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Summary

Intrinsically Disordered Proteins (IDPs) are involved in many biological processes.
Their inherent plasticity facilitates very specialized tasks in cell regulation and
signalling, and their malfunction is linked to severe pathologies. Understanding
the functional roles of IDPs requires their structural characterization, which is ex-
tremely challenging, and needs a tight coupling of experimental and computational
methods. In contrast to structured/globular proteins, IDPs cannot be represented
by a single conformation, and their models must be based on ensembles of confor-
mations representing a distribution of states that the protein adopts in solution.
While purely random coil ensembles can be reliably constructed by available bioin-
formatics tools, these tools fail to reproduce the conformational equilibrium present
in partially-structured regions.

In this thesis, we propose several computational methods that, combined with
experimental data, provide a better structural characterization of IDPs. These
methods can be grouped in two main categories: methods to construct conforma-
tional ensemble models, and methods to simulate conformational transitions.

A key methodological development of this thesis, and the basis of most algorith-
mic contributions, has been the construction of a three-residue fragments (tripep-
tide) database from high-resolution protein structures. We demonstrate that these
tripeptide building blocks are highly rich in information and represent a solid foun-
dation to accurately describe the structure and fluctuations in disordered chains.
One advantage of this approach, which we exploit along the thesis, is the capacity
to apply tailored filtering to obtain the most appropriate tripeptide database for
each specific purpose.

Contributing to the first type of methods, we propose a new approach to gener-
ate realistic conformational ensembles that improves previously existing methods,
being able to reproduce the partially-structured regions in IDPs. This method
exploits structural information encoded in a database of three-residue fragments
(tripeptides) extracted from high-resolution experimentally resolved protein struc-
tures. We have shown that conformational ensembles generated by our method
accurately reproduce structural data obtained from NMR and SAXS experiments
for a benchmark set of nine IDPs. Also exploiting the tripeptide database, we have
developed an algorithm to predict the propensity to form secondary structure ele-
ments of fragments inside IDPs. This new method provides more accurate results
than those of the most commonly-used predictors available on our benchmark set
of well-characterized IDPs.

Contributing to the second type of methods, we have developed an original
approach to model the folding mechanism of secondary structural elements. The
computation of conformational transitions is formulated as a discrete path search
problem using the tripeptide database. To evaluate the approach, we have applied
the strategy to two small synthetic polypeptides mimicking two common structural
motifs in proteins. The folding mechanisms extracted are very similar to those
obtained when using traditional, computationally expensive approaches. Finally,
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we have developed a more general method to compute transition paths between
a (possibly large) set of conformations of an IDP. This method builds on a multi-
tree variant of the TRRT algorithm, developed at LAAS-CNRS, and which provided
good results for small and middle-sized biomolecules. In order to apply this method
to IDPs, we have proposed a hybrid strategy for the parallelization of the algorithm,
enabling an efficient execution in computer clusters.

In addition to the aforementioned methodological work, I have been actively
involved in multidisciplinary work, together with biophysicists and biologists, where
I have applied these methods to the investigation of important biological systems,
in particular the huntingtin protein, the causative agent of Huntington’s disease.

In conclusion, the work carried out during my PhD thesis has enabled a bet-
ter understanding of the relationship between sequence and structural properties
in IDPs, paving the way to novel applications. For example, this deeper under-
standing of sequence-structure relationships will enable us to anticipate structural
perturbations exerted by sequence mutations, and subsequently, the rational design
of IDPs with tailored properties for biotechnological applications.

Resume

Les protéines intrinsèquement désordonnées (IDPs, acronyme en anglais de Intrinsi-
cally Disordered Proteins) sont essentielles dans de nombreux processus biologiques.
Leur plasticité inhérente les assigne à des tâches complémentaires de celles des
protéines globulaires, dans la régulation et dans la signalisation cellulaire ; leurs
dysfonctionnements sont associés des pathologies sévères. Comprendre leur rôle
fonctionnel exige de caractériser la structure des IDPs et des complexes qu’elles
forment. Modéliser les IDPs est extrêmement difficile et exige un couplage étroit
des méthodes expérimentales et informatiques. Contrairement aux protéines struc-
turées/globulaires, les IDPs ne peuvent pas être représentées par une seule confor-
mation, et leurs modèles doivent être fondés sur des ensembles de conformations
représentatifs des états que la protéine adopte en solution.

Il existe de multiples outils bioinformatiques qui permettent d’identifier à pri-
ori les éléments partiellement structurés au sein des IDPs. Cependant, les car-
actéristiques structurelles détectées par ces programmes dépendent fortement de
la méthodologie utilisée, et les différentes méthodes produisent souvent des résul-
tats contradictoires. Alors que des ensembles purement composés par "random
coil" peuvent être construits de manière, par des outils bioinformatiques accessi-
bles, l’équilibre conformationnel présent dans les régions partiellement structurées
est mal reproduit.

Dans cette thèse, nous proposons plusieurs méthodes de calcul qui, combinées à
des données expérimentales, permettent une meilleure caractérisation structurelle
des IDPs. Ces méthodes peuvent être regroupées en deux grandes catégories : les
méthodes de construction de modèles d’ensembles conformationnels et les méthodes
de simulation des transitions conformationnelles.
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Un développement méthodologique clé de cette thèse, et la base de la plupart
des contributions algorithmiques, a été la construction d’une base de données de
fragments de trois résidus (tripeptides) à partir de structures protéiques à haute
résolution. Nous démontrons que ces blocs de construction tripeptidiques sont très
riches en informations et constituent une base solide pour décrire avec précision la
structure et les fluctuations des protéines désordonnées. L’un des avantages de cette
approche, que nous exploitons tout au long de la thèse, est la capacité d’appliquer
un filtrage sur mesure pour obtenir la base de données de tripeptides la mieux
adaptée à chaque objectif spécifique.

Dans le premier ensemble de méthodes, nous présentons une nouvelle approche
pour générer des ensembles conformationnels réalistes, qui améliore les approches
existantes, et permet de reproduire les régions partiellement structurées des IDPs.
Cette méthode exploite les informations structurelles codées dans les bases de
données de tripeptides. Nous avons montré que les ensembles conformationnels
construits par notre méthode reproduisent fidèlement les descripteurs structurels
obtenus à partir d’expériences RMN et SAXS. En tant que composante nécessaire
de l’algorithme de construction d’ensemble, nous avons développé un algorithme
pour prédire la propension de certains fragments à l’intérieur des IDPs à former des
éléments de structure secondaire. Cette nouvelle méthode, qui exploite également
la base de données de tripeptides, fournit des résultats plus précis que ceux des
prédicteurs les plus couramment utilisés sur plusieurs IDPs bien caractérisées. Bien
que le prédicteur structurel ait été principalement développé pour compléter notre
méthode de modélisation d’ensembles, il peut également être très utile comme outil
indépendant.

Dans un deuxième type de méthodes, nous avons développé une approche orig-
inale pour modéliser le mécanisme de repliement des éléments structuraux sec-
ondaires. Le calcul des transitions conformationnelles menant à la formation des
éléments structuraux est formulé comme un problème de recherche de chemin discret
à l’aide de la base de données de tripeptides. Pour évaluer l’approche, nous avons
appliqué la stratégie à deux petits polypeptides synthétiques imitant deux motifs
structurels communs dans les protéines. Les mécanismes de repliement extraits
sont très similaires à ceux obtenus en utilisant des approches traditionnelles et coû-
teuses en calcul. Enfin, nous avons mis au point une méthode plus générale pour
calculer les chemins de transition entre un ensemble (éventuellement important)
de conformations d’IDPs. Cette méthode s’appuie sur une variante multi-arbre
de l’algorithme Transition-based Rapidly-exploring Random Tree (Multi-TRRT),
récemment développé au LAAS-CNRS, et qui a donné de bons résultats pour les
biomolécules de petites et moyennes tailles. Afin d’appliquer cette méthode aux
IDPs, nous avons proposé une stratégie hybride (mémoire partagée/distribuée) pour
la parallélisation de l’algorithme, permettant une exécution efficace dans les clusters
de calcul.

Outre le travail méthodologique susmentionné, nous avons également participé
activement à des travaux multidisciplinaires, en collaboration avec des biophysi-
ciens et des biologistes, où nous avons appliqué ces méthodes à l’étude de systèmes
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biologiques d’importance, en particulier la protéine huntingtin, l’agent responsable
de la maladie de Huntington.

En conclusion, les travaux menés dans le cadre de cette thèse de doctorat ont
permis de mieux comprendre la relation entre la séquence et la structure des IDPs,
ouvrant la voie à de nouvelles applications. Grâce à cette compréhension plus appro-
fondie des relations séquence-structure il sera possible d’anticiper les perturbations
structurelles engendrées par les mutations dans la séquence, ainsi que la conception
rationnelle des IDPs ayant des propriétés spécifiques pour des applications dans les
biotechnologies.
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Chapter 1

Introduction

Intrinsically Disordered Proteins or Regions (IDPs/IDRs) play crucial roles in mul-
tiple biological processes and are directly involved in several pathologies, including
cancer and neurodegeneration [229, 38, 7]. The inherent plasticity of this family of
proteins facilitates a range of functions that are complementary to those of their
folded counterparts [245]. In most cases, the activity of IDPs is manifested when
interacting with globular partners to trigger signaling or metabolic cascades [227].
These interactions are mediated by Short Linear Motifs (SLiMs) that recognize
regions of the partner surface in a highly specific manner [232]. The presence of
transiently formed structural motifs in SLiMs facilitates partner recognition and
tunes the thermodynamics and kinetics of interactions [150, 167, 192]. To under-
stand these functional mechanisms, it is pivotal to identify and characterize these
partially structured elements inserted into IDPs.

The relatively flat conformational energy landscape of IDPs has notably ham-
pered their structural characterization. Modelling IDPs is extremely challenging,
and requires a tight coupling of experimental and computational methods [11 , 12].
In contrast to structured/globular proteins, IDPs cannot be represented by a single
conformation, their flexibility rends impossible the crystallization of the protein.
Even in the case when a fragment of the IDP is crystallized in interaction with its
globular partner, the resulting conformation is not enough to characterize its struc-
ture in solution. IDP models must be based on ensembles, usually involving thou-
sands of conformations representing a distribution of states that the protein adopts
in solution [13, 14]. Experimental data obtained by Nuclear Magnetic Resonance
(NMR) and Small-Angle X-ray Scattering (SAXS) provide information on confor-
mational trends at the residue level, the presence of transient long-range contacts,
and the overall size of the ensemble of conformations [59]. Then, the quantitative
interpretation of these data requires the use of computational approaches that ac-
count for their ensemble averaged properties. These computational approaches are
based on the construction of large conformational ensembles, which are subsequently
refined by integrating the experimental data using restrained Molecular Dynamics
(MD) simulations [44, 208], sub-ensemble selection [164, 119, 16], or Bayesian statis-
tics [65]. Chemical Shifts (CSs) and Residual Dipolar Couplings (RDCs) measured
in partially aligned media are the most sensitive probes to quantify conformational
restrictions at the residue level and to define secondary structural elements [58, 99].
Conversely, ensembles refined with SAXS data describe the overall properties of the
protein in solution [18, 182]. Consequently, conformational ensembles that simulta-
neously describe both sources of complementary information are excellent structural
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models of proteins in solution [207, 33].
Multiple computational tools using distinct levels of description have been de-

veloped to characterize IDPs when no or limited experimental information is avail-
able. Current disorder prediction tools, which are based on the statistical analysis of
protein sequences, provide rough estimations of partly structured regions in IDPs
[47], although the exact secondary structure classes are poorly defined. In prin-
ciple, a more accurate characterization can be provided by MD-based methods.
However, despite significant advances in the extension of MD methods to IDPs
[173, 83], their applicability to exhaustively explore the conformational space of
these proteins is still limited. Knowledge-based approaches have emerged as an
alternative to overcome some of these limitations. These approaches usually de-
scribe the conformational properties of individual residues using the so-called coil
libraries, which contain residue-specific {φ, ψ} angles from fragments of experimen-
tally determined protein structures that do not form secondary structural elements
[209, 103, 15, 66, 223, 203]. Despite their simplicity, coil models provide an accurate
description of NMR parameters such as J-couplings [209, 203] and RDCs [15, 99],
and SAXS curves [18] for flexible peptides and disordered proteins. Nevertheless,
these approaches fail to identify secondary structural elements in IDPs. This limita-
tion is caused by the chain building strategy, which sequentially appends individual
residues accounting for the amino acid type and overlooks the sequence and struc-
tural context [103, 15]. Consequently, approaches such as Flexible-Meccano [15, 163]
provide excellent models for the random-coil but do not capture structural features
involving multiple consecutive residues. The omission of coordinated effects pre-
cludes the capacity of current approaches to predict structural classes and their
populations, and hamper their application for advanced purposes.

During the last two decades, significant progress has been made to under-
stand the complex behavior of IDPs. Nevertheless many aspects related with the
structure-dynamics/function paradigm remain poorly understood. Our work aims
at developing algorithms specially adapted to the study of IDPs to bring new knowl-
edge about the relationship between sequence and conformational behavior for this
family of proteins. It should also be mentioned that, although the first objective of
the methods developed in this thesis concerns IDPs, the algorithmic advances can
be useful for structural biology in general.



15

Contributions of the thesis

The goal of this thesis was to develop computational methods to model IDPs, mak-
ing special emphasis in partially structured fragments. More precisely, our aim was
to better understand the relationship between amino acid sequence and structural
properties of IDPs from different perspectives. For this, we have developed several
algorithms that can be grouped into two main categories:

• The first group is formed by algorithms for the prediction and sampling of IDP
conformation. These algorithms rely on an extensive database of three-residue
fragments (also called tripeptides) extracted from experimentally determined
high-resolution protein structures, described in Chapter 3. The information en-
coded in this database captures local sequence-dependent structural properties
that can be exploited for IDP modeling. First, we propose in Chapter 4 a method
to predict secondary structure propensities in IDPs based in a simple statistical
approach using information in the tripeptide database. Then, also using this
database, Chapter 5 presents a sampling algorithm that, combined with infor-
mation about structural propensities, is able to build realistic conformational
ensembles of IDPs.

• The second group includes algorithms for sampling conformational transition
paths. To better understand the transitions between order and disorder in
partially-structured regions, we developed a path search algorithm that finds
likely conformational transitions between two states applying a heuristic that ex-
ploits structural information in the tripeptide database. Chapter 6 presents the
algorithm and a proof of concept using two well-characterized mini-proteins. Fi-
nally, Chapter 7 presents a novel approach to globally explore the conformational
space of highly-flexible molecules such as IDPs. It is based on an efficient algo-
rithm originating from robotics, called Multi-TRRT. We propose a hybrid par-
alellization strategy enabling the computation of a roadmap of transition paths
between a (possibly very large) set of conformations in very short time. Prelimi-
nary results presented in this manuscript show the potential of this technique.

In addition to the methodological developments, in the context of this thesis, we
have applied the new methods to several systems in the framework of inter/pluri-
disciplinary work together with biophysicists and biologists. The most relevant one
has been the structural analysis of the huntingtin protein, the causative agent of
Huntington’s disease. The structural properties of the poly-Q region in huntingtin
were studied by coupling the backbone NMR chemical shifts and an optimized
combination of ensemble models generated by the sampling algorithm described in
Chapter 5. The results show the potential of the algorithm to reproduce structural
properties of challenging systems. The article describing this work (submitted) is
included as an annex of this thesis.
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2.1 Introduction

The high flexibility of IDPs makes their study highly complex. Many experimental
and computational methods have been developed to gain knowledge of this type
of proteins. This chapter presents basic concepts of structural biology with special
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emphasis on IDPs, and the most widely used experimental methods for their charac-
terization: Nuclear Magnetic Resonance (NMR) and Small-Angle X-ray Scattering
(SAXS). Then, an overview of computational protein modelling and the most pop-
ular simulation algorithms are presented. In addition, a special type of algorithms
coming from robotics, which I parallelized during my thesis (see Chapter 7), is
also explained. Finally, I highlight the importance of combining different types of
experimental and computational methods to obtain a more detailed description of
IDPs.

2.2 Structural biology

2.2.1 Protein structure

The amino acids are the constituent units of proteins. An amino acid is a molecule
composed of a carbon atom (α-carbon) attached to a carboxyl group (-COOH),
an amine group (-NH2), one hydrogen H and a radical R also called side chain,
see Figure 2.1. Notice that the Cα is a stereogenic center (bound to four different
groups) and, therefore two enantiomers are possible. In proteins L-amino acids are
used almost exclusively. A detailed explanation of the main concepts in structural
biology can be found in textbooks, such as references [36, 75].

Consecutive amino acid residues are linked together through a peptide bond, a
double bond between the carbon C of the carboxyl group of one residue and the N
of the following amine group, see red lines in Figure 2.2. When the peptidic bonds
are formed, two parts can be distinguished in a proteins: the backbone and the side
chains, see Figure 2.2 .

The side chain determines the physico-chemical properties of each amino acid
type. Although about 500 naturally occurring amino acids are known, only 20
appear in proteins. The sequence of these 20 amino acid residues in a peptidic chain
is called primary structure (Figure 2.3, a). Sequence is the fingerprint of the protein
and determines its final structure. The transformation from an elongated amino
acid chain to a compact 3D structure is called folding and starts with each region of
the protein adopting a specific secondary structure depending on the sequence. The

Cα
H2N R

H

COOH

L-amino acid D-amino acid

Cα H2NR
H

HOOC

Figure 2.1. L-amino acid and D-amino acid representation with its α-carbon, the amine
group, the carboxylic group, the hidrogen and the side chain
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Figure 2.2. Simplified representation of a protein. In red the peptidic bonds, in black the
backbone atoms and in green the residue side chains

Figure 2.3. Representation of the four levels of protein structure: a) Primary protein
structure, b) Secondary protein structure, c) Tertiary protein structure, d) Quaternary
protein structure

main secondary structures are: α-helix, β-sheet, turns and coil regions (β-sheet and
α-helix are represented in Figure 2.3b). These secondary structures interact between
them to finally form the tertiary structure (Figure 2.3c). Some of the proteins
interact with other proteins and come together to form complex called quaternary
structure (Figure 2.3d). Intrinsically Disordered Proteins (IDPs) do not experience
the folding process and remain disordered in physiological conditions. Despite their
inherent plasticity IDPs, are fully functional [242].

2.2.2 The Structure-function paradigm

Proteins play many important biological functions in living organisms. Enzymes
catalyze all types of chemical reactions, some are nutrient and storage proteins,
which are vital in many plants for the growth and survival of the seeds, others
provide cells with the ability to contract, some bind and transport substances,
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they can be structural proteins giving a defined shape to cells, and some govern
regulatory processes of the cell.

All these functions depend on the resulting structure of the protein, also called
native state. The native state is not a rigid conformation but a combination of ac-
cessible states that the protein can adopt depending on the solvent and the tempera-
ture. Therefore, proteins are dynamic systems and their conformational movements
are important for function [84]. Dynamics in flexible proteins, such as IDPs, is an
inherent feature: they are constantly moving and changing from one conformational
state to another. The energies of the ensemble of all possible conformations is called
conformational landscape and it is characteristic of each protein. Depending on the
sequence, the shape of the conformational landscape changes. While proteins that
fold in a well defined 3D structure will present a funneled landscape with a clear
stable global minimum state, proteins that do not fold into a specific shape, such
as IDPs, have a relatively flat energy landscape with multiple local minima and the
protein is constantly changing its shape moving between different states [100].

2.3 Intrinsically Disordered Proteins and their func-
tions

Intrinsically Disordered Proteins or Regions (IDPs/IDRs) have emerged as key ac-
tors for a large variety of biological functions such as cell signalling and regulation
[242, 56, 243]. The main feature of IDPs and IDRs is their lack of permanent
secondary or tertiary structure that provides them with an inherent malleability
enabling highly specialized biological functions [56]. The disordered nature of IDPs
is encoded in their characteristic amino acid sequence. IDPs are enriched in charged
and polar (Arg, Gly, Gln, Ser, Pro, Glu and Lys) and structure-breaking (Gly and
Pro) amino acids, whereas they are significantly depleted in bulky hydrophobic
(Ile, Leu and Val) and aromatic (Trp, Tyr and Phe) amino acids [4,5]. Eukaryotic
genomes are highly enriched in genes coding for disordered proteins, and this obser-
vation has been linked to the major complexity of these organisms. In particular,
the human genome has 44% of the genes encoding proteins containing disordered
fragments with a length greater than 30 residues [8]. The capacity of IDPs to adapt
their conformation to specifically recognize one or several partners, and the low to
moderate affinity for partners make IDPs ideal for protein-protein interactions [227].
In fact, it has been shown that interactome hubs are enriched in this family of
proteins [57, 110]. Partner recognition is normally performed through conserved
and partially structured motifs of the protein, and their individual properties can
be modulated by post-translational modifications or alternative splicing. IDRs are
highly flexible regions connecting well-folded globular proteins forming the so-called
multi-domain proteins. Multi-domain protein topology, which is highly prevalent in
eukaryotes, enables the presence of multiple biological activities performed by the
globular domains in close proximity [81, 128]. In many of these cases, IDRs behave
as entropic linkers with an inherent plasticity that can be tuned depending on the
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length and the specific amino acid sequence of the region.
IDPs/IDRs perform a large diversity of biological functions mainly exploiting

their inherent flexibility. These functions have been classified in six categories (see
Figure 2.4) in a recent study [231]:

1) Entropic chains: This category corresponds to all IDPs that are not struc-
tured and their function is directly linked to their disorder. These IDPs act
as springs, bristles or linkers, and their functions cannot be performed by
a rigid structures, as its ability to fluctuate from one state to another in a
conformational ensemble is fundamental.

2) Display sites: These disordered regions are in transient interaction with
one or more ligand(s) to induce a chemical modification (phosphorilation,
acetylation, ...) promoting post-translational modifications.

3) Chaperones: Their function is to assist in the folding, assembly and cellular
transport of newly formed proteins. The level of disorder of these proteins
is very high, allowing them to interact with different partners. It has been
recently discovered that RNA chaperones have a greater percentage of disor-
der in their sequence than other types of chaperones (40% disorder for RNA
chaperones compared to 15% disorder for protein chaperones). To further
emphasize the importance of disorder, the main function of these proteins
depends directly on the disorder since it is the disordered fragments that
recognize, solubilize or loosen the structure of misfolded proteins.

.
Figure 2.4. Functional classification of IDRs. Figure obtained from reference [231]
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4) Effectors: Some proteins having IDRs act as effectors causing a modifica-
tion in the behavior of a protein, either by activation or by repression of its
function.

5) Assemblers: Some proteins, through their IDRs, have several binding sites
with multiple partner proteins, and then act as molecular assemblers by pro-
moting the formation, stabilization and regulation of large protein complexes.

6) Scavengers: These IDPs or IDRs store and/or neutralize small ligands. For
example, casein traps calcium phosphate and thus prevent salt precipitation.

Under certain circumstances (mutations or environmental conditions) IDPs can
not properly perform their function. Indeed, IDP malfunction is linked to a large
number of diseases including cancer, neurodegeneration and cardiovascular dis-
eases [229].

The biological relevance of IDPs has fostered their structural characteriza-
tion [59]. Identification of the conformational preferences of binding motifs, the
detection of transient long-range contacts within the chain, the structural pertur-
bations exerted by post-translational modifications (PTMs), the shape of biomolec-
ular complexes with disordered partners, and the spatial distribution of globular
domains in multi-domain protein are structural features that must be characterized
to understand the molecular bases of biological function. This characterization is
far from being trivial as the inherent disorder of IDPs/IDRs precludes their crys-
tallization.

In the following sections, NMR and SAXS experiments, which will be used
along the thesis, will be explained in more detail, focusing on their application to
the study of IDPs. In addition, I will emphasize how their structural information
can be integrated or combined with computational approaches to characterize IDPs
from a structural and dynamical perspective.

2.4 Nuclear Magnetic Resonance spectroscopy

Nuclear Magnetic Resonance (NMR) spectroscopy is an established analytical
method in many scientific fields such as physics, chemistry, biology and medicine. A
detailed explanation of the main concepts in NMR can be found in textbooks such
as references [86, 78]. NMR is one of the principal structural biology techniques. It
has atomic resolution and also has the unique ability to accurately probe protein-
protein interactions and to measure the dynamic properties of proteins [149].

2.4.1 Nuclear Magnetic Resonance spectroscopy of proteins

Solving the 3D structure of a macromolecule with atomic resolution is crucial to un-
derstand the details of its the function. NMR together with X-ray crystallography
and cryo-Electron Microscopy (cryo-EM) are the best means of analyzing protein
structures at atomic resolution. However, NMR experimental conditions allow to
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study proteins in near-natural conditions and capture the dynamics and the flexi-
bility of particles in solution. However, the main limitation of the method is the size
of the proteins that can be studied. Large globular proteins have short NMR signal
relaxation times, thus reducing the sensitivity of the spectra. Moreover, large pro-
teins present more peaks in the spectra, complicating the process of the frequency
assignment. Important in the context of this thesis, NMR is the only technique al-
lowing the high-resolution structural characterization of IDPs [58]. The first step to
study an IDP by NMR is to assign a resonance frequency to all magnetically active
nuclei (1H, 15N, and 13C) of the protein. Due to very low amide proton disper-
sion, assignment of IDP spectra is challenging. However, the use of high magnetic
field spectrometers and several methodological developments allow to routinely as-
sign NMR frequencies of large IDPs [156]. In the last two decades, novel NMR
experiments combined with modelling strategies have been developed to interpret
experimental parameters measured in IDPs in terms of structure [101, 102, 100, 243].

2.4.2 General NMR theory

The principle of NMR spectroscopy is that a nucleus is placed in a very strong
magnetic field and it is then exposed to electromagnetic radiation making the nu-
cleus resonate at a specific frequency of that radiation. The absorption produced
by the resonance of the nucleus is detected by radio receivers. A nucleus needs to
have a spin to be detected. All nuclei having an odd number of protons or/and an
odd number of neutrons have a net spin different of zero, the rest of atoms have
their spin compensated and they can not be detected by NMR. In biomolecules,
the atoms that can directly be observed are 1H but not 12C, 14N and 16O. To be
able to obtain more information about the proteins, isotope labeling with 13C and
15N is necessary. As nuclei are charged particles, their movement generates a mag-
netic field corresponding to a magnetic moment µ proportional to the spin angular
momentum I and a constant specific for each atom γ, known as gyromagnetic ratio.

µ = γI (2.1)

For the case of a 1/2 spin nucleus and in the absence of a magnetic field, the two
states are energetically degenerate. If the nucleus is in a magnetic field B0 in the
Z direction, the spins will align and the two states will have a different energy as
a result of the interaction between the nuclear magnetic dipole moment and the
external magnetic field. The spin states positioned against the field have higher
energy compared to these aligned with the field. The energy gap between the two
states, δE, increases with the applied magnetic field B0. The NMR spectrum is the
result of applying energy to the system in the form of varying radio frequencies. The
nuclei can only absorb energy which matches the δE. As E = Hv, only a specific
frequency is absorbed. The absorbed radio frequency induces a resonance, produc-
ing a peak in the spectrum at that specific precession frequency. In other words,
the magnetic moment of the nucleus rotates around the Z axis at the resonance
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frequency. The motion is called Larmor precession, and the precession frequency,
v0, is given by equation:

v0 = |γ|B0
2π (2.2)

2.4.3 Population of nuclei in a sample

The sample exposed to NMR not only contains one nucleus or one molecule but
a large number of them. The resulting spectrum corresponds to the information
of all the molecules in the sample, and the behavior of the population has to be
understood to interpret the final result. When the magnetic field is applied, there
are more nuclei in the low energy spin state than in the high energy spin state. The
spin populations follow the Boltzmann distribution:

nhigh
nlow

= e−
δE
kT (2.3)

where nhigh is the number of nuclei with high spin energy, nlow is the number of
nuclei with low spin energy, δE is the energy gap between the two energetic levels,
k is the Boltzmann constant (k = 1.38066 · 10−23JK−1) and T is the temperature.
The population excess generates an overall magnetization called bulk magnetization
(M). Increasing the bulk magnetization improves the sensitivity of the experiment.
Therefore, following the equation 2.3, we can increase the population difference by
lowering the temperature or increasing δE by applying a stronger magnetic field B0.

The bulk magnetization is the average of all the individual nuclear magnetic
moments and, if no perturbations are applied, the resulting vector points in the
direction of the external magnetic field B0, see Figure 2.5a. When the radio fre-
quency is pulsed into the sample, all the nuclear magnetic moments are displaced in
the same direction and the resulting average is not pointing to the Z direction but
with a certain angle to this axis. As all the individual nuclei are precessing at the
resonance frequency in a coherent way, the resulting bulk magnetization is moved
from its original axis, and starts to precess in the X,Y plane see Figure 2.5b. When
the radio frequency is turned off, the precession of the individual nuclei becomes
disordered again and, the bulk magnetization gradually returns to the Z axis. This
process is called spin-spin relaxation, and the time it takes is T2. During relaxation,
the bulk magnetisation vector moves around the Z axis, and this oscillating mag-
netic moment generates a electrical current that is detected in Y or X axis. The
resulting periodic signal over time is then treated using Fourier Transform to be
expressed in terms of frequencies.

2.4.4 Electron shielding

Nuclei are surrounded by electrons, which are moving charges that obey to the laws
of electronic induction. The applied magnetic field, B0, induces circulation in the
electron cloud, and a magnetic field in opposite direction of B0 is induced. As a
consequence, the local magnetic field that the nucleus experiences is smaller than
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Figure 2.5. Schematic representation of a Nuclear Magnetic Resonance experiment. The
applied magnetic field (vertical red vector) orientates the atom spins to precess around the
direction of field. a) More nuclei are oriented in the sense of the field represented with
vectors of different colors, but because the nuclei are precessing incoherently the resulting
bulk magnetization, grey vector, is pointing in the direction of the magnetic field. b) After
pulsing the radio frequency, all nuclei precess coherently around the magnetic field direction
and a net bulk magnetization appears.

the applied field:
Blocal = B0(1− σ) (2.4)

where σ is known as the shielding or screening constant, which is a dimensionless
quantity. The electrons are shielding the nucleus and a higher external field is
required to meet the resonance condition. This effect has a crucial importance as
the electronic distribution surrounding an atom depends on the electronegativity of
near atoms allowing to identification of the chemical compounds, or the frequency
assignment.

2.4.5 NMR observables

There are multiple structural observables that can be obtained from NMR spec-
troscopy and that have been used for the study of proteins, such as J-coupling, Nu-
clear Overhauser effects (NOEs), relaxation rates, residual dipolar coupling (RDCs)
and chemical shifts (CS). In this section, we will focus on explaining those used
throughout the thesis: CSs and RDCs.

2.4.5.1 Chemical Shifts

The local magnetic field generated by the local electron density surrounding each
nucleus generates small differences in the absorption frequency from the standard
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one. The observed resonance frequency value of each nucleus is known as chemical
shift (CS) and it is used to identify each nuclei in the molecule. CSs are expressed
in function of the reference resonance frequency vref and in parts per million (ppm):

ppm = (vo − vref )106

vref
(2.5)

where vo is the observed resonance frequency. As CSs are small variations from the
reference frequency, all the observed CSs for the same nuclei appear clustered in a
relative small region of the spectrum. The reference resonance frequency vref cor-
responds to the bare proton nucleus, which is a non convenient reference. Therefore
the shifts are quoted relative to the atoms of standard compounds, such as Tetram-
ethylsilane Si(CH3)4 (TMS).

CSs are very sensitive to the chemical environment sensed by each nucleus.
Therefore, their analysis allows, in principle, the determination of protein struc-
tures. However, these strategies require the combination of the experimental data
with advanced computational tools [204].

IDPs have an inherent flexibility that results in a large number of protein con-
formations present in the solution. For this reason, the CS that is measured corre-
sponds to the average all the conformations present in solution. When compared
with the expected CSs from a random coil, these average values reveal the presence
of secondary structural elements. A chemical shift index (CSI) has been estab-
lished to highlight regions that deviate from pure random coils to form secondary
structural elements [240, 239]. With the growing relevance of IDPs, the interest
in using CSs to detect partially structured elements has been renewed, and several
databases have appeared based on small synthetic peptides [195, 111] or IDPs [221]
to identify these regions.

2.4.5.2 Residual dipolar couplings (RDCs)

Residual dipolar couplings (RDCs) probe the relative orientation of different pairs of
nuclei within a molecule [176, 133]. Dipolar couplings are sensitive to the distance
between both nuclei and the angle that their connecting vector forms with the
external static magnetic field. In solution, where molecules tumble isotropically,
dipolar couplings are cancelled. However, if an alignment medium is introduced in
the sample, molecules behave anisotropically, hampering the signal to be completely
cancelled and RDCs can be measured [69, 205].

For a couple of nuclei i and j with spin 1/2, the following equation describes
the splitting of the signal [224]:

Dij = µ0γiγjh

(2πrij)3

〈
3 cos (θ − 1)2

2

〉
(2.6)

where Dij is expressed in Hz, γi and γj are the gyromagnetic constants of the nuclei
i and j, respectively, µ0 is the vacuum magnetic permeability and h is the Planck’s
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constant. The brackets around the angular term means the average over all the
motions of the particles in the solution. The structural variables of the equation
correspond to the internuclei distance rij , and the angle θ is the angle between
the vector connecting atom i and j and the applied magnetic field vector B0, see
Figure 2.6.

In the case of non-flexible or rigid molecules, the angular average in equation
2.7 can be replaced by a geometric sum of terms describing the orientation of
the internuclear vector with respect to the protein and the corresponding average
describing the order of the entire molecule.〈

3 cos (θ − 1)2

2

〉
=

∑
kl=xyz

Skl cos (αijk ) cos (αijl ) (2.7)

The position of the protein is defined with respect to arbitrary Cartesian coordinate
axes being αijn the angle between the internuclear vector and the axes. Skl is a
Cartesian 3X3 tensor describing the ordering of the protein and depends on the
orientation of the magnetic field relative to fixed coordinate axes in the protein.
As a result, with the RDCs it is possible to obtain local and distant information
about the orientation that has been widely used for structural determination [89].
A detailed explanation of the equations can be found in [225].

Many liquid-crystalline aligning media have been used to generate the
anisotropic sample of the proteins in solution. The common alignment media are
charged polyacrylamide gels that include bicelles made of dimyristoylphosphatidyl-
choline (DMPC) and dihexanoylphosphatidylcholine (DHPC) [11, 162]; filamentous
phages Pf1 [80] or fd [31]; stretched polyacrylamide gel [190, 30]; compressed poly-
acrylamide gel [228]; polietilenglicol/hexanol mixture [188]. More recently, align-
ment media based on DNA [54, 135] and collagen [138] have also been developed.
More detailed information about the most commonly used alignment means can be
found in reviews [10, 225].

IDP conformations in solution differ in shape and size, and therefore, when
they are in an alignment media, they experience different degrees of alignment.
In addition, the internuclear vector has a different orientation with respect to the
alignment tensor for each conformation. All this variability is condensed in an aver-
age RDC that reports on the conformational sampling of an individual vector with
respect to the biopolymeric chain [136]. Nevertheless, RDCs measured in partially
aligned samples are the most sensitive experimental measurement to probe confor-
mational sampling in IDPs [101]. Slighly negative NH RDC values are observed
in random coil regions [136]. Interestingly, more positive and more negative RDCs
than expected for a random coil are associated to α-helices and extended conforma-
tions, respectively [151]. This is an excellent indication to qualitatively assess the
presence of distinct types of secondary structural elements. More quantitative in-
terpretation of RDCs can be derived when applying atomistic models of disordered
chains [103, 15, 141]. The measurement of multiple backbone RDCs enriches the
description of residue-specific structural preferences [98].
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Figure 2.6. Representation of the angle θ formed between the magnetic field B0 and the
vector connecting the two bonded atoms i and j

2.5 Small-Angle X-ray Scattering

Small-angle scattering (SAS) of X-rays (SAXS) or neutrons (SANS) is a biophysical
technique used to determine the low resolution structure of particles with a size
ranging from 1 nm up to around 300 nm. A detailed description of the main
concepts in SAS can be found in textbooks, such as references [159, 218]. SAS is a
versatile technique used in many different fields, and many types of samples can be
analyzed: solid objects, dust, gels or solution samples. In structural biology, SAS is
a useful tool to study the overall shape and structural transitions of macromolecules
in solution. Work in this thesis, as well as the explanations in this section, are
focused on SAXS, but the theory and analysis would be equivalent for SANS data.

2.5.1 Small angle X-ray scattering for proteins

Small-angle scattering of X-rays (SAXS) is a method capable of giving overall in-
formation about the structure and the conformational changes of biological macro-
molecules in solution [64, 219, 113, 177, 93]. Major advances in instrumentation
and computational methods in the last decade have led to a tremendous increase
in the applications of SAXS in structural biology [171, 145, 169, 179, 72]. While
lower in resolution than NMR, X-ray crystallography and cryo-EM, SAXS has the
advantage that it does not require crystallization and it does not have molecular
weight limitations. The sample is analyzed under near native conditions, allowing
its use not only for static structural modelling but also for analyzing dynamical
processes, such as folding/unfolding or assembly/dissociation, and also to under-
stand the response to changes in the experimental conditions (pH, temperature,
pressure, ionic strength, binding...). The experimental conditions of SAXS allows
the characterization of proteins that are impossible to crystallize, like IDPs.
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The biophysical information of the particles in the sample provided by SAXS
are: radius of gyration (Rg), the maximum intra-particle distance (Dmax) and the
molecular weight (MW ). The scattering data are also able to provide structural
information that can be exploited to generate low-resolution 3D structures. Due
to its low resolution nature, SAXS becomes more informative in combination with
other structural, hydrodynamic, computational or biochemical methods. In the
following sections, the method and its application to IDPs will be described.

2.5.2 General SAXS theory

In a typical SAXS experiment, a highly focused monochromatic (with a well-defined
wavelength, λ) and collimated X-ray beam is directed orthogonally onto a flow cell
or static flat sample holder containing the biological sample. The beam is scattered
while passing thought the sample before impacting the 2D detector.

The photons of the monochromatic plane wave, with a wave vector module
|k| = 2π/λ, impact with the electrons of the molecule and are deviated. We only
consider elastic collisions between the photons and the electrons because inelastic
collisions have smaller effect and do not yield any structural information. Elastic
scattering means that the scattered photons have the same energy or wavelength
than the incident photons |ki| = |kf |. In a solution of proteins, the scattering is
isotropic and the resulting intensity, Itotal(s), depends only on the modulus of the
momentum transfer s = ki − kf , |s| = 4θ sin θ/λ, see Figure 2.7.

At any point r inside the protein, the scattering length density ρ(r) is the
total scattering length of the protein per unit of solution volume. The scattering
amplitude A(s) is the Fourier transform of ρ(r) over the protein volume.

