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Algorithmes symboliques-numeriques validés et applications au domaine spatial Validated symbolic-numeric algorithms and practical applications in aerospace

From the Shakuhachi flute's calm to the tempestuous "Monsieur, vous êtes un con !", from the edge of obsolescence LaTeX books to Bourdieu, from endless debates on world best pastries to LMIs use and limits, from tic-toc-Matlab to simplify-Maple, from recurrences to recurrent issues, from collision probabilities to completely remaking the whole world while drinking (a wide-edge) cup of coffee, Denis inspired, enlightened and helped me starting day one, in such a genuine, original and generous way, that still may be completely incomprehensible for the pragmatic and cynic side of some (even myself). Knowing how hard it is to teach morality to a Carpathian hyena (but also how stubborned some can be when not installing Ubuntu as their main operating system...), I hope we will continue working together, it has been a pleasure and an honor to have you as my parrain. Merci beaucoup, Denis! I would like to express my gratitude to the reviewers of this manuscript:

Introduction

This document surveys the framework, the goals and the main outcomes of my research in the last few years, together with new perspectives. The obtained results mainly correspond to my research plan proposed in my CNRS entrance file, back in 2012. They are outlined by insisting on the underlying ideas, using simple examples and algorithms, without imposing to the reader to go over the technical proofs of the corresponding articles. For completeness, complementary references are pointed out and all my research works are either appended to the text or available online in open access platforms 1 . proved in joint works, this manuscript does not deal with the field of formal proof assistants. To lure the reader into the validated computing field, what can be better than a story about satellites? So here it starts.

Document outline.

In what follows, we overview several results published during January 2013-February 2019. My exhaustive publications list is recalled at the end of this manuscript: references I co-authored are referenced with a specific prefix: B for book, J for journal, C for proceedings in (international) conferences, NC for national conference and R for research report, preprint or other unpublished documents.

• Chapter 1 mainly focuses on computer arithmetic results. Namely, several fast and certified algorithms which implement high-precision arithmetic operations are presented. They use as basic building blocks, the floating-point arithmetic operators (addition, multiplication, division, square root) available in hardware (single or double precision) in common processors nowadays. They are collected in an arithmetic library CAMPARY (CudA Multiple Precision ARithmetic librarY), especially tuned both for CPU or GPU computations, which have a highly parallel computing structure. We analyze its performance on two applications: one concerns the long term iteration of a classical chaotic dynamical system, the Hénon map; the other considers the speedup obtained by using CAMPARY instead of other high-precision libraries in an semidefinite programming (SDP) solver on ill-conditionned instances. The results surveyed in this chapter were published in [B1, J6, J3, J7, C6, C9, C5, C14, C11].

• Chapter 2 considers the framework of symbolic-numeric computations. We present several techniques which mix structural properties, coming from the symbolic field of Linear Ordinary Differential Equations (LODEs) with polynomial coefficients, with efficient numerical routines coming from optimization or approximation theory. Moreover, as mentioned above, efficient algorithms for RPAs are described in several contexts, with a systematic analysis on their operations complexity. These include the efficient evaluation of certain integrals, or the computation of validated solutions of LODEs based on truncated Chebyshev series expansions [J2, J4, J5, C10]. The more general setting of multivariate D-finite functions is exploited in an inverse problem involving measures with holonomic densities and support with real algebraic boundary [C2].

• The theoretical tools developed above are inspired by problems coming from optimal control and aerospace. In Chapter 3, we present two such problems and how the solutions based on our tools improve on classical ones. Firstly, the problem of the efficient and reliable orbital collision risk assessment and mitigation is discussed [J5, C12, C13, R2]. In particular, we give a new method [J5] to compute the orbital collision probability between two spherical objects involved in a short-term encounter, under Gaussian uncertainty. Secondly, we focus on efficient and validated algorithms for impulsive spacecraft rendezvous [C8, J2, C3]. This general aim of meeting two spacecraft, under several position, time, or fuel minimization constraints, is usually formulated as an optimal control problem. In the specific case of fixed-time minimum-fuel rendezvous, with a linear impulsive setting, we proposed a solution via an efficient numerical iterative algorithm. This comes from the formulation of a semi-infinite convex optimization problem (SICP), using a relaxation scheme and duality theory in normed linear spaces. The obtained solution is a posteriori certified based on RPAs.

Incidentally, we observed that the SICP-based formulation also provides a solution to a computer arithmetic problem concerning the mathematical function implementation in machine. This very recent result [C1] closes the circle of this overview.

Chapter 1

Fast and Certified Multiple-Precision Arithmetic

Computer arithmetic is devoted to the study of arithmetic algorithms and the implementation of arithmetic operations and functions, either in software or hardware. Improvements are sought in terms of accuracy, speed or reliability for the arithmetic available on computers, processors, dedicated or embedded chips.

A part of my research concerned the development of high-precision arithmetic algorithms, using as basic building blocks the available arithmetic operators (addition, multiplication, division, square root) for fixed-precision floating-point arithmetic. The idea of creating a high-performance multiple-precision arithmetic library originated from our studies, with W. Tucker (Prof. Uppsala University, Sweden), on some chaotic dynamical systems. Subsequently, with J.-M. Muller (CNRS Researcher, LIP, Lyon, France) and our student V. Popescu, who defended her PhD thesis [START_REF] Popescu | Towards fast and certified multiple-precision libraries[END_REF] in July 2017, we made important progress on this project:

• We doubled the available precision by representing a real number as the unevaluated sum of two floating-point numbers. We revisited and proposed new algorithms, insisting on their correctness proofs together with effective error bounds as well as on their regular and sufficiently simple structure [J3]. As a by-product, these algorithms are amenable to formalization, which is an on-going work of L. Rideau (Inria Researcher, Sophia-Antipolis, Nice, France).

• For multiple-precision, numbers are represented as the unevaluated sum of several (more than two) floating-point numbers. In several contributions [J6, C9, C14, C6], we proposed new algorithms for arithmetic operations designed to fit different needs a user might have: either very tight error bounds on the results (some of which were also formally proved), or "quick-and-dirty" results. In some of these works we also collaborated with O. Marty (student intern), S. Collange (researcher at Inria Rennes) and S. Boldo (researcher at Inria, Orsay, France). These algorithms were collected in an open-source library [C11].

• This library was put to test on two applications: one in the field of chaotic dynamical systems [J7], the other on high-accuracy semidefinite programming [C5].

• Part of the above results were also published in the second edition of the Handbook of FP arithmetic [B1].

In what follows, some preliminary notions of floating-point arithmetic are given, before entering the actual results description in Section 1.2.

A few Floating-Point notions

Definition 1.1.1 (Floating-point number). A binary floating-point (FP) number of precision 𝑝 is a number of the form 𝑀 • 2 𝑒-𝑝+1 , where 𝑀 is an integer of absolute value less than or equal to 2 𝑝 -1 and 𝑒 is an integer such that 𝑒 min 𝑒 𝑒 max , where the extremal exponents 𝑒 min and 𝑒 max are constants of the floating-point format being considered, and with the additional requirement that, unless 𝑒 = 𝑒 min , one has 2 𝑝-1 |𝑀 |.

An FP number is called subnormal when 𝑒 = 𝑒 min and |𝑀 | 2 𝑝-1 -1, otherwise it is called normal.

Currently, most floating-point calculations are done in single precision (also called binary32) or double precision (also called binary64) arithmetic. In binary32 arithmetic, 𝑝 = 24, 𝑒 min = -126, and 𝑒 max = 127, while in binary64 arithmetic, 𝑝 = 53, 𝑒 min = -1022, and 𝑒 max = 1023. Most available processors offer very fast implementations of FP arithmetic in these two formats, and comply with the IEEE 754-2008 standard for FP arithmetic [START_REF]IEEE Standard for Floating-Point Arithmetic. IEEE Standard[END_REF]. The IEEE 754-2008 standard defines five rounding functions (round downwards, upwards, towards zero, to the nearest ties to even, and to the nearest ties to away). When an arithmetic operation is performed, the result must be that which would be obtained by performing the operation with infinite precision and then applying the rounding function. Such an operation is said to be correctly rounded.

In such a case, when approximating a nonzero real number 𝑥 ∈ R by RN(𝑥), with RN being the round to nearest rounding mode, the relative error satisfies:

⃒ ⃒ ⃒ ⃒ 𝑥 -RN(𝑥) 𝑥 ⃒ ⃒ ⃒ ⃒ 2 -𝑝 ,
assuming no underflow 1 /overflow occurs. When RN (𝑥) = 𝑥 = 0, the relative error is considered to be 0.

When expressing errors of nearly atomic functions (arithmetic operations, elementary functions, small polynomials, sums, dots products, etc.) it is advisable and frequently more accurate to do it in terms of the weight of the last bit of the significand, which is defined in [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF]: Definition 1.1.2 (Goldberg's definition, extended to reals). If |𝑥| ∈ [2 𝑒𝑥 , 2 𝑒𝑥+1 ), then the unit in the last place of 𝑥 is ulp(𝑥) = 2 max(𝑒𝑥,𝑒min)-𝑝+1 .

Roughly speaking, from the above definitions one has 53 correct bits or 15 correct decimal digits, when rounding a real number to binary64, when no overflow/underflow occurs. Formally, this is expressed by the following notion, which is widely used in numerical analysis [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF]: Definition 1.1.3 (Unit roundoff). The unit roundoff u of a precision-𝑝, binary FP system is

u = ⎧ ⎪ ⎨ ⎪ ⎩ 1 2 ulp(1) = 2 -𝑝 in round-to-nearest mode, ulp (1) 
= 2 1-𝑝 in directed rounding modes.

Note that the distance between 1 and its FP successor is ulp(1) = 2 1-𝑝 , which is also called machine epsilon. In particular, this is what the Matlab function eps returns. Hence, this coincides with the definition of unit roundoff for directed rounded modes, but not for rounding to nearest.

However, several computing problems require higher precision (also called multiple precision), up to a few hundred bits. Examples include problems in the field of chaotic dynamical systems (like the long-term stability of the solar system [START_REF] Laskar | Existence of collisional trajectories of Mercury, Mars and Venus with the Earth[END_REF], long-term iteration of the Lorenz attractor [START_REF] Barrio | A database of rigorous and high-precision periodic orbits of the Lorenz model[END_REF], the study of strange attractors such as the Hénon attractor [J7]), ill-posed semi-definite positive optimization problems that appear in quantum chemistry or quantum information [START_REF] Simmons-Duffin | A Semidefinite Program Solver for the Conformal Bootstrap[END_REF]. We also mention the use of higher precision in computational geometry, where several of the techniques we use were introduced for the first time [START_REF] Priest | Algorithms for arbitrary precision floating point arithmetic[END_REF]. 1 Let us say, as does the IEEE 754 standard, that an operation underflows when the result is subnormal and inexact.

Extending the precision

There exist multiple-precision libraries that allow the manipulation of very high-precision numbers, but their generality (they are able to handle numbers with millions of digits) typically comes at the expense of performance. The reader can for instance refer to [START_REF] Brent | Modern Computer Arithmetic[END_REF] for state-of-the-art algorithms in this case, and to MPFR Library for efficient implementations [START_REF] Fousse | MPFR: A Multiple-Precision Binary Floating-Point Library with Correct Rounding[END_REF].

To harness the availability and efficiency of the hardware implementations of the standard, our approach consisted in representing higher precision numbers as floating-point expansions. These are unevaluated sums of several floating-point numbers of different magnitudes. Such a representation is possible thanks to the availability of error-free transforms, namely algorithms that allow to compute the error of a FP addition or multiplication exactly, taking the rounding mode into account.

More specifically, the sum of two floating-point numbers can be represented exactly (in the sense of dyadic numbers) as a floating-point number which is the correct rounding of the sum, plus another floating-point number corresponding to the remainder. Under certain assumptions, this decomposition can be computed at a very low cost. For example, when RN is round-to-nearest ties to even and |𝑎| |𝑏|, the following simple algorithm (called "Fast2Sum" in the literature [START_REF] Dekker | A floating-point technique for extending the available precision[END_REF] [B1, Chap. 4]), returns the FP number 𝑠 nearest 𝑎 + 𝑏 and the error of that FP operation, namely 𝑡 = (𝑎 + 𝑏) -𝑠: Algorithm 1 The Fast2Sum algorithm.

Input: 𝑎 𝑏 𝑠 ← RN(𝑎 + 𝑏) 𝑧 ← RN(𝑠 -𝑎) 𝑡 ← RN(𝑏 -𝑧)
It is thus possible, in this case, to represent and store the exact sum, even in the presence of roundings at the floating-point level. A slightly more complicated algorithm (2Sum), due to Knuth [START_REF] Knuth | The Art of Computer Programming[END_REF] and Møller [START_REF] Møller | Quasi double-precision in floating-point addition[END_REF], deals with the case where |𝑎| is not necessarily larger than |𝑏|.

If an FMA operator is available 2 , then similarly, an algorithm called 2ProdFMA [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF]Chap.4.4] returns the FP number 𝑡 nearest 𝑎𝑏, and the error 𝑒 of that FP multiplication, namely 𝑎𝑏 -𝑡.

Algorithm 2

The 2ProdFMA algorithm.

𝑡 ← RN(𝑎𝑏) 𝑒 ← RN(𝑎𝑏 -𝑡)

Since these algorithms return their result as an unevaluated sum (𝑥 ℎ , 𝑥 ℓ ) of floating-point numbers (with |𝑥 ℓ | much smaller than |𝑥 ℎ |): more precisely, |𝑥 ℓ | 1 2 ulp(𝑥 ℎ )), a natural idea is to extend the precision based on such unevaluated sums of FP numbers. This kind of representation is called doubledouble (DD) when two terms are considered, triple-double (TD) for three terms, quad-double (QD) for four, and so forth. The general case is known under the name of FP expansion.

An important distinction has to be made between double-double arithmetic and conventional quad FP arithmetic (binary128). Double-double arithmetic is not standardized and lacks many nice and clean properties of binary128, like clearly defined rounding modes, for instance (see Table 1.1 for a summary of differences) and due to this, Kahan [START_REF] Kahan | Lecture notes on the status of IEEE-754[END_REF] qualifies double-double arithmetic as an attractive nuisance except for the BLAS and even compares it to an unfenced backyard swimming pool. Indeed, although extensive work has been done in this area (see for instance [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF]Chap. 14] and references therein), many algorithms have been published without a proof, or with error bounds that are not completely explicit (the error is "less than a small integer times 𝑢 2 ").

The attractive advantage is that operations with FP expansions use only hardware implemented and highly optimized FP operations (in binary32 or binary64). One cannot suppress all the drawbacks mentioned by Kahan: clearly, having in hardware a genuine floating-point arithmetic with twice the precision would be a better option. And yet, if rigorously proven and reasonably tight error bounds are provided, expert programmers can rely on multiple-word arithmetic for extending the precision of computations when the available floating-point arithmetic does not suffice. This is often done via so-called compensated algorithms. For instance the above presented 2Sum, Fast2Sum or 2 ProdFMA represent the simplest instances of such algorithms. For operations with more than two FP numbers, compensated algorithms for summation or inner product (as well as precise error bounds) have recently been subject of intensive research, see for instance [START_REF] Jeannerod | Improved error bounds for inner products in floating-point arithmetic[END_REF][START_REF] Rump | Error estimation of floating-point summation and dot product[END_REF][START_REF] Zhu | Algorithm 908: Online exact summation of floating-point streams[END_REF] or [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF]Chap. 5] for a complete account.

A classical successful example comes from the implementation of elementary functions in fixed precision in so-called mathematical libraries (libms), like glibc, Sun libmcr, Intel c ○libm or CRlibm [START_REF] Daramy-Loirat | CR-LIBM, a library of correctly-rounded elementary functions in double-precision[END_REF].

Example of double-double operations in libms.

Roughly speaking if the input 𝑦 of a function, say sin(𝑦), is given with 15 decimal digits of precision, then the result is expected to also have 15 digits of precision. More specifically, some developers of libms aim for correctly rounded sin in double-precision.

To achieve this, usually, one firstly performs a so-called argument reduction. This allows for the input range to be sufficiently small, so that polynomial approximations are efficient. Such polynomials can be evaluated using only basic arithmetic operations like addition and multiplication. But if these operations are all performed in standard double-precision, it is very difficult to guarantee an intermediary extended accuracy that will allow for a final correctly rounded result in double-precision. Let us explain this in more detail in the following Example 1.2.1, taken from the actual sin function implementation in CRLibm [59, B1].

Example 1.2.1. For sine function evaluation, the reduced argument 𝑥 is obtained by subtracting from the floating-point input 𝑦 an integer multiple of 𝜋/256. As a consequence, 𝑥 ∈ [-𝜋/512, 𝜋/512] ⊂ [-2 -7 , 2 -7 ].

Then, one needs to compute the value of the odd polynomial:

𝑝(𝑥) = 𝑥 + 𝑥 3 • (𝑠 3 + 𝑥 2 • (𝑠 5 + 𝑥 2 • 𝑠 7 )),
which is a polynomial close to the Taylor approximation of the sine function. The coefficients 𝑠 1 , 𝑠 3 and 𝑠 5 are represented in binary64 precision arithmetic: 𝑠 3 = -6004799503160661/2 55 , 𝑠 5 = 4803839602528529/2 59 , 𝑠 7 = -3660068268593165/2 64 . However, since 𝑥 is an irrational number, the implementation of the range reduction needs to return a number more accurate than a binary64, such that the intermediary output accuracy for 𝑝(𝑥) allows for subsequent correct rounding of sin(𝑥). The CRlibm [START_REF] Daramy-Loirat | CR-LIBM, a library of correctly-rounded elementary functions in double-precision[END_REF] solution is to consider a double-double representation for 𝑥 = 𝑥 ℎ + 𝑥 𝑙 .

As a numerical example, let 𝑦 = 0.5, and the corresponding reduced argument 𝑥 = 1/2 -41𝜋/256. This is approximated in double-double as the unevaluated sum 𝑥 ℎ +𝑥 𝑙 , with 𝑥 ℎ = -7253486725817229/2 61 and 𝑥 𝑙 = -508039184604813/2 112 .

If one computes directly 𝑝(𝑥 ℎ + 𝑥 𝑙 ) with the following Horner scheme and binary64 precision:

𝑝 𝑒𝑣𝑎𝑙 (𝑥 ℎ + 𝑥 𝑙 ) = (𝑥 ℎ + 𝑥 𝑙 ) + (𝑥 ℎ + 𝑥 𝑙 ) 3 • (𝑠 3 + (𝑥 ℎ + 𝑥 𝑙 ) 2 • (𝑠 5 + (𝑥 ℎ + 𝑥 𝑙 ) 2 • 𝑠 7 )),

Double-word Arithmetic

one obtains a poor accuracy. Note that with this order of operations, the floating-point addition 𝑥 ℎ + 𝑥 𝑙 returns 𝑥 ℎ , so the information held by 𝑥 𝑙 is lost. The other part of the Horner evaluation also has a much smaller magnitude than 𝑦 ℎ , since |𝑦| 2 -7 , which gives ⃒ ⃒ 𝑦 3 ⃒ ⃒ 2 -21 . The following evaluation leads to a much more accurate algorithm, since the leftmost addition is performed with an extended precision, namely the above mentioned Fast2Sum algorithm:

𝑠 = 𝑥 𝑙 + (𝑥 ℎ • 𝑥 ℎ • 𝑥 ℎ • (𝑠 3 + (𝑥 ℎ • 𝑥 ℎ • (𝑠 5 + (𝑥 ℎ • 𝑥 ℎ • 𝑠 7 ))))),

𝑝 ′

𝑒𝑣𝑎𝑙 (𝑥 ℎ + 𝑥 𝑙 ) = Fast2Sum(𝑥 ℎ , 𝑠).

For our numerical example, one obtains 𝑝 ′ 𝑒𝑣𝑎𝑙 = -7253474763108583/2 61 + 82031/2 79 . This allows for 72 bits of accuracy in the evaluation of 𝑝 compared with 54 for the first evaluation scheme. Note that for both evaluation schemes only standard binary64 operations are used: the second one performs 2 more additions than the first one (by executing the Fast2Sum algorithm) and yet, it allows for an accuracy extension by 33%. This shows that it is possible to compute very accurate values, even in the presence of roundings at the floating-point level, by using only standard precision floating-point arithmetic operations.

Hence, our goal was to extend these ideas and obtain new algorithms for floating-point expansions, provide a very efficient implementation and prove tight error bounds. For several fixed extended precisions (e.g., 2 doubles, 4 doubles), we aimed for performances similar to those of the native format. For that, existing algorithms were improved to be sufficiently simple and regular. This was needed for facilitating their implementation on highly parallel architectures, but also for allowing their formal proof at reasonable cost, since proofs of these algorithms get very tricky. This work resulted in the CAMPARY: CudA Multiple Precision ARithmetic librarY project. A brief summary of the obtained results [B1, J3, J6, J7, C5, C6, C9, C11, C14] is given in what follows.

Double-word Arithmetic

Double-word arithmetic (also known as double-double, when the underlying FP format is binary64) consists in representing a real number as the unevaluated sum of two FP numbers. Definition 1.3.1 (Double-word). A double-word number 𝑥 is the unevaluated sum 𝑥 ℎ + 𝑥 ℓ of two floatingpoint numbers 𝑥 ℎ and 𝑥 ℓ such that

𝑥 ℎ = RN(𝑥).
We provided a rigorous error analysis of existing algorithms for double-word arithmetic (addition, multiplication, division), introduced a new one for multiplying two double-word numbers, suggested an improvement of the algorithms used in the QD library for dividing a double-word number by an FP number and for dividing two double-word numbers. We have also suggested a new algorithm for dividing two double-word numbers when an FMA instruction is available. Table 1.2 summarizes the obtained results. For the functions for which an error bound was already published, we always obtain a significantly smaller bound, except in one case, for which the previously known bound turned out to be slightly incorrect. Our results make it possible to have more trust in double-word arithmetic. For completeness, we provide: Algorithm 3 and Algorithm 4 which perform addition in a very accurate way; Algorithms 5 and 6 which multiply a double-word with an FP (and respectively two double-words) in 6 (and respectively 9) FP operations when an FMA is available and Algorithm 7 for the division of two double-words with a good accuracy/performance compromise. Algorithm 3 -DWPlusFP(𝑥 ℎ , 𝑥 ℓ , 𝑦). 

1: (𝑠 ℎ , 𝑠 ℓ ) ← 2Sum(𝑥 ℎ , 𝑦) 2: 𝑣 ← RN(𝑥 ℓ + 𝑠 ℓ ) 3: (𝑧 ℎ , 𝑧 ℓ ) ← Fast2Sum(𝑠 ℎ , 𝑣) 4: return (𝑧 ℎ , 𝑧 ℓ ) Algorithm 4 -AccurateDWPlusDW(𝑥 ℎ , 𝑥 ℓ , 𝑦 ℎ , 𝑦 ℓ ). 1: (𝑠 ℎ , 𝑠 ℓ ) ← 2Sum(𝑥 ℎ , 𝑦 ℎ ) 2: (𝑡 ℎ , 𝑡 ℓ ) ← 2Sum(𝑥 ℓ , 𝑦 ℓ ) 3: 𝑐 ← RN(𝑠 ℓ + 𝑡 ℎ ) 4: (𝑣 ℎ , 𝑣 ℓ ) ← Fast2Sum(𝑠 ℎ , 𝑐) 5: 𝑤 ← RN(𝑡 ℓ + 𝑣 ℓ ) 6: (𝑧 ℎ , 𝑧 ℓ ) ← Fast2Sum(𝑣 ℎ , 𝑤) 7: return (𝑧 ℎ , 𝑧 ℓ ) Algorithm 5 -DWTimesFP3(𝑥 ℎ , 𝑥 ℓ , 𝑦). 1: (𝑐 ℎ , 𝑐 ℓ1 ) ← 2ProdFMA(𝑥 ℎ , 𝑦) 2: 𝑐 ℓ3 ← FMA(𝑥 ℓ , 𝑦, 𝑐 ℓ1 ) 3: (𝑧 ℎ , 𝑧 ℓ ) ← Fast2Sum(𝑐 ℎ , 𝑐 ℓ3 ) 4: return (𝑧 ℎ , 𝑧 ℓ ) Algorithm 6 -DWTimesDW3(𝑥 ℎ , 𝑥 ℓ , 𝑦 ℎ , 𝑦 ℓ ). 1: (𝑐 ℎ , 𝑐 ℓ1 ) ← 2ProdFMA(𝑥 ℎ , 𝑦 ℎ ) 2: 𝑡 ℓ0 ← RN(𝑥 ℓ • 𝑦 ℓ ) 3: 𝑡 ℓ1 ← FMA(𝑥 ℎ , 𝑦 ℓ , 𝑡 ℓ0 ) 4: 𝑐 ℓ2 ← FMA(𝑥 ℓ , 𝑦 ℎ , 𝑡 ℓ1 ) 5: 𝑐 ℓ3 ← RN(𝑐 ℓ1 + 𝑐 ℓ2 ) 6: (𝑧 ℎ , 𝑧 ℓ ) ← Fast2Sum(𝑐 ℎ , 𝑐 ℓ3 ) 7: return (𝑧 ℎ , 𝑧 ℓ ) Algorithm 7 -DWDivDW3(𝑥 ℎ , 𝑥 ℓ , 𝑦 ℎ , 𝑦 ℓ ). 1: 𝑡 ℎ ← RN(1/𝑦 ℎ ) 2: 𝑟 ℎ ← FMA(-𝑦 ℎ , 𝑡 ℎ , 1) //exact operation 3: 𝑟 ℓ ← RN(-𝑦 ℓ • 𝑡 ℎ ) 4: (𝑒 ℎ , 𝑒 ℓ ) ← Fast2Sum(𝑟 ℎ , 𝑟 ℓ ) 5: (𝛿 ℎ , 𝛿 ℓ ) ← DWTimesFP3(𝑒 ℎ , 𝑒 ℓ , 𝑡 ℎ ) 6: (𝑚 ℎ , 𝑚 ℓ ) ← DWPlusFP(𝛿 ℎ , 𝛿 ℓ , 𝑡 ℎ ) 7: (𝑧 ℎ , 𝑧 ℓ ) ← DWTimesDW3(𝑥 ℎ , 𝑥 ℓ , 𝑚 ℎ , 𝑚 ℓ ) 8: return (𝑧 ℎ , 𝑧 ℓ )
? 2𝑢 2 + 5𝑢 3 2𝑢 2 -6𝑢 3 10 DW + DW [J3, Algorithm 5] N/A N/A 1 11 Algorithm 4 2𝑢 2 (incorrect) 3𝑢 2 + 13𝑢 3 2.25𝑢 2 20 DW × FP [J3, Algorithm 7] 4𝑢 2 1.5𝑢 2 + 4𝑢 3 1.5𝑢 2 10 [J3, Algorithm 8] ? 3𝑢 2 2.517𝑢 2 7 Algorithm 5 N/A 2𝑢 2 1.984𝑢 2 6 DW × DW [J3, Algorithm 10] 11𝑢 2 7𝑢 2 4.9916𝑢 2 9 [J3, Algorithm 11] N/A 6𝑢 2 4.9433𝑢 2 8 Algorithm 6 N/A 5𝑢 2 3.936𝑢 2 9 DW ÷ FP [J3, Algorithm 13] 4𝑢 2 3.5𝑢 2 2.95𝑢 2 16 [J3, Algorithm 14] N/A 3.5𝑢 2 2.95𝑢 2 10 DW ÷ DW [J3, Algorithm 16] ? 15𝑢 2 + 56𝑢 3 8.465𝑢 2 24 [J3, Algorithm 17] N/A 15𝑢 2 + 56𝑢 3 8.465𝑢 2 18 Algorithm 7 N/A 9.8𝑢 2 5.922𝑢 2 31 
Table 1.2 -Summary of the results presented in [J3], where DW stands for double-word; N/A means that the algorithm existed before, but no bound was proven, ? means that the algorithm was given for the first time in our work.

FP Expansions

Next, we focused on FP expansions with more than two FP terms i.e., numbers are represented as the unevaluated sum of more than two standard precision FP. for all 0 𝑖 < 𝑚 -1). Each 𝑥 𝑖 is called a component (or a term) of 𝑥.

In the case of two terms, the additional condition:

𝑥 𝑖+1 1 2 ulp(𝑥 𝑖 ), (1.1) 
appears naturally when expressing the rounded-to-nearest sum of two numbers and their rounding error. This requirement was generalized for more terms by Hida, Li, and Bailey [START_REF] Hida | Algorithms for quad-double precision floating-point arithmetic[END_REF]. While not imposing unicity, such constraint usually called nonoverlapping representation, ensures compacity: it takes fewer terms for achieving the same accuracy. Many similar notions on nonoverlapping were defined in literature firstly by Priest [START_REF] Priest | Algorithms for arbitrary precision floating point arithmetic[END_REF], then Shewchuk [START_REF] Shewchuk | Adaptive precision floating-point arithmetic and fast robust geometric predicates[END_REF], followed by Bailey QD library [START_REF] Hida | Algorithms for quad-double precision floating-point arithmetic[END_REF].

An expansion may contain interleaving zeros, but the definitions that follow apply only to the nonzero terms of the expansion (i.e., the sequence 𝑦 in Definition 1.4.1).

According to Shewchuk [START_REF] Shewchuk | Adaptive precision floating-point arithmetic and fast robust geometric predicates[END_REF], nonzero-overlapping expansions, are defined as follows:

Definition 1.4.2 (𝒮-nonoverlapping Expansion). A floating-point expansion 𝑥 0 + 𝑥 1 + • • • + 𝑥 𝑛-1 is 𝒮-nonoverlapping (that is, nonoverlapping according to Shewchuk's definition) if for all 1 𝑖 𝑛 -1, we have 𝑒 𝑥𝑖-1 -𝑒 𝑥𝑖 𝑝 -𝑧 𝑥𝑖-1
, where 𝑒 𝑥𝑖-1 and 𝑒 𝑥𝑖 are the exponents of 𝑥 𝑖-1 and 𝑥 𝑖 , respectively, and 𝑧 𝑥𝑖-1 is the number of trailing zeros of 𝑥 𝑖-1 .

Note that zero is 𝒮-nonoverlapping with any nonzero floating-point number.

For example, in a binary floating-point system of precision 𝑝 = 4, the numbers 1.100 2 × 2 3 and 1.010 2 × 2 1 are 𝒮-nonoverlapping , whereas they are not nonoverlapping according to (1.1).

In extreme cases, in radix 2, an 𝒮-nonoverlapping expansion with 53 components may not contain more information than one binary64 number (it suffices to put each bit of a floating-point number in a separate component). And yet, 𝒮-nonoverlapping expansions are of interest due to the simplicity of the related arithmetic algorithms. Let us give an important example. First, following Priest [START_REF] Priest | Algorithms for arbitrary precision floating point arithmetic[END_REF], we define expansions whose terms "overlap by at most 0 𝑑 𝑝 -2 bits", where 𝑝 is the underlying precision. Definition 1.4.3. Consider 𝑛 precision-𝑝 floating-point numbers: 𝑥 0 , 𝑥 1 , . . . , 𝑥 𝑛-1 . They overlap by at most 𝑑 binary digits (0 𝑑 < 𝑝) if and only if for all 𝑖, 0 𝑖 𝑛 -2, there exist integers 𝑘 𝑖 , 𝛿 𝑖 such that

2 𝑘𝑖 |𝑥 𝑖 | < 2 𝑘𝑖+1 , (1.2) 2 𝑘𝑖-𝛿𝑖 |𝑥 𝑖+1 | 2 𝑘𝑖-𝛿𝑖+1 , (1.3) 𝛿 𝑖 𝑝 -𝑑, (1.4) 𝛿 𝑖 + 𝛿 𝑖+1 𝑝 -𝑧 𝑖-1 , (1.5) 
where 𝑧 𝑖-1 is the number of trailing zeros at the end of 𝑥 𝑖-1 and for 𝑖 = 0, 𝑧 -1 = 0.

Loosely speaking, this definition states that when written in positional notation, the binary digits of any two successive nonzero terms coincide in at most 𝑑 positions, and no three terms mutually coincide in any digit position.

We proved in [J6] that, under mild assumptions, VecSum(x) (where VecSum is Algorithm 8) which is simply a chain of 2Sum, applied to an expansion 𝑥 with 𝑛 terms, makes it 𝒮-nonoverlapping as soon as its terms overlap by at most 0 𝑑 𝑝 -2 bits. We also prove that for a better performance, when 𝑑 𝑝 -2, the 2Sum calls in the VecSum algorithm can be replaced by calls to Fast2Sum.

The fact that VecSum transforms an expansion whose terms overlap by at most 𝑑 𝑝 -2 bits into an 𝒮-nonoverlapping expansion is important, because an 𝒮-nonoverlapping expansion can easily be transformed into another expansion with a "stronger" nonoverlapping property, that we now define. Algorithm 8 -VecSum(𝑥 0 , . . . , 𝑥 𝑛-1 ).

1: 𝑠 𝑛-1 ← 𝑥 𝑛-1 2: for 𝑖 ← 𝑛 -2 to 0 do 3:

(𝑠 𝑖 , 𝑒 𝑖+1 ) ← 2Sum(𝑥 𝑖 , 𝑠 𝑖+1 ) 4: end for 5: 𝑒 0 ← 𝑠 0 6: return 𝑒 0 , . . . , 𝑒 𝑛-1 

𝑥 0 + 𝑥 1 + • • • + 𝑥 𝑛-1 is ulp-nonoverlapping if for all 1 𝑖 𝑛 -1, |𝑥 𝑖 | ulp(𝑥 𝑖-1 ).
Depending on the nonoverlapping type of an expansion, when using standard floating-point formats as underlying arithmetic, the exponent range forces a constraint on the number of terms. The largest expansion can be obtained when the largest term is close to overflow and the smallest is close to underflow. This gives a maximum ulp-nonoverlapping expansion size of 40 for binary64 and 12 for binary32.

Concerning ulp-nonoverlapping expansions, we proposed several new arithmetic algorithms designed either for efficiency (quick-and-dirty algorthms) or reliability that is, providing tight error bounds on the results. Implemented in CAMPARY library, they are collected and proven in detail in Popescu's PhD dissertation [START_REF] Popescu | Towards fast and certified multiple-precision libraries[END_REF] together with [C14, J6].

We focus here on a renormalization algorithm, which has a key role in restoring the nonoverlapping property after different manipulations with expansions. This algorithm was also formally proved in a joint work with S. Boldo, J.-M. Muller and V. Popescu [C6].

Renormalization of floating-point expansions

We have seen that an expansion that "does not overlap too much" (its terms overlap by at most 𝑑 𝑝 -2 bits) can easily be transformed into an 𝒮-nonoverlapping expansion. Let us now give an algorithm, Vec-SumErrBranch, that transforms an 𝒮-nonoverlapping expansion into an ulp-nonoverlapping expansion.

The VecSumErrBranch algorithm

Algorithm 9 (also represented in Figure 1.2) is a variation of the VecSum Algorithm 8, which starts from the most significant term and instead of propagating the partial sums, propagates the errors. If however, the error after a 2Sum block is zero, the sum is propagated instead. It is formally proved by Boldo et al. [C6] that this algorithm transforms an 𝒮-nonoverlapping expansion into an ulp-nonoverlapping one and that, in all practical cases (in particular, the IEEE formats), 2Sum calls can be safely replaced by Fast2Sum.

Algorithm 9 -VecSumErrBranch(𝑒 0 , . . . , 𝑒 𝑛-1 , 𝑚), where 𝑚 is the number of terms of the result

1: 𝑗 ← 0 2: 𝜀 0 = 𝑒 0 3: for 𝑖 ← 0 to 𝑛 -2 do 4: (𝑟 𝑗 , 𝜀 𝑖+1 ) ← 2Sum(𝜀 𝑖 , 𝑒 𝑖+1 ) 5: if 𝜀 𝑖+1 ̸ = 0 then 6: if 𝑗 𝑚 -1 then 7:
return 𝑟 0 , 𝑟 

The renormalization algorithm

By successively using VecSum and VecSumErrBranch, we can convert an array of numbers overlapping by at most 𝑝 -2 bits into an ulp-nonoverlapping expansion. This gives Algorithm 10 below.

Algorithm 10 -Renormalize(𝑥 0 , . . . , 𝑥 𝑛-1 , 𝑚).

Input: a sequence 𝑥 0 , 𝑥 1 , . . . , 𝑥 𝑛-1 of floating-point numbers overlapping by at most 𝑝 -2 bits.

Output: an ulp-nonoverlapping expansion 𝑟 0 , 𝑟 1 , . . . , 𝑟 𝑚-1 .

(𝑒 0 , 𝑒 1 , . . . , 𝑒 𝑛-1 ) ← VecSum(𝑥 0 , 𝑥 1 , . . . , 𝑥 𝑛-1 ) (𝑟 0 , 𝑟 1 , . . . , 𝑟 𝑚-1 ) ← VecSumErrBranch(𝑒 0 , 𝑒 1 , . . . , 𝑒 𝑛-1 , 𝑚) return 𝑟 0 , 𝑟 1 , . . . , 𝑟 𝑚-1

Renormalization of arbitrary numbers

We have seen how to "renormalize" a sequence that "does not overlap too much". If we are given an arbitrary sequence of floating-point numbers as input, renormalization is still possible, but at a much higher cost. For Algorithm 11, given below, we have proven the following theorem in [J6].

Theorem 1.4.5. Let 𝑥 0 , 𝑥 1 , . . . , 𝑥 𝑛-1 be a sequence of 𝑛 floating-point numbers that may contain interleaving 0s, and let 𝑚 be an integer such that 1 𝑚 𝑛 -1. Provided that no underflow/overflow occurs during the calculations, Algorithm 11 returns the first 𝑚 terms of an ulp-nonoverlapping floating-point expansion

𝑟 = 𝑟 0 + • • • + 𝑟 𝑛-1 such that 𝑥 0 + • • • + 𝑥 𝑛-1 = 𝑟.
Algorithm 11 -Renormalize_arbitrary(𝑥 0 , . . . , 𝑥 𝑛-1 , 𝑚).

