
HAL Id: tel-03659668
https://laas.hal.science/tel-03659668v1

Submitted on 5 May 2022 (v1), last revised 23 May 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Planning of visual servoing tasks for robotics
Alexis Nicolin

To cite this version:
Alexis Nicolin. Planning of visual servoing tasks for robotics. Robotics [cs.RO]. INSA Toulouse, 2022.
English. �NNT : �. �tel-03659668v1�

https://laas.hal.science/tel-03659668v1
https://hal.archives-ouvertes.fr

THÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE
TOULOUSE

Délivré par :
l’Institut National des Sciences Appliquées de Toulouse (INSA de Toulouse)

Présentée et soutenue le 17 Février 2022 par :
Alexis Nicolin

Planning of visual servoing tasks for robotics

JURY
Samer Alfayad Professeur des universités Président du jury
Jean-Bernard Hayet Investigador titular B Rapporteur
Wael Suleiman Associate professor Examinateur
Viviane Cadenat Maîtresse de conférences Examinatrice
Olivier Stasse Directeur de Recherche Directeur de thèse
Florent Lamiraux Directeur de Recherche Co-directeur de thèse
Sébastien Boria Ingénieur R&D Encadrant entreprise

École doctorale et spécialité :
EDSYS : Robotique 4200046

Unité de Recherche :
LAAS - Laboratoire d’Analyse et d’Architecture des Systèmes (UPR 8001)

Directeur(s) de Thèse :
Olivier Stasse et Florent Lamiraux

Rapporteurs :
Samer Alfayad et Jean-Bernard Hayet

Remerciements

Je souhaiterais en premier lieu remercier mes directeurs de thèse, Olivier Stasse
et Florent Lamiraux, pour m’avoir proposé cette thèse et guidé au long de ces 3
années. Je remercie aussi Sébastien Boria et Damien Van Damme qui ont été leurs
pendants côté entreprise. J’ai pu grâce à eux continuer à découvrir et progresser
dans ce vaste domaine qu’est la robotique, passion découverte un peu par hasard
au détour d’un couloir, pas très loin du laboratoire. Merci aussi à Viviane Cadenat
et Philippes Souères, membres du comité du suivi de ma thèse, pour leur conseils
m’ayant rassuré lors de moments de doute.

Merci à Samer Alfayad d’avoir accepté les rôles de rapporteur mais aussi de prési-
dent du jury de ma soutenance. Et merci à Jean-Bernard Hayet pour avoir accepté
d’être second rapporteur, membre du jury, et pour la correction d’une grande partie
des coquilles qui avait échappées aux relectures. Merci aussi à Viviane Cadenat et
Wael Suleiman d’avoir été membres de mon jury de thèse.

Un grand merci à tous les membres de l’équipe, passées ou présents, étudiants ou
diplômés, gepettistes ou adoptés. Grâce à vous, le LAAS est bien plus qu’un endroit
où l’on travaille et étudie, c’est aussi un lieu où on partage et on vit (de patisseries).
Et merci aussi pour toutes ces soirées et ces week-ends hors du laboratoire, et en
espérant y être toujours convié. Une mention spéciale pour le bureau B181, soutien
quotidien de ces années de thèse.

Merci à ma famille, et à tou.te.s mes ami.e.s, pour ces soirées à créer des robots,
des radeaux, et de bons moments. Enfin, un merci tout particulier à Aurélie et à
Poe pour avoir été présents chaque jour à mes côtés.

i

ii

Contents

List of Figures v

List of Tables vii

List of Algorithms vii

1 Introduction 1
1.1 Context . 2
1.2 Robots and software . 3
1.3 Objectives and contributions of the thesis 5
1.4 Organisation of this manuscript . 6
1.5 Publications . 7

2 State of the art 9
2.1 Motion planning . 10
2.2 Constrained motion planning . 17
2.3 Task planning . 22
2.4 Manipulation planning . 27
2.5 Control laws for robots . 30
2.6 Visual servoing . 32

3 Agimus 35
3.1 Introduction . 37
3.2 Concepts . 37
3.3 Software . 53
3.4 Experiments . 62
3.5 Conclusion . 73

4 Calibration 75
4.1 Introduction . 76
4.2 Calibration using HPP’s Newton-Raphson projection 77
4.3 Calibration as several manipulator arms 80

iii

CONTENTS

4.4 Whole-body elasto-geometric calibration of a TALOS robot 82
4.5 Conclusion . 83

5 Agimus: Visual Servoing 85
5.1 Introduction . 86
5.2 Visual Servoing . 86
5.3 Experiments . 91
5.4 Conclusion . 99

6 Middle Sized Drilling Robot 101
6.1 Introduction . 102
6.2 Presentation of the robot . 102
6.3 Drilling process and its challenges . 105
6.4 Conclusion . 107

7 Conclusion 109

Bibliography 113

Glossary 131

Acronyms 133

iv

List of Figures

1.1 Some industrial robots. 2
1.2 The robots used during this thesis. 4

2.1 The piano mover’s problem . 10
2.2 Comparison between Rapidly-exploring Random Tree and Probabilis-

tic Road-Maps. 13
2.3 Robots assemble an IKEA chair . 17
2.4 Humanoid motion planning using a decoupled approach. 21
2.5 Example of a STRIPS tree. 24
2.6 Rearrangement planning . 28
2.7 A Romeo robot grasps a soda can using visual servoing 33

3.1 TALOS manipulates a wooden plank 37
3.2 The four handles on the plank manipulated by TALOS. 39
3.3 Simple graph of constraints with three states 40
3.4 Graph of constraints with waypoints 42
3.5 Initial estimation projected onto the graph of constraints 43
3.6 Transitions taken in the graph of constraints 45
3.7 Visual Servoing Platform’s logo . 53
3.8 An overview of ros_control and its place in a robotics software 58
3.9 Architecture of Agimus . 62
3.10 TALOS humanoid robot developed by PAL Robotics 63
3.11 Some of the humanoid robots used in the DARPA Robotics Challenge 64
3.12 Humanoid robots in the years following the DARPA Robotics Challenge 66
3.13 A typical run of the plank manipulation experiment 69

4.1 Comparison of the joints’ offsets of TALOS before and after calibration 76
4.2 TALOS humanoid robot in a Motion Capture system setup 79
4.3 Illustration of the Denavit-Hartenberg parameters 81
4.4 The various deformations on an industrial robot. 82
4.5 RMS error of the tracking of the robot before and after calibration . . 83

v

LIST OF FIGURES

5.1 The ambiguity problem in pose estimation 87
5.2 TALOS robot with AprilTag markers on its wrists 89
5.3 TALOS robot placing a plank on a table 92
5.4 Tracking error between the gripper and the plank 92
5.6 TIAGo robot, made by PAL Robotics 93
5.5 TALOS manipulates a plank with visual servoing 94
5.7 REEM-C (left) and REEM (right) . 95
5.8 3D printed mockup of a subcomponent of an Airbus A380 engine pylon 96
5.9 Representation of deburring tasks in Agimus 97
5.10 TIAGo experiment with deburring holes on an aircraft’s part 98

6.1 Airbus A321 automated fuselage assembly line in Hamburg Finken-
werder . 103

6.2 M-800iA/60 manipulator from Fanuc 104
6.3 The Middle Sized Drilling Robot . 105
6.4 The Middle Sized Drilling Robot uses reference holes to adapt its

offline programming . 106

vi

List of Tables

3.1 Descriptions of some robots used in the DARPA Robotics Challenge . 65

List of Algorithms

1 Projection on implicit constraints . 44
2 Manipulation Rapidly-exploring Random Tree 45

vii

LIST OF ALGORITHMS

viii

Chapter 1

Introduction

Contents
1.1 Context . 2

1.1.1 ROB4FAM joint laboratory 3
1.2 Robots and software . 3

1.2.1 Software . 3
1.2.2 Robots . 4

1.3 Objectives and contributions of the thesis 5
1.4 Organisation of this manuscript 6
1.5 Publications . 7

1

CHAPTER 1. INTRODUCTION

1.1 Context

Robotics is the latest of the industrial revolutions, which began in the 1950s with
Unimate, a robot conceived by George Devol. Starting in 1961, this robot was used
by General Motors to move die castings and weld them to cars’ bodies. Today, it
is estimated that more than 3 million robots are used in factories throughout the
world, mainly in automotive and electronics industries.

They serve multiple purposes centred around the goal of assisting or even replac-
ing human operators in repetitive, dull or dangerous tasks. Many forms of robots
exist, from the well-known industrial robot manipulators, fig. 1.1a, to delta robots,
fig. 1.1b, two-wheeled mobile robots, and humanoid robots, etc. This last type of
robot easily impress the public, but its complexity has kept it far from the factory
floors for a long time. They indeed require considerable computing power, battery
capacity and software ingenuity to function correctly and be able to react quickly to
their environment. On the other hand, industrial robot manipulators are simple and
often fixed into the ground. Their programming has been done offline for decades,
first manually, and more recently via modelling software or interactive commands.

©
Fa

nu
c

(a) A 6-axis robot

CC
BY

-S
A

4.
0

M
ar

c
Au

de
la

s

(b) A delta robot

Figure 1.1: Some industrial robots.

2

CHAPTER 1. INTRODUCTION

1.1.1 ROB4FAM joint laboratory

This thesis is part of a joint laboratory between the Laboratory for Analysis and
Architecture of Systems (LAAS-CNRS) and the aeronautic company Airbus Oper-
ations. The aim of this partnership is to develop innovative solutions to offer more
responsiveness and decision autonomy to industrial robots in the context of aero-
nautic construction. The long-term research target is to have a humanoid robot
able to climb into a plane on the assembly line, drill some holes and come back, all
without human assistance. This goal is currently thought to be many years into the
future, so there are short-term goals more in line with the industrial wills.

Those short-term goals are structured around two CIFRE theses, two academic
theses, and several post-doctorate positions to provide guidance and experience. The
first goal is for the robot to locate itself robustly in an industrial environment, which
is at the same time very structured and organised, for safety reasons, but also subject
to drastic change over the course of weeks due to business needs. A second target,
which is covered by the second CIFRE, is the development of a new form of control
for the robots, based on measured forces and torques, to increase their intrinsic safety
when working near human operators. The third goal and subject of this thesis is the
demonstration of the viability of state-of-the-art automated planning methods for
industrial tasks. This also includes the simultaneous formulation of control schemes
able to react to slight changes of the plan, such as holes already drilled, without
human intervention. Finally, all those targets needs to be modular, in the sense that
we want to use the same concepts and software on a research humanoid robot and
on an industrial arm, with as few modifications as possible.

1.2 Robots and software

The concepts and ideas developed during this thesis were based on existing software
that will be shortly presented in the following paragraphs. More in-depth presen-
tations will be done in the corresponding chapters. Those developments were then
tested on three very different robots, that we will also describe broadly thereafter,
before a complete introduction in their respective chapters.

1.2.1 Software

Visual Servoing Platform (ViSP) [3]
It is a visual servoing framework developed by the Rainbow team at INRIA in
Rennes, France. In our projects, we are using it to provide computer vision algo-
rithms to our robots.

Pinocchio [4]
This library implements state-of-the-art rigid body algorithms for articulated sys-
tems. It was created by the Gepetto team at LAAS-CNRS in Toulouse, France.
Pinocchio is one of the fundamental brick in our other software.

3

CHAPTER 1. INTRODUCTION

(a) TALOS humanoid robot (b) TIAGo robot (c) Middle Sized Drilling Robot

Figure 1.2: The robots used during this thesis.

Humanoid Path Planner (HPP) [5]
It is a motion planning library developed by the Gepetto team. It is able to handle
the planning of manipulation motions for complex robots such as bi-handed hu-
manoids. But HPP is also quite modular and able to plan for robotic manipulator
arms, mobile robot or even cable robots.

Stack-of-Tasks (SoT) [6]
This is a software implementing a control architecture for redundant robots. It is
based of the notion of tasks from Samson et al. [7] and uses a strict hierarchy of
them to compute the whole body control commands sent to the robot.

Robot Operating System (ROS) [8]
It is an open-source middleware suite that became the de facto standard framework
for light robotics applications. This software serves as an abstraction of the robot’s
hardware and provides services such as inter-process messaging for the users. ROS
is at the core of our two robots made by PAL Robotics.

1.2.2 Robots

Pyrène: The first TALOS Humanoid Robot [9]
The TALOS robot, fig. 1.2a, has been developed by the Spanish company PAL
Robotics, based on the requirements provided by the Gepetto team from the LAAS-
CNRS. It is a 1.75m humanoid robot weighing around 100 kg. Several laboratories
around the world have acquired this robot to perform research on walking, manip-
ulation, human interaction, etc.

4

CHAPTER 1. INTRODUCTION

TIAGo [10]
This is a two-wheeled mobile robot dedicated to research, also manufactured by PAL
Robotics, and displayed fig. 1.2b. It is based on a logistics robot, which provides
autonomous navigation among obstacles. On that base, a torso equipped with a
head and one or two arms has been added. Research done on this robot include
human interaction, manipulation, like its bipedal brother, without the hassle of
moving on two legs.

Middle Sized Drilling Robot (MSDR)
Finally, this robot is an industrial manipulator arm manufactured by the Japanese
company Fanuc, with additional tooling specified by Airbus robotics team. The arm
itself has 6 axes, and can reach out up to 2m with a 60 kg payload. Its purpose is
the autonomous drilling of fasteners’ holes in airframe to assemble a fuselage. To
handle this task, it is equipped with an end-effector comprised of a drill and multiple
sensors to ensure the high quality of the holes. The in-progress prototype can be
seen fig. 1.2c with some of its equipment.

1.3 Objectives and contributions of the thesis

This thesis is a CIFRE, realised within a partnership between the LAAS-CNRS
laboratory and the Airbus Operations company. Its objectives are therefore oriented
towards an industrial target.

The first objective of the thesis is to conceptualise links between the automated
planning of a robot’s manipulation movements and the executive control of those
motions. With those links established, the second contribution should be to auto-
mate the formulation of the controllers themselves, in a way similar to the planning.
For the execution, the accent should be put on using all perceptive capabilities of the
robots, including vision and force sensing. This is aimed at enabling the possibility
for the robot to react to slight changes in its tasks or the environment: obstacles,
tasks already done, etc. By reacting, we mean to be able to still achieve the goals
without having to re-plan its movements, which is a slow process.

Those objectives should be done while keeping in mind the final application
domain which is aeronautic construction. Thus, the targeted tasks include drilling,
deburring, or riveting, which are all requiring a high precision. In the same way as
the joint laboratory it is part of, this thesis has to produce modular software that
can be adapted on the three different robots presented in the previous section.

Because of the large scope of the work, which encompasses planning, control and
sensing, this thesis is heavily based on the pre-existing software presented previously.
This makes the overall work of this thesis a challenging integrative task that enables
communications between those components.

5

CHAPTER 1. INTRODUCTION

1.4 Organisation of this manuscript

Chapter 2 is a presentation of the state of the art in the various domains of robotics
that this thesis dealt with. The first sections present motion planning and task
planning, beginning with a short history of those fields, followed by manipulation
planning, which is a combination of those two aspects of planning. The last two
sections are overviews of robotics whole-body control and visual servo control.

Chapter 3 is the introduction of the Agimus framework. This is a software formu-
lated and developed during this thesis, which incorporate my main contributions.
It builds upon both the motion planner and the hierarchical control stack of the
Gepetto’s team to allow the automated formulation of both manipulation trajecto-
ries and the real-time control schemes to ensure their execution on robots. For the
work of this chapter, the framework was demonstrated on the TALOS humanoid
robot.

Chapter 4 deals with the calibration’s issues of our humanoid robot. Those
shortcomings are discussed, alongside the hypothesis of their origin. I will explain
the two solutions that we tried to solve the problem, without success, then quickly
introduce the work of a colleague who finally designed a process to quickly and
precisely calibrate such a complex robot.

Chapter 5 describes an expansion of the Agimus framework on the control side,
with the addition of visual servoing. Indeed, even with a better calibration of the
robot, the first formulation of Agimus, which computes all trajectories before the
start of the manipulation, is not able to deal with slight changes of the environment
during execution. The chapter deals with the process of adding visual servo control
in the framework and presents two experiments to validate the system. The first
experiment is a more robust version of the one from chapter 3, on the humanoid robot
TALOS. The second experiment lean towards a more industrial side and introduce
the TIAGo robot, tasked with deburring of holes drilled in an aircraft part.

Chapter 6 is focused on an industrial robot designed for hole drilling in aircraft’s
panels, the Middle Sized Drilling Robot (MSDR). The work presented in this chapter
is simpler and more adapted to the safeness and robustness goals of an industrial
environment. There are however many parallels between the research presented in
the previous chapters and the long-term targets of the industry.

Finally, chapter 7 is a general conclusion about the work completed during my
thesis. It will be followed by perspectives and opening about future endeavours, and
about how all this can be adapted from the research to the industrial world.

6

CHAPTER 1. INTRODUCTION

1.5 Publications

The work achieved during my thesis was presented in two international conferences:

• Alexis Nicolin, Joseph Mirabel, Sébastien Boria, Olivier Stasse, and Flo-
rent Lamiraux. “Agimus: A new framework for mapping manipulation mo-
tion plans to sequences of hierarchical task-based controllers”. In: 2020
IEEE/SICE International Symposium on System Integration (SII). IEEE.
2020, pp. 1022–1027

• Joseph Mirabel, Florent Lamiraux, Thuc Long Ha, Alexis Nicolin, Olivier
Stasse, and Sébastien Boria. “Performing manufacturing tasks with a mobile
manipulator: from motion planning to sensor based motion control”. In: 2021
IEEE 17th International Conference on Automation Science and Engineering
(CASE). IEEE. 2021, pp. 159–164

7

CHAPTER 1. INTRODUCTION

8

Chapter 2

State of the art

Contents
2.1 Motion planning . 10

2.1.1 Notions . 10
2.1.1.1 How to represent a planning problem? 10
2.1.1.2 Configuration space 11

2.1.2 Motion planning . 11
2.1.2.1 Deterministic planning 12
2.1.2.2 Sampling-based planning 12
2.1.2.3 Optimisation-based planning 15

2.1.3 Towards variants of the classical motion planning problem 16
2.2 Constrained motion planning 17

2.2.1 Point-wise constraints . 18
2.2.2 Constraints along a path 19
2.2.3 Humanoid motion planning 20

2.3 Task planning . 22
2.3.1 Definition of a task planning problem 22

2.3.1.1 Planning Domain Definition Language (PDDL)
and its successors 23

2.3.2 Solving a task planning problem 24
2.3.2.1 Subsequent approaches 25

2.4 Manipulation planning . 27
2.4.1 Different flavours of manipulation 27
2.4.2 Manipulation planning problem 28

2.5 Control laws for robots . 30
2.6 Visual servoing . 32

9

CHAPTER 2. STATE OF THE ART

2.1 Motion planning

Motion planning is the process of finding a path, devoid of collision, between a
starting robot configuration and a goal. The first classical version of this problem
is called the piano mover’s problem, illustrated in fig. 2.1. The 3D models of an
environment and a rigid object, in this case respectively a house and a piano, are
given as inputs, along with the starting and goal poses of the piano. The objective
of the problem is to find a path to move the instrument while avoiding contact with
the walls of the house, or prove that such a path does not exist. This problem was
discussed at length by Schwartz and Sharir in the 1980s [11, 12, 13, 14, 15], with
extensions to articulated bodies.

Figure 2.1: A representation of the piano mover’s problem,
from [16].

Over the years, those subjects have migrated from the pure research field to-
wards industrial applications surrounding assembly, disassembly [17, 18, 19] and
part moving [20]. However, research is still ongoing for multi-body robots, which we
are using in this thesis. In this section, we will introduce the fundamental notion
of configuration space, then we will go over various algorithms of motion planning,
separated into three classes, each with their strengths and limitations.

2.1.1 Notions

2.1.1.1 How to represent a planning problem?

Links and joints
The most common representation of a robot is as a set of rigid links articulated
by moving joints. The two elementary joint types are the prismatic joint, which
allows the linear sliding of a link relative to another, and the revolute joint, which
constrains the movement between two links to a pure rotation. A combination of
those main joint types, with or without links between them, allows the creation of
more complex joints, such as ball joints or screw joints.

10

CHAPTER 2. STATE OF THE ART

Using links and joints, one can describe the schematic structure of a robot. The
main format, based on XML, used in Robot Operating System (ROS) [8] for those
descriptions is called Unified Robot Description Format (URDF) [21]. In such a
file, a robot is described from a root link, and then links and joints are gradually
added in a tree-like structure to describe the whole system. Useful information,
such as the characteristics of the joints (range, speed, friction, etc.), or those of
the links (collision model, inertia, etc.) are embedded inside the description. Other
data, like 3D models or colours, can also be added for the needs of computer vision
simulations.

2.1.1.2 Configuration space

Definition 1 — A configuration
It is a set of values — one for each Degree of Freedom (DoF) — necessary and
sufficient to define the position of every point of the system, composed of the robot
and, if applicable, movable objects. The Configuration Space (CS) contains all
the configurations achievable by the system. This concept comes from Lagrangian
mechanics and was introduced into the robotic field by Lozano-Pérez and Wesley [22,
23].

The CS for multiple robots and objects is the Cartesian product of their respec-
tive CS. This space is composed of two subsets:

• CSobs: the subset of CS where at least one body of the system collides with
the environment or another body of the system.

• CS free: the subset of CS devoid of collision; CS free = CS \ CSobs. This is the
subset where we plan the robot’s trajectories.

2.1.2 Motion planning

Mathematically, the motion planning problem can be formulated as such:

Definition 2 — Motion planning problem
Given an initial configuration qinit and a set qgoals of suitable objective configurations
fulfilling some desired properties, the problem is to find a trajectory p(t), continuous,
and ideally sufficiently differentiable (to avoid jerk), such that:

• ∀t ∈ [0; 1], p(t) ∈CS free,
• p(0) = qinit,
• p(1) ∈ qgoals.

Extensive studies of the problem have been performed since the 1980s, and while
major algorithms date back to the end of the 1990s and the beginning of the 2000s,
it is still an active field of research. The most important results are compiled into
the books written by Latombe [24], Choset, Lynch, Hutchinson, Kantor, and Bur-
gard [25] and LaValle [26]. There are multiple methods to undertake this problem,
which can be separated into three broad classes, detailed in the coming sections.

11

CHAPTER 2. STATE OF THE ART

2.1.2.1 Deterministic planning

The main property of those approaches is that they always provide the same path
as an answer for a given problem. Or, in the case where no path can join the initial
and goal poses while avoiding obstacles, they can clearly answer that it cannot
be planned. Diverse methods exist to transform an explicit description of CSobs
into an abstracted representation of the connectivity of CS free, in the form of a
graph or a roadmap. We can cite techniques such as cellular decomposition [11],
Voronoi diagrams [27], Canny’s algorithm [28], etc. Other methods rely on a simpler
discretisation of CS free.

Later developments allowed the planning of trajectories in a time-varying envi-
ronment, where some obstacles are mobile. Kant and Zucker [29] use a two-steps
planning to solve this problem: first, find a path to avoid static obstacles, then
adjust the velocity along this path to avoid the mobile objects. At the end, the mo-
tion planning in itself is accomplished by the use of a graph path search algorithm
such as Dijkstra’s shortest path algorithm [30], A*algorithm [31], or their more re-
cent variants. A second sort of approach is based on the use of potential fields to
guide the movements of the robot [32, 33]. The use of potential fields also offers
feedback to avoid mobile objects. Recent works by Zhang et al. [34] combine the
previous methods, using a cell decomposition to approximate CS free and vector fields
to provide a reactive and smooth motion planning.

However, deterministic approaches suffer from some limitations. The need for a
complete representation of the connectivity of CS free implies a combinatorial explo-
sion when the dimension of the problem increases. Yet, the increase in dimension
comes directly from the addition of DoFs to the robot and sometimes the objects
they manipulate. In the case of the humanoid robot used during the thesis, there
are 38 DoFs including its free-floating base, which is intractable for any of the afore-
mentioned algorithms in a reasonable time-frame. The potential fields methods are
able to deal with the increasing dimension of the problem with a greater success,
but they have a tendency to fall into local minima and be trapped there.

2.1.2.2 Sampling-based planning

In order to solve problems of higher dimension, a new algorithmic approach was
necessary. To increase the performance, the whole CS cannot be used any more.
Instead, a random sampling of this space provides an incomplete graph that approx-
imates the connectivity of CS free using collision-free paths.

The algorithms in this approach are usually separated into two categories:
• Single query algorithms. The typical goal being a single-shot use, they do

not seek to construct a good representation of the CS. Instead, they progress
randomly from the initial configuration, towards the goal, by creating a tree of
samples. In some cases, the reverse operation, from goal configurations towards
the initial state, is performed at the same time to increase the chances of
quickly finding a suitable path. The archetype of those algorithms is Rapidly-
exploring Random Tree (RRT) [35], illustrated in fig. 2.2a.

• Multiple queries algorithms. The typical use is to provide multiple paths in a
quasi-static environment. This allows to take some time to construct a good

12

CHAPTER 2. STATE OF THE ART

enough approximation of CS free, in the form of a graph rather than a tree,
to be able to provide answers for paths between any two configurations in
CS free. Then, for each query from an initial towards a goal configuration, the
algorithm only has to pass through this graph to find a suitable path, with
little to no need for further exploration, thus leading to a fast response time.
The most popular of those algorithms are of the family of Probabilistic Road-
Maps (PRM) [36], illustrated fig. 2.2b. The main difference with RRT is that
each new sample is connected to its closest neighbours. Subsequent research
have improved the exploration capabilities of these algorithms to reduce the
size of the road map, like Visibility-PRM (V-PRM) [37].

(a) CS exploration using RRT, image
from [38].

(b) CS exploration using PRM, image
from [38].

Figure 2.2: Comparison between Rapidly-exploring Random Tree
and Probabilistic Road-Maps.

These algorithms are able to deal with larger problems than their deterministic
counter-parts. However, they are not devoid of flaws:

• They are only probabilistically complete, meaning that if a solution exists, the
probability of finding it converges to 1 as the number of iterations increases.
However, in the case where no solution exists, they are not able to conclude
and will run as long as they are allowed.

• Narrow passages are a problem for those algorithms, because the entrance and
exit of such passages is not likely to be explored by the random expansion of
the graph. Some techniques aim to reduce this problem [39, 40].

• For closed-loop systems, such as dual-arm robots, or even humanoids, the
volume of the configuration space that is achievable is zero. Therefore, the
probability of a random configuration being sampled in such sub-manifold
is also zero. Constrained variants of the aforementioned algorithms exist to
counter this deficiency [41].

• Due to the underlying randomness of the configuration chosen by the algo-
rithms, the resulting paths can be very erratic. A post-processing path is
therefore often needed before the plans can be played on real robots. Another

13

CHAPTER 2. STATE OF THE ART

approach as been the creation of variants of the previously mentioned algo-
rithms which are guaranteed to converge towards the globally optimal solution
of the motion planning problem, for example Optimal PRM (PRM*) and Op-
timal RRT (RRT*) [42]. The former attempts to link the last sample with
the closest neighbouring configurations. The latter mainly work by rewiring
the tree of sampled configurations to reduce the overall cost of following the
trajectory.

The most recent works, from the last 10 years, are more focused on practical
improvements of the algorithms. In 2014, Gammell, Srinivasa, and Barfoot presented
a new method: Informed RRT* [43]. This algorithm improves RRT* using the fact
that only new random samples from a certain ellipsoid around the current path can
improve the length of the path. This method retains the optimality and completeness
of the base RRT* algorithm, while outperforming it in rate of convergence and being
less dependent on the dimension of the planning problem.

Fast Marching Tree (FMT*) [44] is advantageous over RRT* and PRM*. In an
obstacle-free space, it will provide the same optimal answer as PRM*, but in the
presence of obstacles it will gain an edge over it because it only lazily evaluates
collisions. This causes sub-optimality against PRM* in some cases, but the rarity
of those occurrences gives a practical advantage to FMT*. It is also simpler to tune
than RRT*, having only two parameters instead of four. The same year, the authors
of Informed RRT*published Batch Informed Trees (BIT*) [45]. It works iteratively in
batches. Configuration samples are randomly and uniformly distributed in the free
space between the start and the goal of the system. An explicit tree of configurations
is then grown from the starting configuration towards the goal, using only collision-
free edges. The construction stops when a solution is found or when the tree cannot
be expanded further. This concludes a batch.

The free space either stays the same if no solution has been found, or it is
reduced into an ellipsoid of around the same size as the solution’s length. The
following batches use increasingly denser sampling strategies, which will yield more
solutions, and asymptotically converge towards the optimal path between the start
and the goal. The authors claim to find better solutions than all the previously
mentioned algorithms, while being faster.

In [46], the authors provide boundaries for the convergence rate of PRM*, and
demonstrate that a good tuning can bring this algorithm towards a O(n) computa-
tional and space complexity for its asymptotic optimality. They extend their results
to more recent sampling-based algorithm, like FMT*. A compromise between RRT,
which is fast to the detriment of the paths’ quality, and RRT*, slower but yield-
ing better paths, is given in [47]. Finally, we can cite a recent axis of the motion
planning research, towards learning and neural networks.

In [48], sampling distributions are learnt from demonstrations, and this informa-
tion is used to bias the sampling of the otherwise classical algorithm. The results
are the improvement of an order of magnitude of the success rate.

14

CHAPTER 2. STATE OF THE ART

2.1.2.3 Optimisation-based planning

The motion planning problem can be written as a trajectory optimisation problem.
Those approaches require an initial trajectory as input, but it can be very naive,
or even in collision with the environment. In broad terms, an optimisation problem
solver seeks the reduction of a cost given by the user. This cost can aggregate
multiple properties of the problem:

• Collision avoidance, which is necessary for an achievable path. It is always
formulated as a signed distance function. The distance corresponds to the
shortest distance between two measured objects, generally the robot and a
part of the environment. The measure is defined as positive when the objects
are non-colliding, zero at the point of contact, and negative when the object
are inter-penetrating. The goal of the solver is then to maintain all those
distances above a positive threshold which is the margin of security between
the robot and each and every object.

• Length or energy. Those are optional, but often appreciated. The cost of
the motion planning problem is penalised with the length of the path, or the
quantity of energy needed to execute it.

• Other properties can be rewarded, such as the smoothness of the movement,
or penalised, like the use of some joints, etc.

The main techniques are Covariant Hamiltonian Optimisation for Motion Plan-
ning (CHOMP) [49] and Stochastic Trajectory Optimisation for Motion Planning
(STOMP) [50]. CHOMP reduces the user-defined cost using covariant gradient infor-
mation. It is able to find collision-free trajectories starting with a naive, straight-line
initial solution which might be in collision with the environment. STOMP has a very
different approach, generating random trajectories around the current trajectory to
explore the CS in search of cheaper parts of the trajectory, which is then updated
before the next iteration of the algorithm.

[51] presents a new algorithm that improves on the original one that was im-
plemented in TrajOpt [52]. It has the same capabilities as CHOMP and uses
a sequential optimisation routine to penalise the collisions. It also considers the
continuous-time collision safety with an efficient formulation of the avoidance con-
straint. Another approach, Gaussian Process Motion Planner (GPMP) [53], repre-
sents continuous-time trajectories using sparse Gaussian processes. The planning
algorithm itself relies on gradient-based optimisation exploiting this sparsity effi-
ciently. The authors propose various extensions, such as GPMP2, which uses nu-
merical optimisation, or iGPMP, an incremental version able to re-plan the motions
if the problem evolves slightly. Those variants are much faster than the original
algorithm while retaining its robustness. Optimisation-based motion planning has
many advantages over the deterministic and random sampling approaches described
previously.

By essence, it converges directly towards an optimum given by the equations of
the cost, instead of randomly and asymptotically approaching it. It should therefore
be faster than the random sampling based motion planning algorithms. However,
in reality, the optimisation can fall into a local optimum that will trap further
progress, preventing the algorithm to ever reach the global optimal path. Various

15

CHAPTER 2. STATE OF THE ART

relaxation techniques, or hybrid approaches using random sampling combined with
optimisation, are able to explore CS free more efficiently to ensure that the result of
the planning will be the global optimal path.

But it comes as no surprise that such solutions are computationally costly com-
pared to the purely optimisation-based approaches.

2.1.3 Towards variants of the classical motion planning
problem

In the previous parts of this section, robots were supposed to be able to directly
control their movements along all the dimensions of their CS free. They are called
holonomic robots. But in reality, some robots are not holonomic, and they cannot
access immediately all their degrees of freedom. For example, differential robots
only have two wheels that can roll forwards or backwards, independently, so they
have 2 DoFs directly available for the control, and cannot move sideways. But they
move on a floor, which is a plan, so their pose is defined by three independent
parameters: (x, y, θ). This implies that, in order to reach the whole CS free, relations
between the controlled DoFs must be taken into account. Staying with our example
of differential robots, for a pure rotation movement, one wheel must roll forwards
while the second rolls backwards at the same speed.

To deal with this, we use what is called a steering method. It is a local
planner that is able to guide the robot between two configurations, while respecting
the dependency between its DoFs. A simple example for our differentiable robot
would be the use of a three steps movements:

• A rotation to orient the robot towards the goal (x, y) coordinates,
• A straight line to reach those coordinates,
• A last rotation to control θ, while (x, y) stay constant.

A more complex steering method would be able to follow curves to reduce the
overall time necessary to execute the movement.

Another point of importance is that the whole CS is not accessible for all robots.
Indeed, even an industrial robot bolted to the floor can have its reach reduced for
heavier loads. Moreover, robotic systems that contain closed loops, such as hu-
manoids, parallel robots or cable-driven robots, are subject to internal constraints.
Those kinds of robots can also have to take into account constraints like equilibrium
or cable tension[54]. This reduces CS free to a sub-manifold of feasible configura-
tions. More details about constrained systems and the motion planning approaches
necessary to deal with them will be given in the next section.

