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“La vie est une cerise
La mort est un noyau
L’amour un cerisier.”
Jacques Prévert, Chanson du Mois de Mai.
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Abstract

This thesis deals with approximating sets using Lasserre’s moment-SOS hierarchy.
The motivation is the increasing need for efficient methods to approximate sets
of secure operating conditions for electrical power systems. Indeed, recent and
ongoing changes in the European power network, such as the increase in renewable
energy sources interfaced by power electronic devices, are bringing up new challenges
in terms of power grid security assessment. The aim of the present thesis is to
investigate the suitability of the moment-SOS hierarchy as a tool for large scale
stability assessment.

In this regard, the very scheme of moment-SOS hierarchies is analysed in-depth,
and general results regarding the convergence and accuracy of the framework are
stated, along with specific computational methods inspired from differential geo-
metry and partial differential equations theory, in order to improve the convergence
of the numerical scheme.

From the computational viewpoint, the core of this thesis is the exploitation
of problem structure to alleviate the computational burden of high dimensional,
large scale industrial problems. The structure of power grids leads us to consider
general sparsity patterns and design methods which distribute our computations
accordingly, drastically reducing computational costs in implementation.

In addition to stability analysis, a special interest is put on the theoretical prob-
lem of volume computation, whose applications rather concern the field of integral
calculus and probability evaluation, as understanding this problem turns out to be
a prerequisite for approximating stability regions of differential systems, such as
regions of attraction or positively invariant sets, with the moment-SOS hierarchy.
Indeed, the moment-SOS approach to volume computation is the core of moment-
SOS stability analysis.

Keywords: Power systems transient stability – infinite dimensional optimization
– moments – polynomial sums of squares – set approximation – direct methods for
stability analysis – sparsity – semidefinite relaxations.
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Résumé

Cette thèse a pour objet l’approximation d’ensembles au moyen de la hiérarchie
moment-sommes-de-carrés (abrégée moment-SOS) de Lasserre. Elle est motivée par
le besoin croissant de méthodes efficaces pour approcher des ensembles de points
de fonctionnement stables dans le domaine des réseaux électriques. En effet, les ré-
cents développements et les changements en cours au sein du système électrique
européen, comme l’augmentation de la part des énergies renouvelables dans la géné-
ration d’électricité, et leur raccordement au réseau par des interfaces d’électronique
de puissance, soulèvent de nouveaux défis en termes d’évaluation de la sécurité des
réseaux électriques. L’objectif de cette thèse est d’étudier la pertinence de la hiérar-
chie moment-SOS dans les études de stabilité à grande échelle.

Dans cette optique, le schéma numérique que constituent les hiérarchies moment-
SOS est étudié en détails, et des résultats généraux sur la convergence et la précision
de cet outil sont formulés, et accompagnés de méthodes de calcul spécifiques, inspi-
rées de notions de géométrie différentielle et de théorie des équations aux dérivées
partielles, visant à améliorer la convergence du schéma numérique.

Du point de vue purement calculatoire, l’élément central de cette thèse est l’ex-
ploitation de la structure des problèmes, en vue d’alléger le coût des calculs liés
aux problèmes industriels à grande échelle, modellisés en très grande dimension.
La structure en réseau des systèmes électriques nous conduit à nous intéresser aux
configurations dites parcimonieuses, et à concevoir des méthodes distribuant les cal-
culs suivant ces configurations, permettant ainsi de réduire drastiquement le coût
en calcul de nos implémentations.

Enfin, en plus de l’analyse de stabilité, un intérêt particulier est accordé au pro-
blème théorique du calcul de volumes, dont les applications se situent plutôt dans
le domaine du calcul intégral et de l’évaluation probabiliste, la compréhension de ce
problème étant un prérequis pour l’approximation de régions de stabilité pour les
systèmes différentiels, comme par exemple les régions d’attractions ou les ensembles
positivement invariants, au moyen des hiérarchies moment-SOS. En effet, l’approche
du calcul de volumes par les hiérarchies moment-SOS est à l’origine de l’analyse de
stabilité par ces mêmes hiérarchies.

Titre en français : Hiérarchie moments-SOS pour approximation ensembliste à
grande échelle. Application à l’analyse de stabilité transitoire des systèmes élec-
triques.

Mots clés : Analyse de la stabilité transitoire des systèmes électriques – optimi-
sation en dimension infinie – moments – polynômes sommes de carrés – approxi-
mations ensemblistes – méthodes directes pour l’analyse de stabilité – parcimonie –
relaxations semidéfinie.
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Notation

This section provides the notations used all along the thesis.

Usual sets
• N: set of natural integers,

• N? := N \ {0}: set of positive integers,

• N?N := {1, . . . , N}: set of N first consecutive positive integers,

• R: set of real numbers,

• R+ := {x ∈ R : x ≥ 0}: set of nonnegative real numbers,

• R++ := {x ∈ R : x > 0}: set of positive real numbers,

• I := [x−, x+], x− < x+ ∈ R: a real interval.

Linear algebra
• Rn×m: space of matrices with n rows and m columns with coefficients in R,

• mi,j: for M ∈ Rn×m, refers to the coefficient on the ith row and jth column,

• In ∈ Rn×n: identity matrix, I := I2, J :=
(

0 −1

1 0

)
∈ R2×2,

• Tr M := ∑
1≤i≤nmi,i: trace of a square matrix M,

• M>: transposition of a matrix M,

• Sn: space of real symmetric matrices with n rows (M> = M),

• Sn+: cone of symmetric positive semi-definite matrices, M ∈ Sn+ ⇔ M � 0,

• Sn++: open cone of symmetric positive definite matrices, M ∈ Sn++ ⇔ M � 0,

• M � 0⇔ −M � 0, M ≺ 0⇔ −M � 0 and M � N⇔ N−M � 0.

Euclidean geometry
• x := (x1, . . . , xn)> ∈ Rn: a real vector with n rows,

• 0: zero finite dimensional vector, x ≥ 0⇔ xi ≥ 0, i ∈ N?n,

• x · y := x>y: inner product of two finite dimensional real vectors,

• |x| := ‖x‖2 =
√

x · x: euclidean norm of a real vector x ∈ Rn,

• Bn := {x ∈ Rn : |x| ≤ 1}: the unit ball of Rn,
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xxiv Notations

• Sn−1 := {x ∈ Rn : |x| = 1}: the unit sphere of Rn,

• BR := R Bn and SR := R Sn−1: the ball and sphere of radius R > 0,

• πX : Rn → X: orthogonal projection on the vector subspace X ⊂ Rn,

• X⊥ := kerπX = {y ∈ Rn : ∀x ∈ X,x · y = 0}: vector space orthogonal to X.

Differential analysis
Let Ω ⊂ Rn be an open or compact set, k ∈ N?.

• ẋ := dx
dt : derivative of the vector function t 7→ x(t),

• ∂x: partial differentiation operator with respect to the variable x,

• ∂kxi1 ,...,xik := ∂xi1 · · · ∂xik : k
th partial differentiation operator w.r.t. xi1 , . . . , xik ,

• ∂ f := (∂xjfi)(i,j)∈N?m×N?n : jacobian matrix of function f : Rn → Rm,

• grad f := (∂ f)> = (∂x1f, . . . , ∂xnf)>: gradient of function f : Rn → R,

• div f := Tr(∂ f): divergence of function f : Rn → Rn,

• ∂ 2f := ∂ (grad f) = (∂2
xi,xj

f)i,j∈N?n : hessian matrix of function f : Rn → R,

• ∆f := Tr(∂ 2f) = div(grad f): laplacian of function f : Rn → R,

• C0(Ω) = C(Ω): space of continuous functions on Ω,

• Ck(Ω) :=
{
f ∈ C(Ω) : grad f ∈ Ck−1(Ω)n

}
, C∞(Ω) := ⋂

l∈N
Cl(Ω).

Integration
Let A ⊂ Ω be a Borel set (countable intersection & union of closed & open sets).

•
∫

A
f(x) dx: Riemann integral of f ∈ C(Ω) on A.

• Cc(Ω): space of continuous functions on Ω vanishing outside a compact.

• M(Ω): space of signed measures, i.e. continuous linear forms on Cc(Ω).

•
∫
f dµ := 〈f, µ〉: duality or Lebesgue integral of f ∈ Cc(Ω) w.r.t. µ ∈M(Ω).

•
∫

A
f dµ :=

∫
1A f dµ: integral of f ∈ Cc(Ω) w.r.t. µ ∈M(Ω) on A.

• λ: Lebesgue measure s.t. ∀f ∈ Cc(Ω),
∫
f dλ =

∫
Ω
f(x) dx.

• λA := 1A λ: restriction of λ to A s.t. ∀f ∈ Cc(Ω),
∫
f dλA =

∫
A
f dλ.
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Algebraic geometry
• k := (k1, . . . , kn) ∈ Nn: a multi-index made of n integers,

• 1i := (0, . . . , 0, 1, 0, . . . , 0): multi-index with ith coordinate equal to 1, all
others being 0,

• |k| := ‖k‖1 = k1 + . . .+ kn: range of k ∈ Nn,

• Nnd := {k ∈ Nn : |k| ≤ d}: index set with bounded range,

• xk := xk1
1 · · ·xknn : kth power of a vector x = (x1, . . . , xn)> ∈ Rn,

• fk := x 7→ f(x)k: kth power of a vector function f = (f1, . . . , fn)> : Rm → Rn,

• R[x] := {p(x) = ∑
|k|≤d ak xk : d ∈ N ∧ ak ∈ R}: space of polynomials in x,

• d◦p := max{|k| : ak 6= 0}: degree of p ∈ R[x],

• Σ[x] := {s = p2
1 + · · · + p2

k : k ∈ N? ∧ p1, . . . , pk ∈ R[x]}: cone of sums of
squares of polynomials,

• Rd[x] := {p ∈ R[x] : d◦p ≤ d}: space of polynomials of degree at most d,

• Σd[x] := Σ[x] ∩R2d[x]: cone of SOS polynomials of degree at most 2d.





1
Introduction

In this introductory chapter, we provide an overview of the concepts and problems
that we will study in this thesis. Section 1.1 presents the general context of the
thesis, namely the need for new tools to assess the stability of industrial power
systems. Section 1.2 briefly reviews some of the different existing approaches to
power systems stability analysis. In Section 1.3 we discuss in more details the
moment-SOS hierarchical approach, which is the method of interest in this thesis.
The chapter ends with Section 1.4, listing the contributions of the thesis and outlines
the structure of this manuscript.

Contents
1.1 Context and motivation of the thesis . . . . . . . . . . . . 1
1.2 Power system stability analysis . . . . . . . . . . . . . . . 3

1.2.1 Definition on a classical example . . . . . . . . . . . . . . 3
1.2.2 Overview of some existing TSA approaches . . . . . . . . 6
1.2.3 Our approach: Direct methods for stability regions . . . . 8

1.3 The moment-SOS approach . . . . . . . . . . . . . . . . . 11
1.3.1 Introduction to measures . . . . . . . . . . . . . . . . . . 11
1.3.2 A brief history . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.3 Moment-SOS hierarchies and power systems . . . . . . . . 15

1.4 Publications and outline . . . . . . . . . . . . . . . . . . . 16
1.4.1 Thesis organization . . . . . . . . . . . . . . . . . . . . . . 16
1.4.2 List of publications . . . . . . . . . . . . . . . . . . . . . . 17

1.1 Context and motivation of the thesis
In the wake of the energy transition, large scale electrical power systems are evolving
faster and faster, with increasing complexity and stochastic behaviors, mostly due
to the massive introduction of partially uncontrollable renewable energy sources
as well as corresponding new technologies, especially in power electronics. Among
such devices, one can cite High Voltage Direct Current (HVDC) lines [18] as well as
power converters [38]. In order to guarantee the functioning of these sophisticated
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2 CHAPTER 1. INTRODUCTION

systems, it is necessary to consider new methods for analysing them, see e.g. [49].
In particular, the stability analysis of nonlinear systems subject to large perturba-
tions has always been an extremely difficult problem, and it is going to complexify
even more with the upcoming evolutions. Estimating the largest perturbation that
the system can endure without impacting consumers and industrial loads remains
a key strategy for large scale electrical power systems management. To that end,
the “bruteforce” method would consist of running a large number of simulations
of the system’s behavior, corresponding to a sample of all possible perturbations,
and determining which ones would present a serious threat for system security, and
which ones would automatically be subsided by the system controls. Of course,
such an approach is not compatible with large scale systems, for which the number
of variables and possible perturbations is way too large to be tractable on a com-
puter. Then, new approaches are needed, which should satisfy a certain number of
requirements listed below:

Be compatible with nonlinearities: Electrical power systems include nonlin-
earities brought upon by the presence of alternative current modelled with trigo-
nometric functions, as well as power controls involving bilinearities, and eventually
more sophisticated technologies, such as saturations. Since the aim is to assess the
system’s behavior subject to large perturbations, linearization around equilibrium,
which is the classical method for small signal stability, is not an option here, hence
the need for nonlinear computational methods.

Avoid false negatives: Given a scenario, we want to decide whether it will lead
to an instability or, on the contrary, if it will pose no threat to the grid security. In
that case, supposing that only approximate solutions can be given, so that an error
is possible, it is crucial to control such error: misclassifying a scenario as “secure”
while it actually endangers the power network (i.e. a false negative) is forbidden
here, as it could have catastrophic consequences. On the contrary, any scenario
classified as “unstable” would be subject to further analysis, which would reveal the
eventual false positives. In other words, some certifications should be given along
with the stability analysis.

Provide accuracy guarantees: Although false positives can be allowed, it is im-
portant to control their occurrences. Indeed, a false positive would require additional
work to be detected, potentially increasing too much the computational burden of
the analysis. For this reason, any guarantees that the probability of false posit-
ive ultimately vanishes, would be highly appreciated. Most often such requirement
translates into convergence of the analysing algorithm.

Be (at least potentially) scalable: For low-dimensional systems such as local
grids, some methods already exist that will be presented in more details in Section
1.2. The central challenge of this thesis is to pave the way for large scale stability
analysis, which supposes that we find a way to tackle hundreds (ideally tens of
thousands) of variables in a reasonable amout of time. As we will expose in Section
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1.3, the network structure has the potential to allow for distributed computations,
which would drastically reduce the computational burden of our task.

Be perturbation-independent: Another factor that would increase the compu-
tational burden of a stability assessment method is the dependence to the analysed
perturbation. Indeed, as the number of possible perturbations increases, the num-
ber of required computations would also grow very quickly, eventually leading to
an intractability. Consequently, a method free from such a dependence, such as
geometric stability characterizations, would be much more efficient and suitable.

In this thesis, we will focus on set approximation schemes, mostly based on
Lasserre’s moments-sums-of-squares (moment-SOS) hierarchy as well as semidefinite
programming (SDP). However, several other approaches to power systems stability
analysis have been proposed in the past, that we are now going to review.

1.2 Power system stability analysis

1.2.1 Definition on a classical example
For the purpose of illustration let us first focus on the simplest representation of a
synchronous machine electromechanical dynamic: the rotating mass or swing equa-
tion, see e.g. [90, 21, 6].

Consider a power system composed of N synchronous generators with respective
voltages v1, . . . ,vN . We assume, as it is common in the literature, that the voltage
magnitudes |v1|, . . . , |vN | are fixed after the fault is cleared, while the phase angles
vector θ := (θ1, . . . , θN) is variable (expressed in a rotating frame) with respective
angular speed ω := (ω1, . . . , ωN). In addition, the loads in the network are con-
sidered to be constant and passive impedances. In normal operation conditions, the
phases will satisfy the following set of differential equations (with physical variables
expressed in SI units here):

θ̇ = ω, (1.1a)
Mk ω̇k = −Dkωk +

(
Pmec
k − P elec

k (θ)
)
, k ∈ N?N (1.1b)

where Pmec
k is the (fixed) mechanical power input at bus k and P elec

k (θ) is the elec-
trical power output of each generator k with value given by

P elec
k (θ) = Gkk|vk|2 +

∑
l 6=k
|vk| |vl| {Bkl sin(θk − θl) +Gkl cos(θk − θl)} . (1.2)

The quantities Bkl and Gkl denote the line susceptances and conductances, and
Mk refers to the generator inertia constant Hk (Mk = 2Hk). The constant Dk

denotes the damping coefficient of each generator. Equation (1.1) is called the
swing equation and models the electromechanical conversion characteristic of the
synchronous machine.

We assume that there exists an equilibrium θ := (θ1, . . . , θN) to these equations,
that satisfies
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Pmec
k = P elec

k (θ), k ∈ N?N . (1.3)

In other words, θ corresponds to a steady-state operating point of an AC trans-
mission system. As phases are defined up to a reference value, we choose one bus,
denoted by subscript “ref”, to serve as the reference bus, with θref = θref = 0 (often
referred to as slack bus). Indeed, the equations are invariant up to a phase shift.

We first introduce working notations that we will use all along the thesis. Con-
sider a vector field f ∈ C1(Rn)n with equilibrium point x ∈ Rn such that f(x) = 0,
along with the differential system

ẋ = f(x). (1.4)

According to the Cauchy-Lipschitz theorem [105, 77], (1.4) admits a continuously
differentiable solution map  R ×Rn −→ Rn

(t,x0) 7−→ x(t|x0)

such that x(0|x0) = x0 (initial condition) and ∂tx(t|x0) = f(x(t|x0)) (dynamics).
Moreover, if x(t|x0) = x holds for one value of t, then it holds for all t ∈ R (in
particular, x0 = x).

Then, transients are defined as follows:
Definition 1.1: Transients

Consider a power system (P) described by differential equation (1.4). Suppose
that at t = tp a perturbation occurs that drastically modifies the differential
equation, into ẋ = f̂(x), f̂ ∈ C1(Rn)n. Its trajectory is x̂(t− tp|x0), t ≥ tp.
At t = tcl > tp, the perturbation is cleared and (P) goes back to nominal
equation (1.4). We define the clearing state xcl := x̂(tcl − tp|x) and post-
perturbation trajectory x(t− tcl|xcl). The behaviour of (P) for t ≥ tp is called
transient.

In particular, we want to assess the system’s transient stability, which is defined
as follows:

Definition 1.2: Transient stability

In this thesis, we call transient stability of a power system (P) its ability to go
back to an operating equilibrium point x from a post-disturbance state xcl far
from x, with the state variables staying in a secure zone of the state space.

This general definition rules out any linearization-based local stability analysis:
we are bound to carry out a sharp, nonlinear transient stability analysis (TSA).

Remark 1.1 (Power system transient stability)
In terms of power systems, transient stability more specifically denotes a fea-

ture of the so-called rotor angle stability, based on the functioning of synchronous
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machines described by (1.1) (see figure 1.1). However, from the mathematical meth-
odological viewpoint, the specificity of transient stability boils down to the notion of
large disturbances and the impossibility of linearization. Thus, the works presented
in this thesis apply to all stability analyses related to large disturbances, for example
in voltage stability. As a result, we included all such stability properties in our
definition of transient stability.

Figure 1.1 – Power systems stability classification.

Image source – [41]; this classification is an upgrade of the one found in [65].

When a perturbation occurs, the dynamics of the system are modified, so that
the state leaves its former equilibrium point x and goes into large excursion. For a
given perturbation, the longer the perturbation, the further from x the clearing state
xcl. Then, after a certain time, the system state will be too far from equilibrium to
be able to go back to equilibrium, even if the perturbation is cleared, and the rotor
angles will quickly go to infinity. We call such time the critical clearing time tcc.

Definition 1.3: Critical Clearing Time (CCT)

tcc := max
∆t

∆t

s.t. xcl := x̂(∆t|x) is stable in the sense of Definition 1.2.

Critical clearing time is a very useful metric to assess transient stability of a
power system under a given perturbation. The CCT depends on the studied per-
turbation and initial state x0, so that what we are interested in is the whole function
(perturbation, x0) 7→ CCT.

Definition 1.4: Critical Clearing State (CCS)

CCT is accompanied with the notion of critical clearing state (CCS), which
will also be of interest:

xcc := x̂(tcc|x).
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In the context of time-invariant systems (1.4), CCS has the advantage to be
independent from the perturbation and the on-fault behavior. It only defines a limit
which, if it is passed, compromises the transient stability of the system.

1.2.2 Overview of some existing TSA approaches
In this section we present some of the considered methods for transient stability
analysis, based on [90, 117].

Currently used methods

Figure 1.2 – Power-angle characteristic of a synchronous machine.

Corresponding to system (1.1) (N = 1) subject to a short-circuit. The plotted
curve is the electrical power that the machine should inject into the grid in normal
functioning conditions.

Image source – https://www.electrical4u.com/equal-area-criterion/

A first basic method for TSA, called the Equal Area Criterion, consists of plotting
the graph of P elec(θ), denoted Pc(δ) in Figure 1.2. Then, one can identify the critical
clearing angle δc, such that areas A1 and A2 are equal, and tcc is the time at which
δc is attained. Indeed, on the figure δ0 represents normal functioning conditions (i.e.
equilibrium), in which the machine injects exactly as much electrical power in the
grid as it receives mechanical power: Pc(δ0) = Pm so that the system (1.1) is at
steady-state. However, during the fault (here a short-circuit), the electrical power
delivered by the machine to the grid vanishes, so that all mechanical power input
Pm is stored in the rotor as kinetic energy (represented by area A1 on the figure),
making δ sharply increase. Then, it can be returned only after fault clearing, under
the form of electrical energy, resulting in at most area A2. Thus, if A1 ≤ A2 all
stored mechanical power can be returned to the grid before synchronism is lost, i.e.
before δ exceeds π, after which δ decreases back to δ0. On the contrary, if A1 > A2,

https://www.electrical4u.com/equal-area-criterion/
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then the machine will lose synchronism before all stored energy is returned, resulting
in transient instability.

In addition to the intuition that this criterion gives of transient behaviours, it
has been extended and studied deeply by power engineers in the past decades, under
the name of Extended Equal Area Criterion (EEAC, see [140]), although the present
thesis does not focus on this TSA method.

As stated before, the general method used to assess transient stability of general
power systems consists of numerical time-domain simulations: if one knows a priori
what the perturbation will be and how long it will last, then one only has to simulate
the trajectory of the system for t ≥ tp and see whether or not it goes back to
equilibrium after tcl. To that end, equation (1.1) or more generally (1.4) is discretized
over time, after which the discretized system is numerically integrated to compute
the trajectory of the system. Then, one can directly observe transient stability or
instability by checking the result of the time-domain simulation.

However, transmission system operators (TSO) are actually interested not only in
deciding the stability of a system but also in assessing stability margins. Indeed, the
actual clearing time tcl is fixed, determined by the speed of the involved protection
devices. Thus, studying the transient stability of a system boils down to computing
tcc and comparing it to the fixed tcl. Then, tcc < tcl means by definition that the
system will be unstable. However, uncertainties on the model and behaviour of the
actual system leads TSOs to look for some kind of robustness propeties for stable
situations, under the form of stability margins, i.e. lower bounds on the value of
tcc − tcl. For this reason, TSOs are interested in computing the actual CCT for
a given perturbation, and not only assessing stability through a single simulation
of the whole transients. However, such computation is very costly, as the most
straightforward method consists of a bisection that would involve a time-domain
simulation at each step.

In order to lighten this computational burden, one can look for randomized solu-
tions, such as the classical Monte-Carlo methods, which consist of sampling the
possible scenarios according to their probability, and only computing CCTs associ-
ated with the chosen sample. Then, instead of obtaining CCTs for all perturbations,
one only has access to an estimation of the probability that the CCT is within a
given interval (see [5, 66]). While such a method would surely decrease the computa-
tional cost of the TSA, it poses the problem of forecasting rare transient events with
severe consequences. Indeed, especially in power grids that have been functioning
24/7, for decades, even very unlikely events have already occurred, and the possibil-
ity for randomized approaches to ignore a part of the potential perturbations poses
an issue for conservative transient stability analyses. However, such methods have
been studied for a long time and paved the way to data-analysis related methods
[102].

AI methods

The current times have seen artificial intelligence progressively gain momentum, up
to a point where it competes with most of the existing state-of-the art methods.
Here we briefly mention different AI-related approaches that have been proposed to
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carry out transient stability analyses.

• Clustering: A possibility is to train an algorithm to identify classes of per-
turbations which will lead to similar behaviors, after which one can study
the details of a small number of representing events and deduce the various
outcomes of a large number of perturbations. Compared to classical random-
ization, this allows for taking outliers into account as specific clusters. Several
contributions were made in this domain, including [37, 19, 98, 55]. Depend-
ing on authors, different classification methods were used, such as k-nearest
neighbours, bayesian classification or hierarchical clustering (see [40, 146] for
details on these classification methods).

• Artificial Neural Networks (ANN): Bio-inspired by the functioning of
human brain, ANNs consist of automatically splitting a complex task into
simpler ones that are ditributed along a pre-determined network of “neurones”
(basically boolean classifiers), whose historical ancestor was the Perceptron
algorithm. The definition of the subtask is called “training” the ANN and
consists of tuning the neurones in a way that minimizes the error rate of the
whole, when analysing a “training set” of known perturbations. Such methods
were applied in [31, 59, 144, 97].

• Support Vector Machine (SVM): Generalizing linear classification, SVM
belongs to the category of lift-and-project methods; the idea consists of em-
bedding the space in which the TSA problem is considered into a vector space
in which discriminating between stable and unstable scenarios is reduced to
checking the sign of a linear form one has to determine. Such a method can
be combined with classical clustering as was done in [94, 142] or with various
optimization methods such as [133, 141].

While AI-based method bear a great potential for power systems TSA, in this
thesis we decided to study methods capable of both competing with machine learning
approaches and giving a deeper understanding of the physics involved in the transient
phenomena. Such methods, called direct methods as they do not require any time-
domain simulation at all, have been around for a long time and are based on the
physical notion of energy.

1.2.3 Our approach: Direct methods for stability regions

Direct methods can be seen as dual to time-domain simulations, in the sense that
instead of computing the successive states of the system, one looks for an observable
that takes the state as input, and outputs a real value on which the stability analysis
is based. This duality will be explained more in details in Chapters 2 and 3. Such
direct methods are based on general differential system stability theory [81, 67] and
were specifically applied to power systems stability analysis in [6, 21, 22, 53, 99].
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Transient stability regions

A promising alternative to the previously reviewed methods consists in determining
a priori an approximation of a transient stability region for system (1.4), i.e. a
region A of the state space for which one can guarantee that if the clearing state
xcl ∈ A then the system will go back to equilbrium within a given time horizon.
We now define a natural candidate for a transient stability region. Indeed, we are
looking for a geometric criterion for convergence of the post-perturbation system,
which leads us to define the region of attraction of a set.

Definition 1.5: Region of Attraction (ROA)

Let M ⊂ X ⊂ Rn, T ∈ (0,+∞]. We define the time T region of attraction
(ROA) of M (with state constraint X) as:

AX
T (M) :=

x0 ∈ Rn :
∀t ∈ [0, T ),x(t|x0) ∈ X

dist(x(t|x0),M) −→
t→T

0

 . (1.5)

where dist(x,Y) := infy∈Y |x − y| is the euclidean distance between a point
x ∈ Rn and a set Y ⊂ Rn. If X = Rn then we only write AT (M) := ARn

T (M).

This definition allows us to state a transient stability analysis problem:

Problem 1: Direct transient stability analysis

Compute an approximating subset Â of some well-chosen ROA AX
T (M), so

that xcl ∈ Â =⇒ xcl can be attained without compromising stability.

Remark 1.2 (False negatives and conservativeness)
In Problem 1, we already allow ourselves to compute an approximation of

some ROA. Indeed, in most of the general cases, the exact AX
T (M) is out of reach

for standard computational methods, hence the resort to approximation.
However, we stated at the beginning of this Chapter that a good TSA should avoid

false negatives. In terms of ROA approximation, this means that we want to compute
inner ROA approximations, so that we can miss stable scenarios (AX

T (M) \ Â 6= ∅
is allowed), but we cannot miss instability issues (Â \AX

T (M) 6= ∅ is forbidden).

Remark 1.3 (Access to CCT)
Given a solution to Problem 1, one only has access to potential critical clearing

states. Relating such result to critical clearing times requires some kind of time-
domain simulation of the faulted system. In other words, direct methods mostly
allow their user to get rid of the post-fault trajectory simulations. For this reason,
ideally, the boundary of the computed transient stability region should be close to a
set of critical clearing states. Other ways to access CCT are not reviewed in the
present thesis.
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Stability oracle functions

What we call stability oracle functions is a most general class of functions whose
value at state xcl gives insight on the stability of the trajectory x(t|xcl). Such
information can in turn be used to assess the transient stability of the studied
system. Here we only give the most general definition, as several more specific
stability oracles will be studied in the rest of the thesis.

Definition 1.6: Stability Oracle Functions (SOFs)

Let D ⊂ Rn. A stability oracle function (SOF) is a v : Rn → R non-increasing
along trajectories x(t|x0) in D, which is characterized by

∀x ∈ D, f(x) · grad v(x) ≤ 0. (1.6)

Remark 1.4 (Positively invariant sublevel sets)
A direct consequence of equation (1.6) is that any sublevel set

Ω := {x ∈ Rn : v(x) ≤ l}

with l ∈ R such that Ω ⊂ D, is positively invariant for system (1.4).

Example 1.5

• Lyapunov functions, whose definition will be recalled in Section 3.2, are an
instance of SOF, related to infinite time ROA.

• Energy functions [22] are an instance of SOF, related to infinite time ROA.

• Dual decision variables of [42] are an instance of SOF that we will study in
Section 3.1, related to finite time ROA.

• Control barrier functions [4] are an instance of SOF, related to positively
invariant sets.

Lyapunov arguments are based on the fact that a stable equilibrium point of a
physical system (such as a power network) is characterized as a local minimum of its
energy. As transient stability requires that the system converges to an equilibrium
after the perturbation is cleared, TSA then reduces to deciding whether the energy
of a system in post-fault state xcl will decrease to a minimum or not. As it is
well known, set Ω from Remark 1.4, when considering a specific kind of Lyapunov
function, is a subset of the Lyapunov ROA A∞({x}) of Definition 1.5. Of course,
depending on the considered SOF, set Ω will have different properties. Finding
relevant SOF for power systems TSA is part of this work, more specifically addressed
in Chapters 3 and 6.

Then, the crucial question remains: how does one compute such functions? Due
to the physical inspiration of direct methods, the first studied oracles were energy
functions, followed by Lyapunov functions, and most of the time they were de-
termined out of physical reasonings or after some analytical computations [22, 131].
However, starting in the early 2000s, some algorithmic methods were developped to:
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• Systematize the computation of SOFs,

• Optimize over SOFs to obtain the “best” transient stability region estimates.

We now introduce some mathematical concepts that will be instrumental in our
computations of transient stability region estimates.

1.3 The moment-SOS approach

1.3.1 Introduction to measures
This section is addressed to a reader unfamiliar with the mathematical notion of
measure. It is an intent to give an intuition on the concept of measure, without
introducing the sophisticated set theory elements that are necessary for a rigorous
definition. In contrast, here we build only on the knowledge of normed vector spaces,
linear forms and continuity. Given a real vector space X equipped with a norm ‖ ·‖,
we recall that:

• A linear form on X is a function φ : X → R s.t. ∀ψ, ψ′ ∈ X , s ∈ R,
φ(ψ + s ψ′) = φ(ψ) + s φ(ψ′); we denote 〈ψ, φ〉 := φ(ψ).

• A continuous function on X is a function f : X → R s.t.

‖ψ − ψk‖ −→
k→∞

0 =⇒ |f(ψ)− f(ψk)| −→
k→∞

0.

• X ′ is the set of continuous linear forms on X , also called dual space1.

Consider the set Cc(Rn) of continuous functions on Rn that vanish outside a ball.
This is an infinite dimensional real vector space, equipped with the uniform norm

‖f‖∞ := sup
x∈Rn

|f(x)|.

We define the dual spaceM(Rn) := Cc(Rn)′, and call it the space of signed measures.
For µ ∈M(Rn) and f ∈ Cc(Rn) we define the integral of f w.r.t. µ as∫

f dµ := 〈f, µ〉.

Then, we define the set of nonnegative functions

Cc(Rn)+ := {f ∈ Cc(Rn) : ∀x ∈ Rn, f(x) ≥ 0}

as well as its dual M(Rn)+ := {µ ∈ M(Rn) : ∀f ∈ Cc(Rn)+,
∫
f dµ ≥ 0}. Those

are cones in the sense that they are invariant through multiplication by a positive
1If X has finite dimension, then all linear forms are continuous, and the Riesz representation

theorem states that X ′ can be identified with X ; however, it is not the case for infinite dimensional
vector spaces.
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Figure 1.3 – Representation of classical measures.

number. M(Rn)+ is the cone of measures on Rn. Eventually, for X ⊂ Rn, we define
the sets

M(X) :=
{
µ ∈M(Rn) : if f ∈ C(Rn) vanishes on X then

∫
f dµ = 0

}
,

M(X)+ :=
{
µ ∈M(Rn)+ : if f ∈ C(Rn) vanishes on X then

∫
f dµ = 0

}
,

which correspond to measures supported on X.
From a physical viewpoint, measures represent mass distributions, or superpos-

itions of points. As a result, they can encode many things, from probability laws
(taking a random variable X of law µ,

∫
f dµ = E[f(X)]) to superpositions of

trajectories of a dynamical system, including distributions of solutions to a given
optimization problem.

Example 1.6

• The Dirac distribution δx represents a unitary mass concentrated in x ∈ Rn,
so that

∫
f dδx = f(x) (Fig. 1.3a).

• The Lebesgue measure λ[a,b] represents a uniform mass distribution on the seg-
ment [a, b] ⊂ R, so that

∫
f dλ[a,b] =

∫ b
a f(x) dx (Fig. 1.3b).

• The Gaussian measure with mean m and standard deviation s represents a
normal probability distribution µ such that (see Fig. 1.3c)

∫
f dµ = 1

s
√

2π

∫ +∞

−∞
e−

(x−m)2

2s2 f(x) dx.

Some measures, such as the Gaussian measure, are absolutely continuous w.r.t.
the Lebesgue measure, meaning that they correspond to actual functions onRn: they
represent densities of mass. Others are not absolutely continuous: for example, the
Dirac measure does not represent a density of mass, but rather a singularity with
mass 1.

In short, measures have two major characteristics:
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• They are the mathematical formalization of point distributions, and hence
appear in a large variety of domains, from probability theory to fluid mechanics
and statistical physics; in particular, trajectories of a differential system can
be encoded under the form of a measure [143, 111, 112, 130, 76];

• They are in duality with functions (such as polynomials as well as stability
oracle functions) through Lebesgue’s integration theory: indeed, the integral
of a function is always computed with respect to a measure (in the case of the
standard integral, the involved measure is the Lebesgue measure).

Remark 1.7 (Link between measures and stability analysis)
In particular, measures are the mathematical concept that explains the relation-

ship between time-domain simulations and direct methods for stability analysis. In-
deed, on the one hand, as a formalization of point distributions, measures can be
used to represent trajectories, that are nothing more than time-state point distribu-
tions. On the other hand, Lebesgue integration theory allows for integrating SOFs
with respect to such trajectory representing measures, introducing a duality between
trajectories and SOFs.

As polynomials are continuous functions,
∫
p dµ represents a particular duality

between p ∈ R[x] and µ ∈M(Rn). Such a duality is instrumental for implementing
the moment-SOS hierarchy. Indeed, historically, moment-SOS hierarchies were made
possible by new theorems on polynomials, that exploited their duality with measures.

1.3.2 A brief history
The moment-SOS or Lasserre hierarchies are the fundamental tools that we will be
studying and using all along this thesis (except in Section 3.2). They are an elegant
framework that brings together real algebraic geometry as well as functional analysis,
to define a plug-and-play scheme for solving a very large variety of problems.

The famous 17th Hilbert problem [46] (solved by Emil Artin in [8]) is at the root
of the moment-SOS approach:

“Can a nonnegative rational function be written as a sum of squares of rational
functions?”

More precisely, Hilbert had proved that the statement is false if one considers
polynomials instead of rational functions [45], which Motzkin complemented with a
counterexample [93], nonnegative but not sum of squares:

pM(x, y) := x4y2 + x2y4 − 3x2y2 + 1.
However, the question of identifying polynomials asked to be positive only on

a subset of Rn still remained to be studied, and motivated numerous works in real
algebraic geometry, leading to the so-called Positivstellensätze [60, 119, 115, 107].
A P-satz reduces the question of positivity of a polynomial over a given subset of
Rn to finding P-satz certificates, involving sums of squares of polynomials (SOS,
see Chapter 2 for details). In parallel, equivalence between SOS characterization



14 CHAPTER 1. INTRODUCTION

and spectral analysis of symmetric matrices was also established [70], allowing for
numerical characterization of positivity over subsets of Rn.

These results were put together, along with fundamental functional analysis argu-
ments, in 2001 to solve the polynomial optimization problem (POP) using Putinar’s
P-satz [68]: Lasserre’s moment-SOS hierarchy was born. The moment-SOS hier-
archy is presented in depth in Chapter 2, along with some original contributions of
this thesis.

Briefly, it consists in modelling a difficult problem using Borel measures such
that, if the analysis is carried out properly, the initial difficult problem is rephrased
as a linear problem on measures. Then, a series of arguments (which we detail in
Chapter 2) based on Putinar’s P-satz, makes possible to approximate this infinite
dimensional linear problem with a sequence of finite dimensional relaxed problems,
that can individually be solved numerically by a computer.

Remark 1.8 (Moment-SOS hierarchies and AI)
It is possible to categorize the moment-SOS hierarchy as a lift-and-project method

(similar to previously discussed SVM). The lift part consists of the infinite dimen-
sional modelling with Borel measures, and the project part is the formulation and
solution of the finite dimensional relaxed problems.

For now, the crucial point is that the high level of abstraction at which the
moment-SOS hierarchy is formulated allowed to apply it in a large number of very
different domains:

• After contributing to the POP, the moment-SOS hierarchy was used to solve
the optimal control problem in [72] in 2008. Indeed, from optimizing over a
static point of Rn, a natural extension was optimization over trajectories of a
control system with values in Rn. This work was a combination of measure
modelling of trajectories with moment-SOS hierarchies, and a duality was
proved between the involved measures and solutions to the Hamilton-Jacobi-
Bellman equation [95].

• After that, the problem of computing the volume of a semialgebraic set K
was addressed in [44]. This time, the formulation as an optimization problem
was only a heuristic to get the volume as optimal solution. An interesting
byproduct of this framework was its duality with functions whose unit sub-
level set approximated K; we call this feature the set approximation property.
Due to this property, the present thesis also focused on this seminal set ap-
proximation problem.

• Eventually, combining trajectory-measure modelling from [72] with the set ap-
proximation property stated in [44] allowed to make a decisive contribution
in the field of direct methods for stability analysis of polynomial control sys-
tems, with references [42, 58, 57], in which inner and outer approximations are
computed for various instances of the constrained region of attraction.

Comprehensive details on the polynomial optimization problem, as well as the three
aforementioned problems, will be given throughout this thesis.
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1.3.3 Moment-SOS hierarchies and power systems

In this section we highlight the very general applicability of the moment-SOS hier-
archies to power systems, through a fundamental example. The first application of
moment-SOS hierarchies to the study of power systems was not related to transient
stability considerations, but to the so-called Optimal Power Flow (OPF) problem.

Consider a power network with several power sources as well as loads, mod-
elled as an AC power system. The AC-OPF problem consists of matching power
consumption and production while minimizing the energy loss in the process.

The optimal power flow can be written as

OPF? = min
vd,vq

f(vd,vq)

s.t. pmin ≤ p(vd,vq) ≤ pmax

qmin ≤ q(vd,vq) ≤ qmax

vmin
mag ≤ vmag(vd,vq) ≤ vmax

mag

smag(vd,vq) ≤ smax
mag

where f is a convex quadratic cost function, the decision variables vd and vq rep-
resent the direct and quadratic coordinates of the voltage at each node of the grid,
p, q and vmag are vectors of nonconvex, degree 2 polynomial functions representing
respectively active power, reactive power and voltage magnitude at each node of
the power grid, and smag is a vector of nonconvex, degree 2 polynomial functions
representing apparent-power line-flows through each line of the power grid (see e.g.
[92] and the comprehensive monography [91]).

This is a particular instance of the polynomial optimization problem, with convex
polynomial objective f and nonconvex feasible set, making the OPF problem hard
to solve in general. Within the literature, one can cite a variety of works that are
referenced in surveys [48, 101, 35, 148]. Most recent contributions consist of relaxing
the problem to make it more tractable in practice, see e.g. [75, 79, 80]. Among those
works, we highlight the use of the moment-SOS hierarchy to formulate a hierarchy of
convex semidefinite relaxations of the AC-OPF problem, that are studied in [92, 39].
In these papers, the authors study in depth the potential that the moment-SOS
hierarchy bears for solving exactly the AC-OPF problem.

Also, building upon [69, 132], the sparse structure of large scale power systems
was related to mathematical sparsity patterns such as correlative sparsity, allowing
for approximate numerical solution of AC-OPF instances with ∼ 10000 variables in
[52]. In a similar direction, it is worth mentioning [1, Chapter 5] for the use of graph
decomposition for Lyapunov stability analysis.

The aim of this thesis is to contribute to the application of moment-SOS hier-
archies to real-life power system transient stability analysis problems. It has been
an opportunity for several contributions in various domains, from generic, theoret-
ical questions on the convergence of the moment-SOS schemes, to pratical stability
analysis of differential systems, and including considerations on the problem of com-
puting the volume of a semialgebraic set.
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1.4 Publications and outline

1.4.1 Thesis organization
The thesis is organized as follows:
• We conclude this introductory chapter with a list of submitted, accepted and

published contributions.

• Chapter 2 progressively introduces the concept of moment-SOS hierarchy in
more detail. We first focus on the general method of infinite dimensional,
measure-based modelling in Section 2.1, with two introductory examples (POP,
K-moment problem) followed by a general formulation of the problem and
some general contributions on the structure of such problems. Then, we in-
troduce the actual moment-SOS hierarchy, which consists of two dual approx-
imating hierarchies (moment relaxations and sum-of-squares strengthenings),
and we state all the results that we will build upon in the rest of the thesis.
Most of the contributions in this chapter were only formulated in particu-
lar cases such as polynomial optimization or volume approximation, but for
the first time we give systematic proofs of the classical theorems concerning
the general moment-SOS hierarchy. The contributions of this chapter were
accepted for publication in [122].

• Chapter 3 then proceeds to the problem of interest here, namely the problem
of hierarchical power systems transient stability analysis. While both hier-
archical stability analysis and power system TSA have been studied for years,
contributions that bring together both fields are scarce. Actually, apart from
the contributions in the present thesis, it seems that [6] was the first attempt in
such direction, drawing upon SOS programming for Lyapunov stability ana-
lysis of power system (1.1). In Section 3.1 (based on publication [53]), we
introduce the moment-SOS based method that was developed in [42] and ad-
apt it to the study of the non-polynomial system (1.1) in a similar fashion as
in [6], after what Section 3.2 (published in [125]) pushes the method of [6] to
its computational limits, by enhancing the considered model with voltage and
mechanical power regulations.

• In Chapter 4, we switch to a more theoretical question, namely the volume
approximation problem. The link between this problem and hierarchical TSA
lies in what we call the “set approximation property”, a feature of the hierarch-
ical volume approximation method hilghlighted in [44], and which inspired the
works of [42]. More precisely, this chapter is dedicated to enhancing the conver-
gence properties of the moment-SOS hierarchy by improving it with additional
constraints deduced from differential geometry arguments. Interestingly, the
demonstration of the convergence improvement involves basic results on par-
tial differential equations. The contributions of this chapter were submitted
for publication as [124].

• Then, Chapter 5 introduces the notion of sparsity, again in the particular con-
text of volume approximation, which is simpler than stability analysis. A new
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scheme is designed to exploit correlative sparsity patterns in the description
of the set whose volume we intend to approximate. This scheme allows us to
partially parallelize the computations and organize them along a tree, with
a transfer of information from the leaves to the root of the tree, at which a
solution to the original problem is computed. A first, very simple path de-
composition structure is studied with examples in dimension up to 100, after
which we formulate a global scheme for generic correlative sparsity patterns,
illustrated on some relevant examples. The corresponding paper [126] was
recently accepted for publication.

• Eventually, most contributions of the previous chapters are used as an in-
spiration for Chapter 6. Section 6.1 focuses on the inner approximation of
Maximal Positively Invariant sets that was published in [100], and the prop-
erties of the corresponding moment-SOS hierarchy are directly deduced from
results of Chapter 2. Then, Section 6.2 (published as [123]) consists of a first
intent to generalize the results of Chapter 5 on sparsity-exploiting volume com-
putation, to the problem of transient stability region approximation. In this
first attempt the sparsity pattern of interest is again a path decomposition
structure that paves the way for general correlative sparsity structures.

1.4.2 List of publications
Published in peer-reviewed international journals

[100] A. Oustry, M. Tacchi and D. Henrion. Inner approximations of the
maximal positively invariant set for polynomial dynamical systems. IEEE
Control System Letters, 3(3):733–738, 2019.

[126] M. Tacchi, T. Weisser, J. B. Lasserre and D. Henrion. Exploiting
sparsity in semi-algebraic set volume computation. Journal of Foundations of
Computational Mathematics. Published online in Feb. 2021. arXiv: 1902.02976.

[122] M. Tacchi. Convergence of Lasserre’s hierarchy: the general case. Op-
timization Letters. Published online in June 2021. arXiv: 2011.08139

Published in peer-reviewed international conferences

[125] M. Tacchi, B. Marinescu, M. Anghel, S. Kundu, S. Benahmed. Power
system transient stability analysis using sum-of-squares programming. In Pro-
ceedings of the Power Systems Computation Conference. IEEE, 2018.

[53] C. Josz, D. K. Molzahn, M. Tacchi and S. Sojoudi. Transient stability
analysis of power systems via occupation measures. In Proceedings of the 10th
Annual Innovative Smart Grid Technologies Conference. IEEE, 2019.

[123] M. Tacchi, C. Cardozo, D. Henrion and J. B. Lasserre. Approximating
regions of attraction of a sparse polynomial differential system. In Proceedings
of the 21st IFAC World Congress, 2020.
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Submitted to peer-reviewed international journals

[124] M. Tacchi, J. B. Lasserre and D. Henrion. Stokes, Gibbs and volume
computation of semialgebraic sets. Submitted in Sept. 2020. arXiv: 2009.12139



2
Numerical analysis of moment problems

This preliminary chapter is an intent to summarize the mathematical tools that
will be used all along this thesis. Briefly, most of the present work is based on the
following methodology:

1) Formulating mathematical questions that correspond to the engineering chal-
lenge we want to address,

2) Modelling these mathematical questions under the particular form of the gen-
eralized moment problem (GMP),

3) Deploying the moment-SOS technology to design schemes that will give ap-
proximate solutions to the GMP.

Step 3) in this methodology does not depend on the engineering and mathematical
questions that arise in the process (these questions will be the subject of the next
chapters). For this reason, we give in the present chapter all the theoretical tools
that will be needed to implement this last step in practice: Section 2.1 introduces
the generic problem that our numerical schemes will approximate, along with two
illustrating examples (polynomial optimization and K-moment problem), while Sec-
tion 2.2 details the hierarchical approximation method that we use. Each section
ends with a technical subsection, marked with a ?.

The original results contained in this chapter were submitted for publication in
[122].
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Figure 2.1 – An example of global polynomial optimization problem.

Here n = 1 and K = [xL, xU ] corresponds to m = 1 and g(x) = (xU − x)(x− xL). As
a continuous function on the compact K, f is bounded and attains its bounds.
Image source – Freiburg university, lecture on real optimization, from the computational economics program.

2.1 The generalized moment problem
This section intends to introduce step by step the concept of generalized moment
problem (GMP). We first present two particular instances of GMP: first the polyno-
mial optimization problem (POP), which is related to pratical computations involved
in engineering and decision making, and then the K-moment problem, being at the
root of moment-based numerical analysis. We then proceed to give a most general
formulation of the GMP, and we end this section with a synthetic theorem that will
be a fundamental tool for all the numerical analyses presented in this thesis. Most
of the notions and results presented in this section can be found in a detailed fashion
in [70].

2.1.1 Global polynomial optimization
A very common instance of the GMP is the global polynomial optimization problem,
which consists in looking for a system configuration (represented by a vector of Rn)
that minimizes a given (polynomial) cost function under some given (polynomial)
state constraints.

Problem 2: Global polynomial optimization (POP)

Let f ∈ R[x] and g ∈ R[x]m such that K := {x ∈ Rn : g(x) ≥ 0} is compact
and nonempty. We consider the problem of minimizing f over K:

f ? := inf
x
f(x) (2.1)

s.t. x ∈ K.

This problem is known as the global polynomial optimization problem (POP).
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Problem 2 has many practical applications among which one can cite the Optimal
Power Flow (OPF) problem (see [48, 101, 35, 148, 39] and references therein), but
is difficult to solve in practice since neither f nor K are assumed to be convex (for a
detailed overview of the approaches to the particular OPF problem, see [91]). This
makes it challenging in the field of optimization.

