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Abstract

This thesis studies resource allocation problems in large-scale stochastic networks. We work on problems
where the availability of resources is subject to time fluctuations, a situation that one may encounter, for
example, in load balancing systems or in wireless downlink scheduling systems. The time fluctuations are
modelled considering two types of processes, controllable processes, whose evolution depends on the action
of the decision maker, and environment processes, whose evolution is exogenous. The stochastic evolution
of the controllable process depends on the the current state of the environment. Depending on whether
the decision maker observes the state of the environment, we say that the environment is observable or
unobservable. The mathematical formulation used is the Markov Decision Processes (MDPs).
The thesis follows three main research axes. In the first problem we study the optimal control of a Multi-
armed restless bandit problem (MARBP) with an unobservable environment. The objective is to characterise
the optimal policy for the controllable process in spite of the fact that the environment cannot be observed.
We consider the large-scale asymptotic regime in which the number of bandits and the speed of the environ-
ment both tend to infinity. In our main result we establish that a set of priority policies is asymptotically
optimal. We show that, in particular, this set includes the Whittle index policy of a system whose parame-
ters are averaged over the stationary behaviour of the environment. In the second problem, we consider an
MARBP with an observable environment. The objective is to leverage information on the environment to
derive an optimal policy for the controllable process. Assuming that the technical condition of indexability
holds, we develop an algorithm to compute Whittle’s index. We then apply this result to the particular
case of a queue with abandonments. We prove indexability, and we provide closed-form expressions of
Whittle’s index. In the third problem we consider a model of a large-scale storage system, where there are
files distributed across a set of nodes. Each node breaks down following a law that depends on the load it
handles. Whenever a node breaks down, all the files it had are reallocated to other nodes. We study the
evolution of the load of a single node in the mean-field regime, when the number of nodes and files grow
large. We prove the existence of the process in the mean-field regime. We further show the convergence in
distribution of the load in steady state as the average number of files per node tends to infinity.
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Chapter 1
Introduction

Contents
1.1 Overview of research problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Resource allocation is the assignment of scarce resources to competing tasks or users. The problems studied
in resource allocation are multidisciplinary. They have a broad range of applications spanning from health
care and transportation systems to communication networks, and are studied in various domains, such as
computer science, electrical engineering and control theory. In this thesis, we focus on resource allocation
problems in systems that evolve over time, and where there are decisions to take that depend on the current
state of the system. The mathematical formulation used will be the Markov Decision Processes (MDPs), a
relevant modelling framework for optimisation in Markov processes.
We work on problems where the availability of resources is subject to time fluctuations. This is a situation
that arises in different contexts, for example, the number of cashiers needed in a supermarket or the demand
in a cloud computing system. We therefore consider MDPs whose parameters fluctuate over time, and we
differentiate two types of processes: the controllable processes and the environments. The environments
are exogenous Markov processes used to model time fluctuations. The state of the environments deter-
mines the value of the parameters of the controllable processes. We also refer to this as Markov-modulated
environments.
We do not make any assumption on the correlation of the different environments. In the case of independent
distributed environments, this allows us to model the effect of independent fluctuating parameters, as one
may encounter, for example, in the arrival rate of new jobs in load balancing systems, or the abandonment
rate of impatient customers. On the other hand, when environments are strongly correlated, one could
model dependence between the controllable processes through “environmental effects”, as it happens, for
example, in wireless downlink scheduling.
We further differentiate whether the environments can be observed or not at the moment there is a decision
to take. In the unobservable environment case, the decision maker does not know the actual state of the
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2 CHAPTER 1. INTRODUCTION

environment, whereas in the observable environment case, the decision maker observes the current state
of the environment in order to choose actions. Under both settings, we are interested in deriving efficient
control policies.
Another topic we address is the resource allocation in large-scale storage systems. We consider a model of
storage systems, where there are files distributed across nodes, and the nodes break down following random
times. When a breakdown occurs, the system allocates the files present in the broken node to other nodes at
random, according to a particular allocation policy. Since exact analysis of the system seems out of reach,
we study the performance as the number of nodes grows large.

1.1 Overview of research problems

We describe now the three problems we address in the thesis, each one of them corresponds to a chapter.
The results obtained in each problem are described in Section 1.3.

1.1.1 Control with unobservable environments

In Chapter 2, we study a large-scale resource allocation problem with controllable processes affected by un-
observable environments. We assume that the decision maker takes actions when the controllable processes
change state, and the available information is the current state of the controllable processes but not the
state of the environments. Considering unobservable environments can be motivated from the fact that it
might be too costly to observe the environment and/or change action each time the environment changes.
We focus on a Multi-Armed Restless Bandit Problem (MARBP), a specific subclass of MDPs in which there
are a number of concurrent projects, known as bandits, that can be made active or passive. In Section 1.2.3
we provide more details on MARBP.
The main goal is to find policies that minimise the average cost incurred by the bandits in a long-run criterion.
We do this in an asymptotic regime, where the number of bandits and the speed of the environments grow
large. This regime is known as the mean-field limit. See Section 1.2.5 for an introduction to the mean-field
theory. Among our main results, we propose a set of priority policies that is asymptotically optimal, and
we describe an implementable policy that is inside this set. This policy is derived from an averaged version
of Whittle’s index as studied for the classical MARBP, see Section 1.2.4 for an introduction to Whittle’s
index.
We cite here related work where models on stochastic control with (partially) unobservable environments
have been studied. In [21], the authors study a multi-class single-server queueing network with arrival
and service rates modulated by an unobservable environment. Note that in the multi-class single-server
queue without environments the standard cµ rule is optimal. Under this rule, the served class is the one
maximising the product ckµk, where ck is the holding cost and µ−1

k is the mean service time of class-k
customers [22, 31]. In the main result in [21], it is shown that an “averaged” version of the classical cµ-rule
is asymptotically optimal in the heavy-traffic regime. In [6], optimal load balancing is studied when the
queue lengths of the servers are unobservable. A set of round-robin policies is proved to be optimal in a
heavy-traffic many-server limiting regime. In [7, 50], the authors study optimal control in a multi-class
queueing system where the servers’ capacity varies according to a Markov-modulated random environment.
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The environment can be partially observed for the activated server. As the control decision influences the
observation made, the authors search for policies that achieve maximum stability.

1.1.2 Control with observable environments

In Chapter 3, we consider a control problem with environment processes that can be observed. Again, we fo-
cus on a Multi-Armed Restless Bandit problem, where each bandit is formed by two processes, a controllable
process and an environment. The decision maker bases its decisions on the current state of the controllable
processes and the current state of the environments. Whenever any of the processes changes state, the
action can be changed as well. These problems arise naturally when there is an exogenous phenomenon
that can be observed but cannot be controlled. For example in the context of wireless communications, the
available download rate depends on weather conditions, and in cloud computing systems the arrival rates
of new jobs fluctuate according to the time of the day.
For the approach of the problem, we provide an algorithm that computes Whittle’s index, which gives rise
to Whittle’s index policy. We are able to obtain an analytical characterisation of the index in the concrete
example of a multi-class abandonment queue: the queues are the controllable processes that may be served
or not, and their transition rates depend on an exogenous environment. More details on our contributions
are provided in Section 1.3.
Optimal control with observable environments has been studied in [1, 4, 30]. In [1, 4], the problem of
scheduling tasks in a wireless setting is modelled through MARBPs with an observable environment. The
controllable process is the remaining service time of tasks – which is a decreasing process–, and the environ-
ment is given by the capacity of the channel –which fluctuates over time in an uncontrollable manner–. Both
previous references consider that the environments across processes are independent. In [30] the authors
consider an MDP in a mean-field regime, with independent processes evolving in a common environment.
It is shown that as the number of processes tends to infinity, the optimal policy converges to the optimal
policy of a deterministic discrete time system.

1.1.3 Performance analysis for large-scale storage systems

In Chapter 4, we address an allocation problem in large storage systems using a stochastic modelling
approach. We consider a model where there are files distributed across a set of nodes, and each node breaks
down after an exponentially distributed amount of time that depends on the number of files it handles.
When a node breaks down, all the files it had are reallocated to other nodes, and the node goes back to a
state with zero files. The destination node of the files is chosen at random and independently across the
files.
Since the model with a fixed number of nodes involves a complex analysis, we focus on the mean-field
regime, as we did in Chapter 2. We take the total number of nodes and the total number of files to infinity,
with a fixed average number of files per node. We study the existence of the process that represents the
load of a single node in the mean-field limit. We further consider the case where the average number of files
per node tends to infinity, and we show the convergence in distribution of the load in steady state.
The problem studied here is motivated by the replication methods used in many large storage systems that
rely on data redistribution, such as Hadoop Distributed File System (HDFS) [18], Google File System (GFS)



4 CHAPTER 1. INTRODUCTION

[32] and Cassandra [42]. Whenever there is a loss of content of a node due to its breakdown, the system
regenerates the lost data blocks from other copies and allocates them in other functioning nodes. The fact
of a node breaking down is closely related to its level of activity: the more data it stores and the more tasks
it handles, the faster it presents failures.
Consistency and fault-tolerance in replicated data stores have been largely studied, see for example [67,
Chapters 7 and 8] and [56, Chapter 13]. In [63] the authors study the evolution of the load of a node in
an equivalent problem to the one we consider. They propose a model of nodes that breakdown after an
exponentially distributed amount of time with constant rates. When a node crashes, all the files that were
in the node are reallocated following different allocation policies. This model does not take into account the
fact that a node breaks down according to its level of activity. The novelty of our work relies on considering
nodes whose time of failure is determined by a function of the current load they have.

1.2 Methodology

We introduce here the methodology used in the thesis. In Section 1.2.1 we define the Markov Decision
Processes (MDPs), a general framework used for modelling stochastic optimisation problems. In Section
1.2.2 we describe the value iteration method, a numerical technique that can be used for solving MDPs. The
Multi-Armed Restless Bandit Problem (MARBP), a particular subclass of MDPs, is presented in Section
1.2.3. In Section 1.2.4 a relaxation approach for the MARBP is discussed, which allows us to derive well-
performing heuristics policies. The mean-field technique used in Chapter 4 to study systems in large-scale
regimes is outlined in Section 1.2.5.

1.2.1 Markov Decision Processes

In this section we introduce a powerful framework related to the study of stochastic optimisation problems,
the Markov Decision Processes (MDPs). They have been largely studied in literature and are one of the
main tools used in the thesis. MDPs were introduced by Bellman in 1957 ([11]) as a generalisation of Markov
Processes where decisions take a role. For a full overview we refer to the textbooks [13, 38, 57, 60].
A continuous-time MDP is a tuple (X ,A, q, C), where

• X is the state space of the process. We will consider the discrete state space X = N ∪ {0}.

• A is a finite set of actions, and A(m) ⊂ A is the set of actions for state m ∈ X .

• q : X ×A×X → R+ is the transition rates function.

• C : X ×A → R is the cost function.

In an MDP, a decision maker knows the current state m ∈ X and selects an action a from the space of
actions A(m). The transition to the next state m′ is defined by the exponential transition rate q(m′|m, a)
that depends not only on the current state of the Markov Process but also on the action. Let ϕ be a policy
that prescribes which action to take in each moment in time. We will denote by Xϕ(t) and Aϕ(t) the state
and the action of the process at time t under policy ϕ, respectively.
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When the process visits state m and the action taken is a, C(m, a) determines the incurred cost. The objec-
tive is to find a policy that minimises some cost criterion. Typically, one studies finite-horizon, discounted
infinite-horizon and average-cost criterion. We will focus on the latter, and we will consider stationary
policies. Hence, our objective is to find a policy ϕ that minimises

lim sup
T→∞

1
T
E

(∫ T

0
C(Xϕ(t), Aϕ(t))dt

)
.

Obtaining an optimal policy of an MDPs is typically out of reach. The existence of a solution cannot always
be assured, and when it exists, its complexity rapidly scales with the dimensions of the state space, the
so-called “curse of dimensionality” [11].
A method for proving the existence and identifying an optimal policy of an MDP comes after the study of
the average-cost optimality equations, also known as Bellman equations. Let τ(m, a) =

∑
m′∈X q(m′|m, a)

denote the total transition rate for state m and action a. If there is a pair (g, V (·)) such that

g + τ(m, a)V (m) = min
a∈A(m)

{
C(m, a) +

∑
m′

q(m′|m, a)V (m′)
}
∀m, (1.2.1)

then a policy that is the argument of the minimum in (1.2.1) is average-cost optimal [60, Section V]. The
value g is the incurred optimal average cost per unit of time, and V (·) is known as the value function, which
captures the difference in cost between starting in state m and an arbitrary reference state.

1.2.2 Uniformisation and value iteration

We present now the discrete-time MDPs with time steps n = 1, 2, . . .. A discrete-time MDP is a tuple(
X̃ , Ã, P, C̃

)
, where X̃ , Ã and C̃ are the state space, the set of actions and the cost function, respectively, as

in the continuous-time MDP. The function P (m′|m, a) is the probability that the process makes a transition
to state m′ in one step given that the current state is m and the action taken is a.
We are interested in discretising a continuous-time MDP in order to get an equivalent discrete-time one. In
this sense, we use a discretisation method known as uniformisation. Let (X ,A, q, C) be a continuous-time
MDP, and let τ(m, a) be the total transition rate for state m and action a. We say the transition rates
are uniformly bounded if there is a constant γ such that τ(m, a) ≤ γ for every m, a. In order to uniformise
(X ,A, q, C), we assume it has uniformly bounded rates.
We define an associated discrete-time MDP

(
X̃ , Ã, P, C̃

)
, where the time between steps represents expo-

nentially distributed time intervals of mean 1/γ in the continuous-time MDP. We let X̃ = X and Ã = A be
defined as in the continuous-time MDP, and C̃(m, a) = C(m, a)/γ is the cost function per time step. Then,
for the probabilities, we set

P (m′|m, a) =

q(m′|m, a)/γ if m′ 6= m

1− τ(m, a)/γ if m′ = m,

where 1−τ(m, a)/γ is the probability of having a "dummy" transition, i.e., the chain does not change its state.
The resulting discrete-time process is embedded in the original continuous-time one. As a consequence, the
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optimal policy for the discrete-time model is the same as for the continuous-time MDP. For a deeper insight
in uniformisation see [54, Chapter 3].
We can now introduce the discrete version of the Bellman Equation for a given discrete-time MDP. If there
is a pair (g̃, V (·)) such that

g̃ + V (m) = min
a∈A(m)

{
C̃(m, a) +

∑
m′

P (m′|m, a)V (m′)
}
∀m, (1.2.2)

then the argument of the minimum in Equation (1.2.2) is an optimal average cost policy. Note that g̃ = g/γ

is the average optimal cost per transition and V (·) is the value function, as described in the continuous-time
Bellman Equation (1.2.1).
Equation (1.2.2) can be numerically solved with algorithms like policy iteration or value iteration. We
focus here on the latter, which we use to characterise optimal policies in Sections 3.4.1 and 3.4.2, and to
numerically determine the performance of an optimal policy in Sections 2.5 and 3.6. Value iteration works
as follows. For each m ∈ X set

V0(m) = 0

Vn+1(m) = min
a∈Ã(m)

{
C̃(m, a) +

∑
m′

P (m′|m, a)Vn(m′)
}

for n = 0, 1, . . . . (1.2.3)

The function Vn(m) is the minimum expected finite-horizon cost that can be achieved in n steps when
starting in state m. It can also be written as Vn(m) = minϕ E

(∑n−1
s=0 C(Xϕ(s), Aϕ(s))|X0 = m

)
. When

taking the limit in n of the sequence of functions Vn(·), whose existence can be assured under certain
conditions, the value function V (·) and the average optimal cost g̃ from Equation (1.2.2) can be retrieved:
the limits Vn(·) − ng̃ → V (·) and Vn+1(·) − Vn(·) → g̃ as n → ∞ hold. The sequence of actions defined
as the minimising action in each step n in (1.2.3) also converges, and the limit is an average-cost optimal
policy, see [38] for details. In addition, when properties of the value function V (·), such as monotonicity
and convexity, can be proved for the functions Vn(·), these carry over to V (·). We use this approach in the
proof of Theorem 3.14 in Appendix 3.7.5 and for Proposition 3.9 in Section 3.4.1.
We present how value iteration can be numerically applied to obtain an optimal policy of a discrete-time
MDP with finite state space. The algorithm consists in building the functions Vn(·) in a recursive fashion
as defined in Equation (1.2.3). Since for any m, Vn+1(m)− Vn(m) converges to the average optimal cost g̃,
we will stop the recursion when the difference maxm∈X (Vn+1(m)− Vn(m))−minm∈X (Vn+1(m)− Vn(m))
is sufficiently small.
Some of the models we study have infinite state space with rates that are not uniformly bounded, namely
the abandonment queue studied in Section 3.4. When we consider abandonments, each customer in the
queue can abandon at a fixed rate, which means that the rates grow linearly with the number of customers.
A method used to handle infinite state spaces and unbounded rates is the so-called truncation. We fix a
state L such that the process does not visit any state m′ > L, i.e. q(m′|m, a) = 0 for any m, a and m′ > L.
The rates q(m′|m, a) for m,m′ ≤ L remain unchanged.
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When we use this truncation method for proving analytical properties for V (·) (e.g. monotonicity), boundary
effects may appear. We will then make use of a smoothing rate truncation method, see [14]. We modify the
rates of the original process for states m < L, such that they decrease to 0 as m grows large, up to state
L, where there are no transitions to states m′ > L. The obtained smoothed process, and its corresponding
value function V L(·), converges to the original one when L→∞, as it is stated in [14, Theorem 3.1]. The
proofs in Sections 3.7.2 and 3.7.5 are based on this method.

1.2.3 Multi-Armed Restless Bandits

We present a particular subclass of MDPs, the Multi-Armed Restless Bandit Problem (MARBP) introduced
in [72]. The restless bandit model has been proved to be a powerful stochastic optimisation framework to
model control problems. In this thesis we study an MARBP in Chapters 2 and 3.
We consider a set of N bandits. The bandits are controllable stochastic processes whose transition rates
depend on whether they are made active or passive, with the constraint of having at most R < N active
bandits at the same time. We use the same notation as in Section 1.2.1 for the continuous-time MDPs. The
state space of the bandits is X = N ∪ {0}, and the set of actions is A = {0, 1}, where a = 0 denotes the
action of making a bandit passive and a = 1 of making it active. Let ϕ be the policy that determines the
action taken for each bandit, which is a function of the states of the bandits.
For a given policy ϕ, Xϕ

k (t) ∈ X denotes the state of bandit k at time t, and ~Xϕ(t) := (Xϕ
1 (t), . . . , Xϕ

N (t)).
Aϕk (t) ∈ A denotes the action of bandit k at time t, and ~Aϕ(t) := (Aϕ1 (t), . . . , AϕN (t)). The constraint can
then be expressed as

N∑
k=1

Aϕk (t) ≤ R ∀t ≥ 0. (1.2.4)

We define the set of feasible policies Φ as the set of all policies that satisfy (1.2.4).
When Xϕ

k (t) = m and Aϕk (t) = a, bandit k makes a transition from state m to state m′ at rate qk(m′|m, a).
The restless term means that bandits may change state even if they are passive. If Ck(m, a) denotes the
cost per unit of time of bandit k, the objective of the optimisation problem is to find the policy ϕ that
minimises the long-run average cost:

lim sup
T→∞

1
T
E

(∫ T

0

N∑
k=1

Ck(Xϕ
k (t), Aϕk (t))dt

)
. (1.2.5)

In summary, we look for a policy ϕ that minimises (1.2.5) under constraint (1.2.4).
In order to solve the MARBP, there exists a methodology, explained in Section 1.2.4, that allows us to
derive efficient index-based policies. An index policy assigns an index to each bandit depending on its
current state, and makes active the R bandits having currently the largest indices. Index type policies are
simple to implement. A first seminal work with an index-type solution for the multi-armed bandit problem
has been proposed by Gittins in the classical non-restless model [34], i.e., where the passive bandits do not
change their state.
Optimal control in restless bandit problems provides a powerful optimization framework to model dynamic
scheduling of activities. In particular, regarding optimal control of computing systems, the restless bandit
framework has been successfully applied in, for example, the context of wireless downlink scheduling [4,
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9, 55], load balancing problems [45], systems with delayed state observation [27], broadcast systems [58],
multi-channel access models [2, 47], stochastic scheduling problems [5, 36, 51] and scheduling in systems
with abandonments [10, 35, 43, 52].

1.2.4 Lagrangian relaxation

We describe now the methodology pioneered by Whittle to derive well-performing heuristics for the MARBP
problem [72]. A key step in the methodology is a relaxation of the constraint (1.2.4), which states that the
number of active bandits must be satisfied on average, and not in every decision epoch:

lim sup
T→∞

1
T
E

(∫ T

0

N∑
k=1

Aϕk (t)dt
)
≤ R. (1.2.6)

Let ΦREL denote the set of policies satisfying the relaxed constraint (1.2.6), and in particular Φ ⊆ ΦREL.
We consider the problem of finding a policy ϕ that minimises (1.2.5) under constraint (1.2.6). Using the
Lagrangian multipliers approach we can rewrite the problem and obtain the following unconstrained version,
which we call relaxed optimisation problem. Find a policy ϕ that minimises

lim sup
T→∞

1
T
E

(∫ T

0

(
N∑
k=1

Ck(Xϕ
k (t), Aϕk (t))−W

N∑
k=0

Aϕk (t)
)

dt
)
. (1.2.7)

The Lagrange multiplier W represents a subsidy for making each bandit passive. The Lagrange multipliers’
theory states that there exists a multiplier W such that constraint (1.2.6) is satisfied. This new formulation
does not have a common constraint, and hence it allows us to decompose the problem in N subproblems,
one for each bandit. For a given W , we will consider the one-dimensional problem of minimising

lim sup
T→∞

1
T
E

(∫ T

0
(Ck(Xϕ

k (t), Aϕk (t))−WAϕk (t)) dt
)
, (1.2.8)

for each bandit k. As a direct consequence, the optimal policy of the relaxed problem is obtained by
combining the optimal policies of the N subproblems. Studying the one-dimensional problem is the key
idea introduced by Whittle [72], used in order to simplify the original problem. Whittle further showed
that, in case the technical condition known as indexability holds, the solution to (1.2.8) is of index type,
i.e., there exists a function Wk(m) such that the optimal policy is to make active a bandit if and only if
Wk(m) > W . This in turn implies that the optimal policy to solve (1.2.7) is of index type as well, and it
activates all bandits such that their respective current indices are larger than W .
The indexability condition establishes that as the subsidy for passivity W increases, the set of states in
which it is optimal to be passive for bandit k (denoted by Pk(W )) increases as well, i.e., W < W ′ implies
Pk(W ) ⊆ Pk(W ′). In other words, indexability states that, given a state m ∈ X , if it is optimal to make
bandit k passive in state m for a given W , it is also optimal to make it passive for any W ′ ≥W .
If the indexability condition holds, the solution to (1.2.8) is given by

Wk(m) := inf {W : m ∈ Pk(W )} . (1.2.9)
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Note that Wk(m) is the smallest value for the subsidy such that it is optimal for that bandit to be passive
in that state. This approach as proposed by Whittle has developed into a large research area, and as a
consequence (1.2.9) is commonly known as Whittle’s index.
Since the solution to the relaxed optimisation problem (1.2.7) will in general not be feasible for the original
problem with constraint (1.2.4), Whittle proposed the following heuristic also based on the Whittle’s index:
in every decision epoch make active the R bandits having currently the largest Whittle’s index. We will
refer to this policy as Whittle’s index policy. This heuristic has been proved to be well-performing in
many important examples, see Niño-Mora [53], and asymptotically optimal under certain circumstances,
see Weber and Weiss [71], Ji et al. [40], Ouyang et al. [55] and Verloop [69].

1.2.5 Mean-field theory

In this section we present the mean-field limit theory. We consider systems with interacting Markov pro-
cesses, and we aim to describe the behaviour of the whole system as the number of processes grows large.
We use this approach to study large-scale systems, in Chapters 2 and 4. For more details we refer to the
lectures [66], and the works in continuous-time [16], in discrete-time [46] and in discrete-time with vanishing
intensity [12].
Assume we have N continuous-time Markov processes living in the finite state space X , that are identically
distributed and indistinguishable. This means that the transition rates of a given process depend on the
total number of processes present in each state i ∈ X , and not on the current state of one of them. Let X(t)
denote the state of a randomly chosen process. We further define Ni(t) for each i ∈ X as the number of
processes in state i at time t. Let ~N(t) := (Ni(t) : i ∈ X ) be the state of the whole system, which satisfies∑
i∈X Ni(t) = N for all time t. We assume that the evolution of the system is such that there are no

synchronous transitions in different processes. Under these definitions, the transition rates of X(t) when
the state of the system is ~N(t) are given by the matrix Qij defined as follows:

Qij( ~N(t)) =

limh→0
1
h
P
(
X(t+ h) = j|X(t) = i, ~N(t) = N~n

)
if Ni(t) > 0

0 if Ni(t) = 0
(1.2.10)

Qii( ~N(t)) = −
∑

j∈X ,j 6=i
Qij( ~N(t)),

where P
(
X(t+ h) = j|X(t) = i, ~N(t) = N~n

)
is the probability of the process to be in state j at time t+ h

conditioned to the fact that at time t it is in state i and the whole system is in state N~n.
Let ~n(t) = ~N(t)/N denote the normalised vector, i.e., ni(t) is the proportion of processes in state i at time
t, we omit the dependence on N for the ease of the reading. The transition rate function associated to ~n(t)
is given by

q
(N)
ij (~n(t)) := Qij(N · ~n(t)). (1.2.11)

Although (1.2.10) and (1.2.11) describe the same transition matrix, (1.2.10) is defined at discrete points of
integer valued vectors, while (1.2.11) is defined at discrete points whose coordinates are integer multiples of
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1/N . We will focus on the latter since we are interested in studying the limit in distribution of ~n(t) as N
goes to infinity.
An important result in mean-field limit theory ([46, 16]) states that, under certain conditions, there exists a
function qij(~n(t)) such that qij(~n(t)) = q

(N)
ij (~n(t)), for all N ≥ 1 and all ~n proportions out of N . Then, the

normalised vector ~n(t) converges in distribution to a deterministic vector as N tends to infinity. Moreover,
for each i ∈ X we have the following differential equation:

d
dtni(t) =

∑
j∈X

nj(t)qij(~n(t)).

This result can be adapted to different contexts. In Chapter 2 we refer to the limiting results in [17] for
mean-field results in the presence of an environment process. In Chapter 4 we make a detailed analysis of
the evolution of the load of a node in a storage system in the mean-field limit.

1.3 Main contributions

In this section we present the structure of the manuscript and the main contributions obtained.
In Chapter 2, we consider a stochastic problem with controllable processes and unobservable environments,
as described in Section 1.1.1. The chapter is based on our publication [SR1]. We assume that the decision
maker takes actions based only on the current state of the controllable process. We study a continuous-time
multi-armed restless bandits problem (MARBP) in an asymptotic regime, where the number of bandits grows
large together with the speed of the environments. The main goal is to find policies that asymptotically
minimise the long-run average cost.
Our main result is Theorem 2.5, where we provide sufficient conditions for a policy to be asymptotically
optimal. We further introduce a set of priority policies that satisfy those conditions. The second main
result is stated in Proposition 2.13, where an averaged version of Whittle’s index policy is proved to be
inside the set of asymptotic optimal policies. In Section 2.5, we evaluate numerically the performance
under Whittle’s index policy, outside the asymptotic regime. We study a multi-class scheduling problem
in a wireless downlink with two classes. We observe that already for two bandits the performance of
the averaged Whittle’s index policy becomes close to optimal as the speed of the modulated environment
increases.
The key step of the proofs of Chapter 2 follows from studying a system with the averaged parameters of
the stochastic process, where the average is determined by the stationary measure of the environments. In
particular, we consider a fluid process and a linear programming (LP) problem with the defined parameters.
This is based on the results in [17] for the evolution of a particle system under a rapidly changing environ-
ment. The policies proved to be asymptotically optimal are the ones that make the fluid process converge
to the equilibrium of the LP problem.
In Chapter 3, we study an MARBP with observable environments, as described in Section 1.1.2. The chapter
is based on [SR2]. Each bandit is formed by two processes, a controllable process and an environment.
The decision maker observes the current state of the environment when choosing actions for the controllable
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processes. The challenge relies on finding optimal control of bandits living in a multi-dimensional state
space.
We study the dynamics of one bandit, based on the relaxed version of the system as introduced in Section
1.2.4. We consider policies of threshold type, where the controllable process is made active if and only if its
state is above a certain threshold. We assume the optimality of threshold policies, which is typically the
case in many queuing models, and we propose Algorithm 3.4 to find the optimal threshold policy for each
value of the Lagrangian multiplier. Whittle’s index is then derived. In Proposition 3.8 we show that, if we
consider a slow environment process, Whittle’s index coincides with Whittle’s index of a bandit that only
sees a fixed state of the environment.
As a relevant case study, we consider a queuing system with abandonments, under linear holding cost.
Our main results are Theorem 3.14, where indexability is proved, and Theorem 3.15, where closed-form
expressions for Whittle’s index are provided. Various techniques have been used for the proofs, such as the
comparison of stochastic processes as described in [19, Chapter 9], or the smoothing truncation method, as
presented in Section 1.2.1.
In Proposition 3.19 we derive simpler expressions for the queues with abandonments when the environments
vary slowly, and when they vary fast. In particular, the result for the fast regime allows us to compare the
observable model of Chapter 3 with the unobservable model of Chapter 2: in Chapter 3 the index remains
dependent on the state of the environment, in contrast to the index that takes the averaged parameter
values in Chapter 2. This is studied numerically in Section 3.6.3, where we conclude that there can be an
important gain in performance when we allow the decision maker to observe the environment, enlarged in
cases where the optimal policy strongly depends on the state of the environment.
We include a further comparison between the results for the unobservable and observable regimes in the
conclusions of the thesis, see Chapter 5.
In Chapter 4, we study a problem of allocation in large distributed storage system, as introduced in Section
1.1.3. This chapter is based on [SR3]. We consider files distributed among a set of nodes. When one of the
nodes breaks down all the files it has are reallocated at random to other nodes, and the node goes back to a
state with zero files. The analysis is focused on the mean-field regime of the system, i.e., when the number
of nodes and files grow large, assuming a fixed average number of files per node. Under this regime, the
evolution of the load of a node is studied. The main difficulty of the problem relies on the fact that the rate
of the breakdowns of the nodes depend on the load they currently have.
We first consider the so-called Random Weighted allocation policy, that assigns to each node a weighted
probability of receiving a file that depends on its current load. Our main contribution is Theorem 4.5, where
we show the existence of the process in the mean-field limit, together with the existence and uniqueness of
its stationary measure. In a following result in Theorem 4.7, we make the average number of files per node
grow large, and we prove the convergence in distribution of the load in steady state. Alternative proofs are
presented for the Random allocation policy, where the probability of assigning a file is uniform among all
servers. This is done in Theorems 4.8 and 4.10.
We work with urn models in order to describe the dynamics of the process. In an urn model, there is a set
of identical balls moving across urns. Each ball waits an exponentially distributed amount of time and then
it jumps to another urn. For our case, we consider a model where all the balls in an urn jump at the same
time. We study the global balance equations of such a process, and using the properties of the allocation



12 CHAPTER 1. INTRODUCTION

functions, we characterise the stationary measure of the process as the solution of a fixed point equation,
see Section 4.3.
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In this chapter we study a large-scale resource allocation problem with controllable processes affected by
unobservable environments. We focus on a multi-armed restless bandit problem, as introduced in Section
1.2.3. The bandits are the controllable processes, whose transition rates depend on the current state of the
environments. We consider that the environments change state relatively fast with respect to the controllable
processes. We study the mean-field limit of the processes, obtained by letting the population of bandits
grow large, together with the speed of the environment.
In our first main contribution, we present sufficient conditions for a policy to be asymptotically optimal
and we show that a set of priority policies satisfies these. In our second main contribution, we introduce
the averaged Whittle’s index policy and prove it to be inside the set of asymptotically optimal policies. We
further provide a numerical evaluation of the performance of the averaged Whittle’s index policy.
For our proofs we consider techniques as used in [69, 71], where MARB problems without environments are
studied in a mean-field regime. In the seminal work [71], Whittle’s index policy is shown to be asymptotically
optimal as the number of bandits that can be made active grows proportionally to the total number of
bandits. In [69], the author does not assume indexability, and, using fluid-scaling techniques, proves that a
set of priority policies is asymptotically optimal.
Another technique that we use is based on convergence results for particle systems living in rapidly varying
environments. We refer to [12, 17], where the authors derived that in the limit the system is described by
an ODE, and the transitions rates of the particles are averaged according to the steady-state distribution
of the environments. The paper [17] considers a countable state space and each particle is associated its
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own modulated environment (no assumption is made on the joint evolution of the environments). On the
other hand, in [12] a finite state space and one common environment is considered, resulting in less complex
technical conditions.
In order to infer the state of the unobservable environment, one could apply learning techniques as the ones
studied in [65]. However, we will not use such techniques, since the environments change at a much faster
time scale than the controllable processes, and we assume that it will be too costly to learn from them. We
follow up this discussion in Section 5.2.2, where in the context of reinforcement learning, we introduce a
method for the case where the environments do not change relatively fast.
The chapter is organized as follows. In Section 2.1, we define the multi-class restless bandit control problem
and introduce the Markov-modulated environments. Section 2.2 contains the asymptotic optimality results.
In Section 2.3, we define a set of priority policies and prove it to be asymptotically optimal when the state
space is finite. In Section 2.4 we define an averaged version of Whittle’s index policy and prove it to be
asymptotically optimal. Section 2.5 presents our numerical results.

