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Chapter 1

Introduction

The work performed during my PhD thesis focus on the formal verification of Dis-
crete Event Systems (DES), and more precisely the study of properties on the timed
languages defined in the context of Time Petri Nets. This work was accomplished
at the LAAS-CNRS (Laboratory for Analysis and Architecture of Systems) in the
Verification of Time Critical Systems team (Verification de Systèmes Temporisés
Critiques – VERTICS) and at the “Institut National des Sciences Appliquées” of
Toulouse (INSA-Toulouse).

This introductory chapter gives a quick overview of this thesis manuscript. We
first introduce different notions related to DES and also provide some motivations
behind our work.

1.1 Context and Motivations

Over the past 40 years, formal verification (on all kind of systems) has held an
important place in computer science. Computing systems are present all around
us and have a substantial impact in our daily life. Formal verification is a field of
computer science that focuses on providing theories, methods and tools for checking
that systems fulfill the requirements drafted by their designers. Formal Verification
is strongly applied in the context of safety critical systems (in the aerospace sector
for example) where the term safety is used to imply catastrophic consequences
(injuries, death, ...) in case of a failure.

We can list some outstanding examples of catastrophic failures, where problems
with a computer program or a controller had a preponderant role. Each of those
major incidents have attracted the attention of the general public at their time (see
for instance [Neumann 1994] for a list of such incidents):

• Therac-25 (1985–87) : Between June 85 and January 87, a computer-
controlled radiation therapy machine, the Therac-25, severely overdosed six
patients due to a software coding issue.

• Ariane 5 (1996) : The inaugural launch of the European Ariane 5 ended in a
blast. This failure was caused by an internal software exception that was not
handled during the execution of a data conversion from 64-bits floating point
to a 16-bits signed integer value.

• NASA Mars Pathfinder (1997) : The Martian rover started losing information
due to several system resets. The system was restarted due to a problem



2 CHAPTER 1. INTRODUCTION

of priority inversion and resulted in delays in relaying data, shortening the
duration of the mission.

• Charles Schwab Corporation (April 13, 2021) : In April of 2021, the Charles
Schwab Corporation transferred 1.2 millions of dollars to a 33 years old Amer-
ican due to a computer bug. The bank managed to get back three quarters
of the money before all was spent.

But formal verification is not here only to show how we could have adverted
failures. We can also present some examples where developing safety critical ap-
plications using formal methods was a success (a survey on this topic is available
in [Garavel 2012]):

• FM8501 (1985) : Formal verification of the 16-bit FM8501 microprocessor
using the NQTHM theorem prover. This was the first verified microprocessor,
followed by many others [Hunt 1994].

• Four color theorem (2005) : Computer-checked proof of the “four color the-
orem”, using the Coq proof assistant, a complex problem in discrete mathe-
matics with a long history of flawed and fallacious proofs [Gonthier 2007].

• Formal modelling of the EMV (Europay-MasterCard-Visa) protocol
(2011) : Formal modelling of the EMV protocol suite in the F# lan-
guage [de Ruiter 2011] and automated analysis of these protocols by joint
use of the FS2PV [Bhargavan 2006] and ProVerif tools [Blanchet 2004].

In my thesis, I focus on the formal verification of reactive, communicating sys-
tems, with a particular emphasis on properties that rely on the respect of hard,
real-time constraints.

The market demands for more efficient and automated solutions has pushed the
complexity of embedded systems to levels never imagined before. Model-checking
became then a natural solution, since it proposes a push-button solution to check
the safety and property on such complex systems. Model-checking catches errors
early in the system design phase, before they become very expensive to fix and it
can be easily integrated into a standard development cycle.

One of the fields we explore to tackle the verification of DES is fault diagnosis.
Fault diagnosis plays an essential role in the safe operation of industrial systems. We
focus on a particular property, based on the analysis of the behaviour of DES, called
diagnosability. First and foremost, we have to define two different notions, diagnosis
and diagnosability. Diagnosis (or online diagnosis) is the method performed to
detect and localize the cause of a fault. Diagnosability (or diagnosability analysis)
is a property that is true for systems such that it is always possible to detect and
locate any specific fault after its occurrence. We also often ask that detection occurs
within a finite delay, or after a finite number of “observable events”. Diagnosability
is analysed offline, on a model of the system, and can be defined as a property on
the language of DES.
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To summarize, this thesis deals with Discrete Event Systems, and more precisely
with the formal verification of properties about their temporal and timed behaviour.

1.2 Discrete Event Systems

Discrete Event Systems are model-based specifications that describe the behaviour
of a system. A DES is often described as a set of discrete elements (distinct states
and distinct events linking them). For example, a simple door can be abstracted as
a DES system with two possible discrete states, open and closed. An event in this
case is the occurrence of an action in the system that can change its state. In our
case, we could consider two possible events, closing and opening.

Recently, we have seen the rapid and complex evolution of DES all around
us. Several of these new systems rely strongly on new methods of programming
(“machine learning” for example). However, the validation and verification of such
algorithms is still undergoing research to reach the robustness of classical validation
and verification methods [Hand 2020]. Therefore, we still need robust systems not
relying on new methods for a lot of safety critical system projects (aeronautics,
automotive, etc) and some of the robust methods need to be extended to the field
of new algorithms.

DES can also be defined as a probabilistic model to convey more information
regarding the behaviour of the system in the form of a probabilistic event. However,
in this thesis, we mainly focus on DES with timed and deterministic behaviour.

In this work we strongly rely on the notion of model, which are much deeply
presented in the Chapter 2 of this thesis.

1.3 Observable Events and Sequence of Executions

One of the core concepts in the formal verification of DES is observability. Even if
a DES requires a large set of events E to describe its dynamics, it is often not the
case that a “bystander” (or outside observer) can observe all of them. Sometimes,
only a fraction of E is observable. This set of observable events, that we denote Eo
in the following, limits the set of properties that an observer can monitor. It also
implies the notion of unobservable events, Eu, such that Eu = E \ Eo.

In the following, we should also use the notion of label, that is a tag or marker
that can be used to represent a group of related events; such that all events with
the same label are indiscernible from each other by an observer. Like with events,
we will have observable and unobservable labels.

Finally, any reasonable observer should be able to record the order (and the
dates) at which actions occur. This leads to the notion of a sequence (or chain) of
events—that we should also call an execution—that will be the central notion that
we study in this work. The set of all labelled sequences of events in a system is
called its language. By looking at the “words” (labelled sequences of events) in this
language, we can express some properties of our DES. Like for instance reachability
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properties, that answers questions such as “can we observe an occurrence of the
event a ?”, temporal properties (properties about the order in which events can
occur in the system) of the form “it is true that the event a is always eventually
followed by the event b ?”

I will not focus on the formal verification of temporal properties in this work, but
rather on the verification that a system is diagnosable or not. Like in the work of
a detective, it is possible to infer a property about unobservable events by looking
at the clues given by the observable events in an execution, and the order and
date at which they occur. This problem is related to the notion of diagnosability,
meaning the property, for a system, that it is always possible to decide whether
some (given) unobservable behaviour occurred by looking only at the sequence of
observable events.

It turns out that many verification methods and techniques rely on the notion of
intersection between languages to express properties on a system; and also checking
whether such intersection is empty or not. This is for example the case with model-
checking [Clarke 1999], when using automata-theoretic approaches. Another exam-
ple is with the theory of supervisory control [Ramadge 1989], for deciding whether
it is possible to synthesize a supervisor given a discrete-event dynamic system.

One distinctive characteristic of our approach is that we use an indirect method
and do not directly compute a product between “state graphs”. Instead, we replace
the use of intersections, at the level of (sets of) behaviours, by a notion of compo-
sition, at the model-level. Meaning that we want to provide an effective method
where the (language) intersection of two models—for instance a system and its
observer—can be defined or computed using the “product” of these systems. In the
next chapters (see for example Section 2.2), we show that such a notion of product
is not easy to define in the presence of timing constraints. This is what motivates
most of our definitions and is at the basis of most of our results.

1.4 Petri Nets

In this work, we choose Petri nets as the main formalism used to define the specifi-
cation of a DES. They will be the syntax we use to describe the possible behaviours
of a DES.

A Petri Net (PN) [Petri 1962] is a discrete device that defines when events in a
system can occur and how they interact with each other; it is a calculus to reason
about concepts such as concurrency and causality. To stick with the problem we
want to address in this work, we will apply Petri nets to reason about observability.

Petri nets can be understood as a calculus because they are defined from a
deliberately small set of elements, interacting by using a very limited set of rules
(or operations). Actually, we only use four elements: transitions, places, arcs and
tokens. The events in a PN are associated with transitions, while states are as-
sociated with places. In its most basic form, all places contain the same kind of
resources, called tokens and the global state of a net is given by the amount of
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tokens in each of its places. Therefore the state of a system can be interpreted as
a mapping between places and the number of tokens that they contain. Finally,
places and transitions are connected together using (directed) arcs, in a graph-like
fashion, that expresses the conditions and the effects of each transition. We define
Petri nets more precisely in Chapter 3, as well as how we can extend this model to
take into account time.

Another interesting feature of Petri nets, that we should make use of, is the abil-
ity to describe a net using a graphical syntax. In the remainder, we use a standard
graph-like representation in which places are depicted with “circles”, transitions
with “boxes”, and names and labels appear as decorations of these elements. For
example, the DES for the door system described in section 1.2 could be modelled
with the net in Figure 1.1.

open

t0

closing

t1

opening

closed

Figure 1.1: PN of a door

Finally, Petri nets also define an algebra, because it is possible to define a set of
operations for combining nets together and inferring properties on the composition
of several systems from the behaviour of each of them. One such operation is the
synchronous product of Petri nets, sometimes also called parallel composition, that is
essential to the study of this model [Cassandras 2009]. This concerns for the notion
of compositionality, and the fact that it works well with labels, is what motivates
(in part) our choice of PN for the specification of DES.

Since we are interested in the study of timed systems, we should consider an
extension of PN, called Time Petri Nets (TPN), where we can also express con-
straints on the time needed before firing a transition. Basically, all transitions are
associated with a timing constraint (a time interval). In order to fire, we add a
new condition; the transition must stay enabled enough time to fulfil its timing
constraint. We should see that time can restrict the set of possible behaviours of a
system and, by doing so, it may greatly complicate formal verification.

In this work, we focus on the diagnosability of single faults in a TPN (see
Chapter 6). The idea is to check if it is possible to infer that a faulty event—an
unobservable event f—has occurred by looking only at the observable events in the
system. We will also consider the problem of diagnosability for “patterns of events”.
Our approach to this problem is based on an extension of the notion of synchronous
product that works well with TPN and the verification methods that have been
developed for their analysis (typically the State Class Graphs of [Berthomieu 1983]).
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1.5 Problematics

The main problematic of our work can be summarized by the following question:
how can we analyse the synchronous product of two TPN in an efficient way?

To explain why this problem is complex, we need first to explain what are the
two main problems that hinder the definition of a synchronous product between
Time Petri Nets.

A first problem has to do with the use of a dense time model. In this case, we may
have to deal with infinitely small time delays, which in turn may create infinitely
many states and (time-)transitions in our systems. This problem has been tackled
for TPN with the definition of State Class Graphs [Berthomieu 1983], in which
the timing information is abstracted using system of inequalities between “time”-
variables (or clocks). Actually the same problem occurs when we use a discrete
notion of time, and when we have large time constants. In this case, even though
the state space may be finite, we may still be faced with a scalability problem. In
my work, I propose an extension of the notion of State Class Graph that will be
useful for checking the diagnosability of TPN.

The second problem, and one of the main focus in my work, is the difficulty
to define a composition operation between TPN that is “compositional”; meaning
that it preserves the product of the behaviours of each net in the product. There
exists some solutions on the composition of Time Petri Nets, see [Peres 2011] in
particular, where the authors extend the TPN model with a new notion of priorities
between transitions (see the notion of IPTPN that we describe in Section 3.3.2.2). A
problem with this approach is that priorities add a lot of complexity when analysing
the behaviour of TPN, and we would like to avoid adding them if not necessary. In
my work, I will propose a new extension, based on an “internal” notion of product,
to solve this problem.

1.6 Contributions

My main contribution is the definition of a new formal model, an extension of Time
Petri Nets [Lubat 2019], that helps us solve the problems described in the previous
section.

Our extension is obtained by integrating a notion of “product of transitions”
directly in the model, with the idea that transitions with a common label must fire
synchronously, but without syntactically “merging” them or their timing constraints
together. This idea is more extensively explained in Chapter 4.

A motivation, and the main application of our extension to TPN, is to propose
a direct extension of the twin-plant construction [Jiang 2001a] to the case of TPN,
without any post-processing of traces (see additional information in Section 3.2).
We use this method to decide the single fault diagnosability problem on TPN and
to show that it can be simply extended to decide the diagnosability of more complex
behaviours; what is commonly called a pattern of behaviours.
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An advantage of our approach is that we can easily adapt it to several extensions
of TPN: adding priorities between transitions; inhibitor arcs; capacity arcs; etc.

In a more schematic way, the contributions of this thesis can be described by
the following itemized list of problems, for which we give solutions based on our
novel product construction:

1. Define a notion of product between labelled TPN that preserves composability,
meaning that the behaviour of the synchronous product of two TPN is exactly
the synchronization of the behaviours of each net taken separately (and on
their observable labels).

2. Define a good data structure and an algorithm for checking the diagnosability
of a single fault in a TPN.

3. Define a method to check the diagnosability of untimed patterns in a TPN.

4. Define a method to check the diagnosability of timed patterns in TPN. This
means that we can also add constraints on the date at which “faults” must
occur. We give a positive answer in the case of a restricted category of timed
patterns, that are interesting in practice. Our solution gives some indication
on the high complexity of this problem in a more general case.

One last contribution of this thesis (contribution number 5) could be interpreted
as an answer to the (natural) question “is your notion of product useful at some-
thing else than diagnosability ?”. While our initial publication on the subject also
includes “(observer-based) model-checking” as a potential application [Lubat 2019],
we decided not to include this direction of research in this manuscript, since it is not
that different from what we describe regarding diagnosability. We propose instead
a chapter that describes how we can transpose our notion of product to the HIPPO
framework [Hladik 2021], a specification language and a real-time execution engine
built as an extension of FIACRE [Berthomieu 2008a] with executable tasks. We
also mention a possible application to a problem known as opacity, that corresponds
to another class of “observability properties”, dual to diagnosability.

1.7 Outline of the Thesis

The thesis manuscript is decomposed into nine different chapters, including this
one. We briefly describe the purpose and content of each chapter in the list below.
To facilitate the reading of the manuscript, we recapitulate the contributions made
at the end of each chapter, in a dedicated section called “summary”.

• Chapter 1 : This chapter presents a quick overview of the problems addressed
during the thesis and of the context of our work. We introduce the notion of
DES and the motivation behind our work.
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• Chapter 2 : This chapter presents the different models used and a brief
overview of methods for the formal verification of systems. We make a focus
on model-checking techniques, which corresponds to the approach followed in
my work. The chapter also tackles the notion of diagnosability we use through
this thesis.

• Chapter 3 : Here we present the technical details regarding the syntax and
semantics of Time Petri nets. We then provide a quick overview on the notion
of products, first on TTS, then on TPN with some ad-hoc solutions. We
conclude by presenting the notion of (discrete-event and continuous-time)
state space graph, which are used for defining the semantics of TPN.

• Chapter 4 : This chapter is devoted to the definition of Product TPN (or
PTPN for short). We define our product operator and give the semantics of
PTPN. We also describe a new kind of behaviour, called timelocks, that can
occur with PTPN but not with TPN.

• Chapter 5 : This chapter describes the notion of State Class Graphs (SCG).
We start by going over the definition of “classical” TPN, then we show how it
can be naturally extended to PTPN. We also discuss the differences between
Weak and Strong SCG.

• Chapter 6 : This chapter describes an application of PTPN (and State Class
Graphs) to check the diagnosability of systems. After a brief overview of the
problem, we describe the notion of critical pairs and the concept of twin plant
in order to detect them. Then, we propose a method for the diagnosability of
a single fault and finally an extension of this method for the case of untimed
patterns.

• Chapter 7 : This chapter focuses on experimental results and on the tool that
was developed specifically to implement our different constructs and meth-
ods. We describe the different experimental tests and benchmarks we used to
test the applicability of our methods. We use these experiments to compare
performances between our approach, with PTPN, with an approach based on
IPTPN, that is also new, but that uses verification tools that were already
available at the start of my thesis. On the second section of this chapter we
also test the scalability of our approach and focus on more complex bench-
marks. Finally, we present a benchmark for the diagnosability of patterns.

• Chapter 8 : Before concluding, we discuss the problem of checking diagnos-
ability for a very specific example of timed pattern that cannot be addressed
with the method defined previously. We also discuss about what is needed in
order to apply this method on more general patterns and how our approach
could be automated.

• Chapter 9 : We use the conclusion as an opportunity to discuss two exten-
sions that are currently being investigated: first concerning another notion
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of observability, called opacity, and another concerned with an application of
synchronous product in the context of the HIPPO execution engine.





Chapter 2

State of the Art

Although we focus on the property of diagnosability in our work, it is interesting
to look at other verification problems related to the study of DES. We use this as
an opportunity to study the state of the art about the modelling of DES and the
different formal verification techniques that could be applied.

Our main technique of interest is model-checking [Clarke 1981, Queille 1982],
which is the approach we used during the PhD thesis. Model-checking is a set of
automated techniques to check whether a systems meets its requirements. This
verification method can also return an counter-example (a scenario) in the case
when one of the requirements is not met.

These techniques are useful during the development of safety critical systems as
described in Chapter 1. We give more details in Section 2.3 of this chapter. Model-
Checking, as indicated by its name, requires models. We start by an overview
of some formalisms that can be used to define a model, and their semantics, in
Section 2.1. Next we give some state of the art on the formal verification for DES
in Section 2.3.

2.1 Modelling of DES

This section is largely based on Introduction to Discrete Event Systems by Lafortune
and Cassandras [Cassandras 2009]. As a first approximation, a DES is a model of
a system in which we can represent the possible states using a finite set of elements
s0, s1, s2, ... and such that the current state of the system can change only using one
of a finite number of events. To better define the concept of DES, we need to give
more details about the two notions of events and discrete.

An event may simply be identified as a specific action (e.g. closing a door)
leading to a possible change in the state of the system (e.g. the door is closed). It
may occur spontaneously or when some conditions are all met (such as conditions
on the duration of an action for example). We should use the notation E to refer
to the finite set of possible events and we use ei to refer to elements in E.

The word discrete refers to the fact that the dynamics of the system is made
up of events. In a DES, state only changes at certain points in time through
instantaneous transitions. At each “moment” we can either select a particular
event (if its conditions are met) or we can select a null-event ε, to simply let time
elapse, without changing the discrete state of the system. In our case, the set of
states (with the initial state and all the reachable states) is called the state-space.
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It is a discrete automaton in which the transitions are tagged with events in E. We
also say that we have an event-driven system [Cohen 2000].

Time, just like events and states, is also generally thought of as discrete in this
kind of approaches. It means that, just like with a mechanical clock, time increases
in a discrete way (like the tick of a clock) and it can be expressed as an integer
number in a certain, fixed unit of time (which can be arbitrarily small). As said
before, in a DES, the evolution depends on the events of the system, which can
be active or not regarding the time of the systems or some other conditions (for
instance a probe detecting a change in the environment). In this context, time can
be a useful information since it can constrain the occurrence of some sequence of
events; for example to limit the duration between the occurrence of a signal and
the raise of an alarm.

In summary, DES have three main characteristics:

• The set of states is a discrete set.

• The current state can change only depending on events (which can be null).

• Time and other continuous data types can be added (a DES can be augmented
with more complex data) and may be used as conditions in the choice of events.

A word about Time : In DES, Time, as said before, is a useful information.
Some events may only occur after a certain amount of time. We usually store time
in two different kinds of data, clocks or domains. We will come back to these notions
later, this is why I should try to give some intuitions about the differences between
clocks and domains here:

• Clocks are simple counters which count how many units of time have elapsed
since they have been last reset. Usually, each event has its own clock which
is reset after its occurrence.

• Domains are systems of inequalities, updated when events occur. They usu-
ally represent constraints on (virtual) clocks, such as upper and lower bounds
on the time the system can stay in a given state.

A word about semantics : we use the notion of semantics as the method used
to describe the possible behaviours of the DES. A central notion in this context is
the one of executions; meaning sequences of events that can be observed in a run
of the system. We can combine time and events to have a better description of the
behaviour, which leads to a notion of timed sequence, such as:

(e, 3), (ε, 3), (e, 0), . . .

We call this sequence a (timed) trace. A trace describes a behaviour of the
system as follows: e occurs at 3 units of time, 3 units of time elapse and then
another event e occurs immediately after that.
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Traces of the form given above, where events are associated with their occurrence
date, describe what is called a signal semantics. Another possible semantics is based
on timed words, where we consider “time elapsing” as a special kind of event, such
as: (for more information about semantics of traces see [Popova 1991]):

3, e, 3, ε, e, . . . or 3, e, 1.2, 1.8, ε, 0, e, . . .

With the usual convention that a sequence of two delays θ, θ′ can always be replaced
with a single delay (of value θ+θ′), and that null delays can be omitted or arbitrarily
added.

These two choices of semantics can lead to slightly different results when we
define the properties of a system. It is the case, for instance, when studying the
decidability of the model-checking problem for some timed temporal logics. But
this will not be the case with the properties studied in my work and we will stick
with the timed words semantics for the remainder of this work.

A trace consisting of no events is called the empty trace and is denoted by ε
and the length of a trace is the number of events contained in it (counting multiple
occurrences of the same event separately). By convention, the length of the empty
trace is zero.

In the following, we give three examples of formal models (equipped with a
notion of time) that can be used to specify DES.

2.1.1 Henzinger’s Timed Transitions Systems

Our first formal model is the Timed Transitions Systems (TTS) defined by Hen-
zinger et al. [Henzinger 1992], which we will abbreviate by TTS-Henzinger (or even
simply by H-TTS) to avoid possible confusions. A H-TTS is composed of a set of
states and a set of discrete events, both evolving depending on the event occurring
or time elapsing. State can change based on two rules:

• An event e occurs and changes the current state.

• Time elapses; the discrete state does not change but we update the time spent
in the current state.

H-TTS is amongst the simplest models for timed DES and does not add more
rules than the one given in our general definition of DES, at the beginning of the
chapter. It is possible to extend H-TTS with a notion of labels and to define a
Labelled Transitions System as a result, see for example [Keller 1976] where this
notion is called “Named Transitions Systems”.

We give an example of H-TTS in Fig. 2.1. We use the semantics given
in [Henzinger 1992] to explain the behaviour of this system.

In a H-TTS each event has its own timing constraint, defined using an inter-
val, that indicates at which times the event can occur. Let’s take the example in
figure 2.1:
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f, [0,∞]

0

1 2

a , [2,4] b, [3,4]b, [1,2]

0

Figure 2.1: Example of a H-TTS

• States: the system has only three different states, {0, 1, 2}, with 0 the initial
state.

• Events: the system has four possible events/transitions, defined by the initial
state, the resulting state, and a label (in this case one of a, b or f).

• Timing Constraints: give the lower and upper bound for the duration one can
stay in a state before “firing” an event.

This H-TTS has four possible events with three respective labels: a, b and f .
In the following, we will often take the convention that f is the label of faults (an
example of unobservable action). Some of the events are constrained by timing
constraints (which are reset every time you leave the previous state). For instance,
after arriving in state 0, the system must transit to state 1, with event a, after a
time θ in the interval [2, 4].

H-TTS is a very simple model that is interesting for historical reasons, but
also because it is very close to the semantics that we should use to describe the
behaviour of our systems. It is basically a Finite State Machine (FSM) with labels
on the transitions, extended with timing constraints. We give two other examples of
timed models: Timed Automata and Time Petri Nets. The first adds the possibility
to have multiple clocks (and not only the time since we entered a state). It also
adds the possibility to express constraints and “invariants” using expression over
clocks.

Time Petri nets is to Petri nets what H-TTS are to FSM. We should see that the
addition of timing constraints on (Petri) transitions is not totally straightforward;
in particular because it complicates composition. We give more details about each
of these models below

Both models can adequately describe the behaviour of timed DES and provide a
framework to analyse and implement DES efficiently. In each case, it is also possible
to find verification tools that can be used to automatically prove properties about
a model.
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2.1.2 Timed Automata

Automata are the most basic form of DES models (almost like a TTS). Timed
Automata (TA) were first introduced in [Alur 1990]. It is an extension of FSM in
which transitions are decorated with expressions over clocks and where the state is
a pair consisting of the current, discrete state, as well as a valuation for the clocks
(we use Q for the set of clocks).

In a timed automaton, each event has a guard (a constraint over clock value)
which indicates when such event can be fired and a set of clocks to be reset when
the transition is fired. Timed Automata are defined by their set of states, their set
of events (labelled or not), their initial state and their set of clocks. In a TA, like
in the H-TTS model, the evolution of the system still depends on two main rules:

• An event e occurs and changes the state.

• Time elapses and the set of discrete clocks evolves. A specific condition of
TA, that makes formal verification feasible, is that all clocks evolve (increase)
with the same constant rate.

We can explain the semantics of TA using simple examples.

Example 1: Our first example is a Timed Automata (figure 2.2) that corresponds
exactly to the H-TTS given in Figure 2.1. This TA is composed as follows:

f

0

1 2

a , x≥2
{x}

b, x≥3
{x}

b, x≥1
{x}

x≤2 x≤4

x≤4

Figure 2.2: Example of a TA

• States: {0, 1, 2}, where 0 is the initial state..

• Events: {0 to 1(a), 1 to 2(f), 2 to 0(b), 1 to 0(b)}.

• Clocks : a single clock, x, that is reset each time we follow a transition after
occurrence (this is the meaning of “inscription” {x}).
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The difference is in the timing constraint. In TA, timing constraints can be
found on events and on states, which are called invariants. Invariants are not from
the classical TA model. Here, for example, you have to leave the state 0 before 4
unit of time and you can only go through the first event after an unit of time (which
is exactly the behaviour of our previous example).

