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Abstract

Modeling of many phenomena in nature escape the rather common frameworks of
continuous-time and discrete-time models. In fact, for many systems encountered
in practice, these two paradigms need to be intrinsically related and connected, in
order to reach a satisfactory level of description in modeling the considered phys-
ical/engineering process. These systems are often referred to as hybrid systems, and
various possible formalisms have appeared in the literature over the past years.

The aim of this thesis is to analyze the stability of particular classes of hybrid
systems, by providing Lyapunov-based sufficient conditions for (asymptotic) stabil-
ity. In particular, we will focus on non-differentiable locally Lipschitz candidate
Lyapunov functions. The first chapters of this manuscript can be considered as a
general introduction of this topic and the related concepts from non-smooth analysis.

This will allow us to study a class of piecewise smooth maps as candidate Lya-
punov functions, with particular attention to the continuity properties of the con-
strained differential inclusion comprising the studied hybrid systems. We propose
“relaxed” Lyapunov conditions which require to be checked only on a dense set and
discuss connections to other classes of locally Lipschitz or piecewise regular functions.

Relaxing the continuity assumptions, we then investigate the notion of general-
ized derivatives when considering functions obtained as max-min combinations of
smooth functions. This structure turns out to be particularly fruitful when consid-
ering the stability problem for differential inclusions arising from regularization of
state-dependent switched systems. When the studied switched systems are composed
of linear sub-dynamics, we refine our results, in order to propose algorithmically veri-
fiable conditions.

We further explore the utility of set-valued derivatives in establishing input-to-
state stability results, in the context of perturbed differential inclusions/switched
systems, using locally Lipschitz candidate Lyapunov functions. These developments
are then used in analyzing the stability problem for interconnections of differential
inclusion, with an application in designing an observer-based controller for state-
dependent switched systems.

Keywords: Stability analysis, locally Lipschitz Lyapunov functions, generalized
derivatives, hybrid systems, switched systems, input-to-state stability.

iii





Résumé

La Nature, dans ses multiples manifestations, nous fournit un grand nombre d’exemples
pour lesquels il est nécessaire d’aller au-delà de la distinction classique entre modèles
où le temps est décrit comme une entité continue et modèles où le temps est dis-
cret/discrétisé. En particulier, pour une multitude de systèmes en physique/ingénierie,
ces deux aspects temporels sont fondamentalement liés, et nécessitent donc que ces
deux paradigmes soient connectés et mis en relation, pour une meilleure précision et
fidélité dans la représentation du phénomène. Cette famille de systèmes est souvent
appelée “systèmes hybrides”, et différentes formalisations mathématiques ont été
proposées.

L’objectif de cette thèse est l’analyse et l’étude de la stabilité (asymptotique)
pour certaines classes de systèmes hybrides, en proposant des conditions suffisantes
à la Lyapunov. Plus spécifiquement, nous nous concentrerons sur des fonctions de
Lyauponv non-lisses ; pour cette raison, les premiers chapitres de cette thèse peuvent
être considérés comme une introduction générale de ce sujet, proposant les instru-
ments nécessaires issus de l’analyse non-lisse. Tout d’abord, grâce à ces outils, nous
pourrons étudier une classe de fonctions de Lyapunov construites par morceaux, avec
une attention particulière aux propriétés de continuité des inclusions différentielles
qui composent le système hybride considéré. Nous proposons des conditions qui
doivent être vérifiées seulement sur un sous-ensemble dense, et donc allant au-delà
de résultats existants.

En négligeant les hypothèses de continuité, nous étudions ensuite comment les no-
tions de dérivées généralisées se spécialisent en considérant des fonctions construites
comme combinaisons de maximum/ minimum de fonctions lisses. Cette structure
devient particulièrement fructueuse quand on regarde la classe des systèmes à com-
mutation dépendant de l’état du système. Dans le cas où les sous-dynamiques sont
linéaires, nous étudions comment les conditions proposées peuvent être vérifiées al-
gorithmiquement.

L’utilité des notions de dérivées généralisées est finalement explorée dans le
contexte de la stabilité entrée-état (ISS) pour inclusions différentielles avec per-
turbations extérieures. Ces résultats nous permettent de proposer des critères de
stabilité pour systèmes interconnectés, et notamment une application du design de
contrôleurs pour systèmes à commutation dépendant de l’état.

Mots clés : Analyse de stabilité, Fonctions de Lyapunov localement Lipschitz,
dérivées généralisées, systèmes hybrides, systèmes à commutation, stabilité entrée-
état (ISS).
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Notation

This section provides the notations used all along the thesis.

• N: the set of positive integers,

• R: the set of real numbers,

• Rn: the set of n-dimensional real-vectors

• R>0, (R≥0): set of strictly positive (non-negative) real numbers.

• Comparison Functions Classes: a function α : R≥0 → R is positive definite
(α ∈ PD) if it is continuous, α(0) = 0, and α(s) > 0 if s 6= 0. A function
α : R≥0 → R≥0 is of class K (α ∈ K) if it is continuous, α(0) = 0, and strictly
increasing; it is of class K∞ if, in addition, it is unbounded. A continuous
function β : R+ ×R+ → R+ is of class KL if β(·, s) is of class K for all s, and
β(r, ·) is decreasing and β(r, s)→ 0 as s→∞, for all r.

• 〈x, y〉, (or x>y): Euclidean scalar product in Rn between x and y ∈ Rn.

• |x| :=
√
〈x, x〉: Euclidean norm (or 2-norm) of vectors in Rn,

• |x|A: given A ⊂ Rn and x ∈ Rn, it denotes the Euclidean distance between x
and A, that is |x|A := inf{|y − x| | y ∈ A}

• Basic Topology Notation: given A ⊂ Rn we denote by int(A) the interior of
A, by A its closure, by bd(A) its boundary, by co(A) its convex hull and by
co(A) the closure of its convex hull.

• B(x, r) and B(x, r): closed and open ball (respectively) centered in x ∈ Rn of
radius r > 0.

• µL(A): the Lebesgue measure of a Lebesgue-measurable set A ⊂ Rn.

• f : dom(f) ⊂ Rn → Rm denotes a function f defined on a domain dom(f) (if
not stated otherwise, an open subset of Rn), returning values in Rm.

• F : dom(F ) ⊂ Rn ⇒ Rm denotes a map F whose values are subsets of Rm,
and we define dom(F ) := {x ∈ Rn | F (x) 6= ∅}.

• ∇f(x): gradient of a function f : O → R at x ∈ O (if it exists).

• Cp(O,Rm): given an open setO ⊂ Rn and an integer p ≥ 0, the set of functions
f : O → Rm such that each component f1, . . . fm : O → R is continuously
differentiable p-times (all the derivatives of order smaller than or equal to p
are continuous at every point of O).

• Liploc(O,Rm): given an open set O ⊂ Rn, the set of locally Lipschitz functions
on O.

xi



xii Notations

• Absolute Continuity: Given a compact interval I : [a, b] ⊂ R, φ : I → Rn

is absolutely continuous on I if φ is differentiable almost everywhere in I, its
derivative φ′ is Lebesgue integrable and

φ(x) = φ(a) +
∫ x

a
φ′(s)ds, ∀ x ∈ I.

When considering a right-open interval I := [0, b) (and possibly b = +∞),
φ : I → Rn is locally absolutely continuous, if it is absolutely continuous on
any compact subinterval of I. In the presentation, for sake of readability, we
will avoid the term “locally”.

• Linear Algebra Notations: Rn×m denotes the set of real matrices with n rows
and m columns; for any A ∈ Rn×m, A> denotes the transpose matrix of A,
Rank(A) denotes the rank of A, det(A) the determinant of A. I denotes
the identity matrix (of appropriate dimension). The symbol Sym(Rn) :=
{A ∈ Rn×n |A> = A} denotes the set of symmetric matrices in Rn×n. Given
A ∈ Sym(Rn), A > 0 (A ≥ 0) stands for A positive (semi-) definite, while
A < 0 (A ≤ 0) stands for A negative (semi-) definite.



1
Introduction

In this introductory chapter, we provide an overview of the concepts and problems
that we will study in this thesis. In Section 1.1 we introduce the main classes of
dynamical systems which have been studied, notably hybrid systems and switching
systems. The main stability notions are recalled in Section 1.2, together with the
classical Lyapunov theorem in the context of differential inclusions. In Section 1.3,
we provide a review of recent results for stability of differential inclusions, hybrid
systems and switching systems via Lyapunov functions. Finally, in Section 1.4, we
present the main directions this thesis will explore, providing an overview of the
chapters to follow.

1.1 Systems Class
Many phenomena in nature or in engineering can be properly modeled using a coup-
ling or interaction between continuous-time dynamics and discrete events. Systems
in which these two kinds of behavior are intrinsically connected are called hybrid
systems, and constitute an active area of research over the past several years.

Many mathematical models for various kind of hybrid systems (i.e. models which
explicitly distinguish between “continuous” and “discrete” evolutions) have been
proposed in the past. For a survey of “historical” models of hybrid system we refer
the doctoral dissertation [21], where a deep comparison is provided. Among other
examples, the so-called model of hybrid-automata is introduced in [65], while for
impulsive differential equation we refer to the book [12]. In [125, Chapter 2] the
interested reader can find several examples of hybrid systems models arising from
several different areas of application.

In this thesis, we will focus on two more recent frameworks, notably switching
systems, as studied formally in [84] and hybrid systems in the formalism of [58]. The
former formalism, which describes the so called switching systems, considers a sub-
class of hybrid systems, emphasizing the continuous behavior and seeing the discrete
events as switching among a prescribed countable family of vector fields. Putting the
emphasis on the class of switching rules/signals and exploiting the properties of the
individual subsystems have been fruitful paths of research. This model is presented
in Section 1.1.2, and we refer to [84] and references therein for the interested reader.

The latter setting provides a paradigm for hybrid systems that is remarkable for
its generality and mathematical rigor, which allows us to derive and adapt many
concepts and results from classical continuous time/discrete time systems theory.

1



2 CHAPTER 1. INTRODUCTION

This model is presented in Section 1.1.3, and for further details we refer to [58].
Both formalisms make use, partially or in some specific cases, of differential

inclusions as modeling tool. For that reason we recall in what follows, the basic
results and solution concepts for this kind of dynamical systems.

1.1.1 Differential Inclusions
This subsection is devoted to introducing the basic notions of differential inclusions,
following the formalism of [5], [45] and [114].

A set-valued map F : Rn ⇒ Rm is a function that at each point x ∈ Rn associates
a set F (x) ⊂ Rm. The set

dom(F ) := {x ∈ Rn | F (x) 6= ∅}.

is the domain of F . In the subsequent Section 2.1 we will provide the main results
of set-valued analysis, defining the necessary properties of set-valued maps.

We are interested in dynamical systems whose right-hand side is described by
a set-valued map. Intuitively, this idea allows us to consider systems for which
the velocity of a generic solution is not uniquely determined by state position, but
instead it lies in a set that depends on that position.

More formally, given a set C ⊂ Rn and a set-valued map F : Rn ⇒ Rn with
dom(F ) ⊃ C, we consider the differential inclusion

ẋ(t) ∈ F (x(t)), x(t) ∈ C. (1.1)

A solution to (1.1) is an absolutely continuous function φ : domφ → C, with
domφ := [0, Tφ) for some Tφ > 0 (and possibly Tφ = +∞), such that

φ̇(t) ∈ F (φ(t)), for almost all t in domφ.

We say that a solution φ : dom(φ)→ Rn of (1.1) is maximal if it cannot be extended
forward in time, that is, if there does not exist any φ̃ : dom(φ̃) → Rn solution of
(1.1), with dom(φ) $ dom(φ̃) and φ(t) = φ̃(t) for all t ∈ dom(φ). The differential
inclusion (1.1) is said to be forward complete if, for any maximal solution φ, we have
dom(φ) = [0,∞).

Given a point x ∈ C, we denote the set of all solutions of (1.1) with φ(0) = x by
SF,C(x). We define the set of solutions of (1.1) as SF,C := ∪x∈CSF,C(x).

Formalism (1.1) is in particular suitable to model a large class of physical systems,
for which the differential equations setting is not rich enough. As a simple example,
one can consider the case of differential equations for which the right-hand side is
known to be approximately equal to a function f : Rn → Rn with a margin of error
in norm, say ε > 0. Then any solution of the “real" differential equation will be a
solution of the differential inclusion

ẋ ∈ F (x) := {f(x)}+ B(0, ε), x ∈ Rn.

Further examples will be provided in what follows, for an overview we refer the
reader to [114, Chapter 1].
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1.1.2 Switching Systems
As studied in [84], in this section, we present the formalism of switching systems.
Intuitively, given a family of vector fields, the setting of switching systems allows
describing the evolution of the state guided by a switching rule/signal that somehow
“chooses” the vector field the state must follow.

Consider a discrete set I ⊂ N, the so called index set, and for each i ∈ I, we
associate a continuous-time dynamical subsystem

ẋ = fi(x),

where fi : Rn → Rn is locally Lipschitz, for any i ∈ I. If the state is free to switch
between subsystems ẋ = fi(x) for any i ∈ I without any constraint, we can define
the switched system under arbitrary switching rule, which can be modeled by the
following differential inclusion

ẋ ∈ co{fi(x) | i ∈ I}. (1.2)

Intuitively, solutions of (1.2) are free to evolve following any convex combination of
the subsystems fi : Rn → Rn for any i ∈ I, see [113, Section 2] for the technical
details.

In many situations, further information is available, and the system is known to
follow a prescribed switching rule that encodes when and how a discrete event, i.e.
a switching between individual modes, labeled by i ∈ I, can occur. As a first case,
we consider switching rules that depend only on the time variable, as formalized in
the following definition.

Definition 1.1: Time-Dependent Switching Signals

Given a discrete set I ⊂ N, define the set of time-dependent switching signals
as

S := {σ : R+ → I | σ is piecewise constant and locally finite} , (1.3)

where, by locally finite, we mean that any σ ∈ S has a finite number of
discontinuities on any bounded subset of R+.

Without loss of generality, we suppose that signals σ ∈ S are right-continuous.
Given a signal σ ∈ S, we define the set of switching instants, that is the points at
which σ is discontinuous, and we denote it by {tσk} ⊂ R+. The collection {tσk} ⊂ R+
may be infinite, or finite, possibly reduced to the initial instant tσ0 := 0. If it is
infinite, then, by local finiteness, it is divergent, i.e. tσk → ∞ for k → ∞. Thus, a
switched system with time-dependent switching rule σ ∈ S can be described by

ẋ(t) = fσ(t)(x(t)). (1.4)

We note that the class of switching systems with prescribed time-dependent switch-
ing rule is a subclass of non-autonomous differential equations. Indeed, given σ ∈ S,
and defining f̃(t, x) := fσ(t)(x), we have that (1.4) can be represented as

ẋ(t) = f̃(t, x(t)).
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In many situations, given a discrete set I ⊂ N, and a set of vector fields F = {fi ∈
Liploc(Rn,Rn) | i ∈ I}, we are interested in studying the properties of system (1.4)
not simply for one prescribed σ ∈ S, but for a subclass of signals. Commonly
considered subclasses are the class of dwell-time switching signals, given by

Sdw(τ) :=
{
σ ∈ S | tσk − tσk−1 ≥ τ, ∀ tσk > 0

}
, (1.5)

or the class of average dwell-time switching signals, defined as

Sadw(τ,N0) :=
{
σ ∈ S | Nσ(T, t) ≤ N0 + T − t

τ
, ∀T > t ≥ 0

}
, (1.6)

where Nσ(T, t) denotes the number of discontinuity points of σ on the interval (t, T ).
These classes have attracted attention in the switching systems community in the

past decades and [84, Chapter 3] provides a thorough overview of stability analysis
for switched systems with such switching signals.

In this thesis, we will mostly focus on another constrained-switching paradigm,
considering switching signals which depend only on the position of the state x with
respect to a pre-defined partition of the state space Rn rather than on time variable.
More formally, given a discrete set I, and a set of vector fields fi ∈ Liploc(Rn,Rn), for
any i ∈ I, we suppose there exists a set of so-called operating regions Xi, i ∈ I, such
that Rn = ∪i∈IXi. While the state is in a specific operating region Xi, solutions will
follow the dynamical system ẋ = fi(x). Whenever the system solution crosses the
boundary of an operating region, its behavior can “switch” according to the region
it will lie in. At this stage, the notions of state-space partition, crossing solution,
boundaries of operating regions are still not precise. We postpone these technical
discussions to Section 2.2, where we will specify what a proper partition of the
state-space is and how this definition ensures the well-posedness of state-dependent
switched systems.

To make a parallel with time-dependent switched systems defined in (1.4), given
a discrete set I, a set of vector fields fi ∈ Liploc(Rn,Rn) and a state-dependent
switching signal σ : Rn → I, constant on some pre-defined operating regions Xi ⊂
Rn, i ∈ I, which cover the state space, we can define a state-dependent switched
system as the differential equation

ẋ(t) = fσ(x(t))(x(t)). (1.7)

Due to the discontinuous behavior of σ : Rn → I, it is clear that the right-hand
side of (1.7) is in general discontinuous with respect to the state x ∈ Rn. Not
surprisingly, the differential inclusions framework will allow us to “enlarge” (1.7),
ensuring well-posedness, and this is the content of Section 2.2.

1.1.3 Hybrid Systems
As presented in [58], in what follows, we formally define the hybrid systems model.
This general paradigm is defined by considering two regions of the state space: in the
first one the system evolves accordingly to a differential inclusion, while in the second
one the system behavior is guided by a difference inclusion, that is a discrete-time
dynamics whose right-hand side is set-valued.
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More formally, given C,D ⊂ Rn and F : domF ⇒ Rn, G : domG ⇒ Rn set-
valued maps such that C ⊂ domF and D ⊂ domG, a hybrid dynamical system
H = (C,D, F,G) is defined by

H :
ẋ ∈ F (x), x ∈ C,
x+ ∈ G(x), x ∈ D.

(1.8)

We will refer to C and D as the flow and jump sets respectively, while F : domF ⇒
Rn, G : domG ⇒ Rn are called flow and jump maps, respectively. The symbol x+

denotes, as for discrete-time systems, the value of the state x after an instantaneous
change. We do not require any non-overlapping property of C and D, possibly
allowing solutions starting from point x ∈ C ∩ D to evolve either according to F
or G. We will formally define, in Section 2.3, the notion of solution for hybrid
systems (1.8). We note here that the framework (1.8) is flexible and can model
many “heterogeneous” systems arising in control theory. Among other examples,
hybrid automata, impulsive dynamical systems and reset systems can be defined
and studied exploiting this formalism, as noted in [58, Chapter 1]. Time-dependent
switched systems as defined in (1.4) can as well be written in the form of hybrid
systems as in (1.8), as shown in [58, Section 1.4.4]. However, the formalism that we
introduced in the previous section allows us to emphasize the particular properties
of switching systems, providing more tailored results depending explicitly on the
class of switching signal.

1.2 Stability Theory
In this section we consider several stability concepts for differential inclusions, as
defined in Section 1.1.1, providing a first illustration of the Lyapunov direct method.
The extension in the hybrid setting is postponed to Section 2.3.

1.2.1 Stability Notions
Since differential inclusions, in general, have multiple solutions from a given initial
point, all the stability concepts have a weak and a strong counterpart. Typically,
given any initial point (close enough to the origin), weak notions require that a
property is satisfied by at least one solution, while strong notions require that the
same property is satisfied by all the solutions. Since we are interested in differential
inclusions arising from state-dependent switched systems or defined as flow-map of
a given hybrid system, we will focus on the strong concepts only. Weak notions are
important, for example, when the differential inclusion is seen as model for control
systems, that is, defining

ẋ ∈ F (x) := {f(x, u) | u ∈ U}, (1.9)

where f : Rn × Rm → Rn defines a control system and U ⊂ Rm is the admissible-
controls set. In this context weak asymptotic stability corresponds to the existence,
for any initial solution x0, of a control u : R+ → U which guides the state to the
origin, (also called global asymptotic controllability to 0) see [38].
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Moreover, classical stability theory deals with a single equilibrium point, typic-
ally the origin. Due to the hybrid behavior of the systems that we will study, we
introduce, in general, stability for closed attractors A ⊂ Rn; the standard case will
be recovered considering A = {0}.

Definition 1.2: Stability for Differential Inclusions

Consider C ⊂ Rn, F : Rn ⇒ Rn with dom(F ) ⊃ C and the differential
inclusion (1.1). Given a closed set A ⊂ Rn we say that

1. The set A is uniformly globally stable (UGS) if there exists α ∈ K∞
such that any solution φ of (1.1) satisfies |φ(t)|A ≤ α(|φ(0)|A) for all
t ∈ domφ.

2. The set A is uniformly globally attractive for (1.1) if, for any ε > 0 and
any r > 0 there exists T > 0 such that, for any solution φ of (1.1) with
|φ(0)|A ≤ r, we have that |φ(t)|A ≤ ε, for any t ∈ dom(φ) such that
t ≥ T .

3. The set A is uniformly globally asymptotically stable (UGAS) for (1.1)
if it is uniformly globally stable and uniformly globally attractive.

Given an open set O ⊂ Rn such that O ⊂ C, and A ⊂ O, if the properties 1., 2.
and 3. in Definition 1.2 are satisfied only by solutions with φ(0) ∈ O, we say that
the set A is uniformly locally stable (ULS), uniformly locally attractive (ULA) and
uniformly locally asymptotically stable (ULAS), respectively.

We underline that, in Definition 1.2, we are not assuming a priori existence
and/or completeness of solutions, since this is not the case, in general, for con-
strained differential inclusions. In particular a system which exhibits finite explo-
sion of solution in finite time it would be uniformly globally attractive, satisfying
point 2. in Definition 1.2. This kind of “counterintuitive” phenomenon is partially
justified by the fact that this definition will be then easily adapted in the context
of hybrid systems, where solutions typically leave the flow set C recurrently, and in
finite time. We also note that the uniform global attractivity introduced in Defin-
ition 1.2 is sometimes called uniform global pre-attractivity (UGpA), for example
in [58], and UGAS is then called uniform global pre-asymptotic stability, to underline
this “lack of completeness”. For notational simplicity, we choose to avoid the prefix
-pre. In what follows existence and completeness will be indeed proved/assumed
case-by-case, but we find it useful to have a stability theory as general as possible.

Global uniform stability of course implies the common notion of (uniform) Lya-
punov stability, that is:

For any ε > 0, there exists δ(ε) > 0 such that any solution φ of of (1.1) with
|φ(0)|A ≤ δ(ε) satisfies |φ(t)|A ≤ ε for all t ∈ domφ.

The two properties are equivalent asking that limε→∞ δ(ε) = +∞. The term “uni-
form” in these two properties underlines the fact the bound functions (α ∈ K∞
and δ : R+ → R+) do not depend on the specific solution we are looking at, (since
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in general we do not have uniqueness), and historically comes from the framework
described in (1.9).

If forward completeness is assured, then uniform global attractivity implies that,
for every solution φ of (1.1), we have limt→∞ |φ(t)|A = 0. This property is com-
monly called global attractivity and it is weaker than item 2. in Definition 1.2, since
uniformity requires that T > 0 depend only on the margin ε > 0 and on r, the dis-
tance of the initial conditions from A; T does not depend on the particular solution
or initial point. Under some assumptions on the map F and on the attractor A,
Lyapunov stability+global attractivity imply UGAS, as proved for example in [36,
Proposition 2.2].

The concept of UGAS in Definition 1.2 can be equivalently defined using the
formalism of KL functions, in fact we have that

• A is uniformly globally asymptotically stable (UGAS), if and only if there
exists β ∈ KL such that any solution φ of (1.1) satisfies |φ(t)|A ≤ β(|φ(0)|A, t)
for all t ∈ domφ,

see [122, Proposition 1] for the proof and for further discussions about KL-stability
for differential inclusions.

1.2.2 Lyapunov Direct Method: Smooth Case
A common and powerful tool in stability theory is given by the Lyapunov direct
method. Definition 1.2 involves properties that are required to hold for all the
solutions starting from any initial point; and thus it is hard to check these conditions
directly. In fact this would require the possibility of analytically compute all the
solutions of a given system, and this is a challenging problem, even in the simpler
case of autonomous differential equations. Roughly speaking, in order to bypass this
issue, the Lyapunov method idea is to find a positive definite function, a so-called
Lyapunov function, which is strictly decreasing (or non-increasing for the UGS case)
along the solutions of system (1.1). We formalize this idea in the following statement.

Theorem 1.3: Smooth Lyapunov Theorem

Consider C ⊂ Rn, F : Rn ⇒ Rn with dom(F ) ⊃ C and a closed set A ⊂ Rn.
We say that a function V : dom V → R is a smooth Lyapunov function for
system (1.1) with respect to A if C ⊂ dom V ⊂ Rn, V ∈ C1(dom V,R), there
exist α1, α2 ∈ K∞ such that

α1(|x|A) ≤ V (x) ≤ α2(|x|A), ∀x ∈ C, (1.10)

and there exists γ ∈ PD such that

〈∇V (x), f〉 ≤ −γ(|x|A), ∀x ∈ C,∀f ∈ F (x). (1.11)

If there exists a smooth Lyapunov function for system (1.1) with respect to A,
then the set A is UGAS for (1.1). If there exists V satisfying (1.10) and (1.11)
with γ ≡ 0, then the set A is UGS for (1.1).
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The following proof is fairly standard, and provides the ideas commonly used in
direct Lyapunov results. However, we find it useful to propose it in this thesis, since
it could be taken as our “foundation stone”. Indeed most of the results that we will
propose are obtained by adapting/relaxing the following ideas in various contexts.

Proof : Let us suppose V : dom V → R is a smooth Lyapunov function,
and consider any φ : dom(φ) → C, a solution of system (1.1) and let us denote
dom(φ) = [0, Tφ), with Tφ > 0, possibly Tφ =∞. By definition, since φ is absolutely
continuous and V is continuously differentiable, the function V ◦ φ : [0, Tφ) → R

is absolutely continuous, and thus its derivative exists almost everywhere, and for
almost every t ∈ [0, Tφ) there exists f ∈ F (φ(t)) such that

d

dt
V (φ(t)) = 〈∇V (φ(t)), f〉. (1.12)

Using the fundamental theorem of calculus, given any τ ∈ [0, Tφ),

α1(|φ(τ)|A) ≤ V (φ(τ)) = V (φ(0)) +
∫ τ

0

d

dt
V (φ(t))dt

≤ V (φ(0))−
∫ τ

0
γ(|φ(t)|A)dt ≤ V (φ(0)) ≤ α2(|φ(0)|A)

(1.13)

where we made use of (1.10), (1.11) and (1.12). We have thus proved (UGS) since,
defining α̃ := α−1

1 ◦ α2 ∈ K∞ we have

|φ(τ)|A ≤ α̃(|φ(0)|A), for every τ ∈ dom(φ). (1.14)

Note that we can follow exactly the same steps if γ ≡ 0, thus proving (UGS) also
when V satisfies (1.11) with γ ≡ 0.

In order to prove uniform global attractivity, considering ε > 0 and r > 0, it
suffices to define

δ := α̃−1(ε), R := α̃(r), m := min
s∈[δ,R]

γ(s) and T ′ := α2(r)− α1(δ)
m

.

By definition of δ and R, and recalling (1.14) we have the following implications

|φ(0)|A ≤ δ ⇒ |φ(t)|A ≤ ε, for every t ∈ dom(φ),
|φ(0)|A ≤ r ⇒ |φ(t)|A ≤ R, for every t ∈ dom(φ),

for every solution φ of (1.1). The attractivity argument now follows by contradiction.
Consider any T > T ′ and suppose that there exists φ : dom(φ) → Rn solution
of (1.1) with |φ(0)|A ≤ r such that |φ(t)|A ≥ δ, for all t ∈ dom(φ) ∩ [0, T ]. This
implies γ(|φ(t)|A) ≥ m, for all t ∈ dom(φ) ∩ [0, T ). Consider now a τ ∈ dom(φ) ∩
(T ′, T ], with the same steps as in (1.13), we have

α1(|φ(τ)|A) ≤ α2(|φ(0)|A)− τm < α2(|φ(0)|A)− T ′m ≤ α2(r)− α2(r) + α1(δ),

and thus |φ(τ)|A < δ, a contradiction. Thus, for any solution φ : dom(φ) → Rn

of (1.1) with |φ(0)|A ≤ r, there exists a τ ∈ dom(φ) ∩ [0, T ] such that |φ(τ)|A ≤ δ,
implying that |φ(t)|A ≤ ε, for all t ∈ dom(φ) ∩ [T,∞), as we wanted to prove. We
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want to stress again that the argument is vacuously satisfied for non-complete solu-
tions such that Tφ < T . ♦
Theorem 1.3 is an important result, and provides sufficient conditions: if a smooth
Lyapunov function exists then the systems is UGAS. Under some further assump-
tions on C ⊂ Rn, A ⊂ Rn and F : C ⇒ Rn the converse is also true: if the attractor
A is UGAS then a smooth Lyapunov function exists, see [122], [36], [86] for the case
C = Rn, or [58, Theorem 7.31] in the more general context of hybrid systems, which
includes constrained differential inclusions as special case.

1.3 Lyapunov Direct Results: Literature Review
As discussed in Section 1.2, the Lyapunov direct method is a powerful tool for estab-
lishing (various kinds of) stability properties for a large class of systems. This section
is devoted to recalling the main results for differential inclusions, hybrid/switching
systems which have appeared over the past years. This will allow discussing the
motivations behind the work of this thesis, correctly placing the results presented
in subsequent chapters in the contemporary context. This section should not be
regarded as an exhaustive survey on Lyapunov theory, since we will only recall and
refer to results that are somehow related with our work. For an overview of Lya-
punov theory in control systems we refer to [10]; while for a general discussion in
the context of ODE’s, a good reference could be the book [82].

Considering differential inclusions as in (1.1), the study of smooth Lyapunov
functions has attracted some attention. For a statement similar to Theorem 1.3
we refer to [114, Theorem 8.3] in the unconstrained case (C = Rn), while in [5,
Chapther 6] the authors present various Lyapunov-like results, in the context of
constrained differential inclusions. Among other examples, a Lyapunov theorem for
differential equations coupled with monotone set-valued operators is presented in
[26, Theorem 6.3], while in [22] (smooth) Lyapunov functions are used to study
instability of differential inclusions as in (1.1).

The adaptation of the Lyapunov Theorem in the context of hybrid systems is
introduced in [58, Theorem 3.18], and it is formally presented in Section 2.3; possible
extensions can be found in [120], or [95].

As we already said, various converse Lyapunov theorems have been proved for
(1.1), see [122], [36] or [58, Theorem 7.31] for the formal statement and [81] for a
thorough review. More precisely, under some assumptions on C and F , we have the
following result: If the origin of the differential inclusion (1.1) is globally asymptotic-
ally stable (GAS), then there exists a smooth Lyapunov function. From a theoretical
point of view, there are many advantages in having a smooth Lyapunov function: in
particular the existence of such a function also gives us information about the ro-
bustness of the stability for the considered dynamical system. Indeed, for a general
hybrid systems, it is shown in [29] that if a smooth Lyapunov function exists, then
the asymptotic stability is robust to small perturbations of the data.

On the other hand, many stability criteria for (1.1) relying on non-smooth Lya-
punov functions have been proposed in the past years. Among other examples we
refer to [34, Chapter 4] and references therein for a general treatment; more detailed
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discussions will be provided in what follows. Indeed, despite the cited smooth con-
verse Lyapunov results, in many situations the construction of less regular Lyapunov
functions can be easier from a computational point of view, or can be even suggested
by the structure of the considered problem, as we discuss in what follows.

The Lyapunov direct method applied to switching systems as defined in Sec-
tion 1.1.2 deserves a special discussion. In fact, this setting can be taken as a first
and intuitive framework in which results relying on non-smooth Lyapunov functions
can effectively provide less demanding stability criteria with respect to the smooth
Lyapunov functions case sketched in Theorem 1.3 for differential inclusions.

One possible approach to proving stability for switched system (1.2) under arbit-
rary switching is to design a common Lyapunov function, that is a positive definite
function which satisfies a decrease property as in (1.11) for all fi : Rn → Rn, i ∈ I.
Of course a necessary condition for the existence of such a function is the fact that
subsystems ẋ = fi(x) are themselves globally asymptotically stable (with respect to
the origin), but this is in general not sufficient. Interestingly, the existence of such
common Lyapunov functions can be related with the commutativity properties of
the functions fi : Rn → Rn, for i ∈ I. In the linear case, i.e. fi(x) = Aix, for
some Ai ∈ Rn×n, it is proven in [94] that if all {Ai}i∈I are Hurwitz and commute,
then a common quadratic Lyapunov function exists, while in [89] this commutativity
property is used to show the possible extensions to the nonlinear subsystems case.
These ideas can be generalized, giving stability conditions for switched systems that
depend on the properties of the Lie algebra generated by the set of matrices {Ai}i∈I ,
as presented in [2]. These results can be adapted, via linearization, to prove local
asymptotic stability in the nonlinear case, while for the study of robustness of these
conditions, see [1]. For a thorough discussion of this subject we refer to [84, Section
2.2] and references therein.

When one is interested in switched systems as in (1.3) driven by a particular
time-dependent signal (or a signal that is known to belong to a particular subclass
as for example (1.5) or (1.6)), the existence of a common Lyapunov function with
respect to all the subsystems is a very restrictive (and not necessary) condition. In
this context, stability certificates can be obtained relying on a multiple Lyapunov
functions approach. More precisely, the idea is that, if all the subsystems ẋ = f(x),
i ∈ I are globally asymptotically stable, we can find, for each i ∈ I, a smooth
Lyapunov function Vi : Rn → R for fi with respect to the origin. Then, one
needs to combine these functions {Vi}i∈I to obtain a time-dependent (or switching
signal-dependent) Lyapunov function. To prove that this time-varying function is
decreasing, one need to impose further conditions at the switching instants, since
the function is in general discontinuous at that instants.

For example one can ask that the sequence of values of the Lyapunov function
at switching instants be decreasing as in [21], that is

Vσ(tk)(φ(tk)) < Vσ(tk−1)(φ(tk−1)), for any tk > 0,

and any solution φ : R+ → Rn of (1.4). Another possibility is to ensure that the
value of the function decreases at each time the switching signal activates/deactivates
the same subsystem. More precisely, considering σ ∈ S, for the decreasing property
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at enter-switching times we ask

Vσ(tk′ )(φ(tk′)) < Vσ(tk)(φ(tk)),

for any tk > 0 and any k′ > k+1 such that σ(tk) = σ(tk′) and any solution φ of (1.4)
see [84, Theorem 3.1] or [21]. We refer the interested reader to [84, Chapter 3].

Another remarkable example of the benefits of the multiple Lyapunov functions
approach in switched systems is the minimal dwell time problem. More precisely,
in the linear and finite-index set case (i.e. fi(x) ≡ Aix, with Ai ∈ Rn×n for all i ∈
I := {1, . . . , K}), it is well known that, if all the matrices A1, . . . , AK are Hurwitz,
there exists a (large enough) dwell-time τ ≥ 0 for which the switched system (1.4) is
asymptotically stable with respect to the class Sdw(τ) defined in (1.5), see [93]. For
this reason, a widely studied problem is the numerical approximation of the minimal
dwell-time τdw ∈ R+ for which this holds. To deal with this problem, a multiple
Lyapunov functions approach has commonly been considered: in [56] a family of
quadratics is used to give lower-bounds on τdw, constructing Lyapunov functions
decreasing between switching but possibly increasing at the switching instants, while
in [4], a different construction is proposed, with the peculiarity that the resulting
Lyapunov functions are non-increasing at every switching instant. Similar results
can be found in [25], [32], [15]. Regarding the converse Lyapunov problem in this
setting, see the result presented in [127, Corollary 6.5].

This multiple Lyapunov functions approach can be somehow adapted in studying
the stability of state-dependent switched systems, as defined in (1.7). Given {fi}i∈I
and a partition of the state space {Xi}i∈I such that Rn = ⋃

i∈I Xi we suppose
that there exists a set of positive definite functions {Vi}i∈I such that the Lyapunov
condition

〈∇Vi(x), fi(x)〉 ≤ −ρ(|x|), for any x ∈ Xi,

is satisfied, for any i ∈ I. Then, defining an “overall” function V : Rn → R as

V (x) := Vi(x), if x ∈ Xi,

the main issue is to ensure proper continuity/decreasing properties of this “piece-
wise” constructed V at the boundaries of the operating regions Xi. This idea was
firstly introduced in [77] and has been used more recently in [11] and [63], or also
in [70] in the context of piecewise affine systems. In [61] the authors studied condi-
tions under which a state-dependent switched system with linear subsystems admits
a common quadratic Lyapunov function. Since state-dependent switched systems
are in general a subclass of discontinuous dynamical systems, an overview of Lya-
punov techniques is provided in [39].

1.4 Contribution and Organization of the Thesis
This thesis focuses on analyzing stability of state-dependent switched and hybrid
systems using multiple Lyapunov functions. The constructions we provide render
the overall Lyapunov function locally Lipschitz, and thus, in general, non-smooth.
More precisely, the main contribution lies in proposing various relaxations of in-
equality (1.11) in Theorem 1.3, when considering candidate Lyapunov functions
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that are merely locally Lipschitz. The main tools used in the analysis arise from the
non-smooth analysis literature, mainly [34], [37], [105]. In the context of differential
inclusions with outer-semicontinuous dynamics, we follow the ideas presented in [8]
and [30] where tighter conditions are proposed if the Lyapunov functions satisfy
some further assumptions. More specifically, in this thesis we apply the non-smooth
Lyapunov framework in two particular settings:

Firstly, imposing (rather strong) continuity assumptions on the considered set-
valued maps, we study constrained differential inclusions as in (1.1), proposing sta-
bility conditions relying on a subclass of locally Lipschitz functions. We show that,
in this context, using generalized differentiation techniques may be difficult or con-
servative or, in fact, unclear when the differential inclusion (1.1) is constrained to
a closed set C ⊂ Rn, as it naturally is the case in hybrid systems. We illustrate
these issues and we show that for a wide class of functions with piecewise structure,
it suffices to check Lyapunov inequalities on a dense subset of the set C and only
at points where the functions are differentiable. This avoids several non-smooth
technicalities and appears less conservative than the alternatives, for examples the
ones introduced in [88] in the context of hybrid systems.

Secondly, we apply the (non-smooth) Lyapunov construction firstly proposed
in [7] to the state-dependent switched systems framework. Since the “set-valued”
regularization of state-dependent switched systems would not satisfy the continu-
ity assumption imposed in the preceding chapter, we will need to follow a differ-
ent approach. In particular we study the class of functions obtained by iterating
pointwise maximum and minimum operators on a finite class of C1 functions. This
allow us to propose relaxed Lyapunov conditions, and to analyze how these condi-
tions relate with the sliding motion phenomenon, which commonly arises in switch-
ing systems. Exploiting the combinatory structure of these max-min functions, we
provide algorithmic procedures to check the proposed conditions, in the case where
the subsystems are linear. This idea of using non-smooth Lyapunov functions is
then generalized to studying how similar constructions can establish also input-to-
state stability (ISS) (see [115]) in the context of perturbed state-dependent switched
systems. This will permits us to propose an observer-based controller for certain
nonlinear two-mode state-dependent switched systems.

More specifically, the structure of this thesis is the following one:

• The non-smooth analysis preliminaries will be presented in Chapter 2, to-
gether with a thorough discussion about solution concepts and well-posedness
for the systems introduced in this introduction.

• In Chapter 3, we propose a class of locally Lipschitz functions with piecewise
structure as candidate Lyapunov functions for differential inclusions. Subject
to some regularity of the dynamics, we show that Lyapunov inequalities can
be checked only on a dense subset, and thus avoiding points of nondifferentiab-
ility of the Lyapunov function. We also relate the proposed class to piecewise
continuously differentiable functions, introduced in [31] and [110] for optimiz-
ation purposes. Finally we present applications to hybrid dynamical systems.
The content of this chapter follows the material presented in the articles [46]
and [47].
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• In Chapter 4 we study a particular class of locally Lipschitz functions: start-
ing from a finite family of continuously differentiable positive definite functions,
we study conditions under which a function obtained by max-min combina-
tions over this family is a Lyapunov function, in the context of state dependent
switched systems. Such max-min type of Lyapunov functions were recently
proposed in the context of discrete-time switching systems [3], [101]. We spe-
cify generalized notions of directional derivatives for these max-min functions,
and use them in deriving stability conditions. For the case of state-dependent
switched systems with linear sub-dynamics, using the S-Procedure, our condi-
tions result in bilinear matrix inequalities. The articles [49] and [51] are the
main sources of this chapter.