2.1 Model description

We consider a multi-class restless bandit problem in continuous time. There are K classes of bandits and
there are Nk class-k bandits present in the system. We further define N :=

∑
kNk as the total number of

bandits and define γk := Nk/N as the fraction of class-k bandits. At any moment in time, a class-k bandit
is in a certain state j ∈ {1, 2, . . . , Jk}, with Jk ≤ ∞. In particular, the state space can be countable infinite.
At any moment in time, a bandit can either be kept passive or active, denoted by a = 0 and a = 1,
respectively. There is the restriction that at most αN bandits can be made active at a time, α ≤ 1.
The transitions of the class-k bandits depend on a process called environment, described by the Markov
process Dk(t) that lives in a countable state space Z = {1, . . . , d, . . .} and is positive recurrent. We make
no further assumptions on the distribution of the joint vector ~D(t) = (D1(t), . . . , DK(t)). For example, it
could be that there is one common environment for all classes of bandits, or instead, the environments per
class are independently distributed. We further let φ(~d) denote the stationary probability vector that the
environment vector ~D(t) is in state ~d. We let φk(dk) denote the marginal probability of environment Dk(t)
to be in state dk. We further assume that

∑
~d′ r(~d

′|~d) < C1, for all ~d, for some C1 < ∞, with r(~d′|~d) the
transition rate of ~D(t) from ~d to ~d′.
When action a is performed on a class-k bandit in state i, i = 1, . . . , Jk, and the environment of this class-k
bandit is in state d, it makes a transition to state j with rate 1

N q
(d)
k (j|i, a), j = 1, . . . , Jk, j 6= i. The

scaling 1/N makes sure that the evolution of the state of a bandit is relatively slow compared to that of
its environment, i.e., the environment changes relatively fast. We assume that the evolution of one bandit
(given its action and the state of its environment) is independent of that of all the other bandits. We
further define the averaged transition rate by qk(j|i, a) :=

∑
d∈Z φk(d)q(d)

k (j|i, a). The fact that the state
of a bandit might evolve even under the passive action explains the term of a restless bandit. Throughout
the chapter, we assume that the transition rates are uniformly bounded, i.e.,

Jk∑
j=1

q
(d)
k (j|i, a) < C2, for all a, d, i, k, (2.1.1)
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for some C2 <∞.
A policy determines at each decision epoch which αN bandits are made active. Decision epochs are moments
when one of the N bandits changes state. We focus on Markovian policies that base their decisions only
on the current proportion of bandits present in the different states. Hence, this means that the decision
maker cannot observe the state of the environment ~D(t). In addition, we assume the decision maker does
not attempt to learn the state of the environment either. We write ~x := (xj,k; k = 1, . . . ,K, j = 1, . . . , Jk),
where xj,k represents the proportion of class-k bandits that are in state j, hence,

~x ∈ B :=

~x : 0 ≤ xj,k ≤ 1 ∀j, k and
∑
j

xj,k = γk

 .

Given policy ϕ, we then define the function yϕ,1 : B → [0, 1]
∑K

k=1
Jk that distinguishes the action chosen for

the bandits. That is, given a policy ϕ, yϕ,1j,k (~x) denotes the proportion of class-k bandits in state j that are
activated when the proportion of bandits in each state is given by ~x. Hence, yϕ,1(·) satisfies yϕ,1j,k (~x) ≤ xj,k
and yϕ,1j,k (~x) ≤ α, ∀j, k. We focus on the set of policies such that yϕ,1(·) is continuous. We further define
yϕ,0j,k (~x) := xj,k − yϕ,1j,k (~x), as the proportion of class-k bandits in state j that are kept passive.
For a given policy ϕ, we define ~XN,ϕ(t) := (XN,ϕ

j,k (t); k = 1, . . . ,K, j = 1, . . . , Jk), with XN,ϕ
j,k (t) the number

of class-k bandits that are in state j at time t.
Our performance criteria are stability and long-run average holding cost. For a given policy ϕ, we will call
the system stable if the process ~XN,ϕ(t) has a unique invariant probability distribution. We will denote
by ~XN,ϕ and XN,ϕ

j,k the random variables following the steady state distributions, assuming they exist. In
case the state space is finite, the process ~XN,ϕ(t) being unichain is a sufficient condition for stability of the
policy ϕ. For infinite state space, whether or not the system is stable can depend strongly on the employed
policy. We will only be interested in the set of stable policies.
We denote by C(d)

k (j, a) ∈ R, j = 1, . . . , Jk, the holding cost per unit of time for having a class-k customer
in state j under action a and when in environment d. We note that C(d)

k (j, a) can be negative, i.e.,
representing a reward. We define the holding cost averaged over the states of the environment as Ck(j, a) :=∑
d∈Z φk(d)C(d)

k (j, a). We further introduce the following value functions for given policy ϕ, and initial

proportion of bandits
~XN,ϕ(0)
N

= ~x ∈ B:

V N,ϕ− (~x) := lim inf
T→∞

1
T
E

∫ T

0

K∑
k=1

Jk∑
j=1

1∑
a=0

C
(Dk(t))
k (j, a)yϕ,aj,k

(
~XN,ϕ(t)
N

)
dt


and

V N,ϕ+ (~x) := lim sup
T→∞

1
T
E

∫ T

0

K∑
k=1

Jk∑
j=1

1∑
a=0

C
(Dk(t))
k (j, a)yϕ,aj,k

(
~XN,ϕ(t)
N

)
dt

 . (2.1.2)
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If V N,ϕ− (~x) = V N,ϕ+ (~x) for all ~x, then we define V N,ϕ(~x) := V N,ϕ+ (~x). We assume there exists a stable policy
for which V N,ϕ(~x) <∞. Our objective is to find a policy ϕ∗ that is average optimal,

V N,ϕ
∗

+ (~x) ≤ V N,ϕ− (~x), for all ~x and for all policies ϕ, (2.1.3)

under the constraint that at any moment in time at most αN bandits can be made active, that is,

K∑
k=1

Jk∑
j=1

yϕ,1j,k

(
~XN,ϕ(t)
N

)
≤ α, for all t. (2.1.4)

2.2 Rapidly varying modulated environments

In this section we study the system as the environment is fast changing and the number of bandits scales.
In Section 2.2.1 we prove asymptotic independence between the proportion of bandits in each state and
the environment. In Section 2.2.2 we establish convergence to a fluid limit and use this to lower bound
the performance for any policy. This lower bound allows to prove asymptotic optimality of certain policies,
which is presented in Section 2.2.3.

2.2.1 Asymptotic independence

In the lemma below we prove that the bandits are asymptotically independent of the environment, i.e.,
when the amount of bandits N tends to infinity. The proof can be found in the Appendix 2.6.

Lemma 2.1. Assume ϕ is a stable policy for any N . Then, for any subsequence of N such that
(
~XN,ϕ/N

)
N∈N

converges in distribution, we have

lim
N→∞

E

(
e−s11

X
N,ϕ
11
N . . . e−sJKK

X
N,ϕ
JKK

N 1(~D=~d)

)
= φ(~d) lim

N→∞
E

(
e−s11

X
N,ϕ
11
N . . . e−sJKK

X
N,ϕ
JKK

N

)
. (2.2.1)

2.2.2 Fluid control problem and lower bound

In this section we study the behaviour of the system as N grows large, that is, as the number of bandits
grows large and the environments vary rapidly. We state convergence to the fluid limit and derive an
associated fluid control problem. The latter allows to derive a lower bound on the average holding cost for
any policy ϕ.
Before presenting the fluid process to which the stochastic system converges, we first provide some intuition.
Recall that the transition rate of a bandit in state j to state i, when action a is performed, is given by
1
N q

(d)
k (i|j, a). Since the rates of the environment do not scale with N , when we take N → ∞, the bandit

will perceive a rapidly changing environment. Before it can make a new transition, its environment has
already changed infinitely many times. Its transition rate will therefore be the average over the states the
environment can be in, that is qk(j|i, a) =

∑
d∈Z φk(d)q(d)

k (j|i, a). The fluid process then arises by taking
into account only the mean drifts q.
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We denote by u a fluid control and let xu(t) be the corresponding fluid process. Let xu,aj,k (t) denote the
proportion of class-k fluid in state j under action a at time t and let xuj,k(t) = xu,0j,k (t) + xu,1j,k (t) be the
proportion of class-k fluid in state j.
We consider fluid controls u(t) that base their actions only on the state of the fluid process x(t). As such,
policies for the stochastic process can be reduced to controls for the fluid problem. In particular, when
given a policy ϕ, the corresponding fluid control u = ϕ is defined as

xu,aj,k (t) = yϕ,aj,k (~xϕ(t)). (2.2.2)

We define the dynamics of xu(t) as follows:

dxuj,k(t)
dt =

1∑
a=0

Jk∑
i=1,i6=j

xu,ai,k (t)qk(j|i, a)−
1∑
a=0

Jk∑
i=1,i6=j

xu,aj,k (t)qk(i|j, a)

=
1∑
a=0

Jk∑
i=1

xu,ai,k (t)qk(j|i, a), (2.2.3)

where the last step follows from qk(j|j, a) := −
∑Jk
i=1,i6=j qk(i|j, a). The constraint on the fluid control u is

that the total proportion of active fluid satisfies

K∑
k=1

Jk∑
j=1

xu,1j,k (t) ≤ α, for all t ≥ 0. (2.2.4)

In the lemma below we formally state the convergence of the stochastic process ~Xϕ(t)/N of the proportions
of bandits. This result will not be used in any of the proofs of our results, but is presented for completeness.
The proof can be found in the Appendix 2.6.
For the convergence to hold, it is assumed in Lemma 2.2 that the process describing the state of a class-k
bandit at time t, is tight [15] in N , that is, roughly speaking that the processes must not oscillate too wildly
so that probability mass cannot disappear from compact sets. For either a finite state space (Jk < ∞) or
when the possible transitions in each state is finite, tightness follows directly, see [17, page 12] for details.

Lemma 2.2. Assume policy ϕ is such that yϕ,1j,k (·) is uniformly Lipschitz continuous, i.e.,

sup
j,k
|yϕ
∗,1

j,k (~x)− yϕ
∗,1

j,k (~z)| ≤ C sup
i,l
|xi,l − zi,l|, for all ~x, ~z, (2.2.5)

with C > 0. For a given policy ϕ, if the process describing the state of a class-k bandit at time t is tight
(with respect to N), then the stochastic process ~XN,ϕ(Nt)

N converges to the deterministic process xu(t), with
u = ϕ (as defined in Equations (2.2.2) and (2.2.3)).

We will be interested in finding an optimal equilibrium point ~x of the fluid dynamics that minimises the
holding cost averaged over the environments,

K∑
k=1

Jk∑
j=1

1∑
a=0

∑
d∈Z

φk(d)C(d)
k (j, a)xaj,k =

K∑
k=1

Jk∑
j=1

1∑
a=0

Ck(j, a)xaj,k.
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Setting (2.2.3) equal to zero, this gives us the following linear optimisation problem:

(LP ) v∗ := min
(xa
j,k

)

K∑
k=1

Jk∑
j=1

1∑
a=0

Ck(j, a)xaj,k

s.t. 0 =
1∑
a=0

Jk∑
i=1

xai,kqk(j|i, a), ∀ j, k, (2.2.6)

K∑
k=1

Jk∑
j=1

x1
j,k ≤ α, (2.2.7)

Jk∑
j=1

1∑
a=0

xaj,k = γk, ∀ k (2.2.8)

xaj,k ≥ 0, ∀ j, k, a, (2.2.9)

Let x∗ and v∗ denote an optimal solution and optimal value of the (LP) problem, respectively.
In Lemma 2.4 below, we use the LP formulation to find a lower bound on the original stochastic optimisation
problem. Before that, we need the following condition.

Condition 2.3. Given a policy ϕ,

a) the process ~XN,ϕ

N (t) has a unique invariant probability distribution pN,ϕ ∀N .

b) the family
{
pN,ϕ

}
N∈N is tight.

c) the family
{
pN,ϕ

}
N∈N is uniform integrable.

When bandits have a finite state space (Jk <∞), Condition 2.3 is true whenever XN,ϕ(t) is unichain.

Lemma 2.4. Assume Condition 2.3 is satisfied. It then holds that the feasible set of the (LP) problem is
non-empty and

lim inf
N→∞

V N,ϕ− (~x) ≥ v∗, (2.2.10)

with v∗ the optimal value of the (LP) problem.

The proof can be found in the Appendix 2.6.

2.2.3 Asymptotic optimality

In this section we present the asymptotic optimality results.

Theorem 2.5. Let x∗ be an optimal solution of the (LP) problem. Let ϕ∗ be a policy for which the fluid
process xϕ∗(t) converges to x∗ as t→∞, and x∗ is the unique equilibrium point (global attractor property).
Assume ϕ∗ satisfies Condition 2.3 and the assumptions made in Lemma 2.2. Then, ϕ∗ is asymptotically
optimal, that is, for all ~x and all policies ϕ, it holds that

lim
N→∞

V N,ϕ
∗
(~x) ≤ lim inf

N→∞
V N,ϕ− (~x). (2.2.11)
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In Section 2.3 we will present a class of policies that satisfy (2.2.5). The global attractor property is verified
numerically for the different examples presented in this chapter, see Section 2.5.

Proof of Theorem 2.5: In [17, Theorem 2.3] the mean-field limit for a particle system in a rapidly varying
environment is given for the stationary regime. Since we assumed tightness of ~XN,ϕ

∗

N (Condition 2.3) and the
fact that the fluid process xϕ∗(t) has a unique global attractor x∗, we can apply their result. Also recall the
discussion in the proof of Lemma 2.2. Hence, from [17, Theorem 2.3] we have, limN→∞ P

(
~XN,ϕ

∗

N = x∗
)

= 1,
for each state j and class k. Together with Lemma 2.1, this gives

lim
N→∞

P

(
~XN,ϕ∗

N
= x∗, ~D = ~d

)
= φ(~d). (2.2.12)

Recall that Ck(j, a) =
∑
d∈Z φk(d)C(d)

k (j, a). Thus

lim
N→∞

V N,ϕ
∗

+ (~x) = lim
N→∞

K∑
k=1

Jk∑
j=1

1∑
a=0

∑
d∈Z

∑
~x

C
(d)
k (j, a)yϕ

∗,a
j,k (~x) · P

(
~XN,ϕ∗

N
= ~x, ~D = ~d

)

=
K∑
k=1

Jk∑
j=1

1∑
a=0

∑
d∈Z

C
(d)
k (j, a)yϕ

∗,a
j,k (~x∗)φk(d)

=
K∑
k=1

Jk∑
j=1

1∑
a=0

Ck(j, a)x∗,aj,k = v∗.

where the first equality follows from the ergodicity theorem, the second equality from uniform integrability of
~X/N (interchange of limit and summations) and (2.2.12), the third equality from the fact that yϕ

∗,a
j,k (~x∗) =

x∗,aj,k (see (2.2.2) and limt→∞ xϕ
∗(t) = x∗), and the last step follows since x∗ is an optimal solution of (LP).

This concludes the proof of Theorem 2.5. 2

2.3 Priority policies

In this section we will define an important class of priority policies for which we can prove asymptotic
optimality results.
A priority policy is defined as follows. There is a predefined priority ordering on the states each bandit can
be in. At any moment in time, a priority policy makes active a maximum number of bandits being in the
states having the highest priority among all the bandits present. Hence, for a given priority policy prio, we
would have that the proportion of class-k bandits in state j that see action 1 is given by

yprio,1j,k (~x) = min


α− ∑

(i,l)∈Sprio
k

(j)

xi,l


+

, xj,k

 , (2.3.1)
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where Spriok (j) denotes the set of pairs (i, l), i = 1, . . . , Jl, l = 1, . . . ,K such that class-l bandits in state i
have higher priority than class-k bandits in state j under policy prio. In the lemma below we show that
this function satisfies (2.2.5) when bandits have a finite state space. The proof is in the Appendix 2.6.

Lemma 2.6. If Jk <∞, Equation (2.2.5) is valid for any priority policy.

We now define a set of priority policies Π∗ that will play a key role in the chapter. The priority policies are
derived from (the) optimal equilibrium point(s) x∗ of the (LP) problem: for a given equilibrium point x∗,
we consider all priority orderings such that the states that in equilibrium are never passive (x∗,0j,k = 0)
are of higher priority than states that receive some passive action (x∗,0j,k > 0). In addition, states that in
equilibrium are both active and passive (x∗,0j,k · x

∗,1
j,k > 0) receive higher priority than states that are never

active (x∗,1j,k = 0). Further, if the full capacity is not used in equilibrium (that is,
∑
k

∑
j x
∗,1
j,k < α), then the

states that are never active in equilibrium are never activated in the priority ordering. The set of priority
policies Π∗ is formalized in the definition below. In particular, in the next section we will prove that an
averaged version of the well-known Whittle’s index policy is in fact inside this set of policies.

Definition 2.7 (Set of priority policies Π∗).
We define

X∗ := {x∗ : x∗ is an optimal solution of (LP) with xk(0) = Xk(0) }.

The set of priority policies Π∗ is defined as

Π∗ := ∪x∗∈X∗Π(x∗),

where Π(x∗) is the set of all priority policies that satisfy the following rules:

1. A class-k bandit in state j with x∗,1j,k > 0 and x∗,0j,k = 0 is given higher priority than a class-k̃ bandit in
state j̃ with x∗,0

j̃,k̃
> 0.

2. A class-k bandit in state j with x∗,0j,k > 0 and x∗,1j,k > 0 is given higher priority than a class-k̃ bandit in
state j̃ with x∗,0

j̃,k̃
> 0 and x∗,1

j̃,k̃
= 0.

3. If
∑K
k=1

∑Jk
j=1 x

∗,1
j,k < α, then any class-k bandit in state j with x∗,1j,k = 0 and x∗,0j,k > 0 will never be

made active.

We can now state the asymptotic optimality result for priority policies in the class Π∗. Intuitively, this
result can be explained as follows. Let ϕ∗ be some policy from the set Π(x∗) ⊂ Π∗. It is easily verified that
x∗ is an equilibrium point of the fluid process xϕ∗(t). If in addition, the point x∗ is a global attractor, that
is, for any initial point, the process xϕ∗(t) converges to x∗, then using Theorem 2.5 one obtains the result.

Corollary 2.8. Assume a finite state space, Jk < ∞, for all k. For a given policy ϕ∗ ∈ Π(x∗) ⊂ Π∗,
assume x∗ is the global attractor of the fluid process xϕ∗(t). If in addition, the process XN,ϕ∗(t) is unichain,
then ϕ∗ is asymptotically optimal, that is, (2.2.11) is satisfied.

Proof: Lemma 2.6 gives that ϕ∗ satisfies (2.2.5). Hence the result follows directly from Theorem 2.5. 2
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Remark 2.9 (Infinite state space). The assumption of finite state space in Corollary 2.8 was made in
order to assure uniformly Lipschitz continuity of the function yϕ

∗,1
j,k (·). In fact, when Jk =∞, one can easily

construct a setting in which (2.2.5) does not hold. For example, for K = 1, take ~x(l) s.t. x
(l)
i = α/l for

i < l, x(l)
l = 1− α, and x(l)

i = 0, for i > l. Take ~z(l) s.t. z(l)
i = 0 for i < l, z(l)

l = 1− α, and z(l)
i = α/l, for

i > l. Then, yprio,1l (~x(l)) = 0 and yprio,1l (~z(l)) = 1− α, where prio is the policy that prioritizes state 1 over
state 2, and state 2 over state 3, etc. However, supj |x

(l)
j − z

(l)
j | = α/l. Since the state space is infinite, we

can now take l→∞. We then directly see that (2.2.5) does not hold.
We however note that in our numerical example, where we consider an infinite state space, we do observe a
very close to optimal performance of the priority policies.

2.4 Averaged Whittle’s index policy

In this section we introduce an averaged version of Whittle’s index. The averaged Whittle’s index policy is
a particular case of a priority policy. It is however only defined in case the system is indexable, while our
definition of the set of policies Π∗ is well-defined for both indexable and non-indexable systems.
In Section 1.2.3 we introduced the relaxation technique and Whittle’s index. We recall here the needed
concepts, based on this chapter’s model. We start by Whittle’s relaxation. In (2.1.4) we set the constraint
that at most αN bandits can be active at a time. We replace it by its time-average version:

lim
T→∞

1
T
E

∫ T

0

K∑
k=1

Jk∑
j=1

yϕ,1j,k

(
~XN,ϕ(t)
N

)
dt

 ≤ α, (2.4.1)

and we consider the relaxed-constraint problem, i.e., minimise (2.1.2) under constraint (2.4.1). Using the
Lagrangian approach, this can then be written as minimising

lim
T→∞

1
T
E

∫ T

0

K∑
k=1

Jk∑
j=1

1∑
a=0

C
(Dk(t))
k (j, a)yϕ,aj,k

(
~XN,ϕ(t)
N

)
dt

+W

∫ T

0

K∑
k=1

Jk∑
j=1

yϕ,1j,k

(
~XN,ϕ(t)
N

)
dt− α

 ,

where W is the Lagrange multiplier (chosen such that the time-average constraint (2.4.1) holds). The latter
can be decomposed into K subproblems, one for each class of bandit, where in each subproblem one needs
to minimise the cost term plus a cost W whenever the bandit is made active. Each subproblem can be
written as:

lim
T→∞

1
T
E

(∫ T

0
(C(Dk(t))

k (Sϕk (t), Aϕl (t)) +W1(Aϕ
k

(t)=1))dt
)
, (2.4.2)

where Sϕk (t) denotes the state of a class-k bandit at time t and Aϕk (t) denotes the action chosen for the
class-k bandit under policy ϕ (for the one-dimensional process).
We have then the following definitions.
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Definition 2.10 (Whittle’s index). Whittle’s index Wk(j) is defined as the least value of W for which it is
optimal in (2.4.2) to make the class-k bandit in state j passive.

We introduce now the indexability condition, that assures structural properties on the optimal policy of the
relaxed control problem, and allows us to derive a policy from Whittle’s index.

Definition 2.11 (Indexability). A bandit is indexable if the set of states in which passive is an optimal
action in (2.4.2) is increasing in W .

When indexability holds, the solution for the relaxed subproblem (2.4.2) is to activate all bandits that are
currently in a state j such that their Whittle index Wk(j) is larger than W . This solution is however not
feasible for the original K-dimensional problem, since sometimes it may activate more than αN bandits at a
time. For the original problem, the following heuristic was then proposed: active those αN bandits having
currently the highest index value. This is what we call Whittle’s index policy. The relaxation technique as
such provides a systematic approach to get a simple index policy.
In this chapter, we study restless bandits living in a modulated environment. In the limiting regime, as the
environment varies rapidly, we found that a bandit observes only the averaged (over the steady state of the
environment) parameters, that is, qk(·) and Ck(·, ·). This motivates us to define the averaged Whittle index
policy.

Definition 2.12 (Averaged Whittle’s index policy). The averaged Whittle’s index W k(j) for our restless
bandit problem living in a modulated environment is defined as the Whittle index that would result from the
restless bandit problem with parameters qk(i|j, a), Ck(j, a), and no modulating environment.
The averaged Whittle index policy activates those αN bandits having currently the highest averaged Whittle
index value W k(Sn,k(t)), where Sn,k(t) is the state of the nth class-k bandit, k = 1, . . . ,K, n = 1, . . . , Nk.

Proposition 2.13. If for the averaged version of the restless bandit problem the process describing the state
of a class-k bandit is unichain, regardless of the policy employed, and in addition the averaged restless bandit
problem is indexable, then there is an x∗ such that the averaged Whittle’s index policy is inside the set of
priority policies Π(x∗) ⊂ Π∗.
If in addition Jk <∞, for all k, and x∗ is the global attractor of the fluid process xϕ∗(t), then the averaged
Whittle index policy is asymptotically optimal.

The above proposition extends the asymptotic optimality result of Whittle’s index policy as obtained in [39,
69, 71] to that of restless bandits living in rapidly varying Markov-modulated environments. The assump-
tions made in Proposition 2.13 are the same as those needed in [39, 69, 71].

Proof of Proposition 2.13: In [69, Proposition 5.6] it was proved that for the standard restless bandit
problem, Whittle’s index policy was inside some set of priority policies defined by some linear program
problem (L̃P ). Since we defined our averaged Whittle’s index policy based on the standard restless bandit
problem with averaged parameters, we directly have that the averaged Whittle index policy is inside the
set of priority policies defined for (L̃P ) based on the averaged parameters. However, it can be checked that
the (L̃P ) for the averaged parameters is equivalent to our (LP) problem, hence, the averaged Whittle index
policy is inside Π̃∗, which is equal to Π∗.
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From the unichain assumption, we obtain that Condition 2.3 is satisfied when Jk < ∞. The asymptotic
optimality result now follows directly from Theorem 2.5. 2

2.5 Numerical evaluation

The objective of this section is to evaluate the performance of the averaged Whittle index policy (and other
heuristics) outside the asymptotic regime. We do this for a multi-class scheduling problem in a wireless
downlink channel. The model we consider is the following. There is one wireless downlink channel that
is shared by two classes of users. For a given policy, let Mϕ

k (t) denote the number of class-k users in the
system. Each class of users is associated a Markov-modulated environment, Dk(t), k = 1, 2, which can be
in two states. When Dk(t) = d, class-k users arrive according to a Poisson process with parameter λ(d)

k ,
k = 1, 2. At each moment in time, the base station can send data to at most one of the classes. Given
Dk(t) = d and Mϕ

k (t) = mk, class k (if served) has departure rate

µ
(d)
k

mk

mk + 1 .

This mimics opportunistic scheduling, since the more class-k users present in the system, the higher will
be the maximum capacity available among the class-k users. See for further details the discussion in [45,
Section 6.1].
The scheduler now needs to decide at each moment in time which of the two classes to activate. We assume

ρ :=
2∑
k=1

λk
µk

< 1,

with λk =
∑2
d=1 λ

(d)
k φk(d) and µk =

∑2
d=1 µ

(d)
k φk(d), so any work-conserving policy makes the system

stable. The objective will be to minimise the mean number of users in the system.
The performance for a given policy will be computed using the value iteration approach, as introduced in
Section 1.2.2, by writing the dynamic programming equation for the process

(Mϕ
1 (t),Mϕ

2 (t), D1(t), D2(t)).

Note that we only consider policies that cannot observe the environments when the scheduling decision is
taken.
We describe the averaged Whittle index policy in Section 2.5.1. We calculate a benchmark policy and
numerically evaluate index policies for several settings: in Section 2.5.3 each class is associated its own
environment in order to model Markov-modulated arrival processes. In Section 2.5.4 we will study the
effect of having one common environment that influences the departure rates of the classes. In Section 2.5.5
we introduce a discussion for the observable case. Our overall conclusion is that the averaged Whittle index
policy performs close to optimal when the modulated environments varies rapidly.
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γ 1 5 10 25 50 100 500 750 1000 2500 5000
gB 9.6 9.7 9.4 8.6 7.7 7.0 6.2 6.1 6.0 6.0 5.9
gW 11.2 10.9 10.2 8.8 7.7 7.0 6.2 6.1 6.0 6.0 5.9

g
∑

d
φ(d)W (d)

12.6 11.9 10.7 8.9 7.8 7.1 6.3 6.2 6.1 6.1 6.0
gW

(1) 10.6 10.5 10.1 8.8 7.8 7.1 6.2 6.1 6.1 6.0 6.0
gW

(2) 12.3 12.9 13 12.1 11.1 10.2 9.2 9.1 9.1 9.1 9.0
Rel(W ) 16.2 12.7 8.4 2.4 0.4 0.01 0.03 0.03 0.03 0.03 0.03

Rel(
∑
d φ(d)W (d)) 30.9 22.6 14 4.2 1.7 1.4 1.7 1.7 1.7 1.7 1.7

Rel(W (1)) 10.5 9 6.7 2.9 1.3 0.9 0.9 0.9 0.9 0.9 1
Rel(W (2)) 27.6 33.6 37.5 42.1 44 45 49.2 50.2 50.9 52.1 52.6

Table 2.1: Results for Example 1.

2.5.1 Averaged Whittle’s index

This model fits in the restless bandit framework with Markov-modulated environments, as presented in
this chapter. In particular, there are two bandits, each bandit representing a class of users, and the state
j ∈ {1, 2, . . .} of the class-k bandit represents its queue length. Hence, when Dk = d, the class-k bandit
makes a transition from state j to state j+ 1 at rate λ(d)

k , and from j to j− 1 at rate µ(d)
k

j
j+1a, where a = 1

when the class-k bandit is served, and a = 0 otherwise. At most one bandit can be activated at a time.
Using the expression of Whittle’s index as derived in [45], we obtain that the averaged Whittle index for
the class-k bandit in state n (its queue length), is given by

W k(n) =
E(Mn

k )− E(Mn−1
k )

πnk (n)− πn−1
k (n− 1)

, n = 1, 2, . . . .

Here Mn
k denotes the stationary random variable of the process Mn

k (t), where ϕ = n is known as the
threshold policy with threshold n. It is a one-dimensional birth-and-death process with birth rates λk and
death rates in state j at rate 1(j>n)µk

j
j+1 . π

n
k (·) denotes the stationary measure of Mn

k (t). We will study
threshold policies in detail in Chapter 3.
The averaged Whittle index policy serves at each moment in time the class of users having the highest index
value W k(Mk(t)). From Proposition 2.13 we have that this policy is asymptotically optimal under certain
conditions. One of the conditions concerns indexability, which is easily verified for this example using [45,
Proposition 2]. The global attractor property is verified numerically for the different examples presented
in this section. Another condition needed is that the state space is bounded, which is not the case for our
example. The numerical results however do indicate a good performance.
The optimality results in this chapter are for the limiting regime where both the number of bandits (classes)
as well as the speed of the modulated environments grow large. In the numerical examples we will instead
keep the number of bandits equal to two, which allows to evaluate the performance of our policy outside
the asymptotic regime. We then evaluate the performance of the averaged Whittle index policy, as well as
other heuristics, for different speeds of the environments.
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2.5.2 Benchmark policy

The modulated environments are unobservable. In addition, their evolution does not depend on the state
of the bandits. We consider the following benchmark policy, derived from the Bellman equation:

V (~n) = n1 + n2 +
2∑
k=1

2∑
d=1

φk(d)λ(d)
k V (~n+ ek) + min

a∈{1,2}

[ 2∑
k=1

2∑
d=1

1(a=k)φk(d)µ(d)
k V ((~n− ek)+)

]
, (2.5.1)

that is, in every state ~n = (n1, n2), the only information available to the decision maker is the steady-state
distribution of the environment. In the next sections we compare the performance of our heuristics to that
of the performance under the actions as defined in (2.5.1).

2.5.3 Markov-modulated arrival processes

Our first numerical example studies Markov-modulated arrival processes. That is, environments D1(t) and
D2(t) are two independent Markov processes. Each environment can be in two states {1, 2} and environment
Dk(t) makes a transition from state d to state d′ at rate rk(d′|d). When class k sees environment d, the
arrival rate is λ(d)

k (while the departure rates remain unchanged).
Example 1: We set the parameters as follows: λ(1)

1 = 5, λ(2)
1 = 0.1, λ(1)

2 = 0.5, λ(2)
2 = 5, and µ

(d)
1 = 7.5,

µ
(d)
2 = 9, for d = 1, 2. We take rk(2|1) = 0.001 · γ, rk(1|2) = 0.009 · γ, k = 1, 2, and let γ vary from

1 up to 5000, in order to study the effect of the speed of the modulated environments. We then have
φ1(1) = φ2(1) = 0.9, hence ρ ≈ 0.67.
In Table 2.1 we show the average performance under the averaged Whittle index policy and that of the
benchmark policy. We also show the performance under three other index policies: we consider the index
policy

∑2
d=1 φk(d)W (d)

k (n), which is the Whittle index averaged over the different environments, and we
consider the index policy W (d)

k (n) for d = 1, 2, which is the Whittle index in case the environment would
be always in state d. We denote by gB the performance of the policy as defined in Section 2.5.2 and let gϕ

denote the average cost under policy ϕ. We define by Rel(ϕ) := gϕ−gB
gB

∗ 100% the loss gap (in %). We
observe that the averaged Whittle index policy W is 2.5% away from the benchmark policy for γ = 25, i.e.,
when the transition rates of the environment are rk(2|1) = 0.025 and rk(1|2) = 0.225. Hence, already for
a normal scaled environment, the performance of the averaged Whittle index policy is very high. For slow
speed, γ = 1, the averaged Whittle index policy is only 16% away from the benchmark policy. The index
policy

∑2
d=1 φk(d)W (d)

k (n) gives slightly worse performance than that of W .
For any speed of the environment, we observe that the index policy W

(1)
k (n) outperforms the averaged

Whittle index policy, while the index policy W (2)
k (n) gives very bad performance ranging between a loss gap

of 30% until 53%. This can be explained from the fact that the environment is 90% of the time in state 1.

2.5.4 One common environment affecting the departure rates

We now consider one common environment D(t), which can be in two states {1, 2}, with transition rates
r(d′|d). This time, we let the arrival rates be independent of the environment. Instead, the state of the
environment influences both the departure rate of class 1 and class 2.
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γ 1 5 10 50 100 500 750 1000 2500 5000 7500 10000 25000
gB 56.6 45.8 43.2 40.6 39.8 25.7 17.9 14.1 9.0 7.8 7.4 7.3 7.0
gW 87.4 85.4 84.5 83.0 81.9 43.8 21.0 15.0 9.1 7.8 7.5 7.3 7.0

Rel(W ) 54.4 86.3 96 105 106 70.2 17.4 6.4 0.8 0.3 0.2 0.1 0.04

Table 2.2: Results for Example 2.

