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Introduction

The reliable and accurate modelling of large-scale materials and their long-time
evolution is still a frontier in research today. Since the early stages of computa-
tional modelling, several strategies have been developed to bridge the highly accu-
rate but computationally expensive first-principles approaches, and more coarse-
grained models. Some of the most commonly adopted approaches are, on one
side, the semi-empirical potentials, that coarse-grain the quantum nature of the
electrons into classical effective-charge potentials, and on the other side, the QM/MM
techniques, that divide the system of simulation into two regions. A smaller re-
gion, treated by ab initio quantum mechanics (QM), and a larger region, treated by
classical charge potentials within molecular mechanics (MM). In the fully atom-
istic description of a system, the first-principles approaches might address a few
hundred atoms for a few pico seconds, while the classical potentials might be able
to simulate a million atoms for few nano seconds. Beyond the atomistic descrip-
tion, coarse-grained models can be used to coarse-grain the system size, but not
the simulated time. Crucial processes such as material degradation, oxidation,
and growth occur on time scales that might be significantly larger than the nano
second.

In order to enable the simulation of these processes, the question that needs
to be answered is how to coarse-grain the time. In other words, how to filter the
degrees of freedom of a system by their representative time scales, while main-
taining a high degree of accuracy.

In the dynamics, the time scale of different degrees of freedom depends on
the potential energy surface (PES) and the kinetic energy (temperature), thus the
total energy of the system. The PES is a surface in a high-dimensional space, that
links the potential energy to the geometry of an atomistic structure. A single point
on the PES represents a unique structure, and its associated potential energy. As
any surface, the PES contains critical points, i.e. points of a zero derivative. Such
points are minima, maxima, and saddle points. Two minima can be connected by
a line, such that the line passes through a saddle point. The dynamic evolution of
a system is a trajectory on the PES.

When the kinetic energy is comparable to the relative heights of saddle points
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of the PES, the system will be able to explore a large portion of the surface, and
quickly reach a stationary equilibrium. When the kinetic energy of a system is
significantly lower, the system will spend most of the time exploring a small re-
gion around a minimum point. In order to accelerate the exploration of large
portions of the PES, several approaches have been developed, ranging from bi-
ased dynamics, such as metadynamics[1, 2], to kinetic Monte Carlo (kMC)-based
algorithms[3, 4]. In industrial applications of materials science, the latter is the
method of choice [5].

While dynamics-based approaches explore the PES by following some dy-
namical trajectory (biased or not), kMC-based approaches are, in principle, dis-
entangled from the details of any trajectory. The kMC evolution occurs through
single points of the PES, weighted by their occurence probability. As a conse-
quence, kMC allows to coarse-grain both the length- and time-scales. However,
a meaningful kMC simulation requires a meaningful coarse-graining of the PES.
The main question is: given a certain material and process, which is the relevant
level of abstraction?

One of the major and consequential assumptions in kMC is that the structure
of a material and its long-term evolution can be coarse-grained by points on a
rigid lattice. This assumption has been successfully implemented and applied on
numerous occasions[6, 7, 8, 9, 10, 11, 12, 13, 14]. However, the lattice picture
fails for some important materials and processes, such as amorphous materials,
grain boundaries, interfaces, dislocations, nucleation, and surface growth prob-
lems. The main reason it fails is that the description of a structure imposed by the
lattice is too simplistic for these kinds of problems, since subtle structural details
might be driving the real evolution of the system. Few attempts of going beyond
the lattice assumption have been made[3, 15, 16, 4, 17]. Contrary to lattice-based
kMC approaches, the mapping between structures visited during the evolution
and the real representation of the PES is the crucial feature of an off-lattice kMC
algorithm. The major differences among off-lattice kMC implementations are
therefore in the way this mapping is managed, i.e. how the structural information
is treated, automatized, and reused.

The main effort of the present work has been to develop a workflow which
allows a precise description of a structure and at the same time enables simple
treatment, automatization, and reuse of structural information. The workflow al-
lows us to link the specific points of the PES that are visited during a kMC sim-
ulation to atomic structures from a catalogue of structures. This link defines the
possible move(s) to the next point(s) on the PES. The link between the two is
the solution of the shape matching problem. Shape matching can be described as
finding a rigid transformation between two structures, such that the two structures
match as best as possible when overlaid one over the other. We have developed
an algorithm called Iterative Rotations and Assignments (IRA), which accurately
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and efficiently resolves the shape matching problem between two generic atomic
structures, including structures with different number of atoms. The solution is
given in the form of a rotation matrix, a translation vector, and a permutation
matrix. After two structures are matched in this way, it is simple to evaluate the
distortion between them.

The developed workflow containing the IRA algorithm has been implemented
into an in-house general off-lattice kMC kernel. This workflow allows for efficient
and fully automatic reuse of structural information. Due to the nature of the shape
matching problem and our IRA algorithm that solves it, structural symmetries can
be recognized and explicitly included with each structure. The performances and
potential applications are showcased by examples ranging from non-trivial diffu-
sion processes, to off-lattice surface problems, such as oxidation. The algorithm
developed can also be used independently of the kMC setting, in any application
that works with atomic structures, or in combination with a catalogue or database
of structures.

Chapter 1 gives a more detailed introduction to the kMC algorithm, and the
description of different assumptions and approximations that can be made. Chap-
ter 2 introduces the concept of shape, and the considerations that need to be made
when representing and expressing similarities between them, in particular when
working with atomic structures. Chapter 3 describes the shape matching problem,
and its application to atomic structures. It also defines our IRA algorithm, and de-
scribes all its components in detail. The results of performance tests are included.
Chapter 4 describes the working principle of our in-house kMC, and defines the
workflow used to link the kMC evolution of a system with a catalogue of atomic
structures, with the help of the IRA algorithm. It also details the procedure of
finding the explicit symmetries of structures involved. Chapter 5 gives some ex-
amples of kMC simulations, using the developed workflow. We showcase the
different capabilities, as well as address the difficulties and potential problems we
encountered. Some future directions for the work started in this thesis are given
in Chapter 6, including potential application ideas outside of the kMC setting.
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Chapter 1

Kinetic Monte Carlo

The dynamical evolution of a system is represented by its equations of motion,
which can be integrated by Molecular Dynamics (MD) techniques. The basic
idea of MD is to discretize the equations of motion via discretizing the time into
small time-steps, for each time-step compute the instantaneous force on all atoms,
and move the atoms according to that force. Repeating this for many time-steps
generates a trajectory which represents a realization of the equations of motion.
The problem is however that the quality of the resulting trajectory depends on the
size of the time-step, a too large time-step can give unphysical trajectories, while
a too small time-step can result in an overwhelming amount of computation for an
underwhelming result. However, in any case a trajectory involving long-time scale
dynamics of a system, computed with MD would require an enormous amount of
computation.

If we think about the trajectory of an MD simulation as exploration of a Poten-
tial Energy Surface (PES), such that each discrete step in that trajectory represents
a point on the PES, an MD trajectory would typically look like a bunch of con-
nected points (a line). In Fig. 1.1, a hypothetical MD trajectory is shown as a black
line, and two basins on the PES are marked as A and B. The colors represent the
height, or the value of the PES, where low energy values are represented by blue,
and high values by red.

Typically, most of the MD simulation is spent exploring the area surrounding
the minimum of the current basin, which in practical terms means the atoms are
vibrating around their equilibrium positions. The extent to which an MD simula-
tion moves around the PES mainly depends on two factors. One factor is the shape
of the PES, namely the depth/height of its features in terms of potential energy,
and the other factor is the simulated temperature T . The simulated temperature
brings an energy proportional to kT into the system, where k is the Boltzmann
constant, which means any feature of the PES with an energy lower or compara-
ble to kT can be accessed relatively easily by the simulation. On the other hand,
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any feature of energy difference much larger than kT is hardly accessible, and
the probability to reach it becomes very low. If two basins are separated by an
energy barrier much higher than kT , then the transition between these two basins
happens only rarely, and it is called a rare event. The systems which exhibit this
kind of features on their PES are called rare-event systems.

A

B

Figure 1.1: Abstract representation of a hypothetical MD trajectory, as set of con-
nected points (black line), on a PES. The blue regions of the PES represent low
energy values (basins), and red regions represent high values. The jump from
basin A to basin B is called a rare event if the basins are separated by an energy
barrier much higher than kT .

The long-time evolution of a rare-event system consists of jumps from state to
state. We define the basinA as a partition of the whole R3N configurational space,
such that any configuration q is said to be in basin A if upon structural relaxation,
it converges to the minimum of basin A. The state A then represents the union of
all such configurations q. A rare-event system will stay within some basin for a
long time relative to its vibrational motion within the same basin. By ignoring all
movements within the same basin, the state-to-state evolution of a system can be
written as equation:

dPA
dt

=
∑
B

wBAPB(t)−
∑
B

wABPA(t), (1.1)

where PA(t) and PB(t) represent the probability to find the system in the stateA or
B respectively, at time t, and wAB represents the rate of transition from state A to
stateB, and similarly forwBA. The Eq. (1.1) is called the master equation. In fact,
a rare-event system will stay within the same basin long enough for the history of
how it got there to become irrelevant. Exiting a state A has nothing to do with the
history prior to A, so all transitions probabilities wAB are independent of states
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before state A. The system has no memory, the jumps are therefore independent
and uncorrelated. Within this assumption, the system forms a Markov chain.

The rate wAB of transitions from state A to state B is given by the Transition
State Theory (TST) as:

wAB = ν0e
−Eac

kT , (1.2)

where Eac is the energy barrier that is the difference between the energy of the
initial minimum A, and the energy at the saddle point SAB of the PES that is
connecting the states A and B (see Fig. 1.2), and ν0 is the vibrational frequency
given as[18]:

ν0 =

3N∏
i=1

νA

3N−1∏
j=1

νSAB

, (1.3)

where νA are the vibrational frequancies at the minimum state A, and νSAB
are the

vibrational frequencies at the saddle point SAB. The frequency ν0 is often approx-
imated as constant, and called the vibrational prefactor, attempt frequency, attack
frequency, or typical frequency. A jump from state A to state B on a hypothetical
PES is represented on Fig. 1.2

Figure 1.2: A jump from state A to state B, over the saddle point SAB of the
hypothetical PES.

Kinetic Monte Carlo (kMC) simulates the evolution of a system by performing
state-to-state jumps, also called events, with associated rate in Eq. (1.2). The
kMC algorithm provides a way to choose from the possible events, and generate
a stochastic trajectory of events, which can be seen as a specific realization of
the master equation in Eq. (1.1). The kMC algorithm also provides a way to
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advance the clock, since the rate of an event can be related to a specific time,
the overall simulation has an associated clock, see in the following Eq. (1.9).
The transition rate wAB has the units of frequency, and is often referred to as the
transition probability.

1.1 The kMC algorithm
A generic kMC procedure can be separated into two aspects, see Alg. 1. One
is related to the evolution of the system in terms of the statistics, namely how to
choose the sequence of events such that the evolution is correct from the statistical
point of view, and correspondingly, how to update the simulation clock in a cor-
rect way. The second aspect is related to the evolution of the physical structure,
how precisely do the structural changes given by the kMC events follow the real
physics, and how are the different events distinguished from each other based on
their structure. In the following, the two aspects are labelled as “statistics”, and
“structure”.

Algorithm 1 A generic kMC procedure. The IDENTIFY_POSSIBLE_EVENTS()
part is responsible for the identification of all events that are possible to execute
at the current simulation step, the CHOOSE_EVENT() part is responsible for the
choice of an event based on its probability, the APPLY_EVENT() is responsible
for the correct application of the structural change, given by the chosen event,
and the UPDATE_SYSTEM() part is responsible for updating the simulation clock
correspondingly.

1: procedure KMC( )
2: while continue_simulation do
3: IDENTIFY_POSSIBLE_EVENTS() . “structure”
4: CHOOSE_EVENT() . “statistics”
5: APPLY_EVENT() . “structure”
6: UPDATE_SYSTEM() . “statistics”
7: end while
8: end procedure

1.1.1 Statistical aspect
As the events considered in a kMC simulation are assumed to be independent,
uncorrelated rare events, they follow the Poisson distribution. In the Poisson dis-
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tribution, the probability for n equivalent events to occur in time t is given by:

P (n) =
(γt)ne−γt

n!
, (1.4)

where γ is the event rate. The probability P (1) for one event to occur is then:

P (n = 1) = γte−γt. (1.5)

Meaning that the expectation value 〈t1〉 of the time for one event to occur can be
calculated by integrating:

〈t1〉 =

∫ ∞
0

γte−γtdt =
1

γ
. (1.6)

Since the events in a kMC simulation can have nonequivalent rates, the rate at
which anything happens in kMC is given by the sum of all the rates wi of events
possible at the current simulation step i, we write total rate γtot as:

γtot =
∑
i

wi, (1.7)

which can then be inserted into the Poisson disribution. The same is also true for
each event separately, the probabilty distribution for a single event with rate wi, to
occur in time t is given by:

p(t) = wie
−wit. (1.8)

In order to correctly choose events according to their rates, and update the sim-
ulation clock, there are two main kMC procedures. One is the Gillespie algorithm
[19], and the other is the BKL algorithm [20]. Presently, both of these algorithms
are standard kMC algorithms, the use of one or the other seems to be essentially
community-related. While other algorithms exist, such as the constant-time algo-
rithm [21], they will not be further discussed here.

Gillespie algorithm

The Gillespie algorithm [19] was first developed in 1976 to model the biochem-
ical networks, such that the probability of possible reactions is respected. It is
sometimes also called dynamic Monte Carlo, or stochastic simulation algorithm
(SSA). The algorithm is as follows.

For each possible event rate wi, draw a random number according to the distri-
bution in Eq. (1.8), and call it ti. Since only one event can happen per simulation
step, choose the fastest one, meaning the event with smallest ti. In order to draw
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random numbers following the distribution in Eq. (1.8), we can draw a random
number Z from a flat distribution [0,1], and compute:

ti = − 1

wi
lnZ. (1.9)

This time ti is then also used to advance the simulation clock.

BKL algorithm

The BKL algorithm was proposed in 1974, by Bortz, Kalos, and Lebowitz, [20]
for the study of Ising spin systems, in particular for cases where a system is close
to an equilibrium, or some metastable state. The BKL algorithm is also called the
n-fold way, or residence-time algorithm. The algorithm is as follows.

Draw a single random number Z1 from a flat distribution [0,γtot], and then
choose the event j such that Z1 is between the partial sum of rates up to j, and
partial sum of rates up to j + 1. To compute the time tj of this event j we draw
another random number Z2 from a flat distribution [0,1], and compute

tj = − 1

wj
lnZ2. (1.10)

The time tj is then used to advance the simulation clock.

The procedure CHOOSE_EVENT() from Alg. 1 can then be written based on
which of the two algorithms is used for the choice of an event, as Alg. 2. The
main purpose of the procedure UPDATE_SYSTEM() is to update the simulation
clock with the time of the chosen event tj . The reason for keeping the two proce-
dures separated, is to leave some margin for any possible event denials during the
APPLY_EVENT() procedure.

Algorithm 2 Choice of an event, based on the Gillespie, and BKL algorithms.
1: procedure CHOOSE_EVENT()
2: if Gillespie then
3: compute random time ti for all events i . Eq. (1.9)
4: choose fastest event j and time tj
5: else if BKL then
6: draw Z1 from [0, γtot]
7: choose event j:

∑j
i wi ≤ Z1 <

∑j+1
i wi

8: compute time tj . Eq. (1.10)
9: end if

10: end procedure
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For detailed proof of the kMC algorithm, see for instance Ref. [22]. It has also
been shown to be a general algorithm to simulate adsorption/desorption events in
Ref. [23]. The event rate of adsorption from gas is related to the partial pressure of
the specific gas. The rate of adsorption ri of specie i follows the Hertz-Knudsen
formula:

ri =
αiApi√
2πmikT

, (1.11)

where αi is the sticking coefficient that takes a value in the range [0,1], which
expresses the fact that only a fraction of incoming molecules will be adsorbed, A
is the surface area of the atomic site of adsorption, pi is the partial gas pressure,
and mi is the mass of the gas specie. The rate of adsorption ri can be thought of
as the vibrational frequency ν0 in the TST expression for event rate in Eq. (1.2),
thus the event rate for an adsorption event in a kMC simulation is expressed as

wads = rie
−Eads

kT . (1.12)

An adsorption event can be thought of as an event where an initially isolated gas
molecule becomes attached to the surface with an adsorption energy Eads, which
can be represented by a gas molecule which arrives from a position far away from
the surface. More simply, the initial state of an adsorption event is a clean surface,
and the final state is the adsorbed molecule attached to the surface. An adsorption
event thus changes the total number of atoms in the simulation.

kMC accelerations

It can be observed that the largest time resolution of kMC is on the time scale
where no two events occur simultaneously. In a scenario where the simulation
includes events with different orders of magnitude for the rates, the algorithm
essentially makes many events of the fast rate, and almost none of the slower
rates. Thus the time resolution is effectively small, given by the smallest event
rate. In practice, such time resolution might lead to scenarios in which one single
event (e.g. a simple atomic jump with a low energy barrier) is applied many
times, before anything more interesting should occur, which hinders the overall
performance of the software in terms of the desired timescales to be reached. This
often undesirable feature is called flickering, or low-barrier problem. Methods
of adjusting the kMC procedure in order to avoid this scenario can be made by
absorbing Markov Chains [24]. This method came to be known as basin, or mean-
rate method [25, 26]. It has been successfully applied to diffusion problem in
Ref. [27], and in other studies, for instance Ref. [28]. The mean-rate method can
be seen as filtering between slow and fast degrees of freedom, or small and big
transition probabilities.
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Modifications which effectively accelerate the execution of kMC are possi-
ble also at the software level, such as efficient parallelization, binary-tree search
algorithms, etc. They will not be further discussed in this work.

1.1.2 Structural aspect
As can be seen from the statistical aspect of kMC described in Sec. 1.1.1, the gen-
eral algorithms for the evolution of a system are relatively simple. However, the
structural aspect of kMC is where the major distinctions are drawn between the
available software, and systems of simulation. The reasons for this distinction lie
in the assumptions, simplifications, and compromises made regarding the descrip-
tion of a system, in order to make a certain simulation possible. More precisely,
the problem lies in the way atomic positions are treated, and the desired level of
coarse-graining of the dynamics of the system.

For certain systems of simulation, an assumption (called the lattice assump-
tion) can be made, which is that the atoms only occupy positions in a very small
region around their reference position, given by the fixed crystal lattice. If this
lattice assumption is true for all states that the system can possibly evolve through
during its evolution, then a simplification of Lattice kMC (LkMC) can be done.
LkMC constrains the atoms to only be allowed to move on a rigid lattice, which
represents an idealization of the atomic positions. LkMC is further described in
Sec. 1.2.

The structures involved in the reactions, or events in the kMC simulation, can
also be coarse-grained. Meaning that a group of atoms representing a character-
istic structure, can be thought of as a single object, with its own corresponding
set of possible events. This is done by Object kMC (OkMC). Such grouping of
the atoms, which can also be constrained by the lattice assumption, represents an
idealization and abstraction of the kMC events. OkMC is further discussed in
Sec. 1.3.

The idealizations of LkMC and OkMC bring simplicity into the structural as-
pect of kMC, and with it also the computational efficiency and speed. The assump-
tions of LkMC and OkMC can also be done for systems where they are not always
exactly true, by forcing the system to evolve in a certain way. In those cases, an
LkMC or OkMC simulation will be a tradeoff between the computational speed,
and the precision in the description of a system in terms of the atomic positions.

When the lattice assumption is not applicable, off-lattice capabilities need to
be enabled. The off-lattice kMC methods should make no approximations or ide-
alizations of the structures, their “ground-truth” should be whatever is given by
the events included in the simulation. In order to make this possible, and to grant
portability to other systems, and a high degree of automatization, the procedures
related to the structural aspect need to be general. The off-lattice kMC is further
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discussed in Sec. 1.4.

Naming conventions

It often happens in the literature that a kMC code is written specifically for the ma-
terial and problem being studied. The material, and the desired degree of coarse-
graining of the simulation dictate the type of code that is needed: the assumptions,
approximations, simplifications, and abstractions that are made. As a result, there
are a large number of specific implementations of the kMC algorithm available,
where the (dis-)advantages of each are not always clear, and their portability to
other materials and problems is rarely questioned or discussed. As a possibly di-
rect consequence of this, there appears to be a degree of freedom in the choice of
the labels that are used to describe a kMC code.

Very often, the historically earlier works make the lattice assumption by de-
fault, but their approach is not specifically labelled LkMC. The lattice assumption
is also often ommitted from the naming convention of the early definitions of Ob-
ject kMC (OkMC). In order to differentiate from OkMC, the kMC variants that
do not use object abstraction are sometimes called Atomistic kMC [29, 30, 31],
or AkMC. The AkMC approaches also often omit the lattice assumptions in their
naming. The adjectives “object” and “atomistic” appear to be related to the way
the events are treated within the kMC, either as group, or single-atom moves.

Approaches which abandon the lattice assumption altogether are referred to as
off-lattice kMC, which relates to the description of the system of simulation, but
do not mention the specific treatment of the events (object vs. atomistic). But,
off-lattice approaches traditionally include a self-learning on-the-fly approach to
event exploration, which inherently includes a group of atoms. For this reason
their events could probably be described as objects with atomic resolution, thus
objects at the lowest level of abstraction, atomistic objects.

Approaches described as hybrid “atomistic-object kMC” have however been
reported for example in Ref. [32], where certain events are treated as objects,
and the others as atomistic. In Ref. [33] for example, which is also described
as hybrid, the lattice assumption is abandoned, and different types of defects are
grouped into different objects, such that the atoms near the border region of an
object need to be in crystalline positions. The difference between their approach
and an off-lattice kMC is that the latter typically uses a self-learning on-the-fly
technique for exploring the events, while the former uses what the authors describe
as “prescribed set of correlated atomic moves.”

In summary, the naming conventions appear to be related to different aspects
of the code. These aspects appear to be:

• the way atomic structures are treated: lattice, or off-lattice;
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• the way events are treated: events including a single atom, events including
a group of atoms, or events including abstract objects;

• the way event exploration is treated: self-learning on-the-fly approach, or
events given pre-described in a catalogue (or hard-coded).

1.2 Lattice kMC
A well-grounded variation of kMC simulation is to impose a fixed grid onto the
system of simulation, such that the atoms can only move on the grid points. The
grid is often taken as the lattice of the underlying crystal, however other choices
can be made, including intertwining of several lattices, or other options. Such
kMC variation is in general labelled Lattice kMC (LkMC). Studies with LkMC
methods typically target systems that do not undergo drastic changes in the mor-
phology of the structures during certain processes, such as for example diffusion
[6, 34], or certain simplified surface phenomena [35, 36, 37, 38] such as epitaxial
growth [7, 39, 14], oxidation [8, 11], step morphology [40], or catalysis [13, 41].

By imposing the atoms to be on a fixed grid of points, there are a number of
simplifications that can be done. Most importantly, compiling the full catalog of
all possible events essentially becomes a problem in combinatorics in the number
of possible initial and final states, given the possible grid sites. Secondly, each
kMC move on a fixed grid is inherently a very precise transformation of an en-
vironment, in the sense that atoms only move on the grid points. Certain kMC
software idealizes the events as-if they were on a fixed grid, however allows for
relaxation of the forces after every move. Thirdly, the environments in the simula-
tion can be efficiently characterized using rather simple descriptors. For example,
whether a grid point contains an atom or not (or any user-defined description, as
in Ref. [10]), all other environmental variables can easily be computed and stored
in arrays like the neighbor list. An illustration is given in Fig. 1.3, where atoms
are shown on the points of a grid, which is represented in grey. An atom of a dif-
ferent type is shown in yellow (which could possibly also represent an unoccupied
lattice site), and some possible diffusion events associated to this site are shown
with blue arrows. Typically, only one atom is assumed to move in an event.

Alternatively, in the software developed in Refs. [9, 42], on-lattice local atomic
environments are encoded as simple graphs. Due to prescribed atomic positions
on the lattice points, the space of possible states is discrete, and thus the simple
graph description is unambiguous. Within the lattice philosophy, one can also
interpolate certain information, for example the energy barrier as function of the
number of first neighbours, as is done in the commercial Lattice kMC code re-
ported in Ref. [43]. In some cases, LkMC can be parametrized in such a way

14



Figure 1.3: Illustration of LkMC situation. The fixed grid is represented in grey,
an atom of different type is colored in yellow, and possible associated diffusion
events are shown with blue arrows.

to effectively capture off-lattice effects [44]. LkMC has also been used to study
certain bio-assemblies [45]. The performance analysis of LkMC in presence of
external fields is reported in Ref. [46]. One of the most notable software employ-
ing LkMC is the SPPARKS code [12].

1.3 Object kMC
Another variation is to group atoms into objects, like for example adsorbate is-
lands on a surface, or group of defects that are close together. Such kMC varia-
tion is generally labelled Object kMC (OkMC). An object is thought of as a single
entity, and typically the events ascribed to such object can transform the object
internally (including resizing), displace the object as a rigid structure (collective
diffusion, dislocation diffusion), or split the object into two or more smaller ob-
jects. The atomic configuration in OkMC is generally encoded into a lattice of
objects, as illustrated in Fig. 1.4, where different objects are represented as col-
ored shapes, and the lattice in grey. In this case, an event would be represented
by the transformation of one object into a different object, or a displacement of an
object to a different lattice point.

If one thinks of the kMC method as coarse-graining of MD in time, then one
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Figure 1.4: Illustration of lattice of objects in an OkMC simulation. The different
objects are represented as colored figures, and the underlying lattice in grey.

can think of OkMC as coarse-graining of kMC in space, or in the type and num-
ber of structures or chemical species present. With abstraction through objects,
the kMC method is greatly accelerated, capable of achieving long time-scales,
however at the cost of losing the atomic scale resolution. The most notable use
of OkMC is in the simulation of clustering of defects in materials, [47, 48, 49], in
such case a cluster of defects is represented by objects.

Keeping in mind the object abstraction, one could ask questions regarding
the rules of the mapping from atomic positions to objects. Such as, what is the
limit for the number of atoms that can be grouped into an object, or what kind of
considerations are made regarding the overall object size and structure, or quite
importantly, is the mapping in the other direction of any meaning? That is, can
the objects be mapped back to atomic structures, and if yes, are the object ab-
stractions portable from one system to another? Or do we need to define them
all from scratch when we change the system of study? Not all of these questions
have a straightforward general answer. For the subset of materials where these
questions have a favourable answer, the OkMC method is a powerful simulation
tool, capable of reaching extremely long time-scales.
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1.4 Off-lattice
At least four important problems need to be faced with, when designing a kMC
software with off-lattice capabilities:

1. the system can evolve towards states that are unknown, that is states that are
not present in the event catalogue;

2. need an unambiguous way of structural comparison for asserting the equiv-
alence of two states;

3. the states need to be labeled in an unabiguous way in the event catalog;

4. need a way to find the correct reference frame in which an event selected
from the event catalogue can occur.

One of the most important assumptions of a kMC algorithm is the complete
knowledge of all possible events at every simulation step. This assumption can
however be far from true, as we can never be sure that the events included in a
simulation represent all possible physics. The assumption is important for two
reasons. The first one is for an accurate computation of the total rate γtot, and sub-
sequently for the computation of event times. The second, more important reason
is that, in an extreme case when the event catalogue does not include any possi-
ble transitions from the current state, the simulation cannot continue. This is the
scenario described by problem 1. To overcome it, a good off-lattice kMC method
should be able to implement what is called a self-learning technique. This means
that the kMC is able to perform an exploration of possible transition paths from
the current state, and is thus able to find relevant transitions from a previously un-
known state, and at the same time increase the probability of finding and including
non-intuitive events in the catalog, that might have previously been missing.

The last three problems from the list are all in some way related to the re-
usability of the events in the event catalogue. Problem 2 occurs when the sys-
tem is checked for possible events to occur at the current simulation step. Since
only the subset of the events in the catalogue, whose initial state is present in the
simulation, are possible to occur, an unambiguous way of structural comparison
is needed, which does not rely on any underlying grid. Problem 3 occurs when
searching the event catalogue for a possible event. If two (or more) non-equivalent
events are labelled in the same way, this poses a problem since the choice of a
wrong event can result in a seriously wrong transition. Problem 4 occurs at the
stage of event execution, since we need to be sure that the event is applied within
a proper reference frame, and in the proper direction. If any of these problems are
not resolved to a sufficient degree, the simulation can go very wrong. Trivially,
one could get rid of them by doing a full exploration of events from scratch at
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every atomic site, for every step of the simulation, which however defeats the idea
of re-usability of the event catalogue.

A number of implementations of this particular kMC variant, employing dif-
fering methods of explorations of transition states, differing structural comparison
methods, and differing approaches to the reusability of events exist, some of them
are briefly listed below.

One of the most notable off-lattice self-learning kMC software is the kinetic
Activation-Relaxation Technique (kART) [4]. In (over-)simplified words, kART
launches an exploration of possible transition paths from the current state each
time it falls into a state that it does not yet know. All the found transitions and
their rates get stored in the event catalogue for possible reuse later in the simula-
tion. In order to enable the explorations, kART needs a way to compute the forces,
which it does by using empirical potentials. As a solution to the structural com-
parison problem, kART relies on the isomorphism of simple graphs. The atoms
within a radial cutoff region are taken as the local environment for which a graph
is constructed, if two graphs are isomorphic then it is assumed that the local en-
vironments are equivalent. This assumption can be ambiguous, which kART can
identify and deal with by enlarging or lowering the radial cutoff, until two graphs
differ. It uses the same graph mechanism to label the events in the event cata-
log. In order to correctly execute the chosen event, kART follows what is called
the canonical labeling of a graph, which gives a certain permutation of the graph
nodes, in which the graphs are identical. This canonical labeling effectively gives
the order of atoms which map the event to the local environment in the system,
and to confirm it, kART relies on the computation of forces. In the case of ro-
tation between the event configuration and the local environment in the system,
kART uses a trial-and-error approach, based on calculation of forces of attempted
moves, to map atoms corretly. It thus resolves all the four problems from the list
to a sufficient degree, however at the cost of having to do many force calculations.