Finally, up until here, a goal was given to the motion planner as a set of con-
figurations in CS. But often, there is an infinity of configurations that produce the
desired effect. Therefore, instead of goal configurations, we prefer the concept of
task to reach an objective. For example, a task could be defined as grab the bot-
tle on the table. Many goal configurations can succeed in doing this task, so it is
more convenient than specifying the exact goal pose. Moreover, if a pose was given
but occupied by another object, the goal would become unfeasible. The planning of
the tasks will be the subject of section 2.3.

16

CHAPTER 2. STATE OF THE ART

2.2 Constrained motion planning

In the classical motion planning framework, the planner is expected to use the whole
CS free to find a suitable path for the robotic system. While this approach is often
successful for 6+ DoFs industrial manipulators performing tasks on their own, other
systems or other tasks may imply some constraints on the planner.

• A closed-loop robotic system, when two or more grounded manipulators are
interacting with the same object at the same time, is subject to drastic po-
sitioning constraints relative to each other. Indeed, for a single manipulator,
the precision of the trajectory taken by the end-effector might be important,
especially in the presence of numerous obstacles. But for multiple interacting
manipulators, even small errors along the trajectory will affect the other robots
and the feedback control could cause damage to the actuators. An illustration
of closed-loop kinematic chain is provided fig. 2.3, where two robots assemble
an IKEA chair together.

• Other robots may have physical constraints not related to obstacles. Cranes,
manual or automated, are especially subject to weight constraints, limiting
their range of operation, or wind speed, which can limit both their range and
precision. Mobile robots, not bounded to the floor like industrial arms, have
to respect equilibrium constraints.

• Humanoid robots, which are one of the main subjects of interest in this thesis,
cumulate several of those constraints. They need to ensure the equilibrium of
their pose at all time, and are nearly always subject to closed-loop constraints.
Indeed, at least the feet are simultaneously on the ground, and multi-contact
locomotion involves even more contacts, using both feet and hands.

©
N

TU
Si

ng
ap

or
e

Figure 2.3: Two robots interact to assemble an IKEA chair, thus
forming a closed-loop kinematic chain.

17

CHAPTER 2. STATE OF THE ART

2.2.1 Point-wise constraints

In order for the robots to respect the constraints, the configuration space that is
feasible is of the form {q ∈ CS | f(q) = 0}, where f is the function modelling
the constraints of the system. This mathematical expression of the feasible CS
clearly highlights the fact that it is a manifold that is only implicitly defined, and
that for non-trivial constraints, the measure of this set is zero in the whole CS.
The consequences of those properties is the impossibility to directly use sampling
methods in order to generate a plan. Indeed, the probability of sampling a feasible
configuration is zero. To deal with this, a new problem, defined thereafter, must be
solved when sampling configurations, to guarantee that the constraints are fulfilled.

Definition 3 — Constraint Satisfaction Problem (CSP)
Given a configuration q0 ∈ CS and a constraint function f : CS 7→ Rn, the problem
is to find a new q ∈ CS, close to q0 and such that f(q) = 0, meaning the constraint
is satisfied by this configuration.

In order to find the new q ∈ CS that respects the constraint, we use a projector,
defined here:

Definition 4 — Projector
Given a constraint function f : CS 7→ Rn, we call projector a function p : CS 7→
CS such that ∀q ∈ CS, f(p(q)) = 0, i.e. the projected configuration respects the
constraint, and ∀q ∈ CS, p2(q) = p(q).

In the next paragraphs, we will discuss various projection methods proposed over
the years.

As is nearly always the case when dealing with computer science, quantities are
not continuous and sometimes subject to some computing imprecision. To account
for those imperfections, a practical solution is to slightly relax the problem using
‖f(q)‖ ≤ ε.

Stilman [55] compares multiple algorithms regarding the CSP. Each of them
keeps a sampling-based planner at its root, but introduces a mechanism to project
the random sample qs onto the manifold satisfying the constraints. Randomised
Gradient Descent (RGD) is a naive yet successful approach, giving a nice baseline
for the performance of cleverer algorithms. It consists in randomly sampling the
neighbourhood of the configuration to reduce the distance to the constraints mani-
fold. It has been used to plan motion for closed kinematic chain systems using PRM
as the planner [56]. Because of its random nature, a lot of computational power is
wasted sampling configurations farther from the feasible manifold.

The same authors proposed the Tangent-space Sampling (TS) method to reduce
this waste by starting from qnear, the configuration closest to qs that is already part
of the motion planner exploring tree. Because it is part of the tree, it satisfies
the constraints of the system. A small displacement from qnear to qs is projected
onto the space tangent to the manifold at the configuration qnear, by computing the
constraint Jacobian at this point. Because the displacement is small and happens
in the tangent space of the manifold, it is expected that the resulting configuration
lies close to the manifold. A gradient descent may be applied from this point to
reduce the error further if needed.

18

CHAPTER 2. STATE OF THE ART

The Newton-Raphson (NR) approach proposed in [55] is similar to TS method,
but the Jacobian of the constraints is computed at qs to improve the convergence
speed toward the feasible manifold. The drawback is the classical tendency of the
pseudo-inverses of Jacobians to become unstable close to singularities. Of course,
those methods require that the constraints be differentiable, to allow the computa-
tion of the Jacobians, but the majority of the constraints in robotics are geometric
and are therefore explicitly differentiable. Recent studies are following similar paths,
but improve the initial sampling strategy by creating approximations of the implic-
itly defined constraints manifold [57, 58, 59].

2.2.2 Constraints along a path

Multiple algorithms have been presented to project a randomly sampled configu-
ration onto the manifold defined implicitly by the constraints. But those are only
points, and not the continuous path constructed on the manifold that a real robotic
system would be able to follow.

The simplest way to approach this continuity problem is the use of a linear
interpolation in CS. For each pair of consecutive feasible configurations, a direct
line is computed between the two. This form a continuous polygon chain in CS, or,
if a higher-order interpolation or post-processing is applied, a smoother curve, which
may be gentler for the real robot. This approach, very simple and computationally
efficient, is however subject to drawbacks, both theoretical and practical.

Indeed, only the endpoints of the chain are guaranteed to be close enough to
the manifold to respect the constraints, while the rest of the curve may cross into
parts of CS that are not feasible. A naive solution to the problem would be to
discretise the path and project the point outside the constraint error range onto the
manifold, then re-interpolate the path. A serious drawback for the general case is
the absence of any information about constraints violation outside the intermediate
points’ immediate neighbourhood.

A more theoretically grounded solution, Recursive Hermite Projection (RHP),
proposed by Hauser [60], is aimed at solving the problem of generating C1 paths
satisfying a set of non-linear constraints. To reach the C1 continuity goal, the
interpolation is a cubic Hermite spline, able to link points by matching both their
values and their derivatives. The rest of the process is similar to the previously
mentioned discretisation and interpolation method, but provides a guarantee on the
maximum value of the constraint violation along the interpolation curve. For this
guarantee to exist, the constraints’ function must be Lipschitz continuous, with a
constant M such that ∀(q0, q1) ∈ CS2, ‖f(q1) − f(q0)‖ ≤ M‖q0 − q1‖. Then, the
path is recursively split and the projection of the intermediate points is done, until
the distance between two consecutive points is d ≤ 2ε

M
, where ε is the maximum

constraint violation that is acceptable.
This distance and the Lipschitz continuous property of the constraints’ function

ensure that the whole path is close enough to the manifold implicitly defined by the
constraints. While this method provides a better constrained path than the naive
approach, it also requires generating and projecting sheer numbers of intermediate
points, which dramatically impact the motion planner performance.

To increase the efficiency of continuous path projection onto the manifold defined

19

CHAPTER 2. STATE OF THE ART

by the constraints, Mirabel and Lamiraux [61, 62] proposed a method similar to
RHP, but only C0 and using fewer intermediate points in the general case. They
first demonstrate how to compute the radius of the neighbourhood of a point where
the NR algorithm is continuous, and use that information to create intermediate
points at the edge of this volume. Far from singularities in CS, the neighbourhood
of a constrained point where NR is continuous can be several orders of magnitude
larger than the ε distance on which RHP depends. The result is a C0 path between
q0 and qgoal, where the intermediate points qi are projected onto the manifold, and
the sub paths between them are certified to be continuously projectable onto the
same manifold during a subsequent post-processing of the trajectory.

Recently, Kingston, Moll, and Kavraki [63] proposed a framework to decouple the
choice of a motion planning algorithm and of the constraint adherence method used.
Their approach preserves the probabilistic completeness and asymptotic optimality
of modern motion planning algorithm, and allows the choice of different methods to
plan on the implicit manifolds coming from the constraints. The results show that
the decoupling between those two key parts of constrained planning can improve
performance by enabling pairings that were difficult to test before. This work is
available in Open Motion Planning Library (OMPL).

2.2.3 Humanoid motion planning

The generation of full body motions for a humanoid robot is especially difficult.
They possess a large number of DoFs, often around 30, separated into 4 limbs,
and thus have a larger part of their CS unfeasible due to self-collisions. Their
equilibrium needs to be maintained at all times. They can only move themselves
through the environment by applying contact forces onto obstacles with their end-
effectors, namely their feet and hands. Finally, their mobile nature implies various
limitations on the actuators, to reduce their weight and power consumption, which
can itself be capped by the on-board battery. For instance, an HRP-2 robot needs
to use a handrail to help itself climb 15 cm stairs, because its legs’ motors are not
powerful enough for this kind of movement [64].

Because of those properties, the direct computing of all the variables necessary
for a humanoid robot movement was rarely addressed until the last ten years. To
make the problem manageable, the complexity had to be decreased. A simplified
model can be proposed, such as a cart running on a table with a small foot [65]
to represent the Zero Moment Point (ZMP) of a biped humanoid robot. Those
methods based on simplified models and the ZMP often require an optimisation
pass to improve the plan and especially its stability [66]. Other approaches use a
decomposition into smaller, and easier, sub problems. With the presentation of the
physics engine MuJoCo [67], it became possible to deal with the complete problem
at once. This engine has been open-sourced by the company DeepMind at the end
of 2021, and one can only hope that it will lead to a general improvement around
planning and control of complex robots.

In [68], the authors show that a humanoid robot performing a dynamic walk,
i.e. oscillating its ZMP between its two feet, is small-space controllable. It means
that the robot is able to grossly follow an arbitrary path providing it respects the
conditions needed to perform the dynamic walk. The problem of generating motions

20

CHAPTER 2. STATE OF THE ART

to make a humanoid robot walk on a floor is then decoupled into two steps. First, a
collision-free path, at constant Center of Mass (CoM) height, is computed, ensuring
that the feet will always be able to lie flat on the ground. Second, the whole-body
motion that follows this path is generated using the dynamic walking pattern. The
path search was usually done using graph search algorithm such as A*algorithm, with
obstacles only at the foot level. This complements another approach that makes use
of motion planning algorithms and approximation of the volume occupied by the
feet during motion [69], which allow the avoidance of above-ground objects.

Recent work [70] increased the flexibility of the planning by removing the hy-
pothesis of a flat floor, allowing the crossing of 3D clutter. Because the floor is not
flat any more, the small space hypothesis does not hold and other execution schemes
are used. A popular method is the pre-computation of small primitive motions to
move the CoM along trajectories that are then concatenated to closely follow a
path [71, 72].

Another approach reduces the dimensionality of the humanoid path planning
problem by first looking only for a path of the CoM of the robot close enough
to the environment to make contact with it, but far enough for the trunk of the
robot not to be in collision [73]. A second step plans the contacts using the end-
effectors of the robot, and creating the corresponding whole-body configurations
in static equilibrium. The last step is to link those static configurations with a
dynamic movement that ensures equilibrium, contact forces and collision avoidance.
A simplified view of those steps is illustrated fig. 2.4. The whole pipeline is described
in details in [74].

Reachability
planner (a)

Contacts Se-
quence (b)

Centroidal
dynamics (c)

Whole body
control (d)

Figure 2.4: Humanoid motion planning using a decoupled approach.

Later work by the same authors improved the original publications with contin-
uous formulation of the first step using Bezier curves [75], whose convexity allows
for optimisation to increase the success rate of the later steps of the process. It also
allows for dynamic transitions between the contacts, instead of ensuring quasi-static
equilibrium at each step. In [76], they use the exact dynamics of the robot, instead
of a reduced model, to compute the configurations. Offline learning of the relation
between the CoM position and the contacts applied to the environments also allowed
to find better states in the first steps of the pipeline, in turn improving the overall
success of the method. Recent works keep a similar decomposition into the se-
quential computing of a centroidal path, then contact forces and finally whole-body
configurations, with the introduction of mixed integers optimisation over a short
horizon, and learning, to provide better centroidal paths from the beginning [77,
78].

21

CHAPTER 2. STATE OF THE ART

2.3 Task planning

Automated planning and scheduling is a branch of artificial intelligence concerned
with the planning of sequences of actions to reach a goal. In a known and static
environment, where the models of the robots and the objects involved are well-
described, it can be done offline beforehand. But in an unknown or dynamic world,
online adaption, or even full online planning and error-dealing strategies become
necessary.

Early development emerged from the works around automated reasoning. Those
programs aimed at reaching a goal given a starting hypothesis and logic rules al-
lowing specific transitions between states. Seminal work include the logic theory
machine [79], the General Problem Solver (GPS) [80]. However, they suffered from
combinatorial explosion, even on simple examples like the Tower of Hanoi problem.
Stanford Research Institute Problem Solver (STRIPS) [81] was an early automated
planner more oriented toward real-world task execution. Its language was the basis
for almost all the existing action languages, specifying state transition systems.

2.3.1 Definition of a task planning problem

Definition 5 — A state
It is a conjunction of logical atoms, or fluents, that are true. All non-mentioned
fluents are assumed to be false.
e.g. At(robot, kitchen) ∧ Hold(robot, knife) is the state when the robot is in the
kitchen, holding a knife.

Definition 6 — An action
It is a transition function between two states. Mathematically, it is defined as a
triple (pre, add, del) which describes the realisation of an action in the system:

• pre is the conjunction of pre-conditions, i.e. the set of functions dependent on
the problem’s fluents that must be true for the action to be executable.

• add is the set of fluents that the action will set to true when executed.
• del is the set of fluents that the action will set to false when executed.

e.g. GoFromRoom1ToKitchen = (At(room1), At(kitchen), At(room1)) is the
action to go from room1 to the kitchen. It is executable only if the robot is present
in the room1 at the time at the start of the action. The new state reached by
executing an action will then be defined as such:

Snew = result(Sold, (pre, add, del)) = (Sold \ del) ∪ add if pre ∈ Sold,
= Sold otherwise.

Definition 7 — STRIPS
A STRIPS instance is a quadruple (P,O, I,G) with the following components:

• P is the set of fluents (or primitives) that defines the system,
• O is the set of actions doable in this world,

22

CHAPTER 2. STATE OF THE ART

• I is the initial state of the system, i.e. the conjunction of true fluents , the
others being assumed as false,

• G is the goal state, which specifies which fluents must be true and which must
be false. Some fluents can be in either state and will not be mentioned in those
two sets.

2.3.1.1 PDDL and its successors

PDDL [82] is a tentative of standardisation of the various artificial intelligence plan-
ning languages that existed at the end of the 1990s. It was elaborated mainly to
allow the creation of the International Planning Competition (IPC) [83]. This lan-
guage enables the comparability of the different teams’ propositions, and enhances
the re-usability of their work. It is separated into two parts. The first part describes
the domain of the planning, or in other terms, the world. It contains the definitions
of objects that will be present in each problem, the possible actions executable in
this world, and their effects. The second part describes the planning problem which
has to be solved using this input. It contains the initial conditions of the world, the
goal states and possibly other objects and actions specific to this instance.

Subsequent developments for each new competition introduced notions to express
other, often more complex, planning problems. Examples of those additions are
numeric fluents, long-term actions, and timed initial literals [84]:

• Numeric fluents, as their name indicates, can have a range of numerical
values, and enables the modelling of non-binary resources such as energy level
or weight.

• Long-term actions have effects that take place not only at the time of ex-
ecution of the action, but also afterwards. Opening a tap could be modelled
as a long-term action, because it is a one-time action that has a continuous
effect: adding water into a bucket at each time-step.

• Timed initial literals can model events occurring at a given time indepen-
dently of the execution of the plan.

In parallel to the effort to update the main language to model more problems with
an increased precision, variants and extensions were developed to cater to specific
needs. We can cite:

• PPDDL, the probabilistic extension, which allows uncertainty in the transi-
tions,

• NDDL, from the NASA, with its accent on activities’ duration, a critical
aspect for space missions,

• MA-PDDL, adding the capability to plan with multiple agents solving the
same problem, or different aspects of it, at the same time.

All those languages enabled researchers and engineers to express complex task
planning problems that needed automated solving. The next step is the resolution
of those problems, i.e. finding the sequence of actions that leads from the initial
state of the world to a state which respects the specifications of the goals. In the

23

CHAPTER 2. STATE OF THE ART

M0, (G)

M0, (Ga, G)

M1, (G)

M0, (Gb, G)

M0, (Gc, Gb, G)

M2, (Gb, G)

M3, (G)

MG, ()

M0, (Gd, Gb, G)

Acta

Actc

Actb

Act

Figure 2.5: Example of a STRIPS tree.

following paragraphs, we will give some details about the methods used over the
years to tackle those problems.

2.3.2 Solving a task planning problem

The original method proposed by the authors of STRIPS is based on the strategy
used in GPS. The main principle is to extract the differences between the fluents
of the current state and a goal state, and to identify the actions that are the most
relevant to reduce those differences. A search tree is generated to solve the problem,
where each node is a pair comprised of the current state of the world and a list of
goals. An example of such a tree is given on fig. 2.5.

At the root, we have the initial state of the world, and the goal of the task
planning problem. At each node, an automated theorem proving algorithm checks
if the current state of the world respects the pre-conditions necessary to reach the
first goal of the list in one action.

• If it can, the action Acti is applied, and a child node is appended to the current
node. It contains the new state of the world, obtained after the execution of
the action, and the list of the remaining goals.

• If no action can reach the first goal, the theorem proving algorithm is able
to provide the differences between the current state of the world and the first
goal. Using those differences, a list of relevant actions, which could bring the
state of the world closer to the first goal, is established. For each of those
actions, a new child node is created, comprised of the current state of the
world (because no action were taken), and the list of goals, extended with a
new goal that represents the pre-conditions of the action.

When the new nodes have been generated, the system immediately checks if an
action can be executed to reduce the list of goals, for each of them. After this

24

CHAPTER 2. STATE OF THE ART

reduction of the lists has ended, if the problem is not solved, a heuristic mechanism
has to select one of the nodes to extend the tree. The choice of this heuristic is not
trivial for a good solving performance and multiple formulas have been proposed to
enhance the STRIPS original method, depending on the precise nature of the task
planning problem at hand.

2.3.2.1 Subsequent approaches

In the 1990s, new approaches emerged, increasing the efficiency of task planning
systems.

GraphPlan
Proposed by Blum and Furst [85], GraphPlan uses a planning technique based on
planning graphs. Instead of a tree, the method consists in the building of an alter-
nating levels forward graph. Level 0 contains the values of the fluents in the initial
state of the world. Level 1 contains all the actions which pre-conditions are fulfilled
at the level below, including a do nothing action. Some may be mutually exclusive,
because their pre-conditions or effects are not compatible, e.g. do nothing and eat
cake, and a list of those exclusivities is kept alongside the graph. Level 2 contains
all the possible values of the fluents if the action at the level above are executed.
Once again, mutual exclusivities can exist, e.g. cake eaten and cake not eaten,
and a list is kept.

The graph construction progresses by repeating the alternating process of check-
ing the actions pre-conditions and applying those actions. The existence of a do
nothing action ensures that the number of possible actions and fluents is never
decreasing. Moreover, this reduces the number of mutual exclusivities. After some
time, an odd level may contain all the fluent values of the goal, without mutual
exclusivity between them. A solution could then be searched by going through the
graph. At the end, the graph will level off, i.e. leveli+1 = leveli, which means that
no action can create other fluents’ values or reduce the exclusivity’s lists. If the
goal’s fluents values are not present, or if there are mutual exclusivities between
some of them, the task planning problem is not doable.

Satisfiability
A second approach is the translation of the task planning problem into a Proposi-
tional Satisfiability Problem (SAT) [86]. A SAT problem consists in determining if
there exists a set of boolean values that satisfies a formula, and returns such a set.
Because such a formula is time and order independent, the authors had to use a
trick to formulate a task planning problem as a SAT problem. The idea is to encode
all the possible plans of a given length into boolean propositions with explicit time
of execution. For example, GoFromTo(A,B, 3) is the proposition encoding that the
robot will go from room A to room B at time 3. This example proposition is only
executable in conjunction with the presence of the robot in room A at that time,
which in turn is only true if the robot has gone to the room at a previous time, etc.

When the task planning problem has been encoded as a SAT problem, a proposi-
tional satisfiability solver is used to determine if the goal is reachable, and if so, how.
Because the maximum size of a plan is fixed during encoding, the authors suggest

25

CHAPTER 2. STATE OF THE ART

a binary search to determine the smallest plan reaching the goal. The authors’ as-
sumptions were that SAT solver’s research would advance much faster than research
in planning systems. Later works by the same authors [87] unified this scheme with
the previously described planning graph concept, to reduce the number of proposi-
tions to check and limit the trial and error phase around the minimal length of the
solution plan.

Heuristic-search
This approach introduced with Heuristic Search Planner [88] uses a heuristic func-
tion to approximate the distance between the current state and the goal. Using
this heuristic as a guide, the planner moves forward inside the state space. Fast-
Forward [89] proved that this approach was very competitive, when in 2000 it out-
performed all the other algorithms during the AIPS-2000 planning competition.
Those approaches use a relaxed form of the task planning problem to enhance the
performance of the solver.

Fast-Forward’s heuristic is based on the same idea as GraphPlan, only consid-
ering the add lists of actions and not their del lists. It also uses a method called
hill-climbing were the algorithm tries to improve its results by only going for-
ward, guided by its heuristic, and appending actions to its plan. Backtracking on
its choices is excluded, and the only way for the algorithm to undo an action is
by applying, if it exists, an action having the inverse effect. As we have seen, this
method has been successful, but can provide plans with a lot of actions followed
by their inverse actions. It is also susceptible to the presence of dead-end states,
from which no inverse action exist to backtrack on the current plan; e.g. throwing
the key after closing the door.

Other works of interest include:
• Goal partitioning [90], where the main goal is divided into less complex sub-

goals to enhance the performance of the planning algorithm by using a divide
and conquer approach.

• Downward planning [91], which starts at the goal and reverses all actions to
reach the initial state of the world. This can reduce the combinatorial explosion
of the state space research.

• Causal graphs [92], aimed at improving the detection of possible dead-end
before the execution of an algorithm like Fast-Forward.

Classical task planning is purely a symbolic problem, which either assumes that
actions are always feasible, or assigns a percentage of failure to each of them. It
does not take into account the reality of the underlying physical system that will
execute the sequence of actions that are planned. Therefore, it is not directly usable
for the guidance of robotic systems. We will present in the next section the domain
of manipulation planning, which combines the motion planning seen in section 2.1
with the higher level task planning of this section.

26

CHAPTER 2. STATE OF THE ART

2.4 Manipulation planning

In the first section, we had an overview of motion planning, which enables a robot to
move from a configuration to another while avoiding obstacles. The second section
was dealing with task planning, a branch of artificial intelligence aiming to find
sequences of actions to reach a goal. In this section, the combination of motion
planning and task planning will be presented. It is called manipulation planning,
and deals with robotic systems interacting with their environment to reach a goal
state.

The problem of manipulation planning has been researched for around 40 years,
often by the same authors that dealt with pure motion planning [93]. Among the
first authors tackling the subject, we can cite the works of Wilfong [94] and Alami,
Simeon, and Laumond [95]. They originally considered the simpler problem of
unarticulated robots and objects translating in their environment. Over the years,
the subject gained in complexity, especially with the expansion of the humanoid
research and the will to include more autonomous robots among human workers [96].

2.4.1 Different flavours of manipulation

The field of manipulation planning research is often times divided into multiple
categories, each with its challenges:

• Navigation Among Movable Obstacles (NAMO), where a robot may need to
move obstacles along its path to reach the goal configuration [97]. Propositions
from the end of the 2000s include probabilistically complete approaches, using
explicit representations of the CS [98, 99, 100]. Later additions allowed the
presence of uncertainties in the environment to better model the challenges en-
countered by a real robot [101, 102]. After being mainly theorised on wheeled
robot, this domain was extended to humanoid robots [103].

• Rearrangement planning, aiming at moving several objects from their initial
configurations toward a goal. [104, 105, 106, 107]. This may use difficult re-
grasp movements for object reorientation [108, 109]. Given the initial and goal
poses of an object, the re-grasp planning component finds a sequence of robot
postures and grasp configurations that reorients the object from the initial pose
to the goal. This is illustrated in fig. 2.6 where a Baxter robot moves coloured
cubes. Those moves may be necessary to reorient an electric drill to drill
holes, or workpieces for assembly. Recent extensions include the use of learning
to address the problem of rearrangement planning among obstacles without
prehension [110]. Their method provides a doubling of performance compared
to the state-of-the-art planner by combining a sampling-based motion planner
and a reinforcement learning scheme. The robot learns how it can interact
with the objects, and the planner provides a path along the actions to reach
the goal state.

• Finally, the demand for automation of human tasks, which often necessitates
two arms, has driven the research around multi-robot manipulation planning
forward. A successful approach decomposes this problem into sub-problems
containing less DoFs, that can be solved separately and executed sequen-
tially [111]. Another approach uses the same kind of decomposition, but then,

27

CHAPTER 2. STATE OF THE ART

the road-maps of the sub-problems are combined into an efficient graph to
plan multi-arms motions [112]. This has led to the formulation of discrete-
RRT [113], and its asymptotically optimal variant dRRT* [114, 115].

Figure 2.6: A Baxter robot performs rearrangement planning of
cubes.

2.4.2 Manipulation planning problem

More generally, the manipulation planning problem takes place in a known environ-
ment. In that environment, a set of robots and a set of movable objects are placed
at an initial configuration. A set of rules or constraints define goal’s configurations
for this instance of the problem. The goal of the manipulation planning problem is
to find a sequence of actions, each corresponding to a collision-free geometric path,
that starts at the initial configuration and reaches a goal.

Unlike in the case of motion planning, the constraints applied to the robots and
objects are not necessarily the same during the whole problem duration. Indeed,
when an object is manipulated by a robot, it moves alongside the end-effector hold-
ing it, and therefore, its position is constrained by the configuration of the robot.
Conversely, an object not held by a robot should be at rest, and the robot may
have other constraints in order to avoid moving this object. Thus, the manipulation
planning problem has a hybrid structure, with discrete states, defined by the set
of activated constraints, which are themselves continuous. Those states are linked
by manipulation paths, and that creates a graph structure [116]. The manipula-
tion paths can be separated into two types of manipulation motions: transit paths,
where the robot moves and the objects are still, and transfer paths, where objects
are manipulated by the robot [95].

In the previous section, we discussed task planning, and concluded that it does
not take into account the reality of the physical system that may be controlled. A
motion planner, on the contrary, deals with the physical system but is not able to
find sequences of actions to reach a goal efficiently. But combining a task planner
with a motion planner is not simple, because the former needs information that the
latter is not able to give.

Indeed, in order to plan a sequence of actions, a task planner needs to know if
the said actions are feasible or not, depending on the computed state of the world.
However, we have seen that the most successful motion planner at the moment
are sampling-based motion planner, that are only probabilistically complete and
therefore cannot determine if a motion is not feasible. In order to plan manipulation
motions, one needs to address this problem and provide geometric information to
the task planner while keeping the computation time at a reasonable level.

28

CHAPTER 2. STATE OF THE ART

Srivastava et al. [117] proposed a framework that uses off-the-shelf task and
motion planners with little to no modification. The only requirement is that the
motion planner should be able to either return a successful plan, and return a failure
to do so to the task planner after some time. The basic principle of the system is
simple, with the task planner calling the motion planner for each task in order to
check if they are physically feasible or not, and creating a sequence of actions from
this information.

Transit paths, transfer paths and the reduction property
When dealing with robots and manipulable objects, the CS is the Cartesian product
of the respective CS of each robot and of each object. This can easily amount to
a space with a dimension of several tens, or even hundreds, and is computationally
prohibitive to sample efficiently. However, we can recall some important notions
from [118]. First, only two sub-manifolds are of interest in the whole CS free for
manipulation planning:

• CP , the sub-manifold of CS free where the objects are at a valid and stable
placement, not grasped by the robot. This is the manifold where the transit
paths lie. However, one may note that the reciprocal is false. A path where
an object slides on a table is contained in CP , but is not a transit path,
because the object is moving. Each possible position of an object therefore
defines a sub-manifold of CP , giving it a foliated structure.

• CG, the sub-manifold of CS free where a robot is holding an object, which there-
fore moves alongside the end-effector. The transfer paths are in this man-
ifold. In the same spirit as above, a foliation of CG exists, induced by the
relative position of the object relative to the end-effector.

Because the goal is not to throw objects or release them at unstable positions,
but instead to manipulate them, all the movements of interest for our purpose are
constrained to those manifolds. The intersection CP ∩CG is the space where a robot
grabs or releases an object. Because of the foliations mentioned above, this is a
space consisting of connected components. An important property, recalled below,
was shown by Dacre-Wright, Laumond, and Alami [119].

Theorem 1 (Reduction property). Any path lying in CP∩CG where the robot is not
in collision with static obstacles can be transformed into a finite sequence of transit
and transfer paths.

Thanks to this, the manipulation problem can be reduced to the discovery of
the connectivity of this space, via pure transit or transfer paths. This is useful,
because task planners are dealing with symbolic variables while motion planners use
continuous variables with a physical meaning. e.g. take the spoon on the table
is symbolic, but depending on the exact position of the spoon, the motion planner
could succeed or fail. However, using the reduction property, if one can prove that
the whole tabletop is a single connected component of CP∩CG, the symbolic variable
is sufficient. This property is used by Cambon, Alami, and Gravot [120] in their
work integrating a task and a motion planner for several robots and objects. It
allows them to use continuous grasps and placements with ease.

29

CHAPTER 2. STATE OF THE ART

A recent and successful development in the domain of manipulation planning
is the algorithm FFrob, proposed by Garrett, Lozano-Perez, and Kaelbling [121].
As its name indicates, it has ties with the task planning algorithm Fast Forward,
which it extends to handle geometrical information. They use an offline sampling
of the robot configurations and useful objects poses to create a reachability graph
that will serve as a heuristic for the Fast Forward algorithm (FF) task planner. In
the case where no solution is found, a new sampling batch is created to update the
graph and retry. While the offline sampling improves performance of this algorithm,
especially when keeping the same graph over multiple instance of problems in the
same environment, this algorithm may be difficult to tune. Indeed, one needs to
select the initial number of samples for objects’ poses, grasps, the iterations’ limit
of the RRT, etc..

Last years’ approaches have taken a similar road of providing geometric and
sometimes constraints information [122] directly to the task planner to guide it.
There are also attempts to create heuristics using machine learning, with a classifier
to quickly decide if a motion is feasible or not [123], or to predict the constraints that
will be encountered during the solving of the manipulation problem, to choose an
appropriate strategy [124]. Finally, a recent extension of the motion planning library
MoveIt! [125] was proposed with the goal of using task planning in combination with
motion planning.

During the last four sections, we have discussed the steps necessary to plan the
movements of a robot in an environment in order to reach a goal configuration. The
first section was dealing with pure motion planning, from its historical beginning at
the end of the 1960s to the modern approach using sampling and machine learning in
order to plan optimal motions. The second section was about adding constraints to
those planner, in order to plan motions for more complex robots, like humanoids, or
simply interact with the environment. The third section dealt with task planning,
where the goal is to find a sequence of elementary actions to reach a desirable
situation. It is one of the oldest problems in computer science and is still improved
today because of its ubiquity in the modern world’s functioning. Finally, the current
section combined all of the above to plan manipulation motions for robotics systems.
But now that we have plans, we need to ensure that the robot will be able to carry
them out, and we will discuss the methods used to control a robot in the next
section.

2.5 Control laws for robots

In the four previous sections, we presented and discussed methods to generate plans
and paths to guide robotic systems in order to perform tasks. In an ideal world,
without unforeseen forces impacting the robot, those paths could be followed blindly
by the system to reach their goals. However, we do not live in this ideal world, and
as we have seen, planning may use simplifications of the robot’s model in order
to compute the paths efficiently. A robot may also need to react on the fly to a
perturbation or even to a new command, which may not be part of the original
planned path. Because of all of this, open-loop control is often insufficient to guide
a robot, and a form of feedback is necessary to robustly follow the planned paths.

30

CHAPTER 2. STATE OF THE ART

For a complex system such as a robot, there exist two main levels for the control.
The first one is specific at the level of the actuators, to ensure that they are able
to follow the orders they are given. Those actuators are equipped with sensors,
for example the angular sensors or torque sensors on a rotating joint, or current,
temperature, distance sensors, depending on the kind of actuators. Using the values
provided by the sensors, and a model of the dynamic of the actuator, one is able to
formulate control laws to ensure a quick, robust and precise following of the orders
sent by the higher level control system of the robot.

A good knowledge of the actuator is a necessary step to build a good model
that in turn leads to good performance of the controlled actuators. A first method
to acquire this knowledge is to build the actuators from the ground up, testing
their reactions along the way and adapting the conception to reach the desired
performance [126, 127, 128]. Others have to use an already provided actuator, and
need to identify the dynamics of the system, by sending orders, getting information
through the sensors, and modelling what is in-between. This work was for example
done on a HRP-2 robot, in order to propose torque control at the joint level, despite
the large and unknown frictions of the strain wave gears, and most importantly,
the absence of a dedicated torque sensor [129]. On a more recent robot, TALOS,
which is equipped with torque sensors on each of its joints, identification of the
actuators was done to provide a control law that respects the mechanical limits of
the system [130].