As the particles in solution are randomly situated and oriented, they scatter
incoherently and the scattering pattern is isotropic. The observed intensity is the
(spherical) average of the intensities due to individual particles in all possible po-
sitions and orientations. This resulting intensity is the product of the scattering
amplitude and its complex conjugate:

A(s) ·A∗(s) = I(s) (2.8)

Interpretation of the scattering result relies on the formalism of contrast varia-
tion [177]. Not only the proteins in the solution contribute to the total scattering in-
tensity, but the bulk solvent also scatters the beam. The intensity due to the solvent
needs to be subtracted to isolate the contribution of the protein, ∆ρ(r) = ρ(r)−ρs.
ρ(r) being the total electron density in r and ρs the electron density of the solvent.
The scattering amplitude A(s) is a Fourier transform of the excess electron density:

A(s) = F [∆ρ(r)] =
∫

∆ρ(r)e−isrdr (2.9)

Relevant structural information of the particle can be obtained by the correla-
tion function, γ(r) [43]. γ(r) expresses the correlation of electron density function
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2θ|k| = 2π/λ

|k'| = |k|
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|s| = (4π sinθ)/λ
s = k' - k
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Figure 2.7. Schematic representation of a SAXS experiment. The incident X-ray beam
is scattered when passing through. The resulting scattered photons are captured in a 2D
detector and then integrated as a function of the scattering angle (2θ). This process is
performed for the buffer and for the sample that are then subtracted to obtain the protein
scattering profile.

between two points within the system separated by a distance r. γ(r) is related
with I(s) by the next equation:

I(s) = 4π
∫
γ(r)r2 sin sr

sr
dr (2.10)

Where sin sr
sr corresponds to the radially average 〈e−isr〉 by applying the Debye

formula to the isotropic scattering intensity recorded in the detector [42].

Experimentally, the final scattered curve is obtained by subtracting the SAXS
profile of the buffer from that of the sample containing the macromolecule, see
Figure 2.7.
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2.5.3 Structure and form factors

There are two types of scattering interactions that contribute to the final SAXS
intensity, the form factor, I(s), and the structure factor, S(s), Itotal(s) = I(s) ·S(s).
The form factor corresponds to the scattering produced by the particle and therefore
gives information about its structure, in our case the structure of the protein. The
structure factor is the intensity due to the fact that our sample is composed by more
than one particle. The structure factor gives a general information about how the
particles are distributed within the sample. In structural biology, we are interested
on the shape of the particle, so we try to minimize the effect of the structure factor
by diluting the sample to reduce the inter-particle interference and making the
structural factor as close as possible to 1. However, samples must contain enough
protein ( > 1 mg/mL) to obtain a correct signal to noise. As a consequence, a
dillution series of the protein of interest is performed, and the resulting curves are
merged (or extrapolated to infinite dilution) to increase the signal to noise while
avoiding the structure factor contribution.

2.5.4 Radius of gyration and forward scattering

The Rg is a parameter directly extracted from the SAXS curve that provides a
measure of the overall size of the protein. The Rg is the average root-mean-square
of the distances to the center of density in the macromolecule weighted by the
scattering length density. Rg is an indicator of the compactness of the protein.
With the same chain length, if the protein adopts a compact shape the resulting
Rg will be smaller compared to an extended shape. The Rg can be estimated using
Guinier’s approximation [77]:

I(s) ≈ I(0) exp
−s2R2

g

3 (2.11)

This Gaussian function approximation of the intensity for small angles, s < 1.3,
and plotted as lnI(s) vs. s2 should be a linear function from where the Rg can
be obtained. In the same extrapolation process, the forward scattering (or the
scattering at 0 angle), I(0), can be estimated. This parameter, which is proportional
to the number of electrons of the particle, can be used to estimate the molecular
weight and the oligomerization state of the macromolecule in solution.

2.5.5 Pair-wise distance distribution

For non-interacting particles in dilute solution the scattering intensity can be rep-
resented by an integral over the particle:

I(s) = 4π
∫ Dmax

0
p(r)sin(sr)

sr
dr (2.12)

where r is the distance between two points scattered within the sample and Dmax

is the maximal dimension of the particle. p(r) = γ(r)r2 represents the histogram
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Figure 2.8. Scattering curves and pair-wise distance distribution functions for 5 particles
(sphere, long rod, flat disk, hollow sphere, and dumbbell) with the same size and different
shapes. From pair distribution functions is easier to intuitively identify the original shapes
of the particles than using the scattering curve. Figure inspired from [113]

of distances between pairs of points within the macromolecule and can be obtained
by the indirect Fourier transformation of the SAXS curve:

p(r) = 1
2π2

∫ ∞
0

srI(s) sin srds (2.13)

As p(r) is described in real space, it is more intuitive to interpret the structural
properties using p(r) rather than using I(s). This is illustrated in figure 2.8 where
particles of the same size but different shapes yield distinct SAXS profiles and p(r)
functions. Notice that from p(r), one can intuitively identify the shapes of the
original particles.

2.5.6 SAXS applied to Intrinsically Disordered Proteins

One of the major advances of SAXS in the last decade has been its extension to
address biomolecular dynamics [53, 18, 182, 17, 109, 106]. Although used in the
past to study protein flexibility [6], the availability of robust protocols to interpret
SAS data in terms of ensembles of conformations have generalized these studies
and, therefore, have enriched the spectrum of applications of the technique [14].

The fact that IDPs sample an astronomical number of conformations has a
strong impact on the scattering profiles measured and their comprehensive analysis
in terms of structure. The experimental SAXS profile of an IDP corresponds to
the average of all the conformations that the protein adopts in solution, inducing
special features to the curves. Figure 2.9A displays the synthetic SAXS curves
for seven conformations of p15PAF, a 111 residue-long IDP, selected from a large
pool of 5,000 conformations [40]. The individual conformations display several
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Figure 2.9. (A) Seven representative conformers randomly selected from an ensemble of
5.000 explicit all-atoms models generated for p15PAF [40]. Solid lines correspond to their
computed curves (B) and Kratky plots (C) and are colored as in panel A. The average
over the ensemble of 5,000 conformations yields a featureless curve that is in very good
agreement with the experimental data (gray circles). (D) p(r) functions computed for the 7
conformers and the complete ensembles in the same color code that in panels (A-C). Figure
extracted from [32]

features along the complete momentum transfer range simulated. The initial part
of the simulated curves, containing the lowest resolution structural information,
presents distinct slopes indicating a large variety of possible sizes and shapes that an
unstructured chain can adopt. The SAXS profile, obtained after averaging curves for
the 5,000 conformations, presents a smoother behavior with essentially no features
(Figure 2.9B).

Traditionally, Kratky plots (I(s)∆s2 as a function of s) have been used to quali-
tatively identify disordered states and distinguish them from globular particles. The
scattering intensity of a globular protein behaves approximately as 1/s4 conferring
a bell-shaped Kratky plot with a well-defined maximum. Conversely, an ideal Gaus-
sian chain has a 1/s2 dependence of I(s) and therefore presents a plateau at large
s values. In the case of a chain with no thickness, the Kratky plot also presents
a plateau over a specific range of s, which is followed by a monotonic increase.
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This last behavior is normally observed experimentally in unfolded proteins. The
Kratky representation has the capacity to enhance particular features of scattering
profiles that allows an easier identification of different degrees of compactness [53].
This is shown in Figure 2.9C where different degrees of compactness for the confor-
mations are observed. Multi-domain proteins present in the same molecule a dual
(folded/disordered) behavior and, consequently SAXS profiles and Kratky plots
present contributions from both structurally distinct regions. Pair-wise distance
distributions, p(r), derived from disordered proteins also present specific properties
(Figure 2.9D). The most characteristic feature is the smooth decrease towards large
intramolecular distances. Maximum intramolecular distance, Dmax, are very large
in disordered proteins. It is worth noting that due to the low population of highly
extended conformations in the ensembles, experimental Dmax values are systemat-
ically underestimated [14]. Unstructured proteins, due to the presence of extended
conformations, are characterized by large average sizes compared to globular pro-
teins. The radius of gyration, Rg, is the most common descriptor to quantify the
overall size of molecules in solution and it is normally obtained using Guinier’s
approximation, eq. 2.11). Debye’s approximation (eq. 2.14) can be more precise
than Guinier’s one to derive Rg values as its validity extends to larger momentum
transfer ranges [24].

I(s)
I(0) = 2

x2
(
x− 1 + e−x

)
;x = s2 ·R2

g (2.14)

Alternatively, p(r) function calculated from the complete scattering profile using
a Fourier transformation also yields precise Rg values for disordered proteins. The
experimental Rg is a single value representation of the size of the molecule, which
for disordered states represents a z-average over all accessible conformations in
solution [64]. The most common quantitative interpretation of Rg for unfolded
proteins, which is based on Flory’s studies in polymer science, relates this parameter
to the length of the protein chain through a power law [237],

Rg = R0 ·Nν (2.15)

where N is the number of residues in the polymer chain, R0 is a constant that
depends on several factors, in particular, on the persistence length, and ν is an
exponential scaling factor. For an excluded-volume polymer, Flory estimated ν to
be ≈ 0.6, and more accurate theoretical estimates established a value of 0.588 [76].
A recent compilation of Rg values measured for 26 chemically denatured proteins
sampling broad range of chain lengths found a ν value of 0.598 ± 0.028, and a R0
value of 1.927 ± 0.27 [114]. The agreement between the ν value obtained exper-
imentally and the theoretical models demonstrates the random coil nature of the
chemically denatured proteins. However, the question whether the conformational
sampling in the chemically denatured state is equivalent to that found for IDPs in
native conditions must be clarified, see reference [114] and references therein. Using
atomistic ensemble models of several disordered proteins, Flory’s equation has been
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parametrized for IDPs [13]:

Rg = (2.54± 0.01) ·N (0.522±0.01) (2.16)

The exponential value obtained from the parametrization, ν = 0.522 ± 0.01,
is notably smaller than that derived from the dataset of denatured proteins,
ν = 0.598 ± 0.028, indicating that IDPs are more compact than chemically de-
natured proteins. This observation is in line with NMR studies that indicated that
urea denatured proteins have an enhanced sampling (around 15%) of extended con-
formations compared with IDPs [144]. As some IDPs are expected to have certain
populations of secondary or tertiary structure, this relationship can be used as an
interpretative tool. Thus, deviations from expected IDP random coil model indicate
enhanced degrees of compactness or extendedness within the protein.

2.6 Modelling Intrinsically Disordered Proteins

SAXS data and the majority of NMR structural parameters are ensemble averages.
In order to fully exploit the structural and dynamic information encoded in experi-
mental data, the use of theoretical models and computational methods is necessary.
Indeed, as further discussed in the next section, the suitable coupling of experi-
mental data and theoretical/computational methods is essential to build realistic
models of IDPs in order to better understand their structural and dynamic prop-
erties. However, modelling disordered proteins is extremely challenging [247]. As
mentioned above, IDPs present a relatively flat (non-funnelled) energy landscape,
with an extremely large number of local minima separated by low-energy barriers.
This, combined with their large size, makes the analysis of their energy landscape
a challenging problem for computational methods.

In this section, we briefly present computational methods used to model and
simulate IDPs. They are grouped in three categories: (1) knowledge-based ap-
proaches to build conformational ensemble models, (2) physics-based (traditional)
methods to sample states and simulate dynamics, (3) robotics-inspired methods to
explore the conformational space.

2.6.1 Knowledge-based approaches to build conformational ensem-
ble models

Computational methods for structural investigations of IDPs are mainly aimed at
producing an ensemble representation of disordered proteins. This requires an ex-
tensive and statistically correct exploration of the conformational space to obtain
a representative set of states. Information extracted from an statistical analysis of
known protein structures can be used for this purpose. The most representative
knowledge-based method for the generation of atomistic models of disordered pro-
teins is Flexible-Meccano (FM) [15, 163], although other similar methods have been
described [103]. In FM, each conformation is built by assembling peptide plane units
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in a consecutive manner using a residue-specific coil library derived from crystallo-
graphic structures. To avoid the collapse of the chain, a coarse-grained description
of side chains is also used. Based on this set of conformations, experimentally
measurable NMR parameters and SAXS curves can be estimated, which has per-
mitted the validation of the resulting models. FM provides excellent models for the
random-coil but do not capture structural features involving multiple consecutive
residues, such as secondary structural elements. To solve this problem, FM allows
to add the percentage of secondary structure population that the user considers
appropriate to fit the experimental data. NMR observables are obtained using ap-
propriate computational methods and compared with the experimental ones. If the
result does not satisfy the process is restarted again adjusting the artificially added
structure. Although this method has given good results, it is a time-consuming
and laborious strategy [238, 40, 213]. FM has also been used with {φ, ψ} values
derived from MD simulations [154]. The long-range contacts can also be simulated
with FM, since it allows to force the contact between the residues of the chain and
to see the effect in the experimental parameters [12]. In this thesis, we present
an approach that exploits the structural information encoded in an extensive coil
library of three-residue fragments (Chapter 3) to create IDP ensemble models that
capture relevant structural features, therefore overcoming some of the limitations
of FM. This method is explained in Chapter 5.

2.6.2 Physics-based methods to sample states and to simulate dy-
namics

Different methods based on physical models have been proposed to sample the con-
formational space of IDPs and to simulate their dynamic behaviour. The most
frequently-used methods are based on molecular dynamics (MD) simulations. MD
simulations analyze the evolution of the system under study by solving Newton’s
equations of motion [107, 174]. Theoretically, MD is a suitable method to cor-
rectly sample the conformational space of IDPs. Nevertheless, in practice, the
high-dimensionality and the wideness of the energy landscape hampers its exhaus-
tive exploration. Several approaches have been proposed to enhance conformational
exploration with MD methods. A particularly effective one is Replica Exchange MD
(REMD) that runs multiple simulations in parallel with different settings (usually
different temperatures) and exchanges states between these processes [222, 246, 28].
Going further in this direction, a recent method called Multiscale Enhance Sampling
(MSES) couples temperature replica exchange and Hamiltonian replica exchange,
using a coarse-grained model to guide atomistic conformational sampling [125].
The performance of MD-based method can also be improved by the integration of
experimental data to restrain the exploration of the most relevant regions of the
conformational space [131, 44, 244].

Monte Carlo (MC) methods are a classical alternative to MD, being the Markov
chain Metropolis scheme [146] the most widely used MC sampling technique [235].
The system is randomly perturbed and the new conformation is accepted with a
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probability that depends on the energy change between the new conformation and
the previous one. Particular mention deserves a recently proposed variant called
Hamiltonian Switch Metropolis Monte Carlo (HS-MMC), which has been specially
conceived to study IDRs tethered to globular domains. Proteins including IDRs
present energy minima due to the contact of the disordered and ordered regions.
To avoid being trapped in such minima, the HS-MMC switches between an all-atom
Hamiltonian to an excluded volume Hamiltonian to push the IDR away from the
ordered domain.

Both MD- and MC-based approaches may suffer from inaccuracies of current
energy models, which are better suited to globular proteins and tend to provide
structurally biased ensembles that do not properly reflect the conformational be-
haviour of unstructured proteins in solution [20, 83]. The development of more
suitable force-fields and solvation models for IDPs are key issues for a correct per-
formance of computational methods. Indeed, this is a very active field of research
[234, 60].

When applied to large molecules, MD and MC methods are computationally
demanding. Thus, parallel computing is almost mandatory. Basic MD and MC
methods are sequential processes, but parallel computation is usually applied at a
lower level for energy evaluation (and derivatives). More sophisticated variants of
these methods, such as REMD, admit parallelization at a higher level. This will be
discussed in Section 7.2.1.

2.6.3 Robotics-inspired methods to explore the conformational
space

Algorithms originating from robotics, which compute feasible paths between two
configurations for multi-body systems in a constrained space, have also been applied
to model conformational transitions in biomolecules such as proteins and peptides
[2, 71, 199]. One of these methods is the Rapidly-exploring Random Tree (RRT)
algorithm [122], a path planning algorithm that can tackle complex problems in
high-dimensional spaces. The basic principle of the RRT algorithm is to construct
incrementally a tree whose origin is located at the initial configuration qinit to ex-
plore the space of accessible configurations and find a feasible path connecting qinit
to the final configuration qgoal. A more sophisticated extension of the RRT, the
Transition-based Rapidly explorer Random Tree (TRRT) algorithm [35], was de-
signed to find the high-quality (low-cost) paths, when a cost/energy function to
evaluate configurations is provided. The pseudo-code of TRRT is sketched in Al-
gorithm 1. Note that the TransitionTest inside the TRRT is inspired from the
Metropolis test in MC methods. The originality if TRRT is that the temperature
parameter, which modulates the difficulty of this transition test, is a self-adaptive
parameter that evolves in order to avoid local minima traps. This class of al-
gorithms, and in particular the multi-tree version of the TRRT, will be further
explained in Chapter 7.
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Algorithm 1: Transition-based Rapidly-exploring Random Tree
input : the configuration space C

the initial configuration qinit and the final configuration qgoal
output: the tree T

1 T ← InitTree(qinit)
2 while not stoppingCriteria (T , qgoal) do
3 qrand ← sampleRandomConf(C )
4 qnear ← findNearestNeighbor(T , qrand)
5 qnew ← extend(qnear, qrand)
6 if qnew 6= null and
7 TransitionTest(cost(qnear), cost(qnew)) then
8 addNewNode(T , qnew)
9 addNewEdge(T , qnear, qnew)

2.7 Combined use of SAXS, NMR and computational
methods

To better understand the structure and dynamics in IDPs, the combination of dif-
ferent experimental and computational methods is necessary. The complementarity
between NMR and SAS is based on the distinct resolution of the information pro-
vided. Whereas SAS probes the overall properties of molecules, NMR information
reports on atomic or residue-specific information. Therefore, the simultaneous de-
scription of both observables strongly suggests the appropriateness of the derived
model. In that context, SAXS can be used to validate structural models of IDPs
refined with NMR data. In this approach, the residue-specific conformational pref-
erences of an IDP are refined using RDCs and CSs using Flexible-Meccano [15, 163].
The final model contains percentages of secondary structural elements in localized
regions that have been imposed to properly describe the NMR data. The resulting
ensemble can be validated by simply comparing the average SAXS curve computed
from the ensemble with that experimentally measured one. This strategy has been
applied to the partially folded Sendai virus PX [15], the transactivation domain of
p53 [238], the K18 construct of Tau protein [155, 154], and the oncogene p15PAF
[40]. A similar approach has been performed to study PaaA2 antitoxin [213]. In
this last study, the NMR-derived ensemble was used as starting pool for a SAXS
EOM refinement, demonstrating that the protein exists in solution as two preformed
helices connected by a flexible linker.

The best manner to exploit the complementarity of both techniques is to in-
tegrate the experimental data into the same refinement protocol. Some of these
integrative approaches have been applied to IDPs. One of them is ENSEM-
BLE, a program that derives ensembles of disordered proteins by collectively de-
scribing SAXS curves in addition to several NMR observables: CS, J-couplings,
RDCs, PREs, Nuclear Overhauser effects, hydrodynamic radius, solvent acces-
sibility restraints, hydrogen-exchange protection factors, and 15N R2 relaxation
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rates [142, 119]. A large number of random structures are computed with FOLD-
TRAJ or TRADES [63, 62], and a Monte Carlo algorithm is used to select a subset
of these structures that are collectively consistent with the experimental restraints.
This subset is used as a basis for the generation of new structures, and the process is
repeated until a final ensemble consistent with all of the experimental measurements
is obtained. This approach addresses the intrinsic problem of under-restraining and
consequent over-fitting by finding the smallest ensemble that is consistent with
all experimental restraints imposed. ENSEMBLE has been applied to character-
ize the protein Sic1 and its hexaphosphorylated version pSic1 by combining SAXS
data with several NMR parameters, including CS, PREs, RDCs, and 15N R2 [148].
Moreover, a structural model of the complex between pSic1, which contains sev-
eral binding regions, and its partner Cdc4 was generated by combining restraints
of the free form of pSic1 with sparse NMR data of the complex suggesting a fuzzy
interaction. ASTEROIDS is another program that allows the synergistic interpre-
tation of NMR and SAXS data [98]. The power of ASTEROIDS is illustrated in
a recent study of Tau and α-synuclein using NMR (CSs, RDCs, PREs) and SAXS
data [194]. Using extensive cross-validation, the authors showed that five different
types of independent experimental parameters are predicted more accurately by se-
lected ensembles than by statistical coil descriptions. With this method, they could
highlight that Tau and α-synuclein sample polyproline-II region in the aggregation-
nucleation sites.
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Tripeptide database
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3.1 Introduction

One of the basic components of the algorithms presented in following chapters of
this manuscript is a database of three-residue fragments (called tripeptides from
now on). We built this tripeptide database from a large set of experimentally
determined high-resolution protein structures with the aim of exploiting the struc-
tural information encoded in these fragments. Note that the use of tripeptides en-
riches the structural information of the database compared with traditional amino
acid-specific databases usually used for IDP conformational sampling [15]. With
this additional information, we expected to build more accurate models of disor-
dered proteins including partially formed secondary structural elements. Whereas
libraries involving larger fragments have been shown to be powerful tools for the
prediction of probable (stable) conformations of globular proteins and peptides
[79, 116, 184, 8, 202, 140], our results (see Chapters 4 and 5) highlight that our ex-
tensive database of tripeptides is enough to accurately represent the conformational
variability and local structural propensities in IDPs. Note that representing the con-
formational variability of disordered chains requires a broad sampling of structures,
which would not be guaranteed using databases of larger (penta- or hepta-peptide)
fragments. In this regard, tripeptides emerge as an optimal compromise for our
purpose of exploring the conformational sampling in IDPs.

This chapter explains the building process of the tripeptide database. Then,
two analyses of the tripeptide database are presented to better understand the
importance of the local sequence context and the structure of the flanking residues.
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Figure 3.1. Construction of the tripeptide database: (a) A non-redundant set of experi-
mentally determined protein structures is used as input. (b) For each protein, fragments of
three consecutive residues (called tripeptides) are analyzed. (c) The structural information
is stored in a database containing one record for each tripeptide (8, 000 in total).

3.2 Database construction

The tripeptide database was built from a large set of experimentally-determined
high-resolution protein structures. We used the SCOPe [67] 2.06 release, with en-
tries having less than 95% sequence identity to each other. A total of 8,907,065
three-residue fragments were extracted from these protein structures and classified
on the basis of their sequence (8,000 tripeptide classes). The database construction
process is illustrated in Figure 3.1. The number of their instances ranges between
9 for the less frequent tripeptide (Cys-Cys-Trp) to 4, 512 for the most frequent
one (Ala-Ala-Ala). The average number of instances is about 688. The tripep-
tides suitable for IDP modeling are mainly those contained in random-coil regions
of globular proteins. Conformations adopted by residues were assigned using the
program DSSP [105], which allowed us to filter out fragments corresponding to
α-helices and β-strands. More precisely, we removed all tripeptides containing at
least one residue involved in these types of secondary structures (i.e. DSSP types
H, G, I, E and B) from the database. This applied to approximately 60% of the
total number of tripeptides extracted from the SCOPe database. The remaining
40% of the tripeptides (3,645,381), which contained residues in coil/loop regions
(i.e. DSSP types T, S and blank/C), were included in the coil database.

We adopt a rigid geometry simplification [198], which assumes constant bond
lengths and angles. Indeed, the standard deviation for the bond lengths and the
bond angles in our database is two orders of magnitude smaller that their average
value, and therefore, we can neglect their variation. Therefore, the only variables
required to determine the conformation of a protein backbone correspond to the ω,
φ and ψ dihedral angles of each amino acid residue. The values of ω usually fluctuate
around 180◦, corresponding to the trans conformation of the peptide bond. Values
of ω around 0◦ are much less frequent, corresponding to the cis conformation. cis
conformations are mainly observed in proline residues. A specific section of this
chapter (Section 3.5) has been devoted to the study of proline cis conformations and
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Figure 3.2. Illustration of a protein fragment involving 5 residues. Each residue is rep-
resented using a different color for the carbon atoms. The backbone is represented using
thicker lines. Considering constant bond lengths, bond angles and peptide bond torsions,
the protein backbone conformation can be defined from three angles (ω, φ and ψ) for each
residue. The gray line indicates the tripeptide fragment.

the effect that the nature of the flanking residues has on its population. Depending
on the value of the φ and ψ angles, we classify the residues as belonging to the α,
β or γ region. The regions of the Ramachandran plot that we use in this thesis are
shown in Figure 3.3 and are defined using the same angular intervals as in previous
studies [164]:

α : φ ≤ 0◦ , −120◦ < ψ ≤ 50◦

β : φ ≤ 0◦ , 50◦ < ψ ≤ 240◦

γ : φ > 0◦ .

The database stores these angular values for each tripeptide extracted from the
ensemble of protein structures (i.e., nine angles for each tripeptide). Figure 3.2
represents a protein fragment involving 5 residues, from which 3 tripeptides are
extracted. The angles defining the conformation of each residue are represented on
the corresponding bonds.

3.3 Sequence-dependent structural preferences

The nature of the neighboring residues has a strong impact on the distribution of
the φ-ψ angles of the observed residue. The conformation of a given residue depends
on its physico-chemical properties as well as these of the flanking residues. This is
illustrated for four tripeptides all having alanine as a middle residue (X-ALA-Y) in
Figure 3.4. One can clearly observe that a change on the flanking residues directly
affects the φ-ψ distribution of the central residue. When the alanine is preceded by
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Figure 3.3. The Ramachandran regions were identified using definitions in related work
[164]. Concretely, [α : φ ≤ 0◦;−120◦ ≤ ψ < 50◦;], [β : φ < 0◦; 50◦ < ψ ≤ 240◦], [γ : φ > 0].

other alanine and followed by histidine almost all the Ramachandran angles of the
central alanine are in the extended region β region. However, when the flanking
residues are threonine and serine, the central alanine has a strong tendency to be
in the α region.

This observation is in agreement with previous studies [88], where the informa-
tion of the closest neighbors is enough to well reproduce the RDCs of an IDP. They
show that the influence of the second nearest residues is weak, unless local structure
is present. Note that the impact of relatively close residues in the sequence is much
more important in structured proteins because they are spatially closer and may
form hydrogen-bonds, like in the case of α-helices.

Finally, we should mention that in addition to the sequence-dependent structural
preferences encoded in the database, the sampling method presented in Chapter 5
uses a coarse-grained model for the side chains, that partially captures repulsive
interactions with non adjacent residues.

Figure 3.4. Distributions of the φ-ψ angles of the central residue for four tripeptides
having alanine as central residue. (a) Ala-Ala-His. (b) Thr-Ala-Ser. (c) Asp-Ala-Ala. (d)
Gln-Ala-Met.
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Figure 3.5. Distributions of the φ-ψ angles of the central residue in a tripeptide, Ser-
Arg-Ala, depending on the structure of the neighboring residues. (a) All the φ-ψ angles
for the central residue Arg, independently on the structure of Ser and Ala. (b) Angles for
Arg when Ser and Ala are in the α region. (c) Values for Arg when Ser and Ala are in the
β/polyproline-II region.

3.4 Context-dependent structural preferences

In addition to the sequence-dependent structural preferences, the conformation of
the neighboring residues, φ-ψ angles, also has a direct influence in the structural
propensities of a given residue. This is illustrated for the Ser-Arg-Ala tripeptide
in Figure 3.5. One can clearly observe that when the φ-ψ angles of the neighbor-
ing Ser and Ala residues are constrained to be in the α region, the central Arg
residue has a high probability to be also in this region. The same happens for
the β/polyproline-II region corresponding to extended conformations. This result
shows that the tripeptide database displays some degree of structural cooperativity
that is incorporated in our structural models of IDPs thanks to the information
encoded in the tripeptide database.

3.5 Effects of the neighboring residues on the cis/trans

proline isomerization

The tripeptide database has multiple applications in structural biology. To illus-
trate its usefulness, we statistically quantified the neighboring effects in the proline
cis/trans equilibrium. This analysis is part of a broader study about this iso-
merization in poly-proline tracts present in the protein huntingtin (manuscript in
preparation).

Our database, containing 754,308 proline-centered tripeptides, had examples
for the 400 existing X-Pro-Y tripeptides (see Table 3.1). The most represented
tripeptide was Ala-Pro-Gly with 7,310 examples, while Trp-Pro-Met was the less
represented tripeptide with only 26 examples. The average number of tripeptides
was 1,886. The population of cis conformations (the cis-trans isomerization in
checked for the peptide bond X-Pro) derived from our database, 6.48%, is slightly
larger to these found in [96] and [201] with 4.63% and 4.50%, respectively. The
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difference probably arises from the nature and size of the databases used or the
analysis. We could derive reliable cis populations for the 400 existing X-Pro-Y.
According to our calculations, we could identify the Trp-Pro-Arg tripetide as the
most prone to present cis conformations, 56.10%, followed by Trp-Pro-Pro and
Trp-Pro-Ile with 47.30% and 42.60% respectively. On the other extreme, no cis
conformations were found for tripeptides Cys-Pro-Met, Gln-Pro-Cys, Met-Pro-Asp
and Met-Pro-Cys.

In the context of the study of poly-proline homo-repeats, it is important to
analyse the effects of neighboring prolines in the isomerization. The populations
found in our database for the X-Pro-Pro and Pro-Pro-X tripeptides were 7.05 %
and 8.56 %, respectively. These percentages indicate that proline in i− 1 position
slightly favours the probability of the cis isomer compared with a proline in position
i+ 1, and they are similar to the average cis in the whole database. Interestingly,
when both flanking positions are occupied by proline, Pro-Pro-Pro, the percentage
of the cis isomer decreases dramatically to 0.80%. This result suggests a strong bias
towards the trans isomer in poly-P tracts. This observation is in excellent agree-
ment with the experimental observations done in the group at the CBS Montpellier.
Concretely, individual prolines were isotopically labeled in two poly-proline tracts
of huntingtin, with 11 and 3 consecutive prolines, and their cis/trans populations
were quantified in a residue-specific manner (manuscript in preparation). Only the
first proline of both poly-proline tracts displayed a measurable population of the
cis conformation, while this isomer could not be detected (< 1.5 %) for all the
other prolines, including the last one. The experimental results suggest a cooper-
ative effect within poly-proline tracts that strongly disfavours the cis population,
in very good agreement with the calculations from the database. This cooperative
effect presents a defined directionality (from N- to C-terminus) with the first pro-
line (X-Pro-Pro) as the only one experiencing the cis/trans isomerization. Notice
that according to our statistical calculations, no significant differences should be
observed between the first and the last proline of a poly-Proline tract.

3.6 Discussion about the structural filtering in the
tripeptide database

We performed a simple experiment to demonstrate the interest of using a database
built from fragments in coil regions with respect to a database including fragments
placed in secondary structure elements, in the context of IDP modeling. The exper-
iment consisted of generating conformational ensembles, using an approach similar
to Flexible-Meccano (FM) [15, 163], for an intrinsically disordered fragment of the
N-tail protein from measles virus (ntailMV) [97] using data (distributions of φ-ψ
angles) with and without secondary structure filtering. The results are presented
in Figure 3.6. The experimental N-HN RDCs profile (black solid lines) is compared
with the theoretical RDCs computed using the unfiltered database (red solid line)
and the coil database (blue solid line). It is clear that the sampling performed using
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Figure 3.6. For the coil region of ntailMV: Experimental N-HN RDCs (black solid lines)
compared with the theoretical RDCs computed from FM-like sampling using the unfiltered
database (red solid line) and the coil database (blue solid line).

the unfiltered database overestimates the α-helix population while the coil database
nicely reproduces the experimentally determined RDCs for this fragment.

It is important to highlight that although the database only includes fragments
extracted from coil regions (i.e. tripeptides contained in secondary structures ele-
ments according to DSSP assignments are filtered out), secondary structures can
still be sampled from it. Indeed, values of φ-ψ angles corresponding to α-helical
regions or extended (β or polyproline-II) regions are still contained in the database
despite the structural filtering, since DSSP also considers other criteria (related to
hydrogen bonds) to assign secondary structures. Therefore, protein conformations
sampled from partially-overlapping tripeptides extracted from the coil database
can contain partially-formed or even fully-formed (canonical) secondary structure
elements. This will be shown through the examples presented in Chapters 5 and 6.
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Table 3.1: List of all 400 possible X-Pro-Y tri-peptides (X and Y = any amino acid)
extracted from a coil database built from the crystallographic entries in PDB with a res-
olution ≤ 2.0Å. The total occurrence of each tripeptide (#total), as well as the number
of prolines in cis (#cis) or trans (#trans) configuration and the calculated percentage of
prolines in cis configuration (%cis) in the respective tripeptide are listed. Tripeptides with
less than 100 instances (low confidence level) are highlighted in grey.

Sequence #cis #trans #Total %cis
ALA_PRO_ALA 184 3789 3973 4.63
ALA_PRO_ARG 136 2273 2409 5.65
ALA_PRO_ASN 134 2263 2397 5.59
ALA_PRO_ASP 136 3442 3578 3.80
ALA_PRO_CYS 29 427 456 6.36
ALA_PRO_GLU 207 3555 3762 5.50
ALA_PRO_GLN 173 1488 1661 10.40
ALA_PRO_GLY 356 6954 7310 4.87
ALA_PRO_HIS 83 1591 1674 4.96
ALA_PRO_ILE 64 1854 1918 3.34
ALA_PRO_LEU 344 3974 4318 7.97
ALA_PRO_LYS 94 1726 1820 5.16
ALA_PRO_MET 15 689 704 2.13
ALA_PRO_PHE 224 1533 1757 12.70
ALA_PRO_PRO 69 2699 2768 2.49
ALA_PRO_SER 156 3612 3768 4.14
ALA_PRO_THR 110 2107 2217 4.96
ALA_PRO_TRP 57 1019 1076 5.30
ALA_PRO_TYR 213 1586 1799 11.8
ALA_PRO_VAL 109 2598 2707 4.03
ARG_PRO_ALA 67 2917 2984 2.25
ARG_PRO_ARG 94 1118 1212 7.76
ARG_PRO_ASN 110 1177 1287 8.55
ARG_PRO_ASP 313 3199 3512 8.91
ARG_PRO_CYS 8 176 184 4.35
ARG_PRO_GLU 63 2940 3003 2.10
ARG_PRO_GLN 49 1176 1225 4.00
ARG_PRO_GLY 183 4116 4299 4.26
ARG_PRO_HIS 28 819 847 3.31
ARG_PRO_ILE 45 827 872 5.16
ARG_PRO_LEU 284 2395 2679 10.60
ARG_PRO_LYS 124 1026 1150 10.80
ARG_PRO_MET 26 424 450 5.78
ARG_PRO_PHE 213 1342 1555 13.70
ARG_PRO_PRO 167 1599 1766 9.46
ARG_PRO_SER 68 2139 2207 3.08
ARG_PRO_THR 108 1996 2104 5.13
ARG_PRO_TRP 29 632 661 4.39
ARG_PRO_TYR 53 804 857 6.18
ARG_PRO_VAL 75 1542 1617 4.64
ASN_PRO_ALA 120 2717 2837 4.23
ASN_PRO_ARG 137 1637 1774 7.72
ASN_PRO_ASN 114 3357 3471 3.28
ASN_PRO_ASP 21 4629 4650 0.45
ASN_PRO_CYS 33 476 509 6.48
ASN_PRO_GLU 49 3600 3649 1.34
ASN_PRO_GLN 23 1822 1845 1.25
ASN_PRO_GLY 120 2670 2790 4.30
ASN_PRO_HIS 107 1168 1275 8.39
ASN_PRO_ILE 126 1044 1170 10.80
ASN_PRO_LEU 256 2243 2499 10.20
ASN_PRO_LYS 25 2344 2369 1.06
ASN_PRO_MET 23 719 742 3.10
ASN_PRO_PHE 102 1464 1566 6.51

Sequence #cis #trans #Total %cis
ASN_PRO_PRO 280 2253 2533 11.10
ASN_PRO_SER 133 2874 3007 4.42
ASN_PRO_THR 298 2669 2967 10.00
ASN_PRO_TRP 292 489 781 37.40
ASN_PRO_TYR 312 1368 1680 18.60
ASN_PRO_VAL 221 1671 1892 11.70
ASP_PRO_ALA 80 5403 5483 1.46
ASP_PRO_ARG 41 3816 3857 1.06
ASP_PRO_ASN 113 4237 4350 2.60
ASP_PRO_ASP 58 3602 3660 1.58
ASP_PRO_CYS 3 423 426 0.70
ASP_PRO_GLU 119 3547 3666 3.25
ASP_PRO_GLN 57 2071 2128 2.68
ASP_PRO_GLY 139 1938 2077 6.69
ASP_PRO_HIS 18 1238 1256 1.43
ASP_PRO_ILE 138 1160 1298 10.60
ASP_PRO_LEU 88 2926 3014 2.92
ASP_PRO_LYS 47 2851 2898 1.62
ASP_PRO_MET 28 601 629 4.45
ASP_PRO_PHE 61 1388 1449 4.21
ASP_PRO_PRO 182 1813 1995 9.12
ASP_PRO_SER 67 6095 6162 1.09
ASP_PRO_THR 32 3391 3423 0.94
ASP_PRO_TRP 43 543 586 7.34
ASP_PRO_TYR 141 1257 1398 10.10
ASP_PRO_VAL 195 2324 2519 7.74
CYS_PRO_ALA 27 1117 1144 2.36
CYS_PRO_ARG 21 663 684 3.07
CYS_PRO_ASN 19 702 721 2.64
CYS_PRO_ASP 32 1003 1035 3.09
CYS_PRO_CYS 3 84 87 3.45
CYS_PRO_GLU 6 951 957 0.62
CYS_PRO_GLN 5 242 247 2.02
CYS_PRO_GLY 61 951 1012 6.03
CYS_PRO_HIS 8 362 370 2.16
CYS_PRO_ILE 12 499 511 2.35
CYS_PRO_LEU 15 533 548 2.74
CYS_PRO_LYS 2 640 642 0.31
CYS_PRO_MET 0 278 278 0.00
CYS_PRO_PHE 58 502 560 10.40
CYS_PRO_PRO 148 658 806 18.40
CYS_PRO_SER 24 660 684 3.51
CYS_PRO_THR 7 634 641 1.09
CYS_PRO_TRP 4 272 276 1.45
CYS_PRO_TYR 22 433 455 4.84
CYS_PRO_VAL 11 659 670 1.64
GLU_PRO_ALA 194 1449 1643 11.80
GLU_PRO_ARG 281 1572 1853 15.20
GLU_PRO_ASN 582 1308 1890 30.80
GLU_PRO_ASP 63 2341 2404 2.62
GLU_PRO_CYS 8 521 529 1.51
GLU_PRO_GLU 253 2597 2850 8.88
GLU_PRO_GLN 108 555 663 16.30
GLU_PRO_GLY 176 3378 3554 4.95
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Sequence #cis #trans #Total %cis
GLU_PRO_HIS 130 867 997 13.00
GLU_PRO_ILE 69 1664 1733 3.98
GLU_PRO_LEU 161 2917 3078 5.23
GLU_PRO_LYS 111 1615 1726 6.43
GLU_PRO_MET 37 747 784 4.72
GLU_PRO_PHE 220 1250 1470 15.00
GLU_PRO_PRO 221 1956 2177 10.20
GLU_PRO_SER 373 2207 2580 14.50
GLU_PRO_THR 215 1502 1717 12.50
GLU_PRO_TRP 63 444 507 12.40
GLU_PRO_TYR 329 1204 1533 21.50
GLU_PRO_VAL 875 2012 2887 30.30
GLN_PRO_ALA 126 1499 1625 7.75
GLN_PRO_ARG 55 763 818 6.72
GLN_PRO_ASN 36 976 1012 3.56
GLN_PRO_ASP 73 3423 3496 2.09
GLN_PRO_CYS 0 326 326 0.00
GLN_PRO_GLU 36 2259 2295 1.57
GLN_PRO_GLN 77 871 948 8.12
GLN_PRO_GLY 87 3572 3659 2.38
GLN_PRO_HIS 14 874 888 1.58
GLN_PRO_ILE 29 1262 1291 2.25
GLN_PRO_LEU 44 2500 2544 1.73
GLN_PRO_LYS 21 1278 1299 1.62
GLN_PRO_MET 51 289 340 15.00
GLN_PRO_PHE 78 961 1039 7.51
GLN_PRO_PRO 100 1187 1287 7.77
GLN_PRO_SER 83 1907 1990 4.17
GLN_PRO_THR 58 1185 1243 4.67
GLN_PRO_TRP 14 548 562 2.49
GLN_PRO_TYR 50 562 612 8.17
GLN_PRO_VAL 94 2126 2220 4.23
GLY_PRO_ALA 111 2588 2699 4.11
GLY_PRO_ARG 179 2548 2727 6.56
GLY_PRO_ASN 178 3485 3663 4.86
GLY_PRO_ASP 203 2975 3178 6.39
GLY_PRO_CYS 65 498 563 11.50
GLY_PRO_GLU 77 2989 3066 2.51
GLY_PRO_GLN 88 1427 1515 5.81
GLY_PRO_GLY 310 4321 4631 6.69
GLY_PRO_HIS 106 1276 1382 7.67
GLY_PRO_ILE 96 1304 1400 6.86
GLY_PRO_LEU 285 3912 4197 6.79
GLY_PRO_LYS 87 2162 2249 3.87
GLY_PRO_MET 76 669 745 10.20
GLY_PRO_PHE 397 1155 1552 25.60
GLY_PRO_PRO 94 1581 1675 5.61
GLY_PRO_SER 187 2526 2713 6.89
GLY_PRO_THR 179 3103 3282 5.45
GLY_PRO_TRP 121 631 752 16.10
GLY_PRO_TYR 447 951 1398 32.00
GLY_PRO_VAL 157 2596 2753 5.70
HIS_PRO_ALA 111 1921 2032 5.46
HIS_PRO_ARG 30 963 993 3.02
HIS_PRO_ASN 16 1947 1963 0.81
HIS_PRO_ASP 72 2392 2464 2.92
HIS_PRO_CYS 8 209 217 3.69
HIS_PRO_GLU 26 2239 2265 1.15
HIS_PRO_GLN 47 665 712 6.60
HIS_PRO_GLY 47 3177 3224 1.46
HIS_PRO_HIS 27 502 529 5.10
HIS_PRO_ILE 37 575 612 6.05
HIS_PRO_LEU 75 1662 1737 4.32