A classical approach to global POP consists in using the definition of the infimum
f ? as the greatest lower bound of f on K to reformulate problem (2.1) as:

f ? = d?f := max
`

` (2.2)

s.t. ∀x ∈ K, f(x) ≥ `

` ∈ R.

Note that problem (2.2) is the definition of the inf operation, so it is litteraly equi-
valent to (2.1). We end up faced to a question that is known to be difficult: deciding
whether a polynomial is nonnegative on a whole set. However, compared to (2.1),
(2.2) has the advantage to be linear in ` and always admit a unique minimizer
`? = f ?.

Another approach to problem 2 relies on randomization: given a random variable
X ∈ K with probability law P ∈M(K)+, one intends to minimize the expected value
E[f(X)] of f(X), where the decision variable is the probability distribution P of X.
Such a problem is formulated as follows:

f ? = p?f := min
P

E[f(X)] (2.3)

s.t. X ∼ P

P ∈ P(K),

where P(K) := {P ∈M(K)+ : P(K) = 1} is the set of probability measures on K.
The obvious optimal solution to (2.3) would be a deterministic X constantly

equal to a minimizer of f on K: noting argminKf := {x ∈ K : f(x) = f ?},
if x? ∈ argminKf , then the Dirac probability distribution P = δx? yields X = x?
almost surely, so that E[f(X)] = f(x?) = f ?.More generally, any P? ∈ P(argminKf)
is a minimizer for problem (2.3).

The striking fact about formulations (2.2) and (2.3) of problem 2, is that they
are two sides of the same coin. Indeed, both of them can be rewritten under the
form of semi-infinite linear programming problems that are dual to one another:

p?f = min
µ

∫
f dµ (2.4a)

s.t. µ ∈M(K)+

µ(K) = 1

d?f = max
`

` (2.4b)

s.t. f − ` ∈ C(K)+

` ∈ R

where we recall that M(K)+ is the cone of nonnegative measures on K and
C(K)+ is the cone of nonnegative continuous functions on K.

Here the decision variable ` is the Lagrange multiplier corresponding to the
(scalar) linear constraint that µ is a probability measure, and conversely the decision
variable µ is the Lagrange multiplier corresponding to the (infinite dimensional)
conic constraint that f − ` is a nonnegative continuous function on K.
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Remark 2.1 (Retrieving minimizers)
Both of these problem formulations not only give access to the optimal value

f ?, but also to the minimizers. Indeed, if µ? and `? are minimizers for problems
(2.4a) and (2.4b) respectively, then argminK f is exactly the set of roots of f −
`? and contains the support of µ?. In particular, the uniform probability measure
on argminKf is an optimal solution for (2.4a) that gives access to the whole set
argminKf as its support.

In this section we have shown that p?f = f ? = d?f , which means that there is no
duality gap between problems (2.4a) and (2.4b).

Historically, POP was the motivation for the design of the Lasserre, moment-
sum-of-squares hierarchy that we will present in details later on. The duality prop-
erties mentioned in the above are a recurrent, fundamental feature of moment-SOS
hierarchies, as we will show. For now, we proceed to our second illustrating example
of the GMP.

2.1.2 The K-moment problem
We consider a more theoretical problem that is a key for measure-based numerical
analysis, namely the K-moment problem. It is formulated as follows:

Problem 3: K-moment problem

Given nonempty sets K ⊂ Rn, Γ ⊂ Nn and a real sequence z := (zk)k∈Γ ∈ RΓ,
is there a measure µ ∈M(K)+ satisfying

∀k ∈ Γ,
∫

K
xk dµ(x) = zk, (2.5)

where xk := xk1
1 · · ·xknn .

This problem has found a variety of solutions during the latest century, including
two interesting theorems that we will present here. We first need to introduce the
concept of Riesz functional.

Definition 2.1: Riesz functional

Let z := (zk)k∈Nn ∈ RNn be a real sequence. For p(x) := ∑
pk xk ∈ R[x], we

define
Lz(p) :=

∑
pk zk.

The linear form Lz : p 7→ Lz(p) is called the Riesz functional of z. Note that
the map z 7→ Lz is itself linear.

Example 2.2 Let us focus on univariate polynomials (n = 1): z = (zk)k∈N.
Let p(x) := x2, q(x) := 1− x, g(x) := 1− x2. Then,

• Lz(p) = z2 ; Lz(q) = z0 − z1 ; Lz(g) = z0 − z2,

• Lz(p q) = Lz(x2 − x3) = z2 − z3,
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• Lz(g p q) = Lz(x2 − x3 − x4 + x5) = z2 − z3 − z4 + z5.

If n = 2, z = (zij)i,j∈N and p(x, y) = (x − y)2 = x2 − 2xy + y2 for instance, then
Lz(p) = z20 − 2z11 + z02.

Remark 2.3 (Link between Lz and integrals)
If µ ∈M(K)+ is a solution to Problem 3 with Γ = Nn, then by definition for all

p ∈ R[x] ∫
p dµ = Lz(p).

Note that Problem 3 only asks for existence of a suitable measure µ here. The
question of its uniqueness is a distinct problem, to which a major contribution was
given in the case where K is compact, Γ = Nn and µ is asked to have finite total
variation and be interior-regular (it is then called a Radon measure, see e.g. [110,
Section 21.3]): indeed, in this compact K setting, the Riesz-Markov theorem [110,
Section 21.4] ensures that a signed Radon measure µ is uniquely represented by
the integrals

∫
f dµ of continuous functions f ∈ C(K), and the Stone-Weierstraß

theorem [110, Section 12.3] states that any continuous function f ∈ C(K) can be
approximated uniformly with polynomials (pε)ε>0, so that∫

f dµ = lim
ε→0

∫
pε dµ = lim

ε→0
Lz(pε)

is uniquely determined by the data zk =
∫

xk dµ for all k ∈ Nn.
The notion of Riesz functional is instrumental in the formulation of a funda-

mental theorem (see [70, Theorem 3.1]) for solving Problem 3:
Theorem 2.2: Riesz-Haviland

Suppose that the set K is closed and that Γ = Nn. Then, Problem 3 has a
solution iff

Lz(p) ≥ 0

for all p ∈ R[x] that is nonnegative on K.

Theorem 2.2 provides us with a first criterion to decide the feasibility of Problem
3. However, we are again faced with the difficult problem of discriminating polyno-
mials with respect to their sign over a set K. With additional assumptions on K, it
is however possible to formulate a decisive feasibility theorem for Problem 3, at the
price of the notion of basic semi-algebraic set:

Definition 2.3: Basic semialgebraic sets

K ⊂ Rn is said to be basic semialgebraic if there exists m ∈ N? as well as
g := (g1, . . . , gm) ∈ R[x]m s.t.

K = {x ∈ Rn : g(x) ≥ 0},

where g(x) ≥ 0 means that for all i ∈ N?m, gi(x) ≥ 0. We call K a simple
semialgebraic set if m = 1, semialgebraic set if it is a finite union of basic
semialgebraic sets.
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Example 2.4

• The half space Hn := {x ∈ Rn : xn ≥ 0} is simple semialgebraic.

• The positive orthant Rn
+ := {x ∈ Rn : ∀i ∈ N?n, xi ≥ 0} is basic semialgebraic.

• The unit ball of Rn, Bn := {x ∈ Rn : 1 − |x|2 ≥ 0} is a compact, simple
semialgebraic set.

• The hypercube [−1, 1]n = {x ∈ Rn : ∀i ∈ N?n, 1 − x2
i ≥ 0} is a compact, basic

semialgebraic set.

Such notions lead to the formulation of Putinar’s P-satz [107, Lemma 3.2], that
is at the root of the moment-SOS hierarchy:

Theorem 2.4: Putinar’s (primal) Positivstellensatz (P-satz)

Suppose that Γ = Nn and that there exists g ∈ R[x]m, R > 0 such that

K = {x ∈ Rn : g(x) ≥ 0 ∧ |x|2 ≤ R2}.

Then, Problem 3 has a unique solution µ ∈M(K)+ iff for all p ∈ R[x]:

• Lz(p2) ≥ 0,

• Lz((R2 − |x|2) p2) ≥ 0,

• ∀i ∈ N?m,Lz(gi p2) ≥ 0.

Theorem 2.4 makes it possible to replace the difficult positivity constraint on p of
Theorem 2.2 with much more easily checked constraints on squares of polynomials
and, by linearity, sums of squares of polynomials, which is at the origin of the name
moment-sum-of-squares or moment-SOS: the hierarchy relies on the link drawn by
Putinar’s P-satz between moments of measures and sums of squares of polynomials.

Remark 2.5 (Ball constraint)
Let g ∈ R[x]m and K := {x ∈ Rn : g(x) ≥ 0} be a generic compact basic

semialgebraic set. For R > 0, define

KR := {x ∈ Rn : g(x) ≥ 0 ∧ |x|2 ≤ R2} = K ∩BR,

where BR := {x ∈ Rn : |x| ≤ R} is the euclidean ball of radius R. In such setting, if
K is compact then it is bounded, so that there exists R0 > 0 s.t. ∀R ≥ R0, K ⊂ BR,
and thus K = KR. This shows that if K is compact, it is always possible to add a
redundant ball constraint so that Putinar’s P-satz 2.4 holds for KR. For this reason,
we will omit the technical ball constraint in most of this thesis.
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2.1.3 Generalizations
Problems 2 and 3 are actually both particular instances of a more general problem
presented in details in [70, Chapter 1].

Let: • K ⊂ X ⊂ Rn, • I,J be sets of indices,

• ϕi ∈ C(X), i ∈ I, • ψj ∈ C(K), j ∈ J,

• ri ∈ R, i ∈ I, • zj ∈ R, j ∈ J, • c ∈ C(K).

The generalized moment problem is the most general linear optimization problem
with measures as decision variables and generalized moment (i.e. integral) objective
function and constraints.

Problem 4: Original generalized moment problem (GMP)

p?GM := sup
µ

∫
c dµ (2.6)

s.t. µ ∈M(K)+∫
ϕi dµ ≤ ri i ∈ I∫
ψj dµ = zj j ∈ J.

Problems 2 and 3 are both instances of Problem 4. Indeed, on the one hand,
taking c = f , I = ∅, J = {0}, ψ0(x) = 1, z0 = 1, and minimizing instead of
maximizing, one obtains exactly the formulation (2.3) of Problem 2.

On the other hand, taking c = 0, I = ∅, J = Γ ⊂ Nn, ψj(x) = xj, one ends up
with a feasibility problem formulation that exactly matches Problem 3.

In addition to including both Problems 2 and 3 (as well as a variety of other
moment problems) as particular instances, Problem 4 allows for more general formu-
lations that include inequality constraints on some moments of the decision variable
µ.

Example 2.6 The volume computation problem is an instance of the GMP (2.6):

p?K := sup
µ

∫
1 dµ

s.t. µ ∈M(K)+∫
ϕ dµ ≤

∫
X
ϕ(x) dx ∀ϕ ∈ C(X)+

where K ⊂ X ⊂ Rn, X being compact. We shall prove later on that p?K = vol K.

One can compute the dual of the GMP, simply by defining the Lagrange multi-
pliers wi ∈ R+, i ∈ I (corresponding to the inequality constraints) and vj ∈ R, j ∈ J

(corresponding to the equality constraints) and performing the standard Lagrange
dualization process, leading to the following problem:
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d?GM := inf
(wi)i∈I
(vj)j∈J

∑
i∈I
wi ri +

∑
j∈J

vj zj

s.t.
∑
i∈I
wi ϕi +

∑
j∈J

vj ψj − c ∈ C(K)+

wi ∈ R+ i ∈ I

vj ∈ R j ∈ J.

However, this dual formulation is somehow more difficult to interpret, with sums
over possibly infinite or even uncountable index sets I and J. Thus, we first work
on a rephrazing of Problem 4 allowing for more synthetic dualization: by linearity
of the integration operation, we can consider without loss of generality that the
elements of ϕ := (ϕi)i∈I and ψ := (ψj)j∈J are linearly independent. Thus, we define:

• Y ′I := span ϕ ⊂ C(X) (resp. Y ′J := span ψ ⊂ C(K)) the vector space spanned
by the basis ϕ (resp. ψ),

• Y ′I+ := span+ϕ :=
{∑K

k=1wk ϕik : K ∈ N? ∧ ∀k ∈ N?K , (wk ≥ 0 ∧ ik ∈ I)
}
the

convex cone spanned by inequality constraints ϕ,

• YI := (Y ′I)′ & YJ := (Y ′J)′ where X ′ := {φ ∈ C(X ) : φ is linear} denotes the
topological dual of the vector space X , and 〈χ, φ〉X := φ(χ) for φ ∈ X ′, χ ∈ X ,

• YI+ := (Y ′I+)′ = {φ ∈ YI : ∀ϕ ∈ Y ′I+, 〈ϕ, φ〉YI ≥ 0} the dual cone of Y ′I+,

• Φ :=

 M(K) −→ YI

µ 7−→ [ϕi 7→
∫
ϕi dµ]

the inequality constraint linear map,

• Ψ :=

 M(K) −→ YJ

µ 7−→ [ψj 7→
∫
ψj dµ]

the equality constraint linear map,

• ρ := [ϕi 7→ ri] ∈ YI & ζ := [ψj 7→ zj] ∈ YJ synthetic optimization paramet-
ers.

This allows us to give a synthetic formulation of (2.6) and its dual.
Problem 5: Synthetic GMP

p?GM := sup
µ

∫
c dµ (2.7a)

s.t. µ ∈M(K)+

ρ− Φµ ∈ YI+

ζ −Ψµ = 0YJ

d?GM := inf
v,w
〈w, ρ〉YI + 〈v, ζ〉YJ (2.7b)

s.t. Φ′w + Ψ′v − c ∈ C(K)+

w ∈ Y ′I+
v ∈ Y ′J

where Φ′ (resp. Ψ′) is the adjoint of Φ (resp. Ψ), defined by
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∫
(Φ′w) dµ = 〈w,Φµ〉YI (resp.

∫
(Ψ′v) dµ = 〈v,Ψµ〉YJ).

Problems (2.6) and (2.7a) are equivalent, and so are their duals.
Indeed, ∑iwi ϕi, wi ∈ R+, and

∑
j vj ψj, vj ∈ R, can be approximated with w ∈ Y ′I+

and v ∈ Y ′J respectively.

Example 2.7 The volume problem of Example 2.6 can be reformulated as an in-
stance of (2.7) with no equality constraints, which allows for easy dual formulation
(see [44]):

p?K = sup
µ

∫
1 dµ (2.8a)

s.t. µ ∈M(K)+

λ− µ ∈M(X)+

d?K := inf
w

∫
w dλ (2.8b)

s.t. w − 1 ∈ C(K)+

w ∈ C(X)+

where λ is the Lebesgue measure on X . Now we show that p?K = vol K = d?K:
On the primal side: µ? := λK := 1K λ is clearly feasible (since 1K ≤ 1) and for

any feasible µ ∈M(K)+, µ?− µ ∈M(K)+, thus µ? is optimal and p?K =
∫

1 dµ? =
λ(K) = vol K.

On the dual side: constraints on w can be synthesized as w ≥ 1K; then, by
density of C(X) in the space L1(X) of Lebesgue-integrable functions, any minimizing
sequence (wε)ε is such that

∫
wε dλ −→

ε→∞

∫
1K dλ = λ(K) = vol K.

The volume problem will serve as an illustrative example in the rest of this
chapter. It will also be at the center of Chapters 4 and 5.

However, some already existing applications of the moment-SOS hierarchy to dy-
namical and control systems rely on GMP formulations involving multiple measures.
For this reason, we eventually propose the following generalization, where instead
of considering a single measure µ ∈M(K)+, one takes:

• µ1 ∈M(X1)+, . . ., µN ∈M(XN)+, where Xk ⊂ Yk ⊂ Rnk ,

• corresponding costs and parameters c1 ∈ C(X1), . . ., cN ∈ C(XN),

• inequality constraint parameters ϕ1 ∈ C(Y1)I, . . . , ϕN ∈ C(YN)I

• equality constraint parameters ψ1 ∈ C(X1)J, . . ., ψN ∈ C(XN)J,

and define the multi-measure integral
∫

c · dµ :=
N∑
k=1

∫
ck dµk,

together with the standard operator notation:

• X :=M(X1)× . . .×M(XN) , X+ :=M(X1)+ × . . .×M(XN)+

• X ′ := C(X1)× . . .× C(XN) 3 c , X ′+ := C(X1)+ × . . .× C(XN)+,

• Y := YI × YJ , Y+ := YI+ × {0YJ} , b := (ρ, ζ) ∈ Y ,
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• Y ′ := Y ′I × Y ′J , Y ′+ := Y ′I+ × Y ′J , Aµ := (Φµ,Ψµ) ∈ Y ,

• ∀` := (w,v) ∈ Y ′, 〈`,b〉Y := 〈w,ρ〉YI + 〈v, ζ〉YJ

• ∀` := (w,v) ∈ Y ′, A ′` := Φ′w + Ψ′v so that

〈w,Φµ〉YI + 〈v,Ψµ〉YJ = 〈`,Aµ〉Y =
∫

(A ′`) · dµ =
∫

(Φ′w + Ψ′v) · dµ,

which allows us to write the following abstract rephrazing of the GMP and its dual:
Problem 6: Abstract multivariate GMP

p?GM := sup
µ

∫
c · dµ (2.9a)

s.t. µ ∈ X+

b−Aµ ∈ Y+

d?GM := inf
`
〈`,b〉Y (2.9b)

s.t. A ′`− c ∈ X ′+
` ∈ Y ′+

By construction, Problems 4 and 5 are particular instances of Problem 6. In
fact, all the infinite dimensional optimization problems that we will consider in this
thesis are instances of this general Problem 6.

Example 2.8 The finite time region of attraction (ROA) problem is another par-
ticular instance of the GMP (2.9), see [42]:

p?ROA := sup
µ,ν,ξ

∫
1 dµ

s.t. µ ∈M(X)+

ν ∈M(I×X)+

ξ ∈M(K)+

λ− µ ∈M(X)+

∂tν + div(ν f) = δ0 µ− δT ξ

d?ROA := inf
v,w

∫
w dλ

s.t. w − v(0, ·)− 1 ∈ C(X)+

− ∂tv − f · grad v ∈ C(I×X)+

v(T, ·) ∈ C(K)+

w ∈ C(X)+

v ∈ C1(I×X)

where I := [0, T ], T > 0 and K ⊂ X ⊂ Rn, X being compact. Here c = (1, 0, 0),
Φ(µ, ν, ξ) = µ, Ψ(µ, ν, ξ) = ∂tν + div(ν f) + δT ξ − δ0 µ, ρ = (λ, 0, 0), ζ = (0, 0, 0).
Then, Φ′w = (w, 0, 0) and Ψ′v = (−v(0, ·),−∂tv − f · grad v, v(T, ·)).

We will have the opportunity to give more detailed explanations on this problem
in Chapters 3 and 6.

2.1.4 Infinite dimensional duality ?

This section only aims at stating a technical theorem that we will use all along this
thesis to prove strong duality in our GMP instances.

Lagrangian duality is a rich notion that makes it possible to consider two view-
points when faced to an optimization problem. We first introduced it in Section
2.1.1 where we gave a primal probabilistic viewpoint (2.4a) as well as a dual ana-
lytic viewpoint (2.4b) to the POP (2.1). Then we introduced generic duality in the
GMP with formulations (2.7) and (2.9).
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Figure 2.2 – A possible aspect of Lagrangian for univariate optimization.

The primal problem maximizes the Lagrangian while staying on the concave curve,
and the dual problem minimizes the Lagrangian while staying on the convex curve.
Image source – “A saddle point”, Intro to optimization in deep learning: Gradient Descent, Ayoosh Kathuria.

Let us first go back to the dual formulation. Starting from (2.9a), the dual (2.9b)
is obtained by rephrazing the problem in terms of Lagrangian:

p?GM = sup
µ∈X+

inf
`∈Y ′+
L(µ, `) (2.10a) −→ d?GM := inf

`∈Y ′+
sup
µ∈X+

L(µ, `) (2.10b)

where the Lagrangian functional is defined by

L(µ, `) :=
∫

c · dµ+ 〈`,b−Aµ〉Y =
∫

(c−A ′`) · dµ+ 〈`,b〉Y ,

both expressions being equivalent by definition of the adjoint operator A ′.
Indeed, by definition of the dual cone Y ′+, for any µ ∈ X+,

inf
`∈Y ′+

L(µ, `) =


∫

c · dµ if b−Aµ ∈ Y+

−∞ else.

Then, since −∞ <
∫

c · dµ, (2.10a) is actually equivalent to (2.9a). Eventually,
to formulate the dual problem, one only needs to switch the sup and inf operators,
and do the reverse reasoning to show that (2.10b) is equivalent to (2.9b).

No matter the subject, considering several viewpoints for a given problem helps
understanding it, and each viewpoint has its special features that allow for elegant
proofs or convenient practical implementations. However, in order to be able to
freely switch between primal and dual formulations of a given problem, one needs
an essential property: the optimum should not depend on the viewpoint, meaning
that one has to ensure that p?GM = d?GM. This is the strong duality property.

In general, strong duality is not guaranteed, and one only has:
Proposition 2.5: Weak duality

It always holds that p?GM ≤ d?GM.
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Proof : Let µ ∈ X+, ` ∈ Y ′+. It is clear that inf
m∈Y ′+

L(µ,m) ≤ L(µ, `).

Then, one can take the supremum over all µ ∈ X+ to get that p?GM ≤ sup
µ∈X+

L(µ, `).

Eventually, taking the infimum over all ` ∈ Y ′+ yields p?GM ≤ d?GM. ♦

For the GMP, one can prove an elegant theorem to easily guarantee strong duality
in practice.

Theorem 2.6: Strong duality in the GMP

Suppose that there exists C > 0 s.t. if µ = (µ1, . . . , µN) ∈ X+ is such that
b −Aµ ∈ Y+, then for all k ∈ N?N , µk(Xk) ≤ C . Suppose that there exists
such µ. In that case,

p?GM = d?GM.

Moreover, (2.9a) has an optimal solution µ? ∈ X+ s.t.

b−Aµ? ∈ Y+ &
∫

c · dµ? = p?GM.

Proof : We rely on [11, Theorem (7.2), Lemma (7.3)]. Consider the cone

K :=
{(
Aµ,

∫
c · dµ

)
: µ ∈ X+

}
⊂ Y ×R.

According to [11, Theorem (7.2)] we only have to prove that p?GM < ∞ and K is
closed. Clearly,

p?GM ≤ ‖c‖∞ ‖µ‖TV ≤ ‖c‖∞ N C <∞,
where ‖c‖∞ := maxk supxk∈Xk

ck(xk) is finite and ‖µ‖TV := ∑
k µk(Xk) ≤ N C.

Besides, [11, Lemma (7.3)] states that for K to be closed, it is sufficient to prove
that X+ has a weak-∗ compact, convex base, and that

∀µ ∈ X+,
(
Aµ,

∫
c · dµ

)
= (0Y , 0) =⇒ µ = 0X . (∗)

We first exhibit a weak-∗ compact convex base for X+ =M(X1)+× . . .×M(XN)+.
Let

P :=
{
φ ∈ X+ :

∫
1 · dφ = 1

}
,

where 1 = (x1 7→ 1, . . . ,xN 7→ 1) ∈ C(X1) × . . . C(XN). P is a base of X+ in the
sense that X+ \ {0X} is isomorphic to R++ × P through the bijective application
χ : (t,φ) 7→ t φ. Indeed, any µ ∈ X+ \ {0X} has a unique antecedent by χ, given
by

µ = t φ with: t :=
∫

1 · dµ =
N∑
k=1

µk(Xk) > 0 & φ := 1
t
µ.

P is convex since X+ is convex and for any t ∈ [0, 1], φ1,φ2 ∈ P , φ̃ := tφ1+(1−t)φ2,∫
1 · dφ̃ = t

∫
1 · dφ1 + (1− t)

∫
1 · dφ2 = t+ 1− t = 1.
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P is weak-∗ closed as the intersection between the level-1 set of the weak-∗ continuous
functional µ 7→

∫
1 · dµ and the weak-∗ closed cone X+.

Eventually, P ⊂ X≤1 := {ν = (ν1, . . . , νN) ∈ X : ∀k ∈ N?N , ‖νk‖TV ≤ 1}, where
‖ν‖TV := sup{

∫
ϕ dν : |ϕ| ≤ 1} is the total variation norm. The Banach-Alaoglu

theorem [15, Theorem 3.16] ensures that X≤1 is weak-∗ compact, yielding that P
is a weak-∗ closed subset of a weak-∗ compact set and thus a weak-∗ compact set
itself.

It remains to prove (∗). Let µ⊥ ∈ X+ s.t. Aµ⊥ = 0Y and
∫

c · dµ⊥ = 0. We
want to prove that µ⊥ = 0X so that (∗) holds.

Let µ(0) ∈ X+ s.t. b − Aµ(0) ∈ Y+. Define for t ≥ 0 µ(t) := µ(0) + t µ⊥.
Let t ≥ 0. Since X+ is a convex cone, µ(t) ∈ X+; in addition, by construction
b − Aµ(t) = b − Aµ(0) is in Y+, so that our assumption ensures that for any
k ∈ N?N , µ

(t)
k (Xk) ≤ C. However, µ(t)

k (Xk) = µ
(0)
k (Xk) + t µ⊥k (Xk) ≥ t µ⊥k (Xk).

This yields that for all t ≥ 0, k ∈ N?N ,

0 ≤ t µ⊥k (Xk) ≤ C,

which is only possible if µ⊥k (Xk) = 0 ∀k ∈ N?N , i.e. if µ⊥ = 0X . ♦

Example 2.9 Consider the global POP:

p?f = min
µ

∫
f dµ (2.4a)

s.t. µ ∈M(K)+

µ(K) = 1

d?f = max
`

` (2.4b)

s.t. f − ` ∈ C(K)+

` ∈ R

We already know that optimal values are attained and that p?f = d?f = f ?. How-
ever, this fact can also be proved using Theorem 2.6: any µ ∈M(K)+ s.t. µ(K) = 1
satisfies µ(K) ≤ C as long as C ≥ 1, and the set of probability measures over
nonempty K is nonempty. Thus, p?f is attained and strong duality holds: p?f = d?f .

Example 2.10 Consider the volume problem:

p?K = sup
µ

∫
1 dµ

s.t. µ ∈M(K)+

λ− µ ∈M(X)+

d?K := inf
w

∫
w dλ

s.t. w − 1 ∈ C(K)+

w ∈ C(X)+

We already know that primal optimum is attained and that p?K = d?K = vol K.
However, this fact can also be proved using Theorem 2.6: any µ ∈ M(K)+ s.t.
λ − µ ∈ M(X)+ satisfies µ(K) ≤ λ(K) =: C, and the set of such measures is
nonempty (for instance, it contains the null measure 0). Thus, p?K is attained and
strong duality holds: p?K = d?K.

Example 2.11 In Chapter 3 we will use Theorem 2.6 to prove strong duality for
the finite time region of attraction problem of Example 2.8.
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Remark 2.12 (Motivation for strong duality results)
As stated at the beginning of this section, strong duality first allows tapping into

both versions of the same problem, depending on which property one intends to use,
without changing the optimal value of the problem.

However, it is not the only interest for proving strong duality: as we will show
later on, strong duality in the GMP is a first sign that the derived finite dimensional
approximation problems should be well behaved when numerically addressed through
optimization algorithms.
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2.2 The moment-SOS hierarchy

After giving an insight on the generalized moment problem and infinite dimensional
linear programming in Section 2.1, we now proceed to detail a method to compute
approximate solutions of such problems, namely Lasserre’s moment-SOS hierarchy.
We first introduce the primal, moment hierarchy, that directly exploits previously
introduced results to give a finite dimensional counterpart to the moment problem
(2.9a). Then, we detail the dual, SOS hierarchy for problem (2.9b), manipulating
simpler objects such as functions and polynomials instead of measures and moments.
Eventually, as in the previous section, we state a strong duality theorem for the
moment-SOS hierarchy, as well as some useful additional results.

2.2.1 Moments

We first focus on the primal (2.9a) on measures, as the moment hierarchy is quickly
stated using theorem 2.4. For the sake of clarity and without loss of generality, we
work with the particular instance of the volume problem:

p?K = sup
µ

∫
1 dµ (2.8a)

s.t. µ ∈M(K)+

λ− µ ∈M(X)+,

with K ⊂ X ⊂ Rn compact sets. The moment hierarchy consists in replacing the
decision variable µ ∈ M(K)+ with the sequence of its moments zk =

∫
xk dµ.

To ensure that this does not change the problem, we invoke Putinar’s P-satz 2.4 to
guarantee that we really work with moment sequences corresponding to actual meas-
ures, and not generic multi-index sequences. However, using Theorem 2.4 requires
an additional assumption on K and X.

Assumption 2.7: Compact basic semialgebraic sets

∃ mK,mX ∈ N, RK, RX ∈ R++, gK ∈ R[x]mK , gX ∈ R[x]mX s.t.

gK,mK(x) = R2
K − |x|2, gX,mX(x) = R2

X − |x|2,

K = {x ∈ Rn : gK(x) ≥ 0}, X = {x ∈ Rn : gX(x) ≥ 0}.

In words, K and X are basic semialgebraic sets with a ball constraint in their
description. According to Remark 2.5, up to adding a redundant ball constraint,
this is equivalent to assuming K and X to be compact basic semialgebraic sets.

Assumption 2.7 allows us to use Theorem 2.4 and reformulate the volume prob-
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lem (2.8a):

p?K = sup
z
z0

s.t. z = (zk)k∈Nn ∈ RNn

∀p ∈ R[x] 0 ≤ Lz(p2) ≤
∫

X
p(x)2 dx

∀p ∈ R[x] Lz(gK,i p
2) ≥ 0 i ∈ N?mK

∀p ∈ R[x] Lz(gX,i p
2) ≤

∫
X
gX,i(x) p(x)2 dx i ∈ N?mX

.

Here, according to Putinar’s P-satz 2.4, we ensure that z is the moment sequence of
a measure µ ∈M(K)+ by enforcing Lz(p2) ≥ 0 and Lz(gK,i p

2) ≥ 0 for all p ∈ R[x]
and i ∈ N?mK

. Similarly, the upper bounding constraints on the Riesz functionals
ensure that the measure λ − µ, whose moment sequence is (

∫
X xk dx − zk)k∈Nn , is

nonnegative on X.
Then, Lasserre’s moment hierarchy only consists in relaxing the moment con-

straints by replacing the infinite dimensional test space R[x] with the dimension
Dd
n :=

(
n+d
n

)
test space Rd[x] of degree at most d polynomials, reducing the search

to finite pseudo-moment sequences:

pdK := sup
z
z0 (2.11)

s.t. z = (zk)|k|≤2d ∈ RNn2d

∀p ∈ Rd[x] 0 ≤ Lz(p2) ≤
∫

X
p(x)2 dx

∀p ∈ Rd−dK,i [x] Lz(gK,i p
2) ≥ 0 i ∈ N?mK

∀p ∈ Rd−dX,i [x] Lz(gX,i p
2) ≤

∫
X
gX,i(x) p(x)2 dx i ∈ N?mX

,

where |k| = k1 + · · · + kn, Nn2d := {k ∈ Nn : |k| ≤ 2d}, dK,i := dd◦gK,i/2e and
dX,i := dd◦gX,i/2e so that the moment constraints only involve the zk for |k| ≤ 2d.

The fundamental difference between problems (2.8a) and (2.11) is that the former
is an infinite dimensional linear cone programming problem, while the latter is a
finite dimensional semidefinite programming problem whose constraints can be re-
formulated as Linear Matrix Inequalities (LMI), through the following definition.

Definition 2.8: Localizing & moment matrices

Let d, dg ∈ N, g ∈ Rdg [x]. Let ed(x) := (ei(x))i≤Ddn be a basis of Rd[x].
Let z = (zk)|k|≤2d+dg ∈ R

Nn2d+dg , where we recall that |Nnd | = Dd
n =

(
n+d
n

)
.

• The degree d localizing matrix Md(g z) of z in g is defined as the size Dd
n

matrix representation in basis ed(x) of the bilinear application

(p, q) ∈ Rd[x]2 7−→ Lz(g p q).

• The degree d moment matrix of z is defined as Md(z) := Md(1 z).
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The localizing matrix is defined so that if p(x) = p · ed(x) and q(x) = q · ed(x),
p,q ∈ RDdn , then

Lz(g p q) = p>Md(g z) q & Lz(g p2) = p>Md(g z) p.

Example 2.13 Let us focus on univariate polynomials (n = 1): z = (zk)1≤k≤2d+dg .
Let d = 2, g(x) := 1− x2, e2(x) := (1, x, x2). Then, z = (z1, z2, z3, z4, z5, z6) and

• M2(z) =


z0 z1 z2

z1 z2 z3

z2 z3 z4

 • M2(g z) =


z0 − z2 z1 − z3 z2 − z4

z1 − z3 z2 − z4 z3 − z5

z2 − z4 z3 − z5 z4 − z6


Now let n = 2, d = 1, g(x, y) = 1 + x− y, e1(x, y) := (1, x, y).
Then, z = (z00, z10, z01, z20, z11, z02, z30, z21, z12, z03) and

• M1(z) =
(
z00 z10 z01

z10 z20 z11

z01 z11 z02

)
• M1(g z) =

(
z00 + z10 − z01 z10 + z20 − z11 z01 + z11 − z02

z10 + z20 − z11 z20 + z30 − z21 z11 + z21 − z12

z01 + z11 − z02 z11 + z21 − z12 z02 + z12 − z03

)

Remark 2.14 (Localizing matrix computation)
One can observe the general property that if Md(z) = (mij)ij is represented by its

coefficients, and ed(x) = (xki)i is a basis of monomials, then mij = mji = zki+kj ,
so that the moment matrix computation is straightforward.

Also, always taking a basis of monomials (xki)i as ed(x), if g(x) = ∑
k gk xk and

Sk0 := (zk)k 7→ (zk+k0)k is the shift operator, then Md(g z) = ∑
k gk Md(Sk z), so

that the localizing matrix is quickly deduced from the moment matrix.
For this reason, we define the shift map z 7→ g z := ∑

k gk Sk z.
Eventually, if zk =

∫
xk dµ for some nonnegative measure µ, then one has the

following relation between µ and Md(z):

Md(z) =
∫

ed(x) ed(x)> dµ(x) � 0,

where for a symmetric M ∈ Sn, M � 0 means that M is positive semidefinite i.e.
M ∈ Sn+.

In the rest of this thesis, we work with a basis of monomials ed(x) = (xki)i. The
interest of Definition 2.8 is that it characterizes nonnegativity of p 7→ Lz(g p2) as
positive semidefiniteness of Md(g z), allowing us to reformulate problem (2.11) as:

Problem 7: Moment relaxation hierarchy

For d ∈ N? large enough, compute

pdK := sup
z
z0 (2.12)

s.t. z = (zk)|k|≤2d ∈ RNn2d

0 � Md(z) � Md(l)
Md−dK,i(gK,i z) � 0 i ∈ N?mK

Md−dX,i(gX,i (l− z)) � 0 i ∈ N?mX
,
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where l := (
∫
X xk dx)|k|≤2d is the truncated moment sequence of the Lebesgue

measure on X and M � N means that N−M � 0. Here we are faced with a finite
dimensional optimization problem whose constraints are written under the form of
size Dd

n LMIs, so that it can be tackled by semidefinite programming solvers, at
least for small values of Dd

n.
In order to formulate the moment hierarchy, we relaxed the infinite dimensional

constraint that a sequence should represent a measure, into less restrictive finite di-
mensional semidefinite positivity constraints on localizing matrices. In other words,
the feasible set for (2.12) is larger than the feasible set for (2.8a), in the sense that
if z represents a feasible measure µ for (2.8a), then it is feasible for the (2.12). For
these reasons, the moment hierarchy is said to be a hierarchy of relaxations, and
p?K ≤ pdK.

The same reasoning allows us to define pdGM ≥ p?GM as long as c and the ϕk
and ψk can be chosen as families of polynomials, which is the case if Y ′ is dual
to a space of Ck functions with compact supports, allowing the use of the Stone-
Weierstraß theorem to reformulate all constraints into moment constraints.

We end this section with a quite useful result .
Lemma 2.9: Pseudo moment sequences boundedness

Let d ∈ N?, R > 0, z ∈ RNn s.t. Md(z) � 0 & Md−1((R2− | · |2) z) � 0. Then,

max
|k|≤2d

|zk| ≤ z0 max(1, R2d).

In words, asking for the moment matrix and the ball-localizing matrix to
be positive semidefinite ensures uniform boundedness of the pseudo-moment
sequence.

Proof : Md(z) � 0 is equivalent to

∀p ∈ Rd[x],Lz(p2) ≥ 0, (a)

while Md−1((R2 − | · |2) z) � 0 means that

∀p ∈ Rd−1[x],Lz((R2 − | · |2) p2) ≥ 0. (b)

(a) with p(x) = xk, |k| ≤ d yields z2k ≥ 0.
(b) with p(x) = 1 yields R2z0 ≥

∑
|k|=1 z2k, since |x|2 = ∑n

j=1 x
2
j = ∑

|k|=1 x2k.
Hence, since the z2k are nonnegative, one has |k| = 1⇒ z2k ≤ R2z0.

Going forward, if |k| = 1, (b) with p(x) = xk yields R2z2k ≥
∑
|k′|=1 z2(k+k′) with

z2(k+k′) ≥ 0 by (a), so that R4z0 ≥ R2zk ≥ z2(k+k′) as long as |k| = |k′| = 1, and
thus, if |k| = 2, R4z0 ≥ z2k. By induction, one has for k ∈ Nnd that

0 ≤ z2k ≤ R2|k|z0 ≤ z0 max(1, R2d). (c)

Let k,k′ ∈ Nnd . Then, (a) with p(x) = xk±xk′ yields 0 ≤ Lz(p2) = z2k±2zk+k′+z2k′

so that
|zk+k′ | ≤

z2k + z2k′

2 ≤ max(z2k, z2k′)
(c)
≤ z0 max(1, R2d). (d)
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Eventually, any k ∈ Nn2d can be written k = k′ + k′′ with k′,k′′ ∈ Nnd , so that it
satisfies (d), and |zk| ≤ z0 max(1, R2d).

♦
This lemma proves several important things, among which any nonzero feasible
vector z for (2.11) satisfies z0 > 0, and if RX ≤ 1 in Assumption 2.7 and z0 ≤ C
is enforced, then for all d ∈ N, z feasible for (2.11) satisfies |zk| ≤ C ∀k. These
features of pseudo-moment sequences will be useful to state important results in
Section 2.2.3.

2.2.2 Sums of squares

We then proceed with the dual (2.9b) on continuous functions, that are more com-
monly used than measures in the field of automatics. For the sake of clarity and
without loss of generality, we keep working with the particular instance of the volume
problem:

d?K = inf
w

∫
w dλ (2.8b)

s.t. w − 1 ∈ C(K)+

w ∈ C(X)+,

with K ⊂ X ⊂ Rn compact sets. First, the Stone-Weierstraß theorem allows ap-
proximating the function w with polynomials without changing the value of the
problem, yielding:

d?K = inf
w

∫
w dλ

s.t. w − 1 ∈ R(K)+

w ∈ R(X)+,

where R(X)+ := R[x] ∩ C(X)+ is the cone of polynomials that are nonnegative
on X. Here the problem of deciding whether a polynomial is nonnegative on a set
appears once again. However, we now give a theorem to tackle this difficulty when
X and K are compact basic semialgebraic sets.

To state our theorem, we introduce the notion of quadratic module:
Definition 2.10: Quadratic module

Let m ∈ N?, g ∈ R[x]m. We define:

• The cone Σ[x] := {p2
1 + . . . + p2

K : K ∈ N ∧ p1, . . . , pK ∈ R[x]} of
polynomial sums of squares (SOS)

• The quadratic module (cone) Σ(g) := {s0 +s ·g : s0 ∈ Σ[x]∧s ∈ Σ[x]m}.

The notion of quadratic module is instrumental in the statement of a dual version
of Theorem 2.4, that is also called Putinar’s Positivstellensatz.
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Theorem 2.11: Putinar’s (dual) Positivstellensatz (P-satz)

Let g ∈ R[x]m, R > 0, K := {x ∈ Rn : g(x) ≥ 0 ∧ |x|2 ≤ R2}. Then,

R(K)++ ⊂ Σ
(
g, R2 − | · |2

)
,

where R(X)++ := {p ∈ R[x] : ∀x ∈ X, p(x) > 0}.

In words, any polynomial q ∈ R[x] that is positive on K can be written

q(x) = s0(x) + s(x) · g(x) + sR(x) (R2 − |x|2)

with (s0, s, sR) ∈ Σ[x]m+2.
Theorem 2.11 is the actual formulation [107, Theorem 1.3] Putinar presented as

the Positivstellensatz in his paper, while its primal formulation 2.4 is a lemma he
stated to prove it. In [107], Putinar proved that these two different formulations are
equivalent. In terms of duality: positivity of q is dual to existence of the measure
µ, s0 is dual to Lz(p2) ≥ 0, s is dual to the Lz(gi p2) ≥ 0, and sR is dual to
Lz((R2 − |x|2) p2) ≥ 0.

Thus, under Assumption 2.7, Theorem 2.11 ensures that any nonnegative poly-
nomial p ∈ R(K)+ (resp. R(X)+) can be approximated with positive polynomials
p+ ε ∈ Σ(gK) (resp. Σ(gX)), ε > 0, so that (2.8b) can be reformulated as

d?K = inf
w

∫
X
w(x) dx

s.t. w − 1 ∈ Σ(gK)
w ∈ Σ(gX).

Then, the Lasserre SOS hierarchy simply consists in restricting the feasible set
to given finite degree d ∈ N. To write such a rephrazing in a synthetic way, we
introduce a notion of finite dimensional quadratic module.

Definition 2.12: Bounded degree quadratic module

Let g ∈ R[x]m, d ∈ N. For i ∈ N?m, define di := dd◦gi/2e the half degree of
the i-th component of g. We define:

• The cone Σd[x] := Σ[x]∩R2d[x] of SOS polynomials of degree 2d or less

• The degree 2d quadratic module

Σd(g) := {s0 + s · g : s0 ∈ Σd[x] ∧ ∀i ∈ N?m, si ∈ Σd−di [x]} ⊂ R2d[x].

This last definition allows us to formulate a new finite degree optimization prob-
lem:
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Figure 2.3 – SOS hierarchy for the length of [−0.5, 0.5].

The SOS hierarchy yields a polynomial wd represented in red, whose integral ap-
proximates by above the area below the blue curve.

Problem 8: Sums-of-squares strengthening hierarchy

For d ∈ N? large enough, compute

ddK := inf
w

∫
X
w(x) dx (2.13)

s.t. w − 1 ∈ Σd(gK)
w ∈ Σd(gX).

The fundamental difference between problems (2.8b) and (2.13) is that the former
is an infinite dimensional linear cone programming problem, while the latter is a
finite dimensional semidefinite programming problem. Indeed, the following result
holds (see [70, Proposition 2.1.]):

Proposition 2.13: SOS programming

Let s ∈ R2d[x] be a degree 2d polynomial, d ∈ N. Let ed(x) be a basis of
Rd[x].
Then, s ∈ Σd[x] iff there exists a positive semidefinite real matrix S ∈ S

Ddn
+

s.t.
s(x) = ed(x)> S ed(x).

In words, deciding whether s is SOS reduces to a sizeDd
n Linear Matrix Inequality

(LMI) feasibility problem, tractable on a computer for small values of Dd
n.

In order to formulate the SOS hierarchy, we strengthened the infinite dimensional
nonnegativity constraints into more restrictive finite dimensional SOS constraints.
In other words, the feasible set for (2.13) is smaller than the feasible set for (2.8b), in
the sense that feasibility for the former is sufficient to ensure feasibility for the latter.
For these reasons, the SOS hierarchy is said to be a hierarchy of strengthenings, and
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d?K ≤ ddK (see Figure 2.3).
The same reasoning allows us to define ddGM ≥ d?GM as long as c and the ϕk

and ψk can be chosen as families of polynomials, which is the case if Y ′ is dual
to a space of Ck functions with compact supports, allowing the use of the Stone-
Weierstraß theorem to reformulate all constraints into moment constraints.

The approximation power of the SOS hierarchy comes from the following the-
orem:

Theorem 2.14: Convergence of the SOS hierarchy

Under Assumption 2.7, (ddGM)d converges monotonically towards d?GM:

ddGM ↘
d→∞

d?GM.

Proof : Monotonicity of (ddGM)d is a direct consequence of the fact that we are
dealing with a hierarchy of strengthenings: increasing d is equivalent to relaxing
constraints, making it possible to go further in the minimization problem, so that
dd+1

GM ≤ ddGM.
Convergence comes from the way we formulated the hierarchy, so that it is suf-

ficient to prove it for the volume problem (2.8b): let ε > 0. Since

d?K = inf
w

∫
X
w(x) dx

s.t. w − 1 ∈ Σ(gK)
w ∈ Σ(gX),

there exists wε ∈ Σ(gX) such that wε − 1 ∈ Σ(gK) and d?K ≤
∫
wε(x) dx ≤ d?K + ε.

Since wε is a (finite degree) polynomial, there exists d1, d2 ∈ N s.t. wε−1 ∈ Σd1(gK)
and wε ∈ Σd2(gX). Thus, taking d = d0 := max(d1, d2), wε is feasible for problem
(2.13), which yields that

d?K ≤ d(d0)
K ≤

∫
wε(x) dx ≤ d?K + ε.

Monotonicity finally ensures that for all d ≥ d0, d?K ≤ ddK ≤ d?K + ε, which is the
definition of convergence of (ddK)d to d?K. ♦

2.2.3 Duality in the hierarchy ?

As in the infinite dimensional case of section 2.1, we study the duality properties of
the moment-SOS hierarchy.

Skipping the details, duality between the P-satz formulations 2.4 and 2.11 as
well as the Lagrangian function

L(z, w) := z0 +
∫

X
w(x) dx− Lz(w),
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where z = (zk)|k|≤2d ∈ RNn2d has positive semidefinite moment and gK localization
matrices and w ∈ Σd(gX), can be used to prove that the semidefinite programming
problems (2.12) and (2.13) are dual w.r.t. each other.

A direct consequence of this fact is that the weak duality property of Proposition
2.5 also holds for the moment-SOS hierarchy: pdK ≤ ddK, and more generally

pdGM ≤ ddGM,

as the moment and SOS hierarchies are always dual w.r.t. each other.
The weak duality property allows us to prove convergence of the moment hier-

archy.
Theorem 2.15: Convergence of the moment hierarchy

Suppose that strong duality holds for the GMP: p?GM = d?GM. Then, under
Assumption 2.7, (pdGM)d converges monotonically towards p?GM:

pdGM ↘
d→∞

p?GM.

Proof : Monotonicity of (pdGM)d is a direct consequence of the fact that we
are dealing with a hierarchy of relaxations: decreasing d is equivalent to relaxing
constraints, making it possible to go further in the maximization problem, so that
pd−1

GM ≥ pdGM.
Then, one has, for d ∈ N,

d?GM
strong duality

= p?GM
relaxation
≤ pdGM

weak duality
≤ ddGM,

so that one easily concludes using Theorem 2.14 and the sandwich rule. ♦

Remark 2.15 (Application of strong duality in the GMP)
Theorem 2.16 is a good example of the relevance of Theorem 2.6. Indeed, for

Theorem 2.16 to hold, i.e. for the moment hierarchy to actually approximate the
GMP, one needs strong duality in the GMP. More generally, strong duality in the
GMP is a necessary condition for the moment-SOS hierarchy to work at its full
potential.

Of course, the strong duality Theorem 2.6 has a hierarchy counterpart that we
are now going to state. For the sake of simplicity, in the rest of this section we
suppose that N = 1 in Problem 6. All the following results still hold with several
measures as decision variable, at the price of less readable proofs.

Theorem 2.16: Strong duality in the hierarchy

Suppose that there exists C > 0 s.t. if z ∈ RNn2d is feasible for the degree d
relaxation of (2.9a), then z0 ≤ C. Suppose that there exists such z. In that
case, under Assumption 2.7,

pdGM = ddGM.

Moreover, the degree d relaxation of (2.9a) has an optimal solution zd ∈ RNn2d .
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Proof : We illustrate the proof with the moment-SOS hierarchy associated to the
volume problem (2.8). The exact same proof can be generalized to the GMP (2.9)
at the price of introducing all the notations for the general moment-SOS hierarchy,
which does not bring any additional theoretical insight. The proof is similar in spirit
to the one of Theorem 2.6. The only change is that the cone K that we consider is
now different, so we only detail the part on closedness of

Kd :=
{

(Ad z, c · z) : z ∈ RNn2d feasible for the degree d relaxation
}
,

where in the case of (2.11) Ad z =
(
Md(z), (Md−dX,i(gX,i z))i∈N?mX

)
is a localizing

matrix operator, and ck = 0 if k 6= 0, c0 = 1. In general, Ad : RD2d
n → V is a

generic linear map onto a finite dimensional real vector space V , and c ∈ RD2d
n a

generic vector of coefficients, so we will do the proof with abstract Ad and c. As for
Theorem 2.6, we only need to exhibit a compact convex base Pd of

Xd+ :=
{
z ∈ RD2d

n : Md(z) � 0 ∧ ∀i ∈ N?mK
,Md−dK,i(gK,i z) � 0

}
to prove that Kd is closed. To that end, we define

Pd := {z = (zk)k ∈ Xd+ : z0 = 1}.