The adaptive kMC (akMC) [3, 50] method, uses the dimer technique [51] to
explore the transition paths, including all atoms in the simulation. Alternatively,
accelerated high-temperature MD simulations have also been used as transition
state exploration method within akMC [52]. The akMC method is presently im-
plemented in the EON software package [53].

Self-learning kMC (SLKMC) [15, 54] method uses the drag method as transi-
tion state exploration method, and a pattern recognition scheme for the reusability
of the found events.

Self-evolving atomistic kinetic Monte Carlo (SEAK-MC) method [16, 55] in-
troduces the concept of active volumes (AVs), such that the system evolution is
done within these AVs. By monitoring the properties of boundary atoms, such
as deviations in energy, strain, or stress, of each AV, possible inter-AV reactions
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are taken into account through automatic AV boundary determination and rede-
termination. SEAK-MC primarily uses the dimer technique [51] to explore the
transition paths localised to AVs, though other methods have been used [56].

The algorithm local-environment kinetic Monte Carlo (LE-KMC) [17] intro-
duces a local environment descriptor, based on the local geometry, used to asso-
ciate the possible events from the catalog to the system of simulation.

A notable approach to structural comparison in this context is the Kinetic
DataBase, reported in Ref. [57].

In the following chapters we present the approach we have developed for an
off-lattice kMC that combines the ideas of simple graph isomorphism, and an ef-
ficient geometric shape matching algorithm, to unambiguously resolve the three
problems associated with re-usability of the event catalogue: the problem of struc-
tural comparison, the problem of labelling of the events in the catalog, and the
problem of finding the correct reference frame for the execution of an event. All
of this is done without the need of computing the forces. And since our approach
does not rely on a pre-defined grid (lattice), it is portable to other systems and pro-
cesses of simulation, including those with a changing number of atoms. Using the
naming convention summarized in Sec. 1.1.2, the present state of our kMC can be
labelled as: off-lattice kMC with a given catalogue of pre-described events, where
each event includes a group of atoms.
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Chapter 2

Shape representation and similarity

2.1 Introduction
Any geometrical pattern can be thought of as a shape. According to [58], there
is no universal definition of what shape is. However the ability to recognize and
compare shapes is of universal importance in everyday life, as well as in a more
technical and scientific setting. The latter is our concern here. Recognition and
comparison of shapes relies on the definition of a meaningful measure (degree) of
similarity. Broadly speaking, there are two particular issues to be addressed.

Firstly, there are a number of things to consider regarding what constitutes a
"shape", e.g. the overall geometry, its positioning and orientation in space, con-
struction by specific constituents (parts), some particular properties related to its
parts or whole, the order in which its parts are stored, etc. Therefore it should
clearly be specified what one is talking about when talking about shape.

And secondly, the wanted level of resolution (precision) when comparing
shapes might differ greatly for different measure definitions. In other words, the
measure should be chosen according to how (in-)homogeneous the set of shapes
to be compared is. This is a bit of a paradox since we would need to know the
diversity in a set of shapes as a precondition to choosing a measure of similarity
which would asses the diversity in that same set. Often we just choose a measure
that is at hand. A critical situation is however when a chosen measure does not
work well over the diversity of shapes in a set. A vivid example would be to com-
pare a basket of oranges, would it suffice to simply say "they are all round", or
would we need more precise words? And which measure do we use when there is
also a potato in that basket, or a banana? Therefore, one should either choose the
measure of similarity carefully and according to the diversity in the set compared,
or precisely specify how to interpret possible mismatches and what to do in those
cases.
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Figure 2.1: A set of oranges could be measured by how round they are. But
what happens to the measure outcome when we include a potato, or a banana?
Choosing a measure of similarity should be consistent with the diversity in the set
of shapes. The interpretation of possible mismatches should be given.

Since the comparison of shapes by hand is a very tedious task, we would like
to automatize the task via a computer. That means we need to formulate the prob-
lem of shape comparison into an algorithm. The type and implementation of any
algorithm depends on its application. An application where a rough but extremely
fast evaluation is needed, will use a different algorithm than some other applica-
tion which needs a very precise evaluation with multiple checks and where time is
not a particular constraint. Moreover since a shape can be any given geometrical
pattern, algorithms and approaches will differ based on the form of the data given
to an algorithm.

In some cases the important part of a shape is its surface, the interior does
not matter. In that case, a shape can be given as a tessellation of smaller surfaces
of certain shapes like triangles, in the form of their normal vectors for instance.
However more interesting cases are where the data of a shape is given as a set of
points, generally referred to as point sets. The number of possible applications of
algorithms for shape similarity when data is given as set of points is very large, we
will not discuss it further. Just as an example, data coming from imaging sensors
is a 2D array of points. Applications such as image recognition immediately come
to mind, for example fingerprint recognition [59]. Many imaging techniques can
also provide data in 3D, for example LiDAR [60], with applications to landmark
recognition, etc.

Atomic structures are generally given as point sets, where each atom is repre-
sented by a point in 3D space, which might have certain associated property(-ies):
chemical specie, mass, charge, etc. There might also be properties relating spe-
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cific atoms to each other, such as chemical bonds, networks of connectivity, etc.
The most basic description of an atomic structure is a set of points, where each
point has three coordinates whose values are prescribed by the reference frame in
which the structure is written, and each point has a property of chemical specie.
In the case of crystals, the ensemble of points in a structure might be part of a
periodic lattice. In that case, the lattice is given by three non-collinear vectors that
prescribe the pattern of periodicity.

The atomic structure data is usually generated as output of different compu-
tational approaches dealing with atomic structures. For example, structural opti-
mization via force minimization (relaxation), or structural evolution via solving
the equations of motion for a system of particles (molecular dynamics), or from
a number of other (combined) approaches. Commonly, these approaches respect
the invariance of physical laws with respect to the reference frame. This means
that in absence of any externally imposed forces, the position and orientation of
a relative reference frame of an atomic structure within the simulation box does
not change the physics. This also means that there is no general standardized ref-
erence frame to perform simulations of atomic structures. This brings us to an
important realization regarding the comparison of shapes within a set of atomic
structures. Two identical structures that differ only by relative orientation, contain
identical physics. Therefore, if physical properties relative only to that structure
are of our interest, the orientation of its reference frame does not matter, and we
can devise algorithms for shape similarity keeping this in mind. More about this
scenario in Sec. 2.2. On the other hand, we can think of situations where the
important information is not only the similarity of shapes, but also the relative
orientation of one with respect to the other. It might be the case, for example,
when several orientations of a structure appear during the same simulation, and
we would like to quantify them in terms of their directions, or just simply map
them onto a reference structure. Sec. 2.3 introduces some concepts and ideas re-
lated to that scenario, which is also the subject of the original work done during
this PhD project, and is the topic of the subsequent Chapter 3.

2.2 Orientation is not important
When speaking about shapes in terms of atomic structures, often the relevant
physical quantities vary only due to the overall geometry and associated chemical
species. The issue of shape similarity can in that case be addressed by employ-
ing distance-like functions that evaluate the relationship (i.e. distance/similarity)
between two abstract structural encodings, often called descriptors. These de-
scriptors and the related distance functions can give meaningful comparisons of
atomic structures in terms of their similarity in geometry and chemical compo-
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sition, but not of the relation between their orientation/position in space (rotated
state).

2.2.1 Representation
Descriptors are functions that encode structural information into high- or low-
dimension vectors, in a way that is invariant to rotations, translations, and per-
mutations of indistinguishable points. They can be classified by the size of their
output. As for instance size 1 x 1 scalar, size 1 x N vector, and size M x N matrix.
Graphs and their properties can also be utilised as descriptors.

Scalar descriptors:

Scalar descriptors can be for instance eigenvalues or functions of eigenvalues of
certain tensors. For example the gyration tensor, defined as:

S =
1

N

∑ x2i xiyi xizi
yixi y2i yizi
zixi ziyi z2i


where the values of x, y, and z are coordinates of points from the structure, writ-
ten relative to its geometrical center, and N is the total number of points in the
structure. The gyration tensor S can be interpreted as "average spatial distribu-
tion" of points in a structure. Taking the eigenvalues of S in a descending order,
S1 > S2 > S3, a scalar called asphericity can be constructed as

b = S1 −
1

2
(S2 + S3),

which returns value zero when the structure is spherical, or some Platonic solid
(cube, tetrahedron, etc). The scalar b is a valid descriptor of an atomic structure.
Other such scalars can be constructed, for example acylindricity,

c = S2 − S3,

which returns value zero when the distribution is cylindrical. Or another scalar
called relative shape anisotropy,

κ2 =
3

2

S2
1 + S2

2 + S2
3

(S1 + S2 + S3)2
− 1

2
,

which returns a value in the interval [0,1], where 0 means distribution is spher-
ically symmetric, and value 1 when all points are on a line. A tensor related to
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the gyration tensor is the inertia tensor, which can be interpreted as "average dis-
tribution of mass". Its eigenvectors are often described as symmetry axes of a
structure. Similar functions of its eigenvalues can be constructed, which can be
exploited as structure descriptors.

Descriptors of this type have been used for example as collective coordinates
in studies of metadynamics of peptides [61], and in analyses of shapes of polymer
chains in attractive cages [62], where the authors exploited the gyration tensor, its
eigenvalues and related shape descriptors mentioned above to construct a pseu-
dophase diagram of the polymer-cage system.

Vector descriptors:

Descriptors can also be of vector type. Most commonly, the idea is to encode the
structural information into a vector that in principle resembles the radial distri-
bution function. In this way the descriptor vector is made invariant to rotation,
translation, and permutation of identical atoms. The applications which generally
use these kind of descriptors is in the Machine Learning (ML) approaches devoted
to atomic structure simulations.

Among the many descriptors used and developed by the ML community, the
most notable ones are the Behler-Parinello descriptor [63], the Smooth Overlap of
Atomic Positions (SOAP) descriptor [64], and lately the Atomic Cluster Expan-
sion (ACE) descriptor [65]. Some other descriptors of this type are also in use, for
instance in Refs. [66, 67, 68, 69, 70]. The SOAP descriptor is briefly outlined in
the following.

The idea of SOAP [64] is to write the atomic structure as a density function.
To achieve this, atomic positions xi are transformed into a sum of Gaussians,
placed at the atomic positions, thus defining the "local density of atoms" ρA(r), of
structure A as:

ρA(r) =
∑
i∈A

(
− (xi − r)2

2σ2

)
.

This local density is invariant to atomic permutations, however it depends on the
relative reference frame of the structure. To achieve rotational invariance, it is
expanded in basis of spherical harmonics and orthogonal radial basis functions.
The coefficients of this expansion are collected into a feature vector p̂(A), which
is a rotationally invariant vector, that carries encoded information of the atomic
structure A.

Starting from the local density of atoms, another way to obtain a rotationally
invariant quantity is to write a kernel function which takes into account all possible
rotations given a symmetry group, see Ref. [71].
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Matrix descriptors:

Descriptors giving a matrix output also exist, for example the Weyl matrix [72].
The Weyl matrix is a matrix of all pairwise scalar products between two structures.
It is however not permutationally invariant.

Graph descriptors:

Another idea is to take the problem from a more general mathematical standpoint.
That is, to map the problem into an abstract topological space, and think about it
in terms of a graph.

The topological space is an abstract space with zero properties, only vertices
connected by edges. An edge can represent any relationship between the vertices
it connects. This structure is called a graph, denoted by G = (V,E), where the
graph G is an ordered pair of vertices V and edges E. V is the set of vertices also
called nodes, and E is a set of edges also called links. If the set of edges E is
ordered, the graph is called directed, and if set E is unordered, the graph is called
undirected. The set of edges E can also have associated weights for each edge, in
that case the graph is called a weighted graph. If an edge has endpoints that are
equal, e.g. it connects a vertex to the same vertex, it is called a loop. If any two
vertices are connected by more than one edge, the graph is said to contain multiple
or parallel edges. A graph containing undirected, non-weigthed edges, no loops,
and no parallel edges, is called a simple graph. Fig. 2.2 shows an example of a
simple graph, and an example of a directed multigraph.

Figure 2.2: An example of a simple graph on the left, which contains non-
weighted, undirected edges, no loops, and no parallel edges. On the right, an
example of a directed multigraph, with non-weigthed, directed edges, one loop,
and multiple (parallel) edges.

The relation between vertex labels and edges can be written in the form of
an adjacency matrix, also called connectivity matrix. The connectivity matrix
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contains elements cij which give the relation between vertices labelled i and j
respectively.

In a simple graph, the connectivity matrix contains only elements 0 and 1.

cij =

{
1, if i, j connected
0, otherwise.

(2.1)

The matrix is symmetric since all edges are undirected, cij = cji, which means an
edge connects i to j and j to i. The diagonal values are all 0, since loops are not
allowed, an element cii = 1 represents a loop on vertex i.

In a directed (multi)graph, the connectivity matrix is not symmetric, since the
edges have a direction and an edge i to j does not automatically mean there is also
an edge j to i. There can be values 1 on the diagonal, since loops are allowed.

The connectivity matrix of a weighted graph has elements cij = w(i, j), where
w(i, j) is the weight associated to the relation between vertices i and j, and it can
be any number.

Two graphs are said to be isomorphic when the set of vertices of one graph can
be obtained by relabelling the set of vertices of the other graph. In other words,
there exists a permutation of the vertices of one graph, such that its connectivity
matrix equals the connectivity matrix of the other graph. If the connectivity matrix
is a property of an abstract topological space W (graph), then any such space
isomorphic to W must contain the same property. The connectivity matrix is a
topological invariant in this sense.

If we map the points from an atomic structure into graph vertices, and relations
between the points into graph edges, then graph isomorphism can be exploited for
identifying equivalent shapes. A very simple approach is to map atomic vectors
into vertices, and map the distance between atoms into an edge between those
atoms, based on some distance cutoff. The connectivity matrix is then constructed
from elements cij:

cij =

{
1, if d(i, j) ≤ Rcut

0, otherwise,
(2.2)

where d(i, j) is the Euclidean distance between atoms i and j, and the distance
cutoff Rcut can depend on chemical species of atoms i and j. The connectivity
matrix is by construction invariant to rotations of the atomic structures.

To calculate whether two graphs are isomorphic or not, the software NAUTY [73]
can be exploited. Given an input in the form of connectivity matrix and the atomic
types, NAUTY can (among other things) return a graph hash value, in a way that
is invariant to permutations. In simple terms, the graph hash value can be thought
of as a tag of that particular graph. If another graph produces the same graph hash
value, the two graphs are isomorphic.
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This straight-forward technique of mapping the atoms into graph vertices and
distances between them into graph edges, and then looking at isomorphism be-
tween two graphs is successfully exploited in the off-lattice, self-learning kinetic
Monte Carlo software kART [4], where graph isomorphism is utilised as a simple
way of assessing similarity/equivalence of atomic structures.

A slightly more convoluted approach is developed in Ref. [74], where the au-
thors present a so-called a universal fragment descriptor, for predicting properties
of inorganic crystals within a ML scheme. In this study, the elements of the con-
nectivity matrix are equal to 1 if atoms i and j share a Voronoi face, and the
distance cutoff is based on covalent radii. The resulting graph is decomposed into
subgraphs with paths of length l, which goes up to l = 3. Additional properties
are given as a schema of reference properties. All the information is then con-
catenated and filtered for low-variance and high-correlation variables. The final
feature vector then contains more than 2000 descriptors.

The graph connectivity matrix also possesses other properties, for example,
we could look at its eigenvalue decomposition. This has been done by authors
in Ref. [75]. They introduced topological coordinates called SPRINT, which
combine the largest modulus eigenvalue and the corresponding eigenvector. The
eigenvector is sorted from smallest to largest component, within sets of alike
atoms. This sorting operation makes the coordinates invariant to permutations
of identical atoms. The SPRINT coordinates were shown to be useful for identi-
fication of structures emerging from dynamic simulations, for example different
phases of water ice in Ref. [76].

Different and more complex types of graphs can also be constructed, that can
carry a range of properties. The field of chemical informatics is rich with studies
developing and utilising approaches based on different types of graphs, and the
related invariants. For example, the notion of a graph can be extended to a hyper-
graph [77], which brings additional capabilities and techniques. Another example
where graphs are used in chemistry is the SMILES [78] approach, which encodes
a molecular graph by a unique ASCII string.

2.2.2 Similarity
The similarity of structural encodings, or descriptors, can be evaluated by a dis-
tance function. A distance function, or a metric, is a mathematical function that
gives a distance between two mathematical entities, e.g. points or shapes. In gen-
eral, a distance function d → [0,∞) is a real-valued, and non-negative function
such that: d(x, y) = 0 implies equivalence of x and y; the function is symmetric
d(x, y) = d(y, x); and the triangle inequality holds d(x, y) ≤ d(x, z) + d(z, y).
The similarity is then expressed through the notion of a distance, where similar
entities are perceived as close, and non-similar ones are perceived as far. An-
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other concept is that of a similarity measure, which can be thought of as simply
inverse distance. Value zero of similarity s(x, y) = 0 then implies complete non-
similarity.

The simplest example of a distance function is the Euclidean distance between
points x and y: d(x, y) = |x − y|. For computing the distance between vectors,
the Euclidean distance is d(ri, rj) = ||ri− rj||. An example of similarity function
between two vectors is the scalar product s(ri, rj) = ri · rj , which is zero when
vectors are orthogonal. For computing distance between matrices or arrays, one
could for example compute the sum of all pairwise distances from vectors of array
A to array B, such as: d(A,B) =

∑
i ||rAi −rBi ||. And as an example of similarity

function between matrices or arraysA andB, compute the maximal scalar product
of all pairwise scalar products, s(A,B) = maxi(r

A
i · rBi ). Many distance and

similarity functions exist, see for example the book Dictionary of Distances [79].
In the case of SOAP descriptor mentioned earlier, the similarity measure be-

tween two feature vectors p̂(A) and p̂(B) is evaluated by a dot product between
the two vectors.

2.3 Orientation is important
In some situations it is desired to compare two structures in terms of their orien-
tation. In that case, the relevant quantity might be the angle between equivalent
axes, or something similar. Generally speaking, two structures can be written
in any possible reference frame, and in any rotated and/or translated state. The
problem of comparing two rotated and translated structures therefore fundamen-
tally depends on first writing them in a common reference frame, and defining a
relative rigid transformation between them.

2.3.1 Rigid transformation
A rigid transformation is an isometric transformation, which means that it pre-
serves distances of a vector space. Such transformations are rigid rotation and/or
reflection, and rigid translation. In the Cartesian 3-dimensional space, a rigid
rotation and/or reflection R can be written as an orthogonal 3 × 3 matrix, with
|det(R)| = 1. More precisely, if det(R) = 1 then R is a proper rigid rota-
tion, and if det(R) = −1 then R corresponds to a reflection. It also holds that
RT = R−1. The application of a rigid transformation T to a vector a returns the
vector a′, and is written as:

T (a) = a′ = Ra+ t, (2.3)
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and the inverse operation, keeping the same R and t:

T−1(a′) = a = RTa′ −RT t. (2.4)

The permutation P of indistinguishable atoms within an atomic structure can
also be seen as a rigid transformation.

2.3.2 Atomic structure
Representation

An atomic structure A is represented by a set of vectors ai ∈ A, representing the
atomic positions written in the respective reference frame, and the corresponding
atomic properties. An atomic structure A thus contains 3N coordinates, where N
is the total number of atoms in A, plus the atomic properties. When a structure is
periodic, the lattice vectors are also given, representing the unit of periodicity.

Order of atoms

In some cases the order in which atoms are written in a structure is important,
and follows some pre-described recipe. Such as for example in Protein DataBank
(PDB) files, where atoms are grouped together based on which residue of the
protein they belong to, for example amino acid.

However more importantly, for a meaningful comparison of atomic structures
A and B on an atom-by-atom basis, the order of atoms in a set is important since
we need to compare an atom from one structure to an equivalent atom in the
other structure. The specific order of atoms is given by a permutation P , which is
generally anN×N -dimensional matrix of integer elements 0 or 1, whereN is the
number of atoms in the structures compared. The comparison of atoms is usually
restricted such that an atom a ∈ A is only compared to one atom b ∈ B. In this
case, the matrix P is such that each row i or column j contains exactly one element
pij with value 1, which can be written as:

∑
i pij = 1, ∀j and

∑
j pij = 1, ∀i.

In general terms, the order of points in two sets of points being compared is
usually called the assignment. The problem of finding the correct assignment is
called the Linear Assignment Problem (LAP). Algorithms for solving the LAP
are known, and they generally work by operating on a given cost matrix. The
elements cij of the cost matrix represent a relationship between a point i from the
first set, and a point j from the second set. The assignment of points i→ j is then
found by minimizing or maximizing a given function of the cost matrix elements.
For instance as formulated by Ref. [80], the assignment matrix x is found by:

min
∑
ij

cijxij, (2.5)
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where the elements of the matrix x are subject to
∑

i xij = 1, ∀j and
∑

j xij =
1, ∀i. The most widely known general-purpose LAP algorithm is the Hungarian
algorithm [81, 82].

When applied to atomic structures, the assignment matrix x has integer ele-
ments, and represents the permutation of atoms P . The Hungarian algorithm can
be applied to solve the LAP in the context of atomic structures, as for example in
Refs. [83, 84, 85].

Similarity

The similarity of atomic structures needs to be evaluated with taking into account
the general orientation. For this reason, the similarity/distance function needs to
be variant under rigid transformations, i.e. it needs to compare components that
depend on the positions relative to the reference frame of a structure.

Such set-set distance function is for example the Root-Mean-Square-Distance
(RMSD), between structures A and B, expressed as

RMSD(A,B) =

√√√√ 1

N

N∑
i

d(ai, bi)2, (2.6)

where N is the number of points, and d(ai, bi) denotes an Euclidean distance
between points ai ∈ A and bi ∈ B. The function RMSD(A,B) is variant on
rigid transformation of either sets A or B, since a rotation expressed as a matrix
R, and translation by a vector t, acting on set B would return

RMSD(A,B) =

√√√√ 1

N

N∑
i

||ai −Rbi − t||2, (2.7)

where ||..|| denotes an Euclidean norm. It can also immediately be noted that the
function RMSD(A,B) depends on the order of points i in both structures. In
other words, the distance RMSD(A,B) is variant on permutations P of struc-
tures A and B. In Refs. [86, 87], authors have proposed a re-definition of RMSD
based on shortest distances, in order to make it invariant on permutations. It can
be expressed as:

RMSDinv(A,B) =

√
1

N

∑
i

min
j
d(ai, bj)2. (2.8)

Another set-set distance function that is variant over rigid transformations is
the Hausdorff distance dH(A,B) [88]. It is expressed as

dH(A,B) = max(h(A,B), h(B,A)), (2.9)
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where h(A,B) is
h(A,B) = max

i
min
j
d(ai, bj), (2.10)

and d(ai, bj) is the Euclidean distance between points ai ∈ A and bj ∈ B. The
Hausdorff distance is invariant over permutations by construction. Similarly as
Eq. (2.8), the Eq. (2.10) takes the minimum distance over all atoms bj ∈ B for
each atom ai ∈ A. The difference is however that Eq. (2.8) makes a sum of
all such minimal distances, while Eq. (2.10) takes only the maximal value. This
subtility can be meaningful in some cases (see the last paragraph in Sec. 3.8.3).
The definition of dH(A,B) in Eq. (2.9) takes the maximal value between values
h(A,B) and h(B,A), which can differ when the sets A and B contain a different
number of points. The distance h from Eq. (2.10) is thus not always commutative.

In Fig. 2.3, the calculation of the Hausdorff distance is shown for two atomic
structures A and B. The atomic structures are similar, however slightly distorted,
and rotated with respect to each other. The atomic indices are also permuted.

h(A,B) = maxi ( minj d(i,j) )

           = 7.683

idx i minj d(i,j) idx j

Figure 2.3: Calculation of h(A,B) for two atomic structures A in red, and B in
blue. The structures are similar, but rotated relative to each other, and the atoms
are permuted. The indices i are listed, with the minimal distances minj d(ai, bj),
and the corresponding indices j. The final value h(A,B) is the maximal value
among all minj d(ai, bj).

The value of h(A,B) in Eq. (2.10) is the largest value among the smallest
distances from points a ∈ A to points b ∈ B. The value of dH(A,B) in Eq. (2.9)
takes the maximal value of h(A,B) and h(B,A). In other words, there exists
a number ε such that each point in B is within ε-distance from a point in A, and
each point inA is within ε-distance from a point inB; the closed ε-neighbourhood
of A completely contains B, and the closed ε-neighbourhood of B completely
contains A. The Hausdorff distance dH(A,B) is equal to the smallest such ε.
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This is sketched in Fig. 2.4, where the value h(A,B) is shown by a green line,
and the ε-neighbourhood in shade of grey around the atoms of A in red. For the
structures in this sketch, the values h(A,B) and h(B,A) are equal, thus the value
dH(A,B) = h(A,B) = h(B,A). The sketch of h(B,A) with the same structures
would be identical, only the grey areas would be drawn around the structure B in
blue. For an example when h(A,B) 6= h(B,A), see Fig. 3.6 and the discussion

Figure 2.4: The value of distance h(A,B) represented by the green line for two
atomic structures A in red, and B in blue. The ε-neighbourhood around red atoms
is represented by the area shaded in grey.

in that section around the commutativity.
The Hausdorff distance function is exploited in the original work done in this

PhD project, it is further discussed in Sec. 3.4.

2.3.3 Reference frames
Representation

The coordinates of an atomic structure are expressed relative to some reference
frame, which has an associated set of basis vectors, called the basis set, or simply a
basis. A set of vectors β is called a basis of a vector space S if every element of the
space S can be expressed as a linear combination of the vectors in β. In the case
of Cartesian 3-dimensional space, the basis set β is formed by three orthonormal
vectors ê1, ê2, and ê3, written as a 3 × 3 column matrix. The basis vectors can
however also not be orthonormal, for example vectors expressing a primitive cell
of a crystal are in general not orthonormal. In this thesis we assume Cartesian
reference frames, unless indicated otherwise.

There exist some ways of finding a reference frame internal to a structure.
For example finding the principal axes of inertia, or of the gyration tensor. The
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problem with these two is that when a structure is isotropic/spherically symmetric,
they are ambiguous and ill-defined. Another idea of a reference frame internal to a
structure is the Eckart frame [89, 90], where the idea is that the reference frame is
molecule-fixed, meaning that it rotates and translates together with the molecule,
and the atomic movements expressed in Eckart frame are strictly due to atomic
vibrations.

Similarity

Assume two orthonormal basis sets β and γ, which can be seen as two rotation
matrices. In 3D, the rotations are the SO(3) group, which has an intrinsic notion
of the distance, and is expressed as an angle between the two rotations. The
relative rotation between β and γ is represented by a rotation matrix R, such that:

R = γTβ, (2.11)

and the distance between β and γ is represented by the angle φ,

φ = arccos
TrR− 1

2
. (2.12)

Rotations in 3D can also be expressed as Euler angles or, in a more compact
way, as quaternions [91, 92, 93]. A quaternion is a 4-dimensional vector giving
the angle and the unit axis of the rotation. Quaternion algebra is well-defined
and often convenient when dealing with rotations, we will however not discuss it
further.
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Chapter 3

Shape matching

Using the concepts introduced in the previous Chapter 2, more precisely in Sec. 2.3,
the shape matching problem is properly defined in the present Chapter, and an
algorithm that has been developed during the PhD project is presented. The im-
plementation of this algorithm into our in-house kMC software is discussed in the
subsequent Chapter 4.

Suppose the orientation of a structure is an important factor, and we would like
to compare two structures A and B. We could compare them directly, meaning
we could let A and B be written in their current reference frames, and compute
some distance function, e.g. RMSD(A,B) from Eq. (2.6).

RMSD(A,B) =

√√√√ 1

N

N∑
i

d(ai, bi)2 (2.6 revisited)

Such evaluation of similarity would be a bit meaningless, since the result depends
on the reference frames which A and B are written in. Moreover, the result de-
pends also on the permutation P of the elements i in sets A and B. To meaning-
fully compare A and B in this case, a common orthonormal reference frame and
permutation should first be found. The problem of finding these two is in general
called the shape matching problem.

The shape matching problem in general is further described and defined in
Sec. 3.1. The Sections 3.2 through 3.7 describe our developed shape matching
algorithm, and the different components of it. The Sec. 3.8 gives an evaluation of
the algorithm, within different scenarios of its use.