Input: an arbitrary sequence 𝑥 0 , 𝑥 1 , . . . , 𝑥 𝑛-1 of floating-point numbers.

Output: an ulp-nonoverlapping expansion 𝑟 0 , 𝑟 1 , . . . , 𝑟 𝑚-1 . 𝑖-1 , 𝑥 𝑖 ) end for (𝑟 0 , 𝑟 1 , . . . , 𝑟 𝑚-1 ) ← VecSumErrBranch(𝑒

𝑒 (0) 0 ← 𝑥 0 for 𝑖 ← 1 to 𝑛 -1 do (𝑒 (𝑖) 0 , 𝑒 ( 
(𝑛-1) 0 , 𝑒 (𝑛-1) 1 , . . . , 𝑒 (𝑛-1) 𝑛-1 , 𝑚) return 𝑟 0 , 𝑟 1 , . . . , 𝑟 𝑚-1

Arithmetic of FP expansions

Based on the above renormalization algorithm one can design other arithmetic operations. For instance, we proved in Popescu's thesis [START_REF] Popescu | Towards fast and certified multiple-precision libraries[END_REF] that by merging two ulp-nonoverlapping expansions in decreasing order of magnitude, and renormalizing the resulting array using Algorithm 10, the output expansion 𝑠, with 𝑟 terms, is ulp-nonoverlapping and satisfies the error bound:

|𝑥 + 𝑦 -𝑠| < 9 2 • 2 -(𝑝-1)𝑟 • (|𝑥| + |𝑦|), (1.6) 
as soon as the underlying precision 𝑝 is at least 4, which always holds in practice. Similarly, we proposed arithmetic algorithms for multiplication, division, reciprocal and square root. We refer the reader to Chap. 3 of Popescu's thesis [START_REF] Popescu | Towards fast and certified multiple-precision libraries[END_REF] for a detailed description all the proposed variants and proofs of error bounds. We provide in Figure 1.3 a summary of error bounds vs. operation count for some of the proposed algorithms with FP expansions of increasing sizes. One can observe that we drastically improved the efficiency compared to Priest [START_REF] Priest | Algorithms for arbitrary precision floating point arithmetic[END_REF] algorithms, while proving good accuracy bounds. 

Applications of CAMPARY

We present two numerical applications of CAMPARY, which make use of both higher-precision and high-performance computations. Firstly, an open question raising in a classical chaotic dynamical system, the Hénon map, is to search for periodic orbits, for values of the parameters close to the classical ones, for which the map is believed to be chaotic. This is hence a very numerically sensitive problem. Our approach [J7], based on extensive long-term numerical iterations of the map, also needs high-performance computing. The second application concerns improving the accuracy of semidefinite programming (SDP) solvers for ill-conditionned instances [C5].

Solutions for these problems are obtained much faster when numerical algorithms are implemented on highly parallel architectures, like for instance GPUs. To this end, CAMPARY is interesting because very few multiple-precision libraries can be ported to GPUs. We provided a CUDA implementation, which is an extension of the C language [162] for NVidia GPUs. Two other similar libraries are GQD [START_REF] Lu | Supporting extended precision on graphics processors[END_REF], which supports double-double (DD) and quad-double (QD) computations, or CUMP [START_REF] Nakayama | Implementation of multiple-precision floating-point arithmetic library for GPU computing[END_REF]. However, these turn out to be suboptimal for our purpose: CUMP is based on the multiple-digit format, for which basic operations are slower than those on multiple-terms, while GQD is multiple terms but limited to 4 doubles.

Finding sinks for Hénon map

Hénon map [START_REF] Hénon | A two-dimensional mapping with a strange attractor[END_REF] can be considered as one of the classic discrete dynamical systems, for which some long-standing questions remain open. It is a two-parameter, invertible map ℎ(𝑥, 𝑦) = (1 + 𝑦 -𝑎𝑥 2 , 𝑏𝑥)., which, depending on 𝑎 and 𝑏, can be chaotic, regular (the attractor of the map is a stable periodic orbit), or a combination of these. It is conjectured that for the classical parameters 𝑎 = 1.4 and 𝑏 = 0.3, the Hénon map is chaotic and supports a strange attractor [START_REF] Hénon | A two-dimensional mapping with a strange attractor[END_REF]. This property has been observed numerically, but the question whether the Hénon attractor is indeed chaotic (trajectories belonging to the attractor are aperiodic and sensitive to initial conditions) remains open.

It is known [START_REF] Benedicks | The dynamics of the Hénon map[END_REF] that there is a set of parameters (near 𝑏 = 0) with positive Lebesgue measure for which the Hénon map has a strange (chaotic) attractor. The parameter space is believed to be densely filled with open regions, where the attractor consists of one or more stable periodic orbits (sinks). In light of this, it is probably impossible to verify that, given a specific point (𝑎, 𝑏) in parameter space, the dynamics of the map generates a strange attractor.

On the other hand, it was more recently proven using validated numerics [START_REF] Galias | Combination of exhaustive search and continuation method for the study of sinks in the Hénon map[END_REF] Proving the existence of such a stable periodic orbit involves a finite (yet challenging) amount of computations, and all necessary conditions are robust (there exists an open set in the parameter space in which all conditions remain true). So, if such a sink exists, we should theoretically be able to find it using high performance computing. In order to find sinks for parameters close to the classical ones, we need to compute very long orbits for a large amount of initial points and parameters, as follows:

(i) for each considered point (𝑎, 𝑏) in parameter space, we perform a large amount of iterations of the Hénon map ℎ for many different initial points. The hope is that at least one of these trajectories will, after some initial transient behaviour, be attracted to what appears to be a periodic orbit. Specifically, given a fixed (𝑎, 𝑏) together with a single initial point (𝑥 0 , 𝑦 0 ), the subsequent computations are governed by two integers 𝑁 𝑡 and 𝑝 𝑚𝑎𝑥 . First, we perform 𝑁 𝑡 iterations of the map ℎ: ℎ(𝑥 0 , 𝑦 0 ), ℎ(ℎ(𝑥 0 , 𝑦 0 )),. . ., ℎ 𝑁𝑡 (𝑥 0 , 𝑦 0 ). These are all discarded, except the final iterate ℎ 𝑁𝑡 (𝑥 0 , 𝑦 0 ), which we continue to follow for another 𝑝 𝑚𝑎𝑥 iterates. At this stage, we examine the piece of orbit ℎ 𝑁𝑡+1 (𝑥 0 , 𝑦 0 ),. . . , ℎ 𝑁𝑡+𝑝𝑚𝑎𝑥 (𝑥 0 , 𝑦 0 ) for any close return. In other words, we attempt to find an integer 1 < 𝑘 < 𝑝 𝑚𝑎𝑥 such that max 𝑘 𝑖=1 ‖ℎ 𝑁𝑡+𝑖 (𝑥 0 , 𝑦 0 )ℎ 𝑁𝑡+𝑖+𝑘 (𝑥 0 , 𝑦 0 )‖ is small. If this succeeds, we may have found a period-𝑘 sink, which we verify a posteriori in a second step. The number 𝑁 𝑡 of transient iterations which are discarded is usually chosen by trial-and-error since it depends on hidden intrinsic properties of the dynamics of the Hénon map. In practice, the following values were employed: 𝑁 𝑡 ∼ 10 9 , 𝑝 𝑚𝑎𝑥 = 5000. Moreover, for each parameter choice, 𝑁 𝑖 ∼ 10 3 different initial points are used. Finally, the entire procedure is repeated for 𝑁 𝑝 ∼ 10 6 parameters near (1.4, 0.3).

(ii) Rigorous numerics (particularly an interval Newton operator [START_REF] Moore | Interval Analysis[END_REF][START_REF] Neumaier | Interval methods for systems of equations[END_REF]) are used to validate/falsify the existence of any sink found in the previous step. This step is not detailed further here, since similar techniques will be discussed in Chapter 2.

With this process, and using only binary64 computations, we found 57 parameters which present stable periodic orbits in 2.94 hours on 2 Nvidia GeForce Tesla C2075 GPU with 448 cores, 1.15GHz. A 21.5x speedup was obtained by our CUDA C implementation vs. a C implementation with OpenMP on Intel(R) Core(TM) i7 CPU 3820, 3.6GHz, 4 cores, 8 threads. This computation confirmed the results obtained in [START_REF] Galias | Combination of exhaustive search and continuation method for the study of sinks in the Hénon map[END_REF]. When increasing the precision, two orbits given in [START_REF] Galias | Is the Hénon attractor chaotic? Chaos: An Interdisciplinary[END_REF] and Table 1.3, were obtained using our GPU implementation. Compared with GQD, our implementation was 1.6 (and respectively 2.8) times faster for double-double (and respectively quad-double) computations.

𝑃

𝑑 𝑟 41 4.73𝑒-10 3.31𝑒-17 47 1.47𝑒-10 1.17𝑒-20 Table 1.3 -Hénon map sinks found using CAMPARY on GPU [START_REF] Galias | Is the Hénon attractor chaotic? Chaos: An Interdisciplinary[END_REF]. 𝑃 is the period, 𝑑 is the distance to the point (1.4, 0.3), 𝑟 is the minimum immediate basin radius.

The closest to the classical parameters sink (of period 115) known to-date [START_REF] Galias | Is the Hénon attractor chaotic? Chaos: An Interdisciplinary[END_REF] is given by parameters: 𝑎 = 1.39999999999999999999968839903277301984563091568983, and

𝑏 = 0.29999999999999999999944845519288458244332946957783,
and for which the periodic window is 𝑑 = 6.335𝑒-22 [START_REF] Galias | Is the Hénon attractor chaotic? Chaos: An Interdisciplinary[END_REF]. Hence, the periodic windows are very narrow and the transient time to corresponding sinks can be extremely long, which implies that "it is practically impossible to observe such sinks in simulations" [START_REF] Galias | Is the Hénon attractor chaotic? Chaos: An Interdisciplinary[END_REF]. This result draws a line on this search for sinks, for this particular system. On the one hand it proved that our arithmetic library is efficient, but on the theoretical side it also implied that there is no point in trying to get closer in parameter space. We continue to work with W. Tucker on different dynamical systems, as further explained in Chapter 4.

Performance assessment of CAMPARY with SDPA

Semidefinite programming (SDP) is an important branch of convex optimization and can be seen as a natural generalization of linear programming to the cone of symmetric matrices with non-negative eigenvalues, i.e. positive semidefinite matrices. However, certain SDP instances are ill-posed and need more accuracy than that provided by the standard double-precision. Moreover, these problems are large-scale and could benefit from parallelization on specialized architectures such as GPUs. Examples of such problems appear in the high-accuracy computation of kissing numbers, i.e. the maximal number of non-overlapping unit spheres that simultaneously can touch a central unit sphere [START_REF] Mittelmann | High-accuracy semidefinite programming bounds for kissing numbers[END_REF]; bounds from binary codes; control theory and structural design optimization (e.g., the wing of Airbus A380) [START_REF] De Klerk | A new library of structured semidefinite programming instances[END_REF]; quantum information and physics [START_REF] Simmons-Duffin | A Semidefinite Program Solver for the Conformal Bootstrap[END_REF].

Numerical inaccuracies when solving SDP with finite precision appear for two main reasons. On the one hand, strong duality does not always hold. In practice, the method of choice for SDP solving is based on interior-point algorithm, like the primal-dual path-following interior-point method (PDIPM) [START_REF] Monteiro | Primal-dual path-following algorithms for semidefinite programming[END_REF]. This algorithm is considered in literature as theoretically mature and is widely accepted and implemented in most state-of-the-art SDP solvers like SDPA [START_REF] Yamashita | Latest Developments in the SDPA Family for Solving Large-Scale SDPs[END_REF], CSDP [START_REF] Borchers | CSDP, a C library for semidefinite programming[END_REF], SeDuMi [START_REF] Sturm | Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones[END_REF], SDPT3 [START_REF] Tütüncü | Solving semidefinite-quadratic-linear programs using SDPT3[END_REF]. However, problems which do not have an interior feasible point induce numerical instability and may result in inaccurate calculations or non-convergence. The SPECTRA package [START_REF] Henrion | SPECTRA -a Maple library for solving linear matrix inequalities in exact arithmetic[END_REF] proposes to solve such problems with exact rational arithmetic, but the instances treated are small and this package does not aim to be a concurrent of general numerical solvers.

On the other hand, even for problems which have interior feasible solutions, numerical inaccuracies may appear when solving with finite precision due to large condition numbers (higher than 10 16 , for example) which appear when solving linear equations. This happens, as explained in [START_REF] Nakata | A numerical evaluation of highly accurate multiple-precision arithmetic version of semidefinite programming solver: SDPA-GMP,-QD and -DD[END_REF], when approaching optimal solutions, since the semidefinite matrices appearing in the primal and dual instances become singular in practice (due to the complementary slackness and optimality condition 𝑋 * 𝑌 * = 0). In this second case, having an efficient underlying multiple-precision arithmetic is crucial to detect (at least numerically) when the convergence issue arises simply from numerical errors due to lack of precision.

This resulted in a recent increased interest in providing both higher-precision (also called multiple precision) and high-performance SDP libraries. We implemented and evaluated the performance of our previously presented arithmetic algorithms of CAMPARY in this context.

To achieve this, CAMPARY was plugged-in for both SDPA CPU and GPU-tuned implementations. Several multiple precision arithmetic libraries like GMP and QD were already ported inside SDPA [START_REF] Nakata | A numerical evaluation of highly accurate multiple-precision arithmetic version of semidefinite programming solver: SDPA-GMP,-QD and -DD[END_REF]. We compared and contrast both the numerical accuracy and performance of SDPA-GMP, -QD and -DD, which employ other multiple-precision arithmetic libraries against SDPA-CAMPARY. We showed that CAMPARY is a very good trade-off for accuracy and speed when solving ill-conditioned SDP problems. For that, an important contribution was a multiple precision GPU compatible general matrix multiplication routine RGEMM that can be used in SDPA. This routine runs at up to 83% of the theoretical GPU peak-performance and allows for an average speedup of one order of magnitude for SDP instances run in multiple precision with SDPA-CAMPARY and GPU support compared to SDPA-CAMPARY on CPU only, as showed in Figure 1.5a. 3Concerning our GPU implementation, performance results for 𝑛-double RGEMM are shown in Figure 1.5b. It is important to note that the RGEMM implementation is quite efficient with: 83% of theoretical peak performance for DD, respectively 43% for TD, 50% for 4D, 57% for 5D, 61% for 6D, 57% for 8D, while other implementations [START_REF] Tan | Fast implementation of dgemm on fermi gpu[END_REF] of DGEMM (matrix multiplication in double precision) attain 58 -70% of the theoretical peak performance. Our DD implementation is slower by ∼ 10% than the implementation in [START_REF] Nakata | A fast implementation of matrix-matrix product in double-double precision on NVIDIA C2050 and application to semidefinite programming[END_REF], which can be explained by the generality of our code.

We conclude by comparing in Table 1.4 the performance obtained on the CPU for a classical problem in coding theory: finding the largest set of binary words with n letters, such that the Hamming distance between two words is at least d. This is reformulated as a maximum stable set problem, which is solved with SDP by Schrijver [START_REF] Schrijver | New code upper bounds from the terwilliger algebra and semidefinite programming[END_REF] and Laurent [START_REF] Laurent | Strengthened semidefinite programming bounds for codes[END_REF]. Instances for such problems are taken from [START_REF] De Klerk | A new library of structured semidefinite programming instances[END_REF]. The comparison is done between SDPA-DD, SDPA-GMP (run with 106 bits of precision) and SDPA-CAMPARY-DD. The accuracy of the obtained results is similar, while our library has better timings. Some instances do not converge when DD precision is used. We also include the results obtained with the SDPA-CAMPARY with triple-double (TD) precision, which has a better performance comparing to SDPA-GMP with 106 bits of precision. 

Conclusion

Nowadays, very efficient arithmetic operations with double-precision floating-point numbers compliant with the IEEE-754 standard are available on most recent computers. However, when more than doubleprecision/binary64 (53 bits) is required, especially in the HPC context, few multiple-precision arithmetic libraries exist, and the trade-off between performance versus reliability is still a challenge. In this sense, we summarized some of our recent results obtained during the master/PhD thesis of my student V.

Problem SDPA-DD SDPA-CAMPARY-DD SDPA-CAMPARY-TD SDPA-GMP Laurent_A [START_REF] Betts | Practical methods for optimal control and estimation using nonlinear programming[END_REF][START_REF] Alfano | Satellite conjunction Monte Carlo analysis[END_REF] optimal: -2 1.4 -The optimal value, iterations and time for solving some ill-posed problems for binary codes by SDPA-DD, -CAMPARY-DD, -CAMPARY-TD, and -GMP-DD. * problems that converge to more than two digits only when using quad-double precision. ** problems that converge to more than two digits with precision higher that quad-double. The digits written with blue were obtained only when triple-double precision was employed.

Popescu. We proposed to represent and compute with multiple-precision numbers via unevaluated sums of standard machine precision floating-point numbers, so-called floating-point expansions. This approach allows to directly benefit from the available and efficient hardware implementation of the IEEE-754 standard. We improved or designed several new algorithms for performing basic arithmetic operations using this extended format. For all the algorithms, we gave rigorous correctness and error bound proofs as well as an implementation in our multiple-precision arithmetic library, CAMPARY.

Our work focused not only on the arithmetic details and technicalities, but also on the applications of CAMPARY. Related future works are discussed in Chapter 4.

Chapter 2

Symbolic-Numeric Computations

In the last 15 years, the increasing demands in both speed and reliability in scientific and engineering computing, contributed to the merging of symbolic and numeric computations, which were coexisting, but traditionnally separated research branches in computational mathematics [START_REF] Wang | Symbolic-numeric computation[END_REF][START_REF] Langer | Numerical and Symbolic Scientific Computing: Progress and Prospects[END_REF]. In this framework, I worked on techniques mixing structural properties (coming from the symbolic field) of Linear Ordinary Differential Equations (LODEs) with polynomial coefficients, with efficient numerical routines coming from optimization or approximation theory. Moreover, an important aspect pertaining to this last area, is not only to compute approximations, but also enclosures of the approximation errors, which give an effective quality measurement of the computation. All in all, the goal is to provide very efficient algorithms (with proven theoretical complexity) which provide accurate and reliable approximate solutions together with effective (approximation and rounding) error bounds. In this context, three contributions are presented in what follows:

1. We proposed a new accurate, reliable and efficient method to evaluate 2D Gaussians on disks [J5]. This result is employed for the computation of orbital collision probability between two spherical space objects involved in a short-term encounter as detailed in Chapter 3.

2. Motivated by this preliminary work and its links with the algebraic structure of moments of Gaussian measures supported on semi-algebraic sets, we extended a study of Lasserre and Putinar [START_REF] Lasserre | Algebraic-exponential data recovery from moments[END_REF] to inverse problems involving measures with holonomic densities and support with real algebraic boundary. In the framework of holonomic distributions (i.e. they satisfy a holonomic system of linear partial or ordinary differential equations with polynomial coefficients), our results exploit the linear recurrence structure of corresponding moments [C2].

3. The two previous contributions make use of algebraic properties of power series solutions of D-finite/holonomic linear differential (systems) of equations. A related aspect, which is important in approximation problems, is to consider other orthogonal series expansions. We focused on the efficient computation of truncated Chebyshev series (together with rigorous approximation error bounds) for D-finite functions in two recent articles [J4, J2]. It is important to remark that the theoretical tools developed for these works were inspired by practical applications coming either from the conception of mathematical libraries (which corresponds to my PhD background) or from the aerospace domain (which corresponds to some of my current research activities as a member of MAC team) and which will be detailed in Chapter 3.

Computation and complexity model

Our numerical algorithms rely on floating-point arithmetics, either in standard double precision, or in arbitrary precision when needed. In the later case, GNU-MPFR library [START_REF] Fousse | MPFR: A Multiple-Precision Binary Floating-Point Library with Correct Rounding[END_REF] is used. For validated computations, we make use of interval arithmetics via the MPFI library [START_REF] Revol | Motivations for an arbitrary precision interval arithmetic and the MPFI library[END_REF].Complexity results are given in the uniform complexity model: all basic arithmetic operations (addition, subtraction, multiplication, division and square root), either in rational arithmetic (for symbolic algorithms), floating-point or interval arithmetic, induce a unit cost of time. In particular, we do not investigate the incidence of the precision parameter on the global time complexity.

To provide some common ground for our results, a few introductory notions concerning (univariate) D-finite functions and (multivariate) holonomic functions are given in what follows. Great existing surveys on these topics include that of B. Salvy [START_REF] Salvy | Linear differential equations as a data-structure[END_REF], F. Chyzak [START_REF] Chyzak | The ABC of Creative Telescoping: Algorithms, Bounds, Complexity. Memoir of accreditation to supervise research (HDR)[END_REF] or C. Koutschan [START_REF] Koutschan | Advanced applications of the holonomic systems approach[END_REF].

Differential finiteness

Rougly speaking, for the definitions in this section, the numbers involved are rational. Formally, one can consider a field K, which is a real finite computable extension of Q.

Univariate case

D-finite (differentially finite) functions are functions satisfying a linear differential equation with polynomial coefficients. A simple example is the exponential function exp which satisfies exp ′exp = 0. To specify a D-finite function 𝑦, a linear homogeneous differential equation of order 𝑟 with polynomial coefficients

𝐿 • 𝑦 = 𝑎 𝑟 𝑦 (𝑟) + 𝑎 𝑟-1 𝑦 (𝑟-1) + • • • + 𝑎 0 𝑦 = 0, 𝑎 𝑖 ∈ K[𝑥], (2.1) 
together with 𝑟 initial values

𝑦 (𝑖) (0) = ℓ 𝑖 , 0 𝑖 𝑟 -1, (2.2) 
is considered such that 𝑦 is its unique solution. This specification can be seen as a data structure, because many mathematical properties of 𝑦 can be inferred directly from this equation. Such a data structure can represent the vast majority of functions commonly used in mathematics and physics, which turn out to be D-finite functions, e.g. exp, sin, cos, their hyperbolic counterpart and their functional inverses (arc trigonometric and arc hyperbolic functions), Bessel, Airy functions, etc. Instead of adopting a closed-formula representation for each such function, one can consider only the LODE satisfied by the function and suitable initial conditions, which is also a finite data-structure. This allowed for the development of a uniform theoretic and algorithmic treatment of these functions, an idea that has led to many applications in recent years in the context of Symbolic Computation [START_REF] Zeilberger | A holonomic systems approach to special functions identities[END_REF][START_REF] Salvy | Linear differential equations as a data-structure[END_REF][START_REF] Salvy | Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable[END_REF][START_REF] Bostan | Low complexity algorithms for linear recurrences[END_REF][START_REF] Bostan | Products of ordinary differential operators by evaluation and interpolation[END_REF][START_REF] Benoit | Quasi-optimal multiplication of linear differential operators[END_REF][START_REF] Bostan | Fast computation of common left multiples of linear ordinary differential operators[END_REF].

In particular, such functions can be expanded in power series whose coefficients are P-recursive, i.e. they satisfy a linear recurrence with polynomial terms in the index variable [START_REF] Stanley | Differentiably finite power series[END_REF]. For example, let exp(𝑧) = ∑︀ +∞ 𝑛=0 𝑐 𝑛 𝑧 𝑛 , then the recurrence satisfied by the coefficients 𝑐 𝑛 is (𝑛 + 1) • 𝑐 𝑛+1 = 𝑐 𝑛 , 𝑐 0 = 1. Indeed, this class of functions marks an ideal spot at the junction between symbolic and numeric computation.

On the approximation side, D-finite functions possess strong analytic properties that can be exploited in the production of approximations and corresponding error bounds. Power series approximations with tight bounds for this class of functions can then be obtained: this is based on efficient algorithms for computing the 𝑛th coefficient of the power series [START_REF] Chudnovsky | Approximations and complex multiplication according to ramanujan[END_REF], [START_REF] Bostan | Algorithmes efficaces en calcul formel[END_REF]Chap.15] together with algorithms which produce majorant series, whose speed of convergence is controlled [START_REF] Van Der Hoeven | Fast evaluation of holonomic functions[END_REF][START_REF] Mezzarobba | Effective bounds for P-recursive sequences[END_REF]. This also entails efficient numerical evaluations of D-finite functions outside of the disk of convergence of the initial power series, via so-called analytic continuation [START_REF] Van Der Hoeven | Fast evaluation of holonomic functions[END_REF][START_REF] Mezzarobba | Effective bounds for P-recursive sequences[END_REF][START_REF] Bostan | Algorithmes efficaces en calcul formel[END_REF]. M. Mezzarobba ore_algebra_analytic package [START_REF] Mezzarobba | Rigorous multiple-precision evaluation of D-finite functions in SageMath[END_REF][START_REF] Mezzarobba | Truncation bounds for differentially finite series[END_REF] provides a SageMath [START_REF] Stein | Sage Mathematics Software (Version 5.12[END_REF] implementation for these algorithms.

Important properties of D-finite functions include closure under addition, product, Hadamard product, or Laplace/Borel transform. Moreover for algebraic 𝑦 (there exists a non-zero polynomial 𝑃 s.t. 𝑃 (𝑥, 𝑦) = 0), and D-finite 𝑓 , the composition 𝑓 ∘ 𝑦 is D-finite. These properties allow (among others) for proving special functions identities. For instance, one way to prove that two power series are equal is to show that they are both solutions of a common linear differential equation, with the same initial conditions. Thus the computation is reduced to finitely many operations, as shown in the example below.

Example 2.1.1 (Identity proof with D-finite functions). Let us prove the following identity:

arcsin(𝑥) 2 = ∑︁ 𝑘 0 𝑘! (︀ 1 2 )︀ . . . (︀ 𝑘 + 1 2 )︀ 𝑥 2𝑘+2 2𝑘 + 2 . (2.3)
For that, one can proceed as follows:

• Consider the LODE for 𝑦 = arcsin: (1 -𝑥 2 )𝑦 ′′ -𝑥𝑦 ′ = 0, 𝑦(0) = 0, 𝑦 ′ (0) = 1.
• Let ℎ = 𝑦 2 , then, by successive derivations obtain an LODE satisfied by ℎ:

ℎ ′ = 2𝑦𝑦 ′ , ℎ ′′ = 2𝑦 ′2 + 2𝑦𝑦 ′′ = 2𝑦 ′2 + 2𝑥 1 -𝑥 2 𝑦𝑦 ′ , ℎ ′′′ = 4𝑦 ′ 𝑦 ′′ + 2𝑥 1 -𝑥 2 (𝑦 ′2 + 𝑦𝑦 ′′ ) + (︂ 2 1 -𝑥 2 + 4𝑥 2 (1 -𝑥 2 ) 2 )︂ 𝑦𝑦 ′ , = (︂ 4𝑥 + 2 1 -𝑥 2 + 6𝑥 2 (1 -𝑥 2 ) 2 )︂ 𝑦𝑦 ′ + 2𝑥 1 -𝑥 2 𝑦 ′2 .
• The vectors ℎ, ℎ ′ , ℎ ′′ , ℎ ′′′ are linear combination of 3 vectors 𝑦 2 , 𝑦𝑦 ′ , 𝑦 ′2 . One can then compute a linear relation,

(1 -𝑥 2 )ℎ ′′′ -3𝑥ℎ ′′ -ℎ ′ = 0.
• From this relation, one obtains the linear recurrence satisfied by the power series coefficients of ℎ: (𝑛 + 1)(𝑛 + 2)(𝑛 + 3)ℎ 𝑛+3 -(𝑛 + 1) 3 ℎ 𝑛+1 = 0, with given initial conditions ℎ(0) = 0, ℎ ′ (0) = 0, ℎ ′′ (0) = 2. It then suffices to check that Equation (2.3) satisfies this recurrence. Otherwise, one could also directly solve the recurrence in this case, and obtain Equation (2.3).

Many (much more complicated) combinatoric and special functions identities can be proved algorithmically with D-finite functions and are beyond the scope of this report. We mention the fact that the degrees of the polynomial coefficients of the involved LODE can be quite high. A striking example in this context is the recent proof that the complete generating function for Gessel walks is algebraic [START_REF] Bostan | The complete generating function for Gessel walks is algebraic[END_REF], where for instance a candidate differential operator is of order 11 and (bivariate) polynomial coefficients of degrees up to 96 (and respectively 78) and with integer coefficients up to 61 digits.

Multivariate case

Let us now briefly discuss how D-finiteness can be generalized to the multivariate case. For that, note that Equation (2.1) reads in operator form 𝐿 • 𝑦 = 0 and that one can obtain other operators which satisfy (2.1) by multiplying it with 𝑥 or by differentiating it. So it is natural to represent such classes of operators in the Weil algebra D 1 := K[𝑥]⟨𝜕 𝑥 ⟩, generated by {𝑥, 𝜕 𝑥 } and quotiented by the relation: 𝜕 𝑥 𝑥 = 𝑥𝜕 𝑥 + 1, which represents the commutation rule coming from Leibniz law: (𝑥𝑦(𝑥)) ′ = 𝑥𝑦 ′ (𝑥) + 𝑦(𝑥). Instead of a single operator 𝐿, we thus consider all the operators of D 1 which satisfy 𝐿 • 𝑦 = 0. This is called the annihilator Ann(𝑦), which is a left ideal of D 1 :

Ann(𝑦) := {𝐿 ∈ D 1 | 𝐿𝑦 = 0}.
Similarly, one can introduce a discrete analogue for the Weil algebra R 1 := K[𝛼]⟨𝑆 𝛼 ⟩ (the polynomial coefficients are in 𝛼), which is a shift algebra for operators on P-recursive sequences, quotiented by the commutation relation 𝑆 𝛼 𝛼 = 𝛼𝑆 𝛼 + 𝑆 𝛼 . It can be seen that the action of a differential operator 𝐿 ∈ D 1 on the generating function ∑︀ 𝑢 𝛼 𝑥 𝛼 of a sequence (𝑢 𝛼 ) 𝛼∈N corresponds to the action of an operator 𝑆 ∈ R 1 on (𝑢 𝛼 ) 𝛼∈N , via the relations 𝜕 𝑥 = (𝛼 + 1)𝑆 𝛼 and 𝑥 = 𝑆 -1 𝛼 (we can always get rid of the negative powers of shift operators by multiplying through). This provides a formal correspondence between D-finite differential equations and P-recursive power series coefficients, which is further exploited in Section 2.3.

By analogy with the univariate case, we proceed to the multivariate one. From now on, we fix some notations related to multivariable and multiindices: let 𝑛 be a positive integer for the ambient space R 𝑛 , when there is no ambiguity with respect to the univariate case, K[𝑥] is the ring of polynomials in the variables 𝑥 = (𝑥 1 , . . . , 𝑥 𝑛 ) and let K[𝑥] 𝑑 be the vector space of polynomials of total degree at most 𝑑. For every 𝑑, let N 𝑛 𝑑 := {𝛼 ∈ N 𝑛 : |𝛼| 𝑑}, where |𝛼| = ∑︀ 𝑖 𝛼 𝑖 . In a multivariate setting, we denote

𝑥 𝛽 = 𝑥 𝛽1 1 . . . 𝑥 𝛽𝑛 𝑛 and 𝜕 𝛼 𝑥 = 𝜕 𝛼1 𝑥1 . . . 𝜕 𝛼𝑛 𝑥𝑛 for 𝛼, 𝛽 ∈ N 𝑛 . The derivative 𝜕𝑝 𝜕𝑥𝑖 is denoted 𝑝 𝑥𝑖 .
To represent linear partial differential operators which annihilate a multivariate function 𝑓 : K 𝑛 → K, we consider first: (i) The ring of differential operators with polynomial coefficients (the 𝑛-th Weyl algebra)

D 𝑛 := K[𝑥 1 , . . . , 𝑥 𝑛 ]⟨𝜕 𝑥1 , . . . , 𝜕 𝑥𝑛 ⟩,
generated by {𝑥 1 , . . . , 𝑥 𝑛 , 𝜕 𝑥1 , . . . , 𝜕 𝑥𝑛 } and quotiented by the relations:

𝜕 𝑥𝑖 𝑥 𝑗 = {︃ 𝑥 𝑖 𝜕 𝑥𝑖 + 1, 𝑖 = 𝑗, 𝑥 𝑗 𝜕 𝑥𝑖 , 𝑖 ̸ = 𝑗, 𝑥 𝑖 𝑥 𝑗 = 𝑥 𝑗 𝑥 𝑖 , 𝜕 𝑥𝑖 𝜕 𝑥𝑗 = 𝜕 𝑥𝑗 𝜕 𝑥𝑖 .
We have that

{𝑥 𝛽 𝜕 𝛼 𝑥 , 𝛼, 𝛽 ∈ N 𝑛 } is a basis of D 𝑛 as a K-vector space. If 𝐿 = ∑︀ 𝛼,𝛽
𝑐 𝛼,𝛽 𝑥 𝛽 𝜕 𝛼 𝑥 , its order is the largest value of |𝛼| such that there exists 𝛽 with 𝑐 𝛼,𝛽 ̸ = 0. Differential operators in D 𝑛 naturally act on smooth functions 𝑓 via

𝜕 𝑥𝑖 𝑓 = 𝑓 𝑥𝑖 := 𝜕𝑓 𝜕𝑥𝑖 . The annihilator Ann(𝑓 ) is a left ideal of D 𝑛 : Ann(𝑓 ) := {𝐿 ∈ D 𝑛 | 𝐿𝑓 = 0}.
In the multivariate setting, a generalization of D-finiteness is the notion of holonomicity. Namely, a multivariate function 𝑓 is called holonomic if there exists such an annihilator Ann(𝑓 ) in D 𝑛 , which is holonomic. This notion has its origin in D-module theory and we provide a formal definition for completeness. 

D 𝑛 I )︁ 𝑠 = Span K {︀ [𝑥 𝛽 𝜕 𝛼 𝑥 ] I , |𝛼| + |𝛽| 𝑠 }︀ .
Then there exists a polynomial 𝑏(𝑠) ∈ K[𝑠] such that dim K (D 𝑛 /I) 𝑠 = 𝑏(𝑠) for 𝑠 large enough. The degree of 𝑏(𝑠) is called the Bernstein dimension of D 𝑛 /I. The left ideal I is called holonomic if the Bernstein dimension of D 𝑛 /I is equal to 𝑛.

When dealing with partial differential equations instead of operators, a holonomic system is a maximally overdetermined system, in the sense that there are as many linear partial differential equations with polynomial coefficients as possible.

Similarly, R 𝑛 := K[𝛼 1 , . . . , 𝛼 𝑛 ]⟨𝑆 𝛼1 , . . . , 𝑆 𝛼𝑛 ⟩ is the set of difference operators with polynomial coefficients in 𝛼, acting on sequences 𝑢 = (𝑢(𝛾 1 , . . . , 𝛾 𝑛 )) 𝛾∈N 𝑛 via

(𝛼 𝑖 𝑢)(𝛾 1 , . . . , 𝛾 𝑛 ) = 𝛾 𝑖 𝑢(𝛾 1 , . . . , 𝛾 𝑛 ), (𝑆 𝛼𝑖 𝑢)(𝛾 1 , . . . , 𝛾 𝑛 ) = 𝑢(𝛾 1 , . . . , 𝛾 𝑖 + 1, . . . , 𝛾 𝑛 ), 𝛾 ∈ N 𝑛 .
The annihilator Ann(𝑢) = {𝑅 ∈ R 𝑛 | 𝑅 𝑢 = 0} is the set of recurrence relations satisfied by 𝑢, which is holonomic when its generating series is holonomic [START_REF] Chyzak | The ABC of Creative Telescoping: Algorithms, Bounds, Complexity. Memoir of accreditation to supervise research (HDR)[END_REF].

Using the theory of D-modules, similar closure properties (under addition, multiplication, definite integration or antiderivative with respect to a variable) to the univariate case can be proved. Unfortunately, the existent algorithms, which execute these closure properties using the representation with holonomic ideals, are not as efficient as those developed for another ring D * 𝑛 of differential operators defined below, which proves better suited algorithmically for certain classes of functions:

(ii) The ring of differential operators with rational fraction coefficients D * 𝑛 := K(𝑥 1 , . . . , 𝑥 𝑛 )⟨𝜕 1 , . . . , 𝜕 𝑛 ⟩, (rational differential Ore algebra) where the commutation rules of D 𝑛 are extended by

𝜕 𝑥𝑖 𝑞(𝑥) = 𝑞(𝑥)𝜕 𝑥𝑖 + 𝜕𝑞(𝑥) 𝜕𝑥 𝑖 , 𝑞(𝑥) ∈ K(𝑥 1 , . . . , 𝑥 𝑛 ).
One can also see Ann(𝑓 ) as a left ideal of D * 𝑛 , and the quotient D * 𝑛 /Ann(𝑓 ) as a K(𝑥 1 , . . . , 𝑥 𝑛 )-vector space. A smooth function 𝑓 is called 𝐷-finite if D * 𝑛 /Ann(𝑓 ) has finite dimension. Equivalently, its iterated derivatives {𝜕 𝛼 𝑥 𝑓, 𝛼 ∈ N 𝑛 } form a finite-dimensional vector space over rational fractions.