Sequence #cis #trans #Total %cis
HIS_PRO_LYS 24 1289 1313 1.83
HIS_PRO_MET 46 865 911 5.05
HIS_PRO_PHE 73 1314 1387 5.26
HIS_PRO_PRO 193 989 1182 16.30
HIS_PRO_SER 433 1990 2423 17.90
HIS_PRO_THR 97 1343 1440 6.74
HIS_PRO_TRP 0 489 489 0.00
HIS_PRO_TYR 46 1170 1216 3.78
HIS_PRO_VAL 60 1109 1169 5.13
ILE_PRO_ALA 119 2945 3064 3.88
ILE_PRO_ARG 37 1353 1390 2.66
ILE_PRO_ASN 33 2023 2056 1.61
ILE_PRO_ASP 40 3243 3283 1.22
ILE_PRO_CYS 28 910 938 2.99
ILE_PRO_GLU 48 3138 3186 1.51
ILE_PRO_GLN 196 1617 1813 10.80
ILE_PRO_GLY 203 3379 3582 5.67
ILE_PRO_HIS 43 1200 1243 3.46
ILE_PRO_ILE 8 1340 1348 0.59
ILE_PRO_LEU 27 1923 1950 1.38
ILE_PRO_LYS 24 2222 2246 1.07
ILE_PRO_MET 5 617 622 0.80
ILE_PRO_PHE 14 1561 1575 0.89
ILE_PRO_PRO 56 2626 2682 2.09
ILE_PRO_SER 284 2058 2342 12.10
ILE_PRO_THR 119 1871 1990 5.98
ILE_PRO_TRP 101 645 746 13.50
ILE_PRO_TYR 47 1099 1146 4.10
ILE_PRO_VAL 51 1553 1604 3.18
LEU_PRO_ALA 177 5669 5846 3.03
LEU_PRO_ARG 94 2714 2808 3.35
LEU_PRO_ASN 50 3195 3245 1.54
LEU_PRO_ASP 56 6276 6332 0.88
LEU_PRO_CYS 41 553 594 6.90
LEU_PRO_GLU 141 6134 6275 2.25
LEU_PRO_GLN 142 1910 2052 6.92
LEU_PRO_GLY 291 6735 7026 4.14
LEU_PRO_HIS 28 1336 1364 2.05
LEU_PRO_ILE 109 2362 2471 4.41
LEU_PRO_LEU 373 3592 3965 9.41
LEU_PRO_LYS 97 3547 3644 2.66
LEU_PRO_MET 39 721 760 5.13
LEU_PRO_PHE 192 2228 2420 7.93
LEU_PRO_PRO 106 4539 4645 2.28
LEU_PRO_SER 127 5315 5442 2.33
LEU_PRO_THR 57 3721 3778 1.51
LEU_PRO_TRP 36 738 774 4.65
LEU_PRO_TYR 94 2098 2192 4.29
LEU_PRO_VAL 186 3462 3648 5.10
LYS_PRO_ALA 117 1977 2094 5.59
LYS_PRO_ARG 55 1194 1249 4.40
LYS_PRO_ASN 315 1619 1934 16.30
LYS_PRO_ASP 46 3039 3085 1.49
LYS_PRO_CYS 281 239 520 54.00
LYS_PRO_GLU 76 3742 3818 1.99
LYS_PRO_GLN 31 1294 1325 2.34
LYS_PRO_GLY 89 6721 6810 1.31
LYS_PRO_HIS 55 604 659 8.35
LYS_PRO_ILE 59 1185 1244 4.74
LYS_PRO_LEU 191 3006 3197 5.97
LYS_PRO_LYS 161 1871 2032 7.92
LYS_PRO_MET 46 931 977 4.71
LYS_PRO_PHE 326 1974 2300 14.20
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Sequence #cis #trans #Total %cis
LYS_PRO_PRO 54 1479 1533 3.52
LYS_PRO_SER 104 3120 3224 3.23
LYS_PRO_THR 33 1709 1742 1.89
LYS_PRO_TRP 36 728 764 4.71
LYS_PRO_TYR 94 945 1039 9.05
LYS_PRO_VAL 86 2779 2865 3.00
MET_PRO_ALA 15 1026 1041 1.44
MET_PRO_ARG 9 496 505 1.78
MET_PRO_ASN 19 720 739 2.57
MET_PRO_ASP 0 970 970 0.00
MET_PRO_CYS 0 95 95 0.00
MET_PRO_GLU 85 728 813 10.50
MET_PRO_GLN 8 629 637 1.26
MET_PRO_GLY 118 1400 1518 7.77
MET_PRO_HIS 42 450 492 8.54
MET_PRO_ILE 14 436 450 3.11
MET_PRO_LEU 9 785 794 1.13
MET_PRO_LYS 8 645 653 1.23
MET_PRO_MET 13 266 279 4.66
MET_PRO_PHE 20 435 455 4.40
MET_PRO_PRO 12 574 586 2.05
MET_PRO_SER 33 562 595 5.55
MET_PRO_THR 23 465 488 4.71
MET_PRO_TRP 1 935 936 0.11
MET_PRO_TYR 21 414 435 4.83
MET_PRO_VAL 11 564 575 1.91
PHE_PRO_ALA 154 2578 2732 5.64
PHE_PRO_ARG 167 967 1134 14.70
PHE_PRO_ASN 258 1513 1771 14.60
PHE_PRO_ASP 142 2902 3044 4.66
PHE_PRO_CYS 18 184 202 8.91
PHE_PRO_GLU 1123 2453 3576 31.40
PHE_PRO_GLN 117 1211 1328 8.81
PHE_PRO_GLY 298 3777 4075 7.31
PHE_PRO_HIS 167 894 1061 15.70
PHE_PRO_ILE 62 1629 1691 3.67
PHE_PRO_LEU 221 1715 1936 11.40
PHE_PRO_LYS 55 1850 1905 2.89
PHE_PRO_MET 38 160 198 19.20
PHE_PRO_PHE 130 880 1010 12.90
PHE_PRO_PRO 211 1735 1946 10.80
PHE_PRO_SER 198 1863 2061 9.61
PHE_PRO_THR 84 1489 1573 5.34
PHE_PRO_TRP 34 436 470 7.23
PHE_PRO_TYR 62 809 871 7.12
PHE_PRO_VAL 128 1806 1934 6.62
PRO_PRO_ALA 154 2115 2269 6.79
PRO_PRO_ARG 72 1183 1255 5.74
PRO_PRO_ASN 65 1464 1529 4.25
PRO_PRO_ASP 78 2003 2081 3.75
PRO_PRO_CYS 188 289 477 39.40
PRO_PRO_GLU 164 3497 3661 4.48
PRO_PRO_GLN 107 1498 1605 6.67
PRO_PRO_GLY 206 4761 4967 4.15
PRO_PRO_HIS 73 1312 1385 5.27
PRO_PRO_ILE 50 1213 1263 3.96
PRO_PRO_LEU 1060 2576 3636 29.20
PRO_PRO_LYS 90 1949 2039 4.41
PRO_PRO_MET 23 752 775 2.97
PRO_PRO_PHE 511 1195 1706 30.00
PRO_PRO_PRO 25 3074 3099 0.81
PRO_PRO_SER 110 2720 2830 3.89
PRO_PRO_THR 198 1748 1946 10.20

Sequence #cis #trans #Total %cis
PRO_PRO_TRP 29 450 479 6.05
PRO_PRO_TYR 167 1477 1644 10.20
PRO_PRO_VAL 78 1571 1649 4.73
SER_PRO_ALA 271 2238 2509 10.80
SER_PRO_ARG 99 1583 1682 5.89
SER_PRO_ASN 137 2421 2558 5.36
SER_PRO_ASP 129 4183 4312 2.99
SER_PRO_CYS 92 390 482 19.10
SER_PRO_GLU 53 2837 2890 1.83
SER_PRO_GLN 214 1324 1538 13.90
SER_PRO_GLY 139 2931 3070 4.53
SER_PRO_HIS 53 896 949 5.58
SER_PRO_ILE 213 1359 1572 13.50
SER_PRO_LEU 143 3239 3382 4.23
SER_PRO_LYS 95 1581 1676 5.67
SER_PRO_MET 43 655 698 6.16
SER_PRO_PHE 166 2835 3001 5.53
SER_PRO_PRO 425 1428 1853 22.90
SER_PRO_SER 112 3270 3382 3.31
SER_PRO_THR 606 1902 2508 24.20
SER_PRO_TRP 28 805 833 3.36
SER_PRO_TYR 467 1403 1870 25.00
SER_PRO_VAL 762 2157 2919 26.10
THR_PRO_ALA 649 2713 3362 19.30
THR_PRO_ARG 151 1671 1822 8.29
THR_PRO_ASN 275 1805 2080 13.20
THR_PRO_ASP 26 3882 3908 0.67
THR_PRO_CYS 19 551 570 3.33
THR_PRO_GLU 65 3300 3365 1.93
THR_PRO_GLN 25 1146 1171 2.13
THR_PRO_GLY 52 4884 4936 1.05
THR_PRO_HIS 32 1104 1136 2.82
THR_PRO_ILE 60 2198 2258 2.66
THR_PRO_LEU 114 3272 3386 3.37
THR_PRO_LYS 68 1764 1832 3.71
THR_PRO_MET 8 916 924 0.87
THR_PRO_PHE 92 1984 2076 4.43
THR_PRO_PRO 186 4206 4392 4.23
THR_PRO_SER 145 2883 3028 4.79
THR_PRO_THR 56 3070 3126 1.79
THR_PRO_TRP 26 1078 1104 2.36
THR_PRO_TYR 22 1547 1569 1.40
THR_PRO_VAL 102 3414 3516 2.90
TRP_PRO_ALA 115 692 807 14.30
TRP_PRO_ARG 266 208 474 56.10
TRP_PRO_ASN 157 394 551 28.50
TRP_PRO_ASP 80 960 1040 7.69
TRP_PRO_CYS 4 73 77 5.19
TRP_PRO_GLU 45 875 920 4.89
TRP_PRO_GLN 58 278 336 17.30
TRP_PRO_GLY 119 902 1021 11.70
TRP_PRO_HIS 33 153 186 17.70
TRP_PRO_ILE 109 147 256 42.60
TRP_PRO_LEU 104 360 464 22.40
TRP_PRO_LYS 44 224 268 16.40
TRP_PRO_MET 4 22 26 15.4
TRP_PRO_PHE 101 833 934 10.80
TRP_PRO_PRO 216 241 457 47.30
TRP_PRO_SER 364 596 960 37.90
TRP_PRO_THR 84 663 747 11.20
TRP_PRO_TRP 21 177 198 10.60
TRP_PRO_TYR 54 143 197 27.40
TRP_PRO_VAL 203 557 760 26.70
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Sequence #cis #trans #Total %cis
TYR_PRO_ALA 818 1240 2058 39.70
TYR_PRO_ARG 461 945 1406 32.80
TYR_PRO_ASN 495 2008 2503 19.80
TYR_PRO_ASP 214 3147 3361 6.37
TYR_PRO_CYS 27 318 345 7.83
TYR_PRO_GLU 97 1989 2086 4.65
TYR_PRO_GLN 84 919 1003 8.37
TYR_PRO_GLY 323 3282 3605 8.96
TYR_PRO_HIS 85 643 728 11.70
TYR_PRO_ILE 62 793 855 7.25
TYR_PRO_LEU 241 1287 1528 15.80
TYR_PRO_LYS 484 1052 1536 31.50
TYR_PRO_MET 34 294 328 10.40
TYR_PRO_PHE 200 1132 1332 15.00
TYR_PRO_PRO 179 899 1078 16.60
TYR_PRO_SER 236 1454 1690 14.00
TYR_PRO_THR 193 1439 1632 11.80
TYR_PRO_TRP 29 614 643 4.51
TYR_PRO_TYR 191 891 1082 17.70
TYR_PRO_VAL 68 971 1039 6.54

Sequence #cis #trans #Total %cis
VAL_PRO_ALA 124 3295 3419 3.63
VAL_PRO_ARG 72 2086 2158 3.34
VAL_PRO_ASN 47 2287 2334 2.01
VAL_PRO_ASP 30 4242 4272 0.70
VAL_PRO_CYS 16 339 355 4.51
VAL_PRO_GLU 78 3368 3446 2.26
VAL_PRO_GLN 25 1561 1586 1.58
VAL_PRO_GLY 304 5442 5746 5.29
VAL_PRO_HIS 23 982 1005 2.29
VAL_PRO_ILE 47 1235 1282 3.67
VAL_PRO_LEU 113 2900 3013 3.75
VAL_PRO_LYS 34 1854 1888 1.80
VAL_PRO_MET 98 620 718 13.60
VAL_PRO_PHE 111 1595 1706 6.51
VAL_PRO_PRO 60 3782 3842 1.56
VAL_PRO_SER 89 2853 2942 3.03
VAL_PRO_THR 101 2072 2173 4.65
VAL_PRO_TRP 16 387 403 3.97
VAL_PRO_TYR 119 1734 1853 6.42
VAL_PRO_VAL 63 2337 2400 2.62
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4.1 Introduction

For over more than 40 years, numerous methods have been developed to predict
secondary structure in proteins from their sequence [104, 168]. However, current sec-
ondary structure predictors are in general trained and evaluated on folded/globular
proteins, and thus, are not necessarily appropriate to identify partially-structured
regions in IDPs. Furthermore, numerous methods have also been proposed to pre-
dict structural disorder from protein sequence (see [134] and references therein).
Available disorder predictors mostly focus on the identifications of disordered re-
gions in predominantly folded proteins. In general, they only provide a binary
output (i.e. ordered/disordered) or a disorder probability for each residue, but
do not identify structural classes. Traditionally, secondary structure and disorder
predictors have been developed independently from each other, since they aim at
providing different information. One exception is the s2D method [211], which pre-
dicts secondary structure populations and disorder in a unified framework. The s2D
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method, as well as the work presented here, relies on a more holistic view of struc-
tural biology of IDPs by exploring descriptors that span the continuum between
the two extremes: ordered, disordered [212, 45, 39].

In contrast to the most advanced approaches, which are based on intricate
machine-learning techniques, here we present an extremely simple strategy to
identify secondary structural propensities from protein sequences. As machine-
learning-based approaches, our method exploits structural information contained
in databases. However, our approach performs simple statistical operations on
the conformational preferences of three-residue fragments extracted from coil re-
gions of experimentally-determined high-resolution protein structures (explained
in Chapter 3). The main advantage of our strategy with respect to most of the
machine-learning-based methods, specially those using neural networks, is that
it enables a comprehensible connection between sequence and structural prefer-
ences/propensities. We have called our method Local Structural Propensity Pre-
dictor (LS2P). The code of the predictor (in Python) will be freely provided.

4.2 Material and Methods

4.2.1 Structural classification of three-residue fragments

The prediction method proposed in this work, LS2P, exploits the statistical infor-
mation on the structural preferences of three-residue fragments using the tripeptide
database presented in Chapter 3.

To simplify the structural classification, the conformational space of each residue
ri was subdivided according to the values of the Ramachandran angles, φ and ψ, into
three regions S = {α, β, γ}, as explained in Chapter 3, and illustrated in Figure 3.3

The combinations of these three structural classes at the single residue level
lead to 27 structural classes S for a tripeptide: ααα, ααβ, ααγ, αβα, . . . , γγγ. The
number of conformations per class was retrieved and stored for each of the 8,000
tripeptide types. These numbers are used by the LS2P predictor as explained below.

4.2.2 Statistical analysis of local structural propensities

LS2P predicts secondary structure propensities for a given protein sequence. For
each residue ri in the sequence, the secondary structure propensity is calculated
using statistical information for the tripeptide ti centered at this residue and for its
neighbors: ti−2, ti−1, ti+1 and ti−2.

Let ni denote the total number of structures present in the tripeptide database
for ti. The number of structures for each one of the 27 structural classes is indicated
using the corresponding Greek letters in subscript. For instance, niβγα is the number
of structures of ti with the first residue of the tripeptide in the β region, the second
in γ and the third in α. We use lower-case Latin letters, for instance x or y, as
variables when the three structural classes have to be considered for one or several
residues. This notation is used below within summation equations.
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Figure 4.1. Ramachandran plots of residues in ti, and in the neighboring tripeptides ti−2,
ti−1, ti+1 and ti+2. Colored regions correspond to the case where ti is in the structural
class S = βγα. Notice that overlapping residues in consecutive tripeptides must be in the
same structural class.

For a tripeptide ti, independently of the rest of the sequence, the number of
structures present in each of the 27 structural classes with respect to the total
number of structures already gives us an idea of its conformational preferences. For
example, for the particular case S = βγα, and considering ti independently of the
rest of the sequence:

p(βγα)i =
niβγα
ni

, ni =
∑

w,x,y∈S
niwxy (4.1)

However, in order to better take into account the sequence context, the compati-
bility of the structural preferences of ti with those of the neighboring tripeptides
has to be considered. This is illustrated in Figure 4.1. In this particular case, the
probability of ti to adopt a conformation of type βγα must consider the probability
of the two last residues of ti−1 to adopt conformations βγ, of the two first residues
of ti+1 to adopt conformations γα, of the last residue of ti−2 to adopt conformations
β, and of the first residues of ti+2 to adopt conformations α. The structural pref-
erences conditioned by the neighbors can be easily computed operating with the
numbers of structures in the tripeptide database. For the example of S = βγα,
the equation can be written as:

p(βγα)i =

∑
t,u,y,z∈S

ni−2
tuβ n

i−1
uβγ n

i
βγα n

i+1
γαy n

i+2
αyz∑

t,u,v,w,x,y,z∈S

(
ni−2
tuv n

i−1
uvw nivwx n

i+1
wxy n

i+2
xyz

) (4.2)
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To compute the propensity of tripeptide ti to adopt a particular structural class
e.g. S = βγα with respect to the observations in our database, we have to divide
p(βγα)i by the overall probability to observe this structural class for all tripeptides:

p(βγα)all =
nall
βγα

N
(4.3)

where “all” implies the sum for the 8,000 tripeptide sequences, and N is the total
number of tripeptide structures in the database. Thus, the structural propensity
can be written as:

P (βγα)i = p(βγα)i
p(βγα)all

(4.4)

Note that the values P (S )i do not correspond to an estimation of the popula-
tions of structural classes for the protein in solution. They are an indicator of the
structural propensity of different regions within the IDP. Values larger than 1 for
a given structural class indicate that this class in favored for the tripeptide in the
local sequence context. On the contrary, values below 1 indicate unlikelihood for
that class.

4.3 Results

4.3.1 Identification of secondary structure propensities in IDPs:
Overall picture

A benchmark set of nine structurally-characterized IDPs was used to evaluate the
performance of our approach. Table 4.1 provides the list of these proteins together
with the references to structural studies of these systems based on NMR experi-
ments. Note that the same benchmark will be used to evaluate the ensemble mod-
eling method presented in Chapter 5. Concretely, MAPK Kinase 7 (MKK7) [117],
the fragment 955-1097 of the Erythrocyte binding antigen 181 (EBA-181) [22], p15
[40], sic1 [148], Measles virus ntail (ntailMV) [97], Sendai virus ntail (ntailSV) [98],
the unique domain of the src kinase (USrc) [170], K18 construct of Tau protein

Table 4.1: The nine IDPs in the benchmark set together with the reference to the articles
from which the experimental RCDs used in this thesis where obtained.

Protein RDCs data
MKK7 [117]
EBA-181 [22]
p15 [40]
sic1 [148]
ntailMV [97]
ntailSV [98]
USrc [170]
K18 [154]
Tau [194]
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(K18) [154], and full-length Tau protein [194] were used in our study. Predictions
of secondary structure propensities predicted by LS2P were compared to the NMR
RDCs, which are extremely sensitive to small conformational bias at residue level
[99]. Other structural analyses of these 9 proteins from related literature were also
considered for this evaluation.

First, we analysed the number of conformations in our database for all the
tripeptides of the benchmark set. Results are summarized in Figure 4.2. The
average number of conformations per tripeptide ranges from 637 to 792 for sic1
and Tau, respectively. The minimum number of conformations found is 22, which
corresponds to the tripeptide Cys-Met-His in EBA-181. These observations indicate
that we have an excellent sampling for the vast majority of the tripeptides and that

Figure 4.2. Number of structures in the tripeptide database for the tripeptides on the 9
IDPs benchmark. The value for each tripeptide is shown on its central residue.
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reliable statistics can be derived from the analysis.
In order to illustrate the application of LS2P, results for the nine benchmark

IDPs are presented at the end of this chapter. MKK7 (see Figure 4.4) and EBA-181
(see Figure 4.5) are representative examples to explain the results provided by LS2P,
and therefore they are commented in more detail here, while the rest of the IDPs
are presented in the following sections. From a structural point of view, MKK7
and EBA-181 present very different features. While MKK7 involves relatively long
regions with helical or extended propensity, EBA-181 is almost fully disordered,
only presenting short partially-structured fragments.

MKK7 fragment analysed involves three MAPK binding domains that have
been structurally characterized by NMR: D1 (residues 25-34), D2 (residues 38-47)
and D3 (residues 70-79) [117]. These three domains have been shown to present
different conformational propensities. The N-terminus of MKK7 (residues 5-30)
presents an α-helical structure that is characterized by the positive values of the
RDC profile. This helical propensity is well predicted by the LS2P method. From
residue 26, LS2P predicts the following region to be highly extended. Interestingly,
this regions display very negative RDC values, which is a signature of extended
conformations. Moreover, the extendedness of D2 was captured by the ensemble
refinement performed in the original study [117]. The rest of the sequence appears,
according to LS2P, as preferentially extended, although some α-helical propensity is
observed at the C-terminus. Moreover, some MKK7 stretches around residues 54, 65
and 80 are dominated by less abundant structures involving γ-type conformations.
Our secondary structure prediction is in very good agreement with the structural
conformation found for the three MAPK binding motifs. D1 lies in the transition
between helical and extended conformations at the N-terminus of MKK7, and this
dual behavior was captured by the ensemble refinement done in the original study.
D2, which is inserted in the long extended region of MKK7 according to LS2P, was
experimentally shown to sample β-strand and polyproline-II (PPII) conformations.
Conversely, predictions of the D3 indicate that this region has no special enrichment
in helical or extended conformations, with the exception of residues 73 and 74, in
line with the original experimentally-derived ensemble model.

Structural investigations of EBA-181 have shown that the fragment involv-
ing residues 945-1097, which is part of the RIII–V region, behaves essentially as
a random coil with the presence of several turn motifs or short single-turn α-
helices [22]. These short helical elements, corresponding to positive RDCs around
residues 987–988, 998, 1006–1007 and 1016–1019, are correctly identified by LS2P.
Note that the identification of turns will be described in more detail below. Other
short regions present some propensity to adopt extended conformations, in partic-
ular regions around prolines P945, P949, P1003, P1039, P1040 and P1044. These
short extended regions are also well predicted by LS2P. When analysing the en-
richment of the 27 structural groups, we observe that most of them are present
along the sequence and only regions around 958, 1050 and the C-terminus seem
to be highly enriched in less common structural classes. Sequences allowing more
heterogeneous conformations seem to be an indicator of disorder and absence of
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stable secondary structural elements.
These results for MKK7 and EBA-181, which showcase different types of IDPs

from a structural point of view, are an indicator of the good performance of LS2P.
The following sections will describe more specifically the ability of LS2P to identify
different types of secondary structural elements within IDPs.

4.3.2 Identification of helical elements within IDPs

LS2P is able to detect helical elements of different lengths, even though the method
operates from structural preferences of three-residue fragments. This highlights the
importance of the local sequence context, which implicitly encodes the cooperative
formation of structural elements along the polypeptide chain. In addition of the
previously described examples, our benchmark contains other examples of IDPs in-
volving relatively long fragments with helical propensity. The two most prominent
ones are ntailMV (see Figure 4.8) and ntailSV (see Figure 4.9). These two pro-
teins have similar sequences and perform the same function by interacting with the
phosphoprotein in two related viruses through a highly stable α-helix.

LS2P identifies several regions displaying an enrichment in helical conforma-
tions in both proteins, including the experimentally characterized functional α-
helix. When comparing with s2D predictions (note that the comparison with s2D
is further commented in a separate section below), we observe different levels of
agreement. In ntailSV, both algorithms identify four α-helices and, interestingly,
two of these regions (around residues 450 and 515) display positive RDCs, sug-
gesting the presence of helical populations. Conversely, only the functional helix
is identified by s2D for ntailMV. The most surprising result is that our approach
predicts that the two functional helices, specially ntailSV, contain a non-negligible
proportion of extended conformations in the middle of the α-helix. This observation
is in contrast with the experimental data [98, 97] and the predictions done with s2D.
These contradictory observation underlines a fundamental difference between both
methods. While s2D was trained using experimental data and therefore captures
propensities in longer protein stretches, LS2P is sensitive to local conformational
bias. In that sense, LS2P could encounter more problems to correctly identify large
helices, which have a strong cooperative nature. However, LS2P can probe short
structures, such as turns and N-caps, that would remain invisible for s2D. It has
been shown that the functional helices of both ntail proteins are highly stabilized by
N-capping serine and aspartic acid residues placed upstream of the helix [98, 97].
The inspection of the conformational propensities in these regions identifies sev-
eral residues with a strong propensity for βαα structures. Concretely, tripeptides
centered in 473, 474 and 479 in ntailSV, and 485, 488 and 491 in ntailMV display
a strong enrichment in βαα conformations. We speculate that this conformation
stabilizes downstream helices in solution, but our predictor may loose the structural
cooperativity due to its local nature.
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4.3.3 Identification of extended regions in IDPs

Several regions are identified as extended (βββ) in the analysis of the benchmark
set. Note that the current implementation of LS2P does not make the difference
between β-strand-type and PPII-type conformations, both of them being classified
as “extended”. Note also that the possible presence of hydrogen bonds to stabilize
β-strands is not considered as this is an uncommon situation in IDPs. Instead,
extended regions are identified only on the basis of the local amino acid sequence.

Protein Tau (see Figure 4.12), and in particular the K18 (see Figure 4.11) con-
struct, is an excellent example to illustrate the ability of LS2P to predict the
propensity of some regions within IDPs to adopt extended conformations. The
method identifies extended regions described in related literature [154, 194]: at the
N-terminal region of Tau (around residue 50, in particular), within the proline-
rich region (residues 212-232), and inside the pseudorepeat domains contained in
K18 (residues 275-282, 307-313 and 338-346, approximately). All the regions cor-
respond to negative RDCs in Figures 4.12 (Tau) and 4.11 (K18). Note that for the
last region, residues 338-346, LS2D predicts a combination of extended and helical
propensities for the second half of this region, followed by an increase of helical
propensity, showing a peak around residues 348. This prediction agrees with the
RDC profile in this region.

LS2P also identifies extended regions in other proteins such as sic1 [148, 147]
(see Figure 4.7) and p15 [40] (see Figure 4.6, showing a good agreement with RDC
profiles and structural descriptions from related literature.

There are two main factors, relaying only on the local sequence, that induce ex-
tended conformations. One of them is the presence of prolines, which enriches neigh-
bouring residues with extended conformations, as is the case for the the proline-rich
region in Tau or the short extended regions in EBA-181. Amino acid bulkiness
is another property that has a strong effect on the conformational preferences of
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Figure 4.3. RDC profile (top, black line), βββ propensity (bottom, blue bars) and
bulkiness profiles (bottom, orange line) for the K18 construct of Tau protein. The pro-
lines are indicated with a green square. The dashed line situated at bulkiness = 14 indi-
cates the threshold adobe which the amino acid are considered as bulky [29]. The three
experimentally-characterized extended regions involving residues 275-282, 307-313 and 338-
346 are highlighted in yellow.
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neighboring residues [248]. Amino acids with large side chains enrich extended con-
formations in neighboring residues as a conformational mechanism to avoid steric
clashes. To illustrate the importance of amino acid bulkiness in the identification
of extended conformations, we have computed the bulkiness profile for all proteins
in the benchmark [29]. Note that the presence of prolines is accounted for this
calculation increasing by 60% its theoretical volume.

Figure 4.3 shows experimental RDCs, the predicted extended propensity and
the bulkiness profile for the the K18 construct of Tau. We observe a correlation
between the regions having highly negative RDCs, displaying a enhanced popula-
tion of βββ propensity, and large bulkiness. This correlation suggests that LS2P
properly identifies regions with extended conformations, and that our statistical
approach captures the steric influence encoded in the sequence.

4.3.4 Identification of turns in IDPs

Various turn types have been defined in folded/globular proteins. Turns have also
been identified in some IDPs. Usually, these turns are only partially formed, compli-
cating their identification. Experimentally, turns can be identified based on RDCs,
which display anomalous values with respect to the neighbouring residues.

Here, we focus type I and type VIII β-turns, which are the most common form
of turns. Disregarding the actual presence of a hydrogen bond that stabilizes such
structural elements, they can be defined in a simple and general way as follows: type
I and type VIII β-turns are characterized by two consecutive amino acid residues
with conformations in the α region of Ramachandran space, preceded and succeeded
by residues with more extended conformations [154]. The possibility to distinguish
other turn types from the 27 structural classes of tripeptides used by LS2P remains
to be further investigated.

Following the definition above, turns could be predicted from the results of
LS2P by identifying consecutive (overlapping) tripeptides with high propensities in
structural classes βαα and ααβ. As shown in figure 4.11, the results provided by
LS2P fit the well-characterized turns in the K18 construct of Tau [154], involving
residues 252-255, 283-286, 314-317, and 345-348. In addition to the aforementioned
signature βαα-ααβ for the two middle residues, these structural elements are often
characterized by a peak of ααα propensity for the second of these middle residues,
which can be higher than the ααβ propensity. In such cases, the ααβ propensity
increases for the next residues in the sequence.

Coming back to the example of EBA-181 (see figure 4.5, the representation of
βαα and ααβ propensities, in addition to ααα, allows to highlight differences be-
tween turn motifs around residues 987 and 998, and small helices involving residues
1006-1007 and 1016-1019. Note that the βαα-ααβ propensity for pairs of consecu-
tive residues is also high in other regions of EBA-181 showing positive peaks in the
RDC profile, such as residues 971-972 and 1031-1032.
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4.3.5 Comparison with state-of-the-art methods for structural
propensity prediction

As mentioned in the introduction, the vast majority of secondary structure pre-
dictors are aimed to predict structural elements within proteins that are mostly
globular, and produce a one-letter code (corresponding only to α-helices and β-
strands in most of the cases) that simplifies the analysis. These methods usually
fail to identify partially-structured regions in IDPs, especially when the structural
propensity is relatively low. On the other hand, disorder predictors, which are
aimed to identify regions lacking secondary structure, do not provide information
about structural propensities at the frontier between order and disorder. Tests us-
ing our benchmark set of 9 IDPs (results of these tests are not presented here since
they lack of interest), as well as results presented in the literature [211, 212], show
the limitations of these “traditional” predictors when applied to IDP sequences. A
remarkable exception is the s2D method [211], which was especially conceived to
simultaneously predict secondary structure and disorder propensities, and which
is particularly well suited to the structural study if IDPs. Here, we compare the
performance of s2D and LS2P to predict secondary structure propensities for the 9
proteins considered in this work.

LS2P and s2D agree in many cases, particularly when the structural elements
are know to have relatively high propensity to be formed in solution. This is the
case for instance for the helical region at the N-terminal side of MKK7 and for the
helical region in ntailSV and ntailMV. Both methods also agree on the prediction
of the extended regions in K18. As mentioned before, the underlying principle of
s2D may make this method more suitable that LS2P for identifying relatively large
and highly-populated structural elements.

However, s2D generally fails to identify transient secondary structure in several
cases for which LS2P clearly provides this information. This is for instance the case
for sic1, which has been shown to concatenate regions with significant propensity
to adopt extended or helical conformations [147]. s2D also fails to identify small
structural motifs such as turns or short helices, whereas LS2P is able to find them,
as it has been illustrated for EBA-181 and K18(Tau). Another interesting case
is p15 (see Figure 4.6, an IDP that has been shown experimentally to have two
extended regions, one at the N-terminal involving residues 15-24 and another at
the C-terminal residues involving 94-104 [40]. LS2P identify the two regions while
s2D does not predict extended propensity for these residues. The rest of structural
preferences found for this protein are not strong when looking at the RDCs profile,
and they are not detected neither by LS2D nor by s2D.

Surprisingly, both methods s2D and LS2P fail to identify a few regions for which
previous work suggest some structural propensity. This is the case for the regions
involving residues 60-75 in USrc, for which helical propensity has been suggested,
as also indicate the positive RDC values in this region (see Figure 4.10). Another
example is the small helix involving residues 72-75 in sic1. The fact that both
methods fail to identify transient structural elements in the same regions, despite
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their very different underlying principles, shows that this is a challenging problem
probably, mainly due to the very particular sequences that can be found in IDPs.
Indeed, the structural prediction of IDPs is still an open problem that required
further research efforts, as discussed in the following section.

4.3.6 Exhaustive structural prediction of poly-Q flanking regions

In addition to the study of the benchmark set of nine proteins, the predictor pre-
sented in this chapter was also used for the investigation of poly-Q regions in
proteins. More precisely, we explored the secondary structure propensity in the
N-flanking region of long poly-Q tracts in human proteins. For that, four hun-
dred fragments with ten or more glutamines and containing a maximum of two
non-glutamine residues were collected from 309 different human proteins, and the
ten preceding (-10 to -1) residues were structurally analysed using our secondary
structure predictor. Our analysis shows a general tendency to adopt α-helical con-
formations in this flanking region. Interestingly, this tendency presents its largest
percentage when close to the poly-Q homo-repeat (residues -1 and -2), and sys-
tematically decreases when more residues of the N-flanking region are incorporated
in the analysis. This analysis, which reinforces with a structural perspective the
compositional analysis done on poly-Q flanking regions, is further described in the
article included in the annexes entitled: “Flanking regions define the conforma-
tion of the poly-glutamine homo-repeat in huntingtin through opposite structural
mechanisms".

4.4 Conclusion

In this chapter, we have investigated the ability to predict secondary structure
propensities within IDPs using local sequence-dependent information encoded in
small protein fragments extracted from coil regions in experimentally-determined
high-resolution protein structures. We have developed an extremely simple sta-
tistical approach based on a coarse classification of tripeptide structures. In con-
trast with nowadays popular neural-network-based secondary structure predictors,
this approach enables a comprehensive connection between sequence and structural
propensities. Moreover, thanks to this simplicity, the proposed predictor LS2P is
very computationally inexpensive. This should allow the fast scanning of large
databases or complete proteomes.

Results presented in the previous section show that our method is able to predict
the main secondary structural elements: α-helices and extended conformations.
These are detected regardless of the length of the secondary structural element. This
is a clear advantage with respect to state-of-the-art secondary structure predictors,
including those suited to IDPs such as s2D, which mainly identify relatively long
and highly populated secondary structure elements. In addition to the detection of
the most common conformations, the statistical analyses of our tripeptide database
provide further information. We detect N-capping structures from the amino acid
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sequence, as exemplified by the highly stable helices of N-tail proteins. Another
unique feature of our approach in the detection of certain types of turns. Provided
by the correct assignment of turn-type using experimental methods, we can connect
them with the sequence of structural classes predicted by L2SP, enabling an easy
scan through other protein sequences.

Despite the good overall performance of the method, it should be noted that
LS2P may predict structural propensity is some regions for which there is no ex-
perimental evidence of secondary structure. This is the case for instance of the
C-terminal region (residues 95-99) of MMK7 (see Figure 4.4), as mentioned above.
The method can also fail to predict helical propensities in a few cases (i.e. it may
produce false negatives). An example is the low populated helical structure in-
volving residues 60-75 in USrc (see Figure 4.10), which has been characterized by
NMR experiments [170]. Such under-performance in some regions can be due to
inaccuracies or lack of information in the tripeptide database.

Indeed, as machine-learning-based methods strongly rely on the data-set used
for training, the results provided by LS2D are dependent on the tripeptide database.
Our current database was constructed from coil regions in a large set of structured
proteins mostly determined by X-ray crystallography. The available information in
this database can be inaccurate or limited for sequences that are seldom observed
in globular proteins but that may appear in IDPs. With the enlargement of repos-
itories of high-resolution structures and data obtained from NMR experiments, we
expect to enrich our database and achieve more robust predictions. A more ex-
tensive and accurate structural database would also enable us to further refine the
structural classes with respect to the three classes per residue α, β, γ considered in
this work. In particular, it would be interesting to distinguish β-strand-type and
PPTT-type conformations.

Finally we must mention that, due to the simplicity of the approach, LS2P
is unable to accurately predict populations of structural elements (i.e. expected
percentage of the different structural classes for the protein in solution). This
would be an interesting extension for future work. A possible approach in this
direction would be to couple LS2P with the method to construct conformational
ensemble models of IDPs presented in Chapter 5, and which requires information
to distinguish fully-disordered and partially-structured regions.
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5.1 Introduction

Multiple computational tools using distinct levels of description have been devel-
oped to characterize IDPs when no or limited experimental information is available.
As explained in Chapter 4, current disorder prediction tools, which are based on
the statistical analysis of protein sequences, provide rough estimations of partly
structured regions in IDPs [47], although the exact secondary structure classes are
poorly defined. In principle, a more accurate characterization can be provided by
MD-based methods. However, despite significant advances in the extension of MD
methods to IDPs [173, 83], their applicability to exhaustively explore the confor-
mational space of these proteins is still limited. Knowledge-based approaches have
emerged as an alternative to overcome some of these limitations. These approaches
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usually describe the conformational properties of individual residues using the so-
called coil libraries, which contain residue-specific {φ, ψ} angles from fragments of
experimentally determined protein structures that do not form secondary struc-
tural elements [209, 103, 15, 66, 223, 203]. Despite their simplicity, coil models
provide an accurate description of NMR parameters such as J-couplings [209, 203]
and RDCs [15, 99], and SAXS curves [18] for flexible peptides and disordered pro-
teins. Nevertheless, these approaches fail to identify secondary structural elements
in IDPs. This limitation is caused by the chain building strategy, which sequen-
tially appends individual residues accounting for the amino acid type and overlooks
the sequence and structural context [103, 15]. Consequently approaches such as
Flexible-Meccano provide excellent models for the random-coil but do not capture
structural features involving multiple consecutive residues. The omission of coor-
dinated effects precludes the capacity of current approaches to predict structural
classes and their populations, and hamper their application for advanced purposes.