A second level of control deals with the multiplicity of the actioned joints, and the
constraints the system is subject to. Indeed, even if each actuator follows its orders,
something has to issue those commands to perform a sound motion. The simplest
method to reach a position with a manipulator is to use inverse kinematics [131]. It
consists in finding the position or angle of each joint of a robot that will result in
the desired position of the end-effector. However, this has severe limitations when
the robot has some redundancy in its actuation chain, with more DoFs than what
is required to reach the goal, or when a joint is close to a singularity, in which case
the commands given by the inverse kinematics scheme may diverge. In the 1980s,
solutions were proposed to handle those singularities for robotic manipulators [132],
and to deal with redundancy [133, 134]. In this last publication, Siciliano and Slotine
begin to use the notion of control task, that will be defined mathematically in more
detail by Samson, Espiau, and Le Borgne [7] and will be used during the rest of this
manuscript.

A subsequent development in the control field is the simultaneous presence of
multiple objectives for the control laws. For example, we saw in the previous section
that humanoid robots have to maintain their equilibrium at all times while perform-
ing other actions. Two major approaches are used to include multiple objectives in
the control scheme of a robot [129, 135]. The first one is to add a weight to each goal,
and tune those weights in order to prioritise one task over another. This method is
highly versatile for specific tasks but tuning can become quite a hard problem when
one tries to generalise a controller for different tasks or environments.

A second approach is the use of a strict hierarchy of tasks. This method will be
described in more details in chapter 3, where we use the Stack-of-Tasks (SoT) [6],
a framework implementing this kind of control scheme, based on the Generalised
Inverted Kinematics (GIK) proposed by Nakamura et al. [133]. The principle is to

31

CHAPTER 2. STATE OF THE ART

try to solve a task of lower importance in the null space of the previously solved
tasks, i.e. using the DoFs that do not affect those higher priority tasks.

Whatever the choice of control scheme, the mathematical basis often involves
the solving of quadratic problems [136, 137, 138], sometimes with non-linear con-
straints [139, 140, 141]. The development of those solving methods and the rapid
increase in embedded computational power in robots has allowed the control in real-
time of full-sized humanoid robots [142], and the handling of difficult tasks such
as pulling a fire hose [143]. Recent advances in the control field aim at reducing
the dichotomy between weighted control and strict hierarchy by implementing a
generalised projector able to deal with both strict and non-strict prioritisation of
tasks [144].

During the last decade, computers have reached sufficient capabilities to be able
to deal with model-based approaches in real-time. This form of control uses a model
of the system to simulate its reactions to commands, using a physical simulation of
the environment [67], in order to refine them before they are sent to the real robot.
The model used for the control can be simplified to reduce the computational burden,
for example by only using the centroidal dynamics and the feet poses of a humanoid
robot to control its walk in real-time [145, 68, 146].

More recent works use a more complete model of the robots, and are able to
deal with multiple contacts with optimisation methods such as Differential Dynamic
Programming (DDP) [147, 148], Model Hierarchy Predictive Control (MHPC) [149]
or mixed integer solving [78]. Another direction of research enabled by the increase of
computation capabilities is that of the solutions based on learning. Some approaches
are based on the use of demonstrations, by way of video clips or motion capture,
of movements to be reproduced by a simulated actor [150, 151, 152]. Others are
bypassing the demonstration step to directly use the simulations to generate more
robust control laws for the locomotion of robots [153, 154]. Finally, some studies
are going further by learning from scratch the movements of a hand in simulation,
that are then transferred to a real robot in order to achieve complex tasks such as
solving a Rubik’s Cube [155].

In this section, we saw an overview of the huge domain of control schemes used
in robotics, in order to provide commands to actuators in reaction to information
transmitted by sensors. One aspect that is used in this thesis is more precisely the
use of visual information to steer the robot during the execution of its tasks. This
is called visual servoing and will be presented in the following section.

2.6 Visual servoing

Visual servoing, also called visual servo control, is a control method that uses data
obtained from computer vision to guide the movements of a robotic system. A
nice overview of the field and some well established algorithms of servo control are
presented in tutorials from Chaumette and Hutchinson [157, 156, 158]. Because
this thesis deals with the planning of visual servoing tasks and not the servo control
itself, I remained a simple user of those existing algorithms, implemented in the
software suite Visual Servoing Platform (ViSP) [3]. Thus, this section will be short
and only presents the few bricks that were used by Agimus, so as not to write a poor

32

CHAPTER 2. STATE OF THE ART

copy of those tutorials. Details about the mathematics behind the control schemes
we used will be given in chapter 5.

The first step to perform visual servo control is of course to capture images using
a camera. However, cameras are equipped with lenses, used to focus the image onto
the photographic sensors, but that can also introduce slight distortions. In order to
gather useful data from those images, one needs to calibrate the cameras used, to
determine the parameters of the lenses and if needed, compensate for them. Multiple
methods have been proposed over the years, most notably by Tsai [159] and later
by Zhang [160] and Sturm and Ramalingam [161].

The second step is to detect the objects or part of the environment that we are
interested in, and track their position relative to the robot. In order to do that,
important visual features of objects are extracted from the image using detectors.
Indeed, an image is basically a huge matrix composed of pixels and a reduction
into a few important components makes the rest of the problem computationally
tractable. The features of interest can be colours, corners, edges [162, 163, 164], etc.
An illustration of the features is provided at the top left of fig. 2.7, where a Romeo
robot is required to grasp a soda can using visual servoing.

The results of those detectors can be used directly in Image-Based Visual Servo-
ing (IBVS), while a second method, called Position-Based Visual Servoing (PBVS)
calls for an estimation of the position of the object from those features. Many al-
gorithms exist for this estimation, depending on the features used, the computing
power available, the desired precision of the results, etc. Most notable estimators
based on a model of the object are the works of Fischler and Bolles [165] and later
DeMenthon and Davis [166].

Figure 2.7: A Romeo robot grasp a soda can using visual servoing.
Image from the ViSP team.

The extraction of the features is often the most computation-intensive part of
a visual servo control scheme. Therefore, when the situation allows it, it may be
advantageous to stick an artificial marker on the object, designed to be easily and
quickly detected using computer vision [167]. This trick is widely used in the realm
of augmented reality [168], and the markers have been improved over the years,
for example to include embedded information [169] or to improve their robustness
against occlusion [170, 171]. Dedicated algorithms allow the estimation of the po-

33

CHAPTER 2. STATE OF THE ART

sition of those markers using the few features that they provide, often the 4 points
that are their corners [172, 173, 174, 175, 176].

Features or positions of objects having been extracted from the captured images,
a control scheme can make use of them to guide a robotic system toward a goal.
Those goals can be diverse, and the precise control methods will therefore vary. One
of the most common use of visual servoing is the tracking of an object [177], in order
to reach it and sometimes grab it [178, 179, 180]. Another usage is the use of those
visual information to guide the locomotion of a robot, be it with wheels [181, 182,
183] or on legs [184, 185]. Whatever the goal, one of the difficulty of those control
methods are that a line of sight has to be maintained between the robot and the
features used for the control [186]. Recent developments are using machine learning
to enhance the possibilities offered by visual servoing. For example, the simulation
of multiple points of view of the scene to improve the success rate of servoing [187],
or the memory of past scenes to use them as a locomotion goal [188].

34

Chapter 3

Agimus

Contents
3.1 Introduction . 37
3.2 Concepts . 37

3.2.1 Constraints Graph . 38
3.2.2 Estimation of the initial state 41
3.2.3 Manipulation planning . 44
3.2.4 Hierarchical control . 46

3.2.4.1 Task-functions 46
3.2.4.2 Dealing with multiple tasks 47
3.2.4.3 Admittance control 49

3.2.5 Controllers’ generation and execution 50
3.2.5.1 Generation of the real-time controllers 50
3.2.5.2 Finite State Machine to control the execution . . 52

3.2.6 Conclusion . 52
3.3 Software . 53

3.3.1 Visual Servoing Platform 53
3.3.2 Pinocchio . 54
3.3.3 Humanoid Path Planner 55
3.3.4 The Dynamic Graph and the Stack-of-Tasks 56
3.3.5 Ros_control . 57
3.3.6 The Agimus framework 58
3.3.7 Conclusion . 62

3.4 Experiments . 62
3.4.1 The TALOS humanoid robot 63

3.4.1.1 Position against other humanoid robots 64
3.4.2 Course of the experiment 66
3.4.3 Presentation of a typical run 69
3.4.4 Discussion . 71

35

CHAPTER 3. Agimus

3.4.4.1 Failures’ detection 72
3.4.4.2 Limitations caused by the poor kinematic cali-

bration of TALOS 72
3.5 Conclusion . 73

36

CHAPTER 3. Agimus

3.1 Introduction

In this chapter is the first contribution of my thesis, in the form of a new framework
to plan and execute manipulation tasks. The major interest of this new framework
is the automation of the generation of real-time controllers, and the simultaneous
building of a Finite State Machine (FSM) that orchestrates the execution of the
plan. The controllers are derived from the specifications of the manipulation tasks.
An introductory illustration of our framework capabilities is presented in fig. 3.1,
where the robot manipulates an object using both its grippers.

Figure 3.1: Example of a manipulation task: a TALOS humanoid
robot is requested to turn a wooden plank upside-down and place
it back on a table.

In the first section, the concepts underlying the whole system will be presented
and explained. The second section deals with the software implementing those con-
cepts, and specifically the ones we used during our development and the subsequent
experiments that validated our ideas. The last part of this chapter is about the
experiment itself, beginning with a description of the robot used to perform it, a
human-sized TALOS humanoid robot. It is followed by the description of the ex-
periment itself, where the robot had to grab a plank of wood on a table and place
it back upside-down. This chapter is concluded by a discussion about the upsides
and downsides of our system.

3.2 Concepts

This section presents the concepts and algorithms used in the framework Agimus.
At the core of those is the graph of constraints, which is explained in details in the
first subsection. Following this is a part about the estimation of the initial state of

37

CHAPTER 3. Agimus

the robot and its environment, and then a presentation of the manipulation planning
algorithm. Next, the fourth section is the introduction to the hierarchical control
schemes that ensure the real-time execution of the planned motions. Finally, the last
part presents the main contributions of Agimus. First, the automated creation of the
control stacks, based on the requirements extracted from the graph of constraints.
Second, the Finite State Machine (FSM) generated to orchestrate the switching
between those controllers, and more generally to order the overall progress of the
demonstration.

3.2.1 Constraints Graph

The upcoming paragraphs deal with the graph of constraints, a representation of
the manipulation rules originally presented in [189], extended in [5], and that is at
the core of Agimus. To improve the clarity of this chapter, the concepts behind this
representation will be recalled here, with the addition of concrete examples coming
from the experiment described in the introduction, performed on the humanoid robot
TALOS. Note that all of this can easily be adapted to a robot with only one arm,
like a classical industrial manipulator, or conversely to a robot with more limbs.

Numerical constraint
Constraints were loosely introduced in the previous chapter, more specifically in
section 2.2. Because in this chapter they are used extensively, a more mathematically
sound definition of the constraints encountered in motion planning will be given.

Let CS = CSrobot1 × CSrobot2 × . . . × CSobject1 × . . . be the cartesian product of
the Configuration Space (CS) of all the robots and objects involved.
A numerical constraint is a mapping: f : CS 7→ Rm, where m ∈ N.
We say that a configuration q ∈ CS satisfies the equality (resp. inequality) constraint
f if and only if f(q) = 0, (resp. f(q) ≤ 0).

A constraint can also be parametrised by a value g0 ∈ Rm. In this case, it is said
to be satisfied, in the equality case (resp. inequality case), if and only if g(q) = g0
(resp. g(q) ≤ g0).

Projection on numerical constraint
A projector onto a constraint is a mapping: projf : CS 7→ CS. For a suitable input
configuration q, projf (q) satisfies the numerical constraint f . In section 2.2.1, we
presented various methods to project a configuration onto manifolds defined by some
numerical constraints. In Agimus, the projection is done using the Newton-Raphson
algorithm.

Gripper, handle, and grasp
In the framework Agimus, for the manipulation planning step, a gripper is reduced
to a virtual frame which represents the point that the robot will grasp when closing
its gripper. On the other side, objects are described alongside one or several virtual
frames, called handles, that represent reference frames (position + orientation)
that a robot can grasp. Those frames are defined manually at the moment to ensure
their feasibility. Thus, in order to pick up an object, the robot superposes a gripper

38

CHAPTER 3. Agimus

x

y

z

x

y

z

H1
x

y
z

H2

x

y

z

H3

x

y
z

H4

Figure 3.2: The four handles on the plank manipulated by TALOS.

frame onto a handle, and closes its gripper. This superposition of a gripper frame
and an object handle is called a grasp.

In our experiment, presented in the introduction and that will be detailed later
on, 4 handles denoted by (H1, H2, H3, H4) are attached to the object. The fig. 3.2
illustrates the different handles and their positions on the plank: two handles on the
top, rotated 180° from each other, to allow grasping from the front and from behind
; two handles on the bottom of the object, to allow grasping even if the plank is
placed bottom-up.

State
A state is a subset of CS defined by a set of numerical constraints. If a configu-
ration satisfies all those constraints, it belongs to this state. The largest state we
considered in our experiment, in the sense that it is defined by the smallest set of
constraints, is the state were the robot is at equilibrium with its feet lying flat on
the ground. We call it the free state, and the corresponding set of constraints is
gfree = gCoM ∪ gFL∪ gFR (resp. the constraints of equilibrium, left foot position and
right foot position). All other states in the problem add some constraints on top of
these. In the experiment, the states over which we were planning the manipulation
demonstration add constraints linked to the grasping of the plank:

• Position of the hands,
• Relative position between the hand and the plank,
• Torque control to grip the plank firmly.

39

CHAPTER 3. Agimus

Left gripper = Handle 1

Right gripper empty

Left gripper = Handle 1

Right gripper = Handle 3

Left gripper empty

Right gripper = Handle 3

Figure 3.3: A simple graph of constraints with three states. The
= sign means that the gripper’s and the handle’s frames are super-
posed, and describes how the robot has grabbed the object. This
graph represents the state to pass an object from one hand to the
other. No transition exists between the states on the sides because
it would require to instantaneously change the grippers’ from open
to closed and vice-versa.

Transition
States are connected by transitions, which contain additional parametrisable nu-
merical constraints. A transition is defined by three states: its origin, its destination
and its owning state ; the latter defining the overall set of constraints that apply
along the whole transition. Often, the owning state is either the origin or the
destination. A transition exists between two states S0 and S1 if there is a path
γ : [0, 1] 7→ CS such that:

• γ(0) = q0 ∈ S0 and γ(1) = q1 ∈ S1,
• ∀t ∈ [0, 1], g(γ(t)) = g(q0), where g is the set of parametrised constraints

applying to the transition.

Conversely, the existence of a transition between two states does not imply the
existence of a feasible path between configurations belonging to those states. Indeed,
a transition can exist between a state with no grasp and a state where the robot

40

CHAPTER 3. Agimus

is grasping an object, but the object could be out of the reach of the robot, and
therefore, a physical path cannot exist. The same is true if a collision prevents the
motion planner from finding a feasible path.

In the experiment, there were two main types of transitions. Those of the first
type link two states together, and represent the creation or deletion of a grasp.
The transitions of the second type are the ones that loop over the same state, and
represent the possibility for the system to move while keeping the existing grasps.

Graph of constraints
The combination of the states and transitions defined above forms a graph that we
call the Graph of Constraints. It represents the manipulation rules for a given
problem. An example of a graph of constraints is given fig. 3.3. It represents the
states necessary to pass an object from the left hand of a humanoid robot to its
right hand, and conversely.

Waypoint state
The existence of a transition between two states does not imply the existence of
an achievable path for the robotic system. But, even if a path exists, the motion
planning algorithm has to find it in a reasonable amount of time. The framework
being aimed at the planning of manipulation motions, it implies interactions with
movable objects. Any interaction between a robot and an object lies at the frontier
between CS free and CSobs. Moreover, to avoid the difficulties of the online checking
of the viability of the grasps of the robot, we explained previously that the handles
of an object are in finite number and at manually-specified positions. Therefore,
classical motion planning methods, by random sampling of configurations and their
subsequent projections onto the constraints, is unlikely to give sufficiently quick
results so close to CSobs. The solution we use is the addition of waypoint states on
transitions creating or deleting a grasp. We call them pre-grasps states. Those
states are defined by the same set of constraints as the state the transition lies in,
with the addition of a fixed pose constraint for the gripper, a short distance away
from the grasp pose itself. The previous graph of constraints with the addition
of waypoints is presented fig. 3.4. This allows the motion planning algorithm to
more easily, and therefore quickly, reach the waypoint, and then a straight path can
connect the waypoint configuration with the grasp configuration. The fig. 3.1, in
the introduction, displays a configuration in a waypoint state that makes the left
gripper less likely to be in collision during the subsequent grasping.

3.2.2 Estimation of the initial state

In the previous section, we explained the concept of the Graph of Constraints,
which is a representation of the rules and constraints applied to a manipulation
problem. However, in order to plan the tasks and motions necessary to reach the goal
of a specific instance of the problem, one must first know the initial configuration of
the system. The naive and time-tested solution is to always start in the same known
configuration, with all the objects at precise positions. Because one of the goal of
our framework is to allow more leeway in the programming of robotic systems, this
solution is unacceptable.

41

CHAPTER 3. Agimus

Left gripper = Handle 1

Right gripper empty

Left gripper = Handle 1
Right gripper <–> Handle 3

Left gripper = Handle 1

Right gripper = Handle 3

Right gripper = Handle 3
Left gripper <–> Handle 1

Left gripper empty

Right gripper = Handle 3

Figure 3.4: The graph of constraints to pass an object from one hand
to the other, with added waypoints to improve the motion planner
performance. Circles are states and hexagons are waypoints. The
<–> sign means that the gripper and object are close, and the
gripper either approaches the object or recedes from it, depending
on the states of origin and destination.

The approach we chose instead is the online estimation of the initial configuration
by the robot itself. Robotic manipulators are equipped with various sensors in
order to be able to figure out at least their own configuration. For the purpose of
manipulating object, we also use on-board cameras to assess the situation of the
rest of the environment. To ease the detection of the relevant objects, we opted for
the use of markers, specifically AprilTags [171], positioned at known coordinates on
those objects. Indeed, this thesis is not oriented toward computer vision, and this

42

CHAPTER 3. Agimus

solution was acceptable for the contribution we aimed to propose.

Left gripper
= Handle 1

Right gripper = None

Left gripper
= Handle 1

Right gripper
= Handle 3

Left gripper = None

Right gripper
= Handle 3

Configuration computed from the encoders and cameras
Configuration projected onto the nearest state

Figure 3.5: The robot computes the configuration of itself and the
world using its sensors. This raw configuration is then projected
onto the nearest state of the graph of constraints, to become valid
for the motion planner.

Thus, we obtain the configuration of the robot via the embedded encoders in its
joints, and the configuration of the rest of the environment in relation to the robot
using its cameras. However, due to the finite precision of those sensors, the perceived
configuration of the whole system can never precisely satisfy the constraints of any
state in the graph of constraints. The configuration of the system therefore
does not belong to any state of the graph of constraints and the manipulation
planning algorithm is unable to plan a path. To overcome this issue, we project
the configuration measured by sensors (AprilTags and joint encoders) onto a state
using the Newton-Raphson method as described in [190] Sec. II.B, and reproduced in
algorithm 1 to improve the clarity and the fluidity of the reading. The result of this
projection is illustrated schematically on the simple graph of constraints presented
previously, fig. 3.5.

A benefit of this approach, in addition to the extended latitude on the placement
of manipulated objects, is the ability to detect when the system is already in a latter

43

CHAPTER 3. Agimus

Algorithm 1 Projection on implicit constraints
procedure Project(q, g, ε)

α = .1, αmax = .95, it = 0, itmax = 20
while ‖g(q)‖ < ε do

q ← q − α
(
∂g
∂q

(q)
)+
g(q)

α← αmax − .8 ∗ (αmax − α)
it← it+ 1
if it > itmax then

return Failure
end if

end while
return q

end procedure

step of the process. This is important for us because one of the long term goal of
this framework is to allow the collaboration of multiple robots or even robots and
human operators. An example of this, that will be developed in further chapters,
namely chapter 5 and chapter 6, is about robots drilling holes in aircraft parts. This
process has multiple steps, some of which will be made by either humans or robots,
depending on their availabilities and the skill needed (holes near supports may need
a clearance that prevent robots from operating). Having one program capable of
adaptation to the situation and the advance of the process it is placed in would be
a vast improvement over manual initialisation.

After this estimation step, the initial state of the manipulation problem is known,
and the goal state can be defined even if it depends on the initial state, as was the
case in our demonstration. The next phase will be the elaboration of a guide path
in CS free to reach this goal.

3.2.3 Manipulation planning

As we have seen in the section 3.2.1, a path can only be found between two configu-
rations Cinit ∈ Si and Cgoal ∈ Sg, if transitions exist between those states. However,
the existence of the necessary transitions is not enough to guarantee that a path can
be found in CS. This path could be prevented to exist by collisions or unreachable
spaces. Therefore, a motion planning algorithm has to be used in order to create a
continuous guiding motion between the initial and goal configurations.

To solve the manipulation planning problem, we run a variant of RRT, that has
been proposed in [189] Sec. III. It is called Manipulation-RRT, and is able to
explore the states defined in the graph of constraints. While the precise operation
of this algorithm can be found in the cited publication, an abstracted version is
provided in algorithm 2.

Upon completion of the algorithm, either a path has been found in CS free, that
goes from the initial configuration towards the goal configuration specified in the
problem, or no complete path could be created. In the first case, the returned path
is expected to be of low quality. Indeed, the RRT algorithm is based on random
sampling of configurations. Thus, even if the variants of RRT we use are asymp-

44

CHAPTER 3. Agimus

Algorithm 2 Manipulation Rapidly-exploring Random Tree
Draw a random configuration qrand,
Find the closest node qnear in the current roadmap,
Find the state of this node in the constraint graph,
Sample a transition getting out of this state,
Extend qnear along the transition up to qnew,
Try to connect qnew to other connected components of the roadmap.

Left gripper = Handle 1

Right gripper empty

Left gripper = Handle 1
Right gripper <–> Handle 3

Left gripper = Handle 1

Right gripper = Handle 3

Right gripper = Handle 3
Left gripper <–> Handle 1

Left gripper empty

Right gripper = Handle 3

Figure 3.6: The transitions chosen by the motion planner in the
graph of constraints to pass the object from the left hand to the
right hand. The order of the transitions is from blue to red.

45

CHAPTER 3. Agimus

totically optimal, they are not run long enough to reach this optimality. Therefore,
the resulting path will be punctuated by seemingly random movements that do not
contribute to the overall goal of the problem’s instance. A refinement step has to be
taken, in our case with the use of the random shortcut method and gradient-based
optimisation algorithms [191, 5].

The output of manipulation planning is a sequence of paths linking the initial
and goal configurations. Each segment of the sequence lies in a transition of the
graph of constraints. A schematic illustration of the choice of transitions to reach
the goal can be seen in fig. 3.6. In the following paragraphs, we will describe the
control strategy that is used to respect those constraints.

3.2.4 Hierarchical control

When reaching this step, we are in possession of a guide path for all the actuators
of the system, i.e. in CS. However, the blind following of this path is not sufficient
to ensure that the goal of the manipulation will be reached. Indeed, someone or
something could perturb the actuators trajectories, and some form of feedback is
necessary to ensure that the overall movement still respect the physical constraints
of the system and achieve the goal.

Another obvious interest of control is the ability to handle objects that are moved
between the planning step and the execution step of the movements, or even dur-
ing the execution itself. This important part will be treated specifically in a later
chapter, chapter 5.

The result of the control step is a vector of commands for the actuators of the
robot. This can come in multiple forms, such as position, velocity, acceleration,
force or current control. In the Agimus framework, commands are expressed kine-
matically, using both position and velocity control, to ensure smooth execution of
the trajectories. In order to compute those, multiple source of information can be
used.

Broadly, those sources can be separated into two groups: feed-forward and feed-
back data. Feed-forward data are given a priori to the system, and some, like the
trajectories of the joints of the robot, can be pre-computed. It includes the path
data created during a motion planning step, model-based commands, etc. Feedback
data are coming from the robot’s sensors, and are used to check whether the paths
provided to the robot are followed, and adjust them in case of perturbations.

Between the input data and the output commands, there are multiple mathemat-
ical objects that will be presented in the following paragraphs. Their implementation
will be detailed in section 3.3.4.

3.2.4.1 Task-functions

We explained in section 2.5 that during this manuscript, we are using the concept of
task-function defined by Samson, Espiau, and Le Borgne [7]. I recall his definition
here for clarity:

46

CHAPTER 3. Agimus

Definition 8 — A task-function
is a C2 n-dimensional function e(q, t) that is usually regulated to zero during the
duration [0, T] of the task.

By abusing the notation, in this work and the related and cited publications,
task and task-function are often used interchangeably.

Feature
e(q, t) = s(q) − s∗(t) is the general form of a task-function, where s is a measured,
or estimated, feature of the system, and s∗ its desired value. A feature can be any
measurable value, such as the position of a end-effector, the angle of a joint or a
visual cue that the robot has to maintain at the center of its field of view.

Those feature are generally separated into two types:
• Those formulated in CS: e(q, t) = q−qdes(t) where qdes is the desired trajectory

for some joints of the robot.
• Others whose formulation is in task space, which often coincide with the world

coordinates: e(q, t) = x(q)−xdes(t), where x(q) is a pose, and xdes(t) its desired
trajectory.

In the end, because the commands are given at the joint level, everything happens
in CS. This makes objectives formulated in task space generally non-linear, because
the relation between a chain of articular angles and the 6D pose of an end-effector
is not linear.

Exponentially decaying error
The task is therefore seen as the error between a current feature measurement and its
desired value. It is possible, without loss of generality, to impose a desired trajectory
for the reduction of this error, and we choose in our software the exponential decay:

ėi
∗ = −λei (3.1)

where λ is the gain applied to the task.
We define the Jacobian matrix Ji of the task ei as follows:

ėi = Jiq̇ (3.2)

In our framework, the robot is controlled purely with kinematics variables, in
other words by commanding the velocities of the motors. If we assume the Jacobian
of the task to be of full rank, we obtain:

q̇ = J+
i ėi

∗ (3.3)
= −λJ+

i ei (3.4)

3.2.4.2 Dealing with multiple tasks

Complex systems, such as humanoid robots, can have multiple tasks, often with a
notion of priority between them. For example, for a humanoid robot, maintaining
contact with the ground and equilibrium is of the utmost importance, while reaching

47

CHAPTER 3. Agimus

for an object is only a secondary objective. Therefore, we have to find the joint
velocities for a set of tasks that may interact with each other, while keeping in sight
their ordering.

One way to realise that is to assign weights to the multiple tasks, and sum them
inside a large task-function that execute everything at the same time. However,
such systems may be hard to tune. Too large a weight for the important task may
prevent the execution of the secondary objectives, even if the robot would be able
to achieve them. Too low, and the equilibrium task could be disrupted by those
secondary targets, in our case leading to the fall of the robot.

One solution implemented in the SoT is thus a strict hierarchy of tasks, that
ensures that objectives of lower importance cannot disturb higher level tasks. The
main idea of this approach is to use the whole CS for the first task, and then compute
the null space of this task, meaning the DoFs that do not impact the task. Then,
the next task is solved inside this reduced space, and we again compute the null
space of both this task and the higher level ones. We progress recursively like this
until all tasks are accounted for, or the null space is reduced to zero.

In a nutshell, the SoT solves iteratively this set of equations:

q̇i+1 = q̇i + (Ji+1Pi)+
(
ėi+1 − Ji+1q̇i + δei+1

δt

)
(3.5)

Pi+1 = Pi − (Ji+1Pi)+(Ji+1Pi) (3.6)

where: i ∈ {1, · · · , n}
q ∈ Crob, the configuration vector of the robot
q̇ = the related velocity
ei = the ith task
Ji = δei

δq
, its Jacobian

ėi = −λiei
q̇o = 0
P0 = I

Computation cost
While this approach is effective to deal with multiple objectives for our robot, the
computation cost of the pseudo-inverse in eq. (3.5) and eq. (3.6) is prohibitive.
Escande et al. [142] showed that it is more efficient to iteratively compute a basis of
the null space of the tasks.

Therefore at iteration i + 1 the null space of the previous control task is given
by an orthogonal matrix Ki such that JiKi = 0 and KT

i Ki = I, then using a SVD
decomposition:

Ji+1Ki = [Ui+1 Vi+1]
[
Si+1 0

0 0

] [
Y T
i+1
ZT
i+1

]
= Ui+1Si+1Y

T
i+1 (3.7)

Then the null space of Ji+1Ki is given by ZT
i+1. Therefore any new control ui+1 is

such that:
q̇i+1 = q̇i +Kiui+1 (3.8)

48

CHAPTER 3. Agimus

to not perturb q̇i. Therefore we slightly rewrite the control eq. (3.5) and the update
eq. (3.6) as:

q̇i+1 = q̇i + (Ji+1Ki)+
(
ėi+1 − Ji+1q̇i + ∂ei+1

∂t

)
(3.9)

Ki+1 = KiZi+1 (3.10)

Updating Ki+1 is simpler than computing Pi+1 and the number of columns of Ki

decreases after each iteration. This allows us to have this decomposition working at
1 kHz on the embedded computer of a TALOS humanoid robot.

The method of computing the commands in the null space of the previous tasks
is however not devoid of downsides. Indeed, in the presence of computational sin-
gularities, that can for example appear when an arm is nearing its full extension,
the null space can be reduced too quickly and prevent most of the lower importance
tasks to be achieved. But we are following a motion planned path, so even if singu-
larities are approached, the path provides a reliable reference to follow. Difficulties
could of course arise with the use of visual servoing, later in this manuscript, but
the margins used to avoid singularities during motion planning were sufficient for it
not to appear in our experiments.

Nevertheless, if this become a real issue, one could implement controllers able
to deal with the problem. A possible solution would be using manipulability ellip-
soids [192] to guide the end-effector along the principal axis for the prioritised tasks
and keep a larger field of motions available for the secondary objectives.

3.2.4.3 Admittance control

In order to successfully grab an object and most importantly keep it steady in
its gripper, we have to control said gripper not only in position but also in torque.
However, the gripper of the TALOS robot is one of the few joints that is not equipped
with a torque sensor and thus, native torque control is not available. We had to
design what is called an admittance control scheme in order to command the position
of the gripper by simulating a dampened spring system as output, in order to exert
the desired force on the object.

The torque applied by the gripper’s motor is estimated using the intensity of
its supplied current. Neglecting the electrical losses, there is a proportional relation
between input current and output torque for a DC motor:

τmotor = I · kτmotor (3.11)

Then, still neglecting frictions and losses, the torque output of a reduction gear is
also proportional to the input torque supplied by the motor:

τ = τmotor · kgear (3.12)

And finally, the force exerted by the gripper on the object is also linear with respect
to the distance between the axis of rotation and the point of contact with the object:

F = τ · daxis−gripper (3.13)

49

CHAPTER 3. Agimus

The values of kτmotor and kgear are given by the manufacturer of the robot, while
daxis−gripper has been measured roughly on the robot itself. We decided to aim for a
gripping force of around 5N at first to steady the object. The measurements of the
current intensity pass through a first-order low-pass filter, with cut-off frequency of
5Hz, in order to eliminate the high frequency variations of the 10 kHz control at the
joint level.

The control is then switched between pure position control and admittance con-
trol. At first, we slowly command a gripper position in collision with the object. At
the moment of contact between the tip of the gripper and the object, this position
will not have been reached, thus the internal PID loop of the joint will command
higher currents. Above a selected threshold, slightly below the desired gripping force,
the commands are switched over to the admittance control scheme, parametrised
empirically to ensure both the continuity and smoothness of the command. When
releasing an object, the inverse process occurs, first with an admittance control, then
a position control to fully open the gripper.

3.2.5 Controllers’ generation and execution

In the previous part, we presented the control scheme that ensure the correct exe-
cution of the manipulation. There is still two missing pieces for the functioning of
our framework. The first one is the generation of the controllers themselves, based
on the information provided by the graph of constraints and a manually designed
correspondence between the constraints and the tasks of the controllers. The second
is the creation of a FSM that supervises the progress of the manipulation and or-
chestrates the various motions and associated real-time controllers. Those two steps
are described in the following paragraphs.

3.2.5.1 Generation of the real-time controllers

Tasks are the execution counterpart of the constraints present in the graph and
at the manipulation planning level. Often, they can be formulated in a similar
manner for those two parts of the software. Equality constraints in the manipulation
planner could be automatically translated into task-function regulated to zero in the
controllers. An example of this is the pose of an end-effector relative to another.

However, things like the position of the CoM or the constraints of the gaze of the
robot are formulated as inequalities for the manipulation planning, to allow some
freedom of movement. Because of the task-function approach of our controllers, a
direct translation is not possible.

Hierarchical controllers able to deal with inequalities exist, but the software used
by the team had not been maintained for several years and were not tested on the
current robots. Therefore, inequality constraints in graph of constraints are also
formulated as task-functions following the planned path at the control level.

