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Abstract

In this thesis, we describe the effect of localized defects on the electronic proper-
ties of silicon. After 60 years of silicon devices production, one might expect all
details of this material to be fully understood, especially considering that the man-
ufacture of nowadays nanometer-sized transistors requires quasi-atomic accuracy.
However, as a direct result of such extreme miniaturization, the accidental creation
of even one single trapping center can be sufficient to alter the desired electronic
properties of the sample, becoming one of the most feared phenomena in the in-
dustry. Since the early years, the identification of these centers has been possible
through the development of characterization techniques, capable of targeting spe-
cific defect properties, related to the position of the center-induced states within
the semiconductor gap (infrared optical absorption, DLTS spectroscopy) or to the
atomic distortions triggered by the form of the localized electronic density (EPR
spectroscopy). Such collection of experimental data motivated the development
of simple symmetry-based models, qualitatively reproducing the basic features of
defects. The later exponential increase in computational power made ab initio

calculations the perfect candidate to give a quantitative theoretical model of point
defects in semiconductors. Atomistic numerical simulations in silicon, based on the
Density Functional Theory, do however typically target specific defect-properties,
not giving a complete theoretical picture of the system, often overlooking previous
models and experimental evidence. In the present thesis, we provide new insight
into iconic defects in silicon through the quantification of long-established atom-
istic models, making an explicit link with the characterization techniques. Our
detailed exploration of the DFT energy surface of the silicon E-center, guided by
a simple Jahn-Teller model, confirmed the observed defect-dynamics at different
temperature regimes, allowing us to link the presence of such point- like defect
to a burst noise in image sensors. Moreover, we investigate the hypothesis of
enhancing photon-absorption in titanium-doped silicon solar cells by describing
many-body effects in the form of the GW approximation, assigning the charged
electronic excitations to transitions between Ti- related states, previously depicted
by a phenomenological model for transition metals in silicon. We also propose a
generalization of the preexisting toy-models to tackle complex centers, for which
a notorious controversy within the ab initio community still exists, showing ex-
plicitly the limitations of mean-field approaches when targeting highly localized
electronic densities. We conclude with a brief critical review of the theoretical
characterization of the defects electronic activity, and in particular the capture
cross section of non-radiative transitions.
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Introduction

One should not keep busy with

semiconductors, they are dirt

effects - Who knows whether

they really exist.

W. Pauli (1931)

In the present era of silicon microelectronics, in which semiconductor
properties are tuned at will, Pauli’s advice seems certainly incredible. One
should however grant him the critique to the ideal concept of semiconductors
as materials with a native insulator character, since their electronic proper-
ties are often governed and modified by these so-called dirt effects. At the
very basis of our nowadays technology, the intentional inclusion of certain
foreign elements or impurities in the material crystalline structure promotes
the generation of free carriers across the band gap, circumventing the nat-
ive absence of charge mobility in semiconductors. Opposite to the doping
character of these impurities, the accidental creation of lattice imperfections
or defects capable of trapping free charges, decreasing the extrinsic concen-
tration of carriers, might alter the desired and targeted properties of the
semiconductor. We might therefore conclude that one should keep busy with
semiconductors, whose intrinsic properties are dominated by dirt effects, con-
stituting the complex and rich field of defects in semiconductors.

In the case of silicon, after more than 60 years of Si-based devices pro-
duction, one might expect all details of this material to be fully understood,
especially considering that the manufacture of nowadays nanometer-sized
transistors requires quasi-atomic accuracy. However, as a direct result of such
extreme miniaturization, the accidental creation of even one single trapping
center can be sufficient to alter the desired electronic properties of the sample,
becoming one of the most feared phenomena in the industry. Regardless of
the improved accuracy in the manufacturing process, embedded systems can
be subject to radiative environments, where highly energetic particles might
interact with the device, altering the material underlying atomic structure.
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As a consequence of such irradiation damage, uncontrollable output signals
(i.e. dark current, burst random noises, etc.) are measured in electronic
components, decreasing their reliability during utilization. It is the case, for
example, of devices sent to aerospace expeditions, during which they might
face solar flares, events characterized by the projection of particles through
the Sun corona into outer space. With an even more specific scope, the suc-
cess of future Mars missions could be compromised by the degradation of the
image sensors employed to guide the observation of the planet (Figure 1).
One is then said to be concerned by the“hardening of the electronic compon-
ents”, guaranteeing the well-functioning of any embedded system. In such
context, characterizing defects in semiconductors at the atomic scale might
be regarded as the first step in mitigation strategies. The investigation of
the electronic properties of defects in silicon at such scale might be achieved
through ab initio computational approaches, describing the center embedded
in the material quantum-mechanically (Figure 1).

1 cm

3 A
1 m2000 km

NASA.gov NASA.gov

Figure 1: Atomistic scale calculations as mitigations strategies of irradiation
damage in silicon-based electronic devices used in aerospace applications.

Historically, the electronic properties or the electronic activity of defects
in semiconductors have been understood in terms of their ability to capture
or release carriers from the bulk bands within a certain region of the lattice,
corresponding to the defect-induced wavefunction. As it is then commonly
and simply depicted, the trapping mechanism consists on transferring a free
carrier from the valence band (VB) or the conduction band (CB) to the trap
level, T, whose energy lies within the band gap (Figure 2). In the case of
for example a silicon-based photodiode, the radiative transitions (I and II in
Figure 2) have then to compete with trapping mechanisms or the so-called
non-radiative transitions (III-VI in Figure 2), resulting in a decrease in the di-
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ode efficiency. The electronic occupation of such trap level or the occurrence
of such transitions were first estimated in the seminal work of Shockley-Red-
Hall (SRH), Statistics of electrons and holes, in which four thermal transitions
were considered: the electron capture (III), the electron emission (IV), the
hole capture (V) and the hole emission (VI). By simply imposing charge bal-
ance or conservation, the concentration of free carriers was determined upon
three single parameters: the position of the trap level (ET), the electronic
capture cross section (σn) and the hole capture cross section (σp). One can
therefore conclude that within such simple model, the electronic activity of
the defect is fully characterized once the positions of the defect levels and
their capture cross sections are determined in a certain theoretical framework
or computational approach. In the present work, we are precisely interested
in modeling the electronic activity of defects in semiconductors due to its im-
mediate interest for the microelectronic industry. More concretely, we focus
on the characterization of selected defects in silicon, aiming to generalize the
individual theoretical pictures to general trends or models by revisiting the
established methodology or computational approaches.

CB

n

p
VB

I II

T

III IV V VI

CB

Figure 2: Radiative (I, II) versus non-radiative transitions (III-VI) across the
silicon pn-junction. Defects in the crystal structure of the material introduce
the trap level T within the band gap, defined by the valence band (VB) and
conduction band (CB). Filled and empty dots represent negative and positive
carriers (electrons and holes) in semiconductors respectively.

Characterization techniques, such as optical absorption (OA) measure-
ments, electronic paramagnetic resonance (EPR) or the deep level transient
spectroscopy (DLTS) have however revealed the complexity of describing
electronic transitions involving trap levels, since defects might be regarded
as molecule-like entities subject to the crystal field of the host material. A
single defect, similarly to a molecule in vacuum, might induce several mo-
lecular orbitals or localized defect states, whose form and eigenvalues are to
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be determined within the crystal band structure. Moreover, it has been ob-
served that changes in the electronic occupation of such orbitals can trigger
atomic distortions in nearby nuclei, presenting different geometries or config-
urations depending on the electronic excitation (i.e. the Jahn-Teller effect).
Experimental evidence has therefore proved that localized-defect electronic
densities are strongly coupled to the lattice and it has been postulated that
such electron-lattice coupling is precisely responsible for the non-radiative or
thermal transitions in the early work of Huang and Rhys and Lang. The
simple diagram in Figure 2 or the simple model of SRH has therefore to be
re-conceived, including the description of the trap levels dependence on the
electronic excitation and local atomic rearrangements.

An accurate estimation of the defect electronic activity, taking into con-
sideration experimental evidence, can be sought thorough a complete theor-
etical model of the point-like defect and its surrounding lattice. The descrip-
tion of such systems quantum mechanically has been previously performed
through ab initio computational approaches, where the electronic structure
of defect and lattice is given in terms of a one-particle picture in the clamped
nuclei approximation. In particular, trap levels induced by defects in silicon
have been characterized by methods based on the Density Functional Theory
(DFT) for the last three decades. In the case of the computation of capture
cross sections, only recently DFT-based models for defects in ZnO, GaAs or
GaN have been proposed. These theoretical approaches did however target
specific quantities (ET and σn), without giving a complete and understanding
picture of the studied center, often overlooking basic fundamental symmetry
considerations and/or experimental evidence.

With nowadays computational resources and sophisticated theories to
solve the Coulomb electronic repulsion, one might be surprised that previous
first-principles models for defects in silicon were not capable of capturing the
observed complexity of the systems. In the present work, we aim at building
full and comprehensive models (Figure 3), taking one step back and start-
ing from simple molecular orbital approaches, before including more general
treatments of the electron-electron interaction, i.e DFT or Many-Body Per-
turbation Theory (MBPT). Through this approach we would like to refute
the idea that advanced computational methods need to be blind, as opposed
to simple symmetry-based theories qualitatively reproducing the experience.
Advancing one of the main conclusion of the present work, toy-models might
be the first interpretation of defects in semiconductors, guiding the charac-
terization at higher levels of theory.
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Figure 3: Theoretical model of an electron capture by a point-defect in silicon:
from single-particle band structures to atomic distortions.

The present thesis begins with an introduction to the field of point defects
in semiconductors (Chapter 1), where preliminary ideas such as the difference
between shallow and deep centers, the formation of defects at equilibrium,
the concept of charge transitions levels, etc. are reviewed. Special attention
is then given to silicon as the most used semiconductor in electronic devices,
for which relevant defect-inducing processes and the resulting realistic cata-
log of defects are discussed. The Chapter ends with an extensive description
of the characterization techniques of defects in semiconductors, with a special
emphasis on measures performed in silicon.

In Chapter 2, we review the computational approaches employed through-
out this thesis, starting from the simplest treatment of the electronic interac-
tion in the form of a Linear Combination of Atomic Orbitals (LCAO), moving
into more accurate levels of theory with the DFT and MBPT. We conclude
the Chapter by discussing the limitations of applying the introduced numer-
ical methods to the description of isolated or diluted defects in a host lattice.

In Chapter 3, we revisit the characterization of iconic centers in silicon, for
which previous computational approaches overlooked or misinterpreted the
existence of atomic distortions or Jahn-Teller distortions when the charge
state of the defect is modified. In the case of the titanium impurity, we re-
consider the interaction of the 3d orbitals with tetra and octa-hedral crystal
fields to guide our investigation of the Ti-related states in silicon. Such ana-
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lysis together with an accurate description of many-body effects allow us to
support the idea that this degrading impurity could be used to enhance the
efficiency of solar cells by inducing an intermediate band in the interacting
defect-defect regime. The second part of the Chapter is dedicated to the un-
derstanding of the finite-temperature dynamics of the silicon E-center, one of
the most common centers in Si wafers, since it consists of a vacancy adjacent
to a dopant impurity (phosphorous, arsenic or antimony). By guiding our
first-principles exploration of the energy landscape with a Jahn-Teller model,
we are able to link specific defect mechanisms to technologically relevant pro-
cesses.

The numerical analysis of the Jahn-Teller effect is then generalized to a
symmetry-based theory in Chapter 4, where the seminal and original Watkins
model is revisited. Our simple toy-model for the E-center reproduces the un-
derlying and basic features of the centers in line with higher levels of theory
and experimental evidence. The model is then employed to study more com-
plex defects such as the divacancy or heavy transition metals like platinum
or gold, for which a long-established controversy still exists in the ab initio
community. The later quantification of the simple models allows us to have
a better understanding of the centers and hence, we are capable of farther
comparing our numerical estimations with experimental data, revealing the
limitations of the employed approach to accurately treat highly localized
electronic densities.

Before concluding, the perspectives or natural continuation of the present
work on the characterization of the electronic activity of defects (i.e. pos-
ition of the trap levels and respective capture cross sections) are collected
in Chapter 5. We discuss the accuracy of the state-of-the-art computed
deep levels of selected centers in silicon, in the general context of the re-
producibility of ab initio calculations. We later revisit the long-established
multi-phonon theories to determine the non-radiative transition probability,
before discussing recent ab initio approaches.
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Chapter 1

Point defects in semiconductors

Many scientists have fortunately

not heeded Pauli’s advice. Had

they done so, not only would the

world have missed a

revolutionary and nowadays

ubiquitous technology, but basic

physical science would have lost

some of the most fruitul,

beautiful and sucessful

applications of quantum

mechanics.

M. Cardona (2007)

Giving an exact date to the first mention of point defects in semicon-
ductors as entities capable of altering the intrinsic properties of the host
material is probably an impossible task. We can however trace the first ideas
on the ability of structural imperfections to alter material properties to the
work of R. W. Pohl in the thirties on alkali halides. He realized that the
absorption of visible light by electrons localized within the anion vacant site
in an ionic crystal was responsible for the color of samples containing crys-
tallographic defects, being transparent for an otherwise perfect solid. In the
mid-1930s, R. Ohl measured a considerable jump in the electrical current of
a silicon slab exposed to a bright light. Such sample was then determined
to be marked by the separation of two regions containing different types of
impurities, yielding a slight excess of electrons and holes respectively. The
union of semiconductors containing opposite signs of free carriers allowed W.
Shockley, W. Brattain and J. Bardeen to build the first transistor and to be
rewarded by the Nobel Prize in Physics in 1956. Short after the explosion
in the manufacturing of silicon-based devices, evidence of a second type of
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impurities, capable of trapping or localizing free carriers within a certain re-
gion of the silicon crystal was reported. The ability of these trapping centers
to alter the electronic properties of the material triggered the interest of the
community to characterize these systems over a few decades ago.

Having established the age of the field, we have justified the need to briefly
settle some preliminary ideas as they are going to be employed throughout
the thesis (section 1.1). Basic features of the centers at equilibrium (local-
induced lattice distortions, relative concentration depending on the formation
regime, finite-temperature dynamics) are introduced at the atomic scale, at
which the electronic activity of these centers is explained by the inclusion of
defects-related energy levels in the semiconductor gap. From a more applied
perspective, far from equilibrium conditions, the large catalog of point defects
in silicon devices is sustained by the examination of actual defect-inducing
process, justifying the need to characterize these centers at the atomic scale
as the first step in mitigation strategies (section 1.2). The big effort already
made by the experimental community to identify such trapping centers is
reflected in the large number of experimental evidence retrieved through a
series of characterization techniques (section 1.3).

1.1 Preliminary ideas

Starting from their simplest definition as structural perturbations breaking
the translational symmetry of a crystalline material (section 1.1.1), we ded-
icate the present section to reviewing basic ideas regarding point defects in
semiconductors. Properties such as their electronic activity, linked to the po-
sition of their eigenvalues within the semiconductor gap and to their ability
to generate free carriers in the host bands, allow us to differentiate between
shallow vs. deep centers (section 1.1.2) and the host material between in-
trinsinc vs. extrinsinc semiconductors (section 1.1.3). At equilibrium condi-
tions, their relative occurrence or concentration depending on the presence
of a chemical and/or electronic reservoir is also considered (section 1.1.4).
The creation of charged defects upon the variation of the Fermi energy (or
concentration of free carriers) lets us reexamine the electronic properties of
deep centers in terms of their charge transition levels (section 1.1.5). We
finally consider point defects as dynamic structural distortions in an infin-
ite medium, introducing thermal mechanisms such as migration, diffusion,
clustering and metastable-switching processes (section 1.1.6).
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1.1.1 The notion of crystallographic defects

An ideal crystalline material can be defined as a periodic arrangement of
atoms infinitely extended. The set of primitive vectors, {ai}, defines the unit
cell of the crystal, which determines the translational symmetry of the atomic
lattice. Electrons in a crystal are therefore subject to a periodic potential of
the form V (r) = V (r + R), with R = n1a1 + n2a2 + n3a3 a vector of the
so-called Bravais lattice (ni integer). The electronic wavefunction, ψ(r), of
the one-electron Hamiltonian defined by V (r) was demonstrated to have the
form of a Bloch state (see [1, 2]),

ψk(r) = eik·ru(r) (1.1)

where u(r) has the same periodicity as the atomic structure of the solid and
the plane wave, eik·r, is characterized by a crystal wave vector, k. The ei-
genvalues of the Schrödinger equation, ǫnk, are therefore characterized by a
discrete quantum number n and the continuous crystal momentum, k. The
single-electron energies plotted against the wave vector constitute the so-
called electronic band structure of the solid material. Due to the translational
symmetry of the crystal, the definition of the electronic wave function is not
unique, since any k-vector of the form k + (2mπR) fulfills equation 1.1, m
being any integer. Any crystal wave vector of the lattice is thus, k′ = k−G,
where G is a vector of the reciprocal lattice, defined by the relation eiR·G = 1.
The band structure of the solid is then typically represented within the unit
cell of the reciprocal lattice or the first Brillouin zone.

In such context of crystalline materials, a structural defect is simply
defined as any local perturbation of the solid periodicity. As a common
example of point-like defect, we can picture a missing atom or a vacancy at
a certain position in the lattice, rT, disrupting the already mentioned trans-
lational invariance of the solid, since V (rT) 6= V (rT + R). An electronic
wavefunction trapped within such perturbation of the potential, ψT, is there-
fore not a Bloch state, being completely delocalized in reciprocal space. In
other words, the defect-induced states are confined within a certain region
of the Bravais lattice, in contrast with the bulk states. The one-electron
eigenvalues of such localized wavefunctions, ǫT, are represented as constant
energy levels in the host band structure as shown in Figure 1.1. To con-
clude, point-like defects are crystalline imperfections of the order of one to a
few atoms, introducing constant energy levels due to the localization of the
induced states.
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Figure 1.1: Diamond structure of a IV-type semiconductor containing a
point-like defect. The periodicity of the crystal is indicated by the primitive
lattice vectors, {ai}, and the imperfection, a mono-vacancy, is represented
in light blue. The host band structure, ǫnk, is depicted on the left, where
bulk states are denoted by v if the belong to the valence band and c for
conduction states. A hypothetical defect eigenvalue is plotted within the
semiconductor band gap: ǫT. The electronic density corresponding to the
bulk wavefunction, ψvk, and the defect-induced state, ψT, is represented in
blue.

1.1.2 Shallow vs. Deep centers

Historically, point defects in semiconductors have been classified as shallow
and deep centers depending on the position of their defect levels (ǫT in Fig-
ure 1.1) within the semiconductor gap. In the literature, the definition of
a deep level as one located in the middle of the band gap and a shallow
level as one close to the band gap edges is often found. There are however
defect levels with the same properties of a deep level whose energies are far
from the middle of the gap. We therefore employ the qualitative definition
used in [3]: a shallow or hydrogenic center is one that can be described by a
simple Hydrogen model and a deep center is one that can not. To exemplify
the Hydrogen model, we consider the case of foreign elements from the V-
and III-columns in the periodic table introduced at substitutional positions
in IV-type semiconductors (e.g. at a given r belonging to the Bravais lattice
represented in Figure 1.1). These foreign atoms therefore contribute to the
tetra-folded covalent bonds of the crystal, having one extra (V-elements) or
one missing (III-elements) electron with respect to the host element. The ex-
tra negative or positive charge (missing electron in the case of III-elements) is
located at the so-called shallow states centered at the impurity atom, whose
properties are induced from the analogy with the hydrogen atom. In the
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common example of a phosphorus atom embedded in silicon, the extra elec-
tron is subject to the spherical potential of the impurity, screened by the
dielectric constant of the material. Within the Hydrogen model, the extra
charge is then said to be weakly bound to the foreign element, localized at
defect states with rather extended effective radius. In the ongoing example
of silicon, the extended radius is estimated to be [2],

a∗ = a0
ǫ∞
m∗ (1.2)

where m∗ = 0.3, ǫ∞ = 12 and a0 are the effective mass, the dielectric con-
stant and the Bohr radius respectively, giving an effective radius, a∗= 18 Å
(as a reference magnitude, the nearest neighbor distance in the silicon crys-
tal is 2.35 Å). Defect wavefunctions are therefore said to be shallow states if
their effective radius is significantly larger than the distance to the first and
second neighbours of the point-like defect, introducing energy levels close to
the top or the bottom of the valence or conduction bands.

In Figure 1.2 the band structures of shallow and deep centers are repres-
ented along with a shallow wavefunction, ψp, and a deep state, ψd1 . In the
shallow domain, two energy levels, ǫn and ǫp, located at ∼ kBTRT from the
bottom of conduction band and the top of the valence band are introduced
in the band gap. The ǫn level represents the binding energy of the extra
electron to the V-element impurity in the above-introduced example of IV-
type semiconductors. Such electron is easily thermalized into the conduction
band, contributing with a negative carrier to the host, and the impurity is
said to be a donor center. The impurity embedded in the semiconductor
goes from being at neutral charge state, for the configuration ǫ↑n, to a pos-
itive charge state, ǫ0n, describing the charge transition 0 → +1. The energy
level ǫp, introduced by the III-element impurity, can capture electrons from
valence band or contribute with one positive charge (hole) to the bulk states.
These centers are therefore typically referred to as acceptors, since they are
responsible for the charge transition 0 → -1, corresponding to the change in
the electronic configuration ǫ↑p → ǫ↑↓p . Point defects in semiconductors are
therefore expected to be present at different charge states if they are capable
of capturing/releasing electrons from/to bulk bands.

Deep centers in semiconductors, in contrast with shallow impurities, in-
duce highly localized states (state ψT in Figure 1.1), with effective radius
varying from 2.5 to 4 Å. Furthermore, one single center might introduce
several states within the band gap, whose energies can not be estimated by
simple theoretical models. In Figure 1.2 a deep center with two energy states,
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Figure 1.2: Band structures of hypothetical shallow and deep centers embed-
ded in a IV-type semiconductor. Besides the valence and conduction bands,
defect-related eigenvalues are denoted by ǫ. Two different shallow defects
are considered, the so-called donor and acceptor centers, with one extra neg-
ative and positive charge respectively. Two different electronic occupations
or charge states of a single deep centers are also represented. The electronic
density corresponding to a shallow state, ψp, and a deep state, ψd1 , are also
depicted.

ǫd1 and ǫd2 , located in the gap is considered. Assuming such defect is neut-
rally charged for an electronic occupation equal 2 (a singlet of electrons in
energy level ǫd1 ; d↑↓

1 ), the electronic configuration d↑
1 corresponds to a charge

defect state equal +1 and d↑↓
1 d↑

2 for a singly negative state, -1. If the defect
at neutral charge state releases one electron, d↑↓

1 → d↑
1, the charge transition

0 → +1 occurs and the deep center is said to act as a donor, by analogy with
the transition between the shallow state of the V-element impurity and the
conduction band. The change in electronic occupation d↑↓

1 d0
2 → d↑↓

1 d↑
2 leads

to a second charge transition 0 → -1, and the center is now behaving as an ac-
ceptor. Deep centers introducing several states ǫT in the semiconductor band
gap, being capable of capturing and releasing electrons can therefore act both
as donors and acceptors. To conclude, deep centers capable of trapping free
carriers deep into the semiconductor band gap are said to be electronically
active, since they modify the electronic properties of the material.

1.1.3 Intrinsinc vs. Extrinsinc semiconductors

Probably the most important quantity of any semiconductor is the concentra-
tion of free carriers, i.e. the number of electrons in conduction band, nc, and
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the number of holes in the valence band, pv, at a given temperature T. As-
suming that no accessible levels are available within the band gap (definition
of native or intrinsinc semiconductor), the relation nc = pv is satisfied and
the Fermi energy lies close to the middle of the band gap [1]. When shallow
impurities are however introduced in the crystal, donor and acceptor centers
contribute with negative and positive carriers to the host bands respectively,
altering the intrinsic condition. Increasing the concentration of shallow im-
purities therefore increases the number of free carriers, often receiving the
name of dopant impurities and the host material a doped or extrinsinc semi-
conductor. Crystals intentionally doped with donor centers (typically P, As
and Sb in the case of silicon) are referred to as n-type doped semiconductors,
whereas p-type semiconductors present a majority of positive carriers, arising
from acceptor centers (e.g. B in silicon). If the concentration of shallow im-
purities is large enough (1013-1018 cm−3 for doped-silicon), the position of
the Fermi energy is shifted towards the conduction band for n-type doping,
whereas it is positioned close to the valence band for p-type doping (position
of ǫn and ǫp in band structures of Figure 1.2).

Deep centers, such as native defects like vacancies and interstitials, can
be found in both intrinsinc and doped semiconductors and will therefore be
in contact with an electronic reservoir given by nc. In other words, deep
centers can be found at different charge states if they trap/release free carri-
ers generated by the shallow impurities. These structural imperfections are
therefore responsible for decreasing the desired concentration of free carriers,
and so their electronic activity is said to degrade the well-functioning of elec-
tronic devices. Certain metallic elements (e.g. titanium and gold in silicon)
are thus accidentally introduced in semiconductors, since they might affect
the doping concentration in the sample even at concentrations of a few per-
cent of the desired free carrier concentration [4], being unwanted impurities.
To conclude, impurities are intentionally introduced in the material if they
induce shallow states and they are referred to as dopants, whereas metallic,
chalcogen, halogen, etc. contamination of the sample introduces deep levels
in the band gap for both intrinsinc and extrinsinc semiconductors.

1.1.4 Formation of defects at equilibrium

The accidental formation of point defects in semiconductors strongly de-
pends on the specific defect-inducing process to which the sample is subject
such as dopant implantation, irradiation, exposition to an oxide surface (sec-
tion 1.2.2). At equilibrium, it is however possible to generalize the formation
probability of different defects for a given material, i.e. to estimate the re-
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lative probability of finding a specific center from the catalog of common
“imperfections”. Such probability of occurrence or concentration of a given
defect, d, can be written in terms of the Gibbs formation energy, Gf ,

c d = e−G d
f
/ kT (1.3)

where k is the Boltzmann constant and T the temperature. Since most
computational approaches are limited to the description of zero-temperature
regime, the Gibbs formation energy is often substituted by the formation
enthalpy, Hd

f ,

G d
f = E d

f + Ω d
f P − S dT = H d

f − S dT (1.4)

where E d
f is the formation energy and Ω d

f is the change in volume due to the
inclusion of the defect in the infinite crystal. Assuming the limit of diluted
defects or non-interacting defects, local atomic expansion/compression are
minimal, and so the formation enthalpy is often simply identified with the
formation energy. In such temperature-pressure conditions, the creation of
defects is mainly determined by the the chemical environment of the sample
or the presence of chemical reservoirs. We must therefore distinguish between
a homogeneous and heterogeneous regime of formation, depending whether
the stoichiometry of the sample remains invariant or not. In the former
case, for which there is no exchange with an external chemical phase, native
defects such as vacancies and interstitials are typically studied for an intrinsic
semiconductor. For an extrinsinc semiconductor, a given concentration or
stoichiometry of dopant impurities characterizes the sample and so, dopant-
related defects must also be accounted for in the homogeneous regime. In
the test case of a mono-vacancy in the silicon crystal, the formation reaction
is simply,

Si [bulk] ⇋ SiV[bulk] + Si. (1.5)

The formation energy of the vacancy can be estimated by imposing the con-
servation of energy in the above reaction and so,

EV
f = E [Si, N−1] + µSi − E [Si, N ] = E [Si, N−1] −

N − 1

N
E [Si, N ], (1.6)

where E [Si, N ] is the energy of N units of silicon crystal, E [Si, N−1] is the energy
of N units of silicon crystal containing one vacancy, and µSi is the chemical
potential of silicon for the missing atom, which is defined from the silicon

bulk energy cohesion,
E [Si, N ]

N
. In the more complex scenario for which the

sample is in contact with an external reservoir, the chemical potential of
different species must be determined in order to fulfill the conservation of
mass. Due to the large variety of chemical environments of silicon wafers
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(section 1.2), the estimation of chemical potentials becomes a challenging
task and beyond the interest of the present work. On the other hand, the
relative stability of an external species at different sites in the lattice might
be easily computed since the dependency with µ is canceled out. In the case
of metallic impurities in silicon, the relative formation energy of the species
at substitutional or interstitial positions in the lattice is simply,

ETMI
f − ETMS

f = E [Si, N ; TMI] − E [Si, N−1; TMS] −
1

N
E [Si, N ] (1.7)

where TM stands for Transition Metal and the subscripts S and I indicate
a substitutional or interstitial lattice sites. Such energy difference therefore
reveals which of the two defects is energetically more favorable or stable re-
gardless of the chemical environment.

So far we have considered the creation of defects for which the quantities
pv and nv remain constant during the formation reaction. In other words, in
equation 1.5 the created defect is imposed to be neutrally charged, without
trapping/releasing free carriers from the crystal bands. It is however possible
that a given defect is prominently found at a different electronic occupation,
and so, the formation energy of charged centers becomes the key quantity to
analyze the relative stability of a given center at different charge states. The
reaction process for the charged vacancy is, for example,

Si [bulk] ⇋ SiV
q

[bulk] + Si − qe (1.8)

where q symbolizes the charge of the defect or the number of electrons re-
leased by the center to the crystal. The notation dq for charged defects is the
one employed throughout the present manuscript. Since at equilibrium the
electronic exchange is determined by the Fermi energy position, the energy
of q electrons transferred to an electronic reservoir is given by qµe,

EVq

f = E q
[Si, N−1] −

N − 1

N
E [Si, N ] + qµe (1.9)

The most thermodynamic stable charge state can therefore differ depending
on the position of the Fermi energy, which is typically represented with re-
spect the top of the valence band (TVB), µe = ǫTVB + EF. In the case of
extrinsinc semiconductors, for example, the center might be stable at pos-
itive charge state for a p-doped sample, whereas it is found in its negative
charge state in the n-type doped semiconductor. Identifying the energetically
most preferable charge state for a given center and EF is typically achieved
by analyzing the so-called charge transition levels (CTLs), as described in
the following.
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1.1.5 The notion of charge transition levels

The charge transitions levels (CTLs) of a deep center delimit energy regions
within the semiconductor band gap in which the defect is energetically more
favorable in a certain charge state. The Fermi level for which the charge
transition (q/q ± 1) occurs is therefore referred to as charge transition level
and it is denoted as E(q/q ± 1). In Figure 1.3a, the positions of the charge
transition levels E+/0 and E0/− corresponding to the hypothetical deep cen-
ter in Figure 1.2 are represented with respect to the host band edges (top
of the valence band, TVB, and bottom of conduction band, BCB). Such de-
fect is therefore stable at three charge states (+1, 0, -1), with transitions
occurring at different energy intervals through the band gap: ǫTVB → E+/0,
E+/0 → E0/−, E0/− → ǫBCB respectively. We remark that even if CTLs are
commonly called defect levels, they correspond to transitions between differ-
ent electronic occupations of the defect-induced states. If we reconsider the
example given in Figure 1.2, the donor level (0/+1) corresponds to a change
in occupation of the orbital ψd1 from one to two electrons and viceversa,
d↑
1 ⇌ d↑↓

1 (where charge neutrality was assumed for the configuration d↑↓
1 ).

In other naive words, an optical absorption band can be identified with an
electronic excitation involving two defect-states (d↑

1 → d↑
2 in the ongoing ex-

ample), but never between two CTLs. For this reason, the charge transition
levels are also named as thermodynamic levels, to differentiate them from the
optical levels, equal to the absorbed or emitted photon energies [5].

0+
_

TVB BCB

charge transition levels

Ef
q

q

Fermi energy

=q + =q _
(a) (b)

= 0

Figure 1.3: (a) Charge transition levels E+/0 and E0/− with respect to the
top of the valence band (TVB) and the bottom of conduction band (BCB)
for a hypothetical deep center. (b) Stability diagram for the same center:
formation energy for q = 0, ±1 versus the Fermi energy, EF ∈ [ǫTVB, ǫBCM].

In terms of the formation energy of charge defects (equation 1.9), the

transition level E(q/q′) is defined as the Fermi energy for which E q
f = E q′

f ,

E(q/q′) =
E q

[Si, d] − E q′

[Si, d]

q′ − q
(1.10)
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CTLs are often represented in stability diagrams, like the one in Figure 1.3b,
since they represent the thermodynamic most stable charge state of the defect
at a given Fermi energy. The ordinate axis corresponds to the formation
energy at a given charge state and the abscissa, the Fermi energy varying
from the top of the valence band and the bottom of conduction band, EF ∈
[ǫTVB, ǫBCM]. The intersection of two curves, E q

f and E q′

f , represents the CTL
corresponding to the transition q ↔ q′.

1.1.6 Finite-temperature defect dynamics

Besides altering the electronic properties of semiconductors, point-like im-
perfections are also responsible for matter-transport thorough the crystal at
small length-scale (metastable-switching phenomena) and at larger length-
scales, with the diffusion of dopants and metallic impurities, the clustering
of native defects, etc. These mechanisms are only visible for certain temper-
ature regimes since they are originated by the lattice dynamics or vibrations.
In Figure 1.4, we have represented different defect lattice-related mechan-
isms within an energy surface corresponding to the formation free enthalpy
for a given atomic configuration, involving the center (a silicon vacancy) and
its first neighbors. As depicted, the minima of the energy surface (points
designated by m1, m2 and m3) correspond to local atomic rearrangements or
elastic distortions in the surroundings of the center, induced by the form and
orientation of the defect-related states. Such structural reorganization might
be in the form of an isotropic expansion, or more complex symmetry-breaking
mechanisms (like the two-against-two paired distortion represented for the
vacancy in Figure 1.4). If a given center presents two or more structural
patterns with different symmetry as global and local minima of the surface,
it is said to be metastable. The mechanism for which the defect modifies its
geometry between local/global minima (at constant lattice site) is referred
to as the metastable-switching process. In the example given in Figure 1.4,
the defect presents two equivalent minima due to the equivalent symmetry
of both configurations m2 and m3, but different orientation in the lattice.
The vacancy can therefore reorient through the transition m2 → m3. If, on
the other hand, the defect migrates to a different position in the lattice, the
defect is diffusing through the crystal (process m1 → m2). In the case of nat-
ive defects, such as the mono-vacancy in the ongoing example, the diffusion
mechanism (e.g. intermediate structural conformations between minima)
is relatively easy to conceive. Vacancies and self-interstitials are however
known for gathering in nearby lattice sites, constituting large clusters of de-
fects. Metallic impurities might migrate from interstitial lattice sites to a
substitutional position by a kick-out mechanism, creating one self-interstitial
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in the process.

mm1 m3

SP

2

Ef

Figure 1.4: Schematic energy surface constructed by assigning a formation
energy value to a certain atomic configuration of the mono-vacancy in silicon.
The three minima of the surface, denoted as m1, m2 and m3, are represented.
Transition paths between different geometries are also depicted, only the
one between m2 and m3 being a minimum energy path. The saddle point
(SP) of the MEP is also marked. Electronic densities at different atomic
configurations are represented in purple.

So far we have merely described the matter-transport mechanisms without
determining the probability of each event to occur. Given I and F, two stable
configurations of the energy surface, the simple transition-state theory estab-
lishes that the reaction I → F passes through an intermediate state, referred
to as the transition state. Such transition state determines the reaction con-
stant, R, since it allows to define the Gibbs activation energy, ∆Ga, as the
energy required to go from the initial point I to the active-state,

R ∝ e−∆Ga / kT (1.11)

The description of ∆Ga in terms of the variation of enthalpy allows to
disentangle a temperature-independent prefactor, from the Arrhenius law,
e−∆Ha / kT. As however commented above, within the employed theoretical
models, the formation enthalpy is often substituted by the formation energy,
Ef (Figure 1.4). In general terms, among all the existent transition paths
between states I and F in the energy-configuration space, the saddle point
of the Minimum Energy Path (MEP) corresponds to the active-state of the
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reaction. In Figure 1.4, the active state or saddle point of the transitions
m2 → m3 is marked by SP, and so the MEP is represented. From the form
of the energy surface, the activation energy for the second mechanism m1 →
m2 is larger than the former one, even if the depicted path does not corres-
pond to the MEP. Comparing activation energies between different processes
allows to have a first insight of the relative occurrence of each lattice-related
mechanism at a given temperature. If however the estimated reaction con-
stant wants to be compared to measured transition rates, the prefactor in
equation 1.11, or more generally, the diffusion coefficient is to be determined.

1.2 The case of silicon

From an applied point of view, the idea of modifying the characteristic Fermi
level of semiconductors by introducing shallow centers or dopants in the crys-
talline structure is at the fundamental basis of silicon-based technology. More
specifically, these electronic devices are based on the well-known pn-junction,
presented in section 1.2.1, constituted by the union of n-type doped silicon
and p-type doped silicon. In the context of microelectronic technology, both
donor and acceptor shallow centers are intentionally introduced in the crys-
tal during the device manufacturing process. Deep centers, on the other
hand, are typically undesirable side effects of the doping process that might
strongly affect the performance of microelectronic devices. An overview of
the most common defect-inducing processes in silicon diodes is presented in
section 1.2.2, whose resulting damage constitutes a large catalog of imper-
fections in the diamond structure. A representative part of such catalog is
introduced in section 1.2.3, where both shallow and deep centers, intrinsic
versus extrinsic defects are classified.

1.2.1 Introduction to the pn-junction

This section aims to give a few basic ideas behind the operation of the junc-
tion so that the fundamentals behind the experimental technique Deep Level
Transient Spectroscopy (DLTS) are later more easily introduced. The pn-
junction is built by the union of n-type doped silicon, for which a certain
concentration of shallow donor impurities has been introduced in the crys-
tal, and p-type doped silicon, with a given concentration of shallow acceptor
centers. As has been previously discussed, shallow defects modify the Fermi
level of the semiconductor, being close to the conduction band in the case
of n-type silicon, and around the valence band for the p-type silicon. Free
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electrons are therefore thermally generated for n-doped silicon, while an in-
crement of the hole concentration can be expected for p-doped silicon. When
both types of doped silicon are joined, a free carrier concentration as the one
showed in Figure 1.5A is then to be expected. Within the proximity of the
junction interface, bound electrons might leave their respective donor im-
purity and be trapped by the acceptor levels. The result of this electronic
exchange is a charge space region, characterized by positively charged donors
and negatively charged acceptors (i.e. P+ and B−, in the case of phosphours
and boron doped silicon). The confronted opposite charged regions (blue vs.
green regions in Figure 1.5B) induce an electric field which acts against the
charge exchange between impurities, defining the charge space region. The
width of the charge space region (denote by W in Figure 1.5) is therefore bal-
anced by the drift of electrons, P + B → P+ + B−, and the induced electric
field, ~E, opposite to the drift. We note that within the region where shallow
impurities are charged, there is no mobile carrier concentration, and so such
region is also known as depletion region. Profiles of charge distribution and
the absolute electric field along the junction, and especially thorough the
depletion region are shown in Figure 1.5B. Finally, the potential difference
across the junction or the energy needed for free carriers to go from one
doped side to the other is represented in Figure 1.5C as eV0.
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Figure 1.5: The pn-junction and the free carriers concentration along the
union (A); the charge distribution and the induced electric field, E, are rep-
resented in (B); and the band diagram is drawn in (C), where the position of
the Fermi energy is indicated, EF. The so-called depletion region or charge
space region (W) is also shown.

To conclude, if an external potential is applied to the equilibrium junc-
tion, two operating regimes of the diode can be distinguished: the forward
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bias and the reverse bias regimes. In the case of the forward bias regime, the
n-side and the p-side of the junction are respectively connected to the anode
and cathode of the external battery. Free carrier on each side are therefore
repelled towards the junction interface, narrowing the depletion region. For
a certain applied potential, the depletion region narrows sufficiently so free
carriers can cross the junction, and a current can be measured in the circuit.
If, on the contrary, the cathode and anode connections to the junction are
inverted, the depletion region is expanded, leading to a high resistivity to the
flow of current (reverse bias regime).

1.2.2 Defect-inducing processes

Within the vast catalog of silicon-based devices, let us give the example of
the image sensors based on the Complementary Metal Oxide Semiconductor
(CMOS) photodiodes, for which the photon absorption mechanism occurs in
the depletion region of the junction (Figure 1.6a). After growing the silicon
wafer, the first step in the fabrication process of any device is to introduce the
shallow impurities in the perfect crystal. Among the most common doping
techniques, we cite the diffusion of the dopants into the semiconductors by
putting it in contact with a gas containing the desired impurities; and the ion
implantation process to accurately target positions of the doped region. Dur-
ing the ion implantation process, silicon is bombarded by III- and V-elements
ions at low temperature. The crystal structure is often damaged since the
incident ion triggers the so-called energetic collision cascades or displacement
cascades. These cascades can be defined as consecutive collisions of atoms,
leading to their displacement from their original lattice positions, creating
traces of vacancies and self-interstitials, amorphizing the material. In Fig-
ure 1.6b the displacement cascade of an energetic ion accelerated into silicon
is shown. A second process, known as the dopant activation mechanism, is
then started by heating the sample, allowing vacancies and interstitials to
become mobile, finding and annealing each other, recrystallizing the mater-
ial. Once the underlying pn-junction of the photodiode is constituted, the
passivation of the silicon surface is often achieved by thermal oxidation, cre-
ating an insulating SiO2 layer (Figure 1.6a), allowing the electronic current
to flow through the device overcoming surface states. Finally, the realization
of an integrated circuit is possible if electronic devices can be interconnec-
ted through the metallic electrodes. This last process is typically referred
to as metallization of the silicon substrate, since the metal-semiconductor
junction is manufactured. To conclude, during the described manufacturing
process, other impurities besides the implanted ions might be accidentally
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introduced in the material; it is the case of hydrogen-rich environment, oxid-
ation of surfaces or even the presence of small metallic particles coming from
the degradation of the chamber components. Purification techniques and re-
crystallization of the semiconductor are often not sufficient to ensure optimal
samples, thus motivating the study and characterization of deep centers as a
fundamental step for defining mitigation strategies.
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Figure 1.6: CMOS conventional photodiode (a) and the displacement damage
due to incident energetic particles into the silicon wafer (b). Displacement
cascades I and II show the trace of the Primary Knock-On atom (PKA) in
red, and the ones corresponding to the Secondary Knock-On atoms (SKA)
in blue. Atoms kicked by the SKAs are also shown in green, whereas the
resulting interstitials are represented in orange. The thermal wave in cascade
II is constituted by atoms kicked out from their original positions, rapidly
taking back their corresponding lattice sites. Simulated cascades are courtesy
of T. Jarrin.

Besides the manufacturing-induced damage, electronic devices might be
subject to highly energetic irradiation if, for example, they are used in ex-
treme conditions, such as aerospace applications. Environmental incident en-
ergetic particles generate a displacement damage similar to the one described
in the manufacturing process, characterized by displacement cascades as the
one shown in Figure 1.6b. In this context, silicon doped wafers subjected to
incident energetic particles, like electrons, protons or neutrons are referred
to as irradiated silicon in the present manuscript. According to the size of
the incident particle, different displacement effects can be expected. Protons
and neutrons are known to generate clusters of defects, whereas point-like
defects are mostly found in electron-damaged silicon. Experimental meas-
ures to characterize point defects in silicon are therefore often performed on
electron-irradiated doped silicon (section 1.3).
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1.2.3 A catalog of common defects

As a result of the above described defect-inducing processes, a large cata-
log of point defects can be commonly encountered in silicon-based devices.
Among such variety, a relatively small, but representative, selection of de-
fects in crystalline silicon is represented in Figure 1.7. Within the given
catalog, native defects such as monovacancies (Fig.1.7 a) and self-interstitals
(Fig.1.7 b) are small imperfections of the lattice, capable of easily diffusing
through the bulk, often finding another point defect to form a bigger com-
plex. The vacancy-self-interstitial pair, for example, known as the Frenkel
pair, is a common defect in all types of semiconductors. In irradiated silicon,
small clusters or aggregation of intrinsic defects have been observed, such as,
for example, the silicon divacancy (Fig.1.7 c), constituted by two adjacent
vacancies. The subset of defects involving small elements like H, C and O
are present in a large variety of forms, from being isolated impurities to com-
plex stoichiometric compounds: Oi, VO (the vacancy-oxygen complex or the
A-center, Fig.1.7 d), VOH, V2O, Ci, CsCi, CiOi, etc; where the subscripts s
and i stand for substitutional and interstitial positions respectively. As men-
tioned above, to increase the number of free carriers in the semiconductor,
impurity dopants are intentionally implanted in the bulk; in n-type doped
silicon, phosphorus, arsenic and antimony atoms can therefore be found at
substitutional positions (Fig.1.7 e). Even if such donor elements introduce
harmless shallow levels in the band gap, their interaction with other intrinsic
defects modifies the nature of the defect states, becoming deep centers. This
is the case of the silicon E-center, constituted by a vacancy trapped next to
a donor element (Fig.1.7 f). During the mentioned manufacturing process,
certain unwanted metallic contamination might occur. Transitions metals
might therefore be present in both substitutional and/or interstitial posi-
tions of the lattice (Fig.1.7 g-h).

From the above given catalog, only the (e) centers, elements from the V-
column of the periodic table, introduce shallow states in the silicon band gap.
The rest of the pictured defects are deep centers, most of them acting both
as donors and acceptors of carriers upon the position of the Fermi energy
(or the concentration of free carriers). The A-center (d) is known to only
capture electrons, being exclusively an acceptor center. Interstitial Ti gives
up to two electrons, receiving the name of a double donor, in p-type doped
silicon, and it traps one electron in n-type doped silicon, acting as a single
acceptor. Substitutional Ti, on the contrary, does not capture or release elec-
trons, since it is not electronically active. As stated before, there is no simple
model capable of predicting the charge states of a deep center at different
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Figure 1.7: Non-exhaustive catalog of point defects in silicon: the monova-
cancy (a), the self-interstitial (b), the divacancy (c), the A-center (d), the
V-element dopant impurity (e), the E-center (f) and the substituional (g)
and the interstitial (h) metallic impurities. In structures (a), (c) and (f),
vacancies, v, are represented as light blue missing atoms; whereas the absent
silicon is not explicitly depicted for the oxygen-vacancy complex (d).

EF, or whether it acts as a donor or as an acceptor center. The DLTS experi-
mental technique, described in section 1.3.3, and the theoretical formulation
of the CTLs, section 1.1.5, represent the effort made by the community to
characterize the electronic activity of deep centers in semiconductors.

1.3 Characterization techniques

Since silicon is the most used semiconductor in the microelectronic industry,
point defects in silicon have been extensively characterized both experiment-
ally and theoretically. The physical fundamentals of the most common ex-
perimental techniques, Optical Absorption, Luminescence, and Photocon-
ductivity, the Electronic Paramagnetic Resonance (EPR), and Deep Level
Transient Spectroscopy (DLTS), are reviewed in this section, as well as some
of the most relevant references in silicon. As it will be evident shortly, these
techniques complement each other, since they respectively provide informa-
tion regarding light-induced electronic transitions within the center, the local
defect geometry, and the electronic activity of deep centers.
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1.3.1 Optical Absorption, Luminescence and Photo-
conductivity

Optical absorption is probably the most ancient technique employed to char-
acterize defects in solids, since in the thirties R. W. Pohl named as Farbzen-
tren the F-centers in alkali halide solids [6]. The absorption of visible light by
electrons localized within the anion vacant site in the ionic lattice were said
to be responsible for the color of the samples containing crystallographic de-
fects, being transparent for an otherwise perfect solid. In the context of point
defects in semiconductors (Figure 1.8A), one or several trap-induced states
are introduced in the band gap, allowing electronic excitations (triggered by
light absorption) or deexcitations (e.g. spontaneous emission of photons or
luminescence) within the forbidden gap. The absorption of light might lead
to a measurable photocurrent if the electronic transition involves a localized
defect state and one of the host bands. Optical absorption and photocon-
ductivity measures are therefore of great interest to characterize optical and
electronic properties of point defects embedded in a semiconductor.
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Figure 1.8: (A) Photon absorptions, hν1 and hν2, and photoconductivity in
semiconductors. (B) Coordination diagram of the photon absorption and
emission cycle for an electron trapped in the anion vacant side of an alkali
halide solid. Equilibrium geometries corresponding to the ground state (prior
to light absorption, hνabs), g; and to the excited state after lattice relaxation
(prior to photon emission, hνemis), g∗ are also shown.