Both (i) and (ii) can be seen as so-called Ore algebras, where one can represent in a unified framework differential, difference (or mixed) operators [START_REF] Chyzak | The ABC of Creative Telescoping: Algorithms, Bounds, Complexity. Memoir of accreditation to supervise research (HDR)[END_REF][START_REF] Koutschan | Advanced applications of the holonomic systems approach[END_REF]. An Ore polynomial ring is obtained by applying Ore extensions to some base ring A. An Ore extension adds a new symbol, say 𝜕 to the base ring: this gives a skew polynomial ring, whose elements are polynomials in the new symbol with coefficients in the base ring. The addition in this skew ring is the usual one, while the multiplication is defined by a specific commutation rule:

𝜕𝑎 = 𝜎(𝑎)𝜕 + 𝛿(𝑎), for all 𝑎 ∈ A,
where 𝜎 and 𝛿 are linear maps on the base ring, with specific properties (mainly they fulfill a skew Leibniz law). Note that in contrast to the Weyl algebra the non-commutativity, is now between the variables of the polynomial ring and its coefficients. Concrete rings of differential/difference operators are obtained depending on how 𝜕, 𝜎, and 𝛿 act on functions. In (i) and (ii) (consider the univariate case for simplicity), 𝜎(𝑓 ) = 𝑓 , 𝛿(𝑓 ) = 𝜕 𝑥 𝑓 and 𝜕𝑓 = 𝛿(𝑓 ). It is important to note that for (i) the base ring is K[𝑥], while for (ii), the base ring is also a field (of rational fractions) K(𝑥).

In classical settings involving analytic functions, the distinction between (i) and (ii) is subtle 1 and often from an algorithmic point of view, it suffices to stick with the more suited rational Ore algebra, where rational coefficients allow to divide out polynomial contents and closure properties (sum, product, algebraic substitution) can be executed in a simpler manner. We refer to [START_REF] Chyzak | The ABC of Creative Telescoping: Algorithms, Bounds, Complexity. Memoir of accreditation to supervise research (HDR)[END_REF][START_REF] Koutschan | Advanced applications of the holonomic systems approach[END_REF][START_REF] Oaku | Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities[END_REF] for a more comprehensive presentation.

However, this distinction is essential when considering "generalized functions", for instance distributions. In this case, Ann(𝑓 ) can only be seen as a left ideal of D 𝑛 and D 𝑛 /Ann(𝑓 ) as a K-vector space. For example, the univariate Dirac distribution, defined by ⟨𝛿, 𝑓 ⟩ = 𝑓 (0), is annihilated (as a distribution) by 𝑥, since ⟨𝑥𝛿, 𝑓 ⟩ = ⟨𝛿, 𝑥𝑓 ⟩ = 0. However, a left ideal of D * 1 containing 𝑥 is necessarily D * 1 , but 1 annihilating 𝛿 would imply 𝛿 = 0. Hence in this setting, which will be adopted in Section 2.3, the relevant notion is holonomicity.

Algorithms and software. An important algorithmic aspect is that the well-known notion of Gröbner bases was generalized to this non-commutative setting (see for example [START_REF] Galligo | Some algorithmic questions on ideals of differential operators[END_REF][START_REF] Chyzak | The ABC of Creative Telescoping: Algorithms, Bounds, Complexity. Memoir of accreditation to supervise research (HDR)[END_REF][START_REF] Koutschan | Advanced applications of the holonomic systems approach[END_REF] and references therein). This is the building block of algorithms on executing closure operations [START_REF] Chyzak | The ABC of Creative Telescoping: Algorithms, Bounds, Complexity. Memoir of accreditation to supervise research (HDR)[END_REF][START_REF] Koutschan | Advanced applications of the holonomic systems approach[END_REF][START_REF] Galligo | Some algorithmic questions on ideals of differential operators[END_REF][START_REF] Takayama | An algorithm of constructing the integral of a module -an infinite dimensional analog of gröbner basis[END_REF][START_REF] Oaku | Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities[END_REF]. Several software packages implement very efficient algorithms for manipulating such functions (especially in the case of rational Ore algebras), for instance algolib which contains in particular the packages gfun [START_REF] Salvy | Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable[END_REF], NumGfun [START_REF] Mezzarobba | NumGfun: a package for numerical and analytic computation with D-finite functions[END_REF], Ore_algebra and Mgfun [START_REF] Chyzak | The ABC of Creative Telescoping: Algorithms, Bounds, Complexity. Memoir of accreditation to supervise research (HDR)[END_REF] in Maple; HolonomicFunctions [START_REF] Koutschan | Advanced applications of the holonomic systems approach[END_REF] in Mathematica.

We now provide a more detailed review of related topics that we addressed in this area.

Efficient evaluation of Gaussians on disks

We became interested in the efficient and reliable computation of the following integral:

𝒫 𝑐 = 1 2𝜋𝜎 𝑥 𝜎 𝑦 ∫︁ B((0,0),𝑅) exp (︂ - 1 2 (︂ (𝑥 -𝑥 𝑚 ) 2 𝜎 2 𝑥 + (𝑦 -𝑦 𝑚 ) 2 𝜎 2 𝑦 )︂)︂ d𝑥d𝑦, (2.4) 
which is a 2D integral over a disk of radius 𝑅 centered at the origin of a Gaussian function with no cross-terms, for given parameters (𝑥 𝑚 , 𝑦 𝑚 ) and (𝜎 𝑥 , 𝜎 𝑦 ). As mentioned in the introduction, this integral appears when estimating the collision risk between two space objects, whose position has Gaussiandistributed uncertainty and under certain assumptions of the so-called short-encounter model. While several methods have been developed in the literature to compute this integral [START_REF] Foster | A parametric analysis of orbital debris collision probability and maneuver rate for space debris[END_REF][START_REF] Patera | General method for calculating satellite conjunction probability[END_REF][START_REF] Alfano | Aerospace support to space situation awareness[END_REF][START_REF] Chan | Collision probability analyses for earth-orbiting satellites[END_REF], we provided a new efficient and reliable method which is based on a numerically stable and efficient power series evaluation.

Our approach

As a keen reader would expect, the employed series is obtained by the use of D-finite functions. Moreover, the evaluation scheme proposed also relies on analytical properties of our series. Particularly, this integral is analytically computed as the product of an exponential term with a convergent power series:

𝒫 𝑐 = exp (︂ - 𝑅 2 2𝜎 2 𝑦 )︂ +∞ ∑︁ 𝑘=0 𝛽 𝑘 𝑅 2𝑘 , (2.5) 
where (𝛽 𝑘 ) 𝑘 0 is a positive P-recursive sequence, suitable for accurate numerical evaluation. Moreover, explicit bounds on the tail of this series are provided. In brief, the steps employed to obtain this formula together with the explicit recurrence for (𝛽 𝑘 ) 𝑘 0 are:

Step 1. Firstly, a method introduced by Lasserre and Zeron in [START_REF] Lasserre | Solving a class of multivariate integration problems via Laplace techniques[END_REF] to integrate Gaussian functions over Euclidean balls is used. Specifically, Equation (2.4) is seen as a function 𝑔(𝑧), with 𝑧 = 𝑅 2 , whose Laplace transform ℒ 𝑔 (𝜆) = ∞ ∫︀ 0 exp(-𝜆𝑧)𝑔(𝑧)d𝑧 can be computed in closed-form:

ℒ 𝑔 (𝜆) = exp (︁ -𝜆 (︁ 𝑥 2 𝑚 2𝜆𝜎 2 𝑥 +1 + 𝑦 2 𝑚 2𝜆𝜎 2 𝑦 +1 )︁)︁ 𝜆 √︀ 2𝜆𝜎 2 𝑥 + 1 √︁ 2𝜆𝜎 2 𝑦 + 1
, for all 𝜆 ∈ C, such that Re(𝜆) > 0.

(2.6) This is then expanded in a power series at ∞. Classical results from [START_REF] Widder | An introduction to transform theory[END_REF] or [START_REF] Widder | The Laplace transform[END_REF]Chap. 2.14] allow for a term by term application of the inverse Laplace transform -also known as the Borel Transform of the sequence of coefficients of ℒ 𝑔 . This leads to a power series for the initial integral:

𝑔(𝑧) = +∞ ∑︁ 𝑘=0 𝛼 𝑘 𝑧 𝑘 . (2.7)
Step 2. In [START_REF] Lasserre | Solving a class of multivariate integration problems via Laplace techniques[END_REF] however, no insight is given on how to obtain the coefficients (𝛼 𝑘 ) 𝑘 0 , besides the obvious way of computing the first ones based on explicit derivatives of ℒ 𝑔 . So, the second step consists in finding a simple form for these coefficients. For that, it suffices to remark that 𝑔 is D-finite and hence, algorithmically obtain the recurrence formula satisfied by (𝛼 𝑘 ).

Step 3. Nevertheless, from a numerical point of view, the direct evaluation in finite precision of the series obtained for 𝑔(𝑧) can be difficult: although the power series expansion of 𝑔(𝑧) is convergent, the evaluation of the sum in finite precision arithmetic is prone to high cancellation [START_REF] Chevillard | Multiple precision evaluation of the Airy Ai function with reduced cancellation[END_REF][START_REF] Gawronski | Reduced cancellation in the evaluation of entire functions and applications to the error function[END_REF]. This means that if consecutive terms are close in magnitude, but of different signs, their sum in finite precision arithmetic contains very few correct significant digits. This makes the power series evaluation impractical for large values of 𝑧. This phenomenon was studied for various common functions e.g., 𝑧 ↦ → exp(-𝑧), the error function erf or the Airy function [START_REF] Chevillard | Multiple precision evaluation of the Airy Ai function with reduced cancellation[END_REF], but a workaround exists on a case by case basis, as exemplified below. One observes that the terms of the sum are alternating in sign and their maximum magnitude is very high compared to the actual value to be computed exp(-20) ≃ 2.06 • 10 -9 . When evaluating in finite precision, the precision loss can be estimated by log

max 𝑖 ⃒ ⃒ 𝑔 𝑖 𝑧 𝑖 ⃒ ⃒ |𝑔(𝑧)|
, which in this case amounts to more than 53 bits that is, no correct digit is obtained when evaluating using the binary64 (double) FP format. However, experts in numerical functions implementations will never use this series for evaluation. Instead, the series for exp(𝑥) is used, which evaluates without cancellation (all the terms are positive) and then the reciprocal 1/ exp(𝑥) is performed.

Similarly to this intuitive example, such a preconditioning was used in order to obtain a series suitable for low cancellation numerical evaluation for other functions [START_REF] Gawronski | Reduced cancellation in the evaluation of entire functions and applications to the error function[END_REF][START_REF] Chevillard | Multiple precision evaluation of the Airy Ai function with reduced cancellation[END_REF]. Instead of 𝑔, the function 𝑓 = ℎ𝑔 is considered, where the so-called preconditioner ℎ is D-finite too. This product is also D-finite by closure properties of D-finite functions. By carefully choosing the preconditioner, both ℎ and 𝑓 can be efficiently numerically evaluated. The heuristic for ℎ is based on a method presented in [START_REF] Gawronski | Reduced cancellation in the evaluation of entire functions and applications to the error function[END_REF] which uses several complex analysis results and properties obtained for 𝑔. In brief, we prove that ℎ(𝑧) = exp(𝑝𝑧) is a good choice for several values of 𝑝. For completeness, an overview of this method is presented in Section 2.2.2. Moreover, the choice 𝑝 = 1 2𝜎 2 𝑦 leads to a simple proof of positivity of the series coefficients of 𝑓 . Finally, explicit truncation error bounds for this series were proved, which also allowed for an a priori computation of the truncation order, when a pre-specified accuracy on the results is required.

These steps allow for building Algorithms 12 and 13, explained below and one obtains the following result:

Proposition 2.2.2. Algorithm 13 is correct that is, given 𝛿 > 0 it returns an interval [︀ 𝒫 𝑐 , 𝒫 𝑐 ]︀ enclosing the evaluation of 𝒫 𝑐 ∈ [︀ 𝒫 𝑐 , 𝒫 𝑐 ]︀
, such that 𝒫 𝑐 -𝒫 𝑐 𝛿. The algorithm runs in 𝑂(log 2 (𝛿 -1 )) i.e. linearly with respect to the number of required correct digits.

The proof is given in [J5] and here, we underline its main ingredients. Firstly, it makes use of Algorithm 12. The initial conditions of the recurrence satisfied by the terms of the power series of 𝑓 are given in lines 2 -5 of Algorithm 12, while the loop in lines 6 -8 computes the truncated sum of a total of 𝑁 positive terms by unrolling the recurrence. In line 13, one divides by the preconditionner to retrieve the original searched value of 𝑔. To obtain the recurrence unrolled in Algorithm 12, it suffices to use the algorithmic properties of D-finite functions: first, the Laplace transform of 𝑓 , which corresponds to a translation in the Laplace domain: ℒ 𝑓 (𝜆) = ℒ 𝑔 (𝜆 -𝑝) (for ℒ 𝑔 given in Eq. 2.6) is D-finite. This can be checked by hand or obtained by the command holexprtodiffeq of Gfun [START_REF] Salvy | Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable[END_REF]. Then, the coefficients of the series are obtained for instance with diffeqtoreq command of Gfun, followed by a Borel transform (which implies division by 𝑛!, hence the obtained sequence is still P-recursive).

Moreover, this is combined with the explicit truncation bounds in Algorithm 13. They correspond to closed-form evaluation of simple minorant/majorant series (whose coefficients are in geometric progression), which can be obtained in this specific case. Otherwise, majorant series tools like those of [START_REF] Mezzarobba | Truncation bounds for differentially finite series[END_REF] could be used. Based on these closed-forms, an a priori sufficient bound of the number of terms, required for a specific accuracy, can in turn be computed. These quantities correspond to: 𝑙 𝑛 for lower bound on truncation, 𝑢 𝑛 for upper bound on truncation and 𝑛 for a sufficient bound on the number of terms.

Before going further, it may be interesting to analyze a little bit further the "precondinionning method" employed above.

Algorithm 12 Approximate evaluation of 𝒫 𝑐 .

Input: Parameters: 𝜎 𝑥 , 𝜎 𝑦 , 𝑥 𝑚 , 𝑦 𝑚 , 𝑅; Number of terms: 𝑁 . Output: P𝑐 -truncated series evaluation of 𝒫 𝑐 .

1: 𝑝 = 1 2𝜎 2 𝑦 ; 𝜙 = 1 - 𝜎 2 𝑦 𝜎 2 𝑥 ; 𝜔 𝑥 = 𝑥 2 𝑚 4𝜎 4 
𝑥 ; 𝜔 𝑦 = 𝑦 2 𝑚 4𝜎 4 
𝑦 ; 𝛼 0 = 1 2𝜎 𝑥 𝜎 𝑦 exp (︂ - 1 2 
(︂ 𝑥 2 𝑚 𝜎 2 𝑥 + 𝑦 2 𝑚 𝜎 2 𝑦 )︂)︂ ; 2: 𝑐 0 = 𝛼 0 𝑅 2 ; 3: 𝑐 1 = 𝛼0𝑅 4 2 (︀ 𝑝 (︀ 𝜙 2 + 1 )︀ + 𝜔 𝑥 + 𝜔 𝑦 )︀ ; 4: 𝑐 2 = 𝛼0𝑅 6 12 (︁ (︀ 𝑝 (︀ 𝜙 2 + 1 )︀ + 𝜔 𝑥 + 𝜔 𝑦 )︀ 2 + 𝑝 2 (︁ 𝜙 2 2 + 1 )︁ + 2𝑝𝜙𝜔 𝑥 )︁ ; 5: 𝑐 3 = 𝛼0𝑅 8 144 (︁ (︀ 𝑝 (︀ 𝜙 2 + 1 )︀ + 𝜔 𝑥 + 𝜔 𝑦 )︀ 3 + 3 (︀ 𝑝 (︀ 𝜙 2 + 1 )︀ + 𝜔 𝑥 + 𝜔 𝑦 )︀ (︁ 𝑝 2 (︁ 𝜙 2 2 + 1 )︁ + 2𝑝𝜙𝜔 𝑥 )︁ + 2 (︁ 𝑝 3 (︁ 𝜙 3 2 + 1 )︁ + 3𝑝 2 𝜙 2 𝜔 𝑥 )︁)︁ ; 6: for 𝑘 ← 0 to 𝑁 -5 do 7: 𝑐 𝑘+4 = - 𝑅 8 𝑝 3 𝜙 2 𝜔𝑦 (𝑘+2)(𝑘+3)(𝑘+4) 2 (𝑘+5) 𝑐 𝑘 + 𝑅 6 𝑝 2 𝜙(𝑝𝜙(𝑘+ 5 2 )+2𝜔𝑦( 𝜙 2 +1)) (𝑘+3)(𝑘+4) 2 (𝑘+5) 𝑐 𝑘+1 - 𝑅 4 𝑝(𝑝𝜙( 𝜙 2 +1)(2𝑘+5)+𝜙(2𝜔𝑦+ 3𝑝 
2 )+𝜔𝑥+𝜔𝑦) 

(𝑘+4) 2 (𝑘+5) 𝑐 𝑘+2 + 𝑅 2 (𝑝(2𝜙+1)(𝑘+3)+𝑝( 𝜙 2 +1)+𝜔𝑥+𝜔𝑦) (𝑘+4)(𝑘+5)
1: 𝑝 = 1 2𝜎 2 𝑦 ; 𝜙 = 1 - 𝜎 2 𝑦 𝜎 2 𝑥 ; 𝜔 𝑥 = 𝑥 2 𝑚 4𝜎 4 𝑥 ; 𝜔 𝑦 = 𝑦 2 𝑚 4𝜎 4 
𝑦 ; 𝛼 0 = 1 2𝜎 𝑥 𝜎 𝑦 exp (︂ - 1 2 
(︂ 𝑥 2 𝑚 𝜎 2 𝑥 + 𝑦 2 𝑚 𝜎 2 𝑦 )︂)︂ ; 2: 𝑙 0 = 𝛼 0 1 -exp(-𝑝𝑅 2 ) 𝑝 ; 3: 𝑢 0 = 𝛼 0 exp (︁ 𝑝 (︁ 𝜙 2 + 𝜔𝑥+𝜔𝑦 𝑝 )︁ 𝑅 2 )︁ -exp(-𝑝𝑅 2 ) 𝑝 (︁ 1 + 𝜙 2 + 𝜔𝑥+𝜔𝑦 𝑝 )︁ ; 4: if 𝑢 0 -𝑙 0 𝛿 then 5: return [𝑙 0 , 𝑢 0 ]; 6: else 7: 𝑁 1 = 2 ⌈︁ 𝑒𝑝𝑅 2 (︁ 1 + 𝜙 2 + 𝜔𝑥+𝜔𝑦 𝑝 )︁⌉︁ ; 8: 𝑁 2 = ⎡ ⎢ ⎢ ⎢ log 2 𝛼 0 exp (︁ 𝑝𝑅 2 (︁ 𝜙 2 + 𝜔𝑥+𝜔𝑦 𝑝 )︁)︁ 𝛿𝑝 √ 2𝜋𝑁 1 (︁ 1 + 𝜙 2 + 𝜔𝑥+𝜔𝑦 𝑝 )︁ ⎤ ⎥ ⎥ ⎥ ; 9: 𝑛 = max {𝑁 1 , 𝑁 2 } -1 10: P𝑐 ← Algorithm 12 (𝜎 𝑥 , 𝜎 𝑦 , 𝑥 𝑚 , 𝑦 𝑚 , 𝑅, 𝑛); 11: 𝑙 𝑛 = 𝛼 0 exp(-𝑝𝑅 2 )(𝑝𝑅 2 ) 𝑛+1 𝑝(𝑛 + 1)! ; 12: 𝑢 𝑛 = 𝛼 0 exp (︁ 𝑝 (︁ 𝜙 2 + 𝜔𝑥+𝜔𝑦 𝑝 )︁ 𝑅 2 )︁ (︁ 𝑝 (︁ 1 + 𝜙 2 + 𝜔𝑥+𝜔𝑦 𝑝 )︁ 𝑅 2 )︁ 𝑛+1 𝑝 (︁ 1 + 𝜙 2 + 𝜔𝑥+𝜔𝑦 𝑝 )︁ (𝑛 +

Some remarks about function evaluation without cancellation

We consider a Taylor series of the form

𝑔(𝜉) = ∞ ∑︁ 𝑖=0 𝑔 𝑖 𝜉 𝑖 , 𝑔 𝑖 ∼ (-1) 𝑖 𝜆 𝛼 𝑖 𝑖! 𝜅 , (2.8) 
where 𝜆, 𝛼, 𝜅 > 0. For large 𝜉 > 0, the computation in finite precision arithmetic of such a sum is prone to cancellation. This is because the terms ⃒ ⃒ 𝑔 𝑖 𝜉 𝑖 ⃒ ⃒ are first growing, before the series starts to converge when 𝑖 𝜅 𝛼𝜉. When 𝑖 𝜅 ≃ 𝛼𝜉 the terms ⃒ ⃒ 𝑔 𝑖 𝜉 𝑖 ⃒ ⃒ usually get much larger than |𝑔(𝜉)|. So the leading bits cancel out while the lower-order bits which actually contribute to the first significant bits of the actual result get lost in the roundoff errors. So, we are interested in minimizing the ratio

𝑑 𝑔 (𝜉) = log max 𝑖 ⃒ ⃒ 𝑔 𝑖 𝜉 𝑖 ⃒ ⃒ |𝑔(𝜉)| . (2.9)
When evaluating an entire function on some complex sector, Gawronski, Müller and Reinhard [START_REF] Gawronski | Reduced cancellation in the evaluation of entire functions and applications to the error function[END_REF] provided an estimation of this ratio based on the asymptotic behaviour of this entire function. Under certain assumptions [START_REF] Gawronski | Reduced cancellation in the evaluation of entire functions and applications to the error function[END_REF], one can estimate that for 𝜉 = 𝑟𝑒 𝑖𝜃 , and large values of 𝑟, log ⃒ ⃒ 𝑔(𝑟𝑒 𝑖𝜃 ) ⃒ ⃒ ∼ ℎ(𝜃)𝑟 𝜌 , which gives the estimate:

𝑑 𝑔 (𝑟𝑒 𝑖𝜃 ) ∼ 𝑟 𝜌 (𝜎 𝑔 -ℎ 𝑔 (𝜃)), (2.10) 
where:

• 𝜌 is the order of 𝑔 (roughly speaking 𝜌 is the infimum of all 𝑚 s.t. 𝑔(𝜉) = 𝑂(exp(|𝜉| 𝑚 )), 𝑟 → ∞);

• ℎ 𝑔 is the indicator function of 𝑔, which shows the growth along a ray; ℎ 𝑔 (𝜃) = lim sup

𝑛→∞ log |𝑔(𝑟𝑒 𝑖𝜃 )| 𝑟 𝜌 ;
• 𝜎 𝑔 is the type of 𝑔, which satisfies: max

𝜃∈[0,2𝜋] ℎ 𝑔 (𝜃) = 𝜎 𝑔 .
Hence, the heuristic to minimize the cancellation is to ensure that 𝜎 𝑔ℎ 𝑔 (𝜃) is small on the complex sector corresponding to 𝜃. We use a simple instance of their method, since we focus only on positive real line evaluation and one can prove that in our case 𝑔 is an entire function of order 𝜌 = 1, also called entire function of exponential type (EFET). In such a case, the indicator of 𝑔 can explicitly be obtained with Polya theorem [START_REF] Levin | Lectures on Entire Functions[END_REF]Chapter 9], which relates the growth of the EFET function 𝑔 along a ray, to the location of the singularities of its Inverse Borel transform.

The indicator function ℎ 𝑔 is showed in Figure 2.1 (a). One can see that in this case, 𝑑 𝑔 (𝑟) = 𝜎 𝑔 > 0 and thus, the sum is not optimally conditioned to be evaluated on the real axis. The idea is to multiply 𝑔 by some preconditioner function, such that both the preconditioner and their product are very well conditioned for evaluation at the considered sector (positive real line in our case). One possible choice for the preconditionner is 𝑒 𝑝𝜉 for which the indicator function is given in Figure 2.1(b) for 𝑝 > 0. From the computation of the indicator function of the product, one can observe that it is well-conditioned for 𝜎 𝑔 𝜎 𝑔 /2. We give for example the indicator function obtained when 𝑝 = 𝜎𝑔 2 in Figure 2.1(c) and respectively 𝑝 = 𝜎 𝑔 in Figure 2. 1(d). For this problem, 𝑝 = 𝜎 𝑔 is considered. Other choices are of course possible for preconditionners and currently, there is no established technique in the literature to assess which one is better. There are also "obvious bad choices": take for instance sin(𝜉) which is entire of order 1 and indicator function ℎ sin = 𝜔 |sin(𝜃)|, 𝜔 > 0. For real line evaluation, this will never give an optimal conditioning in zero.

Moreover, there is no guarantee that the obtained terms for the series are positive (since this estimate works asymptotically). In Chapter 4, future research directions on this topic are given. Let us now check some interesting numerical results. the number of actual correct significant digits that can be certified when computing with 𝑁 terms. For this example, our algorithm needs for instance 800 terms of the series in order to obtain 𝜂 800 = 30 significant digits for Case 3 and respectively 121000 terms to obtain 𝜂 121000 = 20 significant digits in the Case 5. This is due mainly to two reasons: firstly, even though no cancellation occurs, the first terms of the series are very small and in order to compute the largest one (before they start to decrease again due to convergence), many terms need to be computed by unrolling the recurrence. For instance, the log-magnitude of these terms log (𝑐 𝑖 ) is plotted in Figure 2.2 for these two cases. Secondly, the lower and upper bounds 𝑙 𝑁 and 𝑢 𝑁 are under/overestimating the actual tail of the series (although they are asymptotically tight). It would be thus interesting to provide alternatives to this method for this kind phenomenon proper to entire series. This will be discussed further in my research perspectives (Chap. 4).

Challenging examples

Extensions and discussion

One observes that the integral (2.4) can be generalized to a higher (fixed) dimension 𝑛 and it comes to computing the mass (i.e. the moment of order zero) of the restriction of an 𝑛-dimensional Gaussian measure to an 𝑛-dimensional disk with respect to the Euclidean norm.

A first question is whether similar computation methods can be developed in higher dimensions. For each fixed 𝑛, one can apply exactly the same procedure: Laplace transform, computing recurrences and initial conditions in the Laplace plane together with adapted evaluation strategies. Currently, we only provided a 3𝐷 preliminary result in [C13], which shows that the order of recurrences increases as well as the computational complexity related to D-finite algorithms (since more parameters are involved). A further study in this sense would be interesting (cf. Chapter 4).

On a different perspective, one can inquire about what happens for higher order moments, say

𝑚 𝛼 = ∫︁ 𝐷(0,𝑅) 𝑥 𝛼 d𝜇 𝑔 (𝑥), 𝛼 ∈ N 𝑛 , (2.11) 
where in the multivariate notation, 𝑥 = (𝑥 1 , . . . , 𝑥 𝑛 ),

𝑥 𝛼 = 𝑥 𝛼1 1 . . . 𝑥 𝛼𝑛 𝑛 , 𝜇 𝑔 is the multivariate Gaussian measure and 𝐷(0, 𝑅) = {𝑥 ∈ R 𝑛 : | ∑︀ 𝑖 𝑥 2 𝑖 | 𝑅 2 }.
Several questions may be asked:

1. Is there a similar way to efficiently compute 𝑚 𝛼 for a fixed index 𝛼? 

𝑚 𝛼 = ∫︁ 𝐺 𝑥 𝛼 d𝜇 𝑔 (𝑥), 𝛼 ∈ N 𝑛 .
(2.12)

It is interesting to see that these or related questions have been recently studied from different points of view. Without being exhaustive, we note the versatile optimization approach of Lasserre [START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF], which formulates a linear programming problem on an appropriate space of measures, which is then solved via a hierarchy of semidefinite programs involving moments of the measures (also known as the Lasserre hierarchy) and thus proposes a numerical scheme to solve various optimization problems. In particular, in [START_REF] Lasserre | Computing Gaussian & exponential measures of semi-algebraic sets[END_REF] this approach is applied for numerically computing Gaussian and exponential measures of semi-algebraic sets and thus proposes a numerical solution for question 1 above.

From the symbolic computation perspective, creative telescoping techniques [START_REF] Chyzak | The ABC of Creative Telescoping: Algorithms, Bounds, Complexity. Memoir of accreditation to supervise research (HDR)[END_REF][START_REF] Koutschan | Advanced applications of the holonomic systems approach[END_REF][START_REF] Bostan | Generalized Hermite reduction, creative telescoping and definite integration of d-finite functions[END_REF][START_REF] Oaku | Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities[END_REF] can be employed to answer the questions 2-4. However, the numerical computation of initial conditions for the recurrences obtained as well as efficient numerical evaluation techniques are still subject of research and will be developed in Chapter 4.

In the sequel, we focus more on inverse problems related to items 2-4. Namely, in the framework of holonomic systems, we revisit and extend an approach of Lasserre and Putinar [START_REF] Lasserre | Algebraic-exponential data recovery from moments[END_REF], concerning the inverse problem of support and/or density reconstruction when only a finite number of moments are given.

Direct and inverse moment problems with holonomic functions

Many reconstruction algorithms from moments of algebraic data were developed in optimization, analysis or statistics. Lasserre and Putinar [START_REF] Lasserre | Algebraic-exponential data recovery from moments[END_REF] proposed an exact reconstruction algorithm for the algebraic support of the Lebesgue measure, or of measures with density equal to the exponential of a known polynomial. Their approach relies on linear recurrences for the moments, obtained using Stokes theorem. A natural question is whether this result can be generalized, as mentioned in [START_REF] Lasserre | Algebraic-exponential data recovery from moments[END_REF]: the analogy to the well understood moment rigidity of the Gaussian distribution is striking, although the constructive aspects of this finite determinateness remain too theoretical in general. Motivated by this remark, in [C2], we extended this study to measures with holonomic densities and support with real algebraic boundary. Our approach relies on the algorithmic framework available for holonomic systems as presented in Section 2.1.2, as well as a generalized Stokes formula [START_REF] Lasserre | Algebraic-exponential data recovery from moments[END_REF].

From the algebraic point of view, related works include well-studied algebraic methods for reconstruction problems involving measures with finitely many atoms (sums of Dirac) cf. [START_REF] Mourrain | Polynomial-exponential decomposition from moments[END_REF] and references therein. In this case, their moment generating functions are solutions of systems of partial differential equations with constant coefficients, and the moments satisfy multi-index linear recurrences with constant coefficients. We also note that the reconstruction problem is solved in the univariate case, for piecewise D-finite densities in [START_REF] Batenkov | Moment inversion problem for piecewise 𝐷-finite functions[END_REF].

In our algorithms, holonomic distributions are involved and are briefly recalled in Section 2.3.1. Before stating more technical theorems and algorithms, we recall two introductory univariate examples from [C2]. In what follows, the indicator function of a set 𝐺, is denoted by 1 𝐺 .

Example 2.3.1 (Direct problem for erf-like function). We are interested in computing a recurrence for the [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF] in the integral, and consider the distribution 𝑢

moments 𝑚 𝑖 = 1 ∫︀ -1 𝑥 𝑖 𝑒 -𝑥 2 d𝑥. The idea is to include 1 [-1,
corresponding to 1 [-1,1] (𝑥)𝑒 -𝑥 2 .
Although not differentiable as a function, 𝑢 satisfies as a distribution:

(1 -𝑥 2 )(𝜕 𝑥 + 2𝑥)𝑢 = 0. Now, note the Lagrange Identity [START_REF] Ince | Ordinary Differential Equations[END_REF] which is related to integration by parts: for a linear differential operator with polynomial coefficients, 𝐿 = 𝑐 𝑟 𝜕 𝑟 𝑥 +. . .+𝑐 0 , its adjoint is defined as 𝐿 * = (-1) 𝑟 𝜕 𝑟 𝑥 𝑐 𝑟 +. . .+𝑐 0 and the following holds:

𝜙𝐿(𝑓 ) -𝐿 * (𝜙)𝑓 = 𝜕 𝑥 (ℒ 𝐿 (𝑓, 𝜙)), (2.13) 
for any function 𝜙 and 𝑓 , with an explicit linear differential operator ℒ 𝐿 .

Integrating for the test function 𝑥 𝑖 , using (2.13) and noticing that its right hand side vanishes after integration, one has:

1 ∫︁ -1 𝑒 -𝑥 2 (𝜕 𝑥 + 2𝑥) * ((1 -𝑥 2 )𝑥 𝑖 )d𝑥 = 0,
which directly provides the recurrence

𝑖𝑚 𝑖-1 -(𝑖 + 4)𝑚 𝑖+1 + 2𝑚 𝑖+3 = 0.
Example 2.3.2 (Univariate support and density reconstruction). Consider the problem of reconstructing the parameters 𝜉 1 , 𝜉 2 and 𝑝 2 , 𝑝 1 , 𝑝 0 provided that the first 𝑁 moments {𝑚 𝑖 , 0 𝑖 𝑁 } are known:

𝑚 𝑖 = 𝜉2 ∫︁ 𝜉1 𝑥 𝑖 𝑒 𝑝2𝑥 2 +𝑝1𝑥+𝑝0 d𝑥.
(2.14) Like in the previous example, 𝑢 = 1 [𝜉1,𝜉2] 𝑒 𝑝2𝑥 2 +𝑝1𝑥+𝑝0 satisfies:

(𝑥 -𝜉 1 )(𝑥 -𝜉 2 )(𝜕 𝑥 -2𝑝 2 𝑥 -𝑝 1 )𝑢 = 0.
Denote by L := 𝑔(𝑥)𝜕 𝑥 +ℎ(𝑥) the operator to be reconstructed such that L𝑓 = 0, with 𝑔(𝑥) = 𝑥 2 +𝑔 1 𝑥+𝑔 0 and ℎ(𝑥) = 3 ∑︀ 𝑖=0 ℎ 𝑖 𝑥 𝑖 . Integrating and using Lagrange identity, one has:

∞ ∫︁ -∞ (︀ 𝑔(𝑥)𝜕 𝑥 -ℎ(𝑥))(𝑥 𝑖 ) )︀ 𝑢d𝑥 = 0. (2.15)
This gives, for each 𝑖 0:

𝑖𝑚 𝑖+1 + 𝑖𝑔 1 𝑚 𝑖 + 𝑖𝑔 0 𝑚 𝑖-1 -ℎ 3 𝑚 𝑖+3 -ℎ 2 𝑚 𝑖+2 -ℎ 1 𝑚 𝑖+1 -ℎ 0 𝑚 𝑖 = 0. (2.16)
Hence, the coefficients of 𝑔 and ℎ are solution of the above infinite linear system. If 𝑔 is recovered, 𝑝 (except for the coefficient 𝑝 0 ) could also be recovered from the division ℎ/𝑔. Finally the constant coefficient 𝑝 0 could also be recovered from the Equation (2.14), with 𝑖 = 0.

Let us focus now on the general multivariate case and formalize the ideas presented in the above examples.

Holonomic distributions and their moments

Introduced by Schwartz [START_REF] Schwartz | Théorie des distributions[END_REF], distributions generalize functions and measures. Its topological dual ℰ ′ is the set of compactly supported distributions (or simply distributions in this work)

i.e. linear forms 𝑇 : ℰ → R such that:

• There exists a minimal compact set 𝐾 ⊆ R 𝑛 (the support of 𝑇 ) such that ⟨𝑇, 𝜙⟩ = 0 whenever 𝜙 vanishes over 𝐾.

• ⟨𝑇, 𝜙 𝑘 ⟩ → 0 whenever 𝜙 𝑘 → 0 in ℰ.

ℰ ′ has a canonical D 𝑛 -module structure:

⟨𝐿 𝑇, 𝜙⟩ := ⟨𝑇, 𝐿 * 𝜙⟩, 𝐿 ∈ D 𝑛 , 𝑇 ∈ ℰ ′ , 𝜙 ∈ ℰ, (2.17) 
where the adjoint operator 𝐿 * is defined by

𝑥 * 𝑖 = 𝑥 𝑖 , 𝜕 * 𝑥𝑖 = -𝜕 𝑥𝑖 , and (𝐿 1 𝐿 2 ) * = 𝐿 * 2 𝐿 * 1 . Definition 2.3.4 (Holonomic distribution). A distribution 𝑇 ∈ ℰ ′ is holonomic if its annihilator is a holonomic ideal of D 𝑛 : Ann(𝑇 ) := {𝐿 ∈ D 𝑛 | 𝐿 𝑇 = 0 as a distribution} .
A measure supported on a set 𝐺, with density 𝑓 ∈ ℰ, is represented by the distribution 𝑓 1 𝐺 , with ⟨𝑓 1 𝐺 , 𝜙⟩ =

∫︀

𝐺 𝜙(𝑥)𝑓 (𝑥)d𝑥.

We make the following assumption on 𝐺 ⊆ R 𝑛 , which is necessary for the correctness proofs in [C2]:

Assumption 2.3.5. 𝐺 is a compact 𝑛-dimensional semi-algebraic set. In particular, the following holds:

(1) 𝐺 is an 𝑛-dimensional compact manifold such that its boundary can be decomposed as 𝜕𝐺 = 𝑍∪𝑍 ′ , with 𝑍 a finite union of (𝑛-1)-dimensional manifolds and 𝑍 ′ a negligible set w.r.t the (𝑛-1)-dimensional Hausdorff measure.

(2) the ideal of polynomials vanishing over 𝜕𝐺 is radical and principal i.e., generated by a single square-free polynomial 𝑔. In particular, the family {𝑔, 𝑔 𝑥1 , . . . , 𝑔 𝑥𝑛 } is coprime, implying that the set of singular points {𝑥 | 𝑔(𝑥) = 0 and ∇𝑔(𝑥) = 0} is negligible in 𝜕𝐺. (2.18)

Note that if 𝑇 = 𝑓 1 𝐺 with 𝐺 compact and 𝑓 ∈ ℰ, then 𝑚 𝛼 (𝑓 1 𝐺 ) coincides with the moments defined in Equation (2.12).