γ 1 5 10 25 50 100 500 750 1000 2500 5000
gB 25.9 17.0 13.2 9.4 7.6 6.3 4.8 4.6 4.4 4.2 4.0
gW 33.3 21.4 16.7 12.0 9.5 7.8 5.6 5.2 5.0 4.5 4.3

g
∑

d
φ(d)W (d)

33.3 21.5 16.8 12.2 9.8 8.1 5.8 5.4 5.2 4.8 4.6
gW

(1) 30.0 19.4 15.2 10.9 8.7 7.2 5.3 5.0 4.8 4.4 4.2
gW

(2) 34.1 25.4 20.8 15.4 12.4 10.1 6.8 6.3 6.0 5.3 5.0
Rel(W ) 28.5 26.2 26.6 26.7 25.7 23.7 16 13.9 12.5 8.8 6.9

Rel(
∑
d φ(d)W (d)) 28.9 26.9 27.8 29 29 27.9 21.4 19.5 18.2 14.7 13

Rel(W (1)) 15.7 14.6 15.1 15.8 15.6 14.6 10.5 9.2 8.4 6.1 4.8
Rel(W (2)) 31.8 49.9 57.7 63.5 63.6 60.1 42.2 37.5 34.5 27.5 24.4

Table 2.3: Results for Example 3.

Example 2: In this example, we chose the parameters such that, when in environment 1, class 1 has a high
departure rate and class 2 a low departure rate, while in environment 2, we have the opposite. The values
for the parameters are: λ(d)

1 = 0.6, λ(d)
2 = 1.2, for d = 1, 2, and µ(1)

1 = 4, µ(2)
1 = 0.5, µ(1)

2 = 0.1, µ(2)
2 = 6.

We take r(2|1) = 0.004 · γ, r(1|2) = 0.006 · γ. We then have φ1(1) = φ2(1) = 0.6, hence ρ ≈ 0.72.
Note that for these parameters, λ(2)

1 > µ
(2)
1 and λ(1)

2 > µ
(1)
2 . That is, if D(t) = 1, then class 2 is in overload,

while if D(t) = 2, then class 1 is in overload. In particular, this implies that the indices W (d)
k (n) are not

well-defined. We therefore only simulate the performance under the averaged Whittle index policy W .
The results can be found in Table 2.2. We observe that the averaged Whittle index policy is 6.4% away
from the benchmark policy when γ = 1000, i.e., r(2|1) = 4 and r(1|2) = 6. Hence, we observe that already
for a normal scaled environment, the performance of the averaged Whittle index policy is very high. When
γ = 2500, i.e., r(2|1) = 10 and r(1|2) = 15, the gap reduces to 0.8%. For γ = 500, i.e., r(2|1) = 2 and
r(1|2) = 3, and smaller γ, the loss gap becomes significantly large.
Example 3: In this example, we chose the parameters such that the departure rate of class 1 is always lower
than that of class 2, in each environment. In addition, the departure rate for class 1 is considerably higher
in environment 2 compared to its rate in environment 1.
The values for the parameters are: λ(d)

1 = 1, λ(d)
2 = 3.5, for d = 1, 2, and µ(1)

1 = 1.5, µ(2)
1 = 10, µ(1)

2 = 12,
µ

(2)
2 = 11. We take r(2|1) = 0.002 · γ, r(1|2) = 0.008 · γ. We then have φ1(1) = φ2(1) = 0.8, hence ρ ≈ 0.61.

The results can be found in Table 2.3. We observe that the averaged Whittle index policy W is 7% away
from the benchmark policy for γ = 5000, i.e., the transition rates of the environment are rk(2|1) = 10 and
rk(1|2) = 40. For slow speed, γ = 1, the averaged Whittle index policy is 29% away from the benchmark
policy. The index policy

∑2
d=1 φk(d)W (d)

k (n) gives worse performance than that of W .
For any speed of the environment, we observe that the index policy W

(1)
k (n) outperforms the averaged

Whittle index policy, while the index policy W (2)
k (n) gives very bad performance ranging between a loss
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gap of 32% until 21%. Again, this difference can be explained from the fact that the environment is 80% of
the time in environment 1.

2.5.5 Observable environments

Until now, in the numerical examples, we observed that already for a rather normal speed of the environment,
the averaged Whittle index policy works well. Hence, in case the decision maker aims for a policy that is
robust without observing the environment, our heuristic seems to be a good choice.
We introduce now an analysis considering that the decision maker can observe the environments, as it will
be studied in Chapter 3. For Example 3 we have calculated the performance under the optimal policy when
the environment can be observed, and where decision epochs are moments when one of the bandits changes
state, or the environment changes state. Note that for the observable setting, the stability condition strongly
depends on the policy employed. Numerically, we derived that being able to observe the environment gives
an improvement of 16% when γ = 1, and of 60% when γ = 5000. The large improvement, especially
when γ = 5000, comes from the fact that the policy will schedule in an opportunistic manner. Recall
that the departure rate of class 1 is much larger in environment 2 (compared to environment 1). Hence, in
environment 2, an optimal policy will give more preference to class 1. However, in environment 1, class 2 has
a much higher departure rate compared to class 1, hence, more priority will be given to class 2. Observing
the environment, and being able to change the action when the environment changes, makes this large
improvement in the performance possible.
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2.6 Appendix

Proof of Lemma 2.1: For ease of notation, we remove the superscripts ϕ and N in the proof.
For the random vector ~X

N (t), we define the following Probability Generating Function (2.6.1) and the Moment
Generating Function (2.6.2), conditioned on the environment vector ~d:

g(~d)(~z) := E
(
z
X11
N

11 z
X21
N

21 . . . z
Xjk
N

jk . . . z
XJKK

N

JKK
1(~D=~d)

)
=
∑
~x

z
x11
N

11 z
x21
N

21 . . . z
xjk
N

jk . . . z
xJKK

N

JKK
P

(
~X

N
= ~x, ~D = ~d

)
, (2.6.1)

and

g̃(~d)(~s) = g(~d)(e−~s) = E
(

e−~s
~X
N 1(~D=~d)

)
. (2.6.2)

The balance equations for the Markov process
(
~X(t)
N

, ~D(t)
)

state that for each (~x, ~d), we have

P

(
~X

N
= ~x, ~D = ~d

) ∑
~d′∈ZK

r(~d′|~d) +
∑
k,a,i,j

1
N
q

(dk)
k (j|i, a)yai,k(~x) ·N

 (2.6.3)

=
∑
~d′∈ZK

r(~d|~d′)P
(
~X

N
= ~x, ~D = ~d′

)
+

∑
k,a,j

i/xi,k>0
j/xj,k<1

1
N
q

(dk)
k (i|j, a)yaj,k(~x+ ~ej,k

N
− ~ei,k

N
)

·N · P

(
~X

N
= ~x+ ~ej,k

N
− ~ei,k

N
, ~D = ~d

)
.

Note that we have to restrict the sum on the rhs in order to consider the boundary cases. Multiplying (2.6.3)
by zx11

11 . . . z
xJKK
JKK

, summing over ~x on both sides of the equality, we then obtain the following expression:

g(~d)(~z)
∑
~d′∈ZK

P (~d′|~d) +
∑
~x

zx11
11 . . . z

xJKK
JKK

P

(
~X

N
= ~x, ~D = ~d

) ∑
k,a,i,j

q
(dk)
k (j|i, a)yai,k(~x) (2.6.4)

=
∑
~d′∈ZK

P (~d|~d′) g(~d′)(~z) +
∑
~x

zx11
11 . . . z

xJKK
JKK

∑
k,a,j

i/xi,k>0
j/xj,k<1

q
(dk)
k (i|j, a)yaj,k(~x+ ~ej,k

N
− ~ei,k

N
)

· P

(
~X

N
= ~x+ ~ej,k

N
− ~ei,k

N
, ~D = ~d

)
.

Below we will show that the second terms in both the LHS and the RHS of (2.6.4) are equal when taking
limits. We begin rewriting the second term in the LHS. By changing variables ~z → e−~s (since in the limit
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we have that ~X
N is a continuous variable), we have that it is equal to

∑
~x

e−s11x11 . . . e−sJKKxJKK
∑
k,a,i,j

q
(dk)
k (j|i, a)yai,k(~x) · P

(
~X

N
= ~x, ~D = ~d

)
. (2.6.5)

We make the same change of variables in the second term in the RHS. Furthermore, the sums in k, a, i, j
are bounded, because of the hypothesis (2.1.1), the fact that yaj,k(.) is a proportion and
mathbbP is a probability. Thus, as a consequence of Fubini’s theorem, we can interchange the order of
summations:∑

k,a,i,j

∑
~x/xi,k>0
xj,k<1

e−s11x11 . . . e−sJKKxJKK q(dk)
k (i|j, a) · yaj,k(~x+ ~ej,k

N
− ~ei,k

N
)

· P

(
~X

N
= ~x+ ~ej,k

N
− ~ei,k

N
, ~D = ~d

)
.

For each fixed k, i and j, we also make the change of variables ~x→ ~y + ei,k
N −

ej,k
N ,

∑
k,a,i,j

∑
~y/yi,k<1
yj,k>0

e−s11y11 . . . e−sJKKyJKK e−
∑

k
si,k

N

e−
∑

k
sj,k

N

· q(dk)
k (i|j, a)yaj,k(~y)P

(
~X

N
= ~y, ~D = ~d

)

=
∑
~y

e−s11y11 . . . e−sJKKyJKK e−
si
N

e−
sj
N

·
∑
k,a,j

i/yi,k<1
j/yj,k>0

q
(dk)
k (i|j, a)yaj,k(~y)P

(
~X

N
= ~y, ~D = ~d

)
. (2.6.6)

Comparing (2.6.5) and (2.6.6) there are two aspects that remain different. The first one is the restriction of
summing only when yj,k > 0 and yi,k < 1 in (2.6.6), but we can add the boundary cases which only sum 0:
note that when yj,k = 0, there would be a yaj,k(~y) = 0 multiplying, and when yi,k = 1, as it’s a proportion
in class k bandits, this means that yj,k = 0 and again there would be a yaj,k(~y) = 0 multiplying. The second

aspect is the factor e−
∑

k
si,k

N

e−
∑

k
sj,k

N

, which converges to 1 as N →∞. Since yaj,k(~x) ≤ 1, in the limit both terms

are the same.
So we can conclude from (2.6.4) that

lim
N→∞

g̃(~d)(~s)
∑
~d′∈ZK

r(~d′|~d) =
∑
~d′∈ZK

r(~d|~d′) lim
N→∞

g̃(~d′)(~s), (2.6.7)

that is, limN→∞ g̃(~d)(~s) satisfies the balance equations for ~D. Thus, limN→∞ g̃(~d)(~s) = c(~s)φ(~d), where c(~s)
does not depend on ~d. When summing both sides over ~d, we obtain c(~s) = limN→∞ E

(
e−~s

~X
N

)
, that is,

Equation (2.2.1) holds true. 2

Proof of Lemma 2.2 In [17], the mean-field limit is obtained for a particle system living in a rapidly
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varying environment. In particular, in [17, Theorem 2.2] the convergence result in the transient regime is
obtained, which would prove our lemma. Hence, to use the results obtained in [17] we need to verify several
the assumptions A0-A8 as made in that paper. We will do so below.
Each bandit represents a particle, and a transition of a class-k bandit/particle from state j to state i when
in environment d occurs at rate

1
N

1∑
a=0

q
(d)
k (i|j, a)yϕ,aj,k

(
~X(t)
N

)
, (2.6.8)

where yϕ,aj,k

(
~X(t)
N

)
needs to be interpreted as the probability for a class-k bandit in state j to see action a.

Expression (2.6.8) is the equivalence of [17, Equation (3)].
In [17] a discrete-time setting is considered. In the model we consider, the transition rates are uniformly
bounded1, hence we can uniformise our system to obtain a discrete-time model [54, Section 2.6]. Further-
more, we consider a multi-class particle system, while the results in [17] are for an exchangeable system.
As noted in [17, page 38], this is easily generalized to a multi-class model, when adding a class description
to the state of the bandit and having the class of the vector of bandits at time 0 be determined by an
exchangeable random vector.
We are left with verifying Assumptions A0-A8 as stated in [17]. Most of them are true by definition, except
for A0 and A2, which we discuss in the remainder of the proof.
[A0.] states a weak correlation between the bandits’ transitions. That is, let An,k(t) denotes the event of the
n-th class-k bandit to have a transition at time t. Then in A0 of [17] it is assumed that P (An1,k1(t)An2,k2(t)) ≤
ρ(N)/N, with ρ(N) → 0. For our model this is satisfied, since bandits behave independently from each
other, hence this probability is equal to zero.
[A2.] states that the transition rates of the bandits are uniformly Lipschitz, using the total variation
between two empirical measures. That is, there exists a constant C such that for every ~x, ~z,

sup
j,k,d

{
Jk∑
i=1
|q(d)
k (i|j, 0)yϕ,0j,k (~x) + q

(d)
k (i|j, 1)yϕ,1j,k (~x)− q(d)

k (i|j, 0)yϕ,0j,k (~z)− q(d)
k (i|j, 1)yϕ,1j,k (~z)|

}
≤ C sup

j,k
|xj,k − zj,k|. (2.6.9)

1The transition rate out of state ( ~X, ~D) are
∑

i,k
Xj,kq

(d)
k

(i|j, a)/N +
∑

~d′
r(~d′| ~D) ≤ C1 +maxj,k

∑
i

q
(d)
k

(i|j, a) < C1 +C2,
where we use the assumption made on the environment in Section 2.1 and (2.1.1).
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The LHS is equal to

sup
j,k,d

{
Jk∑
i=1
|q(d)
k (i|j, 0)

(
yϕ,0j,k (~x)− yϕ,0j,k (~z)

)
+ q

(d)
k (i|j, 1)

(
yϕ,1j,k (~x)− yϕ,1j,k (~z)

)
|

}

≤ sup
j,k,d

{
Jk∑
i=1

q
(d)
k (i|j, 0)|yϕ,0j,k (~x)− yϕ,0j,k (~z)|+ q

(d)
k (i|j, 1)|yϕ,1j,k (~x)− yϕ,1j,k (~z)|

}
≤ C2 sup

j,k,d

{
|yϕ,0j,k (~x)− yϕ,0j,k (~z)|+ |yϕ,1j,k (~x)− yϕ,1j,k (~z)|

}
≤ C2 sup

j,k,d

{
|xj,k − zj,k|+ 2|yϕ,1j,k (~x)− yϕ,1j,k (~z)|

}
≤ C2(2C + 1) sup

j,k
|xj,k − zj,k|,

where we used (2.1.1) and (2.2.5). That is, (2.6.9) is satisfied.
2

Proof of Lemma 2.4: Let ϕ be a policy that satisfies Condition 2.3. We first prove that the feasible set
of the (LP) problem is non-empty.
Note that we have relative compactness for the sequence of random variables

(
~XN,ϕ/N

)
N∈N

. In case
Jk <∞ for every class k, this is valid because the random vectors live on a compact space. In case Jk =∞
for some k, relative compactness comes from Condition 2.3 and [15, Theorem 6.1]. As a consequence, we
can consider a subsequence of N (for ease of notation still denoted as N) such that ~XN,ϕ/N converges in
distribution when N → ∞. Together with Condition 2.3 we can then define the following limiting point
~y := (yϕ,aj,k ), where

yϕ,aj,k := E

(
lim
N→∞

lim inf
T→∞

1
T

∫ T

0
yϕ,aj,k

(
~XN,ϕ(t)
N

)
dt
)
.

It is important to note that this limit can depend on the subsequence of N considered. For ease of notation,
we are not writing this dependence. We will first prove that ~yϕ is a feasible solution of the (LP) problem.
Since at most N bandits are in the system, we have

lim
t→∞

XN,ϕ
j,k (t)
t

= 0, for all j, k. (2.6.10)

Note that
∫ t

0 y
ϕ,a
j,k ( ~X

N,ϕ(s)
N ) ·Nds is the total aggregated amount of time spent on action a on class-k bandits

in state j during the interval (0, t]. Hence, we can write the following sample-path construction of the
process XN,ϕ

j,k (t):

XN,ϕ
j,k (t) =XN,ϕ

j,k (0) +
1∑
a=0

∑
i 6=j

∑
d∈Z

N
q

(d)
k

(j|i,a)
N

(∫ t

0
1(Dk(s)=d)y

ϕ,a
i,k

(
~XN,ϕ(s)
N

)
·Nds

)

−
1∑
a=0

∑
i 6=j

∑
d∈Z

N
q

(d)
k

(i|j,a)
N

(∫ t

0
1(Dk(s)=d)y

ϕ,a
j,k

(
~XN,ϕ(s)
N

)
·Nds

)
, (2.6.11)
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where Nq
(d)
k

(j|i,a)/N (t) are independent Poisson processes having as rates q(d)
k (j|i, a)/N , i, j = 1, . . . , Jk, k =

1, . . . ,K, a = 0, 1. By the ergodic theorem [23] and because of ~XN having an invariant distribution (see Con-
dition 2.3, item a), we obtain that 1

t

∫ t
0 1(Dk(s)=d)y

ϕ,a
j,k ( ~X

N,ϕ(s)
N )·Nds converges to E

(
1(Dk=d)y

ϕ,a
j,k ( ~X

N,ϕ

N ) ·N
)
<

∞ as t→∞, for all j, k, a, d,N . Because of Lemma 2.1 we further have

lim
N→∞

E

(
1(Dk=d)y

ϕ,a
j,k

(
~XN,ϕ

N

))
= φk(d)yϕ,aj,k . (2.6.12)

Now, when dividing both sides in (2.6.11) by t, taking t→∞, and using that Nθ(at)/t→ aθ and (2.6.10)
hold, we obtain

0 =
1∑
a=0

Jk∑
i=1,i6=j

∑
d∈Z

q
(d)
k (j|i, a)

N
E

(
1(Dk=d)y

ϕ,a
i,k

(
~XN,ϕ

N

)
·N

)

−
1∑
a=0

Jk∑
i=1,i6=j

∑
d∈Z

q
(d)
k (i|j, a)
N

E

(
1(Dk=d)y

ϕ,a
j,k

(
~XN,ϕ

N

)
·N

)

=
1∑
a=0

Jk∑
i=1,i6=j

∑
d∈Z

q
(d)
k (j|i, a)E

(
1(Dk=d)y

ϕ,a
i,k

(
~XN,ϕ

N

))

−
1∑
a=0

Jk∑
i=1,i6=j

∑
d∈Z

q
(d)
k (i|j, a)E

(
1(Dk=d)y

ϕ,a
j,k

(
~XN,ϕ

N

))
. (2.6.13)

Letting N →∞, together with (2.6.12), we then obtain

0 =
1∑
a=0

Jk∑
i=1,i6=j

∑
d∈Z

qdk(j|i, a)φk(d)yϕ,ai,k −
1∑
a=0

Jk∑
i=0,i6=j

∑
d∈Z

qdk(i|j, a)φk(d)yϕ,aj,k ,

=
1∑
a=0

Jk∑
i=1,i6=j

qk(j|i, a)yϕ,ai,k −
1∑
a=0

Jk∑
i=0,i6=j

qk(i|j, a)yϕ,aj,k , (2.6.14)

a.s., that is, ~yϕ satisfies Equation (2.2.6). By definition, ~yϕ satisfies
∑
k,j y

ϕ,1
j,k ≤ α and yϕ,aj,k ≥ 0. Hence,

~yϕ is a feasible solution of (LP). Note that the interchange of limit and summations to go from (2.6.13)
to (2.6.14) is possible because of the uniform integrability given by Condition 2.3.
It is left to prove Inequality (2.2.10). We have,

lim inf
N→∞

V N,ϕ− (x)

= lim inf
N→∞

lim inf
T→∞

1
T
E

∫ T

0

K∑
k=1

Jk∑
j=1

1∑
a=0

C
(Dk(t))
k (j, a) · yϕ,aj,k

(
~XN,ϕ(t)
N

)
dt


≥ E

lim inf
N→∞

lim inf
T→∞

1
T

∫ T

0

K∑
k=1

Jk∑
j=1

1∑
a=0

C
(Dk(t))
k (j, a) · yϕ,aj,k

(
~XN,ϕ(t)
N

)
dt

 ,



2.6. APPENDIX 33

where the inequality holds because of Fatou’s Lemma. So it would be enough to prove that

lim inf
N→∞

lim inf
T→∞

1
T

∫ T

0

K∑
k=1

Jk∑
j=1

1∑
a=0

C
(Dk(t))
k (j, a)yϕ,aj,k (

~XN,ϕ(t)
N

)dt ≥ v∗, (2.6.15)

almost surely.
Consider a fixed realization ω of the process. We first assume that the LHS in (2.6.15) is finite. We then
obtain that

lim inf
N→∞

lim inf
T→∞

1
T

∫ T

0
yϕ,aj,k

(
~XN,ϕ(t)
N

)
1(Dk(t)=d)dt

= lim inf
N→∞

E

(
1(Dk=d)y

ϕ,a
j,k

(
~XN,ϕ

N

))
(2.6.16)

= lim
Ni→∞

E

(
1(Dk=d)y

ϕ,a
j,k

(
~XNi,ϕ

Ni

))

= E

(
lim

Ni→∞
1(Dk=d)y

ϕ,a
j,k

(
~XNi,ϕ

Ni

))
= φk(d)yϕ,aj,k , (2.6.17)

with Ni the subsequence corresponding to the liminf sequence and such that ~XN,ϕ

N converges in distribution.
In the third step we used that ~XN,ϕ/N is uniformly integrable and in the fourth step we used (2.6.12) (this
equation holds for any weakly converging subsequence of ~XN,ϕ

N ). As a consequence we obtain that

lim inf
N→∞

lim inf
T→∞

1
T

∫ T

0

K∑
k=1

Jk∑
j=1

1∑
a=0

C
(Dk(t))
k (j, a)yϕ,aj,k (

~XN,ϕ(t)
N

)dt

=
K∑
k=1

Jk∑
j=1

1∑
a=0

C
(Dk(t))
k (j, a) lim inf

N→∞
lim inf
T→∞

1
T

∫ T

0
yϕ,aj,k (

~XN,ϕ(t)
N

)dt

=
K∑
k=1

Jk∑
j=1

1∑
a=0

∑
d∈Z

Cdk(j, a)φk(d)yϕ,aj,k =
K∑
k=1

Jk∑
j=1

1∑
a=0

Ck(j, a)yϕ,aj,k ≥ v
∗,

where the last inequality holds because ~y is a feasible solution of the (LP) problem.
In particular, the above shows that v∗ < ∞, since we assumed in Section 2.1 that there exists a policy for
which the LHS in (2.6.15) is finite.
Assume now that the LHS of (2.6.15) is infinite. Then inequality (2.6.15) follows directly, since v∗ < ∞.
This concludes the proof. 2

Proof of Lemma 2.6: We consider four possible cases:
(1) If

(
α−

∑
(i,l)∈Sϕ

k
(j) xi,l

)
< 0, then by definition (2.3.1) we have yprio,1j,k (~x) = 0.
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If as well
(
α−

∑
(i,l)∈Sϕ

k
(j) zi,l

)
< 0, then the LHS of (2.2.5) equals zero, hence (2.2.5) holds. If instead(

α−
∑

(i,l)∈Sϕ
k

(j) zi,l

)
≥ 0, then by definition (2.3.1),

|yprio,1j,k (~x)− yprio,1j,k (~z)| = min

α− ∑
(i,l)∈Sprio

k
(j)

zi,l, zj,k


≤ α−

∑
(i,l)∈Sprio

k
(j)

zi,l

<
∑

(i,l)∈Sprio
k

(j)

(zi,l − xi,l)

≤
K∑
k=1

Jk sup
i,l
|xi,l − zi,l|.

In the remaining three cases, we can now assume that for both ~u = ~x, ~z, it holds thatα− ∑
(i,l)∈Sprio

k
(j)

ui,l

 ≥ 0.

(2) If xj,k ≤ α −
∑

(i,l)∈Sϕ
k

(j) xi,l and zj,k ≤ α −
∑

(i,l)∈Sprio
k

(j) zi,l, then we obtain directly the result
|yprio,1j,k (~x)− yprio,1j,k (~z)| = |xj,k − zj,k| ≤ supi,l|xi,l − zi,l|.
(3) If xj,k ≤ α−

∑
(i,l)∈Sprio

k
(j) xi,l and zj,k ≥ α−

∑
(i,l)∈Sprio

k
(j) zi,l, then

|yprio,1j,k (~x)− yprio,1j,k (~z)| =
∣∣∣∣xj,k − α+

∑
(i,l)∈Sprio

k
(j)

zi,l

∣∣∣∣. (2.6.18)

If, in addition, xj,k > α−
∑

(i,l)∈Sprio
k

(j) zi,l, then since xj,k ≤ α−
∑

(i,l)∈Sprio
k

(j) xi,l, we have

|yprio,1j,k (~x)− yprio,1j,k (~z)| = xj,k − α+
∑

(i,l)∈Sprio
k

(j)

zi,l

≤
∑

(i,l)∈Sprio
k

(j)

(zi,l − xi,l)

≤
K∑
k=1

Jk sup
i,l
|xi,l − zi,l|,
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since
∑K
k=1 Jk is the number of states (i, l) bandits can be in. Instead, if xj,k ≤ α−

∑
(i,l)∈Sprio

k
(j) zi,l, then

|yprio,1j,k (~x)− yprio,1j,k (~z)| = α−
∑

(i,l)∈Sprio
k

(j)

zi,l − xj,k

≤ zj,k − xj,k
≤ sup

i,l
|xi,l − zi,l|.

(4) If xj,k ≥ α−
∑

(i,l)∈Sprio
k

(j) xi,l and zj,k ≥ α−
∑

(i,l)∈Sprio
k

(j) zi,l, then

|yprio,1j,k (~x)− yprio,1j,k (~z)| =
∣∣∣∣ ∑

(i,l)∈Sprio
k

(j)

(zi,l − xi,l)
∣∣∣∣

≤
K∑
k=1

Jk sup
i,l
|xi,l − zi,l|.

Setting C =
∑K
k=1 Jk, we proved (2.2.5). 2
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In this chapter we study an optimisation problem with controllable processes affected by observable environ-
ments. We consider a multi-armed restless bandit problem, where each bandit is formed by two processes,
a controllable process and an environment. Thus, the state descriptor of the bandits is two-dimensional.
The decision maker has full information of the state the controllable process and the environment are in.
We further consider the particular case of queues with abandonments under linear holding costs, where
impatient customers can leave the system, regardless of whether they are being served or not. There, the
state of the queue is the controllable process, and the arrival rates, service rates, and abandonment rates
depend on the state of an exogenous environment process.
In our first main contribution, we consider an arbitrary bandit, and under the assumption that the optimal
policy is of threshold type, we provide an algorithm that finds Whittle’s index in any state. In the case the
environment changes at a slower time scale than the controllable process, we derive an analytical expression
for Whittle’s index. For the problem of a multi-class abandonment queue, we show that threshold policies
are optimal. We prove indexability and obtain closed-form expressions for Whittle’s index. These are further
simplified in case the environments vary slowly, and when they vary fast. We further propose a heuristic for
a multi-class queue without abandonments, derived from the results for the problem with abandonments. By
numerical simulations, we assess the suboptimality of Whittle’s index policy in a wide variety of scenarios,
and the general observation is that, as in the case of standard MARBPs, the suboptimality gap of Whittle’s
index policy is small. Numerically, we also assess the performance of the averaged Whittle index policy.
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The latter was proved to be asymptotically optimal for unobservable environments, see Chapter 2, but we
show that it can be far from optimal in the observable setting.
Most of the references in MARBP consider unidimensional bandits, which is a critical assumption in order
to establish indexability, and in turn to calculate Whittle’s index. On the other hand, literature on mul-
tidimensional MARBPs, as considered here, is scarce. The main difficulty lies in establishing indexability,
i.e., ordering the states, in a multidimensional space. Important exceptions are [1, 4], as we described in
Section 1.1.2.
The multi-class abandonment queue has been largely studied in recent literature, see for example the Special
Issue in Queuing Systems on queuing systems with abandonments [37] and the survey [25] in the many-
server settings. In particular, we mention the work of [44], where the authors formulate the abandonment
queue as an MARBP and derive a closed-form expression for Whittle’s index. In this chapter, we extend
this work by considering the abandonment queue with rates that depend on environments.
The chapter is organised as follows. In Section 3.1 we describe the model. In Section 3.2 we present the
relaxation of the original problem and Whittle’s index. In Section 3.3 we introduce the threshold policies
and, assuming they are optimal, we provide the algorithm to determine Whittle’s index. We establish an
analytical solution of Whittle’s index when the dynamics of the environment are much slower than the
controllable process. In Section 3.4 we study the multi-class queue with abandonments. Optimality of
threshold policies is proved in Section 3.4.1. In Section 3.4.2 we prove indexability and obtain expressions
for Whittle’s index. The proofs of the theorems are in Section 3.4.3. In Section 3.5 we derive Whittle’s
index for a multi-class queue without abandonments living in a Markov-modulated environment. Finally,
in Section 3.6 we numerically evaluate the performance of Whittle’s index policy. For ease of the reading,
many proofs are presented in the appendix.

3.1 Model description

We consider a multi-armed restless bandit problem in continuous time. There are N bandits in the system,
each bandit is composed by a controllable process and an environment process. The controllable process
lives in the state space X = {0, 1, . . .}. A bandit can be kept passive or made active, with the constraint that
at most R bandits can be made active at a time, R ∈ N. The transition rates of the controllable process of
a bandit depend on whether it is made active or kept passive and on the current state of the environment,
as defined below.
The environments are exogenous Markov processes living in the state space Z = {1, 2, . . .}, whose evolution
is independent of the state of the controllable processes or the actions taken. Let Dk(t) = d ∈ Z denote the
state of the environment of bandit k at time t, k = 1, . . . , N , and r(dd′)

k the transition rate of Dk(t) from
state d to d′. We assume the environments Dk(t) are positive recurrent. We denote by φk(d) the stationary
probability of environment Dk(t) to be in state d.
We note that no further assumptions are made on the correlation between different environments. However,
in the numerical examples, we focus on the following two special cases:
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• Independent environments: The variables (Dk(t))Nk=1 are independently distributed. As a consequence,
given the action, the evolution of the two-dimensional state of a bandit, (Mk(t), Dk(t)), is independent
of the others. Hence, this setting falls within the classical MARBP with a 2-dimensional state space.

• Common environment: There is only one environment affecting all bandits, that is, D1(t) = . . . =
DN (t) = D(t). When environment D(t) changes state from d to d′, it changes the transition rates
of all bandits at once. In this case there is a correlation between bandits, which does not fit in the
standard MARBP model.

Let ϕ denote the policy that determines the action taken for each bandit. We assume that policies are
Markovian, that is, they can base their decisions only on the current state of the bandits. In particular,
this implies that decisions can depend on the state the environments are in. That is, the decision maker
can observe the environments.
For a given policy ϕ, let Mϕ

k (t) = m ∈ X denote the state of the controllable process of bandit k at time t,
k = 1, . . . , N . Note that (Mϕ

k (t), Dk(t)) describes the two-dimensional state of bandit k. The full description

(Mϕ
1 (t), D1(t), . . . ,Mϕ

N (t), DN (t)) ,

is then a Markov process.
We denote the passive action by a = 0 and the active action by a = 1. We further denote by Aϕk (t) ∈ {0, 1}
the action taken for bandit k at time t under policy ϕ, and ~Aϕ(t) := (Aϕ1 (t), . . . , AϕN (t)) the actions taken
for all the bandits. The constraint can be expressed as

N∑
k=1

Aϕk (t) ≤ R, ∀t ≥ 0. (3.1.1)

We define the set of feasible policies Φ, as the set of all Markovian policies that satisfy (3.1.1).
When action a is applied to bandit k, it makes a transition from state (m, d) to state (m′, d) at rate
qk(m′|m, d, a). Let Ck(m, d, a) denote the cost per unit of time for bandit k when the controllable process
is in state m, the environment is in state d and the action taken is a. For any k, we assume that Ck(m, d, a)
is a convex non-decreasing function in m for any d, a.
The objective of the optimisation problem is to find the policy ϕ that minimises the long-run average holding
cost under constraint (3.1.1), i.e., solve:

min
ϕ∈Φ

lim sup
T→∞

1
T
E

(∫ T

0

N∑
k=1

Ck(Mϕ
k (t), Dk(t), Aϕk (t))dt

)
. (3.1.2)

Finding a solution for the constrained problem (3.1.2) is PSPACE-hard, hence infeasible, see [33, 49, 73].
However, we refer to the Lagrangian relaxation method, as we introduced in Section 1.2.4, that allows to
obtain efficient index policies for the original problem. In Section 3.2 this is applied to the MARBP with
observable environments.
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3.2 Relaxation and Whittle’s index policy

In this section, we introduce the relaxed version of the Markov-modulated multi-armed restless bandit
problem. The main idea of this methodology, as proposed by Whittle in [72], is to solve an unconstrained
problem obtained via a Lagrangian relaxation approach, instead of solving problem (3.1.2) under constraint
(3.1.1). This leads to a significant simplification of the problem, where the multi-dimensional setting can
be replaced by a a one-dimensional setting. The solution for the relaxed problem can be then described by
the Whittle’s index.
We now study the relaxed problem, that is, the constraint on the number of active bandits must be satisfied
on average, and not in every decision epoch:

lim sup
T→∞

1
T
E

(∫ T

0

N∑
k=1

Aϕk (t)dt
)
≤ R. (3.2.1)

We denote the set of policies satisfying constraint (3.2.1) by ΦREL, and we note that Φ ⊆ ΦREL. We
now consider the problem of finding a policy ϕ that minimises (3.1.2) under constraint (3.2.1). We use the
Lagrangian multipliers approach to rewrite the following unconstrained version of the relaxed problem:

min
ϕ

lim sup
T→∞

1
T
E

(∫ T

0

(
N∑
k=1

Ck(Mϕ
k (t), Dk(t), Aϕk (t))−W

N∑
k=0

Aϕk (t)
)

dt
)
. (3.2.2)

The Lagrange multiplierW can be viewed as a subsidy for making each bandit passive. The key observation
made by Whittle is that problem (3.2.2) can be decomposed in N subproblems, one for each bandit, due to
the fact that there is no longer a common constraint. Thus, the solution to (3.2.2) is obtained by combining
the solution to N separate optimisation problems, that is,

min
ϕ

lim sup
T→∞

1
T
E

(∫ T

0
(Ck(Mϕ

k (t), Dk(t), Aϕk (t))−WAϕk (t)) dt
)
, (3.2.3)

for each bandit k. Under ergodicity conditions, we define gϕk (W ) as

gϕk (W ) := E (Ck(Mϕ, Dk, A
ϕ
k ))−WE (Aϕk ) , (3.2.4)

whereMϕ
k , Dk, A

ϕ
k are the respective steady-state variables for a given bandit under policy ϕ. Then, problem

(3.2.3) is equivalent to the problem minϕ gϕk (W ).
We now introduce the indexability notion. Let Pk(W ) ⊂ X ×Z denote the set of states (m, d) in which it is
optimal to be passive when the subsidy for passivity is W . A bandit is called indexable if Pk(W ) increases
in W .

