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Délivré par :
l’Institut National des Sciences Appliquées de Toulouse (INSA de Toulouse)

Présentée et soutenue le 07/07/2021 par :
Clovis Anicet OUEDRAOGO

On QoS Management in NFV-enabled IoT Platforms.

JURY
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“Once upon a time, I, Chuang Chou, dreamt I was a butterfly, fluttering hither
and thither, to all intents and purposes a butterfly. I was conscious only of my
happiness as a butterfly, unaware that I was Chou. Soon I awaked, and there I was,
veritably myself again. Now I do not know whether I was then a man dreaming I
was a butterfly, or whether I am now a butterfly, dreaming I am a man.”

Chuang Chou - Zhuangzi





Abstract

The Internet of Things (IoT) will have to meet the Quality of Service (QoS) needs of new
business applications in various fields such as remote supervision, personal assistance, and
transport. The interactions between the software application and the underlying communicating
objects will be based on communication networks and middleware (or platform) equipped with
new, configurable, programmable, and dynamically deployable functionalities on both physical
entities, i.e., pre-existing, but also virtual, i.e., created dynamically according to the need
thanks to Cloud Computing. In this new ecosystem, meeting the end-to-end QoS needs of IoT
applications remains a significant challenge. The challenge lies both at the intermediary entities
belonging to the IoT platform and the level of the IP networks interconnecting these entities. The
solutions being proposed are multiplying independently. In this problematic context, the general
approach that we consider in this thesis consists of designing, developing, and experimenting
with behavioral models for autonomous management of QoS in IoT platforms. This approach
i) take advantage of the technological opportunities offered in the Cloud infrastructures (i.e.,
dynamic deployment of network functions, programmable networks), ii) take advantage of
the technological opportunities offered by the dynamic deployment of software components,
iii) take into account the de facto heterogeneity solutions deployed, vi) and rely autonomous
computing concepts. Following this approach, the three main contributions are made in this
thesis. Beyond and in addition to the classic concept of Virtualized Network Function (VNF),
we first propose the concept of Application Network Function (ANF), which is based on a
less resource-consuming isolation technique (i.e., software isolation technique). ANFs allow
the deployment of network functions in resource-constrained environments, typically on end
gateways of IoT platforms. They also lead to optimal use of available resources. On this basis
and to maintain at the best level the QoS required by IoT applications, we have designed a set
of IoT Traffic Control functions (TCF) implemented as VNF and ANF. To achieve optimal
deployment of these TCFs, we proposed a second contribution. This contribution consists in the
formulation of a multi-objective optimization problem. The proposed and implemented solution
considers both the deployment of TCFs and scaling actions, intending to optimize the QoS of
IoT applications. The proposed algorithm relies on the bottlenecks (e.g., CPU, RAM) of the
platform nodes, initially provided manually by a human administrator. In a third contribution,
we then turn to the automated identification of these bottlenecks. To do this, we propose an
adaptive identification approach that considers the cost associated with the monitoring of
the IoT platform. Indeed, it is not desirable that the overload generated by the monitoring
system itself causes QoS problems in the IoT platform. To do this, we model the problem of
identifying multiple bottlenecks by a multi-label classification problem. Different supervised
learning algorithms are studied to solve this problem. Finally, we propose an algorithm for
selecting metrics to monitor in IoT platforms according to the costs they generate.

Keywords: Quality of Service (QoS), Internet of Things (IoT), Network Functions
Virtualization (NFV), Genetic Algorithm, Multi-Objective Optimization, Machine Learn-
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Résumé

L’Internet des objets (IoT) devra répondre aux besoins de qualité de service (QoS) des nouvelles
applications métier dans divers domaines tels que la supervision à distance, l’assistance à
la personne et le transport. Pour ce faire, les interactions entre les applications IoT et les
objets communicants reposent sur des réseaux de communication et plateforme (ou middleware)
équipés de nouvelles fonctionnalités configurables, programmables et déployables dynamiquement
sur les deux entités physiques, c’est-à-dire préexistantes, mais aussi virtuel, c’est-à-dire créés
dynamiquement en fonction du besoin. Dans ce nouvel écosystème, répondre aux besoins QoS de
bout en bout des applications IoT reste un défi majeur. Les enjeux se situent à la fois au niveau
des entités intermédiaires de la plateforme IoT, et au niveau des réseaux IP interconnectant ces
entités, pour lesquels les solutions proposées se multiplient de manière indépendante. Dans ce
contexte problématique, l’approche générale que nous considérons dans cette thèse consiste à
concevoir, développer et expérimenter des modèles comportementaux pour une gestion autonome
de la QoS dans les plateformes IoT: i) en tirant parti des opportunités technologiques offertes
dans les infrastructures de type Cloud (par exemple, déploiement dynamique de fonctions
réseau, réseaux programmables), ii) en tirant parti des opportunités technologiques offertes
par le déploiement dynamique de composants logiciels, iii) et en s’appuyant sur l’Autonomic
Computing. Suivant cette approche, les trois contributions principales sont apportées dans cette
thèse. Au-delà et en complément du concept classique de fonction de réseau virtualisé (VNF),
nous proposons d’abord le concept de fonction de réseau d’application (ANF), qui repose sur
une technique d’isolement logiciel (moins consommatrice en ressources). Les ANFs permettent
le déploiement de fonctions réseau dans des environnements à ressources limitées, généralement
sur les passerelles d’extrémité des plateformes IoT. Ils conduisent également à une utilisation
optimale des ressources disponibles. Sur cette base et pour maintenir au meilleur niveau la
QoS requise par les applications IoT, nous avons conçu un ensemble de fonctions de contrôle
du trafic IoT (TCF) implémentées en tant que VNF et ANF. Pour parvenir à un déploiement
optimal de ces TCFs, notre deuxième contribution consiste en la formulation d’un problème
d’optimisation multi-objectifs. La solution proposée et mise en œuvre prend en compte à la
fois le déploiement des TCFs et les actions de mise à l’échelle, visant à optimiser la QoS des
applications IoT. L’algorithme proposé repose sur les goulots d’étranglement (CPU, RAM,
etc.) des nœuds de la plateforme, fournis manuellement par un administrateur humain. Dans
une troisième contribution, nous nous tournons vers l’identification automatisée de ces goulots
d’étranglement. Ainsi, nous proposons une approche d’identification adaptative qui prend en
compte le coût associé à la surveillance de la plateforme IoT. En effet, il n’est pas souhaitable
que la surcharge générée par le système de surveillance lui-même provoque des problèmes
de QoS dans la plateforme IoT. Nous modélisons le problème de l’identification de plusieurs
goulots d’étranglement par un problème de classification multi-label. Différents algorithmes
d’apprentissage supervisé sont étudiés pour résoudre ce problème. Enfin, nous proposons un
algorithme de sélection des métriques à surveiller dans les plateformes IoT en fonction des coûts
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qu’elles génèrent.
Mots clés: Quality of Service (QoS), Internet of Things (IoT), Network Functions Vir-

tualization (NFV), Genetic Algorithm, Multi-Objective Optimization, Machine Learning
(ML), Performance Bottlenecks Analysis, Fault Localization.
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1.1 Context and Research Scope

The last few years have seen the growing development of devices such as sensors, actuators,
and cameras, equipped with communication and computation capacities, in all sectors
of activity, both daily (e.g., lighting, temperature, humidity) and professional (such as

the remote reading of electric meters or gas meters). The reduction in the costs of devices and
the evolution of network technologies, particularly wireless, gave birth to the concept known as
Machine-to-Machine (M2M), intending to reduce and even eliminate human intervention in
the business processes. The Internet of Things (IoT) based on M2M network infrastructures,
therefore, aims to extend the classic Internet to devices other than computers, thus paving the
way for new applications like smart factories and smart homes, smart buildings, e-health.

The use of IoT in these contexts is likely to bring real added value from both the consumer
and the service producer. Several architectural visions are proposed for the structuring of the
IoT. The one we use for our context [oneM2M 2016] is made up of four layers. The first is
the Things layer, which consists of all IoT devices (i.e., sensors and actuators). This layer is
supported by the Network layer which includes all the interconnection technologies necessary
for the different interactions. The IoT platform layer (a.k.a middleware layer) offering an
abstraction layer to IoT applications and facilitating, therefore, their interaction with the
underlying layers. Finally, the Application layer, which consists of all the software applications
contributing, via their interactions with the connected devices, to the business activity.

The specificities of IoT lead to the reconsideration of multiple issues already addressed
in other more traditional contexts (e.g., Internet Protocol (IP) based networks). We are
interested, in this thesis, in the Quality of Service (QoS) problem in IoT platforms. The
International Telecommunication Union (ITU) defines QoS as the totality of characteristics of
a telecommunications service that bear on its ability to satisfy stated and implied needs of the
user of the service [Rec 1994].

In the IoT context, QoS refers to the ability of the IoT ecosystem and its different lay-

1
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ers to support the non-functional needs corresponding to the requirements of the business
applications. The issue of QoS has been widely addressed for the Internet. Nevertheless, it
needs to be reconsidered for the IoT and its applications. Indeed, depending on the business
scenario, the IoT applications can have several profiles defined in terms of data types (e.g.,
binary, text, audio, or image). Applications may also have different kinds of interactions (e.g.,
request/response, publication/subscription) and QoS needs that can evolve dynamically (i.e.,
at runtime). Applications can express these needs in terms of End-to-End latency, throughput,
availability.

In this new ecosystem, meeting the End-to-End QoS needs of the IoT applications remains a
significant challenge. The challenges lie at two-level between the Things layer and the Application
layer: the network and the IoT platform layer. In this thesis, we examine the challenges in IoT
platforms. Indeed, despite standardization efforts such as OneM2M [oneM2M 2016], the QoS
management at this layer still is in its early ages. The existing studies (e.g., [Banouar 2017])
are focused on the structure models1 of this layer via architectural frameworks and making
little contribution to the behavioral models. In addition to the lack of behavioral frameworks
for managing the QoS in the IoT platform, the complexity of the problem at this layer is
phenomenal. The size and heterogeneity of the platform exacerbate this complexity which very
quickly becomes difficult to manage for a human administrator. In this thesis, our proposal
covers the behavioral aspect of the management of QoS requirements of IoT applications.

In the following section, we list the limitations of the existing approaches and define our
research problem and the research questions.

1.2 Problem Statement and General Approach

Problem Statement The state-of-the-art, detailed in the Section 2.5.5, presents a general
vision of works addressing QoS in IoT platforms. However, these works share the following
limitations. Firstly, these works fail to address resource scarcity in IoT platforms. Indeed,
the availability and capacity of the resources, namely computation, storage, and connectivity,
decrease when moving toward Things. Typically, the IoT End Gateways, located close to Things,
are small devices with limited computation, storage, and connectivity capabilities. This creates
a scarcity of resources at the platform edges that none of the existing approaches address.
Secondly, trying to offer a guaranteed QoS to all applications in an IoT platform can only work
on a small scale. Still, as the system scales up to billions of devices and applications, it is not
easy to track all of the reservations needed for such an approach. Thirdly, the existing solutions
remain incomplete (only consider latency, for instance) and lack an overall framework (e.i.

1In this manuscript, structure models represent the static aspects of the QoS management framework. It
emphasizes the things that must be present in the system being modeled. Conversely, the behavior models
represent the dynamic aspect of the QoS management framework. It emphasizes what must happen in the system
being modeled.
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providing all the basic tools to manage End-to-End resources and traffic). Finally, acknowledging
the complexity, heterogeneity, and scale of the IoT platform, there is a glaring lack of cognitive
mechanisms to minimize the role of humans in the QoS management process.

Considering these limitations on the QoS management in IoT platforms we define the
following research problem.

General definition of the problem: The problem addressed in this thesis is the need for
an approach that can autonomously handle complexity (due to the scale and resource scarcity)
of today’s IoT platforms and provide End-to-End QoS to IoT Applications.

General Approach Under this problematic context, the general approach that we consider
in this thesis consists in designing, developing, and experimenting with models for autonomous
management of QoS in the IoT platform: i) taking advantage of the technological opportunities
offered in the Cloud-like infrastructures (i.e., the dynamic deployment of network functions,
programmable networks), ii) taking advantage of the technological opportunities offered by
the dynamic deployment of software components, iii) and following autonomous computing
concepts. Fig. 1.1 illustrates the expected position of our approach regarding the technological
opportunities. For the sake of readability, this section briefly introduces each technology
according to its application. In turn, the reader can find an in-depth analysis in Chapter 2.

This thesis

QoS

IoT 
Platform

Research 
Scope

Technological 
opportunities

NFV

AI

OSGi

Figure 1.1: Thesis positioning: Taking advantage of technological opportunities

• Open Services Gateway initiative (OSGi). This standard is specified and main-
tained by the OSGi Alliance [Alliance 2018]. The OSGi specification describes a modular
system and a service platform for the Java programming language. This modular system
implements a complete and dynamic component model that does not exist in standalone
Java Virtual Machine environments. Components coming in the form of plugins (or
bundles) for deployment can be remotely (without requiring a program reboot) installed,
started, stopped, updated, and uninstalled. The modular system life cycle management
is implemented via Application Programming Interface (API) that allow for remote
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downloading of management policies. A service registry allows bundles to detect the
addition of new services or the removal of services and adapt accordingly. OSGi provides
flexibility in the management and deployment of software components in already deployed
compliant software.

• Network Function Virtualization (NFV). This paradigm proposes to overcome the
dependence between network functions (e.g., filtering function) and the physical hardware
(e.g., switch) on which they are usually deployed. NFV relies for connecting the network
functions on another paradigm: The Software-Defined Network (SDN) paradigm. SDN
aims to apply a logic of programmability to all elements of a network. For example,
a switch can have its packet forwarding logic dynamically programmed rather than
applying a predefined, static algorithm. The purpose of NFV is to provide flexibility
in the management and deployment of initially operator networks, then more generally
communication networks.

• Artificial Intelligence. Artificial intelligence enables computers to mimic the perception,
learning, problem-solving, and decision-making capabilities of the human mind. One of
the problems in building autonomous IoT platforms is the complexity that prevents
one from accurately described them by mathematical models. It is, therefore, difficult
to control such platforms using such existing methods (e.g., queuing theory). Artificial
intelligence-based computational techniques [Choudhury 2016] (i.e., Soft computing) deals
with partial truth, uncertainty, and approximation to solve complex problems.

1.3 Research Questions and Main Contributions

To address the research problem, we start by investigating the following research question:

RQ-1: How to maintain the applications’ QoS the closest to their requirements while
adapting to the resources’ scarcity when moving from Cloud to Things?”

Following the general approach described above, many advancements in the state-of-the-art
are expected to solve the research problem above. To answering RQ-1, we made the following
contributions.

1. We introduce the ANF concept, which relies on a minimal level of isolation technique
dealing with software component execution (e.g., OSGi). The ANFs make possible the
deployment of NFs on IoT End Gateways (i.e., the closest Gateways to the Things ) and
support reaching the best possible use of available heterogeneous resources capacity of the
platform. We design a collection of Traffic Control Functions (TCF) that we implement as
VNF and ANF, intending to sustain the QoS level required by the IoT applications. We
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also provide the performance measurement results to get the quantitative characteristics
associated with the different implementation packages (VNFs and ANFs) of the considered
TCFs. We study the effects of the traffic arrival rates on the processing time and the
resource usage (computation and memory) required for executing the TCFs.

2. To achieve optimal deployment of these TCFs, our second contribution consists of develop-
ing and solving a multiobjective optimization problem. The designed scheme, named QoS
for NFV-enabled IoT platform (QoS4NIP), considers both TCFs deployment and scaling
actions while optimizing for each IoT application its End-to-End QoS. The performance
measurement results (obtained above) are used by QoS4NIP to solve the multiobjective
optimization problem formulated for an efficient planning scheme of TCFs deployment
on the available nodes in NFV-enabled IoT platform (NIP). We evaluate the benefits
in terms of the cost-saving of the solutions provided by the QoS4NIP scheme. These
benefits are compared to the solutions provided by First-come, First-served (FCFS), the
autoscaling scheme, and the two variants of QoS4NIP that do not consider the scaling
action but only TCFs (the first considers only TCFs deployed as VNFs, and the second
considers TCFs deployed as VNFs and ANFs). We consider a realistic case study dealing
with Connected Vehicles for validation of our approach. The validation results show that
our scheme, QoS4NIP while sustaining each IoT application End-to-End QoS, achieves
the best cost-saving amongst the existing competing approaches. A human manually
provided information of the nodes regarding their status in terms of bottlenecks.

The problem of automatically identifying the bottleneck has brought us to the second
Research Question (RQ-2):

RQ-2: “How to determine the metrics that maximize the efficiency of NIP performance
analysis and lead to a minimum cost for an allocated monitoring overhead budget?”

To answering RQ-2, we made our third contribution:

3. We model the problem of Multiple Bottlenecks Identification (MBI) in NIPs as a Multi-
Label Classification (MLC) problem, and we propose a classification of main categories
of bottlenecks in NIPs. We propose an algorithm (Simple Overhead-sensitive Metrics
Selection – SOMS) to answer the research question. This algorithm is a heuristic that
selects a subset of relevant metrics for a given monitoring overhead. We build a virtualized
platform prototype implementing the experimental testbed to gather a training dataset.
We design the testbed to provide a training set that is representative of the real-world
situation. We develop different supervised ML algorithms to perform the identification of
the bottlenecks. We numerically evaluate these MBI models, using the collected data in
terms of Subset accuracy, Coverage Error, Sensitivity, and Specificity. We implemented
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the proposed SOMS to find which metrics should be considered for the efficiency of the
NIP analysis while optimizing the performance of the MBI model, not to label as positive
a negative sample and evaluates its performance. Our numerical results show that 81
metrics give the maximum precision (84%) of the MBI model. Up to 83% can be achieved
even with a relatively limited metrics subset of 22 metrics.

1.4 Manuscript Organization

The remainder of this manuscript is organized as follows.
Chapter 2. We aim to provide an overview of the technological landscape in which the

work presented in this manuscript was executed. First, we present the IoT paradigm (i.e. its
characteristics and enabling technologies). Second, we present the NIP, which aims to decouple
the IoT architecture from its current infrastructure. We also discuss the complexity problem
of such a platform which can only be solved by a high degree of autonomy. Third, we present
the autonomous computing paradigm, which provides a blueprint for constructing autonomous
systems. We also present enabling techniques (i.e., computational techniques based on artificial
intelligence) that allow the implementation of control loops (e.g., Autonomous Manager). We
present why IoT applications need QoS and why it is particularly challenging. Finally, we review
the state-of-the-art limitations of current approaches to support QoS for IoT applications.

Chapter 3. Beyond and in addition to the classic concept of Virtualized Network Function
(VNF), we first propose the concept of Application Network Function (ANF), which is based
on a software-level of isolation technique (e.g., OSGi). ANFs allow the deployment of network
functions in resource-constrained environments, typically on End Gateways of IoT platforms.
They also lead to optimal use of available resources. On this basis and to maintain, at the
closest level possible, the QoS required by IoT applications, we have designed a set of IoT
Traffic Control Functions (TCF) implemented as VNF and ANF. Then we study the use of
Evolution strategies (ES) to design a planning algorithm. The planning algorithm’s goal is
to achieve optimal deployment of these TCFs through solving a multiobjective optimization
problem. The proposed and implemented planning algorithm (QoS4NIP) takes into account
both the deployment of TCFs and scaling actions, to optimize the QoS of IoT applications.
The proposed algorithm relies on the bottlenecks (such as CPU, RAM) of the platform nodes,
first provided manually by a human administrator.

Chapter 4. We then turn to the automated identification of these bottlenecks. To do
this, we propose an adaptive identification approach that considers the cost associated with
the monitoring of the IoT platform. Indeed, it is not desirable that the overload generated
by the monitoring system itself causes QoS problems in the IoT platform. To do this, we
study Machine Learning, especially supervised learning to design the Analyser that solves a
multi-label classification problem. Finally, we propose an algorithm for selecting metrics to
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monitor in IoT platforms according to the costs they generate.
Chapter 5. We discuss the final remarks of the thesis and present the future work. The

Research questions are revisited to discuss the answers we provide and to highlight remaining
gaps that are the subject of future investigations. Also, we explain the limits of our proposal,
delimiting the appropriate cases of application.
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2.1 Introduction

Aiming to provide a clear understanding of the challenges inherent to QoS management
in IoT platforms, in this Chapter, we review base concepts and discuss the state-of-
the-art. To that end, we present the background knowledge regarding the IoT, NIP,

Autonomic Computing, and QoS. We also present the state-of-the-art of approaches to sustain
QoS for IoT applications.

2.2 Internet of Things

The term IoT, as many words with marketing value, tends to be used with a wide range of
meanings. After defining what IoT stands for in this manuscript, representative IoT enablers
are described.

2.2.1 Definition

The term “Internet of Things”, was first used by Kevin Ashton [Ashton 2009] in 1999 while
connecting the latest scheme of RFID in the supply chain of Procter and Gamble (P&G).
A decade later, the word’s meaning evolved with the emergence of active computing power
ubiquitously deployed in connected devices.

The ITU defined IoT in 2012 [ITU-T 2012], as: “A global infrastructure for the information
society, enabling advanced services by interconnecting (physical and virtual) things based
on existing and evolving interoperable information and communication technologies”. In this
manuscript, we adopt this definition, and the term IoT thus refers to the area of technology
and research enabling the deployment of Things networks. To defined the thing in “Internet of
Things” the ITU proposed: a Thing is “an object of the physical world (physical things) or
the information world (virtual things), which is capable of being identified and integrated into
communication networks.”. Note that this definition is not limited to devices such as temperature
sensors or humidity sensors. It also includes services and elements of the environment about
which characteristics may be collected or actuated (e.g., a vehicle or a robot).

Following the definition, the IoT implies a particular need for M2M communication ar-
chitectures and protocols, in particular at the level allowing the interaction between Things
and all the IoT applications that need to interact with them. The IoT applications include
various kinds of applications, e.g., intelligent transportation systems, smart grid, e-health or
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smart home. The intermediate level was originally referred to as a middleware1. With more and
more services (e.g., tools for developers, analytics, advanced security, and privacy) added to
this middleware layer, the terminologies shifted toward platform, and the IoT platforms were
born. We will review this term in more detail in Section 2.2.3.

2.2.2 Enabling technologies

Various communication technologies support the IoT, and here we give an overview of the main
ones.

2.2.2.1 Short-range technologies

The concentration of devices in a limited geographical space, potentially indoors, allows using
telecommunication technologies like Personal area network (PAN) only able to reach a short-
range. If necessary, multiple devices communicating locally at a short range can create a mesh
covering a wide area.

• Bluetooth Low Energy (BLE) is an extension of the Bluetooth communication
technology designed to have a much lower power consumption. BLE is, however, based
on the same paradigm as Bluetooth, and only star topologies are allowed, with a central
master and some peripheral slaves.

• Zigbee is a radio protocol developed by the Zigbee Alliance. Contrary to BLE, Zigbee
devices may be organized in a mesh. Zigbee is an open standard and has a diverse
ecosystem but generates interoperability issues among supposed devices even based on
the same technology. The most popular use case for Zigbee is connected light bulbs.

• 6LowPan was proposed by the Internet Engineering Task Force (IETF). Deploying
6LowPan devices enables creating a mesh network at the packet level (based on the OSI
layered model).

2.2.2.2 Long-range technologies

To implement some use cases such as agriculture, IoT devices must be deployed over large
areas, potentially not covered by traditional communication networks. Some technologies called
Low-Power Wide-Area Network (LPWAN) have been developed to provide ad-hoc networks
that allow long-range and low-power communication.

• LoRa is a communication technology that is supported by the LoRa alliance. In the
network topology enabled by LoRa: devices communicate over LoRa with gateways

1This term borrowed from the distributed applications context meaning was – software that provides services
beyond those provided by the Operating system (OS) to enable the various components of a distributed system
to communicate and manage data.
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connected to “traditional” networks and make the messages available to the user on
dedicated servers. When a LoRa device wakes up to send a message, it is briefly possible
to send a message to it, enabling bi-directional communication.

• SigFox is both a network operator and a communication technology deployed by said
operator. Contrary to LoRa, SigFox is tied to an operator: only SigFox may deploy
an ad-hoc SigFox network. SigFox is, however, quite similar to LoRa: SigFox devices
communicate with SigFox gateways that are connected to the Internet. Therefore, messages
produced by SigFox devices are stored on servers to be accessible via a Web interface
from the client-side.

2.2.2.3 Application layer protocol

The following application layer protocols are used to retrieve data or control IoT devices from
the Internet.

• HyperText Transfer Protocol (HTTP) is the protocol at the core of the Web.
However, HTTP is based on Transmission Control Protocol (TCP), requiring a permanent
connection between the communicating entities during the communication. Establishing
such connection is costly, and HTTP is therefore not adapted to all IoT architectures,
where more lightweight protocols might be preferred. The notion of Representational state
transfer (REST) services is usually associated with the HTTP protocol: a Web server
exposes an HTTP interface that is meant to be accessed by a REST client.

• Constrained Application Protocol (CoAP), contrary to HTTP is based on User
Datagram Protocol (UDP). CoAP is a protocol specially designed for constrained use cases,
with reduced headers and limited packet body. UDP being a datagram-based protocol,
the establishment of a connection is not necessary before exchanging messages. CoAP
mimics the verbs of HTTP, such as GET or POST, and adds a new verb, OBSERVE, to
enable notification of the client when a resource is changed.

• Message Queue Telemetry Transport (MQTT) is a publish-subscribe protocol
standardized by the OASIS consortium. Messages are published to a broker in topics, and
subscribers to a topic are notified on publication. To enable the notification, a connection
must be established between the client and the broker: MQTT is based on TCP.

2.2.3 IoT platforms

IoT platforms originated in the form of IoT middleware, which was simple: act as a mediator
between the Thing and application layers. Its main tasks included data collection from the devices
over different protocols and network topology, remote device configuration and management,
and over-the-air firmware updates. To be used in real-life heterogeneous IoT ecosystems, IoT
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middleware support integration with almost all connected devices and blend in with third-
party applications. The independence from the underlying hardware (devices) and overhanging
software (applications) enable a single IoT middleware to manage any connected device in the
same straightforward way.

Time passing, IoT middleware evolved into a multi-layer platform that enables straightfor-
ward provisioning, management, and automation of connected devices. This platform connects
hardware, however diverse, to the Cloud by using flexible connectivity options, security mecha-
nisms, and broad data processing powers. For developers, an IoT platform provides a set of
ready-to-use features (e.g., device fleet management) that significantly speed up the development
of applications for connected devices and take care of cross-device compatibility.

Thus, an IoT platform has a different meaning depending on its view. It is often referred to
as middleware when one talks about connecting remote devices to applications and manages all
the interactions between the devices and the applications. It is also known as a cloud-enabled
platform or IoT-enabled platform to pinpoint its significant business value, empowering standard
devices with cloud-based applications and services.

Commercial IoT platforms (e.g., Google Cloud IoT or Amazon Web Services IoT) additionally
introduce a variety of features into the hardware and applications as well. They provide
components for frontend and analytics, on-device data processing, and cloud-based deployment.
Some of them can handle End-to-End IoT solution implementation from the ground up.