In order to deal with incompatibilities and still be able to generate multiple
controllers automatically given a graph of constraints, a manual correspondence
between each type of constraint and a task has been created. This is presented
in more details in the section dealing with the Agimus software itself. Controllers
are generated for each transition of the graph of constraints that might be crossed

50

CHAPTER 3. Agimus

during the execution of the experiment.
The controllers contain tasks that can be separated into three groups, by order

of priority, from the most important to the less important:
• Common tasks that ensure the balance of the robot
• Transition-specific tasks that mainly deal with the grasping of the manipulated

objects
• A posture regulation task whose goal is to track the reference configuration

path resulting from the motion planning phase

The first and last groups are therefore put into each and every controller, but fol-
low different references during the execution of the experiment. The addition of
the second group of tasks depends on the transitions’ position inside the graph of
constraints.

To automatically generate the intermediate tasks, we pass through the graph of
constraints. In a nutshell, there are only three main type of transitions: motions,
creation of a grasp, deletion of a grasp. Motion’s transitions between two states do
not induce the creation or deletion of a constraint, therefore the controller can keep
the same stack of tasks as the one existing is the origin state.

A simple grasp, i.e. using only one gripper, is dealt with as follows:
• The origin state S0 has no transition-specific task in its controller, thus only

the balancing and posture tasks are present.
• Between S0 and S1, the goal state of the transition, there exist a waypoint

state, Sw0−1. This state has the same controller as S0. It only adds a pose
goal for the motion planner, a few centimetres above the grasp, to help reduce
the computational cost of planning. Thus, the transition between S0 and
Sw0−1 keeps the controller used for S0. At this time, the transition between
Sw0−1 and S1 also uses this controller, but a visual servoing task was added
for the experiment described in chapter 5.

• We pass through a final transition, from S1 into S1, that adds the position
and admittance tasks handling the gripping force of the robot. This is the
transition where the robot closes its gripper and grab the object.

The resulting SoT at the end of this procedure is then kept during all motions
involving this grasp, to prevent the object from sliding out of the gripper.

A double grasp, i.e. using both grippers, involves an additional task between
Sw0−1 and S1, that makes the pose of the free gripper relative to the pose of the
gripper already grasping the object. In this chapter, the relative positioning of the
two grippers is only managed at the path planning level. Loop closure based on
visual information was added for chapter 5.

The inverse operation, ungrasping, is done in a similar fashion, but in reverse:
• The origin state S1 has at least one gripping force task, and maybe the relative

pose of the second gripper, in addition to the balancing and posture tasks.
• The first transition, from S1 to S1, opens a gripper, so the gripping task has

to remain and be controlled, as do the relative pose task, if it exists.

51

CHAPTER 3. Agimus

• Between S1 and S2, there is a waypoint, Sw1−2, with the same tasks as S2.
For the transition from S1 to Sw1−2, the gripping force task is removed. Then,
between Sw1−2 and S2, if a relative pose task was present, it is also removed.

3.2.5.2 Finite State Machine to control the execution

While browsing the graph of constraints, along with the generation of the controllers,
Agimus also builds a FSM that will orchestrate the execution of the manipulation.
For each transition in the graph of constraints, a corresponding state is built in the
FSM. This FSM has two key goals: handling the passage from one controller to
another, and using the robot’s sensors to detect important events.

The changeover of controllers is a critical step for a real robot, because any dis-
continuity in the commands can have dire consequences on the hardware. Therefore,
we check the state of the robot both at the start of a new state, i.e. before going
through a transition in the graph, and at the end of the state, after the transition
has been passed.

The starting function confirms that the commands of the next controllers are
close enough to the one of the current controllers, before the actual switching. At
the end, we verify that the reference trajectory has been sent in its entirety, and
that the associated commands have converged. There might still exist non-zero
commands for some tasks such as visual servoing, but if the next controllers keep
this task, it should not be an issue.

The second goal of the FSM is to trigger reactions to events detected by the
robot and its software. Those come from various origins, such as the sensors of the
robot, the controllers’ state or internal data. The principal source of events is simply
the manipulation planner informing that it has sent the whole planned trajectory
for the current transition. It triggers the switching towards the end function of the
state that, as mentioned above, waits for the controllers to converge, then switches
over to the next state in the FSM.

Another event monitored during our experiment is the force exerted by the robot
onto its environment. It allows us to quickly stop execution in case of impromptu
contact, which could harm someone or damage the robot. But it is also used to
detect an imprecisely planned contact, for example to grab an object. In this case,
the transmission of the reference trajectory is interrupted because the current goal
has already been reached.

3.2.6 Conclusion

In this section were presented the concepts and algorithms that are at the basis of the
functioning of the framework Agimus. It all begins with the graph of constraints,
which models what the robot can or cannot do, both in term of physical and of
manipulation abilities. A second step uses an estimator to determine the initial
state of the world, and optionally refine the goal based on those information. Then
we succinctly presented the manipulation and motion planner that browses the graph
of constraints in order to travel from the initial state to the goal while respecting
the constraints and avoiding any collision with the environment. The last part

52

CHAPTER 3. Agimus

dealt with the main contributions of the Agimus framework in the field of objects
manipulation by a robotic system. First, the automated generation of the real-
time controllers, in the form of strict hierarchies of tasks, based on the transitions
taken by the manipulation planner through the graph of constraints. Finally, the
simultaneous, and also automated, creation of a complete FSM that regulates the
switching between the controllers, reacts to external or internal events, and more
broadly ensures the good execution of the experiment.

3.3 Software

In this section are presented the software that implement the concepts discussed
previously. The first one, Visual Servoing Platform (ViSP) [3], is a computer vision
and control software that we use simply to detect and locate AprilTags in the envi-
ronment and on the objects manipulated by the robot during our demonstrations.
The second, Pinocchio [4], is a library implementing efficient computation of the
kinematic and dynamic parameters of robots. It is at the core of the two following
software. Humanoid Path Planner (HPP) [5] is the motion planner created by the
Gepetto team. It is based on the concept of the graph of constraints and uses
mainly random sampling planning methods to provide paths for robotic systems in
constrained problems. The fourth piece of software in Agimus is the Stack-of-Tasks
(SoT) [6], which implements a real time hierarchical control scheme for complex
robots. The following is ros_control [193], providing the link between the low
level control of the robot and the higher level control mentioned just above. Fi-
nally, our contribution, Agimus itself, aims at creating the hierarchical control stack
automatically, based on the graph of constraint.

3.3.1 Visual Servoing Platform

Figure 3.7: ViSP’s logo

ViSP is an open-source modular soft-
ware library aimed at the fast prototyp-
ing of visual tracking and servoing ap-
plications. It was first proposed in 2005
by the Rainbow team (then known as
the Lagadic team) at the French labo-
ratory INRIA. ViSP is still improved to
this day by the same team, with contri-
butions from various students hosted in
the lab, and end users from all over the
world.

At the time of its inception, available visual servoing software were nearly al-
ways tied to specific hardware, be it the robot, the camera or the computing system.
Therefore, one of the goal of ViSP is to be cross-platform and as independent from
the targeted hardware as possible. A strong emphasis is also placed on the docu-
mentation and simplicity, to let new users be quickly efficient and able to prototype
their ideas. The software itself is a C++ library made of various modules mostly
independent of each other for an easier composability. The two main targets of those
modules are visual tracking on one side, and visual servo control on the other.

53

CHAPTER 3. Agimus

Within the Agimus framework, it is used for the detection and tracking of artifi-
cial landmarks called AprilTags. Simpler and smaller software could certainly have
been integrated in the framework for this purpose. However, the good packaging
of ViSP into the platform we use, Linux Ubuntu, combined with the high quality
documentation, made it the most efficient choice for us. Besides, the modular archi-
tecture of ViSP reduced the burden of the integration because we only had to deal
with a few modules.

3.3.2 Pinocchio

Pinocchio is a software library implementing state-of-the-art rigid body algorithms
for poly-articulated systems. It was introduced in 2019 by the Gepetto team at
Laboratory for Analysis and Architecture of Systems (LAAS-CNRS), but has been
used for several years and in various project before this official presentation. It is
now maintained and actively improved by both the Willow team at INRIA and the
Gepetto team, along with contributions from other users.

Rigid body dynamics is an extremely useful tool in the robotic field. Despite the
theory being more than two centuries old, algorithms are still periodically revised
to improve their efficiency and adapt them to modern hardware’s computing accel-
eration strategies. One of the last revision of those algorithms has been proposed
by Featherstone [194], and is the main basis upon which Pinocchio is built.

Pinocchio provides efficient implementations of those algorithms for systems com-
posed of rigid bodies linked via joints of several types: revolute, prismatic and
spherical, or even complex compositions of the aforementioned joints. The systems
themselves can be fixed in the world, like industrial manipulators, able to navigate on
the floor, or even free-floating. Among the main algorithms available are Recursive
Newton-Euler Algorithm (RNEA), Articulated Body Algorithm (ABA), Composite
Rigid Body Algorithm (CRBA), etc. They allow the user to easily compute forward
and inverse kinematics, forward and inverse dynamics, kinematic jacobian
or joint space inertia matrix, among others. Pinocchio also handles geometric
collision detection by incorporating the Flexible Collision Library (FCL) [195].

At the time of creation of this library, two contrasting implementation approaches
of the computing of rigid body dynamics were at the core of the available software.
On the one hand, there were software based on code generation, trading flexibility
for an important gain in performance. On the other hand, more recent libraries
loaded robot models at runtime, increasing the versatility.

Pinocchio follows the two paradigms at once, being able to load dynamic models
at runtime, but also to generate code and carry out automated differentiation, also
during the program execution, to improve performance. It also exploits at best the
sparsity induced by the kinematic trees of the modelled systems, which are mostly
robotics, human or animal, and therefore devoid of too many closed kinematic chains.

To further boost the performance, the main author added analytical deriva-
tives [196] for the main algorithms. Finally, thanks to the use of modern program-
ming language paradigms, Pinocchio is able to perform most of the computations
directly at compile time. Benchmarks available in [4] demonstrate that Pinocchio
outperforms all other existing frameworks at the time of presentation.

54

CHAPTER 3. Agimus

Pinocchio is now at the core of several robotics software, among which we can cite
Crocoddyl [147, 148], an open-source and efficient Differential Dynamic Program-
ming solver for robotics, the Stack-of-Tasks, an open-source and versatile hierarchi-
cal controller framework or the Humanoid Path Planner, an open-source software
for Motion and Manipulation Planning. The last two libraries are themselves part
of the Agimus framework and are presented in the upcoming sections.

3.3.3 Humanoid Path Planner

Humanoid Path Planner (HPP) [5] is a C++ software library that implements path
planning and manipulation planning algorithms for articulated systems moving in
environments cluttered with obstacles. It is the result of a major refactoring of
the work around path planning software developed since the 1990s by the robotic
department of the LAAS-CNRS. It was open-sourced at the end of 2013, originally
presented in [116], extended in [5], and is still actively used and improved by the
Gepetto team to this day.

The main characteristic of HPP over other path planning software is its native
integration of the features necessary to handle the constraints associated with hu-
manoid robots. Those non-linear constraints, such as quasi-static equilibrium or
position constraints of end-effectors, are indeed modelled at the core level of the
software and handled by the RRT algorithm used as the default planning method.

Also at the basis of HPP is the concept of the graph of constraints, explained
in details in section 3.2.1, which adds a structure to the manipulation problems,
by expressing the various grasps possible and their connectivity. Despite its origin
mainly oriented toward humanoid robotics, this planner is versatile enough to tackle
other kind of robots, ranging from simple 6 DoFs arms up to cable robots [54].

On the technical side, HPP is now based upon Pinocchio for the handling of
kinematic and dynamic properties of the kinematic chains describing the robots.
We can also note that, like its ancestor Move3D [17], HPP is using a single imple-
mentation of the concept of roadmap, seen in section 2.1, that can then be employed
successively by several path planning algorithms.

Indeed, multiple path planning algorithms have been proposed over the years.
However, at the moment, none of them is clearly superior to the others in all situ-
ations. So there exists various state-of-the-art algorithms with different forces and
weaknesses that are useful for different kinds of problem, and being able to use them
in the same framework is quite practical.

Finally, like other software developed by the Gepetto team, its core is written in
C++ for high performance, but accessible via a Python interface to ease the burden
of prototyping new algorithm’s implementations, or in our case, new demonstrations
of the already existing ones.

In the Agimus framework, HPP is used extensively. The core of the framework
is indeed based on the graph of constraints, originally presented for its use in HPP.
Then, HPP is used for the initial estimation of the system configuration and subse-
quent evaluation of the origin state in the graph. Finally, it naturally provides the
motion planner used to compute the guide path for the system.

55

CHAPTER 3. Agimus

3.3.4 The Dynamic Graph and the Stack-of-Tasks

Dynamic-Graph is a software framework that implements an efficient data flow pro-
gramming structure. It is similar to the better-known MatLab library Simulink. It
was created by the teams of the joint laboratory between Japan and CNRS called
AIST, and is now mainly supported by the Gepetto Team at LAAS.

One of its goal is to provide real-time enabled computations with the use of small
components, named entities, connected by input and output signals, thus forming
a graph structure. The other objective is to do that while offering an easy approach
to build the graph itself, by the use of a scripting language such as Python.

A Dynamic graph is composed of different entities which each provides a more
or less elementary operation. Among other, we can cite:

• Mathematical operators: addition, subtraction, multiplication, and their
matrices counterparts.

• Device entity: a special entity that directly controls either real hardware or
a simulation of it. It is generally both one of the point of entry of a graph,
transferring the data from the robot’s sensors, and the exit point, sending
commands to the actuators.

• Solvers: Larger entities aggregating several signals to compute commands.
This part is discussed in more details later in this section.

The efficiency of the overall framework is based on two main pillars. First, small
components that can be well-tested and optimised. Second, a flow of computation
based around data caching, where outputs are only computed when inputs change.
This allow multiple entities to consume time-hungry results, such as matrices’ in-
verses, at the cost of only one inversion per execution of the complete graph.

The Dynamic graph is used in our framework to implement the SoT in a way
that is both real-time safe and can be interacted with using Python scripting and
commands.

The Stack-of-Tasks (SoT) [6] is a software implementing a control architecture
for redundant robots, and more specifically humanoid robots. As the name suggests,
it is based on the notion of task formalised by Samson et al. [7], and solves GIK, an
approach proposed by Nakamura and Hanafusa [133]. It has been developed by the
Gepetto team at LAAS-CNRS for more than ten years, but is recently being replaced
by other control schemes such as the optimal control library Crocoddyl [147, 148].

Like several other control implementations, the SoT is solving a hierarchy of
quadratic programs to compute the instantaneous whole body control for the robot.
Different versions of the solver are available:

• A hierarchical scheme with equality constraints and tasks, formulated in ve-
locity: sot-core, http://github.com/stack-of-tasks/sot-core

• A hierarchical scheme with equality and inequality constraints and task, formu-
lated in acceleration: sot-dyninv, http://github.com/stack-of-tasks/
sot-dyninv

56

http://github.com/stack-of-tasks/sot-core
http://github.com/stack-of-tasks/sot-dyninv
http://github.com/stack-of-tasks/sot-dyninv

CHAPTER 3. Agimus

• A weighted sum control scheme formulated using the robot’s joints’
torques, sot-torque-control, http://github.com/stack-of-tasks/
sot-torque-control

In Agimus, we are using the kinematic controller, sot-core, to control the robots.
The formulation of those various controllers is automated, based on the information
structured by the graph of constraints.

Internally, the SoT makes heavy use of Pinocchio for its state-of-the-art compu-
tation algorithms for articulated-body dynamics. It is carefully made up of real-time
enabled entities in a Dynamic Graph, avoiding at runtime operations that are not
real-time safe such as memory allocations or disk access. Overall, the control scheme
is able to run at 1 kHz on a real humanoid robot equipped with a desktop-grade com-
puter’s processor.

The SoT uses the inputs coming from the robot’s sensors in order to compute
the commands that are sent to its actuators. This bidirectional communication is
however not direct, as it passes through a ros_control plugin, aptly called ros_-
control-sot, to easily integrate a SoT within the ros_control framework that the
robots uses. Because this control architecture is a crucial part of the robots we are
using, it is presented in more details in the next paragraphs.

3.3.5 Ros_control

ROS is an open-source robotics middleware suite, that has become the de facto
standard framework in light robotics. It provides services such as hardware and
software abstraction, message-passing and packaging aimed at easing the develop-
ment of functionalities in robotics. An application based on ROS is made of several
modules, called nodes, that communicate between them by passing information or
providing and calling services. Modules are typically small and specialised: an image
grabber to manage a camera; a Simultaneous Localisation And Mapping (SLAM)
component to build maps; a module abstracting a range-finder’s interface to gather
data for this map building, etc.

One of the most important component available in the ROS community is ros_-
control. It provides a mean to quickly and easily implement robot’s controllers, and
later manage them. It focuses on guaranteed real-time performance, and abstraction
from the real robot hardware. Ros_control was started in 2012 by Chitta et al. [193]
to gain independence from the controller manager of the PR2 robot made by Willow
Garage, the company behind the creation of ROS. This effort was later joined by
many young robotics companies that based their robots on ROS to benefit from the
growing community and compatible software.

Ros_control’s main job is to start, set up, run in real-time, stop and finally tear
up robotics controller software provided by the user or the community. During those
steps, it deals with the resource management of the underlying robot, preventing
multiple controllers to send conflicting commands to a motor.

This allows developers to concentrate either on the logic of a new innovative
controller, without dealing with those dubious yet crucial aspect about control of a
real system, or on their real complete applications, by reusing existing controllers
and components. Indeed, ros_control is robot-agnostic, meaning that, using the

57

http://github.com/stack-of-tasks/sot-torque-control
http://github.com/stack-of-tasks/sot-torque-control

CHAPTER 3. Agimus

Figure 3.8: An overview of ros_control and its place in a robotics
software

right configuration files, a controller such as a PID can be used as easily for a 6
DoFs arm that it can be for a delta pick-and-place robot. This independence from
the hardware is also advantageous, as it permits to use the same code either on a
real robot or on a simulation.

Moreover, several libraries like the ROS navigation stack are able to interface
with ros_control and use the controllers. Finally, part of ros_control can exist
between the controllers and the system, in order to check, and if necessary modify,
the commands sent. This is a crucial step in ensuring the safety of the real hardware
by setting limits on the actuators’ positions or velocities. A schematics summarising
those various functionalities and their interactions can be found in fig. 3.8.

The robots that we use for our experiments are manufactured by the company
PAL Robotics, and their software is heavily based on ROS. Moreover, the company
was involved in the development of the ros_control component, but is now providing
a slightly different version that is able to expose the torque and current sensors
present in their robots’ joints. Indeed, due to initial design choices, those changes
could not be introduced in the main version of ros_control, but will be part of
the next generation of ROS. In order to combine our robots’ software with our
hierarchical control stack, the SoT, presented in the previous subsection, a ros_-
control plugin integrating the SoT has been created.

3.3.6 The Agimus framework

Agimus itself is composed of several semi-independent packages, each dealing with
a different facet of the overall software. The software is mainly made of Python
scripts, and some C++ files for the performance-critical parts or to interact with
some of the accompanying software. The overall goal of the Agimus framework is
to solve a manipulation problem using a real robot which can be as complex as a
full-sized humanoid robot.

In order to achieve this, the software needs to first figure out a graph of con-

58

CHAPTER 3. Agimus

straints, described in section 3.2.1, that models the ways the robot can manipulate
the objects mentioned in the problem. It then computes the initial state the robot
and the environment are in. Next, the motion planner HPP is called to compute a
path both in the graph and in the CS of the robot. After that, Agimus creates SoT
real-time controllers for the graph’s transitions that will be passed through dur-
ing the manipulation experiment. Finally, an automatically generated supervisor
handles the execution of the motions, switching controllers as needed.

This section presents the various packages forming Agimus, and details how they
are contributing to the steps mentioned above.

Agimus
This package implements the user interface of the framework. For the technical
details, it provides plugins for the Gepetto viewer, the Graphical User Interface
used by HPP. This allows the user to manage all aspects of the experiments: graph
of constraints, estimation of the initial state of the system, manipulation planning,
and finally the execution, from a single graphical interface.

Agimus-Vision
This part of the framework deals with the localisation of 2D markers in the envi-
ronment of the robot, using its camera. It is mainly a wrapper around the ViSP
software suite, presented in section 3.3.1.

While at first the goal was to locate simple objects by direct recognition of their
geometric features, it quickly appeared that the tuning of the detector was not trivial
and the precision was not consistent depending on the ambient luminosity of the
experimentation’s room. For those reasons, we migrated towards a simpler and more
reliable system, based on AprilTags markers, at the cost of having to place them on
the objects manipulated by the robot. Since our contributions are in the domain of
planning and controllers’ generation, and not in the field of computer vision, that
solution was perfectly acceptable for us.

The package is made of a ROS node that captures the video stream of the
robot’s camera, detects and locates AprilTags, and publishes their poses relative to
the robot. The poses are published over ROS transform library 2 (TF2) [197] topics,
for a better integration with ROS and its tools. In this package, there are also some
tools for the intrinsic and extrinsic calibration of the camera.

Agimus-HPP
This is the bridge between the Agimus software and the motion planner HPP. It
provides the required adaptation to make the two software work together.

Indeed, there is at first the trouble of the different middleware used by those two
programs. On one side, HPP uses CORBA [198], while Agimus is heavily relying on
the ROS messaging system. Agimus-HPP handles the translation of the commands
and information between those two systems.

Secondly, HPP’s motion paths are continuous, but the robot awaits discretised
commands at a frequency of 2 kHz. This software package handles the sampling of
the path before the transmission to the controllers. During this step, it also calls
the Pinocchio library to add some information needed by the controllers but not

59

CHAPTER 3. Agimus

directly available in HPP, which only returns the configurations of the robot along
the path. For example, the positions of the CoM and important parts of the robot,
such as the hands, are computed and streamed during this stage of the process.

Finally, this part of the software hosts the Python scripts that conduct the esti-
mation of the initial state of the robot and its environment. As seen in section 3.2.2,
this is an essential step to make the information compatible with the graph of con-
straints and the motion planner. In order to do this, the raw state returned by the
robot’s sensors is projected into the initial state of the problem, and then a second
step of optimisation is performed to reduce the error between the theoretical model
of the robot and the sensors’ measurements.

Agimus-SoT
In this package is the main contribution brought by the Agimus framework, which is
the automated generation of the real-time controllers corresponding to the planned
motions, and their subsequent execution. This part of Agimus has two roles.

The first goal is the automated formulation of the SoT’s controllers, matching
the constraints applying to the transitions in the graph of constraints. The second
is the building of a FSM that handles the switching between those controllers and
the reactions to internal or external events during the execution. The concepts
underlying those objectives were discussed in section 3.2.5, and here we only deal
with the technical side.

The controllers generation is handled by the factory. It is not stricto sensu, as
presented in the concept, a script that reads the graph of constraints to formulate
the controllers, but a script that inherits from the graph builder in HPP and modifies
some functions to build the controllers instead of a graph. Eventually, the result is
the same.

The tasks are defined manually as classes in Python. They are made of several
Dynamic Graph components linked together. There are also metadata to inform
the factory of the diverse inputs and outputs needed by those tasks. During the
pseudo graph building, this script instanciates the classes automatically, adds them
to one SoT per transition, and links the inputs and outputs as needed. These input-
s/outputs are automatically linked to the associated source of data either internally,
via the Dynamic Graph, or externally, using the ROS messaging system.

The tasks1 that appear in our experiments are:
• CoM, which controls the pose of the Center of Mass of the robot
• Foot, which controls the pose of a foot of the robot
• End_effector, controlling the pose of the grippers, and also the gripper2. The

gripper control is using either a pure position control, generally for simulation
or empty handed tests, or a force control, to effectively grab an object. Indeed,
in the first implementation, we used only the position control, knowing the size
of our object. However, it often led to one of two problems. In some cases
the gripper was slightly too largely opened and the object slided, sometimes

1Code folder found at https://github.com/agimus/agimus-sot/tree/master/src/agimus_
sot/task

2Code related to the gripper’s control: https://github.com/agimus/agimus-sot/tree/
master/src/agimus_sot/control

60

https://github.com/agimus/agimus-sot/tree/master/src/agimus_sot/task
https://github.com/agimus/agimus-sot/tree/master/src/agimus_sot/task
https://github.com/agimus/agimus-sot/tree/master/src/agimus_sot/control
https://github.com/agimus/agimus-sot/tree/master/src/agimus_sot/control

CHAPTER 3. Agimus

falling out of the gripper. In other cases, with a gripper more firmly closed,
the motors were excessively loaded and the robot’s securities were triggered,
stopping the motor, thus releasing the object. Therefore, a force control in
admittance was added, using the current sensors of the motors, because the
grippers are one of the few joints of our robot not equipped with direct torque
sensing.

• Grasp, detailed in section 3.2.1, a special task to handle the grasping of the
object on the table or during the handover. It was added to handle the addition
of visual servoing to the framework, which is discussed in chapter 5. Its job is
mostly to ensure that the second gripper is correctly aligned with the object,
even if the latter has slided in the first gripper during the preceding motions.

• Posture, the lowest importance task that follows the guide path computed by
the motion planner. Without perturbation, all the tasks should be compatible
and therefore the robot gladly follows this guide. However, in the presence
of perturbations, the hierarchy prevails and the robot ensures its equilibrium,
then the following of its visual inputs, and finally, it tries to follow the guide
path. This task acts as a regularisation term in the control’s quadratic pro-
gram.

• Tasks dealing with visual servoing schemes are introduced in the chapter 5.

The supervision of the whole system is done by the aptly named supervisor,
which emulates a FSM. It is this component that selects the SoTs during execution,
and connects them to the rest of the system. Its most important job is to check
if the next SoT is compatible with the previous one, i.e. that the commands that
would be sent to the robot are nearly the same, to avoid discontinuities that create
jerk and are harmful to the mechanics of the robot.

The supervisor receives orders from the user interface, presented at the begin-
ning of this section, but also from some events, such as the grippers’ current sensors
or the arm torque sensors. At the moment of experimentation, the orders were lim-
ited to user’s authorisations to proceed with the next action, in order to allow some
time to check if everything is going smoothly. Further envisionned extensions are
discussed at the end of this chapter.

Agimus-Demos
This package hosts the specific instances of the experiments, which consist mostly
of configuration files. In a typical demo folder3, we have:

• The URDF descriptions of the objects involved in the experiment, fixed or
movable, along with the handles’ position to grab them.

• The description of the robot, comprised of its own URDF file and additional
information about the grippers’ capabilities, such as pre-grasps positions, to
improve the speed of the manipulation planning step.

• A rough initial state of the world, that is the basis for the later estimation by
vision and on-board sensors.

3https://github.com/agimus/agimus-demos/tree/master/talos/manipulate_boxes

61

https://github.com/agimus/agimus-demos/tree/master/talos/manipulate_boxes

CHAPTER 3. Agimus

Vision

Estimation

Control

Robot

Planning

Supervisor

Figure 3.9: The architecture and interaction between the compo-
nents of Agimus. Single arrows means that a component provides
information to another. Double arrows are interacting directly, con-
versely to the two arrows between control and the robot, that repre-
sents an indirect communication via the robot’s low level software.

• A script describing the goal of the experiment, and, at the moment of ex-
perimentation, providing shortcuts for the motion planning and SoTs creation
steps, by removing unreachable states or dead-end transitions. Those infor-
mation should be computed automatically, but the goal of our contribution
is not about optimisation of motion planning problems, so we left it as is, in
order to abstain from increasing the complexity of the overall framework.

• Some experiment-specific files and algorithms, such as a travelling salesman
solver for the demonstration that are presented in the chapter 5.

Most of those files are used indifferently in simulation or on the real robot, except
for the physical aspect of gripping an object, which has to be simulated due to
the unreliable behaviour of the physics engine of the simulator when dealing with
plane-on-plane contacts.

The fig. 3.9 summarises the different part of the Agimus framework and the
interactions between them.

3.3.7 Conclusion

In this section were presented the various pieces of software at the core of the Agimus
framework. Integrating all those software, with their different means of formulating
constraints or tasks, was a difficult and time-consuming part of the work of this
thesis. But now that the concepts have been explained and the software presented,
it is time to go onto the experiment that validated our approach.

3.4 Experiments

In this section is presented the demonstration that was performed to validate the
generation of the controllers using the Agimus framework, and to confirm the inter-
est in pursuing the research in this direction. First, there is a thorough introduction
to the robot TALOS, accompanied by some comparisons against other humanoid

62

CHAPTER 3. Agimus

robots. After that, the course of the experiment is described, along with a typical
solution provided by the framework. Finally, the downsides of this first demonstra-
tion are discussed.

3.4.1 The TALOS humanoid robot

The TALOS robot, fig. 3.10, has been developed by the Spanish company PAL
Robotics, based on the requirements [9] provided by the Gepetto team from the
LAAS-CNRS in Toulouse, France.

It is a 1.75m humanoid robot weighing around 100 kg, with two 6 DoFs legs,
a 2 DoFs waist, two 7 DoFs arms each with a 1 DoF gripper and a 2 DoFs head.
It has been designed primarily for dexterous bi-handed manipulation. As such, the
arms can lift up to 6 kg fully stretched and the reachable workspace in front of the
robot is maximised. TALOS is also capable of walking at a mean speed of 10 cm s−1

during 1.5 h.

Figure 3.10: TALOS humanoid robot devel-
oped by PAL Robotics

It is equipped with high-precision
magnetic encoders, temperature and
currents sensors for each of those artic-
ulations, coupled with torque sensors in
all of them except the head’s and grip-
pers. As usual for such robots, a Iner-
tial Measurement Unit (IMU) provides
a 1 kHz filtered measure of the orien-
tation, angular speeds and linear accel-
erations of the torso in which it is in-
stalled. By default, a RGB-D Orbbec
Astra camera is mounted in the head.
Finally, in the ankles and wrists, there
are 6 axis force-torque sensors.

An EtherCAT bus [199] connects all
those actuators and sensors to a con-
trol computer, running a Linux Ubuntu
operating system patched with RT-
Preempt, that add hard real-time ca-
pabilities to the system. All this al-
lows the control loop to run at 2 kHz,
with a theoretical bandwidth margin to
go up to 5 kHz to provide the shortest
reaction time necessary for the execu-
tion of dynamic movements. Because
our controllers are only able to be run
at 1 kHz, we interpolate the commands
before sending them to the robot. The
software stack is based around the well-
known middleware ROS.

There exists multiple control back-ends provided either by the manufacturer or
by the academic users of the robot. A second computer, also running Ubuntu, but

63

CHAPTER 3. Agimus

without the real-time patch, handles the data coming from the high bandwidth
sensors such as cameras and laser rangefinders, and the software that do not need
the real-time features of the control computer. Off-the-shelf, the planning of the
robot’s movements is assured by MoveIt! [200], and a simulation framework based
on Gazebo [201] is provided by PAL Robotics.

Our TALOS, named Pyrène, was the first of its kind, and therefore had some
shortcomings due to its novelty, especially a bad upper body calibration, which
is described more in-depth in the chapter 4. The head has lately been modified
to include two Intel RealSense cameras, a T265 oriented forwards, and a D435i,
oriented towards the ground to detect obstacles. The main sensor in the head is
an Ouster OS1-64 LiDAR, which provides a 3D visualisation of the world around
the robot up to 120m. The software stack we use is also different from the stock
TALOS. During this thesis, part of the control loop was handled using the SoT,
presented in section 3.3.4, while HPP, section 3.3.3, provided the motion planning,
using information gathered with the vision system and treated by ViSP.

3.4.1.1 Position against other humanoid robots

TALOS was specified by the Gepetto team as a successor for its aging humanoid
robot, HRP-2, which was in use since 2006. The requirements written by the
Gepetto’s members were based on the feedbacks from the team participating in
the DARPA Robotics Challenge (DRC). The DRC was created by the Defense Ad-
vanced Research Projects Agency (DARPA), an entity of the United States of Amer-
ica’s army. Hold between 2012 and 2015, its goal was “to develop ground robots
capable of executing complex tasks in dangerous, degraded, human-engineered en-
vironment”[202]. Because the aim was to navigate inside environments adapted to
the human morphology, the majority of the teams involved in the challenge used
humanoid robots.

(a) hrp-2-kai (b) DRC-Hubo+ (c) Atlas, 2013 version

Figure 3.11: Some of the humanoid robots used in the DRC

Many participants used older robotics platforms as a basis, with updates to be
able to handle the proposed tasks. HRP-2, originally conceived in 2003, became

64

CHAPTER 3. Agimus

HRP-2 Kai
[203]

DRC-HUBO+
[204]

Atlas
2016 version

[205]
TALOS [9]

WALK-MAN
2018 version

[206]
Height 1.71m 1.70m 1.50m 1.75m 1.915m

Width 0.63m 0.59m 0.65m 0.55m to
0.78m 0.815m

Depth 0.36m 0.35m 0.48m 0.330m 0.600m
Weight 65 kg 80 kg 75 kg 95 kg 132 kg
Total
DoFs 32 32 28 32 33

Head 2DoFs 1DoF 1DoF 2DoFs 2DoFs
Arms 2×7DoFs 2×7DoFs 2×6DoFs 2×7DoFs 2×7DoFs
Hands 2×1DoF 2×1DoF No 2×1DoF 2×1DoF
Waist 2DoFs 1DoF 3DoFs 2DoFs 3DoFs
Legs 2×6DoFs 2×6DoFs 2×6DoFs 2×6DoFs 2×6DoFs
Wheels No 2×1DoF No No No

Table 3.1: Description of some robots used in the DRC

HRP-2 Kai, fig. 3.11a, a taller version, with an additional DoF on each arm to
improve the manipulation capabilities of the robot. DRC-Hubo, fig. 3.11b, winner
of the challenge, is also a taller version of the Hubo lineage. Its originality came
from its ability to transform between a wheeled position, faster and safer on the
ground, and a walking position, essential to climb stairs.

The DARPA also provided some teams, which were successful in the virtual
parts of the challenge, with Atlas humanoid robots, fig. 3.11c, made by the company
Boston Dynamics. This 1.88m and 150 kg robot used hydraulic power instead of
electrical actuation, but required to be tethered to an outside source of power.

