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Introduction

This document surveys the framework, the goals and the main outcomes of my research in the last few
years, together with new perspectives. The obtained results mainly correspond to my research plan
proposed in my CNRS entrance file, back in 2012. They are outlined by insisting on the underlying ideas,
using simple examples and algorithms, without imposing to the reader to go over the technical proofs
of the corresponding articles. For completeness, complementary references are pointed out and all my
research works are either appended to the text or available online in open access platforms1.

Research Context. The general context of my research is the field of rigorous computing (sometimes
called validated computing as well) which uses numerical computations, yet is able to provide rigorous
mathematical statements about the obtained result, such as sure and reasonably tight, error bounds. The
goal is to bridge the gap between pure mathematics and numerical computing. Obviously, this implies
sometimes walking in equilibrium on a thin rope. Take for instance the obvious question: can we trust
the numerics?

On one end of the spectrum, and from a "(too) traditional pure mathematics" point of view, the short
answer is NO. The long answer is Maybe, but one has to be careful, because...

Usually, numbers are stored and manipulated in finite precision (floating-point being among most
common formats) and they represent only a finite subset of the real axis. For each basic computation
(addition, multiplication) a rounding error may occur. Then, most numerical methods introduce also
so called method approximation errors. Finally, the solved mathematical problem is only a simplified
(sometimes linearized) model of the real world, so model disturbances, uncertainties, nonlinearities have
to be considered. Even for rather simple queries, like values of definite integrals, there is no symbolic
closed-formula for the result. If well-known software (e.g. Matlab, Mathematica, Sage) provide numerical
results, however one is often unaware of mentions like the following in Mathematica Book [227]: when
Mathematica does a numerical integral, the only information it has about your integrand is a sequence of numerical
values for it. If you give a sufficiently pathological integrand, Mathematica may simply give you the wrong answer.

Hence, these numerical computations alone do not constitute a proof of correctness of the result
obtained in general.

On the other end of the spectrum, in the wild world of real applications, the results and performances
of numerical computer algorithms become more and more striking regarding both their efficiency, large
scale, and the current ubiquitous tendency of employing AI algorithms in every field.

In the middle, there lie the computer-aided mathematics or computer-assisted proofs, which have
seen the advent in the last 20 years [213, 88, 90], and whose trend is getting more and more important [60].
Examples where numeric results accuracy has to be guaranteed, arise in attitude and orbit control systems
(AOCS) of spacecraft or surgical robots, or when studying chaotic dynamical systems like strange
attractors or complicated astrodynamics like long-term stability of the solar system [122]. Traditional
validated computing [214] methods are based on arbitrary precision libraries, interval arithmetic, or
formal proofs. Interval arithmetic [152] is the simplest set arithmetic, which always returns an interval
guaranteed to contain the correct result. Such methods were used in computer-assisted proofs in
dynamical systems [213, 38, 67, 216], optimization for uncertain chemical systems [155]. However, so far,
they are employed on a case-by-case basis, and obtaining both efficient approximations and effective
error bounds, for generic classes of numerical problems, remains a difficult task. Some of my results
on this topic are provided in what follows. Let us mention that while some of them have been formally

1They can be found on http://hal.archives-ouvertes.fr/

http://hal.archives-ouvertes.fr/
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proved in joint works, this manuscript does not deal with the field of formal proof assistants. To lure the
reader into the validated computing field, what can be better than a story about satellites? So here it starts.

From validated numerics to spacecraft trajectories and back. Recently, I worked on evaluating an
integral appearing in a critical space project: since the number of space debris has drastically increased,
adequate mitigation and collision avoidance strategies are vital for active satellites [J5]. While relative
debris–satellite positions and velocities are only approximately known, the collision risk has to be both
fast and reliably assessed. If the evaluated risk is sufficiently high, a collision avoidance maneuver is
decided, but each such maneuver reduces the remaining satellite fuel and thus its active in-orbit life.
Yet, a wrong computation which underestimates the risk, could result in the satellite loss (such cases
actually occurred in the past e.g., 2009, Feb. 10, a collision occurred between Iridium 33 and Cosmos
2251 satellites, although the predicted minimum distance of close approach was of 584 m [44]).
The majority of previous solutions [5, 48, 171] could not be used without further approximations
and were unable to guarantee the accuracy requirements. This is because usually either numerical
integration schemes or truncated power series were used, but no rigorous proof regarding the method’s
convergence rate was given. The truncation orders or discretization steps were fixed by trial and error or
by comparing against other numerical tools which might offer higher accuracy. In contrast, our solution,
readily implemented by CNES (French Space Agency) exploits both the power of computer algebra and
numerical evaluation tools which result in a method that is not only reliable (the number of guaranteed
correct digits is user-input) but also faster than quadrature schemes.

Beside this particular example, I designed validated methods employed in the domain of mathemati-
cal library design [J3, J6, C1], dynamical systems [J7] or applications to robust space missions [J5, C8, J2,
J1].

Research themes and structure. The structure of my research was naturally built starting with my
PhD thesis which was centered on validated computations for mathematical library design [R3] and
made use of some computer algebra techniques. Subsequently, during my post-doctorate, I focused
more on high performance computer arithmetic and a posteriori validation techniques for proving certain
properties of chaotic dynamical systems. Finally, starting with January 2013, I joined MAC –Methods
and Algorithms in Control– Team, whose main objectives include providing constructive theoretical
conditions for characterizing solutions to various control and optimization problems, while producing
effective computational algorithms. In this context, my focus is mainly on developing symbolic-numeric
objects and validated algorithms for improving both the numerical reliability and the speed of optimal
control methods applied in aerospace.

More specifically, my research is structured in 3 interconnected layers:

(i) At the numerics level, we are interested in improving the quality (in terms of accuracy, speed,
reliability of software, etc.) of the arithmetic available on computers. In particular, we focus on
high-precision arithmetic algorithms, using as basic building blocks the available operators for
floating-point arithmetic. We are also interested in problems related to the efficient and reliable
implementation and evaluation in fixed-precision of elementary and special functions.

(ii) At the symbolic-numeric level, we focus on Rigorous Polynomial Approximations (RPAs), which
are formed by a polynomial approximation and a rigorous error bound. We consider efficient
algorithms for constructing and manipulating RPAs with the purpose of validating solutions using
them. We make use of an important class of functions which are solutions of linear differential
equations with polynomial coefficients also called differentially finite or D-finite functions for short. These
functions have very interesting symbolic and numeric properties that allow, for instance, for
efficient approximation algorithms based on Taylor, Chebyshev and other series expansions.

(iii) We apply these previously described tools in dynamical systems, optimal control and the aerospace
domain.
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Document outline. In what follows, we overview several results published during January 2013-
February 2019. My exhaustive publications list is recalled at the end of this manuscript: references
I co-authored are referenced with a specific prefix: B for book, J for journal, C for proceedings in
(international) conferences, NC for national conference and R for research report, preprint or other
unpublished documents.

∙ Chapter 1 mainly focuses on computer arithmetic results. Namely, several fast and certified
algorithms which implement high-precision arithmetic operations are presented. They use as basic
building blocks, the floating-point arithmetic operators (addition, multiplication, division, square
root) available in hardware (single or double precision) in common processors nowadays. They
are collected in an arithmetic library CAMPARY (CudA Multiple Precision ARithmetic librarY),
especially tuned both for CPU or GPU computations, which have a highly parallel computing
structure. We analyze its performance on two applications: one concerns the long term iteration of
a classical chaotic dynamical system, the Hénon map; the other considers the speedup obtained
by using CAMPARY instead of other high-precision libraries in an semidefinite programming
(SDP) solver on ill-conditionned instances. The results surveyed in this chapter were published
in [B1, J6, J3, J7, C6, C9, C5, C14, C11].

∙ Chapter 2 considers the framework of symbolic-numeric computations. We present several tech-
niques which mix structural properties, coming from the symbolic field of Linear Ordinary Differ-
ential Equations (LODEs) with polynomial coefficients, with efficient numerical routines coming
from optimization or approximation theory. Moreover, as mentioned above, efficient algorithms for
RPAs are described in several contexts, with a systematic analysis on their operations complexity.
These include the efficient evaluation of certain integrals, or the computation of validated solutions
of LODEs based on truncated Chebyshev series expansions [J2, J4, J5, C10]. The more general
setting of multivariate D-finite functions is exploited in an inverse problem involving measures with
holonomic densities and support with real algebraic boundary [C2].

∙ The theoretical tools developed above are inspired by problems coming from optimal control and
aerospace. In Chapter 3, we present two such problems and how the solutions based on our tools
improve on classical ones. Firstly, the problem of the efficient and reliable orbital collision risk
assessment and mitigation is discussed [J5, C12, C13, R2]. In particular, we give a new method [J5]
to compute the orbital collision probability between two spherical objects involved in a short-term
encounter, under Gaussian uncertainty. Secondly, we focus on efficient and validated algorithms
for impulsive spacecraft rendezvous [C8, J2, C3]. This general aim of meeting two spacecraft, under
several position, time, or fuel minimization constraints, is usually formulated as an optimal control
problem. In the specific case of fixed-time minimum-fuel rendezvous, with a linear impulsive
setting, we proposed a solution via an efficient numerical iterative algorithm. This comes from
the formulation of a semi-infinite convex optimization problem (SICP), using a relaxation scheme
and duality theory in normed linear spaces. The obtained solution is a posteriori certified based on
RPAs.

Incidentally, we observed that the SICP-based formulation also provides a solution to a computer
arithmetic problem concerning the mathematical function implementation in machine. This very
recent result [C1] closes the circle of this overview.

∙ Chapter 4 puts in perspective the obtained results, in the context of a continuous blend of ideas
and techniques corresponding to the previously described items (i) - (iii). It structures my next
research goals and overviews some complementary references which can help in achieving them.
These ideas are also intended to be part of a grant proposal at some future time.

Finally, a CV incorporates an overview of my teaching, developed software, students supervision,
conference organization, research grants/projects I am part of.
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Chapter 1

Fast and Certified Multiple-Precision
Arithmetic

Computer arithmetic is devoted to the study of arithmetic algorithms and the implementation of
arithmetic operations and functions, either in software or hardware. Improvements are sought in terms
of accuracy, speed or reliability for the arithmetic available on computers, processors, dedicated or
embedded chips.

A part of my research concerned the development of high-precision arithmetic algorithms, using as
basic building blocks the available arithmetic operators (addition, multiplication, division, square root)
for fixed-precision floating-point arithmetic. The idea of creating a high-performance multiple-precision
arithmetic library originated from our studies, with W. Tucker (Prof. Uppsala University, Sweden),
on some chaotic dynamical systems. Subsequently, with J.-M. Muller (CNRS Researcher, LIP, Lyon,
France) and our student V. Popescu, who defended her PhD thesis [176] in July 2017, we made important
progress on this project:

∙ We doubled the available precision by representing a real number as the unevaluated sum of two
floating-point numbers. We revisited and proposed new algorithms, insisting on their correctness
proofs together with effective error bounds as well as on their regular and sufficiently simple
structure [J3]. As a by-product, these algorithms are amenable to formalization, which is an
on-going work of L. Rideau (Inria Researcher, Sophia-Antipolis, Nice, France).

∙ For multiple-precision, numbers are represented as the unevaluated sum of several (more than two)
floating-point numbers. In several contributions [J6, C9, C14, C6], we proposed new algorithms
for arithmetic operations designed to fit different needs a user might have: either very tight error
bounds on the results (some of which were also formally proved), or “quick-and-dirty” results. In
some of these works we also collaborated with O. Marty (student intern), S. Collange (researcher at
Inria Rennes) and S. Boldo (researcher at Inria, Orsay, France). These algorithms were collected in
an open-source library [C11].

∙ This library was put to test on two applications: one in the field of chaotic dynamical systems [J7],
the other on high-accuracy semidefinite programming [C5].

∙ Part of the above results were also published in the second edition of the Handbook of FP arith-
metic [B1].

In what follows, some preliminary notions of floating-point arithmetic are given, before entering the
actual results description in Section 1.2.
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1.1 A few Floating-Point notions

Definition 1.1.1 (Floating-point number). A binary floating-point (FP) number of precision 𝑝 is a number
of the form 𝑀 · 2𝑒−𝑝+1, where 𝑀 is an integer of absolute value less than or equal to 2𝑝 − 1 and 𝑒 is
an integer such that 𝑒min 6 𝑒 6 𝑒max, where the extremal exponents 𝑒min and 𝑒max are constants of the
floating-point format being considered, and with the additional requirement that, unless 𝑒 = 𝑒min, one
has 2𝑝−1 6 |𝑀 |.

An FP number is called subnormal when 𝑒 = 𝑒min and |𝑀 | 6 2𝑝−1 − 1, otherwise it is called normal.

Currently, most floating-point calculations are done in single precision (also called binary32) or
double precision (also called binary64) arithmetic. In binary32 arithmetic, 𝑝 = 24, 𝑒min = −126, and
𝑒max = 127, while in binary64 arithmetic, 𝑝 = 53, 𝑒min = −1022, and 𝑒max = 1023. Most available
processors offer very fast implementations of FP arithmetic in these two formats, and comply with
the IEEE 754-2008 standard for FP arithmetic [100]. The IEEE 754-2008 standard defines five rounding
functions (round downwards, upwards, towards zero, to the nearest ties to even, and to the nearest ties
to away). When an arithmetic operation is performed, the result must be that which would be obtained
by performing the operation with infinite precision and then applying the rounding function. Such an
operation is said to be correctly rounded.

In such a case, when approximating a nonzero real number 𝑥 ∈ R by RN(𝑥), with RN being the
round to nearest rounding mode, the relative error satisfies:⃒⃒⃒⃒

𝑥− RN(𝑥)

𝑥

⃒⃒⃒⃒
6 2−𝑝,

assuming no underflow1 /overflow occurs. When RN (𝑥) = 𝑥 = 0, the relative error is considered to
be 0.

When expressing errors of nearly atomic functions (arithmetic operations, elementary functions, small
polynomials, sums, dots products, etc.) it is advisable and frequently more accurate to do it in terms of
the weight of the last bit of the significand, which is defined in [154]:

Definition 1.1.2 (Goldberg’s definition, extended to reals). If |𝑥| ∈ [2𝑒𝑥 , 2𝑒𝑥+1), then the unit in the last
place of 𝑥 is

ulp(𝑥) = 2max(𝑒𝑥,𝑒min)−𝑝+1.

Roughly speaking, from the above definitions one has 53 correct bits or 15 correct decimal digits, when
rounding a real number to binary64, when no overflow/underflow occurs. Formally, this is expressed by the
following notion, which is widely used in numerical analysis [96]:

Definition 1.1.3 (Unit roundoff). The unit roundoff u of a precision-𝑝, binary FP system is

u =

⎧⎪⎨⎪⎩
1

2
ulp(1) = 2−𝑝 in round-to-nearest mode,

ulp(1) = 21−𝑝 in directed rounding modes.

Note that the distance between 1 and its FP successor is ulp(1) = 21−𝑝, which is also called machine
epsilon. In particular, this is what the Matlab function eps returns. Hence, this coincides with the
definition of unit roundoff for directed rounded modes, but not for rounding to nearest.

However, several computing problems require higher precision (also called multiple precision), up
to a few hundred bits. Examples include problems in the field of chaotic dynamical systems (like the
long-term stability of the solar system [122], long-term iteration of the Lorenz attractor [12], the study
of strange attractors such as the Hénon attractor [J7]), ill-posed semi-definite positive optimization
problems that appear in quantum chemistry or quantum information [200]. We also mention the use of
higher precision in computational geometry, where several of the techniques we use were introduced for
the first time [178].

1Let us say, as does the IEEE 754 standard, that an operation underflows when the result is subnormal and inexact.
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1.2 Extending the precision

There exist multiple-precision libraries that allow the manipulation of very high-precision numbers, but
their generality (they are able to handle numbers with millions of digits) typically comes at the expense
of performance. The reader can for instance refer to [34] for state-of-the-art algorithms in this case, and
to MPFR Library for efficient implementations [74].

To harness the availability and efficiency of the hardware implementations of the standard, our
approach consisted in representing higher precision numbers as floating-point expansions. These are
unevaluated sums of several floating-point numbers of different magnitudes. Such a representation is
possible thanks to the availability of error-free transforms, namely algorithms that allow to compute the
error of a FP addition or multiplication exactly, taking the rounding mode into account.

More specifically, the sum of two floating-point numbers can be represented exactly (in the sense
of dyadic numbers) as a floating-point number which is the correct rounding of the sum, plus another
floating-point number corresponding to the remainder. Under certain assumptions, this decomposition
can be computed at a very low cost. For example, when RN is round-to-nearest ties to even and |𝑎| > |𝑏|,
the following simple algorithm (called “Fast2Sum” in the literature [62] [B1, Chap. 4]), returns the FP
number 𝑠 nearest 𝑎+ 𝑏 and the error of that FP operation, namely 𝑡 = (𝑎+ 𝑏)− 𝑠:

Algorithm 1 The Fast2Sum algorithm.

Input: 𝑎 > 𝑏
𝑠← RN(𝑎+ 𝑏)
𝑧 ← RN(𝑠− 𝑎)
𝑡← RN(𝑏− 𝑧)

It is thus possible, in this case, to represent and store the exact sum, even in the presence of roundings
at the floating-point level. A slightly more complicated algorithm (2Sum), due to Knuth [111] and
Møller [150], deals with the case where |𝑎| is not necessarily larger than |𝑏|.

If an FMA operator is available2, then similarly, an algorithm called 2ProdFMA [B1, Chap.4.4] returns
the FP number 𝑡 nearest 𝑎𝑏, and the error 𝑒 of that FP multiplication, namely 𝑎𝑏− 𝑡.

Algorithm 2 The 2ProdFMA algorithm.

𝑡← RN(𝑎𝑏)
𝑒← RN(𝑎𝑏− 𝑡)

Since these algorithms return their result as an unevaluated sum (𝑥ℎ, 𝑥ℓ) of floating-point numbers
(with |𝑥ℓ| much smaller than |𝑥ℎ|): more precisely, |𝑥ℓ| 6 1

2 ulp(𝑥ℎ)), a natural idea is to extend the
precision based on such unevaluated sums of FP numbers. This kind of representation is called double-
double (DD) when two terms are considered, triple-double (TD) for three terms, quad-double (QD) for
four, and so forth. The general case is known under the name of FP expansion.

An important distinction has to be made between double-double arithmetic and conventional quad
FP arithmetic (binary128). Double-double arithmetic is not standardized and lacks many nice and clean
properties of binary128, like clearly defined rounding modes, for instance (see Table 1.1 for a summary
of differences) and due to this, Kahan [106] qualifies double-double arithmetic as an attractive nuisance
except for the BLAS and even compares it to an unfenced backyard swimming pool. Indeed, although
extensive work has been done in this area (see for instance [B1, Chap. 14] and references therein), many
algorithms have been published without a proof, or with error bounds that are not completely explicit
(the error is “less than a small integer times 𝑢2”).

The attractive advantage is that operations with FP expansions use only hardware implemented and
highly optimized FP operations (in binary32 or binary64).

2A FMA operator evaluates an expression of the form 𝑥𝑦 + 𝑡 with one final rounding only.
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Table 1.1 – Main differences between the double-double format (made up with binary64 floating-point
numbers) and quad-precision (binary128).

double-double quad-precision
Precision > 107 bits 113 bits

“wobbling”
Exponent range −1022 to 1023 −16382 to 16383

(11 bits) (15 bits)
Rounding modes N/A RN,RU,RD,RZ

One cannot suppress all the drawbacks mentioned by Kahan: clearly, having in hardware a genuine
floating-point arithmetic with twice the precision would be a better option. And yet, if rigorously
proven and reasonably tight error bounds are provided, expert programmers can rely on multiple-word
arithmetic for extending the precision of computations when the available floating-point arithmetic does
not suffice. This is often done via so-called compensated algorithms. For instance the above presented
2Sum, Fast2Sum or 2 ProdFMA represent the simplest instances of such algorithms. For operations with
more than two FP numbers, compensated algorithms for summation or inner product (as well as precise
error bounds) have recently been subject of intensive research, see for instance [104, 189, 233] or [B1,
Chap. 5] for a complete account.

A classical successful example comes from the implementation of elementary functions in fixed
precision in so-called mathematical libraries (libms), like glibc, Sun libmcr, Intel c○libm or CRlibm [59].

Example of double-double operations in libms. Roughly speaking if the input 𝑦 of a function, say
sin(𝑦), is given with 15 decimal digits of precision, then the result is expected to also have 15 digits of
precision. More specifically, some developers of libms aim for correctly rounded sin in double-precision.
To achieve this, usually, one firstly performs a so-called argument reduction. This allows for the input
range to be sufficiently small, so that polynomial approximations are efficient. Such polynomials can be
evaluated using only basic arithmetic operations like addition and multiplication. But if these operations
are all performed in standard double-precision, it is very difficult to guarantee an intermediary extended
accuracy that will allow for a final correctly rounded result in double-precision. Let us explain this
in more detail in the following Example 1.2.1, taken from the actual sin function implementation in
CRLibm [59, B1].

Example 1.2.1. For sine function evaluation, the reduced argument 𝑥 is obtained by subtracting from the
floating-point input 𝑦 an integer multiple of 𝜋/256. As a consequence, 𝑥 ∈ [−𝜋/512, 𝜋/512] ⊂ [−2−7, 2−7].
Then, one needs to compute the value of the odd polynomial:

𝑝(𝑥) = 𝑥+ 𝑥3 · (𝑠3 + 𝑥2 · (𝑠5 + 𝑥2 · 𝑠7)),

which is a polynomial close to the Taylor approximation of the sine function. The coefficients 𝑠1, 𝑠3 and 𝑠5
are represented in binary64 precision arithmetic: 𝑠3 = −6004799503160661/255, 𝑠5 = 4803839602528529/259,
𝑠7 = −3660068268593165/264.

However, since 𝑥 is an irrational number, the implementation of the range reduction needs to return
a number more accurate than a binary64, such that the intermediary output accuracy for 𝑝(𝑥) allows
for subsequent correct rounding of sin(𝑥). The CRlibm [59] solution is to consider a double-double
representation for 𝑥 = 𝑥ℎ + 𝑥𝑙.

As a numerical example, let 𝑦 = 0.5, and the corresponding reduced argument 𝑥 = 1/2− 41𝜋/256.
This is approximated in double-double as the unevaluated sum 𝑥ℎ+𝑥𝑙, with 𝑥ℎ = −7253486725817229/261

and 𝑥𝑙 = −508039184604813/2112.
If one computes directly 𝑝(𝑥ℎ + 𝑥𝑙) with the following Horner scheme and binary64 precision:

𝑝𝑒𝑣𝑎𝑙(𝑥ℎ + 𝑥𝑙) = (𝑥ℎ + 𝑥𝑙) + (𝑥ℎ + 𝑥𝑙)
3 · (𝑠3 + (𝑥ℎ + 𝑥𝑙)

2 · (𝑠5 + (𝑥ℎ + 𝑥𝑙)
2 · 𝑠7)),
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one obtains a poor accuracy. Note that with this order of operations, the floating-point addition 𝑥ℎ + 𝑥𝑙
returns 𝑥ℎ, so the information held by 𝑥𝑙 is lost. The other part of the Horner evaluation also has a much
smaller magnitude than 𝑦ℎ, since |𝑦| 6 2−7, which gives

⃒⃒
𝑦3
⃒⃒
6 2−21. The following evaluation leads to

a much more accurate algorithm, since the leftmost addition is performed with an extended precision,
namely the above mentioned Fast2Sum algorithm:

𝑠 = 𝑥𝑙 + (𝑥ℎ · 𝑥ℎ · 𝑥ℎ · (𝑠3 + (𝑥ℎ · 𝑥ℎ · (𝑠5 + (𝑥ℎ · 𝑥ℎ · 𝑠7))))),

𝑝′𝑒𝑣𝑎𝑙(𝑥ℎ + 𝑥𝑙) = Fast2Sum(𝑥ℎ, 𝑠).

For our numerical example, one obtains 𝑝′𝑒𝑣𝑎𝑙 = −7253474763108583/261 + 82031/279. This allows for
72 bits of accuracy in the evaluation of 𝑝 compared with 54 for the first evaluation scheme. Note that for
both evaluation schemes only standard binary64 operations are used: the second one performs 2 more
additions than the first one (by executing the Fast2Sum algorithm) and yet, it allows for an accuracy
extension by 33%.

This shows that it is possible to compute very accurate values, even in the presence of roundings at
the floating-point level, by using only standard precision floating-point arithmetic operations.

Hence, our goal was to extend these ideas and obtain new algorithms for floating-point expansions,
provide a very efficient implementation and prove tight error bounds. For several fixed extended
precisions (e.g., 2 doubles, 4 doubles), we aimed for performances similar to those of the native format.
For that, existing algorithms were improved to be sufficiently simple and regular. This was needed for
facilitating their implementation on highly parallel architectures, but also for allowing their formal proof
at reasonable cost, since proofs of these algorithms get very tricky. This work resulted in the CAMPARY:
CudA Multiple Precision ARithmetic librarY project. A brief summary of the obtained results [B1, J3, J6, J7,
C5, C6, C9, C11, C14] is given in what follows.

1.3 Double-word Arithmetic

Double-word arithmetic (also known as double-double, when the underlying FP format is binary64)
consists in representing a real number as the unevaluated sum of two FP numbers.

Definition 1.3.1 (Double-word). A double-word number 𝑥 is the unevaluated sum 𝑥ℎ + 𝑥ℓ of two floating-
point numbers 𝑥ℎ and 𝑥ℓ such that

𝑥ℎ = RN(𝑥).

We provided a rigorous error analysis of existing algorithms for double-word arithmetic (addition,
multiplication, division), introduced a new one for multiplying two double-word numbers, suggested
an improvement of the algorithms used in the QD library for dividing a double-word number by an
FP number and for dividing two double-word numbers. We have also suggested a new algorithm for
dividing two double-word numbers when an FMA instruction is available. Table 1.2 summarizes the
obtained results. For the functions for which an error bound was already published, we always obtain
a significantly smaller bound, except in one case, for which the previously known bound turned out
to be slightly incorrect. Our results make it possible to have more trust in double-word arithmetic. For
completeness, we provide: Algorithm 3 and Algorithm 4 which perform addition in a very accurate way;
Algorithms 5 and 6 which multiply a double-word with an FP (and respectively two double-words) in 6
(and respectively 9) FP operations when an FMA is available and Algorithm 7 for the division of two
double-words with a good accuracy/performance compromise.
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Algorithm 3 – DWPlusFP(𝑥ℎ, 𝑥ℓ, 𝑦).

1: (𝑠ℎ, 𝑠ℓ)← 2Sum(𝑥ℎ, 𝑦)
2: 𝑣 ← RN(𝑥ℓ + 𝑠ℓ)
3: (𝑧ℎ, 𝑧ℓ)← Fast2Sum(𝑠ℎ, 𝑣)
4: return (𝑧ℎ, 𝑧ℓ)

Algorithm 4 – AccurateDWPlusDW(𝑥ℎ, 𝑥ℓ, 𝑦ℎ, 𝑦ℓ).

1: (𝑠ℎ, 𝑠ℓ)← 2Sum(𝑥ℎ, 𝑦ℎ)
2: (𝑡ℎ, 𝑡ℓ)← 2Sum(𝑥ℓ, 𝑦ℓ)
3: 𝑐← RN(𝑠ℓ + 𝑡ℎ)
4: (𝑣ℎ, 𝑣ℓ)← Fast2Sum(𝑠ℎ, 𝑐)
5: 𝑤 ← RN(𝑡ℓ + 𝑣ℓ)
6: (𝑧ℎ, 𝑧ℓ)← Fast2Sum(𝑣ℎ, 𝑤)
7: return (𝑧ℎ, 𝑧ℓ)

Algorithm 5 – DWTimesFP3(𝑥ℎ, 𝑥ℓ, 𝑦).

1: (𝑐ℎ, 𝑐ℓ1)← 2ProdFMA(𝑥ℎ, 𝑦)
2: 𝑐ℓ3 ← FMA(𝑥ℓ, 𝑦, 𝑐ℓ1)
3: (𝑧ℎ, 𝑧ℓ)← Fast2Sum(𝑐ℎ, 𝑐ℓ3)
4: return (𝑧ℎ, 𝑧ℓ)

Algorithm 6 – DWTimesDW3(𝑥ℎ, 𝑥ℓ, 𝑦ℎ, 𝑦ℓ).

1: (𝑐ℎ, 𝑐ℓ1)← 2ProdFMA(𝑥ℎ, 𝑦ℎ)
2: 𝑡ℓ0 ← RN(𝑥ℓ · 𝑦ℓ)
3: 𝑡ℓ1 ← FMA(𝑥ℎ, 𝑦ℓ, 𝑡ℓ0)
4: 𝑐ℓ2 ← FMA(𝑥ℓ, 𝑦ℎ, 𝑡ℓ1)
5: 𝑐ℓ3 ← RN(𝑐ℓ1 + 𝑐ℓ2)
6: (𝑧ℎ, 𝑧ℓ)← Fast2Sum(𝑐ℎ, 𝑐ℓ3)
7: return (𝑧ℎ, 𝑧ℓ)

Algorithm 7 – DWDivDW3(𝑥ℎ, 𝑥ℓ, 𝑦ℎ, 𝑦ℓ).

1: 𝑡ℎ ← RN(1/𝑦ℎ)
2: 𝑟ℎ ← FMA(−𝑦ℎ, 𝑡ℎ, 1) //exact operation

3: 𝑟ℓ ← RN(−𝑦ℓ · 𝑡ℎ)
4: (𝑒ℎ, 𝑒ℓ)← Fast2Sum(𝑟ℎ, 𝑟ℓ)
5: (𝛿ℎ, 𝛿ℓ)← DWTimesFP3(𝑒ℎ, 𝑒ℓ, 𝑡ℎ)
6: (𝑚ℎ,𝑚ℓ)← DWPlusFP(𝛿ℎ, 𝛿ℓ, 𝑡ℎ)
7: (𝑧ℎ, 𝑧ℓ)← DWTimesDW3(𝑥ℎ, 𝑥ℓ,𝑚ℎ,𝑚ℓ)
8: return (𝑧ℎ, 𝑧ℓ)

Operation Algorithm
Previously

known
bound

Bound in [J3]

Largest
relative error
observed in
experiments

FP Ops

DW + FP Algorithm 3 ? 2𝑢2 + 5𝑢3 2𝑢2 − 6𝑢3 10
DW + DW [J3, Algorithm 5] N/A N/A 1 11

Algorithm 4 2𝑢2 (incorrect) 3𝑢2 + 13𝑢3 2.25𝑢2 20
DW × FP [J3, Algorithm 7] 4𝑢2 1.5𝑢2 + 4𝑢3 1.5𝑢2 10

[J3, Algorithm 8] ? 3𝑢2 2.517𝑢2 7
Algorithm 5 N/A 2𝑢2 1.984𝑢2 6

DW × DW [J3, Algorithm 10] 11𝑢2 7𝑢2 4.9916𝑢2 9
[J3, Algorithm 11] N/A 6𝑢2 4.9433𝑢2 8

Algorithm 6 N/A 5𝑢2 3.936𝑢2 9
DW ÷ FP [J3, Algorithm 13] 4𝑢2 3.5𝑢2 2.95𝑢2 16

[J3, Algorithm 14] N/A 3.5𝑢2 2.95𝑢2 10
DW ÷ DW [J3, Algorithm 16] ? 15𝑢2 + 56𝑢3 8.465𝑢2 24

[J3, Algorithm 17] N/A 15𝑢2 + 56𝑢3 8.465𝑢2 18
Algorithm 7 N/A 9.8𝑢2 5.922𝑢2 31

Table 1.2 – Summary of the results presented in [J3], where DW stands for double-word; N/A means
that the algorithm existed before, but no bound was proven, ? means that the algorithm was given for

the first time in our work.
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1.4 FP Expansions

Next, we focused on FP expansions with more than two FP terms i.e., numbers are represented as the
unevaluated sum of more than two standard precision FP.

Definition 1.4.1 (FP Expansion). A floating-point expansion 𝑥 with 𝑛 terms is the unevaluated sum of 𝑛
floating-point numbers 𝑥0, . . . , 𝑥𝑛−1, in which all nonzero terms are ordered by magnitude (i.e., if 𝑦 is the
sequence obtained by removing all zeros in the sequence 𝑥, and if 𝑦 contains 𝑚 terms, then |𝑦𝑖| > |𝑦𝑖+1|
for all 0 6 𝑖 < 𝑚− 1). Each 𝑥𝑖 is called a component (or a term) of 𝑥.

In the case of two terms, the additional condition:

𝑥𝑖+1 6
1

2
ulp(𝑥𝑖), (1.1)

appears naturally when expressing the rounded-to-nearest sum of two numbers and their rounding
error. This requirement was generalized for more terms by Hida, Li, and Bailey [95]. While not imposing
unicity, such constraint usually called nonoverlapping representation, ensures compacity: it takes fewer terms
for achieving the same accuracy. Many similar notions on nonoverlapping were defined in literature
firstly by Priest [178], then Shewchuk [199], followed by Bailey QD library [95].

An expansion may contain interleaving zeros, but the definitions that follow apply only to the
nonzero terms of the expansion (i.e., the sequence 𝑦 in Definition 1.4.1).

According to Shewchuk [199], nonzero-overlapping expansions, are defined as follows:

Definition 1.4.2 (𝒮-nonoverlapping Expansion). A floating-point expansion 𝑥0 + 𝑥1 + · · · + 𝑥𝑛−1 is
𝒮-nonoverlapping (that is, nonoverlapping according to Shewchuk’s definition) if for all 1 6 𝑖 6 𝑛− 1,
we have 𝑒𝑥𝑖−1 − 𝑒𝑥𝑖 > 𝑝− 𝑧𝑥𝑖−1 , where 𝑒𝑥𝑖−1 and 𝑒𝑥𝑖 are the exponents of 𝑥𝑖−1 and 𝑥𝑖, respectively, and
𝑧𝑥𝑖−1 is the number of trailing zeros of 𝑥𝑖−1.

Note that zero is 𝒮-nonoverlapping with any nonzero floating-point number.
For example, in a binary floating-point system of precision 𝑝 = 4, the numbers 1.1002 × 23 and

1.0102 × 21 are 𝒮-nonoverlapping , whereas they are not nonoverlapping according to (1.1).
In extreme cases, in radix 2, an 𝒮-nonoverlapping expansion with 53 components may not contain

more information than one binary64 number (it suffices to put each bit of a floating-point number in a
separate component). And yet, 𝒮-nonoverlapping expansions are of interest due to the simplicity of the
related arithmetic algorithms. Let us give an important example. First, following Priest [178], we define
expansions whose terms “overlap by at most 0 6 𝑑 6 𝑝− 2 bits”, where 𝑝 is the underlying precision.

Definition 1.4.3. Consider 𝑛 precision-𝑝 floating-point numbers: 𝑥0, 𝑥1, . . . , 𝑥𝑛−1. They overlap by at
most 𝑑 binary digits (0 6 𝑑 < 𝑝) if and only if for all 𝑖, 0 6 𝑖 6 𝑛− 2, there exist integers 𝑘𝑖, 𝛿𝑖 such that

2𝑘𝑖 6 |𝑥𝑖| < 2𝑘𝑖+1, (1.2)
2𝑘𝑖−𝛿𝑖 6 |𝑥𝑖+1| 6 2𝑘𝑖−𝛿𝑖+1, (1.3)

𝛿𝑖 > 𝑝− 𝑑, (1.4)
𝛿𝑖 + 𝛿𝑖+1 > 𝑝− 𝑧𝑖−1, (1.5)

where 𝑧𝑖−1 is the number of trailing zeros at the end of 𝑥𝑖−1 and for 𝑖 = 0, 𝑧−1 = 0.