2.2.3.1 OneM2M standard

Most industries are solving their IoT needs on their own. They are addressing specific “vertical”
application requirements in isolation from each other despite similar architectures. This created
“silo” solutions based on very heterogeneous design, production, data model, and implementation
cycle. Such unique solutions often result in vendor-specific hardware. Interoperability is, in
general, very limited or non-existent. Development is limited to the system owners who
understand the particular API, resulting in high development costs and high costs for support. To
overcome this challenge, a consortium with 263 members called OneM2M took a standardization
effort. The proposed standard objective is to design a standard that will lead to the development
of “horizontal” IoT platforms, that is to say, allowing multiple IoT applications with diverse
needs to be sustained while remaining independent of the network and the Things to be
connected (Fig. 2.1). This consortium has attracted and actively involved organizations from
fields of activity related to M2M such as telemetry, intelligent transport, health, utilities,
industrial automation, smart homes.

The oneM2M standard is expected to prevail as the main IoT platform architecture since
it enables and facilitates interoperability at different levels. Concretely, the standard is based
on the notion of resources following the REST architectural style (with resources in a tree
structure) and integrates several communication protocols such as HTTP, CoAP, or MQTT.
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Figure 2.1: IoT challenge: emergence of the common service platform [ETSI 2014]

The oneM2M architecture is made up of four layers.

• The application layer is made up of application entities Application Entity (AE) which
represent the applications interacting with the server, gateways, or device.

• The Service layer, called the Common Service Entity (CSE), represents the middleware
abstraction layer. There are two types of CSE: Infrastructure Node CSE (IN-CSE) hosted
on a Server and Middle Node CSE (MN-CSE) hosted on a Gateway.

• The Network layer encompasses all communication networks.

• The Things layer encompasses all underlying devices.

2.2.3.2 Considered IoT platform: Eclipse OM2M

Eclipse OM2M is an open-source IoT platform compliant with the OneM2M standard developed
in JAVA by the LAAS-CNRS. It provides a REST API with open interfaces allowing the
development of services and applications independent of the underlying network. Eclipse OM2M
platform allows one:

• to support different communication protocols (e.g., HTTP, CoAP, MQTT);

• to interface with remote device management standards (e.g., Open Mobile Alliance Device
Management or OMA-DM);

• to integrate existing technologies (e.g., Zigbee, Phidgets).
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In this manuscript, we consider an architecture inspired by the vision given by the oneM2M
standard. It constitutes our overall infrastructure and is broken down into the following
components (Fig. 2.2): IoT applications, IoT Server, IoT Gateways, and devices. The intercon-
nection between applications and the Server, or between the IoT platform entities themselves
(server⇐⇒ gateway or gateway⇐⇒ gateway), is assumed to be on IP networks. The intercon-
nection between end Gateways and the device is supposed to rely on short-range technologies
(e.g., Zigbee, Bluetooth).

Gateway

Devices

Server

Applications

Data

Commands

PAN IP Network

Figure 2.2: OM2M functional architecture

Server A Server is the entry point for communications between applications and devices via
a gateway. There is only one Server in an IoT platform and can be deployed on a Cloud and
access over the Internet. It implements the IN-CSE of the oneM2M standard.

Gateway A Gateway is the entry point to devices and potentially to other gateways. A
gateway acts as a proxy for the devices to interface them with the core network. Therefore, it
may be deployed on a physical machine close to the devices, generally limited in resources (e.g.,
CPU, RAM). Gateways can be attached in sequence and hierarchically up to the Server. The
number of gateways varies from one to several. It can be attached to one or more devices and
zero or more other gateways. A gateway implements the MN-CSE of the oneM2M standard.

Device An device usually performs metrics capture (e.g., temperature, humidity, heartbeat)
and actuation (e.g., camera, motor) operations. Their integration into the IoT platform may
require the use of a gateway. The number of devices varies from one to several for each gateway.
Each device may be powered with a battery and communicates with the gateway via a specific
network technology (see Section 2.2.2.1).
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Implementation details The considered IoT platform, Eclipse OM2M is based on a modular
architecture implemented through an Equinox OSGi framework, which makes it highly extensible
through modules (OSGi plugins) that can be installed during the design or the runtime of the
platform. (Fig. 2.3).
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Figure 2.3: OM2M overall internal structure [Alaya 2014]

The Open Services Gateway initiative (OSGi) standard is an open standards organization
specified and continues to maintain the OSGi Alliance. The OSGi specification depicts a modular
system for the Java programming language that implements a complete and dynamic component
model that does not exist in a standalone Java Virtual Machine. In the form of plugins (or
bundles) for deployment, applications or components can be remotely installed/ uninstalled,
started/ stopped, updated, and without requiring a restart of the modular system. The
management of Java packages/classes is specified in detail. Application life cycle management
is implemented via APIs that allow remote loading of management policies. A service registry
allows bundles to detect the addition of new services or the removal of services and adapt
accordingly. The OSGi specifications have evolved beyond the original focus of service gateways.
OSGi is used in applications ranging from mobile phones to the open-source Eclipse IDE.
Several application areas include automobiles, industrial automation, building automation,
PDAs, grid computing, entertainment, fleet management, and application servers.

Each of OM2M plugins (Fig. 2.3) offers specific functionalities, allowing in particular, not
only to have an extensible tool but also adaptable, because it is possible thanks to OSGi to
start only a certain number of plugins, to stop, to uninstall, or delete others without the need
to restart the platform entity.

2.3 NFV-enabled IoT platforms

Today we witness the birth of a NIP that relies on two complementary paradigms, NFV and
SDN, to decouple the IoT architecture from its current infrastructure. In the following, we
describe these technologies.
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2.3.1 Definitions

To understand the NIP some definitions need to be made clear.

Network function Networks are responsible for transporting data from one terminal machine
to another terminal machine. To do this, a series of intermediate equipment is often necessary.
These devices implement logic that allows them to process the traffic they receive. This logic is
called a network function. Traditionally, these functions are performed on dedicated equipment,
which is designed for this single use. For example, a router is a piece of equipment that
implements a Network Function (NF). This NF is generally a routing algorithm that decides
the immediate destination of incoming traffic to bring it closer to its final destination.

Virtualization The term virtualization can take several meanings depending on the audience
[Kaufmann 1996]. In this manuscript, virtualize means divide/share an entity’s resources2 for
multiple users by applying techniques such as time-division multiplexing. For example:

• virtualize a processor consists in distributing the total access time to the processor among
several users;

• virtualize a memory consists of logically partitioning this memory for several users;

• virtualize a local network consists (classically) in logically partitioning this local network
into several virtual networks (VLANs), then allocating them to users.

The concept of emulation is often confused with virtualization. Although it can be considered a
complementary technique, emulation aims to provide users with resources different from those
offered by the entity in question. This is possible thanks to an interface (or microcode) that
translates the entity’s resources into resources for the user (Fig. 2.4). For example:

• emulate a processor consists in proposing a processor with natively non-existent function-
alities;

• emulate a memory consists in proposing another type of memory by imitating the behavior
of the latter;

• emulate a network (for example satellite) consists in reproducing the behavior of this
network in an experimental environment (not satellite).

2Anything required for the execution of a program is called a resource. The processor, memory, disk storage,
networks are all examples of resources.
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Figure 2.4: Emulation and Virtualisation [Gallard 2008]

Virtualization container Another important term in NFV is that of virtualization container.
Suppose for the moment that NFV simply means virtualizing the resources used by network
functions. In that case, there are several techniques to achieve this virtualization in practice.
Thus, it is recognized that there are two main ways to proceed when it comes to NFV. These
two ways are the use of the virtual machine and the use of a container to provide the necessary
resources for network functions.

• A virtual machine (VM) is a virtualized computing environment that behaves almost like
a physical computer/server. A VM has all the components (processor, memory/storage,
interfaces/ports) of a physical computer/server. A VM is generated by a hypervisor (e.g.,
Kernel-based Virtual Machine or KVM) which partitions its underlying physical resources
and allocates a part of them to the managed VMs;

• A container is a virtual environment obtained by limiting and prioritizing the resources
allocated to a group of processes (such as CPU, memory, network). A container is generated
by a “container engine” such as Docker or Linux Containers (LXC). Note that hypervisors
such as Proxmox or Openstack make it possible to generate VMs and containers.

Seen by an application, a container is no different from a virtual machine. However, from the
point of view of their structures, these two environments are different. As shown in Fig. 2.5,
container groups together an application and its libraries while virtual machine groups together
an application, its libraries but also an operating system (called Guest-OS). This difference has
two consequences: a virtual machine generally consumes more resources (RAM, CPU, DISK); a
container is highly dependent on the underlying operating system (Host-OS).
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2.3.2 Enabling technologies

This Section presents two complementary paradigms, NFV and SDN, the purpose of which is
to provide flexibility in the management and deployment of initially operator networks, then
more generally, communication networks. We focus on the various standards established by
international standardization bodies such as the European Telecommunications Standards Insti-
tute (ETSI), the Internet Research Task Force (IRTF), and the Open Networking Foundation
(ONF). The NFV paradigm proposes to overcome the dependence between network functions
(e.g., filtering function) and the physical hardware (e.g., switch) on which they are usually
deployed. The SDN paradigm aims to apply a logic of programmability3 to all elements of a
network. For example, a switch can have its packet forwarding logic dynamically programmed
rather than applying a predefined, static algorithm.

2.3.2.1 Software-Defined Network

The idea of programmable networks is older than NFV. Already in 1996, and Ipsilon company
working group proposed a protocol standard called General Switch Management Protocol
(GSMP) for Asynchronous Transfer Mode (ATM) switches [Newman 1998]. This protocol al-
lowed an entity (called a “controller”) to establish and terminate connections on a switch;
add and remove permissions for point-to-multipoint connections; manage the switch ports, or
request configuration information and even statistics. GSMP being limited to ATM technology,
in 1998, researchers from the University of Cambridge proposed the Framework Tempest
[Van der Merwe 1998]. From the early 2000s, an Internet Engineering Task Force (IETF) work-
ing group began working on programmable networks and in 2004 proposed a new architecture
called ForCES [Yang 2004] (Forwarding and Control Element Separation). ForCES intends to
define a framework and associated protocols to standardize the exchange of information between
a control plane and a routing plane. In 2007, at Stanford University, Martin Casado and his team
proposed Ethane [Casado 2007], a new architecture for enterprise networks. Ethane enables

3In this manuscript, programmability means the capability of a system to accept a new set of instructions
that may alter its structure or behavior.
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managers to define a single network-wide policy and then apply it directly. Ethane simply
combines Ethernet switches with a centralized entity (controller). This controller manages the
admission and routing of flows and uses the Ethernet protocol on the switches for routing. In
2008, Nick McKeown and his team proposed an improvement of the Ethane prototype called
OpenFlow [McKeown 2008]. Given many unsuccessful attempts in programmable networks, the
idea of these researchers was to propose a pragmatic compromise:

• Manufacturers do not need to expose the inner logic of their switches; they have to provide
an interface for a protocol (e.g., OpenFlow);

• Network experts and research and development teams will be able to conduct experiments
on switches belonging to different manufacturers, such as experimenting with a new
routing protocol.

Thanks to this compromise, programmable networks have migrated from laboratories to
the industrial world, resulting in laying the first brick of SDN. The primary motivation of the
SDN is to allow companies to easily integrate various applications to improve efficiency, reduce
the complexity of their network infrastructure, and provide new experiences to their users.

2.3.2.2 Network Function Virtualization

The history of NFV dates back several years. The idea comes from network service providers
who have always sought to reduce their production costs. To accelerate the advent of this
technology, some of them have come together in an ETSI Industry Specification Group. In
October 2012, they published a white paper entitled: “Network Functions Virtualization An
Introduction, Benefits, Enablers, Challenges & Call for Action” which introduces and explains
the advantages, possible levers, and challenges of the NFV concept [Virtualisation 2012]. At the
end of 2012, a discussion on the initial concepts occurred during the ETSI workshop on future
networks. After this workshop, the working group expands and proposes an NFV architecture.
Along with these efforts of the ETSI group, other groups, especially from academia, have been
addressing the issue [Qazi 2014, Shih 2016, Cziva 2017b, Hwang 2015a]. Their thoughts will
also be presented in the following sections.

NFV is a concept which aims to allow the implementation of network functions on a
virtualized infrastructure such as cloud computing or generic computer hardware [GSNFV 2013].
These functions are intended to be instantiated, configured, moved in various places of the
network according to the needs of the operators, thus avoiding the need to install new equipment.
The expected benefits include:

• reducing the deployment time of new network services,

• greater automation of network management,



2.3. NFV-ENABLED IOT PLATFORMS 21

• greater flexibility in terms of the use of network resources,

• cost savings in operation and network hardware investment.

Of course, these benefits must be obtained while maintaining the availability and performance
requirements currently recommended in telecommunications networks. Regarding the problem
explained in the Chapter 1 (Introduction), intending to ensure End-to-End QoS for the various
applications, NFV allows deployment in virtualized environments (e.g., Cloud, Fog) network
functions.

NFV is a term that implicitly means to virtualize the resources used by a network function.
Thus, virtualizing a network function means virtualize the computing, storage, and network
resources used by a network function. This statement is confirmed by the ETSI-NFV working
group, which believes that this paradigm does not consist in emulating IT resources for existing
network functions but rather in re-implementing these functions to match their deployment
environment (Cloud for example ). This position can be explained on the one hand by a concern
for performance (virtualization being more efficient than emulation [Abramson 2006]) and on
the other hand from respect for total independence from the necessary IT resources. Examples
of virtualized network functions are listed in Table 2.1.

Niveau dans modèle OSI Fonction Produit
2 Switch OpenVSwitch
3 Router VyOS
4 Load Balancer Apache Load Balancer

Table 2.1: Examples of VNFs

In the current NFV infrastructures, NFV provides general networking functions virtualisation
tools. SDN orchestrates networking functions for specific purposes, allowing behavior and
configuration to be changed and set programmatically. Precisely, when NFV virtualizes the
entire infrastructure of a network, SDN centralizes control of the network, creating a network
that uses software to build, control, and manage it. Therefore, speaking of NFV, although it is
not mentioned, it should be considered that there is an underlying use of SDN. The definition
and instantiation of a set of VNF and subsequent “steering” (via SDN) of traffic through them
are termed Service Function Chains (SFC).

2.3.3 Need for autonomy: No Silver Bullet!

To quote Frederick P. Brooks, Jr.: “complexity is the business we are in, and complexity is
what limits us” [Brooks Jr 1995]. The IoT industry has spent a decade creating an ecosystem
of marvelous and ever-increasing complexity. Nevertheless, soon, complexity itself will be the
problem. The spiraling cost of managing the increasing complexity of IoT platforms is becoming
a significant inhibitor that threatens IoT’s future growth and societal benefits. Managing such
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complex systems has grown too costly and prone to error. Managing a myriad of system details
is too labor-intensive. People under such pressure make mistakes, increasing the potential of
system outages with a concurrent impact on business. Furthermore, testing and tuning complex
systems are becoming more difficult. Consider:

• IoT connections will grow 2.4-fold, from 6.1 billion in 2018 to 14.7 billion by 2023. There
will be 1.8 IoT connections for each member of the global population by 2023. By 2023,
IoT devices will account for 50% of all networked devices (nearly a third will be wireless)
[Cisco 2020].

• The rapid growth of data and devices may be outpacing the IT team’s capabilities, and
manual approaches will not allow keep up. Unfortunately, up to 95% of network changes
are still performed manually, resulting in operational costs two to three times the cost of
the network [Cisco 2020].

• A significant portion of spending on the IoT (746 billion in 2019 [Ergun 2021]) is associated
with maintenance and technical diagnostics due to system failures [Cisco 2020]. Among
various system failures, hard failures in hardware, for which the devices age, degrade, and
eventually fail, are crucial since they are irrecoverable, requiring maintenance to replace
defective parts at high costs.

• Microsoft reports in 2019 and 2020 that complexity and technical challenges are an IoT
deal-breaker for 38% of the over 3, 000 decision-makers surveyed. It says that 47% believe
there are not enough available skilled workers to build or maintain a network of connected
devices [Microsoft 2020].

• For many companies, administrative labor around the IoT service platform life cycle will
account for 20− 50% of overall operational expenses costs [Jasper 2016].

• SmartThings (the Samsung-owned home platform) experienced 100% of Loss Rate on
Monday, March 12, 2018 evening that remained for nearly an entire day for some customers.
That is frustrating for people who have SmartThings appliances that rely on the service:
door locks, garage doors, lights, and more. This 24 hours incident cost nearly 8 millions4.

• According to a 2020 survey [ITIC 2020] by the Information Technology Intelligence
Consulting (ITIC) on 1, 200 companies of all sizes, respondents most common causes of
the worst QoS (i.e., 100% of Loss Rate) included: Human Error (60% of respondents),
Software bugs/flaws (40% of respondents), complexity in provisioning/configuring (35%
of respondents), Understaffed/Overworked IT Dept. (22% of respondents).

4According to Gartner, The average cost of network downtime is around $5, 600 per minute.
https://blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime/

https://blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime/
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To improve and automate IoT platform operations, installation, dependency management,
and performance management to address the above observations, a high degree of autonomy
is desired. To achieve this autonomy, high-level decision-making techniques for reasoning in
uncertainty must be used. These techniques, if used by humans, can be traced to intelligence.
Therefore, one way to achieve a high degree of autonomy is to use high-level decision-making
techniques, intelligent methods. In our view, greater autonomy is the goal, and autonomous
computing is one way to achieve it. In the Section below, we present the paradigm of autonomous
computing.

2.4 Autonomic Computing

The term “autonomic” comes from an analogy to the central nervous system in the human
body, which adapts to many situations automatically without any external help. One way to
address the problem of managing a complex IT infrastructure is to create IT software and
systems that can respond to changes in the IT environment (and, ultimately, the business) so
that systems can adapt, heal and protect themselves [Jacob 2004].

2.4.1 Definition

In a report of IBM from 2001 [Horn 2001], Paul Horn describes the growing complexity of the
software ecosystem and industry. The development of software requires increasing care to ensure
the smooth functioning of such systems. This vision has been discussed in [Kephart 2003] by
Kephart et al. They propose an approach based on a living organism that can manage a system
and also manage itself. In [Jacob 2004], Autonomic computing is defined as the ability of an
IT infrastructure to adapt to change following business policies and objectives. This allows IT
professionals to focus on tasks with higher added value, with business rules guiding systems to
self-configure, self-repair, self-optimize, and self-protect.

• Seft-configuration this feature represents the capability of the system to reconfigure
itself depending on the evolution of the monitored system.

• Self-optimization the management system needs to optimize itself .

• Self-healing when the system has issues, the management system can detect and repair
them based on high-level policies.

• Self-protection the system can protect itself from malicious attacks and errors that
would disable its operation.

Over time, several control loops have been proposed. For instance, the OODA (Observe, Orient,
Decide, and Act) loop [Boyd 1987] had been offered by John Boyd (a military strategist) and
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applied to the combat operations process. While the Autonomic Computing Monitor, Analyzer,
Planner, Knowledge Base (MAPE-K) loop prevails as the oldest and the most popular control
loops in IT, recently, ETSI Experiential Networked Intelligence (ENI) control loop was proposed
[ETSI 2019]. This loop is inspired by OODA and has four stages (i.e., Sense, Perceive, Learn,
and Adapt) that correspond to the Observe, Orient, Decide, and Act stages of the OODA
control Loop.

2.4.2 Maturity level

Implementing the MAPE-K loop, is a complex task that requires going through five levels
[Jacob 2004]. The five levels, or transition steps, of autonomic maturity are:

1. Basic The starting point where most IoT platforms are today, this level represents manual
computing in which all platform elements are installed and managed as separate entities.
These environments require extensive, highly skilled IT staff who must aggregate and
analyze multiple sources of platforms generated data and manage the IT environment
from a broad spectrum of individual consoles with multiple interfaces. The highly skilled
staff sets up, monitors, and eventually replaces platform elements.

2. Managed Supervision techniques and tools are used to collect metrics from the system
to detect anomalies, thus helping to reduce the time for collecting and synthesizing
information. Human skills are necessary for the analysis of detected anomalies and the
execution of corrective actions.

3. Predictive At this level, the system monitors and correlates data to recognize patterns
and recommend actions that are approved and initiated by IT staff. At the predictive level,
the integration of management between several components begins to occur. With the
implementation of predictive capabilities, the benefits include the possibility of reducing
reliance on excellent skills.

4. Adaptive At the adaptive level, not only does the system monitor, correlate and develop
action plans, but the system also takes action following established policies. This level
allows staff to manage performance against service level objectives. This helps an organiza-
tion strike a balance between human and system interactions and helps IT infrastructure
better handle changing business conditions and improve resiliency.

5. Autonomic At the final level, the infrastructure components are well integrated and
manage themselves dynamically according to business rules and policies. The autonomous
level allows staff to focus on business requirements. Trade policy becomes the primary
driver of IT management, and the business benefits from improved agility and resilience.
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2.4.3 Architecture

An architecture is proposed to implement an autonomic computing system. Fig. 2.6 shows this
architecture, called MAPE-K. The framework is made up of the following components: the
Managed Entity and Autonomic Manager.

Autonomic Manager

Managed Entity

Monitor

Analyzer Planner

ExecutorKnowledge 
Base

Sensors Effectors

Figure 2.6: MAPE-K loop for Autonomic Computing [Jacob 2004]

Managed Entity The managed entity is the controlled system. The managed resource is a
collection of resources, observed and controlled through:

• Sensors they represent entities gathering metrics and sending them to the management
system.

• Effectors these components are in charge of changing the managed system when the
autonomic framework detects issues. They perform basic actions on the managed system,
following the orders of the management framework.

Autonomic Manager The autonomic manager is a component that implements the control
loop. The architecture dissects the loop into five parts. The five parts work together to provide
the control loop function.

• Monitor this component aggregates the metrics received from the sensors. It has to
update the Knowledge Base of the framework when a change is detected.

• Analyzer the Analyzer is in charge of finding out the problems in the system. Based
on the description of the entities in the system and their current state retrieved by the
Monitor. It will infer the Symptoms. This information will send a Request For Change
(RFC), a high-level representation of the parameters to change in the system, to the
planner.
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• Planner this component bases its reasoning on the RFC received from the Analyzer.
It aims to find a plan of actions to perform on the system to apply the given changes.
The choices made by the planner are influenced by the high-level policies defined in the
Knowledge Base.

• Executor this receives the plan of actions inferred by the planner. It uses this plan to
determine the correct actuators to use in the system to perform the actions.

• Knowledge Base this component stores the information of the monitored system. It
contains a description of the elements of the system, along with their current state. It
also possesses high-level policies to apply when a decision has to be taken in the system.

In the sections below, we present our vision of implementing Autonomic Manager for NIP.

2.4.4 Enabling techniques

One of the problems in building such an Autonomic Manager for NIP is the complexity that
prevents it from being accurately described by mathematical models and is therefore difficult
to control using such existing methods. Soft computing5 on the other hand, deals with partial
truth, uncertainty, and approximation to solve complex problems. To quote Zadeh A Lotfi, who
is the pioneer of fuzzy logic: “the guiding principle of soft computing is to exploit the tolerance
for imprecision, uncertainty, and partial truth to achieve tractability, robustness, low solution
cost, a better rapport with reality” [Zadeh 1993]. Because of its features such as intelligent
control, nonlinear programming, optimization, and decision-making support, soft computing
has become popular and has drawn research interest from people with different backgrounds
[Jang 1997].

It is becoming difficult to control the growing complexity of modern NIP using traditional
control systems techniques. For example, many nonlinear and time-variant systems with
considerable time delays cannot easily be controlled and stabilized using traditional techniques.
One reason for this difficulty is the lack of an accurate model that describes the system. Soft
computing is proving to be an efficient way of controlling such complex systems. [Yager 1994]
pointed out that soft computing is not a single method, but instead, it is a combination of
several techniques, such as fuzzy logic, neural networks, and genetic algorithms. All these
methods are not competitive but complement each other and can solve a given problem. It can
be said that soft computing aims to solve complex problems by exploiting the imprecision and
uncertainty in decision-making processes.

Fig. 2.7 shows the conventional and soft computing-based solution principle. The left
diagram shows the traditional hard computing approach where an exact model of the system
under investigation is available and traditional mathematical methods are used to solve the

5Soft computing is a collection of artificial intelligence-based computational techniques [Choudhury 2016].
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Figure 2.7: Problem-solving approach [Gupta 2013]

problem. The right diagram shows the soft computing approach where only an approximate
model of the system may be available, and the solution depends upon approximate reasoning
techniques.

One can only build an Autonomic Manager by relying on Soft computing techniques. Below
we describe the main artificial intelligence-based computational techniques used in this thesis
to cope with such a complex task.

2.4.4.1 Machine Learning

To understand “Machine Learning”, one needs to understand what “learning” means in the
context of machine learning. A computer program is said to “learn” from experience E for a task
T and performance measure P , if its performance P at the task T , improves with experience E.
For instance, in “learn to play draughts” for a computer program, the task T is “Play draughts”.
The performance P is the percentage of games won in a world tournament. The experience E
is the opportunity to play against self.

Therefore, ML is the study of computer algorithms that improve automatically through
experience. A computer program that learns from experience is called a learning program (a.k.a
a learner). The learning process can be divided into four stages: data storage, abstraction,
generalization, and evaluation.

1. Data storage is the facilities for storing and retrieving huge amounts of data are an
important component of the learning process. Computers use hard disk drives, flash
memory, random access memory, and similar devices to store data and retrieve data.

2. Abstraction is the process of extracting knowledge from stored data. This involves the
creation of general concepts on the data as a whole. Knowledge creation is the application
of known models and the design of new models. The process of fitting a model to a data
set is called training. After the model training is completed, the data is transformed into
an abstract form that summarizes the original information.
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3. Generalization describes the process of transforming knowledge about stored data into
a form that can be used for future action. These actions must be performed on tasks
similar but not identical to those seen previously. In general, the goal is to discover the
properties of the data that will be most relevant for future tasks.

4. Evaluation is the process of giving feedback to the user to measure the utility of the
learned knowledge. This feedback is then used to measure the improvements in the whole
learning process.

In general, ML algorithms can be classified into three types – supervised learning, unsuper-
vised learning, and reinforcement learning.

Supervised learning is the ML task of learning a function that maps input to output based
on samples of input-output pairs. Each sample in the training set is a pair consisting of an input
object (typically a vector) and an output value. In supervised learning, the learner analyzes
the training data and produces a function, which can be used for mapping new samples. In
the optimal case, the process will correctly determine the output for unseen samples. Both
classification and regression problems are supervised learning problems. Numerous supervised
learning algorithms are available, each with its strengths and weaknesses.

Unsupervised learning is a type of ML algorithm used to draw inferences from datasets
consisting of input data without outputs. In unsupervised learning algorithms, classification or
categorization is not included in the observations. There are no output values, so there is no
estimation of the functions. The samples given to the learner are not labeled. Therefore the
accuracy of the algorithm cannot be assessed. The most popular unsupervised learning method,
used for exploratory data analysis to find hidden patterns or groupings in the data, is cluster
analysis.

