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Abstract

The problem of �ltering applied to automotive diagnostic is studied in this
thesis, for linear or nonlinear, discrete-time dynamical systems, in a context
of mixed uncertainties, i.e. uncertainties can be stochastic or bounded (in
intervals). This context allows us to combine two well-known approaches of
�ltering: stochastic and set-membership approach. Through this thesis, we
show that they complement rather than compete each other. Two models
from the automotive industry are used in the applications along the thesis:
bicycle vehicle model and suspension model.

Mixed �ltering methods are �rst developed and presented in this work,
namely Optimal Upper Bound Interval Kalman Filter (OUBIKF) and Re-
inforced Likelihood Box Particle Filter (RLBPF), one is dedicated to linear
systems and the other to nonlinear systems. The former is based on interval
Kalman �lter and enhances it by using developed properties and optimiza-
tion strategy of upper bounds of all admissible covariance matrices belonging
to a given interval matrix. The later proposes a general scheme of box particle
�lter and develops a reinforcement methodology to the likelihood computa-
tion, the crucial step of the scheme, to enhance the �lter performance.

The second part of this thesis is dedicated to fault detection. The previous
�lters are used and combined with a χ2-based hypothesis testing method with
adaptive degrees of freedom, namely Adaptive Degrees of Freedom χ2-statistic
(ADFC), to deal with fault detection in linear or nonlinear systems. It is a
passive fault detection method enhanced by the adaptive threshold technique
in the decision making stage. This method allows the detection of single or
multiple additive faults on the sensors.

In the last part of this work, a methodology of active diagnosis is devel-
oped, that is the ADFC-based Active Fault Diagnosis (AFD) using auxiliary
signals. This methodology, a preliminary study to the active approach, is
limited to single fault detection. However, its contributions are multiple:
isolation (localization) and identi�cation (estimation) of the fault, reduction
of false alarms and improvement of the state estimation by returning the
estimated fault as a feedback signal to the �lter used. Our future researches
focus speci�cally on this approach.
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Résumé

Le problème du �ltrage appliqué au diagnostic automobile est étudié dans
ce travail de thèse, pour les systèmes dynamiques linéaires ou nonlinéaires,
à temps discret, en contexte d'incertitudes mixtes, c'est-à-dire que les in-
certitudes peuvent être stochastiques ou bornées (dans des intervalles). Ce
contexte permet de combiner deux approches bien connues du �ltrage : les
approches stochastique et ensembliste. Au travers de cette thèse, nous mon-
trons qu'elles se complètent plutôt qu'elles se concurrencent. Deux modèles
issus de l'automobile sont utilisés dans les applications tout-au-long de la
thèse. Il s'agit des modèles de véhicule à bicyclette et de suspension.

Des méthodes mixtes de �ltrage sont tout d'abord développées et pré-
sentées dans ce travail : Optimal Upper Bound Interval Kalman Filter (OU-
BIKF) et Reinforced Likelihood Box Particle Filter (RLBPF), l'un est dédié
aux systèmes linéaires et l'autre aux systèmes nonlinéaires. Le premier se
base sur le �ltre de Kalman intervalle et l'améliore en utilisant les propriétés
développées et la stratégie d'optimisation des bornes supérieures de toutes les
matrices de covariances admissibles appartenant à une matrice d'intervalle
donnée. Le second propose un schéma général de �tre particulaire ensembliste
et développe une méthodologie de renforcement du calcul de la vraisemblance,
l'étape cruciale du schéma, pour améliorer la performance du �ltre.

La deuxième partie de cette thèse est dédiée à la détection de défauts. Les
�ltres précédents sont utilisés et combinés à une méthode de test d'hypothèse
basée χ2 avec les degrés de liberté adaptatifs, à savoir Adaptive Degrees of
Freedom χ2-statistic (ADFC), pour traiter la détection de défauts dans les
systèmes linéaires ou nonlinéaires. Il s'agit d'une méthode de détection de
défaut passive renforcée par la technique de seuil adaptatif dans l'étape de
décision. Cette méthode permet la détection de défauts additifs, simples ou
multiples, sur les capteurs.

Dans la dernière partie de ce travail, une méthodologie de diagnostic actif
est développée, à savoir ADFC-based Active Fault Diagnosis (AFD) utilisant
des signaux auxiliaires. Cette méthodologie, étude préliminaire à l'approche
active, se limite à la détection de défaut simple. Cependant, ses contributions
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sont multiples : isolement (localisation) et identi�cation (estimation) du dé-
faut, réduction de fausses alarmes et amélioration de l'estimation de l'état en
renvoyant le défaut estimé comme un signal de retour au �ltre utilisé. Nos
futures recherches se concentrent tout particulièrement sur cette approche.



Chapter 1

State of the art

With the growth of the industrial automatization and the fast devel-
opment of intelligent systems applications, the necessity of e�cient control
strategies has risen to higher levels. Nerveless, the main problems to the
synthesis of such solutions have been the cost and the feasibility. Indeed,
all e�cient control approaches are based on reliable information either from
high precision sensors or high �delity information reconstruction (estima-
tors, observers). The former is considered as hardware-based approach which
is usually expensive and not always easy to embed. The later is considered as
model-based approach, since it bases entirely on a mathematical model. This
approach is more �exible to control and embed with lower cost. Therefore,
the model-based approach is widely used in many applications with numerous
purposes, included system control, state prediction/estimation, fault diagno-
sis. In this chapter, an overview of the state estimation and the fault diag-
nosis, says the state of the art, is presented to introduce advanced developed
contents in later chapters.

1.1 State estimation problem

In the model-based state estimation problem, a dynamical system is con-
sidered. It can be linear or nonlinear, discrete or continuous time. For the
purpose of computer implementation, any continuous time system must be
discretized. Therefore, through out this thesis, we focus on discrete time
systems for both linear and nonlinear case. For each case, only the relevant
contents of the literature involving our researches in next chapters are pre-
sented here: Kalman �lter for linear system, Bayesian �ltering and Particle
�lter for nonlinear system.
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1.1.1 Standard Kalman Filter

State estimation is a topic of utmost importance when dealing with sys-
tem control. Indeed, obtaining accurate estimations can lead to great im-
provements in the systems performances. One of the most signi�cant ideas to
emerge in the area of system and control theory is the Kalman Filter (Ian R.
and Andrey V., 1999). The Kalman Filter was �rst introduced in (Kalman,
1960) and referred to as Standard Kalman Filter (SKF). In this method, the
system under consideration is a linear discrete time-varying (LTV) system
with additive centered Gaussian noises in state and measurement processes.
The SKF provides optimal estimates for the real (actual) states and involves
�nite dimensional recursive computations which can be straightforwardly im-
plemented on-line.

A precursor of the SKF, known as the Wiener Filter, was developed inde-
pendently by (Wiener, 1949) and (Kolmogorov, 1941). Being also an optimal
method of extracting a signal from noise (as well as the SKF), the Wiener
Filter is however limited to time-invariant system with stationary noise pro-
cesses and not computationally straightforward as the SKF.

Since SKF has released in 1960, many extensions have been investigated
to enhance its performance, included:

� the Extended Kalman Filter (EKF) (Anderson and Moore, 1979) to
deal with nonlinear system by linearization,

� numerous developments of the SKF to robust methods, says Robust
Kalman Filtering, to deal with system uncertainty beside stochastic
noises (Ian R. and Andrey V. (1999); Zhe and Zheng (2006); Mohamed
and Nahavandi (2012a),...).

� set-membership methods (using intervals, zonotopes,...) also to deal
with system uncertainty beside stochastic noises (Chen et al. (1997);
Xiong et al. (2013); Tran et al. (2017); Lu et al. (2019); Combastel
(2005, 2015)...).

The reason of these extensions is that the SKF has a good performance while
relying on the following assumptions:

+ all parameter matrices Ak, Bk, Ck, Dk of the system are known and
there is no other disturbance (than noises) a�ecting the system,

+ the noises must be Gaussian,
which are ideal and unrealistic in modeling. By here, we would distinguish ro-
bust methods from set-membership ones though some authors might consider
the later being also robust methods. Both of them deal with system uncer-
tainty beside stochastic noises, however, the former should be those methods
providing point estimates while the later entirely produces set-valued esti-
mates for the real states. These results represent the di�erent objectives of
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these methods. Estimation methods should be classi�ed in priority by their
estimate results (objectives) rather than the fact that they treat the same
kind of uncertainty.

In the sequel, the SKF is presented in essential details. Consider the
following linear discrete time dynamical system{

xk = Akxk−1 +Bkuk + wk ,

yk = Ckxk +Dkuk + vk ,
k ∈ N∗, (1.1)

in which xk ∈ Rnx and yk ∈ Rny represent state variables and measure-
ments respectively, uk ∈ Rnu inputs, wk ∈ Rnx state noises and vk ∈ Rny

measurement noises.
Assumptions A0 (SKF Assumptions). Matrices Ak, Bk, Ck, Dk

are assumed to be known. wk, vk are centered Gaussian vectors with known
covariance matrices Qk and Rk. The initial state x0 is Gaussian with known
mean and covariance matrix: µ0 and P0. In addition, x0, {w1, ..., wk} and
{v1, ..., vk} are assumed to be mutually independent (or uncorrelated). In
terms of mathematical expression, that is

� x0 ∼ N (µ0, P0), wk ∼ N (0, Qk), vk ∼ N (0, Rk) for any k ≥ 1,
� E[x0w

T
k ] = E[x0v

T
k ] = E[wkv

T
l ] = 0 for any k, l ≥ 1,

� E[wkw
T
l ] = Qkδkl and E[vkv

T
l ] = Rkδkl for any k, l ≥ 1,

where δkl is the Kronecker delta.
Aim. The problem aims to �nd an estimate x̂k|y1:k (≡ x̂k|k for short)

given the observed values {y1 : yk} of the real state xk with which the ex-
pected loss E(‖xk − x̂k|k‖2) is minimized.

Remark 1. The notation p : l : q is used for a range from p to q with step
l provided that p, l, q ∈ N, p ≤ q and l is a divisor of (q − p). For l = 1, we
write p : q. A sequence of variables can be noted interchangeably as y1, ..., yk
or y1 : yk or y1:k. �

Remark 2. De�ne Yk
M
= y1:k as the knowledge up to time k ≥ 1 of the system

(1.1). By convention, Y0 is seen as the zero knowledge when no measurement
is taken. in terms of σ-algebra, the known information corresponding to Y0

is σ(Y0) = {∅,Ω}, where Ω is the sample space on which the random vectors
in consideration are de�ned. Therefore

E[xp|Y0] = E[xk|σ(Y0)] = E[xp] , ∀p ≥ 1,
E[xk|Yk−1] = E[xk|σ(Yk−1)] , ∀k ≥ 1,

where σ(Yk−1) is the σ-algebra generated by Yk−1, k ≥ 1. Therefore, we
write E[x1|Y0] ≡ E[x1|σ0] = E[x1], where the �rst two terms are equivalent
by notation convention. �
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SKF principle. At time k ≥ 1, the state xk is �rst estimated, using
a priori knowledge Yk−1 (use the convention of Remark 2 when k = 1), by
x̂k|k−1

M
= E[xk|Yk−1]. This is the prediction stage. In this stage an approxi-

mate ŷk of measurement yk is also provided thanks to the second equation
of (1.1) without noise vk. The second stage, namely correction stage, will be
implemented once yk arrived. The a priori estimate x̂k|k−1 will be updated
in terms of

x̂k|k = x̂k|k−1 +Kkrk ,
rk = yk − ŷk ,
ŷk = Ckx̂k|k−1 +Dkuk = E[yk|Yk−1] , (1.2)

where rk is called the residual or innovation term and Kk ∈ Rnx×ny is a gain
matrix. The optimal estimate x̂k|k is obtained by applying to (1.2) the choice
of optimal gain Kk = K∗k with

K∗k = argminKk
E(‖xk − x̂k|k‖2)

= argminKk
Tr{E[(xk − x̂k|k)(xk − x̂k|k)T ]}. (1.3)

Solution. De�ne Pk|k−i
M
= E[(xk − x̂k|k−i)(xk − x̂k|k−i)T ], i ∈ {0, 1}, and

call
� Pk|k−1 the a priori estimation (or the prediction) error covariance,
� Pk|k the (a posteriori) estimation error covariance.

Using (1.1) and (1.2), the estimation error covariance can be expressed as:

Pk|k = (I −KkCk)Pk|k−1(I −KkCk)
T +KkRkK

T
k , (1.4)

= Pk|k−1 −KkCkPk|k−1 − Pk|k−1C
T
k K

T
k +Kk(CkPk|k−1C

T
k +Rk)K

T
k .

The optimal gain K∗k , if it exists, is solution to the equation ∂Tr{Pk|k}
∂Kk

= 0,
that is

K∗k = Pk|k−1C
T
k S
−1
k , Sk = CkPk|k−1C

T
k +Rk , (1.5)

provided that Sk is nonsingular. It is clearly that Sk is positive semide�nite.
Most of the cases S−1

k exists, in particular when Rk is positive de�nite. A
(Moore-Penrose) pseudoinverse S+

k is used alternatively in practice when S−1
k

does not exist.
The associated estimation error covariance has the form

P ∗k|k = (I −K∗kCk)Pk|k−1. (1.6)

Finally, the optimal estimate is given by

x̂∗k|k = x̂k|k−1 +K∗k(yk − ŷk)
= (I −K∗kCk)x̂k|k−1 +K∗k(yk −Dkuk) (1.7)
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Remark 3. All above equations and results hold without an explicit deter-
mination of x̂k|k−1 = E[xk|Yk−1] . Lemma 1 provides a version of x̂k|k−1 (i.e.
the two functions are equal with probability 1, or almost surely) and proves
that the x̂k|k expressed in (1.7) is actually a version of E[xk|Yk]. �

Lemma 1. Consider system (1.1) with assumptions A0. Assume that the
�lter is initialized at x̂0|0 = µ0. For k ≥ 1, let rk = yk − ŷk, ŷk = Ckx̂k|k−1 +
Dkuk, de�ne

x̂k|k−1
M
= E[xk|Yk−1] and x̂k|k

M
= x̂k|k−1 +K∗krk,

where K∗k = argminKk
E[‖xk − (x̂k|k−1 +Kkrk)‖2] ∈ Rnx×ny .

Then with probability 1:

x̂k|k−1 = Akx̂k−1|k−1 +Bkuk and x̂k|k = E[xk|Yk] . (1.8)

Proof. By assumptions, it holds that :

x̂0|0 = µ0 = E(x0) = E[x0|Y0],
x̂1|0 = E[x1|Y0] = A1E[x0|Y0] +B1u1 = A1x̂0|0 +B1u1.

Assume that, at time k ≥ 1, the following quantities are given

x̂k−1|k−1 = E[xk−1|Yk−1] and x̂k|k−1 = E[xk|Yk−1].

Denote:

Yp = {T1y1 + ...+ Tpyp : T1, ..., Tp ∈ Rnx×ny} , p ≥ 1,
Y⊥p−1 = {u ∈ Yp : E(uv) = 0,∀v ∈ Yp−1} , p ≥ 2.

It is straightforward to check :
� Yp's are Hilbert spaces with inner product E(uTv), ∀u, v ∈ Yp,
� Yp−1 is closed subspace of Yp,
� Y⊥p−1 is the orthogonal space of Yp−1 in Yp, says Yp = Yp−1 ⊕ Y⊥p−1.

Then every u ∈ Yp can be express as u = PYp−1u + PY⊥p−1
u, where PX is the

projection operator on the space X , PYp−1u ∈ Yp−1 and PY⊥p−1
u ∈ Y⊥p−1.

In addition, Y⊥p−1 can be proved to have the form

Zp−1 =
{
V yp − PYp−1V yp : V ∈ Rnx×ny

}
=

{
V (yp − E[yp|Yp−1]) : V ∈ Rnx×ny

}
.

Indeed, for every V ∈ Rnx×ny , V yp ∈ Yp and hence (V yp−PYp−1V yp) ∈ Y⊥p−1

thanks to the direct sum property. So, Zp−1 ⊂ Y⊥p−1.
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Inversely, let t ∈ Y⊥p−1, there exists u ∈ Yp−1 so that u =
∑p

i=1 Tiyi and
t = u− PYp−1u. Thanks to the projection operator linearity,

t =

p∑
i=1

Tiyi − PYp−1

(
p∑
i=1

Tiyi

)

= Tpyp +

p−1∑
i=1

Tiyi − PYp−1

(
p−1∑
i=1

Tiyi

)
− PYp−1Tpyp.

= Tpyp − PYp−1Tpyp ∈ Zp−1,

where the last equality holds by using the fact PYp−1

(∑p−1
i=1 Tiyi

)
=
∑p−1

i=1 Tiyi
since

∑p−1
i=1 Tiyi ∈ Yp−1. Thus Y⊥p−1 ⊂ Zp−1.

The second form of Zp−1 is veri�ed thanks to the following property:

xk, yk are Gaussian ⇒
{
E[xk|Yp] = PYpxk ,
E[Kkyk|Yp] = PYpKkyk ,

for every 1 ≤ p ≤ k, Kk ∈ Rnx×ny and noting that E is also linear operator.
Therefore, there exists a V ∈ Rnx×ny so that

E[xk|Yk] = PYk−1
E[xk|Yk] + PY⊥k−1

E[xk|Yk]
= E[xk|Yk−1] + V (yk − E[yk|Yk−1])
= x̂k|k−1 + V (yk − ŷk) ,

noting that ŷk = Ckx̂k|k−1 +Dkuk = E[yk|Yk−1].
E[xk|Yk] = PYkxk is the optimal approximate of xk in the sense that

‖xk − E[xk|Yk]‖2
Yk ≤ ‖xk − z‖

2
Yk , ∀z : σ(Yk)-measurable,

⇔ ‖xk − E[xk|Yk]‖2
Yk ≤ ‖xk − z‖

2
Yk , ∀z ∈ Yk,

⇔ E
[
‖xk − E[xk|Yk]‖2] ≤ E

[
‖xk − z‖2

]
, ∀z ∈ Yk, (1.9)

This fact is achieved with V ≡ K∗k , the optimal gain presented in (1.5),
while the existence and uniqueness of K∗k is ensured by the existence and
uniqueness (almost surely or with probability 1) of E[xk|Yk].

So at time k ≥ 1, the optimal estimate of xk chosen as in (1.7) satis�es
x̂k|k ≡ x̂∗k|k = E[xk|Yk]. Then, x̂k+1|k = Ak+1x̂k|k + Bk+1uk+1 = E[xk+1|Yk].
By induction, we conclude that, at any time k ≥ 1,

x̂k|k−1
M
= E[xk|Yk−1] ≡ Akx̂k−1|k−1 +Bkuk,

x̂k|k
M
= x̂k|k−1 +K∗krk ≡ E[xk|Yk] (1.10)
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Algorithm 1 summarizes the SKF mechanism. The estimate x̂k|k therein
is actually the optimal estimate x̂∗k|k mentioned above. The same is true for
the estimation error covariance. The symbol “ ∗ ” is just used for the gain
matrix to emphasize optimality and is omitted in other terms for simplicity.

Algorithm 1 Standard Kalman Filter

1: Initialization: x̂0|0, P0|0, Ak, Bk, Ck, Dk, Qk, Rk, uk, yk, k = 1, 2, 3, ..., N
2: for k = 1, 2, 3, ..., N do
3: Prediction step:
4: x̂k|k−1 = Akx̂k−1|k−1 +Bkuk
5: Pk|k−1 = AkPk−1|k−1A

T
k +Qk

6: Correction step:
7: Sk = CkPk|k−1C

T
k +Rk

8: K∗k = Pk|k−1C
T
k S
−1
k

9: x̂k|k = (I −K∗kCk)x̂k|k−1 +K∗k(yk −Dkuk)
10: Pk|k = (I −K∗kCk)Pk|k−1

11: end for

For further discussion, stochastic properties of related terms appearing in
the SKF are presented here. To this end, following notations are used:

A⊗k,s = AkAk−1...As+1As if s ≤ k and A⊗k,s = I if s > k,
C̃k = I −KkCk, Ãk = C̃kAk and B̃k = C̃kBk.

Properties:

P.1) For k ≥ 1, the recursive formula of xk is given by (1.1), whilst a general
form of xk can be written as

xk = A⊗k,1x0 +
k∑
i=1

A⊗k,i+1Biui +
k∑
i=1

A⊗k,i+1wi . (1.11)

So, xk is a function of Gaussian vectors {x0, w1 : wk}. Furthermore,
xk ∼ N (µk, Pk) where
�µk = Akµk−1 +Bkuk = A⊗k,1µ0 +

∑k
i=1 A

⊗
k,i+1Biui,

�Pk = AkPk−1A
T
k +Qk = (A⊗k,1)P0(A⊗k,1)T +

∑k
i=1(A⊗k,i+1)Qi(A

⊗
k,i+1)T .

P.2) For yk, no recursive formula is obtained, but a general form can be
derived thanks to (1.11)

yk = CkA
⊗
k,1x0+Ck

k∑
i=1

A⊗k,i+1Biui + Dkuk+Ck

k∑
i=1

A⊗k,i+1wi+vk (1.12)
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and therefore, yk is a function of Gaussian vectors {x0, w1:k, vk}.
Furthermore, yk ∼ N (λk,Γk) where
� λk = CkA

⊗
k,1µ0 + Ck

∑k
i=1A

⊗
k,i+1Biui +Dkuk ,

� Γk = CkPkC
T
k +Rk

= (CkA
⊗
k,1)P0(CkA

⊗
k,1)T +

∑k
i=1(CkA

⊗
k,i+1)Qi(CkA

⊗
k,i+1)T + Rk.

P.3) Recursive and general formulas for x̂k|k are deduced from (1.10). ∀k ≥ 1:

x̂k|k = Ãkx̂k−1|k−1 + (B̃k −KkDk)uk +Kkyk, (1.13)

x̂k|k = Ã⊗k,1x̂0|0 +
k∑
i=1

Ã⊗k,i+1(B̃i −KiDi)ui +
k∑
i=1

Ã⊗k,i+1Kiyi .(1.14)

The SKF is initialized at a chosen starting point x̂0|0 (so it is not ran-
dom). Assuming that µ0 is known, x̂0|0 can be chosen to be µ0, or says
x0 ∼ N (x̂0|0, P0).

Furthermore, ∀k ≥ 1, x̂k|k ∼ N (µ̂k, P̂k) where µ̂k = µk and

P̂k =
k∑
i=1

(Ã⊗k,i+1Ki)Γi(Ã
⊗
k,i+1Ki)

T ,

=
k∑
i=1

(Ã⊗k,i+1KiCi)Pi(Ã
⊗
k,i+1KiCi)

T +
k∑
i=1

(Ã⊗k,i+1Ki)Ri(Ã
⊗
k,i+1Ki)

T .

By (1.14) and (1.12), x̂k|k is a function of {y1:k} or of {x0, w1:k, vk}
respectively.

Proof. Let prove µ̂k = µk to emphasize this property. Other properties
are obtained by direct computation. This property is veri�ed since
E(x̂k|k) = E[E(xk|y1 : yk)] = E(xk) = µk.

P.4) The estimation error is de�ned as εk = xk− x̂k|k which can be expressed
in the forms

εk = Ãkεk−1 + C̃kwk −Kkvk , (1.15)

εk = Ã⊗k,1ε0 +
k∑
i=1

Ã⊗k,i+1C̃iwi −
k∑
i=1

Kivi . (1.16)

For k ≥ 1, εk is a function of {x0, w1:k, v1:k} and εk ∼ N (0, Pk|k) since xk
and x̂k|k are normally distributed with the same mean. The error covari-
ance matrix Pk|k = E[εkε

T
k ] determined by (1.4) can also be expressed

in recursive and general forms as:
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Pk|k = ÃkPk−1|k−1Ã
T
k + C̃kQkC̃

T
k +KkRkK

T
k , (1.17)

Pk|k = (Ã⊗k,1)P0|0(Ã⊗k,1)T +
k∑
i=1

(Ã⊗k,i+1C̃i)Qi(Ã
⊗
k,i+1C̃i)

T

+
k∑
i=1

(Ã⊗k,i+1Ki)Ri(Ã
⊗
k,i+1Ki)

T . (1.18)

Under the assumption x0 ∼ N (x̂0|0, P0), the covariance matrix of ε0 is
P0|0 = E[(x0 − x̂0|0)(x0 − x̂0|0)T ] = P0. In addition, ∀k < s, the errors
εk are independent of ws and vs.