Here we present a new approach to build atomistic models of IDPs that uses an
extensive coil library of three-residue fragments (presented in Chapter 3), which are
the minimal fragments containing structural information [88]. The exploitation of
the structural information encoded in the library provides accurate descriptions of
RDCs and SAXS datasets for multiple disordered proteins presenting distinct sec-
ondary structural motifs. This observation suggests that, by capturing conforma-
tional restrictions in turns, α-helices, and β-strands inserted in IDPs, our structural
ensembles are realistic models of these proteins. The relative population, the in-
ternal coordination that transiently stabilizes these secondary structural elements,
and the fluctuating behavior of these elements naturally emerge from our strategy.
Our study seeks to extend structure prediction approaches to disordered chains,
thereby enabling the identification of the structural perturbations that deleterious
point mutations or alternative splicing exert on IDPs and IDRs.

5.2 Materials and Methods

5.2.1 Sampling method

The sampling algorithms builds conformations incrementally from N- to C-termini
in a residue-by-residue manner. When placing a new residue, its backbone angles
{φ, ψ, ω} are extracted from the coil database. An all-atom model is used for the
backbone, whereas a simplified model was used for the side chains, considering a
pseudo-atom placed at the Cβ position for each residue, as previously proposed
[127, 15, 163]. When placing a new residue, collisions with the previously built
residues are tested. In case of collision, a new configuration of the residue is sampled
and tested. This is repeated until a valid configuration is found or a maximum
number trials of 100 (ncolfail = 100) is reached. In these cases, a backtracking search
process is applied, which consists of removing the last three residues and restarting
sampling from this point. When the backtracking process results unsuccessful, the
chain construction is restarted from the beginning.
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Different strategies can be used within this method:
Single-residue-based sampling (SRS): This strategy is similar to the one used

in Flexible-Meccano [15, 163]. The backbone angles of each residue are sampled
disregarding the neighboring residues. In this strategy, when the residue type is
alanine, the angles are randomly selected among all tripeptide conformations of
type X-Ala-Z, X and Z being any of the 20 amino acid types (i.e. 400 tripeptide
sequence types). The process is slightly different when the Z residue is a proline.
In this case, the conformation is selected from sequences X-Ala-Pro.

Three-residue-based sampling (TRS): This strategy takes into account the se-
quence of the neighboring residues i− 1 and i+ 1 when sampling the conformation
of residue i. In other words, when the amino acid types of residues i−1, i, i+ 1 are
X, Y, Z, respectively, the conformation of residue i is sampled from the correspond-
ing class X-Y-Z in the tripeptide database. In addition, the conformation of these
two neighbors is considered in order to restrict sampling to the most structurally
probable regions. For this purpose, sampling of residue i is constrained to a subset
of conformations of the tripeptide class X-Y-Z, such that the backbone angles of
residue i− 1 are within a given angular range (±20◦) around its current conforma-
tion, which was built in the previous step. Since the conformation of residue i+ 1
is not sampled in this building step, the structural restriction requires a back-step
test. Once the conformation of residue i has been built, the conformation of the
tripeptide formed by residues i − 2, i − 1, and i is checked to be present in the
database of the corresponding sequence, considering the aforementioned angular
tolerance. As for collision tests, this structural test can also fail. In this case, a
backtracking process is also applied, with nstrfail = 250.

Hybrid Sampling: The two sampling strategies SRS and TRS can be combined
in the hybrid strategy. Based on experimental RDCs and on additional information
from previous studies, TRS is applied to sample partially-structured regions while
SRS is used for the disordered regions. Note that in the absence of experimental
information, the predictor presented in Chapter 4 could be used to identify partially-
structured regions.

5.2.2 Computation of experimental properties from ensembles

Alignment properties and associated RDCs for each conformation can be computed
by exploiting the similarity between the radius of gyration and the alignment ten-
sors as previously described in section 2.4.5.2 [3, 15]. In the results presented below,
reported RDCs correspond to averages over 100,000 conformations of each ensem-
ble. Computational RDCs were homogeneously scaled to minimize discrepancy with
the experimental ones. The agreement of the resulting RDCs with the experimental
ones was evaluated using the Q-factor [34]: Q = rms(Dmeas − Dcalc)/rms(Dmeas),
where Dmeas and Dcalc are the experimental and computed RDCs, respectively.
Ensemble-averaged SAXS data were computed from 2,000 randomly selected con-
formations from the ensembles generated with the hybrid sampling strategy. Side
chains for each conformation were introduced with SCWRL4 [118] before compu-
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Table 5.1: References to the articles from which the experimental SAXS curves for p15,
USrc and Tau where obtained.

IDP SAXS
curves

p15 [40]
USrc [5]
Tau [155]

tation of its associated theoretical SAXS profile with CRYSOL [217] using default
parameters. The ensemble-averaged curve was compared with the experimental
one by optimizing a scaling and a shift parameter, using χ2 as a figure of merit.
Averaged Cα, Cβ, CO and NH chemical shifts were computed from ensembles of
5,000 conformations with SPARTA+ [201]. Side chains for each conformation were
introduced with SCWRL4 [118] before the calculation. Random coil chemical shifts
were computed using POTENCI [158] and subtracted from the computed ones to
facilitate the interpretation.

5.3 Results

5.3.1 Computational models

We generated ensembles of 100,000 conformations for several IDPs using the dif-
ferent building strategies explained above. We used the same benchmark set of
structurally-characterized IDPs than in the previous chapter, listed in Table 4.1.
N-HN RDCs and SAXS curves were computed from the resulting ensembles using
standard methods explained in the previous section, and were compared with the
experimental RDCs for MAPK Kinase 7 (MKK7) [117], the fragment 955-1097 of
the Erythrocyte binding antigen 181 (eba181) [22], p15 [40], sic1 [147], Measles virus
ntail (ntailMV) [97], Sendai virus ntail (ntailSV) [98], the unique domain of the src
kinase (USrc) [170], K18 fragment of Tau protein (K18) [154], and full-length Tau
protein [194] were used to probe the residue-specific sampling of the models, includ-
ing the presence of partially-formed secondary structural elements. The agreement
of the different building strategies with the experimental data was quantified using
Q-factors [34] (Table 5.2). Moreover, SAXS curves for p15 [40], USrc [5], and Tau
[155] were used to probe the overall size and shape of the ensembles constructed
(see Table 5.1).

5.3.2 The coil model describes disordered regions in IDPs

As a first approach, we built the conformations by randomly selecting {φ, ψ} values
from the database in a residue-specific manner without taking into account the
neighboring residues. Only residues preceding prolines were specifically selected
from the database, since the Ramachandran distributions of these residues differ
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Figure 5.1. Experimental N-HN RDCs (black solid lines) for the nine proteins analyzed
compared with the theoretical RDCs computed using the SRS (blue solid line) and TRS
(green solid line) sampling strategies. To facilitate visual analysis, RDCs from the SRS
method were scaled considering only the regions defined as random coil in the hybrid
approach

considerably [139, 223]. This building mode, which we call single-residue-based
sampling (SRS), can be considered a Flory model since the sequence context of the
building units is not used. The RDC profiles computed using the SRS strategy nicely
reproduced the experimental ones for large sections of all the proteins (Fig. 5.1, blue
lines). Conversely, other regions displaying large (positive or negative) RDCs were
not properly reproduced by SRS ensembles. Not surprisingly, this lack of agreement
was observed in known α-helical regions with positive RDCs (ntailMV, ntailSV and
MKK7), extended regions with strongly negative N-HN RDCs (p15), and turns
displaying sharp positive peaks (eba181, K18 and Tau). Note that inaccuracies
in the representation of partially structured regions have also been observed when
using similar building strategies, such as Flexible-Meccano [15, 163]. The proteins
with highly populated secondary structural elements, such as ntailMV, ntailSV and
MKK7 present large Q-factors (around 100).

5.3.3 Structural information encoded in the tripeptide database
identifies partially formed secondary structural elements

We generated large conformational ensembles using a three-residue-based sampling
strategy (TRS) that selects {φ, ψ} values for each residue i, taking into account the
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Figure 5.2. Experimental N-HN RDCs (black solid lines) for the nine IDPs studied com-
pared with those computed using the hybrid SRS-TRS sampling strategy (red solid lines).
Fragments highlighted in orange correspond to regions considered partially structured, for
which the TRS was applied (see Table 5.3 for details).

amino acid type and the conformation of the neighboring residues i − 1 and i + 1
(see Method Details). In general, RDCs derived from the TRS strategy adopted
less negative or even positive values compared to those obtained from the SRS
strategy (Fig. 5.1, green lines). In some cases, such as for eba181 and ntailMV,
almost the entire RDC profile remained positive. We attribute this systematic
deviation towards positive values to an overpopulation of α-helical conformations
in the tripeptide database, as previously observed when using coil libraries derived
from globular proteins [103, 197]. Interestingly, some local features observed in
the experimental profiles, which were not reproduced by the SRS strategy, were
captured by the TRS strategy. Theoretical RDCs for α-helical regions in ntailMV,
ntailSV and MKK7 were systematically more positive than those corresponding to
their flanking regions. In fact, these were the only three cases for which the Q-
factor for the TRS was better than that of the SRS. Moreover, turns in K18 and
Tau were naturally pinpointed by the TRS strategy, producing sharp peaks in the
RDC profile. Note that more negative RDC values were also observed in some cases,
such as the N-terminus of p15. These observations indicate that some tripeptide
sequences in the database are enriched in particular conformational classes that are
present in solution.
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Table 5.2: Q-factor and χ2 values obtained from the comparison of the experimental and
computational data for each of the proteins studied.

SRS TRS Hybrid

Protein
Q-

factor
RDCs

χ2

SAXS

Q-
factor
RDCs

χ2

SAXS

Q-
factor
RDCs

χ2

SAXS

%
Struc-
ture

MKK7 100.36 67.98 45.20 29.00
eba181 56.01 114.33 46.90 8.18
p15 79.61 1.03 88.11 1.01 63.12 1.04 30.90
sic1 50.67 92.16 53.29 9.78
ntailMV 98.98 91.07 47.23 8.33
ntailSV 110.61 68.97 43.97 15.85
USrc 68.88 2.70 114.16 2.58 60.57 1.93 5.26
K18 63.15 83.61 59.32 8.34
Tau 63.32 2.02 77.87 2.15 60.37 1.52 18.55

5.3.4 A hybrid sampling strategy simultaneously describes struc-
tural properties of disordered and partially ordered regions

The satisfactory description of disordered and partially structured regions achieved
with the SRS and TRS strategies, respectively, prompted us to apply a hybrid build-
ing approach. In this approach, residues belonging to a partially structured region
defined a priori were incorporated into the model using the TRS strategy, while
the rest of the chain was built with the SRS strategy. For the nine proteins tested,
we defined the partially structured regions on the basis of the experimental N-HN
RDCs and previously reported structural analyses (see Table 5.3). In this regard,
SRS-derived RDCs were compared with the experimental ones, and those regions
presenting a systematic deviation were initially assigned as partially structured. The
exact borders of these regions were subsequently refined by testing multiple alterna-
tives. The Q-factors, revealed excellent agreement between the simulated and the
experimental RDC profiles for all the proteins tested (Fig. 5.2 and Table 5.2). This
metric thereby indicates that the hybrid strategy, which simultaneously describes
disordered and partially structured regions, notably improved the SRS and TRS
chain building approaches. However, the level of Q-factor improvement depended
on the percentage of the sequence involved in secondary structural elements. In
highly disordered proteins such as eba181, the improvement of the hybrid method
with respect to the SRS approach was modest, with Q-factors of 56.01 and 46.90 for
the SRS and hybrid strategies respectively. Conversely, a considerable improvement
in the Q-factor was observed in proteins with long and highly populated α-helices,
such as MKK7, ntailMV and ntailSV, whose Q-factors decreased from 100.36, 98.89
and 110.62 for SRS to 45.20, 47.23 and 43.97 with the hybrid strategy, respectively.

Computed RDCs for the α-helical regions of MKK7, ntailMV and ntailSV nicely
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Table 5.3: Regions defined as partially structured in the hybrid strategy for the studied
proteins.

IDPs TRS regions
MKK7 [A2-D29]
eba181 [D985-P986], [P997], [D1004-A1005], [D1015-D1016], [K1086-G1092]
p15 [Y13-S29], [W61-Q62], [R70-D75], [A94-H105]
sic1 [S26-L29], [P72-T77]
ntailMV [R489-Q499]
ntailSV [V476-E489]
USrc [F64-S69]
K18 [L253-V256], [L284-N286], [L315-K317], [F346-K347]
Tau [E115-H121], [R170-S184], [T212-P236]

[L253-V256], [L284-N286], [L315-K317], [F346-K347]

reproduced the experimentally observed bell-shape and the saw-teeth. Importantly,
the description of the positive RDCs did not compromise that of the disordered re-
gions as the model captured their relative intensity. Other characteristic features
observed in the experimental RDC profiles, such as turns in eba181, K18 and Tau
(see below), the broken helix in the 60-75 fragment of USrc caused by two consecu-
tive glycine residues [170], and the sharp inverse γ-turn of W61 of p15 [40], naturally
emerged when using the hybrid approach. Remarkably, this building method did
not require the specification of either the type or the population of secondary struc-
tures. Protein Tau is a particularly challenging example due to its size and the
presence of multiple structural features, which have been extensively studied by
NMR [154, 164, 194]. Seven regions of Tau were defined as structured using the
hybrid approach, four of them being the well described turns found in the repeat re-
gion corresponding to the K18 construct [154, 164]. The presence of highly positive
RDC values found in these four turns were captured by the hybrid approach in both
proteins (Fig. 5.2), thereby indicating the accurate conformational representation
of their sub-sequences in the database.

Chemical Shifts (CSs) were used to further validate the conformational ensem-
bles built with the hybrid SRS-TRS strategy. In this regard, averaged Cα, Cβ,
CO and NH CSs for ntailMV were computed from the ensembles using the pro-
gram SPARTA+ [201] and then compared with the experimental ones (Fig. 5.3).
The simulated CSs were in good agreement with the experimental ones, and they
clearly captured deviations from the purely random coil behavior represented by
the SRS ensemble. These observations substantiate the results obtained when using
RDCs.
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Figure 5.3. Comparison of the experimental (black) Cα, Cβ, CO and NH chemical shifts
of ntailMV with these obtained from the ensembles built with the SRS (blue) and hybrid
(red) strategies. Orange bars indicate these regions defined as structured in the hybrid
modeling.

5.3.5 Comparison to SAXS data

SAXS accurately probes the overall properties of conformational ensembles in so-
lution, thus complementing the residue-specific information provided by RDCs and
CSs [33, 207]. Simulated SAXS profiles were computed from the ensembles using
standard procedures (see Method Details). Overall, excellent agreement between
experimental and simulated profiles was observed for the three proteins, with χ2 of
1.93, 1.04, and 1.52 for USrc, p15 and Tau, respectively (Fig. 5.4). For USrc and
Tau, these values were notably better than those obtained with the SRS (χ2 of 2.70
and 2.02) and the TRS (χ2 of 2.58 and 2.15) sampling approaches. For p15, the
profiles achieved the three sampling strategies showed an excellent correlation with
the experimental profile, with χ2 near 1.0. These results strongly suggest that the
ensembles built with the hybrid approach properly describe the overall properties
of IDPs.
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Figure 5.4. Experimental scattering intensity (black dots) in logarithmic scale as a func-
tion of the momentum transfer, s, compared with the averaged profiles computed from the
hybrid ensemble models for tau (green), USrc (pink), and p15 (red). The profiles have been
displaced along the y-axis for a better inspection.

5.3.6 Prediction of local conformations and secondary structural
elements

The previous sections demonstrate that the ensembles built with the hybrid ap-
proach are excellent representations of IDPs in solution. Next, we explored the
structural features of the resulting models using the helical region in ntailMV, the
extended region at the N-terminus of p15, and the turns in eba181 and K18 as
examples.

For ntailMV, the hybrid strategy notably enriched the structured region in α-
helical conformations while it was depleted in extended (β-S) and polyproline-II (β-
P) (Fig. 5.5a). This structural enrichment in helical conformations induced positive
RDC values in this region. The conformational analysis of the ensemble built for
the N-terminus of p15 indicated a strong enrichment in extended conformations, β-
S and β-P, whereas α-helical ones were depleted (Fig. 5.5b). Interestingly, neither
β-S nor β-P were homogeneously populated along the segment, and either one or
the other became dominant depending on the specific sequence.

A highly relevant feature of the hybrid strategy is its ability to identify turns
from sequences. Four turns have been localized in eba181 based on their positive
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Figure 5.5. Experimental (black) and hybrid building model (green) N-HN RDCs for
two fragments of (a top) ntailMV and (b top) p15. Fragments highlighted in orange were
considered partially structured and built using the TRS strategy. In bottom panels, the
percentage of enrichment of secondary structure classes present in the ensemble built with
the hybrid strategy compared with that built with the SRS strategy. Secondary structure
classes were identified using definitions in related work [164]. Concretely, [βS : −100 >
φ;−120 > ψ > 50], [βP : 0 > φ > −100;−120 > ψ > 50], [αR : 0 > φ; 50 > ψ > −120],
[αL : φ > 0].

RDCs [22], however the sizes of these RDCs differed (Fig. 5.2). While turns 3
(DASL) and 4 (DDAK) presented highly positive values, turns 1 (DPEK) and 2
(DPNT) were only slightly positive thereby suggesting distinct structural features.
Fig. 5.6 shows the conformations adopted by the residues involved in the four turns.
In all turns, residue i+1 adopted an α-helical conformation. However, while residue
i in turns 1 and 2 was mainly extended due to the following proline, it was α-helical
in turns 3 and 4. This structural difference most probably explains the distinct
RDC values of the four turns. According to current definitions [41], the four turns
can be considered β-turns, types I and VIII being compatible with the conformation
of the residue i + 1. Nevertheless, the sequence composition clearly suggests that
turns 1 and 2 with D and P in positions i and i + 1, respectively, are type I β-
turns [41]. In another example, the four turns identified in K18 were enriched in
α-helical conformations in their two central residues (Fig.5.7), an observation that
is in line with the original study [154]. However, residues in position i + 1 (L253,
L248, L315 and F346) sampled the region {φ = −90, ψ = 0} whereas residues
i+2 (K254, N285, S316, and K347) adopted mainly an α-helical conformation with
{φ = −60, ψ = −30}. Although resembling type I β-turns, they did not adopt the
canonical conformation [41].

5.3.7 Coordinated formation of structural elements

We further studied how secondary structural elements are formed within the con-
formational ensembles using the helical region in MKK7 as an example (Fig. 5.8a).
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Figure 5.6. Conformational sampling for the four turns identified in eba181. Each column
displays the Ramachandran plots for the three first residues in turns 1 to 4 when using the
SRS (blue) or the hybrid (green) sampling approaches.

The Secondary Structure-map (SS-map) [91], which allows the quantification of
multiple structured elements within conformational ensembles, was used for this
analysis. According to the SS-map, the ensemble of the N-terminal region of MKK7
presented scarcely populated helical regions of virtually all sizes from 4 up to 28
residues. Although the helix encompassing the whole 28-residue-long region was
found in the ensemble, its population was extremely low, and shorter α-helices
were preferred. In this regard the most populated helices (around 5%) involved
eight and nine residues in non-overlapping segments of the protein. Interestingly,
the N-terminal region of this fragment seemed more prone to form long α-helices
expanding up to 15 residues. The continuum of multiple overlapping helical sections
observed in the ensemble of MKK7, which induces the bell-shape of the resulting
RDC profile, highlights the conformational complexity of helical regions in IDPs.

We tested two alternative procedures to introduce helicity into ensembles gen-
erated using a Flory model (i.e. the SRS strategy in our implementation) that
are frequently used to describe NMR data [40, 164, 170, 238, 13]. Firstly, a 25%
increase in α-helical conformations was imposed for each of the residues within the
region, but no structural coordination between residues was forced (Fig. 5.8b). Sec-
ondly, a canonical α-helix spanning the 28-residue-long region was introduced in
25% of the conformations (Fig. 5.8c). When the helical tendency was increased at
the residue level, the resulting ensemble displayed multiple short helices spanning
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Figure 5.7. Conformational sampling for the four turns identified in K18. Each column
displays the Ramachandran plots for the first three residues belonging to turns 1 to 4 when
using the SRS (blue) or the hybrid (green) sampling approaches.

the whole region. However, the population of longer helices decreased dramati-
cally. Consequently, resulting RDCs were positive but with values close to zero
and they did not display residue-specific features. When a canonical α-helix was
forced within the complete region no shorter helices spontaneously formed in the
remaining 75% of the ensemble. As a result of this conformational homogeneity, the
RDC profile adopted large positive values with the saw-teeth shape induced by the
continuous α-helix. However, RDCs did not present the overall bell-shape observed
experimentally.

To further evaluate the ensembles generated with the aforementioned proce-
dures, we also used two-dimensional plots that display the deviation with respect
to a canonical α-helix (see Fig.5.9 with the associated explanations). In these plots,
each conformation is represented by a point with the x coordinate corresponding
to the distance between the first N and last C backbone atoms of the 28-residue
fragment of MKK7, and the y coordinate corresponding to the average distance
between H-bond donor and acceptor atoms within this fragment. The proposed
hybrid sampling strategy (Figure 5.9, left image), using TRS for the selected 28-
residue region, produces a wide variety of conformations, and several regions of the
plot are more densely sampled. In particular, we can observe more conformations
near the coordinates corresponding to the canonical helix, but slightly shorter (in
terms of end-to-end distance). This can be explained by the propensity to form
shorter helices, as observed in the the SS-map, giving the possibility to flanking
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Figure 5.8. Structural analysis of the helical region in MKK7. (Top panels) Length and
encompassing residues of the α-helices found in ensembles computed using (a) the hybrid
sampling and two theoretical models imposing (b) 25% of enhanced helicity per residue, and
(c) 25% population of a canonical α-helix in the 28-residue long segment. Colors from white
to red indicate the population of helical segments found in the ensembles. (Bottom panels)
Theoretical RDCs calculated from the above described ensembles (red lines) compared with
the experimental ones (black lines).

regions to fold back. Using the procedure that imposes helicity at the residue level
(Figure 5.9, middle image), the distribution of the sampled conformations is much
more compact, and the region near the canonical helix is not sampled at all. This
is in line with the SS-map representation, showing that only very short helices are
formed. Finally, the plot corresponding to the other procedure clearly shows the
imposed 25% populated canonical helix (Figure 5.9, right image), being the rest of
the conformations far from it. Such a discontinuity in the conformational space is
unrealistic. Indeed, although this last procedure can in some cases yield a good
agreement between computationally generated ensembles and experimental data,
these ensembles are inaccurate representations of the conformational heterogeneity
of partially structured regions in IDPs.

A SS-map analysis was also performed in the helical regions of ntailSV and
ntailMV (Fig. 5.10). As in the case of MKK7, the co-existence of multiple over-
lapping short α-helices was observed. However, in contrast to MKK7, these two
proteins displayed a triangular shape in the SS-map, in agreement with their sim-
ilar amino acid sequence and function. This shape arises from the presence at the
N-terminus of a motif of multiple residues with a strong tendency to trigger the
formation of α-helical segments. The most prevalent initial residues of the detected
helices in our ensembles were aspactic acid and serine. These two amino acids have
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Hybrid sampling 25% helicity per residue 25% canonical helix

Figure 5.9. Deviation with respect to a canonical helix of conformations of the N-terminal
region of MKK7 generated using different sampling strategies. The abscissa axis corre-
sponds to the distance between the first N and last C backbone atoms of the 28-residue
long structured region of MKK7. The ordinate axis corresponds to the average distance
between H-bond donor and acceptor atoms. For a canonical 28-residue long helix these
values are 3 Å and 43.5 Å, respectively.

been identified as helix N-capping amino acids, which stabilize α-helices with their
side chain by forming a hydrogen bond at positions 2 or 3 in the helix [98, 137].
This observation suggests that the N-capping properties of these amino acids are
encoded in the tripeptide database and that their capacity to initiate helical motifs
naturally emerges in ensembles built with the hybrid strategy.

5.4 Conclusion

Partially structured motifs are key elements to trigger signaling events and to regu-
late transcription and metabolic pathways [227]. The localization and characteriza-
tion of these motifs inserted within fully disordered fragments have been the focus
of intense research [227, 232, 150]. Here we present an approach that exploits the
structural information encoded in tripeptide fragments extracted from coil regions
of experimentally determined protein structures to build accurate structural en-
sembles of IDPs/IDRs, including scarcely populated structured motifs. Although
Flory models, which do not consider the sequence context, generate conformational
ensembles with the capacity to reproduce diverse experimental data for disordered
chains, they fail to predict and model partially structured elements. Our results
demonstrate that the tripeptide database, which accounts for this sequence context,
contains structural features that are subsequently found experimentally in solution.
Whereas libraries involving larger fragments have been shown to be powerful tools
for the prediction of probable (stable) conformations of globular proteins and pep-
tides [79, 116, 184, 8, 202, 140], our results highlight that our extensive database
of three-residue fragments is enough to accurately represent the conformational
variability and local structural propensities in IDPs. Moreover, representing the
conformational variability of disordered chains requires a broad sampling of struc-
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Figure 5.10. SS-map analysis for the helical regions in ntailMV and ntailSV displaying the
length and the composing residues of the α-helices found in ensembles generated with the
hybrid sampling strategy for both proteins. Color from white to red indicates the population
of these helices. Vertical lines indicate aspartic acids and serines in the sequence that act
as helix N-capping residues. Concretely, D484, D487, S488, S491, and D493 are highlighted
for ntailMV, and D473, D475, S477, and D478 and highlighted for ntailSV.

tures, which would not be guaranteed using databases of larger fragments. In this
regard our tripeptide emerges as optimal for this purpose.

The general agreement between experimental and simulated RDCs implies that
the residue-specific structural information encoded in our tripeptide database is
coherent with the conformational behavior of IDPs in solution. This is a remark-
able observation as the database has been derived from coil regions of crystallo-
graphic structures, which are susceptible to experience packing contacts and/or
reduced mobility. Therefore, the sequence context is a major determinant of struc-
tural propensities, regardless of the state (globular/disordered) or the environment
(crystal/solution). However, for some sequences, a less accurate agreement between
the experimental and simulated RDC profiles has been observed. We attribute
this punctual lack of agreement to the limited conformational coverage of these se-
quences in our database. With the increasing number of experimentally determined
high-resolution protein structures, we expect that more extensive and higher qual-
ity tripeptide databases will be built in the future, which will further improve the
accuracy of conformational ensembles generated with our method.

Our approach relies on the discrimination between disordered and partially
structured regions to subsequently apply the SRS and TRS sampling strategies,
respectively. Here we have used the experimental RDCs and previous studies of
the considered proteins to define both regions. In the absence of RDCs, other ex-
perimental data and bioinformatics predictions can be used to identify partially
structured motifs. CSs, which are the primary information derived from NMR,
are also very sensitive to small conformational bias at the residue level [221, 196].
Partially structured motifs can also be discriminated from fully disordered regions
by their faster NMR transverse relaxation rates [97, 40]. In the absence of ex-
perimental information or to complement it, bioinformatics tools, such as the one
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presented in Chapter 4, can be applied identify regions prone to forming secondary
structure elements. Another interesting source to distinguish structured elements
is sequence conservation analysis. In IDPs, motifs involved in protein-protein inter-
actions present slower mutational rates when compared to non-functional regions
[160].

Partially structured motifs are not permanently folded in IDPs. They can be
seen as an equilibrium between conformations hosting distinct smaller structured
elements that are in continuous exchange driven by their extension or shortening.
In other words, these sequences lack the internal coordination to form permanent
secondary structural motifs and, as a consequence, are susceptible to partial unfold-
ing events. Recognition processes exploit this structural heterogeneity to efficiently
achieve the desired biological tasks. Binding affinities of the co-existing conform-
ers are modulated by the entropic penalty caused by the folding of the recognition
motif fragment that remains disordered in the unbound state [167]. Moreover,
recognition kinetics studies have demonstrated the existence of transiently popu-
lated encounter complexes, and different conformational states of the recognition
element most probably present distinct energy barriers to achieve the final bound
form [192, 215, 46]. In the context of RDCs, the coexistence of multiple partially
folded helical elements in the same region leads to the bell-shaped RDC profile and
the saw-teeth, which report on the prevalence of the different helical fragments. Im-
portantly, this structural heterogeneity is nicely captured by our hybrid sampling
strategy, thereby highlighting the correspondence between the information encoded
in the database and the conformational sampling of IDPs in solution. This feature
is exemplified by the helix N-capping properties that we observed in the ensembles
of ntailMV and ntailSV.

In summary, we have developed a method to build realistic conformational en-
sembles of IDPs and IDRs that describes scarcely populated secondary structural
elements embedded in otherwise fully disordered regions. Our strategy is based on
an extensive database of tripeptide structures and on the separation between disor-
dered and conformationally biased regions within the chain. This approach detects
binding motifs involved in partner recognition that are, in most cases, linked to bio-
logical tasks. Our approach has the potential to anticipate structural effects caused
by point mutations with an eventual role in disease, and the insertion or deletion
of disordered fragments originating from alternative splicing processes. In this re-
gard, we believe that our approach is the first step towards extending structural
bioinformatics and protein design to disordered proteins.





Chapter 6

A heuristic search algorithm to
investigate the formation of

structural elements

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . 96

6.2.1 Use of the structural database . . . . . . . . . . . . . . . . . 96
6.2.2 Formal statement of the conformation path finding problem . 98
6.2.3 Search algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 102
6.3.1 Chignolin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3.2 DS119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1 Introduction

As mentioned in previous chapters, some regions in IDPs are partially structured,
meaning that secondary structure elements constantly form and vanish. These tran-
sient structural elements, usually called Molecular Recognition Elements (MOREs),
are functionally important in many cases, since they are involved in the recognition
of molecular partners [167, 226]. MOREs recognize their globular partners with
high specificity while displaying a moderate affinity, explaining their fundamental
role in signalling, metabolic regulation and homeostasis [227]. In this chapter, we
present a method to investigate the formation of these structural motifs. In addi-
tion to the interest for the study of IDPs, the proposed method has a wider range
of applications, such as the investigation of folding mechanisms in proteins.

Understanding the mechanisms of protein folding and unfolding as a function
of the amino acid sequence is of paramount importance, giving their relevance
in biological processes [233]. Furthermore, numerous diseases are related to the
inability of proteins to fold correctly or to form insoluble amyloidogenic aggregates
due to mutations or metabolic deregulation [230, 112].
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Intensive research efforts over several decades, using both experimental and com-
putational approaches, have yielded important bricks of knowledge on the underly-
ing mechanisms of protein folding, unfolding and other conformational transitions
[9, 241, 52, 186, 132, 19]. Nevertheless, we still lack of a complete understanding
of these mechanisms. Some theories about protein folding give more importance
to interactions between the protein side chains, whereas others consider that the
propensity of protein backbone fragments to form secondary structural elements,
such as α-helices, β-sheets and turns, is the most important mechanism for protein
folding.

We believe that local, sequence-dependent structural preferences are essential
to drive the formation of structural elements, while other phenomena such as hy-
drophobic effects or electrostatic forces help stabilizing the overall structure. Follow-
ing this hypothesis, we propose a theoretical approach to compute conformational
transitions using local structural information extracted from experimental data.
Interactions between distant residues are (explicitly) neglected for the exploration
of transition paths, with the exception of collisions that would lead to unrealis-
tic conformations. However, as further explained below, non-bonded interactions
associated with local structural preferences are implicitly considered, and can be
propagated along the sequence thanks to the application of constrains within the
path search algorithm.

Information extracted from experimentally determined protein structures is fre-
quently used in computational biology. The usual usage is the prediction of the
conformation of the protein side chains, using the so-called rotamer libraries [55],
which encode the most frequent values of the side chain dihedral angles for each
amino acid type. The construction of protein backbone structural databases is less
straightforward than for the side chains as it requires to subdivide proteins into
fragments. The length of the fragments and considerations regarding the amino
acid sequence may depend on the specific application. As also explained in pre-
vious chapters, statistics about the most frequent values of the backbone dihedral
angles of amino acid types have been frequently used to explore the conformational
sampling of highly-flexible proteins or regions [209, 103, 15]. However, such mini-
malistic single-residue fragments neglect the effects exerted by neighboring residues.
Structural libraries involving larger fragments (usually, from 3 to 14 residues) have
been shown to be powerful tools for the prediction of probable (stable) conforma-
tions of globular proteins and peptides [116, 184, 8, 143]. Fragment libraries can also
be used to investigate conformational transitions in proteins. In a recent work, local
moves using a fragment library were combined with other types of structural per-
turbations to compute transitions between several folded states of a protein [152].
Since the aforementioned fragment libraries were mainly conceived for protein struc-
ture prediction, they are focused on the most probable conformations of small and
medium-sized fragments. As a consequence, they are not exhaustive enough for
the study of conformational transitions. This limitation is more evident when the
length of the fragments increases. Fragments involving three consecutive amino acid
residues (tripeptides) represent a good trade-off between sequence-dependent struc-
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tural preferences and exhaustiveness. Indeed, tripeptides contain relevant structural
information [88] and are sufficiently small to capture the conformational variability
of the 20 proteinogenic amino acids in their sequence context. In Chapter 5, we
showed that an extensive database of tripeptides allows to accurately sample the
conformational variability of IDPs. Here, we exploit the combination of this type
of local structural information with a path search algorithm to compute conforma-
tional transitions in small proteins and protein fragments corresponding to relevant
structural elements.

A protein cannot exhaustively explore its huge conformational space to seek
transition pathways. This idea, referred to as the Levinthal’s paradox [126, 185],
is widely accepted. Indeed, a protein performs some search process to find the
most efficient folding and transition pathways. We can say that the protein follows
a powerful heuristic to avoid exploring an astronomically large number of possi-
ble pathways. This heuristic is not well understood yet, but, as mentioned above,
we believe that local sequence-dependent structural preferences play an important
role in it. Our contribution investigates this open question, and proposes a sim-
ple, heuristically-guided search algorithm, inspired from Artificial Intelligence (AI)
and Robotics, to compute conformational transitions. AI and Robotics planning
representations and techniques have been found valuable for solving several compu-
tational biology problems [2, 71, 200]. This chapter illustrates through an original
approach their effectiveness in modeling folding mechanisms of structural elements
in proteins.

The approach presented herein is very different from the ones in related works.
First, the structural information is collected and used in a different way, and sec-
ondly, the algorithmic approach is totally different. Concretely, we use a heuris-
tically guided depth-first algorithm, adapted from search techniques in constraint
satisfaction problems over finite sets (CSP) and in automated task planning [70].
In our case, the state variables are the protein tripeptides, which range over finite
sets of conformations extracted from a global database. The equivalent of an action
is a constrained local change in a state variable. The algorithm relies on adjacency
graphs of the state variables [183], which are computed at preprocessing time and
are essential for efficiently testing the feasibility of transitions and for calculating
the heuristic, which is based on statistical physics considerations. Our approach
tends to favor paths going through high-density states, which are the most proba-
ble ones according to experimental observations recorded in the structural database.
In other words, if we assume that the probability of the observed states for each
tripeptide follows a Boltzmann distribution, we can say that the path search tends
to follow the valleys of the free-energy landscape [236]. The search process also
gives priority to short paths, which should correspond to faster transitions. The
structural preferences for a tripeptide (i.e. at the state variable level) tend to
be propagated along the sequence due to constraints imposed on the bond angles
in the state transition validation, which reinforces neighbor-dependent structural
preferences encoded in the database (see Section S2 in supplementary material for
details). Thus, the path search process incorporates in an implicit way non-local
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interactions along the sequence such as backbone hydrogen bonds in α-helices.
We applied our approach to two synthetic mini-proteins, Chignolin [85] and

DS119 [129], which were particularly designed to fold into well-defined structural
motifs present in natural proteins. These two molecules have been investigated in
recent years using different methods [61, 178]. The results reported in this chapter
are consistent with respect to those described in related literature, and already show
the interest of the proposed approach, which is extremely fast when compared with
currently-used computational methods based on molecular dynamics (MD) simu-
lations [181]. Indeed, MD simulations of large-amplitude protein motions require
ad-hoc computer architectures [132] or massively-distributed computing [210]. The
efficiency of our approach allows to widely investigate, with modest computational
resources, the effect of mutations on protein folding and unfolding, or on other
functionally-important conformational transitions.

6.2 Materials and Methods

The proposed approach relies on a large database of protein structures, repre-
sented as sequences of partially overlapping tripeptides (the construction of the
database was explained in Chapter 3). As stressed above, tripeptides are the mini-
mal structurally-relevant units in proteins. The conformational transition problem
is formalized as a search in a space of tripeptide conformations for a feasible path
from an initial state to a target state of a protein. The state variables correspond
to tripeptides; their values are the conformations of tripeptides actually observed
and recorded in the database. A state variable in the sequence describing a protein
shares its first two residues with its predecessor and its last two with its successor
state variables in the sequence (see Figure 3.2). A transition between two values of
a state variable is feasible if it meets a consistency constraint with respect to the
predecessor and successor state variables, and if the corresponding conformation
of the protein is collision free. The search algorithm seeks a feasible path using a
heuristically-guided depth-first search schema. The heuristic function is a weighted
sum of the distance between two conformations, an estimate of the distance to the
target and a density term to advantage energetically favorable states.

We present next how the information in the tripeptide database is used in the
present context. Then the statement of the conformational transition problem as a
discrete path search problem is presented. Finally, we detail the proposed algorithm
and the heuristics used to solve this problem.

6.2.1 Use of the structural database

Let X be the set of all 8, 000 tripeptides. An element xi ∈ X is a state variable
in our representation. Let Di be the set of all the conformations of xi recorded in
our database. The conformation of xi is characterized by the six backbone dihedral
angles of the three residues in the tripeptide, denoted φi,j and ψi,j , for 1 ≤ j ≤ 3.
Although a conformation is characterized by an angular vector of 6 real numbers,
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Figure 6.1. (a) Database containing one record for each tripeptide (8, 000 in total).
(b) For each tripeptide, the conformations recorded in the database are related with a
proximity criterion and structured into an adjacency graph (the figure shows a simplified
representation of this graph for tripeptide Pro-Ser-Ile).

for the purpose of our search algorithm over biologically observed conformations, we
consider that the range of each state variable xi is the finite set Di of the recorded
conformations in the database. We write xi = vi for some vi ∈ Di.

The distance d(vi, v′i) between two values vi and v′i is defined as the angular root-
mean-square deviation (RMSD) between the two corresponding angular vectors.
More precisely:

d(vi, v′i) =

√√√√1/6
3∑
j=1

(
(φi,j − φ′i,j)2 + (ψi,j − ψ′i,j)2

)

We also define the central distance dc(vi, v′i) with an identical formula for j = 2
solely, i.e., restricted to the central amino acid residue of xi. The idea is to com-
pute a feasible path in the conformations of a protein as a sequence of elementary
transitions focused on the central residue of each tripeptide.

