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Abstract
With the exponential growth in technology performance, the modern world has become
highly connected, digitized, and diverse. Within this hyper-connected world, Communi-
cation networks or the Internet are part of our daily life and play many important roles.
However, the ever-growing internet services, application, and massive traffic growth com-
plexify networks that reach a point where traditional management functions mainly govern
by human operations fail to keep the network operational.

In this context, Software-Defined Networking (SDN) emerge as a new architecture for
network management. It makes networks programmable by bringing flexibility in their con-
trol and management. Even if network management is eased, it is still tricky to handle due
to the continuous growth of network complexity. Management tasks remain then complex.
Faced with this, the concept of self-driving networking arose. It consists of leveraging recent
technological advancements and scientific innovation in Artificial Intelligence (AI)/Machine
Learning (ML) with SDN. Compared to traditional management approaches using only an-
alytic mathematical models and optimization, this new paradigm is a data-driven approach.
The management operations will leverage the ML ability to exploit hidden pattern in data
to create knowledge. This association SDN-AI/ML, with the promise to simplify network
management, needs many challenges to be addresses. Self-driving networking or full net-
work automation is the “Holy Grail” of this association.

In this thesis, two of the concerned challenges retain our attention. Firstly, efficient
data collection with SDN, especially real-time telemetry. For this challenge, we propose
COCO for COnfidence-based COllection, a low overhead near-real-time data collection in
SDN. Data of interest is collected efficiently from the data plane to the control plane, where
they are used whether by traditional management applications or machine-learning-based
algorithms.

Secondly, we tackle the effectiveness of the use of machine learning to handle complex
management tasks. We consider application performance optimization in data centers. We
propose a machine-learning-based incast performance inference, where analytical models
struggle to provide general and expert-knowledge-free performance models. With this ML-
performance model, smart buffering schemes or other QoS optimization algorithms could
dynamically optimize traffic performance. These ML-based management schemes are built
upon SDN, leveraging its centralized global view, telemetry capabilities, and management
flexibility.

The effectiveness of our efficient data collection framework and the machine-learning-
based performance optimization show promising results. We expect that improved SDN
monitoring with AI/ML analytics capabilities can considerably augment network manage-
ment and make a big step in the self-driving network journey.

Keywords: SDN, Network management, Monitoring, Data centers, Machine Learning,
Performance Optimization, Self-Driving Networks
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Résumé

Avec la croissance exponentielle des performances technologiques, le monde moderne
est devenu hautement connecté, numérisé et diversifié. Dans ce monde hyperconnecté,
les réseaux informatiques ou Internet font partie de notre vie quotidienne et jouent de
nombreux rôles importants. Cependant, la forte croissance des services et des applications
Internet, ainsi que l’augmentation massive du trafic, complexifient les réseaux qui atteignent
un point où les fonctions de gestion traditionnelles, principalement régies par des opérations
humaines, ne parviennent pas à maintenir le réseau opérationnel.

Dans ce contexte, le Software Defined-Networking (SDN) émerge comme une nouvelle
architecture pour la gestion des réseaux. Il rend les réseaux programmables en apportant
de la flexibilité dans leur contrôle et leur gestion. Même si la gestion des réseaux est en
partie simplifiée, elle reste délicate à cause de la croissance continue de la complexité des
réseaux. Les tâches de gestion restent alors complexes. Face à ce constat, le concept de self-
driving networking a vu jour. Il consiste à tirer parti des récentes avancées technologiques
et l’innovation scientifique dans le domaine de l’intelligence artificielle (IA) et du machine
learning (ML) en complément au SDN. Par rapport aux approches de gestion traditionnelles
utilisant uniquement des modèles mathématiques analytiques et l’optimisation, ce nouveau
paradigme est une approche axée sur les données. Les opérations de gestion s’appuieront
sur la capacité de l’intelligence artificielle à exploiter les relations complexes et cachées dans
les données pour créer des connaissances. Cette association SDN-AI/ML, avec la promesse
de simplifier la gestion du réseau, nécessite de relever de nombreux défis. Le self-driving
networking ou l’automatisation complète du réseau est le "Saint Graal" de cette association.

Dans cette thèse, deux des défis concernés retiennent notre attention. Dans un premier
temps, la collecte efficace de données avec SDN, en particulier la télémétrie en temps réel.
Pour ce défi, nous proposons COCO pour COnfidence-based COllection, une solution de
collecte de données en temps quasi-réel à faible coût (overhead) pour les réseaux SDN. Les
données d’intérêt sont collectées efficacement du plan de données au plan de contrôle, où
elles sont utilisées par les applications de gestion traditionnelles ou par des algorithmes de
machine learning.

Dans un second temps, nous explorons les possibilités de l’utilisation du machine learn-
ing pour traiter des tâches de gestion complexes. Nous considérons l’optimisation de la
performance des trafics dans les data centers. Nous proposons un modèle de performance
du trafic incast en utilisant le machine learning, là où les modèles analytiques peinent
à fournir des modèles de performance facilement généralisables et sans des connaissances
“domain-specific”. Avec ce modèle de performance ML, des fonctions de management dont
la gestion intelligente des switchs ou d’autres algorithmes d’optimisation de la qualité de
service peuvent optimiser dynamiquement les performances des trafics. Ces opérations de
gestion basées sur le ML sont construites sur une architecture SDN, en tirant parti de sa
vision globale centralisée, de ses capacités de monitoring et de sa flexibilité.

L’efficacité de notre proposition de collecte de données et l’optimisation des perfor-
mances basée sur le machine learning donnent des résultats prometteurs. Nous pensons
que des systèmes de monitoring SDN efficaces couplés avec les opportunités offertes par
l’IA/ML peuvent considérablement améliorer la gestion du réseau et faire un grand pas
vers le concept du self-driving network et donc des réseaux autonomes.

Mots clés:: SDN, Management des réseaux, Monitoring, Data centers, Machine
Learning, Performance, Réseaux autonomes
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Chapter 1

Introduction

1.1 Context
1.2 Scope and Motivations
1.3 Thesis Statement and Contributions
1.4 Dissertation Organization

1.1 Context

Communication networks or the Internet are part of our daily life and play many
important roles. Computer networks play a critical role in modern society by involv-
ing in many aspects: social networks, e-commerce, business, jobs, search engines,
etc. These internet services are hosted by data centers (where many servers are in-
terconnected) connected through backbone networks (WAN - Wide Area Network).
End users access these services through access networks such as WiFi, Cellular net-
works (4G, 5G, and 6G soon) with multiple devices (smartphone, laptops, tablets,
etc.).

To caption the crucial place of the Internet, imagine what the world would be
if suddenly Internet breaks. The importance of the Internet in our life is more
visible with the COVID-19 pandemic. "The importance of information and com-
munications technology (ICT) is even higher in the present crisis than usual. ICT
has been crucial in keeping parts of the economy going, allowing large groups of
people to work and study from home, enhancing social connectedness, providing
greatly needed entertainment, etc." [Király 2020]. Other resources that highlight
the importance of Computer networks during the pandemic include12.

Generally speaking, the internet infrastructure survived this pandemic period
successfully even if it presented some spare outages and performance (latency)
degradation34 [Candela 2020]. In general and particularly in such critical situa-
tions, keeping the network functioning is the role of a set of procedures, methods,
and tools composing what is called network management. It allows to effectively

1https://www.pewresearch.org/internet/2020/04/30/53-of-americans-say-the-internet-has-
been-essential-during-the-covid-19-outbreak/

2https://www.brookings.edu/blog/techtank/2020/04/29/covid-19-has-taught-us-the-internet-
is-critical-and-needs-public-interest-oversight/

3https://ihr.iijlab.net/ihr/en-us/covid19?country=France
4https://labs.ripe.net/author/romain_fontugne/the-internet-health-report/
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operate, administrate, and maintain networks by practically focusing on maintain-
ing reliability, efficiency, and overall performance of the network infrastructure5.
Network management includes several tasks such as monitoring, performance man-
agement, provisioning of network services, maintaining of quality of services, devices
configuration, security, reliability, resilience, etc.

Indeed, the Internet is the global system of interconnected computer networks
based on packet switching [Clark 1988]. For this computer to be able to commu-
nicate, they need common "languages" named as communication protocols. The
protocol suite (TCP/IP) [Cerf 1974] – a conceptual model developed in the 70s –
is the de facto standard used by the Internet to communicate between networks
and devices. Internet is a network of networks. The network control and manage-
ment follow the cybernetic approach [Wiener 1948] for controlling systems with a
feedback control loop as illustrated in Figure 1.1.

Management
(Control)

Network 
(System)

Monitoring
(Measurement)

Feedback

∑ QoS 
(Output)

Requirements 
(Data)

Figure 1.1: Cybernetic Feedback Loop for Network

Network management tasks are generally categorized with the so-called FCAPS
functions, i.e., fault, configuration, accounting, performance, and security man-
agement [Kuklinski 2014]. Unfortunately, network management is complex and
difficult. Indeed, over the years, new internet services impose new control require-
ments, leading to great complexity in communication systems. Control function-
alities that decide how packets should be processed and forwarded constitute one
of the two planes of network devices. The second one being the data-plane re-
sponsible for effectively forwarding the packets. Heterogeneous network equipment
(routers, switches, middleboxes, etc .) to support thousands of new protocols ran
with more than hundreds of millions of source code lines. These protocols were
written using old engineering practices with poorly defined, proprietary, and closed
APIs (Application Programming Interfaces) between control and data planes that
hindered innovations. Network operators could not on their own experiment and
implement new functionalities on their equipment. They need imperatively to pass
through devices vendors, and the entire process may last several years, generally 3
to 4 years, to add a new feature. Moreover, the distributed nature of the control
plane didn’t ease the management. Some management tasks like configuration or

5https://www.extremenetworks.com/enterprise-networking/management/
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monitoring were done with a centralized architecture, but this was quite limited
since operating at individual protocols, mechanisms, and configurations interfaces.

Network management issues mainly governed by the growth of the network,
equipment, connections, and new services, are due to several causes:

(a) Error-prone configuration (manual, in a distributed manner, individual con-
figurations). Wide variety of different gears and management solutions.

(b) Poor troubleshooting mechanisms. Troubleshooting consists of identifying
and fixing network issues as they are raised or proactively. It may suffer
from a lack of global visibility, not too much automation, and advanced data
analytics tools.

(c) Inefficient Monitoring. Network data collection is essential for troubleshoot-
ing, performance diagnosis, and other management tasks. But traditional
monitoring tools may fail to provide good accuracy-overhead or even not suit-
able to collect all required information.

(d) Innovation barriers. Difficulty and even impossibility to innovate in network
management (ossification of the internet) due to vertically integrated equip-
ment with closed interfaces.

(e) Poor performance. It is caused by inefficient control and management imple-
mentations to handle the network distributed states. For example, routing
and traffic engineering solutions as distributed algorithms are not efficient.

(f) Great dependence on human’s ability to master complexity. For example,
network performance optimization algorithms rely mostly on analytical hand-
crafted models. This models resulting from insights gained from empirical
data and using simplification assumptions.

(g) Emerging technologies requirements. The growth of network services and
new demands require more advanced communication systems for Quality-of-
Service (QoS) satisfaction. We can consider here also the re-activeness against
new events, unseen events or behaviours.

However, the internet infrastructure still works, thanks to network managers
and administrators’ ability to master complexity. Mastering complexity is not bad
in itself. It is necessary for building networking systems. But when it comes to
operate and manage the network, things should be easier and straightforward. In
other words, complexity is needed at a low level to know exactly how things work,
but simplicity must be the key at high level. Moreover, with the explosion of huge
networks such as data centers, cloud infrastructures, and the large deployment of
millions of IoT devices, experts mastering all the complexity may work very hard.

In software engineering and computer science, abstractions are used to build and
exploit large-scale systems handling complexity efficiently. Abstractions establish
a level of complexity to consider for a system for a given purpose while hiding the
more complex details that are below the set level or just by hiding irrelevant details.
This approach needs to be applied to computer networks, as mentioned in an iconic
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talk by Scott Schenker6.
The inventory of abstractions in networking was not that shining, especially

regarding network management. Considering the two planes present in the net-
work, the data plane worked pretty well, using layering and encapsulations as good
abstractions. The OSI layering decomposes packet forwarding into fundamental
components, enabling independent but compatible innovation at each layer. This
made the strength of networking. But when it comes to the control plane, there
were many mechanisms (routing, security, traffic engineering) pursuing their goals
individually with no modularity and abstractions. Doing this way is impractica-
ble for managing modern and future large-scale networking systems such as data
centers, multi-cloud, IoT deployments, 5G/6G, etc.

In this context and with the three-fold ambition as follow (i) enabling in-
novation in how networks are designed and managed, (ii) rethinking who is in
control (or in charge) of the network and (iii) making networks programmable,
Software Defined Networking (SDN) arose. It separates the control and the
data planes with open interfaces and provides good abstractions for the control
plane [Casado 2019, Feamster 2014]. New days came for network management.

1.2 Scope and Motivations

SDN was designed as a new architecture for network design and management. SDN
[Haleplidis 2015] (RFC 7426) is the physical separation of the control plane from
the forwarding plane (See Figure 1.2). It eases control and introduces flexibility in
network management, and more innovation in networking is eased.

Data
Control

Data
Control

Data
Control

Data
Control

Data
Control

Management Applications

Data

Data

Data

Data

Data

SDN Controller (Network OS)

Management Applications

SDN

Control Plane
Data Plane

NetworkNetwork

Figure 1.2: Traditional Network vs. SDN

SDN brings many advantages to network management. With the physical sep-
aration of the control plane from the data plane and logically centralized control
and management, SDN handles the error-prone configuration issue and the diffi-
culties from control algorithms operated in a distributed manner. The forwarding

6https://www.youtube.com/watch?v=eXsCQdshMr4
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elements became simple, with open and standardized interfaces opening the way for
innovation and easing their management without wondering about the underlying
gears. The SDN architecture allows developing new complete monitoring and data
collection frameworks. These monitoring capabilities coupled with centralized con-
trol allow great performances by abstracting the distributed states of the network
conveniently. Management functions take advantage of a rich and global view of
the network under control.

Network 
Management 

Issues

a. Error-Prone Configuration

b. Poor Troubleshooting Mechanisms

c. Inefficient Monitoring

d. Innovation Barriers 
(Internet ossification)

e. Poor Performance 
(distributed states)

f. Dependence to Human Complexity 
Mastering

g. Emerging Technologies 
Requirements

...

Figure 1.3: Network Management Problems Handled by SDN

SDN enables addressing some of the management issues discussed above as il-
lustrated in Figure 1.3 (dark green: well addressed; light green: partially addressed;
white: not addressed). With SDN, we have more resilience even if the single point of
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failure problem is raised. Additionally, with SDN, we have the new issue of control
plane/data plane communication overheads. Moreover, With SDN, new interesting
services and platforms have emerged (e.g., multi-cloud Datacenters) that come with
new complex problems. Thus, SDN doesn’t resolve all the management problems,
even if it eases many things, and more it comes with its own challenges.

Nevertheless, SDN presents good advantages and a promising future for network-
ing. Then, adopting SDN and identifying the remaining challenges could ensure an
efficient network management scheme. In other words, with SDN, network man-
agement reaches an interesting level. Still, new investigations need to be done to
allow network management to be more efficient and be able to handle modern and
future networks7. Then, despite the significant advantages of SDN, it is neither a
complete solution for network management problems nor free of problematic issues:
Need for Improved SDN Monitoring. As an illustration, Although the sepa-
ration of the control plane from the forwarding plane comes with a lot of advan-
tages (flexibility, programmability, open interfaces, etc.), communications between
the data plane and the SDN controller generate significant overhead. This over-
head concerns firstly control and configuration by flow rules installation, packet-
in/packet-out handling, and on the other hand, the network information collection.
It’s then important to design efficient monitoring schemes with good accuracy-
overhead trade-off.
Need for More Automation. The increased autonomy with SDN is suitable
but not sufficient regarding the ever-growing complexity of the network that has
to accommodate heterogeneous workloads with various performance requirements.
Indeed, even with SDN, the human operator’s role in network management is very
significant, even for tasks related to "real-time"/"near-real-time" decision-making.
This approach may scale terribly in people costs. And as if that wasn’t enough,
most network faults are caused by human manual error. It is then necessary to
research more and more autonomy in management tasks, and Artificial Intelligence
(AI)/Machine Learning (ML) can help.

Therefore, ensure great performance of networks with the rapidly evolving ap-
plications services, even with SDN, becomes challenging with the classical control
loops involving human intervention or dependence. Then, inspired by autonomous
vehicles, self-driving networks vision which leverages SDN and ML, gained signifi-
cant attention [Feamster 2017, Kalmbach 2018].

The self-driving network (SelfDN) concept or Autonomous Driving Network
(ADN) or Zero-touch network and Service Management (ZSM) [Feamster 2017,
Huawei 2020, ETSI-ZSM 2019] is an emerging trend faced the network that be-
comes more and more complex and seemingly unmanageable. Indeed, the main
objective of network management teams is to continuously deliver application and
service performance and protection for users. Then, they need continuous network
monitoring and optimization to support increasingly dynamic, digitally-driven busi-

7https://www.cisco.com/c/dam/m/en_us/solutions/enterprise-networks/
networking-report/files/GLBL-ENG_NB-06_0_NA_RPT_PDF_MOFU-no-NetworkingTrendsReport-NB_
rpten018612_5.pdf

https://www.cisco.com/c/dam/m/en_us/solutions/enterprise-networks/networking-report/files/GLBL-ENG_NB-06_0_NA_RPT_PDF_MOFU-no-NetworkingTrendsReport-NB_rpten018612_5.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/enterprise-networks/networking-report/files/GLBL-ENG_NB-06_0_NA_RPT_PDF_MOFU-no-NetworkingTrendsReport-NB_rpten018612_5.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/enterprise-networks/networking-report/files/GLBL-ENG_NB-06_0_NA_RPT_PDF_MOFU-no-NetworkingTrendsReport-NB_rpten018612_5.pdf
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ness models, which is not the case with SDN alone or ML alone applied to network
problems. This prowess could be achieved by leveraging AI/ML for optimization on
top of SDN that will provide a convenient environment with monitoring capabili-
ties, data-driven decision-making, machine-learning-based automatic optimization,
adaptive control, and flexibility. Literally, with this approach, networks would learn
to drive themselves, opposed to human rule-based operations that rely on closed-
form analysis of individual protocols and components.

With SelfDN, the management plane can get precisely the relevant data from the
network to train ML models that will drive actions. It’s worth pointing out that it
doesn’t mean that humans are entirely removed from the whole management loop.
Humans are still needed for some tasks (verification, certain constraints definition,
etc.). But some complex management tasks could be automated, at least partially.

As mentioned in [Feamster 2017], the networking research community is already
constructing the building blocs of SelfDN. The puzzle has to be gathered efficiently
within the SelfDN adventure. Indeed, the trip has begun a long in the past with
the concept of autonomic networking that follows the concept of autonomic com-
puting introduced by IBM in 2001 [Horn 2001]. Autonomic computing (AC) aims
to develop systems with self-x properties such as self-configuration, self-healing,
self-optimizing, self-protection, etc. to overcome the rapidly growing complexity
of computing systems management to reduce the barrier that complexity poses to
further growth [Kephart 2003].

The AC architecture is represented by the M-A-P-E Monitor-Analyze-Plan-
Execute (M-A-P-E) formalism that uses closed control loop as a basis [Ayoubi 2018].
The M-A-P-E functions interact with a knowledge source. The functions can re-
trieve data from this source and also add new insights (See Figure 1.4).

Classical management engineering, tightly coupled with human expert knowl-
edge, fails to come up with practical autonomic self-driving networks. This failure
is due to several reasons: the lack of great visibility on the network, barriers of
distributed control, vendor lock-in of legacy networking devices, the lack of pro-
grammability and flexibility that would allow adaptively configure and operate the
network elements autonomously. Fortunately, SDN fills those gaps and providing
new chances for autonomic networking. More, by observing that the cognition was
restricted to the analyze function only within the original M-A-P-E, the authors
of [Ayoubi 2018] revisited M-A-P-E and propose the cognitive M-A-P-E control loop
(C-M-A-P-E) for network management. C-M-A-P-E integrates cognition for all the
functions (C-Monitor, C-analyze, C-Plan, C-Execute). It allows each function to
operate in total autonomy. Recent ML advances are also of great importance. ML
then helps achieve cognition through learning and inference, as shown in Figure 1.4.

In line with the SelfDN vision, the C-M-A-P-E aims to minimize the role of
human operators in the control loop because human error is the main cause of out-
ages. THe C-M-A-P-E enforces the classical control loop from Figure 1.1 to achieve
intelligent automation using ML. Indeed the network complexity is taught to have
been grown far beyond the limits of manual administration. A very close paradigm
is the Knowledge-Defined Networking [Mestres 2017] that restates D. Clark et al.’s
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Figure 1.4: Cognitive control loop for network management (from [Ayoubi 2018]).
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proposed “A Knowledge Plane for the Internet” [Clark 2003] in the context of
SDN-based management.

With advances in SDN, recently data-plane programmability with P4, advances
in AI/ML in hardware, algorithms, and toolkit democratization (Scikit-Learn,
Keras, Tensorflow, Pytorch, etc.) leveraged with these autonomic formalisms, we
expect a promising future for SelfDN.

1.3 Thesis Statement and Contributions

In this thesis, we argue that:
« By designing efficient monitoring for SDN and applying unprecedented ca-

pabilities offered by ML and AI for complex network management tasks, we can
considerably improve network management and make a big step toward full network
automation then self-driving networks. »

Network telemetry or monitoring that consists of collecting and analyzing mea-
surements to understand what is happening in the current network and support
its management operations is not only crucial for network management. But, it is
also a key enabler to let networks run themselves in the context of the vision of
the self-driving network that leverages the C-M-A-P-E control loop with SDN. Our
first contribution deals with efficient telemetry in SDN architectures. For manage-
ment tasks automation with SDN, we consider the use case of data centers, a key
element in today’s Internet, that presents challenging tasks where AI/ML need to
be investigated. Our second contribution then uses ML for performance prediction
in SDN-enabled Data Center Networks (DCNs). Finally, the third contribution
leverages the ML performance modeling capabilities for performance optimization.