P.5) The residual term determined by rk = yk − ŷk = Ck(xk − x̂k|k−1) + vk
can also be expressed as

rk = CkAkεk−1 + Ckwk + vk . (1.19)

For k ≥ 1, rk is a function of {x0, w1:k, v1:k} and rk ∼ N (0, Sk) where

Sk = (CkAk)Pk−1|k−1(CkAk)
T + CkQkC

T
k +Rk. (1.20)

Furthermore, {rk}k≥1 is proved to be a sequence of independent innova-
tion terms by its whiteness (null correlation) and Gaussianity properties
(Mehra, 1970; Anderson and Moore, 1979).

1.1.2 Bayesian Filtering problem

Given the system (1.1) and assumption A0, the state process {xk}k∈N is
Markovian, i.e. p(xk|x0:k−1) = p(xk|xk−1), and furthermore

p(yk|x0:k) = p(yk|xk) ,
p(yk|x0:k, y1:k−1) = p(yk|xk) ,

p(yk|xk) = N (.;Ckxk +Dkuk, Rk) ,
p(xk|xk−1) = N (.;Akxk−1 +Bkuk, Qk) ,

whereN (.;µ,Σ) is the Gaussian density function with mean µ and covariance
Σ. In terms of σ-algebra, above properties can be explained by σ(x0:k, y1:k) =
σ(xk). This implies also that

p(y1:k|x0:k) = p(yk|x0:k, y1:k−1)p(y1:k−1|x0:k)
= p(yk|xk)p(y1:k−1|x0:k−1)

CHAPTER 1 9



=
k∏
i=1

p(yi|xi),

or says {yk|xk}k∈N∗ are mutually independent. It is worth to note that, for
the sake of simplicity, an abuse of notation is accepted in this section. That
is random terms and their realizations are denoted by the same notations.

Using Bayes's theorem, one gets

p(xk|y1:k) =
p(yk|xk, y1:k−1)p(xk|y1:k−1)p(y1:k−1)

p(y1:k)

= p(xk|y1:k−1)
p(yk|xk)

p(yk|y1:k−1)
, (1.21)

where

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 , (1.22)

p(yk|y1:k−1) =

∫
p(yk|xk)p(xk|y1:k−1)dxk .

Under the SKF assumptions, (1.21) and (1.22) are proved to be Gaussian
density functions. Therefore, in order to obtain (reconstruct) these densi-
ties, one only needs to �nd the �rst and second moments related to them,
says the means and the covariances. It is clear that x̂k|k and x̂k|k−1 in the
SKF algorithm (Algorithm 1) are respectively the �rst moments of p(xk|y1:k)
and p(xk|y1:k−1). However, the SKF optimization is managed by the second
moment of the error term εk = xk − x̂k|k instead of using that of p(xk|y1:k).

In a more general framework, the Bayesian �ltering is announced as
follows. Given that {xk}k∈N is a Markovian process and {yk}k∈N∗ so that
σ(x0:k, y1:k) = σ(xk), then by using Bayes's theorem, one gets

p(x0:k|y1:k) =
p(y1:k−1|x0:k, yk)p(yk|x0:k)p(xk|x0:k−1)p(x0:k−1)

p(y1:k)

=
p(yk|xk)p(xk|xk−1)p(y1:k−1|x0:k−1)p(x0:k−1)

p(yk|y1:k−1)p(y1:k−1)

= p(x0:k−1|y1:k−1)
p(yk|xk)p(xk|xk−1)

p(yk|y1:k−1)

= p(x0:k−1|y1:k−1)
p(yk|xk)p(xk|xk−1)∫
p(yk|xk)p(xk|xk−1)dxk

(1.23)

By marginalizing (1.23) one recovers (1.21) which can be implemented to-
gether with (1.22) as recursive computations in a general Bayesian �lter.
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However, it is required suitable knowledge (assumptions) about the speci-
�city of p(yk|xk), p(xk|xk−1), for k ≥ 1, and p(x0), e.g. the Gaussianity. If
the processes {xk} and {yk} are given by dynamical equations with additive
noises: xk = fk(xk−1, uk) + wk and yk = hk(xk, uk) + vk, then (1.22) and
(1.23) are rewritten as

p(xk|y1:k−1) =

∫
pwk

(xk − fk(xk−1, uk))p(xk−1|y1:k−1)dxk−1 ,

p(yk|y1:k−1) =

∫
pvk(yk − gk(xk, uk))p(xk|y1:k−1)dxk ,

where pwk
(.) and pvk(.) are density functions of wk and vk respectively.

In real-world data analysis, estimation problem consists in estimating un-
known quantities from some given observations. In most of applications, prior
knowledge about the phenomenon being modelled is available. This knowl-
edge allows us to formulate Bayesian models, that is prior distributions for
the unknown quantities and likelihood functions relating these quantities to
the observations. Within this setting, all inference on the unknown quan-
tities is based on the posterior distribution obtained from Bayes's theorem.
Often, the observations arrive sequentially in time and one is interested in
performing inference on-line. It is therefore necessary to update the posterior
distribution as data become available (Doucet et al., 2001).

1.1.3 Particle Filter

The Bayesian �ltering is shown to be successful in modeling a large class of
applications as presented in the previous section. It provides however analytic
solutions only in the case of linear system with additive Gaussian noises
(SKF). Other cases require approximation methods, including the extended
Kalman �lter, Gaussian sum approximations and grid-based �lters. The �rst
two methods do not take into account all the relevant statistical features of
the processes under consideration, leading quite often to poor results. Grid-
based �lters, based on deterministic numerical integration methods, can lead
to accurate results, but are di�cult to implement and too computationally
expensive to be of any practical use in high dimensions (Doucet et al., 2001).

Although the issue of the Bayesian approach is di�cult to solve, the
approach itself still attracts attention from researchers by its powerful math-
ematical fundamentals. Other numerical methods solving the Bayesian �l-
tering problem developed since 1960's are named as Sequential Monte Carlo
(SMC) methods. SMC forms a set of simulation-based methods providing an
approach to compute the posterior distributions. Unlike grid-based methods,
SMC methods are �exible, easy to implement, parallelisable and applicable
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in general settings. Numerous closely related algorithms, under the names
of bootstrap �lters, condensation, particle �lters, interacting particle approxi-
mations and survival of the �ttest, have appeared in di�erent research �elds.
As the computer powerful increases and since the key concept of particle
resampling (by bootstrapping) was �rst introduced in (Gordon et al., 1993),
the SMC methods have became powerful tools for many applications. This is
also the reason that one calls interchangeably SMC �lters and Particle Filter
(PF).

The PF consists in approximating recursively the density p(xk|y1:k) as
the cloud of N discrete particles with a probability mass, or weight, assigned
to each of them. In other words, a continuous probability density function
is approximated by a discrete one. Initially, all particles have equal weights
attached to them. To progress to the next time instant, several steps are per-
formed in sequence. First, at the prediction step, the state of every particle
is updated according to the dynamic equation. Next, when the new measure-
ments become available, this new information is used to adjust the particle
weights. The weight corresponds to the likelihood of each particle state de-
scribing the true current state of the system. Finally, the sample states are
redistributed to obtain uniform weighting for the following iteration by re-
sampling them from the computed posterior probability distribution. Thus,
at any time instant, certain characteristics (position, speed, etc.) can be
directly computed, if desired, by using the particle set and weights as an
approximation of the true probability density function.

Although being powerful especially when dealing with nonlinear system,
the PF is computationally expensive due to the large number of particles
being used. When the state dimension increases, the required number of
particles also increases. With a high dimensional system, the PF provides
only a poor performance. This is however the motivation for later researches,
e.g. the branch of investigation related to Box Particle Filter (Abdallah et al.,
2008), a set-membership (interval) approach to particle �lters.

1.2 Fault diagnosis problem

Modern control systems are becoming more and more complex and con-
trol algorithms more and more sophisticated. Consequently, the issues of
availability, cost e�ciency, reliability, operating safety and environmental
protection are of major importance. These issues are important to, not only
normally accepted safety-critical systems such as nuclear reactors, chemical
plants and aircraft, but also other advanced systems employed in cars, rapid
transit trains, etc. For safety-critical systems, the consequences of faults can
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be extremely serious in terms of human mortality, environmental impact and
economic loss. Therefore, there is a growing need for on-line supervision
and fault diagnosis to increase the reliability of such safety-critical systems.
Early indications concerning which faults are developing can help avoid sys-
tem breakdown, mission abortion and catastrophes. For systems which are
not safety-critical, on-line fault diagnosis techniques can be used to improve
plant e�ciency, maintainability, availability and reliability (Chen and Pat-
ton, 1999).

The terminology used throughout this thesis is the one used in (Chen and
Patton, 1999), a rigorous textbook of this research �eld. According to that,
a fault is understood as an unexpected change of system function, although
it may not represent physical failure or breakdown. Such a fault causes
malfunctions or disturbances of the normal operation of an automatic system,
which can lead to an unacceptable deterioration of the system performance or
even a dangerous situation. The use of the term failure is not recommended
since it may suggest to think about a catastrophe, a complete breakdown of
a system component or function. In contrast, the term fault may be used to
indicate that a malfunction may be tolerable at its present stage.

A fault must be diagnosed as early as possible even it is tolerable at its
early stage, to prevent any serious consequences. The fault diagnosis consists
of the following tasks:

� Fault detection: to make a decision whether a fault has occurred in
the system or not.

� Fault isolation: to determine the location of the fault, e.g. which
sensor or actuator has become faulty.

� Fault identi�cation: to estimate the magnitude and type or nature of
the fault.

These above three tasks may be called and classi�ed di�erently using other
terms as Fault dectection and isolation (FDI) and Fault estimation (FE).
Fault diagnosis plays an important role in the fault-tolerant control, as be-
fore any control law recon�guration is possible the fault must be reliably
diagnosed and the information should be passed to a supervision mechanism
to make proper decision.

There is two main approaches to fault diagnosis: the hardware redun-
dancy and the analytical redundancy approaches. The former uses multiple
sensors, actuators, computers and software to measure and/or control a par-
ticular variable. Then, a voting scheme is typically applied to take diagnosis
decisions. The major problems encountered with this approach are the equip-
ment and maintenance costs. In contrast, the later uses redundant analytical
(or functional) relationships between various measured variables of the moni-
tored process (e.g. inputs/outputs; outputs/outputs; inputs/inputs) to check

CHAPTER 1 13



the consistency between fault-free (normal) behavior and faulty behavior and
take diagnosis decisions. Therefore, this approach is more �exible to be de-
signed, more reliable and powerful at the same cost level.

In analytical redundancy schemes, the resulting di�erence generated from
the consistency checking is called as a residual signal. The residual should
be zero-valued when the system is fault-free and diverge from zero when the
system is faulty. The consistency checking is normally achieved through a
comparison between a measured signal with its estimate. The estimate is
generated by the mathematical model of the system being considered. In
other words, a residual is a fault indicator re�ecting the faulty situation of
the monitored system.

A fault diagnosis scheme has in general two stages: the residual genera-
tion and the residual evaluation or decision making stages. In the �rst stage,
the residuals are produced by a residual generator which can apply a deter-
ministic (norm-bounded) or stochastic (innovation-based) approaches. There
are also di�erent methods for a residual generator, for instance (Ding, 2013):

� the parity space method,
� the observer-based method,
� the parameter identi�cation based methods.

Another alternative approach in the literature is the use of the classical in-
tegrator disturbance models in an augmented state-space representation for
sensor/actuator fault estimation. In the second stage, the residual or a func-
tion (transformation) of it is compared to a threshold predetermined con-
stantly or determined adaptively.

Figure 1.1 � Fault diagnosis and control loop

In the control view point, the system model required in model-based FDI
is an open-loop system model although a closed-loop system is in consider-
ation (Fig.1.1). Thus, it is not necessary to consider the controller in the
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design of a fault diagnosis scheme. This is consistent with the separation
principle in control theory because fault diagnosis can be broadly treated as
an observation problem. Once the input to the actuators is available, the
fault diagnosis problem is the same no matter how the system is working in
open-loop or in the closed-loop (Chen and Patton, 1999).

The above statement is however nowadays limited to the passive fault
diagnosis in comparison with the active fault diagnosis. The later consists in
using designed auxiliary signals as supplement inputs injected to the mon-
itored system to excite the fault if it exists. Thus, it concerns the system
stability and hence the design of appropriate controller. This is a novel
branch of research and is presented in more details in Chapter 5.

Moreover, in the �eld of Fault-Tolerant Control (FTC), control recon�g-
uration is an interesting method that uses the results of a fault diagnosis
component to restructure the control loop and to adapt the controller to the
faulty plant. This control aspect is not investigated in the thesis, however a
detailed tutorial can be found in (Lunze and Richter, 2008).
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Chapter 2

Optimal Upper Bound Interval

Kalman Filter

2.1 Introduction

In both industry and academia, Kalman Filter introduced in (Kalman,
1960) has always been interested by its elegant form and result characteristics
(optimal estimator, on-line implementation,...). This is a kind of stochastic
approach for estimation and referred as Standard Kalman Filter (SKF). Since
then, many extensions of the SKF have been presented to improve its ap-
plicability and performance when dealing additionally with bounded uncer-
tainties, of which the two major derivations are robust and interval Kalman
�ltering. In the discussion below, the following extensions of both derivations
deal with bounded uncertainty in parameter matrices only and do not con-
cern bounded nonlinearities of the state equation derived from quasi-linear
system models.

The robust Kalman �ltering, (Xie et al., 1994; Sayed, 2001; Zhe and
Zheng, 2006; Mohamed and Nahavandi, 2012a), provides essentially point
estimators (of the real states) attempting to limit the disturbance e�ects to
the �lter performance. For instance, in (Zhe and Zheng, 2006) and (Mohamed
and Nahavandi, 2012a), �nite-horizon robust Kalman �lters for discrete time-
varying uncertain systems with additive uncertain covariance white noises are
studied without and with missing measurements respectively. Both papers
concern an minimization of the trace of a chosen upper bound of all admis-
sible error estimation covariances with respect to (w.r.t.) some design scalar
parameters selected (or tuned) adequately, says a point-wise optimization
approach.
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The interval Kalman �ltering provides essentially intervals containing all
admissible estimators (of the real states) consistent with considered uncer-
tainties and usually being used as interval estimators for bounds of the real
states. It may have a relation with the robust approach when using an el-
ement (usually the center) of the yielded interval as a robust estimator in
some sense to be precised, however this is not the initial objective of the
set-membership (interval) approach. The Interval Kalman Filter (IKF) was
�rst introduced in (Chen et al., 1997) with an optimal solution and a sub-
optimal scheme for the purpose of real-time implementation. Then, authors
have tried to further investigate this interesting research by its simplicity (al-
though with conservatism) in computation thanks to interval computations
(Section 2.2.1) and the similar structure of the SKF with two steps (predic-
tion and correction) in which the later would improve the estimator obtained
from the former via the stake of a gain matrix (Xiong et al., 2013; Tran et al.,
2017; Lu et al., 2019; Tran et al., 2021).

Xiong et al. (2013) and Tran et al. (2017) study enhancing methods for
IKF and Lu et al. (2019) proposes an optimal solution for the conservatism
problem due to the choice of the IKF bounds. In (Xiong et al., 2013), the
proposed method consists in adding some positivity constraints together with
the SIVIA algorithm to obtain the interval matrix [Kk] containing all poten-
tial optimal gains and hence yielding guaranteed estimation results (without
missing some admissible estimates as in the suboptimal case proposed by
(Chen et al., 1997)). In (Tran et al., 2017), the interval matrix [Kk] of
(Xiong et al., 2013) is replaced by a point matrix Kk minimizing the trace
of an upper bound of the estimation error covariances, thanks to which the
computation time is reduced and the resulted estimators are less conserva-
tive. In (Lu et al., 2019), an optimal upper bound of all symmetric positive
semide�nite matrices belonging to a given interval is provided under the form
α∗I with α∗ ∈ R+, thanks to which upper bound expressions are simpli�ed
and suitable for advanced optimizations and the computation time is further
reduced. Then, considering a large class of upper bounds characterized by
two real parameters and including the one used in (Tran et al., 2017), Lu
et al. (2019) also proposes a point-wise optimization for each choice of these
scalar parameters. More recently, (Tran et al., 2021) proposes an enhanced
method of (Tran et al., 2017) with the same principle of the later, leading to
less conservative interval estimates and requiring however larger computation
time with respect to the later.

The present work is a development of (Lu et al., 2019). The �rst mo-
tivation drives our researches is to �nd an uniform optimized solution of
the error estimation covariance upper bounds in terms of their characterized
scalar parameters. Furthermore, in the interval approach, a major issue is
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the conservatism of the resulted estimators due to the one of interval compu-
tations accumulated in algorithm iterations. In the worst case, the width of
the resulted estimators may explode with a very high value. No study in the
above papers addresses the conditions under which the provided algorithms
can be controlled to perform with stability, i.e. without explosion in width
of the resulted estimators. This is another motivation for our work.

The chapter presents analytical developments concerning the optimiza-
tion of a concrete class of upper bounds of the one introduced in (Lu et al.,
2019). Each upper bound is seen as a function of two arguments: a gain
matrix and a (strict) positive parameter. This class also includes the upper
bound used in (Tran et al., 2017). The optimization is presented with more
concrete and consistency thanks to a system of proposed notations. The
optimization is performed in two stages: �rstly in terms of the gain matrix
and secondly in terms of the depending scalar parameter. A connection with
the well-known optimization result of SKF is pointed out in Theorem 6 of
this chapter which is proved in a novel view and notations. Then, conditions
under which the second stage optimization in terms of the scalar parameter
can be performed are provided. Under these conditions, the optimal trace
value is controlled and hence the algorithm in consideration is ensured to

� perform with C-stability to be clari�ed in De�nition 6,
� obtain a smaller trace upper bound of the covariance matrices in the

correction step than the one in the prediction step.
Thereby, the algorithm proposed in (Lu et al., 2019), namely Optimal Upper
Bound Interval Kalman Filter (OUBIKF), is enhanced both theoretically
and practically by the developments presented in this chapter.

2.2 Theoretical and mathematical background

and tools

2.2.1 Essential of matrix and interval matrix

A real m×n matrix is denoted by A = (aij), aij ∈ R, i ∈ {1, ...,m},
j ∈ {1, ..., n}. The set of real m×n matrices is denoted by Rm×n. AT is the
transpose matrix of A.

Let A = (aij) ∈ Rn×n be a square matrix of order n, the notations σi(A),
λi(A), i ∈ {1, ..., n}, are used to indicate respectively singular values and
eigenvalues of A among which σmax(A) and λmax(A) are the corresponding
maximum values. By de�nition, σi(A)

M
=
√
λi(ATA), i ∈ {1, ..., n}. The

trace of matrix A is de�ned by Tr(A)
M
=
∑n

i=1 aii. The identity matrix of
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order n is denoted by In and its i-th column, denoted by ei, is called the i-th
standard unit vector. The notation 1 (or 1n) denotes the (n-)vector whose
components all equal to 1 and is called the all one vector. The indicator
function I(x) is de�ned to be 1 if the condition x holds true and vanishes
otherwise, in which x can be a vector of conditions.

Diagonal operators are de�ned as follows. Let x be a vector (x1, ..., xn)T

or an n-tuple (x1, ..., xn), de�ne

diag(x) ≡ diag{x1, ..., xn}
M
= (xiδij)i,j∈{1,...,n}

being the diagonal matrix whose entries are of the form xiδij for i, j ∈
{1, ..., n} and δij is the Kronecker delta. De�ne also for any square matrix
A = (aij) of order n:

Diag(A)
M
= (aiiδij)i,j∈{1,...,n} and Diagv(A)

M
= (a11, ..., ann)T ,

where Diag(A) is the diagonal matrix having the same diagonal as the matrix
A and Diagv(A) is the vector of diagonal entries of the matrix A. Thus,

Diag(A) = diag{a11, . . . , ann} = diag{Diagv(A)}.

De�nition 1 (Positive semide�nite (de�nite) matrix). A real square
matrix A of order n is positive semide�nite (de�nite resp.), denoted by A � 0
(A � 0 resp.), if and only if A satis�es zTAz ≥ 0, ∀z ∈ Rn (zTAz > 0,
∀z ∈ Rn \ {0} resp.).

Example 1 (A positive semide�nite matrix is not necessarily sym-
metric). Consider matrix A = (aij) ∈ R2×2 such that aii = a > 0, i ∈ {1, 2}.
For any z ∈ R2, zTAz = a[z2

1 + z2
2 + a12+a21

a
z1z2]. So if a12 + a21 = 2a then A

is actually positive semide�nite but not necessarily symmetric.

Denote:

a) A 6� 0 (6� 0 resp.), the matrix A being not positive semide�nite (de�nite
resp.),

b) S(n)
M
=
{
M ∈ Rn×n : M = MT

}
, the set of real symmetric matrices of

order n,

c) S+(n)
M
= {M ∈ S(n) : M � 0}, the set of real symmetric positive semidef-

inite matrices of order n.
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Remark 4. S(n) is a vector subspace of Rn×n and S+(n) is a convex cone,
that is:

� αM + βN ∈ S(n), ∀M,N ∈ S(n), ∀α, β ∈ R,
� αM + βN ∈ S+(n), ∀M,N ∈ S+(n), ∀α, β ∈ R+. �

De�nition 2 (Matrix norm). Let A = (aij) ∈ Rn×n and x = (x1, ..., xn)T .
Vector norm and matrix norms are de�ned as follow (Zhan, 2002):

a) The Euclidian vector norm: ‖x‖2
M
=
√∑n

i=1 x
2
i ,

b) The nuclear norm: ‖A‖∗
M
=
∑n

i=1 σi(A) =
∑n

i=1

√
λi(ATA) ,

c) The operator norm: ‖A‖ M= σmax(A) =
√
λmax(ATA) ,

d) The Frobenius norm:

‖A‖F
M
=
√∑n

i=1 σ
2
i (A) =

√∑n
i=1 λi(A

TA) =
√
Tr(ATA) =

√∑n
i,j=1 |aij|2.

Remark 5.

a) ‖A‖ ≤ ‖A‖F ≤
√
n‖A‖ and ‖A‖F ≤ ‖A‖∗ ≤

√
n‖A‖F .

b) If A ∈ S(n) then σi(A) = |λi(A)|, ∀i = 1, ..., n.
In particular, σmax(A) = max{λmax(A), |λmin(A)|}.

c) If A ∈ S+(n) then σi(A) = λi(A), ∀i = 1, ...n, consequently
� ‖A‖∗ =

∑
i λi(A) = Tr(A),

� ‖A‖ = λmax(A),

� ‖A‖F =
√∑n

i=1 λ
2
i (A) =

√
Tr(A2) =

√∑n
i,j=1 |aij|2. �

Theorem 1. Let A ∈ Rn×n and λ be an eigenvalue of A. Then:

i) cλ is an eigenvalue of cA for any c ∈ R.
ii) λk is an eigenvalue of Ak for any k ∈ Z \ {0}.
iii) p(λ) is an eigenvalue of p(A) for any polynomial p(.).

iv) λ+ α is an eigenvalue of A+ α I for any α ∈ R.

Proof. The �rst three statements are Theorems ESMM, EOMP and EPM
in (Beezer, 2015) at pages 392-393 with detailed proofs therein. The second
statement is proved by induction and the third one is proved using the �rst
two others. The last statement is direct consequence of the third one.

It is noted that the third statement of the theorem essentially goes back to
Cayley-Halminton theorem stated for 3× 3 and smaller matrices in (Cayley,
1858) and the general case was �rst proved in (Frobenius, 1878).
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Theorem 2. Let A ∈ S(n). Following statements are veri�ed:

i) All eigenvalues of A are real: λi(A) ∈ R, ∀i = 1, ..., n.

ii) There exists an orthogonal matrix Q and diagonal matrix D = diag{λi(A)},
i ∈ {1, . . . , n}, so that A = QDQT . It is called the spectral decomposition
of matrix A.