Example 2: The dissociation between states and clocks generates new be-
haviours. This is the case in our second example, Figure 2.3. In this TA, the
clock y is not reset until the transition from 1 to 2. If the system does not instan-

0

2

y=0,
{y}

x≤2,
{x}

1

Figure 2.3: Example of a TA with a possible Timelock

taneously go from state 0 to state 1, it is not possible to go from state 1 to state 2
because of the impossible solution between the invariant (on y) and the condition
on the event.

This behaviour creates a locked situation called a deadlock or more precisely a
timelock in this situation.

As you can see, TA are almost like TTS in their construction. They are intuitive,
easy to use, easily combined and there is a large body of research on methods for
analysing them.

2.1.3 Time Petri Nets

Our final example of timed model is an extension of Petri Nets (PN) [Petri 1962]
with timing constraints over the transitions. We will focus on this model, due
to [Merlin 1974], that we simply call Time Petri Net (TPN) in the following. We
should not consider other models, such as Petri nets with timing conditions over
the places or the arcs. See [Boyer 2008, Bérard 2013] for more information about
how to compare these different timed extensions of Petri Nets.

In a Petri net, events are associated with transitions. For an event t to occur
(we say that transition t is fired), the condition is that there are enough tokens in
the places connected as input to t. We say also in this case that the transition is
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enabled. After firing a transition, we remove tokens from the input places and add
tokens to the output places.

In a TPN, we also add a condition on the time the transition stays enabled
before firing it. Like in the transition of a H-TTS, this condition is a time interval.
In practice, it means that for every enabled transition we need to have either a
“timer”, or clock, that captures the delay since the transition was enabled (without
interruption); or a “firing domain”, that captures the possible dates in the future
at which the transition can fire.

The choice of clocks versus domains is not really meaningful when defining the
semantics of TPN, but they will later lead to two different ways of abstracting the
timing behaviour. In particular, the original approach defined in [Berthomieu 1983]
is based on firing domains and has resulted on the definition of a notion of “Weak”
State Class Graph (SCG). This is the approach we will follow in the next chapter.
By contrast, the use of clocks lead to a notion of Strong SCG, that we should also
address in the following.

The condition on time for firing an enabled transition, t, is that t can be fired
immediately: its firing domain includes 0 or, dually, the value of its timer is in
the time interval associated with t. We also need to define when the timer associ-
ated with a transition is updated/reset. We will rather say that the transition is
reinitialized when its timing constraints are reset and, in the opposite case, we say
that the transition is persistent. Basically, a transition is persistent when it was
not just fired, or when it did not suddenly become enabled as the result of firing a
transition. We also have several possible choices in the semantics of reinitialization,
see e.g. [Bérard 2013]. We will define more precisely our notion of persistent and
reinitialized transitions in Chapter 3.

Like with the H-TTS and TA models, the state of a TPN evolves depending on
two main rules:

• A transition t is fired and changes the markings of places. In a TPN, the
firing of a transition is immediate (takes 0-time) and atomic. In particular,
all transitions that are enabled but not persistent are reset at the same time.

• Time elapses and we update the firing domains of all enabled transitions.

While this is globally similar to the behaviour of H-TTS and TA, we can stress some
important differences concerning the rule for letting time elapse. These differences
will have an impact on some of our results.

Since no transitions are fired when time elapses, the set of enabled transitions
stays the same. This is one difference with TA, since the expression associated with
an event in a TA may change value when clocks increase. Another difference is
that the timing constraints of enabled transitions are strict; meaning that it is not
possible to wait for a duration θ > 0 if, for some enabled transition t, the value of
θ is not in the firing domain of t. In short, it is not possible in a TPN to gain or
lose events by simply letting time elapse.
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Example of TPN: We give, Figure 2.4, an example of TPN similar to our first
example of TA (see Figure 2.2).

You may notice that this is a very restricted example of TPN since, at any
given times, there is exactly one token in the whole net. We chose this example
to underline the similarities between the three models considered so far. More
precisely, we are in a special case, of a very restricted class of nets, called Marked
Graphs, such that every place has exactly one incoming and one outgoing arc.
We consider more complex examples later in this chapter, with synchronizations
and possible conflicts between several places; see also our examples used in the
“Experimental Results” (Chapter 7).

Another difference between automata and Petri nets is the ability, in the latter,
to model an unbounded number of resources; this is the case when a sequence of
transitions may strictly increase the markings of a net. We should not study the
case of unbounded nets in our work, even though it will not change most of our
results (except when we consider the complexity and/or decidability of some of our
methods).

p0

p1

f

f

t0a [2, 4]

t1

b

[1, 2] p2

t3 b

[3, 4]

Figure 2.4: Example of a TPN

2.1.4 Synchronous Networks of DES

It is possible to enrich models for DES by defining a notion of “networks of models”,
in which different components can synchronize on common observable events. An
emblematic example of such model, in the untimed case, is Arnold and Nivat’s
synchronized network of automata [Arnold 2002].

We can define an abstract operation of product between DES as follows, which
can be interpreted as some kind of Cartesian product between the behaviours of
components. This definition can be extended to more than two systems and/or
with a notion of synchronization vectors.

Definition 1 (Synchronous product of DES). Given two DES, N1 and N2, with
observable events Eo,1, Eo,2, the synchronous product N1‖N2 is a DES with set of
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states S = S1 × S2, events: E = E1 ∪ E2; and clocks : Q = Q1 ∪ Q2, such that
(s1, s2) can transition to (s′1, s′2) in N1‖N2 if and only if one of the following three
conditions occurs:

• s1 transitions to s′1 in N1 and s2 transitions to s′2 in N2 on a common, ob-
servable event.

• s1 transitions to s′1 in N1 on an event that is not in Eo,2 and s′2 = s2.

• s2 transitions to s′2 in N2 on an event that is not in Eo,1 and s′1 = s1.

In the following, we use the product of two copies of the same system, N‖N , in
order to check properties about pairs of executions that have the same observable
events; in the same order and at the same dates. This is the reason why this product
operation is central in my work.

While we can define the synchronization product in an abstract way, it behaves
quite differently depending on the actual choice of formalism we use to model the
DES. We review the situation for the three formalisms we listed in the previous
sections.

In the case of Timed Automata, a network of TA can always be “compiled into”
(interpreted as) a single TA by statically computing all possible interactions (at the
cost of increasing the size of the model). In this case it is necessary to consider the
conjunction of invariants on each state, and the conjunction of the clock expressions
on the synchronized transitions. This is the reason why most formal definitions of
TA avoid the complexity of directly handling networks of TA.

The same is not possible for H-TTS; since different TTS (automata) in a network
may enter their new state at a different time, we may need to keep track of several
“timing intervals” to check which vector of transition can fire at a given date.

The situation with Petri nets lies in between these two cases. In the absence of
time constraints, it is always possible to replace a network of nets by simply fusing
copies of transitions that have the same, observable event. This is a conventional
operation on Petri nets, also called synchronous product. (We define this operation
more formally in the next chapter.) We can illustrate the synchronous product
between two Petri nets using a simple example, see Figures 2.5 and 2.6. Basically,
we create new transitions by fusing together copies of transitions that have the same
label.

One of the main contribution of my work is to define an extension to TPN that
allow to build the synchronous product of two or more systems together.

2.2 Comparing Expressiveness

We have briefly described three possible formalisms to specify timed DES, with
TA and TPN taking the upper hand. For the sake of brevity, we did not mention
other possible choices, such as: timed extension of process calculi, for instance
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Figure 2.5: Two PN before their product
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Figure 2.6: Synchronous product of the two PN in Figure 2.5
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tCCS [Moller 1990]; synchronous languages; etc. A natural question to ask is:
“Which among these models is better ?”

An argument often used in favour of TA is that of conciseness and “primitive-
ness”, since all the (discrete) states in the TA are explicitly given in its definition;
whereas with TPN we must work at two different levels: places in the syntax of the
net and markings in its “state graph” (its semantics). Put differently, assuming we
want to study the impact of adding time to a formal model, we may as well choose
to start with the most basic formalism.

This is not a clear cut point. In practice, tools and models based on TA rather
use networks of Time Automata, with synchronization on channels. This is the
case, for instance, with the tool Uppaal [Larsen 1997]. Comparatively, the notion
of synchronization is intrinsic of TPN. Moreover, TPN do not use a separate (syn-
tactical) category for clocks and do not need to add separate notions for (time)
invariants and clock resets.

A more formal way to approach the problem is to study the question of ex-
pressiveness between models; meaning whether it is always possible to “simulate”
or “interpret” a system expressed using a model in language A, using a model in
language B. Other features that can be taken into account here are the complexity
of computing the interpretation from a model; the size of this interpretation; and
the notion of equivalence used to compare models.

It is known that TA are strictly more expressive than TPN [Lime 2003a,
Bérard 2008] and there are methods to build an equivalent TA from a TPN. In
this context, timed bisimulation is often considered as the right notion of equiva-
lence but, in our case and since we are mainly focused on properties about traces,
language equivalence would be a more interesting choice. We will use these results
in more details in Chapter 4 (see also the equivalence results given in [Lubat 2019]).

Working with a less expressive model may actually have its advantages. In
particular, it could be the case that some classes of problems are easier to deal
with using TPN rather than TA. Also, irrespective of the “theoretical complex-
ity” of a problem, it may be the case that some problems are easier to handle,
in practice, using tools designed for TPN rather than with TA. For instance, we
have not been able to adapt our approach for checking diagnosability over TPN
using tools developed for TA, such as Uppaal (https://uppaal.org/) or TChecker
(https://www.labri.fr/perso/herbrete/tchecker/), due to limitations of these tools.
In brief, none of these tools support the verification of a specific LTL formula, of
the kind ♦dead, meaning that every execution must eventually end with a deadlock
or a timelock. (We give more information on these notions later on.) Yet this
is precisely the kind of property we use with the “twin plant” approach to check
diagnosability [Boussif 2016].

In this PhD thesis, I did not attempt to prove deep theoretical results about
the limitations of using TPN for checking diagnosability, when compared with TA.
The focus is more on developing pragmatic methods for checking diagnosability,
practical enough to serve as a basis for implementing a dedicated verification tool.
As a result, one outcome of my work is to provide some support to the idea that

https://uppaal.org/
https://www.labri.fr/perso/herbrete/tchecker/
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TPN offer a good compromise between expressiveness (it is good enough to model
the systems we need to check) and performance of the verification when it comes to
analysing diagnosability. This is in line with the observations made in [Lai 2008]—a
paper about diagnosis, not diagnosability, and in the untimed case—where the au-
thors conclude that while automata-based approaches are more general, Petri-based
approaches present “significant advantages in terms of computational complexity”.

Now that we have presented the two main models for our DES representation,
and a quick comparison between them, we will focus on the notion of verification.

2.3 Formal Verification and Model Checking

Formal verification is a field of computer science concerned with developing tech-
niques for checking that a system, or protocol, satisfies the requirements defined by
its designers. These requirements can be expressed using informal, natural language
specifications. But more formal approaches are possible, like for instance the use of
modal logics (see for instance our use of temporal logic in Chapter 6) or the use of a
“golden model”, that is a formal model representing the good, expected behaviours
of the system. In the latter case, verification often amounts to checking equivalence
between the implementation and specification models.

Checking the diagnosability property on TPN will require a slightly different
approach, in which we analyse the common observable behaviours in two copies of
the same model.

There is a large collection of verification techniques, that can be classified based
on the methods used to abstract the semantics of the system. We can cite de-
ductive techniques, in which the abstract behaviour is defined from requirements
expressed as inductive properties—these properties must be defined manually by
the user and their proof may rely on the use of proof assistants—; static analysis, in
which the abstract behaviour is automatically derived from the actual system, for
instance from programming code, using predefined approximations (possibly using
some inputs or parameters from the user); and model-checking, where the user must
provide a model specification of the system and the property (for example a finite
automaton or a Petri net).

2.3.1 Model Checking

The main verification method used in my work is Model-Checking. It is a col-
lection of automated techniques first introduced independently by Joseph Sifakis
and Jean-Pierre Queille [Queille 1982] and Edmund M.Clarke and Allen Emer-
son [Clarke 1981]. In the most basic way, model checking operates on a discrete
representation of the model’s “state space”, usually described as Kripke structures
or Labelled Transition Systems (LTS) [Clarke 1999]. Both cases are graph-like data
structure, with a notion of transition relation between states and of initial state.
The only difference between these models is that, in Kripke structures, informa-
tion is stored on the states/nodes, whereas it is stored on the transitions in a LTS.
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More formally, a Kripke structure is equipped with a function that associates sets
of (atomic) properties to each state/node in the graph, whereas a LTS is equipped
with a function that associates properties to transitions.

In my work, I will use a combination of LTS and Kripke structure—a Labelled
Kripke Structure—in which states are labelled with markings of a Petri net and
transitions are labelled with (vectors of) transitions, or labels. We should also work
on an abstracted version of the state space, where we eliminate timing information
and time elapsing transitions. This is exactly the notion of State Class Graphs
(SCG) introduced by Berthomieu et al. [Berthomieu 1983] (see Chapter 5 of this
thesis).

2.3.2 Temporal Logic

An important class of model checking methods rely on the use of temporal logic to
specify the property that we want to check on a model. Temporal Logic is a special
case of modal logics that includes operators to express constraints about the order in
which events can occur. It was defined by Arthur Prior in the 1950s [PRIOR 1957]
and has proven to be a good candidate to express properties about concurrent,
reactive systems.

We can distinguish two main branches of temporal logics, depending on how
they interpret “executions” in a system [Clarke 1988]. In “linear” temporal logics,
the evolution of a system is treated as if each state has a unique possible future.
Thus, linear temporal logic formulas are interpreted over linear sequences (traces)
and describe the behaviour of single executions of the system, independently from
each other. In “branching” temporal logics, such as CTL, we consider that states
may lead to various possible futures. Hence, in this case, formulas are interpreted
over infinite computation trees, describing the possible nondeterministic behaviour
of the system.

There exist many different temporal logics, that can be compared upon their
expressiveness (which properties can be specified ?) and complexity (how complex
it is to check a given property ?). For the sake of brevity, we will only mention
very briefly two examples, LTL and CTL, using only examples. You can find many
textbooks, for instance [Clarke 1999], that provide comprehensive information on
this topic. We will also mention “timed” extensions of temporal logics, where it
is possible to also express constraints on the duration of an action, or the time
separating the occurrence of two events. I will give a single example of such timed,
temporal logics, namely Metric Interval Temporal Logic (MITL).

Linear Temporal Logic (LTL) is the archetype of linear temporal logics. It was
first presented by Pnueli in 1977 [Pnueli 1977]. It is an extension of propositional
logics with two modalities, finally (♦) and globally (�), to express conditions about
the future in an execution path. Basically, given an execution path and a formula
φ of LTL:

• Finally φ (or ♦φ) holds if φ holds sometimes in the future of the path.
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• Globally φ (or �φ) holds if φ holds everywhere, on the entire subsequent path.

A formula is valid for a system if it holds for every maximal executions; meaning
all infinite executions or executions that end with a deadlock.

We can take the example of a LTL formula about events occurring in our main
TPN example (see Figure 2.4).

� (a⇒ ♦ (b ∨ f))

This formula expresses the condition that, every time an event with label a
occurs, it must be the case that an event with label f or b occurs in the future.
This formula is satisfied on our particular example of nets. This is an instance of
“leadsto” formula, a pattern that will arise in our work on diagnosability.

Note that we can also define versions of LTL that deal with states, instead of
events, or that deals equally with both. In point of fact, I will use a LTL model-
checker in my work, called selt [Berthomieu 2008b], part of the Tina toolbox, that
combines both states and events in LTL.

Computational Tree Logic (CTL) is a branching-time logic first introduced
in 1986 [Clarke 1986]. CTL is a modal logics that includes both “path operators”,
that talks about occurrences of events given one execution π (like in LTL), and path
“quantifiers”, that constraint some or all paths starting from a given state s. Unlike
with LTL, where a formula is true if it is satisfied on all (maximal) executions of
the system, we define the satisfiability of a CTL formula φ on states. Hence, in
the same system, we can have states that satisfy and other that dissatisfy the same
property.

• All φ (or Aφ) holds for an event s if φ holds on all the path starting from s.

• Exist φ (or E φ) holds for an event s if there is at least one path starting from
s where φ holds.

• Globally φ (or Gφ) holds for a path π if φ hold everywhere on π.

• Finally φ (or F φ) holds for a path π if φ eventually holds (somewhere) in a
state of π.

With our choice of syntax, a CTL formula equivalent to our previous LTL ex-
ample is:

AG (a⇒ AF (b ∨ f))

LTL and CTL are not comparable, in the sense that some properties can be
expressed in one logic but not the other. For instance, the LTL property ♦� a
holds if event a always occurs infinitely often. This property cannot be expressed
in CTL.

In the case where the property is expressible in both logics, one may be inclined
to use tools for LTL instead of CTL. A pragmatic reason is that there exist efficient
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algorithms for LTL model-checking, that typically require less memory than with
CTL, and that can benefit from on-the-fly computations. The situation is even more
conclusive in the case of TPN, when using SCG approach. Indeed, while it is possible
to compute a SCG abstraction that preserve branching, the result is often much
more complex than with SCGs that only preserve traces (and are therefore enough
when checking linear time properties). In my work, I will show that diagnosability
can be reduced to the problem of checking a “leadsto” property, that is a class of
formulas expressible in both LTL and CTL. Also, instead of reusing a general LTL
model-checker, I will define a specific model-checking algorithm, specialized for this
single formula.

Metric Interval Temporal Logic (MITL) is a fragment of Metric Temporal
Logic (MTL), a logic in which the temporal modalities are replaced with time-
bounded versions, such as ♦[1,3]φ, that constrain the date at which the event must
occur [Henzinger 1998]. In MITL, we add the requirement that every time interval
in a time-bounded operator must not be punctual. Hence MITL rules out the
possibility to enforce that two different events must occur at the same date. One
example of MITL formula is �♦[0,1]a, meaning that event a must occur at least
once every unit of time.

We will not use or refer to timed logics in the following, but mentioning MTL
and MITL gives us the opportunity to make some interesting remarks. First,
contrary to LTL and CTL, the model-checking problem for full MTL is unde-
cidable [Ouaknine 2005]. On the opposite, while MITL is decidable, its theoret-
ical complexity is very high; it is EXPSPACE, whereas model-checking LTL is in
PSPACE. The decidability of MITL with respect to MTL is an indication that
checking synchronicity between events is difficult. Hence an indication that the
problem I address is difficult. Also, the complexity of MITL indicates that it may
be a better idea to use “untimed” verification methods on the SCG (an abstract se-
mantics of TPN where timing information has been discarded). Finally, the MITL
model-checking algorithm is complex and there are no mature verification tool that
implements it (see MightyL [Brihaye 2017] for a prototype implementation). This
is another reason to avoid using timed logics.

2.4 Fault Diagnosis

Fault diagnosis play an essential role in the safe operation of industrial systems.
Diagnosability was introduced in the context of DES by Sampath [Sampath 1995],
where the authors define the notion of diagnoser using a property over the observ-
able language of a system. An extension of this problem in the context of timed
DES is due to Tripakis [Tripakis 2002], that defines a method for checking the diag-
nosability on Timed Automata. It took several years to see the problem addressed
in the context of Time Petri nets [Basile 2018, Liu 2014, Ghazel 2009], which may
indicate that the problem is more complex in this case.
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First and foremost, we have to define two different notions, diagnosis and diag-
nosability [Lin 1994]. Diagnosis (or online diagnosis) is the method performed to
detect and localize the cause of a fault. Diagnosability (or diagnosability analysis)
is the ability to detect and locate any fault within a finite delay after its occurrence.
Diagnosability is analysed offline.

We mainly focus on diagnosability in this work and also focus on the use of labels
to define observable events. The properties of diagnosability can also be studied
using stochastic models [Bérard 2017]. However we will not address this approach
in my thesis.

2.4.1 Diagnosability for DES

Diagnosability was first introduced as a property over the accepted language of
automata [Sampath 1995]. In this work, the authors give necessary and sufficient
conditions for diagnosability and introduce a notion of diagnoser, a model which is
mapped on the online observation of a system in order to detect the occurrence of
a faulty event. Since the diagnoser-based approach has to check all the states, it
suffers from state explosion problem.

This definition of diagnosability can easily be transferred to Petri
nets [Ushio 1998], where the net marking is observable and all transitions are un-
observable. In this paper, a simple diagnoser and sufficient conditions for diagnos-
ability are proposed.

In [Jiang 2001b], an algorithm based on the synchronous product (or parallel
composition) of a DES with itself, called a twin-plant, is proposed. The idea is to
check properties by comparing different behaviors in the same DES. In [Yoo 2002]
a comparable polynomial-time algorithm for deciding diagnosability is presented.
The idea here is to synchronize two copies of the DES, one including the faulty
behaviour and the other without any faults. The product of this modified copy and
the original is called a verifier and may be simpler to analyse than the twin plant.
In each case, an algorithm is proposed to decide diagnosability based on finding
specific “cycles”, or infinite behaviours, in the execution of the system. The system
is diagnosable when no such cycle can be found.

In [Xue 2004], the authors compose a net called verifier net to analyse the
diagnosability of PN. The idea is to check the verifier net, with a reachability
analysis to conclude on the diagnosability.

In all these previous works, We can identify two main variants of the diagnos-
ability problem: K-diagnosability and ∆-diagnosability.

• K-diagnosability is a qualitative analysis where K is an (integer) bound on
the number of events that can occur in a system between the occurrence of a
fault and its detection [Basile 2012].

• ∆-diagnosability is also a qualitative analysis where ∆ is a bound on the time
needed to detect the fault [Tripakis 2002].
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Note that we focus on the diagnosability of “permanent faults”, meaning faults
for which no recovery is made. A notion of intermittent faults also exists, see for
example [Contant 2004],[Jiang 2003] or [Boussif 2021].

2.4.2 Diagnosability in the Presence of Time

Diagnosability analysis between timed and untimed models are quite different. The
information added by the presence of time can be useful to detect faults, for example
because we find inconsistencies in the date at which some event occurs. This means
that a system may not be diagnosable if we disregard timing information but may
become diagnosable when we consider time. However, the addition of time also
brings an extra layer of complexity when analysing a model.

Some works have addressed the diagnosability of TPN [Liu 2014, Wang 2015,
Basile 2017]. While they propose substantially different methods, they all rely on
a variation of the SCG construction of [Berthomieu 1983].

A notion commonly used is the notion of critical pair [Jiang 2001a], meaning a
pair of maximal executions in the model, that have the same observable, at the same
dates. A pair is critical if one execution has a fault and not the other; and a system
is diagnosable if it has no critical pairs. The twin-plant method of [Jiang 2001a] is
representative of this group. The drawback of this approach is that we may have
more states in the twin-plant than in the system. An advantage is that this method
is conceptually simple.

The approach in [Basile 2017] starts by building a Modified SCG that over-
approximates the possible (timed) executions of a system. The system is diagnos-
able if no critical pair is found at this point. Indeed, time can only limit executions,
not add new behaviour. If a candidate critical pair is found, it is necessary to solve
a number of Linear Programming problems (LPP) to check whether this scenario is
feasible (whether it is possible to find consistent times for the occurrence of events).
This approach has several limitations, in particular, it may require to solve a large
number of LPP.

In [Liu 2014], the authors define a notion of Augmented State Class (ASC)
graphs, which are SCG augmented with diagnosability information, and use a
method to split time intervals in order to only keep deterministic paths in the ASC
graph. The interval splitting phase may create a large number of new active states
that can lead to a state explosion problem. The approach in [Wang 2015] relies
on a combination of SCG and an enumeration of all the firing sequences between
active states.

In [Pencolé 2021] the authors define the notion of pattern and the diagnosability
of this new behaviour in a TPN. This notion of pattern is more explored in the
Section 6.4 of this thesis.

Our approach is quite different and relies on the use of the SCG construction
for an extension of TPN that integrates the notion of “twin-product”.
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2.5 Summary

This Chapter introduced most of the state of the art concerning my work. To
summarize:

• Discrete Event Systems are model-based description of real systems that de-
scribes its behaviour. We mainly focus on Petri Nets to model DES in this
work.

• Formal verification is a domain of computer science that describes methods
for checking (or proving) that a system follows correctly the requirements
defined by its designers.

• Properties used during formal verification can often be expressed as a con-
straint over the language of DES. Our approach relies on checking properties
over the intersection of two or more languages.

• Diagnosability (or diagnosability analysis) is the ability to detect and locate
any fault within a finite delay after its occurrence. It is a property which
can be checked via the intersection of language using a method known as the
twin-plant construct [Yoo 2002].

In Chapter 3, we focus on TPN and introduce most of the technical details that
we need to describe our extension of TPN.



Chapter 3

Time Petri Nets and other
Technical Background

In this chapter we present Time Petri nets model. This formalism is classically used
to model DES with time. First, we introduce all the basis of the TPN models and
specifically timing constraints. We then quickly focus on the notions of execution
and trace which are used to define equivalence between models. We also introduce
the product of TPN and different ways to process it.

3.1 Definition

A Time Petri Net (TPN) is a Petri Net where each transition t is decorated with
a (static) time interval Is(t) that constrains the time at which it can fire. A
transition is still enabled when there are enough tokens in its input places as for a
classical net. Once enabled, transition t can fire if it stays enabled for a duration θ
that is in the interval Is(t). In this case, t is said time enabled. We can define more
formally a TPN.

Definition 2 (Time Petri Net). A Time Petri Net (TPN) is a tuple
〈P, T,Pre,Post,m0, Is〉 in which: 〈P, T,Pre,Post〉 is a Petri Net with P and T
the set of places and transitions; Pre, Post : T → P → N are the precondition and
postcondition functions; m0 : P → N is the initial marking; and Is : T → I is its
static interval function (with I =Q≥0 ×(Q≥0 ∪{∞}) for the set of all possible time
intervals).

