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Abstract 

Abstract 

Sleep is essential for human health. Bad sleep and sleep disorders have been increasingly prevalent and are 

gradually becoming a social problem that cannot be ignored. Considerable effort has been devoted to 

academic and industrial research and development on wireless body networks for sleep monitoring in terms of 

non-intrusiveness, portability and autonomy. First of all, this thesis reviews current research on sleep 

monitoring in order to know the current state of research and to collect insights for future work. Specific 

selection criteria were chosen to include articles in which sleep monitoring systems or devices are covered. 

The contributions of the thesis are mainly focused on 3 areas: 

- The implementation of a complete hardware architecture for sleep monitoring based on an IoT network. It is 

based on the development of embedded autonomous patches, on the body (chest, wrists, feet) to measure 

movements and temperature, and in the environment close to the subject to measure the ambient level (sound, 

luminosity, temperature). These wireless sensors collect data continuously during the night and automatically 

transmit them to a remote database for display on a dashboard for the doctor. Two applications have been 

designed: a web-based interface and an Android application. Laboratory tests demonstrated the technical 

feasibility. 

- The proposal of two original methods for the classification of sleep stages (threshold-based methods and k-

means clustering). In this work, the proposed algorithms use only non-dominant wrist acceleration data. The 

calculations lead to a classification into 4-sleep stages ("awake", "light sleep", "deep sleep" and "REM") for 

night sleep. We validate our methods by referring to the results obtained by two commercial devices "Fitbit" 

and "Withings Sleep Analyzer" and to subjective comments from volunteers on their feelings about the quality 

of their sleep. Changes in sleep quality were evaluated for different nights with two volunteers to verify the 

performance of the proposed algorithms. 

- The proposal and definition of sleep indicators to describe the sleep state (sleep positions, sleep stages, 

snoring and periodic leg movements) and its quality via the calculation of a sleep score based on the duration 

of each sleep stage. Five volunteers were recruited for the tests. Over the 15 nights of testing, the proposed 

algorithm based on the k-means clustering showed superior or equivalent performance compared to the results 

of the "Fitbit" tool. In terms of sleep stage classification, the device was compared to the clinical gold standard 

(PSG polysomnography) on one subject during one night at the sleep unit of the Purpan Hospital in Toulouse. 

This work showed that it was possible to propose a light, non-intrusive and autonomous system of continuous 

sleep monitoring at home. 

 

Keywords: Sleep monitoring, wearable sensors, k-means, clustering, classification, sensing, 

Polysomnography 
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Résumé 

Résumé 

Le sommeil est essentiel pour la santé humaine. Les troubles du sommeil sont de plus en plus répandus et 

deviennent progressivement un problème social qui ne peut être ignoré. Des efforts considérables ont été 

consacrés à la recherche et aux développements académiques et industriels sur les réseaux corporels sans fil 

pour la surveillance du sommeil en termes de non-intrusivité, de portabilité et d'autonomie. Tout d'abord, cette 

thèse passe en revue les recherches récentes sur la surveillance du sommeil afin de connaître l'état actuel de la 

recherche et de recueillir des informations pour les travaux futurs. Des critères de sélection spécifiques ont été 

choisis pour inclure des articles dans lesquels les systèmes ou dispositifs de surveillance du sommeil sont 

couverts. 

Les contributions de la thèse sont principalement axées sur 3 volets : 

- La mise en œuvre d'une architecture matérielle complète pour la surveillance du sommeil basée sur un réseau 

IoT. Elle est basée sur le développement de patchs autonomes embarqués, sur le corps (poitrine, poignets, 

pieds) pour mesurer les mouvements et la température, et dans l'environnement proche du sujet pour mesurer 

le niveau ambiant (son, luminosité, température). Ces capteurs sans fil collectent des données en continu 

pendant la nuit et les transmettent automatiquement à une base de données distante pour les afficher sur un 

tableau de bord à l'intention du médecin. Deux applications ont été conçues : une interface web et une 

application Androïd. Des tests en laboratoire ont démontré la faisabilité technique. 

- La proposition de deux méthodes originales pour la classification des stades du sommeil (méthodes basées 

sur les seuils et sur le partitionnement k-means). Dans ce travail, les algorithmes proposés n'utilisent que des 

données sur l'accélération du poignet non dominant. Les calculs conduisent à une classification en 4 stades de 

sommeil ("éveillé", "sommeil léger", "sommeil profond" et "REM-mouvement rapide des yeux") pour le 

sommeil nocturne. Nous validons nos méthodes en nous référant aux résultats obtenus par deux appareils 

commerciaux "Fitbit" et "Withings Sleep Analyzer" et aux commentaires subjectifs de volontaires sur leurs 

sentiments concernant la qualité de leur sommeil. Les changements dans la qualité du sommeil ont été évalués 

pour différentes nuits avec deux volontaires afin de vérifier la performance des algorithmes proposés. 

- La proposition et la définition d'indicateurs de sommeil pour décrire l'état de sommeil (positions de sommeil, 

stades de sommeil, ronflements et mouvements périodiques des jambes) et sa qualité via le calcul d'un score 

de sommeil basé sur la durée de chaque stade de sommeil. Cinq volontaires ont été recrutés pour les tests 

pendant 15 nuits et les performances entre les deux algorithmes proposés ont été comparées aux résultats du 

dispositif "Fitbit". En termes de classification des stades de sommeil, le dispositif a été comparé au gold 

standard clinique (polysomnographie PSG) sur un sujet pendant une nuit à l’unité du sommeil de l'hôpital 

Purpan à Toulouse. 

Ce travail a montré qu'il était possible de proposer un système léger, non intrusif et autonome de surveillance 

continue du sommeil à domicile. 

 

Mots clés : Surveillance du sommeil, capteurs portables, k-means, classification, détection, 

Polysomnographie 
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With increasing social pressures and the ageing of the world's population, sleep problems are 

becoming more and more frequent and represent a social issue that cannot be ignored [1][2]. Health 

professionals consider sleep as an important indicator of health status, poor sleep quality is indeed 

likely to be a sign of many diseases [3]. Moreover, it could lead to serious health consequences and 

to other physical and mental illnesses if the problem lasts over time. Therefore, it is of great 

significance to keep track of the sleep quality through sleep monitoring in order to better understand 

causes and consequences and to prevent possible medical complications. Polysomnography (PSG) is 

currently the internationally recognized gold standard for sleep monitoring [4]. Indeed, PSG 

monitors many body functions, including brain activity (EEG), eye movements (EOG), muscle 

activity or skeletal muscle activation (EMG), heart rhythm (ECG), and limbs movement, during 

sleep. The PSG typically records, in a minimal configuration, 12 channels requiring 22 wires 

attached to the patient. Although the PSG provides the most complete and accurate sleep monitoring 

information, the various electrodes with wires are spread over almost the entire body during 

monitoring, causing great discomfort to the user during sleep. Therefore, PSG is a highly invasive 

means of sleep monitoring. In addition, PSG sleep monitoring must be performed in a specialized 

sleep monitoring unit in the hospital and it is usual to perform only one night of PSG monitoring for 

a patient. This prevents PSG from being a long-term sleep monitoring solution. However, people's 

sleep status can vary from night to night, so that long-term sleep monitoring is essential for reliable 

results. Clearly, it is unrealistic to think that long-term sleep monitoring can be achieved if the 

hospital is the only place where sleep monitoring can be done. The only condition to enable long-

term sleep monitoring would be to move the monitoring site from hospital to patient’s home. 

With the rapid development of wireless sensor networks (WSNs) and BodyLAN technology, 

alternative wearable solutions for sleep monitoring have recently emerged. These systems suffer 

from several drawbacks such as unreliability, complexity, their price which remains quite high in 

most cases besides the fact that these systems do not allow monitoring of all parameters and cannot 

be compared with gold standards, PSG or EEG. Finally, existing professional systems do not allow 

for remote monitoring at home, nor easy remote control by physicians. As a result, the patient must 

periodically visit the hospital to see his doctor and undergo a short sleep observation test, something 

most patients are reluctant to do. Based on the rich techniques and experience gained in the study of 

the WLBAN (wireless local body area network) monitoring system in our laboratory LAAS-CNRS 

since 1990 [5][6][7], we are attempting in this project to provide an alternative solution to this 
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problem by proposing a complete networked sleep monitoring system which provides information 

that is as relevant as current standards and that meets the requirements of physicians, while easing 

the constraints imposed on patients.  

The contributions of the thesis are mainly focused on 3 areas: 

- The implementation of a complete hardware architecture for sleep monitoring based on an IoT 

network. It is based on the development of (1) embedded autonomous patches, on the body (chest, 

wrists, feet) to measure movements and temperature, and of sensors distributed in the environment 

close to the subject to measure the ambient conditions (sound, luminosity, temperature). These 

wireless sensors collect data continuously during the night and automatically transmit them to a 

remote database for display on a dashboard for the doctor. Two applications have been designed: a 

web-based interface and an Android application. Laboratory tests demonstrated the technical 

feasibility. 

- The proposal of two original methods for the classification of sleep stages (threshold-based 

methods and k-means clustering). In this work, the proposed algorithms use only non-dominant wrist 

acceleration data. The calculations lead to a classification into 4-sleep stages ("awake", "light sleep", 

"deep sleep" and "REM") for night sleep. We validate our methods by referring to the results 

obtained by two commercial devices "Fitbit" and "Withings Sleep Analyzer" and to subjective 

comments from volunteers on their feelings about the quality of their sleep. Our algorithms calculate 

the cumulative duration of each sleep stage to evaluate changes in sleep quality between different 

nights. Two volunteers carried out tests for 7 and 10 nights to verify the performance of the two 

algorithms. 

- The proposal and definition of sleep indicators that will make it possible to describe the sleep state 

(sleep positions, sleep stages, snoring and periodic leg movements) and its quality via the calculation 

of a sleep score based on the duration of each sleep stage. Five volunteers were recruited for the tests. 

Over the 15 nights of testing, the proposed algorithm based on the k-means clustering showed 

superior or equivalent performance compared to the results of the "Fitbit" tool. In addition, to 

evaluate the performance of the proposed system in terms of sleep stage classification, we compared 

our device to the clinical gold standard PSG (Polysomnography) on a subject during one night at the 

sleep clinic of the Purpan hospital in Toulouse. 

The manuscript consists of five chapters: 
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In Chapter 1, we present the state of the art of the sleep monitoring system. This review investigates 

the use of various common sensors in the hardware implementation of current SMS (Sleep 

Monitoring System), as well as the types of parameters collected, their positions on the body, the 

possible description of sleep phases, and their advantages and drawbacks. In addition, the data 

processing algorithms and software used in different SMS solutions, as well as their results are 

presented. This review is not limited to the academic research studies, but also investigated various 

commercial products available for sleep monitoring, presenting their characteristics, advantages and 

disadvantages. In particular, we categorized existing research on SMS based on how sensors are used, 

including the number and type of sensors, and preferred positions on the body. In addition to 

focusing on a specific system, issues related to SMS, such as privacy, economic and social impact, 

are also discussed. 

Chapter 2 describes the hardware architecture of our proposed SMS. Detailed technical information 

on all components of the SMS, including the sleep monitoring modules, the master board, the 

gateway and the smartphone application is presented. Besides, we explain how the system works and 

justify our choice of wireless communication solutions.  

Chapter 3 presents sleep indicators by referring to the Pittsburgh Sleep Quality Index (PSQI) which 

includes sleep stages, sleep positions, snoring, periodic leg movements during sleep (PLMS), distal 

skin temperature (fingers, toes) and proximal skin temperature (chest), ambient conditions 

(luminosity and temperature). Meanwhile, it describes the algorithms proposed to obtain these sleep 

indicators. 

Chapter 4 presents the original sleep monitoring algorithms, including threshold and k-means 

clustering algorithms. All the algorithms proposed use only acceleration data acquired by our wrist 

module with a 3-axis accelerometer, allowing the detection of falling asleep and waking up and 

classification into 4-sleep stages (“awake”, “light sleep”, “deep sleep” and “REM”). We validate the 

proposed methods by comparing them to the results of the commercial products “Fitbit Charge 2” 

and “Withings Sleep Analyzer”. Based on wrist movement data collected during 32 nights of sleep 

from a total of 6 volunteers, we can show that the algorithms achieve promising results. Furthermore, 

we define a sleep score based on the duration of each sleep stage, which helps users without relevant 

sleep knowledge to intuitively understand their sleep. 

In Chapter 5, we use PSG (Polysomnography) to follow the sleep of one of the volunteers throughout 

the night in a hospital’s professional sleep laboratory in order to evaluate the performance of the 
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algorithms proposed in chapter 4 in terms of sleep stage classification.  Four confusion matrices are 

created to show the result. Performance assessment indexes such as Cohen’s Kappa coefficient (κ), 

sensitivity, specificity, accuracy, precision, balanced accuracy and F1 score are calculated to assess 

performance from different perspectives. Besides, the links between skin temperature and 

hypnogram and between skin temperature and PLMS are also studied. 

In conclusion, we will briefly remind the work carried out during these three and a half years of 

thesis and will highlight the main results obtained during the experiments. We will give research 

perspectives on the different aspects studied and a first reflection on the implementation of this type 

of device in current medical practices. 
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Chapter 1. State of the art in sleep monitoring system (SMS) 

 

1 Introduction 

1.1 Background 

Sleep is crucial for human health and quality of life. Sleep corresponds to a decrease in the state of 

consciousness that separates two periods of wakefulness. It is characterised by a loss of alertness, a 

decrease in muscle tone and a partial preservation of sensory perception. Sleep is essential for many 

biological functions. Poor sleep and sleep disorders are increasingly prevalent among the world’s 

older population [1][2]. The serious impact of sleep on health and well-being is the dominant 

motivation for sleep monitoring. 

 On personal health, sleep is a foundation for good health as important as diet and exercise, 

according to the National Sleep Foundation. Poor sleep can lead to adverse health consequences, 

including obesity [8], cardiovascular disease [9], and depressive disorders [10]. Sleep is also 

associated with creativity [11], memory enhancement [12], and cognitive function [13]. Patients 

with sudden cardiac death and sleep disorders such as obstructive sleep apnea (OSA) have been 

reported to have peak mortality during sleep [14]. 

 On society, the incidence of sleep disorders appears to be a global concern. Among the world’s 

population, 16.6% of people in Africa and Asia [15], 18% of people in Europe [3], and more than 

20% of people in North America [16][17] are affected by nocturnal sleep disorders. Such 

prevalence has led to a series of societal problems, such as high rates of chronic diseases, road 

traffic accidents, and workplace accidents. Approximately 13% of work injuries are due to sleep 

problems [18]. In the United States, the expenditure for the treatment of moderate-to-severe sleep 

and related disorders amounts to US $165 billion per year, far more than the cost of treating 

diseases such as heart failure, stroke, hypertension, and asthma, which ranges from US $20 to US 

$80 per year [19]. In five OECD (Organisation for Economic Co-operation and Development) 

countries, the economic costs of sleep deprivation represent 1.35% (Canada), 1.56% (Germany), 

1.88% (United Kingdom), 2.28% (United States) and 2.92% (Japan) of their respective gross 

domestic product (GDP) [20]. 

1.2 Sleep Stages Scoring Rules 

Schematically, sleep corresponds to a succession of 3 to 6 successive cycles, each lasting 60 to 120 

minutes. A cycle is itself made up of an alternation of slow wave sleep and REM sleep, each 
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corresponding to different brain activities. Polysomnography (PSG) has long been considered as the 

gold standard for quantifying sleep time, differentiating sleep stages, and assessing sleep 

fragmentation. PSG provides comprehensive physiological information during sleep including 

electroencephalograms (EEGs), electrocardiograms (ECGs), electromyography (EMG), 

electrooculography (EOG), oral-nasal airflow, body position, thoracic and abdominal movements, 

pulse oximetry, and limb movements. Clinicians can obtain reliable sleep monitoring results, such as 

sleep stages, by analyzing the PSG recording during the night. For sleep stage guidelines and scoring 

rules, the R&K rules proposed by Rechtschaffen and Kales in 1968 [21] were used until 2007, when 

the American Academy of Sleep Medicine (AASM) updated the scoring manual commonly referred 

to as the AASM scoring manual [22]. The R&K rules and the AASM rules differ in the terminology 

used. The R&K rules divide sleep into 6 distinct stages: W (wake); non–rapid eye movement (non-

REM [NREM]) stages S1, S2, S3, and S4; and REM sleep stage. The AASM rules recognize 5 sleep 

stages: W (wake) stage N1 (formerly stage 1 sleep), stage N2 (formerly stage 2 sleep), stage N3 

(formerly stages 3 and 4 sleep), and stage R sleep (formerly stage REM sleep), as illustrated in 

Figure 1. 

 

Figure 1. Terminology used by R&K and AASM for sleep stages scoring. 

For the same sleep, the scoring results obtained from R&K rules and the AASM rules will be slightly 

different. One study [23] adopted both rules to score PSG sleep recordings of healthy subjects and 

patients (38 women and 34 men) aged 21 to 86 years. The results showed that sleep latency, REM 

latency, total sleep time, and sleep efficiency were not affected by the classification standard. In 

contrast, the time (in minutes and as a percentage of total sleep time) spent in stage 1 (S1/N1), stage 

2 (S2/N2), and slow wave sleep (S3+S4/N3) differed significantly between the R&K and AASM 

classifications. Although light and deep sleep increased (S1 vs N1 [+10.6 min, (+2.8%)]: P<.01; 
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S3+S4 vs N3 [+9.1 min (+2.4%)]: P<.01), stage 2 sleep decreased significantly according to the 

AASM rules (S2 vs N2 [−20.5 min, (–4.9%)]: P<.01). 

The differences between the results of the 2 sleep standards can be attributed to the different rules 

used [24]. 

The reader is reminded that sleep stages should not be considered as distinct entities but rather as a 

gradual transition of a waveform. Sleep usually follows a predictable pattern, moving cyclically 

between the light sleep stage, the deep sleep stage, and REM. Each sleep cycle typically lasts about 

90 min and is repeated 4 to 6 times during the night. In each sleep cycle, people usually experience a 

transition from light to deep sleep first and then switch to REM. However, some stages can be 

skipped during sleep. For example, one can switch to REM or return directly to deep sleep from 

REM sleep [25]. Sleep quality is analyzed using standard parameters such as sleep efficiency, total 

sleep time, sleep latency, sleep stages 1 and 2, slow-wave sleep (sleep stages 3 and 4), rapid eye 

movement sleep, wake time after sleep onset, and nocturnal wake time [26]. 

1.3 Sleep disorders 

The third edition of the International Classification of Sleep Disorders (ICSD-3), recently released, 

has identified 7 major categories of sleep disorders that include insomnia, sleep-related breathing 

disorders, central hypersomnolence disorders, circadian rhythm sleep-wakefulness disorders, sleep-

related movement disorders, parasomnia, and other sleep disorders [27]. Most sleep disorders can be 

monitored by sleep monitoring systems, and some of them are detailed below: 

 Insomnia refers to impairment in the quality and quantity of sleep. According to Ohayon [28], 10% 

to 30% of the adult population is affected by insomnia. The ICSD-3 criteria for this diagnosis include 

(1) a report of sleep initiation or maintenance problems, (2) adequate opportunity and circumstances 

for sleep, and (3) consequences during the day. The ICSD-3 duration criterion for chronic insomnia 

disorder is 3 months, and a frequency criterion (at least 3 times per week) was added. 

 Sleep apnea is characterized by pauses in breathing or instances of shallow breathing during sleep 

[29]. Due to sleep apnea, the patient wakes up regularly throughout the night to retrieve breathing. 

Frequent awakening results in very poor quality of sleep and excessive daytime fatigue. Usually, 

sleep apnea may be accompanied by loud snoring, which can be easily monitored by a microphone 

(many researchers have studied Snoring signal processing–based methods to achieve a 

supplementary diagnosis way of sleep apnea) [30][31][32]. 
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 Restless legs syndrome (RLS) is based on an urge to move the legs, sometimes accompanied by an 

uncomfortable sensation that (1) occurs primarily with rest or inactivity, (2) is partially or totally 

relieved by the movement, for as long as the movement occurs, and (3) occurs primarily in the 

evening or night [33]. Up to 30% of cases are caused by iron deficiency. These abnormal leg 

movements can be easily monitored with an accelerometer [34][35][36]. 

 Periodic limb movement disorder (PLMD) is characterized by abnormal limb movements and is 

responsible for deterioration in sleep quality [37]. For young people, it will be considered as 

pathologic when the index of periodic limb movement during sleep (PLMS; number of PLMS per 

hour) is greater than 5. For older people, an index of PLMS greater than 15 is usually adopted as the 

pathological threshold. This disorder can be detected by using EMG [38] or actigraphy [34]. 

 Disorders of arousal from NREM (DAN) include confusion arousal, sleepwalking, sleep terrors, and 

sleep-related breathing disorders [27][39]. The general criteria for disorders of arousal include (1) 

recurrent episodes of incomplete awakening, (2) absent or inappropriate responsiveness, (3) limited 

or no cognition or dream report, and (4) partial or complete amnesia for the episode. Detection of 

repeated wakes during the NREM stage can be a sign of DAN. This disorder can be detected using 

EEG. 

 REM sleep behavior disorder (RBD) is characterized by the intermittent loss of REM sleep atonia 

and the appearance of elaborate motor activity associated with the situation in dreams, such as 

repeated episodes of behavior or vocalization resulting from REM [40]. When specific movements 

and sounds are detected during REM stage, RBD should be suspected. This disorder can be detected 

by using a microphone, actigraphy and an EEG. 

Therefore, there appears to be a growing interest in researching new sleep monitoring system 

solutions to provide rapid, reliable, and long-term monitoring results to users and clinicians. 

Innovative home-used sleep monitoring systems offer users access to quality and sleep phases by 

themselves and can be a reference for the diagnosis of sleep disorders by clinicians. 

For sleep monitoring, a sleep monitoring system can include a wide range of wearable or noncontact 

devices, including sensors, actuators, smart fabrics, power supplies, wireless communication 

networks, processing units, multimedia devices, user interfaces, software, and algorithms for data 

capture, processing, and decision support. These systems are able to measure vital signs, such as 

body and limb movements, body and skin temperature, heart rate, ECGs, EEGs, EMG, and 

respiratory rate. The measurements are transmitted via a network either to a central connection node, 



                                                                                                                                                                                                                                      
29                                                              

Chapter 1. State of the art in sleep monitoring system (SMS) 

such as a personal digital assistant, or directly to a medical center for storage, data processing, and 

decision making. 

In order to discuss this potential, we thought it was important to review the current state of research 

and development in the field of sleep monitoring system, highlighting the main features of the most 

promising projects under development and future challenges. 

2 Materials and methods 

With the increasing occurrence of sleep disorders, the study of sleep monitoring systems has been 

one of the hotspots in the field of smart human monitoring. As a result, advances in sleep monitoring 

system development technology are constantly accelerating. Simple, lightweight, and small-size 

sensor systems are being adopted to acquire sleep-related physiological information. These systems 

are designed to be adaptable to the gold standard PSG, particularly with regard to sleep stages, sleep 

or wake, sleep apnea, sleeping positions, etc. In addition, the advantages of such a system over the 

traditional PSG method are that it is affordable, requires little or no technician intervention, is 

installed in the home, and can be used over the long term. The systems have undergone rapid 

development thanks to the progress made in the miniaturization of sensors, the reduction in energy 

consumption, and the various communication possibilities (Bluetooth, Wi-Fi, Sigfox, LoRa, and NB-

IoT). These technologies allow today's sleep monitoring systems to be less intrusive and efficient, 

with remote and continuous monitoring. In this review, specific selection criteria are chosen as 

reference articles on sleep monitoring systems. 

2.1 Inclusion criteria for sleep monitoring systems search 

Most research projects on sleep monitoring systems have focused on smart, portable, and 

nonintrusive devices that encompass wireless communication, moving the monitoring site from the 

hospital to the home, in patch or contactless form. Systems that have the following features are 

included: 

 Wearable, nonintrusive, wireless, and contactless. 

 Patch, body sensor system, and sensor network. 

 Band, watch, textile, bed sheet, and belt. 

 Mobile, stationary, ambulatory, home and remote. 
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Automatic collection and transmission of acquired data and processing results can help physicians 

and caregivers easily monitor sleep conditions over time. In addition, it may be easier to find trends 

in the data, providing insight into individualized sleep patterns. 

2.2 Search methods and strategy 

This literature review focuses on the presentation of the hardware and software adopted in the current 

sleep monitoring system. We have included journal publications, conference publications, and 

information on related websites. The keywords for material collection are shown in Table 1. We 

conducted a keyword search in Web of Science, PubMed, and PubMed Central. 

Table 1. Keywords used for the literature search. 

Sleep Long-term sleep monitor 

Sleep quality Sleep phase classification 

Sleep monitor Sleep stage classification 

Sleep monitor system Contactless sleep monitor 

Sleep monitor and sensor Nonintrusive sleep monitor 

Sleep monitor and smart patch Noninvasive sleep monitor 

Sleep monitor and commercial 

products 

Sleep big data 

Sleep monitor at home Sleep data mining 

PSG Sleep deep learning 

EEG Sleep machine learning 

REM or light or deep sleep or wake Sleep artificial intelligence 

2.3 Results 

Due to the large number of articles and abstracts retrieved, it was decided to include only articles 

published for the period 2016 to 2020 in Web of Science, PubMed, and PubMed Central. By 

counting the number of hits in the bibliographic database for each keyword, we can find search 

hotspots in this field and aspects that are still rarely covered. In this first search, we tried to find 

articles and abstracts, and websites with the keywords listed in Table 1. Keywords are used alone or 

combined using and, or operators. The article should report a clear description of the systems, the 

recipients or users requiring these systems, and issues related to sleep monitoring systems, including 

measured parameters, wireless sensor network (WSN), user needs and user acceptance. As this 

review is not an exhaustive presentation of the scientific literature in the field of sleep monitoring 
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systems, only a few representative sleep monitoring systems research and development projects or 

products from academia or industry are presented. 

The number of hits in the sleep monitoring system research field between 2016 and 2020 is shown in 

Table 2. 

Table 2 shows that the number of hits for the keywords sleep big data, sleep machine learning, sleep 

artificial intelligence, and sleep data mining is lower than the others. It would appear that techniques 

such as big data, machine learning, artificial intelligence and data mining have not been widely 

applied to the sleep monitoring research area, although they are now focused in other research areas. 

Therefore, the combination of these hotspot techniques with sleep monitoring may be a promising 

research direction and will attract more researchers in the future. To facilitate reading of the data in 

Table 2, a histogram is drawn, as shown in Figure 2. 

Table 2. Number of occurrences in the field of sleep monitoring system research over 5 years. 

Keywords Web of Science PubMed IEEE Xplore 

Sleep monitoring system 1606 1810 756 

Sleep stage 4435 4920 499 

Sleep phase 3747 2939 176 

Light sleep 3796 2904 171 

Deep sleep 1606 2086 356 

REM 5568 3542 470 

Sleep care 8277 18367 307 

Sleep quality 20368 15539 637 

Wearable device 16679 7678 6857 

Assistive system 3259 36811 2519 

Contactless monitoring 640 563 566 

Nonintrusive monitoring 239 168 621 

Noninvasive monitoring 5608 10888 1301 

Smart patch 652 126 447 

Medicine skin patch 108 983 25 

Portable device 10956 6090 3350 

eHealth 3660 18358 524 

mHealth 4799 19055 442 

Homecare 565 733 69 

Telecare 520 745 70 
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Telemedicine 8959 15361 2084 

Telemonitoring 974 845 152 

Body sensor 13560 4306 7813 

Body sensor network 3270 639 4093 

Wireless sensor network 30322 2284 31289 

Wireless sensor network wearable 815 162 1269 

Body area network wearable 633 91 683 

Personal area network 1808 23719 1435 

Personal area network wearable 79 52 78 

Sleep monitoring gold standard 151 326 50 

PSG 2201 2557 399 

EEG 32675 31203 7076 

ECG 18739 26467 4815 

Sleep, data processing 1794 1779 851 

Sleep, big data 258 186 110 

Sleep data mining 118 77 88 

Sleep machine learning 644 515 336 

Sleep artificial intelligence 94 461 456 

User needs 58048 4617 17783 

User acceptance 9588 2700 1235 

User satisfaction 10905 1758 2177 
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Figure 2. Number of results in the field of research on sleep monitoring systems over the last 5-year 

period (2016 - 2020). 

The features and advantages of these hot techniques such as big data, artificial intelligence, machine 

learning and datamining make their applications in the field of sleep monitoring very promising. 

Big data can be defined by 3 key concepts: volume, velocity, and variety. Volume refers to the 

amount of data generated and stored. In general, the larger the amount of data, the greater the 

statistical power for descriptive and predictive analysis. Applied to sleep monitoring systems, it 

could better describe sleep behavior and predict sleep-related disorders and health status. Velocity 

refers to the speed of data generation and processing. Big data are often available in real time. This 

makes it easier for people to get their sleep monitoring results in a timely manner, while helping 

subjects or medical staff to respond quickly to abnormalities and emergencies discovered during 

sleep monitoring. Finally, the term variety refers to different sources, types, and formats of data. 

Nowadays, more data types are being collected via sleep monitoring systems, including text, audio, 

image, and video data. Big data allow missing data to be completed through data fusion. This enables 

comprehensive sleep information to be obtained efficiently. In addition, big data can provide targeted 

information through the comprehensive and detailed collection of various relevant information, such 

as age, gender, BMI, place of residence, occupation, etc. For example, certain age groups, a certain 
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gender, people living in a certain location, people working in a certain profession, and people of a 

certain body type have a higher rate of poor sleep quality. Based on that observation, it is possible to 

organize more medical resources in certain areas, and at the same time, more attention in terms of 

sleep health can be given to some people who have a higher rate of poor sleep quality. This will 

improve the efficiency of the medical system. 

Based on the large amount of data obtained through big data technology, techniques such as artificial 

intelligence, machine learning and data mining will be able to make full advantage of their benefits. 

Artificial intelligence refers to technology that presents human intelligence through computer 

programs. Machine learning uses data or previous experience to automatically improve the 

performance of specific algorithms. Data mining is a computational process that uses artificial 

intelligence, machine learning, statistics, and databases to discover patterns in relatively large data 

sets. In general, machine learning is considered a subset of artificial intelligence and consists mainly 

of data mining. As a tedious and repetitive task, sleep monitoring is well suited to the adoption of 

these promising and powerful approaches. When applying these approaches, it is more convenient 

and timely to obtain a large amount and variety of sleep-related data through the continued 

development of big data technology. This allows these approaches to be used to train more powerful 

models and to progressively extract higher-level features from the raw data to create a smarter, more 

efficient, and more convenient sleep monitoring systems. In summary, the combination of sleep 

monitoring and these hotspot technologies will certainly be the next exploration direction for 

researchers. Widespread application of these hotspot technologies in the field of sleep monitoring 

will be the future trend.  

3 Current issues with SMS 

3.1 User needs, perception and acceptance 

A good sleep monitoring system should take into account user needs, perception, and acceptance 

before it is designed. User needs for sleep monitoring systems are diverse. These could include 

obtaining accurate and complete information about sleep. These needs could be met by professional 

medical instruments such as PSG and EEG. In addition, the user needs could also obtain auxiliary 

reference information, that is, only a small amount of key information such as sleep duration, number 

of awakenings, proportion of different sleep stages, and even only a summary of the sleep score. 

These needs are typically met by various apps in consumer electronics and smartphones with sleep 

monitoring functions. Compared to professional medical devices, this type of commercial product 

takes better account of the user’s perception and is usually noninvasive, nonintrusive, or even 
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contactless. The user's perception of the sleep monitoring system is closely related to the number of 

electrodes or sensors attached to the body, the position, and the method of attachment to the body. 