The matrix Q has the following properties:
Q ∈ Rn×n, QT = Q−1, ‖Q‖ = 1, 〈Qx,Qy〉 = 〈x, y〉 for any x, y ∈ Rn,
columns qi of Q are eigenvectors of A associated to λi(A) and 〈qi, qj〉 =
δij the Kronecker delta and 〈., .〉 the inner product.

The matrix QT is also orthogonal and has similar properties of Q.

iii) The following inequalities hold:

∀u ∈ Rn : λmin(A)‖u‖2 ≤ uTAu ≤ λmax(A)‖u‖2. (2.1)

Proof. The �rst statement is a direct consequence of Theorem HRME in
(Beezer, 2015), page 400. The existence of matrices Q and D is con�rmed by
Theorem OD in (Beezer, 2015) at page 575 while properties of Q are those of
a unitary matrix stated by Theorems at pages 212-213. The operator norm
of Q is computed directly using the corresponding norm de�nition. The last
statement is proved using the spectral decomposition of A and properties of
QT as follow:

∀u ∈ Rn, let v = QTu ⇒ uTAu = (QTu)TD(QTu) =
n∑
i=1

λi(A)v2
i

⇒ λmin(A)‖v‖2 ≤ uTAu ≤ λmax(A)‖v‖2,

and noting that ‖v‖2 = 〈v, v〉 = 〈QTu,QTu〉 = 〈u, u〉 = ‖u‖2.

Theorem 3. A ∈ S+(n) if and only if A ∈ S(n) and λmin(A) ≥ 0.

Proof. Being symmetric, A can be decomposed as QDQT using Theorem 2.
(⇒) For any u ∈ Rn, uTAu ≥ 0. Choose u = vmin, the eigenvector

associated with λmin(A), then Avmin = λminvmin and hence λmin(A)‖vmin‖2 =
vTminAvmin ≥ 0 which implies λmin(A) ≥ 0.

(⇐) By (2.1), uTAu ≥ λmin(A)‖u‖2 ≥ 0,∀u ∈ Rn implying A ∈ S+(n).

Lemma 2. Let A ∈ S(n) and α ∈ R. Then
A+ α I ∈ S+(n) ⇔ α ≥ −λmin(A).
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Proof. Since A and αI are symmetric, A+αI is also symmetric. By Theorem
2, all eigenvalues of these matrices are real. Furthermore, by Theorem 1,
λi(A+ α I) = λi(A) + α, ∀i = 1, ..., n. Hence λmin(A+ αI) = λmin(A) + α.

Then the lemma conclusion is straightforward using Theorem 3.

Lemma 3. The following statements hold true:

a) ATA � 0 and AAT � 0 for any A ∈ Rm×n.

b) If P � 0 then MPMT � 0 and NTPN � 0 for all M,N with appropriate
dimensions.

Proof. For any u ∈ Rn and v ∈ Rm, uTATAu = ‖Au‖2 ≥ 0 and vTAATv =
‖ATv‖2 ≥ 0. This concludes the �rst statement of the lemma.

Let P ∈ Rn×n, M ∈ Rm×n. By de�nition, zTPz ≥ 0, ∀z ∈ Rn. So, for
any u ∈ Rm, put z = MTu, then z ∈ Rn and hence

uTMPMTu = (MTu)TP (MTu) = zTPz ≥ 0.

It follows that MPMT � 0. NTPN � 0 is veri�ed by putting M = NT .

De�nition 3 (Moore-Penrose pseudoinverse). LetA ∈ Rm×n. A matrix
A+ ∈ Rn×m is said to be a Moore-Penrose pseudoinverse of A if it satis�ed
following conditions:

a) AA+A = A,

b) A+AA+ = A+,

c) AA+ = (AA+)T and A+A = (A+A)T .

Proposition 1 (Some speci�c Moore-Penrose pseudoinverse).

a) If z ∈ C then z+ = z−1I(z 6= 0).

b) If D = diag{d1, ..., dn} ∈ Cn×n then D+ = diag{d+
1 , ..., d

+
n }.

c) If A ∈ S(n) then it has a spectral decomposition QDQT and A+ =
QD+QT .

d) In general, for any A ∈ Rm×n, A+ = AT (AAT )+ = lim
β→0

AT (AAT +βI)−1.

Proof. It is referred to (Barata and Hussein, 2012) for a tutorial of Moore-
Penrose pseudoinverse. Proposition 1 gathers useful results in the reference.
The proofs of these properties are based notably on De�nition 3 and can be
found in the reference.
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Interval analysis. A real interval, denoted by [x], is a closed connected
subset of R. A real interval matrix [X] of dimension p× q is a matrix with
real interval components [xij], i ∈ {1, ..., p}, j ∈ {1, ..., q}. Write X ∈ [X]
to indicate a point matrix X = (xij) belonging element-wise to [X]. Other
element-wise operators used in the next are “ inf, sup,≤ (≥) ”. De�ne for all
i ∈ {1, ..., p}, j ∈ {1, ..., q}:

• sup([X])
M
= (sup([xij])),

• inf([X])
M
= (inf([xij])),

• mid([X])
M
= (sup([X]) + inf([X]))/2 = (mid([xij])),

• rad([X])
M
= (sup([X])− inf([X]))/2 = (rad([xij])),

• width([X])
M
= sup([X])− inf([X]) = (width([xij])).

The matrices mid([X]), rad([X]) and width([X]) are called respectively the
midpoint matrix, the radius matrix and the width matrix of [X]. Denote also

X = sup([X]) , X = inf([X]) , [X] = [X,X] = mid([X])± rad([X]).

The matrices X and X will be called respectively the largest and smallest
matrix of [X] to distinguish with the notions of upper/lower bound matrices
de�ned in the next section. From this, [X] can be seen as a subset of Rp× q

determined by

[X] = {X ∈ Rp× q : X ≤ X ≤ X},

and therefore set operators (⊂,∩,∪, \, ...) can be applied as usual. De�ne
the hull of a closed set S ⊂ Rp× q and the hull of two interval matrices [X1],
[X2] of the same dimension as follows

hull{S} M
= [inf(S), sup(S)] ,

hull{[X1], [X2]} M
= hull{[X1] ∪ [X2]} = [inf{X1, X2}, sup{X1, X2}],

and hull{∅} = ∅ by convention.

Basic interval computation. Let [u] = [u, u] and [v] = [v, v] be two real
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intervals and α ∈ R. De�ne

• [u] + [v] = [u+ v , u+ v] ,

• α×[u] =

{
[αu , αu] , α ≥ 0

[αu , αu] , α < 0

• [u]− [v] = [u− v , u− v],

• [u] × [v] = hull{uv, uv, uv, uv} ,

• [u]−1 =


∅ , [u] ≡ 0 ,

[u−1, u−1] , [u] 63 0 ,
[u−1 , ∞] , 0 = u < u,
[−∞, u−1] , u < u = 0,
[−∞ , ∞] , u < 0 < u.

• [u]/[v] = [u]×[v]−1.

Since then, interval matrix computations are de�ned similarly to matrix com-
putations using the basic operations above:
• [M ]± [N ] = [P ] = ([pij]) such that [pij] = [mij]± [nij],
• α×[M ] = [P ] = ([pij]) such that [pij] = α×[mij],
• [M ]×[N ] = [P ] = ([pij]) such that [pij] =

∑
k[mik]×[nkj],

for any [M ] = ([mij]), [N ] = ([nij]) of appropriate dimensions and α ∈
R. More general operators are constructed by means of inclusion function
[f ]([x]) (Jaulin et al., 2001). In practice, the package Intlab (Rump, 1999)
developed for Matlab (also existing in Octave and C/C++) is used for these
computations.

A major issue of interval computation is the result conservatism after each
operation (calculation). That is the resulted interval is always the superset of
the one of all possible results yielded by the operator in consideration. Then,
after a number of operations consecutive, the conservatism may be large.

2.2.2 Bounds of a non empty set of real square matrices

In this section, the notion of bounds (with respect to a partial order) of
a non empty set of real square matrices is introduced.

De�nition 4 (Partial order of real square matrices). Let M,N be two
real square matrices of the same size. An order between M and N denoted
by N � M is de�ned if M −N � 0. M is called an upper bound of N and
N a lower bound of M .

In the case of Hermitian matrices, this order is known as the Loewner
(partial) order (ref. (Pukelsheim, 2006; Zhan, 2002)). Recall that a partial
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order R satis�es the properties: i) aRa (Re�exivity); ii) If aRb and bRa
then a = b (Anti-symmetry); iii) If aRb and bRc then aRc (Transitivity).

The partial order in De�nition 4 is extended to the notion of bounds for
a non empty set Ω of real squared matrices as follows:
� U is an upper bound of Ω, denoted Ω � U , if M � U , ∀M ∈ Ω.
� L is a lower bound of Ω, denoted L � Ω, if L � M , M ∈ Ω.
� If P and Q are two upper (lower) bounds of Ω, then P is said better than

Q if and only if the norm of P is smaller (greater) than or equal to the
norm of Q depending on the choice of norms in De�nition 2.

De�nition 5. Let Ω be a non empty subset of Rn×n and ϕ a function:
E ⊂ Rp× q → Rn×n (p, q, n ≥ 1). De�ne:
a) inf Ω is de�ned to be a matrix L ∈ Rn×n s.t. following conditions hold:
• L �M , ∀M ∈ Ω,
• If L̃ �M , ∀M ∈ Ω then L̃ � L.

b) sup Ω is de�ned to be a matrix U ∈ Rn×n s.t. following conditions hold:
• M � U , ∀M ∈ Ω,
• If M � Ũ , ∀M ∈ Ω then U � Ũ .

c) infβ∈E{ϕ(β)} is de�ned to be a matrix L ∈ Rn×n s.t. following conditions
hold:
• L � ϕ(β), ∀β ∈ E,
• If L̃ � ϕ(β), ∀β ∈ E then L̃ � L.

d) supβ∈E{ϕ(β)} is de�ned to be a matrix U ∈ Rn×n s.t. following condi-
tions hold:
• ϕ(β) � U , ∀β ∈ E,
• If ϕ(β) � Ũ , ∀β ∈ E then U � Ũ .

It is worth to note that inf Ω and sup Ω are not necessarily included in Ω
and in the last two de�nitions above, Ω can be considered as Ω = {ϕ(β) ∈
Rn×n, ϕ ∈ E}.

Denote further that:
a) S([X])

M
=
{
X ∈ [X] : X = XT

}
, the set of symmetric matrices belonging

to [X].

b) S+([X])
M
= {X ∈ S([X]) : X � 0}, the set of symmetric positive semidef-

inite matrices belonging to [X].

c) BS([X])
M
= {U ∈ S(n) : S([X]) � U}, the set of symmetric upper bounds

of S([X]).

d) BS+([X])
M
= {U ∈ S+(n) : S+([X]) � U}, the set of symmetric positive

semide�nite upper bounds of S+([X]).
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2.2.3 Optimal upper bound of the set of symmetric posi-
tive semide�nite matrices belonging to an interval
matrix

In this section, we investigate the optimal upper bound of the set Ω of
symmetric positive semide�nite matrices belonging to an interval matrix.

Proposition 2. Let A ∈ S(n). Then A � αI if and only if α ≥ λmax(A).

Proof. The proposition is proved by using Lemma 2, that is

A � αI ⇔ (−A) + αI � 0 ⇔ α ≥ −λmin(−A),

noting that λmin(−A) = mini{λi(−A)} = mini{−λi(A)} = −λmax(A).

Proposition 3. The following statements hold:

a) If A,B ∈ S(n) and A � B then : λmax(A) ≤ λmax(B) and Tr(A) ≤ Tr(B).

b) If A,B ∈ S+(n) and A � B then : ‖A‖ ≤ ‖B‖ and ‖A‖∗ ≤ ‖B‖∗.

Proof. By Proposition 2 and the transitivitive of the � order, A � B �
λmax(B)I and λmax(A) ≤ λmax(B). So the �rst inequality of 3a) is hold.

Since uT (B − A)u ≥ 0, ∀u ∈ Rn and by choosing consecutively u as i-
th standard unit vectors ei then diagonal entries of A and B are such that
bii ≥ aii, i ∈ {1, ..., n}, and hence the second inequality of 3a) is induced.

The part 3b) is obtained by using 3a) together with remark 5c).

In following propositions and corollary of this section, let [M ] = ([mij])
be a real interval symmetric matrix of order n, that is [mij] = [mji], i, j ∈
{1, ..., n} or [M ]T = [M ], and assume that S+([M ]) is non empty.

Proposition 4. The following properties are veri�ed:

a) S([M ]) is compact in the norm vector space S(n).

b) S+([M ]) is a compact subset of S([M ]).

c) Γ
M
= {γ = ‖M‖ : M ∈ S([M ])} and Γ+

M
= {γ = ‖M‖ : M ∈ S+([M ])} are

compact in R.

d) Let α∗+
M
= supM∈S+([M ]) {λmax(M)} and α∗

M
= supM∈S([M ]) {λmax(M)}.

Then
α∗+ ≤ α∗ < ∞.

Proof. a) The upper triangular part of matrix [M ] has m = (n2 + n)/2 in-
terval elements I1, ..., Im. We can construct a continuous function f from
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I1 × ...× Im in Rn×n. Then, since I1 × ...× Im is compact in Rm, the im-
age f(I1 × ...× Im) = S([M ]) is also compact in S(n). The construction
of f is given by f = ψ ◦ φ where φ and ψ are two continuous functions
determined as follow

x = (x1, ..., xm) 7→ φ(x) = N =


x1 x2 · · · xn
0 xn+1 · · · x2n−1
... · · · . . . · · ·
0 0 · · · xm


and N 7→ ψ(N) = N +NT −Diag(N).

b) It is only necessary to prove that S+([M ]) is closed in S(n), and the result
is concluded by the property: If K is compact in a topological space X
and if F is closed in X with F ⊆ K, then F is compact.

Assume that {Mk}k is a sequence in S+([M ]) converging to M∞ ∈ S(n)
and prove that M∞ ∈ S+([M ]), i.e. M∞ ∈ [M ] and M∞ � 0 . Denote
their corresponding entries as mk,ij and m∞,ij. By assumption,

‖Mk −M∞‖2
F =

∑
i,j

(mk,ij −m∞,ij)2 k→∞−−−→ 0

hence (mk,ij −m∞,ij)2 k→∞−−−→ 0, ∀i, j = 1, ..., n.

Since each mk,ij belongs to a closed interval [mij] of matrix [M ] then
m∞,ij ∈ [mij]. So M∞ ∈ [M ].
Next, we prove that uTMku

k→∞−−−→ uTM∞u,∀u ∈ Rn. Indeed, since

∣∣uTMku− uTM∞u
∣∣ =

∣∣∣∣∣∑
i,j

ui (mk,ij −m∞,ij)uj

∣∣∣∣∣ ≤ ‖Mk −M∞‖F
∑
i,j

|uiuj|

and
‖Mk −M∞‖F

k→∞−−−→ 0 ,

it is induced that uTMku
k→∞−−−→ uTM∞u, ∀u ∈ Rn.

Then, since uTMku ≥ 0, ∀u ∈ Rn, so it is impossible that uTM∞u < 0 for
any u ∈ Rn. Therefore uTM∞u ≥ 0,∀u ∈ Rn or equivalently M∞ � 0.

c) Since the operator norm is a continuous function and S([M ]), S+([M ])
are compact in S(n), then Γ, Γ+ are compact in R.

d) The result is induced by extreme value theorem using the compactness of
Γ, Γ+ and the fact that S+([M ]) ⊆ S([M ]) and hence:

sup
M∈S+([M ])

{λmax(M)} = sup Γ+ ≤ sup
M∈S([M ])

{λmax(M)} ≤ sup Γ <∞.

28 CHAPTER 2



Proposition 5. The following statements hold:

a) S([M ]) � αI i� α ≥ α∗ and S+([M ]) � αI i� α ≥ α∗+.

b) E M=
{
M ∈ S+([M ]) : Diag(M) = Diag

(
M
)}

is the non empty set of
maximal elements of S+([M ]).

c) If Ec M= S+([M ])\E contains two elements M,N such that their entries
mkl 6= nkl for some tuple (k, l) : k 6= l, k, l ∈ {1, ..., n}, then S+([M ]) has
no greatest element.

Proof. a) This statement is proved using Proposition 2:

S+([M ]) � αI ⇔ M � αI, ∀M ∈ S+([M ]) ⇔ α ≥ α∗+.

Similar argument is applied for S([M ]).

b) Let M ∈ S+([M ]) (which is assumed to be non empty).
If M ∈ E then E is non empty. If M /∈ E , i.e. Diag(M) 6= Diag(M),
denote

M̂ = M + ∆ , ∆ = −Diag(M) + Diag(M).

Then M̂ ∈ S+([M ]) and satis�es Diag(M̂) = Diag(M). So E is non
empty since M̂ ∈ E . In addition, no matrix M /∈ E is a maximal element
of S+([M ]) since such a matrixM always has an upper bound M̂ in E . In
other words, any maximal element of S+([M ]) (if it exists) must belong
to E .
Next, we prove that any element of E is a maximal element of S+([M ]). In
fact, any matrix M /∈ E is not an upper bound of an element P ∈ E since
Tr(P ) > Tr(M) which contradicts the necessary condition of Proposition
3. Hence, we prove that any two elements of E are not an upper bound
of each other. Let P,Q ∈ E such that P 6= Q and R = P − Q. Then
their entries satisfy rii = 0, rij = pij − qij and rij = rji, i, j ∈ {1, ..., n}.
Assume that Q � P then

uTRu = 2
∑
i<j

uiujrij ≥ 0, ∀u = (u1, ..., un) 6= 0.

Let p, q ∈ {1, ..., n}, p < q, ũ = ep + eq and û = ep − eq where ep, eq are
standard unit vectors. Then:

ũTRũ = eTpRep + eTq Req + eTpReq + eTq Rep = rpq + rqp = 2rpq ≥ 0,
ûTLû = eTpRep + eTq Req − eTpReq − eTq Rep = −rpq − rqp = −2rpq ≥ 0,

implying rpq = 0,∀p, q ∈ {1, ..., n} and p < q, which contradicts P 6= Q.

c) Let M,N ∈ Ec such that mkl 6= nkl for some tuple (k, l) : k 6= l, k, l ∈
{1, ..., n}. Let P = M − Diag(M) + Diag(M) and Q = N − Diag(N) +
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Diag(M). Then P and Q belong to E and are two di�erent maximal
elements of S+([M ]). None of them is an upper bound of the other.
Therefore S+([M ]) does not have the greatest element.

Corollary 1. There exists a matrix N∗ ∈ E such that λmax(N∗) = α∗+.

Proof. By Proposition 4c) and the extreme value theorem, there exists a
matrix N ∈ S+([M ]) such that λmax(N) = α∗+. If N /∈ E , then there exists
a matrix N∗ ∈ E such that N � N∗. This implies that α∗+ = λmax(N) ≤
λmax(N∗) ≤ α∗+ and hence λmax(N∗) = α∗+.

Proposition 6. The following statements hold:

a) α∗+I is the optimal upper bound of S+([M ]) in the set BS+([M ]) in the
sense of operator norm minimization.

b) α∗+I is the optimal upper bound of S+([M ]) in the set

Ω =

{
K ∈ BS+([M ]) : n−1

n∑
i=1

λi(K) ≥ α∗+

}
in the sense of nuclear norm minimization.

Proof. a) Let K ∈ BS+([M ]), one gets:

‖α∗+I‖ = α∗+ , ‖K‖ = λmax(K) , S+([M ]) � K � λmax(K)I.

By Proposition 5a), since S+([M ]) � λmax(K)I then λmax(K) ≥ α∗+. So
‖α∗+I‖ ≤ ‖K‖, ∀K ∈ BS+([M ]).

b) The result is straightforward by verifying ‖α∗+I‖∗ ≤ ‖K‖∗ for all K ∈
BS+([M ]) such that α∗+ ≤ (λ1(K) + ...+ λn(K))/n.

Proposition 7. Let Max([M ]) = (maxij) be a matrix determined by

maxij =

{
sup([mij]) , if mid([mij]) ≥ 0

inf([mij]) , otherwise
(2.2)

then
α∗+ ≤ α∗ ≤ sup{‖M‖F : M ∈ [M ]} ≤ ‖Max([M ])‖F .

In addition, if Max([M ]) � 0, then

λmax(Max([M ])) ≤ α∗+ ≤ ‖Max([M ])‖F .
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Proof. For any M ∈ [M ],

0 ≤ |mij| ≤ max {| sup([mij])|, | inf([mij])|} = |maxij|

then ∑
i,j

|mij|2 ≤
∑
i,j

|maxij|2 , ∀M ∈ [M ]

⇒ ‖M‖F ≤ ‖Max([M ])‖F , ∀M ∈ [M ].
⇒ α∗+ = λmax(N∗) = ‖N∗‖ ≤ ‖N∗‖F ≤ ‖Max([M ])‖F .

where the matrix N∗ is the one stated in Corollary 1.
The last conclusion of the proposition is straightforward.

The following two theorems gather relevant properties of previous propo-
sitions and corollary. They provide the proof of the existence of an optimal
upper bound of S+([M ]), the set of symmetric positive semide�nite matrices
belonging to a given symmetric interval matrix [M ], and a simple way to
localize this optimal upper bound. These theorems are useful to deal with
covariances matrices belonging to a given symmetric interval matrix.

Theorem 4 (Existence of Optimal upper bounds). The following prop-
erties hold:

i) α∗+
M
= supM∈S+([M ]) {λmax(M)} <∞ and S+([M ]) � αI i� α ≥ α∗+.

ii) α∗+I is the optimal upper bound of S+([M ]) in the set BS+([M ]) in the
sense of operator norm minimization.

iii) Let Ω =
{
K ∈ BS+([M ]) : n−1

∑n
i=1 λi(K) ≥ α∗+

}
. α∗+I is the optimal

upper bound of S+([M ]) in Ω in the sense of nuclear norm minimization.

α∗+ is said the optimal value of BS+([M ]).

Theorem 5 (Bounds of Optimal value α∗). The following properties
hold:

i) E M= {M ∈ S+([M ]) : Diag(M) = Diag(sup([M ]))} is the non empty set
of maximal elements of S+([M ]).

ii) There exists a matrix N∗ ∈ E such that λmax(N∗) = α∗+.

iii) Let Max([M ]) = (maxij) be a matrix determined by (2.2) then

α∗+ ≤ sup
M∈[M ]

{‖M‖F} ≤ ‖Max([M ])‖F .

If Max([M ]) � 0 then : λmax(Max([M ])) ≤ α∗+ ≤ ‖Max([M ])‖F .
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Remark 6. The optimal upper bound is not unique depending on the choice
of criteria. It is not unique even in the norm minimization criterion since
di�erent matrices can have the same norm. However, α∗+I might be the
simplest one to use both in practice and theory.

Ideally, we have to �nd N∗ ∈ E to determine α∗+ but this is quite in-
tractable. An alternative way to localize the optimal value α∗+ is provided by
Theorem 5 using the Max([M ]) matrix. By de�nition, Max([M ]) ∈ S([M ]).
If, in addition, Max([M ]) � 0, then Max([M ]) ∈ E , its nuclear norm and
Frobenius norm are both maximum among S+([M ]). So, its operator norm,
λmax(Max([M ])), in that case, might be very close to α∗+. In many case, we
can design or modify [M ] so that Max([M ]) = sup([M ]) � 0.

A more tighter upper bound of α∗+ is α∗ = sup{λmax(M) : M ∈ S([M ])}
since α∗+ ≤ α∗ ≤ ‖Max([M ])‖F . α∗ is studied by many authors, for instance
(Hertz, 1992) or (Hladik, 2013) and references therein, while the eigenvalue
bounds of a square interval matrix can be referred to (Rohn, 1998) . We also
refer to Gerschgorin circle, see e.g. (Meyer, 2000), for bounds of eigenvalues
of square matrices. It may recommended to use intersection of all aforemen-
tioned bounds for more accurate choice of an approximate value of α∗+. In
the worst (and guaranteed) case, we can use α∗+ = ‖Max([M ])‖F where this
choice might be just a scale of the actual value of α∗+. Any alternative choice
of α∗+ between its bounds is meaningful especially when applying in interval
computation. In many situations, a simple approximate choice of α∗+ might
be more appreciated than using a complex algorithm to �nd its actual value.
�

Proposition 8. The following properties hold:

a) (Proposition 1 in (Tran et al., 2017)) Let M,N be two real matrices of
the same dimension, then

MNT +NMT � t−1MMT + tNNT , ∀t > 0. (2.3)

b) If {Mu}u=1:n is a sequence of real matrices, then(
n∑
u=1

Mu

)(
n∑
u=1

Mu

)T
�

n∑
u=1

1 +

n∑
v=1,6=u

σu,v

MuM
T
u (2.4)

provided that σu,v = σ−1
v,u > 0, ∀u ∈ {1 : n}, v ∈ {1 : n} \ {u}.