Loosely speaking, this definition states that when written in positional notation, the binary digits of
any two successive nonzero terms coincide in at most 𝑑 positions, and no three terms mutually coincide
in any digit position.

We proved in [J6] that, under mild assumptions, VecSum(x) (where VecSum is Algorithm 8) which is
simply a chain of 2Sum, applied to an expansion 𝑥 with 𝑛 terms, makes it 𝒮-nonoverlapping as soon as
its terms overlap by at most 0 6 𝑑 6 𝑝− 2 bits. We also prove that for a better performance, when 𝑑 6 𝑝− 2,
the 2Sum calls in the VecSum algorithm can be replaced by calls to Fast2Sum.

The fact that VecSum transforms an expansion whose terms overlap by at most 𝑑 6 𝑝− 2 bits into
an 𝒮-nonoverlapping expansion is important, because an 𝒮-nonoverlapping expansion can easily be
transformed into another expansion with a “stronger” nonoverlapping property, that we now define.
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Algorithm 8 – VecSum(𝑥0, . . . , 𝑥𝑛−1).
1: 𝑠𝑛−1 ← 𝑥𝑛−1

2: for 𝑖← 𝑛− 2 to 0 do
3: (𝑠𝑖, 𝑒𝑖+1)← 2Sum(𝑥𝑖, 𝑠𝑖+1)
4: end for
5: 𝑒0 ← 𝑠0
6: return 𝑒0, . . . , 𝑒𝑛−1

Figure 1.1 – Graphical representation of Algorithm 8. In the 2Sum calls the sum 𝑠 is outputted to the left
and the error 𝑒 downwards.

Definition 1.4.4 (ulp-nonoverlapping Expansion [J6]). A floating-point expansion 𝑥0 + 𝑥1 + · · ·+ 𝑥𝑛−1

is ulp-nonoverlapping if for all 1 6 𝑖 6 𝑛− 1, |𝑥𝑖| 6 ulp(𝑥𝑖−1).

Depending on the nonoverlapping type of an expansion, when using standard floating-point formats
as underlying arithmetic, the exponent range forces a constraint on the number of terms. The largest
expansion can be obtained when the largest term is close to overflow and the smallest is close to
underflow. This gives a maximum ulp-nonoverlapping expansion size of 40 for binary64 and 12 for
binary32.

Concerning ulp-nonoverlapping expansions, we proposed several new arithmetic algorithms de-
signed either for efficiency (quick-and-dirty algorthms) or reliability that is, providing tight error bounds
on the results. Implemented in CAMPARY library, they are collected and proven in detail in Popescu’s
PhD dissertation [176] together with [C14, J6].

We focus here on a renormalization algorithm, which has a key role in restoring the nonoverlapping
property after different manipulations with expansions. This algorithm was also formally proved in a
joint work with S. Boldo, J.-M. Muller and V. Popescu [C6].

1.4.1 Renormalization of floating-point expansions

We have seen that an expansion that “does not overlap too much” (its terms overlap by at most 𝑑 6 𝑝− 2
bits) can easily be transformed into an 𝒮-nonoverlapping expansion. Let us now give an algorithm, Vec-
SumErrBranch, that transforms an 𝒮-nonoverlapping expansion into an ulp-nonoverlapping expansion.

The VecSumErrBranch algorithm

Algorithm 9 (also represented in Figure 1.2) is a variation of the VecSum Algorithm 8, which starts from
the most significant term and instead of propagating the partial sums, propagates the errors. If however,
the error after a 2Sum block is zero, the sum is propagated instead. It is formally proved by Boldo et
al. [C6] that this algorithm transforms an 𝒮-nonoverlapping expansion into an ulp-nonoverlapping one
and that, in all practical cases (in particular, the IEEE formats), 2Sum calls can be safely replaced by
Fast2Sum.
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Algorithm 9 – VecSumErrBranch(𝑒0, . . . , 𝑒𝑛−1,𝑚), where 𝑚 is the number of terms of the result

1: 𝑗 ← 0
2: 𝜀0 = 𝑒0
3: for 𝑖← 0 to 𝑛− 2 do
4: (𝑟𝑗 , 𝜀𝑖+1)← 2Sum(𝜀𝑖, 𝑒𝑖+1)
5: if 𝜀𝑖+1 ̸= 0 then
6: if 𝑗 > 𝑚− 1 then
7: return 𝑟0, 𝑟1, . . . , 𝑟𝑚−1 //enough output terms

8: end if
9: 𝑗 ← 𝑗 + 1

10: else
11: 𝜀𝑖+1 ← 𝑟𝑗
12: end if
13: end for
14: if 𝜀𝑛−1 ̸= 0 and 𝑗 < 𝑚 then
15: 𝑟𝑗 ← 𝜀𝑛−1

16: end if
17: return 𝑟0, 𝑟1, . . . , 𝑟𝑚−1

Figure 1.2 – Graphical representation of Algorithm 9. In the 2Sum calls the sum 𝑠 is outputted
downwards and the error 𝑒 to the right.
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The renormalization algorithm

By successively using VecSum and VecSumErrBranch, we can convert an array of numbers overlapping
by at most 𝑝− 2 bits into an ulp-nonoverlapping expansion. This gives Algorithm 10 below.

Algorithm 10 – Renormalize(𝑥0, . . . , 𝑥𝑛−1,𝑚).

Input: a sequence 𝑥0, 𝑥1, . . . , 𝑥𝑛−1 of floating-point numbers overlapping by at most 𝑝− 2 bits.
Output: an ulp-nonoverlapping expansion 𝑟0, 𝑟1, . . . , 𝑟𝑚−1.
(𝑒0, 𝑒1, . . . , 𝑒𝑛−1)← VecSum(𝑥0, 𝑥1, . . . , 𝑥𝑛−1)
(𝑟0, 𝑟1, . . . , 𝑟𝑚−1)← VecSumErrBranch(𝑒0, 𝑒1, . . . , 𝑒𝑛−1,𝑚)
return 𝑟0, 𝑟1, . . . , 𝑟𝑚−1

Renormalization of arbitrary numbers

We have seen how to “renormalize” a sequence that “does not overlap too much”. If we are given an
arbitrary sequence of floating-point numbers as input, renormalization is still possible, but at a much
higher cost. For Algorithm 11, given below, we have proven the following theorem in [J6].

Theorem 1.4.5. Let 𝑥0, 𝑥1, . . . , 𝑥𝑛−1 be a sequence of 𝑛 floating-point numbers that may contain inter-
leaving 0s, and let𝑚 be an integer such that 1 6 𝑚 6 𝑛−1. Provided that no underflow/overflow occurs
during the calculations, Algorithm 11 returns the first 𝑚 terms of an ulp-nonoverlapping floating-point
expansion 𝑟 = 𝑟0 + · · ·+ 𝑟𝑛−1 such that 𝑥0 + · · ·+ 𝑥𝑛−1 = 𝑟.

Algorithm 11 – Renormalize_arbitrary(𝑥0, . . . , 𝑥𝑛−1,𝑚).

Input: an arbitrary sequence 𝑥0, 𝑥1, . . . , 𝑥𝑛−1 of floating-point numbers.
Output: an ulp-nonoverlapping expansion 𝑟0, 𝑟1, . . . , 𝑟𝑚−1.
𝑒
(0)
0 ← 𝑥0

for 𝑖← 1 to 𝑛− 1 do
(𝑒

(𝑖)
0 , 𝑒

(𝑖)
1 , . . . , 𝑒

(𝑖)
𝑖 )← VecSum(𝑒

(𝑖−1)
0 , 𝑒

(𝑖−1)
1 , . . . , 𝑒

(𝑖−1)
𝑖−1 , 𝑥𝑖)

end for
(𝑟0, 𝑟1, . . . , 𝑟𝑚−1)← VecSumErrBranch(𝑒

(𝑛−1)
0 , 𝑒

(𝑛−1)
1 , . . . , 𝑒

(𝑛−1)
𝑛−1 ,𝑚)

return 𝑟0, 𝑟1, . . . , 𝑟𝑚−1

1.4.2 Arithmetic of FP expansions

Based on the above renormalization algorithm one can design other arithmetic operations. For instance,
we proved in Popescu’s thesis [176] that by merging two ulp-nonoverlapping expansions in decreasing
order of magnitude, and renormalizing the resulting array using Algorithm 10, the output expansion 𝑠,
with 𝑟 terms, is ulp-nonoverlapping and satisfies the error bound:

|𝑥+ 𝑦 − 𝑠| < 9

2
· 2−(𝑝−1)𝑟 · (|𝑥|+ |𝑦|), (1.6)

as soon as the underlying precision 𝑝 is at least 4, which always holds in practice.
Similarly, we proposed arithmetic algorithms for multiplication, division, reciprocal and square

root. We refer the reader to Chap. 3 of Popescu’s thesis [176] for a detailed description all the proposed
variants and proofs of error bounds. We provide in Figure 1.3 a summary of error bounds vs. operation
count for some of the proposed algorithms with FP expansions of increasing sizes. One can observe that
we drastically improved the efficiency compared to Priest [178] algorithms, while proving good accuracy
bounds.
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(a) FP expansions with 4 terms; 𝑢 = 2−212
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(b) FP expansions with 8 terms; 𝑢 = 2−424
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(c) FP expansions with 16 terms; 𝑢 = 2−848

Figure 1.3 – Error bounds vs. number of FP operations for several arithmetic algorithms: square indicates Priest
algorithms [178] (Alg. 26, 30, 34 of [176, Chap. 3]); circle indicates our most accurate algorithms, namely Alg. 27,
31 and 36 of [176, Chap. 3]; triangle indicates other existing versions of the studied algorithms (Alg. 27, 33 of [176,
Chap. 3]); blue color stands for addition, red for multiplication, green for division; full gray diamond for square-root
(Alg. 37 [176, Chap. 3]) and empty gray diamond for reciprocal (Alg. 35 of [176, Chap. 3]).
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1.5 Applications of CAMPARY

We present two numerical applications of CAMPARY, which make use of both higher-precision and
high-performance computations. Firstly, an open question raising in a classical chaotic dynamical system,
the Hénon map, is to search for periodic orbits, for values of the parameters close to the classical ones,
for which the map is believed to be chaotic. This is hence a very numerically sensitive problem. Our
approach [J7], based on extensive long-term numerical iterations of the map, also needs high-performance
computing. The second application concerns improving the accuracy of semidefinite programming
(SDP) solvers for ill-conditionned instances [C5].

Solutions for these problems are obtained much faster when numerical algorithms are implemented
on highly parallel architectures, like for instance GPUs. To this end, CAMPARY is interesting because
very few multiple-precision libraries can be ported to GPUs. We provided a CUDA implementation,
which is an extension of the C language [162] for NVidia GPUs. Two other similar libraries are GQD [138],
which supports double-double (DD) and quad-double (QD) computations, or CUMP [158]. However,
these turn out to be suboptimal for our purpose: CUMP is based on the multiple-digit format, for which
basic operations are slower than those on multiple-terms, while GQD is multiple terms but limited to 4
doubles.

1.5.1 Finding sinks for Hénon map

Hénon map [99] can be considered as one of the classic discrete dynamical systems, for which some
long-standing questions remain open. It is a two-parameter, invertible map ℎ(𝑥, 𝑦) = (1 + 𝑦 − 𝑎𝑥2, 𝑏𝑥).,
which, depending on 𝑎 and 𝑏, can be chaotic, regular (the attractor of the map is a stable periodic orbit),
or a combination of these. It is conjectured that for the classical parameters 𝑎 = 1.4 and 𝑏 = 0.3, the
Hénon map is chaotic and supports a strange attractor [99]. This property has been observed numerically,
but the question whether the Hénon attractor is indeed chaotic (trajectories belonging to the attractor are aperiodic
and sensitive to initial conditions) remains open.

It is known [14] that there is a set of parameters (near 𝑏 = 0) with positive Lebesgue measure for
which the Hénon map has a strange (chaotic) attractor. The parameter space is believed to be densely
filled with open regions, where the attractor consists of one or more stable periodic orbits (sinks). In
light of this, it is probably impossible to verify that, given a specific point (𝑎, 𝑏) in parameter space, the
dynamics of the map generates a strange attractor.

On the other hand, it was more recently proven using validated numerics [78] that for several
parameter values close to the classical ones, what appears to be a strange attractor (Fig. 1.4(a)) is actually
a stable periodic orbit (Fig. 1.4(b)). Specifically, in Fig. 1.4, 10000 iterations of the Hénon map ℎ(𝑥, 𝑦),
with fixed parameters 𝑎 = 1.399999486944 and 𝑏 = 0.3 are plotted. The iterates appearing in Fig. 1.4(a)
start in a point (𝑥′0, 𝑦

′
0) and those for Fig. 1.4(b) in (𝑥′′0 , 𝑦

′′
0 ), which are chosen in the following way: 5 · 109

iterations are performed and skipped (not plotted) before obtaining (𝑥′0, 𝑦
′
0); and respectively, for (b) 6·109

iterations are skipped before obtaining (𝑥′′0 , 𝑦
′′
0 ). Clearly, Fig. 1.4(a) looks like the Hénon strange attractor,

while Fig. 1.4(b) is just a periodic orbit. This means that what we observe in computer simulations is
actually a transient behavior to the periodic steady-state that we are actually interested in.
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Figure 1.4 – Hénon map ℎ(𝑥, 𝑦) = (1 + 𝑦 − 𝑎𝑥2, 𝑏𝑥) with 𝑎 = 1.399999486944, 𝑏 = 0.3; 10000 iterates are
plotted after skipping (a) 5 · 109 and (b) 6 · 109 iterations.

Proving the existence of such a stable periodic orbit involves a finite (yet challenging) amount of
computations, and all necessary conditions are robust (there exists an open set in the parameter space in
which all conditions remain true). So, if such a sink exists, we should theoretically be able to find it using
high performance computing. In order to find sinks for parameters close to the classical ones, we need to
compute very long orbits for a large amount of initial points and parameters, as follows:

(i) for each considered point (𝑎, 𝑏) in parameter space, we perform a large amount of iterations
of the Hénon map ℎ for many different initial points. The hope is that at least one of these
trajectories will, after some initial transient behaviour, be attracted to what appears to be a periodic
orbit. Specifically, given a fixed (𝑎, 𝑏) together with a single initial point (𝑥0, 𝑦0), the subsequent
computations are governed by two integers𝑁𝑡 and 𝑝𝑚𝑎𝑥. First, we perform𝑁𝑡 iterations of the map
ℎ: ℎ(𝑥0, 𝑦0), ℎ(ℎ(𝑥0, 𝑦0)),. . ., ℎ𝑁𝑡(𝑥0, 𝑦0). These are all discarded, except the final iterate ℎ𝑁𝑡(𝑥0, 𝑦0),
which we continue to follow for another 𝑝𝑚𝑎𝑥 iterates. At this stage, we examine the piece of
orbit ℎ𝑁𝑡+1(𝑥0, 𝑦0),. . . , ℎ𝑁𝑡+𝑝𝑚𝑎𝑥(𝑥0, 𝑦0) for any close return. In other words, we attempt to find an
integer 1 < 𝑘 < 𝑝𝑚𝑎𝑥 such that max𝑘

𝑖=1 ‖ℎ𝑁𝑡+𝑖(𝑥0, 𝑦0)− ℎ𝑁𝑡+𝑖+𝑘(𝑥0, 𝑦0)‖ is small. If this succeeds,
we may have found a period-𝑘 sink, which we verify a posteriori in a second step. The number 𝑁𝑡

of transient iterations which are discarded is usually chosen by trial-and-error since it depends on
hidden intrinsic properties of the dynamics of the Hénon map. In practice, the following values
were employed: 𝑁𝑡 ∼ 109, 𝑝𝑚𝑎𝑥 = 5000. Moreover, for each parameter choice, 𝑁𝑖 ∼ 103 different
initial points are used. Finally, the entire procedure is repeated for 𝑁𝑝 ∼ 106 parameters near
(1.4, 0.3).

(ii) Rigorous numerics (particularly an interval Newton operator [152, 159]) are used to validate/falsify
the existence of any sink found in the previous step. This step is not detailed further here, since
similar techniques will be discussed in Chapter 2.

With this process, and using only binary64 computations, we found 57 parameters which present
stable periodic orbits in 2.94 hours on 2 Nvidia GeForce Tesla C2075 GPU with 448 cores, 1.15GHz. A
21.5x speedup was obtained by our CUDA C implementation vs. a C implementation with OpenMP
on Intel(R) Core(TM) i7 CPU 3820, 3.6GHz, 4 cores, 8 threads. This computation confirmed the results
obtained in [78]. When increasing the precision, two orbits given in [79] and Table 1.3, were obtained
using our GPU implementation. Compared with GQD, our implementation was 1.6 (and respectively
2.8) times faster for double-double (and respectively quad-double) computations.
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𝑃 𝑑 𝑟
41 4.73𝑒−10 3.31𝑒−17
47 1.47𝑒−10 1.17𝑒−20

Table 1.3 – Hénon map sinks found using CAMPARY on GPU [79]. 𝑃 is the period, 𝑑 is the distance to
the point (1.4, 0.3), 𝑟 is the minimum immediate basin radius.

The closest to the classical parameters sink (of period 115) known to-date [79] is given by parameters:

𝑎 = 1.39999999999999999999968839903277301984563091568983, and

𝑏 = 0.29999999999999999999944845519288458244332946957783,

and for which the periodic window is 𝑑 = 6.335𝑒−22 [79]. Hence, the periodic windows are very
narrow and the transient time to corresponding sinks can be extremely long, which implies that “it is
practically impossible to observe such sinks in simulations” [79]. This result draws a line on this search
for sinks, for this particular system. On the one hand it proved that our arithmetic library is efficient, but
on the theoretical side it also implied that there is no point in trying to get closer in parameter space. We
continue to work with W. Tucker on different dynamical systems, as further explained in Chapter 4.

1.5.2 Performance assessment of CAMPARY with SDPA

Semidefinite programming (SDP) is an important branch of convex optimization and can be seen as
a natural generalization of linear programming to the cone of symmetric matrices with non-negative
eigenvalues, i.e. positive semidefinite matrices. However, certain SDP instances are ill-posed and need
more accuracy than that provided by the standard double-precision. Moreover, these problems are
large-scale and could benefit from parallelization on specialized architectures such as GPUs. Examples
of such problems appear in the high-accuracy computation of kissing numbers, i.e. the maximal number
of non-overlapping unit spheres that simultaneously can touch a central unit sphere [149]; bounds from
binary codes; control theory and structural design optimization (e.g., the wing of Airbus A380) [61];
quantum information and physics [200].

Numerical inaccuracies when solving SDP with finite precision appear for two main reasons. On the
one hand, strong duality does not always hold. In practice, the method of choice for SDP solving is based
on interior-point algorithm, like the primal-dual path-following interior-point method (PDIPM) [151].
This algorithm is considered in literature as theoretically mature and is widely accepted and implemented
in most state-of-the-art SDP solvers like SDPA [231], CSDP [22], SeDuMi [205], SDPT3 [215]. However,
problems which do not have an interior feasible point induce numerical instability and may result in
inaccurate calculations or non-convergence. The SPECTRA package [94] proposes to solve such problems
with exact rational arithmetic, but the instances treated are small and this package does not aim to be a
concurrent of general numerical solvers.

On the other hand, even for problems which have interior feasible solutions, numerical inaccuracies
may appear when solving with finite precision due to large condition numbers (higher than 1016,
for example) which appear when solving linear equations. This happens, as explained in [156], when
approaching optimal solutions, since the semidefinite matrices appearing in the primal and dual instances
become singular in practice (due to the complementary slackness and optimality condition 𝑋*𝑌 * = 0).
In this second case, having an efficient underlying multiple-precision arithmetic is crucial to detect
(at least numerically) when the convergence issue arises simply from numerical errors due to lack of
precision.

This resulted in a recent increased interest in providing both higher-precision (also called multiple
precision) and high-performance SDP libraries. We implemented and evaluated the performance of our
previously presented arithmetic algorithms of CAMPARY in this context.

To achieve this, CAMPARY was plugged-in for both SDPA CPU and GPU-tuned implementations.
Several multiple precision arithmetic libraries like GMP and QD were already ported inside SDPA [156].
We compared and contrast both the numerical accuracy and performance of SDPA-GMP, -QD and
-DD, which employ other multiple-precision arithmetic libraries against SDPA-CAMPARY. We showed
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that CAMPARY is a very good trade-off for accuracy and speed when solving ill-conditioned SDP
problems. For that, an important contribution was a multiple precision GPU compatible general matrix
multiplication routine RGEMM that can be used in SDPA. This routine runs at up to 83% of the theoretical
GPU peak-performance and allows for an average speedup of one order of magnitude for SDP instances
run in multiple precision with SDPA-CAMPARY and GPU support compared to SDPA-CAMPARY on
CPU only, as showed in Figure 1.5a.3

Concerning our GPU implementation, performance results for 𝑛-double RGEMM are shown in
Figure 1.5b. It is important to note that the RGEMM implementation is quite efficient with: 83% of
theoretical peak performance for DD, respectively 43% for TD, 50% for 4D, 57% for 5D, 61% for 6D, 57%
for 8D, while other implementations [207] of DGEMM (matrix multiplication in double precision) attain
58 − 70% of the theoretical peak performance. Our DD implementation is slower by ∼ 10% than the
implementation in [157], which can be explained by the generality of our code.

We conclude by comparing in Table 1.4 the performance obtained on the CPU for a classical problem
in coding theory: finding the largest set of binary words with n letters, such that the Hamming distance
between two words is at least d. This is reformulated as a maximum stable set problem, which is
solved with SDP by Schrijver [195] and Laurent [128]. Instances for such problems are taken from [61].
The comparison is done between SDPA-DD, SDPA-GMP (run with 106 bits of precision) and SDPA-
CAMPARY-DD. The accuracy of the obtained results is similar, while our library has better timings.
Some instances do not converge when DD precision is used. We also include the results obtained with
the SDPA-CAMPARY with triple-double (TD) precision, which has a better performance comparing to
SDPA-GMP with 106 bits of precision.
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Figure 1.5 – (a) Speedup of SDPA-CAMPARY for 𝑛-double with GPU vs CPU, on several problems from
SDPLIB. Maximum speedup was 16.2; (b) Performance of RGEMM with CAMPARY for 𝑛-double on
GPU. Maximum performance was 1.6GFlops for TD, 976MFlops for QD, 660MFlops for 5D, 453MFlops
for 6D, 200MFlops for 8D.

1.6 Conclusion

Nowadays, very efficient arithmetic operations with double-precision floating-point numbers compliant
with the IEEE-754 standard are available on most recent computers. However, when more than double-
precision/binary64 (53 bits) is required, especially in the HPC context, few multiple-precision arithmetic
libraries exist, and the trade-off between performance versus reliability is still a challenge. In this sense,
we summarized some of our recent results obtained during the master/PhD thesis of my student V.

3Benchmarks were performed on well-known ill-conditioned examples from SDPLIB [23] and [61]. GPU tests were performed
on a GPU NVIDIA(R) Tesla(TM) C2075, with 448 cores, 1.15 GHz, 32KB of register, 64KB shared memory/L1 cache set by default
to 48KB for shared memory and 16KB for L1 cache. CPU tests use an Intel(R) Xeon(R) CPU E3-1270 v3 @ 3.50GHz processor, with
Haswell micro-architecture which supports hardware implemented FMA instructions.
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Problem SDPA-DD SDPA-CAMPARY-DD SDPA-CAMPARY-TD SDPA-GMP
Laurent_A(19,6) optimal: −2.4414745686616550𝑒− 03

iteration 92 94 71 73
time (s) 4.3 3.1 18.65 29.16

Laurent_A(26,10) optimal: −1.3215201241629400𝑒− 05
iteration 80 80 123 125
time (s) 12.8 8.68 109.54 173.42

Laurent_A(28,8) optimal: −1.1977477306795422𝑒− 04
iteration 93 100 76 113
time (s) 47.8 36.85 219.46 541.19

Laurent_A(48,15) optimal: −2.229𝑒− 09
iteration 134 134 165 145
time (s) 2204.61 1569.48 14691.92 21695.08

Laurent_A(50,15) optimal: −1.9712𝑒− 09
iteration 142 142 191 154
time (s) 3463.2 2421.86 25773.96 35173.79

Laurent_A(50,23) optimal: −2.5985𝑒− 13
iteration 124 124 155 140
time (s) 342.73 221.32 2333.74 3426.17

Schrijver_A(19,6) optimal: −1.2790362700180910𝑒+ 03
iteration 40 40 66 95
time (s) 1.59 1.14 14.65 32.21

Schrijver_A(26,10) optimal: −8.8585714285713880𝑒+ 02
iteration 54 54 127 108
time (s) 7.75 5.2 100.73 134.48

Schrijver_A(28,8) optimal: −3.2150795825792913𝑒+ 04
iteration 45 45 69 97
time (s) 21.05 15.06 182.25 422.78

Schrijver_A(37,15) optimal: −1.40069999999999886𝑒+ 03
iteration 58 58 132 116
time (s) 54.86 36.35 683.07 988.21

Schrijver_A(40,15)* optimal: −1.9𝑒+ 04
iteration 23 23 23 23
time (s) 53.99 35.99 285.3 471.870

Schrijver_A(48,15)* optimal: −2.56𝑒+ 06
iteration 27 27 27 27
time (s) 432.13 307.88 2260.24 3862.29

Schrijver_A(50,15)** optimal: −7.6𝑒+ 06
iteration 29 29 29 29
time (s) 694.07 471.57 3695.95 677.830

Schrijver_A(50,23)** optimal: −5.2𝑒+ 03
iteration 29 29 29 29
time (s) 76.55 47.84 413.31 6370.97

Table 1.4 – The optimal value, iterations and time for solving some ill-posed problems for binary codes by SDPA-DD,
-CAMPARY-DD, -CAMPARY-TD, and -GMP-DD. * problems that converge to more than two digits only when using
quad-double precision. ** problems that converge to more than two digits with precision higher that quad-double.
The digits written with blue were obtained only when triple-double precision was employed.
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Popescu. We proposed to represent and compute with multiple-precision numbers via unevaluated
sums of standard machine precision floating-point numbers, so-called floating-point expansions. This
approach allows to directly benefit from the available and efficient hardware implementation of the
IEEE-754 standard. We improved or designed several new algorithms for performing basic arithmetic
operations using this extended format. For all the algorithms, we gave rigorous correctness and error
bound proofs as well as an implementation in our multiple-precision arithmetic library, CAMPARY.
Our work focused not only on the arithmetic details and technicalities, but also on the applications of
CAMPARY. Related future works are discussed in Chapter 4.
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Chapter 2

Symbolic-Numeric Computations

In the last 15 years, the increasing demands in both speed and reliability in scientific and engineering
computing, contributed to the merging of symbolic and numeric computations, which were coexisting,
but traditionnally separated research branches in computational mathematics [221, 118]. In this frame-
work, I worked on techniques mixing structural properties (coming from the symbolic field) of Linear
Ordinary Differential Equations (LODEs) with polynomial coefficients, with efficient numerical routines
coming from optimization or approximation theory. Moreover, an important aspect pertaining to this last
area, is not only to compute approximations, but also enclosures of the approximation errors, which give
an effective quality measurement of the computation. All in all, the goal is to provide very efficient algo-
rithms (with proven theoretical complexity) which provide accurate and reliable approximate solutions
together with effective (approximation and rounding) error bounds. In this context, three contributions
are presented in what follows:

1. We proposed a new accurate, reliable and efficient method to evaluate 2D Gaussians on disks [J5].
This result is employed for the computation of orbital collision probability between two spherical
space objects involved in a short-term encounter as detailed in Chapter 3.

2. Motivated by this preliminary work and its links with the algebraic structure of moments of Gaus-
sian measures supported on semi-algebraic sets, we extended a study of Lasserre and Putinar [126]
to inverse problems involving measures with holonomic densities and support with real algebraic
boundary. In the framework of holonomic distributions (i.e. they satisfy a holonomic system of
linear partial or ordinary differential equations with polynomial coefficients), our results exploit
the linear recurrence structure of corresponding moments [C2].

3. The two previous contributions make use of algebraic properties of power series solutions of
D-finite/holonomic linear differential (systems) of equations. A related aspect, which is important
in approximation problems, is to consider other orthogonal series expansions. We focused on the
efficient computation of truncated Chebyshev series (together with rigorous approximation error
bounds) for D-finite functions in two recent articles [J4, J2].

These contributions are in collaboration with researchers working in Computer Algebra: B. Salvy
(Inria researcher, LIP, Lyon) and his former students A. Benoit (Mathematics teacher, A. Dumas High
School, St-Cloud) and M. Mezzarobba (CNRS Researcher, Paris), as well as in Optimization and Control at
LAAS Laboratory: D. Arzelier and J.-B. Lasserre (CNRS researchers, LAAS, Toulouse) and A. Rondepierre
(Maître de conférences, INSA, Toulouse). My PhD student F. Bréhard, made very important contributions
to the works listed in items 2. and 3. He is to defend his PhD Thesis in July 2019, and is co-supervised
with N. Brisebarre and D. Pous (CNRS Researchers in Lyon). The subject discussed in item 3. is also joint
research with N. Brisebarre.

It is important to remark that the theoretical tools developed for these works were inspired by
practical applications coming either from the conception of mathematical libraries (which corresponds to
my PhD background) or from the aerospace domain (which corresponds to some of my current research
activities as a member of MAC team) and which will be detailed in Chapter 3.
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Computation and complexity model Our numerical algorithms rely on floating-point arithmetics, ei-
ther in standard double precision, or in arbitrary precision when needed. In the later case, GNU-MPFR
library [74] is used. For validated computations, we make use of interval arithmetics via the MPFI li-
brary [185].Complexity results are given in the uniform complexity model: all basic arithmetic operations
(addition, subtraction, multiplication, division and square root), either in rational arithmetic (for symbolic
algorithms), floating-point or interval arithmetic, induce a unit cost of time. In particular, we do not
investigate the incidence of the precision parameter on the global time complexity.

To provide some common ground for our results, a few introductory notions concerning (univariate)
D-finite functions and (multivariate) holonomic functions are given in what follows. Great existing
surveys on these topics include that of B. Salvy [191], F. Chyzak [53] or C. Koutschan [114].

2.1 Differential finiteness

Rougly speaking, for the definitions in this section, the numbers involved are rational. Formally, one can
consider a fieldK, which is a real finite computable extension ofQ.

2.1.1 Univariate case

D-finite (differentially finite) functions are functions satisfying a linear differential equation with polyno-
mial coefficients. A simple example is the exponential function exp which satisfies exp′− exp = 0. To
specify a D-finite function 𝑦, a linear homogeneous differential equation of order 𝑟 with polynomial
coefficients

𝐿 · 𝑦 = 𝑎𝑟𝑦
(𝑟) + 𝑎𝑟−1𝑦

(𝑟−1) + · · ·+ 𝑎0𝑦 = 0, 𝑎𝑖 ∈ K[𝑥], (2.1)

together with 𝑟 initial values
𝑦(𝑖)(0) = ℓ𝑖, 0 6 𝑖 6 𝑟 − 1, (2.2)

is considered such that 𝑦 is its unique solution.
This specification can be seen as a data structure, because many mathematical properties of 𝑦 can be

inferred directly from this equation. Such a data structure can represent the vast majority of functions
commonly used in mathematics and physics, which turn out to be D-finite functions, e.g. exp, sin, cos, their
hyperbolic counterpart and their functional inverses (arc trigonometric and arc hyperbolic functions),
Bessel, Airy functions, etc. Instead of adopting a closed-formula representation for each such function,
one can consider only the LODE satisfied by the function and suitable initial conditions, which is also a
finite data-structure. This allowed for the development of a uniform theoretic and algorithmic treatment
of these functions, an idea that has led to many applications in recent years in the context of Symbolic
Computation [232, 191, 192, 24, 27, 16, 28].

In particular, such functions can be expanded in power series whose coefficients are P-recursive,
i.e. they satisfy a linear recurrence with polynomial terms in the index variable [202]. For example, let
exp(𝑧) =

∑︀+∞
𝑛=0 𝑐𝑛𝑧

𝑛, then the recurrence satisfied by the coefficients 𝑐𝑛 is (𝑛+ 1) · 𝑐𝑛+1 = 𝑐𝑛, 𝑐0 = 1.
Indeed, this class of functions marks an ideal spot at the junction between symbolic and numeric

computation.
On the approximation side, D-finite functions possess strong analytic properties that can be exploited

in the production of approximations and corresponding error bounds. Power series approximations
with tight bounds for this class of functions can then be obtained: this is based on efficient algorithms
for computing the 𝑛th coefficient of the power series [52],[25, Chap.15] together with algorithms which
produce majorant series, whose speed of convergence is controlled [218, 148]. This also entails efficient
numerical evaluations of D-finite functions outside of the disk of convergence of the initial power
series, via so-called analytic continuation [218, 148, 25]. M. Mezzarobba ore_algebra_analytic
package [146, 147] provides a SageMath [203] implementation for these algorithms.

Important properties of D-finite functions include closure under addition, product, Hadamard
product, or Laplace/Borel transform. Moreover for algebraic 𝑦 (there exists a non-zero polynomial 𝑃
s.t. 𝑃 (𝑥, 𝑦) = 0), and D-finite 𝑓 , the composition 𝑓 ∘ 𝑦 is D-finite. These properties allow (among others)
for proving special functions identities. For instance, one way to prove that two power series are equal
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is to show that they are both solutions of a common linear differential equation, with the same initial
conditions. Thus the computation is reduced to finitely many operations, as shown in the example below.

Example 2.1.1 (Identity proof with D-finite functions). Let us prove the following identity:

arcsin(𝑥)2 =
∑︁
𝑘>0

𝑘!(︀
1
2

)︀
. . .
(︀
𝑘 + 1

2

)︀ 𝑥2𝑘+2

2𝑘 + 2
. (2.3)

For that, one can proceed as follows:

∙ Consider the LODE for 𝑦 = arcsin: (1− 𝑥2)𝑦′′ − 𝑥𝑦′ = 0, 𝑦(0) = 0, 𝑦′(0) = 1.

∙ Let ℎ = 𝑦2, then, by successive derivations obtain an LODE satisfied by ℎ:

ℎ′ = 2𝑦𝑦′,

ℎ′′ = 2𝑦′2 + 2𝑦𝑦′′ = 2𝑦′2 +
2𝑥

1− 𝑥2 𝑦𝑦
′,

ℎ′′′ = 4𝑦′𝑦′′ +
2𝑥

1− 𝑥2 (𝑦′2 + 𝑦𝑦′′) +

(︂
2

1− 𝑥2 +
4𝑥2

(1− 𝑥2)2

)︂
𝑦𝑦′,

=

(︂
4𝑥+ 2

1− 𝑥2 +
6𝑥2

(1− 𝑥2)2

)︂
𝑦𝑦′ +

2𝑥

1− 𝑥2 𝑦
′2.

∙ The vectors ℎ, ℎ′, ℎ′′, ℎ′′′ are linear combination of 3 vectors 𝑦2, 𝑦𝑦′, 𝑦′2. One can then compute a
linear relation,

(1− 𝑥2)ℎ′′′ − 3𝑥ℎ′′ − ℎ′ = 0.

∙ From this relation, one obtains the linear recurrence satisfied by the power series coefficients of
ℎ: (𝑛+ 1)(𝑛+ 2)(𝑛+ 3)ℎ𝑛+3 − (𝑛+ 1)3ℎ𝑛+1 = 0, with given initial conditions ℎ(0) = 0, ℎ′(0) =
0, ℎ′′(0) = 2. It then suffices to check that Equation (2.3) satisfies this recurrence. Otherwise, one
could also directly solve the recurrence in this case, and obtain Equation (2.3).