Towards advancing the State-of-the-Art, this thesis makes these three contribu-
tions as follow:
Improved SDN Telemetry. SDN’s promised global view needs to be up-to-date
for efficient and near-optimal control and management, which means near-real-time
network state observation. Inspired by monitoring solutions proposed for SDN ar-
chitectures in the literature and new monitoring trends, we propose a monitoring
framework for the construction of the global and up-to-date view of the network
data plane in SDN. It makes a clear distinction between information that needs
to be collected in an ad-hoc manner with classical OpenFlow polling techniques,
events that need to be conveyed by notifications, and periodic statistics (especially
counters) collection. The only downside is that the periodic collection may gen-
erate a lot of overhead for an SDN architecture. To handle this overhead, i.e.,
provide timely accurate statistics to the control plane with low overheads, adaptive
pull-based approaches were proposed. These approaches consist of using adaptive
polling rates instead of a fixed one. These state-of-the-art approaches provide good
accuracy-overhead trade-offs, but we thought we could do better by detaching from
the classical OpenFlow request-reply model for the particular case of periodic statis-
tics collection. We then propose COCO (COnfidence based adaptive COllection),
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a push and prediction based adaptive periodic OpenFlow statistics collection mech-
anism that decreases the overhead considerably in terms of the number of messages
used to collect this flow statistic in near-real-time, with almost no accuracy degra-
dation.

ML Incast Performance Inference in SD-DCN. Modern cloud-native appli-
cations (big data analytics, IP storage, etc.) bring new traffic patterns on DCNs,
including incast where multiple servers communicate simultaneously with a single
client. The dynamic DCN workload with heterogeneous QoS requirements (high
throughput for elephant traffic and low completion time for incast) complexify data
center management tasks (e.g., congestion control, buffer management, QoS op-
timization algorithms). These performance optimization algorithms need perfor-
mance models providing insights on how various factors affect the performance
metrics (classical management workflow: "measure-model-control(actions)"). The
existing models for incast are analytical models that are either tightly coupled with
a particular protocol version or specific to certain empirical data. Motivated by
this observation, we propose a machine-learning-based incast performance model-
ing engine capable of learning from collected historical data and predicting incast
performance metrics. The learning approach has the advantage of being indepen-
dent of underlying protocols and any restricted assumptions. The power of data is
leveraged to achieve this prowess. The ML model can capture complex relationships
from diverse system parameters to accurately predict application performance in
DCNs.

Automatic ML and Bayesian Optimization (BO) based smart switch
buffer management in SD-DCN. Switch buffer management consists of finding
the best operating parameters such as switch buffer space and AQM parameter val-
ues to achieve efficient performance for applications. Choosing the right buffer size
and Active Queue Management (AQM) parameters for optimal performance is chal-
lenging due to the complexity and dynamics of the data center environment. More,
these parameters interact in complex ways, and then it isn’t easy to develop analyt-
ical performance models that can guide the choices. We are then in the presence of
a difficult optimization problem where the objective function (performance model)
is unknown. Thanks to Bayesian Optimization (BO), a powerful tool designed to
solve such problems where the objective has no simple closed-form. BO supposes,
however, that this performance function can be evaluated at any parameter combi-
nations. But this is not possible for online decision-making by the adaptive smart
buffering scheme. And it is at this point that we leverage the ML performance
model developed in the second contribution. This performance model builds upon
historical data of past parameter configurations, and their observed performance
can provide such evaluations through predictions.

The takeaways of these introductory sections are presented with the thesis big
picture as illustrated in Figure A.2. It highlights our view of the Internet as de-
scribed earlier and the challenges concerned with this thesis.
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1.4 Dissertation Organization

The whole thesis is structured as shown on Figure 1.6. The body of the dissertation
is composed of two parts handling the two main challenges identified within SDN
(Section 1.2) in modern complex networks and that goes in the same direction as
the self-driving networks vision: the need for improved SDN monitoring and the
need for more automation.

Part I - Efficient network telemetry in SDN. It is composed of two chapters.
Chapter 2 presents a general overview of network telemetry and its challenges
within traditional network management. It introduces the SDN architecture and
how it eases network management and then monitoring. The importance of data
collection for SDN architecture functioning is also discussed. The chapter ends by
presenting the overhead problem of periodic data collection in SDN.
Chapter 3 first presents a data collection framework for SDN telemetry. The
framework comprises a set of components, including a periodic collection overhead
handling element. For this element, we propose COCO, a push and prediction-based
adaptive algorithm for continuous flow statistic collection. Intensive evaluation
results using Mininet and real traces show that our proposition can achieve up to
75% overhead reduction compared to a fixed pushing collection with almost no
accuracy degradation.

Part II - AI/ML for complex management tasks in SDN-enabled DCNs to
handle the need for more autonomy for management operations. It includes three
chapters.
Chapter 4 provides a general overview of data centers, how they work, and their
role in the actual internet. It introduces the incast and elephant management
problem in DCNs. We expect ML to handle the complexity related to the traffic
dynamics and heterogeneous performance requirements. This chapter provides a
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brief background on AI/ML, a literature review of its use for network problems
(security, performance, QoS, etc.), and the potential of the hybridization of ML
and SDN as enabling technology for modern and future networks management.
The chapter ends by presenting a base architecture leveraging SDN and ML in a
control loop to handle mixed incast and elephant traffic in DCNs.
Chapter 5 presents an ML framework for incast performance (completion time)
modeling instead of analytical models that depends on empirical data or simplifi-
cations assumptions, but that generalize poorly. We use a Random forest that cap-
tures complex relationships from several parameters (the number of incast senders,
the bandwidth of bottleneck link, etc.) and infers the corresponding incast complet-
ing time. We discuss some challenges within the ML approach, especially prediction
latency.
Chapter 6 presents how we leverage the ML performance model for incast and
elephant performance optimization. We focus on switch buffer management by
formulating an optimization problem to find the best parameters (buffer space,
AQM parameters) to provide optimal performance (minimal incast completion time
and maximal elephant throughput). The resulted optimization problem is a black-
box optimization problem for which we propose Bayesian optimization and the ML
inference for its resolution. This approach allows automatic and adaptive switch
buffering to provide efficient performance in the DCN dynamic environment.

Finally, Chapter 7 concludes this thesis and outlines future research directions.
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Chapter 2

SDN Monitoring Preliminaries

2.1 Network Telemetry 101
2.1.1 Overview
2.1.2 Traditional Monitoring and Challenges

2.2 SDN Architecture and its Telemetry Capabilities
2.2.1 Software Defined Networking
2.2.2 SDN Architecture
2.2.3 Data collection in SDN

2.3 Periodic Monitoring High Overhead Problem

Network telemetry (or monitoring) is an important element of network man-
agement that aims to determine the behaviour of the network and the status of
its elements (e.g., hosts and switches). It helps making a variety of management
decisions for improving the performance and QoS. However, it is challenging to
build real-time and fine-grained network monitoring systems because of the need
to support a variety of measurement queries, handle a large amount of traffic for
large networks, while providing a good accuracy/overhead trade-off. Monitoring
overhead concern the resource constraints at hosts and switches and network band-
width utilization.

This chapter, organized in three sections, aims at proving the general context
needed for our first contribution concerning SDN monitoring. First, Section 2.1
provides an overview of network telemetry by presenting definitions, traditional net-
work monitoring tools, and their challenges with traditional network management
mainly governed by manual operations. Then Section 2.2 as a new architecture for
network management with the goal of brings for agility, flexibility, and an amount
of automation in network management. We present data collection mechanisms
within SDN before ending the chapter with the periodic data collection overhead
problem in Section 2.3.

2.1 Network Telemetry 101

2.1.1 Overview

Network telemetry or monitoring consists of collecting and analyzing measurements
to understand what is happening in the current network to support its management
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operations1. The questions network administrator may care about are, for exam-
ple: "Is there a congestion in the network?", "What are the largest flows of in the
network?", "Is there any performance anomaly?" etc. The collected information
and insights gained on the network would guide control and management deci-
sions concerning traffic classification, anomaly fixes, performance improvements,
troubleshooting, reliability, only to mention this. Then, network telemetry is not
only crucial for network management. It is also a key enabler to let networks run
themselves in the context of the self-driving network vision as illustrated with the
C-MAPE architecture in Figure 1.4, where management and telemetry are in a
closed control loop.

Traditionally, network monitoring forms with network design and net-
work deployment a cycle of network operations [Lee 2014]. Network monitoring
thus consists of collecting and reporting information from collection devices to a
central management station. It’s worth pointing out that, even if network oper-
ators performed control operations (e.g., routing) and device configurations in a
distributed manner, some management operations like monitoring were conducted
with a centralized approach. The collected data helps infer the network behavior,
which is analyzed and guides the design of configuration changes. These config-
urations and infrastructure changes are then deployed on the network, which will
continue to be monitored. And the design-deploy-monitor cycle continues.

Network telemetry with the aim to build a model of the network’s current be-
havior involves resource monitoring and performance monitoring. Besides this clas-
sification, there are endpoint-based and switch-based monitoring. The former is
more close to applications but lacks network visibility. At the same time, the latter
allows having a broad range of information leveraging its more wide visibility, but
it lacks direct information on application performance. Finally, depending on the
methods used to collect and transmit the telemetry data from those measurement
devices, the monitoring can be active (using probes, generally on end-system) or
passive (with no additional monitoring actions on the devices)23 [Labit 2014].

Active monitoring consists of transmitting probes into the network and collect
metrics-of-interest based on the test packet or their response. They are used to de-
termine the end-to-end network performance as it is experienced by the applications.
The common active management tools include ping and traceroute. Ping allows
measuring delay using ICMP Echo Request and Echo Reply messages. Traceroute
allows determining the network topology by following the path of a packet by iden-
tifying the routers through which it passes. Iperf is also an active tool used to
measure delay, jitter, and estimate bandwidth. With the probes, actives methods
generate overhead on the network and interfere with normal traffic on the network.
Unlike active monitoring, passive monitoring does not inject packets into the net-
work. It collects at a specific point in the network, for instance, a switch. The
collected information (captured packets, statistics) is post-processed and analyzed

1https://www.youtube.com/watch?v=VzbV0ceRAVU
2https://www.caida.org/catalog/datasets/monitors/
3https://www.cse.wustl.edu/ jain/cse567-06/ftp/net_monitoring/index.html



2.1. Network Telemetry 101 19

to obtain information about the network behavior. For active monitoring tools, we
may distinguish hardware solutions (Endace DAG) and software ones (tcpdump,
Wireshark, NetFlow, etc.). Our contribution on SDN monitoring falls into the
category of passive methods, where we collect statistics from a network switch.

To be effective for network management, network monitoring must follow the
following requirements: (i) High accuracy to support optimal actions; (ii) High
resource-efficiency meaning with a minimal overhead (e.g. memory, computation
resources); (iii) high scalability to support a high numbers of flows, devices; (iv)
high generality/flexibility; (v) etc.

2.1.2 Traditional Monitoring and Challenges

Traditional network telemetry solutions include SNMP, NetFlow, IPFIX, sFlow,
Ping (ICMP), Tcpdump, Wireshark, etc., [So-In 2009, Zhou 2018]. Let us describe
some of these tools. Netflow is a Cisco solution using probes attached to switches
that collect either complete or sampled flow statistics and send them to a central
controller. The standardized version of NetFlow is IPFIX for IP Flow Information
Export from the IETF working group. sFlow, for "sampled flow", is a sampling
approach that uses a time-based sampling approach to capture traffic information.
Others types of solutions include local traffic information retrieving as packet sniffers
such as Tcpdump and Wireshark. And we will finish with the most used tool, SNMP
(Simple Network Management Protocol), a management protocol composed of a set
of IETF standards for network data collection from network devices. It can also be
used for configuration by modifying information maintained by SNMP agents on
devices to change their behavior.

One of the main characteristics of traditional monitoring is related to the
design-deploy-monitor cycle properties that are executed mainly by manual or
human operations. And configuration errors are one of the most causes of mis-
configuration [Mahajan 2002]. These error-prone configurations may require much
troubleshooting and monitoring from operators. Then, improving design opera-
tions can reduce the time to monitor the network. In this context, some im-
provement works propose solutions in configuration verification and simplifica-
tion [Feldmann 2001, Feamster 2005]. The operations simplification can be achieved
through the automation of certain tasks. For this automation to be effective and
widely adopted, it needs standard interfaces and data formats, which was not the
case.

Moreover, new trends in networking (IoT, 5G, cloud-based data centers, etc.)
create complex and highly dynamic environments where traditional monitoring
techniques (SNMP, NetFlow, sFlow, etc.) are in trouble to achieve the above re-
quirements. SDN monitoring approach is a possible improvements [Tsai 2018].
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2.2 SDN Architecture and its Telemetry Capabilities

2.2.1 Software Defined Networking

SDN [Haleplidis 2015] (RFC 7426) was designed as a new architecture for network
design and management with the physical separation of the control plane from
the forwarding plane. These three points guided the SDN proposition (i) Enabling
innovation in how networks are designed and managed; (ii) rethinking who is in
control (or in charge) of the network (e.g., equipment vendors? network operators?);
(iii) Making network programmable.

The OSI (Open Systems Interconnection) model (see Figure 2.14) developed in
1983 is a stacked protocol model composed of 7 layers from the physical to the ap-
plication layer used as a basis for network design. This layering decomposes packet
forwarding into fundamental components and then presents good abstractions for
the data-plane. These abstractions enable independent but compatible innovation
at each layer5. Over the years, the network growth and new control requirements
led to great complexity. Indeed, network operators used highly complex equipment
(e.g., routers) created to support more than 100 hundreds of protocols (IETF RFCs
and IEEE standards) with more than 100 million of source code based on old en-
gineering practices and using poorly defined APIs. These networking gears were
intended to serve many customers as one product for the benefit of the manufactur-
ers. This complexity – mastered by network managers and administrators to keep
the network working – was questioned and pointed to the need for control planes
abstractions as the key of control and management operations simplification. It was
then difficult to operate networks and difficult to innovate in networking, causing
what is called the internet ossification.

With the simplification purpose and the difficult innovation in networking based
generally on a vertically integrated design approach based with vendor locking, early
SDN researchers propose to bring computing and software engineering approach to
networking. Indeed the computing industry, historically composed of vertically
integrated mainframes, was transformed into a horizontal marketplace with open
interfaces and multiple options at every level. This enables innovation at every level,
such as operating system one (with Linux, Windows, and macOS on top of micro-
processor chips). On the application level, there was a considerable growth of ap-
plications6.This approach to networking consists of bringing three abstractions:
(distribution abstraction, forwarding abstraction, and configuration abstraction)
and two open interfaces (to rely the 3 planes as in Figure 2.2) in how network
are implemented and managed [Feamster 2014, Casado 2019].

The distribution abstractions aim to provide a global view that hidden the
distributed state of the network. Centralized algorithms can then be run on this
global view. For instance, concerning routing, the Dijkstra algorithm can be run

4https://commons.wikimedia.org/wiki/File:Osi-model-jb.svg
5https://www.youtube.com/watch?v=eXsCQdshMr4
6https://sdn.systemsapproach.org/index.html
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Figure 2.1: The OSI Reference Model
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on the network graph instead of using the Bellman-Ford algorithm. This approach
has the merit to make a distributed control problem a logical centralized one. The
distribution abstraction involves designing a common distributed layer, the so-called
network OS (see Figure 2.2). The network OS’s role is to gather information from
the network elements and disseminate control and configuration commands to the
network elements.

The forwarding abstraction hides details of the underlying hardware. It then
provides a flexible model for the control plane. One of the widely used abstraction
is the OpenFlow "Match+Action" abstraction. Configuration abstraction aims to
provide agnostic and model-based configuration of network devices. Examples of
configuration models are YANG, OpenConfig, etc. All these abstractions enable
then to have simpler forwarding devices.

OpenFlow [McKeown 2008] is a fundamental building block of SDN. It is the
first open standard interface separating the network and data planes. This open
API allowed the forwarding plane elements to be externally configured and con-
trolled by an SDN control. OpenFlow is then one of the open interfaces proposed
between forwarding elements and the network OS. It’s categorized as southbound
API. The other interface is the northbound API, between the network OS and the
control applications. Figure 2.3 presents the main component of OpenFlow-enabled
switches that compose the SDN data plane.

Figure 2.3: The main Components of an openFlow switch (from [Found 2015])

To sum up, SDN is a network architecture that decouples the network control
and forwarding functions where a single control plane controls several forwarding
devices. The SDN architecture presents several interesting characteristics among



2.2. SDN Architecture and its Telemetry Capabilities 23

which it is agile, centrally managed, directly programmable, programmatically con-
figures, its is based on open standards and is vendor-neutral7.

2.2.2 SDN Architecture

SDN controller is the heart, not to say the brain of an SDN architec-
ture [ONF TR-521 ]. It exercises management and control over the data-plane de-
vices to satisfy the needs of applications by translating their requirement (high-level
intent) into flow rules (instruction) that will be executed by devices [ONF TR-516 ].
When satisfying these requirements, the controller has to achieve specific goals: QoS
provisioning, optimal network resources utilization, security aspects, etc. The SDN
controller ensures the control part essentially with the OpenFlow protocol [Version ].
For management, protocols used are OF-CONFIG, NETCONF, SNMP, etc.

By controlling and managing the underlying data plane, the SDN controller
plays the role of an active control element in a feedback loop, responding to network
events, recovering from failure, reallocating resources [ONF TR-502 ], etc. Because
the data plane is a dynamic environment that changes over time, the controller, by
mediating between applications and network resources [Schaller 2017], continually
adapts the state of resources of its data-plane to maintain a desired (optimal) state.
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Figure 2.4: SDN Controller in a Control feedback loop

From Figure 2.4, adapted from [ONF TR-521 ] [Schaller 2017], we can see con-
trol as the process of establishing and maintaining a desired state on the data-plane,
and feedback is of utmost importance in this process. The feedback process consti-
tutes a management task (events handling, statistics collection, monitoring, etc.).

7https://opennetworking.org/sdn-definition/
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2.2.3 Data collection in SDN

As shown above, with an SDN architecture, we are in the presence of a closed control
loop. For this control loop to be efficient (i.e., allows applications to dynamically
control the network while improving its utilization, QoS provisioning, etc.), the most
active element of this loop, the SDN controller, has to provide to the applications
network information pertinent to their needs and objectives [ONF TR-516 ]. We
can distinguish two main categories of information:

• Traffic Forwarding information: flow statistics such as switch interfaces
(ports) information like flow volume, data throughput, packet loss, port down
or up, etc.

• Network Resource State information: related more to the management
part e.g., CPU usage, disk usage, etc.

The information may be directly informative (port is down or up) or can be
used as performance metrics and so on. As mentioned by ONF in SDN Scope and
Requirements this information that can be static (eg. datapath ID) or dynamic
(eg. CPU usage) may be collected in several manners: provisioned, discovered,
queried, notified and streamed.

Using these techniques, the SDN controller would gather relevant information
and provide a global view and full knowledge of the data-plane under its control.
The data collection importance is not to be proved. Still, it is increasing with the
advent of machine learning techniques in networking in general [Boutaba 2018] and
especially in the control loop of SDN [Xie 2018], machine learning who breathes
"only" by data. Monitoring will also have a great role in the implementation of self-
driving networks. Self-driving networks need continuous resource monitoring, and
streaming telemetry fits well with this requirement [Rafique 2018]. Nevertheless,
care should be taken to the abstract level and granularity of collected information
and to the cost of this task.

Indeed, Streaming Telemetry8, powered by the OpenConfig working group, is
a new approach for network monitoring in which data is streamed from devices
continuously. Thus bulk time series data is collected (e.g., statistics are uploaded
every 15 seconds). An event-driven update and request/reply mechanism for ad-
hoc data are also available. Unlike SNMP, Streaming Telemetry uses a publish-
subscribe pattern and is a model-driven telemetry scheme enabling vendor-agnostic
monitoring. It is based on open-source initiatives like the YANGmodel, OpenConfig
data model, gRPC (Google Remote Procedure Call), etc.

2.3 Periodic Monitoring High Overhead Problem

For efficient and near-optimal control and management with SDN, the global view
of the network needs to be up-to-date, which means near-real-time network state ob-

8http://www.openconfig.net/
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servation. One practical way to do this is by collecting non-event-based data (traffic
counters especially) periodically at high frequency (e.g., reports interval of few sec-
onds). Continuous monitoring is then ineluctable in SDN, and this monitoring must
not be restricted to only traffic or flow information but all relevant ones that can
be useful in any decision-making process at the controller level. The only downside
is that it may generate a lot of overhead for an SDN architecture. To handle this
issue, adaptive data collection techniques are developed. Based on [Tsai 2018], an
overview of network monitoring in SDN, [Tangari 2018] an adaptive approach for
monitoring in SDN and [Taherizadeh 2018], presenting a state-of-the-art review of
monitoring in edge computing and its requirement, the literature adaptive tech-
niques handle efficiently overhead reduction problem, but they still present these
three aspects:

• they are tailored for a polled-based monitoring model and generally for traf-
fic and flow information collection. Other information may be useful, and
for continuous monitoring, a push model is more adequate as in streaming
telemetry. So, adaptive techniques have to be compatible with this latter
model or more have to be generic;

• they require complex parameters tuning, which limits their adoption;

• the lightness of the proposed solutions for source nodes that need to dedicate
most of their processing capabilities to forwarding tasks is questionable.

The network state information collection, mainly done periodically, is guided
by several reasons. For example, we want network state information to be avail-
able when SDN services or applications request them, a proactive approach for the
network management. This periodic data collection is not without cost, but more
it presents a dilemma: at which frequency (sampling period), the data have to be
collected?

• If we use a high frequency, we will have real-time and accurate information
but with significant overhead.

• A low frequency resolves the problem of overhead, but we will not have enough
accurate network state information to support management operations.

Continuous monitoring, not to say periodic monitoring at high frequency, is then
needed to ensure high-visibility and deep or real-time insights on the data plane.
Streaming telemetry (discussed above) has arisen and is compatible with these
requirements by streaming data each X seconds to an interested receiver, on a push
basis, generating bulk time series data. Concerning the collection overhead, the use
of a push model offers better efficiency compared to a collection in a polling fashion.
Furthermore, to add more efficiency and tackle this overhead problem, we propose
to stream the data, not with high frequency, but with a "virtual high frequency",
or in other words, to use an adaptive sampling in the data streaming process. The
adaptive sampling procedure is based on a confidence index α representing the
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ability of the receiver, here the controller, to predict missing data points according
to the polling frequency adjustment. Our adaptive monitoring algorithm called
COCO will be presented in more detail in Chapter 3. Figure A.2 highlights the
concerns and contributions of this first part of the thesis concerning preparing SDN
for augmented and more intelligent management through its monitoring capabilities
improvement.
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Figure 2.5: Thesis Part I: Improved SDN Telemetry
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In this chapter, we present an architecture for network data collection in SDN.
The near-real-time collection of flow-level statistics provided by OpenFlow (e.g.,
byte count) needed for control and management applications like traffic engineer-
ing, heavy hitters detection, attack detection generate a lot of overhead. Indeed,
this near-real-time collection is conducted with periodic polling at high frequency.
Periodic polling may generate high overheads expressed as the number of OpenFlow
request and reply messages on the control network. To handle these overheads, we
propose a push and prediction-based adaptive collection to handle efficiently pe-
riodic OpenFlow statistics collection while maintaining good accuracy. We utilize
the Ryu Controller and Mininet to implement our solution, and then we carry out
intensive experiments using real-world traces. The results show that our proposed
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approach can reduce the number of pushed messages up to 75% compared to a fixed
periodic collection with a very good accuracy represented by a collection error of
less than 0.5%.