To simplify our presentation, only the case of closed intervals of the form [l, h]
or [l,+∞[ is considered. Moreover, for a time interval I its lower bound is denoted
↓I and its upper bound ↑I. For a transition t with its static interval function Is(t),
its earliest firing time is denoted αst = ↓Is(t) and its latest firing time βst = ↑Is(t) ,
i.e Is(t) = [αst , βst ].

In the following, it is considered that transitions can be tagged using a countable
set of labels Σ = {a, b, . . . }. The special constant ε (not in Σ) is also distinguished
for internal, silent transitions. A global labelling function L : T → Σ ∪ {ε} that
associates a unique label with every transition. It is assumed that there is a
countable set of all possible transitions (identifiers) and that different nets have
distinct transitions. The alphabet of a net is the collection of labels (Σ) associated
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with its transitions.

Example The figure 3.1 uses the same example as the one used in Chapter 2.

p0

p1

f

t0a [2, 4]

t1

b

[1, 2] p2

t3 b

[3, 4]

Figure 3.1: Example of a TPN

This TPN 〈P, T,Pre,Post,m0, Is〉 is composed of:

• Places: P = {p0, p1, p2}.

• Transitions: T = {t0, t1, t3, f}.

• Precondition and postcondition functions:

Pre =

p0 p1 p2


0 1 0 t0
1 0 0 t1
1 0 0 f

0 0 1 t3

Post =

t0 t1 f t3 0 1 1 0 p0
1 0 0 0 p1
0 0 0 1 p2

• Initial marking: m0 = {0, 1, 0}

• Static Intervals for each transition:

Is(t) =



[2, 4] if t = t0

[1, 2] if t = t1

[3, 4] if t = t3

[0,+∞] if t = f
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Moreover, a labelling function has been added to this model such that:

L(t0) = a,L(t1) = b,L(t3) = b,L(f) = ε

with the alphabet Σ = {a, b}.

3.2 Semantics of a TPN

To define the behaviour of a TPN 〈P, T,Pre,Post,m0, Is〉 a marking m and the
set E(m) of enabled transitions are defined as:

Definition 3 (Marking). A marking m is a (total) function m : P → N from places
in P to natural numbers.

Definition 4 (Enabled transition). For a marking m, a transition t in T is enabled
if and only if m >̇ Pre(t) (the pointwise comparison between functions is used).

Definition 5 (Set of enabled transitions). E(m) is the set of transitions enabled
for a marking m, i.e. E(m) = {t | t ∈ T,m >̇ Pre(t)}.

Now it is possible to define a state of a TPN:

Definition 6 (State). A state s of a TPN 〈P, T,Pre,Post〉 is a pair s = (m,ϕ)
in which m is a marking, and ϕ : T → I is a mapping from transitions to time
intervals, also called firing domains such that: ∀t ∈ E(m), ϕ(t) ∈ I ∧ ↑ϕ(t) ≤ βst .

Intuitively, if t is enabled for a marking m, then ϕ(t) contains the dates at
which t can possibly fire in the future. For instance, when t is newly enabled, it is
associated to its static time interval ϕ(t) = Is(t). Likewise, a transition t can fire
immediately only when 0 is in ϕ(t) and it cannot remain enabled for more than its
timespan, i.e. the maximal value in ϕ(t).

For a given delay θ in Q≥0, we denote ι − θ the time interval ι shifted (to the
left) by θ: e.g. [l, h]− θ = [max(0, l− θ),max(0, h− θ)]. By extension, ϕ .− θ is used
for the partial function that associates the transition t the value ϕ(t)−θ. This oper-
ation is useful to model the effect of time passage on the enabled transitions of a net.

We now go into more details about the semantics and behaviour of TPN. To do
this, we must begin by formally defining what a TTS is. Our definition of a TTS
came from [Bérard 2005a] where the authors define more representations of a TPN
(which is different from the H-TTS in Chapter 2).

Definition 7 (Timed Transition Systems). A Timed Transition System (TTS)
over the set of actions A is a tuple [[N ]] = 〈S, s0, A,−→〉 where S is the set of states,
s0 ∈ S is the initial state, −→ ⊆ S × (A ∪ {ε} ∪Q≥0)× S is the set of edges. If
(s, α, s′) ∈ −→, it is written s α−→ s′.
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The following definition of the semantics of a TPN is quite standard, see for
instance [Bérard 2005b, Berthomieu 2006]. In general terms, the semantics of a
TPN is a TTS structure 〈S, S0,→〉 with only two possible kinds of actions: either
a transition t is fired, or a time delay θ elapses. A transition t can fire from the
state (m,ϕ) if t is enabled at m and firable instantly. More formally, the semantics
of the TPN is defined as:

Definition 8 (TPN semantics). The semantics of a TPN N

〈P, T,Pre,Post,m0, Is〉 with the labelling function L : T → Σ ∪ {ε} is the
Timed Transition System (TTS) [[N ]] = 〈S, s0,Σ,→〉 where S is the smallest set
containing s0 and closed by −→, where:

• s0 = (m0, ϕ0) is the initial state, with m0 the initial marking and ϕ0(t) = Is(t)
for every t in E(m0);

• the state transition relation → ⊆ S × (Σ ∪ {ε} ∪Q≥0)×S is the relation such
that for all states (m,ϕ) in S:

(i) (m,ϕ) L(t)−−→ (m′, ϕ′) iff :
∗ t ∈ E(m)
∗ 0 ∈ ϕ(t)
∗ m′ = m−Pre(t) + Post(t)
∗ ∀k ∈ T, k ∈ E(m′)⇒

ϕ′(k) =
{
ϕ(k) if k 6= t ∧m−Pre(t) >̇ Pre(k)
Is(k) otherwise

(ii) if θ 6̇ ϕ(t) then (m,ϕ) θ−→ (m,ϕ .− θ).

Transitions in the case (i) above are called discrete transitions and mean that
if a transition t is enabled and is ready to fire (0 ∈ ϕ(t)) then there is a transition
labelled with L(t) in the TTS from the state (m,ϕ) to the state (m′, ϕ′) where
m′ = m − Pre(t) + Post(t) and ϕ′ is a firing function such that ϕ′(k) = ϕ(k) for
any persistent transition and ϕ′(k) = Is(k) elsewhere; in the case (ii) transitions
labelled with delays are the continuous, or time elapsing, transitions. Like with
nets, the alphabet of a TTS is the set of labels, in Σ, associated to discrete actions.

3.2.1 Executions and traces

An execution of a net N is a sequence in its semantics [[N ]]. It is a time-event
word over the alphabet containing both labels (in Σ∪ {ε}) and delays. Continuous
transitions can always be grouped together, meaning that when (m,ϕ) θ−→ (m,ϕ′)
and (m,ϕ′) θ′

−→ (m,ϕ′′) then necessarily (m,ϕ) θ+θ′
−−−→ (m,ϕ′′) (and the firing domain

ϕ′ is uniquely defined from ϕ and θ). Based on this observation, executions of the
form σ

def= θ0 a0 θ1 a1 . . . where each discrete transition is preceded by a single time
delay can always be considered.
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By contrast, a trace is the untimed word obtained from an execution when only
the discrete actions without ε are kept. Then the language of a TPN N , denoted
L(N), is the set of all its (finite) traces.

By definition, the language of a TPN is prefix-closed; and it is regular when the
net is bounded [Berthomieu 1983].

Example: For our example in Figure 3.1:

• An execution of the TPN could be 2a1ε3b and so the related trace is ab.

• The language is a repetition of a and b such L(N) = (ab)∗.

3.2.2 Firing sequences and runs

Let N = 〈S, s0,Σ,→〉 be a TPN and σ = t1...tn be a transition sequence in T .
Let τ = τ0...τn with τi ∈ Q≥0 be a sequence of times. Then the sequence σ(τ) =
τ0t1τ1...tnτn is called a run of σ.

Definition 9 (feasible run). Let a TTS [[N ]] = 〈S, s0,Σ,→〉, s = (m,ϕ) a state in S
and σ(τ) = τ0t1τ1...tnτn a run of σ. It is said that σ(τ) fires from s into s′ (s σ(τ)−−→s′)
if there are states (s0, s

′
0..., sn) in S such s τ0−→ s0

L(t1)−−−→ s′0...s
′
n−1

τn−→ sn
L(tn)−−−→ s′.

The run σ(τ) is a feasible run from state s in S, if there is a state s′ such that
σ(τ) can fire from s to s′.

The run σ(τ) is said feasible in [[N ]], if σ(τ) is a feasible run from s0.

Definition 10 (firing sequence). A transition sequence σ is a firing sequence in the
TTS [[N ]] if it exits a sequence of time τ such σ has a feasible run σ(τ) in [[N ]].

Definition 11 (reachable state). A state s is reachable in a TTS [[N ]] if there exists
a firing sequence σ in [[N ]] with s0

σ(τ)−−→ s.

Definition 12 (state space). The set RSN of all reachable states in a TTS [[N ]] is
called the state space of [[N ]].

Definition 13 (reachable marking). A marking m is reachable in a TTS [[N ]] if
there is a reachable state s in [[N ]] with s = (m,ϕ).

3.2.3 Equivalence

The notion of bisimulation is a useful concept for the comparison of behaviours. In
a general way, it allows to verify that two behaviours are “similar”: if a system does
an action, then the other system also does this action and vice versa. Moreover, it
is also possible to use a “weak” variant of this property, taking into account only
the non-silent (observable) actions. Since a formal language can be defined by the
set of behaviours it can express, this equivalence can also be used to compare two
formalisms. This equivalence has been extended to the comparison of TTS. The
definition of timed bisimulation is thus obtained.
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Definition 14 (Timed bisimulation). Assume G1 = 〈S1, s
0
1,Σ1,→1〉 and G2 =

〈S2, s
0
2,Σ2,→2〉 are two TTS and the binary relation ∼⊆ S1 × S2. G1 and G2 are

said strongly timed bisimilar iff s0
1 ∼ s0

2 and, whenever s1 ∼ s2 and a ∈ Σ1 ∪ Σ2 ∪
{ε} ∪Q≥0:

• s1
a−→1 s

′
1 ⇒ ∃s′2, s2

a−→2 s
′
2 ∧ s′1 ∼ s′2

• s2
a−→1 s

′
2 ⇒ ∃s′1, s1

a−→1 s
′
1 ∧ s′1 ∼ s′2

Strong timed bisimilarity could be a too strong equivalence. Thus, a weak ver-
sion of timed bisimulation is preferred. It relies on a weak version of the transition
relation s α=⇒ s′ (with α an action in Σ ∪ Q≥0) where silent transitions are hidden.
The weak transition relation is defined from α−→ as follows:

Definition 15 (Weak transition relation). From a transition relation −→ ⊆ S ×
(Σ ∪ {ε} ∪Q≥0)× S the weak transition relation =⇒ ⊆ S × (Σ ∪Q≥0)× S is defined
for an action α ∈ Σ ∪Q≥0 as:

The weak transition relation s α=⇒ s′ is defined from the following set of rules:

s
α−→ s′

s
α=⇒ s′

s
α=⇒ s′ s′

ε−→ s′′

s
α=⇒ s′′

s
ε=⇒ s′ s′

α−→ s′′

s
α=⇒ s′′

s
θ=⇒ s′ s′

θ′
=⇒ s′′

s
θ+θ′

===⇒ s′′

It is then possible to define a weak timed bisimilation between two TTS as
follows:

Definition 16 (Weak timed bisimulation). Assume G1 = 〈S1, s
0
1,Σ1,→1〉 and G2 =

〈S2, s
0
2,Σ2,→2〉 are two TTS with the weak relations =⇒i and the binary relation

≈⊆ S1 × S2. G1 and G2 are said weak timed bisimilar iff s0
1 ≈ s0

2 and, whenever
s1 ∼ s2 and a ∈ Σ1 ∪ Σ2 ∪ {ε} ∪Q≥0:

• s1
a=⇒1 s

′
1 ⇒ ∃s′2, s2

a=⇒2 s
′
2 ∧ s′1 ≈ s′2

• s2
a=⇒1 s

′
2 ⇒ ∃s′1, s1

a=⇒1 s
′
1 ∧ s′1 ≈ s′2

In the following, two nets denoted N1 ≈ N2, are bisimilar when [[N1]] ≈ [[N2]].

Example: Consider the two TTS described in Figure 3.2. They are not timed
bisimilar due to the ε transition in the left TTS, but they are weak timed bisimilar.
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Figure 3.2: Example of a two simple TTS

3.3 Synchronous Products

As stated in the previous chapter, the problem we address in this thesis is based on
the synchronous product of TPN. In this section, we will go through various ways
of realizing this product, starting by defining the TTS product, and then describing
two ad-hoc methods.

3.3.1 TTS products

Definition 17 (Product of TTS). Assume [[N1]] = 〈S1, s
0
1,Σ1,→1〉 and [[N2]] =

〈S2, s
0
2,Σ2,→2〉 are two TTS. The product of [[N1]] by [[N2]] is the TTS [[N1]]‖[[N2]] =

〈S1 × S2, (s0
1, s

0
2),Σ,−→〉 with Σ = Σ1 ∪Σ2 and −→ the smallest relation obeying the

following rules (α ∈ Σ1 ∪ Σ2 ∪ {ε} ∪Q≥0):

s1
α−→1 s

′
1 α ∈ (Σ1 \ Σ2) ∪ {ε}

(s1, s2) α−→ (s′1, s2)
s2

α−→2 s
′
2 α ∈ (Σ2 \ Σ1) ∪ {ε}

(s1, s2) α−→ (s1, s
′
2)

s1
α−→1 s

′
1 s2

α−→2 s
′
2 α 6= ε

(s1, s2) α−→ (s′1, s′2)

Timed bisimilarity (strong and weak) is preserved by product [Peres 2011],
meaning that for all TTS G,G1 and G2 we have G1 ≈ G2 ⇒ (G‖G1) ≈ (G‖G2).

Example: Consider the two TTS shown in Fig. 3.2, then their product synchro-
nized using the properties in Definition 17 is the TTS given by the Fig. 3.3.

In this example, the product of the two TTS with common labelled events (a
and b) is made. The evolution of the system is represented as a pair of state (with
(0, 0′) as its origin). This product can also be conducted on TA with similar results
(even if invariant can sometimes be cumbersome if the product is not automatized).
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Figure 3.3: Synchronous product of two TTS

3.3.2 Synchronous product of TPN

However, the Definition 17 only considers TTS and not TPN. The synchronous
product of two TPN represents the core of this thesis. To our knowledge, two
methods were proposed to process the product of TPN. In [Lime 2003b] a specific
State Class Graph (see Chapter 5 for more details on SCG) based on timed au-
tomata is computed and in [Peres 2011] an ad-hoc transformation is conducted to
an Inhibit-Permit-TPN (IPTPN).

3.3.2.1 State Class Timed Automaton

Lime and Roux proposed an extension in [Lime 2003b] of the state class graph
construction that allows to build the state class graph (see Chapter 5 for more
information) of a bounded TPN as a timed automaton. They prove that this
timed automaton and the TPN are timed-bisimilar and they also prove a relative
minimality result of the number of clocks needed in the obtained automaton. We
use this method to compute a TA from our TPN models and compare it with our
contributions in the Chapter 7.

This first approach is structural but limited to Petri nets whose underlying net
is 1-safe.

This method is augmented by Cassez and Roux [Cassez 2006] who propose a
structural encoding of TPN into TA that preserves the semantics in the sense of
timed bisimulation, and therefore that preserves timed language acceptance. This
encoding generates one automata, and one clock, for every transition in the TPN
and it can be extended in order to accommodate strict timing constraints; that is
static time intervals that have a finite, open bound.

Since we only tackle bounded TPN in this thesis, we remained with the first
method which is more straightforward.
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3.3.2.2 IPTPN

Time Petri nets are extended with a priority relation in Berthomieu et
al. [Berthomieu 2006] where it is shown that priorities strictly increase the expres-
siveness of TPN. TPN was further extended with a second relation over transitions,
the permit relation. The priority relation is kept but renamed the inhibit relation.

Definition 18 (Inhibits Permits TPN). An IPTPN is a labelled TPN augmented
with two relations over transitions:

• I is the inhibit relation written x− ◦y. It is spelled x inhibits y.

• P is the permit relation written x− •y. It is spelled x permits y.

Both the inhibit and the permit arcs are activated when a token sensibilized
then, just like a classical transition.

The inhibit arc forbid the firing of the affected transitions (which means to the
x transition blocks the firing of the y transition). The permits arc allows the firing
of the affected transitions (which means to the x transition allows the firing of the
y transition).

Using these properties of inhibiting and allowing the firing of a transition we
separate the timing constraint from the label of a timed transitions.

These relations allow the decomposition of TPN into IPTPN, which are com-
posable with a synchronous product operation. The idea is to mimic the timing
behaviour of the transitions without having the timing constraint on them (by in-
hibiting and permitting the firing of transitions). Let’s take a quick example:

p0

t0a [4,∞[

p1

p0

t0 a

p1

t3

[4,∞[

Figure 3.4: TPN with a single transition (left) decomposed as an IPTPN (right)

Here, the idea is to decorrelate the transition from its timing constraint but
still keeping the timing behaviour. In this case, the synchronous product is only
conducted on the labelled transitions and it keeps their timing constraint with
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the Inhibit and Permit arc on the fused transitions (hence keeping both timing
behaviour).

However, this solution uses priorities arcs (with the Inhibit and Permit arc) and
duplicates every transitions with timing constraints. This leads to much bigger sys-
tems, especially the use of priorities which requires special state classes to keep the
priority information. The idea with our contribution is also to tackle the problem
of scalability for a synchronous product of TPN.

3.4 Parametric state and parametric run

This Section introduces parametric states and runs and is entirely based on the
book Time and Petri Nets of Popova-Zeugmann [Popova-Zeugmann 2013].

In a TPN, for the same visible actions (label) there may be an infinity of
possible executions for a same trace: trace of 1a4b is the same as 0a5b. The
main idea of the parametric state representation is then to define a notation
capable of representing multiple behaviours regarding the timing constraints. This
“execution” is called parametric run and is based on parametric states.

We need to define the t-marking function as follows:

Definition 19 (t-marking). Let T be the set of all transitions in a TPN N . Any
(total) function h : T → Q≥0 ∪ {]} is a t-marking in N .

For Popova-Zeugmann, a state is a pair z = (m,h) of a marking with a
t-marking where h(t) can be interpreted as the clock of t, meaning that it measures
the time elapsed since the transition last became enabled. The value ] represents
that the clock of the transition has stopped (t not enabled), while any transition t
with h(t) ∈ Q≥0 is running and shows the time of t in the state.

Remind that we also denote βst as the latest firing time of t and αst as its earliest
firing time, i.e Is(t) = [αst , βst ].

Definition 20 (Popova-Zeugmann TTS). For a TPN N = 〈P, T,Pre,Post,m0, Is〉
with the labelling function L : T → Σ ∪ {ε} a TTS [[N ]]p = 〈Z, z0,Σ,→〉 is defined
where Z is the smallest set containing z0 and closed by −→, where:

• z0 = (m0, ho) is the initial state, with m0 the initial marking and

h0 =
{

0 if t ∈ E(m0)
] otherwise

• the state transition relation → ⊆ S × (Σ ∪ {ε} ∪Q≥0)×S is the relation such
that for all states (m,h) in S:

(i) (m,h) L(t)−−→ (m′, h′) iff :
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∗ t ∈ E(m)
∗ h(t) ≥ αst
∗ ∀k ∈ E(m)
h(k) ≤ βk

∗ m′ = m−Pre(t) + Post(t)
∗ ∀k ∈ T ⇒

h′(k) =


] if k /∈ E(m′)
h(k) if k ∈ E(m′) ∧ k 6= t ∧m−Pre(t) >̇ Pre(k)
0 otherwise

(ii) if ∀t ∈ E(m), θ 6̇ Is(t) .− h(t) then (m,h) θ−→ (m,h′), h′(t) = h(t)− θ.

Theorem 1. [Popova-Zeugmann 2013] For a TPN N, [[N ]] is isomorphic to [[N ]]p.

Proof. It is easy to show that for a feasible execution σ = τ0t1τ1t2...tnτn such that
z0

σ−→ z with z = (mz, h) in [[N ]]p we have s0
σ−→ s in [[N ]] with s = (ms, ϕ) such that

mz = ms and for t ∈ E(m), ϕ(t) = Is(t)− h(t).

Definition 21 (Parametric state and parametric run). Let N =
〈P, T,Pre,Post,m0, Is〉 be a TPN and let σ = t1 . . . tn be a firing sequence in N .
Then, the parametric run (σ(x), Bσ) of σ in [[N ]] with σ(x) = x0t1x1 . . . xn−1tnxn
and the parametric state (zσ, Bσ) in N are recursively defined as follows:

Basis:

• σ = ε, i.e, σ(x) = x0.

• zσ = (mσ, hσ) and Bσ are defined as follows:

– mσ = m0

– hσ(t) =
{
x0 if t ∈ E(mσ)
] otherwise

– Bσ = {0 ≤ hσ(t) ≤ βst | t ∈ E(mσ)}

Step:
Assume that zσ and Bσ are already defined for the sequence σ = t1 . . . tn.

For σ = t1 . . . tntn+1, w = t1 . . . tn (we have σ = wtn+1) is defined and set:

• mσ = mw −Pre(tn+1) + Post(tn+1)

• hσ(t) =


] if t /∈ E(mσ)
hw(t) + xn+1 if t ∈ E(mσ) ∩ E(mw) ∧m−Pre(t) >̇ Pre(tn+1) ∧ t 6= tn+1
xn+1 otherwise.

• Bσ = Bw ∪
{
αstn+1 ≤ hw(tn+1)

}
∪ {0 ≤ hσ(t) ≤ βst | t ∈ E(mσ)}
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Remark that for a firing sequence σ = t1..tn, the set Sσ of all solutions for
x = (x1...xn) satisfying the inequalities in Bσ is a polyhedron. The t-marking hσ(t)
is a vector of linear functions.

A parametric state represents the set of all states which can be reached by firing
a feasible run of σ so a state is the combination of all firing sequence σ with their
solutions x in Bσ.

Definition 22 (set of all reachable states). The set of all states which can be
reached by firing a feasible run is :

Kσ = {zσ |Bσ} = {zσ(β(x)) | β(x) is a solution of Bσ}

Example: Let’s consider the TPN described in Fig. 3.1, where :

Kε = {{0, 1, 0}, (x0, ], ], ]) | {0 ≤ x0 ≤ 4}}

After firing the sequence σ = t0, the state Kt0 becomes:

Kt0 = {{1, 0, 0}, (], x1, ], x1) | {2 ≤ x0 ≤ 4, 0 ≤ x1 ≤ 2}}

where the set of conditions Bt0 is the union of Bε, {αst0 ≤ hε(t0) ≤ βst0} = {2 ≤
x0 ≤ 4} and {0 ≤ hσ(t) ≤ βst | t ∈ E(mσ)} = {0 ≤ x1 ≤ 2}.

Definition 23 (Popova state class). Let N be a TPN and σ a feasible transition
sequence. The Popova state class (PSC) Cσ of σ is defined as follows :

Basis: Cε = {s | ∃τ (τ ∈ Q≥0 ∧ z0
τ−→ z)}

Step: If Cσ is already defined then Cσt is derived from Cσ by firing t:
Cσt = {z | ∃z1∃z2∃θ(s1 ∈ Ctr(σ) ∧ τ ∈ Q≥0 ∧ z1

t−→ z2
τ−→ z)}

The PSC Cε is the set of all states in [[N ]] reachable from the initial state by
elapsing time but without firing transitions. And the class Cσ contains all states
that are reachable by firing any feasible runs of σ.

Popova-Zeugmann claims that:

Theorem 2. For every TPN N and for every firing sequence σ it holds that:

(i) RSN =
⋃
σ Cσ, i.e. the state space of N is the union of all (Popova) state

classes.

(ii) {zσ |Bσ} = Cσ.
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3.5 Summary

In this Chapter 3 we have presented the bases of our work, the TPN and its tech-
nicalities. To summarize:

• TPN are composed of places, transitions and timing constraint. Their se-
mantics is based on their labels and they can be combined with labels and
time-events to create chains (or patterns).

• Equivalence and weak-bisimilarity are necessary tools to keep in check the
properties and behaviour after operations on TPN. They are mainly used to
check our TTS still keeps its properties after the synchronous product.

• Synchronous Product are based on the language of DES. Combination is based
on the label of transitions and they can be merged if they have the same
labels. This operation is trivial in Automata and TTS because their timing
constraints can be separated from their labels.

• TPN are not well suited for a classical synchronous product (and it is not
formally defined).

• SCTA and IPTPN are solutions to process the composition of TPN but the
first relies on a transformation into a TA and the second relies on priorities and
creating more transitions which can lead to a problem in term of scalability.

The main new model to create a synchronous product is depicted in the Chap-
ter 4 and it constitutes the basis for all our contributions.

In Chapter 4 we will focus on PTPN and all its properties and technicalities.





Chapter 4

Product TPN and their
Semantics

In this chapter we present our first contribution in the field of synchronous product
of TPN, the PTPN. First, we define our product before going into more detail about
the state created from a PTPN. In the second section of this Chapter, we present
the new semantics provided with PTPN and a new behaviour, the timelock.

Thirdly, we go more precisely into the operation ongoing in a PTPN, in terms
of execution and semantics. In the fourth section, we explain more precisely the
synchronous product between two TTS representing our TPN to compare it to our
PTPN operation.

Finally, we conclude via a summary.

4.1 Definition

Product TPN (PTPN) were created to tackle the problem of synchronous product
on a timed context in a Petri Net model. Indeed, the synchronous product of two
time transitions is not clearly defined (contrary to the Timed Automaton).