One of the main conclusions extracted from the pioneer work of R. W.
Pohl is that point defects might trigger a local rearrangement of nearby
atoms after the electronic occupation of its localized states is modified. In
other words, the equilibrium geometry of the defect might differ between its
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ground state (prior to light absorption) and its excited state (once the exciton
or electron-hole pair is created). Evidence of this atomic rearrangement was
the measure of two different photon frequencies in the absorption and the
emission spectra, hνabs 6= hνemis. The energy loss was said to be given to the
lattice, stored as a local atomic rearrangement or lattice relaxation, Erelax.
The energy exchange during the cycle of photon absorption and emission is
represented in the so-called coordination diagram (Figure 1.8B). Coordina-
tion diagrams are widely used to discuss defect-related processes in solids [7]
and they will be reviewed in detail in Chapter 5. Recovering the interest of
the present section, we emphasize the experimental evidence that point de-
fects with different electronic occupations might induce different local atomic
geometries (equilibrium geometries g and g∗ in Figure 1.8). In the case of
silicon, characterized by an indirect optical band gap equal 1.1 eV, the char-
acterization of the photon absorption and emission cycle by point defects
is very limited. However, by using complementary experimental techniques
(like the EPR spectroscopy) the equilibrium geometry of point defects in
silicon at different charge states might be determined. A second conclusion
naturally raised by the coordination diagram in Figure 1.8B is that in the
limit case of T → 0 one can in principle assume that the number of absorbed
and emitted photons is equal. In the however common finite temperature
conditions, far from the limit case, the phenomenon known as quenched lu-
minescence typically occurs. In other words, different deexcitation processes
besides the one of spontaneous emission compete, being ranked by their re-
spective capture cross sections. In this context, we cite the pioneer work of
Huang and Rhys [8] on the evaluation of capture cross section of luminescense
versus thermal deexcitations, referred to as non-radiative transitions.

Infrared-absorption in silicon

We now introduce some optical measures performed in irradiated silicon.
Even if such experimental evidence was collected over a few decades ago,
certain absorption bands have not yet been assigned to a particular defect
or, when they have, to a specific electronic transition within the defect elec-
tronic configuration. There is therefore an actual need and/or motivation
to theoretically investigate the point-defect band structure, estimating the
electronic excitations, predicting the optical signature of centers. Early work
on infrared absorption and photoconductivity in silicon was collected in [9];
they reported up to eight bands at wavelenghts 1.8, 3.3, 3.9, 5.5, 6.0, 20.5,
27.0 and 30.1 µ (microns). Even if complementary information regarding the
electronic transitions was reported, such as measurable photocurrent, none
of the bands were assigned to a particular defect. Later EPR and infrared
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absorption joined studies [10, 11] succeded in assigning the 12 µ band to the
silicon A-center, motivating the work on infrared absorption in silicon. A
great effort was later made by Watkins and Corbett [12] to unequivocally
assign the 1.8, 3.3 and 3.9 µ bands to a single defect: the silicon divacancy.
We note that even if the defect was identified, the assignment of each band to
a specific electronic transition for a certain charge state remains uncertain.
Figure 1.9 represents an optical signature of irradiated n-type and p-type sil-
icon and their yet unassigned charged centers. Covering the vast literature of
optical characterization of silicon defects is beyond the scope of the present
work; relatively recent collections of optical-related measures can be found
in [13, 4].

Unirradiated

n - type Si

p - type Si

Wave length (Microns) 

1.8 μ

1.8 μ

3.3 μ

3.9 μ

5.5 μ 8 μ

9 μ 12 μ

Figure 1.9: Schematic diagram of radiation-induced defect infrared absorp-
tion bands in both n- and p-type silicon in the wavelenght region 1-13 µ,
based on [12].

1.3.2 Electronic Paramagnetic Resonance (EPR)

The present section is dedicated to review the fundamental physical con-
cepts behind the Electronic Paramagnetic Resonance (EPR) technique. The
reader should expect a short introduction to the topic, with emphasis on
characterizing point defects in semiconductors; for a more advance reading,
we recommend [14]. EPR spectroscopy is a powerful technique which targets
paramagnetic centers (or point defects with an unpaired electron) in a per-
fect diamagnetic crystal. It reveals information about the local environment
of such unpaired localized electron, by analyzing the relativistic interaction
between the unpaired electron, an external applied magnetic field and the
surrounding nuclei.

27



As in any confined system, paramagnetism arises from the magnetic di-
pole moment, µ, induced by the electronic total angular momentum, J. Be-
sides its intrinsic angular momentum or Spin, S, a bound electron presents
the so-called orbital momentum associated to its interaction with a central
potential, L, giving J = S + L. Now, for simplicity and in order to focus on
the fundamental magnetic interaction, we consider the case of a free electron,
with L = 0. The magnetic dipole moment can then be written as,

µS = −gβS. (1.12)

Where β is the Bohr magneton and g is the Landé factor (being g = 2.0023
for a free electron). If the system is perturbed by an external magnetic field
along the z-axis, H, an energy shift of the electronic states in the form of the
Zeeman Hamiltonian is expected,

HZ = −µS ·H = gβHSz, (1.13)

where the projected spin values, Sz, are given by the Pauli matrix operator
Sz = ~

2
σz, with eigenvectors |Sz,M〉 and eigenvalues M = ±1

2
. The perturb-

ative Hamiltonain in equation 1.13 therefore gives a total energy splitting
equal gβH (Figure 1.10A). The energy splitting due to unpaired electrons
subject to a static magnetic field can then be measured by photon absorp-
tion if hν = gβH. In a more realistic picture, the orbital angular momentum
is not quenched, 〈L〉 6= 0, and the total momentum Jz has 2Jz + 1 eigen-
states, |Jz,M〉. Similarly to the previous example, the applied magnetic
field breaks the degeneracy of the angular momentum eigenstates by shift-
ing their energy levels by gβHM respectively. For a Jz relatively large, the
multiplicity of the levels in principle allows multiple optical transitions to oc-
cur (|Jz,M = −Jz〉 → |Jz,M = −Jz + 1〉, ... |Jz,M = −Jz〉 → |Jz,M = Jz〉).
However, if we impose the conservation of the total angular momentum,
only transitions with ∆M = ±1 can actually be observed, characterized by
a photon frequency equal gβH. The resonant condition or the photon fre-
quency for which an EPR peak will be observed is therefore hν0 = gβH,
independently of Jz. The EPR spectra can be generated by varying the mi-
crowave frequency of the incident photon, keeping the applied magnetic field
constant or viceversa.

For an even more realistic model, the inclusion of hyperfine terms arising
from a nearby nucleus should be included in equation 1.13. In other words,
the resonant condition or energy shifts might be modified by the presence of
a nucleus with a non-zero nuclear magnetic moment dipole, µI = gnβnI (Fig-
ure 1.10B). Similarly to the electronic angular momentum, the nuclear spin
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Figure 1.10: (A) Energy splitting for a J = 1
2

system due to the external field
Hz. (B) Electronic and nuclear magnetic dipoles, µS and µI, subject to an
applied magnetic field, H. (C) Schematic EPR spectra for interstitial Al+2

in silicon after [14].

projected along the z-axis, Iz, presents 2Iz +1 degenerate eigenstates, |Iz,m〉.
The interaction of such nuclear magnetic dipole with an applied magnetic
field is at the base of the Nuclear Magnetic Resonance spectroscopy, which
reveals information regarding the energy shifts for a given momentum eigen-
value, m. In the case of EPR spectroscopy, the interest is to determine how
the electronic and nuclear magnetic dipole interaction shifts the unperturbed
electronic states or the resonant frequencies, hν0. The effective magnetic field
seen by the unpaired electron depends on the distance between dipoles and
the relative orientation of the nuclear spin (Figure 1.10B). In its more gen-
eral form, the energy correction can be written in terms of the hyperfine
tensor [14], HI = A · I/gβ, giving new resonant frequencies at,

hν0 ≃ gβ

(

H +
Am

gβ

)

. (1.14)

We note the presence of the nuclear magnetic eigenvalue in the above resonant
condition, indicating that for each azimuth-projected quanta an EPR peak is
observed. In the case of irradiated silicon, the EPR spectrum of interstitial
Al at charge state +2 reveals several satellites arising from the hyperfine
interaction with nearby Si nucleus (Figure 1.10C). These weak signals are
typically assigned to the interaction with non-equivalent silicon neighbors
sites. We also remark the equivalent peaks due to opposite projections of the
nuclear spin, ±m (marked with arrows in Figure 1.10C).

To this moment, we have merely considered the simplest case of a free
electron subject to an applied magnetic field and one nuclear magnetic dipole.
If we now considered a localized unpaired electron within a crystal, interac-
tions with several nearby nuclei can be expected, with corresponding nuclear
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spins Ij, and whose interactions with the electronic dipole are described by
the hyperfine tensors Aj. We also note that the orbital angular momentum
contribution to the electronic magnetic dipole might be introduced by the
so-called g-tensor, g. In a few words, the g-tensor, typically expressed as
g = g01 + ∆g (being g0 = 2.0023), measures the angular momentum devi-
ation of the real unpaired electron in the crystal from a free electron. The
isotropic or anisotropic contribution ∆g therefore reveals information regard-
ing the form and extension of the defect induced state, giving an idea of the
defect local environment or the defect local symmetry. EPR spectroscopy is
capable of measuring the magnitude of ∆g through the interaction of the ef-
fective electronic magnetic dipole, defined as µeffec = βS ·g, with the applied
magnetic field,

HZ = βS · g ·H +
∑

j

S ·Aj · Ij. (1.15)

To conclude, the main axis and eigenvalues of the g-tensor enclose inform-
ation regarding the form, location and environment of the defect electronic
state responsible for the paramagnetism.

EPR spectra of silicon

Since the present manuscript is not conceived as a complete review of EPR
spectroscopy in silicon, only the work of G. D. Watkins & J. W. Corbett on
point defects in irradiated silicon [15, 10, 11, 16, 17, 18, 19] is here introduced.
Watkins and Corbett performed an extensive analysis of point defects created
in silicon upon irradiation. In particular, they used an electronic beam as
incident energetic particles, since they create simpler damage with respect to
protons or neutrons, allowing the investigation of primary defects (isolated
vacancies, interstitials, etc.). Examples of these primary defects in n-type
silicon are, for example, the silicon monovacancy, the A-center, the divacancy,
the E-center (a-d,f in Figure 1.7). The main axis and main values of the
g-tensor for the A-center (vacancy-oxygen complex in Figure 1.11A) were
determined to be [10],

g1 [01̄1] = 2.0093, g2 [011] = 2.0025, g3 [1̄00] = 2.0031. (1.16)

The tensor axis, given in the form of axis of the crystal, reveals the relative
orientation of the defects, whereas the main values show the anisotropy of
such directions. As shown in Figure 1.11, the unpaired electron for the neg-
atively charged center was deduced to be located within an extended orbital
between silicon atoms 1 and 2. Auxiliary techniques to the EPR spectroscopy
were typically used to supplement the study of deep centers. It is the case
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of the optical illumination in situ and uniaxial stress application. Optical
illumination of defects with frequencies larger than the silicon band gap al-
lows the exchange of free carriers between valence and conduction bands. If
the original diamagnetic center captures or releases an electron, EPR signals
corresponding to its paramagnetic charge states will appear. It is the case,
for example, of the diamagnetic A-center at neutral charge state. Defects
presenting multiple equivalent orientations in the lattice are equally prob-
able, given equivalent EPR signals. Continuing with the A-center example,
we note that it presents up to six equivalent orientations, depending on the
position of the interstitial oxygen and therefore of the extended orbital. Such
equivalency can be broken by applying an unixial stress, forcing the defect
to have a preferred relative orientation. The dynamics of the center can be
studied by measuring the recovery or relaxation time to populate again all
possible configurations. The applications of these techniques to irradiated
silicon is discussed in detail in Chapters 4 and 5 for the E-center and the
divacancy.
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Figure 1.11: The main axis of the g-tensor for the silicon A-center or the
vacancy-oxygen complex after [10]. The extended defect orbital is represen-
ted in black.

1.3.3 Deep Level Transient Spectroscopy (DLTS)

The Deep Level Transient Spectroscopy (DLTS) technique to characterize
deep levels in semiconductors was first proposed by D. V. Lang in 1974 [20].
In a few words, DLTS allows to estimate the relative position of a trap level
with respect to the bulk bands, by monitoring its capacity for emitting elec-
trons at a given temperature. DLTS therefore aims at a full characterization
of the electronic activity of a given center by measuring the activation energy
required for a trap to release an electron (equivalent to the binding energy of
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the extra electron to a shallow donor impurity) and the probability of such
thermal process to occur.

Before describing how a DLTS measurement is performed, let us quickly
review the pioneer work of Shockley and Read from 1952 regarding the stat-
istics of the recombinations of holes and electrons in a semiconductor, for
which the recombination process occurs thourgh a trapping mechanism [21].
According to such early work, four trapping mechanisms should be distin-
guished: electron capture (I), electron emission (II), hole capture (III) and
hole emission (IV); such processes I-IV induced by the defect, T, are repres-
ented in Figure 1.12A. Within the principle of detailed balance, the capture
and emission rates of free carriers by the trap were estimated, by establishing
that at thermal equilibrium the same number of carriers were emitted and
captured by the defect. If nT denotes the density of electrons in the trap and
Nt the concentration of traps in the semiconductor, the electronic emission
and capture rates, en and cn, can be balanced as,

ennT = cn(NT − nT) (1.17)

The capture rate of an electron in conduction by a trap, was written as
cn = σn 〈vn〉n, being σn the so-said intrinsic capture cross section of the
defect, n the concentration of free electrons and 〈vn〉 the thermal velocity
of electrons. The probability of the trap being occupied, f = nT/NT was

determined by imposing the Fermi-Dirac distribution, f =
[

1 + e(ET−EF)β
]−1

.
The emission rate from equation 1.17 was then written as,

en = σn 〈vn〉Nc e
−(EC−ET)β (1.18)

where Nc was defined as the effective density of levels for conduction band,
with energy EC. The importance of reviewing this model in the context of
DLTS is that these equations served as guidance in the post-processing of the
output signal. As a first idea, the activation energy, EC−ET in Figure 1.12A,
and the capture cross section of the trap, σn, are the quantities aimed to be
determined by DLTS.

The experimental set up of DLTS is based on the fundamental operation
of the pn-junction (section 1.2.1), since it monitors the release of carriers
from trap levels located within its depletion region, by measuring the vari-
ation of the so-called pn-junction capacitance at a given temperature (Fig-
ure 1.12B). Acknowledging the definition of the charge space region for a
pn-junction under reverse bias, the reader might agree that a depletion ca-
pacitance might be naturally defined as a function of the total charged ions
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Figure 1.12: (A) Shockley and Read theory of recombination of electrons and
holes in a semiconductor through trapping mechanisms, I-IV, based on [21].
(B) Fundamental operation behind a DLTS measure, from [20]. The pn-
junction at reverse bias with no trapped electrons (I), the filling pulse at
forward bias (II), and the emission of trapped electrons at reverse bias (III).
(C) A DLTS characteristic peak, S(T), defined as the depletion capacitance
transient in the time interval, t ∈ [t1, t2], at various temperatures.

within W might be naturally defined. If however, traps in the depletion
region are to be charged/discharged (to capture/release electrons from the
host bands), they can also contribute to modify such capacitance. In order
to measure the capacitance transient in the junction due to the presence of
traps, the occupation of such levels needs to be ensured. The filling of the
traps is achieved by applying an injection pulse to the junction or switching
from reverse bias to forward bias regimes. As shown in Figure 1.12B, during
the injecting pulse the depletion region is compressed, allowing free carriers
to be captured by defects. Once the junction is again at reverse bias, traps
start to emit carriers to bulk bands. Since the re-emission of carriers modi-
fies the charge in the depletion region, the capacitance changes accordingly.
One DLTS signal (Figure 1.12C) is constructed by several consecutive injec-
tion pulses at different temperatures. The capacitance variation or transient,
C(t1) - C(t2), at different temperatures for a given time interval, t ∈ [t1, t2],
constitutes the DLTS peak. Now, before concluding with the experimental
procedure, we remark that the pn-junction in Figure 1.12B actually corres-
ponds to a pn+-junction; i.e. the n-side of the junction presents a heavier
impurity doping level than the p-side, presenting a majority carrier concentra-
tion of electrons. The injection pulse would therefore mainly inject electrons,
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almost exclusively filling traps located in the upper side of the band gap.
Similarly, measures performed on a p+n-junction reveal information about
traps located within the lower side of the gap, electrons being the minority
carrier concentration.

A DLTS peak, like the one showed in Figure 1.12C, already gives an idea
of the temperature regime for which a given defect is electronically active;
i.e. the regime for which the center is most probably going to emit its
trapped electrons. Ultimately, the question to be addressed now is how the
capacitance transient can be related to the emission rate of the defect. After
a few manipulations of equations given the dependency of the capacitance
transient, ∆C = C(t1) - C(t2), upon the depletion region width, W, the
trap and donor concentrations and the saturated capacitance, the normalized
DLTS signal, S, was related to the emission rate as [20],

S(T) =
C(t1) − C(t2)

∆C (0)
= exp (−en(T) ∆t) , (1.19)

where ∆C (0) is the capacitance change due to the pulse at t = 0 and
∆t = t2 − t1. Even beyond this first exponential dependency, D. V. Lang
approximated the thermal velocity as the mean square speed of the Maxwell-
Boltzman distribution, vn = (3kT/m∗)1/2, and the density of states in con-
duction as the one of a non-degenerate semiconductor, Nc = 1

4
(2m∗kT/h2)3/2,

showing from equation 1.18 the follow tendency,

en(T) = γT2σnexp

(

−EC − ET

kT

)

, (1.20)

where γ includes all the non-temperature dependent factors, included in the
definition of vn, Nc. A linear dependence can therefore be expected from the
natural logarithm of the above expression, ln

(

en/T
2
)

∼ −Ea/kT, where the
plotted slope corresponds to the trap energy level with respect to conduction,
Ea = EC − ET (i.e. an Arrhenius plot). One year after the technique was
proposed, deviations from the expected linear dependence were reported [22]
and said to be caused by a lattice relaxation mechanism triggered by the
electronic emission. C. H. Henry and D. V. Lang then proposed their nonra-
diative carriers capture and emission by multiphonon emission theory [23],
approximating the capture cross section as,

σn = σ∞exp

(

−E∞
kT

)

, (1.21)

by equivalency with the capture cross section of spontaneous emission or
luminescence. More details regarding the above approximation are given in
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Chapter 5, where these multiphonon theories are carefully reviewed. From an
applied point of view (to which this experimental section is dedicated), the
DLTS technique allows to measure the activation energy, defined as Ea +E∞,
required by the trap to emit an electron and the capture cross section, σ∞, of
such process. Now, in order to give a practical idea of how these magnitudes
can be exploited to give meaningful information about deep centers, we in-
troduce the measured DLTS activation energies and capture cross sections
of interstitial titanium in silicon.

Spectroscopy of deep levels in silicon

Similarly to the study of absorption bands in silicon presented above, meas-
ured DLTS activation energies are to be assigned to a particular defect em-
bedded in silicon. DLTS signals can be relatively easily linked to a particular
defect by, for example, monitoring the disappearance of the peaks at a certain
temperature, corresponding to the annealing of a well-characterized defect.
In the case of interstitial titanium in silicon, up to three DLTS peaks centered
around different temperatures were assigned to the impurity; see E40, E150

and H180 peaks in Figure 1.13A. If electrons were injected during the for-
ward bias pulse, DLTS peaks are denoted by an E (blue lines in Figure 1.13),
whereas signals measured in p-type silicon are noted as H (since holes are
the majority carriers concentration). Once the nature of the defect is iden-
tified, Arrhenius plots following the equation 1.20 are typically represented
(Figure 1.13B), obtaining a slope equal to the so-called activation energy, Ea.
Depending on the nature of the injected carriers employed, trap levels are
reported with respect to the conduction band, Ea = EC−ET, for E-type sig-
nals; and with respect to the valence band for p-doped silicon, Ea = EV + ET

(Table 1.1).

Table 1.1: DLTS activation energies, Ea, and apparent capture cross sections,
σna, for the three measured peaks corresponding to interstitial titanium in
silicon [24]. Their assignment to a charge transition and therefore, to the
donor or acceptor character of the trap, is also given.

DLTS peak Ea [eV] σna [cm2] Assignment

E40Ti - 0.08 6 × 10−15 0/-
E150Ti - 0.27 5 × 10−16 0/+
H180Ti + 0.26 9 × 10−17 +/++
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Figure 1.13: (A) DLTS signals for interstitial titanium in silicon, after [24].
(B) Arrhenius plots of the Ti-related peaks, also based on [24]. Measures in
n-type silicon, with a majority of electrons as free carriers, are denoted by E
(and blue lines); whereas signals arising from p-type silicon, with a majority
of free holes, are denoted by H (or red lines).

In cases for which the electronic configuration of the defect is known, by
means of complementary techniques and/or theoretical approaches, DLTS
levels can be assigned to a certain charge transition (Table 1.1). If however,
the electronic structure is to be determined, capture cross sections are said
to be exploited to interpret the donor/acceptor character of the DLTS meas-
ured level. In DLTS measurements for which the capture cross sections are
deduced from Arrhenius plots like the one in Figure 1.13B, the quantity σna
is referred to as the apparent capture cross section, as indicated for the values
presented in Table 1.1, extracted from [24]. A second capture cross section,
σn, is said to be obtained by direct measurements if the DLTS signal from
an individual trap is monitored as a function of the filling pulse duration,
tp (e.g. [25]). A detail analysis of the measurement techniques of capture
cross sections and the comparison among different measurement methods is
beyond the scope of the present manuscript. We do however note that for
the DLTS activation energies, the dispersion of different published values is
relatively low (see below), this not being the case for the capture cross sec-
tions, whose values tend to vary within one-two orders of magnitude even
when comparing σn and σna (e.g. [25]). Published results for the DLTS levels
of interstitial Ti are: for the single acceptor level, -0.08 [26], -0.08 [27], for
the single donor level, -0.26 [28], -0.24 [29], -0.27 [30], -0.28 [26], -0.27 [27];
and for the double donor, +0.29 [28], +0.32 [29], +0.26 [30], +0.25 [26],
+0.25 [27]. A collection of the large number of DLTS measures for primary
defects in silicon can be found in [13], and for transition metal impurities
in [4].
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Chapter 2

Computational approaches

The Kohn-Sham theory may be

regarded as the formal

exactification of Hartree theory.

With the exact Vxc all

many-body effects are in

principle included.

W. Kohn (1999)

In this Chapter we will introduce a theoretical framework that will be
used to explore the physics of point defects throughout this thesis. We will
first consider a simple effective model that reproduces the basic features of
defects before moving on to more general ab initio methods that will allow
us to obtain quantitative results. The many-body problem is enounced and
depicted through a simple Linear Combination of Atomic Orbitals (LCAO)-
based model (section 2.1), introducing the need for an explicit treatment
of the Coulomb interaction. The general theory behind the Hartree-Fock
method and the Density Functional Theory (section 2.2) is then introduced,
stressing the limitations of single-particle pictures (e.g. the DFT band gap
problem). A step further into accurately solving the problem of interact-
ing electrons is analyzed through the Many-Body Perturbation Theory in
the GW approximation (section 2.3). The ab initio approaches are finally
considered to simulate isolated defects in host matrices (section 2.4), em-
phasizing the existence of size effects due to elastic distortions and spurious
interactions of charged defect replicas. Challenges linked to the use of mean-
field approaches in the specific context of point defects in semiconductors are
also presented.
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2.1 A simple Molecular Orbital approach

A simple Molecular Orbital approach is the name employed in the present
manuscript to refer to a theoretical model proposed by Watkins and cowork-
ers for defects in silicon (e.g. [14]). The model exploits the molecular behavior
of a defect embedded in the host lattice, since only the localized-defect states
are considered, neglecting the position of the band edges. The original work
focused on silicon defects constituted by dangling bonds or broken bonds
(Figure 2.1), for which the localized wavefunction was written as a linear
combination of such bonds. Watkins models were based on simple symmetry
considerations and they were conceived to sustain experimental evidence in
the form of EPR spectra. Even if such simple models are often cited and
reproduced to explain local atomic rearrangements, clear links with later
electronic structure calculations are typically missing.

Tψ Tψ
a1

1
2

a4 a3

Tψ Tψ
1 2

3 4

34

a2

Figure 2.1: A single-electron molecular orbital model for the mono-vacancy
in silicon. The dangling bonds, ai, constituting the defects states, ψT

i , are
explicitly shown. Blue and purple regions of the ψT

i denote +/- contributions
of ai respectively.

As in any electronic structure calculation, the main challenge is to determ-
ine the many body wave-function, Ψ(r1, r2, .., rNe ;R1,R2, ..,RNn), where Nn

and Ne are the total number of nuclei and electrons and ri and Ri their
respective spatial coordinates. This function is solution to the stationary
non-relativistic Schrödinger equation,

HΨ = EΨ, (2.1)

where the Hamiltonian operator H is defined (in atomic units),

H = −
∑

i

∇2

ri

2
−
∑

α

∇2

Rα

2Mα

+
∑

i

Vnuc(ri) +
1

2

∑

i 6=j

1

|ri − rj |
+

1

2

∑

α 6=β

ZαZβ

|Rα −Rβ |
(2.2)
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Vnuc(r) = −
∑

α

Zαe
2

|r−Rα|
(2.3)

where Zα and Mα are the atomic number and mass of the α-nucleus. Due
to the complexity of the equation defined above, both adiabatic and Born-
Oppenheimer approximations are typically introduced. Under these approx-
imations, commonly referred to as the clamped nuclei approximation, the
nuclei move on a Potential Energy Surface (PES) which is a solution to the
electronic Schrödinger equation,

Helec(R)Ψi(r;R) = Ei(R)Ψi(r;R), (2.4)

where Helec includes the electronic kinetic energy, Te, the Coulomb electron-
nuclei interaction Vne, the Coulomb electron interaction, Vee and the Cou-
lomb ionic interaction, Vnn. The validity of the above equation relies on the
large difference in mass between electrons and nuclei, me/Mn ∼ 10−3, and
therefore different length and time scales of their motion.

In the case of the Molecular Orbital approach, like in any LCAO/Tight-
Binding method, the electronic wavefunction of the molecule/solid is written
as a linear combination of atomic orbitals, {φν},

Ψ(r) =
∑

ν

cνφν(r) (2.5)

We note that in the above example a single atomic orbital is considered per
ion, ν. The coefficients {cν} are determined by solving the Schrodinger equa-
tion 2.4, which projected in the basis set of atomic orbitals gives 〈φµ|Helec |Ψ〉 =
ǫ〈φµ|Ψ〉, and therefore a set of linear equations,

∑

ν

cν (Hµν − ǫSµν) = 0, (2.6)

where the Hamiltonian matrix elements are Hµν =
∫

φ∗
µ(r)Helec φν(r)dr, and

the overlap matrix elements are given by Sµν =
∫

φ∗
µ(r)φν(r)dr. The ac-

curacy and/or transferability of these methods is therefore determined by
the estimation of Hµν , Sµν . In order to illustrate the MO model for point
defects, let us consider the test-case of the Hydrogen molecule, H+

2 , for which
analytical expressions for Hµν , Sµν can be obtained. The Helec for the sys-
tem constituted by two ions, 1 and 2, separated by a distance, R, and with
electronic coordinate r is, in atomic units,

Helec = −1

2
∇2

r −
1

r1
− 1

r2
+

1

R
(2.7)
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Where r1,2 = r ± R/2. If the atomic orbital basis set is composed by two
1s orbitals located at each of the ions,

φ1(r1,R) = ψ1s(r1,R) ∝ e−|r−R/2|/a0 , (2.8)

and equivalently for φ2(r2,R) = ψ1s(r2,R), the molecular wavefunction is
given by |ψ〉 = c1 |φ1〉 + c2 |φ2〉. The system of linear equations 2.6 has a
non-trivial solution if, det (Hµν − ǫSµν) = 0, giving,

ǫ± =
H11 ±H12

1 ± S12

(2.9)

The derivation of such matrix elements can be found in any textbook of fun-
damental atomic and molecular physics. The overlap integral, for example, is
easily computed in elliptical coordinates, giving, S12 =

∫

φ∗
1(r1)φ2(r2)dr =

e−R/a0
{

1 + R/a0 + R2/3a30
}

. The dependency of Hµν , Sµν upon the inter-
ionic distance, R, is shown in Figure 2.2, as well as the eigenvalues of equation
2.6. We remark that H11 ∼ 〈φ1|HH |φ1〉+1/R, where HH is the Hamiltonian
of the well-studied hydrogen atom, and thus such matrix elements can be
evaluated in terms of the first ionization potential of the hydrogen atom, ǫI.
From equation 2.6, the relation c1 ± c2 = 0 is deduced, and therefore, the
wavefunction corresponding to the energy levels ǫ± are,

|ψ±〉 =
1

√

2(1 ± S)
[ |φ1〉 ± |φ2〉 ] (2.10)

A schematic representation of both states |ψ±〉 is shown in Figure 2.2; |ψ±〉
are typically known as the bonding and anti-bonding states respectively, or
with respect to their symmetry transformation upon the horizontal plane of
reflection, the gerade or ungerade states of the molecule. The minimum of
the ǫ+ surface at R0 gives the equilibrium inter-ionic distance of the system
at its ground state, |ψ+〉.

We now consider the neutral molecule, H2, for which it is assumed that the
Coulomb repulsion between electrons, HU , can be treated as a perturbation
of the Hamiltonian Helec = Helec, 1 +Helec, 2 , constituted by a system of non-
interacting electrons subject to the potential of ions 1 and 2 in Figure 2.2.
By imposing the antisymmetry of the electronic wavefunction or the Pauli
principle, six states can be built by taking into account the electronic spin,

|Ψ1〉 = |ψ+〉1 |ψ+〉2 χ00

|Ψ2〉 = |ψ−〉1 |ψ−〉2 χ00

|Ψ3〉 = 1√
2

[|ψ+〉1 |ψ−〉2 + |ψ−〉1 |ψ+〉2] χ00

|Ψ4,5,6〉 = 1√
2

[|ψ+〉1 |ψ−〉2 − |ψ−〉1 |ψ+〉2] {χ11, χ10, χ1−1}

(2.11)
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Figure 2.2: Molecular Orbital model for the H+
2 molecule.

where, for example, χ00 stands for the spin singlet, 1√
2

[|↑↓〉 − |↓↑〉]. The
energy of each state can be determined within stationary perturbation theory
as, ǫ1 = 2ǫ+ + 〈Ψ1|HU |Ψ1〉. In order to evaluate 〈Ψ1|HU |Ψ1〉, let us first
consider the general case of a Slater determinant constituted by two single-
electron orbitals ψa and ψb and spin variables σ and σ′. The corresponding
wavefunction for electrons (r1, s1) and (r2, s2) has the form,

Ψ(r1, s1; r2, s2) ∝ [ψa(r1)ψb(r2)σ(s1)σ
′(s2) − ψb(r1)ψa(r2)σ

′(s1)σ(s2)]
(2.12)

We note the change of notation for electronic coordinates r1,2 with respect
to previous system, H+

2 . If both electrons have the same spin, σ = σ′,
〈Ψaσ;bσ|HU |Ψaσ;bσ〉 = Uab − Jab, where U and J are the Coulomb and Ex-
change integrals respectively,

Uab =

∫

dr1

∫

dr2
|ψa(r1)|2|ψb(r2)|2

|r1 − r2|

Jab =

∫

dr1

∫

dr2
ψ∗
a(r1)ψb(r1)ψ

∗
b (r2)ψa(r2)

|r1 − r2|

(2.13)

For states with opposite spin, σ = −σ′, 〈Ψaσ;b−σ|HU |Ψaσ;b−σ〉 = Uab and
〈Ψaσ;b−σ|HU |Ψa−σ;bσ〉 = −Jab. The eigenvalues of the perturbed Hamilto-
nian Helec + HU can thus be written as,

ǫ1 = 2ǫa + Uaa

ǫ2 = 2ǫb + Ubb

ǫ3 = ǫa + ǫb + Uab + Jab

ǫ4 = ǫa + ǫb + Uab − Jab

(2.14)

Where a, b stand for the bonding and antibonding states ψ± with eigenval-
ues ǫ±. For an interatomic distance R = R0 ± ∆R, the level ordering can
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be trivially deduced as, ǫ1 ≪ ǫ3 < ǫ4 < ǫ2. For a larger distance, one
between R0 and the critical distance corresponding to the dissociation of the
molecule, such ordering might be modified by the Coulomb contribution as,
ǫ4 < ǫ1 < ǫ3 < ǫ2. The motivation to go through this prototype example will
be evident in Chapter 4, where U and J integrals are defined to hypothesize
about the level ordering of the trap states in the context of point defects in
silicon.

Variations of the here-introduced LCAO method have played an import-
ant role in understanding the basic features of defects in semiconductors,
often reproducing the local environment of unpaired localized electrons as
described by EPR spectroscopy. In the context of primary defects in sil-
icon, Watkins models can be considered as the first theoretical attempt to
qualitatively determine the defect electronic structure. In the present work
we exploit this kind of theoretical approaches to guide our first-principles
calculations and to provide a general picture of the center.

2.2 The Density Functional Theory

In the previous section, an adiabatic many-body Hamiltonian was introduced
for the test-case of the hydrogen molecule, H+

2 , in equation 2.7. The challenge
of describing the Coulomb repulsion between electrons was considered in the
case of H2, adopting the common approximation of non-interacting electrons,
Helec = He,1 + He,2, with a total wavefunction Ψ(~r1, ~r2) = Φ1(~r1)Φ2(~r2),
subject to a perturbation, HU . This rudimentary approach can of course
be improved if Ψ(~r1, ~r2) is computed as an eigenstate of the Hamiltonian,
Helec = He,1 + He,2 + HU . In order to do so, several methods based on the
variational principle have been developed through the years; starting by the
Hartree method, proposed in 1928. This principle establishes that finding the
ground state of the the Schrödinger equation, HelecΨ = EΨ, is equivalent to
minimizing the functional defined as,

F [Ψ] =
〈Ψ|Helec |Ψ〉

〈Ψ|Ψ〉 , (2.15)

within the subspace of possible Ψ. Among the possible trial wavefunctions
we are interested in the subset of them physically acceptable, P . The Ψ ∈ P
corresponding to the F -minimum is named the variational best solution to
the quantum-mechanical Hamiltonian and the value Emin the corresponding
variational energy,

Emin = minΨ∈P F [Ψ] ≥ E0. (2.16)
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The variational energy is therefore an upper bound of the true ground state
of the system and Ψ an approximation of Ψ0.

The Hartree-Fock method, proposed in 1930, postulated that if the elec-
tronic interaction is relatively small, the non-interacting picture is still valid
and therefore the total wave function can be written in terms of single-
electron wavefunctions or orbitals, Ψ(~r1, ~r2, .., ~rN) = Φ1(~r1)Φ2(~r2)..ΦN(~rN).
The exclusion principle was satisfied by rewriting the many-electron wave-
function as a Slater determinant of orthonormal single-particle orbitals,

ΨS =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

Φ1(~r1) Φ1(~r2) . . . Φ1(~rN)
Φ2(~r1) Φ2(~r2) . . . Φ2(~rN)

...
...

...
ΦN(~r1) ΦN(~r2) . . . ΦN(~rN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.17)

In its compact form, it can be written in terms of the parity operator P
acting upon particle permutation,

N !
∑

l

(−1)P (l)Φi1(~r1)Φi2(~r2)..ΦiN (~rN), (2.18)

where l is defined as a particular arrangement of the N orbital subscripts (e.g.
i1, i2, .., iN ; i2, i1, .., iN , etc.). The total electronic density can be therefore
expressed as a sum of such single-orbital densities, since,

nS(~r) = 〈ΨS(~r1, ~r2, .., ~rN)|
N
∑

j

δ(~r − ~rj) |ΨS(~r1, ~r2, .., ~rN)〉 =
N
∑

i

|Φin(~r)|2,

(2.19)
showing the equivalence between electronic coordinates, ~rj, and single-particle
orbitals, Φin , and therefore from now on, in is simply designed by i. Once
the many-body system is fully described in terms of single-orbitals, the ques-
tion to be addressed is: what set of {Φi} minimizes the energy functional
described in equation 2.15, or even before this point, what is the form of
the Hartree energy, 〈ΨS|Helec |ΨS〉? Going back to the quantum-mechanical
problem, the Hamiltonian Helec might be written as the sum of a single
particle operator corresponding to the electron kinetic energy in the presence
of nuclei, ĥ0, and a two-particles operator, corresponding to the Coulomb in-
teraction between electrons, ĥe,

Helec =
∑

j

ĥ0(~rj) +
1

2

∑

j 6=k

ĥe(~rj, ~rk) (2.20)
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The single particle operator, similarly to the density operator (equation 2.19),
leads to energy contributions of the form,

〈ΨS|
∑

j

ĥ0(~rj) |ΨS〉 =
∑

i

〈Φi| ĥ0 |Φi〉 (2.21)

The second expectation value for a Slater determinant is,

〈ΨS|
∑

j

ĥe(~rj) |ΨS〉 =
∑

i,j

[

〈ΦiΦj| ĥe |ΦiΦj〉 − 〈ΦjΦi| ĥe |ΦiΦj〉
]

(2.22)

We note that for i = j the Coulomb contribution exactly cancels out, elimin-
ating the interaction of one electron with itself. This is an important result
of the Hartree-Fock method, in contrast with the density functional theory
formalism with its well-known self-interaction error. The variational prin-
ciple can now be applied, by obtaining the single-particle orbitals such that
Φk → Φk + δΦk implies δ 〈ΨS|Helec |ΨS〉 = 0. The variational principle leads
to a set of eigenvalue equations, known as the Hartree-Fock equations,

F̂Φk = ǫkΦk (2.23)

where ǫk is no more than a Lagrange multiplier introduced in the minimiza-
tion procedure to ensure the orthonormality of the orbitals and F̂ is the Fock
operator, F̂ = ĥ0 +

∑

i(Ĵi − K̂i). The operator Ĵi represents the classical
or Hartree interaction between electronic densities, |Φi|2 and |Φk|2, whereas
the exchange term, K̂i, is a consequence of the antisymmetry property of the
wavefunction,

(Ĵi − K̂i)Φk =

∫

Φ∗
i (~r2)ĥe [Φi(~r2)Φk(~r1)] d~r2 −

∫

Φ∗
i (~r2)ĥe [Φi(~r1)Φk(~r2)] d~r2.

(2.24)
We have shown that by construction the Fock operator does depend on
the single-particle orbitals, which are solution of the Hatree-Fock equations.
These equations are therefore to be solved self-consistently, until, the orbitals
employed to construct F̂ , Φk,in, are equivalent to the ones obtained after the
diagonalization of the Hartree-Fock equation, Φk,out.

Before concluding this short introduction to the Hartree-Fock method, we
focus our attention towards the physical meaning of the eigenvalues ǫk. It can
be tempting to assign such eigenvalues to the energy levels of an electronic
interacting system. It is however straightforward to demonstrate that the
total Hartree-Fock energy is equal to,

EHF =
∑

k

ǫk −
1

2

∑

i,j

[

〈ΦiΦj| ĥe |ΦiΦj〉 − 〈ΦjΦi| ĥe |ΦiΦj〉
]

. (2.25)
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The Hartree-Fock eigenvalues do therefore not correspond to single energies
of interacting electrons subject to the interaction of static nuclei. They can
however, be interpreted as the energies required to remove an electron from
a certain one-electron state n, if one derives the Hartree-Fock energy for the
system of N − 1 electrons,

EHF(N − 1) − EHF(N) = −ǫn. (2.26)

And equivalently for the corresponding energy to add an electron at the m
orbital,

EHF(N + 1) − EHF(N) = ǫm. (2.27)

These results are known as the Koopman’s theorem, which established that
ǫk can be assigned to orbital energies under the approximation that adding
or removing one electron leaves the orbitals invariant.

In 1964, P. Hohenberg and W. Kohn proved that for any system of inter-
acting particles in an external potential, v(r), the density n(r) can be used
as the basic variable to describe the ground state properties of the system.
In other words, the external potential is (to within a constant) a unique
functional of the density; making explicit such one-to-one correspondance, if
v′(r) 6= v(r) + constant, then n′(r) 6= n(r). It was also proven that the total
energy of the system can be defined as a functional of the electronic charge
density,

E[n(r)] = 〈Ψn|Helec |Ψn〉 = F [n(r)] +

∫

v(r)n(r)dr. (2.28)

Where the universal functional F [n(r)], independent of the external poten-
tial, includes the expectation values of the electronic kinetic and interacting
terms. The energy functional E[n] for the non-degenerate ground state dens-
ity satisfies the variational principle; i.e. its global minimum corresponds to
the exact ground state energy associated with v(r). Details and proofs of the
so-called Hohenberg-Kohn theorems can be found in their original paper [31].

The Hohenberg-Kohn theorems are at the very basis of the density func-
tional theory; a formalism to compute the electronic structure of molecules
and solids based on their density instead of their many-body wavefunction.
From a practical perspective, describing the system of interacting particles in
terms of their charge density reduces the computational expense of the cal-
culation with respect to wave-function-based methods (such as the Hartree-
Fock method), due to the exponential growth of the Hilbert space with the
number of electrons. We however note that the exact form of the universal
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Figure 2.3: The density, n, as basic variable to describe the properties of
a system of interacting particles subject to an external potential, v, is the
fundamental basis of the density functional theory (DFT).

functional F [n(r)] is unknown. An equivalent expression of the Hartree-Fock
energy functional, E[ΨS], for the density-based functional E[n] is therefore
to be specified. W. Kohn and L. J. Sham were able to tackle the problem
in 1965 by proposing their well-known one-particle picture, described in the
following section.

2.2.1 The Kohn-Sham one-particle picture

W. Kohn and S. J. Sham [32] proposed to map the real problem into an aux-
iliary system of non-interacting electrons with equal ground state density,
whose universal function can be written in terms of three separated contri-
butions,

F [n(r)] = T0 [n(r)] + EH [n(r)] + EXC [n(r)] . (2.29)

The kinetic energy of a non-interacting particle system, T0 [n(r)], is then
simply written in terms of the auxiliary one-particle orbitals, Φi(r),

T0 [n(r)] = −
∑

i

〈Φi|
∇2

2
|Φi〉 , (2.30)

The Hartree energy, EH [n(r)], corresponding to the classical Coulomb inter-
action was previously introduced with the direct term of the Fock operator,
equation 2.24,

EH [n(r)] =
1

2

∫

n(r)n(r′)

|r− r′| drdr′ (2.31)

The remaining term, the so-called exchange-correlation functional, EXC[n(r)],
is defined as the missing contributions to F [n(r)] for a system of interacting
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electrons whose kinetic energy can not be approximated as the one for non-
interacting particles and whose Coulomb repulsion is not a merely classical
interaction. It is often referred to as a correction term for the so-far neg-
lected quantum interactions, like the electronic exchange repulsion due to the
exclusion principle. The Kohn-Sham total energy functional can therefore be
written as,

E[n(r)] = T0 [n(r)] + EH [n(r)] + EXC [n(r)] +

∫

v(r)n(r)dr. (2.32)

Similarly to the Hartree-Fock method, the above energy functional can be
minimized with respect to perturbations Φi → Φi + δΦi, by introducing
Lagrange multipliers imposing the orthonormality of the orbitals, 〈Φi|Φj〉 =
δij, obtaining the well-known Kohn-Sham equations,

[

−∇2

2
+ VKS(r)

]

Φi(r) = ǫiΦi(r). (2.33)

The effective Kohn-Sham potential, VKS(r), includes three potential con-
tributions; the external potential, the Hartree potential and the exchange-
correlation potential, defined as the following functional derivative,

VXC(r) =
∂EXC[n(r)]

∂n(r)

∣

∣

∣

∣

n(r)=n0(r)

(2.34)

Where n0(r) is the ground state density according to the Hohenberg-Kohn
theorem, which in the one-particle picture is determined by the auxiliary
one-particle orbitals, similarly to the Slater charge density in equation 2.19,

n0(r) =
∑

i

|Φi(r)|2 (2.35)

The Kohn-Sham (KS) picture can therefore be interpreted as a single electron
subject to an effective mean potential defined by the ground state density
of the interacting-particles system. The self-consistent KS equations are
therefore no more than a mean field approach, but the computed ground
state density is exact as long as the many-body effects are included in the
exact VXC. Approximations to the exchange-correlation functional, as well as
the physical meaning of the auxiliary functions Φi and ǫi are quickly reviewed
in the following.

Exchange-correlation functionals

As repeated multiple times, DFT is an exact formalism (besides the Born-
Oppenheimer approximation) to determine the ground state density of the
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system of interacting electrons if VXC is known. The first approximation to
the exchange-correlation functional was proposed in terms of a Local Density
Approximation (LDA) [33], where the exchange-correlation functional was
given as the one of an homogeneous gas of interacting electrons at constant
density, εhomo

xc [n(r)],

ELDA
XC [n(r)] =

∫

εhomo
xc [n(r)]n(r) dr. (2.36)

The exchange contribution, εhomo
x [n(r)] = − 3

4π
(3π2n)

1
3 , was determined by

analogy with the Thomas-Fermi approximation to the kinetic energy of the
homogeneous gas; whereas the correlation energy, εhomo

c [n(r)], was computed
from accurate Monte-Carlo simulations [34]. LDA is therefore based on a
simple, well-defined system and it has proven to give rise to physically accur-
ate geometries of molecules and solids. It however presents limitations when
the material presents inhomogeneities in the charge density, giving overbound
structures. A significant improvement to the LDA functional was proposed by
J. W. Perdew and Y. Wang [35], whose approximation to the XC-functional
also included the gradient of the density. A gradient-dependent functional
is better know today as the Generalized Gradient Approximation (GGA).
Contrary to the uniquely-defined LDA functional, multiple GGA formula-
tions have been proposed over the years, and extensive benchmarks can be
found testing their accuracy for different systems. One of the most common
GGA functionals used in the description of solids is the PBE functional,
proposed by Perdew, Burke and Ernzerhof in 1992 [36]. Beyond the GGA
approximation, much more complicated functionals (meta-GGA or hyper-
GGA) were proposed in the search for the chemical heaven of accuracy (see
discussion regarding the Jacob’s ladder of density functional approximations
for the exchange-correlation energy [37]), which are beyond the scope of the
present work.

Before concluding the discussion regarding exchange-correlation function-
als, we quickly introduce a last type of proposed approximations, referred to
as hybrid functionals. These rather expensive functionals mix a fraction of
the Hartree-Fock exact exchange functional with LDA/GGA functionals. As
it was reviewed in detail above, the Hartree-Fock method computes the ex-
change term for a system of interacting electrons exactly. It was also proven,
equation 2.22, that the interaction of an electron with itself was completely
canceled out, since the exchange term compensated exactly the Hartree direct
term. This is not the case in DFT, where the approximated XC-functional
does not compensate the Coulomb self-interaction of electrons or the DFT self
interaction problem. Hybrid functionals are therefore aimed at correcting the
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SI DFT problem by partially including the self-interaction-free Hartree-Fock
exchange. For the sake of completeness, we give as an example the PBE0
functional [38], which mixes the PBE exchange energy and Hartree-Fock ex-
change energy in a set 3 to 1 ratio, with the full contribution of the PBE
correlation energy,

EPBE0
XC =

1

4
EHF

X +
3

4
EPBE

X + EPBE
C (2.37)

The usefulness of hybrid functionals in the context of point defects in semi-
conductors is discussed in detail along the present manuscript.