This chapter is structured as follows. First, Section 3.1 present the detail of
our proposed monitoring framework. Then in Section 3.2 we provide a the prob-
lem of periodic collection of OpenFlow switches statistics. After what a we present
the problem formulation. Section 3.3 presents the adaptive collection mechanism
(COCO) that decreases considerably the overhead in terms of number of messages
used to collect flow statistic in near-real-time. We implement the proposed algo-
rithm using the Ryu Controller and Mininet, and after that, we carry out intensive
experiments using real-world backbone and university data-center traces. The eval-
uations results are presented and analyzed in section 5.5. We also present in this
section a direct use ace of flow counter collection. It consists network utilization
(bandwidth) monitoring, essential for traffic engineering. We discuss the scalability
aspect of our proposition and position it with SDN new directions as P4 and INT
in section 3.5. Section 3.6 presents the related works. Finally, Section 6.7 concludes
the chapter.

3.1 Monitoring Data Collection Framework for SDN

SDN control applications like making optimal routing decisions under certain QoS
constraints and management applications need flow-level real-time monitoring. The
use of traditional monitoring techniques (SNMP, IPFIX, Netflow, sFlow) is not en-
couraged due to scalability concerns; they may require special instrumentation of
the network (switches) or may impose significant overheads on the underlying sys-
tem. In this way researchers proposed specific monitoring frameworks for SDN
environment among which [Chowdhury 2014, Yu 2013, Hartung 2017] to men-
tion a few. They are designed with scalability, flexibility, and especially light-
weightiness(frameworks with low overhead) concerns. These frameworks are com-
posed of blocs like Request Interpreter, Scheduler, Switch Selector, Aggregator,
Databases, Counters blocs, Metrics computation bloc, Restful APIs, etc. All these
frameworks took advantage of OpenFlow flow-level statistics (number of packets or
bytes matching a specific flow, flow duration, etc.), counters, and event-messages
such as Packet-In, Flow Removed messages for the monitoring task.

Recently, new monitoring paradigms have been proposed in networking, includ-
ing In-band Network Telemetry (INT) and Streaming Telemetry. In this part of
the thesis, we focus on streaming telemetry1, powered by the OpenConfig working
group. It is a new approach for network monitoring in which data is streamed from
devices continuously. Thus bulk time series data is collected (e.g., statistics are up-
loaded every 5 seconds). An event-driven update and request/reply for ad hoc data
are also available. Unlike SNMP, Streaming Telemetry uses a publish-subscribe
pattern and is model-driven telemetry enabling vendor-agnostic monitoring. It is

1http://www.openconfig.net/



3.2. Periodic Data Collection Problem 29

based on open-source initiatives like the YANG model, OpenConfig data model,
gRPC (Google Remote Procedure Call), etc.

Inspired by streaming telemetry, we leverage the monitoring frameworks dis-
cussed above and come up with the following data plane state data collection frame-
work for SDN, presented in Figure 3.1.

OpenFlow-enabled Switches Data-plane

Ad hoc 
Req / Rep

Pushed data 
(Stats)

Asynchronous 
Event Reporting

Request Interpretor Collection Overhead 
HandlerMetrics Computation

Network State 
Information 

Base 

Control and Management Applications

UDP OpenFlowOpenFlow

Figure 3.1: Monitoring Framework

The framework is composed of Network State Information Base that stores
collected information. A Request Interpretor translates high-level monitoring
intents and requirements from control and management services as statistics collec-
tion, which is done continuously with a push model over UDP or punctually with
OpenFlow request-reply messages, and also with event-based reporting. A Met-
rics Computation bloc provides QoS and performance metrics based on collected
statistics (e.g., bandwidth estimation through OpenFlow bytes counts time series).
And finally, we have a Collection Overhead Handler, responsible for providing
the global and up-to-date view at low cost, especially when it comes to continuous
(periodic) statistics pushing.

3.2 Periodic Data Collection Problem

3.2.1 Preamble

Continuous monitoring, not to say periodic monitoring at high frequency, is needed
to ensure high-visibility and deep or real-time insights on the data plane. The
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SDN controller will leverage this information to control the network through the
OpenFlow API. Apart from being used to control the forwarding plane through flow
rules installed by the control plane, OpenFlow exposes flow statistics (packets and
bytes count, flow duration, etc.) and other relevant flow information (flow entry
expiration and packet-In). These statistics and event-based information need to be
gathered to enriched the global view of the network and be used by many control
and management functions as traffic engineering [Curtis 2011], routing [Akin 2019],
anomaly detection [Zhang 2013], congestion detection, identification of architectural
bottlenecks, etc. This flow-level measurement is done either actively, by querying
the statistics such as traffic counters, flow duration on a pull basis with Read-State
messages, or passively after an event as flow entry expiration and packet-In.

Moreover, for efficient and near-optimal control and management, the global
view of the network needs to be up-to-date. This means near-real-time network
state observation. One practical way to do this is by collecting non-event-based
data (traffic counters especially) periodically at high frequency (e.g., reports interval
of few seconds). But OpenFlow’s pull-based statistics retrieving may impose high
overheads [Curtis 2011], expressed by the number of request and reply messages on
the data plane.

To handle these overheads, i.e., provide timely accurate statistics to the control
plane with low overheads, pull-based adaptive approaches using adaptive polling
rates instead of a fixed polling frequency were proposed. The collection granularity
adjustment is achieved in two different ways. Either according to the stability of
the statistic being collected, by comparing the difference between two consecutive
data-points to one or several thresholds [Chowdhury 2014]. Or the adaptiveness
uses a prediction-based approach which adjusts the reporting intervals according to
the ability to provide good estimates of future data points based on the historical
set composed of the previously collected data points [Zhang 2013, Tangari 2018].

The approaches mentioned above provide quite good accuracy-overhead trade-
offs. But we can do better by detaching from the classical OpenFlow request-reply
model for the particular case of periodic statistics collection. We then propose a
push and prediction-based adaptive periodic OpenFlow statistics collection with
low overheads and almost no accuracy degradation. This will be possible since
the switch – the source of the statistic being collected – is involved in the adaptive
process. Then it automatically knows the adaptive collection points in time, and on
its own, it will just push the statistic value controller without the need for request
messages. Doing this way, the reduction of overhead will be more consequent.

Before jumping to the problem formulation section, it’s worth point out the
importance of counters, the statics of interest of this study. Indeed, packet switches
maintain statistics for several reasons such as performance monitoring, network
management, network tracing, traffic engineering, and security. The statistics are
usually collected by counters which might, for example, count the number of arrivals
of a specific type of packet or count particular events, such as when a packet is
dropped. The arrival of a packet may lead to different statistics counters being
updated [Shah 2001]. In SDN, where there is a clear separation between the control
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plane and the forwarding plane, these counters originating in the forwarding plane
need to be conveyed to the control plane. Moreover, the data-plane switches use
a match-action paradigm, and the forwarding of packets is done by matching flow
rules that generate bytes and packet counts. The packet bytes counter is very useful
for management applications like heavy hitter detection [Harrison 2018], volumetric
attacks detection [Hamza 2019], link bandwidth estimation, etc.

3.2.2 Problem Formulation

A flow statistic S to be collected in near-real-time, here OpenFlow bytes count on
data plane switch, is modeled by:

S : R+ −→ N
∀u, t ∈ R+ : u ≤ t =⇒ S(u) ≤ S(t)

S(t), representing the bytes count matching a specific flow, or a certain port
bytes count in the interval [0, t), is a cumulative, non-negative and non-decreasing
function. This information must be part of the global and up-to-date view exposed
by the control plane. It may be used to compute some performance metrics like
network utilization, a key metric for management and control functions like Traffic
Engineering. Practically the statistic will be collected periodically, and these func-
tions’ requirements define the period T0 to be used. And then the statistic S may
be seen as: ST0 = {si}ni=0 n→∞, a large sequence of data-points si at regular time
interval T0 with si ≤ si+k, ∀k ∈ N, representing an increasing trend time series. We
denote the collected version at the controller level as Ŝ. If collected at a fixed T0,
ŜT0 will be considered equal to ST0 (with the hypothesis that there is no packet
loss and that data plane and controller communication delay is zero, ideally with
an out-of-band control deployment).

For fine-grained near real-time control and management, T0 needs to be as small
as possible, but this may generate a lot of overhead. A question that could raise at
this point is: "Isn’t any magic T0 to be used that will give a good trade-off between
the collection accuracy and the overhead ?"

3.2.3 Pushed and Predicted based Adaptive Data Collection

Our solution consists of not to have to look for this magic T0. Instead, we will
provide the sample of S(t) with the application chosen T0, but not all the samples
will be really collected. We effectively collect at adaptive frequency (T0, 2T0, 3T0,
...) and the non collected data-points will be predicted based on the already exiting
ones. In other words with our adaptive data collection, ŜT0 = {ŝi}ni=0 where some
data-points are really collected ( ŝi = si ) and the other are predicted based on the
previous ones. Not like in the fixed collection mechanism where ŜT0 = ST0 , here
ŜT0 = ST0 + ε, where ε is the collection (prediction) error.
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One other important optimization opportunity concerns the OpenFlow Statistic
retrieving model that uses a request-reply mechanism. It’s obvious to notice that
in a periodic collection or adaptive collection like in our case, the collection points
are known in time by the source node (the data plane switch) after the collection
initialization. Then the request message is of any importance. The node has to
push the information at the collection points on its own.

We propose our Pushed and Predicted based Adaptive Data Collection mecha-
nism respecting the following requirements:

• Lightweight solution for data plane elements since their main role is forward-
ing. Heavyweight tasks (e.g., prediction) are delegated to the collector in the
control plane. Indeed imposing extra functions on the switches may increase
the processing time of packets.

• It may not require complex parameters tuning, essential to enable easy adop-
tion and evolution.

• The solution must reduce the number of messages compared to a fixed push
mechanism with a bounded error when a fraction of inaccuracy is tolerable.

• And other requirements such as it must be simple to deploy, may not suffer
from packet loss, etc.

3.3 COCO: Periodic Statistic Collection Overhead
Handling

3.3.1 Overview

We are not the first to address this problem of period collection overhead reduction.
With existing solutions, the impact is more visible in terms of data-plane switches
and controller loads. Still, the overhead related to the dissemination (communi-
cation) of monitoring messages is not too much treated, and our monitoring opti-
mization module takes this seriously into account. When proposing a push model,
we divide by two (2) the number of messages to be disseminated compared to a
pull mechanism because we do not need at all request messages to be sent from the
controller to the switches before having statistics information.

Researchers were pessimistic on a push model for monitoring data collection in
SDN, saying that it may require "new instrumentation" on switches. Faced this,
we propose the easy to deploy, transparent and lightweight solution that uses an
adaptive algorithm based on a confide index for collecting traffic counters, statistics
presenting a particular pattern, an increasing trend.

The Collection Overhead Handler bloc (from Figure 3.1), as we will see later,
enables reducing the periodically pushed data overhead considerably while main-
taining very good accuracy. It is built upon two mainstays: the first one is the
adaptive pushing and the second one is the power of time series forecasting
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(prediction). By adaptive push, unlike fixed push where to get ŜT0 at the con-
troller level, ŝi will be pushed by the data plane switch at regular T0 time interval,
to get ŜT0 , ŝi will be pushed at adaptive frequency T0, 2T0, 3T0 ... and the missing
ŝj according to T0 granularity, will be predicted, based on previous collected ŝi.
The controller level’s ability to provide good estimations of uncollected data points
will guide the adjustment of the adaptive frequencies.

Indeed, we represent these adaptive frequencies or periods as Tα = (1 + α)T0,
where α is a confidence index expressing a degree of confidence between the collector
and the node, source of the statistic, on the ability of the prediction method to
provide good estimations of uncollected data-points. The confidence index α is
constructed incrementally. This means that if for a given α the predictions are
good, we pass to a new confidence level α + 1. Conversely, the confidence index
will degrade when we do not have good estimates. Hence our push and prediction-
based adaptive collection solution is called COCO for COnfidence based adaptive
COllection.

Architecturally, our collection overhead reducing mechanism operates on two
entities: the collector and the data plane agent, as shown in Figure 3.2. We de-
velop two algorithms, one per entity working in collaboration. The algorithms are
presented in the next section.

COCO Collector COCO Agent

Counter Values pushing
Over UDP

Collection Initialization (T0, 𝜼) 
+ Period Updates

OpenFlow

Controller Switch

Figure 3.2: COCO Collection Architecture

3.3.2 COCO Algorithms

The COCO Agent executes the adaptive push procedure (see Algorithm 1) as a
software-based monitoring solution on the node (switch), of course in collaboration
with the SDN controller as mentioned earlier. In fact, for a statistic that is required
to be up-to-date at T0 granularity at the controller level, we attach the confidence
index α, and Tα = (1 +α)T0 is the period with which this information (the samples
ŝi = si) will be pushed. Tα will evolve in a similar manner as TCP’s congestion
window evolution: slow-start and congestion avoidance. Indeed, we will begin with
a low period Tα = (1+α)T0 = T0 (α = 0) and α will be increased each β data-points
pushed if a deviation alarm is not raised by the controller. Otherwise, α will be
decreased according to the deviation degree γ.

The process on the controller side is described with Algorithm 2, where the
collector processes collected data-points (ŝi), forecasts uncollected ones (ŝj) and
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Algorithm 1: COCO Agent: Adaptive Pushing Procedure
1 Push β0 data-points ŝi each T0, (α = 0) ;
2 α ←− α + 1 and Tα ←− (1 + α)T0 ;
3 i←− i+ 1 ;
4 while Forever do
5 Push ŝi at Tα ;
6 if (ŝi is the β ith data-point for α) then
7 if ¬ Deviation occurred then
8 α ←− min(α + 1, αmax) ;
9 else

10 α ←− α / (2 * γ) ;
11 end
12 Tα ←− (1 + α)T0 ;
13 end
14 i←− i+ 1 ;
15 end

Algorithm 2: COCO Collector: Forecasting and Deviation
Checking
1 Collect the first β0 data-points ŝi ;
2 α ←− α + 1 and steps←− α+ 1 ;
3 while Forever do
4 Collect data-point ŝi ;
5 Add ŝi to last_collect ;
6 if (ŝi is the β ith data-point for α) then
7 if error_indicator(last_collect, last_forecast) < η then
8 No Deviation: α ←− min(α+1, αmax) ;
9 else

10 Deviation γ: α ←− α / (2 * γ) ;
11 Send Asynchronously γ to the switch;
12 end
13 steps←− α+ 1 ;
14 last_collect ←− ∅ ;
15 last_forecast ←− ∅ ;
16 end
17 Forecast steps future data-points (ŝj) using previous ŝi ;
18 Add the steps ith forecast to last_forecast ;
19 end

raises deviation alarm if needed.
The controller receives samples ŝi from the node each Tα = (1 + α)T0. Firstly

it forecasts step equals to α+ 1 next data-points. The first α forecasts will be used
as estimation of {ŝj}αj=1 uncollected data-points between ŝi and ˆsi+1 on a T0 basis.
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Secondly, The last forecast the α + 1 ith one will be compared to ˆsi+1 to estimate
the prediction algorithm accuracy. For a given α, after collecting β data-points ŝi,
an accuracy deviation checking is done using these data-points {ŝi}βi=1 and their
corresponding forecasts (the α + 1 ith) to compute an indicator of the prediction
error. This indicator is compared to the threshold η, when violated, a deviation
alarm of degree γ (default γ = 1) is raised. γ is sent to the node for updating
(decreasing) α then Tα.

For computing the prediction error indicator, we have investigated two main
metrics used in time series forecasting:

1. Mean Absolute Percentage Error (MAPE):

It is a measure of the accuracy of forecasting methods. It’s expressed as a
percentage and is computed using Eq. 3.1.

MAPE = 100%
β

β∑
k=1

(| ŝk − pred(ŝk)
ŝk

|) (3.1)

MAPE is simple to compute and easily interpretable but it presents some
issues: division by zero, for too low predictions the percentage error can
exceed 100%, negative errors (ŝk < pred(ŝk)) has heavier penalty than positive
errors, etc. Some enhanced versions were proposed to overcome these issues
like sMAPE (Symmetric Mean Absolute Percentage Error) MAAPE (Mean
Arctangent Absolute Percentage Error).

2. Mean Absolute Scaled Error (MASE):

MASE is also a measure of the accuracy of forecasts proposed in
[Hyndman 2006]. It has many desirable properties compared to existing fore-
casting error measurements (e.g., MAPE). MASE is computed using β last
forecasts, β last collected data-points, according to the training set (previous
data-points) used by the forecasting model (See Eq. 3.2).

MASE = 1
β

β∑
k=1

( |ŝk − pred(ŝk)|
1/(β − 1) ∑β

k=2 |ŝk − ˆsk−1|
) (3.2)

It compares the actual forecasting method to the one-step naive forecast com-
puted in-sample with a ratio of their respective Mean Absolute Errors (MAE).
Then when MASE < 1, the actual forecasting performs well than the naive
one and vice versa. We transform this threshold of 1 to η.

Concerning uncollected data-points forecasting, the two following statistical
techniques are investigated:

1. The popular Box-Jenkins ARIMA family of methods shortened as ARIMA
(AutoRegressive Integrated Moving Average):
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ARIMA exploits information embedded in the autocorrelation pattern of the
data. Estimations are done based on the maximum likelihood. The forecast
is done, on previously collected data points, using the univariate statistical
time-series ARIMA model. ARIMA parameters (p, d, q) are computed au-
tomatically using Auto ARIMA2. It chooses the best model order, selecting
the combination that minimizes model quality estimators such as the Akaike
Information Criterion (AIC) or the Bayesian information criterion (BIC). For
convenient time series forecasting, we need to satisfy a minimum training set
size of 50. Then, we define a specific β, β0 equals to 50 (default) for α equals
to 0 in the beginning.

2. Holt’s Trend Corrected Exponential Smoothing:

Also called Double Exponential Smoothing, it is used to do forecasting when
the time series is increasing or decreasing, meaning it presents a trend without
a seasonal pattern. For this model, we may retain two main hyper-parameters:
α∗ the smoothing factor for the level (mean) and β∗ the smoothing factor for
the trend or slope smoothing.

The parameters used in our overhead reduction proposition are summarized in
TABLE 6.1.

Table 3.1: Parameters

Parameters Description
α Confidence index on the ability of the prediction method

to provide good estimations of uncollected data-points., ∈
[0,..,9], α ∈ N

T0 The required time granularity for statistic freshness (up-
dates)

Tα = (1 + α)T0 Effective pushing period for the confidence index α
β0 The minimal number of samples to be collected at the

beginning on T0 that will enable good forecasting enabling
the adaptive push

β Number of samples for a given α after which a deviation
checking is done allowing α to increase or decrease

η A threshold on the prediction error that triggers deviation
alarms for decreasing α

γ The degree of a deviation alarm

Let’s recapitulate with the high-level workflow of our adaptive continuous mon-
itoring scheme as shown in Figure 3.3. Initially, a certain application, control, or
management service expresses its interest in certain information (1a). It specifies
the metric M to be collected, at which frequency it may be available with T0, and η

2http://www.alkaline-ml.com/pmdarima/develop/index.html



3.3. COCO: Periodic Statistic Collection Overhead Handling 37

the collection (or forecast) imprecision tolerance indicator. The registrator then ini-
tialize the collection process on the node (1b) and (1c). The adaptive scheme then
consists of adjusting the collection period for a push-based monitoring model ac-
cording to α. Indeed network devices stream to the SDN controller each Tα (equals
to Tαmin = T0, initially) unit of time and this reporting interval increases automat-
ically [Tαmin, Tαmax] over time (2a). The raw collected data points are augmented
with predictions and delivered to applications (2b). The reporting interval will be
adjusted (decreased) only if the receiver side cannot capture the runtime evolution
of the information being collected and thus can not guarantee a certain accuracy,
initially defined. Then, it raises a deviation alarm, and the reporting interval is
decreased (3).
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Figure 3.3: COCO High Level Workflow

3.3.3 Implementation

In this section we give some details on how the architecture presented in Figure 3.2
is implemented. The COCO Agent is implemented as a python script that could be
run on any OpenFlow switch (e.g., OpenVSwhicth supported). At pushing point,
locally, we use the command-line tool ovs-ofctl3 to retrieve the flow statistics before
sending them to the collector. The messages between the collector and the agent
are carried with UDP Datagram sockets. The COCO Collector is built upon Ryu4,
a python-based SDN controller providing well-defined API to develop SDN control
and management applications. For ARIMA forecasting, we use pmdarima, which is
a Python and Cython wrapper of several different statistical and machine learning
libraries (statsmodels and scikit-learn) and operates by generalizing all ARIMA

3http://www.openvswitch.org/support/dist-docs/ovs-ofctl.8.txt
4https://osrg.github.io/ryu/
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models into a single class. For Holt’s Trend Corrected Exponential Smoothing
forecasting, we use statsmodels.tsa that contains models, classes, and functions for
time series analysis.

3.4 Performance Evaluations

3.4.1 Setup and Evaluation Metrics

We evaluate our proposition using the topology in Figure 3.4 that was set up on a
virtual machine of 32 GB of RAM and 20 vCPUs INTEL server powered by two
very high-end 18-core Intel Xeon E5 2699 v3 CPUs and 64GB of RAM.

SDN Controller

Host 2Host 1

S1
tcpreplay

Mininet

Figure 3.4: Experimental Setup Topology

With tcpreplay5, we replay real network traffics from the two public anonymized
datasets described below:

• UNIV2 [Benson 2010]: A university data-center trace collected on 22 Jan-
uary 2010. We extract 8 samples of 450s from 19:02:15 to 20:10:00.