Following the challenge, which had led to the publications of many papers giving
feedbacks about design choices, many research team updated again their robots to
pursue further advances, while other teams, such as Gepetto, designed new robots
from the ground up, in order to benefit from the experience and the progress of
key technologies, like motors’ and computers’. The new Atlas, fig. 3.12a, presented
in 2016, is smaller and lighter, at 82 kg for a height of 1.75m. It lacks the hands
of its predecessor, but keeps the hydraulic actuation while gaining autonomy with
an on-board battery pack as power source. Those changes are consistent with the
new research focus of Boston Dynamics, which have shifted toward highly dynamic
motions instead of manipulation.

The robot WALK-MAN, which took part in the DRC, was also updated using
feedbacks from its performance during the challenge. The new version, fig. 3.12c,
presented in 2018, is both stronger and lighter than the DRC’s version, thanks
to the use of aluminium and titanium alloys for its frame, instead of steel. Its
computational abilities were also upgraded to increase its capacity to perform actions
autonomously. Indeed, the original European project was to design a robot mainly
teleoperated, and increase the autonomy over time.

65

CHAPTER 3. Agimus

(a) Atlas, 2016 version (b) TALOS (c) Walk-Man, 2018 version

Figure 3.12: Humanoid robots in the years following the DRC

3.4.2 Course of the experiment

Although our work is general and applies on instances of manipulation problems
with several robots and several objects, we illustrated our framework on a simpler
example where a TALOS robot is requested to grab a wooden plank lying on a table,
turn it upside-down, then place it back on the table.

Description of the setup
Before the start of our framework, the robot is positioned in its stand-up configu-
ration, in front of a table, on which two AprilTags are fixed at known coordinates.
On this table, we placed a plank of wood, also decorated with some AprilTags, on
one of its largest faces.

The exact positions of the table relative to the robot is not known, and the plank
of wood is deliberately randomly placed on the table in order to exhibit the interest
of the estimation step, based on the localisation of the AprilTags markers. Indeed,
for other experiments done by the team, the positions of both the robots and the
objects manipulated were enforced, which necessitates careful measurements, taking
valuable time and increasing the risk of failure if they were slightly off.

Inputs of the problem
In the previous section, we presented a typical demonstration folder containing the
configuration files that describe the experiment to perform. Those files are the only
inputs given to the framework, and their content is recalled here for clarity:

• The model of the robot and information about its grippers.
• Data about the environment: models and rough positions of the objects, static

or movable, and information about their handles for the latter.

66

CHAPTER 3. Agimus

• A goal, which is here to turn the plank upside-down from its initially estimated
orientation (the goal is therefore not fixed but depends on the placement of
the plank during the estimation step).

Construction of the graph of constraints
The graph of constraints of the experiment is automatically built from the informa-
tion regarding the grippers and the objects’ handles. The states in the graph are
linked to the grasps, explained in section 3.2.1.

We designate those states using the gripper-handle pairs: ((g1, h1), (g2, h2)) where
gi and g2 are the TALOS grippers, and h1, h2 take values in (H1, H2, H3, H4,None),
and represent the handles of the plank, illustrated previously in fig. 3.2. hi =
None, i = 1, 2 means that gripper i does not grasp anything.

Thus the theoretical number of states is 5 ∗ 5 = 25. However we only considered
a smaller number of states, since some combinations of grasps are always in collision.
It is obvious that the two grippers cannot grab the same handle at the same time,
nor can they grip the rotated handle on the same side of the box. A simple pruning
thus reduces the number of reachable states to 17:

• 5 for ((g1, None), (g2, h2)), h2 ∈ (H1, H2, H3, H4, None)
• 3 for ((g1, H1), (g2, h2)), h2 ∈ (H3, H4, None)
• 3 for ((g1, H2), (g2, h2)), h2 ∈ (H3, H4, None)
• 3 for ((g1, H3), (g2, h2)), h2 ∈ (H1, H2, None)
• 3 for ((g1, H4), (g2, h2)), h2 ∈ (H1, H2, None)

At the time of the experiment, those combinations were detected by a human
operator and integrated into the script describing the experiment, but this detection
might be done automatically. The user also provides some waypoints states to guide
the motion planner and decrease the planning time, see section 3.2.1. That could
also be automated for such a simple object, with waypoints always positioned some
15 cm above the handle of the object. However, for more complex objects, like a
drill, for example, this would require further research to reliably automatise.

Initial state estimation
Now that the graph of constraints has been computed, the framework uses the
sensors of the robot to estimate the initial state of the system. Moreover, neither the
exact position of the table nor that of the plank is known before this step, whereas
those information are needed by the manipulation planner. The file describing the
demonstration only provides a rough estimate of where to find those objects relative
to the robot expected starting position.

The estimation of those positions is done by the computer vision system of
Agimus which detects and computes the poses of the AprilTags on the table and
the plank. The relative transformation between each tag and the corresponding
object is provided in the script describing the experiment. The rest of the system
is the robot, which is able to compute its overall state via the measurements of its
encoders in each joints of its body. The resulting estimation is then compared to the
constraints of the states of the graph of constraints in order to find the one closest

67

CHAPTER 3. Agimus

to the current situation. Finally, the raw estimated state of the robot and the world
around it is projected onto the selected state to provide the mathematically sound
initial situation that the motion planner requires.

Precision about the human operator
From the start to the end of the experiment, the robot is nearly autonomous.
Indeed, all the controllers are running on its on-board control computer, and, in
order to demonstrate the efficiency of our framework, the rest of Agimus, including
the motion planner, is operating on the second on-board computer.

The "nearly" part comes from the supervision offered by the human operator.
Its first intervention happens at the end of the estimation process, to validate that
the situation seen by the robot and the initial state selected in the graph are indeed
representing the real scene. Secondly, the motion planner uses a variant of the
RRT algorithm, which samples random configurations. This can lead to movements
achieving the goal, but with weird detours that increase the overall duration of the
experiment, thus increasing the risk of something going amiss.

Therefore, the operator validates the movement proposed by the planner, or asks
for further optimisation or a totally new plan. Then, they are manually ordering
the robot to proceed with each step of the experiment, in order to have some time
to check beforehand that the next movement will not break the system, because this
robot is quite costly. These steps are not necessary for our framework to work, but
the cost of a real robot is too high not to stay cautious.

Manipulation planning
At this moment in the experiment, we have the initial state of the experiment, the
goal state, and a graph of constraints whose connectivity will guide the manipu-
lation planner. Provided a solution exists, the planner returns it as a sequence of
elementary paths. An elementary path belongs to a single transition in the graph of
constraints, and therefore will be subject to the same controller from start to end.
The human operator may choose to redo this step if the complete planned path
could endanger the robot.

Controllers generation
Using the information contained in the graph of constraints, and the solution pro-
vided by the manipulation planner, Agimus formulates a SoT for each transition of
the graph passed through during the experiment. This part of the algorithm has
been seen in details in section 3.2.5 and section 3.3.6.

After those steps, the situation is as follows:
• The robot is standing still in front of the table, upon which the wooden plank

lies untouched.
• The graph of constraints has been created and the initial state determined

automatically via the use of the robot’s sensors.
• The manipulation planner has found a solution to reach the goal.
• Agimus has formulated the controllers to execute this solution.

68

CHAPTER 3. Agimus

3.4.3 Presentation of a typical run

As the motion planner is based on RRT, there is no guarantee that the robot will
find the same solution from one instance of the problem to another. The constraints
and the intermediate waypoints, however, provide a way to structure the solution
found by the robot.

A typical solution is provided in fig. 3.13, and explained thereafter. Unless stated
otherwise, the controllers are using the planned motions as references.

1: Analysing the
scene and plan-
ning the motions

2: Moving to-
wards first grasp

3: Grasping the
plank

4: Moving towards
second grasp

5: Grasping with
the two grippers

6: Releasing
the first grasp

7: Moving towards
releasing position

8: Releasing the
plank upside-

down on the table

Figure 3.13: A typical run of the plank manipulation experiment

69

CHAPTER 3. Agimus

1. The robot goes to its offline-planned initial position. It is position controlled
using the manufacturer software. It uses its cameras and encoders to determine
the situation and then plan the motions.
Active Agimus controllers:
None.

2. Waypoint with the gripper above the first handle of the plank. This motion is
not using visual servoing but only following blindly the plan computed at the
previous step.
Active Agimus controllers:

• CoM position, left and right feet positions
• Right gripper position
• Posture task

3. Grasp of the plank using the right gripper.
Active Agimus controllers:

• CoM position, left and right feet positions
• Right gripper position
• Right gripper admittance control, to maintain a 5N gripping force
• Posture task

4. Left gripper at the waypoint to grab the second handle of the plank.
Active Agimus controllers:

• CoM position, left and right feet positions
• Right gripper position
• Left gripper position, relative to the measured position of the plank
• Right gripper admittance control, to maintain a 5N gripping force
• Posture task

5. Grasp of the plank using both grippers.
Active Agimus controllers:

• CoM position, left and right feet positions
• Right gripper position
• Left gripper position, relative to the measured position of the plank
• Right gripper admittance control, to maintain a 5N gripping force
• Left gripper admittance control
• Posture task

6. Release of the plank by the right gripper. Note that the right gripper’s position
is now relative to the plank’s position, instead of the left gripper, as in the
previous steps.

70

CHAPTER 3. Agimus

Active Agimus controllers:

• CoM position, left and right feet positions
• Left gripper position
• Right gripper position, relative to the measured position of the plank
• Left gripper admittance control, to maintain a 5N gripping force
• Posture task

7. Waypoint above the release position of the now bottom-up plank.
Active Agimus controllers:

• CoM position, left and right feet positions
• Left gripper position
• Left gripper admittance control, to maintain a 5N gripping force
• Posture task

8. Finally, the plank is placed down on the table by the robot, upside-down, as
requested.
Active Agimus controllers:

• CoM position, left and right feet positions
• Left gripper position
• Posture task

The robot was able to perform this experiment multiple times with a
rate of success of around 80%. The failures mainly came from the sliding
of the plank from the gripper, which prevented the second grasp from hap-
pening. A video is available at https://peertube.laas.fr/videos/watch/
c76b5e69-41b5-4096-847b-7df9f52da072. In this video, it can be seen that the
robot is greatly overshooting its commands. This was due to a low-level bug (forc-
ing a non-zero speed at the goal position) on the robotic platform that could not
be solved by the manufacturer before this video was due for the presentation at a
conference. Since it was not impacting our experiment, we decided to proceed and
explain the bug instead of trying to poorly minimise it by slowing down the robot’s
speed.

3.4.4 Discussion

The first observation that can be made is that our framework allowed the successful
execution of the experiment. While it might seem that we are using a very complex
machinery for a simple bi-manipulation task, let us not forget the demonstrated con-
tributions that underlie Agimus. Those main additions to the pre-existing software
are the estimation of the initial state of the robot and environment, and the auto-
mated generation of the controllers and the associated FSM to handle the execution
of the whole experiment.

First, we have added an estimation system to the pre-existing concept of the
graph of constraints. This extension of the manipulation planner is quite useful,

71

https://peertube.laas.fr/videos/watch/c76b5e69-41b5-4096-847b-7df9f52da072
https://peertube.laas.fr/videos/watch/c76b5e69-41b5-4096-847b-7df9f52da072

CHAPTER 3. Agimus

because until this, one had to rely upon the reliable placement of the manipulated
objects. It was achieved either manually by means of measurements, or in a more in-
dustrial setup, by constraining all the manipulated parts physically. One of the goals
of the joint laboratory supporting this work being the cooperation between robots
and humans, the ability to handle the little chaos coming from small misplacement
is necessary.

The second point, the generation of the controllers, is also important, especially
for the future of our work. Indeed, other teams have been linking controllers to part
of a planned configuration path, in order to execute it robustly, and using FSM to
orchestrate the switching between controllers. However, at the time this work was
submitted, we did not find another work performing automated generation of the
controllers or the associated FSM. The versatility of our approach became visible
when we had to add admittance control to the gripper. The formulation of the task
itself was done manually, but the rest of the system, especially the generation of the
controllers, stayed the same and the experiment was improved quickly.

But there were also downsides to our framework that we did not anticipate
enough.

3.4.4.1 Failures’ detection

In its current form the system does not track failures. For instance it happened
during the first tests that in some configurations the box slid from the robot gripper.
This has been partly fixed by adding rubber to the grippers to increase the friction
coefficient while holding the object. A more sound solution was the addition of the
admittance control to take care of the gripper’s clamping force. Nevertheless, sliding
still occurred in some cases.

Detecting such changes with the help of computer vision would allow the robot
to re-plan the remaining movements if necessary. However, recovery from complete
failure may lead to complex solutions which are not feasible. For example if the plank
falls on the floor, the situation involves a more complex motion such as kneeling
down. Finding this would involve computationally intensive searches for the current
system, and would be very risky to execute on the real robot. In this case, it is
easier to ask for the help of an operator.

3.4.4.2 Limitations caused by the poor kinematic calibration of TALOS

During the first wave of experiments, we were not having too much trouble with the
robot. It was able to reach for the plank almost all the time, and only the sliding of
the plank in the gripper was concerning, as mentioned in the previous paragraph.
However, after an human error during an experiment, the robot had to be sent back
to its manufacturer for repairs. When it came back, the gripper missed the plank
nearly every-time.

We firstly thought that the calibration of the camera was now incorrect, or that
the eye-to-hand parameters were reset during the repairs. A new calibration of the
camera was performed using state-of-the-art software dedicated to the task. This
did not improve the success rate of the experiment.

Measurements between the camera and the centre of the detected AprilTags

72

CHAPTER 3. Agimus

showed that the computed pose of the object was correct with a precision of around
1 cm. As we sometimes saw gap of nearly 10 cm between the gripper’s position and
the object, it was clearly not the principal cause of the observed problem of precision.
Further tests were able to demonstrate that the robot was incorrectly reporting the
position of its grippers relative to its floating base.

The chain of events was as such as follows:
• The camera locates the AprilTags on the object, and reports its pose relative

to its local frame within a centimetre of precision.
• The pose of the object relative to the base of the robot is computed, using the

values of the encoders in the chain of articulation between the base and the
camera frame. This introduces small errors because the chain is short and not
too badly calibrated.

• Our software uses the robot model and information coming from the torso’s
and arm’s encoders to compute the pose of the gripper and move it toward the
object. The determination of the gripper’s pose is subject to large errors, due
to the arm poor calibration and the length of the kinematic chain between the
base of the robot and the gripper (8 joints).

In some rare situations, the robot was able to catch the object because the
position of the arm induced a compensation between some errors in the gripper’s
pose estimation. In other situations, the errors were accumulating, leading to a final
error of around 10 cm, the same order of magnitude that we observed experimentally.

Two axis were explored simultaneously to prevent this behaviour from occurring
again. On one hand, the chapter 4 explains in-depth our investigation, propositions
and finally the solution found to get a better calibration of the arms of our TALOS
humanoid robot. On the other hand, the chapter 5 deals with the addition of
visual servoing before grasping an object, in order to improve the precision of the
manipulation.

3.5 Conclusion

In this chapter was presented the first contribution of my thesis. It is a framework
named Agimus that assembles together a manipulation planner and a real-time
controllers executable on a real humanoid robot. The major additions to those
two existing software are a process of initial state estimation for the robot and
its environment, and a process to automatically generate the controllers using the
information available to the manipulation planner. As such, a user should be able to
quickly create experiments involving the manipulation of objects that do not have
to be placed precisely, providing that the robot is still able to see them.

During this chapter were presented the concepts surrounding the framework,
then the software implementing them, some of which existed beforehand, and some
that were made for the demonstration. Then, a demonstration performed by a
real humanoid robot TALOS was described. Finally, we discussed the upsides and
downsides of our approach and the teaching learnt from the experiments.

73

CHAPTER 3. Agimus

The original publication of this work is:

Alexis Nicolin, Joseph Mirabel, Sébastien Boria, Olivier Stasse, and Florent
Lamiraux. “Agimus: A new framework for mapping manipulation motion plans
to sequences of hierarchical task-based controllers”. In: 2020 IEEE/SICE Interna-
tional Symposium on System Integration (SII). IEEE. 2020, pp. 1022–1027

74

Chapter 4

Calibration

Contents
4.1 Introduction . 76
4.2 Calibration using HPP’s Newton-Raphson projection . 77
4.3 Calibration as several manipulator arms 80
4.4 Whole-body elasto-geometric calibration of a TALOS

robot . 82
4.5 Conclusion . 83

75

CHAPTER 4. CALIBRATION

4.1 Introduction

In the previous chapter, we ended on a bitter note about our experiment where a
TALOS robot was asked to turn a plank upside-down. Following a maintenance,
the robot could no longer grab the plank properly. Before its reparations it was able
to seize the plank on the table with a good success rate. But after its return, the
TALOS robot was only able to catch it correctly on rare occasions. Often, the plank
and the gripper were separated by a clearly visible distance, of up to 10 cm.

The first sources of error we suspected were the camera and the computer vision
software tasked with detecting and estimating the poses of the AprilTags used in our
experiments. We calibrated the camera’s intrinsic parameters, to no avail, then the
extrinsic parameters, i.e. the position of the camera relative to the robot’s frame
of origin. The results were worse, and coarse measurements of the distance and
angles between the camera lens and the markers showed that the reported data
were coherent with the reality. The vision was therefore not the cause of our issues.

Figure 4.1: Comparison of the joints’ offsets in our TALOS right
arm before and after the calibration process. Graph kindly provided
by the authors of [207]

During a colleague experiment, we noticed that the first joint of the arm, at the
level of the shoulder, along the vertical axis, was visibly shifted. The angle was later
shown to be about 7° off [207], with another large offset of 4° for a joint of the wrist.
A graph of the offsets of the joints of the right arm, before and after calibration, has
been kindly provided by Bonnet et al., fig. 4.1. Those defects were overlooked during
our experiments because we use a different initial configuration for the robot, where
its shoulders are angled towards the front, making the misalignment less likely to
be noted. Our colleagues, doing walking experiments, were aligning the shoulders
with the chest of the robot, making the shift unmistakable. We also later tested the

76

CHAPTER 4. CALIBRATION

robot by commanding the grippers to face each other. They were not aligned at all,
as they should have been, meaning that the two arms had different offsets.

The origin of our troubles having been identified, it was clear that the robot
needed to be calibrated in order to reconcile the computer model and the reality.
The manufacturer was aware of some misalignment issues on the arms of the robot,
although offsets of this magnitude rarely went unnoticed before the robots were
sent back to their users. We learnt during our discussions with them that there
were no definite calibration method for the arms of the robots. While the legs were
assembled and adjusted with their parts held in clamps, the arms were too fragile
for the procedure. So they were placed on the body and then aligned manually by
a human operator.

Obviously, this approach was successful enough that we did not complain about
the precision of the robot during our first round of experiments. However, such a
simple procedure would not yield a calibration good enough for the drilling oper-
ations that were the final goals of the Airbus-LAAS joint laboratory ROB4FAM.
We then decided to use the new Motion Capture system (MoCap) available to our
laboratory team to calibrate the robot ourselves, to the required precision.

In this short chapter are presented the two approaches that I used at the start
of my thesis in order to try to calibrate the TALOS humanoid robot. The first was
based on the projection of the raw robot’s configuration onto a HPP state, in the
same way as the estimation step of Agimus, described in the section 3.2.2. The
second method tried was based on the calibration of industrial manipulator arms.
Those two attempts were fruitless, and this time-consuming work was passed to
a more senior colleague already versed in the domain of kinematics and dynamics
identification of robots’ parameters. The last section of this chapter quickly describes
his method, that is currently being submitted to a journal.

4.2 Calibration using HPP’s Newton-Raphson
projection

The first calibration method that was envisioned was based on the same algorithms
as the Agimus framework. As a recall, during the estimation step of this framework,
the robot takes the data coming from its on-board sensors in order to assess its own
state and that of the surrounding world. Because no sensor is perfect, or in our
case because the computer model of a robot sometimes do not reflect the reality
well enough, this raw state of the world is projected onto the graph of constraints.
This projection has two goals. It allows the system to figure out at which step of
the demonstration it is, and therefore which steps still need completion. It is also
used to obtain a mathematically sound representation of the state of the world,
compatible with the manipulation planner that is used afterwards.

Our working hypothesis for this approach was the following: the bodies of the
robot in the computer model are correct, and the joints’ positions relative to those
bodies are also accurate, but there is an offset angle for each of the revolute joints,
that is incorrectly adjusted by the manufacturer. The method we devised was the
following:

77

CHAPTER 4. CALIBRATION

• Add a virtual revolute joint for each existing joint of the arm in the computer
model. This virtual joint would measure the offset between the data of the
real robot and its digital counterpart.

• Stick reflective markers onto the robot’s chest and grippers.
• Use a MoCap to measure the pose of the gripper relative to the chest, at

several random configurations.
• Create in HPP one state for each configuration, using the commanded joint

values as constraints. Those states are all contained into a larger state with
parametrised constraints for the offsets we are seeking, and for the exact po-
sitions of the reflective markers fixed on the robot.

• We then project at the same time onto their respective state the recorded
positions of the markers registered by the MoCap for each configuration.

By locking the joints of the robot in the model and asking the software to perform
a projection, the only variables that can be used are the virtual joints that represent
the offsets. We had 13 DoFs that were not locked, 7 for the arms’ offsets and 2× 3
for the positions of the markers on the chest and gripper. However, we measured
only the 3 components of the relative positions between the gripper’s marker and the
chest’s. Therefore, the projection method could not provide a unique solution had we
used only one state and one measurement. That was why all those states were part
of the larger parametrised state mentioned above. By projecting every measurement
at once, the parameters, i.e. the offsets and the positions of the markers, would be
the same for all the projections. The method was analogous to performing a least
mean squared errors method.

This method required some modifications of HPP, especially for the simultaneous
projections of the configurations. It was successfully tested on simulation data and
the results were satisfying.

Motion Capture system
A MoCap is a group of synchronised infrared cameras coupled with a dedicated
software, that is able to accurately pinpoint the positions of reflective markers in 3
dimensions. It operates by first detecting and isolating the markers in the images,
and then by triangulating their positions using multiple cameras calibrated to have
overlapping fields of view. The MoCap we used was provided by Qualisys.

We can see some of the cameras in fig. 4.2, along with the TALOS humanoid
robot equipped with reflective markers. The system is equipped with 20 Miqus M3
cameras that should be able to reach a 3D resolution of around 0.11mm, up to a
frequency of 340Hz, in ideal conditions. It covers the whole experiment room of
nearly 5×10 m, over which the re-projection error was estimated by the software to
be around 0.6mm. This performance was confirmed by independent measurements
performed using a laser tracker, itself accurate to 10µm to 50 µm, i.e. an order of
magnitude more precise.

Those characteristics were more than sufficient for our needs, and we limited the
acquisition frequency to 100Hz. In order to maximise the quality of the data for
our measurements, each configuration was sampled for 10 s, and we kept the 1 s were
the measurements were the most stable.

78

CHAPTER 4. CALIBRATION

Figure 4.2: A TALOS humanoid robot equipped with IR reflective
markers and surrounded by MoCap cameras

When this approach was carried out on the real humanoid robot, the results were
less than convincing. The offsets computed by this method were wildly dependent
on the subset of the whole dataset that we used. As we were taking subsets of more
than 50 configurations randomly from a complete dataset of around 100, it should
not have happened. Further investigations showed that the robot was less rigid than
previously thought and documented. Therefore our hypothesis of simple offsets for
the angles of the joints was not sufficient.

In order to continue in the direction of this method, we should have taken into
account many other effects. Those would have needed an order of magnitude more
sampled configurations to reach convergence for the calibration values, which was not
tractable for HPP. A second option would have been to generate the configurations
providing the most observability of those offsets, but it was outside our realm of
competence. For all these reasons, this approach was abandoned for a more proven,
but more naive calibration method, which is the subject of the next section.

79

CHAPTER 4. CALIBRATION

4.3 Calibration as several manipulator arms

The second method aim was to be simple and effective. In the previous section, we
were already trying to calibrate one arm from the chest up to the gripper, indepen-
dently of the rest of the humanoid robot. Therefore, it seemed a good idea to try
to implement calibration methods created for industrial manipulator arms. Indeed,
each arm of TALOS is like a 7 DoFs manipulator grounded in the chest. In a similar
manner, the legs are 6 DoFs serial articulated systems with the pelvis of the robot
as their base.

The subject of manipulator arm calibration has been discussed for decades [208,
209] due to its importance to the industry. Industrial robots have always had a
good repeatability, because their job is to repeat the same task continuously, but the
accuracy was not always great. Those robots were historically programmed manually
by human operators, who could see the result of their commands and compensate for
the eventual errors. But this was a time-consuming process of trial and error, that
was not desirable. Robots are increasingly being programmed by motion planners, or
moving in reaction to real-time inputs. For those tasks to succeed, a good accuracy is
necessary, and therefore a good calibration of the kinematic and sometimes dynamic
parameters of the system is required.

Denavit-Hartenberg parameterss
In robotics, the Denavit-Hartenberg parameters (DH parameters) [210] are four
parameters and an associated convention to attach reference frames to the bodies
of a kinematic structure. This is often used to define the pose of a body relative
to its parent. While other conventions have been proposed over the years, this one
and its modified version [211] are still the most cited and used to this day. In
this convention, the transformation between the frames of two consecutive bodies is
made of two screws.

Definition 9 — A screw
It is a transformation combining a rotation θ around an axis with a translation d
along the same axis. The order of those two elementary transformations does not
matter, because: Transaxis(d) ·Rotaxis(θ) = Rotaxis(θ) · Transaxis(d).

The first screw is along the axis of the joint between the two consecutive bodies,
conventionally named [Z]:

n−1Zn = Rotzn−1(θn) · Transzn−1(dn)

=

cos(θn) − sin(θn) 0 0
sin(θn) cos(θn) 0 0

0 0 1 dn
0 0 0 1

 (4.1)

80

CHAPTER 4. CALIBRATION

The second, named [X], is along the x axis of the new frame defined by the
previous screw:

n−1Xn = Rotxn(αn) · Transxn(an)

=

1 0 0 an
0 cos(αn) − sin(αn) 0
0 sin(αn) cos(αn) 0
0 0 0 1

 (4.2)

It defines the new origin and the new reference frame for the next joint in the
kinematic chain. The overall transformation is shown on fig. 4.3. The Denavit-
Hartenberg parameters (DH parameters) [210] for each transformation are thus the
four values: d, θ, a, α. Finally, for a serial robot, we have the equation: [T] =
[Z1][X1][Z2][X2] . . . [Zn][Xn] Where [T] is the transformation between the base of
the robot and the nth body.

CC
-B

Y-
SA

4.
0

Pu
sh

pe
nd

ra
05

0

Figure 4.3: The four classical DH parameters, shown in red, to
transform the frame i-1 into frame i

Using publicly available software dedicated to manipulator arms’ calibration, we
again tried to process our robot’s data in order to compute those parameters for
each joint. However, the flexibilities of our robot once again rendered the procedure
difficult. Indeed, the software we chose was expecting a very rigid robot, like an
industrial manipulator arm, and not a lightweight humanoid robot.

After this new attempt devoid of result, it was decided to pass this calibration
project to a colleague whose speciality is the identification of the kinematic and
dynamic parameters of robots.

81

CHAPTER 4. CALIBRATION

©
S.

Bo
ria

,D
.V

an
D

am
m

e,
Ai

rb
us

Figure 4.4: The various deformations on an industrial robot.

4.4 Whole-body elasto-geometric calibration of a
TALOS robot

This short section is not a part of my own work, but instead of other members of
the team who pursued the calibration project after me. I wanted to include a short
summary of their methods and results in order to bring closure to this chapter.
However at the time of writing their work is awaiting reviews following a submis-
sion to IEEE Transactions on Robotics, therefore I kept the explanations short to
avoid plagiarising their future publication. There are two main differences with the
work reported on in the last two sections. First, the authors took into account the
mechanical deformations of the robots’ arms and legs in their optimisation of the
kinematic parameters. Secondly, the data acquisition was not performed on random
postures any more, but on fewer carefully selected configurations.

One of our main assumption was that the humanoid robot was sufficiently rigid
to neglect the deformations of its joints and bodies. Indeed, while the joints are less
robust than those of an industrial manipulator, the bodies constituting its limbs
are also lighter than those of such manipulators. However, it seems that the use of
strain wave gears in TALOS in lieu of the planetary gears of a standard industrial
arm invalidates this hypothesis. The authors of the new procedure were thus taking
into account the deformations induced by the own weight of the arm, or the weight
of the whole robot in the case of the legs’ parameters computation. The estimation
of those deformations uses information provided by the torque sensors of the robot.
Because those sensors are quite infrequent in today’s humanoid robots, the method
is not directly applicable on every robot.

The second improvement to our approach was the generation of optimal postures
of the robot to gather calibration data. In the 1990s, Gautier and Khalil worked

82

CHAPTER 4. CALIBRATION

Figure 4.5: Root mean square of the tracking error between the
robot’s model and the real measurements, before and after the cal-
ibration process. Graph kindly provided by the authors of [207].

on the reduction of the number of parameters needed to accurately model a real
robot [212, 213]. The follow up on this work was the formulation of the best tra-
jectory planning strategies to observe those parameters [214, 215]. Aimed with a
similar goal, the authors of the new calibration procedure for humanoid robots de-
vised a method to generate postures that improve the observability of the modelling
parameters that they chose. Not only did this approach use fewer configurations,
and thus took less time to perform, but it also improved the accuracy of the re-
sults. Indeed, with fewer but more important postures, there were less low-value
data that could pollute the optimisation problem that computes the parameters of
the kinematic chain of the robot.

The procedure was tested on our badly calibrated TALOS humanoid robot. For
the experimental setup, the main difference with the approaches described previously
was the increase in the number of bodies that were equipped with reflective markers.
Indeed, while we used a cluster of markers for the chest and one on the end-effector,
there, all bodies along the kinematic chain were tracked. Before the calibration, the
position of the clusters of reflective markers were acquired, for 20 postures not used
during the calibration measurements. The computer model was used to compute the
theoretical positions of those clusters for those configurations. The root mean square
error between the computed positions and the real data, for each limb of the robot,
was used to estimate the precision of the calibration. After the calibration, a new
round of data acquisition was performed and a new precision index was computed.
The calibration procedure improved the accuracy of the positioning of the real robot
by a factor of 3, as can be seen in fig. 4.5.

While this section was not about my work, it shows that the problem of the
calibration of the humanoid robot was finally solved.

4.5 Conclusion

This chapter described the attempts that we made to properly calibrate our hu-

83

CHAPTER 4. CALIBRATION

manoid robot whose arm was clearly not reporting its position correctly. Despite
the absence of satisfying results, and the loss of time, it had allowed me to famil-
iarise myself with some general knowledge around robots’ kinematic and dynamic
parameters. The robot was then left with its incorrect calibration until its follow-
ing maintenance, while we carried on with the work about the Agimus framework.
Since we wanted to eventually add visual servoing into the framework, this poor
calibration was not the end of our endeavour, but clearly an important obstacle
that complicated our testing and forced us to move forwards sooner than expected.

84

Chapter 5

Agimus: Visual Servoing

Contents
5.1 Introduction . 86
5.2 Visual Servoing . 86

5.2.1 AprilTags’ detection and pose estimation 87
5.2.2 Visual servoing . 88
5.2.3 Visual servoing task in the hierarchical controller 90

5.3 Experiments . 91
5.3.1 TALOS turns a plank upside down, using vision 91
5.3.2 TIAGo . 93
5.3.3 Tiago performs deburring tasks 95
5.3.4 Discussion . 99

5.4 Conclusion . 99

85

CHAPTER 5. AGIMUS: VISUAL SERVOING

5.1 Introduction

In the last chapter, we discussed the process of finding a calibration method adapted
to our humanoid robot. This quest initially began when we found that the digital
model of our robot was clearly different from the reality, especially for the arms.
Indeed, we had a discrepancy of around 10 cm between the theoretical position of
the robot’s hand and the measurement made on the real robot. This was deleterious
for our experiments, all based around manipulation of objects.

We thought that robot’s calibration processes, having been discussed for half a
century, were mature enough to be used on our humanoid robot, provided we made
some modifications. However, we rapidly found that a research humanoid robot is
much more complex and much less rigid than an industrial robotic manipulator.
Therefore the mostly solved problem of robotic arm manipulators’ calibration was
not easily adapted to our situation.

Fortunately for us, the aim of this thesis, from the beginning, was the planning
of reactive visual servoing tasks. In the chapter 3, the visual part was reduced to the
initial estimation of the situation of and around the robot. However, it was hinted in
the section 3.2.5 that the controller activated a few centimetres before reaching the
position allowing the grasping of an object was intended to receive a visual servoing
task eventually. We originally envisioned the addition of this task to be able to grab
a object whose position changed between the estimation and the execution, or even
maybe to grab a moving object. However, since the robot’s poor calibration issue
was not addressed at this point, the aim changed to simply be able to accurately
reach the object.

In this chapter is presented the second part of the contribution around the Ag-
imus framework. Since the core parts of Agimus have already been detailed in the
chapter 3, only the changes linked to the addition of visual servoing are touched
upon. The first section deals with the theory behind our visual servoing scheme,
and its implementation in the Agimus framework. In the second section, two ex-
periments will be presented. The first is actually the same as the one presented in
chapter 3, but with the addition of a visual servoing control to counter the issues
of calibration of the robot. The second is performed by another robot, TIAGo, and
focused on the more practical industrial task of deburring drilled holes in an aircraft
part facsimile.

5.2 Visual Servoing

In the chapter 3, we were already using visual information during our experiments.
This was done at the beginning of the demonstration, and the results were manually
approved by the operator. The planned motions were then executed blindly by the
robot, which followed the planned path while ensuring its balance. The framework
was however already ready for the next step, which was the addition of real-time
visual servoing tasks.