Kohn-Sham energies and Janak’s theorem

The eigenvalues of the KS equation, similarly to the ǫk for the Hartree-
Fock method, are often identified as single particle energies. Even if they
have proven to give accurate descriptions of band structures of metals, the
expected discrepancy between the total DFT energy and the sum of the KS
energies reveals the lack of physical meaning of these auxiliary functions. An
attempt to find a physical interpretation to these values was given by Janak’s
theorem in terms of fractional occupations,

n(r) =
N
∑

i

|Φi|2 =
∞
∑

i

fi|Φi|2, (2.38)

where fi represents the occupation of the single-particle orbital Φi. The
highest KS energy with fi = 1 is said to be the highest occupied state (in
analogy with the highest occupied molecular orbital and the top of the valence
band), whereas the lowest unoccupied KS energy, with fi = 0, would corres-
pond to the lowest unoccupied molecular orbital and the bottom of the con-
duction band in the single-particle calculation. In terms of this fractionally
occupied KS system, the main result of Janak’s work [39] was to demonstrate
that,

∂E

∂fi
= ǫi, (2.39)

independently of the form of the exchange-correlation functional. Much like
Koopman’s theorem, Janak’s result is used to connect the KS energies with
energy differences between systems with N and N+1 particles, by integrating
equation 2.39,

EN+1 − EN =

∫ 1

0

∂E

∂fi
dfi =

∫ 1

0

ǫi dfi. (2.40)
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In simple terms, the above integral represents a total change in the particle
number equal 1 obtained by adding small fractions, dfi, of an electron
(fi = 1). The sensitive aspect in such evaluation is that the eigenvalue
ǫi is modified by a change in electronic occupation, ǫi = ǫi(fi), showing that
EN+1 − EN ≃ ǫi is an approximation of Janak’s theorem.

2.2.2 Sampling the DFT potential energy surface

Within the Born-Oppenheimer approximation, it is possible to assume fixed
nuclei coordinates when computing the electronic structure of the desired
system. The total DFT energy does however depend on these atomic config-
urations, EDFT(R1,R2, ...,RNn

), constraining the nuclei to move along the
electronic Potential Energy Surface (PES). It is thus possible to investigate
the shape of such PES, finding critical points, such as minima (example of
H+

2 and the equilibrium configuration, R0), metastable minima, etc., if the
nuclei Schrödinger equation is solved. If we however consider the nuclei as
classical masses, subject to an interaction energy, E[{Rα}], the equations of
motion simply are,

MαR̈α = − ∂E

∂Rα

= F[{Rα}]. (2.41)

If the atomic force, F[{Rα}], is known, the above equation can be numerically
integrated by taking a certain time step, ∆t, performing the so-called ab
initio Molecular Dynamics. As a first approach to the problem, atomic forces
can be computed by finite energy differences, E[{Rα + ∆Rα}] − E[{Rα}],
requiring to compute the electronic energy at 3N + 1 atomic positions. Such
computational expensive approximation can be overcome by exploiting the
Hellmann-Feynman theorem and performing one unique calculation. The
theorem establishes that the first order derivative of the energy with respect
one parameter, ∂E/∂λ, can be computed as the expectation value of the
variation ∂H/∂λ. In the particular case of DFT atomic forces, it means that
the evaluation of ∂E

∂Rα
does not depend on any derivative of n(r), but it is

purely a classical electrostatic interaction between nuclear charges and the
electronic charge density. In the present work, computed atomic forces will
not be used in MD simulations, but algorithms to target critical points of
the PES will be used as introduced in the following.

Structural optimization

Structural optimization seeks to find points in the DFT PES such that all
atomic forces are equal zero and for which all the surrounding points are
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Figure 2.4: DFT potential energy surface or energy EDFT[{Rα}] as a function
of ionc clamped positions. The depicted surface is characterized by two
minima, M1 and M2 and the saddle point, SP, of the minimal energy path
between minima.

energetically less favorable (e.g. minima M1 and M2 in Figure 2.4). Among
the variety of optimization techniques, we employ the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm [40, 41] to find equilibrium structures
of point defects embedded in silicon. In very few words, the BFGS algorithm
is said to be a quasi-Newton algorithm, since the Hessian matrix of second
derivatives is not computed, but it is estimated by approximate gradient
evaluations.

Minimum energy transition path

Another aspect of the DFT PES that is typically modeled are the transition
paths between different minima (see the three transition paths betwen M1
and M2 in Figure 2.4). Among these paths, we are particularly interested in
the minimum energy path MEP or the most probable path, since the energy
difference between its saddle point (SP) and the minima is typically assigned
to the activation energy of the thermal transition. The MEP does very often
not correspond to a simple linear interpolation between the initial and final
configurations, and therefore the Nudged-Elastic-Band (NEB) method [42]
is usually employed. The method consists in optimizing a series of interme-
diate configurations or images starting from a tentative reaction path. It is
based on a constrained energy minimization of these images by introducing
spring forces between the images (or beads). The images band is therefore
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subject to the parallel spring force, keeping the beads equally distant, and
the perpendicular electronic force, pushing the band to go downhill towards
the MPE, characterized by all forces being zero (see orange arrow in Fig-
ure 2.4). In the present work, we employ a modification of the NEB method,
the Climbing-Image NEB method [43], in which one of the images is made
to climb up to the saddle point, where it does not feel the spring force.

2.2.3 The plane-wave pseudopotential implementation

Once the fundamental theoretical aspects of DFT have been reviewed, we
are in a position to describe its practical implementation to study condensed
matter systems. We are particularly interested in the plane-wave represent-
ation of the Kohn-Sham scheme, since in a solid it is very convenient to
require states to obey Periodic Boundary Conditions (PBC), being naturally
described in the complete set of Fourier components. Among the different
plane-wave-based DFT codes, we employ the ABINIT package [44], and so
the computational details specified in the present section are characteristic
of such package (even if they are almost equivalent to other codes such as
Quantum-Espresso). Among the multiple practical technicalities of ab initio
codes, we briefly review the plane-wave representation, the k-point sampling
and the pseudopotential approximation. Further specifications, such as the
Ewald summation for the ionic term, the FFT grid to determine quantit-
ies in reciprocal space, the SCF algorithms to solve self-consistently the KS
equations and the spin-unrestricted calculations can be found in any book
specialized in density functional theory [45].

The plane-wave representation and k-point sampling

As already mentioned above, in the case of a crystalline material, the KS po-
tential presents the same periodicity as the crystal lattice, being VKS(r + R) =
VKS(r). The eigenfunctions of the KS equation are therefore Bloch wavefunc-
tions, given by a plane wave, eik·r, modulated by a periodic function, uik(r).
It is thus convenient to write such function as a Fourier series,

uik(r) =
1√
Ωcell

∑

m

ci,m(k)eiGm·r, (2.42)

where Ωcell is the volume of the primitive cell, Gm is a vector from the
reciprocal lattice and ci,m(k) are the Fourier coefficients. The KS orbitals
subject to a periodic potential, Φi,k(r), are then said to be expanded in a
complete plane-wave basis set, characterized by wave-vectors k + Gm. The
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KS eigevalue equations in such basis set become,

∑

m′

HKS
m,m′(k)ci,m(k) = ǫi(k)ci,m(k), (2.43)

whose eigenfunctions are the coefficients of the Fourier expansion. The KS
eigenvalues represented against the k-vector constitute the DFT band struc-
ture of the solid (see for example the definition of ǫTVB and ǫBCB in previous
section). The Hamiltonian matrix elements have a rather simple expression
in reciprocal space,

HKS
m,m′(k) =

〈

k + Gm|HKS|k + Gm′

〉

=
|k + Gm|2

2
δm,m′ + V KS(Gm −Gm′),

(2.44)
so the matrix diagonalization is computed in such space. Even if the plane-
wave basis set is complete, containing infinite plane waves, in practice, the
sum in equation 2.42 is truncated to a certain m. The reduced basis set is
then defined by the kinetic energy cutoff,

Ecut =
|Gmax|2

2
, (2.45)

so only plane waves whose energies are lower than Ecut are included in the
expansion. The augmentation of the energy cutoff increases the size of the
basis set, increasing our precision, but also the computational resources.

In the plane-wave representation of the KS scheme, most of the quantities
(like the DFT total energy) are obtained upon integration over the Brillouin
zone. For a generic function fi(k), where i denotes a discrete band, the
integral might be numerically discretized,

∫

BZ

fi(k)dk −→
∑

k

fi(k). (2.46)

The precision of the DFT results therefore depends on the density of our
k-grid or on the k-sampling scheme (optimized method to reduce the total
number of points by intelligently selecting a few of them upon symmetry
considerations).

The pseudopotential approximation

In most DFT calculations of solids, it is computationally convenient to only
describe explicitly the valence electrons. This approximation to the all-
electron calculation is therefore based on the distinction of core electrons,
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tightly bound to the atomic nucleus, and valence electrons, localized farther
away, almost completely responsible for the interatomic bonding (see example
of the silicon atom in Figure 2.5A). Such a simplification is achieved by intro-
ducing the so-called pseudopotentials, which describe the interaction between
valence electrons and the nuclei screened by the frozen core electrons. The
pseudopotential is therefore characterized by a certain cutoff-radius, rC, de-
fining the pseudization region where the KS all-electron wavefunction needs
to be modified. Inside such region the potential is modified so that the solu-
tion to the KS equation is a smooth and nodeless function, reducing the size
of the basis set needed to describe large variations of the wavefunction (Fig-
ure 2.5B). In the case of the so-called norm-conserving pseudopotentials, the
integrated electronic density corresponding to the pseudized wavefuntion is
the same as the original wavefunction and, for r > rC, the pseudopotential
must coincide with the original all-electron potential. This intuitive introduc-
tion to the pseudopotential approximation is of course an oversimplification
on the pseudopotential method, for a detailed description, we refer the reader
to Chapter 11 of [46].
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Figure 2.5: (A) Kohn-Sham radial functions of the silicon atom, after [45].
The difference between the densities corresponding to core and valence elec-
trons is also shown. (B) A schematic representation of a psp-radial function
for the 3s state of the silicon atom.

In the present work, we employed the Optimized Norm-Conserving Vander-
bilt Pseudopotentials (ONCVPSP) [47], obtained using the PBE approxim-
ation for the exchange-correlation function. In particular, we have employed
the 0.4 version of the PSP table found in [48] .We also referred to the detailed
analysis of the accuracy of such pesudopotentials for a large variety of atomic
elements made in [49].
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2.2.4 The DFT band gap problem

Janak’s theorem, equation 2.39, and its extrapolation to total energy differ-
ences, equation 2.40, play an important role when estimating the semicon-
ductor bang gap or, in the interest of the present work, the relative position
of the trap-induced states. As was briefly mentioned above, KS energies can
reproduce the band structures of metals, but they are found to underestim-
ate the semiconductors band gap. The underestimation of band gaps is one
of DFT most challenging problems and it is typically referred to as the DFT
band gap problem. We say that a band gap is underestimated by comparison
with a measured band gap, which can be defined as the difference between the
first ionization potential IP and the first electronic affinity, EA. From a more
formal point of view, in a system with N electrons the electrical band gap can
be defined as the energy difference between charged excitations, EN−1 − EN

and EN − EN+1,

Eg = IP − EA = (EN−1 − EN) − (EN − EN+1) (2.47)

We note that because Eg can be defined in terms of total energy differences,
one could be tempted to approximate the electrical band gap as a difference
of KS energies corresponding to the highest occupied state (or top of the
valence band, ǫTV B) and the lowest unoccupied state (assigned to the bottom
of conduction band, ǫBCB),

Eg ≃ EKS
g = ǫBCB − ǫTV B (2.48)

From Janak’s theorem or equation 2.40 we know that EKS
g is only an ap-

proximation to the measured band gap and therefore we should not expect
it to be accurate.

There is however another complicated aspect related to this band gap
problem, involving the Kohn-Sham formulation of DFT, and in particular the
approximations made for the exchange-correlation potential. In 1982, J. P.
Perdew et al. proved that the exact exchange-correlation functional presents
a piece-wise linear behavior between integer numbers of electrons [50], or in
format of equation,

∂E(N + 1)

∂fHOMO
=

∂E(N)

∂fLUMO
=⇒ ǫN+1

HOMO = ǫNLUMO (2.49)

In other words, and as shown in Figure 2.6, the exact exchange-correlation
derivative is discontinuous at integer number of electrons. Since by construc-
tion, the approximated exchange-functionals are continuous functions of the
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Figure 2.6: (A) Charge excitation, N → N + 1, and the corresponding
HOMO/LUMO states for different number of electrons. (B) Convexity
of LDA/GGA approximations for the echange-correlation functional upon
changes in particle number.

density, there are no derivative discontinuities, and

∂E DFT(N + 1)

∂fHOMO
>
∂E DFT(N)

∂fLUMO
=⇒ ǫN+1

HOMO > ǫNLUMO (2.50)

This is the reason DFT in its LDA/GGA approximation is said to be a convex
formalism and the EKS

g is underestimated, since ionization potentials are by
construction larger than electron affinities. In the case of the Hartree-Fock
method, the tendency is inverted, ǫN+1

HOMO < ǫNLUMO, and so Hartree theories
are said to be concave with respect to changes in the electronic number,
typically overestimating the semiconductor band gap. Proving the lack of
derivative discontinuity in the employed VXC shows the limitation of DFT
to estimate charged excitations or energy differences at different electronic
occupations. In the ongoing discussion regarding the band gap problem, we
note that even if DFT total energies are employed to compute the electrical
band gap as IP - EA (equation 2.47), the estimated band gap is subject to
the convexity issue of the functional. To overcome such limitation, theor-
ies beyond the density functional theory have been developed, in particular,
we introduce in the following section the Many-Body Perturbation Theory,
which goes one step further in solving all many-body effects.
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2.3 Many-Body Perturbation Theory

So far we have presented electronic structure methods based on the one-
particle picture, namely, the Hartree-Fock method and the Density Func-
tional Theory. We have dedicated some time to show their limitations
when single-particle energies are exploited to give meaningful physical quant-
ities such as ionization potentials and electron affinities. As briefly dis-
cussed in previous sections, electrical band gaps are measured by conducting
photoemission experiments, also referred to as photoelectron spectroscopy.
In the case of direct photoelectron spectroscopy or photoemission exper-
iments, a photon with energy hν interacts with the sample, ejecting one
electron, whose kinetic energy, Ekin, is measured (Figure 2.7). The bind-
ing energy or single-particle energy associated with the ejected electron is
then ǫi = Ekin − hν. We however note that because this single electron is
embedded in a system of interacting electrons, correlated by the Coulomb
potential, the many-body process is more accurately written in terms of total
energies as, E(N − 1) − E(N) = hν − Ekin, where E(N) is the total energy
of the N-particle system and E(N − 1) the corresponding energy for the N-1
system. The complementary process of such process, the inverse photoemes-
sion, is characterized by an electron being injected in the sample, leading to
a photon emission, whose energy is subsequentely measured. The total en-
ergy exchanged in the process is then, E(N)−E(N + 1) = hν −Ekin, where
E(N + 1) is the energy of the (N+1)-particle system (Figure 2.7). In the
case of photoelectron spectroscopy performed on semiconductors, the first
ionization potential, IP = EN−1 −EN , is typically assigned to the electronic
state corresponding to the TVB or the HOMO; and similarly for the first
electronic affinity, EA = EN − EN+1, and the BCB or LUMO; determin-
ing the energy difference IP - EA or the electrical gap. From the theoretical
side, ionization potentials and electronic affinities were tentatively assigned to
Hartree-Fock and Kohn-Sham eigenvalues (section 2.2.1), showing the break-
down of both theories by presenting both Koopman’s and Janak’s theorems.
We are therefore in need of a theoretical framework capable of describing
processes involving the electronic ejection or injection into the system, or in
other words, capable of linking N-particle and (N±1)-particle systems: the
Many-Body Perturbation Theory (MBPT).

Within MBPT, energy differences between systems with different particle
numbers are assigned to the so-called quasiparticle (QP) energies. The notion
of quasiparticles was first introduced by L. D. Landau in 1956 after presenting
his phenomenological theory of Fermi liquids. In a system of interacting
electrons, like a solid, an electron or a bare particle interacts with the other
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Figure 2.7: Photoemission and inverse photoemission experiments. The
photon arriving to or being emitted from the sample has an energy equal
hν, and the kinetic energy of the injected or ejected electron is represented
by Ekin.

electrons via the Coulomb potential, creating an effective positively charged
polarized cloud. The excitations of a system of strongly interacting particles,
can then be described in terms of weakly interacting quasiparticles, or the
ensemble of the bare electron and its surrounding screening charge. The
formal description of these quasiparticles is based on the single-particle Green
function, G, whose determination depends on the accurate calculation of the
quasiparticle self-energy, Σ. A short introduction to MBPT is given in the
following, with the purpose of later describing the so-called GW approximation
and its practical implementation, the G0W0 method.

v W

electronic

interaction

quasiparticle

interaction

Figure 2.8: The bare Coulomb interaction, v, and the screened Coulomb
interaction, W.

The one-particle Green function, G

In the context of N-body problems, we have already established that it is
common to define a complete set of single particle functions, Φk(x), where
x denotes both the space and spin variables, which are used as building
functions of the global wavefunction, Ψ(x2,x1, . . . ,xN). The system is then
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determined by a list of quantum labels, k1, k2, . . . , kN , and so, the N-body
wavefunction can be expressed as |k1, k2, . . . , kN〉. To simplify the manip-
ulation of such wavefunctions, the creation and annihilation operators, a†k
and ak, are typically defined, a†k |k1, k2, . . . , kN〉 = |k, k1, k2, . . . , kN〉, and
ak |k, k1, k2, . . . , kN〉 = |k1, k2, . . . , kN〉. These operators act on one-single-
particles functions, creating or annihilating state k. Applying this formal-
ism to the case of free electrons, the Hamiltonian can be easily written as
H =

∑

k,l ǫk,la
+
k al, and the total number of particles, N =

∑

k a
+
k ak. In

practice, these operators are typically substituted by field operators, ψ(x)
and ψ†(x), acting on space, and defined as, ψ(x) =

∑

k akΦk(x). The time-
dependence of these operators is defined within the Heisenberg picture as
ψ(x, t) = eiHtψ(x)e−iHt, leading to a fundamental equation of motion,

i
∂ψ(x, t)

∂t
=

[

h(x) +

∫

v(r, r′)ψ†(x′, t)ψ(x′, t)dx′
]

ψ(x, t). (2.51)

where v is the Coulomb interaction between particles. Let us now illustrate
the form of the matrix element defined by the operator ψ(x, t) between states
|N〉, ground state of the N-particle system, and |N − 1, s〉, the eigenstate s
of the (N-1) system,

〈N − 1, s|ψ(x, t) |N〉 = fs(x)e−iǫst, (2.52)

with ǫs = E(N)−E(N−1, s), and fs(x) = 〈N − 1, s|ψ(x) |N〉. Similarly, we
can also connect state |N〉 to a system of N+1 electrons, 〈N |ψ(x, t) |N + 1, s〉 =
fs(x)e−iǫst. In the case of non-interacting electrons, where |N〉 is written
as a Slater determinant, |N − 1, s〉 = as |N〉 and |N + 1, s〉 = a†s |N〉, it is
straightforward to show,

fs(x) = 〈N − 1, s|ψ(x) |N〉 = Φs(x), if s occupied

= 〈N |ψ(x) |N + 1, s〉 = Φs(x), if s unoccupied
(2.53)

This result is not surprising, since we have retrieved Koopman’s theorem
for particle excitations. We however note that in an interacting system, the
one-to-one relation between states |N + 1, s〉 and single-particle orbitals, Φs,
is no longer valid, and a different interpretation of ǫs and fs is needed. With
such need in mind, it is common to define the time ordered one-electron
Green function,

iG(xt,x′t′) =

{

〈N |ψ(x, t)ψ†(x′, t′) |N〉 , t > t′

−〈N |ψ†(x′, t′)ψ(x, t) |N〉 , t′ > t
(2.54)

It is said to correspond to the propagation amplitude for an added electron
for positive times (t > t′) or an added hole for negative time (t < t′). If
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we now introduce the full set of eigenstates of the interacting Hamiltonian
(or the closure relation,

∑

s |N ± 1, s〉 〈N ± 1, s|), the Green function can be
rewritten as,

G(x,x′, τ) =
∑

s

e−iǫτfs(x)f †
s (x′), (2.55)

where τ = t− t′ and,

fs(x) = 〈N |ψ(x) |N + 1, s〉 , ǫs = EN+1,s − EN , for ǫs > µ

fs(x) = 〈N − 1, s|ψ(x) |N〉 , ǫs = EN − EN−1,s, for ǫs < µ
(2.56)

If we now take the Fourier transform in time, the physical meaning of G
becomes clear, since,

G(x,x′, ǫ) =
∑

s

fs(x)f †
s (x′)

ǫ− ǫs
. (2.57)

The poles of the previous expression exactly correspond to the excitation
energies of the N-particle system or to the quasiparticle energies, and fs(x)
can the be identified with the quasiparticle amplitude.

Equation of motion for G and the concept of self-energy, Σ

So far we have just introduced the concept of the single-particle propagator,
showing explicitly its connection with quasiparticle energies. The Green func-
tion is however to be determined according to the corresponding equation
of motion. For simplicity, let us neglect the exchange and correlation ef-
fects beyond the Hartree approximation. The non-interacting single particle
Hamiltonian is then, H0 = h0 + VH, and the corresponding Green function,
G0, solution to the equation of motion (ǫ−H0)G0 = I, is written in terms of
single-particle orbitals, Φs,

G0 =
∑

s

Φs(x)Φ†
s(x)

ǫ− ǫs
. (2.58)

G0 therefore corresponds to the propagation of a particle (hole) in a system
of N+1 (N-1) non-interacting particles. If we now turn on the exchange
interaction, the Green function, GHF, is determined by,

(ǫ−HHF)GHF = (ǫ−H0 − Vx)G
HF = I. (2.59)

From the above written equations of motion for both Hartree and Hartree-
Fock Green functions, the following relation is easily obtained by multiplying
by G0 equation 2.59,

GHF = G0 + G0VxG
HF. (2.60)
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If we were to explicitly solve equation 2.59, we would find that GHF or the
Green function at first order of perturbation can be represented as the sum of
three different Feynmann diagrams (Figure 2.9): the free particle propagator,
G0, and the Hartree and Fock diagrams, describing the interaction of one
particle with itself through virtual photons. The infinite sum of Hartree-
Fock diagrams leads precisely to equation 2.60, describing the propagation
of GHF. If we now consider higher order perturbation terms of the Coloumb
interaction, the corresponding Green function, G, presents contributions of
more complicated diagrams (such as, for example, the bubble diagram and
the rainbow diagram at the second order expansion). The infinite sum of
higher order diagrams leads to the Dyson equation for the Green function
in terms of the so-called self-energy, Σ. The idea behind MBPT is then to
consider the Coulomb interaction between electrons,

v(r− r′) =
1

|r− r′| , (2.61)

as a perturbation of the independent-particle system (or Hartree potential),
increasing the accuracy of the self energy from Vx to the exact Σxc.

= + + + +

+ + + +

= + Σ

G

GGG0 0

Hartree Fock

bubble rainbow

Figure 2.9: Dyson equation for the one-particle Green function, G = G0 +
G0ΣG, represented with Feynmann diagrams.

To conclude, the equation of motion for the dressed Green function, in-
troduced here as a generalization of equation 2.59, and formally derived in
ref has the form,

[ǫ− h0(x)− VH(x)] G(x,x′; ǫ)−
∫

Σ(x,x′′; ǫ)G(x′′,x′; ǫ)dx′′ = δ(x,x′). (2.62)
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And the corresponding Dyson equation is,

G(x,x′, ǫ) = G0(x,x
′, ǫ) +

∫

dx1x2G0(x,x1, ǫ)Σ(x1,x2, ǫ)G(x2,x
′, ǫ). (2.63)

Before concluding, we note that the complex many-body character of G is
due to the energy dependence of the self-energy, Σ(x,x′, ǫ).

The screened potential, W

In practice, the bare Coulomb interaction between electrons is substituted
by a screened interacting potential, W, when determining the full interacting
Green function. As one can expect for any homogenous polarizable medium,
a given electronic interaction induces a response from the medium, reducing
the bare interaction by the dielectric constant of the medium, ε. For any
general medium, the interaction between a pair of electrons is reduced by
the surrounding electrons, which act as an effective dielectric medium. The
dynamically screened interaction between electrons is the defined as,

W(r, r′, ǫ) =

∫

dr1ε
−1(r, r1, ǫ)v(r1 − r′), (2.64)

where ε−1 is the microscopic dielectric constant. The one-to-one Coulomb
interaction is therefore replaced by a mean response from the medium, de-
scribed by such dielectric constant. To conclude, within MBPT we aim
to describe not the strong Couloumb interaction between electrons, but a
screened weak interaction W between quasiparticles.

2.3.1 The GW approximation

The replacement of v by the screened potential W allowed L. Hedin to for-
mulate in 1965 a scheme to compute the interacting Green functions by
proposing a set of self-consistent equations [51], represented in the pentagon
of Figure 2.10. The screened potential is written in terms of the irreducible
polarizability, χ̃, in the form of a Dyson equation, W= v+vχ̃W. The irredu-
cible polarizability is connected to the Green function through the three-point
vertex function, Γ. Within the GWΓ theory an exact solution to the many-
body problem is obtained if Hedin’s equations are solved self-consistently,
often using as the starting guess for the Green function, G0.

In practice, and due to the computational cost of the GWΓ scheme, the
vertex function is neglected or set to the identity Γ = 1, leading to the GW
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Figure 2.10: Hedin’s coupled equations, constituting the GWΓ theory.

approximation. The set of equations is then reduced as follows,

Σ(12) = iG(12)W(12)

G(12) = G0(12) +

∫

d34 G0(13)Σ(34)G(42)

χ̃(12) = −iG(12)G(21)

W(12) = v(12) +

∫

d34 v(13)χ̃(34)W(34)

(2.65)

where the notation (12) = (x1, t1,x2, t2) is employed for simplicity. The self-
energy is simply the product between G and W, giving the name to the GW
approximation, and the neglected terms are commonly referred to as vertex
corrections. The above scheme is also to be solved iteratively, to obtain the
approximated self-energy. In practice, and as detailed in next section, the
self-energy is very rarely computed self-consistently, but the one-shot GW
approximation is typically implemented. The self-energy is therefore estim-
ated by the initial guess of the Green function, G0, and the corresponding
screening, W0, leading to the G0W0 calculation of quasiparticle energies.

2.3.2 The G0W0 implementation

As already established, the practical implementation of MBPT consists in
one unique evaluation of both G and W, and the estimation of the self en-
ergy as the convolution of both, G0W0. The one-shot approximation of the
self-energy is justified by the reliability of the starting point: mean-field the-
ories like Hartree-Fock or Kohn-Sham, which already include a description
of the electronic interaction beyond the Hartree potential. As already shown
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in equation 2.58, the independent Green function is easily expressed in terms
of the single-particle orbitals, Φs, constituting the first step of the GW cal-
culation. In the case of computing the many-body corrections on top of the
Kohn-Sham theory, we have,

G0(r, r
′, ǫ) =

∑

s

ΦKS
s (r)ΦKS †

s (r′)

ǫ− ǫKS
s + iηsign(ǫKS

s − µ)
, (2.66)

where the spin-dependence has been dropped, and only the spatial variable
is considered. The second step in the calculation is to compute both the
irreducible polarization, χ̃0, and the screened potential, W0, according to
Hedin’s equations 2.65. The estimated self-energy is then evaluated, Σ0 =
iG0W0, and so, it is possible to write the quasiparticle equation,
(

−∇2

2
+ Vn(r) + VH(r)

)

Φqp
i (r) +

∫

dr′Σ0(r, r
′, ǫqpi )Φqp

i (r′) = ǫqpi Φqp
i (r)

(2.67)
We note that in practice, the above equation is solved by approximating
the quasiparticle wavefunctions as the Kohn-Sham single-particle orbitals,
Φqp

i (r) = ΦKS
i (r), and the quasiparticle energies, ǫqpi , are computed as a first

order correction to the Kohn-Sham starting point,

ǫqpi = ǫKS

i + 〈Φi|Σ0(ǫ
qp
i ) − Vxc |Φi〉 (2.68)

Within the G0W0 approach there is then a one-to-one correspondence between
the KS eigenvalues and the computed QP energies. In most of the GW cal-
culations of band structures, the dependency of Σ with the quasiparticle
energy is linearized, and the expression, ǫqpi = ǫKS

i +Zi 〈Φi|Σ0(ǫ
KS
i )−Vxc |Φi〉,

is solved instead. The renormalization factor, Zi, is simply,

Zi =

[

1 − 〈Φi|
δΣ0(ǫ)

δǫ

∣

∣

∣

∣

ǫ=ǫi

|Φi〉
]−1

(2.69)

Obtaining the quasiparticle eigenvalues is the last step of the GW calculation,
since the quantity Σ0, and hence the screened potential, W0, are assumed to
be previously computed. In the following we briefly describedsome technical
details regarding the calculation of the dielectric matrix through the non-
interacting response function χ0 and the dependency of the screened potential
with ǫ.

Converged quasiparticle band structures

After neglecting the vertex contribution, the irreducible polarizability is eas-
ily written in terms of the Green function in equation 2.66 as χ0(12) =
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−iG(12)G(21),

χ0(r1, r2, ǫ) =
∑

i,j

Φi(r1)Φ
†
i (r2)Φj(r2)Φ

†
j(r1)

[

1

ǫ− (ǫi − ǫj)− iη
− 1

ǫ− (ǫi − ǫj) + iη

]

(2.70)

with the condition of i being an occupied KS state, whereas j runs over the
unoccupied states. The number of empty bands employed in the description
of χ0 is therefore one of the convergence parameters to account for in a GW
calculation, typically needing at least a 1:10 proportion between occupied
versus empty bands [52]. The requirement of including such large number
of bands makes the calculation extremely expensive, explaining the lack of
benchmarks and/or consistent studies of certain systems in the literature (e.g.
point defects in semiconductors). Furthermore, the independent-particle po-
larizability is in practice computed in the reciprocal and frequency domain,
and so, oscillator matrix elements of the form,

Mij(q + G) =

∫

dr1Φi(r1)Φ
†
j(r1)e

−i(q+G)·r1 (2.71)

must be determined, giving a dielectric matrix of the form εG1,G2(q, ω). The
number of G-vectors employed to describe the polarizability thus constitutes
the second convergence parameter to be considered in GW calculations. We
finally note that the dependency of the here-mentioned parameters is often
not independent and a joint convergence study is required.

Computing the screened potential, W0

The computation of the self-energy is commonly split into the exchange con-
tribution, Σx, and the correlation term, Σc, with Σ(ǫ) = Σx+Σc(ǫ). While the
estimation of the exchange term is straightforward, Σx = iGv, the evaluation
of the second terms needs the convolution integral of G and Wp = W − v,

Σc(r1, r2, ǫ) =
1

2π

∫

dǫ′eiηǫ
′
G(r1, r2, ǫ+ ǫ′)Wp(r1, r2, ǫ

′) (2.72)

The energy dependencence of Wp is often given by a plasmon-pole model [53,
54], according to which the imaginary part of ε−1 can be approximated as
a single-pole function in the frequency domain, ǫ. In the present work, the
Godby-Needs plasmon model is employed as implemented in the ABINIT
package.
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2.3.3 Many-body effects in semiconductors

To conclude the present section on MBPT, let us note that eigenvalues of
the quasiparticle equation 2.67 correspond by construction to ionization po-
tentials, IPs, and electronic affinities, EAs. The GW approximation is then
Koopman’s compliant, since,

ǫGW
HOMO = EN − EN−1 = IP, (2.73)

and similarly,
ǫGW
LUMO = EN+1 − EN = EA. (2.74)

The electrical band gap, Eg, is then equal to the energy difference,

Eg = ǫGW
LUMO − ǫGW

HOMO, (2.75)

where ǫGW are eigenvalues of a single particle equation, which accounts for
all many-body effects through the exchange-correlation self-energy, Σxc. GW
calculations of semiconductors are therefore expected to give accurate estim-
ates of electrical gaps, as reported by the the seminal work of M. van Schil-
fgaarde et al. [55], in which many-body corrections were constructed from
the LDA approximation: the GW@LDA scheme.

2.5 3.0 3.5 4.0 4.5 5.0 5.5

GW

BSE

RPA

Exp.

ω [eV]

Im
ε (

ω)

Figure 2.11: Silicon absorption spectrum after [56].

It is also important to emphasize the fact that the GW approximation
leads to the accurate description of charged excitations, for which the number
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of particles is changed by one, i.e. N-1 and N+1 excitations. Exploiting
the quasiparticle eigenvalues to predict neutral excitations, characterized by
the creation of an excitation (or a electron-hole pair), is therefore an ap-
proximation and it needs to be justified. In general terms, when a photon is
absorbed, the binding energy between the paired electron and hole needs to
be taken into account. Such attractive electrostatic interaction is said to jus-
tify the fact that measured optical band gaps are smaller than electrical gaps,
E opt

g < Eg. Neutral excitations are solutions of the Bethe-Salpeter equation
(BSE), which consists of an effective Schrödinger equation for the electron-
hole pair [57]. Even if a review of the BSE theory is beyond the scope of the
present manuscript, we note that in the case of the semiconductors, the BSE
optical band gap is effectively smaller than the GW electrical gap [56].

2.4 Ab initio calculations of point defect prop-

erties in practice

Local “imperfections” in realistic crystalline samples are found in a diluted
regime, characterized by isolated non-interacting defects. In order to simu-
late such conditions, single point-like defects are embedded in large matrices
reproducing the host atomic structure. Depending on the choice of such mat-
rix, ab initio approaches are distinguished between the cluster method, for
which the defect is introduced in a finite cluster emulating the solid struc-
ture, or the large-cell approach, which is constituted by multiple unit cells
arranged according to the primitive vectors of the lattice, subject to the Peri-
odic Boundary Conditions (PBC). In order to guarantee an atomistic model
of isolated defects, the dimension of the host matrix needs to be sufficiently
large to avoid size effects or non-physical interactions at the matrix borders,
but it has to be computationally affordable, since the translational invariance
of the solid can no longer be exploited. To emphasize this particular point,
we quote M. Cardona again (foreword of [58] from 2007):

“Although the field of defects in semiconductors is at least 60 years old,
it had to wait, in order to reach maturity, for the colossal increase in com-
puter power that has recently taken place, following the predictions of Moore’s
law. The ingenuity of computational theorists in developing algorithms to re-
duce the intractable many-body problem of defect and host to one that can be
handled with existing and affordable computer power has also played a signi-
ficant role.”
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Even nowadays, counting on rather large affordable matrices, size effects
are still traceable due to the long-range elastic distortions induced by defects
in covalent materials (section 2.4.1). Furthermore, in the case of PBC-based
calculations, mitigation strategies need to be taken into account to overcome
the long-range spurious Coulomb interaction between defect replicas (sec-
tion 2.4.2). Besides these sources of non-physical interactions, intrinsic to
the large-cell approach, estimated defect properties might be subject to the
DFT band gap problem, i.e. the concavity or lack of piece-wise linearity in
available exchange-correlation functionals (section 2.4.3), for which different
correction schemes have been proposed (section 2.4.4).

In the case of silicon, state-of-the-art calculations typically employ large
cubic cells containing from 216 atoms to 1000 atoms, and they are typically
sampled only at k = Γ = (0, 0, 0), or in fewer cases, employing the smallest
Monkhorst-Pack grid [59] centered at Γ, with a total of 8 k-points. Assuming
that the solid band structure is sufficiently folded for a cell of 216 atoms, the
KS orbitals are simply,

Φi(r) =
1√
Ωcell

∑

m

ci,m e
iGm·r, (2.76)

and the energy density of states for the crystal is well-represented at Γ,
ǫi(k = Γ).

2.4.1 Size effects due to elastic distortions

Artifacts associated to the finite size of the defective cell are known to be
introduced due to the long range ionic relaxations in the host lattice. In
the vacancy-related defects case, for example, broken bonds are known to
recombine into defect states, lowering their energy by inducing large atomic
displacements of first neighbor atoms, and by consequence, second or even
third neighbors of the vacancy. In the case of large metallic ions introduced at
interstitial position (or if the atom is big enough, at substituional position),
might provoke local expansions of the lattice in order to accommodate the
impurity. The range of these defect-associated distortions and the consequent
non-physical elastic contributions do not follow a simple rule of thumb, and
so this issue needs to be addressed for each individual defect. Elastic distor-
tions for three common centers in silicon, the substitutional phosphorous, the
vacancy and the vacancy-phosphorous complex (the E-center) are shown in
Figure 2.12. Relaxation patterns are especially relevant for the vacancy and
the E-center, whereas they are almost negligible for the dopant element. Shal-
low impurities do however introduce rather delocalized states (section 1.1.2),
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whose effective radius might be larger than the cell parameter. The electronic
density, |ΦShallow

KS |2, might then interact with the replicas of the defective cell,
introducing a non-physical contribution due to the overlap between periodic
images (Figure 2.12). A relatively recent work [60] showed that the shallow
KS eigenvalue associated with substitutional phosphorus is converged within
1 meV for a cell containing 10648 atoms. Within the scope of the present
work, we are not interested in accurately describing shallow centers, but the
electronic activity associated with deep states. As depicted in Figure 2.12,
when a P atom traps a mobile vacancy, constituting the phosphorus-vacancy
complex, the P impurity does no longer introduce a shallow state, but several
deep localized states. Seeing the comparative effective radius between shal-
low and deep states, it is safe to conclude that the tails of ΦDeep

KS are normally
contained within any silicon cell, whose lattice parameter is at least ∼ 20 Å
(corresponding to a cubic cell of 64 atoms).

Subst. P Vacancy, V P-V center

Figure 2.12: Defect electronic density corresponding to the substitutional
phosphorous, the mono-vacancy, and the phosphorous-vacancy complex. KS
isosurfaces in a 216-atoms silicon cell for three defect-induced states are
shown in blue. The plotted probability density, |ΦKS|2, corresponds to 1

9

of the maximum isosurface value calculated for each defect.

Historically, convergence tests for deep centers were based on the tend-
ency of formation energies upon variations on the number of host atoms (see,
for example, convergence studies for the silicon vacancy [61, 62, 63, 64]). Be-
sides targeting total energy convergences, one could also check the energy
tendency of a single KS state within the semiconductor band gap, similarly
to the example given above for the P shallow state. In our case, since KS
defect states are not aimed to be determined with a precision of 1 meV,
size effects are discussed in terms of total energy differences or the collective
behavior of KS eigenvalues in a defective cell. For a given cell size, we re-
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mark that finite size effects are responsible for the broadening of the defect
induced states. As described at the very beginning of the manuscript, defect
states are delocalized in k-space, introducing constant energy bands in the
solid band structure. However, artifacts of defective cell calculations induce
the nonphysical dispersion ǫT (k). Two common schemes to overcome such
band broadening are: either to average the eigenvalue over the BZ, or to
sample at Γ only, considering that such k-point exploits the defect symmetry
completely. A second issue related to the KS eigenvalues in a defective cell
is the determination of the host crystal band edges, ǫTVB and ǫBCB, since in
defective cells the band gap narrowing effect is commonly found, character-
ized by an artificial lift of the host band degenerate states. For this reason,
eigenvalues of the defective cell are often shifted to match bulk states deep
in the valence band, where the spurious defect interaction does not affect the
host energy band structure.

2.4.2 Spurious interaction between charged defects

As it has been established, the study of point defects in semiconductors
requires to simulate several trap electronic occupations or different charge
states of the defect. In order to avoid the divergence of the electrostatic
energy for a charged defective cell calculation, a homogeneous neutralizing
background charge is usually employed: the compensating charged jellium.
This technique allows the study of charged defects by accurately describing,
for example, ionic relaxations patterns at different charge states, but it does
however introduce the spurious interaction between charged defect images.
In other words, in addition to the artificial elastic interactions, charged de-
fective cells are characterized by including a fictitious electrostatic interaction
in our DFT calculations. The total energy of a charged cell is therefore arti-
ficially shifted by a certain quantity, ∆E elect, corresponding to the Coulomb
interaction between two rather localized charged densities, separated by a
distance L (or the lattice parameter of the defective cell). A second draw-
back of the charged defective cell calculations is the change of the reference
electrostatic potential due to the interaction between the charged defect and
the compensating jellium, which fixes the KS absolute energies and, in par-
ticular, determines the host band edges. A second correction must therefore
be taken into account when comparing KS DOS for differently charged cells,
often referred to as the potential alignment correction, ∆V .

In the case of defect studies whose main quantity of interest is the forma-
tion energy of charged centers, applying a correction scheme to DFT quant-
ities is fundamental to achieve accurate values. There is therefore a need
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to revisit the expression for the charged defect formation energies, which is
defined in its more general form as,

E q
f [Si, d] = E q

DFT [Si, d] −
∑

I

nIµI + q [ǫTVB + EF] , (2.77)

where E q
DFT [Si, d] = E [Si, dq ]−E[Si, bulk] and the presence of the ionic reservoir

is introduced by the chemical potentials, µI . The term E q
DFT is therefore

subject to the spurious electrostatic interaction induced in the particular
system [Si, dq]; so the electrostatic correction ∆E elect is typically added to the
above expression. Furthermore, describing the position of the valence band
is fundamental to accurately determine the electronic chemical potential,
µe = ǫTVB+EF. To overcome the delocalization of the band edges in a charged
defective cell, it is common to include a potential alignment correction, ∆V ,

E q
f [Si, d] = E q

DFT [Si, d] + ∆E elect −
∑

I

nIµI + q [ǫTVB + EF + ∆V ] . (2.78)

So far we have only introduced the correction terms in the formation energy
expression, without tackling the problem of determining such contributions.
From a historical point of view, the first expression for this term was given by
Leslie and Gillan [65], when they made the assumption that a charged defect
induces a point-like charge distribution. Because such charge distributions
are not isolated systems, the spurious Coulomb interaction was written in
terms of the Madelung constant, αm [66],

∆E elect = −αmq
2

2εL
, (2.79)

where L is the lattice parameter of the cell, or the distance between point-
like distributions; and ε the dielectric constant of the solid. Having the
above monopole correction in mind, it is evident that because of the long-
range character of the Coulomb interaction, slow convergence with respect
to the size of the cell is expected. We also notice that within this point
charge model, higher order terms in the multipole expansion can be added
to expression 2.79. The multipole expansion as the electrostatic correction
to the charged defect formation energy, ∆E elect, is often referred to as the
Makov-Payne correction scheme [67]. On the second correction term, the
simplest scheme is again to align KS eigenvalues obtained for the charged
defective and the neutral pure cells, giving the resulting absolute shift as
∆V , Chapter 2 [58]. We note that in the case of defective charged cells, the
misalignment between KS DOS is consequence of two different artifacts of
the calculation: the atomic relaxation or elastic contributions (also observed
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in a neutral defective cell), and the induced variation of the electrostatic
potential when charging the cell. More sophisticated schemes to accurately
describe both energy corrections terms have been proposed over the years,
see work of [68, 69], including the effort to find a link between the potential
alignment and the electrostatic correction.

2.4.3 Defect properties subject to the DFT band gap
problem

The above introduced quasiparticle approach to study materials properties
(section 2.3) shows the limitations of mean-field theories, such as DFT, to
describe certain many-body effects. Because of the notorious underestima-
tion of electrical band gaps or particle-excitations, KS states computed on
a defective cell, or even DFT total energy differences at different charge
states, poorly describe optical or electronic properties of the center. Fur-
thermore, occupation of localized states within the band gap might suffer
from the Self-Interaction problem and so other physical properties computed
from DFT total energies might also be compromised. Ideally, one should
extend the estimation of single-quasiparticle energies to the description of
the total energy of the system, like in the case of Hartree-Fock and the Dens-
ity Functional Theory, allowing an exploration of a PES which accounts for
all many-body effects. However, in practice, these calculations are compu-
tationally very expensive, particularly in the case of defective cells, and so
single point calculations at critical points of the PES (defined with a mean-
field approach) are usually performed. Defect geometries are therefore not
optimized at the MBPT level of accuracy, but at the accuracy level of the
employed exchange-functional. The error on the local defect geometry is con-
sidered small due to the good description of the local symmetry by DFT, but
many-body effects might become relevant in the subtle energy differences at
difference ionic configurations.

Both the Self-Interaction problem and the concavity of the employed func-
tional (section 2.2.4) are especially relevant when determining the CTLs for
a given center. Besides the finite-size effects and the spurious interaction
between charged defects, the underlying DFT band gap problem also needs
to be taken into account when determining ∆E q, q′

DFT in equation 2.78. Among
the proposed schemes to overcome such limitation, we distinguish the use of
hybrid functionals, the development of the Marker Method and finally, the in-
clusion of many-body corrections. Hybrid functionals are one of the reference
methods to compensate the DFT self interaction problem, by introducing a
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certain fraction, α, of the exact Hartree exchange (equation 2.37). Because
they have proven to give accurate band gaps for semiconductors, they are
expected to accurately locate defects states within their respective band gaps
for a chosen flavor of the functional, tuned by the parameter α. Circumvent-
ing the approximations regarding the exchange-correlation potential and the
lack of a unified transferable expression, we aim for an exact treatment of
the electronic interaction within the many-body perturbation theory, as in-
troduced in the following.

The Marker Method, as an approach to accurately compute CTLs, has
been extensively used in the context of point defects in silicon, so we quickly
review its bases. The main idea behind this method is to correct the under-
estimated term, E q

DFT [Si, d]−E q±1
DFT [Si, d], by introducing an empirical shift.

It is based on the assumption that two defects with, and we quote Chapter
3 [58], “similar electronic properties”, induce the same absolute error when
determining DFT energy differences at different q. It is assumed that if for a
certain marker, M, there is a good experimental reference for its CTL, then
the energy correction is given by,

∆M = E(0/−)M −
(

E −1
DFT [Si,M] − E 0

DFT [Si,M]
)

. (2.80)

The unknown acceptor level for the defect under study is then,

E(0/−)d = ∆M +
(

E −1
DFT [Si, d] − E 0

DFT [Si, d]
)

. (2.81)

As mentioned in Chapter 3 [58], several bold assumptions are made in order
to obtain the above equation. Recalling the definition for the CTL in terms of
formation energies, E0

f = E−
f , it should be clear that both correction terms

due to the spurious electrostatic interaction between defects, ∆E elect and
∆V , need to be included both for the defect and the marker. It is therefore
common to assume that these contributions are equivalent for both systems,
canceling out in the final expression 2.81. On the other hand, establishing
which marker is adequate for a given defect needs an already preconceived
idea of its energy levels or the use of a rather general marker, whose electronic
equivalency with the studied defect might be strongly questioned. We also
remark that the Marker Method (MM) is an empirical method, and not a
full ab initio approach.