• In Chapter 5 we study robustness analysis for interconnections of differential
inclusions. We first provide sufficient conditions for input-to-state stability
(ISS) for differential inclusions, using piecewise C1 candidate Lyapunov func-
tions. The structure of these functions, formally introduced in [110], fits par-
ticularly well the piecewise-smooth structure of the state-dependent switched
system (1.7). We apply our approach to study ISS of an interconnection of
two differential inclusions. In this context, we extend the small-gain theorem
presented in [75], and if the interconnection is in the so-called cascade form,
we adapt the construction proposed in [119]. Also, for differential inclusions,
the construction proposed in [85] allows for Lipschitz continuous functions by
studying the Clarke gradient, while our results rely on a weaker notion of de-
rivative, see the subsequent Section 2.4 for the details. The technical content
of this chapter is mainly taken from [52].

• In Chapter 6 we present some final discussion, underlying the possible future
paths of research.





2
Technical Preliminaries

In this chapter, we provide the necessary preliminaries for studying the system
classes presented in Chapter 1. In Section 2.1, we recall the main continuity prop-
erties for set-valued maps. This will allow studying the problem of existence and
completeness of solutions for differential inclusions. In Section 2.2, we show how
state-dependent switched systems can be modeled by “well-posed” differential in-
clusions, while in Section 2.3, we define the notions of solutions and stability for
hybrid systems. Finally, in Section 2.4 we discuss some possible extensions of the
Lyapunov Theorem 1.3 when considering locally Lipschitz Lyapunov functions.

2.1 Set-Valued Analysis and Differential Inclusions
This section is devoted to presenting the basic properties of differential inclusions,
following the formalism of [105], [5], [6], [45], [114]. Consider a set valued map
F : Rn ⇒ Rm. Since its values are subsets of Rm we have to clarify the continuity
concepts in this context. The main reference for the following definitions is [105,
Chapter 5]. (Below, xk →C x stands for xk ∈ C and xk → x as k →∞).

Definition 2.1: (Semi-)Continuity of Set-Valued Maps

Consider a set C ⊂ Rn and a set valued map F : Rn ⇒ Rm, with domF ⊃ C.

• F is outer semicontinuous relative to C at x ∈ C if

F (x) ⊃ lim sup
y→Cx

F (y) := {f ∈ Rn | ∃xk →C x, ∃fk ∈ F (xk) s.t. fk → f}.

The map F is outer semicontinuous (on C) if it is outer semicontinuous
relative to C at each x ∈ C.

• F is inner semicontinuous relative to C at x ∈ C if

F (x) ⊂ lim inf
y→Cx

F (y) := {f ∈ Rn | ∀xk →C x,∃fk ∈ F (xk) s.t. fk → f}.

The map F is inner semicontinuous (on C) if it is inner semicontinuous
relative to C at each x ∈ C.

15
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The lim sup-lim inf notation is motivated by considering the so-called Painlevé-
Kuratowski set convergence concept, for which we refer to [105, Chapther 4]. Moreover
we say that

• F is continuous relative to C at x ∈ C if it is inner and outer semicontinuous
relative to C at x. It is continuous (on C) if it is continuous relative to C at
each x ∈ C.

• F is locally bounded relative to C at x ∈ C if for some neighborhood U of x
the set F (U ∩C) ⊂ Rn is bounded. It is locally bounded (on C) if this holds at
every x ∈ C.

With an abuse of notation, considering maps F : Rn ⇒ Rm with dom(F ) = Rn

and considering continuity/boundedness properties relative to Rn, we will drop the
“relative to ”- prefix.

Given F : Rn ⇒ Rm, it is important to underline that if F is outer semicontinu-
ous at x ∈ dom(F ), then F (x) is a closed set. In fact it is clear that, in general,
F (x) ⊂ lim supy→Cx F (y): it suffices, given f ∈ F (x), to consider the trivial conver-
gent sequences xk ≡ x and fk ≡ f . Thus, outer semicontinuity at x is equivalent
to the property F (x) = lim supy→x F (y), and since the right-hand side is closed, we
conclude.

In the set-valued analysis/differential inclusions literature, as for example in [5],
[6], [114], the reader can find the notions of upper and lower semicontinuity for
set-valued maps. The formal definitions of these concepts are the following: F :
Rn ⇒ Rm is upper semicontinuous at x if for each open set V with F (x) ⊂ V
there exists an open neighborhood U of x such that F (z) ⊂ V , for all z ∈ U ,
while F is lower semicontinuous at x if for each open set V with F (x) ∩ V 6= ∅
there exists a neighborhood U of x such that F (z) ∩ V 6= ∅, for all z ∈ U . While
inner semicontinuity and lower semicontinuity are equivalent, we have the following
implications (see [58, Lemma 5.15] or [105, Theorem 5.19] for the proof):

• If F : Rn ⇒ Rm is outer semicontinuous and locally bounded at x, then F is
upper semicontinuous at x;

• If F : Rn ⇒ Rm is upper semicontinuous at x and F (x) is closed, then F is
outer semicontinuous at x.

We chose to adopt the outer/inner semicontinuity formalism because of its appeal-
ing symmetry and its clear relation with the limits (inferior and superior) in the
Painlevé-Kuratowski set convergence, see Definition 2.1. Since in our applications
we will always consider set-valued maps which are bounded and with closed values,
these subtleties will not play any role. On the other hand we find it important to
clarify this point, in order to avoid possible misunderstandings, since in what follows
we will possibly refer to results which use the upper/lower semicontinuity formalism.
For the historical reasons behind these notions, we refer to the discussion in [105,
Commentary of Chapter 5].

Any single-valued map f : Rn → Rm can be seen as a set-valued map F f : Rn ⇒
Rm with F f (x) := {f(x)}, that is, a set-valued map with singleton values. It is thus
interesting to note the following equivalences:
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• f is continuous at x;

• F f is continuous at x;

• F f is outer semicontinuous and locally bounded at x;

• F f is inner semicontinuous at x.

2.1.1 Existence and Completeness for Differential Inclusions
We are now in a position to give an existence result for differential inclusions.

Proposition 2.2: Existence of Solutions for Differential Inclusions

Consider C ⊂ Rn and a set-valued map F : Rn ⇒ Rn with C ⊂ dom(F ),
locally bounded in C, outer semicontinuous on C with closed and convex values.
Then, for every x0 ∈ int(C) there exists a solution of (1.1) with φ(0) = x0.
The same holds if outer semicontinuity on C is replaced by inner semicontinuity
on C.

The proof of this result can be found, for example, in [5, Theorems 2.1, 2.3],
in [45] or, for the outer semicontinuous case only, [114, Theorem 4.7]. Note that in
Proposition 2.2, we are considering initial conditions x0 in the interior of C. Initial
conditions on the boundary of C could be problematic in view of existence, since the
differential inclusion can possibly force the solution to “escape” C. This problem
is known in literature under the name of viability, and we refer to [5, Chapter 4]
for a formal treatment. For simplicity, from now on in this subsection we will
consider differential inclusions defined on the whole space Rn, i.e. the right-hand
side has dom(F ) = Rn. Proposition 2.2 can be seen as an extension of the Cauchy-
Peano Existence Theorem, in the sense that we recover the classical hypothesis when
considering continuous single-valued maps f : Rn → Rn.

Since, as we said, we are not interested in uniqueness results, we can now ask if
we can give conditions under which the solutions not only exist but are (forward)-
complete, in the sense that their domains can be extended to the whole line R+.
In the single-valued setting, completeness is often ensured by imposing an anti-
“blow up in finite times” condition, which can be obtained by asking a linear growth
behavior of the vector field. This idea can be obviously generalized to the set-valued
context, see for example [53, Theorem 2.2] and references therein. In the following,
we formalize this idea.

Lemma 2.3: Linear Growth and Completeness

Consider a set valued map F : Rn ⇒ Rn with dom(F ) = Rn; if

• F satisfies the hypotheses of Proposition 2.2 on Rn;

• There exist constants k and a ∈ R such that |f | ≤ k|x| + a, for all
f ∈ F (x), for all x ∈ Rn,

then for any maximal solution φ of (1.1) it holds that dom(φ) = [0,+∞).
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We underline that a linear growth property of the right hand side is only a
sufficient condition for forward completeness. For example, the vector field f :
Rn → Rn, f(x) = −|x|x cannot be bounded in norm by a linear function, but
the solutions of ẋ = f(x) are forward complete, as an explicit computation shows.
Interestingly, this system can be seen as a particular case of differential inclusion

ẋ ∈ −F (x),

where F : Rn ⇒ Rn is a maximal monotone operator, as defined in [105, Definition
12.5]. For this kind of differential inclusions, uniqueness and forward completeness
of solutions is proved in [23, Théorème 3.1], see also [26, Theorem 5.8] for a time-
varying counterpart.

For a thorough discussion about existence, uniqueness and completeness of solu-
tions for differential inclusions, the interested reader can see, for example, the
books [45], [114], [54].

2.2 Regularization of State-Dependent Switched
Systems

In this section, we consider again switching systems as defined in Section 1.1.2. In
particular, we want to investigate and deeply discuss the state-dependent switched
systems case, by properly defining the notion of state-dependent switching signal.
More specifically, we first clarify what we mean by partition of the state-space.

Definition 2.4: Proper State-Space Partition

Given a discrete index set I ⊂ N, let us consider a collection of closed sets
{Xi}i∈I ⊂P(Rn) and a collection of open sets {Oi}i∈I ⊂P(Rn) such that

a) ⋃i∈I Xi = Rn,

b) Xi ⊂ Oi, for all i ∈ I,

c) int(Xi) = Xi, for all i ∈ I,

d) For every i ∈ I, bd(Xi) has zero Lebesgue measure,

e) Xi ∩Xj = bd(Xi) ∩ bd(Xj), for all i, j ∈ I, i 6= j.

In this situation, we say that X := {Xi,Oi}i∈I is a proper partition of Rn.
We define ∂X := ∪i∈I bd(Xi), and we underline that ∂X has zero Lebesgue
measure.

The collection of open sets {Oi}i∈I is somewhat arbitrary, since, given any collec-
tion of closed set {Xi}i∈I , we can always define, for every i ∈ I, Oi := Xi +B(0, ε),
for an arbitrary ε > 0, satisfying property b) of Definition 2.4. On the other hand,
it will be useful to have the collection {Oi}i∈I directly in the definition of proper
partition, since all the continuity/differentiability properties that we need will be
easily defined based on the open sets Oi.
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Definition 2.5: State-Dependent Switched System

Given X = {Xi,Oi}i∈I a proper partition of Rn, consider fi ∈ C1(Oi,Rn),
i ∈ I. A state-dependent switching signal associated to X is a function σ :
Rn → I such that

σ(x) = i, if x ∈ int(Xi), (2.1)
and the state-dependent switched system associated to {Xi,Oi, fi}i∈I is the
differential equation

ẋ = fσ(x)(x). (2.2)

We note here that, given a proper partition X = {Xi,Oi}, a state dependent
switching signal associated to it is not uniquely defined: the value of σ remains un-
specified on the null-measure set ∂X . In what follows we clarify why this ambiguity
does not affect the solution set of the corresponding regularized state-dependent
switched system.

Given a proper partition X of Rn, we can introduce an “index indicator map”,
that is a set valued map IX : Rn ⇒ I defined as

IX (x) := {i ∈ I | x ∈ Xi}. (2.3)

Intuitively, the map IX : Rn ⇒ I can be seen as a set-valued counterpart of the
signal σ : Rn → I associated to X . From Definition 2.5, IX is almost everywhere
single valued and, by item e) of Definition 2.5 , if x ∈ int(X`) for some ` ∈ I
then IX (x) = {`} = {σ(x)}. On the other hand, given a point x ∈ ∂X , IX (x) is
multivalued, and contains all the indexes of sets to which x belongs.

System (2.2) has a discontinuous right-hand side in the first argument and
thus it may not have any Carathéodory solution due to the discontinuity points
of fσ(·)(·), see [39]. Many possible definitions of “generalized solutions” for discon-
tinuous dynamical system are possible (see for example [30] or [39]); we consider
the concept of Filippov solutions, introduced firstly in [54]. More formally, we define
F sw : Rn ⇒ Rn, the Filippov regularization of the discontinuous map fσ, as

F sw(x) := Fil(fσ(x))(x) :=
⋂
δ>0

⋂
µL(S)=0

co{fσ(y)(y) | y ∈ B(x, δ) \ S, y 6= x}

for any x ∈ Rn. Under the hypotheses in Definitions 2.4 and 2.5, it can be proven
that

F sw(x) = co{fi(x) | i ∈ IX (x)},
see for example [54], [39] and [63]. Summarizing, we have “regularized” the discon-
tinuous differential equation in (2.2), by transforming it into the differential inclusion

ẋ ∈ F sw(x) = co{fi(x) | i ∈ IX (x)}. (2.4)

A Filippov solution of system (2.2) is, by definition, a solution of the differential
inclusion (2.4), in the sense presented in Section 1.1.1. As proved in [54, Chapter 2],
or in [39, Proposition 3], if fi are continuous then the set-valued map F sw : Rn ⇒ Rn

is outer semicontinuous and locally bounded in Rn with convex and compact values,
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and thus, recalling Proposition 2.2, we have that for any x0 ∈ Rn there exists
a Filippov solution of (2.2) starting at x0. Moreover, if I is finite and all the
subsystems satisfy a linear growth condition, that is there exist ki, ai ∈ R, for any
i ∈ I such that

|fi(x)| ≤ ki|x|+ ai, for all x ∈ Xi,

then system (2.4) satisfies the conditions in Lemma 2.3, by choosing k = maxi∈I ki,
a = maxi∈I ai, proving completeness of solutions. Let us note that this is true in par-
ticular for state-dependent switched systems among a finite set of linear subsystems,
i.e. the case fi(x) = Aix, for some Ai ∈ Rn×n, i ∈ I.

2.3 Solutions and Stability for Hybrid Systems

In this section we consider again the framework introduced in Section 1.1.3, and we
introduce the notion of solutions, stability and finally we give a hybrid counterpart
of the Lyapunov Theorem 1.3.

Due to the composite structure of hybrid system H = (C,D, F,G) as defined
in (1.8), its solutions takes values on hybrid-time domains, which we define in the
following statement.

Definition 2.6: Hybrid Time Domains

Consider a set E ⊂ R+ ×N. We say that E is a compact hybrid time domain
if E = ⋃J

j=0([tj, tj+1], j), for some J ∈ N and for some times 0 = t0 ≤ t1 ≤
. . . ≤ tJ+1.
We say that E is a hybrid time domain if, for each (T, J) ∈ E, the set E ∩
([0, T ]× {0, 1, . . . , J}) is a compact hybrid time domain.

Intuitively a hybrid time domain is a (finite or infinite) union of closed (except
the last one, if exists) and consecutive intervals (possibly reduced to a singleton),
which are labeled by a discrete counter.

The candidate solutions to (1.8) will be defined on hybrid time domains, and
must be sufficiently regular on non-trivial intervals defining their domains. In the
following statement we formalize this intuition.

Definition 2.7: Hybrid Arcs

A function φ : dom(φ)→ Rn is an hybrid arc if

• The set dom(φ) ⊂ R+ × N is a hybrid time domain,

• For every j ∈ N, the function t 7→ φ(t, j) is absolutely continuous on the
interval Ij := {t ∈ R+ | (t, j) ∈ dom(φ)}.

Now, given a hybrid system H as in (1.8), we have all that we need to properly
define the notion of solution.
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Definition 2.8: Solutions to Hybrid Systems

A hybrid arc φ : dom(φ) → Rn is a solution to the hybrid systems H =
(C,D, F,G) if

• The initial condition satisfies φ(0, 0) ∈ C ∪ D;

• For all j ∈ N such that Ij := {t ∈ R+ | (t, j) ∈ dom(φ)} has non empty
interior, we have

– φ(t, j) ∈ C, for all t ∈ int(Ij),
– φ̇(t, j) ∈ F (φ(t, j)) for almost all t ∈ Ij.

• For all (t, j) ∈ dom(φ) such that (t, j + 1) ∈ dom(φ), we have

– φ(t, j) ∈ D,
– φ(t, j + 1) ∈ G(φ(t, j)).

For the problem of existence of solutions, we refer to [58, Chapter 6] for a com-
plete discussion. Since the flow and jump dynamics in (1.8) are defined by set-valued
maps, in general the solutions from a given starting point, if any, are not unique.

We now formulate the stability concepts and results in the context of hybrid
systems. This case requires some particular care since, as we noted, solutions of (1.8)
are defined on hybrid-time domains.

Definition 2.9: Stability for Hybrid Systems

Consider an hybrid system H = (C,D, F,G). Given a closed set A ⊂ Rn, we
say that

1. The set A is uniformly globally stable for (1.8) if, the exists a function
α ∈ K∞ such that, for any solution φ of (1.8), we have that |φ(t, j)|A ≤
α(|φ(0, 0)|A), for all (t, j) ∈ dom(φ).

2. The set A is uniformly globally attractive for (1.8) if, for any ε > 0 and
any r > 0 there exists a T > 0 such that, for any solution φ of (1.8)
with |φ(0, 0)|A ≤ r, we have that |φ(t, j)|A ≤ ε, for any (t, j) ∈ dom(φ)
such that t+ j ≥ T .

3. The set A is uniformly globally asymptotically stable (UGAS) for (1.8) if
it is uniformly globally Lyapunov stable and uniformly globally attract-
ive.

These definitions are very similar to the ones in Definition 1.2. We want to
underline one important fact: in the continuous-time setting, given a T > 0, the
length of an interval (0, T ) ⊂ R+ is given by T . In the hybrid setting, considering
a solution φ, and its domain dom(φ) ⊂ R+ × N we define the length or distance
between the initial hybrid time (0, 0) and an arbitrary point (t, j) ∈ dom(φ) as the
positive number dH((0, 0), (t, j)) := t + j. This is consistent with the intuitive idea
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of “length", since, given any hybrid time domain E as in Definition 2.6, the relation
defined by (t1, j1) ≤E (t2, j2) ⇔ t1 + j1 ≤ t2 + j2 is a partial ordering on E.

It is now easy to adapt the Lyapunov Theorem 1.3 in this context.
Theorem 2.10: Smooth Hybrid Lyapunov Theorem

Consider a hybrid system H = (C,D, F,G) and a closed set A ⊂ Rn. We say
that a function V : domV → R is a smooth Lyapunov function for H with
respect to A if C ∪D ∪G(D) ⊂ dom V ⊂ Rn, V is continuously differentiable
in an open set containing C, there exist α1, α2 ∈ K∞ such that

α1(|x|A) ≤ V (x) ≤ α2(|x|A), ∀x ∈ C ∪ D ∪G(D), (2.5)

and there exists γ ∈ PD such that

〈∇V (x), f〉 ≤ −γ(|x|A), ∀x ∈ C,∀f ∈ F (x), (2.6)
V (g)− V (x) ≤ −γ(|x|A), ∀x ∈ D, ∀g ∈ G(x). (2.7)

If there exists a smooth Lyapunov function for H with respect to A, then the
set A is UGAS for H.

The proof of this theorem basically follows the idea presented in the proof of
Theorem 1.3, and can be found in [58, Theorem 3.18].

2.4 Locally Lipschitz Lyapunov Functions
In many situations, the existence of a smooth Lyapunov function is not only sufficient
but also necessary (and thus equivalent) to uniform global asymptotic stability for
differential inclusions (1.1). In the case C = Rn, see the results in [36], [122], [86],
and for a hybrid counterpart the interested reader can be referred to [58, Theorem
7.31]. Nevertheless, it often happens that a nonsmooth function V may be easier to
describe and construct.

To illustrate this idea in a particular case, let us consider a linear differential
inclusion (LDI), that is,

ẋ ∈ co{Aix | i ∈ {1, . . .M}}, (2.8)

for some Ai ∈ Rn×n, i = 1, . . . ,M . As discussed in Section 1.1.2, let us recall
that (2.8) can represent the dynamics of a switching system under an arbitrary
switching rule, given the family of subsystems ẋ = Aix, i ∈ {1, . . . ,M}. In this
case, global asymptotic stability of the origin is equivalent to the existence of a
smooth Lyapunov function that is convex and homogeneous of degree 2, as shown
in [42], [92]. Despite this powerful theoretical result, given a set {A1, . . . , AM} and
supposing that the resulting LDI (2.8) is UGAS, the problem of finding such a
smooth convex Lyapunov function is a challenging task from both the theoretical
and computational points of view. Various classes of non-smooth functions have
been proposed to approximate them, for example maxima of quadratic functions
and their convex conjugates [57], [59], or functions with convex polyhedral level sets
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[92]. More generally, stability results for differential inclusions relying on nonsmooth
Lyapunov functions appear in [30], [121].

When considering locally Lipschitz functions (and thus not necessarily differenti-
able) as candidate Lyapunov functions for a given dynamical system, it is crucial to
define a convenient notion of “derivative of the Lyapunov function along solutions”.
More precisely, given a locally Lipschitz function V : Rn → R and an absolutely
continuous function φ : R+ → Rn the function V ◦ φ : R+ → R is absolutely
continuous, and thus its derivative exists almost everywhere. On the other hand,
the main strength of the Lyapunov direct method is that the derivative of V along
solutions is computed without needing the explicit expression of solutions, but via
a condition (as in (1.11)) that only depends on point x in the state space. In the
smooth case, this is done exploiting the chain rule, for which the differentiability of
V is essential. If V is not differentiable, in general ∇V is not everywhere defined,
and so we need an “enlarged/generalized” concept of gradient for locally Lipschitz
functions. Many generalizations are possible, depending on the context and/or on
the “degree of smoothness” of the considered family of functions (continuous, locally
Lipschitz, convex, etc). For locally Lipschitz functions, the main extension of the
theory of differential calculus is presented in [34], and summarized in [105].

2.4.1 Generalized Gradients/Derivatives for
Locally Lipschitz Functions

While in the books [34] and [105], non-smooth analysis theory is developed in a fairly
general context, considering functions defined on Banach spaces and not necessarily
locally Lipschitz, we specialize here the same concepts in a more restrictive setting,
considering functions V : dom(V ) → R, where dom(V ) ⊂ Rn is a given open set.
This choice is motivated by the fact that this assumption simplifies the presentation
and is exactly the hypothesis that we need when defining a candidate Lyapunov
function for finite-dimensional dynamical systems.

Definition 2.11: Local Lipschitzness

Consider V : dom(V )→ R, with dom(V ) ⊂ Rn open. The function V is said
to be locally Lipschitz if, for every x ∈ dom(V ) there exist a neighborhood
U(x) ⊂ dom(V ) of x and a constant L > 0 such that

|V (y)− V (z)| ≤ L|y − z|, for any y, z ∈ U(x). (2.9)

Given an open set O ⊂ Rn we will denote by Liploc(O,R) the set of locally
Lipschitz functions V : O → R.
Given a not necessarily open set C ⊂ dom(V ) we say that V is Lipschitz at x
relative to C if (2.9) holds for any y, z ∈ U(x) ∩ C. The function V is said to
be locally Lipschitz relative to C if it is Lipschitz relative to C at each x ∈ C.

It is important to recall the following inclusions

C1(O,R) $ Liploc(O,R) $ C0(O,R),
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and thus, in general, locally Lipschitz functions are not everywhere differentiable,
but we have the following remarkable result.

Theorem 2.12: Rademacher Theorem

A function V ∈ Liploc(O,R) is almost everywhere differentiable inO, i.e. there
exists a set NV ⊂ O, with µL(NV ) = 0 such that ∇V (x) exists ∀x ∈ O \NV .

We now introduce the concept of generalized gradient for locally Lipschitz func-
tions. The following definition is in fact an equivalent expression [34, Theorem 2.5.1].
The original definition in a more general context is given in [34, Section 2.1].

Definition 2.13: Clarke Generalized Gradient

Consider a locally Lipschitz function V : dom V → R. The Clarke generalized
gradient at x ∈ dom V is the set

∂V (x) := co
{
v ∈ Rn | ∃xk → x, xk /∈ NV , s.t. v = lim

k→∞
∇V (xk)

}
, (2.10)

where NV := {x ∈ dom V | ∇V (x) does not exist} has zero Lebesgue meas-
ure, by Rademacher theorem.

Intuitively, the Clarke generalized gradient at x is obtained by considering all the
convergent sequences of “classical gradients” in a neighborhood of x. In [34, Theorem
2.5.1] the existence of at least one sequence xk as considered in (2.10) is proved,
implying ∂V (x) 6= ∅, for all x ∈ dom(V ). We can thus see the Clarke generalized
gradient as a set-valued map ∂V : dom V ⇒ Rn, with non-empty, compact and
convex values. Moreover ∂V : dom V ⇒ Rn is outer semicontinuous, as proved
in [37, Proposition 1.5]. Considering a point x ∈ dom(V ) and supposing that
V is continuously differentiable in a open neighborhood of x, it is easy to prove
that ∂V (x) = {∇V (x)}, formalizing the fact that the Clarke gradient is a proper
generalization of the “classical” gradient. Moreover, considering any convex function
V : Rn → R , V is clearly locally Lipschitz, and the Clarke gradient coincides with
the “usual” subgradient defined in convex analysis theory, i.e.

∂V (x) = ∂convV (x) := {v ∈ Rn | V (y) ≥ V (x) + 〈v, y − x〉,∀y ∈ U(x)} ,

for any x ∈ Rn, where U(x) is any open neighborhood of x.
It is important to note that Clarke gradient somehow inherits many proper-

ties from classical differential calculus (linearity, chain rules, etc.) as proved in [34,
Chapter 2.3]. More precisely, given V1, V2 : Rn → R locally Lipschitz, g ∈ C1(Rn,Rn),
λ ∈ R and for any point x ∈ Rn, we have

∂[λV1](x) = λ ∂V1(x),
∂[V1 + V2](x) ⊂ ∂V1(x) + ∂V2(x)
∂[V1 · V2](x) ⊂ V1(x)∂V2(x) + V2(x)∂V1(x)
∂[V1 ◦ g](x) ⊂ (Jg(x)) ∂V1(g(x))

(2.11)

where Jg(x) denotes the Jacobian matrix of g at x. It turns out that these properties
are exact, in the sense that the inclusions in (2.11) become equalities (see [34,
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Chapter 2]), if the considered functions are not only locally Lipschitz but also regular,
as we define in what follows.

Definition 2.14: (Clarke)-Regular Functions

Given an open set O ⊂ Rn, a locally Lipschitz function V : O → R is
regular at x ∈ O if, for every v ∈ Rn, the directional derivative V ′(x; v) :=
limh→0+

V (x+hv)−V (x)
h

exists and the equality

V ′(x; v) = max
{
w>v | w ∈ ∂V (x)

}
, ∀v ∈ Rn, (2.12)

holds. V is called regular if it is regular at each x ∈ O.

Definition 2.14 is in fact a characterization of regularity for locally Lipschitz
functions, which follows from [34, Proposition 2.1.2]. For an alternative definition
we refer to [34, Definition 2.3.4].

The right-hand side of (2.12) is also called the Clarke generalized directional
derivative of V at x along v (denoted by V 0(x, v) and defined in [34, Section 2.1]).
The results and definitions of this section could be equivalently stated by referring to
Clarke generalized directional derivatives instead of the Clarke generalized gradient,
but we chose to base our exposition on the Clarke generalized gradient concept.
Even if, from a historical point of view, the generalized derivative V 0(x, v) “came
first” in generalizing the sub-differential calculus from convex to locally Lipschitz
functions, definition (or characterization) (2.10) simply involves limits of classical
gradients (which is a familiar and “comfortable” notion) and we think that our
choice may make the presentation more pleasant for the reader.

2.4.2 Clarke Derivative

In our context, the Clarke generalized gradient is particularly useful, since it allows
us to introduce a notion of generalized derivative of locally Lipschitz functions along
absolutely continuous functions, as defined in the following statement.

Lemma 2.15

Consider a locally Lipschitz function V : dom(V ) → R and an absolutely
continuous function φ : dom(φ) ⊂ R → dom(V ). Then, for almost every
t ∈ dom(φ), there exists a v ∈ ∂V (φ(t)) such that

d

dt
V ◦ φ(t) = 〈v, φ̇(t)〉.

A similar statement and the proof can be found in [30, Proposition 4]. Intuitively
speaking, this lemma provides the required generalization of the chain rule and it
motivates the following definition, where we introduce a possible generalization of
the concept of “derivative of locally Lipschitz function with respect to a differential
inclusions”.
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Definition 2.16: Set-Valued Clarke Derivative

Consider a set C ⊂ Rn, F : Rn ⇒ Rn with dom(F ) ⊃ C and a locally Lipschitz
function V : dom(V )→ R such that dom(V ) ⊃ C. Given x ∈ C we define the
Clarke derivative of V with respect to F as

V̇F (x) := {〈v, f〉 | v ∈ ∂V (x), f ∈ F (x) }. (2.13)

Since the scalar product 〈·, ·〉 : Rn×Rn → R is bilinear and ∂V (x) is a compact
and convex subset of Rn for any x ∈ dom(V ), if also the map F has compact and
convex values, V̇F (x) is a non-empty, compact and convex interval of R for any
x ∈ C and thus it has a well-defined maximum max V̇F (x). The importance of this
set-valued notion of derivative is mainly given by the following result.

Lemma 2.17

Consider a set C ⊂ Rn, F : Rn ⇒ Rn with dom(F ) ⊃ C with compact
and convex values. Given V : dom(V ) → R locally Lipschitz and such that
dom(V ) ⊃ C, for any solution φ : dom(φ)→ Rn of (1.1), we have

d

dt
V ◦ φ(t) ∈ V̇F (φ(t)), for almost every t ∈ dom(φ).

Proof : The proof trivially follows from Lemma 2.15, and recalling that, by
definition, any solution φ of (1.1) satisfies φ̇(t) ∈ F (φ(t)) almost everywhere in
dom(φ). ♦
Lemma 2.17 allows us to give a straightforward generalization of Theorem 1.3 re-
laxing the smoothness assumption on the candidate Lyapunov function.

Theorem 2.18: Clarke Lyapunov Theorem

Consider a set C ⊂ Rn, F : Rn ⇒ Rn with dom(F ) ⊃ C and with convex and
compact values, and a closed set A ⊂ Rn. A function V : domV → R is a
(locally Lipschitz) Clarke Lyapunov function on C for system (1.1) with respect
to A if C ⊂ dom V ⊂ Rn, V is locally Lipschitz, there exist α1, α2 ∈ K∞ such
that

α1(|x|A) ≤ V (x) ≤ α2(|x|A), ∀x ∈ C,

and there exists γ ∈ PD such that

max V̇F (x) ≤ −γ(|x|A), ∀x ∈ C. (2.14)

If there exists a Clarke Lyapunov function for system (1.1) with respect to A,
then the set A is UGAS for (1.1). If V satisfies (2.14) with γ ≡ 0, then the
set A is(UGS for (1.1).

Thanks to Lemma 2.17, the proof can follow exactly the same steps as the proof
of Theorem 1.3.

The idea behind this theorem was suggested in [37, Chapter 4], using a relaxed
chain rule as in Lemma 2.17. In the past years several stability results have been
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proposed for differential inclusions relying on locally Lipschitz Lyapunov functions,
making use of the Clarke generalized gradient as in Theorem 2.18. Among other
examples, the Clarke generalized gradient is used in [11] considering piecewise affine
Lyapunov functions for state-dependent switching systems, in [63] in the context
of interconnected piecewise C1 vector fields and in [85] for interconnected hybrid
systems.

2.4.3 Non-Pathological Functions and Lie Derivative

Before proceeding, let us carefully analyze the conditions of Theorem 2.18 and in
particular inequality (2.14): it requires, at each point of the state space, to find
an upper bound on the maximum of the set V̇F (x), that is, the maximum over all
the possible scalar products between vectors v ∈ ∂V (x) and directions f ∈ F (x),
at any point x ∈ C. Without any further assumption on V and F condition (2.14)
cannot in general be relaxed, as we will discuss in Chapter 3. On the other hand,
in many specific cases, it can be seen that this condition is rather conservative,
when the systems and/or the candidate Lyapunov functions satisfy some further
assumptions.

For example, in [112], it is shown how stability can be proven by studying a
proper subset of V̇F (x), in the context of Filippov regularization of discontinuous dif-
ferential equations, considering regular (Definition 2.14) candidate Lyapunov func-
tions. This idea has been further generalized some years later in [8] and [7], and in
this thesis we will follow the formalism introduced there.

To propose tighter conditions compared to Theorem 2.18, as we said, we will
consider functions that are not only locally Lipschitz, but fortunately not much
more: we will consider the set of non-pathological functions, formally introduced in
the following definition.

Definition 2.19: Non-Pathological Functions

A locally Lipschitz function V : dom(V )→ R is non-pathological if, given any
absolutely continuous function φ : R+ → dom(V ), we have that for almost
every t ∈ R+ there exists at ∈ R such that

〈v, φ̇(t)〉 = at, for all v ∈ ∂V (φ(t)).

In other words, for almost every t ∈ R+, ∂V (φ(t)) is a subset of an affine
subspace orthogonal to φ̇(t).

This definition was originally given in [124]; non-pathological functions form
a large class of functions which clearly includes C1(Rn,R), we recall here some
important properties of this family of functions, for the proofs we refer to [124]
and [8].



28 CHAPTER 2. TECHNICAL PRELIMINARIES

Lemma 2.20: Properties of Non-Pathological Functions

The set of non-pathological functions is closed under addition, multiplication
by scalars and pointwise maximum. More precisely, if V1, V2 : Rn → R are non-
pathological then V1 +V2, max{V1, V2} and λV1 (λ ∈ R) are non-pathological.
Moreover, if V : Rn → R is locally Lipschitz and has at least one of the
following properties:

• continuously differentiable,

• convex/concave,

• Clarke-regular (Definition 2.14),

• semiconvex/semiconcave,

then V is non-pathological.

On the other hand “pathological” locally Lipschitz functions do exists:

Example 2.1 (Pathological function) Given any compact interval [a, b], (with
a < b) consider a locally Lipschitz function V : R→ R such that ∂V (x) = [a, b], for
any x ∈ R. The existence of such a function is proved in a theoretical setting in [18],
but for a constructive definition the interested reader can see [104, pag. 129] on which
is also based subsequent Example 3.1. Considering now the absolutely continuous
function φ : R+ → R defined by φ(t) = t (the identity) we have that φ̇(t) = 1 for
any t ∈ R+. Consider now any t ∈ R+ and given any v ∈ ∂V (φ(t)) = [a, b] we have
〈v, φ̇(t)〉 = 〈v, 1〉 = v and thus V does not satisfy Definition 2.19.

Interestingly, from a theoretical point of view, this property of having “fat” Clarke
gradients (and, in particular, of being “pathological”) is the generic case in the set
of locally Lipschitz functions, as proved in [19]. On the other hand, Lemma 2.20
ensures that at least the classes of functions commonly used in control theory are,
fortunately, non-pathological. 4

The usefulness of non-pathological functions is mainly given by the following result.

Lemma 2.21

If V : Rn → R is non-pathological and φ : R+ → Rn is an absolutely continu-
ous function, then the set

{〈v, φ̇(t)〉 | v ∈ ∂V (φ(t))},

is equal to the singleton { d
dt
V (φ(t))} for almost every t ∈ R+.

The proof of this lemma can be found in [124], and motivates the following
definition.
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Definition 2.22: Set-Valued Lie Derivative

Consider a C ⊂ Rn, F : Rn ⇒ Rn with dom(F ) ⊃ C and locally Lipschitz
function V : dom(V )→ R such that dom(V ) ⊃ C. Given x ∈ C we define the
Lie derivative of V with respect to F as

V̇ F (x) := {a ∈ R | ∃f ∈ F (x) : 〈v, f〉 = a, ∀v ∈ ∂V (x)} (2.15)

If, in addition, the map F has compact and convex values, V̇ F (x) is a compact
interval of R, for any x ∈ C, but possibly empty, as we will clarify in Chapter 4.
Moreover, it is clear that we have

V̇ F (x) ⊂ V̇F (x). (2.16)

In fact, given a ∈ V̇ F (x), there exists f ∈ F (x) such that a = 〈p, f〉, for all p ∈ ∂V (x)
and thus in particular a ∈ V̇F (x). Intuitively, it means that when defining V̇ F (x) we
do not consider every possible scalar product between vectors of ∂V (x) and F (x)
(as in the definition of V̇F (x)). Rather, we only consider directions f ∈ F (x) that
are “meaningful” in the sense of possible flowing directions of solutions.

Lemma 2.23

Consider a set C ⊂ Rn, F : Rn ⇒ Rn with dom(F ) ⊃ C with compact and
convex values. Given a non-pathological function V : dom(V )→ R such that
dom(V ) ⊃ C, for any solution φ : dom(φ)→ Rn of (1.1), we have that

d

dt
V (φ(t)) ∈ V̇ F (φ(t)) (2.17)

for almost every t ∈ dom(φ).

Proof : By Lemma 2.21 and by definition of solutions we have that

{ d
dt
V (φ(t))

}
= {〈p, φ̇(t)〉 | p ∈ ∂V (φ(t))}

⊂ {a ∈ R | ∃f ∈ F (φ(t)) : 〈p, f〉 = a,∀p ∈ ∂V (φ(t))} = V̇ F (φ(t)),

for almost every t ∈ dom(φ). ♦
It is clear that this lemma is the “non-pathological” counterpart of Lemma 2.17,
and thus it allows stating another “relaxed” Lyapunov Theorem.
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Theorem 2.24: Lie Lyapunov Theorem

Consider a set C ⊂ Rn, F : Rn ⇒ Rn with dom(F ) ⊃ C and F taking
convex and compact values, and a closed set A ⊂ Rn. We say that a function
V : domV → R is a (locally Lipschitz) Lie Lyapunov function for system (1.1)
with respect to A if C ⊂ dom V ⊂ Rn, V is non-pathological, there exist
α1, α2 ∈ K∞ such that

α1(|x|A) ≤ V (x) ≤ α2(|x|A), ∀x ∈ C,

and there exists γ ∈ PD such that

max V̇ F (x) ≤ −γ(|x|A), ∀x ∈ C. (2.18)

If there exists a Lie Lyapunov function for system (1.1) with respect to A,
then the set A is UGAS for (1.1). If V satisfies (2.18) with γ ≡ 0, then the
set A is UGS for (1.1).

The proof again follows the same ideas of proof of Theorem 1.3, thanks to Lemma
2.23. When considering condition (2.18), we are assuming by definition that max ∅ =
−∞; in fact we recall that V̇ F (x) can be possibly the empty interval, for some x ∈ C.
In other words, we are avoiding to check condition (2.18) at points x ∈ C such that
V̇ F (x) = ∅. We will clarify why this is justified with some specific examples in
Chapter 4.

Over the past years, stability results involving conditions relying on the Lie de-
rivative concept have attracted attention in the control community. Among other
examples, the study of the Lie derivative of regular functions has been recently used
in [78] to identify and remove infeasible directions of a differential inclusion of the
form (1.1), while in [79] the authors proposed a Lie derivative-based invariance prin-
ciple for state-dependent switched systems, based on the ideas already introduced
in [109].

Concluding this chapter, we propose a numerical example that illustrates in
practice the computation and the behavior of the Clarke generalized gradient, Clarke
and Lie derivatives.

Example 2.2 Consider the locally Lipschitz function V : R→ R defined as V (x) =
|x|. Since the set where V is not differentiable is NV = {0}, and ∇V (x) = sgn(x),
for any x ∈ R \ NV , from definition (2.10), the Clarke generalized gradient at 0 is

∂V (0) = [−1, 1].