Reinforcement learning is the problem of getting an agent to act in the world to maximize
its rewards. A learner is not told what actions to take as in most forms of ML but instead must
finds, by testing different actions, which ones generate the most reward. In the most exciting
and challenging cases, actions may affect the immediate reward and the following situations
and, through that, all subsequent rewards. For instance, consider teaching a dog a new trick:
we cannot tell it what to do, but we can reward/punish it if it does the right/wrong thing. It
has to find out what it did that made it get the reward/punishment. One can use a similar
method to train computers to do many tasks, such as playing draughts, scheduling jobs in the
Cloud, or manage QoS in NIP. Note that reinforcement learning is different from supervised
learning. Supervised learning is learning from samples provided by an expert.
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2.4.4.2 Evolutionary computation

More than 50 years ago, several innovative researchers at different places in Europe and the
United States independently got the idea of mimicking mechanisms of biological evolution to
develop robust algorithms for problems of adaptation and optimization. The concept called
Evolutionary computation, proposes to utilize the underlying mechanism of natural evolution
for optimization problems, resulted in several approaches that have proven their effectiveness
and robustness in various applications.

“Evolutionary computation” (EC) is the study of computer algorithms drawing their
inspiration from nature. EC uses a form of optimization search. For example, it can start with
a population of organisms (the assumptions) and then allow them to mutate and recombine,
selecting only those ablest to survive each generation (by refining the assumptions). Such a
program is sometimes also referred to as a metaheuristic. The search process involves the same
steps:

1. Initialization Randomly generate the initial population of individuals.

2. Evaluation Evaluate the fitness of each individual in that population with the preferred
fitness function.

3. Repeat the following generational steps until a termination condition has been reached
(e.g., a solution that satisfies minimum criteria is found):

a. Selection Select the parents (best-fit individuals) for reproduction.

b. Variation Breed new individuals through crossover and random mutation, giving
“birth” to the next generation.

c. Evaluation Use the fitness function to gauge the individual fitness of the new
individuals

d. Recombination Replace least-fit population with new individuals.

Classical evolutionary algorithms include genetic algorithms, gene expression programming,
and genetic programming. Alternatively, distributed research processes can coordinate through
swarm intelligence algorithms.

Genetic algorithms (GA) are usually associated with the early work of Holland
[Holland 1992], although essentially the same type of algorithm existed much earlier
[Fraser 1957]. GA is commonly used to generate high-quality solutions to optimization and
search problems by relying on biologically inspired operators such as mutation, crossover, and
selection. In a GA, a population of candidate solutions (aka individuals) to an optimization
problem is evolved toward better solutions. Each individual has a set of properties (aka chro-
mosomes or genotype). Chromosomes typically have several fields (called Genes) that might
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contain specific sets of values that in turn represent the parameters to be optimized. Mutation
in GAs might be as simple as changing a bit in the chromosome or might involve an arbitrarily
complicated alteration of one bit into another. Recombination in GAs occurs by selecting
and swapping sets of genes from each parent, usually by simply cutting two sequences and
exchanging the resulting fragments. Chromosomes are stochastically chosen for replication in
the next generation, with a probability distribution that depends directly or indirectly on their
fitness values. There are several algorithms to select these parents. The most straightforward
strategy, sometimes called “proportional fitness selection”, involves scaling the fitness values
within a range of zero to one and choosing chromosomes based on those probabilities. The
probabilities that determine whether a chromosome will pass to the next generation can be
changed. In all cases, mutation and recombination only take place in parents who have been
selected for breeding.

Evolution strategies (ES) were invented [Huning 1976] to solve technical optimization
problems. Contrary to GA, ES uses problem-dependent representations, and primarily mutation
and selection, as search operators. Indeed individuals in ES are described both by “problem-
specific variables”, which are optimized to solve the target problem, and “strategy parameters”,
which modify the algorithm’s behavior itself. The term “strategy parameter” is given to genes
that affect the evolutionary process for a particular individual, usually by specifying a probability
distribution or a rate for random processes. A simple strategy parameter might consist of two
real numbers representing the mean and standard deviation of the amount by which a gene (a
real number) will change when mutated (assuming a normal distribution).

Even if ES looks a lot like Reinforcement Learning, the OpenAI team finds in [Salimans 2017]
that ES is faster, easier to implement, and scale in a distributed computational environment
does not suffer in case of sparse rewards and has fewer hyper-parameters. ES also discover more
diverse solution compared to the traditional Reinforcement learning algorithm.

2.5 Quality of Service

The importance of QoS technologies for computer networks is a constant in the history of
networks. Today, QoS is undoubtedly one of the central pieces of the overall computer network
technologies. How has QoS come to take such an important place in computer networks? This
Section reviews the history of telecommunications network evolution to put this fundamental
question underpinning this manuscript in perspective.

2.5.1 Background and Motivation: history repeats itself

Referring to Figure 2.8, there were usually two separate networks in the early days of telecom-
munications – one for data and one for voice. Each network started with a unique and straight-
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forward goal of transporting a particular type of information. The telephone network, which
was introduced with Alexander Graham Bell’s invention a hundred years ago, was designed to
carry voice. The IP network, on the other hand, was designed to move data.

Simple Terminals
More Intelligence in Network

More Intelligence in Terminals
Simple Network ("Best Effort")

In mid 1990's, the two worlds began to merge

"Best Effort" is not enough for handling 
diverse type of traffic.

Voice/Data
Convergence
Based on IP

Telephone 
Network 
Voice

IP Data

QoS

Figure 2.8: Telecommunications network evolution [Park 2004].

In the early times of the telephone network, the terminal was a simple telephone device, a
simple analog transducer designed to produce an electric power fluctuating with the speaker’s
sound pressure. That was all the function the terminal had to perform. In contrast, the network
itself was more complex than the terminal. It was endowed with the “intelligence” to provide
various types of voice services. A telephone connection is dedicated to one call during the entire
period. After the call is terminated, the circuits are used to establish further calls. The circuits
used to establish calls are called trunks instead of “loops”, which are the lines permanently
dedicated to the telephones of individual end-users. In the first telephone network, there were
two critical measures of the QoS. The first measure was the probability of call blocking. The
probability that a call attempt is blocked due to a lack of an available trunk circuit. The
second quality measure was voice quality, once a call attempt was successful and the connection
was established. The voice quality depended on the transmission quality of the End-to-End
connection during a call, such as transmission loss, circuit noise, echo. The original telephone
network was therefore designed with two main objectives. The first was to ensure that enough
trunk circuits were provided to make the probability of call blocking reasonable (e.g., 1%). The
second was to design the End-to-End network with a transmission plan optimized for voice.
Network degradations such as loss, noise, echo, and delay were reasonable. Voice was, and still
is, a real-time communications service, and there were no queues in the originating telephone
network to store voice signals for later delivery.
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The early IP network was a completely different network from the telephone network. First
of all, the IP network was designed to carry data. Unlike voice, data was, and still mostly is a
non-real-time service. Data are stored in the network and delivered later. When the data was
delivered with an error, it could be retransmitted. This service was sometimes referred to as the
“store-and-forward”. Since the information carried by the IP network was different from that of
the telephone network, the design philosophy used for the IP network was also different from
that used for the telephone network. In the original IP network, the network was designed to
be as simple as possible. The network’s primary function was to forward packets from one node
to the next. Packets were treated the same way – stored in a single buffer and delivered in a
first-in, first-out order. Most of the intelligence was implanted in the terminal device, which
was typically a computer. For example, when a packet arrived at its destination with an error,
the receiving terminal would send the sending terminal a negative acknowledgment. The packet
would retransmit by the sending terminal. The ability to retransmit lost or errored packets
was embedded in the terminal. At the same time, the network was unaware of the errored
packet. Because the early IP network carried one type of information, “store and forward,”
non-real-time data, the network was designed to operate in the “best effort” mode. In this mode,
all packets are equally treated, and, as a result, the simple design paradigm described above
was possible. The main design objective of the IP network was to ensure that the end-user
terminal had the requisite intelligence and protocols to ensure reliable data transmission so
that the network could remain as simple as possible.

In the mid-1990s, however, the two separate networks started to merge. The word around
this time was “voice and data convergence.” The idea was to build a single network to carry
both voice and data. For more efficient and economical operation, carriers started to plan to
consolidate their hodgepodge of separate networks into single “converged” networks. The idea
of creating a single converged network for voice and data was no longer an engineering concept.
With this convergence, however, a new challenge has arisen. In the converged network, the best
effort operation of the earlier IP network is no longer good enough to meet various performance
requirements, often conflicting, of various types of information carried by the network. QoS is
the technology that provides solutions to this technical problem.

Today IoT platforms find themselves in the same situation – platforms built in silos for
particular needs of a specific application. By bringing together these different silos as during
the convergence of networks in the 1990s, new approaches should be developed to address the
problem of QoS.

2.5.2 Definitions

In this Section, we introduce terms associated with QoS for the understanding of this manuscript.
Notwithstanding the long history of discussion, the phrase “quality of service” does not have
a universally accepted meaning. The ITU defines QoS as the totality of characteristics of
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a telecommunications service that bear on its ability to satisfy stated and implied needs
of the user of the service [Rec 1994]. In this manuscript, QoS is used to describe a set of
measurable parameters that can be attached to some identifiable subset of the traffic of IP
packets through a given network domain [Carpenter 2002a]. Depending on the reader’s context,
these characteristics can be defined from two angles: IP network and IoT platform. In Table
2.5.2, the main characteristics [Gozdecki 2003] used in the literature are presented.

IP network point of view IoT platform point of view
Delay: the amount of time it takes a bit (or a packet)
to be routed through the network heading to source
from a destination

Latency: the amount of time it takes a message (e.g.
request) to reach the source from a given destination

Jitter: the delay variation over time Jitter: the latency variation over time
Bandwidth: the maximum rate of data transfer
across a given path per unit time

Throughput: the number of payload messages/bits
successfully transferred across a given path per unit
time

Bit error rate: the rate of bits/packets with errors
that have been transmitted or received per time unit

Loss Rate: share of messages not received by the des-
tination per unit time (dropped, lost in transmission
or in wrong format)

Table 2.2: QoS from different point of view.

In this manuscript we will adopt a IoT platform point of view using the following character-
istics : Latency, Jitter, Throughput and Loss Rate.

2.5.3 Historical approaches

Since the problem is as old, it is not surprising that there have been earlier attempts to solve
it. The IETF has defined two architecture models: Integrated Services and Differentiated
Services. The fundamental difference between these architectures is that one (IntServ) was
design to guaranteed QoS and the other (Diffserv) to optimized QoS.

The Integrated Services (IntServ) model is also known as the hard QoS model. It is a model
based on traffic flows (i.e., source and destination IP addresses and ports). With the IntServ
model, applications ask the network for an explicit reservation per flow. The network devices
keep track of all the flows traversing the nodes, checking if new packets belong to an existing
flow and enough network resources to accept the packet. By reserving resources on the network
for each flow, applications obtain resource guarantees and predictable behavior of the network.
IntServ model performs deterministic admission control based on resource requests vs. available
resources. The implementation of this model requires IntServ capable routers in the network.
It uses Resource Reservation Protocol (RSVP) for End-to-End resource reservation. RSVP
enables a host to establish a connection over connectionless IP Internet:

• Applications request some level of service to the network before sending data.

• The network admits or rejects the reservation (per-flow) based on available resources.
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• Once cleared, the network expects the application to remain within the requested traffic
profile.

The scalability6 of this model is limited by the fact that exists a high resource consumption
on network nodes caused by per-flow processing and associated state. Remember that network
nodes need to maintain the reservation state for each flow traversing the node. The fact that
RSVP is a soft state protocol with continuous signaling load only aggravates the scalability
problem.

The Differentiated Services (Diffserv) model is also known as a soft QoS model. It is a model
based on service classes and per-hop behaviors associated with each class. There is no need
for an explicit request for resource reservation by applications to the network. Differentiated
Services is based on statistical preferences per traffic class. DiffServ allows an end-user to
classify packets into different treatment categories or Traffic Classes (TC), each of which will
receive a different Per-Hop-Behaviour (PHB) at each hop from the source to the destination.
Each network device on the path treats packets according to the locally defined PHB. PHB
defines how a node deals with a TC. Network service policies can be specific to an entire QoS
domain, some part of a network, or even a single node. DiffServ model implements a statistic,
class-based, admission control.

2.5.4 Applications need for QoS: Use Cases

QoS support in IoT platforms is mandatory in a large number of use cases. Each application,
however, will be characterized by a different set of QoS need that can vary noticeably among
each other. In the following, some IoT use cases that require QoS support to ensure proper
operation are presented along with a short characterization of their main requirements.

2.5.4.1 Connected Vehicles

Mobility is a fundamental need in modern society and crucial to economic development. Road-
traffic safety and efficiency are the main factors in sustainable transport. Traffic congestion
causes substantial economic damage, billions of Euro’s in France every year, and the number of
vehicles on the road is growing. Each year thousands of people died on roads in the European
Union. The number of road accidents and fatalities has decreased, at least in highly developed
countries. However, a considerable and sustainable reduction can only be achieved by vehicle
communication and coordination. We have already come to rely on vehicle sensors and driver-
assistance systems to support us in arriving safely and comfortably at our destination. Through
communication, the data exchange among vehicles (V2V communications) and between vehicles
and roadside infrastructure (V2I communications), a vehicle turns from an autonomous system

6In this manuscript, scalability is the property of a system to handle a growing amount of work by adding
resources to the system.
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Advantages Disadvantages
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v

• Good solution for managing flows in small net-
works.

• Intserv enables hosts to request per-flow, quan-
tifiable resources, along end-to-end data paths
and to obtain feedback regarding admissibility
of these requests.

• Poor scalability.
• High resource consumption on the network

nodes.
• Per flow processing (CPU): signaling & process-

ing load.
• Per flow state (memory): to keep track of every

flow traversing the node.
• Continuous signaling (RSVP is a soft state pro-

tocol).
• It’s very difficult to implement.

D
iff

Se
rv

• Highly scalable QoS mechanism.
• Does not require any resource reservation mech-

anism on end hosts.
• Easy configuration, operation and maintenance.
• Support complex traffic classification and con-

ditioning at the edge.
• Can aggregate multiple app flows into a limited

number of TCs.
• Reduced overhead associated to the mainte-

nance of policies on a per flow basis.
• Diffserv nodes can process traffic more easily

than Intserv devices.
• Diffserv is a distributed QoS service model. Re-

source allocation is distributed among all the
routers of a Diffserv domain, allowing for a
greater flexibility and efficiency in the routing
process.

• Coordination between domains in the QoS end-
to-end service.

• SPs QoS customization may affect the guaran-
teed QoS end-to-end service.

Table 2.3: Models for QoS.

into a component of a more efficient cooperative one. The data exchange provides information
on a vehicle’s vicinity as well as non-visible surroundings. Existing communications systems,
such as the radio data system in FM radio, bear high latency and are therefore not suitable
for safety applications. Cooperative systems (e.g., WLAN-based V2X communications system)
introduced to the market enable direct data exchange among vehicles but do not support all
safety applications. Applications for vehicle safety require a very low End-to-End latency of
below 10 milliseconds (the time needed for collision-avoidance systems to intervene before
a collision occurs). With a bi-directional exchange of data for the negotiation of automatic
cooperative-driving maneuvers, a latency of less than 1 millisecond would be needed. In the
future, vehicles will detect a highly dynamic object by radar or video, such as a pedestrian,
and disseminate this information to neighboring vehicles. In the long term, it is expected that
fully automated driving will change individual mobility entirely. Moreover, with small distances
between automated vehicles, particularly in platoons or road trains, potentially safety-critical
situations need to be detected earlier than human drivers.
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2.5.4.2 Smart Manufacturing

The rapid evolution of IoT technologies has recently captured the attention of industrial
companies that expect IoT systems to introduce a breakthrough to enhance the efficiency of the
manufacturing process. This emerging use case referred to in the literature as Industrial IoT
(IIOT for short) represents a significant challenge for IoT platforms. In a typical IIOT ecosystem,
sensors and actuators are deployed in a dedicated network inside a factory plant to collect
specific data and to assist and control the production process. However, the architecture of an
IIOT system is not different from a standard IoT system, the requirements that many industrial
manufacturing processes demand represent the main challenge. Stringent QoS requirements in
terms of loss rate and latency are mandatory to ensure proper implementation of manufacture
automation [Chen 2015]. An example of smart manufacturing applications is a closed-loop
control for non-critical processes. In this case, the application requires that the telemetry
data and the control commands, from sensors and actuators deployed in the assembly line,
respectively, be strictly delivered with latencies of 10 milliseconds [Pister 2009]. When a higher
latency is experienced, the whole system enters into an emergency shutdown state, which
might cause substantial financial repercussions. Even more stringent requirements characterize
emergency signals produced by sensors. They must be dispatched to a powerful central controller
with the lowest latency possible. Furthermore, the loss rate of communication is critical since a
packet loss may result in products with defects. Enforcement of applications’ QoS requirements
is more challenging since it is limited to time-related parameters and involves different aspects,
such as loss rate.

2.5.4.3 eHealth

Latest technology developments will enable new frontiers for the IoT. Among them, smart
health, or eHealth, is a good use case expected to improve our lives significantly by providing
new healthcare services such as remote patient monitoring. In this context, QoS are a key
requirement [Gama 2008]. In remote health monitoring, for example, through a body sensor
network (BSN), the collected data have different relevance, e.g., heart activity data are more
important than data on the body temperature. For this reason, the collection and delivery of
data must be prioritized accordingly through different QoS requirements. Also, data priority
can dynamically change over time depending on the sensor value. To this aim, an IEEE
working group has defined QoS requirements for several health applications. For instance, the
application that is characterized by the most stringent QoS requirements is electrocardiogram
(ECG) monitoring. Such application requires sending bursts of 4 kbit/s of data that must be
delivered within a maximum latency of 500 milliseconds for each electrode [Chevrollier 2005].
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2.5.5 State-of-the-art

Commonly, IoT platforms have been used as an intermediate level that enriches the data
collected from the remote sensors and consumed by the business-level applications. In response
to interoperability and vertical fragmentation problem in the IoT, standardization efforts
have been made to provide horizontal service platform architectures with common services for
applications and devices. However, these standardized service platform architectures (oneM2M,
LwM2M, OCF/Iotivity, for example) do not offer practical solutions for QoS management at
the platform level. These platforms consider the QoS as the result of the underlying networks
[oneM2M 2016, Alliance 2014].

The IoT community has followed two main tracks in its research to improve the situation.

• A first approach is based on the assumption that finding a global solution to the problem
in the actual IoT platform is not feasible. This approach consists of trying to optimize
the use of the resources available from the platform at a given time. In this context, no
latency or throughput guarantees can be obtained, but still, improvements can be achieved.
For example, a service differentiation approach (like DiffServ presented in Section 2.5.3)
may prioritize and maintain QoS for the most strict applications while offering the best
effort to non-sensitive applications. Studies in [Abdullah 2013, Ezdiani 2015, Nastic 2016,
Pizzolli 2016, Agirre 2016, Khazaei 2017, Guevara 2017, Santos 2017] adopted such an
approach regarding the QoS requirements of applications. Let us recall that all of these
studies shared the same advantages and disadvantages of a DiffServ approach (see Table
2.5.3)

• A second family of approaches consists of looking for ways to provide guarantees to
users’ service from the IoT platform. For example, with an explicit reservation/allocation
approach (like IntServ presented in Section 2.5.3), every application that requires some
kind of QoS guarantee has to make an individual reservation. That reservation may
be granted if the required resources are available. All other applications for which no
reservation is made will be served with “Best Effort”. Studies in [Tariq 2014, Kim 2017,
Bhowmik 2017, Petrov 2018, Mendiboure 2019, Kharb 2019, Shi 2020a, Shi 2020b] rely
mainly on the integration of SDN as a enable to implement an IntServ-like approach in
IoT platform for QoS management. We recall that all of these studies shared the same
advantages and disadvantages of an IntServ approach (see Table 2.5.3)

We group these multiple specific solutions (non-standardized) based on the “track” in to provide
QoS to applications (see Fig. 2.9).
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[Abdullah 2013, Ezdiani 2015, Pizzolli 2016, Agirre 2016, Khazaei 2017]
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Figure 2.9: State-of-the-art taxonomy.

2.5.5.1 Solutions for optimized QoS

Authors in [Abdullah 2013] propose a message scheduling for IoT platforms to differ emergency
messages from non-mission-critical messages. Messages are classified into high priority and
best effort. In [Ezdiani 2015], authors present a service differentiation framework based on a
scheduling algorithm. Data captured by the devices are assigned different priorities as per
the desired QoS requirement by the packet. In [Nastic 2016] Nastic et al. introduce a novel
middleware, which provides comprehensive support for multi-level provisioning of IoT Cloud
systems. The main features of this IoT platform include i) a generic, lightweight resource
abstraction mechanism, which enables application-specific customization of Edge devices; ii)
support for automated provisioning of Edge resources and application components in a logically
centralized manner, via dynamically managed APIs; and iii) flexible provisioning models that
enable self-service, on-demand consumption of the Edge resources. Pizzolli et al. [Pizzolli 2016]
introduce Cloud4IoT, a platform offering automatic deployment, orchestration, and dynamic
configuration of IoT software components. This platform support data-intensive applications
with data processing and analytics and enable plug-and-play integration of new sensor objects
and dynamic workload scalability. Overall, the platform is designed to support systems where IoT-
based and data-intensive applications may pose specific requirements for low latency, throughput,
or data locality. Authors in [Agirre 2016] presented a QoS-based service reconfiguration method
to compose the component-based distributed services in IoT platforms. This method provides
four functionalities, including monitoring resources, monitoring component-based applications,
flexible APIs, and composing a QoS-based mechanism. The registry service status achieves the
infrastructure resource management at the service selection level. The monitoring of component-
based applications specifies the QoS characteristics to compose a service. In [Khazaei 2017],
authors propose and evaluate a hierarchical, programmable, and autonomic IoT platform
based on the micro-service models. The proposed platform supports big data processing. The
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autonomic management system ensures the overall QoS and optimized resource utilization.
Guevara et al. [Guevara 2017] present a classification of services according to application QoS
requirements. This is expected to facilitate the decision-making process for the fog scheduler
and specifically to identify the timescale and location of resources. Moreover, [Guevara 2017]
introduces a mapping between the presented classes of service and the processing layers of the
Fog computing reference architecture. Finally, Santos et al. [Santos 2017] propose a model for
the resource provisioning in IoT platform dedicated to Smart Cities. The model is executed
iteratively to optimizes multiple objectives (such as latency, service migrations, and energy
efficiency) and considers cloud-based application QoS requirements and characteristics coming
from the wireless network.

2.5.5.2 Solutions for guaranteed QoS

Authors in [Tariq 2014, Bhowmik 2017] presented a publish/subscribe middleware. The proposal
relies on SDN technology. The proposed middleware offers an application-aware control capable
of enhancing the responsiveness of the control plane while ensuring consistent changes to
the data plane with low synchronization overhead even in the presence of network failures.
Exploring a more narrow use case (i.e., Connected Vehicle), [Mendiboure 2019] presented a
location-aware Pub/Sub middleware with mobility management as additional functionality. The
proposed middleware relies on the Openflow protocol and the SDN. To do so, this middleware
enabling an efficient SDN-based QoS-aware geographic data dissemination. Adding NFV to
SDN, [Petrov 2018] introduces a softwarized 5G architecture for applications with a focus
on End-to-End loss rate. [Petrov 2018] presented a mathematical framework to model and
quantified the process of applications with strict QoS requirements and the corresponding
impact on other applications (i.e., with easy-going requirements). A common drawback of most
existing publish/subscribe systems is their dependence on the application layer mechanisms
to optimize the publish/subscribe operations. For instance, event routing on a broker network
that is organized oblivious to the underlying physical network may result in higher throughput
utilization, and higher End-to-End latency since multiple logical links in the broker network
may share the same physical links.

2.5.5.3 Current Limitations and positioning

Satisfying the various QoS of the applications is crucial to ensure their optimal operation. The
current state regarding this challenge is presented in Table 2.4. This table links the limitations
of each of the solutions studied in the taxonomy presented in Fig. 2.9. In this table, the Valid.
(Validation) column indicates the method used to assess the validity the proposal. Therefore in
this column, “P” means a prototype is used; “S” means the proposal is evaluated in a simulation;
and “None” means no validation was conducted.
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oS [Abdullah 2013] QoS-aware message scheduling al-

gorithm
• Deals with only a fixed number (two) types of traffic classes
• Do not consider different kinds of scheduling strategies
• Only consider Latency

S

[Ezdiani 2015] IoT system architecture that han-
dles interoperability

• Very poor reactivity (Reconfiguration of the system is executed every hour according to
the result of historic data performance analysis)

• Only consider Latency
S

[Nastic 2016] Middleware that supports the pro-
visioning of IoT cloud systems

• Do not support post-deployment resource management
• Only consider Throughput P

[Pizzolli 2016]
PaaS with automatic deployment,
orchestration, and reconfiguration
capabilities

• Orchestration and reconfiguration is performed by employing a simple threshold-based
mechanism

• Only consider Throughput and Latency
None

[Agirre 2016] QoS-based reconfiguration method
for publish/subscribe middleware

• Only consider application-level reconfiguration actions
• Only consider Throughput and Latency P

[Khazaei 2017] Autonomic microservice-based IoT
platform

• Use a simple threshold-based algorithm with a predefined static threshold (manually tune)
taking into account CPU, memory, and network utilization.

• Only consider horizontal scaling action
• Only consider Latency

P

[Guevara 2017] Classification of services according
to their QoS requirements • Only considered Fog-based IoT platforms None

[Santos 2017]
Resource provisioning model for
the IoT service placement problem
in Smart Cities

• Poor scalability due to the long execution time of the used optimization method (integer
linear programming). This may work only for relatively static service demands. S
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oS [Tariq 2014,
Bhowmik 2017]

SDN-based publish/subscribe mid-
dleware

• Non-scalable due to the centralization of the SDN controller
• Poor efficiency in bandwidth usage
• Unable to react to overload situation in the presence of a dynamic workload
• Only consider Throughput and Latency

P

[Kim 2017] VNF placement algorithm • Do not support post-deployment reconfiguration
• Only consider Latency S

[Petrov 2018]
Softwarized 5G architecture for
end-to-end reliability of mission-
critical traffic

• Deals with only a fixed number (two) types of traffic classes
• Focus on the radio access network (RAN)
• Does not consider Throughput

P

[Mendiboure 2019] Location-aware SDN-based Pub/-
Sub middleware

• Non-scalable due to the centralization of the SDN controller
• High computational and communication cost
• Only consider Latency

S

[Kharb 2019] Fuzzy-based scheduling technique
for support service differentiation

• Focus on the LPWAN communications
• Only consider Latency S

[Shi 2020b,
Shi 2020a]

SDN-based publish/subscribe mid-
dleware with multiple SDN do-
mains

• Poor efficiency in bandwidth usage and limited scalability
• QoS is only guaranteed at the local level (within an SDN controller domain)
• Only consider Latency

S

Table 2.4: State-of-the-art limitations
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All the limitations of the literature can be summarized as follows.

Poor scalability of solutions for guaranteed QoS IntServ-like solutions provide poor
scalability and are only suitable for small networks. Considering that there will be 1.8 IoT
devices for each member of the global population by 2023 (14.7 billion devices) and that IoT
devices will account for 50% of all networked devices, such an approach is not conceivable.

