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Abstract

This thesis is about the stability analysis of a coupled finite dimensional system and
an infinite dimensional one. This kind of systems emerges in the physics since it is
related to the modeling of structures for instance. The generic analysis of such systems
is complex, mainly because of their different nature.

Here, the analysis is conducted using different methodologies. First, the recent
Quadratic Separation framework is used to deal with the frequency aspect of such
systems. Then, a second result is derived using a Lyapunov-based argument. All the
results are obtained considering the projections of the infinite dimensional state on a
basis of polynomials. It is then possible to take into account the coupling between the
two systems. That results in tractable and reliable numerical tests with a moderate
conservatism.

Moreover, a hierarchy on the stability conditions is shown in the Lyapunov case.
The real application to a drilling mechanism is proposed to illustrate the efficiency of
the method and it opens new perspectives. For instance, using the notion of practical
stability, we show that a PI-controlled drillstring is subject to a limit cycle and that it
is possible to estimate its amplitude.

Keywords: Coupled ODE/PDE, heterogeneous system, wave equation, projection
methodology, drilling mechanism, Lyapunov stability, Linear Matrix Inequality.





Résumé

Cette thèse porte sur l’analyse de stabilité de couplage entre deux systèmes, l’un de
dimension finie et l’autre infinie. Ce type de systèmes apparait en physique car il est
intimement lié aux modèles de structures. L’analyse générique de tels systèmes est
complexe à cause des natures très différentes de chacun des sous-systèmes.

Ici, l’analyse est conduite en utilisant deux méthodologies. Tout d’abord, la sépara-
tion quadratique est utilisée pour traiter le côté fréquentiel de ce système couplé. L’autre
méthode est basée sur la théorie de Lyapunov pour prouver la stabilité asymptotique de
l’interconnexion. Tous ces résultats sont obtenus en utilisant la méthode de projection
de l’état de dimension infinie sur une base polynomiale. Il est alors possible de prendre
en compte le couplage entre les deux systèmes et ainsi d’obtenir des tests numériques
fiables, rapides et peu conservatifs.

De plus, une hiérarchie de conditions est établie dans le cas de Lyapunov. L’applica
-tion au cas concret du forage pétrolier est proposée pour illustrer l’efficacité de la
méthode et les nouvelles perspectives qu’elle offre. Par exemple, en utilisant la notion
de stabilité pratique, nous avons montré qu’une tige de forage controlée à l’aide d’un
PI est sujette à un cycle limite et qu’il est possible d’estimer son amplitude.

Mots clés: Couplage EDO/EDP, système hétérogène, équation des ondes, méthodologie
de projection, mécanisme de forage, stabilité de Lyapunov, inégalités matricielles linéaires.
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Notation

This section provides the notations used all along the thesis.

• N: set of positive integers,

• R: set of real numbers,

• C: set of complex numbers,

• Re(z): real part of z ∈ C,

• Im(z): imaginary part of z ∈ C,

• C+ = {z ∈ C | Re(z) > 0},

• C̄+\{0} = {z ∈ C | Re(z) ≥ 0, z 6= 0},

• R+ = {x ∈ R | x ≥ 0}.

Matrix set, vectors and operations on matrices

• Rn×m: set of real matrices with n rows and m columns,

• Sn: set of real symmetric matrices with n rows,

• Sn+: set of symmetric semi-definite positive matrices, M ∈ Sn+ ⇔M � 0,

• Sn++: set of symmetric definite positive matrices, M ∈ Sn++ ⇔M � 0,

• M � 0⇔ −M � 0 and M ≺ 0⇔ −M � 0,

• Mk,l: for M ∈ Rn×m, it refers to the number on the kth row and lth column,

• N = M(ni : nj,mi : mj): N ∈ Rnj−ni×mj−mi where Nk,l = Mk+ni,l+mi for
(k, l) ∈ [0, nj − ni − 1]× [0,mj −mi − 1],

• In ∈ Rn×n: identity matrix,

• 0n,m: null matrix of Rn×m and 0n = 0n,n,

• M>: transposition of a matrix M ,

• M∗: the transpose conjugate,

• He(M) = M +M>,

• v ∈ Rn: a real vector with n rows,

• col(v1, v2) =
[
v>1 v>2

]>
for two vectors v1 and v2.

Functional spaces, operators and scalar products
Let X be an Hilbert space.



x NOTATION

• ∂(k)
x : kth partial differentiation operator with respect to the variable x,

• fx = ∂x, ḟ = ∂tf ,

• L2([a, b],Rn): the set of square integrable functions from [a, b] ⊂ R to Rn,

• Hm([a, b],Rn) =
{
f ∈ L2([a, b],Rn) | ∀k ≤ m, ∂(k)

x f ∈ L2([a, b],Rn)
}

: Sobolev space,

• L2 = L2([0, 1],R), Hm = Hm([0, 1],R),

• L2(a, b) = L2([a, b],R), Hm(a, b) = Hm([a, b],R),

• X = H1 × L2,

• X1 = H2 ×H1,

• C([a, b], X) = {f : [a, b]→ X | f is continuous },

• Cm([a, b], X) =
{
f ∈ C([a, b], X) | ∀k ≤ m, ∂(k)

x f ∈ C([a, b], X)
}

,

• Cm
0 ([a, b], X) = {f ∈ Cm([a, b], X) | f(a) = f(b) = 0},

• IX : identity operator on X,

• 0X : zero vector of space X,

• f ∈ Span(e0, . . . , eN)⇔ ∃a0, . . . , aN ∈ R, f = ∑N
k=0 akek for e0, . . . , eN ∈ L2,

• 〈·, ·〉X : canonical inner product on X,

• ‖f‖2
X = 〈f, f〉X for f ∈ X,

• 〈u, v〉Rn = u>v for u, v ∈ Rn,

• 〈f, g〉L2([a,b],Rn) =
∫ b

a
f>(x)g(x)dx for f, g ∈ L2([a, b],Rn),

• 〈f, g〉Hm([a,b],Rn) =
m∑
k=0

〈
∂(k)
x f, ∂(k)

x g
〉
L2([a,b],Rn)

for f, g ∈ Hm([a, b],Rn),

Miscellaneous
Transfer functions are usually denoted by calligraphic letters, and for H a transfer

function, we definite its infinite norm by:

‖H‖∞ = sup
ω∈R+

|H(iω)|.



1
Introduction

If we open a search engine and type in the research bar “why do we use partial differential
equations?”, many other questions arise such as: “What are the real life applications
of partial differential equations?”, “Is it possible to approximate a partial differential
equation?” or even “How do we solve a partial differential equation?”. These questions
are mostly written by graduate students who have started for the first time studying the
complex world of infinite-dimensional dynamic systems. When we look at the proposed
answers, they are often very long and sometimes unclear!

There are many real life applications of Partial Differential Equations (PDEs). The
books [56, 171] draw a list of more than thirty PDEs used in physics to describe a
transport problem, a diffusion reaction, a fluid movement or even the transformations
of a beam subject to external forces. In fact, there are many different domains where a
PDE can be derived using the laws of continuum mechanics. As noted by Stéphen Tim-
oshenko in [167], if we try to mathematically describe a phenomenon at a macroscopic
scale, then we naturally get PDEs. Consequently, if we zoom enough and consider a mi-
croscopic scale or even smaller, the mechanical laws suggest that we may use a sequence
of Ordinary Differential Equations (ODEs) to approximate our original problem. It is
sometimes interesting to consider a truncation of our problem and examine the sys-
tem of ODEs for which the current classical theory might bring insights. This is a very
common approach because it presents less theoretical barriers. Nevertheless, some char-
acteristics introduced by the infinite-dimensional context might be erased when doing
this approximation [158]. Following [42, 56, 163, 164], a complementary approach would
be to use modern theories and numerical tools to finely study the original problem.

In this manuscript, after a theoretical part, we get interested in the study of the
PDE arising when observing the axial and radial dynamics of a drilling pipe without
any finite-dimensional truncation. Considering that the rod is very long leads to a
propagation of the twisting moment and axial compression along the pipe. These
phenomenons are modeled using flow equations and the resulting problem is then a
PDE. More specially, it is a string equation. However, the interaction between the
rock and the drilling bit is well-approximated using Newton’s laws of motion, leading
to a nonlinear ODE. The overall model describing the torsion along the pipe is then
a coupled nonlinear ODE/string equation. Analyzing and controlling this system is a
real challenge today and it is the subject of some recent thesis [9, 128, 158].

There are many other examples coupling a PDE and an ODE such as gas transport
[38], communication network [55] or an overhead crane [44]. Nevertheless, even if the
literature about ODE or PDE independently is very rich, there isn’t much work focusing



2 CHAPTER 1. INTRODUCTION

on the coupling between these two systems of different natures. In the following section,
we highlight the contribution of this thesis in this field.

1.1 Context and contributions of this thesis
One of the simplest infinite-dimensional linear time-invariant system is a Time-Delay
System (TDS) [61, 67]. A delay occurs when there is a time lapse between, for instance,
the measurement and the control, but also physically with a chattering mechanism for
example [67]. The simplest version of a TDS is given as follows: Ẋ(t) = AX(t) + AdX(t− τ), t ≥ 0

X(t) = φ(t), t ∈ [−τ, 0],
(1.1)

where τ > 0 is the delay, φ is the initial condition and A,Ad ∈ Rn×n. The infinite
dimensional behavior can be seen in the initial condition where φ belongs to a functional
space. Existence and uniqueness theorems can be derived in this case and the regularity
on the initial condition implies a different regularity on the solution X as discussed in
[22, 69, 70] for instance.

Many studies have been done since the late fifties by Mishkis [112] who was the
first to really propose a theory dealing with time-delay systems. There is today a
large literature on this subject going from frequency analysis [67, 116] to Lyapunov
stability analysis using the so-called Lyapunov-Krasovskii stability theorem [67] or the
Razumikhin theorem [125] for instance.

The interesting point comes because a TDS can be seen as a special kind of coupled
ODE/PDE. Indeed, let consider the following system:

Ẋ(t) = AX(t) + Adz(1, t), t ≥ 0,

zt(x, t) + ρzx(x, t) = 0, x ∈ (0, 1), t ≥ 0,

z(0, t) = X(t), t ≥ 0,

z(x, 0) = φ(−ρ−1x), x ∈ (0, 1),

(1.2)

where ρ > 0. The second line of this system is a PDE called the transport equation.
This system can be interpreted as the interconnection between an ODE and a tube
which transports the signal X(t) at a speed ρ. The characteristic method [56] gives an
explicit solution to the transport problem for t ≥ ρ−1 which is: z(x, t) = X (t− xρ−1)
and in particular, we get z(1, t) = X(t− ρ−1). Taking then ρ = τ−1, systems (1.1) and
(1.2) are equivalent and have the same initial condition.

This new formulation helps designing new controllers using backstepping for in-
stance. This methodology, inspired from Smith Predictor [149], has been developed to
convert a system into a target system with the desired properties. Finding the control
law issued from backstepping requires tedious calculations but the system performances
can be therefore easily designed. This method has been firstly applied to nonlinear ODE
systems in [91, 92] and then adapted to parabolic PDEs in [150]. From this point, it
gave birth to the control design of many infinite-dimensional systems such as hyperbolic
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equations or more exotic ones like Korteweg-de Vries or Kuramoto-Sivashinsky equa-
tions [89, 93, 106, 107] and more particularly, to coupled ODE/PDE systems. Notice
that this technique leads to an infinite-dimensional dynamical controller which might
be hard to implement [89, Chapter 1]. That is why observers are designed if the state
is not fully measurable, enabling theoretically the application of such a methodology
[89, Chapter 3].

Formulating a TDS as a coupled ODE/PDE system is then fruitful. But it also
makes us think that it might be possible to bring some tools developed originally in the
context of TDS into the more complex world of coupled ODE/PDE. More precisely,
we want to introduce the projection methodology, firstly used for TDS in [145]. This
thesis comes within this scope and follows the work done in [130] on the transport
equation. We consider in this manuscript a different coupling between an ODE and a
string equation [56]. Moreover, we focus on the concrete example of stability analysis
of a drillstring. The aim is to show that we can obtain tractable results, useful in the
analysis of practical problems.

1.1.1 Structure of the manuscript

The manuscript is organized as follows.

Chapter 2 aims at introducing the problem of vibration control in a drilling pipe. It
is presented in a chronological order and starts with the finite-dimensional models
to end with the more complex nonlinear ODE/string equation system. The core
of this chapter is to get a physical understanding of the mechanisms in stage when
drilling. It ends with a comparison between the different models to justify the use
of the most complex one. A statement of the problem dealt in the thesis is also
proposed.

Chapter 3 introduces a simpler coupled linear ODE/string equation referred to as
the toy-example system. This system can be seen as the linearization of the
previous nonlinear system around an operating point. Nevertheless, this system is
interesting because several interpretations can be drawn depending on the chosen
parameters. This chapter focuses on the wellposedness of such a system using the
strongly continuous semigroup theory. It also provides the definitions of stability
dealt with along the manuscript. As a conclusion, the problem established in
Chapter 1 is rephrased using notions from control theory.

Chapter 4 is about the input/output stability analysis of the toy-example system. It
uses mainly frequency arguments in the Laplace domain. Such a work enables
to get an exact stability test. Since this test requires exact calculations, it is
not well suited to any uncertainties in the parameters. Then, we move to two
others stability tests using the Small Gain theorem and the Quadratic Separation
approach. These robust tools are then applied to our problem and lead to Linear
Matrix Inequalities (LMIs). The results are compared with the exact stability
test. This chapter presents the projection methodology as a possibility to improve
Jensen’s inequality.
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Chapter 5 is dedicated to the exponential stability analysis of the toy-example system.
The Lyapunov theory is reminded and used on the toy-example system. A result
on robust stability with respect to polytopic uncertainties is also proposed. This
chapter considers the projection methodology as a state extension or a projection
of the complete Lyapunov functional. The stability test is then expressed using
LMIs. The results obtained are discussed and compared with the one of the
previous chapter.

Chapter 6 comes back to the original problem of stability analysis of a drilling pipe
controlled by a Proportional/Integral (PI) controller. It proposes first an expo-
nential stability test on a linearized drillstring system with a Lyapunov-based
analysis. Then, using the notion of practical stability, the original problem is
answered. A benchmark for different PI controllers is conducted and the effect on
simulations is shown.

Conclusion and Perspectives This last chapter draws a summary of the thesis. It
first recaps the main advances done in the field of coupled ODE/string equation.
More specifically, it enlightens the main results obtained on the drilling pipe. To
conclude the manuscript, some perspectives are stated. We propose an extension
of the work in the direction of a more general class of coupled ODE/PDE. We
also present some conjectures about the PI control of drillstring vibrations.

The appendices are important results that are not directly incorporated into the
chapters because of their technicalities. They nevertheless help having a clearer view
of the work done in each chapter.

1.1.2 Contributions
The contributions in this manuscript falls into several categories.

1. We gave an interpretation of the ODE/PDE coupling within the Quadratic Sepa-
ration framework. The projection methodology was introduced in this framework
and lead to a stability test with a low number of decision variables. Adapting
the projection methodology in this context was at the core of many theoretical
contributions in this field.

2. We provided an extension of the projection methodology using Lyapunov func-
tionals. It leads to a better interpretation of the different terms of the functional
and a very sharp stability test.

3. We detailed a frequency analysis of the system, providing an exact stability test.
This test is at the core of all our numerical simulations since it helps comparing
the conservatism introduced by our methods.

4. We then show the adaptability of our method by looking at a physical system:
the mechanics of a drillstring. This study brought many challenges since we had
to deal with a nonlinearity. The numerical examples depict that this improved
functional helps having a more precise estimate of the oscillations with a moderate
increase of numerical complexity.
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5. Finally, working with different tools for assessing stability helped us getting a
clearer picture of the mechanisms behind our methodology. Thus, we could give
an interpretation with a state extension, and, even if it is not written in the
manuscript, in terms of filter, proposed in an IQC framework, briefly described
in the perspectives.

These contributions are at the core of the ANR project SCIDIS which funded this
thesis. The list above concerns only the manuscript but other theoretical contribu-
tions were made in the domain of controller synthesis for time-delay systems and wave
equations.

1.2 List of publications
The work done during this thesis has led to the publication of two accepted journal pa-
pers and one with decision pending. A book chapter and four articles for international
conferences were also published. Three of the conference papers are not explored in this
thesis and were dedicated to synthesis of controllers. Two of them focus on controller
synthesis for time-delay systems while the last one propose an infinite-dimensional con-
trol law for a wave equation which is not issued from backstepping. This last paper is
closely related to this manuscript and it is therefore proposed in Appendix F. A list of
the publications is given below.
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2
A motivation example : A drilling pipe -

models and challenges

The control of a drilling pipe is a rather difficult challenge from the engineering and
mathematical points of view. Indeed, even if it is possible to use classical mechanics to
derive a third order model for the mechanism [33, 99], this model is not adapted to long
pipes where torsional and axial deformations occur all along the well [135]. Furthermore,
using the laws of continuum mechanics to derive a PDE leads to a difficult interpretation
of the boundary conditions. Then, adding the nonlinear effects due to friction between
the bit and the rocks makes the model even more complex.

This introducing chapter is developed as follows. The first section is devoted to a
short overview of existing models in the literature, to better motivate the model used
and its main features. The second section of this chapter is devoted to the problem
statement. In this part, we talk about the mathematical models for drilling and the
control objective.

2.1 Drilling pipes’ models
A drilling pipe is a mechanism used to pump oil deep under the surface thanks to a
drilling pipe as illustrated in Figure 2.1. Throughout the thesis, Φ(·, t) is the twisting
angle along the pipe and then Φ(0, t) and Φ(L, t) are the angles at the top and at the
bottom of the well respectively. The well is a long metal string of around one kilometer
and consequently, the rotational velocity applied at the top using the torque u1(t) is
different from the one at the bottom. Moreover, there is an extra torque at the bottom
coming from the interaction of the bit with the rock inducing a fluctuation of the bottom
velocity.

As the bit drills the rock, an axial compression of the rod occurs and is denoted Ψ.
This compression arises because of the propagation along the string of the vertical force
u2(t) applied at the top to push up and down the well.

This description leads naturally to two control objectives to prevent the mechanism
from breaking. The first one is to maintain the rotational speed at the end of the pipe
Φ(L, t) at a constant value denoted here Ω0, preventing any twisting of the pipe. The
other one is to keep the penetration rate constant such that there is no compression
along the string.

Several models have been proposed in the literature to achieve these control objec-
tives. They are of very different natures and lead to a large variety of analysis and
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Figure 2.1: Schematic of a drilling mechanism originally taken from [136]. Data corre-
sponding to physical vaues are given in Table 2.2.

control techniques. The book [135, Chap. 2] and the survey [137] provide an overview
of these techniques, which are, basically, of four kinds. To better motivate the model
used in the sequel, a brief overview of the existing modeling tools is proposed but the
reader can refer to [137] and the original papers to get a better understanding of how
the models are constructed.

2.1.1 Lumped Parameter Models (LPM)

These models are the first obtained in the literature [33, 99, 142] and the full mechanism
is described by a sequence of harmonic oscillators. They can be classified into two main
categories:

1. The first kind assumes that the dynamics of the twisting angles Φ(0, t) = Φr(t)
(at the top) and Φ(L, t) = Φb(t) (at the bottom) are described by two coupled
harmonic oscillators. The torque u1 driving the system is applied on the dynamic
of Φr and the controlled angle is Φb. The axial dynamic is not taken into account
in this model. Such a description can be found in [33, 115, 142] for instance.

2. The other two degrees of freedom model is described in [99, 127] for example.
There are also two coupled harmonic oscillators for Ψ(L, t) and Φ(L, t) represent-
ing the axial and torsional dynamics. This model only considers the motions at
the end of the pipe and forgets about the physics occurring along the string.

Using the fundamental principle of mechanics, the first class of models can be then
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Parameter/Physical interpretation Value

Ir Rotary table and drive inertia 2122 kg.m2

Ib Bit and drillstring inertia 374 kg.m2

k Drillstring stiffness 1111 N.m.rad−1

λr Coupled damping at top 425 N.m.s.rad−1

λb Coupled damping at bottom 23.2 N.m.s.rad−1

dr Rotary table damping 425 N.m.s.rad−1

db Bit damping 50 N.m.s.rad−1

γb Velocity decrease rate 0.9 s.rad−1

µcb Coulomb friction coefficient 0.5

µsb Static friction coefficient 0.8

cb Bottom damping constant 0.03 N.m.s.rad−1

Tsb Static/Friction torque 15 145 N.m

η1 Torque decay 5.5

η2 Velocity decrease rate 2.2 s.rad−1

η3 Switching time 3500 s

Table 2.1: Description of the parameters for a LPM model, their physical interpretation
and their approximate numerical values taken from [33, 115, 142].

described by the following set of equations: IrΦ̈r + λr(Φ̇r − Φ̇b) + k(Φr − Φb) + drΦ̇r = u1,

IbΦ̈b + λb(Φ̇b − Φ̇r) + k(Φb − Φr) + dbΦ̇b = −T (Φ̇b),
(2.1)

where the parameters are given in Table 2.1. T is a torque modeled by a nonlinear
function of Φ̇b, it describes the bit-rock interaction1. A second-order LPM can be
derived by only taking into account the two dominant poles of the previous model.

An example of on-field measurements [142], depicted in Figure 2.2, shows the effect
of torque T on the angular speed. The periodic scheme which arises is called stick-slip.
It emerges because of the difference between the static and Coulomb friction coefficients
making an antidamping on the torque function T . Even though the surface angular
velocity does not seem to vary much, there is a cycle for the downhole one and the
angular speed is periodically close to zero, meaning that the bit is stuck to the rock.

The stick-slip effect appears mostly when dealing with a low desired angular velocity
Ω0 on a controlled drilling mechanism. Indeed, if the angular speed Φ̇b(t) is small, the
torque provided by the rotary table at x = 0 increases the torsion along the pipe. This
increase leads to a higher Φ̇b(t) but the negative damping on the torque function implies
a smaller T . Consequently Φ̇b(t) increases, this phenomenon is called the slipping phase.
Then, the control law reduces the torque in order to match Φ̇r(t) to Ω0. Since the torque
increases as well, that leads to a sticking phase where Φ̇b(t) remains close to 0. A stick-
slip cycle then emerges. Notice that this is not the case for high values of Ω0 since the
friction torque T does not vary much with respect to Φ̇b(t), making the system easier
to control.

1See [135, Chap. 3] for a detailed description about various models for T .
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Figure 2.2: Nonlinear effect on the drilling mechanism due to the friction torque at the
bottom of the pipe. These measurements are done on the field [142].

Modeling this phenomenon is of great importance as friction effects are quite com-
mon when studying mechanical machinery. Some models of T are compared in [137],
and the conclusion is that they produce very similar results. The main characteristic is
a decrease of T as Φ̇b(t) increases. One standard model refers to the preliminary work
of Karnopp [83] and Armstrong-Helouvry [6, 7] with an exponential decaying friction
term as described in [114] for instance. This law is written thereafter where θ = Φt(L, ·)
is expressed in rad.s−1:

T (θ) = Tl(θ) + Tnl(θ),

Tl(θ) = cbθ,

Tnl(θ) = Tsb
(
µcb + (µsb − µcb) e−γb|θ|

)
sign(θ).

(2.2)

This model has been used in [115, 135] for instance. A smooth approximation of Tnl
has been later proposed in [21, 134, 170] and consists in:

Tsmooth(θ) = 2Tsbµcb
π

(
η1θe

−η2|θ| + arctan(η3θ)
)
. (2.3)

Parameters η1, η2 and η3 are then obtained from curve fitting with (2.2). This second
model catches the observed behavior around θ = 0 in a better way since it should be
linear with respect to the angular velocity θ but produces an overshoot for a slightly
higher θ. Both torques Tnl and Tsmooth are depicted in Figure 2.3 where Tmax = Tsbµsb
and Tmin = Tsbµcb. The nonlinear part induces the so-called stick-slip phenomenon.

Notice that an on-field description of this mechanism applied to the particular con-
text of drilling systems was provided in [2] and concludes that these models are fair
approximations of the nonlinear phenomena visible in similar structures. The effective-
ness of the two proposed laws to model the torque will be nevertheless shown in the
simulation section.

In Appendix D, the describing function methodology is applied on this model and
it appears that the stick-slip mechanism is well described.
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Figure 2.3: Nonlinear part of the torque. Tnl and Tsmooth are both approximations of
Karnopp’s work [83] on friction.

A LPM gives, in general, a fair approximation for small wells. When the length
of the drilling pipe increases, torsional and axial deformations of the pipe need to be
considered and it cannot be approximated by an ODE anymore. To go further, we need
to consider distributed parameter systems.

2.1.2 Distributed parameter models (DPM)
A deeper modeling can be done with the laws of continuum mechanics. That leads
to a set of PDEs as described in the works [36, 167]. This model has been enriched
in [1, 2, 52] where the system is presented from a control viewpoint and compared to
on-field measurements. In the first papers (see [62] for one of the first control theory
analysis of such a system), the model focuses on the propagation of the torsion only
along the pipe. The axial propagation was introduced in the model by [1, 137]. The new
model is made up of two one-dimensional wave equations representing each deformation
for x ∈ (0, L) and t > 0:

Φtt(x, t) = c2
tΦxx(x, t)− γtΦt(x, t), (2.4a)

Ψtt(x, t) = c2
aΨxx(x, t)− γaΨt(x, t), (2.4b)

where again Φ is the twist angle, Ψ is the axial movement, ct =
√
G/ρ is the propagation

speed of the angle, γt is the internal damping, ca =
√
E/ρ is the axial velocity and γa

is the axial distributed damping. A list of physical parameters and their values is given
in Table 2.2 and Figure 2.1 helps giving a better understanding of the physical system.
In other words, if Ψ(·, t) = 0, then there is no compression in the pipe, meaning that
the bit does not bounce; if Φtt(·, t) = 0, then the angular speed along the pipe is the
same, meaning that there is no increase or decrease of the torsion.

For the previous model to be well-posed, top and bottom boundary conditions (at
x = 0 and x = L) must be incorporated in (2.4). There is a viscous damping at x = 0,
and consequently a mismatch between the applied torque at the top and the angular
speed. The topside boundary condition for the axial part is built on the same scheme
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Parameter/Physical interpretation Value

L Pipe length 2000m

G Shear modulus 79.3× 109 N.m−2

E Young modulus 200× 109 N.m−2

Γ Drillstring’s cross-section 35× 10−4 m4

J Second moment of inertia 1.19× 10−5 m4

IB Bottom hole assembly lumped inertia 89 kg.m2

MB Bottom hole assembly mass 40 000 kg

ρ Density 8000 kg.m−3

g Angular momentum 2000 N.m.s.rad−1

h Viscous friction coefficient 200 kg.s−1

γa Distributed axial damping 0.69 s−1

γt Distributed angle damping 0.27 s−1

δ Weight on bit coefficient 1 m−1

Table 2.2: Physical parameters, meanings and their values [1, 137].

and the following conditions are obtained for t > 0:

GJΦx(0, t) = gΦt(0, t)− u1(t), (2.5a)
EΓΨx(0, t) = hΨt(0, t)− u2(t). (2.5b)

The downside boundary condition (x = L) is more difficult to grasp and is conse-
quently derived later when dealing with a more complex model.

2.1.3 Neutral-type time-delay model
The equations obtained previously are damped wave equations, but, for the special case
where γa = γt = 0, the system can be converted into a neutral time-delay system as
done in [135]. This new formulation enables to use other tools to analyze its stability
as the Lyapunov-Krasovskii theorem [67] or a frequency domain approach [67, 116]
making its stability analysis slightly easier. Nevertheless, the main drawback of this
formulation is the assumption that the damping occurs at the boundary and not all
along the pipe [136]. This useful simplification, even though it is encountered in many
articles [28, 135, 136], is known to change in a significant manner the behavior of the
system [1]. Indeed, (2.4) becomes a system of transport equations and consequently
acts as a delay in the system such that Φt(0, t) is proportional to Φt(L, t − τ) where
τ = Lc−1

t . The velocity at the surface is then directly related to the velocity at the
end of the pipe, enabling a delayed observation of the downhole angular speed. The
internal damping breaks this proportional rules since it brings an internal dissipation,
making the system more difficult to observe.

2.1.4 Coupled ODE/PDE model
To keep the model simple without neglecting the internal damping, a simpler model
than the one derived in (2.4) is proposed in [136], where an harmonic oscillator is used
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to describe axial vibrations and the model results in a coupled ODE/PDE.
A second possibility, reported in [36, 135] for instance, is to propose a second order
ODE as the bottom boundary condition (x = L) for t > 0:

GJΦx(L, t) = −IBΦtt(L, t)− T (Φt(L, t)) , (2.6a)
EΓΨx(L, t) = −MBΨtt(L, t)− δT (Φt(L, t)) , (2.6b)

where T represents the torque applied on the drilling bit by the rocks, described in
equation (2.2). Notice that equation (2.6a) is coming from the conservation of angular
momentum where GJΦx(L, t) is the torque coming from the top of the pipe. Equation
(2.6b) is the direct application of Newton’s second law of motion where EΓΨx(L, t) is
the force transmitted from the top to the bit and δT (Φt(L, t)) is the weight on bit due
to the rock interaction. Since (2.6) is a second order in time differential equation, note
that (2.4) together with (2.6) indeed is coupled ODE/PDE system.

There exist other bottom boundary conditions leading to a more complex coupling
between axial and torsional dynamics. They nevertheless introduce delays, which re-
quires to have a better knowledge of the drilling bit. To keep the content general, the
boundary conditions (2.6) used throughout this thesis are proposed accordingly with
[36, 136, 160].
As a final remark, using some transformations based on (2.7), (2.5a) and (2.6a), it is
possible to derive a system for which backstepping controllers can be used [28, 134].
This is the main reason why this model has been widely used up to now.

2.1.5 Models comparison

We propose in this subsection to compare the coupled ODE/PDE model and the lumped
parameter models for the torsion only. We consider here a linearization of the system
for large Ω0 and consequently we neglect the stick-slip effect by setting T = 0.

First, denote by HDPM the transfer function from u1 to Φ(L, ·) for the DPM and
HLPM from u1 to Φb for the LPM. We also define by HLPM2 a truncation of HLPM

considering only the two dominant poles. The Bode diagrams of HDPM , HLPM and
HLPM2 are drawn in Figure 2.4.

Clearly, the LPMs catch the behavior of the DPM at steady states and low frequen-
cies until the resonance, occurring around

√
k/Ib rad.s−1. From a control viewpoint,

the DPM has infinitely many harmonics as it can be seen on the plots but of lower
magnitudes and damped as the frequency increases (around −10 dB at each decade).
The magnitude plots are not sufficient to make a huge difference between the three
models. Nevertheless, considering the phase, we see a clear difference. It appears that
the DPM crosses the frequency −180 many times making the control margins quite
difficult to assess. Moreover, that shows that the DPM is harder to control because of
the huge difference of behavior after the resonance. They may consequently have a very
different behavior when controlled. That is why we focus in this study on the DPM,
even if it is far more challenging to control than the LPMs.
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Figure 2.4: Bode diagram of HDPM , HLPM and HLPM2.

2.2 Problem statement
The coupled nonlinear ODE/PDE model derived in the previous section can be written
using normalized parameters. For the twisting dynamics, we get for t > 0 and x ∈ [0, 1]:

φtt(x, t) = c̃2
tφxx(x, t)− γtφt(x, t),

φx(0, t) = g̃φt(0, t)− ũ1(t),

φt(1, t) = z1(t),

ż1(t) = −α1φx(1, t)− α2T (z1(t)).

(2.7)

The axial dynamics are then:

ψtt(x, t) = c̃2
aψxx(x, t)− γaψt(x, t),

ψx(0, t) = h̃ψt(0, t)− ũ2(t),

ψt(1, t) = y1(t),

ẏ1(t) = −β1ψx(1, t)− β2T (z1(t)),

(2.8)

The normalized parameters are given in Table 2.3. Note that the range for the spatial
variable is now x ∈ [0, 1] to ease the calculations. The initial conditions are as follows:

φ(x, 0) = φ0(x), φt(x, 0) = φ1(x),

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x),

z1(0) = φ1(1), y1(0) = ψ1(1).
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Parameter/Signal Expression Value Parameter/Signal Expression Value

φ(x, t) Φ(xL, t) - ψ(x, t) Ψ(xL, t) -

c̃t ctL−1 1.57 c̃a caL−1 2.5

α1
GJ

LIB
5.3 β1

EΓ
LMB

8.75

α2 I−1
B 1.12 · 10−2 β2

δ

MB
2.5 · 10−5

g̃
g

GJ
2.1 · 10−3 h̃

h

EΓ
2.86 · 10−7

ũ1(t)
1
GJ

u1(t) - ũ2(t)
1
EΓ

u2(t) -

Table 2.3: Normalized parameters for a drilling pipe.

A proof of existence and uniqueness of a solution to (2.7)-(2.8) could be done using
the tools of the following section in the linearized case. Nevertheless, this problem has
been widely studied (see [21, 28, 134, 136, 160] among many others) and since it is not
the main contribution of this thesis, the existence and uniqueness of a solution to the
previous problem is assumed in the sequel. If the initial conditions satisfy the boundary
conditions with the following regularity

(φ0, φ1, ψ0, ψ1) ∈ (X1)2 =
(
H2 ×H1

)2

then, (see [20] and the following section for more details), there exists a unique solution
to our problem and:

(φ, φt, ψ, ψt, z1, y1) ∈ C0(X2
1 ×R2).

System (2.7)-(2.8) can be divided into two cascaded subsystems:
1. System (2.7) with a coupled nonlinear ODE/string equation describing the torsion

angle φ.

2. System (2.8) with a coupled linear ODE/string equation subject to an external
perturbation (here T (z1)) for the axial displacement.

It appears quite clearly that the perturbation on the second subsystem depends on
the first subsystem in φ. Then, a first step consists in studying system (2.7), which
describes the dynamic of φ only. The response of the system for ũ1 = Ω0 = 10 is shown
in Figure 2.5. We can clearly see that without closing the loop we get an unstable
system. Consequently, we would like to solve the following problem.

Problem 1: Control of the torsion system (2.7)

Let Ω0 > 0 be the desired angular speed.
The control objective is to maintain the rotational speed at the end of the pipe
φ(1, t) close to the constant value Ω0.

This problem is related to the practical stability2 since it is, most of the time, ac-
ceptable from an engineering point of view while the classical definitions of exponential
or asymptotic stability are more dedicated to “theoretical problems”. These two notions
are nevertheless highly related as we will see in the following chapter.

2This is also called ultimate boundedness in [84] or dissipativity in [97].
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Figure 2.5: Open loop response of systems (2.7) to a step for ũ1 = Ω0 = 10 rad.s−1.

2.3 Conclusion
This chapter presented a short overview of existing models for a drilling pipe. There
are numerous ways to describe the phenomena arising in this mechanism. This chapter
shows that the obtained models are consistent one with the other but the one that
seems the closest to the real behavior of the system is the coupled ODE/string equa-
tion. At the end, we stated the problem dealt in the final chapter of this manuscript.
Since studying this nonlinear and infinite-dimensional system is rather challenging, we
propose to develop our methods on a simpler system, made up of an ODE and a PDE,
described in the following chapter. Then, after understanding the methodology, we can
come back to the drilling problems.



3
Coupled linear ODE/string equation:

Notions of existence and stability

From a more mathematical point of view, the most complex resulting model of the
previous chapter is a coupled nonlinear ODE/PDE. Since stating the existence and
uniqueness of a solution to this problem is really demanding, a simpler system is pro-
posed in this chapter. This thesis focuses on how to manage the infinite-dimensional
characteristic of the previous problem, that is why we consider here a coupled linear
ODE/string equation system. This system is very close to the drilling mechanism but
it forgets about the nonlinearity.

The first section aims at introducing this new system and why it is interesting.
We formally prove the existence of a solution using the strongly continuous semi-group
theory [42, 102, 164]. The second section is an introducing part about the basic concepts
in stability analysis. The stability notions are defined depending on the context and
they are finally related to the control objective of the previous chapter.

3.1 Existence of a solution to a coupled ODE/string
equation

The model derived in equations (2.7)-(2.8) is a coupled nonlinear ODE/string equation.
Since it is rather difficult to study this system directly, we propose to simplify the
problem by removing the nonlinearity. That leads to a coupled ODE/string equation.
This part focuses on proving the existence and uniqueness of a solution to this simpler
system.