Indeed, as was explained in section 3.2.5, we were generating a controller for the
transition where the robot makes the final move to grab an object. This controller
had a task to control the position of its gripper, but it was at the time using the

86

CHAPTER 5. AGIMUS: VISUAL SERVOING

Figure 5.1: The ambiguity problem in pose estimation. The projec-
tion could come from either the blue cube or the red cube, depending
on the point of view.

planned motions as reference. For the experiments of this chapter, we switched to a
visual servoing scheme based on AprilTag markers placed on the objects manipulated
and on the obstacles around the robot.

5.2.1 AprilTags’ detection and pose estimation

An AprilTag is a marker made of a group of black and white pixels, enclosed in a
black border, itself surrounded by white. The pixels code for a value, which allows
the use and discrimination of multiple markers in the same environment because
their exist tens of different identifiers. The process of detection and identification
of the AprilTags is detailed in the original publication [171]. We suppose that the
detection was a success and we have a list of AprilTags, along with the coordinates
of their four corners in the image frame.

The pose of each marker is then estimated using those coordinates. This is
called the Perspective-4-Points problem [165] and many methods exist to solve it:
RANSAC [165], ePnP [175], etc. However, since the 4 points that we use for the pose
estimation are on the same plane, an ambiguity exists between two possible results
for the computed point of view [173], as illustrated fig. 5.1. In the experiments of
chapter 3, this phenomenon appeared, but it was never a real issue. Indeed, the
result of the estimation step was validated by a human, and the real-time control
was not using visual information. Thus, we just discarded the wrong estimation,
and moved the plank a little in the hope of escaping the local minima causing the

87

CHAPTER 5. AGIMUS: VISUAL SERVOING

improper computing of the object’s pose. But in this chapter, we are adding a
real-time visual servo control scheme and therefore would appreciate to ensure the
quality of the pose estimation, and above all avoid alternating between the two
ambiguous results during the execution.

A solution to this issue was proposed by another member of our team in the
laboratory. Our robots are equipped with cameras incorporating natively a depth
sensor, accurately aligned with the colour image sensor. His solution was simple:

• The computer vision software detect all AprilTags in the image
• Their poses are estimated. Each time, two solutions exist, so a measure of

the qualities of those estimation is computed simultaneously. This measure
of quality is usually function of the distance between the points detected in
the image and a reprojection of those points using the estimated pose. The
greater the distance between detection and reprojection, the lower the quality
of the estimation. If the quality of one solution is overwhelmingly greater than
the other, it is chosen.

• If the qualities of both estimations are equivalent, we take the depth measure-
ments of all the pixels contained inside the square delimiting the AprilTag.
Then the mean normal of this surface is computed, and the estimation whose
normal is the closest to the depth surface’s normal is kept.

He eventually proposed his solution to the developers of the software ViSP that
we use for our computer vision’s needs, and they incorporated it into the their
framework.

In fig. 5.2, one can see that the table, the robot’s wrists and the object are all
equipped with multiple markers. This redundancy is necessary because the robot
often occlude its own field of view with its arms or grippers. Indeed, when it grabs
the plank, one of the marker is almost completely hidden by the gripper, and the
visual servoing scheme must rely on the second AprilTag. The addition of numerous
markers can also improve the accuracy of the pose estimation. It is especially the
case in the second experiment of this chapter, illustrated fig. 5.10, where the robot
has to position its tool within a few millimetres of precision.

5.2.2 Visual servoing

In the domain of visual servo control, there exists two main configurations for the
relative positions of the camera and the end-effector that is controlled. The first
one, called eye-to-hand, has the camera fixed in the world, observing both the
end-effector and the target. The second one is eye-in-hand, where the camera
is attached to the controlled end-effector, and observing only the target. Other
configurations, involving multiple cameras, or cameras moving independently of the
end-effector, exist but are not used in our framework.

In our experiment, we have two simultaneous control goals that involve vision.
We first need to keep the objects and the visually controlled end-effectors in the field
of view of the robot, in order to be able to effectively control them. The second is
to actually move the end-effector at the desired position, using visual information.
Since the second task is done in front of the robot camera, there never was conflicts

88

CHAPTER 5. AGIMUS: VISUAL SERVOING

Figure 5.2: TALOS robot with AprilTag markers on its wrists

between the tasks in practice.
Image-Based Visual Servoing (IBVS) has its objective written directly in terms

of image coordinates. In our case, we want to be able to see all AprilTags at once
from the point of view of the robot. Therefore, we compute the mean coordinates,
in the image frame, of the AprilTags currently detected, and control the head of the
robot, containing the camera, in order to maintain those at the centre of the image.

For the Position-Based Visual Servoing (PBVS) scheme, the pose of the object
relative to the camera is estimated. The control is then expressed in real world
coordinates, based on this estimation and a specified goal. Coming back to our
framework, we want the gripper of the robots to approach, and eventually grab, an
object. For the estimation step, we ease the burden by using the AprilTags, with the
methods described in the previous section. Formulating the control using the real
world coordinates allows us to change the source of the reference frame as needed.

Mathematically, we have:

eSE(3)(T1, T2) = log(T−1
1 T2) (5.1)

where (T1, T2) ∈ SE(3)2 are two poses. This log represent the screw velocity (v, ω) ∈
R6 that moves T1 to T2 in unit time. If T1 = T2, obviously the error is zero, the
two poses are superposed and the task has converged. The control is applied to a
gripper of the robot, therefore T1 = g1 or T1 = g2.

In the chapter 3, we used the planned position of the gripper as the sole reference
for T2, and a high gain on the task to ensure the close following of this reference.

89

CHAPTER 5. AGIMUS: VISUAL SERVOING

Here, we want to use the pose estimation done by computer vision as the reference
T2 = H1, where H1 is the measured pose of the handle of the object. But the MoCap
could also be used to compute the position of the object and the gripper of the robot
in this control scheme.

Because of the calibration issues of our robot, our control scheme needs to take
into account both the estimated pose of the object and the estimated pose of the
gripper as seen by the computer vision algorithm, instead of the pose returned by
the proprioception of the robot. The reference is thus modified as follows to take
into account the difference between the controlled position of the gripper, based on
encoders’ data, and the position measured by the cameras:

T2 = g−1
1 gmeasured1 H1 (5.2)

The visual servoing task is finally formulated as:

eSE(3)(g1, H1) = log(g1 · (g−1
1 gmeasured1 H1)) = log(gmeasured1 H1) (5.3)

The gain applied to the task is lowered because we want the robot to smoothly reach
is goal which should be static or at least not moving too much.

5.2.3 Visual servoing task in the hierarchical controller

In section 3.2.5, we mentionned the existence of control tasks for the positionning of
the robot’s grippers. However, at the time, the references given to the control stack
were only coming from the planned motions, and not from real-time data. It was
done in order to prepare the continuation of the development of Agimus in the form
of visual servoing, which is described in this chapter. Therefore, the implementation
of the visual servoing schemes described in the previous section was quite easy. The
generation of controllers was already creating tasks for the control of the grippers,
so we just had to modify those tasks to incorporate real-time visual servo control.

At the time of this publication, the task to control the gaze of the robot was not
implemented. During the experiments, the robots were only following the planned
paths for their head configurations, instead of using computer vision data to main-
tain the AprilTag’s markers at the centre of their visual fields. The tests performed
showed that it was largely sufficient because the perturbations of the position of
the objects stayed small compared to the relatively large field of view of the robots.
Therefore, adding that task into the controllers would have only impacted perfor-
mance without any real benefit.

The tasks controlling the grippers of the robots, however, were of a crucial im-
portance. Indeed, our humanoid robot was at the time unable to grab the plank of
wood because of an incorrect estimation of its own grippers’ poses. If the object is
visible, the task relies on the computer vision information for the control, as detailed
in the previous section. During the execution, the gap between the planned poses
and the real poses estimated by the vision node is measured continuously. In the
case of a loss of the line of sight, the planned reference is used, but shifted using the
last information available.

90

CHAPTER 5. AGIMUS: VISUAL SERVOING

5.3 Experiments

In this section, two experiments are presented to demonstrate the implementation
of visual servoing tasks in the Agimus framework, and to discuss the performance
of this approach. The first experiment is nearly the same as the one described
in section 3.4, with the addition of visual servoing tasks to precisely control the
grasping of the wooden plank. The second demonstration is done on another robot,
with a differential drive base, a lifting torso and a single arm. This experiment
is about performing tasks that are more appealing to our industrial partners, like
drilling or deburring holes.

5.3.1 TALOS turns a plank upside down, using vision

At the end of chapter 3, our experiment was hindered by the mechanical inaccuracy
of the robot, following a maintenance. The robot was almost always missing the
wooden plank by up to 10 cm, because of erroneous offsets in some joints of its
arm. Different approaches tried to correct this problem by calibrating the robot are
discussed in chapter 4, but after two failures, we decided to circumvent the problem
by using visual servoing.

The goal of this thesis, from the beginning, is the planning of visual servoing
tasks. Our original goal was to incorporate the visual tasks in order to be able
to move the plank between the estimation step and the execution step. The robot
would have to update its trajectory in real-time to grab the plank at its new position.
Then, we would have tried to add a feed-forward system to allow the moving of the
plank during execution, with the robot able to follow it and grab it when it stopped.
But for this experiment, we aimed at simply reproducing the results of the first
experiment, i.e. grab the plank and place it back upside-down, with a superior
robustness.

For this new experiment, we kept the setup, overall protocol and goal of the one
described in section 3.4. The difference is the use of a visual servo control at the
points of the demonstration relying on precise manipulation. Those key-points are
the grabbing of the plank, the hand-over and the release of the object at the end. At
those moment, instead of blindly following the planned motion based on the initial
estimation of situation, the tasks described in the previous section are added to take
priority in the grippers’ positions control.

The visual servo tasks are added on the transition between the waypoints of
the graph of constraints, before the robot grabs the plank, and state where the
grasping effectively occurs. When the robot reach the waypoint, the visual servoing
task is activated slowly to allow a smooth correction of the gripper’s pose. Then
the reference trajectory computed by the motion planner is resumed, shifted to
correspond to the measured pose of the gripper and the plank at that moment.

The rest of the execution is still entirely based on the planned path. The results
of the experiment were very good, and the robot was on again able to grab the plank
of wood. The sliding of the plank in the gripper, which was already an infrequent
issue since the addition of an admittance force controller for the grippers, was no
longer a problem. Instead of relying on the perceived position of the first gripper
to position the second, the controller was directly using the AprilTags on the plank

91

CHAPTER 5. AGIMUS: VISUAL SERVOING

Figure 5.3: TALOS robot placing a plank on a table

to estimate where to grab the object. On fig. 5.3, we can see the robot placing the
plank back on the table. We clearly see that the plank has slightly slipped in the
gripper, but the control re-align it correctly before the release.

(a) Position of the gripper relative to the
plank. Angular alignment is not controlled
nor tracked until the gripper is less than
50mm away from its goal.

(b) Final approach of the gripper towards
the plank.

Figure 5.4: Tracking error between the gripper and the plank

On fig. 5.4a and fig. 5.4b, we can see the tracking error between the robot’s
gripper and the grasp pose it needs to reach to grab the plank. Like all the other
tasks controlling the robot, we use an exponential decay for the error reduction
(see section 3.2.4.1), which is clearly visible on the two figures. On the first figure,
the bump around 15 s in the error of the linear motion corresponds to the moment
the robot resumes the following of the planned trajectory, to descend towards the
plank. The original plan moves the reference in around a second, but the visual

92

CHAPTER 5. AGIMUS: VISUAL SERVOING

servoing task has a very low gain because the camera refresh rate is low compared
to the robot’s control frequency. Therefore the tracking of this reference is slow and
slightly delayed, which explains the increase of linear error.

The fig. 5.5 presents the experiment with visual servoing, in the same fashion
as section 3.4. A video is available at https://hal.laas.fr/hal-02494737. The
experiment being the same as before, the process is not described again. The only
difference is that the position of the grippers are controlled by visual reference
instead of planned references. The effects of the correction can be seen between the
steps 2 and 3, 5 and 6, and finally 9 and 10.

5.3.2 TIAGo

Figure 5.6: TIAGo robot,
made by PAL Robotics

TIAGo, fig. 5.6, is a mobile manipulator made by the
Spanish company PAL Robotics [10], using a modular
approach both for the hardware and the software. This
robot is made of a mobile base with an upper body com-
posed of a torso, on which are mounted an arm and a
head. The differential drive mobile base has been de-
signed to also work as a stand-alone robot aimed at fulfill-
ing logistics tasks. This base can navigate autonomously
thanks to a SLAM fed by a plane laser rangefinder on
the front of the robot. The torso of TIAGo is actuated,
allowing the total height of the robot to be adjusted be-
tween 110 cm and 145 cm.

The arm, on the front of the upper half of the torso,
has 7 DoFs, 3 of which are situated on the last module,
the wrist. The company capitalised on the technologies
used on their first robots, fig. 5.7, namely REEM [216],
a service robot, and REEM-C, a small biped humanoid,
by reusing the same motorised modules for the arms of
TIAGo. At the end of the wrist, there is a 6 axis force-
torque sensor with a mounting plate that allows the addi-
tion of modular end-effectors. At the time of writing, the
end-effector’s options are multiple parallel grippers and
a hand with 5 fingers. The hand option has 19 DoFs, 3 of
which are actuated, and is based on the work of Catalano

et al. [217]. The main idea is that the few actuated DoFs exploit synergies between
the total DoFs in order to be able to grasp objects of dissimilar shapes. Finally, the
head, at the top of the lifting torso, can pan and tilt. It is equipped with a RGB-D
camera.

Like its brother TALOS, described in section 3.4.1, its software architecture
is based on a Linux Ubuntu operating system, patched with RT-Preempt to pro-
vide hard real-time features. On top of this, the ROS middleware orchestrates the
multiple components that interpret data from the sensors or control the actuators.
Low-level control is implemented as ros_control’s plugins, enabling position, veloc-
ity or current control of the motors, while the high-level motion planning is done by
MoveIt!.

93

https://hal.laas.fr/hal-02494737

CHAPTER 5. AGIMUS: VISUAL SERVOING

1: Analysing the scene
and planning motions

2: Moving towards
first grasp using plan

3: Correcting with
visual servoing

4: Grasping the plank 5: Moving to second
grasp, using plan

6: Correcting with
visual servoing

7: Ending of the
double grasps
manipulation

8: Releasing
the first grasp

9: Moving towards
release position

10: Correcting
with visual servoing

11: Putting the
object upside-

down on the table

Figure 5.5: TALOS manipulates a plank with visual servoing

94

CHAPTER 5. AGIMUS: VISUAL SERVOING

5.3.3 Tiago performs deburring tasks

The industrial goal of this thesis and more generally the joint laboratory ROB4FAM
is to demonstrate that a robot is able to help human workers performing dull tasks.
One of those task is the deburring (smoothing the rough edges) of holes in drilled
parts. It is an essential step in manufacturing because those edges can be quite
sharp and can cut not only the workers themselves, be also fasteners or pieces of
equipment going through those holes.

For this demonstration, we used the TIAGo robot presented in the previous
section, which is equipped with its 5 fingers hand mounted on its end-effector. This
hand is used to grab a drill on which a deburring tool has been installed. Finally,
we took a 3D printed mockup of a real aircraft part, fig. 5.8, quite complex and with
multiple holes, to demonstrate the capabilities of the framework Agimus.

The 5 fingers hand of the robot is strong enough to hold the drill steady during
the motions of the robot’s arm. However, the grasping action itself has a bad
repeatability, which means that the pose of the drill relative to the hand is not
accurately known at the beginning of the experiment. The drill is equipped with an
AprilTag marker that allows a quick and easy determination of its pose relative to
the robot’s camera. In the same manner, the part also has multiple markers fixed
on it.

The software setup is nearly the same as the one used for TALOS in section 5.3.1.
One key difference is the addition of an optional movement of the mobile base at the
beginning of the demonstration, to approach the aircraft’s part. The second differ-
ence is the representation of the deburring on the software side. The holes that need
deburring are represented by handles placed of the part. A gripper is attached
to the deburring tool inserted in the drill. The deburring task is thus performed by
following trajectories between pre-grasp and grasp for these handles. See fig. 5.9
for an illustration of the handles and the gripper.

In the same fashion as the TALOS experiment, the typical solution of the TIAGo
experiment is provided in fig. 5.5, and explained thereafter.

Figure 5.7: REEM-C (left) and REEM (right)

95

CHAPTER 5. AGIMUS: VISUAL SERVOING

Figure 5.8: 3D printed mockup of a subcomponent of an Airbus
A380 engine pylon

1. The robot autonomously goes towards the aircraft’s part, which is at a known
position in an already mapped room. This is done by the ROS navigation
stack provided with the robot.
Active Agimus controllers:
None.

2. It comes to its destination and uses its cameras and the AprilTags to determine
the precise position of the component and moves towards it to be at reaching
distance.
Active Agimus controllers:
None.

3. TIAGo uses its cameras to locate the holes in need of deburring and plan the
motions to achieve its goal. The 3D model is used to determine which holes
to work on.
Active Agimus controllers:
None.

4. It goes to its initial position, arm deployed.
Active Agimus controllers:

• Posture task

96

CHAPTER 5. AGIMUS: VISUAL SERVOING

Figure 5.9: Deburring tasks are represented by virtual grasp – pre-
grasp pairs. A gripper frame is attached to the deburring tool
and handle frames are attached to each hole of the part. Part
and drill models have been built using an RGB-D camera and 3D
reconstruction software.

5. TIAGo points its arm at the first planned hole’s position. Due to the low
precision grabbing of the drill, we can see that it is very badly oriented.
Active Agimus controllers:

• Posture task

6. Visual servoing is activated to correct the position and orientation of the drill
before performing the action itself.
Active Agimus controllers:

• Visual servo control of the drill’s position relative to the hole
• Posture task

7. With the visual servoing still active, the robot performs its deburring. The
contact with the part is checked by vision and also with a limitation on the
force applied by the robot. This force is measured by the force-torque sensor

97

CHAPTER 5. AGIMUS: VISUAL SERVOING

1: Approaching
the object, using
ROS navigation

2: Analysing the scene 3: Planning of
the holes sequence

4: Arm unfolding,
using planned motions

5: Pointing at target,
using planned motions

6: Correcting with
visual servoing

7: Deburring /
drilling / screwing

Figure 5.10: TIAGo experiment with deburring holes on an air-
craft’s part

in the wrist of TIAGo. In a real deburring scenario, this force should be
controlled by the robot to ensure the quality of the work performed.
Active Agimus controllers:

• Visual servo control of the drill’s position relative to the hole
• Posture task

98

CHAPTER 5. AGIMUS: VISUAL SERVOING

The video at https://peertube.laas.fr/videos/watch/
6f40ea79-abcd-490e-a616-3a67bf297d93 illustrates the various steps of the
method. This experiment has been successfully executed several times, including in
front of our industrial partners.

5.3.4 Discussion

In this chapter we demonstrated that the Agimus framework can easily be adapted
to other robots. It also demonstrates that the concepts of grippers, handles and
grasps, that underlie the graph of constraints, are versatile enough to formulate
other tasks than grabbing objects.

The addition of visual servoing tasks to improve the precision of the fine move-
ments of grasping or deburring was also a success. It allowed the TALOS humanoid
robot to perform its plank’s manipulation experiment, section 3.4, even better than
when it was calibrated correctly. Very recent tests, during a live demonstration that
was unfortunately not recorded, also showcased that the visual servoing scheme is
able to deal with the displacement of the part during execution.

There are however still room for improvements. Some discontinuities can be
seen in the commands when switching from the execution of the planned path to
the visual servo control task. The visual tasks are only active beginning at the
pre-grasp states of the graph, and de-activate when coming back to this state after
the deburring. Therefore, during the movements between two holes, we can clearly
observe that the drill of TIAGo is not oriented correctly because no visual servoing
occurs. After each task, the following paths could be modified to integrate the
measured difference between the planned reference position of the drill and the real
measure by vision. Thus, the drill would be near its correct orientation during the
movements between holes, and this could gain some time during the demonstration.
Such detail was of no importance for the sake of the demonstration, but could mean
a lot when porting to industrial manipulators.

5.4 Conclusion

In this chapter, we presented the addition of visual servo control tasks into the Ag-
imus framework. The original goal of this modification was to improve the precision
of the manipulation motions, and allow adaptation to slight changes in the setup
between the estimation step and the execution. Actually, it mainly circumvented
the calibration issues of our humanoid robot, by adding control over the grippers’
positions instead of relying on blind following of the planned paths.

The visual servo control features were successfully tested on two kind of experi-
ments, with two different robots. The first experiment is the follow-up of the one in
chapter 3, with added precision and robustness. The second experiment hinge to-
ward a more industrial demonstration. A TIAGo robot, comprised of a mobile base,
a lifting torso, a robotic arm manipulator and a head, was required to manipulate
a drill to deburr the holes of an aircraft component. While this demonstration was
performed on a robot that is far too compliant to handle real drilling or deburring
tasks, it showcases the capabilities of the Agimus framework.

99

https://peertube.laas.fr/videos/watch/6f40ea79-abcd-490e-a616-3a67bf297d93
https://peertube.laas.fr/videos/watch/6f40ea79-abcd-490e-a616-3a67bf297d93

CHAPTER 5. AGIMUS: VISUAL SERVOING

The work detailled in this chapter was presented in the following publication:

Joseph Mirabel, Florent Lamiraux, Thuc Long Ha, Alexis Nicolin, Olivier
Stasse, and Sébastien Boria. “Performing manufacturing tasks with a mobile ma-
nipulator: from motion planning to sensor based motion control”. In: 2021 IEEE
17th International Conference on Automation Science and Engineering (CASE).
IEEE. 2021, pp. 159–164

100

Chapter 6

Middle Sized Drilling Robot

Contents
6.1 Introduction . 102
6.2 Presentation of the robot 102
6.3 Drilling process and its challenges 105
6.4 Conclusion . 107

101

CHAPTER 6. MIDDLE SIZED DRILLING ROBOT

6.1 Introduction

The previous chapters dealt with the development of the Agimus framework. It is
aimed at facilitating the planning and execution of manipulation tasks on various
kinds of robots. In chapter 3, the framework was successfully tested on a full-sized
humanoid robot, TALOS, to demonstrate the capabilities of the system on such a
complex robot. The last chapter, chapter 5, dealt with the addition of visual servoing
tasks into the framework, and ported the demonstration to a mobile robot equipped
with an arm, TIAGo. By using a robot closer to a classical industrial manipulator
arms, we wanted to show that our work was not just a research subject, but could
be the beginning of a solution for our partners in the aircraft industry.

This chapter presents one robot designed by Airbus to perform drilling on the
aluminium panels that are parts of a plane’s fuselage. The first section explains the
need for a completely new robot and presents the envisionned solution. Because of
the industrial aim of this robot, only a few details can be given at this point, for
confidentiality reasons. The second section deals with the drilling process and how
the robot’s sensors will help it perform adequately. My contributions to the project
around the Middle Sized Drilling Robot (MSDR) were limited, mainly due to the
pandemic. I was advising the team working on the robot in Spain, about computer
vision and reactive planning operations.

6.2 Presentation of the robot

Robots have been used in the industry for half a century, either to increase produc-
tivity, or to replace workers in dirty, dull or dangerous tasks. Aircrafts’ manufac-
turers, like their counterparts in the automotive industry, tried to include robots in
their processes, from the parts’ fabrication up to the final assembly. However, issues
quickly appeared in this endeavour because of the specificities of planes compared to
cars. Two key differences can explain the majority of the problems encountered. The
most obvious is the size of the vehicle, while the second is the volume manufactured
each year.

Planes’ dimensions are in the range of 30m to 70m, compared to the 4m to
5m of a car. This is not typically a problem when the robots work on aircrafts’
components, but it becomes one during assembly. Because robots have a practical
size limit, coming from physical and economical constraints, there are two choices
available. Either increase the number of fixed robots around the plane, or add
DoFs to a few robots to allow them to move between working areas. The second
solution has been tried in one of the assembly line of the A321, in Hamburg, featured
Figure 6.1. Multiple robots, each equipped with a huge end-effector, were fixed onto
an structure that could move along a rail. Overall, this system weighed more than
20 t per side, which was quite heavy to drill �4.8mm holes. Another issue was that
the accuracy of the system was mostly managed by the high rigidity of the structure.

The second issue originates from the software side. Industrial robots, as of today,
are mostly programmed offline, using simulations of the 3D models being worked on.
Then, those programs are executed blindly by the robots, with a limited, or even
non-existing, ability to deal with uncertainties. Thus, they require some testing

102

CHAPTER 6. MIDDLE SIZED DRILLING ROBOT

Figure 6.1: Airbus A321 automated fuselage assembly line in Ham-
burg Finkenwerder

before working a real aircraft’s part. Eventually, some changes between the digital
mock-up and the real component may require the manual insertion of offsets in the
program, or a complete new offline simulation of the movements.

In the car industry, assembly lines can output hundreds of cars a day. The time
required to program the robots and test the assembly lines is earned back by the
volume of production increase robots allow. However, in the aircraft industry, the
typical output of a final assembly line is less than one plane each day. Therefore,
the time invested in the programming and testing of robots is difficult to get back.

Overall, the combination of the low output of the industry and the lack of robots
capable of autonomous adaptation to their task on the market fuelled the need for
a new in-house design for a drilling robot, the MSDR.

The MSDR has been proposed by Airbus’ robotics team to integrate cost-effective
robots in the plane construction workflow. The manipulator arm itself is an M-
800iA/60 robot, fig. 6.2, made by the Japanese robot manufacturer Fanuc. It is
a 6-axes robotic arm capable of moving a payload of 60 kg up to a distance of
2040mm. Each of its joint is measured by two different encoders. The typical one
on the motor side, plus a second one at the output of the reducer, to compensate
eventual deflections or backlash. Those additional encoders allow a repeatability of
0.03mm over the robot’s workspace. Those excellent results are paired with a new
calibration procedure that led to an independent and impressive measurement of
the absolute accuracy in the same order of magnitude.

This robot is equipped with an end-effector designed by the robotics team to
cater the needs of airframe drilling processes. Because the end-effector is a future
industrial tool, I am not authorised to go into details about its exact sensors or

103

CHAPTER 6. MIDDLE SIZED DRILLING ROBOT

Figure 6.2: M-800iA/60 manipulator from Fanuc

capabilities. It is comprised of:
• A drill, mounted on a linear rail, accompanied by a suction hose and adequate

lubrication system,
• Cameras, to detect previously drilled holes and use them to align the robot

with the aircraft part,
• Laser range-finders, to place the end-effector perfectly orthogonally to the part,
• Force sensors, to detect the contact with the part and drill with the required

force.

All those elements will work together to enable accurate drilling of the holes nec-
essary for the assembly of the aluminium panels that make a fuselage. A photograph
of the robot with an incomplete end-effector being tested can be seen fig. 6.3. One
particularity of this robot is that it is designed to be either fixed to the ground or
put on a movable platform to enlarge its area of work. In the next section, details
will be given about the drilling process and how those sensors will help achieve this
performance robustly.

104

CHAPTER 6. MIDDLE SIZED DRILLING ROBOT

Figure 6.3: The Middle Sized Drilling Robot

6.3 Drilling process and its challenges

In the last section, we presented the future drilling robot made by Airbus. The next
paragraphs explain the nominal process that the robot will follow to help the human
operators. Then, we detail the challenges that each step of this process includes.

Before the robot operation, some of the component’s holes have already been
pre-drilled by a skilled human operator. The robot uses those holes as references
to drill the remaining ones by itself, as illustrated in fig. 6.4. The procedure for
drilling a row of holes is as follows:

1. Move to R1 The robot’s tool is moved to the first reference hole, R1, by a
program created offline.

2. Alignment Position and orientation are adjusted using the cameras and laser
range-finders to achieve an accuracy of 0.2mm and 0.5°. This corrected pose
of the tool becomes the new reference for R1.

3. Move to R2 The robot’s tool is moved by the program created offline towards
the second reference hole, R2.

4. Alignment Same process as step 2 but for the second reference.

5. Interpolation Using the corrected values for R1 and R2, the positions of the
holes that remain to be drilled are interpolated.

6. Move to hole 1 The tool is moved in front of the first hole by the online
program, and the orientation is again adjusted.

105

CHAPTER 6. MIDDLE SIZED DRILLING ROBOT

7. Drilling The hole is drilled using a control loop fed by the force sensors’ data.

8. Move to hole n and drill Repeat of the two last steps until the end.

Whenever one of those steps cannot be performed, the robot should au-
tonomously detect its failure and request the assistance of a human. Such failures
may be the impossibility to detect the reference holes or to align the tool orthogo-
nally with respect to the airframe.

©
Ai

rb
us

R1

R2

R1

R2

R1

R2

R1

R2

Figure 6.4: The MSDR uses reference holes to adapt its offline
programming

The detection of the reference holes use the data from the cameras and computer
vision. Scientifically, this part of the process is known and is not very different from
what we did in chapter 5. The alignment using the laser range-finders is a matter of
trigonometry. What is not simple however is to check that the lasers are not firing
into already drilled holes, which would provide erroneous information. The presence
of multiple sensors allows the cross-checking of the measurements to compensate for
such issue.

Some other objectives are linked with the work presented in chapter 3 and chap-
ter 5, and more broadly the goals of the ROB4FAM joint laboratory. The ultimate

106

CHAPTER 6. MIDDLE SIZED DRILLING ROBOT

target of the work in ROB4FAM and with the MSDR is the concurrent coordination
between the robot and its human collaborators.

On the control side, a lighter concept of safety cell for the robot is already
implemented. It slows down the robot when a human comes nearby in order to be
able to stop if they come too close and risk an accident. The work of the laboratory
was to improve this solution via passive torque controllers that would ensure the
physical safety of the operators, but also the robot and the environment around.

On the planning side, which is more in line with the subject of this manuscript, we
wanted the robot to be able to react and adapt its plan to changes of the environment
or of the objectives. By reacting, we mean that the operator may have drilled more
holes than only the references, and the robot should not take time and risk ruining
the holes by re-drilling them. Instead, it should avoid it in real-time without a step
of offline replanning. Replanning would be necessary in the opposite case, when
references are missing or when alignment fails. In those events, at the moment the
robot would ask for the help of an operator. We would like it to re-plan autonomously
its mission and drill other rows of holes if it can, to limit its downtime.

In this section we presented the nominal drilling process of the MSDR. Some of
the tasks involved in this process are already mastered either at the scientific or even
industrial level, e.g. the hole detection. Other more ambitious ones are subjects that
were discussed in the previous chapters, and will require further work to go from
the laboratory to the factory.

6.4 Conclusion

In this chapter we presented the MSDR robot designed by Airbus to help its op-
erators perform dull drilling tasks. This involved the design of a new robot, with
drastically increased accuracy, by the manufacturer Fanuc. Then, the robotics team
at Airbus added the end-effector tooling necessary to perform the drilling to the
quality required in planes. At the time of writing, the step being worked on is the
programming and testing of the robot.

My contributions to this project were limited, due to the pandemic and the
multiple lock-downs. Indeed, the robot was in another country and therefore pro-
gramming and testing it was not possible for me. I advised the engineers working on
the robot on the subject of alignment, providing state-of-the-art articles and guid-
ance in the implementation of algorithms. I was also involved in a parallel project
about reactive planning, which the MSDR should also feature in the future. The
next phase of the project should begin shortly with the implementation of the higher
level concepts developed for Agimus.

107

CHAPTER 6. MIDDLE SIZED DRILLING ROBOT

108

Chapter 7

Conclusion

Summary

The objectives of this thesis were centred around the will to improve automation and
capabilities of adaptation to industrial robots. Today, these robots are programmed
offline either via a modelling tool or sometimes manually by a skilled operator. Then,
the robots follow this programming blindly.

Our goal was to build upon the motion planner to automatically construct a
set of controllers corresponding to each step of the plan. The second step was to
get from a blind following of the plan to a predominant use of the sensors of the
robots, including force/torque sensors and cameras. Then, the offline plan would be
overtaken by the reactive controllers in case of changes between the plan and the
actual situation.

In chapter 2 was presented an overview of the existing works in the various
domains related to this thesis. It covers motion planning and task planning, and
then the combination of those two fields to achieve manipulation of objects and the
environment by robots. This was followed by a presentation of the field of control,
applied to robotics, and finally visual servo control.

Chapter 3 was the main contribution of this thesis, with the presentation of the
Agimus framework. This software is built on the manipulation planner of the team,
HPP, and the hierarchical control software, the SoT, to provide an automated formu-
lation of the controllers from the planned motions. I contributed to the proposition
of the general architecture of the framework, then worked mainly around the vision
and estimation components. I also participated in the adaptation and debugging
of the ageing control software, and finally in several tests and demonstration of our
framework on the TALOS humanoid robot.

In chapter 4 we dealt with the calibration issues of the humanoid robot, and dis-
cussed several trials to improve the situation. I was involved in the implementation
and testing of the first solution, based on the experienced suggestions of a colleague.
I also proposed, implemented and tried the simpler and more naive solution inspired
by the industrial process. However, I did not work on the third method, which was
the first one to return favourable results.

Chapter 5 was about the addition of visual servo control to Agimus, to improve
the precision of the manipulation motions. It also allowed small modifications of

109

CHAPTER 7. CONCLUSION

the setup after the planning step, with the robot able to adapt in real-time to the
changes. I contributed to the demonstration performed on TALOS and that was the
continuity of the experiment done in chapter 3. I added markers, some of the control
schemes, performed tests and measurements. This work led to the submission of a
paper, that was unfortunately refused.