3.1 Rewritten as an optimization problem
Formally, two setsA andB of vector elements, are considered congruent or equiv-
alent if they are related by a transformation that preserves distances, i.e. isomet-
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ric transformation. Such transformations are rigid translations t, rigid rotations
and/or reflections R, and permutations P of indistinguishable vectors. The iso-
metric transformation that fulfills the congruence relation between two structures
gives a solution to the shape matching problem. The congruence relation can be
written as:

PBB = RA+ t. (3.1)

The problem of finding R, t, and PB which best match structures A and B
can be rewritten as an optimization problem,

arg min
R,t

{
D(RA+ t, B)

}
, (3.2)

in which D is a general distance function between two sets, that is i) variant under
R and t, ii) invariant under permutation PB, and iii) returns value 0 when R and
t are such that Eq. (3.1) is satisfied, i.e. when the best match is found. Due to the
invariance of D on the permutation PB, the problem of finding the permutations
is taken out of this equation. It is important to highlight that D does not rely on
an internal structural description (encoding), but rather it directly compares the
"raw" state of the two structures, since R and t depend on their relative reference
frames. When distortions and/or deformations are present, the transformation that
minimizes Eq. (3.2), does not strictly return a 0 distance, but some minimum
value. In that case, the relation between A and B is called a near-congruence, and
the isometric transformation R and t is formally referred to as a near-isometry.
This minimum distance value provides a measure of the quality of the congruence,
i.e. a measure of the similarity between the structures.

The shape matching problem in the form of an optimization problem (Eq. (3.2)),
is usually cast as the problem of finding a global minimum in the phase space of
rotations, reflections, and permutations (neglecting for a moment the translations).
In this formulation, using the RMSD(A,B) from Eq. (2.6), as the distance func-
tion D in optimization Eq. (3.2), does not guarantee the existence of a single
connected path from an arbitrary point in the phase space, to its global minimum.
This can be seen via the following example. Take a structure of 8 points, placed at
the corners of a cube as structureA, where the points are stored in a specific order,
and take an identical structure as B. Then, keeping A fixed, act with a rotation
R around the z-axis on B, and calculate RMSD(A,RB). Doing this for several
permutations of the structure B results in the plot in Fig. 3.1. Notice that a change
in the permutation can cause discontinuous jumps in the RMSD values. Notice
also the abundance of local minima. Taking these two into account, it is not clear
that a path from an arbitrary point to the global minimum should exist.
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Figure 3.1: RMSD as a function of rotations R and permutations between two
identical cubes A andB, shown above the plot. Cube A is fixed whileB is rotated
around the z-axis only. Each color in the plot represents a different permutation
of the rotated cube, some of them are explicitly labelled. Not all permutations are
pictured, as there are in total NP = 8! = 40320 possibilities.

3.1.1 In general terms ...
The main effort in solving the shape matching problem is in finding the optimal
rotations and/or reflections R, and the permutations P . For each of these problems
separately, there exist successful and efficient algorithms.

In order to resolve rotations and/or reflections R among two sets of points
A and B, the existing alogrithms rely on either symmetrization of a special ma-
trix, or minimization of a cost function. Examples of the two ideas include the
Lagrange multiplier method [94], matrix symmetrization [95, 96], decomposition
of a matrix into orthonormal and positive semidefinite matrices [97], Singular
Value Decomposition (SVD) [98, 99, 100], and quaternion eigensystem problem
[101, 102, 103, 104] (a review of quaternions can be found in Ref. [91], and more
recently in Refs. [92, 93]). Usually the cost function minimized is the RMSD
distance, which depends on the order of points (see Eq. (2.6)), therefore the ro-
tation and/or reflection R computed depends on the given order of points. The
problem of finding R is also called the orthogonal Procrustes problem [105].
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Computing the order of points, or the permutation P , is called the assignment
problem. It is introduced in Sec. 2.3.2 paragraph “Order of atoms”. Restated
briefly, it is a mapping from indices of one set to indices of another set, which
minimizes a given cost in the form of a matrix. Solving the assignment problem
might seem simple, but without the knowledge of any intrinsic relation between
the points, the complexity increases very quickly as the total number of possible
permutationsNP of indistinguishable points (atoms) in a structure grows asNP =∏m

k=1 nk!, where m is the total number of different atomic types present, and nk
is the number of atoms of atomic type k.

The shape matching problem is very well known in the computer vision com-
munity, where it is generally known under the term point set registry, for some
reviews on the problematic and associated algorithms, see Refs. [106, 107]. One
of the most widely known algorithms in that community is the Iterative Closest
Point (ICP) algorithm [108]. ICP exploits the idea of self-consistent iteration,
where each step of the iteration combines an assignment procedure and consecu-
tive rotation procedure, until a solution is found. A schematic of ICP procedure
is shown by the plot on Fig. 3.2, where the space of rotations R is represented
on the horizontal axis, the space of permutations is represented by different point
styles, and the value of RMSDP (A,B) is represented by the vertical axis, where
RMSDP (A,B) is the RMSD(A,B) function of Eq. (2.6), evaluated for a given
permutation P . For example, the first step of ICP algorithm in this plot is repre-
sented by computing a permutation P1 at the starting rotationR = 0, then comput-
ing optimal rotation R = R1 at fixed P1, and then computing a new permutation
P2 at rotation R = R1. The algorithm proceeds in this way until reaching a min-
imum of the RMSD(A,B). On the plot of Fig. 3.2, the ICP procedure stops
at rotation R3, since it is then in a state where it cannot find a rotation or per-
mutation that would further decrease the RMSD(A,B), it has therefore reached
a minimum. To compute the assignment of points, the originally proposed ICP
algorithm uses the Hungarian algorithm [81], and the computation of optimal ro-
tations is done using the quaternion approach [97]. It is however known that ICP
might remain trapped in local minima of the transformation space. To mitigate,
the original paper, Ref. [108] suggests using several different starting points, how-
ever other more efficient strategies and modifications exist [109].

3.1.2 Application to atomic structures
Applying the shape matching problem to atomic structures means that point sets
now represent atomic structures, and each point has at least one property associ-
ated to it, which is the chemical specie. Some strategies of resolving the shape
matching as an optimization problem (Eq. (3.2)) specific for atomic structures are
briefly summarized in the following. The main problem is to find optimal atomic
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Figure 3.2: Schematic representation of the Iterative Closest Point (ICP) algo-
rithm. The RMSDP (A,B) is the RMSD(A,B) for a given permutation P .

assignments, and rotations and/or reflections.
The authors in Ref. [110] propose an approach for the alignment of molecules

based on ideas from image recognition, which relies on filtering methods to obtain
atomic assignments. Optimal rotations are later resolved by applying an SVD
minimization.

Finding a rough equivalent reference frame (or Eckart frame[89, 90]) through,
for example, principal axes of inertia, might provide a good-enough rotation for
identifying reasonable assignments, which can in turn be used to find true opti-
mal rotations, see for instance Refs. [111, 112, 113]. This idea is not suitable for
isotropic or compact structures, and crystalline or bulk environments, since the
principal axes might be ambiguously defined, due to the symmetry in the struc-
tures. The calculation of principal axes also involves weights, which usually cor-
respond to atomic masses.

A successful Monte Carlo-based decision scheme for finding the global mini-
mum of RMSD has also been reported in Ref. [85].

An alternative idea to the self-consistent “minimization” of ICP could be to
parse through the full rotation-space by brute-force, and compute optimal score
for each possible rotation. The space of all possible rotations is however much
too large to do that, so one would like to somehow reduce it into a smaller set
of points. That is, to effectively partition the space of rotations into a number of
points R, which is sufficiently low such that an algortihm can try all of them, and
determine the best. The immediate questions are: how many points are sufficient,
and how to choose them such that the best match is included? The following
works have proposed some resolution to these ideas.

Authors in Ref. [83] suggested an algorithm in which the space of possible
rotations and reflections is discretized into a uniform grid of points. For each
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grid-point Ri the optimal atomic assignment PB is obtained as the optimal as-
signment of an inter-structure distance matrix with the Hungarian algorithm[81],
which is then used to minimize rotations with SVD[99]. The grid-point Ri that
brings the lowest final distance is chosen as the optimal rigid transformation, and
the solution of the shape matching problem. The distance function that is min-
imized by SVD is inherently the RMSD(A,B), thus this algorithm effectively
minimizes the RMSD distance. The unifrom-grid strategy is however difficult to
optimize, as the number of grid points is not directly related to any property of the
system.

A slightly different approach has been proposed in Ref. [84], with an atomic-
centered grid of approximate rotations on both structures, meaning that the atoms
present in the system define the possible grid-points Ri. Specifically, the atoms
farthest from the center are selected as the basis for points Ri and subsequently
also to find the approximate rotation. The atomic assignments are obtained via
finding optimal assignment of the inter-structure distance matrix with the Hungar-
ian algorithm. In order to precisely define the atoms which give a possible ba-
sis, a parameter on similarity at atomic-level is introduced, which can be system-
dependent. However, if the compared structures are identical, this method of par-
titioning the rotation space ensures the inclusion of best-match rotation point, or
at least a point in its close proximity.

3.2 Our algorithm
The algorithm presented here follows the idea of partitioning the rotation space R
into a set of discrete points Ri. For each of those points, we calculate a distance
D(RiA,B), where D complies with the constraints given in Sec. 3.1. The point
Ri which gives a minimum D is chosen as an approximate rotation Rapx, which
is used to compute the correct atomic assignments PB, which is then in turn used
to compute the optimal rotation which minimizes a given score.

A schematic of this idea is shown on Fig. 3.3, where the space of possible
rotations has been partitioned into 12 points Ra on the horizontal axis. For each
of these points, the value of distance D(RaA,B) is represented on the vertical
axis. The rotation point which returns the minimal value of D is in this case
Rapx = R6

a, the permutations are computed in this point and used to calculate
the optimal rotation R = Rfin, which minimizes D(RA,B), showcased by the
dashed line.

Our algorithm consists of two parts. The first part iteratively solves the ap-
proximate rotation Rapx, which makes it possible to compute the correct atomic
assignments PB. The second part uses the atomic assignments to compute the final
optimal rotation via standard SVD. We develop the approach Iterative Rotations
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Figure 3.3: Schematic of the idea: the space of rotations R is partitioned into
points Ra on the horizontal axis, the value of D(RA,B) is given on the vertical.
The rotation point that gives the lowest D is chosen as the approximate rotation
Rapx = R6

a, the permutation is then computed and used to find the final optimal
rotation Rfin.

and Assignments (IRA), to obtain the approximate rotation Rapx in the first part
of our algorithm. It is described in more detail in Sec. 3.3. To compute the atomic
assignments PB, we develop our own algorithm: Constrained Shortest Distance
Assignment (CShDA), that solves the Linear Assignment Problem (LAP) under
the one-to-one assignment constraint. It is described in more detail in Sec. 3.4.
The ability of CShDA to deal with structures containing different numbers of
atoms opens a door to a generalization of IRA to structures with different number
of atoms, in Sec. 3.5. The Sec. 3.6 describes the Singular Value Decomposition-
based technique of obtaining optimal rotations, in case when atomic assignments
are known, that is used to obtain final rotation when structures are not exactly
congruent.

The shape matching algorithm developed here has been published in Ref. [114].

3.3 Iterative Rotations and Assignments
One of the two main goals of our algortihm is to find the optimal rotation Rfin,
following the Eq. (3.3). This rotation should be such that one of the two structures
(namely structure B) is kept fixed,

RfinA = B. (3.3)

In order to find the rotation Rfin between the atomic structures A and B, the
main idea is to find a basis set for each structure, such that the structures are equal
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when expressed each in its basis. The relative rotation between these two bases
then gives the rotation Rfin. In order to explain this idea behind IRA in a clear
way, we shall first assume that the two structures being compared are exactly
congruent, in Sec. 3.3.1 and Sec. 3.3.2, where the solution of rotation gives an
exact match. Then we extend the idea to near-congruent structures in Sec. 3.3.3,
where the solution of rotation becomes approximate.

Henceforth we assume that all structures are written in a 3-dimensional Carte-
sian space with an orthonormal basis. In this assumption, any rigid rotation matrix
R is composed of three orthonormal vectors. Similarly, any orthonormal basis set
is equivalent to a rotation matrix R. In other words, the rotation of a structure by
R can be understood as a change of basis operation, and vice versa.

3.3.1 Congruent structures
Assume structuresA andB are exactly equivalent (congruent), that is, the relation
between them written as Eq. (3.1) can be exactly satisfied, but we do not know
the rigid transformation (composed of R, t, and PB) between them. Assume
we can nullify the translation t by shifting both structures to a known common
origin, such as their geometric centers. Let β be the 3× 3 matrix containing three
orthonormal basis vectors for a reference frame of structure A. Similarly, let γ be
the 3 × 3 matrix containing three orthonormal basis vectors of a reference frame
of structure B. When β and γ are such that structure A expressed in the β basis is
equal to the structure B expressed in the γ basis, written as:

βA = γB, (3.4)

then the rotation Rfin from Eq. (3.3) can be written as:

Rfin = γ−1β. (3.5)

Notice that since γ is orthonormal, the inverse is equal to its transpose γ−1 =
γT , which means the Eq. (2.11), giving a relative rotation between two rotations
(reference frames), is satisfied, and Rfin indeed gives the relative rotation between
structures A and B.

R = γTβ, (2.11 revisited)

3.3.2 Parsing the space of rotations; definition of a basis
In order to find the orthonormal bases β and γ (Eq. (3.4)), we partition the space of
all rotations into a set of points. Each point represents a rotation, defined by a basis
composed of orthonormalized vectors of atoms present in the structure. Each basis
is constructed from two atomic vectors, and their cross product as follows. The
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first basis vector ê1 is a normalized atomic vector of some atom, the second basis
vector ê2 is the orthonormal part of some other atomic vector, noncollinear to the
first one, and the third basis vector has two possible values: ê3 = ê1×ê2, and ê3 =
ê2×ê1. The second choice of the third basis vector effectively represents a mirror-
reflected basis. This choice allows the matching of mirror-reflected structures.
Each rotation point, or basis, is thus completely defined by the atoms within the
structure. A simplified 2D schematic of such partitioning for a hypothetical atomic
structure is shown in Fig. 3.4, where the space of all possible rotations is drawn
in dashed grey, and the points in green represent its partitioning. When A and B

Figure 3.4: Partitioning of rotation space into a set of points, for some hypothetical
atomic structure. In 2D for simplicity.

are exactly congruent, the partitioning of rotations for structureAwill be identical
to that of structure B. The task then is to find a pair of bases β and γ (points in
rotation space), which satisfy Eq. (3.4). Since the partitions are equivalent, we
can arbitrarily choose one basis β for structure A, and then iterate through all the
possible points (bases) γ in the structure B, evaluating Eq. (3.4) for each, until a
satisfactory γ is found. This procedure gives the name to our algorithm, Iterative
Rotations and Assignments, abbreviated IRA.

3.3.3 Near-congruent structures
In the situation whenA andB are not exactly congruent (they are near-congruent),
meaning the relation in Eq. (3.1) cannot be exactly satisfied, in other words, there
is some distortions between structures A and B, the partitioning of the rotation
space is not anymore exactly equal for both structures. Since there are now some
distortions in the atomic positions, this induces distortions in the bases constructed
by our procedure, which define points in the rotation space. Thus we cannot
anymore expect to find a pair of bases β and γ, such that condition in Eq. (3.4) is
satisfied exactly. This means the rotation Rfin found by IRA procedure is at best
an approximate rotation Rapx. The approximate rotation would be constructed
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as Rapx = γ−1β, from bases β and γ which are now such that the condition in
Eq. (3.4) is satisfied as best as possible. This is done by computing the distance:

D(γ−1βA, B), (3.6)

for a chosen β, and each possible γ. The distance function D(γ−1βA, B) is the
Hausdorff distance from Sec. 2.3.2. More precisely, the computation ofD follows
Eq. (2.10). In order to compute its value, we first need to compute the one-to-one
atomic assignment.

h(A,B) = max
i

min
j
d(ai, bj) (2.10 revisited)

3.4 Constrained Shortest Distance Assignment
To compute the atomic one-to-one atomic assignments we developed our algo-
rithm called Constrained Shortest Distance Assignment (CShDA).

An atomic assignment, or mapping between atoms ai ∈ A and bj ∈ B is
the set of pairs of two atoms i, j, such that each pair gets a minimum possible
cost, under the constraint that each atom i can only have one and only one match
j, so-called one-to-one assignment. The set of these pairs constitutes the atomic
assignment, which can be written as a permutation matrix P .

The constraints of atomic assignment used in CShDA are described in Sec. 3.4.1.
The link between CShDA and distance function D is described in Sec. 3.4.2. The
comparison/contrast of CShDA with the Hungarian algorithm, which is one of the
most widely used LAP solvers is given in Sec. 3.4.3. The possibility of CShDA
to assign structures with different number of atoms is shown in Sec. 3.4.4.

3.4.1 Constraints
The idea of CShDA is that the distances from an atom ai ∈ A to all atoms b ∈ B
are used as a cost for computing the assignment of atom ai, such that shortest
distances are prioritized for each atom ai locally. To showcase, an atom ai gets
assigned an atom bj with the shortest distance d(ai, bj) among all atoms b. How-
ever, if during the algorithm an atom ai ∈ A which is assigned an atom bj ∈ B
with some distance d(ai, bj), and another atom ai′ ∈ A gets assigned the same
atom bj ∈ B with a distance d(ai′ , bj) < d(ai, bj), the atom ai′ will be prioritized
for this bj , and the atom ai gets assigned a different atom. Symbolically, CShDA
iteratively assigns a single atom ai ∈ A to a single atom bj ∈ B following:

ai → bj | min
bj∈B

d(ai, bj) ∀ai ∈ A (3.7)

44



with the constraint that bj has not yet been assigned with a distance lower than
d(ai, bj), where d is the Euclidean distance between the points. When applied to
a general set of points, this kind of local assignment is sometimes referred to as
bottleneck LAP [115], or more precisely, the inverse-bottleneck LAP.

3.4.2 Link between CShDA and distance D
One can realize that our CShDA algorithm corresponds to the min part of the
Hausdorff distance in Eq. (2.10), with the additional constraint of one-to-one as-
signment. As distance function D we choose the Hausdorff distance in Eq. (2.10).
The evaluation of Eq. (2.10) is then the maximal distance d(ai, bi) among all
points i, where the order of atoms bi follows the assignment provided by the
CShDA algorithm. The computation of distance D is therefore intimately linked
to the CShDA assignment algorithm. In fact, each evaluation of D requires the
computation of CShDA assignment, and each computation of the assignment with
CShDA returns as result the distance D, along with the assignment.

3.4.3 Comparison of CShDA with the Hungarian
There are two main differences between our CShDA and the Hungarian algorithm.

Firstly, the criteria for the assignment of two atoms differ. The Hungarian
algorithm [81] assigns indices such that the total sum of the cost is minimized,
where the cost of assignment is the distance between two points. In CShDA, each
assignment cost is minimized separately, under the one-to-one constraint, where
the assignment cost is the distance between points. In order to illustrate the dif-
ference, we compute the atomic assignments for two structures in two rotated
states (Fig. 3.5), using the Hungarian algorithm following the implementation by
Munkres [82], and using our CShDA algorithm. What we observe when com-
puting the assignments for two structures in different rotated states, is that the
CShDA algorithm tends to concentrate the maximum deviations on a small num-
ber of atoms, contrary to the Hungarian algorithm that favours smaller deviations,
but spread over several atoms. Prioritizing a smaller total distance cost over lo-
cal distances, as done in the Hungarian algorithm, means that globally “distorted”
solutions are preferred over rigid single mismatches, see Fig. 3.5.

The second difference is that the Hungarian algorithm requires two structures
to have equal number of atoms, as the cost of assignment is computed from an all-
to-all distance matrix, which needs to be square. While it is true that any square
matrix can be made to be non-square by the addition of ghost rows or columns
at specific indices, this is not trivial since it is not known a priori which should
these indices be. Our CShDA algorithm does not have such a constraint. The
only requirement for CShDA is that the number of atoms nA in structure A is
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Hungarian (Munkres):

Hungarian (Munkres):

CShDA algorithm:

CShDA algorithm:

Final score:

Rotation 2

Rotation 1

1.1 2.9

Figure 3.5: A schematic of the assignment problem, with structures A and B
in two rotated states. On the left the assignment by the Hungarian algorithm
following the implementation proposed by Munkres [82], and on the right by our
CShDA algorithm. The colors show final assignments of atoms, e.g. a blue atom is
assigned to a blue atom, yellow atom to yellow, etc. The final scores are computed
as max(d(ai, bi)). The first rotated state could represent a particular intermediate
step within the iterative rotations procedure (IRA).

nA ≤ nB, where nB is the number of atoms in structure B, as is explained further
in Sec. 3.4.4.
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3.4.4 Different number of atoms
In the IRA part of the algorithm (Sec. 3.3), the evaluation of distance functionD in
Eq. (3.6) is compliant with the one-to-one matching constraint of the CShDA, and
strictly corresponds to the Hausdorff distance h(A,B). Due to the relatively low
number of atoms in the atomic structure matching, the usage and implementation
of the Hausdorff distance needs some attention. The expression for h(A,B) in
Eq. (2.10) is only commutative when A and B contain the same number of points,
which is the reason the expression for the Hausdorff distance is generally written
in the form of Eq. (2.9), which penalizes the situation where some points are
present in one structure but not in the other.

dH(A,B) = max(h(A,B), h(B,A)) (2.9 revisited)

Fig. 3.6 schematically shows the shortest distances between points of set A (tri-
angles) and points of set B (circles) as arrows, where the largest among them is
colored in red and represents the value of h(A,B), and h(B,A) respectively. As
described in Sec. 3.4, the assignment of atoms is done under the one-to-one con-
straint, which poses a problem for the situation of h(B,A) on the right side of
Fig. 3.6, where B contains more atoms than A, since two atoms of B get assigned
to the same atom of A. A mitigation for avoiding this problem is to systematically
impose that the number of atoms nA ≤ nB, which is the situation of h(A,B) on
the left side of Fig. 3.6. This imposition also opens up the possibility of matching
structural fragments. But, it also adds another layer of complexity to the algo-
rithm, since the choice of common origin is not anymore trivial: the geometric
centers of structures can be far from equivalent when they contain different num-
ber of points. Which calls for a re-statement, and generalization of the algorithm
in Sec. 3.5. When computing CShDA (or distance D) for structures A and B
where the number of atoms nA ≤ nB, the atoms ai ∈ A get assigned atoms
bj ∈ B. The unassigned atoms of B get ignored, and the distance D is computed
as the max value of distances only among the assigned pairs of atoms, which is
nA number of pairs. We enforce that the permutation PB of set B will in this case
be such that the points of A will be assigned to the first nA points of PBB. The
unassigned points of B will be permuted to the end of the set.

3.5 Re-statement of the algorithm: central atom
As has been shown in Sec. 3.4.4, the atomic assignment algorithm CShDA is
not restricted to structures with equal number of atoms, and this opens up the
possibility of matching structural fragments. However the additional complexity
is that the common origin of two structures with different number of atoms is
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Figure 3.6: Schematic representation of the difference between h(A,B) on the
left, and h(B,A) on the right, when A and B contain different number of points.
Set A is represented by triangles, set B by circles. Arrows show the minimum
distances between points in green, and the maximum value in red, h(A,B) and
h(B,A) respectively.

not straightforward to determine. For this reason, the IRA algorithm needs to be
restated such that the possibility of matching structural fragments is taken into
account.

As mentioned in the previous section, the mitigation for non-commutativity of
h(A,B) is to always impose structure A to have less or equal number of atoms as
structure B, nA ≤ nB. In order that the one-to-one constraint for determining the
assignments in CShDA is satisfied, all atoms from A must have a matching atom
in B. Therefore, if the structures A and B are congruent, any atom that is present
in structureAmust also be present in the structureB. We thus use this idea to find
a common origin of the reference frames, as one of the atoms of structure A. The
algorithm thus becomes centered on a particular atom, called the central atom.

The particular choice of the central atom seems quite arbitrary at this point, so
we choose it the atom that is closest to the geometric center of A (it is shown later
in Sec. 3.8.4, that this might not always be the best idea). Let the atomic vector
of the central atom in structure A be labelled rC . Since the basis β that is set in
structure A is now also atom-centered, we call it Ω. The structure A in the new
basis can the be expressed as:

A′ = Ω(A− rC). (3.8)

The iterative search for basis γ in structure B must now take into account that
it can potentially be centered on any atom bJ ∈ B, so an additional loop must
be done. For each potential central atom J , all possible γ bases need to be con-
structed and checked. The atomic vector of atom J is labelled as rJC , and the set
of all possible γ bases, for all possible central atoms J is labelled {UJ}. The
structure B in the new basis can then be written:

B′ = UJ(B − rJC). (3.9)
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In this notation, the IRA iterates over the set of {UJ} bases, and for each computes

D(RapxA, B), (3.10)

where Rapx = U−1J Ω. It chooses atomic ventor rJC and basis UJ whereD is small-
est. The approximate rotation Rapx and translation tapx can then be constructed
as:

Rapx = U−1J Ω (3.11)
tapx = rJc −Rapxrc.

At this point, the permutation PB is computed using the CShDA algorithm.
With all these information the shape matching algorithm can enter the last step,
which is finding the optimal rotation R using the standard SVD algorithm, see
Sec. 3.6.

3.6 Optimal rotations with Singular Value Decom-
position

In the case in which the two structures are not equivalent, i.e. in the case of near-
congruence, after finding the atomic assignments P by our IRA algorithm, the
optimal rotations are found via an SVD-based algorithm [100] as follows.

Point sets A and B are shifted to their geometrical centers, obtaining A′ =
{a′i = ai − ac} and B′ = {b′i = bi − bc} where ac and bc are the vectors of
geometric centers of A and B respectively. A 3× 3 matrix H is constructed from
nA points which are common to A′ and B′ (to enable the decomposition for sets
with different number of atoms),

H =

nA∑
i

|b′i〉〈a′i|, (3.12)

with a′i and b′i the vector points of A′ and B′, and |..〉〈..| denoting outer vector
product. The SVD returns three matrices, U, S, and V, where U and V are
orthonormal rotation matrices, and S is a diagonal matrix containing the sinular
values. These matrices are such that SV D(H) = USVT . The rotation matrix R
is then found as:

R = UVT , (3.13)

and if det(R) = −1, then R is multiplied by diag(1, 1,−1). The translation
vector t is found as:

t = ac −Rbc. (3.14)
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Rotation R and translation t found in this way, are such that the RMSD(A,B) is
minimized (details on SVD can be found in Ref. [100]).

It is commonly believed that SVD-based algorithms are not particularly suited
for matching purposes, due to the ability of SVD to find non-proper rotations
[91], i.e. rotation matrices with negative determinant. Such improper rotations
correspond to reflections (sometimes also addressed as pseudorotations [116]), i.e.
inversions, or mirroring over some axis, which changes the chirality of a vector
set (which is not always desired, e.g. Ref. [110]). It has been suggested [100]
to mitigate this issue by multiplying the rotation matrix by diag(1, 1,−1), thus
forcing a positive determinant. This strategy might however result in a completely
wrong rotation, as the matrix H depends on the order of points (see Eq. (3.12)).

As our IRA approach is able to also suggest mirror-reflected reference frames
(see Sec. 3.3.2), via inverting the third basis vector, it is always able to rigorously
keep track of what has been suggested, and properly enforce the final rotation
matrix to have det(R) = 1 (corresponding to rotation), or by multiplying it by
diag(1, 1,−1) to obtain det(R) = −1 (corresponding to reflection).

3.7 Algorithmic details
A flowchart of our shape matching algorithm is shown on Fig. 3.7, where the first
part of the algorithm (IRA and CShDA) is colored in blue, the second in green
(SVD), and final solution given in red. The Sec. 3.7.1 and Sec. 3.7.2 contain the

Figure 3.7: Flowchart of the algorithm. First part of the algorithm, colored in blue,
gives an approximate solution to rotations and translations, and solution to the
permutation PB. The permutation is needed in the second part of the algorithm,
colored in green, which finds the optimal rotation and translation by utilising the
SVD method. The final solution of the matching algorithm is colored in red.

details on the implementations of IRA and CShDA. The idea is to lay out the ideas
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such that they can be reimplemented by any reader. The subsection 3.7.3 contains
the information on specific implementation as a library.

3.7.1 Iterative Rotations and Assignments (IRA)
The philosophy of IRA is to set some reference frame inA, and then iterate overB
in order to re-find that same reference frame. The iteration procedure is given by
the partitioning of the space of all rotations into a set of dicrete points, as described
in Sec. 3.3.2. The number of points to be iterated over depends on the number of
non-collinear atoms around the central atom of A, which can potentially be very
large. However, if we choose the atoms which set basis Ω for structure A in a
smart way, we can a priori exclude a huge portion of the iteration points. The
pseudo algorithm for the general case when structures A and B contains different
number of atoms is given in Alg. 4, and the case when they contain equal number
of atoms in Alg. 5, the former is described in the following. The latter can also be
used with different number of atoms, but there needs to be a known point, common
to both structures, which replaces the geometric center as the central point. The
main part of IRA, which is the iteration through possible rotations (orthonormal
bases) is given in Alg. 3.

In order to distinguish the cases when A and B contain equal or different
number of atoms, we use a different notation for the bases in each. In case when
number of atoms is equal, we use β and γ, and when number of atoms is different
we use Ω and UJ . The difference is purely in notation, to emphasize that UJ
depends on the index of central atom J . For the main part of IRA in Alg. 3, this
distinction makes no difference.

The central atom ofA is chosen at the start, as the atom closest to the geometric
center of A (Alg. 4 line 2). The atoms of A are then shifted and sorted by their
norm, which is by their distance from the central atom (Alg. 4 line 5). Then the
basis Ω is chosen with two noncollinear atoms, as close as possible to the central
atom (Alg. 4 line 6). The norm of the larger of these two atomic vectors is stored
as a “cutoff” distance kmax, used for terminating the iterations in structureB. In a
sense, this distance determines the search space of rotation points UJ , around each
potential central atom in structureB. The “cutoff” distance kmax is multiplied by
default by 1.2, to slightly increase the search space, and thus accomodate possible
small distortions, and numerical noise (Alg. 4 line 8).