• MAWI [Sony 2000]: A backbone trace from the WIDE MAWI archive col-
lected in September 2019 at the transit link (1Gps) of WIDE to the upstream
ISP. We extract 7 samples of 450s from the archives from 19 to 22 September.

Host1 executes tcpreplay that replays traces on the OpenFlow switch S1, which
executes the COCO Agent. All the traffic from H1 follows a flow-rule and is for-
warded on Host2, which is here just like a sink node. Host1, Host2, and the switch
S1 are emulated with Mininet6. The SDN controller (Ryu) executes the COCO
Collector and collects the flow statistics on S1.

Two main metrics are used in this evaluation. We compute these metrics com-
pared to a fixed push mechanism at T0 (which will be the case when we use, for
example, sFlow for flow statistics collection).

5https://tcpreplay.appneta.com/
6http://mininet.org/
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Accuracy: To evaluate the collection error induced by our adaptive push mech-
anism compared to a fixed T0 one, we use the MAPE. It is expressed in percentage;
the lower this value, the better it is.

Overhead: We express the overhead reduction with the percentage of the num-
ber of messages effectively pushed by the switch to the controller in the adaptive
mechanism compared to the fixed one. We want this value to be as high as possible.

3.4.2 Overhead Reduction and Collection Accuracy

Figure 3.5 and Figure 3.6 show the percentage of messages reduced (on the left)
and the collection error with MAPE (on the right) according to the threshold η

respectively for the traces UNIV2 and MAWI, for (β0, β) equals (50, 10) and (100,
10). We experiment using both ARIMA and Double Exponential Smoothing (ES)
for uncollected data-points prediction, and we use MASE as the error indicator
metric.

For all η > 0, meaning a fraction of inaccuracy is authorized on the collection,
we always have a reduction of the overhead compared to the fixed periodic push
collection. This reduction increases when η increases and may stabilize. We achieve
up to 75% of reduction. And we have this if a very low error (less than 0.5 %) on
the whole collection compared to the fixed T0 collection. This very low error for
both MAWI and UNIV2 increases with η and the reduction percentage.

Figure 3.7, shows for the trace UNIV2, the evolution of the overhead reduction
percentage and the collection error for different values of the collection duration
considering 4 combinations of (β0, β): (50, 10), (50, 30), (100, 10), (100, 30). We can
observe a slight increase in the reduction percentage when the collection duration
increases, with always no collection accuracy degradation (less than 0.25%). In
other words, the collection duration doesn’t have a great impact on the overhead
reduction or collection accuracy, which is normal since we are not looking for long-
term forecasting where long history would be of great importance. Instead, we are
making closed future predictions by forecasting near future data points. In this
configuration, we do not need to go further in the past to have good forecasts. In
other words, we emphasize recent data points supposing older ones less relevant,
and because we are making an online prediction, we set a sliding window of size W
= 1.5*β0.

3.4.3 Computation Time and Evaluations Summary

When a data-point ŝi is collected, before collecting the next one ( ˆsi+1) some compu-
tations are done, like computing estimations of missing data-points, and sometimes
deviation checking. This inter-data-points processing time needs to be bounded for
our algorithm’s good functioning. This compute time may also impact the possible
values of T0. In Figure 3.8, we show the range of this computation time for both
ARIMA and Exponential Smoothing forecasting. Exponential Smoothing gives bet-
ter results (around 0.025 seconds). ARIMA gives computation time around 0.125
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seconds. This value is high because in our implementation with ARIMA, when we
receive the first data point at a new alpha, we rebuilt the forecasting model, which
consumes a big amount of time resources (e.g., 0.5s or 1s even 2s). For the other
cases, we just refresh the model with the newly collected data-point, and in these
cases, the computation value varies around 0.03 s like Exponential Smoothing.

From Figure 3.5 and Figure 3.6, ARIMA and ES provide the same quality
of forecasting even with the big difference in terms of computation time. Hence
for our the scenario considered in this work, the better choice for uncollected data
points is Double Exponential Smoothing. The scenario concerns time series with an
increasing trend without seasonality pattern representing an aggregation of several
flows, all the traffic collected on a backbone link (MAWI), or a selected switch in a
data-center (UNIV2).
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Figure 3.8: Compute time in seconds

3.4.4 Use Case: Network utilization Monitoring (Bandwidth Esti-
mation)

Network utilization representing the percentage of a network’s bandwidth currently
being consumed by network flows or traffic, is an essential metric in operating
a network and for cost-saving operations. The actual utilization of network re-
sources (links, ports, switches) is difficult to measure, predict. As mentioned
in [Hassidim 2013], looking at summary statistics will not tell the whole story since
the utilization changes quickly, depends on many parameters (traffic demands, rout-
ing scheme, etc.). Using this view may not lead to good conclusions. We need to
monitor performance metrics, such as network utilization continuously, to quickly
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Figure 3.9: Bandwidth Estimation with COCO compared to a fixed push mecha-
nism

adapt forwarding rules in response to changes in data-plane workload [Yu 2013].
Provide this continuous monitoring service but with low overhead is what we have
done in this work.

With our lightweight periodic flow statistics data collection, we contribute to
Traffic Engineering (T.E) in SDN by enabling the monitoring and analyses of
near real-time network traffic information. T.E can then find reasonable routing
mechanisms to guide network traffic, improve utilization of network resources, and
better meet requirements of the network QoS, energy-saving scheduling. Band-
width management that consists of measuring and controlling the communica-
tions (flows, packets, traffic) on a network link – to avoid overfilling – is an essential
element of T.E. Indeed, the overfilled link may result in network congestion, and
poor performance of the network7.

Figure 3.9 shows bytes count evolution collected with our adaptive push mech-
anism compared to a fixed push collection and the bandwidth estimated from this
statistic. The bandwidth is expressed in bytes per second (Bps).

3.5 Discussion: Scalability and INT/P4

The objective here is to position our work with scalability concerns and the recent
directions in Software Defined Networking intending to take complete control over
the data-plane with the advent of P4, INT, and programmable switching.

7https://en.wikipedia.org/wiki/Bandwidth_management
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3.5.1 Scalability

This discussion is motivated by this question that may arise: how can this push and
prediction-based adaptive collection scales or works with a typical SDN flow-based
network where the data-plane is composed of many switching elements? There is
no need to worry about this aspect. Indeed, many works have handled the problem
of SDN monitoring overhead reduction by proposing to select a few numbers of
switches, called key switches, that may cover all target flows or links of interest
under monitoring. The key switches are sometimes simply the ingress and egress
switches of flows. More efficiently, their selection is formulated as a weighted set
cover problem [Su 2014] or a vertex cover problem [Bonfoh 2018]. This key switch
selection allows can reduce monitoring cost without loss of accuracy.

Our overhead reduction is to be done on these selected switches, using adap-
tive push instead of polling used in the solutions mentioned above. This can then
reduce the overhead imposed by the collection at high frequency to ensure timely
information. Our solution may be seen as time dimension optimization versus space
dimension optimization of the key switches selection solution. And finally, combin-
ing these two approaches may reduce the overall monitoring cost for constructing
the global and up-to-date view of the state of the data-plane in SDN.

3.5.2 P4/INT

One of the objectives of the couple SDN/OpenFlow was to give operators con-
trol over their networks instead of being dependent on the equipment vendors.
And this has been accomplished in some ways with good control plane abstrac-
tions and the "match-action" forwarding model (e.g., big data-centers like those
of Google built their homegrown control planed based on open interfaces exposed
by the data-plane). But the control will not be effective if network owners are
not in charge of how packets are processed by network elements [Casado 2019].
This leads to the advent of programmable forwarding chips (PISA - Protocol Inde-
pendent Switch Architecture) and P4 (Programming Protocol Independent Packet
Processor) [Bosshart 2014], a high-level language to express how a switch is to be
configured and it has to process packets. This will enable removing the obstacle of
fixed functions switches that recognize a predefined set of header fields and process
packets with a small set of predefined actions.

It’s worth pointing out that P4’s goal is not to replace OpenFlow, but OpenFlow
may be seen as part of P4 and is one of many possible programs (e.g., P4Runtine) to
describe the forwarding behavior. Since there, our OpenFlow-based implementation
can be considered P4-compatible.

Generally implemented with P4, INT (In-band Network Telemetry) [Kim 2015]
is a new abstraction that allows data packets to collect switch internal state (queues
size, queues latency, byte counts, etc.), enabling monitoring of the network state
by the data-plane. We sometimes need to collect from a selected node statistics to
a central server even with this in-band approach. For example, in [Harrison 2018]
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network-wide heavy hitter detection is done with low overall control and data-
plane communications overhead. The large flows are detected locally in the data-
plane with a per-key threshold that triggers reports to the control plane (central
coordinator). A similar approach is used in [Castanheira 2019]. At the triggering
moment when a sort of near real-time statistics collection by the control plane may
be done, our adaptive solution will reduce the overall monitoring task cost.

3.6 Related Work

For continuous statistics collection in SDN, especially flow bytes count, traditional
network monitoring flow sampling techniques like sFlow, NetFlow/IPFIX could be
used. But we don’t need this extra instrumentation on OpenFlow Switches since
they already provide flow statistics by maintaining records on packets matching
installed flow rules. We just need to collect these statistics efficiently. However,
OpenFlow will face some issues to provide the same level of flow-level measure-
ments compared to the sampling techniques mentioned above, especially the lim-
itation of the number of flow rules that a switch can support. In light of this,
[Suárez-Varela 2017] emulates NetFlow/IPFIX operation in SDN, providing Open-
Flow compatible flow sampling methods. For near-real-time statistics collection
with good accuracy-efficiency trade-off, [Cheng 2017] proposes per-flow sampling
with adaptive polling frequency. The polling frequency is adjusted depending on
whether the sampled traffic is stable or busy. In the same context, to have a good
accuracy/overhead trade-off while providing timely data-plane state information,
[Chowdhury 2014] proposes a threshold-based adaptive scheduling algorithm for
flow statistics retrieving by polling

FlowSense [Yu 2013] proposes for continuous link utilization monitoring in
SDN, a zero-overhead passive technique using PacketIn (arrival of a new flow) and
FlowRemoved (expiration of a flow entry) messages to estimate the link utilization.
This solution was qualified as a push-based approach, but we consider it more like
an event notification one (see section 3.1). FlowSense has the advantage, with its
passive measurement, of not imposing any additional monitoring overheads. Still,
if there are long flows, it doesn’t give good estimations since we have few flow
expiration events.

Lots of adaptive algorithms are provided in the literature from wireless
sensor networks data collection [Laiymani 2013] and Internet of Things (IoT
[Trihinas 2018] to SDN for monitoring overhead optimization. As pointed out in
[Tangari 2018], we can distinguish two main techniques:

• Threshold-based adaptive monitoring, where the monitoring period is
adjusted by comparing the two last measurements variations to upper and
lower thresholds.
Payless [Chowdhury 2014] uses this approach. Its authors focus on the trade-
off between monitoring accuracy and network overhead by proposing a fre-
quency adaptive statistics collection scheduling algorithm applied on selected
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switches. Payless’s adaptive algorithm adjusts polling frequency dynamically
based on collected data granularity.

• Prediction-based adaptive monitoring, where the next measurement is
predicted with the last collected ones. The deviation between the forecast
and the real observation guides the period adjustment.

This approach is used in [Zhang 2013] which uses a linear prediction-based
dynamic adjustment scheme to provide dynamic zooming into the flow space
(temporal and spatial dimensions).

Authors in [Tangari 2018] propose SAM (Self-tuning Adaptive Monitoring)
which uses a prediction-based approach to adjust polling rate dynamically but with
minimal parameter tuning effort, not like [Zhang 2013] and [Chowdhury 2014].

Other relevant works on the topic include [Van Adrichem 2014] and
[Fawcett 2018]. OpenNetMon [Van Adrichem 2014], for traffic monitoring (flow-
related information collection with OpenFlow), uses an adaptive polling rate that
increases and decreases respectively when the measurement values differ between
samples and when the values stabilize. TENNISON [Fawcett 2018] is a distributed
security framework with effective and proportionate monitoring. It offers multi-level
monitoring using appropriate tools (sFlow, IPFIX, DPI) from layer 1 to layer 2. Its
sampling and polling rate are dynamically adjustable based on three thresholds.

Although the adaptive monitoring works presented above are very interesting,
they are mainly tailored for traffic monitoring using a polling approach on the first
hand. And on the other hand, most of them require complex parameters tuning.
We do not need only flow-related information collection with a poll-based approach
for fine-grained management at the SDN controller level and within the self-driving
network’s vision with its real-time telemetry requirement. But all relevant informa-
tion that may contribute to the decision-making process may be collected efficiently
as proposed on Figure 3.1.

We propose COCO, an adaptive data collection framework for a push-based
monitoring model with low parameter tuning for the special case of continuous
statistic collection. It uses the two main techniques presented above: a prediction
technique to forecast uncollected data-points and a threshold decision making
process for deviation alarm raising, that expresses if Tα should be increased or
decreased (section 3.2.3). It also has the advantage of being lightweight for source
nodes.

3.7 Summary

This chapter presents an SDN monitoring framework clarifying information that
needs to be collected in an ad-hoc manner with classical OpenFlow polling tech-
niques, events that need to be conveyed by notifications, and periodic statistics
collection for which we propose a trivial push model. This proposition may allow
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reducing the periodic monitoring cost (as the number of messages through the con-
trol network) by 50%. But to go further, we propose an efficient adaptive push
algorithm for the near-real-time flow statistics collection. It is based on time series
prediction (ARIMA and the Double Exponential Smoothing) that guides the adjust-
ment of the pushing time. Our proposition has the advantage of being lightweight
and easy to deploy. We evaluate it using real-world backbone and university data-
center traces. We reduce the collection overhead up to 75% compared to a fixed
periodic pushing collection mechanism at the price of almost no accuracy degrada-
tion with less than 0.5% of collection error.
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In the last few years, data centers have grown considerably to accommodate
the ever-growing Internet services and applications. Enterprises and corporations
are gradually moving their services like Web search and online gaming into cloud
environments. The cloud itself is a collection of data centers. DCs are not only the
backbone of cloud computing but also the vertebral column of the Internet. Hence,
it is a complex and dynamic environment with complex problems where traditional
management struggles to provide good performance. It was naturally managed
with centralized traffic engineering as a controlled environment, making it one of
the first network environments where SDN was deployed. In this second part, we
leverage AI/ML on top of SDN to cope with these complexities by assisting the
human operators or removing them from the control loops for DCN management
tasks

This chapter aims to provide background information on data center networking
and the problem we consider. Firstly, Section 4.1 provides an overview of data cen-
ters and how they are organized. We end this section by presenting the incast and
elephant traffic management challenges. Then, Section 4.2 provides AI/ML defini-
tions and the main ML algorithms categories. After that, the rest of the section
presents a holistic review of previous works that use ML to address network prob-
lems in general and address problems in the SDN context. We conclude this chapter
with Section 4.3 by proposing an AI/ML approach for incast and elephant traffic
management as ML-based management in Software-Defined Data Center Network
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(SD-DCN). We took insights from the already application of ML to networking and
the lessons learned from these previous studies.

4.1 Data Centers

4.1.1 Data Centers 101

A data center is a physical facility that organizations use to house their critical
applications and data. A data center’s design is based on a network of computing
and storage resources that enable the delivery of shared applications and data. The
key components of a data center design include routers, switches, firewalls, storage
systems, servers, and application-delivery controllers1. Information and resources
(hardware and software) from these data centers available to users over the Internet
is denoted as cloud computing.

Cloud computing, unlocked by virtualization, brings more outstanding capabil-
ities and opportunities for recent IT resources (hardware (CPU, RAM, disk, GPU,
I/O, etc.) and software) utilization. With data centers, they have become the de
facto hosting platform for all social and economic innovations. For example, any
IoT deployment will likely have a cloud in the backend. We can say the same for
other types of deployments, such as smart mobility, big data, industry 4.0, and
public cloud AI. More and more companies migrate business from their own servers
to the cloud.

The cloud is then present in several aspects of our life. Besides traditional Web
services such as Web mail, searching, and online education, billions of devices in
the Internet of Things (IoT) also rely on the cloud to host their data [Xu 2017].
The data volume is undergoing extremely rapid growth. Massive amounts of data
are generated in DCs. Many data centers have been constructed worldwide due to
the explosive growth of data volume and type.

In recent years, many data centers have then been built to accommodate this ex-
plosive growth of data. Many companies, such as Amazon, Microsoft, Google, Face-
book, have spent billions of dollars establishing these data centers. Huge volumes
of hardware, software, and database resources in these large-scale data centers can
be allocated dynamically to millions of Internet users simultaneously [Zhang 2016].

A map of data centers in the world (4777 colocation data centers from 127
countries) is presented in Figure 4.12.

Thousands of millions of machines from these data centers (e.g., 50k-80k servers
for a single typical Amazon DC) serve the Internet’s 5 billion users via Amazon,
Google, YouTube, Microsoft, Facebook, Netflix, Twitter, only to mention this. For
example, Facebook data centers serve 2.6 billion active users daily. End-users inter-
act with these powerful computers through the cloud. Data centers deliver seamless

1https://www.cisco.com/c/en/us/solutions/data-center-virtualization/what-is-a-data-
center.html?dtid=osscdc000283

2https://www.datacentermap.com/
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Figure 4.1: Data centers World Map

storage and fine-grained distributed computing, especially for high computing re-
quests from AI/ML applications. DCs are not only the backbone of cloud computing
but also the vertebral column of the Internet. DCs keep the Internet going even
when events like COVID-19 trigger historic surges in traffic3.

4.1.2 How to make the Data Centers work ?

As a result of the section above, making internet works pass through making the
data centers work. Indeed, data centers have evolved from private and small-sized
to large-scale warehouse facilities to accommodate the ever-growing Internet ser-
vices and applications. A data center facility typically houses a large number of
computing and storage nodes interconnected by a specialized large-scale networked
system in a centralized and controlled environment called a data center network
(DCN) [Xia 2016]. Therefore, making the DC work means designing and operating
the data center networks (DCNs) efficiently to meet traffic demands, heterogeneous
performance needs, and scale. These requirements pose great challenges to DCN
infrastructure and its management.

On the first hand, concerning the DCN infrastructure establishment, special-
ized technologies and hardware were designed. For example, Amazon uses custom
routers/switches based on Broadcom Tomahawk ASIC silicon (very high bandwidth
Ethernet Switch Chip at 25.6 Terabits per second). New transmission technologies
(optical fiber-based) were also designed. New typologies to handle the complex
data center environment are studied, tested, and deployed in the same context.
The most famous one was the 3-Tiers, and finally, the Leaf-Spine fabrics are dom-

3https://www.google.com/intl/fr/about/datacenters/podcast/
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inating (See Figure 4.2)4. For the high dynamicity of DCNs, continuous hardware
software/operating systems upgrading is needed.

Figure 4.2: Leaf-spine vs 3-tier architectures

On the other hand, DCN management operations include flow
scheduling [Alizadeh 2013, Chen 2016a, Chen 2018], congestion control
schemes [Alizadeh 2010a, Kumar 2020] , load balancing [Alizadeh 2014, Katta 2016,
Zhang 2018], switch buffer management [cis 2017], etc. All these management
tasks’ main objective is traffic performance optimization with efficient resource
utilization. energy consumption is also one of the big optimization concern.

It’s was clear that with the complexity of data center networks and their traffic,
these management operations need to be automated as much as possible. More, as
a controlled environment, a data center was naturally disposed of for a centralized
management approach [Zhang 2018]. SDN was then rapidly adopted for DCN man-
agement. Indeed Google was one of the first pioneers of SDN adoption [Clark 2016].
Google employed SDN principles to build Jupiter [Singh 2015], a data center inter-
connect capable of supporting more than 100,000 servers. As of 2013, it supports
more than 1 Pb/s of total bandwidth to host its services. Furthermore, Google built
an SDN-based network B4 [Jain 2013], a private backbone network connecting its
data centers across the world. With this SDN management, Google operated its
continuous evolving networking with big challenges that traditional and entirely
distributed methods were unlikely to manage.

With centralized network architecture such as SDN, some management opera-
tions can adopt a logical-centralized controller to collect global network information
and efficiently operate the underlying network resources leveraging the global view
of the data center network. Operations automation is also eased. SDN automates
the configuration of individual network elements from the logically centralized con-
troller. SDN helps make better decisions more rapidly than would not be possible
with a fully decentralized mechanism.

Since the control algorithms are running on dedicated servers in the control
plane, the data plane elements, especially switch operations, are more focused and

4https://community.fs.com/blog/connecting-cisco-nexus-9396px-40g-spine-leaf-netowrk.html
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specialized for forwarding, their primary function. More, innovations can then be
made independently in these two planes, without relying on any external vendor,
which is a good deal. The SDN architecture, this way, increases the overall perfor-
mance.

Despite its advantages, SDN is not necessarily more straightforward than the
existing architectures. Still, it offers some distinct benefits in enabling rapid evo-
lution, greater specialization, and increased efficiency. Among the challenges of
the SDN architectures, the control software, meaning the management operations
algorithms, needs to be developed efficiently.

The increased autonomy with SDN is good but not sufficient regarding classes
of traffics with heterogeneous performance requirements present in DCs and many
optimization opportunities left. The research of more and more autonomy in man-
agement tasks must then be conducted, and AI/ML can help. We will see Why and
How in the next Section 4.3, especially for incast and elephant Traffic Management
in SD-DCN.

4.1.3 Incast and Elephant Traffic Management Problem in DCN

Modern cloud-native applications (big data analytics, IP-storage, etc.) brings new
traffic patterns on data center networks (DCNs) [Wang 2018, Alipourfard 2017].
The DCN workload is thus composed of more and more server-to-server traffic
that include essentially long-lived flows or elephant flows (e.g. backup, replication,
data mining, etc.) and short flows or mice flows (e.g. delivering search results).
Besides this classification, datacenter workloads often require sending requests to
large numbers of servers and then handling their near-simultaneous responses, caus-
ing a problem called incast [Handley 2017]. This many-to-one communication and
its associated traffic pattern are also designed as incast traffic.

This many-to-one pattern in data centers is used for applications such as
distributed storage (e.g. BigTable, HDFS and GFS), web-search with parti-
tion/aggregation design pattern, and cluster computing platforms (MapReduce,
Spark, etc.) [Zhang 2012]. Depending on the size of the responses of the servers we
can distinguish between long-lived incast and short-lived incast. But it’s worth men-
tioning that incast manifests generally in the short-lived form [Phanishayee 2008].