Many (much more complicated) combinatoric and special functions identities can be proved algorith-
mically with D-finite functions and are beyond the scope of this report. We mention the fact that the
degrees of the polynomial coefficients of the involved LODE can be quite high. A striking example in
this context is the recent proof that the complete generating function for Gessel walks is algebraic [29],
where for instance a candidate differential operator is of order 11 and (bivariate) polynomial coefficients
of degrees up to 96 (and respectively 78) and with integer coefficients up to 61 digits.

2.1.2 Multivariate case

Let us now briefly discuss how D-finiteness can be generalized to the multivariate case. For that, note that
Equation (2.1) reads in operator form 𝐿 · 𝑦 = 0 and that one can obtain other operators which satisfy (2.1)
by multiplying it with 𝑥 or by differentiating it. So it is natural to represent such classes of operators in the
Weil algebra D1 := K[𝑥]⟨𝜕𝑥⟩, generated by {𝑥, 𝜕𝑥} and quotiented by the relation: 𝜕𝑥𝑥 = 𝑥𝜕𝑥 + 1, which
represents the commutation rule coming from Leibniz law: (𝑥𝑦(𝑥))′ = 𝑥𝑦′(𝑥) + 𝑦(𝑥). Instead of a single
operator 𝐿, we thus consider all the operators of D1 which satisfy 𝐿 · 𝑦 = 0. This is called the annihilator
Ann(𝑦), which is a left ideal of D1:

Ann(𝑦) := {𝐿 ∈ D1 | 𝐿𝑦 = 0}.

Similarly, one can introduce a discrete analogue for the Weil algebra R1 := K[𝛼]⟨𝑆𝛼⟩ (the polynomial
coefficients are in 𝛼), which is a shift algebra for operators on P-recursive sequences, quotiented by the
commutation relation 𝑆𝛼𝛼 = 𝛼𝑆𝛼 + 𝑆𝛼. It can be seen that the action of a differential operator 𝐿 ∈ D1 on
the generating function

∑︀
𝑢𝛼𝑥

𝛼 of a sequence (𝑢𝛼)𝛼∈N corresponds to the action of an operator 𝑆 ∈ R1
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on (𝑢𝛼)𝛼∈N, via the relations 𝜕𝑥 = (𝛼+ 1)𝑆𝛼 and 𝑥 = 𝑆−1
𝛼 (we can always get rid of the negative powers

of shift operators by multiplying through). This provides a formal correspondence between D-finite
differential equations and P-recursive power series coefficients, which is further exploited in Section 2.3.

By analogy with the univariate case, we proceed to the multivariate one. From now on, we fix some
notations related to multivariable and multiindices: let 𝑛 be a positive integer for the ambient space
R𝑛, when there is no ambiguity with respect to the univariate case,K[𝑥] is the ring of polynomials in
the variables 𝑥 = (𝑥1, . . . , 𝑥𝑛) and letK[𝑥]𝑑 be the vector space of polynomials of total degree at most
𝑑. For every 𝑑, let N𝑛

𝑑 := {𝛼 ∈ N𝑛 : |𝛼| 6 𝑑}, where |𝛼| =
∑︀

𝑖 𝛼𝑖. In a multivariate setting, we denote
𝑥𝛽 = 𝑥𝛽1

1 . . . 𝑥𝛽𝑛
𝑛 and 𝜕𝛼𝑥 = 𝜕𝛼1

𝑥1
. . . 𝜕𝛼𝑛

𝑥𝑛
for 𝛼, 𝛽 ∈ N𝑛. The derivative 𝜕𝑝

𝜕𝑥𝑖
is denoted 𝑝𝑥𝑖 .

To represent linear partial differential operators which annihilate a multivariate function 𝑓 : K𝑛 → K,
we consider first:

(i) The ring of differential operators with polynomial coefficients (the 𝑛-th Weyl algebra)

D𝑛 := K[𝑥1, . . . , 𝑥𝑛]⟨𝜕𝑥1
, . . . , 𝜕𝑥𝑛

⟩,

generated by {𝑥1, . . . , 𝑥𝑛, 𝜕𝑥1 , . . . , 𝜕𝑥𝑛} and quotiented by the relations:

𝜕𝑥𝑖
𝑥𝑗 =

{︃
𝑥𝑖𝜕𝑥𝑖 + 1, 𝑖 = 𝑗,

𝑥𝑗𝜕𝑥𝑖
, 𝑖 ̸= 𝑗,

𝑥𝑖𝑥𝑗 = 𝑥𝑗𝑥𝑖, 𝜕𝑥𝑖
𝜕𝑥𝑗

= 𝜕𝑥𝑗
𝜕𝑥𝑖

.

We have that {𝑥𝛽𝜕𝛼𝑥 , 𝛼, 𝛽 ∈ N𝑛} is a basis of D𝑛 as aK-vector space. If 𝐿 =
∑︀
𝛼,𝛽

𝑐𝛼,𝛽𝑥
𝛽𝜕𝛼𝑥 , its order is the

largest value of |𝛼| such that there exists 𝛽 with 𝑐𝛼,𝛽 ̸= 0.
Differential operators in D𝑛 naturally act on smooth functions 𝑓 via 𝜕𝑥𝑖

𝑓 = 𝑓𝑥𝑖
:= 𝜕𝑓

𝜕𝑥𝑖
. The annihilator

Ann(𝑓) is a left ideal of D𝑛:
Ann(𝑓) := {𝐿 ∈ D𝑛 | 𝐿𝑓 = 0}.

In the multivariate setting, a generalization of D-finiteness is the notion of holonomicity. Namely,
a multivariate function 𝑓 is called holonomic if there exists such an annihilator Ann(𝑓) in D𝑛, which
is holonomic. This notion has its origin in D-module theory and we provide a formal definition for
completeness.

Definition 2.1.2. Let I be a left ideal of D𝑛. For 𝐿 ∈ D𝑛, let [𝐿]I denote the class of 𝐿 in the quotient
D𝑛/I. For 𝑠 > 0, define (︁

D𝑛�I
)︁
𝑠

= SpanK
{︀

[𝑥𝛽𝜕𝛼𝑥 ]I, |𝛼|+ |𝛽| 6 𝑠
}︀
.

Then there exists a polynomial 𝑏(𝑠) ∈ K[𝑠] such that dimK(D𝑛/I)𝑠 = 𝑏(𝑠) for 𝑠 large enough. The degree
of 𝑏(𝑠) is called the Bernstein dimension of D𝑛/I. The left ideal I is called holonomic if the Bernstein
dimension of D𝑛/I is equal to 𝑛.

When dealing with partial differential equations instead of operators, a holonomic system is a maxi-
mally overdetermined system, in the sense that there are as many linear partial differential equations
with polynomial coefficients as possible.

Similarly, R𝑛 := K[𝛼1, . . . , 𝛼𝑛]⟨𝑆𝛼1
, . . . , 𝑆𝛼𝑛

⟩ is the set of difference operators with polynomial
coefficients in 𝛼, acting on sequences 𝑢 = (𝑢(𝛾1, . . . , 𝛾𝑛))𝛾∈N𝑛 via

(𝛼𝑖𝑢)(𝛾1, . . . , 𝛾𝑛) = 𝛾𝑖𝑢(𝛾1, . . . , 𝛾𝑛),

(𝑆𝛼𝑖
𝑢)(𝛾1, . . . , 𝛾𝑛) = 𝑢(𝛾1, . . . , 𝛾𝑖 + 1, . . . , 𝛾𝑛), 𝛾 ∈ N𝑛.

The annihilator Ann(𝑢) = {𝑅 ∈ R𝑛 | 𝑅 𝑢 = 0} is the set of recurrence relations satisfied by 𝑢, which is
holonomic when its generating series is holonomic [53].

Using the theory of D-modules, similar closure properties (under addition, multiplication, definite in-
tegration or antiderivative with respect to a variable) to the univariate case can be proved. Unfortunately,
the existent algorithms, which execute these closure properties using the representation with holonomic
ideals, are not as efficient as those developed for another ring D*

𝑛 of differential operators defined below,
which proves better suited algorithmically for certain classes of functions:
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(ii) The ring of differential operators with rational fraction coefficients

D*
𝑛 := K(𝑥1, . . . , 𝑥𝑛)⟨𝜕1, . . . , 𝜕𝑛⟩,

(rational differential Ore algebra) where the commutation rules of D𝑛 are extended by

𝜕𝑥𝑖
𝑞(𝑥) = 𝑞(𝑥)𝜕𝑥𝑖

+
𝜕𝑞(𝑥)

𝜕𝑥𝑖
, 𝑞(𝑥) ∈ K(𝑥1, . . . , 𝑥𝑛).

One can also see Ann(𝑓) as a left ideal of D*
𝑛, and the quotient D*

𝑛/Ann(𝑓) as aK(𝑥1, . . . , 𝑥𝑛)-vector
space. A smooth function 𝑓 is called𝐷-finite if D*

𝑛/Ann(𝑓) has finite dimension. Equivalently, its iterated
derivatives {𝜕𝛼𝑥 𝑓, 𝛼 ∈ N𝑛} form a finite-dimensional vector space over rational fractions.

Both (i) and (ii) can be seen as so-called Ore algebras, where one can represent in a unified framework
differential, difference (or mixed) operators [53, 115]. An Ore polynomial ring is obtained by applying
Ore extensions to some base ring A. An Ore extension adds a new symbol, say 𝜕 to the base ring: this
gives a skew polynomial ring, whose elements are polynomials in the new symbol with coefficients in
the base ring. The addition in this skew ring is the usual one, while the multiplication is defined by a
specific commutation rule:

𝜕𝑎 = 𝜎(𝑎)𝜕 + 𝛿(𝑎), for all 𝑎 ∈ A,

where 𝜎 and 𝛿 are linear maps on the base ring, with specific properties (mainly they fulfill a skew
Leibniz law). Note that in contrast to the Weyl algebra the non-commutativity, is now between the
variables of the polynomial ring and its coefficients. Concrete rings of differential/difference operators
are obtained depending on how 𝜕, 𝜎, and 𝛿 act on functions. In (i) and (ii) (consider the univariate case
for simplicity), 𝜎(𝑓) = 𝑓 , 𝛿(𝑓) = 𝜕𝑥𝑓 and 𝜕𝑓 = 𝛿(𝑓). It is important to note that for (i) the base ring is
K[𝑥], while for (ii), the base ring is also a field (of rational fractions)K(𝑥).

In classical settings involving analytic functions, the distinction between (i) and (ii) is subtle1 and
often from an algorithmic point of view, it suffices to stick with the more suited rational Ore algebra,
where rational coefficients allow to divide out polynomial contents and closure properties (sum, product,
algebraic substitution) can be executed in a simpler manner. We refer to [53, 115, 163] for a more
comprehensive presentation.

However, this distinction is essential when considering ”generalized functions", for instance distribu-
tions. In this case, Ann(𝑓) can only be seen as a left ideal of D𝑛 and D𝑛/Ann(𝑓) as aK-vector space. For
example, the univariate Dirac distribution, defined by ⟨𝛿, 𝑓⟩ = 𝑓(0), is annihilated (as a distribution) by 𝑥,
since ⟨𝑥𝛿, 𝑓⟩ = ⟨𝛿, 𝑥𝑓⟩ = 0. However, a left ideal of D*

1 containing 𝑥 is necessarily D*
1, but 1 annihilating

𝛿 would imply 𝛿 = 0. Hence in this setting, which will be adopted in Section 2.3, the relevant notion is
holonomicity.

Algorithms and software. An important algorithmic aspect is that the well-known notion of Gröbner
bases was generalized to this non-commutative setting (see for example [80, 53, 115] and references
therein). This is the building block of algorithms on executing closure operations [53, 115, 80, 206, 163].
Several software packages implement very efficient algorithms for manipulating such functions (espe-
cially in the case of rational Ore algebras), for instance algolib which contains in particular the pack-
ages gfun [192], NumGfun [145], Ore_algebra and Mgfun [53] in Maple; HolonomicFunctions [114]
in Mathematica.

We now provide a more detailed review of related topics that we addressed in this area.

2.2 Efficient evaluation of Gaussians on disks

We became interested in the efficient and reliable computation of the following integral:

1A left ideal 𝐼𝐼 of (ii) is D-finite iif its restriction to left ideals in (i) (i.e. 𝐼𝐼 ∩ 𝐼 , where 𝐼 is a left ideal in (i)) is holonomic [115,
Thm.2.22].
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𝒫𝑐 =
1

2𝜋𝜎𝑥𝜎𝑦

∫︁
ℬ̄((0,0),𝑅)

exp

(︂
−1

2

(︂
(𝑥− 𝑥𝑚)2

𝜎2
𝑥

+
(𝑦 − 𝑦𝑚)2

𝜎2
𝑦

)︂)︂
d𝑥d𝑦, (2.4)

which is a 2D integral over a disk of radius 𝑅 centered at the origin of a Gaussian function with no
cross-terms, for given parameters (𝑥𝑚, 𝑦𝑚) and (𝜎𝑥, 𝜎𝑦). As mentioned in the introduction, this integral
appears when estimating the collision risk between two space objects, whose position has Gaussian-
distributed uncertainty and under certain assumptions of the so-called short-encounter model. While
several methods have been developed in the literature to compute this integral [71, 171, 3, 47], we
provided a new efficient and reliable method which is based on a numerically stable and efficient power
series evaluation.

2.2.1 Our approach

As a keen reader would expect, the employed series is obtained by the use of D-finite functions. Moreover,
the evaluation scheme proposed also relies on analytical properties of our series. Particularly, this integral
is analytically computed as the product of an exponential term with a convergent power series:

𝒫𝑐 = exp

(︂
− 𝑅2

2𝜎2
𝑦

)︂ +∞∑︁
𝑘=0

𝛽𝑘𝑅
2𝑘, (2.5)

where (𝛽𝑘)𝑘>0 is a positive P-recursive sequence, suitable for accurate numerical evaluation. Moreover,
explicit bounds on the tail of this series are provided. In brief, the steps employed to obtain this formula
together with the explicit recurrence for (𝛽𝑘)𝑘>0 are:

Step 1. Firstly, a method introduced by Lasserre and Zeron in [127] to integrate Gaussian functions over
Euclidean balls is used. Specifically, Equation (2.4) is seen as a function 𝑔(𝑧), with 𝑧 = 𝑅2, whose

Laplace transform ℒ𝑔(𝜆) =
∞∫︀
0

exp(−𝜆𝑧)𝑔(𝑧)d𝑧 can be computed in closed-form:

ℒ𝑔(𝜆) =
exp

(︁
−𝜆
(︁

𝑥2
𝑚

2𝜆𝜎2
𝑥+1 +

𝑦2
𝑚

2𝜆𝜎2
𝑦+1

)︁)︁
𝜆
√︀

2𝜆𝜎2
𝑥 + 1

√︁
2𝜆𝜎2

𝑦 + 1
, for all 𝜆 ∈ C, such that Re(𝜆) > 0. (2.6)

This is then expanded in a power series at ∞. Classical results from [224] or [223, Chap. 2.14]
allow for a term by term application of the inverse Laplace transform – also known as the Borel
Transform of the sequence of coefficients of ℒ𝑔 . This leads to a power series for the initial integral:

𝑔(𝑧) =

+∞∑︁
𝑘=0

𝛼𝑘𝑧
𝑘. (2.7)

Step 2. In [127] however, no insight is given on how to obtain the coefficients (𝛼𝑘)𝑘>0, besides the obvious
way of computing the first ones based on explicit derivatives of ℒ𝑔. So, the second step consists
in finding a simple form for these coefficients. For that, it suffices to remark that 𝑔 is D-finite and
hence, algorithmically obtain the recurrence formula satisfied by (𝛼𝑘).

Step 3. Nevertheless, from a numerical point of view, the direct evaluation in finite precision of the series
obtained for 𝑔(𝑧) can be difficult: although the power series expansion of 𝑔(𝑧) is convergent, the
evaluation of the sum in finite precision arithmetic is prone to high cancellation [51, 84]. This means
that if consecutive terms are close in magnitude, but of different signs, their sum in finite precision
arithmetic contains very few correct significant digits. This makes the power series evaluation
impractical for large values of 𝑧. This phenomenon was studied for various common functions e.g.,
𝑧 ↦→ exp(−𝑧), the error function erf or the Airy function [51], but a workaround exists on a case by
case basis, as exemplified below.
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Example 2.2.1 (Cancellation in finite precision power series evaluation). Consider the power series

expansion exp(−𝑥) =
∞∑︀
𝑖=0

(−1)𝑖𝑥𝑖

𝑖!
and suppose one evaluates a truncation of this series at 𝑥 = 20.

Numerically, this gives:

exp(−20) ≃ 1−20 . . .+1.66 · 107−1.23 · 107+ . . .+1.19 · 10−8−3.45 · 10−9 . . .

One observes that the terms of the sum are alternating in sign and their maximum magnitude is
very high compared to the actual value to be computed exp(−20) ≃ 2.06 ·10−9. When evaluating in

finite precision, the precision loss can be estimated by log
max

𝑖

⃒⃒
𝑔𝑖𝑧

𝑖
⃒⃒

|𝑔(𝑧)| , which in this case amounts to

more than 53 bits that is, no correct digit is obtained when evaluating using the binary64 (double)
FP format.

However, experts in numerical functions implementations will never use this series for evaluation.
Instead, the series for exp(𝑥) is used, which evaluates without cancellation (all the terms are
positive) and then the reciprocal 1/ exp(𝑥) is performed.

Similarly to this intuitive example, such a preconditioning was used in order to obtain a series
suitable for low cancellation numerical evaluation for other functions [84, 51]. Instead of 𝑔, the
function 𝑓 = ℎ𝑔 is considered, where the so-called preconditioner ℎ is D-finite too. This product is
also D-finite by closure properties of D-finite functions. By carefully choosing the preconditioner,
both ℎ and 𝑓 can be efficiently numerically evaluated. The heuristic for ℎ is based on a method
presented in [84] which uses several complex analysis results and properties obtained for 𝑔. In
brief, we prove that ℎ(𝑧) = exp(𝑝𝑧) is a good choice for several values of 𝑝. For completeness, an
overview of this method is presented in Section 2.2.2. Moreover, the choice 𝑝 = 1

2𝜎2
𝑦

leads to a
simple proof of positivity of the series coefficients of 𝑓 . Finally, explicit truncation error bounds for
this series were proved, which also allowed for an a priori computation of the truncation order,
when a pre-specified accuracy on the results is required.

These steps allow for building Algorithms 12 and 13, explained below and one obtains the following
result:

Proposition 2.2.2. Algorithm 13 is correct that is, given 𝛿 > 0 it returns an interval
[︀
𝒫𝑐,𝒫𝑐

]︀
enclosing

the evaluation of 𝒫𝑐 ∈
[︀
𝒫𝑐,𝒫𝑐

]︀
, such that 𝒫𝑐 −𝒫𝑐 6 𝛿. The algorithm runs in 𝑂(log2(𝛿−1)) i.e. linearly

with respect to the number of required correct digits.

The proof is given in [J5] and here, we underline its main ingredients. Firstly, it makes use of
Algorithm 12. The initial conditions of the recurrence satisfied by the terms of the power series of 𝑓 are
given in lines 2− 5 of Algorithm 12, while the loop in lines 6− 8 computes the truncated sum of a total
of 𝑁 positive terms by unrolling the recurrence. In line 13, one divides by the preconditionner to retrieve
the original searched value of 𝑔. To obtain the recurrence unrolled in Algorithm 12, it suffices to use
the algorithmic properties of D-finite functions: first, the Laplace transform of 𝑓 , which corresponds
to a translation in the Laplace domain: ℒ𝑓 (𝜆) = ℒ𝑔(𝜆 − 𝑝) (for ℒ𝑔 given in Eq. 2.6) is D-finite. This
can be checked by hand or obtained by the command holexprtodiffeq of Gfun [192]. Then, the
coefficients of the series are obtained for instance with diffeqtoreq command of Gfun, followed by a
Borel transform (which implies division by 𝑛!, hence the obtained sequence is still P-recursive).

Moreover, this is combined with the explicit truncation bounds in Algorithm 13. They correspond
to closed-form evaluation of simple minorant/majorant series (whose coefficients are in geometric
progression), which can be obtained in this specific case. Otherwise, majorant series tools like those
of [147] could be used. Based on these closed-forms, an a priori sufficient bound of the number of terms,
required for a specific accuracy, can in turn be computed. These quantities correspond to: 𝑙𝑛 for lower
bound on truncation, 𝑢𝑛 for upper bound on truncation and 𝑛 for a sufficient bound on the number of
terms.

Before going further, it may be interesting to analyze a little bit further the "precondinionning method"
employed above.
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Algorithm 12 Approximate evaluation of 𝒫𝑐.

Input: Parameters: 𝜎𝑥, 𝜎𝑦 , 𝑥𝑚, 𝑦𝑚, 𝑅; Number of terms: 𝑁 .
Output: 𝒫𝑐 – truncated series evaluation of 𝒫𝑐.

1: 𝑝 = 1
2𝜎2

𝑦
; 𝜙 = 1− 𝜎2

𝑦

𝜎2
𝑥

; 𝜔𝑥 =
𝑥2𝑚
4𝜎4

𝑥

; 𝜔𝑦 =
𝑦2𝑚
4𝜎4

𝑦

; 𝛼0 =
1

2𝜎𝑥𝜎𝑦
exp

(︂
−1

2

(︂
𝑥2𝑚
𝜎2
𝑥

+
𝑦2𝑚
𝜎2
𝑦

)︂)︂
;

2: 𝑐0 = 𝛼0𝑅
2;

3: 𝑐1 = 𝛼0𝑅
4

2

(︀
𝑝
(︀
𝜙
2 + 1

)︀
+ 𝜔𝑥 + 𝜔𝑦

)︀
;

4: 𝑐2 = 𝛼0𝑅
6

12

(︁(︀
𝑝
(︀
𝜙
2 + 1

)︀
+ 𝜔𝑥 + 𝜔𝑦

)︀2
+ 𝑝2

(︁
𝜙2

2 + 1
)︁

+ 2𝑝𝜙𝜔𝑥

)︁
;

5:
𝑐3 = 𝛼0𝑅

8

144

(︁(︀
𝑝
(︀
𝜙
2 + 1

)︀
+ 𝜔𝑥 + 𝜔𝑦

)︀3
+ 3

(︀
𝑝
(︀
𝜙
2 + 1

)︀
+ 𝜔𝑥 + 𝜔𝑦

)︀ (︁
𝑝2
(︁

𝜙2

2 + 1
)︁

+ 2𝑝𝜙𝜔𝑥

)︁
+ 2

(︁
𝑝3
(︁

𝜙3

2 + 1
)︁

+ 3𝑝2𝜙2𝜔𝑥

)︁)︁
;

6: for 𝑘 ← 0 to 𝑁 − 5 do

7:

𝑐𝑘+4 = − 𝑅8𝑝3𝜙2𝜔𝑦

(𝑘+2)(𝑘+3)(𝑘+4)2(𝑘+5)𝑐𝑘 +
𝑅6𝑝2𝜙(𝑝𝜙(𝑘+ 5

2 )+2𝜔𝑦(𝜙
2 +1))

(𝑘+3)(𝑘+4)2(𝑘+5) 𝑐𝑘+1

− 𝑅4𝑝(𝑝𝜙(𝜙
2 +1)(2𝑘+5)+𝜙(2𝜔𝑦+

3𝑝
2 )+𝜔𝑥+𝜔𝑦)

(𝑘+4)2(𝑘+5) 𝑐𝑘+2

+
𝑅2(𝑝(2𝜙+1)(𝑘+3)+𝑝(𝜙

2 +1)+𝜔𝑥+𝜔𝑦)
(𝑘+4)(𝑘+5) 𝑐𝑘+3

8: end for
9: 𝑠← 0

10: for 𝑘 ← 0 to 𝑁 − 1 do
11: 𝑠← 𝑠+ 𝑐𝑘;
12: end for
13: 𝒫𝑐 ← exp

(︀
−𝑝𝑅2

)︀
𝑠;

14: return 𝒫𝑐.

Algorithm 13 Evaluation of 𝒫𝑐 with guaranteed accuracy.

Input: Parameters: 𝜎𝑥, 𝜎𝑦 , 𝑥𝑚, 𝑦𝑚, 𝑅; Threshold 𝛿.
Output:

[︀
𝒫𝑐,𝒫𝑐

]︀
such that 𝒫𝑐 6 𝒫𝑐 6 𝒫𝑐 and 𝒫𝑐 − 𝒫𝑐 6 𝛿.

1: 𝑝 = 1
2𝜎2

𝑦
; 𝜙 = 1− 𝜎2

𝑦

𝜎2
𝑥

; 𝜔𝑥 =
𝑥2𝑚
4𝜎4

𝑥

; 𝜔𝑦 =
𝑦2𝑚
4𝜎4

𝑦

; 𝛼0 =
1

2𝜎𝑥𝜎𝑦
exp

(︂
−1

2

(︂
𝑥2𝑚
𝜎2
𝑥

+
𝑦2𝑚
𝜎2
𝑦

)︂)︂
;

2: 𝑙0 = 𝛼0
1− exp(−𝑝𝑅2)

𝑝
;

3: 𝑢0 = 𝛼0

exp
(︁
𝑝
(︁

𝜙
2 +

𝜔𝑥+𝜔𝑦

𝑝

)︁
𝑅2
)︁
− exp(−𝑝𝑅2)

𝑝
(︁

1 + 𝜙
2 +

𝜔𝑥+𝜔𝑦

𝑝

)︁ ;

4: if 𝑢0 − 𝑙0 6 𝛿 then
5: return [𝑙0, 𝑢0];

6: else
7: 𝑁1 = 2

⌈︁
𝑒𝑝𝑅2

(︁
1 + 𝜙

2 +
𝜔𝑥+𝜔𝑦

𝑝

)︁⌉︁
;

8: 𝑁2 =

⎡⎢⎢⎢log2

𝛼0 exp
(︁
𝑝𝑅2

(︁
𝜙
2 +

𝜔𝑥+𝜔𝑦

𝑝

)︁)︁
𝛿𝑝
√

2𝜋𝑁1

(︁
1 + 𝜙

2 +
𝜔𝑥+𝜔𝑦

𝑝

)︁
⎤⎥⎥⎥;

9: 𝑛 = max {𝑁1, 𝑁2} − 1
10: 𝒫𝑐 ← Algorithm 12 (𝜎𝑥, 𝜎𝑦 , 𝑥𝑚, 𝑦𝑚, 𝑅, 𝑛);

11: 𝑙𝑛 =
𝛼0 exp(−𝑝𝑅2)(𝑝𝑅2)𝑛+1

𝑝(𝑛+ 1)!
;

12: 𝑢𝑛 =
𝛼0 exp

(︁
𝑝
(︁

𝜙
2 +

𝜔𝑥+𝜔𝑦

𝑝

)︁
𝑅2
)︁(︁

𝑝
(︁

1 + 𝜙
2 +

𝜔𝑥+𝜔𝑦

𝑝

)︁
𝑅2
)︁𝑛+1

𝑝
(︁

1 + 𝜙
2 +

𝜔𝑥+𝜔𝑦

𝑝

)︁
(𝑛+ 1)!

;

13: 𝒫𝑐 = 𝒫𝑐 + 𝑙𝑛;
14: 𝒫𝑐 = 𝒫𝑐 + 𝑢𝑛;
15: return

[︀
𝒫𝑐,𝒫𝑐

]︀
.

16: end if
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2.2.2 Some remarks about function evaluation without cancellation

We consider a Taylor series of the form

𝑔(𝜉) =

∞∑︁
𝑖=0

𝑔𝑖𝜉
𝑖, 𝑔𝑖 ∼ (−1)𝑖𝜆

𝛼𝑖

𝑖!𝜅
, (2.8)

where 𝜆, 𝛼, 𝜅 > 0. For large 𝜉 > 0, the computation in finite precision arithmetic of such a sum is prone
to cancellation. This is because the terms

⃒⃒
𝑔𝑖𝜉

𝑖
⃒⃒

are first growing, before the series starts to converge when
𝑖𝜅 > 𝛼𝜉. When 𝑖𝜅 ≃ 𝛼𝜉 the terms

⃒⃒
𝑔𝑖𝜉

𝑖
⃒⃒

usually get much larger than |𝑔(𝜉)|. So the leading bits cancel out
while the lower-order bits which actually contribute to the first significant bits of the actual result get lost
in the roundoff errors. So, we are interested in minimizing the ratio

𝑑𝑔(𝜉) = log
max

𝑖

⃒⃒
𝑔𝑖𝜉

𝑖
⃒⃒

|𝑔(𝜉)| . (2.9)

When evaluating an entire function on some complex sector, Gawronski, Müller and Reinhard [84]
provided an estimation of this ratio based on the asymptotic behaviour of this entire function. Under
certain assumptions [84], one can estimate that for 𝜉 = 𝑟𝑒𝑖𝜃, and large values of 𝑟, log

⃒⃒
𝑔(𝑟𝑒𝑖𝜃)

⃒⃒
∼ ℎ(𝜃)𝑟𝜌,

which gives the estimate:

𝑑𝑔(𝑟𝑒𝑖𝜃) ∼ 𝑟𝜌(𝜎𝑔 − ℎ𝑔(𝜃)), (2.10)

where:

∙ 𝜌 is the order of 𝑔 (roughly speaking 𝜌 is the infimum of all 𝑚 s.t. 𝑔(𝜉) = 𝑂(exp(|𝜉|𝑚)), 𝑟 →∞);

∙ ℎ𝑔 is the indicator function of 𝑔, which shows the growth along a ray; ℎ𝑔(𝜃) = lim sup
𝑛→∞

log |𝑔(𝑟𝑒𝑖𝜃)|
𝑟𝜌 ;

∙ 𝜎𝑔 is the type of 𝑔, which satisfies: max
𝜃∈[0,2𝜋]

ℎ𝑔(𝜃) = 𝜎𝑔 .

Hence, the heuristic to minimize the cancellation is to ensure that 𝜎𝑔 − ℎ𝑔(𝜃) is small on the complex
sector corresponding to 𝜃. We use a simple instance of their method, since we focus only on positive real
line evaluation and one can prove that in our case 𝑔 is an entire function of order 𝜌 = 1, also called entire
function of exponential type (EFET). In such a case, the indicator of 𝑔 can explicitly be obtained with Polya
theorem [133, Chapter 9], which relates the growth of the EFET function 𝑔 along a ray, to the location of
the singularities of its Inverse Borel transform.

The indicator function ℎ𝑔 is showed in Figure 2.1 (a). One can see that in this case, 𝑑𝑔(𝑟) = 𝜎𝑔 > 0
and thus, the sum is not optimally conditioned to be evaluated on the real axis. The idea is to multiply
𝑔 by some preconditioner function, such that both the preconditioner and their product are very well
conditioned for evaluation at the considered sector (positive real line in our case). One possible choice
for the preconditionner is 𝑒𝑝𝜉 for which the indicator function is given in Figure 2.1(b) for 𝑝 > 0. From
the computation of the indicator function of the product, one can observe that it is well-conditioned
for 𝜎𝑔 > 𝜎𝑔/2. We give for example the indicator function obtained when 𝑝 =

𝜎𝑔

2 in Figure 2.1(c) and
respectively 𝑝 = 𝜎𝑔 in Figure 2.1(d). For this problem, 𝑝 = 𝜎𝑔 is considered. Other choices are of course
possible for preconditionners and currently, there is no established technique in the literature to assess
which one is better. There are also "obvious bad choices": take for instance sin(𝜉) which is entire of order
1 and indicator function ℎsin = 𝜔 |sin(𝜃)|, 𝜔 > 0. For real line evaluation, this will never give an optimal
conditioning in zero.

Moreover, there is no guarantee that the obtained terms for the series are positive (since this estimate
works asymptotically). In Chapter 4, future research directions on this topic are given. Let us now check
some interesting numerical results.
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(a) (b) (c) (d)

Figure 2.1 – Indicator functions of (a) probability 𝑔; (b) precondition 𝜉 ↦→ 𝑒𝑝𝜉; (c) 𝜉 ↦→ 𝑒
𝜎𝑔
2 𝜉𝑔(𝜉);

(d) 𝜉 ↦→ 𝑒𝜎𝑔𝜉𝑔(𝜉).

2.2.3 Challenging examples

Numerical results on relevant practical instances concerning collision probabilities between debris and
satellites are postponed to Chap 3. Here we focus on two examples, recorded in Table 2.1, which are
interesting from a theoretical viewpoint and which were considered as very challenging for accurate
computing [6].

Case Input parameters (m)
# 𝜎𝑥 𝜎𝑦 𝑅 𝑥𝑚 𝑦𝑚
3 114.25 1.41 15 0.15 3.88
5 177.8 0.038 10 2.12 -1.22

Table 2.1 – Two examples of [5].

Let us denote by 𝜂𝑁 = − log 𝑢𝑁−𝑙𝑁
𝑙𝑁+𝒫𝑐

the number of actual correct significant digits that can be certified
when computing with 𝑁 terms. For this example, our algorithm needs for instance 800 terms of the
series in order to obtain 𝜂800 = 30 significant digits for Case 3 and respectively 121000 terms to obtain
𝜂121000 = 20 significant digits in the Case 5.

(a) Case 3 (b) Case 5

Figure 2.2 – Log-Magnitude of the terms log (𝑐𝑖) in Algorithm 12 function of 𝑖, for Table 2.1 cases.

This is due mainly to two reasons: firstly, even though no cancellation occurs, the first terms of
the series are very small and in order to compute the largest one (before they start to decrease again
due to convergence), many terms need to be computed by unrolling the recurrence. For instance, the
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log-magnitude of these terms log (𝑐𝑖) is plotted in Figure 2.2 for these two cases. Secondly, the lower
and upper bounds 𝑙𝑁 and 𝑢𝑁 are under/overestimating the actual tail of the series (although they are
asymptotically tight). It would be thus interesting to provide alternatives to this method for this kind
phenomenon proper to entire series. This will be discussed further in my research perspectives (Chap. 4).

2.2.4 Extensions and discussion

One observes that the integral (2.4) can be generalized to a higher (fixed) dimension 𝑛 and it comes to
computing the mass (i.e. the moment of order zero) of the restriction of an 𝑛-dimensional Gaussian
measure to an 𝑛-dimensional disk with respect to the Euclidean norm.

A first question is whether similar computation methods can be developed in higher dimensions. For
each fixed 𝑛, one can apply exactly the same procedure: Laplace transform, computing recurrences and
initial conditions in the Laplace plane together with adapted evaluation strategies. Currently, we only
provided a 3𝐷 preliminary result in [C13], which shows that the order of recurrences increases as well as
the computational complexity related to D-finite algorithms (since more parameters are involved). A
further study in this sense would be interesting (cf. Chapter 4).

On a different perspective, one can inquire about what happens for higher order moments, say

𝑚𝛼 =

∫︁
𝐷(0,𝑅)

𝑥𝛼d𝜇𝑔(𝑥), 𝛼 ∈ N𝑛, (2.11)

where in the multivariate notation, 𝑥 = (𝑥1, . . . , 𝑥𝑛), 𝑥𝛼 = 𝑥𝛼1
1 . . . 𝑥𝛼𝑛

𝑛 , 𝜇𝑔 is the multivariate Gaussian
measure and 𝐷(0, 𝑅) = {𝑥 ∈ R𝑛 : |∑︀𝑖 𝑥

2
𝑖 | 6 𝑅2}.