Proof. (2.3) holds thanks to (M − tN)(M − tN)T � 0, ∀t > 0.
Consider(

n∑
u=1

Mu

)(
n∑
u=1

Mu

)T

=
n∑
u=1

MuM
T
u +

∑
u6=v

MuM
T
v
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where u, v ∈ {1, ..., n} and the last term of the right hand side is such that∑
u6=v

MuM
T
v =

∑
u<v

MuM
T
v +

∑
u>v

MuM
T
v =

∑
u<v

MuM
T
v +

∑
v>u

MvM
T
u

=
∑
u<v

(
MuM

T
v +MvM

T
u

)
�

∑
u<v

(
σu,vMuM

T
u + σ−1

u,vMvM
T
v

)
, ∀σu,v > 0, u < v, (using (2.3))

Noting that there are m = n2−n
2

real scalars σu,v > 0 such that u < v and
their m inverses σ−1

u,v in the above expression.
Putting σv,u = σ−1

u,v for all v > u then∑
u6=v

MuM
T
v

�
∑
u<v

σu,vMuM
T
u +

∑
u<v

σv,uuMvM
T
v , ∀σu,v > 0 : σv,u = σ−1

u,v,

=
n−1∑
t=1

(
n∑

s=t+1

σt,s

)
MtM

T
t +

n−1∑
t=1

n∑
s=t+1

σs,tMsM
T
s , ∀σt,s > 0 : σs,t = σ−1

t,s ,

=
n−1∑
t=1

(
n∑

s=t+1

σt,s

)
MtM

T
t +

n∑
s=2

s−1∑
t=1

σs,tMsM
T
s , ∀σt,s > 0 : σs,t = σ−1

t,s ,

=

(
n∑
v=2

σ1,v

)
M1M

T
1 +

(
n−1∑
v=1

σn,v

)
MnM

T
n

+
n−1∑
u=2

(
n∑

v=u+1

σu,v +
u−1∑
v=1

σu,v

)
MuM

T
u , ∀σu,v > 0 : σv,u = σ−1

u,v,

=
n∑
u=1

(
n∑

v=1, 6=u
σu,v

)
MuM

T
u ,∀σu,v > 0 : σv,u = σ−1

u,v.

Consequently (2.4) is concluded.
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2.3 Optimal Upper Bound Interval Kalman Fil-

ter (OUBIKF)

In the previous section, it is pointed out that the matrix α∗+I is the opti-
mal upper bound of the set S+([M ]) among its other upper bounds according
to the operator norm, for a given interval matrix [M ]. This particular form
of upper bound simpli�es many computations and provides tractable forms
of the obtained results subject to further optimization, without which the op-
timization problem might be unable to be solved. Although the exact value
of α∗+ can not be found but its localization bounds are provided and help us
to use alternative approximate values of α∗+. Thanks to the provided theory
background and the use of this kind of upper bound, the developed �lter
in the next is devoted to be named Optimal Upper Bound Interval Kalman
Filter (OUBIKF). The optimization is not only due to the use of this kind
of upper bound but also due to the fact that the obtained upper bound will
be further minimized in terms of its trace.

2.3.1 Principle of the Filter

Consider the following linear discrete time dynamical system{
xk = Akxk−1 +Bkuk + wk ,

yk = Ckxk +Dkuk + vk ,
k ∈ N∗, (2.5)

in which xk ∈ Rnx and yk ∈ Rny represent state variables and measure-
ments respectively, uk ∈ Rnu inputs, wk ∈ Rnx state noises and vk ∈ Rny

measurement noises.
Assumptions A1. Matrices Ak, Bk, Ck, Dk are unknown, deterministic

and belonging to given interval matrices [A], [B], [C], [D] respectively. wk, vk
are centered Gaussian vectors with covariance matrices Qk and Rk belonging
respectively to given interval matrices [Q] and [R]. The initial state x0 is
also Gaussian with mean µ0 and covariance matrix P0. In addition, x0,
{w1, ..., wk} and {v1, ..., vk} are assumed to be mutually independent.

Aim. The developed Filter is aimed to get estimate intervals [x̂k|k] which
contain all admissible estimates x̂k|k of real states xk induced by mixed un-
certainties.

Principle. OUBIKF follows the same structure of the SKF. In the pre-
diction step, thanks to interval computations, the a priori estimate

[x̂k|k−1] = [A][x̂k−1|k−1] + [B]uk
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is provided. It contains all admissible estimates x̂k|k−1 = Akx̂k−1|k−1 + Bkuk
for all values ofAk ∈ [A], Bk ∈ [B] and x̂k−1|k−1 ∈ [x̂k−1|k−1]. In the correction
step, an interval estimator

[x̂k|k] = [x̂k|k−1] +Kk(yk − [ŷk]), with [ŷk] = [C][x̂k|k−1] + [D]uk,

is provided, in which the gain Kk is a point matrix chosen by an optimization
strategy. Concretely, the choice ofKk is proceed by a two stages optimization
considering the class of upper bounds

Γ
M
=
{
ϕk(Kk, β) : S+([Pk|k]) � ϕk(Kk, β)

}
where [Pk|k] is the interval matrix containing all admissible estimation error
covariances Pk|k and the form of ϕk(Kk, β) will be clari�ed in the next. Γ
also includes the upper bound of S+([Pk|k]) used in (Tran et al., 2017). Each
upper bound in Γ is seen as a function of two arguments: gain matrix Kk

and real parameter β > 0. The optimization is performed �rst in terms of Kk

and then with respect to β in order to get the optimal bound ϕ∗k of S+([Pk|k])
among others in Γ. Finally, the Filter is developed and applied with the
guaranteed conditions under which the model should be designed to obtain
the �lter stability in the sense that the Tr{ϕ∗k} is non-asymptotically and
asymptotically bounded. This means that the Tr{ϕ∗k} is not exploded and
hence the resulted estimator width is not exploded either. The Filter is then
called C-stable as de�ned in De�nition 6.

Again, we recall that the conservatism of interval computations is a major
issue of all interval �lters whose objective is to �nd interval estimates rather
than point estimates for real states, so it is worthy to de�ne

De�nition 6. An interval �lter is called C-stable if the widths of interval
estimators for all time instant k are upper bounded by a common constant
C.

2.3.2 First stage optimization of the Filter

In order to enter into the OUBIKF optimization, the following notations
are necessary. They also provide a new way to prove that the gain matrix of
SKF minimizes the trace of the estimation error covariance Pk|k.

For any Kk ∈ Rnx×ny , k ≥ 1, de�ne:

ϕk(Kk)
M
= (I −KkCk)Pk|k−1(I −KkCk)

T +KkRkK
T
k , (2.6)

then

ϕk(Kk) = Pk|k , ϕk(0) = Pk|k−1, (2.7)
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where 0 is the zero matrix whose dimension is appropriate to the context,
e.g. 0 ∈ Rnx×ny in this case, Pk|k−1 and Pk|k are respectively prediction and
estimation error covariances in SKF.
Using the SKF optimal gain K∗k = Pk|k−1C

T
k S
−1
k with Sk = CkPk|k−1C

T
k +Rk

and assuming Sk is nonsingular 1, one gets

ϕk(K
∗
k) = (I −K∗kCk)ϕk(0) = (I −K∗kCk)Pk|k−1.

The Theorem 6 in the following provides the optimal gain expression K∗k
and in the same time emphasizes that using K∗k , Tr{Pk|k} = E(‖xk − x̂k|k‖2)
is minimized and hence the estimator x̂k|k is better than x̂k|k−1 in the sense
of mean square error minimization.

Theorem 6. Consider system (1.1) with SKF assumptions. Then for any
k ≥ 1:

0 � ϕk(K
∗
k) � ϕk(Kk) ,∀Kk ∈ Rnx×ny , (2.8)

K∗k = argminKk
Tr{ϕk(Kk)} = argminKk

Tr{Pk|k}. (2.9)

Proof. Since any covariance matrix is positive semide�nite, then ϕk(Kk) � 0,
∀Kk, and hence ϕk(K∗k) � 0. By assumptions, Sk ∈ S+(ny) and is nonsingu-
lar, then

0 � (Kk − Pk|k−1C
T
k S
−1
k )Sk(Kk − Pk|k−1C

T
k S
−1
k )T (Lemma 3)

= KkSkK
T
k −KkCkPk|k−1 − Pk|k−1C

T
k K

T
k

+ Pk|k−1C
T
k S
−1
k CkPk|k−1

= ϕk(Kk)− Pk|k−1 + Pk|k−1C
T
k S
−1
k CkPk|k−1

= ϕk(Kk)− ϕk(K∗k),

which implies that ϕk(K∗k) � ϕk(Kk), ∀Kk ∈ Rnx×ny .
Then, by Proposition 3, it implies Tr{ϕk(K∗k)} ≤ Tr{ϕk(Kk)}, ∀Kk ∈

Rnx×ny and hence (2.9) is concluded.

In the next, the class Γ of upper bounds to be optimized in terms of the
gain Kk is presented by Theorem 7 which is the main contribution to the
�rst stage optimization of OUBIKF.

1. The nonsingularity of Sk can be assured if Rk is assumed to be positive de�nite
or more strictly measurement noises are assumed to be vectors of independent random
components. In practice, the pseudo-inverse S+

k is used instead with notice that S+
k = S−1

k

when the later exists.
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Theorem 7. Consider system (1.1) with Assumptions A1. Denote [C] =
([cij]) and M = mid([C]). Let Rij = (rij,uv) be a matrix whose elements are
zeros except its ij-th entry rij,ij = rad([cij]) and n0 the number of non null
radius of rad([C]). Denote also Σ =

∑
i,j RijR

T
ij = Diag{rad([C])rad([C])T}.

The following statements hold:

1) ∀k ≥ 1, ∀Ak ∈ [A], ∀Ck ∈ [C], ∀Qk ∈ [Q], ∀Rk ∈ [R], ∀x̂k|k ∈ [x̂k|k],
∀β > 0 and ∀Kk ∈ Rnx×ny :

Pk|k � (1 + β−1n0) (Inx −KkM)Pk|k−1 (Inx −KkM)T

+ Kk

[
(β + n0)

ny∑
i=1

nx∑
j=1

RijPk|k−1R
T
ij +Rk

]
KT
k , (2.10)

2) If Pk|k−1 ∈ [Pk|k−1], S+([Pk|k−1]) � αkI and S+([R]) � γI, then ∀ β > 0
and ∀Kk ∈ Rnx×ny :

Pk|k � αk(1 + β−1n0) (Inx −KkM) (Inx −KkM)T

+ Kk

[
αk (β + n0) Σ + γIny

]
KT
k , (2.11)

3) Denote the right hand side of (2.11) by ϕk(Kk, β).
Denote also Sk,β = MMT +βΣ+ γ

αk(1+n0/β)
Iny and K

∗
k,β = MTS−1

k,β. Then:

ϕk(K
∗
k,β, β) = αk(1 + n0β

−1)(Inx −K
∗
k,βM), (2.12)

0 � ϕk(K
∗
k,β, β) � ϕk(Kk, β) , ∀Kk ∈ Rnx×ny ,∀β > 0, (2.13)

K
∗
k,β = argminKk

Tr{ϕk(Kk, β)}. (2.14)

Proof. 1) Let Ck ∈ [C]. Using the decomposition Ck = M + ∆k where
∆k =

∑ny

i=1

∑nx

j=1 αij(k)Rij for appropriate αij(k) ∈ [−1, 1], i ∈ {1, ..., ny},
j ∈ {1, ..., nx}, one gets

Pk|k = (I −KkCk)Pk|k−1(I −KkCk)
T +KkRkK

T
k

= Λ1 + Λ2 + Λ3 +KkRkK
T
k ,

where

Λ1 = (I −KkM)Pk|k−1 (I −KkM)T ,

Λ2 = (Kk∆k)Pk|k−1 (Kk∆k)
T ,

Λ3 = − (I −KkM)Pk|k−1 (Kk∆k)
T − (Kk∆k)Pk|k−1 (I −KkM)T .

Since Pk|k−1 can be expressed as Pk|k−1 = P
1/2
k|k−1

(
P

1/2
k|k−1

)T
and by apply-

ing (2.3) (Appendix), one gets

Λ3 �
∑
i,j

Tij

{
β−1
ij Λ1 + βijKk RijPk|k−1 (Kk Rij)

T
}
,
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for any βij > 0, where Tij = 1 when rad([cij]) > 0 and null otherwise.
Applying (2.4) (Appendix), then

Λ2 � Kk

[∑
i,j

Tij

(∑
u,v

Tuvσi,j,u,v

)
RijPk|k−1R

T
ij

]
KT
k ,

for all σi,j,u,v > 0 such that σi,j,u,v = σ−1
u,v,i,j. Therefore,

Λ2 � Kk

[
inf sup

{
σi,j,u,v > 0 : σi,j,u,v = σ−1

u,v,i,j

}∑
i,j

Tij
∑
u,v

TuvRij, Pk|k−1R
T
ij

]
KT
k ,

noting that inf sup
{
σi,j,u,v > 0 : σi,j,u,v = σ−1

u,v,i,j

}
= 1.

Choose βij = β > 0 for all i, j and get

Pk|k �

(
1 +

∑
i,j

β−1Tij

)
Λ1 + KkRkK

T
k

+ Kk

[∑
i,j

Tij

(
β +

∑
u,v

Tuv

)
RijPk|k−1R

T
ij

]
KT
k ,

noting that
∑ny

i=1

∑nx

j=1 Tij = n0 and
∑

i,j TijRijPk|k−1R
T
ij =

∑
i,j RijPk|k−1R

T
ij.

Then, (2.10) holds.

2) This statement is directly implied by using the property (issued from
Lemma 3):

A � B ⇒ XAXT � XBXT

for all X with appropriate dimension.

3) The proof of this statement can be derived in a similar way as the one
of Theorem 6.

Remark 7. The parameters βij, σi,j,u,v, β, σ used in Theorem 7 and its proof
depend actually on time instant k. �

Remark 8. Consider the proof of (2.10). When �nding the upper bound of
Λ2, in (Tran et al., 2017), the choice βij = σi,j,u,v = 1, ∀i, j, u, v, is used while
in (Lu et al., 2019), beside choosing βij = β > 0, ∀i, j, the choice σi,j,u,v =
σ > 0, ∀i, j, u, v, is used regardless the condition σi,j,u,v = σ−1

u,v,i,j. None of
these studies provides a diligent investigation of an advanced optimization
in terms of these real parameters (the optimization with respect to the gain
matrix is always performed).
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The present study considers a class of Pk|k's upper bounds which are
optimal with respect to the choice of

σi,j,u,v ≡ σ ≡ sup{σi,j,u,v > 0 : σi,j,u,v = σ−1
u,v,i,j} ≡ 1, ∀i, j, u, v,

where 1 = inf sup{σi,j,u,v > 0 : σi,j,u,v = σ−1
u,v,i,j}. Any choice of σ > 1 will

be called superoptimal. In addition, notice that Pk|k is bounded above by a
number of upper bounds which are not necessarily tight. Only the last sum
of these upper bounds, the right hand side of (2.11), is further optimized
thanks to its tractable form. Therefore, other choices of σ in (0, 1) might
yield, although it is not guaranteed, an upper bound of Pk|k. This choice of
small σ (inferior to 1) is called suboptimal.

The emphasized terms can also be used for the choices of other param-
eters, e.g. β, αk and γ, to provide corresponding Pk|k's upper bounds. In
general, a suboptimal choice of an upper bound might be compensated par-
tially or totally by other superoptimal upper bounds in the sum. This results
in the following Algorithm 2, a main contribution of (Lu et al., 2019), being
explained in light of new viewpoint of the present study and named as the
OUBIKF Beta version. It provides numerous choices of Pk|k's upper bounds
(via β and σ parameters) to obtain (more) reliable estimators in many situ-
ations where one of them is illustrated by Example 2. The optimal bound,
corresponding to the choice of σ = 1, is further optimized with respect to β
in the second stage optimization presented in the next section. �

Example 2 (Academic example). This example is issued from (Lu et al.,
2019) in order to illustrate the algorithm working with small β, σ and com-
pare its results to those of the proposed method UBIKF of (Tran et al., 2017).
The system under consideration is described by equation (2.5) without input
uk, where:

[A] =

 [2.45, 2.72] [−1.41,−1.28] [0.26, 0.28]
[6.32, 6.98] [−3.56,−3.22] [2.45, 2.72]

[−0.79,−0.72] [0.3, 0.34] [0.1, 0.11]

 ,

[C] =

[−8.16,−7.84] [−4.08,−3.92] [1.96, 2.04]
[−2.04,−1.96] [1.96, 2.04] [5.88, 6.12]
[−0.41,−0.39] [15.68, 16.32] [6.86, 7.14]

 ,

[Q] = [R] =

 [8, 12] [−6,−4] [3.2, 4.8]
[−6,−4] [8, 12] [1.6, 2.4]
[3.2, 4.8] [1.6, 2.4] [8, 12]

 .
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Algorithm 2 OUBIKF Beta version

1: Initialization:
2: [x̂0|0], P0|0, [A], [B], [C], [D], [Q], [R], uk, yk, k = 1, 2, 3, ..., N
3: Find n0 the number of non zero radius of [C]
4: Find γ such that S+([R]) � γI
5: for k = 1, 2, 3, ...N do
6: Prediction step:
7: [x̂k|k−1] = [A][x̂k−1|k−1] + [B]uk
8: [Pk|k−1] = [A]Pk−1|k−1[A]T + [Q]
9: Find αk such that S+([Pk|k−1]) � αkI

10: Correction step:
11: Choose βk > 0 and σk > 0

12: τk =
βk + n0σk
1 + n0/βk

; vk =
γk

αk(1 + n0/βk)
13: Sk = mid([C])mid([C])T + τkDiag

{
rad([C])rad([C])T

}
+ vkI

14: Kk = mid([C])TS−1
k

15: [x̂k|k] = (I −Kk[C])[x̂k|k−1] +Kk(yk − [D]uk)
16: Pk|k = (I −Kkmid([C]))αk(1 + n0/βk)
17: end for

The initial state is x0 = (5,−2, 6)T and the algorithm starts at [x̂0] =
([−2, 2], [−2, 2], [−2, 2])T . The initial error covariance bound is P0|0 = 10I.
The vector xk has three components xk,1, xk,2, xk,3 which are states in con-
sideration of the system.

Firstly, state variables xk, measures yk and error covariance matrices
Pk|k corresponding to the SKF are simulated for N = 104 iteration steps.
More precisely, at each time instant k, matrices Ak, Ck, Qk, Rk are gener-
ated respectively from [A], [C], [Q], [R] such that Qk and Rk are symmetric
positive semide�nite. wk, vk are simulated such that wk ∼ N (0, Qk) and
vk ∼ N (0, Rk). Then, xk, yk and Pk|k are computed straightforwardly using
their corresponding expressions. Next, Algorithm 2 is run together with the
one of (Tran et al., 2017), namely UBIKF, for N steps. The outputs of Al-
gorithm 2 are [x̂optk ], Poptk|k and those of UBIKF are [x̂k], Pk|k, where Poptk|k and
Pk|k are upper bounds of the set S+([Pk|k]) yielded respectively by the two
algorithms.

In the use of Algorithm 2, any upper bound αI of the corresponding set
S+([.]) is chosen with α = ‖Max([.])‖F where Max([.]) is de�ned by (2.2).
Also, the choice βk = 1

2.n0.103
and σk = 1

n0.103
are applied for the algorithm.

Simulation results. Using Algorithm 2, the computation time is re-
duced more than 40% with respect to the one of UBIKF (Table 2.1). The
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traces of bounds Poptk|k decrease rapidly and have a convergence tendency while
the traces of Pk|k increase (although bounded) (Fig. 2.1 and 2.2). In addi-
tion, Tr(Pk|k) ≤ Tr(Poptk|k ) ≤ Tr(Pk|k) for all k ≥ 1 (Table 2.2). Besides,
estimate intervals [x̂optk ] are contained in [x̂k] for all k ≥ 1.

RMSE
Time

xk,1 xk,2 xk,3
UBIKF 413.41 448.83 343.82 51.375 s
OUBIKF 416.95 451.48 346.51 28.719 s

Table 2.1 � Academic example - RMSE and computation times yielded by the
OUBIKF Beta version and the UBIKF respectively for N = 104 iterations.

Figure 2.1 � Academic example - Behavior of the traces of error covariance
upper bounds Poptk|k yielded by the OUBIKF Beta version.

Trace Min Mean Max Width*
tr(Pk|k) 1.0592 1.3399 1.6418 0.5826

tr(Poptk|k ) 2.7361 2.7361 2.7418 0.0057

tr(Pk|k) 15.353 132.72 133.47 118.117
*Width = Max - Min

Table 2.2 � Academic example - Traces of estimation error covariance Pk|k
and of their upper bounds according respectively to OUBIKF and UBIKF.
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Figure 2.2 � Academic example - Behavior of the traces of error covariance
upper bounds Pk|k yielded by the UBIKF.

The next result concerns the con�dence intervals de�ned by

CIoptk,r =

[
inf([x̂optk ])− r

√
Diagv(P

opt
k ) , sup([x̂optk ]) + r

√
Diagv(P

opt
k )

]
,

CIk,r =
[
inf([x̂k])− r

√
Diagv(Pk) , sup([x̂k]) + r

√
Diagv(Pk)

]
where r = 1, 2, 3 corresponding to 68%, 95%, 99.7% con�dence interval (the
3-sigma rule). According to the simulation, the 68% con�dence intervals
contain all corresponding state variables xk and CIoptk,1 ⊆ CIk,1, for all k ≥ 1
(Fig. 2.3). So the O(%), the percentage of con�dence intervals containing
corresponding state variables, are both 100% for two algorithms, however the
CIoptk,1's are tighter.

We also deal with a criterion called Root Mean Squared Error (RMSE)
to compare the performance of the two algorithms. The RMSE is de�ned in
(Tran et al., 2017) by

RMSE =

√√√√ 1

N

N∑
k=1

(xk −mid([x̂k]))
2.

The result is that the RMSE of OUBIKF Beta version is slightly greater than
the one of UBIKF (Table 2.1). This criterion is used here as it has been used
before in (Tran et al., 2017) to compare di�erent algorithms. But a critical
point of view can be pointed out. The distance between the state xk and the
midpoint of the corresponding estimate interval is used. This fact dismisses
the issue of the estimate interval width. Naturally, two estimate intervals
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Figure 2.3 � Academic example - 68% Con�dence Intervals yielded by the
OUBIKF Beta version and the UBIKF with respect to the states xk,3.

with a same midpoint have the same RMSE regardless their widths. In other
words, this index just stands for the concentration tendency of states xk with
respect to the corresponding estimate interval midpoint. Another distance
is proposed to improve the meaning of this criterion which is the Hausdor�
distance determined by:

dH(X, Y ) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
for any two non empty sets X, Y in the metric space (Ω, d). In our case, we
have

dH(xk, [x̂k]) = max {|xk − inf([x̂k])|, |xk − sup([x̂k])|}

and the new RMSE is de�ned by

R̂MSE =

√√√√ 1

N

N∑
k=1

dH(xk, [x̂k])2.

The result for R̂MSE in Table 2.3 shows that the estimate intervals [x̂optk ]
are more relevant by their tightness.

R̂MSE
x1 x2 x3

UBIKF 5047.2 4159.1 4213.6
OUBIKF 4708.5 3847.7 3934.2

Table 2.3 � The R̂MSE �
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2.3.3 Second stage optimization and guaranteed condi-
tions of the Filter

In the next, in lieu of �nding directly the optimal upper bound denoted
by ϕ∗k = infβ>0 ϕk(K

∗
k,β, β), the behavior of

φk(β)
M
= Tr{ϕk(K

∗
k,β, β)}, β > 0,

is considered in the aim to �nd its minimum Φ∗k
M
= infβ>0 φk(β). The behavior

of φk(β) is provided by Proposition 9 and illustrated in Fig. 2.4 and 2.5. The
guaranteed conditions of the Filter is built afterward and the second stage
optimization is contributed by Theorem 8.