The coexistence of incast and elephant traffics with heterogeneous QoS re-
quirements (high throughput for elephant traffic and low completion time for
incast) complexify data center management tasks. These tasks include, natu-
rally, congestion management, which aims to mitigate congestion, one of the
principal causes of performance degradation. We can distinguish congestion con-
trol [Alizadeh 2010a, Kumar 2020, Hu 2020] and buffer management (buffer sizing
and AQM - Active Queue Management) [cis 2017, Gomez 2019, Chuprikov 2020].
Examples of congestion control algorithms are Cubic, NewReno, DCTCP, BBR,
etc., and AQM scheme examples are RED, CoDel, Fq-CoDel, etc. The other man-
agement tasks concern routing, load balancing, etc.

Indeed, managing incast traffic patterns with low latency using classical trans-
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port protocols without switch assistance is very challenging [Handley 2017]. The
network’s response to uncontrollable incast traffic is to drop its packets by tail-
drop queues [Xu 2019]. These packet drops degrade considerably in incast per-
formance and the co-existing traffic, including long-lived flows or elephant traf-
fics [Alizadeh 2013]. Consequently, the network requires smart packet buffering
capabilities to efficiently handle the performance needs of these data center appli-
cations [Xu 2019, cis 2017].

In this part II of the thesis, we then focus on smart and adaptive buffer
management, a switch-level operation, to provide great performance for both
incast and elephant traffics in dynamic DCN environment. The smart buffer man-
agement may consist of an autonomous performance optimization process, that
involves continuous network monitoring (performance and resource utilization) and
performance modeling5. On the first hand, continuous monitoring is needed to have
deep visibility on the network. It may ease autonomous optimization through con-
tinuous adjustment. This can be done with SDN, with its telemetry capabilities
and its management flexibility. On the other hand, modeling is fundamental for
network optimization, as reported in [Rusek 2019]: "we can only optimize what we
can model". Indeed, to optimize incast and elephant traffic performance, a model
providing insights on how various factors affect them is required.

However, there is a lack of those of models. Indeed, the classical approach for
network modeling is the design of handcrafted and specialized performance analyt-
ical models. For incast traffic, mostly carried with TCP, performance modeling is
very challenging [Chen 2009]. Indeed, TCP’s stack is a complex system that involves
many heuristics to handle network conditions and application behaviors [Li 2019].
Subtle changes in its parameters may lead to completely different performance. The
existing incast performance analytical models [Chen 2009, Zhang 2011, Chen 2015]
are either tightly coupled with a particular protocol version or specific to certain
empirical data. Relying only on analytical performance modeling for incast perfor-
mance optimization is then not a practical solution.

Therefore providing optimal performance to incast and elephant traffics in dy-
namic DCN through smart and adaptive switch buffer management poses two main
challenges:

• Performance Modeling. The need of a performance modeling approach
that generalizes easily and that do not rely on any domain-specific assump-
tions or approximations.

• Continuous Optimization. The need for an efficient optimization process
that could leverage the aforementioned performance model to anticipate and
efficiently optimize buffer-management-related parameters to achieve optimal
performance.

5https://blogs.cisco.com/cloud/how-to-strike-the-right-balance-between-application-
performance-and-cost?ccid=cc001268
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4.2 AI/ML for Networking

4.2.1 AI/ML 101

AI and ML have a slightly longer history than one might think at first glance. Indeed
the term machine learning was coined in 1959 by Arthur Samuel, who defined
it as a "Field of study that gives computers the ability to learn without being
explicitly programmed.". To achieve this goal, ML leverages knowledge through
experience and by the use of data. Typically, it builds a model based on sample
data, known as "training data, " to make predictions or decisions without being
explicitly programmed to do so.

ML is part of AI, a broader field that deals with building intelligent machines
capable of performing tasks that normally require natural intelligence displayed by
humans. ML can be seen more as a technique, and it is used to create AI. To go
further and have intuitions about ML, it is legitimate to compare it with traditional
programming. An illustration of this comparison is shown in Figure 4.3.

Computer
Vs.

Traditional Programming

Data

Rules
Output

Input + Program = Output

Computer
(Machine)

Machine Learning

Data

Output
Rules / Model

Input + Output = Program

⇒ Program : Manual Process ⇒ Model (Program) : Automated Process 

Figure 4.3: Traditional Programming vs Machine Learning

The manual process aspect of traditional software programming comes from de-
signing programs or rules relying on step-by-step logic (if-else statements), loops
(for/while), Maths/Boolean operators, etc., to solve a specific problem with a com-
puter. These rules come from insights we have on the problem through experience.
Unfortunately, this approach breaks down with some complex problems not neces-
sary for humans but computers, such as image recognition. ML’s alternative method
consists of providing computers the ability to work like a human brain using ex-
amples (input and output) as a training dataset with a so-called trial and error
mechanism. ML then learns from data. The resulted program is a predictive model
that can be used for the prediction of future outcomes. AI/ML is being applied
to solve complex problems in many fields, including image and speech recognition,
robotics, finance, health care, business, etc.

There are three main types of Machine Learning algorithms: supervised learn-
ing, unsupervised learning, and reinforcement learning:
Supervised Learning (SL). It uses labeled datasets that contain both the inputs
and the desired outputs or target to built prediction models. The resulting model
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can then be used to predict the output associated with a new input. SL is used
either for regression when predicting a continuous-valued attribute associated with
an input (e.g., house prices) or classification when associating a category to the
given output (e.g., email filtering as spam or non-spam). SL algorithms include
Support Vector Machine (SVM), Decision Trees (DT), Random Forest (RF), Neural
networks, and so on.
Unsupervised Learning (USL). USL, on the other hand, uses unlabeled data
(only inputs) and tries to find structure in the data. This means clustering or
grouping the data points. One of the central USL algorithms is K-means, which
clusters data by separating samples in n groups of equal variance.
Reinforcement Learning (RL). RL consists of finding optimal control policies
(actions to take by an agent) on a given environment typically represented with the
Markov Decision Process (MDP) framework. By interacting with the environment,
the agent learns optimal policies by trying to maximize a cumulative reward. RL
algorithms include Q-learning, Qeep Q Network (DQN), etc.

4.2.2 AI/ML for Networking

After all, it’s worth pointing out that the recent advancements in AI/ML technol-
ogy have significantly benefited from and empowered by networking offering key
infrastructure with efficient computational resources. In general, Ml benefits from
modern specialized hardware and ML libraries developments. Optimized imple-
mentations and frameworks coupled with specialized hardware are designed. These
hardware accelerators include FPGA (used, for example, by Microsoft and Xilinx
ML Suites), Nvidia’s GPU, AI ASICs (e.g., Google’s TPU), etc. The ML libraries
such as Scikit-Learn, Keras, Tensorflow, and Pytorch contribute to ML advance-
ment and help to its democratization.

Networking also has to benefit from these recent AI/ML advancements. ML
has then been leveraged by the networking community in academia and industry to
deal with the complex problems faced within several research areas. ML brings the
promise of more accurately handling complexities in communication systems where
traditional analytic mathematical models struggle with the exponential growth of
network traffic thanks to the advances in smart devices, the Internet of Things
(IoT), and cloud computing. The traffic diversity with heterogeneous performance
requirements complexifies a lot the underlying network design and management.

ML has already been applied in a wide range applications for network-
ing [Boutaba 2018, Ridwan 2021] through several network types as WSN, MANET,
cognitive radio networks. cloud, etc. The main applications ares include traffic engi-
neering, performance optimization and network security. With traffic engineering,
ML was applied to traffic prediction (e.g. [Edmund 1993, Chen 2016b, Li 2016]),
traffic classification (e.g. [Kim 2008, Zhang 2014]) one of the earliest fields were ML
was applied, and routing (e.g. [Hu 2010, Mao 2017]). ML application in perfor-
mance optimization concern congestion control (e.g. [Geurts 2004, Winstein 2013]),
QoS/QoE improvement (e.g. [Mushtaq 2012, Jiang 2016, Sun 2016]) and resource
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management (e.g. [Mijumbi 2014, Mao 2016, Tayyaba 2020]). Finally when it
comes to networking security one of the field when ML was leveraged a lot, we
have intrusion detection system (e.g. [Mukkamala 2002, Alom 2015]) and anomaly
detection (e.g. [Garcia-Teodoro 2009, Zhao 2015, Owezarski 2010, Mazel 2015]).

The typical ML application to networking workflow is very similar to the clas-
sical ML framework, as presented in Figure 4.4 specified in this work [Wang 2017].

Figure 4.4: The typical ML Workflow for Networking (from [Wang 2017])

The plethora of ML applications to networking studies may give an idea about
the exciting opportunities ML can bring to networking. However, with the tradi-
tional distributed nature of networks, the application of ML would not be at its
full potential due to the lack of data collection capabilities and dynamic network
operations and configurations. Thanks to SDN that can help with these concerns
by easing ML application to networking management.

4.2.3 AI/ML in Softwarized Networks

With SDN’s global visibility on the network and its programmability ML-based,
optimal management operations can be executed on the network in near-real-time,
even in real-time. Applying ML with SDN is then of significant interest to handle
a wide range of network management tasks [Xie 2018, Zhao 2019].

These tasks are quite the same as in the previous section but in an SDN fashion
and include resource management and allocation, network flow/traffic management,
QoS/QoE prediction, routing optimization, and security. ML algorithms in SDN-
based resource management and allocation (e.g. [Mao 2016, Martin 2018]) tend to
maximize the utilization of the data plane resources, using mostly RL-based al-
gorithms. ML in SDN-based traffic management concern traffic control and traffic
classification (e.g. [Gao 2018, Xiao 2015, Amaral 2016, Wang 2016, Fan 2017]). For
QoE/QoS predictions (e.g. [Jain 2016, Pasquini 2017]) leveraged either by proac-
tive control operations or planning operations. Concerning routing optimization
(e.g. [Pasca 2017, Azzouni 2017, Stampa 2017]) with ML and SDN, more effi-
cient routing mechanisms proposed are traffic-aware and energy-aware. And fi-
nally, ML and SDN association provides interesting ways of securing the network
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(e.g. [da Silva 2016, Shone 2018, Kalkan 2018, Sultana 2019]).
SDN relates to other technologies, especially Network Function Virtualization

(NFV) that enables operators to virtualize functions like load balancing, routing,
firewalling on commodity servers instead of using dedicated hardware. Both SDN
and NFV come from a software-oriented networking paradigm to provide high flex-
ibility in network operations, and fast but simple adaptation to network changes
[Kellerer 2019]. The resulting networks are then referred as softwarized networks,
but in this thesis, when talking about softwarized networks, the emphasis is made
on SDN. As seen from the works presented above, these softwarized networks with
ML as a data-driven approach for control and management are part of enabling
technologies for future networks.

It comes out from the several ML applications to networking in general, espe-
cially in SDN’s case, that even if there are great promises, open questions remain on
the feasibility and practicality of ML approaches for modern and future networks
management. These questions concern prediction cost, the need for adequate and
realistic datasets availability, evaluation baselines, good exploration versus exploita-
tion for RL-based algorithms, only to mention this. More, the ML application to
networking exhibits disparate ML applications calling for a certain standardization
or uniformization [Boutaba 2018] or even by being guided by a certain long-term
vision as autonomic networking or self-driving networking (SelfDN).

4.3 Thesis Approach: AI/ML for Incast and Elephant
Traffic Management in SD-DCN

With SD-DCN, the network is operated by software designed by operators in the
control plane. Classical optimization methods that are there for a long are still
used but more easily, in a proactive manner taking advantage of the centralization.
However, decisions or critical decisions are still hardcoded based on insights gained
by the specialists, their handcrafted analytical models with traditional optimiza-
tion techniques. These optimization strategies concern multi-commodity flow prob-
lem [Zhang 2018], Integer Linear Programming (ILP) models [Huang 2018] while
the problems we may want to solve with modern DCNs are very far from exhibiting
linear patterns, etc. It’s worth pointing out that even with this picture, things are
still working, thanks to operators/managers’ complexity mastering.

But with the magnification of the complexity, the approach described above
can just not holds and may scale terribly in people costs [Clark 2016] but also in
its ability to master this resulted complexity. And at this point, with the recent
technological advancement in AI/ML, ML has a significant role to play by assist-
ing management operations (humans implications, software) in complex, real-time
decisions making in DCN dynamic environment. The researched goal is to simplify
management operations as much as possible in SD-DCN with continuous evolving
complexity. ML can bring modern automation and control through analytics and
data-driven methods.
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ML, powering historical data that in some sense is leveraged by human operators
to master complexity, can provide performance models without the need of any
domain specifics knowledge compared to the traditional approach using handcrafted
and specialized analytical models. With the ML approach, the simplification aspect
opens ways for more automation in the management operations.

Aligned with the SelfDN vision as introduced in Section 1.2, we proposed the
base architecture on Figure A.1 for efficiently handling the mixed elephant and
incast traffic. We will design certain building blocs in the two following chapters.
In Chapter 5, an ML inference agent for predicting incast performance based on a
variety of system parameters is presented. And in Chapter 6 we will propose traffic
optimizations blocs for optimizing both incast and elephant performance leveraging
the ML prediction agent developed.
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Figure 4.5: Towards SelfDN for SD-DCN Management

Figure 4.6 highlights the concerns and contributions of the second part of the
thesis that uses AI/ML to brings more intelligent automation of complex DCN
management tasks. The ML-based proposition takes advantage of SDN, prepared
in the first part by augmenting its telemetry capabilities in terms of global visibility,
programmability, and data collection.
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5.7 Summary

After presenting a high-level overview of DCN and how ML can help its manage-
ment in the previous chapter, this chapter proposes a machine learning framework
built upon SDN for incast performance prediction in DCN. This service can be
leveraged by smart buffering schemes and online network optimization algorithms
to provide efficient performance in data centers. Indeed, handling the critical in-
cast traffic in DCN requires smart switch buffering. However, the smart buffer
management process needs incast performance models that provide insights on how
various factors affect it. Unfortunately, the literature lacks these types of models.
The existing ones are analytical models, which are either tightly coupled with a
particular protocol version or specific to certain empirical data. Motivated by this
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observation, we propose the machine-learning-based incast performance inference
approach using Random Forest.

The chapter is organized as follows. We first introduce the incast traffic and
present the scenario setup used and the corresponding notations in Section 6.1.
Then, in Section 5.2, we give a detailed presentation of our proposed framework.
Section 5.3 presents the model construction stage. We carry out intensive experi-
ments with the NS-3 simulator and construct the needed dataset. Using this dataset,
we designed machine learning incast completion time prediction models using ran-
dom forest regression. An analytical model for incast performance prediction is pre-
sented in Section 5.4. Evaluation results and analysis are provided in Section 5.5.
We discuss related work in Section 6.6. Finally, Section 6.7 conclude the chapter.

5.1 Incast System Setup and Notations

Incast traffic is a many-to-one communication pattern in data centers where a large
number of servers communicate simultaneously with a single client, as introduced
in Chapter 4. It is present with DCN applications such as distributed storage, web-
search with partition/aggregation design pattern, MapReduce, etc. Incast can cause
severe congestion in switches and result in TCP throughput collapse, substantially
degrading the application performance. The catastrophic TCP throughput collapse
is explained by the fact that the bottleneck switch buffer is overfilled quickly as the
number of competing senders increases. The overfilled buffer leads to packet losses
and subsequent retransmissions after timeouts [Phanishayee 2008, Vasudevan 2009,
Chen 2009]. The TCP retransmission timeout (RTO) is computed dynamically
based on experienced RTTs, but it is subject to a configuration minimum RTO,
RTOmin of around hundred of milliseconds (e.g., 200ms). This default value is
orders of magnitude too large for data center environments where RTT is in the
10s or 100s of microseconds.

This challenging traffic pattern handling is critical for Datacenters. Several
solutions were proposed to mitigate the TCP throughput collapse in the incast sce-
nario. Most of them concern RTOmin tuning to adequate small values in the RTT
scale [Chen 2009, Vasudevan 2009, Chen 2015]. Another approach consists of using
Explicit Congestion Notification (ECN) marking at the bottleneck switch level to
ensure that senders are quickly notified of the queue overshoot and then adjust-
ing their sending rate accordingly [Alizadeh 2010b]. This approach prevents buffer
overflow and subsequent timeouts. The work in [Xu 2019] proposes an intelligent se-
lective packet discarding at the switch level. This intelligent discarding ensures that
the sender responds to packet loss using fast retransmission/fast recovery instead
of RTO, avoiding RTO’s penalty.

Figure 5.1 shows a simplified topology of a typical incast scenario without loss
of generality. N servers send each other the quantity SRU (Server Request Unit)
simultaneously to the sink node. This scenario corresponds to the Fixed Fragment
Workload (FFW) in contrast to the Fixed Block Workload (FBW), where the total
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block size is fixed and partitioned amongst an increasing number of servers. We
consider the setting parameters as in TABLE 6.1. These notations hold for the rest
of this chapter.

Switch

Sender 1

Sender 2

Sender N

Sink Node

...

SRU1

SRU2

SRUN

Data
Block

Figure 5.1: Simplified topology for a typical incast scenario

Table 5.1: Parameters and Notations

Parameters Description
N Number of competing senders
SRU Server Request Unit size, per sender. SRU = 256 KB
B Switch buffer size in packets. e.g. 64 pkts or 96 KB
C Bottleneck link capacity. C = 1 Gbps
RTTnoLoad RTT without queuing delay. RTTnoLoad = 200µs
RTOmin Minimal TCP Retransmission timeout. e.g. 10 ms
S TCP segment size, S=1446 bytes. Packet size = 1.5 KB
τ Overall Incast Completion Time

5.2 SDN-enabled Machine Learning Incast Perfor-
mance Prediction Framework

By following the typical Machine learning workflow for networking as specified in
[Wang 2017] and leveraging SDN [Feamster 2014, Foster 2020], we come up with the
SDN-enabled machine learning incast prediction framework in Figure 5.2. Indeed,
SDN is already deployed and used in data center environments [Singh 2015]. The
machine learning workflow for networking is very similar to the traditional machine
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Figure 5.2: SDN-enabled Learning-based Incast Performance Inference Framework

learning one. It includes six stages as follows: Problem formulation, Data Collec-
tion, Data Analysis, Model Construction, Model Validation, and the last stage is
Deployment and Inference.

The framework is based on two main cornerstones: SDN and the power of
suitable machine learning algorithms of being able to learn some properties of a
historical dataset and leverage the learned proprieties to provide good estimations
on new observations.

From Figure 5.2 the workflow of the framework is as follow. Firstly the pre-
diction model is constructed offline by doing training and parameter tuning on the
historical data. The historical dataset may be composed of a large number of sam-
ples. Each sample represents a combination of features’ values and the associated
target value since we are in a supervised learning configuration. The features in-
clude the congestion algorithm used (tcpCC), the queuing discipline at the switch
level (qdisc), the number of competing senders (N), the bottleneck bandwidth (C),
the round-trip-time (RTT), the server request unit (SRU), the minimum retrans-
mission timeout (RTOmin) and the target attribute is the incast completion time
(τ). Prior knowledge or "domain-specific knowledge" and insights may be leverage
at this stage of model construction.

The constructed model is then deployed (1) as the Inference Agent. Care should
be taken for selecting the model concerning some operational aspects such as pre-
diction latency, stability, and accuracy of the inference, etc. The model is deployed
to be used for incast performance inference. Here real-time inference is desirable.
Incast may generally consist of short flows which last few microseconds. If inference
on real-time input could be done in real-time too, optimization or adjustments could
be done before the incast payload transfer take really place. Otherwise proactive
approaches could be used.

The online input (2), composed of (tcpCC, qdisc, C, SRU, N, RTT, SRU,
RTOmin), is got when an incast traffic is initiated by the client leveraging SDN
fine-grained telemetry and In-band network telemetry (INT) and P4. Taking this
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input, an inference of the incast traffic’s performance is done (3). The information
will then be used by SDN-side smart buffering module or any traffic flow opti-
mization algorithm to achieve efficient performance for the incast traffic and the
co-existing ones. The optimization may concern for example network utilization
maximization, global low mean delay, etc.

Finally, when the incast traffic complete, its really observed performance metric
is also collected efficiently and the historical dataset could be updated (4). Having
the database up-to-date is important, and will allow taking into account new dy-
namics from the data center. When the database significantly changed, the model
needs to be re-constructed and re-deployed.

The historical data gathering and online update of the historical data with the
newly collected data form a base for our framework. The historical data could also
be enriched from outside (other owned data centers, or just from the cloud). For
the data gathering concern, we will take advantage of the fact that a data center
operator (e.g. Amazon, Microsoft, Google, Facebook) holds diverse data centers
from which data could be gathered and mutualized. Indeed, this data collection
needs to be done smartly in order to have very representative data comprising the
features of interest. when an incast request is initiated the corresponding bottleneck
switch knows the number of servers (N) involved in the incast traffic. The available
bandwidth C could be estimated with traditional monitoring tools or lightweight
bandwidth estimation through low overhead byte counter collection as presented
in Chapter 3. And with INT/P4 we could collect any other useful end-to-end
information from the data plane.

5.3 Learning-based Modeling

Recalling the workflow from [Wang 2017] we begin this section with the problem
formulation. For the incast performance inference, the target metric (completion
time) being a continuous variable, its prediction is a regression problem. It falls
under the class of supervised learning algorithms. The other main classes being
unsupervised learning and reinforcement learning algorithms.

5.3.1 Dataset and Analysis

We conducted intensive NS-31 simulations using the scenario topology in Figure 5.1
and varying the parameters from TABLE 6.1. For every simulation, we compute
the corresponding completion time. We finally come up with a dataset composed
of 46581 observations, six parameters, and one target variable, the completion
time. The variables include two categorical variables: the congestion control al-
gorithm used (NewReno or DCTCP) and the associated queuing discipline (FIFO
or FQ_CoDel for NewReno and RED-ECN for DCTCP). The numerical variables
are the bottleneck link bandwidth C, the round trip time RTT , the switch buffer

1https://www.nsnam.org/
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size B, and the number of simultaneous senders N . The server request unit SRU
and RTOmin were respectively fixed to 256000 bytes, and 10ms and are not part of
the dataset.

For the dataset preparation for training, we consider two possibilities: a sin-
gle model taking six features (two categorical and four numerical variables) and
the case where we consider three different training sets for the different categories
(NewReno_FIFO, NewReno_FQ, and DCTCP_RED). For the individual models’
case, we use then only the numerical variables as training features. TABLE 5.2
summarizes information about the different datasets used.

We then consider these two cases in the data pre-processing step. We scale
our data by standardizing numerical features. It consists of centering a feature’s
observations to the mean and scaled it to unit variance. For the singe model, we
encode the two categorical features as a one-hot numeric array. Indeed five new
numerical (binary) features are created to represent the categorical features’ values
(NewReno, DCTCP, FIFO, FQ_CoDel, RED-ECN).