Now, suppose that a set-valued map F : R ⇒ R is given such that F (0) := [f1, f2] ⊂
R. Using (2.13), we compute

V̇F (0) = {pf | p ∈ [−1, 1], f ∈ [f1, f2]}
= [−max{|f1|, |f2|},max{|f1|, |f2|}] .

On the other hand, using (2.15) and noting that p1f = p2f for each p1, p2 ∈ [−1, 1]



2.4. LOCALLY LIPSCHITZ LYAPUNOV FUNCTIONS 31

if and only if f = 0, we get

V̇ F (0) =
{0} if 0 ∈ [f1, f2],
∅ if 0 /∈ [f1, f2].

It is easily verified that V̇ F (0) is a subset of V̇F (0) and it is possibly empty. 4





3
Piecewise Constructed Lyapunov
Functions and Densely Checked

Conditions

In this chapter, given a set C ⊂ Rn and a set-valued map F : dom(F ) ⇒ Rn, with
C ⊂ dom(F ) we study the differential inclusion

ẋ ∈ F (x), x ∈ C. (3.1)

In particular, we propose a class of locally Lipschitz functions with piecewise struc-
ture for use as candidate Lyapunov functions. Subject to the hypothesis of inner
semicontinuity of the set valued map F , we show that Lyapunov inequalities can
be checked only on a dense set and thus we avoid checking them at points of non
differentiability of the Lyapunov function. Connections to other classes of locally
Lipschitz or piecewise regular functions are also discussed and applications to hybrid
dynamical systems are included. We provide several examples as an illustration of
the usefulness and the limitations of our approach. This chapter is mainly based on
the publications [46] and [47].

3.1 Overview
Lyapunov tools for stability analysis of equilibria, or compact, or just closed sets
for differential inclusions have been the subject of extensive research. As showed in
Chapter 1, even if in many situations the existence of a smooth Lyapunov function is
sufficient and necessary for global asymptotic stability of (3.1), it often happens that
a nonsmooth function V may be easier to describe and construct. Stability results
for differential inclusions relying on nonsmooth Lyapunov functions appear in [30],
[121], [37]. In most of these works, the authors use the Clarke generalized gradient
to formulate Lyapunov conditions at points where the Lyapunov function V is not
differentiable. Among other examples, the Clarke generalized gradient is used in
[11] for piecewise affine Lyapunov functions for state-dependent switching systems
and in [85] for interconnected hybrid systems. This strategy, effective for classical
continuous-time nonlinear systems, was suggested in [37, Chapter 4] and then well
summarized in [121, p.99]. The main drawback of the Clarke generalized gradient
condition is that it considers all the scalar products between generalized gradients

33
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and all values of the differential inclusion. A different approach is presented in [62],
where the nonsmooth function is studied by exploiting regularization-via-convolution
techniques. One possible way to overcome the limitations of generalized gradients
is to propose stability conditions that only need to be checked away from the points
where the candidate Lyapunov function is not differentiable.

With this motivation in mind, we introduce in this chapter a class of locally
Lipschitz functions for which the Lyapunov inequalities need to be checked only on
a dense subset of C, under further hypotheses on the map F : C ⇒ Rn, but without
further assumptions on C. The class includes functions that can be built using
the pointwise maximum and the pointwise minimum of continuously differentiable
functions (see [49] and references therein) but is more general. When C is a closed
set (possibly with an empty interior) we show that our conditions are less restrictive
than the Clarke gradient-based conditions of Theorem 2.18. We also relate the
proposed class to piecewise continuously differentiable functions, introduced in [31]
and [110] for optimization purposes. As main application, we use the proposed class
of Lyapunov functions for sufficient conditions for asymptotic stability of hybrid
dynamical systems.

Collecting our relaxed Lyapunov conditions on the flow set C with proper Lya-
punov jump conditions on the set D, we propose a stability result that generalizes
the standard sufficient Lyapunov conditions for hybrid systems in [58, Theorem
3.18]. This result allows revisiting a classical example from the reset control literat-
ure: the Clegg integrator in feedback with an integrating plant. This example has
been shown to overcome intrinsic limitations of linear feedback systems in [14]. For
this example, both [131] and [96] provided numerical and analytic nonconvex (and
nonsmooth) Lyapunov functions. We give here a pair of new (arguably simpler)
nonconvex functions, and also a new convex Lyapunov function.

3.1.1 Chapter Organization
The chapter is structured as follows. In Section 3.2, we provide some example to il-
lustrate the possible extensions and the limitations of the approach of Theorem 2.18.
In Section 3.3, we present our main stability statements, while in Section 3.4 we
deeply investigate the relations between our results and the existing literature on
locally Lipschitz Lyapunov functions. In Section 3.5, we introduce the concept of
global piecewise functions which simplifies our analysis. Finally, in Section 3.6 we
apply all our previous results in the context of hybrid dynamical systems, presenting,
as an example, the Clegg integrator.

3.2 Everywhere and Almost Everywhere Condi-
tions

We recall how the conditions of Theorem 2.18 require, in general, to find a positive
definite function V : dom(V ) → R with C ⊂ dom(V ), to compute the Clarke
generalized gradient of V at each point in C and finally check the condition

〈v, f〉 ≤ −γ(|x|), ∀x ∈ C, ∀v ∈ ∂V (x), ∀f ∈ F (x), (3.2)
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with γ ≡ 0 if one is interested in (UGS) or γ ∈ PD in the (UGAS) case.
We see here how condition (3.2) can be straightforwardly relaxed in some cases,

as already noted in [121] for continuous vector fields and differential equations.

Proposition 3.1: Almost Everywhere Conditions

Consider an open set O ⊂ Rn, a locally Lipschitz function V : O → R, an
inner semicontinuous and locally bounded set valued map F : O ⇒ Rn, a
closed set A ⊂ Rn and a continuous function γ : R→ R. If

〈∇V (y), f〉 ≤ −γ(|y|A), ∀f ∈ F (y), ∀y ∈ O \ NV , (3.3)

it holds that

〈v, f〉 ≤ −γ(|x|A) ∀x ∈ O, ∀v ∈ ∂V (x), ∀f ∈ F (x).

We recall that NV ⊂ Rn was defined as the set of point at which V is not
differentiable, that by Rademacher Theorem has measure zero, i.e. µL(NV ) = 0. For
that reason (3.3) can be regarded as an “almost everywhere” Lyapunov condition.

In Proposition 3.1 we don’t specify any particular property of the continuous
function γ : R+ → R to cover both γ ≡ 0 (certifying UGS) and γ ∈ PD (certifying
UGAS) as in Theorem 2.18, as well as a variety of more general decrease/increase
conditions. The following proof is simply an adaptation, in the context of inner
semicontinuous set-valued maps, of the reasoning presented in [122] for continuous
functions f : Rn → Rn.

Proof : Consider x ∈ O, take any sequence xk → x, xk ∈ O \ NV , such that
limk→∞∇V (xk) exists. Denote w := limk→∞∇V (xk) and pick any f ∈ F (x). By
inner semicontinuity and local boundedness of F , there exists a sequence fk ∈ F (xk)
such that fk → f . By equation (3.3), and by continuity of γ and of the scalar
product, we have

〈∇V (xk), fk〉 ≤ −γ(|xk|A),
↓ ↓

〈w, f〉 ≤ −γ(|x|A).

Recalling Definition 2.13, any v ∈ ∂V (x) is obtained as convex combination of
vectors v = limk→∞∇V (xk). Thus, by arbitrariness of xk → x and f ∈ F (x), we
can conclude. ♦

Summarizing, when F is inner semicontinuous and locally bounded, it suffices
to check the Lyapunov inequality almost everywhere in the open set O, that is at
points where ∇V is defined and then the Clarke decrease condition (2.14) holds
everywhere in O. Combining Theorem 2.18 and Proposition 3.1, it is possible to
guarantee UGAS (or UGS) using locally Lipschitz functions V by only certifying the
decrease at the points where V is differentiable. In the following section we explore
the limits and the drawbacks of this “relaxed” approach.
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3.2.1 Counterexamples: dense sets and non-inner semicon-
tinuous maps

Given an open set O ⊂ Rn, note that a full measure subset of O, that is a set S ⊂ O
such that µL(O\S) = 0, is always a dense subset of O, in the sense that S contains
O. The converse is not true in general: for example S = Q ⊂ R is such that Q = R

but µL(Q) = 0. One can ask: is it sufficient, for a general locally Lipschitz function,
to check Lyapunov decrease inequalities only on a dense subset of C? The answer is
“no”, even if the dynamic is continuous, as illustrated by the following example.

Example 3.1 (Checking on a dense set) The main idea of this example is taken
from [104]: Consider λ ∈ (1

2 , 1), and a measurable set M ⊂ R≥0 such that, for every
non-empty interval I ⊂ R≥0, it holds that

0 < µL(M ∩ I) < µL(I), (3.4)

(such sets are called interval-splitting sets) and, additionally,

µL(M ∩ [0, t]) ≥ λt, ∀ t > 0. (3.5)

The construction of such a set is provided in [41, Lemma 2], see also [107] for the
original construction of interval-splitting sets. In [41], interval-splitting sets with the
additional property (3.5) are used to construct locally Lipschitz functions for which
the steepest descent / subdifferential flow generated by the Clarke subdifferential has
quite pathological behavior: it fails to decrease and in fact increases the functions.
Given a set N ⊂ R, define the characteristic function of N as

χN(s) :=
1, if s ∈ N,

0, if s /∈ N.

Consider the function W : R≥0 → R defined as

W (s) :=
∫ s

0
χM(r)− χMc(r) dr,

where M c := R≥0 \M . Using the same reasoning as in [104], it can be proven that
W is locally Lipschitz, and (3.4) implies that ∂W (x) = [−1, 1] for all x ∈ R≥0 and
the sets

X1 := {x ∈ R≥0 | ∇W (x) exists ∧ ∇W (x) = 1},
X−1 := {x ∈ R≥0 | ∇W (x) exists ∧ ∇W (x) = −1},

are both dense subsets of R≥0. In fact ∇W (·) = χM(·)− χMc(·) almost everywhere,
and by (3.4) and Rademacher Theorem, for any x ∈ R≥0 and any ε > 0, there exist
xε1 ∈ X1 and xε−1 ∈ X1 such that |x − xεj| < ε, for any j ∈ {−1, 1}. We prove next
that (3.5) ensures that the function W satisfies the bounds

(2λ− 1)s ≤ W (s) ≤ s, ∀ s ∈ R≥0. (3.6)

The upper bound is straightforward as

W (s) = µL(M ∩ [0, s])− µL(M c ∩ [0, s]) ≤ µL([0, s]) = s.
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The lower bound is obtained as follows from (3.5):

W (s) = µL(M ∩ [0, s])− µL(M c ∩ [0, s])
≥ λs− µL([0, s] \ (M ∩ [0, s])) ≥ λs− (1− λ)s = (2λ− 1)s.

Consider now the differential equation

ẋ = f(x) = x,

and the candidate Lyapunov function V : R → R defined by V (x) := W (|x|). The
function V : R→ R is locally Lipschitz and, by (3.6), it is also positive definite and
radially unbounded. Moreover, it holds that

∇V (x) =
−1, ∀ x > 0, x ∈ X−1,

+1, ∀ x < 0, x ∈ −X−1.

Consequently
〈∇V (x), f(x)〉 = −|x|, ∀x ∈ S,

where S := X−1∪−X−1\{0} is a dense subset of R by construction. In other words,
V is a positive definite and radially unbounded locally Lipschitz function for which
the Lyapunov decrease inequality

〈∇V (x), f(x)〉 ≤ −|x|,

is satisfied on a dense subset S of R. On the other hand, the equilibrium point 0 is
clearly unstable. 4

In the next section, we present a subclass of locally Lipschitz functions for which
it is enough to check the Lyapunov decrease inequality on a dense subset of C.

Another question of interest in generalizing Proposition 3.1 is whether the inner
semicontinuity hypothesis is in general necessary, or it can be replaced by outer
semicontinuity, without loosing this “almost everywhere” stability certificate. The
following example actually illustrates how inner semicontinuity is indeed necessary.

Example 3.2 (Violating Inner Semicontinuity) Consider the differential inclu-
sion (3.1), with C = R2, and the considered set-valued map is defined as the Filippov
regularization FFil

f : R2 → R2 of the state dependent switched system

ẋ =
A1x, if x>Qx ≥ 0,
A2x, if x>Qx < 0

(3.7)

where

A1 :=

−0.3 −1

5 −0.3

 , A2 :=

−0.3 5

−1 −0.3

 , Q :=

1 0

0 −1

 .
Defining Xi := {x ∈ R2 | (−1)ix>Qx ≤ 0}, it is easy to see that X = {Xi,R

2}i∈{1,2}
is a proper state space partition, as introduced in Definition 2.4. For the details of
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Figure 3.1: Example 3.2: In red dashed line a level set of V in (3.10), in green and
blue the trajectories of two solutions. The solution starting at z1 enters the plotted
sublevel set, reaches the point z ∈ R and then starts “sliding” towards infinity.

Filippov regularization of state dependent switched system we refer to Section 2.2.
By definition of Filippov regularization, we have

FFil
f =


{A1x}, if x>Qx > 0, equivalently x ∈ int(X1),
{A2x}, if x>Qx < 0, equivalently x ∈ int(X2),
co{A1x,A2x} if x>Qx = 0.

(3.8)

As showed in Chapter 1, F is outer semicontinuous on R2, locally bounded, has
compact and convex values, but it is not inner semicontinuous at points x ∈ R2\{0}
satisfying x>Qx = 0. Indeed, considering any y 6= 0 such that y>Qy = 0, we have
that f̃ := 1

2A1y + 1
2A2y ∈ FFil

f (y), but considering a sequence yk → y such that
y>k Qyk > 0 (i.e. yk ∈ int(X1)), for any k ∈ N, we have that FFil

f (yk) = {A1yk} and
thus we can not “obtain” f̃ as limits of vectors fk ∈ FFil

f (yk), violating the definition
inner semicontinuous (recall Defintion 2.1).
We want to study the stability of A = {0} for the differential inclusion

ẋ ∈ FFil
f (x), x ∈ R2, (3.9)

trying to construct a locally Lipschitz Lyapunov function.
Consider the function

V (x) := max
{
x>P1x, x

>P2x
}
, (3.10)

where

P1 :=

5 0

0 1

 and P2 :=

1 0

0 5

 .
It is easy to check that PiAi + A>i Pi < 0, for all i ∈ {1, 2} and if x>Qx > 0 then
x>P1x > x>P2x. As a consequence we have

〈∇V (x), f〉 < 0; ∀x ∈ R2 \ (bd(X1) ∪ bd(X2)), ∀f ∈ F (x),
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which implies (3.3). On the other hand, condition (3.2) does not hold on R := {x ∈
R2 | x1 = x2}, and one can see that every solution of (3.9) starting at some x0 ∈ R,
x0 6= 0 goes to infinity sliding along R. In particular, the origin is unstable. See
Figure 3.1 for a graphical representation. 4

In Chapters 4 and 5 we will consider not-inner semicontinuous differential inclusion
arising from state-dependent switched systems as (3.7), but the analysis will be
carried on with different tools with respect to the ones proposed in the following
section.

3.3 Main Stability result
Given a set C ⊂ Rn, we present here a class of locally Lipschitz Lyapunov functions
associated to system (3.1), for which it suffices to check the Lyapunov inequality on
a dense subset of C. We want to underline how, at this stage, we are not imposing
any topological assumption on the set C ⊂ Rn, which can be open, closed (or neither
open nor closed), and bounded or unbounded. Most of the efforts of this chapters
exactly lie in proposing “flexible” conditions, permitting the analysis of differential
inclusions constrained to non-necessarily “well-behaved” sets.

Definition 3.2: The Class L(C)

Consider C ⊂ Rn. A function V : domV → R (with dom V open), is a locally
Lipschitz and locally finitely generated function on C (and we write V ∈ L(C))
if C ⊂ dom V and

(a) For each x ∈ C, there exist an open neighborhood U(x) ⊂ Rn and an
L > 0 such that |V (x′) − V (x′′)| ≤ L|x′ − x′′|, ∀x′, x′′ ∈ U(x) ∩ C (i.e.,
V is locally Lipschitz relative to C, recall Definition 2.11).

(b) There exists a set S(x) ⊂ C ∩ U(x), such that ∇V (y) exists for all
y ∈ S(x), satisfying

S(x) ⊃ C ∩ U(x) (i.e. S(x) is dense in C ∩ U(x)). (3.11)

(c) There exists a finite index set I(x), and for each i ∈ I(x), there are
open sets Ui ⊂ Rn and C1 functions Vi : Ui → R such that each y ∈ S(x)
satisfies, for some i ∈ I(x),

y ∈ Ui, V (y) = Vi(y), and ∇V (y) = ∇Vi(y). (3.12)

This definition intuitively presents a subclass of locally Lipschitz functions having
a particular local structure relying on a finite family of continuously differentiable
functions. Given a set valued map F : C ⇒ Rn, this structure is crucial in defining
relaxed conditions ensuring decreasing properties of a V ∈ L(C) along solution
of (3.1), as presented in the following statement.
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Definition 3.3: The Class LF (A, C)

Considering a map F : C ⇒ Rn and a closed set A ⊂ Rn, we say that V is a
locally Lipschitz and locally finitely generated strong Lyapunov function for A
on C (V ∈ LF (A, C)) if V ∈ L(C) and

(L1) There exist α1, α2 ∈ K∞ such that

α1(|x|A) ≤ V (x) ≤ α2(|x|A), ∀ x ∈ C. (3.13)

(L2) There exists γ ∈ PD such that, for each x ∈ C, each y ∈ S(x) satis-
fies (3.12) for some i ∈ I(x) and moreover,

〈∇Vi(y), f〉 ≤ −γ(|y|A), ∀ f ∈ F (y). (3.14)

Finally, we say that V is a locally Lipschitz and locally finitely generated weak
Lyapunov function for A on C (V ∈ L◦F (A, C)) if all the previous conditions
hold with γ ≡ 0 in (L2). 4

We now prove that if V is in LF (A, C) (V is in L◦F (A, C), resp.) then the value
of V decreases (does not increase, resp.) along the solutions of system (3.1).

Theorem 3.4: Main Stability Result

If V ∈ LF (A, C) and F : C ⇒ Rn is locally bounded and inner semicontinuous,
then, for every φ ∈ SF,C and almost every t ∈ dom(φ) := [0, Tφ),

d

dt
V (φ(·))(t) ≤ −γ(|φ(t)|A). (3.15)

Thus, A is UGAS for (3.1). Similarly, if V ∈ L◦F (A, C), then (3.15) holds with
γ ≡ 0 and thus A is UGS for (3.1).

Proof : Consider any solution φ ∈ SF,C. Since φ is absolutely continuous by
definition so is t 7→ V (φ(t)). Then, φ and V ◦φ are differentiable almost everywhere,
i.e., for almost every t ∈ domφ = [0, Tφ), φ̇(t) and d

dt
V (φ(·))(t) exist, and for

almost every such t, φ̇(t) ∈ F (φ(t)). Thus consider any such time t ∈ [0, Tφ),
and denote x := φ(t) ∈ C and f := φ̇(t) ∈ F (x). Consider the neighborhood
U(x) of x, the associated index set I(x), the sets Ui and functions {Vi}i∈I(x) given
by Definition 3.2. Let us consider a sequence of times tk ↘ t, and denote by
xk := φ(tk) ∈ C; by continuity of φ, xk → x. Without loss of generality we can
suppose xk ∈ U(x) ∩ C, ∀k ∈ N (possibly disregarding some initial points and
relabeling). Consider the set S(x) given in Definition 3.2; since C ∩ U(x) ⊂ S(x),
for each k ∈ N there exists a sequence xk,l ∈ S(x) converging to xk. Moreover,
by property (c) of Definition 3.2, for each l ∈ N, there exists ik,l ∈ I(x) satisfying
V (xk,l) = Vik,l

(xk,l) and∇V (xk,l) = ∇Vik,l
(xk,l). Since I(x) is finite,we may consider,

without relabeling, a subsequence of xk,l, such that ik,l = ik for some ik ∈ Ix, for
every l ∈ N. Similarly we may consider, without relabeling, a subsequence of xk
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such that ik = i, for some i ∈ I(x) and every k ∈ N. Then V (xk,l) = Vi(xk,l),
∀ l ∈ N, and, by continuity of V and Vi, the following holds

V (xk) = lim
l→∞

V (xk,l) = lim
l→∞

Vi(xk,l) = Vi(xk),

V (x) = lim
k→∞

V (xk) = lim
k→∞

Vi(xk) = Vi(x).
(3.16)

Hence, recalling that Vi ∈ C1(Ui,R) and using identities (3.16), we have

d

dt
V (φ(·))(t) = lim

τ↘t

V (φ(τ))− V (φ(t))
τ − t

= lim
k→∞

V (xk)− V (x)
tk − t

= lim
k→∞

Vi(xk)− Vi(x)
tk − t

= lim
τ↘t

Vi(φ(τ))− Vi(φ(t))
τ − t

= d

dt
Vi(φ(·))(t) = 〈∇Vi(x), φ̇(t)〉 = 〈∇Vi(x), f〉.

(3.17)

Now, for each k ∈ N, we can choose a large enough l = lk so that xk,lk → x as
k → ∞. By inner semicontinuity of F there exists a sequence fk ∈ F (xk,lk) such
that fk → f as k →∞. Finally by continuity of ∇Vi, γ and the scalar product we
have, as k →∞,

(3.14) ⇒ 〈∇Vi(xk,lk), fk〉 ≤ −γ(|xk,lk |A),
↓ ↓

〈∇Vi(x), f〉 ≤ −γ(|x|A),

and by (3.17), we can conclude that (3.15) holds. By a standard comparison ar-
gument, (3.15) implies that A is (UGAS) for (3.1). The same argument could be
used to infer that V ∈ L◦F (A, C) implies that (3.15) holds with γ ≡ 0 and thus A is
(UGS) for (3.1). ♦

3.4 Comparisons with other Classes of Functions

In this section, we prove that the class L(C) introduced in Definition 3.2 has strong
connections with the class of piecewise C1 functions introduced in [110], in the case
where C ⊂ Rn is an open set. This also allows us to investigate the relations between
the class LF (A, C) and the concept of Clarke locally Lipschitz Lyapunov functions
defined in Theorem 2.18.

3.4.1 Piecewise C1 functions vs L(C) functions

In [110], the following class of functions is introduced.
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Definition 3.5: Piecewise C1 function; [110]

Given an open set O ⊂ Rn, a continuous function V : O → R is called
piecewise C1 function on O if for each x ∈ O there exist an open neighborhood
U(x) ⊂ O of x, an index set I(x) = {1, . . . K}, a family F = {V1, . . . VK} ⊂
C1(U(x),R) such that

V (z) ∈ {Vi(z) | i ∈ I(x)}, ∀z ∈ U(x). (3.18)

Roughly speaking, a piecewise C1 function at every point x ∈ O is locally defined
as a continuous selection (or patching) of a finite number of “pre-defined" continu-
ously differentiable functions.

We now prove that the conditions of Definition 3.5 are equivalent to those con-
ditions of Definition 3.2 for L(C) when C is an open set. We may then think of L(C)
functions as generalizations of piecewise C1 functions over not necessarily open sets.
This extension is relevant in Section 3.6, when C is a closed set. More precisely, we
have the following proposition.

Proposition 3.6

Consider an open set O ⊂ Rn. A function V : dom(V )→ R is in L(O) if and
only if it is piecewise C1 on O.

Proof : To prove the equivalence, first suppose that V ∈ L(O) and we show that
it is piecewise C1 onO. The continuity of V onO is trivial, since V is locally Lipschitz
relative to O, by item (a) of Definition 3.2. Take any x ∈ O and consider the
neighborhood U(x), the set S(x), the index set I(x), the sets Ui, and the functions
Vi : Ui → R given in Definition 3.2 of L(O). Since O is open, without loss of
generality, we suppose that U(x) ⊂ O. We want to prove that

U(x) ⊂
⋃

i∈I(x)
Vi :=

⋃
i∈I(x)

{z ∈ Ui | V (z) = Vi(z)}. (3.19)

To prove (3.19), take any z ∈ U(x), if z ∈ S(x), then V (z) = Vi(z) for some i ∈ I(x)
and thus z ∈ ⋃i∈Ix

Vi. If z 6∈ S(x), then from conditions (b) and (c) in Definition 3.2
there exist zk ∈ S(x), zk → z such that V (zk) = Vik(zk) for some ik ∈ I(x). By
finiteness of I(x), without loss of generality we can assume ik = i for some i ∈ I(x)
and for all k ∈ N. Then by continuity of V and Vi, we have

V (z) = lim
k→∞

V (zk) = lim
k→∞

Vi(zk) = Vi(z),

which shows that z ∈ Vi ⊂
⋃
i∈I(x) Vi. Concluding, define I ′(x) := {i ∈ I(x) | x ∈

Ui} and U ′(x) ⊂ U(x) as U ′(x) := ⋂
i∈I′(x) Ui ∩ U(x). By (3.19), I ′(x) is not empty

and thus U ′(x) is an (open) neighborhood of x. Again by (3.19) we have

V (z) ∈ {Vi(z) | i ∈ I ′(x)}, ∀ z ∈ U ′(x),

concluding the implication.
For the converse implication, let us suppose V : O → Rn is a piecewise C1 function
on O. We recall the following facts:



3.4. COMPARISONS WITH OTHER CLASSES OF FUNCTIONS 43

• If V is piecewise C1 on O then it is locally Lipschitz continuous, see [110,
Prop. 4.1.2],

• There exists an open and dense subset S ⊂ O where V is continuously dif-
ferentiable. Moreover, consider any x ∈ O, the neighborhood U(x) and the
associated index set I(x) in Definition 3.5. For every z ∈ U(x) ∩ S it follows
from [110, Prop. 4.1.5] that there exists an i ∈ I(x) such that∇V (z) = ∇Vi(z).

The two facts above imply that a piecewise C1 function satisfies properties (a), (b)
and (c) of Definition 3.2, concluding the proof. ♦

We recall here some useful properties of piecewise C1 functions. Let us consider
a piecewise C1 function V : O → R on an open set O, any x ∈ O and the re-
lated neighborhood U(x) and the index set I(x) given in Definition 3.5. Define the
following set of essentially active indexes at x ∈ O:

Ie(x) =
{
i ∈ I(x) | x ∈ int({y ∈ U(x) | V (y) = Vi(y)})

}
. (3.20)

It follows by continuity that V (x) = Vi(x) for all i ∈ Ie(x), and in particular there
exists a neighborhood U ′(x) of x, U ′(x) ⊂ U(x), such that

V (z) ∈ {Vi(z) | i ∈ Ie(x)}, for all z ∈ U ′(x),

see [110, Propostion 4.1.1] for the proof.
Moreover in [110, Proposition 4.3.1] the following characterization of the Clarke

gradient for piecewise C1 functions is proven; we recall it here, together with the
instructive proof.

Lemma 3.7

Given V : O → R piecewise C1 and any x ∈ O, it holds that

∂V (x) = co{∇Vi(x) | i ∈ Ie(x)}. (3.21)

Proof : Consider x ∈ O and the related neighborhood U(x), define

S1(x) := {∇Vi(x) | i ∈ Ie(x)},

S2(x) :=
v ∈ Rn

∣∣∣∣ ∃xk → x, xk /∈ NV , s.t.
v = lim

k→∞
∇V (xk)

 .
Recalling Definition 2.13, if we prove that S1(x) = S2(x); then (3.21) holds.

S1(x) ⊂ S2(x): Let us call Ci = {y ∈ U(x) | V (y) = Vi(y)}, and consider
v ∈ S1(x), that is there exists an i ∈ Ie(x) such that v = ∇Vi(x). By (3.20), there
exists a sequence xk → x such that xk ∈ int(Ci) for all k ∈ N. By definition of Ci
we have that V is differentiable at any xk, and moreover ∇V (xk) = ∇Vi(xk), for
any k ∈ N. Thus, we have

∇Vi(x) = lim
k→∞
∇Vi(xk) = lim

k→∞
∇V (xk)
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proving that v = ∇Vi(x) ∈ S2(x).
S2(x) ⊂ S1(x): Consider v ∈ S2(x), namely there exists a sequence xk → x,

such that V is differentiable at any xk, and such that limk→∞∇V (xk) = v. We
can suppose, without loss of generality that xk ∈ U(x), for any k ∈ N. In [110,
Proposition 4.1.3] it is proved that for each k ∈ N there exists ik ∈ Ie(x) such that
∇V (xk) = ∇Vik(xk). By finiteness of Ie(x) we can extract (relabeling k into h) the
subsequence xh with constant indices ih ≡ i for some i ∈ Ie(x), obtaining

lim
k→∞
∇V (xk) = lim

k→∞
∇Vi(xk) = ∇Vi(x),

and hence v ∈ S1(x). ♦

3.4.2 Clarke Lyapunov Functions vs LF (A, C) functions
We study here the relation between Clarke locally Lipschitz Lyapunov functions
(in the sense of Theorem 2.18 and locally finitely generated Lyapunov functions
LF (A, C) (in the sense of Definition 3.3). The next lemma shows that a function
V ∈ LF (A, C) also satisfies the condition (2.14) in the interior of C, and thus is a
Clarke locally Lipschitz Lyapunov function if C is open.

Lemma 3.8

Given a closed set A ⊂ Rn, a set C ⊂ Rn and F : C ⇒ Rn a locally bounded
and inner semicontinuous set-valued map. Consider a function V ∈ LF (A, C),
then for every x ∈ int(C), we have

〈v, f〉 ≤ −γ(|x|A), ∀v ∈ ∂V (x), ∀f ∈ F (x). (3.22)

If V ∈ L◦F (A, C) then, for every x ∈ int(C), inequality (3.22) holds with γ ≡ 0.

Proof : Consider any x ∈ int(C), and the open neighborhood U(x) given by
Definition 3.2; we can suppose, without loss of generality, that U(x) ⊂ int(C).
Thanks to Lemma 3.6, V is piecewise C1 on U(x), and thus, recalling (3.21), we
have

∂V (x) = co{∇Vi(x) | i ∈ Ie(x)}.
The proof is then carried out by showing

〈∇Vi(x), f〉 ≤ −γ(|x|A), ∀ i ∈ Ie(x), ∀ f ∈ F (x). (3.23)

For proving (3.23), consider any i ∈ Ie(x). By definition (3.20), there exists a se-
quence xk → x such that xk ∈ int(Vi) for all k ∈ N, where Vi := {z ∈ U(x) | V (z) =
Vi(z)}. By density of S(x), given in (3.11) in Definition 3.2, for each k ∈ N there
exists a sequence xk,l → xk as l →∞, such that xk,l ∈ S(x) ∩ int(Vi), for all l ∈ N.
For each k ∈ N, we choose a large enough l = lk so that xk,lk → x as k → ∞.
By construction xk,lk ∈ S(x) ∩ int(Vi), for all k ∈ N. Consider any f ∈ F (x), by
inner semicontinuity of F we can find a sequence fk ∈ F (xk,lk) such that fk → f as
k →∞. By definition of Vi and equation (3.14), we have

〈∇Vi(xk,lk), fk〉 ≤ −γ(|xk,lk |A), ∀k ∈ N,
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Figure 3.2: Example 3.3, the system (3.24) and the behavior of the function V .

and by continuity of ∇Vi and γ this implies

〈∇Vi(x), f〉 ≤ −γ(|x|A).

Since x ∈ int(C), i ∈ Ie(x) and f ∈ F (x) are arbitrary, we can conclude the proof.
The same argument can be used in the case V ∈ L◦F (A, C) with γ ≡ 0. ♦

The lemma showed, roughly speaking, that a function V ∈ LF (A, C) is a Clarke
locally Lipschitz Lyapunov function if C is open. It is not clear how, under the con-
ditions of Definition 3.3, to consider the condition (3.22) at points on the boundary
bd(C). The next example shows how a function in LF (A, C) can “do the job” when
C has no interior.

Example 3.3 Consider the closed set

C := {x := (x1, x2) ∈ R2 | (x1 − 1)2 + (x2 − 1)2 = 2 ∧ x2 ≥ 0},

represented by the red line in Figure 3.2, and the vector field f : C → R2, defining
system

ẋ = f(x) = |x|(Ax+ b), x ∈ C, (3.24)
where A = ( 0 −1

1 0 ) and b = (1,−1).
Note that f(0) = 0 and f(x) 6= 0 for all x ∈ C \ {0} (since A−1b = (1, 1) /∈ C).
Denoting by TC(x) the tangent cone of C at x (see e.g. [105, Definition 6.1]), we
have f(x) ∈ TC(x), for every x ∈ C, see Figure 3.2 for a graphical representation.
We want to prove that A = {0} is UGAS for system (3.24), constructing a function
V ∈ LF ({0}, C). To this end, consider three functions Vi ∈ C1(R2,R), i ∈ {1, 2, 3}
given by

V1(x) := x2, V2(x) := x1 + 2, V3(x) := −x2 + 6. (3.25)
We show below that the function V : R2 → R, given below, satisfies V ∈ LF ({0}, C).

V (x) :=


V1(x) if x1 ≤ 0,
V2(x) if 0 < x1 < 2,
V3(x) if x1 ≥ 2.



46 CHAPTER 3. PIECEWISE CONSTRUCTED FUNCTIONS

Step 1: Local Lipschitz continuity and positive definiteness in C:
By definition, V is continuously differentiable in C \ {z1, z2, z3}, where z1 := (0, 2),
z2 := (2, 2) and z3 := (2, 0), as shown in Figure 3.2. At these points V is continuous
because

V (z1) = V1(z1) = V2(z1) = 2,
V (z2) = V2(z2) = V3(z2) = 4,

V (z) = V3(z), ∀z ∈ IB(z3, 1) ∩ C.

It is also easily checked that V is locally Lipschitz relative to C with constant L(x) ≡
1. Finally, from a case-by-case analysis, it is easily checked that |x|2 ≤ V (x) ≤ 3|x|,
∀x ∈ C.
Step 2: Lyapunov conditions:
By definition of V and f we have

∇V (x) =


(0, 1)> if x1 < 0
(1, 0)> if 0 < x1 < 2

(0,−1)> if x1 > 2

and computing we obtain

〈∇V (x), f(x)〉 =


|x|(x1 − 1) if x1 < 0,
|x|(−x2 − 1) if 0 < x1 < 2,
|x|(1− x1) if x1 > 2.

Concluding, we may prove the almost everywhere condition

〈∇V (x), f(x)〉 ≤ −|x|, ∀x ∈ C \ {z1, z2, z3}. (3.26)

It is thus clear that conditions (b), (c) and (L2) of Definitions 3.2 and 3.3 hold, by
choosing U(zi) = IB(zi, 1), I(zi) = {i, i + 1}, S(zi) = U(zi) \ {zi}, for i ∈ {1, 2}.
For z3 it suffices to choose U(z3) = IB(z3, 1), I(z3) = {3}, S(z3) = U(z3) \ {z3}.
For the other points in C the claim is trivial from (3.26). We have thus proved that
V ∈ LF ({0}, C), and Theorem 3.4 implies (UGAS) of the origin for system (3.24).
See Figure 3.2 on the right for a graphical representation of the function V .
Comparison with Clarke Lyapunov functions:
It is easily seen that the function V fails to be continuous outside C; more precisely,
for every open set O such that C ⊂ O, V is not continuous on O, because dis-
continuity is inevitable in any neighborhood of z1 and z2. It is thus clear that the
Clarke gradient cannot be defined at z1 and z2, and thus V is not a Clarke locally
Lipschitz Lyapunov function, as defined in Theorem 2.18. We emphasize that altern-
ative constructions are possible but what is appealing about our design is its intuitive
nature.

4



3.5. GLOBAL PIECEWISE STRUCTURE 47

3.5 Global Piecewise structure
The properties in Definitions 3.2 and 3.5 are, in a sense, local, because they require
that each x ∈ dom V has a neighborhood on which V has a piecewise structure
and is built from finitely many smooth functions, but this structure and the smooth
functions may be different for different x. Below, we introduce a family of locally
Lipschitz functions for which the piecewise structure is global, in the sense that V
is globally obtained by “gluing together” a finite number of smooth functions.

Definition 3.9: Proper Piecewise C1 functions

Let O ⊂ Rn be an open set. A continuous function V : O → R is called a
proper piecewise C1 function on O if there exist I = {1, . . . , K}, closed sets
{Xi}i∈I , open sets {Oi}i∈I and continuously differentiable functions Vi : Oi →
R, i ∈ I, such that:

(A) Xi ∩ O ⊂ Oi, for all i ∈ I,

(B) int(Xi) = Xi, (namely Xi is regular-closed), for all i ∈ I,

(C) O ⊂ ⋃i∈I Xi,
(D) V (x) = Vi(x), if x ∈ Xi. 4

If V : O → R is a proper piecewise C1 function, then it is piecewise C1, as
in Definition 3.5. Indeed, it suffices to select U(x) ≡ O, I(x) ≡ I and F ≡
{V1, . . . , VK}.

For this class of proper piecewise C1 functions, given a set valued map F :
C ⇒ Rn, in the case where C is regular-closed (that is C = int(C)), it may be
computationally easier to check the conditions of Definition 3.3, as the next result
suggests. The sufficient conditions below may hold when conditions based on the
Clarke gradient don’t; this is illustrated in Section 3.6.2.

Theorem 3.10

Consider a set C ⊂ Rn such that int(C) = C and let V : O → R be a proper
piecewise C1 function with C ⊂ O. Consider a closed set A ⊂ Rn and a locally
bounded and inner semicontinuous set-valued map F : C ⇒ Rn. If there exist
α1, α2 ∈ K∞, and γ ∈ PD such that

α1(|x|A) ≤ V (x) ≤ α2(|x|A), ∀x ∈ C, (3.27)

〈∇Vi(x), f〉 ≤ −γ(|x|A),
∀x ∈ int(Xi) ∩ int(C),
∀f ∈ F (x), ∀i ∈ I,

(3.28)

then V ∈ LF (A, C). Thus A is (UGAS) for system (3.1). Considering γ ≡ 0
in (3.28), then V ∈ L◦F (A, C) and A is (UGS) for system (3.1).

Proof : We prove the theorem by showing that all the hypotheses of Defini-
tion 3.2 and Definition 3.3 hold. The facts that C ⊂ O and that V is locally Lipschitz
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relative to C are straightforward. Condition (3.27) is exactly (L1) of Definition 3.3.
It only remains to prove (b),(c) of Definition 3.2 and (L2) of Definition 3.3. For any
x ∈ C, we consider U(x) ≡ O and define S(x) ≡ S := ⋃

i∈I int(Xi)∩ int(C). We now
prove that S ⊃ C. Consider a point x ∈ C, recalling that int(C) = C we consider a
sequence xk ∈ int(C) such that xk → x, as k → ∞. By properties (B) and (C) of
Definition 3.9, we have

⋃
i∈I

int(Xi) =
⋃
i∈I

int(Xi) =
⋃
i∈I
Xi ⊃ O ⊃ C ⊃ int(C).

Thus, for each k ∈ N, there exists a sequence xk,l ∈
⋃
i∈I int(Xi) ∩ int(C) such that

xk,l → xk as l → ∞. For each k ∈ N, we choose a large enough l = lk so that
xk,lk → x as k → ∞. By construction, xk,lk ∈

⋃
i∈I int(Xi) ∩ int(C), proving the

density of S in C (and thus (b) of Definition 3.2). Now, for each y ∈ S there exists
i ∈ I such that y ∈ int(Xi) and since by condition (D), V coincides with Vi in the
open set int(Xi), we have ∇V (y) = ∇Vi(y) proving condition (c) of Definition 3.2.
Finally, by condition (3.28) we obtain (L2) of Definition 3.3, concluding the proof
that V ∈ LF (A, C). Then UGAS follows from Theorem 3.4. The case with γ ≡ 0 is
completely analogous. ♦
We prove that the family of proper piecewise C1 functions is closed under the point-
wise maximum and pointwise minimum operators.