3.1.1 A toy-example of a linear coupled system

Let consider the slightly different and simpler toy-example, depicted in Figure 3.1:

Ẋ(t) = AX(t) +Bu(1, t), t ≥ 0, (3.1a)
utt(x, t) = c2uxx(x, t), x ∈ [0, 1], t ≥ 0, (3.1b)
u(0, t) = KX(t), t ≥ 0, (3.1c)
ux(1, t) = −c0ut(1, t), t ≥ 0, (3.1d)
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Figure 3.1: Block diagram for the system described by equation (3.1).

with the following initial conditions:

u(x, 0) = u0(x), x ∈ [0, 1], (3.2a)
ut(x, 0) = v0(x), x ∈ [0, 1], (3.2b)
X(0) = X0, (3.2c)

We assume that X0 ∈ Rn and (u0, v0) ∈ X1 = H2 ×H1 such that equations (3.1c) and
(3.1d) are respected. In this case, the initial conditions (X0, u0, v0) are compatibles
with the boundary conditions.

System (3.1) represents the interconnection of a linear time invariant system with
a string equation. Here, the state u denotes the amplitude of the wave, which belongs
to a functional space and consequently is of infinite dimension. We assume that the
state u(x, t) belongs to R but the analysis described in the following chapters can be
extended without difficulty to Rm, m > 1.

The overall system is composed by two subsystems: The ODE described by equa-
tion (3.1a) and the PDE related to equations (3.1b)-(3.1c) and (3.1d). The input of
the PDE is defined as u(0, ·) and its output is u(1, ·). They are both of Dirichlet kind,
that is, the output and the input depend on the state u at different positions but not
on its derivative.

For the system to be well-posed, another boundary condition is needed. The so-
called boundary damping equation (3.1d) is commonly used. It has been shown in
[66, 94], for instance, that this boundary condition ensures the stability of the wave
equation itself; i.e. K = 0, if and only if c0 > 0. The case c0 = 0 removes the damping,
leading to a “pure” wave equation. Finally, c0 < 0 makes the subsystem unstable.
Notice that these two subsystems can be coupled (or interconnected) if K = 0 or B = 0.
Otherwise, they are cascaded. This is explained by the block diagrams in Figure 3.2,
where one can easily understand the different natures of the interconnection.
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(a) Coupled system (3.1) with B 6= 0 and K 6= 0 (b) Cascaded system (3.1) with B = 0 (top) and
K = 0 (bottom)

Figure 3.2: Block diagrams of coupled and cascaded systems represented by (3.1).

Remark 3.1

The wave equation operator associated to the boundary conditions described
above is known to be diagonalizablea. Once diagonalized, it can be expressed
as the composition of two transport equations, one going forward and another
backward. Boundary condition (3.1d) implies a reflection of the forward wave
with a coefficient α = 1−cc0

1+cc0
as explained in [101]. Enforcing c0 > 0 implies

|α| < 1 and, consequently, the energy of the wave is decreasing.
aTo see the detailed proof of this statement, the reader can refer to [102], [164] and the

references therein.

There are several practical interpretations of this system. Hence, the string equation
can be seen for instance as a communication channel and we study the robustness of
the ODE subject to this communication constraint. On the other hand, we can study
the string equation and see the ODE as a controller to enhance the performance of the
PDE. These two cases lead to three different scenarii:

1. The ODE and the PDE are asymptotically stable. Then we study the robustness
of the interconnection. The ODE can be seen as a filter which aims at enhancing
the performance of the coupled system.

2. The ODE is unstable and the PDE is stable. The focus is then made on the
stabilizing properties of the string equation.

3. The PDE is unstable. The ODE can be seen then as a controller for the PDE.

It appears that most of the works today [34, 55, 109, 111, 154, 156, 168] deal with
the first case and present a robustness result. The second case is less classical and uses
the stabilizing effect of the PDE to compensate the unstable behavior of the ODE.
There does not exist many examples in the literature of such systems since proving
the stability of this interconnection is rather tedious. Note that in the case of a stable
closed-loop ODE, i.e. A+BK is Hurwitz, and with a fast wave equation, i.e. c is large,
[35] shows that we can use the singular perturbation methodology and get the stability
of the closed-loop system.

The third case is dealt for instance in [42] where it is shown that the proposed
interconnection cannot be stable if the PDE is unstable. This case illustrates the
notion of ill-posed problem from a control viewpoint, studied in [75, 109, 110, 111] for
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instance. There are many other names for a similar definition as small-τ stabilizability
(coming from [22, 69, 118] and derived in the following chapter). This phenomenon can
be understood as follows. If the PDE is unstable, i.e. c0 < 0, there are infinitively many
poles in the right-half plane [14]. Consequently, there does not exist a proper finite-
dimensional controller moving infinitively many poles in the left-half plane. On the
contrary, if c0 = 0, there might exist a controller ensuring the asymptotic stabilization
of the coupled system but it cannot be robust to any delay in the loop, which is not
acceptable from a practical viewpoint [75, 109]. That is the reason why we decided not
to address this last scenario and focus on the two first ones.

The existence of a solution and its regularity is not the main concern of this
manuscript. The focus is made on stability analysis and, consequently, its dissipa-
tivity. Nevertheless, studying the wellposedness of the interconnection is one key point
before studying its stability. Indeed, in some cases, knowing the regularity of the
solution helps proving stability (see [104] among many others for instance). For prov-
ing the wellposedness of the interconnection, we propose to derive the operator for-
mulation of system (3.1). To this extend, we introduce the following notations for
(X, u, v) ∈ Rn ×X = Rn ×H1 × L2:

A : Rn ×X → Rn ×X[
X
u
v

]
7→

[
A 0 0
0 0 1
0 c2∂xx 0

] [
X
u
v

]
+
[
Bu(1)

0
0

]
,

D(A ) = {(X, u, v) ∈ Rn ×X1 | u(0) = KX, v(0) = K(AX +Bu(1)),

ux(1) = −c0v(1)} ,

(3.3)

where X1 = H2 × H1. The space Rn × X is the smallest set giving a meaning to
operator A if the derivative is understood in the weak sense. The following subsection
aims at showing that there exists a unique solution to system (3.1), modeled as follows
for t ≥ 0:

d

dt

[
X(t)
u(t)
v(t)

]
= A

[
X(t)
u(t)
v(t)

]
,

u(0, t) = KX(t), ux(1, t) = −c0v(1, t), v(0) = K(AX +Bu(1)),

(X(0), u(·, 0), v(·, 0)) = (X0, u0, v0) ∈ D(A ).

(3.4)

3.1.2 The strongly continuous semi-group theory in this con-
text

The existence of a solution to an infinite-dimensional system leads to much more difficul-
ties compared to finite-dimensional problems since there does not exist any on-the-shelf
Cauchy theorem. But, there are many other ways to prove the existence and unique-
ness of a solution. One can, for example, use a Galerkin-like methodology [56]. A more
formal and traditional way is to use the famous Lax-Milgram theorem [29, Corollary
5.8] which relies on Banach fixed-point theorem. This is nevertheless quite tedious and
is left for some nonlinear systems. We can also express the problem using an operator
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formulation and then use Hile-Yosida theorem (Theorem 7.4 from [29] for instance),
especially if the operator is linear.

From a system theory perspective, the most intuitive concept is the so-called strongly
continuous semi-group theory [42, 102, 108, 164]. This subsection is devoted to some
key-results and definitions in this field. The concept of strongly continuous semigroup
[42, Definition 2.1.2] is at the core of this theory and is defined in the context of (3.1)
in the following definition.

Definition 3.1: Strongly continuous semigroup

Let X = H1 × L2 and X1 = H2 ×H1.
A strongly continuous semigroup is an operator-valued function Tt from R+

to the set of bounded linear operators from Rn × X into itself that satisfies the
following properties:

Tt+s = TtTs, for t, s ≥ 0, (3.5a)
T0 = I, (3.5b)∥∥∥Tt [Xu

v

]
−
[
X
u
v

]∥∥∥ −−−→
t→0+

0, ∀
[
X
u
v

]
∈ Rn ×X. (3.5c)

Tt is also called a C0-semigroup for brevity.

To better motivate this definition, consider the following ODE:

Ẋ = AX, X(0) = X0 ∈ Rn,

where A ∈ Rn×n. It is well-known that a solution to the previous problem is

t ∈ [0,∞] 7→ eAtX0.

Definition 3.1 enlarges the concept of exponential of a matrix to the highly more
abstract concept of the “exponential of an operator”. Example 2.1.3 from [42] shows that
the function t 7→ exp(At) indeed satisfies the three properties (3.5). Property (3.5c) is
also known as “strong continuity” and implies that the solution continuously depends
on its initial condition.

Note that 1
t

(
eAt − In

)
−−→
t→0

A, and pursuing the same idea, it appears that a C0-
semigroup is generated by an operator defined as follows [42, Definition 2.1.8].

Definition 3.2: Infinitesimal generator of a C0-semigroup

The infinitesimal generator A of a C0-semigroup on Rn ×X is defined by

A
[
X
u
v

]
= lim

t→0+

1
t

(Tt − I)
[
X
u
v

]
,

whenever the limit exists; the domain of A , D(A ) being the set of elements in
Rn ×X1 for which the limit exists.

Thanks to the previous definition, it appears that if the semi-group generated by A
exists, then there is a unique solution to (3.4). Such a conclusion nevertheless requires
more calculations, summarized by the following proposition [164, Theorem 2.3.5].
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Proposition 3.1: Existence and uniqueness of a solution

Let Tt be a C0-semigroup on Rn × X with infinitesimal generator A . Let
(X0, u0, v0) ∈ D(A ) and define the following function:

(X, u, v) : [0,∞) → D(A )

t 7→ Tt

[
X0

u0

v0

]
.

Then (X, u, v) is continuousa and (X, u, v) ∈ C1([0,∞),Rn×X1). Moreover, it is
the unique function with these properties satisfying the initial value problem (3.4).

aThe space D(A ) is equipped with the graph norm ‖(X,u, v)‖Rn×X1 + ‖A (X,u, v)‖Rn×X1 .

Expressed differently, we say that the solution (X, u, v) is complete. The previous
proposition is useful but it is quite difficult in practice to explicitly determine Tt using
Definition 3.2. There exists another way to prove that A is the infinitesimal generator
of a C0-semigroup without explicitly determining Tt.

Proposition 3.2: Existence of a C0-semigroup

Let A : D(A ) → Rn × X and 〈·, ·〉D(A ) be a scalar product on D(A ). If there
exists w ∈ R and s0 ∈ R+ such that〈

A
[
X
u
v

]
,
[
X
u
v

]〉
D(A )

≤ ω‖(X, u, v)‖D(A ), for (X, u, v) ∈ D(A ), (3.6)

∀s > s0,
{

(sI −A )
[
X
u
v

]
|
[
X
u
v

]
∈ D(A )

}
= Rn ×X, (3.7)

then A is the infinitesimal generator of a C0-semigroup.

Proof : This proposition is an adaption of [42, Corollary 2.2.3], but with a quite
different proof. First, rewrite equation (3.6) to the following equivalent expression for
(X, u, v) ∈ D(A ): 〈

(A − wI)
[
X
u
v

]
,
[
X
u
v

]〉
≤ 0.

Consequently, A2 = A −wI is dissipative (see Definition 3.1.1 from [164]). It is obvious
from Definition 3.2 that D(A2) = D(A − wI) = D(A ) and consequently for s ∈ R+:

{
(sI −A2)

[
X
u
v

]
|
[
X
u
v

]
∈ D(A2)

}
=
{

((s+ w)I −A )
[
X
u
v

]
|
[
X
u
v

]
∈ D(A )

}
.

Then, for all s > max(s0 + w, 0), thanks to (3.7), we get:

{
(sI −A2)

[
X
u
v

]
|
[
X
u
v

]
∈ D(A2)

}
= Rn ×X.

Using now Lumer-Phillips theorem [164, Theorem 3.8.4], we get that A2 generates a
C0-semigroup T2,t. Let now Tt = T2,te

wt = ewtT2,t, since T2,t is a C0-semigroup, we get
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the following:

T0 = I,

TtTs = T2,te
wtT2,se

ws = T2,t+se
w(t+s) = Tt+s, for all t, s ∈ R+,∥∥∥Tt [Xu

v

]
−
[
X
u
v

]∥∥∥ =
∥∥∥T2,te

wt
[
X
u
v

]
−
[
X
u
v

]∥∥∥ −−−→
t→0+

0, ∀
[
X
u
v

]
∈ Rn ×X1.

Then, according to Definition 3.1, Tt is a C0-semigroup. We get that

lim
t→0+

1
t

(Tt − I) = lim
t→0+

1
t

(
T2,te

wt − I
)

= lim
t→0+

1
t

(T2,t(1 + wt)− I) = A

and using Definition 3.2, A is the infinitesimal generator of Tt. ♦

Compared to traditional existence theorems, the previous proposition does not re-
quire the solution to be stable. In Lumer-Phillips theorem [164, Theorem 3.8.4], the
generated C0-semigroup Tt is necessarily a contraction semigroup since w ≤ 0. For-
mulated in terms of control theory, that means we can only prove the existence of a
solution to a stable system, which is quite conservative. The concept in Proposition 3.2
is less restrictive than dissipativity and is called quasi-dissipativity in [20, Appendix A].
To say it simply, condition (3.6) guarantees that the solution (X, u, v) does not blow
up in finite time and that its estimate is an unbounded exponential. Condition (3.7) is
related to the density of D(A ) in Rn×X. Note that if D(A ) is not well-defined, then
conditions (3.6) and (3.7) cannot hold.

Remark 3.2: On the sufficiency of Proposition 3.2

Considering finite-dimensional systems, Cauchy theorem [29, Theorem 7.3] states
that there always exists a solution for an infinitesimal generator A ∈ Rn×n.
Proposition 3.2 provides an equivalent formulation in this case. Equations (3.6)
and (3.7) hold if A has bounded complex eigenvalues, which is always true.
One can also note that Proposition 3.2 is not a necessary and sufficient condition
for the existence of a C0-semigroup, such a theorem is derived in [120, Chap. 1]
but requires different conditions.

3.1.3 Existence of a solution to the interconnected system
The aim of this subsection is to use the semigroup theory developed in the previous
subsection for system (3.1). Using Proposition 3.2, we get the following theorem.

Theorem 3.1: Existence and regularity of the solution to (3.1)

Assume c0 > 0. If (X0, u0, v0) ∈ D(A ), then there exists a unique solution
(X, u, ut) to system (3.1) with the following regularity property:

(X, u, ut) ∈ C([0,+∞),D(A )) ∩ C1([0,+∞),Rn ×X).

Moreover, u, ut, ux, utt and uxx are L2 on each compact set of R+.



24 CHAPTER 3. COUPLED LINEAR ODE/STRING EQUATION

The proof is technical and is not of main importance in the sequel, it is therefore
detailed in Appendix A.

Remark 3.3: Weak solutions to system (3.1)

According to Propositions 2.10.1 and 2.10.2 and Remark 4.1.2 from [164] (or
equivalently [42, Theorem 3.1.7]), there exists a unique weak solution (defined
in [56, p. 7]) to system (3.1) in Rn × X. This can be proven using a density
argument and [164, Theorem 3.1.7] and we get that for (X0, u0, v0) ∈ Rn × X1,
the solution of (3.1) has the following regularity:

(X, u, ut) ∈ C([0,+∞),Rn ×X).

Note that the previous theorem does not state the existence of a solution to nonlinear
system (2.7) -(2.8). The techniques are really different for this nonlinear problem and
we do not explore them in this manuscript.

3.2 Stability analysis of a coupled ODE/string
equation

As said previously, the aim of this thesis is not to prove the existence of solutions to
(3.1) but to characterize the behavior of the trajectory. The existence of a solution is
then a prerequisite.

We can briefly define stability analysis as the response of a system to a perturbation.
This perturbation can be of different kinds, leading to different notions of stability.
This section provides some useful definitions used in the sequel. It is divided in two
subsections since we are not interested in this thesis by the same objectives whether
the system is linear or not.

3.2.1 Notions of stability for the toy-example

The first chapters of this manuscript are dedicated to the stability analysis of a lin-
ear system. Two notions of stability are investigated here. The first one, called in-
put/output stability studies the behavior of a trajectory with an exogenous perturba-
tion. The second kind of stability is referred to as exponential stability and focuses on
the response of the system to initial conditions.

Input/Output stability

In this case, we study the response of a system to an input and we forget about the
transient behavior due to the initial conditions. Then, we naturally need to slightly
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change the system to introduce an input r and an output y:

Ẋ(t) = AX(t) +B (u(1, t) + r(t)) , t ≥ 0, (3.8a)
y(t) = KX(t), t ≥ 0, (3.8b)

utt(x, t) = c2uxx(x, t), x ∈ [0, 1], t ≥ 0, (3.8c)
u(0, t) = y(t), t ≥ 0, (3.8d)
ux(1, t) = −c0ut(1, t), t ≥ 0, (3.8e)

(3.8f)

with the following initial conditions:

X(0) = 0, (3.9a)
u(x, 0) = 0, x ∈ [0, 1], (3.9b)
ut(x, 0) = 0, x ∈ [0, 1]. (3.9c)

Compared to (3.1), the input is the function r and the initial conditions (3.9b),
(3.9c) and (3.9a) are set to 0. Note that the input affects directly the ODE (3.8a)
and indirectly (3.8d) and (3.8e), meaning that the initial conditions are still compatible
with the boundary conditions, no matter the value of r(0). This consideration implies
that Proposition 3.2 applies to (3.8)-(3.9) and the solution still exists with the same
regularity.

The notions of input/output stability is then easy to define in this context. Using
energy considerations, we say that a system is stable if it does not create energy, in
other words, if it is dissipative. Since there is an input, we want to show that the energy
inside the system remains bounded if the input is of bounded energy. This concept is
formalized by the following definition.

Definition 3.3: Input/Output stability

System (3.8)-(3.9) is said to be input/output stable if there exists γ > 0 such
that the following holds:

∀T > 0, ∀r ∈ L2([0, T ],R),
∫ T

0
|y(t)|2dt ≤ γ

∫ T

0
|r(t)|2dt.

Chapter 4 studies the input/output stability of system (3.8)-(3.9).

Asymptotic and exponential stability of an equilibrium point

This part is dedicated to the concept of stability of an equilibrium point. We do not
consider any input here but we keep the intuitive notion of stability: the system should
not generate energy. That means here that we give an energy at t = 0 and we want
to show that the energy inside the system does not blow infinitely. More formally, we
define the energy of the system using a norm on D(A ).
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Definition 3.4: Norm on D(A )

For (X, u, v), (X̄, ū, v̄) ∈ D(A ), we define the following inner product and norm:

〈(X, u, v), (X̄, ū, v̄)〉D(A ) = X>X̄ + 〈u, ū〉L2 + c2〈ux, ūx〉L2 + 〈v, v̄〉L2 ,

‖(X, u, v)‖2
D(A ) = 〈(X, u, v), (X, u, v)〉D(A )

= ‖X‖2
n + ‖u‖2

L2 + c2‖ux‖2
L2 + ‖v‖2

L2 .

Remark 3.4

Of course, ‖ · ‖D(A ) is equivalent to ‖ · ‖Rn×X.

There exist some particular trajectories of system (3.1) for which the energy is not
varying and remains constant. The definition of stability depends on these points.

Definition 3.5: Equilibrium point of (3.1)

A point (Xe, ue, ve) ∈ D(A ) is an equilibrium point of (3.1) if the trajectory
(X, u, v) ∈ C1([0,∞),Rn × X) of (3.1) with initial condition (Xe, ue, ve) verifies
the following:

∀t > 0, ‖(Ẋ, u̇, u̇t)‖D(A ) = 0Rn×X1 .

The equilibrium points of (3.1) are studied in the following proposition.
Proposition 3.3: Equilibrium points of system (3.1)

An equilibrium (Xe, ue, ve) ∈ D(A ) of system (5.2) verifies

(A+BK)Xe = 0, ue = KXe, ve = 0.

Moreover, if A+BK is not singular, there is a unique equilibrium 0Rn×X.

Proof : Since the trajectory ue and ve are continuous, an equilibrium point (Xe, ue, ve) ∈
D(A ) of system (5.2) is such that:

0 = AXe +Bue(1), (3.10a)
0 = c2∂xxue(x), x ∈ [0, 1], (3.10b)

ve(x) = 0, x ∈ [0, 1], (3.10c)
ue(0) = KXe, (3.10d)

∂xue(1) = 0. (3.10e)

A solution to equation (3.10b) is ue(x) = ax + b where a, b ∈ R. In accordance to
equation (3.10e), ue is a constant function and using equation (3.10d), we get ue = KXe.
Since (3.10a) holds, that leads to: (A+BK)Xe = 0. ♦

The definitions of stability and asymptotic stability are then a direct interpretation
of what we said previously.
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Definition 3.6: Stability and asymptotic stability [63, Definition 1.3]

1. An equilibrium point (Xe, ue, ve) ∈ D(A ) is stable if for ε > 0, there exists
δ > 0 such that the following holds for all (X0, u0, v0) ∈ D(A ):

‖(X0 −Xe, u
0 − ue, v0 − ve)‖D(A ) < δ

⇒ ∀t ≥ 0, ‖(X(t)−Xe, u(t)− ue, ut(t)− ve)‖D(A ) < ε,

for the trajectory (X, u, v) of (3.1) with initial condition (X0, u0, v0).

2. An equilibrium point (Xe, ue, ve) ∈ D(A ) is asymptotically stable if it
is stable and for any (X0, u0, v0) ∈ D(A ), the following holds:

lim
t→∞
‖(X(t)−Xe, u(t)− ue, ut(t)− ve)‖D(A ) = 0,

for the trajectory (X, u, v) of (3.1) with initial condition (X0, u0, v0).

We are interested in this thesis only in global properties and consequently, the previ-
ous definitions have a meaning only if there is a unique equilibrium point (Xe, ue, ve) ∈
D(A ). In other words, we require to have A + BK not singular. To keep the content
clear, since (3.1) is linear, we will assume without loss of generality that the unique equi-
librium point is 0Rn×X. The stronger notion of exponential stability is defined thereafter
in this context.

Definition 3.7: Exponential stability

The equilibrium point (Xe, ue, ve) = 0Rn×X is exponentially stable if there
exists µ > 0, γ ≥ 1 such that the following holds:

∀t ≥ 0, ‖(X(t), u(t), ut(t))‖D(A ) ≤ γ‖(X0, u0, v0)‖D(A )e
−µt,

where (X, u, v) is the trajectory of (3.1) with initial condition (X0, u0, v0) ∈
D(A ).
It is said to be exponentially stable with a decay-rate of at least µ∗ with
µ∗ > 0 if µ in the previous definition is greater than or equal to µ∗.

Of course, if an equilibrium point is exponentially stable, it is also asymptotically
stable. Contrary to finite-dimensional systems, for infinite-dimensional systems, expo-
nential stability is not equivalent to asymptotic stability [109]. Proving the exponential
stability of system (3.1) is the main concern of Chapter 5.

3.2.2 Stability for a drilling pipe
For nonlinear systems, looking for global exponential stability is rather complicated
and sometimes impossible because there are several equilibrium points or because the
trajectories do not converge exponentially. There exist many alternatives such as con-
sidering local versions of the previous definitions. This is nevertheless not investigated
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in this thesis but left in the perspectives. Another interesting point is to relax the
definition of asymptotic stability to get the asymptotic stability to a set P as defined
in [97] and in the following definition.

Definition 3.8: Practical stability of a set P [84, 97]

System (3.1) is said to be practically stable to P ⊂ Rn × X if the following two
properties are verified:

1. For any initial condition (X0, u0, v0) ∈ D(A ),

min
(XP ,uP ,vP )

‖(X(t)−XP , u(t)− uP , ut(t)− vP)‖D(A ) −−−→t→∞
0.

2. For any initial condition (X0, u0, v0) ∈ P ,

∀t ≥ 0, (X(t), u(t), ut(t)) ∈ P ,

where (X(t), u(t), ut(t)) is the unique trajectory of (3.1) with initial condition
(X0, u0, v0).

In practice, we are looking for a level set of a Lyapunov functional. In this case,
the previous definition means that the trajectories of (3.1) are converging towards a
ball of radius Xbound (attractivity) and that once inside this ball, they cannot escape
(invariance). In other words, X, u and ut are bounded. If Xbound = 0, we recover the
definition of asymptotic stability. This notion provides a new expression for Problem 1.

Problem 2: Practical stability of the torsion system (2.7)

Let Ω0 > 0 be the desired angular speed.
We want to find a control law u1 minimizing zbound > 0 defined as follows:

∀η > 0, ∃T > 0, ∀t ≥ T, |z1(t)− Ω0| ≤ zbound + η. (3.11)

3.3 Conclusion
This chapter was dedicated to the toy-example system. It was enlighten that, as ex-
pected, studying the existence of a solution to a linear infinite-dimensional problem
is far more difficult than for finite-dimensional systems. We have summarized some
well-known results coming C0-semigroup theory which provides existence of a solution
and we used them for our problem.

Finally, the second part of this chapter dealt with different notions of stability. We
saw how these definitions are related one to the other and to the problems coming from
the control of drill-vibrations. These definitions are guiding us all along the following
chapters.

Now that the basic properties of the toy-example system are known, the following
chapter is dealing with its input/output stability.



4
Frequency analysis of coupled

ODE/boundary-damped string equation

The previous chapter introduces the problem and studied the existence and regularity of
a solution. This chapter investigates the frequency analysis of the toy example system
stated in (3.1). This approach has been successfully applied to linear time-invariant
finite-dimensional systems (see [63] for instance). The main interest of this method
was to assess stability of such a system with an algebraic condition on the roots of a
polynomial, which is a necessary and sufficient condition for stability. Such an approach
has been extended to some classes of infinite-dimensional problems [42, 164].

For a time-delay system, one of the simplest infinite-dimensional systems, the fre-
quency analysis approach assesses stability as a condition on the roots of a quasi-
polynomial, which is a polynomial with complex exponentials [116]. In many cases,
this is a very tedious problem which can sometimes be solved using algorithms such as
the Cluster Treatment of Characteristic Roots (CTCR) [117, 118] or using pseudospec-
tral approach [26].

In a more general setting, finding the roots represents a real challenge. To answer
this problem, the robust community proposes tools which do not require to solve al-
gebraic equations. The cleverness was to split the problem into smallest and more
manageable subsystems, which can be encapsulated into uncertainty sets. This new
formulation helps getting numerical criteria which are, most of the time, not equivalent
but sufficient to prove the stability of the initial system. Robust stability can be as-
sessed using the Small-Gain Theorem [51, 169], Integral Quadratic Constraints (IQCs)
[105] or Quadratic Separation (QS) [4, 79, 121] for instance.

This chapter is organized as follows. Section 1 proposes an equivalent formulation of
ODE/string equation (3.8) in terms of neutral-type time-delay systems. This formula-
tion enables us to derive necessary stability conditions. In particular, we can apply the
CTCR algorithm to detect the number of unstable poles and then get an exact stability
test. A problem with the previous test lies in its lack of robustness. This will be dealt
in Section 2 using the Small-Gain Theorem. This conservative but simple result is then
extended in Section 3 using Quadratic Separation which refines the previous stability
test.
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Figure 4.1: Block diagram of system (4.1) where r̂ is the input and ŷ = KX̂, the output.

4.1 Time-delay system description

It is well-known that a wave equation can often be written as a time-delay system [87, 89,
135]. This alternative formulation arises naturally when applying the Laplace transform
of the ODE/PDE system. It enables using different tools to assess the input/output
stability of (3.8).

4.1.1 Laplace transform of the coupled system

The notion of Laplace transform extends easily to infinite-dimensional systems from its
traditional definition for finite-dimensional systems as noted in [53]. This transforma-
tion is possible if the variables under concern are L2 in time on each compact set of
R+, which is the case in (3.8) as discussed in Section 3.1.

Applying the Laplace transform to (3.8), with s ∈ C denoting the Laplace variable,
system (3.8) translates into the following equations:

sX̂(s) = AX̂(s) +B (û(1, s) + r̂(s)) , (4.1a)
s2û(x, s) = c2ûxx(x, s), x ∈ [0, 1], (4.1b)
û(0, s) = KX̂(s) = ŷ(s), (4.1c)
ûx(1, s) = −c0sû(1, s), (4.1d)

where X̂, û and ŷ denote the Laplace transforms of X, u and y respectively. The block
diagram of this system is depicted in Figure 4.1 where W(x, s) is the transfer function
from û(0, s) to û(x, s) for x ∈ [0, 1]. In order to simplify this set of equations, let us note
that (4.1b) is a differential equation in x that can be easily solved, and the solution is:

û(x, s) = AW(s)e scx +BW(s)e− scx,

with A and B two transfer functions to be defined using the boundary conditions (4.1c)
and (4.1d). This leads to the following system: (4.1c)⇔ AW(s) +BW(s) = ŷ(s),

(4.1d)⇔ s
c

(
AW(s)e sc −BW(s)e− sc

)
= −sc0û(1, s) = −sc0

(
AW(s)e sc +BW(s)e− sc

)
.
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We derive from the previous system of equations the expression of the transfer function
of the string equation, which is given by:

W(x, s) = û(x, s)
ŷ(s) = e−

s
c
x + αe

s
c
(x−2)

1 + αe−2 s
c

, (4.2)

with α = 1−cc0
1+cc0

and x ∈ [0, 1]. In particular, the transfer function from ŷ(s) to û(1, s)
reads:

W(1, s) =W(s) = û(1, s)
ŷ(s) = (1 + α)e−s/c

1 + αe−2s/c = 2e−s/c
1 + cc0 + (1− cc0)e−2s/c . (4.3)

Notice that W(x, s) has infinitely many poles. These poles are independent on the
spatial variable x and their real part c

2 log |α| is strictly negative if cc0 6= 1 and c0 > 0.
Remark 4.1: On the stability of W

When c0 = 0, W has infinitely many poles on the imaginary axis and for c0 < 0,
there are infinitely many poles with a strictly positive real part. Applying Corol-
lary 9.1.4 from [42], for any finite-dimensional system, the coupled system (4.1)
cannot be input/output stable if the W is not stable.
In other words, the third scenario in Section 3.1 ( p. 17) cannot be dealt using
this method here. We will come back to this point later in this chapter.

In order to obtain the transfer function of Figure 4.1, let us first express the transfer
function between r̂ + û(1, ·) and ŷ:

H(s) = ŷ(s)
û(1, s) + r̂(s) = K(sIn − A)−1B = N(s)

D(s) , (4.4)

where N and D are two polynomials of degree n − 1 and n, respectively. Using the
expression of W developed previously, we obtain the following transfer function:

F(s) = ŷ(s)
r̂(s) = H(s)

1−H(s)W(s) =
N(s)

(
1 + αe−2s/c

)
(1 + cc0)ceq(s, c)

, (4.5)

where
ceq(s, c) =

(
1 + cc0 + (1− cc0)e−2s/c

)
D(s)− 2N(s)e−s/c. (4.6)

The stability of system (4.1) is determined by the location of the roots of (4.6).
These roots are called the poles of F and their influence on the stability is discussed in
details in the following subsection.

4.1.2 A neutral type time-delay system
A time-delay system is of neutral type when its highest order derivative is affected by
a delay term τ . Given a characteristic equation, this feature appears as the highest
power of the Laplace variable s is multiplied by the delay operator e−τs. Inspecting the
corresponding transfer function F or the characteristic equation (4.6) of system (4.1),
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it is easy to see that this system exhibits the neutral characteristic if cc0 6= 1. The
theory on Neutral Functional Differential Equations (NFDE) is detailed in [86, 116] for
instance. We can re-write system (4.1) in the standard NFDE form by collecting the
derivative of the states on the left-hand side:

Ẋ(t) + αẊ(t− 2c−1) = AX(t) + 2
1 + cc0

BKX(t− c−1)

+ αAX(t− 2c−1) +Br(t) + αBr(t− c−1), (4.7)

where from [69, 118] the difference operator is defined for all t ∈ R+ as:

Dα(X)(t) = X(t) + αX(t− 2c−1). (4.8)

Remark 4.2: F represents a time-delay system if α = 0

One can see that for cc0 = 1, we have α = 0 and system (4.1) is no longer a
neutral type system but a retarded one [22]. This distinction is critical for the
stability analysis since there is a finite number of unstable poles for a time-delay
system, which is not necessarily the case for a neutral time-delay system. It will
also help building various examples and enables a comparison with the stability
tests already available for time-delay systems.

When it comes to study stability of NFDEs, contrary to functional differential equa-
tions of retarded type, inspecting the pole locations of the corresponding characteristic
equation is not sufficient to guarantee its input/output stability. A prerequisite for the
study of stability is the so-called small τ -stabilizability, this is also known as small-delay
phenomenon or strong stability. When an NFDE is small τ -stabilizable, it is guaranteed
that the poles of the NFDE behave continuously as the delay value changes from 0 to
0+. Whenever this property holds, then studying the pole locations of an NFDE allows
one to conclude on the stability of an NFDE (see [22, 70] for more information). If
this is not the case, even if all the poles are with a strictly negative real parts, there
might exist an input which makes the system diverges. The following definition of small
τ -stabilizable comes from [69, 118].

Definition 4.1: Small τ-stabilizable

An NFDE system is said to be small τ-stabilizable if the difference operator
Dα(X)(t) is stable.

This definition leads to the following proposition.
Proposition 4.1

System (4.1) is neutral and small τ -stabilizable if and only if

c0 > 0 and cc0 6= 1.

Proof : According to Theorem 12.5.1 and Corollary 12.5.1 from [69], the difference
operator (4.8) is stable if and only if |α| is strictly less than 1. This is the case if and
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only if c0 > 0. Moreover, the system is neutral if α 6= 0 and then cc0 6= 1. ♦

Finally, since the system is small τ -stabilizable under the previous condition, its
input/output stability can be discussed. The following theorem is a rephrasing of
Theorem 9.9.1 from [70].

Corollary 4.1

System (4.1) is input/output stable if the two following conditions are satisfied:

1. c0 > 0,

2. ∀s ∈ C+, ceq(s, c) 6= 0.

As one established some key properties regarding the neutral aspect of (4.1), the
stability analysis can be pursued.

4.1.3 Pole crossing approach

Once the characteristic equation is derived, different methodologies can be applied to
assert input/output stability of system (4.1). Various techniques can be adopted for this
purpose, see for example [147]: 2-D stability tests [67, Section 2.2.1] [82], pseudo-delay
methods [77, 126], direct/robust analysis [116] or bifurcation analysis [26, 113, 166]
among many others. Since the coefficients of ceq in (4.6) are delay-dependent, it is
generally difficult to apply the classical techniques used to assess the stability of time-
delay systems. This problem has been investigated in some studies [23, 81] and usually
requires a tedious analysis.

In this part, we focus on a method allowing to find the exact condition for which
the system in closed loop (4.1) is input/output stable. Specifically, we use an analysis
based on a pole location argument that is the Cluster Treatment of Characteristic Roots
(CTCR) methodology, originally proposed in [117].

Let τ = c−1 for clarity and regrouping the terms by their delay dependence, char-
acteristic equation (4.6) becomes:

ceq(s, τ) = a0(s, τ) + a1(s, τ)e−τs + a2(s, τ)e−2τs, (4.9)

with a0(s, τ) =
(
1 + c0

τ

)
D(s), a1(s, τ) = −2N(s) and a2(s, τ) =

(
1− c0

τ

)
D(s). It is

clear that the system described by F can switch from stable to unstable behavior, or
vice-versa, only if (4.6) has a pole on the imaginary axis for a given delay [117].

The CTCR algorithm starts by exhaustively detecting all the imaginary poles s =
iω, along with their corresponding delay values (Proposition 1 of [117]). Next, CTCR
identifies that each pole s = iω has a unique crossing direction over the imaginary
axis for all the delays creating this crossing (Proposition 2 of [117]). Knowing the
number of unstable poles at τ = 0, which is trivial to assess, it is then possible to use
the information regarding crossing directions and at which delay values such crossings
occur to find the pole locations across the imaginary axis. With this idea, it becomes
possible to count the number of poles on the right-half plane for a given delay value
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τ > 0. Whenever there are no unstable poles for certain delays, using Corollary 4.1, we
state that the system is input/output stable for those delays.