A convenient way to deal with moments of a distribution is the Fourier transform (also called characteristic function). 

F {𝑇 }(𝑧) = ∑︁ 𝛼∈N 𝑛 𝑚 𝛼 (𝑇 ) (-𝐼 𝑧) 𝛼 𝛼! = ⟨𝑇, 𝑒 -𝐼 𝑥•𝑧 ⟩, 𝑧 ∈ R 𝑛 . Proposition 2.3.8. Let 𝑇 ∈ ℰ ′ and 𝐿 = ∑︀ 𝛽 𝑞 𝛽 (𝑥)𝜕 𝛽 𝑥 ∈ D 𝑛 .
(𝑖) The Fourier transform of 𝐿 𝑇 is related to that of 𝑇 by

F {𝐿 𝑇 } = 𝐿 F F {𝑇 }, with 𝐿 F = 𝐿 [︂ 𝑥 𝑖 ↦ → 𝐼 𝜕 𝑧𝑖 𝜕 𝑥𝑖 ↦ → 𝐼 𝑧 𝑖 ]︂ = ∑︁ 𝛽 𝑞 𝛽 (𝐼 𝜕 𝑧 )(𝐼 𝑧) 𝛽 . (2.19) (𝑖𝑖)
The moments of 𝐿 𝑇 are related to those of 𝑇 by

(𝑚 𝛼 (𝐿 𝑇 )) = 𝐿 M (𝑚 𝛼 (𝑇 ))
, with Finally, the following proposition provides differential equations for measures supported on semialgebraic sets. Its proof is given in [C2] and is based on Lagrange's identity and Stokes' theorem. 

𝐿 M = 𝐿 [︂ 𝑥 𝑖 ↦ → 𝑆 𝛼𝑖 𝜕 𝑥𝑖 ↦ → -𝛼 𝑖 𝑆 -1 𝛼𝑖 ]︂ = ∑︁ 𝛽 (-1) |𝛽| 𝑞 𝛽 (𝑆 𝛼 ) (︃ 𝑛 ∏︁ 𝑖=1 (︀ 𝛼 𝑖 𝑆 -1 𝛼𝑖 )︀ 𝛽𝑖 )︃ , (2.20 
Then 𝑔 𝑟 𝐿 ∈ Ann(𝑓 1 𝐺 ).
Hence, Proposition 2.3.10 gives an easy way to construct operators in Ann(𝑓 1 𝐺 ) from operators in Ann(𝑓 ). Indeed, given a Gröbner basis {𝐿 1 , . . . , 𝐿 𝑘 } of Ann(𝑓 ), and 𝑔 ∈ R[𝑥] vanishing over 𝜕𝐺, each operator 𝑔 𝑟𝑖 𝐿 𝑖 (with 𝑟 𝑖 the order of 𝐿 𝑖 ) annihilates 𝑓 1 𝐺 as a distribution. Therefore, each operator 𝑅 𝑖 := (𝑔 𝑟𝑖 𝐿 𝑖 ) M gives a valid recurrence for the sequence of moments (𝑚 𝛼 ). Together with Proposition 2.3.8 and in particular Equation (2.20), this provides a method for computing linear recurrences for the moments. The advantage is that when the coefficients of the polynomial 𝑔 are given as parameters, the obtained recurrences remain linear with respect to them.

However, from the fact that 𝑓 is holonomic, one can not directly guarantee that the ideal generated by {𝑔 𝑟1 𝐿 1 , . . . , 𝑔 𝑟 𝑘 𝐿 𝑘 } is holonomic. Similarly, we are not able to prove (or refute) that {𝑅 1 , . . . , 𝑅 𝑘 } is holonomic in general. Nevertheless, one can apply a Gröbner basis algorithm, which will possibly return such a basis. This heuristic is proposed in Algorithm 14.

We proved that this algorithm returns a Gröbner basis of a holonomic ideal, in the particular case of an exponential-polynomial density (including the Lebesgue measure), and a smooth boundary, Algorithm 14 RECURRENCESMOMENTS(𝑛, 𝑔, {𝐿 1 , . . . , 𝐿 𝑘 } ) Input: Gröbner basis {𝐿1, . . . , 𝐿 𝑘 } for Ann(𝑓 ), 𝑔. Output: Gröbner basis for Ann(𝑚𝛼). extending [START_REF] Oaku | Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities[END_REF]Prop. 4]. Note that creative telescoping algorithms of Oaku [START_REF] Oaku | Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities[END_REF], are proven to compute a holonomic system, but when the coefficients of the polynomial 𝑔 are given as parameters, the obtained recurrences are not linear with respect to them.

However, having a Gröbner basis is not mandatory for the reconstruction problems addressed in the next section and the recurrences obtained as above turn out to be sufficient and constitute the basic brick of our reconstruction method.

Reconstruction methods

The general reconstruction problem considered is the following: • From the solution 𝐿 ′ of (2.22), extract a polynomial g vanishing on 𝜕𝐺 and an operator L ∈ Ann(𝑓 ).

Note that the solution of the system (2.22) corresponds to a truncation of the infinite system (2.21), since ⟨𝑓 1 𝐺 , 𝐿 ′* 𝑥 𝛼 ⟩ = 0, for |𝛼| 𝑁 . Hence, one is interested in obtaining bounds N on 𝑁 , such that any solution of (2.22) is also solution of (2.21). Such an a priori uniform bound depending only on 𝐴 and 𝑑 𝛽 does not exist in general.

Remark 2.3.11. As noted in [START_REF] Batenkov | Moment inversion problem for piecewise 𝐷-finite functions[END_REF], for general holonomic operators 𝐿 with 𝑟 > 1, the number 𝑁 of required moments, in order to correctly recover the parameters, might depend also on specific coefficients of 𝐿.

An example is the 𝑛th Legendre polynomial, whose first 𝑛 moments (taken over [-1, 1]) vanish, while 𝐿 𝑛 = 𝜕 𝑥 ((1 -𝑥 2 )𝜕 𝑥 ) + 𝑛(𝑛 + 1). Hence the reconstruction of 𝜇 𝑓 depends also on the parameter 𝑛, which is part of the definition of 𝐿 𝑛 . On the contrary, for exponential-polynomial case, we show that 𝑁 depends only on the degrees of the polynomials involved.

Another issue detailed in [C2] is that 𝐿 ′ may not be factorized as g(𝑥) 𝑟 L with g vanishing on 𝜕𝐺 and L𝑓 = 0. These issues can be solved when 𝑓 is exponential-polynomial: Problem 2 (Exp-Poly Inverse Problem). Let a measure 𝜇 𝑓 = 𝑓 1 𝐺 d𝑥, supported on a compact semialgebraic set 𝐺, whose algebraic boundary is included in the zero set of a polynomial 𝑔 ∈ K[𝑥] 𝑑 . Let 𝑓 = exp(𝑝), with 𝑝 ∈ K[𝑥] 𝑠 . Given 𝑠, 𝑑, and a finite number of moments 𝑚 𝛼 , |𝛼| 𝑁 , recover the coefficients of both 𝑔 and 𝑝.

Algorithm 15 and Theorem 2.3.12, proved in [C2], show that this reconstruction problem boils down to solving a linear system of 3𝑑 + 𝑠 -1 equations, involving moments up to degree |𝛼| 4𝑑 + 2(𝑠 -1). Moreover, if 𝑔 0 over 𝐺, N can be only 2𝑑 + 𝑠 -1, requiring moments up to degree 3𝑑 + 2(𝑠 -1).

The general holonomic case is addressed in two steps: firstly, for recovering the density, it can be proved that 𝑁 is finite, but no a priori bound for it is known; secondly, once the density is known, a stronger result is proved for the support reconstruction, since an explicit uniform bound on the number of required moments is given. The corresponding theorems proved in [C2] are summarized below. For the support reconstruction, the following assumption is made. Roughly speaking, the differential system must not be singular over the Zariski closure of 𝜕𝐺, except for a zero-measure set. In particular, this proves that when the density is known, the support can be reconstructed using moments up to degree (3𝑟 -1)𝑑 + (𝑑 -1)𝑏 + 𝑠 + max 𝑖𝑗 {deg (𝑞 𝑖,𝑗 ) -𝑗}.

In the algorithms proposed, "exact computations" are assumed, that is, both the polynomial coefficients and the given moments 𝑚 𝛼 lie in a computable finite extension of Q. The practical case of approximately known numerical moments was for the moment only briefly analyzed. A final example in this sense is presented (some others are available in [C2]), while a thorough robustness analysis remains to be done. 

(︁ (ℎ𝐿𝑖) M 𝑚 )︁ 𝛼 = 0, |𝛼| 𝑁, 𝑖 ∈ [1 . . 𝑛]
3: g ← ℎ/ GCD(ℎ, ℎ𝑥 1 , . . . , ℎ𝑥 𝑛 ) 4: return g

Example and conclusion

Our implementation2 uses OreAlgebra and OreGroebnerBasis routines from the Holonomic Functions library [START_REF] Koutschan | Advanced applications of the holonomic systems approach[END_REF]. The exactly computed moments 𝑚 𝑖𝑗 (obtained from the recurrences given by Algorithm 14 together with closed-form initial conditions, when possible) are truncated to m𝑖𝑗 , s.t. ⌊log 10 𝑚𝑖,𝑗 -m𝑖𝑗 𝑚𝑖𝑗 ⌋ = 𝜀 i.e., 𝜀 represents the number of correct digits of m𝑖𝑗 .

In a second time, Algorithm 15 solves the inverse problem given the approximate m𝑖𝑗 . For numerically solving the resulting overdetermined systems of linear equations, we employ a Least Mean Squares method of Mathematica. (i) Direct problem: The proposed method is very robust on the above academic examples, but a further study is needed for an efficient implementation in practical higher-dimensional cases. On the theoretical side, this study provided further insight on the question raised in [START_REF] Lasserre | Algebraic-exponential data recovery from moments[END_REF] regarding the finite determinateness of a measure. To sum up, provided Assumptions 2.3.5 and 2.3.13 hold, for a measure with compact algebraic support 𝐺, with 𝑔 ∈ K[𝑥] 𝑑 vanishing on 𝜕𝐺 and known holonomic density 𝑓 , the moments up to degree 𝑁 (which only depends on 𝑑 and the order of a rectangular differential system which annihilates 𝑓 ) determine in a constructive and robust manner the coefficients of 𝑔. Thus, this determines in turn all the other moments. When both the density and the support are unknown, a uniform bound 𝑁 does not exist in general. We provided the solution for the special case of unknown exponential-polynomial density.

Given 𝑔 = (𝑥 2 + 𝑦 2 -1)(𝑥 2 + 𝑦 2 -9)(𝑥 2 + (𝑦 -2) 2 -1)((𝑥 -2) 2 + 𝑦 2 -
From power to orthogonal series. Broadly speaking, the above contributions exploit the algebraic properties of power series solutions of holonomic linear differential (systems) of equations. Another natural aspect is to consider other orthogonal series expansions. In my research, this was dealt with from the point of view of polynomial approximation as discussed below.

Rigorous Polynomial Approximations

When computing approximate solutions, one often uses polynomial approximations. This is frequently useful since such an approximation may be more compact to represent and store, and also more efficient to evaluate and manipulate. Concerning evaluation, polynomial approximations are especially important. In general, the basic functions that are implemented in hardware on a processor are limited to addition, subtraction, multiplication, and sometimes division. Moreover, division is significantly slower than multiplication. The only functions of one variable that one may evaluate using a bounded number of additions/subtractions, multiplications and comparisons are piecewise polynomials: hence, on such systems, polynomial approximations are not only a good choice for implementing more complex mathematical functions, they are frequently the only one that makes sense. Polynomial approximations for common functions used to be tabulated in handbooks [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]. Nowadays, most computer algebra systems provide routines for obtaining polynomial approximations for such functions. However, when bounds for the approximation errors are available, they are not guaranteed to be accurate and are sometimes unreliable.

An important part of my work deals with solving this shortcoming using Rigorous Polynomial Approximations (RPAs): a polynomial approximation together with rigorous error bounds. More specifically, an RPA for a function 𝑓 defined over an interval 𝐼 is a couple (𝑃, ∆) where 𝑃 is a polynomial and ∆ is an interval such that 𝑓 (𝑥) -𝑃 (𝑥) ∈ ∆, for all 𝑥 ∈ 𝐼.

In this framework, D-finite functions play an important role, since (as mentioned in Section 2.1) for this class of functions, many recent efficient algorithms provide both polynomial approximations and rigorous error bound. When expanding in power series a given D-finite function 𝑓 , efficient algorithms were developed for computing its coefficients and also for providing effective bounds on the tail inside the disk of convergence of the series. From the linear recurrence on the coefficients, one can produce majorant series whose speed of convergence is under control [START_REF] Van Der Hoeven | Fast evaluation of holonomic functions[END_REF][START_REF] Mezzarobba | Effective bounds for P-recursive sequences[END_REF] (an example for such majorant series was given in 2.2). Moreover, analytic continuation provides a generalization of this process outside the disk of convergence. Reliable approximations can be obtained on any disk containing no singularities of 𝑓 , given a polygonal path starting from the origin, which avoids the (finitely many) singularities of the equation and such that on each of its vertices, translated arbitrarily precise initial conditions for the same differential equation can be computed. This process was automatically and efficiently implemented [START_REF] Mezzarobba | Effective bounds for P-recursive sequences[END_REF][START_REF] Mezzarobba | Truncation bounds for differentially finite series[END_REF] in computer algebra systems like Maple or Sage.

RPAs constructed on power series, can be obtained also for non D-finite functions, when such functions are represented as an expression tree composed of basic functions (D-finite or other functions for which RPAs can be constructed) together with arithmetic operations (addition, multiplication, division, square-root). Recursively evaluating such a tree, by overloading corresponging operators with operations on polynomials and error bounds, is known as Taylor model algebra. This tool was made popular by Makino and Berz and similar ideas were employed in a series of articles of several authors [START_REF] Makino | Rigorous Analysis of Nonlinear Motion in Particle Accelerators[END_REF][START_REF] Neumaier | Taylor forms -use and limits[END_REF][START_REF] Makino | Taylor models and other validated functional inclusion methods[END_REF]. During my PhD, I already analyzed, implemented and proposed improvements for Taylor models [R3], then proposed with N. Brisebarre [C17] a new so-called Chebyshev models (CMs) algebra, using Chebyshev interpolants.

The main idea is that despite its simplicity, Taylor expansion has several drawbacks when uniformly approximating 𝑓 over a given compact interval. When 𝑓 is not smooth enough on the disc surrounding the considered interval, convergence cannot be ensured and one needs to suitably split the interval and provide a Taylor series for each subsegment (via analytic continuation for instance). Moreover, even when convergent, the 𝑛-th order truncated Taylor series of 𝑓 is usually not the best uniform polynomial approximation of degree 𝑛 over the segment under consideration. From this point of view, truncated Chebyshev series or Chebyshev interpolants prove to be a better choice and excellent accounts on this topic are given in [START_REF] Boyd | Chebyshev and Fourier spectral methods[END_REF][START_REF] Cheney | Introduction to approximation theory[END_REF][START_REF] Fox | Chebyshev polynomials in numerical analysis[END_REF][START_REF] Mason | Chebyshev polynomials[END_REF][START_REF] Powell | Approximation theory and methods[END_REF][START_REF] Trefethen | Approximation theory and approximation practice[END_REF][START_REF] Rivlin | The Chebyshev polynomials[END_REF].

Subsequently, we proposed in [J4] a method for computing CMs for D-finite functions. The key ingredient of our method is that the coefficients of Chebyshev series expansions also satisfy linear recurrences with polynomial coefficients (like power series do). However, these recurrences do not yield a direct computation of the coefficients, owing chiefly to the lack of initial conditions. Therefore, we used a combination of a classical method dating back to Clenshaw, revisited in light of the properties of the recurrence relations we consider, and a rigorous enclosure method for the solution of the differential equation based on a fixed point theorem. One more important contribution of this work is that the algorithms for obtaining these RPAs have a linear arithmetic complexity.

Chebyshev expansions of D-finite functions

Chebyshev polynomials and Chebyshev series

The Chebyshev family of polynomials is defined using the following three-term recurrence relation:

𝑇 0 (𝑋) = 1, 𝑇 1 (𝑋) = 𝑋, (2.23) 𝑇 𝑛+2 (𝑋) = 2𝑋𝑇 𝑛+1 (𝑋) -𝑇 𝑛 (𝑋), 𝑛 0, (2.24) 
which gives a basis for R[𝑋]. Equivalently, 𝑇 𝑛 is defined to be the only polynomial satisfying 𝑇 𝑛 (cos(𝜃)) = cos(𝑛𝜃) for all 𝜃 ∈ R. In particular, one gets that |𝑇 𝑛 (𝑡)| 1 for all 𝑡 ∈ [-1, 1]. To obtain more symmetric formulas, one can define 𝑇 -𝑛 := 𝑇 𝑛 for all 𝑛 0, which is consistent with the trigonometric definition of 𝑇 𝑛 .

Similarly to the monomial basis, we have simple formulas for multiplication and (indefinite) integration:

𝑇 𝑛 𝑇 𝑚 = 1 2 (𝑇 𝑛+𝑚 + 𝑇 𝑛-𝑚 ), 𝑛, 𝑚 ∈ Z, ∫︁ 𝑇 𝑛 = 1 2 
(︂ 𝑇 𝑛+1 𝑛 + 1 - 𝑇 𝑛-1 𝑛 -1 )︂ , 𝑛 ∈ Z, (2.25) 
where 𝑇 𝑛+1 /(𝑛 + 1), resp. 𝑇 𝑛-1 /(𝑛 -1), is 0 by convention when the denominator vanishes (that is, when 𝑛 = -1, resp. 𝑛 = 1). However, contrary to the monomial basis, derivation in the Chebyshev basis does not have a compact expression:

𝑇 ′ 𝑛 = 𝑛 ∑︁ |𝑖|<|𝑛| 𝑖̸ =𝑛 mod 2 𝑇 𝑖 = {︂ 𝑛(𝑇 -𝑛+1 + • • • + 𝑇 -1 + 𝑇 1 + • • • + 𝑇 𝑛-1 ), 𝑛 even, 𝑛(𝑇 -𝑛+1 + • • • + 𝑇 0 + • • • + 𝑇 𝑛-1 ), 𝑛 odd. ( 2.26) 
Another important property is that Chebyshev polynomials form a family (𝑇 𝑛 ) 𝑛 0 of orthogonal polynomials with respect to the following inner product, defined on 𝐿 2 ([-1, 1]), the space of real-valued measurable functions over [-1, 1] for which

∫︀ 1 -1 𝑓 (𝑡) 2 (1 -𝑡 2 ) -1/2 d𝑡 < +∞: ⟨𝑓, 𝑔⟩ := ∫︁ 1 -1 𝑓 (𝑡)𝑔(𝑡) √ 1 -𝑡 2 d𝑡 = ∫︁ 𝜋 0 𝑓 (cos 𝜃)𝑔(cos 𝜃) d𝜃 ∈ R, 𝑓, 𝑔 ∈ 𝐿 2 .
One has: ⟨𝑇 0 , 𝑇 0 ⟩ = 𝜋, ⟨𝑇 𝑛 , 𝑇 𝑛 ⟩ = 𝜋 2 , for 𝑛 > 0, and ⟨𝑇 𝑛 , 𝑇 𝑚 ⟩ = 0, for 𝑛 ̸ = 𝑚. Whence, the 𝑛-th order Chebyshev coefficient of 𝑓 ∈ 𝐿 2 is defined by:

[𝑓 ] 𝑛 := 1 𝜋 ⟨𝑓, 𝑇 𝑛 ⟩ = 1 𝜋 ∫︁ 𝜋 0 𝑓 (cos 𝜃) cos(𝑛𝜃) d𝜃, 𝑛 ∈ Z.
(2.27)

Note that [𝑓 ] -𝑛 = [𝑓 ] 𝑛 for all 𝑛 ∈ Z and the symmetric 𝑛-th order truncated Chebyshev series of 𝑓 is defined by: This theorem shows the effectiveness of approximating by truncated Chebyshev series even when functions have low regularity. Moreover, the smoother 𝑓 is, the faster its approximants converge. From [211, Thm 7.2], one has that if the 𝜈th derivative of 𝑓 is of bounded variation 𝑉 , then for a truncation order 𝑛, the speed of convergence is in 𝑂(𝑉 𝑛 -𝜈 ). According to [START_REF] Trefethen | Approximation theory and approximation practice[END_REF]Thm 8.2] for analytic functions, if 𝜌 > 0 and 𝑓 is analytic in the neighborhood of the set bounded by the Bernstein 𝜌-ellipse

п 𝑛 • 𝑓 := ∑︁ |𝑖| 𝑛 [𝑓 ] 𝑖 𝑇 𝑖 = [𝑓 ] -𝑛 𝑇 -𝑛 + • • • + [𝑓 ] 0 𝑇 0 + • • • + [𝑓 ] 𝑛 𝑇 𝑛 , 𝑛 0. Beside convergence of п 𝑛 • 𝑓 to 𝑓 in 𝐿 2 ([-1, 1 
ℰ 𝜌 = {𝑧 = (𝜌𝑒 𝑖𝜃 + 𝜌 -1 𝑒 -𝑖𝜃 )/2 ∈ C | 𝜃 ∈ [0,
2𝜋]} of foci -1 and 1, the convergence is in 𝑂(𝑀 𝜌 -𝑛 ), where 𝑀 upper bounds |𝑓 | on ℰ 𝜌 . In particular, for entire functions (𝜌 = ∞), the convergence is faster than any geometric sequence [START_REF] Boyd | Chebyshev and Fourier spectral methods[END_REF].

Note also that truncated Chebyshev series are near-best approximations with respect to the uniform norm, denoted by 

‖ • ‖ ∞ in what follows, over [-1, 1] on the space 𝒞 0 = 𝒞 0 ([-1, 1]) of
)︂ ‖𝑓 -𝑝 * 𝑛 ‖ ∞ .
The Chebyshev Recurrence Relation From Equations (2.23) and (2.25) follows the important property that the Chebyshev coefficients of a D-finite function obey a linear recurrence with polynomial coefficients, a fact that was dealt with in a series of articles [START_REF] Fox | Chebyshev methods for ordinary differential equations[END_REF][START_REF] Fox | Chebyshev polynomials in numerical analysis[END_REF][START_REF] Paszkowski | Zastosowania numeryczne wielomianow i szeregow Czebyszewa[END_REF][START_REF] Lewanowicz | A new approach to the problem of constructing recurrence relations for the Jacobi coefficients[END_REF][START_REF] Geddes | Symbolic computation of recurrence equations for the Chebyshev series solution of linear ODE's[END_REF], and can be summarized in the framework of a suitable skew-polynomial ring (which were briefly defined in Section 2.1) as follows.

Denote by Q(𝑛)⟨𝑆, 𝑆 -1 ⟩ the skew Laurent polynomial ring over Q(𝑛) in the indeterminate 𝑆, subject to the commutation rules 

𝑆𝜆 = 𝜆𝑆 (𝜆 ∈ Q), 𝑆𝑛 = (𝑛 + 1)𝑆. (2.28) Likewise, Q[𝑛]⟨𝑆, 𝑆 -1 ⟩ ⊂ Q(𝑛)⟨𝑆, 𝑆 -1 ⟩
𝑢(𝑥) = ∞ ∑︁ 𝑛=-∞ 𝑢 𝑛 𝑇 𝑛 (𝑥), 𝑣(𝑥) = ∞ ∑︁ 𝑛=-∞ 𝑣 𝑛 𝑇 𝑛 (𝑥).
There exist difference operators 𝑃, 𝑄 ∈ Q[𝑛]⟨𝑆, 𝑆 -1 ⟩ with the following properties. 

Letting

𝛿 𝑟 (𝑛) = 2 𝑟 𝑟-1 ∏︁ 𝑖=-𝑟+1 (𝑛 -𝑖), 𝐼 = 1 2𝑛 (𝑆 -1 -𝑆), (2.30) 
we have 𝑄 = 𝑄 𝑟 = 𝛿 𝑟 (𝑛)𝐼 𝑟 (this expression is to be interpreted as a polynomial identity in Q(𝑛)⟨𝑆, 𝑆 -1 ⟩). In particular, 𝑄 depends only on 𝑟 and satisfies the same symmetry property as 𝑃 .

A sloppy but perhaps more intuitive statement of the main point of Theorem 2.4.3 would be: "( ∫︀ ) 𝑟 𝐿 • 𝑢 = 𝑤 if and only if 𝛿 𝑟 (𝑛)𝑃 • 𝑢 = 𝑤, up to some integration constants". While several properties of the Chebyshev recurrence (2.29), like the injectivity of 𝑄 restricted to symmetric sequences, the structure of recurrence singularities, as well as the asymptotic structure of the solutions of this recurrence are analyzed and proved in [J4], compared with power series, this recurrence does not yield a direct computation of the coefficients, due to several difficulties:

• Lack of initial conditions: unlike the first few Taylor coefficients of 𝑦, the Chebyshev coefficients that could serve as initial conditions for the recurrence are not related in any direct way to initial or boundary conditions of the differential equation. Moreover, the order 2𝑠 of the recurrence is usually larger than that of the differential equation, so we need to somehow "obtain more initial values for the recurrence than we naturally have at hand".

• Existence of leading and trailing singularities of the recurrence (2.29) (over which we have some control [J4, Prop. 2.7]).

• Chebyshev recurrences always admit divergent solution sequences, which do not correspond to the expansions of solutions of the differential equation the recurrence comes from. It can be proved, using the main asymptotic existence theorem for linear recurrences (Birkhoff-Trjitzinsky), that in general a Chebyshev recurrence (like in Theorem 2.4.3 ( 2)) has a basis of 2𝑠 "germs of solutions at infinity", half of them convergent and half divergent [J4, Corollary 3.6].

Due to the above mentioned difficulty, the numerical evaluation of Chebyshev series coefficients by (forward) recurrence unrolling is problematic, as exemplified below.

Example 2.4.4 (Numerical evaluation of forward recurrence for Chebyshev series coefficients. Part 1). The Chebyshev recurrence associated to the equation 𝑦 ′ = 𝑦 is

(𝑃 • 𝑢) 𝑛 = 𝑢(𝑛 + 1) + 2𝑛 𝑢(𝑛) -𝑢(𝑛 -1) = 0.
In terms of the modified Bessel functions 𝐼 𝜈 and 𝐾 𝜈 , a basis of solutions of the recurrence is given by the sequences (𝐼 𝜈 (1)) 𝜈∈Z and (𝐾 𝜈 (1)) 𝜈∈Z . The former is the coefficient sequence of the Chebyshev expansion of the exponential function and decreases as Θ(2 -𝜈 𝜈! -1 ). The later satisfies 𝐾 𝜈 (1) = Θ(2 𝜈 (𝜈 -1)!).

Hence, even if we had a way of obtaining very accurate initial conditions of the recurrence, forward unrolling would result in very unstable numerical computations, as practically shown in comparison with the Taylor counterpart, in To compute these solutions efficiently, despite the difficulties discussed above, a method originally due to Clenshaw [START_REF] Clenshaw | The numerical solution of linear differential equations in Chebyshev series[END_REF] 3 and already discussed in the Chebyshev series context in [START_REF] Fox | Chebyshev methods for ordinary differential equations[END_REF][START_REF] Fox | Chebyshev polynomials in numerical analysis[END_REF][START_REF] Rebillard | Etude théorique et algorithmique des series de Chebychev, solutions d'équations différentielles holonomes[END_REF]] can be used. This is related to Miller's well-known backward recurrence technique [START_REF] Bickley | Bessel functions. Part II. Functions of positive integer order, volume X of Mathematical Tables[END_REF][START_REF] Wimp | Computation with Recurrence Relations[END_REF] to compute minimal ("slowest increasing") solutions of three-term recurrences. Miller's idea is to compute the coefficients 𝑢 𝑁 , 𝑢 𝑁 -1 , . . . , 𝑢 0 of a linear recurrence sequence in the backward direction, starting form arbitrary "initial conditions" 𝑢 𝑁 +1 and 𝑢 𝑁 +2 . When 𝑁 goes to infinity (𝑢 𝑁 +1 , 𝑢 𝑁 +2 being chosen once and for all), the computed coefficients 𝑢 0 , . . . , 𝑢 𝑁 get close to those of a minimal solution with large 𝑢 0 , 𝑢 1 , in accordance with the intuition that "minimal solutions are the dominant ones when going backwards". This method behaves much better numerically than the standard forward recurrence. But its key feature for our purposes is that it allows to compute a minimal solution characterized by its minimality plus one normalizing condition instead of two initial values. This is exemplified below. Based on our study of the properties of the recurrence, we can turn Clenshaw's method into the true Algorithm 18 that applies uniformly to differential equations of arbitrary order and degree, which runs linearly in function of 𝑁 . Roughly speaking, we use the idea of backward recurrence to approach the whole subspace of convergent solutions instead of a single minimal one. There remains to take care of the constraints related to the singularities of the recurrence, the symmetry condition and the initial values of the differential equation, all of which is done using linear algebra. Its correctness proof is more technical and can be found in [J4], here we highlight the main result. Theorem 2.4.6. Algorithm 18 fails for finitely many 𝑁 only. As 𝑁 → ∞, its output satisfies

𝑢(0) = 1 1/0! = 1 𝑢(1) = 1 1/1! = 1 𝑢(2) = 0.
𝑁 max 𝑛=-𝑁 |𝑦 (𝑁 ) 𝑛 -𝑦 𝑛 | = 𝑂(𝑁 𝜏 𝑒 1,𝑁 ),
for some 𝜏 independent of 𝑁 and 𝑒 1,𝑁 corresponding to the formal asymptotic behavior of the least convergent solution of the recurrence i.e. 𝑒 1,𝑁 = 𝑂(𝑁 ! 𝜅 𝛼 𝑁 𝑒 𝑜(𝑁 ) ) (with 𝜅 0 and if 𝜅 = 0 then |𝛼| < 1).

Algorithm 18 Clenshaw-like computation of Chebyshev series coefficients for D-finite functions. Input:

a linear differential operator 𝐿 of order 𝑟, and suitable boundary conditions 𝜆 1 (𝑦) = ℓ 1 , . . . , 𝜆 𝑟 (𝑦) = ℓ 𝑟 , a target degree 𝑑 > 𝑠, an integer 𝑁 max(𝑑, max{𝑛 : 𝑏 -𝑠 (𝑛) = 0}). 9 solve for (𝜂 𝑖 ) 𝑖∈I the linear system

{︂ 𝜆 𝑘 (ỹ) = ℓ 𝑘 , 1 𝑘 𝑟, 𝑏 -𝑠 (𝑛)ỹ 𝑛-𝑠 + • • • + 𝑏 𝑠 (𝑛)ỹ 𝑛+𝑠 = 0, 𝑛 ∈ 𝑟, 𝑠 -1 ∪ S (2.31) 10 return ∑︀ 𝑑 𝑛=-𝑑 ỹ𝑛 𝑇 𝑛 (𝑥)
More numerical examples for Algorithm 18 can be found in [J4]. We chose to show the quality of these approximations by the following "effective near-minimax approximation" property [J4]: Corollary 2.4.7. Given 𝑑 ∈ N, there exists 𝑁 such that Algorithm 18, called with parameters 𝐿, (ℓ 𝑘 ), 𝑑, and 𝑁 , computes a polynomial 𝑝 𝑑 of degree at most 𝑑 satisfying ‖𝑝 𝑑 -𝑦‖ ∞ (︀

4𝜋 -2 ln(𝑑+1)+5 )︀ ‖𝑝 * 𝑑 -𝑦‖ ∞ in 𝑂(ln ‖𝑝 𝑑 -𝑦‖ -1 ∞ ) arithmetic operations.
Concerning the computation of an a posteriori validated approximation error bound, we proposed in [J4] an algorithm based on convergent Neumann series of linear operators in the Banach space of continuous functions (𝒞 0 , ‖ • ‖ ∞ ). We chose here to focus on a more recent work [J2], in collaboration with my PhD student, F. Bréhard, and N. Brisebarre (co-supervisor). It extends the complexity study of [J4] to the framework of quasi-Newton validation methods for LODEs.

Validated and efficient Chebyshev spectral methods for linear ordinary differential equations

More specifically, consider the following problem: Problem 3. Let 𝑟 be a positive integer, 𝛼 0 , 𝛼 1 , . . . , 𝛼 𝑟-1 and 𝛾 continuous functions over

[-1, 1]. Consider the LODE 𝑓 (𝑟) (𝑡) + 𝛼 𝑟-1 (𝑡)𝑓 (𝑟-1) (𝑡) + • • • + 𝛼 1 (𝑡)𝑓 ′ (𝑡) + 𝛼 0 (𝑡)𝑓 (𝑡) = 𝛾(𝑡), 𝑡 ∈ [-1, 1], (2.32) 
together with conditions uniquely characterizing the solution: a) For an initial value problem (IVP), consider:

Λ • 𝑓 := (𝑓 (𝑡 0 ), 𝑓 ′ (𝑡 0 ), . . . , 𝑓 (𝑟-1) (𝑡 0 )) = (𝑣 0 , 𝑣 1 , . . . , 𝑣 𝑟-1 ), (32a) 
for given 𝑡 0 ∈ [-1, 1] and (𝑣 0 , 𝑣 1 , . . . , 𝑣 𝑟-1 ) ∈ R 𝑟 . b) For a generalized boundary value problem (BVP), conditions are given by 𝑟 linearly independent linear functionals 𝜆 𝑖 : 𝒞 0 → R:

Λ • 𝑓 := (𝜆 0 (𝑓 ), . . . , 𝜆 𝑟-1 (𝑓 )) = (ℓ 0 , . . . , ℓ 𝑟-1 ), (32b) 
for given (ℓ 0 , . . . , ℓ 𝑟-1 ) ∈ R 𝑟 .

Given an approximation degree 𝑑 ∈ N, find the coefficients of a polynomial f (𝑡) = ∑︀ 𝑑 𝑛=0 𝑐 𝑛 𝑇 𝑛 (𝑡) written in Chebyshev basis (𝑇 𝑛 ), together with a tight and rigorous error bound

𝜂 such that ‖𝑓 -f ‖ ∞ := sup 𝑡∈[-1,1] |𝑓 (𝑡) -f (𝑡)| 𝜂.
One can readily see that the previously proposed algorithm provides a solution for the numerical part, given sufficiently good polynomial approximations of the coefficients 𝛼 𝑖 . But other numerical methods could also be used (see for instance [START_REF] Iserles | A first course in the numerical analysis of differential equations[END_REF][START_REF] Olver | A fast and well-conditioned spectral method[END_REF]). Therefore, we also proposed another linear (with respect to the approximation degree) time approximation algorithm in [J2] which is based on an algorithm for almost-banded linear systems from [START_REF] Olver | A fast and well-conditioned spectral method[END_REF], together with a classical integral reformulation of the above problem.

We focus now on the rigorous computation of approximation error bounds. Our proposed solution is less based on computer algebra algorithms for D-finite functions (although some structural properties of such functions remain essential) and more oriented towards a functional analysis approach. In particular, a so-called a posteriori quasi-Newton validation method is employed, which mainly relies on a fixed-point argument of a contracting map. This method was already used for nonlinear multivariate problems [START_REF] Yamamoto | A numerical verification method for solutions of boundary value problems with local uniqueness by Banach's fixed-point theorem[END_REF][START_REF] Lessard | Rigorous numerics for nonlinear differential equations using Chebyshev series[END_REF][START_REF] Van Den Berg | Rigorous numerics in dynamics[END_REF][START_REF] Hungria | Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach[END_REF], but these works focused on ad-hoc solutions for specific problems. In contrast, our study is from the computer algebra perspective: only LODEs are handled, yet with a generic algorithmic approach, as well as its complexity study.

General setting for quasi-Newton validation

Consider the equation F • 𝑥 = 0 where F is an operator acting on a Banach space (𝐸, ‖•‖). A numerical method provides an approximation ̃︀ 𝑥 of some exact solution 𝑥. One is interested in rigorously bounding the approximation error between 𝑥 and ̃︀ 𝑥. For that, a classical idea is to reformulate the problem as a fixed-point equation T • 𝑥 = 𝑥 with T : 𝐸 → 𝐸 an operator whose fixed points correspond to the zeros of F. The distance between a given approximation and a fixed point of T is bounded based on the following theorem [ • T is contracting over 𝐵(̃︀ 𝑥, 𝑟): there exists a constant 𝜇 ∈ (0, 1) such that for all 𝑥 1 , 𝑥 2 ∈ 𝐵(̃︀ 𝑥, 𝑟),

‖T • 𝑥 1 -T • 𝑥 2 ‖ 𝜇‖𝑥 1 -𝑥 2 ‖,
then T admits a unique fixed point 𝑥 * in 𝐵(̃︀ 𝑥, 𝑟) and we have the following enclosure of the approximation error:

‖T • ̃︀ 𝑥 -̃︀ 𝑥‖ 1 + 𝜇 ‖𝑥 * -̃︀ 𝑥‖ ‖T • ̃︀ 𝑥 -̃︀ 𝑥‖ 1 -𝜇 .
One special class of such operators T are the Newton-like operators acting on Banach spaces (see [START_REF] Rall | Computational solution of nonlinear operator equations[END_REF]Chap.4] and references therein). Suppose that F is of class 𝒞 2 over 𝐸, and suppose that A = ( dF| 𝑥=̃︀ 𝑥 ) -1 exists. Then the fixed points of:

T = I -A • F : 𝐸 → 𝐸 (2.33)
are exactly the zeros of F and T has a null derivative at ̃︀ 𝑥, so that it is locally contracting around ̃︀ 𝑥. Hence, if for a well-chosen 𝑟 > 0, the hypotheses of Theorem 2.4.8 are respected, one obtains an upper bound for the approximation error ‖𝑥 * -̃︀ 𝑥‖. In general however, we cannot exactly compute ( dF| 𝑥=̃︀ 𝑥 ) -1

and A is only an approximation. Still, this may be sufficient to get a contracting operator T around ̃︀ 𝑥.