Proposition 3.11

Consider an open set O ⊂ Rn. The class of proper piecewise C1 functions on O
is closed under the operations of pointwise maximum and pointwise minimum
of finitely many functions. More precisely, given V1, . . . , VK : O → R proper
piecewise C1 functions on O, the functions VM , Vm : O → R defined by

VM(x) := max
i=1,...K

{Vi(x)},

Vm(x) := min
i=1,...K

{Vi(x)},
∀ x ∈ O,

are proper piecewise C1 on O.

Proof : [Sketch of the Proof] We note that if V is proper piecewise C1 so is
W := −V . Moreover, by definition of pointwise maximum and pointwise minimum
operators, max{a, b, c} = max{a,max{b, c}} and min{a, b} = −max{−a,−b} for
all a, b, c ∈ R. Therefore, it suffices to prove that, given V1, V2 : O → R proper
piecewise C1 functions, the max function VM : O → R defined by

VM(x) := max{V1(x), V2(x)}, ∀ x ∈ O,

is proper piecewise C1 on O, since the general statement follows iterating this prop-
erty. Toward this end, let us consider V1, V2 : O → R proper piecewise C1 functions.
For both j = 1, 2, we can consider Ij = {1, . . . , Kj}, closed sets {X j

i }i∈Ij , open sets
{Oji }i∈Ij and continuously differentiable functions V j

i : Oji → R, i ∈ Ij, such that
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Definition 3.9 is satisfied for Vj, j = 1, 2. Define the open sets

Y0 := int({x ∈ O | V1(x) = V2(x)}),
Y1 := {x ∈ O | V1(x) > V2(x)},
Y2 := {x ∈ O | V1(x) < V2(x)}.

Let us take IM := {1, . . . , K1, K1 + 1, . . . , 2K1, 2K1 + 1, . . . 2K1 +K2} and define

XM
i :=


X 1
i ∩ Y0, if 1 ≤ i ≤ K1,

X 1
i−K1 ∩ Y1, if K1 + 1 ≤ i ≤ 2K1,

X 2
i−2K1 ∩ Y2, if 2K1 + 1 ≤ i ≤ 2K1 +K2,

and

(OMi , V M
i ) :=


(O1

i , V
1
i ) if 1 ≤ i ≤ K1,

(O1
i−K1 , V

1
i−K1) if K1 + 1 ≤ i ≤ 2K1,

(O2
i−2K1 , V

2
i−2K1) if 2K1 + 1 ≤ i ≤ 2K1 +K2.

It can be shown that VM , IM , {XM
i }i∈IM , {OMi }i∈IM and {V M

i }i∈IM satisfy Defin-
ition 3.9. Conditions (A) and (D) are straightforward; Condition (B) follows from
the fact that given X ⊂ Rn such that X = int(X ) and an open set U ⊂ Rn, one has

int(X ∩ U) = X ∩ U .

Condition (C) holds recalling that ∪i∈I1 int(X 1
i ) and ∪i∈I2 int(X 2

i ) are dense in O
and O ⊂ Y0 ∪ Y1 ∪ Y2. ♦
Let O ⊂ Rn be an open set, and consider V1, . . . , VK : O → R proper piecewise C1

functions. We consider a max-min function VMm : O → R defined by

VMm(x) := max
j∈{1,...,J}

{
min
k∈Sj

{Vk(x)}
}
, ∀x ∈ O (3.29)

where J ≥ 1 and S1, . . . , SJ ⊂ {1, . . . , K} are non-empty subsets, see also [49] and
references therein for a thorough discussion about this family of functions. Iterating
the result in Proposition 3.11, it trivially holds that VMm is proper piecewise C1

on O. Remarkably, any piecewise affine function (PWA) can be represented in
the form (3.29) with V1, . . . VK : Rn → R affine functions, that is the so-called
lattice representation, see [129] and references therein. We will intensively study
this particular family of functions in the subsequent Chapter 4 in the context of
state-dependent switched systems.

3.6 Application to Hybrid Dynamical Systems
In this section we show how Theorem 3.4 can be used in the hybrid systems setting,
proposing a result which generalizes the “classical” hybrid Lyapunov Theorem 2.10.
We recall here the main definition: Given C,D ⊂ Rn, F : domF ⇒ Rn, G :
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domG ⇒ Rn, such that C ⊂ domF and D ⊂ domG, a hybrid dynamical system
H = (C,D, G, F ) is

H :
ẋ ∈ F (x), x ∈ C,
x+ ∈ G(x), x ∈ D.

(3.30)

For all relevant discussion we refer to Sections 1.1.3 and 2.3. A possible extension
of Theorem 2.10 now follows.

Theorem 3.12: “Relaxed” Hybrid Lyapunov Theorem

Given hybrid system (3.30), suppose that F : domF ⇒ Rn is locally bounded
and inner semicontinuous with C ⊂ domF . Given a closed set A, suppose
that V : domV → R is such that

(a) V ∈ LF (A, C);

(b) V is a discrete-time Lyapunov function for A in D, in the sense that
dom V ⊃ D ∪G(D) and there exist α1, α2 ∈ K∞, γ ∈ PD satisfying

α1(|x|A) ≤ V (x) ≤ α2(|x|A), ∀x ∈ D ∪G(D) (3.31a)
V (g)− V (x) ≤ −γ(|x|A) ∀x ∈ D, g ∈ G(x). (3.31b)

Then A is UGAS for hybrid system (1.8). Moreover, if V ∈ L◦F (A; C) and
condition (b) is satisfied with γ ≡ 0, then A is UGS for hybrid system (1.8).

Proof : Consider any solution of (3.30) ψ : domψ → Rn. Consider any j ∈ N

such that the j-th interval of flow, Ij, has nonempty interior. In this case, consid-
ering the restriction ψ(·, j) : Ij → C, we have ψ(·, j) ∈ SF,C. Applying Theorem 3.4
we have that V ◦ ψ(·, j) : Ij → R is strictly decreasing, with the rate determined
by γ in (3.14). Conditions (3.31a) guarantee the decrease of V ◦ ψ during jumps of
ψ, with the rate determined by γ in (3.31a). Thus A is UGAS, following the same
steps as in the proof of [58, Theorem 3.18]. The case with V ∈ L◦F (A; C) and γ ≡ 0
ensuring (UGS) of A for system (3.30) is straightforward. ♦

There is no loss of generality in using the same class K∞ functions α1, α2 for
positive definiteness in C and in D ∪ G(D): if they were different, one considers
the point-wise minimum for the lower bound and the point-wise maximum for the
upper bound. The same reasoning applies to γ. Thus merging (L1) of Definition
3.3 and (3.31a) of Theorem 3.12 yields α1, α2 ∈ K∞ such that

α1(|x|A) ≤ V (x) ≤ α2(|x|A) ∀x ∈ C ∪ D ∪G(D), (3.32)

consistently with the hypothesis of Theorem 2.10. For the case when A is compact,
it is customary to relax this condition to the equivalent property that V be positive
definite w.r.t A, and radially unbounded relative to C ∪ D, see [82, Lemma 4.3].
Similarly, one can show that (3.31a) is equivalent to requiring that G(D ∩ A) ⊂ A
and

V (g)− V (x) < 0, ∀x ∈ D \ A, ∀g ∈ G(x), (3.33)
so that there is no need to compute explicitly the function γ, see [111].
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3.6.1 Homogeneous Hybrid Dynamics
In this section we study a class of hybrid dynamical systems given byẋ = AFx, x ∈ C = {x ∈ Rn |x>QFx ≥ 0},

x+ = AJx, x ∈ D = {x ∈ Rn |x>QJx ≥ 0},
(3.34)

where AF , AJ ∈ Rn×n andQF , QJ ∈ Sym(Rn) := {S ∈ Rn×n | S = S>}. Such (3.34)
satisfies the hybrid basic conditions defined in [58, Assumption 6.5]. Moreover, C
and D are symmetric cones, that is, if x ∈ C (x ∈ D resp.) then λx ∈ C (λx ∈ D
resp.), for all λ ∈ R. Noting that the flow and jump maps are linear, system (3.34)
is homogeneous with respect to the standard dilation, as defined in [60] (see also [58,
Chapter 9]). Consistently with the converse result in [123], we consider (proper
piecewise C1) candidate Lyapunov functions homogeneous of degree 2.

Definition 3.13: Proper Piecewise Quadratic Functions

A proper piecewise C1 function V : Rn → R (recall Definition 3.9) is a proper
piecewise quadratic function (V ∈ PQ(Rn)) if

• For each i ∈ I, there exists Ri ∈ Sym(Rn) such that Xi = {x ∈
Rn | x>Rix ≥ 0};

• For each i ∈ I there exists Pi ∈ Sym(Rn) such that Vi(x) := x>Pix, for all
x ∈ Rn.

By definition of {Xi}i∈I and {Vi}i∈I , a proper piecewise quadratic function is
in particular even and homogeneous of degree 2, that is, V (λx) = λ2V (x), ∀λ ∈
R, ∀ x ∈ Rn.

We now state a useful corollary of Theorem 3.12 in the context of homogeneous
hybrid dynamical systems (3.34).

Corollary 3.14

Consider system (3.34), with QF not negative semi-definite. Suppose that
there exist V ∈ PQ and λ1, λ2 > 0 such that

λ1|x|2 ≤ V (x) ≤ λ2|x|2, ∀ x ∈ C ∪ D ∪ AJ(D), (3.35)

and, for all x ∈ Rn, for all i ∈ I, it holds that

x>QFx > 0 ∧ x>Rix > 0 ⇒ x>PiAFx < 0. (3.36)

Moreover, suppose that for all x ∈ Rn, for all (j, i) ∈ I × I, it holds that

x>QJx ≥ 0 ∧ x>Rjx ≥ 0 ∧ x>A>JRiAJx ≥ 0
⇓

x>AJPiAJx− x>Pjx < 0.
(3.37)

Then the origin is UGAS for hybrid system (3.34).
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DC

D C

x2 = εx1

x1

x2

Figure 3.3: Trajectories of system (3.38)

Proof : [Sketch of the proof] The hypothesis of QF being not negative semi-
definite ensures that int(C) = C = {x ∈ Rn | x>QFx ≥ 0}, as required in The-
orem 3.10. It is clear that (3.35) implies (3.32). Implication (3.36) ensures that
V ∈ LF ({0}; C), since it implies condition (3.28) of Theorem 3.10. Implication (3.37)
ensures (3.31b). Applying Theorem 3.12 we conclude that {0} is (UGAS) for sys-
tem (3.34). ♦
We note that condition (3.35) does not necessary imply Pi > 0 for all i ∈ I. In fact
it is sufficient to ensure that the functions Vi(x) = x>Pix are positive definite in
their region of activation Xi = {x ∈ Rn | x>Rix ≥ 0}, for each i ∈ I. The overall
function V then satisfies bounds as in (3.32); the quadratic bounds in (3.35) can be
obtained by homogeneity of V . Moreover, Corollary 3.14 is particularly appealing
because conditions (3.35), (3.36) and (3.37) could be reduced, via S-Procedure, as
a system of LMIs, but paying a price in term of conservatism.

3.6.2 Clegg Integrator
The Clegg integrator connected to an integrating plant has been shown to overcome
intrinsic limitations of linear feedback [14], (see also [102]). More specifically, using
the ε-regularization suggested in [96], we focus on the hybrid closed-loopẋ = AFx, x ∈ C = {x ∈ R2 |x>Qx ≥ 0},

x+ = AJx, x ∈ D = {x ∈ R2 |x>Qx ≤ 0},
(3.38)

with

AF =

 0 1

−1 0

 , AJ =

1 0

0 0

 , Q =

 1 − 1
2ε

− 1
2ε 0

 ,
and ε > 0 being a small regularization parameter, see Figure 3.3 for a graphical
representation.

Following [131], there does not exist a quadratic Lyapunov function. In fact, given

any symmetric and positive definite matrix P =

p11 p12

p12 p22

, and considering points
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z1 = (−1, 0) and z2 = (0, 1), we have that z1, z2 ∈ C and the Lyapunov inequalities
z>1 PAF z1 < 0 and z>2 PAF z2 < 0 would imply p12 < 0 and p12 > 0 respectively and
hence, a contradiction. UGAS of (3.38) was established with nonconvex numerical
piecewise quadratic constructions in [131], and then via a nonconvex analytic con-
struction in [96]. We illustrate the use of Corollary 3.14 by building three proper
piecewise quadratic Lyapunov functions, one of them convex. In what follows, we fix
ε = 0.1, but the functions that we construct work for any ε such that 0 < ε ≤ 0.1.
Max of Quadratics:
We first use a max function of two quadratics

VM(x) := max{x>P1x, x
>P2x}, (3.39)

with P1 =

 1 −0.1

−0.1 0.5

 , P2 =

2.5 1.4

1.4 0.5

 ,
where we illustrate the use of quadratics not necessarily positive definite (see also
[83]). We prove next that (3.39) satisfies the hypotheses of Corollary 3.14. First of
all, the function VM satisfies (3.35) (positive definiteness): this is straightforward
by noting that P1 > 0. Let us define X1, X2 ⊂ R2, as

X1 := {x |V1(x) ≥ V2(x)} = {x |x>(P1 − P2)x ≥ 0},
X2 := {x |V2(x) ≥ V1(x)} = {x |x>(P2 − P1)x ≥ 0},

and denoting R := (P1 − P2) =

−1.5 −1.5

−1.5 0

, we can conclude

X1 = {x |x>Rx ≥ 0}, X2 = {x |x>Rx ≤ 0}.

For the jump condition (3.37), we first note that D ⊂ {x | x1x2 ≥ 0} ⊂ X2: given
x = (x1, x2) with x1x2 ≥ 0 we have x>Rx ≤ 0. Moreover, since G(D) = {x |x2 = 0},
we conclude that D ∪ G(D) ⊂ X2. In other words, the jump set and its image are
contained in the region where V ≡ V2. We can thus simply obtain the inequality

V2(x+)− V2(x) = x>A>J P2AJx− x>P2x

= 2.5x2
1 − 2.5x2

1 − 3x1x2 − 0.5x2
2 < 0,

∀x ∈ D \ {0}, proving (3.37).
For the flow condition, for simplicity, we split the flow set C = C1 ∪ C2 :=

(X1 ∩ C) ∪ (X2 ∩ C). From the fact that D ⊂ X2, we note that (X1 ∩ C) = X1. Thus
for C1, it suffices to find a µ1 ≥ 0 such that the LMI

P1AF + A>FP1 + µ1S + 0.1Id < 0

is satisfied, and this is the case choosing, for example, µ1 = 0.4. Secondly, we note
that the region C2 := X2 ∩ C can be rewritten as C2 = {x | x>Q2x ≥ 0}, where

Q2 :=

 0.2 −0.8

−0.8 −4

 .
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LV (1)

DC

D C
x1

x2

(a) In black we plotted the 1-
level set of the max of quad-
ratics Lyapunov function VM
defined in (3.39).

DC

D C

V1

V2

V3

x1

x2

(b) The 1-level set of the mid
of quadratics Lyapunov func-
tion Vmid defined in (3.40).

w

DC

D C

x1

x2

(c) The 1-level set of the con-
vex Lyapunov function Vconv
defined in (3.41).

Figure 3.4: Level sets of the constructed Lyapunov functions for system (3.38); in
red some particular solutions.

Thus, for proving
x ∈ X2 ⇒ x>P2AFx < 0

it suffices to find a µ2 ≥ 0 such that the LMI

P2AF + A>FP2 + µ2Q2 + 0.1Id < 0,

is satisfied. This is the case, for example, with µ2 = 2.
To summarize, all the conditions of Corollary 3.14 are satisfied by VM and we

can conclude that A = {0} is (UGAS) for system (3.38). See Figure 3.4(a) for
a graphical representation of our construction, where nonconvexity of VM emerges
from the fact that P2 is not sign-definite.
Mid of quadratics:
Consider the symmetric matrices

P1 =

 1 0.25

0.25 0.7

 , P2 =

0.55 −0.2

−0.2 0.25

 , P3 =

25
16

49
160

? 0.25


and consider the function

Vmid(x) := mid{V1(x), V2(x), V3(x)}
:= max{min{V1, V2},min{V2, V3},min{V1, V3}},

(3.40)

where Vi(x) := x>Pix. Intuitively, the “mid” operator selects the function whose
value lies between the two others. Taking I = {1, 2, 3}, we introduce as in Defini-
tion 3.13, the sets as

Xi : = cl
(
{x ∈ R2 | x>Pjx < x>Pix < x>Pkx}

∪ {x ∈ R2 | x>Pkx < x>Pix < x>Pjx}
)
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for every i ∈ I, j 6= k ∈ I \ {i}. The sets Xi could of course be rewritten in the
form Xi = {x ∈ Rn | x>Rix ≥ 0} for some Ri ∈ Sym(Rn), i ∈ {1, 2, 3}, but this is
not necessary for our analysis, since we rely on the general Theorem 3.10, instead
of Corollary 3.14.

Positive definiteness of Vmid is immediate, noting that P1, P2 and P3 are all
positive definite.

The jump condition on D is trivial, and can be obtained following the same steps
as with function VM .

For the flow condition we will prove (3.28). It can be seen that

X1 ∩ int(C) = {x | x>Q1x > 0},
X2 ∩ int(C) = {x | x>Q2x > 0},
X3 ∩ int(C) = ∅,

where

Q1 = θ1θ
>
2 + θ2θ

>
1 =

 0.2 −0.9

−0.9 −2

 ,

Q2 = θ2θ
>
3 + θ3θ

>
2 =

−2 −1

−1 0

 .
where θ1 = (−0.1, 1), θ2 = (−1,−1) and θ3 = (1, 0) are properly chosen vectors
perpendicular to the lines that represent the boundaries of X1∩int(C) and X2∩int(C),
respectively. We prove the flow condition (3.28) looking for scalars µ1, µ2 ≥ 0 such
that the LMIs

P1AF + A>FP1 + µ1Q1 + 0.1Id < 0,
P2AF + A>FP2 + µ2Q2 + 0.1Id < 0,

are satisfied; this turns out to be true choosing, for example, µ1 = µ2 = 0.5. We
have proved that

〈∇V1(x), AFx〉 ≤ −0.1|x|2, ∀x ∈ C1, and
〈∇V2(x), AFx〉 ≤ −0.1|x|2, ∀x ∈ C2

which imply the flow conditions (3.28). Theorem 3.12 holds and we conclude that
A = {0} is (UGAS) for the system (3.38). See Fig. 3.4(b) for a graphical represent-
ation of our construction, which shows again nonconvex level sets of Vmid.

Convex Lyapunov Function
The two Lyapunov functions above are both nonconvex. We construct here a convex
one, starting from Vmid. Looking at the level set LVmid(1), the idea is to connect the
points of intersection of LVmid(1) with the two lines that form the boundary of D
using a straight line. We thus define

Vconv(x) =
Vmid(x), if x ∈ C,
〈w, x〉2, if x ∈ D,

(3.41)

where w = (0.9574, 0.7071) is a vector tangent to the line of interest, suitably scaled
to ensure continuity. This function satisfies the conditions of Theorem 3.12 from
the properties of Vmid. It is represented in Fig. 3.4(c).
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3.7 Summary
We studied the problem of stability for a class of differential inclusions constrained in
a set C, with a particular interest in applications to hybrid dynamical systems. We
provided sufficient Lyapunov conditions for a particular class of piecewise-defined
locally Lipschitz functions, requiring to check the Lyapunov decrease inequality only
on a dense subset of a given domain of interest C. We then studied the relations
between our proposed class of locally Lipschitz functions and the piecewise C1 func-
tions recently proposed in the literature. Our approach has also been compared
with the existing literature on locally Lipschitz Lyapunov functions, showing that
our conditions are in general less restrictive than the Clarke gradient-based condi-
tions presented in Section 2.4. We finally applied our approach in the context of
hybrid dynamical systems, with particular care to the homogeneous case. We apply
our result to a classical example from the reset systems literature: the Clegg integ-
rator model. Several examples are provided to show the novelty and the usefulness
of our results.



4
Max-Min Locally Lipschitz Lyapunov

Functions for Switched Systems

In this chapter we consider (unconstrained) differential inclusions of the form

ẋ ∈ F (x), (4.1)

proposing stability conditions using a particular class of locally Lipschitz functions,
obtained by iterating pointwise maximum and minimum operators over a finite
family of continuously differentiable functions. We focus our attention on outer
semicontinuous maps F : Rn ⇒ Rn in the right-hand side of (4.1), since we are
interested in applications to switched systems. In particular, we consider:

• Switching systems under arbitrary switching rule, that is differential inclu-
sions where the set-valued right-hand-side comprises the convex hull of a finite
number of vector fields.

• Autonomous switched systems with a state-dependent switching signal.

Since regularization of state-dependent switched systems are not inner semicontinu-
ous in general (as showed by Example 3.2) the tools presented in Chapter 3 cannot
be directly applied in this setting, forcing us to follow other paths for the stability
analysis.

More precisely, we analyze the notions of directional derivatives (introduced in
Section 2.4) for max-min functions, and use them in deriving stability conditions
with various degrees of conservatism, where more conservative conditions are numer-
ically more tractable. The proposed constructions also provide nonconvex Lyapunov
functions, which are shown to be useful for systems with state-dependent switch-
ing that do not admit a convex Lyapunov function. Several examples are included
to illustrate the results. The content of this chapther is based on the articles [49]
and [51].

4.1 Overview
Starting with a finite family of vector fields {f1, . . . , fM} ⊂ C1(Rn,Rn) we are inter-
ested in studying stability properties in the swtiched systems context. As introduced

57
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in Section 1.1.2, when the evolution of state trajectories results from arbitrary switch-
ing among the individual subsystems, the stability analysis problem is equivalently
addressed by considering the differential inclusion (DI), described by

ẋ ∈ co
{
fi(x) | i ∈ {1, . . . ,M}

}
. (4.2)

For the linear differential inclusion (LDI) case (that is fi(x) = Aix for some Ai ∈
Rn×n), it is shown in [42], [92] that asymptotic stability is equivalent to the exist-
ence of a common Lyapunov function that is convex, homogeneous of degree 2, and
C1(Rn,R). By addressing a similar question, the paper [90] establishes the exist-
ence of a common homogeneous polynomial Lyapunov function for asymptotically
stable LDIs. Various parameterizations can approximate such homogeneous convex
functions, such as maximum of quadratic functions and its convex conjugates [57],
[59], which are shown to be universal in [68]. Constructions involving functions with
convex polyhedral level sets are proposed in [92] and in [16]. Without any struc-
tural conditions, the Lyapunov functions for system (4.2) are, in general, not finitely
constructible.

In contrast to studying stability uniformly over all possible switching signals as
in (4.1), it is also of interest to study dynamical systems driven by a given switching
function σ : Rn → {1, . . . ,M}, resulting in

ẋ = fσ(x)(x), (4.3)

so that the solution set for system (4.3) is a strict subset of the solution set of
system (4.2). As already mentioned, existence of a convex Lyapunov function is
necessary for asymptotic stability of LDIs. However, it is possible that system (4.3)
is asymptotically stable with σ fixed, but does not admit a convex Lyapunov func-
tion [17]. In the linear setting (i.e. fi(x) ≡ Aix, for some A1, . . . , Am ∈ Rn×n)
is possible to provide sufficient conditions for a minimum of quadratics (clearly
non-convex) to be a Lyapunov function in this context, see [69] and [128]. Several
other techniques involving construction of common Lyapunov functions also exist:
with piecewise quadratic functions [77], using parameter-dependent polytopic selec-
tion of quadratic functions [40, 91], LMI based formulation for multiple Lyapunov
functions [44], [100], and polynomial Lyapunov functions using sum-of-squares tech-
niques. Beyond piecewise quadratics, sum-of-squares techniques have been used for
polynomial Lyapunov functions [99].

In this article, the problem of interest is to construct a Lyapunov function for sys-
tems (4.1) and (4.3) which guarantees asymptotic stability of the origin {0} ⊂ Rn.
We consider maps obtained by taking the maximum, minimum, or their combin-
ation over a finite family of continuously differentiable positive definite functions,
see Definition 4.2 for details. Such max-min type of Lyapunov functions were re-
cently proposed in the context of discrete-time switching systems [3], [101]. For the
continuous-time case treated in this paper, studying this class of functions naturally
requires certain additional tools from nonsmooth and set-valued analysis, and one
such fundamental tool is the generalized directional derivative. An overview of these
concepts for locally Lipschitz function was given in Section 2.4. The construction
of non-smooth Lyapunov functions for system (4.3) using the Clarke’s generalized
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gradient concept is also presented in [11]. However, this notion turns out to be
rather conservative as is seen in several examples (including the one given in Sec-
tion 4.2). To overcome this conservatism due to Clarke’s generalized derivative, we
work with the set-valued Lie derivative. Focusing on this latter notion of general-
ized directional derivative for the class of max-min Lyapunov functions, the major
contributions of this chapter are listed as follows:

• Describe max-min functions and study generalized notions of set-valued derivat-
ives for such functions.

• Provide stability results for systems (4.2) and (4.3) using set-valued derivative
notions.

• Obtain stability conditions using matrix inequalities for the case of linear vec-
tor fields in (4.1) and (4.3), and Lyapunov functions obtained by max-min of
quadratics.

For the max-min candidate Lyapunov functions studied in this paper, which are
not Clarke-regular in general, we compute set-valued Lie derivatives and use them
to derive stability conditions for systems (4.1) and (4.3). The resulting conditions
turn out to be less conservative than the ones obtained by using Clarke’s derivative,
which are here recovered as a corollary. When restricting the attention to the linear
case fi(x) = Aix, and max-min functions obtained from quadratic forms, the Lie-
derivative conditions require solving nonlinear matrix inequalities.

It should be noted that, since we allow for the minimum operation in the con-
struction, certain elements in our proposed class of Lyapunov functions are noncon-
vex. In our approach, when we construct a homogeneous of degree 2 nonconvex
Lyapunov function for the LDI problem, a convexification of such functions also
provides a Lyapunov function [59, Proposition 2.2]. In fact, the sublevel sets of
max-min functions approximate the convex sublevel sets of a homogeneous of de-
gree 2 convex Lyapunov function (which is known to exist) with nonconvex sets
obtained via intersections and unions of ellipsoids.

When addressing system (4.3), our approach provides a more general class of non-
convex and nondifferentiable Lyapunov functions obtained via max-min operations.
To describe the solutions of switched systems, we adopt Filippov regularizations
[54], and establish stability conditions for the resulting system. Considering such
regularized differential inclusions for the switched systems also allows considering
sliding motions along the switching surfaces. In this setting, our adopted notion of
set-valued Lie derivative turns out to be crucial and has an interesting geometrical
interpretation in terms of the tangent subspace to the switching surface.

4.1.1 Chapter Organization
The chapter is organized as follows: In Section 4.2 we provide an example of a two-
dimensional switched system that does not admit a convex Lyapunov function, but
a max-min Lyapunov function can be found. In Section 4.3 the class of max-min
functions is presented and we show our main stability results in the setting of differ-
ential inclusions. In Section 4.4 we apply our results to switched systems, written
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as a differential inclusion using Filippov regularizations, and we study asymptotic
stability along with an instructive example. In Section 4.5, we analyze deeply the
case of linear switched systems and propose an algorithmic procedure to construct
max-min Lyapunov functions, followed by some concluding remarks in Section 4.6.

4.2 A Motivating Example
We consider a switched system for which there does not exist any convex Lyapunov
function. However, this system is asymptotically stable and our results will allow
constructing a Lyapunov function V defined as

V (x) := max
{

min{x>P1x, x
>P2x}, x>P3x

}
, (4.4)

for some positive definite matrices Pi ∈ R2×2, i = 1, 2, 3.

Example 4.1 Consider a state-dependent switched system as with three subsystems
and a state-dependent switching rule x 7→ σ(x) ∈ {1, 2, 3}, namely

ẋ = Aσ(x)x (4.5)

where

(A1, A2, A3) =


−0.1 1

−5 −0.1

 ,
−0.1 5

−1 −0.1

 ,
1.9 3

−3 −2.1


 .

To define the switching signal σ, introduce matrices

(Q1, Q2, Q3) :=


−(1 +

√
2) −2+

√
2

2

−2+
√

2
2 −1

 ,
 −1

(1+
√

2) −
√

2
2

−
√

2
2 −1

 ,
 1

√
2

√
2 1




and the switching signal

σ(x) :=


1, if x ∈ S1 := {x>Q1x > 0} ∪ S13,

2, if x ∈ S2 := {x>Q2x > 0} ∪ S21,

3, if x ∈ S3 := {x>Q3x > 0} ∪ S32,

(4.6)

where the subspaces Sij, i 6= j are defined as Sij := {x ∈ R2 |x>Qix = x>Qjx} ,
namely

S13 :=
{
x ∈ R2 |x2 = −(1 +

√
2)x1

}
,

S21 :=
{
x ∈ R2 |x2 = −x1

}
,

S32 :=
{
x ∈ R2 |x2 = − 1

1 +
√

2
x1

}
.

We note that in (4.6), we have S1 ∪ S2 ∪ S3 = R2 and that the only point of
intersection among the three sets is the origin.
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Figure 4.1: The solid blue line shows a trajectory of system (4.5) starting at z0 and
moving in the clockwise direction. The red dashed line indicates a level set of the
max-min Lyapunov function (4.4). The solid black line indicates the set R0 used in
the analysis.

In the following we note how the class of convex candidate Lyapunov functions is
“not big enough” to handle this example, motivating the study of a class of locally
Lipschitz functions not necessarily convex.

Proposition 4.1

There does not exist a convex Lyapunov function for system (4.5).

Proof : Given a set R0 ⊂ R2 and a time T > 0, let C(T ;R0) be the set of
reachable points of solutions of system (4.5) after time T , starting in R0, that is,

C(T ;R0) := {x(t) ∈ Rn|x solves (4.5), x(0) ∈ R0, t ≥ T} .

Following [17, Lemma 2.1], if we show that there exists a compact set R0 6= {0}
and a T > 0 such that R0 ⊂ co{C(T ;R0)}, then the system does not admit a
convex Lyapunov function. Toward this end, we choose z0 := [−1 1]> ∈ S21, and
the compact set R0 := {αz0 : α ∈ [0, 1]} ⊂ S21, i.e. the line segment connecting 0
and z0. We compute

eA1t = e−
t

10

 cos(
√

5t)
√

5
5 sin(

√
5t)

−
√

5 sin(
√

5t) cos(
√

5t)

 ,

eA2t = e−
t

10

 cos(
√

5t)
√

5 sin(
√

5t)

−
√

5
5 sin(

√
5t) cos(

√
5t)

 ,

eA3t = e−
t

10

 2√
5 sin(

√
5t) + cos(

√
5t) 3√

5 sin(
√

5t)

− 3√
5 sin(

√
5t) cos(

√
5t)− 2√

5 sin(
√

5t)

 ,
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which allows us to write analytically the solution of the system starting from any
given initial condition. We let t1 > 0 be the smallest time such that z1 := eA1t1z0 ∈
S13, and t2 > t1 be the smallest time such that z2 := eA3(t2−t1)z1 ∈ S32. We finally
choose t3 > t2 as the smallest time such that z3 := eA2(t3−t2)z2 ∈ S21. It turns out
that |z3| = 1.2671. Thus, the half turn, starting with z0 ∈ S21 and reaching z3 ∈ S21,
decreases the norm of the state by a factor of β := |z3|

|z0| = 0.8961. Due to the central
symmetry of the dynamics (that is, if x is a solution, then −x is also a solution) the
solution will reach the set R0 at the point β2[−1 1]> at time t̃3 = 2t3. Hence, the
set R1 := {αz0 : α ∈ [0, β2]} is (strictly) contained in the set C(t1;R0). To show
that R0 ⊂ co{C(t1;R0)}, it thus remains to check that

{αz0 : α ∈ [β2, 1]} ⊂ co{C(t1;R0)}. (4.7)

Property (4.7) is graphically illustrated in Figure 4.1 and is proven by the fact that
points a = [

√
2− 2

√
2]> ∈ S13 and b = [−

√
2 2−

√
2]> ∈ S32 satisfy |a| < |z1| and

|b| < |eA3(t2−t1)eA1t1z3|, and thus a, b ∈ C(t1;R0), and z0 = 1
2a+ 1

2b ∈ co{C(t1;R0)}.
Having already shown that 0 ∈ co{C(t1;R0)}, property (4.7) indeed holds. ♦
In Section 4.4, we will study conditions that lead to the construction of a Lyapunov
function for state-dependent switched systems. In particular, for the aforementioned
example, we will find matrices Pi > 0, i = 1, 2, 3 to show that the function V in
(4.4) is a Lyapunov function.

4.3 Stability Using Max-Min Functions
In this section, considering a particular class of locally Lipschitz functions, we use the
generalized derivatives, establishing sufficient stability conditions for system (4.1).

4.3.1 Max-Min Functions
The following definition was introduced by [101] in the context of path-complete
Lyapunov functions for discrete time switching systems.

Definition 4.2: Max-Min Functions

Consider an open and connected set O ⊂ Rn. Given K base functions
V1, . . . , VK ∈ C1(O,R), a max-min function VMm : O → R is either defined as

VMm(x) := max
j∈{1,...,J}

{
min
k∈Sj

{Vk(x)}
}
, (4.8a)

for some J ≥ 1 and nonempty sets S1, . . . , SJ ⊂ {1, . . . , K}, and, similarly, a
min-max function is defined as

VmM(x) = min
j∈{1,...,J?}

{
max
k∈S?

j

{Vk(x)}
}
, (4.8b)

for some J? ≥ 1 and nonempty sets S?1 , . . . , S?J? ⊂ {1, . . . , K}.
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The following proposition states the equivalence between (4.8a) and (4.8b), which
is obtained by applying the distributive property of the max min operators. For a
formal proof we refer to [97] and references therein. In the sequel, all our derivations
apply to both equivalent expressions (4.8a) and (4.8b) but for definiteness, we use
the notation adopted in (4.8a).

Proposition 4.3

Given J ≥ 1 (resp. J? ≥ 1), and S1, . . . SJ (resp. S?1 , . . . , S
?
J?) nonempty

subsets of {1, . . . , K}, there exists J? ≥ 1 (resp. J) and nonempty subsets
S?1 , . . . , S

?
J? (resp. S1, . . . SJ) of {1, . . . , K} such that expressions (4.8a) and

(4.8b) coincide, for all x ∈ O, and for any V1, . . . , VK ∈ C1(O,Rn).

We denote by Mm(V1, . . . , VK) the set of all the possible max-min functions
obtained from K base functions V1, . . . , VK . Given V ∈ Mm(V1, . . . , VK), it is
noted that at each point x ∈ O where a strict ordering holds between the values of
the base functions, that is, V`1(x) < V`2(x) < · · · < V`K (x), the function value V (x)
coincides with V˜̀(x), for some ˜̀ ∈ {1, . . . , K}. At points where two or more base
functions are equal, the function V may switch between different base functions.
For every ` ∈ {1, . . . K}, we may define the set where the function V` is active, more
precisely

C` := {x ∈ O | V (x) = V`(x)}, (4.9)

which are closed by continuity of V, V1, . . . , VK . We can thus associate a mapping
to every V ∈Mm(V1, . . . , VK).

Definition 4.4: Essentially-active index map

Given a function V ∈ Mm(V1, . . . , VK), the corresponding essentially-active
index map αV : O ⇒ {1, . . . , K} is defined as

αV (x) :=
{
` ∈ {1, . . . , K} | x ∈ int(C`)

}
, (4.10)

Indexes ` ∈ αV (x) are called essentially-active indexes of V at x.

We highlight that

αV (x) ⊂ {` ∈ {1, . . . , K} |V (x) = V`(x)}, ∀x ∈ O. (4.11)

To obtain the inclusion (4.11), consider any ` ∈ αV (x), then from Definition 4.4 and
O being open, there is a sequence xk → x such that xk ∈ int(C`), ∀ k ∈ N. By
continuity of V and V`, we have V (x) = limk→∞ V (xk) = limk→∞ V`(xk) = V`(x).
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Figure 4.2: A particular sublevel set of V (x) = max{V3(x),min{V1(x), V2(x)}}.

Remark 4.5: Max-Min functions as Piecewise C1 functions

Given V1, . . . , VK ∈ C1(O,Rn), it is easy to prove that the class of functions
Mm(V1, . . . , VK) is in particular a subset of the more general class of piecewise
C1 functions as introduced in Definition 3.5. In this sense, the map αV : O ⇒
{1, . . . , K}, corresponds to the map Ie introduced in (3.20); the αV -notation
was chosen only for readability reasons. Moreover the set appearing in the
right-hand side of inclusion (4.11) is called active index set in the context
of piecewise C1 functions, for example in [98] and [110, Chapter 4]. In the
following we will use results from the piecewise C1 theory, but we would like
to underline how functions in Mm(V1, . . . , VK) have even stronger properties,
due to its structure. This structure will be useful in what follows to develop
algorithms based on max-min candidate Lyapunov functions.

We emphasize that, in general, the inclusion in (4.11) is strict and equality
does not necessarily hold. To see this, and better understand the definition of αV ,
let us consider an example with three quadratic and positive definite base functions
V1, V2, V3 : R2 → R and the max-min function V (x) = max{V3(x),min{V2(x), V1(x)}}
of the form (4.4). In Figure 4.2, we show a particular sublevel set of V and high-
light two specific points xA, xB for checking the definition of αV . Locally around
xA, function V coincides with V3 and thus for (4.10) we have αV (xA) = {3}, even
though the active index set is {2, 3}, because xA /∈ ( int(C2)). On the other hand,
if we consider xB, where V1(xB) = V2(xB), we have αV (xB) = {1, 2} because V is
equal to both V1 and V2 in some open sets around xB.

Given x ∈ O, the essentially active index set αV (x) encodes all the necessary
informations to locally describe the function V , as formalized in what follows.

Lemma 4.6

Consider V ∈Mm(V1, . . . , VK). For each x ∈ O the set αV (x) is non empty
and there exists a neighborhood U of x such that

(z ∈ U)⇒ (∃ `z ∈ αV (x) such that V (z) = V`z(z)). (4.12)
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See [110, Propostion 4.1.1] for the proof in the general case of piecewise C1

functions.

4.3.2 Stability Conditions
The following statement draws connections between Clarke’s generalized gradient
∂V and the set-valued Clarke and Lie derivatives V̇F and V̇ F (we refer to Section 2.4
for the formal definitions) for a generic V ∈Mm(V1, . . . , VK), using the map αV .

Proposition 4.7: Generalized Derivatives for Max-Min Functions

Given V ∈Mm(V1, . . . , VK) and x ∈ O, the following equality holds

∂V (x) = co{∇V`(x) | ` ∈ αV (x)}. (4.13)

In particular, given F : Rn ⇒ Rn, the Clarke and Lie derivatives read

V̇F (x) = co{〈∇V`(x), f〉 | ` ∈ αV (x), f ∈ F (x)} (4.14)
V̇ F (x) = {a ∈ R | ∃f ∈ F (x) : a = 〈∇V`(x), f〉, ∀` ∈ αV (x)}. (4.15)

Proof : The proof of (4.13), together with the general statement in the piecewise
C1 setting, can be found in Lemma 3.7. Equivalences (4.14) and (4.15) then follow
recalling Definitions 2.16 and 2.22. ♦

We propose sufficient conditions for asymptotic stability of system (4.1) in terms
of V̇ F given in (4.15), while adopting the convention max ∅ = −∞. The following
statement can be seen as a specification of the general result presented in The-
orem 2.24, while restricting the class of candidate Lyapunov function to the set
Mm(V1, . . . , VK).

Theorem 4.8: Max-Min Lyapunov Functions

Given system (4.1), an open and connected set O ⊂ Rn such that 0 ∈ O,
and K positive-definite functions V1, . . . , VK ∈ C1(O,R), consider a max-min
function V ∈ Mm(V1, . . . , VK) with V̇ F given in (4.15). If there exists a
function γ ∈ PD such that, for every x ∈ O,

max V̇ F (x) ≤ −γ(|x|), (4.16)

then V is a Lyapunov function and system (4.1) is locally AS. If O = Rn and
in addition, each Vj, j ∈ {1, . . . , K}, is radially unbounded, then the origin
of (4.1) is GAS.