Table 5.2: Datasets

Models n_samples n_features
Single Model 46581 6
NewReno_FIFO 15492 4
NewReno_FQ 15502 4
DCTCP_RED 15587 4

5.3.2 Model Training

After data analysis, we first investigate classical machine learning algorithms from
less complex to the more complex without hyper-parameter tuning, in order to pick
the most promising to work with. The models investigated are Linear Regression
(lasso and ridge), Support Vector Regressor (SVR) with three kernels (linear, rbf,
and polynomial), Decision tree, Random Forest(RF), and Multi-layer Perceptron
(MLP). Random Forest only provides good results. Apart from decision trees, the
other investigated machine learning algorithms were unable to capture the dataset
dynamics, providing bad results. We then focus on Random Forest for the rest
of this work, and as a proof-of-concept implementation. The machine learning
algorithms are implemented using Scikit-learn 0.23.2 [Pedregosa 2011].

Random Forest falls under machine learning averaging methods, that combine
the predictions of several base estimators here decision trees. The combined es-
timator is usually better since its variance is reduced. Decision trees are a non-
parametric machine learning algorithm that predicts by learning simple decision
rules inferred from the data features.

A random forest regressor has several hyper-parameters that need to be tuned
for performance optimization. Some of the most important includes, the number
of estimators (trees) used to construct the forest (n_estimators), the maximum
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number of features provided to each tree (max_features), max_depth which depth
we want every tree in the forest to grow, etc. For example, after a certain num-
ber, increasing the number of trees has almost no accuracy improvement but just
increases model complexity with high training time.

Scikit-learn provides two main tools for hyper-parameter tuning GridSearchCV
and RandomizedSearchCV. GridSearchCV exhaustively considers all parameter
combinations from a parameter grid. On the other hand, RandomizedSearchCV
can sample a given number of candidates from a parameter space with a specified
distribution which is more convenient when we have a large search space. We use
both on a set of parameter ranges but the Scikit-learn default hyper-parameter val-
ues perform quite well. The random forest regression algorithm with 100 estimators
(trees) is used for both the single model case and the individual models one.

5.4 Analytical Modeling

Before presenting the evaluations results of our machine-learning performance pre-
diction approach, we present here an analytical model for predicting incast com-
pleting time when TCP NewReno is used. Timeout is the main factor of goodput
degrading [Zhang 2011]. We use recommended small RTOmin in the milliseconds,
which solves quite acceptably the goodput collapse, making the timeout impact al-
most negligible. This analytical model is compared to the machine-learning-based
in the next section.

5.4.1 Assumptions

Firstly we consider that the simultaneous incast senders are fully synchronized.
The overall congestion window evolution follows an aggregate AIMD. This phe-
nomenon is called TCP Synchronization, where multiple TCP connections increase
and decreasing their congestion windows simultaneously. Then all the senders will
be considered as a single aggregate source sending the total data to the client.

Secondly, we consider TCP congestion steady-state. Taking a macroscopic view
of the traffic sent by the aggregate source, we can ignore the slow start phase.
Indeed, the connection is in the slow-start phase for a relatively short period because
the connection grows out of the phase exponentially fast. When we ignore the slow-
start phase, the congestion window grows linearly, gets chopped in half when loss
occurs, grows linearly, gets chopped in half when loss occurs and so on.

It’s worth pointing out that one RTT is required to initiate the TCP connection.
After one RTT the client sends a request for the incast data. The first bytes of the
data are piggybacked onto the third segment in the three-way TCP handshake.
After a total of two RTTs the client begins to receive data from the aggregate
source.



70Chapter 5. Learning-based Incast Performance Inference in SD-DCN

5.4.2 Modeling Completion Time of Incast

Considering the assumptions mentioned above and being inspired by an existing
model2 we propose incast completion time analytical model as follows.

Let X = N∗SRU
S , the number of segments present in the incast data. Using TCP

and its AIMD congestion mechanism, we have the evolution of the congestion win-
dow as follows. The first window contains 1 segment, the second window contains
2 segments, the third window contains 4 segments, and so on. More generally, the
k-th window contains 2k−1 segments. Let K be the number of windows that cover
incast data to be transmitted. K can be expressed in terms of X as follows:

K = min{k : 20 + 21 + 22 + ...+ 2k−1 ≥ X}

K = min{k : 2k − 1 ≥ X}

K = min{k : k ≥ log2(X + 1)}

K = min{k : k ≥ log2(N ∗ SRU
S

+ 1)}

After transmitting a window’s worth of data, the server may stall (i.e., stop
transmitting) while it waits for an acknowledgment. But not every time. Let us
now calculate the amount of stall time after transmitting the k-th window. The
time from when the server begins to transmit the k-th window until when the server
receives an acknowledgment for the first segment in the window is S

C +RTT . The
transmission time of the k-th window is S

C ∗ 2k−1.
The stall time is the difference of these two quantities:

max{(S
C

+RTT − 2k−1 ∗ S
C

), 0}

The server can potentially stall after the transmission of each of the first K-1
windows. (The server is done after the transmission of the K-th window.) We can
now calculate the latency for transferring the overall incast data. The latency has
three components: 2RTT for setting up the TCP connection and requesting incast
data; N ∗SRU/C, the transmission time of the overall data; and the sum of all the
stalled times. Thus, the incast completion time τ is:

τ = 2 ∗RTT + N ∗ SRU
C

+
K−1∑
k=1

max{(S
C

+RTT − 2k−1 ∗ S
C

), 0}

We could obtain a more compact expression for the completion time with Equa-
tion 5.1 as follow:

2http://www2.ic.uff.br/∼michael/kr1999/3-transport/3_07-congestion.html
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τ = 2 ∗RTT + N ∗ SRU
C

+
P∑
k=1

(S
C

+RTT − 2k−1 ∗ S
C

) (5.1)

With P = min{Q,K − 1}
where K = min{k : k ≥ log2(N∗SRUS + 1)}
and Q = max{k : k ≤ log2(1 + C∗RTT

S ) + 1}

This model could be refined, approximating loss rate and including the cor-
responding retransmission times. However, these approximations are challenging.
And with the machine learning approach, there is no need to look for such approx-
imations. They are automatically learned from the data.

5.5 Validation and Analysis

Evaluation experiments were carried out on an Intel Core i7-7500U CPU 2.70 GHz
x 4 with 16 GB of RAM running Ubuntu 16.04 LTS. We consider three evaluation
metrics. The first is the prediction score (Eq. 5.2). It represents which proportion
of the variance in the dependent variable is predictable from the independent vari-
ables. A more precise regression is one that has a relatively high R squared, close
to 1. We will represent the score in percentage. Secondly we will use NMAE for
Normalized Mean Absolute Error (Eq. 5.3). We want the NMAE to be as small as
possible. And finally, we will consider the prediction time.

R2(y, ŷ) = 1−
∑n
i=1(yi − ŷi)∑n
i=1(yi − ȳ) , with ȳ =

∑n
i=1 yi
n

(5.2)

NMAE(y, ŷ) =

∑n

i=1|yi−ȳ|
n

ȳ
, with ȳ =

∑n
i=1 yi
n

(5.3)

5.5.1 Prediction Score and Normalized Mean Absolute Error

The first presented results concern prediction accuracy represented by the prediction
score and the NMAE, all in percentage. Figure 5.3 shows prediction score and
NMAE for different training size ratios for the single model and the individual
ones. The general tendency is that the precision is quite stable with training ratios
from 0.2 to 0.4 meaning a training set of 80% to 60% respectively. More tightly we
can observe a slight decrease but not meaningful for the single model from 90.75%
to 89.15%. The NMAE involves inversely with the general stability observed. The
NMAE for the single model is around 20%.

The other observation is that the individual models perform better than the
single model especially for NewReno_FIFO (97.78% to 97.03%) and NewReno_FQ
(96.23% to 95.73%). The NMAE for NewReno_FIFO is around 7% and 8% for
NewReno_FQ. However, performances are less good for DCTCP_RED where we
observe score from 83.16% to 86.21% with the NMAE around 27%. Dynamics with
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Figure 5.3: Score vs. Test size ratio

DCTCP dynamics is then more complex to capture, needing the investigation of
other machine learning models or adding new features to improve its performance.

5.5.2 Machine learning vs. Analytical Model

Figure 5.4 presents some simulation data-points from the test set, their correspond-
ing prediction with the individual random forest model, and the prediction with the
analytical model presented in Equation 5.1. We present the results for NewReno
with both FIFO and FQ_CoDel. The machine learning prediction follows well
the data-points. The analytical model even in a simple form is able to capture
the data-points apart from the points where the completion time is quite high.
The normalized mean absolute errors for these shown data points are presented in
TABLE 5.3 (where CC stands for the congestion algorithm used and QDISC, the
associated queueing discipline).
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Table 5.3: NMAE Analytical vs. ML

CC & QDISC NewReno_FIFO NewReno_FQ
NMAE ML 2.12 % 6.73%
NMAE Analytical 28.40% 33.22%

It’s worth pointing out that the queuing discipline was not really taken into ac-
count during the model construction, at least explicitly. But when supposing overall
synchronization of congestion windows that assume implicitly fair-queue share mak-
ing the model suitable for fair queuing. Also, we note that fair queuing does not
improve consequently the overall completion time. However, the bandwidth is fairly
shared between senders, which is not the case with FIFO. With FIFO, some senders
may finish transmitting their SRU very quickly and others too late presenting great
unfairness between senders.

5.5.3 Prediction Time Distribution

Finally we present the atomic (one-by-one) prediction latency in Figure 5.5. The
prediction time of the single model is slightly higher than those of the individual
models since it is more complex and is constructed using all the individual training
sets. However, this difference needs to be balanced with the fact that in the case
of the individual models a prior process time is needed, to match input to the
corresponding model.
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Figure 5.5: Atomic Runtime Prediction Latency Distribution

The prediction time is unfortunately high, around 0.10 seconds. This high
latency can be explained by the use of Scikit-learn. Indeed, Scikit-learn is not
necessarily suitable for production model deployment but more suitable for proto-
typing. Scikit-learn implements some methods in C for performance but additional
overhead is present due to Python function calls, feature extraction, to name a
few. Suitable input data format usage could improve performance and also bulk
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prediction (many instances at the same time). Indeed when predicting bulk test
sets, we have quite the same prediction latency as for atomic prediction and then
the prediction throughput increases. The performance gain with bulk prediction
can be explained with these factors: linear algebra libraries optimizations, branch-
ing predictability, CPU cache, etc. It’s also pointing out that existing optimization
solutions for machine learning pipelines are generally dedicated to the training step.

In production, more optimized implementations and frameworks coupled
with specialized hardware (FPGA, GPU, TPU, Xilinx, etc.) are needed
[Crankshaw 2019]. These hardware accelerators include FPGA (used for example
by Microsoft and Xilinx ML Suites), Nvidia’s GPU, AI ASICs (e.g. Google’s TPU),
etc. For our proposed inference system, we hope there will be enough computation
resources in data centers management and control planes and the use of dedicated
hardware will improve its performance. This way advantages of this machine learn-
ing inference could be effectively beneficial for overall flow QoS optimization in data
centers.

Moreover, the use of the proactive approach where the control plane simulates
what-if-scenarios by exploring some incast setups and parameter adjustments taking
the prediction of the inference agent can help. Parameter adjustments needed to
achieve global performance can then be anticipated. In this case, the prediction
time penalty will be less severe.

5.6 Related Works

5.6.1 TCP Incast Modeling

The authors in [Chen 2009] analyze the dynamics of the incast problem by exploring
its sensitivity to various system parameters. The understanding of the dynamics of
incast is done with an analytical model based on empirical data. This quantitative
model is completed with a qualitative refinement to capture most of the incast
aspects, unfortunately, not all. This work, however, explains the root cause of
incast, the RTO, and supports the TCP-level solution consisting mostly of using
small RTOmin values in the data center RTT scales to alleviate throughput collapse.

The work [Zhang 2011] provides an analytical goodput model of incast where the
goodput deterioration is explained by 2 types of timeouts. The block tail timeout
observed when the number of simultaneous senders N is small, and the block head
timeout when N is large. This work considers the sending of consecutive data
blocks. The analytical model characterizes well the general tendency of TCP incast
problem. This helps to understand the problem and helps understanding possible
solutions such as RTOmin reduction. But when a new solution is provided to handle
incast traffic, we may need to rebuild a new model to express attended performances.

Finally, authors in [Chen 2015] provide an in-depth understanding of how TCP
incast problem happens with an interpretive model. This model explains qualita-
tively how systems parameters (block size, link capacity, buffer size) and mechanism
variables (RTOmin) impact TCP incast.
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5.6.2 Machine Learning for QoE/QoS inference in SDN

A comprehensive survey on machine learning algorithms’ application to SDN can
be found in [Xie 2018]. This application to SDN is guided by diverse objectives that
include traffic classification, security, resource management, routing optimization,
and finally Quality of service (QoS) / Quality of Experience (QoE) prediction. For
this latter let us focus on two works [Pasquini 2017] and [Jain 2016].

An end-to-end application QoS prediction is proposed in [Pasquini 2017]. Open-
Flow per port statistics are used to infer the service-level QoS metrics such as frame
rate or response time for video-on-demand applications. Two machine learning al-
gorithms (decision tree and random forest) are used.

The authors in [Jain 2016] propose a two-phase analysis approach for QoS infer-
ence, able to predict traffic congestion. Firstly it discovers which key performance
indicators (KPIs) are correlated with the QoS metric using a decision tree. Then it
mines each KPI’s quantitative impact using linear regression.

The work in [Rusek 2020] proposes RouteNet that leverages the ability of Graph
Neural Networks (GNN) for network modeling and optimization in SDN. Taking as
input network topology information, routing schemes, and traffic matrix RouteNet,
based on Generalized Linear Models, can provide accurate source-destination KPIs
delay distribution (mean delay and jitter) packet drops prediction. These KPI pre-
dictions could be leveraged by QoS-aware optimizer to improve global performance.

5.7 Summary

In this chapter, we propose an SDN-enabled machine learning incast performance
prediction framework for data center networks. This framework’s goal is to pro-
vide incast completion time inference at run-time. This information could then be
leveraged by any flow optimization algorithm or adaptive smart buffering mecha-
nism to dynamically adjust system parameters to achieve efficient performance for
both incast traffic and the co-existing traffic (generally elephant flows). We con-
duct intensive NS-3 simulations and construct a representative dataset. After that,
a random forest regression model was implemented.

The evaluation results show that the proposed learning-based incast perfor-
mance inference can provide good predictions using a single model or individual
models depending on the congestion control algorithm and the queuing discipline
used. We achieve up to 90% of prediction performance score for the one single model
case, 97% for TCP New Reno with FIFO, 97% for NewReno with FQ_CoDel, and
86% for DCTCP with RED and ECN. We also compared our random forest model to
the analytical model approach. The machine learning approach has the advantage
of being easily generalizable for diverse congestion control and queuing discipline
schemes, dynamic environments and of not being tightly coupled with any domain-
specific assumptions and approximations. In Chapter 6, we will see how we can
leverage this ML performance modeling to optimize data centers traffics through
smart switch buffer management.
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In this chapter, we leverage the ML-inference model from the previous chapter to
effectively handle incast and elephant traffics in DCN. We define a performance op-
timization problem to find the best buffer-management-related parameters (switch
buffer size and Active Queue Management (AQM) parameters) that achieve opti-
mal performance for incast and elephant traffics in DCN using the ML model. On
the first hand, we propose an exhaustive search procedure using the generate and
test basic algorithm to optimize performance when considering only switch buffer
sizing. And finally, for a more general and smart search algorithm, we leverage
Bayesian Optimization with the ML-based inference framework to select the best
or near-best buffer-management-related parameter settings to provide overall great
performance to mixed incast and elephant traffic in DCNs.

We structure the chapter into seven sections. First, in Section 6.1, we present
a mixed incast and elephant traffic scenario and the corresponding notations. We
also formalize the smart switch buffering scheme as an optimization problem. In
Section 6.2, we present the smart buffering framework and provide detailed infor-
mation on its workflow. Section 6.3 recalls the ML modeling step, which is quite
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similar to the procedure in the previous chapter. Then we present the optimization
process in Section 6.4. We, first hand, consider the case where we have to choose
only the optimal buffer size. For this case, an exhaustive search algorithm seems
to be acceptable. But with additional AQM parameters, the search space explodes
and leads us to BO. Section 6.5 presents the evaluation results. Related works are
discussed in Section 6.6. And we finish the chapter with a conclusion in Section 6.7.

6.1 Scenario and Problem Formulation

6.1.1 Mixed Elephant and Incast Traffic Scenario and Notations

For this study, we consider a dumbbell topology of mixed elephant and incast traffic
as shown in Figure 6.1. All senders and clients are connected to the switches with
a 1Gbps link. The bottleneck link between the two switches S1 and S2, has the
bandwidth C. Incast senders are connected in a star shape to the switch S1. In
this figure, N incast servers send each other the quantity SRU (Server Request
Unit) simultaneously to the incast sink node linked to S2. In this scenario, the
elephant traffic corresponds to a bulk transfer from the elephant source to the
elephant receiver (e.g., background continuous file transfer or server migration).
We consider the setting parameters as in TABLE 6.1. These notations hold for the
rest of the chapter.

Elephant
Source

Elephant
receiver

Incast
client

Incast 
Senders

Sender 1

S1 S2

Sender 2 Sender N

Figure 6.1: Basic topology of mixed elephant-incast scenario

Generally speaking, and especially in the scenario described above, congestion
control algorithms (e.g., TCP Cubic through a classic FIFO qdisc on the switch
level) fail to ensure good performance. Smart buffer management at the switch level
composing of buffer sizing and AQM scheme is necessary to achieve better perfor-
mance. Earlier investigations show that FQ-CoDel [Hoeiland-Joergensen 2018] is
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Table 6.1: Parameters and Notations

Parameters Description
N Number of incast senders
SRU Server Request Unit size, per sender; SRU = 256 KB
B Switch buffer size in packets; e.g. 64 pkts or 96 KB
C Bottleneck link capacity; e.g. C = 1 Gbps
baseRTT RTT without queuing delay; e.g. baseRTT = 200µs
RTOmin Minimal TCP Retransmission timeout; e.g. 10 ms
S TCP segment size, S=1446 bytes. Packet size = 1.5 KB
CC Congestion Control algorithm (e.g. Cubic)
qdisc Queueing discipline (e.g. FIFO, Fq-CoDel)
τ Incast Completion Time (s)
γ Elephant Goodput (Mbps)

well suited for such scenario, and it provides very interesting results as also specified
in this prior work [Gong 2018].

Indeed, FQ-CoDel for Flow Queue - Controlled Delay is a packet scheduler
and an AQM algorithm developed to fight bufferbloat and reducing latency. It
achieves this goal by reducing the impact of head-of-line blocking from bursty traffic
and providing isolation for low-rate traffic. It was originally developed for home
routers. Its default parameter values (e.g., target = 5ms and interval = 100ms) are
then not suitable for data center environments with gigabit links and microsecond
RTTs [Bufferbloat 2014]. To be effective to the mixed elephant and incast traffic,
FQ-CoDel’s parameters need to be tuned carefully and with well-defined switch
buffer space.

The challenge for smart buffer management in this context is to select the best
operating parameters (the switch buffer size B, the FQ-CoDel interval, and target)
setting to achieve optimal performance for any inputs parameters combinations
(represented by the congestion control CC used, the number of incast senders N,
baseRTT, etc.)

6.1.2 Problem Formulation

Let U(τ, γ) denote the performance utility metric. It must satisfy the researched
performance goal of providing high throughput (especially goodput in this study)
γ for the elephant flow and low completion time τ for the incast traffic. Inspired
from the network power metric [Floyd 2008, Winstein 2013], which follows a similar
goal, we define U(τ, γ) = log(γ)− log(τ).

Our objective is to maximize U(τ, γ) by finding adequate parameter settings.
This goal is formalized with the optimization problem as follows.

Maximize
P

U = fX(P )

subject to P ∈ ΩP

(6.1)
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with P the set of operating parameters Pi (e.g., B, interval) with their respective
values spaces (e.g., B < Bmax). ΩP is the resulting overall variables domains, not
to say the optimization problem constraints. X represents the other parameters
Xj (e.g., N, C, CC, etc.) that don’t serve as decision variables of the optimization
problem. These non-decision-variables will, however, be taken as inputs of the
optimization model. Depending on implementation reasons or other concerns, we
can consider the equivalent minimization problem as:

Maximize
P

U = fX(P ) ⇔ Minimize
P

−U = −fX(P )

Formalized as in Eq. 6.1, the problem seems obvious to solve. Unfortunately,
that is not the case. f expressing U based on the parameters Pi is an unknown func-
tion. Indeed, τ = gX(P ) and γ = hX(P ) with g and h expressing the performance
metrics τ and γ based on the parameters Pi and Xj are unknown functions. In other
words, there is no analytical performance model for mixed incast and elephant traf-
fic due to data center dynamics and complexity. Since U = log(γ)−log(τ) = fX(P ),
f is also an unknown function. This makes our optimization problem challenging,
and it falls in the category of the so-called black-box optimization.

To address this challenge, we will take advantage of the ML performance model
studied in the previous chapter. Our proposed approach is integrated into the SDN-
ML-DCN management framework. The resulted SDN-enabled ML-based smart
buffer management framework is presented in the next section.

6.2 SDN-enabled ML-based Smart Buffer Management
Framework

This smart adaptive buffer management framework (see Figure 6.2) can manage
mixed incast-elephant traffic with overall better application performance in terms
of efficiency (high elephant throughput and low incast completion time) and fair-
ness. Indeed, by separating the network’s control plane from its data plane, SDN
introduces flexibility in network management, provides a global view of the network,
and facilitates telemetry. Moreover, it eases the use of machine learning techniques
in the management plane as presented in Chapter 5. Using machine learning, we
could provide good predictions of the performance utility metric U(τ, γ) for dif-
ferent parameter combinations. The Performance Optimizer will leverage these
predictions as f ’s estimates during the optimization process.