The CTCR framework has already been used for neutral systems [118] while re-
specting the small τ -stabilizability property. In the following, we briefly summarize this
framework [117, 118] and also point out the main difference introduced while studying
the particular system (4.1). Following the process described in [117, 118], the Rekasius
substitution [126] is defined as:

e−τs := 1− Ts
1 + Ts

, τ ∈ R+, T ∈ R, s = iω, (4.10)

which is an exact substitution of exponential terms when s = iω. The mapping trans-
formation is bijective and its inverse is given for ω > 0 by:

τ = 2
ω

[
tan−1(ωT )± `π

]
, ` = `0, `0 + 1, . . . (4.11)

Here, `0 is the first integer for which τ is positive.
Next, substituting (4.10) into the characteristic equation (4.6) and expanding by

(1 + Ts)2, which does not bring any artificial imaginary poles, we obtain a transformed
characteristic equation, given by:

c̄eq(s, T ) =
(

1 +
2c0

τ
Ts+ T 2s2

)
D(s)−N(s)(1− T 2s2),

which is nothing but a multinomial in s and T . Note that the imaginary poles s = iω
of the original characteristic equation ceq and this multinomial c̄eq are identical. Hence,
one can alternatively compute the imaginary poles s = iω from this multinomial, which
is a much easier task. To this end, we first build the coefficients {bk(T, τ)}k∈(0,n+2), such
that:

c̄eq(s, T ) =
n+2∑
k=0

bk(T, τ)sk. (4.12)

It is worth noting that multinomial (4.12) is not exactly of the required form to apply
the CTCR methodology. The main problem is that coefficients bn depend explicitly on
the delay τ . This brings an additional difficulty to our problem because it may also
rule out certain periodicity properties (Proposition 2 in [117]). However, we will show
in the next paragraph that this issue can be solved.

Indeed, consider the following manipulation. As c0 is always divided by the delay τ
in bk, if one defines a new positive variable c1 = c0τ

−1 = c0c, then bk depends only on c1
and not on τ anymore. Working at a given strictly positive c1 removes the dependence
of bk in τ . Since they are now independent, the methodology applies. This manipulation
also shows that c1 = c0c is a variable of interest when it comes to study the stability of
boundary damped strings.

Using bk and ak as defined in equations (4.9) and (4.12), the CTCR methodology
provides the boundaries of the parameter space in which the input-output stability
of system (4.1) holds1. The algorithm to obtain the stability chart is summarized as
follows for a given c1 = c0τ

−1 and originally comes from [14].
1Here, we provide the general framework of CTCR for an exact stability analysis. Handling degen-

erate cases requires care as was demonstrated in [148]. Such special cases, for a slightly different c1,
will however not arise.
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Algorithm 4.1

1. Using c̄eq, one can find the roots s = iω corresponding to T ∈ R, e.g.,
by using Routh’s array. There are only a finite number of such solutions
(Proposition 1 of [117]);

2. For each T ∈ R obtained previously, we already know the angular frequency
ω for which a crossing on the imaginary axis occurs. For each ω, there is a
root tendency, indicating the unique direction of the crossing independent
of the delays creating that crossing (Proposition 2 of [117]).

3. Then, using the inverse transformation of Rekasius transformation in (4.10),
it is possible to find all the delays {τ`} corresponding to each pair of (T, ω)
and falling in an interval from 0 up to a target delay value τmax. Sorting
these delays in ascending order, and starting with the number of unstable
poles for τ = 0, the number of unstable poles for a delay τ < τmax can be
accounted by observing the root tendency property of the crossings.

4. The stability areas of system (4.1) for a given c1 = c0τ
−1 are obtained if no

unstable poles are detected (Corollary 4.1). Since τ is known at this point,
c0 can be recovered as c0 = c1τ .

Remark 4.3: Stability chart of (4.1)

Notice that the coefficients bk depend linearly on c1 and then the roots of c̄eq(·, T )
vary continuously with respect to c1. In other words, the delays τ for which there
is a crossing vary continuously relatively to c1. The border of each stability area
on the map (c1, τ) is consequently continuous.
This observation indicates that to plot a stability chart, we can use the mapping
(c1, τ) or equivalently (α = 1−c1

1+c1
, τ).

The tool presented in this chapter enables to get an exact stability test. However,
it suffers from a lack of robustness because it depends on a perfect knowledge of ceq.
The following sections deal with this issue.

4.2 Small-Gain Theorem
A complementary approach dealing with robustness issues (with respect to uncertainties
on A or c for instance) considers the wave W as an uncertain system. Characterizing
these uncertainties by some inequalities allows us to use classica robust control tools
such as the Small-Gain Theorem [51, 169].

4.2.1 Adapted Small-Gain Theorem
Since the system under study is an interconnection between two subsystems as shown in
Figure 4.1, the stability of the interconnection can be stated under some conditions on
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each subsystem. The first tool coming from the robust stability community considered
here is the Small Gain Theorem for infinite-dimensional systems [42].

Consider the block diagram of Figure 4.1 where the wave equation is modeled as
an uncertain transfer function. The following stability criteria is a direct application of
the Small-Gain Theorem.

Theorem 4.1: Small-Gain Theorem [14]

System (4.1) is input-output stable for (c, c0) ∈ (0,∞)2 if the following condition
is satisfied:

‖H‖∞ = ‖K(sIn − A)−1B‖∞ < min(cc0, 1). (4.13)

Remark 4.4

If the previous theorem holds, then cc0 > 0 and system (4.1) is small τ -
stabilizable.

Proof : Beforehand, let evaluate the H∞-norm of W . Some calculations lead to:

‖W‖∞ = max
w∈R+

|H(iw)| = 2
(1 + cc0) minω≥0 |1 + αe−2iω/c|

,

where α = 1−cc0
1+cc0

. For |α| < 1, the function ω 7→ 1 + αe−2iτω is inside the circle on the
complex plane centered at 1 and of radius |α| < 1. Consequently, we get:

min
ω≥0

∣∣∣1 + αe−2iω/c
∣∣∣ =


2cc0

1+cc0
if cc0 < 1,

2
1+cc0

otherwise .

Consequently, we get:

‖W‖∞ = max
( 1
cc0

, 1
)
.

Then, using the Small-Gain Theorem for infinite-dimensional systems as stated in [42,
Theorem 9.1.7], the interconnected system is input/output stable if each subsystem is
stable and ‖H‖∞‖W‖∞ < 1. The first condition is ensured if ‖H‖∞ < 1 and c0 > 0.
The second condition is verified depending on the value of cc0.

1. Assume cc0 ≤ 1. That leads to ‖W‖∞ = 1
cc0

, it then follows that robust stability
is ensured if ‖H‖∞‖W‖∞ = ‖H‖∞

cc0
< 1. This is equivalent to (4.13).

2. If cc0 > 1, then ‖W‖∞ = 1. Stability is ensured if ‖H‖∞ < 1, which is equivalent
to (4.13).

♦
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Remark 4.5: Delay-robustness of the criterion

The proof of the previous theorem shows that the interconnection (4.1) is robustly
stable for all uncertainties W verifying ‖W‖∞ = max

(
1
cc0
, 1
)
.

For instance, consider the uncertainty Wh(s) = W(s)e−hs for h > 0. We get
easily that W and Wh have the same H∞-norm. Consequently, Theorem 4.1
ensures that (4.1) is robust to the addition of a delay h, whatever the value c > 0
as long as c0 > 0. This point is discussed in the following proposition.

The main advantage of the previous theorem lies in its simplicity. Indeed, it is an
algebraic test and some properties can be easily deduced.

Proposition 4.2: Consequences of the Small-Gain Theorem

Assume (4.13) holds. The following properties are then verified:

1. A+BK is Hurwitz,

2. There exists a function

cmin : (0,+∞) → R+

c0 7→ cmin(c0)

where cmin(c0) ≤ ‖H‖∞c−1
0 such that system (4.1) is input/output stable

for all c ≥ cmin(c0). Moreover, lim
c0→+∞

cmin(c0) = 0.

3. Let α =
1− cc0

1 + cc0
, if c0 > 0, condition (4.13) is equivalent to:

α <
1− ‖H‖∞
1 + ‖H‖∞

. (4.14)

Proof :

1. Since ‖H‖∞ < 1, applying the Small Gain Theorem leads to A+BK Hurwitz.

2. Since ‖H‖∞ < cc0, we get that c > ‖H‖∞c−1
0 . This point is a very interesting

robustness result. It means for all wave speed larger than ‖H‖∞c−1
0 , system (4.1)

remains stable. That naturally leads to the existence of the function cmin with
the above properties.

3. Since ‖H‖∞ < cc0, we get that 1−‖H‖∞ > 1−cc0 and (1 + ‖H‖∞)−1 > (1+cc0)−1.
Combining these two equations leads to (4.14).

♦

Note that the last property implies that at a given and fixed c1 = cc0, the in-
put/output stability of system (4.1) is independent on the delay τ = c−1, as noted in
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Figure 4.2: Stability chart of (4.1) with (4.15). The hatched area is the exact unstable
area according to the CTCR algorithm presented in Section 4.1.3, while Theorem 4.1
gives that the red area is stable.

Remark 4.5. This remark shows that the theorem does not provide a speed dependent
stability test and is therefore conservative.

4.2.2 Example and numerical test

Consider the following example coming from [14]:

A =

−2 1

0 −1

 , B =

1

1

 , K =
[
0 −20

21

]
. (4.15)

We note that ‖H‖∞ = 0.9524 < 1, then, Theorem 4.1 and Proposition 4.2 apply.
One obtain that the closed-loop system (4.1) is stable for all α < 0.0244. Figure 4.2
shows the stability chart for α ∈ (0, 1) and c ∈ [0.33, 100] with the two methods
proposed: The CTCR algorithm and the Small Gain Theorem.

We can clearly see on that example that Theorem 4.1 produces very conservative
results. Indeed, the white area is stable but is not detected by the Small-Gain theorem.
The following section proposes a different framework to enhance the previous result, at
the price of a more complex stability test.

4.3 Quadratic Separation
The Small-Gain Theorem ensures the input/output stability of an interconnected sys-
tem composed of a disturbance and a plant which are both stable. To decrease the
conservatism and consider a broader class of interconnected systems, the Quadratic
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Figure 4.3: Feedback system for quadratic separation. A and E are matrices and ∇ is
an uncertain operator. ω̄ and z̄ are the references.

Separation (QS) framework can be used. This framework has been originally proposed
in [79] and extended in [121]. It studies the wellposedness of a closed-loop system
made up of an uncertain linear transformation and a known linear transformation as in
Figure 4.3. Note that in this framework, ω, ω̄, z and z̄ are complex vectors.

4.3.1 Framework and methodology

First, we describe the methodology of QS and then we apply this theory to provide a
preliminary result on system (4.1) in the following subsection. Then we will extend this
stability analysis to provide less conservative results. QS states the wellposedness of a
generic system described in Figure 4.3, where z, z̄ ∈ Cnz and ω, ω̄ ∈ Cnω , E ∈ CnE×nz is
full-column rank, A ∈ CnE×nω and ∇ ∈ Cnω×nz is a transfer function.

In our case here, we consider that this operator acts on two signals w and z in the
Laplace domain. We assume here that ∇ depends on a variable s ∈ C̄+\{0} only and
consequently, the system described in Figure 4.3 rewrites as:

∀s ∈ C̄+\{0},

 ω̂(s)− ˆ̄ω(s) = ∇(s)ẑ(s),

E
(
ẑ(s)− ˆ̄z(s)

)
= Aω̂(s).

(4.16)

To ease the notation in the sequel, we introduce the following definition.

Definition 4.2: System Σ(E ,A,∇)

The system in Figure 4.3 and equation (4.16) can be written as Σ(E ,A,∇) where
E is full-column rank.

The quadratic separation methodology ensures the wellposedness of the intercon-
nection, defined as follows for a system Σ(E ,A,∇).

Definition 4.3: Wellposedness of Σ(E ,A,∇) [79]

The interconnected system described on Figure 4.3 is wellposed if for each s in
C̄+\{0}, the map (ω̄, z̄) ∈ Cnω × Cnz 7→ (ω, z) ∈ Cnω × Cnz is bijective.
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Remark 4.6

Note that the notion of wellposedness considered here is not directly related to
the definition of wellposedness in Hadamar sense for PDEs [42, p. 15]. In the
general quadratic separation framework as described in [79, 121], ∇ is assume to
be uncertain and we study the wellposedness of the interconnection with respect
to this operator.

To better understand the wellposedness of (4.16), an equivalent definition for this
system is given by the following proposition.

Proposition 4.3: Wellposedness of Σ(E ,A,∇)

If Σ(E ,A,∇) is wellposed then

∀s ∈ C̄+\{0}, det


 Inz −E+A

−∇ Inω


 6= 0 (4.17)

holds where E+ is a left pseudo-inverse of E , such that E+E = Inz .

Proof : This proof is inspired from [79] and can be found in [121]. For s ∈ C̄+\{0},
system (4.16) rewrites as:

 E −A

−∇(s) Inω


z
ω

 =

E 0

0 Inω


 z̄
ω̄

 . (4.18)

Since E is full-column rank, there exists a pseudo-inverse E+ ∈ Cnz×nE such that E+E =
Inz . System (4.18) implies the following:

E+ 0

0 Inω


 E −A

−∇(s) Inω


z
ω

 =

 Inz −E+A

−∇(s) Inω


z
ω

 =

 z̄
ω̄

 . (4.19)

If the system is wellposed, then for a given (ω̄, z̄) ∈ Cnω × Cnz there is a unique
(ω, z) ∈ Cnω × Cnz verifying (4.19) for all s ∈ C̄+\{0}. This is equivalent to equa-
tion (4.17). ♦

Nevertheless, stating the wellposedness of Σ(E ,A,∇) seems difficult. Theorem 1 and
Corollary 2 from [121] give a necessary and sufficient condition for the wellposedness
of the general system (4.16). These results are summarized and adapted to our case in
the following theorem.
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Theorem 4.2: Quadratic Separation [121]

The system described by Figure 4.3 and equation (4.16) is wellposed if and only
if there exists a real matrix Θ = Θ> of appropriate dimension such that:

∀s ∈ C̄+\{0}, Ξ =

 I

∇(s)


∗

Θ

 I

∇(s)

 � 0, (4.20)

[
E −A

]⊥>
Θ
[
E −A

]⊥
� 0, (4.21)

where ∇∗ is the trans-conjugate of ∇ and E is full-column rank.

Remark 4.7

The previous theorem highlights a main difference with usual Lyapunov-based
theorem. Indeed, multiplying by the kernel on the left and on the right leads to
less decision variables than classical theorems and a better interpretation of the
slack-variables [64].
Moreover, the quadratic separation approach can be easily extended to some
robust cases as done in [121].

The methodology to apply Theorem 4.2 is quite simple. We try to find a separator
Θ satisfying (4.20). This can be difficult to assess since it must hold for all s ∈ C̄+\{0}
and has to be as flexible as possible. To this extend, we then assume Θ is a linear
function in the decision variables to be defined. Then (4.21) should be an LMI in the
former decision variables, which is suitable for computational resolution.

Note that if (4.21) cannot be solved for a given separator defined a priori, that does
not mean (4.16) is not wellposed. Indeed, one looses the equivalence by imposing a
structure to Θ. We therefore obtain a sufficient condition of wellposedness.

The solution explored in this chapter to reduce the conservatism introduced by the
choice of the separator is to extend system Σ(E ,A,∇) as defined in the following.

Definition 4.4: Extended system

Let Σ◦ = Σ(E◦,A◦,∇◦) and Σe = Σ(Ee,Ae,∇e).
Σe is said to be an extension of Σ◦ if the following holds:

Ee =

E◦ 0

E1 E2

 , Ae =

A◦ 0

A1 A2

 , ∇e =

∇◦ 0

∇1 ∇2

 ,
where E1, E2,A1 and A2 are matrices of appropriate dimensions. ∇1 and ∇2 are
transfer functions.

Extended system has the following interesting property.
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Theorem 4.3: Wellposedness of an extended system

If Σe is wellposed, then Σ◦ is wellposed.

Proof : The proof of this result is technical and it is therefore left in Appendix B. ♦

In the sequel, we will firstly derive a new model of the form (4.16) for system (4.1).
Then, we will provide several conditions ensuring its wellposedness.

4.3.2 First stability result

The aim of this introducing part is to derive a first stability result for (4.1) using
quadratic separation. First, note that (4.3) can be written differently as:

W(s) = 2(1 + cc0)e−τs
1 + αe−2τs = 1 + α

1 + αe−2τs e
−τs = δ(s)e−τs,

where δ(s) = 1+α
1+αe−2τs . System (4.1) is then equivalent to:

sX̂(s) = AX̂(s) +Bδ(s)e−τs
(
KX̂(s) + r̂(s)

)
= AX̂(s) +B(û(1, s) + r̂(s)). (4.22)

Consider the following signals:

z⊕(t) = col
(
Ẋ(t), KX(t), KX(t− τ)

)
,

ω⊕(t) = col
(
X(t), KX(t− τ), u(1, t)

)
.

(4.23)

Then, Σ(E⊕,A⊕,∇⊕) is a new formulation of system (4.1) with E⊕,A⊕ and ∇⊕ defined
as follows:

∇⊕(s) = diag (s−1In, e
−τs, δ(s)) ,

E⊕ = In+2, A⊕ =


A 0n,1 B

K 0 0

01,n 1 0

 .
(4.24)

The following proposition makes the link between the wellposedness of Σ(E⊕,A⊕,∇⊕)
and the input/output stability of (4.1).

Proposition 4.4

If Σ(E⊕,A⊕,∇⊕) is wellposed with c0 > 0 and det(A+BK) 6= 0, then system (4.1)
is input/output stable.

Proof : This proof is technical and it is therefore reported in Appendix B. ♦

Remark 4.8

Note that the condition det(A+BK) 6= 0 is not restrictive since it is equivalent to
the existence of a unique equilibrium point of (4.1). The other condition c0 > 0
is the classical assumption to be small-τ stabilizable.
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In this subsection, we propose a structure for the real-valued separator Θ such that
inequality (4.20) applied to ∇⊕ always holds for s ∈ C̄+\{0}.

Proposition 4.5

Let c, c0 > 0 and α = 1−cc0
1+cc0

. Assume Θ⊕ =
[

Θ11
⊕ Θ12

⊕

Θ12
⊕
> Θ22

⊕

]
such that

Θ11
⊕ = diag (0n,−Q,R(1 + α)) ,

Θ12
⊕ = diag

(
−P, 0,−R 1

1−α

)
,

Θ22
⊕ = diag (0n, Q,R) .

(4.25)

Then, for any P ∈ Sn+ and Q,R ∈ R+, the inequality:

Ξ⊕ =

 I

∇⊕(s)


∗

Θ⊕

 I

∇⊕(s)

 � 0, (4.26)

holds for all s ∈ C̄+\{0} where ∇⊕ is given in (4.24).

Proof : For any s ∈ C̄+\{0}, let us compute Ξ⊕:

Ξ⊕ =


−2PRe(s−1) 0n,1 0n,1

01,n Q(|e−τs|2 − 1) 0

01,n 0 Rδ−1(s)

 , (4.27)

where γ = 1
1−α and δ−1(s) = 1 +α− 2

1−αRe (δ(s)) + |δ(s)|2. We need to prove that this
matrix is negative.

First, note that for s ∈ C̄+\{0}, we get Re(s−1) = Re(s)|s|−2 ≥ 0, and consequently:

∀s ∈ C̄+\{0}, −2PRe(s−1) � 0.

Secondly, since for all s ∈ C̄+\{0}, |e−τs|2 ≤ 1, we obtain:

∀s ∈ C̄+\{0}, Q(
∣∣∣e−τs∣∣∣2 − 1) ≤ 0.

Finally, since w 7→ δ(iw) is the Moëbius transformation of a circle, calculations show
that it is consequently a circle of diameter γ = 1

1−α and radius |α|γ. Then, s 7→ δ(s) is
inside a circle of center γ and radius |α|γ. Hence, we get that |δ(s) − γ|2 ≤ |α|2γ2 for
s ∈ C̄+\{0}. In other words |δ(s)|2 − 2γRe(δ(s)) + (1− α2)γ2 ≤ 0. That leads to:

∀s ∈ C̄+\{0}, Rδ−1(s) ≤ 0.

These considerations imply that Ξ⊕ � 0. ♦
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Remark 4.9

The structure of the previous separator Θ⊕ is not new and has already been used
many times in [79, 121] for instance.

Using Theorem 4.2 leads to the following theorem.
Theorem 4.4: First stability result

Assume c > 0, c0 > 0 and det(A+BK) 6= 0.
Let Θ⊕ =

[
Θ11
⊕ Θ12

⊕

Θ12
⊕
> Θ22

⊕

]
such that

Θ11
⊕ = diag (0n,−Q,R(1 + α)) , Θ12

⊕ = diag
(
−P, 0,−R 1

1−α

)
,

Θ22
⊕ = diag (0n, Q,R) .

(4.28)

If there exist P ∈ Sn+ and Q,R ∈ R+ such that the following LMI holds:

[
E⊕ −A⊕

]⊥>
Θ
[
E⊕ −A⊕

]⊥
� 0,

then system (4.1) is input/output stable.

Proof : First, thanks to Proposition 4.5, Theorem 4.2 holds. Since det(A+BK) 6= 0
and c0 > 0, then Proposition 4.4 states that system (4.1) is input/output stable. ♦

We can easily see that the previous condition is independent on the value of the
delay τ . The obtained results are therefore not depending on the delay and we get a
similar condition to the Small-Gain Theorem of the previous part. There is not enough
information on the uncertainty ∇⊕ to get a sharper stability criterion. We then need
to characterize the uncertainty ∇⊕ as much as possible. Following some studies on
time-delay systems, [121] shows that the following interpretation of Figure 4.1 can be
used:

z0(t) = col
(
Ẋ(t), KX(t), KX(t− τ), KẊ(t)

)
,

ω0(t) = col
(
X(t), KX(t− τ), u(1, t), K (X(t)−X(t− τ))

)
.

(4.29)

with

∇0(s) =

∇⊕(s) 0

0 δ0(s)

 , δ0(s) = 1−e−τs
s

E0 =


E⊕ 0n+2,1

−K 0 0

01,n 1 −1

1

0

 , A0 =


A⊕ 0n+2,1

02,n+2
0

1

 .
(4.30)

Note that E0 is full-column rank. Consequently, in the sense of Definition 4.4, Σ(E0,A0,∇0)
is an extension of Σ(E⊕,A⊕,∇⊕). Compared to the previous system, we added two sig-
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nals KẊ in z0 and K(X(t) − X(t − τ)) in ω0. These new signals help characterizing
the uncertainty ∇0 as shown by the following theorem.

Theorem 4.5: Quadratic Separation stability test [14]

Assume c0 > 0 and det(A+BK) 6= 0.
Let Θ0 =

[
Θ11

0 Θ12
0

Θ12
0
> Θ22

0

]
is proposed:

Θ11
0 = diag (0n,−Q,R(1− α),−τ 2S) , Θ12

0 = diag
(
−P, 0,−R 1

1−α , 0
)
,

Θ22
0 = diag (0n, Q,R, S) .

(4.31)
If there exist P ∈ Sn+ and Q,R, S ∈ R+ such that the following LMI holds:

[
E0 −A0

]⊥>
Θ0

[
E0 −A0

]⊥
� 0 (4.32)

for Θ0, E0 and A0 defined in (4.31) and (4.30), then system (4.1) is input/output
stable.

Proof : With the proposed structure of Θ0, for all s ∈ C̄+\{0}, the following holds:

Ξ0 =

 I

∇0(s)


∗

Θ0

 I

∇0(s)

 =

 Ξ⊕ 0n+2,1

01,n+2 S
(
|δ0(s)|2 − τ 2

)
 . (4.33)

Using Jensen’s inequality (Proposition E.3) on the function u 7→ eus leads to:

∀(s, τ) ∈ C̄+\{0}×R+, |δ0(s)|2 − τ 2 =
∣∣∣∣∣1− e−τss

∣∣∣∣∣
2

− τ 2 =
∣∣∣∣∫ 0

−τ
eusdu

∣∣∣∣2 − τ 2

≤ τ
∫ 0

−τ
|eus|2du− τ 2 ≤ 0.

(4.34)

Consequently, the previous result together with Proposition 4.5, we get Ξ0 � 0. Ac-
cording to Theorem 4.2, Σ(E0,A0,∇0) is wellposed if (4.32) holds. Using Theorem 4.3
about extended systems, we can conclude that Σ(E⊕,A⊕,∇⊕) is wellposed. Conse-
quently, using Proposition 4.4, we get that system (4.1) is input/output stable. ♦

Remark 4.10

The disturbance component δ0 is related to Jensen inequality (see for instance
[67] and Proposition E.3), a widely used inequality in the analysis of time-delay
systems.

This stability condition is related to traditional results obtained using a Lyapunov
approach [61] and Jensen inequality. It is known that it provides a conservative test
[143, 144]. In the following section, we study a way to enhance inequality (4.34), which
is the main cause of conservatism.
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4.3.3 Towards a hierarchy of inequalities

In the previous part, we have given a special structure for Θ which has helped to obtain
a feasible test for (4.20). Nevertheless, the less optimal the inequalities assessing (4.20)
are, the more conservative the choice of Θ is. Equation (4.34) is a good approximation
for small delay τ but becomes a rude approximation as τ increases. In this part, we
describe a method to get better inequalities and consequently, a better separator Θ.

There are several solutions to improve (4.34). We can first find an ellipse which
gives a better estimate of |δ0|2. This solution is not investigated here but can be found
in [65]. Instead, we will try to find a transfer function δ+ such that the inequality

∀s ∈ C̄+\{0},
[
δ0(s)∗ δ+(s)∗

] δ0(s)

δ+(s)

 ≤ τ 2 (4.35)

is verified. If we find such a δ+, expending the previous expression leads to |δ0(s)|2 +
|δ+(s)|2 ≤ τ 2. This new inequality is better than (4.34) in the sense that the gap
between the two sides of the equation is thiner. This last transfer function is then
employed to derive an extension of Σ⊕. In [144], the authors used Wirtinger inequality
to get δ+(s) = 1

s

(
1− 2

τs
+ (1 + 2

τs
)e−τs

)
. This Wirtinger-based inequality encompasses

Jensen inequality since it always provides a better bound. The idea was once again
enhanced in [145] using Bessel inequality (Proposition E.4), leading to a hierarchy of
inequalities, at a price of a large extended system.

From now on, we choose the unique polynomial basis of L2(−τ, 0) with respect to
the scalar product 〈·, ·〉L2(−τ,0), called the basis of shifted Legendre polynomials {Lk}k∈N
which is defined in Appendix E, Definition E.1. Applying Proposition E.5 to the com-
plex exponential leads to the following result, called frequency-Bessel inequality.

Lemma 4.1: Frequency-Bessel inequality [14]

Let τ > 0 and N ∈ N, then the following inequality holds:

∀s ∈ C̄+\{0}, δ∗N(s)δN(s) ≤ τ 2, (4.36)

with δN(s) =
√
τ

〈eθs, L0(θ)
‖L0‖

〉
L2(−τ,0)

· · ·
〈
eθs,
LN(θ)
‖LN‖

〉
L2(−τ,0)

>.
Proof : Let s ∈ C̄+\{0}, Bessel inequality (Proposition E.5) applied to function

θ 7→ eθs gives:

δN(s)∗δN(s) = τ
N∑
k=0

∣∣∣∣∣∣
〈
eθs,
Lk(θ)
‖Lk‖

〉
L2(−τ,0)

∣∣∣∣∣∣
2

≤ τ‖eθs‖2
L2(−τ,0).

This leads to: δ∗N(s)δN(s) ≤ τ
∣∣∣∫ 0
−τ e

θ(s+s∗)dθ
∣∣∣. As s ∈ C̄+\{0}, the right-hand side

is bounded by τ 2 and that ends the proof. ♦



4.3. QUADRATIC SEPARATION 47

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 4.4: Plot of θ 7→ ‖δN(iθ)‖2eiθ for τ = 1 and θ ∈ [0, 2π] and N ∈ {0, 1, 2, 3}. The
more N increases, the closer the colored area is to the unit disk, meaning that the gap
in inequality (4.36) is smaller. We can also note the hierarchy between the inequalities,
each area at an order N is included in all smaller order areas.

This new inequality is an enhancement of inequality (4.34) since for N = 0, we
recover it. Inequality (4.36) is less and less conservative as N increases. This is shown
in Figure 4.4. To understand this figure, we first need to grasp what is the signification
of each colored area. The deep blue area corresponds to the image of the function
(r, θ) ∈ R+ × [0, 2π] 7→ ‖δ0(iθ)‖2e−riθ. Thanks to (4.36), we know that it is inside
the disk of radius τ = 1. The light and deep blue area is the image of the function
(r, θ) ∈ R+ × [0, 2π] 7→ ‖δ1(iθ)‖2e−riθ. And we continue this way till N = 3. We see
that the colored area is close to the unit disk, that means for N = 3, inequality (4.36)
is nearly optimal for s = iθ and θ = [0, 2π]. We can note that for small θ, Jensen
inequality gives indeed a very good estimate and |δ0|2 ' τ 2. This estimate gets worse
as θ increases.

4.3.4 Extended stability analysis

Using inequality (4.36), we need to define new signals. To keep consistence with sub-
section 4.3.2, δN is applied to KẊ, in its Laplace form, we get:

∀s ∈ C̄+\{0}, sδN(s)KX̂(s) = VN(s) =
[
ν0(s) · · · νN(s)

]>
,

where, according to (E.3), νk(s) = s
√

2k + 1
〈
eθs,Lk(θ)

〉
L2(−τ,0)

KX̂(s). We then natu-
rally introduce for k ∈ [0, N ]:

χk(s) =
〈
eθs,Lk(θ)

〉
L2(−τ,0)

KX̂(s) and XN(s) =
[
χ0(s) · · · χN(s)

]>
.
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Consequently, defining ĨN = diag
({

1√
2k+1

}
k∈[0,N ]

)
, we get that:

∀s ∈ C̄+\{0}, VN(s) = sĨ−1
N XN(s).

There is also another definition for XN , coming from the following integration by
part for k ∈ [0, N ] and using (E.3):

∀s ∈ C̄+\{0}, χk(s) =
∫ 0

−τ
eθsLk(θ)dθ KX̂(s) =

([
eθs

s
Lk(θ)

]0
−τ
− 1
s

∫ 0

−τ
eθs d

dθ
Lk(θ)dθ

)
= s−1

(
1− (−1)ke−τs

)
KX̂(s)− 1

τs

k−1∑
i=0

`ikχi(s).

Gathering all these results leads to the following formulation for the block diagram
in Figure 4.1:

∀s ∈ C̄+\{0},

 ω̂N(s)− ˆ̄ωN(s) = ∇N(s)ẑN(s),

EN
(
ẑN(s)− ˆ̄zN(s)

)
= AN ω̂N(s),

where

zN(t) =


z⊕(t)

KẊ(t)

ẊN−1(t)

 , ωN(t) =


ω⊕(t)

VN(t)

XN−1(t)

 ,
∇N(s) = diag

(
∇⊕(s), δN(s), s−1IN

)
,

(4.37)

and with

EN =



E⊕ 0

−K 0 0

0 1N −1̄N
0 0 0

1 0

0 0

0 IN


, AN =



A⊕ 0

0
0 0

ĨN LN

ĨN(1 :N, :) 0


, (4.38)

and

LN = 1
τ

[`ik]i∈[0,N ],k∈[0,N−1] ,

1N =
[
1 · · · 1

]>
∈ RN+1, 1̄N =

[
(−1)0 · · · (−1)k · · · (−1)N

]>
∈ RN+1.

The zeros in the previous matrices refer to the null matrices of appropriate dimensions.
We obtain the following theorem which gives a sufficient condition for the wellposedness
of Σ(EN ,AN ,∇N).
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Theorem 4.6: Extended Quadratic Separation stability test

Let N ∈ N and assume det(A+BK) 6= 0 with τ, c0 > 0 given and fixed. If there
exist PN =

[
P11 P12
P>12 P22

]
∈ Sn+N

+ and Q,R, S ∈ R+ such that

[
EN −AN

]⊥>
ΘN

[
EN −AN

]⊥
� 0 (4.39)

holds for ΘN =
[

ΘN,1 ΘN,2
Θ>N,2 ΘN,3

]
where

ΘN,1 =diag
(
0n,−Q,R 1

1−α ,−τ
2S, 0N

)
,

ΘN,3 =diag (0n, Q,R, S ⊗ IN+1, 0N) ,

ΘN,2 =



−P11 0 0 0 −P12

0 0 0 0 0

0 0 −R(1− α) 0 0

0 0 0 0 0

−P>12 0 0 0 −P22


,

(4.40)

then system (4.1) is input/output stable.

Proof : The proof is a consequence of Theorem 4.2. We need then to show that the
following inequality holds:

∀s ∈ C̄+\{0}, ΞN(s) =

In+N+3

∇N(s)


∗

ΘN

In+N+3

∇N(s)

 � 0.

Define the following variable:

Ξ̄N(s) =


In 0n,3 0n,N

0N,n 0N,3 IN

03,n I3 03,N

ΞN(s)


In 0n,3 0n,N

0N,n 0N,3 IN

03,n I3 03,N


>

,

then Ξ̄N(s) � 0 is equivalent to ΞN(s) � 0. Expending Ξ̄N leads to:

Ξ̄N(s) = diag
(
−2PNRe(s−1), Q

(
|e−τs|2 − 1

)
, Rδ−1(s), S

(
|δN(s)|2 − τ 2

))
.

Applying Proposition 4.5 and Lemma 4.1, we then get ΞN(s) � 0 for s ∈ C̄+\{0}. To-
gether with (4.39), we get that Σ(EN ,AN ,∇N) is wellposed. Since EN is non-singular,
Σ(EN ,AN ,∇N) is an extension of Σ(E⊕,A⊕,∇⊕) (as defined in Definition 4.4). Then
Theorem 4.3 states that Σ(E⊕,A⊕,∇⊕) is wellposed. Proposition 4.4 yields that sys-
tem (4.1) is input/output stable. ♦
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Remark 4.11

Note that setting N = 0 in Theorem 4.6 resumes to Theorem 4.5.

Remark 4.12: On the number of decision variables

The number of decision variables for this extended theorem is (n+N)2+n+N
2 + 3.

Increasing the order implies a quadratic increase in the number of decision vari-
ables. Traditional semi-definite algorithm can handle problems with up to 3000
decision variables in less than 30s on an Intel Core i7 processor. Consequently,
for a small system (n = 20), the maximum order N is around 50, but for a larger
system (n = 75), we cannot solve the problem with N ≥ 0 in less than 30s,
meaning that increasing the size of the system is a critical issue.

4.4 Numerical examples & discussion
In this section, we study the stability of three systems with different characteristics.
The aim is to show that the techniques developed along this chapter can handle a large
variety of problems with a relatively good accuracy. We used the software Yalmip [100]
to formulate Semi-Definite Problems (SDP) and the algorithm used for the resolution
is SDPT-3 [161].

4.4.1 A and A+BK Hurwitz with ‖H‖∞ < 1
The first case is the same as (4.15). Consequently, the Small-Gain Theorem 4.1 applies
and gave the stability chart displayed in Figure 4.2. The Quadratic Separation method-
ology also applies, leading to Figure 4.5. This figure has been obtained considering a
griding and evaluating LMI (4.39) at each point. The color of each area corresponds to
the lowest feasible order.

We can clearly see that the detected stability area is larger than the one detected
by Theorem 4.1. Indeed, using the Small-Gain Theorem, we get the stability for α <
0.0244. This is quite normal since Quadratic Separation can be viewed as an extension
of the Small-Gain Theorem. Nevertheless, even at order 3, there is a gap between
the estimated stable area and the exact stable area given by CTCR, meaning that
some stable areas are not detected. It seems that no matter the order, there will
be a difference between the exact stable area and the estimated one using Quadratic
Separation. Denoting by Si the stable area at an order i ∈ N, the following holds for
this example: Si ⊆ Si+1.