For the number of electrodes or sensors, the fewer the number, the better the user’s perception. For 

the position of the attachment, it is preferable to attach it to the distal limbs such as the wrist, fingers, 

ankle, instep, and toes rather than to the main body, face and head. The method of attachment to the 

body can be with tape or a belt, such as a chest belt. In general, tape can give a better user perception 

than a belt because there is less surface contact with the body and less restraint on the body. User 

acceptance of sleep monitoring systems depends on the satisfaction of the user's needs and 

perception. Usually the satisfaction of the user's needs and the satisfaction of the user's perception are 

contradictory. In order to meet the user's needs as much as possible, more complete and accurate 

human physiological information needs to be collected, which often means attaching more sensors to 

more body positions which often aggravates the user's perception. Therefore, the design of a good 

sleep monitoring system has to find a compromise between user needs and user perception, which is 

usually related to ease of use while trying to meet the user's needs as much as possible. 

3.2 Effectiveness 

Although the PSG is the gold standard for sleep monitoring, it is expensive, highly invasive, and 

complicated to perform. PSG monitoring is not easily accessible, especially in developing countries 

[41]. Due to the many limitations of PSG, most people are only subject to PSG monitoring for one 

night. However, night-time monitoring is not sufficient to determine the actual sleep status. To 

improve effectiveness and obtain appropriate follow-up, long-term home monitoring is necessary. 

Guettari et al [42] proposed a system based on a thermal sensor used over a long period of time to 

monitor changes in sleep quality and can be used at home and remotely consulted by sleep medicine 

experts. Changes in sleep quality derived from long-term monitoring are very useful in assessing 

sleep health. Using existing equipment daily for sleep monitoring is proving to be an effective 

approach, such as sleep monitoring using our smartphone router. Liu et al [43] proposed monitoring 

vital signs of breathing and heart rate during sleep using a single Wi-Fi access point (such as a router) 

and a single Wi-Fi device (PC or smartphone) without any wearable or dedicated devices. Thus, the 

system has the potential to be widely deployed and to provide continuous long-term monitoring. 

Smartphone apps are considered a good choice for large-scale, low-cost, and long-term sleep 

monitoring, which will improve efficiency and accuracy [25][44]. Sleep Hunter [45] is a mobile 

service that uses the built-in sensors of smartphones. It is implemented on the Android platform and 

can detect the transitions between sleep stages for monitoring sleep quality and the smart wake-up 
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call, which wakes up users in light sleep. The ability to perform long-term monitoring is important 

for the effectiveness of a sleep monitoring system. Long-term monitoring is essential for reliable 

results and early detection of abnormal sleep changes. To do this, sleep monitoring systems should 

be as inexpensive, easy to use, and easily accessible as possible. 

3.3 Interoperability 

Sleep monitoring devices are useful in health care. The value of these devices will increase if sleep 

monitoring system software apps can seamlessly collect medical data and upload them to a database. 

The ISO/IEEE11073 (X73) family of interoperability standards was originally designed for clinical 

point-of-care environments. The latest branch of X73, X73 for personal health devices (X73PHD), 

enables the development of interoperable personal health ecosystems and brings benefits to both 

technology producers (design cost reduction, experience sharing, and marketing facilities) and users 

(plug and play, accessibility, ease of integration, and price) [46]. OpenICE is an open source 

software project of the Massachusetts General Hospital's Plug-and-Play Medical Device 

Interoperability Program, which builds on much of research programs performed since 2004 to 

support four distinct user groups: use case demonstrations, clinical adoption, regulatory science, and 

commercial adoption [47]. Data sharing and interoperability are positive for users, researchers, 

physicians, and businesses. With the development and popularization of big data technology, 

improving interoperability is a hotspot in sleep monitoring system research and will be the trend for 

future developments. 

3.4 Hardware and software considerations 

The main hardware considerations for sleep monitoring system focus on 3 aspects: cost, comfort, and 

convenience, which could be the determining factors for acceptance of implementation. In terms of 

cost, the equipment should be affordable for most people. In addition, for devices that require 

frequent maintenance, such as the need for frequent replacement of specific components and the 

consumption of specific reagents or materials, their cost should be considered. For devices designed 

to use disposable batteries instead of rechargeable batteries, energy consumption should be taken into 

account, as frequent battery replacement will significantly increase the cost of use. In terms of 

comfort, contactless systems have the greatest advantage, but for contact systems, the emphasis is on 

wireless, miniaturization, and weight reduction. The comfort aspect includes ease of implementation 

and maintenance convenience. In terms of the convenience of implementation, daily implementation 

does not have to be complex and time-consuming. The main objective is to allow users to carry out 



                                                                                                                                                                                                                                      
37                                                              

Chapter 1. State of the art in sleep monitoring system (SMS) 

the application themselves without the intervention of professional technicians. In general, in terms 

of maintenance convenience, the longer the maintenance interval, the easier the operations are. 

The main considerations for sleep monitoring system software are two-fold: effectiveness and 

efficiency. First, the sleep monitoring software must be able to effectively process the data collected 

to obtain the most accurate monitoring results. In terms of efficiency, this includes temporal 

efficiency and energy efficiency. It is very important for real-time sleep monitoring system 

processing takes into account temporal efficiency. The cost of execution time must be short enough 

to meet the real-time requirement. 

For non–real-time sleep monitoring systems that process data after the end of monitoring, time 

efficiency is also of great importance. After sleep, users tend to be concerned about the results 

obtained. Waiting time will have an impact on the user experience, so the shorter the processing time, 

the better. Energy efficiency depends on 2 aspects: the optimization of the algorithm and the stand-

by or wake programming for the hardware. If the algorithm can be well optimized, it will 

significantly reduce the energy consumption for the execution of the algorithm. Moreover, with 

reasonable stand-by or wake programming of the hardware, unnecessary energy consumption can be 

avoided. 

3.5 Medical, wellness, quality of life benefits 

Sleep quality is a crucial factor for human health and quality of life. The harmful effects of poor 

sleep quality and sleep disorders are increasingly recognized. Patients suffering from sleep disorders 

are prone to chronic diseases such as obesity, diabetes, and hypertension. The use of sleep 

monitoring systems could reduce the incidence of sleep-related illnesses, or illnesses could be 

predicted by sleep through long-term monitoring and trend analysis. McHill et al [48] demonstrated 

the relationship between obesity and sleep time. Lee et al [49] examined the impact of sleep quantity 

and sleep quality on blood glucose control in type 2 diabetes. Fuchs et al [50] showed that OSA is a 

clear risk factor for resistant hypertension. The application of sleep monitoring system can overcome 

infrequent clinical visits which may fail to detect transient events that predict dangerous future 

events. Early diagnosis through long-term trend analysis could prevent the potential severity of a 

disease. Such analyses could provide instant diagnosis of acute events, issue alerts to health care 

professionals, and reduce intervention time through telediagnosis and teletherapy. Some typical sleep 

disorders, such as sleep apnea, restless leg syndrome, and periodic limb movement disorders can be 

detected in time through sleep monitoring. Unfortunately, people suffering from sleep disorders such 

as OSA tend to go undiagnosed [51] because they are usually unaware that sleep apnea has occurred. 
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This lack of symptom awareness during sleep is a serious health problem for modern life [52]. Early 

signs of these disorders could be monitored and treated with mild medication [53]. 

3.6 Cost, psychological and socio-economic barriers 

Wireless patches, wristbands, chest belts, headbands, or other wearable devices that connect a sleeper 

to formal or informal caregivers, a data center or call center, who can then notify medical services in 

the event of abnormal sleep, are affordable and reliable. This technology has been available for more 

than 15 years, but despite its affordability [54], its adoption is minimal in almost all countries. 

Wearing permanent mobile health care devices and systems has psychological effects on patients. 

Significant barriers limit the widespread use of these systems due to the lack of studies which carry 

out test of smart wearable systems by end-users who give their feedbacks and preferences [55]. The 

high cost of current sleep monitoring system services limits their expansion. Wireless networks are 

another barrier to the deployment of sleep monitoring systems. Until the end of 2019, the global 

Internet penetration rate was only 58.7% [56]. As a result, access to services via internet is not 

always available. People with sleep disorders may have difficulties finding adequate sleep 

monitoring devices and services to support them monitor the quality of their sleep. Economic and 

social issues also need to be addressed to ensure that the market for sleep monitoring systems is open. 

A sound analysis of the costs and benefits of sleep monitoring systems has not been carried out. 

Some studies focus only on the technology and performance of the systems [44][57]. Socio-technical 

design science needs to be taken into account to ensure that sleep health care meets the needs of 

society. Ultimately, Coiera [58] argued that it is the beliefs and values of our culture that determine 

what we will create and what we will dream about. In total, there are 4 rules governing the design of 

health services: (1) technical systems have strong social consequences, (2) social systems have 

technical consequences, (3) we do not design technology; designing socio-technical systems does not 

just mean designing technology, and (4) the design of socio-technical systems must take into account 

how people and technologies interact. 

3.7 Privacy, ethics, and legal barriers 

With the continuous development of sleep monitoring technology, the collection of user information 

by the sleep monitoring system has become increasingly detailed and diverse. At the same time, it 

has gradually evolved from traditional night-time monitoring to long-term monitoring. This series of 

developments has improved the accuracy and reliability of sleep monitoring but has considerably 

increased the risk of leakage of user privacy information. To protect the privacy of users, the 

traditional method is to give informed consent before receiving sleep monitoring, and data collection 
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can only take place once the user has signed the informed consent. Consent is normally used to 

authorize a single study, and there are no specific regulations for data sharing in the research 

community. Given the high value and increasing popularity trend of big data applications, privacy 

issues related to data sharing need to be addressed urgently by legislators. 

3.8 Impact of sleep monitoring systems on society 

Sleep disorders affect a significant part of the population [3][15][16]. The socioeconomic 

consequences can be dramatic. These include drowsiness at the wheel, sleepiness at work, and 

cardiovascular disease [59]. Surantha et al [60] have argued that sleep quality monitoring is one of 

the solutions to maintaining sleep quality and preventing chronic diseases, mental problems, or 

accidents caused by sleep disorders. 

Based on these considerations and issues, many types of sleep monitoring systems have been 

developed. The features of these are detailed in the following section. 

4 Sleep Monitoring System Features 

4.1 Conventional SMS 

4.1.1 PSG 

Polysomnography (PSG) is the gold standard in sleep assessment introduced in the 1960s as a tool 

for assessing sleep disorders. The subject equipped with a PSG is illustrated in Figure 3. A PSG 

records a minimum of 12 channels requiring a minimum of 22 wires attached to the patient. These 

channels vary in each laboratory and can be adapted to meet the physician’s requirements. There are 

a minimum of 3 channels for the EEG, 1 or 2 measure for airflow, 1 or 2 are for chin muscle tone, 1 

or more for leg movements, 2 for eye movements (EOG), 1 or 2 for heart rate and rhythm, 1 for 

oxygen saturation, and 1 is for each waist belt, which measures movements of the chest wall and 

upper abdominal wall. Belt movements are usually measured using piezoelectric sensors or 

respiratory inductance plethysmography. Breathing amplitude is often measured by the temperature 

changes that occur with breathing, as measured by a thermistor or thermocouple placed in the path of 

the airflow (nose and mouth). Body movements have been measured using the EMG. Oximetry is 

adopted to measure oxygen saturation levels in the blood by passing infrared light through the finger 

and measuring absorption patterns (made by the oxygen-carrying pigment, hemoglobin, in the blood). 

The body position sensor is used to distinguish between lying, standing, and lateral positions during 

sleep. 
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Although PSG provides the most accurate and objective measurement of sleep, specialized 

equipment, an elaborate facility, and dedicated and experienced PSG technologists are required to 

perform and analyze recordings, which are costly and labor intensive. This technique is not practical 

for large-scale and long-term sleep monitoring [61]. 

Figure 3 shows the standard configuration of a polysomnogram. In Figure 3, the patient lies in a bed 

with sensors attached to the body. In Figure 3, the polysomnogram recording shows the blood 

oxygen level, the respiratory event, and the REM sleep stage over time. 

 

Figure 3. Sleep monitoring by PSG - National Heart Lung and Blood Institute (NIH), November 2013. 

4.1.2 EEG 

The EEG is an electrophysiological monitoring method that records the electrical activity of the brain 

using electrodes placed along the scalp to measure voltage fluctuations resulting from ionic current 

in the neurons of the brain [62]. The EEG signal is the most important signal in the classification of 

sleep stages [63]. 

Different sleep stages are characterized by different brain activities that can be detected by EEG 

recordings. The EEG patterns of the different sleep stages are shown in Figure 4. Stage 1 is the 

transition stage between wakefulness and sleep. It usually lasts between 1 and 5 min. This stage 
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consists of a low-voltage EEG pattern with well-defined alpha (Figure 5(a)) and theta (Figure 5(b)) 

activity, occasional peaks in vertex activity, and slow eye movements. This stage, which represents 

on average 4% to 5% of total sleep, is free of spindles (Figure 5(d)) and K-complexes (Figure 5(e)). 

Stage 2 is the baseline of sleep and is characterized by the occurrence of sleep spindles and K-

complexes and a relatively low-voltage, mixed-frequency EEG background noise. In addition, high-

voltage delta waves can account for up to 20% of stage 2 epochs. Stage 3 is a period in which at least 

20% and no more than 50% of sleep consists of EEG signals with a frequency of 2 Hz or less and an 

amplitude greater than 75 µV (delta waves; Figure 5(c)). Stage 4 is quite similar to stage 3, except 

that delta waves cover 50% or more of the recording. Stage 4 generally accounts 12%-15% of total 

sleep time. 

Stages 3 and 4 together are also called deep sleep or slow wave sleep (SWS), and it is the most 

restorative part of sleep. REM is the sleep stage in which dreams occur and makes up 20%-25% of a 

normal night’s sleep. The incidence of rapid eye movements under closed eyelids, motor atonia, and 

low-voltage EEG patterns are well known. During REM sleep, brain activity is reversed from stage 4 

to a pattern similar to stage 1. The characteristics of each sleep stage are summarized in Table 3. 

Although the EEG is accurate in determining sleep stages, the complexity and intrusiveness of the 

user make it difficult to monitor sleep on a large scale, over the long term and in the home. 

 
 

Figure 4. Typical EEG pattern for different stages of sleep [64]. 
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Figure 5. Typical EEG wave types. 

 

Table 3. Characteristics of each stage of sleep. 

Sleep 

stages 

Proportion of 

sleep (%) 

EEG
 
frequency 

(Hz) 

EEG amplitude 

(mv) 

EEG percentage (one 

screen) 

Awake <5 15 to 50 <50 α>50% 

N1 2 - 5 4 - 8 50 - 100 
Theta wave >50% or 

alpha wave <50% 

N2 45 - 55 4 - 15 50 - 150 
Delta wave < 20%; K-

complex > 1.7% 

N3 3 - 8 2 to 4 100 - 150 Delta wave 20% to 50% 

N4 10 - 15 0.5 - 2 100 - 200 Delta wave >50% 

REM
 

20 - 25 15 - 30 <50 EEG with mixed wave 

 

4.1.3 ECG 

Electrocardiography (ECG) is the process of recording the electrical activity of the heart over a 

period of time using electrodes placed on the skin. These electrodes detect tiny electrical changes on 

the skin that result from the electrophysiological pattern of depolarization and repolarization of the 

heart muscle with each heartbeat. In a conventional 12-lead ECG, 10 electrodes are placed on the 

patient’s limbs and on the surface of the chest. The correlation behavior in the heartbeat rate differs 

significantly for light sleep, deep sleep, and REM sleep. During deep sleep, the heart rate is reduced, 

whereas a relative increase is observed in REM sleep [65]. In addition, spontaneous movements 

during sleep are preceded by an increase in heart rate [66]. These observations indicate a functional 

 

a. Alpha wave c. Delta wave b. Theta wave 

d. Spindle wave 

e. K-complex wave 
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link between cardiac activities and sleep stages. As with PSG and EEG, the complexity, high 

equipment, and expertise requirements of the standard ECG are barriers to its use as a large-scale, 

long-term, home sleep monitoring method. 

4.2 Wireless body area network (WBAN) 

4.2.1 Introduction 

The wireless body area network (WBAN) is a wireless sensor network that aims to monitor the user's 

vital signs and physiological information by deploying sensors on or next to the human body. 

Parameters acquired from the WBAN can include brain waves, heart rate, body movements, skin 

temperature, blood oxygen saturation level, sound, etc. or environmental conditions such as 

temperature, brightness, noise level and humidity. Thanks to advances in sensor and communication 

technology, WBAN enables the exchange of information or commands over short distances between 

sensor components. Moreover, remote data transmission or control between the sensor components 

and the database or control center is also available based on WBAN. Features such as these make the 

WBAN a very suitable tool for performing continuous monitoring tasks without requiring too much 

manual intervention, thus meeting the requirements of sleep monitoring. As a result, many sleep 

monitoring systems have been developed by researchers and technicians based on the WBAN. 

WBAN technology is highly valued in the fields of medical sciences and human health care [67]. In 

the health care field, WBAN has established itself as a leading technology capable of providing real-

time patient health monitoring in hospitals, asylums, and even at home [68]. WBAN allows the 

removal of cables and the relocation of instrumentation and intelligence to the sensor nodes 

themselves, which is useful for establishing a nonintrusive, portable, continuous home sleep 

monitoring system [59]. Currently, the WBAN-based sleep monitoring system has attracted 

increasing attention from researchers around the world [69][70][71]. Like the evolution of the 

WBAN, the trends in sleep monitoring system are miniaturization, intelligence, and long-term 

monitoring capability. In this section, we have selected some representative works on WBAN-based 

sleep monitoring systems over the last few years, which we briefly present from a hardware and 

software point of view. 

4.2.2 Hardware implementation 

A WBAN-based sleep monitoring system is a sensor network application in which the sensor is an 

essential piece of hardware. The choice of sensor determines the type of body parameters that will be 

acquired, and the position of the sensors directly influences the efficiency, quality of data acquisition, 
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and user acceptance. For these reasons, we list the type and position of sensors used in several works, 

specify the possible description of sleep phases, and briefly analyze the advantages and drawbacks of 

each type of sensor, as presented in Appendix I. Table 4 lists the sensors used in each study. 

Table 4. Choice of sensor for different sleep monitoring works. 

Source Accelerometer 
Pressure 

sensor 

Temperature 

sensor 

Thermopile sensor 

(Infrared) 
Microphone 

ECG 

sensor 

Pulse 

sensor 

Kalkbrenner et al 

[74] 
✓a

 —
b — — ✓ — — 

Guettari et al [42] — — — ✓ — — — 

Seba et al [97] ✓ — ✓ ✓ — — — 

Velicu et al [72] ✓ — — — — ✓  

Suzuki et al [93] ✓ — ✓ — — ✓ ✓ 

Suzuki et al [80] ✓ — — — — — ✓ 

Saad et al [114] ✓ — ✓ — — — ✓ 

Sadek et al [95] — ✓ — — — — — 

Sadek et al [98] — ✓ — — — — — 

Lee et al [99] ✓ — — — — ✓ — 

Chan et al [94] ✓ — — — — ✓ — 

Samy et al [100] — ✓ — — — — — 

a
Tick mark: the sensor is included  

b
Em dash: the sensor is not included 

As shown in Appendix I, the accelerometer is the most commonly used sensor in these works, 

usually placed on the wrist or chest or close to both positions. The microphone has been adopted 

only once in these works. However, the microphone is a sensor widely used in the monitoring of 

sleep apnea [67][101][102]. As a sound recording sensor, the microphone is useful for detecting 

snoring or even abnormal breathing [103], which are also important physiological parameters related 

to the sleep state. Both the ECG sensor and the pulse sensor are used for heart rate monitoring, but 

due to different detection principles, their positions are different. Appendix I shows that in most 

cases, the ECG sensor is placed close to the chest, while the pulse sensor is placed close to the wrist. 

Thus, for user acceptance, the pulse sensor is better than the ECG sensor. 

Both the accelerometer and the thermopile sensor can be used for motion detection, but they have 

their own advantages. In terms of user acceptance, the accelerometer should generally be attached to 

the user’s body, but the thermopile sensor is a non-contact sensor, so the thermopile sensor is 
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preferable. However, with regard to measurement accuracy, thermopile sensors are easily disturbed 

by the user’s coatings, such as duvets, which affect the measurements. In addition, thermopile 

sensors can only monitor effectively in a limited and fixed area. It is difficult for thermopile sensors 

to specifically measure the movement of certain parts of the body, such as measuring only leg 

movement to detect periodic leg movements during sleep. As a result, the accelerometer outperforms 

the thermopile sensor. In short, the type of sensor to be chosen depends on the application scenario 

and specific requirements. 

4.2.3 Software and algorithm processing 

Software or algorithms are used to process the data collected by the hardware. Table 5 presents the 

algorithms, software, and system results illustrated in several books or articles. 

Table 5. Implementation of software or algorithm in various works. 

Source Involved algorithms or software Outputs 

Kalkbrenner 

et al [77] 

1. An FIR bandpass filter with boundaries between 200 and 2000 Hz was used on the 

initial raw tracheal body sound signal acquired by microphone to obtain a pure 

breathing sound signal 

2. A bandpass filter with the boundaries between 5 and 30 Hz was applied on the 

initial raw tracheal body sound signal acquired by microphone to suppress 

breathing and most of the artifacts to get heart beat sound 

3. A LD classifier was used on cardiorespiratory features and movement features for 

automated sleep staging 

1. Sleep and wake 

classification 

2. Wake, REM, and 

NREM classification 

3. Wake, REM, light 

sleep, and deep sleep 

classification 

Sadek et al 

[95] 

1. Wavelet decomposition was used on microbend fiber optic sensor data to achieve 

the measuring of heart rate 

2. Third-order polynomial fit and Savitzky-Golay smoothing was used on microbend 

fiber optic sensor data to achieve the measuring of respiratory rate 

3. Adaptive thresholding method was used on SD of the respiratory signal for apnea 

or nonapnea classification 

4. Chebyshev type-I bandpass filter was used on microbend fiber optic sensor data to 

extract BCG and respiratory signals 

5. The MODWT with the multiresolution analysis was used on microbend fiber optic 

sensor data to estimate heart rate 

Heart rate, respiratory, and apnea 

Guettari et al 

[42] 

1. SAX method was used on thermal sensor data for segmentation processing of the 

thermal signal 

2. SOM algorithm—Kohonen maps is used on features of thermal signal 

segmentation level, thermal signal segmentation duration and the variance of each 

thermal signal segmentation for achieving classification 

Classification of signal segments 

as 3 phases of sleep:  

1. Deep and paradoxical 

sleep (REM, N3) 

2. Agitated and light 

sleep (N1, N2)  

3. Awake phase (Wake) 

Seba et al 

[97] 

K-means algorithm was used on IButton skin temperature sensor data to achieve data 

clustering and classification  

Classification of the activities 

into 3 classes: awakening, calm 

sleep, and agitated sleep 

Saad et al 

[90] 

This sleep monitoring system involves Arduino IDE software and Visual Studio 2015. 

1. Arduino IDE is programmed that consist of sensor algorithms to enable those 

The relationship between the 

room ambience and quality of 
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sensors and to read the value that has been captured from room ambience and 

body condition. 

2. A window application was programed by Visual Studio to display the value of 

those parameters. 

sleep 

Sadek et al 

[96] 

1. Multiresolution analysis of the maximal overlap discrete wavelet transform was 

used on piezoelectric sensor data to compute heart rate. 

2. Bandpass Butterworth filter is used on microbend sensor data to retrieve BCG 

signal. 

Heart rate of the person sitting in 

the massage chair 

Velicu et al 

[72] 

Kushida algorithm–derived equation was used on accelerometer data as the 

discriminator for wake or sleep, wake or REM, and light or deep by applying 3 different 

thresholds. 

Discrimination for wake or sleep, 

wake or REM, and light or deep 

Sadek et al 

[98] 

1. For comparison, 5 classifiers are employed, that is, RF, SVM, multilayer, 

feedforward NN, LDA, and DT 

2. Butterworth bandpass filter with frequency limits of 1 Hz and 12 Hz was used on 

microbend fiber optic sensor data to extract BCG component 

3. MATLAB based software was developed as a data labeling tool 

Classification of informative and 

noninformative signal for further 

heart rate detection work 

Kalkbrenner 

et al [74] 

1. The developed software for visualizing and storing received data 

2. Heart sound was extracted by applying a bandpass filter ranging from 15 Hz up to 

80 Hz on microphone data 

3. Breath sound was extracted by applying a bandpass filter ranging from 100 Hz up 

to 1.5 kHz on microphone data 

4. Stable results of accelerometer are provided by using the Madgwick-Filter 

Heartbeats, breathing, snoring, 

sleeping positions, and 

movements of the volunteer 

Sadek et al 

[104] 

1. The BCG signal is decomposed using CEEMDAN (complete ensemble empirical 

mode decomposition with adaptive noise) 

2. Sensor data fusion method: time domain average 

3. The BCG signal is extracted using a Butterworth high-pass filter (fifth-order with 

a cutoff frequency of 0.2 Hz) followed by a Butterworth low-pass filter (10th order 

with a cutoff frequency of 30 Hz) on microbend fiber optic sensor data 

Heart rate 

Suzuki et al 

[93] 

1. Silmee framework  provides basic functionality of Silmee system by locating 

Silmee sensor node, smartphone (or tablet or wearable terminal) and cloud server 

2. Silmee firmware provides vital signal processing capabilities such as noise 

reduction, important information extraction, or data compression 

3. Silmee API: This API provides basic information to realize wide-variety of smart 

healthcare MWs and apps 

4. Silmee MWs are located in smartphone (or tablet or wearable terminal) or in 

health care cloud server. The MWs provide less medical expert API than Silmee 

API. For example, determination of REM and non-REM sleep, which is a popular 

term, is one of Silmee MW API, which is calculated by R-R intervals information 

included in the Silmee API 

ECG wave, pulse wave, skin 

temperature and body movements 

were measured by the set and 

send to a smartphone using a 

Bluetooth wireless connection 

Suzuki et al 

[80] 

1. The Cole algorithm for wake and sleep identification from the amount of activity 

data  

2. Fast Fourier transformation (FFT) is executed for the even-interval pulse-to-pulse 

intervals (PPIs) to get the frequency spectrum 

3. The k-means clustering method is adopted to classify sleep stages 

Wristwatch-shaped physiological 

sensor that monitors user’s wrist 

motion and pulse wave interval 

Lee et al [99] 1. To capture the respiratory signal, first-order derivation is used to compensate for 

the drifting phenomenon of pressure sensor 

2. A low-pass filter is applied to eliminate short-term fluctuations in respiration 

Classification of sleep stages: 

1. Wake  

2. NREM 
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signals 

3. Sum all the pixels in the lower half of the pressure image and mark a leg 

movement when a significant drop or increase in pressure is detected 

4. A simple thresholding technique for movement reporting 

3. REM 

Beattie et al 

[105] 

The Scikit library used to explore different types of classifiers: LD classifiers, quadratic 

discriminant classifiers, RF, and SVM approaches, and the LD classifier achieved the 

best performance 

Classification of sleep stages: 

1. Wake 

2. Light (N1 or N2) 

sleep 

3. Deep (N3) sleep 

4. REM 

Teruaki et al 

[119] 

1. To convert the video image to grayscale images to calculate the inter-frame 

difference. 

2. To calculate the difference in luminance between two frames at each pixel. If the 

difference in the luminance value at a pixel is greater than a set threshold, the pixel 

is converted to white (luminance value is 255) or black otherwise (luminance 

value is 0) for binarization. 

3. Noise in the inter-frame difference is reduced by expansion and erosion. 

4. The number of white pixels is counted, and the summed value is regarded as a 

measure of the amount of body movement. 

5. Four sleep stages classification using support the vector machine (SVM) classifier. 

Classification of sleep stages: 

1. Wake 

2. Light (N1 or N2) 

sleep 

3. Deep (N3) sleep 

4. REM 

Kim et al 

[120] 

1. To calculate the sum, mean, standard deviation (STD) and maximum values of the 

movement data as a feature for the sleep quality classification. 

2. Five classifiers: decision tree, Naïve Bayes, multilayer feed-forward neural 

network, AdaBoost, and random forest were used for the sleep quality 

classification. 

Classification of sleep quality:  

1. good 

2. moderate  

3. poor 

Chang et al 

[121] 

1. To calculate the root mean square, the ratio between the low-band and high-band 

energies and the variance of the acoustic signal recorded by the smartphone's built-

in microphone as a feature for detecting snoring, coughing and body movements. 

2. Decision tree classifier to classify different sleep-related events. 

Classification of sleep-related 

events:  

1. Snore 

2. Cough 

3. Body movement 

 

Data or signal processing algorithms typically include spectral analysis, wavelet transformation, 

Empirical Mode Decomposition (EMD), and a variety of filters. Many sleep-related physiological 

signals, such as the EEG and ECG, are non-stationary. Wavelet analysis is very useful for processing 

non-stationary signals and has been adopted by many researchers specialized in sleep monitoring. 

EMD, proposed by Huang et al [106], is generally used to extract breathing and heartbeat signals 

from the measured data. Unlike wavelet decomposition methods, this method is based on data and 

does not require the prior definition of a mother wavelet. With this technique, any complicated signal 

can be decomposed into a defined number of high and low frequency components, called intrinsic 

mode functions. This technique is suitable for the analysis of non-linear and non-stationary 

biosignals [107] and allows the extraction of local temporal structures such as heartbeats 

superimposed on respiration signals [108]. In sleep monitoring, several types of biosignals of 
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different frequencies are acquired simultaneously. Therefore, filters are effective and simple tools for 

signal discrimination that are widely adopted in this field. 

The classification algorithm is usually used for the classification of sleep stages. Sleep stage 

classification is an important and common output of the sleep monitoring system. Although sleep 

stages include stages 1, 2, 3, and 4 and the stage REM according to the AASM [22], most research 

classifies sleep stages more simply as a wake, light sleep (stages 1 and 2), deep sleep (stages 3 and 4), 

REM [105] or wake, NREM (stages 1, 2, 3, and 4), REM [99], or some other similar way. This 

simplification of sleep stages implies a balance between the difficulty of the task and the application 

requirements. Commonly used classifiers include Random Forest (RF), Support Vector Machine 

(SVM), Multilayer, Feedforward Neural Network (NN), Linear Discriminant Analysis (LDA), 

Decision Tree (DT), and Bayes. Some papers compare the performance of several classifiers in their 

work to find the best [98][105]. 

4.2.4 Research prototypes 

4.2.4.1 Non-contact methods 

Seba et al [97] discussed the development of a new approach to sleep analysis. This system, based on 

temperature monitoring (patient and ambient), aims to be integrated into the telemedicine platform 

developed in the framework of the Smart-EEG project by the SYEL—SYstèmes ELectroniques team. 

The proposed method is based on the thermal signature to classify the activity into 3 classes: 

awakening, calm sleep, and agitated sleep by k-means clustering. A thermopile sensor (TMP007) 

was placed above the bed at a distance close to 2 m to measure the upper Bed+Patient temperature. A 

thermal camera giving images in medical format but also information on the target temperature 

according to a spatial distribution is used to label the different events related to changes in the 

patient's posture in the bed by visual analysis by an expert. An inertial unit is used to obtain the wrist 

acceleration along 3 axes to compare the responses of the thermopile sensor. The system measured 

wrist, distal and proximal skin temperatures using IButtons [109], giving a numerical example of 

classification of sleep based on thermal data. The day/night alternation corresponds, on the one hand, 

to the alternation between wakefulness and sleep and, on the other hand, to the alternation between 

high and low temperatures. During sleep, the core body temperature decreases, while during the day 

it increases. Skin temperature, unlike the core body temperature, increases during sleep and 

decreases after waking. The work of [110] examined a possible mechanic sleep monitoring system 

linking rhythms in sleep and core body and skin temperature, focusing on the causal effects of core 
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and skin temperature changes on sleep regulation. Several studies refer to the links between core 

body or skin temperature and sleep [109][111].  