Incompleteness Current solutions are generally not configurable and provide only a tiny
subset of the service differentiation mechanisms needed for control and management of IoT
applications traffic. Indeed, to be able to manage traffic in IoT platforms, we must first
identify the (group of) targeted traffic (with Classification and Marking mechanisms) and then
differentiate the services (with Dropping, Shaping, Scheduling, or Redirecting mechanisms).

Missing to address lack of resources in the IoT When service differentiation mechanisms
are proposed, authors always assume the mechanisms already deployed in the IoT platform
missing; therefore, an essential characteristic of IoT gateways: “resource is tight”. To deal
efficiently with the IoT platform resources, the on-the-fly deployment (i.e., when needed) of
these mechanisms is essential.

Lack of an overall framework It is necessary to develop an overall QoS management
framework to build upon and reconcile the existing scaling (out/in and up/down) mechanisms
(for gateways and Server deployed in a virtualized environment) with service differentiation
mechanisms (mentioned above). Typically a framework allowing to differentiate the service
offered by the IoT platform and adding (or removing) resources (e.g., Computation, Memory,
Network) when needed.

Lack cognitive mechanisms The literature lack mechanisms to minimize the role of humans
in the control loop and overcome the limitations of manual administration related to the
complexity, heterogeneity, and scale of the IoT platform.

Given all these limitations, in this thesis, our scientific positioning is centered on:

1. sustaining End-to-End QoS to IoT Applications in today’s IoT platforms with a Diffserv-
like approach,

2. handle resource scarcity with a less resource consuming way of deploying network function,
and

3. handle the complexity in the QoS management (due to the scale, resource scarcity, and
technology heterogeneity) with autonomic computing models.
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2.6 Conclusion

This chapter aimed at giving an overview of the technological landscape in which the work
presented in this manuscript has been executed.

First, the IoT paradigm has been introduced as the networking Things. One of the char-
acteristic features of IoT ecosystems is heterogeneous technologies calling for a standardized
platform.

Second, we present the NIP, which aims to decouple the IoT architecture from its current
infrastructure. NIP relay on two complementary paradigms, NFV and SDN, the purpose of
which is to provide flexibility in the management and deployment of initially operator networks,
then more generally communication networks. Such a platform is so complex that a high degree
of autonomy to overcome several challenges.

Third, we present the Autonomous Computing paradigm that provides a blueprint for
building autonomous systems. In our view, greater autonomy is the goal, and autonomous
computing is one way to achieve it. We also present enabling techniques (i.e., artificial intelligence-
based computational techniques) to implements the control loop (i.e., the autonomic manager).

Finally, we present the importance of QoS technologies for computer networks, especially
in IoT platforms. We present and discuss the difference of the historical approaches on QoS
management: Integrated Services (IntServ) and Differentiated Services (DiffServ). The distinc-
tion between these approaches is that IntServ was designed to guaranteed QoS and the Diffserv
optimized it. We presented why IoT applications need QoS and why it is incredibly challenging.
We review the State-of-the-art limitation of current approaches to sustain QoS for applications.

In the following, we explore these artificial intelligence-based computational techniques to
bring planners to life (Fig. 2.10).

Autonomic Manager

Software-defined IoT Platforms
(Chapter 3)

Monitor

Analyzer
Planner
(ES)

Chapter 3

ExecutorKnowledge 
Base

Sensors Effectors

Figure 2.10: Building of the Planner in the Chapters 3.
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3.1 Introduction

In the NFV environments, autoscaling1 is used to guarantee a certain level of QoS2. Despite
the recent efforts made by the industry and academia communities for QoS management in
NFV-enabled IoT Platforms (NIPs), we drew the following observations and conclusions.

First, the majority of current IoT platform providers, such as Google, AWS IoT Core, or
Microsoft Azure IoT, only provide “autoscaling tools” to manage resources provisioned by
tenants [Qu 2018]. According to a Microsoft study, [Microsoft 2020], almost all companies
involved in IoT have experienced failure of a project at the Proof of Concept stage. The number
one reason is the overall high cost of scaling. The autoscaling scheme is automatically triggered
when resource usage reaches a given threshold (e.g., CPU usage > 80%). This observation drove
the IoT community toward considering the cost minimization of autoscaling as an important
research challenge. The second observation is that in those platforms, nodes implement the
First-Come-First-Served (FCFS) [oneM2M 2016] as a default traffic control policy. In FCFS,
the traffic messages coming from different IoT applications are queued together and served
in the order of their arrival. For a given level of resources within a NIP’s node, the FCFS
processing of IoT applications’ traffic traversing this node may lead to the following problem:
the resource usage induced by a “greedy” IoT application can lead to QoS degradation for other
IoT applications. Therefore, this would trigger a new scaling action to increase the provisioned
resources. These first two observations lead to a state that the cost of the provisioned resources
is not optimal. To reach an optimal solution, we propose to associate the autoscaling scheme
with Traffic Control Functions (TCFs) that take into account the different QoS levels required
by the IoT applications. The third observation is that the data centers have held significant
Capital Expenditure but have low resource usage. For instance, in 2017 inside Alibaba cluster
[Lu 2017], the average CPU utilization per machine was 40%, and maximum maintains about
60%. The average memory utilization per machine was 60% and the maximum about 90%.
While at Google3, the average CPU and memory usage rates in production clusters were only
20% and 40%, respectively, in 2012 [Reiss 2012]. Nearly at the same time, the average CPU
utilization rate of Amazon AWS EC2 was only 7% to 17% [Liu 2011]. This observation concludes
that there are available resources that one can use to host the TCFs.

The last observation is that in the Cloud-to-Thing continuum (C2TC) [Brogi 2017], the
availability and capacity of the resources, namely computation, storage, and connectivity,
decrease when moving from the Cloud toward things. Typically, the IoT End Gateways, located
close to things, are small devices with limited processing, storage, and connectivity capabilities.
Thus, motivated by the above observations and by the promises brought by the existing studies

1Autoscaling is a reconfiguration scheme where the number of resources varies automatically based on the
load on the platform.

2The term QoS refers to the measurement of the overall performance of the NIPs service. We consider the
following aspects of the NIPs service: Unavailability, Throughput, and Latency.

3No recent information is available today.
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[Tootoonchian 2018], one option for the deployment of TCFs within NIPs relies on the use of
technologies such as NFV. However, deploying those TCFs only as VMs or OS-level containers
(as required by NFV) does not cover the resources and capacities heterogeneity of future
networks. In this context, we formulated the following research question:

“How to maintain the applications’ QoS the closest to their requirements while
adapting to the resources’ scarcity when moving from Cloud to Things?”

By answering this question, we seek to build a method that enables End-to-End QoS
management in IoT. To fit the decreasing resources’ capacities when moving close to the things
and make the End-to-End deployment of NFs, an isolation technique (or virtualization solution)
that consumes fewer resources is required. Such a solution is one of the contributions of this
Chapter that we name Application Network Function (ANF).

Considering these conclusions, our objective is to meet the QoS requirements of IoT
applications executed on NIPs and to optimize the costs induced by a classic autoscaling scheme.
For this purpose, the approach explored in this Chapter is to take advantage of the different
ways of deploying TCFs (i.e., via VNFs or ANFs), while taking into account nodes’ resources
heterogeneity. In other words, we seek to deploy dynamically (i.e., when the need arises) i) the
appropriate TCF (e.g., Dropper, Scheduler), ii) in the appropriate packaging (ANF or VNF),
and iii) on the appropriate nodes of the platform (e.g., a Scheduler before a congested node,
not after).

The significant contributions of this Chapter are summarized below.

• We introduce the ANF concept, which is based on a minimal level of isolation technique
dealing with software execution. The ANFs make possible the deployment of NFs on
IoT End Gateways and support reaching the best possible use of available heterogeneous
resources capacity C2TC. We design a collection of TCFs that we implement as VNFs
and ANFs, with the aim to sustain the QoS level required by the IoT applications. We
also provide the performance measurement results to get the quantitative characteristics
associated with the different implementation packages (VNFs and ANFs) of the considered
TCFs. We study the effects of the traffic arrival rates on the processing time and the
resource usage (CPU and RAM) required for executing the TCFs. The performance
measurement results are used to solve the multiobjective optimization problem introduced
hereafter.

• To achieve optimal deployment of these TCFs on the available nodes in NIPs, we formulate
a multiobjective optimization problem. The formulated problem is solved by a planning
scheme, named QoS4NIP, that considers both TCFs deployment and scaling actions while
optimizing the overall End-to-End QoS.



46
CHAPTER 3. JOINT OPTIMIZATION OF THE SCALING ACTION AND THE TCFS

DEPLOYMENT

• We evaluate the benefits in terms of cost-saving of the solutions provided by the QoS4NIP
scheme. These benefits are compared to the solutions provided by FCFS (the lazy scheme),
the autoscaling scheme, and the two variants of QoS4NIP that do not consider scaling
action but only TCFs (the first considers only TCFs deployed as VNFs, and second
considers TCFs deployed as VNFs and ANFs). We consider a realistic case study dealing
with Connected Vehicles for the validation of our approach. The validation results show
that our scheme, QoS4NIP while sustaining the End-to-End QoS for each application in
NIPs, achieves the best cost-saving amongst the existing competing approaches.

The remainder of the Chapter is structured as follows. Section 3.2 discusses the state-of-
the-Art. Section 3.3 develops the proposed approach and explains the key concepts. Section
3.4 presents the implemented TCFs and the performance evaluations of the implemented VNF
and ANF concepts. Section 3.5 is devoted to the QoS4NIP scheme description. Section 3.6
demonstrates the proposed approach effectiveness for the Connected Vehicles case study. The
proposed work considered hypotheses are discussed in Section 3.7. Finally, Section 3.9 concludes
the Chapter.

3.2 State-of-the-Art

Several fields, such as information-centric networking (ICN), overlay network, and network
slicing, consider the use of NFV for the management of QoS. In this Chapter, since we only
aim to contribute to this domain for the IoT context, we consider the reference contributions
made in the literature. The following sections present a literature review analysis on overhead
minimization for cost saving in NFV and runtime optimization in NFV that are essential
aspects of the proposed approach.

3.2.1 Overhead Minimization in NFV

As presented in Section 3.4, in this Chapter, we propose the ANF concept to enable the
deployment of NFs over the full C2TC. The existing literature involves research proposals
aiming to reduce the massive footprint of today’s NFV platforms [Cziva 2017a, Palkar 2015,
Riggio 2015, Yasukata 2017, Gallo 2018]. In [Cziva 2017a], the authors present the Glasgow Net-
work Functions (GNF), a container-based NFV platform that runs and orchestrates lightweight
container-based VNFs, saving core network utilization and providing lower Latency. Palkar et
al. [Palkar 2015] propose a framework (E2) for NFV packet processing. E2 provides a single
coherent system for managing NFs while relieving developers from developing per-NF solutions
for placement, scaling, fault-tolerance, and other functionalities. Riggio et al. [Riggio 2015]
propose a MEC OS that supports lightweight virtualization. Yasukata et al. in [Yasukata 2017]
propose HyperNF, a high-performance NFV framework aiming at maximizing server perfor-
mance when concurrently running large numbers of NFs. HyperNF implements Hypercall-based
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virtual I/O, placing packet forwarding logic inside the hypervisor to significantly reduce I/O
synchronization overheads. Gallo et al. [Gallo 2018] propose a scalable NFV-based solution as
a novel approach that satisfies the stated requirements for user-centric support of IoT devices.
The main differences between all these frameworks and our proposal are related to the isolation
of NFs. Since isolation is not a mandatory requirement in our context (the ANFs being used
are considered trusted because they are only supplied by the NIP operator), ANFs have a more
reduced overhead than hypervisor-based NFs.

Furthermore, the virtualization technologies proposed in these studies still have significant
memory, and CPU requirements [Nandugudi 2016] for the C2TC. These solutions are not
adapted to the common IoT End Gateways capacities. At the same time, their needs for a
particular hypervisor prevent them from operating on these gateways.

3.2.2 Runtime Optimization for Cost-saving in NFV

Most of the work for cost saving in NFV consider the initial planning step or the VNFs initial
development step (i.e., design-time optimization), as described in detail in [Herrera 2016].
However, the few works that deal with the Runtime Optimization for cost saving in NFV
problematic, radically, consider to automatically scale the resources provisioned to the platforms
without human intervention under a dynamic workload, to minimize resource cost while
satisfying each application QoS requirement [Qu 2018]. Only considering the autoscaling scheme
in these studies without differentiation in the QoS levels leads to a non-optimal scheme
and induces high relative costs. Ren et al. propose in [Ren 2018] an adaptive autoscaling
algorithm (ASA) using an analytical model to balance the cost-performance trade-off while
maintaining an acceptable level of performance for 5G mobile networks. ASA adds (or removes)
VNF instances according to the number of user requests waiting. Rahman et al. propose in
[Rahman 2018], a proactive Machine Learning (ML)-based approach to perform autoscaling of
VNFs in response to dynamic traffic changes. The authors propose an ML-based planner that
learns VNF (VMs and Docker containers) scaling decisions and behavior of network traffic load
to generate scaling decisions ahead of time. However, the conducted experiments show that
such a proposal has a high financial cost. Similarly, [Tang 2015] investigates a reinforcement
learning approach for autoscaling on NFV. Exploring a different approach, [Rahman 2020]
proposes a negotiation-game-based autoscaling method where tenants and service providers
both engage in the autoscaling decision, based on their willingness to participate, different
QoS requirements, and financial gain (e.g., cost savings). Also, [Rahman 2020] proposes a
proactive ML-based prediction method to perform SFC autoscaling in dynamic traffic scenarios.
Searching beyond the autoscaling scheme, Draxler et al. [Draxler 2018] propose JASPER, a
fully automated approach for jointly optimizing scaling, placement, and routing for multiple
network services, consisting of of of numerous VNFs. JASPER manages various network
services that share the same substrate network, dynamically adds or removes services, and
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handles workload changes. On a similar line, [Toosi 2019] and [Liu 2017] study how to optimize
SFC deployment and readjustment in a dynamic situation. Authors in [Liu 2017] try to
jointly maximize the implementation of new users’ SFCs and the adaptation of in-service
users’ SFCs while considering the trade-off between resource usages and operational overhead.
Quang et al. in [Quang 2018] extend the SFC deployment and readjustment in a dynamic
approach. [Quang 2018] examines VNF migration by providing a model that solves the adaptive
and dynamic VNF allocation problem under QoS constraints. Yu et al. [Yu 2017] extended
the SFC readjustment in a proactive situation approach. [Yu 2017] considers load balance,
energy cost, and resource usages to formulate a multiobjective problem. Contributions in
[Ren 2018, Rahman 2018, Tang 2015, Rahman 2020, Quang 2018, Yu 2017] do not consider
network IoT End Gateways resource constraints, and this limits the applicability for NIPs.
While contributions in [Draxler 2018, Toosi 2019, Liu 2017] authors explicitly acknowledge it
in their approaches. In [Cheng 2018], Cheng et al. investigate the issues of network utility
degradation when implementing NFV in dynamic networks and design a proactive NFV solution
from a stochastic perspective. Unlike existing deterministic NFV solutions that assume given
network capacities and static service quality demands, their work explicitly integrates the
knowledge of substantial network variations. Targeting End-to-End reliability of mission-critical
traffic, Petrov et al. in [Petrov 2018] introduce a softwarized 5G architecture. [Petrov 2018]
also proposes a mathematical framework to model the process of critical session transfers in a
5G access network and to quantify their impact (QoS interferences) on other users traffic flows.
They implemented, in [Petrov 2018], a hardware prototype to investigate the practical effects
of supporting mission-critical data in a 5G NFV-enabled core network.

In summary, the existing literature lacks the attention to NIPs in two perspectives. On the
one hand, several [Ren 2018, Rahman 2018, Tang 2015, Rahman 2020, Quang 2018, Yu 2017]
studies failed to take the available heterogeneous resources capacity of the C2TC into account.
On the other hand, none of the current studies consider the traffic control perspective for cost
saving in NIPs. The approach we propose here addresses the shortcomings of the related work
mentioned below.

3.3 Key Concepts and Approach Overview

The main originality of our contribution consists of the combination of several changes in the
autoscaling approach, with the aim to optimize the cost of QoS management for NIPs. The
first change (Section 3.3.1) consists in considering the on-the-fly deployment of the TCFs to
sustain applications’ QoS in NIPs. The second change (Section 3.3.2) consists in considering
the ANFs, in addition to the VNFs, for the TCFs deployment. The last change (Section 3.3.3)
deals with the elaboration and implementation of a new planning scheme, QoS4NIP, which
jointly optimizes scaling actions and TCFs deployment. QoS4NIP take into account the TCFs
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Figure 3.1: Approach overview over the Cloud-to-Thing continuum.

deployment costs and the scaling actions costs.

3.3.1 The Traffic Control Functions

We handle the NIPs that implement the common reference architectures, such as oneM2M
[oneM2M 2016]. More specifically, we deal with stateless communication (i.e., no stored knowl-
edge of or reference to past requests) between the platform nodes (i.e., Server and Gateways).
Such architectural frameworks allow TCFs to be inserted in the platform nodes without disturb-
ing the supported IoT applications. Based on these features, we consider the TCFs proposed at
the IP network level by Carpenter et al. in [Carpenter 2002b], that we adapt to the specifics
of the IoT traffic context. We manage the QoS in a NIP by implementing and distributing
on-the-fly the adequate TCFs on the NIP’s nodes. We consider that NIPs’ nodes in the Cloud
Server and Edge Gateways have nested virtualization capabilities for hosting VNF in VM (e.g.,
running Docker over Amazon EC2 VMs) [Ren 2017]. Let us remark here that our approach
cannot be applied for all platforms, typically multimedia streaming platforms, because of the
stateful aspects (i.e., requests are performed with the context of previous requests, and the
current requests may be affected by what happened during previous requests) of End-to-End
protocols (i.e., Real-time Transport Protocol or RTP and Real-time Streaming Protocol or
RTSP) widely used in this context.

3.3.2 The ANFs packaging solution

To fully enable the deployment of TCFs over the C2TC, we consider the solution explored in
[Kohler 2000, Decasper 2000], leading to package NFs into software components that one can
deploy on-the-fly on NIPs’ nodes. We then distinguish, in Fig 3.2, two types of NFs. The first
type consists of NFs hosted inside virtual containers (VMs or OS-level containers like Docker).
This type of function is commonly called VNF [ETSI 2014]. The second type consists of NFs
hosted inside a program as a software component. We call them Application NFs (ANF) in the
sequel.
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Figure 3.2: Network Functions Instances.

The ANF concept does not give the same isolation as the VNF concept. Isolation is
one of the inherent features highlighted in the existing NFV platforms. Isolation allows the
NFs to run on the same hardware and not interfere with each other from two standpoints
[Panda 2017]: security and performance. OS-level containers and VMs are the two virtualization
techniques commonly used to provide isolation. On the one hand, different studies, such as
[Nandugudi 2016, Gallo 2018], show that these virtualization techniques generally induce a
high usage of resources. On the other hand, the IoT End Gateways, located close to things,
are generally small devices with limited processing, storage, and connectivity capabilities. For
example, an IoT Gateway, such as a Dell Edge Gateway 5000, has an Intel Atom processor
clocked at 1.33 GHz with only 2 GB of memory. Deploying NFs as VMs or Os-level Containers
does not fit NIPs’ heterogeneity of resource capacities. Indeed, deploying a VNF as a standard
Linux VM requires a minimum4 of 256 Megabytes RAM, a 300 MHz x86 processor, and 1.5
GB of disk space. Deploying this VNF as a container requires a minimum5 of 29 Megabytes of
disk space. This requirement sharply limits the amount of VNFs that can be deployed on a
node and drastically reduces the number of compliant nodes. For most IoT End Gateways, it is
difficult to host multiple instances of such VNFs. Moreover, ANF adapts the NF packaging
to the constrained deployment context using specific solutions for each chosen programming
and deployment environment. The runtime environment “ANF-host” executes on-the-fly ANFs
written in a specific programming language (Java in our case). Some of the characteristics of
such a runtime environment are:

• an ANF is held and versioned in a code repository;

• ANF dependencies are explicitly defined;

4https://help.ubuntu.com/community/Installation/SystemRequirements
5https://hub.docker.com/r/ /ubuntu/
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• an ANF can be deployed into development, staging, or production environments without
changes;

• an ANF configuration is stored in the environment, for instance, through environment
variables;

• backing services, such as data stores, message queues, and memory caches, are accessed
through a network, and no distinction is made between local or third-party services;

• an ANF is stateless, and therefore, enables easy scale out.

All these characteristics allow elementary ANFs to be chained, the same way as VNFs,
to provide complex services commonly named SFC. For example, when using an OSGi-based
modular platform, the ANF is uploaded on the ANF-host through a specific protocol, often
HTTP. The OSGi specifications assume an architecture to remotely manage the OSGi framework
components relying on a Management Agent (MA). The MA receives, verifies, installs, and
configures the ANF according to a “Manifest” file that is similar to the VNFD defined by
ETSI-NFV. The method to deploy multiple ANFs (ANFs SFC) implements the “Pre-Calculated
Deployment” specified by OSGi [Alliance 2018]. A pre-calculated deployment process is initiated
using one of the OSGi subsystem service’s install methods. In this case, ANFs SFC (OSGi-based)
is an OSGi subsystem deployed as an OSGi Subsystem Archive (.esa) file. An OSGi subsystem
comprises resources, including OSGi bundles (ANFs).

3.3.3 The Joint Optimization of the Scaling Action and the TFCs
Deployment

Fig 3.1 illustrates the overall approach. In this figure, the IoT applications run on top of the
NIP (e.g., on a Cloud Server or a User Device). The presence of a square (red) indicates the
deployment of a particular TCF on a node (NFV-I or ANF host). The up-arrow (blue) and the
right-arrow (purple) indicate the execution of a scaling action on a node (scale up and scale
out, respectively). Scale out means adding more instances to a NIP’ node, and scale up means
adding more resources to a NIP’ node. The overall approach relies on the TCFs deployment on
the NIPs’ nodes and the scaling action execution to sustain the QoS for the IoT applications.

Nevertheless, the IoT application QoS’ fulfillment in NIPs can be seen as a multiobjective
optimization problem where objectives are all the different application QoS (e.g., latency,
throughput). This problem raises a set of optimal solutions (known mainly as Pareto-optimal
solutions) instead of a single optimal solution. A solution is Pareto-optimal if we cannot improve
any of the objectives without degrading the others. Without additional subjective preference,
all Pareto-optimal solutions are considered equally “good.” Classical optimization methods
suggest converting the Multiobjective optimization problem artificially to a Single-Objective
optimization problem. This usually requires the repetitive use of an algorithm to find multiple
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Pareto-optimal solutions. On some occasions, such usage does not even guarantee to find Pareto-
optimal solutions [Deb 2002]. In contrast, the population evolution approach of Evolutionary
Algorithms (EA) allows an efficient way to find simultaneously multiple Pareto-optimal solutions
in a single run [Deb 2002]. This is the most popular approach in the literature. We implement
this approach in this Chapter. Additional studies on the Multiobjective EA can be discovered
in [Deb 2001].

Moreover, the joint optimization of the TCFs deployment and the scaling action execution
is very similar to a Knapsack Problem (a widely known non-deterministic polynomial-time
hard problem). For this problem, we propose a meta-heuristic based on the GA that have been
proven to constitute an efficient method to provide suitable near-optimal solutions in a short
amount of time (see Section 3.5).

For convenience, the used notations in the rest of this Chapter are listed in Table 3.1.

Names Meanings
r message arriving at a NF
C set of considered types of services (or traffic classes)
dt NF deployment time
pt NF processing time
tr resource was requested timestamp
ts resource was served timestamp
τ IoT application
z Total number of IoT applications
n Total number of nodes

LQosτ Latency required by τ
TQosτ Throughput required by τ
UQosτ Unavailability required by τ
LE2Eτ End-to-End Latency served to τ
TE2Eτ End-to-End Throughput served to τ
UE2Eτ End-to-End Unavailability served to τ
Liτ Latency of τ on node i
Tiτ Throughput of τ on node i
Uiτ Unavailability of τ on node i
ρiτ Monitored Throughput on node i for τ
δi Monitored Latency on node i
m Total number of scaling actions
p Total number of TCFs
Ai Set of scaling actions supported by the node i
Fi Set of TCFs supported by the node i
fq TCF q benefit
ac Scaling actions c benefit
Γic Cost of scaling action c on node i
cpuq TCF q cpu resource usage
ramq TCF q ram resource usage
ηi Sum of the benefits induced by all the supported TCFs and the scaling actions on the node i
ζi Sum of the benefits of the Throughput induced by all the supported scaling actions on the node i

continued . . .
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. . . continued
Names Meanings
ωi Weighting factor of the Scheduler on the Throughput on the node i
εi Loss factor of the Dropper on the Unavailability on the node i
λi Request arrival rate on node i

CostE2E End-to-End Cost of the scaling action
Costi Cost of all the scaling action execution on node i
RUE2E End-to-End Resource usage of TCFs
RUi Resource usage of TCFs on node i
Hicpu Node i cpu usage
Hiram Node i ram usage
βi Node i cpu usage with Scaling action execution and TCFs deployment
γi Node i ram usage with Scaling action execution and TCFs deployment
Xθ Binary vector describing the describe the application of TCFs or scaling actions to the NIPs’

nodes
xji Binary row of Xθ
Tθ Integer matrix describing the genes’ additional information
tji Integer row of Tθ
Pt Pareto front
Cp Crossover probability
Mp Mutation probability
N Population size
l Chromosome length
T Maximum number of generations

Table 3.1: Notations

3.4 Network Functions for TCFs in NIPs

The traffic control mechanisms proposed at the IP level by Carpenter et al. in [Carpenter 2002b]
inspired the proposed functions. [Carpenter 2002b] introduces DiffServ, an architecture based
on a simple model within which the IP traffic that arrives in the network gets assigned to a class
of behavior. Each class is uniquely identified by a “Tag” in the IP packets. All the intermediate
routers process packets following the behavior associated with their “Tag.” For instance, 80% of
the bandwidth of a router belongs to packets tagged A and 20% to those tagged B.

A small number of functions can be composed to differentiate the level of service provided
to the IoT applications according to their QoS requirements. The traditional functions (i.e.,
Classifier, Marker, Dropper, Shaper, Scheduler) are split up simply and deployed when needed.
For example, we can deploy a dropping function without the shaping function (avoiding its
overhead) and vice versa. We added to these functions a Redirector. The Classifier and Marker
were merged into a new Classifier capable of marking IoT traffic. We package these functions in
NFs (ANF and VNF), deploy, and configure them on-the-fly on the targeted NIPs’ nodes (see
Fig. 3.1). In these functions, traffic is composed of one or several messages that cross the NIP’s
nodes (Server, Gateways); and a traffic profile specifies the temporal properties, such as the
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rate and the burst size of the traffic. It provides the rules for determining whether a message is
in or out of the profile. Usually, this profile is expressed within a Service-level agreement (SLA)
between the application (client) and NIP (Service Provider).

This Section presents a) an overview of the TCFs implemented as ANF and VNF to sustain
the QoS level to the IoT applications; b) performance evaluations of the VNF and ANF concepts.