4.4.2 A not Hurwtiz but A+BK Hurwitz
This second example is defined as follows:

A =

−1 0

0 0

 , B =

0

1

 , and K =
[
0 −5

]
. (4.41)
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Figure 4.5: Stability chart for (4.15). The hatched area is unstable according to the
CTCR algorithm presented in Section 4.1.3, while Theorem 4.6 gives that the colored
area is stable. The areas marked as Si are stable areas up to an order i.

Note that the open-loop system is not stable but the closed loop is. Consequently, the
Small-Gain Theorem cannot apply. The results of Theorem 4.6 obtained for N = 0 up
to N = 5 are drawn in Figure 4.6. We can see that there is no more improvement when
increasing the order. Compared to the unstable area detected by CTCR, the estimated
stability area is then not very accurate, even at high order. This might be due to the
estimation of δ(s) done in Proposition 4.5 which is not optimal.

4.4.3 A and A+BK are not Hurwitz

This second example is borrowed from [5] where

A =

 0 1

−2 0.1

 , B =

0

1

 , K =
[
1 0

]
. (4.42)

This system is very special as neither A nor A+BK are Hurwitz, meaning that the
open and closed-loop systems are both unstable. This case corresponds to Scenario 2
in the previous chapter. Nevertheless, there does exist a stable area for the intercon-
nected system (3.8). This area is a pocket that cannot be detected by the Small-Gain
theorem. However, the Quadratic Separation framework provides an inner-estimation
of the stable area for an order N ≥ 1 as we can see in Figure 4.7. Furthermore, two
main observations can be made.
First, the estimation at α = 0 is close the exact stable area. That means the behavior
of the wave around α = 0 is well captured using Quadratic Separation. For this case,
we get a time-delay system and, consequently, using techniques coming from the anal-
ysis of such systems, should indeed catch the correct behavior when the interconnected
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Figure 4.6: Stability chart for (4.41). The hatched area is unstable according to the
CTCR algorithm presented in Section 4.1.3, while Theorem 4.6 gives that the colored
area is stable. The areas marked as Si are stable areas up to an order i.

system (3.8) is close to be a time-delay system.
The other observation is less understood. It seems that for α > 0.35, LMI (4.39) is
unfeasible. That means there is an upper-bound for α beyond which the Quadratic
Separation methodology cannot apply in the way we derived it. This problem is further
analyzed in the discussion part.

4.4.4 An example with stability pockets

For this last example, the system is taken from [67, 145]2. It is known to possess multiple
stable intervals (pockets) along the delay axis for α = 0. We investigate whether or not
QS can detect these pockets. The system matrices are given by:

A =



0 0 1 0

0 0 0 1

−11 10 0 0

5 −15 0 −0.25


, B =



0

0

1

0


, K =



1

0

0

0



>

. (4.43)

This example is a very good benchmark since the stability area is not so simple. Fig-
ure 4.8 represents the estimated and exact stable areas up to an order 7. We can clearly
see that increasing the order helps reaching higher stable values of c−1. Nevertheless,
the further we are from α = 0, the worse the estimation is.

2In [67], it is said that this state-space representation models a chatter machinery for α = 0. More
information can be found in the given reference.
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Figure 4.7: Stability chart for (4.42). The hatched area is unstable according to the
CTCR algorithm presented in Section 4.1.3, while Theorem 4.6 gives that the colored
area is stable. The areas marked as Si are stable areas up to an order i.
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Figure 4.8: Stability chart for (4.43). The hatched area is unstable according to the
CTCR algorithm presented in Section 4.1.3, while Theorem 4.6 gives that the colored
area is stable. The areas marked as Si are stable areas up to an order i.
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4.4.5 Discussion
Before closing this chapter, we provide a short discussion about some points raised
when analyzing the examples. First of all, we can note that the three approaches are
coherent one with the others. We indeed get a more conservative result using the
Small-Gain theorem. As the order increases, Quadratic Separation gives better result
than the Small-Gain but remains quite conservative and far from the exact stable area.
Moreover, it seems that when c−1 increases, we need a higher order N to ensure its
stability using Quadratic Separation. A higher c−1 means a smaller speed c, it is indeed
much harder to state the stability of the interconnected system if the wave is slow
because it may induce instabilities [116].

One could argue the benefit of using Quadratic Separation for many reasons:

1. CTCR and the Small-Gain theorems provides a simple and fast test for ensuring
the stability;

2. The CTCR algorithm gives the exact stable area, and this, much faster;

3. Quadratic Separation seems also quite conservative.

These three arguments are indeed true but we can try to answer each of them. First
of all, the fastest test is the Small-Gain theorem. It indeed provides a straightforward
expression and enables a global analysis as demonstrated by Proposition 4.2. CTCR is
not that fast and requires many symbolic calculations before reaching the conclusion.
In this sense, it is also subject to uncertainties when finding roots of polynomials. It
is consequently more and more difficult to use this stability test as the order n of the
system increases. This is not always the case for Quadratic Separation because it can
handle quite large systems for a small order N . Moreover, the CTCR algorithm applies
for system (3.8) but if we use other boundary conditions, the algorithm may not be
applicable and consequently, this is a problem-dependent solution while Quadratic Sep-
aration and the Small-Gain Theorem applies whatever the linear boundary condition
used.
Secondly, as noticed previously, the CTCR algorithm does not provide the exact sta-
ble areas since it might be subject to rounding errors. Moreover, plotting the chart
sometimes requires a sharp griding along α. Indeed, we may miss a pole-crossing if
the griding is rude and then the stability chart is wrong. This issue is not encountered
using Quadratic Separation since it is evaluated at each point3. Moreover, it is possible
to extend the stability test obtained with Quadratic Separation to get a robust result
and then to prevent the errors encountered when griding.
Finally, it seems that Theorem 4.6 is quite conservative. We were expecting that when
N goes to infinity, the exact stability area would be recovered, meaning an asymptoti-
cally exact estimation. This is not true but we can make the following claim.

Conjecture 4.1: Another state extension

The state extension used here only takes into account the forward part of the
wave equation. Indeed, equation (4.2) shows that the wave is the sum of two

3Note that we may miss unstable areas if we use a rude griding.
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Figure 4.9: Block diagram of system (4.1) expressed with the delay operator only and
where r̂ is the input and ŷ = KX̂, the output.

signals, and considering W(1, s) means that we only consider the incoming wave
while the contribution of the second wave is not used and described in δ−1(s).
We claim that using the block diagram of Figure 4.9 with the projections of the
two exponential leads to a better stability test, at a price of a higher number of
decision variables.

We did not prove the previous assertion, but we have the intuition that it should
provide a more accurate stability test. Taking the backward wave into account is not
natural in this context but would lead to a better analysis for α > 0 and probably solve
the problem encountered in the second case for α > 0.35.
One last point would be about the hierarchy property. It was not proven that increasing
the order N leads to better results. Nevertheless, according to the results obtained for
time-delay systems using this methodology [145] and the three examples below, we
make this second claim.

Conjecture 4.2: The hierarchy property

Denote by SN the stable estimated area for a given system A,B and K using
Theorem 4.6 at an order N . We then get:

SN ⊆ SN+1.

4.5 Conclusion
In this chapter, we have developed tools to assess the input/output stability of sys-
tem (3.8). Three approaches have been studied: a pole-crossing approach, a Small-Gain
theorem and finally, a Quadratic Separation formulation. These three theorems provide
numerically tractable stability tests and can handle different problems.
The first technique used relies on the number of unstable poles at each speed c of the
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wave. This methodology is very efficient and proposes an exact stability test. Nev-
ertheless, it is hard to extend this approach to other systems and it is not robust to
parameter uncertainties.
The second stability test is very easy to compute numerically, provides a robust stabil-
ity test with many practical consequences. However, it is very conservative and can be
applied in very few cases.
The last result is coming from robust analysis and extends the Small-Gain approach in
order to reduce the conservatism but keeping its robustness property. This approach
leads to an LMI test which requires a semi-definite solver. The use of Bessel inequality
helps getting less conservative results. Then, this extension can be seen as an improve-
ment of Jensen inequality.

Nevertheless, it has to be noted that the robust stability tools did not provide
asymptotic convergence to the exact stability test. The following chapter uses similar
extensions but inside a Lyapunov framework to try to get a better estimate of the stable
area.



5
Lyapunov stability analysis of a coupled
ODE/boundary-damped string equation

The previous chapter was dedicated to the input/output stability analysis of coupled
system (3.8). A complementary approach relies on the Lyapunov theory. This theory
takes its fundamentals in the thesis of Aleksandr Mikhailovich Lyapunov [103], and is
closely related to the decrease of energy of a system. This methodology applies very
well in our context since the semi-group theory (as detailed in Section 3.1.2) requires
some inequalities which are also used in the Lyapunov methodology.

The system under study is the same as (3.1) and it is reminded below for clarity:

Ẋ(t) = AX(t) +Bu(1, t), t ≥ 0, (5.1a)
utt(x, t) = c2uxx(x, t), x ∈ [0, 1], t ≥ 0, (5.1b)
u(0, t) = KX(t), t ≥ 0, (5.1c)
ux(1, t) = −c0ut(1, t), t ≥ 0, (5.1d)

where c and c0 are given and fied, with initial conditions:

u(x, 0) = u0(x), x ∈ [0, 1], (5.2a)
ut(x, 0) = v0(x), x ∈ [0, 1], (5.2b)
X(0) = X0, (5.2c)

where u0(0) = KX0, v0(0) = K(A + BK)X0 and u0
x(1) = −c0v

0(1) such that
(u0, v0, X0) belongs to the domain of the operator as defined in Chapter 3.

This chapter firstly introduces the theory of Lyapunov adapted to an infinite-
dimensional context. The first section is devoted to a literature review with some basic
definitions and useful properties for the sequel. Then, we do a preliminary analysis of
system (5.2). The problem is divided into two subproblems for which the Lyapunov
theory has already been derived. A simple Lyapunov functional is proposed and some
examples are investigated. This approach is then extended in the third part where the
projection methodology is explained. That leads to an extended stability theorem and
a corollary about robust stability is also proposed. Finally, some numerical examples
conclude this chapter and open problems are discussed.
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5.1 An introduction to Lyapunov stability theory
One of the theoretical tools to assess stability of a system is related to the application
of the Lyapunov theorem. It consists in looking for a kind of energy function that
has particular properties. The meaning of this function is examined after providing its
definition, adapted to our infinite-dimensional context.

Definition 5.1: Lyapunov functional [138, Definition 8.1]

A function V : D(A )→ R+ is a Lyapunov functional for system (5.2) if there
exist ε1, ε2, ε3 > 0 and µ ≥ 0 such that the following holds:

ε1‖(X, u, v)‖2
D(A ) ≤ V (X, u, v) ≤ ε2‖(X, u, v)‖2

D(A ), (5.3a)〈
∇V (X, u, ut), A

[
X
u
ut

]〉
Rn×X

+ 2µV (X, u, ut) ≤ −ε3‖(X, u, ut)‖2
D(A ), (5.3b)

where ∇V (X, u, ut) = col (∂XV (X, u, ut), ∂uV (X, u, ut), ∂utV (X, u, ut)).

Remark 5.1

Usually, we choose V as an integral-quadratic functional since it verifies easily
the first inequality and the second one can be bounded by a quadratic term.

Before stating the main theorems of the chapter, let interpret the two inequalities
(5.3). First, (5.3a) means that

√
V is an equivalent norm to ‖ · ‖Rn×X. Since all the

norms are not equivalent in infinite dimension, this inequality is required. Note that
the existence of ε1 > 0 implies that V is positive and ε2 ensures its definitiveness.

The second equation (5.3b) with µ = 0 can be understood as the time derivation
of t 7→ V (X(t), u(t), v(t)) to be strictly negative, meaning that this function is strictly
decreasing along time. Of course, this second statement is close to the notion of dissi-
pative system explored in Section 3.1.2. If µ > 0, since V is positive (due to (5.3a)), we
require V to decrease with a given decay-rate. This will be clarified by the following
proposition where the existence of a Lyapunov functional is related to the exponential
stability.

Proposition 5.1: [19, Theorem 1]

If there exists a Lyapunov functional for system (5.2), then the origin of D(A )
is exponentially stable in the sense of ‖ · ‖D(A ) with a decay-rate of at least µ.

Proof : Since D(A ) ⊂ Rn×X, we can use the canonical scalar product on Rn×X.
If V is a Lyapunov functional for system (5.2), then the following holds for t ≥ 0:

d

dt
(V (X(t), u(t), ut(t)) =

〈
∇V (X(t), u(t), ut(t)),

d

dt

[
X(t)
u(t)
ut(t)

]〉
Rn×X

≤ −2µV (X(t), u(t), ut(t))− ε3‖(X(t), u(t), ut(t))‖2
D(A )

≤ −
(
µ+ ε3

ε2

)
V (X(t), u(t), ut(t)).
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Written differently, we get:
d

dt

(
V (X(t), u(t), ut(t))e

(
2µ+ ε3

ε2

)
t
)
≤ 0.

Integrating the previous expression leads to:

∀t ≥ 0, V (X(t), u(t), ut(t)) ≤ V (X0, u0, v0)e−
(

2µ+ ε3
ε2

)
t
,

or, more conveniently,

∀t ≥ 0, ‖(X(t), u(t), ut(t))‖D(A ) ≤
√
ε2

ε1
‖(X0, u0, v0)‖D(A ) exp

(
−
(
µ+ ε3

2ε2

)
t
)
,

which is the definition of exponential stability with decay-rate of at least µ (see Defini-
tion 3.7). ♦

Remark 5.2: Asymptotic convergence

The second inequality in Definition 5.1 is the key point for proving exponential
stability as shown in the previous proof. To prove asymptotic stability, one can
set µ = ε3 = 0 and use LaSalle Invariance Principle [138, Theorem 8.4]. This
requires far more care for infinite-dimensional systems.

The previous proposition shows that the existence of a Lyapunov functional implies
exponential stability. For linear time-invariant finite-dimensional systems, there is an
equivalence between the two statements1 and the Lyapunov function is quadratic. This
special form makes it very easy to solve using semi-definite programming.

For time-delay systems, such an equivalence also exists as shown in [48, 78, 85] and
the Lyapunov functional is integral quadratic (see [67, Theorem 5.18] for instance).
The interested reader can refer to the works [61, 67, 145] which provides Lyapunov
functionals for time-delay systems.

Since time-delay systems are a special class of coupled ODE/transport equation,
there is some hope to get the equivalence between the existence of a Lyapunov functional
and the exponential stability of (5.2). This has been indeed done by Richard Datko
first in [46] and then enriched in [47]. This result has been adapted to our problem in
the following theorem.

Theorem 5.1: [47]

System (5.2) is exponentially stable if and only if there exists a Lyapunov func-
tional for this system.

The main consequence of this latter theorem is the versatility of the Lyapunov the-
ory. Indeed, that means there exists a Lyapunov function if the system is exponentially
stable. Nevertheless, this functional might not be explicit and therefore, may not be
quadratic. The aim of the following parts is to propose a quadratic Lyapunov functional
which is close to the “ideal” functional but leading to a numerically tractable stability
conditions, in terms of LMIs for instance.

1This has been proved in many books, see [84, Theorem 4.6] for instance.
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5.2 Preliminary stability analysis

As in the finite-dimensional case, finding a Lyapunov functional for a coupled ODE/PDE
system is not easy. Indeed, since the two subsystems are of different nature, it is quite
difficult to propose a Lyapunov functional taking into account the specificity of each
subsystem. Traditionally, we define a Lyapunov function VODE for the ODE part and a
functional VPDE for the infinite-dimensional part as done in [55, 89, 154]. The natural
and first idea to build a Lyapunov functional V for the whole system is to sum up of
VODE and VPDE as we will do in the following subsection.

Remark 5.3: Global exponential stability

As stated in Proposition 3.3, global exponential stability can be achieved if there
is a unique equilibrium point. We therefore assume that A+BK is non singular.

5.2.1 A Lyapunov functional for the wave equation

The PDE considered in system (5.2) is of second order in time. As we want to use some
tools already designed for first order hyperbolic systems, we propose to define some new
states using modified Riemann coordinates, which satisfy a set of coupled first order
hyperbolic PDEs. Let us introduce these coordinates, defined as follows:

χ(x, t) =

 ut(x, t) + cux(x, t)

ut(1− x, t)− cux(1− x, t)

 =

χ+(x, t)

χ−(x, t)

 .
The introduction of such variables is not new and the reader can refer to the articles

[28, 124] or the books [20, 40] and references therein about Riemann invariants. χ+ ∈ L2

and χ− ∈ L2 are related the eigenfunctions of the wave operator associated to the
eigenvalue c. Using this new coordinate system, the wave equation itself rewrites as:

∀t ≥ 0, ∀x ∈ [0, 1], χt(x, t) = cχx(x, t), (5.4)

with the adequate boundary conditions.

Remark 5.4

The norm of the modified state χ can be directly related to the norm of the
functions ut and ux. Indeed simple calculations and a change of variables give:

‖χ‖2
L2 = 2

(
‖ut‖2

L2 + c2‖ux‖2
L2

)
. (5.5)

If u(0, t) = 0, using Proposition E.6 and the previous equality lead to:

1
2

(
1 + 2

c2

)
‖χ‖2

L2 ≥ ‖ut‖2
L2 + c2‖ux‖2

L2 + ‖u‖2
L2 . (5.6)



5.2. PRELIMINARY STABILITY ANALYSIS 61

Since the variable χ is the solution of a transport equation, the following Lyapunov
functional candidate is proposed:

VPDE(χ) =
∫ 1

0
χ>(x) (S + xR)χ(x)dx, (5.7)

where S,R ∈ S2
++. This functional is an enhancement of the one proposed in [20, 39, 40]

and has been proposed in [132].

Remark 5.5

In [20, 40], the authors did not introduce the exact same Lyapunov functional
but the following one:

VBastin(χ) =
∫ 1

0
χ>(x)χ(x)e− δxc dx

for δ > 0. That leads to similar results but it is easier in the sequel to use an
affine term. In [133] for instance, the authors use a combination of both terms.

The following proposition is an adaption of [16, Theorem 1 and Corollary 2].

Proposition 5.2

Let c, c0 > 0. Then, the following system

utt(x, t) = c2uxx(x, t), x ∈ [0, 1], t ≥ 0, (5.8a)
u(0, t) = 0, t ≥ 0, (5.8b)
ux(1, t) = −c0ut(1, t), t ≥ 0, (5.8c)u(x, 0)

ut(x, 0)

 =

u0(x)

v0(x)

 , x ∈ [0, 1], (5.8d)

where (u0, v0) ∈ H2 ×H1 such that they verify (5.8c) is exponentially stable.

Proof : The existence of a solution to system (5.8) has been studied in [39, 66] for
instance. It has been proved that (u, ut) belongs to C1(0,+∞,X). We are interested
here in the stability analysis only.

Since c0 > 0, there exist S1, S2 > 0 such that the following holds:

S2 < S1 and S1(1− cc0)2 < S2(1 + cc0)2. (5.9)

Indeed, the previous conditions rewrite as S2 < S1 < α−2S2 where α = 1−cc0
1+cc0

. The
existence of S1 and S2 is equivalent to α < 1, which is the case if and only if cc0 > 0.
Let now S,R ∈ S2

++ verifying S �
[
S1 0
0 S2

]
� S + R. We want to show that VPDE is a

Lyapunov functional for system (5.8). To this extend, we desire to apply Proposition 5.1
and we are therefore looking for the existence of ε1, ε2 and ε3 > 0 such that (5.3) holds
with µ = 0.
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Existence of ε1 and ε2: Since S,R ∈ S2
++, that means there exists ε1 and ε2 such

that for x ∈ [0, 1]:

ε1

2

(
1 + 2

c2

)
I2 � S � S + xR � S +R � ε2

2 I2.

Consequently, using (5.6), the following inequality on VPDE holds:

VPDE(χ(·, t)) ≥ ε1

2

(
1 + 2

c2

)
‖χ‖2

L2 ≥ ε1
(
‖u‖2

L2 + c2‖ux‖2
L2 + ‖ut‖2

L2

)
.

Similarly, we get:

VPDE(χ(·, t)) ≤ ε2
(
‖ut‖2

L2 + c2‖ux‖2
L2

)
≤ ε2

(
‖u‖2

L2 + c2‖ux‖2 + ‖ut‖2
L2

)
.

Existence of ε3: Taking the time-derivative of VPDE leads to:

V̇PDE(χ(·, t)) = 2
∫ 1

0
χ>t (x, t)(S + xR)χ(x, t) = 2c

∫ 1

0
χ>x (x, t)(S + xR)χ(x, t)dx

= 2c
([
χ>(x, t)(S + xR)χ(x, t)

]1
0
− 〈χ(·, t), Rχ(·, t)〉L2

)
−V̇PDE(χ(·, t)).

In other words, we get:

V̇PDE(χ(·, t)) = c
(
‖χ(1, t)‖2

S+R − ‖χ(0, t)‖2
S − 〈χ(·, t), Rχ(·, t)〉L2

)
. (5.10)

Since R � 0, there exists ε3 > 0 and small enough such that R � ε3
2c

(
1 + 2

c2

)
I2. This

inequality together with (5.6) lead to:

V̇PDE(χ(·, t)) ≤ c
(
‖χ(1, t)‖2

S+R − ‖χ(0, t)‖2
S

)
− ε3

2

(
1 + 2

c2

)
‖χ(·, t)‖2

L2

≤ c
(
‖χ(1, t)‖2

S+R − ‖χ(0, t)‖2
S

)
− ε3

(
‖ut‖2

L2 + ‖u‖2
L2 + c2‖ux‖2

L2

)
.

Using the previous inequality, but replacing χ(1, t) and χ(0, t) by their expression leads
to:

‖χ(1, t)‖2
S+R ≤ S1(ut(1, t) + cux(1, t))2 + S2(ut(0, t)− cux(0, t))2

≤ S1(1− cc0)2ut(1, t)2 + S2c
2ux(0, t)2,

‖χ(0, t)‖2
S ≥ S1(ut(0, t) + cux(0, t))2 + S2(ut(1, t)− cux(1, t))2

≥ S1c
2ux(0, t)2 + S2(1 + cc0)2ut(1, t)2.

Finally, we get the following:

V̇PDE(χ(·, t)) ≤ c3(S2 − S1)ux(0, t)2 + c
(
S1(1− cc0)2 − S2(1 + cc0)2

)
ut(1, t)2

−ε3
(
‖ut‖2

L2 + ‖u‖2
L2 + c2‖ux‖2

L2

)
.

Since (5.9) holds, we get:

V̇PDE(χ(·, t)) ≤ −ε3
(
‖ut‖2

L2 + ‖u‖2
L2 + c2‖ux‖2

L2

)
.
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and VPDE is a Lyapunov functional for system (5.8), meaning that it is exponentially
stable. ♦

One could argue about the difficult procedure for proving that system (5.8) is ex-
ponentially stable while doing in a similar way as [40] would lead to easier calculations.
Actually, we tried here to generate the most general structure a Lyapunov functional
candidate can have. Thus, it is possible to adapt the theorem according to the situation,
and possibly get better results. This will become clearer in the sequel. We know, from
pole location arguments [71], that the condition c0 > 0 is equivalent to the exponential
stability of system (5.8). Consequently, we get that system (5.8) is exponentially stable
if and only if there exist S,R ∈ S2

+ such that VPDE is a Lyapunov functional for (5.8).

5.2.2 Lyapunov functional of the coupled system
As said previously, in this section, we provide a first Lyapunov functional candidate
for coupled system (5.2). To do so, we just add a Lyapunov function for the finite-
dimensional part and (5.7). That leads to:

V (X,χ) = VODE(X) + VPDE(χ) = X>PX +
∫ 1

0
χ>(x)(S + xR)χ(x)dx. (5.11)

This functional candidate is not new and it has been used in [55, 154] or [155] for
instance. The following theorem expresses under which condition V is a Lyapunov
functional.

Theorem 5.2: Simple Lyapunov functional

Let c, c0 > 0. If there exist P ∈ Sn++ and R, S ∈ S2
++ such that

Θ = He
(
D>PF

)
+ c

(
H>(S +R)H −G>SG

)
− cR̃ ≺ 0

where

F =
[
In 0n,4

]
, B̃ = 1

2c

[
1 −1

]
,

D =
[
A+BK B̃ 0n,2

]
, R̃ = diag (0n, R, 02) ,

g =

 0 1

1 + cc0 0

 , G =
[
02,n+2 g

]
+

 K
01,n

D,
h =

1− cc0 0

0 −1

 , H =
[
02,n+2 h

]
+

01,n

K

D.
then V with the parameters P, S and R is a Lyapunov functional for system (5.2).

Proof : The proof follows the same line as in the proof of Proposition 5.2 and is
very similar to the proof of [19, Theorem 1]. We want to apply Proposition 5.1 and we
are therefore looking for the existence of ε1, ε2 and ε3 > 0 such that (5.3) holds with
µ = 0.
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Existence of ε1: Since P, S,R ∈ S+, there there exists ε1 such that:

P � ε1In + 2K>K, S + xR � ε1

2

(
1 + 2

c2

)
I2.

These inequalities lead to:

V (X,χ) ≥ ε1

(
‖X‖2

Rn + |KX|2 + 1
2

(
1 + 2

c2

)
‖χ‖2

L2

)
≥ ε1‖(X, u, ut)‖2

D(A ) + ε1
(
2‖ux‖2

L2 + 2|u(0)|2 − ‖u‖2
L2

)
.

where we recall that u(0) = KX. Applying Proposition E.6 ensures that the last term
is positive and concludes on the existence of ε1.

Existence of ε2: This is the same reasoning as in the previous proof with P ≤ ε2In
for ε2 > 0 and it is therefore omitted.

Existence of ε3: First of all, note that:

V̇ (X(t), χ(·, t)) = He
(
Ẋ>(t)PX(t)

)
+ V̇PDE(χ(·, t))

We start by rewriting the ODE in a more convenient form, similarly to what has
been done in the proof of Theorem 3.1:

Ẋ(t) = AX(t) +Bu(1, t) = (A+BK)X(t) +B
∫ 1

0
u(x, t)dx

= (A+BK)X(t) + 1
2cB

(∫ 1

0
χ+(x, t)dx−

∫ 1

0
χ−(x, t)dx

)
= (A+BK)X(t) + B̃X(t),

where X(t) =
∫ 1

0 χ(x, t)dx. We introduce the following extended state:

ξ(t) = col (X(t), X(t), ut(1, t), ux(0, t)) .

Note then that X(t) = Dξ(t), Ẋ(t) = Dξ(t), χ(0, t) = Gξ(t) and χ(1, t) = Hξ(t),
where the matrices are defined in the statement of this theorem. Using equation (5.10),
we get:

V̇ (X(t), χ(·, t)) = ξ>(t)
{

He
(
D>PF

)
+ c

(
H>(S +R)H − cG>SG

)}
ξ(t)

−c〈χ(·, t), Rχ(·, t)〉L2

= ξ>(t)Θ ξ(t) + cX>(t)RX(t)−
∫ 1

0
χ>(x, t)Rχ(x, t)dx,

Since R � 0 and Θ ≺ 0, there exists a small enough ε3 > 0 such that:

R � ε3

2c
2 + c2

c2 I2, Θ � −ε3 diag
(
In + 2K>K, 2 + c2

2c2 I2, 02

)
.
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Using Jensen inequality (see Proposition E.3), we get the following bound on the deriva-
tive of the functional along the trajectories of (5.2):

V̇ (X(t), χ(·, t)) ≤ −ε3

(
‖X(t)‖2

Rn + 2|u(0, t)|2 + 2 + c2

2c2 ‖χ(·, t)‖2
L2

)

+cX>(t)
(
R− ε3

2c
2 + c2

c2 I2

)
X(t)

−c
∫ 1

0
χ>(x, t)

(
R− ε3

2c
2 + c2

c2 I2

)
χ(x, t)dx

≤ −ε3

(
‖X(t)‖2

Rn + 2|u(0, t)|2 + 2 + c2

2c2 ‖χ(·, t)‖2
L2

)
.

(5.12)

Using now Proposition E.6 in (5.12) and following a similar proof than for Proposi-
tion 5.2, one obtains that:

V̇ (X(t), χ(·, t)) ≤ −ε3‖(X, u, ut)‖2
D(A ).

Then V is a Lyapunov functional for system (5.2). ♦

Remark 5.6: Necessary for Theorem 5.2

• Assume Theorem 5.2 holds, then Θ ≺ 0. Consequently, F>ΘF must be
definite positive. That leads to:

(A+BK)>P + P (A+BK) + c(A+BK)>K>RK(A+BK) ≺ 0,

which imposes A+BK to be Hurwitz.

• In the case of cascaded system (B = 0 or K = 0), the previous remark
implies that A must be Hurwitz.

• Similarly to the previous remark, a necessary condition for Θ ≺ 0 is
[02,n+2 I2] Θ [02,n+2 I2]> ≺ 0. This leads to h>(S + R)h − g>Sg ≺ 0, and
there exist positive definite matrices R and S in S2

++ verifying this latter
condition if and only if c0 > 0. In other words, the PDE must be stable.

Remark 5.7: Special case of fast string equation

The Lyapunov functional used here is the same than in [35]. In this paper, the
authors proved that for c sufficiently large and A + BK Hurwitz, there exist
parameters P, S and R such that V is a Lyapunov functional and the coupled
system is then exponentially stable. This is indeed verified in the examples of the
following section.

As noted in the second chapter, we introduce here a short discussion about cascaded
and coupled systems2. The Lyapunov functional derived here is interesting for cascaded
systems. Indeed, a cascade means that one subsystem - the wave equation or the ODE

2See Figure 3.2 for a reminder of these notions.
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- influences the other but the reverse is not true. It means that, in system (5.2), either
B or K is set to zero.

The case K = 0 implies that the PDE generates a perturbation for the ODE. Since
c0 > 0, the wave itself is exponentially stable and the resulted perturbation is going
exponentially to 0. The ODE will not be affected by this perturbation as long as it
is exponentially stable, which is the case if A is Hurwitz. This is the input to state
stability property of the ODE.

The other case B = 0 implies that the ODE generates a perturbation which feeds the
wave and consequently, we want to know if the PDE is impacted by this perturbation.
Since there is no feedback, the ODE must be stable. In other words, we want the wave
to be input to state stable3. with respect to a perturbation generated by a linear ODE.

The interesting case arises when the system is coupled. Since the wave must be
damped for the theorem to hold, if A+BK is Hurwitz, then it might exist a solution.
Note that when c → ∞, the wave has a very fast dynamic4 and can then be approxi-
mated by the identity operator. Consequently, assuming A+BK Hurwitz means that
for high speed damped waves, the coupled system is stable. Even if A is not Hurwitz,
the coupling might enforce stability of the overall system as noted in Remark 5.7. This
feature will be illustrated in the following subsection.

5.2.3 Numerical results
This subsection follows the same line as Section 4.4. The stability analysis of three
systems is conducted using Theorem 5.2.

A and A+BK Hurwitz with ‖H‖∞ < 1

This example is the same as in the previous chapter:

A =

−2 1

0 −1

 , B =

1

1

 , and K =
[
0 −20

21

]
. (5.13)

The stability chart obtained using Theorem 5.2 is shown in Figure 5.1a. As a
comparison, the Small Gain theorem stated that the system is guaranteed to be stable
for α < 0.0224. The result here is totally different since the stable area detected by the
Small Gain theorem is not part of the new detected stability area. We note that for
high speed, we get a relatively accurate estimation of the stability area.

A not Hurwitz but A+BK Hurwitz

We propose here to consider system (5.2) with the following matrices:

A =

−1 0

0 0

 , B =

0

1

 , and K =
[
0 −5

]
. (5.14)

3See [152, 153] for more information about input to state stability.
4Indeed, |α| =

∣∣∣ 1−cc0
1+cc0

∣∣∣ −−−→
c→∞

1 and the poles of the wave are going to −∞ as seen in (4.3).
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Figure 5.1: Stability charts of the different systems using Lyapunov functional (5.11).
The hatched area is unstable according to the CTCR algorithm presented in Sec-
tion 4.1.3, while Theorem 5.2 gives that the colored area is stable.

Note that A is not Hurwitz but A + BK is. Theorem 5.2 has been applied to this
system and we obtain the stability chart of Figure 5.1b. We can see that when c is
large (τ is small), system (5.2) is stable as expected.

An example with stability pockets

Let us come back to the example presented in (4.42) with the following matrices:

A =



0 0 1 0

0 0 0 1

−11 10 0 0

5 −15 0 −0.25


, B =



0

0

1

0


, K =



1

0

0

0



>

. (5.15)

As said in the previous chapter, this example is interesting for performing some
benchmarking since its stability chart is not straightforward. We applied Theorem 5.2
on this system and we found the chart in Figure 5.1c. We can see that the stable area
according to Theorem 5.2 is very small compared to the real stable area.

Discussion

The proposed approach based on Lyapunov functional (5.11) gives interesting results.
Indeed, we saw that the Lyapunov theory can apply to coupled systems. Considering the



68 CHAPTER 5. LYAPUNOV STABILITY ANALYSIS

sum of Lyapunov functionals for each subsystem indeed leads to a Lyapunov functional
for system (5.2). Even if it is powerful for assessing the stability of cascaded systems,
it leads to poor results when considering interconnected systems with low speed c. The
next section will provide a functional with an improved stability analysis.

5.3 Extended stability analysis
Considering the Lyapunov functional derived in (5.11) for the overall coupled system
leads to a poor stability analysis since we do not consider interactions between the
subsystems. This interaction can be modeled by cross-terms between the states of the
ODE and the PDE. In this section, we provide an extension to the previous analysis
answering this problem.

5.3.1 The projection methodology seen as a state extension

The methodology given below is described in the context of the stability analysis of
system (5.2). It was originally developed in [145] for time-delay systems but it can
be extended to other systems since the concept is quite general. Nevertheless, the
interpretation given in this subsection is relatively new. It relies on an estimation of
the infinite-dimensional state. First of all, we need to find what we denote by the
“state” of the problem. In [122, 123], the state is defined as the minimal quantity of
information that determines uniquely the system and its future evolution. In our case,
the state would be for t ≥ 0:

X∞(t) =

X(t)

χ(·, t)

 =


X(t)

χ+(·, t)

χ−(·, t)

 ∈ Rn × L2 × L2.

Since X∞(t) belongs to a functional space, it is of infinite dimension. It is then not
possible to apply the techniques developed in the finite-dimensional case. One solution
is then to approximate this state on a finite-dimensional space. To this extend, let
(ek)k∈N be an orthogonal and dense family of L2 and define the following:

χ+
N(x, t) =

N∑
k=0

Ω+
k (t) ek(x)
‖ek‖L2

, Ω+
k (t) =

∫ 1

0
χ+(x, t) ek(x)

‖ek‖L2
dx.

Ω+
k is called the projection coefficient of order k of χ+. Then, the following holds for

t ≥ 0 and x ∈ [0, 1]:

min
y∈Span(ek)k≤N

‖χ+(·, t)− y‖2
L2 = ‖χ+(·, t)− χ+

N(·, t)‖2
L2

= ‖χ+(·, t)‖2
L2 − 2〈χ+(·, t), χ+

N(·, t)〉+ ‖χ+
N(·, t)‖2

L2

= ‖χ+(·, t)‖2
L2 − ‖χ+

N(·, t)‖2
L2 .



5.3. EXTENDED STABILITY ANALYSIS 69

System (5.2) Truncated system (5.2)

State X∞(t) =


X(t)

χ+(·, t)

χ−(·, t)

 XN(t) =



X(t)

〈χ+(·, t), e0〉L2

〈χ−(·, t), e0〉L2

...

〈χ+(·, t), eN〉L2

〈χ−(·, t), eN〉L2


=



X(t)

X0(t)
...

XN(t)



Space Rn × L2 × L2 Rn ×R2(N+1)

Table 5.1: Original and truncated state for system (5.2).

Using Bessel inequality E.4 and Parseval’s identity, we get the two following rela-
tions:

min
y∈Span(ek)k≤N

‖χ+(·, t)− y‖2
L2 ≥ 0, min

y∈Span(ek)k≤N
‖χ+(·, t)− y‖2

L2 −−−→
N→∞

0.