The iterative loop over the structure B can thus begin (Alg. 4 line 9), each
candidate central atom is selected, and the strucutre B shifted to that origin. Then
the atoms are first sorted by their distance, such that the loop over rotations (Alg. 3,
called by Alg. 4 line 13) can exit as soon as an atom is outside the kmax region
(Alg. 3 lines 3 and 5).

This method profoundly cuts down the number of basis that are checked. It
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Algorithm 3 The main part of IRA procedure: looping through possible bases γ,
and selecting the one which gives minimum value of D.

Input: structures A, B, basis β, cutoff kmax
Output: rotation γ, distance D

1: procedure GETGAMMA(A,B,β, kmax, γ,D)
2: for bi ∈ B do
3: if( |bi| > kmax ) exit
4: for bj ∈ B do
5: if( |bj| > kmax ) exit
6: for m = 1 and m = −1 do
7: γ ← SelectBasis(bi, bj , m )
8: A← Rotate( A, γ−1β )
9: hijm = D(A,B) . Compute by CShDA

10: end for
11: end for
12: end for
13: select i, j,m such that hijm is minimum
14: γ ← SelectBasis(bi, bj , m, γ)
15: D ← hijm minimum
16: end procedure

can now be expressed as nC(nC − 1), where nC is the number of noncollinear
atoms within the kmax region of the current central atom. Since the value of
kmax is set by the nearest atoms to the central atom of A, it is most probably on
the order of the first-neighbour distance. This means that the number of atoms nC
is given by the compactness and isotropy of the structure. The largest number of
nearest neighbour for any known solid is 12, in the face centered cubic (fcc), and
hexagonal close-packed (hcp) crystal structures. Thus, for fcc and hcp the number
nc = 12. Additionally, since each atom in fcc or hcp first-neighbour environment
has one collinear atom, the total number of rotation points would be nC(nC−2) =
120. This number is however still not exact, due to the multiplication of kmax by
1.2.

A sketch is shown in Fig. 3.8 depicting a hexagonal structure of atoms, whose
positions are marked by black crosses, and their respective indices are marked.
The first basis vector ê1 marked in grey has been selected on the atom 2, the
possible second basis vectors are given from orthogonal parts of vectors to atoms
3, 4, 6, and 7. They are marked in green as ê2 and ê′2. The orthogonal parts of
vectors given by atoms 3 and 7 coincide, the same for atoms 4 and 6. The atom
5 is collinear with the first basis vector, thus the vector ê′′2 cannot be selected for
a basis. The number of iterations for this structure would thus be 4 per each atom
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Algorithm 4 The IRA procedure for structures containing different numbers of
atoms.

Input: Atomic structures A, B, stored in arrays
Output: Rotation matrix Rapx, translation vector tapx, permutation PB, dis-

tance D
1: vectors :: ai ∈ A, bi ∈ B
2: ChooseCentralAtom( A, ac ) . closest to geometric center
3: rc ← ac
4: A← Shift( A, rc )
5: A← SortByNorm( A )
6: Ω← SelectBasis( ai, aj )
7: A← Rotate( A, Ω )
8: kmax = max(|ai|, |aj|) ∗ 1.2
9: for bJ ∈ B do . candidate central atoms

10: rJc ← bJ
11: B ← Shift( B, rJc )
12: B ← SortByNorm( B )
13: call GETGAMMA(A,B,Ω,kmax, UJ , DJ) . Get UJ
14: end for
15: select J such that DJ is minimum
16: UJ ← SelectBasis(bi, bj , m )
17: Rapx ← U−1J Ω
18: tapx ← rJc −Rapxrc
19: D ← DJ minimum
20: compute PB from CShDA
21: return Rapx, tapx, PB, D

giving ê1, thus 6 · 4 = 24.
For each possible basis UJ constructed in B, the distance D(A,B) is calcu-

lated (Alg. 3 line 9), as stated in Sec. 3.5. Each iteration thus stores in memory:

• an integer giving the index of candidate central atom J ;

• two integers that are the indices of atomic vectors giving ê1 and ê2;

• an integer m, signalling the choice of ê3 as: ê3 = ê1× ê2 when m = 1, and
ê3 = ê2 × ê1 when m = −1, and;

• the value D calculated with that basis.

At the end of the iteration, the lowest value D is chosen with other corresponding
data in memory (Alg. 3 line 13), from which the basis UJ can be reconstructed.
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Figure 3.8: A sketch of the basis construction possibilities in a 2D hexagonal
structure, atomic positions are given as black crosses, with their respective indices
marked. The first basis vector ê1 is already chosen marked in grey, all possible
choices for the second basis vector ê2 are marked. The choice of ê′′2 is marked red,
since it is not an acceptable vector, as it is collinear to ê1.

The structure B is shifted such that atom J is at the origin. The vectors ê1 and ê2
are constructed from given atomic vectors, and ê3 is multiplied bym, which forms
the basis UJ (Alg. 4 line 16). Bases Ω and UJ are combined to give Rapx (Alg. 4
line 17) according to Eq. (3.11). The atomic vector rJC of the central atom J , is
combined with the atomic vector rC of central atom in structure A, and rotation
Rapx to give translation tapx (Alg. 4 line 18) according to Eq. (3.11). Finally, the
permutation PB and distance D(A,B) are computed by CShDA (Alg. 4 line 19
and 20).

The differences of Alg. 4 with respect to the case when structures A and B
contain equal number of atoms in Alg. 5, are the choice of central point, and the
loop over candidate central atoms of B.

3.7.2 Constrained Shortest Distance Assignments (CShDA)
The CShDA algorithm is outlined in Algorithm 6.

As the first step, the all-to-all distance matrix is computed, from atoms of
structure A to atoms of structure B, see Alg. 6 lines 6-11. The matrix elements
dij are such that

dij = ||ri − rj||, (3.15)

where ri is a vector of atom ai ∈ A, and rj is a vector of atom bj ∈ B. If the atoms
ai and bj are not of the same atomic type, then the distance is set to some high
value dij = 990.0, to make the final assignment of this pair of atoms extremely
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Algorithm 5 The IRA procedure for structures containing equal number of atoms.
Also applicable with different number of atoms, but a known common point. In
that case, the geometric center is replaced by that point.

Input: Atomic structures A, B, stored in arrays
Output: Rotation matrix Rapx, translation vector tapx, permutation PB, dis-

tance D
1: vectors :: ai ∈ A, bi ∈ B
2: ChooseCenter( A, rac ) . Geometric center
3: A← Shift( A, rac )
4: A← SortByNorm( A )
5: β ← SelectBasis( ai, aj )
6: A← Rotate( A, β )
7: kmax = max(|ai|, |aj|) ∗ 1.2
8: ChooseCenter( B, rbc ) . Geometric center
9: B ← Shift( B, rbc )

10: B ← SortByNorm( B )
11: call GETGAMMA(A,B, β,kmax, γ,D)
12: Rapx ← γ−1β
13: tapx ← rbc −Rapxr

a
c

14: compute PB from CShDA
15: return Rapx, tapx, PB, D

unlikely. The size of this distance matrix is nA × nB, where nA and nB are the
number of atoms in structures A and B respectively. As such, the distance matrix
is generally neither square, nor symmetric. The Fig. 3.9 shows two structures A
and B with a different number of atoms, containing atoms of two atomic species,
blue and yellow. The indices i and j are marked on each structures with orange. A
and B are such that all atoms are placed on a regular grid with the origin at atom
index 3 in structureA, and at the vacancy in the center of structureB. The nearest-
neighbour distance is 1.0. The all-to-all distance matrix for these two structures is
shown at the bottom.

At second step, the assignments are computed according to Eq. (3.7), see
Alg. 6 lines 12-30. Practically, the row index i of the distance matrix represents
atoms ai, while the column index j represents atoms bj . The assignments i → j
are then computed for each row i, as the index j of the lowest distance value in
that row. However due to the one-to-one assignment constraint, each index j can
be matched to only one index i. Meaning that if for some row index i, a column
index j is selected with a value dij , and then for some other row index i′, the
same column index j is selected (Alg. 6 line 17) with a value di′j , the values dij
and di′j will be compared (Alg. 6 line 19), and the lowest one determines which
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Atoms Atoms

column index j

Figure 3.9: Structures A and B containing two atomic species: blue and yellow,
with the atomic indices marked in orange. The all-to-all distance matrix at the
bottom.

row index (i or i′) will get assigned that column index j. The Fig. 3.10 shows
the distance matrix for structures from Fig. 3.9, with entries circled in green and
red. The green entries mark the final matching of indices i→ j, and the red ones
mark the spots where CShDA had to search the index i again due to a conflict in
assignment. The columns j that have been left unassigned are pointed by orange
arrows, these represent atoms bj ∈ B which do not have a match in A, and are
simply ignored.

Figure 3.10: The assignment of distance matrix for structures from Fig. 3.9. Val-
ues circles in green mark final assignments i → j, red circles mark the situations
of conflicting assignments, and orange arrows mark unassigned column j.

The final assignments i → j of structures A and B, and their corresponding
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distances dij are shown in Table 3.1. The value of distance functionD(A,B) used
in the IRA algorithm is given by the largest value of the selected dij distances
(Alg. 6 line 32). For the present example, D(A,B) = 1.0.

index i index j distance dij
1 9 0.0
2 7 0.0
3 10 1.0
4 1 0.0
5 3 0.0
6 4 0.0
7 6 0.0
8 11 0.0

Table 3.1: Final assignments i→ j of structures A and B from Fig. 3.9.

The permutation matrix PB which permutes the structure B is a nB × nB-
dimensional matrix, whose first nA entries correspond to the indices found by
CShDA, and the final (nB −nA) entries are just on the diagonal, these last entries
do not match any atoms from A (Alg. 6 line 31).

3.7.3 Standalone library
The shape matching algorithm containing IRA and CShDA is presently imple-
mented as a standalone library of routines, written in Fortran. As such, it can
be linked to any software. It is published as GitHub repository at https://
github.com/mammasmias/IterativeRotationsAssignments, un-
der a dual license: Apache v2.0, and GNU General Public License v3.0.

The main idea behind most routines is that the input structures should remain
untouched. In language of Fortran, this means the atomic structures should have
the attribute intent(in). Anything returned by a routine thus has the attribute
intent(out). For example the IRA routine returns the rotation Rapx as a 3×3
rotation matrix, the translation tapx as a 3-dimensional vector, the permutation PB
as nB-dimensional array, and distance D(A,B) as a real number, all these with
the attribute intent(out), and without actually applying them to a structure
inside the routine itself. Giving the option to the program which called the routine,
to use the information in any desired way.

A section of a hypothetical program, in which the shape matching problem is
solved for two atomic structures strucA and strucB using the IRA algorithm,
written as pseudocode would look as Alg. 7. Note that the structures are not
transformed within the said program, the called routines leave them untouched.
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Algorithm 6 The CShDA algorithm.
Input: Atomic structures A, B in arrays
Output: Distance D(A,B), permutation PB

1: vectors :: ai ∈ A, bi ∈ B
2: matrix :: d, dimension( nA, nB) . Assignment matrix
3: list :: found, dimension( nB ) . Contains the assignments
4: list :: dists, dimension( nB ) . Contains assigned distances
5: list :: search, dimension( nA ) . Search order
6: for ai ∈ A do
7: for bj ∈ B do
8: d(i, j) = d(ai, bj) . Euclidean distance
9: if typ(ai) 6= typ(bj) then d(i, j) = 990.0

10: end for
11: end for
12: i← 1
13: search(:)← 1; found(:)← 0; dists(:)← 0.0
14: while search(i) > 0 do
15: search(i)← 0
16: j ← minloc(d(i, :)) . Location of the minimal value
17: if j already in found then . j is already assigned to some i
18: i_old← location of j in found . which previous i
19: if d(i_old, j) < d(i, j) then
20: search(i)← 1 . Search this i again
21: d(i, j)← 999.9 . Don’t find this j again
22: else
23: search(i_old)← 1 . Search i_old again
24: d(i_old, j)← 999.9 . Don’t find this j again
25: end if
26: end if
27: found(i)← j . assignment i→ j
28: dists(i)← d(i, j) . distance of assigned atoms
29: i← next in search(:)
30: end while
31: fill the rest of found with indices of B without a match
32: return D(A,B) = maxval(dists(:)), PB = found(:)

3.8 Performance of the algorithm
The performance test of the IRA algorithm is done to examine its efficiency in
finding the correct rigid transformation between two (near-)congruent structures.
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Algorithm 7 A hypothetical program, solving the shape matching problem with
IRA.

procedure MATCHSHAPE(strucA, strucB)
# calculate rotation R_apx, translation t_apx,
# permutation P, distance D:
call IRA( strucA, strucB, R_apx, t_apx, P, D )

# apply R_apx as matrix-vector multiplication, add t_apx
strucA← matmul( R_apx, strucA ) + t_apx

# permute B
strucB← permute( strucB, P )

# find optimal rotation R and translation t with SVD
call SVD( strucA, strucB, R, t )

# apply R, add t
strucA← matmul( R, strucA ) + t

end procedure

There are three specific scenarios to test.
The first is when two atomic structures are exactly congruent, they do not

contain any distortions, and contain equal number of atoms. This scenario is
tested in Sec. 3.8.1, which also describes the benchmark test of IRA against two
other shape matching algorithms.

The second scenario is when two atomic structures are near-congruent, mean-
ing they contain some atomic distortions, and have the same number of atoms.
This scenario is tested in Sec. 3.8.2.

The third scenario is when two atomic structures are near-congruent, and have
different number of atoms. This scenario is tested in Sec. 3.8.3.

The Sections 3.8.4 and 3.8.5 explore some details of the IRA algorithm. Namely
how to mitigate some mismatches by providing more knowledge about the struc-
tures to the algorithm, in the form of known central atom, or any known common
point in Sec. 3.8.4. And how to reduce the number of rotations tested in the itera-
tive part of IRA in Sec. 3.8.5.

Furthermore, we test the particular scenario of IRA inserted into a kMC soft-
ware in Sec. 3.8.6.

Note that the units of the RMSD distance generally depend on the units in
which the input structures are written. For the tests in Sections 3.8.1, 3.8.2, and
3.8.3, the units are irrelevant, since we are only interested in whether the distance
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value equals to zero or not.

3.8.1 Exact congruence, equal number of atoms
In order to evaluate the efficiency of the IRA algorithm, we perform a test of find-
ing the correct rigid transformation, consisting of R, t, and PB, from any random
initial rotation, reflection, translation, and permutation state. This is done as fol-
lows. An atomic structure A is copied into structure B, then B is operated on
with a random rigid transformation consisting of rotation, reflection, translation,
and permutation. The random rigid transformation is described in the next para-
graph. The structures A and B are thus exactly congruent, contain equal number
of atoms, and are related by some rigid transformation. The IRA algorithm is run
for these two structures A and B. The transformation found by IRA is applied to
B, and then the distance RMSD(A,B) from Eq. (2.6) is calculated. If IRA has
successfully found the correct transformation, the distance RMSD(A,B) will
be exactly zero, or within the floating point precision error. RMSD(A,B) from
Eq. (2.6) is a good distance measure for this case, since it is variant on all the rigid
transformations applied, including permutation.

A random rotation is done by choosing a random rotation axis and a random
rotation angle on the range [0,2π]. The rotation matrix corresponding to this oper-
ation is generated and applied to structure B. To randomly perform the reflection,
a random number on the range [0,1] is drawn, if the number is greater than 0.5,
then the current z-axis of the structure B is mirrored. Random translation is done
by drawing random 3-dimensional vector, with a norm chosen randomly on the
range [0,10]. The srtucture B is then translated by that vector. To randomly per-
mute the indices, a valid random permutation matrix is generated, meaning that
each index appears in it only once. The structure B is permuted with this permu-
tation matrix.

The random transformation test has been done a number of times for each
structure, to gather some statistics of the algorithm efficiency when starting from
different initial states. Two sets of structures A used for this test are from the
Cambridge Cluster Database [117], more specifically we have used the TIP4P
water clusters with n = 2 to n = 21 molecules of water in the cluster, the Lennard-
Jones (LJ) clusters of sizes n = 3 to n = 150 and from n = 310 to n = 1000
atoms. We have also used an amorphous Si structure with n = 64 atoms. Some
sample structures are shown in Fig. 3.11. The test is done 10000 times for each of
the water cluster structures, 100 times for each LJ structure, and 10000 times for
Si structure. The result of every single one of the tests was a distance below the
floating point precision error, which implies that the correct transformation has
been found in all the cases.

For the purpose of the IRA article [114], we have also performed a comparison
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a) b) c)

Figure 3.11: Some sample structures used to test the reliability of the overall
algorithm: a) amorphous bulk silicon, b) n = 11 TIP4P water cluster, and c)
n = 52 Lennard-Jones cluster.

of the efficiency to two other software, namely the ArbAlign from Ref. [113],
and fastoverlap from Ref. [87]. This has been done with the same procedure of
randomizing a structure, and then trying to re-find that transformation, as in the
previous paragraph. The structures chosen for the comparison were such that
they represent different possible shapes, namely isotropic ones, such as compact,
spherically, or cylindrically shaped clusters, as well as non-isotropic ones, such as
water clusters and peptide molecules. The reasoning behind this choice is to show
that the efficieny of IRA is independent of the structure shape. This statement is
not trivially true for the other two algorithms in this test. The datasets chosen are
the following.

Datasets used:

• From the Supplementary Materials of Ref. [113], Neon clusters with num-
ber of atoms n = 10, n = 50, n = 100, n = 150, n = 200, n = 300,
n = 500, and n = 1000, each with two distinct configurations, thus making
Ns = 16 structures altoghether;

• From the Supplementary Materials of Ref. [113], water clusters with num-
ber of water molecules n = 2 to n = 21, n = 25, n = 40, and n = 60, each
in a number of different configurations, making Ns = 70 configurations
altogether;

• From the Supplementary Materials of Ref. [113], conformers of FGG pep-
tide, with n = 37 atoms of 4 different atomic types, in Ns = 15 different
configurations;

• From the Supplementary Materials of Ref. [113], hydrates S1-MA-W1 with
n = 17 atoms of 5 different atomic types, in Ns = 20 different configura-
tions;
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• From the Supplementary Materials of Ref. [118], Al clusters of number of
atoms between n = 63 and n = 160, in steps of 1, and from n = 160 to
n = 310 in steps of 5 or 10, making Ns = 93 structures altogether;

• From the Supplementary Materials of Ref. [119], GaN clusters with number
atoms between n = 12 and n = 96, in steps of 2 or 4, making Ns = 31
structures altogether;

• From the Supplementary Materials of Ref. [120], clusters of Au with a total
of n = 26 atoms, with a varying number of atoms of a different specie,
making Ns = 6 structures altogether.

• From the Cambridge Cluster Database [117], Lennard-Jones clusters of
number of atoms from n = 5 to n = 150 and from n = 310 to n = 520,
making Ns = 357 structures altogether.

A representative structure from each dataset is shown in Fig. 3.12. Note the diver-
sity of shapes of the structures used.

Figure 3.12: Representative structure of each dataset used, note the diversity in
the general shape of structures.

A random transformation was done 50 times for each structure. The suc-
ces of each trial is given by the value of the final RMSD(A,B), if it is above
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the threshold of 0.001, then the trial is deemed as failure, since the correct rigid
transformation should give distance zero. This threshold was chosen as the least
common precision in the default output of all three codes, which is three decimal
places.

The results of the test are given in Table 3.2, and Fig. 3.13. The values in
Table 3.2 are given in the form m/n, where m is the total number of failures, and
n is the number of structures in which the failures occured. The plots in Fig. 3.13

Dataset Ns ArbAlign [113] fastoverlap [87] IRA
Al [118] 93 0/0 613/34 0/0
Au26 [120] 6 186/4 *0/0 0/0
FGG [113] 15 0/0 *0/0 0/0
GaN [119] 31 50/1 *294/14 0/0
LJ [117] 357 45/1 1177/113 0/0
Neon [113] 16 100/2 82/8 0/0
S1MAW1 [113] 20 0/0 *0/0 0/0
water [113] 70 0/0 *217/11 0/0

Table 3.2: Results of the efficiency test of the three algorithms. Each dataset is
referred to by its name, Ns is the number of different structures in each dataset.
Each structure from each dataset was tested with 50 random initial transforma-
tions. The tabulated values are in the form m/n, where m is the total number
of failures, and n is the number of structures in which the failures occur. Values
marked with *: the structures in this dataset include several atomic types, which
fastoverlap cannot distinguish.

report the final values of RMSD for cases when the matching has failed. The
horizontal axis on the plots gives the name of the particular structure where a
failure has occurred, the vertical axis is the number of current trial, the color of
a point gives the final value RMSD, and the shape of a point is related to the
particular software which returned the failure.

Before commenting the results, brief descriptions of the ArbAlign [113], and
fastovelap [87] algorithms are in order.

The algorithm ArbAlign [113] uses similar ideas as the well-known algorithm
Iterative Closest Point ICP [108]. ICP consists of iterative steps combining an
assignment procedure, and a consecutive rotation procedure in each step, until a
solution is found in a self-consistent way. However, the algorithm ArbAlign pro-
poses only one such step. It is well known that ICP can remain trapped in local
minima [109]. This trapping can be mitigated in several ways, one of them is find-
ing a good-enough initial rotation and permutation state. The original article of the
ArbAlign algorithm never mentions local minima explicitly. The first step of Ar-
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Figure 3.13: The final values of RMSD for the cases of failure, for structures and
datasets where failures have occured. The color of each point gives the value of
RMSD, the horizontal axis gives the name of the structure, the vertical axes is the
number of current trial (50 trials per structure), the results coming from different
algorithms are shown by the shape of points: ArbAlign by circles, fastoverlap by
crosses. IRA did not fail even once.

bAlign is however to rotate the structures into their principal axes of inertia, which
can be understood as the mitigation strategy just mentioned. The algorithm then
attempts 48 pre-defined symmetry operations, and does the one-step assignment-
rotation procedure for each attempt. As briefly commented in the Sec. 3.1.2, prin-
cipal axes of inertia are problematic when the structures are isotropic or compact,
since the principal axes might be ambiguous due to the symmetry of the struc-
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tures, which might result in the subsequent assignment-rotations procedure to get
trapped in local minima, no matter the 48 symmetry attempts. Moreover, the com-
putation of principal axes of inertia requires the knowledge of associated weights,
i.e. atomic masses. To solve the LAP, ArbAlign uses the Hungarian algorithm
[81], and to optimize the rotation it uses the SVD-based approach by Kabsch
[99].

The algorithm fastoverlap [87] is based on kernel correlation. It uses Fourier
transform to find maximum correlation between density representations of both
structures. As such, it needs some input parameters, namely the width of Gaus-
sian kernels, and the angular resolution defined by an angular momentum cutoff.
Moreover, fastoverlap does not distinguish different atomic types. The underly-
ing philosophy of solving the matching problem is slightly different than what is
used in the IRA and ArbAlign algorithms. For the test performed here we use the
default parameters set in the fastoverlap software.

From the results of our benchmark test (Table 3.2), we can conclude the fol-
lowing. The algorithm ArbAlign [113] has problems to find the correct rigid
transformation in structures where the principal axes of inertia are ambiguous.
This is very clear from the Au26 dataset from Ref. [120], which includes cylin-
drical shape structures, where the axis along the cylinder is well defined, however
the other two are not. We note that since each structure was tried 50 times, the
result of 186 failures in 4 structures (see Table 3.2) indicates that on average, there
were 46 failed attempts out of 50 trials per structure. Similarly also for the other
datasets, there are a high number of failures for few structures in the dataset. This
indicates that ArbAlign mostly works well, however in cases of failure, it fails
very consistently. This is also seen by the final distance values obtained in struc-
tures where it fails (Fig. 3.13), which are distributed quite randomly. The origin
of this dispersion of values is in my opinion the huge number of local minima
present due to structure symmetry, which ArbAlign effectively walks into with its
one-step procedure.

On the other hand, the algorithm fastoverlap [87] shows a higher overall rate of
failure, but its failures are more disperse, in the sense that we do not observe such
stark contrast between complete success and complete failure, as in ArbAlign.
Moreover, the final values of distance from fastoverlap (Fig. 3.13) show clustering
around several distinct values, which might be a signature of the algorithm getting
stuck in a small number of distinct local minima.

Our proposed IRA algorithm does not show any failure among any of the
structures tested. We can say with high confidence that it is fully reliable at finding
any rigid transformation between two congruent structures.
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3.8.2 Near congruence, equal number of atoms
To test the performance under conditions of near congruence, i.e. the structures
contain some deformations - we first perform a short NVT-ensemble Monte Carlo
(MC) simulation for a LJ-20 cluster from the Cambridge Database [117] at two
different temperatures. The specific temperatures used are T = 0.02 and T = 0.3
in the reduced units. These two values have been chosen as corresponding to
"low" and "a bit higher", and are only used to induce some atomic vibration.

We take the equilibrium configuration of the LJ-20 cluster as reference struc-
ture A. At each step of the MC simulation, the current structure is taken as B,
and the distance RMSDini = RMSD(A,B) is calculated. During the MC, the
structure undergoes some distortion, translation, and rotation, but not permuta-
tion of atoms. We can thus readily apply the SVD method to obtain rotation
that minimizes RMSD(A,B) at current step, and store this RMSD value as
RMSDref . Then we apply random rotation, reflection, translation, and permu-
tation to structure B, and run our shape matching algorithm on it, to obtain B′

aligned to A, and calculate distance RMSDfin = RMSD(A,B′). The distance
RMSDfin should be equal to RMSDref if our algorithm has successfully found
the right transformation. The results are shown on Fig. 3.14. The difference
RMSDref − RMSDfin on every step is on the order of floating point precision
error (i.e., zero), for both test temperatures, confirming the ability of the IRA al-
gorithm to find the correct matching transformation efficiently.

The non-zero value of RMSDfin, can be seen as a measure of the congruence
between the structures.

3.8.3 Near congruence, different number of atoms
To test the algorithm in case of near congruence, where the structures have a differ-
ent number of atoms, we use a trajectory of replica-exchange molecular dynamics
simulation of the cynanine molecule. The data has been provided by the authors
of Ref. [121]. In order to showcase the ability and performances of the IRA and
CShDA algorithms in matching structural fragments, we select two kinds of frag-
ments, a connected one shown in Fig. 3.15, and a non-connected one shown in
Fig. 3.16.

The atoms of the molecule move and distort the molecule during the trajec-
tory, but they do not permute. Thus, we can make a similar test for reliability
as in the previous subsection. We choose as structure A a reference fragment,
and compute the optimal rotation of molecule B using SVD, giving RMSDref =
RMSD(A,B), where the sum in RMSD goes up to nA number of atoms, over
the known atomic indices that make up structure A. Then we randomly ro-
tate, reflect, translate, and permute structure B, and then use our shape match-
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Figure 3.14: Result of the efficiency test of the IRA algorithm for near-congruent
structures. Plot of RMSDini, RMSDfin, and the difference RMSDref −
RMSDfin for temperatures (top) T = 0.02, and (bottom) T = 0.3.

Figure 3.15: The fragment to be matched, and the final matching of the molecule,
the atoms of the fragment are shown with a darker shade for better distinction.
Red, blue and yellow atoms correspond to Carbon, Hydrogen and Oxygen atoms
respectively, the same color code is used in the following.

ing algorithm to obtain B′ aligned to fragment A, and calculate RMSDfin =
RMSD(A,B′). The distances RMSDref and RMSDfin should be equal if the
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right transformation has successfully been found.
The result when structure A is the connected fragment from Fig. 3.15, is that

out of the 80000 configurations in the trajectory, there are 313 instances of the dif-
ference RMSDref − RMSDfin being above the floating point precision value,
i.e. nonzero. These instances represent structures where the algorithm has mis-
matched the fragment. Some of the reasons for this behaviour are explored later
in this section.

Figure 3.16: A disconnected fragment, and matching of a molecule.

Tracking the number of mismatches when structure A is the non-connected
fragment from Fig. 3.16 is not straightforward, since the two hexagons do not
move rigidly. As a consequence, RMSDref as defined previously is ambigu-
ous. One could think to trace the particular steps in the trajectory where the two
hexagons are found with a distance below some threshold, and call those partic-
ular configurations equivalent to the fragment. But actually there is no clear step
in the distance values in this case, the values are quite continuous from small to
large, so it is not straightforward to set such threshold.

Since the value of h in Eq. (2.10) only takes the value of maximal distance,
it only contains information about one specific atom/point. This particularity can
be advantageous in cases of small distortions between two structures. In that sit-
uation, the value of h is low, meaning that all atoms are within this low-distance
h of the reference positions. Larger distortions lead to higher h value, which can
hide the behavior of any specific atom. A high h value can be due to a distor-
tion in a single atom, which completely obscures any information on other atoms.
This property of the Hausdorff distance is often described as high susceptibility
to noise. It opens the possibility of a situation in our algorithm, where a "wrong"
assignment gives a transformation U−1J whose distance D(A{ê}, B{ê′}J ) is lower
than the distance D when the transformation is given by the "correct" assignment,
which then leads to a wrong final assignment and transformation. In other words,
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the algorithm finds a way to map the atoms to the reference structure which satis-
fies the algorithm, but is not actually the mapping we would expect. To mitigate
this, we tried to replace the h(A,B) with a sum of minimal distances dsm(A,B),
given by Eq. (3.16), which is similar to h(A,B) from Eq. (2.10), but dsm takes the
sum of all minimum values, instead of just the maximal value as in h.

dsm(A,B) =
∑
a∈A

min
b∈B

d(a, b). (3.16)

The distance dsm should capture a more "collective" behaviour of the atoms, but
it has not shown any significant changes in the performances with the highly dis-
torted cyanine molecule tests. The mismatches still happen at large set-set dis-
tance values. The choice of a particular set-set distance function therefore does
not seem very crucial, as long as it complies with the permutational invariance,
and translational and rotational variance, imposed by Eq. (3.2). The "mismatches"
are rather due to attempting to match structures that are beyond near-congruence,
or in other words, far from equivalence. Which ultimately brings us back to the
question of comparing oranges, potatoes, and bananas from Fig. 2.1. In such a
situation, a careful interpretation of the matching transformation obtained from
the algorithm is needed. It is true that the final transformation comes from a well-
defined mathematical operation, but this does not mean that it is always meaning-
ful.