A PTPN proposes an extension of TPN with a synchronous product op-
eration between TPN in the style of Arnold-Nivat synchronization of pro-
cesses [Arnold 2002]. The main idea of a PTPN is to force transitions with the
same labels to fire synchronously.

A PTPN is the composition (N,R) of a TPN N , with a set of transitions T , and
a product relation R that is a collection of firing sets r1, ..., rn included in T (hence
R ⊆ P (T ), the powerset of T ). The idea is that all the transitions in an element r
of R must be fired at the exact same time. As a consequence, two transitions in r
should have the same labels (L(r) = a should be used to say they have a common
label a) and not interfere with each other (they should not share a common input
place).

Definition 24 (Product TPN). A product TPN (PTPN) (N,R) is a pair of a
TPN N = 〈P, T,Pre,Post,m0, Is〉 and a product relation R ⊆ P (T ) such that for
every firing set r in R, transitions in r are independent and compatible :

(t1, t2 ∈ r)⇒ (L(t1) = L(t2)) ∧ (∀p ∈ P,Pre(t1)(p) > 0⇒ Pre(t2)(p) = 0)
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Example: Let’s take a simple example of PTPN (N,R) composed of two single
transitions TPN (figure 4.1). Here N is a classical TPN with P = {p0, p1, p2, p3},
T = {t0, t1}, etc., extended with the product relation R = {{t0, t1}}.

p0

p1

t0 a[0, 2]

p2

p3

t1 a[1, 3]

Figure 4.1: A TPTN with a product relation R = {{t0, t1}}

4.2 Semantics of a PTPN and Timelock

The semantics for PTPN relies largely on the semantics of TPN but makes a par-
ticular use of labels to synchronize transitions with same label. As we will see,
this behaviour can conduct to a situation where time constraints induce a blocking
situation that we call time deadlock.

Definition 25 (Semantics of a PTPN). The semantics of a PTPN (N,R) is the
TTS [[(N,R)]] = 〈S, s0,Σ,−→〉, where S is the smallest set containing s0 and closed
by −→ such that:

• s0 = (m0, ϕ0) is the initial state, with m0 the initial marking and ϕ0(t) = Is(t)
for every t in E(m0);

• the state transition relation → ⊆ S × (Σ ∪ {ε} ∪Q≥0)×S is the relation such
that for all states (m,ϕ) in S:

(i) (m,ϕ) a−→ (m′, ϕ′) iff :

∗ ∃r ∈ R with labels a
∗ ∀t ∈ r, t ∈ E(m)
∗ ∀t ∈ r, 0 ∈ ϕ(t)
∗ m′ = m−

∑
t∈r Pre(t) +

∑
t∈r Post(t)

∗ ∀k ∈ T, k ∈ E(m′)⇒

ϕ′(k) =
{
ϕ(k) if k 6= t ∧m−

∑
t∈r Pre(t) >̇ Pre(k)

Is(k) otherwise

(ii) if θ 6̇ ϕ then (m,ϕ) θ−→ (m,ϕ .− θ).
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The only new case (compared to a TPN) is for transitions with the same label
(t ∈ r) to fire synchronously and the effect if firing both of them simultaneously.
When a set of transitions r = {t1, ..., tn} is fired from state (m,ϕ), a transition
k (with k 6= t) is said to be persistent if k is also enabled in the marking m −∑
t∈r Pre(t), only if m −

∑
t∈r Pre(t) >̇ Pre(k). The other transitions enabled

after firing r are called newly enabled.
TPN form a natural subset of PTPN, where every firing set has only one transi-

tion. More precisely, a TPN N with transitions {t1, ..., tn} can always be interpreted
as the PTPN (N,RN ), where RN is the collection of singletons {{t1}, ..., {tn}}. In
the following, we often omit the product relation in a PTPN when it is not needed,
or obvious from the context. We should also simply use the term net, or the symbol
N , to refer to a Product TPN.

Figure 4.2 shows an example where we can consider two TPN N1 and N2 as a
PTPN.

p0

t0

a

p1t1

b[1,∞[

(a) (N1, {{t0}, {t1}})

q0

t2

a

t3

b[0, 1]q1

(b) (N2, {{t3}, {t2}})

Figure 4.2: Two examples of PTPN

As a side effect, our choice of semantics entails that a transition on a “shared
label” is blocked until a fireable transition with the same label on the other compo-
nent is found. This may introduce a new kind of time deadlock that has no direct
equivalent in a TPN: when a transition that shares a label has to fire urgently (hence
time cannot progress) while there are no matching transition that is time-enabled.
For a state (m,ϕ), it happens when a transition in t ∈ r is enabled with ϕ(t) = [0, 0]
and ∃t′ ∈ r, (t′ /∈ E(m)) ∨ (0 /∈ ϕ(t′)).

Example: Consider a PTPN (N,R) composed by the two TPN N1 and N2 of the
Figure 4.2 and with a relation R = {{t0, t2}, {t1, t3}}. The first synchronized event
which can occur in the PTPN N1 ×N2 is transition {t0, t2}. Since time elapses as
in a classical TPN, the t3 transition is enabled and its timing constraint evolves
independently of t1 which is not enabled. The only common solution for the timing
constraint in {t1, t3} is 1 and they have to be fired synchronously. This means
that if any amount of time is elapsed before firing {t0, t2} (which is possible), the
{t1, t3} transitions will never be able to fire (because of timing constraints). This
is the primary example of a timelock.
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Time deadlocks are important in the context of our work. They model the
case of two executions that start with the same observation but that cannot
be reconciled after some point; meaning that observable events are enough to
eventually discriminate them. Such situations are common during diagnosis and
indicate that there is a way to distinguish two partial observations.

Remark that the reachable states in [[(N,R)]] are a subset of the states in [[N ]].
This is because a synchronization on a shared label may be forbidden, but it never
creates a new opportunities to fire a transition.

4.3 Executions and traces

An execution of a PTPN (N,R) is a sequence of actions in its semantics [[(N,R)]]
that starts from its initial state. It is a time-event word α1 . . . αn over the alphabet
containing both labels (a, b, · · · ∈ Σ) and delays (θ ∈ Q≥0), where silent transitions
are not recorded. Since labelled transitions are synchronized there exists only
one label for a pair of synchronized transitions. In the following, executions are
simplified in order to avoid the occurrence of two successive delays; just like in
Section 3.2.1.

By contrast, a trace is the untimed word obtained from an execution when
only the discrete actions are kept. Then the language of a PTPN is the set of
all its (finite) traces. As we will see in the Chapter 5, the State Class Graph
construction of [Berthomieu 1983] provides an effective method for computing a
finite representation of the traces in a bounded TPN. We can do the same with
Product TPN using the SCG construction.

Example: We can illustrate our definitions by considering the PTPN (N,R)
composed by the two TPN N1 and N2 of the Figure 4.2 and with a relation
R = {{t0, t2}, {t1, t3}}. As explained before, the only possibles executions are θ0a

with θ0 > 0 or 0a1b. So the set of traces is {a, ab}.

4.4 Synchronous product of PTPN

We define in this Section the product of two PTPN.

Definition 26 (Synchronous product of PTPN). Given two PTPN (N1, R1) and
(N2, R2) with sets of places P1, P2 and transitions T1, T2, their product (N1, R1)×
(N2, R2) is the PTPN (N,R) where N is the concurrent composition (juxtaposition)
of N1 with N2 the net 〈P1 ∪ P2, T1 ∪ T2,Pre,Post,m1

0 ]m2
0, Is〉 with Pre(t)(p) =
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Prei(t)(p) if and only if t ∈ Ti and p ∈ Pi with i ∈ 1..2, and 0 otherwise (same
with Post); and the product relation R is such that:

R =
⋃

a∈Σ1,2

{r1∪r2 | ri ∈ Ri,L(ri) = a, i ∈ 1..2}∪
⋃

a∈Σ\Σ1,2∪{ε}
{r | r ∈ R1∪R2,L(r) = a}

with Σ1,2 the set of shared labels and Σ = Σ1 ∪ Σ2.

Unlike the conventional synchronous composition operator between Petri nets,
transitions with the same labels are not merged but, instead, relations are composed.
But like with synchronization, our goal is to define an operation that is a congruence,
meaning that [[(N1, R1)× (N2, R2)]] is equivalent to [[(N1, R1)]] ‖ [[(N2, R2)]].

Theorem 3. For two PTPN (N1, R1) and (N2, R2), the TTS [[(N1, R1)× (N2, R2)]]
is isomorphic to [[(N1, R1)]] ‖ [[(N2, R2)]].

Proof. The Theorem can be proved by induction. Assume two PTPN (N1, R1) and
(N2, R2) and (N,R) = (N1, R1)× (N2, R2). We denote:

• [[(N,R)]] = 〈S, s0, |−→,Σ〉

• [[(Ni, Ri)]] = 〈Si, s0
i ,Σi,→i〉 and i = 1, 2

• [[(N1, R1)]] ‖ [[(N2, R2)]] = 〈(S1 × S2), (s0
1, s

0
2),Σ‖,−→〉.

By definition we have Σ = Σ1 ∪ Σ2 = Σ‖ and s0 = (s0
1, s

0
2) that initializes our

induction.

Remark that two TTS 〈S1, s
0
1,→1,Σ〉 and 〈S2, s

0
2,→2,Σ〉 over the same set of

labels Σ are isomorphic if there is a bijection B : S1 → S2 with B(s0
1) = s0

2 and
(s, t, s′) ∈→1⇔ (B(s), t, B(s′)) ∈→2 for all s, s′ ∈ S1.

Suppose an execution σ in [[(N,R)]] from the initial state s0 to a reachable state
s = (m,ϕ), i.e. s0

σ
|−→ s, with (s1, s2) a state in S1 × S2 reachable with the same

execution, i.e. (s0
1, s

0
2) σ−→ (s1, s2).

Consider an action α in Σ ∪ {ε} ∪Q≥0 such s α
|−→s′ exists with s′ = (m′, ϕ′). We

have three cases (Def. 25):

1. For α ∈ Q≥0, we have s′ = (m,ϕ .− α) and so α 6̇ ϕi. By definition (see
Def. 8), if (mi, ϕi) ∈ Si and α 6̇ ϕi then si

α−→i s
′
i exists. Then by Definition 17

(s1, s2) α−→ (s′1, s′2) exists and s′ = (s′1, s′2).

2. For α ∈ Σ1,2, we have by definition transitions ti ∈ Ti, i ∈ 1..2 such that
L(ti) = α, ti ∈ E(m) and 0 ∈ ϕ(ti). Thus, si

α−→i (m′i, ϕ′i) exists and m′ =
m′1 ] m′2 and ϕ′ = ϕ′1 ] ϕ′2 (see properties on pre and post-conditions in
Def. 24). Then (Def. 17) (s1, s2) α−→ (s′1, s′2) exists and s′ = (s′1, s′2).
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3. For α ∈ (Σ \ Σ1,2) ∪ {ε}, it means that there exists a relation r ∈ R1 (resp.
in R2) such L(r) = α and @r′ ∈ R2,L(r′) = α (resp. R1). We have also
∀t ∈ r, t ∈ E(m) ∧ 0 ∈ ϕ(t). Thus s1

α−→1 (m′1, ϕ′1) (resp. s2
α−→2 (m′2, ϕ′2))

exists with m′ = m′1 ] m2 and ϕ′ = ϕ′1 ] ϕ2, (resp. m′ = m1 ] m′2 and
ϕ′ = ϕ1 ] ϕ′2). Then (Def. 17) (s1, s2) α−→ (s′1, s2) (resp. (s1, s2) α−→ (s1, s

′
2))

exists and s′ = (s′1, s′2).

Now, consider an action α in Σ ∪ {ε} ∪Q≥0 such (s1, s2) α−→(s′1, s′2) in [[(N1, R1)]]‖
[[(N2, R2)]]. We have also three cases (Def. 17):

1. For α ∈ (Σ1 \ Σ2) ∪ {ε} and s1
α−→1 s

′
1 thus there is a relation r ∈ R1 such

L(r) = α, ∀t ∈ r, t is enabled at m, and 0 ∈ ϕ(t). By Definition 26 the
relation r is also in R. Thus, it exists a state s ∈ S and a state s′ = s′1 ] s2
such s α

|−→ s′ (Def. 25).

2. For α ∈ (Σ2 \ Σ1) ∪ {ε} and s2
α−→2 s

′
2, we have exactly the same reasoning.

3. For α 6= ε and si
α−→i s

′
i, we can distinguish two other cases:

• For α ∈ Q≥0 we have s′i = (mi, ϕi
.−α), i ∈ 1..2 and so we have a relation

in [[(N,R)]] between s and a state s′ = (m,ϕ′1 ] ϕ′2) = (s′1, s′2) and so
s

α
|−→ s′ exists.

• For α ∈ Σ1,2, we have by definition two relations r1 ∈ R1 and r2 ∈ R2,
such L(r1) = L(r1) = α and ∀t ∈ r1∪r2, t is enabled at m, and 0 ∈ ϕ(t).
By Definition 26, it exists a relation r = r1 ∪ r2 in R, so a relation in
[[(N,R)]] between s and a state s′ = (m′1 ]m′2, ϕ′1 ]ϕ′2) = (s′1, s′2) and so
s

α
|−→ s′ exists.

4.5 L-observable Executions

For a PTPN with a set of labels Σ, a set of observable labels L ⊆ Σ is defined,
and the L-observation for an execution σ = α1 . . . αk is defined as the sequence
obsL(α1) . . . obsL(αk) such that obsL(α) = α when α ∈ Q≥0 ∪ L and obsL(α) = 0
otherwise. Hence obsL(σ) is an execution that contains only the observable events
in σ, in the same order and at the same dates than in σ.

We will now define two new products over a set of observations.

Definition 27 (L-observable product of two TTS). Assume K1 = 〈S1, s
0
1,Σ1,→1

〉 and K2 = 〈S2, s
0
2,Σ2,→2〉 are two TTS and L is a set of (observable) labels

(L ⊆ Σ1 ∩ Σ2). The product of two TTS over L, denoted K1‖LK2, is the TTS
〈(S1 × S2), (s0

1, s
0
2),Σ;−→〉 with Σ = Σ1 ∩ Σ2 such that −→ is the smallest relation
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obeying the following rules:

s1
α−→1 s

′
1

α ∈ (Σ \ L) ∪ {ε}
(s1, s2) α−→ (s′1, s2)

s2
α−→2 s

′
2

α ∈ (Σ \ L) ∪ {ε}
(s1, s2) α−→ (s1, s

′
2)

s1
α−→1 s

′
1 s2

α−→2 s
′
2 α ∈ Q≥0 ∪ L

(s1, s2) α−→ (s′1, s′2)

So the “common observations” in the two nets N1 and N2 relative to common
observations L are exactly the observations in the TTS product [[N1]] ‖L [[N2]]. This
has a direct application when there is the intention to find a critical pair in a
TPN N , since it amounts to finding an observation in [[N1]] ‖L [[N2]] where the first
component had an occurrence of a fault and not the second.

Theorem 4. There is an execution σ in K1 ‖LK2 if and only if there are two exe-
cutions, σ1 in K1 and σ2 in K2, with the same observations: obsL(σ) ≡ obsL(σ1) ≡
obsL(σ2).

Proof. Given an execution σ = α1...αn in K1 ‖L K2, we define two new sequences
σi = #i(σ) (i ∈ {1, 2}) as #i(α1)...#i(αn) such #i(α) = α if si

α−→i s
′
i and #i(α) = 0

otherwise.
Suppose #1(α1...αk) inK1, andK1‖LK2 is in state (s1, s2) after the execution of

α1...αk. If #1(αk+1) = αk+1, then the execution ...αkαk+1 is in K1, else #1(αk+1) =
0 and by Definition 27 the new state is (s1, s

′
2), then ...αkαk+1 is also in K1. The

reasoning is the same with #2 andK2. Recursively, for an execution σ fromK1‖LK2,
we have σi = #i(σ) in Ki.

Moreover, from the rules in Definition 27 we have pi(α) = α for all α ∈ Q≥0 ∪L
and thus obsL(α) = obsL(#i(α)). So we have obsL(σ) ≡ obsL(σi).

Reciprocally, consider any pair of executions σ1 and σ2 with obsL(σ1) ≡
obsL(σ2). An execution σi can be decomposed in σi,1α1σi,2α2...σi,nαnσi,n+1 where
σi,k are executions such obs(σi,k) ≡ 0 and αk ∈ Q≥0∪L. From the Definition 27, the
execution σ = σ1,1σ2,1α1σ1,2σ2,2α2...σ1,nσ2,nαnσ1,n+1σ2,n+1 is feasible for K1 ‖LK2
and obsL(σ) ≡ obsL(σ1) ≡ obsL(σ2).

As for the product of a TTS we now define the synchronous product of TTS
over a set of observables.

Definition 28 (L-observable product of PTPN). Given two PTPN (N1, R1) and
(N2, R2) with sets of places P1, P2 and transitions T1, T2, their product over
a set of observables L ⊆ Σ1 ∩ Σ2, (N1, R1) ×L (N2, R2), is the PTPN (N,R)
where N is the concurrent composition (juxtaposition) of N1 with N2 the net
〈P1 ∪ P2, T1 ∪ T2,Pre,Post,m1

0]m2
0, Is〉 with Pre(t)(p) = Prei(t)(p) if and only if

t ∈ Ti and p ∈ Pi with i ∈ 1..2, and 0 otherwise (same with Post); and the product
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relation R is such that:

R =
⋃
a∈L
{r1∪ r2 | ri ∈ Ri,L(ri) = a, i ∈ 1..2}∪

⋃
a∈Σ\L∪{ε}

{r | r ∈ R1∪R2,L(r) = a}

with Σ = Σ1 ∪ Σ2.

Theorem 5. The State graph of [[(N1, R1)×L (N2, R2)]] is isomorphic to
[[(N1, R1)]]‖L[[(N2, R2)]].

Proof. The proof is exactly the same than Theo. 3 and can be done by induction
on the shortest path from the initial state, s0, to a reachable state s in [[N1 ×L N2]],
then a case analysis on the possible transitions from s.

4.6 Parametric run of a PTPN

As for TPN, a more compact representation of the state space of a PTPN than with
a TTS can be defined by using parametric state. Here, the definition is adapted to
the PTPN.

Definition 29 (Parametric state and parametric run for PTPN). Let (N,R) a
PTPN with N = 〈P, T,Pre,Post,m0, Is〉 be a TPN and let σ = t1 . . . tn be a
firing sequence in N . Then, the parametric run (σ(x), Bσ) of σ in N with σ(x) =
x0t1x1 . . . xn−1tnxn and the parametric state (zσ, Bσ) in N are recursively defined
as follows:
Basis:

• σ = ε, i.e, σ(x) = x0.

• zσ = (mσ, hσ) and Bσ are defined as followed:

– mσ = m0

– hσ(t) =
{
x0 if t ∈ E(mσ)
] otherwise

– Bσ = {0 ≤ hσ(t) ≤ βst | t ∈ E(mσ)}

Step: Assume that zσ and Bσ are already defined for the sequence σ = t1 . . . tn.
For σ = t1 . . . tntn+1 with tn+1 ∈ r, r ∈ R, w = t1 . . . tn (we have σ = wtn+1) is
defined and set:

• mσ = mw −
∑
t∈r Pre(t) +

∑
t∈r Post(t)

• hσ(t) =


] if t /∈ E(mσ)
hw(t) + xn+1 if t ∈ E(mσ) ∩ E(mw) ∧m−

∑
k∈r Pre(k) >̇ Pre(t) ∧ t /∈ r

xn+1 otherwise.

• Bσ = Bw ∪ {αst ≤ hw(t) | t ∈ r} ∪ {0 ≤ hσ(t) ≤ βst | t ∈ E(mσ)}
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4.7 Summary

In this Chapter 4 we presented our first contribution, the PTPN, explaining its
behaviour regarding the synchronous product of TPN.

• PTPN is composed of places, transitions and timing constraint just like TPN.
The idea is to compose TPN by synchronizing transitions on their labels. If a
label was in two (or more) original TPN, there will be a synchronized firing
of the transitions regardless of their timing constraints.

• Timelock is a result of this synchronization. If the timing constraints of two
(or more) transitions do not have a common solution, it will end up in a time
deadlock.

• TTS product and PTPN are equivalent in terms of executions.

• Diagnosability will be based on the product and the new timelock behaviour
which shows timing constraint differences between the original TPN of the
PTPN.

The Chapter 5 will be focused on the state class graph resulting from a TPN
and from a PTPN since we mainly check properties on the state graph of our DES.





Chapter 5

SCG and SSCG

We have seen through the two last chapters that TPN and PTPN have slight dif-
ferences in terms of semantics and behaviour. When the objective is to study a
properties based on a DES, its State Class Abstraction is analysed. The State
Class is a representation of a TPN in terms of the marking and the firing domain
in a finite abstraction.

State Classes can be divided in two kinds, the classical representation of a
State Class (based on the firing domain) and the Strong State Class (based on
clock representation). They both have their value in terms of representation and
properties that can be checked, but the classical representation is generally smaller
than the Strong representation.

In the following section we discuss the State Class Abstraction, first focusing
on TPN then on PTPN, which have a slightly different behaviour because of the
synchronization.

5.1 The State Class Abstraction for TPN

In the remainder of this section, the notation αst and βst are for the left and right
endpoints of Is(t) (that is ↓Is(t) and ↑Is(t) respectively, see Section 3.1 for details).
By definition: 0 ≤ αst ≤ βst . As a convention, it is considered that βst − αst = ∞
if βst is infinite. Likewise, inequalities of the form x ≤ ∞ (which is a tautology)
are implicitly accepted. The notation of αti into αi is also simplified when it is
non-ambiguous.

In this section, the results on the state class abstraction method for TPN defined
by Berthomieu et al. [Berthomieu 1983, Berthomieu 1991] are recalled. A State
Class Graph (SCG) is a finite abstraction of the timed transition system of a net
that preserves the markings and the traces. The construction is based on the
idea that temporal information in states (the firing domain ϕ) can be conveniently
represented using systems of difference constraints [Ramalingam 1995].

5.1.1 State classes

Definition 30 (State class). A state class C is defined by a tuple (m,D) where
m is a marking and D is the firing domain described by a finite system of linear
inequalities.

The domain D is defined by a set of difference constraints in reduced form, that
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are inequalities of the kind:
αi ≤ xi ti ∈ E(m)
xi ≤ βi ti ∈ E(m)

xi − xj ≤ γij i 6= j, ti, tj ∈ E(m)

and the coefficients αi, βi and γij are rational numbers.

In a domain D, the variables xi denote the firing time of the enabled
transition ti relatively to the time when the marking of the class occurred. Con-
sequently, they denote a constraint on the value of ϕ(ti) (see Section 3.1 for details).

The system D is consistent by construction in the case of a TPN. This means
that the system needs to follow the following conditions:

αi ≤ βi (C1)
−γji ≤ γij (C2)

with (i, j) ranging over the set of transitions E(m) (with i 6= j).

Moreover, the form of D can be improved by choosing the tightest possible
bounds that do not change its associated solutions set. In this case, D is in closure
form.

Definition 31 (Closure form). A difference system is in closure form iff it is closed
by recursivity, that is iff it is in normal form and its constraints are the tightest
preserving its solution set.

The closure form of a firing domain D of a class C is [Berthomieu 1983]:

D∗ =


α∗i ≤ xi ti ∈ E(m)
xi ≤ β∗i ti ∈ E(m)

xi − xj ≤ γ∗ij i 6= j, ti, tj ∈ E(m)

where

• α∗i is the smallest possible value of variable xi solution of D, i.e. α∗i =
inf{xi | xi a solution of D},

• β∗i is the largest possible value of variable xi solution of D, i.e. β∗i =
sup{xi | xi a solution of D},

• γ∗ij is the largest possible value of the difference xi − xj, i.e. γ∗ij = sup{xi −
xj | xi, xj a solution of D}.

A result in [Aspvall 1979] implies that this closure form can be computed in
polynomial time with a shortest-path graph algorithm, for example with the Floyd-
Warshall algorithm that has an O(n3) time cost.
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Lemma 1. A system D is in closure form iff ∀i, i, k:

αi ≥ αk − γki (C3)
βi ≤ γik + βk (C4)
γij ≤ βi − αj (C5)
γij ≤ γik + γkj (C6)

Proof. Suppose the system D in closure form, with;

D =


αi ≤ xi
xi ≤ βi

xi − xj ≤ γij

From this system we have the following relations:

αk − γki ≤ xk − γki ≤ xi
xi ≤ xk + γik ≤ βk + γik

xi − xj ≤ xi − xk + xk − xj ≤ γik + γkj
xi − xj ≤ βi − αj

and by definition of α, β and γ as infimum or supremum for a system in closure
form, we have directly D ⇒ (C3), (C4), (C5) and (C6).

Reciprocally, as for Difference-Bound Matrix (DBM), we introduce a variable
x0 = 0 to rewrite inequalities of D:

D =


x0 − xi ≤ −αi
xi − x0 ≤ βi
xi − xj ≤ γij

and so by denoting γ0i = −αi and γi0 = βi the system can be viewed as a set of in-
equalities xi−xj ≤ γij and condition (C3), (C4), (C5) and (C6) can be summarized
with (C6b) γij ≤ γik + γkj extended with x0.

So now suppose that we have (C6b) γij ≤ γik + γkj and that D is not in closure
form. It means ∃γ, xi − xj ≤ γ < γij and so:

xi − xk + xk − xj < γij
γik + γkj < γij

γij < γij

So (C6b)⇒ D in closure form.

During the process to compute a SCG it is necessary to compare two classes.
We introduce the notation LD that represents the set of all solutions for x that
satisfies the inequalities of D and, so, we can define the equality of two classes.
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Definition 32 (Equality of two classes). Two classes C1 = (m1, D1) and C2 =
(m2, D2) are equal if m1 = m2 and LD1 = LD2.

Remark that checking firing domains for equality is improved by the fact that
the domains are in closure form (see [Berthomieu 1983] for details).