Several questions may be asked:

1. Is there a similar way to efficiently compute 𝑚𝛼 for a fixed index 𝛼?

2. Is (𝑚𝛼) P-recursive, in which case, does an efficient algorithm exist for computing a system of
linear recurrences satisfied by (𝑚𝛼)𝛼∈N𝑛?

3. More generally, if the density of 𝜇𝑔 is holonomic (i.e. it satisfies a holonomic system of linear
partial or ordinary differential equations with polynomial coefficients), what can be said about the
sequence (𝑚𝛼)𝛼∈N𝑛?

4. Finally, what happens when considering a more general support 𝐺 ⊂ R𝑛, which is a bounded
open set of Euclidean space, whose boundary 𝜕𝐺 is algebraic (𝜕𝐺 is contained in the real zero set
of finitely many polynomials), hence address the same issues for:

𝑚𝛼 =

∫︁
𝐺

𝑥𝛼d𝜇𝑔(𝑥), 𝛼 ∈ N𝑛. (2.12)

It is interesting to see that these or related questions have been recently studied from different points
of view. Without being exhaustive, we note the versatile optimization approach of Lasserre [123], which
formulates a linear programming problem on an appropriate space of measures, which is then solved via
a hierarchy of semidefinite programs involving moments of the measures (also known as the Lasserre
hierarchy) and thus proposes a numerical scheme to solve various optimization problems. In particular,
in [124] this approach is applied for numerically computing Gaussian and exponential measures of
semi-algebraic sets and thus proposes a numerical solution for question 1 above.

From the symbolic computation perspective, creative telescoping techniques [53, 115, 26, 163] can be
employed to answer the questions 2–4. However, the numerical computation of initial conditions for the
recurrences obtained as well as efficient numerical evaluation techniques are still subject of research and
will be developed in Chapter 4.

In the sequel, we focus more on inverse problems related to items 2–4. Namely, in the framework of
holonomic systems, we revisit and extend an approach of Lasserre and Putinar [126], concerning the
inverse problem of support and/or density reconstruction when only a finite number of moments are
given.
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2.3 Direct and inverse moment problems with holonomic functions

Many reconstruction algorithms from moments of algebraic data were developed in optimization,
analysis or statistics. Lasserre and Putinar [126] proposed an exact reconstruction algorithm for the
algebraic support of the Lebesgue measure, or of measures with density equal to the exponential of
a known polynomial. Their approach relies on linear recurrences for the moments, obtained using
Stokes theorem. A natural question is whether this result can be generalized, as mentioned in [126]: the
analogy to the well understood moment rigidity of the Gaussian distribution is striking, although the constructive
aspects of this finite determinateness remain too theoretical in general. Motivated by this remark, in [C2], we
extended this study to measures with holonomic densities and support with real algebraic boundary.
Our approach relies on the algorithmic framework available for holonomic systems as presented in
Section 2.1.2, as well as a generalized Stokes formula [126].

From the algebraic point of view, related works include well-studied algebraic methods for recon-
struction problems involving measures with finitely many atoms (sums of Dirac) cf. [153] and references
therein. In this case, their moment generating functions are solutions of systems of partial differen-
tial equations with constant coefficients, and the moments satisfy multi-index linear recurrences with
constant coefficients. We also note that the reconstruction problem is solved in the univariate case, for
piecewise D-finite densities in [13].

In our algorithms, holonomic distributions are involved and are briefly recalled in Section 2.3.1.
Before stating more technical theorems and algorithms, we recall two introductory univariate examples
from [C2]. In what follows, the indicator function of a set 𝐺, is denoted by 1𝐺.

Example 2.3.1 (Direct problem for erf-like function). We are interested in computing a recurrence for the

moments 𝑚𝑖 =
1∫︀

−1

𝑥𝑖𝑒−𝑥2

d𝑥. The idea is to include 1[−1,1] in the integral, and consider the distribution 𝑢

corresponding to 1[−1,1](𝑥)𝑒−𝑥2

. Although not differentiable as a function, 𝑢 satisfies as a distribution:

(1− 𝑥2)(𝜕𝑥 + 2𝑥)𝑢 = 0.

Now, note the Lagrange Identity [101] which is related to integration by parts: for a linear differential
operator with polynomial coefficients, 𝐿 = 𝑐𝑟𝜕

𝑟
𝑥+. . .+𝑐0, its adjoint is defined as𝐿* = (−1)𝑟𝜕𝑟𝑥𝑐𝑟+. . .+𝑐0

and the following holds:
𝜙𝐿(𝑓)− 𝐿*(𝜙)𝑓 = 𝜕𝑥(ℒ𝐿(𝑓, 𝜙)), (2.13)

for any function 𝜙 and 𝑓 , with an explicit linear differential operator ℒ𝐿.
Integrating for the test function 𝑥𝑖, using (2.13) and noticing that its right hand side vanishes after

integration, one has:
1∫︁

−1

𝑒−𝑥2

(𝜕𝑥 + 2𝑥)*((1− 𝑥2)𝑥𝑖)d𝑥 = 0,

which directly provides the recurrence

𝑖𝑚𝑖−1 − (𝑖+ 4)𝑚𝑖+1 + 2𝑚𝑖+3 = 0.

Example 2.3.2 (Univariate support and density reconstruction). Consider the problem of reconstructing
the parameters 𝜉1, 𝜉2 and 𝑝2, 𝑝1, 𝑝0 provided that the first 𝑁 moments {𝑚𝑖, 0 6 𝑖 6 𝑁} are known:

𝑚𝑖 =

𝜉2∫︁
𝜉1

𝑥𝑖𝑒𝑝2𝑥
2+𝑝1𝑥+𝑝0d𝑥. (2.14)

Like in the previous example, 𝑢 = 1[𝜉1,𝜉2]𝑒
𝑝2𝑥

2+𝑝1𝑥+𝑝0 satisfies:

(𝑥− 𝜉1)(𝑥− 𝜉2)(𝜕𝑥 − 2𝑝2𝑥− 𝑝1)𝑢 = 0.
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Denote by 𝐿̂ := 𝑔(𝑥)𝜕𝑥+ℎ(𝑥) the operator to be reconstructed such that 𝐿̂𝑓 = 0, with 𝑔(𝑥) = 𝑥2+𝑔1𝑥+𝑔0

and ℎ(𝑥) =
3∑︀

𝑖=0

ℎ𝑖𝑥
𝑖. Integrating and using Lagrange identity, one has:

∞∫︁
−∞

(︀
𝑔(𝑥)𝜕𝑥 − ℎ(𝑥))(𝑥𝑖)

)︀
𝑢d𝑥 = 0. (2.15)

This gives, for each 𝑖 > 0:

𝑖𝑚𝑖+1 + 𝑖𝑔1𝑚𝑖 + 𝑖𝑔0𝑚𝑖−1 − ℎ3𝑚𝑖+3 − ℎ2𝑚𝑖+2 − ℎ1𝑚𝑖+1 − ℎ0𝑚𝑖 = 0. (2.16)

Hence, the coefficients of 𝑔 and ℎ are solution of the above infinite linear system. If 𝑔 is recovered,
𝑝 (except for the coefficient 𝑝0) could also be recovered from the division ℎ/𝑔. Finally the constant
coefficient 𝑝0 could also be recovered from the Equation (2.14), with 𝑖 = 0.

Let us focus now on the general multivariate case and formalize the ideas presented in the above
examples.

2.3.1 Holonomic distributions and their moments

Introduced by Schwartz [196], distributions generalize functions and measures.

Definition 2.3.3 (Test functions and distributions). Let ℰ = 𝒞∞(R𝑛) be the set of smooth functions over
R𝑛, equipped with the compact-open topology: 𝜙𝑘 → 𝜙 in ℰ if 𝜕𝛼𝑥𝜙𝑘 converges uniformly to 𝜕𝛼𝑥𝜙 over
every compact set, for each 𝛼 ∈ N𝑛.

Its topological dual ℰ ′ is the set of compactly supported distributions (or simply distributions in this work)
i.e. linear forms 𝑇 : ℰ → R such that:

∙ There exists a minimal compact set 𝐾 ⊆ R𝑛 (the support of 𝑇 ) such that ⟨𝑇, 𝜙⟩ = 0 whenever 𝜙
vanishes over 𝐾.

∙ ⟨𝑇, 𝜙𝑘⟩ → 0 whenever 𝜙𝑘 → 0 in ℰ .

ℰ ′ has a canonical D𝑛-module structure:

⟨𝐿𝑇, 𝜙⟩ := ⟨𝑇, 𝐿*𝜙⟩, 𝐿 ∈ D𝑛, 𝑇 ∈ ℰ ′, 𝜙 ∈ ℰ , (2.17)

where the adjoint operator 𝐿* is defined by

𝑥*𝑖 = 𝑥𝑖, 𝜕*𝑥𝑖
= −𝜕𝑥𝑖 , and (𝐿1𝐿2)* = 𝐿*

2𝐿
*
1.

Definition 2.3.4 (Holonomic distribution). A distribution 𝑇 ∈ ℰ ′ is holonomic if its annihilator is a
holonomic ideal of D𝑛:

Ann(𝑇 ) := {𝐿 ∈ D𝑛 | 𝐿𝑇 = 0 as a distribution} .

A measure supported on a set 𝐺, with density 𝑓 ∈ ℰ , is represented by the distribution 𝑓1𝐺, with
⟨𝑓1𝐺, 𝜙⟩ =

∫︀
𝐺
𝜙(𝑥)𝑓(𝑥)d𝑥.

We make the following assumption on 𝐺 ⊆ R𝑛, which is necessary for the correctness proofs in [C2]:

Assumption 2.3.5. 𝐺 is a compact 𝑛-dimensional semi-algebraic set. In particular, the following holds:
(1)𝐺 is an 𝑛-dimensional compact manifold such that its boundary can be decomposed as 𝜕𝐺 = 𝑍∪𝑍 ′,

with 𝑍 a finite union of (𝑛−1)-dimensional manifolds and 𝑍 ′ a negligible set w.r.t the (𝑛−1)-dimensional
Hausdorff measure.

(2) the ideal of polynomials vanishing over 𝜕𝐺 is radical and principal i.e., generated by a single
square-free polynomial 𝑔. In particular, the family {𝑔, 𝑔𝑥1 , . . . , 𝑔𝑥𝑛} is coprime, implying that the set of
singular points {𝑥 | 𝑔(𝑥) = 0 and∇𝑔(𝑥) = 0} is negligible in 𝜕𝐺.
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Definition 2.3.6 (Moments of a compactly supported distribution). The moments of a distribution 𝑇 ∈ ℰ ′
are:

𝑚𝛼(𝑇 ) := ⟨𝑇, 𝑥𝛼⟩, 𝛼 ∈ N𝑛. (2.18)

Note that if 𝑇 = 𝑓1𝐺 with 𝐺 compact and 𝑓 ∈ ℰ , then 𝑚𝛼(𝑓1𝐺) coincides with the moments defined
in Equation (2.12).

A convenient way to deal with moments of a distribution is the Fourier transform (also called character-
istic function).

Definition 2.3.7. The Fourier transform of a distribution 𝑇 ∈ ℰ ′ is the analytic function F{𝑇} of
𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ R𝑛 defined by:

F{𝑇}(𝑧) =
∑︁

𝛼∈N𝑛

𝑚𝛼(𝑇 )
(−𝐼 𝑧)𝛼
𝛼!

= ⟨𝑇, 𝑒−𝐼 𝑥·𝑧⟩, 𝑧 ∈ R𝑛.

Proposition 2.3.8. Let 𝑇 ∈ ℰ ′ and 𝐿 =
∑︀
𝛽

𝑞𝛽(𝑥)𝜕𝛽𝑥 ∈ D𝑛.

(𝑖) The Fourier transform of 𝐿𝑇 is related to that of 𝑇 by

F{𝐿𝑇} = 𝐿FF{𝑇}, with

𝐿F = 𝐿

[︂
𝑥𝑖 ↦→ 𝐼 𝜕𝑧𝑖
𝜕𝑥𝑖
↦→ 𝐼 𝑧𝑖

]︂
=
∑︁
𝛽

𝑞𝛽(𝐼 𝜕𝑧)(𝐼 𝑧)𝛽 . (2.19)

(𝑖𝑖) The moments of 𝐿𝑇 are related to those of 𝑇 by

(𝑚𝛼(𝐿𝑇 )) = 𝐿M (𝑚𝛼(𝑇 )), with

𝐿M = 𝐿

[︂
𝑥𝑖 ↦→ 𝑆𝛼𝑖

𝜕𝑥𝑖 ↦→ −𝛼𝑖𝑆
−1
𝛼𝑖

]︂
=
∑︁
𝛽

(−1)|𝛽|𝑞𝛽(𝑆𝛼)

(︃
𝑛∏︁

𝑖=1

(︀
𝛼𝑖𝑆

−1
𝛼𝑖

)︀𝛽𝑖

)︃
, (2.20)

Proposition 2.3.9. Let 𝑇 ∈ ℰ ′. An operator 𝐿 ∈ D𝑛 satisfies

⟨𝑇, 𝐿*𝑥𝛼⟩ = 0, for all 𝛼 ∈ N𝑛, (2.21)

if and only if 𝐿 ∈ Ann(𝑇 ).

Finally, the following proposition provides differential equations for measures supported on semi-
algebraic sets. Its proof is given in [C2] and is based on Lagrange’s identity and Stokes’ theorem.

Proposition 2.3.10. [C2, Prop.3.3] Let 𝐺 and 𝑔 as in Assumption 2.3.5, 𝑓 ∈ ℰ , 𝐿 ∈ Ann(𝑓) of order 𝑟.
Then 𝑔𝑟𝐿 ∈ Ann(𝑓1𝐺).

Hence, Proposition 2.3.10 gives an easy way to construct operators in Ann(𝑓1𝐺) from operators in
Ann(𝑓). Indeed, given a Gröbner basis {𝐿1, . . . , 𝐿𝑘} of Ann(𝑓), and 𝑔 ∈ R[𝑥] vanishing over 𝜕𝐺, each
operator 𝑔𝑟𝑖𝐿𝑖 (with 𝑟𝑖 the order of 𝐿𝑖) annihilates 𝑓1𝐺 as a distribution. Therefore, each operator 𝑅𝑖 :=
(𝑔𝑟𝑖𝐿𝑖)

M gives a valid recurrence for the sequence of moments (𝑚𝛼). Together with Proposition 2.3.8 and
in particular Equation (2.20), this provides a method for computing linear recurrences for the moments.
The advantage is that when the coefficients of the polynomial 𝑔 are given as parameters, the obtained
recurrences remain linear with respect to them.

However, from the fact that 𝑓 is holonomic, one can not directly guarantee that the ideal generated
by {𝑔𝑟1𝐿1, . . . , 𝑔

𝑟𝑘𝐿𝑘} is holonomic. Similarly, we are not able to prove (or refute) that {𝑅1, . . . , 𝑅𝑘} is
holonomic in general. Nevertheless, one can apply a Gröbner basis algorithm, which will possibly return
such a basis. This heuristic is proposed in Algorithm 14.

We proved that this algorithm returns a Gröbner basis of a holonomic ideal, in the particular case
of an exponential-polynomial density (including the Lebesgue measure), and a smooth boundary,
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Algorithm 14 RECURRENCESMOMENTS(𝑛, 𝑔, {𝐿1, . . . , 𝐿𝑘} )

Input: Gröbner basis {𝐿1, . . . , 𝐿𝑘} for Ann(𝑓), 𝑔.
Output: Gröbner basis for Ann(𝑚𝛼).

1: 𝑅𝑖 ← (𝑔𝑟𝑖𝐿𝑖)
M , as in (2.20), with 𝑟𝑖 the order of 𝐿𝑖, for 𝑖 ∈ [1 . . 𝑘]

2: return GröbnerBasis({𝑅1, . . . , 𝑅𝑘},R𝑛)

extending [163, Prop. 4]. Note that creative telescoping algorithms of Oaku [163], are proven to compute
a holonomic system, but when the coefficients of the polynomial 𝑔 are given as parameters, the obtained
recurrences are not linear with respect to them.

However, having a Gröbner basis is not mandatory for the reconstruction problems addressed in the
next section and the recurrences obtained as above turn out to be sufficient and constitute the basic brick
of our reconstruction method.

2.3.2 Reconstruction methods

The general reconstruction problem considered is the following:

Problem 1 (General Inverse Problem). Let 𝜇𝑓 = 𝑓1𝐺d𝑥 be a measure supported on a compact semi-
algebraic set 𝐺, with holonomic 𝑓 . Given a finite number of moments 𝑚𝛼, |𝛼| 6 𝑁 , recover a polynomial
𝑔 ∈ K[𝑥] vanishing on the algebraic boundary of 𝐺 and the coefficients of a holonomic system satisfied
by 𝑓 .

The strategy proposed is:

∙ Take an ansatz 𝐿′ =
∑︀
𝛽∈𝐴

𝑞𝛽(𝑥)𝜕𝛽𝑥 , for a specified finite set 𝐴 ⊂ N𝑛 and polynomials 𝑞𝛽(𝑥) with

specified degrees 𝑑𝛽 .

∙ Let 𝑅 = 𝐿′M (see Equation (2.20)). Solve a finite-dimensional linear system in the unknown
coefficients of the polynomials 𝑞𝛽 :

(𝑅𝑚(𝑓1𝐺))𝛼 = 0, |𝛼| 6 𝑁. (2.22)

This requires the knowledge of moments 𝑚𝛼(𝑓1𝐺) with |𝛼| 6 𝑁 + max
𝛽∈𝐴
{𝑑𝛽 − |𝛽|} (see Equa-

tion (2.20)).

∙ From the solution 𝐿′ of (2.22), extract a polynomial 𝑔 vanishing on 𝜕𝐺 and an operator 𝐿̃ ∈ Ann(𝑓).

Note that the solution of the system (2.22) corresponds to a truncation of the infinite system (2.21), since
⟨𝑓1𝐺, 𝐿′*𝑥𝛼⟩ = 0, for |𝛼| 6 𝑁 . Hence, one is interested in obtaining bounds 𝑁̂ on 𝑁 , such that any
solution of (2.22) is also solution of (2.21). Such an a priori uniform bound depending only on 𝐴 and 𝑑𝛽
does not exist in general.

Remark 2.3.11. As noted in [13], for general holonomic operators 𝐿with 𝑟 > 1, the number𝑁 of required
moments, in order to correctly recover the parameters, might depend also on specific coefficients of 𝐿.
An example is the 𝑛th Legendre polynomial, whose first 𝑛 moments (taken over [−1, 1]) vanish, while
𝐿𝑛 = 𝜕𝑥((1− 𝑥2)𝜕𝑥) + 𝑛(𝑛+ 1). Hence the reconstruction of 𝜇𝑓 depends also on the parameter 𝑛, which
is part of the definition of 𝐿𝑛. On the contrary, for exponential-polynomial case, we show that 𝑁 depends
only on the degrees of the polynomials involved.

Another issue detailed in [C2] is that 𝐿′ may not be factorized as 𝑔(𝑥)𝑟𝐿̃ with 𝑔 vanishing on 𝜕𝐺 and
𝐿̃𝑓 = 0.

These issues can be solved when 𝑓 is exponential-polynomial:
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Problem 2 (Exp-Poly Inverse Problem). Let a measure 𝜇𝑓 = 𝑓1𝐺d𝑥, supported on a compact semi-
algebraic set 𝐺, whose algebraic boundary is included in the zero set of a polynomial 𝑔 ∈ K[𝑥]𝑑. Let
𝑓 = exp(𝑝), with 𝑝 ∈ K[𝑥]𝑠. Given 𝑠, 𝑑, and a finite number of moments 𝑚𝛼, |𝛼| 6 𝑁 , recover the
coefficients of both 𝑔 and 𝑝.

Algorithm 15 and Theorem 2.3.12, proved in [C2], show that this reconstruction problem boils down
to solving a linear system of 3𝑑+ 𝑠− 1 equations, involving moments up to degree |𝛼| 6 4𝑑+ 2(𝑠− 1).

Algorithm 15 RECONSTRUCTEXPPOLY(𝑛, 𝑑, 𝑠,𝑁, (𝑚𝛼)|𝛼|6𝑁+𝑑+𝑠−1)

Input: 𝑛 > 2, degrees 𝑑, 𝑠 > 0, moments 𝑚𝛼 for |𝛼| 6 𝑁 + 𝑑+ 𝑠− 1.
Output: 𝑔, 𝑝 ∈ K[𝑥] with deg (𝑔) 6 𝑑 and deg (𝑝) 6 𝑠.

◁ Find 𝐿′
𝑖 ∈ Ann(𝑓1𝐺)

1: ℎ0 ←
∑︀

|𝛾|6𝑑

ℎ0𝛾𝑥
𝛾 and ℎ𝑖 ←

∑︀
|𝛾|6𝑑+𝑠−1

ℎ𝑖𝛾𝑥
𝛾 for 𝑖 ∈ [1 . . 𝑛],

with symbolic coefficients ℎ𝑖𝛾

2: 𝐿′
𝑖 ← ℎ0𝜕𝑥𝑖 − ℎ𝑖 for 𝑖 ∈ [1 . . 𝑛]

3: Find a nontrivial solution {ℎ𝑖𝛾} of the linear system:

(𝐿′M
𝑖 𝑚)𝛼 = 0, 𝑖 ∈ [1 . . 𝑛], |𝛼| 6 𝑁

◁ Reconstruct 𝑔 and 𝑝
4: 𝑔 ← ℎ0 and 𝑝𝑖 ← ℎ𝑖/𝑔 for 𝑖 ∈ [1 . . 𝑛]

5: 𝑝←
𝑛∑︀

𝑖=1

𝑥𝑖∫︀
0

𝑝𝑖(0, . . . , 0, 𝑡𝑖, 𝑥𝑖+1, . . . , 𝑥𝑛)d𝑡𝑖

6: return (𝑔, 𝑝)

Theorem 2.3.12. [C2, Thm. 4.1] Let 𝑓(𝑥) = exp(𝑝(𝑥)) with deg 𝑝 = 𝑠, and 𝐺, 𝑔 with deg 𝑔 = 𝑑 be as in
Assumption 2.3.5. If 𝑁 > 𝑁̂ = 3𝑑+ 𝑠− 1, then RECONSTRUCTEXPPOLY(𝑛, 𝑑, 𝑠,𝑁, (𝑚𝛼)) returns 𝑔 = 𝜆𝑔
with 𝜆 ∈ K*, and 𝑝 = 𝑝− 𝑝(0). This requires moments up to degree 4𝑑+ 2(𝑠− 1).

Moreover, if 𝑔 > 0 over 𝐺, 𝑁̂ can be only 2𝑑+ 𝑠− 1, requiring moments up to degree 3𝑑+ 2(𝑠− 1).

The general holonomic case is addressed in two steps: firstly, for recovering the density, it can be
proved that 𝑁 is finite, but no a priori bound for it is known; secondly, once the density is known, a
stronger result is proved for the support reconstruction, since an explicit uniform bound on the number
of required moments is given. The corresponding theorems proved in [C2] are summarized below. For
the support reconstruction, the following assumption is made. Roughly speaking, the differential system
must not be singular over the Zariski closure of 𝜕𝐺, except for a zero-measure set.

Assumption 2.3.13. The pair {𝑔, 𝑞𝑖,𝑟} is coprime for each 𝑖 ∈ [1 . . 𝑛].

Theorem 2.3.14. [C2, Thm. 4.4] Let 𝑖 ∈ [1 . . 𝑛], 𝑓 analytic, 𝐺, 𝑔 ∈ K[𝑥]𝑑 satisfying Assumption 2.3.5, and

𝐿 =

𝑟∑︁
𝑗=0

𝑞𝑗(𝑥)𝜕𝑗𝑥𝑖
∈ Ann(𝑓) ∩K[𝑥]⟨𝜕𝑥𝑖⟩,

of minimal order 𝑟, with 𝑞𝑟 of minimal degree. Then, Algorithm RECONSTRUCTDENSITY(𝑛, 𝑖, 𝑟, 𝑠,𝑁, (𝑚𝛼))
returns 𝐿̃ = 𝜆𝐿 with 𝜆 ∈ K* for 𝑠 > 𝑑𝑟 + max{deg (𝑞𝑗)} and 𝑁 large enough.

Theorem 2.3.15. [C2, Thm. 4.5] Let analytic 𝑓 be annihilated by the order 𝑟 rectangular system
{𝐿1, . . . , 𝐿𝑛}, 𝐺 be as in Assumption 2.3.5 with 𝑔 ∈ K[𝑥] of degree 𝑑, and assume also Assumption 2.3.13.
Then, for 𝑁 > 𝑁̂ := (2𝑟 − 1)𝑑+ (𝑑− 1)𝑏+ 𝑠, with 𝑏 = 𝑟 mod 2 and 𝑠 = max{𝑞𝑖,𝑟}, RECONSTRUCTSUP-
PORT(𝑛, 𝑑, 𝑟, {𝐿𝑖}, 𝑁, (𝑚𝛼)) returns 𝑔 = 𝜆𝑔 with 𝜆 ∈ K*.

In particular, this proves that when the density is known, the support can be reconstructed using
moments up to degree (3𝑟 − 1)𝑑+ (𝑑− 1)𝑏+ 𝑠+ max𝑖𝑗{deg (𝑞𝑖,𝑗)− 𝑗}.
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In the algorithms proposed, “exact computations” are assumed, that is, both the polynomial co-
efficients and the given moments 𝑚𝛼 lie in a computable finite extension of Q. The practical case of
approximately known numerical moments was for the moment only briefly analyzed. A final example in
this sense is presented (some others are available in [C2]), while a thorough robustness analysis remains
to be done.

Algorithm 16 RECONSTRUCTDENSITY(𝑛, 𝑖, 𝑟, 𝑠,𝑁, (𝑚𝛼)|𝛼|6𝑁+𝑠)

Input: 𝑛 > 2, 𝑖 ∈ [1 . . 𝑛], order 𝑟, maximum degree 𝑠, moments 𝑚𝛼 for |𝛼| 6 𝑁 + 𝑠.

Output: 𝐿̃ =
𝑟∑︀

𝑗=0

𝑞𝑗(𝑥)𝜕
𝑗
𝑥𝑗

with deg (𝑞𝑗) 6 𝑠.

◁ Find 𝐿′ ∈ Ann(𝑓1𝐺) ∩K[𝑥]⟨𝜕𝑥𝑖⟩
1: ℎ𝑗 ←

∑︀
|𝛾|6𝑠

ℎ𝑗𝛾𝑥
𝛾 for 𝑗 ∈ [0 . . 𝑟] with symbolic coefficients ℎ𝑗𝛾

2: 𝐿′ ←
𝑟∑︀

𝑗=0

ℎ𝑗(𝑥)𝜕
𝑗
𝑥𝑖

3: Find a nontrivial solution {ℎ𝑗𝛾} of the linear system:

(𝐿′M𝑚)𝛼 = 0, |𝛼| 6 𝑁

◁ Extract minimal 𝐿 ∈ Ann(𝑓) ∩K[𝑥]⟨𝜕𝑥𝑖⟩
4: ℓ← GCD(ℎ0, . . . , ℎ𝑟) and 𝑞𝑗 ← ℎ𝑗/ℓ for 𝑗 ∈ [1 . . 𝑛].

5: return 𝐿̃ =
𝑟∑︀

𝑗=0

𝑞𝑗(𝑥)𝜕
𝑗
𝑥𝑗

Algorithm 17 RECONSTRUCTSUPPORT(𝑛, 𝑑, 𝑟, {𝐿𝑖}𝑛𝑖=1, 𝑁, (𝑚𝛼))

Input: 𝑛 > 2, degree 𝑑, order 𝑟, rectangular system {𝐿1, . . . , 𝐿𝑛} of order 𝑟, moments 𝑚𝛼 for |𝛼| 6 𝑁 + 𝑑𝑟 +
max𝑖𝑗{deg (𝑞𝑖,𝑗)− 𝑗}.

Output: polynomial 𝑔(𝑥) ∈ K[𝑥]𝑑 vanishing over 𝜕𝐺.

1: ℎ←
∑︀

|𝛾|6𝑑𝑟

ℎ𝛾𝑥
𝛾 with symbolic coefficients ℎ𝛾

2: Find a nontrivial solution {ℎ𝛾} of the linear system:(︁
(ℎ𝐿𝑖)

M𝑚
)︁
𝛼
= 0, |𝛼| 6 𝑁, 𝑖 ∈ [1 . . 𝑛]

3: 𝑔 ← ℎ/GCD(ℎ, ℎ𝑥1 , . . . , ℎ𝑥𝑛)
4: return 𝑔

2.3.3 Example and conclusion

Our implementation2 uses OreAlgebra and OreGroebnerBasis routines from the Holonomic
Functions library [114]. The exactly computed moments 𝑚𝑖𝑗 (obtained from the recurrences given
by Algorithm 14 together with closed-form initial conditions, when possible) are truncated to 𝑚̃𝑖𝑗 , s.t.
⌊− log10

𝑚𝑖,𝑗−𝑚̃𝑖𝑗

𝑚𝑖𝑗
⌋ = 𝜀 i.e., 𝜀 represents the number of correct digits of 𝑚̃𝑖𝑗 .

In a second time, Algorithm 15 solves the inverse problem given the approximate 𝑚̃𝑖𝑗 . For numerically
solving the resulting overdetermined systems of linear equations, we employ a Least Mean Squares
method of Mathematica.

Example 2.3.16 (Algebraic Support, Lebesgue measure). Consider the moments 𝑚𝑖𝑗 =
∫︀
𝐺

𝑥𝑖𝑦𝑗d𝑥d𝑦, with

respect to the Lebesgue measure, with 𝐺 depicted with the checkered pattern in Figure 2.3.

2The corresponding code is available at http://homepages.laas.fr/fbrehard/HolonomicMomentProblem

http://homepages.laas.fr/fbrehard/HolonomicMomentProblem
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Figure 2.3 – (a) 𝐺 in checkered pattern, together with 𝜕𝐺 in black. For 𝜀 > 4: reconstructed and original boundary
cannot be distinguished at this scale; in dashed-blue, 𝜀 = 4, while in red (b) 𝜀 = 2.

(i) Direct problem: Given 𝑔 = (𝑥2 + 𝑦2 − 1)(𝑥2 + 𝑦2 − 9)(𝑥2 + (𝑦 − 2)2 − 1)((𝑥− 2)2 + 𝑦2 − 1), which
vanishes on 𝜕𝐺, and Ann{1} = {𝜕𝑥, 𝜕𝑦}, Algorithm 14 returns a Gröbner basis with 9 generators and
with 36 monomials under the staircase: {𝑆𝑘

𝑖 𝑆
𝑙
𝑗 , 𝑘, 𝑙 ∈ N, 𝑘 + 𝑙 6 7}.

(ii) Inverse problem: Suppose now given a finite number of numerically computed moments 𝑚̃𝑖𝑗 of the
Lebesgue measure with unknown support 𝐺. The goal is to reconstruct 𝑔 =

∑︀
𝑖+𝑗68

𝑔𝑖𝑗𝑥
𝑖𝑦𝑗 which vanishes

on 𝜕𝐺. The results of Algorithm 15 called with parameters (2, 8, 0, 22, (𝑚̃𝑖𝑗)|𝑖+𝑗|629) are depicted in
Figure 2.3: the reconstructed boundary cannot be distinguished from the exact one at the drawing scale,
when the moments 𝑚̃𝑖𝑗 are given with more than 4 correct digits. When 2 6 𝜀 6 4, the actual geometric
boundary of 𝐺, can still be very well reconstructed, although the algebraic boundary is degraded.

The proposed method is very robust on the above academic examples, but a further study is needed
for an efficient implementation in practical higher-dimensional cases. On the theoretical side, this study
provided further insight on the question raised in [126] regarding the finite determinateness of a measure. To
sum up, provided Assumptions 2.3.5 and 2.3.13 hold, for a measure with compact algebraic support 𝐺,
with 𝑔 ∈ K[𝑥]𝑑 vanishing on 𝜕𝐺 and known holonomic density 𝑓 , the moments up to degree 𝑁 (which
only depends on 𝑑 and the order of a rectangular differential system which annihilates 𝑓 ) determine in a
constructive and robust manner the coefficients of 𝑔. Thus, this determines in turn all the other moments.
When both the density and the support are unknown, a uniform bound 𝑁 does not exist in general. We
provided the solution for the special case of unknown exponential-polynomial density.

From power to orthogonal series. Broadly speaking, the above contributions exploit the algebraic
properties of power series solutions of holonomic linear differential (systems) of equations. Another
natural aspect is to consider other orthogonal series expansions. In my research, this was dealt with from
the point of view of polynomial approximation as discussed below.

2.4 Rigorous Polynomial Approximations

When computing approximate solutions, one often uses polynomial approximations. This is frequently
useful since such an approximation may be more compact to represent and store, and also more efficient
to evaluate and manipulate. Concerning evaluation, polynomial approximations are especially important.
In general, the basic functions that are implemented in hardware on a processor are limited to addition,
subtraction, multiplication, and sometimes division. Moreover, division is significantly slower than
multiplication. The only functions of one variable that one may evaluate using a bounded number
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of additions/subtractions, multiplications and comparisons are piecewise polynomials: hence, on
such systems, polynomial approximations are not only a good choice for implementing more complex
mathematical functions, they are frequently the only one that makes sense. Polynomial approximations
for common functions used to be tabulated in handbooks [1]. Nowadays, most computer algebra systems
provide routines for obtaining polynomial approximations for such functions. However, when bounds
for the approximation errors are available, they are not guaranteed to be accurate and are sometimes
unreliable.

An important part of my work deals with solving this shortcoming using Rigorous Polynomial Approxi-
mations (RPAs): a polynomial approximation together with rigorous error bounds. More specifically, an
RPA for a function 𝑓 defined over an interval 𝐼 is a couple (𝑃,∆) where 𝑃 is a polynomial and ∆ is an
interval such that 𝑓(𝑥)− 𝑃 (𝑥) ∈ ∆, for all 𝑥 ∈ 𝐼 .

In this framework, D-finite functions play an important role, since (as mentioned in Section 2.1) for
this class of functions, many recent efficient algorithms provide both polynomial approximations and
rigorous error bound. When expanding in power series a given D-finite function 𝑓 , efficient algorithms
were developed for computing its coefficients and also for providing effective bounds on the tail inside
the disk of convergence of the series. From the linear recurrence on the coefficients, one can produce
majorant series whose speed of convergence is under control [218, 148] (an example for such majorant
series was given in 2.2). Moreover, analytic continuation provides a generalization of this process outside
the disk of convergence. Reliable approximations can be obtained on any disk containing no singularities
of 𝑓 , given a polygonal path starting from the origin, which avoids the (finitely many) singularities
of the equation and such that on each of its vertices, translated arbitrarily precise initial conditions
for the same differential equation can be computed. This process was automatically and efficiently
implemented [148, 147] in computer algebra systems like Maple or Sage.

RPAs constructed on power series, can be obtained also for non D-finite functions, when such
functions are represented as an expression tree composed of basic functions (D-finite or other functions
for which RPAs can be constructed) together with arithmetic operations (addition, multiplication,
division, square-root). Recursively evaluating such a tree, by overloading corresponging operators
with operations on polynomials and error bounds, is known as Taylor model algebra. This tool was
made popular by Makino and Berz and similar ideas were employed in a series of articles of several
authors [140, 160, 141]. During my PhD, I already analyzed, implemented and proposed improvements
for Taylor models [R3], then proposed with N. Brisebarre [C17] a new so-called Chebyshev models (CMs)
algebra, using Chebyshev interpolants.