3.4.1 Traffic Control Functions Overview

In the remainder of this Chapter, a message arriving at a function is denoted r; C denotes
the set of considered traffic classes (or types of services). A class in r is a header called Local
Service Level (LSL). Since the TCFs are handling traffic classes, it is possible to group IoT
applications with similar QoS requirements in a class. Indeed in a real scenario, this is what
should be done. In the following, for the sake of straightforwardness, each IoT application will
be assigned a distinct traffic class. Below, we explain each of the considered functions, and we
propose the algorithms implementing them on NIPs as TCFs.

Classifier. This function is used to “distinguish” the incoming traffic for further processing.
The Classifier allows identifying a message r of an IoT application and updating its header
with the appropriate LSL. The Classifier identifies the messages based on their headers’ content
according to a set of predefined rules, typically some combination of source and destination
addresses, content-type, protocols, source, and destination ports fields. Algorithm 1 implements
the Classifier. Line 2, the algorithm, first tries to identify the class c of the message r. From
lines 3 to 4, the Classifier adds a message header with the associated LSL when it recognizes
traffic.

The time complexity of the Classifier (Algorithm 1) is O(|C|), where |C| denotes the number
of elements of the set C. We may even handle a fixed number of classes making |C| a constant
in practice.

Algorithm 1: Classifier Network Function
// r: IoT application message
// C: Traffic classes

Input: r, C
Output: r

1 begin
2 c ← ComputeClass(r)
3 if c 6= {} then
4 r ← AddMark(r,c)

5 return r

Dropper. This function allows discarding messages based on their LSL header. The Dropper
discards some or all messages in an IoT application traffic to bring this traffic into compliance
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with an expected profile. A REST API is used to configure the rejection percentage and the
targeted traffic of this function. Algorithm 2 implements the Dropper. Line 2, upon the reception
of a message, the Dropper identifies the associated LSL in the message header. Then, from
lines 3 to 6, the algorithm calculates the previously rejected percentage for the considered
traffic profile. Line 7, the algorithm rejects the message, return null when the percentage of
the rejected messages is lower than the specified limit in the configured policy. Otherwise,
the Dropper forwards the message without any modification. In line 10, the Dropper update
associated the rejection percentage.

The time complexity of the Dropper (Algorithm 2) is O(|C|), where |C| denotes the number
of elements of the set C. We may even handle a fixed number of classes making |C| a constant
in practice.

Algorithm 2: Dropper Network Function
// r: IoT application message
// C: Traffic classes

Input: r, C
Output: r or null

1 begin
2 c ← GetMessageLSL(r)
3 if c 6= {} then
4 for k ∈ C do
5 if k = c then
6 cpast ← GetRejectionPercentage(k)
7 if cpast < c then
8 r ← null

9 UpdateRejectionPercentage(k)
10 return r

Shaper. This function allows delaying the traffic messages to make them compliant with
a defined traffic profile. The Shaper discards some messages if there is not enough space in
the buffer to hold the delayed messages. The Shaper uses the LSL to identify the delay time
of a message. A REST API is used to configure the delaying time and the targeted traffic of
this function. Algorithm 3 implements the Shaper. Line 2, the algorithm tries to identify the
LSL of the message in its LSL header. From lines 3 to 7, the Shaper holds the message for
the necessary delay time matching the identified profile. Line 8, after the elapsed delay, the
function returns the message without modification.

The time complexity of the Shaper (Algorithm 3) is O(|C|), where |C| denotes the number
of elements of the set C. We may even handle a fixed amount of classes making |C| a constant
in practice.
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Algorithm 3: Shaper Network Function
// r: IoT application message
// C: Traffic classes

Input: r, C
Output: r

1 begin
2 c ← GetMessageLSL(r)
3 if c 6= {} then
4 for k ∈ C) do
5 if k = c then
6 d ← GetDelay(k)
7 Wait(d)

8 return r

Scheduler. This function enables the management of the incoming message sequence
according to their LSL headers. The function serves any message with a high LSL before a
message with a low LSL. If two messages have the same LSL, then the function serves according
to their enqueued order. A REST API is used to configure the associated traffic classes in the
queue. Algorithm 4 implements the Scheduler. From lines 1 to 12, the first main procedure
enqueues the received message in an internal queue. It delivers this message while it moves to
the head of the queue. From lines 13 to 16, the second procedure reorders the messages inside
the queue according to their LSL.

The time complexity of the Scheduler (Algorithm 4) is O(|C| + |Q| log |Q|), where |C|
denotes the number of elements of the set C and |Q| denotes the length of the queue Q. In
practice, we may even handle a fixed number of classes making |C| a constant, and then, the
time complexity is O(|Q| log |Q|).

Redirector. This function enables the interception and the forwarding of traffic messages
towards different targets. The routing scheme (at the platform level) is affected by this function
since we are using an oneM2M-based [oneM2M 2016] NIP where the routing is at IoT application-
level (level 6 of OSI layering). This modification is completely transparent to the IoT application.
A REST API is used to configure the new destination and the targeted traffic for this function.
Algorithm 5 implements the Redirector. Line 2, the Redirector, identifies the LSL of the message
according to its LSL header. From lines 3 to 6, it changes the message’s destination (e.g., to
another node) according to the corresponding identified LSL. Line 7 it sends the message to its
new destination without an LSL and additional modifications.

The time complexity of the Redirector (Algorithm 5) is O(|C|), where |C| denotes the
number of elements of the set C. We may even handle a fixed number of classes making |C| a
constant in practice.
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Algorithm 4: Scheduler Network Function
// r: IoT application message
// C: Traffic classes
// Q: IoT application message Queue

Input: r, C, Q
Output: r

1 function Priority-based Scheduler()
2 begin
3 c ← GetMessageLSL(r)
4 if c 6= {} then
5 for k ∈ C) do
6 if k = c then
7 Q.push(k, r)
8 while r¬Q.peek() do
9 Wait()

10 r ← Q.pull()

11 return r

12 function PriortySortQ()
13 while true do
14 if Q 6= {} then
15 Timsort(Q)

Algorithm 5: Redirector Network Function
// r: IoT application message
// C: Traffic classes

Input: r, C
Output: r

1 begin
2 c ← GetMessageLSL(r)
3 if c 6= {} then
4 for k ∈ C) do
5 if k = c then
6 d ← GetRedirectionIP(k)
7 r ← SendTo(r,d)

8 return r

3.4.2 Evaluation of the TCFs packaging (VNF and ANF)

In this Section, we evaluate the deployment time of the TCFs implemented as VNF and ANF.
Then, we study the effects of the traffic arrival rates on the processing time and the resource
usage (CPU and RAM) required for executing the TCFs. The goal is to get quantitative
characteristics associated with the different packaging (ANF and VNF) of the TCFs.

The details of the TCFs implementation are provided in the Appendix A.

Experimental context. The presented performance measurements allow assessing the
deployment time, denoted dt, of the TCFs: as ANF in the considered ANF-host (i.e., IoT
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Gateway); and as VNF in the considered NFV-I nodes. In order not to bias the tests by an
additional upload time related to network conditions, the TCFs are supposed to be already
present in the hosting system as Docker Images for VNFs, and JARs files for ANFs. To collect
performance metrics, we implemented monitoring tools based on Java Management Extensions
(JMX) technology. In each TCF, we created MBeans objects for processing time, CPU, and
RAM remote monitoring.

We characterize the processing time, denoted pt, associated with each function under the
effects of request arrivals. Let a session S = (r1, r2, . . . , rn) be a sequence of n requests for
resource ri coming from the same IoT application, and let tr(ri) and ts(ri), respectively, be the
time that resource ri was requested and the time that resource ri was served, respectively. The
processing time for request ri in session S is:

(3.1) pt(ri) = ts(ri)− tr(ri)

According to [Metzger 2019], the Poisson distribution for modeling the traffic of an IoT
application to the Cloud is a good approximation for the scalability analysis. Thus, to simplify,
we assume that the arrivals of the IoT traffic in a session follow a Poisson distribution. An
event (request arrival) can occur k times (0 to n) in a given interval. The probability P of
observing k events in an interval is given by Equation:

(3.2) P (kt) = e−λ
λk

k!

where :

e is Euler’s number (e = 2.71828...)
k is the number of times a request arrive in an interval and takes values 0, 1, 2, . . .
λ is the request arrival rate.

The experimental testbed consists of three host machines: one traffic generator equipped
with two CPU and 4 GB RAM, one NFV-I equipped with four CPU and 16 GB RAM, and one
ANF-host fitted with one CPU and 4 GB RAM. All the CPUs are CPU Intel Core i7-7500U
clocked at 2.70 GHz. The traffic generator produces the IoT traffics according to a Poisson
distribution with a request arrival rate of λ ∈ [1, 50, 100, 150] req/s6 (request size = 1 Mb). The
NFV-I is composed of all hardware and software components that build up the environment
in which VNFs are deployed and managed using the OpenBaton [Carella 2015] platform. The
ANF-host is running an OSGi-based [Alliance 2018] program that can deploy ANFs. The
three host machines run with Ubuntu 16.04. The template (size) of a VNF/ANF is 1 CPU
and 4 Gigabytes RAM. In these experiments, a message is an HTTP request or an HTTP

6These different request arrival rates are considered realistic [Banouar 2017]
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response. The considered NIP is the Eclipse open-source OM2M [Alaya 2014] that implements
the standard oneM2M [oneM2M 2016].

The conducted experiments address the following questions:

(a) How does the TCF type (ANF or VNF) impact the deployment time;

(b) How does λ in Equation (3.2) impact the processing time defined in Equation (3.1);

(c) How does λ in Equation (3.2) impact the CPU and RAM usage;

(d) How does the CPU and RAM saturation impact the TCF performance.

Performance analysis. In the first experiment, we answer the question “(a)” by investigating
the TCF deployment time. We examine the relationship between the TCF type (ANF and VNF)
and their deployment time. Fig. 3.3 shows the results in a logarithmic scale. The deployment
time of an ANF with an average weight of 15 Kbits is ≈ 8 ms; the deployment time of a VNF
having an average weight of 200 Megabytes is ≈ 520 ms. These results were predictable, but
they still had to be quantified.
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Figure 3.3: Traffic Control Functions deployment time.

The second experiment investigates the TCF processing time to answer the question “(b).”
We analyze the relationship between the request arrival rate λ and the processing time pt. We
start with each implementation (ANF and VNF) of each TCF facing a session S of 3000 requests
and a λ = 1. Then, repeatedly, with the same session S of 3000 requests, we increase λ first to
50, then to 100, and finally to 150. The results (shown in Fig. 3.4 and Fig. 3.5) confirm the
expected behavior: the increase of λ leads to the increase of the processing time. For instance,
in Fig. 3.4, with λ = 1, we have a pt(min) = 0 ms, pt(median) = 2 ms, pt(max) = 50 ms for
the Dropper Network Function processing time. However, the cumulative distribution function
(CDF) of the same TCF facing the same λ differs depending on its type (ANF or VNF). In
Fig. 3.4 and Fig. 3.5, the Classifier processing time represents the insertion of the tag (LSL).
For instance, in Fig. 3.4, it takes 2 ms to insert a tag for almost 75% of the requests when we
handle 1 req/s. Additionally, we handle tags only internally inside an infrastructure node of
the NFV network topology (NFV-I). The Classifier calculates the tag in each node according
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Figure 3.4: [ANF] Traffic Control Functions Processing Time.

to the content of the message headers. The tag is not transmitted outside of the NFV-I node
entities and no transmission overhead is then induced by the message exchange between the
NFV-I nodes, which is the most significant part of the communication traffic. The same applies
to ANF-host.

In the third experiment, we answer the question “(c)” by investigating the TCF resource
usage. We audit the relationship between the request arrival rate λ and the resource usage
(CPU and RAM). We start with each implementation (ANF and VNF) of each TCF facing
a session S of 3000 requests and a λ = 1. Then, we repeat, with the same session S of 3000
requests, raising λ first to 50, then to 100, and finally to 150. Using ANF, there is essentially
no isolation in the use of resources, so we approximate the ANF resource usage to the whole
resource usage of the Java Virtual Machine hosting it, which is the worst situation of resource
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Figure 3.5: [VNF] Traffic Control Functions Processing Time.

usage. For each session of every TCF (ANF, VNF), we measure the average usage of CPU
and RAM. Fig. 3.6a and Fig. 3.6b show these average usages. The results show that the TCFs
implemented as VNFs consume more CPU compared to ANFs. However, both (ANFs and
VNFs) consume the same amount of RAM.

Saturation effect on TCFs: Here, we answer the question “(d)” by exploring the relationship
between the resource saturation (i.e., when CPU and/or RAM are utilized over 90%) and the
TCF performance. As shown in Fig. 3.4 and Fig. 3.5, the CPU saturation has an important
influence on the VNF TCFs performance. From λ = 50, we can see that, on the one hand, the
CPU is used at ≈ 100%, and the pt reaches 5 seconds (Fig. 3.4). On the other hand, the RAM
remains slightly congested because the proposed TCFs are almost stateless and computation
intensive.
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Figure 3.6: Traffic Control Functions Resource Usage.

By reducing the isolation between NFs, we lose strict resource isolation. However, we
decrease the overhead (resource usage, deployment time), reduce the hosting nodes’ complexity,
and increase the number of hosting nodes. ANFs allow End Gateways with low capacity to
accommodate TCFs and therefore to act on (upbound) IoT traffic. Considering, under some
circumstances, the strict isolation as a non-mandatory functionality for the deployment of NFs,
the concept of ANF completes the global toolset that sustains QoS in NIPs. Our approach
aims to dynamically deploy the different TCFs presented in this Section within the platform,
according to resources and requirements changes. Given the task’s complexity, several TCFs can
be considered, but with varying results and deployment opportunities. Section 3.5 presents our
contribution, based on combinatorial optimization heuristics, to decide the best combination
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of TCFs to deploy appropriately to the current context. Section 3.6 presents the method of
evaluating the performance of our contribution, as well as the results obtained.

3.5 Design of QoS4NIP Planner

In this Section, we describe the design of QoS4NIP based on the considerations mentioned
above. QoS4NIP considers the different trade-offs for the autonomous management of QoS in
NIPs. In Section 3.5.1, we describe the considered system model. In Section 3.5.1, we formulate
the QoS model of IoT applications (Latency, Throughput, and Availability), the scaling actions
cost model, and the TCFs deployment resource usage model.

As stated in Section 3.3.3, we formulate in Section 3.5.2 a multiobjective optimization prob-
lem for efficient planning. We propose in Section 3.5.3 a modelization for the problem resolution
(GA-based Constrained Optimization Model). To solve the multiobjective optimization problem,
we explore in Section 3.5.4 the evolutionary strategies and the Pareto front. Finally, we present
in Section 3.5.5, the QoS4NIP planner algorithm.

3.5.1 System Model

Fig. 3.1 depicts the system model used by the multiobjective optimization algorithm presented
in this Chapter. Let the NIP be composed of a set of n TCF (VNF or ANF) hosting nodes
that are already provisioned and are parts of the infrastructure. Let consider that each TCF
or scaling action is associated with a benefit (estimated a priori). This could be justified; for
example, using the classical response time model R = S/(1− U), where S is the node service
time, U is the node (resources) utilization. The execution of a scaling action decreases U and
therefore decreases R. For simplicity, we call this variation (R/Rwith scaling action) the “benefit”
of the scaling action. This benefit, expressed as a percentage (%), describes how the scaling
action influences the QoS on the hosting node. The same applies to the TCFs. For instance,
a benefit of 25% means that the TCF or the scaling action reduces the targeted IoT traffic
Latency by 25% (to the detriment of other traffics that are not targeted).

The joint optimization problem is to find the relevant TCFs to deploy (or remove) on every
node of this set and the scaling actions to execute while optimizing the overall E2E QoS (i.e.,
E2E Latency, Throughput, and Unavailability).

Given a set of z IoT traffics, we compute for each IoT traffic τ : the E2E Latency (denoted
LE2Eτ ), the E2E Throughput (denoted TE2Eτ ), the E2E Unavailability (denoted UE2Eτ ). We
also compute the resource usage associated with the deployment of the TCFs (RUE2E) and the
cost related to the execution of the scaling actions (CostE2E).
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E2E Latency model. As per [Stiliadis 1998], we can easily calculate the E2E Latency as
the sum of all the local Latencies for IoT traffic τ on the n nodes.

(3.3) LE2Eτ =
n∑
i=1

Liτ

In Equation 3.3, we assume a zero-latency for the IoT traffic τ if the benefit ηi (i.e. the sum
of the benefits induced by all the supported TCFs and the scaling actions on the node i) is
greater than 100. Otherwise, the Latency on the node i is (1− ηi%) of the monitored Latency.

(3.4) Liτ =

0 if ηi ≥ 100

δi × (1− ηi%) else

with ηi = ∑p
q=0 fq + ∑m

c=0 ac

q ∈ Fi and c ∈ Ai

E2E Throughput model. The E2E Throughput is the minimum of all the Throughputs
crossed by the IoT traffic τ .

(3.5) TE2Eτ = min(T1τ . . . Tnτ )

We assume that ζi is the sum of the benefits to the Throughput induced by all the supported
scaling actions on the node i. The Throughput on the node i is then the monitored Throughput
added to ζi, if no Scheduler is deployed or if node i does not support Scheduler deployment.
When a Scheduler is on the node i, the Throughput is ωi% of the monitored Throughput added
to ζi.

(3.6) Tiτ =

ρiτ − ζi + 1 if @ scheduler ∨ scheduler /∈ Fi
(ρiτ − ζi + 1)× ωi else

with ωi = 1 + 1
100fscheduler and ζi = 1

100
∑m
c=0 ac

E2E Unavailability model. The E2E Unavailability is the sum of the Unavailability of the
n nodes for the IoT traffic τ .

(3.7) UE2Eτ =
n∑
i=1

Uiτ
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We assume that the Unavailability of node i is zero if there is no Dropper deployed or if node i
does not support the Dropper deployment. If there is a Dropper deployed on the first node (0),
then the Unavailability is the rejection percentage associated with the IoT traffic τ . Otherwise,
the Unavailability is the remaining availability multiplied by the rejection % associated with
the IoT traffic τ .

(3.8) Uiτ =


0 if @ dropper ∨ dropper /∈ Fi
fdropper if i = 0

(1− εi)× fdropper if i > 0

with εi = 1− 1
100

∑i−1
i′=0 Ui′τ

Scaling action execution’s E2E Cost model. The CostE2E is the sum of all the costs
associated with the scaling actions execution on the node i (Costi).

(3.9) CostE2E =
n∑
i=1

Costi

where

(3.10) Costi =


∑m
c=0 Γic if node i support all

the scaling actions

∞ else

TCFs deployment’s E2E resource usage model. The RUE2E , is the sum of all the
resource usage associated with the deployment of TCFs on the nodes.

(3.11) RUE2E =
n∑
i=1

RUi

Where

(3.12) RUi =


∑p
q=0(cpuq(λi) + ramq(λi)) ifβi% ≤ 1

∧γi% ≤ 1

∞ else

with βi = (∑p
q=0 cpuq(λi) +Hicpu) ×

∑m
c=0 ac

and γi = (∑p
q=0 ramq(λi) +Hiram) ×

∑m
c=0 ac
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The CPU and RAM usage of the TCF depend on the request arrival rate λ on the node i.

3.5.2 Multiobjective Problem Formulation

We formulate in this Section a multiobjective optimization problem for efficient planning of
the TCFs (proposed in Section 3.4) and scaling actions execution in the multi-constraint NIP
set-up. Our goal in the formulated problem is to minimize the ratio between the IoT traffic’s
QoS requirement and the QoS provided (E2E Latency, E2E Availability, and E2E Throughput)
by the NIP. The k-objectives problem is formulated as:

(3.13)

minimize F = l1, . . . , lz, t1, . . . , tz, u1, . . . , uz

subject to lτ ≤ 1,∀τ ∈ [1, ..., z],

tτ ≤ 1,∀τ ∈ [1, ..., z],

uτ ≤ 1,∀τ ∈ [1, ..., z]

Where we have

(3.14) lτ = LE2Eτ
LQosτ

(3.15) tτ = TQosτ
TE2Eτ

(3.16) uτ = UE2Eτ
UQosτ

3.5.3 GA-based Constrained Optimization Model

In this Section, we define the “individuals” structure (chromosome). A chromosome is a
solution that combines the execution of scaling actions and TCFs deployment to sustain QoS.
Additionally, we consider the following genetic operators: mutation and crossover.

Genotype. The solutions are represented in a way that they can be easily understood and
manipulated. We define a chromosome as a binary vector Xθ to describe the application of
TCFs or scaling actions to the NIP’s nodes (See Fig. 3.7a). Each Xθ is associated with an
integer matrix Tθ that contains the TCF or scaling actions’ additional information.

(3.17) Xθ = [x1
1, . . . , x

p+m
1 , . . . , x1

n . . . x
p+m
n ]

Particularly, each decision variable xji = 1 if and only if the jth TCF or scaling action is
applied to NIP’s node i. Each decision variable xji is associated with a configuration vector
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(a) Chromosome Xθ.

- 25 2$+1
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(b) Illustration of xji and its associated tji .

Figure 3.7: Genotype Representation.

named tji . The vector tji is represented in Fig. 3.7b and contains the following information:

• tji [1 . . . z]: denotes the decision variable xji effect on all IoT traffics.

(3.18) tji (τ) =

+1 if xji improves the QoS of τ

−1 else

• tji [e]: denotes the proportion of the decision variable xji effect. For instance, tji [e] = 25
means that the decision variable xji can reduce (if tji [τ ] > 0) or increase (if tji [τ ] < 0) the
IoT traffic τ Latency by 25%.

• tji [o]: denotes information to each the decision variable xji .

– In the Redirector gene, tji [o] denotes the number of hops for the class IoT traffic.

– In the Shaper gene, tji [o] denotes the delay time for the class IoT traffic.
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– In the Scheduler gene, tji [o] denotes the scheduling rate for the class IoT traffic.

– In the scale up and scale out genes, tji [o] denotes the cost in USD.

Genetic operators. We consider the classic operators that are enough to create and
maintain the genetic diversity by combining existing solutions into new solutions and to select
between solutions:

• Bit-flip – acts independently on each bit in a solution and changes the value of the bit (0
to 1 and vice versa) with probability Mp, where Mp is a parameter of the operator. The
most commonly prescribed value for this parameter is Mp = 1/l.

• Tournament Selector (Selection) – selects an individual from a population of individuals
by running several “tournaments” among a few individuals randomly chosen from the
population. This operator selects the winner of each tournament (the one with the best
fitness) for crossover.

• Half Uniform Crossover (HUX) – swaps the half of the non-matching bits of two solutions
according to a probability Cp. For this purpose, HUX first calculates the number of
different bits (Hamming distance) between the parents. Half of this number is the number
of bits exchanged between parents to form the two children.

3.5.4 Evolutionary Strategies and Pareto Front analysis

The proposed model above is the starting point in the implementation of a Genetic Algorithm
to optimize the QoS parameters of IoT traffics (Latencies, Throughputs, Availabilities), resource
usage of TCFs, and cost of scaling actions. In this Section, firstly, we present the adopted
evolutionary strategy to compare individuals. Secondly, we offer a discussion on the choice of
the solution in the Pareto front to apply.

Evolutionary strategy. We adopted the evolution strategy for QoS4NIP planner based
on the Hyper-volume calculated from Pareto fronts found by the main algorithms in the
literature and compatible with the formulated problem. We consider the Non-dominated Sorting
Genetic Algorithm II (NSGAII [Deb 2002]), III (NSGAIII [Deb 2014]), and the Strength Pareto
Evolutionary Algorithm 2 (SPEA2 [Zitzler 2001]). The Hyper-volume indicator measures the
volume of the dominated portion of the objective space. It is of exceptional interest, as it
possesses a highly desirable feature called strict Pareto compliance. This feature means that
whenever one approximation completely dominates another approximation, the Hyper-volume
of the former will be higher than the Hyper-volume of the latter.

The largest Hyper-volume was obtained by NSGAII, as shown in Fig. 3.8. The outperfor-
mance of NSGAII on NSGAIII is explainable since our problem is type Knapsack Problems
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(KP). As clearly demonstrated in [Ishibuchi 2016], on multiobjective KP, NSGAII outperformed
NSGAIII. NSGAII will be used for validation purposes in the rest of this Chapter. The reader
may see [Deb 2002] for further details about the NSGAII algorithm.
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Figure 3.8: Hyper-volume measure on the formulated problem with Cp = 100%; Mp = 100%; N
= 200, l = 28.
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Figure 3.9: Speedup achieved by the NSGAII-based evolutionary strategy on the formulated
problem for 3, 10, 20, 50 and 100 IoT traffics (on a Processor Intel (R) Core (TM) i7-7500U
CPU @2.70GHz).

Discussion on the choice of the applied solution. As earlier stated, the presence of
multiple objectives in a problem, in principle, gives rise to a set of optimal solutions. None
of these Pareto-optimal solutions can be considered better than the others in the absence of
additional information. In our context, once the GA finds a Pareto front, a choice must be
made to apply a unique solution to the NIP. We recommend three methods of selection.
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The first method is the Random Selection, which consists of choosing a solution randomly
from the Pareto front. This method is a proper selection since each solution, Xθ, of the Pareto
front has the same probability of being applied to the NIP.

The second method is the QoS objectives-based Selection. This method consists of selecting
a solution to apply to the NIP based on the ranking or weighting of the QoS. For instance, some
non-dominated solutions in the Pareto front lead to request losses for some IoT traffics. The
choice will be towards the solution that discards nothing, even if it proposes higher Latencies
(≤ Lqos).

The last method of selection is the Non-QoS objectives-based Selection. The selection of the
solution to be applied to the NIP is based on Non-QoS criteria, such as the number of scaling
actions and TCFs required by the solution (Complexity-based), or the cost and resource usage
associated with each solution (Cost-based). The following case study on Connected Vehicles
will use this last method (Cost-based).

3.5.5 The QoS4NIP Planner Algorithm

The general workflow of the QoS4NIP planner (NSGAII-based) presented in Algorithm 6 is as
follows.

Algorithm 6: QoS4NIP Planner
// N: Population size
// T: Maximum number of generations
// Xθ: Solution

Input: N ; T
Output: Xθ

1 begin
2 Set t = 0 Initialize P0 and set Q0 = ∅.
3 while t < T do
4 Calculate fitness for Pt and assign rant based on Pareto dominance
5 Perform selection on Pt to fill the mating pool
6 Apply crossover and mutation operators to obtain the offspring population Qt
7 Select the best N non-dominated solution from Pt ∪Qt by the two-step procedure to form Pt+1
8 Set t = t+ 1
9 Set j = 0

10 while j < N do
11 Calculate and save RUE2E [j] for Pt[j]
12 Calculate and save CostE2E [j] for Pt[j]
13 Set j = j + 1
14 indexes ← arg minj=1...N{CostE2E(Pt[j])}
15 index ← arg minj∈indexes{RUE2E(Pt[j])}
16 Xθ ← Pt[index]
17 return Xθ

From lines 2 to 4, the population is initialized randomly, where every individual’s structure
is as proposed in Fig. 3.7a. Then, the fitness value of every solution in the current population is
computed using Equations 3.3, 3.5, 3.7 and the monitoring information (cf. Equations 3.4 and
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3.6). All the individuals of the current population with penalties values are discarded. Once the
fitness is assigned, the population is sorted according to the non-domination individual. Line 5,
the Tournament selector, is applied to the entire population to determine the fittest individuals
of the current population placed into the mating pool. Line 6, new solutions, called offspring, are
generated by applying Bit-Flip Mutation and Half Uniform Crossover to the mating pool. Line 7,
based on the values provided by the ranking scheme, the best individuals from the combination
of the current population Pt and the offspring pool Qt are detected. Those with a lower value
(min) or higher crowding distance are saved in the following population Pt+1. The crowding
distance mechanism is used to preserve the diversity of solutions. It estimates the volume of the
hyper-rectangle defined by two nearest neighbors [Deb 2002]. Suppose some candidate solutions
are of the same rank, and not all can enter the following population. In that case, the less
crowded individuals from a given rank are selected to fit the future population. From lines 9 to
13, the Pareto Front’s scaling action cost and resource usage are calculated. From lines 14 to 17,
using the selection method described in Section 3.5.4, the cheapest solution (Xθ) is returned.
The heuristic time complexity is O(MN2), where M is the number of objectives, and N is the
population size. The plots in Fig. 3.9. have been drawn in logarithmic scales. They show the
speedup in ms as a function of population size.