When T is affine, it is contracting if and only if its linear part 𝒟T has operator norm ‖𝒟T‖ = 𝜇 < 1.

In particular, for an affine operator T, being locally or globally contracting are equivalent. Therefore, the ball 𝐵(̃︀ 𝑥, 𝑟) can be replaced by the whole space 𝐸 in Theorem 2.4.8 and the first condition becomes trivially true. This general abstract formulation was specialized in [J2] as follows.

Setting for quasi-Newton validation of Chebyshev series

• The Banach space denoted by (Ч 1 , ‖•‖ Ч 1 ), contains continuous functions 𝑓 , for which the sum of absolute value of Chebyshev series coefficients is convergent: 

‖𝑓 ‖ Ч 1 := ∑︁ 𝑛∈Z |[𝑓 ] 𝑛 | < +∞. Note that if 𝑓 ∈ Ч 1 ,
𝜙 + K • 𝜙 = 𝜓 with (K • 𝜙)(𝑡) = ∫︁ 𝑡 𝑡0 𝑘(𝑡, 𝑠)𝜙(𝑠)d𝑠, 𝑡 ∈ [-1, 1], (2.34) 
where:

the kernel 𝑘(𝑡, 𝑠) is a bivariate continuous function given by:

𝑘(𝑡, 𝑠) = 𝑟-1 ∑︁ 𝑗=0 𝛼 𝑗 (𝑡) (𝑡 -𝑠) 𝑟-1-𝑗 (𝑟 -1 -𝑗)! , (𝑡, 𝑠) ∈ [-1, 1] 2 , (2.35) 
the right-hand side 𝜓 is given by:

𝜓(𝑡) = 𝛾(𝑡) - 𝑟-1 ∑︁ 𝑗=0 𝛼 𝑗 (𝑡) 𝑟-1-𝑗 ∑︁ 𝑘=0 𝑣 𝑗+𝑘 (𝑡 -𝑡 0 ) 𝑘 𝑘! , 𝑡 ∈ [-1, 1]. (2.36) 
By a slight abuse of terminology, we shall call 𝑟 the order of the integral operator K.

• In this case, F • 𝜙 := 𝜙 + K • 𝜙 -𝜓 is affine, with linear part I + K. The quasi-Newton method requires an approximate inverse operator

A ≈ (I + K) -1 such that ‖I -A • (I + K)‖ Ч 1 < 1.
Of course, computing an exact inverse would solve the problem but is out of reach. Instead of that, one can proceed from the following two key ideas:

it is necessary to consider finite dimensional approximations of these operators and to establish convergence and invertibility properties of these operators and their truncations with respect to their action on Ч 1 , together with effective truncation bounds;

it turns out that in many cases, these finite dimensional truncations have a very interesting sparse matrix structure, namely they are almost-banded, which allows for very efficient numerical algorithms [START_REF] Olver | A fast and well-conditioned spectral method[END_REF].

Specifically, one can prove that K and I + K are bounded linear endomorphisms of Ч 1 , I + K is invertible in Ч 1 . Moreover, the 𝑛-th truncation (also called the 𝑛-th section in [START_REF] Gohberg | Basic classes of linear operators[END_REF]) of the integral operator K:

K [𝑛] = п 𝑛 • K • п 𝑛 , (2.37) 
converges to K for the ‖•‖ Ч 1 operator norm, as 𝑛 → ∞ and K is compact.

Validation for the D-finite case

When the LODE (2.32) is D-finite, the representation matrices (obtained by studying the operator action on Chebyshev polynomials) of K and (I + K) (as well as their truncations K [𝑛] and (I + K) [𝑛] ) have an almost-banded structure (see Figure 2.4).

j = 0 ↓ i = 0 → Figure 2.4 -Almost-banded structure of operator K.
One can prove that for 𝑛 large enough (I + K [𝑛] ) -1 exists and is a good approximation of (I + K) -1 . Since (I + K [𝑛] ) -1 is defined by an (𝑛 + 1)-order square matrix (its restriction over п 𝑛 • Ч 1 ) extended over the whole space Ч 1 by the identity, we define the operator A over Ч 1 as an (𝑛 + 1)-order square matrix 𝐴 approximating (I + K [𝑛] ) -1 over п 𝑛 • Ч 1 , extended by the identity over the whole space:

A • 𝜙 = 𝐴 • п 𝑛 • 𝜙 + (I -п 𝑛 ) • 𝜙.
The first technical issue is to numerically compute (or represent) both very accurately and efficiently such a matrix 𝐴. Specifically, we aim both for a linear complexity computation with respect to 𝑛 and for minimizing ‖𝐼 𝑛+1 -𝐴 • 𝑀 ‖ 1 , where 𝑀 is an order 𝑛 + 1 matrix representation for I + K [𝑛] . In [J2] we present two solutions: one that has a quadratic complexity w.r.t. 𝑛, but computes 𝑀 -1 very accurately; the other uses a heuristic which states that (I + K [𝑛] ) -1 is well approximated by almost-banded matrices. This second option may require a large value of 𝑛, but works well in practice and has a linear complexity w.r.t. 𝑛. A discussion on which of these two methods should be used in practice is presented in [J2], together with complexity estimates in both cases.

Next, one has to provide a rigorous Lipschitz constant 𝜇 (required by Theorem 2.4.8) for the Newtonlike operator. We have:

‖I -A • (I + K)‖ Ч 1 ‖I -A • (I + K [𝑛] )‖ Ч 1 + ‖A • (K -K [𝑛] )‖ Ч 1 , (2.38)
which can be interpreted as:

• ‖I-A•(I+K [𝑛] )‖ Ч 1 is the approximation error because 𝐴 was (maybe) not the exact representation matrix of (I + K [𝑛] ) -1 .

• ‖A • (K -K [𝑛] )‖ Ч 1 is the truncation error because K [𝑛] is not exactly K.

Bounding the approximation error reduces to (almost-banded) matrix multiplication with interval arithmetic, while the truncation error concerns the tail of the operator K and needs some more technical inequalities (cf. [J2, Algorithm 6.]). To summarize, one can prove (and compute explicit upper-bounds) that the error due to tail diagonal coefficients 𝐵 𝐷 (𝑖) = ‖(I-п 𝑛 )•K•𝑇 𝑖 ‖ Ч 1 decreases in 𝑂(1/𝑖). Furthermore, the error due to initial coefficients multiplied by 𝐴, 𝐵

𝐼 (𝑖) = ‖𝐴 • п 𝑛 • K • 𝑇 𝑖 ‖ Ч 1 decreases in 𝑂(1/𝑖 2 ).
Once we have obtained and validated a quasi-Newton operator T with a certified Lipschitz constant 𝜇 < 1, the validation of a candidate solution ̃︀ 𝜙 of the integral Equation (2.34), reduces to computing:

‖𝜙 * -̃︀ 𝜙‖ Ч 1 ‖ ̃︀ 𝜙 + K • ̃︀ 𝜙 -𝜓‖ Ч 1 1 -𝜇 ,
where all the computations are performed in interval arithmetics.

Extension to non D-finite case

The extension to the non D-finite case is based on approximating the coefficients of the differential operators by Chebyshev models, and computing an integral kernel operator by overloading operations with Chebyshev models. The resulting polynomial part defines a polynomial kernel 𝑘 𝑃 (𝑡, 𝑠) and respectively the polynomial integral operator K 𝑃 , such that ‖K -K 𝑃 ‖ Ч 1 is explicitly bounded by a constant depending only on 𝑟 and the initial error bounds in the LODE coefficients approximation. This justifies the fact that K is well-approximated by K 𝑃 when the coefficients of Equation (2.32) are well approximated by polynomials. Similar computations follow, by noting that the linear part of T can be decomposed into three parts:

‖I -A • (I + K)‖ Ч 1 ‖I -A • (I + K [𝑛] 𝑃 )‖ Ч 1 + ‖A • (K 𝑃 -K [𝑛] 𝑃 )‖ Ч 1 + ‖A • (K -K 𝑃 )‖ Ч 1 .
The first two parts are exactly the ones of (2.38) (where the polynomial integral operator K is now called K 𝑃 ) and can be rigorously upper bounded using the same techniques. The last part can be upper bounded thanks to the initial computations with Chebyshev models. It is interesting to notice that the order of magnitude of 𝑛 is largely determined by the second part (as in the polynomial case), whereas the third part mainly depends on the degree of the approximating polynomials for 𝛼 𝑗 (𝑡).

In conclusion, we observe that our validation method is easily adapted to the general case where the coefficients 𝛼 𝑗 are non-polynomial functions rigorously approximated by polynomials. However, contrary to the polynomial case where the involved degrees are usually low, the degrees of the approximants can be rather large, resulting in a dense linear problem and poorer time efficiency. Yet, in practice, the method remains efficient on problems with reasonable coefficient magnitude and time interval under consideration. The case of other boundary conditions is treated by reducing a general BVP validation problem to 𝑟 + 1 IVP validation problems (see [J2] for more details). Our new approach is to be illustrated also for validating solutions of LODEs appearing in robust guidance algorithms for space trajectories in Chapter 3.

We conclude by providing a brief description of the complexity result obtained, whose exact formulation is rather technical and is omitted in this report.

Complexity estimates

Firstly, notice that a numerical approximation of degree 𝑑 can be obtained in 𝑂(𝑑) arithmetic operations either with Algorithm 18 or by the one proposed [START_REF] Olver | A fast and well-conditioned spectral method[END_REF]. Concerning the validation, the relevant parameters involved are the degree of the numerical approximation 𝑑 and the truncation order 𝑛 (of the operator K) needed to obtain a certified Lipschitz constant 𝜇 < 1. In function of these two parameters, the complexity is 𝑂(𝑑 + 𝑛), hence when 𝑛 is small with respect to 𝑑, the validation is linear in 𝑑 also. However, we were not able to prove that this is always the case and the theoretical bound we have is 𝑛 = 𝑂(𝑑𝐵 2 exp(2𝐵)), where 𝐵 quantifies the norm of the coefficients of the integral operator (2.34). However this exponential bound is very pessimistic in practice, and hence our validation algorithm proceeds by setting a truncation order function of a numerical estimate of the norm ‖(I + K [𝑛] ) -1 • (K -K [𝑛] )‖ Ч 1 . This is done by numerically applying this operator on 𝑇 𝑛+1 , which is a heuristic similar to estimating the truncation error of a Chebyshev series by its first neglected term [START_REF] Cheney | Introduction to approximation theory[END_REF]Chap.4.4,Thm. 6]. If the estimated value is not correct, one proceeds by doubling 𝑛, until 𝜇 < 1.

Conclusion

In this chapter, we proposed several symbolic-numeric algorithms, which combine computer algebra, polynomial optimization and validated computations. We based our developments on the algebraic structure and algorithmic properties of D-finite (holonomic) functions. We also exploit other (more functional analysis-like) properties of differential operators like compactness, convergence, invertibility in suitable Banach spaces. Moreover, we focus on the "sparsity" generated by these operators and how this can be efficiently put to use in our algorithms. These core properties are applied in several (at first sight unconnected) areas. Finally, our approach is based both on providing good theoretical complexity estimates, but also practical code which actually works in applications as it will be further discussed in the next chapter. Possible extensions of these works are discussed in Chapter 4.

Chapter 3

Validated Computations for Aerospace

Since my CNRS recruitment in January 2013, one of my general research goals was to bring more reliable computations in the field of optimal control theory and aerospace. This was possible thanks to my collaboration with Denis Arzelier (CNRS Researcher, LAAS). Based on his previous works and research and transfer projects, with CNES or ADS for instance, I became aware of and then contributed to two main space-related themes. One concerns the collision risk assessment for orbital objects [J5, C12, C13, R2], the other is related to orbital rendezvous and proximity operations [C8, C3, C4, C7, J1]. These works also benefited from the collaboration with other researchers from LAAS, namely J.-B. Lasserre (CNRS Researcher, LAAS), C. Louembet (Maître de conférences, Université Toulouse 3) and A. Rondepierre (Maître de conférences, INSA Toulouse), as well as F. Camps (research engineer at LAAS) and also, the following students. Firstly, R. Serra defended his PhD in December 2015, under the supervision of D. Arzelier and A. Rondepierre; I contributed to his supervision in the second part of this PhD (2013-2015). Secondly, P.R. Arantes-Gilz, co-supervised with C. Louembet, defended his PhD thesis in October 2018. Thirdly, F. Bréhard is to defend in July 2019, co-supervised together with N. Brisebarre and D. Pous (CNRS Researchers at LIP, Lyon). Last but not least, N. Deak did an undergraduate internship in 2015 under my supervision. Most of the above results were already presented in detail in the Phd thesis of R. Serra [START_REF] Serra | Opérations de proximité en orbite : évaluation du risque de collision et calcul de manoeuvres optimales pour l'évitement et le rendez-vous[END_REF], or that of P.R. Arantes-Gilz [START_REF] Arantes Gilz | Embedded and validated control algorithms for the spacecraft rendezvous[END_REF]. The goal of this chapter is to focus two contributions, which particularly illustrate the close blend and interaction between the techniques presented in Chapter 2 with optimal control and space-related applications, as follows.

(Collision probability [J5, C12, C13]

). We proposed a new accurate, reliable and efficient method to compute the orbital collision probability between two spherical objects involved in a short-term encounter, under Gaussian uncertainty. In this model of conjunction, the probability of collision is reduced to the integral of a 2D Gaussian probability density function over a disk.

This computation needs to be particularly reliable and fast. In brief, this stems from the fact that the number of space objects in Low Earth Orbits, with diameter above 10 cm, a large majority being space debris, has dramatically increased during the last fifteen years. These orbiting debris constitute a serious hazard for operational satellites. Accordingly, for the overall safety of flight, it is critical to provide adequate mitigation and avoidance strategies when a conjunction includes at least one active satellite. Usually, the relative debris-satellite positions and velocities are only approximately known, hence the risk of an on-orbit collision is modeled as a collision probability.

If it is evaluated to be sufficiently high, a collision avoidance maneuver is decided, but each such maneuver reduces the remaining satellite fuel and thus its active in-orbit life. Yet, a wrong computation which underestimates the risk, could result in the satellite loss. This implies that both efficient and accurate algorithms are needed. In Section 3.1, a more detailed description and modeling of this problem is presented, which boils down to the direct use of Algorithm 13 given in Chapter 2.

This work had a particular practical impact, since after having independently implemented and run it on test databases (millions of cases), CNES uses it now as their reference method. This also resulted in a long term collaboration with our CNRS partners S. Laurens and J.C. Dolado, as part of, for instance, the research and transfer project Global Collision Probability and Satellites Station Keeping (2016-2018), which I coordinated.

(Validated impulsive spacecraft rendezvous [C8, J2]

). The rendezvous (RdV) problem is a process which meets two spacecraft, originally moving on different orbits, in order to match their positions and velocities. A rather general case of RdV can be a spacecraft (referred to as chaser) targeting an object (referred to as target, e.g. International Space Station) on its orbit. Since the '60s, many ideas have been developed, and today, we are interested in successful RdV which minimizes fuel consumption, with increased autonomy (no human operator). This implies that validation of computations and solutions is at stake. Impulsive RdV problems concern in practice a large number of satellites, which are equipped with ergol thrusters. The impulsive approximation for the thrust means that an instantaneous velocity increment is applied to the chaser for each impulse.

In what follows, we focus on the fixed-time minimum-fuel rendezvous between close elliptic orbits of an active spacecraft with a passive target spacecraft, assuming a linear impulsive setting and a Keplerian relative motion. Firstly, closely following the developments in [C8], we present the original optimal control problem, as well as its solution, given by the locations and magnitude of the impulses, and obtained by a numerical iterative algorithm. An interesting contribution is that this algorithm comes from the formulation of a semi-infinite convex optimization problem, using a relaxation scheme and duality theory in normed linear spaces. Secondly, we propose an a posteriori validation for the obtained solution, via Rigorous Polynomial Approximations, which were already discussed in Section 2.4.

The algorithm proposed to solve this optimal control problem was also extended in different settings. In [C3] different linearized dynamics corresponding to the circular restricted 3-bodyproblem are considered. Furthermore, in [C1] an exchange algorithm [START_REF] Watson | The calculation of best restricted approximations[END_REF][START_REF] Chalmers | The Remez exchange algorithm for approximation with linear restrictions[END_REF][START_REF] Carasso | Un algorithme général pour l'approximation au sens de Tchebycheff de fonctions bornées sur un ensemble quelconque[END_REF][START_REF] Carasso | L'algorithme d'échange en optimisation convexe[END_REF] which solves an approximation problem related to efficient machine implementation of mathematical functions is revisited, explained and extended based on the duality theory. Finally, note that a posteriori validation techniques were also extended by my students P.R. Arantes-Gilz and F. Bréhard, together with C. Gazzino (PhD student at LAAS) for other linearized dynamics by providing semi-analytical transition matrices via Chebyshev polynomials [START_REF] Arantes Gilz | Validated semi-analytical transition matrix for linearized relative spacecraft dynamics via Chebyshev polynomials[END_REF].

Collision probability

Since the collision between the Russian satellite COSMOS 1934 and one debris of COSMOS 926 in December 1991, no less than eight orbital collisions have been reported between operational satellites (e.g. IRIDIUM 33 and COSMOS 2251 collision in February 2009, the 10th), or between satellites and debris (e.g. the French satellite CERISE hit by a debris in July 1996, the 24th or the collision between THOR BURNER and a debris of Long March in January 2005, the 17th). Collision risk is particularly high in low orbits and different space agencies (CNES, ESA, NASA) and operators (Airbus Defense and Space (ADS), GMV) have established alert procedures to assess the risks of collision for controlled satellites, and to authorize avoidance maneuvers if the predicted risk exceeds some tolerance threshold. These procedures have undergone many changes in recent years and the field of collision avoidance techniques is currently in full development. For the different evolutions of these procedures, according to different agencies and operators, we refer to [START_REF] Flohrer | Tailoring the observation scenarios and data processing techniques for supporting conjunction event assessments[END_REF], [START_REF] Fletcher | Conjunction evolutions: The process of adapting and evolving operational collision warning software from server to service oriented architecture[END_REF] for ESA, [START_REF] Laporte | Operational Management of Collision Risks for LEO Satellites at CNES[END_REF][START_REF] Laporte | CAESAR: An initiative of public service for collision risks mitigation[END_REF] for CNES and [START_REF] Bonaventure | Collision risk management in astrium satellites[END_REF] for ADS. At the origin of any procedure of collision avoidance between two orbital objects, whether controlled or not, lies the information of conjunction between the two objects. Since 2009, a Conjunction Message is sent by the Joint Space Operations Center (JSpOC) to all spacecraft owners and operators, concerning approximately 15000 objects listed in the Two-Line Elements (TLE) catalog provided by USSTRATCOM (US Strategic Command). The information provided by the JSpOC consists of a Conjunction Assessment Report (CAR) containing few information: the Time of Closest Approach (TCA), the miss distance between the two objects, statistical and geometrical information on the position and the velocities of each object. These messages are sent only three days before the date of the encounter. To obtain more accurate information on the possible encounter, it is necessary to subscribe to a service which will in return provide a Conjunction Summary Report (CSM) from which is extracted the information needed to calculate the risk of collision between both objects. This collision risk assessment evaluates the risk for individual encounters.

The most general methods to accurately compute the global collision probability, without any additional assumption, are based on Monte-Carlo simulations, see e.g. [START_REF] Alfano | Satellite conjunction Monte Carlo analysis[END_REF][START_REF] Dolado-Perez | Satellite Collision Probability Computation for Long Term Encounters[END_REF] in the context of a simple encounter or [START_REF] Garmier | Collision Risk Assessment for Multiple Encounters[END_REF] in the context of a multiple encounter. These methods use a random sampling of 𝑁 vectors in the space of initial conditions. For each of them, the corresponding trajectories are propagated according to the dynamical model adopted on the discretized time interval [0, 𝑇 ]. We count 1 if there is a collision, 0 otherwise. At the end, the collision probability is given by the formula:

𝒫 𝑐 ([0, 𝑇 ]) = 1 𝑁 ∑︀ 𝑁 𝑖=1 𝛿 𝑖 .
The number of trials to be made depends on the requested precision as well as the value of the probability: a low value requires a lot of samples to be correctly estimated, and simulations can be dramatically time-consuming. This is one of the major disadvantages of Monte Carlo methods which makes them unsuitable for detecting low probability events in high dimension such as multiple events [START_REF] Garmier | Collision Risk Assessment for Multiple Encounters[END_REF]. Therefore alternative approaches had to be explored to assess the risk of collision between two or more objects.

In the particular context of encounters between two objects, encounters are usually classified into two families: the short-term encounters [START_REF] Akella | Probability of collision between space objects[END_REF][START_REF] Chan | Spacecraft Collision Probability[END_REF][START_REF] Coppola | Including Velocity Uncertainty in the Probability of Collision between Space Objects[END_REF][START_REF] Foster | A Parametric Analysis of orbital Debris Collision Probability and Maneuver Rate for Space Vehicles[END_REF] and the long-term encounters [START_REF] Chan | Spacecraft Collision Probability[END_REF][START_REF] Dolado-Perez | Satellite Collision Probability Computation for Long Term Encounters[END_REF]. In the context of short-term encounters, conjunctions are assumed to be short and rare and several simplifying assumptions, enabling a more efficient computation of the collision probability can be made. The relative velocity between the two objects is assumed to be very high (several km/s) and the relative motion is assumed rectilinear on the time interval of the encounter. Finally, it is also assumed that the crosscorrelations between the estimated states of the two objects are very small and therefore negligible. Such encounters typically occur in low orbits where the orbital velocities are high. Long-term encounters are characterized by relative velocities of the order of m/s, and correspond to situations where both objects spend significant time in proximity to each other. The motion equations of both objects are linearized around the reference orbit. This type of encounter is more common in the context of formation flying or proximity operations. Investigations about the range of validity of the short-term encounter model can be found in [START_REF] Chan | Spacecraft Collision Probability[END_REF][START_REF] Coppola | Evaluating the Short Encounter Assumption of the Probability of Collision Formula[END_REF]. We focus in what follows on the case of a short-term encounter between spherical objects under Gaussian-distributed uncertainty.

Short-term encounter

Let us recall the five assumptions needed to define the short-term encounter model under Gaussiandistributed uncertainty for spherical objects:

1. The relative trajectories are approximated as rectilinear.

2. The velocities are considered as deterministic variables.

3. Initial position vectors of both objects are Gaussian independent random vectors.

4. Each object is approximated by a spherical geometrical shape.

The time boundaries of the conjunction are extended to infinity.

The fact that the relative motion is rectilinear motivates the choice of a frame of study with one axis along the relative velocity. One possibility is to introduce the so-called encounter frame [START_REF] Foster | A parametric analysis of orbital debris collision probability and maneuver rate for space debris[END_REF][START_REF] Akella | Probability of collision between space objects[END_REF][START_REF] Patera | General method for calculating satellite conjunction probability[END_REF][START_REF] Chan | Spacecraft Collision Probability[END_REF] defined at reference time.

Encounter frame

This frame is centered on the mean position of one of the two objects and is built from the so-called encounter plane. This plane contains the origin and is orthogonal to the direction of the relative velocity. The configuration considered in this study is represented in Figure 3.1. The origin of the frame is located at the center of the primary object 𝑝. The basis vector 𝑒 z is oriented along the relative velocity 𝑣 = 𝑣 𝑠 -𝑣 𝑝 . The basis vector 𝑒 x belongs to the encounter plane: it points towards the orthogonal projection of the mean relative position 𝜇(𝑟 0 ) onto the encounter plane. Finally, the basis vector 𝑒 ỹ completes the right-handed system and thus belongs to the encounter plane as well. In summary, one has

𝑒 z = 𝑣 ‖𝑣‖ , 𝑒 ỹ = 𝑣 × 𝜇(𝑟 0 ) ‖𝑣 × 𝜇(𝑟 0 )‖ , 𝑒 x = 𝑒 ỹ × 𝑒 z . (3.1) 
Let (x 𝑚 , 0, z𝑚 ) be the coordinates of the mean relative position in the encounter frame where the ỹ coordinate is zero by construction. It is worth noticing that, since the relative trajectory is rectilinear, x𝑚 is in fact equal to the miss distance. 

Integral representation

Under the above assumptions, the probability of collision can be formulated as a 2-D integral in the encounter plane. For spherical objects, the domain of integration is a closed disk B((0, 0), 𝑅) centered at the origin of radius 𝑅. The quantity 𝑅 is the combined radius and is defined as the sum of the respective radii of the two objects i.e. 𝑅 = 𝑅 𝑝 + 𝑅 𝑠 .

The two-dimensional probability distribution involved in the probability of collision describes the distribution of the relative position in the encounter plane. From the hypothesis on the nature of uncertainty, it is a multivariate normal law. Therefore, it is completely defined by its mean vector and its covariance matrix [START_REF] Papoulis | Probability, random variables, and stochastic processes[END_REF]. Let Σ xỹ be the covariance matrix of the relative coordinates in the encounter plane. The probability of collision can then be written as:

𝒫 𝑐 = 1 2𝜋 √︀ |Σ xỹ | ∫︁ B((0,0),𝑅) exp (︂ - 1 2 [x -x𝑚 ỹ] Σ -1 xỹ [x -x𝑚 ỹ] 𝑇 )︂ dxdỹ. (3.2) 
Equation (3.2) shows that the probability of collision only depends on the combined radius 𝑅, the miss distance x𝑚 and the covariance matrix Σ xỹ of the relative coordinates in the encounter plane.

Frame rotation

In order to eliminate the cross-terms of the Gaussian function, a rotation of angle -𝜃 to the principal axis of the covariance matrix is performed in the encounter plane (see Figure 3.2). This transformation does not change the nature of the domain of integration which remains a disk of radius 𝑅 centered at the origin. The new coordinates, denoted (𝑥, 𝑦), are respectively along the major and the minor axis. This transformation allows to write a formula with a simpler integrand:

𝒫 𝑐 = 1 2𝜋𝜎 𝑥 𝜎 𝑦 ∫︁ B((0,0),𝑅) exp (︂ - 1 2 (︂ (𝑥 -𝑥 𝑚 ) 2 𝜎 2 𝑥 + (𝑦 -𝑦 𝑚 ) 2 𝜎 2 𝑦 )︂)︂ d𝑥d𝑦, (3.3) 
where the quantities 𝜎 𝑥 and 𝜎 𝑦 are standard deviations of the new coordinates. As a matter of fact, 𝜎 2 𝑥 and 𝜎 2 𝑦 are respectively the largest and the smallest eigenvalues of Σ xỹ . Similarly, the rotation of angle -𝜃 can be explicitly computed function of Σ xỹ , and one has: 3) defines the so-called short-encounter formula for the probability of collision between two spherical objects under Gaussian-distributed uncertainty. It has the form of a 2-D integral over a disk centered at the origin of a Gaussian function with no cross-terms. This corresponds exactly to Equation (2.4), which can be efficiently and reliably evaluated by Algorithm 13 presented in Section 2.2.

𝑥 𝑚 = x𝑚 cos 𝜃, 𝑦 𝑚 = -x 𝑚 sin 𝜃. (3.4) 

Previous works and discussion

Several techniques for evaluating (2.4) have been developed: Foster's [START_REF] Foster | A parametric analysis of orbital debris collision probability and maneuver rate for space debris[END_REF], Patera's [START_REF] Patera | General method for calculating satellite conjunction probability[END_REF] and Alfano's [START_REF] Alfano | Aerospace support to space situation awareness[END_REF], based on numerical integration schemes. These methods are strongly dependent upon the chosen integration method and need to manage a sensitive trade-off between precision and computation time. Another approach more similar to ours is Chan's [START_REF] Chan | Collision probability analyses for earth-orbiting satellites[END_REF][START_REF] Chan | Spacecraft Collision Probability[END_REF] who derives a truncated series-based formula, but with an approximation with respect to the initial model.

Furthermore, these methods [START_REF] Alfano | Review of conjunction probability methods for short-term encounters[END_REF][START_REF] Chan | Spacecraft Collision Probability[END_REF][START_REF] Patera | General method for calculating satellite conjunction probability[END_REF] were unable to guarantee any accuracy requirements. This is because usually either numerical integration schemes or truncated power series were used, but no rigorous proof regarding the method's convergence rate was given. The truncation orders or discretization steps were fixed by trial and error or by comparing against other numerical tools which might offer higher accuracy.

In contrast, our solution [J5] benefits both from computer algebra and numerical evaluation tools, which results in a method that is not only reliable (the number of guaranteed correct digits is user-input) but also faster than quadrature schemes.

Finally, we mention another recent work of Garcia-Pelayo [START_REF] García-Pelayo | Series for collision probability in short-encounter model[END_REF], where the authors also propose a series-based implementation, but which turns out to be exactly our series without the preconditioning. Hence, this method suffers from important cancellation issues, as already explained in Section 2.2.

Numerical tests

The performance of our method is assessed from two perspectives. First, since it is based on a series expansion, the numerical accuracy varies in function of the number of terms computed. Algorithm 13 offers an automatic way of computing the number of terms needed for a user-required accuracy. We exemplify it in what follows on practical cases. Second, our method is compared with other methods from the literature concerning the quality of the results obtained.

Case

Input 

Figure 3.3 shows the number 𝑛 of series terms needed in Algorithm 13 for a requested accuracy 𝛿 ranging from 10 -1 to 10 -13 . We observe that the number of terms for the absolute error to reach the machine precision (10 -13 ) is less 40 in all of Chan's Cases and CSM cases. Note that this number is computed a priori and it is a sufficient number. The actual number of terms for the accuracy to be met may be smaller in some cases, but for these practical examples it is not conservative. Chan's cases 8 and 10 are not drawn since the values obtained directly from the minorant/majorant series i.e., lines 2 & 3 of Algorithm 13 are sufficient for the whole range of absolute error considered. 

Comparison with other methods

Three algorithms from the literature, namely Alfano's [4], Patera's [START_REF] Patera | General method for calculating satellite conjunction probability[END_REF] and respectively Chan's [START_REF] Chan | Spacecraft Collision Probability[END_REF] have been implemented. The chosen test cases are described in Table 3.1: the first 12 cases can be found in [START_REF] Chan | Spacecraft Collision Probability[END_REF]Chapter 5] and are supposed to be representative of real short-term encounters; the next 3 cases are real-case scenarios: the data were retrieved from CSMs (Conjunction Summary Messages) sent by the Joint Space Operations Center to the industrial partner of our study; the last two cases were obtained using the physical parameters of test cases number 3 and 5 provided by Alfano [START_REF] Alfano | Satellite conjunction Monte Carlo analysis[END_REF].

On the other hand, for Alfano's cases, our Algorithm needs much more terms. In order to reach a good accuracy, Algorithm 13 computes 𝑛 = 689 for Alfano's Case 3 and 𝑛 = 10 13 for Alfano's Case 5. This is conservative, since 90 terms for Case 3 and respectively 37000 terms for Case 5 are sufficient to obtain the value given in Table 3.4. This shows however that in some degenerate cases the number of terms needed may increase drastically.

The corresponding results for the probability of collision obtained with different methods are summarized in Tables 3.2, 3.3 and 3.4. The reference values in Table 3.2 were provided by NASA [48] using Foster's method. For Table 3.3, they were given by the industrial partner and for Table 3.4 they were obtained from Monte Carlo trials. All tests were performed with Matlab c ○ R2014a on an Intel Xeon at 3.60GHz.

Since in our method the required accuracy can be set a priori in Algorithm 13, the obtained values are identical (in most cases) or very close to the reference. For Chan's test cases, number 1 to 12, Patera's method gives also 0% of relative error. For the same examples, Alfano's method also performs well, but it fails for very low probabilities like in test cases 8 and 10. On the other hand, Chan's method gives non negligible relative errors for some cases -namely 1, 2, 3, 4, 8, 10, 12 and CSM1-3. As far as precision is concerned, it is definitely the least effective. It is not surprising since it is based on an additional approximation with respect to the original short-term encounter model. For that reason, it gives meaningless results for the two test cases provided by Alfano [START_REF] Alfano | Satellite conjunction Monte Carlo analysis[END_REF], see Table 3.4. These examples were originally designed to compare the efficiency of several methods of the literature and are somehow more tedious as far as computation is concerned. They are challenging also for our method, since the number of terms to be considered in the series expansion is important. Nevertheless, the new method gives satisfactory results.

Concerning timings, our method is very fast: for each case tested, the results are obtained in less than one second; in frequent cases, when the bounds 𝑙 0 and 𝑢 0 are sufficient (lines 2 -3, Algorithm 13), the response is almost instantaneous (10 -5 seconds).

Case

Collision Probability (-) Table 3.4 -Comparison of collision probability value -with 5 significant digits -for test cases from [START_REF] Alfano | Satellite conjunction Monte Carlo analysis[END_REF].

Finally, we mention that we recently compared our preconditioned series with the non-preconditioned one, which was also claimed to be some kind of "new series" by [START_REF] García-Pelayo | Series for collision probability in short-encounter model[END_REF]. This comparison was done in collaboration with CNES on their whole database of millions of close-conjunction cases. It turns out that for various real-life cases, the cancellation phenomenon is present, as expected from our theoretical results. This renders the non-preconditioned series completely inaccurate, that is, no significant digit or not even the sign can be obtained when evaluating in finite (double) precision. This invalidates the observations of [START_REF] García-Pelayo | Series for collision probability in short-encounter model[END_REF], which stated that for practical cases, 2 terms of the non-preconditioned series are always enough for accurate evaluation, i.e. roughly 4 or 5 correct digits after the decimal dot. It also provides a practical argument in favor of solid symbolic-numeric evaluation tools.

Brief discussion on long-term/multiple encounters

In the general context of formation flying satellites or proximity operations, the hypothesis of short-term encounters can no longer be considered valid for the calculation of the overall risk of collision [START_REF] Garmier | Collision Risk Assessment for Multiple Encounters[END_REF][START_REF] Carpenter | Conservative analytical collision probability for design of orbital formations[END_REF]. This is mainly due to lower relative velocities (of the order of 1 m/s), so objects spend significant time in proximity to each other and the cross-correlations between the estimated states are not negligible anymore. Several works [START_REF] Patera | Satellite collision probability for nonlinear relative motion[END_REF][START_REF] Mckinley | Development of a nonlinear probability of collision tool for the Earth observing system[END_REF][START_REF] Chan | Spacecraft Collision Probability[END_REF][START_REF] Dolado-Perez | Satellite Collision Probability Computation for Long Term Encounters[END_REF][START_REF] Phillips | On-board estimation of collision probability for cluster flight[END_REF][START_REF] Campbell | Collision monitoring within satellite clusters[END_REF][START_REF] Coppola | Including Velocity Uncertainty in the Probability of Collision between Space Objects[END_REF][START_REF] Krier | Satellite Collision Probability for Long-term Encounters and Arbitrary Primary Satellite Shape[END_REF] extended the probability calculation in the case of long-term encounters, also called nonlinear framework, under different assumptions and limitations. For the more general case of assessing the risk of multiple encounters that is, one/many debris with a constellation of satellites, like OneWeb (600 satellites expected, 6 already launched by Feb. 2019) for instance, even fewer studies exist [START_REF] Demars | Information-Theoretic Approaches to Space Object Collision[END_REF][START_REF] Phillips | On-board estimation of collision probability for cluster flight[END_REF][START_REF] Frigm | Total probability of collision as a metric for finite conjunction assessment and collision risk management[END_REF].

So far, handling full generality with respect to the dynamics of the objects, the encounter duration, the potentially high number of objects involved, and the distribution of their initial state, was completely out of reach. This concerns both a clear mathematical modeling and a computationally efficient solution.

From a theoretical perspective, a different general convex-optimization-based framework for analysis and optimal control of dynamical systems was proposed in [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF][START_REF] Korda | Moment-sum-of-squares hierarchies for set approximation and optimal control[END_REF][START_REF] Streif | Probabilistic and set-based model invalidation and estimation using lmis[END_REF][START_REF] Lasserre | Nonlinear optimal control via occupation measures and LMI-relaxations[END_REF][START_REF] Marx | A moment approach for entropy solutions to nonlinear hyperbolic pdes[END_REF]. This is based on the formulation of an infinite-dimensional linear programming problem in the cone of nonnegative measures and so-called Lasserre hierarchy of relaxations [START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF].

Based on these works, we proposed a fully general mathematical modeling of the probability of collision of multiple encounters, in the measure theory framework [R2]. The main ingredients of this modeling are:

(1) lifting of the nonlinear dynamics into a linear equation of measures via Liouville's equation; (2) stating a linear optimization problem on measures, whose objective function is exactly the sought probability of collision; (3) practically solving moment problems via a hierarchy of semi-definite optimization.

More precisely, we were able to propose two complementary linear-programming problems on the space of non-negative measures, based on either computing the probability that no collision occurs, or the opposite. Obviously, the sum of these two probabilities is 1, but the numerical solving of these complementary LP problems on measures is done via a sequence of finite dimensional optimization problems, whose optimal values provide both upper and lower bounds on the sought collision probability.

While this practical numerical way of solving LP problems on measures is well-known and applicable, in our case, important numerical issues have been identified. Firstly, the dimension of the general problem is currently prohibitive for existing semi-definite solvers. Secondly, even simple examples show that numerical results in low dimension do not achieve a good accuracy. This is thus an important on-going research area for us, whose ramifications led us to consider related moment problems like those presented in Section 2.3. These issues as well as the sometimes partial solutions we provided so far, show that there still is an important need of cross-fertilization between symbolic-numeric and optimization methods, which will be further discussed in Chapter 4. In the meantime, we describe another contribution, where this goal can be achieved.