These distances d and dc allows us to structure the finite range Di of each state
variable as an adjacency graph, as illustrated in Figure 6.1.b. Its vertices are the
elements in Di. There is an edge (vi, v′i) when dc(vi, v′i) < θ and d(vi, v′i) < θ + ξ,
where θ is a variable adjacency threshold and ξ is a small constant tolerance margin.
The adjacency threshold θ represents a tradeoff between a fully connected graph (no
transition constraints between conformations) and an unconnected one (unreachable
conformations), both cases being unrealistic. We set the threshold such that the
adjacency graph of each tripeptide has a single connected component with moderate
edge connectivity. This threshold θ is slightly different for different tripeptides, with
an average value around 1.0 radian. The value of ξ was set to 0.35 radians in all
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the cases.
The vertices are also characterized by a density function defined as follows:

ρ(vi) = 1 + |{v′i | v′i connected to vi and d(vi, v′i) < ζ}|.

The threshold ζ has to be smaller than the adjacency threshold θ. Here, we set
ζ = 0.2 radians for all the tripeptides. The density ρ is related to the probability
of existence of the corresponding conformation of the tripeptide. Considering basic
principles in statistical physics (i.e., the Boltzmann distribution), this probability
depends on the energy of the state of the molecule. Thus, the most dense regions
in the adjacency graph are also the most energetically-favorable ones.

6.2.2 Formal statement of the conformation path finding problem

A protein (or protein region) of interest is defined by a sequence of state variables
〈x1, . . . , xi, . . . , xn〉, with overlaps. For example, the mini-protein Chignolin is a se-
quence of 10 amino acid residues: 〈Gly-Tyr-Asp-Pro-Glu-Thr-Gly-Thr-Trp-Gly〉; it
is defined with 8 state variables x1 =Gly-Tyr-Asp, x2 =Tyr-Asp-Pro, . . . x8 =Thr-
Trp-Gly. Hence, the state variables are not independent: a transition in a state
variable may or may not be consistent with another transition in the previous or
following state variables in the sequence.

For a given conformational state of the protein s = 〈(x1 = v1), . . . , (xi =
vi) . . . , , (xn = vn)〉, the overlap between consecutive state variables means that
a tripeptide xi shares its first two residues with its predecessors in the sequence and
its last two with its successors; that is:

φi,1 = φi−1,2 = φi−2,3, φi,2 = φi−1,3 = φi+1,1, and φi,3 = φi+1,2 = φi+2,1 , (6.1)

and similarly for the ψ angles.
An elementary state transition with respect to xi, from the value vi to an ad-

jacent value v′i, involves a conformational change mainly in the central residue of
xi (by construction of the adjacency graph). This entails constraints on xi−1 and
xi+1 with respect to their current values in state s. We express these constraints as
inequalities with a tolerance margin as follows:

|φ′i,2 − φi−1,3| < ε, |φ′i,2 − φi+1,1| < ε,

|ψ′i,2 − ψi−1,3| < ε, |ψ′i,2 − ψi+1,1| < ε.
(6.2)

where the angles for the last and first residues of xi−1 and xi+1 correspond to their
current values vi−1 and vi+1. These constraints can be relaxed during the search
by dynamically adjusting the value of ε, as explained below. Here, we set initially
ε = 0.35 radians.

Définition 1 (Feasible transition) A transition in the conformation of a protein
from a state s where xi = vi to a state s′ where xi = v′i is said to be a feasible
transition if and only if:
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(i) the values vi−1 and vi+1 meet the constraints of Equation 6.2, and

(ii) there are no collisions between the atoms of the protein in the state s′.
A feasible path is a sequence of feasible transitions.

Let γ(s, (vi → v′i)) denotes the state s′ corresponding to this transition when it is
feasible, otherwise γ is undefined.

The conformation path finding problem can be formally stated as follows: given
X and the adjacency graphs of all the state variables in a protein, and given an
initial state s0 and a goal state sg, the problem is to find a feasible path that
transforms the protein conformation from s0 into sg, if there exists such a path.

6.2.3 Search algorithm

To generate a feasible path from s0 to sg, we rely on a heuristically-guided depth-
first search in the space

∏
iDi, over all state variables xi in the protein. To ease

the presentation, the algorithm is stated in the pseudo-code of Figure 6.2 as a
simple recursive nondeterministic search procedure called HDFS. The initial call
is HDFS(s0, 〈s0〉). The nondeterministic choice (step labelled /) is a convenient
notation meaning that the algorithm makes at this point a branching decision; it
explores potentially all possible options, expressed here as the set E ; it stops on
the first path which succeeds or it returns failure if all paths fail.1 The determin-
istic implementation of HDFS makes at this step a heuristic choice over which it
backtracks in case of failure; if needed, this is repeated as long as an option in E

remains unexplored. The heuristic driving this choice is detailed below.
The algorithm iterates over all tripeptides in the protein to find their feasible

transitions. For a given state variable xi = vi in s, procedure Transition-Filter checks
the values adjacent to vi in graph Di. Unfeasible transitions are disregarded, as
well as transitions that loop back into a circuit of the search space. The set E is
the union of all retained transitions (vi → v′i) over all state variables. When E is
empty, then s is a dead end; a backtracking is performed.

In our more efficient and deterministic implementation of the algorithm, E is
computed incrementally. E starts with the transitions of a single state variable,
which has feasible transitions. E is augmented with respect to new state variables
when backtracking requires alternative options. In our current code, the ordering
of the state variables in the HDFS loop is not heuristically guided. The effects of
state variable ordering heuristics, such as the proximity to the goal or the average
density in the adjacency graph, remain to be investigated.

Heuristic guidance function For the results presented in this chapter, the
search is guided though the ordering in procedure Transition-Filter of the set A

1The metaphor to help explain a nondeterministic specification of an algorithm is that of a
machine able to multiply itself at each branching point into identical copies, each copy pursuing
the search in parallel until one finds a solution or all fail.
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HDFS(s,Path)
if s = sg then return(Path · s)
E ← ∅
for each state variable xi in s do

E ← E ∪ Transition-Filter(s, xi,Path)
if E = ∅ then return(failure)
else do

Nondeterministically choose in E a transition (vi → v′i) /

s′ ← γ(s, (vi → v′i))
HDFS(s′,Path · s)

Transition-Filter(s, xi,Path)
vi ← value of xi in s
A ← set of values adjacent to vi in adjacency graph Di

for each v′i ∈ A do
if γ(s, (vi → v′i)) is undefined or
if it is a state already in Path

then remove v′i from A

return(A )

Figure 6.2. Main procedure as a recursive nondeterministic best-first search. The choice
(in step /) is guided with the heuristic cost function used to order the set A . In the case
of failure, backtracking is performed at this step to other remaining options in the set E ,
which is computed incrementally.

of feasible values. A is ordered with the following cost function:

cost(vi, v′i) = d(vi, v′i) + w1 × h(v′i, v
g
i ) + w2/ρ(v′i),

where d and ρ are the distance and density functions defined earlier, vgi is the value
of xi in the goal state sg, h is the shortest path in the transition graph to the goal,
and w1 and w2 are weight parameters. The first term seeks to minimize the distance
between consecutive states along the path (i.e., to maximize the continuity of the
path). The second term is the sum of the distances of a minimal path from v′i to the
goal. The third term intends to maximize the density of the states along the path,
which, as explained earlier, are the most energetically favorable ones. The weights
w1 and w2 permit a tuning of the three components; their proper setting remains
to be investigated. Here, we simply set w1 = w2 = 1. Note that h is a lower bound
for the remaining cost from v′ to vg, since a path in the transition graph, minimal
with respect to the distance d, relaxes the feasibility constraints of Definition 1 and
cannot be longer than a feasible path.

In order to speedup the search, a preprocessing of the adjacency graphs labels



6.2. Materials and Methods 101

edges with their distance d and computes for every vertex the shortest path to the
goal as well as the density of every node in each graph. This is done with a standard
graph search algorithm.

The test of collision-free states is computed using a variant of the classical
Cell Linked-List (CLL) algorithm [189]. A pair of non-bonded (pseudo-)atoms is
considered to be in collision if their distance is less than 65% of the sum of their
radii. In this work, we considered the radii values proposed by Bondi [23] for the
backbone atoms, and those proposed by Levitt [127] for the side chains pseudo-
atoms.

Note that the feasibility constraints in Equation 6.2 are too conservative. A
more flexible definition would also accept as feasible the transitions for which either
the current values of xi−1 and xi+1, or some of their respectively adjacent values
v′i−1 and v′i+1, meet these constraints. In that case, the state s′ = γ(s, (vi → v′i))
involves changes in xi but also in its predecessor and successor state variables. The
cost function driving the search would naturally be extended to cost(s, s′) over en-
tire states. Instead, we have implemented a simpler mechanism to locally relax this
constraint if the search process gets blocked : if state transitions fail f consecutive
times (f = 5 in our implementation), the tolerance value ε is increased to 0.7 radi-
ans. ε is reset to 0.35 radians after a successful transition. The next section shows
that, even with such a simplified implementation, the proposed approach already
gives meaningful results.

Properties of HDFS The algorithm is sound; that is, it returns a path which
is feasible, in case of success. This is because each transition meets Definition 1.
HDFS is also complete; that is, it finds a feasible path if one exists with respect
to the transitions in the adjacency graphs of the state variables. This is the case
since in each search state s, E is the entire set of feasible transitions over all state
variables, loops are avoided, and backtracking is systematic.

As for any backtrack search algorithm, the worst case complexity is exponential,
in O(

∏
i |Di|).2 A more useful complexity model is in O(db), where d is the depth

of the search (i.e., the length of the found path), and b is the branching factor. An
upper bound on the branching factor is n×p, where n is the length of the protein and
p is the maximum degree of vertices over all adjacency graphs. However, thanks to
the search guidance of its heuristics, we observed a manageable complexity growth.
Our experiments with seven proteins, ranging in length 10 ≤ n ≤ 67 residues,
show that b does not grow with n; it is constant and very small, about b ' 1.04.
The overall search complexity has a low polynomial growth in n. Furthermore, we
confirmed that, as expected for a local propagation mechanism, the computation
time required for each search state is not a function of n, but a quite small constant,
of about 0.9 ms per state on a standard CPU. The Section S1 in the supplementary

2It is possible to compute the total size of the search space for each given problem (using
Dynamic Programming and taking into account state variable dependencies); but this information
is not very useful since in practice the algorithm explores a very small fraction of the search space.
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Figure 6.3. The left side panel represents the structural propensities at the residue
level observed from a set of 1, 000 conformations randomly generated from the structural
database. Each plot displays the DSSP structural classes using the WebLogo format for
(a) Chignolin, and two mutants: (b) Chignolin-P4A, and (c) Chignolin-W9A. (d) Struc-
tural representation of Chignolin: superposition of an experimentally determined structure
(with carbon atoms in green) and the closest one in the set of 1, 000 sampled conformations
(with carbon atoms in orange). For clarity, only the protein backbone is represented, using
PyMOL [193].

material details this analysis as well as a discussion contrasting the scalability of
our approach with that of MD methods.

6.3 Results and Discussion

This section presents results obtained with the proposed approach for the analysis of
the folding process of two synthetic mini-proteins, Chignolin and DS119, which were
designed to fold into structural motifs present in natural proteins. First, we present
a deeper analysis for Chignolin and two point mutants. Then, results presented for
DS119 show that the approach is general and can be applied to the investigation of
different structural elements.

6.3.1 Chignolin

Chignolin is a synthetic polypeptide consisting of 10 residues [85]. Despite its
small size, Chignolin behaves as a macromolecular protein from structural and
thermodynamic points of view: it folds into a well-defined structure in water, and
shows a cooperative thermal transition between unfolded and folded states [191].
The folded conformation of Chignolin corresponds to a β-hairpin motif, which can
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be found in many natural proteins (Figure 6.3.d). Therefore, elucidating the folding
mechanism of Chignolin helps to understand the folding patterns of more complex
proteins. This has motivated several experimental and computational studies on
Chignolin in recent years. Here, we compare our results with those of Enemark et
al. [61], which are based on extensive molecular dynamics simulations, and provide
detailed information at the single-residue level.

Table 6.1 provides the number of conformations (i.e., number of values of state
variables) contained in our database for the eight overlapping tripeptides composing
Chignolin. The search space size is upper-bounded by

∏
i |Di| ≈ 4× 1023, which is

huge when compared to the extremely focused explorations performed by our algo-
rithm. Thanks to the search guidance of its heuristics, we observed a manageable
complexity growth, as explained in Section 6.2.3 and in the supplementary material.

In a first experiment, we assessed the ability to obtain realistic conformations of
Chignolin using the structural information encoded in our tripeptide database. We
generated an ensemble of 1, 000 Chignolin states by randomly sampling values of the
state variables one by one, in an incremental manner, enforcing the consistency with
neighbor state variables, and rejecting those leading to collisions between atoms.
Interestingly, several states in this relatively small ensemble are close to the folded
conformation of Chignolin [85]. Indeed, 240 over the 1, 000 sampled states have an
angular RMSD distance to the folded conformation below 0.5 radian, the closest one
being around 0.2 radians (see Figure 6.3.d). This confirms that the most important
regions of the conformational space can be sampled by building states from the
tripeptide database.

In order to better characterize the conformational ensemble, secondary struc-
ture types for each state were identified at the single residue level using DSSP [105].
DSSP distinguishes eight types of structural classes, labeled with a letter: H for
α-helix, B for β-bridge, E for strand, G for helix-3, I for helix-5, T for turn, S for
bend, and "blank" (here labeled as L) for coil/loop. We used the WebLogo tool [37]

Table 6.1: Number of conformations (i.e. number of values of state variables) for the eight
overlapping tripeptides composing Chignolin.

Tripeptide
sequence Nb conformations

Gly-Tyr-Asp 994
Tyr-Asp-Pro 710
Asp-Pro-Glu 1541
Pro-Glu-Thr 1030
Glu-Thr-Gly 1446
Thr-Gly-Thr 1779
Gly-Thr-Trp 545
Thr-Trp-Gly 240
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b)a)

Figure 6.4. Structural representation of Chignolin. (a) A set of extended conformations
involving the initial turn at the C-terminal side. (b) Folded conformation. Only the protein
backbone is represented, using PyMOL [193].

to display the structural propensities in the ensemble. WebLogo is usually applied
to analyze results of multiple sequence alignment, but it can be used in a different
context, as we did. Each logo consists of stacks of symbols, one stack for each
position in the sequence. The overall height of the stack indicates the conservation
of the DSSP structural class at that position, while the height of symbols within
the stack indicates the relative frequency of each class at that position. The results
in Figure 6.3.a clearly show the propensity of the central residues to adopt a turn
conformation. The rest of the molecule tends to be more extended, although turns
are also formed in the C-terminal region. As discussed in detail below, these turns
in residues 8 and 9 play a key role in the folding mechanism of Chignolin. Con-
versely, turns are not observed in the N-terminal side. These observations are fully
consistent with the original study [61], and show that the states sampled using the
tripeptide database are structurally relevant.

We repeated the experiment for two mutants of Chignolin: Chignolin-P4A (Pro4
replaced by Ala) and Chignolin-W9A (Trp9 replaced by Ala). Figure 6.3.b shows
that, for Chignolin-P4A, the turn propensity slightly decreases in the central re-
gion, and that it increases in the N-terminal side. For Chignolin-W9A, Figure 6.3.c
shows that the propensity to form turns in the central region is similar to that of the
native Chignolin molecule. However, it decreases in the C-terminal region, which
may have consequences for the efficiency of the folding process. Overall, these ob-
servations are very similar to the results reported in [61], which use computationally
expensive molecular dynamics simulations; they show the strong influence of single
modifications in the sequence on the conformational preferences of the molecule,
and that our approach captures these perturbations.

It has been suggested that the turn in Chignolin originates in the C-terminal
region, and then propagates along the chain until reaching the middle residues [61].
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This has been called the "roll-up" mechanism. To investigate this mechanism, we
selected (among the set of 1, 000 conformations) 15 conformations of Chignolin
presenting turns in residues 8 and 9, and with a relatively extended conformation
for the rest of the chain. These conformations were used as initial states to compute
folding paths, as illustrated in Figure 6.4. The goal state was defined as the closest
conformation to the experimental structure of Chignolin built from values contained
in the tripeptide database. These two conformations are very similar, with an
angular RMSD of 0.1 radians. The HDFS algorithm was applied 20 times to solve
each of these 15 problems (i.e. 300 runs in total). On average, the algorithm
required around 10 seconds to find folding pathways (1st column in Table 6.2),
which is extremely fast.3 Intermediate states along each path were selected with a
step-size corresponding to 1/10th of its total length. The left side panel in Figure 6.5
shows the structural propensities at the residue level for these intermediate states.
It can be observed that the turns in the C-terminal residues tend to disappear, while
these structural elements appear in the middle residues. This "roll-up" mechanism
can also be observed in the right side panel in Figure 6.5, which represents several
intermediate states along one of the folding paths. The first frames (starting from
the top) show that the curvature of the molecule, initially involving residues 8
and 9, rapidly propagates to residues 6 and 7. Then, residues 5 and 4 also bend
successively, and the molecule tends to form a hairpin-like structure. Finally, the
two terminal parts adopt a relatively extended conformation.

As explained in related work [191], the folding process of Chignolin may lead
to misfolded states, which are characterized by interactions between residue pairs
Tyr2-Thr8 and Asp3-Gly7, rather than Tyr2-Trp9 and Asp3-Thr8, as in the cor-
rectly folded structure. We generated a representative model of a misfolded state,
and we computed conformational transitions from initial conformations with the
C-terminal turn (C-ter T) to this state. We also computed transitions from fully-
extended conformations to folded and misfolded states. The results are summarized
in the top part of Table 6.2. This table provides average values (over 300 runs) for:
the computing time required by the HDFS algorithm to find a path; the number of
recursions and backtracks; the number of steps in the solution path; the length of
the solution path, computed as the sum of the lengths associated to edges in the
adjacency graphs; the density of the solution paths, computed as the average of
the density of all the state variables along the path. The most meaningful numbers
in this table are those associated with the density, since they reflect the probabil-
ity of existence of each pathway. Compared to the extended→folded pathway, the
C-ter T→folded pathway goes across more dense and probable regions. This may
explain why Chignolin efficiently folds from unfolded states involving this structural
feature. In both cases, starting from C-ter T or fully-extended states, the transi-
tions to misfolded states seem to be much less probable. This may explain why
the misfolded state of Chignolin is much less frequently observed than the correctly
folded state [120].

3CPU time was measured with an IntelR© CoreTM i7 processor at 2.8 GHz, using a single core.
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Figure 6.5. The left side panel represents the evolution of the structural propensities at the
residue level along Chignolin folding pathway (see Figure 6.3 and the associated comments
for additional explanations about this representation). The right side panel shows some
intermediate states along one of the computed folding paths. Only the protein backbone is
represented, using PyMOL [193].
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Table 6.2: Performance indicators of the HDFS algorithm to compute different conforma-
tional transitions of Chignolin (top) and the mutant Chignolin-W9A (bottom). CPU time
was measured with an Intel R© CoreTM i7 processor at 2.8 GHz, using a single core.

chignolin (original sequence)
C-ter T→folded C-ter T→misfolded extended→folded extended→misfolded

CPU time (s) 11.1 8.7 5.2 3.5
# states 5416.4 2587.7 2800.1 849.5
# backtracks 234.6 136.6 124.6 39.2
Path length (# steps) 133.8 54.5 106.3 48.7
Path distance (rad) 8.8 5.1 6.0 7.0
Path density 31.9 5.5 23.3 4.5

chignolin-W9A (mutant)
C-ter T→folded C-ter T→misfolded extended→folded extended→misfolded

CPU time (s) 12.2 8.8 5.6 5.1
# states 4943.6 2567.8 2317.0 2946.0
# backtracks 219.6 139.0 101.3 126.3
Path length (# steps) 140.3 51.3 103.0 125.7
Path distance (rad) 8.2 9.0 5.8 8.2
Path density 31.2 4.6 23.4 23.8

We repeated the experiments for the mutant Chignolin-W9A. The results are
summarized in the bottom part of Table 6.2. As mentioned above, the set of confor-
mations generated for these two molecules look structurally similar (see Figure 6.3
and the associated comments). The figures in Table 6.2 also show a very similar
behavior of the HDFS algorithm when computing transition paths for this mutant
compared to the original Chignolin. Interestingly, the main difference is observed
for the density of the path extended→misfolded. This path is significantly more fa-
vorable in the case of the mutant. Our results complement the study of Enemark et
al. [61], which suggested that the replacement of Trp9 by Ala facilitates a "roll-
back" mechanism, acting against the "roll-up" mechanism, hindering the formation
of the native turn in the middle residues. We show another possible effect of this
mutation, favoring the formation of misfolded states in competition with the native
structure.

6.3.2 DS119

DS119 is another synthetic polypeptide, consisting of 36 amino acid residues, which
was designed to fold into a βαβ motif [129] (see last frame in Figure 6.6). The folding
process of DS119 has been studied using molecular dynamics simulations [178]. This
previous work showed that the N-terminal side of the central helix tends to form
very quickly. Then, the C-terminal side of the helix starts to form, and the full
helix is finally stabilized. The relatively extended fragments at the two ends of the
molecule tend to come together at the end of the folding process.



108 Chapter 6. Heuristic search algorithm

3620 30

5

P
ro

g
re

ss
 a

lo
n
g
 f

o
ld

in
g
 p

at
h
w

ay

10

9

8

7

6

4

3

2

1

0

1 10

Residue number

Figure 6.6. The left side panel represents the evolution of the structural propensities at the
residue level along DS119 folding pathway. The right side panel shows some intermediate
states along one of the computed folding paths. The "cartoon" representation clearly shows
the formation of the helix. PyMOL [193] was used for the structural visualization.

To investigate the folding mechanism of DS119, we applied a similar procedure
as for Chignolin. In this case, we selected 15 relatively extended conformations,
involving only the L DSSP structural class for all the residues, from a set of 1, 000
randomly generated conformations using the tripeptide database. These conforma-
tions were used as initial states for the HDFS algorithm. As final state, we used
the closest conformation to the experimentally solved structure of DS119 (PDB ID:
2KI0) built from values contained in the tripeptide database. These two confor-
mations are very similar, with an angular RMSD of 0.06 rad. The algorithm was
applied 20 times to solve each of these 15 problems (i.e. 300 runs in total).

Figure 6.6 illustrates the results obtained by the HDFS algorithm. The left side
panel shows the evolution of the structural propensities along the folding path, using
logos based on DSSP classes. The right side panel represents several intermediate
states along one of the solution paths. For clarity purposes, only a few intermediate
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Table 6.3: Performance indicators of the HDFS algorithm on DS119.

DS119 : extended→folded
CPU time (s) 25.2
# states 70558.2
# backtracks 8210.4
Path length (# steps) 158.2
Path distance (rad) 11.3
Path density 124.4

states are shown using a "cartoon" representation of the backbone, where the helical
fragments can be easily identified. It can be observed that, starting from an ex-
tended conformation, the protein backbone rapidly starts to bend around residues
12-13. Recall that the S letter, for "bend", corresponds to a highly curved protein
backbone. Hydrogen bonds required to stabilize the helical conformation are not
yet identified by DSSP at this early stage. Next, curved/helical fragments start
to appear in all central residues (from residue 14 until residue 27), as well as in
three residues in the N-terminal side (residues 3-5). The central helix continues to
fold, and it is almost completely formed at the 7th intermediate frame. In the final
part of the path, the extended fragments at the two ends get close to each other,
nearly forming a parallel β-sheet. This description of the folding process strongly
resembles the one reported in the literature, based on computationally-expensive
simulations [178].

Table 6.3 presents numbers (averaged over the 300 runs) concerning the perfor-
mance of the HDFS algorithm to compute folding paths of DS119. The required
CPU time (and the number of recursions) is only about three times the one requited
to compute folding paths for Chignolin. This shows that, despite the theoretical
(worst-case) exponential complexity, in practice, the computing time scales approx-
imately linearly with the number of variables. This tendency has been confirmed by
preliminary tests for larger molecules (not presented in this chapter). Once again,
we insist that computing time is orders of magnitude faster that traditional molec-
ular dynamics simulation methods. The higher density of the path compared to
Chignolin can be explained by the higher number of conformations for some of the
tripeptides, particularly for those composing the middle helix. Table 6.4 provides
the numbers of conformations (i.e., number of values of state variables) contained
in our database for the 34 overlapping tripeptides composing DS119.

Scalability analysis

We applied the proposed method to five other proteins with increasing size, from
20 to 67 amino acid residues: Trp-cage, WW-domain, BBL, CENP-B, and Villin
(whose respective PDB IDs are: 1L2Y, 1QQV, 1E0M, 2WXC, and 1BW6). The
folded states of the proteins are represented in Figure S6.7. The HDFS algorithm
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Table 6.4: Number of conformations (i.e. number of values of state variables) for the eight
overlapping tripeptides composing DS119.

Tripeptide
sequence Nb conformations Tripeptide

sequence Nb conformations

Gly-Ser-Gly 3727 Lys-Lys-Leu 2286
Ser-Gly-Gln 1118 Lys-Leu-Lys 1996
Gly-Gln-Val 1294 Leu-Lys-Glu 3100
Gln-Val-Arg 607 Leu-Glu-Glu 1631
Val-Arg-Thr 970 Glu-Glu-Ala 2591
Arg-Thr-Ile 757 Glu-Ala-Lys 1514
Thr-Ile-Trp 181 Ala-Lys-Lys 1714
Ile-Trp-Val 180 Lys-Lys-Ala 1629
Trp-Val-Gly 279 Lys-Ala-Asn 1009
Val-Gly-Gly 2443 Ala-Asn-Ile 1010
Gly-Gly-Thr 2510 Asn-Ile-Arg 647
Gly-Thr-Pro 1428 Ile-Arg-Val 998
Thr-Pro-Glu 1738 Arg-Val-Thr 1351
Pro-Glu-Glu 1752 Val-Thr-Phe 888
Glu-Glu-Leu 3433 Thr-Phe-Trp 151
Glu-Leu-Lys 2378 Phe-Trp-Gly 192
Leu-Lys-Lys 2528 Trp-Gly-Asp 257

was applied to find paths between a fully-extended all-trans conformation and the
folded state of each of these proteins. These experiments were not aimed to provide
insights into the folding mechanisms of these proteins, but only to analyze the
scalability of our method.

The performance indicators of the algorithm are summarized in Table S6.5,
which gives the average values over 5 runs for these additional five proteins, as well
as the values presented in this chapter for Chignolin and DS119. We denote n the
length of the protein, t the time it takes to find a path, m the number of states
explored by the search, and d the depth of the search, i.e., the length of the found
path. The analysis of our result can be summarized in the following points:

• As expected for a local propagation mechanism, the complexity of each search
step is not a function of n. This is clearly shown by the ratio t/m which
does not increase with n; its average is about 0.94 ms per search step. In
comparison, each simulation step with usual MD approaches has a complexity
in O(n2).

• As a backtrack search algorithm, HDFS is exponential with respect to d, the
depth of the search, but not with respect to n, the size of the protein. The
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number of search states m grows as m = db, where b is the branching factor.
Thanks to the heuristics guidance of the search, in our case b is very small,
in average b ' 1.03. Again, b is not a function of n (we even observe smaller
values of b for the larger proteins than for the smaller ones), but d grows with
n.

• The overall complexity, in time or in the number of steps, increases with n,
but with a quite reasonable polynomial growth, as illustrated with the three
parameters α1, α2, and α3 in Table 6.5. Their average values provide the
following approximate growth: t = n1.3, m = n3.4, or m = K × n1.4, for
K=1000 (this last function is more adequate given the constant value of t/m
of about 1s for 1000 states). Note again that a simulation with MD would
involve a number of steps growing with d (hence indirectly with n), each step
being quadratic in n.

• As for any heuristics search algorithm, the performance figures are not smooth.
Much more data would be needed to support precise average complexity mod-
els. However the above results give the main trends for the scalability of the
approach: a quasi-constant t/m, a very small branching factor b, and a rea-
sonable polynomial growth of the global complexity in the size of the protein.
Clearly, the approach is scalable: for the largest system in our test set, Villin
(with n = 67), the search algorithm explores about 4.5× 106 states, requiring
35’ of a single core standard processor. In contrast, results reported in the
literature, reference [132], indicate that in order to find folding pathways for a
fast-folding protein such as Villin, MD simulations would require in the order
of 109 steps, each of which being of quadratic complexity in n.

Trp−cage WW−domain BBL VillinCENP−B

Figure 6.7. Structural representation of five proteins with increasing size used to analyze
the scalability of the algorithm (in addition to Chignolin and DS119). The images at the
top are detailed representations, in which thinker lines correspond to the protein backbone
and thinner lines are used for the side chains. The images at the bottom are “cartoon"
representations that highlight the main structural elements: α-helices in red, and β-sheets
in yellow.
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The results also show that the performance of the method depends on the struc-
tural elements in the protein. This can be clearly illustrated with the WW-domain.
The folded structure of this protein is mainly composed of β-sheets, whereas the
other four proteins mainly involve α-helices. Since the backbone of proteins has
a natural propensity to twist, helical fragments are much more frequent that ex-
tended fragments, which lead to the formation of β-sheets. This explains the lower
density of the states along the folding pathway for the WW-domain compared with
the other four proteins. On the other hand, the presence of β-sheets in the folded
structure significantly facilitates the search of folding paths from extended confor-
mations, since these structural elements already correspond to extended fragments.
This explains why the algorithm is faster on the WW-domain compared with the
other proteins.
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6.4 Conclusion

Despite the simplicity of both the algorithm and the heuristic, the results presented
in this chapter show that the proposed approach constitutes a promising new re-
search direction towards the identification of relevant protein folding pathways. The
structural analysis of the folding mechanisms of Chignolin and DS119 are consistent
with respect to descriptions provided in the literature. Note however that a more
detailed and quantitative comparison between the paths obtained with other meth-
ods and trajectories obtained from MD simulations would not be very meaningful,
since the aims of both methods are different: The paths provided by our algorithm
are an approximation, from which interesting information about folding mechanisms
can already be obtained, but that should be refined (using other methods and mod-
els) to get access to accurate information at the atomic level (as provided by MD
simulations). On the other hand, our algorithm is orders of magnitude faster than
atomistic MD simulations.

Overall, the results highlight the importance of local structural preferences,
which are encoded in our tripeptide database. They also suggest that interactions
between distant residues in the sequence, even though they can be essential for
stabilization of the final fold, are less important at an earlier stage to drive the
formation of structural elements.

The good results obtained with the implementation presented in this chapter
motivate us to continue in this research direction. Several points remain to be
further investigated. One important question is about the possibility to include
non-local interactions in the heuristic cost function. Although this does not seem
to be necessary for structural elements or small proteins, interactions between dis-
tant residues in the sequence can be essential to study folding processes of larger
molecules, or aspects related to stability. We also plan to implement and evaluate
transitions over several state variables, as well as different heuristics for variable
ordering. More sophisticated, tree-based search algorithms [70] can improve the
quality and the diversity of the solutions, particularly for large proteins. Finally, let
us mention the limitations imposed by the information contained in the structural
database. Structural information is very limited in some regions of the conforma-
tional space corresponding to states of low probability, but which may be relevant
for an accurate modeling of conformational transitions. With the increasing num-
ber of experimentally-determined high-resolution protein structures, we expect that
more extensive and higher-quality tripeptide databases will be constructed in the
future. Alternatively, these sparsely populated transition regions can be identi-
fied using our approach and subsequently explored using physics-based molecular
models and (continuous) motion planning algorithms [48].

In this work, we have used two well-characterized synthetic mini-proteins to
evaluate the performance of the proposed algorithm. Nevertheless, our main interest
in the future is to apply this method for the investigation of MOREs in IDPs.
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7.1 Introduction

In Chapter 6, we presented a heuristic method to compute conformational tran-
sition paths using structural information in the tripeptide database (presented in
Chapter 3). Here, we present a more general approach to explore the conformational
space of highly-flexible molecules such as IDPs. Starting from a set of conforma-
tions, the method globally explores the conformational space aiming to find the
most likely transition paths between them. In the case of IDPs, this initial set of
conformations can be generated using the method presented in Chapter 5. To per-
form the exploration in a very short time, we have developed a parallel version of
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an efficient algorithm called MultiTRRT, originating from robotics. The resulting
set of conformations and transition paths provides a simplified representation of the
energy landscape.

In recent years, algorithms originally developed for path planning in robotics
have been proposed as an alternative to classic approaches [2, 71, 199]. This work
focuses on one of these algorithms, the Transition-based Rapidly-exploring Ran-
dom Tree (TRRT) [94], which performs a randomized exploration of the conforma-
tional space aiming at finding probable transition paths between stable states of
a molecule. More precisely, we present a parallel implementation of a multi-tree
variant of TRRT [49, 48], which we will call Multi-TRRT hereafter (the principle
TRRT and Multi-TRRT will be reminded in Section 7.3). TRRT is based on the
Rapidly-exploring Random Tree (RRT) algorithm [122], a popular path-planning
algorithm that can tackle complex problems in high-dimensional spaces. Although
path-planning problems in robotics are not very computationally expensive in gen-
eral, several approaches have been proposed for the parallelisation of RRT-like algo-
rithms aiming at reducing computing time. A brief survey on parallel path planning
algorithms will be provided in Section 7.2.2.

Today, the majority of high-performance computing (HPC) systems are clusters
of multi-core processors 1. To take advantage of this architecture, we propose a
hybrid parallelization strategy of the Multi-TRRT algorithm (Section 7.4): shared
memory parallelization (OpenMP) within each multi-core processor and distributed
memory parallelization (MPI) between processors. Such a hybrid strategy is well
suited to the Multi-TRRT algorithm, since extension operations of each tree can be
performed efficiently inside each processor using multi-threading, and several trees
can be constructed almost independently from each other (with few communication
requirements).

The performance of the Hybrid Multi-TRRT algorithm is evaluated using several
molecules of different sizes. Indeed, the size of the molecule is directly related to
the complexity of the problem. Results presented in Section 7.5 show a very good
performance of the parallel implementation, which can provide near-linear speedup
for large molecules.

7.2 Background on parallel computing

Modeling molecular systems is computationally intensive. This has motivated nu-
merous initiatives to introduce parallelization within this domain. This section
first provides a brief survey on the parallelization of molecular dynamics simulation
methods, which are the most frequently used computational techniques to study
biomolecules. Then, more closely related to our contribution, we present a con-
cise review of previous work on parallel path planning algorithms originating from
robotics.

1To avoid ambiguity between nodes of the exploration tree and nodes of the computer cluster,
in this chapter we will refer to each component of a cluster as a computer or as a processor.
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7.2.1 Parallel molecular simulation methods

As mentioned in Chapter 2, Molecular Dynamics (MD) [107] is the most widely-used
technique for studying molecular movements. This method explores the conforma-
tional space of a molecular system by numerically solving the Newton’s equations
of motion. In MD, roughly 90% of the computing time is spent in the calculation
of the forces between non-bonded atoms. Therefore, efforts have been focused on
the parallelization of this part of the algorithm aiming to speed-up MD simulations
since the 1980s [157]. Nowadays, OpenMP (for shared memory architectures) and
MPI (for distributed memory architectures) are widely used for parallelizing MD al-
gorithms, and are included within many software packages such as GROMACS [130]
and NAMD [172].

More sophisticated variants of MD methods enable parallelization at a higher
level. Replica Exchange Molecular Dynamics (REMD) [216] is probably the most
clear representative of these advanced methods. REMD consists of running n in-
stances of the same molecular dynamics problem with different parameter settings
across the different replicas. After several iterations, the configurations of different
replicas are exchanged if an stochastic transition test succeeds. The n simulations
can be run in parallel, only requiring communication for replica exchange. REMD
has been proved to sample the conformational space much more efficiently than a
basic MD thanks to its ability to scape from local minima traps [180].

As an alternative to MD, Monte Carlo (MC) methods sample the conformational
space of a molecular system by generating states according to a Boltzmann distri-
bution [68]. Although the stochastic sampling process performed by a basic MC
method is sequential, several parallelization strategies have been developed [214].
The most simple approach is to run multiple independent MC in parallel [187], with-
out any communication requirement, aiming to provide a more exhaustive sampling
of the conformational space. However, more sophisticated parallelization strategies
can be more efficient [214, 74]. In particular, the method proposed by Strid [214]
improves the sequential MC by obtaining several draws from the posterior distribu-
tion doing multiple evaluations in parallel. Another advanced variant, the Parallel
Tempering Monte Carlo scheme, similar to REMD, enhances sampling by perform-
ing exchanges between replicas running in parallel [220].

7.2.2 Parallel path planning algorithms

Path planning algorithms have been developed to automatically compute robot
movements [121]. In the last decades, sampling-based algorithms [123] have be-
come very popular thanks to their efficiency, generality and conceptual simplicity.
In addition to robotics, they have been applied to problems in other areas such
as computational biology [2, 71, 199]. The basic principle of these algorithms is
to construct a graph or a tree that captures the topology of the admissible (e.g.
collision-free or energetically-feasible) regions of the search-scape by randomly sam-
pling configurations and attempting local connections. The Multi-TRRT algorithm
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addressed in this work belongs to this family of methods.
When applied to simple robot systems, path planning algorithms are com-

putationally fast, and parallelized implementations are not required. However,
parallel computing may provide significant performance gain when dealing with
complex systems. Starting from seminal work on the parallelization of classical
path-planning algorithms [82], most efforts have been focused on shared-memory
parallelization strategies. This is particularly relevant when using current multi-
core central processing units (CPUs) [90] or many-core graphics processing units
(GPUs) [21, 166]. Several approaches have also been proposed for shared-memory
systems with the aim to enable a more general and large-scale parallelization
(e.g. [4, 175, 51]). In this work, we propose to combine both shared-memory and
distributed-memory strategies. To the best of our knowledge, this is the first work
proposing such a hybrid approach in the context of path-planning algorithms.

As for molecular simulation methods, parallelization can be done at different
levels of the algorithm. In the case of path planning algorithms for robotics appli-
cations, collision detection is the most computationally expensive operation, and
parallelization can be focused in this part [21, 166]. Nevertheless, the algorithms
can also be parallelized at a higher level using diverse strategies, as explained below.
This chapter focus on high-level parallelization of the Multi-TRRT algorithm, but
combining it with lower-level parallelization for collision detection and/or energy
evaluation could be an interesting direction for future work.

The best parallelization strategy to be adopted depends on the characteristics
of each path-planning algorithm. Some algorithm present an inherent parallelism
whereby they can be easily subdivided into embarrassingly parallel processes. This
is the case of the Probabilistic Road-Map (PRM) algorithm [108]. Using a basic
parallelization strategy, based on a shared-memory programming paradigm, sig-
nificant speed-up can be achieved by building the roadmap cooperatively across
processes [4]. Other algorithms, such as RRT and its variants, are more difficult to
parallelize due to the intrinsic sequentiality of the tree construction process.

The simplest parallelization strategy, known as the OR Parallel paradigm, can
be applied to all types of radomized algorithms. The idea is to run in parallel
several independent instances of the same sequential processes using different seeds
for the initialization of the random sampling process. The first instance to reach
the solution reports it and the other processes stop. This method reduces the
execution time by multiplying the chances to finding a solution rapidly. It can
significantly speed-up the resolution of problems that have a huge variability on
running time. The strategy has been applied successfully to randomized algorithms
using distributed-memory architecture [27, 26] and in shared-memory machines [25,
1].