Pd is a base of Xd+ in the sense that Xd+\{0} is isomorphic to R++×Pd through
the bijective application χd : (t,p) 7→ t p, with χ−1

d (z) = (z0, z/z0) (using Lemma
2.9, for any Md(z) and Md′((R2−|x|2) z) to be simultaneously positive semi-definite
with z 6= 0, it is necessary that z0 > 0).
Pd is convex. Indeed, let p1,p2 ∈ Pd, t ∈ [0, 1], p̃ := t p1 + (1− t) p2. Then, by

linearity of the localizing matrix operator,

∀g ∈ R[x] Md(g p̃) = t Md(g p1) + (1− t) Md(g p2),

so that its semidefinite positiveness is preserved by convex combination, by convexity
of Sn+ for any n ∈ N. Thus, p̃ ∈ Xd+. Besides,

p̃0 = t p10 + (1− t) p20 = t+ 1− t = 1

so that p̃ ∈ Pd, which proves convexity.
We now move on to showing compactness of Pd. According to Lemma 2.9,

the ball constraint in the description of K and the upper bound z0 ≤ C yield
boundedness of Pd.

In addition, Pd is closed as the intersection between the level-1 set of the continu-
ous function z 7→ z0 and the closed cone Xd+. Indeed Xd+ is closed as the pre-image
of the closed cone (SD

2d
n

+ )mK+1 by the (continuous) linear map

z 7→
(
Md(z), (Md−dK,i(gK,i z))i∈N?mK

)
.

Since finite dimensional closed bounded sets are compact, this proves that Pd is
compact.

Finally, Pd is indeed a compact convex base of Xd+, and the rest of the proof is
identical to what we did for Theorem 2.6. ♦



2.2. THE MOMENT-SOS HIERARCHY 43

Remark 2.16 (Motivation for strong duality in the hierarchy)
Strong duality in the hierarchy has a special flavor as it has a direct influence

on numerical computation of approximate solutions to the GMP. Indeed, most SDP
solvers are primal-dual solvers that solve both the primal and dual instances of the
studied semidefinite programming problem.

Moreover, most often a duality gap ddGM− pdGM > 0 will lead to numerical issues
in the associated LMIs, which makes checking strong duality in the moment-SOS
hierarchy an important condition to assess the efficiency of the numerical scheme.

Eventually, the existence of an optimal pseudo-moment sequence is also a very
important guarantee that the semidefinite solvers will converge.

We conclude this chapter with a strong theorem on the pointwise convergence of
the Lasserre hierarchy’s pseudo-moment sequences.

Theorem 2.17: Convergence of the pseudo-moment sequences

Suppose that (2.9a) has a unique minimizer µ? with support K included in
the unit ball B. Then, under the hypotheses of Theorem 2.16, there exists
an optimal sequence (zd)d∈N of optimal feasible pseudo-moment sequences for
the hierarchy s.t. Lzd(c) = pdGM and for all k ∈ Nn,

zd,k −→
d→∞

∫
xk dµ?(x).

Moreover, this automatically yields strong duality pdGM = ddGM & p?GM = d?GM.

Proof : Existence of (zd)d follows from Theorem 2.16, so we focus on the proof
of convergence. Let d ∈ N. For k ∈ Nn, define

ẑd,k :=

 zd,k if |k| ≤ 2d,

0 else,

so that ẑd ∈ RNn with

‖ẑd‖`∞(Nn) := max
k∈Nn
|ẑd,k| = max

|k|≤2d
|zd,k|

Lemma 2.9
≤ zd,0 ≤ C.

Then, (ẑd)d∈N is a uniformly bounded sequence of

`∞(Nn) :=
{
u ∈ RNn : max

k∈Nn
|uk| <∞

}
= `1(Nn)′,

where `1(Nn) :=
{
u ∈ RNn : ∑k∈Nn |uk| <∞

}
. Thus, the Banach-Alaoglu theorem

yields a weak-∗ converging subsequence (ẑdr)r∈N: ∃z∞ ∈ `∞(Nn);∀u ∈ `1(Nn),∑
k∈Nn

uk zdr,k −→r→∞
∑

k∈Nn
uk z∞,k.

In particular, if k ∈ Nn, zdr,k −→r→∞ z∞,k. Thus, what we want to show is that for
k ∈ Nn, z∞,k = z?k :=

∫
xk dµ?(x).
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Without loss of generality we focus on the relaxations of problem (2.8a).
Let l := (

∫
X xk dx)k∈Nn be the moment sequence of the Lebesgue measure on X.

Let p ∈ R[x]. Then, for all r ∈ N big enough, by feasibility of zdr for the
relaxation of degree dr, one has
• [0,Ll(p2)] 3 Lzdr (p

2) = Lẑdr (p
2) −→

r→∞
Lz∞(p2)

• 0 ≤ Lzdr (gK,i p
2) = Lẑdr (gX,i p

2) −→
r→∞

Lz∞(gK,i p
2)

• 0 ≤ Ll−zdr (gX,i p
2) = Ll−ẑdr (gX,i p

2) −→
r→∞

Ll−z∞(gX,i p
2)

so that according to Putinar’s P-satz 2.4, z∞ is the actual moment sequence of
a measure µ∞ that is feasible for problem (2.8a). Then, one directly has

p?K ≥
∫

1 dµ∞ = z∞,0 = lim
r→∞

ẑdr,0 = lim
r→∞

pdrK ≥ p?K

since for any d ∈ N pdK ≥ p?K. Hence,
∫

1 dµ∞ = p?K, i.e. µ∞ is optimal for problem
(2.8a). By our uniqueness assumption, this yields µ∞ = µ?, i.e. z∞ = z?. Thus,
(ẑd)d has a unique weak-∗ accumulation point z?, which means that for any k ∈ Nn,

zd,k −→
d→∞

z?k =
∫

xk dµ?(x).

Eventually, Theorem 2.16 ensures strong duality pdGM = ddGM, so that putting to-
gether weak GMP duality and the strenghtening property, one has

p?GM
weak duality
≤ d?GM

strenghtening
≤ ddGM

strong duality
= pdGM

convergence
−→
d→∞

p?GM

and the sandwich rule again yields strong GMP duality. ♦

Remark 2.17 (An “all inclusive” theorem)
Theorem 2.17 shows that the hypotheses of Theorem 2.16 for strong duality in the

hierarchy are almost sufficient for the pseudo-moment sequences of the relaxations
to converge pointwise to the moments of the optimal solution of the GMP (2.9a) and
for full strong duality to hold.

In practice we will design instances of the GMP such that Theorem 2.17 holds,
so that we automatically obtain strong duality in the GMP and the corresponding
hierarchy as well as pointwise convergence of the moment sequence.

In particular, up to rescaling, K ⊂ B can always be enforced.

Synthesis of sections 2.1 & 2.2
In this Chapter, the fundamental tools that will be used in this thesis were intro-
duced. Section 2.1 focused on infinite dimensional optimization, introducing the
GMP and its strong modelling power, as well as a useful strong duality theorem for
the analysis of such problem. Then, Section 2.2 derived the Lasserre, moment-SOS
hierarchy that allows numerically approximating solutions of the GMP, along with a
variety of duality and convergence properties. Those two aspects (modelling infinite
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dimension and approximate finite dimension) of the moment-SOS hierarchy pave
the way for the smooth demonstration of approximating properties for the schemes
that will be presented in the rest of this thesis. As a result, they will be instrumental
in all the remaining chapters. We recall in Figure 2.4 the successive steps of the
moment-SOS hierarchy scheme.

Figure 2.4 – Illustration of the moment-SOS hierarchy.

The GMP is used to model a variety of difficult, nonconvex problems, after what a
dual to the GMP is computed, and the moment and SOS hierarchies are formulated
in parallel, and solved as SDP problems with LMI constraints.





3
Transient stability of power systems

The aim of this thesis is to contribute to the application of semidefinite programming
(SDP) methods in power systems transient stability analysis (TSA). A natural first
step is thus to give original applications of existing SDP methods to low-dimensional
power systems. Currently, two schools have issued promising results in the field of
SDP-based direct stability analysis:

• the French school draws on the developments presented in Chapter 2 and
moment-SOS hierarchy-based schemes to approximate various stability regions
of differential systems [42, 58, 57] and its first contribution to power systems
rather focused on the static optimization AC-OPF problem [52]. Section 3.1
gives a first application of such methods to power systems stability analysis,
based on publication [53].

• the US school focuses on SOS programming for Lyapunov methods [51] and it
started contibuting to the particular problem of power systems in 2013 [6]. The
second section of this chapter is an intent to test the computational limits of
such methods on a more sophisticated system model, that was first published
in [125].
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3.1 A moment-SOS based approach
In this section, we show that the problem of TSA in power systems can be addressed
using the moment-SOS hierarchy that we presented in Chapter 2. TSA considers the
behavior of a power system following a major disturbance. Following considerations
from Chapter 1, we focus on direct methods, which consist in computing stability
oracle functions (SOF) parameterizing approximations of well-chosen regions of at-
traction (ROA). We recall that according to Remark 1.2, inner approximations are
preferred to outer ones, as they prevent false negatives; however, we allow ourselves
to also consider outer approximations, if it helps the simplicity of exposition. In
this section, we focus on uncontrolled dynamics as a first step towards certified
estimations of the ROA around a given operating point.

From a theoretical viewpoint, the idea is to use the moment-SOS hierarchy to
compute approximated solutions of the finite time ROA problem presented in Ex-
ample 2.8 (the interest of finite time will be exposed below). This section is organized
as follows. Section 3.1.1 introduces the notion of occupation measure, which will
be instrumental to deriving the finite time ROA problem in a way that will allow
for moment-SOS hierarchy implementation in Section 3.1.2. Section 3.1.3 describes
numerical experiments conducted to show the practical relevance of the proposed
method and gives future research directions regarding computational tractability.

3.1.1 Occupation measures
It turns out that there exist numerical tools inspired from Chapter 2 on the GMP,
which give some methods to compute approximations of constrained regions of at-
traction. While these numerical tools were initially designed only for polynomial
differential systems, the following sections will introduce their conceptual basis, and
how they can be applied to some nonpolynomial differential systems, without re-
sorting to polynomial approximations of the vector fields.

As shown in [42, 58], the moment-SOS hierarchy makes it possible to numeric-
ally approximate AX

T (M) for well-chosen T and M. We recall here how the method
works. The key idea of the authors is to elegantly combine the set approximating
property of the volume problem (see Example 2.6 and the corresponding reference
[44]) with the notion of occupation-measure-based moment-SOS hierarchy intro-
duced in [72]. More precisely, their method consists of grouping all the necessary
time-domain simulations into the resolution of a single, linear partial differential
equation (PDE). It can be compared to a Monte-Carlo algorithm, but offers the
advantage of giving strong inclusion guarantees on the approximation that the com-
putation yields.

Here we introduce the key element to design the ROA problem, following the
contributions in [72]. Suppose that instead of having one deterministic initial condi-
tion x0 for the system (1.4), one is given a random variable x0 with probability law
P0 ∈ P(Rn). This means that for a given Borel set Y ⊂ Rn, P(x0 ∈ Y) = P0(Y).
Instead of considering a sample for the law P0 and running time-domain simulations
for its realizations, as a Monte-Carlo algorithm would do, we directly work on the
probability P0. Indeed, if x0 is a random variable that follows the probability P0,
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then for any t ≥ 0, x(t|x0) is also a random variable, so that we call Pt ∈ P(Rn)
its probability law1. It is actually pretty easy to deduce Pt from P0, through the
notion of transfer operator:

Definition 3.1: Ruelle’s transfer operator

Let E,F be finite dimensional open or compact sets, ϕ : E → F continuous.
Ruelle’s transfer operator [113, 89] ϕ# :M(E)+ →M(F)+ maps a measure µ
onto its pushforward through ϕ, denoted ϕ#µ and defined, for any Borel set
Y ⊂ F, by

ϕ#µ(Y) := µ(ϕ−1(Y)) = µ{x ∈ E : ϕ(x) ∈ Y}.

Proposition 3.2: Probability transfer

For all t ≥ 0, Pt is deduced from P0 through the transfer operator x(t|·)# as
follows: Pt = x(t|·)#P0, i.e. for any Borel set Y ⊂ Rn,

Pt(Y) = P0
(
x(t|·)−1(Y)

)
= P0{x0 ∈ Rn : x(t|x0) ∈ Y}.

Remark 3.1 (Transfer and composition)
From a duality perspective, the adjoint to the Ruelle transfer operator µ 7→ ϕ#µ

is the Koopman composition operator v 7→ v◦ϕ. Indeed, besides the above definition,
for ϕ : Rm → Rn, v ∈ Cc(Rn) and µ ∈M(Rm)+ one has

∫
v d(ϕ#µ) =

∫
(v ◦ ϕ) dµ.

The Ruelle operator is also called Perron-Frobenius operator, after the Perron-
Frobenius theorem whose infinite dimensional extension (named Krein-Rutman the-
orem) allows to prove that its eigenvectors are nonnegative measures. However, the
Perron-Frobenius theorem has many other applications.

Conversely, knowing P0 and Pt gives an information on x(t|·), without having
to perform any simulation. Moreover, the data Pt for all t ≥ 0 defines a function

ψ :

 R+ −→ P(Rn)

t 7−→ ψ(t) := Pt.

Then, a theorem due to Joseph Liouville ensures that ψ is subject to the continuity
equation [129, Theorem 5.34]:

1Such time-dependent measure is called a Young measure, after Laurence Chisholm Young, who
invented them to account for randomized control laws [143].
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Theorem 3.3: Liouville

If f is Lipschitz, then ψ is the unique solution with initial condition ψ(0) = P0
of the following infinite dimensional, linear ODE:

ψ̇ = −div(ψ f), (3.1)

where the derivative is defined w.r.t. the weak-∗ topology on P(Rn).
In particular, if there exists a density function ρ : R+ × Rn → R such that
Pt = ρ(t, ·) λ, then an integration by part yields the classical PDE form

∂tρ+ div(ρ f) = 0. (3.1′)

Remark 3.2 (Divergence of a vector measure)
In Theorem 3.3, we introduce the term −div(ψ f), which is defined as follows:

− div(ψ f)(t) :=
[
v ∈ C1

c (Rn) 7→
∫

f · grad v dψ(t)
]
, (3.2)

where C1
c (Ω) is the subset of C1(Ω) of functions that vanish outside a compact set.

Notice that ψ is an univariate function (of t), with value in a functional
space (in x), so that equation (3.1) is indeed a linear ODE ψ̇ = A ψ while (3.1′) is
a linear PDE in the multivariate unknown function ρ (of t and x).

Thus, Problem 1 can be rewritten in terms of Young measures, if one restricts
to a finite time horizon T ∈ (0,+∞):

Problem 9: Stable initial measure

Find the maximal support for P0 such that (3.1) holds and:

• For all t ∈ I := [0, T ], ψ(t) is supported in X,

• ψ(T ) is supported in M

so that sptP0
def= AX

T (M).

Remark 3.3 (Finite VS infinite time horizon)
Historically, stability analysis was first considered in astrophysics, with scientists

concerned about the long term stability of the planet orbits in the solar system. For
this reason, the most common notion of ROA is the unconstrained, infinite time
ROA A∞(M).

However, in the context of power system TSA, all events occur within a finite,
narrow time horizon, due to the speed of electro-mechanical dynamics. For this
reason, it is only natural that we consider finite time ROAs here. Moreover, we will
see in this chapter that finite time horizons are more convenient for computations
that infinite time horizons.

Nevertheless, infinite time horizons can also be considered, as we will show in
Sections 3.2 and 6.1.
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Now, instead of considering only probability measures P0 ∈ P(Rn) that repres-
ent a random initial condition x0, we propose to consider a superposition of initial
conditions, which is represented by a measure µ ∈ M(Rn)+ s.t. µ(Rn) < ∞. One
can easily switch from the probabilistic viewpoint to this statistical physics view-
point by the following operations: µ = C P0 for a given C > 0, or P0 = 1

µ(Rn) µ. By
linearity of the continuity equation, Theorem 3.3 still holds for ψ := t 7→ x(t|·)#µ
with initial condition ψ(0) = µ in equation (3.1). It can even be extended to the
notion of occupation measure.

Definition 3.4: Occupation measure

For a given initial measure µ ∈ M(Rn)+ and time horizon T > 0, we define
the occupation measure νµ ∈M(I×Rn)+, for a < b ∈ I and Y ⊂ Rn:

νµ([a, b]×Y) :=
∫ b

a

(∫
Rn
1Y(x(t|x0)) dµ(x0)

)
dt =

∫ b

a
ψ(t)(Y) dt.

In particular, if µ = P0 ∈ P(Rn), then νµ([a, b]×Y) =
∫ b
a Pt(Y) dt is the average

time that the random trajectory x(t|x0) spends in Y between times a and b.

Remark 3.4 (Alternative definition of occupation measures)
Using the Riesz-Markov theorem, one can define the occupation measure ν through

its action on C1 functions instead of its action on Borel sets: for v ∈ C1
c (I×Rn),∫

v dνµ :=
∫ T

0

(∫
Rn
v(t,x(t|x0)) dµ(x0)

)
dt =

∫ T

0
〈v(t, ·), ψ(t)〉 dt.

Remark 3.5 (Relevance of occupation measures)
While Young measures such as ψ(t) are measure-valued functions of time, occu-

pation measures are actually standard measures, and as such they can be represented
on compact sets by their moments, allowing for a GMP rephrazing and thus the im-
plementation of the Moment-SOS hierarchy, as we will show in the next section.

Liouville’s theorem also holds for occupation measures, under a slightly different
form.

Theorem 3.5: Transport of occupation measures

Let µ ∈M(Rn)+, T > 0, νµ ∈M(I×Rn) as in Definition 3.4.
Let ξµ := ψ(T ) = x(T |·)#µ (if µ = P0 ∈ P(Rn) then ξµ = PT ).
If f is C1, then, (νµ, ξµ) is the unique solution of the following linear PDE with
unknown (ν, ξ) ∈M(I×Rn)×M(Rn):

∂tν + div(ν f) + δT ξ = δ0 µ, (3.3)

with parameters f , µ, δ0, δT , where δt = [Y 7→ 1Y(t)] ∈ P(R) is the Dirac
measure in t ∈ R.

Proof :

• (νµ, ξµ) is solution to (3.3):



52 CHAPTER 3. POWER SYSTEMS TRANSIENT STABILITY

Figure 3.1 – Illustration of occupation measures.

Here the red trajectory is initialized at x0r and the green one at x0g, so that one can
assign probabilities to both trajectories:

pr := P(red traj.) = P(x0 = x0r) = µ({x0r}),
pg := P(green traj.) = P(x0 = x0g) = µ({x0g}).

Then, the time spent by the red trajectory in Y is Tr = d− c + b− a, and the time
spent by the green trajectory in Y is Tg = f− e, so that

νµ([0, 1]× Y) def= µ({x0r})(d− c + b− a) + µ({x0g})(f− e) = prTr + pgTg

is the average of the times spent by the red and green trajectories in Y.

Let v ∈ C1
c (I × Rn), φµ := ∂tνµ + div(νµ f) ∈ C1(I × Rn)′. Then by definition one

has

〈v, φµ〉 = −
∫

(∂tv(t,x) + f(x) · grad v(t,x)) dνµ(t,x)

= −
∫ T

0

∫
Rn

(∂tv(t,x(t|x0)) + f(x(t|x0)) · grad v(t,x(t|x0))) dµ(x0) dt

= −
∫ T

0

∫
Rn

d
dt
[
v(t,x(t|x0))

]
dµ(x0) dt

(∗)= −
∫
Rn

∫ T

0

d
dt
[
v(t,x(t|x0))

]
dt dµ(x0)
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= −
∫ [

v(t,x(t|x0))
]T

0
dµ(x0)

=
∫
v(0,x0) dµ(x0)−

∫
v(T,x(T |x0)) dµ(x0)

= 〈v, δ0 µ− δT ξµ〉,

where (∗) is obtained using Fubini’s theorem [36, pages 243–249].
By our definition of measures, this proves that φµ = δ0 µ−δT ξµ, which is exactly

equation (3.3).

• Such solution is unique:

Let (ν, ξ) be a solution to (3.3) with µ = 0. By linearity of equation (3.3), showing
(ν, ξ) = (0, 0) will prove uniqueness for the generic µ ∈M(Rn)+. Let v ∈ C1

c (I×Rn)
and define for (t,x0) ∈ I×Rn

ϕ(t,x0) := −
∫ T

t
v(s,x(s− t|x0)) ds.

Then, since f is C1, for all t ∈ I one has x(t|·) ∈ C1(Rn), and thus ϕ ∈ C1
c (I×Rn)

and for any (t,x0) ∈ I×Rn one has

∂tϕ(t,x(t|x0)) + f(x(t|x0)) · gradϕ(t,x(t|x0)) = ∂t (ϕ(t,x(t|x0)))

= ∂t

(
−
∫ T

t
v(s,x(s− t|x(t|x0))) ds

)

= ∂t

(
−
∫ T

t
v(s,x(s|x0)) ds

)
= v(t,x(t|x0))

so that taking x0 = x(−t|x1) for all x1 ∈ Rn one has

∂tϕ(t,x1) + f(x1) · gradϕ(t,x1) = v(t,x1).

Moreover, it is clear that ϕ(T, ·) ≡ 0 so that one also has

0 =
∫
ϕ(T, ·) dξ

(3.3)= −〈ϕ, ∂tν + div(ν f)〉

=
∫
∂tϕ+ f · gradϕ dν

=
∫
v dν.

This last equality holding for all v ∈ C1
c (I×Rn), this proves that ν = 0, after which

ξ = 0 is deduced from (3.3). ♦

Remark 3.6 (Regularity of f)
For the use of Theorem 3.5, so far we only ask f to be C1 so that the flow x(t|·)

of f exists at all t ∈ I, is unique, and is a C1- diffeomorphism.
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3.1.2 Outer ROA approximation for polynomial systems
As stated in the introduction, this thesis aims at applying direct methods to assess
transient stability of a power system. Such method resorts to determining as ac-
curately as possible a transient stability region, by computing some stability oracle
function. In this section, we put the focus on solving Problem 9, which is associated
to a finite time horizon. In contrast, Section 3.2 deals with infinite time horizons.

We now give the numerical scheme to approximate the finite time ROA of a
polynomial differential system. Such scheme resorts to the aforementioned notion
of occupation measure, combined with the set approximation property.

The set approximation property

We consider again the volume problem from [44], which we described in Chapter 2:

p?K = sup
µ

∫
1 dµ (2.8a)

s.t. µ ∈M(K)+

λ− µ ∈M(X)+

d?K := inf
w

∫
w dλ (2.8b)

s.t. w − 1 ∈ C(K)+

w ∈ C(X)+,

with compact sets K ⊂ X ⊂ Rn. Here one can see that the inequality constraints
of the dual problem (2.8b) can be rephrased into

w ≥ 1K on X. (3.5)

Moreover, the convergence properties proved in Chapter 2 yield existence of a min-
imizing sequence (wd)d∈N such that∫

(wd − 1K) dλ −→
d→∞

0. (3.6)

Then, defining K̂d := {x ∈ X : wd(x) ≥ 1}, (3.5) yields that K ⊂ K̂d, and (3.6)
ensures a vanishing volume approximation error:

vol
(
K̂d \K

)
≤
∫

(wd − 1K) dλ −→
d→∞

0.

In other words, sequentially solving the SOS hierarchy corresponding to the dual
volume problem (2.8b) yields a converging outer approximation (K̂d)d of K. In
the context of volume approximation, where K is already known, such a byproduct
is useless. However, it paves the way for general set approximation, and one can
modify problem (2.8) to approximate unknown sets, including some specific regions
of attraction.

From the volume problem to the ROA problem

The ROA problem is then obtained by combining the notion of occupation measure
and Liouville equation (3.3) with the set approximation property, through adding
the Liouville equation to the volume problem (2.8a):
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Let M = K ⊂ X ⊂ Rn be a closed target set, X being compact, and T <∞ the
time horizon, and define I := [0, T ]. Then, consider the duality pair of problems

Problem 10: ROA approximating GMP

p?ROA := sup
µ,ν,ξ

∫
1 dµ (3.7a)

s.t. µ ∈M(X)+

ν ∈M(I×X)+

ξ ∈M(K)+

λ− µ ∈M(X)+

∂tν + div(ν f) = δ0 µ− δT ξ,

d?ROA := inf
v,w

∫
w dλ (3.7b)

s.t. w − v(0, ·)− 1 ∈ C(X)+

− ∂tv − f · grad v ∈ C(I×X)+

v(T, ·) ∈ C(K)+

w ∈ C(X)+

v ∈ C1(I×X).

Here, taking f = 0 reduces (3.7a) to (2.8a). Then, imposing v = 0 in (3.7b) does
not change the optimal value, so that it is equivalent to (2.8b). For this reason, (3.7)
is a generalization of (2.8). Moreover, for a feasible pair (vd, wd) for (3.7b), consider

Âd := {x0 ∈ X : vd(0,x0) ≥ 0}.

Then, the following finite time ROA approximation theorem holds [42]:
Theorem 3.6: Outer finite time constrained ROA approximation

One has
AX
T (K) ⊂ Âd

and the SOS hierarchy provides a converging sequence (Âd)d∈N of outer ap-
proximations of AX

T (K), in the sense that

vol
(
Âd \AX

T (K)
)
−→
d→∞

0.

Proof : Let x0 ∈ AX
T (K). By definition, for all t ∈ I, x(t|x0) ∈ X, and

x(T |x0) ∈ K. Thus, for any feasible vd for (3.7b),

d
dtvd(t,x(t|x0)) = ∂tv(t,x(t|x0)) + f(x(t|x0)) · grad v(t,x(t|x0)) ≤ 0

and vd(T,x(T |x0)) ≥ 0, i.e. vd(x(·|x0)) decreases along the trajectories and is
nonnegative at final time T , so that vd(0,x0) ≥ 0, yielding x0 ∈ Âd. We have just
proved that Âd is an outer approximation of AX

T (K). It remains to show that the
approximation error vanishes when we go through the moment-SOS hierarchy of
Chapter 2.

First, the inequality constraint linking wd and vd(0, ·) ensures that wd ≥ 1Âd
, so

that

vol
(
Âd \AX

T (K)
)

=
∫ (

1Âd
− 1AX

T (K)

)
dλ ≤

∫
wd dλ− vol AX

T (K).
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Second, the choice of compact sets for K,X, I ensures that Assumption 2.7 holds,
up to Remark 2.5, allowing for the use of Theorem 2.14: the SOS hierarchy gives
access to minimizing sequences for problem (3.7b), i.e. ∀d ∈ N, ∃vd ∈ R2d[t,x], wd ∈
R2d[x] feasible for (3.7b) and such that∫

wd dλ −→
d→∞

d?ROA.

Then, we go back to Example 2.8, to prove strong duality: d?ROA = p?ROA. Let us
show that Theorem 2.6 holds. The existence of feasible (µ, ν, ξ) is trivial: (µ, ν, ξ) =
(0, 0, 0) is feasible. It only remains to prove that all feasible occupation measures
are uniformly bounded in mass:

• As for the volume (2.8), λ−µ ∈M(X)+ yields that µ(X) ≤ vol X =: Cµ <∞.

• Testing (3.3) against (t,x) 7→ 1 yields ξ(K) = µ(X) ≤ Cµ =: Cξ <∞.

• Testing (3.3) against (t,x) 7→ t yields

ν(I×X) = 〈t, ∂tν + div(ν f)〉 = 〈t, δ0 µ− δT ξ〉 = Tξ(K) ≤ T Cξ =: Cν <∞.

Then, Theorem 2.6 ensures that strong duality holds, and thus∫
wd dλ −→

d→∞
p?ROA.

Eventually, we show that p?ROA = vol AX
T (K). Theorem 3.5 together with the

definition of the pushforward ensure that ξ ∈ M(K)+ ⇒ µ ∈ M(AX
T (K))+, so

that µ = 1AX
T (K) µ. Together with constraint λ − µ ∈ M(X)+, this yields that

1AX
T (K) λ− µ ∈M(X)+, and then p?ROA ≤

∫
1AX

T (K) dλ = vol AX
T (K).

Moreover, µ = 1AX
T (K) λ ∈ M(X)+ is such that ξ = x(T |·)#µ ∈ M(K)+,

so that Theorem 3.5 ensures that 1AX
T (K) λ is a feasible value for µ, for which∫

1 dµ = vol AX
T (K). Then, taking the supremum, one obtains p?ROA ≥ vol AX

T (K),
and by double inequality, p?ROA = vol AX

T (K), so that∫
wd dλ −→

d→∞
vol AX

T (K).

In conclusion, the approximation error indeed vanishes when d tends to infinity:

vol
(
Âd \AX

T (K)
)
≤
∫
wd dλ− vol AX

T (K) −→
d→∞

0.

♦

Remark 3.7 (Contribution with respect to [42])
Though Theorem 3.6 was already proved in [42], the systematic reduction of the

proof to checking boundedness of the feasible measures, using the original results
from Chapter 2, is new.
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Remark 3.8 (Extension of [42])
It is also possible to prove Theorem 3.6 using Theorem 2.17. In such a case, in

addition to the aforementioned results, one also obtains a convergence proof for the
pseudo-moment sequences of the moment hierarhy. This, combined with Christoffel-
Darboux kernel methods from [87], paves the way for completely new approaches for
moment-hierarchy-based set approximations.

Remark 3.9 (Relevance of the constrained finite time ROA)
The proof of Theorem 3.6 heavily relies on the finite time horizon T and state

constraint sets X and K. Indeed, this choice of parameters is required for I, K
and X to be compact, which is instrumental in the proof. In other words, state
constraints and a finite time horizon are the price for the convergence of the ROA
approximation.

However, such constraints are quite relevant for TSA: as pointed in Remark 3.3,
a finite time horizon is suitable in this context. Moreover, operational TSA does not
only expect that the system quickly converges to equilibrium, but also that the traject-
ory remains secure during all the transients; this involves additional state constraint
security specifications (e.g. current, voltage and power boundedness), which can be
encoded in X.

Thus, even though the notion of constrained finite time ROA is less usual than
the notion of free infinite time ROA, it is particularly relevant in the context of this
thesis. As a result, it will be the first TSA approach to which we will apply structure
decomposition to facilitate computations (see Section 6.2).

3.1.3 Finite time ROA estimation for a 3 machines model
Apart from rephrazing the proof for the ROA approximation, an important contri-
bution of this section is the extension of the framework to non-polynomial equations
of power systems, with numerical application to the three machine model. In terms
of numerical application, we are interested in analysing the transient behaviour of
system (1.1)–(1.3). More precisely, to numerically illustrate the TSA problem, we
use the three-bus numerical example from Chiang et al. [21], which is composed of
three synchronous machines connected in a meshed grid. The third bus is arbitrarily
chosen as the reference angle (i.e., θ3 = 0), so that one only needs two phase angle
variables, θ1, θ2, and two rotor speed variables, ω1, ω2, to describe the dynamics.
[21] neglected conductances Gkl and attributed numerical values to Mk, Dk, Pmec

k ,
|vk| and Bkl, obtaining:

θ̇k = ωk, k = 1, 2,
ω̇1 = − sin(θ1)− 0.5 sin(θ1 − θ2)− 0.4 ω2,

ω̇2 = −0.5 sin(θ2)− 0.5 sin(θ2 − θ1)− 0.5 ω2 + 0.05,

where the ωk are expressed in rad/s and the θk are in rad. A stable equilibrium is
given by θ = (0.02, 0.06).

This very basic example will serve as a numerical test case for our moment-SOS
TSA method.
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Figure 3.2 – The three machines cycle.

Tackling trigonometric dynamics

Following [6], the coordinates can be shifted so that (θ1, θ2) = (0.00, 0.00) is a stable
equilibrium. This dynamical system can in turn be formulated as a polynomial
differential algebraic system, as suggested in [6]. To that end, we introduce auxiliary
variables

sk := sin(θk) and ck := 1− cos(θk), k = 1, 2 (3.8)
and define ω := (ω1, ω2), s := (s1, s2), c := (c1, c2) as well as x := (ω, s, c) ∈ R6.
One then obtains the following differential algebraic equation system (DAEs)

ω̇1 = 0.4996s2 − 0.4ω1 − 1.4994s1 − 0.02c2 +0.02s1s2

+0.4996s1c2 − 0.4996c1s2 + 0.02c1c2,

ω̇2 = 0.4996s1 + 0.02c1 − 09986s2 + 0.05c2−0.5ω2

−0.02s1s2 − 0.4996s1c2 + 0.4996c1s2−0.02c1c2,

ṡk = (1− ck)ωk k = 1, 2,

ċk = skωk k = 1, 2,

0 = s2
k + c2

k − 2ck k = 1, 2,

We will show later on that one can actually avoid increasing the number of variables
and immediately obtain a polynomial differential system of equations in complex-
valued quantities.

A particularity of the occupation measure approach is that the state set X should
have an interior point such that the computed volumes are non-zero. Hence, con-
straints 0 = h(x) := (s2

k + c2
k − 2ck)k=1,2 in the dynamics derived from our change
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of variable may be troublesome, since the manifold M := {x ∈ R6 : h(x) = 0} is a
hyper-surface with no interior point. A simple method to address this issue consists
of ignoring the equality constraints when computing the ROA approximation Âd,
and then consider Âd ∩M as the desired ROA estimation. Such an exact method
does not work with any arbitrary equality constraints. However, in the case of con-
straints derived from a change of variable, this approach is valid due to the fact that
the reformulated vector field f then satisfies (grad h)·f ≡ 0. Thus, the dynamics are
tangent to M, yielding that any trajectory starting in M will remain in M, which is
exactly the constraint h(x(t|x0)) = 0, ∀ t ∈ [0, T ]. For equality constraints that are
not derived from changes of variables, this does not hold anymore; in such case, one
could think of replacing the classical Lebesgue measure λ with a Hausdorff measure
supported on M, and computed using Stokes theorem if M is the boundary of a
full-dimensional set [73].

To the best of our knowledge, this is the first time that algebraic equality con-
straints derived from a change of variable are addressed within the occupation meas-
ure approach. This facilitates the novel application of occupation measures theory
to non-polynomial systems. The general non-polynomial dynamics framework that
can be tackled with this method will be discussed in details in Section 3.2.3.

Case study

For our numerical experiments, we use MATLAB R2015b, YALMIP [78], SeDuMi 1.3
[120], and the “ROA” code of [42] to apply occupation measure theory to the three-
bus example from [21] that is described above.

We define the finite time ROA parameters as follows:

• X := [−π, π]2 × [−1, 1]2 × [0, 2]2
= {x ∈ R6 : (ω2

1,2 ≤ π2) ∧ (s2
1,2 ≤ 1) ∧ (0 ≤ c1,2 ≤ 2)}

• K := Bε = {x ∈ R6 : |x|2 ≤ ε2}, ε = 0.1, T = 8 s.

Following the developments in Chapter 2, problem (3.7b) admits a SOS strenght-
ening that can be expressed as follows:

ddROA := inf
w

w · l (3.9)

s.t. w(x)− v(0,x)− 1 ∈ Σd(g(x))
− ∂tv(t,x)− f(x) · grad v(t,x) ∈ Σd(g̃(t,x))
v(T,x) ∈ Σd(0.01− |x|2)
w(x) ∈ Σd(g(x))
v(t,x) ∈ R2d[t,x],

where:

• l is the vector of moments of the Lebesgue measure λ on X in a moment basis,

• w is the vector of coefficients of w in the corresponding monomial basis,

• g(x) = (π2 − ω2
1,2, 1− s2

1,2, (2− c1,2)c1,2, 30− |x|2) describes the state set X,



60 CHAPTER 3. POWER SYSTEMS TRANSIENT STABILITY

• f(x) = (ω̇, ṡ, ċ) describes the polynomial dynamics and

• g̃(t,x) = ((T − t)t, π2 − ω2
1,2, 1− s2

1,2, (2− c1,2)c1,2, 100− t2 − |x|2).

Again, there is no duality gap between these truncated problems and the corres-
ponding moment relaxations of (3.7a), at every order of the hierarchy, thanks to
Theorem 2.16 (the proof is identical to the strong duality proof for Theorem 3.6).
Though we already have proved the convergence of the outer approximation, the
computational burden increases sharply as the order d increases.

We complement this explanation by briefly discussing the approach for comput-
ing inner approximations. The machinery for inner ROA approximations is very
similar to the outer approximation approach discussed above. The key distinction is
that the inner approximations consider an outer approximation to the complement
of the ROA, AX

T (K)c := X \AX
T (K), inducing additional technicalities. See [58] for

further details.
We note that practical power system analyses require the ability to address

significantly larger problems than the test case considered in this section. How-
ever, constructing certified approximations for the ROA leads to difficult computa-
tional challenges, see e.g. Section 3.2. Similar to the demonstrations of previous
algorithms [6],[50], this section focuses on a small system as an initial step towards
practical applications. Future work that exploits network sparsity and other prob-
lem structures will be crucial for scalability. Decomposition approaches may also
prove to be valuable [61, 62, 63].

With final time T = 8 and radius ε = 0.1, we find the following polynomial,
v5(0, x), at fifth-order relaxation (d = 5):

v5(0, x) = 1.8707− 4.9538x1 + 0.0017x2

− 4.7856x3 + 0.0018x4 − 0.0037x5

− 4.8546x6 − 0.0131x2
1 + 10.9412x1x2

− 0.0356x1x3 + 13.9529x1x4 + 0.0208x1x5

+ 0.0142x1x6 + 16.4121x2
2 + 0.0609x2x3

− 0.2755x5
5x

5
6 + 0.0017x4

5x
6
6 + 0.0170x3

5x
7
6

− 0.0002x2
5x

8
6 − 0.0021x5x

9
6 − 0.0003x10

6 .

The zero super-level set Â5 := {x ∈ R6 : v5(0,x) ≥ 0} provides an outer
approximation to the ROA. We illustrate the polynomial v5(0, ·) in Fig. 3.3 as a
function of the original state variables (θ1, θ2). We consider (ω1, ω2) = (0, 0) in
order to visualize the ROA, but this is not a necessary restriction. We illustrate the
outer approximation to the ROA in Fig. 3.4.

Likewise, with T = 8 and ε = 0.1, we find at the third-order relaxation (d = 3)
the inner approximation to the ROA presented in Fig. 3.5 (again with ω = (0, 0)
used only for representation purposes).

We next show how one could use Hermitian SOS to obtain better numerical
results. For optimal power flow problems, applying Hermitian SOS yields compu-
tational advantages while preserving convergence guarantees [54]. The idea is to
exploit the structure that comes from alternating current physics in order to reduce
the computational burden. We consider the transient dynamics of a system after
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Figure 3.3 – Plot of the graph of vd(0, ·), d = 5.

The polynomial for the three-bus system whose zero super-level set, which is in-
dicated by the back region, provides an outer approximation to the ROA. The
projection shown is for ω = (0, 0).

Figure 3.4 – Outer ROA approximation of degree d = 5.

An outer approximation of the ROA is indicated by the back region. The projection
shown is for (ω1, ω2) = (0, 0).

the fault has disappeared and we assume that there is no voltage instability. In that
case, it is reasonable to assume that the magnitudes |vk| of the complex voltages
are fixed such that only the phase angles θk are variables. This allows us to define
vk := exp(j θk) (up to proper rescaling), such that v̇k = j θ̇k exp(j θk), where j2 = −1.
The dynamics can thus immediately be written as a polynomial differential system
of equations (with physical variables now expressed in perunits, s.t. the voltages
have magnitude 1):
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Figure 3.5 – Inner ROA approximation of degree d = 3.

An inner approximation of the ROA is indicated by the back region. The projection
shown is for (ω1, ω2) = (0, 0).

v̇k= j ωkvk,

ω̇k=−Dk
Mk
ωk + 1

Mk

(
Pk − 1

2
∑
l 6=k−Gkl|vk|2 − Y klvkvl − Yklvlvk

)
,

0 = |vk|2 − 1,

(3.10)

where Ykl denotes the mutual admittance of the line connecting buses k and l.
It is straightforward to adapt the theory of occupation measures to complex

states by leveraging recent results in complex algebraic geometry [27]. A future
work would consist of implementing a complex version of the hierarchy proposed
in [42] in order to reduce the computational burden at a given relaxation order.

In conclusion, in the context of the transient stability analysis of power systems,
this section demonstrates the potential for using the theory of occupation measures
(along with convex optimization techniques) to compute inner and outer approxim-
ations to the region of attraction for a stable equilibrium point. To the best of our
knowledge, this is the first time that occupation measure theory has been applied
to analyze transient stability problems for electric power systems. The resulting
approximations have the potential to provide analytically rigorous guarantees that
can reduce the need for computationally expensive time-domain simulations. With
computational tractability remaining an important challenge, the next chapters will
investigate how to exploit sparsity for set approximation, in particular when using
occupation measures.
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3.2 An SOS, Lyapunov-based approach
In this section, we investigate an alternative SOS method for ROA approximation,
which is based on Lyapunov theory rather than occupation measures. We recall
here that, as our variable v in Section 3.1, Lyapunov functions are an instance of
SOF (historically, they even are the archetype of SOF, since the first direct methods
for stability analysis resorted to what we now call Lyapunov functions) as listed in
Example 1.5. The Lyapunov approach was used in [6] for transient stability analysis
of a power system. However, the generators were modeled only by their swing equa-
tions. As the voltage and frequency regulators have an important impact on stability
analysis, in the present section this approach is extended by considering a generator
with voltage dynamics and both voltage and frequency regulations. This also paves
the way to taking into account high penetration of power electronics elements in the
grid due to the integration of renewable energies and HVDC transmission lines, thus
having an important impact on the transient stability of the system. SOS method
gives an analytical solution for the construction of Lypunov functions in order to
estimate the infinite time ROA for a locally asymptotically stable equilibrium point
of the system.

The section is organized as follows: the problem is formulated and modelled in
Section 3.2.1 for a Single Machine-Infinite Bus (SMIB) system. Section 3.2.2 sums
up the elements of Lyapunov theory that are at stake. SOS formalism and algorithms
are briefly recalled in Section 3.2.3, along with a necessary change of variables (i.e.,
reformulating the model of the system with trigonometric non linearities into a
set of polynomial differential algebraic equations). The reformulating procedure is
proved to be a Lie-Bäcklund transformation, which means that the transformed
system has equivalent trajectories and stability properties [34]. Next, in Section
3.2.4 we relax Lyapunov’s conditions for stability and model constraint equations
to suitable SOS conditions using theorems from real algebraic geometry in order to
formulate the problem as an optimization one. Hence, a Lyapunov function for the
asymptotically stable equilibrium point is constructed using the expanding interior
algorithm developed in [51, 6]. An estimate of the ROA is given by a level set of
the Lyapunov function. We finally test the ROA estimation error by numerically
computing the real one in all state directions via full nonlinear simulations. The
codes are implemented in MATLAB using SOSTOOLS [106] which is a free, third-
party MATLAB toolbox that models SOS problems.

3.2.1 The single machine - infinite bus system
We consider a synchronous machine connected to a power grid through two trans-
mission lines in parallel (see Figure 3.6). The power grid is modelled as an infinite
bus. The infinite bus imposes a nominal voltage of amplitude Vg and frequency ωg at
node B. Each transmission line is a series of two impedance matrices Zt := RtI+XtJ
(or equivalently one synthetic impedance matrix Zeq = 2Zt), where Rt, Xt ∈ R+ and

I =
(

1 0

0 1

)
, J =

(
0 −1

1 0

)
.
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The synchronous machine has two rotating axes d (direct) and q (quadratic), which
support the currents id and iq (we use the notation is := (id, iq)>), generating a
voltage vs := (vd, vq)> at the machine’s terminal.

The synchronous machine is characterized by an internal resistance Ri and equi-
valent reactance matrices Xi := J diag(xd, xq) and X′i := J diag(x′d, xq), with
xd, xq, x

′
d ∈ R+. It receives a mechanical power Pm and rotates at frequency ω,

generating a field voltage with magnitude Ef orthogonal to the rotor axis, and thus
providing an e.m.f e ∈ R2. Let θ be the phase between the machine internal voltage
and the grid voltage and H the machine’s mechanic inertia constant.

Synchronous Machine

AE M

S

B

Zt Zt

Zeq

RiX′i is

ui ut

vm
e vs vg

∞

Figure 3.6 – Synchronous machine connected to an infinite bus (SMIB).

The equations describing the dynamics of this system are given in [114, p. 105].
In this section we give some details on how these equations can be derived as a
5th order model. First, we take as a starting point the swing equation that models
the synchronous machine, but we do not assume its voltage magnitude |vs| to be
constant anymore. Thus, we enrich the model with the dynamics of the e.m.f. e,
obtaining a 3rd order model. Then, we proceed to modelling the outer control loops
on the voltage magnitude |vs| and frequency ω, that appear in the dynamics of the
field voltage Ef and mechanical power input Pm respectively, leading to a 5th order
model.

Synchronous machine dynamics

As stated above, we write the equations of the system in a rotating frame whose
direct axis is aligned with the rotor’s axis, and whose quadratic axis is aligned with
the field voltage. In such system, the synchronous machine’s dynamics write:

θ̇ = 100π(ω − ωg) (3.11a)
2H ω̇ = Pm − (vm · is) (3.11b)

T0 ė = Ef

(
0

1

)
− e− (Xi − X′i) is, (3.11c)

where θ is expressed in rad, and all other variables are expressed in p.u.
Notice that equation (3.11c), which models how the field voltage Ef generates
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the e.m.f e, is given in vector form and can be decomposed as

T0 ėd = − ed
T0 ėq = Ef − eq − (xd − x′d) id (3.11c′)

so that the direct component ed of e is discarded by our choice of convention (taking
initial value ed(0) = 0).

Then, equation (3.11b) can be rephrased using Ohm’s law

vm = e− X′i is,

so that vm · is = eq iq − (x′d− xq) id iq = (eq + (xq − x′d) id) iq, allowing us to rewrite

2H ω̇ = Pm + ((x′d − xq) id − eq) iq. (3.11b′)

Thus, at this point the synchronous machine’s dynamics takes the general form of
a polynomial control system

ẋ = f(x,u)

with state variable x = (θ, ω, eq)> and “control” input u = (Ef , Pm, id, iq)>. The
values of id and iq are determined through the transmission lines’ equations (which
take the general algebraic form g(x,y) = 0, g ∈ R[x,y]m where y = (id, iq)>), while
Ef and Pm are themselves subject to a broader control loop.

Synchronous machine outer control loop

The machine is governed by two regulators. First, an Automatic Voltage Regulator
(AVR) is implemented as follows. Ef is set to be proportional to the voltage mag-
nitude error Vref − Vt, where Vt := |vs| =

√
v2
d + v2

q is the voltage magnitude at the
machine terminal, and Vref is the voltage reference:

E?
f := Ka(Vref − Vt).

Then, we model the actuator response as a first order

Ta Ėf = E?
f − Ef ,

obtaining the control equation

Ta Ėf = −Ef +Ka(Vref − Vt). (3.12)

When the field voltage Ef is subject to such control law, the voltage magnitude at
the synchronous machine’s terminal will automatically respond to any change in the
reference Vref .

Second, a turbine governor regulates the mechanical power injected into the
synchronous machine as follows. Pm is set to equate to a reference Pref plus a
term that is proportional to the frequency error ωref − ω, where ωref is the reference
frequency value:

P ?
m = Pref +Kg(ωref − ω).
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Again, we model the actuator response as a first order

Tg Ṗm = P ?
m − Pm,

obtaining the control equation

Tg Ṗm = Pref − Pm +Kg(ωref − ω). (3.13)

Now considering the system composed with equations (3.11a), (3.11b′), (3.11c′),
(3.12), (3.13), one is seemingly faced to a new polynomial control system ẋ = f(x,u)
with state x = (θ, ω, eq, Ef , Pm)> and input u = (id, iq, Vt, Vref , Pref , ωref)>. However,
id, iq and Vt are not properly speaking “control inputs”, but rather algebraic vari-
ables: as stated before, they are determined by the transmission line equations, that
we will now derive. Thus, the actual control input is u = (Vref , Pref , ωref)>, and it is
supposed to be fixed in the rest of this section.

Transmission lines equations

The circuit represented in Figure 3.6 is equivalent to the much simpler one that we
display in Figure 3.7.

A
Zt is B

ut

vs vg

∞

Figure 3.7 – The equivalent simplified SMIB model.