Guettari et al [42] presented the design and first evaluation of a new monitoring system based on 

contactless sensors to estimate sleep quality. A passive thermopile sensor mounted on the wall 

produces thermal signals to detect human presence in the bed and then to estimate sleep quality. The 

Symbolic Aggregate Approximation (SAX) method has been implemented [112], which uses 

Gaussian window in the processing of the thermal signal segmentation. Each segment is generated by 

the SAX method based on a segmentation of the mid variance and then identifying its sleep phase. 

The system extracted 3 features: the duration of the thermal data segment, the variance of the thermal 

segment of each segment, and the level of each segment. The Kohonen self-organized map (SOM) 

[113] was used to classify the signal segments into 3 sleep phases: deep or paradoxal sleep (R, N3), 

agitated or light sleep (N1, N2), and awake phase (W). It synchronized the thermal signal with the 

sleep stage labels according to the physiological parameters measured by the PSG, with a hypnogram 

being established manually by the doctors. This study involved 13 patients, 11 people for the 

learning of the SOM model, and 2 other patients for the evaluation of the learned SOM model. In 

total, 87% (40/46) of the evaluation results showed good classifications. 

Gu et al [45] presented Sleep Hunter, a mobile service that detects the transition between sleep stages 

for monitoring sleep quality and intelligent wakefulness. The smartphone was placed next to the 

participant’s pillow. Using sensors built into smartphones, Sleep Hunter integrates body movements, 

acoustic events, environmental lighting conditions, sleep duration, and personal factors using a 

statistical model: the linear-chain conditional random field (CRF) [114] for sleep stage detection. He 

argued that, compared to the Hidden Markov Model [115], CRFs are more relevant for sequences 

that have long interdependencies and may therefore perform better in this application. Based on the 

duration of each sleep stage, Sleep Hunter also provides a report on sleep quality and a smart call 

service for users. In this work [45], the commercial product Zeo [116] was adopted as the reference 

device. A study [117] indicated that the quality of sleep is actually determined by the distribution of 

the different stages of sleep rather than the length of sleep during the night. This work distinguished 

the sleep stages between wakefulness, light sleep, deep sleep, and REM. The sleep quality score is 

then calculated according to the duration of each sleep stage. The detection accuracy of the Sleep 

Hunter proposed in this work [45] was 64.55%. 

Krishna et al [118] proposed SleepSensei, an automated sleep quality monitor that estimates the sleep 

duration for the user. It uses (1) the built-in webcam and microphone of a personal computer 
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connected to a power source, and custom software to collect environmental features, and (2) the 

accelerometer sensor of a smartphone to detect body movements. Smartphones are placed close to 

the user (next to the pillow). In this system, the user can be in 1 of 2 sleep states: deep sleep or light 

sleep. The user's sleep state (sound or light) is determined solely on the basis of the variance of the 

user's body movements during sleep. Environmental features such as light intensity, ambient noise, 

temperature, and humidity have been entered by using custom software. 

Temperature, ambient sound (noise and music), and light conditions have been proven to be strong 

indicators of the user’s environment that clearly affect sleep [122]. The system proposed a regression 

model consisting of linear regression and SVM regression. The regression model estimates the share 

of each time slot (30-min window) that contributes to the completion of a user’s sleep quota (the total 

duration of sleep a user needs to obtain satisfactory sleep). The ground truth of this system comes 

from the data provided by users on the quality of sleep by answering the question: was the sleep 

fulfilling? It uses SVM and naive Bayes models as classifiers. By comparing the results of each 

classifier with 2 and 4 times cross-validation, the SVM model with 2 times cross-validation has the 

best results and has an average accuracy of 79.84%. 

Teruaki et al [119] developed a sleep monitoring system based on an infrared web camera (DC-

NCR300U, Hanwha Q CELLS Japan co. ltd., Japan) placed on the bedroom wall. They extracted 

data on body movements by processing the recorded video data. Five parameters were then 

calculated from the extracted body movement data. Finally, four sleep stages (Wake, Light, Deep 

and REM) were estimated by applying these five parameters to a SVM classifier. A total of 23 nights 

of 6 subjects were used for the performance tests. The overall estimation accuracy was 70.3 ± 11.3% 

with the highest accuracy being that of Deep (82.8 ± 4.7%) and the lowest being that of Light (53.0 ± 

4.0%) and 68.0 ± 6.8% that of REM compared to the PSG results. 

Kim et al [120] propose an unobtrusive sensing environment including a high-sensitive 

accelerometer on a bed and passive infrared (PIR) motion sensors in every room, for monitoring the 

elderly’s sleep-wake conditions, to assess their sleep quality. The PIRs are installed on the wall and 

just below the ceiling of the room to detect the presence of a person in the room. The accelerometer 

(BMA250E) was placed under the mattress to detect the presence of a person sleeping on a bed and 

the detected signal was collected for storage and analysis to determine the quality of sleep. Four 

parameters including the sum, mean, standard deviation (STD) and maximum values of the 

movement data collected by the accelerometer under the mattress, were calculated as features of the 

sleep quality classification. Five classifiers: decision tree C4.5, Naïve Bayes, multilayer feed-forward 
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neural network, AdaBoost, and random forest were used for the sleep quality classification 

(including three classifications level: good, moderate and poor). The Pittsburgh Sleep Quality Index 

(PSQI) was adopted as the ground truth. 235 nights of 4 elderly people were included in the 

performance tests. The classification accuracy of five classifiers decision tree C4.5, Naïve Bayes, 

multilayer feed-forward neural network, AdaBoost, and random forest is 90.87%, 85.00%, 94.17%, 

92.5% and 92.43 respectively. 

Chang et al [121] present a system called iSleep to monitor the quality of people’s sleep using a 

standard smartphone. iSleep uses the smartphone's built-in microphone to detect events that are 

closely related to sleep quality, and derives quantitative measures of sleep quality using actigraphy 

scoring criteria and the Pittsburgh Sleep Quality Index (PSQI). They extracted three features: the root 

mean square, the ratio between low and high band energies and the variance of the the recorded 

acoustic signal to detect snoring, coughing, and movement events during sleep through a decision 

tree classifier. They evaluated iSleep in a long-term experiment involving seven participants and a 

total 51 nights of sleep. The experimental results show that iSleep achieves an accuracy of more than  

90% for the classification of sleep events in different contexts. 

4.2.4.2. Contact methods 

Distributed Sensor System on the Body 

Velicu et al [72] proposed a system based on an accelerometer and an ECG sensor for the 

classification of sleep phases (wakefulness, light sleep, deep sleep, and REM). The accelerometer 

was embedded in a wristband, but the position of the ECG sensor was not mentioned. It described the 

classification logic: (1) the body movements become less intense and less frequent when we enter the 

deeper phases of sleep and (2) the HR becomes more stable as the sleep deepens. The equation 

derived from the Kushida algorithm [73] was adopted in this system as a discriminator between wake 

and sleep using accelerometer data collected every minute, with a 9-min sliding time window, 

showing 69% agreement with the EEG sensor result. This work shows part of the classification 

results for an experiment lasting 3 hour and 43 min. However, the results have not been validated 

against the PSG or any other reliable standard. 

Kalkbrenner et al [74] presented the first step in the development of a sleep monitoring system. It 

includes the capabilities to capture heartbeats, breathing, snoring, sleeping positions, and movements 

of 2 volunteers. In this system, a microphone was set up at the suprasternal notch to record breathing 

sounds and heart sounds. The heart signal is extracted by applying a band-pass filter from 15 Hz to 
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80 Hz. Nakano [75] and Yadollahi [76] have shown that placing a stethoscope such as a microphone 

in the suprasternal notch at night can detect sleep apnea. At the same time, an MPU6000 inertial 

measurement unit embedded in an abdominal belt worn by the patient determines sleep position and 

movements. The data is transmitted wirelessly to the laptop via Bluetooth and processed, visualized, 

and stored using specially developed software. The validation of the proposed system by comparison 

with the gold standard was published in [77]. A total of 60 adult subjects were diagnosed at night, 

and PSG screening was included for validation of the proposed system. A total of 30 feature 

dimensions were extracted from the data on breath, heartbeat, and movement. A linear discriminant 

(LD) classifier was used for automated sleep staging. The classifier achieved an accuracy of 86.9% 

and a kappa of 0.69 for the sleep or wake classification, an accuracy of 76.3% and a kappa of 0.42 

for the Wake or REM or NREM classification, and an accuracy of 56.5% and a kappa of 0.36 for the 

wake or REM or light sleep or deep sleep classification. 

Lee et al [78] have proposed smart patches and wearable bands (W-band) to record biosignals during 

sleep. The system consists of 15 smart patches attached to the user's face to monitor multiple 

biosignals (EEG, ECG, EMG and EOG). A total of 14 biosignal sensor (SN) patches to monitor 

biosignals, a network controller (NC) patch placed behind the ear to manage the whole system and 

used as a reference electrode for ECG, EEG and EOG signals. All electrodes are implemented on a 

multilayered fabric patch based on the Planar Fashionable Circuit Board technology. The biosignals 

recorded by the SN patches are collected in the NC patch with an internal 20 kb SRAM via the W-

band. When the memory is full, the recorded data is transmitted to an external device via an 

inductively coupled interface. The program displaying the data runs on an external PC so that the 

user can check the monitoring result after waking up. The performance of biosignal recording by this 

system has not been compared to a gold standard. 

Stand-Alone System with Several Sensors 

Shambroom et al [79] evaluated a wireless system for the automatic collection and scoring of human 

sleep. This system uses dry silver-coated fabric sensors in the headband to collect 

electrophysiological signals from the forehead, which include contributions from the EEG and eye 

and forehead muscle movements. The resulting signal is transmitted to a base station using an ultra–

low-power wireless protocol at 2.4 GHz. The system was compared with the PSG data scored by 2 

technicians using R&K criteria. A reduced set of sleep stage classifications was adopted, including 

awake, REM, light sleep (combined N1 and N2 stages), and deep sleep (combined N3 and N4 stages) 

[21]. A total of 26 healthy adults were subjected to simultaneous sleep measurements using this 
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system and the PSG. Agreement was 62% and 56%, respectively, for PSG1 (recording of PSG noted 

by technician 1) and PSG2 (recording of PSG noted by technician 2). The mean agreement (SD) on 

the complete night sleep stage for the 26 subjects was 75.9% (7.0%) for this system compared to 

PSG1 (PSG recording noted by technician 1), 74.7% (8.5%) for this system compared to PSG2 (PSG 

recording noted by technician 2), and 81.2% (7.4%) for this system compared to PSGC (PSG 

recording noted consistently by 2 technicians). 

Suzuki et al [80] described a wristwatch-shaped wearable sleep monitoring system for home use. The 

sensor incorporates a photoelectric pulse wave sensor and a 3-axis accelerometer to measure pulse 

waves and accelerations at the user’s wrist and stores the calculated pulse intervals (PPIs) and 

amount of activity in a flash memory (4 MB). It uses the Cole's algorithm to identify waking or 

sleeping from the amount of activity data [81]. The system compared the estimation result with the 

PSG results. A Fast Fourier transform (FFT) is performed to obtain the heart rate spectrum. In the 

frequency domain, the integral value of the power from 0.04 Hz to 0.15 Hz is called LF (low 

frequency), which indicates both sympathetic and parasympathetic nervous activities. The integral 

value of the power from 0.15 Hz to 0.4 Hz is called HF (high frequency), which indicates 

parasympathetic nervous activity. The balance between sympathetic and parasympathetic nervous 

activity is related to the stages of sleep. According to the study by Baharav et al [82], there is a 

decrease in LF during sleep, with minimal values during non-REM slow wave sleep, i.e. deep sleep, 

and high levels similar to those of wakefulness during REM. 

The HF increased with the onset of sleep, reaching maximal values during slow wave sleep, and 

behaved as a mirror image of LF, as shown in Figure 6. The correlation between HF, LF of PPI, and 

sleep stages is summarized in Table 6. 
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Figure 6. Illustration of HF and LF from PPI [93]. 

 

Table 6. Correlation between high and low frequency PPIs (pulse-to-pulse intervals) and sleep stages. 

Frequency 

band 
Sleep onset Slow wave sleep Wakefulness 

HF Increase Maximum Low level 

LF Decrease Minimum High level 

 

The sympathetic predominance that characterizes wakefulness decreases during non-REM sleep, is 

minimal during slow wave sleep and approaches average levels of wakefulness during REM sleep. 

Autonomic balance shifts to parasympathetic predominance during slow wave sleep. To classify 

sleep stages from the LF and HF data sets, the k-means clustering method is adopted. It defines the 

coincidence ratio as a moving average sleep stage correlation coefficient (20-min window) between 

the stages estimated by this method and those estimated by the PSG. A mean coincidence ratio of 

0.735 (SD 0.052) was obtained for the classification of SWS, REM, non-REM, and wake stages. 

Beattie et al [105] estimated sleep stages using a wrist-worn device that measured movements using 

a 3D accelerometer and an optical pulse photoplethysmograph, which provided data on movement, 

breathing, and heart rate variability. Night-time recordings were obtained from 60 adult participants 

wearing these devices on their left and right wrists, simultaneously with a type III home sleep testing 

device (Embletta MPR) that included EEG channels for sleep stages. The reference Embletta 

recordings were scored for sleep stages using the AASM guidelines [83], which indicate sleep stages 

as awake, light (N1 or N2), deep (N3), and REM over a 30-second epoch period. Motion-based 
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features include the number of activities over 30 seconds, the magnitude of rotation (using the 3D 

accelerometer to combine the maximum−minimum of each axis), the time from the last significant 

movement and the time until the next significant movement. They extracted heart rate features such 

as HF power (0.15-0.4 Hz), LF power (0.04-0.15 Hz), very low frequency (VLF) power (0.01-0.04 

Hz), root mean square of the successive differences, pNN50 (the proportion of the number of pairs of 

successive RR intervals -the interval between R waves of the ECG, i.e. the time between heart beats- 

that differ by more than 50 ms divided by the total number of RR intervals), delta RR (intervals 

between beats) and the average heart rate. 

The spectral features of the estimated breathing rate on a 1 s basis such as HF power (0.15-0.4 Hz), 

LF power (0.04-0.15 Hz) and VLF power (0.015-0.04 Hz) were formed. The system used the Scikit 

library to explore different types of classifiers: LD classifiers, quadratic discriminant classifiers, RF, 

and SVM approaches. The LD mode seems to work a bit better than the others, so it was chosen as 

the final model. Based on a single validation, the overall accuracy per epoch of the automated 

algorithm was 69%, with a Cohen kappa of 0.52 (SD 0.14). 

Only One Sensor Attached to a Single Body Location 

Tataraidze et al [84] presented an algorithm for the detection of wakefulness, REM, and non-REM 

sleep based on a set of 33 features extracted from the respiratory inductive plethysmography signal 

captured by the PSG thoracic belt. The features extracted include logarithm of power in different 

frequency ranges, time and frequency domain features, motion, breathing, and volume-based features. 

A bagging classifier was used in the experiments and a heuristic algorithm was applied to increase 

the performance of the classification. Compared with the PSG gold standard, an accuracy of 80.38 

(SD 8.32%) and a Cohen kappa of 0.65 (SD 0.13) were obtained with the classifier. 

4.2.5 Commercial products 

Given the various shortcomings of PSG, such as its invasiveness, high cost, and one-night 

monitoring, the industry has shown great enthusiasm for the development of commercial sleep 

monitoring products with the advantages of being portable, noninvasive, and suitable for long-term 

monitoring. Commercial products used for home sleep monitoring are currently available for direct 

sale on the market. Some of the most popular and representative products are briefly introduced 

below. 

Zeo [116] is a headband based on a true lightweight EEG brainwave pod monitor. It can provide a 

classification of sleep stages into awake, light (stages 1 and 2 combined), deep (stages 3 and 4 
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combined), and REM sleep. The Companion for Zeo smartphone app has been developed for data 

collection. A validation study has been published [79]. Compared to the PSG, the epoch-to-epoch 

concordance of light, deep, and REM sleep is greater than 74%. 

Up (Jawbone) [85] is a soft rubber wristband. In terms of sleep monitoring, it provides total sleep 

duration, time to fall asleep, and the number of night-time awakenings. It also interacts with 

smartphone applications. To date, no validation studies have been carried out. 

Fitbit [86] is also a wristband product. Its sleep monitoring algorithm classifies night sleep into 

awake, light sleep, deep sleep, and REM based on wrist movements and heart rate data. It also 

provides total sleep duration, sleep starting time and sleep end time. The publication [83] evaluates 

the performance of the Fitbit against the PSG. It shows a sensitivity of 0.96 (sleep detection 

accuracy), a specificity of 0.61 (wakefulness detection accuracy), an accuracy of 0.81 for the 

detection of N1+N2 sleep (light sleep), an accuracy of 0.49 for the detection of N3 sleep (deep sleep), 

and an accuracy of 0.74 for the detection of REM sleep. 

RestOn [87] is a thin belt. It uses a single click of the magnetic cover to fix the device on the 

bedsheet; the position corresponds to the user’s chest. RestOn can measure heart rate and respiratory 

rate in real time. The 2-foot-long medical-grade sensors are embedded into a thin belt less than 2 mm 

long. The device can provide sleep time, actual sleep time and sleep stages including awake, light, 

medium, and deep sleep. Its smart alarm can wake the user during the lightest sleep time. 

The Sleep Dot [88] measures sleep cycles and body movements by simply attaching it to the upper 

corner of the pillow. It can play music to help the user fall asleep. Soothing sounds and music are 

adopted as alarm tones to wake the user more naturally during the lightest sleep. This product works 

with a smartphone application and generates a sleep report that can be shared with family and friends. 

Withings Aura [89] is a bedside device with a white fabric sleep sensor placed under the mattress, 

aligned in position with the user’s chest. It is recommended that the 11-inch high bedside device be 

placed at least 1 m from the bed. The bedside device measures environmental parameters such as 

temperature, light, and noise. The white fabric sleep sensor indicates the sleep time, the number of 

awakenings during the night, the duration of light sleep or deep sleep or REM sleep, and the 

percentage of the sleep target achieved. 
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5 Conclusion 

Sleep observation and analysis is a very important medical issue considering the possible 

consequences on people's behavior. Indeed, sleep is a very important biological function for humans 

and it strongly contributes to the quality of life. The analysis of sleep quality makes it possible to 

diagnose sleep disorders or even to explain them by linking them to external factors (diseases, stress, 

anxiety, depression, pathologies, etc.). It appears that sleep disorders are increasing sharply among 

the world's population. The scientific challenge of finding solutions that can be deployed on a large 

scale, automated and as reliable as the techniques used in the medical field is important and is 

attracting the interest of researchers and manufacturers.  

So, the objective of this chapter was to recall the societal, medical but also technological stakes on 

the issue of sleep monitoring and analysis. It provides an overview of the current state and future 

prospects of research and development of sleep monitoring systems. The gold standard used is the 

PSG technique, which is an intrusive method that can only be used in a clinical setting. Several 

studies have focused on the development of methods and strategies for lighter and longitudinal 

monitoring. Sleep monitoring systems have been proposed but they raise questions about user 

acceptance of wearing these devices, socio-economic aspects, privacy and impact on society, but also 

about the performance of the proposed algorithmic processing. This chapter deals with these issues 

and the different solutions reported in the literature and available on the market. 

The sleep monitoring system features a broad and heterogeneous range of devices, WSN standards 

and applications, and involves the efforts of many researchers, developers, and users. Due to its 

interdisciplinary nature, several applications related to sleep monitoring integrate biomedical 

engineering and medical informatics. Other knowledge in the fields of medicine, social sciences, 

psychology, economics, ethics, and law must be taken into account and integrated into the 

development and deployment of wearable healthcare systems. Most systems are still at the prototype 

stage and developers have not yet faced deployment issues. Information technology and electronics 

are mature fields and can provide viable, disposable, and affordable wearable systems. 

In chapter 2, we will present our global hardware proposal for sleep monitoring with the deployed 

hardware and architecture.   
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Chapter 2. Hardware architecture proposal for sleep 

monitoring 

1 Introduction 

As mentioned in Chapter 1, sleep monitoring is mainly carried out in hospital sleep units and is based 

on international standards: PSG (Polysomnography) and EEG (Electroencephalography). However, 

PSG and EEG have many disadvantages. Indeed, they are very invasive and very complicated to 

implement and transport. In addition, they are very expensive and can only be found in hospitals and 

specialized units. However, with the rapid development of wireless sensor networks (WSNs) and 

BodyLAN technology, alternative wearable solutions for sleep monitoring have recently emerged. 

As we see in Chapter 1, these systems have a number of disadvantages such as unreliability, 

complexity and still high cost. Besides these systems do not allow to monitor all parameters as PSG 

and EEG and do not achieve the same level of performance and reliability. Finally, the existing 

professional systems do not allow remote monitoring at home, nor easy remote control by doctors. 

As a result, the patient has to visit the hospital periodically to see his doctor and make short sleep 

observation stays (1 or 2 nights at most), which most patients are reluctant to do. 

In this chapter, we attempt to provide an alternative solution to these issues by proposing a complete 

SMS hardware architecture providing information that is as relevant as current standards and meets 

the requirements of doctors.  

2 Overall SMS architecture 

After discussions with researchers, technicians and doctors, we specified the requirements that the 

system should meet. Technically, it is mainly a matter of proposing and building a communicating 

portable system within a network architecture, which can include several people at home or in the 

hospital. This system must be fully configurable locally by the person concerned and also remotely 

by the doctor. In addition, the system must be able to feed monitoring data from each patient (at 

home or in hospital) to a server-based database to be viewed and analyzed by doctors on a suitable 

interface. Thus, the overall architecture of the proposed sleep monitoring system was specified as 

shown in Figure 7. 
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Figure 7. Overall architecture of the proposed sleep monitoring system. 

The overview of the main functions/services of the system is divided into several sub-systems: The 

"Sensors", The "Master", the "Gateway", the Android application, the database and the website. 

The sensors acquire sleep-related physiological data that will be sent to the master board via BLE 

(Bluetooth Low Energy) [123] when the user sends “data uploading” command to the master board 

through customized smartphone application “L.M.S”. After receiving the data from the sensors, the 

master board sends the data to the gateway via LoRaWAN (Long Range Wide Area Network, 

hereinafter referred to as LoRa) [124]. The gateway is responsible for sending the received data to 

the database via Internet, which is done through the WiFi network of patients [125]. Finally, doctors 

or users can easily check the sleep monitoring data through web pages that perform requests to the 

database. Users can use the customized smartphone application “L.S.M” (LAAS Sleep Monitoring) 

to send control commands to the system via BLE, thus conveniently performing operations such 

turning the system on and off or downloading data. 

2.1 How the system works? 

Notification is used for transferring measurement data from sensors at the end of the night; 

depending on the protocol, the client can request a notification for a particular feature from the server. 

The server then sends the value to the client when it becomes available. In our case, each sensor 

notifies the BLE client (Master) whenever there is data to be transmitted (every 12.5 ms). This is a 

huge advantage of this technology. It prevents the client from constantly probing (polling) the server, 

as this would require the server's radio circuit to be constantly operational, resulting in considerable 

energy optimization. The Master is the heart of our system. It simultaneously plays the two roles of 

BLE (BLE master for the sensors and BLE slave for the Android application “L.S.M”). It has the 

same operating modes as the sensors. The operation of the system can be represented by the 

following sequence diagram (Figure 8): 
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Apk Android
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Figure 8. Sequence diagram for local configuration. 

In the system development and testing phase, the physical shots of the components of the system are 

shown in the Figure 9. 

 

Figure 9. System components tested individually and combined. 

The different components of the system were brought into interaction during several integration tests 

in order to synchronize the exchange and transmission speed taking into account the different types 

of communication used (BLE, Wifi, LoRa). The various errors detected in this way were corrected, 
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and to avoid the loss of data during transmission, corrective measures were introduced such as 

acknowledgments of receipt and data retransmission. 

Finally, the system components were integrated into packaging with LEDs for signaling. No buttons 

(except for power on) have been added to facilitate use and operation by medical staff (Figure 10). 

All possible commands must be executed either locally via the Android application or remotely from 

the web interface. The L.S.M system is very flexible and scalable. Indeed, a new sensor can be added 

at any time by a simple configuration. 

 

Figure 10. The final L.S.M system appearance. 

2.2 Choice of wireless communication techniques 

There are many wireless techniques available, each with its own characteristics and suitable for 

different application scenarios. We have listed several commonly used wireless communication 

techniques and their main technical parameters, as shown in Table 7. Several techniques are adopted 

in our proposed system architecture.  
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Table 7. Technical parameters of commonly used wireless communication technologies. 

Wireless 

techniques 
Spectrum Band 

Transmission 

range 
Data rate 

Power 

consumption 

BLE 
2.4 to 2.4835 

GHz 
>100 m 

0.27 to 1.37 

Mbit/s 
10 to 500 mW 

LoRa 

433 MHz, 868 

MHz (Europe), 

915 MHz 

(Australia and 

North America), 

865 MHz to 867 

MHz (India) and 

923 MHz (Asia) 

4.8 to 14.4 km 

in rural areas; 

1.6 to 4.8 km 

in rural areas 

0.3 kbit/s to 

27 kbit/s 
25 mW 

NB-IoT 800MHz/900MHz 15 to 35 km 
160 kbit/s to 

250 kbit/s 
100 mW 

WiFi 2.4/5 GHz 
20 m indoor; 

150 m outdoor 

600 to 9608 

Mbit/s 

100 to 500 

mW 

ZigBee [128] 
868/915 MHz and 

2.4GHz 
50 to 300m 

250 kb/s in 2.4 

GHz, 20 kbit/s 

in 868 MHz, 

40 kbit/s in 

915 MHz 

10 to 100 mW 

Sigfox 

868MHz 

(Europe), 

902MHz (the US) 

20 to 50km 
0.1 kbit/s to 

0.6 kbit/s 
30 mW 

 

The communication between sensors and master board is through BLE. The sensors and master 

board are designed to be in the same room when system works. Therefore the transmission range of 

the wireless technique is unnecessary to be long. The BLE and WiFi are both suitable for indoor 

communication scenarios with relatively short transmission range. However, the WiFi has much 

higher data rate and power consumption as shown in Table 7. As the data rate of BLE can meet our 

requirement for the sensors’ data transmission, the BLE is adopted. For the similar reason, the 

communication techniques between the smartphone application “L.S.M” and the master board also 

uses BLE.  

The communication between master board and gateway is through LoRa. When the room where the 

user under sleep monitoring by our system can’t access to the Internet, the gateway will be put in 

another place where it can access to the Internet so that to upload the sleep monitoring data to 

database. As a consequence, the distance between gateway and master board could be several 

kilometers. The transmission range of LoRa and NB-IoT (Narrow Band Internet of Things) [126] 

techniques can meet this requirement. However, the data rate and power consumption of NB-IoT are 

much higher than LoRa. As the data rate of LoRa is enough to transmit the sleep monitoring data and 

considering the life of battery, LoRa seems better. Sigfox [127] is also a widely used IoT 
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communication technology with a long transmission range and low power consumption. However, 

Sigfox requires an additional monthly fee, which is more costly than LoRa. In addition, unlike LoRa, 

which is open, Sigfox's network can only be deployed by the operating company, while LoRa's 

network can be built by individuals themselves. Therefore, LoRa is more flexible than Sigfox and 

more suitable for personal application scenarios, while Sigfox is more suitable for public application 

scenarios. Clearly, in personal application scenarios such as sleep monitoring, LoRa seems to be the 

better choice. 

The communication between gateway and database is done through Internet. WiFi is the most widely 

used Internet access technology; we choose to use WiFi to connect the gateway to the Internet. In 

addition to WiFi, the gateway can also be directly connected to the Internet by directly using the 

2g/3g/4g/5g service provided by the network operator, but this method requires a separate SIM 

(Subscriber Identity Module) card for each gateway device and a separate monthly network usage fee. 

The cost is high. When using WiFi, multiple gateway devices can share one WiFi hotspot and only 

pay one network fee. 

After defining the overall architecture, the details of technical and development of sub-system 

including sensors, master board, gateway and Android application “L.S.M” (LAAS Sleep Monitoring) 

are described as follows. 

2.3 Hardware system 

According to the methodology adopted to meet the specifications, and after a study of the various 

technical possibilities corresponding to the defined logical architecture (the subsystems), the overall 

hardware architecture is presented in Figure 11. 

 

Figure 11. Overall hardware architecture of the proposed SMS. 
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2.3.1 Sensors 

The data acquisition of the system are realized by various sleep monitoring modules, and each sleep 

monitoring module uses specific sensors to collect important physiological data related to sleep. 

Table 8 lists technical information for each sleep monitoring module. A more detailed description for 

each module is presented in section 2.4 of this chapter. 

Table 8. Technical information of sleep monitoring modules. 

sleep monitoring modules Sensors used Position on body Parameters to acquire 

Chest module 
Accelerometer 

(ADXL362) 
Front chest Sleep position 

Wrist module 

Accelerometer 

(ADXL362), 

Temperature sensor 

(NTC) 

Left  wrist 
Wrist movement, finger 

temperature 

Heart rate and SpO2 

module 
MAX30102 Right wrist 

Heart rate and blood 

oxygen saturation (SpO2) 

Foot module 

Accelerometer 

(ADXL362), 

Temperature sensor 

(NTC) 

Left foot, right foot 
Foot movement, toe 

temperature 

Sound module Microphone (MAX9814) 
Next to the head within 

one meter 
Sound 

Ambient module 

Luminosity (TSL2591), 

Temperature sensor 

(NTC) 

Sleeping room 

Luminosity and 

temperature of sleep 

environment 

 

The sensors we use are integrated into a miniaturized electronic board (see Figure 12) designed at 

LAAS [129].It is positioned at specific positions on the body, with the integrated sensors being 

chosen according to the parameters to be monitored, as listed in Table 8. 

 

Figure 12. The sensor's basic electronic board. (a) Front side; (b) Back side. 

The board is a system-on-chip, connected, and powered by a button cell (3V). Here are the main 

components we used on the sensor's basic electronic board for sleep monitoring: 

3.5cm

3
cm

Accelerometer: 

ADXL362
Microcontroller : 

NRF51822

Storage unit: 

FM25V20A

Battery: 

CR2032

a b
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-An NRF51822 microcontroller containing a 32-bit ARM Cortex M0 processor and a 256kB flash 

memory. This microcontroller is equipped with a BLE V4 LE module with a power of + 4dBm and a 

sensitivity of -93dBm, for data transfer. 

-16kB non-volatile FRAM memory for data backup during sleep. 

-An ADXL 362 low consumption triaxial accelerometer. 

-I/O ports for interfacing with other sensors, depending on the parameters to be observed. 

Programming is done in C using Keil µVision. 

2.3.2 Master board 

The master board is the control and data collection center of the proposed SMS. When the SMS is 

running, just place it in the room where the sleeper is, as shown in Figure 13.  

 

Figure 13. Illustration of the master board location. 

The master board carries out five tasks:  

1) Reception of operating commands, including the search of sensors (discovery phase), 

connection and disconnection of sensors (connecting phase) via BLE from a custom 

smartphone application. 

2) After connecting with the sensors, receive control commands from the custom smartphone 

application via BLE to set the operating modes of the sensors. The sensor operating modes 

include work on, work off and data transmission (data exchange). 

3) Reception and gathering data from the sensors. 

Master 

board
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4) Gathering ambient luminosity and temperature data from sensors integrated in the master 

board. 

5) Send all collected data to the gateway via LoRa network. 

To perform these tasks, the master board (Figure 14) consists of: 

- A 32-bit nRF52832 (ULP) microcontroller, which contains an ARM Cortex M4 processor, 512 KB 

Flash memory and 64 KB RAM memory. It is equipped with a BLE V4.2 LE module with a power 

of + 4dBm and sensitivity -96dBm, for data transfer and is able to establish 8 simultaneous BLE 

connections. 

- A LoRa SX1276 Wireless RF 868 MHz transmitter / receiver with a sensitivity of -146.5 dBm20 

and a power of +20 dBm. 

- Ambient temperature (thermistor) and luminosity sensors.  

 

Figure 14. Master board composition. 