A recent work [51] presents and compares the performance of three distributed-
memory parallel version of RRT: OR parallel RRT, Manager-Worker RRT and
Distributed RRT. The Manager-Worker RRT approach uses a single processor to
manage the tree construction, whereas the other processors take in charge the cal-
culation of the most computationally expensive part of the tree expansion. Thus,
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a single copy of the tree is maintained in the memory of the master processor.
In the Distributed RRT strategy, all the processes build together the same tree.
Each processor needs to update its own copy with information provided by the oth-
ers. Results presented in the referred paper show that the Manager-Worker RRT
and Distributed RRT present a good speed-up when solving constrained problems.
However, both approaches present drawbacks that hinder a good scalability using a
large number of processors. For the Manager-Worker RRT approach, the manager
process can rapidly become a bottleneck. For the Distributed RRT strategy, com-
munication time increases with the number of processors, and can rapidly become
a detriment of performance. Several strategies can be applied to improve the per-
formance of simple distributed-memory approaches mentioned above, such as the
subdivision of the search-space among processes and the implementation of efficient
nearest neighbor search methods [92, 90].

More intricate strategies can be applied for the parallelization of algorithms
that simultaneously construct several exploration trees. For instance, a master-
client scheme was proposed to solve large-scale problems using a forest of random
trees [175]. In a first stage, all the processes are run to build in parallel a number
of trees that can be RRTs [122, 124] or Expansive Space Trees (ESTs) [87]. Then, a
scheduler-processor distributes work to link the trees among client processes. An-
other strategy consist of exchanging information between several processors running
instances of the same problem (each processor builds its own tree) with different
random seeds, aiming to find the shortest path more efficiently [161].

The work presented in this section shares ideas with some of the aforementioned
approaches. As in [175], the construction of several (independent) trees is paral-
lelized. As in [92, 90], the space is subdivided to improve computational efficiency.
Note however that, in our approach, space subdivision is implicit and evolves dur-
ing execution, compared to an explicit and constant subdivision proposed in related
work.

7.3 The Multi-TRRT algorithm

This section presents the main principles of the Multi-TRRT algorithm [49, 48]
that we have parallelized. The pseudo-code of the overall algorithm is presented in
Algorithm 2. It incorporates the parallelization explained in next section. In all
the pseudo-code presented in this chapter, brown lines correspond to OpenMP com-
mands for shared-memory parallelization, and blue lines indicate functions involving
MPI calls for distributed-memory parallelization. Red text is used to highlight parts
of the code involving only the master processor.

Multi-TRRT is a multiple-tree variant of the TRRT algorithm [95, 94]. It ex-
plores a continuous cost space C (i.e. the conformational space of a molecule, in
the present application context) by iteratively expanding several trees rooted at a
given set of m initial configurations Qinit = {q1

init . . . q
m
init}.

At each iteration, a tree Ti is selected for expansion (line 4 in Algorithm 2).
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Algorithm 2: Parallel Multi-TRRT
input : the configuration space C ; the extension step-size δ;

the energy function E : C → R; the set of initial configurations Qinit
output: the tree(s) T

1 (T ,S )← initProcesses(Qinit)
2 #pragma omp parallel (NumThreads)
3 while not stoppingCriteria () do
4 Ti ← chooseNextTreeToExpand()
5 qrand ← sampleRandomConf(Si)
6 qi

near ← findNearestNeighbor(Ti, qrand)
7 qnew ← extend(qi

near, qrand, E, δ)
8 if qnew 6= null and
9 transitionTest(Ti, E(qi

near), E(qnew)) then
10 #pragma omp critical (addNodeAndEdge)
11 addNewNodeAndEdge(Ti, qi

near, qnew)
12 (Tj , qj

near) ← findNearestNeighbor(T , qnew)
13 if distance(qnew, qj

near) ≤ δ then
14 Ti ← merge(Ti, Tj , qnew, qj

near)
15 #pragma omp critical (Communication)
16 MPI_send(Master, qnew, i, j)

17 updateStructures(qnew, Si)
18 return(T )

Following the principle of TRRT, the tree expansion involves three main stages,
corresponding to lines 5-7 in Algorithm 2: 1) A configuration qrand is randomly
sampled2. 2) The nearest neighbor qinear ∈ Ti to qrand is selected for expansion. 3)
A new node qnew (and its corresponding edge) is created by extending/perturbing
qnear in the direction of qrand using a given step size. The principle is illustrated
in Figure 7.1.a. This simple exploration strategy favors a rapid growth of the tree
towards unexplored regions and guarantees convergence towards a uniform coverage
of the reachable regions of C from qinit [95].

A stochastic transition test (lines 9 in Algorithm 2) is then applied to qnew aiming
to favor the exploration of low-cost/high-quality regions of C . This important
component of the TRRT algorithm will be further explained below. If the transition
test succeeds, the new configuration qnew is added to Ti and connected to qinear (lines
10-11 in Algorithm 2). Then, the algorithm searches for the closest configuration
qjnear to qnew in all the other trees Tj 6= Ti. If qjnear and qnew are close enough and
the transition test is accepted in at least one direction, the two trees are connected
(lines 12-14 in Algorithm 2). The exploration continues until all trees are merged
or another stop condition (e.g. maximum number of iterations, timeout, ...) is
reached. Figure 7.2 illustrates the behavior of TRRT (the single-tree variant is
illustrated here for clarity purposes) exploring the conformational energy landscape

2In this pseudo-code, corresponding to the parallel implementation, qrand is not sampled in the
whole space C , as is the case for the basic Multi-TRRT algorithm, but in a subset Si. This will
be further explained in Section 7.4.
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Figure 7.1. Illustration of the TRRT expansion process (for a single tree). The red node is
the initial configuration and grey nodes have been generated in previous iterations. A new
node qnew is created by the extension of the nearest node in the tree qnear toward a randomly
sampled configuration qrand. a) Mono-thread extension. b) Multi-thread extension, where
k new nodes are generated in parallel.

of a very simple molecular system, alanine dipeptide [94]. The figure shows that the
tree tends to explore low energy regions aiming to find the most favorable transition
pathway connecting two given configurations.

The stochastic transition test applied to qnew (lines 9 in Algorithm 2) is based
on the evaluation of a function E : C → R that associates a real-value cost with
each configuration q.

In the case of the molecular models considered in this work, the cost/quality
function E correspond to the potential energy computed from a classical molec-
ular mechanics forcefield [115], as generally used in molecular simulations. More
detailed explanations about this cost/energy function are out of the scope of this
chapter, and the choice of a more suitable function to investigate IDPs remains
for future work (see Conclusions section). However, it is important to note that
this energy function is computationally expensive, and typically scales quadratically
with the size of the molecule being evaluated. The transition test within TRRT is
inspired by the Metropolis criterion commonly used in MC methods, and involves a
self-adaptive parameter T that we call temperature by analogy with methods in sta-
tistical physics. The pseudo-code is provided in Algorithm 3. Moves to lower-cost
configurations are always accepted, and the temperature is unchanged in that case.
Uphill moves are accepted with a probability that decreases exponentially with the
local energy variation. After each accepted uphill move, T is decreased to avoid
over-exploring high-cost regions. After each rejected uphill move, T is increased to
facilitate the exploration and to avoid being trapped in local minima. The greedi-
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Algorithm 3: transitionTest (T , Ei, Ej)
input : the current temperature T ; the temperature increase rate Trate;

the Boltzmann constant K
output: True if the transition is accepted, False otherwise

1 if Ej ≤ Ei then return True
2 if e−(Ej−Ei) / (K·T ) > 0.5 then
3 #pragma omp critical (Temperature)
4 T ← T / 2(Ej−Ei) / energyRange(T )

5 return True
6 else
7 #pragma omp critical (Temperature)
8 T ← T · 2Trate ; return False

Algorithm 4: updateStructures (qnew, Si)
1 if qnew 6= null and nodeNearBoundary(qnew, Si) then
2 #pragma omp critical (updateNPolytope)
3 Si ← updateNPolytope(qnew, Si)
4 #pragma omp critical (Communication)
5 MPI_send(Master, Si)
6 forall (Ii,j) do
7 if nodeInsideIntersection(qnew,Ii,j) then
8 #pragma omp critical (Communication)
9 MPI_send(Processor(j), qnew)

10 while MPI_received(qnew) do
11 (Tj , qj

near) ← findNearestNeighbor(T , qnew)
12 if distance(qnew, q

j
near) ≤ δ then

13 MPI_send(Master, qnew, i, j)

14 while MPI_received(Ii,j) do
15 addToIntersectionList(Ii,j)
16 if Master then
17 while MPI_received(Sj) do
18 if intersection(Si, Sj) then
19 MPI_send(Processor(i,j), Ii,j)

20 while MPI_received(qnew, i, j) do
21 updateGraphOfTrees(qnew, i, j)
22 if numberCC(GraphOfTrees) = 1 then
23 MPI_broadcast(endMessage)

ness of the algorithm depends on the parameter Trate, which is a real value in the
interval (0, 1] provided as input. In general, Trate = 0.1 has been empirically shown
to be a good tradeoff between path quality and computing time [50].
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Figure 7.2. Illustration of TRRT exploring an energy landscape. The background image
represents a two-dimensional projection of the conformational space of a small peptide.
The red dots represent the local energy minima (C5, PII, αR, αP, αL, Cax

7 ), and the black
dots represent the main transition states (S1, S2, S3, S4). The background colors represent
energy values with respect to the global energy minium, C5. TRRT is applied here to find
a path from C5 to one of the local energy minima, αL. The TRRT search tree rooted at
C5 grows on low-energy regions and explores other basins of the landscape before finding a
higher-energy saddle region (around S3) from which αL can be easily reached.

7.4 Materials and methods

This section presents first a global overview of the approach, and then provides
details of the parallel implementation.

7.4.1 General principle

The hybrid parallelization of Multi-TRRT presented below is aimed to better exploit
current (multi-core) computer clusters. The idea is to minimize inter-processor
communication overhead while taking advantages of shared-memory operations. In
addition, this kind of parallelization permits to easily adapt the algorithm to all
types of computer architectures. For the implementation, we use the standard and
widely-used Message Passing Interface (MPI) for inter-processor communication
and Open Multi-Processing (OpenMP) for intra-processor work. Some rules have
to be respected between these two portable APIs in order to perform an efficient
global interaction, as will be explained below.

A logical view of the architecture consists of p processes and k threads within
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Figure 7.3. Illustration of the concept of a bounding n-polytope of a tree and its growth
process. a) A new node is created near the boundary of the n-polytope, represented by the
light brown region. b) The n-polytope is extended around the node (new green region).

each process. We consider one process per processor and one thread per real core.
To be clear, we do not use the available hyper-threading technology that allows to
run two threads per core, since this can have some drawbacks in our case. One of the
processors is chosen as a master processor, which will take in charge some specific
tasks while also performing the other tasks as the rest of the processors. In a first
stage of the algorithm (function initProcesses in Algorithm 2), the master proces-
sor distributes the m initial configurations Qinit among the processes. We consider
m > p, so that each process builds m/p trees in average, almost independently of
the other processes. The distribution takes into account the distances between the
initial configurations, in such a way that neighboring configurations are assigned to
each processor. This is important to reduce inter-processor communication, as will
be better understood later on.

An adaptive space subdivision approach is applied to avoid redundancies in the
exploration performed by the different processes, and to reduce the communication
between processors. The idea is to associate a bounding volume that we call n-
dimensional polytope (n-polytope) Si to each tree Ti. The shape of the n-polytope
evolves as the tree grows. If the n-polytopes Si and Sj associated to two trees Ti

and Tj do not intersect, this means that the exploration is taking place in differ-
ent regions of the space. Thus, the trees can grow independently from each other,
with no communication requirements between the corresponding processes. On the
other hand, when two n-polytopes intersect, communication is required for attempt-
ing the connection of the associated trees. As will be further explained below, in
our implementation, the master processor manages the information concerning the
n-polytopes of all the trees, computes the intersections, and informs the other pro-
cessors when they need to exchange data. The master process also detects when all
the trees are connected, and informs that the exploration can be stopped.
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Figure 7.4. Illustration of the tree junction process. a) The extension of T1 generates
a new node qnew(1) in the intersection of bounding n-polytopes I1,2. b) The processor in
charge of the construction of T2 tries to connect qnew(1) to the nearest neighbor.

7.4.2 Cooperative construction of trees inside each process
(OpenMP)

We explain next how a group of trees is built using multiple threads in a shared-
memory multi-core processor. The idea is to parallelize the whole exploration loop.
From the directive #pragma omp parallel (line 2 in Algorithm 2), several threads
are created. All the threads building cooperatively the set of trees assigned to a
processor (see Figure 7.1.b for an illustration). Each thread performs independently
of the others the tree selection, sampling and extension operations. The only op-
erations that require to be inside critical sections (i.e. that cannot be executed
in parallel) involve the modification of shared variables: the trees Ti, the bound-
ing n-polytopes Si, and the temperatures Ti. Thanks to a careful implementation,
the workload in critical sections is very small compared to the rest of the process,
which is essential for a good performance of the algorithm. The most important
implementation details are provided next.

Copies of the molecular system Most of the operations concerning sampling
and tree expansion require handling a model of the molecular system. Thus, a copy
of this model is provided to each thread in order to avoid race conditions. The
drawback of this solution is that it requires more memory space. Nevertheless, this
is not an important issue, since the memory space required by the copies of the
molecular system is small compared to the space requited by the exploration trees
being constructed.

Multiple temperatures In the basic Multi-TRRT algorithm, the temperature
T is a global variable parameter. In other words, a single T parameter is used
for the construction of all the trees. However, as each tree is exploring a different
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region of the space, it seems reasonable to assign different temperatures to different
trees. This has several advantages. First, since different threads in a process are
often working with different trees (especially when m� p), they are rarely blocked
because of the critical section for updating the value of T . Besides, when using
several processors, they do not need to communicate about variations of T , since
it remains as a local variable for each tree. Furthermore, considering multiple
temperatures improves the quality of the overall exploration (experimental results
showing this are not presented in this chapter).

Multi-threading nearest neighbor search The Hierarchical K-means Tree
method of the Fast Library for Approximate Nearest Neighbors (FLANN) [153]
has been applied to perform the search of the nearest neighbor in the tree (function
findNearestNeighbor in Algorithm 2). The search can be executed simultaneously
by multiple threads. However, the addition of a node is critical since the data-
structure used for the rapid search has to be updated, which cannot be done while
other thread are writing or reading in it. Thus, node insertion must be in a critical
section that also affects node search. To avoid a possible bottleneck, all threads
write the nodes to be inserted in a shared container. The insertion is done when
none of the other threads is performing the search. Only if the container reaches
a limit size, one of the threads enforces node insertion, blocking the access to the
other threads. This is required to ensure a regular updating of the data-structure
used by the search algorithm.

Merging trees When two trees constructed by the same process can be con-
nected, they are merged in a single tree (lines 14-16 in Algorithm 2). The merging
operation is performed by the thread that created the connecting node. To avoid
race conditions during this operation, merging has to be delayed until all the other
threads finish ongoing operations within the two trees concerned.

7.4.3 Limiting communication between processes (MPI)

The efficiency of a parallel algorithm strongly depends on the computational cost
associated to inter-process communication. To reduce this cost, we have imple-
mented an adaptive space subdivision approach as explained below. The idea is to
delay the communication between processes until is it really necessary, and to use
a master process to manage information exchange. The main operations requiring
communication are performed inside the updateStructures function (line 17 in
Algorithm 2), which is detailed in Algorithm 4.

Adaptive space subdivision At the initialization (line 1 in Algorithm 2), a
small n-dimensional polytope (n-polytope) Si is associated to each qiinit ∈ Qinit,
where n is the dimension of the space being explored. In this work, we use hy-
perrectangles because of the simplicity to update their shape and to compute in-
tersections. Nevertheless, other more accurate representations could be used. At
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the beginning, Si is symmetric and centered on qiinit. Random sampling for the
expansion of each tree is performed in its corresponding n-polytope. When a new
node is created near the boundary, the n-polytope grows in the direction of the
tree expansion (lines 1-2 in Algorithm 4). The process is illustrated in Figure 7.3.
Every time that a n-polytope is updated, the information is sent to the master
processor (lines 3-4 in Algorithm 4), which will compute possible intersections with
n-polytopes associated to tress built by other processors. Note that communication
must be in an OpenMP critical section.

N-polytope intersection and trees junction The master processor computes
the intersection between the n-polytope Si sent by a processor i and the n-polytopes
Sj associated to trees managed by other processors (lines 16 in Algorithm 4). If
the intersection Ii,j is not empty, the information is sent to the corresponding
processors (lines 17-18 in Algorithm 4), and they add Ii,j to their n-polytope
intersections lists (lines 13-14 in Algorithm 4).

When a processor i creates a new node qnew lying inside an intersection between
n-polytopes Ii,j , the node is sent to the corresponding processor j (lines 5-8 in
Algorithm 4). Then, the other processor will try to connect the two trees (lines
9-12 in Algorithm 4), as in the basic Multi-TRRT. The process is illustrated in
Figure 7.4.

Stopping condition and path extraction In addition to performing space
intersections, the master processor maintains a graph data structure to represent the
connectivity between all the trees (lines 19-20 in Algorithm 4) using information sent
by all the processors. The exploration process can stop when this graph contains a
single connected component (lines 21-22 in Algorithm 4). Then, the solution path
connecting all the initial configurations Qinit can be extracted. As the solution path
is distributed among the processors, each processor i extracts the part of the path
that connects qiinit with the nodes that served as connectors with trees constructed
by other processors.

7.4.4 Implementation framework

To implement the two aforementioned levels of parallelization, we use a combination
of MPI (for distributed-memory parallelization) and OpenMP (for shared-memory
parallelization). In such a hybrid framework, multiple threads may concurrently call
MPI functions, requiring the MPI implementation to be thread-safe. Our algorithm
makes MPI calls sporadically, but requires all the threads to be available to make
them. Two levels of thread safety (among the four available) can be used in our case:
MPI-THREAD-SERIALIZED and MPI-THREAD-MULTIPLE. For simplicity pur-
poses, we use the MPI-THREAD-SERIALIZED safety level, where multiple threads
can make MPI calls but not simultaneously, as is the case for MPI-THREAD-
MULTIPLE. This implies that all the communications have to be performed inside
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OpenMP critical sections. Non-blocking receive operations (MPI_irecv) are used
to reduce the time spent inside these critical sections.

Since our software is written in C++ and MPI is a library of routines to create
parallel programs in C or Fortran, we had to use a C++ binding of MPI. In ad-
dition, our application messages may contain instances of high-level classes, whose
attributes can be pointers or Standard Template Library (STL) containers, which
is incompatible with low-level MPI communication, requiring the programmer to
explicitly specify the size of each message. Therefore, we exploit the higher-level
abstraction provided by the Boost.MPI library (http://www.boost.org/). Coupled
with the Boost.Serialization library, it enables processes to exchange class instances,
making the tasks of gathering, packing and unpacking the underlying data trans-
parent to the programmer. Given that OpenMP (http://openmp.org/) supports
C++ language, no extra library was required.

7.5 Results and discussion

This section presents an empirical performance analysis of the proposed algorithm.
First, we present the problems considered for this analysis, as well as the specifica-
tions of the computers we used. Then, the performance of the sequential algorithm,
running on a single core, is analyzed to identify the most computationally expen-
sive operations. The performance of the parallelized algorithm is then analyzed on
a multi-core processor and on a cluster of processors, showing the interest of the
hybrid approach.

7.5.1 Problem studied

We have evaluated the Hybrid-MultiTRRT algorithm on several energy landscape
exploration problems involving flexible biomolecules of different sizes. The number
of degrees of freedom (DOF) of the molecule defines the dimension n of the space
being explored. In theory, the complexity of the problem grows exponentially with
n. We have used two relatively small peptides, met-enkephalin [165] and chigno-
lin [191], and intrinsically disordered regions of the vasopressin 2 receptor [206] and
a β-2 adrenergic receptor [73]. Hereafter, we will refer to these four molecules as
MNK, CHGN, V2R and B2AR, respectively. The conformational exploration was
performed using an internal-coordinates representation of the molecules, assuming
constant bond lengths and bond angles. The number of DOF for MNK, CHGN,
V2R and B2AR are 24, 46, 173 and 425, respectively. For all four molecules, the
energy landscape exploration was started from 32 randomly sampled configurations.
More precisely, we generated 32 configurations using random sampling followed by
local energy minimisation in order to obtain acceptable structures. In addition,
a minimum distance was imposed between these initial configurations in order to
maximize space coverage. The problem then consisted of building exploration trees
rooted at these 32 initial states, and eventually to find paths connecting all of them.
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Figure 7.5. Computation time decomposition depending on the number of nodes in the
trees for the four molecules under study.

The same problem was solved for all the instances we tested in terms of number of
threads and processors.

7.5.2 Computer architecture

For the evaluation of the sequential algorithm and the multi-threaded implementa-
tion, we used a server with the following features: Intel R© CoreTM i7 processor at
2.8 GHz, 16-cores, 32 GB RAM.

The evaluation of the hybrid algorithm was performed on the EOS supercom-
puter at CALMIP (Centre de Calcule Midi-Pyrénées). EOS is a Bull supercomputer
with 612 Intel R© IVYBRIDGE processors at 2.8 GHz, with 20 cores and 64 GB RAM
per processor, and a InfiniBand Full Data Rate with 6.89 GB/s bandwidth for inter-
processors communication. For our experiments, we used up to 32 processors (i.e.
up to 640 cores).

7.5.3 Analysis of the sequential algorithm

Figure 7.5 shows the percentage of time that the algorithm is expending in the
most computationally-expensive operations. For each molecule, the plot shows the
time decomposition depending on the number of nodes in the set of exploration
trees. The sum of extend and findNearestNeighbor methods requires for all the
cases more than 99% of the time. Note that the energy computation is actually
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Figure 7.6. Evolution of the time per iteration with respect to the total number of nodes
in the tree.

performed inside extend, and the value is stored for subsequent use. Therefore, the
parallelization of these two operations is essential for performance improvements.
It can be clearly seen in the figure that the time consumed by extend increases
with the size of the molecule, being largely dominant for the two biggest molecules
because of the computational cost of the energy computation. As expected, the time
required by findNearestNeighbor becomes really significant when the trees grow
above several thousands of nodes. sampleRandomConf and addNewNodeAndEdge
operations are very fast in all the cases, representing less than 0.1% of the total
time. Therefore, introducing an OpenMP critical section to protect memory writing
inside addNewNodeAndEdge will not represent an important overhead.

Figure 7.6 show the average time per iteration depending on the number of
nodes in the tree. Since the cost of the most time-consuming operation, extend,
is independent of the trees size, the time per iteration increases slowly for all the
molecules. The time varies significantly with the size of the molecule. Compared
to the smallest molecule, MNK, the time per iteration increases by one order of
magnitude for V2R, and by almost 2 orders of magnitude for B2AR.

7.5.4 Analysis of the multi-threaded algorithm running on a single
processor

As a preamble, before the implementation and analysis of the hybrid parallelization
approach, we analyzed the performance of the Multi-TRRT algorithm running on a
multi-core processor. The goal was to evaluate the potential interest of a larger-scale
parallelization.



7.5. Results and discussion 131

Figure 7.7. Evolution of the speed-up of the parallel algorithm running on a single (multi-
core) processor for the four molecules. As a reference, the black line represent the linear
speed-up.

The usual metric to evaluate the performance of a parallel algorithm over its
sequential counterpart is the speed-up S(k) = ts/tp(k). Where ts is the time needed
to solve the problem working with one thread: ts = tp(1), and tp(k) is the running
time when k threads are used. The results presented in Figure 7.7 show that the
performance strongly depends on the size of the molecule. The plot corresponds
to CPU times averaged over 5 executions for each instance. For a small system
such as MNK, a maximum speed-up of around 4.5 is reached for 11 threads. Then,
the performance does not improve with a larger number of threads. For CHGN,
the speed-up curve also tends to show an asymptotic shape, as for MNK, but with
a maximum value approaching 8 for 16 threads. The reason of this limited per-
formance gain is that the time per iteration of the main loop of the Multi-TRRT
algorithm is very short for small systems (see Figure 7.6). Therefore, when the
number of threads increases, the time spent waiting for access to critical sections
starts to be significant, eventually becoming a bottleneck. Indeed, large-scale paral-
lelization is useless for small molecules. For large systems such as V2R and B2AR,
however, the speed-up increases almost linearly from 1 to 16 threads, with maxima
values around 12 and 13, respectively. This shows that, in principle, better per-
formance gain can be obtained with a larger number of threads using a computer
cluster.

In many cases, the speed-up is not the only criterion to assess the quality of a
parallel algorithm. For instance, in our case, it is important to verify that the quality
of the exploration and of the solution paths do not degrade with an increasing
number of threads.

A side effect of the parallelization of RRT-based algorithms is that some re-
dundancy in the exploration can be introduced by multiple threads simultaneously
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Figure 7.8. Evolution of the total number of nodes needed to solve the transition path-
finding problem depending on the number of threads for the two peptides: a) MNK, b)
CHGN.

Figure 7.9. Energy profiles along the solution paths obtained using 1 thread and 16
threads for the two peptides: a) MNK, b) CHGN.

creating nodes in nearby regions of the space. A simple test to detect if this happens
is to look at the size of the trees (i.e. number of nodes) requires to solve the same
problem with different numbers of threads. An increasing number of nodes with
the number of threads would mean a degradation of the exploration quality. As
shown in Figure 7.8.a, the total number (averaged over 100 runs of the algorithm)
of nodes in the trees required to find paths connecting the 32 initial configurations
for MNK increases slightly with the number of processors (up to 10%). This shows
that, for problems in relatively low dimension, there is some redundancy in the
exploration performed by the parallel version of Multi-TRRT. However, such an
undesired behaviour disappears when the dimension increases. This can be clearly
seen in Figure 7.8.b for CHGN, which shows that the number of nodes in the trees
required to solve te problem is almost constant, independently on the number of
threads. Surprisingly, in this case, the number of nodes is larger for a single thread
(i.e. for the sequential algorithm), which actually shows that the parallel algorithm
performs a more efficient exploration in high-dimensional spaces, due to what we call
the “OR parallel effect" [51]: As each thread performs its own sampling of the space,
when multiple threads are involved, the parallel algorithm reaches smaller-size so-
lutions than the sequential one, on average. This phenomenon is more important
in problems containing “narrow passages", corresponding to saddle regions in the
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Figure 7.10. Evolution of the speed-up of the parallel algorithm with respect to the
number of processors (working with 20 threads per processor). As a reference, the black
line represents the linear speed-up.

energy landscape of the molecules, which require intensive sampling to be found.
To evaluate the quality of the paths obtained by the parallel implementation of

Multi-TRRT compared to the sequential one, we can compare the corresponding
energy profiles. Remind that the solution provided by the algorithm is a set of
connected trees from which a path connecting the 32 initial configurations can
be extracted. We can obtain a simplified representation of the energy profile by
identifying the highest-energy configuration (i.e. the transition state) between each
pair of initial configurations directly connected along the path. Figure 7.9.a shows
that the energy profiles of the solutions obtained with the sequential and the parallel
versions (using 16 cores) of Multi-TRRT are very similar in the case of MNK, thus
demonstrating that the quality of the solutions is preserved for problems in relatively
low dimension. In higher dimension, as shown in Figure 7.9.b for CHGN, the quality
of the paths are better for the solutions obtained by parallel algorithm running on
16 threads than for the sequential algorithm. This is also a consequence of the “OR
parallel effect", which yields a better sampling of high-dimensional spaces with
Multi-TRRT when several processes run in parallel.

7.5.5 Analysis of hybrid algorithm

We have evaluated the performance of the hybrid parallelization of Multi-TRRT
for the two large molecules: V2R and B2AR. For this, instead of measuring the
time required to connect the 32 initial configurations, we have measured the time
required to generate 200,000 nodes. The reason is that the former involves a larger
variance than the latter, therefore requiring a larger number of runs in order to
obtain a meaningful average value. As we have seen in the previous subsection, the
number of nodes needed to solve a problem is almost constant independently on
the number of threads/processes, and the variance is very low. Therefore, the time
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to generate a given number of nodes is a good indicator of the performance that
requires only a few runs (we performed 10 runs) per instance.

Figure 7.10 shows how the speed-up of the parallel algorithm increases with
the number of processors. The speed-up increase is linear at the beginning, when
using up to 4 processors for V2R and up to 8 processors for B2AR. Then, it slightly
decreases, this performance degradation being a bit more significant for V2R. Nev-
ertheless, the speed-up using 32 processors is around 30 for the largest molecule,
B2AR. This shows that the proposed parallelization strategy is very efficient, par-
ticularly thanks to the space subdivision approach to reduce inter-processor com-
munication.

7.6 Conclusions

Nowadays, most HPC systems are clusters of multi-core processors. We have pre-
sented a parallel implementation of Multi-TRRT to efficiently exploit this type
of architectures, combining distributed-memory parallelization using MPI with
shared memory-parallelization using OpenMP. Such a hybrid parallelization strat-
egy clearly outperforms our previous fully-distributed implementations of RRT-like
algorithms [51], significantly reducing communication overhead and memory needs.
This implementation is also very flexible, since the algorithms can be run on a
single multi-core processor (without communication requirements) or on a large
computer cluster without any modification in the code. The adaptive space sub-
division approach is a key component of the proposed parallelization strategy. It
drastically reduces computational cost associated to inter-processor communication
and nearest neighbor search.

Although the work presented here is focused on the application of the proposed
parallel algorithm to highly-flexible biomolecules, the explanations concerning the
methods can be easily extracted from the application context. The principle is
very general, and could be applied to other sampling-based path search/planning
algorithms applied in different domains. Indeed, we expect that our work will be a
source of inspiration for the parallelization of related methods.

As mentioned above, in this work, we have used a classical molecular mechan-
ics forcefield to evaluate the potential energy of the molecule. This choice of an
AMBER-like potential was motivated by the generality of this type of energy func-
tion, and because our first goal was the development of the parallel version of the
conformational exploration algorithm rather than a particular application. Never-
theless, AMBER-like potentials are probably not the best choice for the investiga-
tion of IDPs. The analysis of different energy functions in order to select the most
suitable one for IDPs remains for future work.
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Conclusions and Perspectives

This manuscript has presented several algorithmic contributions aiming at better
understanding the structural and dynamic behaviour of Intrinsically Disordered
Proteins (IDPs). A fundamental pillar of the thesis is a tripeptide database built
from a large set of experimentally-determined high-resolution protein structures.
The results derived from the different algorithms based on this database have
demonstrated the importance of local sequence-dependent structural properties to
determine IDP conformations.

The first algorithm, a secondary structure predictor specially designed for IDPs,
aims at distinguishing partially ordered fragments from disorder within IDPs. It
shows that we can reliably extract secondary structure propensity in IDPs by a clas-
sification of the tripeptide conformations based on the Ramachandran angles and a
simple statistical approach accounting for the neighboring residues. Our algorithm
provides better results that other published methods. The main advantage is the
simplicity that allows the connection between sequence and specific local structural
features.

The second algorithmic contribution is a structural ensemble builder for IDPs
that uses the tripeptides of the database as building-blocks. The algorithm uses a
combination of two sampling strategies: one for random coil regions and the other
for regions with a tendency to form secondary structures. To validate the model, we
built ensembles for a benchmark set of nine well-characterized IDPs. The excellent
agreement between the RDCs computed from the ensembles and the experimental
ones demonstrates the accuracy of the method. Building realistic ensembles allowed
us to better understand the distribution of secondary structural types within IDPs.
One of the difficulties of the method is the selection of the optimal sampling strategy
to be used in each section of the protein. This can be done by selecting the regions
according to the experimental data, as presented in Chapter 5, but we envision
the application of the secondary structure predictor described in Chapter 4 as a
valuable tool for this purpose.

The third algorithm presented in this thesis uses the tripeptide database to
compute likely transitions between two conformational states of a protein (or protein
region). The proposed heuristic search algorithm is able to identify relevant protein
folding pathways of small structured motifs. It can also be used to better understand
the transitions between order and disorder in partially structured regions of IDPs.
Indeed, IDPs undergo these structural transitions continuously. Our approach is
orders of magnitude faster than MD simulations. It is worth mentioning that even
if the resulting folding pathway is an approximation, relevant information about
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the main steps of the folding mechanism can be derived.
Finally, the fourth contribution is a parallel version of a global exploration algo-

rithm called Multi-TRRT. Multi-TRRT is an efficient algorithm, originating from
robotics, applied to compute the transition between multiple states by exploring the
energy landscape of a given system. Due to the high dimensional space of IDPs,
the calculation of transition paths between different states becomes computation-
ally intractable in a reasonable time. To overcome this problem, we designed the
parallelization of the code to be executed in a HPC cluster. The results of our hy-
brid parallelization, combining OpenMP and MPI, show an almost-linear speedup,
meaning that the execution time can be approximately divided by the number of
processor cores used. Thanks to this, computing time to globally explore the con-
formational space of IDPs can be easily reduced from years to days.

Future Work

The good results obtained during this thesis are encouraging to continue with the
development of computational methods to investigate IDPs. We envision several
steps and directions to pursue this work.

First, we plan to make the methods accessible to the scientific community, in
particular through user-friendly web servers. Indeed, the method to generate IDP
ensemble models has already been used by others to model disordered regions in
proteins such as linkers and tails. The possibility of sampling disordered regions can
be interesting for a broad research community in different contexts of application.
Moreover, making our methods available will also allow us to get feedback from the
users, which can be very valuable to improve our methods.

One interesting possible usage of our algorithms is the study of structural and
dynamic perturbations of point mutations. Our methods can be used to compare
the result of the native sequence with that of a given mutated sequence: with the
secondary structure predictor the resulting secondary structure propensities can
be compared; the ensemble generation algorithm could produce different confor-
mations for the mutated sequence and the differences in terms of structure can be
analysed; the resulting transitions paths from the two algorithms presented (heuris-
tically guided algorithm and Hybrid Multi-TRRT) could also highlight interesting
differences between the mutants and the native sequence.

Another point for future work is the evolution of the tripeptide database. The
PDB is continuously growing through new three-dimensional structures deposited.
As a consequence, our tripeptide database will also become larger and richer with
time. A more complete database will automatically improve the results of our algo-
rithms. Another possibility to increase the number of structures in the tripeptide
database would be the use of all the structures deposited in the PDB, instead of
using SCOP. Our database can be subsequently filtered according to specific needs.
A complementary direction of improvement of the database, which is already being
explored in our group, is to select the structures according to the solvent exposure.
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In other words, choosing tripeptides according to their position in the protein, from
the core of the protein to the surface. Preliminary work (not presented in this
manuscript) shows that tripeptides extracted from the core of the protein are more
likely to form secondary structures than tripeptides extracted from the surface.
Using experimental data, such as RDCs or chemical shifts, we can evaluate which
subset of the tripeptide database is more accurate for the different usages proposed
in my thesis.

There are multiple ways to improve the algorithms presented in Chapters 6
and 7. For the heuristic database-assisted path search algorithm, more sophisti-
cated techniques, such as Monte Carlo tree search, could be implemented. Such
improved implementation would provide higher quality paths in terms of energy
(paths passing through higher-density regions) and in terms of accuracy (more in-
termediate steps could be found).

Concerning the Hybrid Multi-TRRT, the significance of the results provided by
the method is strongly dependent on the applied energy function. The integration
of more appropriate energy models for IDPs instead of the generic AMBER-like
potential used here for the evaluation of the computational performance of the
algorithm is an interesting direction for future work. Besides, Multi-TRRT can also
be improved by choosing more appropriate distance metrics for IDPs. The metric
used in this work, the RMSD over all the dihedral angles, is not very suitable for
large conformational changes, and is computationally expensive. In the case of
IDPs, other simplified metrics, such as the Cα-Cα euclidean distance over some
selected residues could be a better-suited metrics.

Finally, we can envision future research topics, such as the rational design of
IDPs with tailored structural properties. Traditionally, protein design consists
of finding a sequence that folds into a given three-dimensional structure. This
paradigm is limited to the design of rigid systems, and cannot be easily extended to
the design of highly-flexible proteins or regions. The acquired knowledge during this
thesis on the sequence/structure relationships paves the way to the computational
design of IDPs for a broad range of applications in biotechnology.This manuscript
has presents several algorithmic contributions aiming at better understanding the
structural and dynamic behaviour of Intrinsically Disordered Proteins (IDPs). A
fundamental pillar of the thesis is a tripeptide database built from a large set of
experimentally-determined high-resolution protein structures. The results derived
from the different algorithms based on this database have demo
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Abstract 

The poly-Q homo-repeat in the N-terminal region of huntingtin (httex1) is the causative agent of 

Huntington’s disease, a neurodegenerative pathology arising when the number of consecutive 

glutamines exceeds 35. Httex1 poly-Q is flanked by a 17-residue-long fragment (N17) and a proline-

rich region (PRR), which have been shown to promote and inhibit the aggregation propensity of the 

protein, respectively, by poorly understood mechanisms. Based on experimental data obtained from 

site-specifically labeled NMR samples, we derived an ensemble model of httex1 containing 16 

consecutive glutamines that presents an equilibrium of lowly populated α-helices of different lengths 

extending towards the poly-Q tract. The model identified both flanking regions as opposing poly-Q 

secondary structure promoters. While N17 triggers helicity through a promiscuous hydrogen bond 

network involving the side chains of the first glutamines in the poly-Q tract, the PRR promotes 

extended conformations in its neighboring glutamines. Computational analyses confirmed that these 

opposed conformational influences dictate the structure of the poly-Q tract in a position-dependent 

manner. Furthermore, a bioinformatics analysis of the human proteome showed that these structural 

traits are present in many human glutamine-rich proteins and that they are more prevalent in proteins 

with longer poly-Q tracts. Taken together, these observations provide the structural bases to 

understand previous biophysical and functional data on httex1. 
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Introduction 

Huntington’s disease (HD) is one of nine hereditary neurodegenerative disorders caused by an 

expansion of CAG triplet repeats beyond a pathological threshold. For HD, this expansion is located in 

the first exon of the huntingtin gene and results in an abnormally long poly-glutamine (poly-Q) tract 

within the N-terminus of the huntingtin protein (httex1)1. When the number of consecutive glutamines 

exceeds 35, the resulting mutant protein forms large cytoplasmic and nuclear aggregates, a hallmark of 

HD, and causes neuronal degeneration, especially affecting the neurons of the striatum2–5. 

Aggregation, disease risk and age of onset correlate with the length of the poly-Q tract1,2. Interestingly, 

the aggregates predominantly contain mutant httex1 fragments, instead of the full-length protein, 

which comprises 3,142 amino acids in the non-pathogenic form. Indeed, it has been shown that the 

httex1 fragment alone is enough to reproduce the HD symptoms in mice6.  

While the httex1 aggregation mechanism and the resulting β-sheet amyloid fibrils have been 

thoroughly characterized7–12, the structural bases of the pathological threshold and the mechanisms by 

which the native form of mutant httex1 give rise to toxicity and cell death are still poorly understood. 

Some clues regarding aggregation and pathogenicity of mutant httex1 have been found in the flanking 

regions of the poly-Q tract. The N-terminal domain, composed of 17 residues (N17) (Figure 1a), 

enhances aggregation of longer poly-Q tracts in vitro and in vivo and has been shown to form an 

amphipathic helix that interacts with membranes and chaperones11–17. Moreover, post-translational 

modifications of N17 modulate huntingtin function, translocation, aggregation, and toxicity18–23. The 

poly-Q region is followed by a poly-proline (poly-P) tract of 11 consecutive prolines, which is part of 

the proline-rich region (PRR) containing 31 prolines in total (Figure 1a). In contrast to N17, the poly-P 

tract has a protective effect against aggregation in vitro and in vivo, but is necessary for the formation 

of visible aggregates in cells12,18,24,25. This effect is directional, as N-terminal poly-P tracts do not 

attenuate the aggregation of poly-Q peptides24. It has also been shown that the flanking regions 

differently shape the aggregation pathways of pathological httex1, define the structure and stability of 

fibrils, and modulate its neuronal toxicity12. 