By construction of our state variable θ as the angle from the grid to the machine,
by definition of the infinite bus, and since phases are defined up to an additive
constant, one has

vg = Vg

(
cos(θ0 − θ)

sin(θ0 − θ)

)
So that choosing the phase reference as θ0 = π

2 yields

vg = Vg

(
sin θ

cos θ

)
.

On another hand, Ohm’s laws yield that

vs − vg = ut = Zt is (Fig. 3.7) & e− vs = ui = (Ri I + X′i) is (Fig. 3.6)

so that vs = vg + Zt is and e − vg = (Zt + Ri I + X′i) is, and the SMIB model is
now turned into a semi-explicit polynomial differential algebraic system of equations
(DAEs) ẋ = f(x,y)

g(x,y) = 0
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T0 = 9.67 xd = 2.38 x′d = 0.336 xq = 1.21

H = 3 Ri = 0.002 ωg = ωref = 1 Rt = 0.01

Xt = 1.185 Vg = 1 Ta = 1 Ka = 70

Vref = 1 Tg = 0.4 Kg = 0.5 Pref = 0.7

Table 3.1 – Parameter values for the SMIB model (p.u.).

with f ,g polynomial maps, state variable x = (θ, ω, eq, Ef , Pm)> and algebraic vari-
able y = (id, iq, Vt). Eventually, this DAEs has index 1: for all x ∈ R5, the map
y 7→ g(x,y) is invertible, with

is = (Zt +Ri I + X′i)−1(e− vg) & Vt = |vg + Zt is|.

After some elementary computations and simplifications, one obtains the closed
formulae

iq = (Xt + x′d)Vg sin θ + (Rt +Ri)(eq − Vg cos θ)
(Rt +Ri)2 + (Xt + x′d)(Xt + xq)

(3.14a)

id = Xt + xq
Rt +Ri

iq −
1

Rt +Ri

Vg sin θ (3.14b)

vd = xqiq −Riid (3.14c)
vq = Rtiq +Xtid + Vg cos θ (3.14d)

Introducing transients

We next introduce a temporary short-circuit at node S, according to the following
protocol:

• At a time tsc a short-circuit occurs and we switch from the nominal system
(Figure 3.6) to a new short-circuited system (Figure 3.8), and thus we are no
longer at an equilibrium point.

• During the short-circuit, the system leaves the equilibrium point of the nominal
model and follows the short-circuit equations for the duration ∆t, until the
short-circuit is eliminated.

• At a time tcl = tsc+∆t, we switch back to the nominal topology and equations:
the problem is to know whether the system will converge to an equilibrium
point or not.

The short-circuit equations are computed as follows using the representation of
Figure 3.8: Kirchhoff laws now yield that

vs = vg + ut & is = ia + ib,
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A is

S
Zt ib

Zt

2 Zt ia

B

ut

vs vg

∞

Figure 3.8 – The short-circuited system.

and according to Ohm’s laws

ut = 2 Zt ia & vs = Zt ib,

so that 3 vs = vg + 2 Zt ia︸ ︷︷ ︸
vs

+ 2 Zt ib︸ ︷︷ ︸
vs

= vg + 2 Zt is, and eventually

vs = 1
3vg + 2

3Zt is

that one can compare with the nominal equation vs = vg + Zt is. Since the
short-circuit only affects the transmission line equation, we conclude that the short-
circuited system’s equations are the same as (3.11)–(3.14), but with Rt (resp. Xt)
replaced by 2

3Rt (resp. 2
3Xt) and Vg replaced by 1

3Vg. Thus, equations (3.11)–(3.13)
are not affected by the short-circuit.

In order to decide if, after the short-circuit is cleared at time tcl, the trajectory
of nominal system (3.11)–(3.14) will return to its stable operating point, we use
SOS programming tools and Lyapunov function arguments to compute a numerical
approximation of its region of attraction.

3.2.2 Lyapunov-based inner ROA approximation

The approach that we use in this section is based on Lyapunov stability theory, and
more precisely on a specific definition of stability. We again focus on the differential
system

ẋ = f(x), (1.4)

with equilibrium point x ∈ Rn, i.e. f(x) = 0.
We are interested in the stability properties of (1.4). There exist several notions

of stability, so we now detail only the one that interests us in this section.
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Definition 3.7: Local Asymptotic Stability

The equilibrium point x of ODE (1.4) is said to be:

• Lyapunov-stable (L-S) if

∀ ε > 0,∃ η > 0; |x0 − x| < η =⇒ ∀ t ≥ 0, |x(t|x0)− x| < ε

i.e. if trajectories initialized close enough to x do not go too far from it.

• locally asymptotically stable (LAS) if it is L-S and

∃ R > 0; |x0 − x| < R =⇒ x(t|x0) −→
t→∞

x

i.e. if x attracts all trajectories initialized close enough to it.

Remark 3.10 (Alternative characterization of LAS points)
Using Definition 1.5, the equilibrium point x is LAS iff A∞(x) contains a ball

of positive radius R > 0.

Several stability estimation theorems are due to Alexandr Mikhailovich Lya-
punov and his use of observable functions that are named after him [81]. In partic-
ular, the following result holds.

Theorem 3.8: Lyapunov-Persidsky

Suppose that the equilibrium of (1.4) is x = 0. Then 0 is L-S iff there exists
an open domain D ⊂ Rn and a C1 “Lyapunov function” V : D→ R such that:

(i) 0 ∈ D and V (0) = 0,

(ii) ∀x ∈ D \ {0}, V (x) > 0 (positive definiteness),

(iii) ∀x ∈ D, V̇ (x) := f(x) · grad V (x) ≤ 0 (negative semi-definiteness).

The if part is due to Lyapunov in [81], while the only if comes from Persidsky
[104].

At this point, it is worth recalling that the question we want to answer is the
following: after given transients, is our SMIB system (3.11)–(3.14) still able to
converge to stable operating point? One can prove that such stable operating point
is actually a LAS equilibrium, which means that if the post-fault state is close
enough to equilibrium, then it will indeed converge.

Definition 1.5 allows us to mathematically formulate the transient stability prob-
lem that we presented in Section 3.2.1 for an infinite time horizon.
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Problem 11: Convergence to operating point

Consider the system (3.11)–(3.14), along with a post-fault condition xcl and
a LAS equilibrium point x. Determine whether

xcl ∈ A∞(x).

When T = +∞, Definition 1.5 is accompanied with the Krasovsky-LaSalle prin-
ciple, which was proved approximately at the same time by Nikolai Nikolaievich
Krasovsky [10] and Joseph Pierre LaSalle [67, Theorem 2].

Theorem 3.9: Krasovsky-LaSalle

Let V ∈ C1(Rn) and l ∈ R such that Ω := {x ∈ Rn : V (x) ≤ l} is bounded
and ∀ x ∈ Ω, V̇ (x) ≤ 0. Let

M := {x0 ∈ Ω : ∀ t ∈ R, V̇ (x(t|x0)) = 0}.

Then, Ω is a positively invariant subset of A∞(M).

From Theorems 3.8 and 3.9, one can elegantly deduce a characterization for local
asymptotic stability, due to Lyapunov [81] (if) and Massera [88] (only if).

Theorem 3.10: Lyapunov-Massera

Suppose that the equilibrium of (1.4) is x = 0. Then 0 is LAS iff there exists
an open domain D ⊂ Rn and a C1 function V : D→ R such that:

• Conditions (i) and (ii) of Theorem 3.8 hold,

• ∀x ∈ D \ {0}, V̇ (x) < 0.

Then, for any l ∈ R such that Ω = {x ∈ Rn : V (x) ≤ l} ⊂ D, one has that
Ω is a positively invariant subset of A∞(0).

Proof : For the considered V , M = {0} in Theorem 3.9. The proof then directly
follows from application of Theorem 3.8. Note that the original proof of Lyapunov
and Massera is more sophisticated since they did not have access to Theorem 3.9,
which is actually posterior to Theorem 3.10 but facilitates its demonstration. ♦

This gives a first answer to Problem 11, up to translation on the state space such
that x = 0: if there exist D, V and l as in Theorem 3.10 such that xcl ∈ Ω, then
xcl ∈ A∞(0). Thus, what remains to do is find such D, V and l.

However, we want to be able to answer Problem 11 for all possible values of xcl.
In other words, we are looking for the exact ROA, and not only a subset of it. Such
problem is a very difficult open question in general, but it is still possible to look
for inner approximations of the ROA. For example, the Krasovsky-LaSalle principle
allows us to strenghten our problem into a more tractable question:
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Problem 12: Inner ROA approximation

Numerically approximate the solution to problem

q?ROA = sup
D,V,l

size(Ω) (3.15)

s.t. D ⊂ Rn, V ∈ C1(D), l ∈ R

0 ∈ D & V (0) = 0
∀ x ∈ D \ {0}, V (x) > 0 & V̇ (x) < 0
Ω = {x ∈ Rn : V (x) ≤ l}
Ω ⊂ D.

for an appropriate “size” function.

Remark 3.11 (Convergence of the inner approximation)
Strenghtening Problem 11 into 12 may introduce a strenghtening gap, i.e. one

might always only have Ω  A∞(0). Up to this day, to the best of our knowledge, the
problem of knowing if, for a given maximizing sequence Dk, Vk, lk and corresponding
Ωk, one has

Ωk −→
k→∞

A∞(0)

for at least one Hausdorff2 topology on sets, is still an open question.

Remark 3.12 (Relevance of the approach)
While the infinite time horizon is not a must, this approach has the advantage

to rely on Lyapunov’s well-known stability theory, making it easy to understand.
Moreover, this approach natuarlly favors inner approximations of the ROA, which
we identified in Remark 1.2 as a crucial feature for TSA.

3.2.3 Computing an SOS Lyapunov function
In [103], an SOS programming based method was given for certifying whether a poly-
nomial map is a Lyapunov function or not. In this section, we display a numerical
scheme, based on this method, which was designed in [51] to compute approximate
solutions to Problem 12 for polynomial dynamics f ∈ R[x]n, and extended to an
instance of nonpolynomial dynamics in [6]. Our contribution here is to systematize
such extension to a class of dynamics that we name algebraic dynamics (not to be
confused with differential algebraic systems).

From algebraic to polynomial dynamics

As highlighted in Chapter 2, reformulating an optimization problem under the form
of a SOS programming problem can only be done if all the data of the initial problem
are polynomial. However, in our case, equations (3.11)–(3.14) include trigonometric

2i.e. a topology that separates sets A and B when A 6= B.
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functions and non-squared euclidean norms. In addition, Lyapunov functions need
the considered equilibrium point to be 0.

Those two difficulties lead us to perform a change of variables, as described in
[6, 53]. Let x := (θ, ω, eq, Ef , Pm)> be the LAS equilibrium point for (3.11)–(3.14),
which we summarize under the form ẋ = f(x) with state x = (θ, ω, eq, Ef , Pm)> and
nonpolynomial vector field f ∈ C1(R5)5, and let V t be the corresponding value for
Vt. We define:

φ1(x) := sin(θ − θ)
φ2(x) := 1− cos(θ − θ)
φ3(x) := ω − ω
φ4(x) := eq − eq
φ5(x) := Ef − Ef

φ6(x) := Pm − Pm

φ7(x) := Vt − V t

φ8(x) := 1
Vt
− 1
V t

.

along with the change of variable:

y := Φ(x)

and the equality constraints:
0 = h1(y) := y2

1 + (1− y2)2 − 1

0 = h2(y) := (y7 + V t)2 − Vt(y)2

0 = h3(y) := (y7 + V t)
(
y8 + 1

V t

)
− 1,

where equation (3.14) ensures that Vt(y)2 is a degree 2 polynomial in y. We then
define X := R5 as well as the algebraic set:

Y :=
{
y ∈ R8 : h(y) = 0

}
.

By construction of h, Φ : X −→ Y is a diffeomorphism with smooth inverse Ψ
defined by ψ1(y) = θ+ sign(y1) arccos(1−y2) and ψi(y) = yi+1 +xi for i = 2, 3, 4, 5.

Remark 3.13 (Validity of the change of variables)
To prove that Φ : X→ Y is well defined, we also need ∀y ∈ Y Vt(y) 6= 0. In fact,

the physics ensure that ∀t Vt 6= 0 because we do not consider short-circuits inside the
synchronous machine. So we already know that starting from any physically relevant
point, the system will not reach the set {x ∈ X : Vt(x) = 0}, which is sufficient here.

According to [34], Φ is a particular case of endogenous transformation between
systems

ẋ = f(x), x ∈ X (1.4)
ẏ = ∂Φ(Ψ(y)) f(Ψ(y)), y ∈ Y. (1.4′)

As such it preserves the stability properties as well as all trajectory properties of
system (3.11)–(3.14) summarized as (1.4), and thus studying the stability of y is
equivalent to studying the stability of x.

Moreover, by construction of Φ it now holds that ẏ = ∂Φ(Ψ(y)) f(Ψ(y)) ∈ R[y]
and 0 = Φ(x) is the LAS equilibrium point of interest in the reformulated system
(1.4′), which corresponds to the general context in which the following scheme (as
well as the hierarchy presented in Section 3.1) can be applied. Before going to the
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next step of the method, we give the extended framework to which SOS programming
schemes can be applied.

Definition 3.11: Algebraic dynamics

Let X := Rn. f ∈ C∞(X)n is said to represent algebraic dynamics iff:

1. there exists h ∈ R[y]q with y ∈ Rm, that define the basic semialgebraic
set

Y := {y ∈ Rm : h(y) = 0}

2. there exists a smooth diffeomorphism Φ : X −→ Y with smooth inverse
Ψ such that (∂Φ ◦Ψ) (f ◦Ψ) ∈ R[y]m.

Remark 3.14 (Application to occupation measures)
Algebraic dynamics always have the property that (∂Φ ◦Ψ) (f ◦Ψ) is tangent to

Y, allowing for systematic use of the heuristic described in Section 3.1.3.

The algorithm that we present hereafter applies to any differential system with
LAS equilibrium point x ∈ X and algebraic dynamics such that Φ(x) = 0.

Another Positivstellensatz

Similarly to Chapter 2, we are now faced with an optimization problem (3.15). How-
ever, this problem is much more complex than those we discussed earlier, and cannot
be directly tackled using the standard moment-SOS hierarchy. Indeed, Problem 12
not only includes semialgebraic set inequality constraints, but also non-nullity con-
straints, which require a generalization of the notion of semialgebraic set.

Definition 3.12: General polynomially constrained set

Let g ∈ R[x]p, h ∈ R[x]q, ` ∈ R[x]r, p, q, r ∈ N?. Then, we define

U(g,h, `) :=


x ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣
g1(x) ≥ 0, . . . , gp(x) ≥ 0

h1(x) = 0, . . . , hq(x) = 0

`1(x) 6= 0, . . . , `r(x) 6= 0


.

Then, real algebraic geometry provides us with results that allow for more gen-
erality than Putinar’s P-satz 2.11, at the price of new computational technicalities
that we are going to explain now.

We first introduce general algebraic structures that will be at the center of an-
other Positivstellensatz. Let g := (g1, . . . , gm) ∈ R[x]m, m ∈ N?.

Definition 3.13: Multiplicative monoid

We define the multiplicative monoid generated by g as

(g)? :=
{
gk : k ∈ Nm

}
.
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Definition 3.14: SOS cone

We define the SOS cone generated by g as

Σ[x][g] :=
{

N∑
i=1

si αi : N ∈ N ∧ ∀i ∈ N?N , (αi ∈ (g)? ∧ si ∈ Σ[x])
}
.

Definition 3.15: Ideal

We define the ideal generated by g as

〈g〉 := {p · g : p ∈ R[x]m} .

With these definitions we can now state the following fundamental theorem [70,
Theorem 2.11].

Theorem 3.16: Krivine-Stengle weak Positivstellensatz (P-satz)

Let g ∈ R[x]p, h ∈ R[x]q, ` ∈ R[x]r, p, q, r ∈ N?. Then, the following are
equivalent:

1. U(g,h, `) = ∅.

2. There exist g ∈ Σ[x][g], h ∈ 〈h〉 and ` ∈ (`)? such that

g + h+ `2 = 0, (3.16)

The LMI based tests for SOS polynomials provided by Proposition 2.13 can
be used to prove that the set emptiness condition from Theorem 3.16 holds, by
finding specific g, h and k such that g+ h+ `2 = 0. g, h and `2 are known as P-satz
certificates or P-satz refutations, since they certify emptiness of U(g,h, `) and refute
its nonemptiness. The search for bounded degree P-satz certificates can be done
using semidefinite programming (SDP). If the degree bound is chosen large enough
the SDP will be feasible and give the refutation certificates. As for the moment-SOS
hierarchy, by putting an upper bound on the P-satz certificates degrees and checking
whether (3.16) has a solution within these bounds, one can create a series of tests
for the emptiness of U(g,h, `). Each of these tests requires the construction of some
SOS and polynomial multipliers, resulting in a SOS program that can be modelled
as an SDP using SOSTOOLS.

The expanding interior algorithm

In the case of problem 12 with reformulated polynomial dynamics (1.4′) and LAS
equilibrium point at 0, two algorithms making this research possible are discussed
in [51]: the expanding D algorithm and the expanding interior (EI) algorithm. Since
the latter is more efficient than the former in practice, we only implemented the EI
algorithm.

The EI algorithm consists of using a positive definiteW ∈ Σ[y] and an expansion
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parameter b > 0 in order to define a variable sized region,

Pb := {y ∈ Y : W (y) ≤ b},

included in the sublevel set Ω := {y ∈ Y : V (y) ≤ 1} of a yet unknown Lyapunov
function V , which we choose to be positive on the whole Y\{0}, so that its domain
D satisfies

D = {0} ∪ {y ∈ Y : V̇ (y) < 0}.

The optimization problem is to expand b as long as we can find a V such that
Pb ⊂ Ω. The level set Ω corresponding to the largest b is our best approximation
of the ROA. In order to enforce Ω ⊂ D, we must have

{y ∈ Y : V (y) ≤ 1} \ {0} ⊆ {y ∈ Y : V̇ (y) < 0}.

Positive definiteness of V on Y \ {0}, Pb ⊂ Ω and Ω ⊂ D are then respectively
rephrased as

{y ∈ Y \ {0} : V (x) ≤ 0} = ∅ & Pb ∩Ωc = ∅ & Ω ∩Dc = ∅.

Consequently, the EI algorithm optimization problem can be formulated using set
emptiness constraints as:

Problem 13: Expanding interior optimization problem

b?W := max
b,V

b (3.17)

s.t. b ∈ R, V ∈ R[y], V (0) = 0
∅ = {y ∈ Rm : (V (y) ≤ 0) ∧ (h(y) = 0) ∧ (y 6= 0)}
∅ = {y ∈ Rm : (W (y) ≤ b) ∧ (h(y) = 0) ∧ (V (y) > 1)}
∅ = {y ∈ Rm : (V (y) ≤ 1) ∧ (h(y) = 0) ∧ (V̇ (y) ≥ 0) ∧ (y 6= 0)}.

It is worth noting that the particular choice of the EI algorithm is a way to
strenghten (3.15) into (3.17).

Then, taking positive definite `1, `2 ∈ Σ[y] (e.g. `i(y) = αi |y|2) to reformulate
the constraint y 6= 0 as a low dimensional polynomial constraint, we can rephraze
(3.17) in terms of emptiness of some well chosen U(g,h, `) sets:

b?W = max
b,V

b (3.18)

s.t. b ∈ R, V ∈ R[y], V (0) = 0
∅ = U(−V,h, `1)
∅ = U((b−W,V − 1),h, V − 1)
∅ = U((1− V, V̇ ),h, `2).

By applying the P-satz Theorem 3.16, (3.18) can in turn be formulated as the
following SOS programming problem:
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b?W = max
b,V,(gi)i

(hi)i,(ki)i

b

s.t. b ∈ R, V ∈ R[y], V (0) = 0
k1, k2, k3 ∈ N, h1, h2, h3 ∈ 〈h〉
g1 ∈ Σ[y][−V ]; 0 = g1 + h1 + `2k1

1

g2 ∈ Σ[y][b−W,V − 1]; 0 = g2 + h2 + (V − 1)2k2

g3 ∈ Σ[y][1− V, V̇ ]; 0 = g3 + h3 + `2k3
2 .

At this stage, our problem could still include an infinite number of SOS con-
straints, due to the structure of Σ[y][g] that gives the possibility to multiply any
number of powers of g with SOS coefficients. Thus, a first strenghtening can be
implemented by replacing Σ[y][g] in equation (3.16) with

Σ̂[y][g] :=
{

N∑
i=1

si gki : N ∈ N ∧ ∀i ∈ N?N , si ∈ Σ[y] ∧ ∀j ∈ N?p, kij ∈ {0, 1}
}

which does not remove too much information when one is looking for small degree
certificates. Then, one obtains the following SOS programming problem:

b̂?W := max
b,V,(ki)i

(pi)i,(sj)j

b

s.t. b ∈ R, V ∈ R[y], V (0) = 0
k1, k2, k3 ∈ N,p1,p2,p3 ∈ R[x]q, s1, . . . , s10 ∈ Σ[y]
0 = s1 − s2V + p1 · h + `2k1

1

0 = s3 + s4(b−W ) + s5(V − 1) + s6(b−W )(V − 1)
+ p2 · h + (V − 1)2k2

0 = s7 + s8(1− V ) + s9V̇ + s10(1− V )V̇ + p3 · h + `2k3
2 .

In order to limit the size of the SOS problem that we will solve numerically,
we restrict ourselves to k1 = k2 = k3 = 1 and we simplify the first constraint by
enforcing s2 = `1 and factoring `1 out of s1 and p1. Since the second constraint
contains quadratic terms in the coefficients of V , we select s3 = s4 = 0, and factor
V − 1 out of all the terms. Finally, we select s10 = 0 in the third constraint in order
to eliminate the quadratic terms in V and factor `2 out. Thus, after renumbering the
remaining SOS polynomials and bounding their degree, we reduce the SOS problem
to:
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Problem 14: Expanding interior strenghtened problem

bdW := max
b,V,(si)i

(pi)i

b (3.19)

s.t. b ∈ R, V ∈ R[y], V (0) = 0
s1 ∈ Σd−dW [y], s2 ∈ Σd−dV [y], s3 ∈ Σd−d′V [y]
p1,p2,p3 ∈ Rd−d◦h[y]q

Σd[y] 3 s4 := V − p1 · h− `1

Σd[y] 3 s5 := −((b−W )s1 + p2 · h + (V − 1))
Σd[y] 3 s6 := −((1− V )s2 + V̇ s3 + p3 · h + `2),

where dW := dd◦W/2e, dV := dd◦V/2e, d′V := dd◦V̇ /2e.

choose b0 > 0 and V0
Lyapunov function on

Ω0 := {y ∈ Y : V0(y) ≤ 1}
such that

Pb0 := {W (y) ≤ b0} ⊂ Ω0

search for p(k+1)
1,2,3 , s

(k+1)
1,2,3 ∈ Σ[y] and a

maximal bk+1 > bk feasible for
(3.19) for fixed Vk+1 = Vk

search for p(k+2)
1,2,3 , s

(k+2)
1 ∈ Σ[y],

Vk+2 ∈ R[y] and a
maximal bk+2 > bk+1 feasible for
(3.19) for fixed s(k+2)

2,3 = s
(k+1)
2,3

test bk+2 − bk+1 < btol

The resulting
Ω? := {y ∈ Y : V ?(y) ≤ 1}

is an estimate of
the ROA A∞(0)

YES NO

linear search for b

Figure 3.9 – The expanding interior algorithm.

According to Proposition 2.13, problem (3.19) is reduced to an optimization
problem with matrix inequalities. However, those inequalities are no longer linear,
because of the presence of the terms b s1, V s2 and V̇ s3 that are bilinear in the
polynomial decision variables. As a consequence, Proposition 2.13 only allows refor-
mulating problem (3.19) as an optimization problem with bilinear matrix inequalities
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(BMI). Such an issue makes problem (3.19) nonconvex and thus more difficult to
solve than the convex problems introduced in Chapter 2. Moreover, Lagrange dual-
ity theory does not apply anymore so our convergence proofs cannot be used in this
context. Nevertheless, problem (3.19) can still be numerically approximated within
an iterative algorithm that resorts to a bisection search and alternately optimizes
over the variables b,p1,p2,p3, s1, s2, s3 on the one hand, and b,p1,p2,p3, s1, V on
the other hand (e.g., [120], [96]), see Figure 3.9.

Remark 3.15 (Dealing with bilinearities)
Fixing some polynomials while optimizing over the others helps dealing with poly-

nomial bilinearities V s2 and V̇ s3. On the other hand, the bilinearity b s1 cannot be
tackled this way, because fixing b would fix the objective function and thus there would
be no optimization problem left. Instead, since b is a scalar decision variable, it is
possible to perform a bisection algorithm to optimize over both b and s1 at the same
time.

Remark 3.16 (Outer iterations)
In [6], the authors improved the EI algorithm by adding an “outer iteration” loop.

The idea is as follows: once the EI algorithm has stopped and given an optimal pair
(b?, V ?), one can restart the whole process with V ? instead of W in the description of
Pb := {y ∈ Y : V ?(y) ≤ b}. This makes the algorithm depend less on the arbitrary
initial choice of W .

Remark 3.17 (Convergence of the EI algorithm)
Contrary to the moment-SOS hierarchy, the EI algorithm solves a nonconvex

optimization problem, which makes any proof of convergence much more difficult.
However, simultaneously to the first publication [125] of the present work, [50] pro-
posed an improved version of the EI algorithm with a proof of convergence to a local
optimum (V ?, b?).

Some features of SOSTOOLS include the setting of polynomial optimization
problems and the search for a polynomial Lyapunov function after expressing the
SOS problem as an SDP problem. In [6], SOSTOOLS is used to implement the
expanding interior algorithm for a dynamic model without regulation.

3.2.4 ROA estimation of the SMIB model
We finally introduce the second contribution of this section, which is the application
of the EI algorithm to the SMIB model of Section 3.2.1. Briefly, the improvement
that we bring with respect to [6] is that we tackle a much more complex differential
system, which is more computationally challenging than the 2nd order model that
was then used as a proof of concept. Then, since the additional control loops help
stabilizing the system, one expects to obtain larger inner ROA approximation than
in the case of [6].

In fact, the 8 dimensional problem one ends up with after reformulating the
SMIB dynamics already exceeds the computational power of a standard laptop. For
this reason, we could not directly solve problem (3.19) for system (1.4′). Thus,
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we propose to slightly modify the AVR equation (3.12), and transform the voltage
droop into a quadratic droop, yielding

Ta
dEf
dt = −Ef +Ka(V 2

ref − V 2
t ). (3.12′)

This small change makes the AVR dynamics polynomial, by getting rid of the square
root operator in the euclidean norm definition. Thus, we no longer need to introduce
y7 and y8 in the reformulated system which then consists of only the first 6 equations
of (1.4′), with y2

1 + (1− y2)2 = 1 as the only remaining polynomial constraint.
From a physical point of view, instead of comparing the magnitude (or modu-

lus) of the voltage (phasor) over the synchronous machine to a reference, we are
comparing its squared magnitude to the square of the reference.

Then, using an expanding domain Pb = {y ∈ R6 : W (y) := |y|2 ≤ b}, the
algorithm in Figure 3.9 builds an increasing sequence of inner approximations to
the ROA which, when the iterations stop for b? = 0.08544, returns the following
Lyapunov function,

V ?(y) = 2.010 y2
1 + 0.07823 y1y2 + 3.1961 y1y3

−2.244 y1y4 − 0.02231 y1y5 + 0.2172 y1y6

+0.9483 y2
2 + 3.422 y2y3 − 2.246 y2y4

−0.003099 y2y5 + 0.1913 y2y6 + 22.92 y2
3 (3.20)

−0.07196 y3y4 − 0.07616 y3y5 + 2.998 y3y6

+4.058 y2
4 − 0.0003899 y4y5 − 0.1467 y4y6

+0.004611 y2
5 + 0.008518 y5y6 + 0.2425 y2

6 ,

whose 1-sublevel set Ω? := {y ∈ R6 : V ?(y) ≤ 1} provides the largest estimation of
the ROA.

Two-dimensional projections of the resulting ROA in original coordinates are
plotted in Figures 3.10 and 3.11 in red lines. While these estimations are quite
large, a comparison to the exact (numerically estimated) ROA, thick blue lines in
Figure 3.11, shows that further improvements are possible, for example by increasing
the degrees of the polynomials in the SOS program, or by going through more outer
iteration loops.

We aim to validate the estimate of the ROA found by the SOS approach, by
testing, in simulation, the limits of stability of the system in all the state-space
directions. For this, the system is systematically initialized at a starting point far
from the considered equilibrium point, and we check by simulation if it goes back
to equilibrium or not.

Since the system has 5 state variables which means a huge number of combin-
ations and because θ and ω are the most important state variables for transient
stability analysis, we decide to make the test in a projection of the state space on
the planes (θ, ω), (eq, Ef ), and (Pm, ω).

Figure 3.11 shows that the estimated ROA (red lines) is inside the real one
(thick blue line, computed numerically by simulation) and this validates the previous
results. The arrows in the plots show that the real ROA is larger in the direction of
the arrows.
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(a) (b)

(c)

Figure 3.10 – Projected graph of the Lyapunov function.

On the plots are displayed 2D projections of the estimated ROA (red line) and
expanding domain Pb? (blue line), and 3D views of the LF in the coordinate pairs:
(a) (θ, ω), (b) (eq, Ef ), and (c) (Pm, ω).

The same figure shows that the trajectories of the system initialized in several
points inside the numerically computed ROA converge asymptotically to the con-
sidered equilibrium point.

In conclusion, SOS approaches and tools have been successfully used to quantify
transient stability of a SMIB system for which the generator has been modeled in
more detail than in previous studies. Indeed, voltage dynamics and voltage and
frequency regulations were taken into account in this formalism. First, this provides
more accuracy in estimation of the stability margin in terms of the ROA. Indeed,
the estimated ROA is large enough compared to the exact ROA computed by simu-
lation. Next, the Lyapunov approach is well suited for the control synthesis and this
quantification can be further exploited to build/tune regulators in order to maxim-
ize ROA. As a matter of fact, in the SOS optimization one can next include the
regulators’ parameters as decision variables. Future work could focus on

• estimation with the full model (without the approximation (3.12′)),

• inclusion of the non linearities of the machine related to saturations of the
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(a) (b)

(c)

Figure 3.11 – Comparison between ROA estimate and simulation built ROA.

We represented 2D projections of the real ROA (thick blue line), the SOS estimate
(thin red line), and expanding domain Pβmax (thin blue line) on the coordinate
subspaces: (a) (e′q, Efd). (b) (Pm, ω), and (c) (δ, ω). Trajectories of the system
initialized in several points (stars) inside the numerically computed ROA converge
asymptotically to the considered equilibrium point.

actuating variables,

• application to larger grids using structure-related model reductions,

• extension to the tuning of regulators’ parameters.

Synthesis of sections 3.1 & 3.2
This Chapter has been dedicated to proposing new power-systems applications of
existing SOS methods for transient stability analysis. The 2nd order model to which
occupation measures were applied in section 3.1 had already been studied in [6]
using the Lyapunov framework, in which the generality of the Krivine-Stengle P-satz
allowed for direct integration of equality constraints; in this matter, our contribution
mainly consisted of adapting the more specific Putinar-based occupation measure
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method to variable-change equality constraints, making possible the study of non-
polynomial algebraic dynamics. Section 3.1 was also a first occasion to apply the
results of Chapter 2 to an instance of the moment-SOS hierarchy, highlighting the
systematic convergence proof allowed by these theoretical results. Section 3.2 then
took SOS methods to the next level of complexity, by considering a 5th order model,
within the Lyapunov framework. This gives us an opportunity to compare Lyapunov
and occupation measure methods in terms of potential applications. We sum up our
comparisons in table 3.2.

Both approaches rely on the approximation of the system’s ROA with level
sets of polynomials. A first important feature of such methods is that a degree
d polynomial in N variables is defined by Dd

N :=
(
N+d
d

)
= (N+d)!

N !d! coefficients, so
that the space of decision variables has dimension Dd

N . One can notice (using the
asymptotic equivalent notation f(x)∼

x→a
g(x) ↔ f(x)/g(x) −→

x→a
1) that Dd

N∼
d→∞

dN

N !
grows polynomially in d with exponent N . As a result, one wants N to be as
small as possible when implementing those algorithms. For the Lyapunov method,
N = n is the number of state variables, while the occupation measure method
involves N = n+ 1 variables, due to the inclusion of time as a variable for function
v. Thus, the Lyapunov method is slightly less costly than the occupation measure
method, even though both methods hardly scale when n grows as one tackles more
realistic models. This highlights the crucial importance of using problem structure
to formulate problems with smaller N .

Then, the main difference between the two approaches is that the moment-SOS
hierarchy presented in Section 3.1 reduces to semidefinite programming, while the ex-
panding interior algorithm of Section 3.2 resorts to BMI constraints. Consequently,
the Lyapunov method loses all the convexity and duality properties that allowed
for the strong convergence proof of the occupation measures approach. On another
note, a weaker convergence was recently proved for the EI algorithm in [50], in the
sense that the EI algorithm terminates, yielding a local optimum for the optimiza-
tion criterion b. Whether such local optimum corresponds to a tight approximation
of the infinite time ROA remains an open question to this day.

However, convergence of the moment-SOS hierarchy comes with a price to pay:
the global optimum strongly depends on the parameters X,K and T . Depend-
ence on X is actually good, since it allows taking into account industrial security
state constraints in the stability analysis, ruling out stable trajectories that would
still damage the power system (such dependence can also be taken into account
in the Lyapunov approach, as a constraint in the Krivine-Stengle P-satz). On the
contrary, dependence on the target set K and time horizon should be considered
carefully: even though such dependence is also motivated by the TSA specifications
of Definition 1.2, the sensitivity to such parameters makes it necessary to precisely
determine K and T in advance, using solid power engineering arguments. An in-
teresting perspective would be to use a Lyapunov-based infinite time ROA inner
approximation Ω? ⊂ AX

∞(x) as a target set for a finite time ROA inner approxima-
tion hierarchy. One would then obtain a sequence of sets Âd,T ⊂ AX

T (Ω?) ⊂ AX
∞(x).

Then, intuitively, one would have[
lim
d→∞

vol
(
AX
∞(x) \ Âd,T

)]
−→
T→∞

0.
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Lyapunov Occupation measures

Nb of variables n (state) n+ 1 (state & time)

Constraints BMI LMI

Convexity no yes

Scheme convergence local global

Parameters none X,K, T

Time horizon infinite finite

Target equilibrium eq. neighbourhood

Table 3.2 – Comparison between Lyapunov and occupation measures for TSA.





4
Volume computation and Stokes theorem

As suggested in Section 3.1.2, the hierarchy-based ROA approximation method re-
lies on the set approximation property that appears in the volume computation
problem (2.8). Then, one “only” has to include occupation measures constrained
by Liouville’s PDE (3.3) to go from approximating a given semialgebraic set to es-
timating an unknown ROA. In other words, the volume computation problem is
the simplest set approximation problem one could think of. As a result, it can be
useful to look for ways to enhance the volume problem tractability, so that it can be
applied to other set approximation problems such as estimating the ROA of a power
system. The two following chapters introduce our contributions in this direction,
that one can find in [124, 126].
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Consider the problem of computing the Lebesgue volume of a compact basic semi-
algebraic set K ⊂ Rn. For simplicity of exposition we will restrict to the case where
K is a smooth, simple semialgebraic set, i.e. the super-level set {x : g(x) ≥ 0 } ⊂ Rn

of a single polynomial g.
Computing or even approximating the volume of a convex body is already hard

theoretically and in practice as well. Even if K is a convex polytope, exact com-
putation of its volume or integration over K is a difficult challenge. Computational
complexity of these problems is discussed in, e.g. [14, 29, 32]. In particular, any
deterministic algorithm with polynomial-time complexity that would compute an
upper bound and a lower bound on the volume cannot yield an estimate on the
bound ratio better than polynomial in the dimension n. For more detail, the inter-
ested reader is referred to the discussion in [44] and to [16] for a comparison. Even
approximating λ(K) by deterministic methods is still a hard problem as explained
in [25] and references therein.

If one accepts randomized algorithms that fail with small probability, then the
situation is more favorable. Indeed, the probabilistic approximation algorithm of [30]
computes the volume to fixed arbitrary relative precision ε > 0 in time polynomial
in 1/ε. The algorithm uses approximation schemes based on rapidly mixing Markov
chains and isoperimetric inequalities; see also hit-and-run algorithms described in
e.g. [17, 116, 145]. So far, it seems that the recent works [24, 25] have provided the
best algorithm of this type.

In full generality with no specific assumption on K such as convexity, the only
general method available is Monte-Carlo, that is, one samples N points according to
Lebesgue measure λ normalized on a simple set X (e.g. a hypercube or an ellipsoid)
that contains K. If PN is the proportion of points that fall into K then the random
variable PN λ(X) provides a good estimator of λ(K) with convergence guarantees as
N increases. However this estimator is non deterministic and fails to provide lower
or upper bounds on λ(K).

When K and X are compact basic semi-algebraic sets, a deterministic numerical
scheme described in [44] provides a sequence {ddK}d∈N ⊂ R of upper bounds that
converges to λ(K) as d increases. Briefly, we recall as stated in Chapter 2

λ(K) = d?K = inf
w∈R[x]

{ ∫
w dλ : w ≥ 1K on X

}
(4.1)

ddK = inf
w∈R2d[x]

{ ∫
w dλ : w ≥ 1K on X

}
. (4.2)

One can notice that minimizing sequences for (4.1) and (4.2) also minimize the
L1(X, λ)-norm ‖w − 1K‖L1(X) :=

∫
|w − 1K| dλ (with convergence to 0 in the case

(4.1)). As the upper bound ddK > λ(K) is obtained by restricting the search in
(4.2) to polynomials of degree at most 2d, the infimum is attained and an optimal
solution can be obtained by solving a semidefinite program. Of course, the size of
the resulting semidefinite program increases with the degree d; for more details the
interested reader is referred to [44].

Then clearly, a Gibbs phenomenon1 takes place as one tries to approximate, on
1The Gibbs phenomenon appears at a jump discontinuity when one numerically approximates a
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X and from above, the discontinuous function 1K by a polynomial of degree at most
d. This makes the convergence of the upper bounds ddK very slow (even for modest
dimension problems). A trick was used in [44] to accelerate this convergence but at
the price of loosing monotonicity of the resulting sequence.

In fact (4.1) is a dual of the following infinite-dimensional Linear Program (LP)
on measures

p?K = sup
µ∈M(K)+

{µ(K) : λ− µ ∈M(K)+ } (4.3)

(where M(K)+ is the space of finite Borel measures on K). Its optimal value is
also λ(K) and is attained at the unique optimal solution µ? := λK = 1K λ (the
restriction of λ to K).

A simple but key observation. As one knows the unique optimal solution
µ? = λK of (4.3), any constraint satisfied by µ? (in particular, linear constraints)
can be included as a constraint on µ in (4.3) without changing the optimal value
and the optimal solution. While these constraints provide additional restrictions in
(4.3), they translate into additional degrees of freedom in the dual (hence a relaxed
version of (4.1)), and therefore better approximations when passing to the finite-
dimensional strengthened version of (4.2). A first set of such linear constraints,
experimented in [71] and later in [139, 73], resulted in drastic improvements but
with no clear rationale behind such improvements.

Contribution. This chapter is based on [124], whose main message and res-
ult is that there is an appropriate set of additional linear constraints on µ in (4.3)
such that the resulting dual (a relaxed version of (4.1)) has an explicit continuous
optimal solution with value λ(K). These additional linear contraints (called Stokes
constraints) come from an appropriate modelling of Stokes’ theorem for integration
over K, a refined version of that in [71]. Therefore the optimal continuous solu-
tion can be approximated efficiently by polynomials with no Gibbs phenomenon,
by the hierarchy of semidefinite relaxations defined in [44] (adapted to these new
linear constraints). Interestingly, the technique of proof and the construction of the
optimal solution invoke classical results from the field of elliptic partial differential
equations (PDE), namely the Lax-Milgram and Poincaré-Wirtinger inequalities as
well as regularity theorems for solutions to elliptic PDEs.

Outline. In Section 4.1 we recall the primal-dual linear formulation of the
volume problem, explain why the dual value is not attained, resulting in a Gibbs
phenomenon, and present the existing Stokes-based heuristics to tackle this issue. In
Section 4.2 we revisit the acceleration strategy based on Stokes’ theorem, with the
aim of introducing a more general acceleration strategy and a new primal-dual linear
formulation of the volume problem. Our main result, attainment of the dual value
in this new formulation, is stated and proved as Theorem 4.5 in Section 4.3. The
drastic improvement in the convergence to λ(K) is illustrated on a simple example
of the Euclidean ball in Section 4.4.

piecewise C1 function with a polynomial function, e.g. by its Fourier series; see e.g. [128, Chapter
9].
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4.1 Existing Stokes-based heuristics
Consider a compact simple semi-algebraic set

K := {x ∈ Rn : g(x) ≥ 0}

with g ∈ R[x]. We suppose that K ⊂ X where X is a compact basic semi-algebraic
set for which we know the moments

∫
X xk dx of the Lebesgue measure λX, where

xk := xk1
1 x

k2
2 · · ·xknn denotes a multivariate monomial of degree k ∈ Nn. We assume

that
Ω := {x ∈ Rn : g(x) > 0}

is a nonempty open set with closure

Ω = K,

and that its boundary
∂Ω = ∂K = K \Ω

is C1 in the sense that it is locally the graph of a continuously differentiable function.
We want to compute the Lebesgue volume of K, i.e., the mass of the Lebesgue
measure λK:

λ(K) :=
∫

K
dx =

∫
1 dλK(x).

4.1.1 Linear reformulation of the volume problem
If X ⊂ Rn is a compact set, denote by M(X) the space of signed Borel measures
on X, which identifies with the topological dual of C(X), the space of continuous
functions on X. Denote byM(X)+ the convex cone of non-negative Borel measures
on X, and by C(X)+ the convex cone of non-negative continuous functions on X.

In [44] a sequence of upper bounds converging to λ(K) is obtained by applying the
moment-SOS hierarchy to approximate, as closely as desired, the (primal) infinite-
dimensional LP on measures:

p?K = max
µ

∫
1 dµ (2.8a)

s.t. µ ∈M(K)+

λ− µ ∈M(X)+

whose optimal value is λ(K), attained for µ? := λK (see Section 2.1.3). The LP
(2.8a) has an infinite-dimensional LP dual on continuous functions, which reads:

d?K = inf
w

∫
w dλ (2.8b)

s.t. w − 1 ∈ C(K)+.

w ∈ C(X)+

Observe that (2.8b) consists in approximating the discontinuous indicator function
1K (equal to one on K and zero elsewhere) from above by continuous functions w,
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Figure 4.1 – Illustration of the Gibbs phenomenon.

Gibbs effect occurs when approximating from above with a polynomial of degree 10
(left red curve) and 20 (right red curve) the indicator function of an interval (black
curve).

by minimizing the L1(X)-norm ‖w − 1K‖L1(X). Clearly the infimum λ(K) is not
attained.

Since K is generated by a polynomial g, one may apply the moment-SOS hier-
archy for solving (2.8), as demonstrated in details in Chapter 2. The main drawback
of such numerical scheme is its typical slow convergence, observed already for very
simple univariate examples, see e.g. [44, Figs. 4.1 and 4.5]. The best available
theoretical convergence speed estimates are also pessimistic, with an asymptoptic
rate of log log d [42]. Slow convergence is mostly due to the so-called Gibbs phe-
nomenon which is well-known in numerical analysis [128, Chapter 9]. Indeed, as
already mentioned, solving (2.8b) numerically amounts to approximating the dis-
continuous function 1K from above with polynomials of increasing degree, which
generates oscillations and overshoots and slows down the convergence, see e.g. [44,
Figs. 4.2, 4.4, 4.6, 4.7, 4.10, 4.12].

Example 4.1 Let K := [0, 1/2] ⊂ X := [−1, 1]. The degree 10 and degree 20
polynomials w obtained by solving the SOS strengthenings of problem (2.8b) are
displayed in Figure 4.1. We can clearly see bumps, typical of a Gibbs phenomenon
at points of discontinuity.

An idea to bypass this limitation consists of adding certain linear constraints to
the finite-dimensional semidefinite relaxations, to make their optimal values smaller
and so closer to the optimal value λ(K). Such linear constraints must be chosen
appropriately:

(i) they must be redundant for the infinite-dimensional moment LP on measures
(2.8a), and

(ii) become active for its finite-dimensional relaxations.
This is the heuristic proposed in [71] to accelerate the Moment-SOS hierarchy for

evaluating transcendental integrals on semi-algebraic sets. These additional linear
constraints on the moments z of µ? are obtained from an application of Stokes’
theorem for integration on K, a classical result in differential geometry. It has
been also observed experimentally that this heuristic accelerates significantly the
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convergence of the hierarchy in other applied contexts, e.g. in chance-constrained
optimization problems [137].

4.1.2 Stokes’ Theorem and its variants
We then explain the heuristic introduced in [44] to accelerate convergence of the
Moment-SOS hierarchy by adding linear constraints on the moments of µ?. These
linear constraints are obtained from a certain application of Stokes’ theorem for
integration on K.

Theorem 4.1: Stokes

Let Ω ⊂ Rn be a piecewise C1 open set. For any (n − 1)-differential form ω
on Ω, one has ∫

∂Ω
ω =

∫
Ω
dω.

.

Corollary 4.2: Gauss formula

In particular, for u ∈ C1(Ω)n and ω(x) = u(x) · n(x) dσ(x), where the dot is
the inner product, σ is the surface or Hausdorff measure on ∂Ω and n is the
outward pointing normal to ∂Ω, we obtain the Gauss formula∫

∂Ω
u · n dσ =

∫
Ω

div u(x) dx. (4.4)

Corollary 4.3: Dual Gauss formula

With the choice u(x) := u(x) ei where u ∈ C1(Ω) and ei is the vector of Rn

with one at entry i and zeros elsewhere, for i = 1, . . . , n, we obtain the dual
Gauss formula ∫

∂Ω
u n dσ =

∫
Ω

grad u(x) dx. (4.5)

Proof : These are all particular cases of [47, Theorem 6.10.2]. ♦

4.1.3 Original Stokes constraints
Associated to a sequence z = (zk)k∈Nn ∈ RNn of moments, introduce the Riesz linear
functional Lz : R[x]→ R as in Definition 2.1. Thus, if z is the sequence of moments
of λK, i.e. if for all k ∈ Nn, zk :=

∫
K xk dx, then Lz(p) =

∫
K p(x) dx and by (4.5)

with u(x) := xkg(x):

Lz(grad(xkg(x))) =
∫

K
grad(xkg(x)) dx

=
∫
∂K

xkg(x) nK(x) dσ(x) = 0,
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since by construction g vanishes on ∂K. Thus while in the infinite-dimensional LP
(2.8a) one may add the linear constraints∫

K
grad(xkg(x)) dµ(x) = 0 ∀k ∈ Nn,

without changing its optimal value p?K = λ(K), on the other hand inclusion of the
linear moment constraints

Lz(grad(xkg(x))) = 0 , |k| ≤ 2d+ 1− deg(g) (4.6)

in the moment relaxation with pseudo-moments z of degree at most d, will decrease
the optimal value of the initial relaxation.

In practice, it was observed that adding constraints (4.6) dramatically speeds
up the convergence of the moment-SOS hierarchy, see e.g. [71, 137]. One main
goal of this section is to provide a qualitative mathematical rationale behind this
phenomenon.

4.2 Contribution to Stokes constraints heuristics

4.2.1 Infinite-dimensional Stokes constraints
In [126], we formulated Stokes constraints in the infinite-dimensional setting, and a
dual formulation was obtained in the context of the volume problem. Using (4.4)
with u = g v (which vanishes on ∂K) and v ∈ C1(K)n arbitrary, yields:∫

K
(grad g(x) · v(x) + g(x) div v(x)) dx =

∫
∂K
g v · n dσ = 0 ,

which can be written equivalently (in the sense of distributions) as

(grad g)λK − grad(gλK) = 0 .

This allows us to rewrite problem (2.8a) as

p?K = max
µ

∫
1 dµ (2.8a′)

s.t. µ ∈M(K)+

λ− µ ∈M(X)+

(grad g)µ− grad(gµ) = 0

without changing its optimal value p?K = λ(K) attained at µ? = λK.
Using the infinite-dimensional convex duality method described in Section 2.1.4,

the dual of LP (2.8a′) reads

d′K := inf
v,w

∫
w dλ (2.8b′)

s.t. w − div(gv)− 1 ∈ C(K)+

w ∈ C(X)+

v ∈ C1(K)n.
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A direct application of Theorem 2.6 yields that d′K = p?K = d?K (we already verified
that the theorem’s working assumptions hold in such case, see Example 2.10).

Crucial observation. Notice that w in (2.8b′) is not required to approximate
1K from above anymore. Instead, it should approximate 1 + div(gv) on K and 0
outside K. Hence, provided that 1 + div(gv) = 0 on ∂K, w might be a continuous
function for some well-chosen v ∈ C1(K)n, and therefore an optimal solution of
(2.8b′) (i.e., the infimum is a minimum). As a result, the Gibbs phenomenon would
disappear and convergence would be faster.