Definition 3.1. Bandit k is indexable if W < W ′ implies Pk(W ) ⊆ Pk(W ′).

In other words, if for W = W0 it is optimal to be passive in state (m, d), it is also optimal to be passive for
any value for the subsidy W ≥ W0. The Whittle’s index in state (m, d) is now defined as follows: it is the
smallest value for the subsidy such that it is optimal to be passive in that state.
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Definition 3.2. When bandit k is indexable, the Whittle’s index in state (m, d) is defined by Wk(m, d) :=
inf {W : (m, d) ∈ Pk(W )}.

We can now give an optimal solution to the relaxed control problem (3.2.2) for a given W . At any moment
in time t, make active all bandits whose current Whittle’s index exceeds the subsidy for passivity, i.e.,
Wk(Mk(t), Dk(t)) > W . A standard Lagrangian argument together with the fact that the cost functions Ck
are convex non-decreasing, gives that there exists a multiplier W such that constraint (3.2.1) is satisfied.
Since the solution to the relaxed optimisation problem will in general not be feasible for the original problem
(3.1.2) with constraint (3.1.1), Whittle proposed a heuristic also based on the Whittle’s index. We will refer
to this policy as Whittle’s index policy.

Definition 3.3 (Whittle’s index policy). At time t, the Whittle’s index policy prescribes to make active the
R bandits having currently the largest value for their Whittle’s index Wk(Mk(t), Dk(t)).

3.3 Calculation of Whittle’s index

In this section we present our main results for the general model. In Section 3.3.1, we provide an algorithm
to calculate the Whittle’s index, and in Section 3.3.2, we obtain Whittle’s index when the environment
changes very slowly compared to the state of the controllable process.
Since we focus on the relaxed problem for one bandit (3.2.3), we omit the dependence on k for ease of
notation throughout this section.

3.3.1 Threshold policies

We assume throughout the chapter that threshold policies (defined below) are an optimal solution of (3.2.3).
This is typically the case in many queueing models. For the case study of an abandonment queue, we prove
it to hold in Section 3.4.1. In this section, we further assume the bandit is indexable, as defined in Definition
3.1.
Threshold policies are defined through a vector ~n = (nd : d ∈ Z), where nd ∈ {−1, 0, 1, . . .} ∪ {∞}, for
all d. Threshold policy ~n activates the bandit if and only if the controllable process is above the threshold
nd when the state of the environment is d. In other words, A~n(m, d) = 1 if m > nd and A~n(m, d) = 0
if m ≤ nd. We denote by π~n(m, d) the stationary probability of the process

(
M~n(t), D(t)

)
to be in state

(m, d).
Alternatively, for some problems, an appropriate definition of threshold policy is to activate the bandit if
and only if the controllable process is below a threshold. The analysis of both cases is similar, and we choose
the former case in our presentation. See [45, Section 3.2] for a case where both types of threshold policies
are considered.
In order to obtain Whittle’s index, one needs to find the optimal threshold policies for any value of W .
First recall that the average cost (see (3.2.4)) under a threshold policy ~n is given by

g~n(W ) :=
∑
d∈Z

∞∑
m=0

C (m, d, a)π~n(m, d)−W
∑
d∈Z

nd∑
m=0

π~n(m, d). (3.3.1)
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Since we assumed that an optimal solution is of threshold type, the optimal average cost can be written as

g(W ) := min
~n
g~n(W ).

In Figure 3.1, the function g(W ) and the functions g~n(W ) are plotted. Note that for any ~n, g~n(W ) is a
non-increasing linear function in W whose slope is determined by −

∑
d∈Z

∑nd
m=0 π

~n(m, d), and g(W ) is a
lower envelope of the functions g~n(W ). In particular, one observes that the horizontal axis can be split in
intervals, where in each interval a different threshold policy is optimal. To find these intervals, note that for
W = −∞ the threshold policy ~n−1 := (−1,−1, . . .) is optimal. Now one can simply look to the first value
of the subsidy, Ŵ0, where a linear function g~n(W ) crosses g(−1,−1,...)(W ), and is optimal for W ∈ [Ŵ0, Ŵ1].
Let ~n0 be the corresponding threshold policy of this linear function. Then, one knows that Whittle’s index
is given by W (m, d) = Ŵ0, for m = 0, . . . , n0

d for all d such that nd0 ≥ 0, since Ŵ0 is the smallest value
such that it is optimal to be passive in those states. This happens because threshold policy (−1,−1, . . .) is
optimal for W ≤ Ŵ0 and ~n0 is optimal for W ∈ [Ŵ0, Ŵ1], with Ŵ1 still unknown. Similarly, one can now
determine Ŵ1, and find the optimal threshold policy in the point Ŵ1, and as such, the Whittle index for
states (m, d), with n0

d < m ≤ n1
d.

To formalize the above procedure, we introduce notation for the crossing points of the linear functions g~n(W ).
We denote by W (~n, ~n′) :=

{
W ∈ R

∣∣∣ g~n(W ) = g~n
′(W )

}
, the set of multipliers W such that the expected

cost under threshold policies ~n and ~n′ is equal. In case the slopes are not equal, i.e.,
∑
d∈Z

∑nd
m=0 π

~n(m, d) 6=∑
d∈Z

∑n′d
m=0 π

~n′(m, d), the set W (~n, ~n′) has a unique element, which from (3.3.1) is given by:

W (~n, ~n′) =
∑
d∈Z

∑∞
m=0 C (m, d, a)π~n(m, d)−

∑
d∈Z

∑∞
m=0 C (m, d, a)π~n′(m, d)∑

d∈Z
∑nd
m=0 π

~n(m, d)−
∑
d∈Z

∑n′
d
m=0 π

~n′(m, d)
. (3.3.2)

Note that in case there are two threshold policies that, besides (−1,−1, . . .), are optimal in Ŵ0, g~n(Ŵ0) =
g~n
′(Ŵ0), then the one having the steepest slope will be the one that minimises when W = Ŵ0 + ∆, with ∆

small enough, hence, we choose that one in the case of a tie.
In Algorithm 3.4 we summarise the above. Under the assumption of threshold optimality and indexability,
the output of Algorithm 3.4 are the threshold policies ~n that optimizes (3.2.3) for each W , and Whittle’s
index.

Algorithm 3.4. Define ~n−1 the vector equal to −1 in every coordinate, that is, under policy ~n−1 the bandit
is active in all environments. Then, for j ≥ 0,

Step j Let

Ej = {~n :
∑
d∈Z

nd∑
m=0

π~n(m, d) 6=
∑
d∈Z

nj−1
d∑
m=0

π~n
j−1

(m, d) and nd ≥ nj−1
d , ∀d},

and compute
Ŵj = inf

~n∈Ej
W (~n, ~nj−1) (3.3.3)
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Figure 3.1: Lower envelop g := min~n g~n. Algorithm 3.4 finds Ŵj for j ≥ 0.

Denote by ~nj the minimiser of (3.3.3). In case of a tie, choose the minimiser that has the steepest
slope −

∑
d∈Z

∑nd
m=0 π

~n(m, d). Define W (m, d) := Ŵj for nj−1
d < m ≤ njd, for every d. Go to step

j+1.

Remark 3.5. The numerical computation of this algorithm requires the set where the minimisation is done
to be finite. Hence, in case |X | =∞ or |Z| =∞, the results obtained are an approximation.

3.3.2 Slowly changing environment

In this section, we give an analytical solution of Whittle’s index when the environment changes at a much
slower time scale than the dynamics of the controllable process of the bandit. We show that in the limit,
the Whittle index in state (m, d) coincides with the Whittle index of a bandit that only sees environment d.
Before giving the results, we introduce some notation for a bandit that always sees environment d. That
is, the bandit lives in the state space X = {0, 1, . . .} and its transition rates are q(m′|m, a) := q(m′|m, d, a)
for m,m′ ∈ X and a = 0, 1. Let (pnd,(d)(m))d∈Z denote the corresponding steady-state probability under
threshold policy nd. We further let W (d)(m) be the Whittle’s index in state m of a bandit that always sees
environment d.
The different time scales are obtained by scaling the transition rates of the environment by β: βr(dd′), and
taking the limit β → 0. In order to obtain an analytical expression for Whittle’s index in the slow regime,
we will assume the environment can be in two states, i.e., |Z| = 2. Whether the results extend to |Z| > 2
is left as further research.
When the environment changes state at a much slower time scale than the controllable process, the con-
ditional (on the environment) steady-state behaviour of the bandit is that of a bandit whose environment
never changes. This is stated formally below. The proof can be found in Appendix 3.7.1.
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Lemma 3.6. Assume |Z| = Z <∞ and let the transitions of the environment be scaled by β, i.e., βr(dd′).
Then it holds that

lim
β→0

π~n(m, d) = φ(d)pnd,(d)(m), ∀m ∈ N0. (3.3.4)

The following lemma states that in the slow regime, the index value given by Algorithm 3.4 can be found
by changing the threshold value in only one of the two environments. For a given β, we denote by ~nj(β) =
(nj1(β), nj2(β)) the values of ~nj as defined in Algorithm 3.4. The proof can be found in Appendix 3.7.1.

Lemma 3.7. Let |Z| = 2 and the transitions of the environment be scaled by β, βr(dd′). Assume (n̂j1, n̂
j
2) :=

limβ→0(nj1(β), nj2(β)) exists, for all j, and that the family {M~n, β} is uniform integrable, for any threshold
policy ~n. Then,

lim
β→0

inf
~n∈Ej

∑2
d=1

∑∞
m=0 C (m, d, a)π~n(m, d)−

∑2
d=1

∑∞
m=0 C (m, d, a)π~nj−1(β)(m, d)∑2

d=1
∑nd
m=0 π

~n(m, d)−
∑2
d=1

∑nj−1
d

(β)
m=0 π~nj−1(β)(m, d)

(3.3.5)

= min
d=1,2

inf
n>n̂j−1

d

∑∞
m=0 C (m, d, a) pn,(d)(m)−

∑∞
m=0 C (m, d, a) pn̂

j−1
d

,(d)(m)∑n
m=0 p

n,(d)(m)−
∑n̂j−1

d
m=0 p

n̂j−1
d

,(d)(m)
(3.3.6)

=
∑∞
m=0 C (m, d0, a) pn̂

j
d0
,(d0)(m)−

∑∞
m=0 C (m, d0, a) pn̂

j−1
d0

,(d0)(m)∑n̂j
d0
m=0 p

n̂j
d0
,(d0)(m)−

∑n̂j−1
d0
m=0 p

n̂j−1
d0

,(d0)(m)
, (3.3.7)

where d0 is such that n̂jd0
6= n̂j−1

d0
(there is at least one such d0).

The following proposition states that in the slow regime the index W (m, d) converges to the index for a
fixed environment d, W (d)(m).

Proposition 3.8. Let |Z| = 2 and the transitions of the environment be scaled by β, βr(dd′). Under the
assumptions of Lemma 3.7, we have that for any m, d,

lim
β→0

W (m, d) = W (d)(m).

The uniform integrability property needs to be checked case by case. For the abandonment queue, as
studied in Section 3.4, we give an alternative proof for the above, which does not require to verify uniform
integrability, see Proposition 3.19.

Proof of Proposition 3.8: The index W (m0, d0) is as obtained from the Algorithm 3.4, through the
values njd(β). Since we assume that the limit of njd(β) exists and lives on N, we have njd(β) = n̂jd for β small
enough. Hence, we can choose j such that nj−1

d0
(β) < m0 ≤ njd0

(β) and we have

lim
β→0

W (m0, d0)

= lim
β→0

inf
~n∈Ej

∑2
d=1

∑∞
m=0 C (m, d, a)π~n(m, d)−

∑2
d=1

∑∞
m=0 C (m, d, a)π~nj−1(β)(m, d)∑2

d=1
∑nd
m=0 π

~n(m, d)−
∑2
d=1

∑nj−1
d

(β)
m=0 π~nj−1(β)(m, d)

.
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For d0 it holds that n̂jd0
6= n̂j−1

d0
. Hence, by Lemma 3.7, the latter is equal to

lim
β→0

W (m0, d0) = inf
n>n̂j−1

d0

∑∞
m=0 C (m, d0, a) pn,(d0)(m)−

∑∞
m=0 C (m, d0, a) pn̂

j−1
d0

,(d0)(m)∑n
m=0 p

n,(d0)(m)−
∑n̂j−1

d0
m=0 p

n̂j−1
d0

,(d0)(m)
. (3.3.8)

The latter is the Whittle index of a bandit that always sees environment d0, W (d0)(m0). This follows by
applying Algorithm 3.4 to the bandit that always sees environment d0. This concludes the proof. 2

3.3.3 Asymptotic optimality of Whittle’s index policy

In [71], the authors considered the standard MARBPmodel (i.e., no environments) and proved that Whittle’s
index policy is optimal as the number of bandits and the number of active bandits, R, scale proportionally.
This results holds for the standard MARBP setting and requires a so-called global attractor property to be
satisfied for the corresponding deterministic set of differential equations.
In the case of independently distributed environments, the state (m, d) is a two-dimensional state of a
classical bandit. Hence, Whittle’s index policy is then also asymptotically optimal. The result does not
directly carry over to correlated environments. This is left as future research.

3.4 Abandonment queue in a Markovian environment

In this section we study a multi-class queue with abandonments living in an observable environment. There
are N classes of jobs. Each class is associated an environment process Dk(t) that can be either in state 1
or state 2. For ease of notation, we define r(d)

k := r
(d,3−d)
k for d = 1, 2. When the class-k environment is in

state d, new class-k jobs arrive according to a Poisson process with rate λ(d)
k . They require an exponentially

distributed amount of service with parameter µ(d)
k . A class-k job abandons the system after an exponentially

distributed amount of time with parameter θ(d)
k . Let Ck(m, d, a) denote the cost per unit of time for holding

m class-k jobs in the system when the environment is in state d and action a is taken. We assume that the
cost function satisfies

Ck(m, d, 0)− Ck((m− 1)+, d, 0) ≤ Ck(m+ 1, d, 1)− Ck(m, d, 1) ≤ Ck(m+ 1, d, 0)− Ck(m, d, 0), (3.4.1)

for allm, d, such thatm ≥ 0. This property is directly implied, for example, when (i) Ck(m, d, a) = Ck(m, d),
or when (ii) Ck(m, d, a) = Ck((m− a)+, d). Here, (i) represents holding cost of jobs in the system and case
(ii) represents holding costs of jobs waiting for service in the queue.
The objective is to minimize the time-average holding cost, see (3.1.2).
Similar to [43], we can cast this abandonment model into a Markov-modulated MARBP. There are N
bandits, where each bandit represents a class of jobs. The state of bandit k is simply the number of class-k
jobs in the system. We then have the following transition rates for bandit k:

qk(m+ 1|m, d, a) = λ
(d)
k and qk((m− 1)+|m, d, a) = mθ

(d)
k + aµ(d),
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for m ∈ N0, d = 1, 2 and a = 0, 1. Activating a bandit is equivalent to serving this class. At most R < N

classes can be served at a time.
In the remainder of this section, we calculate Whittle’s index for one class/bandit. In order to use Algo-
rithm 3.4, we first show in Section 3.4.1 that an optimal solution of the relaxed problem is of threshold type.
Then, in Section 3.4.2, we obtain a closed-form expression for Whittle’s index in the case of linear holding
cost.

3.4.1 Threshold policies

In this section, we prove that an optimal solution of the relaxed problem (3.2.3) for the abandonment model
is of threshold type. We henceforth focus on one bandit. For ease of exposition, we remove the subscript k.

Proposition 3.9. For each W , there exists an ~n(W ) = (n1(W ), n2(W )) such that the threshold policy
~n(W ) is an optimal solution of the relaxed problem (3.2.3).

Proof: The value function V (m, d) satisfies the Bellman’s optimality equation for average costs [57], which
in this case is

(µ(d) +mθ(d) + λ(d) + r(d))V (m, d) + g =

λ(d)V (m+ 1, d) +mθ(d)V ((m− 1)+, d) + r(d)V (m, 3− d) (3.4.2)

+ min
{
C(m, d, 0)−W + µ(d)V (m, d), C(m, d, 1) + µ(d)V ((m− 1)+, d)

}
,

where g is the averaged cost incurred under the optimal policy. Proving optimality of a threshold policy
is equivalent to proving that if in state m + 1 (with m ≥ 0) it is optimal to be passive, it is also optimal
to be passive in state m. Regarding (3.4.2), we have to show that C(m+ 1, d, 0)−W + µ(d)V (m+ 1, d) ≤
C(m+ 1, d, 1) + µ(d)V (m, d) implies that C(m, d, 0)−W + µ(d)V (m, d) ≤ C(m, d, 1) + µ(d)V ((m− 1)+, d).
A sufficient condition to prove this is Property (3.4.1) together with convexity of the value function for each
d,m, so 2V (m, d) ≤ V (m+ 1, d) + V ((m− 1)+, d), which we prove next.
In order to prove the convexity of V (m, d), we use the value iteration method. However, this technique
needs uniformly bounded transition rates. We therefore consider a truncated space at L and smooth the
arrival transitions. We define the value function for the truncated system with parameter L as V L(m, d). In
Appendix 3.7.2 we show that V L(m, d) is a convex function, and in Appendix 3.7.2 that sufficient conditions
hold in order to apply [14, Theorem 3.1], to state convergence of V L → V as L → ∞. With these two
results, convexity of V is concluded. 2

Below we prove properties on π~n(m, d), the steady-state probability of having m jobs in the system and
being in environment d under threshold policy ~n.
Given threshold policy ~n with ni ≥ 0 for i = 1, 2, we have the following rate conservation property for a
given environment.

Lemma 3.10. Under threshold policy ~n it holds that

λ(d)φ(d) + r(3−d)E
(
M~n1(D=3−d)

)
=
(
θ(d) + r(d)

)
E
(
M~n1(D=d)

)
+ µ(d)

∞∑
m=nd+1

π~n(m, d), (3.4.3)
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for d = 1, 2, where M~n denotes the random variable with distribution π~n.

Proof: The rate conservation in a stable system is due to the balance between the arrivals and the departures
in the long-term process. We refer to [20, Section 2.4.7], where the Principle of Set Balance states that
almost surely, the number of exits equals the number of entrances as t tends to infinity. We consider that
each environment defines a stable subsystem. Then, the mentioned balance is represented in both sides of
Equation (3.4.3) for a given environment d. This can be explained as follows. On average, the rate for
arrivals under environment d is λ(d)φ(d), the rate for departures due to service is µ(d)∑∞

m=nd+1 π
~n(m, d),

and due to abandonments is θ(d)E
(
M~n1(D=d)

)
. When the environment of the bandit is in state D(t) = d,

the subsystem in environment d has all the customers, while the subsystem in environment 3− d is empty.
When the environment changes state, a batch departure of every customer is done from one subsystem to
the other. In this sense, for a fixed environment d, the term r(3−d)E

(
M~n1(D=3−d)

)
represents arrivals to

the subsystem, and r(d)E
(
M~n1(D=d)

)
the departures. 2

Lemma 3.11 proves monotonicity properties on
∑nd
m=0 π

~n(m, d). This quantity represents the probability
that a class is not being served and observes environment d.

Lemma 3.11.

1. The function
∑nd
m=0 π

~n(m, d) is non-decreasing in nd, for d = 1, 2.

2. The function
∑nd
m=0 π

~n(m, d) is non-increasing in n3−d, for d = 1, 2.

The first property follows naturally, as increasing the threshold nd implies that one is keeping this class
passive in more states, while the drift towards these passive states remains the same. Hence, the probability
of being passive increases. If instead n3−d increases, the states where the bandit is passive in environment
d are the same. However, the downward drift in environment 3− d decreases in some states, which explains
that the probability of being passive in environment d decreases, i.e., the second property. The proofs can
be found in Appendix 3.7.3.

3.4.2 Whittle’s index for linear cost

In this section, we assume linear holding cost, that is, C(m, d, a) = cm, with c ∈ R 6=0. We first prove that
the abandonment problem is indexable, and then give an expression for Whittle’s index. For ease of reading,
the proofs of the theorems are in Section 3.4.3.
We introduce the following notation:

W (d) := cµ(d) θ(3−d) + r(1) + r(2)

θ(1)θ(2) + r(1)θ(2) + r(2)θ(1) . (3.4.4)

The following two conditions are used in order to prove indexability, Theorem 3.14. Numerical simulations
however suggest that indexability holds for any set of parameters.

Condition 3.12.
µ(1) ≤ µ(2) and θ(1) ≥ θ(2).

Condition 3.13.
W (2) ≤ cµ(2)

θ(2) + r(2) .
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Theorem 3.14. Assume Conditions 3.12 and 3.13 hold. Then all bandits are indexable.

A closed-form expression for the Whittle’s index W (m, d) can now be given.

Theorem 3.15. Assume the bandit is indexable, and w.l.o.g., that µ(1)

θ(1) + r(1) + r(2) ≤
µ(2)

θ(2) + r(1) + r(2) .
We define the subsequence (nj)j≥−1 as follows: n−1 = −1, n0 = 0, and for j ≥ 1 let

nj := min
n>nj−1

W ((nj−1, 0), (n, 0)). (3.4.5)

In case there is more than one minimiser, choose the one that minimises −
∑2
d=1

∑nd
m=0 π

(n,0)(m, d).
Whittle’s index W (m, d) is given by

W (m, d) =


0 for m = 0

W ((nj−1, 0), (nj , 0)) for nj−1 < m ≤ nj , and d = 1

W (2) for m ≥ 1 and d = 2.

(3.4.6)

Moreover, W (m, 1) ≤W (1) ≤W (2) for all m.

If µ(1)

θ(1) + r(1) + r(2) = µ(2)

θ(2) + r(1) + r(2) , then W (m, 1) = W (1) = W (2) for all m.

Remark 3.16. If µ(1)−µ(2) < θ(2), then the slope of the linear function g(n,0), −
∑2
d=1

∑nd
m=0 π

(n,0)(m, d),
is a non-increasing sequence in n, as it will be stated in Proposition 3.23. As a consequence, in that case,
for each step j in Theorem 3.15, the minimiser nj with the steepest slope is the largest minimiser n.

In the following corollary we consider the particular case where nj = j for all j ≥ −1, or equivalently, the
sequence W ((n− 1, 0), (n, 0)) is strictly increasing in n.

Corollary 3.17. If µ(1)

θ(1) + r(1) + r(2) ≤
µ(2)

θ(2) + r(1) + r(2) and the sequence (W ((n − 1, 0), (n, 0)))n∈N is
strictly increasing in n, then Whittle’s index W (m, d) is given by (3.4.7).

W (m, d) =


0 for m = 0

W ((m− 1, 0), (m, 0)) for d = 1

W (2) for d = 2 and m ≥ 1.

(3.4.7)

Although we could not prove the non-decreasing property for the crossing points, based on numerical
observations we believe this holds whenever W (1) 6= W (2) .

Remark 3.18. The queuing model with abandonments without an environment has been studied in [44].
That is, λ(1) = λ(2) = λ, µ(1) = µ(2) = µ and θ(1) = θ(2) = θ. Then, Whittle’s index as in Theorem 3.15
equals cµ/θ, which is in agreement with [44, Section 6.1].

We now scale the transition rates of the environments, to further characterize Whittle’s index in the two
extreme cases of very slow changing or very fast changing environments. As in Section 3.3.2, β is the scaling
parameter and βr(d) is the transition rate of the environment. This proof can be found in Appendix 3.7.4.
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Proposition 3.19. Assume the transition rates of the environment are scaled as βr(d).
It holds that

lim
β→0

W (m, d) = c
µ(d)

θ(d) , ∀m, d.

When µ(1)

θ(1) + r(1) + r(2) ≤
µ(2)

θ(2) + r(1) + r(2) , it holds that

lim
β→∞

W (m, d) =


0 for m = 0

limβ→∞W ((nj−1, 0), (nj , 0)) for nj−1 < m ≤ nj , and d = 1

c
µ(2)

θ
for d = 2,

where θ :=
∑2
d=1 φ(d)θ(d).

For the slow regime, we observe that the Whittle Index W (m, d) coincides with that of the Whittle’s index
when the bandit always sees environment d, given by cµ(d)

θ(d) , see [43].
When the environment changes fast compared to the controllable state of the bandit, the Whittle index
remains state dependent. In environment 2, the index simplifies to cµ

(2)

θ
. This index is very similar to

(i) cµθ , which is Whittle’s index when there are no environments.

(ii) cµ
θ
, an index that was proved to be asymptotically optimal in case the environments are unobservable,

in Chapter 2.

Hence, we see that when the environment changes very fast, it takes the form of departure rate over the
averaged abandonment rate. In case the environment is unobservable, the averaged value is taken in the
index.

3.4.3 Proof of Theorems 3.14 and 3.15

In this section, we set out the proofs of Theorems 3.14 and 3.15. In order to do so, we state several lemmas
and propositions, whose proofs can be found in Appendix 3.7.5.
Throughout this section, we assume that W (1) ≤W (2), or equivalently µ(1)

θ(1)+r(1)+r(2) ≤ µ(2)

θ(2)+r(1)+r(2) .
We start by rewriting W (~n, ~n′), the subsidy such that the expected cost under both threshold policies ~n
and ~n′ are equal. From (3.3.2), we obtain

W (~n, ~n′) = c ·
∑2
d=1

∑∞
m=0mπ

~n(m, d)−
∑2
d=1

∑∞
m=0mπ

~n′(m, d)∑2
d=1

∑nd
m=0 π

~n(m, d)−
∑2
d=1

∑n′
d
m=0 π

~n′(m, d)
, (3.4.8)

given that the denominator in (3.4.8) is not equal to 0.
The rate conservation property of Lemma 3.10 allows us to give an alternative expression for W (~n, ~n′). For
that, we define

sd(~n, ~n′) :=
nd∑
m=0

π~n(m, d)−
n′d∑
m=0

π~n
′
(m, d),
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as the difference between the probability of being passive under threshold policies ~n and ~n′, while the
environment is in state d.

Lemma 3.20. It holds that

W (~n, ~n′) = tW (1) + (1− t)W (2), (3.4.9)

where t := s1(~n, ~n′)
s1(~n, ~n′) + s2(~n, ~n′) .

Consider two policies that are always passive in environment d = 1, i.e., ~n = (∞, n2) and ~n′ = (∞, n′2),
for any pair n2, n

′
2. We have that

∑∞
m=0 π

(∞,n2)(m, 1) = φ(1), where φ(1) is the stationary measure of the
environment for being in state d = 1. Hence, s1(~n, ~n′) =

∑∞
m=0 π

(∞,n2)(m, 1) −
∑∞
m=0 π

(∞,n′2)(m, 1) = 0,
and thus

W ((∞, n2), (∞, n′2)) = W (2). (3.4.10)

Similarly, we haveW ((n1,∞), (n′1,∞)) = W (1). Following this reasoning, we derive properties for the policy
that never serves the bandit, i.e., (∞,∞).

Lemma 3.21. We consider the threshold policy that never serves the bandit, (∞,∞). For any policy
~n = (n1, n2) it holds that W ((∞,∞), ~n) ∈ [W (1),W (2)]. Furthermore, W ((∞,∞), ~n) = W (2) if and only if
n1 =∞ and W ((∞,∞), ~n) = W (1) if and only if n2 =∞.

We can now characterise optimal threshold policies that solve the relaxed optimisation problem for (3.3.1)
as a function of the subsidy W .

Proposition 3.22. 1. The threshold policy (−1,−1) is an optimal solution of (3.3.1) when W ≤ 0.
When W < 0, it is the unique optimal threshold policy. When W = 0, the optimal threshold policies
are (−1,−1), (−1, 0), (0,−1) and (0, 0).

2. Assume Conditions 3.12 and 3.13 hold. For W ∈
[
0,W (2)) the optimal threshold solutions of (3.3.1)

are of the form (n, 0) with n ≥ −1.

3. The threshold policy (∞,∞) is an optimal solution of (3.3.1) when W ≥ W (2). When W > W (2), it
is the unique optimal threshold policy. When W = W (2), the optimal threshold policies are of the form
(∞, n) with n ≥ 0.

Proposition 3.23. Assume Condition 3.12 holds. Then the sequence
(
−
∑2
d=1

∑nd
m=0 π

(n,0)(m, d)
)
n∈N

,

which represents the slope of the linear functions (g(n,0))n∈N, is a non-increasing sequence.

We can now prove Theorem 3.14.
Proof of Theorem 3.14: By Proposition 3.9, an optimal solution of (3.3.1) is of threshold form. For
a given subsidy W , let nd(W ) denote the minimum value for a threshold in environment d such that the
threshold policy (nd(W ), ñ3−d), for some ñ3−d, is optimal.
If

n1(W ) ≤ n1(W + ∆) and n2(W ) ≤ n2(W + ∆), (3.4.11)
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with ∆ > 0, then, the bandit is indexable. Equation (3.4.11) will be proved below.
First assume W < 0. Then, by Proposition 3.22, the optimal threshold policy is (−1,−1). In W = 0 it
turns to (0, 0), and for W > 0 it is of the form (n, 0). Hence, for W ≤ 0, (3.4.11) holds.
Now assume 0 ≤ W < W (2). If W + ∆ > W (2), then the inequality (3.4.11) is trivially true. Now
assume W + ∆ < W (2). By Proposition 3.22, it follows that there are n and n′ such that ~n(W ) = (n, 0) and
~n(W +∆) = (n′, 0). Since the function g(W ) is a lower envelope, the linear function g(n′,0)(W ) has a steeper
slope than the linear function g(n,0)(W ), as it can be seen in Figure 3.1. Furthermore, in Proposition 3.23
we proved that the slope of the linear functions g(n,0)(W ) is non-increasing in n. Therefore, n ≤ n′, and
(3.4.11) holds.
Finally, for W ≥ W (2), the optimal threshold policy is (∞,∞), hence nd(W ) = ∞ for both d = 1, 2, and
(3.4.11) is trivially true. 2

In order to prove Theorem 3.15, we first show that threshold policy (∞, 0) is an optimal solution of (3.3.1)
when W ∈

[
W (1),W (2)].

Proposition 3.24. The threshold policy (∞, 0) is an optimal solution of (3.3.1) when W ∈
[
W (1),W (2)].

If W ∈ (W (1),W (2)), then it is the unique optimal threshold policy. If W = W (2), then any threshold policy
(∞, n) with n ≥ 0 is optimal, and no other threshold policy is.

Using Propositions 3.22 and 3.24 we can prove Theorem 3.15.
Proof of Theorem 3.15: Recall that the Whittle’s index of a state (m, d) is the smallest value for the
subsidy W such that the optimal threshold policy makes that state passive.
First consider states (0, d). From Proposition 3.22, we have that in state 0 it is optimal to be active when
W < 0 and passive if W = 0. Hence, we have that W (0, d) = 0, for both d = 1, 2.
Now consider states (m, 2), with m > 0. From Proposition 3.24, we have that for W ∈ (W (1),W (2)) the
unique optimal threshold policy is (∞, 0). For W ≥W (2), the optimal threshold policy is (∞,∞), since it is
the steepest one. Hence, W (2) is the smallest value for the subsidy W such that in state (m, 2) the optimal
action is to be passive, that is, W (m, 2) = W (2) for every m ≥ 0.
Now consider states of the form (m, 1), with m > 0. Note that for W = 0, in state 0 it is optimal to be
passive, and for W ∈ (W (1),W (2)) the optimal threshold policy is (∞, 0). As a consequence, and since the
bandit is indexable, when 0 ≤ W < W (2), an optimal threshold policy is of the form (n, 0). Algorithm 3.4
characterises Whittle’s index by iteratively defining Ŵj . From Proposition 3.22, we have that for W < 0
the unique optimal threshold policy is ~n−1 = (−1,−1), and for W = 0 the optimal threshold policies are
(−1,−1), (−1, 0), (0,−1) and (0, 0). Hence, Ŵ0 = 0. Furthermore, since the bandit is indexable, for W ≥ 0
it is optimal to be passive in state 0. Therefore, among those four threshold policies, the optimal threshold
policy in the interval [0, Ŵ1] is ~n0 = (0, 0). Then, in W = Ŵ1 the linear function of the following optimal
threshold policy (n1, 0) crosses the linear function g(0,0). Inductively, the increasing sequence (nj)j≥0,
provides the set of minimising policies inside the set {(n, 0)}n≥0. As a consequence, in order to determine
the smallest value of W such that the optimal threshold policy makes a state (m, 1) passive, it is enough to
determine the value j such that nj−1 < m ≤ nj . In other words, W (m, 1) = W ((nj−1, 0), (nj , 0)) for any j
and nj−1 < m ≤ nj .