5.1.2 Transitions between state classes

We quickly explain here how the domain of a class can be obtained after firing a
transition. These steps are taken from [Berthomieu 1983, Berthomieu 1991].

Initial state class

The initial class Cε is (m0, D0) wherem0 is the initial marking and D0 is the domain
defined by the set of static time constraints:

D0 =


αsi ≤ xi ti ∈ E(m0)
xi ≤ βsi ti ∈ E(m0)

xi − xj ≤ γij i 6= j, ti, tj ∈ E(m0)

where E(m0) is the set of enabled transitions at m0 (see Section 3.1 for details) and
γij = βsi − αsj , i 6= j, ti, tj ∈ E(m0)

Firability condition

Theorem 6. Assume Cσ = (m,D) is defined and D is consistent and in closure
form and that a transition tj is enabled at m. A transition tf is firable iff

∀tj ∈ E(m), tj 6= tf γjf ≥ 0 (FIRE)

Proof. A transition tf can be fired with the constraints in D iff there exists a time
θ ≥ 0 such that the system D is consistent and augmented with the constraints:

(1) xf = θ

(2) θ ≤ xj for all transitions tj ∈ E(m), tj 6= tf

Condition (1) means that the transition tf is time-enabled after a time θ has
elapsed, while condition (2) states that the deadline of any enabled transition is not
exceeded.

By eliminating the variable θ, tf can be fired iff the constraints xf ≤ xj are
consistent for all transitions tj 6= tf that is enabled at m. Since the system is in
closure form xj − xf ≤ γjf :

∀tj ∈ E(m), j 6= f γjf ≥ 0
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Successor class

From a class Cσ = (m,D), if condition (FIRE) is true for the transition tf , Cσ.tf =
(m′, D′) is added as the successor class from Cσ, where m′ is the result of firing tf
from m:

m′ = m−Pre(tf ) + Post(tf )

Below, the procedure to compute D′ from D is briefly described in four steps:

1. The (FIRE) conditions for tf stated above are added to D.

2. New variables x′k = xk − xf are used in the set of inequalities. The variable
x′k matches the earliest firing date of k at the time tf fires, that is, the pos-
sible values of the time interval ϕ(k) used in Definition 8, case (i). A set of
inequalities is obtained where all occurrences of the variables xk (and xf in
consequence) can be eliminated.

3. The variables for transitions in conflict with tf are removed, so that the vari-
ables only range over transitions enabled at m′ (transition tf is included).

4. For every transition tk newly enabled at m′ after firing tf , (we denote this set
as nnbl(m, tf )) the constraint αsk ≤ x′k ≤ βsk is added and further inequalities
are provided to take into account the relationship between these new variables
and the persistent ones. These constraints match the fact that the firing
interval of a newly enabled transition tk is equal to Is(k).

As a result, we obtain a set of inequalities where we can eliminate all occurrences
of the variables xk and xf . After removing redundant inequalities and simplifying
the constraints on transitions in conflict with tf—so that the variables only range
over transitions enabled at m′—we obtain a domain D′ that is also in closure form.
The coefficients α′i, β′i and γ′ij of this set of difference constraints can be defined
directly from the coefficients of D.

α′i =
{
αsi
max({0} ∪ {−γki | tk ∈ E(m)})

if ti ∈ nnbl(m, tf )
otherwise

β′i =
{
βsi
γif

if ti ∈ nnbl(m, tf )
otherwise

γ′ij =
{
β′i − α′j
min (γij , β′i − α′j)

if either ti or tj in nnbl(m, tf )
otherwise

We do not give the demonstration of this calculation for a PTN because we will
detail this calculation for a PTPN in the next section. The result has been proved
by H. Bouchened. As we have seen before, a TPN can be represented by a PTPN,
so the computation of the SCG for a PTPN is a generalization.

For the same reason we do not give here properties attached to SCG for a TPN
such as reachability or trace preservation. All these properties will be given in the
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next Section for PTPN.

To compute a SCG from a TPN, we can use the software
TINA [Berthomieu 2004] 1. TINA (TIme petri Net Analyzer) is a toolbox
for the editing and analysis of Petri Nets. TINA can construct various state
space abstractions. Depending on the selected option, the construction preserves
markings, states, LTL properties, or CTL properties of the concrete state space
of the Time Petri net. To compute a SCG, we use the default option and, as we
will see in Chapter 8, some other tools from the TINA toolbox to analyse and
transform TPN.

Example: Through this chapter we will use the TPN described in Fig. 5.1a to
show the differences between the different State Class models.

p0

t1 a

[1, 5]

p1

t0 a

[0, 4]

p2

t3 b t2 c

(a) TPN

0 2

1

t3

t2

t1

t0

(b) SCG

Figure 5.1: Exemple of a TPN N and its SCG

Fig. 5.1b shows the SCG obtained for the TPN. It can be seen that the different
transitions are being fired, without timing information on the SCG.

The initial state s0 = (m0, D0) is composed as follow:

• m0 = {1, 0, 0}

• D0 =



0 ≤ x0
1 ≤ x1
x0 ≤ 4
x1 ≤ 5

x0 − x1 ≤ 3
x1 − x0 ≤ 5

1TINA Website : http://projects.laas.fr/tina/

http://projects.laas.fr/tina/
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Transitions t0 or t1 may fire if their firing constraints are fulfilled in terms of
time conditions. By firing either one, a trivial domain is obtained (in either {1} or
{2}).

By firing transition t0, a new class is obtained with :

• m1 = {0, 0, 1}

• D1 =
{

0 ≤ x2
x2 ≤ ∞

By using TINA on this example, we can obtain exactly the same classes:

class 0
marking

p0
domain

0 <= t0 <= 4
1 <= t1 <= 5

class 1
marking

p2
domain

0 <= t2

class 2
marking

p1
domain

0 <= t3

5.2 The State Class Abstraction Revisited

In this section, we generalize the SCG abstraction to the case of PTPN.

5.2.1 Definition of a state class for a PTPN

The adaptation is quite trivial since a PTPN (N,R) structure is really similar to a
TPN structure N (see Chapter 4 for more details). In this section, the idea is to
focus on the main difference in terms of behaviour between PTPN and TPN, the
subset of transitions which have to fire synchronously. Each step will be repeated
and adapted to the PTPN.
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Initial state class

The initial class C0 is (m0, D0) where m0 is the initial marking and D0 is the same
than for TPN :

D0 =


αsi ≤ xi ti ∈ E(m0)
xi ≤ βsi ti ∈ E(m0)

xi − xj ≤ γij i 6= j, ti, tj ∈ E(m0)

where E(m0) is the set of enabled transitions at m0 with γij = βsi −αsj , i 6= j, ti, tj ∈
E(m0).

Firability condition

Theorem 7. Consider a PTPN (N,R) and assume Cσ = (m,D) defined and D
consistent and in closure form, a set of transitions r ∈ R is firable at m iff r ⊆ E(m)
and:

∀tj ∈ E(m) \ r,min{γjf | tf ∈ r} ≥ 0 (FIRE)

Proof. A set of transitions r ∈ R can be fired with the constraints in D iff all
transitions in r are enabled (i.e. ∀tf ∈ r, tf ∈ E(m)) and there exists a time θ ≥ 0
such that the system D is consistent and augmented with the constraints{

xf = θ tf ∈ r
θ ≤ xj tj ∈ E(m) \ r

And so : {
xf = xf ′ tf , tf ′ ∈ r
xf ≤ xj tj ∈ E(m) \ r, tf ∈ r

Since the system is in a closure form, i.e. xj − xf ≤ γjf , ∀tj ∈ E(m) \ r, ∀tf ∈ r ,
the set of transitions r is firable from the state (m,D) iff:

∀tj ∈ E(m) \ r,min{γjf | tf ∈ r} ≥ 0

Successor class

From a class Cσ = (m,D), if the condition (FIRE) is true for the set of synchronous
transitions r, Cσ.r = (m′, D′) is added as the successor class from Cσ, where m′ is
the result of firing transitions of r from m:

m′ = m−
∑
t∈r

Pre(t) +
∑
t∈r

Post(t)

Now we will proceed with the four same steps as with TPN to construct D′.
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1. The conditions to fire transitions in r are added to D:

D̄ =



xf = xf ′ tf , tf ′ ∈ r
xf ≤ xj tj ∈ E(m) \ r, tf ∈ r
αj ≤ xj tj ∈ E(m)
xj ≤ βj tj ∈ E(m)

xi − xj ≤ γij i 6= j, ti, tj ∈ E(m)

By introducing a new variable xt to replace all variables xf , tf ∈ r, a new
system is obtained:

D̄ =



xt = xf tf ∈ r
xt ≤ xj tj ∈ E(m) \ r

max{αf | tf ∈ r} ≤ xt
xt ≤ min{βf | tf ∈ r}
0 ≤ γff ′ f 6= f ′, tf , tf ′ ∈ r

xt − xj ≤ min{γfj | tf ∈ r} tj ∈ E(m) \ r
xi − xt ≤ min{γif | tf ∈ r} ti ∈ E(m) \ r

αj ≤ xj tj ∈ E(m) \ r
xj ≤ βj tj ∈ E(m) \ r

xi − xj ≤ γij i 6= j, ti, tj ∈ E(m) \ r

Remark that we have for all transitions tk ∈ E(m) \ r :

xt − xj ≤ xk − xj ≤ γkj

and so
xt − xj ≤ min{γkj | tk ∈ E(m)}

2. Consider now a change of variable such as:

x′j = xj − xt

D̄ =



0 ≤ x′j tj ∈ E(m) \ r
max{αf | tf ∈ r} ≤ xt

xt ≤ min{βf | tf ∈ r}
0 ≤ γkl k 6= l, tk, tl ∈ r

max{−γkj | tk ∈ E(m)} ≤ x′j tj ∈ E(m) \ r
x′j ≤ min{γjf | tf ∈ r} tj ∈ E(m) \ r

αj − xt ≤ x′j tj ∈ E(m) \ r
x′j ≤ βj − xt tj ∈ E(m) \ r

x′i − x′j ≤ γij i 6= j, ti, tj ∈ E(m) \ r
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Remark that
xt ≤ min{βf | tf ∈ r}
−xt ≥ −min{βf | tf ∈ r}

αj − xt ≥ αj −min{βf | tf ∈ r}
αj − xt ≥ αj + max{−βf | tf ∈ r}
αj − xt ≥ max{αj − βf | tf ∈ r}

and
max{αf | tf ∈ r} ≤ xt
−max{αf | tf ∈ r} ≥ −xt

βj −max{αf | tf ∈ r} ≥ βj − xt
βj + min{−αf | tf ∈ r} ≥ βj − xt

min{βj − αf | tf ∈ r} ≥ βj − xt
And we have:

αi ≤ x′i + xt ≤ βi
αi − x′i ≤ xt ≤ βi − x′i
αj − x′j ≤ xt ≤ βj − x′j

and so:
x′i − x′j ≤ βi − αj
x′j − x′i ≤ βj − αi

By eliminating xt the system D̄ becomes:

D̄ =



0 ≤ x′j tj ∈ E(m) \ r
max{−γkj | tk ∈ E(m)} ≤ x′j tj ∈ E(m) \ r

max{αj − βf | tf ∈ r} ≤ x′j tj ∈ E(m) \ r
x′j ≤ min{γjf | tf ∈ r} tj ∈ E(m) \ r
x′j ≤ min{βj − αf | tf ∈ r} tj ∈ E(m) \ r

x′i − x′j ≤ γij i 6= j, ti, tj ∈ E(m) \ r
x′i − x′j ≤ βi − αj i 6= j, ti, tj ∈ E(m) \ r

By considering that the system D is in closure form we have from (C5) γij ≤
βi − αj , and so we can eliminate:

max{αj − βf | tf ∈ r} ≤ x′j tj ∈ E(m) \ r
x′j ≤ min{βj − αf | tf ∈ r} tj ∈ E(m) \ r

x′i − x′j ≤ βi − αj i 6= j, ti, tj ∈ E(m) \ r

and so, we have a new system:

D̄ =


α′i ≤ x′i ti ∈ E(m) \ r
x′i ≤ β′i ti ∈ E(m) \ r

x′i − x′j ≤ γij′ i 6= j, ti, tj ∈ E(m) \ r
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where:
α′i = max({0} ∪ {−γki | tk ∈ E(m)})
β′i = min{γif | tf ∈ r}
γ′ij = γij

3. In this new step, we eliminate variables for transitions in conflict with tr
in r when transitions in r are fired. We denote cflt(m, r) = E(m) \ {ti ∈
T | m −

∑
tf∈r Pre(tf ) >̇ Pre(ti)} the set of transitions in conflict with all

transitions in r for a marking m (this set includes transitions in r).

Consider a transition te ∈ cflt(m, r) and i 6= j, ti, tj ∈ E(m) \ cflt(m, r), we
have: 

α′e ≤ x′e
x′e ≤ β′e

x′e − γej ≤ x′j
x′j ≤ γ′je + x′e

x′i − x′j ≤ γ′ie + γ′ej

and so by eliminating x′e, D̄ becomes for all transitions i 6= j, ti, tj ∈ E(m) \
cflt(m, r):

D̄ =



α′j ≤ x′j
max{α′e − γ′ej | te ∈ cflt(m, r)} ≤ x′j

x′j ≤ β′j
x′j ≤ min{γ′je + β′e | te ∈ cflt(m, r)}

x′i − x′j ≤ γ′ij
x′i − x′j ≤ min{γ′ie + γ′ej | te ∈ cflt(m, r)}

We obtain a new system:

D̄ =


α′′j ≤ xi ti ∈ E(m) \ cflt(m, r)
xi ≤ β′′j ti ∈ E(m) \ cflt(m, r)

xi − xj ≤ γ′′ij i 6= j, ti, tj ∈ E(m) \ cflt(m, r)

where:
α′′i = max({α′i} ∪ {α′e − γ′ei | te ∈ cflt(m, r)})
β′′i = min({β′i} ∪ {β′e + γ′ie | te ∈ cflt(m, r)})
γ′′ij = min({γ′ij} ∪ {γ′ie + γ′ej | te ∈ cflt(m, r)})

or

α′′i = max{0,−γki,−γei,−γke − γei | tk ∈ E(m), te ∈ cflt(m, r)}
β′′i = min{γik, γek + γie | tk ∈ r, te ∈ cflt(m, r)}
γ′′ij = min{γij , γie + γej | te ∈ cflt(m, r)}
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As the system D is in closure form, we have (C6) γjk ≤ γji + γik, then

α′′i = max({0} ∪ {−γki | tk ∈ E(m)})
β′′i = min{γik | tk ∈ r}
γ′′ij = γij

4. For every newly enabled transition at m′, the set is denoted as nnbl(m, r) =
E(m′) \ {tk | m−

∑
t∈r Pre(t) >̇ Pre(tk)}.

The constraints αsn ≤ x′n ≤ βsn and x′n − x′m ≤ βsn − αsm are added for each
n 6= m, tn, tm ∈ nnbl(m, r) and further inequalities are provided to take into
account the relationship between these new variables and the others :

D̄ =



α′′j ≤ xj tj ∈ E(m) \ cflt(m, r)
αsn ≤ xn tn ∈ nnbl(m, r)
xj ≤ β′′j tj ∈ E(m) \ cflt(m, r)
xn ≤ βsn tn ∈ nnbl(m, r)

xi − xj ≤ γ′′ij i 6= j, ti, tj ∈ E(m) \ cflt(m, r)
xn − xm ≤ βsn − αsm n 6= m, tn, tm ∈ nnbl(m, r)
xn − xj ≤ βsn − α′′j tn ∈ nnbl(m, r), tj ∈ E(m) \ cflt(m, r)
xi − xn ≤ β′′i − αsn ti ∈ E(m) \ cflt(m, r), tn ∈ nnbl(m, r)

Remark that xi−xj ≤ β′′i −α′′j for all transitions ti, tj ∈ E(m)\cflt(m, r), i 6= j.

This system can be seen as:

D̄ =


α′′′i ≤ xi ti ∈ E(m) \ r
xi ≤ β′′′i ti ∈ E(m) \ r

xi − xj ≤ γ′′′ij i 6= j, ti, tj ∈ E(m) \ r

with:

α′′′i =
{
αsi
max({0} ∪ {−γki | tk ∈ E(m)})

if ti ∈ nnbl(m, t)
otherwise

β′′′i =
{
βsi
min{γik | tk ∈ r}

if ti ∈ nnbl(m, t)
otherwise

γ′′′ij =
{
β′′′i − α′′′j
min(γij , β′′′i − α′′′j )

if either ti or tj in nnbl(m, t)
otherwise

Lemma 2. Assume C = (m,D) is a state class with D in closure form. Then,
for every set of transitions r such that condition (FIRE) holds, there is a unique
class (m′, D′) obtained from C by firing transitions of r. The domain D′ is also in
closure form and can be computed incrementally as described above.
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Proof. To prove that the domain D′ is in closure form we will evaluate:

γ′′′ij ≤ γ′′′ik + γ′′′kj

Consider that:

• ti, tj , tk ∈ nnbl(m, r) 
γ′′′ij = βsi − αsj
γ′′′ik = βsi − αsk
γ′′′kj = βsk − αsj

γ′′′ik + γ′′′kj = βsi − αsk + βsk − αsj
(C1:αs

k≤β
s
k)

≥ βsi − αsj

• ti, tj ∈ nnbl(m, r) and tk ∈ E(m′) \ nnbl(m, r)
γ′′′ij = βsi − αsj

γ′′′ik =
{
βsi if − γlk ≤ 0, ∀tl ∈ E(m)
βsi + γlk otherwise

γ′′′kj = γkt − αsj

γ′′′ik+γ′′′kj =

 βsi + γkt − αsj
(FIRE:γlt≥0)

≥ βsi − αsj
βsi + γlk + γkt − αsj

(C6:γlk+γkt≥γlr)
≥ βsi + γlt − αsj

(FIRE:γlr≥0)
≥ βsi − αsj

• ti, tk ∈ nnbl(m, r) and tj ∈ E(m) \ nnbl(m, r)
γ′′′ij =

{
βsi if − γlj ≤ 0,∀tl ∈ E(m)
βsi + γlj otherwise

γ′′′ik = βsi − αsk

γ′′′kj =
{
βsk if − γlj ≤ 0,∀tl ∈ E(m)
βsk + γlj otherwise

γ′′′ik + γ′′′kj =

 βsi − αsk + βsk

(C1:αs
k≤β

s
k)

≥ βsi if − γlj ≤ 0

βsi − αsk + βsk + γlj
(C1:αs

k≤β
s
k)

≥ βsi + γlj otherwise

• tk, tj ∈ nnbl(m, r) and ti ∈ E(m) \ nnbl(m, r)


γ′′′ij = γit − αsj
γ′′′ik = γit − αsk
γ′′′kj = βsk − αsj

γ′′′ik + γ′′′kj = γit − αsk + βsk − αsj
(C1:αs

k≤β
s
k)

≥ γit − αsj



66 CHAPTER 5. SCG AND SSCG

• ti ∈ nnbl(m, r) and tk, tj ∈ E(m) \ nnbl(m, r)
γ′′′ij =

{
βsi if − γlj ≤ 0, ∀tl ∈ E(m)
βsi + γlj otherwise

γ′′′ik =
{
βsi if − γlk ≤ 0,∀tl ∈ E(m)
βsi + γl′k otherwise

γ′′′kj = min(γkj , β′′′k − α′′′j )

– Suppose γnj ≥ 0,∀tn ∈ E(m), then γ′′′ij = βsi and γ′′′kj = min(γkj , γkt) ≥ 0.

∗ Suppose that γnk ≥ 0,∀tn ∈ E(m) then γ′′′ik = βsi and so we have
γ′′′ik + γ′′′kj = βsi + min(γkj , γkt) ≥ γ′′′ij .

∗ Suppose that γ′′′ik = βsi + γl′k, then γ′′′ik + γ′′′kj = βsi + γl′k +
min(γkj , γkt) ≥ βsi + min(γl′j , γl′t) ≥ βsi = γ′′′ij .

– Suppose γ′′′ij = βsi + γlj then γlj ≤ 0, γlj ≤ γnj , l 6= n, tl, tn ∈ E(m) and
γ′′′ij = βsi and γ′′′kj = min(γkj , γkt + γlj) ≥ γlj .

∗ Suppose that −γnk ≤ 0,∀tn ∈ E(m) then γ′′′ik = βsi and so we have
γ′′′ik + γ′′′kj = βsi + min(γkj , γkt + γlj) ≥ γ′′′ij .

∗ Suppose that γ′′′ik = βsi +γl′k, then γ′′′ik+γ′′′kj = βsi +γl′k+min(γkj , γkt+
γlj) ≥ βsi + min(γl′j , γl′t + γlj) ≥ βsi + γlj = γ′′′ij .

• tj ∈ nnbl(m, r) and ti, tk ∈ E(m) \ nnbl(m, r)
γ′′′ij = γit − αsj
γ′′′ik = min(γik, β′′′i − α′′′k )
γ′′′kj = γkt′ − αsj

– Suppose γ′′′ik = γik then γ′′′ij + γ′′′kj = γik + γkt′ − αsj
(C6:γik+γkt′≥γit′ )

≥ γit′ −

αsj
(γit=min{γik | tk∈r})

≥ γit − αsj
– Suppose γ′′′ik = β′′′i − α′′′k = γit + min(0, γlk) then γ′′′ij + γ′′′kj = γit +

min(0, γlk) + γkt′ − αsj = γit + min(γkt′ , γlk + γkt′) − αsj and so γ′′′ij +

γ′′′kj
(C6:γlk+γkt′≥γlt′ )

≥ γit − αsj + min(γkt′ , γlt′)
(FIRE)
≥ γit − αsj

• tk ∈ nnbl(m, r) and ti, tj ∈ E(m) \ nnbl(m, r)
γ′′′ij = min(γij , β′′′i − α′′′j ) ≤ β′′′i − α′′′j
γ′′′ik = β′′′i − αsk
γ′′′kj = βsk − α′′′j

γ′′′ik + γ′′′kj = β′′′i − αsk + βsk − α′′′j
(C1:αs

k≤β
s
k)

≥ β′′′i − α′′′j ≥ γ′′′ij
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• ti, tj , tk ∈ E(m) \ nnbl(m, r)
γ′′′ij = min(γij , γit, γit + γlj)
γ′′′ik = min(γik, γit, γit + γl′k)
γ′′′kj = min(γkj , γkt′ , γkt′ + γlj)

with γit = min{γif | tf ∈ r} ≤ γit′ and γlj = min{γnj | tn ∈ E(m)} ≤ γl′j .

Consider the different values of γ′′′ik + γ′′′kj :

– γik + γkj
(C6:γik+γkj≥γij)

≥ γij

– γik + γkt′
(C6:γik+γkt′≥γij)

≥ γit′
(γit′≥γit)
≥ γit

– γik + γkt′ + γlj
(C6:γik+γkt′≥γij)

≥ γit′ + γlj
(γit′≥γit)
≥ γit + γlj

– γit + γkj
(γkj≥γlj)
≥ γit + γlj

– γit + γkt′
(FIRE)
≥ γit

– γit + γkt′ + γlj
(FIRE)
≥ γit + γlj

– γit + γl′k + γkj
(C6:γl′k+γkj≥γl′j)

≥ γit + γl′j
(γl′j≥γlj)
≥ γit + γlj

– γit + γl′k + γkt′
(C6:γl′k+γkt′≥γl′t′ )

≥ γit + γl′t′
(FIRE)
≥ γit

– γit + γl′k + γkt′ + γlj
(C6:γl′k+γkt′≥γl′t′ )

≥ γit + γl′t′ + γlj
(FIRE)
≥ γit + γlj

5.2.2 Graph of state classes

Definition 33. (state class graph) The state class graph (SCG) of a PTPN is
obtained by constructing a tree, that we call tree of state classes, with the initial
class as root and arcs labelled with transitions in r, going from class C to class
C ′ iff transitions in r are firable from class C and if firing them leads to class C ′
(Lemma. 2). The SCG is then the merging of equal classes in the tree of state
classes.

Theorem 8. For a PTPN (N,R), if the state (m,ϕ) is reachable in the state
graph of (N,R), and (m,ϕ) (θ,t)−−→ (m′, ϕ′) then there are two classes C = (m,D)
and C ′ = (m′, D′) reachable in the SCG computed for (N,R) with ϕ ∈ D and
ϕ′ ∈ D′.

Proof. We can rewrite a state (m,ϕ) as a pair (m,A) with A a system of inequalities
for ti ∈ E(m) such that:

A =
{
↓ϕ(ti) ≤ yi ≤ ↑ϕ(ti) ti ∈ E(m)
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and if (m,ϕ) (θ,t)−−→ (m′, ϕ′) then (m′, ϕ′) is equivalent to (m′, A′) with:

A′ =
{
↓ϕs(ti) ≤ y′i ≤ ↑ϕs(ti) if ti ∈ nnbl(m, r)
max(0, ↓ϕ(ti)− θ) ≤ y′i ≤ ↑ϕ(ti)− θ if ti ∈ E(m) \ cflt(m, r)

and by definition max{αf | tf ∈ r} ≤ θ ≤ min{βf | tf ∈ r}.

If we suppose that for a state (m,ϕ) we have a state class C = (m,D) such that
ϕ ∈ D (i.e. yi is a solution of D) then:

αi ≤ ↓ϕ(ti) ≤ yi ≤ ↑ϕ(ti) ≤ βi

For ti ∈ nnbl(m, r), we have α′′′i = ↓ϕs(ti) and β′′′i = ↑ϕs(ti), so:

α′′′i ≤ y′i ≤ β′′′i if ti ∈ nnbl(m, r)

For ti ∈ E(m) \ cflt(m, r) we have:

α′′′i = max{0, γli} = max({0} ∪ {−γki | tk ∈ cflt(m, t)})
β′′′i = γil′ = min{γif | tf ∈ r}

We have y′i ≤ ↑ϕ(ti)− θ ≤ βi − θ, and as D is in closure form, from (C5):

βi − θ ≤ γil′ + βl′ − θ
≤ γil′ + βl′ −max{αf | tf ∈ r}
≤ γil′ + βl′ − αl′
≤ γil′

and y′i ≥ max(0, ↓ϕ(ti)− θ) ≥ max(0, αi − θ), and from (C3):

max(0, αi − θ) ≥ max(0, αl − γli − θ)
≥ max(0, αl − γli −min{βf | tf ∈ r})
≥ max(0, αl − γli − βl)
≥ max(0, γli)

and so we have α′′′i ≤ y′i ≤ β′′′i if ti ∈ E(m) \ cflt(m, r).