The main idea is that despite its simplicity, Taylor expansion has several drawbacks when uniformly
approximating 𝑓 over a given compact interval. When 𝑓 is not smooth enough on the disc surrounding
the considered interval, convergence cannot be ensured and one needs to suitably split the interval and
provide a Taylor series for each subsegment (via analytic continuation for instance). Moreover, even
when convergent, the 𝑛-th order truncated Taylor series of 𝑓 is usually not the best uniform polynomial
approximation of degree 𝑛 over the segment under consideration. From this point of view, truncated
Chebyshev series or Chebyshev interpolants prove to be a better choice and excellent accounts on this
topic are given in [33, 49, 76, 143, 177, 211, 186].

Subsequently, we proposed in [J4] a method for computing CMs for D-finite functions. The key
ingredient of our method is that the coefficients of Chebyshev series expansions also satisfy linear
recurrences with polynomial coefficients (like power series do). However, these recurrences do not yield
a direct computation of the coefficients, owing chiefly to the lack of initial conditions. Therefore, we used
a combination of a classical method dating back to Clenshaw, revisited in light of the properties of the
recurrence relations we consider, and a rigorous enclosure method for the solution of the differential
equation based on a fixed point theorem. One more important contribution of this work is that the
algorithms for obtaining these RPAs have a linear arithmetic complexity.
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2.4.1 Chebyshev expansions of D-finite functions

Chebyshev polynomials and Chebyshev series

The Chebyshev family of polynomials is defined using the following three-term recurrence relation:

𝑇0(𝑋) = 1, 𝑇1(𝑋) = 𝑋, (2.23)
𝑇𝑛+2(𝑋) = 2𝑋𝑇𝑛+1(𝑋)− 𝑇𝑛(𝑋), 𝑛 > 0, (2.24)

which gives a basis forR[𝑋]. Equivalently, 𝑇𝑛 is defined to be the only polynomial satisfying 𝑇𝑛(cos(𝜃)) =
cos(𝑛𝜃) for all 𝜃 ∈ R. In particular, one gets that |𝑇𝑛(𝑡)| 6 1 for all 𝑡 ∈ [−1, 1]. To obtain more symmetric
formulas, one can define 𝑇−𝑛 := 𝑇𝑛 for all 𝑛 > 0, which is consistent with the trigonometric definition of
𝑇𝑛.

Similarly to the monomial basis, we have simple formulas for multiplication and (indefinite) integra-
tion:

𝑇𝑛𝑇𝑚 =
1

2
(𝑇𝑛+𝑚 + 𝑇𝑛−𝑚), 𝑛,𝑚 ∈ Z,∫︁

𝑇𝑛 =
1

2

(︂
𝑇𝑛+1

𝑛+ 1
− 𝑇𝑛−1

𝑛− 1

)︂
, 𝑛 ∈ Z, (2.25)

where 𝑇𝑛+1/(𝑛 + 1), resp. 𝑇𝑛−1/(𝑛 − 1), is 0 by convention when the denominator vanishes (that is,
when 𝑛 = −1, resp. 𝑛 = 1). However, contrary to the monomial basis, derivation in the Chebyshev basis
does not have a compact expression:

𝑇 ′
𝑛 = 𝑛

∑︁
|𝑖|<|𝑛|

𝑖 ̸=𝑛 mod 2

𝑇𝑖 =

{︂
𝑛(𝑇−𝑛+1 + · · ·+ 𝑇−1 + 𝑇1 + · · ·+ 𝑇𝑛−1), 𝑛 even,
𝑛(𝑇−𝑛+1 + · · ·+ 𝑇0 + · · ·+ 𝑇𝑛−1), 𝑛 odd. (2.26)

Another important property is that Chebyshev polynomials form a family (𝑇𝑛)𝑛>0 of orthogonal
polynomials with respect to the following inner product, defined on 𝐿2([−1, 1]), the space of real-valued
measurable functions over [−1, 1] for which

∫︀ 1

−1
𝑓(𝑡)2(1− 𝑡2)−1/2 d𝑡 < +∞:

⟨𝑓, 𝑔⟩ :=

∫︁ 1

−1

𝑓(𝑡)𝑔(𝑡)√
1− 𝑡2

d𝑡 =

∫︁ 𝜋

0

𝑓(cos 𝜃)𝑔(cos 𝜃) d𝜃 ∈ R, 𝑓, 𝑔 ∈ 𝐿2.

One has: ⟨𝑇0, 𝑇0⟩ = 𝜋, ⟨𝑇𝑛, 𝑇𝑛⟩ = 𝜋
2 , for 𝑛 > 0, and ⟨𝑇𝑛, 𝑇𝑚⟩ = 0, for 𝑛 ̸= 𝑚.

Whence, the 𝑛-th order Chebyshev coefficient of 𝑓 ∈ 𝐿2 is defined by:

[𝑓 ]𝑛 :=
1

𝜋
⟨𝑓, 𝑇𝑛⟩ =

1

𝜋

∫︁ 𝜋

0

𝑓(cos 𝜃) cos(𝑛𝜃) d𝜃, 𝑛 ∈ Z. (2.27)

Note that [𝑓 ]−𝑛 = [𝑓 ]𝑛 for all 𝑛 ∈ Z and the symmetric 𝑛-th order truncated Chebyshev series of 𝑓 is
defined by:

п𝑛 · 𝑓 :=
∑︁
|𝑖|6𝑛

[𝑓 ]𝑖𝑇𝑖 = [𝑓 ]−𝑛𝑇−𝑛 + · · ·+ [𝑓 ]0𝑇0 + · · ·+ [𝑓 ]𝑛𝑇𝑛, 𝑛 > 0.

Beside convergence of п𝑛 · 𝑓 to 𝑓 in 𝐿2([−1, 1]) [49, Chap. 4], one also has the following result of
uniform and absolute convergence [211, Thm. 3.1]:

Theorem 2.4.1. If 𝑓 is Lipschitz continuous on [−1, 1], it has a unique representation as a Chebyshev
series,

𝑓(𝑥) =

∞∑︁
𝑘=−∞

[𝑓 ]𝑘𝑇𝑘(𝑥), with [𝑓 ]−𝑘 = [𝑓 ]𝑘 for all 𝑘 ∈ Z,

which is absolutely and uniformly convergent.
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This theorem shows the effectiveness of approximating by truncated Chebyshev series even when
functions have low regularity. Moreover, the smoother 𝑓 is, the faster its approximants converge.
From [211, Thm 7.2], one has that if the 𝜈th derivative of 𝑓 is of bounded variation 𝑉 , then for a
truncation order 𝑛, the speed of convergence is in 𝑂(𝑉 𝑛−𝜈). According to [211, Thm 8.2] for analytic
functions, if 𝜌 > 0 and 𝑓 is analytic in the neighborhood of the set bounded by the Bernstein 𝜌-ellipse
ℰ𝜌 = {𝑧 = (𝜌𝑒𝑖𝜃 + 𝜌−1𝑒−𝑖𝜃)/2 ∈ C | 𝜃 ∈ [0, 2𝜋]} of foci −1 and 1, the convergence is in 𝑂(𝑀𝜌−𝑛), where
𝑀 upper bounds |𝑓 | on ℰ𝜌. In particular, for entire functions (𝜌 =∞), the convergence is faster than any
geometric sequence [33].

Note also that truncated Chebyshev series are near-best approximations with respect to the uniform
norm, denoted by ‖ · ‖∞ in what follows, over [−1, 1] on the space 𝒞0 = 𝒞0([−1, 1]) of continuous
functions over [−1, 1] [211, Thm. 16.1]:

Theorem 2.4.2. Let 𝑛 ∈ N, 𝑛 > 1, 𝑓 ∈ 𝒞0, and 𝑝*𝑛 denote the polynomial of degree at most 𝑛 that
minimizes ||𝑓 − 𝑝||∞, then

||𝑓 − п𝑛 · 𝑓 ||∞ 6

(︂
4 +

4

𝜋2
log(𝑛+ 1)

)︂
‖𝑓 − 𝑝*𝑛‖∞.

The Chebyshev Recurrence Relation From Equations (2.23) and (2.25) follows the important property
that the Chebyshev coefficients of a D-finite function obey a linear recurrence with polynomial coefficients,
a fact that was dealt with in a series of articles [75, 76, 169, 135, 85], and can be summarized in the
framework of a suitable skew-polynomial ring (which were briefly defined in Section 2.1) as follows.

Denote byQ(𝑛)⟨𝑆, 𝑆−1⟩ the skew Laurent polynomial ring overQ(𝑛) in the indeterminate 𝑆, subject
to the commutation rules

𝑆𝜆 = 𝜆𝑆 (𝜆 ∈ Q), 𝑆𝑛 = (𝑛+ 1)𝑆. (2.28)

Likewise, Q[𝑛]⟨𝑆, 𝑆−1⟩ ⊂ Q(𝑛)⟨𝑆, 𝑆−1⟩ is the subring of noncommutative Laurent polynomials in 𝑆
themselves with polynomial coefficients. The elements of Q[𝑛]⟨𝑆, 𝑆−1⟩ identify naturally with linear
recurrence operators through the left action ofQ[𝑛]⟨𝑆, 𝑆−1⟩ on sequences (𝑢𝑛)𝑛∈Z, defined by (𝑛 · 𝑢)𝑛 =
𝑛𝑢𝑛 and (𝑆 · 𝑢)𝑛 = 𝑢𝑛+1. Recall that 𝐿 denotes the differential operator appearing in Equation (2.1).

Theorem 2.4.3. [169, 134, 135, 183, 17] Let 𝑢, 𝑣 be analytic functions on some complex neighborhood of
the segment [−1, 1], with Chebyshev expansions

𝑢(𝑥) =

∞∑︁
𝑛=−∞

𝑢𝑛𝑇𝑛(𝑥), 𝑣(𝑥) =

∞∑︁
𝑛=−∞

𝑣𝑛𝑇𝑛(𝑥).

There exist difference operators 𝑃,𝑄 ∈ Q[𝑛]⟨𝑆, 𝑆−1⟩with the following properties.

1. The differential equation 𝐿 · 𝑢(𝑥) = 𝑣(𝑥) holds if and only if

𝑃 · (𝑢𝑛) = 𝑄 · (𝑣𝑛). (2.29)

2. The left-hand side operator 𝑃 is of the form 𝑃 =

𝑠∑︁
𝑘=−𝑠

𝑏𝑘(𝑛)𝑆𝑘 where 𝑠 = 𝑟 + max𝑖(deg 𝑎𝑖) and

𝑏−𝑘(−𝑛) = −𝑏𝑘(𝑛) for all 𝑘.

3. Letting

𝛿𝑟(𝑛) = 2𝑟
𝑟−1∏︁

𝑖=−𝑟+1

(𝑛− 𝑖), 𝐼 =
1

2𝑛
(𝑆−1 − 𝑆), (2.30)

we have 𝑄 = 𝑄𝑟 = 𝛿𝑟(𝑛)𝐼𝑟 (this expression is to be interpreted as a polynomial identity in
Q(𝑛)⟨𝑆, 𝑆−1⟩). In particular, 𝑄 depends only on 𝑟 and satisfies the same symmetry property as 𝑃 .
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A sloppy but perhaps more intuitive statement of the main point of Theorem 2.4.3 would be:
“(
∫︀

)𝑟𝐿 · 𝑢 = 𝑤 if and only if 𝛿𝑟(𝑛)𝑃 · 𝑢 = 𝑤, up to some integration constants”.
While several properties of the Chebyshev recurrence (2.29), like the injectivity of 𝑄 restricted to

symmetric sequences, the structure of recurrence singularities, as well as the asymptotic structure of the
solutions of this recurrence are analyzed and proved in [J4], compared with power series, this recurrence
does not yield a direct computation of the coefficients, due to several difficulties:

∙ Lack of initial conditions: unlike the first few Taylor coefficients of 𝑦, the Chebyshev coefficients
that could serve as initial conditions for the recurrence are not related in any direct way to initial
or boundary conditions of the differential equation. Moreover, the order 2𝑠 of the recurrence is
usually larger than that of the differential equation, so we need to somehow “obtain more initial
values for the recurrence than we naturally have at hand”.

∙ Existence of leading and trailing singularities of the recurrence (2.29) (over which we have some
control [J4, Prop. 2.7]).

∙ Chebyshev recurrences always admit divergent solution sequences, which do not correspond to the
expansions of solutions of the differential equation the recurrence comes from. It can be proved,
using the main asymptotic existence theorem for linear recurrences (Birkhoff-Trjitzinsky), that in
general a Chebyshev recurrence (like in Theorem 2.4.3 (2)) has a basis of 2𝑠 "germs of solutions at
infinity", half of them convergent and half divergent [J4, Corollary 3.6].

Due to the above mentioned difficulty, the numerical evaluation of Chebyshev series coefficients by
(forward) recurrence unrolling is problematic, as exemplified below.

Example 2.4.4 (Numerical evaluation of forward recurrence for Chebyshev series coefficients. Part 1).
The Chebyshev recurrence associated to the equation 𝑦′ = 𝑦 is

(𝑃 · 𝑢)𝑛 = 𝑢(𝑛+ 1) + 2𝑛𝑢(𝑛)− 𝑢(𝑛− 1) = 0.

In terms of the modified Bessel functions 𝐼𝜈 and 𝐾𝜈 , a basis of solutions of the recurrence is given by the
sequences (𝐼𝜈(1))𝜈∈Z and (𝐾𝜈(1))𝜈∈Z. The former is the coefficient sequence of the Chebyshev expansion
of the exponential function and decreases as Θ(2−𝜈 𝜈!−1). The later satisfies 𝐾𝜈(1) = Θ(2𝜈 (𝜈 − 1)!).
Hence, even if we had a way of obtaining very accurate initial conditions of the recurrence, forward
unrolling would result in very unstable numerical computations, as practically shown in comparison
with the Taylor counterpart, in Table 2.2.

Taylor series: exp(𝑥) =
∑︁ 1

𝑛!
𝑥𝑛 Chebyshev series: exp(𝑥) =

∑︁
𝐼𝑛(1)𝑇𝑛(𝑥)

Coeff. Recurrence: 𝑢(𝑛+ 1) =
𝑢(𝑛)

𝑛+ 1
Coeff. Recurrence: 𝑢(𝑛+ 1) = −2𝑛𝑢(𝑛) + 𝑢(𝑛− 1)

Rec. unrolling: Accurate value: Rec. unrolling: Accurate value:
𝑢(0) = 1 1/0! = 1

𝑢(1) = 1 1/1! = 1

𝑢(2) = 0.5 1/2! = 0.5

...
...

𝑢(50) ≈ 3.28 · 10−65 1/50! ≈ 3.28 · 10−65

𝑢(0) = 1.266 𝐼0(1) ≈ 1.266

𝑢(1) = 0.565 𝐼1(1) ≈ 0.565

𝑢(2) ≈ 0.136 𝐼2(1) ≈ 0.136

...
...

𝑢(50) ≈ 4.450 · 1067 𝐼50(1) ≈ 2.934 · 10−80

Table 2.2 – Example of numerical computation (precision binary64) of power series coefficients (left) vs.
Chebyshev series coefficients (right) for exp, by direct recurrence unrolling (first and 3rd column), while
the accurate values are given in the second and 4th column.

To compute these solutions efficiently, despite the difficulties discussed above, a method originally
due to Clenshaw [56]3 and already discussed in the Chebyshev series context in [75, 76, 183] can be

3The Clenshaw method we are referring to, should not be confused with the Horner-like scheme for Chebyshev polynomials
known as Clenshaw’s algorithm [55].
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used. This is related to Miller’s well-known backward recurrence technique [20, 226] to compute minimal
(“slowest increasing”) solutions of three-term recurrences. Miller’s idea is to compute the coefficients
𝑢𝑁 , 𝑢𝑁−1, . . . , 𝑢0 of a linear recurrence sequence in the backward direction, starting form arbitrary
“initial conditions” 𝑢𝑁+1 and 𝑢𝑁+2. When 𝑁 goes to infinity (𝑢𝑁+1, 𝑢𝑁+2 being chosen once and for
all), the computed coefficients 𝑢0, . . . , 𝑢𝑁 get close to those of a minimal solution with large 𝑢0, 𝑢1, in
accordance with the intuition that “minimal solutions are the dominant ones when going backwards”.
This method behaves much better numerically than the standard forward recurrence. But its key feature
for our purposes is that it allows to compute a minimal solution characterized by its minimality plus one
normalizing condition instead of two initial values. This is exemplified below.

Example 2.4.5 (Numerical evaluation of forward recurrence for Chebyshev series coefficients. Part 2).
The Chebyshev recurrence

(𝑃 · 𝑢)𝑛 = 𝑢(𝑛+ 1) + 2𝑛𝑢(𝑛)− 𝑢(𝑛− 1) = 0

is unrolled backward: for instance, to compute an approximation of degree 𝑁 = 50, canonical initial
conditions are set to 𝑢(52) = 0 and 𝑢(51) = 1 and then the other coefficients are "backward" computed
by 𝑢(𝑛− 1) = 𝑢(𝑛+ 1) + 2𝑛𝑢(𝑛). The computation is shown in Table 2.3.

Backward unrolling: Accurate value: Backward unrolling and scaling:

𝑢(52) = 0

𝑢(51) = 1

𝑢(50) = −102

...

𝑢(2) ≈ −4.72 · 1080

𝑢(1) ≈ 1.96 · 1081

𝑢(0) ≈ −4.4 · 1081

𝐼52(1) ≈ 2.77 · 10−84

𝐼51(1) ≈ 2.88 · 10−82

𝐼50(1) ≈ 2.93 · 10−80

...

𝐼2(1) ≈ 0.14

𝐼1(1) ≈ −0.57

𝐼0(1) ≈ 1.27

𝑢(52)

𝐶
= 0

𝑢(51)

𝐶
≈ −2.88 · 10−82

𝑢(50)

𝐶
≈ 2.93 · 10−80

...
𝑢(2)

𝐶
≈ 0.14

𝑢(1)

𝐶
≈ −0.57

𝑢(0)

𝐶
≈ 1.27

𝐶 =

50∑︁
𝑛=−50

𝑢(𝑛)𝑇𝑛(0) ≈ −3.48 · 1081

Table 2.3 – Example of numerical computation (precision binary64) of Chebyshev series coefficients for
exp, with backward recurrence unrolling by setting canonical initial conditions (left) and then scaling the
obtained results with the normalizing condition 𝐶, while the accurate values are given in the middle
column.

Based on our study of the properties of the recurrence, we can turn Clenshaw’s method into the true
Algorithm 18 that applies uniformly to differential equations of arbitrary order and degree, which runs
linearly in function of 𝑁 . Roughly speaking, we use the idea of backward recurrence to approach the
whole subspace of convergent solutions instead of a single minimal one. There remains to take care
of the constraints related to the singularities of the recurrence, the symmetry condition and the initial
values of the differential equation, all of which is done using linear algebra. Its correctness proof is more
technical and can be found in [J4], here we highlight the main result.

Theorem 2.4.6. Algorithm 18 fails for finitely many 𝑁 only. As 𝑁 →∞, its output satisfies

𝑁
max
𝑛=−𝑁

|𝑦(𝑁)
𝑛 − 𝑦𝑛| = 𝑂(𝑁𝜏𝑒1,𝑁 ),

for some 𝜏 independent of 𝑁 and 𝑒1,𝑁 corresponding to the formal asymptotic behavior of the least
convergent solution of the recurrence i.e. 𝑒1,𝑁 = 𝑂(𝑁 !𝜅𝛼𝑁𝑒𝑜(𝑁)) (with 𝜅 6 0 and if 𝜅 = 0 then |𝛼| < 1).
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Algorithm 18 Clenshaw-like computation of Chebyshev series coefficients for D-finite functions.
Input: a linear differential operator 𝐿 of order 𝑟, and suitable boundary conditions
𝜆1(𝑦) = ℓ1, . . . , 𝜆𝑟(𝑦) = ℓ𝑟, a target degree 𝑑 > 𝑠, an integer 𝑁 > max(𝑑,max{𝑛 : 𝑏−𝑠(𝑛) = 0}).
Output: an approximation 𝑦(𝑥) =

∑︀𝑑
𝑛=−𝑑 𝑦𝑛𝑇𝑛(𝑥) of the corresponding solution 𝑦 of 𝐿 · 𝑦 = 0.

1 compute the Chebyshev recurrence operator 𝑃 =
∑︀𝑠

𝑘=−𝑠 𝑏𝑘(𝑛)𝑆𝑘 associated to 𝐿

2 set S = {𝑛 > 𝑠 : 𝑏−𝑠(𝑛) = 0} and I = S ∪ J𝑁,𝑁 + 𝑠− 1K

3 for 𝑛 from 𝑁 + 𝑠− 1 down to 1

4 for 𝑖 ∈ I

5 if 𝑛 = 𝑖 then set 𝑓𝑖,𝑛−𝑠 = 1
6 else if 𝑛 ∈ I then set 𝑓𝑖,𝑛−𝑠 = 0
7 else compute 𝑓𝑖,𝑛−𝑠 using the relation (𝑃 · 𝑓)𝑛 = 0

8 using indeterminate (𝜂𝑖)𝑖∈I, set

𝑦𝑛 =

{︂ ∑︀
𝑖∈I 𝜂𝑖𝑓𝑖,|𝑛|, |𝑛| 6 𝑁

𝑦𝑛 = 0, |𝑛| > 𝑁,
and 𝑦(𝑥) =

𝑁∑︁
𝑛=−𝑁

𝑦𝑛𝑇𝑛(𝑥)

9 solve for (𝜂𝑖)𝑖∈I the linear system{︂
𝜆𝑘(𝑦) = ℓ𝑘, 1 6 𝑘 6 𝑟,
𝑏−𝑠(𝑛)𝑦𝑛−𝑠 + · · ·+ 𝑏𝑠(𝑛)𝑦𝑛+𝑠 = 0, 𝑛 ∈ J𝑟, 𝑠− 1K ∪ S

(2.31)

10 return
∑︀𝑑

𝑛=−𝑑 𝑦𝑛𝑇𝑛(𝑥)

More numerical examples for Algorithm 18 can be found in [J4]. We chose to show the quality of
these approximations by the following “effective near-minimax approximation” property [J4]:

Corollary 2.4.7. Given 𝑑 ∈ N, there exists 𝑁 such that Algorithm 18, called with parameters 𝐿, (ℓ𝑘), 𝑑,
and𝑁 , computes a polynomial 𝑝𝑑 of degree at most 𝑑 satisfying ‖𝑝𝑑−𝑦‖∞ 6

(︀
4𝜋−2 ln(𝑑+1)+5

)︀
‖𝑝*𝑑−𝑦‖∞

in 𝑂(ln ‖𝑝𝑑 − 𝑦‖−1
∞ ) arithmetic operations.

Concerning the computation of an a posteriori validated approximation error bound, we proposed
in [J4] an algorithm based on convergent Neumann series of linear operators in the Banach space of
continuous functions (𝒞0, ‖ · ‖∞). We chose here to focus on a more recent work [J2], in collaboration
with my PhD student, F. Bréhard, and N. Brisebarre (co-supervisor). It extends the complexity study
of [J4] to the framework of quasi-Newton validation methods for LODEs.

2.4.2 Validated and efficient Chebyshev spectral methods for linear ordinary dif-
ferential equations

More specifically, consider the following problem:

Problem 3. Let 𝑟 be a positive integer, 𝛼0, 𝛼1, . . . , 𝛼𝑟−1 and 𝛾 continuous functions over [−1, 1]. Consider
the LODE

𝑓 (𝑟)(𝑡) + 𝛼𝑟−1(𝑡)𝑓 (𝑟−1)(𝑡) + · · ·+ 𝛼1(𝑡)𝑓 ′(𝑡) + 𝛼0(𝑡)𝑓(𝑡) = 𝛾(𝑡), 𝑡 ∈ [−1, 1], (2.32)

together with conditions uniquely characterizing the solution:

a) For an initial value problem (IVP), consider:

Λ · 𝑓 := (𝑓(𝑡0), 𝑓 ′(𝑡0), . . . , 𝑓 (𝑟−1)(𝑡0)) = (𝑣0, 𝑣1, . . . , 𝑣𝑟−1), (32a)

for given 𝑡0 ∈ [−1, 1] and (𝑣0, 𝑣1, . . . , 𝑣𝑟−1) ∈ R𝑟.
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b) For a generalized boundary value problem (BVP), conditions are given by 𝑟 linearly independent
linear functionals 𝜆𝑖 : 𝒞0 → R:

Λ · 𝑓 := (𝜆0(𝑓), . . . , 𝜆𝑟−1(𝑓)) = (ℓ0, . . . , ℓ𝑟−1), (32b)

for given (ℓ0, . . . , ℓ𝑟−1) ∈ R𝑟.

Given an approximation degree 𝑑 ∈ N, find the coefficients of a polynomial 𝑓(𝑡) =
∑︀𝑑

𝑛=0 𝑐𝑛𝑇𝑛(𝑡)

written in Chebyshev basis (𝑇𝑛), together with a tight and rigorous error bound 𝜂 such that ‖𝑓 − 𝑓‖∞ :=

sup𝑡∈[−1,1] |𝑓(𝑡)− 𝑓(𝑡)| 6 𝜂.

One can readily see that the previously proposed algorithm provides a solution for the numerical part,
given sufficiently good polynomial approximations of the coefficients 𝛼𝑖. But other numerical methods
could also be used (see for instance [102, 165]). Therefore, we also proposed another linear (with respect
to the approximation degree) time approximation algorithm in [J2] which is based on an algorithm for
almost-banded linear systems from [165], together with a classical integral reformulation of the above
problem.

We focus now on the rigorous computation of approximation error bounds. Our proposed solution is
less based on computer algebra algorithms for D-finite functions (although some structural properties
of such functions remain essential) and more oriented towards a functional analysis approach. In
particular, a so-called a posteriori quasi-Newton validation method is employed, which mainly relies on a
fixed-point argument of a contracting map. This method was already used for nonlinear multivariate
problems [229, 132, 217, 98], but these works focused on ad-hoc solutions for specific problems. In
contrast, our study is from the computer algebra perspective: only LODEs are handled, yet with a
generic algorithmic approach, as well as its complexity study.

General setting for quasi-Newton validation

Consider the equation F · 𝑥 = 0 where F is an operator acting on a Banach space (𝐸, ‖·‖). A numerical
method provides an approximation ̃︀𝑥 of some exact solution 𝑥. One is interested in rigorously bounding
the approximation error between 𝑥 and ̃︀𝑥. For that, a classical idea is to reformulate the problem as
a fixed-point equation T · 𝑥 = 𝑥 with T : 𝐸 → 𝐸 an operator whose fixed points correspond to the
zeros of F. The distance between a given approximation and a fixed point of T is bounded based on the
following theorem [18, Thm 2.1]:

Theorem 2.4.8. Let (𝐸, ‖ · ‖) be a Banach space, T : 𝐸 → 𝐸 a continuous operator and ̃︀𝑥 ∈ 𝐸 an
approximate solution of the fixed-point equation T · 𝑥 = 𝑥. If there is a radius 𝑟 > 0 such that

∙ T ·𝐵(̃︀𝑥, 𝑟) := {T · 𝑥 | ‖𝑥− ̃︀𝑥‖ 6 𝑟} ⊆ 𝐵(̃︀𝑥, 𝑟) := {𝑥 | ‖𝑥− ̃︀𝑥‖ 6 𝑟}, and

∙ T is contracting over 𝐵(̃︀𝑥, 𝑟): there exists a constant 𝜇 ∈ (0, 1) such that for all 𝑥1, 𝑥2 ∈ 𝐵(̃︀𝑥, 𝑟),
‖T · 𝑥1 −T · 𝑥2‖ 6 𝜇‖𝑥1 − 𝑥2‖,

then T admits a unique fixed point 𝑥* in 𝐵(̃︀𝑥, 𝑟) and we have the following enclosure of the approxima-
tion error:

‖T · ̃︀𝑥− ̃︀𝑥‖
1 + 𝜇

6 ‖𝑥* − ̃︀𝑥‖ 6 ‖T · ̃︀𝑥− ̃︀𝑥‖
1− 𝜇 .

One special class of such operators T are the Newton-like operators acting on Banach spaces (see [180,
Chap.4] and references therein). Suppose that F is of class 𝒞2 over 𝐸, and suppose that A = (dF|𝑥=̃︀𝑥)

−1

exists. Then the fixed points of:
T = I−A · F : 𝐸 → 𝐸 (2.33)

are exactly the zeros of F and T has a null derivative at ̃︀𝑥, so that it is locally contracting around ̃︀𝑥.
Hence, if for a well-chosen 𝑟 > 0, the hypotheses of Theorem 2.4.8 are respected, one obtains an upper
bound for the approximation error ‖𝑥*− ̃︀𝑥‖. In general however, we cannot exactly compute (dF|𝑥=̃︀𝑥)

−1

and A is only an approximation. Still, this may be sufficient to get a contracting operator T around ̃︀𝑥.
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When T is affine, it is contracting if and only if its linear part 𝒟T has operator norm ‖𝒟T‖ = 𝜇 < 1.
In particular, for an affine operator T, being locally or globally contracting are equivalent. Therefore,
the ball 𝐵(̃︀𝑥, 𝑟) can be replaced by the whole space 𝐸 in Theorem 2.4.8 and the first condition becomes
trivially true.

This general abstract formulation was specialized in [J2] as follows.

Setting for quasi-Newton validation of Chebyshev series

∙ The Banach space denoted by (Ч1, ‖·‖Ч1), contains continuous functions 𝑓 , for which the sum of
absolute value of Chebyshev series coefficients is convergent:

‖𝑓‖Ч1 :=
∑︁
𝑛∈Z
|[𝑓 ]𝑛| < +∞.

Note that if 𝑓 ∈ Ч1, then п𝑛 ·𝑓 converges absolutely and uniformly to 𝑓 [J2, Lemma 2.3.]. Moreover,
Ч1 is a Banach algebra analogous to the Wiener algebra 𝐴(T) of absolutely convergent Fourier
series [109, §I.6]: for 𝑓 ∈ Ч1, we have ‖𝑓‖Ч1 = ‖𝑓(cos)‖𝐴(T).

∙ The operators in Equation (2.33) are obtained by transforming the differential Equation (2.32) into
an integral one. This is useful because derivation is not an endomorphism of Ч1 (some functions in
Ч1 are not even differentiable) and also the action of derivation on Chebyshev series has worse
numerical conditioning properties [87].

Proposition 2.4.9. Let 𝑓 be a function of class 𝒞𝑟 over [−1, 1]. Then 𝑓 is a solution of the linear IVP
problem (32a) if and only if 𝜙 = 𝑓 (𝑟) ∈ 𝒞0 is solution of the Volterra integral equation:

𝜙+ K · 𝜙 = 𝜓 with (K · 𝜙)(𝑡) =

∫︁ 𝑡

𝑡0

𝑘(𝑡, 𝑠)𝜙(𝑠)d𝑠, 𝑡 ∈ [−1, 1], (2.34)

where:

– the kernel 𝑘(𝑡, 𝑠) is a bivariate continuous function given by:

𝑘(𝑡, 𝑠) =

𝑟−1∑︁
𝑗=0

𝛼𝑗(𝑡)
(𝑡− 𝑠)𝑟−1−𝑗

(𝑟 − 1− 𝑗)! , (𝑡, 𝑠) ∈ [−1, 1]2, (2.35)

– the right-hand side 𝜓 is given by:

𝜓(𝑡) = 𝛾(𝑡)−
𝑟−1∑︁
𝑗=0

𝛼𝑗(𝑡)

𝑟−1−𝑗∑︁
𝑘=0

𝑣𝑗+𝑘
(𝑡− 𝑡0)𝑘

𝑘!
, 𝑡 ∈ [−1, 1]. (2.36)

By a slight abuse of terminology, we shall call 𝑟 the order of the integral operator K.

∙ In this case, F · 𝜙 := 𝜙 + K · 𝜙 − 𝜓 is affine, with linear part I + K. The quasi-Newton method
requires an approximate inverse operator A ≈ (I + K)−1 such that ‖I −A · (I + K)‖Ч1 < 1. Of
course, computing an exact inverse would solve the problem but is out of reach. Instead of that,
one can proceed from the following two key ideas:

– it is necessary to consider finite dimensional approximations of these operators and to establish
convergence and invertibility properties of these operators and their truncations with respect
to their action on Ч1, together with effective truncation bounds;

– it turns out that in many cases, these finite dimensional truncations have a very interesting
sparse matrix structure, namely they are almost-banded, which allows for very efficient
numerical algorithms [165].
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Specifically, one can prove that K and I + K are bounded linear endomorphisms of Ч1, I + K is
invertible in Ч1. Moreover, the 𝑛-th truncation (also called the 𝑛-th section in [86]) of the integral
operator K:

K[𝑛] = п𝑛 ·K · п𝑛, (2.37)

converges to K for the ‖·‖Ч1 operator norm, as 𝑛→∞ and K is compact.

Validation for the D-finite case

When the LODE (2.32) is D-finite, the representation matrices (obtained by studying the operator action
on Chebyshev polynomials) of K and (I + K) (as well as their truncations K[𝑛] and (I + K)[𝑛]) have an
almost-banded structure (see Figure 2.4).

j = 0↓

i = 0

→

Figure 2.4 – Almost-banded structure of operator K.

One can prove that for 𝑛 large enough (I + K[𝑛])−1 exists and is a good approximation of (I + K)−1.
Since (I+K[𝑛])−1 is defined by an (𝑛+ 1)-order square matrix (its restriction over п𝑛 ·Ч1) extended over
the whole space Ч1 by the identity, we define the operator A over Ч1 as an (𝑛+ 1)-order square matrix
𝐴 approximating (I + K[𝑛])−1 over п𝑛 ·Ч1, extended by the identity over the whole space:

A · 𝜙 = 𝐴 · п𝑛 · 𝜙+ (I− п𝑛) · 𝜙.

The first technical issue is to numerically compute (or represent) both very accurately and efficiently
such a matrix 𝐴. Specifically, we aim both for a linear complexity computation with respect to 𝑛 and for
minimizing ‖𝐼𝑛+1 − 𝐴 ·𝑀‖1, where 𝑀 is an order 𝑛+ 1 matrix representation for I + K[𝑛]. In [J2] we
present two solutions: one that has a quadratic complexity w.r.t. 𝑛, but computes 𝑀−1 very accurately;
the other uses a heuristic which states that (I+K[𝑛])−1 is well approximated by almost-banded matrices.
This second option may require a large value of 𝑛, but works well in practice and has a linear complexity
w.r.t. 𝑛. A discussion on which of these two methods should be used in practice is presented in [J2],
together with complexity estimates in both cases.

Next, one has to provide a rigorous Lipschitz constant 𝜇 (required by Theorem 2.4.8) for the Newton-
like operator. We have:

‖I−A · (I + K)‖Ч1 6 ‖I−A · (I + K[𝑛])‖Ч1 + ‖A · (K−K[𝑛])‖Ч1 , (2.38)

which can be interpreted as:

∙ ‖I−A ·(I+K[𝑛])‖Ч1 is the approximation error because𝐴was (maybe) not the exact representation
matrix of (I + K[𝑛])−1.

∙ ‖A · (K−K[𝑛])‖Ч1 is the truncation error because K[𝑛] is not exactly K.
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Bounding the approximation error reduces to (almost-banded) matrix multiplication with interval
arithmetic, while the truncation error concerns the tail of the operator K and needs some more technical
inequalities (cf. [J2, Algorithm 6.]). To summarize, one can prove (and compute explicit upper-bounds)
that the error due to tail diagonal coefficients𝐵𝐷(𝑖) = ‖(I−п𝑛)·K·𝑇𝑖‖Ч1 decreases in𝑂(1/𝑖). Furthermore,
the error due to initial coefficients multiplied by 𝐴, 𝐵𝐼(𝑖) = ‖𝐴 · п𝑛 ·K · 𝑇𝑖‖Ч1 decreases in 𝑂(1/𝑖2).