2.3.3 Gateway   

The gateway is the data transfer station of the system. On the one hand, it is connectedto the master 

board via LoRa and receives the sleep monitoring data sent by the master board. On the other hand, it 

is connected to WiFi network, transmitting the data received from the master board to any network 

terminal or database located anywhere via the Internet.  

To achieve these tasks, the master board (Figure 15) consists of: 

- Arduino MKR WIFI 1010 microcontroller containing an ARM Cortex-M0 + 32-bit processor. 

- IEEE WiFi module from the U-BLOX NINA-W10 series. 
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Figure 15. Composition of the Gateway (two versions available: Lora-Wifi and Lora-2G). 

 

The Lora-WiFi Gateway works in T/R (Transmit/Receive) in both directions (Figure 16): 

 

Figure 16. Basic diagram of the Lora-WiFi Gateway. 

- Uplink: reception of sensor data from several master boards (differentiated by an Id) via LoRa's RF 

support and send them to the server (database) via WiFi support for processing and visualization by 

the web application (Data upload). 

- Downlink: reception of configurations from the web application via the WiFi support and send 

them to the concerned master board (designated by its Id) via LoRa RF support for its own 

configuration and sensors configurations (remote configuration). 

As it is a customized gateway, specific have been defined with custom preambles (&… \ n: in uplink, 

@ ... \ n: in downlink), headers (source, destination…), data fields and sizes. The Gateway software 

is in charge of forming the frames and distributing them according to their destination. 

The Wifi and LoRa connections are essential for the gateway operations. The gateway does not 

record data, therefore the gateway always checks the availability of the different connections. If one 

of its connections is down (no WiFi signal, etc.), it interrupts its operation to initialize and repair the 

connection concerned (Figure 17).  
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Figure 17. General operation of the gateway. 

The protocol used for WiFi communication with the server (database) is the http protocol, which 

works on the "request-response" principle. The Arduino WiFi module communicates via a temporary 

PHP file that receives data from the gateway and distributes it to the different tables in the database 

according to various parameters (sensors, data type, patient, etc.). The gateway is always listening to 

receive a frame, either by WiFi (configuration) or by LoRa (sensor data). As soon as it detects that 

this is a frame header specific to our system, it decodes it and sequentially forms a new frame in 

order to distribute it to its recipient. The simplified overall operation of the Gateway is managed by a 

state machine shown in Figure 18. 

 

 

Figure 18. Gateway state machine and data flow. 
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At the end of the transmission of all sensors data, the master sends a “flag” to the database to trigger 

calculations and data processing. The algorithms are implemented in python language and launched 

by a "Crontab" on a web server. The results of the processing on the sensor data give access to sleep 

indicators that allow to determine a global sleep index by crossing the different indicators (sleep 

score, as we will see in Chapter 4).  

2.3.4 Android application 

Given the availability and democratization of the use of tablets and smartphones, we have decided to 

develop an Android application “L.S.M” (LAAS Sleep Monitoring) with the system for controlling 

and viewing surveillance data. The application will be used by medical personnel or by patients. 

The application allows interaction between a smartphone running on Android that will act as a "BLE 

Device" and the Master board (NRF52832 microcontroller) that will act as a "BLE Server". The 

application has been built in the Android Studio mobile application development environment. This 

application can be launched on any version of Android that supports BLE communications (API 

above level 18), regardless of screen size. 

The application allows users to perform the following basic operations: 

- Scanning: searching for BLE devices. 

- Filtering: filter found devices according to the BLE services they have as well as their name to 

identify only specific devices (type S4M-MASTER). 

- The BLE connection to a GATT (Generic Attribute Profile) server of a specific type S4M-

MASTER device. 

- Sending data to a BLE service. 

- Receiving data by "Read" or "Notification". 

According to the specifications, the graphical interface of the application has been adapted for user-

friendly approach without requiring special skills with visual indications and animations to guide the 

user (doctor, nurse, patient, etc.). 

The graphical interface is divided into several pages to simplify the use of the application for the user 

(Figure 2.10). It allows the following operations to be carried out: 

- Scanning and connection: this function allows the user to search for compatible BLE type LAAS-

S4M devices that are broadcasting as well as to connect to them. 

- Data Upload: This function allows to retrieve sensor data by notification. 
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- Configuration: allows to carry out all the Master board and Sensors configurations, these 

configurations are grouped into several categories: 

- General configuration: switch ON/OFF all systems (storage status), view existing sensors, know 

the status of the sensors batteries... 

- Commands: switch ON/OFF, Stop advertising. 

- Configuration of the number of sensors, and of acquisition frequencies. 

- Time configuration: Time Now, Time On, Time OFF. 

- Activation or deactivation of the audible alarm to wake up the person at the Time OFF. 

- Configuration of sensors and Master passwords. 

Figure 19 shows the interfaces of the Android Application “L.S.M”. 

 

 

Figure 19. The interface of the Android Application “L.S.M”. 

 

2.4 Sleep monitoring modules 

The sleep monitoring modules are the essential elements of the SMS we propose. They collect the 

raw data necessary for sleep monitoring. In section 2.1, we briefly mentioned the sensors used by all 

sleep monitoring modules, where they are placed on the body and the data collected. In this section, 

we will present each sleep monitoring module in more detail. 

2.4.1 Chest module 

The chest module consists of a smart module and a temperature sensor (negative temperature 

coefficient, NTC), as shown in Figure 20(a). It is wrapped in soft paper and attached to the front of 

the chest with medical tape, as shown in Figure 20(b). This module is designed to measure chest 

temperature and detect the sleeping positions. 

 

L.S.M 
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Figure 20. Chest module. 

2.4.2 Wrist module 

The wrist module consists of a smart module and a temperature sensor (negative temperature 

coefficient, NTC), as shown in Figure 21(a). It is wrapped in soft paper and worn on the non-

dominant wrist like a watch. The temperature sensor is attached to the index finger by medical tape, 

as shown in Figure 21(b). This module is designed to measure the temperature of the fingertrips and 

record data concerning wrist movements. 

 
 

Figure 21. Wrist module. 

2.4.3 Foot module 

The foot module consists of two sub-modules: sub-module a and sub-module b. Sub-module a 

consists of a smart module and a temperature sensor (negative temperature coefficient, NTC), as 

shown in Figure 22(a). Sub-module b consists of one smart module only. The two sub-modules are 

wrapped in soft paper and attached on two insteps (sub-module a is on the left instep, sub-module b 

(a) Module appearance (b) Position of the chest module

(a) Module appearance (b) Position of the wrist module
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is on the right instep) as shown in Figure 22(b). The temperature sensor in sub-module a is attached 

to the big toe with medical tape, as shown in Figure 22(c). Sub-module a is designed to measure the 

temperature of the extremities of the toe and record foot movement data, sub-module b records only 

foot movement data. 

 

Figure 22. Foot module. 

 

2.4.4 Ambient module (Luminosity and Temperature) 

The ambient module can measure the temperature and luminosity of the sleeping environment. Both 

sensors are integrated in the collector box, as shown in Figure 23(a). They are located at the top of 

the collector box, as shown in Figure 23(b). The temperature sensor is also a Negative Temperature 

Coefficient (NTC) sensor, the luminosity sensor is a TSL2591, as shown in Figure 23(c).  The 

temperature data and luminosity data will be collected every minute. 

 

Figure 23. Ambient module. 
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2.4.5 Sound module 

The sound module collects sound data using a MAX9814 microphone, as shown in Figure 24(b). It is 

powered by two 03-2032 batteries to ensure continuous sound data collection throughout the night. 

The appearance of the sound module is shown in Figure 24(a).  It is placed next to the head within 

one meter during monitoring, as illustrated in Figure 24(c). Sound level data is collected every 

second. 

 

Figure 24. Sound module. 

 

2.4.6 Heart rate and SpO2 module 

The heart rate and SpO2 module monitors heart rate and blood oxygen saturation (SpO2). To meet 

the need for heart rate and blood oxygen monitoring while ensuring battery life, we have selected the 

MAX30102 sensor (Figure 25(b)) operating in I2C and allowing these functions to be performed 

with minimum power consumption and a 1.8V supply. It is an optical biosensor that integrates a red 

LED (660 nm), an infrared LED (880 nm) and a photodetector. Data are collected from the finger 

(Figure 25(a)). Its operating principle is based on the absorption properties of hemoglobin in the 

blood. Oxygenated hemoglobin absorbs more infrared light than red light, while deoxyhemoglobin 

absorbs more red light than infrared light. Therefore, the red and infrared LEDs of the oximeter emit 

light alternately, and the photodiode receives an optical signal that is not absorbed. The ratio between 

red and infrared light received by the photodiode is used to calculate the percentage of oxygen in the 

blood. The heart rate is also determined by the pulsating nature of the arterial blood flow. 

(a) Module appearance (b) Microphone 

(MAX9814)

(c) Position of the Module
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Figure 25. Heart rate and SpO2 module. 

 

3 Conclusion 

This chapter presents the overall hardware and software (with the exception of computation engine) 

architecture of our SMS proposal. The overall hardware architecture includes sensors, a master board, 

a gateway and a smartphone application. The sensors are integrated into several sleep monitoring 

modules, including a chest module, a wrist module, a foot module, a sound module and an ambient 

module, to enable the acquisition of sleep related data. The master board collects all data acquired by 

the sensors via BLE and sends it to the gateway via LoRa. After receiving the data sent by the master 

board, the gateway can send it to the database for data storage via WiFi. Thus, doctors or users can 

check the sleep monitoring results through a web page by accessing the database anytime and 

anywhere. The smartphone application is developed to help users to send commands such as 

switching the system on and off and transmitting data with a simple smartphone operation.   

Since BLE is a short-range transmission technology (around 10 meters in open field), the master 

board must be placed in the same room as the monitored user. However, the gateway can be placed 

anywhere within the range of 2-10 km from the master board, as the transmission range of LoRa 

communication technology is 2-10 km. Since the system needs to connect to WiFi to send sleep 

monitoring data over the Internet, users who do not have WiFi coverage available in their living 

environment can find a place with a available WiFi coverage within 2-10 km from where they live 

and place the gateway there to ensure normal operation of our sleep monitoring system. This is very 

useful for areas where network construction is relatively undeveloped.  

Work on the specification of the overall architecture required to perform sleep monitoring was 

discussed. The system designed is easy to be used by medical staff or even non-specialists. In 

(a) Collect heart rate and 

SpO2 data from finger

(b) Heart rate and SpO2 

sensor (MAX30102)
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particular, it facilitates sleep monitoring at home and provides doctors with detailed measurements 

over a longer period of time than conventional hospital observations. Various functionalities such as 

sleep data acquisition with the sleep monitoring modules, collection of data acquired by each sleep 

monitoring module with the master board, system control with a ustomized smartphone application 

and remote data transmission with the gateway required by the specifications have been validated. In 

addition, the project was fully documented. Finally, the system was built following the advice of 

sleep specialists from the Toulouse center hospital. The Toulouse center hospital gave us the 

opportunity to test the system on site, at the sleep unit, in March 2020 , for comparison with the PSG 

gold standard. These results will be presented in chapter 5. 
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Chapter 3. Definition and detection of sleep indicators 

 

1 Introduction 

Sleep quality can be reflected by sleep indicators. As sleep is a complex physiological phenomenon, 

a single indicator is not enough to measure sleep quality. For a SMS, it is very important to select 

and define an appropriate number and type of sleep indicators. Many indicators are needed to assess 

sleep quality from different perspectives. The sleep indicators we propose refer to the Pittsburgh 

Sleep Quality Index (PSQI) [130]. The PSQI was proposed in 1988, by researchers at the University 

of Pittsburgh [130]. It is a self-assessment questionnaire that evaluates sleep quality over a one-

month period. It consists of 19 items, measuring several aspects of sleep, and offers seven scoring 

items and a composite score. The seven scoring items include: 

1. Subjective quality of sleep 

2. Sleep latency (i.e., the time it takes to fall asleep),  

3. Sleep duration,  

4. Usual sleep efficiency (i.e. the ratio of sleep duration to total duration in bed. It is calculated by 

dividing the amount of time spent asleep (in minutes) by the total amount of time in bed (in 

minutes).),  

5. sleeping disorders,  

6. Use of medicines for sleep,  

7. Daytime malfunction.  

Based on the PSQI (Pittsburgh Sleep Quality Index) questionnaire [130] and the recommendations of 

the sleep experts at the Center Hospital of Toulouse, we have defined six sleep indicators. These are 

sleep stages, sleep position, snoring, periodic leg movement index (PLMI) (the number of periodic 

leg movements per hour over the total sleep duration), skin temperature (finger, toe and chest) and 

ambient condition (luminosity and temperature). These indicators are all correlated to the sleep. The 

choice of these six indicators is explained and justified below.  

For the sleep stages, obtaining the time spent in the different sleep stages can provide better 

information to guide behavioral changes and recommendations to improve sleep quality [131]. It is 

therefore very important to obtain the overnight sleep hypnogram.  
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Several studies have analyzed the influence of body position on sleep. In [132], Arbinaga et al 

suggests that people who stated that they sleep on the right side appear to have lower sleep quality 

than the left-side group. Besides, a close relationship between sleeping position and sleep apnea has 

been demonstrated. For patients with obstructive sleep apnea (OSA), 25% to 70% of them reported 

that OSA was more severe in the supine position than in the non-supine position [133][134]. Hence, 

it’s essential to monitor the body position during sleep, especially for people with sleep apnea.  

Snoring is produced by the vibration of the respiratory upper airway during sleep, and can affect the 

quality of sleep [135]. Moreover, as a typical sign of sleep apnea, snoring monitoring may help 

people become aware of sleep apnea at an early stage. This is why we propose a snoring detection 

algorithm that can detect snoring during sleep.  

Restless Legs Syndrome (RLS) is a sensorimotor disorder that often has a profound impact on sleep 

[136]. The severity of the symptoms varies greatly from an occasional stressful situation to a serious 

night-time situation, until total sleep disruption. In a recent study that followed 100 patients with 

RLS and 50 normal controls [38], 84% of patients had a PLMI greater than 5 and 70% had a PLMI 

greater than 10, compared to 36% and 18%, respectively, for controls. This suggests that PLMS 

(Periodic limb movement during sleep) is the typical symptom of RLS, the PLMI measure can be 

used to predict RLS. This is why we have developed our foot module to detect PLMS in order to 

obtain PLMI. The prevalence of RLS was 5.5% and that of PLMS (Periodic limb movement sleep) 

was 3.9% [37]. RLS and PLMS concern more women than men and the prevalence of RLS increased 

significantly with age [38].  

The links between sleep patterns and proximal and distal skin temperature have been discussed in 

some studies [110][137]. In their study [110], Van et al discussed the relationship between sleep and 

body and skin temperature. They reported that core body temperature is lower during our usual sleep 

period than during our usual wake period, but skin temperature has the opposite tendency. Their 

study shows that there is probably a correlation between body and skin temperature and sleep. It may 

be possible to predict sleep status by monitoring body or skin temperature during sleep. For this 

reason, we measured skin temperature in three body positions, including the distal skin temperature 

on fingers and toes and proximal skin temperature on chest, to study their correlation with sleep.  

The luminosity and temperature of the sleep environment can have a significant effect on sleep. It 

is reported that bright artificial light suppresses the nocturnal secretion of melatonin, a hormone 

mainly released by the pineal gland that regulates the sleep–wake cycle [138][139][140]. In addition, 
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the ambient temperature is an important determinant of sleep as thermoregulation is strongly linked 

to the sleep regulation mechanism [141]. An ambient temperature that is too high or too low could 

affect sleep even for healthy people without insomnia. This is why we propose a module for 

monitoring light and ambient temperature to find out whether the sleeping environment is suitable. 

2 Definition of sleep indicators 

The PSQI is now being used by researchers working with people from adolescence to the end of life. 

Clinical studies have found that the PSQI is, to some extent, reliable and valid in the assessment of 

sleep problems. However, the PSQI suffers from the same problems as other self-assessment 

questionnaire, in that scores can be easily exaggerated or minimized by a person’s subjective feelings. 

It is therefore very useful to propose objective measurement methods for these items. The proposed 

sleep monitoring system can measure several sleep indicators from many perspectives, and these 

sleep indicators can provide an objective measure of the 1 - 5 scoring component in the PSQI. Sleep 

indicators detected by our system include: 

1. Sleep stages 

2. Sleeping position 

3. Snoring 

4. Periodic leg movements during sleep (PLMS) 

5. Skin temperature (fingers, toes and chest) 

6. Ambient conditions (luminosity and temperature) 

For the sleep stages, the algorithms we propose use only the acceleration data of the wrist module, 

resulting in a classification into 4-sleep stages (“awake”, “light sleep”, “deep sleep” and “REM”). 

Algorithms are described in detail in chapter 4. The sleep position is determined by the chest module, 

the algorithm is described in detail in section 3.1 of this chapter. Snoring is detected by the sound 

module, the algorithm is described in detail in section 3.2 of this chapter. PLMS is detected by the 

foot module, the algorithm is described in detail in section 3.3 of this chapter. The skin temperature 

(finger, toe and chest) is measured by the temperature sensor of the wrist module, foot module and 

chest module as described in section 3.4 of this chapter. The ambient condition (luminosity and 

temperature) is measured by the ambient module as described in section 3.5 of this chapter.  
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3 Algorithms for obtaining sleep indicators 

3.1 Sleep position detection 

In our proposal, the sleep position is detected by a 3-axis accelerometer ADXL362 in the chest 

module. By inverting the trigonometric functions it is possible to obtain whether the person is 

standing up or lying. If he is lying down, the sleeping position can then be determined. We classify 

the sleep positions into 8 groups. A list of these 9 body positions and their corresponding 

abbreviations is presented in Table 9. 

Table 9. Detected body position and corresponding abbreviation. 

Body position Corresponding  abbreviation 

Stand up S 

On the back OB 

On the back with right tendency BR 

Right side R 

Right side tends to stomach RS 

On the stomach OS 

Left side tend to stomach LS 

Left side L 

On the back with left tendency BL 

 

The result of the detection of the body position obtained by our chest module is presented in Figure 

26. The data were acquired while the volunteer was undergoing the PSG test on the same night as 

presented in Chapter 5. 

 
Figure 26. Result of body position detected by our chest module for one night. 

Table 10. Time spent in each sleeping position. 

Sleep 

position 
S OB BR R RS OS LS L BL 

Duration 

(minutes) 
6.0 233.0 13.1 7.4 0 0.1 1.7 28.6 21.2 

 

Table 10 shows the time spent in each sleeping position. As we can see, the duration of the OB, BR 

and BL positions takes the largest part of the total time and the duration of the OS, RS and LS only 
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takes a very small little proportion of the total time. In addition, the durations of L and R lie between 

the summation duration of OB, BR and BL and the summation duration of OS, RS and LS. This 

result is consistent with reality. When people are under PSG monitoring, their whole body is full of 

electrode lines. In this case, it is very difficult for them to turn their body over. Therefore, the most 

common position will be to lie on their back or lean slightly to the left or right (i.e. OB, BL and BR). 

Lying on the stomach or lying on the stomach with a tendency to the left or right side (i.e. OS, LS 

and RS) will all be rare. The difficulty of lying on the left or right side (i.e. L and R) lies between the 

back and the stomach, so the probability of occurrence of L and R should be somewhere in between. 

In summary, our chest module provides a reasonable sleep posture detection result in this test. 

3.2 Snoring detection 

The snoring detection algorithm is based on sound level data recorded by our sound module. The 

sound level is recorded by an electret microphone with amplifier MAX9814, microcontroller 

NRF51822. The sampling frequency of the sound level is 1 Hz. The real environment of the sound 

level recording is shown in Figure 27. The acquired sound level data is stored in the FRAM during 

monitoring. After the monitoring is completed, all data in the FRAM will be sent to a PC via 

Bluetooth for further processing. 

 

Figure 27. Real environment of the sound level recording. 

 

Microphone 

Pillow 
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3.2.1 Method 

At a first step, we divide the overnight sound level recording OvnRcd into equal length epochs from 

the beginning to the end using a rectangular window with no overlap as described in equation (3-1). 

Each epoch consists of 30 samples, a 30-second sound level recording, according to equation (3-2), 

where N is the total number of epochs. The goal is to determine whether or not an epoch contains 

snoring.  

𝑂𝑣𝑛𝑅𝑐𝑑 = {𝑒𝑝1, 𝑒𝑝2, 𝑒𝑝3, … , 𝑒𝑝𝑁}                                                            (3-1) 

𝑒𝑝𝑙 = {𝑠𝑝𝑙𝑙1, 𝑠𝑝𝑙𝑙2, 𝑠𝑝𝑙𝑙3, …… , 𝑠𝑝𝑙𝑙30}, l = 1, 2, 3,…, N                                             (3-2) 

 

Each sample of an epoch is reduced by the mean value of all 30 samples of that epoch to remove the 

direct-current component, according to equation (3-3). 

𝑠𝑝𝑙𝑙0𝑚 = 𝑠𝑝𝑙𝑙𝑚 −
∑ 𝑠𝑝𝑙𝑙ℎ
30
ℎ=1

30
, m = 1, 2, 3,…, 30                                                   (3-3) 

By observing Figure 28, it can be seen that the epoch with snore (Figure 28(a)) is more quasi-

periodic so that power can be concentrated over a certain frequency range. Therefore, the power 

spectrum based on DFT (discrete Fourier transform) is used to discriminate epochs with snore in the 

frequency domain. First the DFT (discrete Fourier transform) is performed for the sound level 

samples of each epoch, as in equation (3-4), then  the power spectrum is calculated by the 

periodogram method, as in equation (3-5). 

𝑆𝑃𝐿𝑙(𝑘) = ∑ 𝑠𝑝𝑙𝑙0𝑛𝑒
−2𝜋𝑖

30
𝑘𝑛29

𝑛=0 , k = 0, 1, 2,…, 29                                               (3-4) 

𝑃𝑙(𝑘) = |𝑆𝑃𝐿𝑙(𝑘)|
2                                                                       (3-5) 
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Figure 28. Sound level epoch with snoring, freezer noise and movement noise (top: sound level recorded 

by a commercial smartphone application “Do I Snore or Grind”; middle: sound level recorded by the 

smart module with microphone; bottom: power spectrum of the sound level recorded by the smart 

module with microphone). 

By testing many epochs, many differences in the frequency domain are found between the snoring, 

freezer noise and motion noise epochs. Figure 28 shows the comparison of three representative 

epochs containing snoring, freezer noise and motion noise respectively. As can be seen, the power 

spectrum of the snoring epoch has a maximum value at about 0.2 Hz; the epoch with freezer noise 

has a maximum value at a higher frequency; the epoch with motion noise has a maximum value at a 

lower frequency. According to the tests carried out for many epochs, this assessment is true in most 

cases. It is possible to discriminate an epoch with snoring based on this rule. The specific 

requirements for determining the snoring epochs are described as follow.  

For the power spectrum of the epoch with snoring: 

(1) the frequency with the maximum power value is between 0.15 and 0.25 Hz; 

(2) the maximum value is greater than 3 dB. 

(3) The epoch is not classified as “Wake” by the sleep stage classification algorithm based on wrist 

movements. 

Requirement (1) is based on the quasi-periodic snoring, whose sound level curve is usually 

characterized by a certain range of periods, as shown in Figure 28 (a).  Requirement (2) is used to 

exclude quiet epochs with very low maximum power. For requirement (3), it always determines 

epochs as no snoring when they are classified as “Wake” by the sleep stage classification algorithm 
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based on the wrist movements. Indeed, if an epoch is classified as “Wake”, it means that the user is 

moving around a lot at that time, but in most cases snoring occurs when people are motionless and 

snoring is usually interrupted by body movement. The procedure for detecting epochs of snoring is 

described in Figure 29. 

 

Figure 29. Procedure for the detection of snoring epochs. 

3.2.2 Result 

The result of snore detection is shown at the bottom of Figure 30. The height of the bar is the 

maximum value in the power spectrum of the epoch judged to contain snoring. Compared to the 

result of an APP (Do I Snore or Grind) [142], a similar pattern could be found between them, 

especially before 4am. The biggest difference in result between the APP and the proposed algorithm 

is around 5 am. As we can see, the APP reports a significant level of snoring but our algorithm does 
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not report any snoring. Listening to the sound recording around 5 am, we can hear that there is a lot 

of motion noise but no snoring, which is consistent with the result of the proposed algorithm.  

 
Figure 30. Snoring level provided by the commercial smartphone application “Do I Snore or Grind” 

(top) and the algorithm presented (bottom). 

A sleep report will be generated automatically, which will include the duration of sleep, the 

proportion of each sleep stage, the timing of the epochs in the different sleep stages, the number of 

snoring epochs, the duration of the snoring epochs and the timing of the snoring epochs. The 

screenshot of the report is shown in Figure 31. The report can help the user and the physician with 

detailed information about sleep. 
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Figure 31. Snoring detection report screenshot. 

3.3 Periodic leg movements (PLM) detection  

According to standard criteria [143][144], PLMS are only considered if they are part of a series of 

four or more consecutive movements lasting 0.5 to 10 seconds with an interval between movements 

of 5 to 90 seconds and an amplitude greater than 8 mV above the basic signal of an electromyograph 

(EMG). A PLMS index (number of PLMS per hour of sleep) greater than 5 for the entire night’s 

sleep is considered as pathological [145] and can be used for younger people, but an index greater 

than 15 is now often used as a threshold for older subjects. 

PLMS detection is a commonly used method for the diagnosis of RLS in the sleep laboratory [38]. 

Based on standard PLMS criteria, the rule for PLMS detection using the ankle module is defined as 

follows: 

1) The movement level M > 21(see the definition of M in equation 4.1 of chapter 4) is considered as 

the emergence of movement. 

2) When the number of consecutive samples with M > 21 is between 1 and 10 it must be considered 

as a group of movements. 

3) Adjacent movement groups with an interval of 5 to 90 seconds are considered as significant 

movement groups. The interval goes from the end of the movement group to the beginning of the 

next movement group. 

4) A series of four or more consecutive significant movement groups will be considered as a PLMS 

group, the number of significant movement groups is the number of PLMS in that PLMS group. 
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The PLMI is the diagnostic indicator for PLMS based on the foot module. The PLMS detected using 

our foot module is shown in Figure 32. It is derived from the movement of the left foot. The PLMS is 

marked by a red vertical line, each red vertical line means one second of time with the PLMS. 

 

Figure 32. PLMS detected by our foot module. 

The performance of PLMS detection was compared to that of PSG, the gold standard. The results are 

detailed in section 4 of chapter 5. 

3.4 Skin temperature (fingers, toes and chest)  

The distal skin temperature on finger and toe is acquired by the wrist module and the foot module 

respectively, the proximal skin temperature on chest is acquired by the chest module. All temperature 

data is collected every second. Figure 33 shows a recording of the temperature during the night in the 

three body locations. 

 

Figure 33. Recording of night skin temperature in three body positions. 

The relationship between proximal and distal skin temperature and sleep was studied based on the 

results of the PSG gold standard. It is described in detail in section 6 of chapter 5. 

3.5 Ambient conditions (luminosity and temperature) 

Many studies have explored the relationship between sleep and ambient parameters such as 

temperature and luminosity. In one study [146], a significant deep sleep increase was observed in 

young women after exposure to a mildly cold environment (after sleep onset), sufficient to reduce 

core body temperature by 0.2 °C. In another study [147], total sleep time was a mean of 30 min 
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longer, mean sleep efficiency was higher (77 ± 11% versus 71 ± 13% respectively), and patients 

were significantly more alert according to the Karolinska Sleepiness Scale in the morning at an 

ambient temperature of 16°C versus 24°C. Besides, studies have shown that light is a direct stimulant 

that increases brain activation and alertness [148] and impairs the ability to fall asleep and reduces 

sleep quality [149]. Therefore, monitoring the temperature and luminosity of the environment could 

help us determine whether the environment is conducive to good sleep. 

Ambient temperature and luminosity data are collected every minute by our ambient module. Figure 

34 shows an example of a recording of the ambient temperature and luminosity during the night.   

 

Figure 34. Recording of ambient temperature and brightness during the night. 
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4 Conclusion 

This chapter presents the sleep indicators we propose and the methods to obtain these indicators 

based on the hardware modules we have developed. The proposed sleep indicators can cover five of 

the seven scoring items of the PSQI self-assessment questionnaire. Using our hardware modules and 

the proposed algorithms, we can obtain an objective measure of these sleep indicators to overcome 

the shortcomings of the PSQI self-assessment questionnaire which all stem from the subjective 

evaluation. In addition to the sleep indicators included in the scoring component of the PSQI 

questionnaire, the sleep indicators we propose also include PLMS detection. As a result, compared to 

the existing conventional sleep monitoring system, the system we propose has a greater potential to 

detect sleep-related diseases more comprehensively. Finally, all the modules presented in this 

Chapter have been tested in a real sleep environment during one whole night sleep and will be 

presented in Chapter 5.  
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Chapter 4. Sleep stages classification based on wrist 

movements 

1 Introduction 

In recent years, the classification of sleep stages has been a subject of in-depth studies, as it is one of 

the most critical steps in the effective diagnosis and treatment of sleep disorders. Obtaining the time 

spent in the different sleep stages in the environment of ordinary daily life is of great significance for 

research and commercial applications. For example, obtaining an accurate sleep architecture can 

provide better information to guide behavioral changes and provide recommendations for sleep 

improvement [131].  

In the literature, most research adopts supervised machine learning methods that typically require 

large amounts of learning data to train the classifier and computation to implement the model. 

However, some works adopt unsupervised methods such as k-means clustering to achieve sleep stage 

classification. It is usually based on signals directly related to sleep stages such as EEG signal, which 

is highly intrusive and not easy to collect in a home environment. In this work, we propose a k-

means clustering approach using only acceleration data from a wrist-worn sensor to obtain a sleep 

classification into four classes: awake, light sleep, deep sleep and REM. The k-means clustering 

method requires a relatively smaller amount of computation [150], which could make the algorithm 

implementation easier. Moreover, acceleration data from a wrist sensor are very easy to collect. The 

subject only needs to wear a small and lightweight watch such as the one he or she wears on the wrist, 

which is very suitable for the home environment and long-term monitoring.  

2 Data acquisition and preprocessing 

The smart sensing device used was presented in chapter 2. Although the output data rate of 

accelerometer is 12.5Hz, we sample the output acceleration data only every second. This reduces the 

amount of data and limits storage space, which could be advantageous for long-term monitoring 

applications. 

We position the smart module on the non-dominant wrist, wearing it like a watch as shown in Figure 

35. After switching on the smart module, it will first search for the corresponding Bluetooth slave 

device (in this case a PC) to try to pair with it. If the smart module can pair with the Bluetooth slave 

device within 10 seconds (usually 10 seconds is enough for pairing if the Bluetooth slave device is 
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advertising), it will start to send stored data in FRAM to the Bluetooth slave device for further 

processing. Otherwise, it will start to acquire acceleration data every second and store it in FRAM. 

                 

Figure 35. Position of the smart module. 

2.1 Data preprocessing 

With acceleration values Ax, Ay, and Az, a corresponding movement level Mi for sample i, will be 

calculated by equation (4-1), where N is the number of samples for one night.  

1,...,3,2,1,111   NiAzAzAyAyAxAxM iiiiiii                             (4-1) 

The overnight movement level data is cut into 30-samples epochs, noted as Sj (j = 1, 2, 3,…, L, with 

L being the total number of epochs for one night). Each epoch is the shortest unit for further sleep 

stage classification, which has a duration of 30s, as in the Rechtschaffen and Kales Guidelines [151]. 

Using a sleep stage classification algorithm, each epoch will be classified as follows: awake, light 

sleep, deep sleep and REM. 

For each epoch, movement levels of the corresponding 30 samples are summed to obtain an epoch 

movement level EMj, as in equation (4-2). 