This result can be seen as a corollary of the more general statement presented in
Theorem 2.24, since, by Lemma 2.20, functions in Mm(V1, . . . , VK) are in particu-
lar non-pathological, since the class of non-pathological is in particular closed under
pointwise maximum or minimum. On the other hand, we present in what follows
an alternative and direct proof, which rely only on Definition 4.2. This reasoning
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underlines how the properties of pointwise maximum and minimum operators some-
how are reflected in the differential properties of functions V ∈ Mm(V1, . . . , VK),
and for that reason it is presented here.

A fundamental result for proving Theorem 4.8 appears in Lemma 4.9 given below.
The proof of Lemma 4.9 with some related discussions is deferred to Section 4.3.4.

Lemma 4.9

Consider a function V ∈ Mm(V1, . . . , VK) and a solution φ : [0, T ) → O of
the differential inclusion (4.1). For t ∈ [0, T ),

d

dt
V (φ(t)) exists almost everywhere and (4.17a)

d

dt
V (φ(t)) ∈ V̇ F (φ(t)) almost everywhere. (4.17b)

Proof : [Proof of Theorem 4.8] Since, by Definition 4.2, V involves min/max
operations over positive definite functions V1, . . . VK , it follows that V is positive
definite and, as shown in [82, Lemma 4.3], there exist class K functions χ and χ
such that

χ(|x|) ≤ V (x) ≤ χ(|x|), ∀x ∈ O. (4.18)

For the local version, there exists δ > 0, and a constant c > 0 such that B(0, δ) ⊂
EV (c) ⊂ O, where EV (c) := {x ∈ Rn |V (x) ≤ c} denotes a sublevel set of V . Given
a solution φ(·) of system (4.1) with φ(0) ∈ B(0, δ), the function V ◦ φ is absolutely
continuous. By Lemma 4.9, d

dt
(V ◦φ)(t) exists almost everywhere and by (4.16), we

have

d

dt
V (φ(t)) ≤ −γ(|φ(t)|) ≤ 0, (4.19)

almost everywhere. Due to the right inequality in (4.19), any solution φ(·) starting
in B(0, δ) remains in EV (c) for all t, therefore it is defined on R≥0 (i.e. it is complete).
Thus, we have d

dt
V (φ(t)) ≤ −γ ◦ χ−1(V (φ(t)), for almost all t ∈ R≥0, which ensures

asymptotic stability of the origin by standard comparison results.
For the global version, since V1, . . . , VK are radially unbounded, then so is V , and
we can choose χ, χ in (4.18) of class K∞. In this case, if additionally (4.16) holds
for all x ∈ Rn, then the origin is GAS. ♦

Recalling that, given any locally Lipschitz function V : Rn → R and any set
valued map F : Rn ⇒ Rn, it holds that V̇ F (x) ⊂ V̇F (x) for any x ∈ Rn, we
can state the following result specifically for (4.2), using the notion of Clarke’s
generalized derivative, which is generally more conservative than Theorem 4.8.
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Corollary 4.10

Consider the DI (4.2). Given an open and connected set O ⊂ Rn such that
0 ∈ O and K positive-definite functions V1, . . . , VK ∈ C1(O,R), consider a
max-min function V ∈Mm(V1, . . . , VK). Suppose that there exists a function
γ ∈ PD, such that for all x ∈ O,

〈∇V`(x), fi(x)〉 ≤ −γ(|x|), ∀ ` ∈ αV (x), (4.20)

for all i ∈ {1, . . . ,M}. Then the origin of (4.2) is AS and V is a Lyapunov
function for system (4.2). If O = Rn, and in addition, each Vj, j ∈ {1, . . . , K},
is radially unbounded, then the origin of (4.2) is GAS.

Proof : Consider a point x ∈ O, and suppose that αV (x) = {`1, . . . , `p}. Recall-
ing (4.13), for each v ∈ ∂V (x), there exist λ1, . . . , λp ≥ 0, ∑p

j=1 λj = 1, such that
v = ∑p

j=1 λj∇V`j (x). Consequently, for each i ∈ {1, . . . ,M}, (4.20) yields

〈v, fi(x)〉 =
p∑
j=1

λj〈∇V`j (x), fi(x)〉 ≤ −
p∑
j=1

λjγ(|x|) = −γ(|x|),

which implies that 〈v, f〉 ≤ −γ(|x|), for each v ∈ ∂V (x), and every f ∈ co
{
fi(x) | i ∈

{1, . . . ,M}
}
, i.e. max V̇F (x) ≤ −γ(|x|), for all x ∈ O. Since V̇ F (x) ⊂ V̇F (x), the

result follows from Theorem 4.8. ♦
This result, as the precedent, can be seen as the specification, for max min func-
tions, of the general statement presented in Theorem 2.18. While Theorem 4.8 is
stated for a general differential inclusion (4.1), we chose to present Corollary 4.10
for system (4.2) only. The main reason is that the right-hand side of (4.2) is a con-
tinuous set-valued map, and in this case it is not restrictive to consider the Clarke
gradient-based condition (cfr. Section 2.4 and Proposition 3.1).

In the following subsection, we provide a geometric interpretation of the set-
valued Lie derivatives for max-min functions.

4.3.3 Geometry of V̇ F (x)

The developments in this subsection are of independent interest and provide in-
sight into the stability conditions given in the previous section. To avoid excessive
notation we consider the case O = Rn. Given V1, . . . , VK ∈ C1(Rn,R), consider a
function V ∈Mm(V1, . . . , VK) and a point x̃ where V is not differentiable. Denote
αV (x̃) = {`1, . . . , `p}. It follows from (4.11) that

x̃ ∈ S := {x ∈ Rn |V`1(x) = · · · = V`p(x)}. (4.21)
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Consider the map G : Rn → Rp−1 defined by

G(x) :=



V`1(x)− V`2(x)

V`1(x)− V`3(x)
...

V`1(x)− V`p(x)


(4.22)

then x̃ ∈ S in (4.21) is equivalent to the condition G(x̃) = 0 ∈ Rp−1. In order to
apply the inverse function theorem we suppose that the Jacobian matrix of G at x̃
has maximal rank, that is,

rank (JG(x̃)) = rank



∇V`1(x̃)−∇V`2(x̃)

∇V`1(x̃)−∇V`3(x̃)
...

∇V`1(x̃)−∇V`p(x̃)


= p− 1,

namely x̃ is a regular point of G. By [13, Corollary 1.3.7], if x̃ is a regular point,
locally around x̃ the set S is a (n − p + 1)-dimensional C1-manifold, and then the
tangent space TS(x̃) is well defined.

Proposition 4.11

Given V1, . . . , VK ∈ C1(Rn,R), let us consider a function V ∈
Mm(V1, . . . , VK). If x̃ is a regular point of G : Rn → Rp−1 given in (4.22)
with p ≤ K, then the Lie derivative in (4.15) satisfies

V̇ F (x̃) = {〈∇V`(x̃), f〉 | ∀` ∈ αV (x̃), ∀f ∈ TS(x̃)}, (4.23)

where S is given in (4.21).

Proof : Using Proposition 4.7, it is enough to show equivalence between (4.15)
and (4.23). To this end we need to show that a vector f ∈ TS(x̃) if and only if

∇V`1(x̃)>f = · · · = ∇V`p(x̃)>f. (4.24)

By definition of the tangent space, f ∈ TS(x̃) if and only if there exists a differen-
tiable curve φ : (−1, 1) → Rn with φ(t) ∈ S for all t ∈ (−1, 1) such that φ̇(0) = f ,
φ(0) = x̃. From the definition of S in (4.21), we have G(φ(t)) = 0 for all t ∈ (−1, 1),
therefore

0 = d

dt

(
V`j (φ(t))− V`k(φ(t))

)
|t=0

= ∇V`j (φ(0))>φ̇(0)−∇V`k(φ(0))>φ̇(0)
= ∇V`j (x)>f −∇V`k(x)>f,
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(a) The vector fields f1(x̃) and f2(x̃) are
pointing in the same half-plane, which
corresponds to the case V̇ F sw(x̃) = ∅.

(b) A convex combination of the vec-
tor fields f1(x̃) and f2(x̃) aligns with
the tangent space of S12 at x̃ and thus,
V̇ F sw(x̃) 6= ∅.

Figure 4.3: A geometric interpretation of the set V̇ F sw(x̃) in R2.

for all `j, `k ∈ αV (x), and hence (4.24) holds. ♦
Summarizing, given a point x ∈ Rn where the function V ∈Mm(V1, . . . , VK) is not
differentiable, and under the assumption that x is a regular point, this proposition
gives us an intuitive criterion to establish if the set V̇ F (x) is empty or not. Roughly
speaking V̇ F (x) is nonempty if and only if there exists at least one vector f ∈ F (x)
that points inside the surface S in (4.21), where V is not differentiable.

In Figure 4.3 we propose a graphic representation in the plane of this result in
the state-dependent switching case.

4.3.4 Proof of Lemma 4.9
Lemma 4.9 is the key result used in the proof of Theorem 4.8, establishing properties
of the directional derivative of V ∈Mm(V1, . . . , VK) along the solutions of (4.1). In
its proof we will use the following result.

Claim 1 Given functions ξ1, . . . ξJ : R→ R continuous at 0, we have that

lim
h→0

min
j∈{1,...,J}

ξj(h) = min
j∈{1,...,J}

lim
h→0

ξj(h).

Proof : [Proof of Claim 1] Define ξ(h) := minj∈{1,...,J} ξj(h) for all h ∈ R; ξ is
continuous at 0 since it is the pointwise minimum of continuous functions. We have

lim
h→0

min
j∈{1,...,J}

ξj(h) = lim
h→0

ξ(h) = ξ(0)

= min
j∈{1,...,J}

ξj(0) = min
j∈{1,...,J}

lim
h→0

ξj(h),

thus concluding the proof. ♦
Proof : [Proof of Lemma 4.9] Recalling that φ(·) is an absolutely continuous solution
of the differential inclusion (4.1) and that V is a locally Lipschitz function, the
function V ◦ φ : [0, T ) → R is absolutely continuous, and hence d

dt
V (φ(t)) exists
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almost everywhere in [0, T ), proving (4.17a). Moreover, there exists a set N0 of
measure zero such that, for every t ∈ [0, T ) \N0, both φ̇(t) and d

dt
V (φ(t)) exist, and

φ̇(t) ∈ F (φ(t)).
To prove (4.17b), from Proposition 4.3, we use the equivalent representation (4.8b)
of V ∈Mm(V1, . . . , VK), dropping the superscript “?” for notational simplicity, that
is

V (x) := min
j∈{1,...,J}

{
max
`∈Sj

{V`(x)}
}
,

where J ≥ 0 and S1, . . . , SJ are non-empty subsets of {1, . . . , K}. By Lemma 4.6,
for each t ∈ [0, T ), and for each x in a neighborhood of φ(t), V (x) can be expressed
as

V (x) := min
j∈{1,...,J}

{
max

`∈Sj∩αV (φ(t))
{V`(x)}

}
;

namely, only the essentially active indexes in αV (φ(t)) play a role (possibly ruling
out the sets Sj for which Sj ∩ αV (φ(t)) = ∅). Let us introduce the notation

V j(x) := max
`∈Sj∩αV (φ(t))

{V`(x)}. (4.25)

To proceed in a constructive manner, consider the set M(V1, . . . , VK) containing all
the functions obtained by max (and only max) combination over V1, . . . , VK . The
cardinality of M(V1, . . . , VK) is finite and equal to NK := 2K − 1 and we can denote
its elements by Wk, for k ∈ {1, . . . , NK}. Reasoning as before, for each k define
Nk as the subset of [0, T ) where Wk ◦ φ is not differentiable. Since Wk are locally
Lipschitz, then each Nk has measure zero. Fix any t ∈ [0, T ) \ (⋃k∈{0,...,NK}Nk).
From the fact that V j in (4.25) is locally Lipschitz for each j ∈ {1, . . . , J}, we
obtain

d

dt
V j(φ(t)) = lim

h→0

V j(φ(t) + hφ̇(t))− V j(φ(t))
h

, (4.26)

where the limit exists because t /∈ ⋃k∈{1,...,NK}Nk. The functions V j in (4.25) are
regular (Definition 2.14). We can follow the idea of [9, Lemma 1]: by letting h go
to zero from the right, recalling inclusion (4.11), we get

d

dt
V j(φ(t)) = max

`∈Sj∩αV (φ(t))

{
∇V`(φ(t))>φ̇(t)

}
. (4.27)

Similarly, by letting h go to zero from the left in (4.26), we get

d

dt
V j(φ(t)) = min

`∈Sj∩αV (φ(t))

{
∇V`(φ(t))>φ̇(t)

}
. (4.28)

Since d
dt
V j(φ(t)) exists, we have (4.27)=(4.28), and thus for each j ∈ {1, . . . , J} we

can write, for all ` ∈ Sj ∩ αV (φ(t)),

d

dt
V j(φ(t)) = ∇V`(φ(t))>φ̇(t) =: aj(t). (4.29)
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Now consider the function V (x) = minj∈{1,...,J}
{
V j(x)

}
, for x in some neighborhood

of φ(t). For all h > 0, we use the fact that V j(φ(t)) = V (φ(t)) for all j ∈ {1, . . . , J},
to obtain

ξ(h) := V (φ(t) + hφ̇(t))− V (φ(t))
h

= minj{V j(φ(t) + hφ̇(t))} − V (φ(t))
h

= min
j∈{1,...,J}

{
V j(φ(t)+hφ̇(t))−V j(φ(t))

h

}
=: min

j∈{1,...,J}
ξj(h).

Then, applying Claim 1 and (4.29) we have

d

dt
V (φ(t)) = lim

h→0+
min

j∈{1...J}
{ξj(h)} = min

j∈{1...,J}

{
lim
h→0+

ξj(h)
}

= min
j∈{1,...,J}

{
d

dt
V j(φ(t))

}
= min

j∈{1,...,J}
{aj(t)}. (4.30)

Using again Claim 1, we can also write

d

dt
V (φ(t)) = lim

h→0−
V (φ(t) + hφ̇(t))− V (φ(t))

h

= − lim
h→0−

(
min

j∈{1,...,J}

{
V j(φ(t) + hφ̇(t))− V j(φ(t))

−h

})

= − min
j∈{1,...,J}

{
lim
h→0−

V j(φ(t) + hφ̇(t))− V j(φ(t))
−h

}
= − min

j∈{1,...,J}
{−aj(t)} = max

j∈{1,...,J}
{aj(t)}. (4.31)

Summarizing, from (4.30) and (4.31), it follows that a1(t) = · · · = aJ(t) := a(t).
Therefore, from (4.29) we get, for each j ∈ {1, . . . , J}, that ` ∈ Sj∩αV (φ(t)) implies
∇V`(φ(t))>φ̇(t) = a(t). Finally, recalling that αV (φ(t)) = ⋃

j Sj ∩ αV (φ(t)), we have

∇V`(φ(t))>φ̇(t) = a(t), ∀` ∈ αV (φ(t)).

From (4.15), it follows that a(t) ∈ V̇ F (φ(t)), which then implies (4.17b). ♦

4.4 Application to Switched Systems
We now focus our attention on system (4.3), and more specifically we will study
the arising Filippov regularization. We briefly recall here the material presented in
Section 2.2:

Consider a family of vectro fields {f1, . . . , fM} ⊂ C1(Rn,Rn) in (4.3). A switching
signal σ : Rn → I := {1, . . .M} switching signal is defined starting with a proper
partition X = {Xi,Oi}i∈{1,...,M} of the state space, as introduced in Definition 2.4.
We recall here the formal definition:
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Definition 4.12: State-Dependent Switching Signal

Given X = {Xi,Oi}i∈I a proper partition of Rn, a state-dependent switching
signal associated to X is a function σ : Rn → I such that

σ(x) = i, if x ∈ int(Xi), (4.32)

Note that, in Definition 4.12 the value of σ remains unspecified on ∂Xi, i.e.
the boundaries of Xi, i = {1, . . . ,M}. Since ∂Xi by definition has zero Lebesgue
measure, this ambiguity will not affect the solution set of (4.3).

Given f1, . . . , fM ∈ C1(Oi,Rn) and σ : Rn → {1, . . . ,M} as in Definition 4.12 ,
we define f sw : Rn → Rn, as

f sw(x) := fσ(x)(x). (4.33)

Because the vector field in (4.33) is in general discontinuous, we define an appropriate
notion of solution of (4.33), arising from the Filippov regularization.

Definition 4.13: Filippov Regularization, [54]

Given f sw : Rn → Rn in (4.33), and the system

ẋ(t) = f sw(x(t)), (4.34)

define the set-valued Filippov regularization

ẋ ∈ F sw(x) :=
⋂
δ>0

⋃
µL(S)=0

co{fσ(y)(y) | y ∈ B(x, δ) \ S}. (4.35)

For the vector field f sw in (4.33), the computation of F sw is simplified as observed
in Section 2.2 and summarized again here:

Proposition 4.14

Consider the vector field f sw in (4.33) with σ as in Definition 4.12 . Introduce
again, the set-valued map IX : Rn ⇒ {1, . . . ,M} as

IX (x) := {i | x ∈ Xi} (4.36)

then F sw in (4.35) satisfies

F sw(x) = co{fi(x) | i ∈ IX (x)}. (4.37)

We underline again that the Filippov regularization F sw is an outer semicontinu-
ous map with F sw(x) being nonempty, compact, and convex for each x ∈ Rn. Thus,
we can study stability of switched systems in (4.33) using the results developed in
Section 4.3. Defining V̇ F sw(x) as in (4.15) with F replaced by F sw, Theorem 4.8
leads to the following statement in the context of switched systems.
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Theorem 4.15

Consider system(4.3), and a switching law σ : Rn → {1, . . . ,M} as in Defin-
ition 4.12. Consider an open and connected set O ⊂ Rn such that 0 ∈ O
and K positive-definite functions V1, . . . , VK ∈ C1(O,R). If, for a max-min
function V ∈Mm{V1, . . . , VK}, there exists γ ∈ PD such that

max V̇ F sw(x) ≤ −γ(|x|), ∀x ∈ O, (4.38)

then the origin of (4.35) is AS. If O = Rn, and each Vj, j ∈ {1, . . . , K}, is
radially unbounded, then (4.35) is GAS.

Theorem 4.15 simultaneously accounts for points x where IX (x) (associated to
σ), and/or points where αV (x) (associated to V ) are multivalued. Interesting things
happen when these points coincide, namely when V mimics the patchy shape of
F sw.

As an example, consider the simplest non-trivial case, taking an x̃ ∈ O such
that IX (x̃) = {1, 2} and αV (x̃) = {`1, `2}, for some `1, `2 ∈ {1, . . . , K}. We may
give a geometric interpretation of (4.38). Parameterizing an f ∈ F sw(x̃) with f =
λf1(x̃) + (1− λ)f2(x̃) in expression (4.15), we have that V̇ F sw(x̃) 6= ∅, if and only if
there exists λ ∈ [0, 1] such that (we omit the argument x̃ of the gradients to simplify
the notation),

λ(∇V`1 −∇V`2)>f1(x̃) = −(1− λ)(∇V`1 −∇V`2)>f2(x̃),

which holds only if(
(∇V`1 −∇V`2)>f1(x̃)

) (
(∇V`1 −∇V`2)>f2(x̃)

)
≤ 0.

It follows that V̇ F sw(x̃) 6= ∅ only if the vector fields f1(x̃) and f2(x̃) are such
that the inner product of their respective components, normal to the hypersurface
S12 = {x ∈ Rn |V`1(x) = V`2(x)} is negative, namely they do not point both on the
same side of S12. Figure 4.3 provides an illustration of this fact in the planar case.

In Example 4.2, an illustration of this idea is provided.

Example 4.2 We consider a system of the form (4.3) and analyze its stability us-
ing Theorem 4.15. Given A1 =

[
−0.1 1
−5 −0.1

]
, A2 =

[
−0.1 −5

1 −0.1

]
and Q = [ 1 0

0 −1 ], consider
the switched system

ẋ =
f1(x) := A1x− bg̃(x), if x>Qx < 0,
f2(x) := A2x− bg̃(x), if x>Qx > 0,

(4.39)

where b ≥ 0, and function g̃ : R2 → R2 is defined as

g̃(x1, x2) =

g(x1)

g(x2)

 =

arctan(x1)

arctan(x2)

 .
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0.5 1

0.5

1

S1

x1

x2

(a) The blue line shows a
trajectory starting from (0, 1),
the red line a trajectory start-
ing from (0.5, 0) and the red
dashed line indicates a level set
of V (x).

S2 S1

(b) The red arrows represent
the vector field on the whole
state-space. Let us note the
converging sliding motion on
the line S1 and diverging on the
line S2.

x2

x1

S2 S1

(c) The blue arrows represent
the elements of Ffsw (x), and in
particular the convex combin-
ation of f1(x) and f2(x) that
is pointing toward 0 near the
origin and diverging away from
the origin.

Figure 4.4: Trajectories of switched system (4.39) in Example 4.2.

It is clear the the proper partition defining the switching rule in (4.39) arises from
the proper partition X1 := {x ∈ R2 | x>Qx ≤ 0},X2 := {x ∈ R2 | x>Qx ≥ 0} and
O1,O2 = R2. Consider now P1 = [ 5 0

0 1 ], P2 = [ 1 0
0 5 ], we prove that

V (x) = min{x>P1x, x
>P2x}

is a Lyapunov function in the sense of Theorem 4.15. Noting that P1−P2 = 4Q, we
can say that the points where V is not differentiable coincide with the points where
σ is not continuous. To show inequality (4.38), we proceed in three steps:
Step 1: Each subsystem is GAS. Analyzing each subsystem where V is differentiable,
it can be shown that

∇V (x)>f ≤ −0.1|x|2, ∀f ∈ F sw(x), if x>Qx 6= 0.

The next step is to check the inequality (4.38) where V is not differentiable, that is
on the lines S1 := {x ∈ R2 | x2 = x1}, and S2 := {x ∈ R2 | x2 = −x1}, so that
S1 ∪ S2 is the set where x>Qx = 0.
Step 2: Line S1 with converging sliding motion. We compute the set-valued derivative
V̇ F sw(x) for a point x ∈ S1. Based on (4.15), it is seen that

λx>(P1 − P2)f1(x) + (1− λ)x>(P1 − P2)f2(x) = 0 (4.40)

holds with λ = 0.5, for every x ∈ S1. Consequently, for each x ∈ S1, we have
V̇ F sw(x) =

{
2x>P1

(
1
2f1(x) + 1

2f2(x)
)}

=
{
x>P1 (A1x+ A2x)− 2b x>P1g̃(x)

}
. By

construction, the same singleton would be obtained if we replaced P1 by P2. Substi-
tuting the values of Ai and Pi, i = 1, 2, it thus follows that max V̇ F sw(x) < −25

2 |x|
2,

∀x ∈ S1. In Figure 4.4(a), we have plotted two converging “sliding” solutions.
Step 3: Line S2 with diverging sliding motion. Choosing x ∈ S2, and follow-
ing the same reasoning as in Step 2, it is seen that the set V̇ F sw(x) is nonempty
because (4.40) holds with λ = 0.5, for every x ∈ S2. As a result, V̇ F sw(x) =
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{
x>P1(A1x+ A2x) + 2b x>P1g̃(x)

}
. Analyzing the linear term, we have x>P1(A1x+

A2x) = 22.8x2
1 ; for the nonlinear term, for each x ∈ S2, we have

−2b x>P1g̃(x) = −12b x1g(x1).

For x1 small enough, we see that x1g(x1) = x1 arctan(x1) = x2
1 + o(x2

1) where
limx1→0

o(x2
1)

x2
1

= 0. Thus, for sufficiently large values of b > 0, there exists a δ > 0
such that

V̇ F sw(x) = 22.8x2
1 − 12bx2

1 + o(x2
1) < −0.1|x|2, (4.41)

if x ∈ S2 and |x| < δ.
Combining the three steps we proved (4.38) (with γ(|x|) = 0.1|x|2) for a small open
neighborhood O = B(0, δ) of the origin, and Theorem 4.15 establishes local asymp-
totic stability of the origin by using the minimum of two quadratics as a Lyapunov
function. Condition (4.38) fails to be true on the line S2, away from the origin
regardless of the selection of b > 0. Hence, there exist Filippov solutions, starting in
S2 with large enough initial condition that stay in S2 and diverge; see Figure 4.4 for
a graphical illustration. We want to underline that, since x>(A>1 P2 + A1P2)x > 0
for all x ∈ S2, recalling (4.14), it holds that max V̇F (x) > 0, ∀ x ∈ S2. This obser-
vation again shows the utility of using Lie derivative compared to Clarke derivative
which does not allow establishing asymptotic stability of the origin in this case. It is
also interesting to note that the set of initial values leading to instable behavior (the
line S2) has measure zero, and thus the system can be consider as “GAS” almost
everywhere. Moreover, since on S2 we have repelling sliding, for all the initial con-
dition in S2 there exists at least one solution (in fact two) that is converging. This
interesting property is deeply analyze in the recent paper [71], where a new concept
of solutions avoiding this phenomenon is introduced. 4

4.5 Linear Switched Systems and Quadratic Basis
We are now interested in applying Theorem 4.15 to switched systems (4.33) with
linear vector fields and a partition given by symmetric cones. More precisely, given
A1, . . . , AM ∈ Rn×n, we consider the differential inclusion

ẋ ∈ F sw
lin (x) := co{Aix | i ∈ IX (x)}. (4.42)

The set valued map IX : Rn ⇒ {1, . . . ,M} arises from a switching function x 7→ σ(x)
as in Definition 4.12, where the sets X1, . . . , XM ⊂ Rn are defined by

Xi := {x ∈ Rn | x>Qix > 0}, (4.43)

with properly chosen symmetric matrices Qi ∈ Sym(Rn) := {R ∈ Rn×n | R> = R}
and Qi not negative semidefinite for each i ∈ {1, . . . ,M}. The sets Xi in (4.43) are
symmetric closed cones (if x ∈ Xi then λx ∈ Xi for all λ ∈ R \ {0}). The map
IX : Rn ⇒ {1, . . . ,M} in (4.36), can be rewritten in this context as follows:

IX (x) := {i ∈ {1, . . . ,M} | x>Qix ≥ 0}.
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Indeed Qi not negative semidefinite implies Xi = {x ∈ Rn |x>Qix ≥ 0}.
Remark 4.16

Another possible kind of partition of the state space arises by consider-
ing polyhedral cones (with a common vertex at the origin), that is sets
X1, . . . , XM ⊂ Rn defined by linear inequalities Xi := {x ∈ Rn |Kix ≥c 0},
where Ki ∈ Rki×n, for all i ∈ {1, . . . ,M} and ≥c denotes the component-wise
relation. The techniques employed in what follows could be adapted also to
this case.

We restrict our attention to Lyapunov functions homogeneous of degree 2, consid-
ering max-min functions obtained from quadratic forms. This choice is motivated by
the fact that, as proved in [68], max of quadratics Lyapunov functions are universal
(existence is sufficient and necessary) for GAS of linear differential inclusions (LDI).
For linear state-dependent switched systems (4.42), as we noted, non-convex (but
still homogeneous) Lyapunov functions are required, and thus the min-operator was
added to have this flexibility. The study of universality for max-min of quadratics
for (4.42) is open for further research. The construction of “piecewise” quadratic
Lyapunov functions, in similar settings, is studied also in [77], [59], and references
therein.

Definition 4.17

Given K distinct, symmetric and positive definite matrices P1, . . . PK ∈ Rn×n,
a max-min of quadratics is denoted by V ∈Mmq (P1, . . . , PK), and is defined
as

V (x) = max
j∈{1,...,J}

{
min
k∈Sj

{
x>Pkx

}}
, (4.44)

where J ≥ 1 and for each j ∈ {1, . . . , J}, the set Sj ⊂ {1, . . . , K} is nonempty.

Remark 4.18: Homogeneity

Since the sets Xi are symmetric cones, the set-valued map in (4.42) is homo-
geneous of degree 1, in the sense that F sw

lin (λx) = λF sw
lin (x), ∀x ∈ Rn,∀λ ∈ R.

Similarly, a max-min of quadratics function defined as in (4.44) is homo-
geneous of degree 2, that is V (λx) = λ2V (x), ∀x ∈ Rn,∀λ ∈ R, and αV is
constant along rays emanating from the origin, that is αV (λx) = αV (x), ∀x ∈
Rn, ∀λ ∈ R \ {0}.

4.5.1 Stability Conditions with Set-Valued Lie Derivative
We first specialize the conditions of Theorem 4.15 for system (4.42) with V of the
form (4.44). To this end, points x ∈ Rn where αV (x) = {`(x)} is a singleton
are easily characterized because they satisfy x ∈ int(C`(x)). Instead, consider any
x ∈ Rn, such that αV (x) = {`1, . . . , `p} with p > 1, namely any point x where
the locally Lipschitz function V is not continuously differentiable. Define now the
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probability simplex of dimension m as

Λm
0 := {λ ∈ Rm

≥0 |
m∑
j=1

λj = 1}.

Denoting IX (x) = {i1, . . . , im} ⊆ {1, . . . ,M} by (4.15) we have that V̇ F sw
lin

(x) 6= ∅ if
and only if there exist λ = (λ1, . . . , λm) ∈ Λm

0 such that

∇V`k+1(x)>
 m∑
j=1

λjAijx

 = ∇V`k(x)>
 m∑
j=1

λiAijx

 , (4.45)

for each k ∈ {1, . . . , p − 1}. Based on (4.45), define the set Λ(x, {Ai}i∈IX (x)) ⊂ Λm
0

as

λ ∈ Λ(x, {Ai}i∈IX (x)) ⇔


∑m
j=1 λjx

>(P`2 − P`1)Aijx = 0,
... ... ...∑m

j=1 λjx
>(P`p − P`p−1)Aijx = 0,

(4.46)

where λ = (λ1, . . . , λm) ∈ Λm
0 . Then, recalling (4.15), we have

` ∈ αV (x) ⇒ V̇ F sw
lin

(x) =
{

2x>P`(λ1Ai1 + · · ·+ λmAim)x :
(λ1, · · · , λm) ∈ Λ(x, {Ai}i∈IX (x))

}
. (4.47)

The characterization provided by (4.47) is used to prove the next corollary of The-
orem 4.15.

Corollary 4.19

Consider system (4.42) and a max-min of quadratics V ∈Mmq (P1, . . . , PK),
where P1, . . . , PK are symmetric, positive-definite, and pairwise distinct
matrices. Suppose that there exists ε > 0 such that

(i) For each x ∈ Rn with αV (x) = {`} and IX (x) = {i} being singletons, it
holds that

x>(A>i P` + P`Ai)x ≤ −ε|x|2. (4.48)

(ii) For each x ∈ Rn satisfying αV (x) = {`1, . . . , `p} ⊂ {1, . . . , K}, with p > 1,
and IX (x) = {i1, . . . , im} ⊂ {1, . . . ,M} with m > 1, there exists ` ∈ αV (x)
such that ∑

i∈IX (x)
λix
>(P`Ai + A>i P`)x ≤ −ε|x|2, (4.49)

for all (λ1, . . . , λm) ∈ Λ(x, {Ai}i∈IX (x)).

Then the origin of (4.42) is GAS.

Proof : It follows from Theorem 4.15 that the origin of (4.42) is GAS if (4.38)
holds for all x ∈ Rn. We will proceed by analyzing four cases, depending on whether
the sets IX (x) and αV (x) are singletons or not.
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First, consider x such that αV (x) = {`} and IX (x) = {i} are singletons. In this
case,

V̇ F sw
lin

(x) =
{
x>(A>i P` + P`Ai)x

}
≤ −ε|x|2,

where the inequality is due to condition (i).
Secondly, for a point x with αV (x) = {`1, . . . , `p}, with p > 1, and IX (x) =
{i1, . . . , im} withm > 1, it follows from (4.47) and condition (ii) that max V̇ F sw

lin
(x) ≤

−ε|x|2.
Next, consider the case where αV (x) = {`} is a singleton and IX (x) = {i1, . . . , im}
with m > 1, that is a point where V is continuously differentiable and the set F sw

lin (x)
in (4.42) is multivalued. We thus have ∂V (x) = {∇V`(x)}, and from linearity we
have

max V̇ F sw
lin

(x) ≤ max
λ∈Λm

0

m∑
j=1

2λjx>P`Aijx = 2x>P`Ai?x, (4.50)

where i? ∈ arg maxi=i1,...,im 2x>P`Aix. Since i? ∈ IX (x), by (4.36) x ∈ Xi? ; from
item (i) we have

x>k (A>i?P` + P`Ai?)xk ≤ −ε|xk|2.
for some sequence xk → x with xk ∈ int(Xi?) ∩ int(C`), ∀k ∈ N. By continuity we
thus have x>(A>i?P` + P`Ai?)x ≤ −ε|x|2, and from (4.50) we have max V̇ F sw

lin
(x) ≤

−ε|x|2.
Finally, we consider the case αV (x) = {`1, . . . , `p} with p > 1 and IX (x) = {i},
namely a point where the function V is not continuously differentiable and the set
F sw

lin (x) is a singleton, since x ∈ int(Xi). If V̇ F sw
lin

(x) = ∅ we are done. Otherwise, in
view of (4.46), V̇ F sw

lin
(x) 6= ∅ implies

{2x>P`1Aix} = · · · = {2x>P`pAix} = V̇ F sw
lin

(x). (4.51)

Considering, without loss of generality, the index `1 ∈ αV (x), by Definition 4.4 we
can consider a sequence xk → x such that xk ∈ int(Xi)∩ int(C`1), for all k ∈ N. By
condition (i) we have

x>k (A>i P`1 + P`1Ai)xk ≤ −ε|xk|2, ∀ k ∈ N.

By continuity we have x>(A>i P`1 +P`1Ai)x ≤ −ε|x|2; recalling (4.51), it implies that
max V̇ F sw

lin
(x) ≤ −ε|x|2.

Having analyzed all the cases, we conclude that (4.38) holds for all x ∈ Rn and the
assertion follows from Theorem 4.15. ♦

4.5.2 Checking Item (i) of Corollary 4.19
In this section, we exploit the properties of system (4.42) and the family of candidate
max-min Lyapunov functions in (4.44) to computationally check condition (i) of
Corollary 4.19. We do so by following two steps: first, fixing K ≥ 1, J ≥ 1,
nonempty subsets S1, . . . , SJ ⊂ {1, . . . , K}, and hence the corresponding max-min
combination in (4.44), we construct an auxiliary function Φ, which characterizes
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Algorithm 0: The function Φ : SK → {1, . . .K}.
Data: K ∈ N, J ≥ 1, S1, . . . , SJ ⊂ {1, . . . K}
Input: ρ = (ρ1, . . . , ρK) ∈ SK
Output: out = ΦK,J,S1,...,SJ

(ρ)
Function ΦK,J,S1,...,SJ

(ρ):
Set: out = 0, Smin = ∅,
for (j = 1, j ≤ J, j = j + 1) do

for (i = 1, i ≤ K, i = i+ 1) do
if ρi ∈ Sj then

Add ρi to Smin, break
end

end
end
for (j = J, j ≥ 0, j = j − 1) do

if ρj ∈ Smin then
out = ρj, break

end
end
return out

End Function

the regions where αV : Rn ⇒ {1, . . . , K} is single-valued. Notably, this function
is independent of P1, . . . , PK . Secondly, we use Φ to compute matrices P1, . . . , PK
satisfying item (i) of Corollary 4.19 by only checking the feasibility of a finite set of
matrix inequalities. The details of implementing these two steps now follow:

Step 0 Consider the symmetric group of order K denoted by SK, which is the
group of all possible permutations of the first K positive integers. Given any K
pairwise distinct quadratic functions associated to some P1, . . . , PK > 0, for any
ρ = (ρ1, . . . , ρK) ∈ SK, define the open set

Eρ :=
{
x ∈ Rn | x>Pρ1x < · · · < x>PρK

x
}
, (4.52)

which is a cone (possibly empty) where a strict ordering among the K quadratic
functions holds. For a given max-min combination in (4.44), namely given J ≥ 1
and nonempty sets Sj ⊂ {1, . . . , K}, ∀j ∈ {1, . . . , J}, in each Eρ the function
αV : Rn ⇒ {1, . . . , K} defined in (4.10) is constant and single valued; let us denote
it by Φ(ρ) := αV (Eρ) ∈ {1, . . . , K}. 4

In Algorithm 0, we present how to numerically construct Φ : SK → {1, . . . , K},
independently of matrices (P1, . . . , PK).
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Algorithm 1: Lyapunov conditions: Differentiable case.
Data: A1, . . . , AM ∈ Rn×n, Q1, . . . , QM ∈ Sym(Rn).
Initialization: Choose the max-min structure:
Take K ∈ N, J ≥ 1, S1, . . . SJ ⊂ {1, . . .K}, construct Φ : SK → {1, . . . ,K}
(Algorithm 0).
Lyapunov conditions on Eρ, ∀ρ ∈ SK :
(Step 1) Check the feasibility of

A>i PΦ(ρ) + PΦ(ρ)Ai +
K−1∑
k=1

τi,k(ρ)(Pρk+1 − Pρk
) + βi(ρ)Qi < 0,

P1, . . . PK > 0, βi(ρ), τi,k(ρ) ≥ 0, ∀ ρ = (ρ1, . . . , ρK) ∈ SK ,

k ∈ {1, . . . ,K − 1}, i ∈ {1, . . . ,M}.

(4.54)

if (4.54) are feasible then
Output: Matrices (P1, . . . , PK)

else
Output: ∅

end

Remark 4.20

We emphasize that the function Φ is independent of P1, . . . , PK , but only
depends on the max-min policy defined by sets S1, . . . SJ . As an example,
considering J = K and Sj = {j}, the max-min combination (4.44) coincides
with the maximum of the K quadratic functions. In this case, Φ will be
defined as Φ((ρ1, . . . , ρK)) = ρK , ∀ρ = (ρ1, . . . , ρK) ∈ SK , because of (4.52).
Also, to relate Φ with αV , it is seen that for any K base quadratics defined
by (P1, . . . , PK) with a specific max-min combination determined by V , the
mapping αV in (4.10) corresponds to αV (x) = ⋂

ε>0{Φ(ρ) |Eρ ∩ B(x, ε) 6= ∅}.

Next, in Step 1, we use the function Φ to check condition (i) of Corollary 4.19:

Step 1 (Conditions on Eρ) Consider system (4.42), and take K ∈ N, J ≥ 1 and
S1, . . . SJ ⊂ {1, . . . K} nonempty sets. Find P1, . . . , PK > 0, βi(ρ) ≥ 0, τi,k(ρ) ≥
0, ∀ ρ = (ρ1, . . . , ρK) ∈ SK, ∀ k ∈ {1, . . . , K − 1}, and ∀i ∈ {1, . . . ,M}, such that

A>i PΦ(ρ) + PΦ(ρ)Ai +
K−1∑
k=1

τi,k(ρ)(Pρk+1 − Pρk
) + βi(ρ)Qi < 0. (4.53)

In Proposition 4.21 below, we prove that the feasibility of Step 1 yields K matrices
such that condition (i) of Corollary 4.19 holds, while in Algorithm 1 we formalize
this step of computationally checking condition (4.53).
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Proposition 4.21

Consider K ∈ N, J ≥ 1, S1, . . . , SJ ⊂ {1, . . . K} non-empty, (P1, . . . , PK) pos-
itive definite matrices and V defined as in (4.44). If, for any ρ = (ρ1, . . . , ρK) ∈
SK , any i ∈ {1, . . . ,M} and any k = {1, . . . , K − 1}, there exist βi(ρ) ≥ 0,
τi,k(ρ) ≥ 0 such that (4.53) holds, then item (i) of Corollary 4.19 holds.

Proof : The set Eρ ∩ int(Xi) can be written as

Eρ ∩ int(Xi) =
{
x ∈ Rn

∣∣∣∣∣ x
>Qix > 0 ∧ x>(Pρk+1 − Pρk

)x > 0,
∀ k ∈ {1, . . . , K − 1}

}
.