Once we have obtained and validated a quasi-Newton operator T with a certified Lipschitz constant
𝜇 < 1, the validation of a candidate solution ̃︀𝜙 of the integral Equation (2.34), reduces to computing:

‖𝜙* − ̃︀𝜙‖Ч1 6
‖̃︀𝜙+ K · ̃︀𝜙− 𝜓‖Ч1

1− 𝜇 ,

where all the computations are performed in interval arithmetics.

Extension to non D-finite case

The extension to the non D-finite case is based on approximating the coefficients of the differential
operators by Chebyshev models, and computing an integral kernel operator by overloading opera-
tions with Chebyshev models. The resulting polynomial part defines a polynomial kernel 𝑘𝑃 (𝑡, 𝑠) and
respectively the polynomial integral operator K𝑃 , such that ‖K −K𝑃 ‖Ч1 is explicitly bounded by a
constant depending only on 𝑟 and the initial error bounds in the LODE coefficients approximation. This
justifies the fact that K is well-approximated by K𝑃 when the coefficients of Equation (2.32) are well
approximated by polynomials. Similar computations follow, by noting that the linear part of T can be
decomposed into three parts:

‖I−A · (I + K)‖Ч1 6 ‖I−A · (I + K
[𝑛]
𝑃 )‖Ч1 + ‖A · (K𝑃 −K

[𝑛]
𝑃 )‖Ч1 + ‖A · (K−K𝑃 )‖Ч1 .

The first two parts are exactly the ones of (2.38) (where the polynomial integral operator K is now
called K𝑃 ) and can be rigorously upper bounded using the same techniques. The last part can be upper
bounded thanks to the initial computations with Chebyshev models. It is interesting to notice that the
order of magnitude of 𝑛 is largely determined by the second part (as in the polynomial case), whereas
the third part mainly depends on the degree of the approximating polynomials for 𝛼𝑗(𝑡).

In conclusion, we observe that our validation method is easily adapted to the general case where
the coefficients 𝛼𝑗 are non-polynomial functions rigorously approximated by polynomials. However,
contrary to the polynomial case where the involved degrees are usually low, the degrees of the approxi-
mants can be rather large, resulting in a dense linear problem and poorer time efficiency. Yet, in practice,
the method remains efficient on problems with reasonable coefficient magnitude and time interval under
consideration. The case of other boundary conditions is treated by reducing a general BVP validation
problem to 𝑟+1 IVP validation problems (see [J2] for more details). Our new approach is to be illustrated
also for validating solutions of LODEs appearing in robust guidance algorithms for space trajectories in
Chapter 3.

We conclude by providing a brief description of the complexity result obtained, whose exact formula-
tion is rather technical and is omitted in this report.

Complexity estimates

Firstly, notice that a numerical approximation of degree 𝑑 can be obtained in 𝑂(𝑑) arithmetic operations
either with Algorithm 18 or by the one proposed [165]. Concerning the validation, the relevant parameters
involved are the degree of the numerical approximation 𝑑 and the truncation order 𝑛 (of the operator K)
needed to obtain a certified Lipschitz constant 𝜇 < 1. In function of these two parameters, the complexity
is 𝑂(𝑑+ 𝑛), hence when 𝑛 is small with respect to 𝑑, the validation is linear in 𝑑 also. However, we were
not able to prove that this is always the case and the theoretical bound we have is 𝑛 = 𝑂(𝑑𝐵2 exp(2𝐵)),
where 𝐵 quantifies the norm of the coefficients of the integral operator (2.34). However this exponential
bound is very pessimistic in practice, and hence our validation algorithm proceeds by setting a truncation
order function of a numerical estimate of the norm ‖(I + K[𝑛])−1 · (K − K[𝑛])‖Ч1 . This is done by
numerically applying this operator on 𝑇𝑛+1, which is a heuristic similar to estimating the truncation
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error of a Chebyshev series by its first neglected term [49, Chap.4.4, Thm. 6]. If the estimated value is not
correct, one proceeds by doubling 𝑛, until 𝜇 < 1.

2.5 Conclusion

In this chapter, we proposed several symbolic-numeric algorithms, which combine computer algebra,
polynomial optimization and validated computations. We based our developments on the algebraic
structure and algorithmic properties of D-finite (holonomic) functions. We also exploit other (more
functional analysis-like) properties of differential operators like compactness, convergence, invertibility
in suitable Banach spaces. Moreover, we focus on the "sparsity" generated by these operators and how
this can be efficiently put to use in our algorithms. These core properties are applied in several (at first
sight unconnected) areas. Finally, our approach is based both on providing good theoretical complexity
estimates, but also practical code which actually works in applications as it will be further discussed in
the next chapter. Possible extensions of these works are discussed in Chapter 4.
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Chapter 3

Validated Computations for Aerospace

Since my CNRS recruitment in January 2013, one of my general research goals was to bring more reliable
computations in the field of optimal control theory and aerospace. This was possible thanks to my
collaboration with Denis Arzelier (CNRS Researcher, LAAS). Based on his previous works and research
and transfer projects, with CNES or ADS for instance, I became aware of and then contributed to two main
space-related themes. One concerns the collision risk assessment for orbital objects [J5, C12, C13, R2],
the other is related to orbital rendezvous and proximity operations [C8, C3, C4, C7, J1]. These works
also benefited from the collaboration with other researchers from LAAS, namely J.-B. Lasserre (CNRS
Researcher, LAAS), C. Louembet (Maître de conférences, Université Toulouse 3) and A. Rondepierre
(Maître de conférences, INSA Toulouse), as well as F. Camps (research engineer at LAAS) and also, the
following students. Firstly, R. Serra defended his PhD in December 2015, under the supervision of D.
Arzelier and A. Rondepierre; I contributed to his supervision in the second part of this PhD (2013-2015).
Secondly, P.R. Arantes-Gilz, co-supervised with C. Louembet, defended his PhD thesis in October 2018.
Thirdly, F. Bréhard is to defend in July 2019, co-supervised together with N. Brisebarre and D. Pous
(CNRS Researchers at LIP, Lyon). Last but not least, N. Deak did an undergraduate internship in 2015
under my supervision. Most of the above results were already presented in detail in the Phd thesis of R.
Serra [197], or that of P.R. Arantes-Gilz [7]. The goal of this chapter is to focus two contributions, which
particularly illustrate the close blend and interaction between the techniques presented in Chapter 2
with optimal control and space-related applications, as follows.

1. (Collision probability [J5, C12, C13]). We proposed a new accurate, reliable and efficient method to
compute the orbital collision probability between two spherical objects involved in a short-term
encounter, under Gaussian uncertainty. In this model of conjunction, the probability of collision is
reduced to the integral of a 2D Gaussian probability density function over a disk.

This computation needs to be particularly reliable and fast. In brief, this stems from the fact that
the number of space objects in Low Earth Orbits, with diameter above 10 cm, a large majority
being space debris, has dramatically increased during the last fifteen years. These orbiting debris
constitute a serious hazard for operational satellites. Accordingly, for the overall safety of flight, it
is critical to provide adequate mitigation and avoidance strategies when a conjunction includes
at least one active satellite. Usually, the relative debris–satellite positions and velocities are only
approximately known, hence the risk of an on-orbit collision is modeled as a collision probability.
If it is evaluated to be sufficiently high, a collision avoidance maneuver is decided, but each
such maneuver reduces the remaining satellite fuel and thus its active in-orbit life. Yet, a wrong
computation which underestimates the risk, could result in the satellite loss. This implies that
both efficient and accurate algorithms are needed. In Section 3.1, a more detailed description and
modeling of this problem is presented, which boils down to the direct use of Algorithm 13 given in
Chapter 2.

This work had a particular practical impact, since after having independently implemented and
run it on test databases (millions of cases), CNES uses it now as their reference method. This also



60 Chapter 3. Validated Computations for Aerospace

resulted in a long term collaboration with our CNRS partners S. Laurens and J.C. Dolado, as part
of, for instance, the research and transfer project Global Collision Probability and Satellites Station
Keeping (2016-2018), which I coordinated.

2. (Validated impulsive spacecraft rendezvous [C8, J2]). The rendezvous (RdV) problem is a process
which meets two spacecraft, originally moving on different orbits, in order to match their positions
and velocities. A rather general case of RdV can be a spacecraft (referred to as chaser) targeting
an object (referred to as target, e.g. International Space Station) on its orbit. Since the ’60s, many
ideas have been developed, and today, we are interested in successful RdV which minimizes
fuel consumption, with increased autonomy (no human operator). This implies that validation
of computations and solutions is at stake. Impulsive RdV problems concern in practice a large
number of satellites, which are equipped with ergol thrusters. The impulsive approximation for
the thrust means that an instantaneous velocity increment is applied to the chaser for each impulse.

In what follows, we focus on the fixed-time minimum-fuel rendezvous between close elliptic orbits
of an active spacecraft with a passive target spacecraft, assuming a linear impulsive setting and
a Keplerian relative motion. Firstly, closely following the developments in [C8], we present the
original optimal control problem, as well as its solution, given by the locations and magnitude
of the impulses, and obtained by a numerical iterative algorithm. An interesting contribution is
that this algorithm comes from the formulation of a semi-infinite convex optimization problem,
using a relaxation scheme and duality theory in normed linear spaces. Secondly, we propose an a
posteriori validation for the obtained solution, via Rigorous Polynomial Approximations, which
were already discussed in Section 2.4.

The algorithm proposed to solve this optimal control problem was also extended in different
settings. In [C3] different linearized dynamics corresponding to the circular restricted 3-body-
problem are considered. Furthermore, in [C1] an exchange algorithm [222, 45, 41, 40] which solves
an approximation problem related to efficient machine implementation of mathematical functions
is revisited, explained and extended based on the duality theory. Finally, note that a posteriori
validation techniques were also extended by my students P.R. Arantes-Gilz and F. Bréhard, together
with C. Gazzino (PhD student at LAAS) for other linearized dynamics by providing semi-analytical
transition matrices via Chebyshev polynomials [8].

3.1 Collision probability

Since the collision between the Russian satellite COSMOS 1934 and one debris of COSMOS 926 in
December 1991, no less than eight orbital collisions have been reported between operational satellites
(e.g. IRIDIUM 33 and COSMOS 2251 collision in February 2009, the 10th), or between satellites and
debris (e.g. the French satellite CERISE hit by a debris in July 1996, the 24th or the collision between
THOR BURNER and a debris of Long March in January 2005, the 17th). Collision risk is particularly high
in low orbits and different space agencies (CNES, ESA, NASA) and operators (Airbus Defense and Space
(ADS), GMV) have established alert procedures to assess the risks of collision for controlled satellites,
and to authorize avoidance maneuvers if the predicted risk exceeds some tolerance threshold. These
procedures have undergone many changes in recent years and the field of collision avoidance techniques
is currently in full development. For the different evolutions of these procedures, according to different
agencies and operators, we refer to [70], [69] for ESA, [121, 120] for CNES and [21] for ADS.

At the origin of any procedure of collision avoidance between two orbital objects, whether controlled
or not, lies the information of conjunction between the two objects. Since 2009, a Conjunction Message is
sent by the Joint Space Operations Center (JSpOC) to all spacecraft owners and operators, concerning
approximately 15000 objects listed in the Two-Line Elements (TLE) catalog provided by USSTRATCOM
(US Strategic Command). The information provided by the JSpOC consists of a Conjunction Assessment
Report (CAR) containing few information: the Time of Closest Approach (TCA), the miss distance
between the two objects, statistical and geometrical information on the position and the velocities of
each object. These messages are sent only three days before the date of the encounter. To obtain more
accurate information on the possible encounter, it is necessary to subscribe to a service which will in



3.1. Collision probability 61

return provide a Conjunction Summary Report (CSM) from which is extracted the information needed
to calculate the risk of collision between both objects. This collision risk assessment evaluates the risk for
individual encounters.

The most general methods to accurately compute the global collision probability, without any
additional assumption, are based on Monte-Carlo simulations, see e.g. [6, 64] in the context of a simple
encounter or [82] in the context of a multiple encounter. These methods use a random sampling of 𝑁
vectors in the space of initial conditions. For each of them, the corresponding trajectories are propagated
according to the dynamical model adopted on the discretized time interval [0, 𝑇 ]. We count 1 if there is a
collision, 0 otherwise. At the end, the collision probability is given by the formula: 𝒫𝑐([0, 𝑇 ]) = 1

𝑁

∑︀𝑁
𝑖=1 𝛿𝑖.

The number of trials to be made depends on the requested precision as well as the value of the probability:
a low value requires a lot of samples to be correctly estimated, and simulations can be dramatically
time-consuming. This is one of the major disadvantages of Monte Carlo methods which makes them
unsuitable for detecting low probability events in high dimension such as multiple events [82]. Therefore
alternative approaches had to be explored to assess the risk of collision between two or more objects.

In the particular context of encounters between two objects, encounters are usually classified into
two families: the short-term encounters [2, 46, 58, 72] and the long-term encounters [46, 64]. In the
context of short-term encounters, conjunctions are assumed to be short and rare and several simplifying
assumptions, enabling a more efficient computation of the collision probability can be made. The relative
velocity between the two objects is assumed to be very high (several km/s) and the relative motion
is assumed rectilinear on the time interval of the encounter. Finally, it is also assumed that the cross-
correlations between the estimated states of the two objects are very small and therefore negligible. Such
encounters typically occur in low orbits where the orbital velocities are high. Long-term encounters are
characterized by relative velocities of the order of m/s, and correspond to situations where both objects
spend significant time in proximity to each other. The motion equations of both objects are linearized
around the reference orbit. This type of encounter is more common in the context of formation flying or
proximity operations. Investigations about the range of validity of the short-term encounter model can
be found in [48, 57]. We focus in what follows on the case of a short-term encounter between spherical
objects under Gaussian-distributed uncertainty.

3.1.1 Short-term encounter

Let us recall the five assumptions needed to define the short-term encounter model under Gaussian-
distributed uncertainty for spherical objects:

1. The relative trajectories are approximated as rectilinear.

2. The velocities are considered as deterministic variables.

3. Initial position vectors of both objects are Gaussian independent random vectors.

4. Each object is approximated by a spherical geometrical shape.

5. The time boundaries of the conjunction are extended to infinity.

The fact that the relative motion is rectilinear motivates the choice of a frame of study with one axis
along the relative velocity. One possibility is to introduce the so-called encounter frame [71, 2, 171, 48]
defined at reference time.

Encounter frame

This frame is centered on the mean position of one of the two objects and is built from the so-called
encounter plane. This plane contains the origin and is orthogonal to the direction of the relative velocity.
The configuration considered in this study is represented in Figure 3.1. The origin of the frame is located
at the center of the primary object 𝑝. The basis vector 𝑒𝑧 is oriented along the relative velocity 𝑣 = 𝑣𝑠− 𝑣𝑝.
The basis vector 𝑒𝑥̃ belongs to the encounter plane: it points towards the orthogonal projection of
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the mean relative position 𝜇(𝑟0) onto the encounter plane. Finally, the basis vector 𝑒𝑦 completes the
right-handed system and thus belongs to the encounter plane as well. In summary, one has

𝑒𝑧 =
𝑣

‖𝑣‖ , 𝑒𝑦 =
𝑣 × 𝜇(𝑟0)

‖𝑣 × 𝜇(𝑟0)‖ , 𝑒𝑥̃ = 𝑒𝑦 × 𝑒𝑧. (3.1)

Let (𝑥̃𝑚, 0, 𝑧𝑚) be the coordinates of the mean relative position in the encounter frame where the 𝑦
coordinate is zero by construction. It is worth noticing that, since the relative trajectory is rectilinear, 𝑥̃𝑚
is in fact equal to the miss distance.

p

s

v = vs − vp

x̃

ỹ

z̃

x̃m

z̃m

Figure 3.1 – Encounter plane and frame (𝑒𝑥̃, 𝑒𝑦, 𝑒𝑧).

Integral representation

Under the above assumptions, the probability of collision can be formulated as a 2-D integral in the
encounter plane. For spherical objects, the domain of integration is a closed disk ℬ̄((0, 0), 𝑅) centered at
the origin of radius 𝑅. The quantity 𝑅 is the combined radius and is defined as the sum of the respective
radii of the two objects i.e. 𝑅 = 𝑅𝑝 +𝑅𝑠.

The two-dimensional probability distribution involved in the probability of collision describes the
distribution of the relative position in the encounter plane. From the hypothesis on the nature of
uncertainty, it is a multivariate normal law. Therefore, it is completely defined by its mean vector and its
covariance matrix [167]. Let Σ𝑥̃𝑦 be the covariance matrix of the relative coordinates in the encounter
plane. The probability of collision can then be written as:

𝒫𝑐 =
1

2𝜋
√︀
|Σ𝑥̃𝑦|

∫︁
ℬ̄((0,0),𝑅)

exp

(︂
−1

2
[𝑥̃− 𝑥̃𝑚 𝑦] Σ−1

𝑥̃𝑦 [𝑥̃− 𝑥̃𝑚 𝑦]
𝑇

)︂
d𝑥̃d𝑦. (3.2)

Equation (3.2) shows that the probability of collision only depends on the combined radius 𝑅, the
miss distance 𝑥̃𝑚 and the covariance matrix Σ𝑥̃𝑦 of the relative coordinates in the encounter plane.

Frame rotation In order to eliminate the cross-terms of the Gaussian function, a rotation of angle −𝜃
to the principal axis of the covariance matrix is performed in the encounter plane (see Figure 3.2). This
transformation does not change the nature of the domain of integration which remains a disk of radius
𝑅 centered at the origin. The new coordinates, denoted (𝑥, 𝑦), are respectively along the major and the
minor axis. This transformation allows to write a formula with a simpler integrand:

𝒫𝑐 =
1

2𝜋𝜎𝑥𝜎𝑦

∫︁
ℬ̄((0,0),𝑅)

exp

(︂
−1

2

(︂
(𝑥− 𝑥𝑚)2

𝜎2
𝑥

+
(𝑦 − 𝑦𝑚)2

𝜎2
𝑦

)︂)︂
d𝑥d𝑦, (3.3)
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where the quantities 𝜎𝑥 and 𝜎𝑦 are standard deviations of the new coordinates. As a matter of fact, 𝜎2
𝑥

and 𝜎2
𝑦 are respectively the largest and the smallest eigenvalues of Σ𝑥̃𝑦 .

Similarly, the rotation of angle −𝜃 can be explicitly computed function of Σ𝑥̃𝑦 , and one has:

𝑥𝑚 = 𝑥̃𝑚 cos 𝜃, 𝑦𝑚 = −𝑥̃𝑚 sin 𝜃. (3.4)
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Figure 3.2 – Rotation to the principal axis of the covariance matrix in the encounter plane.

Equation (3.3) defines the so-called short-encounter formula for the probability of collision between
two spherical objects under Gaussian-distributed uncertainty. It has the form of a 2-D integral over
a disk centered at the origin of a Gaussian function with no cross-terms. This corresponds exactly to
Equation (2.4), which can be efficiently and reliably evaluated by Algorithm 13 presented in Section 2.2.

Previous works and discussion

Several techniques for evaluating (2.4) have been developed: Foster’s [71], Patera’s [171] and Alfano’s [3],
based on numerical integration schemes. These methods are strongly dependent upon the chosen
integration method and need to manage a sensitive trade-off between precision and computation time.
Another approach more similar to ours is Chan’s [47, 48] who derives a truncated series-based formula,
but with an approximation with respect to the initial model.

Furthermore, these methods [5, 48, 171] were unable to guarantee any accuracy requirements. This is
because usually either numerical integration schemes or truncated power series were used, but no rigor-
ous proof regarding the method’s convergence rate was given. The truncation orders or discretization
steps were fixed by trial and error or by comparing against other numerical tools which might offer higher
accuracy.

In contrast, our solution [J5] benefits both from computer algebra and numerical evaluation tools,
which results in a method that is not only reliable (the number of guaranteed correct digits is user-input)
but also faster than quadrature schemes.

Finally, we mention another recent work of Garcia-Pelayo [81], where the authors also propose a
series-based implementation, but which turns out to be exactly our series without the preconditioning.
Hence, this method suffers from important cancellation issues, as already explained in Section 2.2.

Numerical tests

The performance of our method is assessed from two perspectives. First, since it is based on a series
expansion, the numerical accuracy varies in function of the number of terms computed. Algorithm 13
offers an automatic way of computing the number of terms needed for a user-required accuracy. We
exemplify it in what follows on practical cases. Second, our method is compared with other methods
from the literature concerning the quality of the results obtained.
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Case Input parameters (m)
# 𝜎𝑥 𝜎𝑦 𝑅 𝑥𝑚 𝑦𝑚

Chan 1 50 25 5 10 0
Chan 2 50 25 5 0 10
Chan 3 75 25 5 10 0
Chan 4 75 25 5 0 10
Chan 5 3,000 1,000 10 1,000 0
Chan 6 3,000 1,000 10 0 1,000
Chan 7 3,000 1,000 10 10,000 0
Chan 8 3,000 1,000 10 0 10,000
Chan 9 10,000 1,000 10 10,000 0

Chan 10 10,000 1,000 10 0 10,000
Chan 11 3,000 1,000 50 5,000 0
Chan 12 3,000 1,000 50 0 5,000
CSM 1 152.8814468961533 57.918666623295984 10.3 60.583685340533115 84.875546447209487
CSM 1 5,756.840725983703 15.988242371297744 1.3 115.0558998093139 -81.618369910317043
CSM 3 643.4092722122279 94.230921098486149 5.3 693.4058939950484 102.1772470067133

Alfano 3 114.2585190378857 1.410183033040157 15 0.159164620813659 -3.887207383647396
Alfano 5 177.8109003935867 0.037327944173609 10 2.123006718041866 -1.221789517557463

Table 3.1 – Inputs for test cases from Chan (1–12), CSMs (1–3) and Alfano (3,5)

Figure 3.3 shows the number 𝑛 of series terms needed in Algorithm 13 for a requested accuracy 𝛿
ranging from 10−1 to 10−13. We observe that the number of terms for the absolute error to reach the
machine precision (10−13) is less 40 in all of Chan’s Cases and CSM cases. Note that this number is
computed a priori and it is a sufficient number. The actual number of terms for the accuracy to be met
may be smaller in some cases, but for these practical examples it is not conservative. Chan’s cases 8 and
10 are not drawn since the values obtained directly from the minorant/majorant series i.e., lines 2 & 3 of
Algorithm 13 are sufficient for the whole range of absolute error considered.

Figure 3.3 – Number of terms in the series needed in Algorithm 13 for a requested accuracy 𝛿 ranging
from 10−1 to 10−13. Cases shown: Chan’s Cases (left) and CSM cases (right) from Table 3.1.
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Comparison with other methods

Three algorithms from the literature, namely Alfano’s [4], Patera’s [171] and respectively Chan’s [48]
have been implemented. The chosen test cases are described in Table 3.1: the first 12 cases can be found
in [48, Chapter 5] and are supposed to be representative of real short-term encounters; the next 3 cases
are real-case scenarios: the data were retrieved from CSMs (Conjunction Summary Messages) sent by
the Joint Space Operations Center to the industrial partner of our study; the last two cases were obtained
using the physical parameters of test cases number 3 and 5 provided by Alfano [6].

On the other hand, for Alfano’s cases, our Algorithm needs much more terms. In order to reach a
good accuracy, Algorithm 13 computes 𝑛 = 689 for Alfano’s Case 3 and 𝑛 = 1013 for Alfano’s Case 5.
This is conservative, since 90 terms for Case 3 and respectively 37000 terms for Case 5 are sufficient to
obtain the value given in Table 3.4. This shows however that in some degenerate cases the number of
terms needed may increase drastically.

The corresponding results for the probability of collision obtained with different methods are sum-
marized in Tables 3.2, 3.3 and 3.4. The reference values in Table 3.2 were provided by NASA [48] using
Foster’s method. For Table 3.3, they were given by the industrial partner and for Table 3.4 they were
obtained from Monte Carlo trials. All tests were performed with Matlab c○ R2014a on an Intelr Xeonr
at 3.60GHz.

Since in our method the required accuracy can be set a priori in Algorithm 13, the obtained values are
identical (in most cases) or very close to the reference. For Chan’s test cases, number 1 to 12, Patera’s
method gives also 0% of relative error. For the same examples, Alfano’s method also performs well,
but it fails for very low probabilities like in test cases 8 and 10. On the other hand, Chan’s method
gives non negligible relative errors for some cases - namely 1, 2, 3, 4, 8, 10, 12 and CSM1–3. As far
as precision is concerned, it is definitely the least effective. It is not surprising since it is based on an
additional approximation with respect to the original short-term encounter model. For that reason, it
gives meaningless results for the two test cases provided by Alfano [6], see Table 3.4. These examples
were originally designed to compare the efficiency of several methods of the literature and are somehow
more tedious as far as computation is concerned. They are challenging also for our method, since the
number of terms to be considered in the series expansion is important. Nevertheless, the new method
gives satisfactory results.

Concerning timings, our method is very fast: for each case tested, the results are obtained in less than
one second; in frequent cases, when the bounds 𝑙0 and 𝑢0 are sufficient (lines 2− 3, Algorithm 13), the
response is almost instantaneous (10−5 seconds).

Case Collision Probability (-)
Alfano Patera Chan Algorithm 13 Reference

Chan 1 9.742× 10−3 9.741× 10−3 9.754× 10−3 9.742× 10−3 9.742× 10−3

Chan 2 9.181× 10−3 9.181× 10−3 9.189× 10−3 9.181× 10−3 9.181× 10−3

Chan 3 6.571× 10−3 6.571× 10−3 6.586× 10−3 6.571× 10−3 6.571× 10−3

Chan 4 6.125× 10−3 6.125× 10−3 6.135× 10−3 6.125× 10−3 6.125× 10−3

Chan 5 1.577× 10−5 1.577× 10−5 1.577× 10−5 1.577× 10−5 1.577× 10−5

Chan 6 1.011× 10−5 1.011× 10−5 1.011× 10−5 1.011× 10−5 1.011× 10−5

Chan 7 6.443× 10−8 6.443× 10−8 6.443× 10−8 6.443× 10−8 6.443× 10−8

Chan 8 0 3.219× 10−27 3.216× 10−27 3.219× 10−27 3.219× 10−27

Chan 9 3.033× 10−6 3.033× 10−6 3.033× 10−6 3.033× 10−6 3.033× 10−6

Chan 10 0 9.656× 10−28 9.645× 10−28 9.656× 10−28 9.656× 10−28

Chan 11 1.039× 10−4 1.039× 10−4 1.039× 10−4 1.039× 10−4 1.039× 10−4

Chan 12 1.564× 10−9 1.564× 10−9 1.556× 10−9 1.564× 10−9 1.564× 10−9

Table 3.2 – Comparison of collision probability value –with 4 significant digits– for Chan’s test cases
number 1 to 12. The digits different from the reference value are represented in bold.
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Case Collision Probability (-)
Alfano Patera Chan Algorithm 13 Reference

CSM 1 1.9002× 10−3 1.9001× 10−3 1.8934× 10−3 1.9002× 10−3 1.9002× 10−3

CSM 2 2.0553× 10−11 2.0552× 10−11 2.0135× 10−11 2.0553× 10−11 2.0553× 10−11

CSM 3 7.2004× 10−5 7.2000× 10−5 7.2000× 10−5 7.2003× 10−5 7.2003× 10−5

Table 3.3 – Comparison of collision probability value –with 5 significant digits– for tests cases from CSMs.
The digits different from the reference value are represented in bold.

Case Collision Probability (-)
Alfano Patera Chan Algorithm 13 Reference

Alfano’s No. 3 1.0038× 10−1 1.0087× 10−1 3.1264× 10−2 1.0038× 10−1 1.0085× 10−1

Alfano’s No. 5 4.4712× 10−2 4.4520× 10−2 1.6618× 10−77 4.4509× 10−2 4.4499× 10−2

Table 3.4 – Comparison of collision probability value - with 5 significant digits - for test cases from [6].

Finally, we mention that we recently compared our preconditioned series with the non-preconditioned
one, which was also claimed to be some kind of "new series" by [81]. This comparison was done in
collaboration with CNES on their whole database of millions of close-conjunction cases. It turns out
that for various real-life cases, the cancellation phenomenon is present, as expected from our theoretical
results. This renders the non-preconditioned series completely inaccurate, that is, no significant digit
or not even the sign can be obtained when evaluating in finite (double) precision. This invalidates the
observations of [81], which stated that for practical cases, 2 terms of the non-preconditioned series are
always enough for accurate evaluation, i.e. roughly 4 or 5 correct digits after the decimal dot. It also
provides a practical argument in favor of solid symbolic-numeric evaluation tools.

3.1.2 Brief discussion on long-term/multiple encounters

In the general context of formation flying satellites or proximity operations, the hypothesis of short-term
encounters can no longer be considered valid for the calculation of the overall risk of collision [82, 42].
This is mainly due to lower relative velocities (of the order of 1 m/s), so objects spend significant time
in proximity to each other and the cross-correlations between the estimated states are not negligible
anymore. Several works [170, 144, 46, 64, 173, 39, 58, 116] extended the probability calculation in the case
of long-term encounters, also called nonlinear framework, under different assumptions and limitations.
For the more general case of assessing the risk of multiple encounters that is, one/many debris with
a constellation of satellites, like OneWeb (600 satellites expected, 6 already launched by Feb. 2019) for
instance, even fewer studies exist [63, 173, 77].

So far, handling full generality with respect to the dynamics of the objects, the encounter duration,
the potentially high number of objects involved, and the distribution of their initial state, was completely
out of reach. This concerns both a clear mathematical modeling and a computationally efficient solution.

From a theoretical perspective, a different general convex-optimization-based framework for analysis
and optimal control of dynamical systems was proposed in [92, 112, 204, 125, 142]. This is based on
the formulation of an infinite-dimensional linear programming problem in the cone of nonnegative
measures and so-called Lasserre hierarchy of relaxations [123].

Based on these works, we proposed a fully general mathematical modeling of the probability of collision
of multiple encounters, in the measure theory framework [R2]. The main ingredients of this modeling are:
(1) lifting of the nonlinear dynamics into a linear equation of measures via Liouville’s equation; (2) stating
a linear optimization problem on measures, whose objective function is exactly the sought probability of
collision; (3) practically solving moment problems via a hierarchy of semi-definite optimization.

More precisely, we were able to propose two complementary linear-programming problems on
the space of non-negative measures, based on either computing the probability that no collision occurs, or
the opposite. Obviously, the sum of these two probabilities is 1, but the numerical solving of these
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complementary LP problems on measures is done via a sequence of finite dimensional optimization
problems, whose optimal values provide both upper and lower bounds on the sought collision probability.

While this practical numerical way of solving LP problems on measures is well-known and applicable,
in our case, important numerical issues have been identified. Firstly, the dimension of the general problem
is currently prohibitive for existing semi-definite solvers. Secondly, even simple examples show that
numerical results in low dimension do not achieve a good accuracy. This is thus an important on-going
research area for us, whose ramifications led us to consider related moment problems like those presented
in Section 2.3. These issues as well as the sometimes partial solutions we provided so far, show that there
still is an important need of cross-fertilization between symbolic-numeric and optimization methods,
which will be further discussed in Chapter 4. In the meantime, we describe another contribution, where
this goal can be achieved.

3.2 Validated impulsive spacecraft rendezvous

Since the first space missions (Gemini, Apollo, Vostok) involving more than one vehicle, space rendezvous
between two spacecraft has become a key technology raising relevant open control issues. Formation
flight (PRISMA), on-orbit satellite servicing or supply missions to the International Space Station (ISS)
are all examples of projects that require adequate rendezvous planning tools. A main challenge is to
achieve autonomous far range rendezvous on elliptical orbits while preserving optimality in terms of
fuel consumption. As explained in the introduction, the rendezvous (RdV) problem consists in meeting
two spacecraft, originally moving on different orbits, in order to match their positions and velocities.
The impulsive approximation for the thrust means that an instantaneous velocity increment is applied
to the chaser for each impulse. In this setting, one is interested to find the guidance law that achieves
the maneuver with the lowest possible fuel consumption. This leads to define a minimum-fuel optimal
control problem.

Specifically, in [C8] we focused on the fixed-time minimum-fuel rendezvous between close elliptic
orbits of an active spacecraft with a passive target spacecraft, assuming a linear impulsive setting and
a linearized Keplerian relative motion [43]. The original optimal control problem is transformed into
a semi-infinite convex optimization problem using a relaxation scheme and duality theory in normed
linear spaces. A new numerical convergent algorithm based on discretization methods is designed to
solve this problem. Its solution is then used in a general simple procedure dedicated to the computation
of the optimal velocity increments and optimal impulses locations. As a by-product, one also obtains an
analytical solution for the out-of-plane rendezvous problem.

Furthermore, since this algorithm is numeric, one could be interested in a posteriori validating the
obtained solution with the techniques proposed in Chapter 2. Let us first focus on the optimal control
problem.

3.2.1 Optimal control formulation of the rendezvous problem

We consider the relative dynamics in a moving Local-Vertical-Local-Horizontal (LVLH) frame located at
the center of gravity of a passive target and which rotates with its angular velocity. In this frame, the state
vector 𝑋𝑇 =

[︀
𝑥 𝑦 𝑧 𝑣𝑥 𝑣𝑦 𝑣𝑧

]︀
is composed of the positions and velocities of a chaser satellite

in the in-track, cross-track and radial axes, respectively. Using the true anomaly of the target-vehicle
orbit as the independent variable, and assuming a linearization of the relative equations of motion1,
a system of linear differential equations with periodic coefficients is easily obtained. The considered
minimum-fuel linearized rendezvous problem may be reformulated as the following optimal control
problem.

Problem 4. (Optimal control problem) Let ℒ1,𝑝([𝜈0, 𝜈𝑓 ],R𝑟) be the normed linear space of Lebesgue

integrable functions 𝑢 : [𝜈0, 𝜈𝑓 ]→ R𝑟, with the norm given by ‖𝑢‖1,𝑝 =

∫︁ 𝜈𝑓

𝜈0

‖𝑢(𝜈)‖𝑝d𝜈, and where ‖ · ‖𝑝

1Their validity is guaranteed when the distance between the target and the chaser is assumed to be small compared to the
radius of the target vehicle orbit.
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is the usual ℓ𝑝-norm of an 𝑟-dimensional vector.
Find 𝑢̄ ∈ ℒ1,𝑝([𝜈0, 𝜈𝑓 ],R𝑟) solution of the optimal control problem:

inf
𝑢
‖𝑢‖1,𝑝 = inf

𝑢

∫︁ 𝜈𝑓

𝜈0

‖𝑢(𝜈)‖𝑝d𝜈

s.t. 𝑋 ′(𝜈) = 𝐴(𝜈)𝑋(𝜈) +𝐵𝑢(𝜈), ∀ 𝜈 ∈ [𝜈0, 𝜈𝑓 ]
𝑋(𝜈0) = 𝑋0, 𝑋(𝜈𝑓 ) = 𝑋𝑓 ∈ R𝑛, 𝜈0, 𝜈𝑓 fixed,

(3.5)

where matrices 𝐴(𝜈) and 𝐵 define the state-space model of relative dynamics given by [212]:

𝐴(𝜈) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 2
0 −1 0 0 0 0
0 0 3/(1 + 𝑒 cos(𝜈)) −2 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , 𝐵 =

[︂
O3×3

13

]︂
. (3.6)

The form of these matrices shows that the equations describing motion in the plane of the target-
vehicle orbit and those describing motion normal to the orbit plane can be decoupled and handled
separately. Therefore, the out-of-plane and in-plane rendezvous will be dealt with independently in
sequel developments. Indeed, the state vector dimension and the number of inputs in (3.5) are denoted
𝑛 and 𝑟, respectively with 𝑛 = 2, 𝑟 = 1 for the out-of-plane case and 𝑛 = 4, 𝑟 = 2 for the in-plane case.