2.4.4 The DFT + GW combined approach

In 2009, P. Rinke et al. [70] proposed a combined LDA + GW scheme to
compute formation energies avoiding the DFT band gap problem. The
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idea behind the method is to minimize the DFT self-interaction problem,
very prominent in defective cells, by including many-body corrections. The
method establishes that for any generic defect, d, formation energies at dif-
ferent charge states are safely computed with respect to E q

f , if at charge q the
defect does not present occupied states in the band gap. From the definition
of formation energy, given in equation 2.77, the energy E q−1

f can be estim-
ated using E q

f as starting point, by simply computing E(gq−1, q−1) - E(gq, q)
- µe, where gq and gq−1 are the equilibrium ionic geometries at charge states
q and q − 1 respectively. Regarding the employed notation, we remark that
the defect state q− 1 corresponds to the N+1 number of particles state with
respect to charge state q. As represented in the coordination diagram of
Figure 2.13a, the energy difference E(gq−1, q − 1) - E(gq, q) can be split into
two energy contributions: (1) the vertical transition E(gq, q − 1) - E(gq, q),
at constant equilibrium atomic geometry, gq; and (2) the ionic relaxation at
constant electronic occupation, given by E(gq, q − 1) - E(gq−1, q − 1). The
formation energy at q − 1, can then be written as,

E q−1
f = E q

f + EA(gq, q) + ∆E q−1
relax − µe, (2.82)

where EA(gq, q) is the first electronic affinity computed at charge state q,
describing by construction the energy difference in (1), and ∆E q−1

relax is the
relaxation energy given to the lattice, (2). If the the formation energy at
charge state q − 2 is also to be computed, its expression is straightforward,

E q−2
f = E q−1

f + EA(gq−1, q − 1) + ∆E q−2
relax − µe. (2.83)

So far we have considered a generic defect at charge states q, q−1 and q−2,
without discussing the defect charge neutrality. We however note that for the
majority of point defects, the reference electronic occupation corresponding
to an empty trap does often not correspond to the neutral state.

The DFT + GW approach also constitutes the perfect scheme to avoid the
DFT band gap problem when computing CTLs. Continuing the description
of the generic defect, d, the CTL E q/q−1, can be safely estimated as,

E q/q−1 = EA(gq, q) + ∆E q−1
relax − IPTVB. (2.84)

Being aware of the spurious interaction between charged defects (section 2.4.2),
we note that total energy correction, ∆Eelect, is not needed, since it cancels
out when ∆E q−1

relax is estimated. Regarding the second correction, or the po-
tential alignment correction, ∆V , the electrostatic error in the individual
KS eigenvalues is most likely transferred to the QP eigenvalues, and so, it
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Figure 2.13: Coordination diagram illustrating the DFT + GW combined
approach to estimate formation energies at charge states q+ 1 and q+ 2 (a).
Coordination diagram showing the four possible paths to compute the CTL
E q/q′ within the DFT + GW method (b).

needs to be taken into account when specifying ionization potentials and
electronic affinities with respect to the IPTVB in a defective charged cell.
We now remark another aspect of the DFT + GW approach; the fact that
any CTL E q/q′ can be computed through four different paths (represented in
Figure 2.13b), leading to the equality,

E q/q′ + IPTVB = EA(gq, q) + ∆E q′

relax = IP(gq, q′) + ∆E q′

relax =

= EA(gq′ , q) + ∆E q
relax = IP(gq′ , q′) + ∆E q

relax.
(2.85)

Practical issues and error avoidance regarding the existence of these four
paths is discussed in detail in Chapter 5, where numerical examples for a
catalog of defects in silicon iare provided.

Examples of DFT + GW calculations are rarely found in the literature
due to the computational challenge of performing GW calculations in large
supercells. The method has been exploited to estimate accurate CTLs in the
context of crystalline silicon for the self-interstitial defect in the seminal work
of P. Rinke [70], where many-body corrections were obtained on top of LDA, a
GW@LDA calculation; or for the interstitial carbon impurity [71], employing
a GW@HSE approach (HSE being a hybrid functional). We also remark
the early work on charged oxygen-related defects in amorphous silica [72]
and the case of the carbon vacancy in SiC [73], both based on GW@LDA
calculations. Besides determining the accuracy of the approach by comparing
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estimated CTLs with experimental evidence, in [70], the formation energy
of the neutral silicon interstitial was also matched to diffusion Monte Carlo
calculations; and in [73], energy barriers of the transformation VSi into VCCSi

were corrected by performing GW calculations at the saddle point geometry,
obtaining activation energies in agreement with annealing experiments.
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Chapter 3

Unraveling iconic centers in
silicon: linking atomistic
modeling with experiments

EPR experiments can reveal

much about the electronic and

mechanical properties of the

defects, shedding valuable insight

into their role in altering the

macroscopic properties of the

solids in which they are

incorporated

G. D. Watkins (1975)

Atomistic modeling should be the key asset to guide the identification of
defects in electronic devices whenever characterization techniques are incon-
clusive. As a general idea, comprehensive full theoretical models, contrary
to experimental techniques, allow to explore an infinite number of physical
conditions and/or parameters of the system, providing a complete character-
ization of the center. The increase of computational power, together with the
development of affordable algorithms, made DFT-based methods the perfect
approach to construct a quantitative model for defects in semiconductors.
However, the existence of differently converged parameters and flavors of
the exchange-correlation functionals has transformed DFT studies of defects
in silicon into numerical experiments; limiting the analysis to comparing the
estimated defect properties to measured quantities in order to validate the
choice of the employed set of computational parameters. In the present work,
we take one step back, taking simple symmetry-based models as the starting
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point of our theoretical analysis. Once the fundamental physics of the center
is understood, computational methods are employed to quantify the model,
linking the atomistic modeling with different characterization techniques.

The need to guide ab initio calculations with simple theoretical models
is the main conclusion of the present chapter, throughout which we present
the cases of the titanium impurity (section 3.1) and the E-center in silicon (sec-
tion 3.2). In section 3.1, we question the long-established degrading power
of transition metals (TMs) in silicon by considering the possible existence
of an impurity-induced band in Ti-doped silicon, capable of enhancing the
efficiency of silicon-based solar cells. Our theoretical analysis of the center
starts by revisiting the phenomenological model proposed by Ludwig and
Woodbury, based on simple symmetry considerations and sustained by EPR
spectroscopy. We then quantify the model within a mean-field approach, ex-
plicitly showing the correspondence between the two theories, grounding the
basic features of the center. Only then, state-of-the-art simulations with the
inclusion of many-body effects are performed, investigating the hypothesis
of photon-absorption enhancing efficiency in Ti-doped silicon photodiodes.
From an opposite perspective, the degrading effect of transition metals in
silicon-based devices as isolated impurities is confirmed within a pure first-
principles approach under the DFT+GW method.

In section 3.2, we analyse the relevance of the silicon E-center for several
technologically relevant processes, like the Dark-Current Random Telegraph
Signal in image sensors. The former might be defined as a burst noise in
electronic devices commonly linked to the finite-temperature dynamics of
crystallographic defects, motivating an extensive exploration of the potential
energy surface at different temperature regimes. Our DFT and NEB calcula-
tions, in excellent agreement with EPR spectroscopy, provide new insight into
the defect dynamics, and in particular into the vacancy-mediated dopant dif-
fusion mechanism in silicon. The success of our computational investigation
relies on the molecular-orbital model presented by Watkins, whose simple
symmetry arguments predicted the Jahn-Teller effect, responsible for the ba-
sic features of the center. We unequivocally confirm such Jahn-Teller model
by quantifying the electronic excitations within the molecular-orbital picture,
assigning the transitions to measured infrared bands.
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3.1 Degrading defects or photon-absorption-

enhancing centers? The case of Titanium

From a common perspective, transition metals (TMs) in silicon are known
to introduce several deep levels in the semiconductor gap, reducing the effi-
ciency of silicon-based devices through the so-called non-radiative transitions
or the SRH recombination process [4]. In the particular case of silicon photo-
voltaic devices, their eventual promotion to be widely used required a large-
scale manufacturing process characterized by low cost, lower purity silicon
samples [74, 75], consciously growing contaminated-silicon wafers containing
3d TMs like titanium, copper and iron. There was therefore a motivation to
determine a tolerable contamination which did not degrade the solar-cell per-
formance. Among the considered impurities, titanium was said to severely
impact the cell efficiency, since an occurrence of 2·1014 cm−3 resulted in a
63% performance-loss [75]. From an opposite perspective, Olea et al. [76]
presented experimental evidence that Ti can be implanted in silicon in con-
centrations above 1018 cm−3, proving the possibility that Ti-doped silicon
could serve as an intermediate-band material, increasing the efficiency of
the third generation of solar cells (the so-called intermediate-band (IB) solar
cell [77, 78]). The basic idea behind such IB-materials is to intentionally dope
the sample with an impurity center, which induces a partially filled state
within the forbidden gap (Figure 3.1). Photons with insufficient energy with
respect to the Eg are then still able to pump electrons from the valence band
(VB) to the defect-related band (IB) [77]. Two photon-absorption paths can
therefore co-exist: the direct excitation from VB to CB (3 in Figure 3.1) and
the IB-mediated excitation (1 and 2 in Figure 3.1), triggered by below band
gap photon absorptions. One can therefore question at what concentrations
titanium is a degrading impurity or an efficiency-enchaining center in silicon-
cell photovoltaic devices. Luque et al. [79] postulated that a delocalization
of the intermediate band can be obtained for a sufficiently large density of
impurities, allowing the trapped electronic density to be extended through-
out the crystal. This statement has been criticized by [80], but supported
by measurements in Ti-doped silicon [81, 82, 83]. Two central questions are
therefore to be assessed by theoretical considerations: the existence of an
optically-active Ti-related band within the silicon gap and the possibility
of a localized-delocalized state transition (referred to as an insulator-metal
transition in [84]), guaranteeing the prevention of non-radiative transitions.

Historically, transition metals in silicon have been extensively character-
ized as degrading impurities, targeting their capability to capture and/or
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Figure 3.1: Schematic band structure of an intermediate-band-material-based
solar cell, adapted from [78]. (1) and (2) represent photon absorption trans-
ition with energies lower than Eg, whereas (3) represents above band gap
photon absorption.

release free carriers through non-radiative transitions. Pioneer EPR stud-
ies [85] already revealed that TMs could be found at different charge states
(ranging from +2 to -1), indicating the ability of such impurities to interact
with the electronic reservoir. Further analysis of the EPR spectrum allowed
Ludwig and Woodbury [86] (LW) to postulate that TMs in silicon have a
preference for tetra-folded atomic conformations, since they mostly appear
at substitutional sites and tetra-interstitial sites. As explicitly shown in Fig-
ure 3.2, at both lattice positions, the TM is then surrounded by four nearest
neighbors or silicon atoms 1, 2, 3 and 4, whose interatomic distances dTi−Sin

were established to be equivalent for all n, defining a local geometry with
point-group symmetry Td [86]. Moreover, by monitoring the interaction of
unpaired electrons with an external magnetic field, they observed that TMs
had a preference for large spin values, being S often larger than the usual
1/2 for a single unpaired electron and 0 for a close-shell configuration. In-
terstitial manganese, MnI, for example, presented spin values of 5/2, 2 and
3/2 at charge states +2, +1 and 0 respectively. As a generalization of the
substantial number of EPR spectra collected for different TMs, an atomistic
model regarding the electronic configuration of TMs, explaining the observed
magnetic properties was proposed (details in section 3.1.1). In a few words,
the so-called Ludwig-Woodbury model establishes that the isolated-atom con-
figuration 4s23dn is modified when TMs are embedded in the diamond lattice
as follows: the five 3d orbitals are filled with n + 2 electrons at interstitial
position, whereas, they are occupied by n - 2 electrons at substitutional sites,
since the remaining four electrons contribute to the tetra-folded Ti-Si bonds.
The 3d states are therefore responsible for the TMs electronic activity, push-
ing the 4s states higher in energy, into the conduction band. It was further
postulated that 3d states split according to the electrostatic repulsion with
nearby silicon atoms into a doublet (e-states) and a triplet (t2-states), with
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ǫe < ǫt2 , for a substitutional configuration, whereas |ǫt2 < ǫe| for an intersti-
tial position. The absolute magnitude of the energy splitting, ǫt2 − ǫe, was
assumed small, singly filling both e and t2 states before forming electronic
pairs (Figure 3.2). In other words, the Coulomb repulsion between two elec-
trons whose densities are spatially equivalent is larger than the splitting of
the 3d states, preserving Hund’s principle. The LW model was first sustained
by the observed EPR spectrum for V2+, Cr+,0, Mn2+,+,0, Fe+,0, Ni+ at in-
terstitial positions; and Cr0, Mn+,2− at substitutional positions, where the
notation TMq is employed (with q the charge state of the impurity). Later
EPR investigations [87] revealed a spin value equal 3/2 for positively charged
titanium at interstitial position, also consistent with the model.
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Figure 3.2: The Ludwig-Woodbury model for 3d Transition Metals in silicon.
Electronic configuration for neutral chromium at both substitutional (left)
and tetrahedral-interstitial (right) positions. The four nearest neighbors to
the TM are explicitly marked; silicon atoms 1, 2, 3 and 4.

In alignment with the variety of charge/spin values reported by Ludwig
and Woodbury, DLTS spectroscopy (e.g. [4]) revealed that most of the 3d
TMs introduce up to three deep levels, being present at charge states +2, +1,
0 and -1. The existence of multiple trap levels, confirmed for various TMs
and by different independent measurements (e.g. [4]) is the main argument
to sustain the degrading power of these metallic impurities in silicon-based
devices. In the specific case of Ti, as already introduced in section 1.3.3,
three levels have been consistently reported for TiI; a double donor at EV

+ 0.29-0.32 eV [28, 29, 30, 26, 27, 24], a single donor at EC - 0.24-0.28 eV
[28, 29, 30, 26, 27, 24] and a single acceptor level EC - 0.08 eV [26, 27, 24]. A
fourth level at EV + 0.51-0.55 eV has also been reported [29, 30, 27] and as-
signed to interstitial Ti, reconsidering the position of the double donor level
and hence questioning the existence of a triple donor level. Substitutional
titanium, on the other hand, is known to be electronically inactive, since no
deep levels have been reported for the center [4]. It is precisely such differ-
ence between the electronic properties at both sites in the lattice (i.e. TiI
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and TiS), that allowed to unequivocally determine their relative occurrence,
concluding that Ti in silicon is mainly found at interstitial position. Note
the employed notation: TMI and TMS for tetra-interstitial and substitutional
positions.

On the theoretical side, early density-functional-theory-based calcula-
tions [88, 89] confirmed the fundamentals of the LW framework or the mag-
netic properties at different charge state and atomic site. They however
established that early TMs at interstitial position (namely, titanium and va-
nadium) presented lower spin values of 1 and 1/2 at charge states Ti0,−I , V+,0

I ,
than the predicted 2 and 5/2. Later first-principles studies [90, 91, 92] agreed
on such magnetic properties, focusing their work on the degrading nature of
the impurities by estimating their CTLs, investigating the link with DLTS
activation energies. From a different perspective, computational approaches
have also been used to investigate the possibility of Ti-doped silicon being an
intermediate-band material [93, 84, 94]. In [93, 84], different concentrations
of the impurity in silicon have been modeled by performing PBE calcula-
tions on cubic defective cells containing from 64 to 512 atoms. Variations on
the defect-related KS eigenvalues on the energy density of states obtained
for different regimes led them to conclude that Ti can effectively be used to
dope silicon and the third generation of solar cells. Besides questioning the
validity of their approach to simulate a disorder doped semiconductor with a
set of identical defect replicas, a unique theory addressing at the same time
the degrading effect and the photon-absorption enhancement in photovoltaic
devices by Ti-contamination is still missing.

In the current section, our ab initio characterization of titanium in sil-
icon is presented, carefully detailing the methodology employed throughout
this thesis to represent/determine certain defect properties. Throughout this
section, we also established the general comparison between the numerical in-
vestigation of point-like defects and experimental values at different levels of
approximation: In section 3.1.2, structural properties evaluated within stand-
ard DFT in the PBE approximation are compared to EPR measurements,
confirming the symmetry of the defect-related orbitals and the distortions
triggered in the surrounding lattice. In section 3.1.3, optical and electronic
properties are evaluated with the inclusion of many-body effects in the form
of the GW approximation, tentatively assigning infrared absorption bands
to estimated charged excitations. Finally, in section 3.1.4, we determine the
deep levels of interstitial titanium in silicon within the DFT+GW combined
approach, establishing a one-to-one correspondence with DLTS activation en-
ergies. Our ab initio theoretical picture, in contrast with previous studies, is
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guided by long-standing symmetry-considerations (section 3.1.1), providing
new insight into the defect finite-temperature dynamics, and a new perspect-
ive of its degrading power versus its photon-absorption-enhancing capabilities
if implanted in solar cells.

3.1.1 Transition metals subject to tetra- and octa-hedral
fields: symmetry considerations

The success of the phenomenological LW model when predicting the meas-
ured spin value relies strictly on the filling of the TM 3d shell. Ludwig and
Woodbury did however rely on previous theoretical investigations when dis-
cussing the origin and inversion of the 3d orbitals splitting at substitutional
and interstitial positions. We cite, for example, the seminal work of J. D.
Duntiz and L. E. Orgel [95], regarding the electronic properties of TM ox-
ides. According to their symmetry-based model, when a TM is subject to
an octahedral field, imposed by six negative ions surrounding the TM, the
degeneracy of the five 3d states is broken depending on their spatial ori-
entation with respect to the surrounding ions (Figure 3.3B). Orbitals with
quadratic representations z2 and x2-y2, oriented towards the negative ions,
are less stable than the t2-states, which point in the directions where the
electrostatic repulsion is minimized. If, on the other hand, the TM is sur-
rounded by four negative ions, placed at the vertices of a regular tetrahedron,
within a simple electrostatic-repulsion treatment the levels are inverted with
respect to the ortahedral field. Luwdig and Woodbury applied the model for
TMs subject to tetrahedral and octahedral fields to TMs in silicon, by stat-
ing that even if at both substitutional and interstitial sites the TM presents
four nearest neighbors (Figure 3.2), the six second neighbors at interstitial
position are capable of destabilizing the doublet, favoring the t2 states. In
Figure 3.3A we show the positions of both second and first neighbors to the
interstitial TM in the silicon lattice, as well as the x, y, z axis according to
which the directionality of the 3d orbitals is considered (Figure 3.3B). The t2
states xz and yz are not represented, but they are analogous to the xy state
in the corresponding perpendicular planes. The splitting of 3d states is only
confirmed by EPR spectroscopy in a rather indirect way, leaving the door
open to sustain and quantify the model within a first-principles approach.

Before concluding, we note that a symmetry-based model allowed J. D.
Duntiz and L. E. Orgel [95] to consider perturbations of the crystal fields
upon structural distortions of the surrounding negative ions. In the case
of the octahedral field, if the two atoms along the z-direction are displaced
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Figure 3.3: (A) TM at tetrahedral-interstitial position in the silicon lattice.
First and second neighbors are represented in light grey (atoms 1, 2, 3 and 4)
and with smaller dark grey circles respectively. (B) Quadratic representations
of 3d states z2, x2-y2 and xy, oriented according to the x, y z axis imposed
by the TM second nearest neighbors.

farther away from the TM, the degeneracy of the doublet and the triplet
is lifted, being ǫxz = ǫyz < ǫxy for the t2 states, and ǫz2 < ǫx2−y2 for the
more energetic doublet. Such symmetry-breaking mechanism of orbitally de-
generated systems is commonly referred to as the Jahn-Teller effect, since
in 1937 H. A. Jahn and E. Teller showed that any non-linear molecule is
unstable upon degeneracy of molecular orbitals at static equilibrium. These
systems therefore present at least one symmetric axis along which the mo-
lecule may distort in order to lower its energy. In the context of point defects
in semiconductors, symmetry-breaking atomic distortions are also referred to
as Jahn-Teller distortions, in analogy with a molecule embedded in a dielec-
tric medium, with dielectric constant, ǫhost. In other words, the degeneracy
of defect-induced states might trigger local reconfigurations in the lattice as
the one showed in Figure 2.2.2 for the silicon mono-vacancy.

3.1.2 Ground state electronic properties vs. EPR spec-
troscopy

The first ground state property typically targeted when numerically study-
ing defects in silicon is the DFT optimized geometry at different charge states.
The description of different local configurations by different computational
approaches is often validated or proved wrong by comparing the paramag-
netic electronic configurations to EPR spectroscopy. Even if such link has
demonstrated to be a strong validation of the employed set of numerical
parameters, it is limited to paramagnetic centers, leaving the estimated con-
figuration for paired states at the predictive level. In the case of 3d-TMs
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in silicon, total DFT energies have been exploited to determine the optimal
spin values at different charge states. In the case of interstitial titanium at
charge states +1, 0, -1 spin-unrestricted calculations [90, 91, 92] estimated
the ground state spin values to be 1, 3/2, 1/2 respectively; whereas at sub-
stitutional position, S=0, 1/2 for charge states 0 and -1. They also reported
a highly symmetric tetrahedral configuration (e.g. with point-group sym-
metry Td) independently of the charge state and the position in the lattice.
Even though these spin values are consistent with EPR spectroscopy for Ti+I ,
and the Ludwig-Woodbury model for Ti 0,−I and Ti 0,−S , these theoretical mod-
els were blind to the underlying electronic structure of the defect. In other
words, theoretical models purely based on total-DFT-energies typically fail
to give a complete picture of the center, since no effort to actually describe
the defect-related states is made.
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Figure 3.4: (A) KS energy density of states (DOS) for crystalline silicon. (B)
KS DOS of two silicon supercells containing a neutrally charged titanium
impurity at substitutuinal position, Ti0S; and a positively charged Ti at in-
terstitial position, Ti+I respectively. Trap states are named according to the
Ludwig-Woodbury model for TM in silicon; states e and t2. In the case of
Ti+I , it consists of the spin-polarized projected DOS, ǫi (σ =↑). Filled states
represent the occupied KS orbitals, determined from a PBE-based calcula-
tion.

A stronger correspondence between the LW model and the numerical cal-
culation can be made through a detailed investigation of the KS eigenvalues
and eigenfunctions, which are expected to reproduce the main features of the
defect electronic structure; namely, the number, degeneracy and form of the
localized states. As shown in the KS energy density of states in Figure 3.4A,
among all the possible defect-induced states, we focus our attention on the
band-gap energy region of the host material, since nearby localized states are
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responsible for the fundamental structural properties of the defect. In order
to analyze the KS energy density of states of Ti0S and Ti+I , in Figure 3.4B we
represent a superposition of two sets of KS eigenvalues computed for the pure
silicon cell containing 216 atoms and the defective cell sampled at Γ. In order
to avoid size-effects and spurious interactions between charged defects, a rigid
shift, ∆V is applied to the defective DOS according to e.g. Chapter 2 [58]. In
the case of substitutional Ti, two degenerate states ǫT1, 2 are obtained within
the crystal band edges. These unoccupied KS states are located close to the
BCB and they are candidates to be Ti-induced states. Similarly for the DOS
for interstitial Ti, a triplet of occupied states, responsible for S = 3/2, and
a more energetic unoccupied doublet of states is obtained within the host BG.

Even if the degeneracy and relative energy position of these KS states can
be linked to the LW model, a solid final correspondence can be established
by analyzing the symmetry of the real-space projection of the KS eigenstates,
ΦKS(r) (Figure 3.5). In the case of substitutional Ti, our numerical simula-
tions show that the doublet effectively corresponds to the e-states described
by the LW model, since they present spatial distributions z2 and x2-y2, avoid-
ing the Ti-Si bonds. At the PBE level of theory, we therefore reproduce the
level ordering predicted by the simple theoretical model, locating the five
3d states below the symmetric 4s orbitals and the splitting of the 3d states;
ǫe < ǫt2 . In the case of interstitial Ti, the localized states do however not
correspond to the predicted representations xy, xz and yz, but to a linear
combination of the former, here-named as a singlet a1 and a doublet e (Fig-
ure 3.5). The computed t2 states are oriented in order to avoid the Ti second
nearest neighbors (located along the x, y, z axis), being partially located
within the Ti-Si bonds. The more energetic doublet is unequivocally as-
signed to the e-states since they are analogous to the ones plotted for TiS,
oriented along the x, y, z axis. Finally, the unnamed singlet state located
between the e-doublet and the BCB is actually a bulk state, whose energy
has been lowered artificially by fictitious elastic interactions, artifact com-
monly referred to as the band gap narrowing. The electronic configuration
for Ti+I is then proved to be t↑↑↑2 (or t↑2 a1 t↑↑2 e ), in alignment with the simple
symmetry-based models.

Before concluding, we remark the limitation of the employed mean-field
theory, for which the approximated silicon BG, ǫBCB − ǫTVB, is as expected
(section 2.2.1), smaller than the measured BG for silicon, Eg = 1.17 eV.
The estimated position of defects states within the silicon BG is therefore
compromised by the DFT band gap problem. In the case of substitutional Ti,
for example, the defect is known to be electronically inactive, not introducing
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Figure 3.5: Titanium-related defect states in silicon. Isosurfaces of ΦKS(r)
for both e-states for Ti0S and t2-states for interstitial Ti+I , computed within
the PBE approximation, are shown. Both systems present Td geometries,
with four equivalent distances between Ti and its nearest silicon neighbors,
equal to 2.51 Å and 2.48 Å for Ti0S and Ti+I respectively. One second neighbor
is represented in the case of interstitial Ti, shared by the Si atoms 2 and 3.

trap states in the BG, contradicting our PBE calculation.

The Jahn-Teller effect in trapping impurities from first-principles

After carefully assigning the KS-localized states to the ones described by
the LW model for the precursor charge states Ti0S and Ti+I , further under-
standing of the center can be sought by charging/discharging the defect. In
other words, one might expect that changes in the electronic occupation of
the e-doublet and the t2-triplet are unstable upon distortions of the highly
symmetric Td configuration. If an electron is added to Ti at substitutional
position, Ti−S , a PBE-based optimized structure relaxation reveals an inward
regular expansion of the Ti first silicon neighbors, since the interatomic dis-
tance dSi-Ti is decreased from 2.51 Å at neutral charge state, to 2.49 Å at
negative charge state. Even if the Td symmetry seems to be preserved, we
notice that because the e-states are oriented towards the second neighbors,
the Jahn-Teller distortion occurs within the second shell of the impurity. The
unpaired electron, localized at the orbital x2-y2 triggers a relaxation of the
four second neighbors located within the xy plane towards the impurity. The
effect of such symmetry rupture is rather small, since the length-difference
between both interatomic distances is barely 0.02 Å. In the case of intersti-
tial Ti, small anisotropic relaxations are obtained within the impurity first
shell in the form of a C3v-distortion, since one of the nearest atoms (atom 4
in Figure 3.6) is responsible for the symmetry-breaking mechanism. The new
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distorted structure is named according to point-group symmetry considera-
tions, as later detailed in Chapter 4, while we now investigate the implications
of the here-described electron-lattice coupling. At charge state +2 (or con-
figuration d2), one of the four nearest silicon atoms moves far away from
the impurity, constituting an elongated tetrahedron with dTi-Si4 > d Ti-Si1,2,3

(Figure 3.6). This new local geometry, energetically favors two t2 states over
the third one, being ǫe < ǫa1 , and so resulting in an electronic structure,
t↑↑2 e. If on the contrary an electron is added to the precursor positive state,
achieving charge neutrality, Ti0i or d4, the degeneracy of states t2 is broken
differently, being ǫa1 < ǫe (Figure 3.6). The obtained flattened configuration,
dTi-Si1 < d Ti-Si2,3,4 , has therefore a band structure characterized by t↑↓2 a1 t↑↑2 e.
If yet another electron is added to the center, the structural relaxation is
inverted, obtaining an elongated tetrahedron at negative charge state, with
electronic configuration t↑↓↑↓2 e t↑2 a1 . From a general perspective, we can con-
clude that the Td symmetry is only stable at charge states for which each t2
state is equally filled; namely, charge states +4 (zero occupation), +1 (t↑↑↑2 )
or -2 (double occupation, t↑↓↑↓↑↓2 ). For any other electronic occupation, a
spontaneous symmetry-breaking or Jahn-Teller effect in the form of a distor-
ted tetrahedron, which breaks the degeneracy of the 3d-triplet orbitals, is to
be expected.

t2 t2
a

e a

e1

1

d2 d4

Figure 3.6: Proposed Jahn-Teller effect in the form of a C3v distortion for
interstitial titanium. Two senses of the distortion for charge states +2 and
0 or electronic occupations d2 and d4 are represented: (left) elongated tetra-
hedron, E, (right) flattened tetrahedron, F.

The splitting of the t2 states has been previously considered within dif-
ferent scopes, like the case of transition metals oxides [95], for which the
distortion of the octahedral field lifts the degeneracy of the xy, yz, xz or-
bitals (section 3.1.1). In the context of Ti in silicon, the existence of small
distortions in the case of interstitial Ti were hypothesized [90], but never
confirmed, since it was insinuated that the employed BO-adiabatic approx-
imation was incapable of predicting such phenomena. Within a DFT+U
study [92] a symmetry-breaking mechanism was reported uniquely for the
neutral charge state, obtaining an equivalent symmetry as the one described
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in the present work. We have however showed a general picture for the spontan-
eous symmetry-breaking mechanism, concluding that the symmetric Td config-
uration is exclusively stable at charge states +4, +1 or -2. At the PBE level of
theory, we report a rather small magnitude of the Jahn-Teller distortion ran-
ging from 0.02 to 0.04 Å at charge states +2, 0, -1, certainly questioning the
reliability of such local reconfigurations. The existence of the here-described
C3v distortions is however consistent with the general Jahn-Teller theorem,
which predicts the instability of highly symmetric configurations for uneven
electronic occupations. Moreover, the Jahn-Teller distortion is source of a
non-negligible electron-lattice coupling, which is postulated to be responsible
for the non-radiative transitions [22, 23].

Table 3.1: Proposed Jahn-Teller mechanism for interstitial titanium in sil-
icon. The sense of the C3v distortion (elongated, E, or flattened, F) is indic-
ated for different trap occupations or charge states ranging from +4 to −2
(even if TiI is only observed at charge states, q = +2,±1, 0). The interatomic
distances, estimated within the PBE approximation, are also collected. At
charge state +3, the Td geometry found from simulations is in disagreement
with the general JT model. All values are given in Å.

q +4 +3 +2 +1 0 −1 −2
Trap occupation Zero ↑ ↑↑ ↑↑↑ ↑↑↑↓ ↑↑↑↓↓ ↑↑↑↓↓↓

JT distortion Td C3v-F C3v-E Td C3v-F C3v-E Td

dTi-Sii 2.47 2.48 2.49 2.48 2.45 2.49 2.46
dTi-Sij,k,l 2.47 2.48 2.48 2.48 2.48 2.45 2.46

Further investigation of the symmetry breaking mechanism is conceived
by realizing that the distorted Td geometry induces four equivalent C3v con-
figurations, which under equilibrium conditions are equally probable to co-
exist. At finite temperature, the defect can therefore reorient, describing
the metastable-switching phenomenon. In Figure 3.7, we show the minimum
energy path, computed with the CI-NEB algorithm, for the reorientation
mechanism. Even if changes in atomic positions of the four nearest silicon
atoms are rather subtle, the existence of four minima in the PES is visible
by the relative orientation of the t2 states along the MEP (plots of electronic
density in Figure 3.7). At the PBE level of accuracy, activation energies
between equivalent minima are equal to 8 meV for Ti+2, 0,−1

I . Since the es-
timated activation energies are significantly smaller than kTRT, we postulate

89



that interstitial Ti is capable of freely reorient between different distorted
tetrahedra at temperatures far below RT, hence making the characterization
of the hypothesized symmetry breaking mechanism difficult. We also note
that in the case of interstitial Ti, only the EPR spectrum at single positive
state has been reported, for which no JT distortion is predicted. Exhaustive
explorations of the PES, guided by simple theoretical models, beyond the
usual optimal structure relaxation studies, is one of the main contributions
of the present work.

Minimum energy path
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Figure 3.7: Proposed reorientation mechanism for Ti0I in silicon. The Min-
imum Energy Path (MEP) between equivalent atomic distortions determined
for a PBE-energy surface is represented with black squares, whereas the line
is a guide to the eye. Electronic densities corresponding to the occupied
spin-down projected state are plotted in blue along the MEP.

To summarize, we have proposed a Jahn-Teller model for interstitial Ti
in silicon, consistent with long-standing symmetry-considerations and our ab
initio calculations. The complete picture of the center is constructed by a
careful analysis of the symmetry of KS Ti-related orbitals in silicon and the
respective degeneracy of the KS states at different atomic distortions. Such
investigation is presented opposed to most of previous theoretical models
which limit their defect characterization to total DFT energy differences.

3.1.3 Optical and electronic properties with the inclu-
sion of many-body effects

Quasiparticle calculations performed on top of the KS picture account for
many-body effects when determining defect properties. In general terms,
many-body effects for defects in semiconductors are rarely found in the lit-
erature due to the computational expense of the calculation (convergence of
Σxc with respect to the number of empty bands, section 2.3.2). In the case
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of point defects in silicon, only a few calculations have yet been reported,
namely [70, 71], where the electronic activity of selected centers was evalu-
ated within the DFT+GW combined approach (section 2.4.4). With even
less occurrence (to the best of our knowledge), many-body corrections have
only been exploited to estimate the measured infrared absorption bands in
silicon in [96], where the C-C complex was investigated. As indicated in
section 2.3.3 and depicted in Figure 2.11, differences in quasiparticle ener-
gies can be assigned to neutral excitations if the electron-hole interaction is
small, which can be assumed to be the case of crystalline silicon due to its
high macroscopic dielectric constant (ǫ∞ ∼ 12.0). This particular point has
been addressed in detail for defects in SiC, for which a joint study of BSE and
GW calculations has been performed to characterize excitations involving de-
fect states [97]. Such comparative analysis allowed the authors to estimate
the electron-hole interaction energy, being around 0.2 eV for different stud-
ied transitions, for a semiconductor with a similar dielectric constant than
silicon. In the present thesis, we give a first theoretical insight to neutral
excitations involving defect-states in silicon within the GW approximation,
leaving the characterization of excitonic effects for future works.

In the case of the titanium impurity in silicon, we show the quasiparticle
(QP) energy DOS at both substitutional and interstitial positions in Fig-
ure 3.8. Due to the one-to-one correspondance between the KS eigenvalues
and the quasiparticle energies (equation 2.67), it is possible to identify the
defect-induced QP eigenstates by analyzing the symmetry of |ΨKS(r)|2. In
agreement with different characterization techniques [4], substitutional ti-
tanium does not introduce defect states within the band gap (i.e. it is not
electronically active), since EABCB is lower in energy than EAe. By compar-
ing the QP DOS with the one previously obtained within the PBE approxim-
ation for TiS (Figure 3.4B), we have shown that not only the electrical gap,
Eg, is augmented, but also the correct level ordering is obtained (states e
are moved up into conduction band). At interstitial position, both densities
of states are qualitatively equivalent, since trap states t2 and e are located
within the silicon gap. We also show the symmetry breaking mechanism de-
scribed at the PBE level for the neutral charge state, Ti0I , characterized by
the electronic configuration, t↑↓2 a1 t↑↑2 e. As already described above, the partial
occupation of the t2 states leads to a small distortion of the defect geometry
in the form of an elongated tetrahedron, with one of the Si-Ti atomic dis-
tances larger than the others. Evidence of such distortion in the GW DOS
is the fact that, ǫa1 < ǫe for Ti0I . The position of the ǫGW corresponding to
defect-induced states within the Si BG allow us to confirm that interstitial
Ti is electronically active, introducing more than one charge transition level.
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Figure 3.8: Quasiparticle energy density of states for substitutional and inter-
stitial titanium in silicon. Spin-unrestricted GW calculations are performed
for TiI. Electronic densities in blue correspond to the KS states employed
to construct G0, W0. Specific electronic transitions are denoted with their
respective electronic affinities (EA) and ionization potentials (IP).

Among the previous DFT studies interested in the degrading power of
the impurity [90, 91, 92], only in the latest work the electronic structure of
the defect was investigated. According to their analysis, only the triplet t2
states was found to lay within a rather small electrical gap (Eg ∼ 0.7 eV in
[92], Figure 1). On the side of theoretical works postulating the efficiency-
enhancement of the impurity, KS energy DOS were plotted in [93], where the
identification of KS states with defect-related states is rather unclear and the
employed mean-field approach underestimates the band gap considerably. In
the same line of analysis, [84] plotted the KS energy DOS within a LDA+U
method, postulating that the defect-induced states within the gap had a sil-
icon s and p character, in clear disagreement with our approach.

So far we have merely commented on the relative energy position of ion-
ization potentials and/or electron affinities corresponding to the Ti-related
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states, with respect to IPTVB and EABCB. A quantification of the electronic
activity of both centers can be obtained through the estimation of the CTLs
within the DFT+GW approach as introduced in the following, since we now
focus on the correspondence between charged excitations and possible optical
bands. In the particular context of the IB-materials, for which a partially
filled band needs to be induced within Eg, we can strongly stipulate that
Ti must be implanted at interstitial positions to achieve photon-absorption
enhancement. At interstitial position, we have however shown evidence of
electron-phonon coupling (responsible for non-radiative transitions) through
the Jahn-Teller effect and consequent splitting of the t2 states. According to
Luque et al. [79], recombination centers can be mitigated if their concentra-
tion is sufficiently large to induce a localized to delocalized transition of the
center-related states. In the case of interstitial Ti, for which the t2 states are
highly localized, with an effective radius of 8 Å, we estimate the required crit-
ical concentration to be 6·1020 cm−3. The effective radius is here estimated
as the critical point beyond which the presence probability is smaller than
1
10
ρmax. The presented rough estimation of the critical Ti concentration for

IB-material applications is in very good agreement with the carrier lifetime
increment for silicon wafers doped with Ti in the 1020-1021 cm−3 concentra-
tion range [82]. At the diluted regime, for which the presented calculations
are performed, the precursor state Ti+I (characterized by the absence of Jahn-
Teller distortions) induces an occupied triplet state at 0.4 eV with respect the
TVB, and a triplet of empty states at 1.0 eV. Assuming a small electron-hole
interaction, neutral excitations within such energy ranges are here estimated,
and hence, supporting the photon-absorption-enhancement evidence presen-
ted in [81, 82, 83] for Ti-doped silicon as an IB-material.

Table 3.2: Estimated critical Ti concentration required to induce a local-
ized/delocalized transition of the t2 states, whose relative positions are here
computed as IPt2 - IPTVB for the occupied triplet and EAt2 - IPTVB for the
empty triplet at positive charge state.

Critical Ti concentration Empty t2 triplet Occupied t2 triplet

6·1020 cm−3 1.0 eV 0.4 eV

To summarize, we have obtained the energy density of states for in-
terstitial titanium impurities in silicon including many-body effects within
the GW approximation, in contrast with previous mean-field employed ap-
proaches. At the diluted regime, or in the limit of non-interacting impurities,
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for which the presented calculations are performed, we have positioned the
quasiparticle energies of the center-induced states in the semiconductor band
gap guided by the symmetry analysis performed on the KS wavefunctions.
From the real-space extension of the localized electronic density, we have
estimated the critical concentration for which the point-like defect looses its
isolated character, inducing an intermediate-band with promising technolo-
gical applications.

3.1.4 Computed CTLs vs. DLTS activation energies

Since the degrading effect of transition metal impurities in silicon samples is
unquestionable (e.g. [4]), the electronic properties, and in particular the CTLs,
are often the main targeted quantity of first-principles studies. In the context
of Ti in silicon, previous computed CTLs [90, 91, 92] were determined from
DFT total energies, and so the empirical Marker Method (section 2.4.3) was
employed to avoid the band gap problem. The CTLs were therefore com-
puted as a difference of DFT energies, E q

DFT [Si, d]−E q±1
DFT [Si, d], accounting

for both the energy of adding/removing an electron to a certain defect-state
and for the energy loss through lattice relaxation (or change in atomic dis-
tortion). The employed method was therefore not capable of resolving the
changes in occupation of defect orbitals, or the 3d states in the considered
case, for a given charge transition. Besides comparing the resulting CTLs
between different approaches, the set of employed computational parameters
(besides the ones in a standard DFT calculation), the ∆V , the ∆Eelect, the
∆M and even the U/J values for the LDA+U study reported in [92], were
validated with DLTS activation energies (section 1.3.3).

Continuing the ongoing discussion, DLTS activation energies, typically
referred to as deep levels, do also correspond to electronic transitions of the
form ǫ↑↓T ⇌ ǫ↑T. They can be therefore assigned to the single-electron energy,
ǫT, or quasiparticle eigenvalue, IPT, plus a certain lattice contribution if a
change in the defect geometry occurs. In the case of interstitial Ti, the elec-
tronic configuration at negative charge state, Ti−, is (omitting the splitting
of the t2 states) t↑↓↑↓↑2 . This deep trap, or charge state of the defect, can emit
one electron to conduction, t↑↓↑↓↑2 → t↑↓↑↑2 , leading to the charge transition,
-1 → 0, being measured as an acceptor level (0/-) by the DLTS peak E40
(Table 1.1). If a second electron is emitted to conduction, t↑↓↑↑2 → t↑↑↑2 , the
donor level (0/+) is detected by the E150 peak. In the case of p-type doped
silicon, the injection of positive carriers results in the H180 peak, assigned
to the double donor level (++/+), since it corresponds to the transition
t↑↑↑2 → t↑↑2 . To conclude with the discussion of the widely used misleading
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term of deep levels, previous total-DFT-based calculations with the inclusion
of empirical parameters were capable of reproducing the position of charge
transition energies with respect to band edges in agreement with DLTS spec-
troscopy for interstitial Ti.

In the present work, CTLs are estimated within the DFT+GW approach,
naturally identifying the nature of the electronic transitions. The donor level
(0/+) is, for example, estimated as,

E+/0 = IP 0
t2 a1

− IPTVB + ∆E +
relax, (3.1)

where the quantity IP 0
t2 a1

− IPTVB is represented in the quasiparticle DOS
in Figure 3.8, and ∆E +

relax accounts for the DFT ionic relaxation at positive
charge state going from the distorted flattened tetrahedron to the regular
one. The level E+/0 can also be estimated in terms of the first electronic
affinity at positive charge state, EA+

t2
− IPTVB − ∆E 0

relax, where ∆E 0
relax de-

scribes the distortion of the tetrahedron at neutral charge state. Besides
the two donor levels, located at Ev + 0.46 eV and Ev + 0.81 eV, we also
report a single acceptor level, E0/− in the upper region of the band gap, Ec

- 0.08 eV (Figure 3.9A). Due to the position of the CTLs and the charge
states involved, we tentatively conclude that interstitial Ti in silicon can be
present at up to four different charge states, depending on the position of
EF. Formation energies for these electronic occupations are represented in
Figure 3.9B, according to equations 2.82, 2.83. The non-shaded region in the
diagram E q

f vs EF corresponds to energy intervals of thermodynamic stability
at different charge states. Since the goal of this representation it is not to
estimate absolute values of E q

f , but simply to determine the CTLs, relative
values of formation energies are plotted.

Furthermore, as it has been widely established, calculated CTLs are com-
parable to DLTS levels (Figure 3.9B), revealing a one-to-one correspondance
between the estimated levels and the measured activation energies [26, 27,
28, 29, 30]. When such correspondance is quantitatively analyzed, we how-
ever notice that relatively large shifts are obtained for the double donor and
single acceptor (0.1-0.2 eV), questioning the validity of the first-principles
parameter-free approach and/or the assignment of DLTS activation energies
to the reported charge transitions (Table 3.3). The later argument is sus-
tained by the postulated existence of a fourth CTL, due to the measured
DLTS level, Ev + 0.51-0.55 eV [29, 30], which by all means could correspond
to the double donor computed level. In order to clarify this point, CTLs for
interstitial vanadium in silicon are also computed, due to the electronic equi-
valence between Ti+I and V 2+

I (also referred to as isoelectronic centers). As
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Figure 3.9: Charge transition levels for interstitial titanium within the
DFT+GW combined approach (A). The formation energy E q

f for q =
[+2,+1, 0,−1] vs. the Fermi energy EF ∈ [IPTVB, EABCB] is also represen-
ted (B). The DLTS activation energies and their respective dispersion within
different measurements [26, 27, 28, 29, 30] are also shown.

collected in Table 3.3 , the computed single donor for interstitial vanadium is
slightly lower than the one for Ti, whereas the double donor is located higher
in energy with respect to (++/+) for titanium. The tendency of reducing
the energy difference between donor levels with the increase of atomic num-
ber has also been reported by DLTS spectroscopy, proving the validity of the
comparative analysis. The large absolute errors of the double donor levels
for both TiI and VI seems therefore to indicate an intrinsic limitation of the
employed method, which is further discussed in Chapter 5.

Within the DFT+GW approach, we have confirmed the degrading power
of interstitial Ti in silicon by estimating the position of the Fermi energy for
which the trap captures/releases free carriers from the electronic reservoir.
By employing this specific method, the electron-lattice coupling is explicitly
examined through the relaxation term, ∆Erelax in equation 3.1. Even if
CTLs reveal information regarding the electronic activity of the center, fur-
ther characterization is achieved through the evaluation of the non-radiative
capture cross sections (Chapter 5). To conclude, the DFT+GW approach
also allows to determine regions of the band gap or positions of the Fermi
level for which optical transitions are visible. In the ongoing case, the op-
tical transition between the valence band and the t2 states, described by
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Table 3.3: Charge transition levels for interstitial titanium (Ti) and intersti-
tial vanadium (V), here computed within the DFT+GW combined approach,
collected against DLTS activation energies [26, 27, 28, 29, 30, 98, 99, 100].
The double donor level is given from the TVB, whereas the single double and
acceptor levels are given with respect to the BCB. All values are in eV.

Double donor level Donor level Acceptor level

Ti V Ti V Ti V

DLTS +0.25-0.32 +0.30-0.34 −0.24-0.28 −0.43-0.45 −0.08 −0.16-0.18
DFT+GW +0.46 +0.22 −0.24 −0.26 −0.17 −0.06

EA+
t2
− IPTVB (at the diluted regime) is therefore only possible at positive

charge state, or at the Fermi energies comprised between E++/+ and E+/0.

3.2 Understanding the finite-temperature dy-

namics of the silicon E-center

The E-center is one of the most abundant point-like defects in n-type doped
silicon since it consists of a silicon vacancy trapped next to a donor ele-
ment; most commonly phosphorous, P, arsenic, As, and antimony, Sb (Fig-
ure 3.11a). It is known to be electronically active [e.g. 13], introducing an
acceptor level (-/0) in the silicon gap at ∼ Ec - 0.45 eV independently of
the dopant atomic number. A donor level (0/+) has also been measured
for the phosphorus-vacancy complex (here denoted as the PV center) at
Ev + 0.27 eV [101], overcoming the difficulty of tracking the emission of
minority carriers with DLTS spectroscopy (i.e. the emission of holes in a
n-type doped semiconductor). The existence of such level has still not been
experimentally proved for As- and Sb-doped silicon, but it has been pos-
tulated from theoretical approaches [101]. Besides its electronic activity,
E-centers can play important roles in specific performance losses and long
term degradation processes due to the mobility of vacancies at relatively
low temperatures. As it has been established, the effective dopant diffusion
mechanism in silicon presents two main contributions depending on the in-
trinsic defect assisting the dopant mobility: the vacancy-mediated and the
self-interstitial-mediated mechanisms [e.g. 13, 102]. Uncontrolled dopant dif-
fusion can lead to the depopulation of doped regions in an electronic device,
preventing the desired concentration of free carriers. The complexes arsenic-
vacancy and antimony-vacancy (or AsV and SbV), are considered crucial
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in dopant diffusion as the vacancy-mediated contribution seems to be com-
parable to or even higher than the interstitial-mediated mechanism [102].
Furthermore, the phosphorous-vacancy complex is postulated to be at the
origin of the Dark Current-Random Telegraph Signal [103, 104, 105, 106]
in image sensors, based on the CMOS photodiodes. It is characterized by
sudden transitions between two or several discrete current levels, resulting
in a step-like output signal as the one in Figure 3.10, in absence of incoming
photons (i.e. dark current). The randomness of the signal has been widely
attributed to the variation in the recombination rates of deep levels due to
the metastable-switching process. In particular, the E-center reorientation
at room temperature is postulated to be responsible for this characteristic
output signal, whose existence constitutes an uncontrollable source of error
by inducing a burst noise in the measured current. Since the possibility for
a center to exhibit and/or participate to the aforementioned phenomena re-
lies strictly on the details of its potential energy surface (PES), linking the
macroscopic output RTS with one specific point-like defect has served as a
motivation for the present theoretical study.
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Figure 3.10: Dark current random telegraph signals in photodiodes. A two-
level (in red) and four-level (in black) output signals are shown.