Two models linking poly-Q abnormal expansion and cytotoxicity have been proposed26. The ‘toxic 

structure’ model proposes the appearance of a distinct toxic conformation when the tract expands 

beyond the pathological threshold27–29. The second model, the so-called ‘linear lattice’ model, suggests 

that even short poly-Qs are inherently toxic and httex1 toxicity systematically increases with the tract 

length30–32. Evidence for both models has been obtained using monoclonal antibodies in cells 

expressing httex1 of different lengths29–33. However, this approach provides a very indirect perspective 

on httex1 conformations, and higher resolution information is required to discriminate between both 

hypotheses26. 

In a recent study, combining single-molecule FRET (smFRET) data with atomistic simulations, no 

sharp conformational change of monomeric httex1 around the pathological threshold could be 

observed, but rather a continuous global compaction with increasing poly-Q length induced by the 
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interaction between N17 and the poly-Q tract was suggested34,35. Recent circular dichroism (CD) and 

electronic paramagnetic resonance (EPR) experiments report on a systematic increase of the helical 

propensity and rigidity in httex1 when the poly-Q tract length increases36,37. Observations from these 

in vitro studies are in coherence with the ‘linear lattice’ model. However, they only focused on the 

overall properties of the protein and could not probe httex1 at atomic resolution. Nuclear magnetic 

resonance (NMR) is the most suitable technique to provide a high-resolution picture of the 

conformational preferences of flexible proteins and structural characteristics of subpopulations of 

toxic conformers38. However, NMR studies of httex1 are inherently challenging due to its strong 

compositional bias, which impedes residue-specific assignment and the measurements of structural 

constraints. Due to this challenge, only incomplete observations regarding the conformational 

preferences of the poly-Q and the flanking regions have been reported15,35,36. All these NMR studies, 

independently of the poly-Q length, indicate a transient helical propensity encompassing N17 and the 

homo-repeat. Current structural models of httex1 suggest a compact overall arrangement in which N17 

and the poly-Q tract interact through fuzzy contacts while the PRR sticks out. These tadpole-like 

structures display a systematic increase of the surface area with the length of the tract, also in line with 

the ‘linear lattice’ toxicity model34,35. However, these models are based on sparse data or single 

conformation structural modeling. 

In order to overcome the previously mentioned challenges, we have recently developed a methodology 

to site-specifically incorporate a single [15N, 13C]-labeled glutamine into proteins, and thereby obtain 

simplified NMR spectra39. By systematically applying this site-specific isotopic labeling (SSIL) 

strategy, which combines cell-free protein expression40 and nonsense suppression41, we have obtained 

the NMR assignment at nearly physiological conditions of all non-proline residues in a httex1 

construct containing 16 consecutive glutamines (H16). The ensemble modeling of the resulting 

chemical shifts demonstrated the presence of multiple, partially formed α-helical regions initiated in 

N17 and involving fragments of the poly-Q tract of different lengths. The application of SSIL to N17 

and PRR mutants demonstrated that the distinct conformational features of both flanking regions are 

propagated into the poly-Q tract, which acts as a conformationally versatile polypeptide. These 

observations provide the structural determinants underlying the key role of flanking regions in 

modulating the aggregation properties of httex19,24.  

 

 

Results 

Glutamine NMR scanning of H16 

The monomeric httex1 that we characterized, H16, contained 16 glutamines in the poly-Q tract and 

another six in the PRR (Figure 1a). We produced H16 samples with glutamine-specific isotopic 

labeling using the SSIL strategy previously developed in our group39. To streamline the preparation of 

the 22 H16 NMR samples, we first made sure that all samples could be prepared with similar 
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efficiency by scanning all the TAG-mutated H16-sfGFP plasmids in a 96-well plate after addition of 

10 µM glutamine loaded tRNACUA (Figure 1b). All positions showed fluorescence intensities of ~30% 

of the positive control (H16 without amber stop codon), indicating that the efficiency of the 

incorporation of the labeled glutamine is independent of the specific sequence and the yield is similar 

to those achieved in other studies42,43. Once the suppression efficiency was verified at a small scale, 

the CF reaction volume was increased to 5 mL to produce the NMR samples.  

 

 
Figure 1. Glutamine SSIL scanning of H16. (a) Sequence of H16 and scheme of the sfGFP-fused construct 

used in this study. The color code identifies the individual glutamines throughout the study. The box 

encompassing residues 14LKSF17 identifies the residues mutated to probe the structural connection between N17 

and the poly-Q tract. The position of the insertion of glycines between the poly-Q and the PPR to structurally 

disconnect both regions is also displayed. (b) A scan probing the suppression efficiency using 10 µM loaded 

tRNACUA showed no strong position-specific effects. The experiments were repeated three times. 

 

The 15N-HSQC of H16 displayed the typical features of poly-Q-containing proteins35,36,44,45. While 

peaks from N17 and the PRR are well dispersed, a large density of unresolved peaks corresponding to 

glutamine residues was observed (Figure 2a). In order to disentangle this massive overlap we 

measured 15N- and 13C-HSQCs of the SSIL H16 samples containing a single [15N, 13C]-labeled 

glutamine. As observed in Figure 2b, the glutamines adjacent to N17 (Q18-Q21) appear in the upfield 

region of the poly-Q density without any specific trend. The following glutamines (Q22-Q28) display 

a consistent 1H and 15N downfield shift, indicating a systematic structural change along the homo-

repeat. A large deshielding effect is subsequently observed for Q29, Q30 and Q31, which are strongly 

overlapped. Finally, the last two glutamines of the tract, Q32 and Q33, display isolated peaks induced 

by the proximity of the downstream poly-P. The chemical shifts of glutamines in the PRR are more 

dispersed due to their different neighboring residues. Cα-Hα correlations measured in the same SSIL 

samples follow similar trends along the poly-Q tract (Figure 2c). 
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Figure 2. NMR analysis of H16. (a) Overlay of fully labeled H16 (grey) with individually colored SSIL 15N-

HSQC spectra. (b) Zoomed 15N-HSQC overlay showing the poly-Q region with different glutamine clusters 

(Q18-Q21; Q22-Q28; Q29-Q33; and PRR glutamines). (c) Zoomed 13C-HSQC overlay showing the poly-Q 

region with the same glutamine clusters as in (b). (d) Secondary chemical shift analysis of H16 using 

experimental Cα and Cβ chemical shifts and a neighbor-corrected random-coil library46 and (e) secondary 

structure propensity plot47,48. The positions of glutamine and proline residues in the primary sequence are 

highlighted in grey and blue, respectively. Prolines and residues followed by prolines were not considered in the 

SSP refDB analysis. 

 

 

α-helical propensity in N17 and the poly-Q tract 

The Cα and Cβ chemical shifts measured for all glutamines in this study and the previously reported 

assignment of H1639 allowed the determination of the structural propensities of H16. The secondary 
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chemical shift (SCS) analysis using a neighbor-corrected random coil database46 indicates that both 

N17 and the poly-Q tract are enriched in α-helical conformations, although this propensity is not 

homogeneous (Figure 2d). Helicity increases along N17, reaching its maximum at the first glutamine, 

Q18, and subsequently decreases smoothly. A transition is observed at Q29, which adopts a small and 

negative SCS value. This extends to the following three glutamines, indicating the presence of random 

coil or slightly extended conformations. This conformational transition is pinpointed in the secondary 

structure propensity (SSP) analysis47,48 (Figure 2e). Note that the helical propensity of the N-terminal 

part of H16 remains below 40%, in agreement with similar analyses using an httex1 fragment with 17 

glutamines and the partially assigned httex1 with 25 glutamines35,44. The C-terminal region of H16 

presents negative SCS values, probably reflecting the enrichment in polyproline-II conformations 

induced by the large number of prolines7. 

 

 

The ensemble model of H16 reveals a conformational equilibrium involving multiple α-helices 

The ensemble structure of H16 was investigated by combining the backbone NMR chemical shifts and 

a recently developed approach to build realistic ensemble models of intrinsically disordered proteins49. 

Briefly, our method appends residues, which are considered to be either fully disordered or partially 

structured, to build the complete chain without steric clashes. For fully disordered residues, amino acid 

specific ϕ/ψ angles defining the residue conformation are randomly selected from the database, 

disregarding their flanking residues. For partially structured residues, the nature and the conformation 

of the flanking residues are taken into account when selecting the conformation of the incorporated 

residue (see detailed explanation of the algorithm in the original publication49). Two families of 

ensembles were built to investigate the conformational influence of both flanking regions of H16. For 

the first family (NàC ensembles), starting with the 10AFESLKSF17 region of N17 as partially 

structured, multiple ensembles of 5,000 conformations were built by successively including an 

increasing number of glutamines in the poly-Q tract (from Q18 to Q33) as partially structured, while 

the rest of the chain was considered to be fully disordered. Note that in the partially structured building 

strategy secondary structural elements are propagated due to the neighboring effects. An equivalent 

strategy was followed for the second family of ensembles (NßC ensembles) for which glutamines 

were considered successively as partially structured from the poly-P tract (from Q33 to Q18). For the 

resulting 17 ensembles of each family, and after building the side chains with the program SCWRL450, 

averaged Cα and Cβ chemical shifts were computed with SPARTA+51 and compared with the 

experimental ones (Figure S1). 

Theoretical Cα chemical shifts for the poly-Q tract present different values for regions built as 

partially structured (influenced by the flanking regions) or disordered. Three Cα CS plateaus are 

observed corresponding to α-helical, extended and random coil conformations, and transitions are 

observed between regions built as disordered and influenced by the flanking regions (Figure S1). Not 
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surprisingly, the Cβ chemical shifts turned out to be less sensitive to the presence of structured regions 

in the homo-repeat region (Figure S1). These simulations indicate that flanking regions induce a 

distinct conformational bias to the neighboring glutamines. While N17 induces helical conformations 

with Cα chemical shift values larger than those usually observed for a random coil (NàC ensembles), 

the poly-P tract enriches the ensemble with extended conformations with smaller Cα chemical shift 

values compared to a random coil (NßC ensembles). However, the simulated conformational 

ensembles fail to reproduce the chemical shifts measured in H16, indicating that our simple sampling 

strategy cannot simultaneously describe the structural influence exerted by both flanking regions.  

A third ensemble model of H16 was built by reweighting the populations of the pre-computed 

ensembles, using the experimental Cα and Cβ chemical shifts as constraints. In order to capture the 

influence of the flanking regions, glutamines within the tract were divided into two groups: those 

influenced by N17 and those influenced by the poly-P tract, whose chemical shifts were fitted with the 

NàC and NßC ensembles, respectively. The limit between both families was systematically 

explored, reaching an optimal description of the experimental chemical shifts when Q28 was chosen 

as the last residue structurally connected with N17 (Figure S1). Importantly, the optimization, which 

was performed through a Monte-Carlo procedure, was repeated multiple times always yielded 

equivalent populations. The resulting ensemble nicely described the complete Cα and Cβ CS profiles 

for H16 (Figure S2). Importantly, the systematic decrease of the Cα chemical shifts along the poly-Q 

tract and the flat profile observed for the Cβ chemical shifts were well reproduced, indicating that the 

refined ensemble captures the structural features of the homo-repeat and the distinct conformational 

perturbations exerted by both flanking regions. 

The conformational properties of the optimized ensemble were subsequently investigated in detail. 

First, we explored the conformational preferences of individual glutamines using Ramachandran plots 

(Figures 3 and S3). While the first four glutamines of the tract (Q18-Q21) displayed a strong 

enrichment in helical conformations (Figure 3a), the last four (Q30-Q33) preferred extended ones 

(Figure 3b). The conformational preferences along the tract, calculated from the derived ensemble, 

indicate a systematic decrease in the helical population from ~65% (Q18) to ~50% (Q28) (Figure 3c). 

In line with the NMR measurements (Figure 2), a sharp conformational transition is observed for Q29, 

which is the first residue displaying a preference for extended conformations. 

The cooperativity between the residue-specific conformations to form stable α-helices was analyzed 

using the secondary structure map (SS-map) tool53. The fragment encompassing N17 and the poly-Q 

tract can be described as a complex equilibrium of multiple co-existing α-helices of variable length 

(Figure 3d). The core of this family of helical structures includes the last four residues of N17 and the 

first two glutamines of the homo-repeat. The last residues of N17 act as nucleation points for the 

helices that afterward extend to include a variable number of glutamines of the tract, giving a 

triangular shape to the SS-map. According to our analysis, no α-helices are nucleated within the poly-

Q tract and, as a consequence, helices involving inner glutamines belong only to lowly populated long 
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helical elements. This is shown in Figures 3e and S4, which display representative conformations and 

the α-helical fragments of the four sub-ensembles selected to describe the NMR CSs. Three of these 

ensembles present α-helices that encompass the last residues of N17 and the first residues of the poly-

Q. No persistent turns in the residues connecting both domains are observed, which would otherwise 

yield a strong signature in the chemical shift profile. As a consequence, H16 should be considered as 

an elongated flexible particle, in contrast to the previously proposed compact tadpole-like model34,35. 

 

 
Figure 3. NMR-derived ensemble model of H16. Residue-specific Ramachandran plots for (a) Q18-Q21 and 

(b) Q30-Q33 obtained from the optimized ensemble. (c) Population of α-helix, extended and other 

conformations calculated from the Ramachandran plot for all glutamines in H16 (see Figure S3). The side panel 

Q-Q-Q shows these populations for glutamine tri-peptides present in a coil database49. (d) Secondary structure 

map (SS-map) displaying the length and the residues encompassing the α-helices found in the N-terminal region 

of the optimized ensemble model of H16. The color code (right) indicates the population of the α-helices. (e) 

Representative conformations of the four ensembles used to describe the NMR CSs measured for H16. Only the 

region from M1 to Q28, optimized with the NàC ensembles, is displayed. The SS-maps for these ensembles are 

displayed in Figure S4. 

 

 

Glutamine side chains indicate a structural coupling of N17 and the poly-Q tract 

According to our ensemble model, the last four residues of N17 are strongly linked to the first two 
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glutamines of the poly-Q tract. However, the model, which is based on backbone CSs, does not unveil 

the structural bases of this structural connection. Benefitting from the lack of signal overlap in the 13C-

HSQC of the SSIL samples, glutamine-specific Cβ-H2 and Cγ-H2 correlations could be analyzed 

(Figures 4 and S5). As expected for a flexible protein, the majority of glutamines in H16 display two 

correlation peaks for Cβ-H2 and a single one for Cγ-H2, indicating increased mobility along the side 

chain (Figure S5). Interestingly, the first four glutamines, Q18-Q21, present different spectroscopic 

features. While Q18 and Q19 display a single peak for Cβ-H2 and Cγ-H2, these correlations are split in 

two for Q20 and Q21 (Figure 4a). Most probably, the splitting of Cγ-H2 is caused by the rigidification 

of the glutamine side chains, which results in a different chemical environment for the two 

diastereotopic Hγ atoms. This rigidification likely originates from the formation of a hydrogen bond 

between the side chain amide group and the backbone of a neighboring residue. Notice that similar 

spectroscopic features were observed in a recent characterization of the androgen receptor (AR) N-

terminal domain fragments hosting poly-Q tracts of different lengths55.  

In order to substantiate this hypothesis and profiting that Q20 and Q21 Nε-H21 displayed isolated 

peaks (see below), we determined the temperature coefficients (σHN/T) for these two atoms in a 15N-

labeled H16 sample (Figure S5). We derived σHN/T values of -4.1 and -3.5 ppb/K for Q20 and Q21 

HNε21, respectively. These values are less negative than the threshold value, −4.5 ppb/K, suggesting 

their participation in a hydrogen bond54. Conversely, we obtained σHN/T values of -5.8 and -6.2 for 

Q32 and Q54 HNε21, respectively, confirming the singularity of the first glutamines of the tract.  

Multiple α-helical N-capping hydrogen bonding networks involving glutamine side chains have been 

described56–59. In the AR study, the authors propose a bifurcated hydrogen bond where the amide 

backbone of residue i-4 simultaneously forms hydrogen bonds with the backbone and the side chain of 

glutamine in position i55. Indeed, in this novel mechanism, the side chain hydrogen bond further 

stabilizes the canonical (i-4 à i) backbone helical hydrogen network. This interaction would be 

protected by the hydrophobic side chain of residue i-4, a leucine in AR60. According to this model and 

in the context of huntingtin, the side chain amide groups of Q20 and Q21 would form hydrogen bonds 

with S16 and F17, respectively, the latter one being the most stable interaction according to the extent 

of the Cγ-H2 splitting. The Nε-H21 peaks for Q20 and Q21, which appear clearly shifted from the other 

side-chain peaks, further substantiate this feature (Figure 4b). The frequency shift for these two peaks 

cannot be only attributed to the involvement of these two atoms in an α-helical hydrogen bond, whose 

signature is a 15N upfield shift55. An alternative explanation is the ring current effects exerted by F17 

that, upon formation of the canonical hydrogen bond with Q21, places its side chain in the proximity 

of Q21 Nε-H21 and to lesser extent to Q20 Nε-H21. Note that the magnitude of the ring current shift is 

difficult to anticipate as it depends on persistence and the orientation of the aromatic side chain with 

respect to the shifted atom. Conversely, Q18 Nε-H21, which is adjacent to F17 in the sequence, is not 

affected by the presence of the aromatic side chain. This last observation, which is in line with the 

protective role of the phenylalanine hydrophobic side chain, underpins the structural coupling between 
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the N17 and the poly-Q tract through a hydrogen bonds network. 

 

 
Figure 4. Side chain NMR scanning. (a) Cβ-H2 and Cγ-H2 regions of the 13C-NMR spectra of glutamines Q18, 

Q19, Q20, Q21, and Q31. The spectra of Q31 display the standard behavior of disordered glutamines with a 

doublet and singlet for Cβ-H2 and Cγ-H2, respectively. (b) Zoom on the Nε2-Hε2 side chain region of the 15N-

HSQC spectra measured for all glutamines in H16. Q20 and Q21 do not follow the trend displayed by the other 

glutamines due to their implication in the formation of hydrogen bonds. 

 

 

Mutants reveal the effects of N17 side chains on structural coupling 

In order to further investigate the structural bases of the connection between the N17 and the poly-Q 

domains, we designed three H16 mutants in which the last residues of N17 (14LKSF17) were mutated 

to 14LKGG17, 14LLLF17 and 14LKAA17 (Figures 1a and 5). The LKGG and LKAA mutants were 

designed to weaken to different extents the hydrogen bond network found in wild-type httex1, while 

the LLLF would strengthen the network. The 15N-HSQC spectrum of the LKGG mutant presented 

very clear differences with respect to the wild-type one, especially in the glutamine region (Figures 5a 

and S6). The relatively disperse glutamine peaks of wild-type H16 coalesced in a broad, high-intensity 

downfield-shifted peak. Furthermore, the dispersion of the Nε2-H2 side chain signals in LKGG-H16 

was dramatically reduced (Figure S6). These observations demonstrated that the helical nature of the 

poly-Q tract is lost when mutating the last two residues of N17 to glycine. The origin of the dramatic 

structural changes was investigated using the SSIL strategy by isotopically labeling residues Q18, Q20 

and Q21 of LKGG-H16 (Figure 5b). Compared to H16, the three residues present very different peak 

positions in both spectra. While the N-H correlation of Q18 was strongly influenced by the 
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neighboring glycines, Q20 and Q21 appeared shifted downfield, in the same position as the broad 

glutamine peak (Figure 5a). Cα-Hα correlation peaks for these three residues were strongly shifted 

towards a less helical region of the spectrum (Figure 5b). The SCS analysis of these three residues 

indicated that the helicity was severely reduced compared to wild-type H16 but not completely 

abolished, indicating that the poly-Q tract is slightly helical for this mutant (Figure 5l). For the three 

glutamines, Cβ-H2 and Cγ-H2 correlations presented a doublet and a singlet, respectively (Figure 5c), 

indicating the loss of the hydrogen bonds connecting the N17 to the poly-Q. However, it was unclear 

whether the absence of this structural coupling affected the inherent helical tendency of N17. To 

resolve this point we assigned the N17 region of LKGG-H16, using traditional 3D-NMR experiments, 

and computed the SCSs (Figure S7). Comparison of the wild-type and LKGG-H16 SCS analyses 

showed that the double point mutation is resulting in a bidirectional loss of helicity, impacting the last 

six residues of N17 as well as the following glutamines. 

The mutant LLLF-H16 was designed to provide new sites to the first glutamines of the tract to form 

side chain hydrogen bonds and thus strengthen the helical tendency of the homo-repeat. Glutamine 

peaks of the LLLF-H16 15N-HSQC spectrum presented an additional upfield density that was 

attributed to an increased helical content in this mutant (Figure 5d). SSIL samples for Q18, Q20 and 

Q21 displayed important chemical shift changes in both the N-H and the Cα-Hα correlations (Figure 

5e). In fact, Q20 and Q21 N-H and Cα-Hα peaks appear shifted towards more helical conformations 

with respect to the wild-type. Unfortunately, the Cα-Hα peak for Q18 could not be observed, most 

probably due to a folding/unfolding process in the µs to ms dynamic regime that broadens the peak 

beyond detection. The SCS analysis showed a strong α-helical increase for Q20 and Q21, 

substantiating the above-mentioned qualitative observations regarding the helical increase for this 

mutant (Figure 5l). Despite their overall low intensity, the Cβ-H2 and Cγ-H2 peaks demonstrate a 

stronger structural coupling between N17 and the poly-Q tract. The Cγ-H2 splitting of Q20 and Q21 is 

larger than that observed in the wild-type. Cβ-H2 presents a single peak for Q18 and Q20, something 

occurring only for Q18 and Q19 in the wild-type (Figure 5f, 4a), indicating a stronger hydrogen bond 

network involving additional residues. Therefore, the LLLF-H16 mutant unambiguously links the 

strength of the hydrogen bond network between N17 and the first glutamines of the homo-repeat with 

the persistence and stability of the resulting α-helices. 

The third mutant, LKAA-H16, was designed to display an intermediate behavior with respect to the 

other two. Alanine is a helical promoter amino acid but its side chain is smaller than those of leucine 

and phenylalanine. The LKAA-H16 15N-HSQC spectrum was similar to the wild-type one, although 

less density was observed in the upfield part of the glutamine spectral region (Figure 5g and S6). The 

Cα-Hα peaks for Q18, Q20 and Q21 were shifted downfield in the 1H dimension with respect to those 

of the wild-type (Figure 5h). This feature was quantified in the SCS analysis, which indicates a 

decrease in the helical tendency for Q18 and Q20, while Q21 remained almost unchanged. Exploration 

of the side chains of these three residues suggested some clues to this observation. Interestingly, only 
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Q18 presented two Cγ-H2 peaks, indicating a hydrogen bond between the side chain of this residue and 

the backbone of L14. Therefore, the structural connectivity is modified in LKAA-H16 by exchanging 

the two side chain hydrogen bonds present in the wild-type by a new one involving the first glutamine 

of the tract and concomitantly a decrease of the helical tendency for this mutant. 

The inspection of the Nε-H2 peaks of the suppressed samples further substantiates the structural model 

of the hydrogen bond connection (Figure S6c). Q21 Nε-H21 peak of LLLF-H16 displays a stronger 

upfield shift in the 1H dimension than in the wild type, suggesting more persistent ring current effect 

by F17 aromatic ring caused by the formation of a more stable hydrogen bond. This enhanced 

stabilization of the α-helix is also manifested in the Q18 Nε-H21 peak that now appears strongly 

upfield shifted in the 15N dimension. In LKAA-H16, where F17 is mutated by an alanine, the Nε-H21 

peaks of Q18, Q20 and Q21 are not displaced in the 1H dimension despite the fact that they are 

involved in an α-helix, demonstrating that the ring current effects are at the origin of the unusual 

frequencies of Nε-H21 atoms in httex1.  

 

 

The poly-P C-terminal flanking region breaks the helical tendency of the glutamine homo-repeat 

In order to explore the structural connection between the poly-Q and the poly-P homo-repeats, we 

designed a mutant with five glycines between these tracts (H16-5G), aiming to structurally uncouple 

them (Figure 1a)24. This mutant yielded a very similar 15N-HSQC spectrum to that of H16, with 

glutamine peaks displaying an equivalent level of dispersion (Figure 5j and S6). No relevant 

differences were observed in the backbone or side chain correlations between both spectra, suggesting 

that the presence of the five glycines does not perturb the overall structure of H16. Nevertheless, we 

prepared an SSIL H16-5G sample with [15N, 13C]-glutamine in position Q30, which lies in the non-

helical part of the poly-Q tract of H16, to investigate structural changes resulting from uncoupling 

both homo-repeats at residue level. In comparison with the wild-type, the N-H correlations were 

shifted upfield, whereas the Cα-Hα correlations were shifted downfield in the 1H and upfield in the 13C 

dimension (Figure 5k). This observation suggested an increase in the helical tendency of this residue 

in the new context, which was quantitatively proven by SCS analysis. Q30 adopts a positive SCS 

value in H16-5G while in the wild-type this residue has a slightly negative value (Figure 5l). This 

observation demonstrates that the poly-P tract in httex1 exerts a strong conformational perturbation on 

the neighboring glutamines by enriching the ensemble with extended conformations, which break the 

inherent helical propensity of the poly-Q. 
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Figure 5. SSIL analyses of the structural effects of the flanking regions on the poly-Q tract of H16. Overlay 

of the glutamine region of the 15N-HSQC spectra of fully labeled wild-type H16 (grey) with the N17 mutants 

LKGG-H16 (a, blue), LLLF-H16 (d, green), and LKAA-H16 (g, red). The same color-code was used 

throughout the figure. Zoomed overlays of the 15N- and 13C-HSQCs for site-specifically labeled Q18, Q20 and 

Q21 of wild-type H16 (grey) with LKGG-H16 (b), LLLF-H16 (e) and LKAA-H16 (h). Cβ-H2 and Cγ-H2 NMR 

peaks of the Q18, Q20 and Q21 glutamine side chains of the three N17 mutants LKGG-H16 (c), LLLF-H16 (f) 

and LKAA-H16 (i) compared with those obtained for the wild-type (grey). Zoomed 15N- and 13C-HSQC spectra 

for the H16-5G mutant, which probes the structural perturbation exerted by the poly-P tract, displaying the N-H 

glutamine region (j, purple) overlaid with the wild-type (grey), and the SSIL spectra measured for Q30 (k). (l) 

Histogram of the SCS analyses for the different SSIL samples of the structural mutants measured: Q18, Q20 and 

Q21 for the LKGG-H16, LLLF-H16 and LKAA-H16 mutants, and Q30 for the H16-5G mutant. The SSIL-

derived SCS values are compared to those obtained for the wild-type (grey area). Note that no SCS value was 

derived for Q18 in the LLLF-H16 mutant due to the absence of the Cα-Hα peak in the 13C-HSQC. 
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Sequence analyses of poly-Q flanking regions in human proteins 

In a previous bioinformatics analysis it was shown that leucines, prolines and histidines were 

especially enriched in the flanking regions of human poly-Q tracts61. While leucine and histidine were 

similarly enriched on both sides, proline displayed a preference for the C-flanking region. We 

complemented this study by exploring whether the compositional bias in the flanking regions was 

poly-Q length dependent. For that, four hundred fragments with ten or more glutamine residues and 

containing a maximum of two non-glutamine residues were collected from 309 different human 

proteins, and the ten preceding (-10 to -1) and succeeding (+1 to +10) residues were compositionally 

analyzed. Figure S8 shows that using our poly-Q definition (maximum of 2 non-glutamine residues in 

fragments of 10 or more glutamine residues), we obtain similar results as those derived by Ramazzotti 

et al.61, with leucine, proline and to a lesser extent histidine and alanine being enriched in poly-Q 

flanking regions, as well as the positional asymmetry of proline. Interestingly, using our poly-Q 

definition we identify an enhanced enrichment of leucines in the N-flanking region compared with the 

C-flanking one. Note that a less restrictive definition of the homo-repeat to include larger glutamine-

rich regions was used in the previous study and this could lead to changes in the enrichment levels.  

We then analyzed the effect of the length of the glutamine homo-repeats on the above-described 

compositional biases by selecting pure glutamine stretches. The leucine population in position -1 

increases with the length of the poly-Q tract, reaching a maximum of 30.0% when the number of 

consecutive glutamines in the tract is seven or more, and it is slightly reduced for longer homo-repeats 

(Figure 6a). Interestingly, positions from -2 to -4 also display a similar length dependency, although 

the enrichment is less prominent than in position -1. The population of prolines in the C-flanking 

region systematically increases with the length of the poly-Q tract. The maximum of the enrichment 

occurs at position +1 that extends over the complete region, while it remains close to the background 

in the N-flanking region (Figure 6b). 

Next, we explored the secondary structure propensity in the N-flanking region of long human poly-Q 

tracts with a recently developed approach (manuscript in preparation) based on the previously 

mentioned large database of three-residue fragments49. Briefly, the residue-specific conformational 

bias was evaluated accounting for the effects exerted by the preceding and succeeding amino acids. 

Then, the percentage of α-helical, extended or other conformations was derived. The position-specific 

percentages obtained for each family were averaged in increasing sections of the N-flanking regions 

and reported as notched box plots in Figure 6c. For each fragment, the α-helical conformation was 

preferred with median values ranging from 50.2% to 70.6%, while the preference for extended or other 

conformations was always lower than 25%. Interestingly, the α-helical tendency presents its largest 

percentage when close to the poly-Q homo-repeat (residues -1 and -2), and systematically decreases 

when more residues of the N-flanking region are incorporated in the analysis. 
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In summary, these sequence analyses indicate that the structural and compositional characteristics 

observed in httex1 flanking regions are shared by a large number of other human poly-Q-containing 

proteins. This observation suggests that the structure-mediated functional mechanisms found for 

httex1 in the present study are common to many other human glutamine-rich proteins. 

 

 
Figure 6. Primary and secondary structure context of human glutamine-rich proteins. (a) Leucine and (b) 

proline abundance per position in region -10 to +10 of poly-Q regions in the context of pure glutamine stretches 

of variable length. Horizontal dashed lines correspond to the percentage of leucines (9.9%) and prolines (6.3%) 

found in the human proteome. An analysis of all 20 natural amino acids is displayed in Figure S8. (c) Secondary 

structural prediction (α-helix, extended and others) per two-residue block in the N-terminal flanking regions of 

glutamine-rich fragments. 

 

 

Discussion 

In this study, we demonstrate that the previously developed SSIL strategy39 can be systematically 

applied to investigate poly-Q tracts, one of the most abundant homo-repeats in eukaryotes62–64, and to 

connect their structural features with their specialized biological functions. The NMR analysis of the 

SSIL samples demonstrates that H16 is disordered, but hosts an important level of helicity that is 

initiated in N17, reaching the maximum at the beginning of the poly-Q tract and smoothly vanishing 

along the homo-repeat. A conformational ensemble model refined from experimental data 

recapitulates this non-uniform helical propensity as an equilibrium of multiple canonical helices of 
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different lengths. All these helices start in N17 and extend towards the poly-Q tract, comprising an 

increasing number of glutamines. Q28 is the last glutamine influenced by the α-helical tendency, and 

subsequent glutamines present random coil or slightly extended conformations. The enrichment in α-

helical conformations in httex1 is in agreement with crystallographic structures65,66 and NMR data35,44. 

However, the non-homogeneous helicity can only be captured when an ensemble representation is 

used, as done in the present study. 

Our NMR measurements demonstrate that N17 has an inherent α-helical tendency that is transferred to 

the glutamine homo-repeat through a hydrogen bond network involving glutamine side chains. 

Although the structure of this network cannot be unambiguously resolved with our NMR data, a recent 

study on the poly-Q tract of the AR demonstrates that glutamine side chains form hydrogen bonds 

with hydrophobic residues in the i-4 position, reinforcing the canonical COi-4àHN,i backbone 

hydrogen bond55. In this study it was suggested that the large and hydrophobic residues in the i-4 

position were key for the formation of the bifurcated hydrogen bond by protecting it from water 

molecules. In the context of H16, the last two residues of N17, 16SF17, would play the main role in 

stabilizing and propagating the helix within the poly-Q tract. We have validated this model by 

monitoring the side chain CSs of three mutants in which we modified the last residues in N17 and 

profiting the chemical shift changes induced by the ring current effects of F17 to spatially close atoms. 

While the LLLF-H16 mutant strengthens the structural coupling between N17 and the poly-Q tract, 

the LKGG-H16 mutant is unable to form the hydrogen bond network. Interestingly, LKAA-H16 

provides evidence of the malleability of this helical propagation. For this mutant, hydrogen bonds 

involving 20QQ21 are hampered by the absence of large hydrophobic amino acids in positions i-4 and, 

instead, this mutant utilizes L14 and Q18 to trigger the structural coupling between both regions. In 

addition, these results highlight that the conformational nature of the residues involved in the 

hydrogen bond network is important. In that sense, despite not forming bifurcate hydrogen bonds, the 

inherent helical propensity of alanines is required to connect N17 with the poly-Q tract, a phenomenon 

that is not observed in the LKGG-H16 mutant. These observations suggest that the residue preceding 

the poly-Q tract (position -1 according to our nomenclature) is the preferred one to trigger helicity in 

the homo-repeat. Consequently, the large population of leucines in this position found here and in a 

previous bioinformatics analysis of eukaryotic proteomes strongly suggests the generality of helical 

induction in poly-Q tracts through side chain hydrogen bonds61. Interestingly, this enrichment 

increases for poly-Q tracts with seven or more consecutive glutamines (Figure 6a). Altogether, these 

observations point towards a general structure/function relationship for poly-Q fragments involving 

long α-helices of variable length and stability, depending on the residues preceding the tract. This 

observation is in line with the recurrent presence of coiled-coils in protein fragments containing poly-

Q tracts as well as in their corresponding partners10. 

Multiple post-translational modifications have been described for N17, including phosphorylation, 

acetylation, ubiquitination and SUMOylation, and it has been shown that their presence perturbs the 
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function, aggregation properties and toxicity of huntingtin19,23. According to our observations, 

modifications that decrease the helical propensity of N17 or break the hydrogen-bond network will 

induce an increase in disorder in the poly-Q tract. In a recent study, it was demonstrated that mono-

phosphorylation on S13 or S16 and di-phosphorylation strongly disrupt N17 helicity. Interestingly, 

these post-translationally modified forms of httex1 are less prone to aggregation than the unmodified 

form67. These observations can now be rationalized in the light of our results, indicating a strong link 

between the level of structure, aggregation and modulation through post-translational modifications. 

It is well known that due to the limited conformational variability and the inability to form hydrogen 

bonds, proline is considered to be a structure-breaking residue with the capacity to extend its structural 

influence towards neighboring residues68. Previous CD experiments on httex1-mimicking peptides 

demonstrated the enrichment of polyproline-II conformations in poly-Q tracts preceding poly-P69. 

Here, we could demonstrate this effect at residue level through the NMR-driven molecular modeling 

of httex1 and by monitoring the CS changes in the H16-5G mutant. Moreover, our NMR analysis 

enables the assessment of the extent of structural perturbation exerted by the poly-P over the poly-Q 

tract. The last five glutamines of the tract preferentially adopt random coil or slightly extended 

conformations due to the influence of the proline tract52. However, this influence extends much further 

and causes the smooth decay of the helicity along most of the poly-Q tract in H16. Indeed, recent CD 

experiments as well as partial NMR assignments of httex1 variants with longer homo-repeats show 

that the helical content of httex1 systematically increases with the length of the poly-Q35–37. The 

ensemble of these observations suggests that the perturbation exerted by the poly-P tract has a defined 

range of influence and, therefore, the poly-Q homo-repeat remains helical in the region preceding the 

perturbed segment. According to the ensemble of these studies, we can estimate that the 

conformational influence of the poly-P tract extends to the last 13 glutamines of httex1. Glutamines 

lying in this perturbed region sense a distinct structural influence from both sides, the helical 

propagation from the N-terminus and the helix-breaking tendency from the C-terminus. These 

opposing influences are captured in a different balance between α-helix and extended conformations in 

the individual Ramachandran plots displayed in Figures 3a,b and S3.  

Sequence analyses also demonstrate that the presence of prolines at the C-terminal flanking region of 

glutamine-rich segments is common in eukaryotic proteins and especially significant in the positions 

immediately adjacent to poly-Q tracts61. Here we show that in human proteins the extent of this proline 

compositional bias is poly-Q length dependent, meaning that proteins having longer poly-Q tracts have 

a higher probability to be followed by prolines. Interestingly, an examination of huntingtin orthologs 

shows that the poly-P occurs only in species with four or more consecutive glutamines, suggesting that 

these two homo-repeats have coevolved70,71. The consecutive presence of glutamine and proline 

repeats is also observed in ataxin-2 and ataxin-7, two proteins whose abnormal poly-Q expansion 

causes spinocerebellar ataxias SCA2 and SCA7, respectively72. This concatenation of glutamine- and 

proline-rich regions in unrelated proteins from different organisms suggests a strong selective pressure 
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at the molecular level and a common structure/function mechanism61. For many of these proteins this 

mechanism might be the protection from aggregation of the expanded poly-Q tracts that arises from 

the conformational influence exerted by proline-rich regions. Prolines at the C-terminus shorten the 

length of the helical fragments of the poly-Q tract, reducing the stability of the intermolecular 

interactions and the subsequent aggregation. 

Our results point to an overall extended structure of httex1 that is in contrast to the tadpole-like model 

where N17 and the poly-Q tract form a compact structure stabilized by fuzzy contacts from which the 

semi-rigid PRR sticks out34,35. The compact httex1 structure has been derived from computational 

studies and sparse distance restrains derived from smFRET34,73. Although our experimental data do not 

report on long-range contacts, the hydrogen network involving N17 and the poly-Q tract, as well as the 

absence of the spectroscopic features of a turn in the interphase between both domains, strongly 

privileges the extended model over the compact one. Despite the overall extendedness, our data show 

that httex1 remains highly disordered, especially the last glutamines of the poly-Q tract and the PRR 

region. This flexibility would allow transient contacts between remote parts of the protein that could 

be at the origin of the long-range contacts observed in smFRET experiments34. This extended structure 

supports the ‘linear lattice’ model of toxicity in which the number of exposed glutamines increases 

with the length of the tract. However, the emergence of a toxic conformation, appearing after the 

formation of soluble oligomers as previously suggested12, is also compatible with our model, which 

focuses in the monomeric form of httex1.  

From a practical point of view, our observations warn about the use of isolated poly-Q peptides 

disregarding the sequence context to predict the biophysical/structural behavior and the aggregation 

propensity of glutamine-rich proteins74,75. We demonstrate that the chemical and structural features of 

poly-Q flanking regions govern the conformational behavior of the homo-repeat. Therefore, 

biophysical studies on poly-Q containing proteins must be performed with fragments including the 

relevant neighboring elements. With the SSIL approach these protein-specific properties can be now 

addressed at high resolution in order to unveil among other features the origin of the different 

pathological thresholds observed in poly-Q related diseases76. 

Altogether, our data demonstrates that the poly-Q tract in httex1 is exposed to opposing structural 

effects from both flanking regions. Notably, the enrichment in hydrophobic residues and the α-helical 

conformations in the N-flanking region, as well as the downstream enrichment in prolines, are shared 

by many eukaryotic glutamine-rich proteins. This suggests that many proteins exploit these structural 

properties, which are centered on the structural flexibility and versatility of poly-Q tracts, in order to 

perform specific biological functions while avoiding aggregation and toxicity. 
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Materials and Methods 

Huntingtin exon1 constructs 

All plasmids were prepared as previously described39. Synthetic genes of wild-type huntingtin exon1 

with 16 consecutive glutamines (H16) or H16 carrying the amber codon (TAG) instead of the 

glutamine codon, e.g. Q18 (H16Q18), were ordered from Integrated DNA Technologies (IDT). 