The issue is then to determine whether the infimum in (2.8b′) is attained or not.
And if not, are there other special features of problem (2.8b′) that can be exploited
to yield more efficient semidefinite relaxations ?

4.2.2 New Stokes constraints and main result
In the previous paragraph, the Stokes constraint∫

(v · grad g + g div v) dµ = 0

or equivalently (in the sense of distributions)

(grad g)µ− grad(gµ) = 0 (4.7)

(with µ ∈M(K)+ being the Lebesgue measure on K) was obtained as a particular
case of Stokes’ theorem with u = g v in (4.4). Instead, we can use a more general
version with u not in factored form, and also use the fact that

∀x ∈ ∂K,0 6= grad g(x) = −|grad g(x)| nK(x),

to obtain ∫
div u dµ = −

∫
u · grad g dν ,

or equivalently (in the sense of distributions)

grad µ = (grad g)ν , (4.8)

with µ ∈ M(K)+ being the Lebesgue measure on K and ν ∈ M(∂K)+ being
the measure having density 1/|grad g(x)| with respect to the (n − 1)-dimensional
Haussdorff measure σ on ∂K. The same linear equation was used in [73] to compute
moments of the Hausdorff measure. In fact, equation (4.8) is a generalization of
equation (4.7) in the following sense.

Lemma 4.4: Stokes constraints generalization

If ν ∈M(∂K)+ is s.t. µ ∈M(K)+ satisfies (4.8), then µ also satisfies (4.7).

Proof : Equation (4.8) means that∫
div u dµ+

∫
u · grad g dν = 0
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for all u ∈ C1(K)n. In particular if u = g v for some v ∈ C1(K)n then (4.8) reads

∫
(v · grad g + g div v) dµ = 0 ,

which is precisely (4.7). ♦

Hence we can incorporate linear constraints (4.8) on µ and ν, to rewrite problem
(2.8a) as

p?K = max
µ,ν

∫
1 dµ (2.8a′′)

s.t. µ ∈M(K)+

ν ∈M(∂K)+

λ− µ ∈M(X)+

(grad g)ν − grad µ = 0

without changing its optimal value p?K = λ(K) attained at µ? = λK and ν? =
σ/|grad g|. Notice that LP (2.8a′′) involves two measures µ and ν whereas LP
(2.8a′) involves only one measure µ.

Next, by convex duality, the dual of (2.8a′′) reads

Problem 15: Stokes dual GMP

Find a minimizer for

d′′K = inf
u,w

∫
w dλ (2.8b′′)

s.t. w − div u− 1 ∈ C(K)+

− (u · grad g) ∈ C(∂K)+

w ∈ C(X)+

u ∈ C1(K)n.

Our main result states that the optimal value of the dual (2.8b′′) is attained at
some continuous function (w?,u?) ∈ C(X)+ × C1(K)n. Therefore, in contrast with
problem (2.8b), there is no Gibbs phenomenon at an optimal solution of the (finite-
dimensional) semidefinite strengthening associated with (2.8b′′). On the contrary,
existence of a regular optimum yields at least one sequence of polynomials that
converge uniformly to a global optimizer, due to the Stone-Weierßtrass theorem.

Let Ωi, i = 1, . . . , N denote the connected components of Ω, and let

mΩi
(g) := 1

λ(Ωi)

∫
Ωi

g(x) dx

be the mean of g on Ωi.
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Theorem 4.5: Optimum for dual Stokes volume problem

In dual LP (2.8b′′) the infimum is a minimum, attained at

w?(x) := g(x)
N∑
i=1

1Ωi
(x)

mΩi
(g) , x ∈ X ,

and
u?(x) := grad u(x) ,

where u solves the Poisson PDE −∆u(x) = 1− w?(x), x ∈ Ω

∂nu(x) = 0, x ∈ ∂Ω.

Remark 4.2 (Computing lower bounds for the volume)
The moment-SOS hierarchy associated to LPs (2.8a′′) and (2.8b′′) yields upper

bounds for the volume. Theorem 4.5 is designed for these LPs but it has a straight-
forward counterpart for lower bound volume computation, obtained by replacing K
with X \Ω in the previous developments, i.e. computing upper bounds of λ(X \Ω).
However, two additional technicalities should then be considered:

• This work only deals with semi-algebraic sets defined by a single polynomial; ac-
tually, it immediately generalizes to finite intersections of such semi-algebraic
sets, as long as their boundaries do not intersect (i.e. here K should be in-
cluded in the interior of X): the constraints on boundaries should just be
splitted between the boundaries of the intersected sets.

• This work heavily relies on the fact that the boundary of the considered set
should be smooth; for this reason, computing lower bounds of the volume im-
plies that one chooses a smooth bounding box X (typically a euclidean ball,
ellipsoid or `p ball), which rules out simple sets like the hypercube [−1, 1]n.

Upon taking into account these technicalities, Theorem 4.5 still holds, allowing
to deterministically compute upper and lower bounds for the volume, with arbitrary
precision. Of course in practice, one is limited by the performance of state-of-art
SDP solvers.

4.3 Solving a PDE to attain an optimum
Theorem 4.5 is proved in several steps as follows:
• we show that solutions to a Poisson PDE are optimal for (2.8b′′);

• we study the Poisson PDE on a connected domain;

• we study the Poisson PDE on a union of connected domains;

• we construct an explicit optimum for problem (2.8b′′).
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4.3.1 Equivalence to a Poisson PDE
Lemma 4.6: Optimality condition

Problem (2.8b′′) has an optimal solution iff there exist u ∈ C1(Ω)n, w̃ ∈ C(Ω)+
solving

− div u = 1− w̃ in Ω, (4.9a)
u · n = 0 on ∂Ω, (4.9b)
w̃ = 0 on ∂Ω. (4.9c)

Proof : Let (u, w̃) solve (4.9). Using (4.9c), one can define

w(x) =

 w̃(x) if x ∈ Ω

0 if x ∈ X \Ω.

Then (u, w) is feasible for (2.8b′′) and one has∫
w dλ =

∫
w̃ dλ

(4.9a)=
∫

Ω
(1 + div u) dλ

(4.4)= λ(Ω) +
∫
∂Ω

u · n dσ

(4.9b)= λ(Ω)

so that (u, w) is optimal.
Conversely, let (u, w) be an optimal solution of problem (2.8b′′). We know that

(µ?, ν?) = (λK, σ/|grad g|) is optimal for problem (2.8a′′). Then, duality theory
ensures complementarity: ∫

(w − div u− 1) dλK = 0, (4.10a)∫
u · grad g

|grad g|
dσ = 0. (4.10b)

Since w− div u− 1 is nonnegative on K, (4.10a) yields (4.9a) with w̃ := w|Ω. Like-
wise, since −(u ·grad g) is nonnegative on ∂Ω, (4.10b) yields (4.9b) and thus, using
(4.4), one has

∫
Ω div u dλ = 0. Eventually, (4.10a) yields

∫
Ωw dλ = λ(Ω) =

∫
w dλ

by optimality of w, so that
∫
X\Ωw dλ = 0 and, since w is nonnegative, w|X\Ω ≡ 0.

Continuity of w finally allows us to conclude that w = 0 on ∂Ω, which is exactly
(4.9c). ♦

From Lemma 4.6, existence of an optimum for (2.8b′′) is then equivalent to
existence of a solution to (4.9), which we rephrase as follows, defining f := 1 − w̃
and u = grad u with u ∈ C2(Ω), and where ∆u := div grad u is the Laplacian of
u, and ∂nu := grad u · n.
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Lemma 4.7: Optimum as solution to Poisson’s PDE

If there exist u ∈ C2(Ω)n and f ∈ C(Ω) solving

−∆u = f in Ω, (4.11a)
∂nu = 0 on ∂Ω, (4.11b)
f ≤ 1 in Ω, (4.11c)
f = 1 on ∂Ω, (4.11d)

then problem (2.8b′′) has an optimal solution.

This rephrazing is a Poisson PDE (4.11a) with Neumann boundary condition
(4.11b), whose source term f is a parameter subject to constraints (4.11c) and
(4.11d).

Remark 4.3 (Loss of generality)
Looking for u under the form u = grad u makes us loose the equivalence. Indeed,

while (2.8b′′) and (4.9) are equivalent, existence of a solution to (4.11) is only a
sufficient condition for existence of an optimum for (2.8b′′), since (4.9) might have
only solutions u that are not gradients.

Remark 4.4 (Invariant set for gradient flow)
From a dynamical systems point of view, constraint (4.11b) means that we are

looking for a velocity field or control u in the form of the gradient of a potential u
such that Ω is an invariant set for the solutions t ∈ R 7→ x(t) ∈ Rn of the Cauchy
problem

ẋ(t) = −grad u(x(t)), x(0) ∈ X

after what we just have to define w̃ := 1 + ∆u on Ω and enforce constraints (4.11a),
(4.11c), (4.11d).

4.3.2 Poisson PDE on a connected domain
It remains to prove existence of solutions to problem (4.11). First, notice that
PDE (4.11a) together with its boundary condition (4.11b) enforces an important
constraint on the source term f , namely its mean must vanish:∫

Ω
f dλ = 0. (4.12)

Indeed, if (f, u) solves (4.11), then∫
f dλ

(4.11a)= −
∫

∆u dλ
(4.4)= −

∫
grad u · n dσ

= −
∫
∂nu dσ

(4.11b)= 0 .

Moreover, the following holds.
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Lemma 4.8: Existence on a connected domain

Suppose that Ω is connected. Let the source term f ∈ L2(Ω) ∩ C∞(Ω) have
zero mean on Ω, where Lp(Ω) := {f ∈ RΩ :

∫
|f |p dλ < ∞}. Then there

exists u ∈ C∞(Ω) satisfying (4.11a) and (4.11b).

Proof : We first recall some basic definitions:

• for p ∈ R++ and f ∈ Lp(Ω) the Lp norm is defined by

‖f‖Lp(Ω) :=
(∫

Ω
|f |p dλ

) 1
p

.

• The L2 norm is a Hilbert norm with associated inner product

〈u|v〉L2(Ω) :=
∫

Ω
u v dλ,

such that ‖u‖L2(Ω) =
√
〈u|u〉L2(Ω).

• The Sobolev Hilbert spaces are defined by

H1(Ω) := {u ∈ L2(Ω) : grad u ∈ L2(Ω)n}

and by induction on k > 1,

Hk(Ω) := {u ∈ L2(Ω) : grad u ∈ Hk−1(Ω)n}.

• The Sobolev inner product defines a Hilbert norm:

〈u|v〉H1(Ω) := 〈u|v〉L2(Ω)+〈grad u|grad v〉L2(Ω)n & ‖u‖H1(Ω) :=
√
〈u|u〉H1(Ω).

Now, let us rephrase the Poisson PDE with Neumann boundary condition under a
variational form:

Problem 16: Variational form for (4.11a)-(4.11b)

Find u ∈ H1(Ω) such that for any v ∈ H1(Ω) one has∫
Ω

grad u · grad v dλ =
∫

Ω
f v dλ. (4.13)

Then, for such u, since f ∈ L2(Ω), the interior H2-regularity theorem (see [33,
Theorem 1 in Section 6.3.1]) ensures that u ∈ H2

loc(Ω) := ∩YbΩH
2(Y) (b standing

for compact inclusion), and Green’s “integration by part” theorem writes, for all
v ∈ H1(Ω):∫

∂Ω
v ∂nu dσ =

∫
Ω
v∆u dλ+

∫
Ω

grad u · grad v dλ =
∫

Ω
(∆u+ f) v dλ.

Especially, for v ∈ C∞c (Ω) ⊂ H1(Ω) the left hand side is zero, and by density of
C∞c (Ω) in L2(Ω), we deduce that −∆u = f for the L2(Ω) Hilbert topology and thus
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almost everywhere in Ω. The left hand side is then zero for any v ∈ H1(Ω) and
especially for any v ∈ C∞(Ω) ⊂ H1(Ω), so that, again by density of C∞(∂Ω) in
L2(Ω), one has ∂nu = 0 in L2(∂Ω) and then almost everywhere on ∂Ω.

Eventually, the interior C∞-regularity theorem (see [33, Theorem 3 in section
6.3.1]) ensures that since f ∈ C∞(Ω), u ∈ C∞(Ω) and we obtain the announced
result: u is a smooth strong solution of the Poisson PDE.

Next we invoke Lax-Milgram’s theorem which provides existence and uniqueness
of a solution to a given PDE (see e.g. [33, Section 6.2.1]). In our context the goal is
to solve (4.13) for which it is clear that if u is a solution then any û := u+C, C ∈ R

is also solution, which makes it impossible to obtain uniqueness of the solution in
H1(Ω). We thus restrict ourselves to the hyperplane of zero-mean functions

H :=
{
u ∈ H1(Ω) :

∫
Ω
u dλ = 0

}

which is closed by continuity of the Lebesgue integral, so that H is a Hilbert space
for the scalar product

〈u|v〉H := 〈u|v〉H1(Ω) =
∫

Ω
(uv + grad u · grad v) dλ.

We then define the applications

A :


H −→ R

v 7−→
∫

Ω
f v dλ.

and

B :


H×H −→ R

(u, v) 7−→
∫

Ω
grad u · grad v dλ

The Lax-Milgram theorem then states that if A and B are continuous and if B is
moreover coercive, then there is a unique u ∈ H so that A = B (u, ·), which is the
announced equality (4.13). Let us show that these hypotheses are met.

• Continuity of A . Since A is a linear operator, it is sufficient to show that it
is bounded. Let v ∈ H. Then, Hölder’s inequality yields

|A (v)| =
∣∣∣∣∫

Ω
f v dλ

∣∣∣∣
≤ ‖f‖L2(Ω)‖v‖L2(Ω)

≤ ‖f‖L2(Ω)‖v‖H

because ‖v‖H =
√
‖v‖2

L2(Ω) + ‖grad v‖2
L2(Ω) ≥ ‖v‖L2(Ω). Thus,A is a bounded

operator and |||A ||| = ‖f‖L2(Ω) (equality is obtained by taking v = f ∈ H,
made possible by (4.12)).
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• Continuity of B . Since B is a bilinear operator, it is sufficient to show that it
is bounded. Let u, v ∈ H. Again, Hölder’s inequality yields

|B (u, v)| =
∣∣∣∣∫

Ω
grad u · grad v dλ

∣∣∣∣
≤ ‖grad u‖L2(Ω)‖grad v‖L2(Ω)

≤ ‖grad u‖H‖grad v‖H

because ‖v‖H =
√
‖v‖2

L2(Ω) + ‖grad v‖2
L2(Ω) ≥ ‖grad v‖L2(Ω). Then, B is a

bounded bilinear operator.

• Coercivity of B . First, let us recall the following classical result, proved e.g.
in [33, Theorem 1 in Section 5.8.1].

Lemma 4.9: Poincaré-Wirtinger inequality

Let Ω ⊂ Rn be a bounded, connected, C1 open set. There is a constant
CΩ ≥ 0 such that for any u ∈ H1(Ω):

‖u−mΩ(u)‖L2(Ω) ≤ CΩ‖grad u‖L2(Ω)n

where mΩ(u) := 1
λ(Ω)

∫
Ω u dλ.

Now let us look for a coercivity constant C ∈ R such that ‖u‖H ≤ C B (u, u).
Let u ∈ H. Then, since ∂Ω is C1, we can use Lemma 4.9:

‖grad u‖L2(Ω)n + ‖u−mΩ(u)‖L2(Ω) ≤ (1 + CΩ)‖grad u‖L2(Ω)n

and thus

B (u, u) =
∫

Ω
|grad u|2 dλ

= ‖grad u‖2
L2(Ω)n

≥
‖grad u‖2

L2(Ω)n + ‖u−mΩ(u)‖2
L2(Ω)

1 + C2
Ω

= ‖u‖2
H

1 + C2
Ω

since u ∈ H implies that mΩ(u) := 1
λ(Ω)

∫
Ω u dλ = 0.

Thus, the conditions of the Lax-Milgram theorem are satisfied, which gives us a
unique u ∈ H such that for all v ∈ H, equation (4.13) holds. To conclude, we still
need to extend this property to functions v that have nonzero mean. Let v ∈ H1(Ω),
not necessary in H. We define v̂ := v−mΩ(v), so that v̂ ∈ H and grad v = grad v̂.
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Then, ∫
Ω
f v dλ =

∫
Ω
f v̂ dλ+mΩ(v)

∫
Ω
f dλ

(4.12)=
∫

Ω
f v̂ dλ

(4.13)=
∫

Ω
grad u · grad v̂ dλ

=
∫

Ω
grad u · grad v dλ,

which concludes the solution of the variational formulation and the proof of Lemma
4.8. ♦

4.3.3 General Poisson PDE with boundary regularity
In Lemma 4.8, we assumed that Ω is connected, so that we could apply the Poincaré-
Wirtinger inequality to use the Lax-Milgram theorem, obtaining both existence and
uniqueness of a solution in a well-chosen space. However, we are not interested in
the uniqueness property, and we would like to tackle non-connected sets. Since Ω
is a semi-algebraic set, it has a finite number of connected components Ω1, . . . ,ΩN .

Corollary 4.10: Existence on a disconnected domain

Let the source term f ∈ L2(Ω) ∩ C∞(Ω) have zero mean on each connected
component of Ω. Then there exists u ∈ C∞(Ω) solving (4.11a) and(4.11b).

Proof : Let i = 1, . . . , N . Since
∫
Ωi
f dλ = 0, we can apply the result of Lemma

4.8 replacing Ω with Ωi to obtain ui ∈ C∞(Ωi) such that −∆ui = f in Ωi and
∂nui = 0 on ∂Ωi.

Then, we notice that since ∂Ω is C1, the Ωi cannot be mutually tangent, so that
∂Ω = ⊔N

i=1 ∂Ωi. Thus, for any x ∈ Ω, the following sum has exactly one non-zero
term:

u :=
N∑
i=1

1Ωi
ui.

By definition of the Ωi as the connected components of Ω, u ∈ C∞(Ω).
Let x ∈ Ω. There is an i such that x ∈ Ωi, so that u = ui on a neighbourhood

of x. Thus, −∆u(x) = −∆ui(x) = f(x).
Let x ∈ ∂Ω. There is an i such that x ∈ ∂Ωi, so that u = ui on a neighbourhood

of x in Ω. Thus, ∂nu(x) = ∂nui(x) = 0. ♦

In the previous paragraph we have proved that under suitable conditions on the
source term f , equations (4.11a) and (4.11b) have a solution u ∈ C∞(Ω). However,
the existence of an optimum for problem (2.8b′′) requires u to be in C1(K): we need
to establish regularity at the boundary. For this, an additional assumption on Ω is
needed to state the following corollary to Lemma 4.8.
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Lemma 4.11: Regularity on the boundary

Let the source term f ∈ C∞(Ω) have zero mean on each connected component
of Ω. Suppose that ∂Ω is C∞. Then, there exists u ∈ C∞(Ω) solving (4.11a)
and (4.11b).

Proof : First, since C∞(Ω) ⊂ L2(Ω) ∩ C∞(Ω), we can use Lemma 4.10 to get a
suitable u ∈ C∞(Ω). The only thing that remains to be proved is the regularity of
u on ∂Ω. For this, we use the boundary C∞-regularity theorem [33, Theorem 6 in
Section 6.3.2]: since f ∈ C∞(Ω) and ∂Ω is C∞, we conclude that u ∈ C∞(Ω). ♦

Remark 4.5 (Regularity of Ω)
Assuming that ∂Ω is C∞ instead of C1 is actually without loss of generality since

Ω is a semi-algebraic set: as soon as ∂Ω is locally the graph of a C1 function, it is
smooth.

4.3.4 Explicit optimum for Stokes-enhanced hierarchy
Our optimization problem does not feature only the Poisson PDE with Neumann
condition: it also includes constraints (4.11c) and (4.11d) on the source term. Con-
sequently, a function f ∈ C∞(Ω) with zero integral over any connected component
of Ω and satisfying (4.11c) and (4.11d) remains to be constructed. We keep the
notations of Lemma 4.10 and suggest as candidate

x 7→ f(x) := 1− g(x)
N∑
i=1

1Ωi
(x)

mΩi
(g) . (4.14)

By definition, g = 0 on ∂Ω, so that (4.11d) automatically holds. Moreover, both g
and 1Ωi

are nonnegative on Ω, so that (4.11c) also holds.
In terms of regularity, f is polynomial on each connected component of Ω and

since g smoothly vanishes on ∂Ω, f ∈ C∞(K).
Eventually, let i ∈ 1, . . . , N so that Ωi is a connected component of Ω. Then,

by definition, ∂Ωi ⊂ ∂Ω, and one has

∫
Ωi

f dλ =
∫

Ωi

1− g(x)
N∑
j=1

1Ωj
(x)

mΩj
(g)

 dx

= λ(Ωi)−
1

mΩi
(g)

∫
Ωi

g(x) dx = 0,

since by definition mΩi
(g) = 1

λ(Ωi)
∫
Ωi
g(x) dx.

We finally obtain our couple (u, f) solution to problem (4.11) with f defined in
(4.14) and u given by Lemma 4.11. Then we retrieve the couple (u, w̃) solution to
problem (4.9) by defining u := grad u and for all x ∈ Ω:

w̃(x) := 1− f(x) = g(x)
N∑
i=1

1Ωi
(x)

mΩi
(g) .
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Eventually, the optimization problem (2.8b′′) has a (global) minimizer (u, w) with,
for all x ∈ X,

w(x) = g(x)
N∑
i=1

1Ωi
(x)

mΩi
(g) .

Indeed, one can check that∫
w dλ =

N∑
i=1

1
mΩi

(g)

∫
Ωi

g dλ

=
N∑
i=1

λ(Ωi) = λ(Ω) = λ(K) ,

which concludes the proof of Theorem 4.5.

4.4 Numerical experiments and general heuristics
To illustrate how efficient can be the introduction of Stokes constraints for volume
computation, we consider the simple setting where K is a Euclidean ball included in
X = B the unit Euclidean ball. Indeed drastic improvements on the convergence are
observed. All numerical examples were processed on a standard laptop computer
under the Matlab environment with the SOS parser of YALMIP [78], the moment
parser GloptiPoly [43] and the semidefinite programming solver of MOSEK [26].

4.4.1 Practical implementation
Following the Moment-SOS hierarchy methodology for volume computation as de-
scribed in [44], in the (finite-dimensional) degree d semidefinite strengthening of
dual problem (2.8b′′):

• w ∈ Rd[x] and u ∈ Rd[x]n are polynomials of degree at most d;

• the positivity constraint w ∈ C0(B)+ is replaced with a Putinar certificate of
positivity on B, that is:

w(x) = s10(x) + s11(x)(1− |x|2) , ∀x ∈ Rn ,

where s10 (resp. s11) is an SOS polynomial of degree at most 2d (resp. 2d−2);

• the positivity constraint w − divu − 1 ∈ C0(K)+ is replaced with a Putinar
certificate of positivity on K, that is:

w(x)− div u(x)− 1 = s20(x) + s21(x) g(x) , ∀x ∈ Rn ,

where s20 (resp. s21) is an SOS polynomial of degree at most 2d (resp. 2d−d◦g);

• the positivity constraint u · gradg ∈ C0(∂K)+ is replaced with a Putinar
certificate of positivity on ∂K, that is:

−u(x) · gradg(x) = s30(x) + s31(x) g(x) , ∀x ∈ Rn ,

where s30 (resp. s31) is an SOS polynomial of degree at most 2d (resp. 2d−d◦g);
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Figure 4.2 – Polynomials obtained with and without Stokes constraints.

Here are represented the degree 16 polynomial approximations obtained without
Stokes constraints (left) and with Stokes constraints (right).

• the linear criterion
∫
Bwdλ translates into linear criterion on the vector of

coefficients of w, as
∫
B xα dλ is available in closed-form.

The above identities define linear constraints on the coefficients of all the uknown
polynomials. Next, stating that some of these polynomials must be SOS translate
into semidefinite constraints on their respective unknown Gram matrices. The res-
ulting optimization problem is a semidefinite program; for more details the interested
reader is referred to e.g. [44].

4.4.2 Bivariate disk
Let us first illustrate Theorem 4.5 for computing the area of the disk K := {x ∈
R2 : g(x) = 1/4 − (x1 − 1/2)2 − x2

2 ≥ 0} included in the unit disk B := {x ∈ R2 :
1− x2

1 − x2
2 ≥ 0}.

The degree d = 16 polynomial approximation w obtained by solving the SOS
relaxation of linear problem (2.8b) is represented at the left of Figure 4.2. We
can see bumps and ripples typical of a Gibbs phenomenon, since the polynomial
should approximate from above the discontinuous indicator function 1K as closely
as possible. A rather loose upper bound of 1.1626 is obtained on the volume λ(K) =
π
4 ≈ 0.7854.

In comparison, the degree d = 16 polynomial approximation w obtained by
solving the SOS relaxation of linear problem (2.8b′′) is represented at the right
of Figure 4.2. As expected from the proof of Theorem 4.5, the poynomial should
approximate from above the continuous function g1K λ(K)/(

∫
gλK). The resulting

polynomial approximation is smoother and yields a much improved upper bound of
0.7870.

4.4.3 Higher dimensions
In Table 4.1 we report on the dramatic acceleration brought by Stokes constraints
in the case of the Euclidean ball K := {x ∈ R3 : g(x) = (3/4)2 − |x|2 ≥ 0}
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n d without Stokes with Stokes

3 4 88% (0.03s) 18% (0.04s)

3 8 57% (0.16s) 1.0% (0.44s)

3 12 47% (1.97s) 0.0% (4.63s)

3 16 43% (23.9s) 0.0% (30.1s)

3 20 41% (142s) 0.0% (206s)

Table 4.1 – Stokes constraints performances for increasing relaxation degrees.

Relative errors (%) and computational times (in brackets in seconds) for solving
moment relaxations of increasing degrees d approximating the volume of ball of
dimension n = 3.

n d without Stokes with Stokes

1 10 17% (0.05s) 0.0% (0.03s)

2 10 35% (0.09s) 0.2% (0.25s)

3 10 56% (0.52s) 0.3% (1.19s)

4 10 72% (9.74s) 0.4% (22.8s)

5 10 79% (150s) 0.6% (669s)

n d without Stokes with Stokes

6 4 190% (0.25s) 45.1% (1.03s)

7 4 203% (0.32s) 60.0% (4.88s)

8 4 221% (0.42s) 78.6% (8.45s)

9 4 245% (1.15s) 102% (45.1s)

10 4 278% (3.10s) 131% (176s)

Table 4.2 – Stokes constraints performances for increasing problem dimensions.

Relative errors (%) and computational times (in brackets in seconds) for solving
the degree d = 10 (left) and d = 4 (right) moment relaxation approximating the
volume of a ball of increasing dimensions n.

of dimension n = 3 included in the unit ball B. We specify the relative errors
on the bounds obtained by solving moment relaxations with and without Stokes
constraints, together with the computational times (in seconds), for a relaxation
degree d ranging from 4 to 20. We observe that tight bounds are obtained already
at low degrees with Stokes constraints, sharply contrasting with the loose bounds
obtained without Stokes constraints. However, we see also that the inclusion of
Stokes constraints has a computational price.

In Table 4.2 we report the relative errors on the bounds obtained with and
without Stokes constraints, together with the computational times (in seconds), for
a relaxation degree equal to d = 10 (left) resp. d = 4 (right) and for dimension n
ranging from 1 to 5 (left) resp. from 6 to 10 (right). When d = 10 and n = 5 the
semidefinite relaxation features 6006 pseudo-moments without Stokes constraints,
and 12194 pseudo-moments with Stokes constraints. We see that introducing Stokes
constraints incurs a computational cost, to be compromised with the expected qual-
ity of the bounds.
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Higher dimensional problems can be addressed only if the problem description
has some sparsity structure, as explained in the next chapter. Also, depending on the
geometry of the problem, and for larger values of the relaxation degree, alternative
polynomial bases may be preferable numerically than the monomial basis which is
used by default in Moment and SOS parsers.

4.4.4 General heuristics
As stated in Section 4.2.2, Problem (2.8a′′) is a generalization of (2.8a′) in the sense
of Lemma 4.4. However, such generalization is only valid when K is a smooth simple
semialgebraic set K = {x ∈ Rn : g(x) ≥ 0}, such that −grad g/|grad g| is well
defined on ∂K and coincides with nK. In this section we propose some heuristics
for the case of general compact basic semialgebraic sets:

K = {x ∈ Rn : g(x) ≥ 0}

with g ∈ R[x]m, m > 1. In such case, ∂K is only piecewise smooth:

∂K = K ∩
(
m⋃
i=1
{x ∈ Rn : gi(x) = 0}

)
= K ∩ {x ∈ Rn : h(x) = 0}

where h(x) := g1(x) · · · gm(x). In such case, it is straightforward to state a formu-
lation similar to (2.8a′)-(2.8b′):

p?K = max
µ

∫
1 dµ

s.t. µ ∈M(K)+

λ− µ ∈M(X)+

(grad h)µ− grad(hµ) = 0,

d′K := inf
v,w

∫
w dλ (4.15)

s.t. w − div(hv)− 1 ∈ C(K)+

w ∈ C(X)+

v ∈ C1(K)n,

since h = 0 on ∂K, using the same reasoning as in Section 4.2.1. In practice,
this general formulation with h is the one that has always been used for compact
basic semialgebraic sets. Implementation of this problem drastically improved the
convergence of the corresponding moment-SOS hierarchies. However, Theorem 4.5
does not hold for this formulation. At this stage, two possibilities exist for future
work:

• Extending Theorem 4.5 to formulation (2.8b′),

• Extending formulation 2.8b′′ to general basic semialgebraic sets and extending
Theorem 4.5 to the obtained generalization.

If one focuses on the first possibility, then the problem can be seen as the looking
for w̃ ∈ C(Ω)+, v ∈ C1(Ω)n such that:

− div(hv) = 1− w̃ in Ω,
w̃ = 0 on ∂Ω,
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i.e. studying a degenerate linear PDE. While this PDE seems quite simple, so far
we could not produce an analysis similar to the one presented in this chapter.

If one focuses on the second possibility, a key argument might be to keep the
separation of ∂K as a union of basic semialgebraic sets

∂K =
m⋃
i=1

Ki , Ki := K ∩ {x ∈ Rn : gi(x) = 0}

and to define a boundary measure νi for each one of them:

p?K = max
∫

1 dµ

s.t. µ ∈M(K)+

νi ∈M(Ki)+, i ∈ N?m

λ− µ ∈M(X)+
m∑
i=1

(grad gi)νi − grad µ = 0,

d′′K = inf
∫
w dλ (4.16)

s.t. w − div u− 1 ∈ C(K)+

− (u · grad gi) ∈ C(Ki)+, i ∈ N?m

w ∈ C(X)+

u ∈ C1(K)n.

Then, extending Theorem 4.5 reduces to studying the Poisson PDE with Neumann
boundary conditions on a non-smooth domain.

Conclusions
In this chapter we proposed a new primal-dual infinite-dimensional linear formula-
tion of the problem of computing the volume of a smooth semi-algebraic set gener-
ated by a single polynomial, generalizing the approach of [44] while still allowing for
the application of the moment-SOS hierarchy. The new dual formulation contains
redundant linear constraints arising from Stokes’ Theorem, generalizing the heur-
istic of [71]. A striking property of this new formulation is that the dual value is
attained, contrary to the original formulation. As a consequence, the corresponding
dual SOS hierarchy does not suffer from the Gibbs phenomenon, thereby accelerating
the convergence.

Numerical experiments (not reported here) reveal that the values obtained with
the new Stokes constraints (with a general vector field) are closely matching the
values obtained with the original Stokes constraints of [71] (with the generating
polynomial factoring the vector field). It may be then expected that the original
and new Stokes constraints are equivalent, at least in some cases. However at
this stage we have not been able to prove such equivalence. The crucial difference
between Stokes formulations (2.8a′) and (4.7) is that the former, while allowing for
a proof that the dual inf is attained, restricts to simple semialgebraic sets (defined
by a single polynomial g ∈ R[x]), while the latter can be applied to general basic
semialgebraic sets, but still lacks a proof of dual optimality attainment. Future
works could focus on the extension of our proof to standard Stokes constraints (4.7)
and (4.15), or to the most general Stokes constraints (4.16).

Eventually, the proof of dual attainment builds upon very classical tools from
linear PDE analysis, thereby building up a new bridge between infinite-dimensional
convex duality and PDE theory, in the context of the moment-SOS hierarchy. We
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expect that these ideas can be exploited to prove regularity properties of linear
reformulations of other problems in data science, beyond volume approximation. For
example, it would be desirable to design Stokes constraints tailored to the infinite-
dimensional linear reformulation of the region of attraction problem [42] or its sparse
version [123].





5
Exploiting sparsity for volume

computation

This chapter is based on contribution [126] which proposes a scheme to adapt
the volume approximating moment-SOS hierarchy to a class of problem structures
named sparsity patterns. Such sparsity patterns and their importance are presented
in detail in Section 5.1, with two examples that illustrate both the stake of sparsity
exploitation and the intuition that underlies our contribution. Then, Section 5.2 fo-
cuses on the simplest sparsity pattern we exploited to make the volume computation
moment-SOS hierarchy more tractable, i.e. the path decomposition, with a variety
of numerical examples, including high dimensional volume problems. This section
is followed by a generalization in Section 5.3, which gives a computation scheme for
general correlative sparsity patterns accompanied by another selection of numerical
examples.
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5.1 The importance of sparsity

5.1.1 Motivation
As stated in Section 3.1.2, the measure approach for the volume computation prob-
lem (2.8) is intimately linked to the use (3.7) of occupation measures, in dynamical
systems theory, for computing the ROA of a given target set. Indeed, in [42], the
problem of estimating the ROA is formulated as a GMP very similar to the volume
computation problem. The idea is to maximize the volume of a set of initial condi-
tions that yield trajectories ending in the target set after a given time.

This problem of estimating the ROA of a target set is crucial in power systems
safety assessment, since the power grids must have good stability properties. The
conservative, geometric characterization of the region of attraction as formulated in
[42] is a very promising approach for this domain of application, see Section 3.1 and
the results therein.

In both ROA estimation and volume computation, the main limitation of the
moment-SOS method is that only problems of modest dimension can be handled by
current solvers. Exploiting sparsity seems to be the best approach to allow scalability
both in volume computation and ROA estimation. Since volume estimation is a
simpler instance of the GMP than ROA estimation, we decided to address first the
former problem.

In addition, volume computation with respect to a measure satisfying some con-
ditions (e.g. compactly supported or Gaussian measure) also has applications in
the fields of geometry and probability computation, which is the reason why many
algorithms were already proposed for volume computation of convex polytopes and
convex bodies in general.

5.1.2 Contribution
We design deterministic methods that provide approximations with strong asymp-
totic guarantees of convergence to the volume of K. The methodology that we
propose is similar in spirit to the one initially developed in [44] as described above
and its extension to non-compact sets and Gaussian measures of [71]. However it
is not a straightforward or direct extension of [44] or [71], and it has the following
important distinguishing features:

(i) It can handle sets K ⊂ Rn of potentially large dimension n provided that some
sparsity pattern (namely: correlative sparsity, see section 5.1.4 as well as [132, 23]
for details) is present in the description of K. This is in sharp contrast with [44].

(ii) The computation of upper and lower bounds can be decomposed into smaller
independent problems of the same type, and depending on the sparsity pattern, some
of the computations can even be done in parallel. This fact alone is remarkable and
unexpected.

To the best of our knowledge, this is the first deterministic method for volume
computation that takes benefit from a correlative sparsity pattern in the description
of K in the two directions of (a) decomposition into problems of smaller size and
(b) parallel computation. Of course this sharp improvement is performed at some



5.1. THE IMPORTANCE OF SPARSITY 111

price: our framework only works on semi-algebraic sets that present the appropriate
correlative sparsity pattern (see Assumption 5.12 as well as Section 5.3.4 for detailed
discussion on its applicability).

The key idea is to provide a new and very specific sparse formulation of the
original problem in which one defines a set of marginal measures whose (small di-
mensional) support is in accordance with the correlative sparsity pattern present
in the description of the set K. However, those marginal measures are not similar
to the ones used in the sparse formulation [69] of polynomial optimization prob-
lems over the same set K. Indeed they are not expected to satisfy the consistency
condition of [69]1.

Finally, in principle, our floating point volume computation in large dimension
n is faced with a crucial numerical issue. Indeed as in Monte-Carlo methods, up
to rescaling, one has to include the set K into a box X of unit volume. Therefore
the volume of K is of the order εn for some ε ∈ (0, 1) and thus far beyond machine
precision as soon as n is large. To handle this critical issue we develop a sparsity-
adapted rescaling which allows us to compute very small volumes in potentially very
high dimension with good precision.

5.1.3 A motivating example
Consider the following set

K := {x ∈ [0, 1]100 : ∀i ∈ N?99, xixi+1 ≤ 1/2}.

This is a high-dimensional non-convex sparse semi-algebraic set. The precise
definition of a sparse semi-algebraic set will be given later on, but so far notice that
in the description of K each constraint involves only 2 variables out of 100. The
volume of K is hard to compute, but thanks to the structured description of the set
we are able to prove numerically that its volume is smaller than 2 · 10−5 in less than
2 minutes on a standard computer.

For this we have implemented a specific version of the moment-SOS hierarchy
of SDP relaxations to solve the GMP, in which we exploit the correlative sparsity
pattern of the set K. The basic idea is to replace the original GMP that involves
an unknown measure on R100 (whose SDP relaxations are hence untractable) with
a GMP involving 99 measures on R2 (hence tractable). In addition, this new GMP
can be solved either in one shot (with the 99 unknown measures) or by solving
sequentially 99 GMPs involving (i) one measure on R2 and (ii) some data obtained
from the GMP solved at previous step. Our approach can be sketched as follows.

First, we rescale the problem so that the set K is included in the unit box
X := [0, 1]n on which the moments of the Lebesgue measure are easily computed.

Next, we describe the volume problem on K as a chain of volume subproblems
on the subspaces Im(πi) where πi(x1, . . . , x100) = (xi, xi+1), with a link between the
i-th and (i+ 1)-th sub-problems.

1If two measures share some variables then the consistency condition requires that their re-
spective marginals coincide.
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Finally, in this example, as n = 100 and K ⊂ X, the volume of K is very small
and far below standard floating point machine precision. To handle this numerical
issue, we have implemented a sparsity-adapted strategy which consists of rescaling
each subproblem defined on the projections of K to obtain intermediate values all
with the same order of magnitude. Once all computations (involving quantities of
the same order of magnitude) have been performed, the correct value of the volume
is obtained by a reverse scaling.

The sparse formulation stems from considering some measure marginals appro-
priately defined according to the correlative sparsity pattern present in the descrip-
tion of K. It leads to a variety of algorithms to compute the volume of sparse
semi-algebraic sets.

In this section we describe the method in the prototype case of linear clique
trees. The more general case of branched clique trees is treated later on.

5.1.4 The correlative sparsity pattern and its graph repres-
entation

This work heavily relies on a specific notion of sparsity defined as follows.

Specific notation: Given a Euclidean space X and a subspace Y ⊂ X, the ortho-
gonal projection map from X to Y is denoted by πY . Let 1j denote the j-th vector
of the canonical basis of Rn such that if x = (x1, . . . , xn) then xj = x · 1j. The
N -dimensional subspace spanned by vectors 1i1 , . . . ,1iN is denoted 〈xi1 , . . . , xiN 〉 or
〈xij〉1≤j≤N . Given a measure µ ∈ M(X), its marginal with respect to Y is denoted
by µY ∈ M(Y ). It is equal to the image or push-forward measure of µ through the
map πY .

Definition 5.1: Sparse polynomials

A scalar polynomial p ∈ R[x] is said to be sparse when its vector of coefficients
p (such that p(x) = p·e(x) where e(x) = (xk)|k|≤d◦p) is sparse. In other words,
p is a linear combination of a small number of monomials.

Definition 5.2: Correlative sparsity

A family of polynomial vectors (g1, . . . ,gN) is said to be correlatively sparse
whenever its correlative sparsity pattern matrix R := (Rij)1≤i,j≤n, defined by

Rij := δij +
N∑
k=1

∥∥∥∥∥ ∂

∂xi
gk
∥∥∥∥∥
∥∥∥∥∥ ∂

∂xj
gk
∥∥∥∥∥

(where δij = 1 if i = j and 0 otherwise, and ‖ · ‖ is any norm on polynomial
vectors), is sparse. In other words, for many pairs of indices i 6= j, the variables
xi and xj do not appear simultaneously in any element of {g1, . . . ,gN}.



5.1. THE IMPORTANCE OF SPARSITY 113

Definition 5.3: Correlation graph

The correlation graph G = (V,E) of (g1, . . . ,gN) is defined by vertices V = N?n
and edges E = {(i, j) ∈ V2 : i 6= j ∧ Rij 6= 0}.
The correlative sparsity CS of (g1, . . . ,gN) is the treewidth of its correlation
grapha.

aIntuitively, the treewidth quantifies how “far” a graph is from being a tree. A proper
definition is given in Section 5.3.4.

This chapter proposes a method to reduce the size of the degree d volume com-
putation SDP to

(
CS+d+1

d

)
instead of

(
n+d
d

)
, under appropriate assumptions. To give

an idea of the gain in computational complexity, we illustrate it on our motivating
example of section 5.1.3, where n = 100 while CS = 1.

Definition 5.4: Support of a polynomial

The support of gi is the set I(gi) :=
{
j ∈ N?n : ∂

∂xj
gi 6= 0

}
.

The support subspace of gi is the set Xi := 〈xj〉j∈I(gi), whose dimension is
smaller than n. Since by definition gi = gi ◦ πXi , we use both notations
with the same meaning. Then X := ∑N

i=1 Xi is called the coordinate subspace
decomposition associated to (g1, . . . ,gN).

Without loss of generality, we can suppose that X = Rn (otherwise, there would
be variables that appear in none of the gis).

Definition 5.5: Sparse semialgebraic set

A sparse basic semi-algebraic set has a description

K := {x ∈ X : ∀i ∈ N?N , gi(πXi(x)) ≥ 0}

where (gi)1≤i≤N is a correlatively sparse family of polynomial vectors (in-
equalities are meant entrywise) and X = ∑N

i=1 Xi is the coordinate subspace
decomposition associated to (gi)1≤i≤N (and, by extension, to K).
A sparse semi-algebraic set is a finite union of sparse basic semi-algebraic sets
that share the same coordinate subspace decomposition.

A simple example of a sparse basic semi-algebraic set is

K := {x ∈ R4 : (g1(x1, x2) ≥ 0) ∧ (g2(x2, x3) ≥ 0) ∧ (g3(x3, x4) ≥ 0)} (5.1)

for X = R4, X1 = 〈x1, x2〉, X2 = 〈x2, x3〉, X3 = 〈x3, x4〉 and the projection maps are
πX1(x) = (x1, x2), πX2(x) = (x2, x3), πX3(x) = (x3, x4).

Our methodology is based on the classical theory of clique trees. Up to a chordal
extension (which is equivalent to slightly weakening the correlative sparsity pattern),
we suppose that the correlation graph G = (V,E) is chordal (i.e. every cycle of
length greater than 3 has a chord, that is, an edge linking two nonconsecutive
vertices). Then we construct the maximal cliques of the graph (a clique C is a subset
of V such that every vertex of C is connected to all the other vertices of C or, in
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other words, such that C2 ⊂ E; a clique is maximal when its cardinal is maximal).
Most of the time, up to concatenation of some of the gi, the maximal cliques of a
chordal correlation graph are exactly the supports of the gi: Ci = I(gi), so in the
following we will consider only such case2. Figure 5.1 illustrates this constuction
for the sparse set (5.1), the vertices are denoted by xi and our maximal cliques are
denoted by Cj.

x2x1 x3

C1

x4

C2 C3

Figure 5.1 – Graph associated to the sparse set (5.1).

Then, we construct a clique tree which is instrumental to the computer imple-
mentation. It is proved in [13] that if the graph is chordal, then its maximal cliques
can be organized within a tree satisfying the clique intersection property: for two
maximal cliques C and C′ the intersection C ∩ C′ is contained in every maximal
clique on the path from C to C′. Figure 5.2 represents the clique tree associated to
the sparse set (5.1).

C1 C2 C3

Figure 5.2 – Linear clique tree associated to the sparse set (5.1).

For a slightly more sophisticated illustration, consider the sparse set

K := {x ∈ R6 : g1(x1, x2),g2(x2, x3, x4),g3(x3, x5),g4(x4, x6) ≥ 0} (5.2)

whose correlation graph is represented on Figure 5.3 and whose clique tree is rep-
resented on Figure 5.4. The clique tree of Figure 5.2 is called linear because all
maximal cliques form a single chain (i.e. they are in a sequence) with no branching.
In contrast, the clique tree of Figure 5.4 is called branched.

Our method consists of conveniently rooting the clique tree and splitting the
volume computation problem into lower-dimensional subproblems that are in cor-
respondence with the maximal cliques of the graph. The subproblem associated with
a maximal clique C takes as only input the solutions of the subproblems associated
with the children of C in the clique tree. This way, one can compute in parallel the
solutions of all the subproblems of a given generation, and then use their results to
solve the subproblems of the parent generation. This is the meaning of the arrows in
Figures 5.2 and 5.4. The volume of K is the optimal value of the (last) sub-problem
associated with the root C1 of the tree.

2The only exception would be cliques forming a triangle and is tackled in detail in section 5.3.4.
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x4

C2
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C3

C4

x1

C1

Figure 5.3 – Graph associated to the sparse set (5.2).

C1

C3

C4

C2

Figure 5.4 – Branched clique tree associated to the sparse set (5.2).

5.1.5 An illustrative example: the bicylinder
A sparse moment-SOS hierarchy

Before describing the methodology in the general case, we briefly explain the general
underlying idea on a simple illustrative example. Consider the sparse semi-algebraic
set

K :=

x ∈ R3 :
g1(x1, x2) := 1− x2

1 − x2
2 ≥ 0

g2(x2, x3) := 1− x2
2 − x2

3 ≥ 0

 ⊂ X := [−1, 1]3 (5.3)

modelling the intersection of two cylinders U1 := {x ∈ R3 : x2
1 + x2

2 ≤ 1} and
U2 := {x ∈ R3 : x2

2 +x2
3 ≤ 1}, see Figure 5.5. The subspaces are X1 = 〈x1, x2〉 and

X2 = 〈x2, x3〉 and the projection maps are πX1(x) = (x1, x2) and πX2(x) = (x2, x3).
Let Ki := πXi(Ui) and Xi := πXi(X) = [−1, 1]2 for i = 1, 2.

Following [44], computing vol K is equivalent to solving the infinite-dimensional
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Figure 5.5 – A representation of the bicylinder.

Image source – Wikimedia commons, Steinmetz-solid.svg. Author’s pseudonym: “Ag2gaeh”. License: Attribution-
Share Alike 4.0 International https://creativecommons.org/licenses/by-sa/4.0/legalcode

LP (2.8a). Next observe that in the description (5.3) of K there is no direct interac-
tion between variables x1 and x3, but this is neither exploited in the LP formulation
(2.8a) nor in the SDP relaxations (2.12) to solve (2.8a). To exploit this correlative
sparsity pattern we propose the following alternative formulation

vol K = p?spK := max
µ1,µ2

∫
1 dµ1 (5.4)

s.t. µi ∈M+(Ki) i = 1, 2
µ2 � λ⊗ λ
µ1 � λ⊗ µ〈x2〉

2

where µ〈x2〉
2 denotes the marginal of µ2 in the variable x2, µ � ν means that ν − µ

is a nonnegative measure and ⊗ denotes the tensor product between independent
measures. Notice that here (as well as in the rest of this chapter) for disambiguation
purposes we denote by λ the one-dimensional Lebesgue measure on [−1, 1] (whose
moments are well known). Then, we will use λn to denote the n-dimensional Le-
besgue measure on [−1, 1]n. For the sake of readability, we only use this notation in
the present chapter, where it is necessary.

In the sparse case, the basic idea behind our reformulation of the volume problem
is as follows. We are interested in vol K. However, as the marginal of a measure
has the same mass as the measure itself, instead of looking for the full measure µ in
problem (2.8a), we only look for its marginal on X1.

This marginal µX1 is modeled by µ1 in (5.4). In order to compute it, we need
some additional information on µ captured by the measure µ2 in (5.4). The unique
optimal solution µ of (2.8a) is

µ = λ3
K = 1U1 1U2 λ

3

https://creativecommons.org/licenses/by-sa/4.0/legalcode
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and therefore its marginal µ1 := µX1 in (x1, x2) is given by

dµ1(x1, x2) =
∫ 1

0
dµ(x1, x2, x3)

= 1K1(x1, x2) dx1

(∫ 1

0
1K2(x2, x3) dx3

)
dx2︸ ︷︷ ︸

dµ
〈x2〉
2 (x2)

(5.5)

where
µ2 = λ2

K2 . (5.6)

What is the gain in solving (5.4) when compared to solving (2.8a) ? Observe
that in (5.4) we have two unknown measures µ1 and µ2 on R2, instead of a single
measure µ on R3 in (2.8a). In the resulting SDP relaxations associated with (5.4)
this translates into SDP constraints of potentially much smaller size. For instance,
and to fix ideas, for the same relaxation degree d:

• The SDP relaxation pdK corresponding to (2.8a) contains a moment matrix
(associated with µ in (2.8a)) of size

(
3+d
d

)
;

• The SDP relaxation pdspK corresponding to (5.4) contains two moment matrices,
one associated with µ1 of size

(
2+d
d

)
, and one associated with µ2 of size

(
2+d
d

)
,

where µ1 and µ2 are as in (5.4).