3.8.4 Mitigating the mismatches
By assuming some prior knowledge on the system, it is possible to reduce the
number of mismatches that happen in cases of larger distortions in the structures.
One piece of such prior knowledge is the knowledge of a definitive common point
for the two structures, which could be in form of a known common atom, deemed
central atom.

The first step of our IRA algorithm (Sec. 3.5) selects a central atom in structure
A by the criteria of closeness to the geometrical center of A. The second step is to
select a basis {ê} for a reference frame in A, which is based on positions of atoms
around the central atom. Then the structure B is searched for the equivalent basis
{ê′}J . When large distortions are present in structureB, there is no guarantee that
the basis found in B is equivalent to the basis found in A, or that it even exists.
If we assume that there still exist local environments in the two structures that are
congruent to each other, then the central atom of A could be chosen as the atom
for which its local environment is the most similar to any local environment in B.
Imposing the central atom in A according to that criterion in the case of cyanine
for instance, reduces the number of mismatches by an order of magnitude (313
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originally, 30 with this choice). The imposed central atom for structure A has
been chosen by hand in the present example, however ideas for automatizing this
could be to use simple structure descriptors on short-range (first-neighbour) local
environments, such as the ones described in Sec. 2.2.

The implementation of IRA in our kMC code (see Sec. 4.4.1) uses graph iso-
morphism of local environments as additional per-atom knowledge of the struc-
tures, which can be seen as a filtering method on possible central atoms.

3.8.5 Number of rotations tested
As already mentioned in Sec. 3.7.1, the total number of rotations tested is greatly
dependent on the structure. Fig. 3.17 shows the number of rotations NR tested by
IRA during the matching of the structure with an exactly congruent randomized
version of itself as done in Sec. 3.8.1, against the number of atoms in the structure,
for the Al dataset[118]. The Al dataset, along with LJ and Ne datasets from the
benchmark test in Sec. 3.8.1, represents a worst-case scenario for IRA as all atoms
are of the same atomic type, and the structures are close-packed. As it can be seen
on Fig. 3.17, the number of rotations tested is on the range [2, 154] and there is
no apparent rule. The number of tested reference frames is related to the structure
surrounding the origin point as mentioned in Sec. 3.7.1, which in the case of non-
equal number of atoms is a central atom, and in the case of equal number of atoms
is the geometrical center (or possibly any known common point). The higher
number of tested rotations occurs when the geometrical center of the structure
coincides with an atomic position. In that case, the distance to nearest atoms is the
highest. A large number of atoms is therefore included in the radial cutoff region,
such increasing the number of possible reference frames to be tested. When the
geometrical center falls in between atoms, the distance to nearest neighbors is
shorter (lower number of atoms), and thus less reference frames have to be tested.
In the case of matching structures with non-equal number of atoms, the origin
point of rotation is a central atom. In that case the number of possible rotations
NR is directly linked to how many neighbours the current central atom has, as
described in Sec. 3.7.1, and shown on Fig. 3.8. The total number of rotations
tested in the scenario of non-equal number of atoms would then be the number
of rotations NR per possible central atom, times the number of possible central
atoms. We see that in this case the computational cost can increase fast, with the
number of possible central atoms. It can thus become very beneficial to spend
some computational effort in reducing the set of possible central atoms, using any
method that is deemed effective. This gives another reason for the discussion in
Sec. 3.8.4.

In situations when we know that the two structures being matched are suffi-
ciently similar, the multiplication factor 1.2, used for the cutoff can be reduced,
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Figure 3.17: Number of rotations tested versus the number of atoms, for structures
in the Al dataset [118].

but the value should in any case remain above 1.0. This effectively reduces the
search space of rotations, and the algorithm can be faster as a result. The speedup
comes at the cost of possible mismatches when structures matched are actually
not as similar as we thought.

In situations where the equality of two structures is being tested with a certain
known threshold for equality, heuristic approaches can be used on top of the logic
of the IRA and CShDA algorithms, to exit certain loops as soon as certain criteria
are met. This method has the potential to speed up the algorithm considerably,
however at the cost of generality.

3.8.6 A specific situation: the central atom is known
In this subsection, we test the efficiency of IRA in a specific situation where the
structures A and B contain a different number of atoms, however the central atom
is known a priori. The main effort of this test is to increasingly distort the structure
A, and find at which point IRA fails to find the correct transformation. The value
of the largest deformation at which IRA still finds the correct transformation can
set the maximal reference value for a threshold of equivalence when comparing
two structures.

The particular efficiency test is then as follows. We take a simulation box of
217 atoms of Si with a single interstitial atom as structure B, and a local envi-
ronment around the interstitial atom as structure A with 27 atoms. The typical
first neighbour Si-Si distance in both structures is 2.34 Å. We know exactly which
atomic index is the central atom in A, and which is the atomic index of central
atom in B, namely it is the interstitial atom in both cases. Then we perform some
deformations on the structure A, and attempt matching it to structure B. The eval-
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uation of the final matching will be evaluated for each case separately, in terms
of what the random deformation is, and the value of h after the matching. The
structures A and B are shown on Fig. 3.18.

structure A

structure B

Figure 3.18: Example structure A on the left, and B on the right, used in the test.
The interstitial atom is at the center of both structures.

The deformations on A are performed as randomly generated displacement
vectors, with random norm in the range [0, dmax], which are applied to Nd num-
ber of atoms, chosen at random. The structure A is then also randomized, with
a random rigid transformation including rotation, reflection, translation, and per-
mutation. After that, IRA is used to match A to B with a known central atom.
If the correct transformation is found, the final value of h should be on the order
of dmax. The expectation is that if the number of displaced atoms Nd is small,
for example 5, then the maximal distortion dmax can get quite high and IRA will
still be able to find the correct matching. On the other hand, if Nd is higher, for
example Nd = 27, which displaces all atoms of A , then there might be mis-
matches for lower dmax values. In order to test this, we launch 500 such tests
for each combination of Nd and dmax values, where Nd = {5, 10, 20, 27} and
dmax = {0.1, 0.3, 0.5} Å. The first mismatch happens for Nd = 5 and dmax = 0.5
Å, the final matching is shown on Fig. 3.19, with a successful match for com-
parison. It is worth noting that the distortion of dmax = 0.5 Å actually breaks
the graph isomorphism for the central atom. Subsequent mismatches happen 3
times at Nd = 10 and dmax = 0.5 Å, 11 times at Nd = 20 and dmax = 0.5 Å,
and 25 times at Nd = 27 and dmax = 0.5 Å. There are no mismatches for lower
dmax values. One could conclude that for this example, a threshold distance for
h of around 0.3 Å could represent a meaningful value for structural comparison,
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Figure 3.19: A mismatch at Nd = 5 and dmax = 0.5 Å on the right, and a success-
ful match for reference on the left. The structure A is represented by red atoms,
the structure B by the blue atoms, where the atoms of B that are not matched are
shown in transparent.

since we observe that distortions as large as dmax = 0.3 Å do not cause IRA al-
gorithm to find “alternative” solutions for the matching. Whether that particular
value represents anything meaningful in relation to the atomic distortions in the
particular example, or if there would be a way to come to this value from any other
potentially simpler test, has not been investigated.

From a more empirical inspection of the results of this test, I can say that the
probability of a mismatch is higher when the displaced atoms are coincidentaly
the ones which set the basis β in structure A. This observation can be connected
with the Sec. 3.8.4, in which the knowledge of a central atom is discussed as a
strategy to mitigate mismatches. Here, we could say that a further strategy of
mismatch mitigation could be to input the knowledge on particular atoms that
move the least from one structure to the other, and use those to set the basis.
This is however slightly paradoxical, since the atomic information of this kind is
available only after the matching procedure.
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Chapter 4

Implementation of shape matching
into kMC

A fundamental process within the kMC simulation is the association of possible
events from the event catalog to the atomic sites within the system of simulation,
throught the IDENTIFY_POSSIBLE_EVENTS() routine in Alg. 1 line 3. In order
for an event to be deemed possible for execution, three things need to be known.
Firstly, the local environment defined around an atomic site in the system of sim-
ulation must be sufficiently similar (or equal) to the initial state configuration of
a given event. Secondly, the rigid transformation which satisfies the equivalence
of these two configurations must be found. And thirdly, each of the possible sym-
metries of the event must be checked if they exist in the local environment of the
system, to grant the correct statistics of the move directions. These three things
are used later at the stage of event application, APPLY_EVENT() routine in Alg. 1
line 5.

As has been shown in Chapter 3, all of these tasks can be done simultanously in
an efficient way with the IRA shape matching algorithm. Throughout the Sections
of the present chapter, the details of the implementation of that algorithm inside
our kMC simulation code are given. In the final Section 4.6, we discuss some
ideas that are used for the implementation.

4.1 Program workflow
The general idea for this kMC is to be able to read the ensemble of given events
from input, in the form of atomic coordinates. In order to pass it to our kMC, the
event data is first rewritten into an event catalogue. The event catalogue is then
read by the kMC code at the initial stage of the simulation. As such, we can think
of the whole procedure as composed of two stages, the generation of the event
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catalogue, and the kMC simulation. This process is shown by the schematic in
Fig. 4.1.

generate event catalogue

Figure 4.1: Schematic of the two-stage process: creation of the event catalogue,
and the kMC simulation.

Within the kMC simulation, atomic structures from the system of simulation
get compared to the atomic structures of initial states of events, that are written in
the event catalogue. This is done in two steps.

The first step is a fast pre-screening of the possible event sites in the system of
simulation, by isomorphism of simple graphs using their canonical hash values,
computed by the NAUTY [73] software. In order to do this step more efficiently,
the graph hash values of each event configuration are pre-computed and stored in
the event catalogue, while the hash values of local environments of system sites
are computed on-the-fly in the kMC simulation.

The second step of the comparison of atomic structures is done by our IRA
shape matching algorithm. IRA itself can be seen as a two-step process when
matching structures A and B. From this point of view, the setting of reference
frame β on structure A is the first step, while the iteration to find γ reference
frame on structure B and subsequent SVD minimization is the second step of the
shape matching algorithm. The two steps of IRA matching are independent, in the
sense that once β is known, it can be stored in the memory quite simply as three
integers. The structures that are matched in the kMC are: the structure A that is
the initial state configuration of an event that is stored in the events catalogue, and
structure B that is the local environment around an atomic site in the system of
simulation. Absolutely no knowledge of structureB is needed to complete the first
step of the IRA algorithm, thus the algorithm is split into two parts accordingly.
The first part is done in the event catalogue generation, acting only on structure
A, and the second part is done when knowledge of structures B is given (in the
kMC simulation).

In the Section 4.2, some preliminary definitions and explanations are given,
regarding atomic environments. The Sections 4.3 and 4.4 describe the details
of the two stages of the program, namely the generation of event catalogue, and
the kMC simulation. Their contents are listed in Table 4.1, with references to the
algorithms that they interact with. The main connection between the catalogue
of events and the kMC simulation is at stages of identification of possible events,
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and application of a chosen event. In the general kMC algorithm (Alg. 1), these
are the procedures of the structural aspect of the kMC: IDENTIFY_POSSIBLE_-
EVENTS(), and APPLY_EVENT().

Table 4.1: The two stages of the program, and the different algorithms they inter-
act with.

Event catalogue: Sec. 4.3
select type of event, and local environment: Sec. 4.3.1, 4.3.2, 4.3.3
generate graph hash values: Sec. 4.3.4
IRA first part: generate β and symmetries θ: Alg. 8 Sec. 4.3.5
final format: Sec. 4.3.6

kMC: Sec. 4.4
Identify possible events: Alg. 1, line 3

- check graph hash values: Sec. 4.4.1
- IRA second part: generate γ, check all θ: Alg. 5 Sec. 4.4.2, 4.4.3

apply event: Alg. 1, line 5 Sec. 4.4.4
local update: Sec. 4.4.5

4.2 Atomic environments

4.2.1 System of simulation
Any configuration containing the full set of atomic positions present in the sim-
ulation box shall be designated with the letter R. The system of simulation is
designated Rsys. It is composed of N atoms, each with its xyz-coordinates, and
associated atomic type.

Rsys = {typi, xi, yi, zi}

4.2.2 Central atom
In the kMC simulation, the idea of central atoms is used. The central atom of an
event is placed at the origin of the reference frame of atomic configuration. It is
the atom around which an event will happen.

At the start of kMC simulation, any atom in the system is a potential central
atom for an event to occur. In the first step of the simulation, all sites are parsed,
but only those where an event is deemed possible are potential event sites. In
the subsequent steps, only a subset of the sites are checked, as given by the local
update (see Sec. 4.4.5).
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4.2.3 Local atomic configuration
A local atomic configuration, designated S, is any un-ordered subset of system
configuration Rsys,

S ⊂ Rsys; S = {typk, xk, yk, zk}

where typk, is the atomic type of atom index k, and xk, yk, zk are its xyz coordi-
nates. {k} is the list of indexes invloved in the local configuration. The list {k}
is typically found such that all atoms k satisfy a certain condition. In our kMC,
this condition is the distance from a designated central atom being below some
pre-defined cutoff. An example local atomic configuration S is shown in Fig. 4.2.

Figure 4.2: Example local atomic configuration S.

Atomic events in the kMC are composed of two states: the initial state, and
the final state. The full configuration of the input data of the event initial state is
labelled as Revt

ini , and similarly for the final state Revt
fin. The local atomic configu-

rations corresponding to these states are labelled Sini and Sfin, such that:

Sini ⊂ Revt
ini ; Sini = {typk, xk, yk, zk} (4.1)

and
Sfin ⊂ Revt

fin; Sfin = {typk, xk, yk, zk}. (4.2)

4.2.4 Extended local configuration
To make atomic configurations more flexible, we define the extended local con-
figuration SE , which does not have a fixed size, and is not necessarily isotropic.

Any local atomic configuration S is called an extended local configuration SE

when it is made of two parts: primary part, and extension. The primary part is the
local atomic configuration S from Sec. 4.2.3. The extension is made up of atoms
that follow some other imposed rule.

An atom of the extension can be any atom which is not automatically included
in the local atomic configuration S around a central atom, but it satisfies one or
more of the three conditions:
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• the atom is not included in the local environment around the central atom in
the initial state Sini, but is included in the final state Sfin of the event;

• during the event, the atom moves for a distance larger than some threshold;

• the atom is included manually by the user.

Fig. 4.3 shows an example extended environment SE where the primary part
is colored in green and the extension in yellow.

Figure 4.3: Example extended environment SE , primary part colored in green,
extension in yellow. The yellow atoms of extension are found by the three condi-
tions.

4.3 Generation of event catalogue
Generation of the event catalogue (also called event library) is done by the pro-
gram generate_library.x, which needs two input files, see Fig. 4.4. One

Figure 4.4: Schematic of the creation of the event catalogue.

that is generically called catalogue_input.in, and one called buildlist.in.
Actually, only the catalogue_input.in file is given as standard input to
generate_library.x, and it contains the exact filename of the buildlist.in
file, and the exact filename of the final event catalogue to be written in. It also
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Figure 4.5: Example of catalogue_input.in file.

contains some other parameters used globally during the generation of the events
catalogue. An example is shown on Fig. 4.5.

Due to our idea that kMC events should be given at input, the expected format
of the events is an output calculation of some other computational method, for
example a first-principles code. The file buildlist.in contains data entries
specific to each event. Each data entry contains:

• the value of cutoff rcut;

• the data related to the energetics of the event:

– the prefactor f0, which is the vibrational frequency ν0 from Eq. (1.2);

– the change in energy dE (optional);

– the energy barrier Eacc from Eq. (1.2);

• some additional options, such as the imposition of the central atom, or the
manual inclusion of certain atoms into the event;

• and the paths to original data files containing the full initial and final state
configurations Revt

ini and Revt
fin, and the format of those files.

An example data entry of an event is shown on Fig. 4.6.

4.3.1 Selection of event type
Based on what happens during the event, we classify three types of events: diffu-
sion, adsorption, and desorption. The program generate_library.x selects
the type of event based on the total number of atoms present in the input initial and
final state data Revt

ini and Revt
fin. If the number of atoms is equal, then the event type

is diffusion. If the number of atoms in final state is larger than in the initial state,
then it is an adsorption event, and conversely for desorption. This decision on the
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Figure 4.6: An example event data entry in the file buildlist.in.

type of event is important for how to treat the event configurations. A schematic
is shown on Fig. 4.7.

Figure 4.7: A schematic of the process of generating event configurations from
input data.

4.3.2 The central atom of an event
The central atom of an event specifies the origin of the local reference frame, and
acts as central/input node of the graph of the local structure. It is imposed by the
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command central_atm=c in the event data entry (Fig. 4.6), as:

c =

{
0, choose c automatically,
c, otherwise.

In the case c = 0, the program generate_library.x will choose the
central atom automatically, based on different criteria according to the type of the
event.

In the diffusion-type event, the central atom c is chosen as the atom that moves
the most during the event.

In the adsorption-type event, the central atom cannot be any of the atoms
which arrive during the adsorption event, and is thus chosen to be the atom neigh-
bour to any of the adsorbed atoms.

In case of desorption-type event, the central atom is chosen as one of the atoms
neighbouring the atom that gets desorbed during the event.

In the case when more than one atom gets adsorbed/desorbed during an event,
there are more than one atoms which are the potential central atoms (central/input
nodes). In this case, the local environments of all potential central atoms are
combined into the extended local environment. One of those atoms acts as the
central atom.

4.3.3 Selection of the atomic environment
The list of atoms which participate in an event is chosen around the central atom,
based on the criteria of cutoff, displacement during the event, and user input. Both
the initial and final state configurations are taken into account for those criteria.

Each event specified in the buildlist.in has an associated cutoff value
given by the parameter rcut, which can be in form of radial distance, or counting
the neighbours (connections of the local graph). The choice between the two is
imposed in the input file catalogue_input.in as the parameter rcut_-
mode, which has possible values dist and neig:

• in the case when rcut_mode=dist is used, the rcut value gives the
real-valued distance around the central atom, specifying the atoms included
in the local environment;

• in case rcut_mode=neig, the value rcut is an integer, specifying how
many neighbours from the central/input node of the local graph we count
(see Appendix A).

The rcut is used to generate the local configuration S around the central atom,
composing the initial state Sini and the final state Sfin.
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As described in Sec. 4.2.4, there are three conditions for an atom to be part of
the extended local environment. By default, the atomic indexes that are present
in the Sini and Sfin configurations are combined to form the extended environ-
ments SEini and SEfin. The reasoning here is that if the central atom moves during
the event, such that its initial state local environment Sini is composed of atoms
different than the atoms in its final state Sfin, then the event is composed of all
atoms present in the initial state Sini, and final state Sfin.

The input file catalogue_input.in also specifies a parameter called
small_move_thr, which is used as a threshold value for displacement in any
event. If any atom in the event moves more than this specified threshold, it will be
automatically included in the extended event configurations SEini and SEfin.

The user can also include certain atoms to the event environment by force, by
specifying the command considered_atoms, and then listing the indexes of
atoms that should be added to the extended environments SEini and SEfin.

To summarize, let the set of integers {k}ini represent the atomic indexes of the
input initial state data Revt

ini of the event, which are present in the local configura-
tion Sini around the central atom. Similarly, let the set of indexes {l}fin represent
the atomic indexes of the input final state data Revt

fin, that are present in Sfin. Let
the set of atomic indexes {m}sm represent all atoms which move more than the
threshold small_move_thr during the event. And let the set of atomic indexes
{n}usr represent the atomic indexes that are included in the event by the user’s
imposition. Then the extended environments SEini and SEfin are formed by atoms
from the input data Revt

ini and Revt
fin with atomic indexes {i}, such that:

{i} = {k}ini ∪ {l}fin ∪ {m}sm ∪ {n}usr, (4.3)

where the atoms {k}ini form the primary part of the extended environments SEini
and SEfin, and the other atoms form the extension.

The adsorption/desorption events can have more than one potential central/input
node, as stated in the previous subsection. In those cases, the atomic environments
S are selected around each of the potential central/input nodes, and combined to
form a single extended local environment SE . The primary part of this extended
environment is the local environment S around the atom that is the designated
central atom.

The order in which atoms of the extended environments SEini and SEfin are
written is important to the extent that the atoms belonging to the extension part
must be written after the atoms belonging to the primary part of the environment.
Atoms that get adsorbed are written at the end. The exact order of atoms within
each of these sections is however not important.
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4.3.4 Generation of graph hash values
As has been described in Sec. 2.2.1, the software NAUTY [73] can be used to
calculate the graph isomorphism, through graph hash values. If two graph hash
values are identical, then the corresponding graphs are isomorphic. Reducing the
problem of structural similarity to the isomorphism of graphs greatly reduces the
dimensionality of the problem, and can be resolved in a fast and efficient way with
NAUTY [73]. However, fully relying solely on the simple graph isomorphism
can be problematic, since a simple graph does not contain the information on
specific geometry. For this reason, our kMC uses simple graph isomorphism only
as fast pre-screening of the atomic sites where an event is possible, and isomorphic
graphs only indicate a potential similarity in the geometry of structures.

We set up simple, undirected graphs from the atomic environment. In this
sense, atomic positions get mapped to graph nodes, and the distances between
atoms are mapped to the connectivity matrix, as in Eq. (2.2).

cij =

{
1, if d(i, j) ≤ Rcut

0, otherwise
(2.2 revisited)

Any graph hash can be calculated independently. For the cutoff distance Rcut in
Eq. (2.2) which decides whether two nodes are connected or not, we use specie-
dependent cutoff values given as input parameter color_cutoff in the cata-
logue_input.in file (see Fig. 4.5), and passed to the kMC simulation through
the header of the event catalogue (see Fig. 4.8).

In order to be able to use the mode rcut_mode=neig for selecting the local
atomic environments, we first generate the global connectivity matrix of the whole
system of simulation, and then use a simple graph traversal algorithm based on the
breadth-first search idea (see Appendix A), to find all nodes (atoms) connected up
to rcut=n neighbours away from the central/input node. This subset of atoms
is taken as the local atomic configuration S around a central atom. The rcut=n
parameter is given for each event in the buildlist.in file, see Fig. 4.6.

The graph hash values are generated for the initial state of the event, and for
the final state of the event.

In order to allow the events to each have a specific cutoff rcut, that is in-
dependent from the other events, we introduce the concept of common cutoff
radius. The common cutoff radius rcut_common is the smallest common cut-
off value among all events. This value will be used when parsing the system of
simulation. If graph isomorphism is found with rcut_common, then the specific
rcut of that event will be set, and the local configuration of the system site will
be re-generated and checked with rcut. Therefore, a hash value of the primary
local environment Sini is written into the event catalogue, in the common cutoff
rcut_common, and in the specific cutoff rcut of the event.
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From the final state, only the graph hash value in the specific event cutoff
rcut of the primary environment Sfin is generated.

4.3.5 First part of IRA; symmetries in events
Once the initial and final state configurations SEini and SEfin of an event are known,
the first part of the IRA algorithm can be done. This consists of finding a basis β
for the configuration of the initial state of an event.

At each simulation step of the kMC, the possible events are those whose initial
state can be found within the system. In other words, the possible events are
those whose initial state configuration can be matched to some system site, with a
distance below the threshold of equivalence. We make an assumption that for two
configurations that match below a certain threshold, the particular choice of basis
β will not affect the matching process. The choice of atoms forming the β basis
is thus made simply by choosing two non-collinear atoms as close as possible to
the central atom of the initial state of the event configuration Sini.

At this stage, we also make a search over the possible symmetries in an event.
The event symmetries give possible unique directions in which an event can occur,
and are important for the statistics of a simulation.

The event symmetries θ are such that:

θSini = Sini, (4.4)

and
θSfin 6= Sfin, (4.5)

are satisfied simultaneously. In other words, the symmetry operation θ leaves the
initial state Sini of the event unchanged, while giving a different final state Sfin.
See also Fig. 5.16, for a practical example.

The second, iterative part of the IRA algorithm (Alg. 3) provides a procedure
of iterating through some candidate bases, which we can use to find the symme-
tries θ. However, each candidate basis in that procedure is given by relative posi-
tions of the atoms in Sini. This means that if the set of candidate bases generated
in the IRA procedure contains symmetry operations, they are by-design given in a
reference frame internal to the atomic structure Sini. In order to transform them to
the general reference frame of Sini, we need a transformation relating the general
and internal frames. This transformation is exactly the β basis.

Thus we rewrite the structures Sini and Sfin in the internal reference frame β,
as Sorigini and Sorigfin ,

Sorigini = βSini (4.6)

Sorigfin = βSfin, (4.7)
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and insert that into Eq. (4.4) and Eq. (4.5). Then, we modify the algorithm such
that at each iteration the conditions in Eq. (4.4) and Eq. (4.5) get tested. The
modified algorithm is outlined in Alg. 8. Any transformation θ found to fulfil
both of the conditions, Eq. (4.4) and Eq. (4.5), is taken as a unique symmetry
operation of the event, and stored in form of two atomic indexes which give the θ
basis, plus the integer m. In the original algorithm (Alg. 3), the integer m = −1
signifies that the third basis basis vector ê3 should be constructed as ê3 = ê2 ×
ê1, which is just the negative vector of ê1 × ê2. In order to explore a larger
portion of the transformation space for θ, we extend the iteration over candidate
bases by including also the negative vectors of each basis vector, as possible basis
vectors. Like this, the possible values for m are −3, −2, −1, and 1 (Alg. 8 line
5). Specifically, the value m = −3 means that the basis vector ê3 is multiplied
by −1, the value m = −2 means that the basis vector ê2 is multiplied by −1, and
similarly the value m = −1 means the basis vector ê1 is multiplied by −1, while
the value m = 1 does not flip any basis vector (see Alg. 8 line 7).

Algorithm 8 Modified iterative part of IRA, used to find symmetries in events.
Input: structures Sini, Sfin, basis β
Output: integers m, i, j

1: Sorigini ← βSini
2: Sorigfin ← βSfin

3: for i ∈ Sorigini do
4: for j ∈ Sorigini do
5: for m ∈ {−3,−2,−1, 1} do
6: θ ← SelectBasis(i, j, m )
7: θ(|m|, :)← sign(m) ∗ θ(|m|, :) . Flip the |m|-th basis vector
8: Sini ← Rotate( Sorigini , θ )
9: dH,ini = D(Sorigini , Sini) . Compute by CShDA

10: if (dH,ini < thr_sym) then . Condition Eq. (4.4)
11: new ← True
12: Sfin ← Rotate( Sorigfin , θ )
13: Check against all Smemofin in memory:
14: dH,fin = D(Smemofin , Sfin) . ∀Smemofin in memory
15: if (dH,fin < thr_sym): new ← False . Eq. (4.5)
16: if (new): add m, i, j, Sfin to memory
17: end if
18: end for
19: end for
20: end for
21: return all m, i, j in memory
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4.3.6 Format of the catalogue
The header of the final catalogue of events includes some global parameters of
events, such as number of events, number of atomic species, the threshold for
equivalence of two structures, the specie-dependent cutoff for the connectivity ma-
trix (see Sec. 4.4.1), and the common cutoff radius rcut_common of all events
in the catalog. An example of the header is shown on Fig. 4.8.

Specie-dependent cutoff
for connectivity

Total number of events
in the catalogue

Species present

Threshold for equivalence of
configurations

Figure 4.8: Example of the events catalogue header lines with global parameters
used for all events in the catalogue.

Each event written in the final event catalogue includes information regarding
the topology of the local environment of the event, the energetics data of the event,
and the exact configurations of the initial and final states in the xyz-format, writ-
ten in the reference frame of the original input file of the event. Due to the use of
extended environments, additional information is needed as to how many atoms
there are present in the primary environment, and how many atoms are present in
the extension. As mentioned before, the atoms belonging to the primary environ-
ment are written first, then the atoms of the extension. At the end, information
regarding the basis β and possible additional symmetries is written in the form
of indexes m, i, j from Alg. 8, such that the first triplet m, i, j defines basis β,
and the others give additional symmetries θ. An example diffusion-type event en-
try is shown on Fig. 4.9, with explanations of the event-specific information, the
primary local environment marked with red, and the extended local environment
marked with green. The example event has two possible symmetries, written in
the last two lines containing the integers m, i, j.

In the adsorption-type event, the atoms that get adsorbed are written on the
final spots of the final configuration. We also need an additional integer to tell
how many get adsorbed. An example of adsorption-type event entry in the fi-
nal catalogue is shown on Fig. 4.10. The adsorbed atom are lined with blue. In
desorption-type event, the desorbed atoms are written at the end of initial config-
uration. An example is shown on Fig. 4.11.
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Graph hash in the common cutoff

Cutoff specific for this event

Initial and final state hash
in the specific cutoff

Largest atom-atom distance in the initial configuration

Figure 4.9: Example of a diffusion-type event entry in the final event catalogue.
The primary local environment is marked with red, while the extended environ-
ment is marked with green. The central atom is at the first spot. The event has two
unique symmetries, written in the form of two triplets of integers at the end. The
first triplet gives the β basis, and the second triplet gives one additional symmetry
θ of the event.