The previous calculations show that χ+
N is the projection of χ+ on the subspace

spanned by the family (ek)k≤N and is consequently the optimal approximation (with
respect to the norm ‖·‖L2) of u on the former family. By doing the same for χ−(·, t), the
previous analysis shows that we can build a truncation XN(t) of X∞(t), which belongs
to the finite-dimensional space Rn ×R2(N+1). Table 5.1 draws a summary of this part.

Note that for R � 0, the following inequality is a consequence of Proposition E.4
applied in this context:∫ 1

0
χ>(x, t)Rχ(x, t)dx ≥

N∑
k=0

1
‖ek‖2

L2
X>k (t)RXk(t), (5.16)

where

Xk(t) =

〈χ+(·, t), ek〉

〈χ−(·, t), ek〉

 .
This study shows that we can build an augmented finite-dimensional system, whose

trajectories will be close in norm to the ones of system (5.2). This augmented system
describes the dynamic of the state X and of the projections coefficients. Consequently,
that leads to the following Lyapunov functional candidate:

VN(X,χ) = X>NPNXN +
∫ 1

0
χ>(x) (S + xR)χ(x)dx, (5.17)

where PN ∈ Sn+2(N+1) and S,R ∈ S2. This new functional is actually made up of three
terms:
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• A quadratic term in X introduced by the ODE;

• A functional VPDE for the stability of the string equation;

• Cross-terms between X0, . . . ,XN and X described by the extended state XN .

Remark 5.8: Projection of a generic Lyapunov functional

It is possible to relate the state extension to the parametrization of the Lyapunov
functional. Inspired from the work of [48, 78, 85] on time-delay systems, we can
propose the following Lyapunov functional candidate of the very generic form:

Vc(X,χ) =
∫ 1

0

∫ 1

0

 X

χ(x1)


>  P Q(x2)

Q>(x1) T (x1, x2)


 X

χ(x2)

 dx1dx2 + VPDE(χ),

where P ∈ Sn, Q ∈ L2([0, 1],Rn×2) and T ∈ L2([0, 1]2,S2). Such a Lyapunov
functional has been studied in [131, 132] for coupled ODE/transport equation.
Assuming VN = Vc leads to:

Q(x1) =
N∑
k=0

Qkek(x1), T (x1, x2) =
N∑
k=0

N∑
i=0

Tk,iek(x1)ei(x2),

with Qk ∈ Rn×2 and Tk,i ∈ R2×2, Tk,i = T>i,k and Ti,i ∈ S2. Consequently, using
the functional defined in (5.17), we have:

PN =



P Q0 · · · QN

Q>0 T0,0 · · · T0,N
... ... . . . ...

Q>N TN,0 · · · TN,N


.

We can interpret the state extension as the projection of the operator Q on
the basis {ek}k≤N ; and on the basis {(x1, x2) 7→ ek(x1)ei(x2)}k,i≤N for the other
operator T .

We will show in the following subsection that there exist numerically tractable tests
ensuring that VN is a Lyapunov functional.

5.3.2 Extended Lyapunov stability Theorem

In this subsection, we derive a theorem showing that system (5.2) is exponentially stable
using the projection methodology. We decide to use the basis of Legendre polynomials,
referred to as {Lk}k∈N, as a polynomial basis of L2. This basis is described in Defini-
tion E.1. The choice of this basis will be discussed later on but we can already note
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that it is the unique5 orthogonal polynomial basis of L2 equipped with its canonical
inner-product 〈·, ·〉L2 .

The main theorem of this chapter is written below. This theorem originally comes
from [18, Theorem 1] and is an extension of [19, Theorem 2].

Theorem 5.3: Extended stability analysis of (5.2)

Let N ∈ N and c, c0 > 0. If there exist PN ∈ Sn+2(N+1) and R, S ∈ S2
++ such that ΞN = PN + diag(0n, S, 3S, . . . , (2N + 1)S) � 0,

ΘN = He
(
D>NPNFN

)
+ c

(
H>N(S +R)HN −G>NSGN − R̃N

)
≺ 0,

(5.18)

where

FN =
[
0n+2(N+1),2 In+2(N+1)

]
, DN =

 JN
MN

 ,
JN =

[
0n,2 A+BK B̃ 0n,2N

]
,

MN = c
(
1NHN − 1̄NGN −

[
02(N+1),2+n LN

])
,

B̃ = 1
2c

[
1 −1

]
, R̃N = diag (0n+2, R, 3R · · · , (2N + 1)R) ,

GN =
[
g 02,n+2(N+1)

]
+

 K
01,n

 JN , g =

 0 1

1 + cc0 0

 ,
HN =

[
h 02,n+2(N+1)

]
+

01,n

K

 JN , h =

1− cc0 0

0 −1

 ,
LN = [`ikI2]i,k∈[0,N ] ,

1N = col(I2, . . . , I2) ∈ R2(N+1)×2, 1̄N = col((−1)0I2, . . . , (−1)NI2) ∈ R2(N+1)×2.

Then VN is a Lyapunov functional for system (5.2).

Proof : The proof follows the same line as for Theorem 5.2. We want to apply
Proposition 5.1 and we there need the existence of ε1, ε2 and ε3 > 0 such that (5.3)
holds with µ = 0. The main difference with Theorem 5.2 lies in the use of Bessel
inequality. Based on Proposition E.5, this inequality writes in this context as follows:

N∑
k=0

(2k + 1)X>k RXk ≤
∫ 1

0
χ>(x)Rχ(x)dx, (5.19)

where R ∈ S2
++.

Existence of ε1: The proof of existence of ε1 > 0 is modified compared to the
previous theorem since we do not require PN to be definite positive now. This relaxed

5up to a normalization coefficient.
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condition first appears in [67, 145] and starts by writing the following:

VN(X,χ) ≥ X>NΞNXN −
N∑
k=0

(2k + 1)X>k SXk +
∫ 1

0
χ>(x)Sχ(x)dx. (5.20)

Since ΞN � 0, there exists ε1 > 0 such that the following holds:

ΞN � ε1
(
diag(In, 02(N+1)) + δ diag(0n, I2(N+1))

)
,

where δ = 1
2

(
1 + 2

c2

)
. Plugged into (5.20), it leads to:

VN(X,χ) ≥ ε1‖X‖2
Rn −

N∑
k=0

(2k + 1)X>k (S − ε1δI2)Xk

+
∫ 1

0
χ>(x)(S − ε1δI2)χ(x)dx+ ε1δ‖χ‖2

L2 .

Since S � 0, for ε1 sufficiently small, we get S−ε1δI2 � 0 and then, applying (5.19)
leads to:

VN(X,χ) ≥ ε1
(
‖X‖2

Rn + δ‖χ‖2
L2

)
.

Using (5.5) and Proposition E.6 leads to VN(XN , χ) ≥ ε1‖(X, u, ut)‖2
D(A ).

Existence of ε2: This part is the same as previously and is therefore omitted.
Existence of ε3: First note that the time-derivation of VN along the trajectories

of (5.2) leads to:
d

dt
VN(X(t), χ(·, t)) = He

(
Ẋ>N(t)PNXN(t)

)
+ V̇PDE(χ).

From equation (5.10), we get:

d

dt
VN(X(t), χ(·, t)) = He

(
Ẋ>N(t)PNXN(t)

)
+ c

(
χ(1, t)> (S +R)χ(1, t)

−χ(0, t)>Sχ(0, t)− 〈χ(·, t), Rχ(·, t)〉L2

)
. (5.21)

Let us introduce the following extended state variable:

ξN(t) = col (ut(1, t), ux(0, t), X(t),X0(t), . . . ,XN(t)) , (5.22)

Using Lemma C.1, we get that:

d

dt

[
X0
...

XN

]
= MNξN ,

hence, noting that Ẋ(t) = JNξN(t), χ(0, t) = HNξN(t) and χ(1, t) = GNξN(t), equa-
tion (5.21) rewrites as:

V̇N(X(t), χ(·, t)) = ξ>N(t)
{

He
(
D>NPNFN

)
+ c

(
H>N(S +R)HN − cG>NSGN

)}
ξN(t)

−c〈χ(·, t), Rχ(·, t)〉L2

= ξ>N(t)ΘN ξN(t) + c
N∑
k=0

(2k + 1)X>k (t)RXk(t)

−
∫ 1

0
χ>(x, t)Rχ(x, t)dx.
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Remark 5.9

Notice that X =
∫ 1
0 χ(x, t)dx introduced in the proof of Theorem 5.2 is nothing

more than X0.

Since R � 0 and ΘN ≺ 0, there exists ε3 > 0 such that:

R � ε3

2c

(
1 + 2

c2

)
I2,

ΘN � −ε3 diag
(

02, In + 2K>K, 1
2

(
1 + 2

c2

)
ĨN

)
,

ĨN = diag(I2, 3I2, . . . , (2N + 1)I2).

The previous inequality on V̇N becomes:

V̇N(X(t), χ(·, t)) ≤ −ε3

(
‖X‖2

Rn + 2|u(0, t)|2 + 1
2

(
1 + 2

c2

)
‖χ‖2

L2

)

− c
N∑
k=0

(2k + 1)X>k (t)
(
R− ε3

2c

(
1 + 2

c2

)
I2

)
X>k (t)

+ c
∫ 1

0
χ>(x)

(
R− ε3

2c

(
1 + 2

c2

)
I2

)
χ(x)dx.

We conclude by using (5.19) and Proposition E.6, similarly to what was done in the
proof of Theorem 5.2. ♦

Remark 5.10: Necessary conditions to apply Theorem 5.3

• ΘN ≺ 0 is feasible if the block
[
0n,2 In 0n,2(N+1)

]>
ΘN

[
0n,2 In 0n,2(N+1)

]
is

definite negative. That leads to:

(A+BK)>P + P (A+BK) + c(A+BK)>K>RK(A+BK) +Q ≺ 0,

where P is a positive definite matrix and Q ∈ Sn. In other words, A+BK
must be not singular but since Q is not necessarily positive if N > 0, A+BK
can be not Hurwitz. This case is investigated in the example section.

• Similarly to Theorem 5.2, the first 2 × 2 diagonal block of ΘN must be
definite negative to have ΘN ≺ 0. Simple calculations show that this imply
c0 > 0, and the string equation must be damped.

The previous theorem is interesting because there is a hierarchy property on the
order N . This is discussed in the following subsection.

5.3.3 Hierarchy of LMI conditions
As said previously, we expect to get a better analysis if we increase the order N in
Theorem 5.3. This would be in accordance with Bessel Inequality since the two vectors
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X∞ and XN get close in norm. The following proposition draws clearly the hierarchy
property.

Proposition 5.3: Hierarchy of LMI conditions in Theorem 5.3

If Theorem 5.3 holds for an order N∗, then for all N ≥ N∗, there exist matrices
PN , S and R such that VN is a Lyapunov functional for system (5.2).

Proof : This proof is based on induction. Assume the two LMIs (5.18) are verified
for an order N . We want to show that Theorem 5.3 for the order N + 1 also holds.
Denote by PN , S and R a solution of (5.18) for the order N . Because LN as defined in
the previous is strictly lower diagonal, we get the following:

FN+1 = diag(FN , I2), JN+1 =
[
JN 02

]
, HN+1 =

[
HN 02

]
, GN+1 =

[
GN 02

]
,

MN+1 =

1NHN+1

HN+1

−
1̄NGN+1

GN+1

−
02(N+1),2+n LN 02(N+1),2

02,2+n lN+1 02


=

 MN 02(N+1),2

mN+1 02

 ,
DN+1 =

 DN 02+2(N+1),2

mN+1 02


Assume that for ε ∈ R, PN+1 = diag(PN , εI2), we get:

ΞN+1 =

 ΞN 0n+2(N+1),2

02,n+2(N+1) εI2 + (2N + 3)S

 , ΘN+1 =

 ΘN εm>N+1

εmN+1 −c(2N + 3)R

 .
Applying Schur complement on ΘN+1 shows that there exists ε > 0 small enough such
that ΞN+1 � 0 and ΘN+1 ≺ 0. Consequently, VN+1 is a Lyapunov functional for sys-
tem (5.2). ♦

Proposition 5.3 shows that increasing the order can only lead to better or identical
results. Nevertheless, there is no evidence that if the system (5.2) is exponentially
stable then there exists an order N ∈ N such that VN would be a Lyapunov functional.
A more detailed discussion on that point is provided later on.

Remark 5.11

Note that the case N = 0 does not correspond to Theorem 5.2. Indeed, the
state X0 has already one extension. It would better correspond to the order N =
−1. The hierarchy property stated in Proposition 5.3 shows that the Lyapunov
functional VN encompasses the simple Lyapunov functional V defined in (5.11).
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5.3.4 Discussion about the basis of projection
As we can see in the proof of Proposition 5.3, the most important point to get a
hierarchy is that LN is strictly lower diagonal. In other words, the derivation of a
Legendre polynomial is expressed using strictly lower degree of Legendre polynomials
that are already in the basis. If we want the hierarchy property to hold with another
basis {ek}k∈N, then we should choose a basis such that the following holds:

∀k ∈ N,
d

dx
ek ∈ Span(e0, . . . , ek−1). (5.23)

For this reason, we assume in the sequel that ek is a polynomial of degree at most
k. Such a sequence indeed verifies (5.23). Since Bessel inequality is the key for deriving
Theorem 5.3, we will also require that the sequence {ek}k∈N is orthogonal for a given
scalar product. If we choose 〈·, ·〉L2 then the unique orthogonal polynomial sequence
(up to a normalization coefficient) is the sequence of Legendre polynomials.

For instance, let us consider the Fourier basis {Fk}k∈N defined as:

F0 = 1, ∀k ≥ 1,∀x ∈ [0, 1], Fk(x) = diag (cos(2kπx), sin(2kπx)) .

This is an orthogonal basis of L2 and we get for k ≥ 1 that d
dx
Fk =

[
0 −2kπ

2kπ 0

]
Fk.

Consequently, the derivation matrix is not strictly lower diagonal and the proof of the
hierarchy cannot apply.

An interesting research would be to define another scalar product of L2 and then
find another orthogonal basis which respects equation (5.23). This may provide better
stability analysis results but there is no evidence that a basis is better than another nor
a scalar product to another. This is left to future research.

5.4 Robust stability analysis
The main advantage of using LMIs for stability analysis is to move easily to robust
stability analysis. Here, we propose an extension of Theorem 5.3 to deal with uncer-
tainties on the parameters A and B. The main assumption is that A and B are subject
to polytopic uncertainties, that means the following holds:

[ A B ] ∈ Coi=1,...,m {[ Ai Bi ]} , (5.24)

where m ∈ N, and the matrices Ai and Bi for i = 1, . . . ,m are known and constant.
The notation “Co” means that the matrix [ A B ] belongs to a convex set defined by
the vertices [ Ai Bi ]. In other words, there exist unknown weighting scalar functions
λi, for i = 1, . . . ,m such that ∑m

i=1 λi = 1 and

[ A B ] =
m∑
i=1

λi [ Ai Bi ] . (5.25)

Note that this definition allows a time-varying A and B as long as (5.24) is verified for
all t ≥ 0.
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This kind of uncertainties is commonly used because it fits perfectly in the LMI
formulation. Indeed, a convexity argument helps getting a larger LMI ensuring the
robust stability. The number of edges to define the polytope is directly related to the
complexity of the new LMIs and can then dramatically increase the computational
burden. Moreover, to transform the original non-convex problem into a convex one,
there exist lemmas (see [30, 32] for instance) that multiply the number of decision
variables. An example of such a result is given by the following corollary.

Corollary 5.1: Robust stability analysis of (5.2)

Let N ∈ N, c > 0, c0 > 0 and A, B such that (5.24) holds. If there exist
PN ∈ Sn+2(N+1)×n+2(N+1), S, R ∈ S2

++, YN ∈ R2×(n+2N+6) and κ > 0 following
LMIs are satisfied: ΞN = PN + diag(0n, S, 3S, . . . , (2N + 1)S) � 0,

Θr
N(Ai, Bi) ≺ 0, for all i ∈ [1,m]

(5.26)

with

Θr
N(A,B) =


MN(A,B) + He(Y >NWN(A,B)) Y >N µW>N(A,B)

? −κI2 − cS 02

? ? −κI2

 ,

MN(A,B) =

He
(
Z>N(A,B)PNFN

)
− cR̃N H>N(A,B)(S +R)

(S +R)HN(A,B) −1
c
(S +R)

 ,
WN(A,B) =

[
GN(A,B) 02

]
,

GN(A,B) =
[
g 02,n+2(N+1)

]
+

 K
01,n

 JN(A,B),

HN(A,B) =
[
h 02,n+2(N+1)

]
+

01,n

K

 JN(A,B),

JN(A,B) =
[
0n,2 A+BK B̃ 0n,2N

]
.

then, VN is a Lyapunov functional for system (5.2).

The proof of the previous corollary is rather technical and does not bring notable
insights compared to Theorem 5.3. It is provided in [18]. However, it is important to
state such an extension to make the conservative approach using Lyapunov function-
als relevant regarding the frequency analysis which provides sometimes necessary and
sufficient conditions when no uncertainties.

The following section provides some numerical examples to show the effectiveness
of this method.
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Figure 5.2: Stability chart for (5.27). The hatched area is unstable according to the
CTCR algorithm presented in Section 4.1.3, while Theorem 5.3 gives that the colored
area is stable. The areas marked as Si are stable areas up to an order i.

5.5 Numerical examples and discussion

5.5.1 A and A+BK are Hurwitz with ‖H‖∞ < 1
This example is taken from the previous chapter where the system is defined as follows:

A =

−2 1

0 −1

 , B =

1

1

 , and K =
[
0 −20

21

]
. (5.27)

We can clearly see in Figure 5.2 that Theorem 5.3 provides an accurate inner-approximation
of the stability area. Indeed, even at order 0, the stable area is very large and increasing
the order slightly improves the result but not significantly. Compared to Figures 4.2,
4.5 and 5.1a, the detected stability is much larger here. That is due to the projection
of the whole function χ while before, only part of it was projected. The price to pay is
a huge increase of the number of decision variables.

5.5.2 A is not Hurwitz but A+BK is Hurwitz
This second example is of main interest because the coupling induces the stability to
the interconnected system (5.2). The system is defined as follows:

A =

−1 0

0 0

 , B =

0

1

 , and K =
[
0 −5

]
. (5.28)
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Figure 5.3: Stability chart for (5.28). The hatched area is unstable according to the
CTCR algorithm presented in Section 4.1.3, while Theorem 5.3 gives that the colored
area is stable. The areas marked as Si are stable areas up to an order i.

The result of Theorem 5.3 is shown in Figure 5.3. We can see that the estimated stable
area is close to the exact stable area for high speed and low orders N . The stable
area S0 is larger than the stable area detected using Theorem 5.2 (Figure 5.1b). The
hierarchy is easier to see than in the previous example and we indeed get S0 ⊂ S1 ⊂ S2.

5.5.3 A and A+BK are not Hurwitz

This system is the same as in (4.42), and is reminded below:

A =

 0 1

−2 0.1

 , B =

0

1

 , and K =
[
1 0

]
. (5.29)

Neither A nor A+BK are Hurwitz, meaning that it was impossible with the Lyapunov
functional (5.11) to assess stability. Without any surprise, for the order N = 0, there
is no result, but the area grows significantly when increasing the order and at N = 3,
nearly the whole stability area is correctly estimated. Figure 4.6 in the previous chapter
treated the same example but using Quadratic Separation and the two results differs
significantly because it was impossible to fill the whole area previously.
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Figure 5.4: Stability chart for (5.29). The hatched area is unstable according to the
CTCR algorithm presented in Section 4.1.3, while Theorem 5.3 gives that the colored
area is stable. The areas marked as Si are stable areas up to an order i.

5.5.4 An example with stability pockets
This last example is an extension to what was proposed in Section 4.4.4. Let sys-
tem (5.2) with k ≥ 0 and

A(k) =



0 0 1 0

0 0 0 1

−10− k 10 0 0

5 −15 0 −0.25


, B(k) =



0

0

k

0


, K =



1

0

0

0



>

. (5.30)

For k = 1, we get back to (4.43) in the previous chapter or (5.15) in the previous
section. Theorem 5.3 has been applied on this system for k = 1 and we get Figure 5.5.
Compared to Figures 4.8 and 5.1c, we see that the estimated stability area is much
larger. The hierarchy property is clearly visible. S4\S3 and S5\S4 are surprisingly large
sets. Increasing the order sometimes brings a large contribution.

At this stage, we would like to study the robustness of the previous system using
Corollary 5.1 in two cases: when k ∈ (0.1, 1.5) and k ∈ (1, 2). Denote by Ck the unstable
area for a given gain k determined using the CTCR algorithm. It is possible to get an
inner estimation of the unstable area for the two cases by constructing the two following
sets:

Ck∈(0.1,1.5) =
⋃

k∈{0.1,0.5,0.8,1}
Ck and Ck∈(1,2) =

⋃
k∈{1,1.2,1.5,2}

Ck.

We then get Figure 5.6 for N = 7 (see a similar study done in [18]). We can conclude
that Corollary 5.1 is apparently conservative because there is a huge gap between the
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Figure 5.5: Stability chart for (5.30). The hatched area is unstable according to the
CTCR algorithm presented in Section 4.1.3, while Theorem 5.3 gives that the colored
area is stable. The areas marked as Si are stable areas up to an order i.

estimated unstable area and the estimated stable area. Nevertheless, the estimated
unstable area C might be quite far from the real unstable area since it is calculated for
some fixed values of A and B while they may vary in the polytopic set in the sense that
they are uncertain.

5.5.5 Discussion
First of all, the previous subsection shows the effectiveness of the proposed methodology.
We get a very accurate estimation of the stability area, even at low orders. The order
increases, we detect a stable area for larger τ so smaller c. This is quite expected since
the influence of the string is higher when its speed is small. Since the results are very
accurate for a high N , we make the following conjecture.

Conjecture 5.1: Necessary and sufficient condition for stability

System (5.2) is exponentially stable if and only if there exists N ∈ N such that
LMIs (5.18) hold.

There are different ways to try to prove this assertion. Trying to find an expression
of the complete Lyapunov functional6 and to see that VN is getting as close as we want
to V when N increases. Another approach would consider the equivalence already
proven using DJ-scaling [119]. This is apparently not an easy task.

For the order N = 0, we obtain a more precise stability analysis test than using
the Lyapunov functional (5.11). This is due to two contributions. First, the positivity

6A complete Lyapunov functional V is such that VN is a Lyapunov functional if and only if the
system is exponentially stable.
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Figure 5.6: Robust stability analysis of system (5.2) in two cases and using Corollary 5.1
for N = 7. The unstable area is an inner-estimation using Ck∈(0.1,1.5) in case (a), and
Ck∈(1,2) in case (b).

Order Theorem 4.6 Theorem 5.3

N ∈ N n2+n+N2+N
2 +Nn+ 3 n2+n

2 + 2(N2 + n) + 5N +Nn+ 9

N = 0 13 27

N = 2 24 61

N = 5 48 142

Table 5.2: Number of decision variables for Theorem 4.6 and Theorem 5.3 for different
orders and n = 4.

condition P � 0 has been relaxed to a less constrained one. The other modification is
in the estimated state, where the projection on L0 has been added in VN while it was
not the case in V . These two modifications relaxed the LMIs and cannot lead to worse
results. It appears than in Figures 5.2 and 5.3 the estimated stable area is much larger,
this contributions are then of main importance.

Compared to Theorem 4.6 of the previous chapter, we get better results here. This is
not so easy to understand why but looking at the complexity between the two algorithms
provides one answer. Indeed, Table 5.2 enlightens the difference in the number of
decision variables between the two theorems. We indeed get a better result using
Theorem 5.3 but at a price of many more decision variables, making the computational
time much longer. We can say that, for α close to 0, it is better to use Theorem 4.6,
which is as efficient as the Lyapunov-based theorem and less greedy. But when |α| is
close to 1, it is better to use Theorem 5.3. Appendix C proposes another way to reduce
the computational burden of the Lyapunov-based theorem with a moderate increase of
the conservatism.

This last aspect is of main importance since the robust analysis of Corollary 5.1
requires additional decision variables. Indeed, to make the LMI affine in A and B,
the numerical complexity increases dramatically. It is then of main importance to
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maintain a low complexity for classical theorems such that it is possible to move to
robust stability analysis. We cannot evaluate the conservatism introduced by the robust
stability corollary 5.1 because we only get an inner estimation of the stable area. It
seems very difficult to provide an exact computation of the stability area since the
CTCR methodology does not adapt to a polytopic uncertainty. The easy extension to
robust stability is one of the advantages of considering a Lyapunov-based stability test.

5.6 Conclusions
This chapter focuses on the Lyapunov stability analysis of system (5.2). A simple
Lyapunov functional for this system is made up of two terms: one for the stability
of the ODE and another one for the stability of the string equation. We show that
this functional leads to good results in some cases but they are limited. That is why
we proposed to use the projection methodology, originally developed for time-delay
systems.

This approach relies on an estimation of the infinite-dimensional state. We consider
a truncation of this state such that it becomes finite-dimensional. Such a methodology
leads to a hierarchy of Lyapunov functionals which encompass the simple functional
proposed as a first step.

This methodology presents many advantages. First of all, the simulation results
show a very good accuracy when the order increases. Secondly, it is quite easy to extend
the result to polytopic uncertainties on matrices A and B, which is an interesting robust
extension. Finally, the Lyapunov approach is very adaptable and for the same PDE
but under different boundary conditions, a similar reasoning should lead to a robust
stability analysis. This is explored for instance in the following chapter. Nevertheless,
we must choose a trade-off between numerical complexity and accuracy because this
approach can be quite demanding.

The previous chapter was using Bessel inequality to encompass Jensen’s inequality,
while in this chapter, it is used to parametrize the operators of the Lyapunov functional,
or equivalently, to extend the state. Then, we get three complementary visions of
the same methodology. Depending on which context they are applied, they provide
different results but they rely on the same basis. The following chapter uses the ideas
developed in this chapter to give an answer to the original problems for the drilling
pipe mechanism.



6
Stability analysis of a drilling mechanism

Many phenomena can occur while drilling as bit bouncing, stick-slip or whirling [36].
The challenge is then to design a controller for removing, or at least weakening, these
undesirable effects. Many control techniques were applied on the finite dimensional
system from the simple PI controller investigated in [33, 37], to more advance controllers
as sliding mode control [113] or H∞ design [142].

We focus here on the treatment of stick-slip with a PI controller. Hence, on a first
step, applying the describing function methodology on the finite dimensional model
presented in (2.1) leads to Figure 6.1 (see Appendix D for more details). Note first
that this result is an estimation and there is no guarantee that it is true. It appears
that even with a controller, the stick-slip effect is still there. The amplitude of the
oscillations is the desired angular speed Ω0, when this latter one is small. If Ω0 is
large, the oscillations disappears. Comparing with Figure 2.2, the amplitude of the
oscillations are not well-estimated.

It has already been shown in [160, 159] that a PI controller stabilizes the linear
infinite-dimensional system. Here, we propose to revisit the stability analysis of a PI
controlled infinite-dimensional model of a drilling pipe using the methodology presented
in the previous chapter. Then, we aim at providing a bound on the oscillations and we
investigate the influence of the controller coefficients on the oscillations.

This chapter is organized as follows. The first section is the problem statement. The
second section is dedicated to the study of the linear torsion system. This is a first step
before dealing with the nonlinear system, which is the purpose of next section. Section 4
focuses on the stability analysis of the axial dynamic. Each section is illustrated with
some simulations and a discussion on the results.

6.1 PI controller for the torsional dynamic

The control of vibrations in a drillstring is a problem that was investigated many times
because the vibrations may damage the equipment [135], lead to a slower drilling [45]
and even interfere with the measurement tools [96]. All these undesirable effects lead
to an increase of the cost to maintain the efficiency of the system.

To counteract this phenomenon, many controllers were proposed. We do not aim
here at comparing them but we can list some of them1:

1A more complete list of available controls can be found in [135, Part III ].
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Figure 6.1: Describing function analysis of (2.1) with a PI controller. The proportional
gain is 10−3 and the integrator gain is 1. The oscillations amplitudes refer to Bc and
Ω0 is the reference speed, in rad.s−1.

Low order controllers These controllers are used on real drillstring platforms. They
just ensure that the rotation speed of the rotary table is constant without any
care for the control of vibrations. They are classically a PI controller as in [33,
159, 160, 162] or an H∞ controller [142].

Sliding-mode controllers The obtained control law is then discontinuous and aims
at effectively reducing the stick-slip effect. The sliding surface as defined in [76, 98]
is related to the error between the angular velocity at the bottom and the desired
angular speed. The two cited article uses a high-order sliding mode control.

Flatness-based controllers Such controllers are explored in [134, 135] for instance.
This is done in two stages, the first one is an open-loop control computing the
trajectory by taking the flatness property the system. Once the trajectory is
defined, a feedback control is designed to ensure that the errors between the
proposed trajectory and the real trajectory is indeed going to zero exponentially.

Backstepping controllers This kind of control is probably one of the most recent. It
can be split into three categories. The general backstepping problem on the linear
system is for example described in [129]. The target system is a boundary and
internally damped wave equation similarly to the toy-example system described
in this manuscript. The second class of backstepping controllers is using adaptive
control as in [27] for instance. The aim is to stabilize the drilling pipe without an
explicit knowledge of the damping terms. Finally, an observer based-technique
(as developed in [21]) aims at building an observer which estimates the rotational
speed at the bottom of the pipe with only surface measurements. Then, the
classical backstepping design technique can apply with the estimated signals.

The aim of this chapter is not to design a control law ensuring the stability of the
mechanism but to analyze the effect of the most basic controller: a proportional-integral.
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We then introduce the following control laws:

ũ1(t) = −kφp (φt(0, t)− Ω0)− kφi z2(t),

ż2(t) = φt(0, t)− Ω0,
(6.1)

for the torsional dynamic. Here, kφp is the two proportional gain and kφi is the inte-
gral gain. Note that this controller has already been studied in many other articles
[33, 37, 159] in a different setting. There are two main advantages with such a struc-
ture. First of all, it is a very simple controller which is already implemented in the
drilling machines [10]. And secondly, it requires few measurements, indeed the only
assumed knowledge is the rotational speed of the rotary table φt(0, ·) which is of course
measurable. Implementing this control law in (2.7) leads to:



φtt(x, t) = c̃2
tφxx(x, t)− γtφt(x, t),

φx(0, t) = (g̃ + kφp )φt(0, t)− kφpΩ0 + kiC2Z(t),

φt(1, t) = C1Z(t),

Ż(t) = AφZ(t) +Bφ

[
φt(0,t)
φx(1,t)

]
+ Fφ

[
Ω0

Tnl(z1(t))

]
,

(6.2)

for the torsional dynamic where

Aφ=

− cb
IB

0

0 0

 , Bφ=

0 −α1

1 0

 , Fφ=

 0 −α2

−1 0

 , Z=

z1

z2

 ,
C1 =

[
1 0

]
, C2 =

[
0 1

]
.

Remark 6.1: On the existence of a solution

One may note that θ 7→ Tnl(θ) is not well defined for θ = 0 because of the sign
function. Nevertheless, since the nonlinearity acts directly on the variable z, it
follows that there exists a unique solution to the ODE system in the sense of
Filipov [58]. A more detailed discussion on this point is provided in [24].

As noted in [159], this kind of controller is very efficient in the case of large desired
angular speed Ω0 and on a linearized system. The following part is focusing on the
analysis of a linear approximation of the torsional system (6.2) with a PI controller.

6.2 Stability of the linear torsional dynamic
System (6.2) is a nonlinear system because of the friction term Tnl introduced in (2.2).
Nevertheless, for a high desired angular speed Ω0, Tnl can be assumed constant as seen
in Figure 2.3. Moreover, studying this linear system can be seen as a first step before
studying the nonlinear system, which relies mostly on the stability theorem derived in
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this section.
The proposed linear model of T around Ω0 � 1 is

T (θ) = cbθ + Tnl(Ω0) = cbθ + T0. (6.3)

For high values of Ω0, T0 = Tnl(Ω0) is close to Tsmooth(Ω0) and at the limit when Ω0
tends to infinity, they are equal. Hence the nonlinear friction term for relatively large
angular velocity does not influence much the system. We therefore propose the following
linear approximation:



φtt(x, t) = c̃2
tφxx(x, t)− γtφt(x, t),

φx(0, t) = (g̃ + kφp )φt(0, t)− kφpΩ0 + kiC2Z(t),

φt(1, t) = C1Z(t),

Ż(t) = AφZ(t) +Bφ

[
φt(0,t)
φx(1,t)

]
+ Fφ

[
Ω0
T0

]
,

(6.4)

Remark 6.2

Note that we use the notation φ to refer both to a solution to linear system (6.4)
and to nonlinear system (6.2). In this section, it refers only to the solution to the
linear system.

Remark 6.3: On the linear system

System (6.4) is not the linearization of (6.2) around Ω0 > 0 since we did not
linearized Tnl but we considered a static approximation of the latter.

For simplicity in the sequel, we denote by

Xφ = (φx, φt, z1, z2) ∈ C1([0,∞),H)

with H = L2 × L2 × R2 the infinite dimensional state of system (6.4). The control
objective in the linear case is to achieve the exponential stabilization of any equilibrium
point of (6.4) in angular speed, i.e. φt(1) is going exponentially to a given constant
reference value Ω0.

Since the problem does not rephrase as in Chapter 3, we propose the following
definitions of norm on H, equilibrium points and exponential stability.

Definition 6.1: Norm on H

For Xφ ∈ H, we define the following norm on H:

‖Xφ‖2
H = z2

1 + z2
2 + c̃2

t‖φx(·)‖2
L2 + ‖φt(·)‖2

L2 .

The definition of an equilibrium point of (6.4) is given as follows.
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Definition 6.2: Equilibrium point of (6.4)

X∞φ ∈ H is an equilibrium point of (6.4) if for the trajectory Xφ ∈
C1([0,∞),H) of (6.4) with initial condition X∞φ , the following holds:

∀t > 0, ‖Ẋφ(t)‖H = 0.

The notion of exponential stability is then adapted in the following definition.
Definition 6.3: Exponential stability of X∞φ

Let X∞φ be an equilibrium point of (6.4). X∞φ is said to be µ-exponentially
stable if the following holds for γ ≥ 1, µ > 0 and for any initial conditions
X0
φ ∈ H satisfying the boundary conditions:

∀t > 0, ‖Xφ(t)−X∞φ ‖H ≤ γ ‖X0
φ −X∞φ ‖H e−µt,

where Xφ is the trajectory of (6.4) whose initial condition is X0
φ.

Hence, X∞φ is said to be exponentially stable if there exists µ > 0 such that
X∞ is µ-exponentially stable.

Similarly to what was done in the first part, a lemma about the equilibrium points
of (6.4) is proposed.

Lemma 6.1: Equilibrium points of (6.4)

Assume kφi 6= 0, then there exists a unique equilibrium point

X∞φ = (φ∞x , φ∞t , z∞1 , z∞2 ) ∈ H

of (6.4) and it satisfies φ∞t = Ω0.

Proof : An equilibrium point X∞φ of (6.4) is such that:∥∥∥Ẋ∞φ ∥∥∥H = ‖(φ∞xt , φ∞tt , ż∞1 , ż∞2 )‖H = 0.

From d
dt
z∞2 = φ∞t (0, t) − Ω0 = 0, we get that φ∞t (0, t) = Ω0. Moreover ∂xφ∞t = 0

and ∂tφ
∞
t = 0, that leads to φ∞t = Ω0 and in particular z∞2 = Ω0.

We also get from φ∞xx = 0 and ∂tφ
∞
x = 0 that φ∞x is a first order polynomial in x.

Together with the boundary conditions, the system of equations has a unique solution
if ki 6= 0 such as:

X∞ =
(
φ∞x ,Ω0,Ω0,

φ∞x (0)− g̃Ω0

kφi

)
,

where for x ∈ [0, 1]:

φ∞x (x) = γtΩ0

c̃2
t

(x− 1)− cb
α1IB

Ω0 −
α2

α1
T0.

♦
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Remark 6.4: Equilibrium points for the nonlinear system

Note that the previous proof holds also for the nonlinear system since for Ω0 > 0
Tnl is bijective.

The aim of the following subsection is then to show that this unique equilibrium
point of (6.4) is globally exponentially stable.

6.2.1 Exponential stability of the linear system
To prove the exponential stability, we will use the Lyapunov methodology described in
the previous chapter. It results in the following theorem.