Theorem 9. For a PTPN (N,R), its TTS [[(N,R)]] has the same set of firing
sequences than its SCG.

Proof. From the definition of the state classes, any sequence of firable transitions
from the initial state will be a path in the tree of state classes.

Existence of a path σ from the initial class to a class C ′ implies that a feasible
run with firing sequence σ is feasible from the initial state.

It can be proved that the SCG construction preserves the set of linear time
properties.
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Theorem 10. For a PTPN (N,R) with a finite number of reachable markings, a
finite SCG can be defined with the same set of reachable markings and the same set
of traces than the timed transition system [[(N,R)]].

Proof. From Th. 9 we have immediately the same set of traces.
The proof on the number of classes in a SCG is similar to the Theorem 2

in [Berthomieu 1991]. We give here only the main steps of the reasoning.

From the definition of the firing rule, the constants αi, βi and γij of any domain
are linear combinations with integer coefficients of αsi and βsi , i.e. :

∀i,∃λ1, ..., λ2n ∈ Z, αi = λ1α
s
1 + ...+ λnα

s
n + λn+1β

s
1 + ...+ λ2nβ

s
n

and similarly for βi and γij .

Moreover, from the firing rule, we have bounds on αi, βi and γij computed from
the initial class:

0 ≤ αi ≤ αsi
0 ≤ βi ≤ βsi
−αsk ≤ γjk ≤ βsj

It is shown in [Berthomieu 1991] (Lemma 4) that for two constants A and B

and a finite set of rational constants Q1, ..., Qn, there is only a bounded number of
linear combinations of numbers Q1, ..., Qn with integer coefficients, between A and
B, i.e., for λ1, ..., λn ∈ Z and Q1, ..., Qn ∈ Q, the number of rational numbers x
such that

x = λ1Q1 + ...+ λnQn and A ≤ x ≤ B

is bounded.

We have seen that the possible values αi, βi and γij for systems that define the
state classes are linear combinations with integer coefficients of αsi and βsi and have
upper and lower bounds. Immediately, from the previous result, for a given marking
there exists only a bounded number of domains related to this marking. So if the
PTPN has a finite number of reachable markings then the number of classes, i.e. a
pair of marking and domain, is finite.

5.2.3 Example of a SCG for a PTPN

For the purpose of this example, we will make a PTPN using the same TPN from
the example 5.1b, twice. We call the original TPN N and its twin N ′.
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p0

t1.1 a

[1, 5]

p1

t0.1 a

[0, 4]

p3

t3.1 b t2.1 c ×

p′0

t1.2 a

[1, 5]

p′1

t0.2 a

[0, 4]

p′3

t3.2 b t2.2 c

Figure 5.2: PTPN of N ×N ′

With set of transitions for m0:

{(t0.1|t0.2), (t1.1|t0.2), (t0.1|t1.2), (t1.1|t1.2)}

Using this PTPN we have the following SCG creation.

0 1

3

2

4

t2.1|t2.2 t3.1|t3.2

t0.1|t0.2

t0.1|t1.2

t1.1|t0.2

t1.1|t1.2

Figure 5.3: SCG of the PTPN 5.2

Here, the four markings, still representing the possible markings in the PTPN,
can be seen. As a clear example of a PTPN behaviour, the synchronous firing of
the transitions with the same labels can be seen.

The SCG at {0} is composed as follow:

• m0 = {p0, p
′
0}
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• D =



0 ≤ xt0.1|t0.2 ≤ 4
1 ≤ xt1.1|t1.2 ≤ 5
1 ≤ xt0.1|t1.2 ≤ 4
1 ≤ xt1.1|t0.2 ≤ 4

γt0.1|t0.2,t1.1|t1.2 ≤ 3
γt0.1|t0.2,t0.1|t1.2 ≤ 3
γt0.1|t0.2,t1.1|t0.2 ≤ 3
γt1.1|t1.2,t0.1|t0.2 ≤ 5

. . .

D is of course much bigger because of the synchronous behaviour between the
two TPN. This conclude our study of the SCG and we now proceed to the SSCG,
another abstraction used for verification purposes.

5.3 The Strong State Class Abstraction for TPN

In this section we present the Strong State Class abstraction introduced by
Berthomieu et al. [Berthomieu 1983].

This class relies on clock for time modelling and is defined as strong because
it keeps much more information (priorities for example) than the general repre-
sentation of state class. The preservation of branching can be added in a SSCG.
Contrary to the SCG we will directly give the form of the SSCG for the PTPN
without discussing that of the TPN (a construction of the SSCG for a TPN is given
by Berthomieu and Vernadat in [Berthomieu 2003]).

5.3.1 Definition of a strong state class

A strong state class R is represented by a pair (m,Q), where m is a marking and
the clock domain Q is described by a (finite) system of linear inequalities. Q is
the equivalent of a domain D, but it represents clock counting for every enabled
transition.

Initial state class

For a PTPN with initial state s0 = (m0, C0), the initial strong state class is (m0, Q0)
with:

Q0 =
{

0 ≤ ψi ≤ 0 ti ∈ E(m0)

Firability condition

For a PTPN (N,R) and from a strong state class R = (m,Q) with

Q =


αi ≤ ψi ti ∈ E(m)
ψi ≤ βi ti ∈ E(m)

ψi − ψj ≤ γij i 6= j, ti, tj ∈ E(m)
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consistent, a set of transitions r ∈ R is firable iff:

• All transitions of r are enabled at m, i.e. tf ∈ E(m) ∪ r

• The system Qf = Q ∩ F with

F =


0 ≤ θ

αsf ≤ ψf + θ tf ∈ r
ψi + θ ≤ βsi ti ∈ E(m)

is consistent.

Theorem 11. A set of transitions r of a PTPN (N,R) is firable from a strong
state class R = (m,Q) in closure form iff ∀ti ∈ E(m), ∀tf ∈ r, f 6= i, αsf − βsi ≤ γfi

Proof. Eliminating θ in F yields the system:

0 ≤ βsi − ψi ti ∈ E(m)
αsf − ψf ≤ βsi − ψi i 6= f, tf ∈ r, ti ∈ E(m)

By definition ψi ≤ βsi is true in Q and further, ψf − ψi ≤ γfi exists in Q, so a
necessary condition is that, for each i 6= f there is αsf − βsi ≤ γfi.

Successor class

If the set of transitions r is firable from (m,Q) then we have (m,Q) t−→ (m′, Q′)
with:

m′ = m−
∑
t∈r

Pre(t) +
∑
t∈r

Post(t)

and Q′ is obtained by:

1. Adding a new variable θ constrained by the previous firability condition;

2. For each transition ti enabled at m′, a new variable ψ′i is introduced with
constraints:

ψ′i = ψi + θ if ti /∈ r,m−
∑
t∈r Pre(t) ≥ Pre(ti)

0 ≤ ψ′i ≤ 0 if ti ∈ nnbl(m, r)

3. variables ψ and θ are eliminated.

Now we will detail the computation. Consider the clock domain Q represented
by the following system, assumed consistent and in closure form:

Q =


αi ≤ ψi ti ∈ E(m)
ψi ≤ βi ti ∈ E(m)

ψi − ψj ≤ γij ti, tj ∈ E(m)
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Adding the firability conditions:

Q′ =



0 ≤ θ

αsf ≤ ψf + θ tf ∈ r
ψi + θ ≤ βsi ti ∈ E(m)

αi ≤ ψi ti ∈ E(m)
ψi ≤ βi ti ∈ E(m)

ψi − ψj ≤ γij ti, tj ∈ E(m)

Consider a transition tf ∈ r and making ψf explicit in Q′:

Q′ =



0 ≤ θ

αsf − θ ≤ ψf
αf ≤ ψf

ψi − γif ≤ ψf i 6= f, ti ∈ E(m)
ψf ≤ ψj + γfj j 6= f, tj ∈ E(m)
ψf ≤ βf
ψf ≤ βsf − θ
θ ≤ βsi − ψi ti ∈ E(m)
αi ≤ ψi ti ∈ E(m)
ψi ≤ βi ti ∈ E(m)

ψi − ψj ≤ γij ti, tj ∈ E(m)

We now eliminate ψf :

Q′ =



0 ≤ θ

αsf − θ ≤ ψj + γfj j 6= f, tj ∈ E(m)
αsf − θ ≤ βf
αsf − θ ≤ βsf − θ (4)

αf ≤ ψj + γfj j 6= f, tj ∈ E(m) (5)
αf ≤ βf (6)
αf ≤ βsf − θ

ψi − γif ≤ ψj + γfj j 6= i, tj , ti ∈ E(m) (8)
ψi − γif ≤ βf i 6= f, ti ∈ E(m) (9)
ψi − γif ≤ βsf − θ i 6= f, ti ∈ E(m)

θ ≤ βsi − ψi ti ∈ E(m)
αi ≤ ψi ti ∈ E(m) (12)
ψi ≤ βi ti ∈ E(m)

ψi − ψj ≤ γij ti, tj ∈ E(m)

(4) and (6) are true by hypothesis. Since Q is in closure form, (8) is redundant
with (C6) γij ≤ γif + γfj , and (C3) αf − γfi ≤ αi makes (5) redundant with (12).
There is also: βi ≤ γit + βt which makes (9) redundant with (12). So finally we
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have for all transitions ti, tj ∈ E(m) \ {tf}:

Q′ =



0 ≤ θ

αsf − θ ≤ ψj + γfj
αsf − θ ≤ βf

αf ≤ βsf − θ
ψi − γif ≤ βsf − θ

θ ≤ βsi − ψi
αi ≤ ψi
ψi ≤ βi

ψi − ψj ≤ γij

If we proceed in the same manner to eliminate all transitions in r, we obtain a set
of inequalities for ti, tj ∈ E(m) \ r such:

Q′ =



0 ≤ θ

αsf − θ ≤ ψj + γfj tf ∈ r
αsf − θ ≤ βf tf ∈ r

αf ≤ βsf − θ tf ∈ r
ψi − γif ≤ βsf − θ tf ∈ r

θ ≤ βsi − ψi
αi ≤ ψi
ψi ≤ βi

ψi − ψj ≤ γij

Now consider a transition tc in conflict with r and rewriting Q′ to make the
conflict variable ψc explicit:

Q′ =



0 ≤ θ

αsf − θ ≤ ψj + γfj tf ∈ r
αsf − θ ≤ βf tf ∈ r

αf ≤ βsf − θ tf ∈ r
ψi − γif ≤ βsf − θ tf ∈ r

θ ≤ βsi − ψi
αi ≤ ψi
ψi ≤ βi

ψi − ψj ≤ γij
αsf − θ − γfc ≤ ψc

αc ≤ ψc
ψi − γic ≤ ψc

ψc ≤ βsf − θ + γcf
ψc ≤ βc
ψc ≤ γcj + ψj
ψc ≤ βsc − θ
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And by eliminating ψc we have:

Q′ =



0 ≤ θ

αsf − θ ≤ ψj + γfj tf ∈ r (2)
αsf − θ ≤ βf tf ∈ r (3)

αf ≤ βsf − θ tf ∈ r (4)
ψi − γif ≤ βsf − θ tf ∈ r (5)

θ ≤ βsi − ψi
αi ≤ ψi
ψi ≤ βi

ψi − ψj ≤ γij
αsf − γfc ≤ βsf + γcf (9)

αsf − θ − γfc ≤ βc (10)
αsf − θ − γfc ≤ γcj + ψj (11)

αsf − γfc ≤ βsc (12)
αc ≤ βsf − θ + γcf (13)
αc ≤ βc (14)
αc ≤ γcj + ψj (15)
αc ≤ βsc − θ

ψi − γic ≤ βsf − θ + γcf (17)
ψi − γic ≤ βc (18)
ψi − γic ≤ γcj + ψj (19)
ψi − γic ≤ βsc − θ

(9),(12) and (14) (involving constants only) must hold since the system is con-
sistent. (15),(18) and (19) are redundant. (13) is redundant since αc − γcf ≤ αf
via (3). (11) is redundant via (2). (10) is redundant via (3). (17) is redundant via
(5).

So by iterating the same process for all transitions in conflict we have for tran-
sitions ti, tj ∈ E(m) \ (r ∪ cnflt(m, r))

Q′ =



0 ≤ θ

αsf − θ ≤ ψj + γfj tf ∈ r
αsf − θ ≤ βf tf ∈ r

αf ≤ βsf − θ tf ∈ r
ψi − γif ≤ βsf − θ tf ∈ r

θ ≤ βsi − ψi
αi ≤ ψi
ψi ≤ βi

ψi − ψj ≤ γij
αc ≤ βsc − θ tc ∈ cflt(m, r)

ψi − γic ≤ βsc − θ tc ∈ cflt(m, r)

We now introduce new variables ψ′i for all persistent transitions ti with ψ′i =
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ψi + θ, and so:

Q′ =



0 ≤ θ

αsf ≤ ψ′j + γfj tf ∈ r
αsf − θ ≤ βf tf ∈ r

αf ≤ βsf − θ tf ∈ r
ψ′i − γif ≤ βsf tf ∈ r

0 ≤ βsi − ψ′i
αi ≤ ψ′i − θ

ψ′i − θ ≤ βi
ψ′i − ψ′j ≤ γij

αc ≤ βsc − θ tc ∈ cflt(m, r)
ψ′i − γic ≤ βsc tc ∈ cflt(m, r)

or

Q′ =



ψ′i ≤ βsi
αsf ≤ ψ′j + γfj tf ∈ r

ψ′i − γif ≤ βsf tf ∈ r
ψ′i − ψ′j ≤ γij
ψ′i − γic ≤ βsc tc ∈ cflt(m, r)

0 ≤ θ

αsf − βf ≤ θ tf ∈ r
ψ′i − βi ≤ θ

θ ≤ βsf − αf tf ∈ r
θ ≤ ψ′i − αi
θ ≤ βsc − αc tc ∈ cflt(m, r)

Elimination of θ produces

Q′ =



αi ≤ ψ′i
αsf − γfj ≤ ψ′j tf ∈ r (2)

αsf − βf + αi ≤ ψ′i tf ∈ r (3)
ψ′i ≤ βsf + γif tf ∈ r (4)
ψ′i ≤ βsc + γic tc ∈ cflt(m, r) (5)
ψ′i ≤ βsi
ψ′i ≤ βsf − αf + βi tf ∈ r (7)
ψ′i ≤ βsc − αc + βi tc ∈ cflt(m, r) (8)

ψ′i − ψ′j ≤ γij (9)
ψ′i − ψ′j ≤ βi − αj (10)

αf ≤ βsf tf ∈ r (11)
αc ≤ βsc tc ∈ cflt(m, r) (12)

αsf − βf ≤ βsf − αf tf ∈ r (13)
αsf − βf ≤ βsc − αc tc ∈ cflt(m, r), tf ∈ r (14)

(3) is redundant with (2) since γfi ≤ βf − αi. Similarly, (7) is redundant with
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(4). (8) is redundant with (5) and (10) is redundant with (9). (11)-(14) (involving
constants only) must hold since the system is assumed consistent.

What is left is then:

Q′ =



αi ≤ ψ′i
αsf − γfj ≤ ψ′j tf ∈ r (2)

ψ′i ≤ βsf + γif tf ∈ r (4)
ψ′i ≤ βsc + γic tc ∈ cflt(m, r) (5)
ψ′i ≤ βsi

ψ′i − ψ′j ≤ γij (9)

The last step consists to add variables and constraints corresponding to the newly
enabled transitions yielding system:

Q′ =


α′i ≤ ψ′i ti ∈ E(m)
ψ′i ≤ β′i ti ∈ E(m)

ψ′i − ψ′j ≤ γ′ij i 6= j, ti, tj ∈ E(m)

with

α′i =
{

0
max({αi} ∪ {αf − γfi | tf ∈ r})

if ti ∈ nnbl(m, tf )
otherwise

β′i =
{

0
min({βi} ∪ {βk + γik | tk ∈ r ∪ cflt(m, r)})

if ti ∈ nnbl(m, tf )
otherwise

γ′ij =
{
β′i − α′j
min (γij , β′i − α′j)

if either ti or tj in nnbl(m, r)
otherwise

5.3.2 Example of a SSCG for a PTPN

For the purpose of this example, we will make a PTPN using the same TPN from
the example 5.1b, twice. We call the original TPN N and its twin N ′.

With set of transitions for m0:

{(t0.1|t0.2), (t1.1|t0.2), (t0.1|t1.2), (t1.1|t1.2)}

Here, the SSCG obtained from the PTPN is the same as for a SCG, because on
such small example, the added clocks informations is not significant.

This SSCG is decomposed as follow for state {0}:

• m0 = {p0, p0}

• D =


0 ≤ xt0.1|t0.2 ≤ 4
1 ≤ xt1.1|t1.2 ≤ 5

. . .

The idea is still to have a clock for each possible pair of transitions firing from
the original state. This ends ups with a big clock domain Q.
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p0

t1.1 a

[1, 5]

p1

t0.1 a

[0, 4]

p3

t3.1 b t2.1 c ×

p′0

t1.2 a

[1, 5]

p′1

t0.2 a

[0, 4]

p′3

t3.2 b t2.2 c

Figure 5.4: PTPN of N ×N ′

0 1

3

2

4

t2.1|t2.2 t3.1|t3.2

t0.1|t0.2

t0.1|t1.2

t1.1|t0.2

t1.1|t1.2

Figure 5.5: SSCG of N ×N ′

Now that we have seen the SCG and the SSCG, adapted to PTPN, we summarize
this chapter before going to the next one.
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5.4 Summary

In this Chapter 5 we presented the SCG and SSCG, two constructions used in the
analysis of TPN and PTPN behaviour.

• SCG are composed of states and a domain (representing the timing behaviour
of the TPN or PTPN). They are easily used to analyse the behaviour of the
modelled TPN or PTPN and we will mainly use them trough this thesis.

• SSCG are composed of states and a clock domain (representing the timing
behaviour of the TPN or PTPN). They are bigger than SCG and we use a
particular kind of SSCG, with timing clearly displayed as i events.

• SCG and SSCG are easily adapted to PTPN by adding the information about
the pair of transitions firing synchronously and taking into account the more
restrictive timing constraints.

The Chapter 6 will be focused on the property of Diagnosability, the core prop-
erty we studied during this thesis.





Chapter 6

Diagnosability

After presenting our new models, the PTPN, its computation and the SCG, we
aim to explain an algorithm regarding the diagnosability in TPN models. This
Chapter will be decomposed in four sections. First, we introduce the basis of
our algorithm and we make a quick summary of the needed tools for our models.
Secondly, we present the twin plant method, quickly adapted to our PTPN, and
how to use it to check diagnosability. We then proceed to our two analysis, first an
algorithm to check the diagnosability of a single fault, then, a method to check the
diagnosability of a pattern (a chain of labels). Finally, we conclude this chapter via
a quick summary.

6.1 Problematic

In this chapter, we aim to use our new model, the PTPN, to process an ad-hoc
synchronous product and to check a property (diagnosability) on a TPN. Diag-
nosability (or diagnosability analysis) is the ability to detect and locate any fault
within a finite delay after its occurrence.

Diagnosability of faults in Petri nets can be decomposed in two sets of tech-
niques: graph-based techniques (diagnoser, verifier/twin-plant) or via the solution
of optimization problems (Integer Linear Programming or ILP) (see [Basile 2018]
for example). Graph-based techniques are based on the analysis of the net reach-
ability or coverability graph (with an LTL checker for example). The second ap-
proach tackles the mathematical representation of the system itself to specify and
solve optimization problems (usually expressed as ILP). Our approach is based on
a graph-based method, but we also use optimization methods in the Chapter 8 of
this thesis.

A notion commonly used is the notion of critical pair [Jiang 2001a]. A critical
pair is a trace where one copy has a fault and not the other; and a system is
diagnosable if it has no critical pairs. To check the diagnosability of a DES, a
product composed of the DES with a faultless copy (i.e. a copy where transition
that model the fault is removed) is made and a search for critical pairs is realized.

We want to check those critical pairs in the context of our SCG (from a PTPN).
The problematic of the first section of this Chapter is then: Can we check for critical
pairs in PTPN-SCG?

We then want to extend the notion of diagnosability to the diagnosability of
a pattern, also via a PTPN-SCG. The second problematic of this chapter is then:
Can we check for diagnosability of a pattern in a PTPN-SCG?
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For the first problematic we create an ad-hoc algorithm, aiming at discovering
the critical pairs in our processed SCG, optimizing the exploration of the SCG for
a single fault diagnosability analysis. The second problematic is treated as a more
general problem where a single fault can be expressed as a pattern (which leads to
less optimized results than our ad-hoc algorithm).

We first present the twin-plant method, an algorithm aiming to discover the
critical pairs in a Petri Net.

6.2 Verifier method

One of the first algorithms we were inspired from was the Verifier Meth-
ods [Yoo 2002] to check the diagnosability of a single fault event. The idea is
to compare a TPN with a copy of itself without the faulty transitions. To make
this comparison, a PTPN is constructed between these two TPN and a check is
realized to find a cycle after a faulty transition (hence comparing faulty behaviour
and faultless behaviour).

Let’s take a quick example with the following Twin-TPN in figure 6.1. The
original system N and its faultless copy N ′ is shown.

p1 p2

p0

t0.1 a[2, 4]t1.1

b

[1, 2]

t3.1 b

[3, 4]

f

×

p1 p2

p0

t0.2 a[2, 4]t1.2

b

[1, 2]

t3.2 b

[3, 4]

Figure 6.1: Composition of N and its faultless twin N ′

This system is diagnosable because of the difference in timing constraints be-
tween t1 and t3 which creates a timelock. The SCG of the product of N and N ′

(the two TPN are considered as two PTPN) is given in Figure 6.2. In this SCG,
after the faulty transition, the system cannot fire others transitions.
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1 2

0

t1.1|t1.2 : b

f1 : ε

t0.1|t0.2 : a

Figure 6.2: Example of a SCG.

To detect a cycle after a faulty transition, the SCG of the PTPN is explored. In
our case of diagnosability analysis, the aim is to detect the cycle of functioning after
a fault. To do that, a Tarjan’s [Tarjan 1972] like depth-first search (DFS) algorithm
is designed. A DFS algorithm is an algorithm made to explore tree or graph data
structures. The concept is to explore as far as possible along each branch before
backtracking. Tarjan’s strongly connected components algorithm is an algorithm
in graph theory to find the strongly connected components (SCCs) of a directed
graph. Strongly connected components, in our case, are states which are connected
in each direction through their transitions (hence the existence of a cycle between
them).

If we take the example in Fig 6.2, two SCC: SCC1 = {0, 1} and SCC2 = {2}
are represented. A DFS algorithm would go from the original state 0 and explore
the path t0.1|t0.2 and t1.1|t1.2 as a cycle (a SCC) before backtracking to explore
f.1 and conclude that 2 is an alone state in its own SCC. The idea, to summarize, is
to detect SCC after a faulty event, to conclude on the diagnosability of our system.

We first explain the diagnosability analysis for a single fault event in the follow-
ing Section 6.3.

6.3 Single Fault

In the following, to simplify the notations and when it is not ambiguous, we will
denote a PTPN with the simple TPN without relations. We also assume that all
transitions with a label are observable so L = Σ.

The twin-plant construction of a net N can easily be defined as the composition
of two copies of N , say N.1 ×L N.2. In the following, failures are considered as
transitions on a common unobservable label, denoted f . The single fault f is
diagnosable when a (critical) pair of executions cannot be found such that: (1)
they have the same L-observations; and (2) only one of them eventually exhibits a
failure (contains a transition labelled with f).

Just like in figure 6.2, a deadlock occurs after the faulty event, showing the dif-
ference between faulty and faultless behaviour and concluding on the diagnosability
of the TPN N in figure 6.1.

The general assumption that systems are ultimately observable is used; meaning
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that they do not block and that, on every execution, an observable event is always
eventually found after a bounded number of transitions and within a bounded delay
(which entails the absence of Zeno traces, like in [Tripakis 2002]). Hence the fault
f is diagnosable when all the executions with a faulty transition are blocked. This
means these executions cannot progress due to a observation difference between
faulty behaviour and faultless behaviour.

6.3.1 Algorithm

Using the features of the PTPN modelling, we have developed an algorithm to
check the diagnosability of a TPN (see Algo. 1). This Algorithm is based on the
Twin Machine algorithm and its purpose is to find a cycle after (or with) a fault
transition. If a fault transition leads to a cycle, it means that the TPN is not
diagnosable. The algorithm is based on the Tarjan’s Algorithm [Tarjan 1972] to
find SCC via a DFS method.

The algorithm uses as input a PTPN-SCG (see Chapter 5) created from the
PTPN of the product between N and N ′, its copy without the fault. Each state of
the SCG is associated with an integer value. By default this value is 0 and means
that the state is not in a cycle or a deadlock. If the value of a state is 1 then the
state is in a cycle and if the value is -1 the state is a deadlock. Remark that the
function isCycle(m) (line 33) returns True if the value associated with the state m
is 1 and False otherwise. The function isTransitionFaulty(m,m′) (line 23) returns
True if the transition from m to m′ is labelled as a fault.

The main data structure used in Algo. 1 is a stack called stack. It is a mem-
ory stack where the states explored are stocked. States can be popped (with the
MultiPopAndMark function) or pushed on it (with push function). The function
MultiPopAndMark(m, val) pops the state m and all states in the stack below
and marks each popped state with the value val. However, since this function is
also popping the stack depending on the cycle, it should also detect when a faulty
transition is found and put the global variable aFaultIsOccured to False.