4.4 Inside kMC: identify possible events, apply cho-
sen event

After the event catalogue has been generated, it is passed to our kMC software
by specifying the corresponding filename into the kMC input script input_-
kmc.in. A schematic of the process from generation of event catalog to the final
simulation is shown in Fig. 4.12.

The first thing that kMC program does is to check the graph hash value of each
event in the common cutoff rcut_common, and make a table of which events
are associated to each of them. Like this, when a certain graph hash is found in
the simulation box during the step of identification of possible events, we know
directly which events are the candidate events for this topology. Then each of the
candidate events is checked within its own specific cutoff rcut. If isomorphic
graphs are found, then the system site configuration and the event data undergo
the shape matching procedure, namely the second part of our IRA algorithm. If
the shape matching procedure gives a distance between atomic structures that is
below the threshold of equivalence, then the event is deemed possible. At this
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Figure 4.10: Example of adsorption-type event entry in the final catalogue of
events. The adsorbed atoms are lined with blue at the end of the event final state.

Figure 4.11: Example of desorption-type event entry in the final catalogue of
events. The desorbed atoms are lined with blue at the end of event initial state.

stage, all symmetries of the event are also checked if they exist in the system.
After the procedure of identification of all possible events, and the subsequent

choice of an event to be executed next, the transformation prescribed by the chosen
event needs to be applied in the system of simulation.

After the application of an event, the status of the structures within the system
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generate_library.x

Event catalogue
generation

kMC simulation:
KMC.x

input_kmc.in 

specify the kMC
variables and event
catalogue.

buildlist.in

Specify the list of
events and event-
specific parameters

catalogue_input.in

Specify global parameters
for event catalog, filenames.

Figure 4.12: A schematic representation of the process from generation of event
catalogue to the final kMC simulation.

of simulation needs to be updated for the next step.
In Sec. 4.4.1, the details of checking the graph isomorphism within the system

of simulation are given. In Sec. 4.4.2 and Sec. 4.4.3, the details on the second part
of the IRA algorithm application are given. In Sec. 4.4.4, the details of the appli-
cation of an event are given. The update of the status of the system is described in
Sec. 4.4.5.

4.4.1 Topology check
When parsing over the system of simulation Rsys, a local configuration is gen-
erated for each atom in the system, first with the common cutoff value rcut_-
common. Graph hash value with this environment is calculated, and if there are
any corresponding events with the same common hash value (Sec. 4.3.4), each of
them is checked with its specific cutoff value rcut. If the graph hash value in the
specific cutoff indicates isomorphic graphs, then the current central atom can be a
potential candidate atom for an event, and it undergoes a full geometric check for
the local environment, through the second part of our IRA algorithm.

4.4.2 Second part of IRA
The task of the second part of the IRA algorithm is two-fold. Firstly, it provides a
way of unambiguous evaluation of the geometric similarity between two config-
urations. And secondly, it calculates the exact rigid transformation of one atomic
configuration which matches it to another atomic configuration.
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An event written in the event catalogue can be written as a transformation T .
T prescribes how an initial state SEini should transform into a final state SEfin in a
generic way, without specifying any particular reference frame, a relative atomic
move. It can be written as:

SEini
T→ SEfin. (4.8)

However, what needs to happen in the kMC simulation is a very precise applica-
tion of this event, a transformation of the initial state Rsys

ini into a final state Rsys
fin,

which can be written as:
Rsys
ini

T ′→ Rsys
fin, (4.9)

where T ′ is the transformation prescribed by an event, written in the correct refer-
ence frame ofRsys. The correct reference frame can be found by finding a relative
rigid transformation F between SEini and Rsys

ini , such that:

FRsys
ini = SEini, (4.10)

where F represents rigid rotation and/or reflection, translation, and permutation
of indexes. When F is known, the transformation T ′ is written as:

T ′ = F−1T = F−1(SEfin − SEini). (4.11)

The relation between all equations from this section can be written as a closed
path:

SEini SEfin

Rsys
ini Rsys

fin

T

F−1

T ′

F (4.12)

where finding the transformation F is done by our IRA algorithm.

4.4.3 Geometry check
Since we know the central atom of the event initial state configuration SEini, and
we know the current atomic site from Rsys, the translation part of F can easily be
computed by a simple shift of reference frames. After that, the transformation F
is equivalent to the approximate rotation Rapx from Sec. 3.11. It thus consists of
the bases β and γ, such that

F−1 = γ−1β. (4.13)

As has been described earlier, β can be found independently, and is already known
at this point of the kMC. Namely, it is written in the event catalogue in the form
of a triplet of integers under each event (see Fig. 4.9).
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The task is thus to find the γ basis. There are some algorithmic advantages
when calculating γ in the particular setting of the kMC, with respect to the situa-
tion when matching generic structures, described in Chapter 2. Firstly, the central
atom is known for both configurations. And secondly, we are not particularly
concerned about mismatches, since a mismatch in this case only means that two
configurations are not sufficiently similar, and thus an event is not possible at cur-
rent site (see also test in Sec. 3.8.6). If atomic environments are similar, IRA will
be able to find the match (see also the 100% efficiency rate in Sec. 3.8.1).

Since there are atoms present in SEini, which cannot be found by prescribed
cutoff check in Rsys, namely the atoms of the extension of the environment, we
take a larger portion of the simulation box around the current atomic site, and
exploit the capability of IRA to match with different number of atoms. The exact
specification of which portion we should take is given by the largest atom-atom
distance in the event, which is given for each event entry in the event catalogue,
see Fig. 4.9. This number is increased by factor 1.2, and taken as radial distance
cutoff from the central atom in Rsys. All atoms within this distance are then taken
as tentative local environment Ssys, and matched to SEini to find basis γ. Note that
Ssys chosen like this contains more atoms than SEini, but the central atom for both
is known. Thus we can use the Alg. 5 of IRA, where we replace the geometric
center by the position of the central atom, to find the basis γ.

When the best γ basis is found, we can evaluate the matching between the
atomic configurations. This is done by calculating the distance h from the IRA
algorithm, Eq. (4.14).

h = h(F−1SEini, Ssys) (4.14)

If the evaluation of h is favourable (is below the threshold of equivalence), then
the event is deemed possible at this site, and the atomic indexes that set the γ basis
are recorded in memory. At this point, all the additional symmetries of events are
checked by evaluating the equation:

γ−1θβSEini = Ssys, (4.15)

where θ are the additional unique symmetries (see Sec. 4.3.5), given by the triplets
of integers m, i, j, written at the end of an entry in the event catalogue (see
Fig. 4.9). Each symmetry with a favourable evaluation of Eq. (4.15) is added as a
separate event into the temporary array of possible events to occur at the current
simulation step, since each of them represents a unique possible direction of that
event.

Once all atomic sites in Rsys with a common hash value associated to any
event have undergone such topological and eventual geometry checks, the list of
all possible events at the current simulation step is known. Each event from this
list has an associated atomic site index, event tag/index, event rate, atomic indexes
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that specify the γ basis, and the indexes that specify the θ basis. Now it is back to
the generic kMC algorithm in Alg. 1, to choose the next event to apply, based on
the transition rates (procedure CHOOSE_EVENT() in Alg. 2).

4.4.4 Apply event
When the kMC chooses an event from the list of events, almost all information
regarding the structure/matching of SEini and Ssys can be deduced from the infor-
mation already in the memory: the atomic site, event tag/index, the indexes that
specify the γ basis, and the indexes that specify the θ basis. The only piece of
information missing is the permutation P which gives the permutation of atoms
in SEini which maps them to atoms of the simulation box Rsys. The rigid trans-
formation F is thus known, minus the permutation. The permutation P found by
first applying the known transformation F−1 to SEini, and then computing P using
the CShDA algorithm (see Sec. 3.4).

Once the permutation P is also known, the transformation T ′ which will trans-
form the system of simulation from its initial state Rsys

ini to its final state Rsys
fin can

be written in the form of a 3N -dimensional array, where N is the total number of
atoms in the system, which contains values zero for atoms that do not participate
in the event, and for the others:

T ′ = F−1Pi(S
E
fin − SEini), (4.16)

where Pi gives the mapping of index of atom i from Rsys
ini to an index from SEini,

and F−1 is the rigid transformation

F−1 = γ−1θβ. (4.17)

With all this information, the event can be applied in two different ways:

Rsys
fin = Rsys

ini + T ′ (4.18)

or
Rsys
fin = F−1PSEfin. (4.19)

The Eq. (4.18) will propagate and accumulate any distortions that might be present
in the structureRsys

ini , since T ′ contains the difference (SEfin−SEini). Meanwhile, the
Eq. (4.19) imposes the final state of the event SEfin onto the system configuration,
without regard to what was previously there.

There are some advantages and some disadvantages in applying events by
Eq. (4.18), or by Eq. (4.19). As already mentioned, with application of event
following the Eq. (4.18), some possible distortions that are present in the system
before application of an event will get propagated and accumulated. This means
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that the kMC evolution propagates subtle distortions that might appear during its
history, into the future. In our case of the kMC with a fixed catalogue of events this
is a drawback in the situations when many events can happen close to each other,
and in fact interfere with one another. In that case the application of one event
can effectively destroy the application of a close-by event due to subtle atomic
movements in its proximity.

By application of event following Eq. (4.19), we effectively ignore all atomic
distortions that are present in the system before the current event, and impose
the final atomic positions to be exactly equal to those given by the event in the
catalogue. As such, an event application might destroy subtle atomic structures
(usually near the border of the event), that can be essential to the recognition of
some other, nearby event. Nonetheless, the system locally ends up in a well-
defined final state, which means that it can always continue the propagation with
an appropriate next event. However, possibly at the cost of all the rest of the box
being destroyed.

To a great extent, the problems of Eq. (4.18) and Eq. (4.19) are related to the
atomic distortions present in the original event data, which are possibly inconsis-
tent among each other, and to particular cases when a kMC simulations is per-
formed with too few events in the catalogue. The differences between Eq. (4.18)
and Eq. (4.19) disappear when the relaxation of the forces is included in a sim-
ulation, or the events are explored with an on-the-fly approach. However, in an
attempt to mitigate the propagation of distortions as much as possible, we mix
both Eq. (4.18) and Eq. (4.19). This is done as follows.

The event is first applied with Eq. (4.18). After the application, the coordi-
nates of Rsys

fin are compared to the final state coordinates F−1SEfin. If any atom
in Rsys

fin is within a distance larger than some threshold away from its associated
atom in F−1SEfin, then an interpolation scheme is launched, which interpolates
the coordinates Rsys

fin and F−1SEfin with some factor m ∈ [0, 1], such that the case
m = 0 corresponds to applying the event purely following Eq. (4.18), and the case
m = 1 essentially overwrites Rsys

fin with F−1SEfin, which is equivalent to applying
the event following Eq. (4.19). The distance threshold for comparison, and the in-
terpolation factor m can be set in the kMC input script. The interpolation scheme
used is the Image-Dependent Pair-Potential (IDPP), described in Sec. 4.5.

When an adsorption-type event is applied, all arrays are increased by the num-
ber of arrived atoms, and the arrived atoms are placed at the end of the arrays. In
case of desorption-type event, the indexes of atoms that need to be removed are
first calculated, and then removed from atomic positions in order of descending
index value. All arrays are resized appropriately.
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4.4.5 Local update
After an event is applied, we could scratch all the information about possible
events, and recompute it all from beginning. This is however computationally
expensive, so a better idea is to do what we call a local update.

The idea of local update is that we can save all information about possible
events from the previous step, except for a region of the simulation box where the
latest event has occured. Thus saving potentially quite a lot of computation. We
can reuse the information of the permutation P from the event application step,
which gives the indexes of atoms in Rsys, which have taken part in the applied
event. The search for possible events in the next step will then recycle all the old
information, and only update these atomic sites. There are however more sites in
Rsys which can potentially change their geometry due to an event being applied in
their vicinity, namely the atoms at the border of the applied event. A schematic of
this idea is shown on Fig. 4.13, where the grid represents the global connectivity
matrix, the node marked in green is the central atom of the applied event, the
blue nodes are the atoms involved in the event, and the pink atoms are the atoms
with potential change in their geometry, due to an event applied in their vicinity.
A first-neighbour cutoff is assumed for the schematic. The atoms in blue might
have changed their hash value due to the event. However if any blue atom that
is close to the border of the region changes their position, the change would be
seen by atoms in their cutoff range, thus all the atoms within the cutoff region of
all blue atoms need to be checked/updated in the next step. In order to obtain the
atomic indexes of these atoms, we take the value of the common cutoff rcut_-
common of all events, and use the breadth-first graph traversal algorithm on the
global connectivity matrix (Appendix A).

Once the list of all the atoms which need to be updated is known, the corre-
sponding parts of the global connectivity matrix are computed, and the simulation
goes into the next step.

We occasionally see problems with the local update procedure. Most notably
in simulations with a large number of events possible to occur close-by, where
the events have a low specific cutoff rcut, but they contain lots of atoms in the
extended environment SE . The problem is that the atoms that get updated by the
local update procedure, are not all the atoms that should get updated. In other
words, there are atoms that are left non-updated. This makes sense, since the
updated region only encompasses the region within common cutoff value around
the applied event, and the atoms belonging to the extended environment are not
included in that region. This could be resolved by increasing the range around the
region of applied event, but this potentially means lots of redundant computations
in the next step of event identification. Thus, we currently resolve the problem as
follows. At the stage of event application, the event configuration is transformed
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Figure 4.13: A schematic of the local update idea. The grid is an illustration
of the global connectivity matrix, the node in green marks the central atom, and
the nodes marked in blue represent atoms which have been involved in the event
application, the pink atoms are atoms with potential change in geometry due to an
event in their vicinity.

by F in Eq. (4.17), the distance h(F−1SEini, R
sys) can then be readily evaluated.

If it is beyond the similarity threshold, then we know something has happened in
that atomic site environment, and thus the event should be aborted and this atomic
site added to the update list for the next step, along with all its neighbours within
the common cutoff region.

Note that this local update procedure only updates the information regarding
the structures in the simulation. After this local update, the algorithm passes to
the UPDATE_SYSTEM() procedure in Alg. 1, which continues the generic kMC.

4.5 Image-Dependent Pair Potential (IDPP)
Image-Dependent Pair Potential (IDPP) is a method that has originally been de-
veloped for guessing a good initial path for a transition between given initial and
final configurations, it is presented in Ref. [122]. The method presents a better
alternative to the simple interpolation of Cartesian coordinates, and does not rely
on any external force or energy computation.

In our kMC, IDPP is used as interpolation scheme in order to mix the Eq. (4.18)
and Eq. (4.19), as explained in Sec. 4.4.4. As such, it can be seen as a mitigation
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strategy for the accumulation of distortions, in place of a real relaxation of the
forces with a realistic potential. Concretely, it prevents the final state configura-
tion in the kMC simulation to deviate too much from the final state configuration
of an event in the catalogue.

4.5.1 Original algorithm
The initial path for a transition between two states typically consists of a number
of so-called images of states that are between the given initial and final states.
Traditionally, the k-th imageRk is obtained by directly interpolating the Cartesian
coordinates of the initial state Rini and final state Rfin, by the Eq. (4.20).

Rk = Rini +
k

p

(
Rfin −Rini

)
, (4.20)

Where p represents the total number of images to be created, and k runs from 1 to
p− 1.

The main problem of direct linear interpolation on the Cartesian coordinates
is that it generates a straight line between the initial and final configurations. For
example, if two atoms exchange their positions from Rini to Rsys, then Eq. (4.20)
will generate images such that the two atoms will go straight through each other.
Other vivid example of this problematic are curved-arc paths, for which the Eq. (4.20)
generates a straight path which can potentially mean atoms coming extremely
close to each other.

For the reasons above, IDPP [122] method has beed developed, which is based
on the idea of interpolating atomic distances, instead of directly on the coordi-
nates. The atomic distances in the sense of all atomic distances dAij within a struc-
ture A. As such, the interpolation can be written as Eq. (4.21).

dkij = diniij +
k

p

(
dfinij − diniij

)
, (4.21)

where dkij , d
ini
ij , and dfinij are the all-to-all atomic distance matrices of the interpo-

lated image k, the initial configuration, and the final configuration, respectively.
The variables k and p are the same as in Eq. (4.20). The difference between in-
terpolating on coordinates and interpolating on distances is shown on Fig. 4.14,
where interpolation on coordinates is shown in dashed lines, and interpolation on
distances in full color.

In order to pass from a representation in the form of interpolated distance
matrix dkij to an atomic structure Rk, represented by a 3N -dimensional array, an
objective function is defined by Eq. (4.22):

SIDPPk (R) =
N∑
i

N∑
j>i

w(dij)

(
dkij − dij

)2

, (4.22)
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Figure 4.14: Schematic of paths between initial structure α and final structure β.
In dashed line: path generated by interpolation on coordinates, by Eq. (4.20). In
full color: path generated by interpolation on distances from Eq. (4.21). Image
taken from Ref. [122].

where dkij is the interpolated distance for image k from Eq. (4.21), dij is the Carte-
sian distance between atoms i and j in the current structure R, and w(dij) is a
weight function used to put more weight onto shorter distances, such that the
value rises when two atoms come close together. The form of the weight function
is w(d) = 1/d4. The objective function SIDPPk (R) can be seen as a sort of pair
potential energy function, that depends on the image k. This is where IDPP got
its name. Then an image-dependent “force”-like quantity on atom i of structure
R is given by Eq. (4.23).

F k
i (R) = −∇iS

IDPP
k (R) (4.23)

The next step is to minimize the image-dependent “force” in each image k. In
the original article, this is done by imposing a Nudged Elastic Band (NEB [123])
algorithm where the starting point are images computed by the linear inerpola-
tion from Eq. (4.20), and the “forces” are computed by Eq. (4.23). Note that the
gradient in Eq. (4.23) can be computed analytically.

4.5.2 Our modifications
The modifications that we made to the original IDPP algorithm are only minor.
Instead of taking as input the number of images k to be generated, we take as
input directly the ratio m = k

p
, which is a factor in the range [0,1]. Like this,

IDPP generates only one image, which is located at factor m between the states
Rini and Rfin.
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The second modification we make is to not impose a NEB minimization on
the generated images, but instead do a steepest descent algorithm with image-
dependent “forces” defined as in Eq. (4.23). We find satisfactory results with step
size 0.05, and exit criterion when maximal “force” on any atom has a norm below
0.1.

4.6 Why so complicated?
In this section, we look back at the current chapter from a larger perspective, and
question some ideas that are used.

The IRA algorithm presented in the previous Chapter 3 is parameterless, in-
dependent of the shape of a structure, and does not need any specific distance
cutoffs. Then why is the matching process implemented in the kMC, as described
in the current Chapter, seemingly quite complicated?

In principle, the events could be without a specific cutoff. Within that idea,
the only criterion for deciding which atoms take part in an event could be the
distance that atoms move during an event. The atomic configuration of an event
would then be some configuration of atoms, without any particular order or de-
fined shape. The procedure of identifying possible events could rely solely on the
IRA matching procedure, without the need of graph isomorphism. This would
simplify the creation of the event catalogue. In particular, there would be no need
for any cutoffs, which are actually needed only for generating the graphs, and
consequently, there would also be no need for the concept of extended local envi-
ronments. The stage inside the kMC simulation would also be simplified, for the
same reason. Within that idea, the process of identifying possible events, which
is comparing and matching structures, would get much heavier computation-wise.
Here is why.

Let us imagine a simple system of simulation Rsys, with 100 atoms in total.
Assume one single event, which is possible at 5 sites in the system. Assume that
the initial state configuration of the event SEini includes 15 atoms. Let the initial
state configuration of the event SEini be labelled structure A, and the entire system
of simulation Rsys be labeled structure B. The process of identifying possible
events in kMC is equivalent to the IRA algorithm when matching structuresA and
B with nonequal number of atoms (see Alg. 4), where the potential central atoms
of B are the potential event sites in the system. The difference is that, instead of
searching for a central atom bJ ∈ B for which the distance DJ is minimum (as in
Alg. 4), we search all atoms bJ ∈ B where DJ is below a threshold value, which
means the site has a possible event in kMC. In the present imagined example,
there are 100 atoms in structure B, thus 100 potential central atoms bJ ∈ B, or
potential event sites that need to be checked. As has been discussed in Sec. 3.8.4,
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and Sec. 3.8.5, it is very beneficial for the IRA algorithm, in terms of speed, to
spend some computational time on reducing the set of possible central atoms. For
our imagined example this means reducing the set of potential 100 central atoms
bJ ∈ B, preferrably down to 5, or as close to that number as possible. In our
kMC, the reduction is done by graph isomorphism. The graphs are constructed in
an automatic way, which means specific cutoffs are needed. Firstly the color_-
cutoff parameters, needed to generate the global connectivity (see Fig. 4.5), and
then the event-related common cutoff rcut_common (Fig. 4.8), and the event-
specific rcut (Fig. 4.9), which specify the generation of local graphs, and thus
local atomic structures S. Checking the graph isomorphism of local structures
represents a means of fast-filtering of the possible event sites in the system Rsys,
and is the main reason why the matching process implemented in the kMC seems
quite complicated.

There are also other benefits (not only the computational speed), associated
to having some cutoff distances. The most notable being the “sphericity” of the
primary local environment S, that results from the environment being generated
with a certain cutoff. This “sphericity” makes its use in the symmetry-finding
algorithm (see Sec. 4.3.5). If the structures Sini were without any order and shape,
the criterion for a symmetry θ in Eq. (4.4), would be impossible to evaluate in the
form currently written.

The graph isomorphism condition, as means of fast-filtering of the structures,
could also be replaced by any other similarity descriptor. The main reason for
using graphs in our current implementation is the fact that NAUTY [73] asso-
ciates an integer hash value to each graph. The graph isomorphism thus becomes
a binary yes/no operation, which checks if two hash values are equal or not. We
typically set the specie-dependent Rcut values (called color_cutoff in our
kMC), which specify the connectivity matrix of a graph (see Eq. (2.2)), to typical
first-neighbour distances. As such, the graphs are a direct mapping of the atomic
structures, and the first-neighbour bond network. If we choose the Rcut values
such that they are slightly beyond the typical bond-length values (a few percent
above, e.g. 5-10%), then the graph construction remains unchanged upon small
distortions of the atomic positions. This brings some distortion tolerance into the
graph isomorphism process, and gives the user some control over it via the rela-
tively intuitiveRcut values. Similarly, some distortion tolerance could be achieved
with other shape descriptors, which often come in real-valued scalars (or vectors),
and with a similarity function that gives a range of possible values. However in
that case, we would need to decide a threshold value for deciding if two structures
(or their descriptors) are perceived as equal or not, which might not be as intuitive.
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Chapter 5

Examples

This chapter presents some examples done with our kMC software, based on IRA
algorithm. The different examples are used to showcase the capabilities of the
present stage of our kMC development, as well as to point to the difficulties and
potential problems that have been encountered.

The example in Sec. 5.1 is a simple toy model, used to show the necessity of
the use of extended local environments for the event configurations. It also serves
as simple demonstration of the application of symmetries in events.

The example in Sec. 5.2 is slightly more realistic, since it uses real Density
Functional Theory (DFT)-produced data of O and O2 diffusion in Si crystal. It
explores the artificially induced distortions in the system of simulation, as function
of the event size.

The example in Sec. 5.3 presents a successful simulation of an interstitial atom
diffusion in Si crystal, using events generated from DFT data, where our symme-
try checks reveal a more complete set of events. It is also used to discuss the
calculation of the mean displacement of the diffusion.

The example in Sec. 5.4 is used to showcase the capability of our kMC to
deal with events that change the total number of atoms in the simulation, namely
adsorption and desorption events. The example used is a working principle of a
CO gas sensor, on a SnO crystal.

The example in Sec. 5.5 presents an example where all the capabilities of our
kMC are utilised. It is the simulation of O2 adsorption on the Si(100) surface.
Some advantages of using IRA are shown, namely the capability of recognition of
the different Si sites on the buckled surface. Some problems are also presented,
that are connected to elastic distortions in events, event size, and interference
between several events happening close together on the surface. The example
serves as the main motivation for the on-the-fly approach, not implemented yet
presently.
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5.1 Toy model: simple cubic crystal
To showcase some of the essential parts of the algorithm, we shall use a toy model
system. That is a system of simple cubic crystal, periodic in all directions, com-
posed of two atomic types. This system is not meant as an analogy to anything
physical, it is chosen solely for demonstration purpose.

Toy model system is shown on Fig. 5.1. The two atomic species are A and B,
colored red and blue respectively on Fig. 5.1. There are 500 atoms in total, 491 of
type A and 9 of type B. Atoms of type A are shown in smaller size for reasons of
better visualization.

Figure 5.1: The toy model system used to showcase the different parts of the kMC.

5.1.1 Test 1
For the beginning, we include one single event, which is exchange of atoms of
type A and B in their first-neighbour positions. The event is shown on Fig. 5.2,
with all corresponding directions. The event is centered on the atom B (blue), the
exchange of atoms happens in such a way that the atom of type B (blue) does not
see the first-neighbour local environment of the site where it is diffusing into. And
the atom of type A (red) does not see the local environment it is diffusing from.
From our symmetry checks (see Sec. 4.3.5) we find that the event is possible to
execute in 6 possible directions, consistent with the expectation. This is the first,
and very simple confirmation of the symmetry checking algorithm.

Set in this way, the kMC finds an event possible on each blue atom, and the
event at each blue site is initially possible in 6 directions. This is a simple confir-
mation that also the kMC can read, find, and execute the different symmetries of
an event. As the simulation progresses, blue atoms meet other blue atoms, which
makes their local environment different from the initial state of the event, and
they stop moving since there is no event corresponding to these structures in the
catalog.
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6 final states

Figure 5.2: Exchange of atoms of type B in blue, and type A in red, centered on
atom of type B. The six possible directions of the event are shown.

Thus as expected, what happens in the long kMC simulation with this setup is
that the atoms of type B stop moving as soon as they become the first neighbour
of another atom of type B. Some specific final states of the simulation box are
depicted on Fig. 5.3, all starting from the same initial state depicted in Fig. 5.1.
The bonds are drawn among atomsB when they are in the first neighbour position.
We can observe that the atoms of type B (blue) have formed some clusters, and
the simulation stops at this point because there is no relevant event present in the
event catalog.

Essentially, the blue atoms diffuse randomly in all directions, until they meet
another blue atom at one of their first-neighbour positions. At that point, they are
blocked and cannot move anywhere. From the point of view of the event catalog,
it is impossible to avoid this scenario without modifying the event configurations.
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Figure 5.3: Four specific final states of toy model simulation with the event from
Fig. 5.2. The atoms of type B (blue) have formed some clusters, and the simula-
tions stop due to no possible further event.

5.1.2 Test 2
Another possibility for an event of identical mechanism - exchange of atoms A
and B - is to center the event on atom A, as shown on Fig. 5.4. This time the
atom A does not see the local environment of the state it is diffusing into, and
the atom B does not see its local environment at the initial state. In this kind of
setup, the kMC finds possible event on the 6 red atoms neighbouring to a blue
atom. There is thus no need for having all different possible directions stored in

Figure 5.4: Exchange of atoms of type A and type B, centered on atom of type A.
There are no additional directions of the event, since it is found at each of the 6 A
atoms around a B atom, with corresponding rotation.

the event catalog.
The kMC simulation of this setup never ends up in a situation where two B
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atoms come to first-neighour sites, since that would require an event allowing this
kind of move. Some specific states of kMC simulations are shown on Fig. 5.5,
all starting again from state in Fig. 5.1, but now with the event catalog consisting
of single event from Fig. 5.4. The kMC evolution of this system can run for an
indefinite number of steps.

Figure 5.5: Four specific states of toy model simulation with the event from
Fig. 5.4. The blue atoms never end up on first neighbour positions since the event
corresponding to that does not exist. This simulation can run indefinite number of
steps.

5.1.3 Test 3: justification of extended environment
From the Test 1 in Sec. 5.1.1 we can see that from the point of view of the event
catalog, there is no real way to control the clustering mechanism of the atoms
B. One might suggest to increase the environment of the event to the second
neighbour atoms, or even third, however that just pushes away the same basic
problem. That is, the atom B does not see the state it should diffuse into before it
diffuses.

From the Test 2 in Sec. 5.1.2 we can see that the problem of uncontrolled
clustering of atoms B can be solved by shifting the central atom of the event to
the atom A, which can be thought of as the final state of the diffusion of atom B,
however at the expense of losing information on the local environment of atom B
prior to the diffusion.

Therefore, we combine the local environments around atom B from the initial
and final states, as described in Chapter 4, Sec. 4.3.3, called the extended envi-
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ronment. Like this we gain more control over the events, meaning we can control
all the different scenarios of clustering events. Some examples of events with the
extended environments are shown on Fig. 5.6. With the ability to control the en-
ergy barrier - and with it the probability - of each event comes also the fact that
the number of possible different configurations increases. With the catalogue of

Figure 5.6: Some examples of events within the extended environment, which is
made of combined atoms from initial and final neighbourhood of the central atom.

events depicted on Fig. 5.6, the kMC simulation ends up in similar situations as
final states of Fig. 5.3 in Test 1, however with the major difference that in the
present case, the clustering is under control. For example, by imposing a low
barrier (high probability) to the single blue atom diffusion event, the simulation
makes many steps to cluster any blue atoms. We can also play with the barriers of
head-on clustering, and the diagonal-on clustering events (middle left, and bottom
left on Fig. 5.6), which seems to slightly alter the shape of resulting clusters.