Theorem 6.1: Exponential stability of the linearized system [13]

Let N ∈ N and c̃t, γt > 0 known and constant. Assume there exist PN ∈
S2+2(N+1), R = diag(R1, R2) � 0, S = diag(S1, S2) � 0, Q ∈ S2

+ such that the
following LMIs hold:

ΘN = c̃t Θ1,N + Θ2,N −QN ≺ 0,

PN + SN � 0,
(6.5)

and c̃tR + γt
2 U0 � Q, c̃tR + γt

2 U1 � Q, (6.6)

where

Θ1,N = H>N
[

(S1+R1) 0
0 −S2

]
HN −G>N

[
S1 0
0 −S2−R2

]
GN , Θ2,N = He

(
D>NPNFN

)
,

FN =
[
I2+2(N+1) 02+2(N+1),2

]
, DN = col(JN ,MN), JN =

[
Aφ 02,2(N+1) Bφ

]
,

MN = ΛNHN−Λ̄NGN−
[
02(N+1),2 LN 02(N+1),2

]
,

U0 =
[

2S1 S1+S2+R2
? 2(S2+R2)

]
, U1 =

[
2(S1+R1) S1+S2+R1

? 2S2

]
,

GN =

 c̃tkφi C2

−c̃tkφi C2

02,2(N+1) G

 , G =

1 + c̃t(g̃ + kφp ) 0

1− c̃t(g̃ + kφp ) 0

 ,
HN =

C1

C1

02,2(N+1) H

 , H =

0 c̃t

0 −c̃t

 ,
QN = diag(02, Q, · · · , (2N + 1)Q, 02), SN = diag (02, S, · · · , (2N + 1)S) ,

LN = [`j,kΛ]j,k∈[0,N ] −
γt
2 diag ([ 1 1

1 1 ] , . . . , [ 1 1
1 1 ]) ,

ΛN =
[ Λ

...
Λ

]
, Λ̄N =

[ Λ
...

(−1)NΛ

]
, Λ =

c̃t 0

0 −c̃t

 ,
(6.7)

then the equilibrium point of system (6.4) is exponentially stable.
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Proof : As we aim at showing that X∞φ is an exponentially stable equilibrium point
of system (6.4) in the sense of Definition 6.2, the following variable is consequently
defined for t ≥ 0:

X̃φ(t) = Xφ(t)−X∞φ =
(
φ̃x(·, t), φ̃t(·, t), z̃1(t), z̃2(t)

)
,

where Xφ is a trajectory of system (6.4). We then want to show that there exists a
Lyapunov functional as defined in Definition 5.1 for the previous system. As shown in
Proposition 5.1, X∞φ will then be exponentially stable.

This proof is then divided into three parts. The first one is dedicated to the formu-
lation of a functional candidate. The second part aims at showing that this functional
verifies that the functional is positive, i.e. the positivity inequality (5.3a) holds. The last
part is about proving that if (6.5) holds, then the gradient of the Lyapunov functional
candidate is negative along the trajectories of (6.4), in other words, equation (5.3b) is
verified.

Choice of a Lyapunov functional candidate

The following notations are used in this section for k ∈ N:

χ̃(x) =

φ̃t(x) + c̃tφ̃x(x)

φ̃t(x)− c̃tφ̃x(x)

 , X̃k(t) =
∫ 1

0
χ̃(x, t)Lk(x)dx, (6.8)

where {Lk}k∈N is the orthogonal family of Legendre Polynomials on [0, 1] as defined in
Definition E.1.

X̃k is then the projection coefficient of χ̃ along the Legendre polynomial of degree k.
χ̃ refers to the Riemann coordinates similarly to what was done in the previous chapter.

We decide to use a hierarchical Lyapunov functional candidate. LetN ∈ N, following
the same structure than previously, we propose the following:

VN(X̃φ) = Z̃>NPN Z̃N + VPDE(χ̃) (6.9)

where Z̃N =
[
z̃1 z̃2 X̃>0 · · · X̃>N

]>
and

VPDE(χ̃) =
∫ 1

0
χ̃>(x)

[
S1+xR1 0

0 S2+(1−x)R2

]
χ̃(x)dx.

VN is equivalent to ‖ · ‖2
H

We need to prove that there exist ε1, ε2 > 0 such that the following holds:

ε1‖X̃φ‖2
H ≤ VN(X̃φ) ≤ ε2‖X̃φ‖2

H.

Existence of ε1: The inequalities PN +SN � 0, S � 0 and R � 0 imply the existence
of ε1 > 0 such that:

PN + SN � ε1

[
I2 02,2(N+1)

02(N+1),2
1
2 ĨN

]
,

S � ε1
2 I2,

(6.10)
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with ĨN = diag {(2k + 1)I2}k∈[0,N ]. This statement implies the following on VN :

VN(X̃φ) ≥ Z̃>N
(
PN +

[ 02 02,2(N+1)
02(N+1),2 SN

])
Z̃N−

N∑
k=0

(2k + 1)X̃>k SX̃k + ε1

2 ‖χ̃‖
2
L2

+
∫ 1

0
χ̃(x)>

(
S − ε1

2 I2

)
χ̃(x)dx

≥ ε1

(
z̃2

1 + z̃2
2 + 1

2‖χ̃‖
2
L2

)
−

N∑
k=0

(2k + 1)X̃>k S̃X̃k +
∫ 1

0
χ̃>(x)S̃χ̃(x)dx

≥ ε1‖X̃φ‖2
H,

where S̃ = S − ε1
2 I2 � 0. To get the last inequality, we applied Bessel inequality. That

ends the proof of existence of ε1.
Existence of ε2: Following the same line as previously, the following holds for a

sufficiently large ε2 > 0:

PN � ε2

[
I2 02,2(N+1)

02(N+1),2
1
4 ĨN

]
,

S +R � ε2
4 I2.

Using these inequalities in (6.9) leads to:

VN(X̃) ≤ ε2

(
z̃2

1 + z̃2
2 +

N∑
k=0

2k + 1
4 X̃>k X̃k + 1

4‖χ̃‖
2
L2

)
≤ ε2

(
z̃2

1 + z̃2
2 + 1

2‖χ̃‖
2
L2

)
≤ ε2‖X̃‖2

H.

The last inequality is a direct application of Proposition E.5.

VN has a negative gradient along the trajectories

This part deals with the existence of ε3 > 0 such that:

V̇N(X̃) ≤ −ε3‖X̃φ‖2
H.

Before dealing with the existence of ε3, the following lemma, useful for the time
derivation, is derived.

Lemma 6.2: State derivation [13]

For any function χ̃ ∈ L2 satisfying (6.8), the following expression holds for any
N in N:

d

dt


X̃0
...

X̃N

 = ΛN χ̃(1)− Λ̄N χ̃(0)− LN


X̃0
...

X̃N

 . (6.11)

Proof : This proof is highly inspired from [19]. Since χ̃ ∈ L2 satisfies (6.8),
equation (6.13) can be derived and the following holds:

d

dt
X̃k =

∫ 1

0
χ̃t(x)Lk(x)dx. (6.12)
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Note that the time-derivation of χ̃ leads to:

χ̃t(x) = Λχ̃x(x)− γt [ 1
1 ] φ̃t(x).

Since φ̃t(x) = 1
2 [ 1 1 ] χ̃(x), we get:

χ̃t(x) = Λχ̃x(x)− γt
2 [ 1 1

1 1 ] χ̃(x). (6.13)

Consequently, (6.12) rewrites as:

d

dt
X̃k = Λ [χ̃(x)Lk(x)]10 − Λ

∫ 1

0
χ̃(x)L′(x)dx− γt

2

1 1

1 1

 X̃k.

Using the derivation rule and the boundary values of Legendre polynomials as defined
in Definition E.1 lead to the proposed result in equation (6.11). ♦

The proof of existence of ε3 is detailed since it is not a straightforward adaption of
the previous chapter.

Existence of ε3: The time-derivative of VPDE along the trajectories of (3.1) leads to:

V̇PDE(χ̃) = 2c̃tV1(χ̃)− γt
2 V2(χ̃),

where

V1(χ̃) =
∫ 1

0
χ̃>x (x)

[
S1+xR1 0

0 −S2−(1−x)R2

]
χ̃(x)dx, V2(χ̃) =

∫ 1

0
χ̃>(x)U(x)χ̃(x)dx,

with

U(x) =

 2(S1 + xR1) S1 + S2 + xR1 + (1− x)R2

S1 + S2 + xR1 + (1− x)R2 2(S2 + (1− x)R2)

 .
An integration by part on V1 shows that:

2V1(χ̃) = χ̃>(1)
[
S1+R1 0

0 −S2

]
χ̃(1)− χ̃>(0)

[
S1 0
0 −S2−R2

]
χ̃(0)

−
∫ 1

0
χ̃>(x)

[
R1 0
0 R2

]
χ̃(x)dx.

The previous calculations lead to the following derivative:

V̇PDE(χ̃) = c̃t
(
χ̃>(1)

[
S1+R1 0

0 −S2

]
χ̃(1)− χ̃>(0)

[
S1 0
0 −S2−R2

]
χ̃(0)

)
−
∫ 1

0
χ̃>(x)

(
c̃tR + γt

2 U(x)
)
χ̃(x)dx. (6.14)

We create the following extended state variable:

ξ̃N = col
(
Z̃N , φ̃t(0), φ̃x(1)

)
, (6.15)
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Noting that U0 = U(0) and U1 = U(1), a convexity argument implies that if (6.6) is
verified then c̃tR+U(x) � Q � 0 holds for x ∈ [0, 1]. Since χ̃(0) = GN ξ̃N , χ̃(1) = HN ξ̃N ,
we then get:

V̇PDE(χ̃) ≤ c̃tξ̃
>
NΘ1,N ξ̃N −

∫ 1

0
χ̃>(x)Qχ̃(x)dx. (6.16)

Consequently, we get the following:

V̇N(X̃φ) = He
( ˙̃Z>NPN Z̃N

)
+ V̇PDE(χ̃)

≤ ξ̃>NΘN ξ̃N +
N∑
k=0

(2k + 1)X̃>kQX̃k −
∫ 1

0
χ̃>(x)Qχ̃(x)dx,

(6.17)

where ΘN is defined in (6.5). To obtain the previous equation, one should note that
using Lemma 6.2, we get ˙̃ZN = DN ξ̃N and Z̃N = FN ξ̃N . Since ΘN ≺ 0 and Q � 0, we
get:

ΘN � −ε3 diag
(
I2,

1
2I2,

3
2I2, . . . ,

2N+1
2 I2, 02

)
,

Q � ε3
2 I2.

Then, V̇N is upper bounded by:

V̇N(X̃φ) ≤ −ε3

(
z̃2

1 + z̃2
2 + 1

2‖χ̃‖
2
L2

)
+

N∑
k=0

(2k + 1)X̃>k
(
Q− ε3

2 I2

)
X̃k

−
∫ 1

0
χ̃>(x)

(
Q− ε3

2 I2

)
χ̃(x)dx

≤ −ε3‖X̃φ‖2
H.

The last inequality comes from a direct application of Bessel’s inequality E.5.

Conclusion

Using Proposition 5.1 and the results of the previous subparts, the assumptions of The-
orem 6.1 indeed leads to the exponential convergence of all trajectories of (6.4) to the
desired equilibrium point. ♦

The previous theorem is useful to know that the system is exponentially stable but it
does not give any estimate on the convergence rate. The following subpart characterizes
the decay-rate of the solutions of (6.4).

6.2.2 Exponential stability of the linearized system with a
guaranteed decay-rate

It is possible to estimate the decay-rate µ of the exponential convergence with a slight
modification of the LMIs as it is proposed in the following corollary.
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Corollary 6.1: Exponential stability with a guaranteed decay-rate

Let N ∈ N, µ > 0 and γt ≥ 0. If there exist PN ∈ S2+2(N+1), R = diag(R1, R2) �
0, S = diag(S1, S2) � 0, Q ∈ S2

+ such that (6.6) and the following LMIs hold:

ΘN,µ = ΘN + 2µF>N (PN + SN)FN ≺ 0,

PN + SN � 0,
(6.18)

with the parameters defined as in Theorem 6.1, then the equilibrium point of
system (6.4) is µ-exponentially stable.

Proof : To prove the exponential stability with a decay-rate of at least µ > 0, we
use Proposition 5.1. Similarly to the previous proof, we have the existence of ε1, ε2 > 0.
The existence of ε3 is slightly different. First, note that for the Lyapunov functional
candidate (6.9), we get:

VN(X̃φ) ≥ Z̃>NPN Z̃N +
∫ 1

0
χ̃>(x)Sχ̃(x)dx ≥ Z̃>NPN Z̃N +

N∑
k=0

(2k + 1)X̃>k SX̃k.

This inequality was obtained using Proposition E.5. Using the notations of the previous
theorem and (6.15) yields:

VN(X̃φ) ≥ ξ̃>NF
>
N (PN + SN)FN ξ̃N . (6.19)

Coming back to (6.17), the following holds:

V̇N(X̃φ) ≤ ξ̃>NΘN ξ̃N +
N∑
k=0

(2k + 1)X̃>kQX̃k −
∫ 1

0
χ̃>(x)Qχ̃(x)dx,

Using (6.18), the previous expression becomes:

V̇N(X̃φ) ≤ ξ̃>NΘN,µξ̃N − 2µξ̃>N
(
F>NPNFN + SN

)
ξ̃N

+
N∑
k=0

(2k + 1)X̃>kQX̃k −
∫ 1

0
χ̃>(x)Qχ̃(x)dx.

Injecting inequality (6.19) into the previous inequality leads to:

V̇N(X̃φ) ≤ ξ̃>NΘN,µξ̃N − 2µVN(X̃φ) +
N∑
k=0

(2k + 1)X̃>kQX̃k −
∫ 1

0
χ̃>(x)Qχ̃(x)dx.

Using the same techniques than for the previous proof leads to the existence of ε3 > 0
such that:

V̇N(X̃φ) + 2µVN(X̃φ) ≤ −ε3‖X̃φ‖2
H.

Proposition 5.1 concludes then on the exponential stability with a guaranteed decay-
rate of at least µ. ♦
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Remark 6.5: Maximum allowable decay-rate

As seen earlier, wave equations can sometimes be modeled as neutral time-delay
systems. Ensuring the small τ -stabilizability brings some necessary stability con-
ditions as noted in [14, 20]. In the book [20] for instance, the following criterion
is derived:

µ ≤ c̃t
2 log

∣∣∣∣∣1 + c̃t(g̃ + kφp )
1− c̃t(g̃ + kφp )

∣∣∣∣∣ = µmax. (6.20)

This result implies that there exists a maximum decay-rate and if this maximum
is negative, then the system is unstable. The LMI condition ΘN,µ ≺ 0 contains
the same necessary condition, meaning that the neutral aspect of the system is
well-captured.

6.2.3 Strong stability against small delays in the loop

A practical consequence of the neutral aspect of system (6.4) is that it is very sensitive
to delay in the control and in the measure [71]. To study the robustness of our system
to a delay, we fictionally introduce a delay τ ≥ 0 in the control. To this extend, the
Laplace transform of the system (6.4) with this additional delay is presented below:



s2φ̃(x, s) = c̃2
tφxx − sγtφ̃(x, s),

φ̃x(0, s) = s
(
g̃ + kφp e

−τs
)
φ̃(0, s) + kφi z2(s)e−τs,

sφ̃(1, s) = z1(s),

sz1(s) = − cb
IB
z1(s)− α1φx(1, s),

sz2(s) = su(0, s),

(6.21)

where s ∈ C and τ ≥ 0. To ease the computation, we assume in the sequel that γt = 0,
it does not change the conclusion one may draw after this subsection. The previous
system has then the following solution:

φ̃(x, s) = A(s)esx/c̃t +B(s)e−sx/c̃t ,

where A and B are two transfer functions verifying
s
(
s+ cb

IB

) (
A(s)es/c̃t +B(s)e−s/c̃t

)
= −α1

s

c̃t

(
A(s)es/c̃t −B(s)e−s/c̃t

)
,

A(s)−B(s) = c̃t (A(s) +B(s))
(
g̃ + kφp e

−τs + kφi
e−τs

s

)
.

The previous system has a unique solution, the common denominator of A and B is
the characteristic equation of (6.21), which is:

ceq(s) = c
(
a2
(
e−s

)
s2 + a1

(
e−s

)
s+ a0

(
e−s

))
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where a2, a1 and a0 are polynomials. The expression of a2 is given by:

a2(θ) = 1 + c̃tg̃ + (1− c̃tg̃)θ2/c̃t + c̃tk
φ
p

(
θτ − θτ+2/c̃t

)
= a2,0 + a2,2/c̃tθ

2/c̃t + a2,τθ
τ + a2,τ+2/c̃tθ

τ+2/c̃t ,

where
a2,0 = 1 + c̃tg̃, a2,2/c̃t = 1− c̃tg̃,

a2,τ = c̃tk
φ
p , a2,τ+2/c̃t = c̃tk

φ
p .

Definition 4.1 and [71, Corollary 3.3] implies that (6.21) is small-τ stabilizable if the
following condition is respected:

|a2,2/c̃t |+ |a2,τ |+ |a2,τ+2/c̃t|
|a2,0|

< 1.

In our case, we get2: ∣∣∣∣∣1− c̃tg̃1 + c̃tg̃

∣∣∣∣∣+ 2
∣∣∣∣∣ c̃tk

φ
p

1 + c̃tg̃

∣∣∣∣∣ < 1

Hence, to be robust to delay in the loop, one then needs to ensure the following:

0 ≤ kφp ≤
1

2c̃t
(|1 + c̃tg̃| − |1− c̃tg̃|) = g̃ = 2.1 · 10−3.

This inequality on kp comes when considering the infinite-dimensional problem and does
not arise when dealing with any finite-dimensional model. That point enlightens that
it is more realistic to consider the infinite-dimensional problem because it can explain
several phenomena arising in the reality [10].

6.2.4 Numerical simulations

Using Yalmip with SDPT-3 [100, 161], it appears that the LMIs of Theorem 6.1 are
feasible for the parameters in Table 2.2 and some values of kp and ki, that means
system (6.4) is exponentially stable. Figure 6.2 is a chart obtained such that the
decay-rate of the coupled system is αmax for an order N = 5. It is easy to see that
increasing the gain kp decreases the range of possible ki while it increases its speed (see
equation (6.20)). It is quite natural to note that the larger ki is, the slower the system
is, while increasing the proportional gain leads to a faster system. As a conclusion, for
small values of kp and ki, the system is stable and that was the conclusion of the two
papers [159, 160] using a different Lyapunov functional. Note that with the previous
papers, it was not possible to quantify the notion of “small enough gains kp and ki”
while it is possible to give an estimation with the method of this paper.

Table 6.1 contains the estimation of the decay-rate of the solution depending on
the order used in Corollary 6.1. It also compares with the corollary derived in [13,
Corollary 1]. Note that even if at low order Corollary 6.1 gives a very bad bound, it
tends to the maximal value µmax while [13, Corollary 1] gives a better estimation at

2Note that in the case kφp = 0, we recover the condition µ > 0 in (6.20) from the following equation.



96 CHAPTER 6. STABILITY ANALYSIS OF A DRILLING MECHANISM

0 0.5 1 1.5 2

10
-3

5

10

15

20

25

Figure 6.2: Values of gains kp and ki leading to a stable system with the maximum
decay-rate for N = 5 using Theorem 1. The black area is stable and the white area is
said unstable up to an order 5.

Theorem

Order
N = 0 N = 1 N = 2 N = 3 N = 6 µmax

[13, Corollary 1] (×10−3) 4.21 6.39 6.39 6.39 6.39 7.73

Corollary 6.1 (×10−3) 0.87 4.24 7.31 7.59 7.73 7.73

Table 6.1: Estimated decay-rate µ as a function of the order N used. µmax is calculated
using (6.20) for kp = 10−3, ki = 10.

low order but presents a bias. In short, using the projection methodology helps getting
better results and we will see in the following section that estimating the decay-rate
of system (6.4) is critical to assess the practical stability. We can use a discretization
algorithm using a Euler forward scheme to approximate the angular velocity φ in the
pipe in (6.2) and (6.4). Figure 6.3 represents a simulation on the linear system and
it confirms the same observation about the decay-rate. Indeed, one can see that the
energy of the system is well-bounded by an exponential curve and that the bound
becomes more and more accurate as N increases.

We can use a discretization algorithm using a Euler forward scheme to approximate
the angular velocity φ in the pipe in (6.2) and (6.4). Figure 6.4 highlights that for high
desired angular speed Ω0 and an initial condition close to the equilibrium point, linear
system (6.4) and nonlinear system (6.2) behave similarly. The downhole velocity differs
more significantly than the surface one, which is normal because the nonlinearity acts
on the bit only.

Figure 6.5 displays the result for a zero initial condition on the linear and nonlinear
systems. It appears that the nonlinear system has generally less overshoot than the
linear one. For high desired angular speed Ω0, the two systems behave similarly (Fig-
ures 6.5a and 6.5b) and they are asymptotically stable. As noted previously, this is not
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Figure 6.3: Energy of Xφ with the linear system for kp = 10−3, ki = 10 and Ω0 = 5.
The initial condition is φ0(x) = 4 (

∫ x
0 φ
∞
x (s)ds+ 0.1 cos(2x)), φ1 = 2Ω0 and Z(0) =

2 [z∞1 z∞2 ]>.

the case for a small Ω0 where the linear system is still asymptotically stable while the
nonlinear system is just stable. We can clearly see on 6.5d the stick-slip effect occurring.

In this section, we derived an LMI condition to ensure that the linear system (with
a static approximation for T0) is exponentially stable. In the next section, we will prove
its practical stability using similar tools.

6.3 Stability analysis of system (6.2)

The experiments conducted previously show that there exists a neighborhood NX∞
φ

of
X∞φ such that for any initial condition X0

φ ∈ NX∞φ , the trajectory of the nonlinear
system (6.2) goes exponentially to X∞φ . In other words, the previous result is a local
stability test for the nonlinear system and does not extend straightforward to a global
analysis.

6.3.1 Practical stability of (6.2)

We propose in this part a solution to Problems 1 and 2. We want then to show that
system (6.2) is practically stable, meaning that there exists zbound such that the following
holds:

∀η > 0, ∃T > 0, ∀t ≥ T, |z1(t)− Ω0| ≤ zbound + η. (6.22)

We also want to get an estimation of this zbound.
Practical stability relies mostly on the bounding of Tnl, that is why the following

lemma presents three sector conditions related to the non linear friction term.
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Figure 6.4: Numerical simulations for system (6.4) with kp = 10−3, ki = 10 and Ω0 =
10. The parameters are φ0(x) = (1 + 0.32 sin(x))

∫ x
0 φ
∞
x (s)ds, φ1 = Ω0 and Z(0) =

(z∞1 z∞2 )>. (L) refers to the solution of the linear approximation and (NL) to the
solution of system (6.2).
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(a) Linear system with Ω0 = 20
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(b) Nonlinear system with Ω0 = 20
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(c) Linear system with Ω0 = 5
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(d) Nonlinear system with Ω0 = 5

Figure 6.5: Numerical simulations for system (6.4) and (6.2) for two desired angular
velocities and with a 0H initial condition.
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Figure 6.6: The sector conditions defined in (6.23) encapsulate the nonlineary Tnl inside
the gray box.

Lemma 6.3: Sector conditions on Tnl [13]

For almost all z̃1 ∈ R, the following holds:

Tnl(z̃1 + Ω0)2 ≤ T 2
sbµ

2
sb = T 2

max, (6.23a)
Tnl(z̃1 + Ω0)2 ≥ T 2

sbµ
2
cb = T 2

min, (6.23b)
−2 (z̃1 + Ω0)Tnl(z̃1 + Ω0) ≤ 0. (6.23c)

Proof : These inequalities can be easily verified using Figure 6.6 or the following
expression of Tnl:

Tnl(θ) = Tsb
(
µcb + (µsb − µcb) e−γb|θ|

)
sign(θ), (6.24)

where the parameters are defined in Table 2.1. Indeed, equation (6.23c) is obtained
noting that Tnl is an odd function. Since it is strictly decreasing for θ > 0, we get
equations (6.23a) and almost everywhere, we get (6.23b). ♦

Theorem 6.2: Practical stability of the drilling pipe [13]

Let N ∈ N and Vmax > 0. If there exist PN ∈ S2+2(N+1), R = diag(R1, R2) �
0, S = diag(S1, S2) � 0, Q ∈ S2

+, τ0, τ1, τ2, τ3 ≥ 0 such that (6.6) holds together
with:

ΞN = Θ̄N − τ0Π0 − τ1Π1 − τ2Π2 − τ3Π3 ≺ 0,

PN + SN � 0,
(6.25)



100 CHAPTER 6. STABILITY ANALYSIS OF A DRILLING MECHANISM

where

Θ̄N = diag(ΘN , 02)− α2 He
(
(Fm1 − T0Fm2)>e>1 PN F̃N

)
,

F̃N =
[
FN 02(N+1)+2,2

]
, e1 =

[
1 01,2(N+1)+1

]>
,

Fm1 =
[
01,2(N+1)+4 1 0

]
, Fm2 =

[
01,2(N+1)+4 0 1

]
,

Π0 = VmaxF
>
m2Fm2 − F̃>N (PN + SN) F̃N ,

Π1 = π>2 π2 − T 2
maxπ

>
3 π3, Π2 = T 2

minπ
>
3 π3 − π>2 π2,

Π3 = −He((π1 + Ω0π3)>π2),

π1 =
[
1, 01,2(N+1)+3, 0, 0

]
, π2 =

[
01,2(N+1)+4, 1, 0

]
, π3 =

[
01,2(N+1)+4, 0, 1

]
,

and all the parameters defined as in Theorem 6.1, then the equilibrium point X∞φ
of system (6.2) is practically stable. More precisely, equation (6.22) holds and

zbound =
√
Vmax
ε1

,

where ε1 verifies S � ε1
2 I2 and is the smallest eigenvalue of P̃N defined by:

P̃N = (PN + SN)

I2 0

0 Ĩ−1
N

 .

Some practical consequences of Theorem 6.2 are given after the proof.
Proof : First, let do the same change of variable as before:

X̃φ = Xφ −X∞φ .

We use the same Lyapunov functional as in (6.9). The positivity is ensured in the exact
same way.

Bounding of V̇N(X̃φ) Since the nonlinearity affects only the ODE part of system (6.2),
the difference with the previous part lies in the dynamic of Z̃:

˙̃Z(t) = d

dt

Z(t)−

z∞1
z∞2




= AφZ̃(t) +Bφ

φ̃t(0, t)
φ̃x(1, t)

+ Fφ

 0

Tnl(z̃1(t) + Ω0)− T0

 .

For the bound on the time derivative, following the same strategy as before, we
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easily get:

V̇N(X̃φ) ≤ ξ̃>NΘN ξ̃N − 2α2(Tnl(z̃1 + Ω0)− T0)e>1 PN Z̃N

+
N∑
k=0

(2k + 1)X̃>kQX̃k −
∫ 1

0
χ̃>(x)Qχ̃(x)dx.

(6.26)

We introduce a new extended state variable ξ̄N =
[
ξ̃>N Tnl(z̃1 + Ω0) 1

]>
. Using the

notation of Theorem 6.2, equation (6.26) rewrites as:

V̇N(X̃φ) ≤ ξ̄>NΘ̄N ξ̄
>
N +

N∑
k=0

(2k + 1)X̃>kQX̃k −
∫ 1

0
χ̃>(x)Qχ̃(x)dx. (6.27)

The negativity of the bound would be ensured if Θ̄N ≺ 0. Since its last 2 by 2 diagonal
block is 02, it is impossible to get such an inequality. We then use the definition of
practical stability.

Definition of practical stability of (6.2) If we rewrite (6.22) in terms of VN , the
system is practically stable if there exists Vmax > 0 such that following holds:

∀η > 0, ∃T > 0, ∀t > T, VN
(
X̃φ(t)

)
≤ Vmax + η.

In other words, the ball S =
{
X̃φ ∈ H | VN

(
X̃φ

)
≤ Vmax

}
is attractive and invariant.

This implies that VN is strictly decreasing when outside S, and that leads to Figure 6.7,
which illustrates this concept in a two-dimension plane. Hence, we want the existence
of ε3 > 0 such that the following holds:

∀X̃φ ∈ H, such that VN(X̃φ)− Vmax ≥ 0 ⇒ V̇N(X̃φ) ≤ −ε3‖X̃φ‖H. (6.28)

A sufficient condition to get VN(X̃φ)− Vmax ≥ 0 is:

VN(X̃φ)− Vmax ≥ Z̃>NPN Z̃N +
∫ 1

0
χ̃>(x)Sχ̃(x)dx− Vmax

≥ −ξ̄>NΠ0ξ̄N ≥ 0.

The previous inequality is obtained using Bessel inequality (Proposition E.5) on
∫ 1
0 χ̃
>(x)Sχ̃(x)dx.

Hence, a sufficient condition for S to be invariant and attractive is:

∀X̃φ ∈ H, such that ξ̄>NΠ0ξ̄N ≤ 0 ⇒ V̇N(X̃φ) ≤ −ε3‖X̃φ‖H.

Noting that z̃1 = π1ξ̄N , Tnl(z̃1 + Ω0) = π2ξ̄N and 1 = π3ξ̄N , Lemma 6.3 rewrites as:

∀i ∈ {1, 2, 3}, ξ̄N Πi ξ̄N ≤ 0.

Using the estimate calculated in (6.27) and in a similar way as for Theorem 6.1, a
sufficient condition to be practically stable is:

∀ξ̄N 6= 0 s. t. ∀i ∈ [0, 4], ξ̄>NΠiξ̄N ≤ 0, ξ̄>NΘ̄N ξ̄N < 0. (6.29)

The technique called S-variable, explained in [54] for instance, translates the pre-
vious inequalities into an LMI condition. Indeed, Theorem 1.1 from [54] shows that
condition (6.29) is verified if

∃τ0, τ1, τ2, τ3 ≥ 0, Θ̄N − τ0Π0 − τ1Π1 − τ2Π2 − τ3Π3 < 0.
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Figure 6.7: Illustration of the practical stability of (6.2). This is a projection of X̃φ on
(z̃1, z̃2). The dotted lines are isolines of VN . The ball S refers to VN ≤ Vmax.

Practical stability in the sense of ‖ · ‖H Consequently, condition (6.25) implies
that S is an invariant and attractive set for system (6.2). Using (6.10), we then get the
following: {

X̃φ ∈ H | ‖X̃φ‖H ≤ Xbound = V 1/2
maxε

−1/2
1

}
⊇ S,

Then, the equilibrium point X∞φ of system (6.2) verifies:

∀η > 0, ∃T > 0, ∀t ≥ T, ‖Xφ −X∞φ ‖H ≤ Xbound + η. (6.30)

Since, by definition of ‖ · ‖H, |z1−Ω0| ≤ ‖X̃φ‖H, we get that for Xbound = zbound the
desired objective (6.22) indeed holds. ♦

6.3.2 On the optimization of zbound
The condition (6.25) is a Bilinear Matrix Inequality (BMI) since PN , τ0 and Vmax are
decision variables and it is therefore difficult to get its global optimum. Nevertheless,
the following lemma gives a sufficient condition for the existence of a solution to this
problem.

Corollary 6.2: Equivalent condition for practical stability [13]

There exist τ0 > 0 and Vmax such that Theorem 6.2 holds if and only if there
exists N > 0 such that LMIs (6.6) and (6.5) are satisfied.
In other words, the equilibrium point of system (6.2) is practically stable if and
only if the linear system (6.4) is exponentially stable.
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Proof : Note first that expending (6.25) with τ3 = 0 leads to:

ΞN =



ΘN,τ0/2 κPN

κ>PN

τ2 − τ1 0

0
τ1T

2
max − τ2T

2
min

−τ0Vmax

 , (6.31)

where κPN ∈ R(4+2(N+1))×2 depends only on PN .

Proof of sufficiency: Assume there exists N > 0 such that LMIs (6.6) and (6.5) are
satisfied. Considering τ2 = 0 and using Schur complement on ΞN , we get:

ΞN ≺ 0⇔ ΘN + τ0(F>NPNFN + SN)− κPN

− 1
τ1

0

0 1
τ1T 2

max−τ0Vmax

κ>PN ≺ 0,

with τ0Vmax > τ1T
2
max. Since ΘN ≺ 0, considering τ0 small enough, τ1 large and

Vmax > τ1τ
−1
0 T 2

max the previous condition is always satisfied and Theorem 6.2 applies.

Proof of necessity: Assume ΞN ≺ 0 and (6.6) holds. Then its first diagonal block
must be definite negative. Consequently ΘN,τ0/2 ≺ 0 and, according to Corollary 6.1,
system (6.4) is exponentially stable with a decay-rate of at least τ0/2. ♦

Remark 6.6: On the optimization of Vmax

Equation (6.31) shows that the larger τ0 is, the smaller Vmax can be. In other
words, having the largest τ0 improves the bound on the functional VN . We then
want τ0 as large as possible.
The upper-left block of ΞN in (6.31) is nothing more than ΘN,τ0/2. Then τ0
is related to the decay-rate of the linear system and using (6.20), we get the
following necessary condition:

τ0 ≤ 2µmax.

As seen in the previous section, the projection methodology helps giving a better
estimate of the decay-rate and consequently a higher τ0 and a smaller Vmax. Thus,
the projection methodology helps having a better optimization.

Thanks to Corollary 6.2, the following algorithm should help solving the BMI if
Theorem 6.1 is verified.
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Algorithm 6.1: Finding the smallest zbound

Assume that equations (6.5) and (6.6) are verified for a given N ∈ N.

1. Fix τ0 = 2µmax as defined in (6.20).

2. Check that equations (6.5), (6.6) and (6.25) are satisfied for Vmax a strictly
positive decision variable. If this is not the case, then decrease τ0 and do
this step again.

3. Thanks to Corollary 6.2, there exists a τ0 small enough for which equations
(6.5), (6.6) and (6.25) hold. Once τ0 is found, freeze this value.

4. Since the problem is unbounded, it is possible to fix a variable without loss of
generality, let Vmax = 104 for instance and solve the following optimization
problem:

min
PN ,S,R,Q,τ1,τ2,τ3,εP

−εP

subject to
(6.5), (6.6) and (6.25),

PN + SN − diag(εP , 02N+3) � 0,

R � 0, S � 0, Q � 0.

5. Then compute zbound =
√
Vmaxε

−1
1 where ε1 is defined in (6.10).

This algorithm does converge because of Corollary 6.2. Nevertheless, it is not proven
to converge to the minimal value of zbound.

Remark 6.7: Objective of the optimization problem

In step 4, we maximize εP . This variable is highly related to ε1. Actually, using
(6.19), we have:

VN(X̃φ) ≥ εP (z1 − Ω0)2,

and ε1 ≤ εP . For numerical issues, it is better to optimize on εP than on ε1.

6.3.3 Numerical Simulations & discussion

First of all, since Theorem 6.1 applies, then Corollary 6.2 holds and system (6.2) is
practically stable. We apply the numerical procedure described in Algorithm 6.1 to
find the minimal zbound. Figure 6.8 illustrates the results obtained.

In Figure 6.8a, we study the effect of τ0 on the optimization process. We stopped
at order N = 7 because when N gets higher than 8. This is quite common when we
use Yalmip with an objective function. Nevertheless, it appears that when τ0 increases,
we indeed get a smaller zbound, which is in accordance with Remark 6.6. We also see
that when we increase τ0, we then need to increase the order N to get feasible LMIs
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(a) kφp = 10−3, kφi = 10 and Ω0 = 5 and some
values of τ0. The limit is zbound = 29.
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(b) kφp = 10−3, kφi = 10 and N ∈ 5.
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(c) kφp = 10−3, Ω0 = 5 and N ∈ 5.
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(d) kφi = 10, Ω0 = 5 and N ∈ 5.

Figure 6.8: Solution zbound of BMI (6.25) with algorithm 6.1.

(as noted in Table 6.1).
Figure 6.9 shows the energy of the system as a function of time. One can see that

the bound Xbound is quite accurate since the error between the maximum of the auto-
oscillations and Xbound is around 53%. Moreover, note that max |z1 − Ω0| = 11.7 =
0.4Xbound, in other words, nearly half of the oscillations are concentrated in the variable
z1, which means the stick-slip mostly acts on the variable z1 and does not affect much
the rest of the system. Particularly, it seems very difficult to estimate the variation of
z1 knowing only φt(0, t).