3.6 Evaluations in a Connected Vehicles Case Study

Most of the data required by Connected Vehicles can be transferred using short-distance
communications. However, numerous use cases depend on information that is not obtainable
within proximity. For these longer communication paths, the cellular network could be a
potential solution for communication between vehicles and vehicles to the network itself, so-
called vehicle-to-network (V2N) communication. As shown in Fig 3.10, we consider three realistic
V2N IoT traffics with different QoS requirements [Boban 2018]. We carried out simulations to
evaluate the effectiveness of the proposed approach against others.

3.6.1 Compared Schemes

The relative performance comparison of the proposed scheme (QoS4NIP) has been carried out
against four other schemes. The first is the standard First-Come-First-Served (FCFS)-based
approach. Unlike the proposed scheme, this approach does not emphasize maintaining QoS
requirements. The second is the autoscaling scheme. To not bias the results, we compared
our scheme with the autoscaling approach without considering a particular implementation in
the literature while trying to show its limits. To do this, the compared autoscaling scheme is
obtained by tuning our planning algorithm to use the scaling actions only and switching off
VNF and ANF deployment.
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In our comparison, we also want to distinguish the costs induced by VNF usage versus ANF
usage, independently of autoscaling. For this purpose, we implemented the two other schemes as
two variants of QoS4NIP, wherein one variant only deploys VNFs, while the latter, additionally,
considers using ANFs on the IoT End Gateways. In the following, the FCFS, the autoscaling
scheme, and the considered variants of QoS4NIP are referred to as FCFS, AS, QoSEF, and
QoSEFe, respectively.

3.6.2 Simulation Setup and Evaluation Parameters
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Figure 3.10: Considered topology for the case study.

Table 3.2 shows Teleoperated driving, Cooperative maneuvers and Traffic efficiency QoS
requirements. All these V2N IoT applications communicate with the actuators and sensors in
the vehicle through “IoT Server”, Cloud “GW C”, Edge “GW C1” and End “GW C11.” In each
test case, the platform is modeled by a snapshot, s0, where no TCF is deployed, and no scaling
action is executed. We implemented all the compared schemes (AS, QoS4NIP, QoSEF, QoSEFe)
in Python using the multiobjective Evolutionary Algorithms library Platypus [Hadka 2017].

Using the results of our previous work [Ouedraogo 2018b, Ouedraogo 2018a], we show the
a priori benefit of each TCF presented in Table 3.3. The scaling actions benefits are considered,
as shown in the work [Hwang 2015b]. For the resource usage parameters (CPU and RAM), we
rely on the performance model of ANF and VNF presented in Section 3.4.
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V2N
Application Description QoS Requirements

T L A

Teleoperated driving An external operator drives the vehicle using a
live-stream video. 25 20 99

Cooperative
maneuvers

A set of vehicles communicating and behaving as a
system for performing coordinated actions. 10 100 99

Traffic efficiency Optimization of traffic parameters (traffic lights, speed
limit, etc.). 10 1000 90

Table 3.2: Representative V2N applications. T= Throughput in req/sec (request size = 1Mb);
L= Latency in ms; A= Availability in %.

The four considered schemes for comparison (AS, QoSEF, QoSEFe and QoS4NIP) are
initialized with the snapshot of the FCFS scheme, s0 (presented in Table 3.4), corresponding to
a number of objectives = 9, N = 200, Cp = 100%, and Mp = 1; with n = 4, p = 5, m = 2, and
l = 28 (i.e. n× (p+m)). The Server and the Cloud “GW C” are experiencing CPU and RAM
bottlenecks - their resource usage (Hiram and Hicpu) are 90%. The Edge “GW C1” and the End
“GW C11” are experiencing low resource usage - their resource usage (Hiram and Hicpu) are 10%.
The resource usage of the VNFs is [20-30]%. The resource usage of the ANFs is [5-10]%. The
scale up and scale out cost per node is fixed to 0.3 USD (corresponding to an “AWS r4.large”
price in march 2020).

Benefit Description
Classification 0% Deploy a classifier on an node
Redirection 0% Deploy a redirector on an node
Scheduling 35% [Ouedraogo 2018b] Deploy a scheduler on an node

Shaping 35% [Ouedraogo 2018b] Deploy a shaper on an node
Dropping 41% [Ouedraogo 2018b] Deploy a dropper on an node
Scale out 50% [Hwang 2015b] Replicate an node
Scale up 50% [Hwang 2015b] Double resources of an node

Table 3.3: Benefits parameter settings

QoS offered to applications at s0
Teleoperated driving Cooperative maneuvers Taffic efficiency
L (ms) T (req/sec) L (ms) T (req/sec) L (ms) T (req/sec)

Server 5 25
30 10 100 10Cloud “GW C” 10

Edge “GW C1” 5 20
End “GW C11” 25

Table 3.4: Initial snapshot s0 parameter settings

3.6.3 Evaluation Metrics

The reconfiguration plan, we refer to here, are those proposed by the solutions associated with
the different schemes. The evaluation metrics used to assess the proposed approach are defined
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as follows:

• E2E Actions Cost and E2E Resource Usage: respectively, the End-to-End costs computed
from Equation (3.9) and the End-to-End resource usage to sustain the QoS computed
from Equation (3.11).

• E2E Latency: End-to-End solutions Latency of Teleoperated driving, Cooperative maneu-
vers and Traffic efficiency, computed from Equation (3.3).

• E2E Availability: End-to-End solutions Availability of Teleoperated driving, Cooperative
maneuvers, and Traffic efficiency is 1 minus the End-to-End solutions Unavailability
(denoted UE2Eτ ), computed from Equation (3.7).

• E2E Throughput: End-to-End solutions Throughput of Teleoperated driving, Cooperative
maneuvers and Traffic efficiency, computed from Equation (3.5).

3.6.4 Observations

This part discusses the results we obtained. We compare the E2E Actions Cost, the E2E
Resource Usage, the E2E Latency, the E2E Availability, and the E2E Throughput in the FCFS
scheme with the results obtained from the schemes AS, QoSEF, QoSEFe, and QoS4NIP.
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Figure 3.11: Relative E2E Reconfiguration Cost and Resource Usage.

The E2E Actions Cost and E2E Resource Usage. Fig. 3.11 shows the obtained Pareto
Front. The associated cost in the FCFS scheme is 0 because no TCF is deployed, and no action
is currently performed on the considered NIP set-up. In the AS scheme, the cost ranges from
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Figure 3.12: Selected E2E Reconfiguration Plan (Xθ).
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Figure 3.15: E2E Throughputs.

0.21 to 1.0 (0.25 to 1.2 in USD), and the resource usage remains 0 since no TCF is currently
deployed on the considered NIP set-up. The QoSEF scheme does not induce any cost, and
resource usage ranges from 0.62 to 0.63. In the QoSEFe scheme, using ANFs, resource usage
has been reduced to range 0.34 to 0.38. In the QoS4NIP scheme, by combining the AS scheme
and the QoSEFe scheme, the resource usage is between 0.1 and 0.58, and the cost is between
0.1 and 0.76 (i.e., 0.12 and 0.912 in USD).

The Cost-based solution selection, discussed in Section 3.5.4, is applied for the FCFS, AS,
QoSEF, QoSEFe and QoS4NIP schemes. In general, the (CostE2E , RUE2E) are, respectively
(0, 0), (0.21, 0), (0, 0.62), (0.34, 0), and (0.1, 0.1). The cost of the AS scheme is about two times
higher than QoS4NIP (i.e., we have 50% financial cost-saving). Fig. 3.12 shows the selected
E2E reconfiguration plan of each scheme. The FCFS scheme is to do nothing. The AS scheme
performs scale Out Cloud “GW C” and Edge “GW C1”. The QoSEF scheme deploys the
following VNFs: on the Edge “GW C1” a Classifier, a Scheduler; on the End “GW C11” a
Classifier, a Scheduler and a Shaper. The QoSEFe scheme deploys the following ANFs: on the
End “GW C11”, a Classifier, a Shaper, a Scheduler; and, on the Edge “GW C1”, two VNFs: a
Classifier, and a Scheduler. The QoS4NIP scheme performs scale Out on the Edge “GW C1”. It
deploys, on the End “GW C11”, the following ANFs: a Classifier, a Shaper, and a Scheduler.

QoS provided by the optimized reconfiguration plans. Fig. 3.13 shows the provided
E2E Latencies by the optimized reconfiguration plan of QoS4NIP versus other schemes. In the
FCFS scheme, the E2E Latency for Teleoperated driving is 25 ms and 120 ms for Cooperative
maneuvers, which does not meet their requirements, 20 ms and 100 ms, respectively. Only in
this scheme, the Traffic efficiency’s required E2E Latency is reached (400 ms ≤ 1000 ms). In
the other schemes (AS, QoSEF, QoSEFe, QoS4NIP), the E2E Latencies required by the IoT
traffics are sustained. However, we observe that the AS scheme provides much more than what
is required by the IoT traffics. For instance, for Teleoperated driving, the AS scheme provided
10 ms E2E Latency, which is less than what is supported by the IoT traffic, and that is where
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we see that the QoSEF, QoSEFe, and QoS4NIP schemes do better. Only by differentiating the
processing between the IoT traffics, the schemes QoSEF and QoSEFe make it possible to answer
the required E2E Latencies of all the IoT traffics. The result is an increase in the E2E Latency
of the Traffic efficiency (≈ 600 ms), which always remains under the tolerable E2E Latency
limit (under 1000 ms). The proposed QoS4NIP scheme provided the best E2E Latencies, except
for Traffic efficiency, where the AS scheme provided low E2E Latency (200 ms).

Fig. 3.14 plotted the proposed E2E Availability by the optimized reconfiguration plan of
QoS4NIP versus other schemes. In the FCFS and AS schemes, the E2E Availability is 100%.
The fact that these schemes do not deploy droppers explains this value. However, in schemes
QoSEF, and QoSEFe, the E2E Availability is 90% for Cooperative maneuvers and Traffic
efficiency, due to the use of a dropper (rejecting 10% of the targeted traffic). In QoS4NIP, the
E2E Availability is 99% for Cooperative maneuvers and Traffic efficiency, due to the use of a
dropper (rejecting 1% of the targeted traffic). Teleoperated driving being of the most demanding
in QoS, its traffic is not dismissed. The E2E Availability provided by all schemes always remains
under the tolerable threshold.

Fig. 3.15 shows the provided E2E Throughput of QoS4NIP versus other schemes. E2E
Throughput required by Teleoperated driving is not met in the FCFS scheme. In the AS scheme,
the provided E2E Throughput is much higher than the IoT traffic’s requirement, which is not a
cost-optimal plan. The schemes based on differentiation (QoSEF, QoSEFe, and QoS4NIP) use
schedulers and provide the closest E2E Throughput regarding the IoT traffic’s requirements.
For instance, the QoS4NIP scheme provided to the Teleoperated driving an E2E Throughput of
25 req/s which is required.

We can conclude from these simulations that the available resources can limit the QoSEF
and the QoSEFe scheme’s effectiveness in the NIP set-up. The AS scheme is effective but has
not optimal costs. The QoS4NIP seems to be the best way to enable QoS for NIPs by taking
advantage of the service differentiation and the autoscaling combination to overcome the above
limitations of both schemes separately considered.

3.7 Considered hypotheses

We make the following considerations about the problem at hand. First, the NIP’s nodes in the
Cloud/Edge are VMs and can be easily scaled (up and out). The NIP’s nodes at the network
End (End Gateways) are mainly hardware nodes. In rare cases, an End Gateway can be a VM
located in a data center. Since the VMs are in the Cloud/Edge, the physical server’s available
capacity is supposed unlimited, as considered in the literature. For example, some IaaS providers
are now proposing Cloud/Edge joint offers, where the limited capacity in the Edge data center
is mitigated through continuous offloading to Cloud data centers. Oppositely, we consider
that all reconfiguration plans generated by QoS4NIP must respect the limitation of resource
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capacities inside the NIP’s nodes. Second, we consider only the NIP-level QoS regardless of the
underlying IP network performance (consisting of routers and switches). Thereby, the system
model does not consider the network-level Latency. Third, the scaling decisions are considered
binary since QoS4NIP aims to minimize the scaling cost. “Zero,” meaning no scaling action is
necessary, and “One” meaning a scaling action is unavoidable. This allows us to be accurate
in our comparison by considering the “lowest boundary” of the autoscaling approach with a
minimal cost of “one new instance” at once (the non-compressible cost). Finally, we assume
that only one instance of any TCF can simultaneously run on a NIP’s node, and when a scale
out is applied to a NIP’s node, the associated TCF will be deployed both on the initial instance
and on the new replicate. We did not consider applying different TCFs during the scale out for
the following reasons. We aim to maintain consistency in handling IoT traffic. When a node is
scaled out, a load-balancer is deployed upstream of the node’s instances. Upon the arrival of
a request, this load-balancer redirects this request to any node instances with no distinction.
Applying different TFCs to instances would lead to an inconsistency problem for the IoT traffic
handled by that node. That would result in different processing rules for requests arriving at
the same (scaled-out) node. Considering such a direction will break the standard management
rules for resource scaling. Indeed, we assume that using the standard management rules for the
scaling of the nodes, executing different TFCs in instances would be technically not sound: the
scaling manager can delete any instances regardless of the TCFs executed. For these reasons,
we consider, in our contribution, that any instance of a scaled-out node will process the arriving
requests as decided by QoS4NIP regardless of the number of running instances. Considering
the same TCFs in all instances of a given node allows us to be in line with the standard scaling
approaches that proceed by deploying identical instances when scaling out a given node and by
removing any instance when scaling-in.

3.8 Integration in the Autonomic Manager

In a real scenario, as described in Section 3.6, the proposed planner, called QoS4NIP, is located
on top of the NIP’s monitoring system. This follows the autonomic architecture model of
[Kephart 2003]. QoS4NIP is invoked periodically and takes the monitoring information as
inputs. The output of QoS4NIP is a reconfiguration plan represented by a binary vector.
The configuration enforcement component [Kephart 2003] performs this reconfiguration and
considers the current configuration. For instance, when the QoS4NIP reconfiguration plan
includes deploying a given TCF on a particular NIP’s node, and if this given TCF is already
deployed, nothing happens. Otherwise, the TCF will be deployed. The same applies when the
QoS4NIP reconfiguration plan does not include the deployment of a given TCF on a particular
NIP’s node (this TCF will be removed). QoS4NIP handles a scaled out/up node, virtually, as a
unique node with i) resized resource in case of scaling-up, and ii) combined resources in case of
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scaling-out.

3.9 Conclusion

We have proposed in this Chapter a new cost-effective approach combining the advantages of
the Traffic Control Functions (TCFs) deployed as NFs and the autoscaling of the virtualized
processing resources. We considered the specific and challenging case of the NFV-enabled IoT
Platforms (NIPs), where de facto heterogeneity is stressed by the emerging context of the
recent networking technologies for routing and connectivity, the computation infrastructure for
processing and storage, and the varying constraints of data producers and consumers’ devices. We
considered the horizontal NIPs that increase the heterogeneity by addressing the cross-domain
interoperability. We implemented our approach on top of OM2M, the reference implementation of
the international standard oneM2M [oneM2M 2016]. We showed by emulating different scenarios
of the domain of Connected Vehicles that the classical systematic scaling can be avoided while
fitting the required End-to-End QoS requirements for both common and potentially critical IoT
traffics. We considered the different QoS parameters (Latency, Throughput, and Availability)
and the Cloud resource usage cost that we handled in a multiobjective optimization approach.
We implemented TCFs that we deployed as Network Functions (NFs), which are appropriate to
the capacity limits of the NIPs’ nodes. We implemented a scheme, QoS4NIP, that efficiently
combines the scaling actions and traffic management.

In the next Chapter, we take a deeper look at the bottleneck identification in IoT platforms.
The aim is to analyze the root causes of the degradations to orientate the planner to search for
a solution properly. The logic for answering this question will be implemented in the analyzer
(see Fig. 3.16).

Autonomic Manager

Software-defined IoT Platforms
(Chapter 4)

Monitor

Analyzer
(ML)

Chapter 4
Planner

ExecutorKnowledge 
Base

Sensors Effectors

Figure 3.16: Building of the Analyzer in the Chapters 4.
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4.1 Introduction

In general, meeting the strict QoS requirements of IoT applications through effective
performance diagnosis remains an inescapable challenge [White 2017]. Indeed, the in-
tegration of IoT Platforms, traditionally vertical to shared horizontal platforms, gives

rise to performance bottlenecks, challenging to detect and mitigate. Performance diagnosis
is a two-step process: we first seek to detect QoS violations, and secondly determine the
causes of this violation,i.e., the bottlenecks1 in terms of performances (e.g., CPUs satura-

1A bottleneck is a resource or an application component that limits the performance of a system [Gregg 2013].
[Malkowski 2009b] describes a bottleneck component as a potential root-cause of undesirable performance
behavior caused by a limitation (e.g., saturation) of some significant system resources associated with the
component.
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tions) associated with the resource of the NIP responsible for the assumed violation. This
second step is known as the performance analysis step. This Chapter focuses on this second
step, when a violation has already been detected using, for instance, methods presented in
[Qiu 2018, Schmidt 2018, Li 2018, Yu 2019]. Solving this analysis problem requires real-time
collection and analysis of data characterizing the NIP’s performance. This data collection can
be massive, and as a result, can induce negative impacts on the performance of the NIP (e.g.,
use of bandwidth, computing resource, and storage resource) and on the reasoning time of the
analysis method. Because of recent advances in the industry and the literature, we can draw
the following observations. First, there are over 80 types of metrics available to monitor in an
NIP deployed on a public cloud such as AWS (using EC2 VMs2). Second, these metrics induce
not negligible monitoring overhead3.

In an ideal scenario, the overhead of collecting data increases with a constant value per
access. Following [Waller 2014], three causes of overhead are common to most application-level
monitoring frameworks (i) instrumentation of the system under monitoring, (ii) collection of
monitoring data (iii) writing or transferring the collected data. Finally, these metrics have
different impacts on the efficiency of the analysis of bottlenecks [Wang 2018]. In this context,
and considering a maximum overhead not to be exceeded (i.e., monitoring overhead budget),
we formulated the following research question:

“How to determine the metrics that maximize the efficiency of NIP performance
analysis and lead to a minimum cost for an allocated monitoring overhead budget?”

We seek to build an adaptive method that optimizes the bottlenecks analysis performance
regarding a monitoring overhead budget associated with the different available metrics by
answering this question.

The significant contributions of this Chapter are summarized below.

• We model the problem of Multiple Bottlenecks Identification (MBI) in NIPs as a Multi-
Label Classification (MLC) problem, and we propose a classification of main categories of
bottlenecks in NIPs;

• We propose an Overhead-sensitive Metrics Selection Algorithm to answer the research
question. This Algorithm is a heuristic that selects a subset of relevant metrics for a given
monitoring overhead.

2https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/metrics-collected-by-CloudWatch-
agent.html

3 Monitoring overhead is the amount of additional usage of resources by monitored execution of a program
compared to a regular (unmonitored) execution of the program. In this case, resource usage encompasses the
utilization of CPU, memory, I/O. Monitoring overhead concerning execution time is the most commonly used
definition of overhead
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• We build a virtualized platform prototype implementing the experimental testbed to
gather a training dataset. We also design the testbed to provide a training set that is
representative of the real-world situation.

• We develop different supervised ML algorithms to identify the bottlenecks. We numerically
evaluate these MBI models using the collected data.

• We implement the proposed SOMS to find which metrics should be considered for the
efficiency of the NIP analysis while optimizing the performance of the MBI model, not to
label as positive a sample that is negative and evaluate its performance.

The remainder of the Chapter is structured as follows. Section 4.2 presents an adaptive
performance analysis use case to be considered and evaluated. Section 4.3 discusses the related
work. Section 4.4 details the system model. Section 4.5 describes the proposed methodology to
tackle the multiple bottlenecks identification problems in NIPs with an allocated monitoring
overhead budget. Section 4.6 presents the experimental setup. Section 4.7 is devoted to the
evaluation of the proposed approach. Section 4.8 describes how the proposed approach is
implemented in a real scenario. Finally, our work results, its limits, and future work are
discussed in the Conclusion Section.

4.2 Motivating use case

We present here an adaptive performance analysis use case to be considered and evaluated.
In this use case, we assume that the NIP service provider wants a flexible trade-off between
the efficiency of the analysis and the monitoring overhead. The monitoring overhead can
be translated into a financial cost (i.e., the number of metrics observed proportional to the
number of messages transmitted by second). In the Cloud-to-Thing continuum, [Brogi 2017],
the availability and capacity of the resources, namely computation, storage, and connectivity,
decrease when moving from the Cloud toward Things. Typically, the IoT End Gateways,
located close to Things, are small devices with limited processing, storage, and connectivity
capabilities. In this work, we consider the monitoring overhead is inversely proportional to
available resources when moving from the Cloud toward Things (i.e., from the Cloud Server
to the IoT End Gateways). We consider 3 situations where the allocated overhead budget
fluctuates in time: unlimited budget, modest budget, and austere budget. As depicted in Fig.
4.1, we define the following scenarios based on the Chicago taxi trips dataset provided by the
City of Chicago’s open data portal4. The overhead budget is unlimited in the first scenario
(unlimited overhead budget between 7h-20h). In the second scenario (a modest overhead budget
between 5h-7h and 20h-23h), the overhead budget is relatively limited. The overhead budget

4Chicago data portal. https://data.cityofchicago.org
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is severely limited in the third scenario (austere overhead budget between 0h-5h). Below we
describe each scenario.
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Figure 4.1: Chicago Millennium Park taxi signal counts by hour of the day for Monday, February
06, 2017.

• Unlimited budget scenario: We first investigate the case where the overhead budget is
Unlimited. This scenario occurs during the rush hours in Fig. 4.1 where the taxi signal
number exceeds a thousand. During this period, we assume that the NIP service provider
wants the efficiency of the analysis at its highest and does not set a limit to the monitoring
overhead. Consequently, the best metrics subset that maximizes the efficiency of NIP
performance analysis will be selected regardless of the associated overhead. In this scenario,
the useless or irrelevant metrics will still be discarded.

• Modest budget scenario: Let ωu be the overhead induced by the selected metric subset
in the previous scenario (Unlimited budget scenario). In a second time, we investigate
the case where the overhead budget is 50% of ωu. This scenario occurs during the hours
where the taxi signal number is between five hundred and one thousand (see Fig. 4.1).
We assume that the NIP service provider may tolerate an efficiency smaller than in the
previous scenario during this period. The NIP service provider’s primary concern is a
trade-off between the efficiency of the analysis and the monitoring overhead. The result
of this scenario is selecting the best metrics subset that maximizes the NIP performance
efficiency of the analysis with a minimum cost compatible with the 50% of ωu monitoring
overhead.

• Austere budget scenario: Pushing further second scenario, we analyze the trade-off between
the efficiency of analysis and the monitoring overhead in this third scenario. We assume
that the NIP service provider may tolerate even lesser efficiency than in the previous
scenario. This scenario occurs during the hours where the taxi signal number is lower
than five hundred (see Fig. 4.1). The overhead budget is 25% of ωu. Consequently, the
best metrics subset that maximizes the efficiency of the NIP performance analysis with a
minimum cost compatible with the 25% of ωu monitoring overhead will be selected.
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When analyzing this use case, the desired efficiency of analysis is not the same over time.
This is why we must make adjustments accordingly to the monitoring budget.

4.3 State-of-the-Art

Several fields, such as traditional IP Networks [Yan 2012], Cloud Computing [Weng 2018],
and Big Data [Zhou 2018], consider the multiple bottlenecks identification problem. Moreover,
regarding NFV, most of the existing works consider the fault detection problem or the fault
recovery problem in the fault management framework (see [Solé 2017] for more detail). Nev-
ertheless, few works deal with the fault localization problem (i.e. bottlenecks identification
problem). In this Chapter, since we only aim to contribute to this domain for the IoT context,
we consider the reference contributions made in the literature. In the following, we present a
literature review analysis on NFV-enabled IoT Platforms, including IoT which is an essential
aspect of the proposed work.

Sauvanaud et al. propose, in [Sauvanaud 2016] and [Sauvanaud 2018], an approach to detect
the Service Level Agreements (SLAs) violations and initial symptoms of SLAs violations. In
their approach, authors consider a fault injection tool to train a supervised learning algorithm
to pinpoint the root anomalous VNF causing SLA violations. Experiments were performed in a
virtual IP Multimedia Subsystem (Clearwater) testbed. Similarly, Gonzalez et al. propose, in
[Gonzalez 2017] an offline machine learning-based method for the automatic identification of
dependencies between system events, enhanced with summarization, operations on graphs, and
visualization that help network operators identify the root causes of errors. Cui et al. explain,
in [Cui 2017] an analytic model based on the Cyclic Temporal Constraint Network (CTCN),
which aims at the fault analysis of cyclic computer networks using temporal information. The
proposed model relies on a given “predetermined candidate fault causes” to determine the most
likely fault cause(s) with a given time interval(s) of occurrence(s). Cotroneo et al. describe, in
[Cotroneo 2017b] an approach to detect problems affecting the QoS, such as overload, component
crashes, avalanche restarts, and physical resource contention in production NFV services. The
method infers the service health status by collecting metrics from multiple elements in the
NFV service chain and by analyzing their (lack of) correlation over time. Experiments were
performed on an NFV-oriented Interactive Multimedia System. Cotroneo et al. propose, in
[Cotroneo 2017a] a dependability benchmark to support NFV providers at making informed
decisions about which virtualization, management, and application-level solutions can achieve
the best dependability. Authors define the use cases, measures, and faults to be injected. Their
experiments, conducted in an IMS case study, suggest that the container-based configuration
can be less dependable than the hypervisor-based one and point out which faults NFV designers
should address to improve dependability. Additionally, authors describe in [Cotroneo 2018]
potential guidelines for evaluating the reliability of NFV Infrastructures (NFVIs), intending
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to verify whether NFVIs satisfy their reliability and performance requirements, even in the
presence of faults. The described guidelines are practices to be followed in terms of inputs,
activities, and outputs. These practices are intended to be conducted by NFV designers that
want to evaluate the reliability of their NFVI against quantitative performance, availability,
and fault tolerance objectives and to get precise feedback on how to improve its fault tolerance.
Zhang et al. explain, in [Zhang 2018] a deep learning-based fault analysis method to predict a
virtual network’s failure. The proposed deep learning model enables the earlier failure prediction
by using a Long Short-Term Memory (LSTM) network, which discovers the long-term features
of the network history data. Mariani et al. propose, in [Mariani 2018] a fault localization
approach based on machine learning and graph theory. In the proposed approach, the machine
learning models are trained with correct executions only and compensates for the inaccuracy
that derives from training with positive samples, the outcome of machine learning techniques
with graph theory algorithms. Pfitscher et al. propose, in [Pfitscher 2019] a model based on
queuing networks theory to quantify the guiltiness of each VNF on degrading the performance
of a network service. A hybrid algorithm based on linear regression and neural networks is also
introduced to adjust the model’s parameters according to the environment particularities, such
as the type and number of VNFs in the service. Experimental evaluations confirm the ability of
the model to detect bottlenecks and quantify performance degradations. Tola et al. describe,
in [Tola 2019] an approach to estimate the end-to-end NFV-deployed service availability, and
present a quantitative assessment of the network factors that affect the availability of the service
provided by an NFV architecture. The proposed approach considers a two-level availability
model where (i) the low level considers the network topology structure and NFV connectivity
requirements through the definition of the system structure function based on minimal-cut sets
and (ii) the higher level examines dynamics and failure modes of network and NFV elements
through stochastic activity networks. Bouattour et al. propose, in [Bouattour 2020] a model
to identify the noise source in a virtualized infrastructure. First, an anomaly detection model
based on unsupervised learning is proposed to identify the machines that are in an abnormal
state in the infrastructure. An investigation of the cause is later achieved by searching, with a
supervised learning algorithm, how anomalies are propagated in the system.