The E-center was first characterized by Watkins and Corbett during a
series of Electronic Paramagnetic Resonance (EPR) studies of point defects
in silicon [17, 19]. They reported that the ground state configuration of the
neutral E-center presents a pairing geometry: one of the three interatomic
distances between the three silicon atoms adjacent to the vacancy is shorter
than the other two (Figure 3.11). Moreover, in [17, 19] two temperature
regimes were distinguished. At low temperature stress measurements re-
vealed the existence of three degenerate ground state geometries: P1, P2 and
P3 (Figure 3.11), separated by an energy barrier of 60-70 meV. Later optical
absorption studies [107] of PV−, AsV− and SbV− showed a ground state dis-
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tortion of opposite sign. In this configuration, known as resonant, one of the
silicon bonds is longer than the other two (R in Figure 3.11). The change of
the atomic relaxation pattern with the charge state, together with the pres-
ence of degenerate ground states was explained by a simple single-electron
orbital model [108], according to which the PES is predicted to exhibit the
form of a Mexican hat. Furthermore, Watkins hypothesized [108] that the
energy barrier between equivalent minima for the neutral systems actually
corresponds to the energy difference between pairing and resonant configur-
ations. At higher temperatures, energy barriers of 0.90 up to 1.30 eV, for
P, As, Sb were observed. Such barriers were assigned to the reorientation of

the vacancy-dopant axis, i.e. the reorientation of the whole vacancy-dopant
complex. It was also postulated that this reorientation process, followed by
a dopant-vacancy exchange would characterize the vacancy-mediated dopant
diffusion.
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Figure 3.11: (a) The silicon E center and its projection along the vacancy-
dopant axis. The probability density for the unpaired electron at neutral
charge state is also shown. (b) Watkins et al. model for the E-center potential
energy surface at the neutral charge state. Three geometries are distinguished
depending on the relative interatomic distances between atoms 1, 2 and 3: the
symmetric breathing configuration (B), the pairing configuration (P), and the
resonant bond configuration (R). Pi and Ri denote the pairing and resonant
geometries with unpaired distances djk < dij = dik and djk > dij = dik,
respectively.

On the modelling side, the energy ranking of these configurations is not
consistent between different studies [109, 110, 111, 101, 112, 113]: the ground
state geometry for the PV center was found to be a pairing configuration
for both neutral and negative charge states in [109] (see also Ref. [110] for
the neutral charge state) but a resonant one in [111]. Later studies repor-
ted a rather flat PES with multiple metastable minima, comprising pairing,
resonant and, in some cases, also breathing (B, in Figure 3.11) configura-
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tions [101, 112]. Only for the AsV center the measured atomic distortion at
neutral and negative charge states (pairing and resonant distortions respect-
ively) has been correctly reproduced [113]. In all the aforementioned works,
the assessment for metastability has been only based on total energy cal-
culations with no further exploration of the actual PES shape. This leaves
the question open about the ground state geometry and the temperature-
dependent dynamics of the E-center in silicon, and of the capacity of com-
putational modelling to reproduce experimental findings [17, 19].

In the present work, by means of state-of-the art DFT-based methods we
obtain the ground state geometry for different charge states, in line with
Watkins et al. observations(section 3.2.1). The presence of Jahn-Teller
distortions is further confirmed by accurately describing and analyzing the
electronic structure of vacancy-dopant complexes by means of many-body
perturbation theory within the GW approximation. The PES shape is ex-
plored by single-point total energy calculations on interpolated geometries
and by using the Climbing Image Nudged Elastic Band (CI-NEB) method
(section 3.2.2). Within this approach, we are able to reproduce the model
proposed by Watkins et al.: three pairing degenerate minima and three res-
onant degenerate saddle points, with the higher energy maximum breathing
mode lying at the top of the Mexican hat potential. Finally, by using the CI-
NEB algorithm we found energy barriers for the reorientation of the whole
vacancy-dopant complex in very good agreement with the experimental meas-
urements (section 3.2.3). For the exchange mechanism, for which no direct
experimental measure is available, our results suggest a rethinking of this
diffusion mechanism: the barrier, higher than what previously postulated,
seems to indicate a relevant vacancy-mediated contribution only for the case
of Sb.

3.2.1 Ground state electronic structure: a Jahn-Teller
model

We confirm that the geometry of the silicon E-center at different charge states
is fully described by changes in the interatomic distances between atoms 1,
2 and 3 in Figure 3.11, i.e. the vacancy’s first silicon neighbours. We report
a pairing configuration (P in Figure 3.11) as the ground state for the PV0,
AsV0 and SbV0 centers and a resonant geometry (R) for the negative charge
states (Table 3.4), in agreement with the experimental evidence [17, 19, 107].
The breathing mode configuration (B in Figure 3.11) is the ground state for
the three centers at positive charge state (or empty trap), in agreement with

100



previous hypothesis [108]. The characteristic interatomic distance, dij, for
PV+, AsV+ and SbV+ is equal to 3.54 Å, 3.59 Å and 3.63 Å respectively.
The increase of the interatomic distance with the dopant atomic number is
due to the subtle relaxation of the dopant towards the vacant site; going from
its ideal substitutional site to a slight interstitial position. The dopant net
displacement at positive charge state is equal to 0.06 Å, 0.22 Å and 0.43 Å, in
ascending order of the dopant atomic number. Such tendency is observed for
all charge states, with a lower absolute displacement for 0 and -1 cases due
to the increase of electronic density at the vacant site. Such behaviour is not
visible by EPR spectroscopy, it does however have an important implication
on the impurity diffusion mechanism, as discussed in later sections.

Table 3.4: Relevant interatomic distances dij for the E-center at neutral and
negative charge states, corresponding to ground state geometries pairing and
resonant respectively. All values are given in Å.

Center
q = 0 q = −1

dij djk = dik dij djk = dik

PV 2.99 3.58 3.54 2.84
AsV 3.05 3.61 3.55 2.87
SbV 3.11 3.65 3.55 2.97

The change in structural configuration or atomic distortion with the
charge state can be explained through the partial electronic occupation of
the trap-induced levels or the Jahn-Teller effect (introduced in previous sec-
tion for titanium in silicon). According to H. A. Jahn and E. Teller atomic
distortions like pairing and resonant geometries are energetically more favor-
able than highly symmetric configurations (i.e. the breathing configuration),
for which degeneracy of defect-orbitals is expected. The investigation of the
electronic configuration of the E-center was first performed by Watkins [108]
by means of a simple one-electron molecular orbital (MO) model. Within such
level of theory, trap-induced states were written as a linear combination of
the three dangling bonds a1, a2 and a3, located in atoms 1, 2 and 3 respect-
ively. As established in previous sections, such simple approach captures the
molecule-like behavior of the point defect, being able to describe the sym-
metry of the localized trap-induced electronic states. On the other hand, it
remains an oversimplification of the system, since only three silicon atoms
are considered, ignoring the influence of the surrounding silicon diamond
structure. In the case of the breathing mode configuration, i.e. before the
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Jahn-Teller distortions, the lowest electronic level corresponds to the highly
symmetric state S = (a1+a2+a3)/

√
3, whereas states A = (2a1−a2−a3)/

√
6

and B = (a2−a3)/
√

2 are higher and degenerated in energy (see Figure 3.12).
If the empty trap (in the current case, the single positively charged E-center)
gets occupied by one or two electrons, the system undergoes a structural
reconfiguration in the form of a Jahn-Teller distortion, breaking the degen-
eracy of states A and B. The state A is favored by the pairing configuration,
P, (ǫA < ǫB), whereas the state B is lower in energy in the case of the res-
onant configuration, R. More details on the matrix elements, that allowed
Watkins to postulate the energy levels diagram in Figure 3.12, are discussed
in the following Chapter. For now, we focus on the qualitative description
of the trap-induced states and their relative energy ordering with respect to
changes in the atomic configurations.
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Figure 3.12: The single-electron-orbital model for the E-center proposed by
Watkins [17, 19]. The probability density for the electronic states S, A and
B and their relative energy position at different atomic configurations are
shown. The measured absorption bands [107] and their corresponding elec-
tronic transition assignments within Watkins’ model for AsV− are also shown.

A simple MO model like the one proposed by Watkins is able to predict,
for example, that at neutral charge state the unpaired electron is mainly
located at one of the silicon neighbouring atoms (atom 1 in Figure 3.12),
as described by state A and observed by EPR spectroscopy [17, 19]. It is
however limited to the description of localized levels, overlooking the pres-
ence of bulk delocalized states, and to the use of empirical parameters when
estimating the relative position of the trap levels. The splitting of the defect
levels A and B after the spontaneous distortion was confirmed by optical ab-
sorption experiments [107] on the AsV− center, where two absorption bands
were reported at 0.74 eV and 1.05 eV. They were assigned to electronic ex-
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citations from an occupied localized state (S and B levels in Figure 3.12) to
the unoccupied state A. Unfortunately, only values for the smaller band were
reported for the other two dopants. However, Watkins speculated that their
defect-induced optical bands should be very similar to the ones for AsV−,
seeing the similarity between electronic configurations. Even though the elec-
tronic structure of the E-center is a clear evidence of the Jahn-Teller effect,
no quantitative description has so far been given due to the limitations of
previously used mean-field approaches [109, 110, 111, 101, 112, 113], incap-
able of describing particle excitations.

Optical and electronic properties from state-of-the-art calculations

Our DFT calculations qualitatively reproduce the point defect electronic
structure obtained by means of simple symmetry arguments; i.e. the degen-
eracy of the localized levels A and B in the absence of Jahn-Teller distortions
and the splitting and exchange of such levels for the pairing and resonant
configurations. Moreover, the electronic density distributions of the Kohn-
Sham states A and B are in good agreement with the simple MO model (see
Figure 3.12). The inclusion of crystal field effects when using the supercell
approach, in contrast with Watkins’ simple MO model, allows us to give an
exhaustive picture of the electronic structure of the E-center. We remark
that the highly symmetric S state does not appear as a disentangled local-
ized state, but it hybridizes with the silicon bulk states, becoming part of
the valence band for all charge states. Defect-induced levels A and B are
always found to be within the forbidden silicon gap. On the other hand, the
electronic state coming from the donor atom is completely disentangled from
both bulk states and localized trap states S, A and B; it is located deep in
the valence band, at approximately 0.5 eV from the top of the valence band.
In order to provide a quantitative description of the band structure, Many-
Body perturbation corrections in the GW approximation (section 2.3.1) are
computed on top of the DFT eigenvalues. In Figure 3.13, we show the quasi-
particle Density Of States (DOS) for the E-center embedded in silicon (simil-
arly to the ones presented for TiS and TiI). We remark once more that the
electronic densities of localized states, plotted in Figure 3.13, correspond to
Kohn-Sham states, thanks to the one-to-one correspondence between the KS
scheme and the QP eigenvalues (equation 2.67).

As the electron-hole interaction is small, quasiparticle energy differences
between empty and occupied states (ionization potentials and electronic af-
finities) can be exploited to meaningfully estimate vacancy-dopant-complex-
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Figure 3.13: The quasiparticle density of states for the AsV− center. Cal-
culated optical absorption bands (EAA-IPB and EAA-IPTVB) and their as-
signation to single-particle transitions together with the electronic density of
the corresponding DFT states A and B.

related optical absorption bands. In the case of the AsV− center the energy
difference between the first ionization potential (IPB) and the first electronic
affinity (EAA) can be assigned to the 6000 cm−1 (0.74 eV) absorption peak
reported in [107], confirming that such transition occurs from the occupied
defect state B to the unoccupied localized state A (Figure 3.13). In the case
of the 8500 cm−1 (1.05 eV) band, we assign the measured absorption band
to an electronic excitation involving the top of the valence band and the loc-
alized level A (here described as EAA - IPTVB). We remark that the previous
assignment made by Watkins was limited to a MO model, and therefore the
position of the top of the valence band was neglected from the electronic
structure prediction (Figure 3.12).

We estimate the absorption bands for PV− and SbV− to be located at 0.72
eV and 1.04 eV and 0.60 eV and 0.89 eV respectively (Table 3.5), confirm-
ing that the E-center has similar electronic properties independently of the
dopant, as postulated in [107]. Within the presented Many-Body approach,
we note that an absolute error of less than 12% is obtained with respect
to the available optical measurements for the singly negative E-center. The
predicted one-particle excitation bands at charges states 0 and +1 are also
given in Table 3.5. Our estimation of the first excitation energies, in good
agreement with experience, appears to be the numerical confirmation of the
Jahn-Teller effect for the silicon E-center. It also allows to uniquely assign
the presence of E-centers in a n-type doped silicon by its characteristic ab-
sorption signature when complex optical absorption spectra are measured,
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Table 3.5: First excitation energies within Many-Body perturbation theory
in the form of the GW approximation for the E-center at charge states 0, ±
1. A and B stand for the localized defect states, whereas TVB stands for the
top of the valence band.

Charge
state

Center
PV AsV SbV

+ 1 EAA,B − IPTVB 0.59 – 0.60 – 0.49 –

0
EAB − IPA 0.66 – 0.62 – 0.56 –

EAB − IPTVB 0.88 – 0.85 – 0.75 –

-1
EAA − IPB 0.72 0.761 0.70 0.741 0.60 0.681

EAA − IPTVB 1.04 – 1.03 1.051 0.89 –

1Measured absorption bands [107]

including excitations within different point defects, like the one showed in
Figure 1.9.

Besides estimating neutral excitations or absorption bands involving defect-
induced states, quasiparticle energies can be employed to compute charge
transition levels or, as they are commonly referred to, the trap levels in the
forbidden gap. In Figure 3.14, the CTLs measured as DLTS activation en-
ergies for the PV center [101] are represented, dividing the silicon gap in
three regions corresponding to the defect charge states 0, ±1. Within the
DFT+GW combined approach (section 2.4.4), such CTLs can be computed
as a vertical charged excitation (1), followed by a change in the defect geo-
metry (2). In the coordination diagram of Figure 3.14, the PES at each
charge state is represented schematically as having one unique minimum at
breathing, gB, pairing, gP, and resonant, gR, geometries respectively. The
CTL E +/ 0 might then be estimated as the first electronic affinity at positive
charge state, minus the energy difference between breathing and pairing con-
figurations at neutral charge state. The second deep level, E 0/−, is similarly
computed starting at the pairing geometry at neutral charge state.

Exploiting quasiparticle energies to estimate both optical and electronic
properties allows to picture CTLs as changes in the partial occupation of
defect states (often involving a relaxation of the ionic positions), hence rein-
forcing the idea that neutral excitations are only observed for certain Fermi
energies. The E-center donor level can be interpreted as the occupation
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Figure 3.14: Optical versus electronic properties of the PV center estim-
ated as charged excitations or quasiparticles energies. Represented charge
transition levels are taken as the DLTS activation energies reported in [101].

of degenerate states A and B at positive charge state, whose energy vari-
ation EN+1−EN at constant geometry is given (with respect to TVB) as
EAA, B − IPTVB. Then, if EF < E +/ 0, the neutral excitation from the TVB
to states A, B might be observed until the charge transition + → 0 occurs,
partially filling state A. The E-center acceptor level therefore corresponds to
the full occupation of state A, with vertical energy contribution EA↓

A−IPTVB.
We note that the later atomic relaxation P → R is responsible for the inver-
sion of levels A and B, the later being fully occupied at negative charge state.
Within the band gap region, E +/ 0 < EF < E 0/−, a neutral excitation from
TVB to the partially empty state A is in principle allowed unless an extra
electron is added to the system, originating the second charge transition, 0
→ − . The importance of correctly assigning CTLs to the occupation of spe-
cific defect-states is therefore remarked when absorption bands are measured
only at certain positions of the Fermi level. A similar reasoning as the one
presented here for the PV center allow us to unequivocally assign the three
measured absorption bands for the silicon divacancy to one-particle excita-
tions (Chapter 4).

Estimated CTLs for the E-center within a full ab initio parameter-free
approach are collected in Table 3.6. The proximity among the deep levels for
the three impurities, similarly to the optical bands, is a conclusive evidence
that the three centers are governed by the same Jahn-Teller effect. Our com-
puted values are in fair agreement with previous theoretical studies, which in
contrast with the here employed formalism, included an empirical parameter
to circumvent the DFT band gap problem (i.e. the Marker Method, intro-
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duced in section 2.4.3). The deviation of 0.1-0.2 eV between the estimated
CTLs and the corresponding DLTS activation energies is consistent with the
absolute error here reported for interstitial Ti and V in silicon. A consistent
analysis of such intrinsic error of the DFT+GW combined formalism will be
discussed in detail in section 5.1.

Table 3.6: Charge transition levels for the silicon E-center here computed
within the DFT+GW combined approach, collected against the estimated
values by the Marker Method (MM) [101] and DLTS activation energies.
The donor level is given from the TVB, whereas the acceptor level is given
with respect the BCB. All values are in eV.

Donor level Acceptor level

DFT+GW MM DLTS [101] DFT+GW MM DLTS [114]

PV +0.29 +0.22 +0.27 −0.45 −0.36 −0.45
AsV +0.31 +0.24 – −0.39 −0.35 −0.47
SbV +0.35 +0.27 – −0.28 −0.31 −0.44

To summarize, we have numerically confirmed the Jahn-Teller model pro-
posed by Watkins within a simple molecular-orbital approach at different
levels of theory. Breathing, pairing and resonant geometries are obtained as
ground state minima of the energy surfaces at positive, neutral and negative
charge states for a PBE description of the electronic exchange-correlation
contribution. Optical and electronic properties of the three centers have
been also investigated with the inclusion of many-body effects, unequivoc-
ally establishing the equivalence of the electronic structures of PV, AsV and
SbV in silicon, sustained by experimental evidence (infrared OA and DLTS
spectroscopy).

3.2.2 The Mexican hat potential energy surface at low
temperatures

We now focus our attention on the energy landscape of the E-center at low
temperatures, studied by EPR stress studies [17, 19] in the case of the neutral
charge state. As hypothesized by [17, 19], we found three pairing configura-
tions, P1, P2 and P3 in Figure 3.11, as ground state minima of the potential
energy surface (Pi is characterized by an unpaired distance djk < dij = dik).
The unpaired electron is therefore mainly located in silicon atom i at the
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pairing configuration Pi (see the form of the localized state A in Figures 3.12
and 3.13). Even though the three distortions are geometrically equivalent,
the electronic jumps between atoms 1, 2 and 3 modify the magnetic moment
of the center, making the transitions between pairing configurations visible
through EPR spectroscopy [17, 19]. The lifetime of each distortion was es-
timated by compressing the bulk in a given spatial direction (prioritizing
one of the three orientations) and studying the recovery time of the back-
reorientation. The low-temperature regime reorientation barriers were estim-
ated to be within 60-70 meV [17, 19] and it was later postulated [108] that
such energy barriers actually correspond to the energy difference between
the pairing and the resonant geometries. A NEB calculation between points
P1 and P2 finds the R3 geometry (resonant configuration characterized by
unpaired distance d12 > d31 = d32) as the saddle point of the transition path
(see Figure 3.15), proving Watkins’ hypothesis regarding the height of the
energy barriers between equivalent minima. We estimate the energy differ-
ence between pairing and resonant configurations to be 36 meV, 31 meV and
28 meV for PV0, AsV0 and SbV0 respectively. As in Ref. [113] the “disagree-
ment” between the calculated barrier, 20 meV for the AsV0 complex, and
the measured value [19], 70 meV, was attributed to size effects, we performed
calculations on a 511 atoms supercell. We obtained a very similar value of
about 38 meV for all three dopants, showing that size effects are particularly
important for the SbV complex.

P1 P2

AB B

ABA

R3

(a) (b)

g
P1 R3

g
P2

g

Figure 3.15: Symbolic representation of the minimum energy path between
equivalent pairing configurations for the PV0 center. The highest occupied
Kohn-Sham state (a) and the relative position of the trap-induced levels A
and B (b) at different atomic positions are also shown.

The potential energy surface for the E center at neutral charge state is
therefore characterized by three pairing geometries as degenerate minima, sep-
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arated by three resonant configurations as saddle points (Figure 3.16). Along
the Minimum Energy Path (MEP), despite structural changes between pair-
ing and resonant configurations seeming “negligible”, the unpaired electron
localizes at different atomic sites (see the electronic density plots that follow
the symbolic paths P1 → R3 → P2 in Figure 3.15). At the saddle point, the
system adopts a resonant configuration for which the half-filled electronic or-
bital becomes state B, as expected from a Jahn-Teller system (Figure 3.15).
If we consider a set of configurations along a straight path between a pairing
and resonant configuration with the same characteristic unpaired distance,
the system is forced to pass through a highly symmetric configuration, close
to the breathing mode geometry (B in Figure 3.11), overcoming an energy
barrier of ∼ 60-100 meV (Figure 3.16). According to the above results,
the PES of the E-center exhibits the shape of a Mexican hat, in agreement
with Watkins ideas and measurements. At room temperature, the barriers
between pairing configurations are comparable to kTRT and the neutral E-
center can reorient by circling around the Mexican hat. These reorientations
can therefore not be responsible for the Random Telegraph Signal, since at
room temperature an average configuration of the three Jahn-Teller distor-
tions is observed, corresponding to a highly symmetric geometry [17, 19].
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Figure 3.16: The potential energy surface at low temperature for the neutral
E-center. Transition paths (1) and (2) between pairing and resonant con-
figurations for the three dopants are shown. The electronic density for the
unpaired electron at different atomic configurations is also shown. Points are
obtained within the NEB algorithm (1) and single point DFT calculations
(2). Lines are a guide for the eye.
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For the negative charged E-centers the Mexican hat is inverted: pair-
ing and resonant configurations becomes, respectively, saddles and minima
points. The energy barriers to jump from one minimum, R configuration, to
another one is of 62 meV, 48 meV and 25 meV for PV−, AsV− and SbV−

respectively (511 atoms supercell) at the DFT level of approximation. As in
the neutral case, size effects are important when computing such reorienta-
tion barrier, resulting in up to 20 meV energy difference between 215 and 511
silicon supercells. Reorientation barriers at both charge states are presented
in Table 3.7. Positively charged E-centers exhibit a single minimum that cor-
responds to the breathing configuration, B. The rather small reorientation
barriers (or energy differences between pairing and resonant configurations)
for charge states 0 and -1 are the possible cause of previous works claiming
the E-center was a multi-stable center. However, we have shown that a good
understanding of the system and the origin of the distortions is sufficient
to prove such studies wrong. To conclude, we remark that any Jahn-Teller
potential energy surface is easily predicted by simple symmetry-based con-
siderations, giving a qualitative description of the defect-induced states and
its relative energy ordering with respect to atomic distortions. Even if so far
we have focused on the numerical side of the characterization, in the follow-
ing chapter a general theory to model Jahn-Teller systems is introduced and
applied to more complex systems.

Table 3.7: Reorientation barriers at low temperatures at neutral and negative
charge states for all three dopants, computed in this work (t.w.) and other
works (o.w.) as the total energy difference between pairing and resonant
configurations. All values are given in meV.

q = 0 q = −1
t.w. o.w. Exp. t.w. o.w.

PV 38 – 62 [17] 62 –
AsV 36 20 [113] 60 [19] 48 40 [113]
SbV 38 – 70 [19] 25 –

Underestimation of the reorientation barriers

The systematic underestimation of the barriers, 40 meV for all three dopants,
against the 60 to 70 meV measured by Watkins et al. [17, 19], is a signature of
the well known Self-Interaction problem in standard DFT exchange and correl-
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ation functionals. Such well-known problem of DFT is typically encountered,
in the particular case of point defects, when computing the charge transition
levels (section 2.4.3). From a broader perspective, a pure DFT calculation
will most probably fail when energetically comparing different configurations
of partially occupied traps, since it requires an accurate treatment of the
electronic interaction that is limited in a mean-field approximation. Among
the different schemes that have been proposed to correct such shortcom-
ing, we are particulary interested on the combined DFT+GW approach,
previously exploited to correct total energy differences in point defects stud-
ies [70, 72, 73]. In a few words, total energy differences for different atomic
configurations are safely determined by DFT only in the case of non-occupied
traps (process (2) indicated by the violet arrow in Figure 3.17), computing
energy differences between different trap occupations at a given point defect
geometry within a GW approach (process (1) represented by a orange arrow
in Figure 3.17).
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Figure 3.17: The coordination diagram for the silicon E-center at neutral
and positive charge states (a). The electronic structure of relevant points
in the diagram are also shown (b). The transition between the two minima
of the parabolas, indicated in the diagrams with orange and purple arrows,
is composed by the loss of one electron at pairing configuration and neutral
charge state (1) and posterior atomic relaxation from pairing to breathing
configurations at positive charge state (2).

In the present case, we are not interested in determining the energy differ-
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ence between different charged geometries, but in the subtle energy difference
between two different geometries at constant trap occupation, ∆E (gP, gR,
0) in Figure 3.17a. By definition, the ionization potential computed within
the GW method for the pairing configuration (gP) at neutral charge state
can be written as the total energy difference,

IP (gP, 0) = E (gP, 0) − E (gP,+). (3.2)

By computing the same quantity at the resonant configuration, the reorient-
ation barrier at neutral charge state can be written as,

∆E (gP, gR; 0) = IP (gP, 0) − ∆E (gP, gR; +) − IP (gR, 0). (3.3)

The quantity ∆E (gP,gR; +) is the difference in energy between the pairing
and resonant configurations at positive charge state (empty trap) and there-
fore can be safely estimated within DFT. All energy differences required to
accurately compute the reorientation barriers at neutral charge state are rep-
resented in Figure 3.17a. Since the electronic structure of the E-center should
be perfectly known by now, we also show processes (1) and (2) in terms of
transitions in the trap-induced levels in Figure 3.17b.

In the case of the PV center (where the elastic contributions are minimal
at 216 atoms), such difference in ionization potentials, IP (gP, 0) − IP (gR, 0),
is equal to 65 meV and the corresponding reconfiguration energy, ∆E (gP,gR;
+), is 10 meV, given an overall reorientation barrier of 75 meV. Similarly, a
value of 71 meV is obtained for the AsV center. These values reinforce the
idea of DFT limitations when computing certain properties of point defects.
The limitations and drawbacks of the above presented DFT+GW combined
approach will be discussed in more detail in future sections.

To conclude, we have extensively explored the PES of the E-center at
neutral and negative charge states, finding the Mexican hat shape hypo-
thesized by Watkins. The comparison of the estimated reorientation barriers
between equivalent Jahn-Teller distortions with EPR activation energies have
allowed us to identify the limitations of the PBE-functional when describing
certain defect properties, due to the DFT well-known self-interaction prob-
lem. We have then proven that within a higher level of treatment of the
Coulomb electronic repulsion (or within the GW approximation), the under-
estimated barriers are correctly shifted with respect to experiment.
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3.2.3 The energy landscape at high temperatures: com-
plex reorientation and exchange

The present section is dedicated to the two mechanisms underlying the
vacancy-mediated dopant diffusion: the defect reorientation and the vacancy-
dopant exchange (see Figure 3.18). The first process involves the reorientation
of the vacancy-dopant axis, through the movement of the vacancy to second
(vacancy positions 2 and 2’ in Figure 3.18) and third neighbour positions (de-
noted 3) with respect to the impurity. Such mechanism was first proposed by
[17, 19], after performing EPR stress studies at high temperatures. They ob-
tained the lifetime of each defect-axis orientation, corresponding to activation
energies that were comprised between 0.9 and 1.3 eV, for dopant-increasing
atomic number. As in the case of low temperature studies, a characterization
of the atomic process and its energy landscape at high temperatures is pos-
sible by EPR spectroscopy due to the change in magnetic moment between
the initial and final configurations (see configurations 1 and 1’ in Figure 3.18).
It was also postulated that the reorientation mechanism constituted the bot-
tleneck process for vacancy-mediated diffusion, since the energy expense for
the dopant-vacancy exchange was believed to be close to 0.33 eV (activation
energy for the monovacancy diffusion in silicon [16]).
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3
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Exchange

Reorientation

Figure 3.18: The vacancy-mediated dopant diffusion mechanisms: the reori-
entation of the defect and the exchange vacancy-dopant.

The high temperature dynamics of the E-center is studied through the
mechanisms of defect reorientation and dopant-vacancy exchange within the
CI-NEB algorithm (see section on sampling the DFT PES 2.2.2). The ex-
change of positions between the dopant and the vacancy is a direct symmetric
process, as shown in Figure 3.19. The decrease of the energy barrier with
the increase of the dopant size is explained by the ground state geometry of
the E-center. As mentioned in section 3.2.1, the dopant slightly moves from
its ideal substitutional position towards the vacant site. Such effect increases
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with the dopant size, as it is evident by the low energy barrier obtained, in
particular, for the antimony-vacancy exchange. In contrast with the simple
exchange process, the reorientation of the defect axis requires the movement
of the vacancy to different sites of the lattice before arriving to its final con-
figuration. The electronic and structural configurations at second and third
neighbour positions are studied as intermediate states of the reorientation
process. Two different minimum energy paths must therefore be character-
ized (1 → 2 and 2 → 3), with their respective energy barriers. The relative
stability of the second neighbour and third neighbour configurations present
opposite tendencies with the dopant size. The E-center is barely stable at
third neighbour configuration in the case of the PV0 center, finding an energy
barrier of 26 meV, whereas the energy expense to leave such configuration is
about 0.16 eV in the case of the antimony (transition 3 → 2 in Figure 3.19).
As it is shown in Figure 3.19, such behaviour is inverted in the case of the
second neighbour configuration, obtaining energy barriers to return to the
first neighbour site of 11 meV for SbV0 and 0.11 eV for PV0 (transition 2 → 1
in Figure 3.19). The reorientation barrier observed by EPR stress studies at
high temperatures [17, 19] is here estimated as the energy difference between
the ground state configuration of the E-center and the saddle point of the
2 → 3 transition (see Figure 3.19).

The theoretical values obtained in Table 3.8 clearly show that the diffu-
sion of the whole vacancy-dopant complex is energetically more expensive in
the case of the PV center than postulated by Ref. [17] from the mono-vacancy
diffusion. The activation energy for the exchange mechanism is comparable
to the 0.33 eV barrier for the mono-vacancy diffusion only in the case of an-
timony. We remark that the energy path for the exchange antimony-vacancy
is characterized by a positive barrier of 0.26 eV, in big contrast with the
negative value previously published by [115]. In a few words, the systematic
study presented in Table 3.8 allows to confirm the energy expense of the
reorientation process measured at high temperatures and to better estimate
the exchange barrier, unmeasurable by EPR studies, and therefore unknown
from experimental characterization. While a detailed study of the diffusion
mechanism of the E-center is beyond the scope of the present work, our res-
ults indicate that vacancy-mediated diffusion would be the primary diffusion
mechanism for large dopant-atomic numbers, as it has been experimentally
proved in Ref. [102].

For what concerns the possible contribution of the E-center to the Ran-
dom Telegraph Signal, we refer to the measurements of I. H. Hopkins and G.
R. Hopkinson [103] on proton-irradiated charge-couple devices (CCD), where
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Figure 3.19: The energy landscape of the E-center at high temperatures:
activation energies for the reorientation of the vacancy-dopant axis and ex-
change. The probability density for the unpaired electron along both pro-
cesses is shown. Only relevant points, corresponding to local minimum and
saddle points, are shown in the case of the reorientation process. Lines are
guides to the eye. Activation energies for the first-neighbor-complex dissoci-
ation (transition 1 → 2) and the complete reorientation process (transition
1 → 3), as well as the ones for the exchange mechanism are listed in Table 3.8.

Table 3.8: Exchange barriers, first neighbours binding energies and reori-
entation barriers at high temperatures for PV0, AsV0 and SbV0. Values are
given in eV. t.w. stands for this work, whereas o.w. stands for other works.

Dopant
Exchange barrier

1st neighb.
binding energy

Reorientation barrier

t.w. o.w. t.w. o.w. t.w. o.w. Exp.

P 1.36 1.05 [115], 1.29 [116] 0.84 1.05 [115] 0.87 0.8 [116] 0.93 [17]

As 0.81 0.65 [115] 0.95 1.17 [115] 1.07 1.0 [113] 1.07 [19]

Sb 0.26 -0.05 [115] 1.01 1.45 [115] 1.26 – 1.28 [19]

the two-level RTS was assigned to the presence of the PV center. In the ori-
ginal work, the observed burst noise was linked to the reorientation between
equivalent geometries at room temperature, justifying the variation of the
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dark current with the atomic reorientation by exemplifying the P→V cen-
ter as a dipole moment subject to an electric field. The one-to-one relation
between the RTS and the reorientation of the P→V axis at room temperat-
ure was strongly supported by the so-said similar kinetics presented by both
phenomena [103], since the magnitude of the RTS activation energies, 0.94
eV and 0.95 eV for the down and up levels respectively, was equivalent to
the reorientation barrier estimated by Watkins of 0.93 eV [17]. Our com-
puted energy barrier for the PV center reorientation process confirms both
Watkins’ measurement and its identification with a particular atomic-scale
mechanism. Our result seems by consequence to support the early work of I.
H. Hopkins and G. R. Hopkinson [103]. We however note that later studies,
and in particular [105], reported a different characteristic time constant for
such signal on P-doped silicon, but it was still assigned to the presence of the
PV complex due to correlation between the dissociation temperature of the
center and the characteristic T above which the RTS was disappearing. The
work presented in [104, 106] also focused on the temperature-dependence ar-
guments, leaving aside the measured time constants. Seeing that in most of
proton- or neutron-irradiated devices small clusters are known to dominate
over the creation of point-like-defects, it seems like purely temperature-based
justifications are insufficient to prove a one-to-one correspondence between
RTS and defects, given the vast catalog of possible defects. To conclude,
we remark the fact that both AsV and SbV centers present similar reori-
entation barriers as the one discussed for the PV complex (see Table 3.8),
being consequently candidates for RTS defects in As- and Sb-doped silicon.
However, to the best of our knowledge, only the work of [117] has so far
presented a comparative study of P- and As- doped devices, where the vast
catalog of created defects and/or clusters of defects prevented the one-to-one
correspondence with single point-like defects. Even if a description of RTS
activation energies like the one performed by I. H. Hopkins and G. R. Hopkin-
son was done, a further and more detailed examination of how reorientations
between equivalent configurations are capable of originating a macroscopic
response in the device is required.

To conclude, we have explored the energy landscape for the vacancy-
dopant axis reorientation observed at higher temperatures, finding activation
energy barriers in very good agreement with experiments. Moreover, the
computed exchange barriers offer a new insight on the vacancy-mediated
diffusion. In particular, in the case of the SbV complex, they support the
long time belief that Sb diffuses in silicon mainly through a vacancy-mediated
mechanism.
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3.3 Computational details

The ABINIT package [44], version 8.10.1, was used to perform all the presen-
ted calculations. Kohn-Sham real space wavefunctions and electronic dens-
ities are plotted using the XCrySDen package [118].

Both metallic impurities and the E-center have been embedded in a
216/215 atoms-cell for all calculations, except for certain geometry relax-
ations performed on a bigger cell of 512/511 atoms, as specified in section
3.2.2. The Brillouin zone was sampled at gamma and the Perdew-Burke-
Ernserhof exchange-correlation functional [36] was chosen for all the presen-
ted results. The ONCVPSP norm-conserving pseudopotentials [48] from the
pseudo-dojo platform were taken. We remark that for As (Z = 33) and Sb
(Z = 51) elements, part of the core electrons were put in valence, and there-
fore 15 valence electrons were explicitly considered instead of the 5 electrons
for the phosphorous atom. Similarly for titanium and vanadium, with isol-
ated atomic configurations, [Ar] 3d24s2 and [Ar] 3d34s2, twelve and thirteen
electrons were respectively self-consistently relaxed. An energy cutoff for the
plane wave basis set of 762, 1306 and 1225 eV has been employed for the PV,
AsV and SbV centers embedded in silicon bulk. In the case of interstitial
titanium and vanadium, the energy cutoff was fixed to 1088 eV.

Defect geometries at different charge states have been optimized by means
of the BFGS algorithm, with a convergence threshold of 1 meV/Å. The PES
is explored by both the climbing-NEB method, with a total energy conver-
gence threshold of 1 meV, and by single-point total energy calculations. All
geometries discussed in the present work were obtained without any sym-
metry constraints. Saddle points of the Mexican hat energy surface for the
E-center were determined on a 216-atoms cell by standard structural relax-
ation and the NEB method, obtaining indistinctly the atomic distortions
collected in Table 3.9. Reorientation barriers estimated on the 512-atoms
cell purely rely on the BFGS algorithm to correctly describe saddle point
geometries.

Prior to the determination of W0 and G0, two consecutive DFT calcula-
tions are performed: a full self-consistent calculation with few empty bands,
followed by three scf cycles generating the later required large number of
empty bands. The cutoff energy to determine such building Kohn-Sham ei-
genfunctions is the same as the one employed in the above detailed DFT
calculations. We employ a cutoff energy of 82 eV to describe the dielectric
matrix for the Many-body corrections computed on top of the Kohn-Sham
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Table 3.9: Relevant interatomic distances dij for the E-center at neutral and
negative charge states, corresponding to saddle points geometries resonant
and pairing respectively for a 216-atoms cell. All values are given in Å.

Center
q = 0 q = −1

dij djk = dik dij djk = dik

PV 3.61 3.28 2.76 3.36
AsV 3.64 3.36 2.79 3.39
SbV 3.71 3.53 2.87 3.44

energies. In order to assure convergence of the GW exchange-correlation
self-energy, we use a very large ratio of 10:1 empty bands versus occupied
bands. Size effects and spurious interactions between charged defective cells
are considered in the case of QP DOS, shifting IP and EA values according to
the non-defective silicon cell. Charge transition levels computed within the
DFT+GW combined formalism are obtained from the neutral charge state,
defining the vertical transitions as IP0 and EA0 (except for the double donor
level for TiI and VI, for which IP+ and ∆E2+ are employed).
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Chapter 4

On the modeling of Jahn-Teller
effects in silicon

This process of model-building,

essentially that of discarding all

but essentials and focusing on a

model simple enough to do the

job but not too hard to see all

the way through, is possibly the

least understood and often the

most dangerous of all the

functions of a theoretical

physicist

R. W. Anderson

As established by the Jahn-Teller theorem, the instability of localized or-
bitally degenerate atomic configurations upon distortions with respect to a
given symmetry transformation is a universal effect for all non-linear atomic
systems. In the context of point defects in semiconductors, such universal
mechanism is source of electron-phonon coupling and hence, thermal elec-
tronic transitions within the technologically unwanted recombination centers.
Within an even more specific scope, confined symmetry-breaking mechanisms
in an infinite crystal are responsible for local atomic reorientations, since
they often allow finite-temperature dynamics between different/equivalent
Jahn-Teller distortions. In the case of silicon, which is often assumed to be
well-characterized, such effect has been widely exemplified in the case of the
mono-vacancy within a point-group-theoretical treatment, and later quanti-
fication by first-principles calculations. Such comprehensive characterization
of Jahn-Teller distortions in silicon is however an exceptional case, since as
presented in the previous Chapter, this universal mechanism is not fully un-
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derstood (case of the E-center) or even neglected (Ti impurity) in existent
ab initio studies.

In the present Chapter, we present a general theoretical framework to
study Jahn-Teller effects in silicon, based on the ab initio quantification
of simple symmetry-based models. We demonstrate that within these toy-
models the estimated basic features of the center, such as the symmetry of the
defect-orbitals and variations of the defect electronic structure with atomic
distortions, allow us to establish a solid correspondence with EPR measure-
ments. Symmetry considerations are then employed to guide the state-of-
the-art ab initio characterization, providing a stronger grounded comparison
with experimental data. In addition, the validation of first-principles simu-
lations by both fundamental constrains and experimental evidence enables
us to evaluate the quality or accuracy of the calculations.

More precisely, we target the characterization of Jahn-Teller effects for
rather complex centers in silicon, for which the symmetry, sense and mag-
nitude of the distortions are still source of controversy in the ab initio com-
munity. The Chapter begins with the presentation of a symmetry-based
generalized model for the C3v → C1h distortions of the trimer or the E-
center (section 4.1), taking as starting point Watkins’ original model. In
section 4.2, an equivalent model for the D3d → C2h mechanism is proposed
for the divacancy or the bi-trimer. Within such model, pairing and resonant
distortions are again either minima or saddle points of the energy surface,
providing an extra degree of comparison with EPR reorientation barriers,
in contrast with previous studies. A complete understanding of the center
allows us to revisit the long-standing assignment of the optical absorption
bands with the inclusion of many-body effects. The universality of the model
is farther proved when tetrahedral Jahn-Teller distortions for the vacancy and
heavy transition metals (Pt, Au) in silicon are considered (section 4.3). The
Td → D2d mechanism for such centers is a clear example of the importance of
the Jahn-Teller effect, since large lattice relaxations might induce larger level-
splitting than the on-site Coulomb repulsion,favouring double occupations.
We conclude with the description of multiple symmetry-breaking mechan-
isms, D2d → CV

2v, D2d → C2v and D2d → D2, explaining the reorientation of
the Pt− center at cryogenic temperatures and providing an explanation for
the absence of EPR signals for the Au0 center.
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4.1 A toy-model for the silicon E-center

A simple one-electron model for the silicon E-center [108] was introduced
in the previous Chapter as a theoretical model capable of qualitatively re-
producing the experience. It was however noted that as a molecular-orbital
approach, empirical parameters were required if meaningful values were to
be compared with the measured optical absorption bands and/or reorient-
ation barriers at low temperatures. The success of such model was to cor-
rectly describe the localized trap-induced electronic states (states A and B
in Figure 4.1) and their relative position in energy upon atomic distortions
(degeneracy and reversal of states A and B at geometries B, P and R). In
other words, the Jahn-Teller effect was naturally characterized by the three
dangling bonds located at the three silicon neighbours of the vacancy (atoms
1, 2 and 3 in Figure 4.1).

1

23

(b)

S A B
2

1

3

(a)

Figure 4.1: The silicon E-center projected on the vacancy-dopant axis (a) and
the eigenstates of the trimer (b) constituted by the first silicon neighbours
of the vacancy or atoms 1, 2 and 3.

Even though Watkins’ model (section 4.1.1) was enough to guide our
ab initio exploration of the PES, it presents a couple of limitations that
should be taken into consideration when extrapolating such simple model
to the study of more complex defects. In the following, we present our
generalization of the original model (section 4.1.2), allowing us to establish a
full qualitative correspondence with experience, but explicitly showing that
without an empirical input or a more sophisticated treatment of the electronic
Coulomb repulsion, basic features such as the ground state geometry at a
given charge state remain inconclusive.

4.1.1 Watkins’ original model

In a few words, Watkins’ model for the silicon E-center was simply based
on the trimer constituted by silicon atoms 1, 2 and 3, each contributing
with a broken bond, here denoted as a1, a2 and a3. By first considering an
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equilateral conformation, d12 = d13 = d23, matrix elements between different
dangling bonds were said to be non-zero and equivalent, 〈ai|H0 |aj〉 = −γ.
The eigenstates of the resulting equilateral-trimer-Hamiltonian, H0, were then
obtained as a linear combination of {ai}: S ∼ a1+a2+a3, A ∼ 2a1−a2−a3 and
B ∼ −a2 + a3 (note the change of notation with respect [108]), represented
in Figure 4.1b. In this new basis set, H0 is trivially,

H0 =

|B〉 |A〉 |S〉
〈B| ǫA, B 0 0
〈A| 0 ǫA, B 0
〈S| 0 0 ǫS

(4.1)

It was then shown that for any given equilateral trimer, or any given hopping
γ, the eigenvalues for states A and B, ǫA, B, are degenerate and higher in
energy than ǫS. Led by the experimental evidence of pairing distortions
as ground state geometries [17, 19], Watkins [108] aimed to reproduce the
Jahn-Teller effect in the form of a distorted trimer by proposing a perturbative
Hamiltonian, HJT. Since the distorted trimer is defined upon one horizontal
plane of reflection, σQ in Figure 4.2, the Jahn-Teller Hamiltonian, HJT, was
approximated as a linear perturbation of the trimer, QA, with respect to σQ.
In other words, HJT was constructed as an even distortion with respect to one
of the three equivalent σQ, explicitely breaking the three-fold symmetry of
the equilateral trimer. States A and S are also even upon such perturbation;
whereas state B is odd under the trimer plane of reflection, giving off-diagonal
terms equal to zero, 〈B|HJT |A, S〉 = 0. The other non-zero terms were
determined by Watkins [108] to be,

HJT =

|B〉 |A〉 |S〉
〈B| −V QA 0 0
〈A| 0 +V QA

V√
2
QA

〈S| 0 ? V√
2
QA 0

(4.2)

As it is implied in equation 4.2, both states A and S are no longer eigenstates
of the distorted trimer, but they are combined into new states A’∼ λA + γS
and S’∼ γA +λS, with λ > γ. As expected, states B and A’ present a differ-
ent tendency with respect to the sign of the applied linear perturbation as,
〈B|HJT |B〉 = −V QA; whereas 〈A’|HJT |A’〉 = 〈λA + γS|HJT |λA + γS〉 ∼
(1 +

√
2γ)V QA, in the case of |λ|2 ∼ 1. The degeneracy of states A and B is

not only lifted, but ǫA’ < ǫB for QA(+) (or a pairing distortion) and viceversa
for QA(−) (resonant geometry), as it is sustained by experimental evidence.
We also show that within the linear regime considered by Watkins, a similar
energy shift of the trap levels A and B upon the Jahn-Teller distortions is
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expected.

Q 
A

(+) Q 
A

(-)
23

1

Figure 4.2: Atomic distortions described by Watkins’ model [108] for the
silicon E-center. The horizontal plane of reflection, σQ, for both static dis-
tortions is also shown.