The following notations are used:
• All notations de�ned in Theorems 6 and 7: ϕk, K∗k , Sk, M , Rij, Σ,
n0, αk, γ, ϕk, K

∗
k,β, Sk,β.

• r = rank(M),
• λi, i = 1, ..., r, are non null eigenvalues of MMT ,
• dij's are entries of the diagonal matrix Σ,
• dmin = min{dii 6= 0, i = 1, ..., ny},
• dmax = max{dii 6= 0, i = 1, ..., ny}.

Lemma 4. Let α > 0, c > 0, β > 0, a(β) = α(1 + n0/β) and

ξ(β) = a(β)
[
nx − Tr{MT

(
MMT + βcIny

)−1
M}
]
. Then

lim
β→∞

ξ(β) = αnx = αTr{Inx},

lim
β→0

ξ(β) =

{
αcn0Tr{(MMT )+} , nx = r

∞ , nx > r .

Furthermore:

a) If nx = r and λi ≥ n0c, ∀i ∈ {1, ..., r}, then ξ(β) is non-decreasing and

infβ>0 ξ(β) = limβ→0 ξ(β) = αcn0Tr{(MMT )+},
supβ>0 ξ(β) = limβ→∞ ξ(β) = αnx.

b) If nx > r and λi ≤ n0c, ∀i ∈ {1, ..., r}, then ξ(β) non-increasing and

supβ>0 ξ(β) = limβ→0 ξ(β) =∞,

infβ>0 ξ(β) = limβ→∞ ξ(β) = αnx.

Proof. Since MMT ∈ S+(ny), it can be decomposed as MMT = QΛQT ,
QQT = Iny and Λ = diag{λi(MMT ), i ∈ {1, .., ny}} with r = rank(M)
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non (null eigenvalues) positive λi of MMT . This implies (MMT + sI)−1 =
Q(Λ + sI)−1QT for all s ∈ R. Thus

Tr{MT
(
MMT + βcIny

)−1
M} = Tr{MMT

(
MMT + βcIny

)−1}

= Tr{Λ
(
Λ + βcIny

)−1} =
r∑
i=1

λi
λi + βc

and

ξ(β) = a(β)

[
nx −

r∑
i=1

λi
λi + βc

]
= a(β)

r∑
i=1

[
nx
r
− λi
λi + βc

]
.

Since 0 < r = rank(M) ≤ min{nx, ny} then
nx
r

= 1 + δ for some δ ≥ 0, and

ξ(β) = (1 + n0/β)αδr + αc
r∑
i=1

β + n0

cβ + λi
,

dξ

dβ
(β) =

−αδr
β2

+ αc
r∑
i=1

λi − n0c

(cβ + λi)2
.

The lemma conclusions are then straightforward.

Proposition 9. Let k ≥ 1, ε > 0, c1,k = dmin+ γ
αk(ε+n0)

and c2,k = dmax+ γ
αkn0

.

Recall that φk(β) = Tr{ϕk(K
∗
k,β, β)}, β > 0 and let

h(β) = αk(1 + n0/β) [nx − r] ,
g(β) = αk(1 + n0/β)nx,

ξi,k(β) = αk(1 + n0/β)
[
nx − Tr{MT

(
MMT + βci,kIny

)−1
M}
]
, i ∈ {1, 2}.

Then for all 0 < β ≤ ε:

0 ≤ h(β) ≤ ξ1,k(β) ≤ φk(β) ≤ ξ2,k(β) ≤ g(β) , (2.15)

a) If nx = r and λi ≥ n0dmax + γ
αk
, ∀i = 1, ..., r, then

0 < ck.Tr{(MMT )+} ≤ Φ∗k ≤ lim
β→0

φk(β) ≤ ck.Tr{(MMT )+} < αknx

where ck = αkn0dmin + γ, ck = αkn0dmax + γ and Φ∗k = infβ>0 φk(β).

b) If nx > r and λi ≤ n0dmin + γ
αk
, ∀i = 1, ..., r, then

∞ = lim
β→0

φk(β) ≥ ξ2,k(β) ≥ φk(β) ≥ ξ1,k(β) ≥ lim
β→∞

φk(β) = αknx = Φ∗k.

CHAPTER 2 45



Proof. Using following facts
� 0 �MMT +βc1,kIny �MMT +βΣ + γβ

αk(β+n0)
Iny �MMT +βc2,kIny ,

� A,B ∈ S+(n) and 0 � A � B imply that
+ 0 � B+ � A+ (note that X+ ≡ X−1 if X−1 exists),
+ 0 �MTAM �MTBM , ∀M ∈ Rn× p,
+ 0 � P + A � P +B , ∀P ∈ Rn×n,
+ 0 � sA � sB , ∀s > 0 and tB � tA � 0 , ∀t < 0,

and get for all 0 < β ≤ ε (note that ξ1,k(.) depends on ε):

0 ≤ ξ1,k(β) ≤ φk(β) ≤ ξ2,k(β) ≤ αk(1 + n0/β)nx.

It remains to prove 0 ≤ hk(β) ≤ ξ1,k(β) for (2.15) to be true. It is obvious
that hk(β) ≥ 0, ∀β > 0 since r = rank(M) ≤ min{nx, ny}. Then hk(β) ≤
ξ1,k(β) follows from the fact that

r ≥
r∑
i=1

λi
λi + βc1,k

= Tr{MT (MT + βc1,kIny)−1M} , ∀β > 0.

By (2.15) one gets:

0 ≤ inf
0<β≤ε

h(β) ≤ ξ1,k(β) , ∀β ∈ (0, ε]

⇒ 0 ≤ inf
ε>0

inf
0<β≤ε

h(β) ≤ ξ1,k(β) , ∀β > 0, ∀ε > 0

⇒ 0 ≤ αk(nx − r) ≤ inf
β>0

ξ1,k(β), ∀ε > 0.

Then it is straightforward that

0 ≤ αk(nx − r) ≤ inf
β>0

ξ1,k(β) ≤ inf
β>0

φk(β) = Φ∗k ≤ inf
ε>0

ξ2,k(β) ≤ αknx,∀ε > 0

noting that ξ1,k(β) depends on ε. Therefore

0 ≤ αk(nx − r) ≤ sup
ε>0

inf
β>0

ξ1,k(β) ≤ Φ∗k ≤ inf
ε>0

ξ2,k(β) ≤ αknx.

Furthermore,
• 0 ≤ limβ→0 ξ1,k(β) ≤ limβ→0 φk(β) ≤ limβ→0 ξ2,k(β),
• Φ∗k = inf

β>0
φk(β) ≤ limβ→0 φk(β).

Following results are based on Lemma 4.
a) For nx = r and λi ≥ n0c2,k ≥ n0c1,k, ∀i ∈ {1, ..., r}, one gets:

inf
β>0

ξi,k(β) = lim
β→0

ξi,k(β) = αkn0ci,kTr{(MMT )+}, i ∈ {1, 2},

sup
ε>0

inf
β>0

ξ1,k(β) = sup
ε>0

αkn0c1,kTr{(MMT )+} = αkn0dmin + γ
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where αkn0c1,k = αkn0dmin + γn0

ε+n0
, ε > 0 and αkn0c2,k = αkn0dmax + γ.

Substituting above results, the conclusion holds.
b) For nx > r and λi ≤ n0c1,k ≤ n0c2,k, ∀i = 1, ..., r, the functions ξj,k,

j ∈ {1, 2}, are non-increasing and

sup
β>0

ξj,k(β) = lim
β→0

ξj,k(β) =∞ , inf
β>0

ξj,k(β) = lim
β→∞

ξj,k(β) = αknx.

Then the conclusion are veri�ed.

Figures 2.4 and 2.5 illustrate Proposition 9 in which (2.15) is highlighted.
Lemma 4 is technically needed for Proposition 9, while the later provides the
bounds of φk(β) together with its in�mum value Φ∗k in two accessible cases.
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Figure 2.4 � The smallest bound h(β) and greatest bound g(β) of φk(β) =
Tr{ϕk(K

∗
k,β, β)} at a �xed time k ≥ 1.

Guaranteed conditions

It is di�cult to get the exact behavior of φk(β), unless its bounds and
limits, in particular, conditioning:

C1 :

{
nx = r
λi ≥ n0dmax + γ/αk, ∀i = 1, ..., r

It is interesting to know Φ∗k = infβ>0 φk(β) but we are just able to determined
from Proposition 9 that in conditions C1,

0 ≤ | lim
β→0

φk(β)− Φ∗k| ≤ αkn0(dmax − dmin)Tr{(MMT )+},
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Figure 2.5 � An example of φk(β) = Tr{ϕk(K
∗
k,β, β)} for the case nx = r and

λi ≥ n0dmax + γ/αk, ∀i ∈ {1, ..., r}, at a �xed time k ≥ 1.

in which dmax, dmin are controllable. So, the minimization of φk(β) (exactly
or approximately) consists in how to design the system under consideration
to reach conditions C1 and control dmax, dmin in an appropriate way. For
instance, when dmax = dmin = d for some d > 0, i.e. Σ = dIny , then Φ∗k is
determined.

Design of conditions C1
Condition 1: nx = r.
Since M ∈ Rny ×nx , r ≤ min{nx, ny}, to get r = nx, it requires two

things: nx ≤ ny and M has nx linearly independent columns. Note that the
number of output measurements ny is not necessary the number of physi-
cal sensors ns. Output measurements are basically designed regarding the
application system and are functions of states: yk(i) = fi(xk(1), ..., xk(nx)),
i = 1, ..., ny. In view of the system design, when ny < nx we can take more
yk(j) = fj(xk(1), ..., xk(nx)), ny < j ≤ nx for appropriate fj with notice
that a function (e.g. a combination) of yk(1), ..., yk(ny) is also a function
of xk(1), ..., xk(nx). Thus, the matrix [C] and hence M = mid([C]) can be
obtained with nx ≤ ny before any yk(i) is measured by sensor. The missing
output measurements yk(j) could be estimated by several ways, e.g. by an
observer, which are considered as virtual sensors. In that case, an implicit
observability assumption is required and the robust sensitivity must be taken
into account. This necessitates further research in the future for a systematic
implementation. The second requirement is simple to regularize numerically
in particular for the interval context. A regularization [C] ← [C] + [ε, ε] is
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suitable so that M = mid([C]) has nx linearly independent columns.

Condition 2: λi ≥ n0dmax + γ/αk, ∀i ∈ {1, ..., r}.
This condition is equivalent to λmin ≥ n0dmax + γ/αk, where λmin =

min{λi, i ∈ {1, ..., r}}. This condition is achievable thanks to the Lemma 5
below.

Lemma 5. If for some s ∈ (0, 1), the following two expressions hold

◦ 0 ≤ max
{
rad([cij]), i ∈ {1, ..., ny}, j ∈ {1, ..., nx}

}
≤

√
s
λmin

n0nx
,

◦ αk ≥ max

{
γ

(1− s)λmin

, sup{λmax(P ), P ∈ S+([Pk|k−1])}
}

then the condition λmin ≥ n0dmax + γ/αk is veri�ed.

Proof. From assumptions of the lemma we get

dmax ≤ nx

(
s
λmin

n0nx

)
and

1

αk
≤ (1− s)λmin

γ
,

which imply that n0dmax + γ
αk
≤ λmin.

For a more precise context, in Lemma 6, denote 0p× q as a p× q zeros
matrix. This lemma is needed for Theorem 8 computations. Only its third
statement requires the �rst condition of C1.

Lemma 6. The following statements hold:

a) K
∗ M

= M+ = MT (MMT )+ = (MTM)+MT ∈ Rnx×ny .

b) limβ→0K
∗
k,β = K

∗
and limβ→0 ϕk(K

∗
k,β) = ϕk(K

∗
).

c) If rank(M) = nx, i.e. M has full column rank, then Inx−K
∗
M = 0nx×nx.

Proof. a) The �rst expression is just a denotation for K
∗
with the two equal-

ities of M+ from Proposition 3.2 of (Barata and Hussein, 2012).
b) Since A+ = A−1 when the later exists and applying the Tikhonov's

regularization from Theorem 4.3 of (Barata and Hussein, 2012), we get

lim
β→0

K
∗
k,β = lim

β→0
MT

(
MMT + βΣ +

γβ

αk(β + n0)
I

)+

= lim
β→0

lim
η→0

MT

(
MMT + βΣ +

γβ

αk(β + n0)
I

)T
×

×

[(
MMT + βΣ +

γβ

αk(β + n0)
I

)2

+ ηI

]−1

= lim
η→0

MT
(
MMT

) [(
MMT

)2
+ ηI

]−1

= MT (MMT )+ = K
∗
.
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Since limβ→0K
∗
k,β = K

∗
and noting that

ϕk(K
∗
k,β)− ϕk(K

∗
) = (K

∗
k,β −K

∗
)(SkK

∗T − CkPk|k−1)

+ (K
∗
k,βSk − Pk|k−1C

T
k )(K

∗
k,β −K

∗
)T ,

then limβ→0 ϕk(K
∗
k,β) = ϕk(K

∗
).

c) By de�nition of Moore-Penrose pseudoinverse, we get MM+M = M
and hence M(Inx −M+M) = 0ny ×nx .
Let X = Inx −M+M = [X1...Xnx ] ∈ Rnx×nx where Xi is i-th columns of X,
i ∈ {1, ..., nx}. So

MX = 0ny ×nx ⇔ MXi = 0ny × 1 , ∀i ∈ {1, ..., nx}
⇔ Xi ∈ N (M) , ∀i ∈ {1, ..., nx}

where N (M) is the null space of M .
Using the assumption rank(M) = nx then N (M) = {0nx× 1}.
It follows that Xi = 0nx× 1,∀i ∈ {1, ..., nx} and hence

X = Inx −M+M = Inx −K
∗
M = 0nx×nx .

Theorem 8. Assume that rank(M) = nx and assumptions of Lemma 5 are

veri�ed. Let δ = max
{
rad([cij]), i ∈ {1, ..., ny}, j ∈ {1, ..., nx}

}
. Then

ϕk(K
∗
) � lim

β→0
ϕk(K

∗
k,β, β) � lim

β→0
ϕk(K

∗
, β) � (αkn0δ

2nx+γ)(MTM)+ � αkInx

(2.16)
where ϕk(K

∗
) is the estimation error covariance associated with the use of

Kk = K
∗
and will be denoted by PK

∗

k|k .

Assume further that: S+([Q]) � λ1Inx, S+([A][A]T ) � λ2Inx, S+([P0|0]) �
α0Inx,

λ2n0nxδ2

λmin
≤ L < 1, and let

ΨL =
λ1n0nxδ

2 + γ

λmin(1− L)
, ΨL(k) = ΨL + (α0 −ΨL)Lk,

then

PK
∗

k|k � ΨL(k)Inx , MSEK
∗

= Tr{PK
∗

k|k } ≤ ΨL(k)nx , (2.17)

PK
∗

k+1|k � (λ2ΨL(k) + λ1) Inx . (2.18)
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Remark 9. Being a function of L, ΨL is non decreasing on (0, 1) and
γ/λmin = lim

L→0
ΨL < ΨL < lim

L→1
ΨL =∞. The fact L→ 0 implies that δ → 0,

equivalently, rad([C]) = 0 or [C] reduces to the point matrix mid([C]), and
then the limit γ/λminInx is the minimum upper bound of PK

∗

k|k according to the

change of rad([C]). If furthermore, L ≤ λ2 < 1, then ΨL ≤ lim
L→λ2

= λ1n0nxδ2+γ
λmin(1−λ2)

which is a �nite value. The condition λ2 < 1 relates to a requirement for the
stability of the considered system.

Remark 10. The assumption λ2n0nxδ2

λmin
≤ L < 1 is equivalent to δ2 ≤ L

λ2

λmin

n0nx
.

Together with the assumption δ2 ≤ s λmin

n0nx
for some s ∈ (0, 1), we can get

di�erent choices to achieve these assumptions. First, we can think that λ2 =
sup{λmax(AkA

T
k ),∀Ak ∈ [A]}. If L and λ2 are given and satisfy 0 < L

λ2
< 1

then we may choose s = L
λ2

and rad([C]) is controlled by δ ≤
√
s λmin

n0nx
.

For instance, in many applications, a reasonable value for δ is 5% − 10%.
Another possible setting is that we choose L, s ∈ (0, 1) so that λ2 ≤ L

s
then

the assumption λ2n0nxδ2

λmin
≤ L holds. The smaller λ2 is, the greater s can be

chosen in (0, 1) and hence the more uncertainty of [C] can be covered via its
radii. Besides, L can be seen as convergence rate of ΨL(k) to ΨL as k tends
to ∞.

Remark 11. Since ΨL(k) = ΨL+ (α0−ΨL)Lk, then ΨL(k) ↓ ΨL if α0 ≥ ΨL

and ΨL(k) ↑ ΨL if α0 < ΨL. In the later case, PK
∗

k|k � ΨLInx , ∀k ≥ 1.
Furthermore, ΨL can be precomputed and controlled before the algorithm
starts. For instance, it can be controlled the choice of L, s, δ so that ΨL ≤ Ψ
with a given constant Ψ > 0. Concretely, the constraint L

λ2
≥ s ≥ n0nxδ2

λmin
can

be reduce to s = L/λ2 = n0nxδ
2/λmin which implies ΨL = λ1L

λ2(1−L)
+ γ

λmin(1−L)
.

Let ΨL = Ψ and get

L =
Ψ− γ/λmin

Ψ + λ1/λ2

, s = L/λ2 , δ2 = sλmin/(n0nx),

provided that γ/λmin < Ψ.

Proof. By assumptions of the theorem, the conditions C1 holds. Then, it
follows from Lemma 6, Proposition 9 and Theorems 6-7 that :

0 � ϕk(K
∗
k) � lim

β→0
ϕk(K

∗
k,β) = ϕk(K

∗
) � lim

β→0
ϕk(K

∗
k,β, β) � lim

β→0
ϕk(K

∗
, β),

and

lim
β→0

ϕk(K
∗
, β) = K

∗ [
αkn0Σ + γIny

]
K
∗T � (αkn0δ

2nx + γ)(MTM)+,
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in which Σ � δ2nxIny and K
∗
K
∗T

= (MTM)+.
Since MMT and MTM have the common non null eigenvalues then they

have the same λmin (non null). So we get K
∗
K
∗T

= (MTM)+ � 1
λmin

Inx and
hence

lim
β→0

ϕk(K
∗
, β) �

(
αkn0δ

2nx + γ
) 1

λmin

Inx � αkInx ,

where the last inequality holds thanks to λmin ≥ n0δ
2nx + γ

αk
.

By recursion, one gets

PK
∗

k|k = (Ã⊗k,1)P0|0(Ã⊗k,1)T +
k∑
i=1

(Ã⊗k,i+1C̃i)Qi(Ã
⊗
k,i+1C̃i)

T

+
k∑
i=1

(Ã⊗k,i+1K
∗
)Ri(Ã

⊗
k,i+1K

∗
)T , (2.19)

where Ã⊗k,s = ÃkÃk−1...Ãs+1Ãs if s ≤ k and Ã⊗k,s = I if s > k, C̃k = I−K∗Ck,
Ãk = C̃kAk.

For any p ≥ 1, Cp ∈ [C] is decomposed as Cp = M + ∆p, ∆p =∑
i,j αij(p)Rij, αij(p) ∈ [−1, 1] and hence, using Lemma 6 and (2.4), one

gets (
I −K∗Cp

)(
I −K∗Cp

)T
= K

∗
∆p∆

T
pK

∗T

� K
∗
(n0Σ)K

∗T

� n0δ
2nxK

∗
K
∗T

� n0δ
2nx

1

λmin

Inx ,

implying that ÃpÃTp � λ2n0δ
2nx

1

λmin

Inx .

Substituting these results into (2.19), it follows that

PK
∗

k|k � α0

(
λ2n0nxδ

2

λmin

)k
Inx +

λ1n0nxδ
2 + γ

λmin

k∑
i=1

(
λ2n0nxδ

2

λmin

)k−i
Inx

and the conclusion holds noting that λ2n0nxδ2

λmin
≤ L < 1 and

∑k−1
i=0 L

i = 1−Lk

1−L .
In addition, lim

k→∞
ΨL(k) = ΨL.
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2.3.4 OUBIKF Algorithm

Applying Theorem 8 to the OUBIKF Beta version (Algorithm 2) with
the choice of σ = 1, β → ∞ and under conditions C1, theoretically, one
obtains

[x̂k|k] = lim
β→0
{(Inx −K

∗
k,β[C])[x̂k|k−1] +K

∗
k,β(yk − [D]uk)},

= (Inx −K
∗
[C])[x̂k|k−1] +K

∗
(yk − [D]uk),

= K
∗(

[−1, 1] · rad([C])
)

[x̂k|k−1] +K
∗
(yk − [D]uk),

Pk|k
M
= lim

β→0
ϕk(K

∗
k,β, β) = lim

β→0
(I −K∗k,βM)αk (1 + n0/β)

= lim
β→0

(I −K∗k,βM)αkn0/β,

Tr{Pk|k} = lim
β→0

φk(β) ≈ Φ∗k,

and, numerically, for small 0 < β �, one obtains:

Pk|k
β�
≈ (I −K∗k,βM)αkn0/β ≈ K

∗ [
αkn0Σ + γIny

]
K
∗T
,

Tr{Pk|k}
β�
≈ φk(β) ≈ Tr{K∗

[
αkn0Σ + γIny

]
K
∗T} ≈ Φ∗k.

Above results constitute the optimal version of the OUBIKF Algorithm which
is simply named as OUBIKF (Algorithm 3) in the following.

Remark 12. The corresponding con�dence intervals are determined by

CIik =
[
inf([x̂ik|k])− h

√
P iik|k, sup([x̂ik|k])] + h

√
P iik|k

]
,

for i = 1, ..., nx and h = 1, 2, 3, which contain the states xk with probabilities
at least 68%, 95%, 99.7% according to h.

2.4 Application

In this section, the OUBIKF Algorithm is applied in simulation to a model
taken from automotive domain (Fergani, 2014). This model is a nonlinear
continuous-time model which has been discretized/linearized and thus given
under the form (1.1).
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Algorithm 3 OUBIKF

1: Initialization:
2: [x̂0|0], P0|0, [A], [B], [C], [D], [Q], [R], s, λmin, uk, yk, k = 1, 2, 3, ..., N
3: Find n0 the number of non zero radius of [C]
4: Find γ such that S+([R]) � γI using Theorem 5
5: K

∗
= mid([C])+;

6: Σ = Diag
{
rad([C])rad([C])T

}
;

7: for k = 1, 2, 3, ...N do
8: Prediction step:
9: [x̂k|k−1] = [A][x̂k−1|k−1] + [B]uk

10: [Pk|k−1] = [A]Pk−1|k−1[A]T + [Q]
11: Find αk such that S+([Pk|k−1]) � αkI using Theorem 5
12: αk = max {γ/[(1− s)λmin] , αk}
13: Correction step:

14: [x̂k|k] = K
∗(

[−1, 1] · rad([C])
)

[x̂k|k−1] +K
∗
(yk − [D]uk)

15: Pk|k = K
∗ [
αkn0Σ + γIny

]
K
∗T

16: end for
(∗) s and λmin satisfy conditions C1.

2.4.1 Bicycle vehicle model

The model parameters

The vehicle model parameters obtained by an identi�cation process on
the Renault Mégane Coupé are presented. Throughout the paper, indexes
i = {f, r} and j = {l, r} are used to identify vehicle front, rear and left,
right positions, respectively. The full vehicle model with all the nonlinear
equations describing its dynamical behaviour can be found in (Fergani, 2014).