The existing literature lacks attention to NIP from three perspectives. First, to the best of
our knowledge, no existing work in NFV-enabled IoT Platforms considers taking into account
the fact that multiple bottlenecks may arise among several resources in these platforms (i.e.,
the multiple bottlenecks identification problem). Second, none of the current studies consider
the cost and the differentiated contribution of the metrics used to operate the analysis. Thirdly,
no approach considers the cost of the analysis (which we discuss here under the term “budget”).
Note that the other works do not address it because it is not necessary for their considered
contexts. However, in our context (i.e., IoT), this cost cannot be ignored due to the limitation
of resources in the node close to objects.
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In that direction, our contribution’s main originality consists of combining several changes in
the traditional approach to handle bottlenecks identification problem. The first change (Section
4.5.1) consists of considering that multiple bottlenecks may arise among several resources in
NIPs. The second change (Section 4.5.2) consists of considering adapting the monitored metrics
to the strict minimum that allows practical bottlenecks analysis in NIPs. We use the term
“monitoring overhead budget” and “overhead budget” interchangeably in the latter.

4.4 System Model
In this Section, we propose a model for the considered system. For convenience, Table 4.1 lists
the main notations.

Names Meanings
B Number of possible bottlenecks
Ct Observation cycle
D Multi-bottleneck training set
Fk Flow k of messages
h Hypothesis to optimize
m Number of samples
Mk Message on Fk

Nk Set of network functions composing a Pathk
Ok Monitoring overhead of every performance metric
op,n Value of the monitoring overhead associated to the metric p on nfn
p Performance metrics p
P Number of performance metrics
Ψ Optimization criterion
S Set of metrics without a metric θp,n

Θk Decision variable regarding which performance metrics is actually monitored
θp,n Value of the decision variable associated to the metric p on nfn
Xk The monitored performance related to Fk during Ct
xp,n Mean value of the time series associated to the metric p on nfn during a Ct
Y True Bottlenecks
Ŷ Diagnosed Bottlenecks
fnj False negative of the j-bottleneck
fpj False positive of the j-bottleneck
nfn NF n in Nk

Pathk Path k

tnj True negative of the j-bottleneck
tpj True positive of the j-bottleneck

Table 4.1: Notations

4.4.1 NIP Model

In our work, we handle the NIPs that implement the common reference architectures, such as
oneM2M [oneM2M 2016]. We consider that NFV-I in the Cloud/Fog/Edge node Virtualized
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Network Functions (VNF), Application Network Function(ANF) [Ouedraogo 2020] and Physical
Network Functions (PNF) offering the NIP service to the IoT Application and IoT devices.

Fig. 4.2 depicts the NIP model used in this Chapter. A set of Network Functions (NF)
make up this platform. In this ecosystem, the applications send their messages to the nodes
of the platform. Then, the latter route them to other nodes or the objects containing the
requested resources. For instance, when the IoT Application APP1 sends a message to the NF1
node requesting a resource available on Dev1, the message will then be routed successively
to the NF2, NF3, NF4, NF5, and NF6. This application-level routing is done according to
the REST architectural style, which most current IoT service providers implement (ex: AWS
IoT Core, Microsoft Azure IoT, oneM2M). To facilitate the presentation of the performance
analysis system, we define an NIP to consist of a set of flows F1, F2, F3, ..FK . A flow Fk is a
set of Mk successive messages Fk = {msg1,msg2, . . . ,msgMk

} exchanged between a source and
a destination nodes. Each flow Fk will be routed through a predetermined Pathk. Pathk is
composed of a set of Nk network functions; Pathk = {nf1, nf2, . . . , nfNk}. The source and the
destination of a flow Fk are denoted as FkS and FkD , respectively. Hence, each network function
may process several messages during a single observation cycle of Ct.

NIP CPU 
Bottleneck ?

NF1 NF2 NF4 NF5 NF6

Application1

Applicationz

Bottlenecks

Monitoring Data

NIC 
Bottleneck ?

Cloud Fog Edge
 (Dedicated nodes, 
PC, Smartphone)
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SDNSDN Legacy 
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Adaptive Performance Analysis

 Thing1

 Thingz

NFV-I
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Figure 4.2: System Model

4.4.2 Performance Monitoring Model

For each NF (nfn) in the NIP, we propose to monitor P performance metrics (e.g., CPU, Disk
I/O). The monitored performance related to a flow Fk is denoted Xk.
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(4.1) Xk =



nf1 nf2 · · · nfNk

x1,1 x1,2 · · · x1,Nk
x2,1 x2,2 · · · x2,Nk

...
... . . . ...

xP,1 xP,2 · · · xP,Nk


where:

xp,n= is the mean5 value of the time series associated to the metric p on node n during a cycle
Ct.

All the performance metrics are not necessarily monitored. Indeed, let Θk be the decision
variable regarding which performance is monitored.

(4.2) Θk =



nf1 nf2 · · · nfNk

θ1,1 θ1,2 · · · θ1,Nk
θ2,1 θ2,2 · · · θ2,Nk

...
... . . . ...

θP,1 θP,2 · · · θP,Nk


where :

(4.3) θp,n =

1 if the performance metric p on nfn is monitored

0 otherwise

Let Ok be the monitoring overhead of every performance (considered in the NIP) on each
NF nfn for a flow Fk.

(4.4) Ok =



nf1 nf2 · · · nfNk

o1,1 o1,2 · · · o1,Nk
o2,1 o2,2 · · · o2,Nk

...
... . . . ...

oP,1 oP,2 · · · oP,Nk


where:

op,n is the monitoring overhead of the performance metric p on nfn.

5For simplicity, we consider the mean value among a wide variety of others statistics extracted from the time
series.
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4.5 Adaptive Performance Analysis

In traditional computer systems (e.g., as modeled by queuing theory), a typical assumption
is that their workloads consist of independent jobs. This assumption, which is valid for old-
style batch-oriented processing and interactive users, guarantees the appearance of single
bottlenecks for an entire system. Single bottlenecks can be relatively easily identified since
they appear as resources reaching saturation. The “independent jobs” model does not hold
for NIPs that rely on a different architecture style. Today’s NIPs are pipelines of processing
components, e.g., web servers, application servers, and database servers, introducing several
strong dependencies among components. These dependencies may lead not only to one single
bottleneck but potentially to multiple bottlenecks distributed throughout the whole system
[Malkowski 2009b]. Indeed several works, such as [Battré 2010, Malkowski 2009a], consider an
approach allowing to analyze multiple bottlenecks in a single run. We propose to explore this
approach in this work.

Our proposed method is intended to overcome the limitations described in Section 4.7. As
indicated in the introduction, this work’s fundamental objective is to determine which metrics
should be considered for the best efficiency of the NIP analysis, given a tolerated overhead
budget. First, the proposed method must identify the bottlenecks. This identification’s output
is human readable and is represented by a binary vector Y to describe the presence or not of
bottlenecks in the Flow Fk. Second, the proposed method identifies the most relevant metrics
to collect in a given scenario (i.e., with a tolerated overhead budget). To this end, an approach
built on supervised learning is employed. Based on an MLC Algorithm, a feature selection
wrapper algorithm (SOMS) is used to measure the relevance of a given metric (i.e., its role in
determining the bottlenecks).

Some definitions need to be made clear to understand the proposed approach. Based on
[John 1994], we classified metrics into three disjoint categories: strongly relevant, weakly relevant,
and irrelevant. Let g(·) be the SOMS algorithm learning hypothesis and let S = Θk − {θp,n}
be a set of metrics without a metric θp,n. These categories of relevance can be formalized as
follows.

Strong relevance: A metric θp,n is strongly relevant iff

(4.5) g(Θk) > g(S)

Weak relevance: A metric θp,n is weakly relevant iff

(4.6)
g(Θk) = g(S) , and

∃S′ ⊂ S , such that g(Θ′k) > g(S′)
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Irrelevance: A metric θp,n is irrelevant iff

(4.7) ∀S′ ⊆ S, g(Θ′k) ≤ g(S′)

The strong relevance indicates that the metric is always necessary for an optimal subset; it
cannot be removed without affecting the efficiency of the analysis. Weak relevance suggests that
the metric is not needed but may become necessary for an optimal subset at certain conditions.
Irrelevance indicates that the metric is not needed at all. An optimal subset should include all
strongly relevant metrics, none of irrelevant metrics, and maybe a subset of weakly relevant
metrics.

As depicted in Fig. 4.3, the proposed methodology is as follows.

NF0 Metrics
NF1 Metrics

NF2 Metrics
NF3 Metrics

NF0 Metrics
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Figure 4.3: Adaptive Performance Analysis Method

Off-line Training In a supervised learning approach, there is a training step. In this step,
the Adaptive Performance Analysis infers two functions g(·) (e.i. SOMS) and h(·) (e.i. MBI)
from the training dataset. In the SOMS Algorithm (see Algorithm 7) each new subset is used to
train and test a MBI model. Training a new model for each subset is computationally intensive
but provides the best performance [Jović 2015] and is the only approach directly applicable
to multilabel dataset [Tsoumakas 2009]. After training SOMS Algorithm, the found optimal
subset is sent to the Metrics management component, and only these metrics will be active for
the Online prediction step. The associated h(·) is also transferred to the Online MBI.

Online Prediction Once the optimal subset is found in the training step; the predictions
are made online. When the Monitoring (see Chapter 2) component catches a QoS violation,
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the corresponding data on the violation is gathered, and the Online MBI is invoked to identify
the Bottlenecks.

4.5.1 Multiple bottlenecks identification (MBI)

Multiple bottlenecks identification (or Fault isolation) in IoT platforms is challenging because
of the interactions between different network entities (e.g., wireless sensors, gateways) and
protocols. The multiple bottlenecks identification problem can be viewed as an MLC problem.
We try to categorize the detected QoS violations into one or several of the existing bottleneck
classes carefully arranged by an expert. In machine learning, a typical classification problem
aims to extract models from training data with known class labels to predict the test data
categories of which the class labels are unknown.

To formally describe the MLC problem, suppose X = RP×Nk denotes the (P ×Nk)-
dimensional instance space, and Y = y1, y2, . . . , yB denotes the bottleneck space with B

possible bottlenecks. We define yi as a possible bottleneck (property of the IoT platform
node) that may have caused the detected QoS violations. Let a multi-bottleneck training set
D = {(Xi

k, Y
i)|1 ≤ i ≤ m} be independently and randomly drawn according to an unknown

probability distribution P(X,Y ) on X×Y . For each multi-bottleneck example (Xi
k, Y i), Xi

k ∈ X
and Y i ⊆ Y is the set of bottlenecks associated with Xi

k. The goal in MBI model is therefore
to induce from D a hypothesis h : X → Y that optimizes a criterion Ψ(Y, Ŷ ) when it provides
a vector of relevant bottlenecks Ŷ = h(X0

k) = (h1(X0
k), h2(X0

k), . . . , hB(X0
k)) for any unseen

instance X0
k .

Remark that the criterion Ψ is not necessarily unique. Indeed several criteria were retained
to evaluate the MBI model (see Section 4.7.1).

4.5.2 Simple Overhead-sensitive Metrics Selection (SOMS)

In this Section, to answer which metrics subset should be considered for the efficiency of the
NIP analysis , we present a SOMS. The proposed SOMS Algorithm select a subset of relevant
metrics for a given overhead budget. Formally, SOMS solve the following optimization problem:

(4.8)
optimize g = 1

m

m∑
i=1

Ψ(Y i, h(Xi
k �Θk))

subject to ωadmin ≥ ω

where:

• ωadmin is the overhead budget tolerated by the NIP administrator for a flow Fk.

• ω (see Eq. 4.9) is the total monitoring overhead for a flow Fk,
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In Eq. 4.8:

(4.9) ω =
P∑
p=1

Nk∑
n=1

(Θk �Ok)p,n

The Overhead-sensitive Metrics Selection is an optimal subset selection problem (aka best
subset selection). In general, this problem (i.e optimal subset selection) is nonconvex and is
known to be NP-hard [Natarajan 1995]. For this problem, we propose a heuristic based on
the Forward Sequential Selection search strategy [Reunanen 2006] that has been proven to
constitute an efficient method to provide suitable near-optimal solutions in a short amount of
time (see Section 4.6). This strategy follows a wrapper approach [Kohavi 1997]. The general
work-flow of the SOMS Algorithm is presented in Algorithm 7.

From lines 1 to 4, Θk is initialize with a P × Nk Zero matrix, r is initialize with 0, and
set of best metric Sb is set to ∅. Then, until the set of all metrics is reached, the Algorithm
explored different combinations of metrics (Line 5). In line 6, the Algorithm initializes the set of
evaluations of different combinations to ∅. For each possible combination, from line 7 to 10, add
the p metric on node n, evaluate the combination. In line 12, find the best combination. From
line 13 to 17, was this combination the best of its size found so far? If no, switch to the best one;
if yes, take the combination, store the newly found subset. In line 19, backtrack until better
subsets are found. In line 20, initialize the set of evaluations of different combinations. From
lines 21 to 25, repeat each possible combination, prune the p metric on node n, evaluate the
combination, and find the best combination. In line 26, was a better subset of size r − 1 found?
If yes, backtrack and store the newly found subset; if no, stop backtracking. In line 31, reached
the best subset with the maximum monitoring overhead one can afford (i.e., the overhead
budget)? If yes, return Sb (the set of best metric found); if no, continue. The evaluation of the
different combinations of metrics is performed from lines 34 to 39. In line 35 the monitoring
overhead w is Compute from Equation 4.9 with Θk and Ok. From line 36 to 39, can one afford
the selected metrics? If yes, cross-validate the MBI model h(·) (see Section 4.5.1) with the
combination of metrics and return the score; if no, return a penalty score.

4.6 Experimental Setup

To solve the formulated problem in a supervised learning fashion, we build a testbed to collect
a training dataset. The testbed was designed to provide a training set that is representative
of the real-world situation. In this Section, we offer a detailed description of the experimental
testbed and the bottleneck injection campaign. We also perform an analysis of the collected
multilabel dataset.
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Algorithm 7: Simple Overhead-sensitive Metrics Selec-
tion

// h: MBI model
// X: Metrics
// Y : Bottlenecks
// wuser: Tolerated overhead budget
// Ok: Metrics overhead
// Sb: Optimal subset

Input: X, Y , wuser, Ok
Output: Sb

1 begin
2 Θk ← 0P,Nk
3 k ← 0
4 Sb ← ∅
5 while r < P ×Nk do
6 Sr ← ∅
7 foreach {(p, n) | Θkp,n = 0} do
8 Θ∗k ← Θk

9 Θ∗kp,n ← 1
10 Sr(p, n) ← evaluate(X,Y ,Θ∗k)

11 r ← r + 1
12 (p, n) ← arg maxSr(·)
13 if Sr(p, n) ≥ evaluate(X,Y ,Sb(r)) then
14 Θk ← Sb(r)
15 else
16 Θkp,n ← 1
17 Sb(r) ← Θk

18 backtracking ← True
19 while r > 2 and backtracking=True do
20 Sr ← ∅
21 foreach {(p, n) | Θkp,n = 1} do
22 Θ∗k← Θk

23 Θ∗kp,n ← 0
24 Sr(p, n) ← evaluate(X,Y ,Θ∗k)

25 (p, n) ← arg maxSr(·)
26 if Sr(p, n) < evaluate(X,Y ,Sb(r − 1)) then
27 r ← r − 1
28 Θkp,n ← 0
29 Sb(r) ← Θk

30 else backtracking ← False

31 if Sb(r) = penalty then break

32 return Sb

33

34 function evaluate(X,Y ,Θk)
35 Compute ω from Equation 4.9 with Θk and Ok.
36 if ωadmin ≥ ω then
37 s ← crossValidate(h,X[:, vec(Θk)],Y )
38 else s ← penalty
39 return s
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4.6.1 Testbed

We deployed on a virtualized platform a prototype implementing the experimental testbed (see
Fig. 4.4) consists of nine node machines: Applications (Apps) node, Devices (Devs) node, NF1
(SRV) node, NF2 (GW1) node, NF3 (GW11) node, and NF4 (GW111) node.

        Control LAN

                                     Monitoring

DevsApps NF1
(SRV)

NF2
(GW1)

NF4
(GW111)

NF3
(GW11)

Dataset
N

IP

Bottleneck
Injector

Data LAN (IoT Traffic)

Test Automation

Figure 4.4: Experimental Setup.

Table 4.2 describes the resources allocated to each node.

NF vCPU RAM (GB) Disk (GB) Match
Applications (Apps) 1 0.5 10 AWS “T2.micro” instance

Devices (Devs) 1 0.5 8 Raspberry Pi 1 Model B computer
NF1 (SRV) 2 2 15 AWS “T2.medium” instance

NF2 (GW1) 1 1 10 AWS “T2.micro” instance
NF3 (GW11) 1 1 10 AWS “T2.micro” instance

NF4 (GW111) 1 0.5 8 Raspberry Pi 1 Model B computer

Table 4.2: Experimental testbed resources description

The testbed is composed of Virtual Machines (VMs) running on Ubuntu server 16.04. A
JMeter6 Server is running in the Devices (Devs) node and produces the IoT workload with
a request arrival rate of 20 requests per second. The considered IoT Platform is the Eclipse
open-source OM2M7. The NIP nodes communicate through the Data LAN. The monitoring
data are collected by the Zabbix8 open-source monitoring software. The bottlenecks injection

6Apache JMeter is an Apache project that can be used as a load testing tool for analyzing and measuring
various services’ performance, focusing on web applications (https://jmeter.apache.org).

7The Eclipse OM2M project, initiated by LAAS-CNRS, is an open-source implementation of oneM2M and
SmartM2M standard (https://www.eclipse.org/om2m)

8Zabbix is an open-source monitoring software tool for diverse IT components, including networks, servers,
virtual machines (VMs), and cloud services (https://www.zabbix.com).
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and remediation are performed by VMware Mangle9. The experiments are performed by an
automation script (Test Automation). The Test Automation script gathers and stores in the
Dataset the monitoring data (from Zabbix) and the injected bottlenecks (from VMware Mangle).
The commands and the monitoring data are sent through the Control LAN.

4.6.2 Bottlenecks Injection Campaign

Eight bottleneck types are considered and distinguished according to the NF resource they
impact. They are referred to as CPU, Memory, Disk I/O, Disk space, Packet delay, Packet
corruption, Packet duplication, and Packet loss. The NFs selection probabilities follow a uniform
distribution (i.e., each NF has the same probability of being selected). The injection campaign
corresponds to the execution of Algorithm 8 that periodically performs bottleneck injections
in NFs. An injection is defined by the targeted NF, its bottleneck type, intensity level, and
duration. During a campaign, two consecutive injections are separated by µ (mean time
between bottlenecks). A campaign consists of injecting all combinations of injections. Campaign
parameters are as follows: target NFs listed in Nk, bottleneck types listed in Bt and their
occurrence frequency listed in Bp, intensity levels listed in Bi, duration values listed in Dv and
their selection probabilities listed in Dp. To perform the multiple bottlenecks injection, we use
Algorithm 8.

Algorithm 8: Multiple Bottlenecks Injection
// Nk: Set of Network Functions
// Bt: Bottleneck Types
// Bp: Occurrence frequency of Bottlenecks
// Bi: Bottleneck intensities
// Dv: Duration values
// Dp: Probabilities of Duration
// µ: Mean time between bottlenecks
// Bids: Injected bottlenecks IDs

Input: Nk, Bt, Bp, Bv, Dv, Dp, µ
Output: Bids

1 begin
2 while injection do
3 bt ← Choose a value in Bt following the distribution Bp
4 t ← Choose a value in Dv following the distribution Dp
5 n ← Choose a value in Nk following a uniform distribution
6 bi ← Bi(bt)
7 id ← CallMangleAPI(n,bt,t,bi)
8 Bids ← Append(id)
9 Wait(µ)

10 return Bids

This Algorithm (8) is executed by the Test Automation script. From lines 3 to 6, the targeted
NF, its bottleneck type, its intensity level, and its duration are selected according to their

9Mangle enables you to run chaos engineering experiments seamlessly against applications and infrastructure
components to assess resiliency and fault tolerance (https://vmware.github.io/mangle).
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associated probabilities. In line 7, the VMware Mangle component is invoked to perform the
injection. In line 8, the injection information is collected and stored in the dataset. In line 9,
the Algorithm waits µ time before another injection begins. Remark that the injection duration
should be long enough to collect sufficient observations while short enough for the injection
duration to be realistic.

Name Bp Bi Description
CPU 20 90% High CPU utilization
Memory 15 90% High Memory utilization
Disk I/O 12 5MB High disk I/O utilization
Disk space 12 90% High disk space utilization
Packet delay 11 200ms High NIC usage creating additional delay
Packet duplicate 10 10% High NIC usage creating packet duplication
Packet corrupt 10 10% High NIC usage creating packet corruption
Packet loss 10 10% High NIC usage creating packet loss

Table 4.3: Injected Bottlenecks during the campaign

Table 4.3 describing the injected bottlenecks during the campaign. The bottlenecks duration
values are {60, 90, 120}. The probabilities Dp associated to the duration are {0.5, 0.3, 0.2}. The
last campaign parameter µ is set to 30 seconds.

4.6.3 Overview of Multilabel Dataset
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Time (minutes)

Packet loss
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Packet delay
Packet corrupt
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Disk space

Disk I/O
CPU

NF1
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Figure 4.5: Thirty-minute sample of injected bottlenecks per NF (NF1, NF2, NF3, NF4).

As presented in Fig. 4.5, multiple bottlenecks were injected in the considered testbed. The
campaign last for 24h. With an observation cycle Ct set to 10 seconds, we gathered 8640 training
samples. The number of collected metrics per NF P = 26. Over the whole testbed P ×Nk = 104
metrics were collected. For a complete list of the monitored metrics, see Appendix A. The
number of bottlenecks is 8 per NF for a total of B = 32. The bottlenecks cardinality (i.e., the
average number of bottlenecks per example in the dataset)is 1.960, and the bottlenecks density
(the number of bottlenecks per example divided by the total number of bottlenecks, averaged
over the samples) is 0.061. The bottlenecks frequency in the dataset per by NF is presented in
Fig. 4.6.
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Figure 4.6: Bottlenecks frequency in the dataset per by NF.

4.7 Evaluation

4.7.1 Efficiency Criteria

Although the analysis result has multiple outcomes that can be classified into positive or
negative, such a grouping enables one to represent the comparison between a test and its
reference standard in one 2× 2 table, as depicted in Table 4.4.

True Bottlenecks

Diagnosed Bottlenecks True Positive (tp) False Positive (fp)
False Negative (fn) True Negative (tn)

Table 4.4: Confusion Matrix

Table 4.4 the abbreviations tp, fp, fn, and tn denote the number of respectively true
positives, false positives, and false, and true negatives. The terms “True Positive”, “False
Positive,” “True Negative,” and “False Negative” refer to the presence or absence of bottlenecks
and the correctness of the classification. The same definitions are used throughout the Chapter.
For each j-bottleneck the tpj , fpj , fnj , and tnj are defined as follows.

(4.10) tpj =
m∑
i=1

1(Ŷ i
j = 1 and Y i

j = 1)

(4.11) fpj =
m∑
i=1

1(Ŷ i
j = 1 and Y i

j = 0)

(4.12) fnj =
m∑
i=1

1(Ŷ i
j = 0 and Y i

j = 1)
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(4.13) tnj =
m∑
i=1

1(Ŷ i
j = 0 and Y i

j = 0)

As stated in the motivation Section, in this work, we are interested in a MBI model that
avoids false positive bottleneck. The Subset accuracy is not the most important criteria to
consider for the proposed method efficiency. We use the positive predictive value (a.k.a precision)
to indicate the probability that the NIP has the identified bottleneck in the case of a positive
test. The ideal value of the precision, with a perfect test, is 1, and the worst possible value
would be 0. The average precision (ΨPrecision) is therefore defined as follows.

(4.14) ΨPrecision = 1
B

B∑
j=1

tpj
tpj + fpj

Nevertheless, the Subset accuracy, and Coverage Error, are reported and discussed. The
Subset accuracy measures the set of bottlenecks predicted for a sample that exactly matches
the corresponding set of bottlenecks in Y . Coverage Error measures the average number of
bottlenecks that have to be included in the final prediction, such as all true bottlenecks are
predicted. The Coverage Error is useful if one wants to know how many top-scored-bottlenecks
the MBI model has to predict on average without missing any true one.

(4.15) ΨSubset accuracy = 1
m

m∑
i=1

1(Ŷ i = Y i)

For a given prediction Ŷ i the estimated rank of the label j is denoted by ri(j). The most
relevant label takes the top rank (1), and the last one only gets the lowest rank (B).

(4.16) ΨCoverage Error = 1
m

m∑
i=1

max
j∈Yi

ri(j)

Additionally, the Sensitivity, and Specificity, are reported to illustrate the performance of
the classification models. Sensitivity measures the proportion of true positives that are correctly
identified. Specificity measures the proportion of true negatives. Both ratios are independent of
the bottleneck distribution in the dataset.