Finally, chapter 6 presented an industrial robot conceived by Airbus robotics
team to drill holes in aluminium panels that constitute the fuselage of a plane. Due
to the pandemic, the robot was delayed several months in Spain, so my contributions
were centred around scientific guidance to the engineers working on the robot itself.

Future works

In our demonstrations, the framework was successful and its main purpose, the auto-
mated generation of controllers, proved to be useful. Indeed, thanks to that, we only
had to modify the grippers’ controllers to add visual servoing during manipulation
of object on a TALOS humanoid robot.

Improve Agimus to rely less on the user
However, the framework is still heavily relying on the user for several features, and
those are paths of improvement for the future of Agimus.

A first improvement could be a better semantic for the whole system. Indeed, at
the moment, the drilling and deburring actions of TIAGo, seen in section 5.3.3 are
modelled by pairs of pre-grasp and grasp states, which is not really intuitive. It could
be replaced by a simpler drill task for the end-user, which would encapsulate the
sequence of pre-grasp and graps actions. A second way to explore is the reduction
of the use of visual markers and supplementary data about objects, such as their
handles position. Both are prone to human errors when the data are manually
entered in the scripts. They could be replaced eventually by a direct recognition
of objects based on their 3D models, and automated extraction of the handles also
based of the models. Those axis of development have been explored by trainees and
could give good results in the long run. Finally, the framework is asking a human
operator to check the planned path before execution, to prevent superfluous or even
dangerous movements. We think that some measurements of the quality of a path
could be automated, and that Agimus could re-plan by itself the parts with less
desirable behaviour. The choice of the criteria is however difficult and may depend
on the complete task itself, so a supervision by a human seems necessary for the
foreseeable future.

Detect and handle errors
At the moment, Agimus does not handle errors, and even does not detect a lot of
undesirable actions. The main error checking mechanism is at the lower level of the
robot’s control system, and measure forces, torques and motors’ states in order to
prevent deterioration of the robot. The detection of errors at the task execution level
is entirely done by the human supervising the experiment, which at the moment can
only pause the execution to correct the problem manually.

110

CHAPTER 7. CONCLUSION

There are two ways to improve that, one in real-time and one at the end of each
sub-task. A kind of real-time checking for erroneous behaviour is already present in
the form of visual servoing. Indeed, this was added to enhance the precision of the
manipulation motions and to counter a bad calibration of the robot or the slipping
of the object in the grippers. While this correctly handles slight variations around
the plan, it cannot cope with changes such as the object falling. For such problem, it
would be better for the robot to call an operator for assistance. The validation at the
end of a sub-task could be similar to the estimation step of Agimus. A measurement
of the robot’s state and the analysis of an image of the work area would inform the
framework on the success or failure of the previous task, and entail the planning of
a corrective action if necessary.

Towards an industrial demonstration
Agimus has been demonstrated on a humanoid robot and then on a mobile robot
equipped with a manipulator arm. Those are research robots that are not present
in the aeronautic industry, where all the robots are huge manipulator arms. There
are still several steps before the framework can be safely used on such systems.
One of those step is to try Agimus on a manipulator arm. This work has recently
began with a UR10 robot, for a project linked with the ROB4FAM joint laboratory.
The major envisioned difficulty when switching to industrial robot is the absence
of open-source environment and access to the low level data from the sensors, or to
the direct control of the motors.

111

CHAPTER 7. CONCLUSION

112

Bibliography

[1] Alexis Nicolin, Joseph Mirabel, Sébastien Boria, Olivier Stasse, and Flo-
rent Lamiraux. “Agimus: A new framework for mapping manipulation mo-
tion plans to sequences of hierarchical task-based controllers”. In: 2020
IEEE/SICE International Symposium on System Integration (SII). IEEE.
2020, pp. 1022–1027 (cit. on pp. 7, 74).

[2] Joseph Mirabel, Florent Lamiraux, Thuc Long Ha, Alexis Nicolin, Olivier
Stasse, and Sébastien Boria. “Performing manufacturing tasks with a mobile
manipulator: from motion planning to sensor based motion control”. In: 2021
IEEE 17th International Conference on Automation Science and Engineering
(CASE). IEEE. 2021, pp. 159–164 (cit. on pp. 7, 100).

[3] Éric Marchand, Fabien Spindler, and François Chaumette. “ViSP for visual
servoing: A generic software platform with a wide class of robot control skills”.
In: ieee robotics & automation magazine 12.4 (2005), pp. 40–52 (cit. on pp. 3,
32, 53, 132, 134).

[4] Justin Carpentier et al. “The Pinocchio C++ library: A fast and flexible im-
plementation of rigid body dynamics algorithms and their analytical deriva-
tives”. In: 2019 IEEE/SICE International Symposium on System Integration
(SII). IEEE. 2019, pp. 614–619 (cit. on pp. 3, 53, 54).

[5] Florent Lamiraux and Joseph Mirabel. Prehensile manipulation planning:
modeling, algorithms and implementation. To appear in the IEEE Transac-
tions on Robotics. Nov. 2020. url: https://hal.laas.fr/hal-02995125
(cit. on pp. 4, 38, 46, 53, 55, 131, 133).

[6] Nicolas Mansard, Olivier Stasse, Paul Evrard, and Abderrahmane Kheddar.
“A versatile generalized inverted kinematics implementation for collaborative
working humanoid robots: The stack of tasks”. In: 2009 international confer-
ence on advanced robotics. ieee. 2009, pp. 1–6 (cit. on pp. 4, 31, 53, 56, 132,
134).

[7] Claude Samson, Bernard Espiau, and Michel Le Borgne. Robot control: the
task function approach. Oxford University Press, Inc., 1991 (cit. on pp. 4, 31,
46, 56).

[8] Morgan Quigley et al. “ROS: An open-source robot operating system”. In:
icra workshop on open source software. Vol. 3. 3.2. kobe, japan. 2009, p. 5
(cit. on pp. 4, 11, 134).

113

https://hal.laas.fr/hal-02995125

BIBLIOGRAPHY

[9] Olivier Stasse et al. “TALOS: A new humanoid research platform targeted
for industrial applications”. In: 2017 ieee-ras 17th international conference
on humanoid robotics (humanoids). ieee. 2017, pp. 689–695 (cit. on pp. 4, 63,
65).

[10] Jordi Pages, Luca Marchionni, and Francesco Ferro. “TIAGo: The modular
robot that adapts to different research needs”. In: International workshop on
robot modularity, IROS. 2016 (cit. on pp. 5, 93).

[11] Jacob T Schwartz and Micha Sharir. “On the “piano movers’” problem I.
The case of a two-dimensional rigid polygonal body moving amidst polygonal
barriers”. In: Communications on pure and applied mathematics 36.3 (1983),
pp. 345–398 (cit. on pp. 10, 12).

[12] Jacob T Schwartz and Micha Sharir. “On the “piano movers” problem. II.
General techniques for computing topological properties of real algebraic
manifolds”. In: Advances in applied Mathematics 4.3 (1983), pp. 298–351
(cit. on p. 10).

[13] Jacob T Schwartz and Micha Sharir. “On the piano movers’ problem: III.
Coordinating the motion of several independent bodies: The special case
of circular bodies moving amidst polygonal barriers”. In: The International
Journal of Robotics Research 2.3 (1983), pp. 46–75 (cit. on p. 10).

[14] Micha Sharir and Elka Ariel-Sheffi. “On the Piano Movers’ problem: IV. Var-
ious decomposable two-dimensional motion-planning problems”. In: Commu-
nications on Pure and Applied Mathematics 37.4 (1984), pp. 479–493 (cit. on
p. 10).

[15] Jacob T Schwartz and Micha Sharir. “On the piano movers’ problem: V. The
case of a rod moving in three-dimensional space amidst polyhedral obstacles”.
In: Communications on Pure and Applied Mathematics 37.6 (1984), pp. 815–
848 (cit. on p. 10).

[16] Markus Rickert, Arne Sieverling, and Oliver Brock. “Balancing exploration
and exploitation in sampling-based motion planning”. In: IEEE Transactions
on Robotics 30.6 (2014), pp. 1305–1317 (cit. on p. 10).

[17] Thierry Simeon, Jean-Paul Laumond, and Florent Lamiraux. “Move3D: A
generic platform for path planning”. In: Proceedings of the 2001 IEEE Inter-
national Symposium on Assembly and Task Planning (ISATP2001). Assembly
and Disassembly in the Twenty-first Century.(Cat. No. 01TH8560). IEEE.
2001, pp. 25–30 (cit. on pp. 10, 55).

[18] Etienne Ferre and Jean-Paul Laumond. “An iterative diffusion algorithm for
part disassembly”. In: IEEE International Conference on Robotics and Au-
tomation, 2004. Proceedings. ICRA’04. 2004. Vol. 3. IEEE. 2004, pp. 3149–
3154 (cit. on p. 10).

[19] Jean-Paul Laumond. “Kineo CAM: a success story of motion planning algo-
rithms”. In: IEEE Robotics & Automation Magazine 13.2 (2006), pp. 90–93
(cit. on p. 10).

114

BIBLIOGRAPHY

[20] Florent Lamiraux, Jean-Paul Laumond, Carl Van Geem, Daniel Boutonnet,
and Gilbert Raust. “Trailer truck trajectory optimization: the transporta-
tion of components for the Airbus A380”. In: IEEE robotics & automation
magazine 12.1 (2005), pp. 14–21 (cit. on p. 10).

[21] URDF XML specifications. url: http://wiki.ros.org/urdf/XML (cit. on
p. 11).

[22] Tomás Lozano-Pérez and Michael A Wesley. “An algorithm for planning
collision-free paths among polyhedral obstacles”. In: Communications of the
ACM 22.10 (1979), pp. 560–570 (cit. on p. 11).

[23] Tomas Lozano-Perez. “Spatial planning: A configuration space approach”.
In: Autonomous robot vehicles. Springer, 1990, pp. 259–271 (cit. on p. 11).

[24] Jean-Claude Latombe. Robot motion planning. Vol. 124. Springer Science &
Business Media, 2012 (cit. on p. 11).

[25] Howie Choset, Kevin M Lynch, Seth Hutchinson, George A Kantor, and
Wolfram Burgard. Principles of robot motion: Theory, algorithms, and im-
plementations. MIT press, 2005 (cit. on p. 11).

[26] Steven M LaValle. Planning algorithms. Cambridge university press, 2006
(cit. on p. 11).

[27] Osamu Takahashi and Robert J Schilling. “Motion planning in a plane us-
ing generalized Voronoi diagrams”. In: IEEE Transactions on robotics and
automation 5.2 (1989), pp. 143–150 (cit. on p. 12).

[28] John Canny. The complexity of robot motion planning. MIT press, 1988 (cit.
on p. 12).

[29] Kamal Kant and Steven W Zucker. “Toward efficient trajectory planning:
The path-velocity decomposition”. In: The international journal of robotics
research 5.3 (1986), pp. 72–89 (cit. on p. 12).

[30] Edsger W Dijkstra et al. “A note on two problems in connexion with graphs”.
In: Numerische mathematik 1.1 (1959), pp. 269–271 (cit. on p. 12).

[31] Peter E Hart, Nils J Nilsson, and Bertram Raphael. “A formal basis for the
heuristic determination of minimum cost paths”. In: IEEE transactions on
Systems Science and Cybernetics 4.2 (1968), pp. 100–107 (cit. on p. 12).

[32] Oussama Khatib. “Real-time obstacle avoidance for manipulators and mobile
robots”. In: Autonomous robot vehicles. Springer, 1986, pp. 396–404 (cit. on
p. 12).

[33] Shuzhi Sam Ge and Yun J Cui. “Dynamic motion planning for mobile robots
using potential field method”. In: Autonomous robots 13.3 (2002), pp. 207–
222 (cit. on p. 12).

[34] Liangjun Zhang, Steven M LaValle, and Dinesh Manocha. “Global vector field
computation for feedback motion planning”. In: 2009 IEEE International
Conference on Robotics and Automation. IEEE. 2009, pp. 477–482 (cit. on
p. 12).

[35] Steven M LaValle et al. “Rapidly-exploring random trees: A new tool for
path planning”. In: (1998) (cit. on p. 12).

115

http://wiki.ros.org/urdf/XML

BIBLIOGRAPHY

[36] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars.
“Probabilistic roadmaps for path planning in high-dimensional configura-
tion spaces”. In: IEEE transactions on Robotics and Automation 12.4 (1996),
pp. 566–580 (cit. on p. 13).

[37] Thierry Siméon, Jean-Paul Laumond, and Carole Nissoux. “Visibility-based
probabilistic roadmaps for motion planning”. In: Advanced Robotics 14.6
(2000), pp. 477–493 (cit. on p. 13).

[38] Junli Gao, Weijie Ye, Jing Guo, and Zhongjuan Li. “Deep reinforcement
learning for indoor mobile robot path planning”. In: Sensors 20.19 (2020),
p. 5493 (cit. on p. 13).

[39] Sébastien Dalibard and Jean-Paul Laumond. “Linear dimensionality reduc-
tion in random motion planning”. In: The International Journal of Robotics
Research 30.12 (2011), pp. 1461–1476 (cit. on p. 13).

[40] David Hsu, Tingting Jiang, John Reif, and Zheng Sun. “The bridge test
for sampling narrow passages with probabilistic roadmap planners”. In:
2003 IEEE international conference on robotics and automation (cat. no.
03CH37422). Vol. 3. IEEE. 2003, pp. 4420–4426 (cit. on p. 13).

[41] Dmitry Berenson, Siddhartha S Srinivasa, Dave Ferguson, and James J
Kuffner. “Manipulation planning on constraint manifolds”. In: 2009 IEEE
International Conference on Robotics and Automation. IEEE. 2009, pp. 625–
632 (cit. on p. 13).

[42] Sertac Karaman and Emilio Frazzoli. “Sampling-based algorithms for opti-
mal motion planning”. In: The international journal of robotics research 30.7
(2011), pp. 846–894 (cit. on p. 14).

[43] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. “In-
formed RRT*: Optimal sampling-based path planning focused via direct sam-
pling of an admissible ellipsoidal heuristic”. In: 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE. 2014, pp. 2997–3004
(cit. on p. 14).

[44] Lucas Janson, Edward Schmerling, Ashley Clark, and Marco Pavone. “Fast
marching tree: A fast marching sampling-based method for optimal motion
planning in many dimensions”. In: The International journal of robotics re-
search 34.7 (2015), pp. 883–921 (cit. on p. 14).

[45] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot.
“Batch informed trees (BIT*): Sampling-based optimal planning via the
heuristically guided search of implicit random geometric graphs”. In: 2015
IEEE international conference on robotics and automation (ICRA). IEEE.
2015, pp. 3067–3074 (cit. on p. 14).

[46] Lucas Janson, Brian Ichter, and Marco Pavone. “Deterministic sampling-
based motion planning: Optimality, complexity, and performance”. In: The
International Journal of Robotics Research 37.1 (2018), pp. 46–61 (cit. on
p. 14).

[47] Oren Salzman and Dan Halperin. “Asymptotically near-optimal RRT for
fast, high-quality motion planning”. In: IEEE Transactions on Robotics 32.3
(2016), pp. 473–483 (cit. on p. 14).

116

BIBLIOGRAPHY

[48] Brian Ichter, James Harrison, and Marco Pavone. “Learning sampling distri-
butions for robot motion planning”. In: 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE. 2018, pp. 7087–7094 (cit. on
p. 14).

[49] Matt Zucker et al. “Chomp: Covariant hamiltonian optimization for motion
planning”. In: The International Journal of Robotics Research 32.9-10 (2013),
pp. 1164–1193 (cit. on p. 15).

[50] Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and
Stefan Schaal. “STOMP: Stochastic trajectory optimization for motion plan-
ning”. In: 2011 IEEE international conference on robotics and automation.
IEEE. 2011, pp. 4569–4574 (cit. on p. 15).

[51] John Schulman et al. “Motion planning with sequential convex optimization
and convex collision checking”. In: The International Journal of Robotics
Research 33.9 (2014), pp. 1251–1270 (cit. on p. 15).

[52] John Schulman, Jonathan Ho, Alex X Lee, Ibrahim Awwal, Henry Bradlow,
and Pieter Abbeel. “Finding locally optimal, collision-free trajectories with
sequential convex optimization.” In: Robotics: science and systems. Vol. 9. 1.
Citeseer. 2013, pp. 1–10 (cit. on p. 15).

[53] Mustafa Mukadam, Jing Dong, Xinyan Yan, Frank Dellaert, and Byron
Boots. “Continuous-time Gaussian process motion planning via probabilistic
inference”. In: The International Journal of Robotics Research 37.11 (2018),
pp. 1319–1340 (cit. on p. 15).

[54] Diane Bury, Jean-Baptiste Izard, Marc Gouttefarde, and Florent Lami-
raux. “Continuous tension validation for cable-driven parallel robots”. In:
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE. 2020, pp. 6558–6563 (cit. on pp. 16, 55).

[55] Mike Stilman. “Global manipulation planning in robot joint space with task
constraints”. In: IEEE Transactions on Robotics 26.3 (2010), pp. 576–584
(cit. on pp. 18, 19).

[56] Steven M LaValle, Jeffery H Yakey, and Lydia E Kavraki. “A probabilistic
roadmap approach for systems with closed kinematic chains”. In: Proceedings
1999 IEEE International Conference on Robotics and Automation (Cat. No.
99CH36288C). Vol. 3. IEEE. 1999, pp. 1671–1676 (cit. on p. 18).

[57] Beobkyoon Kim, Terry Taewoong Um, Chansu Suh, and Frank C Park. “Tan-
gent bundle RRT: A randomized algorithm for constrained motion planning”.
In: Robotica 34.1 (2016), pp. 202–225 (cit. on p. 19).

[58] Léonard Jaillet and Josep M Porta. “Path planning under kinematic con-
straints by rapidly exploring manifolds”. In: IEEE Transactions on Robotics
29.1 (2012), pp. 105–117 (cit. on p. 19).

[59] Ricard Bordalba, Lluís Ros, and Josep M Porta. “A randomized kinodynamic
planner for closed-chain robotic systems”. In: IEEE Transactions on Robotics
37.1 (2020), pp. 99–115 (cit. on p. 19).

[60] Kris K Hauser. “Fast interpolation and time-optimization on implicit contact
submanifolds.” In: Robotics: Science and systems. Citeseer. 2013, p. 22 (cit.
on p. 19).

117

BIBLIOGRAPHY

[61] Joseph Mirabel and Florent Lamiraux. “Manipulation planning: building
paths on constrained manifolds”. 2016 (cit. on p. 20).

[62] Joseph Mirabel. “Manipulation planning for documented objects”. PhD the-
sis. Institut National Polytechnique De Toulouse, 2017 (cit. on p. 20).

[63] Zachary Kingston, Mark Moll, and Lydia E Kavraki. “Exploring implicit
spaces for constrained sampling-based planning”. In: The International Jour-
nal of Robotics Research 38.10-11 (2019), pp. 1151–1178 (cit. on p. 20).

[64] Manuel Kudruss et al. “Optimal control for whole-body motion generation
using center-of-mass dynamics for predefined multi-contact configurations”.
In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Hu-
manoids). IEEE. 2015, pp. 684–689 (cit. on p. 20).

[65] Shuuji Kajita et al. “Biped walking pattern generation by using preview
control of zero-moment point”. In: 2003 IEEE International Conference
on Robotics and Automation (Cat. No. 03CH37422). Vol. 2. IEEE. 2003,
pp. 1620–1626 (cit. on p. 20).

[66] Wael Suleiman, Eiichi Yoshida, Jean-Paul Laumond, and André Monin. “On
humanoid motion optimization”. In: 2007 7th IEEE-RAS International Con-
ference on Humanoid Robots. IEEE. 2007, pp. 180–187 (cit. on p. 20).

[67] Emanuel Todorov, Tom Erez, and Yuval Tassa. “MuJoCo: A physics engine
for model-based control”. In: 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE. 2012, pp. 5026–5033 (cit. on pp. 20,
32).

[68] Sébastien Dalibard, Antonio El Khoury, Florent Lamiraux, Alireza Nakhaei,
Michel Taïx, and Jean-Paul Laumond. “Dynamic walking and whole-body
motion planning for humanoid robots: An integrated approach”. In: The In-
ternational Journal of Robotics Research 32.9-10 (2013), pp. 1089–1103 (cit.
on pp. 20, 32).

[69] Nicolas Perrin, Olivier Stasse, Léo Baudouin, Florent Lamiraux, and Eiichi
Yoshida. “Fast humanoid robot collision-free footstep planning using swept
volume approximations”. In: IEEE Transactions on Robotics 28.2 (2011),
pp. 427–439 (cit. on p. 21).

[70] Robert J Griffin, Georg Wiedebach, Stephen McCrory, Sylvain Bertrand,
Inho Lee, and Jerry Pratt. “Footstep planning for autonomous walking over
rough terrain”. In: 2019 IEEE-RAS 19th International Conference on Hu-
manoid Robots (Humanoids). IEEE. 2019, pp. 9–16 (cit. on p. 21).

[71] Marco Cognetti, Pouya Mohammadi, and Giuseppe Oriolo. “Whole-body
motion planning for humanoids based on CoM movement primitives”. In:
2015 IEEE-RAS 15th International Conference on Humanoid Robots (Hu-
manoids). IEEE. 2015, pp. 1090–1095 (cit. on p. 21).

[72] Paolo Ferrari, Marco Cognetti, and Giuseppe Oriolo. “Humanoid whole-body
planning for loco-manipulation tasks”. In: 2017 IEEE International Confer-
ence on Robotics and Automation (ICRA). IEEE. 2017, pp. 4741–4746 (cit.
on p. 21).

118

BIBLIOGRAPHY

[73] Steve Tonneau, Nicolas Mansard, Chonhyon Park, Dinesh Manocha, Franck
Multon, and Julien Pettré. “A reachability-based planner for sequences of
acyclic contacts in cluttered environments”. In: Robotics Research. Springer,
2018, pp. 287–303 (cit. on p. 21).

[74] Pierre Fernbach. “Modèles réduits fiables et efficaces pour la planification
et l’optimisation de mouvement des robots à pattes en environnements con-
traints”. PhD thesis. Université Paul Sabatier-Toulouse III, 2018 (cit. on
p. 21).

[75] Pierre Fernbach, Steve Tonneau, and Michel Taïx. “CROC: Convex resolution
of centroidal dynamics trajectories to provide a feasibility criterion for the
multi contact planning problem”. In: 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). IEEE. 2018, pp. 1–9 (cit. on
p. 21).

[76] Justin Carpentier and Nicolas Mansard. “Multicontact locomotion of legged
robots”. In: IEEE Transactions on Robotics 34.6 (2018), pp. 1441–1460 (cit.
on p. 21).

[77] Yu-Chi Lin, Brahayam Ponton, Ludovic Righetti, and Dmitry Berenson. “Ef-
ficient humanoid contact planning using learned centroidal dynamics pre-
diction”. In: 2019 International Conference on Robotics and Automation
(ICRA). IEEE. 2019, pp. 5280–5286 (cit. on p. 21).

[78] Brahayam Ponton, Majid Khadiv, Avadesh Meduri, and Ludovic Righetti.
“Efficient multicontact pattern generation with sequential convex approx-
imations of the centroidal dynamics”. In: IEEE Transactions on Robotics
(2021) (cit. on pp. 21, 32).

[79] Allen Newell and Herbert Simon. “The logic theory machine – A complex
information processing system”. In: IRE Transactions on information theory
2.3 (1956), pp. 61–79 (cit. on p. 22).

[80] Allen Newell, John C Shaw, and Herbert A Simon. “Report on a general
problem solving program”. In: IFIP congress. Vol. 256. Pittsburgh, PA. 1959,
p. 64 (cit. on pp. 22, 133).

[81] Richard E Fikes and Nils J Nilsson. “STRIPS: A new approach to the ap-
plication of theorem proving to problem solving”. In: Artificial intelligence
2.3-4 (1971), pp. 189–208 (cit. on pp. 22, 134).

[82] Drew McDermott et al. PDDL - The planning domain definition language.
1998 (cit. on p. 23).

[83] International Conference on Automated Planning and Scheduling. Interna-
tional Planning Competition. url: https://www.icaps-conference.org/
competitions/ (visited on 11/28/2021) (cit. on pp. 23, 134).

[84] Maria Fox and Derek Long. “PDDL2. 1: An extension to PDDL for expressing
temporal planning domains”. In: Journal of artificial intelligence research 20
(2003), pp. 61–124 (cit. on p. 23).

[85] Avrim L Blum and Merrick L Furst. “Fast planning through planning graph
analysis”. In: Artificial intelligence 90.1-2 (1997), pp. 281–300 (cit. on p. 25).

119

https://www.icaps-conference.org/competitions/
https://www.icaps-conference.org/competitions/

BIBLIOGRAPHY

[86] Henry Kautz, David McAllester, and Bart Selman. “Encoding plans in propo-
sitional logic”. In: KR 96 (1996), pp. 374–384 (cit. on p. 25).

[87] Henry Kautz and Bart Selman. “Unifying SAT-based and graph-based plan-
ning”. In: IJCAI. Vol. 99. 1999, pp. 318–325 (cit. on p. 26).

[88] Blai Bonet and Hector Geffner. “Planning as heuristic search: New results”.
In: European Conference on Planning. Springer. 1999, pp. 360–372 (cit. on
p. 26).

[89] Jörg Hoffmann and Bernhard Nebel. “The FF planning system: Fast plan
generation through heuristic search”. In: Journal of Artificial Intelligence
Research 14 (2001), pp. 253–302 (cit. on p. 26).

[90] Yixin Chen, Chih-Wei Hsu, and Benjamin W Wah. “SGPlan: Subgoal parti-
tioning and resolution in planning”. In: Edelkamp et al.(Edelkamp, Hoffmann,
Littman, & Younes, 2004) (2004) (cit. on p. 26).

[91] Malte Helmert. “The fast downward planning system”. In: Journal of Artifi-
cial Intelligence Research 26 (2006), pp. 191–246 (cit. on p. 26).

[92] Malte Helmert. “A Planning Heuristic Based on Causal Graph Analysis.” In:
ICAPS. Vol. 16. 2004, pp. 161–170 (cit. on p. 26).

[93] Tomas Lozano-Perez. “A simple motion-planning algorithm for general robot
manipulators”. In: IEEE Journal on Robotics and Automation 3.3 (1987),
pp. 224–238 (cit. on p. 27).

[94] Gordon Wilfong. “Motion planning in the presence of movable obstacles”.
In: Annals of Mathematics and Artificial Intelligence 3.1 (1991), pp. 131–150
(cit. on p. 27).

[95] Rachid Alami, Thierry Simeon, and Jean-Paul Laumond. “A geometrical
approach to planning manipulation tasks. The case of discrete placements
and grasps”. In: The fifth international symposium on Robotics research. MIT
Press. 1990, pp. 453–463 (cit. on pp. 27, 28).

[96] Karim Bouyarmane, Stéphane Caron, Adrien Escande, and Abderrahmane
Kheddar. “Humanoid Robotics: A Reference”. In: ed. by Ambarish Goswami
and Prahlad Vadakkepat. Springer, 2018. Chap. Multi-contact Motion Plan-
ning and Control (cit. on p. 27).

[97] Mike Stilman and James J Kuffner. “Navigation among movable obstacles:
Real-time reasoning in complex environments”. In: International Journal of
Humanoid Robotics 2.04 (2005), pp. 479–503 (cit. on p. 27).

[98] Dennis Nieuwenhuisen, A Frank Van Der Stappen, and Mark H Overmars.
“An effective framework for path planning amidst movable obstacles”. In:
Algorithmic Foundation of Robotics VII. Springer, 2008, pp. 87–102 (cit. on
p. 27).

[99] Mike Stilman and James Kuffner. “Planning among movable obstacles with
artificial constraints”. In: The International Journal of Robotics Research
27.11-12 (2008), pp. 1295–1307 (cit. on p. 27).

120

BIBLIOGRAPHY

[100] Jur Van Den Berg, Mike Stilman, James Kuffner, Ming Lin, and Dinesh
Manocha. “Path planning among movable obstacles: a probabilistically com-
plete approach”. In: Algorithmic Foundation of Robotics VIII. Springer, 2009,
pp. 599–614 (cit. on p. 27).

[101] Martin Levihn, Jonathan Scholz, and Mike Stilman. “Planning with movable
obstacles in continuous environments with uncertain dynamics”. In: 2013
IEEE International Conference on Robotics and Automation. IEEE. 2013,
pp. 3832–3838 (cit. on p. 27).

[102] Martin Levihn, Mike Stilman, and Henrik Christensen. “Locally optimal nav-
igation among movable obstacles in unknown environments”. In: 2014 IEEE-
RAS International Conference on Humanoid Robots. IEEE. 2014, pp. 86–91
(cit. on p. 27).

[103] Sébastien Dalibard, Alireza Nakhaei, Florent Lamiraux, and Jean-Paul Lau-
mond. “Manipulation of documented objects by a walking humanoid robot”.
In: 2010 10th IEEE-RAS International Conference on Humanoid Robots.
IEEE. 2010, pp. 518–523 (cit. on p. 27).

[104] Athanasios Krontiris and Kostas E Bekris. “Dealing with difficult instances
of object rearrangement.” In: Robotics: Science and Systems. Vol. 1123. 2015
(cit. on p. 27).

[105] Jun Ota. “Rearrangement of multiple movable objects-integration of global
and local planning methodology”. In: IEEE International Conference on
Robotics and Automation, 2004. Proceedings. ICRA’04. 2004. Vol. 2. IEEE.
2004, pp. 1962–1967 (cit. on p. 27).

[106] Changkyu Song and Abdeslam Boularias. “Object rearrangement with nested
nonprehensile manipulation actions”. In: 2019 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). IEEE. 2019, pp. 6578–6585
(cit. on p. 27).

[107] Shuai D Han, Nicholas M Stiffler, Athanasios Krontiris, Kostas E Bekris, and
Jingjin Yu. “Complexity results and fast methods for optimal tabletop rear-
rangement with overhand grasps”. In: The International Journal of Robotics
Research 37.13-14 (2018), pp. 1775–1795 (cit. on p. 27).

[108] Weiwei Wan, Hisashi Igawa, Kensuke Harada, Hiromu Onda, Kazuyuki Na-
gata, and Natsuki Yamanobe. “A regrasp planning component for object
reorientation”. In: Autonomous Robots 43.5 (2019), pp. 1101–1115 (cit. on
p. 27).

[109] Weiwei Wan, Kensuke Harada, and Fumio Kanehiro. “Preparatory manip-
ulation planning using automatically determined single and dual arm”. In:
IEEE Transactions on Industrial Informatics 16.1 (2019), pp. 442–453 (cit.
on p. 27).

[110] Joshua A Haustein, Isac Arnekvist, Johannes Stork, Kaiyu Hang, and Danica
Kragic. “Learning manipulation states and actions for efficient non-prehensile
rearrangement planning”. In: arXiv preprint arXiv:1901.03557 (2019) (cit. on
p. 27).

121

BIBLIOGRAPHY

[111] Jur Van Den Berg, Jack Snoeyink, Ming C Lin, and Dinesh Manocha. “Cen-
tralized path planning for multiple robots: Optimal decoupling into sequential
plans.” In: Robotics: Science and systems. Vol. 2. 2.5. 2009, pp. 2–3 (cit. on
p. 27).

[112] Mokhtar Gharbi, Juan Cortés, and Thierry Siméon. “Roadmap composition
for multi-arm systems path planning”. In: 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE. 2009, pp. 2471–2476
(cit. on p. 28).

[113] Kiril Solovey, Oren Salzman, and Dan Halperin. “Finding a needle in an
exponential haystack: Discrete RRT for exploration of implicit roadmaps in
multi-robot motion planning”. In: Algorithmic Foundations of Robotics XI.
Springer, 2015, pp. 591–607 (cit. on p. 28).

[114] Rahul Shome and Kostas E Bekris. “Anytime multi-arm task and motion
planning for pick-and-place of individual objects via handoffs”. In: 2019 Inter-
national Symposium on Multi-Robot and Multi-Agent Systems (MRS). IEEE.
2019, pp. 37–43 (cit. on p. 28).

[115] Rahul Shome, Kiril Solovey, andrew Dobson, Dan Halperin, and Kostas E
Bekris. “d-RRT*: Scalable and informed asymptotically-optimal multi-robot
motion planning”. In: Autonomous Robots 44.3 (2020), pp. 443–467 (cit. on
p. 28).

[116] Joseph Mirabel et al. “HPP: A new software for constrained motion plan-
ning”. In: 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE. 2016, pp. 383–389 (cit. on pp. 28, 55).

[117] Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Rohan Chitnis, Stuart
Russell, and Pieter Abbeel. “Combined task and motion planning through an
extensible planner-independent interface layer”. In: 2014 IEEE international
conference on robotics and automation (ICRA). IEEE. 2014, pp. 639–646
(cit. on p. 29).

[118] Thierry Siméon, Jean-Paul Laumond, Juan Cortés, and Anis Sahbani. “Ma-
nipulation planning with probabilistic roadmaps”. In: The International
Journal of Robotics Research 23.7-8 (2004), pp. 729–746 (cit. on p. 29).

[119] Benoit Dacre-Wright, Jean-Paul Laumond, and Rachid Alami. “Motion plan-
ning for a robot and a movable object amidst polygonal obstacles”. In: Pro-
ceedings 1992 IEEE International Conference on Robotics and Automation.
IEEE Computer Society. 1992, pp. 2474–2475 (cit. on p. 29).

[120] Stephane Cambon, Rachid Alami, and Fabien Gravot. “A hybrid approach
to intricate motion, manipulation and task planning”. In: The International
Journal of Robotics Research 28.1 (2009), pp. 104–126 (cit. on p. 29).

[121] Caelan Reed Garrett, Tomas Lozano-Perez, and Leslie Pack Kaelbling.
“FFRob: Leveraging symbolic planning for efficient task and motion plan-
ning”. In: The International Journal of Robotics Research 37.1 (2018),
pp. 104–136 (cit. on p. 30).