Validated impulsive spacecraft rendezvous

Since the first space missions (Gemini, Apollo, Vostok) involving more than one vehicle, space rendezvous between two spacecraft has become a key technology raising relevant open control issues. Formation flight (PRISMA), on-orbit satellite servicing or supply missions to the International Space Station (ISS) are all examples of projects that require adequate rendezvous planning tools. A main challenge is to achieve autonomous far range rendezvous on elliptical orbits while preserving optimality in terms of fuel consumption. As explained in the introduction, the rendezvous (RdV) problem consists in meeting two spacecraft, originally moving on different orbits, in order to match their positions and velocities. The impulsive approximation for the thrust means that an instantaneous velocity increment is applied to the chaser for each impulse. In this setting, one is interested to find the guidance law that achieves the maneuver with the lowest possible fuel consumption. This leads to define a minimum-fuel optimal control problem.

Specifically, in [C8] we focused on the fixed-time minimum-fuel rendezvous between close elliptic orbits of an active spacecraft with a passive target spacecraft, assuming a linear impulsive setting and a linearized Keplerian relative motion [START_REF] Carter | Linearized impulsive rendezvous problem[END_REF]. The original optimal control problem is transformed into a semi-infinite convex optimization problem using a relaxation scheme and duality theory in normed linear spaces. A new numerical convergent algorithm based on discretization methods is designed to solve this problem. Its solution is then used in a general simple procedure dedicated to the computation of the optimal velocity increments and optimal impulses locations. As a by-product, one also obtains an analytical solution for the out-of-plane rendezvous problem.

Furthermore, since this algorithm is numeric, one could be interested in a posteriori validating the obtained solution with the techniques proposed in Chapter 2. Let us first focus on the optimal control problem.

Optimal control formulation of the rendezvous problem

We consider the relative dynamics in a moving Local-Vertical-Local-Horizontal (LVLH) frame located at the center of gravity of a passive target and which rotates with its angular velocity. In this frame, the state vector

𝑋 𝑇 = [︀ 𝑥 𝑦 𝑧 𝑣 𝑥 𝑣 𝑦 𝑣 𝑧 ]︀
is composed of the positions and velocities of a chaser satellite in the in-track, cross-track and radial axes, respectively. Using the true anomaly of the target-vehicle orbit as the independent variable, and assuming a linearization of the relative equations of motion1 , a system of linear differential equations with periodic coefficients is easily obtained. The considered minimum-fuel linearized rendezvous problem may be reformulated as the following optimal control problem. 

where matrices 𝐴(𝜈) and 𝐵 define the state-space model of relative dynamics given by [START_REF] Tschauner | Elliptic orbit rendezvous[END_REF]:

𝐴(𝜈) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 2 0 -1 0 0 0 0 0 0 3/(1 + 𝑒 cos(𝜈)) -2 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , 𝐵 = [︂ O3×3 13 ]︂ . (3.6)
The form of these matrices shows that the equations describing motion in the plane of the targetvehicle orbit and those describing motion normal to the orbit plane can be decoupled and handled separately. Therefore, the out-of-plane and in-plane rendezvous will be dealt with independently in sequel developments. Indeed, the state vector dimension and the number of inputs in (3.5) are denoted 𝑛 and 𝑟, respectively with 𝑛 = 2, 𝑟 = 1 for the out-of-plane case and 𝑛 = 4, 𝑟 = 2 for the in-plane case. Remark 3.2.1. In Problem 4, the 1-norm cost captures indirectly the consumption of fuel used. In fact, the performance index used in Problem 4 is an upper-bound expressed as an angular velocity, on the usual characteristic velocity expressed in m/s. Previous works Indirect approaches, based on the optimality conditions derived from the Pontryagin's maximum principle and leading to the so-called primer vector theory ( [START_REF] Lawden | Optimal trajectories for space navigation[END_REF]), have been extensively studied [START_REF] Carter | Linearized impulsive rendezvous problem[END_REF][START_REF] Lion | Primer vector on fixed-time impulsive trajectories[END_REF][START_REF] Prussing | Primer vector theory and applications[END_REF][START_REF] Arzelier | Analytical study of the impulsive approximation[END_REF]. However, due to the nonconvex and polynomial nature of these conditions, numerical approaches remained either too complicated, or made use of heuristics which exhibit only suboptimal solutions on some instances. An important theoretical contribution for the optimal control problem was proposed in [START_REF] Neustadt | Optimization, a moment problem, and nonlinear programming[END_REF] and revisited in [START_REF] Claeys | Moment LMI approach to LTV impulse control[END_REF]. The idea is to recast it as a simpler optimization problem using a relaxation scheme and the duality theory in minimum-norm problems. In [START_REF] Claeys | Moment LMI approach to LTV impulse control[END_REF], a linear programming problem on measures is formulated, which is solved by a hierarchy of linear-matrix inequalities. However, the numerical solving of these hierarchies remains cumbersome.

Following [START_REF] Neustadt | Optimization, a moment problem, and nonlinear programming[END_REF], our contribution was to propose a new simpler convergent iterative numerical algorithm to solve the fixed-time impulsive linear rendezvous (without fixing a priori the number of impulses). This was based on the observation that by topological duality results [START_REF] Luenberger | Optimization by Vector Space Methods[END_REF][START_REF] Neustadt | Optimization, a moment problem, and nonlinear programming[END_REF], the problem to be solved becomes a Semi-Infinite Convex Programming (SICP) Problem. In turn, SICP can be solved by iterative discretization methods [START_REF] Reemtsen | Numerical techniques for semi-infinite programming: A survey[END_REF]. For instance, one of the most classical algorithms, which can be interpreted in the SICP context, with the further simplification of the constraints being linear, is the Remez algorithm [START_REF] Cheney | Introduction to approximation theory[END_REF].

In order to obtain the SICP formulation, the theoretical framework employed [161, C8] is summarized below:

• Formulation of a minimum norm moment problem. It is known that the solutions of the uncontrolled linearized dynamics in equation (3.5) form an 𝑛-dimensional affine space and a closed-form fundamental matrix, say 𝜙(𝜈), was provided by Yamanaka and Ankersen [START_REF] Yamanaka | New state transition matrix for relative motion on an arbitrary elliptical orbit[END_REF]. Defining the matrix (3.8)

𝑌 (𝜈) = 𝜙 -1 (𝜈)𝐵 = [︀ 𝑦 1 (𝜈) • • • 𝑦 𝑛 (𝜈) ]︀ 𝑇 ∈ R 𝑛×𝑟 ,
Several remarks are important at this point:

the specific matrices 𝑌 (𝜈) encountered in the rendezvous problem, 𝑦 1 (𝜈) • • • 𝑦 𝑛 (𝜈) are linearly independent elements of 𝒞([𝜈 0 , 𝜈 𝑓 ], R 𝑟 ); -when the fundamental matrix 𝜙(𝜈) cannot be obtained exactly in closed-form, techniques from Section 2.4 can be employed to obtain efficient polynomial approximations for its entries; -Problem 5 may not reach its optimal solution due to concentration effects [START_REF]Numerical techniques in relaxed optimization problems[END_REF]. This is mainly due to the fact that the functional space ℒ 1,𝑝 ([𝜈 0 , 𝜈 𝑓 ], R 𝑟 ) in which the optimal solution is sought, is not the topological dual of any other functional space [START_REF] Luenberger | Optimization by Vector Space Methods[END_REF]. It is then necessary to consider a so-called relaxed problem, whose solutions are thought of as generalized solutions of Problem 5. Specifically, they are searched for in the space of functions of bounded variation BV([𝜈 0 , 𝜈 𝑓 ], R 𝑟 ) [START_REF] Neustadt | Optimization, a moment problem, and nonlinear programming[END_REF][START_REF] Luenberger | Optimization by Vector Space Methods[END_REF].

• Relaxation of the original problem. It is important to note that a unique association can be made between a function 𝑔 ∈ BV([𝜈 0 , 𝜈 𝑓 ], R 𝑟 ) and a linear functional belonging to the topological dual space 𝑙 ∈ 𝒞 * ([𝜈 0 , 𝜈 𝑓 ], R 𝑟 ) of the space 𝒞([𝜈 0 , 𝜈 𝑓 ], R 𝑟 ), by the Riesz Representation Theorem [START_REF] Luenberger | Optimization by Vector Space Methods[END_REF], via the duality bracket:

𝑙(𝑦 𝑖 ) = ⟨𝑦 𝑖 (•), 𝑙⟩ = ∫︁ 𝜈 𝑓 𝜈0 𝑦 𝑖 (𝜈) 𝑇 d𝑔(𝜈). (3.9) 
Hence, Problem 5 may be relaxed as: ‖𝑦(𝜈)‖ 𝑞 (and with 1 𝑝 + 1 𝑞 = 1). It is shown in [START_REF] Neustadt | Optimization, a moment problem, and nonlinear programming[END_REF] that the infimum of Problem 6, denoted by η, is reached and that it is equal to the infimum of Problem 5.

Although Problem 6 is still an infinite-dimensional optimization problem, it is particularly appealing due to the important following result [START_REF] Neustadt | Optimization, a moment problem, and nonlinear programming[END_REF] [139, Chapter 5]. The two problems defined in eq. (3.12) may be considered as dual through the equality of the optimal values of their respective objectives and the relation between their solutions thanks to the alignment condition in eq. (3.13). This results in a significant simplification: the infinite-dimensional optimization Problem 6 has been converted to a search of an optimal vector λ in a finite-dimensional vector space submitted to a continuum of constraints, yielding a Semi-Infinite Convex Problem (SICP):

Theorem 3.2.2. Let 𝑦 𝑖 (•) ∈ 𝒞 ([𝜈 0 , 𝜈 𝑓 ], R 𝑟 ), ∀ 𝑖 = 1, • • • , 𝑛 and suppose that 𝐷 = {𝑙 ∈ 𝒞 * : ⟨𝑦 𝑖 (•), 𝑙⟩ = 𝑐 𝑖 , 𝑖 = 1, • • • , 𝑛} ̸ = ∅, (3.11 
Problem 7. (SICP problem) Find λ ∈ R 𝑛 solution of μ = min 𝜆∈R 𝑛 -𝑐 𝑇 𝜆 ‖𝑌 𝑇 (𝜈)𝜆‖ 𝑞 1. (3.14) 
Note that μ = -η. An efficient numerical method for solving Problem 7 is given in Sec. 3.2.2. Once its solution is obtained, the alignment relation between the function ȳ(•) element of the Banach space 𝒞([𝜈 0 , 𝜈 𝑓 ], R 𝑟 ) and the functional l belonging to its dual space 𝒞 * ([𝜈 0 , 𝜈 𝑓 ], R 𝑟 ) is particularly important to get back to the optimal control searched for as a bounded variation function. There is an optimal solution ḡ(•) ∈ BV ([𝜈 0 , 𝜈 𝑓 ], R 𝑟 ) corresponding to the optimal solution l in equation (3.9), which is a step function with at most 𝑛 points of discontinuity ν𝑗 ∈ Γ, 𝑗 = 1, • • • , 𝑁 𝑛. Its jumps are given by:

ḡ𝑠 (ν 𝑗 ) -ḡ𝑠 (ν - 𝑗 ) = 𝛼 ν𝑗 sgn(ȳ 𝑠 (ν 𝑗 ))𝜒 Γ𝑗 , 𝛼 ν𝑗 > 0, when 𝑝 = 1, or ḡ𝑠 (ν 𝑗 ) -ḡ𝑠 (ν - 𝑗 ) = 𝛼 ν𝑗 |ȳ 𝑠 (ν 𝑗 )| 𝑞-1 sgn(ȳ 𝑠 (ν 𝑗 )), when 1 < 𝑝 < ∞, (3.15) 
for 𝑠 = 1, • • • , 𝑟 and 𝛼 ν𝑗 solutions of the linear system:

𝑁 ∑︁ 𝑗=1 𝛽 𝑖 (ν 𝑗 )𝛼 ν𝑗 = 𝑐 𝑖 , 𝑖 = 1, • • • , 𝑛, (3.16) 
where 𝛽 𝑖 (ν 𝑗 ) are given by:

𝛽 𝑖 (ν 𝑗 ) = 𝑟 ∑︁ 𝑠=1 𝑦 𝑖,𝑠 (ν 𝑗 )sgn(ȳ 𝑠 (ν 𝑗 )), when 𝑝 = 1, or 𝛽 𝑖 (ν 𝑗 ) = 𝑟 ∑︁ 𝑠=1 𝑦 𝑖,𝑠 (ν 𝑗 )|ȳ 𝑠 (ν 𝑗 )| 𝑞-1 sgn(ȳ 𝑠 (ν 𝑗 )), when 1 < 𝑝 < ∞, (3.17) 
for all 𝑗 = 1, • • • , 𝑁 .

This theorem states important results that have been known for a while in the aerospace community but whose value has not been completely exploited to derive efficient numerical algorithms for impulsive maneuvers design. First, it says that the optimal controlled trajectory for the minimum-fuel Keplerian linearized elliptic rendezvous problem is purely impulsive and that the number of impulses is upperlimited by 𝑛 which is the dimension of the fixed final conditions of the optimal control problem. 

A convergent discretization approach

Based on Problem 7 and Theorem 3.2.3, a convergent iterative numerical method is presented. Firstly, the SICP Problem 7 is solved using Algorithm 19, whose convergence proof was given in [C8]. Namely, the idea is to consider an efficient discretization procedure [START_REF] Reemtsen | Numerical techniques for semi-infinite programming: A survey[END_REF]Chap.7], by constructing a sequence of finite subsets Θ 𝑖 ⊆ Θ := [𝜈 0 , 𝜈 𝑓 ] and solving Problem 7 on this discretization Θ 𝑖 respectively. The discretization procedure implemented was to add at each iteration the point which violates most the constraints, see line 6 of Algorithm 19. Under certain assumptions discussed in [C8] (among which Θ is compact, Slater condition holds for Problem 7, the initial set Θ 0 can be chosen in a convenient way), the sequence of solutions of finite dimensional problems, given in line 7 of the algorithm, is convergent to that of the SICP Problem 7.

Algorithm 19

Numerical procedure for solving Problem 7.

Input: interval Θ = [𝜈 0 , 𝜈 𝑓 ], matrix 𝑌 (𝜈), initial condition 𝑐, accuracy 𝜀 Output: 𝜇 (𝑖) and 𝜆 (𝑖) numerical solution of Problem 7 Init:

1 𝑖 ← 0; 2 Θ 0 ← {𝜃 0 ; 𝜃 1 } ⊂ Θ s.t. 𝜃 0 -𝜃 1 ̸ = 𝑘𝜋;
3 Solve eq. (3.19) for ∆𝑉 0 and ∆𝑉 1 ;

4 Solve for 𝜆 (0) the system 𝑌 𝑇 (𝜃 𝑘 )𝜆 (0) = ∆𝑉 𝑘 /‖∆𝑉 𝑘 ‖ 𝑞 , 𝑘 = 0, 1.

5 While max 𝜃∈Θ ‖𝑌 (𝜃) 𝑇 𝜆 (𝑖) ‖ 𝑞 -1 > 𝜀 do 6 𝑖 ← 𝑖 + 1; Θ 𝑖 ← Θ 𝑖-1 ∪ {︂ arg [︂ max 𝜃∈Θ ‖𝑌 𝑇 (𝜃)𝜆 (𝑖) ‖ 𝑞
]︂}︂ ;

7 Find 𝜆 (𝑖) solution of discretized problem: (𝑖) , 𝜆 (𝑖) .

𝜇 (𝑖) = inf 𝜆∈R 𝑛 -𝑐 𝑇 𝜆 s.t. ‖𝑌 𝑇 (𝜃 𝑘 )𝜆‖ 𝑞 1 for all 𝜃 𝑘 ∈ Θ 𝑖 8 return 𝜇
In practice, the norms and corresponding problems to be solved are: -for a gimbaled single thruster one has 𝑝 = 𝑞 = 2, which gives a semi-infinite positive semi-definite (SDP) problem:

inf 𝜆∈R 𝑛 -𝑐 𝑇 𝜆 s.t. [︂ -1 𝜆 𝑇 𝑌 (𝜈) 𝑌 𝑇 (𝜈)𝜆 -1 ]︂ ⪯ 0, ∀ 𝜈 ∈ [𝜈 0 , 𝜈 𝑓 ]; (3.20) 
-for 6 ungimbaled identical thrusters, one has 𝑝 = 1, 𝑞 = ∞ which gives a semi-infinite linear programing (LP) problem:

inf 𝜆∈R 𝑛 -𝑐 𝑇 𝜆 s.t. ⃒ ⃒ ⃒ ⃒ ⃒ 𝑛 ∑︁ 𝑖=1 𝜆 𝑖 𝑦 𝑖,𝑠 (𝜈) ⃒ ⃒ ⃒ ⃒ ⃒ 1, ∀ 𝜈 ∈ [𝜈 0 , 𝜈 𝑓 ], 𝑠 = 1, . . . , 𝑟. (3.21) 
We also obtained in [C8] an estimation of the accuracy of the obtained numerical value 𝜇 (𝑖) with respect to the optimal cost 𝜂 in Problem 6. The discretization method produces outer approximations of a solution of the SIP problem, thus providing increasing lower bounds for its solution:

η = max ‖𝑌 𝑇 (𝜈)𝜆‖𝑞 1 𝑐 𝑇 𝜆 = - min ‖𝑌 𝑇 (𝜈)𝜆‖𝑞 1 -𝑐 𝑇 𝜆 -𝜇 (𝑖) . (3.22) 
A lower bound can also be obtained. Thus, given 𝜀, the output 𝜇 (𝑖) , 𝜆 (𝑖) of Algorithm 19 provides a good numerical approximation for the optimal cost of the original problem, η. Secondly, one identifies the impulse locations and velocity increments in Algorithm 20 which is based on Theorem 3.2.3. Specifically, the impulse locations can be identified by finding

Γ = {ν 𝑘 ∈ [𝜈 0 , 𝜈 𝑓 ] : ‖𝑌 (ν 𝑘 ) 𝑇 𝜆 (𝑖) ‖ 𝑞 = 1}.
This is done numerically on a grid of [𝜈 0 , 𝜈 𝑓 ] (lines 1-2 of Algorithm 20). Then one solves the system given in eq. (3.19). This is always possible, since, according to Neustadt, the following holds: if at most 𝑛 locations are found in Γ, the system is underdetermined/determined and it has at least one solution (lines 5-6); if more than 𝑛 locations are found in Γ, one can select 𝑛 among them such that the system has a solution (lines 7-8).

Algorithm 20 Numerical Reconstruction of impulse locations and vectors

Input: interval Θ = [𝜈 0 , 𝜈 𝑓 ], matrix 𝑌 (𝜈), initial condition 𝑐, accuracy 𝜀, solution 𝜆 (𝑖) ∈ R 𝑛 of Pb. 7

Output: impulse locations and impulse vectors Γ 𝑖𝑚𝑝 , {∆𝑉 𝑖 } 

1 Γ 𝑑 ← discretized grid of [𝜈 0 , 𝜈 𝑓 ] 2 Γ ← {ν 𝑘 ∈ Γ 𝑑 : ‖𝑌 (ν 𝑘 ) 𝑇 𝜆 (𝑖) ‖ 𝑞 -1 ∈ [-𝜀, 𝜀]} 3 𝑁 ← size(Γ)

Numerical example

One of the numerical examples of [C8] is presented in what follows.

Example 3.2.5 (ATV Example -Numerical solution). It concerns the in-plane motion case and related to some example of the Automated Transfer Vehicle (ATV) setup [START_REF] Labourdette | ATV Jules Verne mission maneuver plan[END_REF]. The parameters of the reference orbit and of the rendezvous are given in Table 3.5. For the in-plane rendezvous, two different cases are studied: I-a single gimbaled thruster using ℒ 1,2 norm and II-6 ungimbaled thrusters with ℒ 1,1 norm. Note that the numerical solver employed is SDPA [START_REF] Yamashita | Latest Developments in the SDPA Family for Solving Large-Scale SDPs[END_REF]. 

A posteriori validation

As depicted in Figures 3.5d and 3.4d the trajectory in the (𝑥, 𝑧) plane seems to be correct. It is however the result of a numerical algorithm and a numerical integration of the controlled ODE system (3.6), so an a posteriori certification can be useful. Furthermore, in general, a closed-form fundamental matrix for such systems is unavailable, which would hinder the use Algorithm 19. A solution to these two problems is to use the RPAs techniques proposed in Section 2.4. This would offer in general both an approximation for a fundamental/transition matrix of linear ODE systems and a certification step, which consists in validating the obtained controlled trajectories. Concretely, we want to provide rigorous polynomial approximations of the chaser's in-plane trajectories over each segment [𝜈 𝑖 , 𝜈 𝑖+1 ], where 𝜈 𝑖 and 𝜈 𝑖+1 are two consecutive impulse times. These are precisely IVP problems over compact segments, where at each step 𝑖, we propagate the position and velocity of the chaser from 𝜈 𝑖 to 𝜈 𝑖+1 and compute the new conditions at 𝜈 𝑖+1 by incrementing the obtained velocity (𝑥 ′ (𝜈 𝑖+1 ), 𝑧 ′ (𝜈 𝑖+1 )) by the impulse velocity vector (∆𝑥 ′ (𝜈 𝑖+1 ), ∆𝑧 ′ (𝜈 𝑖+1 )). We focus on the in-plane problem, because the out-of-plane is a simple oscillator, which has a classical solution. For the notations to be clear, at step 𝑖 over [𝜈 𝑖 , 𝜈 𝑖+1 ], let's call 𝜈 𝑜 = 𝜈 𝑖 and 𝜈 𝑓 = 𝜈 𝑖+1 .

The in-plane part of the ODE system (3.6), is recast under a form similar to what was discussed in Section 2.4, as follows: 

𝑧 ′′ (𝜈) + (︂ 4 - 3 1 + 𝑒 cos 𝜈 )︂ 𝑧(𝜈) = 𝜁, 𝑥(𝜈) = 𝑥(𝜈 0 ) + (𝑥 ′ (𝜈 0 ) -2𝑧(𝜈 0 ))(𝜈 -𝜈 0 ) + 2
𝜈𝑜+𝜈 𝑓 2 + 𝜈 𝑓 -𝜈𝑜 2 

𝑡

)︁ , we get the following LODE over [-1, 1]:

𝑓 ′′ (𝑡) + 𝛼 0 (𝑡)𝑓 (𝑡) = 𝜔 2 𝜁, (3.25) 
with

𝛼 0 (𝑡) = 𝜔 2 (︂ 4 - 3 1 + 𝑒 cos(𝜉 + 𝜔𝑡) )︂ , 𝜉 = 𝜈 𝑜 + 𝜈 𝑓 2 , 𝜔 = 𝜈 𝑓 -𝜈 𝑜 2 .
This equation is interesting for several reasons. First, the coefficient 𝛼 0 (𝑡) is not polynomial so that all the steps of the method presented in Section 2.4 are involved to get a rigorous error bound. Then, even if the denominator in 𝛼 0 (𝑡) never vanishes over R, the coefficient has singularities in the complex plane.

Hence, if the total time of the mission is long enough (that is, if 𝜔 is large enough), a Taylor method needs to use interval subdivision, while Chebyshev methods remain valid over the whole interval. Finally, choosing various values for 𝑒 and 𝜔 will allow us to test the method in difficult cases (that is, when 𝑒 gets close to 1 or when 𝜈 𝑓 -𝜈 𝑜 gets large). This is shown in what follows.

Approximating the non-polynomial coefficient. The first step consists in computing a rigorous Ч 1polynomial approximation of 𝛼 0 (𝑡). The cosine term cos(𝜉 + 𝜔𝑡) is a solution of 𝑓 ′′ + 𝜔 2 𝑓 = 0, and can be rigorously approximated using our method in this easy case. We consider that 𝜉 = 0. When 𝜔 gets large, the Chebyshev series will converge more slowly so that we will need a larger degree 𝑑.

Then, to approximate the inverse series, it is clear that when 𝑒 gets close to 1, the minimal value of the denominator gets close to 0 and we will again need a large degree to get an accurate approximation. In Table 3.6, we sum up approximation results for 3 different values of 𝑒 and 3 different values of 𝜔.

𝑒 𝜔 𝑑 = 10 𝑑 = 20 𝑑 = 50 𝑑 = 100 𝑑 = 200 𝜋/4 3 • 10 -15 2 • 10 -28 1 • 10 -64 ≈ 0 ≈ 0 .0052 𝜋 5 • 10 -7 1 • 10 -13 7 • 10 -34 1 • 10 -65 ≈ 0 4𝜋 1.8 7 • 10 -3 1 • 10 -8 3 • 10 -19 2 • 10 -39 𝜋/4 4 • 10 -12 4 • 10 -22 4 • 10 -52 ≈ 0 ≈ 0 .2 𝜋 1 • 10 -3 9 • 10 -8 4 • 10 -19 7 • 10 -39 1 • 10 -77 4𝜋 7 • 10 1 • 10 1 4 • 10 -2 4 • 10 -6 3 • 10 -14 𝜋/4 3 • 10 -14 8 • 10 -20 4 • 10 -47 1 • 10 -92 ≈ 0 .80621 𝜋 4 • 10 -1 8 • 10 -3 3 • 10 -9 2 • 10 -19 7 • 10 -40 4𝜋 2 • 10 3 1 • 10 3 2 • 10 2 1 • 10 1 4 • 10 -2
Table 3.6 -Chebyshev approximations errors of the coefficient 𝛼 0 (𝑡), function of eccentricity, interval and degree.

Obtaining a contracting Newton-like operator. Having a rigorous approximation 𝑎 0 (𝑡) of degree 𝑑 for 𝛼 0 (𝑡), we can now apply the validation method to equation (3.25). The integral transform produces coefficients:

𝛽 0 (𝑡) = 𝑡𝑎 0 (𝑡), 𝛽 1 (𝑡) = -𝑎 0 (𝑡),
which induces an almost-banded structure for the operator K (the width of the band is 𝑑 + 1). In Table 3.7, we present the parameter 𝑛 which is the truncation order for K, to obtain a contracting Newton operator T, in three different situations depending on 𝑒, 𝜔 and the appropriately chosen 𝑑. The final column gives the certified upper bound given by the algorithm for the Lipschitz constant of of degree 𝑛 = 18 of 𝑧 ′′ (𝜈) (radial acceleration), together with the rigorous error bound obtained by our method. The dashed curve corresponds to the exact solution, which as expected lies inside the tube defined by our rigorous approximation. One notices that we obtain a tight error bound, even for the ‖ • ‖ ∞ norm. Figure 3.6c gives the minimal degree 𝑑 corresponding to an approximation of 𝑧 for which our algorithm is able to certify an error below 1m, in function of the period length and the eccentricity of the target reference orbit. Finally, we provide a validation of the obtained numerical solution of the previous ATV example, in the case II (ℒ 1,1 norm).

Example 3.2.6 (ATV Example -A posteriori validation). Between two impulses a polynomial with a validated error bound is computed for 𝑥(𝜈), 𝑥 ′ (𝜈), 𝑧(𝜈) and 𝑧 ′ (𝜈) as shown before. After each impulse, the new initial conditions are: for the positions, it suffices to rigorously evaluate the polynomials plus the error bound at the final time 𝜈 𝑓 ; the velocities are obtained as the interval sum between the impulse values and the rigorous evaluation of 𝑥 ′ (𝜈 𝑓 ) and 𝑧 ′ (𝜈 𝑓 ). This provides a validated enclosure of the position and velocity at each point and in particular at the end of the considered interval. In Table 3 

Other spin-off results

The presented work combines optimal control, computer algebra and approximation theory in the framework of aerospace domain. It features simplicity, speed and reliability. On the one hand, it makes use of state of the art linear/SDP solvers; on classical rendezvous mission examples, for accuracies of 𝜀 = 10 -4 , no more than 10 iterations are necessary, which accounts for few milliseconds on a modern computer. On the other hand, error bounds provide guarantees that the accuracy requirements are met, both in terms of consumption and trajectory validation.

The numerical algorithm solution to the optimal problem presented, also provided us with valuable insight for solving other problems related or not to aerospace. At first, this allowed us to provide a closed-form solution for the elliptic out-of-plane rendezvous problem [C8] (which was not detailed here for the sake of brevity) and to get a better grasp on a more intricate geometric interpretation for the in-plane case, which is the subject of future works. Then, we applied mainly the same algorithm to solve the problem of fixed-time fuel-optimal trajectories with high-thrust propulsion in the vicinity of Lagrange points in the circular restricted three-body problem [C3].

Incidentally, we also observed that the SICP problem formulation presented above can be applied to a problem coming from the mathematical function implementation in machine, which was briefly discussed in Section 1.2. We believe that it is interesting to note the cyclic aspect of these results: we make use of validated computations to provide more reliable optimal control solutions, which in turn provide us with new solutions of well-known problems in computer arithmetic. Thus, we take a moment to briefly summarize this very recent result [C1] at the end of this chapter.

A spin-off result in mathematical functions implementation As shown in Example 1.2.1 for instance, the problem of evaluating a function 𝑓 in FP arithmetic, usually boils down to two main steps:

• an approximation polynomial 𝑝 is searched for, on some specific interval 𝐼, such that two main requirements are met: its coefficients are representable with a specified fixed precision format (usually, binary32, binary64, or an unevaluated sum of such formats) and the approximation error is less than a target 𝜀 approx , whether absolute ‖𝑓 -𝑝‖ ∞ 𝜀 approx or relative ‖(𝑓 -𝑝)/𝑓 ‖ ∞ 𝜀 approx .

For that, efficient algorithms were developed in [START_REF] Brisebarre | Computing machine-efficient polynomial approximations[END_REF][START_REF] Brisebarre | Efficient polynomial 𝐿 ∞ -approximations[END_REF]. In the simpler case of polynomials which can be solved by the Remez algorithm (see [START_REF] Brisebarre | Efficient polynomial 𝐿 ∞ -approximations[END_REF][START_REF] Chevillard | Efficient and accurate computation of upper bounds of approximation errors[END_REF] and references therein). This iterative algorithm has quadratic convergence and rather low complexity, since it involves solving a linear system of size 𝑛 + 2 at each step, together with numerically computing the extrema of 𝑓 -𝑝 over 𝐼.

• an efficient evaluation scheme for 𝑝 is searched for; since after each addition or multiplication, rounding errors occur, one must ensure that the computed value p satisfies ‖𝑝 -p‖ ∞𝐼 𝜀 eval (or ‖(𝑝p)/𝑝‖ ∞𝐼 𝜀 eval ) for a given threshold 𝜀 eval . Heuristics presented in [START_REF] Lauter | Arrondi Correct de Fonctions Mathématiques[END_REF] extend the precision of the important coefficients, such that the evaluation error remains below 𝜀 eval .

These two steps are usually independently considered, except for very small precisions or polynomial degrees, where an exhaustive search on the rounded coefficients is possible [START_REF] Tisserand | High-performance hardware operators for polynomial evaluation[END_REF]. However, as explicitly mentioned in [START_REF] Brisebarre | Computing machine-efficient polynomial approximations[END_REF], one would like to take into account the roundoff error that occurs during polynomial evaluation: getting the polynomial, with constraints on the size of the coefficients, that minimizes the total (approximation plus roundoff) error would be extremely useful. We made some progress on this open question, by formulating a semi-infinite linear optimization problem (SIP) whose solution is the best polynomial with respect to the uniform norm of the sum of both errors.

The where we denote the monomial basis by 𝜋 0 (𝑡) = (1, . . . , 𝑡 𝑛 ) 𝑇 . Note that in [C1], we provide an algorithm based on [START_REF] Oliver | Rounding error propagation in polynomial evaluation schemes[END_REF][START_REF] Langlois | Automatic linear correction of rounding errors[END_REF][START_REF] Solovyev | Rigorous estimation of floating-point round-off errors with symbolic taylor expansions[END_REF], which computes closed-form expressions for 𝜃(𝑎, 𝑡), of the form 𝜃(𝑎, 𝑡) = ∑︀ 𝑛+1 𝑖=1 |𝜋 𝑖 (𝑡) 𝑇 𝑎|. For instance, for Horner evaluation scheme one has 𝜋1(𝑡) 𝑇 = (𝑢, 𝑢𝑡, . . . , 𝑢𝑡 𝑛-1 , 𝑢𝑡 𝑛 ),

𝜋2(𝑡) 𝑇 = (0, 2𝑢𝑡, . . . , 2𝑢𝑡 𝑛-1 , 2𝑢𝑡 𝑛 ), . . . , 𝜋𝑛(𝑡) 𝑇 = (0, 0, . . . , 2𝑢𝑡 𝑛-1 , 2𝑢𝑡 𝑛 ), 𝜋𝑛+1(𝑡) 𝑇 = (0, 0, . . . , 0, 𝑢𝑡 𝑛 ),
where 𝑢 is the unit roundoff (cf. Definition 1.1.3 i.e. 𝑢 = 2 -53 , for round-to-nearest in binary64 precision).

An important observation is that, based on the above formula, (𝑃 ′ general ) can be formulated as a linear SIP, at the expense of a different index set Ω replacing the previous index set 𝐼. Here, the set of constraints of (𝑃 ′ general ) involving absolute values is replaced by as many linear constraints as required to represent all possible sign combinations. With the following definitions: Let us recall that Algorithm 19 is based on the iterative principle that after solving at a certain step a discretized version (𝑃 𝑚 ), it finds the "most violating point 𝜔 not in the set 𝜔, adds it to the discretized set, then repeats the solving process. However, for this case of linear SIP and under certain mild assumptions, we presented in [C1], an improvement of this algorithm, which performs an exchange of points at each step. Moreover, we proved that instead of solving an LP at each step, one can further simplify this approach to solving a system of linear equations, which is even more efficient. This can be seen as a generalization, in the above framework, of the Remez algorithm, which solves Problem (𝑃 minimax ). To prove its correctness, important discretization properties of linear SIP problems are employed in [C1], based for instance on the more recent survey [START_REF] Shapiro | Semi-infinite programming, duality, discretization and optimality conditions[END_REF] and revisiting older works [START_REF] Watson | The calculation of best restricted approximations[END_REF][START_REF] Chalmers | The Remez exchange algorithm for approximation with linear restrictions[END_REF][START_REF] Carasso | Un algorithme général pour l'approximation au sens de Tchebycheff de fonctions bornées sur un ensemble quelconque[END_REF][START_REF] Carasso | L'algorithme d'échange en optimisation convexe[END_REF]. We state only the main result in what follows. We need however, to define similarly to Section 3.2.1, the topological dual of Problem (𝑃 ), in the space 𝒞(Ω) * of signed Borel measures 𝜇 over (Ω, ℬ(R 𝑛+2 )) [89, Section 21.5]:

𝑥 = (𝑎, 𝑎) ∈ R 𝑛+2 , 𝑧 = (1, 0, . . . , 0) ∈ R 𝑛+2 , 𝛼(𝑡, 𝜎0, . . . , 𝜎𝑛 + 1) = (1, 𝜎0𝜋0 𝑇 (𝑡) + 𝑛+1 ∑︁ 𝑖=1 𝜎𝑖𝜋𝑖 𝑇 (𝑡)) 𝑇 ∈ R 𝑛+2 , S = {-1, 0, 1}
max 𝜇⪰0 ∫︁ Ω 𝑐(𝜔)d𝜇(𝜔) s.t. ∫︁ Ω 𝛼(𝜔)d𝜇(𝜔) = 𝑧. (𝐷) Its discretization (𝐷 𝑚 ) of (𝐷) is: max 𝑦𝑗 0 𝑗∈[1..𝑚] 𝑚 ∑︁ 𝑗=1 𝑐(𝜔 𝑗 )𝑦 𝑗 s.t. 𝑚 ∑︁ 𝑗=1 𝑦 𝑗 𝛼(𝜔 𝑗 ) = 𝑧. (𝐷 𝑚 )
Denoting for a Problem (𝑃 ), respectively val(𝑃 ) and Sol(𝑃 ), its optimal value and the set of its optimal solutions, one has the following inequalities:

• the weak duality, that is val(𝐷) val(𝑃 ) always holds;

• val(𝐷 𝑚 ) val(𝐷) and val(𝑃 𝑚 ) val(𝑃 );

• val(𝐷 𝑚 ) = val(𝑃 𝑚 ) (strong duality holds) provided that none of (𝑃 𝑚 ) or (𝐷 𝑚 ) is infeasible. Conditions for having only equalities i.e., val(𝐷 𝑚 ) = val(𝑃 𝑚 ) = val(𝐷) = val(𝑃 ) may be obtained by using conjugate duality theory as developed in [198, 

the following statements are true:

(i) Sol(𝑃 ) ̸ = ∅ and bounded;

(ii) Sol(𝐷) ̸ = ∅ and bounded;

(iii) Problem (𝑃 ) is reducible (that is val(𝑃 ) = val(𝑃 𝑚 )) to a Problem (𝑃 𝑚 ) with 𝑚 𝑑;

(iv) val(𝑃 ) = val(𝐷) = val(𝑃 𝑚 ) = val(𝐷 𝑚 ).

We proved in [C1] that Assumptions A1-A4 are satisfied for our Problem (𝑃 ′ general ), with 𝑑 = 𝑛 + 2 and therefore results (i)-(iv) of Theorem 3.2.8 apply. This allows for recasting the problem (𝑃 ′ general ) as the problem of finding the right discretization {𝜔 1 , . . . , 𝜔 𝑛+2 } such that item (iv) of Theorem 3.2.8 applies and to solve the associated (𝑃 𝑚 ) and/or (𝐷 𝑚 ).

Based on these results, an adaptation of an algorithm of [START_REF] Carasso | L'algorithme d'échange en optimisation convexe[END_REF], which can be seen as a generalization of the dual simplex algorithm for Problem (𝐷) is as follows.