The linear bicycle model

Since the full model is highly non linear, a linear bicycle model as illus-
trated by Fig. 2.6 reproducing the lateral behaviour of the car is used for this
study by linearizing the former. Reference to Fig. 2.6, β(t) is the sideslip an-
gle and ψ(t) is the vehicle yaw which form the model state variables. Ftyf (t)
represents lateral front tire forces, Ftyr(t) represents lateral rear tire forces
and Ftxf (t) represents the longitudinal front tire forces, v is the vehicle speed,
∆Ftxr(t) is the di�erential rear braking force (obtained based on the braking
torques Tbrj), δ is the steering angle andMdz is the yaw moment disturbance.
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Symbol Value Unit Signi�cation
m 1535 kg vehicle mass
Iz 2149 kg.m2 vehicle yaw inertia
Cf 20000 N/degree lateral tire front sti�ness
Cr 20000 N/degree lateral tire rear sti�ness
Sr 12720 N longitudinal tire rear sti�ness
lf 1.4 m distance COG - front axle
lr 1 m distance COG - rear axle
tr 1.4 m rear axle length
R 0.3 m tire radius
µ [2/5; 1] − tire/road contact friction coe�cient
v [50; 130] km/h vehicle velocity coe�cient

Table 2.4 � Renault Mégane Coupé parameters.

Figure 2.6 � View of the bicycle model reproducing the lateral behaviour of
the car.

The model is obtained considering the following:
a) Low sideslip angles: |β| < 7 degrees,
b) Low longitudinal slip ratio: < 0.1,
c) Low steering angles: cos(δ) ' 1.

The linearized lateral tire forces are:

Ftyf (t) = Cfβf (t), Ftyr(t) = Crβr(t), (2.20)

with βf (t) and βr(t) denoting the front and rear sideslip angles,

βf (t) = δ(t)− β(t)− lf ψ̇(t)

v
, βr(t) = β(t) +

lf ψ̇(t)

v
. (2.21)
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This leads to the following state space representation (2.22):[
β̇(t)

ψ̈(t)

]
=

[ −Cf−Cr

mv
1 + µ

−lrCr−lfCf

mv2

−lrCr−lfCf

Iz

−l2fCf−l2rCr

Izv

] [
β(t)

ψ̇(t)

]

+

[
Cf

mv
0 0 0

lfCf

Iz
1
Iz

SrRtr
2Iz

−SrRtr
2Iz

]
δ
Mdz

Tbrl
Tbrr


. (2.22)

Remark 13. It is worth noting that the sideslip dynamics are highly non-
linear and cannot be measured via a conventional sensor.

Remark 14. µ ∈ [0; 1] is the tire/road adhesion coe�cient. Its value depends
on the road conditions (dry, wet, icy,...) and highly in�uences the lateral
dynamics of the vehicle.

2.4.2 Simulation

A discretization phase with a sampling time T = 0.05s is applied to the
considered continuous model to get matrices Ad, Bd, Cd, Dd (non interval
and independent of time instant k) according to equations in (1.1). Then,
interval matrices [A], [B], [D] are generated as follow: for F ∈ {Ad, Bd, Dd},
let F = mid([F ]) and choose the radii rad([F ]) at random in [0 ,max_rad]
with max_rad = 0.5. The covariance matrices [Q] and [R] are generated in
the same way, their diagonal elements being intervals of positive real numbers.

ChooseM = mid([C]) = Cd. With this choice, rank(M) = nx, so the �rst
part of conditionsC1 is satis�ed. The second part of conditionsC1 is reached
using Remark 11 to compute L, s, δ with the choices Ψ = 10γ/λmin and
n0 = nxny. Then [C] is generated in the same way of [A] where max_rad = δ.

ΨL λmin λ1 λ2 γ s L δ
3.84 3.49 0.91 2.30 1.34 0.24 0.82 0.23

Table 2.5 � Parameter computation results.

Inputs uk are simulated according to a dynamic change for N = 864
time instances (Fig. 2.7), that is the vehicle is assumed to be driven at
15m/s (54 km/h) on a dry road (µ = 1) and a double line change maneuver
is performed from t = 0.5s to t = 1.5s by the driver. The initial state is
chosen at x0 = (0, 0)T . At each time instant k, generate Ak, Bk, Ck, Dk,
Qk, Rk according to uniform distribution in corresponding interval matrices
and so that Qk ∈ S+(nx) and Rk ∈ S+(ny). Then wk and vk are simulated.
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Figure 2.7 � Bicycle model - Input uk simulation

Finally, {xk, yk}k∈1:N are computed according to system (1.1) where xk =
(β(k), ψ̇(k))T ≡ (x1(k), x2(k))T .

For state estimation, Algorithm 3 is used to obtain [x̂k|k] and corre-
sponding con�dence intervals CIk. The Algorithm is initialized at [x̂0] =
([−0.5, 0.5], [−0.5, 0.5])T and P0|0 = max{Diag(sup([Q]))}I.

The 95% con�dence intervals CIk contain all real states xk as shown in
Figure 2.8. The computation time using the OUBIKF with the new setting
of the present work is improved against the OUBIKF Beta version with the
setting proposed in (Lu et al., 2019) (Table 2.6), while the last one has been
shown by simulation to be more e�cient in computation time against its
precursor (Tran et al., 2017).

OUBIKF OUBIKF Beta version
Computation time (s) 2.33 3.02

Table 2.6 � Computation times of OUBIKF and OUBIKF Beta version with
two settings for N = 864 iterations.

Remark 15. It is worth to note that Algorithm 3 is not applicable for Exam-
ple 2 since the widths of the given matrices are too large so that λ2n0nxδ2

λmin
> 1

and thus there is no suitable L can be chosen.

2.5 Conclusion and perspective

The OUBIKF Algorithm proposed in (Lu et al., 2019) (Beta version) is
enhanced theoretically and practically by the two stages optimization and
the guaranteed conditions C1.
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Figure 2.8 � Estimation results. For i = 1, 2, the center green line: real states
xik, the solid blue lines : 95% con�dence intervals CIik.

Under these conditions, the optimal upper bound is reached approxi-
mately by the chosen Pk|k whose trace is highly close to the optimal value
Φ∗k. Also, the considered Algorithm is ensured to perform with stability in
the sense that the trace of Pk|k is non-asymptotically and asymptotically
bounded and can be controlled, implying that there is no width explosion of
the resulted estimators. In addition, the trace of Pk|k is smaller than the one
of the upper bound αkInx of S+([Pk|k−1]) in the prediction step.

Thanks to deep analysis in limit results, expressions of the correction
step are simpli�ed and many factors of them can be computed o�-line. It
reduces the algorithm computation time in comparison Algorithm 3 with
others used in (Chen et al., 1997), (Xiong et al., 2013), (Tran et al., 2017),
(Lu et al., 2019) depending on the complexity of the gain expressions and of
the corresponding method of �nding the gain.

The present work concerns however interval Kalman �ltering in which
�eld a number of issues are not investigated systematically, especially those
related to �lter convergence, system/�lter stability, controller/observer de-
sign using interval estimates. For instance, using the OUBIKF, the inter-
val �lter C-stable notion (De�nition 6) might have connections to the �lter
convergence (which notion must be properly de�ned). In another view, in-
vestigate the robust control aspect of the OUBIKF is also an interesting
research.

58 CHAPTER 2



Chapter 3

Reinforced Likelihood Box

Particle Filter

3.1 Introduction

In State Estimation or Filtering problems, when dealing with a linear
Gaussian state-space model, analytical expressions computing the state esti-
mates according to posterior distributions can be derived by the well known
and widespread Standard Kalman Filter (SKF) (Kalman, 1960). Many ex-
tension of SKF are then provided by various researches in di�erent contexts
(Mohamed and Nahavandi, 2012b; Combastel, 2015; Chen et al., 1997; Lu
et al., 2019). For nonlinear model without Gaussian measurement assump-
tion, Particle Filters (PF) have been applied successfully to a variety of state
estimation problems (Gordon et al., 1993; Doucet et al., 2001). The PF ef-
�ciency and accuracy depend mostly on the number of particles used in the
estimation which may require a large computation time.

One of the famous extensions of PF to set membership approach is the
Box Particle Filter (BPF) (Abdallah et al., 2008). BPF handles box (interval
vector of) states and bounded errors by using interval analysis and constraint
satisfaction techniques. This method has been shown to control quite e�-
ciently the number of required particles, hence reducing the computational
cost and providing good results in several experiments.

Since then, numerous variants of BPF have been developed (Nassreddine
et al., 2010; Blesa et al., 2015; Tran et al., 2018) to deal with measurement
bounded uncertainty, measurement stochastic uncertainty or measurement
mixed uncertainty. Various techniques and theories are proposed to address
the diversity of requirements in these contexts, e.g. weight updating using
Bayesian �ltering technique extending to box particle case (Blesa et al., 2015)
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or belief function theory with di�erent methods (Nassreddine et al., 2010;
Tran et al., 2018).

In the present work, regarding the large variety of BPF, a scheme is
proposed to give a generalized description that highlights the speci�city of
this class of �lters. An analysis of the likelihood computation (the crucial
step in the scheme) methodology is investigated, thanks to which a novel �l-
ter, namely Reinforced Likelihood Box Particle Filter (RLBPF), is produced.
This �lter bene�ts the advantages from various existing BPFs via the use
of a number of reinforcement techniques (score function, reduction percent-
age, exponential weighting, backward estimate,...) to enhance the estimation
performance. An overview on BPFs and discussions about from assumptions
used in the literature to the �lters performance evaluation approach are pre-
sented. Also, an academic illustration example and an application to the
suspension (quarter vehicle) model are provided to highlight the e�ciency of
the proposed estimation strategy.

The chapter is organized as follows. The problem formulation is pre-
sented in Section 3.2 with discussions about assumptions used in the liter-
ature. Section 3.3 presents the general scheme of BPF and the likelihood
computation methodology. Section 3.4 deals with the main disadvantage
of Likelihood Computation Methods (LCMs) and provides necessary require-
ments of a novel BPF method. Section 3.5 presents the RLBPF method
with its essential algorithm version, a �lter performance evaluation approach
and an academic illustration example. Section 3.6 provides an application of
RLBPF to the suspension model and its full algorithm version which helps to
deal with more complexes models like that used in the application. Section
3.7 presents the conclusion of the chapter with discussions and perspectives.

3.2 Problem formulation

In this section, we present the assumptions used in the literature by a
number of researches. The �rst assumption is a common assumption used by
all related researches while the other three assumptions are used di�erently
by each of them. Then, some further discussions are also provided.

Consider the following dynamical system:

(Σ) :

{
xk = f(xk−1, uk, wk),
yk = h(xk, uk, vk) ,

k ∈ N∗, (3.1)

where xk ∈ Rnx and yk ∈ Rny are respectively state and measurement out-
put, uk ∈ Rnu input, wk ∈ Rnw state dynamic disturbance and vk ∈ Rny

measurement noise.
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Assumption (A) : State Process Uncertainty

uk, wk are unknown and belong respectively to known intervals [uk] and [wk].

Assumption (B) : Measurement Bounded Uncertainty

(B1) vk is unknown and belongs to known interval [vk].
(B2) The observed measurements are intervals [yk].
(B3) The measurements are assumed to be accurate in the sense that [yk] 3

h(xk, uk) ≡ h(xk, uk, 0) (the zero noise case), where xk is the real state.

Assumption (C) : Measurement Stochastic Uncertainty

(C1) vk are additive noises with known density pv.
(C2) The observed measurements are point values yk.

Assumption (D) : Measurement Mixed Uncertainty

(D1) vk are additive Gaussian noises with unknown mean µk ∈ Rny and
covariance Σk ∈ Rny ×ny .

(D2) µk ∈ [µk], Σk ∈ [Σk] with known intervals [µk], [Σk].
(D3) The observed measurements are point values yk.

Assumption (A) is used in (Abdallah et al., 2008; Nassreddine et al., 2010;
Blesa et al., 2015; Tran et al., 2018).

Assumptions (B) are under study in (Abdallah et al., 2008; Nassreddine
et al., 2010). In (Abdallah et al., 2008), the BPF is introduced and becomes
standard for many extensions or variants with essential steps: initialization,
propagation, contraction, likelihood (weight) computation, state estimation
and resampling. In (Nassreddine et al., 2010), the Belief State Estimation
algorithm is developed using the belief function theory. It may require some
techniques for the construction and computation of masses, but after being
normalized, these masses become likelihoods in the probability sense. There-
fore, we also call likelihood computation as an essential step of this method.

Assumptions (C) are used in (Blesa et al., 2015). The method proposed
therein includes a di�erent approach to weight the box particles as well as a
resampling procedure based on repartitioning the box enclosing the propa-
gated states. There is no contraction step in this method.

Assumptions (D) are used in (Tran et al., 2018), in which (D1) is a spe-
cial case of (C1) with a slight relaxation by adding bounded uncertainties to
Gaussian parameters µk and Σk. In (Tran et al., 2018), the belief function
theory is used with continuous mass functions to represent these kinds of un-
certainties and to compute box particle likelihoods. The proposed approach
therein leads to the so-called Evidential Box Particle Filter (EBPF) including
all essential steps of the standard BPF.
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Remark 16. (B3) is the implicit assumption deriving the consistency be-
tween the predicted measurement boxes [h]([xik], [uk]), i ∈ {1, ...,M} (M the
number of partitioned boxes), and the real measurement box [yk]. This con-
sistency is used in the contraction step and the likelihood computation by
penalizing all particle boxes with which the intersections [h]([xik], [uk]) ∩ [yk]
are empty. �

Remark 17. Assumptions (D3) and (C2) are coincided. They can be trans-
formed into (B2) with a slight relaxation of (B3). That is, knowing the
density of vk, we deduce its con�dence intervals [vk] with some signi�cant
level α and de�ne [yk]

M
= yk− [vk]. Then (B3) is relaxed in the sense that the

observed measurements [yk] do not contain h(xk, uk) with certainty but with
only a high probability (1− α). �

3.3 General scheme of Box Particle Filter

3.3.1 Scheme

In general, although applying di�erent background theories, the proposed
methods in (Abdallah et al., 2008; Nassreddine et al., 2010; Blesa et al.,
2015; Tran et al., 2018) study State Estimation in a framework of stochastic
uncertainties and/or bounded uncertainties with two main objectives :

• Objective 1: Reduce as much as possible the width of box particles
to penalize the conservatism due to interval computations.
• Objective 2: Quantify (compute) box particle likelihoods as well as
possible to enhance the accuracy of the estimates.

The methods used in these references can be considered as variants of BPF
and be summarized by Scheme 4 which is applied in a mostly similar manner
across them.

Remark 18. In this scheme, for a general presentation, the observed mea-
surements are denoted as intervals since the point values are considered as
special cases of intervals.

Nk0 in the initialization step takes value in {1, ...,M} and is the number
of box particles obtained at the end of the likelihood computation step at
the previous time instant (k0 − 1). For k0 = 0, the initialization concerns
only the partition of [x0] and not the resampling. Condition C in the while
loop is di�erent from method to method. �
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Scheme 4 General Scheme of Box Particle Filtering

STEP 1 : Initialization.
At a time step k0 ≥ 0, (re)partition the interval [xk0 ] or resample the set
{[xjk0 ], wj}j=1,...,Nk0

intoM disjoints equal-volume sub-boxes with the same
weights: {[xik0 ], wi = 1/M}i=1,...,M .

while {[xik0 ], wi}i=1,...,M still satis�es a predetermined Condition C do

STEP 2 : Propagation.
Get a new set of box particles {[xik0+1] = [f ]([xik0 ], [uk0 ])}i=1,...,M estimat-
ing the box containing the real state xk0+1 = f(xk0 , uk0) with or without
a contraction step.

STEP 3 : Likelihood computation

• Compute (and normalize) the likelihoods of box particles
{[xik0+1]}i=1,...,M being the box containing the real state xk0+1. This
computation bases on the consistency between the estimated mea-
surement [h]([xik0+1], [uk0 ])'s and the obtained measurement [yk0+1]
using di�erent criteria and methods.
By this step, the following set of box particles with updated
weights is obtained : {[xik0+1], wi}i=1,...,M .

• Some techniques can be applied at this step to get a more "e�-
cient" set of box particles, e.g. discarding the boxes with small
weights (smaller than some predetermined threshold) and with or
without replicating the box associated with the greatest weight,...
From this, the set of box particles becomes {[xik0+1], wi}i=1,...,Nk0+1

,
1 ≤ Nk0+1 ≤M .

STEP 4 : Estimation

Interval estimate : [xk0+1] =
M∑
i=1

wi · [xik0+1] (3.2)

Point estimate : xk0+1 =
M∑
i=1

wi ·mid([xik0+1]) (3.3)

STEP 5 : k0 = k0 + 1

end while

STEP 6 : Restarting at STEP 1.
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Remark 19. The interval estimate obtained from (3.2) has the same mid-
point values as the one computed by (3.3) and its width equal the mean of
propagated boxes ([xik0+1]'s) widths, i.e.:

mid([xk0+1]) =
M∑
i=1

wi.mid([xik0+1]) , rad([xk0+1]) =
M∑
i=1

wi.rad([xik0+1]) .

Some methods considered above propose to use alternately a kind of con�-
dence interval determined by:

CI = Point estimate (3.3) ± h
√
Diagv(Covariance matrix) ,

where h > 0 and the Covariance matrix is computed in several ways (Abdal-
lah et al., 2008; Tran, 2017). Therefore, a more general interval estimate of
the real state can be obtained by

[xk0+1] =
M∑
i=1

wi.mid([xik0+1]) ± ScF.
M∑
i=1

wi.rad([xik0+1]), (3.4)

ScF = diag{α1, ..., αnx} , αi > 0, i = 1, ..., nx,

where ScF is called scaling factors. Indeed, with appropriate values of ScF,
(3.2) and (3.3) can be achieved from (3.4). Furthermore, ScF can be �xed
or time variant. �

3.3.2 Likelihood computation methodology

In the next, the diagram in Fig.3.1 is used to discuss the methodology of
LCMs related to Scheme 4.

First of all, that is the assumptions of the system under consideration
supply the information needed to build the likelihood. For instance, the
information may be:

• Information (a): The intersection between [yk] and the box [h]([xik], [uk])
containing the real value yk must be non empty,

• Information (b): The distribution of vk and hence the distribution of
rk = yk − h(xk, uk) is Gaussian (for additive measurement noise),

(or more other piece of information)...

The information can be directly an assumption or a deduction of the later.
In bounded-error context, only Information (a) is treated (Abdallah et al.,
2008) while in the mixed uncertainty case, both Information (a) and In-
formation (b) are taken into account (Tran et al., 2018).
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Criteria to
decide how a box
particle be chosen

as preferable
than others

Likelihood
Computation

Method
(LCM)

Information issued
from assumptions

Figure 3.1 � Likelihood computation methodology schema

Criteria and methods are then chosen to exploit the information. On
the one hand, once a criterion is chosen, di�erent methods can be used to
calculate the likelihood. On the other hand, a calculation method may cor-
respond to one or many criteria. There are also calculation methods that
exploit better the supplied information than others. These ideas are illus-
trated by Example 3.

Example 3 (Illustration example). To exploit Information (a), follow-
ing criteria can be used:

• Criterion 1: The particle [xik] giving a "bigger" intersection determined
by [ẑik]

M
= [h]([xik], [uk]) ∩ [yk] must be preferable,

• Criterion 2: The particle [xik] making [ŷik]
M
= [h]([xik], [uk]) "closer" to [yk]

must be preferable.

How to represent "bigger" (size) or "closer" (closeness) notions and how to
calculate the corresponding likelihoods depend on the choice of LCMs.

Criterion 1 is used in (Abdallah et al., 2008). The associated LCM uses
the volume Vol(.) to represent the box size and computes the likelihoods as
L1 = (L1

1, ..., L
M
1 ):

Li1 =
Vol([zik])
Vol([ŷik])

, i ∈ {1, ...,M} ,

with Vol([x])
M
=
∏nx

j=1 width([xj]) and [x] an interval vector. However, other
methods can also be used, perhaps with some advantages or disadvantages,
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to calculate (with a normalization) the likelihoods such as Lj = (L1
j , ..., L

M
j ),

j ∈ {2, 3, 4}:

Li2 = Vol([zik]), L
i
3 =

∥∥width([zik])
∥∥
∞ , L

i
4 =

∥∥width([zik])
∥∥

2
, ...

in which L3 and L4 are LCMs using distances between the two bounds of the
intersection to represent its size. Which method will be chosen regarding its
convenience and performance is not an obvious question.

Criterion 2 can be applied with di�erent LCMs using a distance (e.g.
Hausdor�) between [ŷik] and [yk] to represent their closeness. Criterion 2
can also be used to exploit Information (b) as in (Tran et al., 2018) via the
central tendency of the Gaussian vector [rik] = yk − [ŷik] along with the belief
function theory in the sense that: the more [ŷik] is close to yk (equivalently,
[rik] is close to the mean [µk]) the greater belief and plausibility [ŷik] attains.

A more detailed analysis of the method used in (Tran et al., 2018) is
found in section 3.4.1 and a LCM that meets all these criteria is developed
in section 3.5. �

It is worth to note that, in some cases, it is di�cult to distinguish clearly
between criterion and LCM as illustrated by Fig.3.1, e.g. in (Blesa et al.,
2015) with Interval Bayes �ltering approach or in (Nassreddine et al., 2010)
and (Tran et al., 2018) with the belief theory. The reason is that the criteria
are implied under complexes theories.

3.4 Toward a novel method for Box Particle

Filtering

3.4.1 Indistinguishability of likelihood computation meth-
ods

In order to deal with Objective 1, in the literature, contractors are usu-
ally applied based on the Constraint Satisfaction Problem technique. How-
ever, this is not the most crucial step of BPFs using Scheme 4, e.g. this
step is skipped in (Blesa et al., 2015). Furthermore, partition a box into M
disjoint equal-volume sub-boxes and then compute the expected interval by
(3.2) also help to reduce the conservatism due to interval computations. The
most crucial step that di�ers one method to another in this class of BPFs is
the Likelihood computation focusing on Objective 2. This is thus the main
discussion of this section.
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In the next, two representative groups of criteria and LCMs used in the
literature will be analyzed to show their major disadvantage which is the in-
distinguishability. In general, the box likelihoods are computed at every time
step k. The more they can represent the ability of a box containing the real
value, the better estimate is obtained by Estimation step. Indistinguishabil-
ity means that most of the computed likelihoods are quasi equal and hence
not useful for distinguishing between box particles.

Group I . Apply Criterion 1 with LCMs using the box volume for the
box size representation.

This criterion is used implicitly in the contraction step of all BPF al-
gorithms including it and applied in (Abdallah et al., 2008) with the LCM
L1. Since (Abdallah et al., 2008) is the pioneering paper to BPF, most of
other related papers with bounded (or mixed) uncertainty are a�ected by its
proposed method. Therefore L1 is investigated as a representative method
of this group.

To show the indistinguishability of this kind of methods, consider real
interval vector [yk] = [y

k
, yk] and real point vector δ such that 0 ≤ δ ≤ yk

(element-wise), δ ∈ Rp. Let T = diag{t1, ..., tp} be a diagonal matrix where
its diagonal entries are tr ≥ 0, r ∈ {1, ..., p}.
Then, all boxes [ŷik], i ∈ {1, ...,M}, having the form :[

y
k
− Tδ, y

k
+ δ
]

or
[
yk − δ, yk + Tδ

]
give the same likelihoods Li1 = 1∏p

r=1(1+tr)
.

There are many other cases in which likelihoods are quasi equal and thus
making the corresponding boxes [ŷik] indistinguishable. For instance,M boxes
[ŷik]'s may have likelihoods Li = 1/M ± εi with an appropriate small εi ≥ 0
so that

∑M
i=1 L

i = 1. In this case, the bene�t of the likelihood computation
step could be insigni�cant.

Group II. Use Criterion 2 to exploit Information (b).
The LCM used in (Tran et al., 2018) is investigated as the representative

method of this group to deal with stochastic or mixed uncertainties and with
additive Gaussian measurement noises.