To conclude, Watkins’ model is capable of reproducing the observed Jahn-
Teller effect because the Hamiltonian, H0 +HJT, accounts for atomic distor-
tions upon simple symmetry considerations. A generalization of his model
would consist in writing the trimer Hamiltonian with an explicit paramet-
erization of interatomic distances, dij, naturally describing changes in the
atomic configuration (see section 2.1 on the simple Molecular Orbital ap-
proach). Furthermore, the model HJT is restricted to one given reflection or
distortion plane, σQ, overlooking the existence of three equivalent distorted
trimers. The transition from positive distortion Q+

A (pairing geometry) to
negative distortion Q−

A (resonant configuration) is therefore forced to pass
through QA = 0, or the high symmetric configuration. Watkins was aware
of such limitation, when he wrote that pairing and resonant geometries were
minima and saddle points of the PES within the QA−QB plane [108], making
explicit the need for a second parameter, QB, but without including it in his
model of HJT. The Hamiltonian in equation 4.2 can therefore not reproduce
the transition path between equivalent atomic distortions (or equivalent Q+

A

with respect to three equivalent planes of symmetry σQ). We finally note
that at this level of theory, without an expicit treatment of the electronic
interaction and/or the delimitation given by the host lattice, the model is
not capable of predicting whether the pairing or the resonant configurations
are the actual minima of PES at different charge states. The fact that in
Watkins’ theoretical work the correct geometry was assigned to charge states
0 and -1 was induced from experimental evidence.
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4.1.2 A generalization of Watkins’ model: full corres-
pondence with experience

We now introduce our generalization of Watkins’ approach or our toy-model
for the silicon E-center, also based on the trimer formed by atoms 1, 2 and 3
in Figure 4.1. As in any LCAO-based approach, the defect-induced localized
states can be written as,

ψT(r) =
N
∑

i

ciai(r) (4.3)

Where N is the number of host atoms contributing to the trap-states, ψT,
with a dangling bond, ai. Interatomic distances between atoms constitut-
ing the defect, dij, are constrained by the diamond structure, and therefore
equilibrium interatomic distances are limited to dSi-Si±∆dij. In other words,
since the system constituted by atoms i is not confined to the lattice po-
tential, our model will never describe the equilibrium distances, dij 0 (as it
was shown for the hydrogen molecule in Figure 2.2). The goal of the present
approach is therefore not to determine the position of the PES minima, but
to qualitatively describe the form ({ci}) and relative energy differences of
ψT states. Assuming that within the range in configuration space ∆dij, off-
diagonal matrix elements Sij are small, we consider S = I, and since the
diagonal terms of the Hamiltonian Hii are almost constant (see their de-
pendency upon the interatomic distance R in Figure 2.2), the reference of
energy is set to zero. Furthermore, the basis set, {ai}, employed within the
toy-model does not present the directionality expected from a sp3 hybridiz-
ation (dangling bonds in Figure 4.1), but the orbitals are characterized as
s-like, with off-diagonal matrix elements,

〈ai|H |aj〉 = −γij = −γ0e−αdij . (4.4)

The above H is therefore parameterized according to three interatomic dis-
tances dij. The eigenstates of H for an equilateral trimer are the same as
the ones predicted by Watkins and plotted in Figure 4.1b, with ǫA, B < ǫS.
In Figure 4.3, eigenvalues of the breathing configuration or equilateral trimer
are marked with B.

Starting from the equilateral configuration, and relying on experimental
evidence, we investigate the Jahn-Teller mechanism by breaking the sym-
metry of the B-trimer with respect to an horizontal reflection plane, σ. Pair-
ing, P, and resonant, R, distortions are then considered by explicitly modi-
fying the set of interatomic distances, making dij < dik = djk for Pσ and
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Figure 4.3: Eigenvalues of the trimer at different interatomic distances along
σ-unrestricted (1) and σ-restricted (2) paths of the schematic sombrero. The
symmetry character of the corresponding eigenstates S, A and B is indicated
with the color legend.

dij > dik = djk for Rσ. In Figure 4.3, we show the relative energy differ-
ence of the trimer eigenvalues at different atomic configurations along the
σ-restricted transition path (also denoted as path 2) between pairing (Pσ)
and resonant (Rσ) distortions. We assign a blue color to eigenvalues corres-
ponding to even eigenstates (states S and A) upon the reflection plane of
distortion, σ, an a green color to the B state, for being odd under such trans-
formation. Since no confining potential is considered, no minimum of the
PES is actually obtained, and so any σ-constrained distortion breaking the
symmetry of the breathing configuration, B, is referred to as a Jahn-Teller
distortion and is generally denoted as Pσ,σ′,σ′′ and Rσ,σ′,σ′′ (in contrast with
the minima of the E-center PES P1,2,3 and R1,2,3). Transition path 2 there-
fore represents different magnitudes of the distortion in the positive sense
(or P configuration) versus the negative sense (or R conformation). Given
the three-fold symmetry of the precursor B state, a second transition path
is investigated when modifying the symmetry plane along the path, σ → σ′
(path 1 in Figure 4.3). The color of the trimer eigenstates gradually changes
from blue to green or viceversa along Pσ ↔ Rσ′ . In practice, once the initial
and final sense, orientation and magnitude of the transition path are con-
ceived, a linear interpolation between initial and final interatomic distances
is represented. We also note that Watkins’ eigenstates of the distorted trimer
S’ and A’, defined as S’∼ γA+λS and A’∼ λA+γS, are also obtained within
our toy-model. However, for small perturbations λ≫ γ and therefore S’∼ S
and A’∼ A, and thus we did not rename the states of the trimer in previous
discussions.

To summarize, we have fully characterized the PES of the trimer, going
one step beyond Watkins’ model, since it was limited to the σ-restricted path.
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In relation with the neutral E-center, we assume an occupation equal three
(up and down arrows in Figure 4.3), explicitly showing that the breathing
geometry, B, represented in path 2 of Figure 4.3, corresponds to the inflec-
tion point for states A and B, since the corresponding HOMO abruptly goes
from being a pure A state for a pairing configuration (left side of B) to a
B state for a resonant configuration (right side of B). In the case of the
second considered path, or atomic transition 1, the HOMO state of the sys-
tem gradually changes from a state A (at a pairing configuration defined
upon σ) into a state B (for a resonant configuration R with respect to a dif-
ferent reflection plane, σ′), in agreement with our numerical calculations for
the E-center (Chapter 4). Our toy-model for the trimer therefore reproduces
the underlying physics of the point defect, in terms of form and energy order
of the trap-states, existence of multiple minima and/or metastability of the
PES. To this point, we have estimated the electronic structure for a system
of non interacting electrons arising from an atomic trimer. In the case of an
electronic occupation equal four or the negative state of the silicon E-center,
for which an explicit treatment of the electronic interaction might be relev-
ant, a system of interacting electrons within the trimer is considered in the
following.

Interacting electrons: the ground state geometry of the trimer

The toy-model based on the one-electron Hamiltonian in equation 4.4 intro-
duced in the previous section allowed us to determine the electronic structure
of a trimer for a system of non-interacting electrons. The question that can
now be raised is whether it is possible to establish within the toy-model
for the trimer the ground state geometry of the silicon E-center at differ-
ent charge states or different electronic occupations. The neutral charge
case was already introduced in the previous section when an electronic oc-
cupation equal three was employed to exemplify different transition paths
between pairing and resonant configurations (Figure 4.3). For such case,
even if a minimum of the PES is missing for a certain magnitude of the
Jahn-Teller distortion, we observe that ǫA < ǫB for a similar magnitude of
distortion, showing a preference for a pairing configuration at the given elec-
tronic occupation. On the other hand and similarly to the test-cases of H+

2

and H2 molecules presented in Chapter 2, there is a motivation to estimate
the Coulomb interaction to compare the ground state properties of the tri-
mer at electronic occupation equal three and four. Within our toy-model,
we consider that electrons one and two are occupying state S, without in-
teracting with electrons three and four, which are occupying higher energy
states A and/or B. We are thus interested by two electrons subject to the

126



Hamiltonian H1 + H2 + HU , where the trimer Hamiltonian H1 is defined in
equation 4.4 and HU is the Coulomb interaction between electrons three and
four. Equivalently to equation 3.7, six antysimmetric states can be written
as,

|ΨA〉 = |A〉1 |A〉2 χ00HOLAHOLAHOLAHOLHot
|ΨB〉 = |B〉1 |B〉2 χ00HOLAHOLAHOLAHOLooH
|ΨAB, S〉 = 1√

2
[|A〉1 |B〉2 + |B〉1 |A〉2] χ00HOLAHOo

|ΨAB, T〉 = 1√
2

[|A〉1 |B〉2 − |B〉1 |A〉2] {χ11, χ10, χ1−1}
(4.5)

The eigenvalues, prior to the perturbation HU , are equal to 2ǫA, 2ǫB and
ǫA + ǫB for both singlet, S, and triplet, T, states. For a distorted trimer
(see tendency of eigenvalues in Figure 4.3), the electronic ground state wave-
function is ΨA for a pairing configuration (ǫA < ǫB) and ΨB for a resonant
geometry (ǫA > ǫB). The energy of such states can be estimated in terms
of the Coulomb integral U (Chapter 2), as 2ǫA + UAA and 2ǫB + UBB, nat-
urally wondering whether state ΨB lowers the energy of state ΨA for a sim-
ilar magnitude of distortion. Now, since both states A and B are defined
as rather simple linear combinations of dangling bonds, we can evaluate
these integrals in terms of such constituent elements; namely 〈ΨB|HU |ΨB〉 =
1
4
〈a2(r1) − a3(r1), a2(r2) − a3(r2)|HU |a2(r1) − a3(r1), a2(r2) − a3(r2)〉. For

an equilateral trimer, we find, however,

2 〈ΨA|HU |ΨA〉 = 2 〈ΨB|HU |ΨB〉 = Uii + Uij + 2Jij − 4Fij (4.6)

Where the above integrals are defined for simplicity in the following nota-
tion, Uij :=

[

a∗i (r1)ai(r1)a∗j(r2)aj(r2)
]

and Jij :=
[

a∗i (r1)aj(r1)a∗j(r2)ai(r2)
]

.
The reminding integrals F do not correspond to either a Coulomb or Ex-
change integrals, since they are of the form, Fij = [a∗i (r1)ai(r1)a∗i (r2)aj(r2)].
It should be clear that equation 4.6 is obtained after assuming the three
dangling bonds are equivalent (i.e. Uij = Uji = Uik = etc). The terms UAA

and UBB must therefore break the degeneracy when the system undergoes
a Jahn-Teller distortion, making Uij 6= Uik, etc. We conclude that without
explicitly solving the integrals in equation 4.6 for a distorted trimer, it is not
possible to hypothesize about the ground state of the trimer for an electronic
occupation equal four.

To conclude, from simple symmetry considerations we have proven that
the neutral and negative trimer are both characterized by a Mexican hat
energy surface, in alignment with experimental evidence. We have however
explicitly shown that the treatment of the electronic Coulomb repulsion at
this level of theory limits a further comparison with EPR spectroscopy or a
definitive assignment of the true ground state minima. A quantification of

127



the toy-model is hence necessary if a stronger comparison with experience is
sought after, as shown in previous Chapter for the numerical investigation of
the E-center at the PBE level of approximation. The success of the full the-
oretical study for the silicon E-center has motivated the joint toy-model-ab
initio characterization of selected centers in silicon, providing comprehensive
pictures validated with experience.

4.2 A long standing controversy: the silicon

divacancy

Contrary to the E-center, the silicon divacancy is an intrinsic point-like defect
since it consists of a vacancy adjacent to another vacancy (see Figure 4.4).
It is a very common center in both n-type and p-type irradiated silicon [13]
and it is known to introduce three DLTS levels in the semiconductor band
gap, which have been assigned to the charge transitions (+/0), (0/-) and (-/2-
) [13]. Similarly to the E-center, previous theoretical attempts to characterize
the defect [119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130] are not
only incapable of reproducing the experience, but the contradictions among
the published results revealed the sensitivity of the Jahn-Teller distortion
to the employed exchange-correlation functional or, with a broader term,
the electronic interaction treatment. The motivation to study this defect is
therefore to make a clearer theoretical model, supported by the experimental
measurements. Furthermore, due to its structural resemblance with the E-
center, we can consider the divacancy as a model comprising two trimers
facing each other, as shown in Figure 4.4.

The structural similarity between the E-center and the divacancy was
first postulated by Watkins and Corbett, since early EPR studies [18, 17] on
doped silicon. The silicon divacancy is associated with two different EPR
signals measured after irradiating p-type and n-type silicon: the G6 and G7
spectra [18], which have been assigned to charge states, V+

2 and V−
2 . Evid-

ence of pairing distortions (d23 < d12 = d13, with dij = di′j′ , see Figure 4.4)
were reported for both systems; for which it was postulated that the localized
electrons were filling an extended orbital between atoms 1 and 1’ (or more
generally, i and i′). Reorientation barriers analogous to the ones discussed
for the trimer at low temperatures were estimated to be 0.073 eV and 0.056
eV for V+

2 and V−
2 respectively. Complementary theoretical considerations

allowed Watkins [108] to postulate that the same Mexican hat PES obtained
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Figure 4.4: The silicon divacancy and its potential energy surface at positive
charge state according to Watkins’ model. The electronic density for the
unpaired electron is shown.

for the E-center at neutral charge state could also describe singly charged
divacancies (Figure 4.4), and so, a second sense of the Jahn-Teller distor-
tion was included in the model: the resonant configuration, R. Later joint
theoretical and EPR studies [131] investigated further the wavefunction of
the unpaired electron and its link with the measured spectrum, questioning
the symmetry previously established by Watkins. Both infrared absorption
and photoconductivity measurements were performed on irradiated silicon
by [9]. Their analysis of the dependence of each measured absorption band
upon the existence of photoconductivity and/or the position of the Fermi
level above/below which a given signal was disappearing allowed [12] to tent-
atively assign the 1.8-µm, 3.3-µm and 3.9-µm bands to three electronic ex-
citations arising from the silicon divacancy-induced states.

The big effort made by the ab initio community during the past three
decades to characterize the ground state geometry of the divacancy is an un-
equivocal sign of the complexity in modelling such center. A resonant-bond
model as the ground state Jahn-Teller distortion for the negative state was
proposed by [119, 120, 122], criticized by Watkins in [121] and supported by
later calculations [130]. In [123] only the neutral charge state was considered,
reporting a resonant distortion as the global minima, whereas a pairing con-
figuration was found to be the ground state for all three charge states in
[125, 126, 127]. To add more incoherence, a mixed structure with an S2 geo-
metry was reported for V−

2 in [124], a resonant configuration for states 0, ±
1 was postulated in [128] and a drastic dependency with the XC-functional
was indicated by [129] when describing simultaneously pairing and resonant
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configurations as ground state geometries for charge state 0 and -1.

Even though a pairing configuration has been succesfully described by
[125, 126, 127] for both V±

2 , no effort was made to investigate the shape of
the PES and the role of the resonant-bond geometry in the global theor-
etical model remains unclear. The possibility of both configurations being
metastable was briefly commented in [119, 128]. If Watkins’ hypothesis is
correct [108], as it was for the E-center, the resonant distortion would however
be the saddle point of the transition between equivalent pairing configura-
tions, and the difference in energy between both geometries would determine
the reorientation energy barrier.

In the following, we present a toy-model for the silicon divacancy (sec-
tion 4.2.1), based on two facing trimers, which reproduces the Mexican hat
energy surface postulated by Watkins. The model is then rediscussed in terms
of point-group theory with the pretext of further comparing with previous
models, but it is ultimately employed to describe the Jahn-Teller effect as
the symmetry breaking mechanism D3d → C2h. The toy-model is later quan-
tified at the PBE level of approximation (section 4.2.2), explicitly showing
different degrees of comparison with experience. We can therefore judge the
quality or accuracy of the symmetry-guided ab initio calculations to resolve
Jahn-Teller distortions, in contrast with previous studies. We conclude with
the assignation of the measured optical bands within our bi-trimer picture
with the inclusion of many body effects (section 4.2.3).

4.2.1 A toy-model for the divacancy

As already mentioned above, the silicon divacancy can tentatively be modeled
as two facing trimers T and T’, as shown in Figure 4.5. A total number of six
dangling bonds must be taken into account and therefore the Hamiltonian
can be written as,

H =

(

HT HC

HC HT’

)

(4.7)

where HT and HT’ are the Hamiltonian corresponding to both trimers, and
thus identical to equation 4.4. The off-diagonal terms, included in HC, ac-
count for the coupling between trimers and so,

HC =





−γ11′ −γ12′ −γ13′
−γ21′ −γ22′ −γ23′
−γ31′ −γ32′ −γ33′



 (4.8)

130



where γij′ are defined for interatomic distances dij′ between atoms belong-
ing to different trimers. Since the defect is embedded in the silicon lat-
tice, characteristic interatomic distances (at the PBE level of theory) are,
dij = di′j′ = 3.87 Å, dij′ = 4.53 Å and dii′ = 5.96 Å. Since γij = γi′j′ > γij′ , γii′
prior to defect relaxation, we consider that each trimer preserves its identity,
i.e. the expected Jahn-Teller distortions will be symmetric for both trimers,
being dij always equal to di′j′ , as postulated by Watkins and shown in Fig-
ure 4.4. The six eigenstates for two facing equilateral trimers are represented
in Figure 4.5. The notation employed to name such eigenstates is based on
the toy-model for the trimer, introduced in section 4.1. Since the form of
the trimer-eigenstate (orbitals S, A and B in Figure 4.3) is the same for both
trimer T and T’, the bi-trimer orbitals are named according to the symmetry
transformation upon inversion (transformation T ↔ T’). State S + S’, for
example, is even upon such transformation, whereas S - S’ is odd.

S + S'
A + A' B + B' S - S' A - A'

B - B'

T

T'1

2 3
1'

2'3'

Figure 4.5: The divacancy toy-model based on a bi-trimer and its corres-
ponding eigenstates.

As already stated several times, we assume that the divacancy PES can
be described by a bi-trimer toy-model limited to the constraint dij = di′j′ .
Such assumption is based on experimental evidence [18] and the difference
in magnitude of γij versus γij′ , imposed by the surrounding lattice. We can
therefore guide the exploration of the divacancy or bi-trimer potential energy
surface by the model developed for the silicon E-center or a single trimer. In
Figure 4.6 we represent the six energy levels obtained for the breathing geo-
metry, B, or the equilateral trimers configuration. Highly symmetric states
S + S’ and S - S’ are lowest in energy, with ǫS+S’ < ǫS-S’. States A - A’ and
B - B’ are higher and degenerate in energy, as well as states A + A’ and B
+ B’, with ǫA+A’ > ǫA-A’. Similarly as for the single trimer, a Jahn-Teller
distortion in the form of pairing (P) or resonant (R) configuration breaks
the symmetry of the system, lifting the degeneracy of all four states. Fur-
thermore, since the three-fold symmetry is present also in this case, a PES
characterized by three equivalent minima is also expected. Transition paths
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1 and 2 explored for the trimer can thus also be conceived for the divacancy
and so in Figure 4.6 a similar color-legend as the one defined for the trimer
in Figure 4.3 is employed. We note that besides the transformation upon
the plane of reflection, σ, for which the distinction blue/green is made, the
transformation under the inversion symmetry is also considered when using
the filled/empty pattern.
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Figure 4.6: Eigenvalues of the bi-trimer within the divacancy toy-model along
two different transition paths (1) and (2) between pairing and resonant dis-
tortions.

Assuming an electronic occupation equal five (e.g. divacancy at positive
charge state), path 2 in Figure 4.6 shows how the HOMO goes from being the
A - A’ state for a pairing-like distortion (left side of B) to the B - B’ state
for a resonant-like configuration (right side of B) along the σ-constrained
transition. Two regimes appear for the transition path 2, marked by the
level-crossing (LC) of states A + A’ and B - B’ for a positive distortion (P)
and states B + B’ and A - A’ for the opposite sense of distortion (R). In
other words, if the distortion in both trimers is sufficiently large to overcome
the coupling terms, a level crossing would energetically favor both states A
over states B for a large pairing geometry and viceversa. We note again that
at this level of approximation it is not possible to conclude which magnitude
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of the pairing or resonant distortions are the actual minima/saddle points
of the divacancy PES. The sombrero PES in Figure 4.6 is a pure schematic
representation of path 2; since the point marked as LC could by all means
already correspond to the actual minimum.

A second path is considered by going around the sombrero (see again
path 1 for the trimer in Figure 4.3), characterizing the transitions between
equivalent minima. In this case, we have distinguished two different regimes,
by showing a transition between large distortions (black line) and critic dis-
tortions (dotted line), for which the level-crossing is still very subtle. In the
case of having an electronic occupation equal five or the positively charged di-
vacancy (Figure 4.6), the difference between such paths is unnecessary, since
the HOMO will gradually change from state A - A’ to state B - B’ for both
considered paths. In the case of a higher electronic occupation (especially
for occupation equal 7 or the negatively charged divacancy) it does however
become relevant due to the proximity of the two intermediate eigenstates.

As it was briefly mentioned above, the intra- and inter-trimer hoppings,
γij and γij′ , were defined upon the characteristic interatomic distances of a
divacancy embedded in the silicon lattice. For a Jahn-Teller distortion with
unpaired distances d12 and d1′2′ , and therefore d13 = d23 = d1′3′ = d2′3′ , two
different inter-trimer hopppings are obtained, since −γij = −γ0e−dij/a0 . The
intra-trimer hoppings, defined equivalently as −γij′ = −γ0e−dij′/a0 , are also
modified by the symmetry breaking, since the intra-trimer distances become:
d33′ 6= d11′ = d22′ and d12′ 6= d13′ = d23′ . For a pairing distortion, character-
ized by d12 < d13 = d23, the intra-trimer hoppings become, d33′ > d11′ = d22′
and d12′ < d13′ = d23′ . In the case of a resonant geometry, the inequalities
are inverted, being d12 > d13 = d23, d33′ < d11′ = d22′ and d12′ > d13′ = d23′ .
Once the magnitude and orientation (either σ or σ′) of the initial and final
distortions of the considered path are defined, the respective hoppings are
computed upon their interatomic distances. The subset of atomic configura-
tions constituting the path are obtained by linearly interpolating the initial
and final configurations. The importance of the inter-trimer hopping was
commented when discussing the level crossing of eigenstates upon the mag-
nitude of the Jahn-Teller distortion (Figure 4.6). In the limit case for which
the inter-trimer hopping is set to zero (case of two non-interacting trimers),
gerade and ungerade eigenstates upon inversion will be indistinguishable, de-
generate in energy. The pairing/resonant distortion in each trimer would be
capable of lifting the degeneracy of states A and B, but not between A - A’
and A + A’. Such limit case is prevented by the silicon lattice environment,
but it could still question the validity of the constrain dij = di′j′ in the regime
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prior to the level crossing. In other words, in the present work the possibility
of having a configuration lower in energy by breaking the inversion symmetry
upon the two trimers in the region between the two LC points is not con-
sidered.

The divacancy from a point-group symmetry perspective

Applying a similar one-electron model as the one introduced in section 4.1,
Watkins et al. [18] wrote the six localized levels of the divacancy as a linear
combination of the broken bonds ai, where i = 1, ..3, 1′, ..3′, being capable
of ordering such levels upon symmetry considerations. To be specific, he
employed a perturbative Hamiltonian, similar to the one in equation 4.2,
to establish the electronic structure at a given Jahn-Teller distortion. Since
both Jahn-Teller distortions (pairing and resonant geometries) present a C2h

point-group symmetry, he labeled the trap-induced states with their respect-
ive symmetry representation (see Figure 4.7).

Table 4.1: Character table for the C2h point-symmetry group. The notation
employed in section 4.2.1 is also included.

C2h E C2 σh i bi-trimer
ag 1 1 1 1 A + A’ or S + S’

bg 1 -1 -1 1 B + B’

au 1 1 -1 -1 B - B’

bu 1 -1 1 -1 A - A’ or S - S’

Before discussing the electronic occupation within Watkins model, a more
detailed discussion regarding point-group symmetries and their representa-
tions is given in the following. In Table 4.1, the transformations of the four
group representations (bu, au, ag and bg) under the four characteristic sym-
metry operations are shown. The symmetry operations in the case of C2h

are: the identity (E), the horizontal plane of reflection (σh in Figure 4.7),
the π rotation around an axis perpendicular to σh (C2) and the inversion of
elements j ↔ j′ (i). The states denoted by a are symmetric under a π rota-
tion, whereas the b states are antisymmetric. The distinction gerade (g) and
ungerade (u) is made for symmetric and antisymmetric states upon inversion
(note that, for example, bu ∼ a1−a1′ and on the contrary, ag ∼ a1+a1′). The
fact that any symmetry operation (e.g. σh) is actually a combination of the
other two, i.e. C2

⊗

i = σh, is exploited in the use of a two-letter convention
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to name each representation univocally. We note that the convention used
when naming the toy-model states was based on the σh and i operations,
since A and B kind states have opposite parity upon the reflection plane (σh)
and the distinction A + A’ and A - A’ are the gerade-ungerade notation
for the inversion transformation (i). States S and A are indistinguishable
under such symmetry transformations, as indicated in Table 4.1. However,
since the highly symmetric states S are always lower in energy (Figure 4.6)
and they are not precursors of the symmetry-breaking mechanism, they are
typically not included in the discussion, naming states A + A’ and A - A’ as
ag and bu unequivocally.
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bg
au N

A

A

N

(a)

N

A

A

N

(b)

2'

σh
bu au ag bg

1
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32

3'

(c)

eg

eu
bu
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au

bg

D d C h3 2 C h2D d3

Figure 4.7: The trap-induced states of the divacancy named upon symmetry
transformations (a). Electronic structure for the divacancy according to [125]
for large (b) and small (c) pairing Jahn-Teller distortions.

Watkins’ original model for the divacancy [18, 108] was guided by the
experimental evidence of a pairing Jahn-Teller distortion for both charged
states V±

2 . It was then stated that since the same sense of distortion was ob-
served for charged states ±, both states A were to be occupied and lower in
energy with respect to states B (see level ordering for large pairing distortions
in Figure 4.6). The electronic occupation was therefore postulated to be a1gb

0
u

and a2gb
1
u for the centers VV+ and VV− respectively. We remark that even if

the form of Watkins orbitals is in agreement with our toy-model, he estim-
ated the order of the A states, as being ǫbu < ǫag for all possible magnitudes
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of the pairing distortion in disagreement with our toy-model (Figure 4.6).
This remark was already stated by early theoretical analysis of [131] and its
comparison with EPR spectroscopy and first principles calculations [125, 126]
obtaining large paring distortions for both charge states (Figure 4.7), as dis-
cussed in detail in the following.

The divacancy potential energy surface

The energy surface represented in Figure 4.8 might be regarded as a sum-
mary of the emerging conclusions from the divacancy toy-model. Such energy
surface, corresponding to the HOMO of the bi-trimer for an electronic occu-
pation equal five, reveals the existence of three equivalent minima in the form
of Jahn-Teller distortions with respect to the three symmetry-planes of the
equilateral trimers. Along the transition paths between equivalent minima,
the symmetry character of the HOMO is modified, being even with respect
to σh at the minima (blue color) and odd at the saddle points (green color).

b

au
u

B

Pσ Pσ' Pσ''

RσRσ''
Rσ'

D

C

d3

h2

C h2

R

P

Figure 4.8: The silicon divacancy potential energy surface at positive charge
state within our bi-trimer toy-model. The energy surface corresponds to the
ǫHOMO at different atomic configurations. Note the change of filled/empty
pattern with respect to previous section (i.e. bu ≡ A - A’ and au ≡ B - B’).

The breathing configuration, B, is located at the peak of the PES, rep-
resenting the instability of the orbitally-degenerate configuration. One could
however wonder about the form of the top of the tent : is the abrupt peak
shape expected in the actual point defect PES? Within our toy-model, such
shape has a simple explanation in terms of the avoided level crossing, which
can be easily illustrated for a two level system. We consider a general two-
state Hamiltonian describing the energy levels of states au and bu, Ea and
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Eb, along a path connecting two regimes where Ea < Eb and Ea > Eb,

H =

(

Ea w
w∗ Eb

)

(4.9)

Since by construction states au and bu have opposite signs upon the plane of
reflection σ, any hermitan matrix conceived in a σ-constrained space, Hσ, has
off diagonal terms equal zero, 〈au|Hσ |bu〉 = 0. In other words, if the above
defined Hamiltonian commutes with the reflection upon σ operator, states au
and bu are symmetry protected, leading to no avoiding crossing (w = 0) and
the system abruptly goes from one state to the other. If however the Hamilto-
nian 4.9 does not preserve symmetry, w 6= 0, and the new eigenvalues are
of the form E± = 1

2
(Ea + Eb) ± 1

2

√

(Ea − Eb)2 + 4|w|2. The crossing is thus
avoided, smoothing the inflection point of the transition between states au
and bu. Returning to the shape of the bi-trimer PES, any of the three paths
passing by the breathing configuration, B preserves the symmetry, leading
to level crossing. Any other path, obtained by the intersection of the conical
shaped surface and any plane not passing by B, is characterized by an avoid-
ing level crossing. In the case of the actual point defect PES, it is difficult to
hypothesize whether a symmetry protected inflection point can exist, since
contributions from the lattice or higher order of theory might give w 6= 0 for
the silicon divacancy.

In the present work, we have therefore developed a toy-model for the sil-
icon divacancy, demonstrating that the center is also characterized by a Mex-
ican hat energy surface. Pairing and resonant distortions for the trimer and
bi-trimer are hence described by a general model of symmetry-breaking mech-
anisms: C3v → C1h and D3d → C2h respectively. The particular complexity
when characterizing the Jahn-Teller effect for the divacancy is explained by
the level crossing of the partially occupied defect states for increasing atomic
distortions. At this level of theory, in the case of large pairing distortions and
an electronic occupation equal one (for example), we propose an electronic
configuration b↑u (A - A’), in clear disagreement with Watkins’ original model,
a↑g (A + A’), but sustained by symmetry considerations.

4.2.2 Quantitative analysis and link with EPR spec-
troscopy

Our first-principles characterization of the silicon divacancy, guided by the
simple qualitative analysis, had as first objective to explore the PES at pos-
itive and negative charge states, linking the theoretical model with EPR
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spectroscopy results. At the PBE level, we confirm that the ground state
geometry of the silicon divacancy at both singly charge states is a pairing
Jahn-Teller distortion, whose characteristic interatomic distances are collec-
ted in Table 4.2 (note that at this level of theory, dij = di′j′ , as assumed
for the toy-model). Further exploration of the divacancy PES allowed us
to identify the resonant configurations as the saddle points of the transition
path between pairing-equivalent minima, and thus interatomic distances for
such geometry are also included in Table 4.2. Finally, in order to have a refer-
ence for the magnitude of the Jahn-Teller distortions, interatomic distances
for the neutral E-center (vacancy-phosphorus complex isoelectronic to the
VV+) are also collected in the Table. A direct comparison of the three pair-
ing geometries allow us to conclude that both isoelectronic systems present
similar magnitudes of the Jahn-Teller distortion, whereas such distortion is
quenched for the negative charge state of the divacancy.

Table 4.2: Relevant interatomic distances dij for the E-center (phosphorous-
vacancy complex) at neutral charge state and the divacancy at singly charge
states, computed within the PBE approximation. All values are given in Å.

Center
Pairing Resonant

dij djk = dik dij djk = dik

PV0 2.99 3.58 3.59 3.20
VV+ 3.07 3.64 3.66 3.36
VV− 3.28 3.43 3.51 3.30

As predicted by the toy-model, differences in the sense and magnitude of
the atomic distortions result in different band structures or different ordering
of the defect-induced states. From the spatial projection of the wavefunction
and/or electronic densities (Figure 4.9), we can identify the Kohn-Sham ei-
genfunctions with our toy-model states, showing that simple symmetry-based
considerations were enough to qualitatively describe the electronic structure
of the divacancy. At this level of theory, and including the description of the
surrounding lattice, two different level-orderings for the pairing configuration
are reported according to the two magnitudes of the distortion predicted as
minima for the two charge states. As represented in Figure 4.9, the largest
perturbation, corresponding to the positive charge state, is characterized by
the slight inversion of states ag and au (or the level-crossing point, LC, in Fig-
ure 4.6). Independently of the relative positions of such unoccupied states,
the unpaired electron is located at state bu or A-A’, which within the mean-
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field approach is positioned below the top of the valence band. At negative
charge state, the quenched pairing distortion is not enough to favor both
A-like states over the B-like states, locating the unpaired electron in state au
or B-B’. The level-ordering of defect-states is also investigated for the reson-
ant configuration, R, for q = +1 (Figure 4.9). Since the magnitude of such
distortion is rather quenched for all three systems considered in Table 4.2, it
is not surprising that the Jahn-Teller effect is not capable of overcoming the
LC point for a negative sense of the distortion, and so, we find bu lower in
energy than bg or B+B’.

0 .0 0 .5 1 .0 0 .0 0 .5 1 .0

0 .0 0 .5 1 .0

P R

P

aubu bgag au bu bg ag

aubu bgag

VV+

VV
_

ε KS [σ =  ]

ε KS [σ =  ] ε KS [σ =  ]

Figure 4.9: Spin-projected Kohn-Sham density of states for the pairing geo-
metry at both single charge states of the divacancy and for the resonant
configuration at positive state, estimated within the PBE approximation.
The wavefunction corresponding to the defect-states for the P configurations
and the electronic density for the R distortion are also shown. Defect states
are named according to point group C2h transformations. Filled states are
represented as filled levels in the DOS plot and/or by up and down arrows
subscripts of the defect names, e.g. b↑u for the VV+ at pairing configuration.
Kohn-Sham eigenvalues are given in eV. Black arrows indicate the plane and
sense of distortion for both P1 and R1 (or Pσ and Rσ for the toy-model).
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At positive charge state we report an electronic configuration b↑u, sup-
ported by both symmetry-based considerations and PBE calculations, in
contrast with Watkins simple model, reporting a↑g. Independently of this
disagreement, both models predict the electronic density for the unpaired
electron to be described by an extended orbital between atoms i and i′

(or a σ-even-state). At negative charge state, Watkins postulated that the
unpaired electron was located at the bu state, being the overall configura-
tion, a↑↓g b

↑
u. Besides the fact that this level-ordering contradicts again the

gerade/ungerade ranking predicted by our toy-model, Watkins was reporting
a large pairing distortion, where all three localized electrons were in σ-even-
states (or extended orbitals between equivalent atoms under inversion). At
the PBE level, we obtain an electronic occupation b↑↓u a

↑
u, for which the un-

paired electron is described by a σ-odd-state for a small pairing distortion.

Our ab initio calculations also contradict previous first-principles cal-
culations investigating the electronic structure of the negative divacancy
[125, 126], since they both obtained electronic configurations b↑↓u a

↑
g for a pair-

ing distortion. At the LDA level of approximation, S. Ogüt et al. [125] did
emphasize that the level-crossing of states ag and au was only obtained if size
effects were minimized, increasing the cluster size from Si36H42 to Si316H158

and concluding that the smallest cluster for which ǫag < ǫau was Si206H158.
In [126], by using a similar cluster method and a local density functional, they
did however also report the structure b↑↓u a

↑
g for the small cluster Si146H98. In

the present work, size effects are minimized by increasing the 216-atoms cu-
bic cell to a 512-atoms cell, observing small variations in the interatomic
distances, modifying the level-ordering of defect-induced states only in the
case of the positive charge state (obtaining ǫau < ǫag for the smaller cell). A
further remark can be made if the work of Sieverts et al. [131] is brought
into the discussion, since they argued that if VV− was identified with the
ag state, the theoretical values for the hyperfine parameters were far too low
compared to the experimental values, resulting in a poor description of the
system. We can therefore conclude that unequivocally assigning the ag or bu
orbitals to the VV− center is a non-trivial task. Because of the limitations
of the employed theoretical approach[131] (EHT calculations), the authors
argued about the reliability of the computed hyperfine parameters, explicitly
stating the need for a higher level of theory. One possible strategy would
be to resolve the hyperfine structure directly from ab initio calculations (as
implemented in the Quantum-Espresso package [132]) to finally and unequi-
vocally assign the ag or bu orbital to the negative state of the divacancy,
determining the magnitude of the Jahn-Teller distortion.
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Table 4.3: Proposed electronic structure for the negative divacancy charac-
terized by a pairing distortion. For reference [131], the crossed configuration
indicates a lack of agreement with the defect-orbital assigned to the unpaired
electron.

Watkins [18] Sieverts [131] Cluster calculations [125, 126] This work

a↑↓g b
↑
u ✓

✓❙
❙
a↑g b↑↓u a

↑
g b↑↓u a

↑
u

Further comparison with experiment is possible when the reorientation
process between equivalent pairing minima is investigated (Figure 4.10). At
positive charge state, the unpaired electron goes from a bu state for the
P2 configuration to a au orbital at the R3 saddle point of the transition,
confirming the form of the PES hypothesized by simple symmetry consider-
ations (Figure 4.8). The activation energy for such process is computed to
be 40 meV, equivalently to the results for the E-center, underestimating the
experimental value of 73 meV. The MEP for the transition between small
pairing distortions is also obtained (Figure 4.10), being the electronic trans-
ition b↑↓u a

↑
u → a↑↓u b

↑
u. The estimated reorientation barrier is equal 2 meV, far

underneath the experimental value of 56 meV. Even if our first-principles
calculations are capable of reproducing the EPR investigation for the pos-
itive center, it is possible that the PBE description of the negative state is
erroneous, non-physically quenching the pairing distortion, wrongly describ-
ing its electronic configuration. One can then be tempted to conclude that
the absence of level-crossing in the quenched pairing distortion and the large
underestimation of the reorientation barrier are both product of a poor de-
scription of the negative system. We however note, that in the case of large
pairing distortions [125], the reorientation barrier, reported as a Jahn-Teller
energy for both pairing and resonant geometries, is double the experimental
value.

Even more notorious than the description of different magnitudes of the
Jahn-Teller distortion between different approaches is the estimation of dif-
ferent senses of the distortion among the published results (Table 4.4). As
established in the introduction, during the past three decades the senses of
the C2h distortion at charge states 0, ±1 have been under debate in the ab
initio community. As a general trend, the energy difference between pairing
and resonant distortions for the neutral and negative divacancy is estim-
ated to be within 10 meV at the LDA level of approximation, questioning
the ability of such mean-field approach to accurately describe the electronic
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Figure 4.10: Reorientation of divacancy between equivalent pairing distor-
tions at both single charge states, investigated within the PBE approxim-
ation. The wavefunction corresponding to the unpaired electron is plotted
along the MEP and the electronic configuration is indicated. The plane of
symmetry σh defining the direction of the symmetry breaking (directions 1,
2 and 3 or planes σ, σ′ and σ′′ in Figure 4.8) and the sense of the distortion
(P or R) is also represented with black arrows.

occupation of the divacancy orbitals and hence the corresponding atomic
distortion. Furthermore, previous studies did often neglect the investigation
of the overall Jahn-Teller mechanism, overlooking the form of the PES (and
postulating the mestastability of both P and R distortions [128]) and/or the
geometry of the precursor charge states ±2. In the present work, we report
a full theoretical picture for the charge excitations of the divacancy (or the
systems VV±1, VV±2) consistent with symmetry considerations and quanti-
fied within the PBE approximation (Figure 4.11).

We describe a breathing configuration for the empty trap or charge state
+2 and the half-filled trap or state -2, characterized by equivalent interatomic
distances 3.63 Å and 3.40 Å. At neutral charge state, we obtain resonant
configurations as the global minima of the PES, and pairing distortions as
the saddle points of the reorientation mechanism. The inversion of the Mex-
ican hat energy surface when an electron is added to the positive divacancy
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Table 4.4: Proposed ground state geometries for the silicon divacancy at
charge states ranging from +2 to -2 (being q = +2 not thermodynamic-
ally stable [13]). The configurations B, P, R and M stand for breathing
(D3d), pairing (C2h), resonant (C2h) and mixed pairing-resonant distortions
respectively. The XC-functional characterizing the reported calculations are
specified (where t.w. stands for this work). If different sizes of the cluster/cell
were employed, the results for the largest system are collected.

[18] t. w. [120] [123] [124] [125] [126] [128] [129] [129] [130]

Exp. PBE LDA LDA LDA LDA LDA LDA LDA PBE LDA

+2 - B - - B - - - - - -

+1 P P P - M P P R P P R

0 - R - R M P P R R P R

−1 P P R - M P P R R P R

−2 - B - - B B - - B B -

is consistent with the inversion of minima and saddle points of the E-center
PES obtained for the charge transition 0 → -1. The estimated energy dif-
ference between minima and saddle points is however 2 meV, in alignment
with previous mean-field calculations, poorly differentiating between elec-
tronic configurations b↑↓u for a pairing distortion and a↑↓u for a resonant geo-
metry. We might then conclude that even if the PBE calculation is perfectly
consistent with our toy-model, the obtained flattened Mexican hat energy
surface (Figure 4.11) might be an artefact in any standard DFT calcula-
tion. This statement is sustained by our understanding of the center, allow-
ing us to compare the underestimated difference EPBE{gR} - EPBE{gP} with
the observed reorientation barrier at negative charge state (Figure 4.11). It
therefore seems that in order to accurately quantify the toy-model for the
divacancy one needs to go beyond the LDA or PBE description of the elec-
tronic interaction, fully optimizing the Jahn-Teller distortion with a higher
level of theory.

To summarize, a deep understanding of the center from simple symmetry
considerations and DFT-based calculations have allowed us to build a con-
sistent model for the charged excitations of the silicon divacancy. Within
such picture, the long-standing debate of pairing versus resonant distortions
as ground state geometries is resolved in favor of a description where such
configurations represent minima or saddle points of the energy surface. With
the full characterization of the PES, new degrees of comparison with exper-
iment are possible (i.e. EPR reorientation barriers), letting us judge the
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Figure 4.11: Charged excitations of the silicon divacancy computed from ab
initio calculations in the PBE approximation and sustained by symmetry
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ence in total energies EPBE{gR} - EPBE{gP}. Schematic single-particle band
structures are represented for close-shell configurations or charge states 0,
±2.
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quality of standard DFT calculations. In particular, in the case of the negat-
ive divacancy, we conclude that an accurate description of the center requires
of a higher level of theory with respect to the employed PBE approximation.

4.2.3 On the assignment of the optical absorption bands

The three optical absorption bands 1.8, 3.3 and 3.9 µm reported in the pi-
oneering study of Y. Y. Fan and A. K. Ramdas in irradiated silicon [9] were
unequivocally associated to the divacancy over five decades ago by employ-
ing complementary characterization techniques [12]. The assignment of such
bands to specific electronic transitions within the vacancy-related states was
tentatively proposed by [12] within Watkins molecular-orbital model [18].
Due to the limitations presented by such simple approach, we dedicate the
present section to revisiting the previous (and only) established correspond-
ence.

As determined during the first series of experiments [9], the observed
infrared bands were not visible for any Fermi-level in the band gap, but
the electronic excitations occurred for a certain charge state of the defect
(Figure 4.12). This is the reason, the 3.9 µm band was assigned to the posit-
ive divacancy by [12], since it disappears for Fermi energies above the single
donor level, E+/0. Equivalently, the 3.3 µm band was associated to the double
negative charge state, since it only becomes visible for EF > E−/2−. Finally,
the remaining band, 1.8 µm, was observed for several charges states of the
divacancy, namely q = +1, 0, -1. With all these considerations and having
in mind the level-ordering in Watkins model for the highest four orbitals,
ǫag < ǫbu < ǫau < ǫbg (Figure 4.12c), the 3.9 µm band was assigned to an
excitation from the valence band to the partially unoccupied ag state; the 1.8
µm was described as a transition from a valence-like state to the unoccupied
bu state, and the 3.3 µm was simply said to be associated with the promotion
of an electron from the fully occupied state bu to other excited states [12]. We
remark that within such model and as depicted in Figure 4.12, it is impossible
to describe the position of the valence band, simply assigning the starting
point of the transition the highly symmetric states ag (S + S’) and bu (S - S’).

In the present work, and similarly to the previous correspondence, we
assign the 3.9 µm band to an excitation from the valence band to the first
partially unoccupied state bu at positive charge state (or transition α in Fig-
ure 4.12). Such correspondence is based on its dependence on the Fermi-level
and our theoretical model positioning the bu-state lower than the ag-level (in
disagreement with Watkins’ model). Furthermore, we estimate the charged
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Figure 4.12: (a) Deep levels in the silicon gap corresponding to different
charge states of the divacancy obtained by DLTS spectroscopy [13]. (b) The
Fermi-energy dependence of the infrared bands 1.8 µm (0.69 eV), 3.3 µm
(0.34 eV) and 3.9 µm (0.31 eV) found by [9] (depicted diagram is based
on [12]). (c) Divacancy energy levels for the positive and negative states
within Watkins model [18] and tentative assignment of the measured bands.
(d) Quasiparticle energies for the divacancy at charge states +1, -2 and this
work tentative assignment for the observed excitations.

transition EA+
bu

-IPTVB to be equal 0.37 eV, in close agreement with the meas-
ured band (Table 4.5). In the case of the 1.8 µm band, we tentatively associ-
ate the excitation to a transition from the valence band to the first or second
fully unoccupied state at positive charge state (levels au and ag within the
proposed model). We however note that the accurate inclusion of many-body
effects within the GW approximation forces us to decrease the defective cell
size to a 216 atoms-cell, for which no level-crossing is found at the underlying
PBE level. For is the reason, the level ordering of the divacancy states in
diagram 4.12 differs from the one depicted in the DOS of Figure 4.9. One has
to therefore keep in mind that the cost of including an accurate treatment
of the electronic interaction is to artificially quench the Jahn-Teller distor-
tion due to size effects that can be difficult to avoid. As a consequence of
such limitation, the charged excitations EA+

au-IPTVB and/or EA+
ag -IPTVB are

tentatively assigned to the measured neutral excitation (Table 4.5).

Finally, and thanks to our theoretical model including the description
of high charge states, we assign the 3.3 µm band to an electronic transition
from the fully occupied state eu at charge state -2 to the conduction band (ζ-
transition in Figure 4.12). Such association disagrees strongly with Watkins’
previous correspondence, since he was not taking into account the highly
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Table 4.5: Tentative assignment of the measured optical bands with the elec-
tronic transitions depicted in Figure 4.12, estimated as quasiparticle energy
differences, EA - IP, for a non-converged 216-atoms cell.

Transition α γ ζ

EA - IP 0.37 eV 0.50, 0.80 eV 0.75 eV

Opt. band 0.31 eV (3.9 µm) 0.68 eV (1.8 µm) 0.37 eV (3.3 µm)

symmetric electronic configuration at charge state -2, characterized by two
degenerate orbitals eu and eg, non the position of the conduction band (Fig-
ure 4.9). Our proposed transition is entirely based on the fact that the band
is only observed at Fermi energies above the double acceptor level, since our
estimation in terms of quasiparticle energies significantly overestimates the
electronic excitation.

4.3 The invisible Jahn-Teller effect in silicon

Heavy transition metals, such as platinum and gold, are less and less frequent
trapping impurities in silicon wafers, due to the increased control in the man-
ufacturing process [4]. From a fundamental perspective, early EPR studies of
substitutional Pt− did report deviations from the well-established Ludwig-
Woodbury model for transition metal impurities [133], observing a Jahn-
Teller effect disrupting the substitutional tetrahedral symmetry. The missing
EPR spectra for its isoelectronic center, Au0, fed the interest to characterize
such challenging systems with complementary techniques [134, 135] and/or
simple symmetry-based models [136, 137]. Previous first-principles studies on
gold have focused on determining the electronic activity of the defects [138,
139], giving little insight into its basic properties and the symmetry-breaking
mechanism. A parallel study of both centers at different levels of theory
might therefore be regarded as the natural conclusion to the present Chapter.

In contrast with early 3d transition metals with a preference for a per-
fect substitutional lattice position with Td-symmetry, EPR spectra for Pd−

and Pt− revealed a slight shift of the impurities from the substitutional site
(Figure 4.13a), giving a global C2v-geometry [133]. Furthermore, the wave-
function of the unpaired electron was not located at the foreign element,
but within two of the four nearest silicon neighbours (atoms 1, 2, 3, 4 in
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Figure 4.13), contrary to the well-studied cases of early 3d transition metals
(plots of 3d orbitals in 3.5). This interpretation of the EPR signal was suppor-
ted by [135], who did also perform stress-alignment measurements, observing
a defect-reorientation mechanism at temperatures as low as T ∼ 2 K for the
Pt− center. The evidence of rather small reorientation barriers, together with
the fact that Pt− and Au0 are isoelectronic centers, allowed [140] to hypo-
thesize about the missing EPR signal for neutral gold. It was established
that since the two metals are neighbours in the periodic table, they present
similar electronic structures when embedded in silicon and hence, Au0 would
also present a C2v symmetry. In the case of gold, the Jahn-Teller distortion
would however not be static, as in the case of platinum, but the system would
(and we quote [140]) tunnel between two trigonal distortions, resulting on
a tetrahedral distortion with g⊥ close to zero. A similar magnitude for the
g-tensor-main-value was found in [134], where Zeeman studies were reported
for both excitation spectra at 793 and 611 meV. From their detailed investig-
ation of the electronic structure, they concluded that substitutional neutral
gold in silicon is a paramagnetic center, with S = 1

2
, capable of freely reori-

enting between static distortions at T = 1.9 K. One could therefore question
whether neutral gold is effectively describing a dynamical Jahn-Teller effect
(i.e non-observable static distortions) and consequently, the origin of g⊥ ∼=
0.