Remark 3.2.1. In Problem 4, the 1-norm cost captures indirectly the consumption of fuel used. In fact,
the performance index used in Problem 4 is an upper-bound expressed as an angular velocity, on the
usual characteristic velocity expressed in m/s.

Previous works Indirect approaches, based on the optimality conditions derived from the Pontryagin’s
maximum principle and leading to the so-called primer vector theory ([130]), have been extensively
studied [43, 136, 179, 11]. However, due to the nonconvex and polynomial nature of these conditions,
numerical approaches remained either too complicated, or made use of heuristics which exhibit only
suboptimal solutions on some instances. An important theoretical contribution for the optimal control
problem was proposed in [161] and revisited in [54]. The idea is to recast it as a simpler optimization
problem using a relaxation scheme and the duality theory in minimum-norm problems. In [54], a linear
programming problem on measures is formulated, which is solved by a hierarchy of linear-matrix
inequalities. However, the numerical solving of these hierarchies remains cumbersome.

Following [161], our contribution was to propose a new simpler convergent iterative numerical
algorithm to solve the fixed-time impulsive linear rendezvous (without fixing a priori the number of
impulses). This was based on the observation that by topological duality results [139, 161], the problem
to be solved becomes a Semi-Infinite Convex Programming (SICP) Problem. In turn, SICP can be solved
by iterative discretization methods [184]. For instance, one of the most classical algorithms, which can
be interpreted in the SICP context, with the further simplification of the constraints being linear, is the
Remez algorithm [49].

In order to obtain the SICP formulation, the theoretical framework employed [161, C8] is summarized
below:

∙ Formulation of a minimum norm moment problem. It is known that the solutions of the uncon-
trolled linearized dynamics in equation (3.5) form an 𝑛-dimensional affine space and a closed-form
fundamental matrix, say 𝜙(𝜈), was provided by Yamanaka and Ankersen [230]. Defining the matrix
𝑌 (𝜈) = 𝜙−1(𝜈)𝐵 =

[︀
𝑦1(𝜈) · · · 𝑦𝑛(𝜈)

]︀𝑇 ∈ R𝑛×𝑟, one has:

𝑐 = 𝜙−1(𝜈𝑓 )𝑋(𝜈𝑓 )− 𝜙−1(𝜈0)𝑋0,

=

∫︁ 𝜈𝑓

𝜈0

𝜙−1(𝜎)𝐵𝑢(𝜎)d𝜎 =

∫︁ 𝜈𝑓

𝜈0

𝑌 (𝜈)𝑢(𝜎)d𝜎.
(3.7)

Hence, Problem 4 can be equivalently written as:
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Problem 5. (Minimum norm moment problem) Find 𝑢̄(𝑡) ∈ ℒ1,𝑝([𝜈0, 𝜈𝑓 ],R𝑟) solution of the
minimum norm moment problem:

inf
𝑢
‖𝑢‖1,𝑝 = inf

𝑢

∫︁ 𝜈𝑓

𝜈0

‖𝑢(𝜈)‖𝑝d𝜈

s.t.

∫︁ 𝜈𝑓

𝜈0

𝑌 (𝜎)𝑢(𝜎)d𝜎 = 𝑐, 𝜈0, 𝜈𝑓 fixed.
(3.8)

Several remarks are important at this point:

– the specific matrices 𝑌 (𝜈) encountered in the rendezvous problem, 𝑦1(𝜈) · · · 𝑦𝑛(𝜈) are linearly
independent elements of 𝒞([𝜈0, 𝜈𝑓 ],R𝑟);

– when the fundamental matrix 𝜙(𝜈) cannot be obtained exactly in closed-form, techniques
from Section 2.4 can be employed to obtain efficient polynomial approximations for its entries;

– Problem 5 may not reach its optimal solution due to concentration effects [188]. This is mainly
due to the fact that the functional space ℒ1,𝑝([𝜈0, 𝜈𝑓 ],R𝑟) in which the optimal solution is
sought, is not the topological dual of any other functional space [139]. It is then necessary to
consider a so-called relaxed problem, whose solutions are thought of as generalized solutions of
Problem 5. Specifically, they are searched for in the space of functions of bounded variation
BV([𝜈0, 𝜈𝑓 ],R𝑟) [161, 139].

∙ Relaxation of the original problem. It is important to note that a unique association can be made
between a function 𝑔 ∈ BV([𝜈0, 𝜈𝑓 ],R𝑟) and a linear functional belonging to the topological dual
space 𝑙 ∈ 𝒞*([𝜈0, 𝜈𝑓 ],R𝑟) of the space 𝒞([𝜈0, 𝜈𝑓 ],R𝑟), by the Riesz Representation Theorem [139],
via the duality bracket:

𝑙(𝑦𝑖) = ⟨𝑦𝑖(·), 𝑙⟩ =

∫︁ 𝜈𝑓

𝜈0

𝑦𝑖(𝜈)𝑇 d𝑔(𝜈). (3.9)

Hence, Problem 5 may be relaxed as:

Problem 6. (Linear minimum norm problem)
Find a linear functional 𝑙̄ ∈ 𝒞*([𝜈0, 𝜈𝑓 ],R𝑟) solution of the linear minimum norm problem:

𝜂 = inf
𝑙
‖𝑙‖

s.t. 𝑙(𝑦𝑖) = ⟨𝑦𝑖(·), 𝑙⟩ = 𝑐𝑖, ∀ 𝑖 = 1, · · · , 𝑛.
(3.10)

Note that the dual norm of the functional 𝑙 is defined as ‖𝑙‖ = sup
‖𝑦(·)‖𝑞61

|𝑙(𝑦)|, for continuous

functions 𝑦 : [𝜈0, 𝜈𝑓 ]→ R𝑟, equipped with the norm ‖𝑦(·)‖𝑞 = sup
𝜈06𝜈6𝜈𝑓

‖𝑦(𝜈)‖𝑞 (and with 1
𝑝 + 1

𝑞 = 1).

It is shown in [161] that the infimum of Problem 6, denoted by 𝜂, is reached and that it is equal to
the infimum of Problem 5.

Although Problem 6 is still an infinite-dimensional optimization problem, it is particularly appealing
due to the important following result [161] [139, Chapter 5].

Theorem 3.2.2. Let 𝑦𝑖(·) ∈ 𝒞 ([𝜈0, 𝜈𝑓 ],R𝑟), ∀ 𝑖 = 1, · · · , 𝑛 and suppose that

𝐷 = {𝑙 ∈ 𝒞* : ⟨𝑦𝑖(·), 𝑙⟩ = 𝑐𝑖, 𝑖 = 1, · · · , 𝑛} ≠ ∅, (3.11)

then
𝜂 = min

𝑙∈𝐷
‖𝑙‖ = max

‖𝑌 𝑇 (𝜈)𝜆‖𝑞61
𝑐𝑇𝜆. (3.12)

In addition, let 𝑙̄ and 𝜆̄ be optimal solutions of (3.12), 𝜆̄ = Arg[ max
‖𝑌 𝑇 (𝜈)𝜆‖𝑞61

𝑐𝑇𝜆] and let 𝑦(𝜈) =

𝑛∑︁
𝑖=1

𝜆𝑖𝑦𝑖(𝜈) =

𝑌 𝑇 (𝜈)𝜆̄ ∈ R𝑟. Then the optimal 𝑙̄ is aligned with the optimal 𝑦:⟨︀
𝑦(·), 𝑙̄

⟩︀
=

∫︁ 𝜈𝑓

𝜈0

𝜆̄𝑇𝑌 (𝜈)d𝑔(𝜈) = ‖𝑦(·)‖𝑞‖𝑙̄‖. (3.13)
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The two problems defined in eq. (3.12) may be considered as dual through the equality of the optimal
values of their respective objectives and the relation between their solutions thanks to the alignment
condition in eq. (3.13). This results in a significant simplification: the infinite-dimensional optimization
Problem 6 has been converted to a search of an optimal vector 𝜆̄ in a finite-dimensional vector space
submitted to a continuum of constraints, yielding a Semi-Infinite Convex Problem (SICP):

Problem 7. (SICP problem) Find 𝜆̄ ∈ R𝑛 solution of

𝜇̄ = min
𝜆∈R𝑛

−𝑐𝑇𝜆
‖𝑌 𝑇 (𝜈)𝜆‖𝑞 6 1.

(3.14)

Note that 𝜇̄ = −𝜂. An efficient numerical method for solving Problem 7 is given in Sec. 3.2.2. Once
its solution is obtained, the alignment relation between the function 𝑦(·) element of the Banach space
𝒞([𝜈0, 𝜈𝑓 ],R𝑟) and the functional 𝑙̄ belonging to its dual space 𝒞*([𝜈0, 𝜈𝑓 ],R𝑟) is particularly important to
get back to the optimal control searched for as a bounded variation function.

Theorem 3.2.3. (Recover solution as step function [161])
Let 𝑦𝑖(·) ∈ 𝒞 ([𝜈0, 𝜈𝑓 ],R𝑟), 𝑖 = 1, . . . , 𝑛 and 𝜆̄ ∈ R𝑛 be an optimal solution of Problem (3.14). Define

the sets Γ𝑠 = {𝜈 ∈ [𝜈0, 𝜈𝑓 ] : |𝑦𝑠(𝜈)| = 1} and Γ =

{︂
𝜈 ∈ [𝜈0, 𝜈𝑓 ], ‖𝑦(𝜈)‖𝑞 = max

𝜈06𝜈6𝜈𝑓

‖𝑦(𝜈)‖𝑞 = 1

}︂
. Note

that Γ = ∪𝑠Γ𝑠 for 𝑝 = 1. There is an optimal solution 𝑔(·) ∈ BV ([𝜈0, 𝜈𝑓 ],R𝑟) corresponding to the
optimal solution 𝑙̄ in equation (3.9), which is a step function with at most 𝑛 points of discontinuity 𝜈𝑗 ∈ Γ,
𝑗 = 1, · · · , 𝑁 6 𝑛. Its jumps are given by:

𝑔𝑠(𝜈𝑗)− 𝑔𝑠(𝜈−𝑗 ) = 𝛼𝜈𝑗
sgn(𝑦𝑠(𝜈𝑗))𝜒Γ𝑗

, 𝛼𝜈𝑗
> 0,

when 𝑝 = 1,
or
𝑔𝑠(𝜈𝑗)− 𝑔𝑠(𝜈−𝑗 ) = 𝛼𝜈𝑗

|𝑦𝑠(𝜈𝑗)|𝑞−1sgn(𝑦𝑠(𝜈𝑗)),

when 1 < 𝑝 <∞,

(3.15)

for 𝑠 = 1, · · · , 𝑟 and 𝛼𝜈𝑗
solutions of the linear system:

𝑁∑︁
𝑗=1

𝛽𝑖(𝜈𝑗)𝛼𝜈𝑗
= 𝑐𝑖, 𝑖 = 1, · · · , 𝑛, (3.16)

where 𝛽𝑖(𝜈𝑗) are given by:

𝛽𝑖(𝜈𝑗) =

𝑟∑︁
𝑠=1

𝑦𝑖,𝑠(𝜈𝑗)sgn(𝑦𝑠(𝜈𝑗)), when 𝑝 = 1,

or

𝛽𝑖(𝜈𝑗) =

𝑟∑︁
𝑠=1

𝑦𝑖,𝑠(𝜈𝑗)|𝑦𝑠(𝜈𝑗)|𝑞−1sgn(𝑦𝑠(𝜈𝑗)),

when 1 < 𝑝 <∞,

(3.17)

for all 𝑗 = 1, · · · , 𝑁 .

This theorem states important results that have been known for a while in the aerospace community
but whose value has not been completely exploited to derive efficient numerical algorithms for impulsive
maneuvers design. First, it says that the optimal controlled trajectory for the minimum-fuel Keplerian
linearized elliptic rendezvous problem is purely impulsive and that the number of impulses is upper-
limited by 𝑛 which is the dimension of the fixed final conditions of the optimal control problem.

Remark 3.2.4. It is also shown in [161] that a sequence of functions 𝑢𝜀(·) ∈ ℒ1,𝑝([𝜈0, 𝜈𝑓 ],R𝑟) converges
to a linear combination of 𝛿(·) functions corresponding to the function 𝑔(·) with equal norms. Let
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∆𝑉 (𝜈𝑗) = 𝑔(𝜈𝑗)− 𝑔(𝜈−𝑗 ), then roughly speaking, this may be described by:

𝑢̄𝜀(𝜈) →
𝑁∑︁
𝑗=1

∆𝑉 (𝜈𝑗)𝛿(𝜈𝑗 − 𝜈), 𝜀→ 0. (3.18)

Indeed, the initial optimal control problem amounts to finding the sequences of optimal impulse locations
{𝜈𝑖}𝑖=1,··· ,𝑁 and optimal impulse vectors {∆𝑉 (𝜈𝑖)}𝑖=1,··· ,𝑁 verifying the boundary equation:

𝑐 =

𝑁∑︁
𝑖=1

𝑌 (𝜈𝑖)∆𝑉 (𝜈𝑖). (3.19)

3.2.2 A convergent discretization approach

Based on Problem 7 and Theorem 3.2.3, a convergent iterative numerical method is presented. Firstly, the
SICP Problem 7 is solved using Algorithm 19, whose convergence proof was given in [C8]. Namely, the
idea is to consider an efficient discretization procedure [184, Chap.7], by constructing a sequence of finite
subsets Θ𝑖 ⊆ Θ := [𝜈0, 𝜈𝑓 ] and solving Problem 7 on this discretization Θ𝑖 respectively. The discretization
procedure implemented was to add at each iteration the point which violates most the constraints, see line
6 of Algorithm 19. Under certain assumptions discussed in [C8] (among which Θ is compact, Slater
condition holds for Problem 7, the initial set Θ0 can be chosen in a convenient way), the sequence of
solutions of finite dimensional problems, given in line 7 of the algorithm, is convergent to that of the
SICP Problem 7.

Algorithm 19 Numerical procedure for solving Problem 7.
Input: interval Θ = [𝜈0, 𝜈𝑓 ], matrix 𝑌 (𝜈), initial condition 𝑐, accuracy 𝜀
Output: 𝜇(𝑖) and 𝜆(𝑖) numerical solution of Problem 7
Init:
1 𝑖← 0;

2 Θ0 ← {𝜃0; 𝜃1} ⊂ Θ s.t. 𝜃0 − 𝜃1 ̸= 𝑘𝜋;

3 Solve eq. (3.19) for ∆𝑉0 and ∆𝑉1;

4 Solve for 𝜆(0) the system 𝑌 𝑇 (𝜃𝑘)𝜆(0) = ∆𝑉𝑘/‖∆𝑉𝑘‖𝑞 , 𝑘 = 0, 1.

5 While max
𝜃∈Θ
‖𝑌 (𝜃)𝑇𝜆(𝑖)‖𝑞 − 1 > 𝜀 do

6 𝑖← 𝑖+ 1; Θ𝑖 ← Θ𝑖−1 ∪
{︂

arg

[︂
max
𝜃∈Θ
‖𝑌 𝑇 (𝜃)𝜆(𝑖)‖𝑞

]︂}︂
;

7 Find 𝜆(𝑖) solution of discretized problem:

𝜇(𝑖) = inf
𝜆∈R𝑛

−𝑐𝑇𝜆
s.t. ‖𝑌 𝑇 (𝜃𝑘)𝜆‖𝑞 6 1 for all 𝜃𝑘 ∈ Θ𝑖

8 return 𝜇(𝑖), 𝜆(𝑖).

In practice, the norms and corresponding problems to be solved are:
– for a gimbaled single thruster one has 𝑝 = 𝑞 = 2, which gives a semi-infinite positive semi-definite
(SDP) problem:

inf
𝜆∈R𝑛

−𝑐𝑇𝜆

s.t.

[︂
−1 𝜆𝑇𝑌 (𝜈)

𝑌 𝑇 (𝜈)𝜆 −1

]︂
⪯ 0, ∀ 𝜈 ∈ [𝜈0, 𝜈𝑓 ];

(3.20)

– for 6 ungimbaled identical thrusters, one has 𝑝 = 1, 𝑞 = ∞ which gives a semi-infinite linear
programing (LP) problem:
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inf
𝜆∈R𝑛

−𝑐𝑇𝜆

s.t.

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝜆𝑖𝑦𝑖,𝑠(𝜈)

⃒⃒⃒⃒
⃒ 6 1,∀ 𝜈 ∈ [𝜈0, 𝜈𝑓 ], 𝑠 = 1, . . . , 𝑟.

(3.21)

We also obtained in [C8] an estimation of the accuracy of the obtained numerical value 𝜇(𝑖) with
respect to the optimal cost 𝜂 in Problem 6. The discretization method produces outer approximations of
a solution of the SIP problem, thus providing increasing lower bounds for its solution:

𝜂 = max
‖𝑌 𝑇 (𝜈)𝜆‖𝑞61

𝑐𝑇𝜆 = − min
‖𝑌 𝑇 (𝜈)𝜆‖𝑞61

−𝑐𝑇𝜆 6 −𝜇(𝑖). (3.22)

A lower bound can also be obtained. If after 𝑖 iterations, max
𝜃∈Θ
‖𝑌 (𝜃)𝑇𝜆(𝑖)‖𝑞 6 1 + 𝜀, where 𝜀 is a user

defined input parameter, then
−𝜇(𝑖)

1 + 𝜀
6 𝜂. (3.23)

Thus, given 𝜀, the output 𝜇(𝑖), 𝜆(𝑖) of Algorithm 19 provides a good numerical approximation for
the optimal cost of the original problem, 𝜂. Secondly, one identifies the impulse locations and velocity
increments in Algorithm 20 which is based on Theorem 3.2.3. Specifically, the impulse locations can be
identified by finding

Γ = {𝜈𝑘 ∈ [𝜈0, 𝜈𝑓 ] : ‖𝑌 (𝜈𝑘)𝑇𝜆(𝑖)‖𝑞 = 1}.
This is done numerically on a grid of [𝜈0, 𝜈𝑓 ] (lines 1-2 of Algorithm 20). Then one solves the system
given in eq. (3.19). This is always possible, since, according to Neustadt, the following holds: if at most
𝑛 locations are found in Γ, the system is underdetermined/determined and it has at least one solution
(lines 5-6); if more than 𝑛 locations are found in Γ, one can select 𝑛 among them such that the system has
a solution (lines 7-8).

Algorithm 20 Numerical Reconstruction of impulse locations and vectors

Input: interval Θ = [𝜈0, 𝜈𝑓 ], matrix 𝑌 (𝜈), initial condition 𝑐, accuracy 𝜀, solution 𝜆(𝑖) ∈ R𝑛 of Pb. 7
Output: impulse locations and impulse vectors Γ𝑖𝑚𝑝, {∆𝑉𝑖}

1 Γ𝑑 ← discretized grid of [𝜈0, 𝜈𝑓 ]

2 Γ← {𝜈𝑘 ∈ Γ𝑑 : ‖𝑌 (𝜈𝑘)𝑇𝜆(𝑖)‖𝑞 − 1 ∈ [−𝜀, 𝜀]}
3 𝑁 ← size(Γ)

4 if (𝑁 6 𝑛) then

5 Γ𝑖𝑚𝑝 ← Γ

6 Solve for ∆𝑉𝑖, 𝑖 = 1, . . . , 𝑁 , the linear system 𝑐 =
∑︁

𝜈𝑖∈Γ𝑖𝑚𝑝

𝑌 (𝜈𝑖)∆𝑉𝑖.

7 else

8 Γ𝑖𝑚𝑝 ← Choose 𝑛 points in Γ s.t. the linear system 𝑐 =
∑︁

𝜈𝑖∈Γ𝑖𝑚𝑝

𝑌 (𝜈𝑖)∆𝑉𝑖 has a solution.

9 return Γ𝑖𝑚𝑝, {∆𝑉𝑖}.

3.2.3 Numerical example

One of the numerical examples of [C8] is presented in what follows.

Example 3.2.5 (ATV Example - Numerical solution). It concerns the in-plane motion case and related to
some example of the Automated Transfer Vehicle (ATV) setup [117]. The parameters of the reference
orbit and of the rendezvous are given in Table 3.5.
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Semi-major axis a = 6763 km.
Inclination i=52 deg.

Argument of perigee 𝜔=0 deg.
Longitude of the ascending node Ω= 0 deg.

Eccentricity e = 0.0052
Initial time 𝜈0 = 0 rad.

Initial state vector 𝑋𝑇
0 [-30 0.5 8.514 0] km. - m/s.

Initial state vector 𝑋̃𝑇
0 [-51.9222 0.0865 0.95734 0].104

Final anomaly 𝜈𝑓 = 8.1832 rad.
Duration 𝑡𝑓 − 𝑡0 = 7200 s.

Final state vector 𝑋𝑇
𝑓 [-100 0 0 0] m. - m/s.

Final state vector 𝑋̃𝑇
𝑓 [-76.3818 0 69.1519 0]

Table 3.5 – Parameters of the ATV example.

For the in-plane rendezvous, two different cases are studied: I- a single gimbaled thruster using
ℒ1,2 norm and II- 6 ungimbaled thrusters with ℒ1,1 norm. Note that the numerical solver employed is
SDPA [231].

I: ℒ1,2 norm For 𝜀 = 10−4, Algorithm 19 needs 6 iterations and returns an approximation of the optimal
solution 𝜆̄ = [−1.177, 1.132, −1.571, 14.36]

𝑇
.10−4. Then, Algorithm 20 builds a 4-impulse minimum-

fuel solution with a cost of 10.7989 m/s. The approximations of optimal impulse locations are given by
Γ𝑖𝑚𝑝 = {0, 1.3872, 6.6639, 8.1832} [rad]. This process is illustrated in Figure 3.4.
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(d) Optimal trajectory in (𝑥, 𝑧) plane.

Figure 3.4 – ℒ1,2 norm, ATV example. The next point added to the discretization scheme is shown in
green; the final impulse locations are shown in red.
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II: ℒ1,1 norm Similarly, the ℒ1,1 case is run considering a tolerance parameter 𝜀 = 10−4. After 5
iterations of Algorithm 19, 𝜆̄ = [0.1041 − 0.1083 0.1373 1.2679]𝑇 (see Figure 3.5). Then, the impulse
locations are given by Γ𝑖𝑚𝑝 = {0, 1.3352, 6.7087, 8.1832} [rad], with a fuel-consumption for this in-plane
maneuver of 10.8415 m/s. The comparisons of ℒ1,2 and ℒ1,1 fuel-minimum solutions show a minor
difference with respect to the optimal locations and overall consumption.
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(d) Optimal trajectory in (𝑥, 𝑧) plane.

Figure 3.5 – ℒ1,1 norm, ATV example. The next point added to the discretization scheme is shown in
green; the final impulse locations are shown in red.

3.2.4 A posteriori validation

As depicted in Figures 3.5d and 3.4d the trajectory in the (𝑥, 𝑧) plane seems to be correct. It is however
the result of a numerical algorithm and a numerical integration of the controlled ODE system (3.6), so an
a posteriori certification can be useful. Furthermore, in general, a closed-form fundamental matrix for
such systems is unavailable, which would hinder the use Algorithm 19. A solution to these two problems
is to use the RPAs techniques proposed in Section 2.4. This would offer in general both an approximation
for a fundamental/transition matrix of linear ODE systems and a certification step, which consists in
validating the obtained controlled trajectories.

Concretely, we want to provide rigorous polynomial approximations of the chaser’s in-plane tra-
jectories over each segment [𝜈𝑖, 𝜈𝑖+1], where 𝜈𝑖 and 𝜈𝑖+1 are two consecutive impulse times. These are
precisely IVP problems over compact segments, where at each step 𝑖, we propagate the position and
velocity of the chaser from 𝜈𝑖 to 𝜈𝑖+1 and compute the new conditions at 𝜈𝑖+1 by incrementing the
obtained velocity (𝑥′(𝜈𝑖+1), 𝑧′(𝜈𝑖+1)) by the impulse velocity vector (∆𝑥′(𝜈𝑖+1),∆𝑧′(𝜈𝑖+1)). We focus on
the in-plane problem, because the out-of-plane is a simple oscillator, which has a classical solution. For
the notations to be clear, at step 𝑖 over [𝜈𝑖, 𝜈𝑖+1], let’s call 𝜈𝑜 = 𝜈𝑖 and 𝜈𝑓 = 𝜈𝑖+1.

The in-plane part of the ODE system (3.6), is recast under a form similar to what was discussed in
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Section 2.4, as follows:

𝑧′′(𝜈) +

(︂
4− 3

1 + 𝑒 cos 𝜈

)︂
𝑧(𝜈) = 𝜁,

𝑥(𝜈) = 𝑥(𝜈0) + (𝑥′(𝜈0)− 2𝑧(𝜈0))(𝜈 − 𝜈0) + 2

∫︁ 𝜈

𝜈0

𝑧(𝑠)d𝑠,

𝜁 = 4𝑧(𝜈0)− 2𝑥′(𝜈0) and 𝜈 ∈ [𝜈0, 𝜈𝑓 ].

(3.24)

We use the affine rescaling 𝜈 = 𝜈(𝑡) =
𝜈𝑜+𝜈𝑓

2 +
𝜈𝑓−𝜈𝑜

2 𝑡 for 𝑡 ∈ [−1, 1], and setting 𝑓(𝑡) = 𝑧 ∘ 𝜈 =

𝑧
(︁

𝜈𝑜+𝜈𝑓

2 +
𝜈𝑓−𝜈𝑜

2 𝑡
)︁

, we get the following LODE over [−1, 1]:

𝑓 ′′(𝑡) + 𝛼0(𝑡)𝑓(𝑡) = 𝜔2𝜁, (3.25)

with

𝛼0(𝑡) = 𝜔2

(︂
4− 3

1 + 𝑒 cos(𝜉 + 𝜔𝑡)

)︂
, 𝜉 =

𝜈𝑜 + 𝜈𝑓
2

, 𝜔 =
𝜈𝑓 − 𝜈𝑜

2
.

This equation is interesting for several reasons. First, the coefficient 𝛼0(𝑡) is not polynomial so that all
the steps of the method presented in Section 2.4 are involved to get a rigorous error bound. Then, even if
the denominator in 𝛼0(𝑡) never vanishes overR, the coefficient has singularities in the complex plane.
Hence, if the total time of the mission is long enough (that is, if 𝜔 is large enough), a Taylor method needs
to use interval subdivision, while Chebyshev methods remain valid over the whole interval. Finally,
choosing various values for 𝑒 and 𝜔 will allow us to test the method in difficult cases (that is, when 𝑒
gets close to 1 or when 𝜈𝑓 − 𝜈𝑜 gets large). This is shown in what follows.

Approximating the non-polynomial coefficient. The first step consists in computing a rigorous Ч1-
polynomial approximation of 𝛼0(𝑡). The cosine term cos(𝜉 + 𝜔𝑡) is a solution of 𝑓 ′′ + 𝜔2𝑓 = 0, and
can be rigorously approximated using our method in this easy case. We consider that 𝜉 = 0. When
𝜔 gets large, the Chebyshev series will converge more slowly so that we will need a larger degree 𝑑.
Then, to approximate the inverse series, it is clear that when 𝑒 gets close to 1, the minimal value of the
denominator gets close to 0 and we will again need a large degree to get an accurate approximation. In
Table 3.6, we sum up approximation results for 3 different values of 𝑒 and 3 different values of 𝜔.

𝑒 𝜔 𝑑 = 10 𝑑 = 20 𝑑 = 50 𝑑 = 100 𝑑 = 200
𝜋/4 3 · 10−15 2 · 10−28 1 · 10−64 ≈ 0 ≈ 0

.0052 𝜋 5 · 10−7 1 · 10−13 7 · 10−34 1 · 10−65 ≈ 0
4𝜋 1.8 7 · 10−3 1 · 10−8 3 · 10−19 2 · 10−39

𝜋/4 4 · 10−12 4 · 10−22 4 · 10−52 ≈ 0 ≈ 0
.2 𝜋 1 · 10−3 9 · 10−8 4 · 10−19 7 · 10−39 1 · 10−77

4𝜋 7 · 10 1 · 101 4 · 10−2 4 · 10−6 3 · 10−14

𝜋/4 3 · 10−14 8 · 10−20 4 · 10−47 1 · 10−92 ≈ 0
.80621 𝜋 4 · 10−1 8 · 10−3 3 · 10−9 2 · 10−19 7 · 10−40

4𝜋 2 · 103 1 · 103 2 · 102 1 · 101 4 · 10−2

Table 3.6 – Chebyshev approximations errors of the coefficient 𝛼0(𝑡), function of eccentricity, interval
and degree.

Obtaining a contracting Newton-like operator. Having a rigorous approximation 𝑎0(𝑡) of degree 𝑑
for 𝛼0(𝑡), we can now apply the validation method to equation (3.25). The integral transform produces
coefficients:

𝛽0(𝑡) = 𝑡𝑎0(𝑡), 𝛽1(𝑡) = −𝑎0(𝑡),
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which induces an almost-banded structure for the operator K (the width of the band is 𝑑+1). In Table 3.7,
we present the parameter 𝑛 which is the truncation order for K, to obtain a contracting Newton operator
T, in three different situations depending on 𝑒, 𝜔 and the appropriately chosen 𝑑. The final column gives
the certified upper bound given by the algorithm for the Lipschitz constant of T. A numerical solution
of equation (3.24) can be now validated.

𝑒 𝜔 𝑑 𝑛 bound
.0052 𝜋/4 10 30 1.5 · 10−3

.0052 4𝜋 30 90 4.1 · 10−2

.2 𝜋 20 60 6.4 · 10−3

.80621 𝜋/4 10 30 3.2 · 10−3

.80621 𝜋 30 90 4.9 · 10−2

.80621 4𝜋 500 1500 2.1 · 10−3

.

Table 3.7 – Validation of the Lipschitz constant of the quasi-Newton operator T.

This is firstly shown on an academic example. Let us fix the eccentricity 𝑒 = 0.5 (in order to observe the
approximation errors at drawing scale), the interval [𝜈0, 𝜈𝑓 ] = [0, 6𝜋] corresponding to 3 periods, and the
initial conditions (𝑥(𝜈0), 𝑧(𝜈0), 𝑥′(𝜈0), 𝑧′(𝜈0)) = (−3·104 m, 5·103 m, 9·103 m · rad−1, 4·103 m · rad−1). The
corresponding functions 𝑥(𝜈) and 𝑧(𝜈) are plotted in Figure 3.6a. Figure 3.6b represents an approximation
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Figure 3.6 – Different validation results related to the spacecraft rendezvous problem.

of degree 𝑛 = 18 of 𝑧′′(𝜈) (radial acceleration), together with the rigorous error bound obtained by our
method. The dashed curve corresponds to the exact solution, which as expected lies inside the tube
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defined by our rigorous approximation. One notices that we obtain a tight error bound, even for the
‖ · ‖∞ norm. Figure 3.6c gives the minimal degree 𝑑 corresponding to an approximation of 𝑧 for which
our algorithm is able to certify an error below 1m, in function of the period length and the eccentricity
of the target reference orbit. Finally, we provide a validation of the obtained numerical solution of the
previous ATV example, in the case II (ℒ1,1 norm).

Example 3.2.6 (ATV Example - A posteriori validation). Between two impulses a polynomial with a
validated error bound is computed for 𝑥(𝜈), 𝑥′(𝜈), 𝑧(𝜈) and 𝑧′(𝜈) as shown before. After each impulse,
the new initial conditions are: for the positions, it suffices to rigorously evaluate the polynomials plus
the error bound at the final time 𝜈𝑓 ; the velocities are obtained as the interval sum between the impulse
values and the rigorous evaluation of 𝑥′(𝜈𝑓 ) and 𝑧′(𝜈𝑓 ). This provides a validated enclosure of the
position and velocity at each point and in particular at the end of the considered interval. In Table 3.8,
we provide an enclosure of the final states obtained with this validated trajectory propagation procedure
in function of different polynomial degrees 𝑑.

d 𝑥(𝜈𝑓 ) 𝑧(𝜈𝑓 ) 𝑥̇(𝜈𝑓 ) 𝑧̇(𝜈𝑓 )
25 -100 + [-2.68e1, 2.68e1] [-7.40e0, 7.40e0] [-1.82e-2, 1.82e-2] [-5.37e-3, 5.37e-3]
30 -100 + [-1.01e-1, 1.01e-1] [-2.76e-2, 2.76e-2] [-6.77e-5, 6.77e-5] [-2.01e-5, 2.01e-5]
40 -100 + [-2.32e-5, 2.32e-5] [-6.39e-6, 6.39e-6] [-1.56e-8, 1.56e-8] [-4.63e-9, 4.63e-9]
50 -100 + [-2.04e-8, 1.64e-8] [-5.04e-9, 5.06e-9] [-1.23e-11, 1.23e-11] [-3.66e-12, 3.65e-12]

Table 3.8 – Final states obtained with rigorous trajectory propagation for the ATV example in function of
the approximation degree 𝑑 employed.

3.2.5 Other spin-off results

The presented work combines optimal control, computer algebra and approximation theory in the
framework of aerospace domain. It features simplicity, speed and reliability. On the one hand, it makes
use of state of the art linear/SDP solvers; on classical rendezvous mission examples, for accuracies of
𝜀 = 10−4, no more than 10 iterations are necessary, which accounts for few milliseconds on a modern
computer. On the other hand, error bounds provide guarantees that the accuracy requirements are met,
both in terms of consumption and trajectory validation.

The numerical algorithm solution to the optimal problem presented, also provided us with valuable
insight for solving other problems related or not to aerospace. At first, this allowed us to provide a
closed-form solution for the elliptic out-of-plane rendezvous problem [C8] (which was not detailed here
for the sake of brevity) and to get a better grasp on a more intricate geometric interpretation for the
in-plane case, which is the subject of future works. Then, we applied mainly the same algorithm to
solve the problem of fixed-time fuel-optimal trajectories with high-thrust propulsion in the vicinity of
Lagrange points in the circular restricted three-body problem [C3].

Incidentally, we also observed that the SICP problem formulation presented above can be applied
to a problem coming from the mathematical function implementation in machine, which was briefly
discussed in Section 1.2. We believe that it is interesting to note the cyclic aspect of these results: we make
use of validated computations to provide more reliable optimal control solutions, which in turn provide
us with new solutions of well-known problems in computer arithmetic. Thus, we take a moment to
briefly summarize this very recent result [C1] at the end of this chapter.

A spin-off result in mathematical functions implementation As shown in Example 1.2.1 for instance,
the problem of evaluating a function 𝑓 in FP arithmetic, usually boils down to two main steps:

∙ an approximation polynomial 𝑝 is searched for, on some specific interval 𝐼 , such that two main
requirements are met: its coefficients are representable with a specified fixed precision format
(usually, binary32, binary64, or an unevaluated sum of such formats) and the approximation error
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is less than a target 𝜀approx, whether absolute ‖𝑓 − 𝑝‖∞ 6 𝜀approx or relative ‖(𝑓 − 𝑝)/𝑓‖∞ 6 𝜀approx.
For that, efficient algorithms were developed in [36, 35]. In the simpler case of polynomials

𝑝 =
𝑛∑︀

𝑖=0

𝑎𝑖𝑡
𝑖 of given degree 𝑛, with real coefficients 𝑎𝑖, this is equivalent to the so-called minimax

problem:
min
𝑎𝑖∈R,
𝑖∈[0..𝑛]

max
𝑡∈𝐼
|𝑓(𝑡)− 𝑝(𝑡)|,

(𝑃minimax)

which can be solved by the Remez algorithm (see [35, 50] and references therein). This iterative
algorithm has quadratic convergence and rather low complexity, since it involves solving a linear
system of size 𝑛+ 2 at each step, together with numerically computing the extrema of 𝑓 − 𝑝 over 𝐼 .