Figure 6.8b describes the variation of the bound zbound when Ω0 varies. There is a
slight decrease of the bound after Ω0 = 10rad.s−1. This is counter-intuitive and does
not reflect the observations made with Figure 6.5. One explanation is that we didn’t
state that Tnl is a strictly decreasing function for positive θ.

The plot in Figure 6.8c shows that the value of the integral gain ki does impact
the oscillations due to stick-slip since Xbound increases from 25 to 43 for ki ∈ [0.5, 16]
and the LMIs become infeasible after this point (these values have been obtained with
Ω0 = 5, kp = 10−3 and N = 5). The proportional gain plays a slightly different role
since it fastens the system (see equation (6.20)) and it slightly increases the oscillations.
To stay robustly stable against small delays in the loop, as noted in Section 6.2.3, we
should consider 0 ≤ kφp ≤ 2.1·10−3 which does not offer a large set of choices. It appears
that the minimum of zbound is obtained for kφp close to 0. Consequently, increasing the
gain kφp seems not to reduce the stick-slip effect.
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Figure 6.9: Energy of Xφ for kφp = 10−3, kφi = 10 and Ω0 = 5. The initial condition is
φ0(x) = (1 + 1.2 sin(2x))

∫ x
0 φ
∞
x (s)ds, φ1 = Ω0 and Z(0) = [z∞1 z∞2 ]>.

As a conclusion, if a PI controller does not weaken the stick-slip effect, the equilib-
rium point of the controlled system is practically stable. Moreover, it does enable an
oscillation around the desired equilibrium point and a local convergence to that point.

Remark 6.8: Using Tsmooth instead of Tnl

If we use another model for the nonlinearity, we will get different results. For
example, using Tsmooth as defined in (2.3), inequality (6.23b) is not valid anymore,
and we must choose τ2 = 0. The two other sector conditions of (6.23) are still
valid. Since there is less decision variable, the new optimization problem cannot
lead to a lower zbound. We conducted similar tests with τ2 = 0, kφp = 10−1, ki =
10,Ω0 = 5 and N = 7. We get zbound = 328, which is far more than previously.

This observation makes us think on the importance of the chosen model before
analysis. It is clear that Tnl is not smooth, and consequently, the solution is
less regular than considering Tsmooth. However, the analysis is better with the
discontinuous Tnl. There is a compromise to do.

The torsional dynamic has been studied in the two last sections of this chapter. We
now move to the axial stability analysis, using slightly different tools.

6.4 Conclusion
This chapter was about the stability analysis of a drilling pipe, controlled by a PI
controller. We saw that the projection methodology applied in this specific context
helps characterizing the exponential stability of the linear model. Indeed, we can get
a precise estimate of the decay-rate. This estimation plays an important role when
it comes to evaluate the amplitude of the oscillations due to the stick-slip effect. We
saw that the projection methodology gives a bound on the oscillations. This bound is
very close to the obtained bound in simulations. Finally, we saw that a PI controller
apparently does not weaken the torsional vibrations, but it ensures the stability of the
drilling pipe. This brings an answer to Problems 1 and 2.
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Applying the projection methodology on a drilling pipe is still at its beginning. This
chapter shows that it seems very promising and should help designing controllers. The
perspectives and conjectures which arose during this short study are reported in the
Perspective section of the following chapter.





7
Conclusion & Perspectives

7.1 General conclusion
This thesis has considered the stability analysis of a coupled ODE/string equation with
application to a drilling mechanism. The modern technique of projecting the infinite-
dimensional state on the orthonormal basis of Legendre polynomials has been applied
to this specific system, leading to very accurate stability tests. This work was organized
in five chapters and the following contributions were obtained.

• The first two chapters dealt with a presentation of the model used for a drilling
machine and illustrated the coupled ODE/string equation. Moreover, a proof of
existence and uniqueness of a solution was provided for the linear case.

• The third chapter focused on applying the input/output stability analysis tools
on a toy-example system. It enlightened the fundamental properties of a wave
equation and gave some necessary stability conditions. This chapter also proposed
to study the system using the quadratic separation framework. The projection
methodology has then been adapted in this context, and it appeared that it can
be seen as an inequality improvement. Some theoretical contributions on the
study of infinite-dimensional systems using quadratic separation were provided.
However, the obtained stability test seems not to converge to exact results.

• Chapter 5 aimed at increasing the accuracy of the previous test considering
a Lyapunov-based stability analysis. This chapter introduced the projection
methodology as an estimation of the infinite-dimensional state in a finite- dimen-
sional basis. The obtained Lyapunov functional candidate was then interpreted as
the projection of the complete one on the same basis. The obtained stability tests
are therefore more accurate than the previous ones but are more computationally
demanding.

• The last chapter made use of the tools developed in Chapter 5 to analyze the
behavior of a PI-controlled drillstring. It was shown that the projection method-
ology helped estimating the decay-rate of the solution to the linear drilling pipe
model. The stability analysis of the nonlinear system was conducted using the
notion of practical stability. Its accuracy highly depends on the estimated decay-
rate of the linear system. Consequently, increasing the number of projections
helps having a better bound on the solution of the nonlinear system.
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Figure 7.1: Cone-bounded and local sector conditions for θ 7→ Tnl(θ + Ω0) − Tnl(Ω0).
For that example, we considered Ω0 = 5 and r = 2.

As a conclusion, we can say that the projection methodology is a theoretical tool
that helps capturing in an efficient manner the infinite-dimensional properties of coupled
systems. We saw that this methodology can be interpreted as an improvement on an
inequality, a state extension of a projection of a complete Lyapunov functional.

7.2 Perspectives

The results obtained in the previous chapters show that the projection methodology
is a promising tool for the stability analysis of heterogeneous systems. Nevertheless,
this is a preliminary work and there are still open questions and new challenges left for
future research in this domain. The following subsections give a flavor of what can be
investigated at short and long term.

7.2.1 Local and global asymptotic stability of the nonlinear
torsional dynamic of a drilling pipe

In Chapter 6, we conducted a global stability analysis. The idea is now to complete this
study by doing a local stability analysis. At the core of this idea there is the embedding
of the nonlinear term θ ∈ [−r, r] 7→ Tnl(θ + Ω0) − Tnl(Ω0) into a region delimited by
linear functions as done in [43, 157] for the saturation. Figure 7.1 shows an example
of such a bounding. Then pursuing the same idea than previously with the S-variable
approach, we should get a local exponential stability test.

The projection methodology should help having an estimate of the basin of attrac-
tion, as done in [146] for a transport equation. When increasing the order, the estimated
basin of attraction may converge to the exact one. For a given Ω0, the aim is then to
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get an estimation of the parameter Xbasin(Ω0) ∈ R+ such that the following holds:

∀X0
φ ∈ H s. t. ‖X0

φ −X∞φ ‖H ≤ Xbasin(Ω0) ⇒ lim
t→∞
‖Xφ(t)−X∞φ ‖H = 0,

where Xφ is the solution of system (6.2) with initial condition X0
φ. Of course, the value

Xbasin highly depends on the desired angular speed Ω0. For a given Tm and TM as
defined in Figure 7.1, a quick analysis of the torque function Tnl (as defined in (2.2))
shows that limΩ0→∞ r(Ω0) = ∞, in other words, the region where the encapsulation is
true increases with Ω0. Consequently, we make the following conjecture.

Conjecture 7.1

The volume of the basin of attraction Xbasin has the following properties:
∀Ω0 > 0, d

dΩ0
Xbasin(Ω0) > 0,

lim
Ω0→∞

Xbasin(Ω0) =∞.

If the previous conjecture is verified, that means there exists an Ωmin such that for
all desired angular speed Ω0 higher than Ωmin, Xbasin(Ω0) is strictly less than Xbound(Ω0)
defined in (6.30) as

∀η > 0 ∃T > 0, ∀t ≥ T, ‖Xφ(t)−X∞φ ‖H ≤ Xbound(Ω0) + η.

The attractive and invariant ball SΩ0 =
{
Xφ ∈ H | ‖Xφ −X∞φ ‖H ≤ Xbound

}
determined

using the notion of practical stability in Chapter 6 appears to be slightly decreasing with
Ω0, we get then Xbound(Ω0) ≤ Xbound(0+) ' 25. Then, there exists Ωmin such that for
Ω0 > Ωmin, the ball SΩ0 is included in the basin of attraction of (6.2) (see Figure 7.2),
and the system is globally asymptotically stable. This would be in accordance with the
result obtained using the describing function analysis conducted in Appendix D (see
Figure D.6).

Conjecture 7.1 leads to the possible use a controller which makes the solution moves
from a basin of attraction to another, ensuring the global asymptotic stability, as done
for linear parameter varying systems in [31, 139] for instance. That would bring a
rigorous proof of what is done in practice as noted in [135, Chap. 8] or [10].

7.2.2 On a more general coupled ODE/PDE system

Along this thesis, we used the quadratic separation framework or Lyapunov-based ar-
guments to conclude on the stability of a coupled ODE/string equation system. There
is another famous framework used to prove input/output stability which was not used
here. This other framework is highly related to quadratic separation and uses Integral
Quadratic Constraints (IQCs) to encapsulate the uncertain operator [105, 165]. During
my stay in Stuttgart with Professor Carsten Scherer, we considered the case where the
uncertainty is an infinite-dimensional dynamic, defined in the sequel.
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Figure 7.2: This schematic represents the attractive and invariant ball (in green) and
the basin of attraction (in red) of system (6.2) for two values of desired angular speed
Ω1

0 < Ωmin < Ω2
0. This is a projection on the plane (z1, z2).

We are interested now in the more general coupled ODE/PDE system described in
Figure 7.3 and where the uncertainty follows these equations:

A z(x, t) =
m∑
k=0

Fk∂
(k)
x z(x, t), t > 0, x ∈ (0, 1),

w(t) = LBm(z)(t), t > 0,

z(x, 0) = 0l,1, x ∈ [0, 1],

(7.1)

where z(x, t) ∈ Rl and L ∈ Rr×2ml. The domain of the operator A is:

D(A ) = {z ∈ Hm(0, 1) | KBBm(z) = Kyy} , (7.2)

where KB ∈ Rml×2ml has full-rank, Ky ∈ Rml×p and

Bm(z)(t) = col
(
z(0, t), z(1, t), . . . , ∂(m)

x z(0, t), ∂(m)
x z(1, t)

)
,

with m ∈ N, m > 0 and Fm 6= 0. The operator Bm is similar to the trace operator as
defined in [29], for instance, whose output is the values of the signal and its derivatives
at the two boundary points. The condition expressed by KBBm(z) = Kyy reflects
the boundary conditions. A similar but even more general description of this kind of
uncertainty appears in [3].

Let the new system described in Figure 7.4 and assume that ‖ · ‖D(A ) is a semi-
norm on D(A ). The definition of an IQC with terminal cost Z introduced in [140] for
finite-dimensional systems can be extended for an infinite-dimensional state z as:

∀T > 0,
∫ T

0
ψz(t)>Mψz(t)dt+ ξ>(T )Zξ(T ) ≥ ε‖z(T, ·)‖2

D(A ). (7.3)

where ε > 0, M and Z are not signed matrices of appropriate dimensions. ξ is the state
of filter Ψz and ψz is its output. An IQC relates then the energy spent in the system
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Figure 7.3: General coupled ODE/PDE system.

Figure 7.4: General coupled ODE/PDE system within the IQC framework.

between 0 and T and the remaining energy at time T . This is then a kind of dissipation
inequality.

This framework is well adapted to our study since it proposes a new interpretation
of the projection methodology. Indeed, the filter Ψz can be seen as the generator of
the projection coefficients of z and then ψz is the collection of the projection coeffi-
cients. Then inequality (7.3) can be seen as a time integration of Bessel inequality
(Proposition E.5).

The main advantage of this framework lies in its elegant formulation which enables
a very simple expression of the stability in terms of LMIs. The current work aims at
expending the result obtained in Theorem 3 from [140] to infinite-dimensional systems.
Nevertheless, the stability analysis of a very general class of systems such as (7.1)
seems idyllic and it appears rapidly that each class of equations1 must be explored
independently. This is on going work.

7.2.3 Other perspectives

The two previous points were deeply developed during my PhD but there are other
perspectives, which are of main interest as well and would be relevant for future work.
About the general coupled ODE/PDE system, the following axes are proposed.

On the wellposedness: the notion of wellposedness developed in Definition 4.3 is
highly related to the notion of wellposedness in Hadamar sense [42, p. 15] which

1A class of equation is defined by its degree m.
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requires existence, uniqueness and continuous dependency on the initial state. We can
investigate under which condition a general coupled ODE/PDE system as in Figure 7.3
can be translated into (4.16).

Move from stability analysis to controller design: we derived in this manuscript
LMIs, which assess stability of a given coupled ODE/string equation system. The idea
would be to design controllers using the same methodology. Nevertheless, transforming
analysis LMIs to control design LMIs usually leads to conservative conditions. In [12,
15], I have developed algorithms that perform well for time-delay systems. We can then
hope that it is possible to extend them to PDEs.

Observer of the projection coefficients: following the same vein than previously,
it would be interesting to develop more advanced controllers, which make use of the
projection coefficients. Since these coefficients are time-varying, the idea would be to
use an observer as in [141]. This can be considered as a finite-dimensional observer
of an infinite-dimensional system. Such a tool would help building finite-dimensional
controllers for coupled system by discretizing a backstepping control law.

For the specific problem of drilling, the following avenues are given:

Input to state stability and position tracking for the axial dynamic: in Chap-
ter 6, the derived controllers ensure a convergence in speed of the torsional system, but
to prevent any axial compression, a similar controller can be used, leading to an input
to state stability of the axial dynamic with respect to a perturbation generated by the
torque at the bottom. This does work well since the axial system is in cascade with the
torsional one. Nevertheless, a position tracking would also be necessary. This requires
a control on ψ(0, ·) as investigated in [136] for instance.

Using a DOSKIL controller: in [33], a more advance controller using an observer
is used to suppress the stick-slip phenomenon on a finite-dimensional model. The idea
would be to use this model as an observer to estimate the oscillations at the bottom of
the pipe and then use a modified PI controller to reduce the vibrations.

Stability analysis of other controllers: as noted in Chapter 6, there already exist
many controllers for a drilling system. Nevertheless, it is difficult to compare them.
It would be interesting to use the methodology derived in this manuscript to draw a
comparison of the efficiency of each controller.

Coupling with backstepping: many controllers for a drilling pipe are issued from
the so-called backstepping [21, 28, 89, 134]. This manuscript did not propose any com-
parisons nor simulations with a backstepping controlled drillstring since we focused on
stability analysis. The aim is not to replace backstepping but one can imagine merging
these two methodologies to synthesize controllers with the desired performances. In-
deed, the main idea behind backstepping is to find a map between the original system
and a stable target system. So far, the target system is chosen quite simple to be sure
that it is stable with some robustness margin. Using the projection methodology would
help considering more complex target systems with more desirable properties.
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Appendix to Chapter 3

This appendix is devoted to the proof of Theorem 3.1, which is a direct consequence
of Proposition 3.2. The first part of this proof aims at deriving equation (3.6) and the
second part is about proving (3.7).

Quasi-dissipativity of system (3.4)

According to Proposition 3.2, we first need to show that inequality (3.6) holds for
w ∈ R. What follows is an adaptation of [20, Theorem A.1] and [57].

First, we introduce the following scalar product1 on D(A ) for ε ∈ (0, 1):〈[
X
u
v

]
,
[
X̄
ū
v̄

]〉
D(A )

= X>X̄ + 〈u, ū〉L2 + 〈ζ+, ζ̄+〉L2 + (1− ε)〈ζ−, ζ̄−〉L2 ,

where, as in [40], ζ+, ζ−, ζ̄+ and ζ̄− are the so-called Riemann invariants:

ζ+ = v + cux, ζ̄+ = v̄ + cūx,

ζ− = v − cux, ζ̄− = v̄ − cūx.

Note that the norm derived from this inner product is as follows:

‖(X, u, v)‖2
D(A ) = X>X + ‖u‖2

L2 + (2− ε)
(
c2‖ux‖2

L2 + ‖v‖2
L2

)
− 2ε〈v, cux〉L2 .

To prove quasi-dissipativity, we use the following notation:
X̄

ū

v̄

 = A


X

u

v

 =


AX +Bu(1)

v

c2uxx

 .

Consequently, ζ̄+ = c∂xζ+ and ζ̄− = −c∂xζ−. Note now that for (X, u, v) ∈ D(A ),
we get u(1) = χ+KX because u(0) = KX with the notation χ =

∫ 1
0 ux(x)dx. Conse-

quently, the following holds:〈
A
[
X
u
v

]
,
[
X
u
v

]〉
D(A )

= X>(A+BK)>X + χ>B>X + 〈u, v〉L2

+c
∫ 1

0

(
∂xζ

>
+ (x)ζ+(x)− (1− ε)∂xζ>− (x)ζ−(x)

)
dx.

1Since it is related to the canonical scalar product on Rn × X, we indeed get that 〈·, ·〉D(A ) is a
symmetric positive definite bilinear form on D(A ) for ε < 1.
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A direct integration leads to:〈
A
[
X
u
v

]
,
[
X
u
v

]〉
D(A )

= 1
2X

>He(A+BK)X + 1
2 He

(
χ>B>X

)
+ 〈u, v〉L2

+ c

2
[
ζ>+ (x)ζ+(x)− (1− ε)ζ>− (x)ζ−(x)

]1
0
.

Introduce the variable ξ(x) = col (X,χ, u(x), v(x), cux(0), v(1)) for x ∈ [0, 1], the
boundary conditions writes as:

ζ+(0)=K(A+BK)X+KBχ+cux(0)=H+ξ(x), ζ+(1)=(1− cc0)v(1)=G+ξ(x),

ζ−(0)=K(A+BK)X+KBχ−cux(0)=H−ξ(x), ζ−(1)=(1 + cc0)v(1)=G−ξ(x),

where

H+ =
[
K(A+BK) KB 0 0 1 0

]
, G+ =

[
0 0 0 0 0 (1− cc0)

]
,

H− =
[
K(A+BK) KB 0 0 −1 0

]
, G− =

[
0 0 0 0 0 (1 + cc0)

]
.

Finally, we get:

〈
A
[
X
u
v

]
,
[
X
u
v

]〉
D(A )

= 1
2

∫ 1

0

[ X
χ
u(x)
v(x)

]> [ He(A+BK) B 0 0
B> 0 0 0
0 0 0 I
0 0 I 0

] [ X
χ
u(x)
v(x)

]
+c ξ>(x)

(
G>+G+ −H>+H+

)
ξ>(x)

−(1− ε)c ξ>(x)
(
G>−G− −H>−H−

)
ξ(x)dx.

=
∫ 1

0
ξ>(x)Πξ(x)dx,

(A.1)
where Π =

[ Π11 Π12
Π>12 Π22

]
, with Π11 and Π12 are symmetric matrices which are not needed

in the sequel but Π22 has the following form:

Π22 = c

2

−ε 0

0 ε(1 + cc0)2 − 4cc0

 .
Picking a small enough ε ensures that Π22 is negative definite. Consequently, using
Schur complement (Proposition E.1), we get:Π11 − Γ(w) Π12

Π>12 Π22

 ≺ 0⇔ Π11 − Γ(w)− Π12Π−1
22 Π>12 ≺ 0, (A.2)

where

Γ(w) = w diag



In 0 0 0

0 2(1− ε)c2 0 0

0 0 1 0

0 0 0 2(1− ε)


.
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Assuming again that ε is sufficiently small so that, for w > 0, we get Γ � 0, then there
always exists w large enough such that (A.2) holds. In other words, for w large enough,
Π ≺ diag(Γ(w), 02) and (A.1) becomes:

〈
A
[
X
u
v

]
,
[
X
u
v

]〉
D(A )

=
∫ 1

0
ξ>(x)Πξ(x)dx ≤

∫ 1

0
ξ>(x)Γ(w)ξ(x)dx.

Consequently, there exists w > 0 such that the following holds:〈
A
[
X
u
v

]
,
[
X
u
v

]〉
D(A )

≤ w
{
X>X + ‖u‖2

L2 + 2(1− ε)
(
‖v‖2

L2 + c2χ>χ
)}
.

Using Jensen inequality E.3 implies that χ>χ ≤ ‖ux‖2
L2 , that leads to:〈

A
[
X
u
v

]
,
[
X
u
v

]〉
D(A )
≤w

{
X>X+ ‖u‖2

L2 + (2− ε)
(
‖v‖2

L2 + c2‖ux‖2
L2

)}
−wε

(
‖v‖2

L2 + c2‖ux‖2
L2

)
≤ w‖(X, u, v)‖2

D(A ) − wε
(
‖v‖2

L2 + c2‖ux‖2
L2 − 2|〈v, cux〉L2|

)
.

Noting that ‖v − cux‖2
L2 = ‖v‖2

L2 − 2〈v, cux〉L2 + c2‖ux‖2
L2 ≥ 0, the previous inequality

implies the following:

∃w ∈ R,
〈
A
[
X
u
v

]
,
[
X
u
v

]〉
D(A )

≤ w‖(X, u, v)‖2
D(A ),

and the system is quasi-dissipative.

The range condition for system (3.4)

We want to show that the following holds:

∃s0 > 0,∀s > s0,
{

(sI −A )
[
X
u
v

]
|
[
X
u
v

]
∈ D(A )

}
= Rn ×X. (A.3)

We will proceed by double inclusion.

1. Since D(A ) ⊂ Rn ×X, we get the following:

∀s > 0,
{

(sI −A )
[
X
u
v

]
|
[
X
u
v

]
∈ D(A )

}
⊆ Rn ×X. (A.4)

2. We want now to prove that

∃s0 > 0,∀s > s0,
{

(sI −A )
[
X
u
v

]
|
[
X
u
v

]
∈ D(A )

}
⊇ Rn ×X. (A.5)

We follow the same lines as in [19, 109].
Let (r, g, h) ∈ Rn ×X, we assume that there exists (s,X, u, v) ∈ R+ ×D(A ) for
which the following set of equations is verified:

sX − AX −Bu(1) = r, (A.6a)
su(x)− v(x) = g(x), (A.6b)

sv(x)− c2uxx(x) = h(x), (A.6c)
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for all x ∈ [0, 1]. Equations (A.6b), (A.6c) give:

∀x ∈ (0, 1), u(x) = k1 exp(sc−1x) + k2 exp(−sc−1x) +G(x)

where G(x) =
∫ x
0
sg(ν)+h(ν)

sc
sinh

(
s
c
(ν − x)

)
dν ∈ H2 and k1, k2 ∈ R are constants to

be determined. Using the boundary conditions u(0) = KX, we get the following
equivalent system for all x ∈ [0, 1]:

sX − AX −Bu(1) = r, (A.7a)
u(x) = 2k1sinh(sc−1x) +KXe−sc

−1x +G(x), (A.7b)
su(x)− v(x) = g(x). (A.7c)

Taking its derivative with respect to x at the boundary x = 1, we get:

ux(1) = 2sc−1k1cosh(sc−1)− sc−1KXe−sc
−1 +Gx(1),

We also have ux(1) + c0v(1) = 0, leading to a uniquely defined k1 ∈ R. Then, we
get:

u(1) = G2 +KXf(sc−1)

with G2 ∈ R and f(y) =
(
1− (cc0−1)sinh(y)

2(cosh(y)+cc0sinh(y))

)
e−y. Then using (A.6a), we get:

(
sIn − (A+BKf(sc−1))

)
X = r +BG2.

Since f is continuous, f(0) = 1 and limy→∞ f(y) = 0 then f is bounded over R+

and there exist (fmin, fmax) ∈ R2 such that f(y) ∈ [fmin, fmax] for y ∈ R+. Let

s0 = max
fm∈[fmin,fmax]

λmax(A+ fmBK),

where λmax(M) for M ∈ Rn×n is the maximum eigenvalue of M in terms of mod-
ulus. s0 is consequently the modulus of the highest eigenvalue of A+BKf(sc−1)
for s > 0. We then get:

∀s > s0, det
(
sIn − (A+BKf(sc−1))

)
6= 0.

Consequently, for all s > s0, sIn − (A+BKf(sc−1)) is invertible and we get:

X =
(
sIn − (A+BKf(sc−1))

)−1
(r +BG2) , (A.8a)

u(x) = 2k1sinh(sc−1x) +KXe−sc
−1x +G(x), (A.8b)

v(x) = su(x)− g(x), (A.8c)

and (X, u, v) ∈ D(A ). The assertion is then proved and (A.3) holds.
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B.1 Proof of Theorem 4.3
First of all, since E◦ and Ee are full column rank, then there exist E+

◦ , E+
e and E+

2 which
are left pseudo-inverses of E◦, Ee and E2, respectively. We then get that there exists E+

1
such that the following holds:

E+
e =

E+
◦ 0

E+
1 E+

2

 .
Using Proposition 4.3, the wellposedness of Σe is equivalent to

∀s ∈ C̄+\{0}, det


 I −E+

e Ae
−∇e(s) I


 6= 0.

The above inequality is equivalent to

∀s ∈ C̄+\{0}, det




I

−E+
◦ A◦ 0

−E+
1 A+

◦ − E+
2 A1 −E+

2 A2

−∇◦ 0

−∇1 −∇2

I




6= 0.

Inverting columns 2 and 3 and lines 2 and 3 leads to:

∀s ∈ C̄+\{0}, det





I −E+
◦ A◦ 0

−∇◦ I

0 −E+
1 A+

◦ − E+
2 A1 I −E+

2 A2

−∇1 0 −∇2 I




6= 0.

Using the block-determinant formula, we get that:

∀s ∈ C̄+\{0},



det


 I −E+

◦ A◦
−∇◦ I


 6= 0,

det


 I −E+

2 A2

−∇2 I


 6= 0.



120 APPENDIX B.

Using Proposition 4.3, we get that Σ(E◦,A◦,∇◦) is wellposed.

B.2 Proof of Proposition 4.4
Let us first recall the transfer function F (defined in (4.5)) can be written as follows:

F(s) = KB

sI − A−BKδ(s)e−τs .

Assume that the system is wellposed. In light of Proposition 4.3, we get:

∀s ∈ C̄+\{0}, det
([

In+2 −A⊕
−∇⊕(s) In+2

])
6= 0.

Proposition E.2 translates the previous expression into its equivalent:

∀s ∈ C̄+\{0}, det (In+2 −∇⊕(s)A⊕) 6= 0. (B.1)

Expanding (B.1) leads to the following:

∀s ∈ C̄+\{0}, det
([

In−s−1A 0n,1 −s−1B

−Ke−τs 1 0
01,n −δ(s) 1

])
6= 0.

Define the following matrices Tleft(s) =
[
sIn 0n,2
02,n I2

]
and Tright(s) =

[
In 0n,1 0

01,n 1 0
01,n δ(s) 1

]
. Since

Tleft and Tright are invertible for all s ∈ C̄+\{0}, we get that (B.1) is equivalent to:

∀s ∈ C̄+\{0}, det
(
Tleft(s)

[
sIn−A 0n,1 −B
−Ke−τs 1 0

01,n −δ(s) 1

]
Tright(s)

)
6= 0.

Expending the previous expression and using the block-determinant formula lead to:

∀s ∈ C̄+\{0}, det
([

sIn−A −Bδ(s)
−Ke−τs 1

])
6= 0.

Again, Proposition E.2 allows us to write the equivalent formulation that is:

∀s ∈ C̄+\{0}, det
(
sIn − A−BKδ(s)e−τs

)
6= 0.

Since c0 is assumed to be strictly positive, in order to fulfill the assumptions of Corol-
lary 4.1, it remains to ensure that the determinant is also not zero at s = 0, which is
done by assumption.
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C.1 Differentiation of the extended state
The differentiation of the vector col(X0, . . . ,XN) is not straightforward. The following
lemma, taken from [19] deals with this issue.

Lemma C.1

For any function χ ∈ L2, the following expression holds for any N in N:

d

dt

 X0(t)
...

XN (t)

 = c

1Nχ(1, t)− 1̄Nχ(0, t)− LN

 X0(t)
...

XN (t)

 .
Proof : For a given integer k in N, differentiating Xk along the trajectories of (5.2)

yields Ẋk(t) = c
∫ 1

0 χx(x, t)Lk(x)dx. Then, integrating by parts, we get:

Ẋk(t) = c
(

[χ(x)Lk(x)]10 −
∫ 1

0
χ(x)L′k(x)dx

)
.

Use the properties of the Legendre polynomials given in Definition E.1 yields:

Ẋk(t) = c
(
χ(1, t)− (−1)kχ(0, t)

)
− c

N∑
j=0

`k,jXj(t),

where the coefficient `k,j are defined in equation (E.3). The end of the proof consists
in gathering the previous expression from k = 0 to k = N . ♦

C.2 Towards a lower complexity of Theorem 5.3
This section is dedicated to a slightly different formulation of Theorem 5.3 which helps
getting similar results with a more flexible complexity. The theorem is as follows.

Theorem C.1: Extended stability analysis of (5.2)

Let N1, N2 ∈ N. If there exist PN1,N2 ∈ Sn+N1+N2+2 and S,R ∈ S2
++ and s̃, s̄ ∈ R+

such that
ΞN1,N2 = PN1,N2 + S̃N1 + S̄N2 � 0,

S − S̃ − S̄ � 0,

ΘN1,N2 = He
(
D>N1,N2PN1,N2FN1,N2

)
+c

(
H>N(S +R)HN −G>NSGN − R̃N

)
≺ 0,
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with the notations of Theorem 5.3 and

FN1,N2 =


0n,2 In 0n,2(N+2)

0N1+1,2 0N1+1,n ĨN1,N

0N2+1,2 0N2+1,n ĨN2,N

 , DN1,N2 =


JN

ĨN1,NMN

ĨN2,NMN

 ,
ĨN∗,N =

[
IN∗+1 0N∗+1,N−N∗

]
,

S̃N1 = s̃ diag(0n, 1, 3, . . . , 2N1 + 1, 0N2+1), S̃ = s̃

 1 −1

−1 1

 ,
S̄N2 = s̄ diag(0n+N1+1, 1, 3, . . . , 2N2 + 1), S̄ = s̄

1 1

1 1

 ,

(C.1)

then system (5.2) is exponentially stable.

Proof : The idea is very simple and lies in a different estimation of X∞ as pre-
sented in Table 5.1. Expressed in the original variables u, the coefficients related to the
projections of ut and cux are defined as follows for k ∈ N:

Ux,k =
[
1 −1

]
Xk, Ut,k =

[
1 1

]
Xk.

Consequently, we consider the following state extension for N1, N2 ∈ N:

XN1,N2 = col (X,Ux,0, . . . ,Ux,N1 ,Ut,0, . . . ,Ut,N2) .

It appears then that for N = max(N1, N2), XN1,N2 ∈ Span(XN) and for N1 = N2 = N
and Span(XN,N) = Span(XN), meaning that XN,N is just a re-arrangement of XN

but they represent the same vector. This naturally introduces the following Lyapunov
functional:

VN1,N2 = X>N1,N2PN1,N2XN1,N2 +
∫ 1

0
χ>(x)(S + xR)χ(x)dx,

where PN1,N2 ∈ Sn+N1+N2+2 and S,R ∈ S2. Of course, for N1 = N2 = N , this is the
same Lyapunov functional as in (5.17). Now, we want to apply Proposition 5.1.

Existence of ε1: Similarly to the proof of Theorem 5.3, a lower bound of VN1,N2

can be easily obtained:

VN1,N2(X,χ) ≥ X>N1,N2ΞN1,N2XN1,N2 − s̃
N1∑
k=0

(2k + 1)U>x,kUx,k − s̄
N2∑
k=0

(2k + 1)U>t,kUt,k

+
∫ 1

0
χ>(x)Sχ(x)dx.

Let N = max(N1, N2), since s̃, s̄ ∈ R+, the previous expression becomes:

VN1,N2(X,χ) ≥ X>N1,N2ΞN1,N2XN1,N2 −
N∑
k=0

(2k + 1)X>k
(
S̃ + S̄

)
Xk +

∫ 1

0
χ>(x)Sχ(x)dx.
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Figure C.1: Number of decision variables for Theorem 4.6 and Theorem 5.3 for different
orders.

Using the fact that S � S̃ + S̄ leads to:

VN1,N2(X,χ) ≥ X>N1,N2ΞN1,N2XN1,N2 −
N∑
k=0

(2k + 1)X>k SXk +
∫ 1

0
χ>(x)Sχ(x)dx.

The end is the same as in the proof of Theorem 5.3.
Existence of ε2: This part is very similar to the one in the proof of Theorem 5.3.
Existence of ε3: Let N = max(N1, N2). Using equation (5.22), we get that

XN1,N2 = FN1,N2ξN and ẊN1,N2 = DN1,N2ξN . The existence of ε3 now follows the same
line as in the proof of Theorem 5.3. ♦

The previous theorem is interesting because when it is possible to increase N1 inde-
pendently of N2. This is of main importance since they might play different roles, as we
can see in the simulations proposed in Figure C.2. First of all, note that Figure C.2f is
the same than using Theorem 5.3 with N = 5, and for approximately the same number
of variables. One can see that for values around α = 0, it is not needed to increase
both N1 and N2. Indeed, they play a similar role in this area and we get a very good
estimation of the stability area for N1 = 0 and increasing the other variable. When α
is far from 0, then we may need to increase both N1 and N2 to get a better result.

As a conclusion, we can say that assessing the stability when α 6= 0 is more chal-
lenging and requires more decision variables. Moreover, it seems that increasing the
order of N1 or N2 helps getting stability results for low speed waves. Quantifying the
importance of a projection with respect to another seems a real challenge and, so far,
one gets only observations. This would help reducing the computational burden of the
methodology.
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(b) N1 = 1, N2 ∈ {0, 1, 2, 3, 4, 5}
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(c) N1 = 2, N2 ∈ {0, 1, 2, 3, 4, 5}
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(d) N1 = 3, N2 ∈ {0, 1, 2, 3, 4, 5}
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(e) N1 = 4, N2 ∈ {0, 1, 2, 3, 4, 5}
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(f) N1 = 5, N2 ∈ {0, 1, 2, 3, 4, 5}

Figure C.2: Stability chart for (5.28). The hatched area is unstable according to the
CTCR algorithm presented in Section 4.1.3, while Theorem C.1 gives that the colored
area is stable. The number of decision variables needed to get the stability is reported
in the color bar.
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This appendix is devoted to the use of describing functions for the analysis of the stick-
slip phenomenon. The describing function analysis [8] is a nonlinear tool to approximate
the behavior of a system and characterize its output. It is particularly efficient when the
output is periodic and its Fourier decomposition shows a dominant fundamental and
first harmonic. As seen in Figure D.1, the stick-slip phenomenon has a fundamental
which corresponds to a non-zero mean value in the time representation and a first
harmonic around 0.18 Hz. This observation was first noticed in [33]. We derive here a
very similar study than in [33] but with the nonlinear friction term (2.2).

We want to derive an estimation of the stick-slip behavior, we will use the LPM
system derived in (2.1) instead of the DPM system (2.7). This system is reminded
below: 

IrΦ̈r + λr(Φ̇r − Φ̇b) + k(Φr − Φb) + drΦ̇r = u1,

IbΦ̈b + λb(Φ̇b − Φ̇r) + k(Φb − Φr) + (db + cb)Φ̇b = −u2,

u2 = Tnl(Φb).

(D.1)

We denote by G =
[
G11 G12
G21 G22

]
the transfer function from (u1, u2) to (Φ̇r, Φ̇b). Using a PI

controller on the surface velocity leads to the block diagram of Figure D.2.
Simplifying the block diagram leads to the one of Figure D.3 with the following
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(a) On-field measurements [142]
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(b) Fourier transform of the downhole velocity

Figure D.1: Downhole and surface velocity angle for a drilling machine. a) is the
temporal signal and b) represents the Fourier transform of the downhole velocity.



126 APPENDIX D. APPENDIX TO CHAPTER 6

Figure D.2: Block diagram of (D.1).

Figure D.3: Modified block diagram of (D.1).

definition:

G̃(s) = R(s)G12(s)G21(s)
1 +G11(s)R(s) −G22(s), W (s) = G21(s)R(s)

1 +G11(s)R(s) , R(s) = kp + ki
s
.