One finds at each iteration ℓ, the solution 𝑦 (ℓ) of (𝐷

(ℓ) 𝑛+2 ), with 𝜔 (ℓ) = {𝜔 𝑗 (ℓ) } 𝑛+2 𝑗=1
. Such a solution is a feasible (but not necessarily optimal) point of the dual Problem (𝐷). Moreover, the objective value z 𝑇 x (ℓ) of (𝑃 (ℓ) 𝑚 ) and (𝑃 ) for the instance 𝑥 (ℓ) := (𝑎 (ℓ) , 𝑎 (ℓ) ) is equal to the objective value of (𝐷) for the instance 𝑦 (ℓ)2 . Hence, either 𝑥 (ℓ) is a feasible solution of Problem (𝑃 ) by Theorem 3.2.8, or it is an infeasible point of Problem (𝑃 ). In the latter case, one of these constraints is replaced by a new one, indexed by 𝜔 * (ℓ) , in an exchange step in order to increase the objective value of the dual and works towards primal feasibility. In order to prove the convergence of this process, one needs an assumption on the dual solution, which always holds in the Remez algorithm. It is not proven in our current setting, but it never failed in practice. Assumption 3.2.9. At each iteration ℓ, the solution 𝑦 (ℓ) of the dual discretized Problem (𝐷

(ℓ) 𝑛+2 ) is an interior point, that is 𝑦 (ℓ) 𝑗 > 0 for all 𝑗 ∈ [1 . . 𝑛 + 2].
We conclude by illustrating this method on an academic example. 2 The feasible set of (𝑃 ) is included in the feasible set of (𝑃 (ℓ) 𝑚 ), for all ℓ.

Example 3.2.10 (Airy function). Let Ai over 𝐼 = [-2, 2], approximated by a polynomial of degree 𝑛 = 6, evaluated using the Horner scheme with 𝑢 = 2 -12 . We fix a tolerance 𝜏 = 0.01.

At iteration 0 (Figure 3.7), the points 𝑡 (0)

𝑗 are initialized with the Chebyshev nodes and the signatures 𝜎 𝑗 (0) define a Remez-like system of linear equations on the coefficients of the polynomial (Figure 3.7d). Its solution 𝑥 (0) = (𝑎 (0) , 𝑎 (0) ) defines a polynomial 𝑝 (0) (𝑡) = 𝑎 (0)𝑇 𝜋 0 (𝑡), whose approximation error is depicted in Figure 3.7a. It exhibits quasi-equioscillations indicating that 𝑝 (0) is rather close to the degree-6 minimax approximation of Ai over 𝐼. However, the total error is more important near -2 and 2 (Figure 3.7b), due to the evaluation depicted in green. In particular, the algorithm detects the maximum error at 𝑡 * since the signatures are different. To perform the exchange, the dual solution is needed (Figure 3.7c). It is a positive combination of Dirac measures supported on the finite set 𝜔 (0) . Moving forward to iteration 6 (Figure 3.8), the total error is more balanced, though still not optimal. Both the signatures and the approximation error are now completely different from the Remez solution.

Eventually, the algorithm stops at iteration 9 (Figure 3.9). Indeed, the maximum total error 𝑎

* (in orange) is less than 1% higher than the error 𝑎 (9) over the discrete set 𝜔 (9) . Note that the total error reaches its maximum at 𝑛 + 2 = 8 points. This became possible by unbalancing the approximation error, namely reducing the amplitude of the oscillations near -2 and 2, at the cost of higher oscillations in the middle of 𝐼. Other examples show that in practice, the total error obtained with our approach is better than the previous methods which work in two separate steps (approximation and evaluation). We also show that in some other cases, the minimax polynomial solution of problem (𝑃 minimax ) is very close to the solution of (𝑃 general ). Further experiments are necessary to assess the whole practical importance of this method. All in all, the examples presented in this Chapter show that numerically reliable and efficient solutions can be obtained when generic optimization frameworks are rethought and tuned from an approximation and/or computer algebra perspective. This encouraging trend will be further discussed in Chapter 4.

Probably the most used self-validating method in the study of nonlinear algebraic, integral or differential equations is based on the contraction mapping principle. This is a fixed point theorem which guarantees that a contraction mapping of a complete metric space to itself has a unique fixed point. We already made use of this theorem (see Thm. 2.4.8) in the general setting of quasi-Newton validation, in Section 2.4.2. This corresponds to a posteriori validation: usually, one finds a good numerical solution 𝑝 and then verifies that the image under the contracting mapping of a ball centered at 𝑝 and of suitable radius 𝑅 is invariant. This implies that the actual solution is enclosed in the ball ℬ(𝑝, 𝑅). This theorem can also be used in a constructive way: we can obtain the fixed point as the limit of an iteration scheme defined by repeated images under the mapping of an arbitrary starting point in the space. When implemented numerically using ball based computations, one has to pay special attention to the wellknown issues of overestimation or wrapping effect. Hence, we are interested in efficiently manipulating and implementing operations with such closed balls having roughly speaking, as center a truncated series and with radius a certain norm for the error. A key element for this extension is that, as shown in [START_REF] Benoit | Fast Semi-numerical Algorithms for Chebyshev Series[END_REF]Chap.8], remarkable properties of recurrences satisfied by series coefficients of D-finite functions hold for such generalized Fourier series. This can be made constructive through the use of Ore-algebras as shown in Chapter 2.

Application to certified quadratures: infinitesimal Hilbert's 16th problem An ongoing work, in collaboration with F. Bréhard, N. Brisebarre and W. Tucker, concerns the certified evaluation of certain Abelian integrals involved in a computer-assisted proof of a new lower bound on the Hilbert number for quartic systems. This is related to the second part of Hilbert's 16th problem [START_REF] Hilbert | Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker-Congress zu Paris[END_REF], which asks about the maximum number and location of limit cycles of a planar polynomial vector field of degree 𝑑. Solving this problem even for the case 𝑑 = 2 seems to be out of reach at the present state of knowledge. A restricted version of Hilbert's 16th problem, known as the infinitesimal Hilbert's 16th problem, asks for the number of limit cycles that can bifurcate from a perturbation of a Hamiltonian system [START_REF] Arnol | Ten problems[END_REF]. These limit cycles are related to the zeros of certain Abelian integrals on a union of compact intervals, via the so-called Poincaré-Pontryagin theorem. Based on RPAs representations, we are building an integration routine that is both fast (in order to explore a huge field of possible systems, together with the attached compact intervals) and certified (the computations are highly unstable). Moreover, for obtaining continuous approximations of these integrals in function of certain parameters, we make use of algebraic properties of D-finite functions and Laplace transform, in the same manner as presented in Chapter 2.

RPAs in generalized Fourier series Spectral and collocation methods for numerical approximations of ODEs are current in literature [START_REF] Boyd | Chebyshev and Fourier spectral methods[END_REF][START_REF] Trefethen | Spectral methods in MATLAB[END_REF][START_REF] Le Maître | Spectral methods for uncertainty quantification: with applications to computational fluid dynamics[END_REF] and were recently applied in the aerospace domain [START_REF] Vasile | Set propagation in dynamical systems with generalised polynomial algebra and its computational complexity[END_REF]. However, obtaining effective rigorous accuracy bounds on the solutions is less developed, especially from a generic algorithmic point of view. We aim to generalize our validated Newton-like method (see Section 2.4) to an efficient computer algebra-based algorithm for validated solutions of nonlinear ODEs. An important objective in this context is to extend our approach to generalized Fourier series. Truncated Chebyshev Series or Chebyshev interpolation polynomials are often used in practice because they are near-best approximations with respect to the uniform norm. Also, in the space of square integrable functions, truncated Chebyshev series are best approximations with respect to the attached ℒ 2 (1/ √ 1 -𝑥 2 ) norm. However, for different convergence domains or due to some intrinsic properties of the problems considered, it is more suitable to use other truncated series, with different norms: Legendre polynomials are preferred for pseudo-spectral optimal control [START_REF] Ross | A review of pseudospectral optimal control: From theory to flight[END_REF], Hermite for polynomial chaos propagation [START_REF] Vittaldev | Spacecraft uncertainty propagation using Gaussian mixture models and polynomial chaos expansions[END_REF] with applications in spacecraft trajectories design [START_REF] Park | Nonlinear mapping of gaussian statistics: Theory and applications to spacecraft trajectory design[END_REF], Fourier for the rigorous verification of several invariant objects arising in dynamical systems, like time periodic orbits for Kuramoto-Sivashinsky equations, Bessel series when dealing with specific boundary conditions [START_REF] Arioli | Non-symmetric low-index solutions for a symmetric boundary value problem[END_REF]. In general, let us consider the Banach space of ℒ 2 functions defined on some some set 𝑋, and the attached || • || 2 norm and denote ℬ(𝑝, 𝑅) = {𝑓 : ||𝑓 -𝑝|| 2 𝑅} the closed ball of center 𝑝 and radius 𝑅. This is a complete metric subspace. These kinds of balls or RPAs are intensively used objects in most rigorous computing methods. A short term goal is to provide efficient algorithms, similar to those presented in Section 2.4.1, which provide recurrences satisfied by the coefficients of 𝑝, as well as accurate evaluation schemes for it. Then, a posteriori validated error bounds could be obtained, by setting the problem in the suitable Banach space and applying Picard's iteration or quasi-Newton contracting map.

Multivariate RPAs

Finally, let us consider the extension to multivariate orthogonal series. Classical univariate Chebyshev polynomials are among the most important building blocks in approximation theory and are also frequently used for multidimensional approximations. Besides tensor products (like the one used for bivariate approximations in Chebfun), other less classical extensions for multivariate orthogonal polynomials were developed [START_REF] Gasca | Polynomial interpolation in several variables[END_REF]. From an algorithmic point of view, the main important connection to be made is between multivariate orthogonal series and holonomic D-modules, which are multivariate equivalent of D-finite functions i.e., their partial derivatives generate a vector space of finite dimension on the field of rational functions (cf. Section 2.1.2).

From the approximation point of view, an important issue here is to maintain good approximation properties with respect to the considered norm. In the univariate case, both truncated Chebyshev series and Chebyshev interpolation polynomials are near-best and the connection between them is classical, see for example [START_REF] Joldes | Rigorous Polynomial Approximations and Applications[END_REF]Chap. 4][211]. In the multivariate case, however, there is no explicit solution for finding optimal or near-optimal interpolation points with respect to the uniform norm of the interpolation error. One solution is to find points that come from zeros of quasi-orthogonal polynomials in several variables [START_REF] Dunkl | Orthogonal Polynomials of Several Variables[END_REF] which would help us to make a connection similar to the univariate case, between orthogonal series and polynomial interpolation through minimal cubatures formulas. Moreover, in [START_REF] Ryland | On multivariate Chebyshev polynomials and spectral approximations on triangles[END_REF], multivariate Chebyshev polynomials on triangular domains are proposed. Their numerical results on some quadrature problems seem to indicate that this choice is also suitable for RPAs.

Efficient numerical evaluation of RPAs

As discussed in Section 2.2, when evaluating RPAs in finite precision, catastrophic cancellation i.e., subtraction of terms of same order of magnitude which results in important precision loss can appear. The problematic phenomenon, for truncated convergent series evaluation, is that the absolute values of the terms involved, start by increasing before decreasing towards 0, while their signs are not identical. In the classical case of the error function erf(𝑥), this problem can be circumvented by factoring out an exponential. On these lines, we obtained in Section 2.2, a new result for some cases of truncated convergent power series to be evaluated on the real line. Although very useful, our approach remains ad-hoc for the moment and more work is necessary for this method to be efficient in general. Efficient generic algorithms for reducing such cancellation effects are to be found. Moreover, the problem of extending this method for generalized Fourier series evaluation is open.

We already have several promising hints for generalizing our algorithm, which combine both symbolic and numeric aspects in complex analysis: the asymptotic behavior of series coefficients is connected to their integral representation [START_REF] Wyman | The asymptotic behaviour of the Laurent coefficients[END_REF], which in turn, can be efficiently numerically evaluated with saddlepoint methods [START_REF] Flajolet | Analytic Combinatorics[END_REF]Chapter VIII]. A different angle for seeing our pre-conditioning method is that it represents a first result in extending Polya's positivstellensatz [START_REF] Pólya | Über positive darstellung von polynomen vierteljschr[END_REF] (an algebraic description of positive polynomials) to the case of analytic functions.

Extension and Integration of RPAs in the framework of Optimal Control

In Optimal Control, the objective is to find an optimal control input function, subject to some performance measure and the system dynamics, which are complex in general. We deal with nonlinear ODEs or with a differential-algebraic equations. Moreover, uncertainties are often present in dynamics or state measurements. Nowadays, the great majority of practical i.e. computer-based methods in optimal control are heavily based on standard linear algebra routines and floating-point arithmetic [START_REF] Betts | Practical methods for optimal control and estimation using nonlinear programming[END_REF], while the development of computer algebra and symbolic-numeric techniques in this field is marginal. Thus, optimal control is a natural outlet for reliable computation: symbolic-numeric approximations are to be declined in the context of both deterministic (direct and indirect) and stochastic optimal control. This implies either the integration of RPAs in the existing algorithms or more often the adaptation of these algorithms towards RPAs in order to improve reliability and speed.

We distinguish in (deterministic) optimal control two distinct numerical approaches: the indirect and direct methods. The first class consists in writing (usually necessary) optimality conditions based on the Pontryagin maximum principle [START_REF] Bryson | Applied optimal control[END_REF] and thus posing a Two Point Boundary Value Problem (TPBVP) which can be nonlinear, and solving it numerically with shooting methods for instance. The second approach is to discretize and thus directly translate the initial problem into a nonlinear programming problem with an appropriate parametrization. Only an approximation of the initial problem is solved in the latter case. In both cases, we are interested in validated computation methods to guarantee the obtained numerical solutions. Beside the development of new algorithms for validated solutions, an important issue is to certify the computation of optimal trajectories (especially for space objects), particularly for embedded control systems (trajectories are computed on on-board embedded computers which allows for increasing the autonomy for space missions).

Direct optimal control This basically consists in transforming the problem to a nonlinear finitedimensional optimization problem: depending on the transcription approach, both the control and the state variables may be discretized. Many variants exist [START_REF] Betts | Practical methods for optimal control and estimation using nonlinear programming[END_REF] and among them, we are interested in improving the speed and reliability of pseudo-spectral and collocation methods. For example, pseudospectral Legendre method has already been used in space applications like the zero-propellant maneuver of International Space Station in 2006, or the minimum-time rotational maneuver performed in orbit by TRACE telescope in 2010 [START_REF] Ross | A review of pseudospectral optimal control: From theory to flight[END_REF], while variants based on Chebyshev or other Galerkin discretizations [START_REF] Boucher | Galerkin optimal control[END_REF] also exist. However, as mentioned in [START_REF] Ross | A review of pseudospectral optimal control: From theory to flight[END_REF], "at the theoretical level, stronger convergence theorems are required for these methods". In addition, the efficiency of computations has to be improved, driven by a demand to perform mission planning at a faster and faster pace [START_REF] Ross | A review of pseudospectral optimal control: From theory to flight[END_REF]. My claim is that RPAs-based methods are efficient and in the same time provide convergence proofs: a validated error bound is a mathematical certificate that the numerical solution is sufficiently close to the real one.

Indirect optimal control

The main idea is to reduce the problem to a Two Point Boundary Value Problem (TPBVP) with the help of Pontryagin maximum principle [START_REF] Bryson | Applied optimal control[END_REF]. Using shooting methods consists mainly in obtaining a solution to a Cauchy problem where the initial value is unknown (formal) and then use Newton method (or its variations) in order to obtain this value as the zero of the function which relies the boundary constraints. When a multiple shooting method is used, a subdivision of the time interval is considered and the problem is reduced to finding the zeros of a function which is defined on a vectorial space of higher dimension (proportional to the number of subdivisions). My intuition is that computer algebra methods for RPAs could provide solutions to Cauchy problems with formal initial conditions. Then, interval Newton method (and higher order methods for zero finding) [START_REF] Yamamoto | A numerical verification method for solutions of boundary value problems with local uniqueness by Banach's fixed-point theorem[END_REF] will be used to obtain an enclosure of the solution. Validated Newton-like methods are very versatile and are based on powerful fix-point theorems which can be readily adapted to provide enclosures of the solution. RPAs and validated Newton-like methods can be readily adapted to provide solutions enclosures for TPBVP.

Stochastic optimal control

It is often employed when uncertainty and stochastic effects play a significant role in the dynamics of the system. A very recent approach [START_REF] Boutselis | Stochastic optimal control using polynomial chaos variational integrators[END_REF] is based on Polynomial Chaos [START_REF] Wiener | The homogeneous chaos[END_REF]. First introduced by Wiener, Polynomial Chaos decomposes stochastic processes into a convergent series of Hermite polynomials in a Gaussian random variable. So-called Wiener-Askey Polynomial or generalized Polynomial Chaos (gPC), extends this idea to various distributions modeled with orthogonal polynomials in the corresponding Hilbert spaces and was successfully used for analyzing stability or linear quadratic control of stochastic systems or for spacecraft orbit propagation under Gaussian type uncertainties [START_REF] Vittaldev | Spacecraft uncertainty propagation using Gaussian mixture models and polynomial chaos expansions[END_REF][START_REF] Jones | Nonlinear propagation of orbit uncertainty using non-intrusive polynomial chaos[END_REF]. Symbolic-numeric algorithms employed for the computation of polynomial coefficients in RPAs are easily adapted to this framework and could drastically improve the computation time and numerical efficiency of these methods.

Reliable Computations for Guidance, Navigation and Control of Spacecraft

Previously mentioned techniques are to be applied for the guidance, navigation and control of spacecraft when uncertain models are used. Firstly, new symbolic-numeric spectral methods are used in the context of stochastic optimal control for the computation of optimal collision avoidance maneuvers in the case of mega-constellations. Secondly, we consider the reliable computation of optimal trajectories: either ground
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 11144 Figure 1.1 -Graphical representation of Algorithm 8. In the 2Sum calls the sum 𝑠 is outputted to the left and the error 𝑒 downwards.

Figure 1 . 2 -

 12 Figure 1.2 -Graphical representation of Algorithm 9. In the 2Sum calls the sum 𝑠 is outputted downwards and the error 𝑒 to the right.

Figure 1 .

 1 Figure 1.3 -Error bounds vs. number of FP operations for several arithmetic algorithms: square indicates Priest

  that for several parameter values close to the classical ones, what appears to be a strange attractor (Fig. 1.4(a)) is actually a stable periodic orbit (Fig. 1.4(b)). Specifically, in Fig. 1.4, 10000 iterations of the Hénon map ℎ(𝑥, 𝑦), with fixed parameters 𝑎 = 1.399999486944 and 𝑏 = 0.3 are plotted. The iterates appearing in Fig. 1.4(a) start in a point (𝑥 ′ 0 , 𝑦 ′ 0 ) and those for Fig. 1.4(b) in (𝑥 ′′ 0 , 𝑦 ′′ 0 ), which are chosen in the following way: 5 • 10 9 iterations are performed and skipped (not plotted) before obtaining (𝑥 ′ 0 , 𝑦 ′ 0 ); and respectively, for (b) 6•10 9 iterations are skipped before obtaining (𝑥 ′′ 0 , 𝑦 ′′ 0 ). Clearly, Fig. 1.4(a) looks like the Hénon strange attractor, while Fig. 1.4(b) is just a periodic orbit. This means that what we observe in computer simulations is actually a transient behavior to the periodic steady-state that we are actually interested in.

Figure 1 . 4 -

 14 Figure 1.4 -Hénon map ℎ(𝑥, 𝑦) = (1 + 𝑦 -𝑎𝑥 2 , 𝑏𝑥) with 𝑎 = 1.399999486944, 𝑏 = 0.3; 10000 iterates are plotted after skipping (a) 5 • 10 9 and (b) 6 • 10 9 iterations.

Figure 1 . 5 -

 15 Figure 1.5 -(a) Speedup of SDPA-CAMPARY for 𝑛-double with GPU vs CPU, on several problems from SDPLIB. Maximum speedup was 16.2; (b) Performance of RGEMM with CAMPARY for 𝑛-double on GPU. Maximum performance was 1.6GFlops for TD, 976MFlops for QD, 660MFlops for 5D, 453MFlops for 6D, 200MFlops for 8D.
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 212 Let I be a left ideal of D 𝑛 . For 𝐿 ∈ D 𝑛 , let [𝐿] I denote the class of 𝐿 in the quotient D 𝑛 /I. For 𝑠 0, define (︁

Example 2 . 2 . 1 (𝑖=0(- 1 )

 2211 Cancellation in finite precision power series evaluation). Consider the power series expansion exp(-𝑥) = ∞ ∑︀ 𝑖 𝑥 𝑖 𝑖! and suppose one evaluates a truncation of this series at 𝑥 = 20. Numerically, this gives: exp(-20) ≃ 1-20 . . . +1.66 • 10 7 -1.23 • 10 7 + . . . +1.19 • 10 -8 -3.45 • 10 -9 . . .

Figure 2 . 1 -

 21 Figure 2.1 -Indicator functions of (a) probability 𝑔; (b) precondition 𝜉 ↦ → 𝑒 𝑝𝜉 ; (c) 𝜉 ↦ → 𝑒 𝜎𝑔 2 𝜉 𝑔(𝜉);

Figure 2 . 2 -

 22 Figure 2.2 -Log-Magnitude of the terms log (𝑐 𝑖 ) in Algorithm 12 function of 𝑖, for Table 2.1 cases.
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 233 Test functions and distributions). Let ℰ = 𝒞 ∞ (R 𝑛 ) be the set of smooth functions over R 𝑛 , equipped with the compact-open topology: 𝜙 𝑘 → 𝜙 in ℰ if 𝜕 𝛼 𝑥 𝜙 𝑘 converges uniformly to 𝜕 𝛼 𝑥 𝜙 over every compact set, for each 𝛼 ∈ N 𝑛 .
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 236 Moments of a compactly supported distribution). The moments of a distribution 𝑇 ∈ ℰ ′ are:𝑚 𝛼 (𝑇 ) := ⟨𝑇, 𝑥 𝛼 ⟩, 𝛼 ∈ N 𝑛 .
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 237 The Fourier transform of a distribution 𝑇 ∈ ℰ ′ is the analytic function F {𝑇 } of 𝑧 = (𝑧 1 , . . . , 𝑧 𝑛 ) ∈ R 𝑛 defined by:

Proposition 2 . 3 .

 23 10. [C2, Prop.3.3] Let 𝐺 and 𝑔 as in Assumption 2.3.5, 𝑓 ∈ ℰ, 𝐿 ∈ Ann(𝑓 ) of order 𝑟.

1 :

 1 𝑅𝑖 ← (𝑔 𝑟 𝑖 𝐿𝑖) M , as in (2.20), with 𝑟𝑖 the order of 𝐿𝑖, for 𝑖 ∈ [1 . . 𝑘] 2: return GröbnerBasis({𝑅1, . . . , 𝑅 𝑘 },R𝑛)

Problem 1 (

 1 General Inverse Problem). Let 𝜇 𝑓 = 𝑓 1 𝐺 d𝑥 be a measure supported on a compact semialgebraic set 𝐺, with holonomic 𝑓 . Given a finite number of moments 𝑚 𝛼 , |𝛼| 𝑁 , recover a polynomial 𝑔 ∈ K[𝑥] vanishing on the algebraic boundary of 𝐺 and the coefficients of a holonomic system satisfied by 𝑓 .The strategy proposed is:• Take an ansatz 𝐿 ′ = ∑︀ 𝛽∈𝐴 𝑞 𝛽 (𝑥)𝜕 𝛽𝑥 , for a specified finite set 𝐴 ⊂ N 𝑛 and polynomials 𝑞 𝛽 (𝑥) with specified degrees 𝑑 𝛽 .• Let 𝑅 = 𝐿 ′ M (see Equation(2.20)). Solve a finite-dimensional linear system in the unknown coefficients of the polynomials 𝑞 𝛽 :(𝑅 𝑚(𝑓 1 𝐺 )) 𝛼 = 0, |𝛼| 𝑁. (2.22) This requires the knowledge of moments 𝑚 𝛼 (𝑓 1 𝐺 ) with |𝛼| 𝑁 + max 𝛽∈𝐴 {𝑑 𝛽 -|𝛽|} (see Equation (2.20)).

Algorithm 15

 15 RECONSTRUCTEXPPOLY(𝑛, 𝑑, 𝑠, 𝑁, (𝑚 𝛼 ) |𝛼| 𝑁 +𝑑+𝑠-1 )Input: 𝑛 2, degrees 𝑑, 𝑠 0, moments 𝑚𝛼 for |𝛼| 𝑁 + 𝑑 + 𝑠 -1. Output: g, p ∈ K[𝑥] with deg (g) 𝑑 and deg (p) 𝑠. ◁ Find 𝐿 ′ 𝑖 ∈ Ann(𝑓 1𝐺) 1: ℎ0 ← ∑︀ |𝛾| 𝑑 ℎ0𝛾𝑥 𝛾 and ℎ𝑖 ← ∑︀ |𝛾| 𝑑+𝑠-1 ℎ𝑖𝛾𝑥 𝛾 for 𝑖 ∈ [1 . . 𝑛],with symbolic coefficients ℎ𝑖𝛾2: 𝐿 ′ 𝑖 ← ℎ0𝜕𝑥 𝑖 -ℎ𝑖 for 𝑖 ∈ [1 .. 𝑛] 3: Find a nontrivial solution {ℎ𝑖𝛾} of the linear system:(𝐿 ′M 𝑖 𝑚)𝛼 = 0, 𝑖 ∈ [1 . . 𝑛],|𝛼| 𝑁 ◁ Reconstruct g and p 4: g ← ℎ0 and p𝑖 ← ℎ𝑖/g for 𝑖 ∈ [1 . . 𝑛] . . . , 0, 𝑡𝑖, 𝑥𝑖+1, . . . , 𝑥𝑛)d𝑡𝑖 6: return (g, p) Theorem 2.3.12. [C2, Thm. 4.1] Let 𝑓 (𝑥) = exp(𝑝(𝑥)) with deg 𝑝 = 𝑠, and 𝐺, 𝑔 with deg 𝑔 = 𝑑 be as in Assumption 2.3.5. If 𝑁 N = 3𝑑 + 𝑠 -1, then RECONSTRUCTEXPPOLY(𝑛, 𝑑, 𝑠, 𝑁, (𝑚 𝛼 )) returns g = 𝜆𝑔 with 𝜆 ∈ K * , and p = 𝑝 -𝑝(0). This requires moments up to degree 4𝑑 + 2(𝑠 -1).
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 2313 The pair {𝑔, 𝑞 𝑖,𝑟 } is coprime for each 𝑖 ∈ [1 . . 𝑛]. Theorem 2.3.14. [C2, Thm. 4.4] Let 𝑖 ∈ [1 . . 𝑛], 𝑓 analytic, 𝐺, 𝑔 ∈ K[𝑥] 𝑑 satisfying Assumption 2.3.5, and 𝐿 = 𝑟 ∑︁ 𝑗=0 𝑞 𝑗 (𝑥)𝜕 𝑗 𝑥𝑖 ∈ Ann(𝑓 ) ∩ K[𝑥]⟨𝜕 𝑥𝑖 ⟩, of minimal order 𝑟, with 𝑞 𝑟 of minimal degree. Then, Algorithm RECONSTRUCTDENSITY(𝑛, 𝑖, 𝑟, 𝑠, 𝑁, (𝑚 𝛼 )) returns L = 𝜆𝐿 with 𝜆 ∈ K * for 𝑠 𝑑𝑟 + max{deg (𝑞 𝑗 )} and 𝑁 large enough. Theorem 2.3.15. [C2, Thm. 4.5] Let analytic 𝑓 be annihilated by the order 𝑟 rectangular system {𝐿 1 , . . . , 𝐿 𝑛 }, 𝐺 be as in Assumption 2.3.5 with 𝑔 ∈ K[𝑥] of degree 𝑑, and assume also Assumption 2.3.13. Then, for 𝑁 N := (2𝑟 -1)𝑑 + (𝑑 -1)𝑏 + 𝑠, with 𝑏 = 𝑟 mod 2 and 𝑠 = max{𝑞 𝑖,𝑟 }, RECONSTRUCTSUP-PORT(𝑛, 𝑑, 𝑟, {𝐿 𝑖 }, 𝑁, (𝑚 𝛼 )) returns g = 𝜆𝑔 with 𝜆 ∈ K * .

Algorithm 16 3 :Algorithm 17

 16317 RECONSTRUCTDENSITY(𝑛, 𝑖, 𝑟, 𝑠, 𝑁, (𝑚 𝛼 ) |𝛼| 𝑁 +𝑠 ) Input: 𝑛 2, 𝑖 ∈ [1 . . 𝑛], order 𝑟, maximum degree 𝑠, moments 𝑚𝛼 for |𝛼| 𝑁 + 𝑠. Output: L = 𝑟 ∑︀ 𝑗=0 q𝑗(𝑥)𝜕 𝑗 𝑥 𝑗 with deg (q𝑗) 𝑠. ◁ Find 𝐿 ′ ∈ Ann(𝑓 1𝐺) ∩ K[𝑥]⟨𝜕𝑥 𝑖 ⟩ 1: ℎ𝑗 ← ∑︀ |𝛾| 𝑠 ℎ𝑗𝛾𝑥 𝛾 for 𝑗 ∈ [0 . . 𝑟] with symbolic coefficients ℎ𝑗𝛾 2: 𝐿 ′ ← 𝑟 ∑︀ 𝑗=0 ℎ𝑗(𝑥)𝜕 𝑗 𝑥 𝑖 Find a nontrivial solution {ℎ𝑗𝛾} of the linear system: (𝐿 ′M 𝑚)𝛼 = 0, |𝛼| 𝑁 ◁ Extract minimal 𝐿 ∈ Ann(𝑓 ) ∩ K[𝑥]⟨𝜕𝑥 𝑖 ⟩ 4: ℓ ← GCD(ℎ0, . . . , ℎ𝑟) and q𝑗 ← ℎ𝑗/ℓ for 𝑗 ∈ [1 . . 𝑛]. RECONSTRUCTSUPPORT(𝑛, 𝑑, 𝑟, {𝐿 𝑖 } 𝑛 𝑖=1 , 𝑁, (𝑚 𝛼 )) Input: 𝑛 2, degree 𝑑, order 𝑟, rectangular system {𝐿1, . . . , 𝐿𝑛} of order 𝑟, moments 𝑚𝛼 for |𝛼| 𝑁 + 𝑑𝑟 + max𝑖𝑗{deg (𝑞𝑖,𝑗) -𝑗}. Output: polynomial g(𝑥) ∈ K[𝑥] 𝑑 vanishing over 𝜕𝐺. 1: ℎ ← ∑︀ |𝛾| 𝑑𝑟 ℎ𝛾𝑥 𝛾 with symbolic coefficients ℎ𝛾 2: Find a nontrivial solution {ℎ𝛾} of the linear system:

Example 2 . 3 . 16 (

 2316 Algebraic Support, Lebesgue measure). Consider the moments 𝑚 𝑖𝑗 = ∫︀ 𝐺 𝑥 𝑖 𝑦 𝑗 d𝑥d𝑦, with respect to the Lebesgue measure, with 𝐺 depicted with the checkered pattern in Figure 2.3.
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 23 Figure 2.3 -(a) 𝐺 in checkered pattern, together with 𝜕𝐺 in black. For 𝜀 > 4: reconstructed and original boundary cannot be distinguished at this scale; in dashed-blue, 𝜀 = 4, while in red (b) 𝜀 = 2.
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 241 ])[START_REF] Cheney | Introduction to approximation theory[END_REF] Chap. 4], one also has the following result of uniform and absolute convergence[START_REF] Trefethen | Approximation theory and approximation practice[END_REF] Thm. 3.1]: If 𝑓 is Lipschitz continuous on [-1, 1], it has a unique representation as a Chebyshev series,𝑓 (𝑥) = ∞ ∑︁ 𝑘=-∞ [𝑓 ] 𝑘 𝑇 𝑘 (𝑥), with [𝑓 ] -𝑘 = [𝑓 ] 𝑘 for all 𝑘 ∈ Z,which is absolutely and uniformly convergent.

1 . 2 .

 12 The differential equation 𝐿 • 𝑢(𝑥) = 𝑣(𝑥) holds if and only if𝑃 • (𝑢 𝑛 ) = 𝑄 • (𝑣 𝑛 ).(2.29) The left-hand side operator 𝑃 is of the form 𝑃 = 𝑠 ∑︁ 𝑘=-𝑠 𝑏 𝑘 (𝑛)𝑆 𝑘 where 𝑠 = 𝑟 + max 𝑖 (deg 𝑎 𝑖 ) and 𝑏 -𝑘 (-𝑛) = -𝑏 𝑘 (𝑛) for all 𝑘.

Example 2 . 4 . 5 (

 245 Numerical evaluation of forward recurrence for Chebyshev series coefficients. Part 2). The Chebyshev recurrence(𝑃 • 𝑢) 𝑛 = 𝑢(𝑛 + 1) + 2𝑛 𝑢(𝑛) -𝑢(𝑛 -1) = 0is unrolled backward: for instance, to compute an approximation of degree 𝑁 = 50, canonical initial conditions are set to 𝑢(52) = 0 and 𝑢(51) = 1 and then the other coefficients are "backward" computed by 𝑢(𝑛 -1) = 𝑢(𝑛 + 1) + 2𝑛 𝑢(𝑛). The computation is shown in

  Output: an approximation ỹ(𝑥) = ∑︀ 𝑑 𝑛=-𝑑 ỹ𝑛 𝑇 𝑛 (𝑥) of the corresponding solution 𝑦 of 𝐿 • 𝑦 = 0. 1 compute the Chebyshev recurrence operator 𝑃 = ∑︀ 𝑠 𝑘=-𝑠 𝑏 𝑘 (𝑛)𝑆 𝑘 associated to 𝐿 2 set S = {𝑛 𝑠 : 𝑏 -𝑠 (𝑛) = 0} and I = S ∪ 𝑁, 𝑁 + 𝑠 -1 3 for 𝑛 from 𝑁 + 𝑠 -1 down to 1 4 for 𝑖 ∈ I 5 if 𝑛 = 𝑖 then set 𝑓 𝑖,𝑛-𝑠 = 1 6 else if 𝑛 ∈ I then set 𝑓 𝑖,𝑛-𝑠 = 0 7 else compute 𝑓 𝑖,𝑛-𝑠 using the relation (𝑃 • 𝑓 ) 𝑛 = 0 8 using indeterminate (𝜂 𝑖 ) 𝑖∈I , set ỹ𝑛 = {︂ ∑︀ 𝑖∈I 𝜂 𝑖 𝑓 𝑖,|𝑛| , |𝑛| 𝑁 ỹ𝑛 = 0, |𝑛| > 𝑁, and ỹ(𝑥) = 𝑁 ∑︁ 𝑛=-𝑁 ỹ𝑛 𝑇 𝑛 (𝑥)

18 ,Theorem 2 . 4 . 8 .

 18248 Thm 2.1]: Let (𝐸, ‖ • ‖) be a Banach space, T : 𝐸 → 𝐸 a continuous operator and ̃︀ 𝑥 ∈ 𝐸 an approximate solution of the fixed-point equation T • 𝑥 = 𝑥. If there is a radius 𝑟 > 0 such that • T • 𝐵(̃︀ 𝑥, 𝑟) := {T • 𝑥 | ‖𝑥 -̃︀ 𝑥‖ 𝑟} ⊆ 𝐵(̃︀ 𝑥, 𝑟) := {𝑥 | ‖𝑥 -̃︀ 𝑥‖ 𝑟}, and

Figure 3 . 1 -

 31 Figure 3.1 -Encounter plane and frame (𝑒 x, 𝑒 ỹ , 𝑒 z ).

Figure 3 . 2 -

 32 Figure 3.2 -Rotation to the principal axis of the covariance matrix in the encounter plane. Equation (3.3) defines the so-called short-encounter formula for the probability of collision between two spherical objects under Gaussian-distributed uncertainty. It has the form of a 2-D integral over a disk centered at the origin of a Gaussian function with no cross-terms. This corresponds exactly to Equation (2.4), which can be efficiently and reliably evaluated by Algorithm 13 presented in Section 2.2.
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 33 Figure 3.3 -Number of terms in the series needed in Algorithm 13 for a requested accuracy 𝛿 ranging from 10 -1 to 10 -13 . Cases shown: Chan's Cases (left) and CSM cases (right) from Table 3.1.

8 8 0 3 . 219 ×

 83219 742 × 10 -3 9.741 × 10 -3 9.754 × 10 -3 9.742 × 10 -3 9.742 × 10 -3 Chan 2 9.181 × 10 -3 9.181 × 10 -3 9.189 × 10 -3 9.181 × 10 -3 9.181 × 10 -3 Chan 3 6.571 × 10 -3 6.571 × 10 -3 6.586 × 10 -3 6.571 × 10 -3 6.571 × 10 -3 Chan 4 6.125 × 10 -3 6.125 × 10 -3 6.135 × 10 -3 6.125 × 10 -3 6.125 × 10 -3 Chan 5 1.577 × 10 -5 1.577 × 10 -5 1.577 × 10 -5 1.577 × 10 -5 1.577 × 10 -5 Chan 6 1.011 × 10 -5 1.011 × 10 -5 1.011 × 10 -5 1.011 × 10 -51.011 × 10 -5 Chan 7 6.443 × 10 -8 6.443 × 10 -8 6.443 × 10 -8 6.443 × 10 -8 6.443 × 10 -Chan 10 -27 3.216 × 10 -27 3.219 × 10 -27 3.219 × 10 -27 Chan 9 3.033 × 10 -6 3.033 × 10 -6 3.033 × 10 -6 3.033 × 10 -6 3.033 × 10 -6 Chan 10 0 9.656 × 10 -28 9.645 × 10 -28 9.656 × 10 -28 9.656 × 10 -28 Chan 11 1.039 × 10 -4 1.039 × 10 -4 1.039 × 10 -4 1.039 × 10 -4 1.039 × 10 -4 Chan 12 1.564 × 10 -9 1.564 × 10 -9 1.556 × 10 -9 1.564 × 10 -9 1.564 × 10 -9

  3 1.0038 × 10 -1 1.0087 × 10 -1 3.1264 × 10 -2 1.0038 × 10 -1 1.0085 × 10 -1 Alfano's No. 5 4.4712 × 10 -2 4.4520 × 10 -2 1.6618 × 10 -77 4.4509 × 10 -2 4.4499 × 10 -2

Problem 4 .