30

1

,...,3,2,1,
k

jkj LjMEM

                                                      (4-2) 

Where j is the index of epoch, L is the total number of epochs. 
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As sleep is a constantly evolving process, it is necessary to associate the previous and following 

periods when analyzing the sleep state at a given time. Thus, for each epoch, 9 epochs are considered 

before and after it. A weighted PM value is then defined (see equation (4-3)) to further facilitate 

sleep analysis. Equation (4-3) is inspired by Cole’s algorithm. Cole’s algorithm calculates the value 

also as a polynomial summation to distinguish sleep from wakefulness based on wrist activity. The 

difference is that Cole’s algorithm only considers 4 minutes before and 2 minutes after the current 

epoch to calculate the distinction value. Besides, the coefficients of the polynomial that we have 

defined change periodically along the term, which can better simulate the characteristic that human 

sleep also changes periodically, as we have seen from observations. 
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To sum up, the data preprocessing scheme is illustrated in Figure 36. 

 

Figure 36. Overnight data preprocessing scheme. 
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Figure 37. Illustration of M, EM, PM for a same night. 

As shown in Figure 37, for one night’s data, M is very scattered which further complicates the real 

sleep analysis. On the contrary, PM has a more orderly data evolution which is helpful for the further 

sleep stages classification. Based on the calculated PM, we have implemented two methods for 

classifying sleep stages: a threshold method and a k-means method, as described in the following 

sections.  

3 Threshold method 

We have defined 3 thresholds to achieve the classification of sleep stages. In our experiments, we 

first tried to set different values for the thresholds and then adjusted the values of the thresholds by 

observing the classification results. After many experiments (10 to 100 times), observations and 

adjustments, we determined the final threshold values. 

3.1 Sleep and Awake discrimination 

Wrist movement can be considered as an indicator of the wakefulness state [152]. The amount of 

wrist movement can therefore be a sign of sleep or awake. We define TS/W as a threshold (Figure 38(a) 

showing an overnight PM evolution) to discriminate ‘Awake’ and ‘Sleep’ epochs, which is 1350 

determined from experimental observation and tests. When the PM value of an epoch is greater than 
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TS/W, the epoch is classified as ‘Awake’. Otherwise, it is classified as ‘Sleep’ and the discrimination 

process continues to refine the classification.  

 

Figure 38. Illustration of three thresholds in sleep stages discrimination. 

3.2 Deep sleep and Light sleep/REM discrimination 

A lower movement level corresponds to a deeper sleep state [153]. It is possible to define a threshold 

of PM value or standard deviation of several continuous PM values to discriminate light sleep from 

deep sleep. REM sleep is shorthand defined as an activated brain in a paralyzed body, but muscle 

twitches often accompany REM [154]. It can therefore be assumed that the overall movement level 

during REM is very low, but the standard deviation of movement level may be relatively high due to 

muscle twitches. Based on the above analysis, we believe that deep sleep is characterized by the 

lowest standard deviation of movement level, which could be used as a feature to distinguish it from 

light sleep and REM. Hence, it is possible to define a standard deviation threshold of several 

continuous PM values to distinguish deep sleep from light sleep and REM. For epochs first classified 

as ‘Sleep’, 6-epochs groups G are formed (representing 3-minute data). For each G, the standard 

deviation (SD) of the PM values is calculated. If SD is less than a threshold TD/LR (as illustrated in 
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Figure 38(b)), the epochs in G are classified as ‘Deep sleep’. The value of TD/LR is 10 derived from 

testing, observation and correction. 

3.3 Light sleep/REM discrimination 

Light sleep and REM are characterized by a relatively high and relatively low movement level 

respectively. Thus, a threshold on the PM value can be used to discriminate between them. After the 

two previous steps, the remaining epochs noted as H can be classified as ‘Light sleep’ or ‘REM’. To 

discriminate these two stages, a 500 value threshold TL/R is defined (as illustrated in Figure 38(c)), 

derived from tests, observations and threshold adjustments. When the PM of H is greater than TL/R, it 

will be classified as ‘Light sleep’ otherwise as ‘REM’. 

The overall classification procedure is described in Figure 39.  

 

Figure 39. Procedure of sleep stages discrimination. 
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end of a night's sleep. Once monitoring begins, if the “sleep” state lasts at least 5 minutes, the first 

point of the 5 minutes will be considered as the starting point for falling asleep, noted as the asleep 

point. From the end of the recording and the countdown monitoring, if the “sleep” state lasts at least 

5 minutes, it will be considered as the last “sleep” epoch. Thus, the following epoch is considered to 

be the starting point of awakening, noted as the awakening point. The epochs between the asleep 

point and the awakening point are defined as the sleep segment. 

3.5 Optimization processing 

After obtaining the result of the sleep stage classification using the procedure shown in Figure 39, 

some steps are necessary to optimize the results: 

1) When the falling asleep point has been determined, all the epochs before it will be considered as 

“awake”. 

2) Once the point of awakening has been determined, all subsequent epochs will be considered 

“awake”. 

3) When ‘light sleep’ lasts less than 1 minute and there is an “awake” state before and after, define 

this ‘light sleep’ period so that it is classified as ‘awake’.  

4) When “REM” lasts less than 1 minute and there is a ‘light sleep’ before and after, define this 

“REM” period as a ‘light sleep’ one. 

 

Figure 40. Example of result obtained with the “Threshold method” for a night. 

Figure 40 shows a result of the “Threshold method” including the detection of the time of falling 

asleep, waking up and the hypnogram with the corresponding PM evolution. 

The “Threshold method” uses three thresholds which are all absolute values to classify sleep stages. 

This means that the same thresholds will be applied to different people. It is difficult to make this a 

universally applicable method because people's movements during sleep are different, the amplitude 
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and frequency of movements are individual characteristics which can be explained by factors such as 

body height and weight, gender, physical condition, age, etc. In order to develop a universal method 

suitable for different people, we plan to test the k-means clustering that makes this possible as 

explained in section 4.1. 

4 K-means method 

4.1 K-means clustering 

As a classic machine learning method, k-means clustering [155] has been widely used in fields as 

diverse as image segmentation, data compression, wireless sensor network routing, data mining, etc. 

It is an efficient method for automatically classifying a dataset into k-groups based on the similarity 

of the features of each data set. First, it randomly selects k initial cluster centers Ci and then 

iteratively performs the following steps: 

1. Assign each sample si to its nearest clustering center; 

2. Update each Ci clustering center with the mean of the samples currently in the cluster. 

The algorithm converges when the assignment of samples to clusters does not change any more. For 

the k-means clustering algorithm, the selection of the initial cluster centers could significantly affect 

the final clustering result. As the initial clustering centers are randomly selected, the clustering result 

also has some uncertainty. During the experiments, we found that the final clustering results using 

randomly selected cluster centers generally did not change much, but in a few cases the final 

clustering results were far from the others. In order to prevent these rare cases from becoming the 

final clustering result, we repeat the same clustering procedure several times and then determine the 

final clustering result by voting, as described in the section 4.4. 

The k-means method is applied for sleep epochs to obtain a hypnogram containing “Awake”, “Light 

sleep”, “Deep sleep” and “REM”. The sleep epochs start from the time where we fall asleep until we 

wake up, which is detected by the threshold method described in section 3. As far as we know, there 

are several works [156][157][158] that adopt k-means method to classify sleep stages using the EEG 

signal, but no one using the wrist movement signal. 

4.2 Feature extraction 

A 2-dimension feature based on PM is used for k-means clustering. We directly use PM as the first 

dimension of the feature. All PMs are grouped sequentially, and each group contains six PM values. 

The standard deviation of the PM values in each group is used as the second dimension of the feature 
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for the corresponding six epochs in the group. In other words, the second dimension of the feature for 

the six epochs in one group is the same, i.e. the standard deviation of their corresponding PM values. 

4.3 Sleep stages clustering  

The overall procedure of this “k-means” method consists of 5 iterations of k-means clustering with 

k=2, noted 5km2. 

We also tried to classify the four sleep stages directly using only one iteration of the k-means 

clustering with k=4, noted 1km4.  

We have adopted “Fitbit charge 2
TM

” as the reference device to evaluate the results of the 

“Threshold”, “5km2” and “1km4” methods. The “Fitbit charge 2
TM

” is a commercial device that has 

been compared with the PSG (polysomnography) gold standard and validated as promising for sleep 

stages and sleep-wake detection [159]. The “Fitbit Charge 2
TM

” has shown a sensitivity of 0.96 

(accuracy to detect sleep), a specificity of 0.61  (accuracy to detect wake), an accuracy of 0.81 for the 

detection of N1+N2 sleep (“light sleep”), an accuracy of 0.49 for the detection of N3 sleep (“deep 

sleep”), and an accuracy of 0.74 for the detection of rapid-eye-movement (REM) sleep . The 

classification results of the Fitbit, threshold, 5km2 and 1km4 methods will be presented in section 

5.3, and the hypnograms and the proportion of each two-night sleep stage obtained by each method 

are shown in Figures 41 and 42 respectively. The volunteer for this two-night test is 27 years old 

with a height of 180 cm and a weight of 60 kg, without sleep complaints. 

According to the study [154], for normal young adults who live on a conventional sleep-wake 

schedule and without sleep disorders: 

 Waking up during sleep usually represents less than 5% of the night. 

 Light sleep generally accounts for about 47% to 60% of sleep. 

 Deep sleep generally accounts for about 13% to 23% of sleep. 

 REM sleep usually accounts for 20% to 25% of sleep. 

It has been found that the proportion of light sleep should be much higher than that of deep sleep. 

However, given the experimental results, the 1km4 method still obtains too much  deep sleep time 

and not enough light sleep time, which is contradictory with the results of the study [154] obtained 

by the PSG method [154]. The 5km2 and threshold methods have comparable results to those of the 

study [154]. We will therefore present the 5km2 method in detail. 
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Figure 41. Sleep stages classification result of four methods for two nights. 

 
Figure 42. Proportion of each sleep stages obtained from four methods for two nights. 
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4.3.1 Awake 

After a k-means clustering (k=2) on the sleep segment defined by the “Threshold” method, the 

cluster with the highest mean PM value is classified as “awake”. The other cluster is noted as S1. 

4.3.2 Light sleep 

The “Light sleep” comes from 2 sources. Firstly, after a second k-means (k=2) clustering on the 

previous cluster S1, the cluster with the highest mean value of PM is classified as “Light sleep”. The 

other cluster is noted S2. Then, a third k-means clustering (k=2) is performed on S2, and the cluster 

with the highest mean PM value is defined as quasi-REM noted S3, the cluster with the lowest mean 

PM value is defined as quasi-Deep sleep noted S4. Finally a fourth k-means clustering is performed 

on S3, and the cluster with the highest mean PM value is also classified as “Light sleep”. In summary, 

“light sleep” corresponds to cluster S2 and the last mentioned cluster. 

4.3.3 Deep sleep 

On the quasi-Deep sleep cluster noted S4, a new k-means clustering (k=2) is carried out. The cluster 

with the lowest mean PM value is classified as “Deep sleep”. 

4.3.4 REM 

The “REM”, as “light sleep”, also comes from 2 sources. On the one hand, after a k-means clustering 

for quasi-REM S3, the cluster with the lowest mean PM value is classified as “REM”. On the other 

hand, with the k-means clustering performed over quasi-Deep sleep S4, the cluster with the highest 

mean PM value is also classified as REM. 

The procedure for sleep stages clustering is illustrated in Figure 43. 
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Figure 43. Procedure for sleep stages clustering. 
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First of all, we have carried out the above-mentioned sleep stages clustering procedure ten times. 

Thus, for each epoch, we obtained 10 clustering results. Then, for the 10 clustering results, the class 

to which the epoch finally belongs is determined by a majority vote. If different classes have the 

same number of votes, the selection priority is as follows: awake > light sleep > deep sleep > REM. 

Table 11. Result of a sleep stage obtained from 10 identical 5km2 methods for one night. 

Iteration index Wake Light sleep Deep sleep REM 

1 29.5 134.5 117 187.5 

2 29.5 134.5 121.5 183 

3 29.5 167 121.5 150.5 

4 29.5 167 117 155 

5 29.5 131.5 119.5 188 

6 29.5 167 121.5 150.5 

7 29.5 109 260 70 

8 29.5 134.5 117 187.5 

9 29.5 134.5 117 187.5 

10 29.5 134.5 117 187.5 

Unit: minute 

5 Experimental results 

5.1 Processing time 

The “Threshold”, “1km4” and “5km2” algorithms are all implemented on “MATLAB R2011b”, with 

the same computer with “Intel i7-2600 CPU @ 3.40GHz, 8GB RAM” . For 8-hour night-time data 

processing, the time spent on the "Threshold method", "1km4 method" and "5km2 method" is 1.04s, 

1.73s and 1.84s respectively. The processing time for all algorithms is very short, less than 2 seconds. 

This indicates that proposed methods can be used in a real time application, giving fast results. 

5.2 Falling asleep/waking up detection analysis 

5 young adults, from 27 to 32 years old (3 females, 2 males), were recruited for the tests. A total of 

15 nights of sleep were tested using four sleep stage classification methods, namely “Fitbit”, 

“Threshold (the method presented in section 5 which uses 3 thresholds)”, “5km2” and “1km4”. The 

“Threshold”, “5km2” and “1km4” methods are all implemented solely based on the wrist movement 

data. Considering every night, we have collected 30 falling asleep/waking up detection results. The 

difference between the "Fitbit method" and the proposed “Threshold method” for detecting the time 

of falling asleep and waking up is shown in Table 12.  

Table 12 shows that 25 out of 30 results have a maximum time difference of 5 minutes. For night 14, 

subject 5 reported going to bed around 11.30pm, then watching his smartphone for 10 minutes and 

then falling asleep. The time of falling asleep detected by the proposed “Threshold method” is 
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therefore more accurate than Fitbit's for that night. For night 15, the difference in waking time is 49 

minutes. However, subject 5 reported waking up around 8:00am that morning. Therefore, the 

09:01am wake-up time determined by Fitbit is clearly incorrect. Subject 5 agrees with the wake-up 

time determined by the “Threshold method” for night 15.   

Table 12. Number of sleep and wake-up detection results in different time difference ranges. 

Time difference ≤ 5 min 
> 5 min ≤ 

10 min 

> 10 min ≤ 

15 min 
> 15 min 

Number of 

results 
25 2 2 1 

 

5.3 Sleep stages classification analysis 

The results of the sleep stage classification are presented in Table 13. They are compared with users' 

self-reported feedbacks. 

Table 13. Comparison of the four methods of sleep stages classification. 

Subject Night Method Awake 
Light 

sleep 

Deep 

sleep 
REM 

Sleep 

score 

Declarative feedback of the 

subject  on his sleep 

1(male) 

1 

Fitbit 71 192 62 86 75.0 

Very poor sleep, awake 

sleep many times 

Threshold 108.5 163.5 18 112 50.0 

5km2 30 158.5 117.5 97 83.4 

1km4 14 20 262.5 106.5 73.1 

2 

Fitbit 67 247 74 107 79.5 
Very tired before sleeping, 

sleeps much better than the 

first night, less sleep awake  

Threshold 66.5 154 66 181 62.9 

5km2 29.5 134.5 117 187.5 73.7 

1km4 17.5 32 321.5 97.5 77.3 

3 

Fitbit 59 264 46 81 73.2 

Normal sleep 
Threshold 85 169 51 142 63.2 

5km2 75 181 64 127 71.5 

1km4 15.5 59.5 248 124 78.4 

2(female) 

4 

Fitbit 53 184 112 111 84.3 

Very light sleep with a 

distinct awake sleep 

Threshold 12.5 175.5 153 112 91.1 

5km2 19.5 210 66 175.5 77.5 

1km4 8.5 16 299.5 147 73.1 

5 

Fitbit 51 262 54 82 77.5 
Sleep better than last night 

(night 4) 
Threshold 41 265 54 81 79.6 

5km2 116.5 198 54 73.5 63.4 
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1km4 25.5 83.5 180 153 74.2 

6 

Fitbit 60 236 55 79 76.6 

Normal sleep with a sleep 

awake  

Threshold 29.5 95.5 132 151.5 71.4 

5km2 23 259.5 35 112 77.4 

1km4 19 59.5 222.5 128.5 76.5 

3(female) 

7 

Fitbit 15 216 59 90 79.2 

Very poor sleep, with a 

distinct awake sleep 

Threshold 3 95.5 132 151.5 70.5 

5km2 61.5 146.5 6 169 41.8 

1km4 18.5 44 240 80.5 71.5 

8 

Fitbit 56 373 61 115 62.4 

Sleep much better than last 

night (night 7)  

Threshold 22.5 287 48 237 55.4 

5km2 10.5 315 23.5 246.5 48.3 

1km4 8.5 23.5 360.5 203 58.7 

9 

Fitbit 25 229 31 100 70.3 

Normal sleep 
Threshold 11 102 42 225 49.8 

5km2 10 197 35 139 67.7 

1km4 9.5 32.5 203 136 65.7 

4(male) 

10 

Fitbit 38 161 48 65 60.0 

Normal sleep 
Threshold 18 155.5 45 89 60.6 

5km2 34.5 161.5 44.5 67.5 59.4 

1km4 9.5 29 162 107.5 53.3 

11 

Fitbit 45 199 99 87 87.3 

Normal sleep 
Threshold 30.5 243 90 51.5 83.2 

5km2 136 152.5 94 33.5 57.6 

1km4 33 76.5 192 114.5 76.3 

12 

Fitbit 59 195 82 79 80.7 
Very poor sleep, feeling 

something unpleasant before 

going to sleep 

Threshold 32 317.5 30 28 58.5 

5km2 121 249.5 30 8 45.1 

1km4 6.5 75.5 169.5 157 73.2 

13 

Fitbit 79 156 92 49 65.0 
Very poor sleep, feeling 

very anxious before going to 

sleep which affects sleep 

Threshold 23.5 279.5 36 22.5 55.6 

5km2 126.5 127.5 6.5 102 34.6 

1km4 45 79 150 88.5 65.8 

5(female) 

14 

Fitbit 43 272 33 166 66.6 
Good sleep, get out of bed 

around 6:30 then go back  to 

bed continue to sleep 

Threshold 16 280.5 66 132 86.6 

5km2 10.5 270 136.5 78.5 93.3 

1km4 7.5 6 334.5 147.5 73.1 

15 
Fitbit 39 379 35 91 64.8 Poor sleep, many dreams 

and awake during this sleep. Threshold 7.5 393 42 51 66.3 
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5km2 135.5 189.5 37.5 132 51.5 Get up around 8:15 

1km4 31 96.5 242 125 80.1 

16 

Fitbit - - - -  

Normal 
Threshold 14.5 381.5 42 153 65.8 

5km2 141 341 8.5 101.5 31.9 

1km4 45 111 139.5 296.5 46.3 

(In this table, the unit of number representing the duration of sleep stages is the minute). 

 

On night 2, the volunteer reported having slept well. Comparing the results of the “Fitbit”, 

“Threshold” and “5km2” methods, the 5km2 classifies less epochs as “Awake” and “Light sleep” 

and more epochs as “Deep sleep” and “REM”, which is consistent with subject's feedback. 

During the fourth night, the volunteer felt that he had slept poorly with very light sleep and a 

distinctly awake sleep. It can be seen that the k-means method finds more “Light sleep” and less 

“Deep sleep” than the other two methods, which is more indicative of the subject's true state of sleep.   

During night 7, the volunteer had the impression of very little sleep, which is associated with distinct 

awake sleep. It is noted that the results of the 5km2 k-means method show a much higher proportion 

of “Awake” and a lower proportion of “Deep sleep”. Compared to the “Fitbit” and “Threshold” 

methods, the 5km2 method better highlights sleep problems according to the subject's feedback. 

During night 8, the volunteer mentioned better sleep compared to the previous night (night 7).  On 

night 8, the results of the k-mean method show a significant decrease in “Awake” and an increase in 

“Deep sleep” compared to the result of night 7. However, the other two methods even show a 

significant increase in “Wake” and a near or significant decrease in “Deep sleep”, which may not 

indicate an improvement in sleep quality.   

The test results on nights 1 and 5 show that the k-means method is less effective. 

On night 1, the subject reports poor sleep and repeated awakening, but the k-means method gives the 

least “Wake” and the most “Deep sleep”, which is contrary to the actual sleep state. 

On night 5, the subject sleeps better than the previous night (night 4). However on night 5, the k-

means method shows a dramatic increase in “Wake” and a slight decrease in “Deep sleep” compared 

to the night 4, which is also contrary to the actual sleep state. 

Nights 3, 6, 9 and 10 are considered by the subjects as normal sleeps. The results of the k-means 

method are comparable to those of the two other methods for these nights.   
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On nights 12 and 13, subject 4 reports very poor sleep. For the “5km2” and “Threshold” results, we 

can see the significant decrease in deep sleep time on nights 12 and 13 compared to nights 10 and 11 

which are considered by subject 4 as normal sleep. However, for the “Fitbit” results, the deep sleep 

time even increases significantly on nights 12 and 13 compared to night 10. 

As shown in Table 13, the deep sleep times obtained by “Fitbit”, “Threshold” and “5km2” increased, 

decreased and decreased respectively between nights 14 and 15. A study [160] has shown that 

individuals are less awake after the onset of sleep and that people who sleep more deeply report less 

daytime sleepiness. It can therefore be assumed that being awake is negatively correlated with good 

sleep and that deep sleep is positively correlated with good sleep. According to the feedback of 

sleepers, night sleep 14 is good and night sleep 15 is bad. Therefore, the decrease in the duration of 

deep sleep from night 14 to night 15 may better reflect the real change in sleep quality between these 

two nights. Considering all nights, 10 nights show better results with the 5km2 method, 4 nights 

show comparable performance between the 5km2 method, the “Fitbit” and “Threshold” methods, 

and 2 nights show lower performance for the 5km2 method compared to the “Fitbit” and “Threshold” 

methods. The test results for nights 2, 4, 7, 8 and 11 - 16 show that the “5km2” method appears to 

have superior performance in sleep stages classification.   

6 Sleep score  

After obtaining the hypnogram, we can obtain the duration of each sleep stages, which is closely 

related to the quality of sleep. It’s therefore possible to assess sleep quality by defining a sleep score 

based on the hypnogram, which helps users without relevant sleep knowledge to intuitively 

understand their sleep. For healthy sleep, the total sleep duration and the proportion of each sleep 

stage should be within a reasonable range. The appropriate sleep duration [161] for individuals of 

different generation is shown in Table 14.   

Table 14. Appropriate sleep duration for each generation. 

Generation Appropriate sleep duration 

newborns 14 ~ 17 h 

infants 12 ~ 15 h 

toddlers 11 ~ 14 h 

preschoolers 10 ~ 13 h 

school-aged children 9 ~ 11 h 

teenagers 8 ~ 10 h 

young adults and adults 7 ~ 9 h 

older adults 7 ~ 8 h 
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In this study, all volunteers belong to the young adult and adult generation. The normal proportion of 

each sleep stage for individuals of this generation who do not complain about their sleep is shown in 

Table 15 [154]. 

Table 15. Proportion of normal sleep stages for young adults and adults. 

Sleep stage Normal proportion 

Awake < 5% 

Light sleep 47% ~ 60% 

Deep sleep 13% ~ 23% 

REM 20% ~ 25% 

 

The definition of the symbols is presented in Table 16. These symbols are used in the flowchart for 

calculating sleep scores. 

Table 16. Definition of symbols. 

 Awake Light sleep Deep sleep REM 

Duration DW DL DD DR 

Lower limit of normal 

proportion 
PWL PLL PDL PRL 

Upper limit of normal 

proportion 
PWU PLU PDU PRU 

Total sleep duration T 

Lower limit of 

appropriate sleep 

duration 

TL 

Upper limit of 

appropriate sleep 

duration 

TU 

Sleep score S 

 

The steps for calculating the sleep score are shown in Figure 44.  
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Figure 44. Procedure for calculating the sleep score. 

The sleep score is calculated on the basis of the total sleep duration and the duration of each sleep 

stage. Depending on the normal range given in Tables 14 and 15, any parameter outside the range 

will result in a lower sleep score. Besides, within the normal range, more deep sleep epochs and less 
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to a range of 0 ~ 100, with the higher score meaning better sleep. The rescaling method is the last 

step in the diagram in Figure 44.  

In order to help the reader better understand the proposed calculation method of sleep score, we take 

the sleep of night 1 in Table 13 as an example to illustrate the complete sleep score calculation 

process. On that night, the duration of awake (DW), light sleep (DL), deep sleep (DD) and REM (DR) 

is 30, 158.5, 117.5 and 97 minutes respectively, as shown in Table 17.  

Table 17. Sleep stage information of the night used to illustrate the calculation of the sleep score. 

 Awake Light sleep Deep sleep REM 

Duration (Minutes) 30 158.5 117.5 97 

Proportion 7.4% 39.3% 29.2% 24.1% 

Normal Range < 5% 47% ~ 60% 13% ~ 23% 20% ~ 25% 

 

According to Table 15, PDL is 0.13, PDU is 0.23, PWL is 0, PWU is 0.05. According to the first step 

described in Figure 44, we can obtain the primary sleep score Sp from equation (4-4). 
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                                            (4-4) 

By introducing the value into the equation, we obtain Sp=67.1. Then we check if the proportion of 

deep sleep, light sleep and REM is in the normal range or not.  

The proportion of deep sleep is 29.2%. According to Table 4-5, the proportion of deep sleep is too 

high. This results in a reduction of the score by the equation (4-5). 
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                                               (4-5) 

T is the total sleep duration which is the sum of each sleep stage duration. By introducing this value 

into the equation, we obtain SD=46.76.
 

The proportion of light sleep is 39.3%. According to Table 15, the proportion of light sleep is too low. 

This results in a reduction of the score by the equation (4-6). 

)
2

1()( LULL
LLLDDL

PP
DPTSS




                                               (4-6) 

According to Table 15, PLL is 0.47, PLU is 0.6. and DL is 158.5 minutes. By introducing the value into 

the equation, we obtain SDL=32.4.
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The proportion of REM is 24.1%. According to Table 15, the proportion of REM is within the 

normal range. The score will not change at this step: 

DLDLR SS 
                                                                       (4-7) 

Finally, we check if the total sleep duration is within the normal range or not. The total sleep 

duration T=403 minutes (6.7h) is not in the normal range for young adults and adults, which should 

be 7~9h according to Table 14. This will result in a reduction of the score by the equation (4-8). 

)( TTSS LDLRDLRT 
                                                          (4-8) 

According to Table 14, TL=420 minutes (7h). By introducing the values into the equation, 

SDLRT=15.4 is obtained. The SDLRT is the raw sleep score, we rescale the raw sleep score in the 

range of 0~100 to obtain the final sleep score S. The rescaling is performed by the equation (4-9).
 

100
minmax
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SS

SS
S DLRT

                                                          (4-9) 

Where Smin means the raw sleep score of a bad sleep, Smax means the raw sleep score of a very good 

sleep.  We define sleep that lasts only 5 minutes of light sleep as the worst sleep. For the worst sleep, 

the duration of awake, light sleep, deep sleep and REM is 0, 5, 0 and 0 respectively. We can then 

calculate the corresponding raw sleep score Smin= -417.2. We define the best sleep when the total 

sleep duration and the proportion of deep sleep are both the upper limit of normal sleep, there is no 

awake, and the proportions of light sleep and REM are both within the range specified by normal 

sleep as listed in Table 4-5. For the best sleep, the duration of awake, light sleep, deep sleep and 

REM is 0, 280.8, 124.2 and 135 minutes respectively. We can then calculate the corresponding raw 

sleep score Smax= 101.8. According to the equation (4-9), we can obtain the final sleep score S=83.4. 

This is the whole procedure of sleep score calculation with the given duration of each sleep stage.
 
  

We are trying to find a lower limit for a good sleep score. Here we define a lower limit for a good 

sleep as a sleep where the lower limit of the total sleep duration, the lower limit of the normal deep 

sleep proportion, the upper limit of the normal awake proportion, and light sleep, REM are both 

within the normal range. For the lower limit of good sleep, the duration of awake, light sleep, deep 

sleep and REM is 21, 252, 54.6 and 92.4 minutes respectively. The corresponding sleep score is 

defined as the lower limit of the sleep score for good sleep, which is 85.1. The sleep scores 

calculated for all volunteers on the basis of the hypnogram given by four methods are presented in 
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Table 13. Of all the 15 test nights, only the sleep score of night 4 with the threshold method, night 11 

with the Fitbit method and night 14 with the threshold and 5km2 methods is above the lower limit of 

the sleep score for good sleep. Thus, according to the method proposed for calculating the sleep 

score and the good sleep baseline, the rate of good sleep with the Fitbit method is 6.67% (1/15); the 

rate of good sleep with the Threshold method is 13.3% (2/15); the rate of good sleep with the 5km2 

method is 6.67% (1/15). It should be pointed out that the 5 volunteers for the tests are all PhD 

students. One study showed that only 11.5% of the students surveyed met the criteria for good sleep 

quality [162]. Thus, the relatively low rate of good sleep obtained by the methods we propose can be 

considered as a reasonable result.  

7 Performance evaluation compared to commercial products 

7.1 Reference devices 

About one year after completing the experiment described in section 4.5.3, we purchased another 

commercial sleep monitoring device, “Withings Sleep Analyzer” [163]. We intended to re-test the 

algorithm in 4.5.3 using the average of the Withings and Fitbit data as a reference to evaluate the 

results of the proposed methods. We then re-tested subject 4 in Table 13 for 10 nights of sleep and 

found that the results obtained using the algorithm differed significantly from those of Fitbit and 

Withings as shown by the results of volunteer 1 in Table 18. Therefore, we decided to modify the 

algorithm in order to fit the results.  

7.2 New “Threshold” method 

Compared to the “Threshold” method mentioned in Section 3, the change to the new “Threshold” 

method only affects the value of TD/LR (threshold used to distinguish deep sleep from light sleep and 

REM) and TL/R (threshold used to distinguish light sleep from REM). In the new “Threshold” method, 

the TD/LR value is 49 and the TL/R value is 560, derived from experimental observation and testing. In 

the following content, the “Threshold” method mentioned in Section 3 is noted as the “T1” method, 

the new “Threshold” method noted as the “T2” method. 

7.3 New “k-means” method 

Compared to the “5km2” method mentioned in Section 4, the new “k-means” method uses the same 

features but the clustering procedure changes. The number of k-means clustering iterations in the 

new “k-means” method will not only be 5 as in the “5km2” method. An iteration condition is 

established which may lead to a number of iteration higher than 5. The overall procedure of the new 
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“k-means” method includes multiple iterations of k-means clustering with k=2, noted as “Mkm2” (M 

stands for Multiple). The detailed steps of “Mkm2” method are presented in Figure 45. 

 

Figure 45. Flow chart of the “Mkm2” method. 

7.4 Experimental setup 

Two males adult without subjective sleep disorders were recruited as test volunteers. Volunteer 1 is 

28 years old and has a BMI (body mass index) of 18.3. Volunteer 2 is 27 years old and has a BMI of 

19.1.  A total of 17 nights (10 nights for volunteer 1, 7 nights for volunteer 2) of sleep data acquired 

under real conditions were tested using six sleep stage classification methods: two commercial 

products including “Fitbit” and “Withings”, four proposed methods including the “T1” , “T2”, 

“5km2” and “MKm2” methods. The “T1”, “T2”, “5km2” and “MKm2” methods are implemented 
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solely on the basis of wrist movement data. The proposed algorithms are all implemented on the 

same computer with “Intel i7-2600 CPU @ 3.40GHz, 8GB RAM” on “MATLAB R2011b”. 

7.5 Falling asleep and waking up detection 

The detection of falling asleep and waking up is only achieved by the “Threshold” method (T1 and 

T2, they are the same in the algorithm for detecting falling asleep and waking up). The mean value of 

“Fitbit” and “Withings” for the moments of falling asleep and waking up is adopted as a reference. 

Over all nights, the absolute values of the time difference between the “Threshold” method and the 

reference for the falling asleep time is 13.3±11.4 min, and for the waking up time is 8.6±10.0 min. 