(D.2)
With this second diagram, it is relevant to use the describing function approach if G̃

is a low-pass filter. This can be verified on the Bode plot of G̃ in Figure D.4. We then
need to find the linear approximation of Tnl. Let consider the following: e(A,B, t) = A+B sin(t),

Tnl(e(A,B, t)) ' s(A,B, t) = a0(A,B) + a1(A,B) cos(t) + b1(A,B) sin(t),

where a0(A,B) = 1
2π
∫ π
−π Tnl(e(A,B, t))dt, a1(A,B) = 1

π

∫ π
−π Tnl(e(A,B, t)) cos(t)dt and

b1(A,B) = 1
π

∫ π
−π Tnl(e(A,B, t)) sin(t)dt. s is then the first harmonic approximation of

Tnl(e). We create the two following pseudo-transfer functions:
N0(A,B) = a0(A,B)

A
,

N1(A,B) = a1(A,B)j + b1(A,B)
B

,

where j is the imaginary number. Performing numerical integration leads to the ap-
proximations of N0 and N1 presented in Figure D.5. Note that N0 and N1 are both real
because Tnl is odd and consequently a1 = 0. We remark that N1 has a peak just after
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Figure D.4: Bode plot of G̃.
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Figure D.5: Numerical computation of N0 and N1 for different values of bias A.
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Figure D.6: Plot of solutions to (D.3). The oscillations amplitudes refers to Bc and Ω0
is the reference speed, in rad.s−1.

A and switches sign from negative to positive. As A increases, the negative damping
tends to go to 0. These remarks are of main importance in the sequel.

Applying harmonic balance, necessary conditions for the existence of oscillations
with pulsation w0, amplitude Bc and bias Ac are:

G̃(jω0) = −1
N1(Ac, Bc)

, Ac(1 + G̃(0)N0(Ac, Bc)) = W (0)Ω0. (D.3)

Since there ki 6= 0, there is an integrator in the loop and consequently G̃(0) = 0, leading
to Ac = Ω0. We note that G̃(jω0) is real for ω0 = 1.836 rad.s−1. The value of G̃(jω0)
at this frequency changes with ki and a dichotomy algorithm can solve (D.3) leading
to Figure D.6. We note that there are auto-oscillations for Ω0 ∈ [0,Ω0max(ki)]. Ω0max
is a decreasing function of ki but for small ki (meaning less than 100), there is no real
change in Ω0max. Moreover, the oscillations are of amplitude Ω0 because of the switch
of sign in N1 around B = A. Compared to Figure D.1, the amplitude estimation is not
correct but the frequency of the oscillations is close.



E
Useful inequalities

This appendix aims at gathering inequalities used in the thesis.

E.1 Matrix inequalities

This first inequality provides an equivalent formulation for the positivity of a matrix.

Proposition E.1: Schur Complement [25]

The following statements are equivalent:

1. M =

M11 M12

M>
12 M22

 ≺ 0,

2. M22 ≺ 0 and M11 −M>
12M

−1
22 M12 ≺ 0.

This formula stays the same if ≺ becomes �. It has many uses and it can help
“linearizing” a matrix inequality for instance.

When dealing with wellposedness, it is quite often required to assure that the de-
terminant of a matrix is non-null. The following proposition is of great help with that.

Proposition E.2

Let M11 ∈ Cn×n,M12 ∈ Cn×p and M21 ∈ Cp×n. The following statements are
equivalent:

1. det (M) 6= 0 where M =

M11 M12

M21 Ip

.

2. det (M11 −M12M21) 6= 0.

Proof : Note first the following equality:

M

 In 0n,p
−M21 Ip

 =

M11 −M12M21 M12

0p,n Ip

 .
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Taking the determinant of the previous expression leads to:

det(M) det


 In 0n,p
−M21 Ip


 = det(M11 −M12M21) det(Ip).

The previous equality directly leads to the equivalence proposed in Proposition E.2. ♦

E.2 Inequalities on signals

E.2.1 Jensen and Bessel Inequalities
Many inequalities are used on signals during this thesis. The most useful ones are
derived thereafter.

Proposition E.3: Jensen’s inequality [67, Proposition B.8]

For a, b ∈ R such that a < b and f ∈ L2(a, b), the following holds:∣∣∣∣∣
∫ b

a
f(x)dx

∣∣∣∣∣
2

≤ (b− a)
∫ b

a
|f(x)|2dx. (E.1)

Jensen’s inequality is originally a result on convexity of a function [80] and the
previous proposition is a direct application with the square function. This leads to the
classical Cauchy-Schwartz inequality with the canonical scalar product of L2(a, b). It
can be seen, in this context, as a first order Bessel inequality (on the constant vector
1).

Proposition E.4: Bessel Inequality [41]

Let a < b and f ∈ L2(a, b). For any orthogonal sequence ek of L2(a, b) with respect
to the inner product 〈·, ·〉L2(a,b), the following inequality holds for all N ∈ N:

N∑
k=0

∣∣∣∣∣∣
〈
f,

ek
‖ek‖

〉
L2(a,b)

∣∣∣∣∣∣
2

≤ ‖f‖2
L2(a,b). (E.2)

Moreover, Parseval identity ensures that this inequality tends to an equality when
N tends to infinity.

Proof : The proof is quite simple. Let N ∈ N and

∀x ∈ [a, b], fN(x) =
N∑
k=0

〈
f,

ek
‖ek‖L2(a,b)

〉
L2(a,b)

ek(x)
‖ek‖ L2(a,b)

.

The orthogonal property allows us to write the following:

‖f − fN‖2
L2(a,b) = ‖f‖2

L2(a,b) − 2〈f, fN〉L2(a,b) + ‖fN‖2
L2(a,b) = ‖f‖2

L2(a,b) − ‖fN‖2
L2(a,b) ≥ 0.
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♦

In this thesis, we are using a polynomial base, defined in the following.

Definition E.1: Orthogonal basis of Legendre polynomials

The only polynomial orthogonal basis of L2(a, b) for a < b is called the basis of
Legendre polynomials and it is defined as follows:

∀x ∈ [a, b], Lk(x) = (−1)k
k∑
l=0

(−1)l
k
l


k + l

l

(x+ b− a
b− a

)l
.

These polynomials have the following properties:

Lk(a) = (−1)k, Lk(b) = 1, ‖Lk‖2 = b− a
2k + 1 ,

d

dx
Lk(x) = 1

b− a

k∑
j=0

`kjLj(x), `ik =

 0, if k ≥ i,

(2k + 1)
(
1− (−1)k+i

)
, otherwise.

(E.3)

No detailed proof of these properties is given here but they can be found in [41] for
the original Legendre polynomials and in [145] for the shifted ones. A special case of
Bessel inequality on L2(a, b) with Legendre polynomials is reported below.

Proposition E.5: Bessel’s inequality with Legendre polynomials

For any f ∈ L2(a, b) and N ∈ N, the following holds:

N∑
k=0

(2k + 1)〈f,Lk〉2L2(−τ,0) ≤ (b− a)‖f‖2
L2(−τ,0). (E.4)

Proof : This statement is an immediate consequence of Proposition E.4 with the
basis of Legendre polynomials defined in the previous definition. ♦

Remark E.1

Taking N = 0, (E.2) rewrites as

〈f, 1〉2L2(a,b) ≤ (b− a)‖f‖2
L2(a,b),

which is inequality (E.1). The first order of (E.2) leads to the celebrated
Wirtinger-based inequality of [144].
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E.2.2 1-D Poincaré-Wirtinger inequality
When dealing with Sobolev spaces, one of the most famous inequality is the so-called
Poincaré inequality [29, Proposition 8.13] which helps for norm inequalities. In the case
of a 1-D signal, it can be obtained quite easily by the following proposition.

Proposition E.6: [19, Lemma 1]

For u ∈ H1, the following inequality holds:

‖u‖2
L2 ≤ 2‖ux‖2

L2 + 2|u(0)|2.

Proof : Since ux ∈ H1, we get for x ∈ [0, 1]:

u(x)2 =
(∫ x

0
us(s)ds+ u(0)

)2
=
(∫ x

0
us(s)ds

)2
+ 2u(0)

∫ x

0
us(s)ds+ |u(0)|2.

Using Young and Jensen inequalities leads to:

u(x)2 − 2|u(0)|2 ≤ 2
(∫ x

0
us(s)ds

)2
≤ 2

∫ x

0
u2
s(s)ds ≤ 2

∫ 1

0
u2
s(s)ds.

Integrating between 0 and 1 leads to the result. ♦

Remark E.2

The previous inequality can be reversed without any difference in the proof,
leading to:

∀u ∈ H1, ‖u‖2
L2 ≤ 2‖ux‖2

L2 + 2|u(1)|2.

Note that these two inequalities can be found with a totally different proof in [89,
Lemma A.1].



F
Stabilization of an unstable wave equation

using an infinite-dimensional dynamic
controller

In recent years, we have seen a renewed interest in the control of infinite-dimensional sys-
tems for both practical and theoretical considerations. Indeed, many complex systems
may be easily modeled by Partial Differential Equations (PDE). These include delay
systems [132], string/payload [74], MEMS [59] or drilling pipes [28, 135], among many
others [20]. From a theoretical point of view, one has witnessed many contributions
to these problems: backstepping method [93], saturated control [124] or event-based
control [55].

Concerning the case of hyperbolic PDE and especially the string equation in a finite
domain, even if the model is quite simple, there exist various control laws which can
be distributed or only at the boundary for example. Firstly, notice that many different
kinds of instabilities can affect the system as for instance internal anti-damping [60, 73]
or an unstable Robin boundary condition [90]. These two instabilities generally lead to
a finite number of unstable poles. Another possible boundary condition which induces
infinitely many unstable poles are reported in [94]. As noted in [94, 95], this instability
arises from the unstable difference operator which appears if the wave equation is mod-
eled as a neutral time-delay system. The control of this anti-stable wave is therefore
much more challenging. Furthermore, in general, if a standard feedback control law is
designed, it is known to be not robust to input/output-delays [49, 50].

This paper deals with the stabilization of an antistable wave equation of the latter
kind with Dirichlet actuation. Several methodologies have been proposed to stabilize
this model as [68, 95]. Among them, a very popular approach refers to the backstepping
methodology for infinite-dimensional systems introduced in [89, 93]. The idea is to
determine a feedback law such that the closed-loop system behaves as an asymptotically
or exponentially stable system with the desired properties, for instance a one side
boundary damped wave equation. This leads to the design of an infinite-dimensional
control law which requires a distributed measure all over the domain [88, 151]. Notice
that if these measurements are not available, an observer can be designed to estimate
this whole state, measuring the state and its derivative at one boundary [90]. The
proposed methodology follows the same starting point. We aim at finding a control law
in order to get, in closed-loop, a two sided boundary damped wave equation but contrary
to the backstepping approach the target system is extended in the space domain (see
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for instance [72]). This new idea simplifies the design of the control law. Firstly, it
results in a very simple dynamic control law of infinite dimension. Secondly, the control
law requires the measurement of only the state at one boundary. Furthermore, this
methodology allows to obtain performances similar to approaches such as backstepping.
An interesting feature relies also on the robustness of the approach since the parameters
of the original system could be uncertain.

The paper is organized as follows. In Section 2, the model for the wave equation
as well as the control objectives are detailed. In Section 3, a new controller design
is proposed. The existence and uniqueness of a solution to the closed-loop system is
then studied. Therefore, an exponential stability result is derived and some extensions
are provided. As the main result is formulated in terms of a Linear Matrix Inequality
(LMI), the exponential stability result is extended in Section 4 to a robust stability
analysis. Section 5 provides a numerical application of the proposed controller on two
examples together with a comparison with the backstepping methodology.
Notations: Throughout this paper, the notation ut stands for ∂u

∂t
. The common

spaces of square integrable functions on [0, 1] is denoted L2 = L2([0, 1];R) and Hn ={
z ∈ L2;∀m ≤ n, ∂

mz
∂xm
∈ L2

}
for the Sobolov spaces. L2 is equipped with the norm

‖z‖2 =
∫ 1

0 |z(x)|2dx = 〈z, z〉. For any square matrices A and B, diag is defined as
diag(A,B) = [ A 0

0 B ]. A matrix P ∈ Rn×n is positive definite if it belongs to the set §n+
or more simply P � 0. In is the identity matrix of dimension n×n and 0n,m is the null
matrix of size n×m.

F.1 Problem Statement
The wave equation studied in this paper is described by the following model:

utt(x, t) = c2
1uxx(x, t), x ∈ (0, 1),

ux(0, t) = gut(0, t),

u(1, t) = w(t),

y(t) = ux(1, t),

u(x, 0) = u0(x), ut(x, 0) = u0
t (x), x ∈ (0, 1),

(F.1)

It represents the evolution of a wave equation of amplitude u of speed c1. At x = 0,
there is a well-known boundary damping condition [94]. At x = 1, there is a Dirichlet
actuation and w is the control law. The only measurement is y, which is the space
derivative of u at x = 1.

g is closely related to the reflection coefficient at the boundary x = 0. It is well-
known from [94] that for g < 0, this wave is unstable. Actually, this issue has also been
discussed in [71] where it is compared to a neutral time-delay system. Indeed, for g < 0,
the neutral time-delay system has a non-stable difference operator, making its stabi-
lization possible only if ut(1, ·) is exactly and perfectly measured. This measurement
is, in general, difficult to get since it relies on specific sensors which cannot provide the
derivative at time t but at a sightly delayed time. As enlighten in [49, 50], a propor-
tional feedback control on ut(1, ·) is not robust to time-delay. That is the reason why
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Figure F.1: Block diagram of closed-loop system (F.1)-(F.2).

we need to consider that the measure of ut(1, ·) is not available, making the synthesis
of a control law a real challenge. Notice that the famous methodology of backstepping,
described in [89] explains for instance how to build such a control law but it relies on
the full distributed measurements of the state u which are practically difficult to get.

Here, considering g < 0, we aim at showing that there exists an infinite-dimensional
controller ensuring which is not issued from a backstepping methodology ensuring the
L2-stability of the closed-loop system without an explicit measurement of ut(1, ·).

F.2 Controller Design
The proposed controller is as follows where h > 0 and q are the control design param-
eters: 

vtt(x, t) = c2
2vxx(x, t), x ∈ (0, 1),

vx(0, t) = y(t),

vx(1, t) = −hvt(1, t)− qv(1, t),

w(t) = v(0, t) + r(t),

v(x, 0) = v0(x), vt(x, 0) = v0
t (x), x ∈ (0, 1).

(F.2)

The reference is r and we assume, without loss of generality, that r ≡ 0. This
control is of infinite dimension and describes a wave equation. Even if an explicit
control formulation of w depending on the initial conditions and y can be derived (using
[101] for example), this controller is seen as an infinite-dimensional dynamic controller
depicted in Fig. F.1. Note that, if c1 = c2 = c, controller (F.2) is an extension of
system (F.1). Indeed, the closed-loop system is then an extended wave over a domain
of length 2 and speed c with two damping or anti-damping boundary conditions. The
stability of this interconnected system seems then quite simple and a stability test is
provided in Section 3. The most interesting part comes when deriving a robust stability
criterion to uncertainties on c1 and g, as discussed in Section 4.

Remark F.1

The same methodology applies (and similar results are obtained) considering
other boundary conditions: ux(1, t) = w(t) and y(t) = u(1, t) for system (F.1)
while for the controller we use: v(0, t) = y(t). The closed-loop is still an extension
of the wave on the larger interval (0, 2).
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F.2.1 Existence and uniqueness
As the string equation is a second order in time and space, the state u must be regular
enough such that the derivations have a sense. Then, as done in [89, 164], the following
space is defined:

H =
{

(u, ut, v, vt) ∈ H1 × L2 ×H1 × L2, u(1) = v(0)
}
.

In some practical cases like in drilling systems [28], a convergence in speed is required
with no care on the position. Then, similarly to [89, 151], a seminorm on H is defined:

‖(u, ut, v, vt)‖2
H = c2

1‖ux‖2 + ‖ut‖2 + c2
2‖vx‖2 + ‖vt‖2. (F.3)

Together with space H, this is a semi-norm because a convergence in the sense of ‖ · ‖H
means ut, ux, vt and vx are converging to 0 but there is no constraint on u and v.

If a convergence in position is needed, the previous subspace is equipped with the
following norm:

‖(u, ut, v, vt)‖2
H0 = ‖(u, ut, v, vt)‖2

H + v(1)2. (F.4)

This norm implies the convergence of ux, ut, vx, vt and v(1) meaning u and v are
converging to 0 in L2 norm. With these previous definitions, (H, ‖ · ‖H) and (H, ‖ · ‖H0)
are Hilbert spaces.

Definition F.1: Dissipative system

System (F.1)-(F.2) is said to be dissipative in (H, ‖ · ‖H) (resp. (H0, ‖ · ‖H0))
if there is a seminorm ‖ · ‖ equivalent to ‖ · ‖H (resp. ‖ · ‖H0) for which
d
dt
‖(u, ut, v, vt)‖ < 0.

The following proposition states the existence and uniqueness of solutions to (F.1)-
(F.2).

Proposition F.1: Existence and regularity of a solution

For any initial condition (u0, u0
t , v

0, v0
t ) ∈ H, there exists a unique solution to the

latter system if system (F.1)-(F.2) is dissipative in (H, ‖ · ‖H).

The proof is very similar to the one given in [164, Ch. 3.9] on the wave equation
with boundary damping. Assuming the dissipativity of the abstract operator T related
to system (F.1)-(F.2), it is enough to show that T is invertible to apply Lumer-Phillips
Theorem (see for instance Theorem 3.8.4 in [164]). Once the solution is defined, the
study of its equilibrium points can be pursued.

Proposition F.2: Equilibrium point

An equilibrium point (ue, ve) of system (F.1)-(F.2) verifies: ue = ve ∈ R and
que = 0. If q 6= 0, then the only equilibrium point is 0H.

Proof : Assume (ue, ve) is an equilibrium point. Then for x ∈ (0, 1), ue and ve are
two first order polynomials. The boundary condition on ve at x = 1 gives ve(0) = 0 if
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q 6= 0. Since uex(0) = 0, we get ue ∈ R. Then, since we have ue(1) = ve(0), that gives
ue = 0 and, consequently, ue = 0. If q = 0, we only get ue = ve ∈ R. ♦

The desired property throughout this paper is the exponential stability of system
(F.1)-(F.2) defined as follows.

Definition F.2: H-exponentially stable

A solution of system (F.1)-(F.2) with initial condition (u0, u0
t , v

0, v0
t ) ∈ H is said

to be H-exponentially stable if there exist γ > 1, α > 0 such that the following
inequality holds for t ≥ 0:

‖(u(t), ut(t), v(t), vt(t))‖H ≤ γ‖(u0, u0
t , v

0, v0
t )‖He−αt. (F.5)

Definition F.3: H0-exponentially stable

A solution of system (F.1)-(F.2) with initial condition (u0, u0
t , v

0, v0
t ) ∈ H is said

to beH0-exponentially stable if there exist γ > 1, α > 0 such that the following
inequality holds for t ≥ 0:

‖(u(t), ut(t), v(t), vt(t))‖H0 ≤ γ‖(u0, u0
t , v

0, v0
t )‖H0e

−αt. (F.6)

After these very general results, the proof of dissipativity is given thanks to the
construction of a Lyapunov functional, which has a strictly negative derivative along
the trajectories of system (F.1)-(F.2).

F.2.2 Main theorem

As a first step, we consider the case q 6= 0, and the following theorem is derived for a
convergence in speed and position.

Theorem F.1: H0-exponential stability theorem

The unique solution of system (F.1)-(F.2) with initial condition (u0, u0
t , v

0, v0
t ) ∈

H is H0-exponentially stable and converges to 0H if there exists real numbers
S1, S2, S3, S4, S5 > 0 such that the following LMI holds with q 6= 0:

Ψc1,c1g(0) ≺ 0, (F.7)

with

Ψc1,c1g(α) = H>c1,c1gEα(1)SHc1,c1g −G>c1,gSGc1,c1g +Qα,

Hc1,c1g =
[ 0 c1 1 0 0

1−c1g 0 0 0 0
0 0 0 1−c2h −c2q
0 −c2 1 0 0

]
, Gc1,c1g =

[ 1+c1g 0 0 0 0
0 −c1 1 0 0
0 c2 1 0 0
0 0 0 1+c2h c2q

]
,

Qα = diag
(
03,3,

[
0 S5
S5 2αS5

])
, S = diag(S1, S2, S3, S4),

Eα(x) = diag(e2αxc−1
1 I2, e

2αxc−1
2 I2).
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Proof : Let us introduce the following variable:

χ(x, t) =



ut(x, t) + c1ux(x, t)

ut(1− x, t)− c1ux(1− x, t)

vt(x, t) + c2vx(x, t)

vt(1− x, t)− c2vx(1− x, t)


,

for t ≥ 0, x ∈ (0, 1). This variable is based on modified Riemann invariant [19, 20],
which has the following property: χt = Λχx with Λ = diag(c1, c1, c2, c2). Following
[19, 40, 109], we introduce a Lyapunov functional:

Vα(χ, v(1)) =
∫ 1

0
χ>(x)Eα(x)Λ−1Sχ(x)dx+ S5v

2(1), (F.8)

where the time variable has been omitted for the sake of simplicity. Note that Vα is
equivalent to ‖ ·‖H0 and its derivative along the trajectories of system (F.1)-(F.2) gives:

V̇α(χ, v(1)) = 2
∫ 1

0
χ>x (x)Eα(x)Sχ(x)dx+ 2S5v(1)vt(1)

=
[
χ>(x)Eα(x)Sχ(x)

]1
0
− 2α

∫ 1

0
χ>(x)Eα(x)Λ−1Sχ(x)dx

+2S5v(1)vt(1)

= −2αVα(χ, v(1)) + χ>(1)Eα(1)Sχ(1)

−χ>(0)Sχ(0) + 2αS5v
2(1) + 2S5v(1)vt(1).

(F.9)

Introducing ξ = [ut(0) ux(1) vt(0) vt(1) v(1)]>, the two states χ(0) and χ(1) can
be rewritten as χ(0) = Gc1,c1gξ, χ(1) = Hc1,c1gξ so that we get:

V̇α(χ, v(1)) + 2αVα(χ, v(1)) = ξ>Ψc1,c1g(α)ξ ≤ 0.

As it is continuous with respect to α, if Ψc1,c1g(0) ≺ 0, it is also the case for a
sufficiently small α. Then, the solutions converge exponentially with respect to ‖ · ‖H0 .
♦

It is possible to prove that the previous theorem does not hold if h < −1 but the
exponential convergence in semi-norm (F.3) still holds, meaning that the solutions do
not converge to 0H but the wave speeds ux and ut are indeed going exponentially to 0.
This weaker stability condition is expressed in the following corollary, dealing with the
case where q = 0.

Corollary F.1: H-exponential stability condition

The unique solution of system (F.1)-(F.2) with q = 0 and initial condition
(u0, u0

t , v
0, v0

t ) ∈ H is H-exponentially stable if there exists S1, S2, S3, S4 > 0
such that the following LMI holds:

Ψ̃c1,c1g =
[
I4 04,1

]
Ψc1,c1g(0)

[
I4 04,1

]>
≺ 0, (F.10)
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Proof : Similarly to the previous proof, we consider another Lyapunov functional:

Vα(χ) =
∫ 1

0
χ>(x)Eα(x)Λ−1Sχ(x)dx,

and the extended state: ξ = [ut(0) ux(1) vt(0) vt(1)]>. Vα is then equivalent to ‖ · ‖H
and it is exponentially stable in the sense of ‖ · ‖H. ♦

The previous results are presented in terms of LMIs but for a stable wave and
controller with q = 0, these inequalities are always verified as stated in the following
corollary.

Corollary F.2: H-exponential stability of a stable wave equation

If h > 0, g > 0 with q = 0, the unique solution of system (F.1)-(F.2) with initial
condition (u0, u0

t , v
0, v0

t ) ∈ H is H-exponentially stable.

Proof : First of all, note that h > 0 and g > 0 ensure that
∣∣∣1−c1g
1+c1g

∣∣∣ < 1 and∣∣∣1−c2h
1+c2h

∣∣∣ < 1. Moreover by selecting S1 = S2 = 0.5 and S4 = S3 − ε, we can rewrite
Ψ̃ = Ψ̃c1,c1g in equation (F.10) as:

Ψ̃ =



−2c1g 0 0 0

0 −c2
2ε c1 − 2c2S3 + c2ε 0

0 c1 − 2c2S3 + c2ε −ε 0

0 0 0 S3(c2h− 1)2 − (S3 − ε)(c2h+ 1)2


.

For ε < c1
c2

and S3 = c1
2c2

+ ε
2 then Ψ̃c1,c1g ≺ 0 if and only if S3(c2h − 1)2 − (S3 −

ε)(c2h + 1)2 < 0. This is ensured by taking ε small enough. Consequently system
(F.1)-(F.2) is exponentially stable. ♦

Remark F.2

Noting that for c1 = c2 = c and q = 0, system (F.1)-(F.2) is a wave equation of
speed c and length 2. The dynamic controller acts then similarly than the one
derived in [68]. The stability of this double boundary damped system is indeed
|1−cg1+cg

1−ch
1+ch | < 1 as noted in [20, ch. 3.3.1]. The stability chart with respect to cg

and ch is depicted in Figure F.2. Its decay-rate is given by the following formula:

αdyn = − c4 log
∣∣∣∣∣1− cg1 + cg

1− ch
1 + ch

∣∣∣∣∣ . (F.11)

The previous result can be seen as a robust stability criterion. Indeed, considering
system (F.1) with uncertain parameters c1 > 0 and g > 0, the coupled system is stable
no matter c2 > 0 and h > 0.

However, in the case where g is negative, the previous corollary does not apply. This
is indeed more difficult because system (F.1) is unstable and controller (F.2) must be
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Figure F.2: Stability areas for system (F.1)-(F.2) depending on c1 = c2 = c, h and g.
The hatched area is unstable.

designed to make the interconnection stable. The next step is to derive a stability result
for uncertain systems expressed in terms of LMIs and this is the aim of the following
part.

F.3 Robustness Analysis / Controller Synthesis
Let us consider that system (F.1) is now an uncertain system, that is the speed c1 and
the damping g are uncertain. Only a nominal system (F.1) with nominal parameters
c = cn and g = gn is known. We assume that the real speed c1 is constant and that both
c1 and cn belong to the interval [cmin, cmax] ⊂ R+. The last parameter g is assumed
to be in the set [gmin, gmax] ⊂ R and so does gn. Then, the uncertain system can be
viewed as a deviation from the nominal plan.
If nominal plant (F.1) with a speed cn and a damping coefficient gn is potentially
unstable, then, a controller of the form of (F.2) can be designed. Indeed, we set c2 = cn
and choose h such that (cngn, cnh) is in the stability area presented in Figure F.2. Then
the nominal plant is exponentially stable with q = 0. The condition derived thereafter
states the stability of the uncertain system made up of (F.1) and the previously designed
controller.

Theorem F.2: Robust stability theorem

Let us define the following:

δmax = maxz∈D
∣∣∣1−z1+z

∣∣∣ , zmax = Argmaxz∈D
∣∣∣1−z1+z

∣∣∣ ,
D = {z = c1g, c1 ∈ [cmin, cmax], g ∈ [gmin, gmax]} .

There exists a unique solution of system (F.1)-(F.2) with initial condition
(u0, u0

t , v
0, v0

t ) ∈ H and it is H-exponentially stable if the following holds for



F.3. ROBUSTNESS ANALYSIS / CONTROLLER SYNTHESIS 141

S1, S2, S3, S4 > 0:

1 ≤ δmax <∞ and

 Ψcmin,zmax ≺ 0,

Ψcmax,zmax ≺ 0.

Remark F.3

Notice that coefficient δ(cg) = 1−cg
1+cg is a physical parameter for the wave

equation and corresponds to the reflexion coefficient (see [14, 101]). Taking
δmax = maxcg∈D |δ(cg)| means we are studying the “most” unstable system in
the uncertainty set. For δmax < 1, Corollary F.2.2 states that the uncertain sys-
tem is stable. If δmax = +∞, there does not exist a controller of the form (F.2)
making the system stable. These considerations bring that D ⊂ (−1,+∞) or
D ⊂ (−∞,−1).

Proof : The robustness analysis is based on the derivation of a common Lyapunov
functional for all the systems inside the uncertainty set. This Lyapunov functional must
have a strictly negative derivative along the trajectories. In other words, Ψc1,z ≺ 0 for
all c1 ∈ [cmin, cmax] and z ∈ D.

Noticing that Ψc1,z is a block-diagonal matrix, one can write Ψc1,z = diag(Φz,Θc1 ,Ξ)
with

Φz = S2(z − 1)2 − S1(z + 1)2,

Θc1 =

(S1 − S2)c2
1 − (S3 − S4)c2

2 (S1 + S2)c1 − (S3 + S4)c2

(S1 + S2)c1 − (S3 + S4)c2 S1 − S2 − S3 + S4

 ,
Ξ =

 S3(1− c2h)2 − S4(1 + c2h)2 −c2q(S3(1− c2h) + S4(1 + c2h))

−c2q(S3(1− c2h) + S4(1 + c2h)) −S4(c2q)2

 .
The aim is now to show that Φz < 0, Θc1 ≺ 0 and Ξ ≺ 0 for all uncertain systems.

As δmax <∞, then, z 6= −1 and Φz(z + 1)−2 < Φzmax(zmax + 1)−2 < 0.
The last part of this proof deals with the negativity of Θc1 . To derive such a result,

one can prove that Θc1 is convex in c1. Then if it is negative at its boundary, it is
always negative. Using Schur complement, Θc1 ≺ 0 is equivalent to: p(c1) = k2c

2
1 + k1c1 + k0 < 0,

S1 − S2 − S3 + S4 < 0,
(F.12)

with k2 = S1 − S2 − (S1+S2)2

S1−S2−S3+S4
and k1, k0 ∈ R. Considering δmax > 1, we get:

S2 ≤ S2δ
2
max < S1,

since Φzmax < 0. Then, k2 > 0 and consequently p in (F.12) is convex with respect to c1.
Thus, if Θcmin and Θcmax are negative definite, the inequality Θc1 ≺ 0 straightforwardly
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holds for any c1 in the interval [cmin, cmax]. In other words, the following implication
holds for all c1 ∈ [cmin, cmax] and z ∈ D: Ψcmin,zmax ≺ 0,

Ψcmax,zmax ≺ 0
⇒ Ψc1,z ≺ 0,

which concludes the proof. ♦

Remark F.4

This proof shows that the result is still true even if g is time-varying, but the
restriction g ∈ [gmin, gmax] holds. However, a time-varying c1 is not allowed
because it changes the calculations of the derivative along the trajectories of V .
If one adds the constraint q = 0, the previous robustness result is still valid for
Ψ̃ instead of Ψ.

Remark F.5

The proposed controller is not robust to delay in the measure so do the backstep-
ping controllers in [89].

F.4 Examples
Two examples are studied in this part. The first one considers an open-loop stable wave
equation and the second one an unstable system (F.1).

F.4.1 Stable wave equation
The first example is an open-loop stable wave equation with a dynamic controller whose
parameters are given below:

c1 = c2 = 1, g = 3, h = 0.9, q = 5.

The closed-loop system is stable according to Theorem F.2.2. Thanks to equa-
tion (F.11), the dynamic controller aims at making the system faster and converging
to 0H. The decay-rate of the solution can be obtained considering the maximum α in
Theorem F.2.2 for which it is still feasible. The resulting solution has then a decay-rate
of 0.157. Notice that, since q 6= 0, the closed-loop system converges asymptotically to
the only equilibrium point 0, as shown in Figure F.3.

F.4.2 Anti-damped wave equation
This second example aims at comparing two controllers, the dynamic controller devel-
oped in this paper and the one coming from backstepping approach [89, 151], which is
given by:

w(t) = g − c1k

c1 − gk

(
g

c1
u(0, t) +

∫ 1

0
ut(x, t)dx

)
. (F.13)
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Figure F.3: Time response of system (F.1) with a dynamic control and initial condition:
u0(x) = cos(2πx), v0(x) = 1 and u0

t (x) = v0
t (x) = 0.

Applying this control law, system (F.1) in closed loop is transformed into the fol-
lowing target system: 

ztt(x, t) = c2
1zxx(x, t), x ∈ (0, 1),

zx(0, t) = kzt(0, t),

z(1, t) = 0,

where the initial conditions are not expressed, since it is the target system. Its decay-
rate is then given by αb = − c1

2 log
∣∣∣1−c1k
1+c1k

∣∣∣. Comparing this expression to the decay
rate of the proposed closed-loop target system (F.11), to get a similar decay-rate (i.e.
αdyn = αb) and then a fair comparison between the two controls, one must choose:

k = c−1
1

1−
√
|δ1δ2|

1 +
√
|δ1δ2|

, or k = c−1
1

1 +
√
|δ1δ2|

1−
√
|δ1δ2|

.

The parameters chosen for the simulation are then:

c1 = c2 = 1, g = −0.27, h = 0.6, q = 0, k = 0.205, (F.14)

leading to a decay-rate of 0.208. Figure F.4 shows the simulation results for system
(F.1) for both controllers. The comparison between the two control signals is given
in Figure F.4c. The poles of each closed-loop system are displayed in Figure F.4d.
One can see that controller (F.2) produces more poles than the backstepping control.
This is an argument showing that the two controls are indeed of different kind. The
backstepping controller seems faster in Figure F.4c but Figure F.4d clearly shows that
the poles are indeed with the same real part, and consequently, with the same decay-
rate. The backstepping controller seems faster in Figure F.4c but the controllers have
been designed to have the same decay-rate.
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(a) System (F.1) with controller (F.2) (b) System (F.1) with controller (F.13)
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Figure F.4: System behavior depending on the controller. Figures (a) and (b) are
simulations with initial conditions: u0(x) = cos(2πx) − 1, u0

t (x) = v0(x) = v0
t = 0

for x ∈ (0, 1). Figure (c) is a comparison between the two control laws. Figure (d)
is a root locus comparison between the poles in three situations: backstepping (F.13)
with parameters (F.14); dynamic controller (F.2) with parameters (F.14) and robust
controller (F.2) with parameters (F.14) but a speed mismatch (c1 = 0.8).
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One drawback of this methodology is that the dynamic controller does not provide
an explicit control law while the backstepping, in this case, gives a relatively simple
expression for w. Even if the backstepping methodology formulates w in terms of u, it
is also an infinite dimension control law since it uses the integral over space.

The main difference between the two controllers are the needed measurements.
While the dynamic controller only requires the measure of ux(1, ·), the backstepping
control asks for u(0, ·) and ut(x, ·) for x ∈ (0, 1). If these measurements are not avail-
able, an infinite-dimension observer has been developed in [151] to estimate the states
ut at each point of the string but requiring the measurement of ux(1, ·) and uxt(1, ·).
Then, the main advantage of having an explicit control law disappears. In comparison,
our methodology provides a simpler control law with only one boundary measurement
and a very simple robustness criterion. This is mainly due to the LMI formulation
which provides an efficient framework for this kind of study. Moreover, the parameter
γ in Definition F.2 and equation (F.5) can be estimated using eigenvalues of S in (F.8).

A robustness analysis has also been conducted in this case using Theorem F.3. We
get the exponential stability for the interconnected system with c2 = 1, h = 0.6 and the
following uncertainties:

1. c1 ∈ [0.74, 1.45] with g ∈ [−0.27,+∞);

2. c1 ∈ [0.8, 1.4] with g ∈ [−0.29,+∞).

There is no upper bound on g as δmax is always obtained for a negative g. According
to the previous study, a mismatch between the two speeds (c1 = 0.8 and c2 = 1) leads
to a stable interconnected system. In this case with g = −0.27, simulations confirm
that point.

F.5 Conclusion
An infinite-dimensional controller is derived to stabilize a anti-stable string equation
with Dirichlet actuation. It is quite simple and the calculations are easily extended to
robust stability. This enables the comparison with backstepping and one can notice
similar performances for a much more simple implementation. This study brought the
idea of extending systems in order to transform them to a more suitable form for control.
This idea can be enlarged to other PDEs and maybe also to cascaded PDEs.
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