52 CHAPTER 3. OPTIMAL CONTROL WITH OBSERVABLE ENVIRONMENTS

We are left to prove that W ((nj , 0), (nj−1, 0)) ≤W (1) for every j. To do so, recall from (3.4.9) that

W ((nj , 0), (nj−1, 0)) = W (1) + (1− t)
(
W (2) −W (1)

)
,

with 1 − t := s2((nj , 0), (nj−1, 0))
s1((nj , 0), (nj−1, 0)) + s2((nj , 0), (nj−1, 0)) . From Property 2) in Lemma 3.11 it follows

that s2((nj , 0), (nj−1, 0)) < 0. We state the following property between arbitrary linear functions in R: if
two linear functions cross each other in a given W , the one that minimises for W ≥ W is steeper than the
one that minimises forW ≤W . In this case, since g(nj−1,0)(W ) minimises forW ≤W ((nj , 0), (nj−1, 0)) and
g(nj ,0)(W ) minimises forW ≥W ((nj , 0), (nj−1, 0)), g(nj ,0) is steeper than g(nj−1,0), i.e., s1((nj , 0), (nj−1, 0))+
s2((nj , 0), (nj−1, 0)) > 0. Then 1 − t ≤ 0, and as a consequence, W ((nj , 0), (nj−1, 0)) ≤ W (1) for every j.
2

3.5 Multi-class queue in a Markovian environment

In this section we study a queueing model without abandonments with an observable random environment
and general holding cost. That is, we consider the model as described in Section 3.4 where now the
abandonment rates are set equal to zero. First, we discuss the stability conditions of the model. Secondly,
we derive Whittle’s index, based on the results obtained in the previous section for an abandonment queue
(by letting θ → 0). The latter is used to propose an index policy.

3.5.1 Stability conditions

We first provide the maximum stability conditions, that is the conditions on the parameters such that there
exists a policy that makes the system stable. This stability result follows from [62].

Proposition 3.25 (Proposition 1, Section 4, in [62]). Let φ(~d) be the probability that bandit k sees envi-
ronment dk, k = 1, . . . , N . Recall that φk(dk) denotes the marginal distribution.
If there exists a policy such that the multi-class queue with environments is stable, then there exists a vector
~γ = (γk~d : 1 ≤ k ≤ N, ~d ∈ ZN ), such that

γk~d ≥ 0 and
N∑
k=1

γk~d ≤ φ(~d), for all k, ~d, (3.5.1)

and ∑
d∈Z

λ
(d)
k φk(d) ≤

∑
~d∈ZN

µ
(dk)
k γk~d, ∀1 ≤ k ≤ N. (3.5.2)

If there exists a vector ~γ such that (3.5.1) and∑
d∈Z

λ
(d)
k φk(d) <

∑
~d∈ZN

µ
(dk)
k γk~d, ∀1 ≤ k ≤ N, (3.5.3)

then there exists a policy that makes the system stable.
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Proof: For the sake of readability we present a sketch of the proof.
If the system is stable under some policy ϕ, then we consider the process under this policy in a stationary
regime, and let γϕ

k~d
be the average fraction of time that the environment is ~d and bandit k is active. The

obtained vector ~γϕ satisfies (3.5.1) by definition. It also satisfies Equation (3.5.2), which can be seen by
contradiction. Assume it did not hold, then at least one bandit would grow indeterminately towards infinite
with probability 1.
If (3.5.1) and (3.5.3) hold for a certain ~γ, we define the policy ϕ as the policy that, under environment ~d,

makes bandit k active with probability γk~d/φ(~d) and with probability 1−
∑N
k=1 γk~d

φ(~d)
does not make active

any bandit. Then policy ϕ allocates to bandit k on average a service rate equal to
∑

~d∈ZN µ
(dk)
k γk~d, which

by (3.5.3) is larger than its arrival rate. This implies stability. 2

3.5.2 Whittle’s index policy

For the multi-class queue without abandonments, one cannot directly apply Algorithm 3.4 in order to get
Whittle’s index. The reason for this is as follows. Let us focus on one bandit, and assume µ(1) < µ(2). Then,
we believe that as the subsidy grows from −∞ to ∞, threshold policies of the form (n, 0), n = 1, 2, . . ., will
be optimal, and then, for larger W , the threshold policy (∞, 0) is optimal. However, once in environment
1 it is optimal to be passive in all states, when now comparing different threshold values for environment
2, each such threshold will have the same steady-state probability of being passive. Hence, there is no
difference in the average obtained subsidy for passivity between threshold policies of the form (∞, n) and
(∞, n+ n′). This means that no index can be defined for states (m, 2). A similar observation was made for
the classical multi-class queue without environments, see [44, Section 7]. In order to obtain Whittle’s index
for the multi-class queue with environments, we therefore assume there are abandonments, and then let the
abandonment rate scale to zero.
We assume linear holding cost. Let W θ(m, d) be the Whittle’s index in the presence of abandonments (as
derived in Section 3.4.2), with θ1 = θ2 = θ, with θ > 0. It is direct from Theorem 3.15 that if µ(1) < µ(2),
then

lim
θ→0

θW θ(m, 2) = cµ(2), for all m ≥ 1. (3.5.4)

That is, in environment 2, one needs to consider the scaled index. In environment 1, we observed numerically
that no scaling was needed in order to obtain a non-trivial limit. In fact, we believe the following to be true:

Conjecture 3.26.
lim
θ→0

W θ(m, 1) <∞.

In order to prove this conjecture, one needs to study W ((nj−1, 0), (nj , 0)), which by (3.4.9) depends on the
steady-state distributions. A perturbation approach as presented in [3, Theorem 2], would allow to write
the steady state as an expansion in θ. However, the results of [3] do not directly apply since there the
transition rates are assumed to be uniformly bounded.
We can now define a heuristic for the multi-class queue with a random environment. Let us assume there
are N bandits and R can be made active. Define for each bandit k, 1 ≤ k ≤ N , dk such that µ(3−dk) ≤ µ(dk).
In every decision epoch make active the bandits that are currently in their state dk. If there are more than
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R, choose the R ones having the largest value for ckµ(dk). If there are less than R, make also active the
bandits currently in state 3− dk having the largest value for limθ→0W

θ

k(m, 3− dk) as defined in Conjecture
3.26.

3.6 Numerical evaluation

In this section the performance under Whittle’s index policy is compared to the performance of an optimal
policy obtained via value iteration. We consider the abandonment model with two classes of users and two
states for the environment(s), Z = {1, 2}. The decision epochs occur when there is a change of state, either
in the queue length or in the environment. At each decision epoch the decision maker chooses which user
to serve, that is, R = 1. We assume linear holding costs that do not depend on the environment or action
taken, i.e., Ck (m, d, k) = m.
We plot the relative suboptimality gap in percentage for the different policies. We denote by gϕ the
performance under policy ϕ. Then, the suboptimality gap for policy ϕ is given by 100 ∗ (gϕ− gOPT )/gOPT ,
where gOPT is the average cost under an optimal policy.
In Section 3.6.1, we generate a large number of parameters and using boxplots we show the suboptimality
gaps under different policies. In Section 3.6.2 we focus on one particular set of parameters. In Section 3.6.3,
we discuss how much one can gain by observing the state of the environments.

3.6.1 Boxplots

In this section we consider two different models for the environments. The first model is that of one common
environment, and the second model is that of independent identically distributed environments. Numerically
we calculate the suboptimality gap under Whittle’s index policy W (m, d), Whittle’s index policy for a fixed
environment W (d)(m), and the policy that for each set of parameters chooses at random which bandit to
serve in each state. We do this for 200 sets of randomly generated parameters in order to obtain a boxplot.
This allows us to plot for each policy the 25th and 75th percentiles, the median value with an horizontal
line and the outliers with “+”.
Figure 3.2 (left) considers random sets of parameters chosen as follows: The parameters are chosen uniformly
at random such that λ(d)

k = λ ∈ [1, 10], µ(d)
k ∈ [1, 20], r(d)

k = r(d) ∈ [1, 20], and θ(d)
k = θ ∈ [0.1, 0.5], for

k = 1, 2 and d = 1, 2. We observe that the suboptimality gap of policies W (m, d) and W (d)(m) is very
small, both for independent environments as well as for a common environment. The random policy shows
worse performance having a median of the suboptimality gap in 18%.
The fact that the policy W (d)(m) performs similar to Whittle’s index policy W (m, d) is surprising. The
former does not take into account that the environment changes dynamically over time. To show that
W (d)(m) is not an efficient policy, we narrow our set of randomly generated parameters. As before, we
chose the parameters λ(d)

k , r(d), r(d)
k , and θ

(d)
k . However, the departure rates are chosen differently. In

environment d = 2, the departure rates are equal for both classes, i.e., µ(2)
1 = µ

(2)
2 = µ, where the value

µ is chosen uniformly at random in the interval [1, 20]. In environment d = 1, we take µ(1)
1 = µ − a and

µ
(1)
2 = µ+ a, where a ∈ [0, µ] is chosen uniformly at random. Now, the fixed policy W (d)(m) will give equal

priority to classes 1 and 2 in environment 2. However, since the environment will change later to state
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Figure 3.2: Suboptimality gap with (left) random parameters and (right) constrained parameters.

d = 1, it could have been better to prioritize class 1 in environment 2, because in environment 1 it will have
a lower departure rate, while class 2 has a higher departure rate. This effect of changing environments is
taken into account in the Whittle index policy W (m, d).
Figure 3.2 (right) plots the result for 200 samples. As expected, Whittle’s index policy has an suboptimality
gap close to 0, as in the previous example, while this is not the case for Whittle’s index policy for a fixed
environment, W (d)

k (m). For the latter policy, the median is 4% and the 75th percentile is 15% for the
common environment setting (vs. 0% both values for Whittle’s index policy), and the median is 3% and the
75th percentile is 9% for the independent environments setting (vs. 0% and 2% for Whittle’s index policy).

3.6.2 Particular example

From the above plots, we conclude that even in a common environment, Whittle’s index performs rather
well. Below we show that this is not always the case. We obtain a set of parameters such that Whittle’s
index policy has a good performance when the environments are independent, but it performs bad when
the environments are common for both bandits.
We choose the following parameters: the arrival rates are λ(d)

k = 4γ, γ > 0, for k = 1, 2, d = 1, 2, and hence
independent of the environment. The departure rates are µ(1)

1 = 8, µ(2)
1 = 5, µ(1)

2 = 27, µ(2)
2 = 21, hence

µ
(d)
1 < µ

(d)
2 , for each environment d. The abandonment rates are θ(1)

1 = 0.1, θ(2)
1 = 0.1, θ(1)

2 = 0.4, θ(2)
2 = 0.3,

hence θ(d)
1 < θ

(d)
2 , for each environment d. These parameters satisfy the following inequalities:

1) W
(1)
2 << W

(1)
1 and 2) W

(2)
1 < W

(1)
2 .

As such, when the environment is in state (D1(t), D2(t)) = (1, 1), the indices (relation 1) indicate that
preference is leaning towards serving class 1. This is surprising, since the departure rate for class 1,
µ

(1)
1 = 8 is much smaller than the departure rate for class 2 in environment 1, µ(1)

2 = 27. However,
when (D1(t), D2(t)) = (2, 1), then from relation 2, one sees that preference leans towards serving class 2 at
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Figure 3.3: Suboptimality gap of Whittle’s index policy and the index W (d)(m) as a function of (left)
the scaling parameter of arrival rates (γ) and (right) the scaling parameter of the transition rates for the
environment (β).

his high departure rate 27. When the two environments are independent, one visits this state a positive
fraction of time and hence profits from the highest departure rate for class 2. If instead the environment for
both classes is common, one is never in state (D1(t), D2(t)) = (2, 1), explaining why Whittle’s index policy
can have a large suboptimality gap.
We consider three cases for the environment parameters:

• in the first set, both environments D1(t), D2(t) are identically distributed and their transition rates
are given by r(1)

k = 15β and r(2)
k = 17β, k = 1, 2, with β > 0. Thus, φ(1)

k = 17/32 and φ(2)
k = 15/32.

Indicated in the plot by “i.i.d.”.

• In the second set, the environments are non-identical and their transition rates are given by r(1)
1 =

15β, r(2)
1 = 17β, r(1)

2 = 10β and r(2)
2 = 2β, where β > 0. Thus, φ(1)

1 = 17/32, φ(2)
1 = 15/32, φ(1)

2 = 1/6
and φ(2)

2 = 5/6. Indicated in the plot by “non-identical”.

• In the third set, the environments are common with r(1) = 15β and r(2) = 17β, k = 1, 2, with β > 0.
Thus, φ(1) = 17/32 and φ(2) = 15/32. Indicated in the plot by “common”.

Note that Condition 3.12 and Condition 3.13, which were needed in order to prove indexability, are not
satisfied for the above parameters. However, numerically we observed that for this parameter setting, the
system is indexable.

Scaling arrivals

We first study the suboptimality gap as the load in the system changes. We set β = 1. In Figure 3.3 (left)
the relative suboptimality gap under Whittle’s index policy (denoted by W (m, d)) is plotted as a function
of γ. For the independent environment settings, the gap is not larger than 7%, and is 1% when in overload.
However, in a common environment, the gap can be around 25%.
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Figure 3.4: Whittle’s index as a function of the scaling parameter of the transition rates for the environment.
(left) state m = 1, (right) state m = 10.

Scaling speed of the environments

We now study the suboptimality gap as the speed of the environments changes.
In Figure 3.3, (right) the suboptimality gap for both policies W (m, d) and W (d)(m) is plotted as a function
of the speed of the transitions of the environment (and γ = 1). For the two independent environment
settings, we observe that for β around 10−2, the performance under Whittle’s index policy W (m, d) and
the policy W (d)(m) are very similar. Their suboptimality gap is less than 12%. On the other hand, for
the common environment, the suboptimality gap under Whittle’s index policy is around 23% when the
transition rates of the environments are not scaled. Surprisingly, the fixed Whittle index performs rather
well for any choice of β.
Recall from Proposition 3.8 that Whittle’s index W (m, d) converges as β → 0 to W (d)(m). This explains
why in Figure 3.3, (right) the performance of Whittle’s index policy converges towards the fixed Whittle’s
index policy. Under linear cost, W (d)(m) is equal to cµ(d)

k /θ
(d)
k , for k = 1, 2 and d = 1, 2. In Figure 3.4, we

plot Wk(1, d), Wk(10, d) and the values cµ(d)
k /θ

(d)
k and see the convergence.

3.6.3 Unobservable environments

In practice, the environment might not be observable due to technical constraints. In this section, we assess
the performance degradation in case information on the environment is not available.
In Chapter 2 it was shown that the averaged Whittle index policy is asymptotically optimal when the
state of environments is unobservable, as the number of bandits grows large together with the speed of
the environment. In particular, from Chapter 2 together with [44], one obtains that for the abandonment
multi-class queue with linear cost, the averaged Whittle index W k(m), is given by

W k(m) = ck
θk
µk
,

with θk :=
∑
d∈Z φk(d)θ(d)

k and µk :=
∑
d∈Z φk(d)µ(d)

k .
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Figure 3.5: Suboptimality gap for unobservable policies with (left) random parameters and (right) con-
strained parameters.

We present here boxplots that compare the performance of the averaged Whittle index policy, W (m), to
the Whittle index policy, W (m, d), obtained for the observable model. We further include the policy that
for each set of parameters chooses at random which bandit to serve in each state. We consider two models
for the environment: (i) one common environment for both classes, (ii) independent identically distributed
environments.
We first consider 200 sets of randomly generated parameters. In Figure 3.5 (left) the parameters are
chosen uniformly at random such that λ(d)

k = λ ∈ [1, 10], µ(d)
k ∈ [1, 20], r(d)

k = r(d) ∈ [1, 20], and
θ

(d)
k ∈ [0.1, 0.5], for k = 1, 2 and d = 1, 2. We observe that the suboptimality gap of policy W (m, d) is very
small, with a median of 0% for both the common environment and the independent environments setting.
The suboptimality gaps of policy W (m) are larger, with a median of 7% for the common environment
setting and 10% for the independent environments setting. The random policy shows worse performance,
where the median of the suboptimality gap is above 20% in both cases.
For Figure 3.5 (right), we narrow our set of randomly generated parameters. In particular, we choose
parameters such that the optimal action depends on the state the environment is in. The averaged index
policy will not be able to mimic this, since it is a static policy. We fix the parameters such thatW (1)

1 >> W
(1)
2

and W (2)
1 << W

(2)
2 . Hence, in environment 1 it will be optimal to serve bandit 1 with high probability, and

in environment 2 it will be optimal to serve bandit 2 with high probability. In the boxplot of Figure 3.5
(right), we still observe that the median of the suboptimality gap of policy W (m, d) is 0% in both cases,
while the median of the suboptimality gap of policy W (m) is 29% for the common environment setting and
22% for the independent environments setting.
In Figure 3.5, we considered that the environment has transition rates of the same order as the main
process. In a separate analysis we consider environments whose transition rates are 100 times larger than
the transitions rates of the controllable process. We recall that we proved in Chapter 2 that the averaged
Whittle’s index policy W (m) is optimal in a rapidly varying unobservable environment. In the boxplots of
Figure 3.6 the parameters are chosen as in Figure 3.5, except for the rates of the environment, where we take
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Figure 3.6: Suboptimality gap for unobservable policies with a fast environment, with (left) random param-
eters and (right) constrained parameters.

r
(d)
k = r(d) ∈ [100, 2000]. We consider 200 sets of parameters for each boxplot. In this case we observe that
the suboptimality gap of policy W (m, d) is still small, below 1% in both boxplots and in both settings. The
median of the suboptimality gap of policy W (m) for the random parameters (left) is 9% for the common
environment setting, and 12% for the independent environments setting, and for the constrained parameters
(right) is 24% for the common environment setting, and 20% for the independent environments setting.
We conclude that in both regimes, with normal speed and with fast speed, there is an important loss in
performance if we consider an unobservable policy. We obtained medians above 7% when the parameters are
chosen at random, and above 20% when the optimal policy depends strongly on the state of the environment.
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3.7 Appendix

3.7.1 Proof of Lemmas of Section 3.3.2.

Proof of Lemma 3.6:

The measure pnd,(d)(m) is the stationary distribution of the one-dimensional process with the following rates
for m ≥ 0: q(m+ 1|m) = λ(d), and q((m− 1)+|m) = mθ(d) + 1(m>nd)µ

(d), Let pnd,(d)(m) be the stationary
measure of this process, which satisfies the following balance equations:(

λ(d) +mθ(d) + 1(m>nd)µ
(d)
)
pnd,(d)(m) (3.7.1)

= 1(m>0)λ
(d)pnd,(d)(m− 1) +

[
(m+ 1)θ(d) + 1(m+1>nd)µ

(d)
]
pnd,(d)(m+ 1),

for all m ≥ 0, d.
The balance equations for π~n(m, d) are

(λ(d) +mθ(d) + 1(m>nd)µ
(d) + βr(d))π~n(m, d) (3.7.2)

= 1(m>0)λ
(d)π~n(m− 1, 1) +

[
(m+ 1)θ(d) + 1(m+1>nd)µ

(d)
]
π~n(m+ 1, d)

+
∑
d′ 6=d

βr(dd′)π~n(m, d′),

for all m ≥ 0, d. The stationary probability measure that satisfies the balance equations is unique. As
β → 0, (3.7.2) is equal to (3.7.1) with pnd,(d)(m) replaced by limβ→0 π

~n(m, d). After normalisation, we
hence have that limβ→0 π

~n(m, d) = φ(d)pnd,(d)(m), for all m ≥ 0. 2

Proof of Lemma 3.7:

Recall that for a given β, ~nj(β), j = 0, . . . , is the minimisation vector obtained in (3.3.3), and ~̂nj =
limβ→0 ~n

j(β).
For n ≥ n̂jd, define

Âjd(n) :=
∞∑
m=0

C (m, d, a) pn,(d)(m)−
∞∑
m=0

C (m, d, a) pn̂
j
d
,(d)(m)

B̂jd(n) :=
n∑

m=0
pn,(d)(m)−

n̂j
d∑

m=0
pn̂

j
d
,(d)(m).

We define the function

f j(~n) := lim
β→0

∑2
d=1

∑∞
m=0 C (m, d, a)π~n(m, d)−

∑2
d=1

∑∞
m=0 C (m, d, a)π~nj(β)(m, d)∑2

d=1
∑nd
m=0 π

~n(m, d)−
∑2
d=1

∑nj
d
(β)

m=0 π~nj(β)(m, d)
, (3.7.3)
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for ~n ∈ Ej . By Lemma 3.6 and since ~M~n(β) is uniform integrable, we have that f j(~n) is equal to

∑2
d=1

∑∞
m=0 C (m, d, a)φ(d)pnd,(d)(m)−

∑2
d=1

∑∞
m=0 C (m, d, a)φ(d)pn̂

j
d
,(d)∑2

d=1
∑nd
m=0 φ(d)pnd,(d) −

∑2
d=1

∑n̂j
d
m=0 φ(d)pn̂

j
d
,(d)

.

Hence, equivalently, we can write f j(~n) =
1(n1>n̂

j
1)φ(1)Âj1(n1) + 1(n2>n̂

j
2)φ(2)Âj2(n2)

1(n1>n̂
j
1)φ(1)B̂j1(n1) + 1(n2>n̂

j
2)φ(2)B̂j2(n2)

.

By definition of ~̂n(j+1) and since ~nj+1(β) = ~̂nj+1 for β small enough, f j(~n) is minimized in ~̂nj+1, that is,

f j(~̂nj+1) = inf
~n∈Ej

f j(~n). (3.7.4)

In particular, this implies, f j(~̂nj+1) ≤ min(f j(n̂j+1
1 , n̂j2), f j(n̂j1, n̂

j+1
2 )), that is,

φ(1)Âj1(n̂j+1
1 ) + φ(2)Âj2(n̂j+1

2 )
φ(1)B̂j1(n̂j+1

1 ) + φ(2)B̂j2(n̂j+1
2 )

≤ min
(
Âj1(n̂j+1

1 )
B̂j1(n̂j+1

1 )
,
Âj2(n̂j+1

2 )
B̂j2(n̂j+1

2 )

)
. (3.7.5)

Now, assume there is a strict inequality in (3.7.5), and assume Â
j
1(n̂j+1

1 )
B̂j1(n̂j+1

1 )
≤ Âj2(n̂j+1

2 )
B̂j2(n̂j+1

2 )
. The strict inequality

in (3.7.5) implies

B̂j1(n̂j+1
1 )Âj2(n̂j+1

2 ) < Âj1(n̂j+1
1 )B̂j2(n̂j+1

2 ), that is, Âj2(n̂j+1
2 )

B̂j2(n̂j+1
2 )

<
Âj1(n̂j+1

1 )
B̂j1(n̂j+1

1 )
. (3.7.6)

This gives contradiction with the assumption that Âj1(n̂j+1
1 )

B̂j1(n̂j+1
1 )

≤ Âj2(n̂j+1
2 )

B̂j2(n̂j+1
2 )

. Hence, by contradiction we

proved that the inequality in (3.7.5) is an equality, that is,

f j(~̂nj+1) = min(f j(n̂j+1
1 , n̂j2), f j(n̂j1, n̂

j+1
2 )). (3.7.7)

Assume without loss of generality that f j(n̂j+1
1 , n̂j2) ≤ f j(n̂j1, n̂

j+1
2 ). We are left to prove that

f j(n̂j+1
1 , n̂j2) = inf

n>n̂j1

∑∞
m=0 C (m, 1, a) pn,(1)(m)−

∑∞
m=0 C (m, 1, a) pn̂

j
1,(1)(m)∑n

m=0 p
n,(1)(m)−

∑n̂j1
m=0 p

n̂j1,(1)(m)
. (3.7.8)

Let n∗1 be the n such that the infimum is taken on the RHS. Hence, the RHS can equivalently be written
as f j(n∗1, n̂

j
2). We prove (3.7.8) by contradiction. That is, assume f j(n̂j+1

1 , n̂j2) > f j(n∗1, n̂
j
2). But since

f j(~̂nj+1) = f j(n̂j+1
1 , n̂j2) > f j(n∗1, n̂

j
2), we have contradiction with the fact that f j is minimized in ~̂nj+1.

Combining (3.7.4), (3.7.7), and (3.7.8), we conclude the proof. 2
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3.7.2 Proof of Proposition 3.9:

For a given L� 1, we truncate the state space at L and we smooth the arrival transitions by

qL(m+ 1|m, d, a) := λ(d)
(

1− m

L

)+
, (3.7.9)

for m = 0, 1, . . . , L.

Convexity of V L

We assume 1 = λ(1) +λ(2) +µ(1) +µ(2) + r(1) + r(2) +Lθ(1) +Lθ(2) for the uniformisation constant, without
loss of generality. For any d and m = 0, . . . , L, we initialize by defining V L0 (m, d) = 0 and

V Lt+1(m, d) =
(

1− m

L

)
λ(d)V Lt (min{m+ 1, L}, d)

+ r(d)V Lt (m, 3− d) +mθ(d)V Lt ((m− 1)+, d)

+ min{−W + C(m, d, 0) + µ(2)V Lt (m, d), C(m, d, 1) + µ(2)V Lt ((m− 1)+, d)}

+ m

L
λ(d)V Lt (m, d) + (L−m)θ(d)V Lt (m, d)

+
(
λ(3−d) + µ(3−d) + r(3−d) + Lθ(3−d)

)
V Lt (m, d).

We will prove that

2V Lt (m, d) ≤ V Lt ((m− 1)+, d) + V Lt (m+ 1, d), for 0 ≤ m ≤ L− 1, (3.7.10)

for any t, i.e. the convexity of V L.
We first prove by induction in t that V Lt (m, d) is non-decreasing in m. Note that V L0 (m, d) = 0 is non-
decreasing by definition, so we assume V Lt (m, d) is non-decreasing and we prove that

V Lt+1(m+ 1, d)− V Lt+1(m, d) ≥ 0 for 0 ≤ m ≤ L− 1. (3.7.11)

We study the inequality splitting in terms according to the parameter that is multiplying. Firstly, we look
to the terms multiplied by λ(d) in V Lt+1(m+ 1, d)− V Lt+1(m, d), so we have
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λ(d)
(

1− m+ 1
L

)
V Lt (min{m+ 2, L}, d) + λ(d)m+ 1

L
V Lt (min{m+ 1, L}, d)

− λ(d)
(

1− m

L

)
V Lt (min{m+ 1, L}, d)− m

L
λ(d)V Lt (m, d)

= λ(d)
(

1− m+ 1
L

)
V Lt (min{m+ 2, L}, d) + m

L
λ(d)V Lt (min{m+ 1, L}, d)

− λ(d)
(

1− m+ 1
L

)
V Lt (min{m+ 1, L}, d)− m

L
λ(d)V Lt (m, d)

= λ(d)
(

1− m+ 1
L

)
(V Lt (min{m+ 2, L}, d)− V Lt (min{m+ 1, L}, d))

+ m

L
λ(d)(V Lt (min{m+ 1, L}, d)− V Lt (m, d)) ≥ 0.

The last inequality is due to the inductive hypothesis for V Lt (m, d). Let us consider now the terms multiplied
by θ(d):

(m+ 1)θ(d)V Lt (m, d) + (L−m− 1)θ(d)V Lt (min{m+ 1, L}, d)

−mθ(d)V Lt ((m− 1)+, d)− (L−m)θ(d)V Lt (m, d)

= mθ(d)V Lt (m, d) + (L−m− 1)θ(d)V Lt (min{m+ 1, L}, d)

−mθ(d)V Lt ((m− 1)+, d)− (L−m− 1)θ(d)V Lt (m, d)

≥ mθ(d)(V Lt (m, d)− V Lt ((m− 1)+, d))

+ (L−m− 1)θ(d)(V Lt (min{m+ 1, L}, d)− V Lt (m, d)) ≥ 0.

The last inequality holds because of the non-decreasing hypothesis for V Lt (m, d). For the terms multiplied
by r(d) it is straightforward that

r(d)V Lt (m+ 1, 3− d)− r(d)V Lt (m, 3− d) ≥ 0,

because of the inductive hypothesis as well. Equivalently for the dummy transition terms,

(λ(3−d) + µ(3−d) + r(3−d) + Lθ(3−d)) (V Lt (m+ 1, d)− V Lt (m, d)) ≥ 0.

Finally, we consider the minimisation terms in V Lt+1(m + 1, d) − V Lt+1(m, d), where the inequality is a con-
sequence of the non-decreasing property of V Lt (m, d) and C, and the fact that if A ≥ B and A′ ≥ B′, then
min{A,A′} ≥ min{B,B′}:

min{−W + C(min{m+ 1, L}, d, 0) + µ(2)V Lt (min{m+ 1, L}, d),

C(min{m+ 1, L}, d, 1) + µ(2)V Lt (m, d)}

≥ min{−W + C(m, d, 0) + µ(2)V Lt (m, d),

C(m, d, 1) + µ(2)V Lt ((m− 1)+, d)}.
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This concludes the proof of (3.7.11), i.e., V Lt is non-decreasing.
We consider now equation (3.7.10). Note that for m = 0 the equation reduces to V Lt (0, d) ≤ V Lt (1, d), which
is true for every t and every d, because V Lt is non-decreasing in m. Then for 1 ≤ m ≤ L − 1, we make an
analogous reasoning: we prove it by induction in t and we split the inequalities according to the multiplying
parameters. For the initial step V L0 (m) = 0 the inequality holds, so we assume it holds for V Lt (m, d) and
we study the inequality (3.7.10) for t+ 1. Note that

2V Lt+1(m, d) =2
(

1− m

L

)
λ(d)V Lt (m+ 1, d) + 2m

L
λ(d)V Lt (m, d) (3.7.12)

+ 2r(d)V Lt (m, 3− d)

+ 2mθ(d)V Lt (m− 1, d) + 2(L−m)θ(d)V Lt (m, d)

+ 2 min{−W + C(m, d, 0) + µ(2)V Lt (m, d), C(m, d, 1) + µ(2)V Lt (m− 1, d)}

+ 2
(
λ(3−d) + µ(3−d) + r(3−d) + Lθ(3−d)

)
V Lt (m, d)

The term V Lt+1(m− 1, d) + V Lt+1(m+ 1, d) equals

λ(d)
(

1− m− 1
L

)
V Lt (m, d) + λ(d)

(
1− m+ 1

L

)
V Lt (min {m+ 2, L} , d)

+ λ(d)m− 1
L

V Lt (m− 1, d) + λ(d)m+ 1
L

V Lt (m+ 1, d)

+ r(d)V Lt (m− 1, 3− d) + r(3−d)V Lt (m− 1, d) + r(d)V Lt (m+ 1, 3− d) + r(3−d)V Lt (m+ 1, d)

+ (m− 1)θ(d)V Lt ((m− 2)+, d) + (m+ 1)θ(d)V Lt (m, d)

+ (L−m+ 1)θ(d)V Lt (m− 1, d) + (L−m− 1)θ(d)V Lt (m+ 1, d)

+ min{−W + C(m− 1, d, 0) + µ(2)V Lt (m− 1, d), C(m− 1, d, 1) + µ(2)V Lt ((m− 2)+, d)}

+ min{−W + C(m+ 1, d, 0) + µ(2)V Lt (m+ 1, d), C(m+ 1, d, 1) + µ(2)V Lt (m, d)} (3.7.13)

+
(
λ(3−d) + µ(3−d) + r(3−d) + Lθ(3−d)

)
V Lt (m− 1, d)

+
(
λ(3−d) + µ(3−d) + r(3−d) + Lθ(3−d)

)
V Lt (m+ 1, d).

We first compare the two terms multiplied by λ(d) in (3.7.12) to check they are smaller than or equal to the
ones multiplied by λ(d) in (3.7.13). First assume 1 ≤ m ≤ L − 2. The terms multiplied by λ(d) in (3.7.12)
are
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2
(

1− m

L

)
V Lt (m+ 1, d) + 2m

L
V Lt (m, d)

= 2
(

1− m+ 1
L

)
V Lt (m+ 1, d) + 2m

L
V Lt (m, d) + 2

L
V Lt (m, d)

≤
(

1− m+ 1
L

)
V Lt (m, d) +

(
1− m+ 1

L

)
V Lt (m+ 2, d) + 2m

L
V Lt (m, d) + 2

L
V Lt (m+ 1, d)

=
(

1− m− 1
L

)
V Lt (m, d)− 2

L
V Lt (m, d) +

(
1− m+ 1

L

)
V Lt (m+ 2, d)

+ 2m
L
V Lt (m, d) + 2

L
V Lt (m+ 1, d)

=
(

1− m− 1
L

)
V Lt (m, d) +

(
1− m+ 1

L

)
V Lt (m+ 2, d)

+ 2m− 1
L

V Lt (m, d) + 2
L
V Lt (m+ 1, d) (3.7.14)

Because of convexity, we know that 2m−1
L V Lt (m, d) ≤ m−1

L (V Lt (m− 1, d) + V Lt (m+ 1, d)), hence the third
term in (3.7.14) can be bounded, and we obtain:

2
(

1− m

L

)
V Lt (m+ 1, d) + 2m

L
V Lt (m, d)

≤
(

1− m− 1
L

)
V Lt (m, d) +

(
1− m+ 1

L

)
V Lt (m+ 2, d)

+ m− 1
L

(
V Lt (m− 1, d) + V Lt (m+ 1, d)

)
+ 2
L
V Lt (m+ 1, d)

≤
(

1− m− 1
L

)
V Lt (m, d) +

(
1− m+ 1

L

)
V Lt (m+ 2, d)

+ m− 1
L

V Lt (m− 1, d) + m+ 1
L

V Lt (m+ 1, d), (3.7.15)

which is the same as the terms multiplied by λ(d) in (3.7.13). Now assume m = L − 1, then inequality
(3.7.10) reduces to 2(1 − 2/L)V Lt (L − 1, d) ≤ (1 − 2/L)(V Lt (L − 2, d) + V Lt (L, d)), which holds because of
convexity of V Lt .
We consider now the terms multiplied by θ(d). We need to prove

2mV Lt (m− 1, d) + 2(L−m)V Lt (m, d)

≤ (m− 1)V Lt ((m− 2)+, d) + (m+ 1)V Lt (m, d) + (L−m+ 1)V Lt (m− 1, d)

+ 2V Lt (m− 1, d) + (L−m− 1)V Lt (m+ 1, d),

or, equivalently,

2(m− 1)V Lt (m− 1, d) + 2(L−m− 1)V Lt (m, d)

≤ (m− 1)V Lt ((m− 2)+, d) + (m− 1)V Lt (m, d) + (L−m− 1)V Lt (m− 1, d)

+ (L−m− 1)V Lt (m+ 1, d).
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This last inequality is obtained from the convexity property for 2V Lt (m− 1, d) and 2V Lt (m, d) on the lhs.
For the terms multiplied by r(d), and the dummy transitions (λ(3−d) + µ(3−d) + r(3−d) + Lθ(3−d)), the
inequalities to prove are

2r(d)V Lt (m, 3− d) ≤ r(d)V Lt (m− 1, 3− d) + r(d)V Lt (m+ 1, 3− d) and

2(λ(3−d) + µ(3−d) + r(3−d) + Lθ(3−d))V Lt (m, d)

≤ (λ(3−d) + µ(3−d) + r(3−d) + Lθ(3−d)) (V Lt (m− 1, d) + V Lt (m+ 1, d)),

which are a direct consequence of convexity of V Lt .
We lastly consider the minimisation terms, for which we analyse each possible combination of optimal
actions in states m− 1 and m+ 1. Since at time t, V Lt is convex, the optimal actions satisfy the optimality
of threshold policies. Denote by a∗m ∈ {0, 1} the optimal action in state m, where action 0 (1) is passive
(active). Then, since the threshold policy is optimal at time t, (a∗m−1, a

∗
m+1) equals (0, 0), (0, 1) or (1, 1).