In this method, the innovation term rk = yk − h(xk, uk) is Gaussian with
µk ∈ [µk] = [µ

k
, µk] and Σk ∈ [Σk] = [Σk,Σk]. It belongs to some of intervals

[rik] = yk − [ŷik], i ∈ {1, ...,M}. A mass function m(.; [µk], [Σk]) is de�ned
with focal elements

[HVα] =
[
µ
k
−
√
αDiagv(Σk), µk +

√
αDiagv(Σk)

]
, α ≥ 0,

where
√

(.) is an element-wise operator and Diagv(X) returns the diagonal
of matrix X as a vector (see Chapter 2, Section 2.2.1).
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Then, the belief bel(.) and plausibility pl(.) of [rik] are computed and consid-
ered as lower and upper bound of the probability of [rik] containing the real
value rk. At this stage, Criterion 2 is applied based on the central tendency
of the Gaussian vector rk: the more [ŷik] is close to yk (equivalently [rik] is
close to [µk]), the greater belief and plausibility the box particles [xik] (that
yield [ŷik] via the function h) attains. The computation rule is that:

bel([x]) = Fn+2(αbel) , αbel = max {α : [HVα] ⊆ [x]} ,
pl([x]) = 1− Fn+2(αpl) , αpl = min {α : [HVα] ∩ [x] 6= ∅} ,

where n is the dimension of considered boxes, Fn+2 is the cumulative distri-
bution function of the χ2 distribution with n+ 2 degrees of freedom. Finally,
the likelihood of each particle [xik] is computed thanks to the Generalized
Bayes theorem (GBT) and Pignistic transformation.

Example 4 (Belief and plausibility computation in EBPF method).
Consider example 3 in (Tran et al., 2018). One compute the belief and
plausibility of 3 boxes [x1], [x2], [x3] where the result is shown in Fig. 3.2
considering that [xi] = yk − [ŷik], i = 1, 2, 3. �

The indistinguishability of the method is shown via the following two
critical points.

Firstly, all boxes that do not contain [µk] ≡ [HV0] have a positive plausi-
bility and a null belief. This fact gives us a very poor information in terms
of probabilities. The probability of a box containing the real value in this
case belong to [bel, pl] = [0, pl] with 0 ≤ pl ≤ 1. The more a box is close to
[µk], the more its plausibility is close to 1, and hence the weaker information
is provided.

Secondly, all boxes intersecting [µk] have the plausibility 1. So, these
boxes are not distinctive regarding their plausibilities. They are distinguish
only by their beliefs, in which:

� For the boxes that intersect [µk] but do not contain it, their beliefs are
0 and [bel, pl] = [0, 1]. A zero information can be issued about these
boxes in this case.

� For the ones containing [µk], their beliefs are characterized by the
greatest focal element [HVαbel

] they contain. The greater [HVαbel
] a

box can contain, the more belief it gets.
It is quite similar to apply the rule: "the more [rik] is centralized (hav-
ing a bigger intersection with [µk]) and has a bigger volume, the greater
likelihood it gets". Di�erent LCMs can be applied using that rule with
a lightened calculation strategy and background theory.
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Figure 3.2 � Belief and plausibility computation example for EBPF method

Due to the above two critical points, the likelihoods computed in the next
step using GBT and Pignistic transformation are almost indistinguishable.
The following example illustrates this fact. The computation formulae are
as follows (Tran et al., 2018):

m(A|yk) = η
∏

[xik]∈A
pl
(
yk − [h]

(
[xik], [uk]

)) ∏
[xjk]/∈A

[
1− pl

(
yk − [h]

(
[xjk], [uk]

))]
,

Lik =
∑

A⊂Ω,A 6=∅

m(A|yk)
|A|

· I([xik] ∈ A) , ∀[xiK ] ∈ Ω,

where Ω = {[xik], i = 1, ...,M}, A a subset of Ω, |A| the cardinality of A and
η = 1−

∏
[xik]∈Ω

[1− pl (yk − [h] ([xik], [uk]))].
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Example 5 (Likelihood computation using GBT and Pignistic trans-
formation in EBPF method). Let Ω = {[x1

k], [x
2
k], [x

3
k]} where [xik] ∈ IR2,

i = 1, 2, 3. For short, put [rik] = yk − [h]([xik], [uk]), i = 1, 2, 3. Using the
assumption vk ∼ N (µk,Σk), µk ∈ [µk], Σk ∈ [Σk], in this example, we as-
sume further that [rik] ∩ [µk] 6= ∅, i = 1, 3, and [r2

k] ∩ [µk] = ∅. Then, we get
pl([rik]) = 1 for i = 1, 3 and 0 < pl([r2

k]) < 1. Therefore η = 1 and

L1
k =

m([x1
k]|yk)

|{[x1
k]}|

+
m({[x1

k], [x
2
k]}|yk)

|{[x1
k], [x

2
k]}|

+
m({[x1

k], [x
3
k]}|yk)

|{[x1
k], [x

3
k]}|

+
m({[x1

k], [x
2
k], [x

3
k]}|yk)

|{[x1
k], [x

2
k], [x

3
k]}|

,

=
1− pl([r2

k])

2
+
pl([r2

k])

3
,

in which

m([x1
k]|yk) = pl([r1

k])
(
1− pl([r2

k])
) (

1− pl([r3
k])
)

= 0,

m({[x1
k], [x

2
k]}|yk) = pl([r1

k])pl([r
2
k])
(
1− pl([r3

k])
)

= 0,

m({[x1
k], [x

3
k]}|yk) = pl([r1

k])pl([r
3
k])
(
1− pl([r2

k])
)

= 1− pl([r2
k]),

m({[x1
k], [x

2
k], [x

3
k]}|yk) = pl([r1

k])pl([r
2
k])pl([r

3
k]) = pl([r2

k]).

Similarly, we get

L3
k =

1− pl([r2
k])

2
+
pl([r2

k])

3
, L2

k =
pl([r2

k])

3
.

Having the same likelihood, [x1
k] and [x3

k] are thus indistinguishable.
If furthermore pl([x2

k]) is close to 1 then all the three likelihoods are quasi
equal. �

Remark 20. In (Blesa et al., 2015), a more general framework is applied
for stochastic uncertainty context. The measurement additive noise vk can
be non Gaussian and the weights (likelihoods) wik are updated thanks to
Bayesian Filtering strategy:

wik ∝ prior distribution ×
∫
xk∈[xik]

pv(yk − h(xk, uk))dxk

where the integral term approximates to
∫
t∈[rik]

pv(t)dt. The Criterion 2 is
then interpreted as: the more [rik] is close to the high density region of vk,
this integral term and hence wik gets greater value. �
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3.4.2 Requirements of a novel Box Particle Filter method

We aim to �nd a novel method bene�ting almost advantages of existing
criteria and LCMs and also attaining a gain in computation time. More
precisely, the novel one

� must exploit as much as possible the supplied information needed to
build the likelihood,

� must provide a LCM reducing the indistinguishability,
� can combine many simple methods rather than use only a complex

one in order to get a gain in computation time while the algorithm
performance is at least not weakened (or weakened in an acceptable
margin).

A combination of several methods in parallel can be used to bene�t all their
advantages but with a large requirement of resources and with no gain even
high computation time cost. Therefore, such a method is not in the scope of
our intention.

3.5 Reinforced Likelihood Box Particle Filter

(RLBPF)

3.5.1 Assumptions

Consider system (Σ) under Assumptions (A), (B2), (D1) and (D2).
The measurements are generally intervals [yk] due to sensor errors.

Remark 21. The above measurement assumptions concern sensor errors and
model (stochastic) uncertainties. Regarding to Remark 17, it is necessary
to treat [yk] = [yk] − [vk] where [vk] is a con�dence interval of vk chosen
practically as proposed in (Tran et al., 2018) by

[vk] =

[
µ
k
− r
√
Diagv(Σk), µk + r

√
Diagv(Σk)

]
, (3.5)

where r = 1, 2, 3. This treatment generalizes the one in Remark 17 when the
measurements are given by point values. �

3.5.2 Method and Algorithm (Essential version)

In this section, for the sake of simplicity, we introduce the core of the
method also the essential version of the RLBPF Algorithm. The full version
Algorithm will be introduced via the Quarter vehicle model simulation at the
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next section with all optional techniques that are able to make the RLBPF
more e�cient and suitable for numerous applications.

The essential of the proposed method RLBPF is to build a score function
Jk = (J1

k , ..., J
M
k ) satisfying many criteria. The particles having small scores

J ik are preferable. After computing J ik's, these scores are then normalized
and transformed into likelihoods W i

k's . The smaller J ik corresponds to the
greater W i

k.
The proposed score function Jk is:

J ik =
(
dik,1 + dik,2

)
V i
k , i ∈ {1, ...,M}, (3.6)

where

dik,1 = dH([yk], [ŷ
i
k]) (Hausdor� distance),

dik,2 = ‖mid([yk])−mid([ŷik])‖2,

V i
k =

V ol([ŷik] \ [yk])

V ol([ŷik])
= 1− V ol([ŷik] ∩ [yk])

V ol([ŷik])
. (3.7)

Thereby, Jk measures the closeness between [ŷik]'s and [yk] via both a kind
of maximum distance dik,1 and a kind of concentric tendency measure dik,2.
Jk also takes into account the size of intersections [ŷik] ∩ [yk] via the volume
proportions V i

k 's. Consequently, Jk exploits at the same time Information
(a) and Information (b) and meets both Criterion 1 and Criterion 2.

Then Jk is sorted in ascending direction and a reduction percentage R%
is applied, i.e. Nhold = b(100−R)%Mc particles corresponding to Nhold �rst
scores {J ik}i=1,...,Nhold

of the sorted Jk are retained. This stage is optional
with R% can be 0. It is however recommended using 0 < R% ≤ 0.3 to
penalize directly unlikelihood particles and to reduce the conservatism of
interval computations as well as the computation time.

There are several ways to compute likelihoods from the score function Jk
such as:

W i
k =

1− J ik/mean(Jk)

Nhold − 1
, mean(Jk) =

Nhold∑
p=1

Jpk , (3.8)

where (Nhold − 1)−1 =
(∑Nhold

i=1 (1− J i/mean(Jk))
)−1

is the normalization
constant, or :

W i
k =

exp{−J ik}∑Nhold

p=1 exp{−J ik}
=

exp{−J ik + c}∑Nhold

p=1 exp{−J ik + c}
, (3.9)
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where c is any chosen positive constant to avoid the case that exp{−J ik}'s
are too small and represented numerically as 0 (e.g. the choice c = mean(J)
is recommended). In this developed method, in order to reinforce one more
time (beside the use of the score function Jk and after the reduction stage)
the distinguishability between Nhold remained particles, the later computing
method (3.9) is chosen.

After computing estimate [xk+1] according to (3.2), a backward estimate
is added as follows:

[xk] = hull{[xik]}, (3.10)

for those [xik]'s correspond toW i
k's just computed. This backward estimation

does not used in (Abdallah et al., 2008; Nassreddine et al., 2010; Blesa et al.,
2015; Tran et al., 2018).

The proposed method is summarized in Algorithm 5.

Algorithm 5 Reinforced Likelihood Box Particle Filter (Essential
version)

1: Initialization:
[x0] ≡ [x̂0], R%, M , [uk], [wk], [yk], [µk], [Σk], k = 1, ..., N .
Compute Nhold = b(100−R)%Mc.

2: for k = 1, 2, 3, ...N do
3: Partition [x̂k−1] into M disjoints sub-boxes {[x̂ik−1]}i=1,...,M

4: Propagation:
5: [x̂ik] = [f ]([x̂ik−1], [uk], [wk]) , i = 1, ...,M
6: Likelihood computation:
7: [ŷik] = [h]([x̂ik], [uk]) , i = 1, ...,M
8: Compute Jk = (J1

k , ..., J
M
k ) using equation (3.6)

9: Sort Jk in ascending direction and hold Nhold �rst values:
10: [Jk, index] = sort(Jk);
11: Jk = Jk(1 : Nhold);
12: index = index(1 : Nhold);
13: Compute W i

k, i = 1, ...,M using equation (3.9)
14: Estimation:
15: [x̂k] =

∑
i∈index

W i
k.[x̂

i
k]

16: [x̂k−1] = hull{[x̂ik], i ∈ index}
17: end for

Remark 22. BPFs often use a non large (small) number of particles to gain
computation time and reduce the loss of a guaranteed estimation. Conse-
quently, the resampling or repartition step happens almost always, at every
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or only after a few iterations. In some sense, the fact that we hold previous
weights and update them afterward has no signi�cant e�ect while this e�ect
might not be quanti�ed straightforwardly. Furthermore, conditions under
which the resampling or repartition is implemented base usually on some
heuristic choice of a threshold. This is also an issue of discussion but out
of the scope of the present work. Therefore, the proposed method uses a
reasonable (small) number of particles, performs the repartition at each it-
eration and strengthens the likelihood computation and the estimation with
more e�cient strategies. �

3.5.3 Performance evaluation of Box Particle Filters shar-
ing the general Scheme

In order to evaluate how the computed likelihoods bring e�ciency to
the estimation, it must compare the result of a BPF with that of the basic
scenarios of Scheme 4:

• Scenario 1: Using the contraction step without partition (1 box particle);
• Scenario 2: Using equi-likelihood 1/M and without contraction step (M
box particles);
• Scenario 3: Using equi-likelihood 1/M and with contraction step (M box
particles).

The reason is that, in some applications, using solely the contraction step,
the algorithm performance has been rather good and the e�ciency brought
by the computed likelihoods might be insigni�cant. The same manner might
happen for the other scenarios.

The following indexes, proposed in (Tran et al., 2018), will be used for
performance evaluations:

RMSEj = sup

√√√√ N∑
k=1

(xk,j − [x̂k,j])2/N, j ∈ {1, ..., nx}

E =
N∑
k=1

width([x̂k])/N = (E1, ..., Enx)T ,

O =
N∑
k=1

I(xk ∈ [x̂k])/N = (O1, ..., Onx)T ,

where RMSE is the root mean squared error upper bound, I(.) is the indi-
cator function.
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3.5.4 Academic simulation example

Consider the following nonlinear system which was used as an illustration
example in (Tran et al., 2018). It will be relaunched in the present work
to compare the proposed method (RLBPF) with the one (EBPF) in the
reference.

xk+1 =

(
αk,1 1

1− αk,1 αk,2

)
xk +

(
βk,1 0
0 βk,2

)
uk +

(
20 0
0 10

)
wk,

yk = xk,2xk/10 + vk,

with zk = (zk,1, zk,2)T , zk ∈ {xk, uk, wk},
αk,i = (0.2 + eTi δk/20)(100 + eTi xk)/200 ,

βk,i = (200 + eTi xk)/400, i ∈ {1, 2},
e1 = [−1, 1]T , e2 = [1, 2]T ,

δk ∈ [δk] = ([−0.1, 0.1], [−0.1, 0.1])T ,

uk ∈ [uk] = ([75, 85], [−35,−25])T ,

wk ∈ [wk] = ([−0.01, 0.01], [−0.01, 0.01])T .

The initial state is x0 = [90, 80]T with [x0] = ([85, 103], [75, 91])T , the number
of iteration N = 10000 and vk ∼ N (µk,Σk) where µk ∈ [µk], Σk ∈ [Σk],
[µk] = ([−1, 1], [−1, 1])T and [Σk] = diag{[90, 200], [90, 200]}.

Since, in (Tran et al., 2018), the point value measurements yk are consid-
ered, in this simulation we also use such an assumption and get [yk] = yk−[vk],
where [vk] is chosen as in (3.5) with r = 3. The reduction percentage
R = 20% is applied throughout the simulation for RLBPF and the parti-
cle number M = 9 is applied for both methods.

Let's consider the three basic scenarios (see Section 3.5.3) of the simula-
tion (Table 3.1) and the comparison between RLBPF and EBPF (Table 3.2
and Fig 3.3).

Scenario 1 Scenario 2 Scenario 3
j = 1 j = 2 j = 1 j = 2 j = 1 j = 2

RMSEj 11.04 19.22 4.72 8.06 4.70 7.85
Oj (%) 100 100 99.80 99.92 99.80 99.80
Ej 18.86 31.27 6.88 11.92 6.86 11.68

Time (s) 46.93 49.12 81.98

Table 3.1 � Academic example - The three basic scenarios of Box Particle
Filters
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Table 3.1 shows that using only the contraction step gives no good per-
formance results in terms of RMSE and E indexes (Scenario 1). Comparing
Scenarios 2 and 3, it is shown that the contraction step just brings a poor ef-
�ciency to the use of equi-likelihood. Table 3.2 shows the better performance
of RLBPF versus EBPF in terms of RMSE, E indexes and the computation
time (with a reduction of more than 60%). Also, in this simulation example,
EBPF performance is not better than those of the two basic scenarios 2 and
3.

RLBPF EBPF
j = 1 j = 2 j = 1 j = 2

RMSEj 4.67 7.43 5.62 8.90
Oj (%) 99.76 99.97 99.99 99.92
Ej 6.85 11.81 8.72 14.41

Time (s) 67.49 190.06

Table 3.2 � Academic example - RLBPF versus EBPF

Figure 3.3 � Academic example - RLBPF versus EBPF

3.6 Application - The RLBPF full version Al-

gorithm

3.6.1 Quarter vehicle model

The vertical quarter car model is often used to study the vertical behavior
of a vehicle according to the suspension characteristic (passive or controlled)
(Fig. 3.4). When controlled suspension is considered, the passive damper Fc
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is removed and replaced by an actuator that provides a force u either active
or semi-active depending on the chosen actuator (Fig. 3.5). In �gures, the
sprung mass ms and unsprung mass mus represent respectively the vehicle
chassis and the vehicle wheel. zs and zus are respectively the relative vertical
displacement of the vehicle chassis and the vehicle wheel with respect to the
road. zr is considered as the road disturbance.

Figure 3.4 � Quarter vehicle model

Figure 3.5 � Quarter vehical model - Passive (left) and Active control (right)
modes

Vertical e�orts generated by the suspension and tire elements are nonlin-
ear. Let recall that:

Ftz = kt (zus − zr) + ct (żus − żr)
Fsz = Fk (zs − zus) + Fc (żs − żus) (passive suspension)
Fsz = Fk (zs − zus) + u (controlled suspension)

(3.11)

where kt and ct are the linear tire sti�ness and damping factors, Ftz the tire
force usually assumed to be linear and Fsz the suspension force.
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The vertical quarter car model is given by the following dynamical equations,{
msz̈s = − (Fsz + Fdz)
musz̈us = Fsz − Ftz

(3.12)

where

• zdef = (zs − zus) is the suspension de�ection,
• zs and zus are the chassis and unsprung masses bounce,
• ms and mus are sprung and unsprung masses,
• Fk(.) is a nonlinear function of zdef ,
• Fc(.) is a nonlinear function of żdef ,
• Fdz describes a vertical disturbance force (that can be caused by a load
transfer, e.g. steering situation).

Then, according to the suspension model chosen, di�erent kinds of quarter
car models may be obtained:

� If u = Fc(żdef ), the suspension is passive.
� If u = Fc(żdef ,Ω), the suspension is semi-active, where Ω is input

parameter of the controlled damper that modi�es the damping factor.
� If u is an independent function, the quarter car is said to be active.

Remark 23. In the vertical quarter vehicle model, the nonlinear phenomena
come from the force description of the suspension elements and not from the
equation structure. Therefore, the model can be set as a LPV system.

The unsprung mass mus corresponds to the set of elements that compose
the wheel, the suspension system and multiple links from the chassis to the
"road". Without loss of generality, it is often referred to as the wheel since
zus is the center of the wheel. �

3.6.2 Simulation

Consider the following nonlinear system modeling the MR (Magneto-
Rheological) damper:{

msz̈s = −kszdef − Fdamper
musz̈us = kszdef + Fdamper − kt(zus − zr) ,

(3.13)

Fdamper = c0żdef + k0zdef + fI tanh (c1żdef + k1zdef ) ,

where c0, k0, c1, k1 are constant chosen according to (Nino-Juarez et al., 2008)
such that

c0 = 1500 (Nsm−1), c1 = 129 (sm−1), k0 = 989 (Nm−1), k1 = 85 (m−1),
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and fI is a controllable force depending on the input current I and satisfying
the dissipativity constraint

0 < fmin ≤ fI ≤ fmax .

In this simulation, we consider fmin = 1000 N/m and fmax = 1500 N/m.
Other parameter values used in the simulation are presented in Table 3.3
issued from (Fergani, 2014).

Symbol Value Unit Signi�cation
ms 315 kg sprung mass
mus 37.5 kg unsprung mass
ks 29500 N/m suspension linearized sti�ness
kt 208000 N/m tire sti�ness
zdef [−0.09; 0.05] m suspension bound (stroke limit)

Table 3.3 � Linearized Renault Mégane Coupé parameters of the quarter
vertical model (front suspension).

Comparing to the general system (3.12), in the MR damper model (3.13),
it is assumed that Fdz = 0 and Ftz = kt(zus − zr).

Putting
• x = [zs, żs, zus, żus]

T as state variable under consideration and x(i),
i ∈ {1, ..., 4}, are its components,
• u = fI as controllable input,
• w = zr,

then x, u, w are functions of time t and the state-space representation of
(3.13) is expressed in the form

ẋt = f(t, xt) =


f1(t, xt)
f2(t, xt)
f3(t, xt)
f4(t, xt)

 , (3.14)

where

f1(t, xt) = eT2 xt ,

f3(t, xt) = eT4 xt ,

f2(t, xt) =
(
aTxt − ut tanh(bTxt)

)
/ms ,

f4(t, xt) =
(
cTxt + ut tanh(bTxt) + ktwt

)
/mus ,

CHAPTER 3 79



with ei's are i-th standard unit vectors and

a =


−ks − k0

−c0

ks + k0

c0

, b =


k1

c1

−k1

−c1

, c =


ks + k0

c0

−ks − k0 − kt
−c0

.
The system (3.14) will be discretized using the Fourth order Runge-Kutta
method (Kincaid and Cheney, 1991) with a chosen sampling time T =
10−4(s). The resulted discrete time state dynamical system is denoted by:

xk = f̃(xk−1, uk, wk) + ηk, k ∈ N∗, (3.15)

where ηk is assumed to be Gaussian noise with zero mean and covariances
10−8Inx . The corresponding observed measurements are assumed to be zdef at
every time step, thus the measurement dynamical equation can be expressed
in the form

yk = h(xk) + vk = Cxk + vk , C = [1, 0,−1, 0] , (3.16)

where vk is assumed to be Gaussian with mean µk ∈ [µk] = [−0.005, 0.005]
and variance σ2

k ∈ [σ2
k] = [1, 4]∗10−6. The precision of the sensors is assumed

to be ±0.005 (m).
State and measurement simulation: Assume that the initial state

is x0 = (0, 0, 0, 0)T , the control force input is set to get its maximum value
constantly (u = 1500) for all time instants and the road disturbance is set
as w = 0.05 max{0, sin(πt)}. {xk, yk}k=1:N are then generated using (3.15)
and (3.16) for N = 4.104 steps. The measurements obtained will be intervals
[yk] = yk ± 0.005 because of sensor errors.

The three basic scenarios of BPFs sharing Scheme 4: The �lters
start at [x0] = [−0.06, 0.06]× 1nx .

� Scenario 1 is the simplest one without partition and contraction. It
has a divergent result with RMSE ∝ 1097 and the mean of widths
E ∝ 1097, where x ∝ 10p means that x = c.10p with 0 < c < 10. The
computation time of this scenario is 490s.

� For scenarios 2 and 3, the questions arisen are that how many particles
will be made and at which (all or some and which ones) components
of the box the partition will be implemented. The state variable has
4 components. We tried with an intermediate solution: the partition
is a bisection at the two components having greater widths among
them, so the number of particles is 4. Scenarios 2 and 3 have very
similar resulted estimates as shown in Table 3.4 and Figure 3.6. The
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Figure 3.6 � Quarter vehicle model - Scenario 2 and Scenario 3 with 4 par-
ticles. (Both scenarios have very similar (but not coincident) resulted esti-
mates. The �gure shows only the ones of Scenario 3.)

RMSEj Oj(%) Ej

Scenario 2 3 2 3 2 3

j = 1 0.007 0.006 1.14 0.71 ∝ 10−4

j = 2 0.081 0.080 0.47 0.40 ∝ 10−4

j = 3 0.004 0.003 1.58 1.07 ∝ 10−4

j = 4 0.091 0.090 0.57 0.61 ∝ 10−4

Table 3.4 � Quarter vehicle model - Scenarios 2 and Scenario 3 with 4 parti-
cles.

resulted estimates in these scenarios are nearly point estimates with
rather good RMSE indexes (Fig. 3.6). The computation times are
respectively 519s (scenario 2) and 590s (scenario 3).