V AuPt

1 2

3 4

(a) (b)

Figure 4.13: (a) Geometry of the Pt− center proposed by [133]. (b) Schematic
representation of the vacancy model for the mono-vacancy (V) and substitu-
tional gold (Au). Electronic densities corresponding to a trap-induced state
are depicted in blue.

From a theoretical perspective, a simple molecular-orbital model was first
developed to support the experimental evidence of a C2v-distortion for the
Pd− and Pt− centers [136, 137]. The theoretical investigation was based on
the well-established vacancy model [141], which did also describe a C2v geo-
metry for the silicon mono-vacancy at negative charge state. The analogy
between the two systems was established by arguing that the closed shells
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4d10 (for Pd) and 4f14, 5d10 (for Pt) are located deep into the silicon valence
band, and hence, the defect-states of the TMs arise from the four broken
bonds in silicon atoms 1, 2, 3 and 4 (Figure 4.13b). The vacancy model was
also applied to neutral gold, with electronic configuration, [Xe] 4f14 5d10 6s1,
simply stating that the center presented one extra charge with respect Pt.
For both systems, the C2v-geometry at negative charge state (neutral state
for Au) was explained through two consecutive symmetry breaking mechan-
isms, Td → D2d → C2v, lifting completely the degeneracy of the t2-states,
postulated to be located within the semiconductor gap. To conclude, it was
remarked that even if the symmetry-point group at different charge states
was equivalent for the vacancy and the TM, the sense of the distortion was
opposite with respect to each other, presenting electronic structures with
different level-ordering (similarly to the discussion for the divacancy, sum-
marized in Figure 4.9).

Among the ab initio community, little attention has been given to the
Pd, Pt and Au centers in silicon. In the case of substitutional gold, the
main focus of the published work [138, 139] was to determine the CTLs as
an energy difference of DFT-total energies, so a full picture of the center
was not given. In [138], it was stated that the Au-center was slightly distor-
ted from the Td position into a C2v-geometry, without further investigating
the ground-state basic features of the defect. In [139], the geometry of the
center was obtained at charge states ranging from +1 to -3, reporting a
∼ D2d symmetry for all electronic occupations, except for the neutral state,
for which a D2 geometry was described. From the computed CTLs, they
argued that gold presents Anderson-negative-U properties, being unstable at
paramagnetic states, justifying the missing EPR signal for Au0

S. This result
is however not consistent with DLTS levels EV + 0.35 eV and EC - 0.56 eV,
widely assigned to the charge transitions 0/+ and 0/-, and neither with the
optical measurements reported in [134]. Even if Pt- and Au-contamination
is typically under control in silicon-based devices, the degrading power of
such impurities is unquestionable, since even at small concentrations of 1012

cm−3, they are responsible for faulty devices due to the enhanced dark cur-
rent [4], motivating our work to clarify the contradictory interpretations for
the missing EPR signal for gold.

In the present work, we propose a theoretical framework equivalent to the
one previously introduced for the divacancy to investigate the reorientation
of the Pt− center at very low temperatures between static C2v-distortions
and the possibility of neutral gold exhibiting dynamical Jahn-Teller distor-
tions. Due to the hypothesized similarity of the Jahn-Teller distortions for

149



the mono-vacancy and the metallic impurities, our investigation of the cen-
ters is performed and consequently presented as follows: In section 4.3.1,
we expose the symmetry-breaking mechanism constituted by two consecut-
ive Jahn-Teller distortions Td → D2d → C2v, proposed in Watkins’ vacancy
model. To ground the basic features of the center, we extensively analyse
the symmetry of the vacancy-related orbitals at different atomic distortions,
establishing a solid correspondence with our ab initio characterization. The
understanding of such simple defect is later exploited to model the D2d-
distortions for the Pd, Pt and Au centers (section 4.3.2), comparing the
magnitude of the distortions, the symmetry of the KS wavefunctions and ul-
timately, the reorientation barriers. Our detailed analysis of the intermediate
geometry in the overall symmetry-breaking mechanism, contrary to previous
theoretical considerations, allows us to demonstrate the equivalence of the
energy surface Td → D2d with the ones previously presented for the trimer
and bi-trimer. We finally investigate the Jahn-Teller distortions for all the
studied centers at electronic occupation equal three (section 4.3.3), which was
associated to the C2v type of distortions in Watkins model. In the case of
neutral gold, we propose an alternative explanation for the non-measurable
EPR-signal, linked to the description of a new symmetry of the ground state
in the form of D2-distortions. Furthermore, we investigate the complex shape
of the energy surface for the Pt− center, characterized by six equivalent min-
ima and two reorientation processes, whose accurate description is beyond
a CI-NEB algorithm. In such context, we propose the symmetry character
of both reorientation mechanisms, assigning the D2-distortion to the saddle
point between two equivalent C2v-distortions, successfully reproducing the
measured reorientation at cryogenic temperatures.

4.3.1 The vacancy model

The first theoretical model for the silicon vacancy was proposed by Watkins [141],
predicting once again the form and relative energy position of the defect-
induced states within a simple molecular orbital approach. In contrast with
the silicon E-center, the localized electronic states are described as a linear
combination of four dangling bonds, arising from the vacancy first neigh-
bours. The system therefore presents a four-fold symmetry instead of the
three-fold transformations extensively discussed for the trimer and bi-trimer.
According to Watkins, at charge state +2 or empty trap the PES presents
a single minimum corresponding to a Td geometry, for which three out of
the four defect-states are degenerate in energy (Figure 4.14). The main
contribution of the model is to describe the instability originated by the
partial occupation of the t2 states, leading to two consecutive Jahn-Teller
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distortions, required to lift completely the degeneracy of the triplet. The
symmetry breaking mechanisms postulated by Watkins were sustained by
EPR spectroscopy for the paramagnetic states q = ± 1 and they were later
confirmed by first-principles calculations [61, 62, 63, 64]. At both charge
states +1 and 0, the system adopts a D2d geometry, characterized by a
paired inward relaxation, for which the six interatomic distances follow,
d24 = d13 = dJT < d12 = d14 = d23 = d34 (Figure 4.14). At charge states
+1, 0, the t2-states are therefore unfolded in a b2-state and the e-doublet. If
yet another electron is added to the center, a second Jahn-Teller distortion
in the form of a C2v configuration was predicted to lift the degeneracy of
states e. The new geometry, observed at charge state -1, is characterized
by interatomic distances, d24 = dJT < d13 = dJT2 < d12 = d14 = d23 = d34
(Figure 4.14).
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Figure 4.14: Watkins vacancy model [141] characterized by two Jahn-Teller
distortions, lowering the symmetry of the tetrahedral system from a Td geo-
metry to a D2d configuration and consecutively to a C2v conformation.

From simple symmetry considerations, or within our toy-model, the de-
generacy of the defect states at different atomic configurations Td, D2d and
C2v, is reproduced. In the case of the D2d geometry, for instance, the lowest
defect-state simply corresponds to ∼ a1 + a2 + a3 + a4 (Figure 4.15). Such
highly symmetric state is labeled as a1 according to the point-group trans-
formations collected in Table 4.6. The second non-degenerate state, or state
b2, has the form ∼ −a1 + a2 − a3 + a4, for a symmetry-breaking mechanism
constrained by interatomic distances, d13 = d24 = dJT. Due to the three-fold
degeneracy of the C2-symmetry transformation characterizing the precursor
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Td configuration, one can already postulate the existence of three equivalent
D2d geometries, with paired distances, d13 = d24 = dJT or d12 = d34 = dJT
or d14 = d23 = dJT at this level of theory. Further analysis of the reorient-
ation process between equivalent minima is given in the following, since we
now simply focus on introducing the Jahn-Teller distortions and their relev-
ant symmetry elements. The b2 state is even with respect to both dihedral
planes, σd, (one of them represented in Figure 4.15) and the parallel rotation
axis, C2; whereas it is odd under a S4 transformation and the two rotation
axis, C ′

2, perpendicular to the main axis, C2 (also represented in Figure 4.15).
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Figure 4.15: Trap-induced states for the vacancy at D2d configuration within
a simple MO approach labeled according to point-group transformations.

The obtained degenerate states are labelled according to the irreducible
representation of size two, e; since these states do not transform to them-
selves under certain symmetry transformations. State a1 − a3, for instance,
goes to states ±(a2−a4) if the rotation constrained by the C ′

2-axis is applied
to the system. The values listed in Table 4.6 for such representation are thus
defined as the trace of the matrix of order two, containing 0, 1, -1 transform-
ations under a given symmetry operation. In the ongoing example of the two
rotations C ′

2, the diagonal terms are equal zero (since state a1 − a3 does not
go to itself under the operation) and both off-diagonal terms are equal to ±1
depending on the direction of the rotation axis. The trace of the matrix is
then equal to zero, as listed in Table 4.6. In the case of symmetry operations
like the identity, for which diagonal terms are non-zero (state a1 − a3 is even
under such transformation), the trace of the corresponding matrix is equal 2.
We finally notice the equivalence of states a1−a2−a3+a4 and a1+a2−a3−a4
(proposed by the original Watkins model) and our states a1 − a3 and a2 − a4
at this level of approximation.

If the symmetry of the system is lowered through the mechanism D2d →
C2v, the trap-induced states remain invariant at this level of theory (Fig-
ure 4.16), being relabelled according to the symmetry representations listed
in Table 4.6. At this new atomic configuration, characterized by d24 = dJT <
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Table 4.6: Character tables for the D2d, C2v and D2 point-symmetry groups.

D2d E 2S4 C2 2C ′
2 2σd

a1 1 1 1 1 1
a2 1 1 1 -1 -1
b1 1 -1 1 1 -1
b2 1 -1 1 -1 1
e 2 0 -2 0 0

C2v E C2 σv σ′
v

a1 1 1 1 1
a2 1 1 -1 -1
b1 1 -1 1 -1
b2 1 -1 -1 1

D2 E C ′
2 C ′′

2 C ′′′
2

a 1 1 1 1
b1 1 1 -1 -1
b2 1 -1 1 -1
b3 1 -1 -1 1

d13 = dJT2 , states a1−a2−a3+a4 and a1+a2−a3−a4 are no longer eigenstates
of the Hamiltonian, since they are not compatible with a transformation un-
der σv, defined as the vertical plane, parallel with the principal axis. States
a1 − a3 and a2 − a4 are differentiated as states b1 and b2, depending on their
behaviour with respect both perpendicular planes σv and σ′

v. Furthermore,
state b1 is lower in energy with respect to b2, because σ′

v contains the in-
teratomic direction defining dJT2 . We remark that states denoted as a1 and
b2 for the D2d geometry, are both now labeled as a1, since they are indis-
tinguishable under the C2v operations, similarly to states A+A’ and S+S’
(A-A’ and S-S’) in the case of the divacancy. Before concluding, we notice
that within these simple considerations, six minima of the PES can be expec-
ted, since for each distortion with respect the three equivalent C2 axis, each
C2v geometry co-exists for d24 = dJT < d13 = dJT2 ⇋ d24 = dJT2 < d13 = dJT.
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Figure 4.16: Trap-induced states for the vacancy at C2v geometry within a
simple MO approach labelled according to point-group transformations.

The Jahn-Teller effect for the silicon vacancy has historically served as
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the test-case-study to analyse the convergence of ab initio calculations re-
garding size of the cell/cluster, number of k-points, form of the defective cell,
etc. [61? , 63, 64]. Among the published works, the most recent one [64]
investigated the ground state geometry at charge states ranging from +2 to
-2, in alignment with Watkins model. At the LDA level of approximation,
they did also confirm the electronic negative-U properties properties of the
center, postulated in the seminal work of Baraff, Kane and Schlüter [142]
and sustained by experimental evidence [143]. In a few words, an Ander-
son negative-U system is characterized by the formation of a localized elec-
tronic pair, capable of inducing a large lattice relaxation, overcoming the
Coulomb repulsion between the electrons. The paramagnetic states of the
Anderson-center are therefore said to be thermodynamically unstable, since
the Jahn-Teller distortion causes the level inversion between the double and
single donor/acceptor levels (E++/+ > E+/0 and E−/−− < E−/0).
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Figure 4.17: Spin-unrestricted quasiparticle density of states for the vacancy
at charge states +2 and 0 and spin-restricted states for the singly charged
states, ±1. The Kohn-Sham wavefunction of the defect-induced states is
shown for the paired systems, whereas the electronic density is represented for
the V±1. The point group symmetry is specified at each atomic distortion and
the localized states are named accordingly. Computed quasiparticle energies
within the GW approximation are given in eV.
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In the present work, besides revisiting Watkins model through an extens-
ive point-group-symmetry analysis, we have also performed state-of-the-art
first-principles calculations, establishing a one-to-one correspondence between
the two theories (Figure 4.17). As depicted, at the PBE level of theory, the
degeneracy and real-space projection of the KS eigenstates are in perfect
alignment with previous symmetry considerations. The inclusion of many-
body effects, in contrast with the work presented in [64], allows us to directly
postulate that the vacancy is a negative-U center, since IP 0

b2
< IP+

b2
(Fig-

ure 4.17). Such energy difference reveals the stability of the electronic pair,
b↑↓2 , through lattice relaxation or the thermodynamic stability of the neutral
charge state over the single charge state. Further information regarding the
magnitude of the Jahn-Teller distortions is provided in the following, since
the motivation for the present section was simply to ground the vacancy
model at different levels of theory to guide the investigation of more complex
systems (Pt, Au).

4.3.2 Transition Metals exhibiting Jahn-Teller tetra-
hedral distortions

From our first-principles study of the Pd, Pt and Au centers in silicon at
charge states +2, +1 and 0 (+3, +2 and +1 for Au), we confirm that these
TMs are characterized by tetrahedral Jahn-Teller distortions, triggered by the
partial occupation of the defect-states located in the nearest silicon atoms.
For an empty trap, t02, the precursor state presents a Td symmetry, with equi-
valent interatomic distances, dij, between the silicon atoms. For an electronic

occupation equal one (t↑2, corresponding to charge states Pt+, Pd+, Au+2) or
two (t↑↓2 or Pt0, Pd0, Au+), we report a D2d-geometry, whose characteristic in-
teratomic distances are collected in Table 4.8. The distance dJT, represented
in Figure 4.14, corresponds to interatomic distances between paired atoms,
being different from the other four characteristic dij. Relevant interatomic
distances are also included for the mono-vacancy, V, as a reference for the
sense and magnitude of the D2d-distortion. From the distances collected in
Table 4.8, we conclude that the Jahn-Teller distortion for the TMs occurs in
the same sense as for the mono-vacancy, since dJT < dij. The magnitude of
the distortion is almost equivalent for all four systems for an electronic oc-
cupation equal one, since the two dJT are consistently ∼ 0.1 Å smaller than
the remaining four dij. In the case of the electronic pair, t↑↓2 , the lattice-
relaxation is much more prominent for the vacancy nearest neighbours, ∼
0.5 Å, than for the metallic impurities, ∼ 0.2 - 0.3 Å. Independently of the
magnitude of the D2d-distortions described by silicon atoms 1, 2, 3 and 4,

155



the TMs remain unperturbed at the perfect substitutional site.

Table 4.8: Relevant interatomic distances dij between the nearest silicon
atoms for the Pd, Pt, Au and vacancy (V) centers, computed within the
PBE approximation. Electronic occupations of the precursor t2 states (prior
to JT distortions) are indicated in parenthesis. All values are given in Å.

Center
Td (t02) D2d (t↑2) D2d (t↑↓2 )
dij dJT dij dJT dij

Pd 3.90 3.78 3.93 3.65 3.95
Pt 3.88 3.76 3.90 3.63 3.93
Au 3.99 3.89 4.02 3.79 4.05
V 3.76 3.49 3.66 3.07 3.54

The electronic configuration for the here-studied impurities is therefore
b↑2 and b↑↓2 , as predicted for the mono-vacancy at charge states +1 and 0 (Fig-
ure 4.17). In Figure 4.18 we quantify the simple symmetry-based model at
the PBE level of theory (wavefunctions and electronic densities of the defect-
related states) and within MBPT, by representing the quasiparticle energy
density of states for Au+2 and Pt+. The KS-states are in excellent agree-
ment with the ones depicted for the vacancy, confirming that substitutional
Pt and Au in silicon can be simply modelled as single missing atoms. We can
therefore conclude that the first symmetry-breaking mechanism in metallic
impurities, Td → D2d, is identical to the one described and observed for the
vacancy. Our results slightly contradict Watkins model [136, 137], for which
the spontaneous Jahn-Teller distortions were directly described for an elec-
tronic occupation equal three, establishing that the intermediate tetragonal
distortion (D2d) had an opposite sense with respect the one described here.
According to their theoretical considerations, the e doublet would therefore
be lower in energy and occupied by the three electrons, before lowering the
symmetry to a C2v configuration. We can therefore conclude with the ori-
ginal part of our investigation, carefully investigating the intermediate-step-
geometry in the overall symmetry-breaking mechanism Td → D2d → C2v.

We conclude the present section by analysing the reorientation mechanism
between the three equivalent D2d-distortions for all the considered systems.
Contrary to the trigonal centers (E-center, divacancy), the three equivalent
minima of the PES are not defined by three equivalent σh-planes, but with
respect to three perpendicular C2 axis, here identified with the coordination
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Figure 4.18: Spin-restricted quasiparticle energy density of states for Au+2

and Pt+, both presenting D2d-distortions and hence, and electronic occupa-
tion, b↑2. The KS wavefunction and the electronic density for the partially
occupied b2 and empty e states are respectively shown for Au+2 and Pt+.
Estimated values within the GW approximation are given in eV.

axis: D x<
2d , D y<

2d and D z<
2d (Figure 4.19). The superscript < denotes the sense

of the D2d-distortion, since the ground state geometries for the studied cen-
ters follow dJT < dij. Moreover, by simple symmetry considerations or within
our toy-model, we postulate that the saddle points characterizing the reori-
entation process correspond to opposite senses of the D2d-distortion, D>

2d,
defined by dJT > dij. Even more precisely, and equivalently for the trimer
(and bi-trimer), the saddle point of the transition D i<

2d ↔ D j<
2d , defined to

any two i, j axis, corresponds to the distortion D k>
2d , defined with respect to

the third symmetry-axis, k (Figure 4.19). A C2-restricted path (or transition
D i<

2d ↔ D i>
2d ), in analogy with the σ-restricted path for the trimer, would

force the system to pass through the highly symmetric Td configuration,
characterized by the degeneracy of the t2 states. The shape of the PES for
V+1,0, Pd+1,0, Pt+1,0 and Au+2,+1 is therefore here postulated to be identical
to the one extensively investigated for the E-center and divacancy in silicon
upon exchange of the symmetry elements C2 ↔ σh, defining the Jahn-Teller
mechanism.

The ab initio exploration of the PES confirms the simple symmetry model,
obtaining D>

2d-distortions as saddle points of the MEP, whose activation en-
ergies are collected in Table 4.9. We remark the similarity of the barriers for
Pd and Pt at charge states +1 and 0, and a general proximity in the order of
magnitude for all the studied centers. In the case of the vacancy, the fact that
the energy expense of the reorientation is increased at least by a factor of ten
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Figure 4.19: Proposed symmetry model for the Td → D2d mechanism, partic-
ularized for the Pt center at charge states +1, 0. The electronic wavefunction
corresponding to the partially occupied (b↑2) or fully occupied (b↑↓2 ) states for
the three minima are also depicted.

when an electron is added to the system was already observed experimentally
through EPR spectroscopy [141] and confirmed by ab initio calculations [144].
Since similar tendencies are obtained for the metallic impurities, we origin-
ally report that the D2d lattice relaxation is energetically stabilized by the
constitution of an electronic pair, b↑↓2 , similarly to for the silicon vacancy.
We do however report ionization potentials corresponding to states b↑2 and
b↑↓2 to be within 0.05 eV with respect to each other for Au+2,+ and Pt+/0 re-
spectively. Contrary to the silicon vacancy, the D2d-distortions are therefore
not sufficiently large to overcome the Coulomb repulsion between the paired
electrons and the paramagnetic states are thermodynamically stable (i.e. Pt
and Au centers do not present negative-U properties in silicon).

Table 4.9: Activation energies between equivalent D2d-distortions for Pd, Pt,
Au and the mono-vacancy at electronic occupations b2

↑ and b↑↓2 . All values
are given in eV.

Trap occupation Pd Pt Au V

b2
↑ 0.04 0.04 0.02 0.02 0.0131 0.052

b↑↓2 0.16 0.15 0.10 0.20 0.231 0.322, 0.202

[1]Measured reorientation barriers [141] [2]Other works [144, 145]

To summarize, we have proven that Jahn-Teller distortions in the sur-
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rounding of heavy transition metals, such as platinum and gold, can be simply
modelled in the same way as the case of a single missing atom. Besides com-
paring the magnitude of the Jahn-Teller distortions and the reorientation
barriers among the studied defects, we have proposed a general shape for the
Td → D2d energy surface, equivalent to previous models for the C3v → C1h

for the E-center and D3d → C2h for the divacancy. We finally notice that the
reorientation process between equivalent D2d-distortions was exclusively dis-
cussed for the vacancy by precedent theoretical studies, without investigating
any further the symmetry of the transition path.

4.3.3 Multiple symmetry-breaking mechanisms

For a trap-occupation equal three, our ab initio approach reproduces the
C2v-distortion for the Pd− and Pt− centers as the ground state geometries,
postulated from EPR measurements [133, 135]. In agreement with experi-
mental observations and Watkins’ simple model [136, 137], the sense of the
distortion is opposite to the one described by the mono-vacancy, since the
four interatomic distances dij are smaller than the paired distances dJT, dJT2

(Figure 4.20). Two senses of the C2v distortion are therefore to be distin-
guished (similarly to the Pairing and Resonant distortions for the E-center,
divacancy; or the D>

2d, D
<
2d distortions at charge states Pt+,0), so in the

following we denote by CV
2v the Jahn-Teller described by the vacancy, with

dij > dJT, dJT2 (Figure 4.20). Since the sense of the distortion conditions the
level-ordering of the defect-induced states, we notice that in the case of the
Pt− center, the b1, b2 states are lower in energy than the symmetric a1 state,
locating the unpaired electron in a b2-state, b↑↓1 b

↑
2, contrary to the vacancy

electronic configuration, a↑↓1 b
↑
1 (Figure 4.20).

dJT1dJT2

dJT1dJT2

b1
b2

C2v
Pt- C2vV- V

Figure 4.20: C2v-distortions for Platinum in silicon and the mono-vacancy at
negative charge state (or electronic occupation equal three). The wavefunc-
tion of the unpaired electron is also represented.

In Table 4.10 we present the interatomic distances between the metal or

159



vacancy first silicon neighbors at the PBE level of approximation for both
the C2v and CV

2v distortions. Even if the defect electronic density is located
at nearest Si atoms, triggering the Jahn-Teller relaxations, we estimate a
small shift of the metallic impurities from their substituional sites as depic-
ted in Figure 4.20, in alignment with EPR spectroscopy [133]. Such effect
was vaguely described from first-principles calculations in the case of gold at
neutral charge state, postulating a small deviation of 0.03 Å [138]. Within
the present approach, we however report a larger net movement equal 0.17,
0.13, 0.09 Å for Pd−, Pt−, Au0 respectively along the C2 axis and in the
direction of the dJT2 distance.

Table 4.10: Relevant interatomic distances dij between the nearest silicon
atoms for the C2v-geometry, estimated within the PBE approximation. All
values are given in Å.

C2v Pd− Pt− Au0 V−

dJT 3.79 3.79 3.99 2.83
dJT2 4.15 4.11 4.16 3.39
dij 3.75 3.73 3.88 3.46

The equivalence or universality among the potential energy surfaces for
the C3v → C1h (E-center), D3d → C2h (divacancy) and Td → D2d (previous
section) mechanisms is clearly broken in the case of the Td → C2v mechanism,
due to the existence of six equivalent minima and two different reorientation
processes. As depicted in Figure 4.21, for each of the three possible orienta-
tions of the C2-symmetry-axis (here identified with the coordinate axis), two
different configurations or orientations +/- can co-exist upon the inversion
dJT1 ⇋ dJT2 . The center might hence not only reorient with respect to the C2-
symmetry-axis, but also with respect the +/- sense of such direction. Even
if such small reconfigurations were assigned to the reorientation of the Pt−

center at very low temperatures [133], no further investigation of the trans-
ition path has been performed within simple molecular-orbital approaches,
nor within an ab initio approach. In the case of neutral gold, characterized by
the non-measurable EPR signal and for which the C2v-distortion was merely
postulated to be the ground state geometry [140, 134], a reorientation barrier
equal 0.11 eV between equivalent C2v configurations was reported in [138].
Such large reorientation barrier is however not consistent with the absence
of EPR spectrum for gold in silicon, since that would imply that static C2v

Jahn-Teller distortions would be observed at temperatures comparable to RT
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(when Pt− was observed to freely reorient at T ∼ 2 K).
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C2

Figure 4.21: Schematic six-minima energy surface corresponding to the
Td → C2v mechanism. Activation energies, ∆∗, estimated with the CI-NEB
algorithm at the PBE approximation, for the two reorientation processes
(C x+

2v ↔ C z−
2v and C y+

2v ↔ C y−
2v ) are indicated.

In the present work, as a first step into characterizing the energy surface
of the Pt− center, we blindly estimate the MEP between equivalent minima
within a CI-NEB calculation, obtaining activation energies, ∆∗

C2
= 60 meV

and ∆∗
+/− = 40 meV (Figure 4.21). The height of the +/- barrier is however

clearly overestimated with respect to EPR measurements, from which it was
deduced that the center could freely reorient at temperatures as low as ∼
2 K between “two equivalent trigonal distortions”. A closer look into the
symmetry-character of the computed transitions reveals that the estimated
saddle point presents a ∼ D2d-geometry. This result however contradicts the
general observed trend of the SP being of the same symmetry order as the
minima (as it has been extensively studied for the C3v → C1h, D3d → C2h and
Td → D2d cases). One could therefore question the validity of the numerical
optimization and whether it is correctly describing the symmetry-character
of the reorientation process, postulating the need to further investigate the
shape of the PES for the Pt− center.

In the case of neutral gold, Au0, our first-principles calculations reveal
that the C2v distortion does not correspond to the global minimum of the
PBE-potential energy surface, but we find a D2 geometry instead, character-
ized by six paired distances, dJT1 = 3.81 Å, dJT2 = 3.95 Å and dJT3 = 4.08 Å.
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The obtained geometry might be regarded as a D2d distortion, followed by a
rotation of the paired atoms in opposite senses as depicted in Figure 4.22a.
Such symmetry-breaking mechanism has been previously reported by [139]
within a LSDA approximation. They did however not perform a proper
analysis of the geometry, simply stating that “the distortion is enough to
lift the degeneracy of the three defect states”. As shown in the character
tables collected in Table 4.6, the D2 symmetry has the same number of irre-
ducible representations or symmetry elements then the C2v point group, so
it has the correct construction to lower the symmetry of the D2d geometry.
Within our simple toy-model, we have modeled the D2d → D2 mechanism,
for which the resulting eigenstates have been named according to symmetry
considerations (Figure 4.22). As depicted, the degeneracy of the e states is
lifted, resulting in three defect-states b1, b2 and b3, defined with respect to
the three symmetry-axis C ′

2, C
′′
2 and C ′′′

2 . If the geometry of the center is so
that dJT1 = d13 = d24 < dJT2 = d12 = d34 < dJT3 = d14 = d23, then C ′

2 ≡ x̂,
C ′′

2 ≡ ŷ and C ′′′
2 ≡ ẑ and b1 ∼ a1 + a3 − a2 − a4, b2 ∼ a1 + a2 − a3 − a4

and b3 ∼ a1 + a4 − a2 − a3, as depicted in Figure 4.22a within the toy-
model and Figure 4.22c within the PBE approximation. Equivalently to the
C2v-distortions, six equivalent D2 geometries can co-exist, depending on the
relative orientation of the symmetry elements. In Figure 4.22c, for instance,
we have represented two equivalent distortions with C ′′′

2 ≡ ẑ, and oppos-
ite orientations of the C ′

2 and C ′′
2 axis: x̂ ↔ ŷ. The lack of energy barrier

between both D2 and C2v distortions for the Au0 center, together with the
small energy difference of 9 meV between both geometries, indicates that
this second type of distortions might play a relevant role in the reorientation
mechanism of the Pt− center.

By twisting the already characterized C2v geometry for the Pd− and Pt−

centers as the starting point of the structural optimization, the minimization
algorithm also finds as critical points of the PES the D2 and the CV

2v sym-
metries. One could therefore question the existence of different local minima
and/or the metastability of the metallic impurities. Since however such geo-
metries present the same symmetry order than the six-fold global minima of
the PES, we postulate that they actually correspond to the saddle points of
the two reorientation processes. The CV

2v distortion, similarly to the model for
the D2d-energy surface, corresponds to the saddle point of the reorientation
mechanism with respect to the C2 symmetry, whereas the D2 symmetry char-
acterizes the transition between +/- orientations. Such assignment is sup-
ported by symmetry considerations (or within our toy-model), the activation
energies obtained as total energy differences (giving ∆C2 = E{gCV

2v}−E{gC2v}
= 21 meV and ∆+/− = E{gD2} − E{gC2v} = 4 meV for the Pt− center) and
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Figure 4.22: (a) Jahn-Teller model for the D<
2d → C2v and D<

2d → D2 mech-
anisms. (b) Two out of six equivalent D2 distortions, restricted to C ′′′

2 ≡ ẑ.
(c) Spin-restricted quasiparticle density of states for the PBE-defined ground
state geometries of the Pt− and Au0 centers. The real-space projection of
the KS wavefunctions are also shown.

the first-principles exploration of the symmetry-imposed transition paths (i.e.
lack of energy barrier in the transition C2v ↔ D2 and C2v ↔ CV

2v).

In Figure 4.23, we have depicted our model for the reorientation processes
of a C2v center by placing the six minima of the energy surface on the six
vertices of a regular octahedron, under the restriction that +/- orientations
can not be positioned in adjacent nodes. The reorientation of the center
with respect the C2-axis is therefore given by the edges of the octahedron,
whereas the transitions +/- are represented by the union of non-adjacent
nodes. Furthermore, we postulate that any line representing a reorientation
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process can be mediated by two different geometries or distortions. In the
case of the C

x,+/−
2 ↔ C

z,+/−
2 reorientation (depicted as a regular square

in Figure 4.23), any of the four depicted transitions is characterized by a
CVy+

2v or a CVy−
2v distortion. If on the other hand, we linearly interpolate

between the C
x,+/−
2 and the C

Vx,+/−
2v distortions, the system is forced to pass

through a highly symmetric configuration, obtaining an energy barrier equal
0.14 eV. The transition between +/- orientations is depicted in Figure 4.23
for the C z,+

2 ↔ C z,−
2 distortions. The saddle point of the MEP corresponds

to either of the D2 geometries with the restriction C ′′′
2 ≡ ẑ, imposing that

the largest interatomic distance dJT3 for the D2 distortion is aligned with the
dJT1 and dJT2 distances characterizing the C2v geometry. Two more trans-

itions paths might be considered, by forcing the transitions C
z,+/−
2 → D2, for

C ′′′
2 ≡ x̂ and C ′′′

2 ≡ ŷ. Even if both transitions are characterized by non-zero
energy barriers, they are inequivalent, due to the difference in energy cost to
align the dJT1 (distortion with C ′′′

2 ≡ x̂) and dJT2 (distortion with C ′′′
2 ≡ ŷ)

distances with the dJT1 and dJT2 for the C2v configuration.
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Figure 4.23: Theoretical model for the two reorientation processes of the
Pt− center in silicon, characterized by C2v Jahn-Teller distortions. Trans-
itions between different C2-symmetry axis are defined by CV

2v distortions,
whereas the smaller +/- reorientations are given by D2 distortions. Activ-
ation energies are determined at the PBE level of approximation as total
energy differences, e.g. ∆+/− = E{gD2} − E{gC2v}.
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We have hence proven once more that a blind ab initio characterization
of the defect PES is not capable of describing the most basic features of the
center. From simple symmetry considerations we have deduced the reorienta-
tion processes of the Pt− center, building for the first time a consistent model
for its energy surface. In Table 4.11, energy barriers for both reorientation
mechanisms between equivalent C2v distortions, estimated as total energy
differences E{gCV

2v} − E{gC2v} and E{gD2} − E{gC2v}, are collected. Activ-
ation energies are however still overestimated with respect to experimental
evidence, questioning again the actual accuracy of the employed mean-field
calculations. In the case of neutral gold, our ab initio calculations predict a
D2 distortion as the ground state geometry of the energy surface, with C2v

distortions as saddle points, defining an energy barrier of 9 meV. At this
level of approximation, one has to therefore question whether the absence
of EPR spectrum for gold in silicon is due to the estimated symmetry of
the static Jahn-Teller minima of the PBE-energy surface (in contrast with
previous discussions), or whether the center is characterized by a dynamical
Jahn-Teller effect (in the form of D2 or even C2v distortions).

Table 4.11: Total energy differences between the reference C2v geometry and
the CV

2v and D2 distortions. All values are given in meV.

Pd− Pt− Au0

CV
2v 21 21 –
D2 7 4 -9

We conclude by restating the complexity of the Jahn-Teller effect in the
studied centers for an electronic occupation equal three, for which three dif-
ferent symmetry-breaking mechanisms are described: D2d → CV

2v (mono-
vacancy), D2d → C2v (negatively charged platinum) and D2d → D2 (neutral
gold). In the case of Pt−, we have further investigated the shape of the energy
surface, proposing a symmetry-resolved path for the observed small reorient-
ations at low temperatures. The height of the computed barrier makes us
however question once more the quality or accuracy of the mean-field cal-
culations when describing Jahn-Teller effects in silicon. In the same line of
thought, we also report a D2 symmetry for neutral gold in silicon, which is
barely 9 meV lower in energy than the previously proposed C2v geometry.
From a general perspective, we can question whether our symmetry guided ab
initio characterization is capable of predicting the static or dynamic nature
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of Jahn-Teller effects in silicon whenever the experimental evidence is incon-
clusive.

4.4 Computational Details

General computational details on the here performed ab initio calculations
were already introduced in section 3.3. In the particular case of the silicon
divacancy, we employ a large 512-atoms cell to investigate basic structural
properties and a 680 eV energy cutoff. The inclusion of many-body cor-
rections forces us to reduce the size of the cell, artificially quenching the
Jahn-Teller distortions as collected in Table 4.12.

Table 4.12: Relevant interatomic distances dij for the divacancy at singly
charge states embedded on a 216- and 512-atoms cells. All values are given
in Å.

q = +1 q = −1
dij djk = dik dij djk = dik

216-atoms cell 3.21 3.66 3.32 3.49
512-atoms cell 3.07 3.64 3.28 3.43

Transition metals are embedded on a 216-atoms cell, and an energy cutoff
of 1088 eV is employed to describe the D2d geometries, whereas a 1578 eV
cutoff was chosen to characterize the C2v and D2 distortions. All presented
quasiparticles energies are obtained for an energy cutoff equal 1088 eV.
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Chapter 5

Electronic activity of point
defects in semiconductors:
past, present and future

Thus electrons are raised by the

light into conduction band,

wander around until they find an

F-center, and then stick there

Pohl (1937)

In the field of point defects in semiconductors, and especially defects in
silicon, most of the theoretical studies are focused on determining the elec-
tronic activity of these trapping impurities due to its immediate technological
interest. In terms of the long-established SRH model, one might then think
that defects in semiconductors are fully characterized if the position of the
induced deep levels (EV+ ET or EC+ ET) and their respective non-radiative
capture cross sections (σn) are determined. For what concerns silicon, a lot of
effort has been dedicated to computing the charge transition levels (CTLs) of
diluted centers by developing different computational approaches, evaluating
their accuracy by comparison with the DLTS activation energies. Through-
out this thesis, we have however extensively discussed the limitations of these
studies, often offering a poor description of the basic features of the center
and overlooking complementary information given by EPR spectroscopy and
OA measurements.

In the present Chapter, we revisit established models to evaluate the elec-
tronic activity of defects in semiconductors, basing our analysis on our under-
standing of selected centers in silicon (Chapters 3, 4). Since only preliminary
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results are given, this Chapter might be regarded as the natural perspectives
of the present work. In section 5.1, we briefly compare the existent computa-
tional methods to estimate deep levels in semiconductors, before discussing
the accuracy of the DFT+GW approach when the resulting CTLs are com-
pared to DLTS energies. Furthermore, the barely discussed lack-of-energy-
conservation issue of the method is reconsidered by providing numerical ex-
amples for selected centers in silicon. In section 5.2, we provide a historical
overview of the so-called multi-phonon theories to evaluate non-radiative
capture cross sections, giving special attention to the latest ab initio-based
models.

5.1 Accuracy of computed deep levels by state-

of-the-art calculations

Intrinsic limitations of the commonly employed mean-field approaches to
characterize defects in semiconductors (i.e. self-interaction problem and the
DFT band gap problem) are responsible for the poor description of deep levels
in the band gap (Chapter 2). As introduced in Chapter 2, three methods
have been proposed by the community to circumvent such issues, namely: the
Marker method, the use of hybrid functionals and the DFT+GW combined
method. With the existence of three competitive methods, it is surprising
that to this date (and to the best of our knowledge) no comparative study or
benchmark has been systematically performed on selected defects in semicon-
ductors. In the case of silicon, the election of the Marker method to estimate
most of the reported CTLs (with the exception [70, 71]) has therefore no
formal or comparative justification (other than perhaps, limitations in the
computational resources). In the present thesis, because we aim for a full
ab initio parameter-free approach, we have employed the DFT+GW method.

Even if such method does not require any empirical shift (equation 2.81,
in the context of the Marker Method), nor the choice of a certain fraction
or parameter α (needed to define the hybrid functionals, equation 2.37), we
still have to face the election of the ab initio code, the exchange-correlation
functional, the pseudopotential, the electrostatic correction for charged su-
percells, etc. One is then confronted with the general reproducibility issues
in first-principles calculations [146] and the estimation of absolute errors in
such studies. In the case of CTLs, here computed as specified in the Compu-
tational Details section 3.3, deep levels for Ti and E-center were estimated
to be between 0.1-0.2 eV off with respect to the corresponding DLTS activ-
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ation energies. We can therefore question whether such absolute error is the
expected accuracy of the method or whether there is an intrinsic limitation
that needs to be corrected/taken into account.

Among the published works exploiting the DFT+GW combined method,
in [147, 148] a lack of energy conservation in the electronic-capture-release closed
cycle was reported and corrected. Before giving numerical examples of such
issue and analyzing the proposed correction schemes, let us simply consider
the electronic-capture-release cycle for the well known case of the silicon E-
center and its two deep levels in the gap. As depicted in Figure 5.1, the
energy exchanged through the electron release/capture process might be es-
timated as the energy difference between the minima of the parabolas, i.e.
difference in energy at the two ground state geometries at different charge
states. As it is represented, each charge transition might then be determined
through two different paths (P1 and P2 in Figure 5.1), starting at different
atomic distortions and evaluating the relaxation energy, ∆E, at two differ-
ent charge states. Furthermore, for each transition path, one can determine
the electronic excitation as an electron capture (in the form of an electronic
affinity, EA) or an electron release (determined by an ionization potential,
IP). One single charge transition level may then be computed through four
different equivalent paths, given a net energy difference equal zero (close cycle
represented in black in Figure 5.1).

In practice, the lack of energy conservation or numerical deviations among
different equivalent paths were reported in the works of [147, 148]. In [147],
discrepancies from the equality IP(0) = EA(+) at fixed atomic configuration
were consistently studied at different levels of theory (HF, LDA, G0W0, etc),
allowing them to conclude that the GW approximation is slightly concave
and proposing to estimate the vertical transition or electronic excitation as
the average of the estimated EA and IP. The later work of [148] reported
differences of 0.1-0.2 eV between QP energies, estimating deep levels as the
average between both CTLs obtained for paths P1 and P2 (taking either the
IP or EA for the vertical transition).

In the present work, we also report a lack of energy conservation for
the studied defects in silicon, as illustrated for the E-center (phosphorous-
vacancy complex) in Table 5.1. For both donor (+/0) and acceptor (-/0)
levels, we observe the inequality IP(q) 6= EA(q − 1) at fixed atomic distor-
tions. Moreover, the QP eigenvalues reveal the slight concavity issue of the
G0W0 method reported in [147], since IPs are systematically smaller than
EAs. Furthermore, if one tries to compute the total energy exchanged in
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Figure 5.1: Coordination diagrams illustrating the energy exchange in charge
transitions +1 ↔ 0 and 0 ↔ −1 for the silicon E-center. Two different
paths to estimate the CTLs (P1 and P2) are differentiated in blue and red
respectively. The vertical transition for each path can be computed as an
electron capture (EA) or an electron release (IP) at different charged states
(e.g. IP(+), EA(0)). In black, the close energy cycle with a net energy
exchange equal zero.

close cycles by describing both vertical transitions in Paths 1 and 2 exclus-
ively with IPs or EAs, one finds that IP(q, gq) + ∆Eq−1(gq → gq−1) 6= IP(q,
gq−1) - ∆Eq(gq−1 → gq), and equivalently for the EAs. In other words, be-
sides the lack of precision when determining excitation energies or changes
in the particle number, Paths 1 and 2 are numerically non equivalent, which
might be attributed to the difference of the underlying KS wavefunctions
employed to estimate G0 and W0 at two different atomic geometries.

Table 5.1: Vertical transitions energies (IPs or EAs) from IPTVB and re-
laxation energies (∆E) employed to compute the CTLs induced by the PV
center through the two different paths depicted in diagram 5.1.

CTL Path 1 Path 2

+/0
EA+{gB} IP0{gB} ∆E0

B→P EA+{gP} IP0{gP} ∆E+
P→B

0.60 0.47 0.12 0.40 0.22 0.07

0/− EA0{gP} IP−{gP} ∆E−
P→R EA0{gR} IP−{gR} ∆E0

R→P

0.80 0.70 0.19 0.44 0.34 0.13
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Figure 5.2: Absolute error of the computed single donor and acceptor levels
for selected centers in silicon: interstitial titanium (TiI), interstitial vanadium
(VI), the phosphorous-vacancy complex (PV), the divacancy (VV), intersti-
tial carbon (CI) and the oxygen-vacancy complex (VO). The energy difference
|ECTL − EDLTS| corresponds to the deviation of the estimated CTLs within
the DFT+GW approach from the corresponding DLTS activation energies.
Experimental values for PV, CI and VO were taken from [13, 101, 114]. In
the case of centers for which multiple DLTS activation energies have been
reported (Tii [26, 27, 28, 29, 30] , VI [98, 99, 100], VV [13]), the reference
level was assigned to the corresponding mean value. Vertical transitions have
been determined at neutral charge state, i.e. IP0 for donor levels, EA0 for ac-
ceptor levels, whereas relaxation energies have been estimated as DFT-total
energy differences at constant singly charged states, ∆E+, ∆E−. All values
are in eV.

One can therefore question the best strategy to estimate CTLs within
the DFT+GW approach, minimizing the intrinsic error of the method. Try-
ing to keep the formalism as general as possible, we have computed vertical
excitations exclusively from the neutral charge state and atomic distortion
g0 for selected defects in silicon, avoiding the inclusion of an arbitrary elec-
trostatic correction (which might play a significant role in the inequality
IP(q) 6= EA(q − 1)). In Figure 5.2, we have plotted the energy difference
|ECTL − EDLTS| for single donor and acceptor levels, which might be inter-
preted as the absolute error of the estimated CTLs. Besides the challenging
studied cases of the TiI, VI, PV, VV centers, we have computed the CTLs
levels for interstitial carbon (CI) and the A-center (VO), since our our PBE-
structural optimization is consistent with the fully understood defect-induced
states and atomic distortions from EPR measurements [10, 149]. Even if an
extension of the present investigation to a larger catalog of defects is recom-
mended, one can already foresee that single donor levels are more accurately
estimated than single acceptor levels, or more generally, computed ionization
potentials seem to be closer to the true QP energies than electronic affinit-
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ies. If the better estimation of IPs over EAs in HF-related theories was to
be consistently proved, an even more accurate framework to estimate CTLs
could be established.

To conclude, as in any DFT-based study, one has to be careful with the
intrinsic error of computed values, which might be mitigated with the elec-
tion of the pseudopotential, the exchange-correlation functional, etc., or in
some cases, might be consequence of an underlying limitation of the theory.
In the particular case of CTLs, we have shown the lack of energy conservation
in electron-capture-release cycles. Acceptor levels estimated from electronic
affinities seem to be systematically computed with a 0.1-0.2 eV error bar,
which corresponds to a ∼10% of the silicon band gap. Prior to the per-
formance of more numerical studies, one might be tempted to propose to
exclusively estimate CTLs using IPs, after establishing a general scheme for
the electrostatic correction of QP energies.

5.2 Non-radiative transitions under the scope

Evidently, introducing deep levels in the band gap is the fundamental condi-
tion for a defect to be electronically active. Among the catalogue of centers,
there is however experimental evidence supporting that not all centers are
equally harmful or equally efficient when degrading the performance of elec-
tronic devices. One is therefore interested in the probability of defects to cap-
ture/release free carriers non-radiatively or more specifically, by the capture
cross sections (σn) of the defect-induced levels. From a historical perspect-
ive, Huang and Rhys reported their seminal work evaluating radiative and
non-radiative cross sections in the context of point defects in alkali-halide
materials in 1950 [8]. The main ideas of such early investigations were later
taken by D. V. Lang [23], who published his widely known non-radiative cap-
ture and recombination by multiphonon emission theory in 1977, becoming
the referent theoretical framework for thermal transitions within trapping
centers. Due to the unquestionable influence of both theories in nowadays
ab initio modelling, we dedicate section 5.2.1 to review the main ideas be-
hind both works, before discussing recent first-principles estimations of the
non-radiative σn in section 5.2.2.

5.2.1 Early theoretical frameworks

Due to the non-radiative character of the thermal transitions in recombin-
ation centers, one can only be certain of their occurrence through indirect
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evidence. It is the case, for example, of the absorption-emission photon cycle
within a given center, for which the number of absorbed photons is differ-
ent from the number of emitted quanta. This phenomena, often refereed to
as quenched luminescence, is widely explained by the existence of compet-
ing processes, capable of de-exciting the electron non-radiatively, dissipating
the excitation energy through lattice vibrations. Throughout this section,
it is therefore important to keep in mind that radiative and non-radiative
transitions were historically studied together, employing similar theoretical
frameworks to model the role of electron-photon coupling and the electron-
lattice coupling in defect-localized processes.