We also use Property (3.4.1), regarding the cost function. For a∗ = (0, 1) and 1 ≤ m ≤ L− 1 we have

2 min{−W + C(m, d, 0) + µ(2)V Lt (m, d), C(m, d, 1) + µ(2)V Lt (m− 1, d)}

≤ −W + C(m, d, 0) + µ(2)V Lt (m, d) + C(m, d, 1) + µ(2)V Lt (m− 1, d)

≤ −W + C(m− 1, d, 0) + µ(2)V Lt (m, d) + C(m+ 1, d, 1) + µ(2)V Lt (m− 1, d)

= min{−W + C(m− 1, d, 0) + µ(2)V Lt (m− 1, d), C(m− 1, d, 1) + µ(2)V Lt ((m− 2)+, d)}

+ min{−W + C(m+ 1, d, 0) + µ(2)V Lt (m+ 1, d), C(m+ 1, d, 1) + µ(2)V Lt (m, d)},

where in the last equality the value for the minimums are given by the optimal action a∗ = (0, 1).
For a∗ = (0, 0), we use convexity of C and V Lt :

2 min{−W + C(m, d, 0) + µ(2)V Lt (m, d), C(m, d, 1) + µ(2)V Lt (m− 1, d)}

= −2W + 2C(m, d, 0) + 2µ(2)V Lt (m, d)

≤ −2W + C(m− 1, d, 0) + C(m+ 1, d, 0) + µ(2)V Lt (m− 1, d) + µ(2)V Lt (m+ 1, d)

= min{−W + C(m− 1, d, 0) + µ(2)V Lt (m− 1, d), C(m− 1, d, 1) + µ(2)V Lt ((m− 2)+, d)}

min{−W + C(m+ 1, d, 0) + µ(2)V Lt (m+ 1, d), C(m+ 1, d, 1) + µ(2)V Lt (m, d)}.

Equivalently for a∗ = (1, 1), we make use of convexity properties:

2 min{−W + C(m, d, 0) + µ(2)V Lt (m, d), C(m, d, 1) + µ(2)V Lt (m− 1, d)}

= 2C(m, d, 1) + 2µ(2)V Lt (m− 1, d)

≤ C(m− 1, d, 1) + C(m+ 1, d, 1) + µ(2)V Lt ((m− 2)+, d) + µ(2)V Lt (m, d)

= min{−W + C(m− 1, d, 0) + µ(2)V Lt (m− 1, d), C(m− 1, d, 1) + µ(2)V Lt ((m− 2)+, d)}

min{−W + C(m+ 1, d, 0) + µ(2)V Lt (m+ 1, d), C(m+ 1, d, 1) + µ(2)V Lt (m, d)}.
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This finishes the proof of (3.7.10) for t + 1, hence function V Lt is convex. By [57, Chapter 9.4] it follows
that V Lt (·) − tg → V L as t → ∞, where g is the averaged cost incurred under the optimal policy. Hence,
convexity of V Lt implies convexity of V L. 2

Hypothesis needed for [14, Theorem 3.1]

In this section, we verify that V L → V as L→∞. In particular, we verify that the sufficient conditions as
stated in [14, Theorem 3.1] hold.
For ease of notation, we introduce qL((m′, d′)|(m, d), a) as the transition rate of the truncated process from
state (m, d) to state (m′, d′), when action a is applied. That is, qL((m + 1, d)|(m, d), a) = λ(d)

(
1− m

L

)+
,

qL(((m − 1)+, d)|(m, d), a) = mθ(d) + aµ(d), and qL((m, 3 − d)|(m, d), a) = r(d), for m ∈ N0, d = 1, 2 and
a = 0, 1.
In order to state the sufficient conditions of [14, Theorem 3.1], we need the following definition.

Definition 3.27. A function f : X ×Z → R+ is a moment function if there exists an increasing sequence
of finite sets (En)n∈N ⊂ X × Z such that limn→∞En = X × Z and inf {f(m, d) : (m, d) /∈ En} → ∞ as
n→∞.

The conditions, as stated in [14, Theorem 3.1], are:

1. There exists a function f : X × Z → R+, constants α, β > 0 and M > 0 such that∑
(m′,d′)∈X×Z

qL((m′, d′)|(m, d), a) f(m′, d′) ≤ −αf(m, d) + β1{m<M}(m, d), for all m, d, ϕ, L.

2. (a, L) → qL((m′, d′)|(m, d), a) and (a, L) →
∑

(m′,d′)∈X×Z q
L((m′, d′)|(m, d), a)f(m′, d′) are continu-

ous functions in a and L for all (m, d) and (m′, d′).

We take the function f(m, d) = eεm with ε > 0. We define the sets En = {(0, 1), (0, 2), . . . , (n, 1), (n, 2)} for
each n, which are finite, limn→∞En = X × Z and inf {f(m, d) : (m, d) /∈ En} → ∞ as n→∞.
Condition 1 can be reduced to show that there exists ε > 0, M > 0 and a constant α > 0 such that∑

(m′,d′)∈X×Z

qL((m′, d′)|(m, d), a) f(m′, d′) ≤ −αf(m, d),

for d = 1, 2 and m > M , that is,

λ(d)
(

1− m

L

)+
eε(m+1) + (mθ(d) + aµ(d))eε(m−1) + r(d)eεm(

λ(d)
(

1− m

L

)+
+mθ(d) + aµ(d) + r(d)

)
eεm ≤ −αeεm,

for d = 1, 2 and m > M , where a is the action taken in state (m, d) under policy ϕ. The inequality can be
rewritten as

λ(d)
(

1− m

L

)+
(eε − 1) + (mθ(d) + aµ(d))(e−ε − 1) ≤ −α, (3.7.16)
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Note that, since
(

1− m

L

)+
is decreasing in m, there exists a constant C such that λ(d)

(
1− m

L

)+
(eε−1) <

C. For the other term, since (e−ε − 1) < 0, there exists an M such that for m > M , (mθ(d) + aµ(d))(e−ε −
1) < −C. Then there exists α > 0 such that inequality (3.7.16) holds for d = 1, 2 and m > M and
Condition 1 is proved. For Condition 2, the continuity of the functions (a, L) → qL((m′, d′)|(m, d), a) and
(a, L)→

∑
(m′,d′)∈X×Z q

L((m′, d′)|(m, d), a)f(m′, d′) in a and L holds by definition of the transition rates.
2

3.7.3 Proof of Lemma 3.11

Proof of Property 1) in Lemma 3.11:

Without loss of generality, we assume that the increasing term is n1. Then, for a given (n1, n2), we will
show that

n1∑
m=0

π(n1,n2)(m, 1) ≤
n1+1∑
m=0

π(n1+1,n2)(m, 1).

The idea of the proof relies on using the comparison result 9.3.2 in [19, Chapter 9], for both processes given
by the threshold policies (n1, n2) and (n1 + 1, n2). For that, we define the following cost function:

C~n(m, d, a) :=

1 if d = 1 and m ≤ n1

0 otherwise.

In other words, C~n(m, d, a) = 1 if and only if the state of the environment is 1 and the process is in a passive
state for policy ~n. We also define the resulting expected reward per unit time,

G~n :=
n1∑
m=0

π~n(m, 1).

The remainder of the proof consists in showing

G(n1,n2) ≤ G(n1+1,n2). (3.7.17)

Since the result 9.3.2 in [19, Chapter 9] requires a uniformisable process and our abandonment rates grow
linearly in n in an infinite state space, we consider a truncated version. Let L be the limited capacity for
the truncated version of the process, with L > max {n1 + 1, n2}. We denote by q~n,L((m′, d′)|(m, d), a) the
transition rate of the process from state (m, d) to state (m′, d′), when action a is applied, where action a is
determined by the threshold policy ~n.
We introduce the uniformisation constant H(L) := maxd

{
λ(d) + µ(d) + r(d) + Lθ(d)} and the transition

probabilities P ~n,L ((m′, d′)|(m, d), a) obtained after the standard uniformisation approach [68, P.110] for
each step of length H(L). Let V ~n,Lt (m, d) denote the expected cumulative cost over t steps under threshold
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policy ~n when starting in state (m, d). Then V ~n,Lt satisfies the relation

V ~n,Lt+1 (m, d) = C~n(m, d,1m>nd)
H(L) +

∑
(m′,d′)

P ~n,L ((m′, d′)|(m, d),1m>nd)V ~n,Lt (m′, d′).

Let G~nL denote the expected reward for the truncated processes, and, using result 9.3.2 in [19, Chapter 9],
we will prove that

G(n1,n2),L ≤ G(n1+1,n2),L. (3.7.18)

In order to apply result 9.3.2 in [19, Chapter 9], we need to prove that for all states (m, d) and t ≥ 0,

C(n1+1,n2)(m, d, a)− C(n1,n2)(m, d, a) (3.7.19)

+
∑

(m′,d′)

[
q(n1+1,n2),L((m′, d′)|(m, d), a)− q(n1,n2),L((m′, d′)|(m, d), a)

]
·
[
V

(n1,n2),L
t (m′, d′)− V (n1,n2),L

t (m, d)
]

≥ 0.

Note that for (m, d) 6= (n1 + 1, 1), C(n1+1,n2) (m, d, a) = C(n1,n2) (m, d, a), and
q(n1+1,n2),L((m′, d′)|(m, d), a) = q(n1,n2),L((m′, d′)|(m, d), a), for any (m′, d′). Thus the inequality holds
directly. It remains to check the state (m, d) = (n1 + 1, 1). The only difference in rates between q(n1+1,n2),L

and q(n1,n2),L is the transition to state (n1, 1). Hence, inequality (3.7.19) simplifies to

1− µ(1)
[
V

(n1,n2),L
t (n1, 1)− V (n1,n2),L

t (n1 + 1, 1)
]
≥ 0,

or equivalently,
V

(n1,n2),L
t (n1, 1)− V (n1,n2),L

t (n1 + 1, 1) ≤ 1
µ(1) . (3.7.20)

By induction, we can prove the following more general result. For ease of reading, its proof appears in
Appendix 3.7.3.

Lemma 3.28.

V
(n1,n2),L
t (m, d)− V (n1,n2),L

t (m+ 1, d) ≤ 1
µ(1) , ∀ 0 ≤ m ≤ L− 1, d = 1, 2.

With this Lemma, the proof for the truncated processes is done and (3.7.18) holds. To generalize this for
the original processes with unbounded rates we use the following result from [26, Theorem 3.1]. There exist
constants K1,K2 such that ∣∣∣G(n1,n2),L −G(n1,n2)

∣∣∣ ≤ K1

H(L) ,∣∣∣G(n1+1,n2),L −G(n1+1,n2)
∣∣∣ ≤ K2

H(L) .
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As a consequence and after (3.7.18), we get the following relation:

G(n1,n2) ≤ G(n1,n2),L + K1

H(L) ≤ G
(n1+1,n2),L + K1

H(L) ≤ G
(n1+1,n2) + K2

H(L) + K1

H(L) .

Since this holds for every L, and H(L)→∞ when L→∞, we conclude (3.7.17) and the proof is done. 2

Proof of Lemma 3.28.

To simplify notation, since (n1, n2) and L are fixed in the lemma, we will write Vt for V (n1,n2),L
t and H for

H(L). The inequality to prove is

Vt(m, d)− Vt(m+ 1, d) ≤ 1
µ(1) , ∀ 0 ≤ m ≤ L− 1, d = 1, 2.

We initialize with k = 0, V0(m, d) = 0 for every (m, d), and for k = 1,

V1(m, d) =

1/H if d = 1 and m ≤ n1

0 otherwise.

As a consequence, sup(m,d) |V1(m, d)− V1(m+ 1, d)| = 1
H
≤ 1
µ(1) .

We assume now Vt(m, d)−Vt(m+1, d) ≤ 1
µ(1) for every (m, d), and we prove it for Vt+1(m, d)−Vt+1(m+1, d).

We begin with the state (n1, 1), where we have

Vt+1(n1, 1) = 1
H

+ 1
H

[
n1θ

(1)Vt(n1 − 1, 1) + r(1)Vt(n1, 2) + λ(1)Vt(n1 + 1, 1)

+
(
H − n1θ

(1) − r(1) − λ(1)
)
Vt(n1, 1)

]
,

Vt+1(n1 + 1, 1) = 1
H

[(
(n1 + 1)θ(1) + µ(1)

)
Vt(n1, 1) + r(1)Vt(n1 + 1, 2) + λ(1)Vt(n1 + 2, 1)

+
(
H − (n1 + 1)θ(1) − µ(1) − r(1) − λ(1)

)
Vt(n1 + 1, 1)

]
.

Then, the following equation holds, and we apply the inductive hypothesis
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Vt+1(n1, 1)− Vt+1(n1 + 1, 1)

= 1
H

+ 1
H

[
n1θ

(1) (Vt(n1 − 1, 1)− Vt(n1, 1)) + r(1) (Vt(n1, 2)− Vt(n1 + 1, 2))

+ λ(1) (Vt(n1 + 1, 1)− Vt(n1 + 2, 1))−
(
θ(1) + µ(1)

)
(Vt(n1, 1)− Vt(n1 + 1, 1))

+
(
H − n1θ

(1) − r(1) − λ(1)
)

(Vt(n1, 1)− Vt(n1 + 1, 1))
]

= 1
H

+ 1
H

[
n1θ

(1) (Vt(n1 − 1, 1)− Vt(n1, 1)) + r(1) (Vt(n1, 2)− Vt(n1 + 1, 2))

+ λ(1) (Vt(n1 + 1, 1)− Vt(n1 + 2, 1))

+
(
H − n1θ

(1) − θ(1) − µ(1) − r(1) − λ(1)
)

(Vt(n1, 1)− Vt(n1 + 1, 1))
]

≤ 1
H

+ 1
H

[
n1θ

(1) 1
µ(1) + r(1) 1

µ(1) + λ(1) 1
µ(1)

+
(
H − n1θ

(1) − θ(1) − µ(1) − r(1) − λ(1)
) 1
µ(1)

]

= H − θ(1)

Hµ(1) ≤ 1
µ(1) .

For states (m, d) 6= (n1, 1), C~n (m, d, a) = C~n (m+ 1, d, a), which makes the inequality easier to check.
Again, using similar algebraic calculations, we can conclude that Vt+1(m, d)− Vt+1(m+ 1, d) ≤ 1/µ(1) and
the Lemma is proved. 2

Proof of Property 2) in Lemma 3.11:

We compare again the processes (n1, n2) with (n1 + 1, n2). In this case we have to prove

n2∑
m=0

π(n1,n2)(m, 2) ≥
n2∑
m=0

π(n1+1,n2)(m, 2).

We denote by M (n1,n2)(t) and M (n1+1,n2)(t) the controllable processes of the bandit, under policies (n1, n2)
and (n1 +1, n2) respectively, with initial state given by the stationary measure. Note that their distribution
is given by π~n: for a given m ∈ X ,

P(M~n(t) = m) = π~n(m, 1) + π~n(m, 2).

A simple coupling argument shows that M (n1,n2)(t) ≤st M (n1+1,n2)(t), since they have the same rates in
every state except for (n1 + 1, 1), where M (n1+1,n2)(t) does not serve and, as a consequence, it has a lower
death rate. Furthermore, the previous statement is true when looking to the second environment, i.e.,
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M (n1,n2)(t)1(D(t)=2) ≤st M (n1+1,n2)(t)1(D(t)=2). This inequality implies that for any n ∈ X ,

n∑
m=0

π(n1,n2)(m, 2) = P
(
M (n1,n2)(t) ≤ n,D(t) = 2

)
≥ P

(
M (n1+1,n2)(t) ≤ n,D(t) = 2

)
=

n∑
m=0

π(n1+1,n2)(m, 2).

If we take n = n2, the Proposition is proved. 2

3.7.4 Proof of Proposition 3.19:

Slow regime. We assume without loss of generality µ(1)

θ(1) + r(1) + r(2) ≤
µ(2)

θ(2) + r(1) + r(2) . Note that

limβ→0W
(d) = c

µ(d)

θ(d) for both d = 1, 2. Together with Theorem 3.15, it is direct that limβ→0W (m, 2) =

c
µ(2)

θ(2) for m ≥ 0.
For d = 1, recall from Lemma 3.20 thatW ((nj−1, 0), (nj , 0)) can be written as a function of s1((nj−1, 0), (nj , 0))
and s2((nj−1, 0), (nj , 0)). For any j ≥ 0, s2((nj−1, 0), (nj , 0)) = π(nj−1,0)(0, 2)− π(nj ,0)(0, 2). From Lemma
3.6 we can deduce that for any d ∈ Z and any pair of policies ~n, ~n′ such that nd = n′d,

lim
β→0

π~n(m, d) = lim
β→0

π~n
′
(m, d) ∀m ≥ 0. (3.7.21)

In particular,
lim
β→0

s2((nj−1, 0), (nj , 0)) = 0.

Then, following from (3.4.9), limβ→0W ((nj−1, 0), (nj , 0)) = W (1) = c
µ(1)

θ(1) , which concludes the proof for
the slow regime.

Fast regime. Since φ(d) = r(3−d)

r(1) + r(2) and θ =
∑2
d=1 φ(d)θ(d), we can write

lim
β→∞

W (d) = lim
β→∞

cµ(d) β(r(1) + r(2)) + θ(3−d)

β(r(1)θ(2) + r(2)θ(1)) + θ(1)θ(2)

= lim
β→∞

cµ(d)
1 + θ(3−d)

β(r(1)+r(2))
β(r(1)θ(2)+r(2)θ(1))

β(r(1)+r(2)) + θ(1)θ(2)

β(r(1)+r(2))

= lim
β→∞

cµ(d)
1 + θ(3−d)

β(r(1)+r(2))

(φ(2)θ(2) + φ(1)θ(1)) + θ(1)θ(2)

β(r(1)+r(2))

= c
µ(d)

θ
,

which gives the value of the index for d = 2. 2
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3.7.5 Proof of results in Section 3.4.3.

Proof of Lemma 3.20: expression for W (~n, ~n′).

Since
∑nd
m=0 π

~n(m, d) +
∑∞
m=nd+1 π

~n(m, d) = φ(d), Lemma 3.10 for ~n states

λ(d)φ(d) + r(3−d)
∞∑
m=0

mπ~n(m, 3− d) = (θ(d) + r(d))
∞∑
m=0

mπ~n(m, d) + µ(d)φ(d)− µ(d)
nd∑
m=0

π~n(m, d),

or, equivalently,

∞∑
m=0

mπ~n(m, d) =
(
λ(d)φ(d) + r(3−d)

∞∑
m=0

mπ~n(m, 3− d)− µ(d)φ(d) + µ(d)
nd∑
m=0

π~n(m, d)
)

1
θ(d) + r(d) ,

for d = 1, 2. After some algebra, we can solve these two equations in
∑∞
m=0mπ

~n(m, 1) and
∑∞
m=0mπ

~n(m, 2),
and then we obtain

∞∑
m=0

mπ~n(m, d) =
((

λ(d) − µ(d)
)
φ(d)

(
θ(3−d) + r(3−d)

)
+
(
λ3−d − µ(3−d)

)
φ(3− d)r(3−d)

+µ(3−d)r(3−d)
n3−d∑
m=0

π~n(m, 3− d) + µ(d)
(
θ(3−d) + r(3−d)

) nd∑
m=0

π~n(m, d)
)

· 1
θ(1)θ(2) + θ(2)r(1) + θ(1)r(2) , (3.7.22)

for d = 1, 2. In the numerator in (3.4.8), the terms can be regrouped per environment, i.e.

2∑
d=1

c

( ∞∑
m=0

mπ~n(m, d)−
∞∑
m=0

mπ~n
′
(m, d)

)
. (3.7.23)

From (3.7.22), and together with the notation si(~n, ~n′) :=
∑ni
m=0 π

~n(m, i)−
∑n′i
m=0 π

~n′(m, i), we obtain

∞∑
m=0

mπ~n(m, d)−
∞∑
m=0

mπ~n
′
(m, d) =

µ(d) (θ(3−d) + r(3−d)) sd(~n, ~n′) + µ(3−d)r(3−d)s3−d(~n, ~n′)
θ(1)θ(2) + θ(2)r(1) + θ(1)r(2) . (3.7.24)

Summing we obtain the following expression for (3.7.23):

2∑
d=1

c

( ∞∑
m=0

mπ~n(m, d)−
∞∑
m=0

mπ~n
′
(m, d)

)

= c ·
µ(1) (θ(2) + r(1) + r(2)) s1(~n, ~n′) + µ(2) (θ(1) + r(1) + r(2)) s2(~n, ~n′)

θ(1)θ(2) + r(1)θ(2) + r(2)θ(1)

= s1(~n, ~n′)W (1) + s2(~n, ~n′)W (2).

Since the denominator in (3.4.8) is s1(~n, ~n′) + s2(~n, ~n′), Lemma 3.20 is proved. 2
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Proof of Lemma 3.21: comparison to policy (∞,∞).

Since
∑ni
m=0 π

~n(m, i) ≤ φ(i) for i = 1, 2, it follows that si((∞,∞), ~n) =
∑∞
m=0 π

(∞,∞)(m, i)−
∑ni
m=0 π

~n(m, i) =
φ(i) −

∑ni
m=0 π

~n(m, i) ≥ 0. This implies that 0 ≤ t ≤ 1 as defined in Lemma 3.20, hence together with
(3.4.9), it follows that W ((∞,∞), ~n) ∈ [W (1),W (2)].
Note that

∑n1
m=0 π

~n(m, 1) +
∑∞
m=n1+1 π

~n(m, 1) = φ(1) and
∑∞
m=n1+1 π

~n(m, 1) > 0 for n1 < ∞. As a
consequence,

∑n1
m=0 π

~n(m, 1) < φ(1), so s1((∞,∞), ~n) = φ(1) −
∑n1
m=0 π

~n(m, 1) > 0 and t > 0. Equation
(3.4.9) can be rewritten as W (2) − t(W (2) −W (1)), hence W ((∞,∞), ~n) < W (2) if n1 < ∞. If n1 = ∞,
s1((∞,∞), ~n) =

∑∞
m=0 π

(∞,∞)(m, 1) −
∑∞
m=0 π

(∞,n2)(m, 1) = φ(1) − φ(1) = 0, and t = 0. In this case,
W ((∞,∞), ~n) = W (2).
The reasoning for n2 =∞ is analogous. 2

Proof of Proposition 3.22

In order to prove Point 1, we start with W = 0. The difference between policies (−1,−1), (−1, 0), (0,−1)
and (0, 0) relies on serving or not a queue when it’s empty. As a consequence, they have no difference in their
dynamics (thus, in their invariant distribution π~n), neither in their expected cost

∑2
d=1

∑∞
m=0 cmπ

~n(m, d).
From the definition of g~n(0) in Equation (3.3.1) we obtain that g(−1,−1)(0) = g(−1,0)(0) = g(0,−1)(0) =
g(0,0)(0). Furthermore, if either n1 > 0, or n2 > 0, or both of them are larger than 0, then the expected
costs satisfy

∑2
d=1

∑∞
m=0 cmπ

(0,0)(m, d) <
∑2
d=1

∑∞
m=0 cmπ

~n(m, d), because the former is active in every
non-zero state. Hence, g(0,0)(0) < g~n(0) for any ~n /∈ {(−1,−1), (−1, 0), (0,−1), (0, 0)}.
For W < 0, the proof follows considering the slope of the linear functions g~n(W ), which is given by
−
∑2
d=1

∑nd
m=0 π

~n(m, d). For policy (−1,−1) the slope is 0, while −
∑2
d=1

∑nd
m=0 π

~n(m, d) < 0 for any
~n 6= (−1,−1). Together with the fact that in W = 0 policy (−1,−1) minimises, we get that (−1,−1) is the
unique optimal threshold policy for W < 0, and the proof of Point 1 is finished.
For the proof of Point 2 we state the following lemma. We present its proof in Appendix 3.7.5.

Lemma 3.29. Assume Conditions 3.12 and 3.13 hold. When d = 2 and m ≥ 0, being active is an optimal
action for 0 ≤W < W (2). When d = 2 and m = 0, being passive is an optimal action for 0 ≤W .

From Lemma 3.29, for 0 ≤ W < W (2) in environment 2 the optimal action is passive in m = 0 and active
in m > 0, then the optimal threshold policy in environment 2 has to be 0. Thus, the optimal solutions are
in the set of policies {(n, 0)}−1≤n≤∞.
Point 3 follows from Lemma 3.21 and a comparison of the linear functions. For any policy ~n = (n1, n2),
W ((∞,∞), ~n) ≤ W (2) and the slope of its linear function is −

∑2
d=1

∑nd
m=0 π

~n(m, d) ≥ −1, since π~n is a
probability distribution. For the policy (∞,∞), the slope is −

∑∞
m=0 π

(∞,∞)(m, d) = −1, thus the linear
function g(∞,∞)(W ) is the steepest one. It follows that for W ≥ W (2), (∞,∞) is an optimal solution of
(3.3.1) and it is the only one for W > W (2). In addition, when W = W (2), only policies of the form (∞, n)
have the same cost g~n(W ) as (∞,∞) (see Lemma 3.21). Hence, whenW = W (2), optimal threshold policies
are of the form (∞, n). 2
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Proof of Lemma 3.29.

We want to show the optimal policies in environment d = 2 for 0 ≤ W < W (2). Recall from (3.4.2) that
Bellman’s optimality equation is given by:

(µ(d) +mθ(d) + λ(d) + r(d))V (m, d) + g =

cm+ λ(d)V (m+ 1, d) +mθ(d)V ((m− 1)+, d) + r(d)V (m, 3− d) (3.7.25)

+ min
{
−W + µ(d)V (m, d), µ(d)V ((m− 1)+, d)

}
.

Hence, in state (m, d) passive is an optimal action if and only if −W + µ(d)V (m, d) ≤ µ(d)V ((m− 1)+, d).
Similarly, active is an optimal action if and only if −W +µ(d)V (m, d) ≥ µ(d)V ((m− 1)+, d). In case m = 0,
−W +µ(d)V (0, d) ≤ µ(d)V (0, d) if and only ifW ≥ 0. In other words, in state 0 the optimal action is passive
if and only if W ≥ 0, and both actions are optimal if W = 0.
Let W < W (2). We will show that

−W + µ(2)V (m, 2) ≥ µ(2)V (m− 1, 2), ∀m ≥ 1,

or equivalently,
V (m, 2)− V (m− 1, 2) ≥W/µ(2), ∀m ≥ 1. (3.7.26)

Since we will use the value iteration method, we formulate an analogous property for the truncated value
function V L, see Lemma 3.30. We truncate the state space at L and smooth the transition rates from state
m to state m+ 1 as in (3.7.9). That is, we replace the arrival rates λ(d) by

λ(d)
(

1− m

L

)+
,

for m = 0, 1, . . . , L. The uniformisation constant is taken as

γ := λ(1) + λ(2) + µ(1) + µ(2) + r(1) + r(2) + Lθ(1) + Lθ(2), (3.7.27)

We define the value function V Lt (m, d) as follows. For any d and m = 0, . . . , L we initialize by defining
V L0 (m, d) = 0 and

V Lt+1(m, d) =cm

γ
+
(

1− m

L

)+ λ(d)

γ
V Lt (min {m+ 1, L} , d)

+ r(d)

γ
V Lt (m, 3− d) + mθ(d)

γ
V Lt ((m− 1)+, d)

+ 1
γ

min{−W + µ(d)V Lt (m, d), µ(d)V Lt ((m− 1)+, d)}

+ min
{m
L
, 1
} λ(d)

γ
V Lt (m, d) + (L−m)θ(d)

γ
V Lt (m, d)

+ 1
γ

(
λ(3−d) + µ(3−d) + r(3−d) + Lθ(3−d)

)
V Lt (m, d).

The following lemma states the property needed for V L.
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Lemma 3.30. Assume Conditions 3.12 and 3.13 hold. For 0 ≤W < W (2) there exists an L0 large enough
such that

V L(m, 2)− V L(m− 1, 2) ≥W/µ(2) ∀L ≥ L0 and 1 ≤ m ≤ L. (3.7.28)

We can conclude now the proof of Lemma 3.29. From Lemma 3.30 there exists an L0 such that inequality
(3.7.28) holds for all L ≥ L0. Since V L → V , as stated in Section 3.7.2, inequality (3.7.26) is proved, which
concludes the proof. 2

Proof of Lemma 3.30:

We define the parameters WL,(d):

WL,(d) := cµ(d) θ(3−d) + r(1) + r(2) + λ(3−d)/L(
θ(1) + r(1) + λ(1)

L

)(
θ(2) + r(2) + λ(2)

L

)
− r(1)r(2)

.

Note that WL,(d) →W (d) as L→∞. We further define:

C
L,(d)
t (m) := V Lt (m, d)− V Lt (m− 1, d), d = 1, 2,

and we will show that there exists an L0 and t0 such that for L ≥ L0 and t ≥ t0,

C
L,(2)
t (m) ≥W/µ(2) for 1 ≤ m ≤ L, (3.7.29)

We write CL,(d)
t+1 (m) as follows:

C
L,(d)
t+1 (m) = V Lt+1(m, d)− V Lt+1(m− 1, d) (3.7.30)

= c

γ
+
(

1− m

L

)+ λ(d)

γ
C
L,(d)
t (m+ 1) + r(d)

γ
C
L,(3−d)
t (m) + (m− 1)θ(d)

γ
C
L,(d)
t (m− 1)

+ 1
γ

min
{
−W + µ(d)Vt(m, d), µ(d)Vt(m− 1, d)

}
− 1
γ

min
{
−W + µ(d)Vt(m− 1, d), µ(d)Vt((m− 2)+, d)

}
+m− 1

L

λ(d)

γ
C
L,(d)
t (m) + (L−m)θ(d)

γ
C
L,(d)
t (m)

+λ(3−d) + µ(3−d) + r(3−d) + Lθ(3−d)

γ
C
L,(d)
t (m).

We have the following properties for functions CL,(1)
t (m) and CL,(2)

t (m).

Lemma 3.31. Assume 0 ≤W < W (2). Define

t0 := min
t

{
t s.t. µ(d)C

L,(d)
t (m) ≥W for a pair (m, d)

}
.

Then there exists an L1 large enough such that for L ≥ L1, t0 <∞ and CL,(d)
t (m) = C

L,(d)
t is constant in

m for all t ≤ t0.
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From the previous lemma, we have that t0 is the minimum t such that either µ(1)C
L,(1)
t ≥W or µ(2)C

L,(2)
t ≥

W for L ≥ L1. Under Condition 3.12, we will prove that at time t0, it holds that µ(2)C
L,(2)
t0 ≥ µ(1)C

L,(1)
t0 ,

and hence µ(2)C
L,(2)
t0 ≥W .

Lemma 3.32. Assume Condition 3.12 holds and let 0 ≤ W < W (2) and L > 0. Then µ(2)C
L,(2)
t ≥

µ(1)C
L,(1)
t for t ≤ t0.

The previous property allows us to state conditions under which inequality (3.7.29) holds in t = t0 for all
L ≥ L1. Note that for t > t0, Condition 3.13 will be sufficient to prove that (3.7.29) holds for t ≥ t0 and
for all m.

Lemma 3.33. Assume Condition 3.13 holds and 0 ≤ W < W (2). Then there exists an L0 large enough
such that for all L ≥ L0, CL,(2)

t (m) ≥W/µ(2), ∀1 ≤ m ≤ L and t ≥ t0.

Lemma 3.33 proves that (3.7.29) holds for 0 ≤W < W (2) and L ≥ L0. Equivalently, (3.7.28) holds and the
proof of Lemma 3.30 is finished. 2

We provide now the proofs of Lemmas 3.31, 3.32 and 3.33.

Proof of Lemma 3.31: Since the sequenceWL,(2) →W (2) as L→∞ andW < W (2), we can take L1 such
that for all L ≥ L1 W < WL,(2). The property of CL,(d)

t (m) being constant in m is trivial for t = 0, since
V L0 (m) = 0 for all m, and thus CL,(d)

0 (m) = 0 as well. For a given t < t0 we assume CL,(d)
t (m) is constant,

and we then prove this property for t+ 1. Since µ(d)C
L,(d)
t (m) < W , at time t passive is the optimal action

in (3.7.30) for m ≥ 1 and for W ≥ 0 passive is also optimal for m = 0. Hence,

C
L,(d)
t+1 (m) = c

γ
+
(

1− m

L

) λ(d)

γ
C
L,(d)
t (m+ 1) + r(d)

γ
C
L,(3−d)
t (m) + (m− 1)θ(d)

γ
C
L,(d)
t (m− 1)

+µ(d)

γ
C
L,(d)
t (m) + m− 1

L

λ(d)

γ
C
L,(d)
t (m) + (L−m)θ(d)

γ
C
L,(d)
t (m)

+λ(3−d) + µ(3−d) + r(3−d) + Lθ(3−d)

γ
C
L,(d)
t (m).