From the point of view of the event symmetries, the following happens. The
diffusion of single blue atom, the event depicted at the top left of Fig. 5.6, has
6 associated symmetries, which are consistently checked. Whenever there is an-
other blue atom at the second neighbour position, which is the left-most red atom
in the initial state (see Fig. 5.6, top left), that particular symmetry (direction) be-
comes impossible to execute, while the other 5 remain possible. This capability is
achieved due to the combination of consistent symmetry checking, and the use of
extended local environments within the kMC.
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5.2 O and O2 diffusion in Si
To move away from toy models, we look into the O and O2 diffusion in Si. The
problem is in a way similar to the toy model from Sec. 5.1, however there are now
only two atoms capable of diffusion - there are two O atoms in the simulation
box, in a crystalline Si system. All the data used comes from concise, devoted
DFT calculations, such that elastic distortions are present in the system at the
initial stage of the simulation, and within all events.

The isolated O atom is situated in the bond between two Si atoms, and can
diffuse into any of the six neighbouring bonds of the same type, three per Si
atom on each side. Fig. 5.7 shows the Si atoms in red, and O atoms in blue,
there are three possibilities of O atom diffusing over the central Si atom, into a
neighbouring Si-Si bond. Since our shape matching algorithm in the kMC will

Figure 5.7: Single O atom (in blue) can diffuse into any neghbouring Si-Si bond
(in red). On this figure the event is centered on the Si atom, thus generating the
three unique events around that atom suffices to cover all six states into which the
O atom can move.

recognize identical environment also from the Si atom on the opposite side of the
Si-O-Si bond than the events shown in Fig. 5.7, all six possibilities for O diffusion
are covered. The different directions of O diffusion depicted on Fig. 5.7 are all
generated by our symmetry check procedure described in Sec. 4.3.5, from a single
DFT calculation (NEB).

Two O atoms that are close together can rotate their configuration around a
common Si atom, such that one O atom diffuses, this is depicted on Fig. 5.8(a), or
reorient themselves without diffusing, Fig. 5.8(b). They can also diffuse together
to a neighbouring Si atom, as in Fig. 5.9. And with some probability, they can also
dissociate into two isolated O atoms, or conversly, associate from two isolated O
atoms, shown on Fig. 5.10.

We launch a simulation with the event catalog containing these events, on an
initial configuration of the box that contains two O close together, forming O2,
Fig. 5.11 (left). The O2 successfully dissociates into two individual O atoms,
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(a)

(b)

Figure 5.8: O2 movements around common Si atom: (a) rotation, (b) reorienta-
tion.

Figure 5.9: O2 diffusion to another Si atom.

which diffuse independently, Fig. 5.11 (middle), and sometimes come close to-
gether to momentarily form O2, Fig. 5.11 (right).

5.2.1 Effect of elastic distortions
As observed in Fig. 5.11, the structure of the Si crystal gets unphysically distorted
by the O propagation. The reason for this artifact and an attempt at its quantifica-
tion are discussed in this section.

In order to focus on the effect of elastic distortions in the system, and/or the
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Figure 5.10: O2 dissociates into two individial O, or two individual O associate
into O2.

Figure 5.11: The initial state of the simulation (left) is with an O2 formation,
which dissociates into (middle) two individually diffusing O atoms, which can
also (right) associate into O2. Comparing the images on the left and right, notice
the distortions of the Si crystal structure. They are an unphysical artifact related
to the elastic distortions included in the event, described further in Sec. 5.2.1.

event configurations, we take the simulation box with a single O atom in the Si
crystal network, with 217 atoms in total. The simulation box has been relaxed
with DFT. For the event we take just the single O atom diffusion. The event data
comes also from a DFT calculation, therefore all elastic distortions are included
both in the kMC simulation box, and in original event data.

As we generate the event configurations that will be written into the event
catalogue for kMC, we choose the rcut_mode=neig option (see Sec. 4.3.3).
This allows us to choose the atoms that will get included in the event through the
neighbour-cutoff parameter rcut in form of an integer, specifying the number
of neighbour shells to be included. Another option for controlling which atoms
get included in an event is the minimal-move threshold small_move_thr. We
set small_move_thr relatively high, such that no atoms join the event due to
this parameter, and we vary the neighbour-cutoff parameter rcut. Like this the
number of atoms included in the event will depend only on the choice of the cutoff.
We choose the values of cutoff to be 1, 2, 3, and 4. The event configurations SEini
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corresponding to these choices are shown on Fig. 5.12.

1n
2n

3n
4n

Figure 5.12: Initial state event configurations SEini for the single O diffusion, with
respective choice of the neighbour-cutoff parameter.

The simulation boxRsys at its initial state includes all elastic distortions around
the O atom. As the kMC applies an event, only a portion of all atoms get moved.
The portion depends on the cutoff of the event. Therefore if the event cutoff is too
small, not all the atoms that originally contribute with elastic distortions will get
moved, which introduces distortions into the system. Contrary, if the event cutoff
is large enough, all elastic distortions should get propagated with the application
of an event, and the distortions should not apprear

For this experiment, we make four different simulations of the same initial
box. Each simulation includes one event, one of the four from Fig. 5.12, which
is propagated for 500 kMC steps. Then we attempt to quantify the distortions
present at the final configuration. The expectation is that the smallest event (1n)
will introduce lots of distortion since it does not propagate many atoms around,
and the largest event (4n) will introduce only a small amount of distortion.

The initial state of the simulation, and the four final states corresponding to
the four simulations are shown on Fig. 5.13. From the point of view of the O
diffusion, the four simulations are comparable, since all 6 possible directions of O
diffusion are possible at each step. The diffusion of O atom is plotted in terms of
the distance travelled from its initial position versus the kMC steps in Fig. 5.14,
the simulation time here is not relevant, since all moves have identical probability.

The distortions present in the initial configuration, and in each of the four
final configurations can be seen from the radial distribution functions, shown on
Fig. 5.15. A radial distribution function is expected to show sharp delta-function
shaped peaks for a crystalline solid, and more broad peaks for more disorganized
structures.
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Figure 5.13: The initial state of kMC simulation, and the final states of four sim-
ulations with different cutoffs for O diffusion. A side view is chosen for simpler
visualization of the distortions.
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Figure 5.14: Diffusion of O atom in terms of the displacement of O atom relative
to its initial position, for the four simulations.
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initial
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Figure 5.15: Radial distribution functions for the initial configuration and the four
final configuration of each simulation. The distortions appearing during the kMC
simulation can best be seen for the 1n case, as expected. The units of the y-axis
are not important in this image, and have been rescaled for each plot.

In order to actually quantify the distortions, we calculate the forces present in
the system with DFT, with identical parameters for each of the boxes. For this
calculation, Quantum Espresso [124] has been used, with Projector-Augmented-
Wave (PAW) pseudopotentials with 50 Ry cutoff for the energy, and Gaussian
smearing of 0.005. The resulting total forces are reported in Table 5.1.

If the total force calculated is a good characterization of the distortions present
in each system, then they follow the expected behaviour. They are largest in the
1n simulation, and smallest in 4n system, with respect to total force in the initial
system.

From this subsection we conclude that the size of the event will have an effect
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Simulation Total force (Ry/au)
initial 0.003

1n 1.667
2n 0.680
3n 0.366
4n 0.147

Table 5.1: Resulting forces for each simulation.

on the distortions of the system during the kMC evolution. They arise due to
disparity between the distortions initially present in the system, and the portion of
atoms that actually get propagated with each event. As the elastic distortions can
be very long-range (1/r) the most general way to fix this problem seems to be to
compute the forces after each kMC step and let the system relax. However, that
computation can be computationally prohibitive for large systems, particularly
when using first-principles energy and force engines.

To mitigate, we use a modified IDPP (as described in Sec. 4.5), to check after
every step of the simulation that the configuration of atoms involved in the event is
distorted within a threshold from the final state configration of the event. In fact,
without using this technique the 1n simulation from this subsection is generally
not even possible to reach 500 kMC steps, the distortions get too large for the
shape matching to identify the event structures.

The second conclusion we can make is that we would like to include as many
elastic distortions as possible into the event, which implies generally a relatively
big number of atoms and extent of the event local environment. This also implies
that in the case of a second O atom present in the system, all symmetrically unique
configurations that include the two atoms within that local environment need to
be known, otherwise the event catalog is obviously incomplete.

5.3 Si interstitial diffusion in silicon
In this example we use the kMC to simulate the diffusion of an interstitial atom
in silicon. Within this simulation, the interstitial configuration is possible in two
distinct states, called the dumbbell, and the hexagonal configurations. The possi-
ble transitions that are diffusive are transitions between these two configurations.
There are four symmetry-non-equivalent canonical events, each of them is gener-
ated from a single DFT calculation (NEB) data. They are described in more detail
below.

The hexagonal configuration can diffuse into a dumbbell configuration, this
transition is depicted on Fig. 5.16. The hexagonal configuration (in the center of
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Fig. 5.16) is characterized by a single atom in the non-crystalline position, placed
at the center of one of the four hexagon formations in the diamond crystal unit cell.
The dumbbell configuration (in the six corners of Fig. 5.16) is characterized by
two atoms on non-crystalline positions, the interstitial atom from hexagonal con-
figuration moves slightly towards one of the atoms in the hexagon, which pushes
this atom into the neighbouring hexagon, so the dumbbell configuration is char-
acterized by interstitial atoms on similar off-center positions of two neighbouring
hexagons. This event can occur in six different directions which were all found
by the symmetry checks described in Sec. 4.3.5.

Figure 5.16: Hexagonal to dumbbell transition. Hexagonal configuration in the
center, and dumbbell configurations in the six corners. The atoms of the primary
environment are shown in solid colour, the atoms of extended environment are
transparent. The green arrows indicate the movement of each atom with respect
to the initial state. The six directions of this event are generated by the algorithm
for finding the event symmetries θ (Alg. 8), from single event data.
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The dumbbell configuration can transform back into hexagonal. This is de-
picted on Fig. 5.17. The atom at the left side of the dumbbell moves into a crys-
talline position, and the atom at the right of the dumbbell moves into interstitial
hexagonal position. Notice that this event can occur on both atoms in the dumbbell
configuration. The local environments as seen from these two atoms are symmet-
ric over the rotation around the axis perpendicular to the plane of the image in
Fig. 5.17. In our kMC simulation, both of these atomic sites in the system will be
assigned the event, in the two possible directions respectively. Thus making four
possible escape paths from the dumbbell configuration into the hexagonal.

Figure 5.17: Dumbbell to hexagonal transition. The atom at the left side of the
dumbbell moves into a crystalline position, the atom at the right of the dumb-
bell moves into a hexagonal interstitial configuration. The atoms of the primary
environment are shown in solid color, the atoms of extended environment are
transparent.

The hexagonal configuration can diffuse into another hexagonal configuration
in two ways. The first one is called inside, depicted on Fig. 5.18. The interstitial
atom moves from one hexagon ring to another, within the same diamond structure
of the unit cell. This event has three possible directions.

The second way of hexagonal-hexagonal diffusion is called outside. Depicted
on Fig. 5.19, the interstitial atom diffuses to the hexagonal structure of the neigh-
boring diamond structure of the unit cell.

Taking all of the events described above, the event catalog has twelve events.
These events have been generated from four DFT calculations (NEB), one for
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Figure 5.18: Hexagonal to hexagonal inside. The interstitial atom moves from
one hexagon to another, within the same diamond unit cell structure.

Figure 5.19: Hexagonal to hexagonal outside. The interstitial atom diffuses to
neighbouring hexagon of the diamond structure.

each event. The energy barriers associated to each event are given in Table 5.2.
These energy barriers are given as input with each event for our kMC.

The simulation box in this example is a cube with the side length 64.8 Å, and
has 13825 atoms of Si, which are for the most part crystalline. In the initial state of
the simulation, there is one interstitial defect in the dumbbell configuration. The
initial configuration is shown on Fig. 5.20 from two viewpoints, and a close-up of
the dumbbell interstitial defect in blue circle.
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Event Eac (eV)
hex-dum 0.261
dum-hex 0.278

hex-hex in 0.156
hex-hex out 0.015

Table 5.2: Activation (barrier) energies for each event.

Figure 5.20: Initial state of the Si interstitial simulation, with 13825 Si atoms,
one interstitial in the dumbbell configuration from two viewpoints. The dumbbell
interstitial is shown in the blue zoom-in.
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We characterize the distortions accumulated due to not accounting for all elas-
tic distortions in the events exactly (see Sec. 5.2.1) by comparing the radial dis-
tribution functions at the initial and final state of the simulation. After 5000 kMC
steps, the radial distribution functions are shown on Fig. 5.21, we see that the
dispersion of the width of peaks is very small, which implies that there is some
small amount of distortion in the atomic positions at the final state, but is largely
negligible, and does not affect the shape matching process used for recognition
and execution of events. The threshold for equivalence of structures for the IRA
algorithm used is dist_thr=0.3 Å.

initial
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distance	(Ang.)

final

Figure 5.21: Radial distribution functions for the initial and final states of the
simulation. The dispersion of the width of each peak is associated to the atomic
distortions that arise due to the error buildup of not exactly accounting for all
elastic distortions in the events.

We can calculate the mean displacement of the trajectory, by computing the
running average of the displacement of the current simulation step from a refer-
ence. That is usually done by taking the initial state of the simulation as the refer-
ence structureA, and the current simulation step as structureB. Then we calculate
the displacement of the current simulation step, with respect to the reference, by
computing RMSD(A,B) as defined by Eq. (2.6). Doing this for each simulation
step in a running average way, we obtain the mean displacement. Equivalently,
we can take just the last step of the simulation, and compute the RMSD with
reference to the initial state. The value computed is often thought of as a radius of
a sphere, representing the mean distance an atom can diffuse in a given time unit.

There is however a problem with computing the RMSD in this way, since it
is not invariant over the permutations. The problem arises when the index of the
diffusing atom changes. In that case, the sum in RMSD is made up of a number
of vectors, whose norms all contribute to the final value. In fact, every time the
index of diffusing atom changes, a new vector will appear in that sum.
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To illustrate the problem, we use the present Si interstitial diffusion example.
The main diffusion happens through the diffusion of a hexagonal interstitial into
another hexagonal. Here there is no problem, since the interstitial atom remains
the same after the diffusion process. However, the diffusion into a dumbbell con-
figuration produces two atoms that are not in the crystalline positions (or very
close to their reference crystalline positions). And when the dumbbell diffuses
back into a hexagonal, one of these two atoms becomes crystalline (or very close
to its reference crystalline position, it shall be called crystalline in the following),
while the other becomes the hexagonal interstitial. Thus, it can happen that an
atom that has originally been a hexagonal interstitial, becomes crystalline after
the diffusion through dumbbell, and an atom that has originally been crystalline,
to become a hexagonal interstitial. This effectively means that the index of the
diffusing atom has changed. This process is illustrated in Fig. 5.22.

Figure 5.22: The process of change of the index of the diffusing atom in the
hexagonal configuration, through the dumbbell configuration. Green arrows show
the atomic displacements with respect to the left image.

A question naturally arises. How can we compare values related to the dif-
fusion, obtained by computational methods, to those obtained by experimental
techniques? Since the experimental techniques do not have an insight into each
atomic move, they cannot resolve the history of the states between the initial mea-
surement, and the final measurement, since the atoms of equivalent species are
indistinguishable.

If we apply this reasoning to our simulation, more specifically the computa-
tion of the RMSD, we see that instead of what is computed by directly apply-
ing the RMSD formula (all the displacement vectors in the sum are shown on
Fig. 5.23 left), one should take into account that the atoms are indistinguishable,
and that there is no resolution on the intermediate history (single displacement
vector shown on Fig. 5.23 right). We shall call the RMSD computed as Fig. 5.23
(left) “direct”RMSDdir, and theRMSD computed with a single vector displace-
ment from Fig. 5.23 (right) “invariant” RMSDinv.
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Figure 5.23: Displacement vectors taken into the RMSD calculation in green.
On the left: due to exchange of the index of diffusing atom, simply aplying the
RMSD formula from Eq. (2.6) includes a large number of vectors in the sum. On
the right: the intermediate history of the simulation is generally not known, so it
should not be taken into account when computing the diffusion, as the diffusing
atom is not distinguishable from the others.

In order to compute the single vector displacement from the right side of-
Fig. 5.23, we can take the final state of the simulation as structureB, and compute
the permutations PB, with reference to the initial state of simulation A, by the
CShDA algorithm (Sec. 3.4). For large simulation boxes, this operation is quite
slow, so doing it for every simulation step is not viable. Alternatively, we can
follow a specific local environment through its graph hash value. So we calculate
the distance between an atom with a specific hash value in the current simulation
state, and an atom with identical hash value in the initial simulation state. This
distance is equivalent to the invariant RMSDinv.

The Fig. 5.24 shows the computation of RMSD(A,B) done for each sim-
ulation step. The value of the direct RMSDdir by applying the definition from
Eq. (2.6), and by following a specific graph hash value of the hexagonal interstitial
atom, to compute the invariant RMSDinv of Fig. 5.23 (right). Both computations
are done for the same simulation run.

The frequency of the change of index of the diffusing atom can be seen by
looking at the direct displacement vectors during the simulation, as in Fig. 5.23
(left), from simulations at different temperatures. We take three different temper-
atures, T = 300, T = 600, and T = 900 K, and plot the direct displacement
vectors, shown in green on Fig. 5.25 for the three temperatues. Each of the im-
ages comes from a single simulation of 5000 kMC steps at given temperature.
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Figure 5.24: Computations of direct RMSDdir, and invariant RMSDinv, during
1000 steps of the kMC simulation.

For better representation of the event statistics, the number of steps should be of
a much higher number, and the simulation box should be made bigger. This ex-
ample can however give a sketch of what is happening. The vectors shown on
Fig. 5.25 are the displacement vectors of each atom during the simulation. If the
diffusion happens on the same atomic index for several steps, it is represented by a
longer straight vector, and if the index of the diffusing atom changes, a new vector
is started at the current location.

Figure 5.25: Direct displacement vectors of the atoms. Each new vector represents
a change in the index of diffusing atom. The atomic positions are made invisible
for clarity.

We see that the dumbbell event, which is responsible for the change of the
index of diffusing atom happens much less often in the T = 300 K simulation, as
expected judging from the energy barrier of that event in Table 5.2.
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5.4 Gas sensor
The main purpose of the example in this subsection is to show the ability of our
kMC software to deal with events with non-constant number of atoms. Such
events are adsorption and desorption events.

The system of simulation is a slab of SnO2 crystal, which comes in contact
with a CO gas. In this example we include the following events:

• adsorption event A, where a CO molecule adsorbs on the SnO2 surface;

• a diffusive event B where the CO molecule reacts with the surface, with the
possibility to be executed also in backward fashion as −B;

• and desorption event −A where the CO molecule desorbs from the surface,
which is the adsorption event executed in backwards.

All the events are shown in Fig. 5.26, where the Sn atoms are colored red, the O
atoms blue, and C atoms yellow

A

-A

B

Figure 5.26: Events included in the simulation.

The chain of occuring events can be written as: A → (B → −B)n → −A,
such that the succession (B → −B) can happen n times. After the desorption
event, the surface is identical to the surface before the adsorption event. For this
reason, the presentation of this simulation via animation/video would be slightly
more convenient than a pictorial before/after showcase. Nevertheless I show some
snapshots of a single simulation at different timesteps in Fig. 5.27.

The rate of adsorption is related to the partial pressure of the impinging gas,
following Eq. (1.11) and Eq. (1.12). We test the adsorptions/desorptions with the
following experiment. We set the probabilities for all events to the same value,
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Figure 5.27: Some snapshots of the adsorption/desorption simulation.

and run the simulation at several different values of partial pressure, at equal tem-
perature. There are in total 96 Sn sites where the CO molecule can adsorb with
event A from Fig. 5.26. The number of CO molecules present at the surface at
each simulation step is shown on Fig. 5.28. The values of pressure are given rela-
tive to each other, the first simulation is run at P1 = P0, the second simulation at
P2 = 2P0, and third at P3 = 0.5P0. As expected, the number of CO molecules is
higher at higher partial pressure of the CO gas.

There are other physically relevant events for this simulation, which together
form the working principle of a CO gas sensor [125]. Those will however not be
further discussed here, the main reason being that the interactions among events
have not been calculated, which inevitably means an incomplete event catalogue
for the kMC approach used here. And since the surface of simulation is relatively
small, the interactions among events cannot be neglected.

123



	0

	10

	20

	30

	40

	50

	60

	70

	0 	2000 	4000 	6000 	8000 	10000

N
m

b
r.

	o
f	
C

O
	m

o
le

c
u
le

s

KMC	step

P1	=	P0

P2	=	2	P0

P3	=	0.5	P0

Figure 5.28: Number of CO molecules on the surface as function of the kMC step,
for three simulations at different pressures.

5.5 O2 adsorption on Si(100) surface
The Si(100) surface is known to reconstruct into a buckled structure, such that Si
dimers are formed on the surface, which tilt in the direction of either of the two Si
atoms in the dimer (see Fig. 5.29). The periodicity of these tilting dimers has long
been a topic of investigations. Two specific periodicities, namely c(4 × 2) and
p(2 × 2) have been shown to be energetically the most favourable [126]. In low
temperature Scanning Tunneling Microscopy (STM) experiments, coexistence of
these two reconstructions has been observed [127]. At room temperature, it is
understood that the tilting of the dimers can change rapidly, causing the experi-
mental methods to detect an “average” image, meaning a symmetric dimer with
no tilting.

The mechanics of O2 molecule adsorption and diffusion on Si(100) p(2 × 2)
surface have previously been reported [128, 129, 130], and simulated with the
OXCAD Lattice-kMC software [131]. In the OXCAD framework, the distinction
of surface dimer tilting was disregarded, and the simulated surface was symmetric
with no tilting. Another difficulty with OXCAD software is that each Si atom
has an idealized on-lattice local environment, and the events are hard-coded in the
software. Idealized on-lattice environment means that the growth of SiO2 layer
cannot happen in the predicted amorphous way, and that any strain-related effects
cannot be accounted. The hard-coding of events in the software is a potentially
major inconvenience for a user wishing to extend the catalogue of possible events.

124



The resolution of these problems has actually been the main driving force of this
PhD work since the beginning.

Note that the first-neighbour Si-Si distances in this example are between 2.4
Å and 2.6 Å, and the Si-O distances are between 1.0 Å and 1.8 Å. The threshold
for equivalence dist_thr in the rest of this section is in units of Å.

5.5.1 Buckling/tilting of surface Si-Si dimers
With the IRA shape matching algorithm implemented in our kMC software, there
are a number of local atomic environments that can be distinguished at the Si(100)
surface, depending on the dist_thr used for the equality of structures. Some
of them are shown on Fig. 5.29, where the different colors indicate atoms with an
equal local environemnts as characterized in four cases: graph hash only on top
left, and three different thresholds with IRA matching algorithm. On the bottom
right panel, the yellow and green environments are actually mirrored reflections
of each other. We note that with using only the graph hash as descriptor, the tilt-
ing (buckling) of surface dimers cannot be distinguished, while with IRA we can
distinguish the up- and down-Si atoms in the dimer (purple and pink, respectively,
on Fig. 5.29). The thresholds used on Fig. 5.29 are quite high, for a real simula-
tion we would like to use a value around dist_thr=0.3, in order to properly
distinguish different local environments.

Figure 5.29: Local environments of Si(100) surface, represented with different
colors, at different thresholds for equality.
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5.5.2 Atomic distortions
To run the kMC simulation of O2 adsorption on Si(100) surface, we have taken the
DFT data of events published in Refs. [128, 130, 129, 131], Ref. [132], and some
other unpublished DFT calculations. Already from looking at a small number
of this dataset, we notice that the surface is quite responsive to any movement,
in some cases an event on one site can induce distortions in Si atoms up to 3
neighbours away, see Fig. 5.30 and Fig. 5.31 for two examples. In Fig. 5.31,
the displacement vectors are shown in green, and a particular Si atom which is 2
neighbours from the event site has marked the magnitude of displacement, which
can be considered “small”, but is very close to the order of threshold dist_-
thr=0.3 that we would like to use. Any such atom that appears near the border
of several events simultaneously, can be displaced several times due to events in
its vicinity. By doing so, these kinds of “small” unphysical displacements tend to
build up very fast. In fact, they soon build up into a value which is beyond the
given dist_thr value, meaning that specific atomic site is not anymore deemed
possible for any event. Even if it had never adsorbed any atom, in this particular
case.

Figure 5.30: Adsorption event, where the Si dimers in red, parallel to the event
site are heavily affected - they become flat. The adsorbed O atoms are in yellow.

Very often among the events in the dataset, an event on one dimer affects the
Si atoms in the two neighboring dimers in the same dimer row. For example it
might change the direction of their tilt, as in Fig. 5.30. This characteristic could
probably be ascribed to the same physical process as the one that causes sponta-
neous flipping of the dimer tilts at room temperature. If we want to exclude such
distortions in our kMC simulation, it means that each such event needs lots of
curation by the user. For instance, we have attempted to ignore the atomic move-
ments beyond the second neighbour, or beyond the first neighbour, or preventing
specific atoms from moving at all, or even explicitly including or exluding partic-
ular atoms from the event, but the basic problem is that when two events happen
close to each other, the execution of one can alter the environment of the other,
rendering it impossible to detect and execute. It might be that event curation is the
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displacement: 
    0.23 Ang.

Figure 5.31: Diffusion event, with marked displacement vectors in green, and
order of magnitude of distortion in a Si atom which is 2 neighbours away from
event site.

fundamental mistake we are making, in the sense that all events should be able to
modify the surface as they want. From this point of view, the simulation of O2

adsorption on Si(100) surface by means of off-lattice kMC, is the prime example
of the need for the relaxation of the forces, and an on-the-fly approach, able to
correct the mistakes and explore the configuration space on its own.

5.5.3 Simulation with a subset of all events
In the following, I show a smaller subset of curated events from the O2 adsorption
event data, that lead to a curious problem at the stage of event identification, in-
volving primary and extended local environments S and SE , structural fragment
detection, and graph isomorphism. The subset of events included is shown on
Fig. 5.32 and Fig. 5.33, the data and schematics are taken from Ref. [131], and
modified for present needs. The numbering of structures follows the numbering
in the mentioned article. The events taken include configurations labelled in the
original article from 1 to 8, excluding 6. Events added extra for the present simu-
lation are adsorptions into structures 1 and 5. In Fig. 5.32 and Fig. 5.33, the atoms
shown in a configuration are all atoms included in each event, and they do not
strictly correspond to the atoms drawn in the schematic of the event.

Notice that the final state configurations of event 1 → 3 in Fig. 5.32 are dif-
ferent from the initial configuration of event 3 → 1, which should in principle
be identical. In particular, there is an additional bond between two Si atoms in
final structures of event 1 → 3. This is a consequence of attempting to curate
the event by freezing some atoms, to prevent some structural disorder buildup.
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Figure 5.32: Events including structures from 1 to 4, showing the atomic con-
figurations, schematic representations, and values of the energy barrier Eac in eV
above or under the arrows.

The direct consequence being that the graph hash value of final state of 1 → 3
is different than the graph hash value of initial state of event 3 → 1, which is
obviously undesirable. Similar problem occurs also at events 7 → 8 and 8 → 7
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Figure 5.33: Events including structures from 5 to 8, excluding 6, showing the
atomic configurations, schematic representations, and values of the energy barrier
Eac in eV above or below the arrows.

on Fig. 5.33. From the point of view of structural distortions, this is actually not a
problem, since each event is applied as in Eq. (4.18), thus any non-moving atom
contributes 0 distortions. For the actual simulation done here, the cutoff distances
used for graph constructions have been altered such that this discrepancy does
not cause problems, but I wanted to highlight it as one of the many difficulties of
curating certain events, and the inconsistencies that may arise from doing so.

We run a kMC simulation with this event catalogue on a system of 2304 atoms,
with 144 Si-Si dimers at the surface. At first glance, the simulation is quite sucec-
ssful. At the end of 1000 kMC steps, there are still more than 200 possible events,
indicating low overall distortions of the structure. However upon closer inspec-
tion of the atomic configuration, we notice structures that are not present in the
event catalogue, such as shown on Fig. 5.34. The full chain of events that lead to
this structure is shown on Fig. 5.35, with the dimer site circled in blue. We can
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Figure 5.34: A structure not present in the event catalogue, that appears in the
kMC simulation.

Figure 5.35: The chain of events leading up to an unknown structure from
Fig. 5.34. The configurations marked with question marks (???) highlight the
fact that these configurations are not present in the event catalogue.

pinpoint the cause of formation of this structure to the event, henceforth called
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“adsorption 5”, which is the first event listed in Fig. 5.33. In order to understand
why this event happens, we follow the steps of the algorithm which identifies
possible event sites.

The first stage of this algorithm is to filter atomic sites in Rsys by graph iso-
morphism through their hash values using NAUTY (see Sec. 4.4.1). The central
atom of the “adsorption 5” event configuration SEini is the Si atom at the “up” site
of the dimer. The primary part Sini, and the corresponding graph is composed of
the atoms marked in green on Fig. 5.36 (left). The corresponding central atom
in the system Rsys, with its four first-neighbour atoms composing the graph are
shown in green on Fig. 5.36 (middle), label this configuration Ssys. The graphs
of Sini and Ssys are isomorphic, thus the algorithm passes it onto the second part,
which is the more rigorous geometry check (see Sec. 4.4.2).