The first conclusive evidence of trapped electrons being coupled with the
crystal lattice was provided by Pohl in the form of considerable widths of
the absorption curves of F-centers in alkali-halides [6]. In such early inter-
pretation, as a consequence of the F-center electron-crystal coupling, lattice
phonons were said to be created/annihilated when a photon-induced electron
transition occurred. For a given electronic transition, the broadening in the
absorption frequencies spectra was then identified with a larger or smaller
number of exchanged lattice quanta (see, for example, the dotted lines with
respect the bold line in Figure 5.3, representing photon-absorbed transitions).
In such context, the first quantitative theory of the absorption curves was
reported by K. Huang and A. Rhys (1950) in their seminal work, Theory
of light absorption and non-radiative transitions in F-centers [8], where the
radiative transition probability was estimated by explicitly considering both
the electronic and ionic degrees of freedom. Further understanding of the de-
excitation mechanisms was intended when they computed the non-radiative
transition probability, setting a reference framework to still nowadays de-
termine the σc for deep levels in semiconductors.

As in any quantum-mechanical system with initial and final states |i〉 and
|f〉, one can think of estimating the transition probability i→ f in terms of
the Fermi-Golden rule,

Pi→f ∝ |Mij|2δ(E − Eif ), (5.1)

where Mif denotes the matrix elements describing the nature of the trans-
ition and Eif stands for the total energy exchanged in the process. Due
to the complexity to compute Mij for both electronic and ionic degrees of
freedom, in practice, or as exemplified by Huang and Rhys, one can make
a first simplification by considering the Franck-Condon approximation. The
system initial and final states can then be written as a product state, e.g.
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Figure 5.3: (Left) Coordination diagram constituted by two parabolas rep-
resenting two electronic states i and f , for which the vibronic states, n, n′

are also depicted. Photon-induced absorption transitions between both para-
bolas are represented with black arrows. (Right) Schematic absorption curve
corresponding to the radiative transitions represented in the coordination
diagram. The Zero-Phonon-Line is explicitly marked for both diagrams.

|i〉 → |φi〉 |χi〉, where |φi〉 and |χi〉 are the electronic and ionic wavefunc-
tions respectively. In the case of a radiative transition, the Franck-Condon
principle might be understood by the fact that a photon-mediated electronic
transition is vertical, i.e. it does not involve any changes in the surrounding
lattice, and hence,

Mif ∝ 〈i| ~d |f〉 → 〈φi| ~d |φf〉 〈χi|χf〉 , (5.2)

where 〈φi| ~d |φf〉 denotes the dipole matrix element between two electronic
states, responsible for the observed absorption band; and 〈χi|χf〉 is the vi-
bronic term. Because the theory intended to model the annihilation/creation
of phonons in radiative transitions, the initial and final ionic wavefunctions
were specified by two quantum numbers, the electronic state (i, f) and the
vibrational state (n, n′); so for simplicity from now on we will use the follow-
ing notation, |n〉 ≡ |χi,n〉 and |n′〉 ≡ |χf,n′〉 (Figure 5.3). The vibronic term,
later called the line shape factor or vibrational factor, F (ν), was written as a
function of the photon frequency, ν, by summing over all possible quantum
states of the final configuration, n′,

F (ν) =
∑

n′

| 〈n|n′〉 |2δ(hν − (Ef,n′ − Ei,n)), (5.3)

giving the transition probability Pi→f (ν) = | 〈φi| ~d |φf〉 |2F (ν). The success
of the Huang-Rhys early work was precisely to develop an expression for
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the vibronic term within the continuum approximation for the lattice, de-
scribing the ionic crystal as a dielectric medium. In such model, all normal
coordinates, qj, were be characterized by the same longitudinal frequency, ωl,
and the electronic transitions within the F-center were described by different
magnitude of perturbations in the coordinates.

Within the same theoretical framework, Huang and Rhys wrote an ana-
logous expression of Mij (equation 5.2) for the non-radiative transition, stat-
ing that when there is no perturbation term, the transition probabilities can
still be obtained by perturbation methods. In simpler words, the matrix ele-
ments for non-radiative transitions were identified with the non-adiabatic
terms, neglected in the Born-Oppenheimer approximation or the nuclei kin-
etic related-terms, KN . In the following, we reproduce the derivation repor-
ted in [8] to determine Pi→f , starting from the definition of the electronic
and ionic equations in the Born-Oppenheimer approximation,

[

K̂e + V̂e + V̂en − Eα

]

φα = 0
[

K̂n + V̂n + Eα − Eαn

]

χα,n = 0
(5.4)

where Eα is the potential energy surface obtained at frozen ionic positions
and electronic state α and Enα is the total energy of the electronic and ionic
system. The perturbative term is then,

(Ĥ − Eα,n)φαχα,n = Knφαχα,n − φαKnχα,n (5.5)

and the corresponding matrix elements, 〈fn′| Ĥ−Ei,n |in〉, can be simply de-
rived by writing Kn in terms of the normal coordinates, Kn = −

∑

j ∂
2/2∂q2j .

If one neglects second order derivative terms,

Pi→f (p) ∝
∑

n′

∣

∣

∣

∣

∣

∑

j

〈f | ∂

∂qj
|i〉 〈n′| ∂

∂qj
|n〉
∣

∣

∣

∣

∣

2

δ (p~ωl − (Ef,n′ − Ei,n)) (5.6)

In contrast with the radiative transition, the exchange in energy is entirely
dissipated through p =

∑

j ∆nj lattice-phonons, which in the approximation
of the continuum lattice were reduced to one single longitudinal frequency,
ωl. Similarly to the tedious derivation for the radiative line shape factor,
Huang and Rhys obtained an expression for the vibronic term, which will
not be copied here, but can be found in [8].

The main contributions of the pioneering work of Huang and Rhys are
therefore to provide a full quantum-mechanical formalism to describe trans-
itions involving both the electrons and the lattice and to derive the first
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analytical expressions for the finite-temperature radiative and non-radiative
probabilities. The theory was however quickly criticized for being limited
to a single frequency model, being generalized to many-frequency models
by [150, 151] shortly after the publication of the first paper. An incommensur-
able amount of works have since then been published with the objective of es-
timating the radiative and/or non-radiative probabilities (e.g [152, 23, 153]),
most of them invoking the seminal work of Huang and Rhys. Since giving
a detailed review of such theories is beyond the scope of the present thesis,
we simply aim to contextualize certain recurrent ideas that are often linked
with the Huang-Rhys model or to the non-radiative transition probability;
namely, the multi-phonon emission concept and the Huang-Rhys factor.

Even if Huang and Rhys commented on the dissipation or creation of
several lattice quanta and they formulated that the energy conservation in
non-radiative transitions was restricted to p~ωl, they did not discuss any
further the phenomenology of the studied transitions. It was, to the best of
our knowledge, M. Lax the first author to use the term multi-phonon pro-
cess [154], after contextualizing the theoretical formalism to an electron being
trapped by a defect level located in the middle of the semiconductor band
gap. More concretely, referring to the electron-capture process, he wrote:

“that the electron not only must come to the vicinity of the center, it must
on arrival perform the unlikely task of disposing of perhaps 0.5 eV (and it
may take ten phonons to carry away this energy)”

This is the reason that (even nowadays) the electron-capture by an impurity
is said to be accompanied or mediated by simultaneous emission of a number
of phonons (i.e. the so-called non-radiative transitions through multi-phonon
emission theories).

The motivation of M. Lax to understand the multi-phonon processes or
the lattice-relaxation process can be tracked back to his early work [150],
where he worked on the generalization of the Huang-Rhys model to a many-
frequency model and he represented certain definitions or parameters of the
model in one-dimensional coordination diagrams. Thanks to such simple graph-
ical representations, changes in the lattice coordinates or normal modes were
simply associated to lattice-relaxation energies. With this interpretation of
radiative and non-radiative transitions, M. Lax naturally defined an S-factor
(similar to the one defined in Huang-Rhys work), explicitly relating dissip-
ation energies with exchanged lattice-quanta for a given transition. The
one-dimensional diagrams and the S-factor were later widely reproduced,
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with the later eventually becoming the famous Huang-Rhys factor.

One-dimensional coordination diagrams, like the ones depicted in Fig-
ure 5.4 for radiative and non-radiative transitions are an extreme simplifica-
tion of the Huang-Rhys original work, especially in the considered case of the
two electronic surfaces having the same curvature, ω. They are however of-
ten employed to understand lattice-related process, like the measured Stokes
shift or difference between the photon absorbed and emitted frequencies by
a given center, which is associated to the change of the optimized atomic
positions at different electronic states. Assuming that such modification in
the lattice positions can be described by a change in the normal mode, Q0,
the Huang-Rhys factor, is symply defined as (e.g. [7]),

~ωS =
1

2
ω2Q2

0 (5.7)

As represented in Figure 5.4, within such simple model, the Stokes shift can
be trivially related to the curvature of the electronic energy surfaces and the
above-defined Huang-Rhys factor.

In the case of non-radiative transitions, the electron-lattice process is
often depicted as two intersecting parabolas, as represented in Figure 5.4.
Within such model, the non-radiative transitions are simply approximated
as thermally-activated processes, defined by an energy barrier, EB, which
can be written in terms of the S-factor, the curvature ω and the energy shift
between both parabolas, E0 (Figure 5.4). The transition probability can thus
be simply estimated as,

Pi→f ∝ exp(−EB/kT ) (5.8)

A similar expression in the context of charge-electronic-transfer in chemical
reactions was postulated by the Marcus theory [155] and by K. Huang [8],
when he took the high temperature limit of his original non-radiative trans-
ition probability. In the limit of high temperatures or the classical limit, there
is therefore a general consensus of the characteristic rate of multi-phonon pro-
cesses following a simple Arrenhius law.

To summarize, the term non-radiative transitions encapsulates the large
variety of possible non-visible processes in solids or molecules, responsible for
degrading phenomena in electronic devices, such as quenched luminescence
or free-carrier recombination through trap states. The pioneering work of
Huang and Rhys constitutes the first attempt to model the non-radiative
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0, is also de-
picted and related to the Stokes shift (hνabs − hνem) for radiative transitions
and the energy barrier (EB) for non-radiative transitions.

transition probability, for the particular case of F-centers in alkali-halides.
Since then, multiple theories have been proposed, trying to generalize the
Huang-Rhys formalism to multiple-frequency models, but without defining
a universal theoretical framework. Only at the high-temperature limit, a
characteristic expression in the form of an Arrenhius law is often widely
adopted.

Multi-phonon theories linked to DLTS spectroscopy

Due to its unquestionable importance in the field of thermal recombination
in semiconductors, we give special attention to the work of Henry and Lang,
titled Non-radiative capture and recombination by multiphonon emission in
GaAs and GaP [23], often considered as the reference multi-phonon theory. In
their seminal work, they presented a formalism to determine the probability
of electron-capture by a trap level from the bulk bands non-radiatively, which
is still employed nowadays to correct DLTS activation energies. Within their
simple formalism, the capture of an electron from conduction (C) to a bound
state (T) is explained through the lattice vibrations causing the free and
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bound state to cross. The transition rate for electron capture, C → T, was
written as,

w =
2π

~
avenc

∑

nt

| 〈tnt|H |cnc〉 |2δ(εc − εt), (5.9)

where the global wavefunctions |T〉 and |C〉 are written in terms of the elec-
tronic states, |t〉 and |c〉, and the lattice states, |nt〉 and |nc〉. Restricting
the calculation to one single vibrational mode, with frequency ω, and a net
displacement given by the occupations nt and nc, the energy exchanged in
the process, εc − εt, is defined as nc~ω − nt~ω − E0 (being E0 the energy
difference between the minima of the two parabolas). The above equation is
then approximated by considering a rather simple electron-lattice coupling
term,

w =
2π

~
| 〈t|∆V |c〉 |2

(

avenc

∑

nt

| 〈nt|nc〉 |2δ(εc − εt)

)

. (5.10)

The term in parenthesis was said to be identical to the line shape factor,
F (ν), defined for radiative transitions with a zero-photon-frequency, ν = 0,
and it was then substituted by the Huang-Rhys derived expression. Taking
the high temperature limit they wrote,

F (0) = (4π~ωkTS)−1/2 exp (−EB/kT ) , (5.11)

with,
EB = (E0 − ~ωS)2/4~ωS (5.12)

The capture cross section was then simply written as, σc = AF (0), where
the electronic matrix element, A ∝ | 〈t|∆V |c〉 |2, was approximated as the
one between a free and bound states subject to a spherical square potential
of depth V0. Their final, widely reproduced expression,

σc = σ∞c e
−E∞c/kT , (5.13)

was then proposed, with σ∞c = (ǫ1/S~ω)1/2(π2/2e)(~2/2m∗kTR) and E∞c =
EB−kTR, where ǫ1 is a parameter of the model (energy position of the bound
state with respect the continuum) and TR is equal T = 300 K.

The theoretical work presented by Henry and Lang does therefore not
present any further advance in the estimation of the non-radiative capture
cross section, since their original contribution is merely to compute 〈t|∆V |c〉
within a rather simple model. Furthermore, one could argue against the ap-
proximation introduced between equations 5.9 and 5.10, where the electron-
lattice coupling matrix element is only estimated for the electronic states,
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taking the vibronic term as a simple overlap between the ionic wavefunc-
tions, contradicting the Huang and Rhys theory for non-radiative transitions
(equation 5.6). Even so, in the limit of high temperatures, they find the
general expression for thermal-activated processes, characterized by the ex-
ponential factor, exp (−EB/kT ), defined by an energy barrier, EB, retriev-
ing the general expression discussed above. The merit of their early work is
therefore justified by their phenomenological perspective, explicitly match-
ing measured captures cross section curves to the Arrenhius plot defined by
equation 5.13. It is thus important to keep in mind that the proposed ex-
pression for σ∞ is merely an approximation of the general framework and
deviations from the exponential law have to be treated with a higher level of
theory.

To conclude, in the context of carrier recombination, non-radiative capture-
cross sections are simply written in the form of Arrenhius laws, exclusively
considering the classical or high-temperature limit. In particular, the Henry-
Lang expression for the capture cross section, σ∞ (equation 5.13) is still
employed nowadays to correct DLTS activation energies or to model the
temperature dependence of the measured σna (section 1.3.3). In the absence
of a general framework describing all temperature regimes, one could then
think of understanding the low temperature limit through the accurate de-
scription of the defect-induced phonon spectra within ab initio calculations,
explicitly solving the matrix elements described in equation 5.6.

5.2.2 Ab initio modelling of non-radiative transitions

A full quantum-mechanical treatment of the electron-lattice system is of
course beyond the possibilities of present ab initio methods, or more precisely,
computational power. Even within the Born-Oppenheimer approximation or
at frozen nuclei positions, the estimation of charged and neutral electronic
excitations is still limited by computational resources. Ab initio calculations
can therefore not address the direct estimation of transition probabilities, but
they can estimate parameters of the early proposed theories (section 5.2.1),
which previously relied on empirical values or rather simple theoretical mod-
els. It is the case of the recent estimation of Huang-Rhys factors for molecules
(e.g. [156]) and defects (e.g. [157]) as part of the investigation of the light-
absorption spectra.

Recent works have however tried to go one step further, reformulating
the non-radiative transition rates, explicitely computing the electron-phonon
coupling matrix element between electronic states [158, 159] (matrix element
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denoted by A in Lang theory). In [158], the analytical expression for the
electron transition rate between states s and l is adapted from the work of
Freed and Jortner (1970) for large molecules [152],

Wsl =
∑

k

|Ck
sl|2 F(β, ωk) (5.14)

where Ck
sl is the so-called electron-phonon coupling constant for the phonon

mode k, with frequency ωk. The cumberstone function F , corresponding to
the vibronic term, is explictely given in [158]. Their work does therefore con-
sist on developing a method to numerically estimate Ck

sl, or more precisely,
〈φs| ∂H/∂R |φl〉, and to diagonalize the dynamic matrix for selected displace-
ments for the defective cell to determine the phonon DOS and corresponding
normal modes.

In [159], the capture rate is written in terms of the matrix element,
∆He−ph

im;fn, including both the electronic, |φi,f〉, and ionic, |χim,fn〉, degrees
of freedom,

∆He−ph
im;fn =

∑

k

〈φi| ∂H/∂Qk |φf〉 〈χim|Qk −Q0;k |χfn〉 (5.15)

where the sum runs over all phonon modes, Qk. To numerically afford
the estimation of the defined matrix elements, the many-frequency system
is reduced to only one special phonon mode, circumventing the sum over
all modes k. The highly dimensional problem is thus reduced to a one-
dimensional model, where the configuration coordinate Q is defined as, Q2 =
∑

α,tmα(Rαt −Rf ;αt), being Rαt and Rf ;αt the atomic position of atom α at
any configuration and at the final configuration respectively. Once all de-
rived quantities for such effective mode of vibration are determined, matrix
elements in equation 5.15 are computed numerically.

To summarize, in addition to the lack of a general and unified theory for
non-radiative transitions, one needs to deal with the ab initio characteriza-
tion of vibrational-related properties of a defective cell, which is still a rather
unaffordable calculation, especially if one wants to guarantee the convergence
of the DFT total energy second derivatives. Starting from the initial choice
of an analytical expression for the matrix elements (equation 5.14 or the
Freed-Jortner probability) to the important approximations when numeric-
ally estimating the vibrational modes or electron-phonon matrix elements,
one might be tempted to criticize the transferability or reproducibility of the
calculations.

181



As a more general conclusion, one might state that non-radiative trans-
itions are ultimately conceived as either quantum or classical transitions
between two intersected parabolas representing the energy surface of two
different trap electronic occupations. In the high-temperature or classical
limit, in which, in addition, the two parabolas are often described by the
same curvature (Figure 5.4), the characteristic energy barrier is written in
terms of a lattice relaxation energy or the Huang-Rhys factor. In recent
DFT-based works [159], the quantum transition is described by estimating
the relative displacement of both parabolas in normal coordinates and their
respective curvature in an effective-vibrational-mode approximation. In such
line of analysis, one might think of constructing a simple model based on
the full theoretical pictures of the energy surfaces proposed in the present
thesis, for which changes in the trap electronic occupations are characterized
through relevant symmetry-determined modes of vibration.
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Conclusions

On voit les qualités de loin et les

défauts de près

V. Hugo

In a few lines, the main contribution of the present thesis to the long-
established field of defects in silicon are the presented full-theoretical pictures
for selected centers, unifying fundamental symmetry constraints and state-
of-the-art ab initio calculations. A deep understanding of the basic features
of the centers, and in particular the energy surface described by the trapped
electron with respect to atomic distortions, have allows us to make a solid
correspondence with experimental evidence, in opposition to previous first-
principles simulations. Ultimately, the established quantitative theoretical
frameworks were employed to link the presence of certain point-like defects
to nowadays technologically relevant phenomena (e.g. photon-enhancing ab-
sorption in solar-cells, random burst noise in image sensors, or even more gen-
erally, the electronic activity of defects embedded in semiconductor wafers).

A blind DFT-based exploration of the potential energy surface has proven
to give erroneous interpretations of the defect metastability or ground state
geometry even in the simplest case of the silicon E-center, whose ground
state properties are determined by an atomic trimer (constituted by the va-
cancy nearest silicon neighbours). In the present work, we have guided our
ab initio calculations with the previously proposed Jahn-Teller model, de-
veloped from a simple molecular-orbital theory, which effectively describes
how changes in the occupation of defect-induced levels (or charge state) trig-
ger different atomic distortions. Within our DFT-based approach, we have
established a one-to-one correspondence between the two theories, compar-
ing the symmetry of the estimated localized wavefunctions and structural
distortions. The Jahn-Teller model has been further confirmed by accurately
determining the optical absorption bands with the inclusion of many-body ef-
fects. The hypothesized Mexican hat shape of the three-fold minima energy
surface has also been supported by our extensive exploration of the PBE-
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PES, matching the EPR-measured reorientation barriers between equivalent
distortions with our calculations. The valuable insight into the defect basic
features provided by EPR-spectroscopy (anticipated by G. D. Watkins), has
been further enhanced by modelling the defect-axis reorientation process at
high temperatures, matching the measured activation energies and confirm-
ing its role in the vacancy-mediated dopant diffusion mechanism.

The numerical investigation of the Mexican hat energy surface for the
trimer has been generalized to different symmetry-breaking mechanisms in
silicon, namely, the D3d → C1h (E-center), the D2d → C2h (the divacancy)
and the Td → D2d (transition metals exhibiting vacancy-like distortions).
Within such general framework, Jahn-Teller distortions lowering the sym-
metry of the precursor state with respect to different orientations of the
symmetry axis (σh-reflection plane or C2-rotation axis for the studied cases)
might therefore co-exist, characterizing the finite-temperature reorientation
between equivalent minima of the energy surface. Furthermore, in the con-
sidered cases of three-fold degenerate minima energy surfaces, we have shown
that the reorientation process between the general axis i → j is defined by
a saddle point corresponding to an opposite sense of the JT distortion with
respect to the third axis k. A symmetry-restricted path does however force
the system to pass through the highly symmetric precursor state. In the
case of negative platinum, the complexity of the six-fold minima surface is
explained by two consecutive Jahn-Teller distortions, Td → D2d → C2v, re-
quired to lift completely the degeneracy of the precursor t2-states. In such
case, we have shown that minimization algorithms like the NEB method are
incapable of finding accurate MEP between equivalent C2v distortions, re-
quiring symmetry considerations (or the description of the D2-geometry of
the same symmetry order) to describe the observed reorientation of Pt− at
cryogenic temperatures.

The PBE quantification of simple symmetry-based toy-models has gen-
erally proved to be in good agreement with EPR experimental evidence, es-
pecially for low trap occupations (e.g. neutral E-center, positive divacancy,
the mono-vacancy at positive and neutral charge states). In the limit of
large electronic localized densities (e.g. negative divacancy) we have how-
ever shown that DFT calculations are compromised by the approximations
made in the exchange-correlation functional, resulting in a poor description
of the occupied orbitals and the magnitude of the distortions. With such
reliability of the PBE-accuracy in mind, we have questioned whether the
non-measurable EPR signal for gold in silicon is effectively due to a C2v-
dynamical Jahn-Teller effect or whether it is a consequence of the actual
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symmetry of the ground state geometry, here obtained as a D2-distortion.
For the employed approximation of the Coulomb electronic interaction, the
existing controversy for certain centers in the ab initio community can not
be dissipated, but we postulate the need of a higher level of theory. The
here presented calculations are however fully consistent with fundamental
symmetry restrictions.

In the limit of small Jahn-Teller distortions for which quantum effects
might become relevant and the PBE accuracy might be questionable, we
have considered the case of interstitial titanium in silicon. Even if such cen-
ter has received a lot of recent attention due to its possible role as photon-
absorption enhancing impurity, none of the previous theoretical studies have
investigated the instability of the partially occupied 3d orbitals in the silicon
crystal. Our proposed model is based on previous symmetry considerations
of early transition metals subject to tetra- and octahedral crystal fields. For
the precursor charge state, Ti+, for which the triplet t↑↑↑2 is stable against
Jahn-Teller distortions, we have estimated the critical doping concentration
to induce an intermediate band (in contrast with the localized defect orbital)
and the relative position of the defect-states with respect to the bulk bands
in the diluted regime.

Understanding Jahn-Teller effects for defects in silicon (i.e. the symmetry
and magnitude of the distortions and the corresponding form and degener-
acy of the defect-orbitals) allowed us to consequently compute the charge
transition levels (CTLs) within the DFT+GW formalism, estimating the en-
ergy exchange at different atomic distortions at the PBE level of theory and
the position of the partially occupied defect-levels with a many-body ap-
proach. Even if the DFT band gap problem is formally circumvented, we
have provided numerical evidence supporting the few investigations claiming
the lack of energy conservation in the electron capture-release cycle. Within
such intrinsic error-bar, we have confirmed the electronic activity of selected
defects in silicon within a full ab initio parameter-free approach, by compar-
ing CTLs with DLTS activation energies.

A further characterization of the electronic activity of defects in semicon-
ductors has finally been proposed with the estimation of the lattice-mediated
electron-capture rate. By revisiting early established theoretical frameworks
we have discussed the lack of a unified general theory to compute non-
radiative transition probabilities, except for the high temperature limit, for
which the capture rate is commonly defined as the one for a temperature-
activated mechanism or a simple Arrhenius law. It is the case of the multi-
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phonon emission theory proposed by Lang, which is still used nowadays to
correct DLTS activation energies. On the ab initio front, we have commen-
ted on the rather big approximations required to estimate vibrational-related
properties of localized atomic modes in the de-localized solid degrees of free-
dom.

To conclude, one should not undervalue the complexity of theoretically
characterizing point defects in silicon, especially since atomistic modelling
might be regarded as the key-asset in mitigation strategies for degraded Si-
based electronic devices. From fundamental structural properties to the eval-
uation of electronic capture cross sections, sophisticated ab initio calculations
should be guided by general symmetry-based models in order to establish a
grounded comparison with experiments, allowing to determine the quality
of the numerical approach. We hence propose to extrapolate the presen-
ted general theoretical frameworks to the study of any kind of defect in any
given semiconductor and to determine the regime of accuracy of state-of-the-
art calculations when computing certain defect properties (i.e. magnitude
of Jahn-Teller distortions, variation of optical bands with the Fermi energy,
etc.). Moreover, we aim to extend our full pictures of selected centers to ad-
dress the static versus dynamical character of the Jahn-Teller effect in silicon
and to consistently evaluate the electronic-capture non-radiative transition
probability by accurately determining the symmetry of the promoting vibra-
tional mode.
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• École d’été GDR MODMAT - Istres (Jul 2019)

• Abinit School - Bruyères-le-Châtel (Jan 2019)

• Total Energy and Force Methods Workshop - Trieste (Jan 2019)

187



Bibliography

[1] N. W. Ashcroft and N. D. Mermin. Solid State Physics. Harcout
College, 1976.

[2] G. Grosso and G. P. Parravicini. Solid State Physics. Academic Press,
2003.

[3] P. Yu and M. Cardona. Fundamentals of Semiconductors. Springer-
Verlag, 1990.

[4] K. Graff. Metal Impurities in Silicon-Device Fabrication. Springer,
2000.

[5] Christoph Freysoldt, Blazej Grabowski, Tilmann Hickel, Jörg Neuge-
bauer, Georg Kresse, Anderson Janotti, and Chris G. Van de Walle.
First-principles calculations for point defects in solids. Rev. Mod. Phys.,
86:253–305, Mar 2014.

[6] R W Pohl. Electron conductivity and photochemical processes in alkali-
halide crystals. Proceedings of the Physical Society, 49(4S):3–31, aug
1937.

[7] A. Stoneham. Theory of Defects in Solids. Oxford University Press,
1975.

[8] Kun Huang and Avril Rhys. Theory of light absorption and non-
radiative transitions inf-centres. Proceedings of the Royal Society of
London. Series A. Mathematical and Physical Sciences, 204(1078):406–
423, 1950.

[9] H. Y. Fan and A. K. Ramdas. Infrared absorption and photoconduct-
ivity in irradiated silicon. Journal of Applied Physics, 30(8):1127–1134,
1959.

188



[10] G. D. Watkins and J. W. Corbett. Defects in irradiated silicon. i.
electron spin resonance of the si-a center. Phys. Rev., 121:1001–1014,
Feb 1961.

[11] J. W. Corbett, G. D. Watkins, R. M. Chrenko, and R. S. McDonald.
Defects in irradiated silicon. ii. infrared absorption of the si-a center.
Phys. Rev., 121:1015–1022, Feb 1961.

[12] L. J. Cheng, J. C. Corelli, J. W. Corbett, and G. D. Watkins. 1.8-, 3.3-,
and 3.9-µ bands in irradiated silicon: Correlations with the divacancy.
Phys. Rev., 152:761–774, Dec 1966.

[13] P. Pichler. Intrinsinc Point Defcts, Impurities, and Their Diffusion in
Silicon. Springer-Verlag, 2004.

[14] Jr. & L. M. Slifkin (Eds.) J. H. Crawford. Point Defects in Solids. Vol.
2 Semiconductors and Molecular Crystals. Plenum Press, 1975.

[15] G. D. Watkins, J. W. Corbett, and R. M. Walker. Spin resonance
in electron irradiated silicon. Journal of Applied Physics, 30(8):1198–
1203, 1959.

[16] G.D. Watkins. An EPR study of the lattice vacancy in silicon. J. Phys.
Soc. Japan, 18:Suppl. II, 22, 3 1963.

[17] G. D. Watkins and J. W. Corbett. Defects in irradiated silicon: Elec-
tron paramagnetic resonance and electron-nuclear double resonance of
the Si-E center. Phys. Rev., 134:A1359–A1377, Jun 1964.

[18] G. D. Watkins and J. W. Corbett. Defects in irradiated silicon: Elec-
tron paramagnetic resonance of the divacancy. Phys. Rev., 138:A543–
A555, Apr 1965.

[19] Edward L. Elkin and G. D. Watkins. Defects in irradiated silicon: Elec-
tron paramagnetic resonance and electron-nuclear double resonance of
the arsenic- and antimony-vacancy pairs. Phys. Rev., 174:881–897, Oct
1968.

[20] D. V. Lang. Deep level transient spectroscopy: A new method to
characterize traps in semiconductors. Journal of Applied Physics,
45(7):3023–3032, 1974.

[21] W. Shockley and W. T. Read. Statistics of the recombinations of holes
and electrons. Phys. Rev., 87:835–842, Sep 1952.

189



[22] D. V. Lang and C. H. Henry. Nonradiative recombination at deep levels
in gaas and gap by lattice-relaxation multiphonon emission. Phys. Rev.
Lett., 35:1525–1528, Dec 1975.

[23] C. H. Henry and D. V. Lang. Nonradiative capture and recombination
by multiphonon emission in gaas and gap. Phys. Rev. B, 15:989–1016,
Jan 1977.

[24] L. Scheffler, Vl. Kolkovsky, and J. Weber. Identification of titanium-
hydrogen complexes with up to four hydrogen atoms in silicon. Journal
of Applied Physics, 117(8):085707, 2015.

[25] H. Kortegaard Nielsen, A. Hallén, and B. G. Svensson. Capacitance
transient study of the metastable m center in n-type 4h−SiC. Phys.
Rev. B, 72:085208, Aug 2005.

[26] D. Mathiot and S. Hocine. Titanium-related deep levels in silicon: A
reexamination. Journal of Applied Physics, 66(12):5862–5867, 1989.

[27] L. Tilly, H. G. Grimmeiss, H. Pettersson, K. Schmalz, K. Tittelbach,
and H. Kerkow. Electrical and optical properties of titanium-related
centers in silicon. Phys. Rev. B, 43:9171–9177, Apr 1991.

[28] J.-W. Chen, A.G. Milnes, and A. Rohatgi. Titanium in silicon as a
deep level impurity. Solid-State Electronics, 22(9):801 – 808, 1979.

[29] J.R. Morante, J.E. Carceller, P. Cartujo, and J. Barbolla. Thermal
emission rates and capture cross-section of majority carriers at titanium
levels in silicon. Solid-State Electronics, 26(1):1 – 6, 1983.

[30] Alex C. Wang and C. T. Sah. Complete electrical characterization
of recombination properties of titanium in silicon. Journal of Applied
Physics, 56(4):1021–1031, 1984.

[31] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev.,
136:B864–B871, Nov 1964.

[32] L. J. Sham and W. Kohn. One-particle properties of an inhomogeneous
interacting electron gas. Phys. Rev., 145:561–567, May 1966.

[33] W. Kohn. Density functional and density matrix method scaling lin-
early with the number of atoms. Phys. Rev. Lett., 76:3168–3171, Apr
1996.

190



[34] D. M. Ceperley and B. J. Alder. Ground state of the electron gas by a
stochastic method. Phys. Rev. Lett., 45:566–569, Aug 1980.

[35] John P. Perdew and Yue Wang. Accurate and simple analytic repres-
entation of the electron-gas correlation energy. Phys. Rev. B, 45:13244–
13249, Jun 1992.

[36] John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized
gradient approximation made simple. Phys. Rev. Lett., 77:3865–3868,
Oct 1996.

[37] John P. Perdew and Karla Schmidt. Jacob’s ladder of density functional
approximations for the exchange-correlation energy. AIP Conference
Proceedings, 577(1):1–20, 2001.

[38] Carlo Adamo and Vincenzo Barone. Toward reliable density func-
tional methods without adjustable parameters: The PBE0 model. The
Journal of Chemical Physics, 110(13):6158–6170, April 1999.

[39] J. F. Janak. Proof that ∂e
∂ni

= ǫ in density-functional theory. Phys.
Rev. B, 18:7165–7168, Dec 1978.

[40] R. Fletcher. A new approach to variable metric algorithms. The Com-
puter Journal, 13(3):317–322, 01 1970.

[41] C. G. BROYDEN. The Convergence of a Class of Double-rank Minim-
ization Algorithms 1. General Considerations. IMA Journal of Applied
Mathematics, 6(1):76–90, 03 1970.

[42] HANNES JNSSON, GREG MILLS, and KARSTEN W. JACOBSEN.
Nudged elastic band method for finding minimum energy paths of trans-
itions, pages 385–404.

[43] Graeme Henkelman, Blas P. Uberuaga, and Hannes Jónsson. A
climbing image nudged elastic band method for finding saddle points
and minimum energy paths. The Journal of Chemical Physics,
113(22):9901–9904, 2000.

[44] X. Gonze, F. Jollet, F. Abreu Araujo, D. Adams, B. Amadon, T. Ap-
plencourt, C. Audouze, J.-M. Beuken, J. Bieder, A. Bokhanchuk,
E. Bousquet, F. Bruneval, D. Caliste, M. Ct, F. Dahm, F. Da Pieve,
M. Delaveau, M. Di Gennaro, B. Dorado, C. Espejo, G. Geneste,
L. Genovese, A. Gerossier, M. Giantomassi, Y. Gillet, D.R. Ham-
ann, L. He, G. Jomard, J. Laflamme Janssen, S. Le Roux, A. Levitt,

191



A. Lherbier, F. Liu, I. Lukaevi, A. Martin, C. Martins, M.J.T. Oli-
veira, S. Ponc, Y. Pouillon, T. Rangel, G.-M. Rignanese, A.H. Romero,
B. Rousseau, O. Rubel, A.A. Shukri, M. Stankovski, M. Torrent, M.J.
Van Setten, B. Van Troeye, M.J. Verstraete, D. Waroquiers, J. Wiktor,
B. Xu, A. Zhou, and J.W. Zwanziger. Recent developments in the
ABINIT software package. Comput. Phys. Commun., 205:106–131, Au-
gust 2016.

[45] F. Giustino. Materials Modelling using Density Functional Theory.
Properties & Predictions. Oxford University Press, 2014.

[46] Richard M. Martin. Electronic Structure. Basic Theory and Practical
Methods. Cambridge University Press, 2004.

[47] D. R. Hamann. Optimized norm-conserving Vanderbilt pseudopoten-
tials. Phys. Rev. B, 88(8):085117, August 2013.

[48] http://www.pseudo-dojo.org/.

[49] M.J. [van Setten], M. Giantomassi, E. Bousquet, M.J. Verstraete, D.R.
Hamann, X. Gonze, and G.-M. Rignanese. The pseudodojo: Training
and grading a 85 element optimized norm-conserving pseudopotential
table. Computer Physics Communications, 226:39 – 54, 2018.

[50] John P. Perdew, Robert G. Parr, Mel Levy, and Jose L. Balduz.
Density-functional theory for fractional particle number: Derivative
discontinuities of the energy. Phys. Rev. Lett., 49:1691–1694, Dec 1982.

[51] Lars Hedin. New method for calculating the one-particle green’s
function with application to the electron-gas problem. Phys. Rev.,
139:A796–A823, Aug 1965.

[52] Fabien Bruneval and Xavier Gonze. Accurate gw self-energies in a
plane-wave basis using only a few empty states: Towards large systems.
Phys. Rev. B, 78:085125, Aug 2008.

[53] Mark S. Hybertsen and Steven G. Louie. Electron correlation in semi-
conductors and insulators: Band gaps and quasiparticle energies. Phys.
Rev. B, 34:5390–5413, Oct 1986.

[54] R. W. Godby and R. J. Needs. Metal-insulator transition in kohn-sham
theory and quasiparticle theory. Phys. Rev. Lett., 62:1169–1172, Mar
1989.

192

http://www.pseudo-dojo.org/


[55] M. van Schilfgaarde, Takao Kotani, and S. Faleev. Quasiparticle self-
consistent gw theory. Phys. Rev. Lett., 96:226402, Jun 2006.

[56] Giovanni Onida, Lucia Reining, and Angel Rubio. Electronic ex-
citations: density-functional versus many-body green’s-function ap-
proaches. Rev. Mod. Phys., 74:601–659, Jun 2002.

[57] E. E. Salpeter and H. A. Bethe. A relativistic equation for bound-state
problems. Phys. Rev., 84:1232–1242, Dec 1951.

[58] D. A. Drabold & S. K. Estreicher (Eds.). Theory of Defects in Semi-
conductors. Springer-Verlag, 2007.

[59] Hendrik J. Monkhorst and James D. Pack. Special points for brillouin-
zone integrations. Phys. Rev. B, 13:5188–5192, Jun 1976.

[60] J S Smith, A Budi, M C Per, N Vogt, D W Drumm, L C L Hollenberg,
J H Cole, and S P Russo. Ab initio calculation of energy levels for
phosphorus donors in silicon. Scientific Reports, 7(1):6010, 2017.

[61] M. J. Puska, S. Pöykkö, M. Pesola, and R. M. Nieminen. Convergence
of supercell calculations for point defects in semiconductors: Vacancy
in silicon. Phys. Rev. B, 58:1318–1325, Jul 1998.

[62] M. I. J. Probert and M. C. Payne. Improving the convergence of defect
calculations in supercells: An ab initio study of the neutral silicon
vacancy. Phys. Rev. B, 67:075204, Feb 2003.

[63] A. F. Wright. Density-functional-theory calculations for the silicon
vacancy. Phys. Rev. B, 74:165116, Oct 2006.

[64] Fabiano Corsetti and Arash A. Mostofi. System-size convergence of
point defect properties: The case of the silicon vacancy. Phys. Rev. B,
84:035209, Jul 2011.

[65] M Leslie and N J Gillan. The energy and elastic dipole tensor of defects
in ionic crystals calculated by the supercell method. Journal of Physics
C: Solid State Physics, 18(5):973–982, feb 1985.

[66] C. Kittel. Introduction to Solid State Physics. John Wiley & Sons,
2005.

[67] G. Makov and M. C. Payne. Periodic boundary conditions in ab initio
calculations. Phys. Rev. B, 51:4014–4022, Feb 1995.

193



[68] Christoph Freysoldt, Jörg Neugebauer, and Chris G. Van de Walle.
Fully ab initio finite-size corrections for charged-defect supercell calcu-
lations. Phys. Rev. Lett., 102:016402, Jan 2009.

[69] Samuel E. Taylor and Fabien Bruneval. Understanding and correct-
ing the spurious interactions in charged supercells. Phys. Rev. B,
84:075155, Aug 2011.

[70] Patrick Rinke, Anderson Janotti, Matthias Scheffler, and Chris G.
Van de Walle. Defect formation energies without the band-gap prob-
lem: Combining density-functional theory and the gw approach for the
silicon self-interstitial. Phys. Rev. Lett., 102:026402, Jan 2009.

[71] Wei Chen and Alfredo Pasquarello. Accuracy of gw for calculating
defect energy levels in solids. Phys. Rev. B, 96:020101, Jul 2017.

[72] L. Martin-Samos, G. Roma, P. Rinke, and Y. Limoge. Charged oxygen
defects in sio2: Going beyond local and semilocal approximations to
density functional theory. Phys. Rev. Lett., 104:075502, Feb 2010.

[73] Fabien Bruneval and Guido Roma. Energetics and metastability of the
silicon vacancy in cubic sic. Phys. Rev. B, 83:144116, Apr 2011.

[74] R.H. Hopkins, R.G. Seidensticker, J.R. Davis, P. Rai-Choudhury, P.D.
Blais, and J.R. McCormick. Crystal growth considerations in the use
of solar grade silicon. Journal of Crystal Growth, 42:493 – 498, 1977.

[75] A. Rohatgi, J.R. Davis, R.H. Hopkins, P. Rai-Choudhury, P.G. McMul-
lin, and J.R. McCormick. Effect of titanium, copper and iron on silicon
solar cells. Solid-State Electronics, 23(5):415 – 422, 1980.

[76] J. Olea, M. Toledano-Luque, D. Pastor, G. Gonzlez-Daz, and I. Mrtil.
Titanium doped silicon layers with very high concentration. Journal
of Applied Physics, 104(1):016105, 2008.

[77] Antonio Luque and Antonio Mart́ı. Increasing the efficiency of ideal
solar cells by photon induced transitions at intermediate levels. Phys.
Rev. Lett., 78:5014–5017, Jun 1997.

[78] Antonio Luque, Antonio Mart́ı, and Colin Stanley. Understanding
intermediate-band solar cells. Nature Photonics, 6(3):146–152, Mar
2012.

194



[79] Antonio Luque, Antonio Mart, Elisa Antoln, and Csar Tablero. Inter-
mediate bands versus levels in non-radiative recombination. Physica
B: Condensed Matter, 382(1):320 – 327, 2006.

[80] Jacob J. Krich, Bertrand I. Halperin, and Aln Aspuru-Guzik. Nonra-
diative lifetimes in intermediate band photovoltaicsabsence of lifetime
recovery. Journal of Applied Physics, 112(1):013707, 2012.
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[138] A. Resende, R. Jones, S. Öberg, and P. R. Briddon. Calculations of
electrical levels of deep centers: Application to au-h and ag-h defects
in silicon. Phys. Rev. Lett., 82:2111–2114, Mar 1999.

[139] Fabiano Corsetti and Arash A. Mostofi. Negative-u properties for sub-
stitutional au in si. EPL (Europhysics Letters), 105(5):57006, mar
2014.

[140] F G Anderson. An explanation for the missing EPR from the isolated
substitutional gold impurity in silicon. Journal of Physics: Condensed
Matter, 3(24):4421–4432, jun 1991.

200



[141] S. T. Pantelides (Ed.). Deep Centers in Semiconductors. Gordon and
Breach, 1992.

[142] G. A. Baraff, E. O. Kane, and M. Schlüter. Theory of the silicon
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[157] Gerg ő Thiering and Adam Gali. Ab initio calculation of spin-orbit
coupling for an nv center in diamond exhibiting dynamic jahn-teller
effect. Phys. Rev. B, 96:081115, Aug 2017.

[158] Lin Shi and Lin-Wang Wang. Ab initio calculations of deep-level carrier
nonradiative recombination rates in bulk semiconductors. Phys. Rev.
Lett., 109:245501, Dec 2012.

202



[159] Audrius Alkauskas, Qimin Yan, and Chris G. Van de Walle. First-
principles theory of nonradiative carrier capture via multiphonon emis-
sion. Phys. Rev. B, 90:075202, Aug 2014.

203



Hola



Résumé

Dans cette thèse, nous décrivons l’effet des défauts localisés sur les propriétés électroniques
du silicium. Après 60 ans de production industrielle de dispositifs à base de sili-
cium, on pourrait s’attendre à ce que tous les caractéristiques de ce matériau soient
parfaitement comprises, surtout si l’on considère que la fabrication des transistors ac-
tuels à l’échelle du nanomètre nécessite une précision quasi atomique. Cependant, en
conséquence directe de cette miniaturisation extrême, la création accidentelle d’un seul
défaut peut suffire à modifier les propriétés électroniques souhaitées de l’échantillon,
devenant ainsi l’un des phénomnes les plus redoutés de lindustrie. Historiquement,
l’identification de ces centres a été possible grâce au développement et à lamélioration
des techniques de caractérisation, capables de cibler des propriétés de défaut spécifiques,
par exemple, liées à la position des états induits par le centre dans la bande interdite du
semi-conducteur (absorption optique infrarouge, spectroscopie DLTS) ou aux distorsions
atomiques déclenchées par la forme de la densité électronique localisée (spectroscopie
EPR). Une telle quantité de données expérimentales a motivé le développement de
modèles simples basés sur la symétrie, reproduisant qualitativement les caractéristiques
fondamentales des défauts. Plus récemment l’augmentation exponentielle de la puissance
de calcul a fait des calculs ab initio le modèle théorique parfait pour fournir une repres-
entation quantitatif des défauts ponctuels dans les semi-conducteurs. Les simulations
numériques léchelle atomique dans le silicium, basées sur la théorie de la fonctionnelle
de la densité, ciblent cependant généralement des propriétés spécifiques des défauts, ne
donnant pas une image théorique complète du système, et négligeant souvent les modèles
précédents et les preuves expérimentales. Dans cette thèse, nous apportons une nouvelle
vision sur les dfauts emblmatiques du silicium par la quantification de modles identifis
de longue date, en tablissant un lien explicite avec les techniques de caractérisation.
Notre exploration détaillée de la surface d’énergie potentielle du E-center du silicium,
guidée par un modèle simple de Jahn-Teller, a confirm la dynamique des dfauts observe
diffrents rgimes de temprature, nous permettant de relier la prsence d’un tel dfaut ponc-
tuel un bruit lectronique dans les capteurs d’images. De plus, nous étudions l’hypothèse
d’une amélioration de l’absorption des photons dans les cellules solaires en silicium dopé
au titane en décrivant les effets à plusieurs corps à laide de lapproximation GW. De cette
maniére, on attribue les excitations électroniques chargées aux transitions entre les états
du titane, précédemment décrits par un modèle phénoménologique pour les métaux de
transition dans le silicium. Nous proposons également une généralisation des toy-models
préexistants pour aborder les centres complexes, pour lesquels une controverse notoire
au sein de la communauté ab initio existe toujours, montrant explicitement les limites
des approches de champ moyen lorsqu’elles ciblent des densités électroniques hautement
localisées. Nous concluons par une brève revue critique de la caractérisation théorique
de l’activité électronique des défauts, et en particulier de la section efficace de capture
des transitions non radiatives.



Abstract

In this thesis, we describe the effect of localized defects on the electronic properties
of silicon. After 60 years of silicon devices production, one might expect all details
of this material to be fully understood, especially considering that the manufacture of
nowadays nanometer-sized transistors requires quasi-atomic accuracy. However, as a
direct result of such extreme miniaturization, the accidental creation of even one single
trapping center can be sufficient to alter the desired electronic properties of the sample,
becoming one of the most feared phenomena in the industry. Since the early years, the
identification of these centers has been possible through the development of characteriz-
ation techniques, capable of targeting specific defect properties, related to the position
of the center-induced states within the semiconductor gap (infrared optical absorption,
DLTS spectroscopy) or to the atomic distortions triggered by the form of the localized
electronic density (EPR spectroscopy). Such collection of experimental data motivated
the development of simple symmetry-based models, qualitatively reproducing the ba-
sic features of defects. The later exponential increase in computational power made
ab-initio calculations the perfect candidate to give a quantitative theoretical model of
point-defects in semiconductors. Atomistic numerical simulations in silicon, based on
the Density Functional Theory, do however typically target specific defect-properties,
not giving a complete theoretical picture of the system, often overlooking previous mod-
els and experimental evidence. In the present thesis, we provide new insight into iconic
defects in silicon through the quantification of long-established atomistic models, mak-
ing an explicit link with the characterization techniques. Our detailed exploration of
the DFT energy surface of the silicon E-center, guided by a simple Jahn-Teller model,
confirmed the observed defect-dynamics at different temperature regimes, allowing us to
link the presence of such point-like defect to a burst noise in image sensors. Moreover,
we investigate the hypothesis of enhancing photon-absorption in titanium-doped silicon
solar cells by describing many-body effects in the form of the GW approximation, assign-
ing the charged electronic excitations to transitions between Ti-related states, previously
depicted by a phenomenological model for transition metals in silicon. We also propose
a generalization of the preexisting toy-models to tackle complex centers, for which a
notorious controversy within the ab-initio community still exists, showing explicitly the
limitations of mean-field approaches when targeting highly localized electronic densit-
ies. We conclude with a brief critical review of the theoretical characterization of the
defects electronic activity, and in particular the capture cross section of non-radiative
transitions.
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