(4.17) ΨSpecificity = 1
B

B∑
j=1

tnj
tnj + fpj
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(4.18) ΨSensitivity = 1
B

B∑
j=1

tpj
tpj + fnj

The Area Under the receiver operating characteristic Curve, or AUC (ΨAUC), is used in
the literature to compare the performance of classifiers. The AUC has a crucial statistical
property: the AUC of a classifier is equivalent to the probability that the classifier will rank a
randomly chosen positive instance higher than a randomly chosen negative example. It is used
for three specific purposes: determine the cutoff value with the highest Sensitivity and Specificity,
evaluate the discriminating capacity of an analysis model, and compare the discriminative
ability of different analysis models. The AUC is desirable for the following two reasons: AUC is
scale-invariant (i.e., It measures how well predictions are ranked, rather than their absolute
values; AUC is classification-threshold-invariant (i.e., It measures the quality of the model’s
predictions irrespective of the chosen classification threshold). In this way, the ΨAUC values
are helpful in our context to select the classification model to analyze the bottleneck. The best
value of ΨAUC is 1, and the worst value is 0.

(4.19) ΨAUC =
∫ 1

x=0
ΨSpecificity((1−ΨSensitivity)−1(x)) dx

Below, we present the MBI and the SOMS evaluations.

4.7.2 Multiple bottlenecks identification (MBI)

There are two main approaches [Zhang 2013] to accomplish an MLC: problem transformation
and algorithm adaptation. The former aims to produce a problem that can be processed with
traditional classifiers (e.i, Single or Multiclass Classification). Conversely, the latter’s objective
is to adapt existing classification algorithms to work with the MLC problem. Among the
transformation methods, the most popular are those based on the MLC problem’s binarization
(i.e., Binary Relevance, Classifier Chain, and the Label Powerset). These transformation methods
produce a multiclass problem from an MLC problem considering each label set as a class. There
are algorithms based on nearest neighbors in the algorithm adaptation approach, such as
ML-kNN. Selecting the right MLC Algorithm is the next step to solve the considered problem.

We consider the ML-kNN, the Binary Relevance, the Classifier Chain, and the Label
Powerset. We adopted the MLC Algorithm for the MBI model based on the ΨAUC. As in the
literature, we use 75% of the collected data for training the different MBI models and 25%
for the evaluations. In problem transformation algorithms (Classifier Chain, Binary Relevance,
Label Powerset), a Multi-layer Perceptron is used as a base classifier.

The models were trained with scikit-multilearn [Szymański 2017]. In Fig. 4.7 (a) - (d) four
curves are shown. The diagonal line (Random Classifier) shows the performance of a random
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Figure 4.7: MLC Receiver operating characteristic and AUC (ΨAUC). (a) ML-kNN; (b) Binary
Relevance; (c) Classifier Chain; (d) Label Powerset.

guess. An intuitive example of random guessing is a decision by flipping coins. Points above
the Random Classifier line represent good classification results (better than random); points
below the line represent bad results (worse than random). The second Curve (Minimum Area)
corresponds to the ROC of the smallest of AUC. The third Curve (Average Area) corresponds
to the average ROC of all the bottlenecks. The fourth Curve (Bottleneck curve) presents
each ROC of the bottlenecks. The best ΨAUC (average value = 0.987 and minimum value
= 0.964) was obtained by Label Powerset, as shown in Fig. 4.7 (d). Label Powerset is a problem
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transformation approach that transforms a multilabel problem into a multiclass problem with
one multiclass classifier trained on all unique label combinations found in the training data.

ML-kNN Binary Relevance Classifier Chain Label Powerset
Precison 0.8388 0.8753 0.8671 0.8253
Subset accuracy 0.5278 0.5366 0.5454 0.6611
Coverage Error 13.3852 12.5731 12.4852 9.5255
Specificity 0.9906 0.9921 0.9918 0.9891
Sensitivity 0.6791 0.7036 0.7048 0.7357

Table 4.5: Multi-label Classifiers Performance Comparison (with Hyper-parameter optimization)

Additionally, as presented in table 4.5, the Label Powerset Algorithm performs better in
ΨSubset accuracy (0.6611), ΨCoverage Error (9.5255) and ΨSensitivity (0.7357) than ML-kNN, Binary
Relevance and Classifier Chain. However Binary Relevance has the higher score in ΨSpecificity

(0.9921) and in ΨPrecision (0.8769). Label Powerset Algorithm will be used for validation purposes
in the rest of this Chapter. The reader may see in [Tsoumakas 2009] for further details about
the Label Powerset algorithm.

In Fig. 4.8 we present a deeper look into the Label Powerset Algorithm performance. Fig.
4.8 (a) shows the bottlenecks identification precision grouped by NF and Fig. 4.8 (b) shows
the NF identification precision grouped by bottlenecks type. In Fig. 4.8 (a), the Algorithm
can identify with a minimun precision > 0.81 the Memory bottleneck (average is 0.89 and
median is 0.89), Disk space bottleneck (average is 0.86 and median is 0.86), Disk I/O bottleneck
(average is 0.83 and median is 0.82), CPU bottleneck (average is 0.82 and median is 0.81).
It can also identify with a minimun precision > 0.72 Packet duplicate bottleneck (average is
0.79 and median is 0.77), Packet delay bottleneck (average is 0.77 and median is 0.77), Packet
corrupt bottleneck (average is 0.77 and median is 0.77), Packet loss bottleneck (average is 0.75
and median is 0.74). From a NF perspective (see Fig. 4.8 (b)), the Algorithm can identify all
the bottlenecks on the NF4 with an average precision of 0.82 (minimun is 0.75 and median
is 0.81), on NF2 with an average precision of 0.81 (minimun is 0.72 and median is 0.81), on
NF1 with an average precision of 0.81 (minimun is 0.72 and median is 0.79), on NF3 with an
average precision of 0.81 (minimun is 0.75 and median is 0.80). The average precision for the
all bottleneck is 0.82.

In the Section below, we evaluate the SOMS Algorithm in the Adaptive Performance
Analysis use case described in Section 4.2.

4.7.3 Simple Overhead-sensitive Metrics Selection (SOMS)

In this Section, we evaluate how the SOMS Algorithm finds which metrics should be considered
for the efficiency of the NIP analysis while optimizing the MBI model’s ability to minimize
the false positives (i.e., the precision). Let assume, for evaluation purpose, that the monitoring
overhead increases by 0.5 moving from the Cloud to Things – the monitoring overhead is set to
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Figure 4.8: Label Powerset Model precision (ΨPrecision). (a) Bottlenecks identification precision
grouped by NF; (b) NF identification precision grouped by Bottlenecks.
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Figure 4.9: SOMS Algorithm precision.

0.5 on NF1, 1 on NF2, 1.5 on NF3, 2 on NF4. As stated in Section 4.2, in three scenarios, the
overhead budget changed in time: Unlimited overhead budget, Modest overhead budget, and
Austere overhead budget. The SOMS Algorithm is implemented in Python 3. We use 75% of
the collected data for Algorithm training and 25% for the evaluation.

In Fig. 4.9, SOMS Algorithm removes or adds metrics at the time based on the MBI
performance, until it reached all the metrics. The line (Best metric Selection) presents the
progression of the precision (ΨPrecision) during the SOMS Algorithm execution. The numbers of
selected metrics and the monitoring overhead are shown on the first x-axis and the second x-axis.
When all the metrics are selected, the precision of the MBI model is 0.83. In an Unlimited
Budget scenario, the maximum precision is reached at 81 metrics with a monitoring overhead of
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ωu = 100.5. The remaining 23 metrics are irrelevant and do not increase precision. The Modest
Budget scenario’s monitoring overhead ωadmin is set to 50.25. The best subset metric compatible
with this budget contains 38 metrics for a monitoring overhead of ω = 44. The Austere Budget
scenario’s monitoring overhead ωadmin is set to 25.125. The best subset metric compatible with
this budget is 22 metrics for a monitoring overhead of ω = 24.5. The maximum precisions in
the different scenarios are 0.84, 0.83, and 0.83 respectively, for the Unlimited Budget scenario,
the Modest Budget scenario, and the Austere Budget scenario. Note that the precision of the
Unlimited Budget scenario is greater than the initial precision (where all metrics are selected)
of the MBI model. This is explained by the fact that some (irrelevant) metrics act as noise on
the model and degrading its performance.
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Figure 4.10: Performance in different scenarios. (a) Subset accuracy; (b) Coverage error; (c)
Sensitivity; (d) Specificity.

We present an in-depth look at the performance associated with different scenarios. As
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Fig. 4.10 shows, in addition to the MBI model precision, other criteria are considered: Subset
accuracy, Coverage error, Sensitivity, and Specificity. The first criterion considered is the Subset
accuracy (ΨSubset accuracy). In Fig. 4.10 (a) When all the metrics are selected the Subset accuracy
is 0.65. When the best metric subset is selected in the Unlimited Budget scenario, the Subset
accuracy is 0.66. Remark that by carefully selecting the reverent metrics, the SOMS Algorithm
increases the MBI model Subset accuracy. In the Modest Budget and the Austere Budget
scenarios, the Subset accuracy is 0.64. In Fig. 4.10 (b) the different Coverage Error are displayed.
With all the metrics, the Coverage Error is 9.85, while in the Unlimited Budget scenario, the
Coverage Error is lower (9.38). In the Modest Budget scenario, the Coverage Error is 9.57. In
the Austere Budget scenario, the Coverage Error is 9.65. Fig. 4.10 (c) the different Sensitivity
are displayed. The Sensitivity when all the metrics are considered is 0.81, while when carefully
selecting the reverent metrics (in the Unlimited Budget scenario), the Sensitivity is 0.83. In the
Modest Budget and Austere Budget scenarios, the Sensitivity is 0.84. Fig. 4.10 (d) the different
Specificity are displayed. The Specificity when all the metrics are considered is 0.98, while when
carefully selecting the reverent metrics (in the Unlimited Budget scenario), the Specificity is
0.99. In the Modest Budget and Austere Budget scenarios, the Specificity is 0.98.

4.7.4 Discussion

As earlier stated, our goal in this Chapter is to build an Adaptive Performance Analysis
method that optimizes the bottlenecks analysis performance regarding a monitoring overhead
budget associated with the different available metrics. The proposed method relies mainly
on two machine learning models: the MBI and the SOMS. The MBI model is used for the
multiple bottlenecks analysis, and the SOMS model is used for the metric selection optimization.
Regarding the MBI model selection, we benchmark five multilabel algorithms. The results show
that the compared algorithms demonstrate good performance. However, the Label Powerset
outperformed in Coverage Error, showing that on average, we need to go down to the 9th
bottlenecks (ranked) to cover all the relevant bottlenecks of the sample. Hence the Subset
Accuracy and the Sensitivity results justify using Label Powerset as a base algorithm for the
MBI model.

To achieve the metric selection regarding a monitoring overhead budget, we have proposed
SOMS (a feature selection heuristic). SOMS optimize the MBI model precision. By analyzing
the results, we observe that the precision criterion is not sufficient to decide on the choice
of metrics in the different scenarios. Indeed, other criteria such as the Subset accuracy, the
Coverage error, the Sensitivity, and the Specificity are important to take into account to choose
adaptively (in time) the best subset of metrics (see Fig. 4.10). The proposed method exhibited
high performances for the considered use case in the presence of different bottleneck types.
The SOMS Algorithm determines the metrics that maximize the efficiency of the analysis and
have a minimum overhead compatible with an allocated overhead budget. Nevertheless, our
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approach shares all supervised learning algorithms’ intrinsic limitations regarding the need to
have a representative and complete training dataset to make a useful analysis. Accordingly, the
method is likely to be less efficient if an unknown bottleneck occurs during operation. This
problem can be mitigated by frequently re-training the models (MBI and SOMS) with the data
collected continuously from the NIP.

The computational complexity of Label Powerset is upper bounded by O(min(m, 2B)), but
is usually much smaller in practice [Tsoumakas 2010]. The SOMS Algorithm computational
complexity is upper bounded by O(2P×Nk) [Doak 1992].

Our numerical results show that 81 metrics give the maximum precision (84%) of the MBI
model. Up to 83% can be achieved even with a relatively limited metrics subset of 22 metrics.
Regarding these experimental results, it is possible to conclude that our approach gives valuable
information to make decisions about the NIP bottlenecks to improve the QoS.

4.8 Integration in the Autonomic Manager

As presented in Chapter 2, the following components interact with the Autonomic Manager
The Monitoring component [Kephart 2003] that collects the details from the managed NIP via
monitoring agents (Sensors). The details include data such as topology information, QoS, and
performance metrics. The Autonomic Manager retrieves and stores these collected data for
analyzing purposes. The planner component [Kephart 2003] provides the mechanism to schedule
and perform the necessary changes to the NIP. Once the planner has generated an adaptation
plan, some actions may need to be taken to modify the state of one or more NIP nodes. The
following components interact within the Autonomic Manager. The Knowledge base component
stores the data. The knowledge base includes topology information, historical logs, metrics,
IoT applications information, and the allocated overhead budget. The Monitoring component
uses simple models, such as time-series forecasting, to detect the violations on IoT applications’
QoS. The Monitoring component is continuously invoked. The output of Monitoring component
is performance data associated with a QoS violation. The Adaptive Performance Analysis
(Analyzer) components analyze the non-trivial dependency in the provided data to analyze
the bottlenecks causing a detected violation. This component is invoked by the Monitoring
component when it detects a QoS violation (see Section 4.5). The Planner component (see
[Ouedraogo 2020]) determines the set of candidate actions to recover from identified bottlenecks.
The planner is in charge of increasing (or decreasing) the number of metrics to be observed
in the NIP. Let us remark that such functionality is not implemented by the current version
of the QoS4NIP planner. This component is invoked by Analyzer component every time the
selected metrics subset is updated.
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4.9 Conclusion

To summarize, we have proposed in this Chapter a new overhead-sensitive approach for multiple
bottleneck identification in NIPs. This approach combines a multilabel classification algorithm
(Label Powerset) and a metrics selection algorithm called SOMS. We considered the specific
and challenging case of the NFV-enabled IoT Platforms (NIPs), where de facto heterogeneity
is stressed by the emerging context of the recent networking technologies for routing and
connectivity, the computation infrastructure for processing and storage, and the varying
constraints of data producers and consumers’ devices. We considered the horizontal NIPs that
increase the heterogeneity by addressing the cross-domain interoperability. We implemented
our approach on top of OM2M, the reference implementation of the international standard
oneM2M [oneM2M 2016]. We showed by emulating different scenarios where the overhead
budget varies. Using all the platform metrics may increase the model’s generalization error by
keeping irrelevant features or noise. We hope this study provides valuable insights into how
one can adaptively analyze performance bottlenecks in NIPs (i.e., determine the proper metric
subset to collect) while efficiently controlling the induced monitoring overhead. The following
Chapter concludes the thesis and summarizes the major contributions while highlighting future
research directions and perspectives.
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5.1 Conclusion

5.1.1 Summary

In recent years, the IoT has evolved at an exceptional speed, making it possible to connect
a large number of heterogeneous things (such as sensors, actuators, smartphones, appli-
cations). One of the important aspects of this IoT is the IoT platform (a.k.a middleware),

the objective of which is to connect remote devices to user applications and manages all the
interactions between the hardware and the applications. Today, there are many proprietary
solutions on the market, which remain very specific to their manufacturer and application
area. This makes the applications very dependent on hardware and software (e.g., sensors of
a particular brand, specific development environments), and therefore difficult to deploy and
maintain. This induces a “vertical” fragmentation of the IoT solutions offered. Fortunately, many
initiatives have led to the specification and implementation of several “horizontal” platform
solutions. If heterogeneity seems to be resolved at the platform level, that of QoS remains
an open problem until today. Besides, such a platform is so complex that a high degree of
autonomy is needed to overcome several challenges.

Considering the current limitations (discussed in Chapter 2) on the QoS management in IoT
platforms, we addressed in this thesis the lack of an approach that can, autonomously, handle
the scale and resource scarcity of today’s IoT platforms and sustain QoS to IoT Applications.

We investigated a general approach that consists in designing, developing, and experimenting
with behavioral models for autonomous management of QoS in the IoT platform: i) taking
advantage of the technological opportunities offered in the Cloud-enabled infrastructures (i.e.,
the dynamic deployment of network functions, programmable networks), ii) taking advantage
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of the technological opportunities offered by the dynamic deployment of software components,
iii) and following autonomous computing concepts.

5.1.2 Thesis Contributions

The summary of the thesis contributions is presented below.

• Beyond and in addition to the classic concept of VNF, in our first contribution, we
proposed the concept of ANF, which is based on a software isolation technique that
consumes fewer resources. ANFs allow the deployment of network functions in resource-
constrained environments, typically on end gateways of IoT platforms. They also lead to
optimal use of available resources. On this basis and to maintain at the best level the
QoS required by IoT applications, we have designed a set of IoT TCF implemented as
VNF and ANF.

• To achieve an optimal deployment of these TCFs, our second contribution consisted in the
formulation of a multi-objective optimization problem. The proposed and the implemented
solution takes into account both the deployment of TCFs and scaling actions, intending
to optimize the QoS of IoT applications. We investigate GA to solve this problem. The
proposed algorithm relies on the bottlenecks (such as CPU, RAM) of the platform nodes,
first provided manually by a human administrator.

• In a third contribution, we then turn to the automated identification of these bottlenecks.
To do this, we proposed an adaptive identification approach that considers the cost
associated with the monitoring of the IoT platform. Indeed, it is not desirable that the
overhead generated by the monitoring system itself causes QoS problems in the IoT
platform. We modeled the problem of identifying multiple bottlenecks by a multi-label
classification problem. Different supervised learning algorithms have been studied to solve
this problem. Finally, we proposed an algorithm for selecting metrics to monitor in IoT
platforms according to the costs they generate.

5.2 Perspectives

During the thesis, we have faced various challenges. Future research directions can be summarized
as follows.

5.2.1 Short-term research directions

In the short term, we are considering the following avenues of research.
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• Implementation of a proof of concept prototype: All the proposed algorithms in
this thesis were proven and evaluated through either theoretical analysis, partial proto-
typing, or extensive simulations. Although the reaction time of the different components
for the MAPE-K loop, taken into account in the design stages and guided the selection
of families or types of algorithms in all of our contributions. However, these means are
insufficient to prove the real performances. Therefore, we plan to implement the algorithms
into a real MAPE-K loop.

• ANF large-scale experimentation testbed: The limited number of ANF-hosts
prevent us from a large-scale measurement campaign of the proposal’s experiments. A
real-world deployment in a broader scale environment would need to deploy a large
number of ANF-hosts. Today, such resources are not yet available, unlike the NFV-I that
can be deployed at a significant scale by provisioning a high number of VM (e.g., Amazon
EC2 VMs). A potential future work to solve this issue is deploying an open crowd-sourced
testbed for large-scale experimentation.

5.2.2 Medium term research directions

In the medium term, we are considering the following avenues of research.

• Traffic Control Functions parameter configuration: The current QoS4NIP planner
in Chapter 4 considers only the optimization of NFs (VNF/ANF) chaining to be deployed
and scaling actions. It does not go further into finding the optimal parameter configuration
for all these actions (scaling the NF with different sizes, adapting the loss rate within the
Shaper, adapting the timeout limit, the queue reservation rate, and the other parameters
for the other functions). It would also be interesting to extend the current planner to
configure the TCFs parameters optimally.

• Metrics Selection Problem Formulation: A line of future research would be to
formulate a multi-objective problem to take into account multiple criteria in the SOMS
algorithm. It would also be interesting to extend this method to consider a hybrid approach
combining supervised and unsupervised learning algorithms (e.g., based on the clustering
of observations like in our previous work in [Morales 2019]), and take advantages of the
benefits of each of these distinct algorithms while mitigating their weaknesses to identify
known bottleneck as well as an unknown bottleneck. Considering the injected bottleneck
types investigated in our experiments, it was assumed that they are representative of the
manifestation of a large set of bottlenecks located in the NFs. We still need to assess the
representativeness of such bottleneck types.
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5.2.3 Long-term research directions

In the long term, we are considering the following avenues of research.

• Distributed QoS management: Huge chunk of current research focus is on centralized
control loops. Modern IoT platforms are inherently distributed with components spanning
multiple physical domains (servers or datacenters). Data collection across such domains is
often impractical or difficult due to potential system overheads, proprietary, and privacy
regulations. This implication calls for a decentralized approach that fits naturally with
such platforms.

• Multi-level QoS management: Current efforts must extend towards the QoS man-
agement in IoT platforms at different OSI levels considering the complexity of today’s
infrastructure and application. For example, it should be possible to identify bottlenecks
from a set of higher and lower level application service components through the virtualiza-
tion layer to system resource bottlenecks. Similarly, reconfiguration planning should focus
on the application layer and be extended to the transport and network layers. Promising
future research would be to implement the proposed solution in this thesis to handle the
full OSI stack.
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VNFs Implementation Details in Docker

We develop a prototype of the traffic functions in Java 8. Two service layer protocols are
supported in this implementation: Constrained Application Protocol (CoAP) and Hypertext
Transfer Protocol (HTTP). Moreover, we based the service layer protocols implementation
on public optimized Open-Source libraries: Californium (https://www.eclipse.org/californium)
for CoAP and Apache HTTP (https://httpd.apache.org) for HTTP. After the compilation
of source code, the binaries of the TCFs are built into Docker images (Ubuntu 16.04). The
associated VNF packages are created and onboarded in the ETSI-MANO OpenBaton and ready
to be deployed as VNFs. IP traffic redirection, when necessary, is done using Software-defined
networking (SDN) by adding Openflow rules on the NFV-I interconnection switches via the
NFV-I SDN controller REST API.

ANFs Implementation Details in Eclipse OM2M

OM2M nodes are developed following a modular architectural style based on the OSGi standard
[Alliance 2018]. Thanks to this implementation, it is possible to integrate our ANFs as OSGi
Bundles. Our integration approach is achieved so that the OM2M node maintains its modular
design and operates without these new ANFs. An OM2M node (in-cse or mn-cse) is com-
posed of the following components: Core, Binding, Persistence, and Interworking Proxy Entity
(IPE). The Core component is responsible for processing generic requests and responses (i.e.,
protocol-agnostic messages). It implements features such as Registration, Discovery, Re-routing,
Notifications. The Binding components act as translators of protocol-specific messages to generic
messages and vice versa. A Binding component is necessary for every supported protocol (i.e.,
HTTP, CoAP). The Persistence components are responsible for implementing the data storage
strategy. There is an interface component and supported storage locations (in-memory, file, or
server databases). Similar to the Binding components, they provide a translation of generic
messages into non-IP (i.e., Bluetooth, ZigBee, Z-Wave) messages and vice versa.

To achieve this integration, we had to consider two options: (1) to re-implement the Binding
components and Interworking Proxy Entity components of a node to add a new interface to
be used for the communication with ANFs. Such a modification would have resulted in a new
version of Eclipse OM2M, or (2) to use the OSGi feature “Proxying Service” [Alliance 2018],
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(a) Internal structure of an OM2M node integrating ANFs.

(b) ANFs chaining in an OM2M node.

Figure A.1: Seamless integration in the OM2M IoT platform.

which allows us to intermediate an OSGi service. We have chosen the second option, which
enables the integration of ANFs without affecting the oneM2M [oneM2M 2016] standard being
implemented through Eclipse OM2M. Furthermore, this option has the advantage of not
changing any element of the current implementation of OM2M. As shown in Fig. A.1a, the
main element of this architecture is the “ANF Chaining adapter.” This component is specified
following a design pattern [Gamma 1995]. It intermediates the OSGi service between the Core
component and the Binding components. Depending on its configuration, it also decides to pass
the request message through zero or several ANFs before reaching the Core. The same applies
to the response message. We implemented a Management Agent (MA) that receives and installs
ANF files (JAR). We also implemented an ANF deployment manager that deploys ANFs on a
remote node. The deployment manager also configures ANFs dynamically, including the “ANFs
Chaining adapter,” a particular ANF. An example is illustrated in A.1b. After implementing
OSGi compatible source code, we generate the JAR (Java ARchive) associated with each TCFs.
The generated JARs are ready to be deployed as ANFs. More details of the architecture of
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implementation, integration, and deployment of the TCFs into the Eclipse OM2M can be found
in [Ouedraogo 2018b].

Monitored metrics

List of the 26 monitored metrics per NF (From the official OS Linux Template of Zabbix).

/: Free inodes in % /: Space utilization
/: Used space /boot: Free inodes in %
/boot: Space utilization /boot: Used space
Available memory Available memory in %
CPU idle time CPU iowait time
CPU softirq time CPU system time
CPU user time CPU utilization
Context switches per second Free swap space
Free swap space in % Interface enp0s8: Bits received
Interface enp0s8: Bits sent Interrupts per second
Load average (15m avg) Load average (1m avg)
Load average (5m avg) Memory utilization
Number of processes Number of running processes

Sources of implemented works

1. ANF and VNF performance measurement The performance measurement results
to get the quantitative characteristics associated with the different TCFs implementation
packages are available at github.com/couedrao/QoS4NIP.

2. QoS4NIP Algorithm The Python source of the proposed planning scheme algorithm
is available for download at github.com/couedrao/QoS4NIP.

3. Multi-bottlenecks dataset The experiment dataset are available at
github.com/couedrao/APA4NIP.

4. APA4NIP Algorithms The Python source of the proposed analyze algorithms is
available at github.com/couedrao/APA4NIP.

https://github.com/couedrao/QoS4NIP
https://github.com/couedrao/QoS4NIP
https://github.com/couedrao/APA4NIP
https://github.com/couedrao/APA4NIP
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[Battré 2010] Dominic Battré, Matthias Hovestadt, Björn Lohrmann, Alexander Stanik et
Daniel Warneke. Detecting bottlenecks in parallel dag-based data flow programs. In 2010
3rd Workshop on Many-Task Computing on Grids and Supercomputers, pages 1–10.
IEEE, 2010. (Cited in page 90.)

[Bhowmik 2017] Sukanya Bhowmik, Muhammad Adnan Tariq, Boris Koldehofe, Frank Dürr,
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Guthemberg Da Silva Silvestre. Anomaly detection and diagnosis for cloud services:
Practical experiments and lessons learned. J. Syst. Softw., vol. 139, pages 84–106, 2018.
(Cited in page 85.)

[Schmidt 2018] Florian Schmidt, Florian Suri-Payer, Anton Gulenko, Marcel Wallschlager,
Alexander Acker et Odej Kao. Unsupervised anomaly event detection for VNF service
monitoring using multivariate online arima. Proc. Int. Conf. Cloud Comput. Technol.
Sci. CloudCom, vol. 2018-December, pages 278–283, 2018. (Cited in page 82.)

[Shi 2020a] Yulong Shi, Jonathon Wong, Hans Arno Jacobsen, Yang Zhang et Junliang Chen.
Topic-Oriented Bucket-Based Fast Multicast Routing in SDN-Like Publish/Subscribe
Middleware. IEEE Access, vol. 8, pages 89741–89756, 2020. (Cited in pages 37, 38
and 40.)

[Shi 2020b] Yulong Shi, Yang Zhang et Junliang Chen. Cross-layer QoS enabled SDN-like
publish/subscribe communication infrastructure for IoT. China Commun., vol. 17, no. 3,
pages 149–167, 2020. (Cited in pages 37, 38 and 40.)

[Shih 2016] Ming-Wei Shih, Mohan Kumar, Taesoo Kim et Ada Gavrilovska. S-nfv: Securing
nfv states by using sgx. In Proceedings of the 2016 ACM International Workshop on
Security in Software Defined Networks & Network Function Virtualization, pages 45–48.
ACM, 2016. (Cited in page 20.)
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