In the second part of the algorithm, the correct transformation is found, such
that the event structure SEini is matched to the structure of the systemRsys, utilising
the capability of IRA to match structural fragments. During the matching process,
atoms of Rsys belonging to the environment extension of SEini are searched. The
atoms of extension of SEini are the remaining two red atoms on Fig. 5.36 (left).
The criterion for the search on those atoms is the distance from a reference po-
sition, thus the distance between an atom in SEini which is the reference, and a
corresponding atom in Rsys, see Fig. 5.36 (right). Thus, all atoms present in the
system Rsys are searched in order to identify a subset which consists of atoms
that are closest to the reference atoms, where the reference atoms are the atoms
of the extension part of SEini configuration of the event. The atoms of this subset
are then combined with Ssys, to form the configuration which is matching the SEini
configuration. In the present example, the subset of atoms of Rsys matching the
extension of SEini are the two atoms circled in red on Fig. 5.36 (right), where the
event environment SEini is colored blue and written in the reference frame match-
ing the system environment Rsys. The two found atoms are combined with Ssys
into SEsys, which is such that it matches SEini, with equal number of atoms. The
atoms of SEsys are all within a satisfactory distance from their referece positions
in SEini, the distance h(SEini, S

E
sys) < dist_thr, and the event “adsorption 5” is

deemed possible to occur.
During this whole process, the O atom in yellow that is present in one of the

Si-Si bonds is never seen by the algorithm. It is impossible to include that O atom
into any kind of graph, or structural check, because the present algorithm simply
does not know about it. Thus an incorrcet event is marked as possible, and also
gets applied.

The most obvious way of avoiding the showcased problem, is to increase the
cutoff of the events. In this way, the primary part of the event configurations is
larger, and since the primary part is sensitive to this kind of situations, the error
would be avoided. However, increasing the event cutoff does not really solve this
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Figure 5.36: Left: initial state SEini of the event, first neighbour atoms from the
central atom are colored in green, they compose the primary part Sini and the
graph. Middle: local environment found in the system Rsys, first neighbour atoms
from central atom are colored in green, they compose the primary part of the
system configuration Ssys and their graph is isomorphic to the graph of event
initial state Sini of the left. Right: the two structures written in corresponding
frame of reference, the two blue atoms of environment extension are circled in red,
each of them has an atom from the system in red, within a satisfactory distance.
The yellow O atom is never seen by the algorithm.

problem in general. A different cutoff means that the same situation can still hap-
pen at the border of whatever distance the event cutoff is, i.e. in the extension part
of the environment. The problem is thus only pushed further away from the cen-
tral atom. If the cutoff is large enough, then the problem might be negligible from
the structural point of view (not speaking about the energetics). In this example,
increasing the cutoff of events inevitably means that a much larger catalogue of
events is needed, to take into account all the combinatiorial possibilities. On top
of that, since there are long range elastic distortions, and events happening close
to each other, or even interfering with one another, the number of events needed
in the catalogue becomes enormous, and impossible to handle manually. Thus the
need for the possibility of relaxation of the forces, and on-the-fly exploration of
the events is crucial.
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Chapter 6

Perspectives

This chapter presents some perspectives for the work done during this PhD project.
Some of them are already a subject of on-going work, namely the efforts toward
the on-the-fly exploration of events in the kMC (see Sec. 6.1). An observed side-
effect of our kMC with an event catalogue, is that it can be exploited in other
ways, not only for simulating the real evolution of a system (see Sec. 6.2). As
an algorithm independent of its implementation in the kMC, IRA alone also has
some interesting perspectives (see Sec. 6.3).

6.1 Towards the on-the-fly exploration of events in
kMC

As has been shown throughout the Examples chapter, the main limitation of not
computing the forces is that there are almost always some errors that either build
up from smaller errors, or errors that arise on the border of an event, or errors due
to interaction of multiple events. Or most often they are due to the event catalogue
being incomplete. These errors are manifested through atomic positions, which
can for some time continue to evolve due to the distortions being below the equiv-
alence threshold, then at some point they surpass that threshold, and the evolution
stops.

It is therefore fundamental in perspective to add relaxation of the forces with
a realistic potential, and on-the-fly capabilities. Currently, the idea for implement-
ing the on-the-fly learning capabilities heavily realies on the Activation-Relaxation
Technique nouveau (ARTn) [133, 134, 135]. This section is meant as proof-of-
concept. The importance of correct and exact physics is thus pushed a bit to the
side.
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6.1.1 Including relaxation of the forces
To include the relaxation of the forces, the off lattice kMC kernel with IRA shape
matching implemented is interfaced with the LAMMPS molecular dynamics code
[136], with the official website at www.lammps.org. This interface allows the
usage of all capabilities of LAMMPS within our kMC, the main idea being the
calculation of forces, to be used for structural relaxation.

The interfacing is done through the official fortran interface provided with the
LAMMPS package. The calculation of forces requires the definition of a potential,
which also come with LAMMPS.

In the future, coupling with a first-principles code such as Quantum Espresso
[124] is not excluded.

The decision of when a relaxation of the system should be launched can be
made by several criteria. The most simple one being to launch system relaxation
every m number of steps. Other possibilities include launching relaxation once
values of distances from the IRA shape matching algorithm start going beyond
some threshold value, which usually indicates that there is an error buildup of
whatever origin. Or, in situation where after event application some atoms in the
system are distorted from their reference positions, given by the event final state.
Or to replace the call to IDPP (Sec. 4.5) with a regular force minimization. The
different criteria would most probably be chosen based on what kind of force
computation we are doing, is it a fast empirical potential-based computation, or a
slow but precise first-principles computation.

As of the moment of writing this, we have implemented the most simple force
relaxation criterion, which is to launch it every m number of kMC steps.

6.1.2 Tracing the unknown configurations
An important aspect of the on-the-fly exploration scheme is to know when a con-
figuration is unknown, as it has not been encountered before. The most straight-
forward tool available in our kMC for this task is the graph hash value.

Unknown structure by graph hash

This section is a kMC simulation of migration of vacancies in Al crystal. There is
one event in the catalogue, which is a single vacancy migration, with environment
cutoff of first neighbour. In the system of simulation there are two vacancies,
which are initially three neighbours away. Thus initially, the migration event of
one vacancy does not interfere with the migration event of the other vacancy.
The situation is shown on Fig. 6.1, where the first-neighbour atoms around each
vacancy are shown in white, and other atoms in transparent green.
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Figure 6.1: Initial state with two vacancies in Al. They are sufficiently far away
such that the migration events do not interfere.

Within a number of migration events of each vacancy separately, we see some
atomic environments which were not present at the initial state, nor in the events
catalogue, recognised by a graph hash that has never appeared before. They rep-
resent environments where the two vacancies come close together, within the first
neighbour distance. They are shown on Fig. 6.2, represented by black atoms.

Figure 6.2: Unknown local environments

At the simulation step where a previously unknown graph hash is encountered,
we have the data on atomic positions, and the index of the atom which had the new
graph hash value. The configuration, along with the atomic index is sufficient
information for ARTn exploration to succeed.

Thus the atomic positions and atomic index were written to a file whenever
a new hash was found. At the end of one kMC run, the information from that
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file was used to launch ARTn explorations on the system, using the embedded
atom method (EAM) [137] potential provided in LAMMPS. The events found are
shown on Fig. 6.3.

Figure 6.3: Found events by ARTn from the configurations of previously unknown
graph hashes, from Fig. 6.2.

These events can then be included in the next kMC run, through the event
catalogue. This process is not yet automated, but this example shows a possible
workflow to follow, in which the information on unknown local environments is
deduced from the graph hash values. A slightly more general approach could be
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to recognize unknown structures with the IRA shape matching algorithm, which
could provide information on specific atoms that differ the most from their refer-
ence positions. The ARTn exploration could then be launched on these specific
atoms.

Potentially interesting event direction

If there is an event in the catalogue which has several possible directions, all the
directions are tested during the identification of possible events at the current kMC
step. If some direction is not found to be possible, due to the local environment
in that particular direction having some distortions, that particular direction could
be used as target direction for event exploration.

From my experience, typically the events with several possible directions are
events on some kind of interstitial atoms. Thus if we have a diffusion of interstitial
atom that is normally possible to occur in a number of independent directions, but
then at some step is not possible in a specific direction - due to possibly another
defect present in the environment in that direction - that particular direction might
be an interesting area for event exploration. Since the knowledge of that particular
direction is readily availabe in our kMC, it could directly be passed to the event
exploration module, and used as guide for the exploration.

6.2 Exploiting the kMC and its event catalogue in
different ways

The generation of event data described in Sec. 4.3 can also be used to transform
some initial structure into any other structure. Such procedure could be useful for
the preparation of structures used as initial state of a simulation.

For example, transforming an initially crystalline structure into a vacancy, or
interstitial, or any combination of them. This kind of an event can then be used
to create defects, along with the elastic distortions around them, as desired, in
specific locations within the initially crystalline simulation box.

Taking for example the event which generates a vacancy, the event will be
marked as desorption event in the events catalogue, since an atom disappears.
The initial and final states of this event are shown on Fig. 6.4 for a single vacancy
creation from a perfect Si crystal diamond structure.

Running a kMC simulation with this event for 20 steps produces 20 vacancies,
as shown on Fig. 6.5, where on the bottom the green atoms are atoms around a
vacancy.

The same trick can be done for interstitial atom generation. In that case the
event would be treated as adsorption.
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Figure 6.4: Vacancy generation event, transforming a crystalline structure into a
vacancy defect structure, including the elastic distortions around it.

Figure 6.5: Top left: initial state of the simulation - Si in perfect crystalline struc-
ture; top right: structure after 20 vacancy-creation events, side view; bottom:
structure after 20 vacancy-creation events, atoms in green are atoms around a
vacancy.

With some minor modifications to the kMC procedure, such generation of
defects could be done in a relatively fast and controlled way, where the number of
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defects, or their density, could be controlled, and also their spatial distribution.

6.3 Beyond kMC
Other than just the ideas of heuristic techniques for further reducing the speed of
IRA from the software point of view, some ideas for real applications of the IRA
algorithm outside of the kMC setting are collected below.

6.3.1 IRA alone
Since IRA is independent of the shape of atomic structures, and does not specifi-
cally require any parameter of distance cutoff, it can be used to match and compare
any kind of structures, and/or structural fragments.

For the example, in the MD trajectory of the cyanine molecule from Sec. 3.8.3,
we can measure the diversity in the structure of a specific fragment. Take for ex-
ample the fragment shown on Fig. 3.15 as reference structureA, and each instance
of the cyanine molecule throughout the MD trajectory as structure B (the MD tra-
jectory contains 80 thousand instances). Then make a histogram of all distances
RMSD(A,B) obtained after the matching procedure, on Fig. 6.6. Note the four
peaks in the histogram, corresponding to the clustering of structures into four clus-
ters. Fig. 6.6 also shows the typical member structure of each cluster on the right,
where the reference fragment is shown in darker colors, and the viewing angle is
such that the fragment is kept fixed. From the images we can immediately notice
two main differences among the four: the rotation of the blue atom at the top left
corner of the fragment, and the rotation of the rest of the molecule at the bottom
of the fragment. From the point of view of a molecule-fixed reference frame, the
latter actually corresponds to the rotation of the fragment around the bond con-
necting it to the rest of the molecule. This rotation is reported in the original work
of cyanine, Ref. [121], as one of the two main structural changes of the cyanine
molecule throughout the trajcetory.

More complicated examples could be devised, such as fragments containing
parts of non-connected structures, or even just endpoints of a fragment. Like
that, we could think of the matching process as a kind of “triangulation” of the
structures. This could be used in collecting data about rotations of structures
in a simulation, or even across multiple simulations. Like this one could also
generate correlation functions over multiple structures, or fragments within the
same structure, taking also into account their orientations. All this invariantly of
the permutations of atoms. Another idea could also be to disregard the atomic
species, and focus only on the overall shapes of structures.
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Figure 6.6: Histogram of theRMSD(A,B) values obtained after the matching of
structural fragment A, and the whole molecule B, for all steps of the MD trajec-
tory. The four peaks correspond to grouping of the structures into four clusters, the
representative structure of each cluster is shown on the right, with the reference
fragment structure A in darker colors.

6.3.2 IRA with a catalogue of structures
The combination of a catalogue of structures, and the IRA algorithm could be
used in a similar way as in the kMC, for other vectorial properties. For example as
follows. Have not only the atomic structures in the catalogue, but also some other
vectorial per-atom quantity, like the velocity, force, eigenvector, etc, which depend
on the general reference frame of the structure. Then the matching transformation
found by IRA, which consists of the rigid rotation, translation, and permutation,
could be applied to this vectorial quantity, and thus be correctly mapped onto the
atomic structure that is being compared. Moreover, the knowledge of all atom-to-
reference-atom distances could be seen as a distortion score, and used to adjust,
or interpolate, these vectorial quantities accordingly.
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Summary and conclusions

As it has been highlighted throughout this thesis, the key point of an off-lattice
kMC is the mapping between structures visited in the evolution, and the real rep-
resentation of the PES. We have developed an algorithm Iterative Rotations and
Assignments (IRA), which allows a precise description and a parameterless com-
parison of atomic structures. A workflow has also been developed, which inserts
this algorithm into our in-house off-lattice kMC. This workflow enables efficient
automatization and reuse of structural information throughout the kMC evolution.

The IRA algorithm implements a reliable, and accurate way of solving the
shape matching problem, in congruent, and near-congruent cases. It operates di-
rectly with the raw state of structures, i.e. the atomic positions. There are two key
components of our IRA shape matching algorithm, one is the way of solving for
the rotations, and the other is solving for the permutations. To solve for the ro-
tations, the main idea is the partitioning of the rotation space into specific points,
given by the atoms of the structure itself (see Sec. 3.3.2). To solve for the per-
mutations, the assignment algorithm Constrained Shortest Distance Assignment
(CShDA) has been developed, which is based on the idea of minimizing the cost
of assignment for each atom locally (see Sec. 3.4.1). CShDA resolves atomic
assignments under the one-to-one assignment constraint, and provides the evalua-
tion of the Hausdorff distance h (Eq. (2.10)), which is used as the distanceD in the
shape matching problem statement (Eq. (3.2)). CShDA works also for structures
containing different number of atoms (see Sec. 3.4.4), which gives the possibil-
ity of generalizing the IRA algorithm to match generic structural fragments (see
Sec. 3.5). The benchmark tests of IRA show a 100% efficiency in the case of exact
congruence and equal number of atoms (see Sec. 3.8.1), and a slightly lower effi-
ciency in the case of a fragments belonging to highly distorted structures (99.7%
in Sec. 3.8.3). The loss of efficiency is related to larger distortions that appear
among the structures, which open the possibility for the algorithm to find a nu-
merically more satisfactory matching than the matching that is expected (correct).
To mitigate these mismatches, prior knowledge of the structures needs to be pro-
vided to the algorithm. In Sec. 3.8.4, we suggest this knowledge in the form of
a known common point, or a central atom. This information limits the search
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space of IRA algorithm to a more relevant subspace where the correct matching
is expected to be found.

In order to exploit IRA in our off-lattice kinetic Monte Carlo (kMC) kernel,
a workflow has been developed, which enables efficient automatization and reuse
of structural information. In particular, the workflow separates the catalogue of
events from the internal logic of the kMC (see Sec. 4.1). This separation allows
greater user control over the events included in the kMC, and keeps the inter-
nal logic of the kMC independent of the events, thus making it general. This is
achieved by splitting the IRA algorithm into two parts. The first part is done al-
ready in the catalogue of events, where the basis β of Eq. (3.4) is found, along
with possible symmetries θ of the event (see Sec. 4.3.5). In order to accelerate the
identification of possible events in the system of simulation, a pre-screening based
on isomorphism of simple graphs is used. This is done through the NAUTY [73]
software, which generates a canonical hash value for each graph, such that identi-
cal hash values indicate isomorphic graphs. Each event in the catalogue contains
information on this hash value (see Sec. 4.3.4). Each atomic site in the kMC sim-
ulation which passes the pre-screening of graph isomorphism (see Sec. 4.4.1), is
passed to the second part of the IRA algorithm. At this stage, IRA searches for
the γ basis in the configuration of the kMC system (see Eq. (3.4), Sec. 4.4.2).
The information from the two pieces of the IRA algorithm are combined into the
solution of the shape matching problem, such that the similarity of structures can
be evaluated, and the existence of possible symmetries confirmed (see Sec. 4.4.3).
Each confirmed symmetry of an event is deemed as separate event. An event is
deemed possible if the similarity (see Eq. (4.14)) is below a designated threshold.
After the selection of a certain event as the next event to be applied, the informa-
tion from IRA is retrieved, and the event is applied (see Sec. 4.4.4).

In order to make the workflow with the event catalogue robust and portable
to many systems, while operating at a high degree of automatization, we had
to face several problems. In order to enable the use of graph isomorphism as a
pre-screening technique, a cutoff for the local environment had to be introduced.
Since the events can be of different sizes among each other, we have introduced
a method which allows different events to have their own specific cutoff. This
method defines a cutoff value that is common to all events, and first screens the
graph hash values within this cutoff. The subset of atomic sites whose graphs
are isomorphic with the graph of some event in the common cutoff, are further
checked with the specific cutoff of the event. In the case of diffusing atoms, we
noticed that in order to have real control over the diffusion process, the final state
of a diffusion event has to be included in the local configuration of its initial state
(see Sec. 5.1). For this reason we have introduced the concept of an extended lo-
cal configuration (see Sec. 4.2.4), which by default includes atoms comprising the
initial and final states of an event. Other criteria can be used for the inclusion of
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additional atoms in the extended environment, as for instance including atoms that
move a significant distance during an event. In the case when there is a disparity
between the extent of elastic distortions present in the system of simulation, and
the size of configurations included in an event, we noticed unphysical and non-
negligible accumulation of distortions in the atomic positions (see Sec. 5.2 and
Sec. 5.5.2). We mitigate the situation by using an ad-hoc variation of the Image-
Dependent Pair Potential (IDPP) interpolation scheme (see Sec. 4.5), which brings
the atoms after an event application closer to their reference positions, which are
given by the final state configuration of an event. This mitigation was successful
in the case when there is only one event possible to happen in the same region
(see Sec. 5.2.1), while it had only limited effect when a higher number of events
are happening in the same region (see Sec. 5.5.2). Combining all these consid-
erations, successful simulation of a non-trivial diffusion process has been shown,
namely the Si interstitial diffusion in silicon, where there is a possibility of ex-
change of the diffusing atom (see Sec. 5.3), as well as simulation of processes
which change the total number of atoms, such as adsorption and desorption of CO
molecule on the SnO2 surface (see Sec. 5.4), and the oxidation of Si(100) surface
(Sec. 5.5). The off-lattice nature of our approach has been proven useful for the
recognition of geometrically different atomic sites in the buckled Si(100) surface
(see Sec. 5.5.1), which is not possible with lattice-based kMC approaches. More-
over, the oxidation of this surface (see Sec. 5.5.2 and Sec. 5.5.3) is the paradigm
of a very complex system, since the oxide grows in the amorphous phase, and the
elastic distortions are extremely long-ranged. As such, the local environment en-
compassing each event needs to be quite large to meaningfully map the diversity
of the local structures. This inevitably implies that the catalogue needs to include
a huge number of events. Moreover, along the evolution the adsorption of addi-
tional oxygen atoms occurs in parallel with diffusion-like events, thus becoming
an even larger combinatory problem. For this reason, the generation of input event
data by hand becomes unaffordable, and the need for structural relaxations and an
on-the-fly approach to the exploration of events is crucial.

Beyond the use of IRA within our off-lattice kMC, the developed workflow
could be useful for finding correlations and identifying collective behaviours, in
the context of any simulation method working with atomic positions (Sec. 6.3). It
could also aid in constructing correlation functions of generic atomic structures, or
any other vectorial quantity (velocities, forces, etc.), disentangled of the simulated
time. The structural similarity expressed in the distance D can be interpreted as
distortion score, and used as surrogate model for scalar properties (definition of a
“local energy”).

The natural evolution of the present work is to extend our in-house general
off-lattice kMC with the capabilities of structural relaxation, and an on-the-fly
approach to the exploration of events, and this is already in progress (see Sec. 6.1).
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Appendix A

A breadth-first graph traversal
algorithm

A breadth-first graph traversal algorithm that is used within the scope of our kMC
software is described.

Any known node (or vertex) of a graph can be called a “parent” node, then all
nodes connected to the parent node can be called “child” nodes. In the context
of atomic structures inside our kMC software, the nodes are mapped from atomic
positions. As described in Sec. 2.2.1, two nodes are connected when the distance
between the atoms representing the two nodes are within a radial distance given
by the cutoff.

The phrase “graph traversal” refers to finding some path over the nodes and
connections of a graph, starting at the input parent node, and traversing the graph
by visiting the child nodes. Such path might have a given definite endpoint, for
example a specific node index, or it might have a given size, or depth. There are
in general two ways a graph can be traversed, the first is called depth-first, and
the second is called breadth-first. The former is not discussed here, but the basic
description of the latter is the following. In a single step of the traversal path,
all child nodes of given parent node(s) are visited, and memorized. In the next
step, these nodes become parent nodes, and all their child nodes are visited. This
basic operation is illustrated on Fig. A.1, where the input node is colored in green,
all child nodes of the input node are colored in blue, and will be visited in the
first step of a breadth-first traversal algorithm. On the second step, the blue nodes
become parent nodes, and all red nodes will be visited.

We write the connectivity of an atomic structure in a (N×N) matrix C, where
N is the number of atoms. The matrix elements cij are given as Eq. (2.2).

cij =

{
1, if d(i, j) ≤ Rcut

0, otherwise
(2.2 revisited)
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node: 3
input parent

node: 7
child of 3

node: 12
child of 5 or 7

node: 13
child of 4

node: 9
child of 4 and 2

node: 15
child of 2

node: 14
child of 2

node: 2
child of 3

node: 4
child of 3

node: 5
child of 3

Figure A.1: Breadth-first traversal of a given graph. The input node is colored in
green, it is the start of a traversal path. In the first step, all blue nodes are visited,
in the second step all red nodes are visited. When two nodes at the same level are
connected to each other, such as nodes 5 and 7, keeping the correct history of the
traversal path can be tricky, but is irrelevant for our purpose.

Assume an N -dimensional (0, 1) integer vector v, call it the input vector, with
values 1 on specific indexes m. Multiplying the connectivity matrix C with v
gives a resulting vector u, as in Eq. A.1.

Cv = u (A.1)

The vector u contains nonzero elements on indexes which are endpoints of con-
nections from all indexes m of the vector v. The values at nonzero indexes of u
are the number of paths leading to that index, from all indexes m. Stated simply,
vector u is nonzero at indexes of all child nodes of the parent nodes with indexes
m.

We can reuse the ouput vector u as input vector v for the second step: v ← u
and apply Eq. A.1. The new vector u has nonzero values at indexes of all second-
level child nodes of the parent node(s).

If the input node m in the first step is the green node from Fig. A.1, then the
vector u at first step contains all blue nodes, and at second step all blue and red
nodes. Repeating the processs once more would return the third-level child nodes,
etc. In the context of atomic structures, each n-th level of child nodes represents
the n-th neighbours from the input parent atom, with respect to the connectivity
matrix C.
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In our kMC software, we use this algorithm to search for atoms belonging
to a local environment of a specific atom (see Sec. 4.3.3). In this context, the
connectivity matrix contains all atoms in the simulation box. The (N ×N) repre-
sentation of the connectivity matrix can become extremely large, so we transform
it to a neighbour list structure. The breadth-first tarversal algorithm described
above is then transformed accordingly, but the idea remains the same.

A problem with the described algorithm is that the exact history of each step of
the traversal path is lost when the input vector v contains several (interconnected)
nodes, such as nodes 5 and 7 on Fig. A.1. This is however irrelevant for our needs.
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Abstract

The long-term evolution of a large-scale atomic system can be simulated by
approximating it as a series of events, also called jumps, with a kinetic Monte
Carlo (kMC) algorithm. Particular problems arise when the system to be simu-
lated cannot be assigned to a rigid, periodic lattice. Off-lattice kMC approaches
can be used to overcome this difficulty. For off-lattice kMC software, desirable
characteristics are the ability to efficiently reuse information from its event cata-
logue and to be accurate throughout the simulation. To enable these characteris-
tics, a structural comparison technique is needed at two stages of each kMC sim-
ulation step: when identifying the possible events, and when executing the events
in the simulation. This thesis presents the development of the necessary structural
comparison technique, the so-called Iterative Rotations and Assignments (IRA)
shape matching algorithm, and details of its implementation and use within a gen-
eral off-lattice kinetic Monte Carlo kernel.

As an independent algorithm, the IRA algorithm is able to solve the shape
matching problem for any two arbitrarily-rotated and/or distorted atomic struc-
tures. The IRA algorithm is based on the idea of reducing the phase space of
possible rotations to a set of points, given by the atomic vectors of the structure
itself. The algorithm iterates through all of the rotation points thus generated
and selects the rotation for which a particular distance function (the Hausdorff
distance function) gives the minimum value. To address and solve the problem
of atomic assignment between two atomic structures, generally called the Linear
Assignment Problem (LAP), within the shape matching problem, the IRA algo-
rithm uses the Constrained Shortest Distance Assignments (CShDA) algorithm
also developed and presented in this thesis. Due to the ability of CShDA to solve
assignments for structures containing different numbers of atoms, the IRA algo-
rithm can also be applied to structural fragments. When inserted into the specific
situation of off-lattice kMC software, we establish that the IRA algorithm is an ef-
ficient structural comparison technique, at both critical stages of kMC simulation.
In addition, IRA is able to efficiently and accurately identify all symmetries of
kMC events, thus granting a statistically correct execution of the move directions.
The off-lattice kMC approach using the shape matching algorithm developed here
(IRA) also allows the simulation of processes which change the total number of
atoms in a system, namely adsorption and desorption processes. Several exam-
ples of simulations using the off-lattice kMC software that incorporates IRA and
CShDA algorithms are discussed, along with the novelties of our approach. We
also discuss the successful and unsuccessful resolutions of the difficulties encoun-
tered in the examples. The thesis concludes with the possible future directions for
the work, including an exciting fully independent learning-on-the-fly approach to
kMC.
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Résumé

L’évolution à long terme d’un système atomique à grande échelle peut être
simulée en l’approchant comme une série d’événements, également appelés sauts,
à l’aide d’un algorithme de Monte Carlo cinétique (kMC). Des problèmes parti-
culiers se posent lorsque le système à simuler ne peut être assigné à un réseau
rigide et périodique. Les approches kMC hors réseau peuvent être utilisées pour
surmonter cette difficulté. Pour un logiciel kMC hors réseau, les caractéristiques
souhaitables sont la capacité de réutiliser efficacement les informations de son cat-
alogue d’événements et d’être précis tout au long de la simulation. Pour permettre
ces caractéristiques, une technique de comparaison structurelle est nécessaire à
deux étapes de chaque simulation kMC : lors de l’identification des événements
possibles, et lors de l’exécution des événements dans la simulation. Cette thèse
présente le développement de la technique de comparaison structurelle nécessaire,
l’algorithme IRA (Iterative Rotations and Assignments) de mise en correspon-
dance des formes, ainsi que les détails de sa mise en œuvre et de son utilisation
dans un noyau général de Monte Carlo cinétique hors réseau.

En tant qu’algorithme indépendant, l’algorithme IRA est capable de résoudre
le problème de correspondance de forme pour deux structures atomiques arbi-
trairement tournées et/ou déformées. L’algorithme IRA est basé sur l’idée de
réduire l’espace de phase des rotations possibles à un ensemble de points, donnés
par les vecteurs atomiques de la structure elle-même. L’algorithme itère à travers
tous les points de rotation ainsi générés et sélectionne la rotation pour laquelle une
fonction de distance particulière (la fonction de distance de Hausdorff) donne la
valeur minimale. Pour aborder et résoudre le problème de l’affectation atomique
entre deux structures atomiques, généralement appelé le Linear Assignment Prob-
lem (LAP), dans le cadre du problème de correspondance des formes, l’algorithme
IRA utilise l’algorithme Constrained Shortest Distance Assignments (CShDA)
également développé et présenté dans cette thèse. En raison de la capacité de
CShDA à résoudre les assignations pour des structures contenant différents nom-
bres d’atomes, l’algorithme IRA peut également être appliqué à des fragments
structurels. Lorsqu’il est inséré dans la situation spécifique du logiciel kMC hors
réseau, nous établissons que l’algorithme IRA est une technique de comparaison
structurelle efficace, aux deux étapes critiques de la simulation kMC. En outre,
l’IRA est capable d’identifier efficacement et précisément toutes les symétries des
événements kMC, garantissant ainsi une exécution statistiquement correcte des
directions de déplacement. L’approche kMC hors réseau utilisant l’algorithme de
correspondance de forme développé ici (IRA) permet également la simulation de
processus qui modifient le nombre total d’atomes dans un système, à savoir les
processus d’adsorption et de désorption. Plusieurs exemples de simulations util-
isant le logiciel kMC hors réseau qui incorpore les algorithmes IRA et CShDA
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sont discutés, ainsi que les nouveautés de notre approche. Nous discutons égale-
ment des résolutions réussies et non réussies des difficultés rencontrées dans les
exemples. La thèse se termine par les directions futures possibles pour le tra-
vail, y compris une approche passionnante d’apprentissage à la volée totalement
indépendante pour kMC.
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