As the size of those matrices is the crucial limiting parameter for all SDP solvers,
one can immediately appreciate the computational gain that can be expected from
the formulation (5.4) versus the formulation (2.8a) when the dimension is high or
the relaxation order increases. Next it is not difficult to extrapolate that the gain
can be even more impressive in the case where the correlative sparsity pattern is of
the form

K = {(x0, . . .xN) ∈ X : ∀i ∈ N?N , gi(xi−1,xi) ≥ 0 }, (5.7)

with xi ∈ Rni and ni � n for i = 0, . . . , N . In fact, it is straightforward to define
examples of sets K of the form (5.7) where the first SDP relaxation associated with
the original dense LP formulation (2.8a) cannot be even implemented on state-of-
the-art computers, whereas the SDP relaxations associated with a generalization of
the sparse LP formulation (5.4) can be easily implemented, at least for reasonable
values of d.

Sparse Stokes constraints: the bicylinder

In Section 4.4.4 we designed efficient general Stokes constraints for the dense for-
mulation of problem (2.8a), at the price of introducing a polynomial h vanishing
on the boundary of K to obtain problem (4.15). However, in the sparse case (5.4),
the polynomial h would destroy the sparsity structure, as it is the product of all



118 CHAPTER 5. VOLUME COMPUTATION & SPARSITY

polynomials defining K and as such it depends on all components of x. Thus, we
must adapt our strategy to introduce sparse Stokes constraints3.

In this section, to keep the notations simple, we illustrate the ideas on our
introductive bicylinder example of Section 5.1.5. Considering the optimal measures
µ1 and µ2 defined in (5.5),(5.6), we can apply Stokes constraints derived from the
Gauss formula (4.4), in the directions in which they are Lebesgue: for µ1 in the x1
direction and for µ2 in the remaining directions. To see this, define

h1(x1, x2) = g1(x1, x2) e1,

h2(x2, x3) = g2(x2, x3) e2,

h3(x2, x3) = g2(x2, x3) e3

where gi(xi, xi+1) = 1−x2
i −x2

i+1, such that h1 ·nK1 vanishes on the boundary of K1
and h2 · nK2 and h3 · nK2 vanish on the boundary of K2, where nKi

is the outward
point vector orthogonal to the boundary of Ki. For i, j, k ∈ N, the Gauss formula
(4.4) yields

∫
K1

∂

∂x1
(g1(x1, x2)xi1x

j
2) dµ1 = 0,∫

K2

∂

∂x2
(g2(x2, x3)xj2xk3) dµ2 = 0,∫

K2

∂

∂x3
(g2(x2, x3)xj2xk3) dµ2 = 0.

Hence, adding these constraints does not change the optimal value of the LP problem
(5.4).

5.2 Exploiting path decomposition sparsity

5.2.1 Path computation theorem
We consider a sparse basic semialgebraic set

K := {x ∈ X : ∀i ∈ N?N ,gi(πXi(x)) ≥ 0}

with gi ∈ R[xi]mi and its coordinate subspace decomposition Rn =: X = ∑N
i=1 Xi.

Let Ui := {x ∈ X : gi(πXi(x)) ≥ 0} so that our sparse semi-algebraic set can be
written

K =
N⋂
i=1

Ui.

3Actually, Stokes formulation (4.16) can be made sparse more directly, by enforcing the fact
that the boundary measure νi only depends on the variables of the polynomial gi. However, during
the PhD, we tackled sparse volume computation before working on problem (4.16). As a result, in
this chapter we only use Stokes constraints under the form of (4.15).
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Up to translation and rescaling, we suppose that K ⊂ X := [0, 1]n. Moreover, let

Ki := {xi ∈ Xi : gi(xi) ≥ 0} = πXi(Ui) ; Xi := πXi(X)

and let
Yi := Xi ∩X⊥i+1 = 〈xj〉j∈Ci∩Cc

i+1

be a subspace of dimension ni := |Ci ∩ Cc
i+1| for i ∈ N?N−1 with YN = XN . The

superscript ⊥ denotes the orthogonal complement. We work under the following
assumptions.

Assumption 5.6: Connected correlation graph

For all i ∈ {2, . . . , N} one has Xi ∩
i−1∑
j=1

Xj 6= {0}.

Assumption 5.7: Path decomposition

For all i ∈ {2, . . . , N} one has Xi ∩
i−1∑
j=1

Xj ⊂ Xi−1.

If Assumption 5.6 is violated then K can be decomposed as a Cartesian product,
and one should just apply our methodology to each one of its factors. Assumption
5.7 ensures that the associated clique tree is a path decomposition as in Figure 5.2,
i.e. that it does not contain branchings.

Theorem 5.8: Path computation

If Assumptions 5.6 and 5.7 hold, then

vol K = p?spK := max
(µi)i

∫
1 dµ1

s.t. µi ∈M(Ki)+ i ∈ N?N (5.8a)
µi � µ

Xi∩Xi+1
i+1 ⊗ λni i ∈ N?N−1 (5.8b)

µN � λnN . (5.8c)

Proof : Let us first prove that pspK ≥ volK. For i ∈ N?N , letWi := X⊥i ∩
N∑

j=i+1
Xj

so that
N∑
j=i

Xj = Xi⊕Wi. Our working assumptions ensure that Wi is never reduced

to {0}. For xi ∈ Xi define

dµi(xi) := 1Ki
(xi)

∫
Wi

N∏
j=i+1

1Kj
◦ πXj(xi + wi) dwi

 dxi. (5.9)

By construction µi ∈M+(Ki) and constraints (5.8a) are enforced. In addition, one
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can check that, if xi,i+1 ∈ Xi ∩Xi+1, then

dµ
Xi∩Xi+1
i+1 (xi,i+1) def=

∫
yi,i+1∈X⊥i ∩Xi+1

dµi+1(xi,i+1 + yi,i+1)

(5.9)=
(∫

X⊥i ∩Xi+1
1Ki+1(xi,i+1 + yi,i+1) . . .

. . .

∫
Wi+1

N∏
j=i+2

1Kj
◦ πXj(xi,i+1 + yi,i+1 + wi+1) dwi+1

 dyi,i+1

 dxi,i+1

=
∫

Wi

N∏
j=i+1

1Kj
◦ πXj(xi,i+1 + wi) dwi

 dxi,i+1

since by construction of the Wj, (X⊥i ∩Xi+1)⊕Wi+1 = Wi.
Thus, comparing this to (5.9), one can see that constraints (5.8b) are satisfied.

Moreover, they are saturated on Ki. Eventually, one has

X = X1 ⊕W1

and thus ∫
1 dµ1 =

∫
X1
1K1(x1)

∫
W1

N∏
j=2

1Uj
(x1 + w1) dw1

 dx1

=
∫
X

 N∏
j=1

1Uj
(x)

 dx

=
∫
X
1K(x) dx

= vol K,

that is, we have just proved that p?spK ≥ vol K.
To prove the converse inequality, observe that our previous choice µ1, . . . , µN

saturates the constraints (5.8b) while enforcing the constraints (5.8a). Any other
feasible solution µ̃1, . . . , µ̃N directly satisfies the inequality µ̃i � µi. In particular,
µ̃1 � µ1 and thus ∫

1 dµ̃1 ≤
∫

1 dµ1 = vol K.

Taking the maximum over all feasible (µ̃i)i∈N?N yields that p?spK ≤ vol K. ♦

Remark 5.1 (Duality in the sparse scheme)
The dual of the LP problem of Theorem 5.8 is the LP problem

d?spK := inf
(wi)i

∫
wN dλnN (5.10)

s.t. w1(x1) ≥ 1 x1 ∈ K1

wi+1(xi+1) ≥
∫
Yi

wi(yi + πXi(xi+1)) dyi xi+1 ∈ Ki+1 i ∈ N?N−1

wi ∈ C(Xi)+ i ∈ N?N .
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It is straightforward to prove that if µ1, . . . , µN is feasible for problem (5.8), then for
any i ∈ N?N , one has

∫
1 dµi ≤

∫
1 dµN ≤ C := vol XN = 1, so that Theorem 2.6

holds, and there is no duality gap, i.e. d?spK = p?spK = vol K. For example, in the
case of the bicylinder treated in Section 5.1.5, the dual of (5.4) reads:

d?spK = inf
w1,w2

∫
X2
w2(x2, x3) dx2dx3

s.t. w1(x1, x2) ≥ 1 (x1, x2) ∈ K1

w2(x2, x3) ≥
∫ 1

−1
w1(x1, x2) dx1 (x2, x3) ∈ K2

wi ∈ C(Xi)+ i ∈ N?N .

Thus, if (w(d)
1 , w

(d)
2 )k∈N is a minimizing sequence for this dual LP, then the sets

K̂d :=
{

(x1, x2, x3) ∈ [0, 1]3 : (w(d)
1 (x1, x2) ≥ 1) ∧

(
w

(d)
2 (x2, x3) ≥

∫ 1

0
w

(d)
1 (x1, x2) dx1

)}

are outer approximations of the set K and the sequences (vol K̂d)k and (
∫
w

(d)
2 dλ2)

decrease to vol K. Similar statements can be made for the general dual problem.

Corollary 5.9: Convergence of the path computation scheme

Under Assumption 2.7 on the Ki and Xi = πXi([−1, 1]n), i ∈ N?N , the Moment-
SOS hierarchy corresponding to problem (5.8) converges to vol K.

Proof : Since strong duality p?spK = d?spK holds, this is a direct consequence of
Theorems 5.8, 2.14 and 2.15. ♦

Remark 5.2 (Sequential Moment-SOS hierarchy)
The LP (5.8) is formulated as a single problem on N unknown measures. How-

ever, it is possible to split it in small chained subproblems to be solved in sequence.
Each subproblem is associated with a maximal clique (in the linear clique tree) and
it takes as input the results of the subproblem associated with its parent clique. This
way, the sparse volume computation is split into N linked low-dimension problems
and solved sequentially. This may prove useful when N is large because when solving
the SDP relaxations associated with the single LP (5.8), the SDP solver may en-
counter difficulties in handling a high number of measures simultaneously. It should
be easier to sequentially solve a high number of low-dimensional problems with only
one unknown measure. Both formulations being strictly equivalent, this would not
change the convergence properties of the sparse scheme.

As explained in Chapter 2, the hierarchy of SDP relaxations associated with our
infinite-dimensional LP provides us with a sequence of upper bounds on vol K. One
may also be interested in computing lower bounds on vol K. In principle it suffices
to apply the same methodology and approximate from above the volume of X \K
since K is included in the unit box X. However, it is unclear whether X \K has
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also a sparse description. We show that this is actually the case and so one may
exploit correlative sparsity to compute lower bounds although it is more technical.
The following result is a consequence of Theorem 5.8:

Corollary 5.10: Lower bounds sparse computation

If K is sparse, then K̃ := X \K is sparse as well, and vol K̃ is the value of
the LP problem

p?spK̃ := max
(µi,j)i,j

N∑
j=1

∫
1 dµ1,j

s.t. µj,j ∈M(cl K̃j)+ 1 ≤ j ≤ N

µi,j ∈M(Ki)+ 1 ≤ i < j ≤ N

µj,j � λpj 1 ≤ j ≤ N

µi,j � µ
Xi∩Xi+1
i+1,j ⊗ λni 1 ≤ i < j ≤ N

where pj := dimXj, ni := dimX⊥i+1 ∩Xi, K̃j := [0, 1]pj \Kj is open and cl K̃j

denotes its closurea.
aThis is necessary to ensure that our measures are defined on compact sets so that all

representation theorems hold.

Proof : The following description

K̃ =
N⊔
j=1

j−1⋂
i=1

Ui ∩ Ũj

 ,
where ⊔ stands for disjoint union and Ũj := {x ∈ Rn : πXj(x) ∈ K̃j}, is sparse.
Indeed the description of the basic semi-algebraic set

Lj :=
j−1⋂
i=1

Ui ∩ Ũj

is sparse. In addition, by σ-additivity of the Lebesgue measure, one has

vol K̃ =
N∑
j=1

vol Lj.

Finally, by using Theorem 5.8 we conclude that vol Lj is the value of LP consisting
of maximizing

∫
Xj
dµ1,j subject to the same constraints as in the above LP problem.

Summing up yields the correct value. ♦

5.2.2 General sparse Stokes constraints
Consider the sequential decomposition of problem (5.8) in Theorem 5.8:
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p?spK,i := max
µi

∫
1 dµi

s.t. µi ∈M(Ki)+

µi � µ
?Xi∩Xi+1
i+1 ⊗ λni

for i ∈ N?N−1, and

p?spK,N := max
µN

∫
1 dµN

s.t. µN ∈M(KN)+

µN � λnN

Our algorithm consists of sequentially solving these problems, starting with de-
termining µN , then µN−1, and so on until µ1, whose mass will be vol(K). We
implement Stokes constraints on each one of these problems. For the problem in
µN , we implement regular Stokes constraints as in Section 4.4.4:

p?spK,N := max
µN

∫
1 dµN

s.t. µN ∈M(KN)+

µN � λnN

(grad hN)µN − (grad hN µN) = 0

where hN is a polynomial vanishing on ∂KN , for example hN = gN,1 · · · gN,mN .
Then, let i ∈ N?N−1 and suppose that µi+1 is known, such that determining µi

is reduced to solving the LP problem of computing p?spK,i. From the arguments of
Section 5.2.1, we know that the optimal measure µi is supported on Ki and that
on this set it is the product measure between µXi∩Xi+1

i+1 and the uniform measure on
Yi = 〈xj〉j∈Ci∩Cc

i+1
. Since Stokes’ theorem is only valid for uniform measures, it will

only apply to µYi
i .

Let J ⊂ N?n. For f ∈ C1(Rn) we define

gradJf :=
(
∂f

∂xj

)
j∈J

such that gradN?n
f = gradf and grad{j}f = ∂f

∂xj
for example. This notation allows

us to define Stokes constraints exactly in the directions we are interested in and to
formulate the general sparse Stokes constraints:

p?spK,i := max
µi

∫
1 dµi

s.t. µi ∈M(Ki)+

µi � µ
?Xi∩Xi+1
i+1 ⊗ λni

(gradCi∩Cc
i+1
hi)µi − gradCi∩Cc

i+1
(hi µi) = 0

where hi is a polynomial vanishing on ∂Ki, for example hi = gi,1 · · · gi,mi .
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Remark 5.3 (Refining Stokes constraints)
In some cases, in both dense and sparse contexts, these Stokes constraints can

be slightly improved by choosing a different polynomial h(i,)j for each basis vector ej
when applying the Gauss formula (4.4) to u = hj ej, such that hj can be taken with
the lowest possible degree, allowing for a better implementation of the hierarchy. For
example, if one is looking for the volume of K := [0, 1]2, the polynomial vanishing
on ∂K with the lowest degree is h(x1, x2) := x1(1 − x1)x2(1 − x2), but one can
formulate Stokes constraints by applying the Gauss formula (4.4) to x1(1 − x1) e1
and x2(1 − x2) e2, instead of h(x1, x2) e1 and h(x1, x2) e2. By doing so, one would
replace the constraint (grad h) µ− grad(h µ) = 0 with

(
∂hj
∂xj

)
µ− ∂

∂xj
(hj µ) = 0 for

every possible j. This is what we actually implemented in our numerical examples,
but we presented the Stokes constraints in the restrictive case of hj = h for all j for
the sake of readability.

5.2.3 Path computation examples
Bicylinder revisited

We refer to (2.8a) as the dense problem and to (5.4) as the sparse problem. For
both problems, we consider instances with and without additional Stokes constraints.
Note that for the bicylinder example of Section 5.1.5 the optimal value for both the
dense and the sparse problem is

vol K = 16
3 ≈ 5.3333

since adding Stokes constraints does not change the optimal value.
We solve the SDP relaxations with Mosek on a standard laptop, for various

relaxation orders and we report the bounds and the computation times in Table 5.1.
We observe a slow convergence for the dense and the sparse versions without Stokes
constraints, and a much faster convergence with Stokes constraints. We also observe
significantly smaller computation times when using the sparse formulation.

A nonconvex set

Let X := R5, X1 = 〈x1, x2〉, X2 = 〈x1, x3〉, X3 = 〈x1, x4〉, X4 = 〈x1, x5〉 and for
i = 1, 2, 3, 4

• gi(x1, xi+1) := (2x2
1 − x2

1+i − 1 , x1 (1− x1) , xi+1 (1− xi+1)),

• Ki := g−1
i ((R+)3) = {(x1, xi+1) ∈ [0, 1]2 : 2x2

1 − x2
i+1 ≥ 1}.

Let us approximate the volume of the sparse set

K :=
{

(x1, x2, x3, x4, x5) ∈ [0, 1]5 : ∀i ∈ N?4, 2x2
1 − x2

i+1 ≥ 1
}

=
4⋂
i=1

π−1
Xi

(Ki) .

Here the coordinates x2, x3, x4 and x5 do not interact: they are only linked with
the coordinate x1. The proper way to apply our linear computation Theorem 5.8 is
to define a linear clique tree as shown in Figure 5.6.
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full sparse

d without Stokes with Stokes without Stokes with Stokes

2 7.8232 (1.0s) 5,828 (1.1s) 7,7424 (1.1s) 5,4984 (1.1s)

3 7.2368 (0.9s) 5,4200 (1.3s) 7,1920 (0.9s) 5,3488 (1.1s)

4 7.0496 (1.4s) 5,3520 (2.2s) 7,0040 (1.2s) 5,3376 (1.2s)

5 6,8136 (3.1s) 5,3400 (4.4s) 6,7944 (1.8s) 5,3352 (1.8s)

6 6,7376 (7.2s) 5,3376 (8.2s) 6,6960 (2.1s) 5,3344 (2.3s)

7 6,6336 (12.8s) 5,3360 (18.3s) 6,6168 (2.6s) 5,3344 (3.2s)

Table 5.1 – Performance of sparse computation of the bicylinder’s volume.

Bounds on the volume (and computation times in seconds) vs relaxation order for
the bicylinder.

One can verify that such organization of the cliques satisfies Assumptions 5.6
& 5.7, allowing for the application of Theorem 5.8 and the implementation of the
Moment hierarchy corresponding to problem (5.8) with sparse Stokes constraints.

This yields the following formulation

vol K = p?spK = max
(µi)i

∫
1 dµ1 (5.11)

s.t. µi ∈M(Ki)+ i = 1, 2, 3, 4
dµ1(x1, x2) � dµ

〈x1〉
2 (x1) dx2

dµ2(x1, x3) � dµ
〈x1〉
3 (x1) dx3

dµ3(x1, x4) � dµ
〈x1〉
4 (x1) dx4

dµ4(x1, x5) � dx1 dx5

with Stokes constraints
∂

∂x2

[
(2x2

1 − x2
2 − 1) x2 (1− x2)

]
dµ1(x1, x2) = ∂

∂x2

[
(2x2

1 − x2
2 − 1) x2 (1− x2) dµ1(x1, x2)

]
∂

∂x3

[
(2x2

1 − x2
3 − 1) x3 (1− x3)

]
dµ2(x1, x3) = ∂

∂x3

[
(2x2

1 − x2
3 − 1) x3 (1− x3) dµ2(x1, x3)

]
∂

∂x4

[
(2x2

1 − x2
4 − 1) x4 (1− x4)

]
dµ3(x1, x4) = ∂

∂x4

[
(2x2

1 − x2
4 − 1) x4 (1− x4) dµ3(x1, x4)

]
∂

∂x5

[
(2x2

1 − x2
5 − 1) x5 (1− x5)

]
dµ4(x1, x5) = ∂

∂x5

[
(2x2

1 − x2
5 − 1) x5 (1− x5) dµ4(x1, x5)

]
∂

∂x1

[
(2x2

1 − x2
5 − 1) x1 (1− x1)

]
dµ4(x1, x5) = ∂

∂x1

[
(2x2

1 − x2
5 − 1) x1 (1− x1) dµ4(x1, x5)

]
.

We can compute analytically

vol K = 1
15
(
7− 4

√
2
)
' 0.0895.
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(a) Variable graph.

C1 C2

C3C4

(b) Clique tree.

Figure 5.6 – Graph with linear clique tree for the nonconvex set.

On Figure 5.7 we show results from solving several relaxations via the dense
and the sparse approach, with and without Stokes constraints. While solving with
Mosek the degree 12 dense relaxation took about 1000 seconds, solving the degree
12 sparse relaxation took less than 10 seconds. With the sparse relaxations it was
possible to go much higher in the hierarchy. Figure 5.7b shows convincingly how
Stokes constraints accelerate the convergence of the hierarchy. We can also observe
that the nonconvexity of K poses no special difficulty for the volume computation.
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Figure 5.7 – Performance for the nonconvex set.

A high dimensional polytope

Consider
K(n) := {x ∈ [0, 1]n : ∀i ∈ N?n−1, xi + xi+1 ≤ 1}.
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According to [118], for any θ ∈ (−π
2 ,

π
2 ), one has the elegant formula :

tan θ + sec θ = 1 +
∞∑
n=1

vol K(n) θn

which gives access to the volume of K(n) for n arbitrarily large. For example when
n = 20 we obtain

vol K(20) = 14814847529501
97316080327065600 ≈ 1.522 · 10−4.

From the SDP viewpoint, vol K(n) is computed by solving relaxations of the LP
problem given in Theorem 5.8 where N = n − 1, Xi = 〈xi, xi+1〉 and gi(xi, xi+1) =
(xi, xi+1, 1− xi − xi+1), i = 1, . . . , n− 1.

We implemented the volume computation algorithm for n = 20, with Stokes
contraints. This cannot be achieved without resorting to sparse computation as the
dimension is too high for regular SDP solvers. With the sparse formulation however
we could solve relaxations up to degree 28 in less than 100 seconds, see Figure 5.8.
Note however, that the analytic volume is of the order of 10−4. In consequence we
observe a non monotonicity of the relaxation values which contradicts the theory.
This issue is surprising as the Mosek SDP solver terminates without reporting issues.
This indicates that computing small volumes in large dimension can be numerically
sensitive.
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Figure 5.8 – Performance for the high dimensional polytope.

We represent the obtained bounds on the volume vs relaxation order.

In order to fix the monotonicity issue, we added a sparse rescaling to our problem.
The idea is the following: at each step of the algorithm, the mass of the measure µi
is less than the mass of the reference measure

ρi := µ
Xi∩Xi+1
i+1 ⊗ λni .

Defining
εi := |µi|

|ρi|
∈ (0, 1),
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Figure 5.9 – Sparse rescaling performance for the high dimensional polytope.

we obtain that

vol K =
N∏
i=1

εi

as a telescoping product, since |ρN | = vol XN = 1 (recall that X = [0, 1]n &
XN = [0, 1]nN ). As a result, if N is large and the εi are small, one can expect the
volume to be very small, which explains why the SDP solver encounters difficulties.
Thus, a solution is to multiply each domination constraint by a well-chosen rescaling
factor ε such that the mass of µi does not decrease too much. As a result, one obtains
vol K = εN−1p? εspK, where

p? εspK := max
(µi)i

∫
1 dµ1 (5.12)

s.t. µi ∈M(Ki)+ i ∈ N?N

ε µi � µ
Xi∩Xi+1
i+1 ⊗ λni i ∈ N?N−1

µN � λnN .

Figure 5.9 gives a comparison between the results obtained with and without sparse
rescaling, using the SDP Solvers SeDuMi and Mosek, for the choice ε = 1

2 .
First, one can see that without rescaling (Figure 5.9a), both SeDuMi and Mosek

have accuracy issues that make them lose monotonicity, while the rescaling (Figure
5.9b) allows recovering monotonicity at least when using SeDuMi (which is slower
but more accurate than Mosek to our general experience). Second, it is clear that the
relative approximation error is much smaller with scaling. This, combined to the fact
that the error is relative (after rescaling, the error is much smaller), demonstrates
the power of our rescaling method.
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A nonconvex high dimensional set

Finally, we consider the set already mentioned in Section 5.1.3, which is both non-
convex and high dimensional. Let

K(n) :=
{
x ∈ [0, 1]n : ∀i ∈ N?n−1, xi+1 xi ≤ 1/2

}
whose analytic volume is a function of the dimension n. For n = 3 the analytic
volume is 0.75, for n = 4 it is 0.6566, approximately. In higher dimensions we do
not have an analytic expression for the volume. However, in order to get a feeling
for its value for bigger n, we ran a Monte Carlo simulation with one million samples
for n = 10, 20, 50, and 100.

Remark 5.4 (On Monte Carlo simulations)
We describe the very basic Monte Carlo approach used here. Let X1, . . . ,XN be

i.i.d. samples from some law µ. In our case µ is the uniform distribution on [0, 1]n.
Further let f be a function from the probability space into {0, 1}. Again, in our case,
f would return 1 if the sample Xi is in the set K(n), and 0 else. By the strong law
of large numbers

F̂N := 1
N

N∑
i=1

f(Xi) −→
N→∞

∫
f dµ = vol K(n).

This makes F̂N a reasonable guess if N is large. However, F̂N is still a guess, and
it might happen that F̂N is actually far away from the approximated quantity.

As a consequence of the Central Limit Theorem, the difference F̂N −
∫
f dµ

behaves (almost) like a normal distributed random variable with zero mean and vari-
ance σ2/N where σ2 =

∫
(f −

∫
fd µ)2 dµ. Note that the variance σ2 can also be

estimated based on the i.i.d. samples X1, . . . ,XN :

Ŝ2
N := 1

N − 1

N∑
i=1

(Xi − F̂N)2.

This allows one to define a confidence interval for the approximated volume. Indeed,
say we are interested in a 99%-confidence interval. Then for G a standard normal
distributed random variable, we have P(|G| < 2.58) ≈ 0.99 and consequently,

P

F̂N −
2.58ŜN√

N
≤
∫
fdµ ≤ F̂N + 2.58ŜN√

N

 ≈ 0.99.

Remark 5.5 (Moment-SOS hierarchy VS Monte-Carlo)
Before we go on, let us emphasize that the method proposed in this chapter is

not in competition with the Monte Carlo approach. While the Monte Carlo method
gives a probabilistic estimate of the volume, our method provides a guaranteed upper
bound. Nonetheless, it would be disconcerting if the computed upper bound were
much smaller than the lower bound of the confidence interval, and we consider our
approximation valid, when it returns something in the order of the Monte Carlo
approximation. The results for different dimensions n and solved with the Mosek
SDP solver are summarized in Table 5.2.
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As in the previous section we experience accuracy issues for the relaxations of or-
der 14 and n = 20, 100, as well as for order 16 and n = 50. Otherwise, the ap-
proximations provide better upper bounds for increased relaxation orders as expec-
ted. For n = 3, 4 the approximation is reasonably close to the analytic value. For
n = 10, 20, 50 our scheme provides an upper bound in the same order of magnitude
as the 99%-confidence interval of the Monte Carlo simulation. We interpret this as
a validation for both the Monte Carlo approach and our own approach. For n = 100
we could not derive a meaningful confidence interval. Indeed, as our approximation
shows, the volume for n = 100 is less than 9 · 10−6. In order to get an accuracy
of ε = 10−6 one would have to draw approximately N = 1

ε2 = 1012 samples. With
our non-sophisticated implementation, the Monte Carlo simulation for one million
points took about 5 seconds. Extending this linearly to a simulation with 1012

samples would therefore take a little less than 2 months (5 · 106 s ' 1389 h ' 58 d).
With more sophisticated methods, this time could certainly be reduced dramatic-
ally. However, it sets the 44 minutes it took to solve relaxation order 16 for n = 100
into perspective.

5.3 Exploiting correlative sparsity

5.3.1 General correlative sparsity pattern
Let us describe a general method to compute the volume of

K :=
N⋂
i=1

Ui

where Ui = {x ∈ X : gi(x) ≥ 0} and (g1, . . . ,gN) is a correlatively sparse family of
polynomial vectors with associated coordinate subspace decompositionX = ∑N

i=1 Xi.
For this we construct the correlation graph G = (V,E) as follows:

• V = {1 . . . , n} represents the canonical basis {e1, . . . , en} of X = Rn;

• E = {(i, j) ∈ {1, . . . , n}2 : i 6= j & ei, ej ∈ Xk for some k ∈ N?N .

As stated in Section 5.1.4, we suppose that the correlation graph of (gi)1≤i≤N has
exactly N maximal cliques (see Section 5.3.4 for discussions when it is not the case)
that are in correspondence with the Xi.

Let K be the set of maximal cliques of G. We will use the following property of
graphs:

Definition 5.11: Clique Intersection Property (CIP)

The graph G = (V,E) is said to satisfy the clique intersection property (CIP)
iff there is a clique tree T = (K, E), E ⊂ K2, such that for all C,C′ ∈ K,
C ∩C′ ⊂ C′′ for any C′′ on the path connecting C and C′ in the tree T .
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n=3 n = 4 n=10

d value time (s) value time (s) value time (s)

4 7.86E-01 0.95 7.09E-01 0.61 3.93E-01 1.24

5 7.73E-01 2.87 6.90E-01 0.78 3.57E-01 1.84

6 7.69E-01 2.74 6.84E-01 0.86 3.45E-01 4.21

7 7.66E-01 4.58 6.79E-01 1.83 3.38E-01 4.55

8 7.63E-01 5.00 6.77E-01 2.29 3.34E-01 5.97

9 7.63E-01 6.11 6.74E-01 3.33 3.30E-01 11.56

10 7.62E-01 9.83 6.73E-01 6.86 3.26E-01 18.21

11 7.61E-01 18.16 6.72E-01 8.57 3.26E-01 22.24

12 7.60E-01 19.45 6.71E-01 10.43 3.23E-01 33.78

13 7.60E-01 22.49 6.70E-01 17.89 3.22E-01 74.00

14 7.60E-01 27.02 6.69E-01 26.84 3.21E-01 79.68

15 7.59E-01 32.90 6.69E-01 39.25 3.20E-01 119.7

16 7.58E-01 78.20 6.68E-01 61.32 3.19E-01 176.6

ana/mc 7.50E-01 - 6.57E-01 - [2.99e-01, 3.03e-01]

n = 20 n=50 n = 100

d value time (s) value time (s) value time (s)

4 1.47E-01 5.11 7.68E-03 10.64 9.49E-05 15.19

5 1.20E-01 3.58 4.78E-03 15.10 4.80E-05 26.87

6 1.11E-01 8.13 3.86E-03 21.75 2.84E-05 49.89

7 1.07E-01 11.06 3.42E-03 48.31 2.27E-05 77.07

8 1.03E-01 17.93 3.20E-03 72.78 1.91E-05 135.08

9 1.00E-01 33.31 2.99E-03 120.49 1.63E-05 202.12

10 9.81E-02 41.02 2.99E-03 103.61 1.44E-05 299.44

11 9.70E-02 85.83 2.89E-03 165.56 1.22E-05 441.67

12 9.59E-02 117.08 2.77E-03 220.84 1.19E-05 623.24

13 9.51E-02 138.38 2.67E-03 314.00 1.08E-05 850.92

14 9.57E-02 156.32 2.60E-03 457.92 1.10E-05 1175.02

15 9.39E-02 249.82 2.54E-03 685.64 9.86E-06 1589.49

16 9.36E-02 357.87 2.56E-03 859.60 9.46E-06 2623.02

ana/mc [8.09e-02, 8.24e-02] [1.48e-03, 1.68e-03] -

Table 5.2 – Performances on a nonconvex high dimensional set.

ana/mc refers to the analytic value and the 99%-confidence interval, respectively.
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Such a property is equivalent to the fact that G is chordal4, see [13]. We then
replace Assumption 5.7 with the following strong correlative sparsity assumption:

Assumption 5.12: Disjoint Intersection Property (DIP)

We suppose that there is a clique tree T = (K, E), rooted in some C1, that
simultaneously satisfies the CIP and the following disjoint intersection prop-
erty (DIP): ∀C,C′,C′′ ∈ K, if (C,C′) ∈ E and (C,C′′) ∈ E then C′ = C′′ or
C′ ∩C′′ = ∅.

In words, each clique has an empty intersection with all its siblings. See Section
5.3.4 for details on how to check this assumption and construct such a tree when
it exists, as well as possible solutions when Assumption 5.12 does not hold. Figure
5.10 illustrates the meaning of this assumption for n = 12 and N = 8. One can
check that Assumptions 5.6 and 5.12 hold.

Remark 5.6 (On Assumption 5.12)
With these assumptions, the only possible clique trees for applying our method to

the nonconvex example illustrated in Figure 5.6 are linear clique trees. Indeed, any
branched clique tree would imply sibling cliques containing x1.
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Figure 5.10 – Chordal graph (left) with its clique tree (right).

4Thus the CIP always holds, up to a chordal extension. In particular, cyclic graphs can be
handled with empty interactions between well-chosen variables.
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5.3.2 Distributed computation theorem
One can formulate a simple generalization of the sequential implementation of The-
orem 5.8 to our general correlative sparsity pattern.

Theorem 5.13: Distributed computation

Let Assumptions 5.6 and 5.12 hold. Let T = (K, E) be a clique tree as in
Assumption 5.12. Then vol K =

∫
1 dµ?1 where for i ∈ N?N , µ?i is an optimal

solution to the following GMP:

p?spK,i := max
µi

∫
1 dµi

s.t. µi ∈M(Ki)+ (5.13a)

µi �

 ⊗
(Ci,Cj)∈E

µ
?Xi∩Xj
j

⊗ λni (5.13b)

and ni = dim Xi ∩
( ∑

(Ci,Cj)∈E
Xj

)⊥
=
∣∣∣∣∣Ci ∩

( ⋃
(Ci,Cj)∈E

Cj

)c∣∣∣∣∣.
Proof : We define, for i ∈ N?N ,

Yi := Xi ∩

 ∑
(Ci,Cj)∈E

Xj

⊥ = 〈xk〉k∈Ci ; (Ci,Cj)∈E⇒k/∈Cj

and we observe that, according to Assumption 5.12, for any i ∈ N?N

Xi =
 ⊕

(Ci,Cj)∈E
Xi ∩Xj

⊕ Yi.

Thus, constraint (5.13b) is well-posed.
For i ∈ N?N , let D(i) := {j > i : ∃ an oriented path from Ci to Cj in T}

be the set of descendants of Ci, as well as Wi := ∑
j∈D(i)

Xj = 〈xk〉k∈Cj ; j∈D(i) and

ri := dimWi =
∣∣∣∣∣ ⋃
j∈D(i)

Cj

∣∣∣∣∣.
We are going to show by induction that for i ∈ N?N ,

µ?i = 1Ki

 ∏
j∈D(i)

1Kj
◦ πXj λri

Xi∩Wi

⊗ λni .

Our base cases are the leaves of T , i.e. the i such that D(i) = ∅. Then, problem
(5.13) is reduced to the classical problem of computing the volume of Ki, whose
optimal solution is exactly µ?i = λKi

= 1Ki
λni (because D(i) = ∅⇒ ni = dimXi),

which is the expected result.
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Then we can proceed to the induction: let i be a node of T that is not a leaf:
D(i) 6= ∅; and suppose that for j ∈ D(i) such that (Ci,Cj) ∈ E ,

µ?j = 1Kj

 ∏
k∈D(j)

1Kk
◦ πXk λqj

Xj∩Wj

⊗ λnj .

Then, constraint (5.13b) can be rewritten as

µi �

 ⊗
(Ci,Cj)∈E

1Kj

 ∏
k∈D(j)

1Kk
◦ πXk λqj

Xj∩Wj

⊗ λnj


Xi∩Xj⊗ λni
which in turn is simplified into

µi �

 ⊗
(Ci,Cj)∈E

1Kj

 ∏
k∈D(j)

1Kk
◦ πXk

 λnj+qj

Xi∩Wj
⊗ λni

since the CIP ensures that Xi∩Xj∩Wj = Xi∩Wj: indeed Cj is on the path between
Ci and any Ck with k ∈ D(j), so that Ci∩Ck ⊂ Cj and thus Xi∩Xk ⊂ Xj, yielding
Xi ∩Wj ⊂ Xj. At this point one can notice that nj + qj = dim(Xj + Wj).

Then, using the DIP, we know that if (Ci,Cj), (Ci,Ck) ∈ E with j 6= k then
Cj ∩ Ck = ∅ and with the CIP Cj ∩ Cl = ∅ for any l ∈ D(k). This yields that
(Xj + Wj) ∩ (Xk + Wk) = {0} and thus Wi = ⊕

(Ci,Cj)∈E
(Xj + Wj), allowing us to

rewrite constraint (5.13b) as

µi �

 ⊗
(Ci,Cj)∈E

1Kj

 ∏
k∈D(j)

1Kk
◦ πXk

 λnj+qj

Xi∩Wi

⊗ λni ,

which simplifies into

µi �

 ∏
j∈D(i)

1Kj
◦ πXj λri

Xi∩Wi

⊗ λni .

Eventually, we are again faced to a classical instance of the dense volume problem

for Ki, with
( ∏
j∈D(i)

1Kj
◦ πXj λri

)Xi∩Wi

⊗ λni instead of only the uniform Lebesgue

measure, and we know that the optimal solution is obtained by multiplying this
non-negative dominating measure with the indicator of Ki, yielding

µ?i = 1Ki

 ∏
j∈D(i)

1Kj
◦ πXj λri

Xi∩Wi

⊗ λni

which is the announced result.
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We conclude by using the fact that D(1) = {2, . . . , N} and Rn = X1 + W1 =
X1 ⊕ (X⊥1 ∩W1) to compute the value:

∫
1 dµ?1 =

∫
1K1

 N∏
j=2

1Kj
◦ πXj λq1

X1∩W1

dλn1

=
∫
X1
1K1(x1)

∫
X⊥1 ∩W1

N∏
j=2

1Uj
(x1 + w1) dw1

 dx1

=
∫
Rn

(
N∏
i=1

1Ui
(x)

)
dx

=
∫
Rn
1K(x) dx

= vol K.

♦

Therefore one obtains a sequence of infinite dimensional LPs on measures that
can be algorithmically addressed using the usual SDP relaxations. The computations
start from the leaves of the clique tree and proceed down to the root. It is worth
noting that all the maximal cliques of the same generation in the tree are totally
independent, which allows treating them simultaneously, i.e. to partially parallelize
the computations. Let d ∈ N. We consider the solutions z(d)

i to the degree d moment
relaxations corresponding to problems (5.13), for i ∈ N?N , as well as the relaxation
values pdspK,i. We are going to study the convergence of the sequence pdspK,1 to vol K.

Theorem 5.14: Convergence of the branched Moment-SOS hier-
archy

Suppose that Assumption 2.7 holds for the Ki and the Xi. Let Ci ∈ K
such that for Cj ∈ K satisfying (Ci,Cj) ∈ E , we have a converging se-
quence of pseudo-moment vectors (z(d)

j )d: for any appropriate multi-index
k, z(d)

j,k−→
d→∞

∫
Xj

xk
j dµ

?
j(xj).

In this setting, if each relaxation of the i-th LP problem (5.13) has at least
one feasible solution, then the corresponding Moment hierarchy converges: for
any appropriate multi-index k, z(d)

i,k−→
d→∞

∫
xk
i dµ

?
i (xi).

Thus, by induction, if at all nodes of T the moment relaxations remain feasible
at all degrees of relaxation, then the branched Moment hierarchy converges,
namely pdspK,1 −→

d→∞
p?spK,1 = vol K.

Proof : The feasibility assumption ensures that the z(d)
i are properly defined at all

degrees d. Then, pointwise convergence of the (z(d)
j )d yields that it is bounded for the

weak-∗ topology on R[x]′. The moment relaxation of constraint (5.13b) combined
with Lemma 2.9 then yield that (z(d)

i )d is bounded for the weak-∗ topology on R[x]′,
which means, according to the Banach-Alaoglu theorem, that it has an accumulation
point. Finally, by uniqueness of the solution to the infinite dimensional LP problem
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(5.13), the convergence of (z(d)
j )d to the moment sequence of µ?j ensures that this

accumulation point is none other than the moment sequence of µ?i . This proves
existence and uniqueness of the accumulation point of (z(d)

i )d. Then, we get for any
appropriate multi-index k

z
(d)
i,k −→

d→∞

∫
xk dµ?i (x).

To conclude for the global convergence of the sparse scheme, we just need to check the
base case of this induction. Here again the base case is the leaves of the tree at which
we are faced to standard instances of the volume problem, whose associated Moment-
SOS hierarchy is already proved to converge. Thus, our convergence assumption is
satisfied, which means that as long as all the relaxations are feasible, their solutions
converge weakly-∗ to the infinite dimensional optimal measures, and in particular

pdspK,1 −→
d→∞

p?spK,1 = vol K.

♦

Remark 5.7 Stokes constraints can be implemented similarly to the linear case.

5.3.3 Distributed computation examples
6D polytope

Let X := R6 and X1 = 〈x1, x2〉, X2 = 〈x2, x3, x4〉, X3 = 〈x3, x5〉, X4 = 〈x4, x6〉. For
i = 1, 3, 4 let gi(x, y) := (x, y, 1− x− y) and

Ki := g−1
i

(
R2

+

)
= {(u, v) ∈ [0, 1]2 : u+ v ≤ 1}.

Let g2(x, y, z) := (x, y, z, 1− x− y − z) and

K2 := g−1
2

(
R3

+

)
= {(x, y, z) ∈ [0, 1]3 : x+ y + z ≤ 1}.

Let us approximate the volume of the 6D polytope

K :=


x ∈ R6

+ :

x1 + x2 ≤ 1

x2 + x3 + x4 ≤ 1

x3 + x5 ≤ 1

x4 + x6 ≤ 1


=

4⋂
i=1

π−1
Xi

(Ki) .

No linear clique tree is associated to this problem through Proposition 5.12. The
only possible clique trees for applying our method are the two branched clique trees
of Figure 5.11.

Let us compare the performance of the algorithms derived from the two possible
clique tree configurations and with the dense problem. For that, we first write the
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(a) 3 step clique tree.
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(b) 2 step clique tree.

Figure 5.11 – Two possible branched clique trees for the 6D polytope.

problem associated with the 3 step clique tree configuration of the top of Figure
5.11:

vol K =
∫

1 dµ?1 (5.14)
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where

µ?1 = argmax
µ1

∫
1 dµ1

s.t. µ1 ∈M(K1)+

dµ1(x1, x2) � dx1 dµ
?〈x2〉
2 (x2)

µ?2 = argmax
µ2

∫
1 dµ2

s.t. µ2 ∈M(K2)+

dµ2(x2, x3, x4) � dx2 dµ
?〈x3〉
3 (x3) dµ?〈x4〉

4 (x4)

µ?i = argmax
µ3

∫
1 dµi, i = 3, 4

s.t. µi ∈M(Ki)+

µi � λ2.

This problem can be complemented with the following Stokes constraints:
∂

∂x1

[
x1 (1− x1 − x2)

]
dµ1(x1, x2) = ∂

∂x1
[x1 (1− x1 − x2) dµ1(x1, x2)]

∂

∂x2

[
x2 (1− x2 − x3 − x4)

]
dµ2(x2, x3, x4) = ∂

∂x2
[x2 (1− x2 − x3 − x4) dµ2(x2, x3, x4)]

∂

∂xi

[
xi (1− xi − xi+2)

]
dµi(xi, xi+2) = ∂

∂xi
[xi (1− xi − xi+2) dµi(xi, xi+2)]

∂

∂xi+2

[
xi+2 (1− xi − xi+2)

]
dµi(xi, xi+2) = ∂

∂xi+2
[xi+2 (1− xi − xi+2) dµi(xi, xi+2)] i = 3, 4.

The 2 step clique tree of the bottom of Figure 5.11 yields the following formulation

vol K =
∫

1 dµ?2 (5.15)

where

µ?2 = argmax
µ2

∫
1 dµ2

s.t. µ2 ∈M(K2)+

dµ2(x2, x3, x4) � dµ
?〈x2〉
1 (x2) dµ?〈x3〉

3 (x3) dµ?〈x4〉
4 (x4)

µ?i = argmax
µi

∫
1 dµi, i = 1, 3, 4

s.t. µi ∈M(Ki)+

µi � λ2,

with Stokes constraints

∂

∂xi

[
xi (1− xi − xj)

]
dµi(xi, xj) = ∂

∂xi
[xi (1− xi − xj) dµi(xi, xj)]

∂

∂xj

[
xj (1− xi − xj)

]
dµi(xi, xj) = ∂

∂xj
[xj (1− xi − xj) dµi(xi, xj)]
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for (i, j) = (1, 2), (3, 5), (4, 6). However, no Stokes constraints can be applied for
the computation of µ2 (there is no Lebesgue measure in the domination constraint,
so the optimal measure is not uniform). For this reason one can expect a slower
convergence than in the linear configuration.

We implement the hierarchies associated to the 2 and 3 step sparse formulations,
as well as the dense problem hierarchy, and compare their performance in Figure
5.12. We can compute analytically

vol K = 1
18 ' 0.0556.

2 3 4 5 6 7 8

relaxation order

10 0

10 1

10 2

ti
m

e
s
 (

s
e

c
o

n
d

s
)

Full Stokes

2 step Stokes

3 step Stokes

(a) Computation time vs relaxation order.

2 3 4 5 6 7 8

relaxation order

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

b
o

u
n

d
s
 o

n
 v

o
lu

m
e

Full Stokes

2 step Stokes

3 step Stokes

Analytic

(b) Bounds on the volume vs relaxation order.

Figure 5.12 – Performance for the 6D polytope.

Both sparse formulations outperform the dense one in terms of computational
time needed to solve the corresponding SDPs (Figure 5.12a). On the accuracy side
however (Figure 5.12b), we observe that the 2 step formulation seems to be less effi-
cient than the 3 step formulation. In particular when considering the accuracy/time
effort relation at order 3 the dense formulation provides a better value in almost the
same time.

We believe that this can be explained by the way Stokes constraints are added
to the program. Indeed, at a given clique, Stokes constraints can only be imple-
mented in the variables that are not shared with the input measure. In the fully
(2 step) branched configuration, the last step of the optimization program cannot
be accelerated by Stokes constraints at all, while in the 3 step configuration, step 1
includes Stokes constraints in x3, x4, x5, x6, step 2 includes Stokes constraints in x2
and step 3 includes Stokes constraints on x1, which explains the gap between the
optimal values of these two configurations.

Moreover, it seems that even the least branched (3 step) configuration still
presents a gap between its optimal value and the analytic solution. This might also
happen with a non-sparse instance of the Moment-SOS hierarchy (which converges
theoretically) and it is likely due to the choice of the monomial basis to represent
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polynomials. Indeed, most of the Moment-SOS parsers generate SDP problems with
the basis of monomials, while sometimes other bases (e.g. Chebyshev or Legendre
polynomials) are more appropriate. However, in this precise case, it might also be
linked again with the sparse Stokes constraints implementation. Indeed, in step 2
of the scheme, the unknown measure measures x2, x3 and x4 but Stokes constraints
are implemented only in x2, leaving a possible Gibbs effect in x3, x4. Unlike most of
our numerical examples, this one still includes an optimization step in which most
of the variables are not controlled through Stokes constraints. The gap between the
optimal value and the analytic value for the 3 step branched formulation in Figure
5.12b could be explained by a Gibbs effect in the second optimization step.

As a consequence, in the following, one should avoid the branched hierarchies
that cannot be accelerated at each step at least partially by Stokes constraints. Such
a hierarchy appears when the root of the chosen clique tree shares all its vertices
with its children cliques. It can be proved that such a configuration can always be
avoided while implementing sparse volume computation, by choosing a leaf as the
new root of the tree.

4D polytope

Let X := R4, X1 := 〈x1, x2〉, X2 := 〈x2, x3〉, X3 := 〈x3, x4〉, gi(a, b) := (a, b, 1−a−b),
i = 1, 2, 3 and Ki := g−1

i

(
R3

+

)
= {(u, v) ∈ [0, 1]2 : u+ v ≤ 1}. Let us approximate

the volume of the 4D polytope

K :=


(x1, x2, x3, x4) ∈ R4

+ :
x1 + x2 ≤ 1

x2 + x3 ≤ 1

x3 + x4 ≤ 1


=

3⋂
i=1

π−1
Xi

(Ki) .

In such a case, there are two possible configurations for the associated clique tree
of Proposition 5.12, see Figure 5.13. Accordingly, we can compute vol K in two
different ways. The first way

vol K = max
(µi)i

∫
1 dµ1 (5.16)

s.t. µi ∈M(Ki)+

dµ1(x1, x2) � dx1 dµ
〈x2〉
2 (x2)

dµ2(x2, x3) � dx2 dµ
〈x3〉
3 (x2)

dµ3(x3, x4) � dx3 dx4

is the linear formulation given by Corollary 5.8, which is under the form of a non-
parallelizable single linear problem. The following additional Stokes constraints can
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(b) branched clique tree.