The 17 nights’ falling asleep and waking up moments obtained by the reference and the “Threshold” 

method are shown in Figure 46. As can be seen, most of falling asleep and waking up times are close 

to the reference. 

 

Figure 46. Moments of falling asleep and waking up obtained by reference and “Threshold” method. 

7.6 Cumulative duration of each sleep stage 

The cumulative duration of each sleep stage is calculated for the “Fitbit”, “Withings”, “T1” , “T2”, 

“5km2” and “Mkm2” methods. We take as a reference the mean value of the “Fitbit” and “Withings” 

methods for the cumulative duration of each sleep stage. The results of the comparison of the 

proposed methods and the reference in the sleep stage classification and the determination of the time 

of falling asleep and waking up are presented in Table 18. Overall, looking at Table 18, it can be 

seen that the results obtained by the new method (T2 and Mkm2) are closer to the reference than the 

old method (T1 and 5km2). The results obtained will then be analyzed to assess the performance of 

the proposed four methods. 
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Table 18. Comparison of the results of the proposed methods and the reference. 

Volunteer Night Method Awake Light Deep REM 

Time of 

falling 

asleep 

Time of 

waking up 

1 

1 

Reference 20 198.5 46 77.5 02:09 07:51 

T1 15 231 12 94.5 

01:59 07:51 
T2 15 202 48 87.5 

5km2 140.5 156 12 44 

Mkm2 17 195.5 53 86 

2 

Reference 23 209.5 94.5 52.5 02:01 08:16 

T1 24 272 54 26.5 

01:55 08:12 
T2 24 186.5 114.5 52 

5km2 81 182.5 18 95 

Mkm2 11.5 124.5 158.5 81 

3 

Reference 15 186.5 75.5 96 01 :41 07 :53 

T1 26 250.5 48 85 

01:34 08:23 
T2 26 204.5 96 83 

5km2 21 274.5 28.5 85.5 

Mkm2 7 260.5 67 74 

4 

Reference 23 161 99 52.5 02:00 07:36 

T1 14 204 46.5 77 

01:56 07:38 
T2 14 183 88.5 55.5 

5km2 122 122 28.5 68 

Mkm2 10 167 115 48.5 

5 

Reference 26.5 217 67 25.5 02 :52 08 :28 

T1 70 213.5 48 5.5 

02 :49 08 :26 
T2 70 166 72 29 

5km2 110.5 138 56 32.5 

Mkm2 6.5 151.5 88 90 

6 

Reference 17 161.5 84 71 02 :39 08 :11 

T1 52 253.5 18 9.5 

02 :32 08 :05 
T2 52 206 48 26.5 

5km2 144.5 116 56 17 

Mkm2 8 191 88 45 

7 

Reference 30 225.5 63.5 74 01 :17 07 :50 

T1 25 313.5 24 33 

01 :10 07 :45 
T2 25 272 54 44.5 

5km2 136.5 221 17 20 

Mkm2 6 251 38.5 99 

8 

Reference 26.5 154 61 48.5 02 :58 07 :49 

T1 50 189.5 24 66.5 

02 :54 

- 

08 :24 

- 

T2 50 142 82.5 55.5 

5km2 62.5 177 22 67.5 

Mkm2 5 99.5 120.5 104 

9 

Reference 15.5 162.5 30.5 55 04 :19 08 :54 

T1 11 159 18 78 

04 :13 08 :39 
T2 11 138 30 87 

5km2 104.5 115 24 21.5 

Mkm2 14 160.5 34.5 56 

10 

Reference 18.5 139 64.5 34 03 :29 07 :45 

T1 13 136.5 6 98 

03 :27 07 :41 
T2 13 109.5 54 77.5 

5km2 73 118.5 26.5 35 

Mkm2 0.5 121 63 68.5 

2 1 

Reference 24 209 87 78.5 01 :48 08 :10 

T1 35 300.5 54 17 
01 :13 08 :00 

T2 35 175.5 168 28 
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5km2 88 115.5 9 193 

Mkm2 14 145 229.5 17 

2 

Reference 17.5 230 120.5 116.5 23 :54 07 :58 

T1 1.5 170 72 250.5 

23 :44 07 :58 
T2 1.5 128.5 174 190 

5km2 166.5 193 83.5 50 

Mkm2 4.5 258 119.5 111 

3 

Reference 98 226.5 80 64.5 00 :34 08 :15 

T1 44 140 42 246 

00 :12 08 :04 
T2 44 101 136.5 190.5 

5km2 26 244.5 44 156.5 

Mkm2 7 104.5 190 169.5 

4 

Reference 19 184.5 110 93 01:23 08:04 

T1 16.5 282.5 66 46.5 

01:01 07:52 
T2 16.5 150.5 192 52.5 

5km2 9.5 111 83 207 

Mkm2 3.5 9 350.5 47.5 

5 

Reference 17.5 187.5 109 97.5 01:18 08:09 

T1 16 279 42 117.5 

00:41 08:15 
T2 16 185 174 79.5 

5km2 9.5 194.5 46 203.5 

Mkm2 7.5 146.5 166 133.5 

6 

Reference 76 226.5 80.5 83 00 :27 08 :05 

T1 31.5 154 54 230 

00:11 08:01 
T2 31.5 116.5 168 153.5 

5km2 28.5 248 62 130 

Mkm2 14 25.5 308 121 

7 

Reference 55 153 124.5 85.5 01 :10 08 :21 

T1 44.5 215 42 157.5 

00 :42 08 :21 
T2 44.5 145.5 198 71 

5km2 50 268 18.5 121.5 

Mkm2 37.5 38.5 286 96 

 

Table 19 shows the mean±SD of the cumulative duration of each sleep stage obtained by reference, 

using the “T1”, “T2”, “5km2” and “Mkm2” methods for the two volunteers. To check whether there 

is a statistically significant difference between the “T1”, “T2”, “5km2”, “Mkm2” methods and the 

reference with regard to the cumulative duration of each sleep stage, we also calculate the p-values of 

the Pearson correlation using a Student's t-distribution for a transformation of the correlation. The p-

value is the probability of obtaining test results that are at least as extreme as the results actually 

observed, assuming that the null hypothesis is correct [164]. In general, there is no statistically 

significant difference when p > 0.05 [165].  
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Table 19. Measures of the cumulative duration of each sleep stage between the reference and the 

proposed methods. 

Volunteer Time in each sleep stage Awake Light Deep REM 

1 

Reference Mean±SD(min) 21.5±5.1 181.5±29.9 68.6±20.9 58.7±21.2 

T1 
Mean±SD(min) 30±20.3 222.3±53.2 29.9±17.5 57.4±35.3 

p-value 0.30 0.29 0.54 0.21 

T2 
Mean±SD(min) 30±20.3 181.0±45.5 68.8±26.3 59.8±23.0 

p-value 0.30 0.35 0.52 0.10 

5km2 
Mean±SD(min) 99.6±39.9 162.1±52.9 28.9±15.2 48.6±28.4 

p-value 0.46 0.71 0.77 0.97 

Mkm2 
Mean±SD(min) 8.6±4.7 172.2±53.4 82.6±39.5 75.2±20.6 

p-value 0.51 0.70 0.47 0.03 

2 

Reference Mean±SD(min) 43.9±32.9 202.4±28.7 101.6±18.8 88.4±16.3 

T1 
Mean±SD(min) 27±16.1 220.1±67.3 53.1±12.2 152.1±95.9 

p-value 0.06 0.05 0.24 0.16 

T2 
Mean±SD(min) 27±16.1 143.2±30.4 172.9±19.9 109.3±67.4 

p-value 0.06 0.04
 0.17 0.22 

5km2 
Mean±SD(min) 54±56.6 196.4±63.2 49.4±29.1 151.6±56.6 

p-value 0.46 0.07 0.69 0.75 

Mkm2 
Mean±SD(min) 12.6±11.8 103.9±88.2 235.6±83.1 99.4±51.9 

p-value 0.60 0.38 0.74 0.15 
 

As shown in Table 19, only the p-value of Mkm2 method in REM for volunteer 1 and T2 method in 

light sleep for volunteer 2 are less than 0.05 showing a statistically significant difference from the 

detected cumulative duration of each sleep stage.  

Bland-Altman plots were used to show this agreement. As shown in Figure 47 to 50, the number of 

points outside the range of the dotted line for the “T1”, “T2”, “5km2” and “Mkm2” methods is 3, 3, 

1 and 4 respectively. The number of points outside the dotted line means the number of nights 

outside the 95% agreement limit in the determination of the cumulative duration for one of the sleep 

stage. Bland-Altman's plots show a good concordance between the four proposed methods and the 

reference.  

In this section, the performance evaluation of the four proposed methods, using the results of two 

commercial devices as a reference, shows that the performance of the four methods is relatively 

similar. Therefore, in the next chapter, we will evaluate the performance of the four proposed 

methods using the PSG gold standard.  
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Figure 47. Bland-Altman's plots agreement for four sleep stages determined by the “T1” method. (a) 

awake; (b) light sleep; (c) deep sleep; (d) REM. 

 

 

 

Figure 48. Bland-Altman's plots agreement for four sleep stages determined by the “T2” method. (a) 

awake; (b) light sleep; (c) deep sleep; (d) REM. 
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Figure 49. Bland-Altman's plots agreement for four sleep stages determined by the “5km2” method. (a) 

awake; (b) light sleep; (c) deep sleep; (d) REM. 

 

 

Figure 50. Bland-Altman's plots agreement for four sleep stages determined by the “Mkm2” method. (a) 

awake; (b) light sleep; (c) deep sleep; (d) REM. 
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8 Conclusion 

In this chapter, we propose algorithms for classifying sleep stages based solely on wrist movements 

acquired by a worn accelerometer. The proposed algorithms include the threshold-based method (T1 

method and T2 method) and the k-means clustering method (5km2 method and Mkm2 method). The 

threshold-based method uses three thresholds to obtain falling asleep/ waking up detection and sleep 

stages (“awake”, “light sleep”, “deep sleep” and “REM”) classification. The k-means clustering 

method allows the classification of sleep stages (“awake”, “light sleep”, “deep sleep” and “REM”)by 

performing a k-means clustering (k=2) 5 (5km2) or multiple (Mkm2) times. We recruited 5 

volunteers (2 men, 3 women) who carried out validation tests for 16 full nights. Among the 16 nights, 

10 nights show that the “5km2” method is better than the “Fitbit” and the T1 methods, 4 nights show 

a close performance, only 2 nights show that the “5km2” method is worse. Moreover, we have 

defined a sleep score calculation method to assess the quality of sleep of a full night. With tests 

conducted over 16 nights, the sleep score obtained by the method we propose shows a promising 

performance in determining whether sleep is good or not.  

Furthermore, we adopt the mean value of two commercial products “Fitbit” and “Withings” as a 

reference to validate the four proposed methods. Experimental data are acquired from 17 overnights 

sleep of two volunteers with no sleep disorder. For the detection of the falling asleep and waking up 

time, the proposed method shows a deviation of 13.3±11.4 mins and 8.6±10.0 mins respectively from 

the reference. For the detection of the cumulative duration of each sleep stage a p-value is calculated, 

only the Mkm2 method in REM for volunteer 1 and T2 method in light sleep for volunteer 2 show a 

statistically significant difference with the reference. Meanwhile, Bland-Altman's plots show that the 

number of points outside the 95% agreement limit compared to the reference for the “T1”, “T2”, 

“5km2” and “Mkm2” methods is 3, 3, 1 and 4 respectively. It shows that the four proposed methods 

are in good agreement with the reference. However, the “Fitbit” and “Withings” are not the gold 

standard for sleep monitoring, the tests results with the PSG gold standard will be presented and 

analyzed in the next Chapter. 
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Chapter 5. Performance evaluation based on the PSG gold 

standard 

1 Introduction 

In chapter 4, we have evaluated the performance of our proposed methods by referring to 

commercial products and obtained good results with the analysis of p-value and Bland-Altman plots. 

Specifically, only the p-value of the Mkm2 method in REM for volunteer 1 and the T2 method in 

light sleep for volunteer 2 are less than 0.05, showing a statistically significant difference with 

respect to the detected cumulative duration of each sleep stage. Besides, the Bland-Altman plots 

show that the number of points outside the 95% agreement for the “T1”, “T2”, “5km2” and “Mkm2” 

methods is 3, 3, 1 and 4 respectively (the total number of points is 68, 4 sleep stages in 17 nights). 

However, commercial products are not the gold standard for sleep monitoring. In the context of 

rigorous research works, it is essential to use a gold standard to evaluate the performance of the 

methods we propose. In this way, in this chapter we present our real test in the hospital using the 

PSG gold standard and we evaluate the methods by comparing them to the PSG results. In addition 

to evaluating the performance of the wrist module sleep stage classification, we also evaluate the 

performance of the detection of periodic leg movements during sleep (PLMS) of the foot module 

with reference to the EMG of the PSG. The correlations between body and skin temperature and 

sleep have been explored by several studies [110][137]. Besides, the doctors in the hospital 

cooperating with this project also showed great interest in monitoring skin temperature during sleep 

to explore the correlations between skin temperature and PLMS. Therefore, to develop hypnogram 

and PLMS prediction algorithms based on the skin temperature measurement, the links between skin 

temperature and hypnogram and between skin temperature and PLMS are also studied referring to 

the results of PSG. 

2 Real test in-situ 

The PSG is the gold standard in sleep monitoring as it is widely used to evaluate the performance of 

new sleep monitoring devices. We use the five sleep monitoring modules developed by our research 

team and the PSG to simultaneously monitor the sleep of a volunteer in the sleep laboratory located 

in the university hospital center of Toulouse in France to test the four proposed methods.  
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2.1 Environmental conditions 

The test was performed in a sleep laboratory in a standard ward. The environment of the whole ward 

is shown in Figure 51. The Figure 52(a) shows the volunteer equipped with the PSG system and our 

five sleep monitoring devices lying on the bed in the ward, ready to be monitored. The corresponding 

position of the PSG sensors and our modules (chest, wrist and foot module) on the body is illustrated 

in Figure 52(b). Generally speaking, the time required to wear the modules we proposed is roughly 

within ten minutes, and it can be done alone. In contrast, it takes about half an hour to install the PSG 

on the body, and it must be installed by at least one professionally trained medical staff. The 

volunteer recruited is a 28-year-old man with a BMI (body mass index) of 18.3. A one-night test was 

carried out for a primary evaluation of the performance of the four proposed methods. 

 

Figure 51. Environment conditions of the whole ward. 
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Figure 52. (a) The volunteer with the PSG and our wristband on the body in hospital; (b) Schematic 

diagram of the corresponding location of the PSG sensors and our modules on the body [169]. 

2.2 Synchronization protocol 

Each of the five sleep monitoring modules and the PSG has their own independent control unit and 

data acquisition. In practice, it was difficult to ensure that they would all start collecting data at the 

same time. Therefore, it is essential to synchronize the data collected by all the sleep monitoring 

devices and the PSG after all data has been collected in order to obtain meaningful results. 

The synchronization method we use consists of two steps. First, the five sleep monitoring devices are 

synchronized with each other. Since each sleep monitoring device has an accelerometer that collects 

movement data, we intend to synchronize them by shaking them simultaneously and looking for the 

same marker in the collected movement data. The second step is the synchronization between the 

five sleep monitoring devices and the PSG. Since all five sleep monitoring devices were 

synchronized in the first step, it was only necessary to synchronize one of the sleep monitoring 

devices with the PSG in this step. Since both our foot device and the EMG of the PSG collect leg 

movement data, we intend to compare the waveforms of the leg movement data collected by the two 

devices to perform the synchronization between them. The two synchronization steps are described 

in detail in the following sections. 

2.2.1 Synchronization between the five sleep monitoring devices 

First, the step is to hold the five sleep monitoring devices together in one hand, as shown in Figure 

53, then hold them, without moving, still for 10 seconds, and shake them for 10 seconds. This 

operation is repeated three times and ends by holding the devices without moving for 10 seconds, as 

(a) (b)(a) (b)

Our wrist module

Our foot module (left and right)

Our chest module 
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illustrated in Figure 54. Since all modules will record the movement level, the waveform of the 

movement level recorded by them will have a shape similar to that in Figure 54. 

 

Figure 53. Five hand-held sleep monitoring devices. 

 

 

Figure 54. Sequence to create the synchronization sign. 

 

Figure 55 shows the first 4 minutes of the movement level collected by each module. We can easily 

find the synchronization sign in the waveform of the movement level, as the part noted by the dotted 

box. The synchronization sign consists of three movement epochs, the edges of each movement 

epoch can be adopted as a synchronization flag, as indicated by the vertical red dotted line.  

Static 10s Static 10s Static 10sStatic 10s

Shake 10s Shake 10sShake 10s

Figure 5, the procedure to create the sign of synchronization
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Figure 55. The synchronization sign in the movement level waveform of each module. 
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2.2.2 Synchronization between the five sleep monitoring devices and the PSG  

The PSG records EMG of the legs, whose waveform can be clearly displayed in dedicated software. The foot 

devices record the movement level of both feet. Here, the PSG and the devices are synchronized by comparing 

the EMG waveform of the left leg and the movement level waveform of the left foot. The left leg EMG 

waveform and the left foot movement level waveform should be similar in terms of the change pattern.  As 

shown in Figure 56, the green waveform corresponding to “JAMBG” channel in the upper part of the figure is 

the left leg EMG waveform recorded by the PSG, the lower part of the figure is the left foot movement level 

waveform. As we can see, their waveform trends fit perfectly to each other, allowing them to synchronize with 

each other.  

The PSG recording starts at 22:48:46, 06 March, and ends at 03:59:50, 07 March. 

 

Figure 56. Synchronization sign between PSG and left foot module. 

 

3 Sleep stages classification performance compared to the PSG 

3.1 Hypnogram data preparation 

We compare the hypnograms obtained by the T1, T2, 5km2 and Mkm2 methods with the hypnogram 

obtained by the PSG as shown in Figure 57. The hypnogram data of the methods we propose are 

obtained directly by operating the algorithms on Matlab by programming. The hypnogram of the 

PSG is read by the software “DeltaFree EEG reader”. The interface of the software after reading the 

PSG data is shown in Figure 58. The interface shows only the waveforms of each PSG signal and 

does not directly display the sleep structure diagram. To display the hypnogram, we need to click on 

button 1 as illustrated on Figure 58. 
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Figure 57. Hypnogram obtained from the PSG, Threshold and 5km2 methods. 
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Figure 58. “DeltaFree EEG reader” software interface. 

Then, the hypnogram of the whole night will be displayed in the lower part of the interface, as the 

area 1 marked in Figure 59. The current epoch of hypnogram displayed in the interface is marked by 

a black vertical line by the software, and area 2 displays the corresponding time of the current epoch 

of the hypnogram, area 3 displays the corresponding sleep stage of the current epoch of the 

hypnogram. Once the sleep stage information for the current epoch has been noted manually, the 

next epoch is displayed by clicking button 2. Thus, by continuously clicking on button 2, we can 

record the sleep stages for each epoch, one by one, until we have recorded the whole night's sleep 

stages, i.e. the hypnogram. It is important to note that the software can automatically generate an 

initial hypnogram and various events based on the data collected by the PSG. However, the initial 

hypnogram and the different events automatically generated by the software are not completely 

accurate and must be checked and corrected manually by the physician before to be used as final 

sleep monitoring results. Of course, the hypnogram given by the software we use in this work has 

been checked and corrected by the physician. 

Button1
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Figure 59. Illustration of obtaining a hypnogram of PSG from the “DeltaFree EEG reader” software. 

 

3.2 Results analysis 

Table 20 shows the duration of each sleep stage obtained by the PSG, the T1, T2, 5km2 and Mkm2 

methods. Figure 60 shows the proportion of each sleep stage obtained by the PSG, the T1, T2, 5km2 

and Mkm2 methods. 

Table 20. Cumulative duration (in min) of each sleep stage obtained from the PSG, threshold and 5km2 

methods. 

 Awake Light sleep Deep sleep REM 

PSG 254 (82%) 41.5 (13%) 15.5 (5%) 0 (0%) 

T1 method 237 (76%) 56 (18%) 6 (2%) 12 (4%) 

T2 method 237 (76%) 12 (4%) 7.5 (2%) 54.5 (18%) 

5km2 method 119 (38%) 155.5 (50%) 16 (5%) 20.5 (7%) 

Mkm2 method 12.5 (4%) 154.5 (50%) 42 (14%) 102 (33%) 

Unit: minute 

Area1

Area3

Button2

Area 2
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Figure 60. Proportion of each sleep stage obtained from the PSG, threshold and 5km2 methods. 

 

By observing the PSG hypnogram in Figure 57, we can see that the sleep this night consists mainly 

of awake and light sleep. This result is similar to that of the T1 method and the 5km2 method. These 

two methods give a hypnogram consisting mainly of awake and light sleep. However, the T2 method 

gives a hypnogram composed mainly of awake and REM, Mkm2 also gives a much higher 

proportion of REM compared to the PSG method. This suggests that the T1 and 5km2 methods are 

better than the T2 and Mkm2 methods.  According to Table 21 and Figure 60, the difference is that 

the hypnogram of the T1 method contains relatively more awake (76%) which is closer to that 

detected by the PSG (82%) method, the hypnogram of the 5km2 method contains relatively less 

awake (38%) but more light sleep (50%). In the PSG hypnogram, the longest duration of deep sleep 

is around 03:18:46. The T1, T2, 5km2 and Mkm2 methods also detected deep sleep at this time, but 

the proportion of deep sleep detected by the 5km2 method (5%) is the same as that detected by the 

PSG method (5%). The PSG did not detect any REM epochs but the T1, T2, 5km2 and Mkm2 

methods detected a few REM epochs. However, the cumulative duration of the REM detected by the 

T1 method and the 5km2 method is relatively short, 12 minutes and 20.5 minutes respectively. On 

the other hand, the cumulative duration of the REM detected by the T2 method and the Mkm2 

method is much longer, 54.5 minutes and 102 minutes respectively. In this respect, the T1 and 5km2 

methods are slightly better than the T2 and Mkm2 methods. 

Readers may be puzzled by this result. As the T2 and Mkm2 methods were developed after the 

T1and 5km2 methods were proposed, they were expected to achieve better performance. But why 

was the performance verified to be inferior to that of T1 and 5km2? This is because the T2 and 

Mkm2 methods are developed when commercial products are used as a reference. Since this section 

validates the performance of the T2 and Mkm2 methods against the PSG gold standard, it is possible 

PSG T1 T2 5km2 Mkm2
0

10

20

30

40

50

60

70

80

90

P
ro

p
o

rt
io

n
(%

)

 

 

Deep

REM

Awake

Light



                                                                                                                                                                                                                                      
131                                                              

Chapter 5. Performance evaluation based on the PSG gold standard 

to overturn the conclusions previously reached using commercial products as a reference. This also 

reveals the importance of the choice of reference. By using commercial products as a reference, it is 

likely that a conclusion totally opposite to that obtained using the PSG as a reference. Readers may 

again ask themselves, "Are commercial products reliable?" They have already been compared to the 

PSG in the literature. It is true that some commercial products such as Fitbit have been validated by 

the PSG. However, the results of the literature show that the commercial product does not perfectly 

match the PSG results. For the Fitbit, it showed a sensitivity of 0.96 (accuracy to detect sleep), a 

specificity of 0.61 (accuracy to detect wake), an accuracy of 0.81 for the detection of N1+N2 sleep 

(“light sleep”), an accuracy of only 0.49 for the detection of N3 sleep (“deep sleep”), and an 

accuracy of 0.74 for the detection of rapid-eye-movement (REM) sleep. Therefore, the PSG should 

ultimately be used as a reference to assess the performance of the proposed methods when conditions 

permit. 

So, we have compared the results of the sleep stage classification of the four proposed methods with 

the PSG, epoch by epoch. Four confusion matrices are created to show the result, as illustrated in 

Figure 61. For physiological significance, deep sleep is very different from awake and light sleep. 

Therefore, confusion between deep sleep and awake, and confusion between deep sleep and light 

sleep can be considered a serious mistake. Unlike the T1 and 5km2 methods, which classify only a 

small portion of awake or light sleep epochs as deep sleep or REM epochs, the T2 and Mkm2 

methods misclassify many more awake or light sleep epochs as deep sleep or REM epochs. This 

suggests that the T1 and 5km2 methods have better performance in sleep stage classification than the 

T2 and Mkm2 methods. 
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Figure 61. Confusion matrix of the four methods proposed. 

Cohen’s Kappa coefficient (κ) is a measure of agreement between categorical variables [167]. To 

evaluate more precisely the agreement between the four proposed methods and the classification of 

sleep stages using the PSG method, Cohen’s Kappa coefficient (κ) is calculated. Landis & Koch [166] 

characterized κ < 0 as indicating no agreement and 0–0.20 as slight, 0.21–0.40 as fair, 0.41–0.60 as 

moderate, 0.61–0.80 as substantial, and 0.81–1 as almost perfect agreement [166]. The T1 method 

shows a fair agreement with the PSG (κ = 0.24), the T2 method shows a slight agreement with the 

PSG (κ = 0.15), the 5km2 method shows a slight agreement with the PSG (κ = 0.09) and the Mkm2 

method also shows a slight agreement with the PSG (κ = 0.07), as shown in Table 21. 

Table 21. Cohen’s Kappa coefficient (κ) of the four proposed methods relative to the PSG. 

Method Cohen’s Kappa coefficient (κ) Agreement with the PSG 

T1 0.24 Fair 

T2 0.15 Slight 

5km2 0.09 Slight 

Mkm2 0.07 Slight 

 

Based on the Cohen’s Kappa coefficient values of the four methods proposed in Table 21, the T1 

method shows the best agreement with the PSG. 
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For physiological significance, deep sleep is very different from awake and light sleep. Therefore, 

confusion between deep sleep and awake, and confusion between deep sleep and light sleep in the 

results of the T2 and Mkm2 methods can be considered a serious error.  

 

Figure 62. Confusion matrix for the recognition of each sleep stage with the T1 method. 

 

Figure 63. Confusion matrix for the recognition of each sleep stage with the T2 method. 
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Figure 64. Confusion matrix for the recognition of each sleep stage with the 5km2 method. 

 

Figure 65. Confusion matrix for the recognition of each sleep stage with the Mkm2 method. 
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The confusion matrix for the recognition of each sleep stage with the T1, T2, 5km2 and Mkm2 

methods are presented respectively in Figures 62, 63, 64 and 65. Six performance assessment indexes 

based on the confusion matrix are calculated and presented in Table 22, including:  

- Sensitivity: measures the proportion of positives that are correctly identified (i.e. the proportion 

of those with a certain condition (affected) who are correctly identified as having the condition). 

- Specificity: measures the proportion of negatives that are correctly identified (i.e. the proportion 

of those who do not have the condition (unaffected) who are correctly identified as not having the 

condition). 

- Accuracy:  the ratio of correctly predicted samples to the  total number of samples. 

- Precision: also called PPV (positive predictive value) is the ratio of correctly predicted positives 

to the total predicted positives. 

- Balanced accuracy: the average of the accuracy of each class. 

-  F1 score:  the harmonic mean of the precision and recall (sensitivity), can be used as a single 

measure of test performance for the positive class. 

These indexes assess performance from different perspectives. They all range from 0 to 1, and a 

higher value means better performance. The equations to calculate them are also listed in Table 22. 

In our experiments, the number of samples included in the different classes is uneven and usually 

varies greatly. At the same time, we consider the correct detection of positive and negative samples 

should be of the same importance. Therefore, among all the performance assessment indexes, we 

believe that balanced accuracy is the best one to evaluate the overall performance of the proposed 

methods.  As can be seen from the Table 22, the T1 method has the highest or tied for the highest 

balanced accuracy in each class. As the results, it can be considered that T1 method outperforms than 

other three methods.  
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Table 22. Assessment indexes for recognition of each sleep stage with the threshold and 5km2 methods. 

Evaluation indexes Method Awake REM Light Deep 

FNTP

TP
ySensitivit




 

T1 0.83 0 0.25 0.39 

T2 0.83 0 0.01 0.10 

5km2 0.42 0 0.46 0.77 

Mkm2 0.05 0 0.41 1.00 

TNFP

TN
ySpecificit




 

T1 0.55 0.96 0.83 1.00 

T2 0.55 0.82 0.96 0.98 

5km2 0.76 0.93 0.49 0.99 

Mkm2 1.00 0.67 0.49 0.91 

FNTNFPTP

TNTP
Accuracy






 

T1 0.78 0.96 0.75 0.97 

T2 0.78 0.82 0.83 0.94 

5km2 0.48 0.93 0.49 0.98 

Mkm2 0.22 0.67 0.48 0.91 

FPTP

TP
Precision




 

T1 0.89 0 0.19 1.00 

T2 0.89 0 0.04 0.20 

5km2 0.89 0 0.12 0.75 

Mkm2 1.00 0 0.11 0.37 

2
FNTN

TN

FPTP

TP
accuracy Balanced 















 

T1 0.66 0.50 0.53 0.98 

T2 0.66 0.50 0.45 0.58 

5km2 0.56 0.50 0.49 0.87 

Mkm2 0.60 0.50 0.48 0.68 

ysensitivitprecision

ysensitivitprecision2
scoreF1






 

T1 0.86 0 0.22 0.56 

T2 0.86 0 0.02 0.13 

5km2 0.57 0 0.19 0.76 

Mkm2 0.09 0 0.17 0.54 

 

4 PLMS detection performance compared to the PSG 

4.1 Introduction 

Restless legs syndrome (RLS) is a neurological condition characterized by an urge to move usually 

associated with paresthesia that occurs or worsens at rest and is relieved by activity [168]. Most 

patients with RLS complain of sleep disorders. In a study of 133 patients, a large majority of RLS 

patients (84.7%) often had difficulty in falling asleep at night, and 86% reported that the symptoms 

of RLS woke them up frequently during the night [169]. Periodic leg movement during sleep (PLMS) 

is a typical symptom of RLS. The prevalence of PLMS is 3.9% and RLS was 5.5% [170]. RLS and 

PLMS are higher in women than in men. The prevalence of RLS increases significantly with age. 

Studies evaluating the relevance between PLMS and RLS reported that approximately 80% of 

patients with RLS have a pathological rate of PLMS defined as > 5 PLMS/h of sleep [144][169][170]. 
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The measurement of PLMS can be an important indicator for assessing the severity of RLS 

[171][172][173].  

According to standard criteria [143][144], PLMS are only scored if they are part of a series of four or 

more consecutive movements of 0.5 to 10 seconds duration with an inter-movement interval of 5 to 

90 seconds and an amplitude greater than 8 mV above the basic electromyograph (EMG) signal.  A 

PLMI greater than 5 for the entire night of sleep considered as pathological can still be used for 

younger people, but a PLMI greater than 15 is now often used as a threshold for older subjects. As 

for others sleep disorders, PSG is considered as the only clinically acceptable way to quantify PLMS 

[34]. However, PSG has many drawbacks such as its high cost, invasiveness, difficulty to use, and 

can usually only be tested once in hospital for a same patient. It is therefore useful to develop a cheap, 

non-invasive, easy to operate PLMS detection device suitable for long-term monitoring at home. 

Based on the standard diagnostic criteria for PLMS, we define the PLMS detection rule using our 

proposed foot module, as described in section 2.4.3 of Chapter 2.  

4.2 Results and discussion 

The number of PLMS per hour during sleep detected by this rule is defined as the PLMS index, 

which is the diagnostic indicator for PLMS based on the foot module. The PLMS detected by our 

foot module is shown in Figure 66. The PLMS is marked by a red vertical line (lines with height that 

reach the top), each red vertical line means one second with the PLMS. The blue vertical line (lines 

with height that do not reach the top) indicates the left foot movement level collected by our left foot 

module. 

 
Figure 66. PLMS detected by our foot module. 

The number of PLMS distributed in each sleep stage detected by the PSG and our left foot module is 

shown in Table 23. 
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Table 23. Number of PLMS distributed in each sleep stage. 