The workflow of the framework is quite similar to the one presented in Fig-
ure 5.2). Firstly, the performance prediction model is trained offline on the historical
data. The samples of the historical dataset represent a combination of feature values
and the associated target value since we are in a supervised learning configuration.
The features include the congestion control algorithm used (CC), the queuing dis-
cipline at the switch parameters (e.g., FQ-Codel interval), the number of incast
senders (N), the bottleneck bandwidth (C), the base round-trip-time (baseRTT),
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Figure 6.2: SDN-enabled ML-based Smart Buffer Management Framework

and the target attribute (the performance utility metric U(τ, γ) = log(γ)− log(τ)).
The trained model is then deployed (1) as the ML Agent. The online input

(2), composed of (CC, qdisc, C, SRU, N, RTT, baseRTT), is got when an incast
traffic is initiated by the incast client leveraging SDN fine-grained telemetry, In-band
Network Telemetry (INT), and P4. Taking this input, The Performance Optimizer
interacts with the ML agent by using the predictions as the utility observations
(3). This interaction is repeated smartly till best operating parameters for the
incast query are found (4). Ideally, the optimization process must converge in real-
time. Otherwise, proactive management with future planning in what-if-scenario
modeling will be used. With the optimal run-time parameters configuration, the
system may observe overall efficient application performance.

Finally, at completion, real observed performance metrics (τ and γ are also
collected, and the historical dataset could be updated (5). Having the database
up-to-date is important, and will allow taking into account new dynamics from
the data center. When the database significantly changed, the model needs to be
re-constructed and re-deployed.

6.3 ML Performance Utility Prediction Model

The target value, the performance utility metric U(τ, γ), is a continuous variable.
Its prediction is a regression problem and we are in a supervised learning case
as in Chapter 5. For this ML-based prediction mechanism to be relevant for our
optimization component, it needs to be simple and easily generalizable [Fu 2021].
Moreover, it is preferable if the model does not require a too high training set size
to provide good predictions that capture well U(τ, γ)’s dynamics.

The ML model construction for the simplified scenario of incast holds here.
That simplified setup was well choosen with no lost of generality. We then directly
leverage the results and lessons learned from that study of the previous chapter.
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We use Random Forest as ML algorithm with Scikit-learn default hyperparameters
(e.g., the number of trees n_estimators = 100).

6.4 Optimization Process

6.4.1 Preamble

Here, the goal is to find the optimal buffer-based parameter setting to provide
overall better for both elephant and incast flows. Thanks to ML, these best pa-
rameters can adapt to the system changing represented by the parameters CC,
C, baseRTT, etc. The manageable parameters would generally be related to the
switches, such as its buffer space or its queuing discipline. Adaptive buffer man-
agement [Chuprikov 2020] can be achieved easily with data-plane programmability
powered by P4.

By solving the problem formulated in Section 6.1 to provide optimal perfor-
mance, the challenge is twofold:
Ideal Buffer Sizing. Indeed, buffer is in the heart of the vast majority of
performance issues [hus 2019]. For internet backbone routers, the rule-of-thumb
states a buffer size equals the output bandwidth C times the round-trip-time RTT
B = C ∗RTT (the BDP, bandwidth-delay product), to keep high utilization at the
bottleneck link [Villamizar 1994]. With the increase of high-speed links, the BDP
rule was improved by [Appenzeller 2004] that proposes a smaller buffer requirement
B = (C ∗ RTT )/

√
n, where n is the number of flows with almost the same perfor-

mance. Unfortunately, when it comes to data center switches’ buffer requirements,
as far as we know, there is no rule-of-thumb. A widely standard recommendation
is to use in data centers relatively small buffers to achieve high bandwidth, and low
latency [Alizadeh 2010b, Raiciu 2019, Shpiner 2016]. But due to the critical aspect
of buffer size on performance, buffer sizing needs more attention.
Best AQM (FQ-CoDel) Parameters. As mentioned earlier, FQ-CoDel, origi-
nally developed for home routers, provides interesting results for our mixed elephant
incast traffic. However, its default parameters values (e.g. target = 5ms and in-
terval = 100ms) are not suitable for data center environments with gigabit links
and microsecond RTTs [Bufferbloat 2014]. To be effective in this environment, FQ-
CoDel’s parameters (interval and target) need to be tuned carefully and ideally in
an automatic manner. The FQ-CoDel target parameter was fixed to 10% of the
interval as recommended in [Hoeiland-Joergensen 2018]. We will then search for
the best interval T value according to the situations.

6.4.2 Exhaustive-Search-based Optimization Algorithm

With a focus on the switch buffer size B (P = {B}), the optimization problem
consists of finding the best B* that maximizes the performance utility metric U
for a given combination of the other parameters X. The optimization procedure is
done in three steps: (i) Generate a set of candidates B, (ii) Evaluate the resulting
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Algorithm 3: Exhaustive ML-based Performance Optimization
Input: ML_model, maximum buffer space Bmax
Output: Recommended optimal buffer space B∗

1 Generate a search space ΩB

2 for B ∈ ΩB do
3 û ← ML_model(B)
4 U_tab[B] ← û

5 end
6 B∗ ← argmax

B
U_tab

incast completion time of each of them, and (iii) selects the one that satisfies the
optimization objective.

The algorithm procedure is presented in Algorithm 4. It begins by generating
the set of candidates B to test ΩB (line 1). For an incast traffic, the corresponding
parameters are collected and the expected the utility metric U is inferred with the
Random forest model (line 3) for various candidates B. After this evaluation, the
best-fitted candidate B* (line 6) is used by the SDN controller to dynamically adjust
the switch buffer space to handle efficiently the traffic.

6.4.3 Bayesian-Optimization-based Algorithm

Considering only the switch buffer space B as the decision variable of the optimiza-
tion problem, the exhaustive search approach is tolerable. But when considering
additional parameters (e.g., the FQ-CoDel interval T), the search space increases,
and the exhaustive search that requires evaluating all possible candidates is no more
practicable. We then propose to use Bayesian Optimization (BO) [Shahriari 2015]
to solve the general smart buffering optimization problem in Eq. 6.1. BO is a frame-
work to solve optimization problems like this one where the objective function f is
unknown beforehand but can be observed through experiments [Alipourfard 2017].
Indeed, there are no gradients, and typically f evaluation is expensive, and the ob-
servations may be noisy. The optimization process involves designing a sequential
strategy that maps collected data to the next query point to find optimal parame-
ters. For our case, for a new query point to evaluate, the observation means to run
effectively through the network the corresponding scenario. This is not possible,
and we propose to rely on historically collected data. We will construct an ML
prediction model from this data that can provide evaluation for any query point as
prediction, even those that were not really observed yet.

The optimization problem consists of finding the best buffer-based parameters
P (B* and T*) that maximize U for a given combination of the other parameters
Xj . Since the framework could provide ML performance predictions, an obvious
optimization procedure would consist simply of scanning throw all the candidates
Pi = (Bi, Ti) from ΩP and selects the one that maximizes the objective. This pro-
cedure has a high overhead (the prediction time), but it will also propagate the
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Algorithm 4: BO&ML-based Performance Optimization
Input: ML_model, ΩP ,M, A
Output: Recommended optimal parameter setting P*

1 D1 ← Init_Samples(ML_model, ΩP )
2 for i ← 1, 2, ... do
3 Prob(Y | P, Di) ← Fit_Model(M, Di)
4 Pi+1 ← argmax

P∈ΩP

A(P, Prob(Y | P, Di))

5 Yi+1 ← ML_model(Pi+1)
6 Di+1 ← Di ∪ (Pi+1, Yi+1)
7 end

prediction errors through all the search space. To reduce the search time and over-
head, we propose the smart search procedure presented in Algorithm 4 leveraging
BO [Shahriari 2015, Dewancker 2015].

The general idea is to build a probabilistic surrogate model (e.g., Gaussian
process) M that puts a prior belief over the possible objective functions, and se-
quentially refine this model since data (Pi, Yi) are observed via Bayesian posterior
updating. Let D denote the available data. The updated model is queried to select
next candidate Pi+1 in the search space through acquisition function A (e.g. UCB -
Upper Confidence Bound) maximization. Indeed, the acquisition function trade off
exploration and exploitation. It is high where the surrogate model predicts a high
U (exploitation) and where the model prediction uncertainty is high (exploration).

Algorithm 4 falls under the class of sequential model-based optimization. Using
a starting set of samples D1 from the parameter space ΩP (line 1 ), the proba-
bilistic regression modelM is initialized (line 3 ). Then new candidates Pi+1 from
the search space are sequentially selected by optimizing the pre-defined acquisition
function A (line 4 ). A uses the current probabilistic model as a cheap surrogate
for the black-box and expensive objective U = fX(P ), which is represented here
by the random forest model ML_model. Each new Pi+1 evaluation produces an
observation Yi+1 (line 5 ) which is appended to the historical set Di as Di+1 (line
6 ). The new set Di+1 will then be used to update the regression model M and
new candidate suggestion will be done. All this process is repeated in respect to a
so-called query budget (e.g. number of iterations) or till a certain stop condition is
reached (e.g. the model confidence interval falls below a threshold).

At the end (e.g., after K iterations), a final recommendation of the best parame-
ters P* (here B* and T*) are used by the SDN controller to dynamically adjust the
switch buffer space and configure FQ-CoDel to handle the mixed incast elephant
traffic efficiently.

For the algorithm implementation, we use Scikit-Optimize (or skopt) built upon
Scikit-Learn.
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6.5 Experimentation Study

We consider three evaluation metrics concerning the ML prediction accuracy. The
first is the prediction score. It represents which proportion of the variance in the
dependent variable is predictable from the independent variables. The most precise
regression model would be the one that has a relatively high R squared, close to 100,
when expressed in percentage. We will represent the score in percentage. Secondly,
we use NMAE. We want the NMAE to be as small as possible. And finally, we
will consider the relative prediction error: |yi−ŷi|

yi
.

6.5.1 Exhaustive Search for BS only Experiments

6.5.1.1 Setup

We conducted intensive NS-3 simulations using the scenario topology in Figure 6.1
and varying the parameters from TABLE 6.1. For every simulation, we compute
the corresponding completion time. We finally come up with a dataset composed
of 83200 observations, six parameters, and one target variable, the incast comple-
tion time. The variables include two categorical variables: the congestion control
algorithm CC used (NewReno or Cubic) and the associated queuing discipline qdisc
(FIFO or FQ_CoDel). The numerical variables are the bottleneck link bandwidth
C, the base round trip time baseRTT , the switch buffer size B, and the number of
simultaneous incast senders N . When using FQ_CoDel the target parameter and
and the interval T were fixed to the default values. The server request unit SRU
and RTOmin were respectively fixed to 256000 bytes, and 10ms and are not part of
the dataset features.

Another working hypothesis considered here is to only optimize the incast traf-
fic’s performance, considering the elephant one as not critical. meaning minimizing
incast completion time τ . Then, the objective is now: Maximize

P
U = fX(P ) =

− log(τ)⇔ Minimize
P

− U = log(τ)⇔ Minimize
P

τ .
For the dataset preparation for the model training, we consider two possi-

bilities: a single model taking six features (two categorical and four numerical
variables) and the case where we elaborate individual models for the 4 categories
(NewReno_FIFO, NewReno_FQ, Cubic_FIFO, Cubic_FQ). We will consider indi-
vidual models’ case. Each category is represented by a dataset of 20800 observations
with only the numerical variables. In the data pre-processing step, the dataset is
scaled by standardizing these numerical features. It consists of centering a feature’s
observations to the mean and scaled it to unit variance.

From a minimalism perspective, for our ML model, we will not use all the
samples from our dataset. A subset with n_samples (e.g. 5000, 10000, 15000, etc.)
will be used after shuffling the entire dataset. Form this minimalist set, 70% will
be used to train the model while the 30% remaining will be used to validate the
trained model.
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6.5.1.2 ML Prediction Accuracy

For a subset with n_samples of 10000, where 7000 samples are used to train the
random forest model we obtain the scores and NMAE on the 3000 remaining set as
presented in TABLE 6.2. Using all the dataset (20800 samples) generated through
NS-3 simulations gives scores around 99% with NMAE of around 1%. These results
prove the ability of the ML-performance approach to provide accurate predictions.

Table 6.2: ML predictions Accuracy

Categories Score (%) NMAE (%)
NewReno_FIFO 96.54 9.81
NewReno_FQ 96.95 9.07
Cubic_FIFO 96.90 9.26
Cubic_FQ 96.23 10.98

The prediction score and NMAE provide a good picture of the prediction accu-
racy. But they don’t give detailed information on the model behavior. This infor-
mation is provided in Figure 6.3 which presents the CDF (Cumulative Distribution
Function) of the relative errors over all the evaluation samples. This distribution
of residuals shows that the prediction error is very low for the majority of the test
data-points for the 4 categories.
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Figure 6.3: CDF of predictions relative errors

In Figure 6.4, we show For Cubic_FQ the real observed test points and their
corresponding predictions with the random forest model. This regression plot con-
firms the significant relative errors observed from the CDF plot. Of course, when the
subset contains all the initial dataset (K = 20800 samples), the prediction accuracy
is better with a score almost equals to1 as shown in Figure 6.5.
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Figure 6.4: Predictions vs. Real observations (K = 10000 samples)
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6.5.1.3 Optimization Evaluation Results

To evaluate the effectiveness of our optimization algorithm Algorithm 4, we compute
B* for diverse values of N, with all the other parameters fixed. The algorithm output
is presented in TABLE 6.4. We will compare the performance observed using this
optimal B versus when using the maximum available buffer space Bmax.

Table 6.3: Optimal Buffer space B* from Incast Performance Optimization Algo-
rithm

N 1 4 8 16 20 32 48 64 100
B* 4 16 64 64 40 32 64 25 64

Figure 6.6 shows the incast completion time τ when using Algorithm 4 against
over-provisioning using Bmax. We can observe that τ is almost the same with both
B* and Bmax. It follows from these results that, with our framework, we could
achieve great incast performance while preventing buffer wastage that may occur
when over-provisioning. Moreover, sometimes, using the maximum available buffer
space could degrade the performance (N = 32 on Figure 6.6).
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Figure 6.6: Incast FCT Optimization for diverse number of incast senders

6.5.2 BO for BS and AQM parameters tuning Experiments

6.5.2.1 Setup

As in the previous experiment, a working dataset is generated from intensive NS-3
simulations. These simulations use the mixed incast-elephant traffic scenario from
Figure 6.1. For this study, we fixed the CC to Cubic, the qdisc to FQ-CoDel, C to
1Gbps, baseRTT to 100µs, SRU to 256000 bytes, and RTOmin 10ms. For every
simulation, we compute the corresponding performance metric U . We generate a



6.5. Experimentation Study 89

dataset composed of 1690 observations, three features, and one target variable, the
performance utility metric. The features are all numerical variables and include
the number of simultaneous incast senders N , the switch buffer size B, and the
FQ-CoDel interval parameter T . The server fixed parameters are not part of the
dataset features used during the model training.

In Figure 6.7, we show the values of the utility metric in the search space. We
can remark that it varies a lot with N. And with a given value of N, we can have
multiple near-optimal zones. This great variability confirms the complexity1 of the
DCN traffic optimization problem, which calls for automatic ML-based modeling
instead of an analytical one. More, this ML model may be coupled with intelligent
Optimization algorithms. The exhaustive search is not an efficient approach for this
case.
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6.5.2.2 ML Prediction Accuracy

.
The random forest model shows a prediction score of 93.73% and an NMAE of

3.15%. The prediction statistics provide a good picture of the prediction accuracy,
but they don’t give detailed information on the model behavior. Figure 6.8 plot-
ting scatters of real observed test points, and their corresponding predictions show

1
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this individual behavior. These results prove the ability of the ML-performance
approach to provide accurate predictions of the utility performance metric.
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Figure 6.8: Predictions vs. Real observations

We can observe two regions. The first one has a high utility metric U ∈ [9, 12]
corresponding incast with relatively small incast senders (< 32 or 48) and the
second one with metric U ∈ [5, 7] for more increasing incast servers numbers. This
observation highlighted the fact that with increasing incast senders number degrade
performance for both incast and elephant. The objective of the smart buffering
scheme is to provide performance close to the better possible one.

6.5.2.3 Optimization Evaluation Results

To evaluate the effectiveness of our BO algorithm Algorithm 4, we compute (B*,
T*) for diverse values of N, with all the other parameters fixed. The algorithm
output is presented in TABLE 6.4. We will compare the performance observed
using these optimal parameters (B*, T*) Ureal versus when using the maximum
available buffer space (Bmax and T_default) Udflt.

Table 6.4: Optimal Parameters (B*, T*) from the BO&ML-based Algorithm

N 1 4 8 16 20 32 48 64 100
B* 1 16 64 38 35 29 61 35 45
T* 100 1250 2804 3000 2750 766 100 2750 571
Upred 11.62 11.11 10.64 10.15 9.96 9.41 8.94 6.79 6.59
Ureal 11.62 11.38 10.81 10.13 9.96 9.22 9.05 6.65 6.61
Udflt 11.51 11.27 10.23 10.18 9.94 9.2 9.09 6.82 6.64
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We can see that choosing the maximum available buffer size can provide almost
the same performance as our approach from these results. However, this is a lazy
and inefficient approach. Indeed contour plots of the performance utility metric
show many near-optimal regions, and even a relatively small switch buffer with the
best AQM parameters setting can achieve excellent performance. The BO&ML
approach can then prevent buffer wastage that may occur when over-provisioning.
And also, it is possible to select the best parameters when prioritizing between incast
and elephant traffic. The utility metric would become U(τ, γ) = log(γ)−α∗ log(τ),
where α guides this prioritization.

6.5.2.4 Optimization Algorithm convergence

Figure 6.9 shows the convergence of our BO-based performance optimization algo-
rithm for different probabilistic models, and also we compare with a dummy random
search algorithm. The Gaussian Process (gp_results) outperforms the other mod-
els. It converges in few iterations, less than 10. It’s worth pointing out that the
random optimizer performs very well too, this can happen, but there is no guarantee
of convergence in general.
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Figure 6.9: Convergence plot of Algorithm 4 For N = 64

We present again for N = 64, the candidates explored and exploited with the
partial dependence of the buffer size B and the FQ-CoDel interval T in Figure 6.10.
As additional information, Figure 6.11 precises the number of samples for each
parameter of the search space as a histogram.
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6.6 Related Works

Prior works have explored the use of ML to provide models for network and perfor-
mance optimization. The work in [Rusek 2020] proposes RouteNet that leverages
the ability of Graph Neural Networks (GNN) for network modeling and optimiza-
tion in SDN. Taking as input network topology information, routing schemes, and
traffic matrix RouteNet, based on Generalized Linear Models, can provide accurate
end-to-end performance metric predictions such as delay distribution (mean delay
and jitter) and packet drop prediction. These predictions could then be leveraged
by QoS-aware global performance optimization.

The work in [Chen 2018] explores if Deep Reinforcement Learning (DRL) can
be used for automatic traffic optimization in datacenters. Their preliminary study
shows that The DRL approach’s high latency is an obstacle to traffic optimization
at the scale of current datacenters. Leveraging long-tail distribution of datacen-
ter workload, they propose AuTO mimicking the Peripheral and Central Nervous
Systems in animals to solve this scalability problem. Their work focuses on flow
scheduling and load balancing. They adopt Multi-Level Feedback Queueing by
optimizing its thresholds.

The study in [Fu 2021] evaluates whether ML offers a simple and general ap-
proach to performance prediction. It evaluates 6 ML performance prediction models
across 13 real-world applications. The authors of [Fu 2021] show that many appli-
cations exhibit a surprisingly high degree of irreducible prediction error. And they
propose a more nuanced methodology for applying ML for performance prediction.

6.7 Summary

This chapter explores DCN traffic performance optimization through smart buffer
management. Firstly an exhaustive search algorithm is proposed to solve the re-
sulted black-box optimization problem. It allows optimization of unknown or diffi-
cult to obtain analytical performance models by exploiting machine learning predic-
tions. It is acceptable for a small search space (e.g., considering only buffer sizing).
But when additional buffer-management-related parameters are also considered, the
exhaustive approach is not an efficient solution. We then propose the SDN-enabled
DCN management framework to leverage Machine Learning (ML) and Bayesian
Optimization (BO), aiming to achieve optimal performance in data centers by find-
ing the best switch buffer size and AQM parameters. It allows optimization on
unknown or difficult to obtain analytical performance models of modern data cen-
ters applications. Evaluations based on intensive NS-3 simulations show that we
can find the best or near-best buffer-management-related parameters (buffer size
and AQM parameters) to handle mixed incast and elephant traffic with great per-
formance. We expect this framework to be a building block for autonomous data
center management.





Chapter 7

Conclusion

7.1 Summary of Contributions
7.2 Future Directions
7.3 Publications

With new trends in networking (IoT, 5G, cloud-based data centers, etc.), mod-
ern and future networks constitute a complex and highly dynamic environment.
This complexity makes network management difficult, and even networks seem un-
manageable with traditional management schemes involving human intervention
and dependence. Inspired by self-driving cars, self-driving networks constitute a
new promising networking research topic leveraging SDN, machine learning, and
automation1 to remove humans from the management loop, at least partially, to
address this magnifying complexity.

Network management teams aim to continuously deliver application and service
performance and protection. Then, they need continuous network monitoring and
optimization to support increasingly dynamic and digitally-driven business models.
This goal is not achieved with SDN alone, nor with ML alone applied to network
problems. However, it is achievable within the SelfDN vision that combines AI/ML
on top of SDN-based networks. SDN Provides excellent operational flexibility and
programmability in how to manage networks but introduces substantial challenges.
AI/ML advances in computing power (e.g., GPU, TPU) and storage are expected
to help cope with these challenges. AI/ML will drive network management by
rapidly correlating information from multiple data sets to extract real-time insights
to manage complexity (increased number of connections, programmability, etc.)
and optimize resources. ML will complete the work opened by SDN. Figure 7.1
summarizes the journey from SDN to SelfDN and the pushing elements.