If (4.53) holds, due to the strict inequality, there exists εi,ρ > 0 such that

x>(A>i PΦ(ρ) + PΦ(ρ)Ai)x ≤ −εi,ρ|x|2, ∀x ∈ Xi ∩ Eρ. (4.55)

By Step 0 we have αV (x) = {Φ(ρ)} and, by (4.43), IX (x) = {i} for all int(Xi)∩Eρ,
and thus (4.55) implies that (4.48) holds for all x ∈ int(Xi) ∩ Eρ. Defining ε :=
mini,ρ εi,ρ we have that (4.48) holds for each x ∈ Rn with αV (x) and IX (x) being
singletons, thus concluding the proof. ♦

Remark 4.22: Polyhedral cones

Consider again the alternative state-space partition discussed in Remark 4.16.
More precisely, consider polyhedral cones D1, . . . , DM ⊂ Rn defined by Xi :=
{x ∈ Rn | Kix ≥c 0}, where, for each i ∈ {1, . . . ,M} Ki ∈ Rki×n, for some
ki ∈ N. Equivalently, the sets Xi can be represented by Xi = cone(vi)Mi

i=1,
where v1, . . . , vMi

∈ Rn are the rays of the cone Xi. Let us call by Ri ∈ Rn×Mi

the matrix whose columns are the vectors vi. As presented in [70, Lemma 1] we
have that, given any symmetric matrix S ∈ Rn×n, if there exists a symmetric
and entry-wise positive matrix Ni ∈ Rn×n such that R>i SRi + Ni ≤ 0 then
x>Sx < 0, ∀x ∈ Xi. Using this result, the procedure presented in Step 1 and
Proposition 4.21 can be adapted to the polyhedral cones case by requiring that
for any ρ = (ρ1, . . . , ρK) ∈ SK , any i ∈ {1, . . . ,M} and any k = {1, . . . , K−1},
there exist τi,k(ρ) ≥ 0 and a symmetric entry-wise positive matrix Ni(ρ) such
that

R>i S(ρ)Ri +Ni(ρ) ≤ 0,
with S(ρ) := A>i PΦ(ρ) + PΦ(ρ)Ai +∑K−1

k=1 τi,k(ρ)(Pρk+1 − Pρk
).
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Remark 4.23: Computational burden

It is noted that, in general, since |SK | = K!, Algorithm 1 requires study-
ing the feasibility of M ·K! inequalities, which involve MKK! non-negative
scalars and K symmetric positive-definite matrices. It is clear that the com-
putational burden grows quickly as a function of the number K of the chosen
base-quadratics. However, fixing J ≥ 1, S1, . . . , SJ ⊂ {1, . . . , K} in (4.44)
(thus fixing a particular max-min structure) the computational burden can be
reduced. In Appendix A, Section A.2, we show how the number of required
inequalities depends on the choice of sets Sj in the case of three quadratics,
i.e. K = 3.

Example (4.1 - Continued: Item (i)) We have already proved that there does
not exist a convex Lyapunov function for system (4.5). We will construct a max-
min of quadratics Lyapunov function V of the form (4.4). In other words, we have
fixed K = 3, J = 2, S1 = {1, 2} and S2 = {3}. Using Algorithm 0 we construct
the function Φ that reads Φ(ρ1) = Φ(ρ2) = Φ(ρ3) = Φ(ρ4) = 3, where ρ1 = (1, 2, 3),
ρ2 = (1, 3, 2), ρ3 = (2, 1, 3), ρ4 = (2, 3, 1); and Φ(ρ5) = 1, where ρ5 = (3, 1, 2); and
Φ(ρ6) = 2, where ρ6 = (3, 2, 1). In these cases, the matrix inequalities of Algorithm 1
(after the reductions outlined in Remark 4.23) read

A>2 P2 + P2A2 + τ1(P2 − P3) + τ2(P1 − P2) + β1Q2 < 0,
A>1 P1 + P1A1 + τ3(P1 − P3) + τ4(P2 − P1) + β2Q1 < 0,
A>3 P3 + P3A3 + τ5(P3 − P1) + β3Q3 < 0,
A>3 P3 + P3A3 + τ6(P3 − P2) + τ7(P1 − P3) + β4Q4 < 0,
τk ≥ 0, ∀k ∈ {1, . . . , 7}, βi ≥ 0, ∀i ∈ {1, . . . , 4}, P1, P2, P3 > 0.

Using numerical solvers, it follows that these inequalities are feasible, and in partic-
ular they are satisfied by

P1 =

5 0

0 1

 , P2 =

1 0

0 5

 , P3 =

3 2

2 3

 , (4.56)

τ = (0.258, 0.102, 0.258, 0.102, 0.284, 0.193, 0.090) and βi = 0, ∀ i ∈ {1, . . . , 4}. A
level set of V is plotted in Fig. 4.1. This proves that V in (4.4) with Pi as in (4.56)
satisfies item (i) of Corollary 4.19.

In general, finding a function V as in (4.44) that satisfies only condition (i) of
Corollary 4.19 is not enough to conclude that the system (4.42) is GAS. On the other
hand, if we consider a linear differential inclusion (LDI), this would be sufficient, as
explained in the following remark.
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Remark 4.24: Linear Differential Inclusions

The construction of max-min Lyapunov functions is also tailored for linear
differential inclusions (LDI), that is

ẋ ∈ co
{
Aix | i ∈ {1, . . . ,M}

}
. (4.57)

for some matrices A1, . . . AM ∈ Rn×n. Remarkably, since system (4.57) is
a continuous differential inclusion, checking the Lie’s conditions on the set
of non differentiability of the candidate Lyapunov function V is not needed,
see also [59]. In other words, for continuous differential inclusions it will be
sufficient to have an output (P1, . . . , PK) of Algorithm 1 to conclude global
asymptotic stability.

4.5.3 Checking item (ii) of Corollary 4.19 in R2.
To study GAS of system (4.42), we also need to check item (ii) of Corollary 4.19,
which is computationally harder than item (i). We now discuss how this condition
simplifies in the planar case, that is when n = 2. To do so, let us analyze the
geometry of the switching rule proposed in (4.43). To non-trivially satisfy Defini-
tion 4.12, we will suppose that the matrices Q1, . . . , QM ∈ Sym(R2) are sign indef-
inite. We will characterize the sets Xi in (4.43) using the following result.

Lemma 4.25

Given any sign indefinite matrix Q ∈ Sym(R2), there exist θ1, θ2 ∈ R2 \ {0},
θ2 /∈ span(θ1) such that

Q = θ1θ
>
2 + θ2θ

>
1 . (4.58)

Proof : [Sketch of the proof] Let us denote by λ− < 0 < λ+ the eigenvalues
of Q, and with v−,v+ ∈ R2 the corresponding unit eigenvectors (|v−| = |v+| = 1).
By the spectral decomposition we have that Q = λ+v+v

>
+ + λ−v−v

>
−. Let us call

η =
√
−λ−
λ+−λ− > 0 and κ =

√
2

λ+−λ− > 0, then by choosing θ1 = κ
[√

1− η2 v+ − η v−
]

and θ2 = κ
[√

1− η2 v+ + η v−
]
, it is seen that (4.58) holds. ♦

Lemma 4.25 allows checking algorithmically condition (ii) of Corollary 4.19 in
the planar case. This is done in two steps.

Step 2a Given M sign indefinite matrices Q1, . . . , QM ∈ Sym(R2) such that the
corresponding switching signal satisfies Definition 4.12, then matrices Qi, i = 1, ...,M ,
decomposed as in (4.58), can be suitably ordered1 in such a way that

Qi = θiθ
>
i+1 + θi+1θ

>
i for i = 1, . . . ,M − 1,

QM = θM(−θ1)> + (−θ1)θ>M ,
(4.59)

1For the ordering of matrices Qi, via vectors θi in (4.58), we can associate an angle with each
one of the lines θi, i = 1, . . . ,M , using the atan2 function.
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for some suitable selections of linear independent vectors θ1, . . . , θM ∈ R2∩{(x1, x2) ∈
R2 |x1 ≥ 0}.
For each i ∈ {1, . . . ,M}, take vi ∈ R2 as a unit vector generating the subspace
θ⊥i := {x ∈ R2 | θ>i x = 0}. 4

Step 2b Consider V ∈Mmq (P1, . . . , PK) satisfying condition (i) of Corollary 4.19.
For every vi such that αV (vi) = {`i1, `i2} is multivalued, solve the system0 ≤ λ ≤ 1,

λv>i (P`i2 − P`i1)Ai−1vi + (1− λ)v>i (P`i2 − P`i1)Aivi = 0,
(4.60)

(with i − 1 = M if i = 1), and denote by Λi ⊂ [0, 1] the set of solutions of (4.60)
for vi (possibly empty). 4

In the following we formally prove the effectiveness of Steps 2a and 2b.
Proposition 4.26

Consider A1, . . . , AM ∈ R2×2 andM indefinite matricesQ1, . . . QM ∈ Sym(R2)
such that the corresponding switching signal satisfy Definition 4.12. Consider
the parametrization of Q1, . . . QM presented in (4.59). Suppose that there
exist P1, . . . , PK > 0 such that V ∈Mmq (P1, . . . , PK) satisfies condition (i)
of Corollary 4.19. If, for all i ∈ {1, . . . ,M} such that αV (vi) is multivalued,
we have

λv>i (P`i1Ai−1 + A>i−1P`i1)vi + (1 − λ)v>i (P`i1Ai + A>i P`i1)vi < 0, (4.61)

for all λ ∈ Λi, then item (ii) of Corollary 4.19 holds.

Proof : Recalling (4.43), the parametrization in (4.59) characterizes the points
x where the map IX (x) is multivalued. From (4.59), we have that Di∩Di+1 = θ⊥i+1,
for all i = 1, . . . ,M − 1 and DM ∩D1 = θ⊥1 . Thus

IX (x) =


{i, i+ 1}, if x ∈ θ⊥i+1, i = 1, . . . ,M − 1,
{1,M}, if x ∈ θ⊥1 ,
{i}, if x>Qix > 0.

(4.62)

Let us now consider a function V ∈Mmq (P1, . . . , PK) that satisfies condition (i) of
Corollary 4.19. From Remark 4.18, for any max-min function V ∈Mmq (P1, . . . , PK),
the value of the map αV : R2 ⇒ {1, . . . , K} has at most 2 elements. To check
item (ii) of Corollary 4.19 we must consider all the points x ∈ R2 such that IX (x)
and αV (x) are multivalued. As shown in (4.62), the set of points where the map
I is multivalued coincides with the union of the M lines θ⊥1 , . . . , θ⊥M . From Re-
mark 4.18, the homogeneity of F sw

lin and V ∈ Mmq (P1, . . . , PK) implies that it is
sufficient to check condition (ii) of Corollary 4.19 only for the chosen unit vectors
v1, . . . vM which span θ⊥1 , . . . θ⊥M respectively. We can conclude noting that, for each
i ∈ {1, . . . ,M} such that αV (vi) is multivalued, system (4.60) corresponds to (4.46),
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and equation (4.49) follows from (4.61) selecting a small enough ε > 0. ♦

Proposition 4.26 shows that for a planar linear switched system (4.42), (4.43)
involving M subsystems, it is sufficient to identify unit vectors vi, i = 1, . . . ,M
generating the switching lines, and verify inequality (4.49) for these M points. Item
(ii) of Corollary 4.19 then follows from homogeneity. This result allows concluding
the analysis of Example 4.1.

Example (4.1 - Continued: Item (ii)) As a last step to show that the origin
of (4.5), (4.6) is GAS, we have to ensure the condition (ii) of Corollary 4.19. Since
the signal (4.6) can be rewritten in the form (4.59), we can follow Steps 2a and 2b,
taking v1 ∈ S13, v2 ∈ S21, v3 ∈ S32 such that |vj| = 1, for all j ∈ {1, 2, 3}. Consider-
ing system (4.60), it is easily checked that Λj = ∅, ∀ j ∈ {1, 2, 3}. Recalling (4.47),
V̇ F (vj) = ∅, for j = 1, 2, 3. Then by Proposition 4.26 the function V in (4.4) is a
Lyapunov function for system (4.5) which certifies GAS.

Remark 4.27

In Example 4.1, it can be shown that V in (4.4) does not satisfy the conditions
V̇F sw(x) < 0 for some x ∈ R2: consider the point v1 ∈ S13, where we have
shown V̇ F sw(v1) = ∅. Since v1 ∈ S13, then ∂V (v1) = co{2P1v1, 2P3v1} and
F sw(z0) = co{A1v1, A3v1}. Straightforward computations yield v>1 (P3A1 +
A>1 P3)v1 = 8.65 > 0, and thus ∃w ∈ ∂V (v1) and f ∈ F sw(v1) such that
0 < w>f ∈ V̇F sw(v1), which implies that conditions relying on the Clarke
derivative concept would not prove stability in this case. In that sense, we
Corollary 4.19 provides less conservative conditions.

4.5.4 Checking item (ii) of Corollary 4.19 in Rn with 2 modes.
The main difficulty in checking item (ii) of Corollary 4.19 in higher dimensions is
that the set Λ(x, {Ai}i∈IX (x)) of (4.46) cannot be finitely parameterized. In this
section, we impose a structure on (4.42) which allows us to check this condition
without explicitly computing Λ(x, {Ai}i∈IX (x)). The idea is to rule out the motion
on switching surfaces, in which case negative definiteness of V̇ F sw

lin
on the switching

surface can be established by continuity arguments. More precisely, we consider a 2-
mode n-dimensional switched system, i.e. M = 2 in (4.42), and the setsX1, X2 ⊂ Rn

are defined by
X1 = {x ∈ Rn | x>Q1x = x>Qx > 0},
X2 = {x ∈ Rn | x>Q2x = −x>Qx > 0},

(4.63)

where Q ∈ Sym(Rn) is invertible. In other words, we are considering a proper
partition of Rn (in the sense of Definition 2.4), which comprises two symmetric
cones D1, D2 ⊂ Rn. We will denote the boundary of these cones (also called the
switching surface) with Q := {x ∈ Rn | x>Qx = 0}.

A computationally attractive way to avoid sliding motion, is to follow a prelim-
inary step, presented in what follows.
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Step 2? (Ruling out motion on the switching surface) For every z ∈ Rn such
that |z| = 1, check if the implication

z>Qz = 0 ⇒ (z>QA1z)(z>QA2z) > 0 (4.64)

is satisfied. 4

Condition (4.64) intuitively means that, given a unit vector z ∈ Q, the vectors A1z
and A2z are both pointing inside (or outside) the cone D1, and thus it rules out the
possibility of having solutions sliding along Q, which can be consider a “crossing
boundary” (cft. [71]). A viable way to check condition (4.64) is to consider the
decomposition of Q as Q = V ΛV >, where invertibility of Q implies that Λ is a
diagonal matrix with only 1 and −1 diagonal elements and then check the simpler
implication

z>Λz = 0 ⇒ (z>V −>QA1V
−1z)(z>V −>QA2V

−1z) > 0

for all |z| = 1. To simplify the discussion, consider max-min combination over K
quadratics defined by K symmetric and positive definite matrices P1, . . . PK ∈ Rn×n

satisfying:
Rank(Pj1 − Pj2) = n, ∀j1, j2 ∈ {1, . . . , K}, j1 6= j2, (4.65)

which is not too restrictive since full-rank matrices are dense in Rn×n.
Proposition 4.28

Consider a 2-mode linear switched system (4.42) withD1, D2 ⊂ Rn as in (4.63)
and Q ∈ Sym(Rn) invertible. Suppose that for all z ∈ Rn, |z| = 1, the implic-
ation (4.64) in Step 2? holds. If there exist P1, . . . , PK > 0 satisfying (4.65),
and V ∈ Mmq (P1, . . . , PK) satisfying condition (i) of Corollary 4.19, then
item (ii) holds and system (4.42) is GAS.

Proof : To check item (ii) of Corollary 4.19, consider any x ∈ Rn such that
x>Qx = 0, i.e. IX (x) = {1, 2}, and αV (x) = {`1, . . . , `p} ⊂ {1, . . . , K} with p > 1.
We consider 2 cases:
Case 1: Suppose there exist `′, `′′ ∈ αV (x), `′ 6= `′′ such that x>(P`′ − P`′′) = τx>Q,
for some τ ∈ R \ {0}.
Then the equation (resembling (4.45),)

x>P`′(λA1x+ (1− λ)A2x) = x>P`′′(λA1x+ (1− λ)A2x),

has solutions λ ∈ [0, 1] if and only if there exists λ ∈ [0, 1] such that

x>Q(λA1x+ (1− λ)A2x) = 0. (4.66)

We have supposed that (4.64) in Step 2? holds for z = x
|x| , thus by homogeneity

of F sw
lin (x) equation (4.66) has no solution λ ∈ [0, 1] since the scalars x>QA1x

and x>QA2x have the same sign (and are not zero). Recalling equations (4.46)
and (4.47), this implies that V̇ F sw

lin
(x) = ∅, ensuring (ii) of Corollary 4.19.
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(a) Five trajectories φi : R+ → R3 of sys-
tem (4.67).

10 20 t

V (φi(t))

(b) The evolution of the Lyapunov function
V along the solutions φi, i = 1, . . . , 5.

Figure 4.5: System (4.67) in Example 4.3

Case 2: Suppose that ∀ `′, `′′ ∈ αV (x), `′ 6= `′′, x>(P`′ − P`′′) 6= τx>Q1, for all
τ ∈ R \ {0}.
In this case we show in Lemma A.1 in A.1 that there exists a sequence xk → x such
that xk ∈ Q, (i.e. I(xk) = {1, 2}) and αV (xk) = {`}, for all k ∈ N, for an ` ∈ αV (x).
By hypothesis, V satisfies item (i) of Corollary 4.19, implying by continuity that,
for every k ∈ N,

x>k P`A1xk ≤ −ε|xk|2, and x>k P`A2xk ≤ −ε|xk|2.

Since xk → x when k →∞, again by continuity we have

x>P`A1x ≤ −ε|x|2 and x>P`A2x ≤ −ε|x|2.

Thus, ∀λ ∈ [0, 1] such that

x>P`1(λA1 + (1− λ)A2)x = · · · = x>P`p(λA1x+ (1− λ)A2x),

we have x>P`(λA1 + (1 − λ)A2)x ≤ −ε|x|2. Recalling (4.46) and (4.47) it implies
that max V̇ F sw

lin
(x) ≤ −ε|x|2.

Having proved item (ii) of Corollary 4.19 in both Cases 1 and 2, we can conclude.
♦

Example 4.3 Concluding this section, we present a switched system evolving in R3

and we prove GAS using Proposition 4.28.
Let us consider the matrices,

A1 =
[
−0.1 −1 0

1 −0.1 0
0 0 0.2

]
, A2 =

[
−0.2 1 0.1
−1 −0.2 0
0.1 0 −0.1

]
, Q =

[ 1 0 0
0 1 0
0 0 −1

]
(4.67)

and Q1 = Q, Q2 = −Q. It is easy to see that they define a system of the form (4.42)
and moreover Q is invertible. Parameterizing a generic x ∈ Q = {x ∈ R3 | x>Qx =
0} as x = [ x1, x2, ±

√
x2

1+x2
2 ]>, it can be seen that (4.64) in Step 2? holds. Using the
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algorithms 0 and 1 of Section 4.5.2, we prove here that the max of 2 quadratics
defined by

V (x) := max{x>P1x, x
>P2x}

with P1 :=
[ 4 0 0

0 4 0
0 0 1

]
and P2 :=

[ 3 0 0
0 3 0
0 0 2

]
satisfies item (i) of Corollary 4.19. First of all,

we have that P1 − P2 = Q, and thus the analysis outlined in Step 0 is simplified,
since

Eρ1 = {x ∈ R3| x>Q1x > 0} =: D1 and Φ(ρ1) = 1,
Eρ2 = {x ∈ R3| x>Q2x > 0} =: D2 and Φ(ρ2) = 2,

where ρ1 = (1, 2) and ρ2 = (2, 1) denote the two elements of S2. Following Step 1,
item (i) of Corollary 4.19 holds, since P1A1 +A>1 P1 + τ1Q1 < 0 and P2A2 +A>2 P2 +
τ2Q2 < 0 are satisfied choosing τ1 = 0.6, τ2 = 0. Since (4.64) and (4.65) hold,
invoking Proposition 4.28 we have that item (ii) of Corollary 4.19 is satisfied, and
V is a Lyapunov function proving GAS of system (4.67). In Figure 4.5, we have
plotted the trajectories of 5 particular solutions φi : R+ → R3, i = 1, . . . , 5, of
system (4.67) and the evolution of V along these solutions.

4.6 Summary
For the class of systems comprising differential inclusions, and state-dependent
switched systems, we introduced a family of nonsmooth functions obtained by max-
min combinations. Based on two notions of generalized directional derivatives, we
proposed sufficient conditions for global asymptotic stability. For a class of systems
with conic switching regions and linear dynamics within each of these regions, we
studied some conditions under which a max-min condition can be obtained by solv-
ing matrix inequalities. A possible route for future research is the generalization of
this approach to a wider class of systems, and develop further numerical tools for
checking the proposed Lie derivative based conditions.



5
Stability of Interconnections via

Non-Pathological ISS-Lyapunov Functions

This chapter address robustness analysis for interconnections of dynamical systems
(described by outer semicontinuous differential inclusions) using generalized notions
of derivatives associated with locally Lipschitz Lyapunov functions obtained from
a finite family of differentiable functions. We first provide sufficient conditions for
input-to-state stability (ISS) for differential inclusions, using a class of non-smooth
(but locally Lipschitz) candidate Lyapunov functions. In general our conditions are
less conservative than the more common Clarke derivative based conditions. We
apply our result to (perturbed) state-dependent switched systems, and to the inter-
connection of two differential inclusions. As an example, we propose an observer-
based controller for certain nonlinear two-mode state-dependent switched systems.
The content of this chapther is based on the work presented in [52].

5.1 Overview
For analyzing stability or performance of integrated or large-scale dynamical sys-
tems, it is natural to consider them as a collection of several subsystems of lower di-
mension/complexity. After a certain abstraction, the behavior of the overall system
can be obtained either by switching among the constituent subsystems, or through
certain interconnections of the underlying subsystems, or through a combination
of these. This viewpoint of analyzing complex systems provides the motivation to
consider stability and robustness analysis for interconnections of switched systems.

Given a family of vector fields {f1, . . . , fK} ⊂ C1(Rn ×Rm,Rn) and a switching
signal σ : Rn → {1, . . . , K}, we consider the system

ẋ = fσ(x)(x, u). (5.1)

For studying generalized solutions of such discontinuous systems, we extend the map
fσ(·)(·, u), considering the Filippov regularization of (5.1) (see [54]). This leads to a
differential inclusion of the form (see Section 5.4 for details)

ẋ ∈ F (x, u), (5.2)

where F satisfies some regularity assumptions. Our first objective is to study asymp-
totic stability and robustness with respect to u for system (5.2). We then apply our

89
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results to the analysis of interconnected systems of the form
{
ẋ1 ∈ F1(x1, x2, u),
ẋ2 ∈ F2(x1, x2, u).

(5.3)

In the theory of nonlinear control systems, the concept of input-to-state stability
(ISS), introduced in [115], has been widely used to study the robustness of dynamical
subsystems to external disturbances. Because of its elegant characterization in terms
of Lyapunov functions, ISS is now perceived as a textbook tool for analyzing the
performance of nonlinear systems, [82]. For example, the ISS notion has been useful
in analyzing interconnections of two dynamical systems, either in cascade form [117],
or in feedback by using the so-called small-gain condition [76, 75, 72]. Moving away
from the framework of conventional nonlinear systems, the ISS notion has been
generalized to systems with continuous and discrete dynamics. In this regard, we find
sufficient conditions in terms of slow switching for ISS of time-dependent switched
systems in [126], characterization of ISS for hybrid systems with jump dynamics
in [27], [28], or for a class of differential inclusions in [74]. More recently, we have
seen ISS results for interconnections of hybrid systems [85, 108], and time-dependent
switched systems [130, 132].

By and large, most of the aforementioned results in the literature deal with
smooth Lyapunov functions. This is partially justified by the fact that the existence
of a smooth Lyapunov function is not only sufficient but also necessary for asymp-
totic stability of the equilibrium [36], [122], [42], and for ISS with respect to external
perturbations [86]. The recent survey on converse Lyapunov theorems [81] provides
an insightful background on such developments. In the context of switched and hy-
brid systems, even though there are converse results proving the existence of smooth
Lyapunov functions [58], [28], the lack of constructive elements in the proofs of con-
verse results and the system structure itself provide the motivation to work with
multiple Lyapunov functions [84, Chapter 3]. When dealing with time-dependent
switched systems, these multiple Lyapunov functions can still be combined to get
a smooth (with respect to state) common Lyapunov function. Such constructions
have been seen in analyzing ISS of switched system [126] and certain interconnec-
tions [130, 132]. However, when dealing with state-dependent switched systems, the
patching of the Lyapunov functions may make the resulting common Lyapunov func-
tion non-differentiable, but locally Lipschitz in most cases. This element is seen in
the analysis of asymptotic stability using piecewise differentiable functions [77, 11],
and to some extent for establishing ISS as well [64],[63].

In this chapter we propose sufficient conditions for ISS using locally Lipschitz
Lyapunov functions for the class of differential inclusions in (5.2). The concept of
set-valued derivatives for locally Lipschitz functions, introduced in Section 2.4, is
crucial to properly define the notion of derivatives along the system’s trajectories.
In particular, considering the subclass of locally Lipschitz functions called non-
pathological functions (as introduced in Definition 2.19), the notion of Lie derivative
leads to less conservative stability conditions. The Lie derivative concept has been
recently used in [78] to identify and remove infeasible directions of a differential
inclusion of the form (5.2), and for stability analysis using an invariance principle
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for state-dependent switched systems [79], based on the ideas already introduced
in [109].

The technical novelty of this chapter starts with the use of Lie derivative for
establishing ISS property of switched systems (5.1), or more generally of the dif-
ferential inclusion (5.2). As an example, we will apply our results using candidate
Lyapunov functions that are obtained by “gluing together” a finite number of pre-
constructed C1-functions. The structure of these piecewise functions, formally intro-
duced in [110], fits particularly well the piecewise-smooth structure of the switched
system (5.1), as already noted in [63]. The recent paper [87] presents conditions
for ISS of state-dependent switched systems when the unforced system is globally
asymptotically stable, using a trajectory-based analysis rather than Lyapunov func-
tions.

After developing this fundamental result on ISS of a single differential inclusion
using the Lie derivative notion, we extend our approach to study ISS of an intercon-
nection of two such differential inclusions. In this context, we extend the small-gain
theorem presented in [75] by constructing a max-separable Lyapunov function where
the individual functions are only Lipschitz continuous. Also, for differential inclu-
sions, the construction proposed in [85] allows for Lipschitz continuous functions, but
the authors of [85] only use the Clarke derivative. Here instead, the Lyapunov func-
tions that we associate with each subsystem are only required to satisfy a decrease
condition based on the Lie derivative, which are weaker than those using the Clarke
derivative. When the interconnection (5.3) is in the so-called cascade form, we adapt
the construction proposed in [119], constructing a common Lyapunov function in
the sum-separable form, starting from two non-pathological Lyapunov functions of
the subsystems in (5.3). Earlier ISS results for interconnections of switched systems
have focused only on time-dependent switched systems [130, 132], while the contri-
bution of this manuscript revolves in studying interconnections with state-dependent
switching. We finally illustrate the usefulness of our results by performing output
feedback stabilization of a state-dependent switched system using an observer-based
controller. The arising nonlinear conditions are shown to become computationally
tractable in the switched linear case.

5.1.1 Chapter Organization

This chapter is organized as follows: In Section 5.2 we recall the basic definitions
and the necessary preliminaries from non-smooth analysis, with particular atten-
tion to the non-pathological class of locally Lipschitz functions. The first main
result on ISS of system (5.2) using locally Lipschitz Lyapunov functions is given in
Section 5.3, while in Section 5.4 we apply our result to state-dependent switched
systems. In Section 5.5, we study interconnected differential inclusions, proposing
a Lie derivative-generalization of classical small-gain and cascade arguments. We
study the application of our results for feedback stabilization of switched systems in
Section 5.6. In the Appendix, we prove some technical results on piecewise C1 func-
tions used in Section 5.4 and we prove the equivalence between various ISS-Lyapunov
conditions.
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5.2 Backgrounds
In this section we introduce the required technicalities, in order to treat our ISS
analysis of perturbed differential inclusions.

5.2.1 Basic notions for perturbed differential inclusions
We recall here the formalism of differential inclusions with inputs, and recall the
basic concepts of solutions and stability of equilibrium. These definition will be
similar to the ones introduced in Section 2.1, but particular care is needed, since
here the right-hand side of (5.2) depends not only on the state x ∈ Rn, but also on
an external input/perturbation u ∈ Rm

Let F : Rn×Rm ⇒ Rn be a set valued map with nonempty, compact and convex
values, outer semicontinuous in the first argument and continuous in the second, see
Section 2.1 for a thorough discussion about continuity concepts for set-valued maps.
Suppose that F (0, 0) = {0}, and consider the differential inclusion

ẋ ∈ F (x, u), (5.4)

where input u : R+ → Rm belongs to the set of measurable and locally essentially
bounded functions

U := {u : R+ → Rm |u measurable, ess sup
0≤τ≤T

|u(τ)| <∞,∀T > 0}.

For the unperturbed differential inclusion ẋ ∈ F (x, 0), the hypotheses that F (·, 0) :
Rn ⇒ Rn has closed, convex and non-empty values together with outer semicon-
tinuity are sufficient for the existence of solutions, and are sometimes referred as
basic assumptions in the literature, and, as showed in Proposition 2.2 are enough
to ensure local exixtence of solutions. On the other hand, the hypothesis that
F : Rn ×Rm ⇒ Rn is continuous in the second argument is introduced to handle a
large class of inputs like U .

We introduce here the concepts of solutions: Given a vector x0 ∈ Rn and an input
u ∈ U , x : [0, T ) → Rn is a (Carathéodory) solution of system (5.4) starting at x0
if x : [0, T ) → Rn is absolutely continuous, x(0) = x0, and ẋ(t) ∈ F (x(t), u(t)), for
almost every t ∈ [0, T ). Under the stated assumptions on the map F : Rn × Rm ⇒
Rn, we may prove the following existence result.

Proposition 5.1: Local existence

Let F : Rn × Rm ⇒ Rn be a mapping with nonempty, compact and con-
vex values, outer semicontinuous in the first argument and continuous in the
second argument. Given an input u ∈ U , system (5.4) has solutions from
any initial point x0 ∈ Rn, i.e. there exists (at least) a Caratheodory solution
x : [0, T )→ Rn of system (5.4) starting at x0, for some T > 0.

Proof : Considering any input u ∈ U , we define F̃ : R+ ×Rn ⇒ Rn by

F̃ (t, x) := F (u(t), x).
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We now prove the existence of solutions of the non-autonomous differential inclusion

ẋ(t) ∈ F̃ (t, x(t)).

By hypothesis, F̃ is upper semicontinuous with respect to the x-component. Moreover,
by continuity of F with respect to the second component, for every x ∈ Rn, we can
extract a continuous selection, i.e.

f(x, ·) ∈ C(Rm,Rn), f(x, u) ∈ F (x, u), for every u ∈ Rm,

see for example [105, Example 5.57] or [45, Lemma 2.1]. Thus f(x, u(·)) : R+ → Rn

is a measurable selection of F̃ (·, x) since

f(x, u(t)) ∈ F (x, u(t)) = F̃ (t, x).

Now consider any T > 0, and r := ess sup0≤τ≤T |u(τ)|. Define the compact ball
B := B(0, r), and consider any compact set K ⊂ Rn; since F : Rn × Rm → Rn is
upper semicontinuous with compact values, by [55, Proposition 2.3] F (K × B) is
compact, and thus ∃M > 0 such that

sup
f∈F (K×B)

|f | =: |F (K ×B)| ≤M.

By definition of F̃ , this implies |F̃ (t, x)| ≤ M for almost every (t, x) ∈ [0, T ] ×K,
i.e. F̃ is locally essentially bounded. This trivially implies that F̃ is locally bounded
by integrable functions. We can now apply [45, Corollary 5.2]) to conclude local
existence of solutions. ♦
Next, we recall the input-to-state stability (ISS) concept, firstly introduced in [115].

Definition 5.2

System (5.4) is input-to-state stable (ISS) with respect to u if there exist a
class KL function β, and a class K function χ such that, for any x0 ∈ Rn and
for any input u ∈ U , all the solutions starting at x0 satisfy

|x(t)| ≤ β(|x0|, t) + χ
(
ess sup
0≤τ≤t

|u(τ)|
)
, ∀t ≥ 0. (5.5)

Recalling the definition of U , bound (5.5) ensures that the solutions x be uni-
formly bounded, and thus complete, i.e. dom(x(·)) = [0,+∞). It is clear that ISS
of (5.4) implies global asymptotic stability (GAS) in the unperturbed case u ≡ 0.

5.2.2 Generalized derivatives
Our aim is to prove ISS of system (5.4) via non-smooth Lyapunov functions, and thus
in the following we recall various notions of generalized derivatives. For a general
introduction of non-smooth analysis tool, we refer to Section 2.4. In particular, given
a locally Lipschitz function V : Rn → R and a set valued map F : Rn × Rm ⇒ Rn,
it is easy to adapt the concept of Clarke and Lie derivative of V along F , as we
present in the following statement.
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Definition 5.3: Set-valued directional derivatives, Perturbed Case

Given a locally Lipschitz function V : Rn → R, and a set-valued map F :
Rn × Rm ⇒ Rn, given any (x, u) ∈ Rn × Rm we define the Clarke and Lie
derivatives of V along F , respectively, as follows:

V̇F (x, u) := {〈p, f〉 | p ∈ ∂V (x), f ∈ F (x, u) },
V̇ F (x, u) := {a ∈ R | ∃f ∈ F (x, u) : 〈p, f〉 = a, ∀p ∈ ∂V (x)}.

(5.6)

For each (x, u) ∈ Rn×Rm the sets V̇F (x, u) and V̇ F (x, u) are closed and bounded
intervals, possibly empty, see [30]. In particular

V̇ F (x, u) ⊂ V̇F (x, u). (5.7)

Moreover, if V is continuously differentiable at x, one has ∂V (x) = {∇V (x)} and
thus

V̇ F (x, u) = V̇F (x, u) = {〈∇V (x), f〉 | f ∈ F (x, u)}.

In this chapter, we study ISS of differential inclusions with inputs, considering
the class of non-pathological candidate Lyapunov functions and investigating how
the non-pathological property could be exploited in the context of interconnected
differential inclusions. Since it will be used in what follows, we recall here the crucial
property of non-pathological functions, as introduced in Definition 2.19.

Given a non-pathological function V : Rn → R, for any u ∈ U , any initial
condition x0 ∈ Rn and any solution x : dom(x(·))→ Rn of (5.4), we have that

d

dt
V (x(t)) ∈ V̇ F (x(t), u(t)) (5.8)

for almost every t ∈ dom(x(·)). The proof of this result is obtained following the
same reasoning of Lemma 2.23. In Section 5.4 we will define a family of locally
Lipschitz functions and we will prove that it is a subset of the non-pathological
functions.

5.3 ISS Lyapunov result
In this section, we provide sufficient conditions for ISS of system (5.4). In what
follows, due to the fact that the set V̇ F (x, u) is possibly empty, we adopt the con-
vention max ∅ = −∞. The following theorem (and its proof) is an adaptation, in the
setting of non-pathological functions, of the reasoning already proposed many times
in literature, for example [118] and [82]. The novelty of this result lies in the fact
that we require Lie generalized derivative of the Lyapunov function to be negative
definite. Recalling the inclusion (5.7), this statement can be seen as a generalization
of the existing results on ISS of differential inclusions relying on the notion of Clarke
derivative, in particular [85].
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Theorem 5.4: Non-Pathological ISS-Lyapunov Functions

Let V : Rn → R be a locally Lipschitz and non-pathological function such
that there exist α, α ∈ K∞, ρ ∈ PD and γ ∈ K such that

α(|x|) ≤ V (x) ≤ α(|x|), (5.9)
V (x) > γ(|u|) ⇒ max V̇ F (x, u) ≤ −ρ(|x|), (5.10)

then system (5.4) is ISS w.r.t. u, and V is called a non-pathological ISS-
Lyapunov function for system (5.4).

Proof : Given any input u ∈ U , and any x0 ∈ Rn, consider any solution of
system (5.4) starting at x0 and with input u, and denote it by x : dom(x(·))→ Rn.
The function V ◦ x : dom(x(·)) → R is absolutely continuous because it is the
composition of a locally Lipschitz continuous function and an absolutely continuous
function. Then d

dt
V (x(t)) exists almost everywhere.

Consider now an input u ∈ U and any T ≥ 0. Define c = γ
(
ess sup0≤τ≤T |u(τ)|

)
and the set D = {x ∈ Rn |V (x) ≤ c}.
Step 1. Consider first an x0 ∈ D, we want to prove that any solution x starting
at x0 remains in D, at least until T , i.e. x(t) ∈ D, for all 0 ≤ t ≤ T . Consider
thus a solution x : dom(x(·))→ Rn of system (5.4) starting at x0 and with input u.
Firstly, we note that for almost every time t ∈ [0, T ], such that x(t) /∈ D, we have

V (x(t)) > c ≥ γ(|u(t)|).

Thus by (5.10), we have

max V̇ F (x(t), u(t)) ≤ −ρ(|x(t)|), (5.11)

for almost all t ∈ dom(x(·)) such that x(t) /∈ D. Let us now suppose, ad absurdum,
that the solution leaves D before T > 0, that is, there exists a 0 < t ≤ T such
that x(t) /∈ D implying V (x(t)) ≥ c + ε, for an ε > 0. Defining t := sup{0 ≤ t <
t | V (x(t)) ≤ c}, by continuity of V ◦ x, we have that V (x(t)) = c. Recalling that
V is a non-pathological function, by (5.8), we have that d

dt
V (x(t)) ∈ V̇ F (x(t), u(t))

for almost every t ∈ [t, t]. From equation (5.11), we conclude

d

dt
V (x(t)) ≤ −ρ(|x(t)|), a.e. in [t, t],

which implies

ε ≤ V (x(t))− V (x(t)) =
∫ t

t

d

dt
V (x(τ))dτ ≤ −

∫ t

t
ρ(|x(τ)|)dτ ≤ 0,

and thus we have a contradiction, proving that, for any solution x starting in D,
x(t) ∈ D, for any 0 ≤ t ≤ T .

Step 2. Now consider the case x0 /∈ D and consider any solution x : dom(x(·))→
Rn of system (5.4) starting at x0 and with input u. We define t1 := inf{0 ≤ t ≤
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T |x(t) ∈ D}, if the set {0 ≤ t ≤ T |x(t) ∈ D} is empty, we set t1 = +∞. By Step
1. and by (5.9) we have

α(|x(t)|) ≤ V (x(t)) ≤ c

for all t ≥ t1, t ∈ [0, T ], and thus, writing χ := α−1 ◦ γ and recalling the definition
of c, we obtain

|x(t)| ≤ χ
(
ess sup
0≤τ≤T

|u(τ)|
)
, ∀t ≥ t1. (5.12)

By definition of t1, for t < t1, t ∈ [0, T ], we have x(t) /∈ D. Reasoning as in Step 1.
we have

d

dt
V (x(t)) ≤ −ρ(|x(t)|), a.e. in [0, T ] ∩ [0, t1),

and thus from [86, Lemma 4.4], there exists a KL function β̃ (depending only on
ρ) such that V (x(t)) ≤ β̃(V (x0), t)), for all t ∈ [0, T ] ∩ [0, t1]. Hence, defining
β( ·, ·) := α−1 ◦ β̃(α( ·), ·), it holds that

|x(t)| ≤ β(|x0|, t), ∀t ≤ t1. (5.13)

Combining (5.12) and (5.13), we finally have

|x(t)| ≤ β(|x0|, t) + χ
(
ess sup
0≤τ≤T

|u(τ)|
)
. (5.14)

Collecting Steps 1. and 2. we have proved that, for any, x0 ∈ Rn any solution
x : dom(x(·)) → Rn of system (5.4) starting at x0 and with input u satisfies the
inequality (5.14). Note that the functions β and χ do not depend on u ∈ U , on
T ≥ 0 and on x0 ∈ Rn, or on the particular chosen solution. By arbitrariness of
u ∈ U and T > 0 we can conclude. ♦

Remark 5.5

As already observed in the literature, for example in [27], the existence of
ρ ∈ PD and γ ∈ K such that condition (5.10) holds is implied by the existence
of two functions ρ̂ ∈ K∞ and γ̂ ∈ K such that

max V̇ F (x, u) ≤ −ρ̂(|x|) + γ̂(|u|) ∀(x, u) ∈ Rn ×Rm. (5.15)

Indeed, implication (5.15)⇒ (5.10) holds by choosing ρ := 1
2 ρ̂ and γ = ρ̂−1◦2γ̂.