 Total Awake REM Light sleep Deep sleep 

PSG 56 47 0 6 3 

Our module 57 48 0 9 0 

 

As we can see, the total number of PLMS given by PSG report is very close from the result of the 

PSG and from our foot module. Furthermore, the number of PLMS distributed at each sleep stage is 

also very close from the result of the PSG and from our foot module.  The main difference between 

the two exists in the PLMS distribution in light sleep and deep sleep. The PSG detects 3 PLMS in 

deep sleep but our foot module doesn’t detect any PLMS during deep sleep. In light sleep, our foot 

module detects 3 more PLMS than the PSG. The reason why our foot module does not detect any 

PLMS during deep sleep may be that the limb movement is very slight during deep sleep so that the 

movement level of some foot movements does not reach the threshold of foot movement. Therefore, 

PLMS during deep sleep is not detected. In addition, in this night sleep, the duration of deep sleep is 

also very short, which also increases the difficulty of detecting PLMS. 

5 Links between skin temperature and hypnogram 

5.1 Data processing 

Looking at Figure 33 in section 3.4 of Chapter 3, we can see some links between temperature of 

three body parts (chest, finger and toe) and hypnogram of the PSG.  The longest continuous sleep 

episode and the only deep sleep episode are observed near 4.5 hours. During this time, the 

temperature of the chest, fingers and toes is stable and very close to each other around 4.5 hours.  

We define chest temperature as Tci, finger temperature as Tfi, toe temperature as Tti. Then we 

calculate the sum of their respective differences, denoted SD3Ti. 

iiiiiii TtTfTtTcTfTcSD3T 
                                          (5-1) 

Where i is the index of the sample, temperature being sampled every second. 

5.2 Results 

The synchronous comparison between SD3T and the PSG hypnogram is shown in Figure 67. In 

Figure 67(a), the dashed box corresponds to the period when sleep is continuous and most of these 

periods are deep sleep. Also in Figure 67(b), the red dashed box shows the period when the SD3T 

remains low and stable. This phenomenon suggests that a stable and low SD3T may correspond to 

restful and continuous sleep. 
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Figure 67. Synchronous comparison between SD3T and the PSG hypnogram. (a) Hypnogram obtained 

by PSG. (b) SD3T. 

 

6 Links between skin temperature and PLMS 

6.1 Data processing 

By observing the temperature curves of the finger and toe in Figure 3.8 of chapter 3, there seems to 

be some correlation between the appearance of PLMS and temperature changes. Therefore, we 

perform a first-order difference for finger and toe temperature during the night, denoted DTf and DTt 

respectively, as equations (5-2) and (5-3). 

NiTfTfDTf iii ,......,3,21                                                (5-2) 

NiTtTtDTt iii ,......,3,21                                                (5-3) 

Where i is the temperature index of the sample, N is the total number of samples. More precisely, we 

set DTf1=DTt1=0.  

6.2 Results 

The synchronous comparison between DTt, DTf and PLMS overnight is shown in Figure 68. 
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Figure 68. Synchronous comparison between DTt, DTf and PLM overnight. 

By observing Figure 68, the distribution of PLMS is lowly correlated with DTt but highly correlated 

with DTf. In Figure 68, five relatively independent groups can be found through observation, we 

therefore divide the overnight time into 5 areas as marked by the dashed box in Figure 68, each area 

containing a relatively concentrated set of PLMS events. Each area contains a relatively concentrated 

set of high values of DTf, i.e. a relatively large change in finger temperature. In addition, the density 

of the PLMS distribution and the density of DTf are similar in each area. In areas 1, 2 and 4, the 

emergence of PLMS is very dense, and the emergence of the high DTf value is also relatively dense. 

In areas 3 and 5, the emergence of PLM is relatively low, and the emergence of high DTf value is 

also relatively low. In part of areas 1 and 2, part of areas 3 and 4, part of areas 4 and 5, there is no 

emergence of PLMS, nor is there a significant DTf value. 

Based on these phenomena we can assume that the emergence of PLMS is positively correlated with 

the DTf value. PLMS is maybe more correlated with finger temperature than toe temperature.  
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7 Conclusion 

In this chapter, we have performed a preliminary validation of the four methods proposed for the 

sleep stages classification with reference to the PSG gold standard. Based on the confusion matrix 

analysis, the results show that the proposed T2 method has a fair agreement with the PSG and that 

the other three methods show a slight agreement with the PSG. The T1, T2 and Mkm2 methods are 

efficient for the detection of awake. The T1, 5km2 and Mkm2 methods are efficient for the detection 

of deep sleep. All the proposed methods are relatively less efficient for the detection of REM and 

light sleep. In general, the T1 method is the most efficient among the four methods proposed. For 

PLMS detection, we define the detection rules based on the foot movement data acquired by our 

proposed foot module. The results show that the total number of PLMS and the number of PLMS 

distributed in each sleep stage detected by our foot module are both very close to the PSG. 

Furthermore, we explore the links between skin temperature and hypnogram and between skin 

temperature and PLMS. We have found that the lower and flat continuous SD3T corresponds to 

continuous sleep and even deep sleep, that the emergence of PLMS is positively correlated to the 

DTf value and that PLMS is more correlated to finger temperature than to toe temperature. This 

experiment has shown that it would be possible to predict PLMS based on the change in finger 

temperature. Nevertheless, further investigative work over several nights and several subjects should 

confirm this observation. 
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General conclusion 

Sleep monitoring is a very important medical issue because it is recognized that the quality of sleep 

has a strong impact on health and consequently on well-being and quality of life. We wished to 

address this subject from the sleep observation and measurement point of view by using the least 

invasive and intrusive technical devices. Indeed, currently, the gold standard used for sleep 

monitoring is the PSG technique, which is an intrusive method that can only be used in a clinical 

setting. Several studies have focused on the development of methods and strategies for lighter and 

long-term monitoring. However, these monitoring systems still raise questions about the acceptance 

of wearing these devices by users, about their implementation in real conditions, about socio-

economic aspects, about privacy and impact on society, but also about the performance of the 

proposed algorithmic processing. 

For this purpose, we have carried out a systematic review on the current state and future challenges 

of SMS under these different aspects. This study allowed us to propose a first original SMS solution 

for home deployment and longitudinal monitoring. This solution includes a hardware architecture 

based on standard telecommunications technologies and sleep monitoring data processing algorithms 

used in the AI field. The solution has been tested on volunteers and performances have been 

evaluated. 

In this work, we first provide an overview of the current state and future prospects of research and 

development of sleep monitoring systems. The different solutions reported in the literature and 

available on the market are reviewed. Systematic evaluations of the effectiveness and efficiency of 

sleep monitoring system are considered as key issues to ensure potential user acceptance. Sleep 

monitoring is important for both individuals and clinicians. Beyond healthy lifestyle interest and 

clinical diagnosis, sleep monitoring may also be important in reducing work-related injuries due to 

fatigue, particularly for lone workers. However, this type of monitoring will only be practical if 

systems with proven reliability and validity are in place. Consumers and patients will have the 

opportunity to take part in the personal health data revolution. Increasingly powerful and convenient 

wearable technologies will be able to provide rich health information, but it is not clear that this will 

translate into workable health decisions. The democratization of devices previously reserved for 

physicians should improve access to health data and overall awareness of personal health. It is 

important that such information is properly communicated to and understood by consumers. More 

complex integrated sensor technologies, detection, and analytical algorithms are likely to be 
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developed in the coming years. Other wearable diagnostic tools for consumers, or even implantable 

devices and nanotechnologies, are currently under development. Ideally, these technologies will 

empower consumers and patients and promote preventive medicine. The most important challenges 

are the development of nonintrusive hardware implementation, smart signal processing, data analysis 

and interpretation, interoperability of communication standards, efficiency of electronic component, 

energy self-sufficiency, and long-term monitoring. 

To address some of these challenges, our proposed hardware architecture includes sensors, a master 

board, a gateway and a smartphone application, allowing the user to control the operation of the 

entire system including turning the system on and off, uploading and downloading data, simply by 

using the custom smartphone application via BLE. The sensors are integrated into several sleep 

monitoring modules, including a chest module, a wrist module, a foot module, a sound module and 

an ambient module. The sleep monitoring modules acquire comprehensive sleep-related data for 

indicators such as sleep stages, PLMS and snoring. Thanks to Wireless Sensor Networks (WSNs) 

and BodyLAN technology, only three small size and lightweight wireless sleep monitoring modules 

(one chest module, one wrist module and one foot module) are attached to the body. Unlike a 

completely non-contact approach, attaching an appropriate number of non-intrusive sleep monitoring 

modules to the body ensures that valuable and reliable physiological data can be collected and avoids 

causing unacceptable user discomfort. Although the system contains several sleep monitoring 

modules that collect data at the same time, the master board can control their operating status and 

download the data they each collect via BLE and send it to the gateway via LoRa. If the user is in an 

environment without internet coverage, the gateway can be placed in a location with internet 

coverage and the sleep monitoring data can first be transmitted to the gateway via LoRa, then the 

gateway can upload the data to the server through Internet connection. The gateway can be placed at 

a distance up to 10 km from the user, but by increasing the number of gateways, the distance at 

which the gateway can be placed can theoretically be infinite. This is useful for users in areas with 

less Internet coverage. 

Sleep stage classification algorithms are based solely on wrist movements acquired by a wrist 

module with an accelerometer are proposed. These algorithms include the threshold-based method 

(T1 method and T2 method) and the k-means clustering method (5km2 method and Mkm2 method). 

Both T1 and T2 threshold-based methods use three thresholds to achieve the falling asleep/ waking 

up detection and the sleep stages (“awake”, “light sleep”, “deep sleep” and “REM”) classification, 

but T1 and T2 methods adopt different threshold values. The k-means clustering method allows the 
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classification of sleep stages (“awake”, “light sleep”, “deep sleep” and “REM”) by performing a k-

means clustering (k=2) 5 (5km2) or more (Mkm2) times. We recruited 5 volunteers (2 men, 3 

women) who carried out validation tests for 16 full nights. The results obtained were compared to 

two reference products: the "Fitbit Charger 2" watch and the Withings mattress. Among the 16 nights, 

10 nights show that the “5km2” method is better than the “Fitbit” and the T1 methods, 4 nights show 

close performance with other approaches, and only 2 nights show that the “5km2” method is worse. 

Moreover, we have defined a sleep score calculation method to assess the quality of sleep of a full 

night. With tests conducted over 16 nights, the sleep score obtained by the methods we propose 

shows a promising performance in determining whether sleep is good or not. Furthermore, we take 

the mean value of the two commercial products “Fitbit” and “Withings” as a reference to validate the 

four proposed methods. Experimental data are acquired from 17 overnights sleep of two volunteers 

with no sleep disorder. For the detection of the falling asleep and waking up time, the proposed 

method shows a deviation of 13.3±11.4 mins and 8.6±10.0 mins respectively from the reference. For 

the detection of the cumulative duration of each sleep stage a p-value is calculated, and only the 

Mkm2 method for volunteer 1 and T2 method for volunteer 2 show a statistically significant 

difference with the reference for respectively the REM and light sleep stages. Meanwhile, Bland-

Altman's plots show that the number of points outside the 95% agreement limit compared to the 

reference for the “T1”, “T2”, “5km2” and “Mkm2” methods is 3, 3, 1 and 4 respectively. It shows 

that the four proposed methods are in good agreement with the reference. 

A preliminary validation of the four methods proposed for the sleep stages classification with 

reference to the PSG gold standard is also performed. Based on the confusion matrix analysis, the 

results show that the proposed T2 method has a fair agreement with the PSG while the other three 

methods show a slight agreement with the PSG. The T1, T2 and Mkm2 methods are efficient for the 

detection of awake. The T1, 5km2 and Mkm2 methods are efficient for the detection of deep sleep. 

All the proposed methods are relatively less efficient for the detection of REM and light sleep. In 

general, the T1 method is the most efficient among the four methods. For PLMS detection, we define 

the detection rules based on the foot movement data acquired by our proposed foot module. The 

results show that the total number of PLMS and the number of PLMS distributed between each sleep 

stage detected by our foot module are both very close to the PSG. Furthermore, we explore the links 

between skin temperature and hypnogram and between skin temperature and PLMS. We found that 

the lower and flat continuous SD3T (the sum of the respective differences between the temperature 

of the chest, fingers and toes) corresponds to continuous sleep and even deep sleep, and that the 

emergence of PLMS is positively correlated to the DTf (first-order difference in finger temperature 
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during the night) value and that PLMS is more correlated to finger temperature than to toe 

temperature. This experiment has shown that it would be possible to predict PLMS based on the 

change in finger temperature. 

Finally, this work presents a first complete solution for long-term sleep monitoring at home, but there 

is still ways of improvement: 

-On the hardware: 

In terms of hardware, reducing energy consumption was an urgent consideration for our system. The 

wireless sleep monitoring module is powered by a coin cell battery, and a 220mAh battery will only 

provide continuous power to the module for 2-3 nights. A total of four modules need to be powered 

by coin cell batteries and the cost of one battery is around 1 Euro. The cost of the batteries currently 

consumed by the system is high, which does not benefit the implementation of long-term monitoring. 

To solve this issue, two directions have to be considered. The first one is to use components that 

consume less energy, for example we can choose lower power processors and sensors meeting the 

task requirements. The second direction is to use rechargeable batteries to power the wireless 

modules, for example by induction for ease of use, to avoid the ongoing expense of frequent battery 

changes. 

Another consideration is the miniaturization of the device to be worn on the body. It must be light 

and have a shape factor adapted to the location where it is installed. 

-On the algorithms: 

In terms of algorithms, we have considered three main directions to further improve the performance 

of the proposed algorithm. First, more volunteers need to be recruited to perform more nights of PSG 

testing. The PSG results will then be used as a reference and the proposed algorithm will be modified 

accordingly so that the results are as close as possible to the PSG. At the same time, if enough data 

from the PSG test is available, we may consider adopting supervised machine learning methods such 

as support vector machine, random forest, linear discriminant, etc. or even deep learning techniques 

to try to further improve the performance of the algorithm. In addition, for the sleep stage 

classification algorithms, we only consider features based on wrist movement in current work. Based 

on the correlation we found between skin temperature and hypnogram, we can consider adding skin 

temperature to the existing feature set to improve the algorithm performance and strengthen the sleep 

diagnosis. 
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-On deployment in real conditions: 

Regarding the deployment of the system in real conditions, we do not currently have a good housing 

for our sleep monitoring modules. For all the modules that need to be attached to the body, we 

simply wrapped them in paper and then taped them to the corresponding body part, which is 

rudimentary and inconvenient to deploy; this is only a temporary solution for testing purposes. In 

practice, in the future, we hope to work with relevant product design teams to design and 

manufacture aesthetically, pleasing and user-friendly packages for each module.  

Finally, the device must be able to be installed and used by the patient himself/herself in a short 

period of time. 

-On the connection to the medical practices: 

The ultimate goal of our system is to help physicians better understand sleep conditions so that they 

can prescribe perfectly adapted recommendations to improve patients’ sleep quality. It is only by 

fully understanding the needs of physicians and users that we will be able to better link our proposed 

system to medical practices. That is why in the future, we hope to invite more physicians and users to 

use our system free of charge, then communicate with them about their experience and ask for their 

comments and suggestions, which will help us determine the direction of system improvement. We 

have begun to exchange in this way with the sleep unit of the Purpan hospital. In addition, sleep 

apnea monitoring is also an important topic in sleep monitoring research area. The PSG is the gold 

standard in sleep apnea monitoring. The sound module we propose has the ability to detect snoring 

without contact but does not yet have the ability to detect sleep apnea events. Therefore, in order to 

make our system a better alternative to the PSG, one of the future directions of our work would be to 

improve the hardware and algorithms currently used in the sound module to make it capable of 

detecting sleep apnea events. 
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Appendix I. Hardware implementation in different works.  

Sensors Source 
Parameters 

obtained 
Sensor type Position Possible 

description of 
sleep phases 

Advantages Drawbacks 

Accelerometer 

Seba et al 

[97] 
Acceleration of the 

wrist 
XSENS Wrist 

1) Body 
movement is 

becoming less 
intense and less 

frequent as we 

fall into the 
deeper phases 

of sleep [72]. 
2) In REM, people 

tend to exhibit 

large body 

movements. 

Whereas in the 
deep sleep 

stage, it 

accompanied 
with slight 

body 

movements 
such as arm 

trembling and 

leg jerking 
[91]. 

3) In general 
movements 

during sleep 

provide 
valuable 

information 
about sleep 

quality [74]. 
4) The movements 

are associated 

with the Wake 
stage and light 

stages of 

NREM as a 
result of 

changes in 

sleep posture 
that occurs 

every 5-10 

minutes. REM 
sleep, on the 

other hand, is 

characterized 
by muscle 

immobility and 
body paralysis 

to prevent 

sleepers from 
acting out their 

dreams and 

hurting 
themselves 

[92]. 

A widely 

used sensor, 

efficient to 
detect body 

motion. 

It is usually 

need to be 

attached or 

worn by the 

subjects 
during sleep. 

Saad et al 

[90] Body movement Not mentioned Not mentioned 

Velicu et al 

[72] Wrist activity MPU6050 Wrist belt 

Kalkbrenner 
et al [74] 

1) sleeping 

position;  

2) movements of 
the patient 

MPU-6000 (by  
InvenSense)  

Abdominal 
belt 

Suzuki et al 
[93] Motion Not mentioned Chest 

Suzuki et al 

[80] Amount of activity Not mentioned Wrist 

Lee et al 
[99] 

Movement and the 
body’s posture 

LIS3DH, ST 
Microelectronics 

Torso 

Chan et al 

[94] Activity, posture Not mentioned 

1) The left 

midclavicul
ar line over 

intercostal 

space (ICS) 
2 

2) Vertically 

over the 
upper 

sternum 

3) Horizontally 
on the left 

midclavicul

ar line over 
ICS 6 

Beattie et al 
[105] Motion 

3D accelerometer 

without the mention 

of the type 

Left and right 
wrist 

Kim et al 
[120] Body movement BMA250E 

Under the 
matress 

Microphone 

Kalkbrenner 

et al [74] 

1) Breathing 

sound ; 

2) heart sound 
Not mentioned 

Suprasternal 

notch 

1) Breathing 
varies when we 

are awake or 

during REM 
sleep, but they 

are more stable 

and regular 
when we are in 

NREM sleep 

[72]. 

1) It can 
effectivel

y record 
snore, 

breathing 

sound 

even the 

heartbeat 

sound. 
2) It can be 

It should be 
used in quiet 

environment, 

easy to be 

disturbed by 

noise. 
Chang et al 

[121] Acoustic signal 
Built-in microphone 

of smartphone 
Next to bed 
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2) In REM, 
breathing rate 

is commonly 
unstable. 

Whereas in the 

deep sleep 
stage, breathing 

rate becomes 

slower and 
more regular 

[91]. 

placed 
close to 

the 

subject 
without 

any 

contact. 

Thermopile 
sensor (Infrared) 

Seba et al 

[97] 

Temperature of 
upper part of the 

"bed + patient" 

TMP007 
Remotely from 

the patient 

The same as 
accelerometer. 

A simple 
and non-

contact 

technology 
for human 

presence 

and motion 
detection. 

1) Easily 
affected by 

dust, 

strong 
light 

interferenc

e.  

2) Can only 

detect 

fixed area. 
3) Can’t 

detect 

small 
movement. 

 

Guettari et 
al [42] 

1) human presence 

in the bed ; 
2) movements of a 

person during 

sleep 

Not mentioned 
Fixed on the 
wall 

Teruaki et 

al [119] Body movement DC-NCR300U 
Fixed on the 
wall of the 

bedroom 

Temperature 

sensor 

Seba et al 

[97] Skin temperature IButtons 

1) Hand 

2) Foot 
3) Axillary 

1) The cutaneous 

temperature 

increases 

during sleep 

and decreases 
during waking 

[77]. 

2) The normal 
core body 

temperature is 

usually 37 °C, 
and can be 

slightly 

decreased 
during sleep 

[120]. 

A kind of 
sensor with 

many types. 

It can be 
used to 

detect skin 

temperature 
or 

environment 

temperature 
during 

sleep. 

 

1) Very high 

requiremen
t for the 

resolution 

(at least 
0.2°C) 

when used 

to detect 

skin 

temperatur

e. 
2) Correlation 

between 

temperatur
e and sleep 

quality is 

proved in 
state of the 

art but 

using only 
thermal 

signals to 

estimate 
sleep 

quality is 

not the 

easiest 

way [42]. 

Suzuki et al 

[93] Skin temperature Not mentioned Chest 

Saad et al 

[90] Skin temperature Thermistor 

The 

Thermistor 
clipped on any 

of fingertip for 

a few second 
to get a 

consistent skin 
temperature 

reading 

ECG sensor 

Velicu et al 

[72] ECG wave Not mentioned Not mentioned 
1) Breathing and 

heart rate vary 

when we are 

awake or 
during REM 

sleep, but they 

are more stable 
and regular 

when we are in 

NREM sleep 
[72]. 

2) Heart rate 
becomes more 

stable as sleep 
deepens [72]. 

It allows to 

record ECG 
wave, which 

is highly 

correlated 
with sleep 

stage.  

It must be 

attached or 
worn 

generally at 

chest by 
subjects 

during sleep. 

Suzuki et al 
[93] ECG wave Pseudo-Soc Chest 

Lee et al 

[99] 
Heart rate 

variablity 

An Ag-/AgCl based 

electrode array 
Torso 

Chan et al 

[122] 

Heart rate and 
heart rate 

variability 

Not mentioned 

1) The left 
midclavicul

ar line over 

intercostal 
space (ICS) 

2 

2) Vertically 
over the 

upper 

sternum 
3) Horizontally 

on the left 
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midclavicul
ar line over 

ICS 6 

Pulse sensor 

Suzuki et al 

[93] Pulse wave Photoplethysmogram Chest 

The correlation 

coefficient 

between PPIs and 
R-R intervals of 

ECG is 0.96 [80]. 

1) For the 

purpose 

of 
calculatin

g heart 

rate, it 
can be 

placed at 

wrist, 
relatively 

less 

intrusive 
than ECG 

sensor. 

2) The 
result is 

very 

close to 
ECG 

sensor 

[80]. 

It must be 

attached or 

worn by 
subjects 

during sleep. 

Suzuki et al 
[80] 

Pulse-to-pulse 
intervals (PPI) 

Photoelectric Wrist 

Saad et al 

[90] Heart rate Not mentioned 

Simply attach 

to anywhere 

near the blood 
vessel 

Beattie et al 

[105] Heart rate 
Optical pulse 
photoplethysmograph 

(PPG) 

Wrist 

Pressure sensor 

Sadek et al 
[95] 

1) Heart rate 

2) Respiration 

Microbend fiber 
optic sensor embeded 

in sleep mat (Mat 

dimensions: 20 cm  
50 cm  0.5 cm) 

Sleep mat is 
positioned on 

the operating 

room table 
approximately 

below the 

patient's chest 
and stomach. 

1) Breathing and 
heart rate vary 

when we are 

awake or 
during REM 

sleep, but they 

are more stable 
and regular 

when we are in 

NREM sleep 
[72]. 

2) Heart rate 
becomes more 

stable as sleep 
deepens [72]. 

3) The 
ballistocardiogr

am (BCG) 
signal records 

the mechanical 

activity 
originating 

from the 

rebound of the 

body, generated 

when the blood 

is pumped out 
of ventricles 

into the large 

blood vessel 
synchronous 

with each heart 

beat [96]. 

1) A widely 

used 
sensor, 

with 

many 
types for 

different 

applicatio
ns. 

2) It’s a 

simple 
and 

efficient 
method 

to detect 

body 
motion 

even 

breathing 
and heart 

rate. 

3) When 
embedde

d in mat 

or 
matress, 

it can be 

a 
nonintrus

ive 

method. 

Relatively 

short lifespan 

Sadek et al 

[96][98] 

Ballistocardiogram 
(BCG) signal 

(heart rate) 

Microbend fiber 
optic sensor embeded 

in pressure mat. 

The sensor is 

embedded in 
the headrest of 

the massage 

chair 

Sadek et al 

[104] 

Ballistocardiogram 
(BCG) signal 

(heart rate) 

Fiber Bragg Grating 
(FBG) sensor 

embedded in a mat. 

The FBG 
sensor mat is 

placed over a 

bed, under a 
thin bed sheet, 

where the 

locations of 
the arrays are 

under the 

head, under 
the chest, 

under chest 

and abdomen, 
and under hips 

respectively. 

Samy et al 
[100] 

Respiration rate, 

leg movement,  

body movement,  
posture and body 

Orientation 

 

The e-textile 
piezoresistive fabric 

Three-stacked-
layer structure 

of the e–textile 

bed sheet. The 
e-textile piezo 

resistive fabric 

is sandwiched 
between two 

orthogonal 

conductive bus 
layers. 

 

 

  



                                                                                                                                                                                                                                      
150                                                              

Appendix I. Hardware implementation in different works. 

  



                                                                                                                                                                                                                                      
151                                                              

References 

References 

[1] Van de Straat V, Buffel V, Bracke P. Medicalization of Sleep Problems in an Aging Population: A 

Longitudinal Cross-National Study of Medication Use for Sleep Problems in Older European Adults. Journal 

of Aging and Health; 2018.  

[2] Bao Y P, Han Y, Ma J, et al. Cooccurrence and bidirectional prediction of sleep disturbances and 

depression in older adults: meta-analysis and systematic review. Neuroscience & Bio behavioral Reviews; 

2017, 75: 257-273. 

[3] Dregan A, Armstrong D. Cross-country variation in sleep disturbance among working and older age 

groups: an analysis based on the European Social Survey. International psychogeriatrics, 2011, 23(9): 1413. 

[4] Jafari, B., & Mohsenin, V. (2010). Polysomnography. Clinics in chest medicine, 31(2), 287-297. 

[5]  Chan M, Campo E, Estève D. Assessment of activity of elderly people using a home monitoring 

system. International Journal of Rehabilitation Research; 2005, 28(1): 69-76.  

[6] Campo E, Bonhomme S, Chan M, et al. Remote tracking patients in retirement home using wireless 

multisensor system//e-Health Networking Applications and Services (Healthcom), 2010 12th IEEE 

International Conference on. IEEE; 2010: 226-230.  

[7] Charlon Y, Campo E, Brulin D. Design and evaluation of a smart insole: Application for continuous 

monitoring of frail people at home. Expert Systems with Applications; 2018, 95: 57-71.  

[8] Reutrakul S, van Cauter E. Sleep influences on obesity, insulin resistance, and risk of type 2 diabetes. 

Metabolism 2018 Jul; 84:56-66.  

[9] Tobaldini E, Costantino G, Solbiati M, Cogliati C, Kara T, Nobili L, et al. Sleep, sleep deprivation, 

autonomic nervous system and cardiovascular diseases. Neurosci Biobehav Rev 2017 Mar;74(Pt B):321-329.  

[10] Suzuki H, Savitz J, Kent Teague T, Gandhapudi SK, Tan C, Misaki M, et al. Altered populations of 

natural killer cells, cytotoxic T lymphocytes, and regulatory T cells in major depressive disorder: association 

with sleep disturbance. Brain Behav Immun 2017 Nov;66:193-200  

[11] Lewis PA, Knoblich G, Poe G. How memory replay in sleep boosts creative problem-solving. Trends 

Cogn Sci 2018 Jun;22(6):491-503.  

[12] Huber R, Born J. Sleep, synaptic connectivity, and hippocampal memory during early development. 

Trends Cogn Sci 2014 Mar;18(3):141-152.  

[13] Scullin MK, Bliwise DL. Sleep, cognition, and normal aging: integrating a half century of 

multidisciplinary research. Perspect Psychol Sci 2015 Jan;10(1):97-137  

[14] Gami AS, Howard DE, Olson EJ, Somers VK. Day-night pattern of sudden death in obstructive sleep 

apnea. N Engl J Med 2005 Mar 24;352(12):1206-1214.  

[15] Stranges S, Tigbe W, Gómez-Olivé FX, Thorogood M, Kandala NB. Sleep problems: an emerging 

global epidemic? Findings from the INDEPTH WHO-SAGE study among more than 40,000 older adults from 

8 countries across Africa and Asia. Sleep 2012 Aug 1;35(8):1173-1181  



                                                                                                                                                                                                                                      
152                                                              

References 

[16] Sutton DA, Moldofsky H, Badley EM. Insomnia and health problems in Canadians. Sleep 2001 Sep 

15;24(6):665-670.  

[17] Kessler RC, Berglund PA, Coulouvrat C, Hajak G, Roth T, Shahly V, et al. Insomnia and the 

performance of US workers: results from the America insomnia survey. Sleep 2011 Sep 1;34(9):1161-1171  

[18] Uehli K, Mehta AJ, Miedinger D, Hug K, Schindler C, Holsboer-Trachsler E, et al. Sleep problems 

and work injuries: a systematic review and meta-analysis. Sleep Med Rev 2014 Feb;18(1):61-73  

[19] Filip I, Tidman M, Saheba N, Bennett H, Wick B, Rouse N, et al. Public health burden of sleep 

disorders: underreported problem. J Public Health 2016 Dec 6;25(3):243-248  

[20] Hafner M, Stepanek M, Taylor J, Troxel WM, van Stolk C. Why sleep matters-the economic costs of 

insufficient sleep: a cross-country comparative analysis. Rand Health Q 2017 Jan;6(4):11  

[21] Allan Hobson J. A manual of standardized terminology, techniques and scoring system for sleep 

stages of human subjects. Clin Neurophysiol 1969 Jun;26(6):644.  

[22] Iber C, Ancoli-Israel S, Chesson A, Quan S. The AASM Manual for the Scoring of Sleep and 

Associated Events. American Academy of Sleep Medicine. 2007. URL: https://aasm.org/clinical-

resources/scoring-manual/ [accessed 2020-08-13] 

[23] Moser D, Anderer P, Gruber G, Parapatics S, Loretz E, Boeck M, et al. Sleep classification according 

to AASM and Rechtschaffen & Kales: effects on sleep scoring parameters. Sleep 2009 Feb;32(2):139-149  

[24] Himanen S, Hasan J. Limitations of Rechtschaffen and Kales. Sleep Med Rev 2000 Apr;4(2):149-167.  

[25] Fino E, Mazzetti M. Monitoring healthy and disturbed sleep through smartphone applications: a 

review of experimental evidence. Sleep Breath 2019 Mar;23(1):13-24.  

[26] Westerlund A, Lagerros YT, Kecklund G, Axelsson J, Åkerstedt T. Relationships between 

questionnaire ratings of sleep quality and polysomnography in healthy adults. Behav Sleep Med 

2016;14(2):185-199.  

[27] Sateia MJ. International classification of sleep disorders-third edition: highlights and modifications. 

Chest 2014 Nov;146(5):1387-1394.  

[28] Ohayon MM. Epidemiology of insomnia: what we know and what we still need to learn. Sleep Med 

Rev 2002 Apr;6(2):97-111.  

[29] Avcı C, Akbaş A. Sleep apnea classification based on respiration signals by using ensemble methods. 

Bio-Med Mater Eng 2015 Aug 17;26(s1):S1703-S1710.  

[30] Hou L, Xie S, Kai S. Detection of OSAHS Using Only Time-Domain Property of Snoring Signal. In: 

International Conference on Multimedia Technology. 2011 Presented at: ICMT'11; Jul 26-28, 2011; 

Hangzhou, China.  

[31] Karunajeewa AS, Abeyratne UR, Hukins C. Multi-feature snore sound analysis in obstructive sleep 

apnea-hypopnea syndrome. Physiol Meas 2011 Jan;32(1):83-97.  

[32] Solà-Soler J, Fiz JA, Morera J, Jané R. Multiclass classification of subjects with sleep apnoea-

hypopnoea syndrome through snoring analysis. Med Eng Phys 2012 Nov;34(9):1213-1220.  