122

BIBLIOGRAPHY

[122] Neil T Dantam, Zachary K Kingston, Swarat Chaudhuri, and Lydia E
Kavraki. “An incremental constraint-based framework for task and motion
planning”. In: The International Journal of Robotics Research 37.10 (2018),
pp. 1134–1151 (cit. on p. 30).

[123] andrew M Wells, Neil T Dantam, Anshumali Shrivastava, and Lydia E
Kavraki. “Learning feasibility for task and motion planning in tabletop en-
vironments”. In: IEEE robotics and automation letters 4.2 (2019), pp. 1255–
1262 (cit. on p. 30).

[124] Beomjoon Kim, Zi Wang, Leslie Pack Kaelbling, and Tomás Lozano-Pérez.
“Learning to guide task and motion planning using score-space represen-
tation”. In: The International Journal of Robotics Research 38.7 (2019),
pp. 793–812 (cit. on p. 30).

[125] Michael Görner, Robert Haschke, Helge Ritter, and Jianwei Zhang. “MoveIt!
task constructor for task-level motion planning”. In: 2019 International Con-
ference on Robotics and Automation (ICRA). IEEE. 2019, pp. 190–196 (cit.
on p. 30).

[126] Samer Alfayad, Fethi B Ouezdou, Faycal Namoun, and Gordon Gheng. “High
performance integrated electro-hydraulic actuator for robotics. Part I: Prin-
ciple, prototype design and first experiments”. In: Sensors and Actuators A:
Physical 169.1 (2011), pp. 115–123 (cit. on p. 31).

[127] Samer Alfayad, Fethi B Ouezdou, Faycal Namoun, and Gordon Gheng. “High
performance integrated electro-hydraulic actuator for robotics. Part II: Theo-
retical modelling, simulation, control & comparison with real measurements”.
In: Sensors and Actuators A: Physical 169.1 (2011), pp. 124–132 (cit. on
p. 31).

[128] Felix Grimminger et al. “An open torque-controlled modular robot archi-
tecture for legged locomotion research”. In: IEEE Robotics and Automation
Letters 5.2 (2020), pp. 3650–3657 (cit. on p. 31).

[129] andrea Del Prete, Nicolas Mansard, Oscar E Ramos, Olivier Stasse, and
Francesco Nori. “Implementing torque control with high-ratio gear boxes
and without joint-torque sensors”. In: International Journal of Humanoid
Robotics 13.01 (2016) (cit. on p. 31).

[130] Noélie Ramuzat, Florent Forget, Vincent Bonnet, M Gautier, S Boria, and
Olivier Stasse. “Actuator model, identification and differential dynamic pro-
gramming for a talos humanoid robot”. In: 2020 European Control Conference
(ECC). IEEE. 2020, pp. 724–730 (cit. on p. 31).

[131] Richard P Paul. Robot manipulators: Mathematics, programming, and con-
trol: The computer control of robot manipulators. Richard Paul, 1981 (cit. on
p. 31).

[132] Oussama Khatib. “A unified approach for motion and force control of robot
manipulators: The operational space formulation”. In: IEEE Journal on
Robotics and Automation 3.1 (1987), pp. 43–53 (cit. on p. 31).

[133] Yoshihiko Nakamura and Hideo Hanafusa. “Optimal redundancy control of
robot manipulators”. In: The International Journal of Robotics Research 6.1
(1987), pp. 32–42 (cit. on pp. 31, 56).

123

BIBLIOGRAPHY

[134] Bruno Siciliano and J-JE Slotine. “A general framework for managing multi-
ple tasks in highly redundant robotic systems”. In: Fifth International Con-
ference on Advanced Robotics’ Robots in Unstructured Environments. IEEE.
1991, pp. 1211–1216 (cit. on p. 31).

[135] Karim Bouyarmane and Abderrahmane Kheddar. “On weight-prioritized
multitask control of humanoid robots”. In: IEEE Transactions on Automatic
Control 63.6 (2017), pp. 1632–1647 (cit. on p. 31).

[136] Philip E Gill, Walter Murray, and Michael A Saunders. “SNOPT: An SQP
algorithm for large-scale constrained optimization”. In: SIAM review 47.1
(2005), pp. 99–131 (cit. on p. 32).

[137] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science
& Business Media, 2006 (cit. on p. 32).

[138] Philip E Gill, Walter Murray, and Margaret HWright. Practical optimization.
SIAM, 2019 (cit. on p. 32).

[139] Michael JD Powell. “A fast algorithm for nonlinearly constrained optimiza-
tion calculations”. In: Numerical analysis. Springer, 1978, pp. 144–157 (cit.
on p. 32).

[140] Robert J Vanderbei and David F Shanno. “An interior-point algorithm for
nonconvex nonlinear programming”. In: Computational Optimization and
Applications 13.1 (1999), pp. 231–252 (cit. on p. 32).

[141] Richard H Byrd, Mary E Hribar, and Jorge Nocedal. “An interior point
algorithm for large-scale nonlinear programming”. In: SIAM Journal on Op-
timization 9.4 (1999), pp. 877–900 (cit. on p. 32).

[142] Adrien Escande, Nicolas Mansard, and Pierre-Brice Wieber. “Hierarchical
quadratic programming: Fast online humanoid-robot motion generation”. In:
The International Journal of Robotics Research 33.7 (2014), pp. 1006–1028
(cit. on pp. 32, 48).

[143] Ixchel G Ramirez-Alpizar et al. “Motion generation for pulling a fire hose by
a humanoid robot”. In: 2016 IEEE-RAS 16th International Conference on
Humanoid Robots (Humanoids). IEEE. 2016, pp. 1016–1021 (cit. on p. 32).

[144] Mingxing Liu, Yang Tan, and Vincent Padois. “Generalized hierarchical con-
trol”. In: Autonomous Robots 40.1 (2016), pp. 17–31 (cit. on p. 32).

[145] Hongkai Dai, andrés Valenzuela, and Russ Tedrake. “Whole-body motion
planning with centroidal dynamics and full kinematics”. In: 2014 IEEE-RAS
International Conference on Humanoid Robots. IEEE. 2014, pp. 295–302 (cit.
on p. 32).

[146] Maximilien Naveau, Manuel Kudruss, Olivier Stasse, Christian Kirches,
Katja Mombaur, and Philippe Souères. “A reactive walking pattern gen-
erator based on nonlinear model predictive control”. In: IEEE Robotics and
Automation Letters 2.1 (2016), pp. 10–17 (cit. on p. 32).

[147] Carlos Mastalli et al. “Crocoddyl: An efficient and versatile framework for
multi-contact optimal control”. In: 2020 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2020, pp. 2536–2542 (cit. on pp. 32,
55, 56).

124

BIBLIOGRAPHY

[148] Carlos Mastalli et al. Crocoddyl: A fast and flexible optimal control library
for robot control under contact sequence. 2019. url: https://github.com/
loco-3d/crocoddyl/wikis/home (cit. on pp. 32, 55, 56).

[149] He Li, Robert J Frei, and Patrick M Wensing. “Model hierarchy predictive
control of robotic systems”. In: IEEE Robotics and Automation Letters 6.2
(2021), pp. 3373–3380 (cit. on p. 32).

[150] Wael Suleiman, Eiichi Yoshida, Fumio Kanehiro, Jean-Paul Laumond, and
André Monin. “On human motion imitation by humanoid robot”. In: 2008
IEEE International conference on robotics and automation. IEEE. 2008,
pp. 2697–2704 (cit. on p. 32).

[151] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel Van De Panne.
“Deepmimic: Example-guided deep reinforcement learning of physics-based
character skills”. In: ACM Transactions on Graphics (TOG) 37.4 (2018),
pp. 1–14 (cit. on p. 32).

[152] Kevin Bergamin, Simon Clavet, Daniel Holden, and James Richard Forbes.
“DReCon: data-driven responsive control of physics-based characters”. In:
ACM Transactions On Graphics (TOG) 38.6 (2019), pp. 1–11 (cit. on p. 32).

[153] Nicolas Heess et al. “Emergence of locomotion behaviours in rich environ-
ments”. In: arXiv preprint arXiv:1707.02286 (2017) (cit. on p. 32).

[154] Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel Van De Panne.
“Deeploco: Dynamic locomotion skills using hierarchical deep reinforcement
learning”. In: ACM Transactions on Graphics (TOG) 36.4 (2017), pp. 1–13
(cit. on p. 32).

[155] Ilge Akkaya et al. “Solving Rubik’s cube with a robot hand”. In: arXiv
preprint arXiv:1910.07113 (2019) (cit. on p. 32).

[156] François Chaumette and Seth Hutchinson. “Visual servo control. I. Basic
approaches”. In: IEEE Robotics & Automation Magazine 13.4 (2006), pp. 82–
90 (cit. on p. 32).

[157] Seth Hutchinson, Gregory D Hager, and Peter I Corke. “A tutorial on visual
servo control”. In: IEEE transactions on robotics and automation 12.5 (1996),
pp. 651–670 (cit. on p. 32).

[158] François Chaumette and Seth Hutchinson. “Visual servo control. II. Ad-
vanced approaches”. In: IEEE Robotics & Automation Magazine 14.1 (2007),
pp. 109–118 (cit. on p. 32).

[159] Roger Tsai. “A versatile camera calibration technique for high-accuracy 3D
machine vision metrology using off-the-shelf TV cameras and lenses”. In:
IEEE Journal on Robotics and Automation 3.4 (1987), pp. 323–344 (cit. on
p. 33).

[160] Zhengyou Zhang. “A flexible new technique for camera calibration”. In: IEEE
Transactions on pattern analysis and machine intelligence 22.11 (2000),
pp. 1330–1334 (cit. on p. 33).

[161] Peter Sturm and Srikumar Ramalingam. Camera models and fundamental
concepts used in geometric computer vision. Now Publishers Inc, 2011 (cit.
on p. 33).

125

https://github.com/loco-3d/crocoddyl/wikis/home
https://github.com/loco-3d/crocoddyl/wikis/home

BIBLIOGRAPHY

[162] John Canny. “A computational approach to edge detection”. In: IEEE Trans-
actions on pattern analysis and machine intelligence 6 (1986), pp. 679–698
(cit. on p. 33).

[163] Chris Harris, Mike Stephens, et al. “A combined corner and edge detector”.
In: Alvey vision conference. Vol. 15. Citeseer. 1988 (cit. on p. 33).

[164] Jianbo Shi et al. “Good features to track”. In: 1994 Proceedings of IEEE
conference on computer vision and pattern recognition. IEEE. 1994, pp. 593–
600 (cit. on p. 33).

[165] Martin A Fischler and Robert C Bolles. “Random sample consensus: A
paradigm for model fitting with applications to image analysis and auto-
mated cartography”. In: Communications of the ACM 24.6 (1981), pp. 381–
395 (cit. on pp. 33, 87).

[166] Daniel F DeMenthon and Larry S Davis. “Model-based object pose in 25 lines
of code”. In: International journal of computer vision 15.1-2 (1995), pp. 123–
141 (cit. on p. 33).

[167] Ulrich Neumann and Youngkwan Cho. “A self-tracking augmented reality
system”. In: Proceedings of the ACM Symposium on Virtual Reality Software
and Technology. 1996, pp. 109–115 (cit. on p. 33).

[168] Hirokazu Kato and Mark Billinghurst. “Marker tracking and HMD cali-
bration for a video-based augmented reality conferencing system”. In: Pro-
ceedings 2nd IEEE and ACM International Workshop on Augmented Reality
(IWAR’99). IEEE. 1999, pp. 85–94 (cit. on p. 33).

[169] Jun Rekimoto. “Matrix: A realtime object identification and registration
method for augmented reality”. In: Proceedings. 3rd Asia Pacific Computer
Human Interaction (Cat. No. 98EX110). IEEE. 1998, pp. 63–68 (cit. on
p. 33).

[170] Edwin Olson. “AprilTag: A robust and flexible visual fiducial system”. In:
2011 IEEE International Conference on Robotics and Automation. IEEE.
2011, pp. 3400–3407 (cit. on p. 33).

[171] John Wang and Edwin Olson. “AprilTag 2: Efficient and robust fiducial de-
tection”. In: 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE. 2016, pp. 4193–4198 (cit. on pp. 33, 42, 87, 131).

[172] Radu Horaud, Bernard Conio, Olivier Leboulleux, and Bernard Lacolle. “An
analytic solution for the perspective 4-point problem”. In: Computer Vision,
Graphics, and Image Processing 47.1 (1989), pp. 33–44 (cit. on p. 34).

[173] Denis Oberkampf, Daniel F DeMenthon, and Larry S Davis. “Iterative pose
estimation using coplanar feature points”. In: Computer Vision and Image
Understanding 63.3 (1996), pp. 495–511 (cit. on pp. 34, 87).

[174] Long Quan and Zhongdan Lan. “Linear n-point camera pose determination”.
In: IEEE Transactions on pattern analysis and machine intelligence 21.8
(1999), pp. 774–780 (cit. on p. 34).

[175] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. “EPnP: An accu-
rate O(n) solution to the PnP problem”. In: International journal of computer
vision 81.2 (2009), p. 155 (cit. on pp. 34, 87).

126

BIBLIOGRAPHY

[176] Shiqi Li, Chi Xu, and Ming Xie. “A robust O(n) solution to the perspective-
n-point problem”. In: IEEE transactions on pattern analysis and machine
intelligence 34.7 (2012), pp. 1444–1450 (cit. on p. 34).

[177] Nikolaos P Papanikolopoulos, Pradeep K Khosla, and Takeo Kanade. “Visual
tracking of a moving target by a camera mounted on a robot: A combination
of control and vision”. In: IEEE transactions on robotics and automation 9.1
(1993), pp. 14–35 (cit. on p. 34).

[178] Ezio Malis, Francois Chaumette, and Sylvie Boudet. “2 1/2 D visual ser-
voing”. In: IEEE Transactions on Robotics and Automation 15.2 (1999),
pp. 238–250 (cit. on p. 34).

[179] Bernard Espiau, François Chaumette, and Patrick Rives. “A new approach
to visual servoing in robotics”. In: ieee Transactions on Robotics and Au-
tomation 8.3 (1992), pp. 313–326 (cit. on p. 34).

[180] Jonas Koenemann et al. “Whole-body model-predictive control applied to
the HRP-2 humanoid”. In: 2015 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS). IEEE. 2015, pp. 3346–3351 (cit. on
p. 34).

[181] Viviane Cadenat, Philippe Souères, and Michel Courdesses. “An hybrid con-
trol for avoiding obstacles during a vision-based tracking task”. In: 1999
European Control Conference (ECC). IEEE. 1999, pp. 1114–1119 (cit. on
p. 34).

[182] Viviane Cadenat, Ricardo Swain, Philippe Soueres, and Michel Devy. “A
controller to perform a visually guided tracking task in a cluttered environ-
ment”. In: Proceedings 1999 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems. Human and Environment Friendly Robots with
High Intelligence and Emotional Quotients (Cat. No. 99CH36289). Vol. 2.
IEEE. 1999, pp. 775–780 (cit. on p. 34).

[183] Jian Chen, Warren E Dixon, M Dawson, and Michael McIntyre.
“Homography-based visual servo tracking control of a wheeled mobile robot”.
In: IEEE Transactions on Robotics 22.2 (2006), pp. 406–415 (cit. on p. 34).

[184] Jean-Bernard Hayet, Frédéric Lerasle, and Michel Devy. “A visual land-
mark framework for indoor mobile robot navigation”. In: Proceedings 2002
IEEE International Conference on Robotics and Automation (Cat. No.
02CH37292). Vol. 4. IEEE. 2002, pp. 3942–3947 (cit. on p. 34).

[185] Jean-Bernard Hayet, Claudia Esteves, Gustavo Arechavaleta, Olivier Stasse,
and Eiichi Yoshida. “Humanoid locomotion planning for visually guided
tasks”. In: International Journal of Humanoid Robotics 9.02 (2012) (cit. on
p. 34).

[186] Moslem Kazemi, Kamal Gupta, and Mehran Mehrandezh. “Path-planning
for visual servoing: A review and issues”. In: Visual Servoing via Advanced
Numerical Methods (2010), pp. 189–207 (cit. on p. 34).

[187] Fereshteh Sadeghi, Alexander Toshev, Eric Jang, and Sergey Levine.
“Sim2real viewpoint invariant visual servoing by recurrent control”. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion. 2018, pp. 4691–4699 (cit. on p. 34).

127

BIBLIOGRAPHY

[188] Noé G Aldana-Murillo, Luis Sandoval, Jean-Bernard Hayet, Claudia Esteves,
and Hector M Becerra. “Coupling humanoid walking pattern generation and
visual constraint feedback for pose-regulation and visual path-following”. In:
Robotics and Autonomous Systems 128 (2020), p. 103497 (cit. on p. 34).

[189] Joseph Mirabel and Florent Lamiraux. “Manipulation planning: Addressing
the crossed foliation issue”. In: 2017 ieee international conference on robotics
and automation (icra). ieee. 2017, pp. 4032–4037 (cit. on pp. 38, 44).

[190] Joseph Mirabel and Florent Lamiraux. “Handling implicit and explicit con-
straints in manipulation planning”. In: robotics: science and systems 2018.
2018, 9p (cit. on p. 43).

[191] Mylène Campana, Florent Lamiraux, and Jean-Paul Laumond. “A gradient-
based path optimization method for motion planning”. In: advanced robotics
30.17-18 (2016), pp. 1126–1144 (cit. on p. 46).

[192] Tsuneo Yoshikawa. “Manipulability of robotic mechanisms”. In: The inter-
national journal of Robotics Research 4.2 (1985), pp. 3–9 (cit. on p. 49).

[193] Sachin Chitta et al. “Ros_control: A generic and simple control framework
for ros”. In: the journal of open source software 2.20 (2017), pp. 456–456 (cit.
on pp. 53, 57).

[194] Roy Featherstone. Rigid body dynamics algorithms. Springer, 2014 (cit. on
p. 54).

[195] Jia Pan, Sachin Chitta, and Dinesh Manocha. “FCL: A general purpose li-
brary for collision and proximity queries”. In: 2012 IEEE International Con-
ference on Robotics and Automation. IEEE. 2012, pp. 3859–3866 (cit. on
pp. 54, 133).

[196] Justin Carpentier and Nicolas Mansard. “Analytical derivatives of rigid body
dynamics algorithms”. In: Robotics: Science and systems (RSS 2018). 2018
(cit. on p. 54).

[197] ROS Transform Library 2. url: http://wiki.ros.org/tf2 (cit. on pp. 59,
134).

[198] Common Object Request Broker Architecture. url: https://www.omg.org/
spec/CORBA/ (cit. on p. 59).

[199] International Electrotechnical Commission et al. “Industrial communication
networks–fieldbus specifications–part 3–12: data-link layer service definition–
part 4–12: datalink layer protocol specification–type 12 elements”. In: iec, dec
61.1 (2007), pp. 58–53 (cit. on p. 63).

[200] David Coleman, Ioan Sucan, Sachin Chitta, and Nikolaus Correll. “Reducing
the barrier to entry of complex robotic software: A MoveIt! case study”. In:
arXiv preprint arXiv:1404.3785 (2014) (cit. on p. 64).

[201] Nathan Koenig and andrew Howard. “Design and use paradigms for gazebo,
an open-source multi-robot simulator”. In: 2004 ieee/rsj international confer-
ence on intelligent robots and systems (iros)(ieee cat. no. 04ch37566). Vol. 3.
ieee. 2004, pp. 2149–2154 (cit. on p. 64).

128

http://wiki.ros.org/tf2
https://www.omg.org/spec/CORBA/
https://www.omg.org/spec/CORBA/

BIBLIOGRAPHY

[202] Archive of the DARPA Robotics Challenge (DRC) website. url: https://
web.archive.org/web/20130120060850/http://www.darpa.mil/our_
work/tto/programs/darpa_robotics_challenge.aspx (cit. on p. 64).

[203] Kenji Kaneko et al. “Humanoid robot HRP-2Kai—improvement of HRP-2
towards disaster response tasks”. In: 2015 ieee-ras 15th international con-
ference on humanoid robots (humanoids). ieee. 2015, pp. 132–139 (cit. on
p. 65).

[204] Jeongsoo Lim et al. “Robot system of DRC-Hubo+ and control strategy of
team kaist in darpa robotics challenge finals”. In: the darpa robotics challenge
finals: humanoid robots to the rescue. springer, 2018, pp. 27–69 (cit. on p. 65).

[205] Boston Dynamics’ Atlas robot. url: https://www.bostondynamics.com/
atlas (cit. on p. 65).

[206] Description of the new WALK-MAN robot. url: https://spectrum.ieee.
org / new - version - of - walkman - is - slimmer - quicker - better - at -
quenching-your-flames (cit. on p. 65).

[207] Vincent Bonnet, Joseph Mirabel, David Daney, Florent Lamiraux, Maxime
Gautier, and Olivier Stasse. Practical whole-body elasto-geometric calibration
of a humanoid robot. Application to the Talos robot. Submitted to the IEEE
Transactions on Robotics. Oct. 2021 (cit. on pp. 76, 83).

[208] Pradeep K Khosla and Takeo Kanade. “Parameter identification of robot
dynamics”. In: 1985 24th IEEE conference on decision and control. IEEE.
1985, pp. 1754–1760 (cit. on p. 80).

[209] Donna E Whitney, CA Lozinski, and Johnathan M Rourke. “Industrial robot
forward calibration method and results”. In: (1986) (cit. on p. 80).

[210] Jacques Denavit and Richard Scheunemann Hartenberg. “A kinematic no-
tation for lower-pair mechanisms based on matrices”. In: Journal of Applied
Mechanics 23 (1955), pp. 215–221 (cit. on pp. 80, 81, 133).

[211] Wisama Khalil and J.F. Kleinfinger. “A new geometric notation for open
and closed-loop robots”. In: vol. 3. May 1986, pp. 1174–1179. doi: 10.1109/
ROBOT.1986.1087552 (cit. on p. 80).

[212] Maxime Gautier and Wisama Khalil. “On the identification of the inertial pa-
rameters of robots”. In: Proceedings of the 27th IEEE Conference on Decision
and Control. Vol. 3. IEEE Austin. 1988, pp. 2264–2269 (cit. on p. 83).

[213] Maxime Gautier and Wisama Khalil. “Direct calculation of minimum set of
inertial parameters of serial robots”. In: IEEE Transactions on robotics and
Automation 6.3 (1990), pp. 368–373 (cit. on p. 83).

[214] Maxime Gautier. “Numerical calculation of the base inertial parameters of
robots”. In: Journal of robotic systems 8.4 (1991), pp. 485–506 (cit. on p. 83).

[215] Jan Swevers, Chris Ganseman, D Bilgin Tukel, Joris De Schutter, and Hen-
drik Van Brussel. “Optimal robot excitation and identification”. In: IEEE
transactions on robotics and automation 13.5 (1997), pp. 730–740 (cit. on
p. 83).

129

https://web.archive.org/web/20130120060850/http://www.darpa.mil/our_work/tto/programs/darpa_robotics_challenge.aspx
https://web.archive.org/web/20130120060850/http://www.darpa.mil/our_work/tto/programs/darpa_robotics_challenge.aspx
https://web.archive.org/web/20130120060850/http://www.darpa.mil/our_work/tto/programs/darpa_robotics_challenge.aspx
https://www.bostondynamics.com/atlas
https://www.bostondynamics.com/atlas
https://spectrum.ieee.org/new-version-of-walkman-is-slimmer-quicker-better-at-quenching-your-flames
https://spectrum.ieee.org/new-version-of-walkman-is-slimmer-quicker-better-at-quenching-your-flames
https://spectrum.ieee.org/new-version-of-walkman-is-slimmer-quicker-better-at-quenching-your-flames
https://doi.org/10.1109/ROBOT.1986.1087552
https://doi.org/10.1109/ROBOT.1986.1087552

BIBLIOGRAPHY

[216] Luca Marchionni, Jordi Pages, Jordi Adell, Jose Rafael Capriles, and Hilario
Tomé. “Reem service robot: How may i help you?” In: International Work-
Conference on the Interplay Between Natural and Artificial Computation.
Springer. 2013, pp. 121–130 (cit. on p. 93).

[217] Manuel G Catalano, Giorgio Grioli, Edoardo Farnioli, Alessandro Serio,
Cristina Piazza, and Antonio Bicchi. “Adaptive synergies for the design and
control of the Pisa/IIT SoftHand”. In: The International Journal of Robotics
Research 33.5 (2014), pp. 768–782 (cit. on p. 93).

130

Glossary

Agimus A planning and execution framework developed by the LAAS-CNRS. It
build upon the concept of the graph of constraints presented in HPP to com-
bine this manipulation planner with a automated generation of SoT controllers
to ensure the good execution of the plan.

AprilTag A type of 2D visual fiducial markers, mainly used in augmented reality
and robotics. They can easily be detected by computer vision software, and
their position and orientation can be precisely computed. (See [171])

Configuration a set of values — one for each DoF — necessary and sufficient to
define the position of every point of a system, composed of a robot and, if
applicable, movable objects.

Configuration Space the set of all the configurations achievable by the system.

CS free the subset of CS devoid of collision; CS free = CS \ CSobs. This is the subset
where we plan the robot’s trajectories.

CSobs the subset of CS where at least one body of the system collides with the
environment or another body of the system.

Humanoid Path Planner a C++ Software Developement Kit implementing path
planning for kinematic chains in environments cluttered with obstacles. The
platform implements an original way of modeling manipulation planning
through a constraint graph that represents the numerical constraints that de-
fine the manipulation problem. (See [5])

Middle Sized Drilling Robot a drilling robot designed by Airbus Operations to
help in the process of aircrafts’ assembly, which requires tens of thousands
of holes. It is based on a Fanuc M-800iA/60 robot, equipped with a custom
end-effector containing a drill, cameras to detect reference holes, laser sensors
for precise alignement, and force sensors to ensure adequate drilling force and
prevent slippage.

ROB4FAM Robots For the Future of Aircrafts Manufacturing: a joint laboratory
between Airbus and the LAAS-CNRS aimed at developping software technolo-
gies to adapt the robots to the aircraft industry

Stack-of-Tasks a C++ Software Developement Kit implementing a control archi-
tecture for redundant robots and more specifically for humanoid robots. The

131

GLOSSARY

framework is flexible enough to implement hierarchical control and weighted
control. (See [6])

Visual Servoing Platform a modular cross platform library that allows proto-
typing and developing applications using visual tracking and visual servoing
technics. ViSP is able to compute control laws that can be applied to robotic
systems. It provides a set of visual features that can be tracked using real
time image processing or computer vision algorithms. (See [3])

132

Acronyms

ABA Articulated Body Algorithm

BIT* Batch Informed Trees

CHOMP Covariant Hamiltonian Optimisation for Motion Planning

CoM Center of Mass

CRBA Composite Rigid Body Algorithm

CS Glossary: Configuration Space

CSP Constraint Satisfaction Problem

DARPA Defense Advanced Research Projects Agency

DDP Differential Dynamic Programming

DH parameters Denavit-Hartenberg parameters (See [210])

DoF Degree of Freedom

DRC DARPA Robotics Challenge

FCL Flexible Collision Library (See [195])

FF Fast Forward algorithm

FMT* Fast Marching Tree

FSM Finite State Machine

GIK Generalised Inverted Kinematics

GPMP Gaussian Process Motion Planner

GPS General Problem Solver (See [80])

HPP Glossary: Humanoid Path Planner (See [5])

IBVS Image-Based Visual Servoing

IMU Inertial Measurement Unit

133

ACRONYMS

IPC International Planning Competition (See [83])

LAAS-CNRS Laboratory for Analysis and Architecture of Systems

MHPC Model Hierarchy Predictive Control

MoCap Motion Capture system

MSDR Glossary: Middle Sized Drilling Robot

NAMO Navigation Among Movable Obstacles

NR Newton-Raphson

OMPL Open Motion Planning Library

PBVS Position-Based Visual Servoing

PDDL Planning Domain Definition Language

PRM Probabilistic Road-Maps

PRM* Optimal PRM

RGD Randomised Gradient Descent

RHP Recursive Hermite Projection

RNEA Recursive Newton-Euler Algorithm

ROS Robot Operating System (See [8])

RRT Rapidly-exploring Random Tree

RRT* Optimal RRT

SAT Propositional Satisfiability Problem

SLAM Simultaneous Localisation And Mapping

SoT Glossary: Stack-of-Tasks (See [6])

STOMP Stochastic Trajectory Optimisation for Motion Planning

STRIPS Stanford Research Institute Problem Solver (See [81])

TF2 ROS transform library 2 (See [197])

TS Tangent-space Sampling

URDF Unified Robot Description Format

ViSP Glossary: Visual Servoing Platform (See [3])

V-PRM Visibility-PRM

ZMP Zero Moment Point

134

Résumé
La robotique est de plus en plus présente dans le cadre industriel. À l’origine

programmés manuellement par leurs opérateurs, les robots d’aujourd’hui utilisent
de plus en plus des trajectoires calculées par des programmes simulant l’ensemble de
l’environnement de travail. Des erreurs de modélisation, voire d’exécution, rendent
cependant obligatoire des périodes d’essais pour s’assurer que le robot s’acquittera
correctement de sa tâche.

Cette thèse a pour objectif de relier le concept de contrainte que le planificateur
de mouvements prend en compte avec les logiciels de commande en temps réel du
robot, qui gère le bon déroulement des tâches. La commande doit ainsi prendre
en compte les données provenant des multiples capteurs du robot pour adapter les
trajectoires planifiées à la réalité et s’assurer de la réalisation de ses objectifs. Cette
thèse s’effectue dans le cadre d’une convention CIFRE entre le laboratoire du LAAS-
CNRS et l’entreprise Airbus Operations. Elle fait par ailleurs partie de ROB4FAM,
un laboratoire commun entre ces deux entités, qui a pour but l’étude du futur de la
robotique appliquée à la construction aéronautique.

La contribution majeure de cette thèse est la génération automatique de ces
logiciels de commande à partir des contraintes exprimées à l’étape de planification.
Jusqu’à présent, ce type de correspondance était plutôt établi manuellement. Parmi
les différents types de commande existants, un accent tout particulier a été mis sur
la commande par asservissement visuel. En effet, les caméras sont des capteurs à
la fois abordables et capables de générer des données d’une grande richesse, mais
surtout les ordinateurs modernes sont désormais en mesure de traiter efficacement
ce volume d’information en temps réel.

Enfin, les logiciels de commande que nous présentons dans ce manuscrit utilisent
une hiérarchie stricte de commandes. Cela signifie que le robot cherchera à assurer
la réalisation du premier objectif, généralement lié à la préservation de son intégrité,
avant de prendre en compte les suivants. Grâce à cette architecture, le robot peut
s’adapter à des changements mineurs de ses objectifs tout en garantissant la sécurité
des opérateurs, de son environnement de travail et de sa structure même.

Les concepts et logiciels développés au cours de cette thèse ont été mis en œuvre
sur un robot humanoïde, TALOS, puis sur un robot mobile à roue équipé d’un
bras manipulateur, TIAGo. Ils ont été capables d’accomplir leurs tâches malgré le
déplacement des objets qu’ils allaient manipuler entre l’étape de planification des
mouvements et celle d’exécution du programme.

Abstract
Robots are increasingly present in the industrial environment. Originally pro-

grammed manually by their operators, today’s robots are progressively using paths
calculated by programs that simulate the entire work environment. However, mod-
elling or even execution errors require testing periods to ensure that the robot will
perform its task correctly.

This thesis intends to link the concept of constraint that the motion planner
takes into account with the robot’s real-time control software, which manages the
correct execution of tasks. The control must take into consideration the data from
the robot’s multiple sensors to adapt the planned paths to reality and ensure that
its objectives are achieved. This thesis is being carried out within the framework of
a CIFRE agreement between the LAAS-CNRS laboratory and the company Airbus
Operations. It is also part of ROB4FAM, a common laboratory between those
two entities, which aims at studying the future of robotics applied to aeronautical
construction.

The main contribution of this thesis is the automatic generation of such control
software based on the constraints expressed at the planning stage. Until now, this
type of correspondence was mostly established manually. Among the different types
of control schemes available, special emphasis has been placed on visual servo control.
This is due to the fact that cameras are affordable sensors capable of generating a
considerable amount of data. But above all modern computers are now able to
process this volume of information efficiently in real-time.

Finally, the control software we present in this manuscript uses a strict hierarchy
of commands. This means that the robot will seek to ensure the achievement of the
first objective, usually related to the preservation of its integrity, before considering
the following ones. With this architecture, the robot can adapt to minor changes
in its objectives while ensuring the safety of the operators, its working environment
and its structure itself.

The concepts and software developed during this thesis were implemented on
a humanoid robot, TALOS, and then on a mobile wheeled robot equipped with a
manipulator arm, TIAGo. They were able to accomplish their tasks, despite the
displacement of the objects they were going to manipulate between the movement
planning stage and the program execution stage.

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Context
	Robots and software
	Objectives and contributions of the thesis
	Organisation of this manuscript
	Publications

	State of the art
	Motion planning
	Constrained motion planning
	Task planning
	Manipulation planning
	Control laws for robots
	Visual servoing

	Agimus
	Introduction
	Concepts
	Software
	Experiments
	Conclusion

	Calibration
	Introduction
	Calibration using HPP's Newton-Raphson projection
	Calibration as several manipulator arms
	Whole-body elasto-geometric calibration of a TALOS robot
	Conclusion

	Agimus: Visual Servoing
	Introduction
	Visual Servoing
	Experiments
	Conclusion

	Middle Sized Drilling Robot
	Introduction
	Presentation of the robot
	Drilling process and its challenges
	Conclusion

	Conclusion
	Bibliography
	Glossary
	Acronyms