The converse implication (5.10) ⇒ (5.15) holds if F (0, 0) = {0} and ρ ∈ K∞,
and it is proven in Lemma B.2 in the Appendix B.
Moreover, using (5.9), another equivalent formulation of condition (5.15) cor-
responds to asking that there exist two functions ρ̃ ∈ K∞ and γ̃ ∈ K such
that

max V̇ F (x, u) ≤ −ρ̃(V (x)) + γ̃(|u|), ∀(x, u) ∈ Rn ×Rm. (5.16)

The advantage of (5.16) is that in this formulation the function ρ̃ represents
the decay rate of V along the solutions. 4
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5.4 State Dependent Switched Systems
In this section, we apply our ISS result to a specific differential inclusion with in-
puts arising from a suitable regularization of state-dependent switched systems. We
recall the concept of a “well-behaved” partition of the state space, of the associated
switched system, and of a family of functions related to this partition, and finally
we provide the specialization of Theorem 5.4 in this setting.

Since these concepts will be used intensively, we found useful to partially recall
the notions/definitions arising in the state-dependent switching setting, as already
presented in Section 2.2.

Definition 5.6: Proper State-Space Partition

Given a finite set of indexes I := {1, . . . K}, let us consider closed sets
X1, . . . , XK ⊂ Rn and open sets O1, . . .OK ⊂ Rn such that

a) ⋃Ki=1Xi = Rn,

b) Xi ⊂ Oi, for all i ∈ I,

c) int(Xi) = Xi, for all i ∈ I,

d) For every i ∈ I, bd(Xi) has zero Lebesgue measure,

e) Xi ∩Xj = bd(Xi) ∩ bd(Xj), for all i, j ∈ I, i 6= j.

In this situation, we say that X := {Xi,Oi}i∈I is a proper partition of Rn.
We define ∂X := ∪i∈I bd(Xi).

Given a proper partition X of Rn, the “index indicator map” is the set valued
map IX : Rn ⇒ I defined as

IX (x) := {i ∈ I | x ∈ Xi}. (5.17)

We underline that IX is almost everywhere single valued. In fact, by Definition 5.6,
item e), if x ∈ int(X`) for some ` ∈ I then IX (x) = {`}.

Definition 5.7: (Perturbed) State-Dependent Switched System

Given X = {Xi,Oi}i∈I a proper partition of Rn, consider fi ∈ C1(Oi ×
Rm,Rn), i ∈ I. The state-dependent switched system associated to
{Xi,Oi, fi}i∈I is, by definition, the differential inclusion

ẋ ∈ F sw(x, u) = co{fi(x, u) | i ∈ IX (x)} (5.18)

considering again signals u ∈ U .

We recall the differential inclusion (5.18) is obtained as the Filippov regulariz-
ation of the discontinuous differential equation defined by fσ : Rn × Rm → Rn,
x 7→ fσ(x)(x, u), considering a switching signal σ : Rn → I such that σ(x) = i,
if x ∈ int(Xi), for any i ∈ I. see Section 2.2 for the proof. Note that the map
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F sw : Rn×Rm ⇒ Rn satisfies the hypotheses of Section 5.2: F sw(x, u) is a compact,
convex and non empty set for every (x, u) ∈ Rn × Rm, the map x 7→ F sw(x, u) is
outer semicontinuous for any u ∈ Rm and the map u 7→ F sw(x, u) is continuous
for any x ∈ Rn. In general, in order to have an equilibrium in 0, it is sufficent to
suppose that 0 ∈ F sw(0, 0), but, from now on, we will assume the stronger property
that fi(0, 0) = 0, for all i ∈ I such that 0 ∈ Oi, and thus F sw(0, 0) = {0}.

We introduce here a family of locally Lipschitz functions that we propose as
candidate Lyapunov functions for (5.18).

Definition 5.8: Piecewise C1 Functions Associated to Proper Parti-
tions

Consider J = {1, . . . , N} and Y = {Yj,Vj}j∈J , a proper partition of Rn.
A function V : Rn → R is called a piecewise C1 function with respect to
the proper partition Y (and we write V ∈ P(Y)) if there exist real-valued
functions V1, . . . VN such that

1. Vj ∈ C1(Vj,R) for each j ∈ J ,

2. V (x) = Vj(x), if x ∈ Yj.

Piecewise C1 functions with respect to a proper partition are a particular kind
of “piecewise C1 functions” as introduced in Definition 3.5. More specifically, con-
ditions in Definition 5.8 are equivalent to the ones given in Definition 3.9, where
we introduced the concept of “proper piecewise C1 functions”. Since here we are
interested in application to state-dependent switching systems, we found useful to
reintroduce this Definition, relying on the concept of proper state-space partition,
simplifying the presentation. For a general introduction of piecewise smooth func-
tions, the interested reader is referred to [31],[98] and [110]. We recall here some
important properties of piecewise C1 w.r.t. proper partitions.

Proposition 5.9

Consider V ∈ P(Y), with respect to a proper partition Y = {Yj,Vj}j∈J , in
the sense of Definition 5.8. Then the following hold:

1. V is locally Lipschitz, non-pathological and

∂V (x) = co {∇Vj(x) | j ∈ IY(x)} . (5.19)

2. Given F sw : Rn ×Rm ⇒ Rn defined as in (5.18), we have

V̇ F sw(x, u) =
{
a ∈ R

∣∣∣∣ ∃f ∈ F sw(x, u) :
〈∇Vj(x), f〉 = a, ∀j ∈ IY(x)

}
. (5.20)

The equivalence in (5.19) is proven in Lemma 3.7 and thus (5.20) trivially holds.
We postpone to the Appendix B the proof of non-pathology of functions in P(Y).
We can now specialize the results stated in Section 5.3 in this setting. First, we
consider a candidate Lyapunov function in the class of piecewise C1 functions P(Y),
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where the proper partition Y does not necessarily coincide with X , the proper par-
tition associated with the considered switched system. Then we present specifically
the case X = Y , see the subsequent Remark 5.12 for further discussion.

Corollary 5.10: ISS for state dependent switching

Consider a proper partition X = {Xi,Oi}i∈I and an associated switched sys-
tem (5.18). Let us consider another proper partition Y = {Yj,Vj}j∈J and let
V ∈ P(Y). Suppose that there exist α, α ∈ K∞, ρ ∈ PD and γ ∈ K such
that:

A) for each j ∈ J , for each x ∈ Yj,

α(|x|) ≤ Vj(x) ≤ α(|x|);

B) for each j ∈ J , for each x ∈ int(Yj) \ ∂X and for each u ∈ Rm,

V (x) > γ(|u|) ⇒ 〈∇Vj(x), fσ(x)(x, u)〉 ≤ −ρ(|x|);

C) for each (x, u) ∈ ∂X ×Rm,

V (x) > γ(|u|) ⇒ max V̇ F sw(x, u) ≤ −ρ(|x|);

then system (5.18) is ISS.

Proof : By the non-pathological property of V established in Proposition 5.9,
we can apply Theorem 5.4. Getting inequality (5.9) from A) is straightforward. We
check inequality (5.10) decomposing Rn as follows:

Rn =
( ⋃
j∈J

int(Yj) \ ∂X
)
∪ ∂X ∪

(
∂Y \ ∂X

)
.

Consider first a point x ∈ int(Yj) \ ∂X for some j ∈ J . Function V ∈ P(Y) is C1

at x, and F sw(x, u) = {fσ(x)(x, u)} is single-valued. Thus, for any u ∈ Rm, we have

V̇ F sw(x, u) = {〈∇Vj(x), fσ(x)(x, u)〉},

and by B), the implication in (5.10) holds.
If x ∈ ∂X, the assertion follows directly by C).
As the last step, consider a point x ∈ ∂Y \∂X, and thus x ∈ int(Xi) for some i ∈ I.
In particular at x, we have F sw(x, u) = {fi(x, u)}. Consider u ∈ Rm and suppose
that V (x) > γ(|u|). Recalling (5.19) in Lemma 5.9 and by Definition 5.6, for each
j ∈ IY(x), there exists a sequence xjk → x such that xjk ∈ int(Yj) ∩ int(Xi) for all
k ∈ N. By continuity of V and γ, we can suppose V (xjk) > γ(|u|). At these points,
from B), we get 〈∇Vj(xjk), fi(x

j
k, u)〉 ≤ −ρ(|xkj |). By continuity of ∇Vj, fi and ρ we

have
〈∇Vj(x), fi(x, u)〉 ≤ −ρ(|x|),

for each j ∈ IY(x).
We have proved (5.10) for all x ∈ Rn, concluding the proof. ♦
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We underline that we are not explicitly checking (5.10) on the zero Lebesgue measure
set ∂Y \ ∂X: this is possible thanks to the continuity of F sw when restricted to
int(Xi) for some i ∈ I.

As a special case of Corollary 5.10, we present the situation X = Y .
Corollary 5.11

Consider a proper partition X = {Xi,Oi}i∈I and the associated switched
system (5.18). Consider V ∈P(X ) such that there exist α, α ∈ K∞, ρ ∈ PD
and γ ∈ K satisfying

A)’ for each i ∈ I, for each x ∈ Xi

α(|x|) ≤ Vi(x) ≤ α(|x|);

B)’ for each i ∈ I, for each (x, u) ∈ int(Xi)×Rm,

V (x) > γ(|u|) ⇒ 〈∇Vi(x), fi(x, u)〉 ≤ −ρ(|x|);

C)’ for each (x, u) ∈ ∂X ×Rm,

V (x) > γ(|u|) ⇒ max V̇ F sw(x, u) ≤ −ρ(|x|);

then system (5.18) is ISS.

Remark 5.12: Comparison between Cor. 5.10 and Cor. 5.11

To check the conditions of Corollary 5.11 for each i ∈ I, we must find a smooth
Lyapunov function Vi for the system fi in the set Oi ⊃ Xi. Then we must
construct a continuous function V by “gluing together” the Vi’s on ∂X and
finally check the Lie-based condition C)’ on the switching surface ∂X. On
the other hand, in some situations, it can be difficult to construct a smooth
Lyapunov function even for a single subsystem in its region of activation if
the subsystem is unstable. For this reason, in Corollary 5.10 we allow the
candidate Lyapunov functions to be possibly non-differentiable in the interior
of the Xi, and we do not need to check the conditions at the point of non-
differentiability of V , as long as F (·, u) is continuous in a neighborhood of
∂Y \ ∂X. 4
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ẋ1 ∈ F1(x1, x2, u)
u (x2, u) x1

ẋ2 ∈ F2(x1, x2, u) u

x1

x2

x2

(x1, u)

Figure 5.1: The interconnected system in (5.22).

5.5 Interconnected Differential Inclusions
In this section, we use Theorem 5.4 to study stability of feedback and cascade
interconnections of two systems modeled by differential inclusions.

5.5.1 Feedback Interconnection and Small Gain Theorem
For the system shown in Figure 5.1, we establish ISS of the interconnected system by
constructing a Lyapunov function from two (nonsmooth) ISS-Lyapunov functions
associated with the two subsystems. Our proof techniques are inspired from [76,
75], and here our objective is to generalize those techniques to the case of non-
pathological functions, using Lie derivative.

Consider F1 : Rn1 × Rn2 × Rm ⇒ Rn1 and F2 : Rn1 × Rn2 × Rm ⇒ Rn2 ,
and suppose that they have non empty, compact and convex values and are outer
semicontinuous in the first two arguments and continuous in the third one. Consider
the interconnection

ẋ1 ∈ F1(x1, x2, u), (5.21a)
ẋ2 ∈ F2(x1, x2, u). (5.21b)

We introduce the notation x = (x1, x2) := (x>1 , x>2 )> ∈ Rn = Rn1+n2 and the
augmented differential inclusion

ẋ ∈ F (x, u) :=

F1(x1, x2, u)

F2(x1, x2, u)

 . (5.22)

We suppose that the two-subsystems are ISS with respect to their inputs, and they
admit non-pathological ISS-Lyapunov functions, as we state precisely in the follow-
ing statement.

Assumption 5.1 Suppose that there exist non-pathological functions V1 : Rn1 → R

and V2 : Rn2 → R such that

1a) There exist α1, α1 ∈ K∞ satisfying

α1(|x1|) ≤ V1(x1) ≤ α1(|x1|), ∀ x1 ∈ Rn1 .
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1b) There exist α2, α2 ∈ K∞ satisfying

α2(|x2|) ≤ V2(x2) ≤ α2(|x2|), ∀ x2 ∈ Rn2 .

2a) There exist ρ1 ∈ PD, and χ1, γ1 ∈ K satisfying

V1(x1) > max{χ1(V2(x2)), γ1(|u|)}
⇓

max V̇ 1,F1(x1, x2,u) ≤ −ρ1(V1(x1))

2b) There exist ρ2 ∈ PD, and χ2, γ2 ∈ K satisfying

V2(x2) > max{χ2(V1(x1)), γ2(|u|)}
⇓

max V̇ 2,F2(x1, x2,u) ≤ −ρ2(V2(x2))

Since we want to combine the functions V1 and V2 to obtain a non-pathological
ISS function W : Rn → R for the interconnected system (5.22), we need to recall
the following results from non-smooth analysis.

Fact 5.1 [34, Theorem 2.6.6] Consider a locally Lipschitz function V : Rk → R

and σ ∈ C1(R,R), and define U := σ ◦ V . We have

∂U(x) = σ′(V (x))∂V (x), ∀x ∈ Rk,

where σ′(s) denotes the derivative of σ at s ∈ R.

Fact 5.2 [34, Proposition 2.3.12] Given two locally Lipschitz functions V1 : Rk → R

and V2 : Rk → R consider the function V (x) := max{V1(x), V2(x)}. Given any
z ∈ Rk such that V1(z) = V2(z), it holds that

∂V (z) ⊂ co{∂V1(z), ∂V2(z)}.

Moreover, we need this well-known comparison result, for the proof, see [75, Theorem
3.1].

Fact 5.3 Given χ1, χ2 ∈ K such that

χ1 ◦ χ2(r) < r, ∀r > 0.

There exists σ ∈ K∞ ∩ C1(R+,R+) with σ′(s) > 0 for all s ∈ [0,∞) such that

χ2(r) < σ(r), and χ1(σ(r)) < r, ∀ r > 0. (5.23)

The geometrical intuition behind (5.23) is that the graph of the function σ lies
between the graphs of χ2 and χ−1

1 , see for example Fig.1 in [75]. Finally, the following
lemma will be used in the proof.
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Lemma 5.13

Suppose V1 : Rn1 → R and V2 : Rn2 → R are two non-pathological functions
satisfying Assumption 5.1. Consider σ ∈ C1(R+,R+) such that σ′(s) > 0
for all s > 0 and the composite function U1 := σ ◦ V1. Let W (x1, x2) :=
max{U1(x1), V2(x2)}, and consider a point z = (z1, z2) 6= (0, 0), z1 ∈ Rn1 ,
z2 ∈ Rn2 such that U1(z1) = V2(z2). It holds that

∂W (z1, z2) = co
{
∂Û1(z1), ∂V̂2(z2)

}
(5.24)

where

∂Û1(z1) :=


v1

0

 ∣∣∣∣ v1 ∈ ∂U1(z1) = σ′(V1(z1))∂V1(z1)

 and

∂V̂2(z2) :=


 0

v2

 ∣∣∣∣ v2 ∈ ∂V2(z2)

 .

Proof : Consider a point z = (z1, z2) 6= (0, 0) such that U1(z1) = V2(z2), the
inclusion ∂W (z) ⊂ co{∂Û1(z1), ∂V̂2(z2)} is obtained by Fact 5.2.

For the converse inclusion, due to convexity of ∂W (z1, z2), it suffices to show that
∂Û1(z1) ⊂ ∂W (z1, z2) and ∂V̂2(z2) ⊂ ∂W (z1, z2). We only prove the first inclusion,

as the other one can be proved with a similar reasoning. Consider any v̂ =

v1

0

 ∈
∂Û1(z1), where v1 ∈ ∂U1(z1). Recalling Definition 2.13 of the generalized gradient,
there exists a sequence xk1 ∈ Rn1 such that xk1 → z1 and such that ∇U1(xk1) is defined
and ∇U1(xk1) → v1. Moreover, from 1b) and 2b) of Assumption 5.1, the function
V2 has no local minima other than 0 because V2 is a Lyapunov function for the
unperturbed system ẋ2 ∈ F2(0, x2, 0). Thus, considering any point x2 6= 0, V2 is
decreasing along the solutions starting at (0, x2) with zero input. By local existence
of solutions from any initial point, we have that x2 cannot be a local minimum of
V2. Thus z2 is not a local minima for V2, and we can consider a sequence x`2 → z2
such that V2(z2) > V2(x`2), for all ` ∈ N. Now, by continuity of U1 and V2, for each
` ∈ N, there exists k` ∈ N such that

U1(xk`
1 ) > V2(x`2). (5.25)

Consider the sequence x` :=

xk`
1

x`2

 ∈ Rn. We have x` → z = (z1, z2), and from

equation (5.25)

W (x`) = max{U1(xk`
1 ), V2(x`2)} = U1(xk`

1 ), ∀ ` ∈ N.
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Thus, W is differentiable at all x` ∈ Rn and

lim
`→∞
∇W (x`) =

lim`→∞∇U1(xk`
1 )

0

 =

v1

0

 = v̂.

By definition of v̂ and the generalized gradient, it follows that v̂ ∈ ∂W (z1, z2) and
hence ∂Û1(z1) ⊂ ∂W (z1, z2). Similarly, one can prove that ∂V̂2(z2) ⊂ ∂W (z1, z2),
and thus the equality (5.24) holds. ♦
We have now all the necessary tools to present a small gain theorem involving non-
pathological ISS functions, adapting the idea firstly proposed in [75].

Theorem 5.14: Generalized Small Gain Theorem

Consider the non-pathological functions V1, V2 satisfying Assumption 5.1 and
suppose that

χ1 ◦ χ2(r) < r, ∀r > 0. (5.26)
Considering a function σ ∈ K∞ ∩ C1(R+,R+) satisfying property (5.23) in
Fact 5.3, define W : Rn → R as

W (x1, x2) := max{σ(V1(x1)), V2(x2)}. (5.27)

ThenW is a non-pathological ISS function and thus system (5.22) is ISS w.r.t.
u.

Proof : We want to show that W : Rn → R satisfies all the conditions of
Theorem 5.4. To this end, it is enough to show that

A) σ ◦ V1 : Rn1 → R is non-pathological, and W : Rn → R is non-pathological.

B) There exist ρ ∈ PD and γ ∈ K such that

W (x) > γ(|u|) ⇒ max Ẇ F (x, u) ≤ −ρ(|x|). (5.28)

Proof of A): We recall that V1 : Rn1 → R is non-pathological and σ ∈ C1(R,R)
and σ′(r) > 0 for all r > 0. Defining U1 := σ ◦ V1, by Fact 5.1 we have ∂U1(x) =
σ′(V1(x))∂V1(x) for all x ∈ Rn1 . Moreover for any absolutely continuous function
ϕ : [0, T ) → Rn1 , we have that ∂V1(ϕ(t)) is a subset of an affine subspace ortho-
gonal to ϕ̇(t), for almost every t ∈ [0, T ), and the same holds for ∂U1(ϕ(t)) =
σ′(V1(ϕ(t))∂V1(ϕ(t)). Thus U1 : Rn1 → R is non-pathological. The non-pathology
of W : Rn → R follows from the fact that pointwise maximum of non-pathological
functions is non-pathological, as stated in Lemma 2.20.
Proof of B): We proceed by considering three cases. Let us define the sets

O1 :={(x1, x2) ∈ Rn | V2(x2) < σ(V1(x1))},
O2 :={(x1, x2) ∈ Rn | V2(x2) > σ(V1(x1))},

Γ :={(x1, x2) ∈ Rn | V2(x2) = σ(V1(x1))}.
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For z = (z1, z2) ∈ O1, by continuity there exists a neighborhood U of z where
W (x) = σ(V1(x1)), for all x = (x1, x2) ∈ U . By Fact 5.1, we have ∂W (z) =
σ′(V (z1))∂V1(z1)× 0 and in particular,

Ẇ F (z, u) = σ′(V1(z1))V̇ 1,F1(z1, z2, u). (5.29)

Recalling that z ∈ O1 and equation (5.23), we have χ1(V2(z2)) < χ1(σ(V1(z1))) <
V1(z1). Thus, by condition 2a) of Assumption 5.1, we have from (5.29) that

W (z) > γ̂1(|u|)⇒ max Ẇ F (z, u) ≤ −ρ̂1(W (z)), ∀z ∈ O1, (5.30)

where ρ̂1(s) := σ′(σ−1(s)) ρ1(σ−1(s)) is a positive definite function and γ̂1(s) :=
σ(γ1(s)) is class K.
For z = (z1, z2) ∈ O2, following the same reasoning (but without the complications
introduced by σ), one has that

W (z) > γ2(|u|)⇒ max Ẇ F (z, u) ≤ −ρ2(W (z)), ∀z ∈ O2. (5.31)

Before addressing z = (z1, z2) ∈ Γ, using an idea proposed in [78], we introduce the
following notation motivated by definition (5.6): Given F : Rn × Rm ⇒ Rn and a
locally Lipschitz function V : Rn → R we define

F V (z, u) := {f ∈ F (z, u)|∃a ∈ R : 〈v, f〉 = a, ∀v ∈ ∂V (z)} .

By Definition 5.3, it is clear that

V̇ F (z, u) =
{
〈v, f〉 | v ∈ ∂V (x), f ∈ F V (z, u)

}
. (5.32)

We continue by using the following set inclusion whose proof is postponed a few
lines to avoid breaking the flow of the exposition:

FW (z, u) ⊂ F V1
1 (z1, z2, u)× F V2

2 (z1, z2, u). (5.33)

Finally consider z = (z1, z2)> ∈ Γ and take any w ∈ ∂W (z), by Lemma 5.13,
there exist v1 ∈ ∂V1(z1), v2 ∈ ∂V2(z2) and λ ∈ [0, 1] such that

w =

λσ′(V1(z1))v1

(1− λ)v2

 .

Consider f =

f1

f2

 ∈ FW (z, u), so that, from (5.33), f1 ∈ F V1
1 (z1, z2, u) and

f2 ∈ F V2
2 (z1, z2, u). Using (5.32), we may proceed as in (5.30) and (5.31) and use

continuity of W to get, for all z ∈ Γ = bd(O1) ∩ bd(O2)

W (z) > γ̂1(|u|)⇒ max
f1∈F

V1
1 (z,u)

v1∈∂V1(z1)

σ′(V1(z1))〈v1, f1〉 ≤ −ρ̂1(W (z))

W (z) > γ2(|u|)⇒ max
f2∈F

V2
2 (z,u)

v2∈∂V2(z2)

〈v2, f2〉 ≤ −ρ2(W (z)).
(5.34)
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Using (5.34) we finally get that W (z) > max{γ̂1(|u|), γ2(|u|)} implies

〈w, f〉 = λσ′(V1(z1))〈v1, f1〉+ (1− λ)〈v2, f2〉
≤ −λρ̂1(W (z))− (1− λ)ρ2(W (z))
≤ −min{ρ̂1(W (z)), ρ2(W (z))}.

Thus, letting γ(s) := max{γ̂1(s), γ2(s)} and ρ(s) := min{ρ̂1(s), ρ2(s)}, we have

W (z) > γ(|u|) ⇒ max Ẇ F (z, u) ≤ −ρ(W (z)), ∀z ∈ Γ. (5.35)

Collecting (5.30), (5.31) and (5.35) we can conclude (5.28), and prove item B).
We complete the proof by proving (5.33). To this, take any f ∈ FW (z, u). By

definition of F in (5.22), we have that f =

f1

f2

 for some f1 ∈ F1(z1, z2, u) and

f2 ∈ F2(z1, z2, u). By Lemma 5.13 and Fact 5.1, for any v1 ∈ ∂V1(z1), the vector

w =

σ′(V1(z1))v1

0

 ∈ ∂W (z) and thus

〈w, f〉 = σ′(V1(z1))〈v1, f1〉.

By varying v1 in ∂V1(z1) and recalling that f ∈ FW (z, u) (and thus 〈w, f〉 is constant
for all w ∈ ∂W (z)), we obtain that f1 ∈ F V1

1 (z1, z2, u), that is 〈v1, f1〉 constant w.r.t. v1 ∈

∂V1(z1). The same reasoning applies to f2, considering a vector w =

 0

v2

 ∈ ∂W (z),

with v2 ∈ ∂V2(z2), concluding the proof of the claim. ♦

Remark 5.15

The idea of analyzing the derivative of the composite function W in the three
sets O1,O2,Γ, appeared firstly in [75], and is the common idea of many results
on small-gain theorems for interconnected systems, see for example [85] or
[72]. The analysis in O1 and O2 was straightforward, but because of non-
differentiability of V1 and V2, the analysis in the set Γ is different from [75].
In particular the additional tools from nonsmooth analysis have been used to
study the Lie-derivative of W along F on the set Γ.

5.5.2 Cascade System
We now apply Theorem 5.4 to cascade interconnections as in Figure 5.2. More
precisely, given two maps F1 : Rn1 × Rn2 × Rm ⇒ Rn1 , and F2 : Rn2 × Rm ⇒ Rn2

we consider the cascade system defined as follow:

ẋ1 ∈ F1(x1, x2, u), (5.36a)
ẋ2 ∈ F2(x2, u). (5.36b)
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ẋ2 ∈ F2(x2, u) ẋ1 ∈ F1(x1, x2, u)

u

u x2 x1

x2

Figure 5.2: The cascade system in (5.36).

Defining again n := n1 + n2 we will write F : Rn ×Rm ⇒ Rn defined by

F (x1, x2, u) :=

F1(x1, x2, u)

F2(x2, u)

 .
The cascade system (5.36) can be seen as a system of the form (5.22) where F2

does not depend on x1, see also Figure 5.2. Therefore Theorem 5.14 can be applied
with χ1 ≡ 0 and condition (5.26) holds for any χ2 ∈ K. On the other hand, the
cascade structure allows us to construct a different ISS-Lyapunov function, based
on two non-smooth ISS-Lyapunov functions associated with each subsystem. The
function that we construct is in the so-called sum-separable form, that has some clear
advantages with respect to the max-separable form (5.27) in Theorem 5.14, see [73]
and references therein for a thorough discussion. In particular, the sum-separable
architecture preserves regularity, and in our setting also leads to a more direct proof
of ISS of the cascade interconnection.

As a starting point of our construction, we assume that both subsystems admit a
non-pathological ISS Lyapunov function, using the formulation (5.15) in Remark 5.5.

Assumption 5.2 The following conditions hold for system (5.36):

(A.1) ISS of (5.36b). There exist a non-pathological function V2 : Rn2 → R and
α2 α2, ρ2 ∈ K∞ and γ2 ∈ K satisfying

α2(|x2|) ≤ V2(x2) ≤ α2(|x2|), ∀x2 ∈ Rn2 ,

max V̇ 2,F2(x2, u) ≤ −ρ2(V2(x2)) + γ2(|u|),

for all x2 ∈ Rn2 and for all u ∈ Rm.

(A.2) ISS of (5.36a). There exist a non-pathological function V1 : Rn1 → R and α1
α1, ρ1, γ1 ∈ K∞ satisfying

α1(|x1|) ≤ V1(x1) ≤ α1(|x1|), ∀x1 ∈ Rn1 ,

max V̇ 1,F1(x1, x2, u) ≤− ρ1(V1(x1))
+ γ1(V2(x2)) + γ2(|u|),

for all x1 ∈ Rn1, x2 ∈ Rn2 and all u ∈ Rm.
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(A.3) Defining ν(s) := γ1(s)/ρ2(s), there exists a scalar M > 0 such that

lim
s→0+

ν(s) = lim
s→0+

γ1(s)
ρ2(s) ≤M.

In other words, γ1(s) ∈ O(ρ2(s)) as s→ 0+.

Remark 5.16: Tightness of Assumption 5.2

Condition (A.3), which is used in the construction of W in the proof of the
following Proposition 5.17, is not restrictive: if it does not hold it is possible
to modify the function V1 in such a way that it holds, following the same
idea proposed in [117]. Due to this fact, Proposition 5.17 establishes that
when system (5.21) is in the cascade-form presented in equation (5.36), it suf-
fices to have ISS-Lyapunov functions (satisfying the Lie-derivative conditions
presented in (A.1) and (A.2) ) for each subsystem, to conclude ISS of the
interconnected system. In this context, the small gain condition required in
the general construction of Theorem 5.14 is somehow trivially satisfied. 4

Using Assumption 5.2, we can construct a non-pathological Lyapunov function
for the cascade system (5.36), by adapting a Lyapunov design developed in [117]
and [132].

Proposition 5.17

Consider the cascade system (5.36), and suppose that Assumption 5.2 holds.
There exists a continuous and nondecreasing function ν : R+ → R+ satisfying
ν(s) ≥ 4ν(s), for all s ∈ R+. Moreover, the function

W (x1, x2) :=
∫ V2(x2)

0
ν(s)ds+ V1(x) (5.37)

is a non-pathological ISS functions for system (5.36); that is there exist α, α ∈
K∞ such that

α(|(x1, x2)|) ≤ W (x1, x2) ≤ α(|(x1, x2)|) (5.38)
for all (x1, x2) ∈ Rn1 ×Rn2 , and there exist ρ ∈ K∞ and γ ∈ K such that

max Ẇ F (x1, x2, u) ≤ −ρ(W (x1, x2)) + γ(|u|), (5.39)

for all (x1, x2) ∈ Rn1 ×Rn2 and for all u ∈ Rm.

Proof : The existence of function ν : R+ → R+ under (A.3) of Assumption 5.2
is established in [117, Lemmas 1 and 2]. Introduce the function ` : R+ → R+ defined
by

`(s) :=
∫ s

0
ν(r)dr, ∀ s ∈ R+.

Since ν(s) ≥ 4ν(s) > 0, ∀s > 0, then ` is a class K∞ function. Moreover ` ∈
C1(R+,R+). We can thus rewrite

W (x1, x2) = ` ◦ V2(x2) + V1(x1).
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Non-pathology of W follows from Proposition 5.9 and Fact 5.1 since ` is C1 by con-
struction. Moreover, the functions α and α of equation (5.38) are easily constructed
as α(s) :=

∫ α2(s)
0 ν(r)dr + α1(s) and α(s) :=

∫ α2(s)
0 ν(r)dr + α1(s).

Let us now define U2 := ` ◦ V2; noting that `′(s) = ν(s) and using Fact 5.1, we have
that U̇2,F2(x2, u) = ν(V2(x2))V̇ 2,F2(x2, u). Recalling (A.1), we can write

max U̇2,F2(x2, u) ≤− ν(V2(x2))ρ2(V2(x2))
+ ν(V2(x2))γ2(|u|),

(5.40)

∀x2 ∈ Rn2 , ∀u ∈ Rm. Defining θ(s) := ρ−1
2 (2γ2(s)), we prove the following inequal-

ity
max U̇2,F2(x2, u) ≤− 1

2ν(V2(x2))ρ2(V2(x2))

+ ν(θ(|u|))γ2(|u|).
(5.41)

Indeed, by (5.40), if γ2(|u|) ≤ 1
2ρ2(V2(x2)), (5.41) trivially holds. Otherwise, we see

that
γ2(|u|) ≥ 1

2ρ2(V2(x2))⇔ V2(x2) ≤ ρ−1
2 (2γ2(|u|)) = θ(|u|),

and by the nondecreasing property of ν, inequality (5.41) holds. Before proceeding
to proving (5.39) we observe the following equality

Ẇ F (x1, x2, u) = U̇2,F2(x2, u) + V̇ 1,F1(x1, x2). (5.42)

To show (5.42), we recall that any locally Lipschitz function G : Rn1 × Rn2 → R

defined by G(x1, x2) = G1(x1) +G2(x2), satisfies

∂G(x1, x2) =


v1

v2

 ∣∣∣∣ v1 ∈ ∂G1(x1), v2 ∈ ∂G2(x2)

 (5.43)

and thus, using definition (5.6), we obtain (5.42). From (A.2), (5.41) and (5.42),
we have

max Ẇ F (x1, x2, u) ≤ −ρ1(V1(x1)) + γ1(V2(x2)) + γ2(|u|)

− 1
2ν(V2(x2))ρ2(V2(x2))+ν(θ(|u|))γ2(|u|).

From the assumption ν(s) ≥ 4γ1(s)
ρ2(s) for all s ∈ R+, and following [80, Lemma 10], we

finally have
max Ẇ F (x1, x2) ≤ −γ1(V2(x2))− ρ1(V1(x1))

+ ν(θ(|u|))γ2(|u|) + γ2(|u|)
≤ −ρ(W (x1, x2)) + γ(|u|),

where we have defined

γ(s) := (ν(θ(s)) + 1) γ2(s),

ρ(s) := min
{
ρ1(1

2s), γ1(1
2`
−1(s))

}
.

♦
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5.6 Feedback Stabilization of a 2-mode Switched
System

We now use the tools developed in the previous section to solve an output feedback
stabilization problem for a class of switched systems with two modes. In particular,
we consider the state dependent switched system defined as

S :


ẋ =

f1(x) + g(x)u ifx ∈ X1 := {q(x) ≥ 0},
f2(x) + g(x)u ifx ∈ X2 := {q(x) ≤ 0},

y = h(x),
(5.44)

where x ∈ Rn and u ∈ Rm. The basic assumptions we impose on the system (5.44)
are the following:

Assumption 5.3 The data in (5.44) is such that:

• f1, f2 ∈ C1(Rn,Rn);

• g ∈ C1(Rn,Rn×m);

• h ∈ C1(Rn,Rp);

• q ∈ C1(Rn,R) and X = {Xi,R
n}i∈{1,2} form a proper partition of Rn (recall

Definition 5.6);

• q(0) ≥ 0 ⇒ f1(0) = 0 and q(0) ≤ 0 ⇒ f2(0) = 0;

• There exists βg ∈ C(R+,R), βg(s) ≥ 0 for all s ≥ 0, such1 that ‖g(x)‖ ≤ βg(|x|),
for all x ∈ Rn,

• There exists βf ∈ K∞ such that |f1(x)− f2(x)| ≤ βf (|x|), for all x ∈ Rn.

Example 5.1 (Switched Linear Case) As a simple paradigm, one can think of
a state-dependent switched linear system, such as

fi(x) = Aix, g(x) ≡ B, h(x) = Cx,

where Ai ∈ Rn×n for i ∈ {1, 2}, B ∈ Rn×m and C ∈ Rp×n. Regarding the function
q ∈ C1(Rn,R), the simplest non-trivial cases are the halfspace partitions or the
symmetric conic partitions, described respectively by the functions

qv(x) := 〈v, x〉 or qQ(x) := x>Qx,

for some v ∈ Rn, or Q ∈ Sym(Rn), Q is neither negative, nor positive semi-definite.
These cases satisfy Assumption 5.3, by selecting

βg(s) := ‖B‖, and βf (s) := ‖A1 − A2‖s. 4
1Here and in what follows we consider the 2-induced matrix norm, i.e., given A ∈ Rn×m we

define
‖A‖ := sup

|x|=1
|Ax|
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Under Assumption 5.3, we design next an observer-based controller for sys-
tem (5.44) of the form

C :


ż =

f1(z) + g(z)u+ `1(y − h(z)) if z ∈ X1,

f2(z) + g(z)u+ `2(y − h(z)) if z ∈ X2,

u = k(z),
(5.45)

where `1, `2 ∈ C1(Rp,Rn), and the globally Lipschitz map k : Rn → Rm are design
parameters.

We consider the interconnected system (5.44)-(5.45), and in particular its Filip-
pov regularization, which can be written as follows

ẋ ∈ co {fi(x) | i ∈ IX (x)}+ g(x)k(z) =: F̃x(x, z), (5.46a)
ż ∈ co {fi(z) + `i(h(x)− h(z)) | i ∈ IX (z)}

+ g(z)k(z) =: F̃z(x, z),
(5.46b)

where the function IX is defined as in (5.17).
The maps F̃x, F̃z : Rn × Rn ⇒ Rn satisfy the conditions of Section 5.2: they have
non-empty, compact and convex values and are outer semicontinuous with respect
to the states (x and z respectively) and continuous with respect to the inputs (z
and x respectively). We can thus conclude local existence of solutions for the sys-
tems (5.46a), (5.46b) using Proposition 5.1.

To design (5.45), we first characterize stability of the interconnection (5.46). To
this end, we perform the change of coordinates (x, z) 7→ (x, e) := (x, x− z) and we
construct the Filippov regularization of the corresponding dynamics, resulting in

ẋ ∈ Fx(x, e) := F̃x(x, x− e) (5.47a)
ė ∈ Fe(x, e), (5.47b)

where the map Fe : Rn × Rn ⇒ Rn is defined as the Filippov regularization of the
discontinuous map fe(x, e) :=

f1(x)− f1(z)− `1(h(x)− h(z)) + g̃(x, z) if q(x) ≥ 0, q(z) ≥ 0,
f2(x)− f1(z)− `1(h(x)− h(z)) + g̃(x, z) if q(x) ≤ 0, q(z) ≥ 0,
f1(x)− f2(z)− `2(h(x)− h(z)) + g̃(x, z) if q(x) ≥ 0, q(z) ≤ 0,
f2(x)− f2(z)− `2(h(x)− h(z)) + g̃(x, z) if q(x) ≤ 0, q(z) ≤ 0,

(5.48)

with g̃(x, z) := (g(x)− g(z))k(z).
In our construction, we first use Theorem 5.14 to ensure ISS of (5.47a) based on

two functions V1, V2, each of them associated to a mode.

Property 5.1 There exist V1, V2 ∈ C1(Rn,R), and ψ
x
, ψx, ρx, αx ∈ K∞, such that,

for each x ∈ Rn, (−1)i−1q(x) > 0 implies

ψ
x
(|x|) ≤ Vi(x) ≤ ψx(|x|), (5.49a)

|∇Vi(x)| ≤ ρx(|x|), (5.49b)
〈∇Vi(x), fi(x) + g(x)k(x)〉 ≤ −αx(|x|). (5.49c)
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Moreover, there exists a function θx ∈ K∞ such that

θx(s) ≤
αx(s)

βg(s)ρx(s)
, ∀ s ∈ R+. (5.50)

Finally, defining
Vx(x) := Vi(x), if x ∈ Xi i = 1, 2, (5.51)

we suppose that Vx is continuous, that is,

(q(x) = 0) ⇒ V1(x) = V2(x), (5.52)

and there exist functions γqx ∈ K and αqx ∈ PD such that for all x ∈ Rn satisfying
q(x) = 0, it holds that

(|x| ≥ γqx(|e|) )⇒ max V̇ x,Fx(x, e) ≤ −αqx(|x|). (5.53)

Based on Property 5.1, we may prove the next result.
Proposition 5.18

Under Property 5.1, there exists α̂x ∈ PD and γ̂x ∈ K such that

(|x| ≥ γ̂x(|e|) ) ⇒ max V̇ x,Fx(x, e) ≤ −α̂x(|x|)

and thus system (5.47a) is ISS w.r.t. e.

Proof : First of all we rewrite system (5.47a) as

ẋ ∈ co {fi(x) | i ∈ IX (x)}+ g(x)k(x)− g(x) [k(x)− k(z)] .