                                                                                                                                                                                                                                      
153                                                              

References 

[33] Walters AS, LeBrocq C, Dhar A, Hening W, Rosen R, Allen TP, International Restless Legs 

Syndrome Study Group. Validation of the international restless legs syndrome study group rating scale for 

restless legs syndrome. Sleep Med 2003 Mar;4(2):121-132.  

[34] Plante DT. Leg actigraphy to quantify periodic limb movements of sleep: a systematic review and 

meta-analysis. Sleep Med Rev 2014 Oct;18(5):425-434  

[35] Terrill PI, Leong M, Barton K. Measuring Leg Movements During Sleep Using Accelerometry: 

Comparison With EMG and Piezo-Electric Scored Events. In: 35th Annual International Conference of the 

IEEE Engineering in Medicine and Biology Society. 2013 Presented at: EMBC'13; July 3-7, 2013; Osaka, 

Japan p.6865.  

[36] Madhushri P, Ahmed B, Penzel T. Periodic Leg Movement (PLM) Monitoring Using a Distributed 

Body Sensor Network. In: 37th Annual International Conference of the IEEE Engineering in Medicine and 

Biology Society. 2015 Presented at: EMBC'15; August 25-29, 2015; Milan, Italy.  

[37] Ohayon MM, Roth T. Prevalence of restless legs syndrome and periodic limb movement disorder in 

the general population. J Psychosom Res 2002 Jul;53(1):547-554.  

[38] Montplaisir J, Allen RP, Arthur W. Restless Legs Syndrome and Periodic Limb Movements During 

Sleep. Italian Ministry of Health. 2010.   URL: https://moh-it.pure.elsevier.com/en/publications/restless-legs-

syndrome-and-periodic-limb-movements-during-sleep-2 [accessed 2020-08-13] 

[39] Zucconi M, Ferini-Strambi L. NREM parasomnias: arousal disorders and differentiation from 

nocturnal frontal lobe epilepsy. Clin Neurophysiol 2000 Sep;111(Suppl 2):S129-S135.  

[40] Ferini-Strambi L, Zucconi M. REM sleep behavior disorder. Clin Neurophysiol 2000 Sep;111:S136-

S140. 

[41] Gitanjali B. Establishing a polysomnography laboratory in India: problems and pitfalls. Sleep 1998 

Jun 15;21(4):331-332.  

[42] Guettari T, Istrate D, Boudy J, Benkelfat B, Fumel B, Daviet J. Design and first evaluation of a sleep 

characterization monitoring system using a remote contactless sensor. IEEE J Biomed Health Inform 2017 

Nov;21(6):1511-1523.  

[43] Liu J, Chen Y, Wang Y, Chen X, Cheng J, Yang J. Monitoring vital signs and postures during sleep 

using WiFi signals. IEEE Internet Things J 2018 Jun;5(3):2071-2084.  

[44] Roomkham S, Lovell D, Cheung J, Perrin D. Promises and challenges in the use of consumer-grade 

devices for sleep monitoring. IEEE Rev Biomed Eng 2018;11:53-67.  

[45] Gu W, Shangguan L, Yang Z, Liu Y. Sleep hunter: towards fine grained sleep stage tracking with 

smartphones. IEEE Trans on Mobile Comput 2016 Jun 1;15(6):1514-1527.  

[46] Barrón-González HG, Martínez-Espronceda M, Trigo JD, Led S, Serrano L. Proposal of a novel 

remote command and control configuration extension for interoperable personal health devices (PHD) based 

on ISO/IEEE11073 standard. Conf Proc IEEE Eng Med Biol Soc 2014;2014:6312-6315.  



                                                                                                                                                                                                                                      
154                                                              

References 

[47] Arney D, Plourde J, Goldman JM. OpenICE medical device interoperability platform overview and 

requirement analysis. Biomed Tech (Berl) 2018 Feb 23;63(1):39-47.  

[48] McHill AW, Wright KP. Role of sleep and circadian disruption on energy expenditure and in 

metabolic predisposition to human obesity and metabolic disease. Obes Rev 2017 Feb;18(Suppl 1):15-24.  

[49] Lee SW, Ng KY, Chin WK. The impact of sleep amount and sleep quality on glycemic control in type 

2 diabetes: a systematic review and meta-analysis. Sleep Med Rev 2017 Feb;31:91-101. 

[50] Fuchs FD, Fuchs SC, Martinez D. Obstructive sleep apnea-Hypertension link: almost there? J Thorac 

Dis 2017 Oct;9(10):3537-3540. 

[51] Hossain JL, Shapiro CM. The prevalence, cost implications, and management of sleep disorders: an 

overview. Sleep Breath 2002 Jun;6(2):85-102.  

[52] Deng F, Dong J, Wang X, Fang Y, Liu Y, Yu Z, et al. Design and implementation of a noncontact 

sleep monitoring system using infrared cameras and motion sensor. IEEE Trans Instrum Meas 2018 

Jul;67(7):1555-1563.  

[53] Okubo M, Imai Y, Ishikawa T. Development of Automatic Respiration Monitoring for Home-care 

Patients of Respiratory Diseases With Therapeutic AIDS. In: 4th European Conference of the International 

Federation for Medical and Biological Engineering. 2008 Presented at: ECIFMBE'08; November 23-27, 2008; 

Antwerp, Belgium.  

[54] Coughlin JF. Aging & Family Caregiving: Why Should Financial Services Care? Massachusetts 

Institute of Technology. 2006.   URL: 

http://web.mit.edu/coughlin/Public/Publications/Coughlin%20Caregiving%20&%20Financial%20Services.pd

f [accessed 2020-08-13] 

[55] Barlow J, Bayer S, Curry R. Implementing complex innovations in fluid multi-stakeholder 

environments: experiences of ‘telecare’. Technovation 2006 Mar;26(3):396-406. 

[56] World Internet Usage and Population Statistics. Internet World Stats. 2020.   URL: 

https://www.internetworldstats.com/stats.htm [accessed 2020-03-03] 

[57] Kelly JM, Strecker RE, Bianchi MT. Recent developments in home sleep-monitoring devices. ISRN 

Neurol 2012;2012:768794. 

[58] Coiera E. Four rules for the reinvention of health care. Br Med J 2004 May 15;328(7449):1197-1199.  

[59] de VN, Robert F, Penders J. Wireless Body Area Network for Sleep Staging. In: IEEE Biomedical 

Circuits and Systems Conference. 2007 Presented at: BIOCAS'07; November 27-30, 2007; Montreal, Quebec.  

[60] Surantha N, Kusuma GP, Isa SM. Internet of Things for Sleep Quality Monitoring System: A Survey. 

In: 11th International Conference on Knowledge, Information and Creativity Support Systems. 2016 Presented 

at: KICSS'16; November 10-12, 2016; Yogyakarta, Indonesia.  

[61] van de Water AT, Holmes A, Hurley DA. Objective measurements of sleep for non-laboratory 

settings as alternatives to polysomnography--a systematic review. J Sleep Res 2011 Mar;20(1 Pt 2):183-200. 



                                                                                                                                                                                                                                      
155                                                              

References 

[62] Schomer DL, de Silva HL. Niedermeyer's Electroencephalography: Basic Principles, Clinical 

Applications, and Related Fields. New York, USA: Lippincott Williams & Wilkins; 2005. 

[63] Chokroverty S. Atlas of Sleep Medicine. New York, USA: CRC Press; 2010. 

[64] Khalighi S, Sousa T, Pires G, Nunes U. Automatic sleep staging: a computer assisted approach for 

optimal combination of features and polysomnographic channels. Expert Systems with Applications 2013 

Dec;40(17):7046-7059.  

[65] Vaughn B, Quint S, Messenheimer J, Robertson K. Heart period variability in sleep. Clin 

Neurophysiol 1995 Mar;94(3):155-162.  

[66] Townsend RE, Johnson LC, Naitoh P, Muzet AG. Heart rate preceding motility in sleep. 

Psychophysiology 1975 Mar;12(2):217-219.  

[67] Wu T, Wu F, Redoute J, Yuce MR. An autonomous wireless body area network implementation 

towards IoT connected healthcare applications. IEEE Access 2017;5:11413-11422.  

[68] Rathee D, Rangi S, Chakarvarti SK, Singh VR. Recent trends in wireless body area network (WBAN) 

research and cognition based adaptive WBAN architecture for healthcare. Health Technol 2014 May 

24;4(3):239-244.  

[69] Milici S, Lazaro A, Villarino R, Girbau D, Magnarosa M. Wireless wearable magnetometer-based 

sensor for sleep quality monitoring. IEEE Sensors J 2018 Mar 1;18(5):2145-2152.  

[70] Younes M, Soiferman M, Thompson W, Giannouli E. Performance of a new portable wireless sleep 

monitor. J Clin Sleep Med 2017 Feb 15;13(2):245-258    

[71] Finan PH, Richards JM, Gamaldo CE, Han D, Leoutsakos JM, Salas R, et al. Validation of a wireless, 

self-application, ambulatory electroencephalographic sleep monitoring device in healthy volunteers. J Clin 

Sleep Med 2016 Nov 15;12(11):1443-1451    

[72] Velicu OR, Madrid NM, Seepold R. Experimental Sleep Phases Monitoring. In: International 

Conference on Biomedical and Health Informatics. 2016 Presented at: BHI'16; February 24-27, 2016; Las 

Vegas, NV, USA.  

[73] Kushida CA, Chang A, Gadkary C, Guilleminault C, Carrillo O, Dement WC. Comparison of 

actigraphic, polysomnographic, and subjective assessment of sleep parameters in sleep-disordered patients. 

Sleep Med 2001 Sep;2(5):389-396.   

[74] Kalkbrenner C, Eichenlaub M, Brucher R. Development of a new homecare sleep monitor using body 

sounds and motion tracking. Curr Dir Biomed Eng 2015;1(1):30-33.  

[75] Nakano H, Hayashi M, Ohshima E, Nishikata N, Shinohara T. Validation of a new system of tracheal 

sound analysis for the diagnosis of sleep apnea-hypopnea syndrome. Sleep 2004 Aug 1;27(5):951-957.   

[76] Yadollahi A, Giannouli E, Moussavi Z. Sleep apnea monitoring and diagnosis based on pulse 

oximetry and tracheal sound signals. Med Biol Eng Comput 2010 Nov;48(11):1087-1097.   

[77] Kalkbrenner C, Brucher R, Kesztyüs T, Eichenlaub M, Rottbauer W, Scharnbeck D. Automated sleep 

stage classification based on tracheal body sound and actigraphy. Ger Med Sci 2019;17:Doc02    



                                                                                                                                                                                                                                      
156                                                              

References 

[78] Lee S, Yan L, Roh T. The Smart Patches and Wearable Band (W-Band) for Comfortable Sleep 

Monitoring System. In: Annual International Conference of the IEEE Engineering in Medicine and Biology 

Society. 2011 Presented at: EMBC'11; August 30- September 3, 2011; Boston, USA.  

[79] Shambroom JR, Fábregas SE, Johnstone J. Validation of an automated wireless system to monitor 

sleep in healthy adults. J Sleep Res 2012 Apr;21(2):221-230.    

[80] Suzuki T, Ouchi K, Kameyama K. Development of a Sleep Monitoring System with Wearable Vital 

Sensor for Home Use. Science and Technology Publications. 2009.   URL: 

https://www.scitepress.org/papers/2009/17842/pdf/index.html [accessed 2020-08-13] 

[81] Cole RJ, Kripke DF, Gruen W, Mullaney DJ, Gillin JC. Automatic sleep/wake identification from 

wrist activity. Sleep 1992 Oct;15(5):461-469.   

[82] Baharav A, Kotagal S, Gibbons V, Rubin BK, Pratt G, Karin J, et al. Fluctuations in autonomic 

nervous activity during sleep displayed by power spectrum analysis of heart rate variability. Neurology 1995 

Jun;45(6):1183-1187.   

[83] Berry RB, Brooks R, Gamaldo CE, Harding SM, Lloyd RM. The AASM Manual for the Scoring of 

Sleep and Associated Events. American Academy of Sleep Medicine. 2015.   URL: https://aasm.org/clinical-

resources/scoring-manual/ [accessed 2020-08-13] 

[84] Tataraidze A, Anishchenko L, Korostovtseva L, Kooij BJ, Bochkarev M, Sviryaev Y. Sleep stage 

classification based on respiratory signal. Conf Proc IEEE Eng Med Biol Soc 2015;2015:358-361.   

[85] Jawbone Up: Fitness Tracker Review. Live Science. 2013.   URL: 

https://www.livescience.com/40107-jawbone-up-review.html [accessed 2013-10-02] 

[86] FitBit. 2020 Aug 11.   URL: https://www.fitbit.com/fr/

store?utm_source=&utm_medium=paidsearch&gclid=Cj0KCQjwv- 

DaBRCcARIsAI9sba9Dh12KY1zqUWJ1WLOZbS5BDheFt-ITkH3s-tE-

652MtxsDMvoP3LgaAkgWEALw_wcB& dclid=CLevqriyutwCFcriGwodGHQL0Q [accessed 2020-08-11] 

[87] Sleepace. 2020.   URL: http://www.sleepace.com/en/reston.html?category=reston [accessed 2020-08-

11] 

[88] Sleep Dot B501. 2020.   URL: http://www.sleepace.com/en/dot.html?category=dot [accessed 2020-

08-11] 

[89] Withings Aura Sleep System. Sleep Trackers. 2020.   URL: https://sleeptrackers.io/withings-aura/ 

[accessed 2020-08-11] 

[90] Saad WH, Khoo CW, Ab Rahman SI, Ibrahim MM, Saad NH. Development of sleep monitoring 

system for observing the effect of the room ambient toward the quality of sleep. In: IOP Conference Series: 

Materials Science and Engineering. 2017 Presented at: IOP'17; June 12-16, 2017; Prague, Czech Republic.  

[91] Webb WB, Agnew HW. Sleep stage characteristics of long and short sleepers. Science 1970 Apr 

3;168(3927):146-147.   



                                                                                                                                                                                                                                      
157                                                              

References 

[92] Purves D, Augustine G, Fitzpatrick D. Physiological Changes in Sleep States. Second Edition. 

Washington, DC, USA: Neuroscience; 2001. 

[93] Suzuki T, Tanaka H, Minami S. Wearable Wireless Vital Monitoring Technology for Smart Health 

Care. In: 7th International Symposium on Medical Information and Communication Technology. 2013 

Presented at: ISMICT'13; March 6-8, 2013; Tokyo, Japan.  

[94] Chan AM, Selvaraj N, Ferdosi N. Wireless Patch Sensor for Remote Monitoring of Heart Rate, 

Respiration, Activity, and Falls. In: 35th Annual International Conference of the IEEE Engineering in 

Medicine and Biology Society. 2013 Presented at: EMBC'13; July 3-7, 2013; Osaka, Japan.  

[95] Sadek I, Seet E, Biswas J, Abdulrazak B, Mokhtari M. Nonintrusive vital signs monitoring for sleep 

apnea patients: a preliminary study. IEEE Access 2018;6:2506-2514.  

[96] Sadek I, Biswas J, Abdulrazak B. Continuous and Unconstrained Vital Signs Monitoring With 

Ballistocardiogram Sensors in Headrest Position. In: International Conference on Biomedical & Health 

Informatics. 2017 Presented at: BHI'17; February 16-19, 2017; Orlando, Florida, USA.  

[97] Seba A, Istrate D, Guettari T, Ugon A, Pinna A, Garda P. Thermal-signature-based sleep analysis 

sensor. Informatics 2017 Oct 28;4(4):37.  

[98] Sadek I, Biswas J, Yongwei Z. Sensor Data Quality Processing for Vital Signs With Opportunistic 

Ambient Sensing. In: 38th Annual International Conference of the IEEE Engineering in Medicine and Biology 

Society. 2016 Presented at: EMBC'16; August 16-20, 2016; Orlando, FL, USA.  

[99] Lee WK, Yoon H, Park KS. Smart ECG monitoring patch with built-in R-peak detection for long-term 

HRV analysis. Ann Biomed Eng 2016 Jul;44(7):2292-2301.   

[100] Samy L, Huang M, Liu JJ, Xu W, Sarrafzadeh M. Unobtrusive sleep stage identification using a 

pressure-sensitive bed sheet. IEEE Sensors J 2014 Jul;14(7):2092-2101.  

[101] Lee L, Lo Y, Yu J, Lee G, Ni Y, Chen N, et al. Snoring sounds predict obstruction sites and surgical 

response in patients with obstructive sleep apnea hypopnea syndrome. Sci Rep 2016 Jul 29;6:30629.    

[102] Hou L, Wang C, Zhang C. Calculating AHI Combine Oximetery and Snore Sound. In: China Summit 

and International Conference on Signal and Information Processing. 2015 Presented at: ChinaSIP'15; July 12-

15, 2015; Chengdu, China.  

[103] Emoto T, Abeyratne UR, Kawano K, Okada T, Jinnouchi O, Kawata I. Detection of sleep breathing 

sound based on artificial neural network analysis. Biomed Signal Proces 2018 Mar;41:81-89.  

[104] Sadek I, Biswas J, Fook VF. Automatic Heart Rate Detection From FBG Sensors Using Sensor 

Fusion and Enhanced Empirical Mode Decomposition. In: International Symposium on Signal Processing and 

Information Technology. 2015 Presented at: ISSPIT'15; December 7-19, 2015; Abu Dhabi, United Arab 

Emirates.  

[105] Beattie Z, Oyang Y, Statan A, Ghoreyshi A, Pantelopoulos A, Russell A, et al. Estimation of sleep 

stages in a healthy adult population from optical plethysmography and accelerometer signals. Physiol Meas 

2017 Oct 31;38(11):1968-1979.   



                                                                                                                                                                                                                                      
158                                                              

References 

[106] Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, et al. The empirical mode decomposition 

and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond A 1998 Mar 

8;454(1971):903-995.  

[107] Charleston-Villalobos S, González-Camarena R, Chi-Lem G, Aljama-Corrales T. Crackle sounds 

analysis by empirical mode decomposition. Nonlinear and nonstationary signal analysis for distinction of 

crackles in lung sounds. IEEE Eng Med Biol Mag 2007;26(1):40-47.   

[108] Balocchi R, Menicucci D, Santarcangelo E, Sebastiani L, Gemignani A, Ghelarducci B, et al. 

Deriving the respiratory sinus arrhythmia from the heartbeat time series using empirical mode decomposition. 

Chaos Soliton Fract 2004 Apr;20(1):171-177.  

[109] Van Marken Lichtenbelt WD, Daanen HA, Wouters L, Fronczek R, Raymann RJ, Severens NM, et al. 

Evaluation of wireless determination of skin temperature using iButtons. Physiol Behav 2006 Jul 30;88(4-

5):489-497.   

[110] Van Someren EJ. Mechanisms and functions of coupling between sleep and temperature rhythms. 

Prog Brain Res 2006;153:309-324.   

[111] Kräuchi K, Deboer T. Body temperatures, sleep, and hibernation. Principl Pract Sleep Med 2011:323-

334.  

[112] Keogh E, Lin J, Lee SH, Herle H. Finding the most unusual time series subsequence: algorithms and 

applications. Knowl Inf Syst 2006 Nov 23;11(1):1-27.  

[113] van Hulle MM. Self-organizing maps. In: Handbook of Natural Computing. Berlin, Heidelberg: 

Springer; 2012:585-622. 

[114] Lafferty J, McCallum A, Pereira FC. Conditional Random Fields: Probabilistic Models for 

Segmenting and Labeling Sequence Data. University of Pennsylvania ScholarlyCommons. 2001.   URL: 

https://repository.upenn.edu/cgi/viewcontent.cgi?article=1162&context=cis_papers [accessed 2020-08-13] 

[115] Schuster-Böckler B, Bateman A. An introduction to hidden Markov models. Curr Protoc 

Bioinformatics 2007 Jun;Appendix 3:Appendix 3A.   

[116] Zeo Sleep Manager Pro: Usage Tips. Gibson Research Corporation. 2016.   URL: 

https://www.grc.com/zeo.htm [accessed 2016-05-10] 

[117] Carpenter JS, Andrykowski MA. Psychometric evaluation of the Pittsburgh sleep quality index. J 

Psychosom Res 1998 Jul;45(1):5-13.   

[118] Krishna A, Mallick M, Mitra B. SleepSensei: An Automated Sleep Quality Monitor and Sleep 

Duration Estimator. In: Proceedings of the First Workshop on IoT-enabled Healthcare and Wellness 

Technologies and Systems. 2016 Presented at: IoT of Health'16; June 25-30, 2016; Singapore,.  

[119] Nochino T, Ohno Y, Kato T, et al. Sleep stage estimation method using a camera for home use. 

Biomedical engineering letters, 2019, 9(2): 257-265. 

[120] Kim J Y, Chu C H, Kang M S. IoT based Unobtrusive Sensing for Sleep Quality Monitoring and 

Assessment. IEEE Sensors Journal, 2020. 



                                                                                                                                                                                                                                      
159                                                              

References 

[121] Chang X, Peng C, Xing G, et al. iSleep: A Smartphone System for Unobtrusive Sleep Quality 

Monitoring. ACM Transactions on Sensor Networks (TOSN), 2020, 16(3): 1-32. 

[122] Kay M, Choe EK, Shepherd J. Lullaby: a Capture & Access System for Understanding the Sleep 

Environment. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing. 2012 Presented at: 

UbiComp'12; September 5-8, 2012; Pittsburgh, USA.  

[123] https://www.bluetooth.com/bluetooth-resources/intro-to-bluetooth-low-energy/ 

[124] https://lora-alliance.org/ 

[125] https://www.wi-fi.org/ 

[126] https://en.wikipedia.org/wiki/Narrowband_IoT 

[127] https://www.sigfox.com/en 

[128] https://zigbeealliance.org/ 

[129] Charlon Y. Conception de dispositifs électroniques portés pour le suivi de l’état de santé des 

personnes âgées, Toulouse, LAAS-CNRS, 2014. 

[130] Buysse, D. J., Reynolds III, C. F., Monk, T. H., Berman, S. R., & Kupfer, D. J. (1989). The Pittsburgh 

Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry research, 28(2), 193-

213. 

[131] Daskalova N, Lee B, Huang J, et al. Investigating the effectiveness of cohort-based sleep 

recommendations. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 

2018, 2(3): 1-19. 

[132] Arbinaga F, Tornero-Quiñones I, Fernández-Ozcorta E. Sleeping Position, Expression of Anger and 

Subjective Sleep Quality in University Students. Sleep and Hypnosis (Online), 2018, 20(4): 267-274. 

[133] Ravesloot M J L, Van Maanen J P, Dun L, et al. The undervalued potential of positional therapy in 

position-dependent snoring and obstructive sleep apnea—a review of the literature. Sleep and Breathing, 

2013, 17(1): 39-49. 

[134] Shetty M, Mador M J. Prevalence of Positional Obstructive Sleep Apnea in Patients Undergoing 

Polysomnography and the Effect of Sleep Stage//Positional Therapy in Obstructive Sleep Apnea. Springer, 

Cham, 2015: 53-64. 

[135] Mendonça F, Mostafa S S, Morgado-Dias F, et al. A review of approaches for sleep quality analysis. 

Ieee Access, 2019, 7: 24527-24546. 

[136] Walters AS International Restless Legs Study Group. (1995). Toward a better definition of the restless 

legs syndrome. Mov Disord, 10, 634-42. 

[137] Gubin D G, Weinert D, Rybina S V, et al. Activity, sleep and ambient light have a different impact on 

circadian blood pressure, heart rate and body temperature rhythms. Chronobiology international, 2017, 34(5): 

632-649. 

[138] Lewy A J, Wehr T A, Goodwin F K, et al. Light suppresses melatonin secretion in humans. Science, 

1980, 210(4475): 1267-1269. 

https://lora-alliance.org/
https://www.wi-fi.org/
https://en.wikipedia.org/wiki/Narrowband_IoT


                                                                                                                                                                                                                                      
160                                                              

References 

[139] Auld F, Maschauer E L, Morrison I, et al. Evidence for the efficacy of melatonin in the treatment of 

primary adult sleep disorders. Sleep Medicine Reviews, 2017, 34: 10-22. 

[140] Faraone S V. ADHD: Non-Pharmacologic Interventions, An Issue of Child and Adolescent 

Psychiatric Clinics of North America, E-Book. Elsevier Health Sciences, 2014. 

[141] Gilbert, S. S., van den Heuvel, C. J., Ferguson, S. A., & Dawson, D. (2004). Thermoregulation as a 

sleep signalling system. Sleep medicine reviews, 8(2), 81-93. 

[142] https://play.google.com/store/apps/details?id=com.bruxlabsnore&hl=fr 

[143] Zucconi M, Ferri R, Allen R, et al. The official World Association of Sleep Medicine (WASM) 

standards for recording and scoring periodic leg movements in sleep (PLMS) and wakefulness (PLMW) 

developed in collaboration with a task force from the International Restless Legs Syndrome Study Group 

(IRLSSG). Sleep Med 2006;7(2):175-183. 

[144] Michaud M, Paquet J, Lavigne G, et al. Sleep laboratory diagnosis of restless legs syndrome. Eur 

Neurol 2002;48:108-113. 

[145] Coleman RM. Periodic movements in sleep (nocturnal myoclonus) and restless legs syndrome. In: 

Guilleminault C, editor. Sleeping and waking disorders: indications and techniques. Menlo Park, CA: 

Addison–Wesley; 1982. p. 265-295. 

[146] Sewitch D E, Kittrell E M W, Kupfer D J, et al. Body temperature and sleep architecture in response 

to a mild cold stress in women. Physiology & behavior, 1986, 36(5): 951-957. 

[147] Fletcher A, Heuvel C, Dawson D. Sleeping with an electric blanket: effects on core temperature, sleep, 

and melatonin in young adults. Sleep, 1999, 22(3): 313-318. 

[148] Rahman S A, Flynn-Evans E E, Aeschbach D, et al. Diurnal spectral sensitivity of the acute alerting 

effects of light. Sleep, 2014, 37(2): 271-281. 

[149] Chang A M, Aeschbach D, Duffy J F, et al. Evening use of light-emitting eReaders negatively affects 

sleep, circadian timing, and next-morning alertness. Proceedings of the National Academy of Sciences, 2015, 

112(4): 1232-1237. 

[150] Xu D, Tian Y. A comprehensive survey of clustering algorithms. Annals of Data Science, 2015, 2(2): 

165-193. 

[151] Rechtschaffen A. A manual of standardized terminology, technique and scoring system for sleep 

stages of human subjects. Public Health Service, 1968. 

[152] Acebo C, LeBourgeois M K. Actigraphy. Respiratory care clinics of North America, 2006, 12(1): 23. 

[153] Pollak C P, Tryon W W, Nagaraja H, et al. How accurately does wrist actigraphy identify the states of 

sleep and wakefulness? Sleep, 2001, 24(8): 957-965. 

[154] Carskadon M A, Dement W C. Normal human sleep: an overview. Principles and practice of sleep 

medicine, 2005, 4: 13-23. 

[155] MacQueen J. Some methods for classification and analysis of multivariate observations//Proceedings 

of the fifth Berkeley symposium on mathematical statistics and probability. 1967, 1(14): 281-297. 

https://play.google.com/store/apps/details?id=com.bruxlabsnore&hl=fr


                                                                                                                                                                                                                                      
161                                                              

References 

[156] Diykh M, Li Y, Wen P. EEG sleep stages classification based on time domain features and structural 

graph similarity. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24(11): 1159-

1168. 

[157] Van Hese P, Philips W, De Koninck J, et al. Automatic detection of sleep stages using the EEG//2001 

conference proceedings of the 23rd annual international conference of the IEEE engineering in medicine and 

biology society. IEEE, 2001, 2: 1944-1947. 

[158] Güneş S, Polat K, Yosunkaya Ş. Efficient sleep stage recognition system based on EEG signal using 

k-means clustering based feature weighting. Expert Systems with Applications, 2010, 37(12): 7922-7928. 

[159] de Zambotti M, Goldstone A, Claudatos S, et al. A validation study of Fitbit Charge 2™ compared 

with polysomnography in adults. Chronobiology international, 2018, 35(4): 465-476. 

[160] Brand S, Gerber M, Kalak N, et al. Adolescents with greater mental toughness show higher sleep 

efficiency, more deep sleep and fewer awakenings after sleep onset. Journal of Adolescent Health, 2014, 54(1): 

109-113. 

[161] Hirshkowitz M, Whiton K, Albert S M, et al. National Sleep Foundation’s sleep time duration 

recommendations: methodology and results summary. Sleep health, 2015, 1(1): 40-43. 

[162] Buboltz Jr W, Jenkins S M, Soper B, et al. Sleep habits and patterns of college students: an expanded 

study. Journal of College Counseling, 2009, 12(2): 113-124. 

[163] https://www.withings.com/fr/fr/sleep-analyzer 

[164] Wasserstein R L, Lazar N A. The ASA statement on p-values: context, process, and purpose. 2016. 

[165] Di Leo G, Sardanelli F. Statistical significance: p value, 0.05 threshold, and applications to 

radiomics—reasons for a conservative approach. European Radiology Experimental, 2020, 4(1): 1-8.Van der 

Geer J, Hanraads JAJ, Lupton RA. The art of writing a scientific article. J SciCommun 2000;163:51-9. 

[166] Landis, J. R., Koch, G. G. The measurement of observer agreement for categorical data. biometrics, 

1977, 159-174. 

[167] https://online.stat.psu.edu/stat509/node/162/ 

[168] Chiaro G, Manconi M. Restless legs syndrome, periodic limb movements during sleep and 

cardiovascular risk. Autonomic Neuroscience, 2019, 220: 102554. 

[169] Montplaisir J, Boucher S, Gaétan Poirier, et al. Clinical, polysomnographic, and genetic 

characteristics of restless legs syndrome: A study of 133 patients diagnosed with new standard criteria. 

Movement Disorders, 1997, 12(1):61-65. 

[170] Hening W. The clinical neurophysiology of the restless legs syndrome and periodic limb movements. 

Part I: diagnosis, assessment, and characterization. Clinical Neurophysiology, 2004, 115(9): 1965-1974. 

[171] Allen R P, Earley C J. Restless legs syndrome: a review of clinical and pathophysiologic features. 

Journal of Clinical Neurophysiology, 2001, 18(2): 128-147. 

[172] Garcia-Borreguero D, Larrosa O, de la Llave Y, et al. Correlation between rating scales and sleep 

laboratory measurements in restless legs syndrome. Sleep medicine, 2004, 5(6): 561-565. 

https://www.withings.com/fr/fr/sleep-analyzer


                                                                                                                                                                                                                                      
162                                                              

References 

[173] Aksu M, Demirci S, Bara-Jimenez W. Correlation between putative indicators of primary restless legs 

syndrome severity. Sleep medicine, 2007, 8(1): 84-89. 

  



                                                                                                                                                                                                                                      
163                                                              

List of Publications 

List of Publications 

 

Journals: 

1. Pan Q., Brulin D., Campo E. Current Status and Future Challenges of Sleep Monitoring Systems: 

Systematic Review. JMIR Biomedical Engineering, 2020, 5(1): e20921. 

2. Zitouni M., Pan Q., Brulin D., et al. Design of a Smart Sole with Advanced Fall Detection Algorithm. 

Journal of Sensor Technology, 2019, 9(04): 71. 

3. Pan Q., Brulin D., Campo E. Wrist movement analysis for long-term home sleep monitoring. Expert 

Systems With Applications. Dec. 2020. Under revision. 

 

International conferences: 

1. Pan Q., Brulin D., Campo E. Home sleep monitoring based on wrist movement data processing//10th 

International Conference of Information and Communication Technology (ICICT-2020). November 

13-15
th
, 2020. Best paper award. 

 

National conferences: 

1. Pan Q., Campo E., Brulin D. Smart device for long-term sleep monitoring at home. 21ème édition des 

Journées Nationales du Réseau Doctoral en Micro-nanoélectronique (JNRDM), Jun 2019, Montpellier, 

France. 2019. 

2.  Pan Q. In-home sleep monitoring based on wrist movement. Doctoral school event GEET, Toulouse, 

May 2020. 