Figure 5.13 – Two possible clique trees for the 4D polytope.

be added:

∂

∂x1

[
x1 (1− x1 − x2)

]
dµ1(x1, x2) = ∂

∂x1
[x1 (1− x1 − x2) dµ1(x1, x2)]

∂

∂x2

[
x2 (1− x2 − x3)

]
dµ2(x2, x3) = ∂

∂x2
[x2 (1− x2 − x3) dµ2(x2, x3)]

∂

∂x3

[
x3 (1− x3 − x4)

]
dµ3(x3, x4) = ∂

∂x3
[x3 (1− x3 − x4) dµ3(x3, x4)]

∂

∂x4

[
x4 (1− x3 − x4)

]
dµ3(x3, x4) = ∂

∂x4
[x4 (1− x3 − x4) dµ3(x3, x4)] .

On the other hand, if one associates the maximal clique C1 to the subspace X2 and
the maximal clique C2 to the subspace X1, one also has

vol K =
∫

1 dµ?2 (5.17)
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where

µ?2 = argmax
µ2

∫
1 dµ2

s.t. µ2 ∈M(K2)+

dµ2(x2, x3) � µ
?〈x2〉
1 (dx2) dµ?〈x3〉

3 (x3)

µ?1 = argmax
µ1

∫
1 dµ1

s.t. µ1 ∈M(K1)+

dµ1(x1, x2) � dx1 dx2

µ?3 = argmax
µ3

∫
1 dµ3

s.t. µ3 ∈M(K3)+

dµ3(x3, x4) � dx3 dx4

which is the branched formulation associated to Theorem 5.13. Here one can see that
µ?1 and µ?3 can be computed independently in parallel, and then re-injected in the
problem to which µ?2 is the solution. One can add the following Stokes constraints:

∂

∂x1

[
x1 (1− x1 − x2)

]
dµ1(x1, x2) = ∂

∂x1
[x1 (1− x1 − x2) dµ1(x1, x2)]

∂

∂x2

[
x2 (1− x1 − x2)

]
dµ1(x1, x2) = ∂

∂x2
[x2 (1− x1 − x2) dµ1(x1, x2)]

∂

∂x3

[
x3 (1− x3 − x4)

]
dµ3(x3, x4) = ∂

∂x3
[x3 (1− x3 − x4) dµ3(x3, x4)]

∂

∂x4

[
x4 (1− x3 − x4)

]
dµ3(x3, x4) = ∂

∂x4
[x4 (1− x3 − x4) dµ3(x3, x4)] .

We can compute analytically

vol K = 5
24 ' 0.2083.

In Figure 5.14 we compare the two sparse formulations with and without Stokes
constraints. Surprisingly the linear formulation is faster than the branched one
for small relaxation degrees, most probably because at this level of precision the
branching costs more in terms of constructing and parsing the LMIs than it saves
in computational time. When going deeper in the hierarchy we see the advantage
of the branched formulation where more computations are done in parallel. As ob-
served in the previous example however, the branched formulation seems to have
problems to converge to the optimal value on an early relaxation. While the val-
ues of both formulations without Stokes constraints almost coincide, the values of
the linear formulation with Stokes are strictly better than the ones of the acceler-
ated branched formulation. This further supports our conjecture that formulations
where Stokes constraints can be added at every step of the optimization program
are to be preferred: the fact that both configurations behave equally without Stokes
constraints and that the branched configuration keeps a relaxation gap when im-
plementing Stokes constraints suggests that these Stokes constraints behave better
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in linear configurations than in branched configurations. For this reason, in the 6D
case where all possible configurations are branched, we could not completely elim-
inate the relaxation gap, while in this case where there is a linear configuration, the
relaxation gap vanishes.
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Figure 5.14 – Performance for the 4D polytope.

5.3.4 The disjoint intersection hypothesis
It may happen that Assumption 5.12 does not hold, in which case all the above
results would not apply. For example one could think of the following set:

K :=
{
x ∈ R6 : x2

1 + x2
2 + x2

3 ≤ 1 ∧ ∀i ∈ {2, 3}, x2
i + x2

i+2 + x2
i+3 ≤ 1

}
whose correlative graph is represented on Figure 5.15. Here the DIP and CIP cannot
be simultaneously enforced: the CIP would only be satisfied by a branched clique
tree, but since all the cliques share common vertices, in such a branched tree there
would automatically be sibling cliques with nonempty intersection. Also, one can
notice that in this case (and, as far as we know, only in similar configurations where
Assumption 5.12 is violated), the clique C2 does not correspond to a polynomial
appearing in the description of K.

First, we would like to emphasize that the core of this chapter is the linear com-
putation theorem, for which the working assumption always holds. The branched
generalizations are only consequences of this linear computation theorem.

Second, the fact that Assumption 5.12 does not hold is not a dead-end for using
our scheme. In fact, even the simpler CIP might not hold, in which case one would
need to perform a chordal extension, which consists of adding virtual links between
variables to construct a chordal graph. Basically, a chordal extension would make
the graph chordal at the price of slightly weakening the correlative sparsity pattern.
In general, the same can be performed to enforce Assumption 5.12: one could add
virtual links between variables to enforce the assumption to hold. For example, if
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Figure 5.15 – A correlation graph that violates Assumption 5.12.

one artificially links variables x3 and x4 in the correlation graph of K, one obtains a
new correlation graph, with an associated clique tree satisfying all our working as-
sumptions (see Figure 5.16). This manipulation results in increasing the correlative
sparsity CS from 3 to 4, which is a weakening of the correlative sparsity pattern.
However, our framework still allows reducing the dimensionality of the problem from
6 to 4.

x2

x3

x1

C1
x5

x4

x6

C3

C2
C1 C2 C3

Figure 5.16 – A way to fix our counterexample.

Remark 5.8 (Alternative to graph extension)
There might exist examples for which the DIP would only be obtained by com-

pletely destroying the sparsity pattern one wants to exploit. However, this could
also happen with the more common CIP. In either case, an option might be to
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consider the standard dual volume computation problem (2.8b) as a way to find
minimizing sequences (wd)d that approximate 1K, and to apply it to each one of the
Ki := {xi ∈ Xi : gi(xi) ≥ 0} to obtain a sequence

(
w

(d)
1 , . . . , w

(d)
N

)
d
such that

(
w

(d)
i

)
d

approximates 1Ki
. Then, one would still have to prove that the convergence of the

hierarchy is stable by product (which is nontrivial) to conclude that
∫ N∏

i=1
w

(d)
i ◦ πXi(x) dx

converges to vol K. The major drawback of this solution is that in order for (wd)d
to approximate 1K, we cannot implement Stokes constraints, as they would modify
problem (2.8b) (see Chapter 4) in a way that makes us lose the convergence to an
indicator (this is precisely the point of Stokes constraints: they allow their user
to obtain the volume without trying to approximate discontinuous functions with
polynomials). However, we know that the volume approximation hierarchy has a bad
convergence rate without Stokes constraints. In general, we should not expect any
method that approximates indicators with polynomials to yield satisfactory results in
terms of volume computation. Such a method should be considered only as a last
resort if any trial to apply the above scheme fails. Finally, this option represents a
framework that would be completely independent from the above and thus it remains
out of the scope of this chapter.

We now move on to proposing a detailed method to enforce Assumption 5.12. To
do so, we first introduce a more detailed glossary for graph theory. Let G = (V,E)
be a graph with vertices set V and edges set E ⊂ V2. The following definitions can
be found in e.g. [13]:

• The degree deg v of v ∈ V is the cardial of the set {v′ ∈ V : (v, v′) ∈ E} i.e.
the number of vertices connected to v.

• A clique of G is a subset of vertices C ⊂ V such that v, v′ ∈ C implies
(v, v′) ∈ E.

• A graph G is chordal if every cycle of length greater than 3 has a chord, i.e.
an edge connecting two nonconsecutive vertices on the cycle.

• A tree T = (K, E) is a graph without cycle.

• The treewidth of a chordal graph is the size of its biggest clique minus 1. Thus
the treewidth of a tree is 1 and the treewidth of a complete graph (E = V2)
of size n is n− 1.

• A rooted tree is a tree in which one vertex has been designated the root.

• In a rooted tree, the parent of a vertex v is the vertex v connected to it on
the path to the root; v is then called a child of v; two vertices that have the
same parent are called siblings; a descendant of a vertex v is any vertex which
is either the child of v or is (recursively) the descendant of any of the children
of v; v is then called an ancestor of itself and any of its descendants.
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• The vertices of a rooted tree can be partitioned between the root, the leaves
(the vertices that have parents but no children) and the branches (that have
children and parents).

• Let K be the set of maximal cliques of G. A clique tree T = (K, E) of G is a
tree whose vertices are the maximal cliques of G.

• A clique tree satisfies the clique intersection property (CIP) if for every pair
of distinct cliques C,C′ ∈ K, the set C ∩ C′ is contained in every clique on
the path connecting C and C′ in the tree. We denote by T ct the set of clique
trees of G that satisfy the CIP.

• The ordering K = {C1, . . . ,CN} satisfies the Running Intersection Property
(RIP) if ∀i ∈ {2, . . . , N}, ∃ ki ∈ {1, . . . , i− 1} such that Ci ∩

i−1⋃
j=1

Cj ⊂ Cki .

• Let A ⊂ V. Then, the subgraph of G generated by A is given by

〈A〉G := (A,E ∩A2).

Theorem 5.15: Chordality & RIP

A connected graph G is chordal if and only if T ct 6= ∅ if and only if K admits
an ordering that satisfies the RIP.

Definition 5.16: Disjoint Intersection Property

Let G = (V,E) be chordal and connected. Let T = (K, E) ∈ T ct be a clique
tree rooted in C1 ∈ K. T satisfies the Disjoint Intersection Property (DIP) if
∀C,C′,C′′ ∈ K, if (C,C′) ∈ E and (C,C′′) ∈ E then C′ = C′′ or C′∩C′′ = ∅.
In words, each clique has an empty intersection with all its siblings.

We are now going to give a systematic way to enforce Assumption 5.12 and
generate the associated clique trees. Let (g1, . . . ,gN) be a correlatively sparse family
of polynomial vectors with a connected chordal correlation graph G = (V,E). Let
K be the set of maximal cliques of G. We construct the clique graph GK = (K,F)
such that (C,C′) ∈ F iff C ∩C′ 6= ∅. One can in turn define cliques (called meta-
cliques) for this new graph, and its correlative sparsity CSK is the size of its biggest
maximal meta-clique minus 1. One can note that any clique tree is a subtree of GK
including all its vertices.

Remark 5.9 If GK itself is a tree (as in section 5.3.3), then it trivially satisfies the
DIP and CIP, and Assumption 5.12 automatically holds.
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Lemma 5.17: Genealogy

Let T = (K, E) be a clique tree satisfying Assumption 5.12.

1) Let C,C′ ∈ K such that C 6= C′ and C∩C′ 6= ∅. Then, up to permuting
them, C is a descendant of C′.

2) Let Q be a meta-clique. Then, 〈Q〉T is an oriented path of T : the
elements of Q are ancestor to one another and each C ∈ Q has its
parent in Q except one of them.

Proof :

1) Let C′′ be the last common ancestor of C and C′, meaning that C′′ is an
ancestor of both C and C′ but any child of C′′ is the ancestor of at most one
of them. Such ancestor exists since the root C1 is a common ancestor to C
and C′. Then, C′′ is on the path between C and C′. Since C 6= C′, up to
permuting them, we can suppose that C 6= C′′.
By contradiction, we suppose that C′ 6= C′′. Then, let Ĉ be the child of C′′
that is also the ancestor of C, and C̃ the child of C′′ that is also the ancestor
of C′. Both exist since C′′ is an ancestor of C and C′ and C 6= C′ 6= C′′. C′′
being the latest common ancestor of C and C′, we deduce that Ĉ 6= C̃ so that
Ĉ and C̃ are siblings. Then, the DIP ensures that Ĉ ∩ C̃ = ∅. However, Ĉ
and C̃ are on the path between C and C′, so according to the CIP they both
contain C ∩C′ which is nonempty. This is a contradiction.

2) According to point 1), all elements of Q are descendants of one another, so
that they are all on the same path in T . We only have to show that any C
between two elements C′,C′′ of Q on this path is also an element of Q. Indeed,
let C′′′ ∈ Q. Then, up to a permutation on {C′,C′′,C′′′} we can suppose that
the unoriented path includes in this order: (C′,C,C′′,C′′′). Then, C is on the
path between C′ and C′′′, so the CIP implies that C ⊃ C′ ∩C′′′ is nonempty
(since C′ and C′′′ belong to the same clique Q), and then C has a nonempty
intersection with C′′′. This shows that C has a nonempty intersection with
any element of Q, which by maximality of Q is the definition of C ∈ Q.

♦

Corollary 5.18: Path decomposition

If GK is a complete graph (all pairs of maximal cliques have nonempty in-
tersection as in section 5.3.3), then the only candidates for our clique tree
are linear clique trees (i.e. path decompositions). In such case, Assumption
5.12 is equivalent to the existence of a reordering of (g1, . . . ,gN) such that
Assumption 5.7 holds.
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We now give an alogrithm to generate a clique tree T = (K, E) that satisfies
the DIP and the CIP. In case Assumption 5.12 does not hold, this algorithm auto-
matically adds edges to E until it finds an appropriate clique tree (see Algorithm
1).

Remark 5.10 (Explanation of Algorithm 1) • Minimizing deg C1 is a way
to ensure Stokes constraints will be fully implementable, in contrast to the 2
step implementation in section 5.3.3.

• Index i denotes a clique that has already been added to the tree; the algorithm
adds to the tree every clique that shares vertices with Ci, and then increments
i.

• Index j denotes the meta-clique in which we are working; according to Lemma
5.17, in such meta-clique the cliques should be added in line.

• Index k denotes the number of elements that have already been added to the
tree; when k is equal to the number of cliques, our clique tree is complete.

• Index l denotes the lates clique of the meta-clique Qj that has been added to
the tree; according to Lemma 5.17, Cl should then be the parent of Ck+1.

• At line 1 we maximize |Qj| to favor linear configurations as they are the most
compatible with Stokes constraints.

• The if loop at line 1 checks whether it is possible to add the remaining cliques
of Qj to our tree without destroying the CIP.

• The if loop at line 1 checks whether the clique we want to add destroys the DIP
or not.

• At line 1 we maximize |Ck+1∩Cl| so that it is less likely to pose problems with
CIP and DIP in the future iterations.

• The if loops at lines 1 and 1 are meant to minimize the correlative sparsity of
the new graph G = (V,E), since it is the limiting factor for the tractability of
our algorithm.

Theorem 5.19: Convergence of Algorithm 1

Any clique tree returned by Algorithm 1 satisfies the DIP and the CIP.

Proof : We are going to show by induction that at any step k, the graph
Tk := (Pk, Ek) is a tree that satisfies the CIP and the DIP. First, it is trivial that
T1 = ({C1},∅) is a tree and satisfies the CIP and the DIP. Next, we suppose
that we have constructed a tree Tk satisfying CIP and DIP through iterations of our
algorithm, and that the next iteration leads us to define a Tk+1 := (Pk∪{Ck+1}, Ek∪
{(Cl,Ck+1}). Since the only edge we added connected Cl to a new vertex that was
not in Tk, it did not introduce any cycle, thus Tk+1 is still a tree. We are now going
to check the CIP and DIP.
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Algorithm 1: How to build an appropriate clique tree
Data: G = (V,E) and its clique graph GK = (K,F).
Result: T = (K, E) satisfying CIP & DIP if Assumption 5.12 holds,

G = (V,E) with additional edges else.
Initialization: Choose C1 ∈ K with minimal degree in GK;

Initialize i = j = k = 1, P1 := {C1}, E1 := ∅;
while k < |K| do

while Mik := {Q maximal meta-clique : Q∩ Pck 6= ∅,Ci ∈ Q} 6= ∅ do
Choose Qj ∈ argmax

Q∈Mik
|Q|;

while Qj ∩ Pck 6= ∅ do
l := max{r ≤ k : Cr ∈ Qj};
if
∃(C,C′) ∈ argmax{|Ĉ∩Cl| : (C̃, Ĉ) ∈ Pk×Qj∩Pck, C̃∩Ĉ * Cl}
then
if |Cl ∪C| > |Cl ∪C′| then

foreach v ∈ C′, v′ ∈ Cl do E← E ∪ {(v, v′), (v′, v)};
return G = (V,E) ;

else
foreach v ∈ C, v′ ∈ Cl do E← E ∪ {(v, v′), (v′, v)};
return G = (V,E) ;

end
else

Choose Ck+1 ∈ argmax
C∈Qj∩Pck

|C ∩Cl|

end
if ∃C ∈ Pk s.t. (Cl,C) ∈ Ek & C ∩Ck+1 6= ∅ then

if |C ∪Ck+1 < |Cl ∪Ck+1| ∧ |Cl ∪C| then
foreach v ∈ C, v′ ∈ Ck+1 do E← E ∪ {(v, v′), (v′, v)};
return G = (V,E) ;

else if |Cl ∪C| > |Cl ∪Ck+1| then
foreach v ∈ Ck+1, v′ ∈ Cl do E← E ∪ {(v, v′), (v′, v)};
return G = (V,E) ;

else
foreach v ∈ C, v′ ∈ Cl do E← E ∪ {(v, v′), (v′, v)};
return G = (V,E) ;

end
else
Pk+1 := Pk ∪ {Ck+1};
Ek+1 := Ek ∪ {(Cl,Ck+1)};
k ← k + 1 ;

end
end
j ← j + 1 ;

end
i← i+ 1 ;

end
return T := (P|K|, E|K|);
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• Let C,C′′ ∈ Pk+1; C ∩C′′ 6= ∅. Let C′ ∈ Pk be on the path between C and
C′′ in Tk+1 (C′ 6= Ck+1 because Ck+1 is on no path in Tk+1).

– If C,C′′ ∈ Pk then by our induction hypothesis C ∩C′′ ⊂ C′.
– Else, without loss of generality we have C′′ = Ck+1 and C ∈ Pk.
∗ Since we successfully passed through the if loop of line 1, we have

C ∩Ck+1 ⊂ Cl.
∗ By our induction assumption (Tk satisfies the CIP), we have C∩Cl ⊂

C′ (because either C′ = Cl or C′ is on the path between C and Cl,
the parent of Ck+1).

This yields C′ ⊃ C ∩Cl ⊃ C ∩ (C ∩Ck+1) = C ∩Ck+1 = C ∩C′′.

Then, Tk+1 satisfies the CIP.

• Let C ∈ Pk,C′,C′′ ∈ Pk+1 such that (C,C′), (C,C′′) ∈ Ek+1.

– If C′,C′′ ∈ Pk then by our induction hypothesis C′ ∩C′′ = ∅.
– Else, without loss of generality we have C′′ = Ck+1,C = Cl, and since

we successfully passed through the if loop of line 1, we have C′ ∩ C′′ =
C′ ∩Ck+1 = ∅.

Then, Tk+1 satisfies the DIP.

♦

Finally, we conjecture that if Assumption 5.12 holds, then Algorithm 1 will
directly return a clique tree satisfying the CIP and the DIP without adding any
edge to G.

Conclusion

Our results
In this chapter we addressed the problem of approximating the volume of sparse
semi-algebraic sets with the Moment-SOS hierarchy of SDP relaxations. As illus-
trated by our examples, our sparse formulation allows one to dramatically decrease
the computational time for each relaxation, and to tackle high dimensional volume
computation problems that are not tractable with the usual SDP methods. By
splitting the problems into low dimensional subproblems, one drastically reduces
the dimension of each relaxation, without loss of precision. This reduction of com-
plexity is due to the correspondance between the structure of our algorithm and the
correlative sparsity pattern in the description of the semi-algebraic set.

We also showed that additional Stokes constraints have a huge effect on con-
vergence and precision for volume computation, and that they can successfully be
adapted to our sparse formulations. This yields a much better rate of convergence for
the corresponding hierarchy. However, implementing these Stokes constraints leads
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to subtle constraints that have to be enforced if one wants to efficiently compute the
volume:

• First, one should always prefer the linear formulation of Theorem 5.8 whenever
possible, since this ensures that Stokes constraints can always be efficiently
implemented.

• Then, in the more general case of Theorem 5.13, one should always avoid for-
mulations in which the root of the computation tree has no Stokes constraint;
fortunately, such configurations can always be avoided by chosing a leaf as the
root of the clique tree.

Furthermore, in the branched case, one should be aware of the fact that each
step of the algorithm introduces an approximation error, and the errors accumulate
until the root is reached. Consequently, a formulation in which the clique tree has
too many generations will lead to a larger global error than a formulation with less
generations. For this reason, one should minimize the number of generations in the
clique tree, which is equivalent to parallelizing as much as possible. In addition
to that, when the problem has many dimensions and branches, parallelization can
obviously drastically increase the speed of the computations.

Applications and future work
To the best of our knowledge, this sparse method for solving volume problems is
new and full of promises for future applications. For instance, the problem of com-
puting the mass of any compactly supported measure absolutely continuous (with
respect to the Lebesgue measure) can be adressed using this sparsity method. Also,
measures that are not compactly supported but have some decay properties (e.g.
Gaussian measures) can also be handled by our method, which may prove useful in
computations for probability and statistics. Also, specific constraints could prob-
ably be used in addition to Stokes constraints when the semi-algebraic set presents
a specific structure (e.g. a polytope, a convex body).

Furthermore, the framework of exploiting correlative sparsity can be applied to
any method that relies on computations on measures, whether these measures are
represented by their moments (as it is done in this chapter), or by samples (as in
the stochastic volume computation methods). In particular, we believe that this
formalism could easily be extended to Monte-Carlo-based volume computations.

Finally, we also believe that this method can be adapted to the computation of
regions of attraction, through the formalism developed in [42], for high dimensional
differential-algebraic systems that present a network structure, such as power grids,
distribution networks in general and possibly other problems. The main difficulty
resides in taking sparsity into account when formulating the Liouville equation, and
keeping uniqueness of the solution as in the non-controlled non-sparse framework.





6
Theoretical contributions to stability

analysis

This final chapter gathers original contributions to the particular problem of differ-
ential systems stability analysis, which is the goal of this thesis. While Chapter 3
merely was an extension of existing frameworks to power systems TSA, this chapter
draws on most previously presented results to build two new frameworks for stability
analysis of differential systems.

Section 6.1, which is based on the work [100], uses the results of Chapter 2 to
extend the existing frameworks presented in Chapter 3, to the inner approximation of
the Maximal Positively Invariant (MPI) set of a differential system, whose relevance
for power systems security and slightly reduced computational complexity will be
discussed hereafter.

Section 6.2, published as [123], then extends the results from Chapters 3 and 5
to approximating regions of attraction of large scale, sparsely coupled, differential
systems, in a first attempt to fill the gap between stability regions approximation
theory and its application to large scale power grids.
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6.1 Inner approximation of maximal positively in-
variant sets

This section is an effort along a research line initiated in [42] for developing convex
optimization techniques to approximate sets relevant to non-linear control systems
subject to non-linear constraints, with rigorous proofs of convergence in volume.
The approximations are obtained by numerically solving a hierarchy of semidefinite
programming or linear matrix inequality (LMI) relaxations, as proposed originally
by Lasserre in the context of polynomial optimization [70]. Convergence proofs are
achieved by exploiting duality between non-negative continuous functions and Borel
measures, approximated respectively with sums of squares (SOS) of polynomials
and moments, justifying the terminology moment-SOS or Lasserre hierarchy. In the
context of control systems, the primal moment formulation builds upon the notion
of occupation measures [72] and the dual SOS formulation can be classified under
Hamilton-Jacobi techniques [9].

Previous works along this line include inner approximations of the region of
attraction [58], outer approximations of the MPI set [57], as well as outer approx-
imations of the reachability set [83]. Besides their use for power systems stability
analysis (see Section 3.1), these techniques were applied e.g. in robotics [86] and
biological systems [109]. In [42, 58] the regions of attraction are defined for a fi-
nite time horizon, which is a technical convenient framework since the occupation
measures have then finite mass. To cope with an infinite time horizon and MPI
sets, a discount factor was added in [57] so that the mass of the occupation meas-
ure decreases fast enough when time increases. In [83], the mass was controlled by
enforcing a growth condition on the volume of complement sets. This condition,
difficult to check a priori, can be validated a posteriori using duality theory.

It must be emphasized here that, in general, the infinite time horizon setup
is more convenient for the classical Lyapunov framework and asymptotic stability,
see e.g. [20] and references therein, whereas the finite time horizon setup is more
convenient for approaches based on occupation measures. In the current section, we
make efforts to adapt the occupation measure framework to an infinite time horizon
setup, at the price of technical difficulties similar to the ones already encountered in
[83]. Contrary to the outer approximations derived in [57], we have not been able to
use discounted occupation measures for constructing inner approximations. Instead,
the technical device on which we relied is a growth condition on the average exit
time of trajectories.

The main contributions of this section are:

1. A moment-SOS hierarchy for constructing inner approximations of the MPI
set for a polynomial dynamical system with semialgebraic constraints;

2. A detailed, self-contained, rigorous proof of convergence of the hierarchy, under
an assumption on the average exit time of trajectories.
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Section 6.1.1 presents the problem statement. In section 6.1.2 we introduce
a modified version of occupation measures which allow for a new GMP formula-
tion. Section 6.1.3 describes the MPI set inner approximation method with proof
of convergence under appropriate assumptions. Numerical results are analyzed in
Section 6.1.4.

6.1.1 MPI set
Consider the autonomous system

ẋ(t) = f(x), x ∈ Ω ⊂ Rn, t ∈ [0,+∞) (6.1)

with a given polynomial vector field f ∈ R[x]n of degree d0. The state trajectory
x(.) is constrained to the interior Ω of a nonempty compact basic semi-algebraic set

X := {x ∈ Rn : ∀i ∈ N?mX
, gi(x) ≥ 0}

where the gi are given polynomials of degree di. We define ∂X := X \Ω.
The vector field f is polynomial and therefore Lipschitz on the compact set X. As

a result, for any x0 ∈ Ω, there exists a unique maximal solution x(·|x0) to ordinary
differential equation (6.1) with initial condition x(0|x0) = x0. The time interval on
which this solution is defined contains the time interval on which x(·|x0) ∈ Ω.

For any T ∈ [0,+∞], we define the following set.
Definition 6.1: Time T secure initializing set

XT := {x0 ∈ Ω : ∀t ∈ [0, T ], x(t|x0) ∈ Ω}

is the set of all initial states generating trajectories staying in Ω between time
t = 0 and t = T .

Remark 6.1 (Meaning of the name “secure initializing set”)
If one considers the set X as a set of polynomial security constraints that should

be enforced (e.g. in the field of power systems: bound specifications for current and
voltage magnitudes as well as active and reactive power or phase shifting), then
XT is the set of initial conditions generating trajectories that satisfy these security
constraints between time t = 0 and t = T , hence the name of time T “secure”
initializing set.

Remark 6.2 (Link with constrained regions of attraction)
Using the notation of Definition 1.5, one has

XT
def= AΩ

T (Ω).

To avoid heavy notations, we use the simpler XT naming.

On another hand, the maximal positively invariant set included in Ω is defined
as follows



156 CHAPTER 6. THEORETICAL STABILITY ANALYSIS

Definition 6.2: Maximal Positively Invariant (MPI) set

Let P ⊂ Rn. P is said to be positively invariant (PI) for the system (6.1) iff

∀x0 ∈ P,∀t ≥ 0,x(t|x0) ∈ P.

Then, the maximal positively invariant set included in X is defined as its name
suggests:

MPIX :=
⋃

P⊂X
P PI

P.

Remark 6.3 (Positive invariance and boundary)
Defining as in Chapter 4, for any x ∈ ∂P, the outward pointing normal vector

n(x), one immediately has that P is PI for (6.1) iff

∀x ∈ ∂P, f(x) · n(x) ≤ 0.

It is then straightforward to draw a link between the MPI set and infinite time
secure initializing sets, under the form of the following lemma.

Lemma 6.3: MPI set characterization

The infinite time secure initializing set is the MPI set included in Ω:

X∞ = MPIX.

Proof : Let x0 ∈ X∞, t, t′ ∈ [0,∞). Then

x(t′|x(t|x0)) = x(t+ t′|x0) ∈ Ω,

so that x(t|x0) ∈ X∞: X∞ is PI, and thus X∞ ⊂ MPIX.
Let x0 ∈ MPIX, t ≥ 0. By definition, x(t|x0) ∈ MPIX ⊂ X, and thus x0 ∈ X∞,

which yields MPIX ⊂ X∞. ♦

Remark 6.4 (Relevance of the MPI set)
In terms of stability analysis, computing the infinite time secure initializing set

is very interesting. Indeed, this set is defined as the set of initial (or post-fault)
conditions for which the system is bound to “eternally” satisfy all specified security
constraints that define the set X. In other words, a trajectory initialized in X∞ is
sure not to lose synchronism, and the values of the current, voltage and power are
prevented from reaching dangerous heights.

We make the following assumption implying that X∞ has non-empty interior:
Assumption 6.4: Lyapunov stability

Ω contains a Lyapunov-stable equilibrium point x for f .
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Indeed in such case if ε > 0 is such that Bε(x) ⊂ Ω, then Definition 3.7 provides
us with a η > 0 such that Bη(x) ⊂ X∞, where BR(x) = {y ∈ Rn : |x − y| ≤ R} is
the radius R euclidean ball around x.

The complementary set Xc
T := Ω \XT is the set of initial conditions generating

trajectories reaching the target set ∂X at any time before T : this is the region of
attraction of ∂X with free final time lower than T

Xc
T =

⋃
τ∈[0,T )

AΩ
τ (∂X). (6.2a)

The complementary set Xc
∞ is the region of attraction of ∂X with free and unboun-

ded final time
Xc
∞ =

⋃
τ≥0

AΩ
τ (∂X). (6.2b)

In this section we want to approximate the MPI set X∞ from inside as closely
as possible.

The next section presents a new instance for the GMP, which is as usual ac-
companied with a hierarchy of convex linear matrix inequality (LMI) relaxations
yielding a converging sequence (in the sense of the Lebesgue measure) of inner ap-
proximations of the MPI set.

However, due to the infinite time horizon, such a strong result is available only
under some assumptions, based on the notion of exit time.

Definition 6.5: Exit time

For a given x0 ∈ X, we define the exit time as the smallest time at which the
trajectory initialized in x0 hits the boundary ∂X:

τ(x0) := inf{t ≥ 0 : x(t|x0) /∈ Ω}.

Definition 6.5 allows for straightforward characterizations of the previously in-
troduced sets of interest: for T ≥ 0,

XT = {x ∈ Ω : τ(x) > T}, Xc
T = {x ∈ Ω : τ(x) ≤ T}

X∞ = {x ∈ Ω : τ(x) =∞}, Xc
∞ = {x ∈ Ω : τ(x) <∞}.

In the rest of this section we make the assumption that the average exit time of
trajectories leaving Ω is finite:

Assumption 6.6: Exit time integrability

τ := 1
λ(X)

∫
Xc
∞

τ(x) dx < +∞.

Remark 6.5 (Motivation for Assumption 6.6) This assumption is necessary
for the rigorous proof of convergence of the sequence of approximations of X∞. It is
difficult to check a priori. We will show however that, independently of this assump-
tion, the validity of our approximations can be checked numerically a posteriori.
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6.1.2 Primal approximation problem and its value
As seen in the literature, the standard set approximation hierarchies are designed
for outer approximations: see Section 3.1.2, [42], [57]. Then, inner approximations
of a set K are obtained as a byproduct of the complementary outer approximation
of Kc: see Corollary 5.10 and [58]. In the present case, we thus aim at outer
approximations of Xc

∞. We take our inspiration in the concept of reachable set.
Consider the continuous time dynamical system (6.1) as well as the discrete time
dynamical system

xk+1 = f(xk) (6.3)
so that xk = fk(x0) for any k ∈ N, x0 ∈ X, where fk = f ◦ f . . . ◦ f︸ ︷︷ ︸

k times

.

Definition 6.7: Reachable sets

Let K0 ⊂ X and inductively define Kr+1 := f(Kr) ∩X.

• The (forward) reachable set (RS) of K0 for system (6.1) is defined as

RX
K0 := {x(T |x0) : (T ≥ 0) ∧ x0 ∈ K0 s.t. ∀t ∈ [0, T ],x(t|x0) ∈ X}

• The (forward) reachable set (RS) of K0 for system (6.3) is defined as

RX
K0 :=

{
fK(x0) : K ∈ N ∧ x0 ∈ K0 s.t. ∀k ∈ N?K , fk(x0) ∈ X

}
=
∞⋃
r=0

Kr

• The backward reachable set (BRS) of K0 for a discrete (resp. continuous)
time system is the RS if the discrete (resp. continuous) time system with
f replaced with −f (i.e. time flowing backwards).

On the one hand, in [83], the authors dealt with the problem of approximating by
outside the forward reachable set for a given initializing set, in the setting of discrete
time dynamical systems (6.3). On the other hand, Xc

∞ can be seen as the continuous
time, backward reachable set of the boundary ∂X: indeed, it is constituted of all
the initial conditions generating trajectories that hit the boundary ∂X. Thus, our
contribution here mostly consists of a (nontrivial) adaptation of the work found in
[83] to continuous time systems.

Again, such a method resorts to occupation measures, in a slightly adapted form:
instead of working with the occupation measure νµ = I×A 7→

∫
X
∫
I 1A(x(t|x0)) dt dµ

(see Section 3.1.1), consider its time average counterpart

νµ := A 7→
∫

X

(∫ τ(x0)

0
1A(x(t|x0)) dt

)
dµ.

Also, we replace the terminal measure ξµ ∈M(K)+ with a boundary measure γµ ∈
M(∂X)+ which will measure where the trajectories leave X. Then, if µ ∈M(Xc

∞)+,
the Liouville equation (3.3) can be integrated with respect to time to yield

div(νµ f) + γµ = µ, (3.3′)
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which we incorporate into our traditional set approximation problem. Eventually, we
enforce “by hand” an upper bound on the mass of our average occupation measure.

Problem 17: Primal inner MPI approximation LP

For a given τ+ ∈ R+, we define the following instance of the GMP

p?MPI(τ+) := sup
µ,ν,γ

∫
1 dµ

s.t. µ ∈M(X)+

ν ∈M(X)+

γ ∈M(∂X)+

µ � λ (6.4a)
div(ν f) + γ − µ = 0 (6.4b)∫

1 dν ≤ τ+ λ(X) (6.4c)

Remark 6.6 (Loss of uniqueness)
While the classical Liouville equation (3.3) has a unique solution (ν, ξ) = (νµ, ξµ),

it is not the case anymore with its integral counterpart: there can be several couples
(ν, γ), different from the expected (νµ, γµ) and satisfying (3.3′). For example, if
µ = 0, then any (ν, γ) = (t δx, 0) is a solution to (3.3′), where x is the L-S equilibrium
point for f and t ∈ R. Thus, Theorem 3.5 for the finite time ROA does not have an
MPI counterpart, making the analysis of Problem 17 harder to carry out.

Remark 6.7 (Strong duality condition)
Here, τ+ is introduced to ensure that all the feasible measures have a finite mass.

Otherwise, the strong duality Theorem 2.6 would not hold. We give more details on
this subject in Section 6.1.3.

Note that problem (6.4) is linear in the decision variables which are the three
measures µ, ν, γ. The two following lemmata link the infinite-dimensional LP (6.4)
and the MPI set X∞.

Lemma 6.8: Upper bound on p?MPI

Assuming that τ+ ≥ τ , we have p?MPI(τ+) ≥ λ(Xc
∞).

Proof :

• µ? := λXc
∞

• ν? := A 7→
∫
Xc
∞

∫ τ(x0)
0 1A(x(t|x0)) dt dx0

• γ? := A 7→
∫
Xc
∞
1A(x(τ(x0)|x0)) dx0

define a feasible triplet. Indeed, constraint (6.4a) is automatically satisfied and one
has :
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•
∫

1 dν? =
∫

Xc
∞

(∫ τ(x0)

0
dt
)

dx0 = τ λ(X) ≤ τ+λ(X) so that (6.4c) holds

• constraint (6.4b) is satisfied, since ∀v ∈ C1(X),

〈div(ν? f), v〉 = −
∫

Xc
∞

∫ τ(x0)

0
grad v(x(t|x0)) · f(x(t|x0)) dt dx0

= −
∫

Xc
∞

(v(x(τ(x0)|x0))− v(x0)) dx0

= 〈µ? − γ?, v〉.

then, p?MPI(τ+) ≥
∫

1 dµ? =
∫

1 dλXc
∞ = λ(Xc

∞). ♦

Lemma 6.9: Lower bound for p?MPI

For any triplet (µ, ν, γ) feasible in (6.4), µ is supported on Xc
∞, i.e.∫

1X∞ dµ = 0.

The proof of this lemma uses the following assumption on the MPI set:
Assumption 6.10: Choice of X

∀x ∈ ∂X∞ ∩ ∂X, f(x) · n(x) < 0. In words, at all points where ∂X∞ is
tangent to ∂X, the trajectories strictly enter X. Up to the choice of X, this
assumption is reasonable for any physical system.

Proof : Let (µ, ν, γ) be a feasible triplet for (6.4). Let χ := div(ν f) (6.4b)= µ− γ.
For x ∈ Rn, let

ϕ(x) :=

K exp
(
− 1

1−|x|2
)

if |x| < 1
0 else

where K > 0 is such that
∫
ϕ dλ = 1. Then, for ε > 0 and x ∈ Rn, let:

• ϕε(x) := 1
ε
ϕ
(

x
ε

)
≥ 0

• νε(x) :=
∫

X
ϕε(y− x) dµ(y) ≥ 0

• χε(x) := div(νε f)(x) = grad νε(x) · f(x) + νε(x) div f(x).

According to the theory of mollifiers (see [15, Section 4.4]), ϕ, ϕε, νε and χε are
smooth compactly supported functions, and for any w ∈ C0

c (Rn),∫
Rn
w(x) νε(x) dx −→

ε→0

∫
X
w(x) dµ(x)
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from which it directly follows that for v ∈ C1
c (Rn)∫

Rn
v(x)χε(x) dx =

∫
Rn
v(x) div(νε f)(x) dx

= −
∫
Rn

grad v(x) · f(x) νε(x) dx

−→
ε→0
−
∫
Rn

grad v(x) · f(x) dµ(x)

=
∫
Rn
v(x) dχ(x).

By density of C1
c (Rn) in C0

c (R) with respect to the supremum norm ‖.‖L∞(Rn) , this
implies that χε λ weak-∗ converges (in the sense of measures) to χ.

For a given η > 0 consider the set

Xη
∞ :=

{
x ∈ X∞ : inf

y∈∂X
|x− y| > η

}
.

By definition, Xη
∞ ∩ ∂X = ∅, and then for any Borel set A ⊂ Xη

∞, one has χ(A) =
µ(A). In particular, χ(∂Xη

∞) = µ(∂Xη
∞) = 0 since µ � λ. Then, we can apply

the Portemanteau theorem (equality marked with a ∗, see [56, Theorem 13.16]) to
χ(Xη

∞):

µ(Xη
∞) = χ(Xη

∞)
∗= lim
ε→0

∫
Xη
∞
χε(x) dx

def= lim
ε→0

∫
Xη
∞
div(νε f)(x) dx

= lim
ε→0

∫
∂Xη
∞

f(x) · nη(x) νε(x) dσ(x) (6.5)

where nη stands for the unit normal vector to ∂Xη
∞ pointing towards Xηc

∞, according
to the Gauss formula (4.4). Now, let R+ be the function

R+ :


∂X∞ ∩ ∂X −→ R

x 7−→ sup

 R > 0 : ∀η ∈ (0, R),∀y ∈ ∂Xη
∞

|x− y| < R =⇒ f(y) · nη(y) ≤ 0

 .
In words, R+(x) is the largest range around x in which the f · nη are non-positive.
According to Assumption 6.10, f being continuous, R+ takes only positive values.
Moreover, due to the regularity of f , X and X∞, R+ is continuous on the compact
set ∂X∞ ∩ ∂X, therefore it attains a minimum R?

+ > 0.
Let η ∈ (0,R?

+), x ∈ ∂Xη
∞. Then, there are two possibilities:

• either x ∈ ∂X∞, and then by positive invariance of X∞, f(x) · nη(x) ≤ 0;

• or inf
y∈∂X

|x− y| = η < R?
+, and by definition of R?

+, f(x) · nη(x) ≤ 0.
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It follows that for any x ∈ ∂Xη
∞, f(x) · nη(x) ≤ 0. Thus, one obtains

∫
∂Xη
∞

f(x) · nη(x) νε(x) dx ≤ 0

and after letting ε tend to 0, using equation (6.5), we have µ(Xη
∞) ≤ 0, which means,

by non-negativity of µ, that µ(Xη
∞) = 0.

Eventually, since Xη
∞ ⊂ X∞ and µ � λ, one has

µ(X∞) = µ(X∞)− µ(Xη
∞)

= µ(X∞ \Xη
∞)

≤ λ(X∞ \Xη
∞)

= λ
({

x ∈ X∞ ; inf
y∈∂X

|x− y| ≤ η
})

−→
η→0

λ(X∞ ∩ ∂X) = 0

which leads to the conclusion that µ(X∞) = 0. ♦

Theorem 6.11: Value of Problem 17

Assuming that τ+ ≥ τ , the infinite-dimensional LP (6.4) has a value
p?MPI(τ+) = λ(Xc

∞). Moreover the supremum is attained, and the µ? com-
ponent of any solution is necessarily the measure λXc

∞ .

Proof : This is a straightforward consequence of Lemmata 6.8 and 6.9. ♦

6.1.3 Dual approximation problem and its value

According to the developments in Section 2.1, the dual LP of problem (6.4) reads
as follows.

Problem 18: Primal inner MPI approximation LP

For a given τ+ ∈ R+, we define the following infinite-dimensional LP

d?MPI(τ+) := inf
u,v,w

∫
X

(w(x) + τ+ u) dx

s.t. w − v − 1 ∈ C(X)+ (6.6a)
u− f · grad v ∈ C(X)+ (6.6b)
v ∈ C(∂X)+ (6.6c)
w ∈ C(X)+

v ∈ C1(X)
u ∈ R+.
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Lemma 6.12: Positive invariance

Let (0, v, w) be a feasible triplet for problem (6.6).
Then, the set X̂∞ := {x ∈ Ω : v(x) < 0} is a PI subset of X∞.

Proof : Since X∞ is the MPI set included in X and X̂∞ ⊂ X by definition, it is
sufficient to prove that X̂∞ is positively invariant.

Let x0 ∈ X̂∞. Then, for any t > 0, one has

v(x(t|x0)) = v(x0) +
∫ t

0
∇v · f(x(s|x0)) ds ≤ v(x0) < 0

using constraint (6.6b).
We still have to show that x(t|x0) remains in Ω at all times t ≥ 0. If not, then

there exists a t∂ > 0 such that x(t∂|x0) ∈ ∂X according to the intermediate value
theorem, the trajectory being of course continuous in time. However, by feasibility
of (0, v, w), one then has v(x(t∂|x0)) ≥ 0, which is in contradiction with the fact
that v(x(t|x0)) < 0 for all t > 0 which we just proved.

Thus, we obtain that for all t > 0, x(t|x0) ∈ Ω and v(x(t|x0)) < 0, i.e. x(t|x0) ∈
X̂∞. ♦

Remark 6.8 (Inner MPI approximation)
For a feasible triplet (u, v, w), if u 6= 0, then there is no guarantee that the

solution of (6.6) yields an inner approximation of X∞. However, it still gives access
to inner approximations of the XT , T ∈ R+, and we will show that under Assumption
6.6, these approximations converge to X∞.

Lemma 6.13: Inner approximation of XT

For any triplet (u, v, w) feasible in (6.6), for any T > 0,

X̂T := {x0 ∈ Ω : v(x0) + uT < 0} ⊂ XT .

Proof : Let (u, v, w) be a feasible triplet in (6.6) and let x0 be an element of Xc
T

for a given T > 0.
By definition of XT we know that T ≥ τ(x0), where τ is the exit time, and

that for any t ∈ [0, τ(x0)],x(t|x0) ∈ X. Thanks to constraint (6.6b), we can
therefore say that for any t ∈ [0, τ(x0)], (∇v · f)(x(t|x0)) ≤ u. Hence for any
t ∈ [0, τ(x0)], v(x(t|x0)) ≤ v(x0) + u t. In particular, we deduce that

v(x(τ(x0)|x0)) ≤ v(x0) + uτ(x0) ≤ v(x0) + uT.

As x(τ(x0)|x0) ∈ ∂X, (6.6c) yields that v(x(τ(x0)|x0)) ≥ 0 and thus v(x0) ≥ −uT .
This proves that

Xc
T ⊂ {x0 ∈ Ω : v(x0) ≥ −uT}

hence X̂T ⊂ XT . ♦
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Theorem 6.14: Strong duality

There is no duality gap between primal LP problem (6.4) on measures and
dual LP problem (6.6) on functions in the sense that p?MPI(τ+) = d?MPI(τ+).

Proof : This is a direct consequence of Theorem 2.6: the only thing that we
have to prove is the boundedness of the masses of µ, ν and γ. Boundedness of µ
and ν respectively follow from constraints (6.4a) and (6.4c). Then,∫

1 dγ (6.4b)=
∫

1 dµ

so that the mass of γ admits the same bound as the mass of µ. ♦

Remark 6.9 (The importance of τ+)
Taking τ+ to infinity or, equivalently, removing constraint (6.4c) boils down to

imposing u = 0 in the dual problem (6.6). Although this would indeed ensure that our
approximating set X̂∞ is included in the actual MPI set X∞, it would also destroy
our proof of strong duality.

But looking in detail leads to understand that things are even worse: without
constraint (6.4c), any feasible ν generates an infinity of feasible candidates νt :=
ν + t δx, where x is the L-S equilibrium point of system (6.1) and δx is the Dirac
measure in x. Actually, this δx would be a nontrivial element of the kernel of (A , c)
(using the notations of Chapter 2), i.e. a counterexample to equation (∗) which
is asked to hold in the proof of Theorem 2.6. In other words, constraint (6.4c) is
absolutely necessary to enforce strong duality.

Without this constraint, the results in Section 6.1.2 would still hold, yielding that
p?MPI(τ+) = vol Xc

∞, but one would only have d?MPI(τ+) ≥ p?MPI(τ+). From a “Slater”
viewpoint (see [70][pp. 8,128,313] or [11][p. 171]) problem (6.6) might not admit
any interior point. Finding a way to bypass the artificial use of constraint (6.4c) is
actually an open question for inner MPI computation.

6.1.4 Numerical implementation and its convergence
Following the developments of Section 2.2.2, problem (6.6) admits a SOS tightening
which can be written as follows:

ddMPI(τ+) := inf
u,v,w,p
(sij)i,j

w · l + u τ+ l0

s.t. w − v − 1 = s10 + s1 · g (6.7a)
u− f · grad v = s20 + s2 · g (6.7b)
v = s30 + s3 · g + p h (6.7c)
w = s40 + s4 · g
v, w ∈ R2d[x]
u ∈ R+
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s10, s10, s10, s10 ∈ Σd[x]
s1i, s1i, s1i, s1i ∈ Σd−ddi/2e[x]
p ∈ R2d−

∑
i
di

[x],

where h = g1 · · · gmX . Vector l denotes the Lebesgue moments over X indexed in
the same basis in which the polynomial w with vector of coefficients w is expressed.

SOS problem (6.7) is a tightening of problem (6.6) in the sense that any feasible
solution in (6.7) gives a triplet (u, v, w) feasible in (6.6).

Theorem 6.15: Inner MPI approximation

Problem (6.7) is an LMI problem and any feasible solution (ud, vd, wd) gives
inner approximations X̂d

t := {x ∈ Ω : vd(x) + ukt < 0} of the XT s. In
particular, if ud = 0, X̂d

∞ := {x ∈ Ω : vd(x) < 0} is an inner approximation
of X∞.

Proof : This is a direct consequence of Proposition 2.13 as well as Lemmata
6.12 and 6.13. ♦

This SOS tightening is a finite dimension convex optimization, and as such it
admits a primal formulation derived from Lagrangian theory, which can be seen as
an LMI relaxation of infinite dimensional LP (6.4) (see Section 2.2 for details).

Theorem 6.16: Convergence of the hierarchy

Let τ+ > τ . Then, under Assumption 2.7 for X,

1. The sequence (ddMPI(τ+)) is monotonically decreasing and converging to
λ(Xc

∞)

For every d ≥ dmin := 1/2∑i di, let ψd := (ud, vd, wd) denote a 1
d
-optimal

solution of the dual tightening of order d. One has then :

2. ud −→
d→∞

0,

3. wd
L1(X)−→
d→∞

1Xc
∞ .

Proof :

1. is a direct consequence of Theorems 2.14 and 6.14.