∙ an efficient evaluation scheme for 𝑝 is searched for; since after each addition or multiplication,
rounding errors occur, one must ensure that the computed value 𝑝 satisfies ‖𝑝− 𝑝‖∞𝐼

6 𝜀eval (or
‖(𝑝− 𝑝)/𝑝‖∞𝐼 6 𝜀eval) for a given threshold 𝜀eval. Heuristics presented in [129] extend the precision
of the important coefficients, such that the evaluation error remains below 𝜀eval.

These two steps are usually independently considered, except for very small precisions or polynomial
degrees, where an exhaustive search on the rounded coefficients is possible [208]. However, as explicitly
mentioned in [36], one would like to take into account the roundoff error that occurs during polynomial evaluation:
getting the polynomial, with constraints on the size of the coefficients, that minimizes the total (approximation plus
roundoff) error would be extremely useful. We made some progress on this open question, by formulating a
semi-infinite linear optimization problem (SIP) whose solution is the best polynomial with respect to the
uniform norm of the sum of both errors.

The original optimization problem

min
𝑎𝑖∈R,
𝑖∈[0..𝑛]

max
𝑡∈𝐼

(|𝑓(𝑡)− 𝑝(𝑡)|+ |𝑝(𝑡)− 𝑝(𝑡)|) ,
(𝑃general)

is firstly formulated as a convex SIP problem, using a linearized bound say, 𝜃(𝑎, 𝑡), for the evaluation
error |𝑝(𝑡)− 𝑝(𝑡)|:

min
(𝑎,𝑎)∈R𝑛+2

𝑎

s.t. |𝑓(𝑡)− 𝜋0(𝑡)𝑇𝑎|+ 𝜃(𝑎, 𝑡)− 𝑎 6 0, 𝑡 ∈ 𝐼,
(𝑃 ′

general)

where we denote the monomial basis by 𝜋0(𝑡) = (1, . . . , 𝑡𝑛)𝑇 .
Note that in [C1], we provide an algorithm based on [164, 119, 201], which computes closed-form

expressions for 𝜃(𝑎, 𝑡), of the form 𝜃(𝑎, 𝑡) =
∑︀𝑛+1

𝑖=1 |𝜋𝑖(𝑡)
𝑇𝑎|. For instance, for Horner evaluation scheme

one has

𝜋1(𝑡)
𝑇 = (𝑢, 𝑢𝑡, . . . , 𝑢𝑡𝑛−1, 𝑢𝑡𝑛),

𝜋2(𝑡)
𝑇 = (0, 2𝑢𝑡, . . . , 2𝑢𝑡𝑛−1, 2𝑢𝑡𝑛), . . . ,

𝜋𝑛(𝑡)
𝑇 = (0, 0, . . . , 2𝑢𝑡𝑛−1, 2𝑢𝑡𝑛),

𝜋𝑛+1(𝑡)
𝑇 = (0, 0, . . . , 0, 𝑢𝑡𝑛),

where 𝑢 is the unit roundoff (cf. Definition 1.1.3 i.e. 𝑢 = 2−53, for round-to-nearest in binary64 precision).
An important observation is that, based on the above formula, (𝑃 ′

general) can be formulated as a
linear SIP, at the expense of a different index set Ω replacing the previous index set 𝐼 . Here, the set of
constraints of (𝑃 ′

general) involving absolute values is replaced by as many linear constraints as required
to represent all possible sign combinations. With the following definitions:

𝑥 = (𝑎,𝑎) ∈ R𝑛+2, 𝑧 = (1, 0, . . . , 0) ∈ R𝑛+2,

𝛼(𝑡, 𝜎0, . . . , 𝜎𝑛 + 1) = (1, 𝜎0𝜋0
𝑇 (𝑡) +

𝑛+1∑︁
𝑖=1

𝜎𝑖𝜋𝑖
𝑇 (𝑡))𝑇 ∈ R𝑛+2,

S = {−1, 0, 1}𝑛+2, 𝜔 = (𝑡, 𝜎0, . . . , 𝜎𝑛+1) ∈ Ω := 𝐼 ×S,
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Problem (𝑃 ′
general) is exactly the following linear SIP:

min
𝑥∈R𝑛+2

𝑧𝑇𝑥

s.t. 𝛼(𝜔)𝑇𝑥 > 𝑐(𝜔), 𝜔 ∈ Ω,
(𝑃 )

where 𝑐(𝜔) = 𝜎0𝑓(𝑡), Ω is a compact metric space and the function 𝑔(𝑥, 𝜔) = 𝑐(𝜔)−𝛼(𝜔)𝑇𝑥 6 0 defining
the feasible set is a continuous function from R𝑛+2 × Ω into R. Note that for S′ = {−1, 1} × {0}𝑛+1 and
Ω′ = 𝐼 ×S′ ⊆ Ω, (𝑃minimax) is exactly retrieved as shown in the next example.

Example 3.2.7. For 𝑛 = 5, Problem (𝑃minimax) is:

min
(𝑎,𝑎)∈R7

𝑎

s.t. (1, 𝜎01, 𝜎0𝑡, . . . , 𝜎0𝑡
5)(𝑎, 𝑎0, 𝑎1, . . . , 𝑎5)𝑇 > 𝜎0𝑓(𝑡),

𝜎0 = ∓1, 𝑡 ∈ 𝐼.
(3.26)

while Problem (𝑃 ′
general), assuming Horner evaluation is:

min
(𝑎,𝑎)∈R7

𝑎

s.t. (1, 𝜎0 + 𝜎1𝑢, (𝜎0 + 𝜎1𝑢+ 𝜎22𝑢)𝑡, . . . , (𝜎0 + 𝜎1𝑢+ . . .+ 𝜎5𝑢)𝑡5)(𝑎, 𝑎0, 𝑎1, . . . , 𝑎5)𝑇 > 𝜎0𝑓(𝑡),
𝜎0 = ∓1, 𝜎1 = ∓1, . . . , 𝜎5 = ∓1, 𝑡 ∈ 𝐼.

(3.27)

For Problem (𝑃 ′
general), a convergent iterative algorithm similar to Algorithm 19 could be employed,

which considers solving at each step a discretized version of Problem (𝑃 ). In this case, a discretization
(𝑃𝑚) of (𝑃 ) for a set 𝜔 = {𝜔1, . . . , 𝜔𝑚} ⊆ Ω is the following linear program (LP):

min
𝑥∈R𝑛+2

𝑧𝑇𝑥

s.t. 𝛼(𝜔𝑗)
𝑇𝑥 > 𝑐(𝜔𝑗), 𝑗 = 1, · · ·𝑚.

(𝑃𝑚)

Let us recall that Algorithm 19 is based on the iterative principle that after solving at a certain step a
discretized version (𝑃𝑚), it finds the "most violating point 𝜔 not in the set 𝜔, adds it to the discretized set,
then repeats the solving process. However, for this case of linear SIP and under certain mild assumptions,
we presented in [C1], an improvement of this algorithm, which performs an exchange of points at each step.
Moreover, we proved that instead of solving an LP at each step, one can further simplify this approach to
solving a system of linear equations, which is even more efficient. This can be seen as a generalization, in
the above framework, of the Remez algorithm, which solves Problem (𝑃minimax). To prove its correctness,
important discretization properties of linear SIP problems are employed in [C1], based for instance on
the more recent survey [198] and revisiting older works [222, 45, 41, 40]. We state only the main result in
what follows. We need however, to define similarly to Section 3.2.1, the topological dual of Problem (𝑃 ),
in the space 𝒞(Ω)* of signed Borel measures 𝜇 over (Ω,ℬ(R𝑛+2)) [89, Section 21.5]:

max
𝜇⪰0

∫︁
Ω

𝑐(𝜔)d𝜇(𝜔)

s.t.
∫︁
Ω

𝛼(𝜔)d𝜇(𝜔) = 𝑧.
(𝐷)

Its discretization (𝐷𝑚) of (𝐷) is:

max
𝑦𝑗>0

𝑗∈[1..𝑚]

𝑚∑︁
𝑗=1

𝑐(𝜔𝑗)𝑦𝑗

s.t.
𝑚∑︁
𝑗=1

𝑦𝑗𝛼(𝜔𝑗) = 𝑧.

(𝐷𝑚)

Denoting for a Problem (𝑃 ), respectively val(𝑃 ) and Sol(𝑃 ), its optimal value and the set of its optimal
solutions, one has the following inequalities:
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∙ the weak duality, that is val(𝐷) 6 val(𝑃 ) always holds;

∙ val(𝐷𝑚) 6 val(𝐷) and val(𝑃𝑚) 6 val(𝑃 );

∙ val(𝐷𝑚) = val(𝑃𝑚) (strong duality holds) provided that none of (𝑃𝑚) or (𝐷𝑚) is infeasible.

Conditions for having only equalities i.e., val(𝐷𝑚) = val(𝑃𝑚) = val(𝐷) = val(𝑃 ) may be obtained by
using conjugate duality theory as developed in [198, Theorems 2.2, 2.3 and 3.2].

Theorem 3.2.8. [198, Thm. 2.2, 2.3, 3.2] Under the assumptions:

A1 Ω is a compact metric space, 𝛼 : Ω→ R𝑑 and 𝑐 : Ω→ R are continuous functions;

A2 val(𝑃 ) is finite;

A3 (Slater’s condition): there exists 𝑥∘ such that:

𝛼(𝜔)𝑇𝑥∘ > 𝑐(𝜔), for all 𝜔 ∈ Ω; (3.28)

A4 There exist 𝜔1, . . . , 𝜔𝑑 ∈ Ω with (𝛼(𝜔1), · · · ,𝛼(𝜔𝑑)) linearly independent such that:

∃ 𝑦1, . . . , 𝑦𝑑 > 0, 𝑧 =

𝑑∑︁
𝑗=1

𝑦𝑗𝛼(𝜔𝑗), (3.29)

the following statements are true:

(i) Sol(𝑃 ) ̸= ∅ and bounded;

(ii) Sol(𝐷) ̸= ∅ and bounded;

(iii) Problem (𝑃 ) is reducible (that is val(𝑃 ) = val(𝑃𝑚)) to a Problem (𝑃𝑚) with 𝑚 6 𝑑;

(iv) val(𝑃 ) = val(𝐷) = val(𝑃𝑚) = val(𝐷𝑚).

We proved in [C1] that Assumptions A1-A4 are satisfied for our Problem (𝑃 ′
general), with 𝑑 = 𝑛+ 2

and therefore results (i)-(iv) of Theorem 3.2.8 apply. This allows for recasting the problem (𝑃 ′
general) as

the problem of finding the right discretization {𝜔1, . . . , 𝜔𝑛+2} such that item (iv) of Theorem 3.2.8 applies
and to solve the associated (𝑃𝑚) and/or (𝐷𝑚).

Based on these results, an adaptation of an algorithm of [40], which can be seen as a generalization of
the dual simplex algorithm for Problem (𝐷) is as follows.

One finds at each iteration ℓ, the solution 𝑦(ℓ) of (𝐷
(ℓ)
𝑛+2), with 𝜔(ℓ) = {𝜔𝑗

(ℓ)}𝑛+2
𝑗=1 . Such a solution is a

feasible (but not necessarily optimal) point of the dual Problem (𝐷). Moreover, the objective value z𝑇x(ℓ)

of (𝑃
(ℓ)
𝑚 ) and (𝑃 ) for the instance 𝑥(ℓ) := (𝑎(ℓ),𝑎(ℓ)) is equal to the objective value of (𝐷) for the instance

𝑦(ℓ)2. Hence, either 𝑥(ℓ) is a feasible solution of Problem (𝑃 ) by Theorem 3.2.8, or it is an infeasible
point of Problem (𝑃 ). In the latter case, one of these constraints is replaced by a new one, indexed by
𝜔*

(ℓ), in an exchange step in order to increase the objective value of the dual and works towards primal
feasibility. In order to prove the convergence of this process, one needs an assumption on the dual
solution, which always holds in the Remez algorithm. It is not proven in our current setting, but it never
failed in practice.

Assumption 3.2.9. At each iteration ℓ, the solution 𝑦(ℓ) of the dual discretized Problem (𝐷
(ℓ)
𝑛+2) is an

interior point, that is 𝑦(ℓ)𝑗 > 0 for all 𝑗 ∈ [1 . . 𝑛+ 2].

We conclude by illustrating this method on an academic example.

2The feasible set of (𝑃 ) is included in the feasible set of (𝑃 (ℓ)
𝑚 ), for all ℓ.
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Example 3.2.10 (Airy function). Let Ai over 𝐼 = [−2, 2], approximated by a polynomial of degree 𝑛 = 6,
evaluated using the Horner scheme with 𝑢 = 2−12. We fix a tolerance 𝜏 = 0.01.

At iteration 0 (Figure 3.7), the points 𝑡(0)𝑗 are initialized with the Chebyshev nodes and the signatures
𝜎𝑗

(0) define a Remez-like system of linear equations on the coefficients of the polynomial (Figure 3.7d).
Its solution 𝑥(0) = (𝑎(0),𝑎(0)) defines a polynomial 𝑝(0)(𝑡) = 𝑎(0)𝑇𝜋0(𝑡), whose approximation error
is depicted in Figure 3.7a. It exhibits quasi-equioscillations indicating that 𝑝(0) is rather close to the
degree-6 minimax approximation of Ai over 𝐼 . However, the total error is more important near −2
and 2 (Figure 3.7b), due to the evaluation depicted in green. In particular, the algorithm detects the
maximum error at 𝑡(0)* = −2 (in orange). Note that 𝑡(0)1 was already equal to −2, but 𝜔(0)

1 ̸= 𝜔
(0)
* since

the signatures are different. To perform the exchange, the dual solution is needed (Figure 3.7c). It is a
positive combination of Dirac measures supported on the finite set 𝜔(0). Moving forward to iteration
6 (Figure 3.8), the total error is more balanced, though still not optimal. Both the signatures and the
approximation error are now completely different from the Remez solution.

Eventually, the algorithm stops at iteration 9 (Figure 3.9). Indeed, the maximum total error 𝑎(9)* (in
orange) is less than 1% higher than the error 𝑎(9) over the discrete set 𝜔(9). Note that the total error
reaches its maximum at 𝑛+ 2 = 8 points. This became possible by unbalancing the approximation error,
namely reducing the amplitude of the oscillations near −2 and 2, at the cost of higher oscillations in the
middle of 𝐼 .
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Figure 3.7 – Approximation of Ai over [−2, 2]: iteration 0

Other examples show that in practice, the total error obtained with our approach is better than the
previous methods which work in two separate steps (approximation and evaluation). We also show that
in some other cases, the minimax polynomial solution of problem (𝑃minimax) is very close to the solution
of (𝑃general). Further experiments are necessary to assess the whole practical importance of this method.
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Figure 3.8 – Approximation of Ai over [−2, 2]: iteration 6
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Figure 3.9 – Approximation of Ai over [−2, 2]: iteration 9
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All in all, the examples presented in this Chapter show that numerically reliable and efficient solutions
can be obtained when generic optimization frameworks are rethought and tuned from an approximation
and/or computer algebra perspective. This encouraging trend will be further discussed in Chapter 4.
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Chapter 4

Research perspectives

My long term research goal is to bring more reliable computations in the field of optimal control theory
and aerospace applications (e.g. spacecraft rendezvous, in-orbit servicing, collision risk mitigation),
where several difficult, but very promising challenges are left to be addressed. Several works [182, 107,
108, 103, 137] in this sense considered the application of interval analysis in the field of control. However,
they make extensive use of interval branch and bound methods and little or no use at all of powerful
symbolic algorithms existing nowadays.

For that, I consider four main challenges:

∙ C1: Efficient Computation/Evaluation/Manipulation of Rigorous Polynomial Approximations
(RPAs);

∙ C2: Extension and Integration of RPAs in the framework of Optimal Control Theory;

∙ C3: Applications to Guidance, Navigation and Control of Spacecraft;

∙ C4: Computer Arithmetic aspects pertaining to C1– C3.

The first objective is to consider the symbolic-numeric aspect: modern computer algebra algorithms
(rooted in commutative and differential algebra) are employed via approximation theory (in suitable
functional spaces) to obtain efficient approximations and analytic error bounds. Secondly, at subse-
quent numerical levels, roundoff errors are handled, especially in the context of extended precision or
embedded computations.

4.1 RPAs: Rigorous Polynomial Approximations

As discussed in Chapter 2, at the symbolic-numeric level, we aim not only to compute approximations,
but also enclosures of errors. The width of such an enclosure gives a direct quality measurement of the
computation, and can be used to adaptively improve the calculations at run-time. Polynomials are one
of the most efficient and exploited ways for computing in this setting. To improve their reliability, we
worked on Rigorous Polynomial Approximations (RPA): a polynomial approximation together with rigorous
error bounds (Section 2.4). Broadly speaking, the idea of working with polynomial approximations
instead of functions is analogous to using floating-point arithmetic instead of real numbers [66, 210]:
various generalized Fourier series, including Chebyshev series, play the role of floating-point numbers.
However, with RPAs, one comprises a function space counterpart of interval arithmetic by providing
rigorous truncation error bounds. The main appeal of this approach is the ability to solve functional
equations rigorously using enclosure methods [110, 160]. We discussed, in Chapter 2, several recent
results based on Chebyshev series and D-finite functions. My goal is to further exploit these properties
in the context of RPAs for ordinary differential equations (ODEs). Namely, the objective is the efficient
computation, manipulation and evaluation of rigorous polynomial approximations as solutions of ODEs.
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Probably the most used self-validating method in the study of nonlinear algebraic, integral or
differential equations is based on the contraction mapping principle. This is a fixed point theorem which
guarantees that a contraction mapping of a complete metric space to itself has a unique fixed point. We
already made use of this theorem (see Thm. 2.4.8) in the general setting of quasi-Newton validation, in
Section 2.4.2. This corresponds to a posteriori validation: usually, one finds a good numerical solution 𝑝
and then verifies that the image under the contracting mapping of a ball centered at 𝑝 and of suitable
radius 𝑅 is invariant. This implies that the actual solution is enclosed in the ball ℬ(𝑝,𝑅). This theorem
can also be used in a constructive way: we can obtain the fixed point as the limit of an iteration scheme
defined by repeated images under the mapping of an arbitrary starting point in the space. When
implemented numerically using ball based computations, one has to pay special attention to the well-
known issues of overestimation or wrapping effect. Hence, we are interested in efficiently manipulating
and implementing operations with such closed balls having roughly speaking, as center a truncated series
and with radius a certain norm for the error. A key element for this extension is that, as shown in [15,
Chap.8], remarkable properties of recurrences satisfied by series coefficients of D-finite functions hold
for such generalized Fourier series. This can be made constructive through the use of Ore-algebras as
shown in Chapter 2.

Application to certified quadratures: infinitesimal Hilbert’s 16th problem An ongoing work, in
collaboration with F. Bréhard, N. Brisebarre and W. Tucker, concerns the certified evaluation of certain
Abelian integrals involved in a computer-assisted proof of a new lower bound on the Hilbert number for
quartic systems. This is related to the second part of Hilbert’s 16th problem [97], which asks about the
maximum number and location of limit cycles of a planar polynomial vector field of degree 𝑑. Solving
this problem even for the case 𝑑 = 2 seems to be out of reach at the present state of knowledge. A
restricted version of Hilbert’s 16th problem, known as the infinitesimal Hilbert’s 16th problem, asks
for the number of limit cycles that can bifurcate from a perturbation of a Hamiltonian system [10].
These limit cycles are related to the zeros of certain Abelian integrals on a union of compact intervals,
via the so-called Poincaré-Pontryagin theorem. Based on RPAs representations, we are building an
integration routine that is both fast (in order to explore a huge field of possible systems, together with the
attached compact intervals) and certified (the computations are highly unstable). Moreover, for obtaining
continuous approximations of these integrals in function of certain parameters, we make use of algebraic
properties of D-finite functions and Laplace transform, in the same manner as presented in Chapter 2.

RPAs in generalized Fourier series Spectral and collocation methods for numerical approximations
of ODEs are current in literature [32, 209, 131] and were recently applied in the aerospace domain [219].
However, obtaining effective rigorous accuracy bounds on the solutions is less developed, especially
from a generic algorithmic point of view. We aim to generalize our validated Newton-like method
(see Section 2.4) to an efficient computer algebra-based algorithm for validated solutions of nonlinear
ODEs. An important objective in this context is to extend our approach to generalized Fourier series.
Truncated Chebyshev Series or Chebyshev interpolation polynomials are often used in practice because
they are near-best approximations with respect to the uniform norm. Also, in the space of square
integrable functions, truncated Chebyshev series are best approximations with respect to the attached
ℒ2(1/

√
1− 𝑥2) norm. However, for different convergence domains or due to some intrinsic properties

of the problems considered, it is more suitable to use other truncated series, with different norms:
Legendre polynomials are preferred for pseudo-spectral optimal control [187], Hermite for polynomial
chaos propagation [220] with applications in spacecraft trajectories design [168], Fourier for the rigorous
verification of several invariant objects arising in dynamical systems, like time periodic orbits for
Kuramoto-Sivashinsky equations, Bessel series when dealing with specific boundary conditions [9]. In
general, let us consider the Banach space of ℒ2 functions defined on some some set 𝑋 , and the attached
|| · ||2 norm and denote ℬ(𝑝,𝑅) = {𝑓 : ||𝑓 − 𝑝||2 6 𝑅} the closed ball of center 𝑝 and radius 𝑅. This is a
complete metric subspace. These kinds of balls or RPAs are intensively used objects in most rigorous
computing methods. A short term goal is to provide efficient algorithms, similar to those presented in
Section 2.4.1, which provide recurrences satisfied by the coefficients of 𝑝, as well as accurate evaluation
schemes for it. Then, a posteriori validated error bounds could be obtained, by setting the problem in the
suitable Banach space and applying Picard’s iteration or quasi-Newton contracting map.

Multivariate RPAs Finally, let us consider the extension to multivariate orthogonal series. Classical
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univariate Chebyshev polynomials are among the most important building blocks in approximation
theory and are also frequently used for multidimensional approximations. Besides tensor products (like
the one used for bivariate approximations in Chebfun), other less classical extensions for multivariate
orthogonal polynomials were developed [83]. From an algorithmic point of view, the main important
connection to be made is between multivariate orthogonal series and holonomic D-modules, which are
multivariate equivalent of D-finite functions i.e., their partial derivatives generate a vector space of finite
dimension on the field of rational functions (cf. Section 2.1.2).

From the approximation point of view, an important issue here is to maintain good approximation
properties with respect to the considered norm. In the univariate case, both truncated Chebyshev
series and Chebyshev interpolation polynomials are near-best and the connection between them is
classical, see for example [R3, Chap. 4][211]. In the multivariate case, however, there is no explicit
solution for finding optimal or near-optimal interpolation points with respect to the uniform norm of the
interpolation error. One solution is to find points that come from zeros of quasi-orthogonal polynomials
in several variables [65] which would help us to make a connection similar to the univariate case, between
orthogonal series and polynomial interpolation through minimal cubatures formulas. Moreover, in [190],
multivariate Chebyshev polynomials on triangular domains are proposed. Their numerical results on
some quadrature problems seem to indicate that this choice is also suitable for RPAs.

Efficient numerical evaluation of RPAs As discussed in Section 2.2, when evaluating RPAs in finite
precision, catastrophic cancellation i.e., subtraction of terms of same order of magnitude which results
in important precision loss can appear. The problematic phenomenon, for truncated convergent series
evaluation, is that the absolute values of the terms involved, start by increasing before decreasing
towards 0, while their signs are not identical. In the classical case of the error function erf(𝑥), this
problem can be circumvented by factoring out an exponential. On these lines, we obtained in Section 2.2,
a new result for some cases of truncated convergent power series to be evaluated on the real line.
Although very useful, our approach remains ad-hoc for the moment and more work is necessary for this
method to be efficient in general. Efficient generic algorithms for reducing such cancellation effects are
to be found. Moreover, the problem of extending this method for generalized Fourier series evaluation is
open.

We already have several promising hints for generalizing our algorithm, which combine both sym-
bolic and numeric aspects in complex analysis: the asymptotic behavior of series coefficients is connected
to their integral representation [228], which in turn, can be efficiently numerically evaluated with saddle-
point methods [68, Chapter VIII]. A different angle for seeing our pre-conditioning method is that it
represents a first result in extending Polya’s positivstellensatz [175] (an algebraic description of positive
polynomials) to the case of analytic functions.

4.2 Extension and Integration of RPAs in the framework of Optimal
Control

In Optimal Control, the objective is to find an optimal control input function, subject to some performance
measure and the system dynamics, which are complex in general. We deal with nonlinear ODEs or
with a differential-algebraic equations. Moreover, uncertainties are often present in dynamics or state
measurements. Nowadays, the great majority of practical i.e. computer-based methods in optimal
control are heavily based on standard linear algebra routines and floating-point arithmetic [19], while
the development of computer algebra and symbolic-numeric techniques in this field is marginal.

Thus, optimal control is a natural outlet for reliable computation: symbolic-numeric approximations
are to be declined in the context of both deterministic (direct and indirect) and stochastic optimal control.
This implies either the integration of RPAs in the existing algorithms or more often the adaptation of
these algorithms towards RPAs in order to improve reliability and speed.

We distinguish in (deterministic) optimal control two distinct numerical approaches: the indirect and
direct methods. The first class consists in writing (usually necessary) optimality conditions based on
the Pontryagin maximum principle [37] and thus posing a Two Point Boundary Value Problem (TPBVP)
which can be nonlinear, and solving it numerically with shooting methods for instance. The second
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approach is to discretize and thus directly translate the initial problem into a nonlinear programming
problem with an appropriate parametrization. Only an approximation of the initial problem is solved
in the latter case. In both cases, we are interested in validated computation methods to guarantee
the obtained numerical solutions. Beside the development of new algorithms for validated solutions,
an important issue is to certify the computation of optimal trajectories (especially for space objects),
particularly for embedded control systems (trajectories are computed on on-board embedded computers
which allows for increasing the autonomy for space missions).

Direct optimal control This basically consists in transforming the problem to a nonlinear finite-
dimensional optimization problem: depending on the transcription approach, both the control and
the state variables may be discretized. Many variants exist [19] and among them, we are interested in
improving the speed and reliability of pseudo-spectral and collocation methods. For example, pseudo-
spectral Legendre method has already been used in space applications like the zero-propellant maneuver
of International Space Station in 2006, or the minimum-time rotational maneuver performed in orbit by
TRACE telescope in 2010 [187], while variants based on Chebyshev or other Galerkin discretizations [30]
also exist. However, as mentioned in [187], "at the theoretical level, stronger convergence theorems are
required for these methods". In addition, the efficiency of computations has to be improved, driven by
a demand to perform mission planning at a faster and faster pace [187]. My claim is that RPAs-based
methods are efficient and in the same time provide convergence proofs: a validated error bound is a
mathematical certificate that the numerical solution is sufficiently close to the real one.

Indirect optimal control The main idea is to reduce the problem to a Two Point Boundary Value
Problem (TPBVP) with the help of Pontryagin maximum principle [37]. Using shooting methods consists
mainly in obtaining a solution to a Cauchy problem where the initial value is unknown (formal) and
then use Newton method (or its variations) in order to obtain this value as the zero of the function which
relies the boundary constraints. When a multiple shooting method is used, a subdivision of the time
interval is considered and the problem is reduced to finding the zeros of a function which is defined on a
vectorial space of higher dimension (proportional to the number of subdivisions). My intuition is that
computer algebra methods for RPAs could provide solutions to Cauchy problems with formal initial
conditions. Then, interval Newton method (and higher order methods for zero finding) [229] will be
used to obtain an enclosure of the solution. Validated Newton-like methods are very versatile and are
based on powerful fix-point theorems which can be readily adapted to provide enclosures of the solution.
RPAs and validated Newton-like methods can be readily adapted to provide solutions enclosures for
TPBVP.

Stochastic optimal control It is often employed when uncertainty and stochastic effects play a
significant role in the dynamics of the system. A very recent approach [31] is based on Polynomial
Chaos [225]. First introduced by Wiener, Polynomial Chaos decomposes stochastic processes into a
convergent series of Hermite polynomials in a Gaussian random variable. So-called Wiener-Askey
Polynomial or generalized Polynomial Chaos (gPC), extends this idea to various distributions modeled
with orthogonal polynomials in the corresponding Hilbert spaces and was successfully used for analyzing
stability or linear quadratic control of stochastic systems or for spacecraft orbit propagation under
Gaussian type uncertainties [220, 105]. Symbolic-numeric algorithms employed for the computation of
polynomial coefficients in RPAs are easily adapted to this framework and could drastically improve the
computation time and numerical efficiency of these methods.

4.3 Reliable Computations for Guidance, Navigation and Control of
Spacecraft

Previously mentioned techniques are to be applied for the guidance, navigation and control of spacecraft
when uncertain models are used. Firstly, new symbolic-numeric spectral methods are used in the context
of stochastic optimal control for the computation of optimal collision avoidance maneuvers in the case of
mega-constellations. Secondly, we consider the reliable computation of optimal trajectories: either ground
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mission planning tools or embedded control systems (on-board computation for increased autonomy).
Specific applications include spacecraft rendezvous, in-orbit servicing, collision risk mitigation.

My third major objective is to provide effective solutions for concrete space projects: both speed and
reliability are at stake.

The risk assessment and collision avoidance strategies for the case of mega-constellations is one
of our practical short-term objectives.

As briefly mentioned in Section 3.1.2, the general framework of the problem of collision avoidance
was already studied in our report [R2], where the objective is to give an exact and rigorous mathematical
modeling of the problem of the computation of the probability of collision for multiple encounters. Our
approach follows the general convex optimization-based framework for analysis and optimal control of
dynamical systems proposed in [92, 112, 204, 125, 142]. This is based on (1) the formulation of an infinite-
dimensional linear programming problem in the cone of nonnegative measures (also known as lifting of
nonlinear dynamics via Liouville’s equation and (2) the theory of non-negative polynomials and so-called
Lasserre hierarchy of relaxations. In this general framework, finite dimensional relaxations outer- or
inner- approximate by polynomial sublevel sets various quantities of interest in controlled dynamical
systems, like the region of attraction [113, 92, 112] or the maximal positively invariant set [166].

While the theoretical convergence of these approximants is proved, in practice the underlying
methods are numeric, the corresponding solvers work in the ill-conditioned monomial basis and no
certified counterpart was developed except for very small instances [93].

In our practical case, our numerical experiments show that firstly, the dimension of the general
problem is currently prohibitive for existing semi-definite solvers. Secondly, several examples show
that numerical results in low dimension do not achieve a good accuracy. Recent works suggest that
formulating the Moment-Sum-of-Squares problem with respect to orthogonal bases results in better
numerical stability [73]. In this sense, for stochastic solutions of an ordinary differential equation which
describes the propagated orbit, orthogonal expansions are frequently used in the so-called polynomial
chaos expansions [105, 220].

We intend to use symbolic-numeric methods for obtaining and manipulating RPAs in the practical
solving of the linear optimization problem of measures. We aim for a three-fold improvement: (1)
algebraic properties (like recurrences satisfied by moments of D-finite functions) reduce the number of
variables in the optimization problem to solve; (2) the better conditioning of orthogonal bases improves
numerical solving, thus allowing for higher order relaxations (in finite precision solvers); (3) a preliminary
study can be made on how to efficiently propose solutions which are rigorous and certified.

We believe that with the help of RPAs algorithms, a posteriori uncertainty orbit propagation can be
rendered more efficient and reliable (an important challenge is that the relative dynamics between debris
and a cluster of satellites is nonlinear).

Spacecraft rendezvous has become a key technology raising relevant open control issues. Formation
flight (PRISMA), on-orbit satellite servicing or supply missions require adequate rendezvous planning
tools. A main challenge is to achieve autonomous far range rendezvous on elliptical orbits while
preserving optimality in terms of fuel consumption, which defines a minimum-fuel optimal control
problem. In Section 3.2, we developed a new numerical convergent algorithm for solving this problem in
a linearized fixed-time framework. Validation of trajectories is done a posteriori with RPAs for LODEs,
which was presented in Section 2.4. Our goal is to extend this problem to a framework that is more
general than linearized Keplerian dynamics. Solutions of more accurate ODE models, which take into
account orbital perturbations for example, are to be obtained with RPAs. This will allow for developing
new tractable and guaranteed algorithms. Especially in the context of increased satellite autonomy, this
could improve on our work [J1] of embedding model predictive control algorithms on low-consumption
processors specifically certified for spaceflight.

4.4 Computer Arithmetic related aspects

Once Computer Algebra provides the canvas for RPAs (e.g., a recurrence relation satisfied by the
polynomial coefficients), evaluation takes place in the realm of numerics. Usually, the computations for



evaluating the polynomial (e.g., by unrolling the recurrence) are done in standard floating-point double
precision (53 bits) for efficiency. Thus, roundoff errors appear at the computer arithmetic level and need
to be handled. Some techniques for avoiding catastrophic loss of precision were presented in Section 2.2.
When needed, extended precision as presented in Chapter 1 or an interval arithmetic built on it, can
be used for a small overhead. Our goal is to put CAMPARY at the core of reliable numerical code on
RPAs and more generally, make it a natural tool for symbolic-numeric computations. Note that highly
parallel subsystems (like GPUs) have already been used for embedded pseudo-spectral optimal control
for spacecraft [187].

This would provide a complete top-down approach for optimal control algorithms implementations
by ensuring that the Computer Arithmetic tools are adequate.

In this context, we will focus on several specific tasks which extend our previous developments. So
far, we focused on the tight and rigorous error bound analysis of basic arithmetic operations in extended
precision obtained via FP expansions. We intend to provide similar improvements in larger calculations.

Error analysis for fast transforms. The Fast Fourier Transform (FFT) and related algorithms (e.g., fast
cosine transforms) play a central role in large precision arithmetic, since they are used in fast polynomial
and integer multiplication algorithms [194]. Performing an FFT-based multiplication requires a careful
error control: all intermediate calculations are done in FP arithmetic, and since the final, exact, results
(e.g., the coefficients of the polynomial product) are integers, we get them by rounding to the nearest
integer the computed results. Hence the error on the computed results must be less than 1/2. Many error
analysis results of the FFT [181, 96, 172, 174] bound the relative mean-square error. For our applications to
high-precision arithmetic, we also need bounds in terms of infinity norm [91]. Recently, in an already
submitted work [R1], we have improved the bound [91] and built bad input cases for which the attained
error is around one eighth of the bound. A short term objective is to extend these results to other similar
transforms.

Fast and accurate algorithms for complex and quaternion floating-point arithmetic. Similarly to our
developments in Chapter 1, we will consider complex operations in FP arithmetic. Currently, complex
arithmetic primitives are in general not as accurate or efficient as basic arithmetic operations and
are frequently subject to spurious under/overflow (an intermediate calculation underflows or overflows,
making the computed final result irrelevant, although the exact result is in the domain of the representable
numbers). For these reasons, complex arithmetic provided by programming languages is seldom used.
Arithmetic operations on quaternions as well as conversion algorithms to/from rotation matrices are
prone to similar numerical issues as the complex numbers, as recently illustrated in [193]. Quaternions
represent rotations in R3 in a non-singular way, which makes them useful in computer graphics, drone
and aerospace vehicle control. We aim at providing accurate, reliable, and fast algorithms for complex and
quaternion arithmetic. We will frequently use error-free transforms (which were recalled in Section 1.2)
to enable faithful evaluation. The efficiency of this library will be assessed on concrete aerospace
applications mentioned above.
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