Let us note that equation (5.49a) assures continuity of the function Vx, and thus
Vx is a piecewise C1 function with respect to X , in the sense of Definition 5.8.
Consider first a point x ∈ int(Xi) for some i ∈ {1, 2}, that is an x ∈ Rn such that
(−1)i−1q(x) > 0. We have

Fx(x, e) = {fi(x) + g(x)k(x)− g(x)[k(x)− k(z)]} =: {f̃i},

and thus by equation (5.49c) it follows that, for x ∈ Xi,

〈∇Vx(x), f̃i〉 = 〈∇Vi(x), f̃i〉
≤ −αx(|x|) + |∇Vi(x)|‖g(x)‖|k(x)− k(z)|
≤ −αx(|x|) + ρx(|x|)βg(|x|)Lk|x− z|,

where βg comes from Assumption 5.3, Lk > 0 is the Lipschitz constant of the map
k : Rn → R and ρx is given by equation (5.49b). Choosing 0 < ε < 1, we have

〈∇Vx(x), f̃i〉 ≤ − (1− ε)αx(|x|)
− εαx(|x|) + ρx(|x|)βg(|x|)Lk|x− z|
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and thus, for i ∈ {1, 2}, and each x ∈ Xi,

〈∇Vx(x), f̃i〉 ≤ −(1− ε)αx(|x|), if |e| ≤
εαx(|x|)

Lkρx(|x|)βg(|x|)
.

Thanks to (5.50), the function θ̂x(s) := εθx(s)
Lk
≤ εαx(s)

Lkρx(s)βg(s) is of class K∞. Defining
αcx := (1− ε)αx and γcx := θ̂−1

x , by arbitrariness of i ∈ {1, 2}, the previous inequality
implies that, for any x ∈ int(X1) ∪ int(X2),

(|x| ≥ γcx(|e|) ) ⇒ max V̇ x,Fx(x, e) ≤ −αcx(|x|). (5.54)

Consider now a point x ∈ ∂X1∪∂X2. By definition of the proper partition {X1, X2},
we have q(x) = 0, and thus implication (5.53) holds. Collecting (5.53) and (5.54)
we obtain that, for all x, e ∈ Rn,

(|x| ≥ γ̂x(|e|) ) ⇒ max V̇ x,Fx(x, e) ≤ −α̂x(|x|),

where γ̂x(s) := max{γc(s), γqx(s)} and α̂x(s) := min{αcx(s), αqx(s)}, concluding the
proof. ♦

Remark 5.19: Clarke derivative based condition

It is possible to obtain a corollary of Proposition 5.18, based on the Clarke
derivative, as in Definition 5.3. To this end, it is sufficient to replace implica-
tion (5.53) in Property 5.1, with the following:

(CL.1) For all x ∈ Rn such that q(x) = 0, for each i ∈ {1, 2},

〈∇Vi(x), f3−i(x) + g(x)k(x)〉 ≤ −αx(|x|),

where αx ∈ K∞ satisfies also (5.49c).

The proof carries over straightforwardly, recalling the inclusion (5.7). 4

Example 5.1 (Continued) In the switched linear case of Example 5.1, Property 5.1
can be guaranteed with quadratic functions Vi(x) := x>Pix, i ∈ {1, 2}. Indeed, since
the partitions given by qv (or qQ) are conic, i.e. Xi is a cone for each i ∈ {1, 2},
we can look for Lyapunov functions homogeneous of degree 2, see [106] and the
extension [123]. From now on we focus on the case qQ(x) = x>Qx. The half-space
partition case (i.e. considering qv(x) = 〈v, x〉) can be developed analogously to [64].

Considering qQ(x), it suffices to find K ∈ Rm×n, positive definite matrices
P1, P2 ∈ Rn×n, µ12, µ21, µQ ∈ R, ax > 0 and µ1, µ2 ≥ 0 such that

P1 − P2 = µQQ; (5.55a)
µ1Q+ P1(A1 +BK) + (A1 +BK)>P1 + axI < 0; (5.55b)
−µ2Q+ P2(A2 +BK) + (A2 +BK)>P2 + axI < 0; (5.55c)
µ12Q+ P1(A2 +BK) + (A2 +BK)>P1 + axI < 0; (5.55d)
µ21Q+ P2(A1 +BK) + (A1 +BK)>P2 + axI < 0; (5.55e)
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for each i ∈ {1, 2}. Then all the conditions of Property 5.1 hold with Vx(x) := x>Pix,
if x ∈ Xi. Indeed, first we note that (5.55a) implies (5.52) of Property 5.1. Moreover,
we can define

λx := min
i∈{1,2}

{λmin(Pi)}, λx := max
i∈{1,2}

{λmax(Pi)},

where λmax(P ), λmin(P ) represent respectively the largest and the smallest eigenvalues
of a positive definite matrix P > 0. The bound functions in (5.49a) and (5.49b) of
Property 5.1 are thus obtained by defining

ψx(s) := λxs
2, ψx(s) := λxs

2, ρx(s) := 2λxs.

Via the S-Procedure (see for example [20, Section 2.6.3]), equation (5.55b) implies

x>(P1(A1 +BK) + (A1 +BK)>P1)x < −ax|x|2,

if x>Qx ≥ 0 and equation (5.55c) implies

x>(P2(A2 +BK) + (A2 +BK)>P2)x < −ax|x|2,

if x>Qx ≤ 0. We have thus proved (5.49c) of Property 5.1 with αx(s) := axs
2.

Similarly, using Finsler’s Lemma (see [43], equations (5.55d) and (5.55e) imply
item (CL.1) in Remark 5.19, again with αx(s) := axs

2. The function θx ∈ K∞
in (5.50) can be defined as θx(s) := ax

2‖B‖λx
s. 4

Let us now consider the error dynamics (5.47b) and characterize ISS from x,
using a C1-Lyapunov function, satisfying the next property.
Property 5.2 Suppose that there exist Ve ∈ C1(Rn,R), and ψ

e
, ψe, αe, ρe ∈ K∞

such that

ψ
e
(|e|) ≤ Ve(e) ≤ ψe(|e|), ∀ e ∈ Rn (5.56a)∣∣∣∣∣∂Ve∂e (e)

∣∣∣∣∣ ≤ ρe(|e|), ∀ e ∈ Rn. (5.56b)

Moreover, for all x ∈ Rn, for all z ∈ Rn and for each i ∈ {1, 2},

〈∂Ve
∂e

(e), fi(x)− fi(z)− `i(h(x)− h(z)) + g̃(x, z)〉 ≤ −αe(|e|), (5.57)

with e = x− z. Finally there exists θe ∈ K∞ such that

θe(s) ≤
αe(s)
ρe(s)

∀ s ∈ R+. (5.58)

Based on Property 5.2 we can prove the next result.
Proposition 5.20

Under Property 5.2, there exist γ̂e ∈ K and α̂e ∈ K∞ such that

(|e| ≥ γ̂e(|x|) ) ⇒ 〈∂Ve
∂e

(e), fe〉 ≤ −α̂e(|e|),

for all fe ∈ Fe(x, e), and thus the system (5.47b) is ISS w.r.t. x.
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Proof : It is easy to see that the second and third expression in (5.48) can be
rewritten respectively as

f1(x)− f1(z)− `1(h(x)− h(z)) + g̃(x, z) + (f2(x)− f1(x))
f2(x)− f2(z)− `2(h(x)− h(z)) + g̃(x, z) + (f1(x)− f2(x))

and thus we can rewrite fe : Rn ×Rn → Rn as

fe(x, z) :=



f1(x)− f1(z)− `1(h(x)− h(z))
+ g̃(x, z) + I−(q(x))f̃(x) if q(z) ≥ 0,

f2(x)− f2(z)− `2(h(x)− h(z))
+ g̃(x, z)− I+(q(x))f̃(x) if q(z) ≤ 0.

where we defined f̃(x) := f2(x)−f1(x) and I+, I− are the indicator functions of the
positive and negative real numbers respectively. We note that, by Assumption 5.3,

max{|I−(q(x))f̃(x)|, |I+(q(x))f̃(x)|} ≤ βf (|x|)

for all x ∈ Rn. Thus, we can now apply the same reasoning used in proof of
Proposition 5.18, concluding that

( |e| ≥ γ̂e(|x|) ) ⇒ 〈∂V
∂e

(e), fe〉 ≤ −α̂e(|e|), ∀fe ∈ Fe(x, e),

where α̂e := (1− ε)αe and γ̂e := (εθe)−1 ◦ βf , for some 0 < ε < 1. Note that condi-
tion (5.58) ensures that γ̂e ∈ K. The ISS property follows again from Theorem 5.4.
♦
To clarify our construction, the idea behind Property 5.2 and Proposition 5.20 is to
search for a common C1 Lyapunov function for the two vector fields fi(x)− fi(z)−
`i(h(x) − h(z)) + g̃(x, z), i ∈ {1, 2}. If x and the estimated state z are not in the
same region Xi, then the (x−z)-dynamics is perturbed by a factor ±(f1(x)−f2(x)),
which is treated as an external disturbance. The injection gains `i induce ISS with
respect to these disturbances.

Example 5.1 (Continued) For the switched linear case presented in Example 5.1,
Property 5.2 can be ensured using a quadratic function Ve(e) := e>Pee, with Pe > 0,
by finding matrices L1, L2 ∈ Rn×p and ae > 0 such that

Pe(Ai − LiC) + (Ai − LiC)>Pe + aeI < 0, (5.59)

for each i ∈ {1, 2}. Indeed, defining

λe := λmin(Pe), λe := λmax(Pe), ψe(s) := λes
2,

ψe(s) := λes
2, ρe(s) := 2λes, α̂e(s) := aes

2,

equations (5.56a), (5.56b) and (5.57) are satisfied, and the function θe ∈ K∞ in (5.58)
is defined as θe(s) = ae

2λe
s. 4
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We are finally ready to state our stability conditions, based on Theorem 5.14,
for the interconnection in (5.46).

Corollary 5.21

Assume that Properties 5.1 and 5.2 hold, and define η1 := ψx ◦ γ̂e ◦ ψ−1
e

and
η2 := ψe ◦ γ̂x ◦ ψ−1

x
. If

η1 ◦ η2(s) < s, ∀s > 0, (5.60)
then system (5.46) is globally asymptotically stable.

Proof : Since by Propositions 5.18 and 5.20 we can construct non-pathological
ISS-Lyapunov functions Vx and Ve as in Assumption 5.1, it remains to check that
condition (5.60) implies the small gain condition (5.26) in Theorem 5.14. First we
note that, by (5.49a) and (5.56a),

Vx(x) ≥ η1(Ve(e)) = ψx ◦ γ̂e ◦ ψe−1(Ve(e))
⇔ ψx

−1(V (x)) ≥ γ̂e ◦ ψe−1(Ve(e))
⇒ |x| ≥ γ̂e(|e|),

since Vx(x) ≤ ψx(|x|), and Ve(e) ≥ ψe(|e|). By Proposition 5.18, this implies that

(Vx(x) ≥ η1(Ve(e)) )⇒ max V̇ x,Fx(x, e) ≤ −α̂x(|x|).

Following the same path for η1, we obtain the implication

(Ve(e) ≥ η2(Vx(x)) )⇒ max V̇ e,Fe(x, e) ≤ −α̂e(|e|),

proving that (5.60) implies (5.26). ♦

Remark 5.22: Concluding Example 5.1

Considering again the switched system presented in Example 5.1, we can check
the small-gain condition (5.60) as follows. Recalling the definitions of γ̂x and
γ̂e in the proofs of Propositions 5.18 and 5.20 we can write

γ̂x(s) = 2‖B‖‖K‖λx
εax

s and γ̂e(s) = 2‖A1 − A2‖λe
εae

s.

Thus, by arbitrariness of 0 < ε < 1, condition (5.60) holds if

16‖B‖2‖K‖2‖A1 − A2‖2λx
3
λe

3

λxλea2
xa

2
e

< 1.

5.7 Summary
In this chapter, we focused on ISS of differential inclusions using locally Lipschitz
Lyapunov functions. We provided sufficient conditions based on the notion of Lie
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derivative of the candidate Lyapunov function, which generalize previous results
relying on the study of the Clarke derivative. We applied our results to state-
dependent switched systems and proposed a new formulation of the well-known small
gain theorem in the context of interconnected differential inclusions. We finally
studied the design of an observer-based output feedback controller for a bimodal
switched system. As possible further research, we may investigate convex LMI-based
algorithms, based on using Lipschitz non quadratic functions and Lie derivative.





6
Conclusions and Perspectives

6.1 General Conclusions
This thesis has considered the stability problem for differential inclusions, with
two main application areas: hybrid systems and state-dependent switched systems.
From a control point of view, Lyapunov function design is a fruitful tool for pro-
posing stability certificates for a large class of dynamical systems. In this work, we
focused on proposing Lyapunov results relying on locally Lipschitz functions, ana-
lyzing some specific class, and underlining the subtleties and the limitations with
respect to the considered problems. We found it useful, in the first part of this
thesis (Chapters 1 and 2), to propose an “almost complete” formal introduction
of the considered frameworks, namely (constrained) differential inclusions, hybrid
systems and switching systems. Moreover, in Chapter 2, we proposed an overview
of the main results built upon locally Lipschitz Lyapunov functions, with particular
care in defining and developing the differential concepts needed, together with an
historical discussion and a comparison with the recent literature. Even if the content
of these first two chapters is fairly standard, we hope this brief summary provides a
clear and brief introduction for a reader who would like to familiarize and discover
this interesting subject. The work was then organized in three core chapters, whose
technical contributions are listed in what follows.

• In Chapter 3 we studied the problem of stability for a class of inner semicon-
tinuous constrained differential inclusions, with a particular interest in applic-
ations to hybrid dynamical systems. For a particular class of piecewise-defined
locally Lipschitz functions we underlined how the Lyapunov decrease inequal-
ity could be verified only on a dense subset of the given domain of interest C.
This was in particular interesting since the proposed result turns out to be less
conservative than the “classical” conditions relying on the computation of the
Clarke gradient, and, moreover, it is tailored also for cases where the domain
C is closed, and possibly with empty interior. This “geometrical elasticity” of
the proposed conditions turns out to be quite important when the results are
applied to hybrid systems, since it is fairly common to have closed flows sets in
this setting. Several examples are provided to show these subtleties, and the
limitations of our approach. We studied the relations between our proposed
class of locally Lipschitz functions and the piecewise C1 functions recently pro-
posed in the literature. We applied our result to the Clegg integrator model,
a classical example from the reset systems literature.

119
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• InChapter 4 we introduced and studied a family of locally Lipschitz functions
obtained by max-min combinations. Based on two notions of generalized direc-
tional derivatives, we proposed sufficient conditions for global asymptotic sta-
bility of differential inclusions, with particular attention to the state-dependent
switched systems case. This allowed us to clarify the relations between the
notion of Lie derivative, and the sliding motion phenomenon, which often arise
in switching systems, thus complicating the analysis. For a class of systems
with conic switching regions and linear dynamics within each of these regions,
we studied some conditions under which a max-min certificate can be obtained
by solving a set of matrix inequalities. These results crucially depend on the
combinatory structure (given by max-min combinations) of the chosen class
of functions, and motivated our choice of studying this particular case.

• In Chapter 5, considering differential inclusions perturbed by external sig-
nals, we focused on proposing ISS certificates using locally Lipschitz func-
tions. Relying on the notion of Lie derivatives of non-pathological functions,
we provided sufficient conditions that generalize previous results relying on
the study of the Clarke generalized derivative. Again, we studied the applic-
ation of our main results to state-dependent switched systems. We proposed
a new formulation of the well-known small-gain theorem in the context of
interconnected differential inclusions, and we analyzed deeply the case of in-
terconnections in the so-called cascade form. We finally studied the design of
an observer-based output feedback controller for a bimodal switched system.

Concluding, in this thesis we mainly concentrated in proposing various kinds of
relaxed Lyapunov conditions considering locally Lipschitz functions. The possible
routes of research are detailed in the following section.

6.2 Perspectives
In this concluding section, we introduce possible paths for future research, suggested
by the work presented in this thesis.

6.2.1 Algorithmic Verification
The results presented in this thesis showed how, for a large class of systems, one
can obtain relaxed Lyapunov conditions when looking at locally Lipschitz functions,
choosing the appropriate notions of “derivative of a scalar function along solutions
of dynamical systems”. The main drawback of this approach is that the conditions
we obtained, even if appealing from a theoretical point of view, turn out to be
computational hard to implement and verify, also for relatively simple systems (for
example switched systems composed by linear subsystems). During this work, we
started exploring the possibility of proposing algorithmic procedures, in order to
verify our proposed conditions, as for example was sketched in Section 3.6 for hy-
brid systems, or in Section 4.5 for state-dependent switched systems. Nevertheless,
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it would be interesting to investigate and propose computationally tractable con-
ditions, at least for the case of hybrid and state-dependent switched systems with
linear sub-dynamics, and subjected to specific geometric properties of flow/jump
sets and state-space partition. More specifically, in this thesis we focused on op-
erating regions/flow sets defined as symmetric cones, that is sets X ⊂ Rn defined
by X := {x ∈ Rn | x>Qx ≥ 0}, considering Q ∈ Sym(Rn×n). A similar and
promising setting would arise considering polyhedral partitions of the state space, or
polyhedral flows and jump sets, i.e. sets defined as intersection of a finite number of
closed half-spaces. Interesting recent results in this context can be found in [11], [70]
and [71].

6.2.2 Smooth Approximation
During this PhD project, the following interesting question arose, and unfortunately
we were able to provide only a partial answer. As we have already underlined, if the
origin of differential inclusion

ẋ ∈ F (x), (6.1)

(where F : Rn ⇒ Rn is outer semicontinuous with non-empty, compact and convex
values) is globally asymptotically stable (GAS), then there exists a smooth Lyapunov
function, see [122] or [36] for the formal statement and [81] for a thorough review.
Since we proposed various locally Lipschitz Lyapunov constructions, we faced the
following question:

Given a locally Lipschitz Lyapunov function V : Rn → R for system (6.1), is it
possible to approximate V in order to find a smooth Lyapunov function?

More precisely, we proposed the following conjecture:
Conjecture 6.1: Smooth Approximation

Let us suppose V : Rn → R is a Clarke or Lie locally Lipschitz Lyapunov
function for system (6.1) (recall Theorems 2.18 and 2.24). Then, for any
compact set K ⊂ Rn and any ε > 0 there exists a function Ṽ ∈ C1(Rn,R)
such that

• ‖V (x)− Ṽ (x)‖ ≤ ε, for every x ∈ K,

• Ṽ is a smooth Lyapunov function for (6.1), as defined in Theorem 1.3

Intuitively, this conjecture postulates that, given a locally Lipschitz Lyapunov
function for (6.1) (satisfying certain conditions), there always exists a smooth Lya-
punov function arbitrarily close to it (in the uniform norm sense), at least on compact
sets. This conjecture is true when considering Clarke locally Lipschitz Lyapunov
functions, and we analyzed this case in the conference paper [50]. Not surpris-
ing, the result follows from a “regularization-via-convolution” technique, a common
tool used in various converse Lyapunov theorems (as the ones in [86],[122], [36]),
and formally introduced for example in [24, Proposition 4.21]. Unfortunately, this
tool can not be applied “mutatis mutandis” to the Lie-locally Lipschitz Lyapunov
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functions case. In the paper [50] some preliminary and partial results are given,
exploring and underlining the subtleties. This investigation was not satisfactory,
and for that reason Conjecture 6.1 is still open, and it will be the subject of further
research. Despite its theoretical appeal, an important motivation for constructing
smooth approximations is that they provide more information about the robustness
of the system. For example in [50, Proposition 15], we showed a connection between
the existence of smooth Lyapunov functions and the ISS property with respect to
additive inputs.

6.2.3 Time-Dependent Switched Systems: Minimum Dwell
Time Computation

Another potentially interesting path of research would be to explore the possibility of
using locally Lipschitz functions in the study of stability of time-dependent switched
systems. As we have briefly sketched in Section 1.3, in this context it is quite
common to find in literature stability results relying on multiple Lyapunov functions,
i.e. constructions obtained combining/gluing together a finite number of functions.
Thus, it seems promising to look at generalizations of the constructions proposed
here for state-dependent switched systems, but it will need some care. Indeed, while
the Lyapunov functions proposed in this thesis have always been obtained “patching"
together a finite number of functions in the state space variable x, it seems reasonable
that, in a time-dependent switching context, this patching should be done in the
time variable, thus obtaining time-varying or signal-dependent Lyapunov functions.
For this reason a serious investigation is needed, in order to develop the appropriate
notions of derivative/decrease conditions. More specifically, an interesting (and
still open) problem was presented almost twenty years ago in [66], and concern the
finiteness and behavior of the L2-norm of switched linear systems defined byẋ(t) = Aσ(t)x(t) +Bσ(t)u(t),

y(t) = Cσ(t)x(t) +Dσ(t)u(t),
(6.2)

given a finite set of subsystemsM = {(Ai, Bi, Ci, Di) | i ∈ {1, . . . , K}} and under a
dwell-time constraint on the time-dependent switching signal σ : R+ → {1, . . . , K}.
Recently, in [33], it was proved that, under certain conditions, the L2 stability
of (6.2) is equivalent to the GAS of system ẋ(t) = Aσ(t)x(t). Since the main char-
acterizations of stability for switched systems under dwell-time assumptions (for
example [127], [32]) are given by using multiple Lyapunov constructions involving
non-smooth Lyapunov functions, we believe that our approach could give interesting
developments in this direction. Preliminary results in this direction are given in the
conference paper [48].

6.2.4 Control Design/State-Partition Control
We derived in this thesis various Lyapunov conditions ensuring (asymptotic) sta-
bility for hybrid systems and state dependent switched systems. One step forward
in our analysis would be the use of similar conditions in constructing a feedback
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control law, when the systems admits an input variable. A particular example of
application of our ISS result in this context was discussed in Section 5.6. We recall
that the study and use of non-smooth functions as control Lyapunov functions has
been a rich and active field of research in the past years, since it is well-known
that a system can be globally asymptotically controllable (or equivalently, feedback
stabilizable when considering feedback solutions, see [35]), even if a smooth con-
trol Lyapunov function does not exists, see for example [116], [103] and references
therein.

More specifically, we believe that our results could be applied to the following
specific problem: considering a discrete set of vector fields {fi}i∈I ⊂ Liploc(Rn,Rn),
we would like to construct a state-space partition X = {Xi}i∈I (as introduced in
Section 2.2) for which the resulting state-dependent switched system is globally
asymptotically stable. Roughly speaking, the state-dependent switching rule in this
case is seen as an input parameter that the designer can choose, instead of a given
data of the considered system. Preliminary discussions and results in this context
are provided in [84, Section 3.4].





A
Appendix to Chapter 4

This appendix is dedicated to clarify and develop some concepts introduced in
Chapther 4. In particular, in Section A.1 we provide the proof of a technical result,
while in Section A.2 we study, as a further insight, the family of max-min functions
obtained from 3 quadratics, and show how the computational complexity of the
proposed conditions depends on the max-min structure.

A.1 A Technical Result
Lemma A.1

Consider Q ∈ Sym(Rn) invertible and any max-min function V ∈
Mm(x>P1x, . . . , x

>PKx), such that P1, . . . , PK > 0 satisfy (4.65). Consider
a point x ∈ Rn such that x>Qx = 0 and αV (x) = {`1, . . . , `p} (p > 1). If
∀ `′, `′′ ∈ αV (x), `′ 6= `′′, x>(P`′ − P`′′) 6= τx>Q, for all τ ∈ R \ {0}, then
there exists a sequence xk → x such that x>kQxk = 0 and αV (xk) = {`}, for
all k ∈ N, for an ` ∈ αV (x).

Proof : Since Q is invertible, for all x ∈ Rn \ {0} such that x ∈ Q = {x ∈
Rn | x>Qx = 0}, we can define the tangent space of Q at x as Tx(Q) := {w ∈
Rn | x>Qw = 0}, see for example [13, Page 23]. Consider v ∈ Rn, v 6= 0, such that
x>Qv = 0 and x>(P`′ − P`′′)v 6= 0, for all `′, `′′ ∈ αV (x), `′ 6= `′′. Such a v ∈ Rn

exists, since, by (4.65), Q and P`′ − P`′′ are invertible and x>Q and x>(P`′ − P`′′)
are linearly independent, for all `′, `′′ ∈ αV (x), `′ 6= `′′. By definition of Tx(Q), given
β > 0, there exists continuously differentiable function ψ : (−β, β)→ Rn such that
ψ(0) = x, ψ̇(0) = v, and ψ(τ)>Qψ(τ) = 0, (i.e. ψ(τ) ∈ Q), ∀ τ ∈ (−β, β). For all
`′, `′′ ∈ αV (x), `′ 6= `′′, define Ψ`′,`′′ : (−β, β)→ R as

Ψ`′,`′′(τ) := ψ(τ)>(P`′ − P`′′)ψ(τ).

Since `′, `′′ ∈ αV (x) we have Ψ`′,`′′(0) = 0; moreover Ψ`′,`′′ is continuously differen-
tiable at 0 and by the chain rule Ψ̇`′,`”(0) = x>(P`′ − P`′′)v 6= 0. This means that
there exists a β′ < β, β′ 6= 0 such that

Ψ`′,`′′(τ) = ψ(τ)>P`′ψ(τ)− ψ(τ)>P`′′ψ(τ) 6= 0, (A.1)

for all τ ∈ (0, β′), for all `′, `′′ ∈ αV (x), `′ 6= `′′. We now consider a sequence τk → 0
such that τk ∈ (0, β′), ∀k ∈ N, and define xk := ψ(τk). Without loss of generality we
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can suppose xk ∈ U , for all k ∈ N, where U is the open neighborhood of x defined
in Lemma 4.6. By (A.1) we have

x>k P`′xk 6= x>k P`′′xk, ∀ `′, `′′ ∈ αV (x), `′ 6= `′′.

By Lemma 4.6 this implies that, ∀ k ∈ N, there exists `k ∈ αV (x) such that
αV (xk) = {`k}. By finiteness of αV (x), possibly considering a subsequence, we
can suppose αV (xk) = {`} ∀ k ∈ N, with ` ∈ αV (x). Since, by definition of ψ,
x>kQxk = 0, ∀ k ∈ N, we also have I(xk) = {1, 2}, ∀k ∈ N. ♦

A.2 Max-Min Functions with Three quadratics
In this section, we analyze some max-min functions of 3 quadratics defined by
positive-definite and symmetric matrices P1, P2 and P3. It can be taken as a simple
useful model to underline some remarks and how the number of inequalities in (4.53),
resulting from the S-procedure depends on the choice of the max-min composition.
With an abuse of notation, we will write min{Pi, Pj} instead of min{x>Pix, x>Pjx}.
The set Mm{P1, P2, P3} has the following elements:

• Common Lyapunov function: V = max{min{Pi}};

• Min of 2 quadratics: V = max{min{Pi, Pj}};

• Max of 2 quadratics: V = max{min{Pi},min{Pj}};

• Min of 3 quadratics: V = max{min{P1, P2, P3}};

• Max of 3 quadratics:

V = max{min{P1},min{P2},min{P3}};

• Quasi-max functions:

V = max {min{P1},min{P2, P3}} ;

• Quasi-min functions:

V = max {min{P1, P3},min{P2, P3}} ;

• Mid-of-quadratics function:

V = max {min{P1, P2},min{P2, P3}min{P1, P3}} .

Our interest particularly lies in the last three cases because the remaining cases can
be obtained more simply by considering maximum or minimum of (3 or less) quad-
ratic functions. Moreover the cases of quasi-max and quasi-min are in some sense
dual as we observe that max {min{Pi, Pk},min{Pj, Pk}} = min {Pk,max{Pi, Pj}}.
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A.2.1 Comparison of Max Construction with Other Results
Let us consider the max function V = max{P1, P2, P3}. Without loss of generality,
we write down only the inequalities corresponding to the regions where x>P3x has
the maximum value. We want to show that the two inequalities, corresponding to
a fixed i ∈ {1, . . . ,m}, can be reduced to a single inequality, and hence the total
computational burden can be reduced from 6m to 3m inequalities.

Lemma A.2

Denote A := Ai for a fixed i ∈ {1, . . . ,m}. Consider the following statements:

1. ∃ τ21, τ32 ≥ 0 such that A>P3 + P3A+ τ21(P2 − P1) + τ32(P3 − P2) < 0.

2. ∃ τ12, τ31 ≥ 0 such that A>P3 + P3A+ τ12(P1 − P2) + τ31(P3 − P1) < 0.

3. ∃λ1, λ2 ≥ 0 such that A>P3 + P3A+ λ1(P3 − P1) + λ2(P3 − P2) < 0.

Then, it holds that 1 ∧ 2 ⇐⇒ 3.

Proof : 1 ∧ 2 ⇒ 3. If τ21 = 0 then 3 holds with λ1 = 0 and λ2 = τ32. The case
τ12 = 0 is analogous. If τ21 6= 0, τ12 6= 0 it suffices to multiply the inequality in item
1 by 1

τ21
, then add it to the inequality given in 2 multiplied by 1

τ12
to arrive at 3.

3⇒ 1 ∧ 2: Let us take λ1 and λ2 such that A>P3+P3A+λ1(P3−P1)+λ2(P3−P2) < 0.
We have

A>P3 + P3A+ λ1(P3 − P1) + λ2(P3 − P2)± λ2P1 =
A>P3 + P3A+ (λ1 + λ2)(P3 − P1) + λ2(P1 − P2) < 0,

that is precisely the inequality in 2. The inequality in 1 can be derived with the
same argument. ♦
With this Lemma we have recovered the sufficient conditions for computing Lya-
punov function via the max of quadratics, given in [59, Corollary 4.4], while using
the more general framework of max-min functions.

A.2.2 Mid of 3 Quadratics
Let us consider the mid of quadratics described by

V = max {min{P1, P2},min{P2, P3},min{P3, P1}} .

We have called this function mid of quadratics because, for every x ∈ Rn, it takes
the value x>P`x such that x>Pjx ≤ x>P`x ≤ x>Pkx, where i, k, ` are different. Let
us suppose, just to explain the ideas, to have a “trivial switching” systems, that is
M = 1 Q1 = I and A1 ∈ Rn×n, that is the linear system ẋ = A1x. The general
case then could be reduced using the same ideas, mutadis mutandis. In this case the
condition (4.53) becomes: ∃ τ12, τ13, τ21, τ23, τ31, τ32, τ̃12, τ̃13, τ̃21, τ̃23, τ̃31, τ̃32 ≥ 0 such
that

(123) A>i P2 + P2Ai + τ21(P2 − P1) + τ32(P3 − P2) < 0,

(132) A>i P3 + P3Ai + τ31(P3 − P1) + τ23(P2 − P3) < 0,
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(213) A>i P1 + P1Ai + τ12(P1 − P2) + τ̃31(P3 − P1) < 0,

(231) A>i P3 + P3Ai + τ̃32(P3 − P2) + τ13(P1 − P3) < 0,

(312) A>i P1 + P1Ai + τ̃31(P1 − P3) + τ̃21(P2 − P1) < 0,

(321) A>i P2 + P2Ai + τ̃23(P2 − P3) + τ̃12(P1 − P2) < 0.

We have enumerated the inequalities using the triplets (j1j2j3), which correspond
to the cone where x>Pj1x ≤ x>Pj2x ≤ x>Pj3x. This is the worst case: we can not
regroup any inequalities, and 6m inequalities involving 12m non-negative scalars
must be solved.

A.2.3 Quasi-Max Function
In this case, we consider the function described as

V = max {min{P1},min{P2, P3}} .

For the trivial system defined by M = 1, Q1 = I, A1 ∈ Rn×n, conditions given
in (4.53), are in this case: ∃τ12, τ13, τ21, τ23, τ31, τ32, τ̃12, τ̃13, τ̃21, τ̃23, τ̃31, τ̃32 ≥ 0 such
that

(123) A>P2 + P2A+ τ21(P2 − P1) + τ32(P3 − P2) < 0,

(132) A>P3 + P3A+ τ31(P3 − P1) + τ23(P2 − P3) < 0,

(213) A>P1 + P1A+ τ12(P1 − P2) + τ̃31(P3 − P1) < 0,

(231) A>P1 + P1A+ τ̃32(P3 − P2) + τ13(P1 − P3) < 0,

(312) A>P1 + P1A+ τ̃31(P1 − P3) + τ̃21(P2 − P1) < 0,

(321) A>P1 + P1A+ τ̃23(P2 − P3) + τ̃12(P1 − P2) < 0.

Reasoning as in Lemma A.2 it easy to note that inequalities (231), (321), (213) are
equivalent to the single inequality

∃ λ̃ ≥ 0 s.t. A>P1 + P1A+ λ̃(P1 − P2) < 0.

This way, we can rewrite the sufficient conditions for the quasi-max Lyapunov func-
tion as: ∃ τ21, τ23, τ31, τ32, τ̃21, τ̃31, λ̃ ≥ 0 such that

(123) A>P2 + P2A+ τ21(P2 − P1) + τ32(P3 − P2) < 0,

(132) A>P3 + P3A+ τ31(P3 − P1) + τ23(P2 − P3) < 0,

(312) A>P1 + P1A+ τ̃31(P1 − P3) + τ̃21(P2 − P1) < 0,

(4) A>P1 + P1A+ λ̃(P1 − P2) < 0.

Note that, for every i ∈ {1, . . . ,m}, we have just one more inequality (involving just
one more non-negative scalar) as compared to the max of quadratics case.
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Appendix to Chapter 5

This appendix presents some results concerning Chapter 5 and the correspond-
ing proofs. In particular, in Section B.1 we prove that, given a proper partition
X = {Xi,Oi}i∈I of Rn, piecewise C1 functions w.r.t. X (Definition 5.8) are non-
pathological (Definition 2.19) In Section B.2 we prove the equivalence between two
different ISS-Lyapunov sufficient conditions, as discussed in Remark 5.5.

B.1 Non-Pathology of Piecewise C1 functions
In this Appendix we conclude the proof of Proposition 5.9, showing that piecewise
C1 functions are non-pathological. We first recall that, considering X = {Xi,Oi}i∈I ,
a proper partition of Rn, if V ∈P(X ) then V is locally Lipschitz and

∂V (x) = co {∇V`(x) | ` ∈ IX (x)} . (B.1)

Lemma B.1

Consider X = {Xi,Oi}i∈I , a proper partition of Rn. If V ∈P(X ), then V is
non-pathological.

Proof : Recalling Definition 2.19 we must show that, given any ϕ ∈ AC(R+,R
n),

∂V (ϕ(t)) is a subset of an affine subspace orthogonal to ϕ̇(t), for almost all t ∈ R+,
namely that ∃ at ∈ R such that

〈v, ϕ̇(t)〉 = at, ∀v ∈ ∂V (ϕ(t)). (B.2)

Since ϕ : R+ → Rn is absolutely continuous and V : Rn → R is locally Lipschitz
we have that ϕ and V (ϕ(t)) are differentiable almost everywhere, i.e. there exists
a set of measure zero N ⊂ R+ such that ϕ̇(t) and d

dt
V (ϕ(·))(t) both exist for every

t ∈ R+ \ N . Using (B.1), to ensure (B.2) it is enough to show that, for almost all
t ∈ R+ \ N , there exists at ∈ R such that

〈∇V`(ϕ(t)), ϕ̇(t)〉 = at, ∀ ` ∈ IX (ϕ(t)). (B.3)

Fix any t ∈ R+ \ N . Either (B.3) holds for that t, or there exist `1, `2 ∈ IX (ϕ(t))
such that `1 6= `2 and

〈∇V`1(ϕ(t)), ϕ̇(t)〉 6= 〈∇V`2(ϕ(t)), ϕ̇(t)〉.
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In this second case we have
d

dt
(V`1(ϕ(t))− V`2(ϕ(t))) =

=〈∇V`1(ϕ(t)), ϕ̇(t)〉 − 〈∇V`2(ϕ(t)), ϕ̇(t)〉 6= 0.

Thus, by continuity, there exists ε > 0 small enough such that V`1(ϕ(t̃)) 6= V`2(ϕ(t̃)),
for all t̃ ∈ (t−ε, t+ε)\{t}, which implies that either `1 /∈ IX (ϕ(t̃)) or `2 /∈ IX (ϕ(t̃))
(or both), for all such t̃, because, by Definition 5.8,

`1, `2 ∈ IX (x) ⇒ V (x) = V`1(x) = V`2(x).

This shows that for any point t where two or more scalar products 〈∇V`j (ϕ(t)), ϕ̇(t)〉
“disagree” in (B.3), t is isolated. We conclude by recalling that a set of isolated point
is countable [67, Page 180] and thus has measure zero, as to be proven. ♦

B.2 Proof of ISS-Equivalent Conditions
In this section we want to prove the following result

Lemma B.2

Consider V : Rn → R and F : Rn × Rm ⇒ Rn a set valued map with
nonempty, compact and convex values, and outer semicontinuous in the first
and continuous in the second component such that F (0, 0) = {0}. Then:
There exists ρ ∈ K∞ and γ ∈ K such that

max V̇ F (x, u) ≤ −ρ(|x|), ∀ |x| ≥ γ(|u|), (B.4)

implies
There exists ρ̂, γ̂ ∈ K∞ such that

max V̇ F (x, u) ≤ −ρ̂(|x|) + γ̂(|u|) ∀(x, u) ∈ Rn ×Rm. (B.5)

Proof : The main idea of this proof was firstly introduced in [27, Proposition
2.6]. Let us define Ω(r) := Bx(0, γ(r))×Bu(0, r) ⊂ Rn×Rm, for all r ∈ R+. Define

λ(r) := max
(x,u)∈Ω(r)

{max V̇ F (x, u) + ρ(|x|)},

β(r) := max{0, λ(r)} (and β(r) = 0 if λ(r) not defined).

Clearly β(r) ≥ 0 for all r ∈ R+, it is nondecreasing and β(0) = 0. We want to prove
that lims→0+ β(s) = 0. Since ρ(|x|)→ 0 if |x| → 0, defining

θ(r) := max
(x,u)∈Ω(r)

{max V̇ F (x, u)},

we have to prove that
lim sup
s→0+

θ(s) ≤ 0.
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In other words we have to prove that ∀ε < 0 there exists an δ > 0 such that

θ(δ′) < ε ∀ δ′ < δ.

We suppose by contradiction that this is not the case, thus ∃ ε > 0 such that ∀δ > 0
there exists δ′ ≤ δ such that

θ(δ′) ≥ ε.

Let fix this “special” ε > 0. Developing it means that for all δ > 0, there exists a
(x, u) ∈ Ω(δ) such that

max V̇ F (x, u) ≥ ε.

That means that for all δ, there exists a (x, u) ∈ Ω(δ), there exists an f ∈ F (x, u)
such that

cost ≡ 〈v, f〉 ≥ ε, ∀v ∈ ∂V (x). (B.6)
We have the following fact

• ∂V is locally bounded around 0, see [34, Prop. 2.1.2(a)]

• Since F (0, 0) = {0} and F outer semicontinuous in (x, u), for every φ > 0,
there exists a m(φ) > 0 such that F (x, u) ⊂ Bx(0, φ), for all (x, u) ∈ Ω(m(φ)),
see [105, Theorem 5.19].

By the local boundedness of ∂V there exist a1 > 0 and M > 0 such that |v| ≤ M ,
for all v ∈ ∂V (x), for all x ∈ Bx(0, γ(a1)). Let us chose a2 <

ε
M
, thus there exist

m(a2) > 0 such that F (x, u) ⊂ Bx(0, a2), for all (x, u) ∈ Ω(m(a2)). Thus take
a < min{a1, a2}, by (B.6) we have that there exists a (x, u) ∈ Ω(a) and a f ∈ F (x, u)
such that ε ≤ 〈v, f〉, but this would imply

ε ≤ 〈v, f〉 ≤ |v||f | < M
ε

M
= ε,

leading us to a contradiction. Thus there exists an γ̂ ∈ K∞ such that β(r) ≤ γ̂(r),
for all r ∈ R+. Now if |x| ≥ γ(|u|), (B.5) follows directly from (B.4), if |x| ≤ γ(|u|)
we have

max V̇ F (x, u) + ρ(|x|) ≤ max
(x,u)∈Ω(|u|)

{max V̇ F (x, u) + ρ(|x|)}

≤ γ̂(|u|).
♦
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