Using the stack, cycles are found. The idea is to explore all states and their
successors to detect the cycles. The function stops when it concludes on the diag-
nosability and returns 1 if it is diagnosable and -1 otherwise (line 32). The algorithm
is followed by a quick example.

Example: For our following example we took again our TPN from 6.1 which is
diagnosable. In this particular case, the fault in the TPN N is diagnosable because
of the timing constraint in t3 and t1 (the transitions in the faultless copy N ′).
They do not have a common solution, hence the deadlock because of the timing
constraints.

If this example is modified just a little bit to end up with figure 6.3, differ-
ent results are obtained. In this example the t3.1 transition has different timing
constraint with [2, 3] as its static interval.
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Algorithm 1 Find cycle after a fault
1: //Input is the SCG from PTPN N after the intersection with N’ the faultless

copy
Require: SCG scg
2: stack := empty stack
3: aFaultIsOccured := False
4: notDiag := False
5: cycleAlgorithm(scg.origin)
6:
7: Function rec cycleAlgorithm(m)
8: stack.push(m)
9: if isDeadlock(m) then

10: stack.MultiPopAndMark(m,−1) // Mark the deadlock
11: end if
12: while notDiag == False and stack.isEmpty == False do
13: if m.next is in the stack then
14: if aFaultIsOccured then
15: notDiag := True // There is a cycle.
16: end if
17: // If there is no fault, we still have a cycle.
18: stack.MultiPopAndMark(m.next, 1)
19: else
20: if aFaultIsOccured and isCycle(m.next) then
21: // If the fault has occurred and the next state leads to a cycle, it is not

diagnosable.
22: notDiag := True
23: else if isTransitionFaulty(m,m.next) then
24: // Indicate the occurrence of a fault
25: aFaultIsOccured := True
26: end if
27: m’ = nextUnexploredState(m)
28: cycleAlgorithm(m’)
29: end if
30: end while
31: if notDiag then
32: return(−1) // The fault is diagnosable.
33: else if stack.isEmpty() then
34: // If we have check each state the system is diagnosable.
35: return(1)
36: end if
37: EndFunction
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p0

p1

f

f

t0a [2, 4]

t1

b

[1, 2] p2

t3 b

[2, 3]

Figure 6.3: Example of a TPN Nex2

If the SCG of Nex2 ×L N ′ex2 is processed, the SCG in figure 6.4 is obtained.

0 1

2

t3.1|t1.2

t1.1|t1.2

f1

t0.1|t0.2

Figure 6.4: SCG of Nex2 ×L N ′ex2

In this example you can quickly conclude that it is possible to have a common
solution in the timing constraint of t3.1|t1.2 and continue to run the TPN after
the faulty event (since the fault leads to the state {2} which is not a deadlock any
more).

If this SCG is run through our algorithm, the result show in Table 6.1 is obtained.
Beginning at state {0} and by following the transitions, a cycle between {0} and
{1} is quickly found. However, since all of {1} next states are not explored, the
algorithm goes back to {1} and the faulty transition f1 is followed. After exploring
{2}, the existence of a single SCC {0, 1, 2} is observed, which contains a faulty
transition concluding on the undiagnosability of the faulty event f1.

Stack {0} {0, 1} {0, 1} {0, 1, 2} {0, 1, 2}
Followed Transitions t0.1|t0.2 t1.1|t1.2 f1 t3.1|t1.2

Table 6.1: Processing of the Stack for SCC detection

This example focuses on the idea that timing is an important information to
conclude on the diagnosability of events in a TPN. More examples will be available
on Chapter 7 of this thesis, focusing on the scalability of our method.
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Now that we have presented the diagnosability analysis for a single fault, we
will present our extensions of this algorithm to the case of patterns.

6.4 Patterns

Our method can be extended to check the diagnosability of patterns of unobservable
events [Jéron 2006] (a chain of labels). The idea here is to process the diagnosability
of a much more complex behaviour represented as a chain of labelled transitions
(usually unobservable) by using our PTPN model. We want to rely on our ad-hoc
synchronous behaviour to synchronize and detect patterns in TPN systems.

In our case, a pattern M is a special instance of TPN. The set of labels occurring
in M is denoted F and a place in M , said found, is distinguished as a witness for
detection. For instance, the pattern in Fig. 6.5 detects executions that have three
consecutive occurrences of b without any f in-between.

twob

p1 back1

f p0

found

three b

oneb t0 bt1 f

p2

back2

f

back0 f

Figure 6.5: pattern for “three consecutive b without f”

A pattern M detects the execution σ if obsF (σ), the F -observation of σ, is an
execution of M that “marks” the place found: the execution obsF (σ) can be run in
[[M ]] and it satisfies the linear property ♦found. It means that the pattern behaviour
can be executed in the system and that the found place is detected.

More generally, we say that pattern M is detected in N when we reach a state
where place found is marked in N ×F M . This can be inferred from the marking
graph of the pattern (see Fig. 6.6) or from the product N ×F M .

Instead of defining a pattern as a regular language [Jéron 2006], or as a set
of timed sequences [Gougam 2017, Pencolé 2018], we use a (prefix-closed) set of
executions in [[M ]]. Hence we restrict ourselves to time regular languages, meaning
sets of executions that can be “realized” with a TPN. This is enough to model every
regular set of (untimed) traces in a TPN model. The process of a timed pattern is
explored in Chapter 8.
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p0

p1

p2

found

b, f

b

f

bf

b

f

Figure 6.6: marking graph for the pattern in Fig. 6.5

6.4.1 Composition of a Pattern

We also want to make sure that a pattern does not interfere with the system it
interacts with. For example, it should not prevent some executions of the system.
To this end, three well-formedness conditions on patterns are imposed.

Definition 34 (Well-formed Pattern). A well-formed pattern is defined as followed:

1. Patterns are total: they should always allow transitions on the labels in F , at
any time (they never block or delay a transition).

2. Patterns are deterministic: the same observations should lead to the same
states.

3. Labels in F are unobservable: F ∩ L = ∅.

Constraints (1) and (2) can be expressed as a property over all states in [[M ]],
namely ∀s ∈ [[M ]], a ∈ F, θ ∈ Q≥0.@t ∈ T, s′, s′′ ∈ [[M ]], (L(t) = a ∧ s θ−→ s′

t−→ s′′).

By analogy with our previous definition of diagnosability, patternM is diagnos-
able if it is not possible to find a (critical) pair of executions such thatM is detected
in one but never in the other. This question can be reduced to a model-checking
problem on a twin-plant; this time on the product of the system with the pattern.
Generally, N1 and N2 are used to denote a system and its copy and M1 and M2 for
the pattern and its copy.

Theorem 12. Given a well-formed pattern M , with labels F , the net N , with label
L, is diagnosable for pattern M if and only if all the maximal executions of the
product (N1 ×F M1)×L (N2 ×F M2) satisfy (♦found.1)⇒ ♦ (found.2 ∨ dead).

Proof. Since M is total (constraint 1 in Definition 34), the pattern is detected for
an execution σ of N iff (Th. 4) there is an (equivalent) execution σM in [[N ]]‖F [[M ]]
and the property ♦found is valid for σM .

Moreover, sinceM is deterministic (constraint 2 in Definition 34), σM is unique,
so it is not possible to find another execution in σM in [[N ]]‖F [[M ]], compatible with
σ, where found is not marked.

Hence (Th. 5) the diagnosability of a pattern M is equivalent to check the
diagnosability of the event found in the PTPN N ×F M .
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By Th. 4 and F∩L = ∅ (constraint 3 in Definition 34), a critical pair in (N×FM)
corresponds to an execution in the state graph of ([[N1 ×F M1]])‖L([[N2 ×F M2]]).
In the following, we denote the atomic proposition found.i the faults stemming
from Mi. Let us now consider an execution σ in ([[N1 ×F M1]])‖L([[N2 ×F M2]]) and
distinguish the cases where σ is a blocked or infinite execution:

(1) Since the system is ultimately observable and by Th. 4, an execution σ

in ([[N1 ×F M1]])‖L([[N2 ×F M2]]) is blocked if and only if all infinite exe-
cutions σ1 = σ′1σ

′′
1 in [[N1 ×F M1]] and σ2 = σ′2σ

′′
2 in [[N2 ×F M2]] with

obsL(σ′1) ≡ obsL(σ′2) ≡ obsL(σ) have diffente L-observations for σ′′1 and σ′′2 ,
i.e. obsL(σ′′1) 6≡ obsL(σ′′2). It means that the property (♦found.1⇒ ♦dead) ∧
(♦found.2⇒ ♦dead) is valid for σ iff obsL(σ1) 6≡ obsL(σ2).

(2) For an infinite execution σ in ([[N1 ×F M1]])‖L([[N2 ×F M2]]), they are two
executions, (Th. 4) σ1 in [[N1 ×F M1]] and σ2 in [[N2 ×F M2]], such obsL(σ) ≡
obsL(σ1) ≡ obsL(σ2). If the LTL formula (♦found.1) ⇒ (♦found.2) is not
valid for σ, then it exists two executions with the same L-observables σ1
in [[N1 ×F M1]] and σ2 in [[N2 ×F M2]] such the pattern is detected in σ1
and not in σ2 (i.e. the system is not diagnosable). And reciprocally, if we
have two executions σ1 and σ2 with obsL(σ1) ≡ obsL(σ2) and where the
pattern is detected in σ1 and not in σ2, then it exits an execution σ in
([[N1 ×F M1]])‖L([[N2 ×F M2]]) where (♦found.1) ⇒ (♦found.2) is not valid
(reasoning is the same if we consider (♦found.2)⇒ (♦found.1)).

From the previous cases (1) and (2) we can conclude that if properties (♦found.1)⇒
(♦found.2 ∨ dead) and (♦found.2) ⇒ (♦found.1 ∨ dead) are valid for all maximal
executions in ([[N1 ×F M1]])‖L([[N2 ×F M2]]) then it not exists two executions in
[[N1 ×F M1]] and in [[N2 ×F M2]] with the same L-observables and where only one
detected the pattern. So, by definition, the system is diagnosable iff the properties
are valid.

These properties can be optimized by taking into account the inherent symmetry
of the problem (If one of the properties is valid, the second is also valid) and so we
have only to verify that (♦found.1)⇒ ♦(found.2 ∨ dead).

Some of the well-formedness constraints can be relaxed in the proof of Theo-
rem 12. For instance, “deterministic” can be replaced with the weaker property:
“detection is unambiguous”. This means that it is not possible to find an execution
in M that leads to two markings, one where found is marked and the other is not.
Nonetheless, this presentation has some merits. For instance each condition can be
checked automatically on the marking graph of M when the net is bounded and
has no timing constraints.

But a question which remains is, How do the product is processed?.

6.4.2 Synchronization with the Pattern

The idea is to first process the product of the TPN N and its pattern M .
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System Pattern
F

Figure 6.7: First step of our Pattern-Product

When the product described in figure 6.7 is done (with a PTPN synchronizing
the two TPN as N ×F M), the occurrence of the found place has to be checked.
For this, the diagnosability of the transitions just before found is tested. To do
this, another ad-hoc twin-plant method for a single fault is applied. So, a copy of
N ×F M is processed and synchronized with itself (with ×L) just like in figure 6.8.

System Pattern

System 2 Pattern 2

L

F

F

Figure 6.8: Second step of our Pattern-Product

Contrary to the methods in Section 6.3, the faulty transitions in the copy are
not erased and the system is checked via an LTL formula.

This method, however, creates a much bigger system than the previous one
(Section 6.3) because of the synchronized pattern added to the system N .

6.4.3 Single Fault Pattern

A pattern can also be defined as a single fault pattern, which means that the pattern
is only composed of a single transition representing the faulty event. This method is
efficient for a pattern, but in the case of a single fault, it will create a much bigger
SCG at the end of the process than our first twin-plant method in Section 6.3,
because the fault is erased in the previous method and place found is added.

Therefore, to check ifN is diagnosable for a single fault with the pattern method,
the SCG can be generated from N.1×LN.2 then a LTL model-checker can be used
to check property (♦f.1)⇒ ♦ (f.2 ∨ dead).
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6.4.4 Algorithm

The diagnosability of a net, N , in relation to an F -pattern, M , can be checked by
first generating the SCG from a script processing the SCG from subsection 6.4.2 ;
and then use a LTL model-checker with the property of Th. 12 :

(♦found.1)⇒ ♦ (found.2 ∨ dead)

The idea is to detect the occurrence of a foundmarking or a deadlock, indicating
the diagnosability of the detected pattern. The model-checker selt is used to check
on the SCG if the pattern is diagnosable. For an example of this method, which
creates a larger system, you may refer to the Chapter 7 for our benchmark about
the diagnosability of patterns.

Example: Our system remains the TPN N in Figure 6.3 and the pattern M is
the single fault pattern shown in Figure 6.9.

p0

t0

f found

t1

f

Figure 6.9: Pattern M

The software Twina (see Section 7.1) is used to process the PTPN from N and
M . Twina can also give a counter-example if the system is not diagnosable. The
following result are obtained for a single fault diagnosability analysis on N .

# net {}, 16 places, 15 transitions, 74 arcs #
# bounded, not live, possibly reversible #
# abstraction count props psets dead live #
# states 14 16 13 0 6 #
# transitions 26 15 15 6 7 #
FALSE

state 0:
L.scc*3 {p0.1.1} {p0.1.2} {p1.2.1} {p1.2.2} {ptest_t0.2.1}
{ptest_t0.2.2} {ptest_t1.2.1} {ptest_t1.2.2} {ptest_t3.2.1} {ptest_t3.2.2}

-{t0.2.1|t0.2.2} ... (preserving T)->
* [accepting] state 11:
L.scc {found.1.1} {p0.1.2} {p0.2.2} {p2.2.1} {ptest_t0.2.1}
{ptest_t0.2.2} {ptest_t1.2.1} {ptest_t1.2.2} {ptest_t3.2.1} {ptest_t3.2.2}
-{t3.2.1|t1.2.2} ... (preserving - dead /\ - {found.1.2})->
state 11:
L.scc {found.1.1} {p0.1.2} {p0.2.2} {p2.2.1} {ptest_t0.2.1}
{ptest_t0.2.2} {ptest_t1.2.1} {ptest_t1.2.2} {ptest_t3.2.1} {ptest_t3.2.2}

The counter-example can be processed in a trace which can be input on the
Tina tool.
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6.5 Summary

In this Chapter 6 we present a diagnosability analysis for a single fault and a pattern
based on PTPN.

• Single Fault is detected with the help of the twin-plant method, adapted to
a PTPN. The idea is to detect if there is a difference in behaviour between a
faulty system and a faultless system.

• Patterns are more complex behaviours to detect. They are represented as a
TPN. They are synchronized to the original system to detect the occurrence
of the pattern in the system. This produces bigger systems than the previous
methods but more complex behaviour can be analysed than a single fault.

The Chapter 7 will be focused on our experimental result, compared with the
IPTPN methods presented in Section 3.3.2.2.



Chapter 7

Experimental Results

In this Chapter, we focus on the different tests and benchmarks that we used
to evaluate the feasibility of our methods. First, we mainly compare the PTPN
methods to the IPTPN methods (see subsection 3.3.2.2 for more information). We
also want to test the scalability of our method and we focus on more complex
benchmarks on the second section of this chapter.

Finally we present a benchmark for the diagnosability of patterns by using a
well-known example from a previous paper by Gougam and al. [Gougam 2017].

Before going into our results (mainly used to prove the scalability of our meth-
ods), we quickly present our software, TWINA, which is now part of the TINA
toolbox [Berthomieu 2004].

7.1 TWINA

TWINA [Dal Zilio 2019] is a tool for analyzing the product of two Time Petri Nets
(PTPN), with possibly inhibitor and read arcs [Peres 2011]. Its main objective is to
compute a usable representation of the intersection of two net languages; meaning
the intersection of the (timed) languages obtained from the executions of two TPNs,
in which transitions with the same labels are fired at the same time.

The tool is based on a new extension of the State Class Graph construction, the
method used in the TINA (TIme petri Net Analyzer) toolbox. Like for TINA, this
tool is maintained by the Verification of Time Critical Systems (VERTICS) group
at LAAS-CNRS, which develops new verification methods and tools for checking
properties of critical systems having strong temporal and timing requirements.

TWINA is made to compute PTPNs in different forms (SCG or SSCG for ex-
ample) and data computable in the rest of the TINA tool-chain (selt for example).
Let’s quickly go through some of its options:

%twina -h
twina -W system.net
twina -F system.net
twina -W -v system.net

• -W process the SCG of the system in input by preserving markings and
maximal executions.

• -F process the SSCG of the system in input with time delay (in i transition).

https://projects.laas.fr/twina/
http://projects.laas.fr/tina/
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• -W -v process the LSCG of the system in input and output all the marking
and domain of each class of the system.

For more information about this software, you may refer to its website
(https://projects.laas.fr/twina/). Let’s now take our first example.

7.2 Single Fault analysis

We now focus on our single fault diagnosability analysis. We first use our twin-
plant algorithm to conclude on the diagnosability of our system. For this, we use
an option in the tool TWINA with the following command:

twina -f --fault f system.net

This command simply processes a twin-plant with a fault f and concludes with
our algorithm on the diagnosability of our system. In our experiments, we want
to compare the results obtained with PTPN (using TWINA) and an encoding into
IPTPN [Peres 2011]. By default, TWINA uses option -W, that computes the Linear
SCG of a net. We also provide an option -I to compute the LSCG for the product
of two nets.

Let’s take a more direct example.

7.2.1 Example of single fault analysis

We take again the example from Chapter 2 in figure 2.4. We process a twin-plant
construct and check the diagnosability of our system with the first algorithm (see
Algorithm 1).

p1 p2

p0

t0.1 a[2, 4]t1.1

b

[1, 2]

t3.1 b

[3, 4]

f

×

p1 p2

p0

t0.2 a[2, 4]t1.2

b

[1, 2]

t3.2 b

[3, 4]

Figure 7.1: Composition of N and its faultless twin N ′

We compare our method with the software sift (construction and checking of
reachability graph), another software in the Tina toolbox and the SCTA methods
(see subsection 3.3.2.1) to process TA from TPN [Lime 2003a] (and then model-
check the resulting twin-plant TA). We process the SCG used in sift with an
IPTPN [Peres 2011] and a classical TPN. Since the IPTPN models process a SSCG
(and not a SCG) and sift was not made specifically for diagnosability analysis, we
end up with slightly better results.

https://projects.laas.fr/twina/
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Twina IPTPN/sift TPN/sift
Places 6 6 25
Trans. 7 12 (2 + 5 ∗ 2) 211
Classes 3 3 1389

Figure 7.2: Results of the analysis of a single fault

In figure 7.2, it can be clearly seen that the Twina method is the most efficient.
Since IPTPN must create transitions to process the decomposition of timing con-
straints from their labelled transitions, it is naturally bigger in terms of transitions.
Another way to analyse the diagnosability is to process a SSCG from a TA com-
puted from a TPN, which was our idea for the TPN/sift solution. As you can see,
it creates the biggest SCG possible in terms of places, so this method is certainly
not efficient in terms of scalability.

We also compared our methods via bigger models, found in the diagnosis worlds,
in the next Subsection.

7.2.2 Scalability example

We use several models, some adapted to a timed context, to check the feasibility and
the scalability of our method. If you would like to reproduce our benchmark, you
can refer to our manual on the TWINA webpage (https://projects.laas.fr/twina/)
in the reproducibility section. In the following, we compare the size of the LSCG
obtained on different models with the results obtained using IPTPN and Tina. The
results are reported in Section 7.3 below, with the sizes of the SCG in number of
classes and edges; we also give the ratio of classes saved between the SCG and the
SSCG (where a ratio of 2 means that we have twice as much classes in the SSCG
than in the LSCG). We use the sift tool to compute the SSCG from an IPTPN; sift is
an optimized version of TINA that provides fewer options (state class abstractions)
but that is much faster.

We use different models for our benchmarks (in each case we state the name of
the fault option used in the twin product construction):

• plant is the model of a complex automated manufacturing system
from [Wang 2015] (-fault=F);

• jdeds is an example taken from [Gougam 2017] extended with time (-fault=f);

• train is a modified version of the train controller example in the Tina distri-
bution with an additional transition that corresponds to a fault in the gate
(we have examples with 3 and 4 trains) (-fault=F1);

• wodes is the WODES diagnosis benchmark of Giua (found for instance
in [Gougam 2017]) with added timing constraints (-fault=F1).

https://projects.laas.fr/twina/post/reproducibility/
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For each model, we give the result of three experiments: plain where we compute
the SCG of the net, alone; twin where we compute the intersection between the TPN
and a copy of itself with some transitions removed; and obs where we compute the
intersection of the net with a copy of the observer.

Twina IPTPN/sift
Model Exp. Classes Classes Ratio
jdeds plain 26 28 × 1.1
jdeds twin 544 706 × 1.3
jdeds obs 57 64 × 1.1
train3 plain 3.10 · 103 5.05 · 103 × 1.6
train3 twin 1.45 · 106 4.02 · 106 × 2.8
train3 obs 6.20 · 103 1.01 · 104 × 1.6
train4 plain 1.03 · 104 1.68 · 104 × 1.6
train4 twin 2.10 · 107 5.76 · 107 × 2.7
train4 obs 2.06 · 104 3.37 · 104 × 1.6
plant plain 2.70 · 106 4.63 · 106 × 1.7
plant twin 1.30 · 103 1.63 · 103 × 1.3
plant obs 5.72 · 106 9.79 · 106 × 1.7
wodes plain 2.55 · 103 5.36 · 103 × 2.1
wodes twin 5.54 · 104 1.51 · 105 × 2.7
wodes obs 5.77 · 103 1.47 · 104 × 2.5
wodes232 plain 2.04 · 104 3.24 · 104 × 1.6
wodes232 twin 3.96 · 107 3.39 · 108 × 8.6
wodes232 obs 1.06 · 105 2.26 · 105 × 2.1

Figure 7.3: Results of the two methods

As expected, TWINA is generally more efficient because it relies on the SCG
model, smaller compared to the SSCG models from an IPTPN. For smaller systems,
such as jdeds, the IPTPN method still remains efficient, however, for bigger system
such as wodes232, the IPTPN method produces almost ten times the classes of the
PTPN method. You can also see that Figure 7.3 only focus on classes and not on
transitions. In an IPTPN method, the number of transitions is generally doubled
in timed systems since every timed transition is decomposed into two transitions.

We now focus on our example for pattern diagnosability analysis.

7.3 Pattern analysis

We applied our methods to the following example from [Gougam 2017]. The system
is defined in figure 7.4. It is the modelling of a transport system, timed. You can
refer to the TWINA webpage on the benchmark patterns if more information about
the pattern is wanted.

https://projects.laas.fr/twina/post/benchmark_patterns/
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Figure 7.4: Transport timed - [Gougam 17]

We modified slightly this model to give it a b and a e transitions and created
the following 3b without e pattern (figure 7.5). Every time an e label occurs, we go
back to the original place of the pattern. We still want to detect the found place
just like in Section 6.4.
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Figure 7.5: pattern for “three consecutive b without e”

The result depends on the timing constraints: let X be the (static) time interval
for t6, Y for t7 and Z for t10 and t14.

• X = Y = Z = [0,∞[ : the system is not diagnosable and has 126548
classes. The system without any timing constraint leads to a state space with
14270 markings

• X = Y = [0,∞[ and Z = [0, 6] : the system is not diagnosable and has
129096 classes

• X = Y = [0,∞[ and Z = [1, 6] : the system is diagnosable and has 15848
classes

• X = Y = [0, 10] and Z = [0,∞[ : the system is diagnosable and has only
2186 classes

Depending on the timing constraints, the pattern is diagnosable or not. If the
system is not diagnosable, we end up with almost 130000 classes, which is still
scalable regarding the original size of the system and patterns.

We now quickly summarize our results.
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7.4 Summary

In this Chapter 7 we presented our results, compared with a previous method
(IPTPN).

• PTPN is generally more efficient than IPTPN in terms of size because it relies
on the SCG construction contrary to the IPTPN which relies on the SSCG
construction.

• Untimed Patterns can be detected on timed system with our method which
is scalable.

The Chapter 8 will be focused on the diagnosability of timed patterns, which is
an undergoing work.





Chapter 8

Timed Pattern Diagnosability

In the Chapter 6, the studied patterns have no time in their models. The question
that naturally arises is: is it possible to extend this method to patterns with time?

To do this, we must first define the way in which time will be taken into account
in the pattern, and then study how to perform the model-checking operation.

This Chapter is decomposed as follows: First, we introduce the problematic
encountered for the analysis of timed patterns, with an example. We quickly go
into one of our solutions and the needed hypothesis for it to work. The idea is
also to detail our process, since this method will be automatized in future works.
Finally, we conclude via a quick summary of this Chapter.

8.1 Problematic

One of the problematic we encounter when augmenting the notion of pattern was
the idea to implement time inside of these modelled behaviour. When trying to
check a timed pattern, we asked ourselves two main questions:

• Should time be relative to the previous event or absolute to the launch of the
system?

• What do we do when the system does not behave on a path with the pattern?
How do we take it into account?

For the first question we decided to tackle time as a relative value (the first event
being the start of the system). We can still tackle a pattern without considering a
timed first event with a pattern such as a4b which means "b 4 units of time after
a".

Let’s take the following system in figure 8.1 as an example of a wanted timed
pattern. The only observable labels are the o labels in this example.
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Figure 8.1: TPN "sys3"

In this system, we can easily show that there exists only one possible path to
obtain the pattern 8a4b which means "b 4 units of time after a and a 8 units of
time after the start of the system". Let’s decompose the only possible path:

Marking : p0 p3 p4 p1 p2
Taken transitions : 5t9 5t93t10 5t93t102t11 5t93t102t112t7

Observation : 10o2 10o2 10o2

Table 8.1: Decomposition of the path for 8a4b

As you can see, the only possible outcome of an observation of 10o2 is the
occurrence of b 4 units of time after an a label which occurs at 8 units of time
after the start of the system. We can then conclude, since 10o2 is the only possible
observable behaviour for this pattern, that the pattern 8a4b is diagnosable. Every
time we would see a 10o2, we would conclude on the occurrence of the unobservable
labels.