 4 (Optimal control problem) Let ℒ 1,𝑝 ([𝜈 0 , 𝜈 𝑓 ], R 𝑟 ) be the normed linear space of Lebesgue integrable functions 𝑢 : [𝜈 0 , 𝜈 𝑓 ] → R 𝑟 , with the norm given by ‖𝑢‖ 1,𝑝 = ∫︁ 𝜈 𝑓 𝜈0 ‖𝑢(𝜈)‖ 𝑝 d𝜈, and where ‖ • ‖ 𝑝 is the usual ℓ 𝑝 -norm of an 𝑟-dimensional vector. Find ū ∈ ℒ 1,𝑝 ([𝜈 0 , 𝜈 𝑓 ], R 𝑟 ) solution of the optimal control problem: inf 𝑢 ‖𝑢‖ 1,𝑝 = inf 𝑢 ∫︁ 𝜈 𝑓 𝜈0 ‖𝑢(𝜈)‖ 𝑝 d𝜈 s.t. 𝑋 ′ (𝜈) = 𝐴(𝜈)𝑋(𝜈) + 𝐵𝑢(𝜈), ∀ 𝜈 ∈ [𝜈 0 , 𝜈 𝑓 ] 𝑋(𝜈 0 ) = 𝑋 0 , 𝑋(𝜈 𝑓 ) = 𝑋 𝑓 ∈ R 𝑛 , 𝜈 0 , 𝜈 𝑓 fixed,

Problem 5 .

 5 one has:𝑐 = 𝜙 -1 (𝜈 𝑓 )𝑋(𝜈 𝑓 ) -𝜙 -1 (𝜈 0 )𝑋 0 , = ∫︁ 𝜈 𝑓 𝜈0 𝜙 -1 (𝜎)𝐵𝑢(𝜎)d𝜎 = ∫︁ 𝜈 𝑓 𝜈0 𝑌 (𝜈)𝑢(𝜎)d𝜎. (3.7) Hence, Problem 4 can be equivalently written as: (Minimum norm moment problem) Find ū(𝑡) ∈ ℒ 1,𝑝 ([𝜈 0 , 𝜈 𝑓 ], R 𝑟 ) solution of the minimum norm moment problem: inf 𝑢 ‖𝑢‖ 1,𝑝 = inf 𝑢 ∫︁ 𝜈 𝑓 𝜈0 ‖𝑢(𝜈)‖ 𝑝 d𝜈 s.t. ∫︁ 𝜈 𝑓 𝜈0 𝑌 (𝜎)𝑢(𝜎)d𝜎 = 𝑐, 𝜈 0 , 𝜈 𝑓 fixed.

Problem 6 .

 6 (Linear minimum norm problem) Find a linear functional l ∈ 𝒞 * ([𝜈 0 , 𝜈 𝑓 ], R 𝑟 ) solution of the linear minimum norm problem: η = inf 𝑙 ‖𝑙‖ s.t. 𝑙(𝑦 𝑖 ) = ⟨𝑦 𝑖 (•), 𝑙⟩ = 𝑐 𝑖 , ∀ 𝑖 = 1, • • • , 𝑛. (3.10) Note that the dual norm of the functional 𝑙 is defined as ‖𝑙‖ = sup ‖𝑦(•)‖𝑞 1 |𝑙(𝑦)|, for continuous functions 𝑦 : [𝜈 0 , 𝜈 𝑓 ] → R 𝑟 , equipped with the norm ‖𝑦(•)‖ 𝑞 = sup 𝜈0 𝜈 𝜈 𝑓

  let l and λ be optimal solutions of (3.12), λ = Arg[ max ‖𝑌 𝑇 (𝜈)𝜆‖𝑞 1 𝑐 𝑇 𝜆] and let ȳ(𝜈) = 𝑛 ∑︁ 𝑖=1 λ𝑖 𝑦 𝑖 (𝜈) = 𝑌 𝑇 (𝜈) λ ∈ R 𝑟 . Then the optimal l is aligned with the optimal ȳ: ⟨︀ ȳ(•), l⟩︀ = ∫︁ 𝜈 𝑓 𝜈0 λ𝑇 𝑌 (𝜈)dḡ(𝜈) = ‖ȳ(•)‖ 𝑞 ‖ l‖. (3.13)

Theorem 3 . 2 . 3 .

 323 (Recover solution as step function[START_REF] Neustadt | Optimization, a moment problem, and nonlinear programming[END_REF]) Let 𝑦 𝑖 (•) ∈ 𝒞 ([𝜈 0 , 𝜈 𝑓 ], R 𝑟 ), 𝑖 = 1, . . . , 𝑛 and λ ∈ R 𝑛 be an optimal solution of Problem(3.14). Define the setsΓ 𝑠 = {ν ∈ [𝜈 0 , 𝜈 𝑓 ] : |ȳ 𝑠 (ν)| = 1} and Γ = {︂ ν ∈ [𝜈 0 , 𝜈 𝑓 ], ‖ȳ(ν)‖ 𝑞 = max 𝜈0 𝜈 𝜈 𝑓 ‖ȳ(𝜈)‖ 𝑞 = 1 }︂ . Note that Γ = ∪ 𝑠 Γ 𝑠 for 𝑝 = 1.

Remark 3 . 2 . 4 .

 324 It is also shown in[START_REF] Neustadt | Optimization, a moment problem, and nonlinear programming[END_REF] that a sequence of functions 𝑢 𝜀 (•) ∈ ℒ 1,𝑝 ([𝜈 0 , 𝜈 𝑓 ], R 𝑟 ) converges to a linear combination of 𝛿(•) functions corresponding to the function ḡ(•) with equal norms. Let ∆𝑉 (ν 𝑗 ) = ḡ(ν 𝑗 )ḡ(ν - 𝑗 ), then roughly speaking, this may be described by:ū𝜀 (𝜈) → 𝑁 ∑︁ 𝑗=1 ∆𝑉 (ν 𝑗 )𝛿(ν 𝑗 -𝜈), 𝜀 → 0. (3.18)Indeed, the initial optimal control problem amounts to finding the sequences of optimal impulse locations {ν 𝑖 } 𝑖=1,••• ,𝑁 and optimal impulse vectors {∆𝑉 (ν 𝑖 )} 𝑖=1,••• ,𝑁 verifying the boundary equation: 𝑐 = 𝑁 ∑︁ 𝑖=1 𝑌 (ν 𝑖 )∆𝑉 (ν 𝑖 ). (3.19)

I: ℒ 1 , 2

 12 norm For 𝜀 = 10 -4 , Algorithm 19 needs 6 iterations and returns an approximation of the optimal solution λ = [-1.177, 1.132, -1.571, 14.36] 𝑇 .10 -4 . Then, Algorithm 20 builds a 4-impulse minimumfuel solution with a cost of 10.7989 m/s. The approximations of optimal impulse locations are given by Γ 𝑖𝑚𝑝 = {0, 1.3872, 6.6639, 8.1832} [rad]. This process is illustrated in Figure 3.4. Optimal trajectory in (𝑥, 𝑧) plane.

Figure 3 . 4 -

 34 Figure 3.4 -ℒ 1,2 norm, ATV example. The next point added to the discretization scheme is shown in green; the final impulse locations are shown in red.

  Optimal trajectory in (𝑥, 𝑧) plane.

Figure 3 . 5 -

 35 Figure 3.5 -ℒ 1,1 norm, ATV example. The next point added to the discretization scheme is shown in green; the final impulse locations are shown in red.

2 +𝜈 𝑓 -𝜈𝑜 2 𝑡

 22 (𝜈 0 ) -2𝑥 ′ (𝜈 0 ) and 𝜈 ∈ [𝜈 0 , 𝜈 𝑓 ]. (3.24) We use the affine rescaling 𝜈 = 𝜈(𝑡) = 𝜈𝑜+𝜈 𝑓 for 𝑡 ∈ [-1, 1], and setting 𝑓 (𝑡) = 𝑧 ∘ 𝜈 = 𝑧 (︁

7 -

 7 Validation of the Lipschitz constant of the quasi-Newton operator T. This is firstly shown on an academic example. Let us fix the eccentricity 𝑒 = 0.5 (in order to observe the approximation errors at drawing scale), the interval [𝜈 0 , 𝜈 𝑓 ] = [0, 6𝜋] corresponding to 3 periods, and the initial conditions (𝑥(𝜈 0 ), 𝑧(𝜈 0 ), 𝑥 ′ (𝜈 0 ), 𝑧 ′ (𝜈 0 )) = (-3•10 4 m, 5•10 3 m, 9•10 3 m • rad -1 , 4•10 3 m • rad -1 ). The corresponding functions 𝑥(𝜈) and 𝑧(𝜈) are plotted in Figure3.6a. Figure3.6b represents an approximation Exact representation of 𝑥(𝜈) and 𝑧(𝜈) for 𝜈 ∈ [0, 6𝜋] and 𝑒 = 0.5. Rigorous approximation ̃︀ 𝜙 of degree 18 of 𝑧 ′′ , over [0, 6𝜋] and for 𝑒 = 0.5.

  Approximation degree 𝑑 needed to rigorously approximate 𝑧 on [0, 𝑘𝜋] within an error of 1m, in function of 𝑘 and the eccentricity 𝑒.

Figure 3 . 6 -

 36 Figure 3.6 -Different validation results related to the spacecraft rendezvous problem.

*

  = -2 (in orange). Note that 𝑡 (0) 1 was already equal to -2, but 𝜔

Figure 3 . 7 -

 37 Figure 3.7 -Approximation of Ai over [-2, 2]: iteration 0

Figure 3 . 8 -

 38 Figure 3.8 -Approximation of Ai over [-2, 2]: iteration 6

Figure 3 . 9 -

 39 Figure 3.9 -Approximation of Ai over [-2, 2]: iteration 9
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Table 1 .

 1 1 -Main differences between the double-double format (made up with binary64 floating-point numbers) and quad-precision (binary128).

		double-double quad-precision
	Precision	107 bits	113 bits
		"wobbling"	
	Exponent range	-1022 to 1023 -16382 to 16383 (11 bits) (15 bits)
	Rounding modes	N/A	RN, RU, RD, RZ

  Definition 1.4.1 (FP Expansion). A floating-point expansion 𝑥 with 𝑛 terms is the unevaluated sum of 𝑛 floating-point numbers 𝑥 0 , . . . , 𝑥 𝑛-1 , in which all nonzero terms are ordered by magnitude (i.e., if 𝑦 is the sequence obtained by removing all zeros in the sequence 𝑥, and if 𝑦 contains 𝑚 terms, then |𝑦 𝑖 | |𝑦 𝑖+1 |

  1 , . . . , 𝑟 𝑚-1 //enough output terms

	8:	end if
	9: 10:	𝑗 ← 𝑗 + 1 else
	11: 12:	𝜀 𝑖+1 ← 𝑟 𝑗 end if
	13: end for

14: if 𝜀 𝑛-1 ̸ = 0 and 𝑗 < 𝑚 then 15: 𝑟 𝑗 ← 𝜀 𝑛-1 16: end if 17: return 𝑟 0 , 𝑟 1 , . . . , 𝑟 𝑚-1

Table 2 .

 2 Numerical results on relevant practical instances concerning collision probabilities between debris and satellites are postponed to Chap 3. Here we focus on two examples, recorded in Table2.1, which are interesting from a theoretical viewpoint and which were considered as very challenging for accurate computing[START_REF] Alfano | Satellite conjunction Monte Carlo analysis[END_REF].

	Case		Input parameters (m)	
	#	𝜎 𝑥	𝜎 𝑦	𝑅	𝑥 𝑚	𝑦 𝑚
	3	114.25 1.41 15 0.15 3.88
	5	177.8 0.038 10 2.12 -1.22

1 -Two examples of [5]. Let us denote by 𝜂 𝑁 =log 𝑢 𝑁 -𝑙 𝑁 𝑙 𝑁 + P𝑐

  1), which vanishes on 𝜕𝐺, and Ann{1} = {𝜕 𝑥 , 𝜕 𝑦 }, Algorithm 14 returns a Gröbner basis with 9 generators and with 36 monomials under the staircase: {𝑆 𝑘 𝑖 𝑆 𝑙 Suppose now given a finite number of numerically computed moments m𝑖𝑗 of the Lebesgue measure with unknown support 𝐺. The goal is to reconstruct 𝑔 = ∑︀

𝑗 , 𝑘, 𝑙 ∈ N, 𝑘 + 𝑙 7}.

(ii) Inverse problem:

𝑖+𝑗 8

𝑔 𝑖𝑗 𝑥 𝑖 𝑦 𝑗 which vanishes on 𝜕𝐺. The results of Algorithm 15 called with parameters (2, 8, 0, 22, ( m𝑖𝑗 ) |𝑖+𝑗| 29 ) are depicted in Figure

2

.3: the reconstructed boundary cannot be distinguished from the exact one at the drawing scale, when the moments m𝑖𝑗 are given with more than 4 correct digits. When 2 𝜀 4, the actual geometric boundary of 𝐺, can still be very well reconstructed, although the algebraic boundary is degraded.

  Let 𝑛 ∈ N, 𝑛 1, 𝑓 ∈ 𝒞 0 , and 𝑝 * 𝑛 denote the polynomial of degree at most 𝑛 that minimizes ||𝑓 -𝑝|| ∞ , then||𝑓п 𝑛 • 𝑓 || ∞

		continuous
	functions over [-1, 1] [211, Thm. 16.1]:	
	Theorem 2.4.2. (︂ 4 +	4 𝜋 2 log(𝑛 + 1)

Table 2

 2 

	.2.
	Taylor series: exp(𝑥) = 𝐼 Rec. unrolling: ∑︁ 1 𝑛! 𝑥 𝑛 Chebyshev series: exp(𝑥) = ∑︁ Accurate value: Rec. unrolling: Accurate value:

𝑛 (1)𝑇 𝑛 (𝑥) Coeff. Recurrence: 𝑢(𝑛 + 1) = 𝑢(𝑛) 𝑛 + 1 Coeff. Recurrence: 𝑢(𝑛 + 1) = -2𝑛𝑢(𝑛) + 𝑢(𝑛 -1)

Table 2 .

 2 

	2 -Example of numerical computation (precision binary64) of power series coefficients (left) vs.
	Chebyshev series coefficients (right) for exp, by direct recurrence unrolling (first and 3rd column), while
	the accurate values are given in the second and 4th column.

Table 2 .

 2 3. 

	Backward unrolling:	Accurate value:	Backward unrolling and scaling:
	𝑢(52) = 0			𝑢(52) 𝐶	= 0
	𝑢(51) = 1 𝑢(50) = -102		𝑢(51) 𝐶 𝑢(50) 𝐶	≈ -2.88 • 10 -82 ≈ 2.93 • 10 -80
		. . .			. . .
	𝑢(2) ≈ -4.72 • 10 80 50	𝐼 2 (1) ≈ 0.14 𝐼 1 (1) ≈ -0.57 𝐼 0 (1) ≈ 1.27	𝑢(2) 𝐶 𝑢(1) 𝐶 𝑢(0) 𝐶	≈ 0.14 ≈ -0.57 ≈ 1.27
	𝐶 =	∑︁ 𝑛=-50	𝑢(𝑛)𝑇 𝑛 (0) ≈ -3.48 • 10 81

𝑢(1) ≈ 1.96 • 10 81 𝑢(0) ≈ -4.4 • 10 81 𝐼 52 (1) ≈ 2.77 • 10 -84 𝐼 51 (1) ≈ 2.88 • 10 -82 𝐼 50 (1) ≈ 2.93 • 10 -80 . . .

Table 2 .

 2 

3 -Example of numerical computation (precision binary64) of Chebyshev series coefficients for exp, with backward recurrence unrolling by setting canonical initial conditions (left) and then scaling the obtained results with the normalizing condition 𝐶, while the accurate values are given in the middle column.

  then п 𝑛 • 𝑓 converges absolutely and uniformly to 𝑓 [J2, Lemma 2.3.]. Moreover, Ч

1 

is a Banach algebra analogous to the Wiener algebra 𝐴(T) of absolutely convergent Fourier series [109, §I.6]: for 𝑓 ∈ Ч 1 , we have ‖𝑓 ‖ Ч 1 = ‖𝑓 (cos)‖ 𝐴(T) .

• The operators in Equation (2.33) are obtained by transforming the differential Equation (2.32) into an integral one. This is useful because derivation is not an endomorphism of Ч 1 (some functions in Ч 1 are not even differentiable) and also the action of derivation on Chebyshev series has worse numerical conditioning properties

[START_REF] Greengard | Spectral integration and two-point boundary value problems[END_REF]

.

Proposition 2.4.9. Let 𝑓 be a function of class 𝒞 𝑟 over [-1, 1]. Then 𝑓 is a solution of the linear IVP problem (32a) if and only if 𝜙 = 𝑓 (𝑟) ∈ 𝒞 0 is solution of the Volterra integral equation:

Table 3 .

 3 

	parameters (m)

1 -Inputs for test cases from Chan (

Table 3 .

 3 CSM 2 2.0553 × 10 -11 2.0552 × 10 -11 2.0135 × 10 -11 2.0553 × 10 -11 2.0553 × 10 -11 CSM 3 7.2004 × 10 -5

	Case	Collision Probability (-)	
	Alfano	Patera	Chan	Algorithm 13	Reference
	CSM 1 1.9002 × 10 -3	1.9001 × 10 -3	1.8934 × 10 -3	1.9002 × 10 -3	1.9002 × 10 -3
		7.2000 × 10 -5	7.2000 × 10 -5	7.2003 × 10 -5	7.2003 × 10 -5

2 -Comparison of collision probability value -with 4 significant digits-for Chan's test cases number 1 to 12. The digits different from the reference value are represented in bold.

Table 3 .

 3 3 -Comparison of collision probability value -with 5 significant digits-for tests cases from CSMs. The digits different from the reference value are represented in bold.

	Case		Collision Probability (-)	
	Alfano	Patera	Chan	Algorithm 13	Reference
	Alfano's No.				

  If after 𝑖 iterations, max

	defined input parameter, then	𝜃∈Θ	‖𝑌 (𝜃) 𝑇 𝜆 (𝑖) ‖ 𝑞	1 + 𝜀, where 𝜀 is a user
	-𝜇 (𝑖) 1 + 𝜀	η.		(3.23)

  Solve for ∆𝑉 𝑖 , 𝑖 = 1, . . . , 𝑁 , the linear system 𝑐 = 𝑖𝑚𝑝 ← Choose 𝑛 points in Γ s.t. the linear system 𝑐 =

	∑︁	𝑌 (ν 𝑖 )∆𝑉 𝑖 .
	ν𝑖∈Γ𝑖𝑚𝑝	
		∑︁	𝑌 (ν 𝑖 )∆𝑉 𝑖 has a solution.
	ν𝑖∈Γ𝑖𝑚𝑝

4 if (𝑁 𝑛) then 5 Γ 𝑖𝑚𝑝 ← Γ 6 7 else 8 Γ 9 return Γ 𝑖𝑚𝑝 , {∆𝑉 𝑖 }.

Table 3 .

 3 5 -Parameters of the ATV example.

Table 3 .

 3 

	T. A numerical solution

Table 3 .

 3 .8, we provide an enclosure of the final states obtained with this validated trajectory propagation procedure in function of different polynomial degrees 𝑑. 8 -Final states obtained with rigorous trajectory propagation for the ATV example in function of the approximation degree 𝑑 employed.

	d	𝑥(𝜈 𝑓 )	𝑧(𝜈 𝑓 )	ẋ(𝜈 𝑓 )	ż(𝜈 𝑓 )
	25	-100 + [-2.68e1, 2.68e1]	[-7.40e0, 7.40e0]	[-1.82e-2, 1.82e-2]	[-5.37e-3, 5.37e-3]
	30 -100 + [-1.01e-1, 1.01e-1] [-2.76e-2, 2.76e-2]	[-6.77e-5, 6.77e-5]	[-2.01e-5, 2.01e-5]
	40 -100 + [-2.32e-5, 2.32e-5] [-6.39e-6, 6.39e-6]	[-1.56e-8, 1.56e-8]	[-4.63e-9, 4.63e-9]
	50 -100 + [-2.04e-8, 1.64e-8] [-5.04e-9, 5.06e-9] [-1.23e-11, 1.23e-11] [-3.66e-12, 3.65e-12]

  𝑖 𝑡 𝑖 of given degree 𝑛, with real coefficients 𝑎 𝑖 , this is equivalent to the so-called minimax

	𝑝 =			
	problem:			
	min 𝑎 𝑖 ∈R, 𝑖∈[0..𝑛]	max 𝑡∈𝐼	|𝑓 (𝑡) -𝑝(𝑡)|,	(𝑃 minimax )

𝑛 ∑︀ 𝑖=0 𝑎

  𝑛+2 , 𝜔 = (𝑡, 𝜎 0 , . . . , 𝜎 𝑛+1 ) ∈ Ω := 𝐼 × S, 𝜎 0 𝑓 (𝑡), Ω is a compact metric space and the function 𝑔(𝑥, 𝜔) = 𝑐(𝜔) -𝛼(𝜔) 𝑇 𝑥 0 defining the feasible set is a continuous function from R 𝑛+2 × Ω into R. Note that for S ′ = {-1, 1} × {0}𝑛+1 and Ω ′ = 𝐼 × S ′ ⊆ Ω, (𝑃 minimax ) is exactly retrieved as shown in the next example. 𝜎 0 1, 𝜎 0 𝑡, . . . , 𝜎 0 𝑡 5 )(𝑎, 𝑎 0 , 𝑎 1 , . . . , 𝑎 5 ) 𝑇 𝜎 0 𝑓 (𝑡),𝜎 0 = ∓1, 𝑡 ∈ 𝐼. 𝜎 0 + 𝜎 1 𝑢, (𝜎 0 + 𝜎 1 𝑢 + 𝜎 2 2𝑢)𝑡, . . . , (𝜎 0 + 𝜎 1 𝑢 + . . . + 𝜎 5 𝑢)𝑡 5 )(𝑎, 𝑎 0 , 𝑎 1 , . . . , 𝑎 5 ) 𝑇 𝜎 0 𝑓 (𝑡), 𝜎 0 = ∓1, 𝜎 1 = ∓1, . . . , 𝜎 5 = ∓1, 𝑡 ∈ 𝐼.(3.27)For Problem (𝑃 ′ general ), a convergent iterative algorithm similar to Algorithm 19 could be employed, which considers solving at each step a discretized version of Problem (𝑃 ). In this case, a discretization (𝑃 𝑚 ) of (𝑃 ) for a set 𝜔 = {𝜔 1 , . . . , 𝜔 𝑚 } ⊆ Ω is the following linear program (LP):

	Problem (𝑃 ′	general ) is exactly the following linear SIP:
				min 𝑥∈R 𝑛+2 s.t.	𝑧 𝑇 𝑥 𝛼(𝜔) 𝑇 𝑥 𝑐(𝜔), 𝜔 ∈ Ω,	(𝑃 )
	where 𝑐(𝜔) = Example 3.2.7. For 𝑛 = 5, Problem (𝑃 minimax ) is:
				min (𝑎,𝑎)∈R 7	𝑎
				s.t.	(1, (3.26)
	while Problem (𝑃 ′	general ), assuming Horner evaluation is:
	min (𝑎,𝑎)∈R 7		𝑎
	s.t.	(1, min 𝑥∈R 𝑛+2	𝑧 𝑇 𝑥
				s.t.	𝛼(𝜔

𝑗 ) 𝑇 𝑥 𝑐(𝜔 𝑗 ), 𝑗 = 1, • • • 𝑚. (𝑃 𝑚 )

  Theorems 2.2, 2.3 and 3.2].A1 Ω is a compact metric space, 𝛼 : Ω → R 𝑑 and 𝑐 : Ω → R are continuous functions; A2 val(𝑃 ) is finite; A3 (Slater's condition): there exists 𝑥 ∘ such that: 𝛼(𝜔) 𝑇 𝑥 ∘ > 𝑐(𝜔), for all 𝜔 ∈ Ω;(3.28)

	Theorem 3.2.8. [198, Thm. 2.2, 2.3, 3.2] Under the assumptions:

A4 There exist 𝜔 1 , . . . , 𝜔 𝑑 ∈ Ω with (𝛼(𝜔 1 ), • • • , 𝛼(𝜔 𝑑 )) linearly independent such that:

∃ 𝑦 1 , . . . , 𝑦 𝑑 > 0, 𝑧 = 𝑑 ∑︁ 𝑗=1 𝑦 𝑗 𝛼(𝜔 𝑗 ),

They can be found on http://hal.archives-ouvertes.fr/

A FMA operator evaluates an expression of the form 𝑥𝑦 + 𝑡 with one final rounding only.

Benchmarks were performed on well-known ill-conditioned examples from SDPLIB[START_REF] Borchers | SDPLIB 1.2, a library of semidefinite programming test problems[END_REF] and[START_REF] De Klerk | A new library of structured semidefinite programming instances[END_REF]. GPU tests were performed on a GPU NVIDIA(R) Tesla(TM) C2075, with

cores, 1.15 GHz, 32KB of register, 64KB shared memory/L1 cache set by default to 48KB for shared memory and 16KB for L1 cache. CPU tests use an Intel(R) Xeon(R) CPU E3-1270 v3 @ 3.50GHz processor, with Haswell micro-architecture which supports hardware implemented FMA instructions.

Chapter 1. Fast and Certified Multiple-Precision Arithmetic

A left ideal 𝐼𝐼 of (ii) is D-finite iif its restriction to left ideals in (i) (i.e. 𝐼𝐼 ∩ 𝐼, where 𝐼 is a left ideal in (i)) is holonomic[START_REF] Koutschan | Advanced applications of the holonomic systems approach[END_REF] Thm.2.22].

The corresponding code is available at http://homepages.laas.fr/fbrehard/HolonomicMomentProblem

The Clenshaw method we are referring to, should not be confused with the Horner-like scheme for Chebyshev polynomials known as Clenshaw's algorithm[START_REF] Clenshaw | A note on the summation of Chebyshev series[END_REF].

Their validity is guaranteed when the distance between the target and the chaser is assumed to be small compared to the radius of the target vehicle orbit.
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Chapter 4

Research perspectives

My long term research goal is to bring more reliable computations in the field of optimal control theory and aerospace applications (e.g. spacecraft rendezvous, in-orbit servicing, collision risk mitigation), where several difficult, but very promising challenges are left to be addressed. Several works [START_REF] Rauh | Interval Methods for Optimal Control[END_REF][START_REF] Kanno | Validated numerical methods for systems and control engineering[END_REF][START_REF] Kanno | Validated numerical computation of the L-infinity-norm for linear dynamical systems[END_REF][START_REF] Jaulin | Automation for Robotics[END_REF][START_REF] Lizia | Robust Space Trajectory and Space System Design using Differential Algebra[END_REF] in this sense considered the application of interval analysis in the field of control. However, they make extensive use of interval branch and bound methods and little or no use at all of powerful symbolic algorithms existing nowadays.

For that, I consider four main challenges:

• C1: Efficient Computation/Evaluation/Manipulation of Rigorous Polynomial Approximations (RPAs);

• C2: Extension and Integration of RPAs in the framework of Optimal Control Theory;

• C3: Applications to Guidance, Navigation and Control of Spacecraft;

• C4: Computer Arithmetic aspects pertaining to C1-C3.

The first objective is to consider the symbolic-numeric aspect: modern computer algebra algorithms (rooted in commutative and differential algebra) are employed via approximation theory (in suitable functional spaces) to obtain efficient approximations and analytic error bounds. Secondly, at subsequent numerical levels, roundoff errors are handled, especially in the context of extended precision or embedded computations.

RPAs: Rigorous Polynomial Approximations

As discussed in Chapter 2, at the symbolic-numeric level, we aim not only to compute approximations, but also enclosures of errors. The width of such an enclosure gives a direct quality measurement of the computation, and can be used to adaptively improve the calculations at run-time. Polynomials are one of the most efficient and exploited ways for computing in this setting. To improve their reliability, we worked on Rigorous Polynomial Approximations (RPA): a polynomial approximation together with rigorous error bounds (Section 2.4). Broadly speaking, the idea of working with polynomial approximations instead of functions is analogous to using floating-point arithmetic instead of real numbers [START_REF] Epstein | Ultra-arithmetic I: function data types[END_REF][START_REF] Trefethen | Computing numerically with functions instead of numbers[END_REF]: various generalized Fourier series, including Chebyshev series, play the role of floating-point numbers. However, with RPAs, one comprises a function space counterpart of interval arithmetic by providing rigorous truncation error bounds. The main appeal of this approach is the ability to solve functional equations rigorously using enclosure methods [START_REF] Kaucher | Self-validating numerics for function space problems[END_REF][START_REF] Neumaier | Taylor forms -use and limits[END_REF]. We discussed, in Chapter 2, several recent results based on Chebyshev series and D-finite functions. My goal is to further exploit these properties in the context of RPAs for ordinary differential equations (ODEs). Namely, the objective is the efficient computation, manipulation and evaluation of rigorous polynomial approximations as solutions of ODEs. mission planning tools or embedded control systems (on-board computation for increased autonomy). Specific applications include spacecraft rendezvous, in-orbit servicing, collision risk mitigation.

My third major objective is to provide effective solutions for concrete space projects: both speed and reliability are at stake.

The risk assessment and collision avoidance strategies for the case of mega-constellations is one of our practical short-term objectives.

As briefly mentioned in Section 3.1.2, the general framework of the problem of collision avoidance was already studied in our report [R2], where the objective is to give an exact and rigorous mathematical modeling of the problem of the computation of the probability of collision for multiple encounters. Our approach follows the general convex optimization-based framework for analysis and optimal control of dynamical systems proposed in [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF][START_REF] Korda | Moment-sum-of-squares hierarchies for set approximation and optimal control[END_REF][START_REF] Streif | Probabilistic and set-based model invalidation and estimation using lmis[END_REF][START_REF] Lasserre | Nonlinear optimal control via occupation measures and LMI-relaxations[END_REF][START_REF] Marx | A moment approach for entropy solutions to nonlinear hyperbolic pdes[END_REF]. This is based on (1) the formulation of an infinitedimensional linear programming problem in the cone of nonnegative measures (also known as lifting of nonlinear dynamics via Liouville's equation and (2) the theory of non-negative polynomials and so-called Lasserre hierarchy of relaxations. In this general framework, finite dimensional relaxations outer-or inner-approximate by polynomial sublevel sets various quantities of interest in controlled dynamical systems, like the region of attraction [START_REF] Korda | Inner approximations of the region of attraction for polynomial dynamical systems[END_REF][START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF][START_REF] Korda | Moment-sum-of-squares hierarchies for set approximation and optimal control[END_REF] or the maximal positively invariant set [START_REF] Oustry | Inner approximations of the maximal positively invariant set for polynomial dynamical systems[END_REF].

While the theoretical convergence of these approximants is proved, in practice the underlying methods are numeric, the corresponding solvers work in the ill-conditioned monomial basis and no certified counterpart was developed except for very small instances [START_REF] Henrion | Finding largest small polygons with GloptiPoly[END_REF].

In our practical case, our numerical experiments show that firstly, the dimension of the general problem is currently prohibitive for existing semi-definite solvers. Secondly, several examples show that numerical results in low dimension do not achieve a good accuracy. Recent works suggest that formulating the Moment-Sum-of-Squares problem with respect to orthogonal bases results in better numerical stability [START_REF] Foucart | Determining Projection Constants of Univariate Polynomial Spaces[END_REF]. In this sense, for stochastic solutions of an ordinary differential equation which describes the propagated orbit, orthogonal expansions are frequently used in the so-called polynomial chaos expansions [START_REF] Jones | Nonlinear propagation of orbit uncertainty using non-intrusive polynomial chaos[END_REF][START_REF] Vittaldev | Spacecraft uncertainty propagation using Gaussian mixture models and polynomial chaos expansions[END_REF].

We intend to use symbolic-numeric methods for obtaining and manipulating RPAs in the practical solving of the linear optimization problem of measures. We aim for a three-fold improvement: (1) algebraic properties (like recurrences satisfied by moments of D-finite functions) reduce the number of variables in the optimization problem to solve; (2) the better conditioning of orthogonal bases improves numerical solving, thus allowing for higher order relaxations (in finite precision solvers); (3) a preliminary study can be made on how to efficiently propose solutions which are rigorous and certified.

We believe that with the help of RPAs algorithms, a posteriori uncertainty orbit propagation can be rendered more efficient and reliable (an important challenge is that the relative dynamics between debris and a cluster of satellites is nonlinear).

Spacecraft rendezvous has become a key technology raising relevant open control issues. Formation flight (PRISMA), on-orbit satellite servicing or supply missions require adequate rendezvous planning tools. A main challenge is to achieve autonomous far range rendezvous on elliptical orbits while preserving optimality in terms of fuel consumption, which defines a minimum-fuel optimal control problem. In Section 3.2, we developed a new numerical convergent algorithm for solving this problem in a linearized fixed-time framework. Validation of trajectories is done a posteriori with RPAs for LODEs, which was presented in Section 2.4. Our goal is to extend this problem to a framework that is more general than linearized Keplerian dynamics. Solutions of more accurate ODE models, which take into account orbital perturbations for example, are to be obtained with RPAs. This will allow for developing new tractable and guaranteed algorithms. Especially in the context of increased satellite autonomy, this could improve on our work [J1] of embedding model predictive control algorithms on low-consumption processors specifically certified for spaceflight.

Computer Arithmetic related aspects

Once Computer Algebra provides the canvas for RPAs (e.g., a recurrence relation satisfied by the polynomial coefficients), evaluation takes place in the realm of numerics. Usually, the computations for evaluating the polynomial (e.g., by unrolling the recurrence) are done in standard floating-point double precision (53 bits) for efficiency. Thus, roundoff errors appear at the computer arithmetic level and need to be handled. Some techniques for avoiding catastrophic loss of precision were presented in Section 2.2. When needed, extended precision as presented in Chapter 1 or an interval arithmetic built on it, can be used for a small overhead. Our goal is to put CAMPARY at the core of reliable numerical code on RPAs and more generally, make it a natural tool for symbolic-numeric computations. Note that highly parallel subsystems (like GPUs) have already been used for embedded pseudo-spectral optimal control for spacecraft [START_REF] Ross | A review of pseudospectral optimal control: From theory to flight[END_REF].

This would provide a complete top-down approach for optimal control algorithms implementations by ensuring that the Computer Arithmetic tools are adequate.

In this context, we will focus on several specific tasks which extend our previous developments. So far, we focused on the tight and rigorous error bound analysis of basic arithmetic operations in extended precision obtained via FP expansions. We intend to provide similar improvements in larger calculations.

Error analysis for fast transforms. The Fast Fourier Transform (FFT) and related algorithms (e.g., fast cosine transforms) play a central role in large precision arithmetic, since they are used in fast polynomial and integer multiplication algorithms [START_REF] Schönhage | Schnelle Multiplikation grosser Zahlen[END_REF]. Performing an FFT-based multiplication requires a careful error control: all intermediate calculations are done in FP arithmetic, and since the final, exact, results (e.g., the coefficients of the polynomial product) are integers, we get them by rounding to the nearest integer the computed results. Hence the error on the computed results must be less than 1/2. Many error analysis results of the FFT [START_REF] Ramos | Roundoff error analysis of the fast Fourier transform[END_REF][START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF][START_REF]Rapid multiplication modulo the sum and difference of highly composite numbers[END_REF][START_REF] Plonka | Numerical Fourier Analysis[END_REF] bound the relative mean-square error. For our applications to high-precision arithmetic, we also need bounds in terms of infinity norm [START_REF] Henrici | Applied and Computational Complex Analysis[END_REF]. Recently, in an already submitted work [R1], we have improved the bound [START_REF] Henrici | Applied and Computational Complex Analysis[END_REF] and built bad input cases for which the attained error is around one eighth of the bound. A short term objective is to extend these results to other similar transforms.

Fast and accurate algorithms for complex and quaternion floating-point arithmetic. Similarly to our developments in Chapter 1, we will consider complex operations in FP arithmetic. Currently, complex arithmetic primitives are in general not as accurate or efficient as basic arithmetic operations and are frequently subject to spurious under/overflow (an intermediate calculation underflows or overflows, making the computed final result irrelevant, although the exact result is in the domain of the representable numbers). For these reasons, complex arithmetic provided by programming languages is seldom used. Arithmetic operations on quaternions as well as conversion algorithms to/from rotation matrices are prone to similar numerical issues as the complex numbers, as recently illustrated in [START_REF] Sarabandi | Accurate computation of quaternions from rotation matrices[END_REF]. Quaternions represent rotations in R 3 in a non-singular way, which makes them useful in computer graphics, drone and aerospace vehicle control. We aim at providing accurate, reliable, and fast algorithms for complex and quaternion arithmetic. We will frequently use error-free transforms (which were recalled in Section 1.2) to enable faithful evaluation. The efficiency of this library will be assessed on concrete aerospace applications mentioned above. 
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