At time t, we have that CL,(d)
t (m) = C

L,(d)
t for every d and m ∈ {1, . . . , L}, hence

C
L,(d)
t+1 (m) = c

γ
+
(

1− m

L

) λ(d)

γ
C
L,(d)
t + r(d)

γ
C
L,(3−d)
t + (m− 1)θ(d)

γ
C
L,(d)
t

+µ(d)

γ
C
L,(d)
t + m− 1

L

λ(d)

γ
C
L,(d)
t + (L−m)θ(d)

γ
C
L,(d)
t

+λ(3−d) + µ(3−d) + r(3−d) + Lθ(3−d)

γ
C
L,(d)
t

= c

γ
+
(

1− 1
L

)
λ(d)

γ
C
L,(d)
t + r(d)

γ
C
L,(3−d)
t + µ(d)

γ
C
L,(d)
t

+(L− 1)θ(d)

γ
C
L,(d)
t + λ(3−d) + µ(3−d) + r(3−d) + Lθ(3−d)

γ
C
L,(d)
t

= c

γ
+ γ − θ(d) − r(d) − λ(d)/L

γ
C
L,(d)
t + r(d)

γ
C
L,(3−d)
t , (3.7.31)
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where the last inequality follows from the definition of γ, (3.7.27). Hence, CL,(d)
t+1 (m) does not depend on m.

To conclude, we show that t0 6=∞. Since for d = 1, 2, CL,(d)
t is increasing in t, let CL,(d) := limt→∞ C

L,(d)
t .

Following from (3.7.31), CL,(1) and CL,(2) are the solutions of the following system of equations.
CL,(1) = c

γ
+
γ − θ(1) − r(1) − λ(1)

L

γ
CL,(1) + r(1)

γ
CL,(2)

CL,(2) = c

γ
+
γ − θ(2) − r(2) − λ(2)

L

γ
CL,(2) + r(2)

γ
CL,(1)

(3.7.32)

After some algebraic computation, we find that the solutions of this set of equations are CL,(1) = WL,(1)/µ(1)

and CL,(2) = WL,(2)/µ(2). If t0 = ∞, then limt→∞ µ(2)C
L,(2)
t ≤ W < WL,(2), which gives a contradiction.

Hence, t0 <∞. 2

Proof of Lemma 3.32: Let ∆t = µ(2)C
L,(2)
t − µ(1)C

L,(1)
t . Using (3.7.31) and after some computation we

get

C
L,(1)
t+1 = C

L,(1)
t

[
γ − θ(1) − r(1) − λ(1)

L

γ
+ µ(1)r(1)

γµ(2)

]
+ ∆t

r(1)

γ
+ c

∆t+1 = µ(1)C
L,(1)
t

γ

[
θ(1) + µ(2)r(2)

µ(1) + r(1) − θ(2) − r(2) − µ(1)r(1)

µ(2)

]
+∆t

[
µ(2)(γ − θ(2) − r(2) − λ(2)

L )− µ(1)r(1)

γµ(2)

]
+ c(µ(2) − µ(1))

γ
.

We show by induction that both CL,(1)
t ≥ 0 and ∆t ≥ 0. For t = 0 it is trivial. Assume it holds for t. Since

γ − θ(1) − r(1) − λ(1)

L > 0, it follows that for CL,(1)
t+1 ≥ 0. For ∆t+1 we have that c(µ

(2) − µ(1))
γ

≥ 0, because

µ(2) − µ(1) ≥ 0 by Condition 3.12. The term multiplying ∆t is:

µ(2)(γ − θ(2) − r(2) − λ(2)/L)− µ(1)r(1)

γµ(2) ≥ 0,

which is non-negative if and only if

µ(2)(γ − θ(2) − r(2) − λ(2)/L) ≥ µ(1)r(1).

This holds because µ(2) ≥ µ(1) and (γ − θ(2) − r(2) − λ(2)/L) ≥ r(1), by definition of γ.
Finally, since µ(1) ≤ µ(2) and θ(2) ≤ θ(1), we have

θ(2) + r(2) + µ(1)

µ(2) r
(1) ≤ θ(1) + µ(2)

µ(1) r
(2) + r(1).

Hence ∆t+1 ≥ 0 and the proof is finished. 2
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Proof of Lemma 3.33: We show that there is an L0 such that the following property holds for every
t ≥ t0, for all L ≥ L0 and all m ≥ 1:

C
L,(2)
t (m) ≥ W

µ(2)

C
L,(1)
t (m) ≥ (θ(2) + r(2) + λ(2)/L)W − cµ(2)

r(2)µ(2) .
(3.7.33)

Since from Condition 3.13, W < W (2) ≤ cµ(2)

θ(2) + r(2) , there exists an L2 such that

W ≤ cµ(2)

θ(2) + r(2) + λ(2)/L
,

for all L ≥ L2, or equivalently, (θ(2) + r(2) + λ(2)/L)W − cµ(2) ≤ 0. On the other hand, it is easy to see by
induction from (3.7.30) that CL,(1)

t (m) ≥ 0 for all m, t. Hence, CL,(1)
t (m) ≥ (θ(2)+r(2)+λ(2)/L)W−cµ(2)

r(2)µ(2) for all
L ≥ L2 and all t.
In Lemmas 3.31 and 3.32 we proved that CL,(2)

t0 (m) ≥ W

µ(2) , holds for L ≥ L1 and t = t0. Then we take

L0 = max (L1, L2), we assume inequalities in (3.7.33) hold for t > t0, and we prove they are valid for t+ 1.
For all states (m, 2) we have that active is an optimal action because CL,(2)

t+1 (m) ≥ W/µ(2). Hence, from
(3.7.30):

C
L,(2)
t+1 (m) = c

γ
+
(

1− m

L

) λ(2)

γ
C
L,(2)
t (m+ 1) + r(2)

γ
C
L,(1)
t (m) + (m− 1)θ(2)

γ
C
L,(2)
t (m− 1)

+µ(2)

γ
C
L,(2)
t (m− 1) + m− 1

L

λ(d)

γ
C
L,(2)
t (m) + (L−m)θ(2)

γ
C
L,(2)
t (m)

+λ(1) + µ(1) + r(1) + Lθ(1)

γ
C
L,(2)
t (m)

≥ c

γ
+ γ − θ(2) − r(2) − λ(2)/L

γ

W

µ(2) + r(2)

γ

(θ(2) + r(2) + λ(2)/L)W − cµ(2)

r(2)µ(2)

= W

µ(2) ,

where in the inequality we used that CL,(1)
t (m) ≥ (θ(2)+r(2)+λ(2)/L)W−cµ(2)

r(2)µ(2) . On the other hand, CL,(1)
t (m) ≥

(θ(2)+r(2)+λ(2)/L)W−cµ(2)

r(2)µ(2) holds for all t as it was proved before. This concludes the proof of both inequalities
in (3.7.33) for t ≥ t0, and then Lemma 3.33 is proved as well. 2

Proof of Proposition 3.23.

The proof here is similar to the one of Property 1) in Lemma 3.11 in Section 3.7.3, in the sense that we
will compare the truncated processes with limited capacity L > n, using the comparison result 9.3.2 in [19,
Chapter 9]. Here we compare the truncated process under threshold policy (n, 0) with the one under thresh-
old policy (n+1, 0). For the uniformisation, as we repeat the same structure, H(L), P ~n,L ((m′, d′)|(m, d), a)
and V ~n,Lt have the same definitions. However, we take as cost function C~n(m, d), for a given threshold
policy ~n = (n1, n2),
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C~n(m, d) =

1 if m ≤ nd d = 1, 2

0 otherwise.

So C~n(m, d) = 1 in the passive states, regardless the environment. As a result, the reward per unit time is
G~n,L =

∑2
d=1

∑nd
m=0 π

~n(m, d), which is the term to compare between the truncated processes.
We consider the costs C(n,0), C(n+1,0) and the transition rates q(n,0),L, q(n+1,0),L for the truncated processes
under policies (n, 0) and (n+ 1, 0), respectively. Then Inequality (3.7.19) has to be proved for all the states
where C(n+1,0) and C(n,0) or q(n+1,0),L and q(n,0),L are not the same. This happens in the states that
are active under one policy (n, 0) and passive under the other one (n + 1, 0), i.e., in state (n + 1, 1). The
inequality to prove reduces to

V
(n,0),L
t (n, 1)− V (n,0),L

t (n+ 1, 1) ≤ 1
µ(1) , (3.7.34)

for t ≥ 0. As before, we prove a more general result, as stated in Lemma 3.34.

Lemma 3.34. Under Condition 3.12,

V
(n,0),L
t (m, d)− V (n,0),L

t (m+ 1, d) ≤ 1
µ(1) ∀ 0 ≤ m ≤ L− 1, d = 1, 2.

Now, result 9.3.2 in [19, Chapter 9] can be applied, and we obtain

2∑
d=1

nd∑
m=0

π(n,0)(m, d) ≤
2∑
d=1

nd∑
m=0

π(n+1,0)(m, d)

for the truncated processes. Using the same reasoning as in the proof of Property 1) in Lemma 3.11, we
obtain that this property holds as well for the original (untruncated) process.

2

Proof of Lemma 3.34.
The proof is similar to the one in Section 3.7.3. To simplify notation, since (n, 0) and L are fixed in the
lemma, we will write Vt for V (n,0),L

t and H for H(L). The proof goes by induction, and the cases of t = 0
and t = 1 are the same as before. We assume Vt(m, d)− Vt(m+ 1, d) ≤ 1

µ(1) for every (m, d). We prove it

now for t+ 1. We first consider the state (0, 2).

Vt+1(0, 2) = 1
H

+ 1
H

[
r(2)Vt(0, 1) + λ(2)Vt(1, 2) +

(
H − r(2) − λ(2)

)
Vt(0, 2)

]
,

Vt+1(1, 2) = 1
H

[(
θ(2) + µ(2)

)
Vt(0, 2) + r(2)Vt(1, 1) + λ(2)Vt(2, 2)

+
(
H − θ(2) − µ(2) − r(2) − λ(2)

)
Vt(1, 2)

]
.
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By applying the inductive hypothesis, we obtain

Vt+1(0, 2)− Vt+1(1, 2)

= 1
H

+ 1
H

[
r(2) (Vt(0, 1)− Vt(1, 1)) + λ(2) (Vt(1, 2)− Vt(2, 2))

−
(
θ(2) + µ(2)

)
(Vt(0, 2)− Vt(1, 2)) +

(
H − r(2) − λ(2)

)
(Vt(0, 2)− Vt(1, 2))

]

≤ 1
H

+ 1
H

[
r(2) 1

µ(1) + λ(2) 1
µ(1) +

(
H − θ(2) − µ(2) − r(2) − λ(2)

) 1
µ(1)

]

= H + µ(1) − θ(2) − µ(2)

Hµ(1) .

The inequality H + µ(1) − θ(2) − µ(2)

Hµ(1) ≤ 1
µ(1) holds if and only if µ(1) − µ(2) < θ(2). The latter holds from

Condition 3.12 and θ(2) > 0.
Similarly, one obtains the same conclusion for states (m, d) 6= (0, 2). This finishes the inductive step and
the Lemma is proved. 2

Proof of Proposition 3.24.

The proof relies on comparing g(n,m)(W ) for an arbitrary policy (n,m) with g(∞,0)(W ) forW ∈
[
W (1),W (2)].

In particular, it will be shown that g(∞,0)(W ) ≤ g(n,m)(W ) for W ∈ [W (1),W (2)], g(∞,0)(W ) < g(n,m)(W )
for W ∈ (W (1),W (2)), and for W = W (2) the equality g(∞,0)(W ) = g(n,m)(W ) holds if and only if n =∞.
To prove the above, we first consider a threshold policy (n,m) = (∞,m). From Equation (3.4.10), it is
direct to see that W ((∞,m), (∞, 0)) = W (2), hence g(∞,m)(W (2)) = g(∞,0)(W (2)). Then, we compare the
slopes, recall that −

∑2
d=1

∑nd
m=0 π

~n(m, d) is the slope of g~n(W ) for any threshold policy ~n. In this case,
the slope of g(∞,m)(W ) is −(φ(1)+

∑m
k=0 π

(∞,m)(k, 2)) and the slope of g(∞,0)(W ) is −(φ(1)+π(∞,0)(0, 2)).
From Property 2) in Lemma 3.11, we know that

∑m
k=0 π

(∞,m)(k, 2) > π(∞,0)(0, 2). As a consequence,
g(∞,m)(W ) is steeper than g(∞,0)(W ), and therefore, for W < W (2), g(∞,0)(W ) < g(∞,m)(W ). For the if
and only if, in case n 6= ∞, g(n,m)(W (2)) 6= g(∞,0)(W (2)), because if g(n,m)(W (2)) = g(∞,0)(W (2)), then
g(n,m)(W (2)) = g(∞,∞)(W (2)), and this contradicts Lemma 3.21.
We now consider a threshold policy (n,m) with n 6= ∞. We split the proof in two steps. In the first step,
we compare policies (∞, 0) and (n, 0). Then, in the second step we compare policies (n, 0) and (n,m). This
will be sufficient to conclude the comparison between policies (∞, 0) and (n,m).
Step 1. In this step we prove that g(∞,0)(W ) < g(n,0)(W ), when W ∈

(
W (1),W (2)], and g(∞,0)(W (1)) ≤

g(n,0)(W (1)) when W = W (1).
To prove Step 1, we distinguish between three cases, as depicted in Figure 3.7. The cases represent the
possible relations between the slopes of the functions g(∞,0)(W ) and g(n,0)(W ).

Case a) −
∑2
d=1

∑nd
m=0 π

(∞,0)(m, d) < −
∑2
d=1

∑nd
m=0 π

(n,0)(m, d).
In this case g(∞,0)(W ) is steeper than g(n,0)(W ). In terms of s1 and s2, −

∑2
d=1

∑nd
m=0 π

(∞,0)(m, d) <
−
∑2
d=1

∑nd
m=0 π

(n,0)(m, d) is equivalent to s1 ((∞, 0), (n, 0)) + s2 ((∞, 0), (n, 0)) > 0. Recall from (3.4.9)
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WW (1) W (2)

g(
W

)

(∞
,∞)

(n, 0)

(∞, 0)

Case a)

WW (1) W (2)

g(
W

)

(∞
,∞)

(n, 0)

(∞, 0)

Case b)
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Figure 3.7: Proof of Proposition 3.24. Comparing slopes of functions g(n,0) and g(∞,0).

that
W ((∞, 0), (n, 0)) = W (1) + (1− t)

(
W (2) −W (1)

)
,

with t := s1((∞, 0), (n, 0))
s1((∞, 0), (n, 0)) + s2((∞, 0), (n, 0)) .

Since s1 ((∞, 0), (n, 0)) + s2 ((∞, 0), (n, 0)) > 0 and s2 ((∞, 0), (n, 0)) = π(∞,0)(0, 2) − π(n,0)(0, 2) ≤ 0 (be-
cause of Property 2) in Lemma 3.11), we have that t ≥ 1. SinceW (2)−W (1) ≥ 0, W ((∞, 0), (n, 0)) ≤W (1).
This, together with the fact that g(∞,0) is steeper, implies that for W > W (1), g(∞,0)(W ) < g(n,0)(W ) and
for W = W (1), g(∞,0)(W (1)) ≤ g(n,0)(W (1)).

Case b) −
∑2
d=1

∑nd
m=0 π

(∞,0)(m, d) > −
∑2
d=1

∑nd
m=0 π

(n,0)(m, d).
When g(n,0)(W ) is steeper the opposite situation occurs. Note that −

∑2
d=1

∑nd
m=0 π

(∞,∞)(m, d) = −1,
hence g(∞,∞)(W ) is the steepest linear function. BesidesW ((∞,∞), (n, 0)) < W (2) andW ((∞,∞), (∞, 0)) =
W (2) because of Lemma 3.21. Hence, W ((∞, 0), (n, 0)) > W (2), and as a consequence, for W ≤ W (2),
g(∞,0)(W ) < g(n,0)(W ).

Case c) −
∑2
d=1

∑nd
m=0 π

(∞,0)(m, d) = −
∑2
d=1

∑nd
m=0 π

(n,0)(m, d).
Hence g(n,0)(W ) and g(∞,0)(W ) are parallel, which means that W ((∞, 0), (n, 0)) is not defined. Since
W ((∞,∞), (n, 0)) < W (2) and W ((∞,∞), (∞, 0)) = W (2), we can conclude that g(n,0)(W ) and g(∞,0)(W )
are not the same line, and in particular g(n,0)(W ) > g(∞,0)(W ) for all W .

Step 2. Assume n 6=∞, and fix any m. For W ∈
[
W (1),W (2)], g(n,0)(W ) ≤ g(n,m)(W ).

First note that, from Properties 1) and 2) in Lemma 3.11, s2 ((n,m), (n, 0)) =
∑m
l=0 π

(n,m)(l, 2)−π(n,0)(l, 2) ≥
0 and s1 ((n,m), (n, 0)) =

∑n
l=0 π

(n,m)(l, 1) −
∑n
l=0 π

(n,0)(l, 1) ≤ 0. From the fact that s1 ((n,m), (n, 0))
and s2 ((n,m), (n, 0)) have opposite signs (or they are equal to 0), and following from Equation (3.4.9),
W ((n,m), (n, 0)) can not be in (W (1),W (2)). Hence, we are in one of the following cases.
If W ((n,m), (n, 0)) ≤W (1), then from Equation (3.4.9) we have

s2((n,m), (n, 0))
s1((n,m), (n, 0)) + s2((n,m), (n, 0)) ≤ 0.

Since s2((n,m), (n, 0)) ≥ 0, s1((n,m), (n, 0)) + s2((n,m), (n, 0)) < 0, which means that g(n,0)(W ) is steeper
than g(n,m)(W ). This implies that g(n,0)(W ) ≤ g(n,m)(W ) for W ≥ W ((n,m), (n, 0)), hence, in particular
for W ≥W (1).
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If W ((n,m), (n, 0)) ≥W (2), the reasoning is analogous. From Equation (3.4.9) we have

s1((n,m), (n, 0))
s1((n,m), (n, 0)) + s2((n,m), (n, 0)) ≤ 0,

and, as it was stated before, s1((n,m), (n, 0)) ≤ 0. Hence, s1((n,m), (n, 0)) + s2((n,m), (n, 0)) > 0,
which means that g(n,m)(W ) is steeper than g(n,0)(W ). As W ((n,m), (n, 0)) ≥ W (2), for any W ≤ W (2),
g(n,0)(W ) ≤ g(n,m)(W ).

2
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In this chapter, we present a model of replication in large distributed storage systems using a stochastic
modelling approach. A storage system consists in a set of nodes used to ensure data availability in large
scale networks. Each node contains a large number of files as well as copies of those files. The nodes are
interconnected in such a way that data blocks can be replicated and reallocated.
A relevant problem among these systems is the fact that the nodes break down: it is common to see nodes
crashing due to issues like a high level of activity. Addressing this problem in order to ensure that the
system continues operating properly is known as fault-tolerance, and in particular we are interested in the
reliability feature. Reliability is the property of not losing information whenever there is a failure. A very
extended method used for guaranteeing reliability is to store copies of the same file in different nodes [70].
Moreover, in order to minimise the probability of losing data, an automatic mechanism of replication works
whenever a node breaks down. The mechanism consists in regenerating a new copy of every file that was in
that node just before the breakdown, using copies present in other nodes, and reallocating the new copies
to different functioning nodes as the system continues working.
Many important systems such as Hadoop Distributed File System (HDFS) [18], Google File System (GFS)
[32] and Cassandra [42] use replication mechanisms as the one previously described to ensure data availabil-
ity. For some references in replication and fault-tolerance in large data stores we also refer to [67, Chapters
7 and 8] and [56, Chapter 13].
We study a version of this mechanism, and we focus our attention on the load distribution of each node,
that is a key feature among these systems. The load distribution can be studied by representing the process
as an urn model, which consists in a set of urns and a set of identical balls jumping across the urns along
time. Each ball waits a randomly distributed amount of time and then jumps to another urn, following a
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particular allocation policy, which may be deterministic or randomly distributed. Urn models are frequently
used in theoretical computer science to study the efficiency of algorithms, for example, for the allocation
of copies of files in large distributed systems [42, 63], or the allocation of tasks to processors in large scale
computing networks [41, 48].
We refer to the urn model studied in [64], where after an exponentially distributed amount of time all the
balls in one urn are reallocated to different urns. Each ball is reallocated to an urn chosen by a random
variable, and the random variables used to choose the urns are independent. Under this setting, in [64]
the authors study the local mean-field interactions between urns when the number of urns grows large, and
they prove the convergence of the distribution of the load of each urn under certain conditions.
Another relevant work we cite is [63], where a model of replication for large storage systems is studied. The
authors consider nodes that break down after an exponential distributed amount of time with constant rate,
and whenever a breakdown occurs, all the files in that node are reallocated to other nodes. Each file goes to
a node chosen at random according to an allocation policy, and the random variables that select the nodes
for each file are independent. Different allocation policies are analysed, in particular one that consists in
choosing uniformly at random two nodes, and reallocating the file to the least loaded node among them.
This policy is known as the Power of Choice, and it has been largely studied, see [59] for a survey. In [63]
two limits are considered, in first term the number of nodes grows large, and in second term the average load
per node is taken to infinite. Their striking result is that under the Power of Choice policy the distribution
of the load of a node has a finite support.
We remark that modelling breakdowns with constant rates, as it is done in [63], does not consider that
the level of activity of a node directly affects its lifespan. The novelty of our work relies in considering
times of failures determined by the amount of data a node handles. The more tasks it has to process, the
faster it breaks down. To the best of our knowledge a few works are done under this setting. We refer here
to Schechner’s work [61], inspired in Coleman’s load-sharing model [24]. The author studies nodes with
breakdown rates that are linear in their current charge, but it is not applied in replication mechanisms.
In this chapter we consider the following system. There are files distributed among nodes, where each file
remains in its node until the node breaks down. Each node breaks down at a rate that depends on the
number of files it has. When this happens, all the files present in the broken node are reallocated, and the
node goes back to the state with zero files. For the ease of the tractability of the model we assume that the
reallocation step is done at once for all the files in the node and it does not take time.
When a breakdown occurs, each file is allocated following a random variable. The random variables used
for the reallocated files are independent and identically distributed, and we will state the model for any
arbitrary distribution. For our main results, we will consider the Random Weighted policy, that assigns to
each node a weighted probability of receiving a file according to the load it currently has. We will further
study the Random policy as a particular case of the Random Weighted policy, where all the nodes have the
same weight. In this case we provide a deeper insight.
Under these dynamics, we analyse the evolution of the storage load of a single node in the long term. We
consider the case where the total number of nodes and the total number of files grow large. We make the
scaling assumption that the average number of files per node converges to a real value, denoted by β. This
is known as the mean-field limit. We will not study the convergence to the mean-field limit, but we focus
on it, and in particular, on the evolution of the process in the mean-field regime.
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We introduce our main results. In our first main contribution, we prove the existence of the process
describing the mean-field limit for a fixed β. In this same theorem we prove the existence and uniqueness
of the stationary measure of the process. In our second contribution, we let β tend to infinity, and we prove
the convergence in distribution of the load in steady state. Finally, for the Random policy we obtain an
expression of the generating function of the load in steady state. Our main results are done for the case
where the rate of the breakdowns is linear in the number of files each node has.
The chapter is organised as follows. In Section 4.1 the stochastic model and the allocation policies are
described for a fixed number of nodes. The mean-field model used to study the large scale system is
presented in Section 4.2. Our main results are introduced in Section 4.3. In Section 4.3.1 we consider the
Random Weighted policy, and in Section 4.3.2 we state the results for the Random policy.

4.1 Model description

We describe the model for a fixed number of nodes. Let N0 = {0, 1, . . .} denote the set of non-negative
integers. We consider a system with N nodes indexed by i = 1, . . . , N , and FN files distributed among the
nodes, with FN � N .
The state of the system is described by a vector ~l = (l1, . . . , lN ) ∈ SN , with

SN :=
{
~l ∈ NN0 : l1 + . . .+ lN = FN

}
.

For i = 1, . . . , N , li is the amount of files in node i.
Let f : N0 → R+ be an increasing function, which determines the rates of the breakdowns of the nodes. If ~l
is the current state of the system, node i waits an exponentially distributed amount time of rate f(li) until
it fails. For our main results in Section 4.3 we will assume that the rate of the breakdowns is linear, i.e.,
f(n) = cn, for some c > 0.
When node i breaks down, all the li files present in the node are reallocated to other nodes at random, and
node i goes back to state 0. The reallocation step does not take time and it is done at the same time for all
the li files.
For each reallocated file we consider a random variable that selects the destination node with a probability
that depends on the current state of the system ~l. We assume that the random variables used to select
the destination nodes are independent and identically distributed. If the state of the system is ~l, let pNij (~l)
denote the probability that a given file in node i is reallocated to node j, and PNi (~l) :=

(
pNi1(~l), . . . , pNiN (~l)

)
the probabilities of reallocation from node i to the rest of the nodes. Note that when node i breaks down and
the state of the system is ~l, the reallocation of the files present in node i are li independent events. Then, if
ZNij (~l) denotes the number of files of node i allocated to node j, ZNij (~l) follows a binomial distribution with
parameters li and pNij (~l).
We introduce the notation for the process. The state of the system at time t is denoted by a càdlàg process
~LN (t), with

~LN (t) :=
(
LN1 (t), . . . , LNN (t)

)
∈ SN ,
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LNi (t) is the number of copies on server i at time t. We let ΓN (t) be the empirical distribution of the process,
defined as

ΓN (t)(A) := 1
N

N∑
i=1

δLN
i

(t)(A),

for any A ⊂ N0. ΓN (t)(A) is the fraction of nodes having a number of files in set A at time t.
The evolution of the process ~LN (t) depends on the times of the breakdowns of the nodes, and the rates
of the breakdowns depend themselves on the state of ~LN (t). As a consequence, a full description of the
evolution of ~LN (t) involves the use of complex non-stationary Poisson processes (see [68, Chapter 1.3] for a
definition), which we do not address in this chapter. Nevertheless, we describe here the possible transitions
of the process LNi (t) for a given i, based on the exponential rates it follows.
Fix i ∈ {1, . . . , N}, and consider the process LNi (t) in N0. The process has transitions given by two classes
of events: a) when node i breaks down, and b) when node i receives files from the breakdowns of other
nodes.
a) If at a given time t, the process LNi (t) = li, node i breaks down at rate f(li) and it spreads all its files.
In other words, the transition li → 0 occurs at rate f(li).
b) If at a given time t, the whole system is in state ~LN (t) = ~l, any of the other nodes m = 1, . . . , N , m 6= i,
may break down an allocate one or more of its lm files to node i. The breakdown of node m occurs at
rate f(lm), and when this happens, ZNmi(~l) files are allocated to node i, where ZNmi(~l) is a binomial random
variable with parameters lm and pNmi(~l). Then, the process LNi (t) makes the transition li → li + ZNmi(~l) at
rate f(lm), for all m = 1, . . . , N , m 6= i.

4.1.1 Allocation policies

For our main results, we will consider two allocation policies, the Random Weighted allocation policy and
the Random policy.
For the Random Weighted allocation policy we set a non-increasing weight function W : N0 → (0,K] for
some constant K > 0. Then, for a given node i and state ~l, we define the probabilities pNij (~l) as:

pNij (~l) = W (lj)
/ N∑

k=1,k 6=i
W (lk), (4.1.1)

if j 6= i, and pNii (~l) = 0. Note that pNij (~l) is well defined because
∑N
k=1,k 6=iW (lk) > 0. Since

∑N
j=1 p

N
ij (~l) = 1,

the vector PNi (~l) defines a probability on the set {1, . . . , N}.
The Random policy is a particular case of the Random Weighted policy where W is constant. In other
words, for a given node i and state ~l, the probabilities pNij (~l) are

pNij (~l) = 1
N − 1 , (4.1.2)

if j 6= i, and pNii (~l) = 0.
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4.2 Mean-field limit

The focus of our work is on the mean-field limit of the process, i.e., the regime where N tends to infinity.
We make the scaling assumption that the average number of files per node converges to a value β > 0, i.e.:

β := lim
N→∞

FN
N
. (4.2.1)

We will not study the convergence to the mean-field limit, but the limiting process of the load of a single
node in such regime. In Section 4.2.1 we provide the conditions assumed in order to consider the mean-field
regime. In Section 4.2.2 we describe the limiting process.

4.2.1 Conditions for convergence

The following condition is regarding the initial state ~LN (0).

Condition 4.1. • For all N , the distribution of the vector ~LN (0) satisfies the following exchangeability
relation: (

LN1 (0), . . . , LNN (0)
) dist..=

(
LN2 (0), . . . , LNN (0), LN1 (0)

)
.

• The second moment of LN1 (0) is finite for all N , i.e.,

sup
N≥1

E
(
LN1 (0)2) <∞.

• The sequence of initial distributions (~LN (0))N∈N converges to a probability distribution on N0.

We describe now the asymptotic behaviour of the probabilities of reallocation PN1 (·) as N grows large. We
define an allocation function Ψ : M(N0)×N0 → R, whereM(N0) denotes the set of probability distributions
on N0. For a given σ ∈ M(N0) and l ∈ N0, if the load of the nodes is identically distributed by σ, the
probability of allocating a file to a node currently having l files is of the order of Ψ(σ, l)/N , as it is stated
in the following condition.

Condition 4.2. The sequence
(
PN1 (·)

)
N∈N =

(
pN1i(·) : 1 ≤ i ≤ N

)
N∈N satisfies the relation

lim
N→∞

sup
1≤i≤N,~l∈SN

∣∣∣∣∣∣NpN1i(~l)−Ψ

 1
N

N∑
j=1

δlj , li

∣∣∣∣∣∣ = 0, (4.2.2)

where Ψ is a non-negative bounded function on M(N0)× N0, such that, for any σ ∈M(N0),∑
k≥0

Ψ(σ, k)σ(k) = 1. (4.2.3)

Relation (4.2.3) is a mass conservation condition: when a node breaks down, every file is reallocated with
probability 1.
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Proposition 4.3. For the Random Weighted policy, the allocation function ΨRW is

ΨRW (σ, l) = W (l)
/∑

k≥0
W (k)σ(k). (4.2.4)

For the Random policy, the allocation function ΨR is

ΨR(σ, l) = 1
/∑

k≥0
σ(k). (4.2.5)

Proof: Following from the definition of the allocation probabilities in Equations (4.1.1) and (4.1.2), we
show that both functions ΨRW ,ΨR satisfy Condition 4.2.
In the Random Weighted case, for the expression in Equation (4.2.2) we have

sup
1≤i≤N,~l∈SN

∣∣∣∣∣∣NpN1i(~l)−ΨRW

 1
N

N∑
j=1

δlj , li

∣∣∣∣∣∣
= sup

1≤i≤N,~l∈SN

∣∣∣∣∣∣∣
NW (li)∑N

k=1,k 6=iW (lk)
− W (li)∑

k≥0W (k) 1
N

∑N
j=1 δlj (k)

∣∣∣∣∣∣∣
= sup

1≤i≤N,~l∈SN

∣∣∣∣∣ NW (li)∑N
k=1,k 6=iW (lk)

− NW (li)∑N
k=1W (lk)

∣∣∣∣∣ , (4.2.6)

where the last inequality follows from the fact that, for a given ~l, δlj (k) = 1 if and only if k = lj . Since
the total number of nodes grows large together with the number of files, the limit in N in Equation (4.2.6)
equals 0. It is easy to see that Equation (4.2.3) holds for ΨRW .
In the Random case, in Equation (4.2.2) we have

sup
1≤i≤N,~l∈SN

∣∣∣∣∣∣NpN1i(~l)−ΨR

 1
N

N∑
j=1

δlj , li

∣∣∣∣∣∣ = sup
1≤i≤N,~l∈SN

∣∣∣∣∣∣∣
N

N − 1 −
1∑

k≥0
1
N

∑N
j=1 δlj (k)

∣∣∣∣∣∣∣
= sup

1≤i≤N,~l∈SN

∣∣∣∣ N

N − 1 − 1
∣∣∣∣ , (4.2.7)

where for the last inequality we use that 1
N

∑N
j=1 δlj is a probability distribution, and it is evaluated over

N0. The limit in N in Equation (4.2.7) equals 0. It is straightforward to see that Equation (4.2.3) holds for
ΨR. 2

4.2.2 Limiting process

We introduce now our main problem. We study the existence of the process as the possible limit of
(LN1 (t))N∈N as N grows large. This process will be denoted by (Xβ(t)). We first provide an informal
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0 1 · · · n · · ·f(0)

αΨ(πβ , 0)

f(1)

αΨ(πβ , 1) αΨ(πβ , n− 1)

f(n)

αΨ(πβ , n)

Figure 4.1: diagram of process (Xβ(t)).

description of the evolution of (Xβ(t)), and, in second term, we formally formulate the problem. From this
section, we assume that Condition 4.1 and Condition 4.2 are satisfied.
As it was stated for (LN1 (t)), the process (Xβ(t)) lives in N0 and it has two types of transitions. a) when
the node breaks down, and b) when the node receives files from the breakdowns of other nodes.
The transitions of type a) are the same as for (LN1 (t)), thus (Xβ(t)) makes transitions n → 0 at rate f(n)
for all state n ≥ 0.
For the transitions of type b), intuitively, as the total number of nodes N grows large, the reallocation step
of a single breakdown does not allocate more than one file to the same node. In other words, for N large
enough, and given nodes i, j and a state ~l,

P
(
ZNij (~l) ≥ 2

)
= 0,

where ZNij (~l) is a binomial random variable with parameters li and pNij (~l). As a consequence, the transitions
of type b) in (Xβ(t)) are birth transitions n→ n+ 1 for all n ≥ 0. We want to determine the rate of these
transitions, i.e., the rate at which node 1 receives a file from any of the other nodes. In order to do so, we
consider the process in equilibrium.
Let us assume that the process (Xβ(t)) is ergodic. We denote by πβ its stationary measure and Xβ the
random variable distributed by πβ . Note that, from the scaling assumption (4.2.1), E(Xβ) = β. At
equilibrium, the load of an arbitrary node is given by Xβ , and the rate at which it breaks down is f(Xβ).
Therefore, the output flow of files from any node is given by the following parameter α:

α := E
(
Xβf(Xβ)

)
.