Now, for the second question: What happens if the system begins with the
t0 transition? Technically, it would create a difference of behaviour between the
system and its pattern which would always result in a deadlock (since the first
timing of the pattern needs an a to occur at 8).

If the system does not take the path with the timed event we want, how do we
process it? Previously, in untimed patterns, we ended up in deadlock if the pattern
was not found, but here, we would have a problem regarding the timed behaviour
(which is related to the beginning of the system or the previous event). In an ideal
system, the path would always try to have the wanted behaviour and we would
conclude on the diagnosability of such behaviour.
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This problem of unwanted behaviour was considered by the processing of a spe-
cial kind of pattern for the diagnosability of timed behaviour.

One of our first ideas for a 8a pattern is the following figure 8.2. We wanted
to end up with a more general approach with a classical twin product in the form
(N ×E)×L (N ×E)′ (with N the system and E the pattern and N ′,E′ their copy).
In this pattern, we let the system act freely and we prioritize the occurrence of the
first a transitions at 8. The orange arcs are priorities arcs which prioritize the origin
transition (for example tp2 is more prioritize than tp3).

p0

found

tp3

[0, 0] notfound

tp4

a

tp5

ap1

tp0

[8, 8]

tp1 a

tp2

a

Figure 8.2: Prototype of a 8a pattern

In this case of a pattern E, we want to take the first a occurring at 8, but we do
not force the system to absolutely take this behaviour. If it is possible to have 8a,
the pattern will indeed prioritize the occurrence of the pattern. We did not want
to inferred on the system behaviour, but we did not mind the idea of prioritizing a
possible occurrence.

However, this method to model-check the system was lacking in terms of fea-
sibility. The idea behind a twin-product (N × E) ×L (N × E)′ is to compare the
system (with the pattern occurring if possible) and a copy of itself (without the
pattern). In this case, the pattern is prioritized in the copy and the original, so
it is impossible to compare with this product (since both will have the pattern if
possible).

Another idea we had was to process a stronger pattern, in terms of imposing its
behaviour on the system, and to compare the forced system and an unforced copy,
such as the following operation (N × E)×L N ′. However, since the priorities in E
were a downgrade in terms of memory, we processed a new kind of time pattern
which forced its behaviour through the PTPN operation × between N and E.

Let’s say we want to detect the following pattern of 8a4b. An a label 8 after the
start of the system precisely and a b after 4 units of time. We have the following
pattern in figure 8.3:
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Figure 8.3: Pattern 8a4b

This pattern breaks several rules defined in section 6.4. This pattern is not total
and it is interfering with the system behaviour (which is something we want here).
The idea is to force the system N to synchronize and to follow the pattern E if
possible. Then, we have to compare and to analyse all the paths that the system
N takes with the pattern E and compare them with an unsynchronized copy of N .

In this case, we will treat the deadlock from the unwanted behaviour in the
process of analysing this product.

We present this process in the following section 8.2.

8.2 Analysis process

First, we quickly describe all the tools used in the process chain before going into
the details of the process for the operation of model-checking.

8.2.1 Tools used on the process chain

To process our previous idea of a timed pattern, we used several tools in the process
chain.

• TINA : TINA builds various state space abstractions for Petri nets and Time
Petri nets. We used it to build our original net and its pattern.

• TWINA : TWINA is a tool for analysing the “product” of two Time Petri
Nets (TPN), with possibly inhibitor and read arcs. We used it to process our
product (with × and ×L).

• Muse : Muse model-checks state-event on a Kripke transition system given in
ktz format. We used it to find the states where found became true.

• Pathto : Given a Kripke transition system (KTS) in a ktz file, a target state
and a source state (default 0), computes a path in the ktz from the source to
the destination state. We used it to find the path to the state where found
became true.

• Plan : From a Time Petri net or Time Transition System and a firing sequence
in .scn format, plan computes an inequality system characterizing all the
times at which transitions in the sequence may fire. We used it to create the
inequalities systems representing our path to the found places.

http://projects.laas.fr/tina/manuals/tina.html
https://projects.laas.fr/twina/
http://projects.laas.fr/tina/manuals/muse.html
http://projects.laas.fr/tina/manuals/pathto.html
http://projects.laas.fr/tina/manuals/plan.html
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• Z3 : Z3 Theorem Prover is a cross-platform satisfiability modulo theories
(SMT) solver. We used it to solve our inequations (and see if multiple obser-
vations can be found for the same pattern).

Now that we have quickly described our tools and their usage, we proceed to
our process.

8.2.2 Process

The process we used is summarized in the following figure 8.4.

Solutions

TPN

Product NxE to force the
behavior of E on the

system. Deadlock path
will then be ignored as

"incompatible".

N

Twina

TWINA process a
labelled product on the
observable labels. We

then compare NxE
compatible path with N.

N x E

Muse found the
state where the
"found" place
became true.

(N x E) || N

We found the path
to the state with
found with the
"Pathto" tool.

State with
found Path to found Inequalities

Plan is used to create a
system of inequalites

(on the timing
constraint) for every

path. If they all have an
unique solution, we are

diagnosable.

We solve the
system with the Z3

SMT solver.

Muse Pathto Plan Z3

Figure 8.4: Process to analyses a Timed Pattern

The question asked is "How do we tackle a path without 8a?". To process this
event we ended up creating a new product, ad-hoc, for this problematic. First,
we process a PTPN of the system N and its pattern E and we want to find the
acceptable path which tried to behave in the pattern. The process is decomposed
as follows:

• We process the PTPN N × E to find the acceptable path. If the system
cannot follow E behaviour, we will only obtain a deadlock. We know the
desired behaviour impossible, hence its diagnosability.

• We now process and study the synchronous product ((N×E)×LN) to search
the state where we obtain a found place;

• The analysis of the product ((N × E) ×L N) is done with the muse model-
checker. The twin product × is done on labels, and ×L is done on observables
labels (o1 and o2); We obtain a chain of states if there is any just as follows:

[31 , 32]

• With every state found, we can use the tool pathto to get all the paths leading
to this particular state. For a state we can obtain a path as follows:

https://en.wikipedia.org/wiki/Z3_Theorem_Prover
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0 i 1 i 3 i 5 i 7 i 11 t9.1 12 t9.2.2 15 i 16 i 18 i
20 t10.1 21 tpa.1.2 t10.2.2 23 i 24 i 26 t11.1 t11.2.2
27 i 28 i 29 tpb.1.2 t7.2.2 31

With every i representing time and each number representing the state evolv-
ing.

• With these obtained paths, we can use the tool plan to get a system of in-
equalities representing all the static intervals of this path. We can obtain a
system as follows:

{t9.2.2}$z1
{t10.2.2}$z4
{t11.2.2}$z6
{t7.2.2}$z8

where

0 <= start
-----------------
4 <= z1 - start <= 5
0 <= z4 - start
1 <= z4 - z1 <= 3
0 <= z6 - start
1 <= z6 - z4 <= 2
0 <= z8 - start
2 <= z8 - z6 <= 2

With each variable zx representing the clock of transition (with the start as
the reference).

• Finally, we can use a SMT (we use z3 ) to check if there is only a unique
solution to the observable of these paths compatible with E.
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This method however, still has issues. First of all, the created system from the
product is big in terms of classes, transitions and places. The main problem of this
method, in terms of scalability, is the creation of all of the different inequalities
systems which have to be solved to conclude on the diagnosability of the timed
pattern.

This method was then automated by linking all of the different tools with a
Python parser called Pollux.

8.2.3 The Pollux parser

Pollux is a parser programmed in Python which is capable of processing the previ-
ously mentioned steps to analyse the diagnosability of timed patterns.

The process is explained step-by-step just like in the previous Subsection. First
and foremost, the two inputs of Pollux are: The acceptable states with a found
place and the pattern in the form of the time associated to its transitions (or labels).

• The input, in the case of our example (in figure 8.1) is decomposed in two
files:
The state with found becoming true:

[31 , 32]

The pattern:

t10=8,t7=12

For the next step, Pollux parses the state file to process the state one by one.

• Using the pathto tool, with the states processed one by one, the following
results are obtained:
Path0 for state 31:

0 i 1 i 3 i 5 i 7 i 11 t9.1 12 t9.2.2 15 i 16 i 18 i
20 t10.1 21 tpa.1.2 t10.2.2 23 i 24 i 26 t11.1 t11.2.2
27 i 28 i 29 tpb.1.2 t7.2.2 31

Path1 for state 32:

0 i 1 i 3 i 5 i 7 i 11 t9.1 12 t9.2.2 15 i 16 i 18 i
20 t10.1 21 tpa.1.2 t10.2.2 23 i 24 i 26 t11.1 t11.2.2
27 i 28 i 29 t7.1 30 tpb.1.2 t7.2.2 32
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With every i representing time and each number representing the state evolv-
ing. Those paths need to be processed in a form usable by the plan tool. The
new files are called SCNPath.

• After the parsing of the two previous paths, the following results are obtained:
SCNPath0 for state 31:

{t9.1}$0{t9.2.2}{t10.1}$0{tpa.1.2}$0{t10.2.2}{t11.1}
$0{t11.2.2}{tpb.1.2}$0{t7.2.2}

SCNPath1 for state 32:

{t9.1}$0{t9.2.2}{t10.1}$0{tpa.1.2}$0{t10.2.2}{t11.1}
$0{t11.2.2}{t7.1}$0{tpb.1.2}$0{t7.2.2}

Here, the idea in a SCNPath is to keep only the necessary transitions to create
the inequalities with the plan tool.

• With these obtained paths, we can use the tool plan to get a system of in-
equalities representing all the static intervals of this path. We obtain systems
as follows:
System0 for SCNPath0:

{t9.1}$z0
{t9.2.2}$z1
{t10.1}$z2
{tpa.1.2}$z3
{t10.2.2}$z4
{t11.1}$z5
{t11.2.2}$z6
{tpb.1.2}$z7
{t7.2.2}$z8

where

0 <= start
-----------------
4 <= z0 - start <= 5
4 <= z1 - start <= 5
0 <= z1 - z0 <= 1
5 <= z2 - start <= 8
1 <= z2 - z0 <= 3
0 <= z2 - z1 <= 3
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8 <= z3 - start <= 8
3 <= z3 - z1 <= 3
0 <= z3 - z2 <= 2
0 <= z4 - start
1 <= z4 - z1 <= 3
0 <= z4 - z2 <= 2
0 <= z4 - z3 <= 0
0 <= z5 - start
1 <= z5 - z2 <= 2
0 <= z5 - z3 <= 2
0 <= z5 - z4 <= 2
0 <= z6 - start
1 <= z6 - z3 <= 2
1 <= z6 - z4 <= 2
0 <= z6 - z5 <= 2
0 <= z7 - start
4 <= z7 - z3 <= 4
2 <= z7 - z5 <= 2
2 <= z7 - z6 <= 2
0 <= z8 - start
2 <= z8 - z5 <= 2
2 <= z8 - z6 <= 2
0 <= z8 - z7 <= 0

System1 for SCNPath1:

{t9.1}$z0
{t9.2.2}$z1
{t10.1}$z2
{tpa.1.2}$z3
{t10.2.2}$z4
{t11.1}$z5
{t11.2.2}$z6
{tpb.1.2}$z7
{t7.2.2}$z8

where

0 <= start
-----------------
4 <= z0 - start <= 5
4 <= z1 - start <= 5
0 <= z1 - z0 <= 1
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5 <= z2 - start <= 8
1 <= z2 - z0 <= 3
0 <= z2 - z1 <= 3
8 <= z3 - start <= 8
3 <= z3 - z1 <= 3
0 <= z3 - z2 <= 2

. . .

The main issue here was to process these systems into file understandable by
the z3 solver. We also had to compute these with the pattern file to add the
information into the system of inequalities.

• Just before using z3 we have to process the new inequalities systems. The
following results are obtained:
Inequatilies0 for System0:

(declare-const z1 Int)
(assert (>= z1 4))
(assert (<= z1 5))
(declare-const z4 Int)
(assert (>= z4 0))
(assert (>= z4 (+ 1 z1)))
(assert (<= z4 (+ 3 z1)))
(declare-const z6 Int)
(assert (>= z6 0))
(assert (>= z6 (+ 1 z4)))
(assert (<= z6 (+ 2 z4)))
(declare-const z8 Int)
(assert (>= z8 0))
(assert (>= z8 (+ 2 z6)))
(assert (<= z8 (+ 2 z6)))
(assert (= z4 8))
(assert (= z8 12))
(declare-const y4 Int)
(assert (not (= y4 z4)))
(assert (>= y4 0))
(assert (>= y4 (+ 1 z1)))
(assert (<= y4 (+ 3 z1)))
(declare-const y8 Int)
(assert (not (= y8 z8)))
(assert (>= y8 0))
(assert (>= y8 (+ 2 z6)))
(assert (<= y8 (+ 2 z6)))
(check-sat)
(get-model)
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Inequatilies1 for System1:

(declare-const z1 Int)
(assert (>= z1 4))
(assert (<= z1 5))
(declare-const z4 Int)
(assert (>= z4 0))
(assert (>= z4 (+ 1 z1)))
(assert (<= z4 (+ 3 z1)))
(declare-const z6 Int)
(assert (>= z6 0))
(assert (>= z6 (+ 1 z4)))
(assert (<= z6 (+ 2 z4)))
(declare-const z9 Int)
(assert (>= z9 0))
(assert (>= z9 (+ 2 z6)))
(assert (<= z9 (+ 2 z6)))
(assert (= z4 8))
(assert (= z9 12))
(declare-const y4 Int)
(assert (not (= y4 z4)))
(assert (>= y4 0))
(assert (>= y4 (+ 1 z1)))
(assert (<= y4 (+ 3 z1)))
(declare-const y9 Int)
(assert (not (= y9 z9)))
(assert (>= y9 0))
(assert (>= y9 (+ 2 z6)))
(assert (<= y9 (+ 2 z6)))
(check-sat)
(get-model)

• Finally, we can use a SMT solver (we use z3 ) to check if there is only a
unique solution to the observable of these paths compatible with E. In this
case, both systems are said unsat (for unsatisfiable), hence the diagnosability
of this pattern.

Still, the process of all of the inequalities files is an issue in terms of memory
and the scalability of Pollux is still untested. For this particular example, which
is not that big, we process all the steps in 0, 10 seconds. We would also want to
process a more general method which is presented in Chapter 9.

We now do a quick summary of this chapter.
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8.3 Summary

In this Chapter 8 we presented an extension of the diagnosability of a pattern by
adding timing constraints on it.

• Timed Patterns are relative to the start of the system in our case. After the
first event we are relative to the previous event in terms of time.

• Diagnosability of a timed pattern relies on several tools to conclude by checking
the timing constraints of the possible paths for the timed pattern behaviour.

This concludes the current work we had done on the diagnosability of timed
patterns. We now proceed to the conclusion of this thesis.



Chapter 9

Conclusion

9.1 Overview

This Chapter 9 concludes our work. This thesis describes my contributions to the
synchronous product of TPN and its applications in the domain of diagnosis (more
precisely diagnosability analysis). I propose a new model, called PTPN, to create
and ad-hoc synchronization between TPN and mimic the synchronous product be-
haviour in a TPN context. During this thesis, I also propose an algorithm to conduct
our diagnosability analysis on our PTPN model. This approach is implemented in
the tool TWINA which is tested on several benchmarks.

In Chapter 4, I have defined our new model, the Product TPN, which allows
a synchronization between several TPN via their common labels. The idea is to
force transitions with common labels to fire synchronously. With this in mind, I
also tackle some new behaviours encountered in the PTPN models, such as the
timelock.

In Chapter 5, I also process a new SCG model for our PTPN, to analyse directly
the state classes of our PTPN model. The new behaviour is the firing of several
transitions synchronized at the same time.

In Chapter 6, I tackle the property of diagnosability. The idea is to use the
PTPN to create an ad-hoc synchronous product and to check the property of diag-
nosability (of a single fault or of a pattern).

In Chapter 7, I propose a test for our algorithm, compared with previous meth-
ods of analysis. I also use several benchmarks to test the scalability of our method
and I conclude on its feasibility.

In Chapter 8, I explain one of the extension of our diagnosability of patterns.
The diagnosability of timed patterns is explained with all its problematic regarding
timing in the pattern. An ad-hoc solution for an example is then proposed.

Several publications are the result of the work done during this thesis:

• A State Class Construction for Computing the Intersection of Time Petri Nets
Languages - August 2019
Lubat, Éric and Dal Zilio, Silvano and Le Botlan, Didier and Pencolé, Yannick and Subias,
Audine
17th International Conference on Formal Modelling and Analysis of Timed Systems (FOR-
MATS)
Amsterdam, Netherlands

https://hal.laas.fr/hal-02263832
https://hal.laas.fr/hal-02263832
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• The tool TWINA construction d’espaces d’états abstrait pour l’intersection
de Time Petri nets - November 2019
Lubat, Éric
12ème Colloque sur la Modélisation des Systèmes Réactifs (MSR 2019)
Angers, France

• A Short Overview on Diagnosability of Patterns in Timed Petri Net - June
2020
Lubat, Éric and Dal Zilio, Silvano
14th Summer School on Modelling and Verification of Parallel Processes (MOVEP 2020)
Grenoble (on line), France

• A New Product Construction for the Diagnosability of Patterns in Time Petri
Net - December 2020
Lubat, Éric and Dal Zilio, Silvano and Le Botlan, Didier and Pencolé, Yannick and Subias,
Audine
59th Conference on Decision and Control (CDC 2020)
Jeju Island (on line), South-Korea

• Détection de Pattern temporisé dans les réseaux de Petri temporels - Novem-
ber 2021(Proceeding)
Lubat, Éric and Hladik, Pierre-Emmanuel
Modélisation des Systèmes Réactifs (MSR’21)
Paris, France

I also wanted to talk about some future work and perspective for this thesis. I
present some extensions we worked on, the opacity, the hippo add-on, comparison
with Uppaal, Prognosability and Pollux.

9.2 Future works

Opacity: Our first extension would be to study more thoroughly the property
of Opacity. Opacity is a basic property of Discrete Event Systems that relates to
the "anonymity" of concealed events. It means that every secret event (which is
usually unobservable) cannot be detected by an outside observer. Actually, many
definitions for opacity only ask for the secret to stay undetected after a bounded
number of operations.

This property can be expressed, as many properties in a DES, as a property on
formal languages. Opacity has several possible uses: as a tool to express anonymity
constraints; as a requirement for voting systems; as a security property in some
military systems; etc.

We are interested by the study of opacity because it shares a lot of similarity
with diagnosability, see for instance the work of Bérard [Bérard 2017] where the
author directly connects the two properties.

https://hal.laas.fr/hal-02432695
https://hal.laas.fr/hal-02432695
https://hal.laas.fr/hal-02899522
https://hal.laas.fr/hal-02989834
https://hal.laas.fr/hal-02989834
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However, during our study of this property we ended up on the paper The dark
side of Timed Opacity [Cassez 2009]. In this paper, the author extends the notion
of opacity, defined for DES, to a dense-time system. He also defines and studies
the problem of timed opacity in TA. From the point of view of an attacker, time
measurement gives a more accurate and realistic model of the system.

However, the author concludes that for a very restrictive class of TA, the opacity
problem is already undecidable, leaving no hope for a decidable solution on a less
restrictive model. Notice that his result carries over to other reasonable models of
dense-time systems like Time Petri Nets (TPN), because TPN and TA are weakly
timed bisimilar.

This problem was not tackled in our TPN study, but it was interesting to focus
more on the time information and the branching information of our models. To
extend the study of opacity we would have to create a weaker version of this prop-
erty to conclude on a possibility of opacity for example. We now talk about the
undergoing work on a tool called HIPPO.

HIPPO: The design of embedded real-time systems requires specific toolchains to
guarantee time constraints and safe behaviour. These tools and their artefacts need
to address timing constraints and execution semantics in a robust way during the
modelling, verification and implementation of the system. HIPPO is a toolchain,
that integrates tools for design, verification and execution built around a common
formalism.

HIPPO is based on an extension of the Fiacre specification language with run-
time features, such as asynchronous function calls and synchronization with events.
We formally define the behaviour of these additions and describe a compiler to
generate both an executable code and a verifiable model from the same high-level
specification. The execution of the resulting code is supported by a dedicated ex-
ecution engine that guarantees real-time behaviour and that reduces the semantic
gap between high-level models and executable code.

HIPPO gets a Fiacre model and processes a real-time executable. Our contri-
bution remains in the field of PTPN. We did work on HIPPO to create a PTPN
behaviour on it. Since HIPPO is already an efficient toolbox for the simulation of
real-time systems, we want to create an add-on which does not impact the overall
behaviour of the HIPPO tool.

The idea is to create a PTPN using the HIPPO toolbox, by synchronizing
transitions with the same label, just like in a classical PTPN. For this, we process
a C library to add to the original HIPPO code. This was made with the idea to
process an observer, with the goal of checking properties on the system defined
in the HIPPO environment. An ad-hoc test was made to detect the occurrence
of an event on the system double-click but the automation of the process is still
undergoing development. This new feature of the HIPPO tools would need to be
tested in terms of scalability.
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Comparison with UPPAAL: One of the works we tried to process dur-
ing the beginning of this thesis was a comparison, in terms of memory,
speed and results between a twin-plant methods made with PTPN and
one made with UPPAAL. The idea was to use a classical example, called
trains3 (https://projects.laas.fr/twina/post/examples/) which is a level-crossing ex-
ample with 3 trains, to compare the two methods.

The synchronization between the different elements composing the trains sys-
tem were made via PTPN and via a classical synchronous product for UPPAAL.
However, to this day, the UPPAAL verifier cannot handle implication with a dead-
lock (which is a core idea to check diagnosability via a twin-plant methods), so we
did not had the opportunity to finish this comparison.

Prognosability: A key property for the safety of system is the property of prog-
nosability. Prognosability represents the ability for a system to be prognosed, or in
other terms, it represents the ability to predict a failure (before its occurrence). This
property is directly linked to the property of diagnosability studied through this
thesis (for an overview on Diagnosability and Prognosability see [Vignolles 2020]).
Indeed, if a failure is to be prognosed it need to be a diagnosable failure (since
you cannot predict future behaviors which are not diagnosable), you can see more
information about the necessity of diagnosability in a prognosis field in [Genc 2009].

Just like our study of diagnosability, we can process the property of prognosabil-
ity by checking twin-plant algorithms or by solving optimization problems. Some
works exist regarding the prognosability of extended Petri Nets, with upper and
lower bound regarding timing of the possible prognosed behavior [Kanazy 2019],
but to our knowledge, there is not a generalized method to verify the prognosabil-
ity on Time Petri Nets.

A key future work would be to adapt first the analysis of single fault prognos-
ability with PTPN.

Pollux: Finally, one of the possible future works would be to generalize the pro-
cess in Chapter 8. The Pollux parser would also need a scalability test with a
configurable example where you could decide the size of the system for a same
pattern.
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Abstract: We study the behaviour of Discrete Event Systems (DES) subject
to strong temporal constraints. We are more particularly interested in the
formal verification of properties on the timed languages associated with their
executions. In this context, we focus on DES modelled using Time Petri Nets
(TPN), an extension of classical Petri nets in which we can constrain the time
during which transitions stay enabled.

Our goal is to use and extend techniques borrowed from model-checking
in order to check properties related to the diagnosability of a system. To this
end, we study properties on the intersection of the timed languages of systems.
Our approach is based on the definition of a new composition operator, that
we call synchronous product, that constrain different transitions to fire at the
same time. This allows us to analyse the product of systems more directly,
without the need to compute the intersection of their language at the level of
their state spaces.

Our main contribution is the definition of a new formal model, called
Product TPN (PTPN), that includes our notion of synchronous product in
its syntax. We show how to extend the notion of State Class Graphs to
PTPN and use this construction to check the diagnosability of single faults
on TPN. We also study the diagnosability of more complex behaviours, ex-
pressed using patterns of events, and explore a restricted case of timed pattern.

Keywords: Discrete Event Systems, Verification, Model-checking, Time
Petri Nets, Synchronous Product, Diagnosability, Pattern



Résumé : Cette thèse porte sur l’étude des Systèmes à Événements Discrets
(SED) soumis à des contraintes temporelles fortes, et plus précisément sur la
vérification de propriétés liées aux langages associés à leurs exécutions. Dans
ce contexte, nous nous concentrons à l’étude des réseaux de Petri temporels
(TPN) comme modèle pour la spécification des SED.

L’objectif général est d’utiliser et d’étendre des méthodes issues du do-
maine du model-checking afin de répondre à des questions de diagnosticabil-
ité. Pour ce faire, nous cherchons à vérifier des propriétés liées à l’intersection
entre les langages temporels (le comportement) de différent systèmes. Notre
approche repose sur la définition d’une nouvelle opération de produit syn-
chrone entre TPN qui nous permet d’utiliser des techniques d’analyse plus
directes. Ceci nous permet, en particulier, d’éviter de devoir calculer directe-
ment l’intersection entre langages au niveau des espaces d’état des systèmes.

Notre contribution principale est la définition d’un nouveau modèle, les
Product TPN (PTPN), qui internalise notre concept de produit synchrone
entre transitions. Nous proposons une extension de la notion de graphes de
classes au cas des PTPN et utilisons ce modèle pour vérifier la propriété de
diagnosabilité sur les TPN dans le cas de fautes simples, mais également pour
la diagnosticabilité de scénarios plus complexes, décrit sous la forme de motifs.

Mots clés : Systèmes à événements discrets, Vérification formelle, Model-
checking, réseaux de Petri temporels, Produit synchrone, diagnosticabilité,
motif
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