2. We define φ? := (µ?, ν?, γ?) feasible for (6.4) as in the proof of Lemma 6.8.
Then,

ud

∫
1 dν? =

∫
ud dν

?

(6.6b)
≥

∫
f · grad vd dν?

(6.4b)=
∫
vd dγ

? −
∫
vd dµ

?
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(6.6c)
≥ −

∫
vd dµ

?

(6.6a)
≥

∫
(1− wd) dµ?

def= λ(Xc
∞)−

∫
wd dµ

?

(6.4a)
≥ λ(Xc

∞)−
∫

X
wd(x) dx (6.8)

so that

0
(6.4c)
≤ (τ+ λ(X)− ν?(X))ud

(6.8)
≤

∫
X

(wd(x) + τ+ ud) dx− λ(Xc
∞)

1
d
-optim.
≤ ddMPI(τ+) + 1

d
− λ(Xc

∞)
1.−→

d→∞
0.

Since by assumption τ+ > τ̄ = ν?(X)
λ(X) , this means that ud −→

d→∞
0.

3. Let ε > 0. Let T > 0 such that λ(XT \X∞) ≤ ε. Let d̄ ≥ dmin such that for
all d ≥ d̄ one has that ‖ud T‖L1(X) ≤ ε and |

∫
Xwd(x) dx− λ(Xc

∞)| ≤ ε. Such
an integer exists from points 1 and 2. Using the triangle inequality and the
fact that ‖ud T‖L1(X) ≤ ε one has

‖wd − 1Xc
∞‖L1(X) ≤ ‖wd + ud T − 1Xc

∞‖L1(X) + ε. (6.9)

With the notation A = ‖wd + ud T − 1Xc
∞‖L1(X), one has

A =
∫

Xc
T

|wd(x) + ud T − 1Xc
∞(x)| dx +

∫
XT

|wd(x) + ud T − 1Xc
∞(x)| dx.

We denote by B and C these two terms, respectively. Since Xc
T ⊂ Xc

∞, one
can replace 1Xc

∞ with 1 in B. Then, constraint (6.6a) along with Theorem
6.15 allow us to remove the absolute value to obtain

B =
∫

Xc
T

(wd(x) + ud T − 1) dx =
∫

Xc
T

wd(x) dx− λ(Xc
T ) + λ(Xc

T )ud T

and since λ(Xc
T )ud T ≤ ‖ud T‖L1(X) ≤ ε,

B ≤
∫

Xc
T

wd(x) dx− λ(Xc
T ) + ε. (6.10)

Moreover, we have that C ≤
∫
XT

(|wd(x)|+|ud T |+|1Xc
∞(x)|) dx and therefore,

using the nonnegativity of wd and the fact that ‖ud T‖L1(X) ≤ ε, one has
C ≤

∫
XT

wd(x) dx +ε+λ(XT \X∞). Since we have λ(XT \X∞) ≤ ε by choice



6.1. INNER APPROXIMATION OF MAXIMAL POSITIVELY INVARIANT SETS167

of T , we deduce that C ≤
∫
XT

wd(x)dx + 2ε. Combining this inequality with
(6.10), we have :

A = B + C ≤
∫

X
wd(x) dx− λ(Xc

T ) + 3ε

from which we deduce that A ≤ 5ε, using that |
∫
Xwd(x) dx − λ(Xc

∞)| ≤ ε
and λ(Xc

∞ \Xc
T ) ≤ ε. Combining this with (6.9), we have that

‖wd − 1Xc
∞‖L1(X) ≤ 6ε.

♦

Remark 6.10 (No free lunch rule) Despite this convergence result, one should
be aware of the fact that the computational burden increases sharply with the di-
mension of the state space and the degree of the relaxations. Indeed, the involved
polynomials have D2d

n =
(
n+2d
n

)
coefficients. Consequently, high values of n and d

might be intractable. A possible way to handle this consists in exploiting the struc-
ture of the considered problems, such as sparsity. The key is to split the state space
into low dimensional subspaces and distribute the problem over the obtained parti-
tioning (see Chapter 5 as a first example of what can be done in practice for volume
computation).

For this section, we chose to focus on the simple example of the Van der Pol
oscillator, as was done in [42]:ẋ1 = −2 x2

ẋ2 = 0.8 x1 + 10 (1.022x2
1 − 0.2) x2.

(6.11)

Let X = {x ∈ R2 : x2
1 + x2

2 ≤ 1} and τ+ = 100
π
.

We implemented the hierarchy of SOS problems (6.7) in MATLAB, using the
toolbox YALMIP interfaced with the SDP solver MOSEK. For d = 6 and 7 (SOS
degrees 12 and 14 respectively), we compared the obtained regions to the outer
approximations computed using the framework presented in [57], see Figure 6.1. In
this implementation, we checked at each relaxation whether u was near to zero:
for d = 6, we had u ∼ 10−7, and for d = 7 we obtained u ∼ 10−6, which is
satisfactory. Moreover, we also ran the hierarchy with constraint ud = 0 (to enforce
inner approximations) and obtained the same results.

However, we observed some difficulties:

• For low degrees, the only solution v found by the solver is very close to the
zero polynomial: the coefficients are of the order 10−5, therefore the plots
are irrelevant; one loses conservativeness and several constraints are violated
(namely the positivity constraint on v on ∂X).

• For higher degrees, the basis of monomials is not adapted since for example in
dimension 1 xα is close to the indicator of {−1, 1}n. As a result, the coefficients
are of the order 105 or more, and again the plots make little sense.
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Figure 6.1 – Outer and inner MPI set approximations.

Carried out for the Van der Pol oscillator with the unit disk as the admissible state
set X. The reported k are the relaxation orders (named d in the rest of the
section).

One can also find numerical applications of this method to actual electrical engin-
eering problems in [99] with very promising results.

Our original motivation is the study of transient phenomena in large-scale elec-
trical power systems, see Section 3.1 and references therein. Our objective is to
design a hierarchy of approximations of the MPI set for large-scale systems de-
scribed by non-linear differential equations. A first step towards non-polynomial
dynamics can be found in [99]. Since the initial work [42] relied on the mathem-
atical technology behind the approximation of the volume of semi-algebraic sets,
we already studied in Chapter 5 the problem of approximating the volume of a
large-scale sparse semi-algebraic set. We are now investigating extensions of the
techniques for approximating the MPI set of large-scale sparse dynamical systems,
and the current section contributes to a better understanding of its inner approx-
imations, in the small-scale non-sparse case. Our next step consists of combining
the ideas of Chapter 5 with those of the current section, so as to design a Lasserre
hierarchy of inner approximations of the MPI set in the large-scale case, and apply
it to electrical power system models.

As it was done at the end of Chapter 3 we display an updated comparison table
of the various approaches to stability analysis, depending on the set one intends to
approximate. The need for parameter τ+ is the main drawback of this method, for
two reasons:

• It should be greater than the average exit time τ of the studied system, which
most of the time is completely unknown;
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• When τ+ is too big, numerical issues arise in the hierarchy, mostly because the
integral w · l in the objective of the dual (6.7) becomes negligible with respect
to τ+ u l0.

However, the advantages of approximating the MPI set are multiple:

• The approximating scheme presents the classical convexity and convergence
properties of the Lasserre hierarchy, as for the finite time ROA approximation
schemes

• The involved measures and polynomials do not depend on time, so that e.g.
for d = 10 and in state dimension 5 (which is a reasonable setting in practice),
the LMI size is D10

5 = 3003 instead of D10
6 = 8008;

• From the power systems stability viewpoint, it is very interesting since it
exactly computes the set of post-fault conditions that will not lead to violation
of the given security constraints that make up X.

Lyapunov ROA finite time ROA MPI set

Nb of variables n (x) n+ 1 (t,x) n (x)

Constraints BMI LMI LMI

Convexity no yes yes

Scheme convergence local global global

Parameters none X,K, T X, τ+

Time horizon infinite finite infinite

Target x K X

Table 6.1 – Comparison between ROA, finite time ROA & MPI set schemes.

6.2 Sparsity-based approximation for finite time
ROA

This section describes a computational technique for generating outer approxima-
tions of finite time ROA of sparse polynomial ODEs, with the purpose of assessing
the stability of large scale power systems in the future. These outer approximations
contain all initial conditions for which the dynamical systems can operate safely. In-
deed, power networks are usually modeled by an interconnection of weakly coupled
nodes, while the dynamic behaviour of the system is mainly driven by generators,
which are modeled by (closed-loop controlled) ordinary differential equations.
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Most of the technical literature on stability analysis for power networks focuses
on the construction of Lyapunov functions computed by nonconvex optimization,
and more specifically a bilinear variant of polynomial SOS optimization, as in e.g.
[6, 50] and Section 3.2. An inner approximation of the infinite time ROA is then
modeled as a sublevel set of the Lyapunov function, and various heuristics are used
to enlarge this sublevel set as much as possible, see e.g. [20] and references therein.
It can be enforced that the Lyapunov functions have the same sparsity structure as
the system to be analyzed, see e.g. [147] and references therein, but to our knowldge,
it was never applied to ROA approximation. Regardless of the application, some
efforts have been made to improve the scalability of the costly SOS programming
techniques (see [2, 3, 85] and the references therein), at the price of accuracy of the
computed solutions. The work of [63, 64] is a first step towards the application of
Lyapunov techniques to ROA estimation for interconnected systems. Another way
of exploiting the system’s structure is to rely on sparsity in terms of time scales
instead of sparsity in terms of variables, see e.g. [121].

The main contribution of the current section is to identify a sparsity structure
that allows us to apply the moment-SOS hierarchy for sparse ROA approximation.
We construct a hierarchy of outer approximations of increasing degree, though the
sparsity is introduced at the price of the convergence proof that no longer holds.
For this, we rely heavily on Chapter 5 which focused on the approximation of the
volume of a sparse semi-algebraic set.

In the context of differential systems stability analysis, our work can be seen
an extension to large-scale systems of results of Sections 3.1 and 6.1 as well as
[99]. It can be interpreted as well as a finite time dual approach to the standard
Lyapunov approach of Section 3.2 and [20, 6, 64, 147]. We prefer however to see the
Lyapunov approach as a dual to an infinite time occupation measure approach, in
the sense that Lyapunov functions are obtained as a (dual Lagrangian) certificate of
a property (stability) of the system’s trajectories (modeled by occupation measures
in a primal problem). The advantage of considering finite time ROA instead of
standard Lyapunov ROA is the linearity of its characterization (which leads to
solving convex LMIs instead of nonconvex bilinear matrix inequalities as in the
Lyapunov framework), as well as the proof of convergence in volume (in the non-
sparse case).

6.2.1 A path decomposition sparsity pattern
Let N ∈ N. We consider the following system of sparsely coupled polynomial ODEs:

ẋi = fi(xi,xi+1) xi ∈ Xi i ∈ N?N−1 (6.12a)
ẋN = fN(xN−1,xN) xN ∈ XN (6.12b)

where for all i ∈ N?N , Xi := {xi ∈ Rni : gXi
(xi) ≥ 0}, are finite dimensional compact

basic semialgebraic sets and fi ∈ R[xi,xi+1]ni , i ∈ N?N−1, fN ∈ R[xN−1,xN ]nN are
polynomial maps. We define Xi := Rni , X := X1 × . . .×XN , X := X1 × . . .×XN ,
f := (f1, . . . , fN) and n := n1 + . . .+nN . Note that X is also a compact semialgebraic
set described by the polynomial vector gX := (gX1 ◦ πX1 , . . . ,gXN

◦ πXN ).
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Given a finite time horizon T > 0 and compact basic semialgebraic target sets
Ki = {xi ∈ Xi : gKi

(xi) ≥ 0} ⊂ Xi, K := K1 × . . . ×KN , we aim at computing
outer approximations of the finite time ROA, defined as

AX
T (K) :=

x0 ∈ Rn :
∀t ∈ [0, T ],x(t|x0) ∈ X

x(T |x0) ∈ K

 . (6.13)

Remark 6.11 (Link with Chapter 5)
This is the path decomposition special case of correlative sparsity that we studied

in Section 5.2. The only difference here is that instead of appearing in the description
of the set K we indended to measure, the sparsity pattern is found in the dynamics
of the differential system ẋ = f(x).

Here there are N − 1 cliques Ci = I(gXi
)∪I(gXi+1), i ∈ N?N−1 (using the notations

of Section 5.1.4), see Figure 6.2.

... xN−2 xN−1x3x2x1 xN

C1 C2 CN−2 CN−1

Figure 6.2 – Illustration of the studied sparsity pattern.

Remark 6.12 (Information transfer)
A way to look at this sparse differential system consists of building the exact

same clique tree as in Chapter 5 (in the present context, we call it the clique path),
and then look at the clique CN−1, which is the leaf of the tree. Indeed, the dynamics
of this clique do not depend on any exogenous variable, and it can be viewed as a
subsystem of the form

ẋN−1 = fN−1(xN−1,xN)

ẋN = fN(xN−1,xN).

Then, solving this system provides us with trajectories xN−1(t|x0), xN(t|x0), and
one can consider uN−2(t) := xN−1(t|x0) as a control law for the dynamics of xN−1:

ẋN−2 = fN−2(xN−2,uN−2).

Eventually, iterating until one reaches the root of the clique path yields the total
trajectory. However, this is only the problem of finding a trajectory given some
initial condition x0 ∈ X, while our interest is in the inverse problem of fighting
suitable initial conditions AX

T (K) such that the trajectory hits the target set K at
time T .



172 CHAPTER 6. THEORETICAL STABILITY ANALYSIS

Remark 6.13 (Specificity of set approximation)
Contrary to the volume problem where our interest is only in the volume of a

given set, i.e. the mass (or first moment) of a measure, in set approximation we
are interested in determining the set, i.e. computing the support of a measure. The
reason why classical schemes for sparse polynomial optimization (see e.g. [132, 69])
do not directly apply to volume computation is precisely that they are rather adapted
to retrieving the support of a measure (i.e. determining minimizers of a polynomial),
but if implemented for the volume computation problem, they do not converge to
the volume of the considered set, hence the necessity for the original contribution
in Chapter 5. However, again the scheme developed in Chapter 5 is specifically
adapted for volume computation, which is not relevant for approximating regions of
attraction. In the next sections we develop a new method, inspired from the existing
ones, specifically designed for the study of dynamical systems.

With the future application to electrical power systems in mind, we focus on
exploiting the network-like structure in our computations. A power network model
has the particularity that not all the variables directly interact in the equations.
Especially, nodes that are geographically far from each other are not connected
together in the dynamics of the system. This corresponds to a sparse structure,
which motivates this work.

6.2.2 A sparse infinite dimensional formulation
Following the inspiration given by both Chapter 5 and [147], we derive an LP prob-
lem that can be split into small dimensional subproblems, and thus is a lot more
scalable than the dense formulation (3.7). To that end, we introduce the number
of cliques K := N − 1 as well as the sets X′i := Xi × Xi+1, X′i := Xi × Xi+1,
K′i := Ki × Ki+1, states x′i := (xi,xi+1), maps f ′i := (fi, fi+1) and dimensions
n′i := dim X′i = ni + ni+1, i ∈ N?K .

We recall that the dense formulation for the finite time ROA outer approximation
(3.7) reads:

p?ROA := sup
µ,ν,ξ

∫
1 dµ (3.7a)

s.t. µ ∈M(X)+

ν ∈M(I×X)+

ξ ∈M(K)+

λ− µ ∈M(X)+

∂tν + div(ν f) = δ0 µ− δT ξ,

d?ROA := inf
v,w

∫
w dλ (3.7b)

s.t. w − v(0, ·)− 1 ∈ C(X)+

− ∂tv − f · grad v ∈ C(I×X)+

v(T, ·) ∈ C(K)+

w ∈ C(X)+

v ∈ C1(I×X).

Now, as in Chapter 5 the idea is to split the measures along the cliques dis-
tribution. However, as we are not looking for a volume, we do not need any of
the resulting measures to be marginals of the original ones, which gives us more
slack. The main difficulty lies in the Liouville equation (3.3). Indeed, if we split our
measures µ, ν, ξ into µi, νi, ξi, then the following happens in the Liouville equation
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applied to µ1, ν1, ξ1(extending derivative notation of Section 5.2.2) :

∂tν1 + divx1(ν1 f ′1) + divx2(ν1 f2) = δ0 µ1 − δT ξ1,

which makes no sense if the measures µ1, ν1, ξ1 only depend on states x1,x2, as f2
depends on x2 and x3. Enlarging the number of states modelled in a measure is
not an option, since one would always have to deal with the term divxj(ν1 fj), fj
depending on both xj and xj+1. For this reason and to preserve sparsity, we extend
ν1 with a measure φ1 ∈M(I×X′2)+ and introduce a consistency condition (see [69])
between them:

ν
〈t,x2〉
1 = φ

〈t,x2〉
1

so that ν1 and φ1 can be seen as the two marginals of an occupation measure, subject
to a hybrid “Liouville consistency” constraint:

(δ0 µ1 − δT ξ1 − ∂tν1)〈t,x1〉 = divx1(ν1 f1)〈t,x1〉

(δ0 µ1 − δT ξ1 − ∂tν1)〈t,x2〉 = divx2(φ1 f2)〈t,x2〉.

Then, one can write the following GMP:
Problem 19: Primal sparse ROA approximation

p?spROA := sup
(µi)i,(ξi)i
(νi)i,(φi)i

K∑
i=1

∫
1 dµi (6.15)

s.t. µi ∈M(X′i)+ i ∈ N?K

φi ∈M(I×X′i+1)+ i ∈ N?K−1

νi ∈M(I×X′i)+ i ∈ N?K

ξi ∈M(K′i)+ i ∈ N?K

λn
′
i − µi ∈M(X′i)+ i ∈ N?K

(δ0 µi − δT ξi − ∂tνi)〈t,x1〉 = divxi(νi fi)〈t,xi〉 i ∈ N?K−1

(δ0 µi − δT ξi − ∂tνi)〈t,xi+1〉 = divxi+1(φi fi+1)〈t,xi+1〉 i ∈ N?K−1

∂tνK + div(νK f ′K) = δ0 µK − δT ξK
ν
〈t,xi+1〉
i = φ

〈t,xi+1〉
i i ∈ N?K−1

whose dual writes

d?spROA := inf
(ui)i,(wi)i
(vij)i,j ,vK

K∑
i=1

∫
wi(xi,xi+1) dxi dxi+1 (6.16a)

s.t. wi(xi,xi+1)− vi1(0,xi)− vi2(0,xi+1) ≥ 1 (6.16b)
(xi,xi+1) ∈ X′i, i ∈ N?K−1

wK(xK ,xN)− vK(0,xK ,xN) ≥ 1 (6.16c)
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(xK ,xN) ∈ X′K
fi+1(xi+1,xi+2) · grad vi2(t,xi+1) ≤ −u(t,xi+1) (6.16d)

(t,xi+1,xi+2) ∈ I×X′i+1, i ∈ N?K−1

∂tvi1(t,xi) + ∂tvi2(t,xi+1) + fi(xi,xi+1) · grad vi1(t,xi) ≤ u(t,xi+1) (6.16e)
(t,xi,xi+1) ∈ I×X′i, i ∈ N?K−1

∂tvK(t,xK ,xN) + f ′K(xK ,xN) · grad vK(t,xK ,xN) ≤ 0 (6.16f)
(xK ,xN) ∈ X′K

vi1(T,xi) + vi2(T,xi+1) ≥ 0 (6.16g)
(xi,xi+1) ∈ K′i i ∈ N?K−1

vK(T,xK ,xN) ≥ 0 (6.16h)
(xK ,xN) ∈ X′K

wi ∈ C(X′i)+, i ∈ N?K

vi1 ∈ C1(I×Xi), i ∈ N?K−1

vi2 ∈ C1(I×Xi+1), i ∈ N?K−1

vK ∈ C1(I×X′K)
ui ∈ C(I×Xi+1), i ∈ N?K−1

Here the idea is to split the decision variables v and w of problem (3.7b) and
distribute them along the components of our sparse system. The decision variables
ui are added to take into account the interconnection between the components:
summing (6.16d) and (6.16e) yields a regular Lyapunov-like inequality on vi =
vi1 + vi2. Thus, we do not simply compute an uncertified intersection of regions of
attraction of smaller subsystems, but rather a sparsely defined outer approximation
of the global region of attraction. By doing so, we end up with inequality constraints
involving only the variables of one of the considered subsystems at a time, which
drastically reduces the dimension of the decision space in the SOS hierarchy.

Our main result is the numerical certification that can be stated as follows:

Theorem 6.17: Sparse outer ROA approximation

Let (u,v,w) be feasible for problem (6.16), and consider the set

Âv :=

x ∈ Rn :
∀i ∈ N?K−1, vi1(0, πXi(x)) + vi2(0, πXi+1(x)) ≥ 0

vK(0, πX′K (x)) ≥ 0

 . (6.17)

Then, one has AX
T (K) ⊂ Âv.

Proof : Let x0 ∈ AX
T (K). Then, by definition, x(T |x0) ∈ K, and according to

constraint (6.16g) one has for i ∈ N?K−1

vi1(T, πXi(x(T |x0))) + vi2(T, πXi+1(xi+1(T |x0))) ≥ 0. (6.18)
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Moreover we know that

vi1(T, πXi(x(T |x0)))− vi1(0, πXi(x0)) =
∫ T

0

d
dt(vi1(t, πXi(x(t|x0)))) dt

=
∫ T

0
∂tvi1(t, πXi(x(t|x0)))+

fi(πX′i(x)) · grad vi1(t, πXi(x(t|x0))) dt
(6.16e)
≤

∫ T

0
ui(t, πXi+1(x(t|x0)))− ∂tvi2(t, πXi+1(x(t|x0))) dt.

The same reasoning on vi2 yields

vi2(T, πXi+1(x(T |x0)))− vi2(0, πXi+1(x0))
(6.16d)
≤∫ T

0
∂tvi2(t, πXi+1(x(t|x0)))− ui(t, πXi+1(x(t|x0))) dt.

Finally, adding both inequalities, one obtains

0
(6.18)
≤ vi1(T, πXi(x(T |x0))) + vi2(T, πXi+1(x(T |x0)))
≤ vi1(0, πXi(x0)) + vi2(0, πXi+1(x0)).

Since vK is nonnegative at time T in KK in virtue of (6.16h), and decreasing
along trajectories in virtue of (6.16f), the last required inequality is also satisfied.
Thus, x0 ∈ Âv. ♦

With this formulation, we design a method to compute sparse outer approxim-
ations of the ROA, using only convex semidefinite programming, while all existing
methods resort only to nonconvex optimization, namely bilinear matrix inequalit-
ies. However, the constraint that the approximation should be sparse is a significant
restriction that prevents us from proving convergence to the actual ROA. Indeed,
with the following elementary exemple we show that in the case of sparse dynamics
and target set, the ROA has no reason to be sparse.

6.2.3 Sparsity of the actual finite time ROA
Consider the simple case where N = 3 and the dynamics are:

ẋ1 = (x2
1 + x2

2 − 0.25)x1 (6.19a)
ẋ2 = (x2

2 + x2
3 − 0.25)x2 (6.19b)

ẋ3 = (x2
2 + x2

3 − 0.25)x3. (6.19c)

Here, it is clear that the bicylinder C := {x ∈ R3 : x2
1+x2

2 ≤ 0.25, x2
2+x2

3 ≤ 0.25}
is contained in the infinite time ROA of the equilibrium point 0.

However, this ROA is strictly larger than our sparsely defined C, and it intricates
all variables, which means that it cannot be sparsely described.
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Figure 6.3 – A stable trajectory x1(t|x0).

Here the initial conditions are x01 = 0.46, x02 = x03 = 0.25.

To illustrate this fact, we plotted the evolution of x1(t|x0) with different initial
conditions x0 = (x01, x02, x03) outside C (see Figures 6.3 and 6.4). In the three
cases, (x02, x03) is in the disk of radius 0.5 such that x2(t|x0) and x3(t|x0) go to 0
quickly.

However, depending on both x02 and x03, the trajectory of x1(t|x0) is either
stable (with quick convergence to 0) or unstable (with finite time explosion).

This example highlights the non-sparsity of the infinite time ROA. The same
observation carries over for any finite time ROA (say for T = 100, K = [−0.1, 0.1]3)
which is very close to the infinite time ROA.

From this we can deduce that exploiting sparsity prevents from directly proving
the convergence of our ROA estimations towards the actual ROA, the former being
sparsely defined while the latter is not. However, we can still obtain good outer
approximations of the ROA using this technique. The advantages that one gains
while giving up convergence are twofold :

• The computational time is drastically reduced for systems that were tractable
using the converging dense framework;

• This framework allows one to handle systems that are intractable with the
standard dense framework, as shown experimentally below.

Besides, two possibilities exist that might allow improving this contribution into
a converging scheme:

• First, the fact that the exact ROA itself is not sparse does not mean that it
cannot be approximated with sparsely defined sets; thus, looking into sparse
approximation of dense sets, especially emphasizing the sparse structure of the
dynamics, might be an interesting option;
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Figure 6.4 – Two unstable trajectories x1(t|x0).

Here the initial conditions are x01 = 0.46, x02 = 0.26, x03 = 0.25 (left) and x01 =
0.46, x02 = 0.25, x03 = 0.3 (right).

• Second, looking for sparse polynomials does not mean that our ROA approx-
imations have to be correlatively sparse; for example, one could also look at
the set Ãv := {x ∈ Rn : v(x) := vK(0, πX′K (x)) + ∑K−1

i=1 vi(0, πXi(x)) ≥ 0},
whose description is not correlatively sparse as v depends on all variables;
however it is obvious that AX

T (K) ⊂ Âv ⊂ Ãv so that the sparse approx-
imation is tighter; nevertheless, other non-sparse ROA approximations with
sparse schemes could also be investigated.

6.2.4 Computing sparse ROA approximations
We tested our formulation (6.16) on two numerical examples: the first one is the
example that we mentioned in section 6.2.3, and the second one is a dimension 20
chain constituted by 10 interconnected Van der Pol oscillators.

Reducing computational time: a toy example

To check that our sparse method is relevant, we implemented it on system (6.19)
and compared its performances to those of the dense formulation of [42], with SOS
polynomials of degrees 8 (Figure 6.5a) and 10 (Figure 6.5b), with state constraint
set X = [−1, 1]3, time horizon T = 100 and target set K = [−0.1, 0.1]3.

On these figures we also plot the bicylinder (that should be inside the infinite
time ROA and the finite time ROA AX

T (K) for T large enough and K small enough).
We gathered the computational times in Table 6.2.
The first thing one can note is the important gain in computational time: our

sparse formulation is by far less costly than the standard dense formulation, and the
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degree dense sparse

4 4 4

6 24 10

8 334 83

10 5542 440

12 - 1865

Table 6.2 – Performances of the sparse ROA approximation scheme.

We report and compare the computation times (in seconds) for the dense and sparse
formulations.

gap increases with the degree (at degree 10 the sparse formulation is more than 10
times faster).

(a) Degree 8. (b) Degree 10.

Figure 6.5 – Comparing the sparse and dense ROA approximation schemes.
We compare the sparse (red) and dense (green) ROA approximations and the bicyl-
inder (brown).

Second, one can see that while at degree 8 the dense approximation is tighter than
the sparse one, at degree 10 this does not hold anymore: the sparse approximation
is actually tighter around x = 0 (resulting in the blue-green spot on the side of the
surface), and more generally both approximations are close one to another.
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High dimension: a chain of Van der Pol oscillators

To test our method on large scale systems, we take the same example as in [63], but
adapted to our first sparsity pattern: we consider a chain of Van der Pol oscillators
linked with random couplings. The general framework is as follows:

ẏi = −2zi (6.20a)
żj = 0.8yj + 10(1.22y2

j − 0.21)zj + εjzj+1yj (6.20b)
żN = 0.8yN + 10(1.22y2

N − 0.21)zN (6.20c)

with i ∈ N?N and j ∈ N?K , K = N − 1. This corresponds to our sparse polynomial
ODE (6.12) with ni = 2 and xi = (yi, zi) for i = 1, . . . , N (thus n = 2N). One
can notice that the sparse structure is even more specific than stated in our general
framework since

fj(xj,xj+1) =
(

fj1(zj)
fj2(xj ,zj+1)

)
for j = 1, . . . , K.

Here εj is a random variable that follows the uniform law on [−0.5, 0.5], modelling
a weak interaction between the oscillators. For reporting our results, we let N = 10,
X = [−1, 1]20, T = 30 and K = [−0.1, 0.1]20 and we use a particular sample ε. We
report on degree 12 certificates, which takes approximately 23’, among which 11’35”
for declaring the decision variables with the YALMIP interface, 10’46” for solving
the SDP problem with MOSEK and 41” for plotting the results with Matlab.

For j = 1, . . . , K we plot the sets

Âj := {xj ∈ Xj : vj1(0,xj) ≥ 0}

which correspond to T = 30, Kj = [−0.1, 0.1]2 for the j-th Van der Pol oscillator
with perturbation εjzj+1yj where zj+1 is a trajectory from the (j + 1)-th Van der
Pol oscillator, starting in 0 at t = 0, as well as

ÂN := {xN ∈ XN : vN(0,xN) ≥ 0}

which corresponds to T = 30, KK = [−0.1, 0.1]2 for the N -th (non perturbed) Van
der Pol oscillator see Figure 6.6.

As expected considering the low magnitude of the interactions, on Figure 6.6 one
can identify shapes similar to the ROA of a standard Van der Pol oscillator. How-
ever, the shapes are perturbed: their respective sizes differ slightly. The standard
framework of [42] cannot be used here, due to the high dimension of the state space.
It is also important to note that an important part of the computational time was
spent for modelling the SDP problem, while the SDP solver was quite fast, once the
decision variables were properly declared. We believe that these results are quite
encouraging for future works on sparse ROA approximation.

Further comments

This work is a first step towards convex computation of large scale stability regions
for sparse systems. Like Lyapunov-based methods, this framework gives no conver-
gence guarantee for the polynomial approximations when the degree tends to infinity,
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Figure 6.6 – 2D representations of finite time ROA approximations.
We represented Â1 to Â10 (from left to right and top to bottom). These are not
actual projections of the ROA approximations but can be visually compared with
an actual Van der Pol oscillator ROA (due to the small magnitude of the random
coupling ε).

due to the strong sparsity constraints imposed to the SOS certificates. However, we
have been able to reduce the problem of assessing stability of a large scale sparse
system into a tractable convex problem. In our opinion this is a complete novelty,
since previous works resulted into nonconvex bilinear problems.

This framework is valid for any chain of coupled ODEs, and it can readily be
extended to other sparsity patterns, as highlighted in [126]. The presentation of
the results is however more complicated, which is the reason why we only presented
chained ODEs in this chapter.

For now, we applied it only for outer approximations of the finite time ROA, while
inner approximations of the finite time ROA and maximal positively invariant sets
remain to be studied. Future work will also include the transient stability assessment
of a meshed multi-machine system as in [6, 53], and the stability analysis of different
converter grid-forming controls as in [7, 127].

The present contribution seems to outperform the direct application of [69, 132,
147] on example (6.19), although it seems very similar to them. At this point, we
do not have a theoretical explanation of why this heuristic works better in practice
than previously established works on sparsity. Similarly, we expect our framework
to be more accurate than DSOS and SDSOS approaches such as [84] (where similar
scales are tackled) as sparsity keeping full semidefinite constraints usually is.

Synthesis of sections 6.1 & 6.2
In this chapter we developed two new GMP instances for power systems stability
analysis. The MPI set had already been studied in [57] where an outer approx-
imation scheme was given. However, inner approximations required a significant
improvement of the method, through a non-trivial extension of the results proposed
in [83], which was the object of Section 6.1. Such a contribution yields a very inter-
esting tradeoff between the time-independent Lyapunov formulation of Section 3.2
and the convex Lasserre hierarchy strong convergence guarantees associated to Sec-
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tion 3.1. Then, an original, general heuristic was developed in Section 6.2 in order to
exploit correlative sparsity patterns that may appear in the dynamics of power grids,
due to their network structure. Exploiting network topology for moment-SOS ROA
approximation is a new feature, since so far sparsity was mostly used for polynomial
optimization and Lyapunov function computation only.

Naturally, while the scheme is proposed and illustrated for the finite time ROA
outer approximation, it can as well be applied to inner ROA approximation as well
as inner and outer MPI set approximation. We chose to use the finite time ROA
outer approximation framework to illustrate this heuristic, as it is historically the
first ever application of moment-SOS hierarchies to stability analysis. Combining
the schemes of sections 6.1 and 6.2 means combining the advantages of the two
methods: in particular, the size of each clique decreases by 1, as time disappears
from the problem. This combination, which we postponed to future developments,
might yield very interesting results.

Eventually, we want to highlight the fact that both our MPI approximation
framework and our correlatively sparse scheme also have the potential to combine
with other sparsity methods, such as sparse BSOS [138], term sparsity [108, 134, 135,
136] or time sparsity as it is exploited in the case of grid-forming power converters
in [121]. Especially, we have an ongoing collaboration with the authors of this last
promising paper, which might lead to time sparsity exploiting, inner MPI set ap-
proximation schemes, and thus allow for improved stability analyses of grid-forming
power converters, combining the benefits of these approaches.





7
Conclusions and perspectives

7.1 General conclusions
Although the motivation for this thesis is the industrial need for innovative methods
in the field of large scale stability analysis, it was the occasion for several contribu-
tions in various domains. Indeed, a particular focus was put on methods resorting
to set approximating moment-SOS hierarchies, and more precisely on the expected
computational gain that exploiting network sparsity structures can yield. This led
to a variety of related problems, that can be listed in chronological order:

1. Since moment-SOS hierarchies take only polynomials as input, is it possible
to apply them to AC power systems, which feature non-polynomial functions
such as sine, cosine, modulus and saturations? Based on the existing work [6],
the answer was yes, but a systematic proof was missing.

2. While sparsity had already been used for polynomial optimization (see [132,
69, 54]), its extension to set approximating hierarchies was nontrivial. The
problem of formulating a sparse scheme for the simplest set approximating
hierarchies (i.e. volume computation) then naturally arose.

3. A side problem to this was the question of theoretical and practical convergence
of the moment-SOS hierarchies, especially for set approximation, which led us
to look for systematic proofs of theoretical convergence as well as techniques to
speed up practical convergence, and to investigate more in depth the connexion
between volume computation and set approximation.

4. Eventually, in parallel to solving all these problem, the fundamental question
of designing new moment-SOS hierarchies, allowing for a fast, tractable stabil-
ity analysis in the case of high dimensional, network-like differential systems,
needed to be addressed.

Each of these subproblems was then addressed within one or several chapters of
this thesis, whose technical contributions are listed in what follows:

• Although Chapter 2 was mainly dedicated to formally introducing Lasserre’s
moment-SOS hierarchies that are at the core of the thesis, it represented an
opportunity for several original contributions regarding general features of the
GMP and its numerical solution using moment-SOS hierarchies. Indeed, in
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most previous works on the subject, the features of the involved hierarchies
had to be studied “from scratch”, while always invoking the same set of math-
ematical theorems. For the first time, in this Chapter we formulated general
results independent from the specific problem at hand: Theorem 2.6 states
explicit conditions for strong duality to hold in any instance of the GMP,
Lemma 2.9 gives a new bound on pseudo moment sequences magnitudes, The-
orem 2.16 is a finite dimensional version of Theorem 2.6 for strong duality in
general moment-SOS hierarchies, and Theorem 2.17 is an “all inclusive” the-
orem which proposes standard conditions one can check to ensure convergence
of the moment-hierarchy in terms of pseudo-moment sequences, which is one
of the strongest possible convergence properties.

• In Chapter 3 we continued to introduce key concepts for moment-SOS sta-
bility analysis, such as occupation measures, Liouville PDEs and set approx-
imating properties, as well as mentioning classical stability notions such as
local asymptotic stability and Lyapunov functions. However, these standard
objects were again accompanied with some contributions w.r.t. their applica-
tion: Section 3.1 studied the application of moment-SOS hierarchies to non-
polynomial differential systems, through the use of changes of variables and
the corresponding equality constraints. The core contribution was the obser-
vation that these equality constraints do not have to be implemented in the
moment-SOS hierarchy (which would require the use of Hausdorff measures
and Stokes theorem), but can instead be added after solving the corresponding
SDP relaxations. This was the first application of moment-SOS hierarchies to
the problem of power systems stability analysis. Then, Section 3.2 extended
these results to a Lyapunov-based hierarchy of SOS programming problems,
identifying exactly the class of dynamics that could be studied through polyno-
mial optimization (which we named algebraic dynamics), and pushing standard
solvers to their limits in terms of problem dimension (n = 6).

• Chapter 4 can be seen as a practical follow up to Chapter 2 in the sense
that, after studying theoretical convergence of general moment-SOS hierarch-
ies, we focused on practical convergence of the volume computation hierarch-
ies through the use of so-called Stokes constraints. Classical results from
the theory of PDEs could be invoked to prove the existence of optimal solu-
tions to both primal and dual infinite dimensional GMP instances (main The-
orem 4.5), so that the dual optimal solution could be uniformly approximated
with polynomials, which is the most favorable setting for hierarchical poly-
nomial optimization, and in practice drastically improves the convergence of
the volume computation hierarchy. However, we also observed that this con-
vergence improvement mostly concerns the scalar value that approximates the
actual volume of the considered set, and that it destroys the set approxima-
tion property of the volume computing problem, which is a crucial property for
stability analysis (as our strategy consists of applying the set approximation
property to stability sets such as regions of attraction). This is a fundamental
difference between the original volume computation problem and the derived
stability analysis problems.
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• In Chapter 5 we started studying the possibility of exploiting sparsity in set
approximating moment-SOS hierarchies. Focusing on the fundamental volume
problem, we designed two original distributed computation schemes (summed
up in Theorems 5.8 and 5.13) that exploit correlative sparsity patterns to
solve previously intractable high-dimensional volume computation problems.
Additional graph theory assumptions were required in contrast to sparsity
in polynomial optimization [69], so that a computation propagating strategy
could be implemented, based on the notion of marginal measures, allowing for
partial parallelization, distributed rescaling and again Stokes-based conver-
gence acceleration. This original scheme allowed for unprecedented numerical
computation of volumes in dimension 100, outperforming by far the stand-
ard moment-SOS hierarchy and even competing with non-certified randomized
methods. However, we later found out that as for sparse polynomial optim-
ization schemes, this strategy is very specific to volume computation where
the target is the scalar value of the volume, approximated with marginals of
measures, and does not directly extends to stability analysis, for which another
sparsity exploiting strategy is required.

• Eventually, Chapter 6 groups two original contributions to the domain of
hierarchical stability analysis: Section 6.1 is a contribution on the inner ap-
proximation of maximal positively invariant sets, which can be understood as
the biggest secure sets regarding security conditions formulated as polynomial
constraints of type g(x) ≥ 0. Strongly relying on the results of Chapter 2, a
new moment-SOS hierarchy is proposed to inner-approximate MPI sets, with
convergence guarantees. Then, Section 6.2 is a first attempt to formulate a
sparsity exploiting moment-SOS hierarchy for the problem of stability analysis.
Here we focused on outer, finite time ROA approximation, and highlighted the
fact that even sparse dynamics do not ensure sparsity of the description of the
actual ROA. However, we were still able to compute quite accurate outer ap-
proximations in settings where the state space dimension exceeded by far what
we used to be able to tackle with non-sparse moment-SOS hierarchies.

To conclude, in this thesis, we studied a variety of aspects of moment-SOS hier-
archies, from theoretical general scheme convergence properties to pratical applica-
tion to power systems, including various subtleties around original set approximating
hierarchy formulations. The possible routes for next research works are detailed in
the following section.

7.2 Perspectives
In this section we give our view of possible future works related to the contributions
that we presented in this thesis.

7.2.1 Exploiting time sparsity
As a follow-up to the work in Section 6.2, a collaboration was starded at ETH Zürich
with Florian Dörfler and Irina Subotić, on the exploitation of time sparsity, based
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on [121]. The aim of this project is twofold.

• Apply moment-SOS related methods to the stability analysis of grid forming
power converters, which interface renewable energy sources to global AC power
grids, and using the results to compare different grid forming control strategies,
such as droop control, distributed virtual oscillator control, matching control,
and more. See [127] for details on these control strategies.

• Combine the heuristics developed in [121], that allow looking for sparse Lya-
punov functions in the setting of nested differential systems with multiple time
scale, with the sparsity exploiting methods developed in this thesis, mostly in
Chapter 6, to be able to tackle accurate power converter models, which scale
at a minimum of 12 state variables.

Briefly, the focus is on a system of the form:

ẋ1 = f1(x1,x2) = p(x1) + M(x1)(P x1 + Q x2) (7.1a)

ẋi = fi(x1, . . . ,xi+1) =
i+1∑
j=1

Aij xj 2 ≤ i ≤ N − 1 (7.1b)

ẋN = fN(x1, . . . ,xN) =
N∑
j=1

ANj xj (7.1c)

where x1 ∈ Rn1 , . . . ,xN ∈ RnN are ordered from slower to faster convergence towards
steady-state, p ∈ R[x1]n1 is a polynomial vector field, M : Rn1 → Rn1×m (with
m ∈ N?) is a linear map, P ∈ Rm×n1 , Q ∈ Rm×n3 and Aij ∈ Rni×nj are matrices.
Intuitively, each state variable’s dynamics linearly depend on all the slower variables
as well as the first faster variable (except for x1).

In such setting, and under some additional technical assumptions, [121] proposes
to look for Lyapunov functions under the form

V (x1, . . . ,xN) =
N∑
i=1

Vi(yi), (7.2)

where yi = xi − xsi is the difference between xi and its steady-state map xsi . Thus,
reproducing their developments, it is possible to adapt the moment-SOS hierarchies
corresponding to finite time ROA and MPI set approximation schemes, and look for
dual variables under the same form, drastically reducing the computational time, as
the sparse schemes presented in this thesis allowed to do.

Theoretical developments are near to complete, and mostly the numerical exper-
iments remain to be carried out, with challenging model complexity and parameter
tunings.

7.2.2 Combining Stokes & Christoffel-Darboux
The issue with Stokes constraints presented in Chapter 4 is that while they address
the Gibbs phenomenon, they also lead to losing the set approximating property,
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which is crucial to deduce any stability region from the super-level set of a polyno-
mial, as was done in Sections 3.1, 6.1 and 6.2. However, Stokes constraints consist
of adding linear constraints on the involved measures, that are redundant in the
GMP formulation but become active in its moment relaxations. Thus, even though
our contribution focused on the dual side of Stokes constraints, strong duality in
the hierarchy implies that they also have a positive impact on the convergence of
the pseudo moment sequences corresponding to the SDP relaxations. Then, instead
of looking for a description of the approximated set in terms of super-level set of
a function from the SOS hierarchy, one could directly use methods to deduce set
descriptions from moments, such as the Christoffel-Darboux polynomial method.

Definition 7.1: Christoffel Darboux (CD) polynomial

Let µ ∈ M(X)+, and let zk :=
∫

xk dµ define its moment sequence z. Let
d ∈ N and define a basis ed(x) of Rd[x] as in Definition 2.8. We recall that µ
then has a moment matrix

Mµ,d := Md(z) =
∫

ed(x) · ed(x) dµ(x)

which represents the bilinear functional (p, q) 7→
∫
p q dµ.

Assuming that the support of µ contains a ball B, for all p := p ·ed(x) ∈ Rd[x]
with p ∈ RDdn \ {0}, one has

p>Mµ,d p =
∫
p2 dµ ≥

∫
B
p2 dµ > 0,

and Mµ,d is positive definite. In such setting (Mµ,d � 0), the Christoffel-
Darboux (CD) polynomial is defined by

qµ,d(x) := ed(x)>M−1
µ,d ed(x).

The work in [74] shows how sublevel sets of qµ,d can be used to recover the
support of µ for large d, and its extension [87] gives a method to do the same when
the support of µ has an empty interior. Our hope is that Stokes constraints can
improve the accuracy of the CD semialgebraic set approximations, and we believe
that it would be very interesting to compare the results obtained using the set
approximation property highlighted in this thesis with those obtained using the
Stokes-augmented, CD approximation. The question of conservativeness, which is
guaranteed by the set approximation property but does not hold in general in the
CD framework, should be studied with care.

7.2.3 Studying sparsity for general lift-and-project methods
As highlighted in Remark 5.5, although our sparsity exploiting schemes were de-
signed to be applied with moment-SOS hierarchies, they are compatible with other
computational methods, such as Monte-Carlo schemes. Also, moment-SOS hier-
archies can be seen as lift-and-project methods, which consist in taking a difficult
problem, lifting into a higher dimensional linear problem, and solving projections
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of the obtained high dimensional linear problem. Indeed, in the context of power
systems moment-SOS stability analysis, one is looking for a stability region for a
finite dimensional differential system ẋ = f(x), which one represents using occupa-
tion measures and the Liouville equation (lift), and then one solves a hierarchy of
corresponding finite dimensional, SDP relaxations (project).

However, other lift-and-project methods exist, among which one can cite the
framework of Reproducing Kernel Hilbert Spaces (RKHS).

Definition 7.2: Reproducing Kernel Hilbert Spaces

If X is a set and H ⊂ RX is a Hilbert space of functions on X , define the
evaluation functional

Lx :

 H −→ R

f 7−→ f(x)

• H is called a Reproducing Kernel Hilbert Space (RKHS) if ∀x ∈ X ,
operator Lx is continuous: ∃Cx > 0 s.t. |Lx(f)| = |f(x)| ≤ Cx ‖f‖H.

• Then the Riesz representation theorem ensures the existence of κx ∈ H
s.t. Lx = 〈·, κx〉H, which allows us to define the reproducing kernel

κ : (x, y) 7→ 〈κx, κy〉H, so that Lx = f 7→ 〈f, κ(x, ·)〉H.

Remark 7.1 (Christoffel-Darboux kernel)
Using the notations of Definition 7.2.2, let

κµ,d(x,y) := ed(x)>M−1
µ,d ed(y)

(note that one then has qµ,d(x) = κµ,d(x,x), and the vector of coefficients of κµ,d(x, ·)
in the basis ed(y) is exactly M−1

µ,d ed(x)). Consider the set X = Rn as well as the
Hilbert space H := L2(µ) = {f ∈ RX :

∫
f 2 dµ < ∞} and let p(y) := p · ed(y) ∈

Rd[y]. One then has, by construction of Mµ,d:

〈p, κµ,d(x, ·)〉H =
∫
p(y)κµ,d(x,y) dµ(y) = p>Mµ,d

(
M−1
µ,d ed(x)

)
= p ·ed(x) = p(x),

so that κµ,d is a reproducing kernel for the Hilbert space Rd[x] ⊂ H.

Then, moment-SOS hierarchies and RKHS intersect in approximating Mµ,d. Al-
though RKHS have their own sparsity exploiting heuristics, it could be interesting
to compare both fields and see whether moment-SOS sparse schemes could be trans-
posed to RKHS, or conversely if RKHS sparse schemes could have applications in
moment-SOS hierarchies.

7.2.4 Studying Active electricity Distribution Networks
There exists different types of power grids, such as high voltage electricity trans-
mission networks that exist at the national / continental scale and are operated by
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transmission system operators (TSO) such as Réseau de Transport d’Électricité in
France. At a more local scale, power supply is managed through active distribu-
tion networks (ADN) that are at the interface between the high voltage network
and most power generators and consumers. Such networks have a tree structure
very similar to the clique tree structures exploited in Chapter 5, which gives us the
intuition that sparse schemes should be quite compatible with the study of ADNs.

Thus, from the power systems point of view, all previously mentioned theoretical
options could be implemented for the study of ADNs. The idea, from the TSO
viewpoint, is that having access to stability regions of ADNs makes it possible to
add stability constraints at the interface between the transmission grid and the
ADN, and these constraints can be taken into account by the TSO when planning
the next operations, e.g. as additional constraints in the ACOPF problem.

In addition to the possibilities mentioned in the previous sections, new ap-
proaches can also be considered for ADN (as well as power systems in general)
stability analysis, such as data-driven control barrier functions, that are a generaliz-
ation of the dual variables v and w in (3.7). For example, the contributions found in
[12] could prove to be useful; indeed, in this paper, an uncertainty set and a control
policy are designed to fit an error bound on the trajectory of a linear discrete time
system, and these outputs (uncertainty set and control policy) might be integrated
as constraints or additional information for the transmission grid side OPF prob-
lem. Here one could aim at extending from discrete time to continuous time or from
linear dynamics to polynomial dynamics if electrical powers are involved.

Back to RKHS, recent developments make possible to combine data-driven ana-
lysis and robust computation (see e.g. [82], which computes deterministic error
bounds on the predictions provided by RKHS methods), allowing for robust kernel-
based control and certified data-driven stability assessment. Here the idea would be
to see whether it is possible to obtain certified (conservative) approximations of the
ADN stability regions at a lower cost than the hierarchy’s relaxations.

All these possible approaches pave the way for new computational methods in
the field of power systems stability analysis and control, in the continuation of this
thesis: with appropriate effort and investment, one of them might be tomorrow’s
industrial standard.
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