The probability that a file is assigned to a node depends on its current state n, and this is determined by
the function Ψ as defined in Condition 4.2. Then, the rate at which a files arrives to node 1 is given by
αΨ(πβ , n).
In summary, provided that all the conditions needed for its existence are satisfied, (Xβ(t)) is a jump process
whose Q-matrix is given by q(n, 0) = f(n) and q(n, n + 1) = αΨ(πβ , n), for all n ≥ 0. The evolution of
(Xβ(t)) is represented in Figure 4.1. We can now formulate our problem.

Formulation of the problem
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We study the existence of the process (Xβ(t)). This process exists if there exist a probability measure πβ
and an α ∈ R+ that satisfy the following equations.

πβ(n)(αΨ(πβ , n) + f(n)) = πβ(n− 1)αΨ(πβ , n− 1), for n ≥ 1, (4.2.8)

α =
∑
n≥0

nf(n)πβ(n), (4.2.9)

where (4.2.8) are the balance equations of (Xβ(t)), and (4.2.9) is the output flow from an arbitrary node.
In Proposition 4.4, we further characterise πβ as the solution of a fixed point equation. This characterisation
will be used in the proofs of our main results.

Proposition 4.4. Assume the process (Xβ(t)) exists, i.e., there exist πβ and α that satisfy Equations (4.2.8)
and (4.2.9). Let Xβ be the random variable distributed by πβ. Then πβ satisfies the fixed point equation
ν(πβ) = πβ in M(N0), where ν is defined for σ ∈M(N0) as

ν(σ) = ν(σ)(n) :=
E
(
f(Xβ)

)
α(σ)Ψ(σ, n) + f(n)

n−1∏
k=0

α(σ)Ψ(σ, k)
α(σ)Ψ(σ, k) + f(k) , for n ≥ 0, (4.2.10)

where α(σ) =
∑
n≥0 nf(n)σ(n) and we use the convention

∏j
k=i ak = 1 if j < i.

Proof: Following from Equation (4.2.8), for any n ≥ 1, πβ(n) satisfies the following equation:

πβ(n) = πβ(n− 1) α(πβ)Ψ(πβ , n− 1)
α(πβ)Ψ(πβ , n) + f(n) .

We deduce inductively from last expression that, for n ≥ 1,

πβ(n) = πβ(0) α(πβ)Ψ(πβ , 0)
α(πβ)Ψ(πβ , n) + f(n)

n−1∏
k=1

α(πβ)Ψ(πβ , k)
α(πβ)Ψ(πβ , k) + f(k) . (4.2.11)

For πβ(0), from Relation (4.2.3) on Ψ we have that
∑
n≥0 πβ(n)Ψ(πβ , n) = 1, which can be rewritten as∑

n≥1
πβ(n)Ψ(πβ , n) = 1− πβ(0)Ψ(πβ , 0). (4.2.12)

Then, we sum both sides of equation (4.2.8) for n ≥ 1, and we get

α(πβ) [1− πβ(0)Ψ(πβ , 0)] + E
(
f(Xβ)

)
− πβ(0)f(0) = α(πβ),

which is equivalent to

πβ(0) =
E
(
f(Xβ)

)
α(πβ)Ψ(πβ , 0) + f(0) .

This proves the expression for n = 0. Furthermore, following from (4.2.11), we obtain

πβ(n) =
E
(
f(Xβ)

)
α(πβ)Ψ(πβ , n) + f(n)

n−1∏
k=0

α(πβ)Ψ(πβ , k)
α(πβ)Ψ(πβ , k) + f(k) , for n ≥ 1,
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and the proposition is proved. 2

4.3 Main results

In this section we present our results. We assume a linear rate for the breakdowns of the nodes, i.e.,
f(n) = c1n, c1 ∈ R>0.

4.3.1 The Random Weighted allocation

Let us consider the Random Weighted allocation policy, where the allocation function ΨRW is given by
Equation (4.2.4). For a fixed β, we denote the studied process as defined in Section 4.2.2 by (XRW

β (t)). As
a first step, we prove the process (XRW

β (t)) exists. Then, we study the convergence in distribution of the
process in equilibrium as β tends to infinity.

Theorem 4.5. For a given β > 0, under the Random Weighted allocation policy and linear rate of break-
downs, the process (XRW

β (t)) exists. In other words, there exist πβ and α that satisfy Equations (4.2.8) and
(4.2.9).

Proof: Following from Proposition 4.4, we consider ν(σ) as defined in (4.2.10). We study the existence and
uniqueness of the solution of the fixed point equation πβ = ν(πβ), and of α(πβ), which we will denote α as
an abuse of notation.
Let XRW

β denote the random variable distributed by πβ , and recall that E(XRW

β ) = β. Since we consider
ΨRW and f(x) = c1x, for πβ(n) = ν(πβ)(n) we obtain

πβ(n) = c1βγ

αW (n) + c1nγ

n−1∏
k=0

αW (k)
αW (k)+c1kγ

, for n ≥ 0, (4.3.1)

where α := c1 E
((

X
RW

β

)2
)

and γ :=
∑
k≥0W (k)πβ(k). Therefore, the proof reduces to show that, under

these definitions, there exist unique values α and γ.
We consider the following two equations.

1
β

= c1γ

αW (0) +
∑
n≥1

1
n(n+1)

(
1−

n∏
k=0

αW (k)
αW (k)+c1kγ

)
, (4.3.2)

1 =
∑
n≥0

W (n)c1β
αW (n)+c1nγ

n−1∏
k=0

αW (k)
αW (k)+c1kγ

. (4.3.3)

Equation (4.3.2) follows from the fact that
∑
n≥0 πβ(n) = 1, a detailed computation can be found in

Appendix 4.4. Equation (4.3.3) follows from the definition of γ and Equation (4.3.1).
Let x0 := γ/α, then from Equation (4.3.2) we obtain

1
β

= c1x0

W (0) +
∑
n≥1

1
n(n+1)

(
1−

n∏
k=0

W (k)
W (k)+c1kx0

)
. (4.3.4)
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Since
∏n
k=0

W (k)
W (k)+c1kx0

is strictly decreasing as a function of x0 > 0, the right hand side of Equation (4.3.4)
is strictly increasing in x0. Furthermore, the limit of the right hand side of Equation (4.3.4) as x0 → 0+ is
0, and its limit as x0 → +∞ is +∞. Therefore, for a given β > 0, Equation (4.3.4) has a unique solution
x0 > 0.
Then, note that an equivalent formulation of (4.3.3) is

α = c1β
∑
n≥0

n∏
k=0

αW (k)
αW (k)+c1kγ

= c1β
∑
n≥0

n∏
k=0

W (k)
W (k)+c1kx0

. (4.3.5)

Since for each β > 0 there exists a unique x0 > 0, from Equation (4.3.5) we deduce that for each β > 0
there exists a unique α > 0. Finally, for each β > 0, there exists a unique γ = x0α > 0. We conclude that
(XRW

β (t)) exists, and its stationary measure is given by (4.3.1). 2

Corollary 4.6. With the notation of Theorem 4.5, we have

lim
β→+∞

γ/α = 0.

Proof: This result follows from the proof of Theorem 4.5. Recall that γ/α = x0, and for each β > 0
there exists a unique x0 > 0 that satisfies Equation (4.3.4). Furthermore, as β tends to infinity, the lhs of
Equation (4.3.4) tends to 0, and the x0 that solves the equation tends to 0 as well. 2

Convergence as β →∞ for the case W (n)=c2/nδ.
For the remainder of the section, we assume a weight function given by

W (n)=

c2 for n = 0

c2/n
δ for n ≥ 1,

(4.3.6)

with δ, c2 > 0. In Theorem 4.7 we prove the convergence in distribution of XRW

β as β grows large. We recall
that γ and α are parameters that depend on β, although we omit it in the notation for ease of the reading.

Theorem 4.7. Let W (n) be defined as in (4.3.6). For the convergence in distribution of the variable XRW

β

we have

lim
β→∞

(
c1γ

c2α

)1/(δ+2)
X
RW

β = X
RW

∞ ,

where XRW

∞ is a random variable with density

xδ

C
exp

(
−x

δ+2

δ+2

)
, x≥0, with C := (δ+2)−1/(δ+2) Γ

(
δ+1
δ+2

)
, (4.3.7)

on R+, and Γ is the classical Gamma function.
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Proof: Following from Equation (4.3.1), we have that the distribution of XRW

β for n ≥ 1 is

πβ(n) = c1βγn
δ

c2α+ c1γnδ+1

n−1∏
k=0

c2α

c2α+c1γkδ+1

= 1
c2α

c1βγn
δ

1 + c1γ
c2α

nδ+1

n−1∏
k=0

1
1+ c1γ

c2α
kδ+1

= c1βγ

c2α
nδ

n∏
k=0

1
1+ c1γ

c2α
kδ+1 ,

and πβ(0) = c1βγ

c2α
. We simplify the notation in order to continue the proof. Let a := c1γ/c2α, Za :=

(c1βγ/c2α)−1 is the normalisation constant, and

Ua(n) :=

1 for n = 0

nδ
∏n
k=0

1
1+akδ+1 for n ≥ 1.

Then, the expression of the distribution reduces to πβ(n) = Ua(n)/Za for all n ≥ 0. Note that from Corollary
4.6, limβ→∞ a = 0.
Using this notation, we prove now the convergence in distribution. If φ is a bounded continuous function
on R+, define

Aa(φ) :=
∑
n≥0

φ
(
a1/(δ+2)n

) Ua(n)
Nδ+1
a

, with Na :=
⌊

1
a1/(δ+2)

⌋
.

Since the normalisation constant can also be written as Za =
∑
n≥0 Ua(n), we have that Aa(1) = Za/N

δ+1
a ,

and
E
(
φ
(
a1/(δ+2)X

RW

β

))
= Aa(φ)
Aa(1) .

We have to prove that the previous expression converges to E
(
φ
(
X
RW

∞

))
as a goes to 0. We prove this

in two steps. Firstly we show that, if K>0 is sufficiently large, the sum of terms with the indices greater
than KNa in the definition of Aa(1) can be made uniformly small with respect to a. Secondly, we prove
the convergence of (Aa(φ)) when φ has a compact support.
For K>0, let

RK(a) :=
∑

n≥KNa

Ua(n)
Nδ+1
a

= 1
Na

∑
n≥KNa

(
n

Na

)δ
exp

(
ln
(

n∏
k=0

(
1+akδ+1)−1

))

= 1
Na

∑
n≥KNa

(
n

Na

)δ
exp

(
−

n∑
k=0

ln
(

1+ 1
Na

aNδ+2
a

(
k

Na

)δ+1
))

.
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By definition of Na, the expression aNδ+2
a is converging to 1 as a goes to 0. We assume that a is sufficiently

small so that aNδ+2
a is lower bounded by 1/2. We then have

RK(a) ≤ 1
Na

∑
n≥KNa

(
n

Na

)δ
exp

(
−

n∑
k=0

ln
(

1+ 1
2Na

(
k

Na

)δ+1
))

≤
∫ +∞

K

(u+ 1)δ exp

− buNac∑
k=0

ln
(

1+ 1
2Na

(
k

Na

)δ+1
) du

≤
∫ +∞

K

(u+ 1)δ exp
(
−
∫ buNac/Na

0
Na ln

(
1+ 1

2Na
xδ+1

)
dx
)

du. (4.3.8)

The change of variables in second inequality is n→ buNac, and in third inequality is k → xNa.
If v>0, we consider the function w 7→w ln(1+v/w). This function is increasing on R+, following from its
derivative, which, with the change of variables p = w

w+v , is

ln(1+v/w)− v

w+v = − ln(p)−1+p ≥ 0 for all p∈(0, 1].

We fix some b>0 sufficiently small. For a∈(0, b), we have Na ≥ Nb, and following from (4.3.8), we get

RK(a) ≤
∫ +∞

K

(u+ 1)δ exp
(
−
∫ buNac/Na

0
Nb ln

(
1+ 1

2Nb
xδ+1

)
dx
)

du,

and therefore, by Lebesgue’s Theorem, we get the relation

lim sup
a↘0

RK(a) ≤
∫ +∞

K

(u+ 1)δ exp
(
−
∫ u

0
Nb ln

(
1+ 1

2Nb
xδ+1

)
dx
)

du.

One can thus choose K sufficiently large so that the right hand side of the last expression is arbitrarily
small, and therefore, all the RK(a) with a in a neighbourhood of 0 are sufficiently small as well. The first
step is established.
Assume now that φ has compact support in [0,K] with K∈N, Aa(φ) can be written as

Aa(φ) = 1
Na

KNa∑
n=0

φ
(
a1/(δ+2)n

)( n

Na

)δ
exp

(
−

n∑
k=0

ln
(

1+ 1
Na

aNδ+2
a

(
k

Na

)δ+1
))

.

As before, the convergence of (aNδ+2
a ) to 1 as a goes to 0 shows that, for a sufficiently small, Aa(φ) is in

an interval of the type [Bη1
a (φ), Bη2

a (φ)] where η2<1<η1 and η1 and η2 are arbitrarily close to 1, with the
definition

Bηa(φ) := 1
Na

dKNae∑
n=0

φ(n/Na)
(
n

Na

)δ
exp

(
−

n∑
k=0

ln
(

1+ 1
Na

η

(
k

Na

)δ+1
))

.

We study the convergence of Bηa(φ) as a→ 0. We first write the uniform estimation, for 0 ≤ n ≤ dKNae,
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−
n∑
k=0

ln
(

1+ 1
Na

η

(
k

Na

)δ+1
)

= −
∫ n

0
ln
(

1+ 1
Na

η

(
u

Na

)δ+1
)

du+O

(
1
Na

)
.

Then Bηa(φ) is equivalent to

1
Na

dKNae∑
n=0

φ(n/Na)
(
n

Na

)δ
exp

(
−
∫ n

0
ln
(

1+ 1
Na

η

(
u

Na

)δ+1
)

du
)

= 1
Na

dKNae∑
n=0

φ(n/Na)
(
n

Na

)δ
exp

(
−
∫ n/Na

0
Na ln

(
1+ 1

Na
ηuδ+1

)
du
)
. (4.3.9)

The elementary inequality | ln(1+x)−x| ≤ x2

2 , for x∈[0, 1], gives us the uniform estimation

Na ln
(

1+ 1
Na

ηuδ+1
)

= ηuδ+1 +O

(
1
Na

)
,

for u in some fixed finite interval. Following from (4.3.9), we get

Bηa(φ) ∼ 1
Na

dKNae∑
n=0

φ(n/Na)
(
n

Na

)δ
exp

(
−
∫ n/Na

0
ηuδ+1 du

)

= 1
Na

dKNae∑
n=0

φ(n/Na)
(
n

Na

)δ
exp

(
−η (n/Na)δ+2

δ + 2

)

Finally, with the uniform estimation of the integral and Lebesgue’s Theorem, we get the relation

lim
a↘0

Bηa(φ) =
∫ K

0
φ(x)xδ exp

(
−ηx

δ+2

δ+2

)
dx,

and, therefore, the desired convergence for (Aa(φ)).
The constant C in (4.3.7) is the normalisation constant needed for the function to be a density, and it can
be computed from the expression of Γ

(
δ+1
δ+2

)
. The theorem is proved. 2

4.3.2 The Random allocation

In this section we consider the Random allocation policy, where the allocation function ΨR is given by
Equation (4.2.5). It is a particular case of the Random Weighted allocation policy, taking a constant weight
function W (n) = K with K > 0, for all n ≥ 0. We denote the studied process as (XR

β (t)), and X
R

β the
variable distributed by the stationary measure. The novelty of the section relies on the explicit expression
of the generating function of XR

β .
We assume a breakdown rate given by f(x) = x.
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Theorem 4.8. For a given β > 0, under the Random allocation policy and with a rate of breakdowns given
by f(x) = x, the process (XR

β (t)) exists. In other words, there exist πβ and α that satisfy Equations (4.2.8)
and (4.2.9).
Furthermore, the generating function of the variable XR

β has the following expression.

E
(
zX

R

β

)
=
(

1+αz
∫ 1

0
(1−u)αeαzu du

)/(
1+α

∫ 1

0
(1−u)αeαu du

)
. (4.3.10)

Proof: Following from the definition of ΨR, and inductively from the balance equations (4.2.8), for n ≥ 1
we have

πβ(n) = πβ(0)
n∏
k=1

α

α+ k
, (4.3.11)

where α := E
((

X
R

β

)2
)
. Since πβ(0) is the normalisation constant, it can be expressed as

πβ(0) =

1+
∑
n≥1

n∏
k=1

α

α+ k

−1

. (4.3.12)

In this case, the existence and uniqueness of πβ reduces to show the existence and uniqueness of α such that
Equations (4.3.11) and (4.3.12) are well defined. In order to obtain an expression for E(XR

β ), we rewrite

∑
n≥1

n

n∏
k=1

α

α+ k
=

∑
n≥1

(n+ α− α)
n∏
k=1

α

α+ k

=
∑
n≥1

α

n−1∏
k=1

α

α+ k
− α

∑
n≥1

n∏
k=1

α

α+ k
=
∑
n≥1

α (Sn−1 − Sn)

= α
(
S0 − lim

n
Sn

)
= α.

Consequently,

E(XR

β ) =
∑
n≥1

nπβ(n) = α

/1+
∑
n≥1

n∏
k=1

α

α+ k

 . (4.3.13)

Denote, for x ∈ R+,

fα(x):=
∑
n≥1

(
n∏
k=1

1
α+ k

)
xn+α, (4.3.14)

it is easy to see that

f ′α(x) = xα + fα(x) and fα(0) = 0, hence fα(x) =
∫ x

0
uαex−u du.

From Equations (4.3.13) and (4.3.14), and the fact that β = E(XR

β ), we obtain that

β = α

1 + α−αfα(α) ,
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or, equivalently, after the substitution u→ α(1− u) in the integral in fα(α), we get

1
β

= 1
α

+
∫ 1

0
(1−u)αeαu du. (4.3.15)

Note that the integrating factor h(α, u) = eα(ln(1−u)+u) is decreasing in α, since ln(1 − u) + u ≤ 0 for
u ∈ (0, 1). Then the right hand side of the expression is strictly decreasing in α > 0, and it varies between
+∞ and 0. Hence, for any β > 0 there exists a unique α > 0 satisfying Equation (4.3.15), and the proof of
the existence is ended.
For the generating function we have

E
(
zX

R

β

)
= πβ(0) +

∑
n≥1

πβ(n)zn = πβ(0)+πβ(0)
∑
n≥1

(
n∏
k=1

α

α+ k

)
zn,

and, in consequence,
E
(
zX

R

β

)
πβ(0) = 1+

∑
n≥1

(
n∏
k=1

α

α+ k

)
zn. (4.3.16)

For πβ(0) we have that

1
πβ(0) = 1+

∑
n≥1

n∏
k=1

α

α+ k

= α

E
(
X
R

β

)
= 1+α

∫ 1

0
(1−u)αeαu du,

where the second equality follows from Equation (4.3.13) and the third one from the fact that E(XR

β ) = β

and from Equation (4.3.15). Then, recall the definition of fα(x) in (4.3.14), in (4.3.16) we obtain

(
1+α

∫ 1

0
(1−u)αeαu du

)
E
(
zX

R

β

)
= 1+

∑
n≥1

(
n∏
k=1

α

α+ k

)
zn

= 1+fα(αz)
(αz)α = 1+

∫ αz

0

( u
zα

)α
eαz−u du,

or, equivalently,

E
(
zX

R

β

)
=
(

1+αz
∫ 1

0
(1−u)αeαzu du

)/(
1+α

∫ 1

0
(1−u)αeαu du

)
,

and the proof is ended. 2

Convergence as β → ∞. We present now the convergence in distribution of XR

β as β → ∞. In order to
do so, we introduce Proposition 4.9, which is a technical result regarding the growth rate of α(β).
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Proposition 4.9. Under the Random allocation policy,

lim
β→+∞

α(β)
β2 = π

2 .

Proof: We rewrite the integral in (4.3.15) as:∫ 1

0
(1−u)αeαu du =

∫ 1

0
exp(α(ln(1−u) + u)) du

= 1√
α

∫ √α
0

exp
(
α

(
ln
(

1− u√
α

)
+ u√

α

))
du.

Using the relation ln(1−x)≤−x−x2/2 for x ∈ (0, 1), obtained from its Taylor polynomial, and Lebesgue’s
convergence theorem, we get

lim
α→+∞

√
α

∫ 1

0
(1−u)αeαu du =

∫ +∞

0
e−u

2/2 du =
√
π

2 . (4.3.17)

Then, following from (4.3.15),

α

β2 = α

(
1
β

)2
= 1
α

+ 2
∫ 1

0
(1−u)αeαu du+

(√
α

∫ 1

0
(1−u)αeαu du

)2

.

Taking limit as β →∞, and from (4.3.17), we obtain

lim
β→+∞

α

β2 = π

2 .

2

Theorem 4.10. For the convergence in distribution of the variable XR

β we have

lim
β→∞

X
R

β

β
= X

R

∞,

where XR

∞ is a random variable with density

f(u) = e−
u2
π

π/2 .

Proof: We make the change of variables in the generating function, as given by (4.3.10), to get the Laplace

transform of X
R

β

β in the limit:

φβ(s) = E
(
e
s
βX

R

β

)
=
(

1+αe−
s
β

∫ 1

0
(1−u)αeαe

− s
β u du

)/(
1+α

∫ 1

0
(1−u)αeαu du

)
=
(

1√
α

+
√
αe−

s
β

∫ 1

0
(1−u)αeαe

− s
β u du

)/(
1√
α

+
√
α

∫ 1

0
(1−u)αeαu du

)
. (4.3.18)
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In a separate analysis, we study the following term:

√
α

∫ 1

0
(1−u)αeαe

− s
β u du =

∫ √α
0

exp
(
α

(
ln
(

1− u√
α

)
+ u√

α
e−

s
β

))
du.

Using again the inequality ln(1−x)≤−x−x2/2 for x ∈ (0, 1), we get

ln(1−x) + xe−
s
β≤−

(
1− e−

s
β

)
x−x2/2.

Then,

lim
β→∞

√
α

∫ 1

0
(1−u)αeαe

− s
β u du ≤ lim

β→∞

∫ √α
0

exp
(
α

(
−
(

1−e−
s
β

) u√
α
− u2

2α

))
du

= lim
β→∞

∫ √α
0

exp
(
−
(

1−e−
s
β

)√
αu− u2

2

)
du

= lim
β→∞

∫ √α
0

exp
(
−
(
s

β
+ o( s

β
)
)√

αu− u2

2

)
du

= lim
β→∞

∫ √α
0

e−
√
α
β su−u2

2 +o( sβ )
√
αu du

=
∫ ∞

0
e−
√

π
2 su−

u2
2 du,

where the second equality is due to the Taylor expansion of 1−e−
s
β , and the last one to Proposition 4.9. The

inequality is in fact an equality, because of Lebesgue’s convergence theorem. Then, following from (4.3.18),
we get the convergence of the Laplace transform,

lim
β→∞

φβ(s) =
∫ ∞

0
e−
√

π
2 su−

u2
2 du

/√
π

2

=
∫ ∞

0
e−su

e−
u2
π

π/2 du,

and the density of XR

∞ is deduced. 2

Remark 4.11. The result in Theorem 4.10 can be deduced from Theorem 4.7, taking the limit δ → 0,
together with Proposition 4.9. In order to obtain the same expression for the density functions, a change of
variables is needed.
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4.4 Appendix

Calculation of Equation (4.3.2): From Equation (4.3.1) we have that

πβ(n) = c1βγ

αW (n) + c1nγ

n−1∏
k=0

αW (k)
αW (k) + c1kγ

.

The normalisation relation for πβ states that
∑
n≥0 πβ(n) = 1, then

1
β

=
∑
n≥0

c1γ

αW (n) + c1nγ

n−1∏
k=0

αW (k)
αW (k) + c1kγ

= c1γ

αW (0) +
∑
n≥1

n

n

c1γ

αW (n) + c1nγ

n−1∏
k=0

αW (k)
αW (k) + c1kγ

= c1γ
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Throughout this thesis we studied resource allocation problems in large-scale stochastic systems. The
mathematical framework used was the Markov Decision Processes (MDPs), and, in particular, we focused
on a subclass of MDPs known as Multi-armed restless bandits problems (MARBP). We worked on problems
with conditions that fluctuate over time. This was modelled considering two types of processes, controllable
processes and environments. The current state of the environment determines the value of the parameters
of the controllable processes. We differentiated whether the environment can be observed or not, and under
both settings we looked for efficient control policies in a long-term average criterion. We further studied a
model of large-scale storage systems with files distributed across nodes. After a node breaks down, all the
files it had are reallocated to other nodes. We analysed the evolution of the load of a single node.
Our main contributions encompasses a range of results on optimal control and on the performance of
allocation policies. For our first problem we considered an MARBP with unobservable environments. We
studied the asymptotic regime, as the number of bandits grows large together with speed of the environment.
In Theorem 2.5 we provided sufficient conditions for a policy to be asymptotically optimal, and we defined
a set of priority policies that satisfies these. When the technical condition known as indexability holds,
an averaged version of Whittle’s index is inside the set of priority policies, see Proposition 2.13. The
second problem we considered is an MARBP with observable environments. We focused on the relaxed
version of the problem, and we proposed Algorithm 3.4 to determine Whittle’s index. For the problem of a
queue with abandonments we prove that indexability holds in Theorem 3.14, and we derive the Whittle’s
index in closed-form in Theorem 3.15. In both problems we delivered a numerical evaluation to show the
performance of the obtained policies. For the problem of large-scale storage systems, we focused on the
mean-field regime as the number of nodes and files grows large. By studying the global balance equations,
we proved the existence of the process in the mean-field regime, in Theorem 4.5. We further showed the
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convergence in distribution of the load in steady state as the average number of files per node tends to
infinity, in Theorem 4.7.

5.1 Impact of observability

One of the motivations of this thesis was to study the implications of observability or unobservability on
Whittle’s index. Numerically we analysed this impact in Sections 2.5.5 and 3.6.3. Table 5.1 summarises our
main theoretical characterisations in each of the cases.
In the unobservable case, we proved in Proposition 2.13 that the averaged Whittle’s index policy is asymp-
totically optimal in a fast environment as the number of bandits grows large. In the case of queues with
abandonments, the averaged Whittle’s index reduces to the index µk/θk, where µk is the averaged service
rate and θk is the averaged abandonment rate of bandit k. We leave for future work the problem of optimal
control with environments that vary relatively slow or with normal speed. In Section 5.2.2, we present some
ideas in this direction.
In the observable case, we considered policies that can depend on the current state of the environment
d ∈ Z, and this is reflected in our results. Algorithm 3.4 provides expressions for the Whittle’s index in the
general setting. In particular, we proved in Proposition 3.8 that when the environment is slow the Whittle’s
index coincides with the Whittle’s index of a bandit that only sees environment d. We denoted this index
by W (d)

k (m) for bandit k in state m. For the model of queues with abandonments, Theorem 3.15 provides
the Whittle’s index in closed-form. In Proposition 3.19, we obtain simpler expressions for the slow and fast
regime, as shown in the table. For the slow regime, the index is µ(d)

k /θ
(d)
k , where µ(d)

k is the service rate
and θ(d)

k the abandonment rate of bandit k when the state of the environment is d. For the fast regime, the
index is µ(d)

k /θk. We make the remark that this index remains dependent on state d of the environment, in
contrast to the index in the unobservable model, which takes both averaged parameter values.
As a general conclusion, the results for the observable case are more complete than for the unobservable
case. We comment further on this in the next section.

Speed of the environment
Slow Normal Fast

Unobservable
General
problem Future work Future work

Averaged
Whittle’s index

Queues with
abandonments µk/θk

Observable
General
problem W

(d)
k (m) Algorithm 3.4 Algorithm 3.4

Queues with
abandonments µ

(d)
k /θ

(d)
k Theorem 3.15 µ

(d)
k /θk

Table 5.1: Index policies obtained for different models and regimes of the speed of the environment.
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5.2 Future work

We outline various lines of research that follow from the works presented in this thesis.

5.2.1 Activation constraint depending on the environment

In Chapters 2 and 3, we considered a unique sample-path constraint on the number of active bandits that
does not depend on the state of the environments. Following the notation of Chapter 3, this was stated in
Equation (3.1.1). An alternative approach can be considered, by proposing a sample-path constraint per
state of the environments. For given values

{
R~d : ~d ∈ ZN

}
, we consider the following set of constraints:

N∑
k=1

Aϕk (t)1(~D(t)=~d) ≤ R~d1(~D(t)=~d), ∀t ≥ 0 and ∀~d ∈ ZN , (5.2.1)

where ~D(t) := (D1(t), . . . , DN (t)) denotes the state of the environment processes of all the bandits. The
relaxed version of constraints (5.2.1) states that the number of active bandits must be satisfied on average,
and not in every decision epoch.

lim sup
T→∞

1
T
E

(
N∑
k=1

∫ T

0
Aϕk (t)1(~D(t)=~d)dt

)
≤ R~dφ(~d) ∀~d ∈ ZN ,

where φ(~d) is the stationary probability of ~D(t) to be in state ~d. The Lagrangian multipliers approach applied
for several constraints leads us to consider several multipliers, W~d, one for each state ~d the environments
can be in:

min
ϕ

lim sup
T→∞

1
T
E

(∫ T

0

(
N∑
k=1

Ck(Mϕ
k (t), Dk(t), Aϕk (t))−W~d1(~D(t)=~d)

N∑
k=0

Aϕk (t)
)

dt
)
∀~d ∈ ZN .

We leave for a future work the study of Whittle’s index obtained after this relaxation. In particular, we
believe that for the observable setting, Whittle’s index will not only depend on the state of the bandit
(m, d), as we have in Chapter 3, but also on the environment of the other bandits.
In [28], a relaxation of an MARBP problem with more than one sample-path constraint is proposed, resulting
in multiple Lagrangian multipliers. The authors formulate a related Whittle’s index.

5.2.2 Unobservable environments

As it is stated in Table 5.1, it remains as future work to study optimal control for bandits affected by
unobservable environments, in cases where the environment does not change relatively fast. In addition to
the environment changing fast, another assumption in our analysis was that the number of bandits tends
to infinity. Thus, the mathematical analysis of the unobservable case remains largely unexplored.
The problem with unobservable environments can be considered as a MARBP with partially observable
states. A reference in Markov Processes with incomplete state information is [8]. One possibility to get
more insights would be to resort to learning algorithms, in particular reinforcement learning (RL). This is
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an area of research that recently received a lot of attention, a full overview can be found in the textbook
[65].

Q-learning
We refer here to Q-learning, a technique used to find optimal control for MDPs without specific knowledge
of its transition rules. In Q-learning, the expected one-step reward is estimated for each state and action,
by repeating many episodes of the process and updating the followed policy according to observations.
Such technique can be explored for an MARBP with unobservable environments in order to learn the optimal
policy, at least numerically. As the experiment is run several times, under ergodicity assumptions, all the
states of the environments are visited. Learning from these transitions allows to obtain an estimation of the
evolution of the process.
For a theoretical approach, a reference in this subject is [29]. The authors adapt the Q-learning technique to
obtain Whittle’s index in a MARBP with unknown transition matrices. They show that the derived policy
performs close to the fully-informed Whittle’s index policy.

5.2.3 Observable environments: Whittle’s index in slow regime

In Proposition 3.8, we proved that, when the environment is slow, Whittle’s index coincides with the index
of a bandit that only sees a fixed environment d ∈ Z. In the proposition, and in previous results, we used
the technical assumption that the environment visits only two states, i.e., |Z| = 2. Although we were not
able to extended the result for |Z| > 2, we believe it holds, and it remains as further research.

5.2.4 Observable environments: optimality for correlated environments

In the classical MARBP theory, the bandits are assumed to be independent. In the model in Chapter 3,
the bandits are formed by the controllable processes and the environments. When the environments are
independent, we can conclude that the bandits are independent, and their state is a two-dimensional state
of a classical bandit. This means that the classical MARBP theory applies, and the associated results hold,
such as the asymptotic optimality of Whittle’s index policy proved in [71].
However, in case the environments are not independent, the previous statement is not true, and some
research questions arise.

• A first question to address is how efficient is Whittle’s index policy in the MARBP. In Section 3.6.1 we
presented a numerical evaluation with random samples to study the performance of Whittle’s index
policy in such a setting. Our results suggest that it has a good performance. We would like to further
study whether Whittle’s index policy is asymptotically optimal, as the number of bandits that can be
made active grows proportionally to the total number of bandits.

• An alternative line of research follows if we consider a non-relaxed approach to solve the problem. A
course of action on this direction would be to study the equilibrium solutions of the linear-programming
problem derived from the fluid dynamics of the system, as it is done for the MARBP in [69].
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5.2.5 Large-scale storage systems

We propose some extensions for our main result in Chapter 4, Theorem 4.5. As a first extension, we can
consider a quadratic rate for the breakdowns of the nodes, instead of a linear rate. A possible approach to
solve this problem is to express the solution of the fixed point equation (4.2.10) as the solution of an ODE
of second order. A simpler version of this method is already used in the proof of Theorem 4.8, with an ODE
of first order.
Another extension is to consider allocation policies that involve a more complex analysis than the Random
Weighted policy. In particular, we are interested in the so-called Power of d-Choices policy, where, for
allocating a file after a breakdown, the system chooses d nodes at random, and allocates the file to the
least loaded node among this subset. We would like to generalise the results in [63], where the Power of
d-Choices policy is considered for a system with breakdowns at a constant rate. The authors show that
in the mean-field regime the process behaves as a non-homogeneous Markov process, and the stationary
measure is then derived.
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