Following this strategy, 22 amber mutants were ordered: 16 within the poly-Q tract and six outside. 

Synthetic genes of the structural mutants (LKGG-H16, LKAA-H16, LLLF-H16 and H16-5G) and 

their corresponding amber codon mutants (Q18, Q20, Q21 and Q30) were ordered from GeneArt®. 

All genes were cloned into pIVEX 2.3d, giving rise to pIVEX-H16-3C-sfGFP-His6 and mutants. The 

sequence of all plasmids was confirmed by sequencing by GENEWIZ®. 

 

Preparation and aminoacylation of suppressor tRNACUA 

A tRNACUA/tRNA synthetase pair based on the Gln2 tRNA77 and glutamine ligase GLN4 from 

Saccharomyces cerevisiae was prepared in house as previously described39. Briefly, the artificial 

suppressor tRNACUA was transcribed in vitro and purified by phenol-chloroform extraction. Prior to 

use, the suppressor tRNACUA was refolded in 100 mM HEPES-KOH pH 7.5, 10 mM KCl at 70°C for 

5 min and a final concentration of 5 mM MgCl2 was added just before the reaction was placed on ice. 

The refolded tRNACUA was then aminoacylated with [15N, 13C]-glutamine (CortecNet) in a standard 

aminoacylation reaction: 20 µM tRNACUA, 0.5 µM GLN4, 0.1 mM [15N, 13C]-Gln in 100 mM HEPES-

KOH pH 7.5, 10 mM KCl, 20 mM MgCl2, 1 mM DTT and 10 mM ATP78. After incubation at 37°C 

for 1 hour GLN4 was removed by addition of glutathione beads and loaded suppressor tRNACUA was 

precipitated with 300 mM sodium acetate pH 5.2 and 2.5 volumes of 96% EtOH at -80°C and stored 

as dry pellets at -20°C. Successful loading was confirmed by urea-PAGE (6.5% acrylamide 19:1, 8 M 

urea, 100 mM sodium acetate pH 5.2)78.  

 

Standard cell-free expression conditions 

Lysate was prepared as previously described39 and based on the Escherichia coli strain BL21 Star 

(DE3)::RF1-CBD3, a gift from Gottfried Otting (Australian National University, Canberra, 

Australia)79. Cell-free protein expression was performed in batch mode as described by Apponyi et 

al.80. The standard reaction mixture consisted of the following components: 55 mM HEPES-KOH 

(pH 7.5), 1.2 mM ATP, 0.8 mM each of CTP, GTP and UTP, 1.7 mM DTT, 0.175 mg/mL E. coli total 

tRNA mixture (from strain MRE600), 0.64 mM cAMP, 27.5 mM ammonium acetate, 68 µM 1-5-

formyl-5,6,7,8-tetrahydrofolic acid (folinic acid), 1 mM of each of the 20 amino acids, 80 mM 

creatine phosphate (CP), 250 µg/mL creatine kinase (CK), plasmid (16 µg/mL) and 22.5% (v/v) S30 

extract. The concentrations of magnesium acetate (5 - 20 mM) and potassium glutamate (60 - 

200 mM) were adjusted for each new batch of S30 extract. A titration of both compounds was 

performed to obtain the maximum yield.  
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Cell-free H16Qx position screen 

Plasmids of all 22 amber mutants of wild-type H16 were tested for possible position specific effects of 

the amber codon placement on the suppression efficiency at a final concentration of 10 µM tRNACUA. 

The time-course of H16 protein synthesis was monitored using a fluorescence read-out (sfGFP) and a 

plate reader/incubator (Gen5, BioTek Instruments, 485 nm (excitation), 528 nm (emission)). Assays 

were carried out as triplicates in a reaction volume of 50 µL dispensed in 96-well plates. The reactions 

were incubated at 23°C for 5 hours. 

 

Preparation of NMR samples 

Samples for NMR studies were produced at 5-15 mL scale and incubated at 23°C and 750 rpm in a 

thermomixer for 5 hours. Uniformly labeled NMR samples were obtained by substituting the standard 

amino acid mix with 3 mg/mL [15N, 13C]-labeled ISOGRO®40 (an algal extract lacking four amino 

acids: Asn, Cys, Gln and Trp) and additionally supplying [15N, 13C]-labeled Asn, Cys, Gln and Trp 

(1 mM each). Furthermore, potassium glutamate was substituted by 80 mM potassium acetate to 

enable the labeling of glutamates. To produce site-specifically labeled samples, 10 µM of [15N, 13C]-

Gln suppressor tRNACUA were added to the standard reaction mixture (see above). 

 

Protein purification  

The cell-free reaction was thawed on ice and diluted 2-3 fold with buffer A (50 mM Tris-HCl pH 7.5, 

500 mM NaCl, 5 mM imidazole) before loading onto a Ni gravity-flow column of 1 mL bed volume 

(cOmplete™ His-Tag Purification Resin, Sigma Aldrich). The column was washed with buffer B (50 

mM Tris-HCl pH 7.5, 1000 mM NaCl, 5 mM imidazole) and the target protein was eluted with buffer 

C (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 250 mM imidazole). Elution fractions were checked under 

UV light and fluorescent fractions were pooled and dialyzed against NMR buffer (20 mM BisTris-HCl 

pH 6.5, 150 mM NaCl) at 4°C using SpectraPor 1 MWCO 6-8 kDa dialysis tubing (Spectrum Labs). 

Dialyzed protein was then concentrated with 10 kDa MWCO Vivaspin centrifugal concentrators 

(3500 x g, 4°C) (Sartorius). Protein concentrations were determined by means of fluorescence using 

an sfGFP calibration curve. Final NMR sample concentrations ranged from 4 to 11 µM. Protein 

integrity was analyzed by SDS-PAGE. 

 

NMR experiments and data analysis 

All NMR samples contained final concentrations of 10% D2O and 0.5 mM 4,4-dimethyl-4-

silapentane-1-sulfonic acid (DSS). Experiments were performed at 293 K on a Bruker Avance III 

spectrometer equipped with a cryogenic triple resonance probe and Z gradient coil, operating at a 1H 

frequency of 700 MHz or 800 MHz. 15N-HSQC and 13C-HSQC were acquired for each sample in 

order to determine amide (1HN and 15N) and aliphatic (1Haliphatic and 13Caliphatic) chemical shifts, 
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respectively. Spectra acquisition parameters were set up depending on the sample concentration and 

the magnet strength. 15N-HSQC spectra were acquired for 8 to 20 hours using 256-512 scans, 88-128 

increments and a spectral width of 21 ppm in the indirect dimension. 13C-HSQC spectra were acquired 

for 10 to 24 hours using 256-512 scans, 96-128 increments and a spectral width of 60 ppm in the 

indirect dimension. All spectra were processed with TopSpin v3.5 (Bruker Biospin) and analyzed 

using CCPN-Analysis software81. Chemical shifts were referenced with respect to the H2O signal 

relative to DSS using the 1H/X frequency ratio of the zero point according to Markley et al.82.  

Random coil chemical shifts were predicted using POTENCI, a pH, temperature and neighbor 

corrected IDP library (http://nmr.chem.rug.nl/potenci/)46. Secondary chemical shifts (SCS) were 

obtained by subtracting the predicted value from the experimental one (SCS=δexp-δpred). For better 

reliability of the results regarding possible referencing errors, we used the combined Cα and Cβ 

secondary chemical shifts (SCS(Cα)-SCS(Cβ)). In addition, secondary structure propensities (SSPs) 

were calculated using the script developed by Marsh et al.47 and the refDB database48.  

 

Model building and experimental ensemble optimization 

Ensemble models for the two families capturing the conformational influences of the flanking regions, 

NàC and NßC, were constructed with the algorithm described in reference49, which uses a curated 

database of three-residue fragments extracted from high-resolution protein structures. The averaged 

Cα and Cβ CSs for the 34 ensembles, 17 for each family, were computed with SPARTA+51 and used 

to refine a final ensemble in agreement with the experimental data. Concretely, the optimized 

ensemble model of H16 was built by reweighting the populations of the pre-computed ensembles, 

minimizing the error with respect to the experimental Cα and Cβ CSs. In order to capture the influence 

of the flanking regions, glutamines within the tract were divided into two groups: those influenced by 

N17 and those influenced by the poly-P tract, whose chemical shifts were fitted with the NàC and 

NßC ensembles, respectively. The limit between both families was systematically explored by 

computing the agreement between the experimental and optimized CSs through a χi
2 value. An optimal 

description of the complete CS profile was obtained when Q28 was chosen as the last residue 

structurally connected with N17. Finally, an ensemble of 50,000 structures was built using the 

optimized weights and it was used to analyze the residue-specific Ramachandran propensities and the 

secondary structure population using SS-map53. 
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Figure S1 

 
Figure S1. Chemical Shift (CS) based ensemble refinement of H16. (a-d) Overlay of the 

experimental (black) and theoretical (color) Cα (a and b) and Cβ (c and d) CSs of the poly-Q tract 

computed for the NàC (a and c) and the NßC (b and d) families of ensembles. The ensembles were 

built by incrementally incorporating glutamines in the partially structured region from Q18-Q33 

(NàC) and from Q33 to Q18 (NßC). The boundaries chosen for the partially structured regions for 

each of the 5,000 conformation ensembles are indicated in the panel. Horizontal dashed lines indicate 

the three plateaus corresponding to helical, random coil and extended averaged conformations. 

Experimental (black) vs ensemble-optimized (red) Cα (e and f) and Cβ (g and h) CSs exclusively 

fitted with the NàC (e and g) or the NßC (f and h) ensembles. For the NàC only Cα and Cβ 

experimental CSs from residues Q18-Q28 were used in the optimization. The reweighted model 

consisted of [10:17; 46.17%], [10:22; 26.93%], [10:23; 5.92%], and [10:26; 20.98%], where [X:Y] 

refers to the first and last residues considered as partially structured in the model. For the NßC only 

Cα and Cβ experimental CSs from residues Q29-Q33 were used in the optimization. The reweighted 

model consisted of [22:42; 46.05%], [28:42, 0.8%], [29:42, 42.86%, and [34:42, 10.28%].  
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Figure S2 

 
Figure S2. Chemical Shift (CS) based ensemble refinement of H16. Experimental (black) vs. 

ensemble-optimized (red) for all (a) Cα and (b) Cβ CSs measured for H16. The M1-Q28 and the Q29-

P83 fragments of the optimized profile were built from those optimized using the NàC and NßC 

ensembles, respectively. The poly-Q tract is shaded in gray; gaps are due to proline residues for which 

we do not have experimental data. 
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Figure S3 

 
Figure S3. Ramachandran distribution for the glutamine residues of the poly-Q tract of H16 derived 

from the CS-optimized ensemble of H16. The populations of α-helical (0 > φ; 50 > ψ > −120), 

extended (0 > φ; −120 > ψ > 50), and other (0 < φ) conformations are reported in Figure 3c in the 

main text. The red color indicates a higher density of conformations. 
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Figure S4 

 
Figure S4. SS-maps for the four ensembles selected using the experimental CSs. Fragments 

considered as partially structured are highlighted in red on the top of each panel. The percentage of the 

α-helical fragments is indicated in a color scale from high (red) to low (blue) populations. 
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Figure S5 

 
Figure S5: Side chain NMR scanning and temperature factors. (a) Cβ and (b) Cγ 13C-HSQC 

spectra for all glutamines in H16. With the exception of the first four glutamines (Q18-Q21), both 

families of spectra display a canonical behavior where Cβ-H2 and Cγ-H2 are doublets and singlets, 

respectively. The color code is equivalent to the one used in Figure 1 in the main text. (c) Zoom of the 

Nε-H2 region of the 15N-HSQC of fully labeled H16 measured at different temperatures. Solid lines 

connect the centers of the peaks for Q20, Q21, Q32 and Q54 at the different temperatures. Other peaks 

could not be unambiguously identified and therefore were not used in the analysis. (d, left panel) 

Linear fit of the 1H frequency of the Nε-H2 peaks of the four residues plotted against the temperature. 

The slope of the linear fit (d, right panel) reports on the temperature coefficient and the probability of 

the atom to be involved in a hydrogen bond. According to these slopes, Q20 and Q21 side chains form 

a hydrogen bond, while Q32 and Q54 side chains do not.  
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Figure S6 

 
c 

 
 

Figure S6: 15N-HSQC spectra of the structural mutants in comparison with the wild-type. (a) 

Backbone spectra of wild-type H16 (grey) overlaid with LKGG-H16 (blue), LLLF-H16 (green), 

LKAA-H16 (red) and H16-5G (purple). (b) Side chain spectra corresponding to the same mutants 

using the same color code. Note that peaks corresponding to the first glutamines for the LLLF-H16 

and LKAA-H16 are not displayed due to the lower intensity (see below). (c) Zoom of the Nε-H2 peaks 

for residues Q18, Q20 and Q21 of mutants LLLF-H16 and LKAA-H16 obtained from SSIL samples 

overlaid to the same region for the wild type protein in gray. Their chemical shifts substantiate the 

hydrogen bond network involving F17 in httex1 (see main text). 
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Figure S7 

 
Figure S7. SCS analysis of LKGG-H16 in comparison with the wild-type. Secondary chemical 

shift analysis using experimental Cα and Cβ chemical shifts and a neighbor-corrected random-coil 

library POTENCI46 for the wild-type (connected black points) and the LKGG-H16 mutant (blue 

histogram). Only residues belonging to N17 and the poly-Q tract are displayed. Data from Q18, Q20 

and Q21 was obtained from SSIL samples; the other glutamines were not investigated. 
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Figure S8 

 
Figure S8. Compositional analysis of the poly-Q flanking regions in human proteins. Percentage 

for each one of the 20 natural amino acids in the positions preceding (-10 to -1) and following (+1 to 

+10) the poly-Q tracts in human proteins. The solid vertical line corresponds to the position of the 

poly-Q tract. Poly-Q tracts were defined as having a maximum of 2 non-glutamine residues in 

fragments of 10 or more glutamine residues. Horizontal dashed lines define the percentage for each 

amino acid type in the human proteome. 
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Intrinsically Disordered Proteins (IDPs) perform a broad range

of biological functions. Their relevance has motivated intense

research activity seeking to characterize their sequence/

structure/function relationships. However, the conformational

plasticity of these molecules hampers the application of

traditional structural approaches, and new tools and concepts

are being developed to address the challenges they pose.

Small-Angle Scattering (SAS) is a structural biology technique

that probes the size and shape of disordered proteins and their

complexes with other biomolecules. The low-resolution nature

of SAS can be compensated with specially designed

computational tools and its combined interpretation with

complementary structural information. In this review, we

describe recent advances in the application of SAS to

disordered proteins and highly flexible complexes and discuss

current challenges.
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Introduction
In the last two decades, Intrinsically Disordered Proteins

or Regions (IDPs/IDRs) have emerged as fundamental

molecules in a broad range of crucial biological functions

such as cell signaling, regulation, and homeostasis

[1,2,3��]. Due to their lack of a permanent secondary

and tertiary structure, IDPs and IDRs are highly plastic

and have the capacity to perform specialized functions

that complement those of their globular (folded) counter-

parts [4]. Disordered regions, which can finely adapt to

the structural and chemical features of their partners, are

very well suited for protein–protein interactions and are

thus abundant in hub positions of interactomes [5–7].

The importance of disordered proteins in a multitude of

biological processes has fostered intense research efforts

that seek to unravel the structural bases of their function.

Nuclear Magnetic Resonance (NMR) has been the main

structural biology technique used to characterize the

conformational preferences at residue level, and, there-

fore, to localize partially structured elements [8,9]. How-

ever, a number of structural features related to the overall

size and shape of IDPs or their complexes remain elusive

to NMR. To study these properties, thereby comple-

menting NMR residue-specific information, Small-Angle

Scattering (SAS) of X-rays (SAXS) or Neutrons (SANS) is

the most appropriate technique [10–12]. Although SAS is

a low-resolution technique, the data obtained is sensitive

to large-scale protein fluctuations and the presence of

multiple species and/or conformations in solution [13–15].

However, the conversion of SAS properties into structural

restraints is challenging due to the enormous conforma-

tional variability of IDPs and the ensemble-averaged

nature of the experimental data [16]. The quantitative

analysis of these data in terms of structure has prompted

the development of computational approaches to both

model disordered proteins and to use ensembles of con-

formations to describe the experimental data. Here we

highlight the most relevant developments and applica-

tions of SAS to IDPs and IDRs, with a special emphasis on

the computational strategies required to fully exploit the

data in order to achieve biologically insightful informa-

tion.

Structural models of IDPs and their
experimental validation
For disordered proteins, the structural insights gained

from overall SAS parameters, such as the radius of gyra-

tion, Rg, the pairwise intramolecular distance distribution,

p(r), and the maximum intramolecular distance, Dmax, are

limited. Neither these parameters nor the traditional

Kratky representation, I(s)s2 versus s where I(s) represents

the scattering intensity and s the momentum transfer,

which qualitatively report on the compactness of biomo-

lecules in solution, directly account for the ensemble
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nature of disordered proteins. In order to fully exploit the

structural and dynamic information encoded in SAS data,

it is necessary to use realistic three-dimensional (3D)

models. However, the generation of conformational

ensembles of disordered proteins is extremely challeng-

ing, mainly because of the flat energy landscape and the

large number of local minima separated by low-energy

barriers [17]. The most popular methods to generate 3D

models of IDPs are based on residue-specific conforma-

tional landscapes derived from large databases of crystal-

lographic structures [18,19,20�]. However, the main

limitation of these approaches is the absence of sequence

context information, thereby precluding the prediction of

transiently formed secondary structure elements or the

presence of long-range interactions between distant

regions of the protein. Accurate energy models (force-

fields) accounting for the interactions within the chain

and with the solvent are required to describe these

features. The development of specific force-fields to

study conformational fluctuations in disordered proteins

is a very active field of research [21–24]. Molecular

Dynamics (MD) or Monte-Carlo (MC) simulations, when

an appropriate energy description is provided, are suitable

methods to correctly sample the conformational space of

IDPs. However, the high-dimensionality and the breadth

of the energy landscape hamper exhaustive exploration of

this space. Replica Exchange MD (REMD) [25,26],

which exchanges conformations between parallel simula-

tions running at multiple temperatures, or Multiscale

Enhanced Sampling (MSES) [27], which couples tem-

perature and Hamiltonian replica exchange, have been

proposed to enhance the conformational exploration of

MD methods. The performance of MD-based methods

can also be improved by the inclusion of experimental

data to delimit the exploration to the most relevant

regions of the conformational space [28–30].

The quality of computational models of disordered pro-

teins is normally validated using experimental data. The

Rg derived from the low-angle region of SAXS curves or

from the p(r) function is an excellent probe of the overall

size of a particle in solution. Rg compilations have been

extensively used to validate models of denatured and

natively disordered proteins through Flory’s relationship,

which correlates the Rg observed with the number resi-

dues of the chain [31,14]. The compilation of the Rgs from

76 IDPs (Figure 1) reveals that these proteins are more

compact than chemically denatured ones. It has been

shown that denatured proteins present an enhanced

sampling of extended conformations, probably due to

the interaction of the protein with chemical agents

[32]. Importantly, deviations from the expected Rg values

for canonical random-coil behavior, which is represented

by the green line in Figure 1, indicate the presence of

structural features that modify the overall size of the

particle in solution towards more extended or more com-

pact (Figure 1). The extendedness detected using this

analysis for several Tau protein constructs has been

linked to the presence of secondary structural elements

probed by NMR [29]. These structural properties can be

more thoroughly examined when the complete SAXS

curve is used to validate the ensemble models of peptides

[33] or proteins [19,34,35].

Ensemble approaches
In the last decade, ensemble methods have become

highly popular to structurally characterize disordered

proteins. Guided by experimental data, these methods

aim to derive accurate ensemble models of flexible pro-

teins. Several strategies that apply these methods to SAS

data have been reported: Ensemble Optimization Meth-

od (EOM) [36,37]; Minimal Ensemble Search (MES)

[38]; Basis-Set Supported SAXS (BSS-SAXS) [39];

Maximum Occurrence (MAX-Occ) [40]; Ensemble Re-

finement of SAXS (EROS) [41]; Broad Ensemble Gener-

ator with Re-weighting (BEGR) [42]; and Bayesian

Ensemble SAXS (BE-SAXS) [43]. These methods share

a common strategy that consists of the following three

consecutive steps: (i) computational generation of a large

ensemble that describes the conformational landscape of

16 Proteins: bridging theory and experiment
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Rg values from 76 IDPs as a function of the number of residues of the

protein are plotted in Log–Log scale. Only proteins lacking a

permanent secondary or tertiary structure were considered for the

compilation. Proteins with ordered domains, molten globules, or

denatured proteins were not considered. Straight lines correspond to

Flory’s relationships parametrized for denatured proteins using

experimental data (purple-dashed) [31] and IDPs using computational

ensembles calculated with Flexible-Meccano (green-solid) [32].

Colored bands correspond to uncertainty of the parametrization for

both models. Some IDPs contain local structural features and

consequently they are globally more extended or more compact than

expected for a random coil. These structural features, even if

transient, can be manifested in the experimental Rg.
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the protein; (ii) calculation of the theoretical SAXS curves

from the individual conformations; and (iii) use of a

multiparametric optimization method to select a sub-

ensemble of conformations that collectively describe

the experimental profile. Despite the common strategy,

these approaches present distinct features in the three

steps. Readers are referred to the original articles for

detailed descriptions. The availability of ensemble meth-

ods has transformed the study of flexible proteins by SAS.

Ensemble methods provide a description in terms of the

statistical distributions of structural parameters or con-

formations that is revolutionary with respect to traditional

analyses based on averaged parameters extracted from

raw data. Using this power, structural perturbations

exerted by temperature [44�,45], buffer composition

[46], or mutations [47] have been monitored in terms

of ensembles of conformations.

Despite the popularity of ensemble methods, several

aspects are still under debate. The most relevant ones

are the use of discrete descriptions for entities that probe

an astronomical number of conformations, and the sta-

tistical significance of ensembles derived from data

containing a very limited amount of information. The

strategies described use distinct philosophies to address

these issues, including the search for the minimum

number of conformations to describe the data [37,38],

the representation of the optimal solution as a distribu-

tion of low-resolution structural parameters such as Rg or

Dmax [36], and the application of Bayesian statistics

[39,43] or maximum entropy approaches [41]. Regard-

less of the strategy used to derive an ensemble of

conformations compatible with the experimental data,

one must be careful on the structural interpretation of

the final solution. The optimized ensemble is a repre-

sentation of the behavior of the protein in solution and

not the exact enumeration of the conformations adopted

by the protein. Consequently, the final ensemble can

only be used to derive structural features that describe

the protein. Importantly, the nature of these features

depends on the experimental data used to derive the

model. If only SAS data have been used, then an assess-

ment of the degree of flexibility, and the size and shape

distributions sampled by the protein can be obtained

from the ensemble. Conversely, conformational prefer-

ences at residue level can be extracted if NMR informa-

tion probing structure in a residue-specific manner is

used along the refinement.

Enriching the definition of conformational
ensembles of IDPs with complementary
information
The definition of protein ensembles derived from SAS

data using ensemble methods is limited to the overall

structure and the space sampled by the protein in solu-

tion. Although this is an important improvement with

respect to classical approaches, several crucial features,

such as the localization of secondary structural elements

or compact regions, remain elusive using this approach.

Considerable research efforts have been channeled into

enriching the resolution of the resulting ensemble with

complementary information.

NMR is the only technique that can provide atomic-

resolution information on IDPs and, consequently, it is

the most common method applied in combination with

SAS [48]. NMR is highly versatile and can measure

multiple observables reporting on protein structure and

dynamics [49]. Concretely, information reporting on the

backbone conformational preferences at residue level can

be probed by means of time-averaged and ensemble-

averaged chemical-shifts (CSs), J-couplings and Residual-

Dipolar Couplings (RDCs). NMR can also probe long-

range interactions within a protein chain or in protein

complexes through Paramagnetic Relaxation Enhance-

ment (PRE) experiments. In these experiments, a stable

radical or a paramagnetic metal is introduced in a specific

position of the chain, and the spatially close atoms can be

identified by a decrease in their signal intensity that is

proportional to the distance.

The best manner to exploit the complementarity be-

tween NMR and SAS is to integrate the experimental

data into the same refinement protocol. The programs

ENSEMBLE [50,51] and ASTEROIDS [52] derive

ensembles of disordered proteins by collectively describ-

ing SAXS curves, in addition to several NMR observables.

These powerful approaches seek to find the appropriate

way to combine data with very different information

content while avoiding overfitting. In a pioneering study,

ensembles of Tau and a-synuclein were determined by

combining SAXS with multiple backbone CS, RDC, and

PRE datasets [53��]. Those authors addressed the optimal

combination of experimental data and the overfitting

problem with extensive cross-validation tests that sub-

stantiated conformational bias in the aggregation-nucle-

ation regions for both proteins.

Other structural techniques such as single molecule

Fluorescence Resonance Energy Transfer (smFRET)

[54] and Electron Paramagnetic Resonance (EPR)

[55,56��] have been combined with SAXS to study large

and flexible complexes. Recent developments in Mass

Spectrometry (MS) offer novel sources of structural in-

formation [57]. Ion Mobility Spectrometry (IMS) can

capture, in a similar way to SAS, the overall properties

of conformational ensembles of disordered proteins.

However, a recent study comparing IMS and SAXS data

for some IDPs suggests that the conformations sampled in

solution and in gas-phase are not equivalent [58]. Hydro-

gen/Deuterium Exchange MS (HDX/MS) probes struc-

tural elements in proteins by identifying regions that are

protected from the exchange with solvent protons [57].

The availability of fast HDX/MS methods enables the

Small-angle scattering on disordered proteins Cordeiro et al. 17
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exploration of secondary structural elements in IDPs and

localizing their interaction sites with globular partners

[59]. In a recent study HDX/MS information was com-

bined with SAXS to study the calcium-induced structure

formation in RD, a protein hosting repeated regions able

to bind this cation [60].

The structural definition of a SAXS derived ensemble

model can also be enriched by the simultaneous analysis

of curves measured for multiple deletion mutants of the

same IDP [36]. When applied to two different isoforms of

Tau protein, this approach identified the repeat region of

the protein as the origin of distinct global rearrangements

of its flanking regions [61].

The large toolbox of structural techniques that can probe

distinct structural features of IDPs will result in a better

understanding on their structure–function relationship.

In this regard, the future development of robust and

reliable ways to integrate biophysical measurements in

ensemble approaches is imperative when addressing

complex biomolecular entities such as IDPs and their

complexes.

Disordered proteins in complexes
The biological function of many IDPs is manifested when

they recognize their biological folded partners [5]. This

recognition frequently involves linear motifs of the dis-

ordered chain, which, upon binding, adopt relatively fixed

conformations while the rest of the IDP remains flexible

[62].

The relevance of protein–protein complexes involving

disordered partners has promoted growing interest in

unraveling their structural characterization, with the

aim to understand the bases of their biological activity.

This structural characterization is complex and poses

multiple challenges to traditional structural biology

methods. SAXS has emerged as a valuable alternative.

However, overall structural parameters or ab initio recon-

structions derived from SAXS curves cannot capture the

inherent plasticity of these complexes [63,64�,65]. Hybrid

(or integrative) methods that combine information from

multiple techniques, thus exploiting their individual

strengths, are the most appropriate approaches to study

highly flexible complexes [66]. In this context, it is

important to describe how different structural biology

18 Proteins: bridging theory and experiment

Figure 2
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Crystallography

SAXS SANS and Contrast Variation
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Cartoons representing the structural sensitivity of NMR, X-ray crystallography, and SAS for a complex involving a disordered protein (central

cartoon). NMR normally probes the flexible regions of these complexes while the globular partner and the interacting region remain invisible.

Crystallography provides detailed information of the interacting region of the complex but not for the flexible parts. SAXS probes the complete

ensemble, although the details cannot be assessed due to its inherent low-resolution. SANS, through contrast variation experiments, can probe

independently both partners in the context of the complex depending on the deuteration level of the partners and the D2O/H2O of the buffer. SAS

is an ideal tool to integrate NMR and crystallographic information to build complete structural and dynamic models of disordered biomolecular

complexes.
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techniques probe complexes involving IDPs (Figure 2).

Due to the dynamic nature of the interaction and the

distinct hydrodynamic properties of the globular and

disordered parts of the complex, NMR generally detects

only those regions that remain flexible upon binding.

Although not general, it is sometimes possible to crystal-

lize the globular partner in the presence of a small peptide

corresponding to the interacting region of the IDP.

Therefore, X-ray crystallography provides an atomic

resolution picture of the interacting regions that is com-

plementary to NMR since the two techniques probe non-

overlapping parts of the same entity [67]. Conversely,

SAXS probes the complete assembly and can be used to

integrate the information from both NMR and X-ray

crystallography. If one of the partners is deuterated,

contrast variation SANS experiments can be performed

and the individual components of the assembly can be

alternatively highlighted depending on the D2O/H2O

ratio of the buffer. The power of combining multiple

techniques is exemplified in the study of the interaction

of the Vesicular Stomatitis Virus (VSV) nucleoprotein

(N0) and the dimeric phosphoprotein (P), a high-affinity

complex that precludes the oligomerization of N0 in vivo
[68��]. Using EOM, the authors simultaneously fitted one

SAXS curve and four SANS curves measured at different

contrast levels for the complex of N0 with deuterated P
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Examples of polydisperse scenarios that can occur in low-affinity complexes involving an IDP and a globular partner. (a) Both proteins have a

single binding site. The complex is in equilibrium with the free forms of both proteins. (b) The globular partner is a dimer and has two identical

binding sites. The free forms are in equilibrium with three possible complexes recognizing one or two binding sites of the globular partner. Due to

the symmetry of the dimer, the two singly bound complexes are however indistinguishable by SAS. (c) The IDP presents two similar binding sites

(pink and green). The free forms are in equilibrium with two 1:1 complexes using a distinct IDP interacting site to bind the globular partner, and a

complex where the IDP simultaneously interacts with two globular partners. On the right part of the figure, three panels are displayed representing

the molar fraction of each species along a simulated titration experiment for each scenario. These populations were computed assuming a fixed

concentration of the globular partner, [globular] = 100 mM, and increasing concentrations of IDP, [IDP], from 1 mM to 400 mM. A common

dissociation constant Kd = 20 mM was used for scenarios A and B, in panel C the two IDP binding sites, pink and green, display a Kd = 20 mM and

40 mM, respectively. These panels exemplify the inherent polydispersity of moderate affinity complexes, and how multiple titration experiments will

probe differently the species present and their relative populations.
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protein. The additional information provided by the

distinct contribution of the two proteins in the SANS

experiments notably improved the description of the

conformational properties of the complex.

In many cases, the conformational mobility of the inter-

acting region of the IDP is reduced (or frozen) upon

binding to the biological partner. There is an entropic

cost associated with this rigidification that often leads to

low-affinity to moderate-affinity complexes (Kd > 1 mM)

[62]. The structural modulation of the affinity is key to

achieving tunable responses to external signals, thereby

explaining the prevalent role of disordered proteins in

signaling processes [2,3]. In the concentration range nor-

mally used in SAXS experiments, the complex is in

equilibrium with the free forms of the two partners,

thereby giving rise to population-weighted averaged

SAXS curves (Figure 3a). This scenario can be even more

complex if one or both of the partners have multiple

equivalent or similar binding sites (Figure 3b,c). In this

case, the polydispersity of the mixture increases as a result

of the presence of several complexes with distinct stoi-

chiometries.

The interpretation of SAS data from polydisperse sam-

ples is challenging [69]. Although the coupling of SAXS

to Size-Exclusion Chromatography (SEC-SAXS) can, in

some instances, separate the components of the mixture,

there are multiple examples where the coexistence of

multiple species is unavoidable. In these circumstances

and with the aim to isolate the contribution of the

individual species within complex mixtures, analytical

approaches have been developed to decompose large

SAXS titration datasets [70,71]. This decomposition is

easier when prior structural knowledge of the species is

used for the analysis [69]. However, to apply this strat-

egy to low-affinity flexible complexes, accurate confor-

mational descriptions of all species in the free and

bound forms are mandatory. The analysis of SAS data

measured in samples with different relative concentra-

tions of both partners seems the most appropriate strat-

egy to enrich the information content in order to

structurally characterize these extremely challenging

scenarios (Figure 3).

Conclusions and outlook
During the last decade, SAS has been added to the

toolbox of techniques used to study conformational fluc-

tuations in proteins. This dynamic revolution of SAS is

linked to the development of computational tools able to

describe the conformational landscape of biomolecules

and ensemble approaches with the capacity to interpret

SAS data in terms of structural variability. These compu-

tational tools, which use chemical and structural knowl-

edge of biomolecules, partially compensate for the

limited amount of information coded in a SAS curve.

Therefore, the capacity to fully exploit the structural

information held in SAS data will necessarily be linked

to the development of more advanced and precise compu-

tational approaches with specially developed force-fields.

This notion is especially applicable to IDPs and IDRs,

which populate a huge number of conformational states.

For these proteins, SAS can be enriched with comple-

mentary information obtained by NMR, smFRET, EPR,

or MS, and integrated into a common ensemble model

embedding structure and dynamics. A particularly chal-

lenging subclass of IDPs is that containing Low-Com-

plexity Regions (LCRs), which are involved in multitude

of biological processes and are related to severe patholo-

gies. LCRs are unusually simple protein sequences with a

strong amino acid composition bias. The resulting simi-

larity of chemical environments within their sequence

hampers their structural characterization by NMR. SAS

can be a valuable alternative through which to study this

important but structurally neglected family of proteins

[72–74].

The function of multitude of IDPs is determined by their

interaction with biomolecular partners to form assem-

blies, which, in many cases, are of low to moderate

affinity. The capacity of SAS to probe the size and shape

of particles in solution places this technique in a unique

position to address these polydisperse scenarios. A case in

point is the fibrillation process that several IDPs undergo

to form amyloids, which are linked to severe diseases.

The decomposition of time-dependent SAXS datasets

has been successfully used to characterize intermediate

oligomeric forms [75�,76], thereby validating SAXS as a

practical tool for this purpose.

The need to understand the mechanisms underlying

complex cellular processes and recent technical and

conceptual advances in structural biology techniques

across the board have prompted researchers to tackle

challenging systems that were inaccessible some years

ago. Many of these systems are inherently dynamic and/

or polydisperse and can be exquisitely probed by SAS. As

a consequence, we anticipate that SAS will take on

greater relevance in hybrid approaches where its unique

information will be synergistically integrated with data

from multiple sources to deliver accurate structural and

dynamic models of disordered proteins and their com-

plexes.
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16. Bernadó P, Blackledge M: Structural biology: proteins in
dynamic equilibrium. Nature 2010, 468:1046-1048.

17. Zhou H-X: Polymer models of protein stability, folding, and
interactions. Biochemistry 2004, 43:2141-2154.

18. Jha AK, Colubri A, Freed KF, Sosnick TR: Statistical coil model of
the unfolded state: resolving the reconciliation problem. Proc
Natl Acad Sci USA 2005, 102:13099-13104.
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73. Boze H, Marlin T, Durand D, Pérez J, Vernhet A, Canon F, Sarni-
Manchado P, Cheynier V, Cabane B: Proline-rich salivary proteins
have extended conformations. Biophys J 2010, 99:656-665.

74. Owens GE, New DM, West AP, Bjorkman PJ: Anti-PolyQ
antibodies recognize a short PolyQ stretch in both normal and
mutant huntingtin exon 1. J Mol Biol 2015, 427:2507-2519.

75.
�

Vestergaard B, Groenning M, Roessle M, Kastrup JS, van de
Weert M, Flink JM, Frokjaer S, Gajhede M, Svergun DI: A helical
structural nucleus is the primary elongating unit of insulin
amyloid fibrils. PLoS Biol 2007, 5:1089-1097.

Pioneering study on the characterization of fibrillating proteins using
SAXS. The fibrillation of insulin is monitored by SAXS in a time-dependent
manner. The resulting curves are the population-weigted averages of all
species co-existing in solution. In an arduous procedure, the species-
pure curves for the three main components of the mixtures were decom-
posed allowing their structural characterization including their molecular
weight, oligomerization state, and 3D arrangement.

76. Giehm L, Svergun DI, Otzen DE, Vestergaard B: Low-resolution
structure of a vesicle disrupting alpha-synuclein oligomer that
accumulates during fibrillation. Proc Natl Acad Sci USA 2011,
108:3246-3251.

Small-angle scattering on disordered proteins Cordeiro et al. 23

www.sciencedirect.com Current Opinion in Structural Biology 2017, 42:15–23



214 Chapter 10. Annex-2


	Introduction
	Basic concepts and Background
	Introduction
	Structural biology
	Protein structure
	The Structure-function paradigm

	Intrinsically Disordered Proteins and their functions
	Nuclear Magnetic Resonance spectroscopy
	Nuclear Magnetic Resonance spectroscopy of proteins
	General NMR theory
	Population of nuclei in a sample
	Electron shielding
	NMR observables

	Small-Angle X-ray Scattering
	Small angle X-ray scattering for proteins
	General SAXS theory
	Structure and form factors
	Radius of gyration and forward scattering
	Pair-wise distance distribution
	SAXS applied to Intrinsically Disordered Proteins

	Modelling Intrinsically Disordered Proteins
	Knowledge-based approaches to build conformational ensemble models
	Physics-based methods to sample states and to simulate dynamics
	Robotics-inspired methods to explore the conformational space

	Combined use of SAXS, NMR and computational methods

	Tripeptide database
	Introduction
	Database construction
	Sequence-dependent structural preferences
	Context-dependent structural preferences
	cis/trans proline isomerization analysis
	Structural filtering in the tripeptide database

	Prediction of secondary structure propensities in IDPs
	Introduction
	Material and Methods
	Structural classification of three-residue fragments
	Statistical analysis of local structural propensities

	Results
	Identification of secondary structure propensities in IDPs: Overall picture
	Identification of helical elements within IDPs
	Identification of extended regions in IDPs
	Identification of turns in IDPs
	Comparison with state-of-the-art methods for structural propensity prediction
	Exhaustive structural prediction of poly-Q flanking regions

	Conclusion

	Ensemble modeling algorithm
	Introduction
	Materials and Methods
	Sampling method
	Computation of experimental properties from ensembles

	Results
	Computational models
	The coil model describes disordered regions in IDPs
	Structural information encoded in the tripeptide database identifies partially formed secondary structural elements
	A hybrid sampling strategy simultaneously describes structural properties of disordered and partially ordered regions
	Comparison to SAXS data
	Prediction of local conformations and secondary structural elements
	Coordinated formation of structural elements

	Conclusion

	Heuristic search algorithm
	Introduction
	Materials and Methods
	Use of the structural database
	Formal statement of the conformation path finding problem
	Search algorithm

	Results and Discussion
	Chignolin
	DS119

	Conclusion

	Hybrid-multiTRRT algorithm
	Introduction
	Background on parallel computing
	Parallel molecular simulation methods
	Parallel path planning algorithms

	The Multi-TRRT algorithm
	Materials and methods
	General principle
	Cooperative construction of trees inside each process (OpenMP)
	Limiting communication between processes (MPI) 
	Implementation framework

	Results and discussion
	Problem studied
	Computer architecture
	Analysis of the sequential algorithm
	Analysis of the multi-threaded algorithm running on a single processor
	Analysis of hybrid algorithm

	Conclusions

	Conclusions and Perspectives
	Bibliography
	Annex-1
	Annex-2