7.1 Summary of Contributions

Self-driving networking with the potential to simplify network management is a
grand challenge for networking and the “Holy Grail” to reach for network manage-
ment research. Even if some building blocks exist in the literature, the selfDN trip

1"Networks will operate as a system with increasing levels of autonomy, taking into account
their own state, the dynamic state of all the users and applications, and the vast array of possible
options", Ravi Chandrasekaran SVP, Enterprise Networking Business
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Figure 7.1: Network management: From SDN to SelfDN

has a long way to go since its deployment is almost nonexistent today. It, indeed,
presents several challenges that need to be addressed to enforce potential adoption.
In this thesis, we have studied two main challenges of the SelfDN vision: (i) The
need for improved SDN monitoring; (ii) The need for more automation through the
use of AI/ML for complex management tasks. The results of our contributions are
summarized as follow:

Improved SDNMonitoring (Chapter 3). For our first contribution, we propose
a generic monitoring framework for SDN to provide efficient data collection to con-
struct the global and up-to-date view of the underlying data plane at the SDN con-
troller level. This framework distinguishes event-based data collection, ad-hoc data
collection with pull request/reply messages, and finally, periodic statistics (counters)
collections. For this latter category, we are in the presence of a dilemma that con-
cerns the optimal reporting interval time to use to achieve a good accuracy-overhead
trade-off. Unlike the literature works that propose adaptive polling rate mecha-
nisms, we propose a more efficient adaptive solution named COCO (COnfidence
based adaptive COllection). COCO is a pushed and prediction based adaptive pe-
riodic data collection scheme. To provide accurate flow counters evolution with low
overhead, COCO seizes these two following optimization opportunities:

• On the first hand, the pull model with request-reply messages of standard
OpenFlow collection is inefficient. With a periodic collection or even with
our adaptive collection, the collection points in time are known by the source
node. This latter has to push to the controller at the collection points on its
own without the need for a request message.

• On the other hand, our proposed approach leverages the cumulative, non-
negative, and non-decreasing aspects of the counters in predicting near-future
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values based on the previously collected ones. We use time series forecasting
(ARIMA and Double Exponential Smoothing).

COCO has the advantage of being lightweight for switches and easy to deploy
since almost all the intelligence is concentrated on the collector in the controller.
The evaluation results with real traces show that our proposed approach can re-
duce the number of pushed messages up to 75% compared to a fixed periodic data
collection with a very good accuracy represented by a collection error of less than
0.5%.

ML-based Performance Modeling in SD-DCN (Chapter 5). For our second
contribution, we tackle complex management operations in DCNs. DCN manage-
ment operations required performance models, which handcrafted analytical mod-
eling approaches struggle to provide due to the DCN environment dynamicity and
complexity. Powering data-driven analytics, we propose a machine learning frame-
work build upon SDN for incast performance prediction. With its capability of not
relying on any domain-specific assumptions and approximations, machine learn-
ing can then be leveraged to construct a generalized model via a uniform training
method. We carry out intensive experiments with the NS-3 simulator and build the
needed dataset. Using this dataset, we designed machine learning incast completion
time prediction models using random forest regression. The evaluation results show
the effectiveness of our ML-modeling approach that can accurately capture complex
relationships between various factors and incast completion time.

Automatic ML and BO based smart switch buffer management in SD-
DCN (Chapter 6). Finally, for the third contribution, we leverage the ML-
modeling approach from the previous contribution with BO to design an intelligent
switch buffer management scheme in DCN. It provides great performance for mixed
incast and elephant traffic, meaning maximal throughput for elephant traffic and
minimal completion time for incast. Choosing the proper buffer size and AQM
parameters for optimal performance is challenging due to the complexity and dy-
namics of the data center environment. More, these parameters interact in complex
ways, and then it isn’t easy to come up with analytical performance models that
can guide the choices. We are then in the presence of a difficult optimization prob-
lem where the objective function (performance model) is unknown. Thanks to
Bayesian Optimization, a powerful tool designed to solve such problems, where the
objective has no simple closed-form. BO supposes, however, that the performance
function can be evaluated at any parameter combinations. But this is not possible
for online decision-making by the adaptive smart buffering scheme. We leverage the
ML performance model build upon historical data of past parameter configurations
and their observed performance to handle this issue. The ML model provides such
evaluations through predictions. Coupled with SDN, this BO&ML-based buffer
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management scheme can select the best or near-best parameter settings to deliver
overall good performance to mixed incast and elephant traffic in DCNs. It uses
dynamic automatic optimization and can adapt automatically to continuous traffic
changes. At last, it is aligned with the self-driving networking trend that allows
network systems to deal with dynamic workloads in an automated and, ideally,
zero-touch way.

7.2 Future Directions

SDN Monitoring Framework and COCO
In a short term perspective, We will investigate the pertinence of our proposed

approach on more traces, different type of traffic, i.e., traffic with different magni-
tude of the number of flows, type of flows TCP or UDP, and at the same time by
improving our proposition according to these specific aspects. For the variety of the
data to be collected, we will investigate COCO on other continuous statistics, ei-
ther on switches or end hosts, that do not present an increasing trend, for instance,
switch queue occupancy, CPU usage, etc. For such statistics where the time series
may be more irregular, we can use Long Short-Term Memory (LSTM)/Recurrent
Neural Network (RNN).

Although our proposed solution requires minimal user-defined parameters (only
T0 the data freshness period, and η the collection imprecision tolerance indicator),
we can aspire for a more autonomous monitoring procedure that may adjust the
accuracy-overhead tradeoff automatically based on a high-level goal defined by the
management plane. With its ability to interact with a dynamic environment and
learn optimal policies, reinforcement learning seems to be an excellent candidate to
investigate from a mid-term perspective.

Finally, as a long-term perspective concerning SDN monitoring, we plan to
rethink the proposed framework in-band network telemetry (INT coupled) with
P4. With this feature, our framework will enable the monitoring of end-to-end
information and then will not only cover the passive monitoring on data plane
switches. It thus will integrated end hosts. This vision is in some sense aligned
with the top-down approach for network telemetry discussed in [Yu 2019], where
network monitoring systems should provide high-level declarative abstractions for
network management teams to specifies measurement queries. This queries may be
translated into low-level API calls at switches and hosts.

ML-based SD-DCN management
Secondly, for the ML-based DCN management propositions, the identified future

works are as follow. As short-term future works, we plan to extend the dataset with
new parameters. For instance, congestion control and queuing discipline schemes
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(e.g., BBR) and by integrating new features in the dataset as the SRU , RTOmin,
etc. Indeed, BBR, for example, is not yet part of the NS-3 simulator and was not
considered when constructing our working datasets. For the ML&BO smart buffer
management that focuses on TCP Cubic and FQ-Codel as the most promising candi-
date to handle mixed DCN workload and as a proof-of-concept of our proposition,
we plan to investigate performance improvement using other transport protocols
(e.g., DCTCP) with our proposed scheme. Also, a more general performance met-
ric U = log(γ)−α∗ log(τ) use needs to be investigated for the optimization process.
This general objective may help to control the priority given of the incast compared
to the elephant traffic.

As of mid-term perspectives, we plan to associate with the ML&BO optimal
parameters finding Network Calculus [Le Boudec 2000] to determine worse case
bounds of the DCN traffic performance. This will brings more flexibility in ensuring
QoS when the optimal performance can not be achieved. This way, the degraded
mode will be possible. Additionally, for the ML&BO loop, we will investigate how
RL and Deep RL can be helpful, especially when dealing with a high number of
features that may explode the possible network states to consider in the performance
optimization process.

Final Remarks
Last but not least, more high-level research may try to determine the types of

tasks that can really be full-automated, the ones that still need humans in the loop.
For this latter how human and machine may collaborate to make the internet great
again need to be questioned.

ML as an alternative or an assistant to human operations to cope with com-
plexity is a promising approach. In the case of networking, since networks are
significantly present in our daily life, they undergo a large amount of traffic, and
the requirements are high. This resulted network system is then complex, and this
complexity tends to magnify. ML can help, as we show it in this thesis. But, at
this point, it’s still difficult to say what problems ML can or cannot solve. How-
ever, if we cannot solve the problem, is it "normal" or is it because network-specific
MlL algorithms are not yet developed. All these interesting research questions need
further investigations and collaborations. These investigations may pass through
multidisciplinary research2, beginning by collaborating with the AI/ML community
and broader areas.

2"Real problems are often interdisciplinary", Jennifer Rexford, Athena 2017
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7.3 Publications

This thesis is founded on the knowledge acquired through the following scientific
productions:

Conferences:

[1] Kokouvi Benoit Nougnanke, Yann Labit, and Marc Bruyere, "BO&ML-based
Smart Buffer Management in Software-Defined Data Center Networks," under
Review Process.

[2] Kokouvi Benoit Nougnanke, Yann Labit, and Marc Bruyere, "ML-Based In-
cast Performance Optimization in Software-Defined Data Centers," in 22nd
International Conference on High-Performance Switching and Routing (IEEE
HPSR 2021), 7-10 June 2021. Paris, France.

[3] Kokouvi Benoit Nougnanke, Yann Labit, Marc Bruyere, Simone Ferlin, and
Ulrich Matchi Aïvodji, "Learning-based Incast Performance Inference in
Software-Defined Data Centers," in 24th Conference on Innovation in Clouds,
Internet and Networks (IEEE ICIN 2021), March 01-04, 2021. [Best Paper
Award].

[4] Kokouvi Benoit Nougnanke, Marc Bruyere, and Yann Labit, “Low-Overhead
Near-Real-Time Flow Statistics Collection in SDN,” in 6th IEEE International
Conference on Network Softwarization (NetSoft 2020), June 2020.

[5] Kokouvi Benoit Nougnanke, and Yann Labit, “Novel Adaptive Data Collection
based on a Confidence Index in SDN,” in 2020 IEEE 17th Annual Consumer
Communications & Networking Conference (CCNC), 10-13 Jan. 2020.

Posters:

[1] Kokouvi Benoit Nougnanke, Marc Bruyere, and Yann Labit, “Low-Cost Near-
Real-Time Counters Collection in SDN,” in 2020 ACM SIGCOMM Sympo-
sium on SDN Research (SOSR), March 2020.

[2] Kokouvi Benoit Nougnanke, and Yann Labit, “ Control Messages Optimiza-
tion in SDN,” in SDN DAY 2018 , November 2018.

Best Paper:

https://www.laas.fr/public/fr/benoit-nougnanke-re%C3%A7oit-le-prix-du-meilleur-papier-%C3%A0-licin-2021


Appendix A

Résumé des Travaux de thèse

A.1 Contexte et Motivations

La croissance exponentielle des services et des applications Internet, ainsi que
l’augmentation massive du trafic, complexifient les réseaux informatiques. Ces
derniers atteignent un point où les fonctions de management (ou gestion) tradi-
tionnelles, principalement régies par des opérations humaines, ne parviennent pas
à maintenir le réseau opérationnel. Ce constat soulève la nécessité de recourir à de
nouvelles approches de management pour les réseaux modernes ainsi que ceux du
futur. Dans ce contexte, le Software Defined-Networking (SDN) émerge comme une
nouvelle architecture pour la gestion des réseaux [Casado 2019, Feamster 2014]. Sa
caractéristique principale est la séparation du plan de contrôle du plan de données
des équipements réseaux. SDN propose une gestion centralisée et intelligente des
réseaux à l’aide d’applications logicielles. Il rend les réseaux programmables en
apportant de la flexibilité dans leur contrôle et leur management.

SDN présente, certes, des avantages (abstractions au niveau du plan de contrôle,
interfaces de programmation ouvertes, etc.) mais il n’est pas exempt de nouveaux
défis dont la construction de la vision globale du réseau par une collecte efficace de
données. Cependant, il est porteur d’un avenir prometteur pour les réseaux. Ainsi
l’adoption du SDN et l’identification des défis restants permettraient de tendre vers
un mécanisme de management de réseau plus adapté. En d’autres termes, avec
le SDN, le management réseau a atteint un niveau intéressant. Cependant, de
nouvelles recherches doivent être menées pour que la gestion du réseau soit plus
efficace et puisse supporter les réseaux modernes et futurs. Nous identifions ces
deux challenges principaux:
Besoin de systèmes de monitoring efficaces avec SDN. A titre d’illustration,
bien que la séparation du plan de contrôle du plan de données présente de nom-
breux avantages (flexibilité, programmabilité, interfaces ouvertes, etc.), les com-
munications entre le plan de données et le contrôleur SDN génèrent une surcharge
(overhead) importante [Curtis 2011]. Cette surcharge concerne d’une part le con-
trôle et la configuration par l’installation de règles de flux, la gestion des paquets
entrants et sortants, et d’autre part la collecte d’informations sur le réseau. Il est
donc important de concevoir des systèmes de monitoring (télémétrie) efficaces avec
un bon compromis précision-overhead.
Besoin de plus d’automatisation pour les tâches complexes. L’autonomie
accrue offerte par le SDN est appropriée mais pas suffisante au regard de la com-
plexité croissante du réseau (cas d’étude des data centers) qui doit accueillir des
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charges de travail hétérogènes avec des exigences de performance variées. En effet,
même avec le SDN, le rôle de l’opérateur humain dans la gestion du réseau est très
important, même pour les tâches liées à la prise de décision en "temps réel"/"quasi
temps réel". Cette approche peut se traduire par un coût humain terriblement
élevé [Clark 2016]. Et comme si cela ne suffisait pas, la plupart des pannes de
réseau sont causées par des erreurs manuelles humaines. Il est alors nécessaire de
rechercher de plus en plus d’autonomie dans les tâches de gestion, et l’intelligence
artificielle (IA)/Machine Learning (ML) peut y contribuer.

Par conséquent, assurer de bonnes performances des réseaux avec les services et
applications qui évoluent rapidement, même avec le SDN, devient un défi surtout
en cause des boucles de contrôle classiques impliquant une forte intervention ou
une dépendance humaine. C’est ainsi qu’inspirée par le concept des véhicules au-
tonomes, la vision du self-driving network (SelfDN), s’appuie sur le SDN et le ML
pour simplifier la gestion des réseaux et tendre idéalement vers des réseaux au-
tonomes a fait l’objet d’une attention considérable [Feamster 2017, Kalmbach 2018].
Cette vision des réseaux autonomes, avec le potentiel de simplifier la gestion des
réseaux, est un "grand challenge" pour les réseaux et le "Saint Graal" à atteindre
pour la recherche sur le management des réseaux.

A.2 Nos Contributions

En phase avec la vision SelfDN et en prenant comme cas d’étude les réseaux de
data centers (voir Figure A.1), nous avons proposé les trois contributions suivantes
en adressant les challenges soulevés plus haut:
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Figure A.1: Vers le SelfDN pour le management du SD-DCN (Réseaux data centers
pilotés par SDN)

Monitoring SDN efficace (Chapitre 3). Dans notre première contribution,
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nous proposons un framework de monitoring générique pour le SDN afin de fournir
une collecte de données efficace pour construire la vue globale et la plus à jour du
plan de données sous-jacent au niveau du contrôleur SDN. Ce framework distingue
la collecte de données basée sur des événements, la collecte de données ad-hoc avec
des messages requête/réponse en mode pull, et enfin, la collecte de statistiques péri-
odiques (compteurs). Pour cette dernière collecte, nous sommes en présence d’un
dilemme qui concerne la période de collecte optimale à utiliser pour obtenir un bon
compromis précision-overhead. Contrairement aux travaux de la littérature qui pro-
posent des mécanismes de collecte avec une fréquence adaptative, nous proposons
une solution adaptative plus efficace appelée COCO (COnfidence based adaptive
COllection). COCO est une approche de collecte de données périodique adapta-
tive basée sur le modèle de collecte push et la prédiction de séries temporelles.
Pour fournir une évolution précise des compteurs de flux (d’octets) avec un faible
overhead, COCO saisit les deux opportunités d’optimisation suivantes:

• D’une part, le modèle pull avec des messages requête-réponse de la collecte
OpenFlow [McKeown 2008] standard est inefficace. Avec une collecte péri-
odique ou avec notre collecte adaptative, les points de collecte dans le temps
sont connus par le nœud source. Ce dernier peut donc pousser vers le con-
trôleur aux points de collecte lui-même sans avoir recours à un message re-
quête.

• D’autre part, COCO exploite l’aspect cumulatif et croissant des compteurs
lors de la phase de prédiction des valeurs futures (de proche en proche) à
partir des valeurs précédemment collectées. Nous utilisons des méthodes de
prédiction des séries temporelles à l’instar d’ARIMA et du lissage exponentiel
double.

COCO a l’avantage d’être léger pour les commutateurs et facile à déployer
puisque presque toute l’intelligence et les calculs lourds sont concentrés sur le col-
lecteur dans le contrôleur SDN. Les résultats de l’évaluation avec des traces réelles
montrent que l’approche proposée peut réduire le nombre de messages poussés
jusqu’à 75 % par rapport à une collecte de données périodique fixe, avec une très
bonne précision représentée par une erreur de collecte inférieure à 0,5 %.

Modéles de performance basés ML dans SD-DCN (Chapitre 5). Dans
notre deuxième contribution, nous nous attaquons aux opérations de gestion com-
plexes des réseaux DCN. Les opérations de gestion des DCN nécessitent des modèles
de performance, que les approches de modélisation analytique classiques peinent à
fournir en raison de la dynamique et de la complexité de l’environnement DCN.
En utilisant des analyses basées sur les données, nous proposons un framework
d’apprentissage automatique au-dessus de SDN pour la prédiction des performances
incast (trafic de type N-à-1 où plusieurs serveurs communiquent avec un client si-
multanément) [Handley 2017]. Grâce à sa capacité à ne pas s’appuyer sur des
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hypothèses et des approximations simplificatrices ni de connaissances "domain-
specific", le ML est utilisé pour construire un modèle généralisable facilement. La
construction du modèle ML est faite en suivant le workflow classique [Wang 2017]
d’application du ML aux réseaux. Nous avons réalisé des expériences intensives avec
le simulateur NS-3 et construit le dataset nécessaire. À l’aide de ce dataset, nous
avons conçu le modèle ML du temps de finition du trafic incast en utilisant la ré-
gression par forêt aléatoire (Random Forest). Les résultats de l’évaluation montrent
l’efficacité de notre approche de modélisation ML qui peut capturer avec précision
les relations complexes entre les différents paramètres et le temps de finition de
l’incast.

Gestion automatique et intelligente des commutateurs (Smart buffering)
basée sur ML et BO dans SD-DCN (Chapitre 6). Enfin, dans la troisième
contribution, nous tirons parti de l’approche de modélisation ML de la contribution
précédente avec l’optimisation bayésienne (BO) [Shahriari 2015] pour concevoir une
solution de gestion intelligente des commutateurs dans l’environnement DCN. Elle
offre de bonnes performances pour le trafic mixte incast et elephant, c’est-à-dire
un débit maximal pour le trafic éléphant et un temps de finition minimal pour
l’incast. Le choix de la taille de buffer et des paramètres AQM appropriés pour
une performance optimale est challengeant en raison de la complexité et de la dy-
namique de l’environnement des data centers. De plus, ces paramètres interagissent
de manière complexe, et il n’est donc pas facile de trouver des modèles analytiques
de performance qui puissent guider les choix. Nous sommes alors en présence d’un
problème d’optimisation difficile où la fonction objectif (modèle de performance) est
inconnue. Grâce à l’optimisation bayésienne, un outil puissant conçu pour résoudre
de tels problèmes, où l’objectif n’a pas de forme analytique simple. L’optimisation
bayésienne suppose toutefois que la fonction de performance puisse être évaluée
pour n’importe quelle combinaison de paramètres. Mais cela n’est pas possible
pour la prise de décision en mode on-line par la solution de smart buffering des
commutateurs. Nous utilisons le modèle de performance ML basé sur les données
historiques des configurations de paramètres passées et leurs performances observées
pour résoudre ce problème. Le modèle ML fournit de telles évaluations par le biais
de prédictions. Couplé au SDN, cette solution de gestion intelligente des commuta-
teurs basée sur BO&ML peut sélectionner les meilleurs paramètres afin de fournir
une bonne performance globale au trafic mixte incast et éléphant dans les DCN. La
solution utilise une optimisation dynamique automatique et peut s’adapter automa-
tiquement aux changements continus du trafic. Enfin, elle s’aligne sur la tendance
des réseaux autonomes avec pour vision de permettre aux systèmes réseaux de gérer
les charges de travail dynamiques de manière automatisée et, idéalement, sans in-
tervention humaine.

La vue d’ensemble de la thèse telle qu’illustrée dans Figure A.2 met en évidence
notre vision de l’Internet et les défis concernés et adressés par cette thèse.
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Figure A.2: Vue d’ensemble de la thèse

Remarques Finales

Finalement, nous tenons à souligner que l’approche ML défendue dans cette
thèse n’implique pas de sortir l’homme complètement de la boucle. Enfin et surtout,
des recherches de plus haut niveau pourraient tenter de déterminer les types de
tâches qui peuvent réellement être entièrement automatisées, celles qui nécessitent
toujours la présence de l’homme dans la boucle. Il conviendra de s’interroger sur la
manière dont l’opérateur humain et le ML peuvent collaborer pour rendre l’Internet
"Great Again".

Le ML en tant qu’alternative ou assistant aux opérations humaines pour faire
face à la complexité grandissante des réseaux est une approche prometteuse. Dans
le cas des réseaux, étant donné que les réseaux sont très présents dans notre vie
quotidienne, ils subissent une grande quantité de trafic et des exigences élevées en
termes de performance. Le système de réseau qui en résulte est alors complexe,
et cette complexité a tendance à s’amplifier. Le ML peut aider, comme nous le
montrons dans cette thèse. Mais, à ce stade, il est encore difficile de dire quels
problèmes le ML peut ou ne peut pas résoudre. Cependant, si nous ne pouvons pas
résoudre le problème, est-ce "normal" ou est-ce parce que les algorithmes ML spé-
cifiques au réseau ne sont pas encore développés. Toutes ces questions de recherche
intéressantes nécessitent des investigations et des collaborations supplémentaires.
Ces investigations peuvent passer par une recherche multidisciplinaire1, en com-
mençant par une consolidation des collaborations avec la communauté AI/ML ainsi
que des domaines plus larges.

1"Real problems are often interdisciplinary", Jennifer Rexford, Athena 2017
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Machine Learning & Bayesian
Optimization

B.1 Choosing the right ML estimator

Choosing the right ML algorithm is not the funny part of ML. There is no theory
yet, and the choice is much about art. However, different estimators are better
suited for different types of data and different problems. Figure B.1 from https://
scikit-learn.org/stable/tutorial/machine_learning_map/index.html pro-
vides users a bit of a rough guide on which algorithms to try for a specific problem.
The map on the website is interactive and provides documentation for each algo-
rithm.

B.2 BO Procedure

Figure B.2 provides an illustration of the BO procedure for a one variable function.
The plots show the mean and confidence intervals estimated with a probabilistic
model of the objective function. Although the objective function is shown, in prac-
tice, it is unknown. The plots also show the acquisition functions in the lower
shaded plots. The acquisition is high where the model predicts a high objective
(exploitation) and where the prediction uncertainty is high (exploration). Note
that the area on the far left remains unsampled, as while it has high uncertainty, it
is correctly predicted to offer little improvement over the highest observation

https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
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Figure B.1: Scikit-learn ML MAP
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Figure B.2: Illustration of the Bayesian optimization procedure over three iterations
(From [Shahriari 2015])
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