� Since the more particles are partitioned, the interval estimates have
smaller widths, then we also tried to reduced the number of particles to
2 and the partition is e�ectuated at the maximum width component of
the box. Regarding Table 3.5 and Figure 3.7, the resulted estimates of
both scenarios are divergent (for N becomes more and more greater).
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RMSEj Oj(%) Ej

Scenario 2 3 2 3 2 3

j = 1 1.81 0.92 100 100 2.35 1.21

j = 2 2.17 0.10 90.79 80.68 2.73 1.36

j = 3 1.88 0.92 100 100 2.47 1.22

j = 4 2.86 1.44 96.72 86.86 3.69 1.83

Table 3.5 � Quarter vehicle model - Scenarios 2 and 3 with 2 particles.

Figure 3.7 � Quarter vehicle model - Scenario 2 and Scenario 3 with 2 par-
ticles. (Both scenarios have very similar (but not coincident) resulted esti-
mates. The �gure shows only the ones of Scenario 2.)

Estimation using RLBPF: The measurements are treated according
to Remark 21. The number of particles is 4 obtained by bisection at two
components with greater widths of the box to be partitioned. Since the
number of particles is small, the reduction percentage R% = 0% is used.
It encounters that the essential version of RLBPF failed to provide good
estimates because the volume V in (3.7) gets 0 or 1 at all of its components
for many iteration steps. V = 0 means that all estimated measurements
[ŷik]'s are contained in [yk], so the partition of the box [x̂k−1] is not necessary
hence lines 18 − 21 in the Algorithm 6 are added. Furthermore, to avoid
partially this situation, a condition at line 5 of the Algorithm is added and

82 CHAPTER 3



controlled by a chosen constant c1. In contrast, when V = 1, all estimated
measurements [ŷik]'s have empty intersection with [yk], so a regularization
controlled by a constant c2 is provided by lines 12−17 of the Algorithm. This
regularization bases on 2 conditions: the previous estimates is good enough
and the state dynamic is smooth. Finally, a smoothing factor SmF and a
scaling factor ScF are applied additionally to get more reliable estimates
depending on the application in consideration. The scaling factor is used
in the same manner as Remark 19 has discussed. So, that is the reason of
the full version of RLBPF (Algorithm 6) with additional controlling factors
making the �lter more suitable for numerous applications. When c1 is small
enough, c2 < 1, SmF = 1, ScF = Inx and the lines 18 − 21 are inactivated
then the essential version of RLBPF is recovered. Thus, the methodology
does not change and the full version provides more freedom to the �lter.

RMSEj Oj(%) Ej

Case I II I II I II

j = 1 0.040 0.125 100 100 0.065 0.228

j = 2 0.367 0.216 100 83.46 0.590 0.263

j = 3 0.014 0.116 100 100 0.022 0.223

j = 4 0.327 0.364 99.1 98.73 0.503 0.527

Table 3.6 � Quarter vehicle model using the RLBPF full version. Case I:
SmF = 0.2, ScF = diag{0.9965, 2, 0.99, 1.4}. Case II: SmF = 1, ScF = Inx .

The estimation results using the full version of RLBPF with and without
SmF and ScF are presented by Figures 3.8, 3.9 and Table 3.6, i.e. SmF =
0.2, ScF = diag{0.9965, 2, 0.99, 1.4} in the �rst case and SmF = 1, ScF =
Inx in the second. In both cases, c1 = c2 = 5, c3 = 0.9 and ε = 0.001.

It is worth to note that, concerning the partition process, it would be
natural to consider physical conservation properties as further (virtual) mea-
surements. The investigation of this subject is found in (Rauh et al., 2011).

CHAPTER 3 83



Figure 3.8 � Quarter vehicle model - RLBPF full version with smoothing and
scaling factor (4 particles).

Figure 3.9 � Quarter vehicle model - RLBPF full version without smoothing
and scaling factor (4 particles).

3.7 Conclusion and perspective

A general scheme is provided to generalize the speci�city of BPFs. The
likelihood computation methodology is investigated. This analysis point out
the disadvantages of existing �lters and opens a way to improve the computed
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Algorithm 6 Reinforced Likelihood Box Particle Filter (Full ver-
sion)

1: Initialization: [x0] ≡ [x̂0], [uk], [wk], [yk], [µk], [Σk], k = 1, ..., N .
2: Choose: c1, c2, c3, ε, ScF, SmF, R%, M .
3: Compute Nhold = b(100−R)%Mc.
4: for k = 1, 2, 3, ...N do
5: if max{width([x̂k−1])} < c1.max{width([x̂0])} then
6: [x̂k] = [f ]([x̂k−1], [uk], [wk]) ;
7: else
8: Partition [x̂k−1] into M disjoints sub-boxes {[x̂ik−1]}i=1,...,M ;
9: [x̂ik] = [f ]([x̂ik−1], [uk], [wk]) , i = 1, ...,M ; % Propagation

10: [ŷik] = [h]([x̂ik], [uk]) , i = 1, ...,M ; %Likelihood computation

11: Compute V = (V 1, ..., V M) using (3.7);
12: count = 1 ;
13: while V i = 1, ∀i = 1, ...,M and count < c2 do
14: [x̂k−1] = c3.[x̂k−1] + (1− c3).[x̂k−2]; %k > 2 by choosing [x̂0]

15: Redo lines 8− 11; %c3 ∈ [0, 1]

16: count + = 1;
17: end while
18: if V i = 0, ∀i = 1, ...,M then
19: [x̂k] = [f ]([x̂k−1], [uk], [wk]) ;
20: Continue %Skip all remaining commands in the for loop

21: end if
22: V (V == 0)← ε; %0 < ε < min{V (V > 0)}
23: Compute Jk = (J1

k , ..., J
M
k ) using (3.6) and (3.7);

24: Sort Jk in ascending direction and hold Nhold �rst values:
25: [Jk, index] = sort(Jk);
26: Jk = Jk(1 : Nhold);
27: index = index(1 : Nhold);
28: Compute W i

k, i = 1, ...,M using (3.9);
29: mid =

∑
i∈index

W i
k.mid([x̂ik]); %Estimation

30: rad = SmF.

(
ScF.

∑
i∈index

W i
k.rad([x̂ik])

)
+ (1− SmF).rad([x̂k−1]);

31: [x̂k] = mid ± rad; %ScF: Scaling factors (see Remark 19)

32: [x̂k−1] = hull{[x̂ik], i ∈ index}; %SmF ∈ [0, 1]: Smoothing factor

33: end if
34: end for
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likelihoods by making them more reliable using a reinforcement method. Al-
though a proper de�nition of the indistinguishability of likelihood computa-
tion methods is not provided as well as the degree of this indistinguishability,
a strategy is proposed to evaluate the performance of this class of �lters us-
ing the three basic scenarios (Section 3.5.3). The simulation highlights the
e�ciency of the RLBPF in gain of computation time and evaluation indexes.

In principle, the RLBPF can be implemented with any state and mea-
surement continuous dynamical functions, unless conditions under which the
�lter provide a good performance or guaranteed results, e.g. with C-stability,
are not pointed out. The control factors c1, c2, c3, ε, SmF, ScF, on the one
hand, make the �lter be more e�cient, �exible and suitable for numerous ap-
plications, on the other hand, they are subject to future studies about optimal
choices and/or automatic adaptive choices of them either by analytical or ma-
chine learning method. Investigation of RLBPF on some concrete classes of
state and measurement dynamical functions (e.g. L-Lipschitz, L2,...) is also
a potential research perspective. The score function J as well as the method
weighting it may be improved and the number of particles will be applied in
the partition step is an issue of the �lter.
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Chapter 4

Adaptive Degrees of Freedom

χ2-statistic Method to sensor

fault detection

4.1 Introduction

Within the control theory and its �eld of applications, fault detection
is extremely important for all system engineering problems. It is a crucial
component of any system diagnosis scheme and has received a lot of attention
in both academia and industry. Reliable fault detection and isolation is a
�rst class requirement in many �elds. Indeed, e�cient (early and accurate)
fault detection can help avoid dangerous scenarios (accidents, explosions,...)
or improve productivity (reducing process activity loss such as leakage...).
In 2013, the World Health Organization (WHO) has registered more than
1.24 million deaths and over than 50 million injuries worldwide on roads
(globally the eighth leading cause of death) most of them caused by abnormal
vehicle behavior (Prevention, 2013). In the petrochemical industries loss has
been estimated to over than 20 Billion dollars every year caused by the non
e�ciency of the AEM (Anormal Event Management).

Many methods and techniques have been developed to meet these abun-
dant requirements. The model-based approaches are proven to provide good
results and acceptable tradeo� between fault sensitivity and computational
cost especially those based on residual generation (see Patton et al. (2013)
and references within). Several methods for fault detection in dynamic sys-
tems are mentioned in (Willsky, 1976), including the innovation-based method
in which a χ2-statistic hypothesis testing was used. This method is applied
appropriately with the standard Kalman �lter (Kalman, 1960) to process
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the linear dynamic system with (known) deterministic coe�cient matrices.
In (Sainz et al., 2002), an approach to generate envelopes based on interval
techniques of the modal interval analysis is proposed. In (Puig, 2010), the
use of set-membership methods in fault diagnosis and fault tolerant control is
reviewed. These methods aim at checking the consistency between observed
and predicted behaviors by using simple sets (intervals, zonotopes,...) to
approximate the exact set of possible behaviors. Also, the design of stable
interval observers for linear systems with additive time-varying zonotopic
input bounds is proposed in (Raka and Combastel, 2013). Interval observers
provide an estimate on the set of admissible values of the state vector at
each time instant. Ideally, the size of the evaluated set is proportional to the
model uncertainty, thus interval observers generate the state estimates with
estimation error bounds, similarly to Kalman �lters, but in the deterministic
framework. Main tools and techniques for design of interval observers are
reviewed in (E�mov and Raïssi, 2016) for continuous-time, discrete-time and
time-delayed systems.

The e�ciency of these strategies has attracted the attention of the indus-
trial community, especially, the automotive industry. Thus, many academical
studies have tried to provide solutions within this �eld based on set member-
ship fault detection and isolation (FDI). In (Meseguer et al., 2010), a fault
diagnosis approach is proposed. It has been motivated by the problem of de-
tecting and isolating faults of the Barcelona's urban sewer system limnimeters
(level meter sensors). It is based on interval observers improving the inte-
gration of FDI tasks. (Ifqir et al., 2018) reviews the problem of robust state
estimation and unknown input interval reconstruction for uncertain switched
linear systems. A design method for obtaining interval observers that pro-
vide guaranteed lower and upper bounds of the state and unknown inputs
is applied to vehicle lateral dynamic estimation to show the e�ectiveness of
the algorithms. Also, in (Chen et al., 2020), an extended set-membership �l-
ter applied to the vehicle's longitudinal velocity, lateral velocity, and sideslip
angle provides not only higher accuracy, but also can provide a 100% hard
boundary which contains the real values of the vehicle states (compared to
the Unscented Kalman Filter UKF-based approaches).

Recently, (Tran, 2017) proposes an approach combining the χ2-statistics
hypothesis test with the Upper Bound Interval Kalman Filter (UBIKF, Tran
et al. (2017)) in order to solve detection problems dealing with interval
Kalman �lter. The contribution to the fault detection in (Tran, 2017) is
the use of an upper bound for all positive semi-de�nite matrices belonging
to an interval matrix. This upper bound aims to overcome the singularity
of the inverse of interval matrices. Based on this concept, an adaptive hy-
pothesis test method is developed in (Lu et al., 2021) to detect sensor faults
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applied to a linear discrete time dynamic system with assumptions requiring
the use of interval computations. The proposed method combines, on the
one hand, OUBIKF the optimal version of UBIKF presented in Chapter 2,
with, on the other hand, a χ2 hypothesis test whose degrees of freedom (d.f.)
are adaptively chosen thanks to ampli�er coe�cients. This is the content of
the present chapter together with a development of this method applied to
the nonlinear dynamical system.

The chapter is organized as follows. Section 4.2 presents the state-space
representation of a dynamical system (linear or nonlinear) with additive sen-
sor faults and performance indicators for fault detection methods. Section
4.3 provides the main contributions of the chapter, included principles and
algorithms of the novel adaptive testing method for sensor fault detection
to linear and nonlinear dynamical systems and two corresponding applica-
tion simulations (bicycle vehicle model and suspension model). The chapter
conclusion and perspectives are presented in Section 4.4 .

4.2 State-space representation with sensor faults

and performance indicators for fault detec-

tion methods

4.2.1 State-space representation with sensor faults

The state-space representation with sensor faults can be expressed in the
form {

xk = Akxk−1 + Bkuk + wk ,
yk = Ckxk + Dkuk + vk + f sk ,

k ∈ N∗, (4.1)

or more general {
xk = fk(xk−1, uk, wk) ,
yk = hk(xk, uk, vk) + f sk ,

k ∈ N∗, (4.2)

where xk ∈ Rnx and yk ∈ Rny represent state variables and measures respec-
tively, uk ∈ Rnu inputs, wk ∈ Rnx state noises, vk ∈ Rny measurement noises,
f sk ∈ Rny additive sensor fault vectors.

Sensor faults occur when an a�ecting value (fault) f sk comes into a mea-
surement. Each of its components corresponds to a sensor fault. Thus the
fault vector f sk can be of the multiple or single error type. In the �rst type,
some (or all) sensors cause errors which a�ect the yk value for the corre-
sponding components. In the second type, only one sensor causes an error
and just the corresponding yk component is a�ected.

CHAPTER 4 89



4.2.2 Performance indicators for fault detection meth-
ods

To evaluate the fault detection performance, some indicators are intro-
duced. Assume that the dynamical system, (4.1) or (4.2), implements in N
iterations among which faults occur in a region R with length l (0 ≤ l ≤ N).
The region R may be a range or union of ranges. For simplicity, hereafter we
call R an error range. Knowing that the detection signal has value 1 or 0, we
call right detected signal the 1-value detection signal situated inside the error
range and false detected signal the 1-value detection signal situated outside
the error range. Furthermore,
• Detection Rate (DR) is determined by the number of right detected
signals over the length l of error range.
• No Detection Rate (NDR) is determined by NDR = 1−DR.
• False Alarm Rate (FAR) is determined by the number of false detected
signals over N − l, the cardinal of the region outside the error range.
• The E�ciency (EFF) of the detection is determined by EFF = DR−
FAR.

More details on indicators can be found in (Chen and Patton, 1999) with a
slight di�erence.

4.3 Adaptive Degrees of Freedom χ2-statistics

(ADFC) method for sensor fault detection

4.3.1 Fault detection based on ADFC and OUBIKF for
linear system

The ADFC method introduced in this section is the main contribution of
(Lu et al., 2021) using Algorithm 2 (Lu et al., 2019) in the residual generation.
The method works obviously with Algorithm 3 as well as with the RLBPF
(Algorithm 6) as we will see in Section 4.3.3.

Consider the dynamical system (4.1) with the same assumptionsA1 using
for OUBIKF. System (4.1) with assumptions (A1) is a quite general model
adapted to a wide range of applications. In this system, parameter matrices
are time varying, the uncertainty may result from di�erent sources (system
disturbances, measurement noises) and may be of di�erent kinds (stochastic
and bounded uncertainties).

The Algorithm 2 is used to generate residual intervals [rk] = yk − [ŷk],
[ŷk] = [C][x̂k|k−1] + [D]uk, and the fault detection procedure of the proposed
method is based on a statistical hypothesis testing. Therefore, it is vital to
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investigate carefully the stochastic property of related terms of the system
under standard conditions (SKF, Section 1.1.1), otherwise the fault detection
test for the interval case cannot be derived. Summarizing these properties,
in the fault free case, state xk, measure output yk, estimator x̂k|k, estimation
error εk and residual rk are all Gaussian vectors, in which rk ∼ N (0, Sk).
Furthermore, the following property plays a key role for the development in
the next.

Key property (K). Assuming Sk is non singular and let ηk = S
−1/2
k rk =

(ηk,1, ..., ηk,ny). Then ηk ∼ N (0, I), that is ηk,i's are N (0, 1)-distributed and
independent each other.

Innovation-based fault detection method. In the literature, using
the χ2-statistics test for sensor fault detection is a kind of Innovation-based
approach mentioned in (Mehra and Peschon, 1971). In (Willsky et al., 1974),
(Willsky et al., 1975), this method is applied for fault detection problems in
which the following statistic is used

νk =
k∑

i=k−W+1

ηTi ηi =
k∑

i=k−W+1

rTi S
−1
i ri , (4.3)

where W is a window size (W ≤ k) and ri's are residual terms obtained by
the SKF. The statistic νk is considered as a χ2 -distributed random variable
withWny degrees of freedom. A rule for the fault detection test is established
as: (H0) νk ≤ δ, no error occurred; (H1) νk > δ, an error occurred, where
δ is the threshold determined by P(χ2(Wny) > δ) = α with α a chosen
signi�cance level (or the probability of Type I error). The window sizeW and
the threshold δ are to be chosen to provide an acceptable trade-o� between
the probability of declaring (H1) when actually (H0) and the probability
declaring (H0) when actually (H1) (Willsky et al., 1975).

For the next development, it is worth to note that a statistic T can follow
exactly a distribution F or be approximated by another statistic T̃ with
distribution F . Any statistic can be used as estimator for a quantity of
interest with or without consistency and with di�erent accuracies.

Principles of the method. By system (4.1) and assumptions (A1),
measures yk and interval matrices [A], [B], [C], [D], [Q], [R] are known, and
we obtain by computation measure estimate intervals [ŷk] = [C][x̂k|k−1] +
[D]uk, residual intervals [rk] = yk − [ŷk] and the interval matrix [Sk] =
([C][A])[Pk−1|k−1]([C][A])T + [C][Q][C]T + [R] which contains all accessible
residual covariances Sk.

In the literature, to use the χ2-statistics test method, a standard normal
distribution form (ηk = S

−1/2
k rk ∼ N (0, I)) is needed. A similar form but for

the interval vector [rk] is meant to match our goals, and thus the singularity
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problem of [Sk] is an impediment. To overcome this impact, it is proposed in
(Tran, 2017) to use the upper bound of S+([Sk]) instead of [Sk] and a better
choice of this upper bound is applied thanks to properties developed in (Lu
et al., 2019).

The following strategy is proposed in the present work:
• Find Σk such that S+([Sk]) � Σk. This upper bound matrix is of the
form Σk = akI (ak ∈ R+) using Theorem 5.
• Compute:

[η̃k] = Σ
−1/2
k [rk] = [rk]/

√
ak,

[ξk] = [η̃k]
T [η̃k] = [rk]

TΣ−1
k [rk] = [rk]

T [rk]/ak.
• Apply the absolute operator for intervals [ξk] since ξk = η̃Tk η̃k is non
negative for all ξk ∈ [ξk] whilst during interval computations, most of
the time inf([ξk]) < 0 < sup([ξk]).
The absolute operator for intervals is de�ned by

abs([a , b]) =

{
[min(|a|, |b|) ,max(|a|, |b|)] , 0 /∈ [a , b]

[0 ,max(|a|, |b|)] , 0 ∈ [a , b]
.

• Let Uk = sup(abs([ξk])). The statistic Uk will be used in hypothesis
testing for which it is approximated by a χ2(κkny) random variable
(explication in the next paragraph). κk is called an adaptive ampli�er
coe�cient.

Some remarks can be made immediately as follows: ∀k ≥ 1,
� 0 ≤ ξk ≤ ηTk ηk ∼ χ2(ny) since Sk � Σk, ∀Sk ∈ S+([Sk]),
� 0 ≤ ξk ≤ Uk,
� E[χ2(ny)] = ny � Uk almost of times.
It is reasonable to consider ξk as a χ2-distributed random variable with

a d.f. smaller than ny, but this statistic is actually unknown. What we
have in hand is the statistic Uk obtained by computation. Based on above
remarks, it is proposed to approximate this statistic Uk by a χ2-distributed
random variable with an adaptive d.f. κkny (κk > 1) where κk is an adaptive
ampli�er coe�cient (a.a.c.). Thanks to this a.a.c., adaptive thresholds are
built and help to detect faults.

The rule for the fault detection test is that: (H0) Uk ≤ δk, no error
occurred; (H1) Uk > δk, an error occurred, where δk is the adaptive threshold
determined by P(χ2(κkny) > δk) = α with α is a chosen signi�cance level.

After test running, an adjustment procedure is proposed to obtain detec-
tion signals more accurately. That is, in a window of size w, if the number of
consecutive error occurrences is smaller than w, we consider that these errors
(if exist) don't cause serious e�ects and will be dismissed. Furthermore, since
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error is often detected with a delay, all detection signals will be shifted to
the left bw/2c steps (b.c is the �oor function).

Choice of the a.a.c. A χ2 distributed random variable has the cumu-
lative distribution function with d.f. k:

F (x, k) = P(χ2
k ≤ x) =

∫ x/2
0

t
k
2
−1e−tdt∫∞

0
t
k
2
−1e−tdt

. (4.4)

In the literature, k is a positive integer. However, from the analysis point of
view, F (x, k) is a continuous function of k (k > 0) at any positive value of x
(since the Gamma function Γ(z) =

∫∞
0
tz−1e−tdt is continuous for all z > 0).

Consequently a positive real d.f. κkny can be used.
For an accurate choice of a.a.c κk, some conditions are required:
� Firstly, it must be sensitive to the fault occurred.
� Secondly, it must be large enough to get a small FAR (e.g. ≤ 5%) in

the fault free case.
� In addition, being a distribution parameter of statistic Uk, it is highly

recommended that the chosen κk is related to the Uk's construction.
Concretely, by writing residual intervals in the form [rk] = mid([rk]) +

[−1
2
, 1

2
] ∗ width([rk]), the statistic Uk is expressed as

Uk =
‖width([rk]) + 2 · abs(mid([rk]))‖2

4ak
, (4.5)

a function of mid([rk]) and width([rk]) where the later is more sensitive to the
fault than the former. The residual width is a major factor in�uencing the
Uk's computation and, furthermore, re�ects the performance of the model
and algorithm. Consequently it is reasonable to chose κk as a function of
residual width.

Remark 24. An example is shown in Fig.4.1 illustrating the sensitivity to
the fault of the residual width. It is simulated from Bicycle vehicle model
presented in section 4.3.2 and according to the result shown in Fig.4.5. In-
deed, Fig.4.1 shows that residual widths become very large inside the error
range (between the two vertical lines) whilst residual midpoints are stable
around 0 outside the error range and do not change too much inside it. �

Which function of residual width will be chosen is a hard problem due to
many impacts, for instance:

� no further information about width([rk]) and mid([rk]) is available,
� κk and corresponding threshold δk are both unknown; it exists only

a relation represented via the quite complex function (4.4) so that
F (δk, κkny) ≥ 1− α,
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Figure 4.1 � Behavior of the �rst (top) and the second (bottom) residual
components with fault value b = 20.

� the yielded δk (by κk) must satisfy the fault detection constraint:
δk ≥ Uk when no error occurs and δk < Uk otherwise.

Therefore, an additional requirement for the chosen κk is that it must (while
being su�ciently large in the fault free case as aforementioned) not increase
as fast as Uk when an error occurs and a�ects on the width([rk]).

Combining all constraints and noticing that, in general, identify analyt-
ically degrees of freedom for a test problem is always not evident, the �rst
step, the following a.a.c. is proposed:

κk =
1

ny

ny∑
i=1

(sup([rk])i − inf([rk])i) . (4.6)

Simulation results in section 4.3.2 favored this choice by showing that it
provides a small FAR and also satis�es all other requirements aforementioned.

Being not unique, the a.a.c. can be chosen di�erently by a scale of (4.6)
which will be discuss in section 4.3.2.

Algorithms. The OUBIKF algorithm is originally developed for estima-
tion with outputs [x̂k|k] and Pk|k. For fault detection purpose, this algorithm
is used within Algorithm 7 so that [x̂k|k−1] and [Pk|k−1] are yielded as outputs
of the former.
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Algorithm 7 ADFC method to linear system

1: Initialization:
2: [x̂0|0],P0|0, [A], [B], [C], [D], [Q], [R], α, uk, yk, k = 1, 2, ..., N .
3: for k = 1, 2, 3, ...N do
4: Use OUBIKF (Algorithm 2 or 3) to get: [x̂k|k−1], [Pk|k−1].
5: [rk] = yk − [C][x̂k|k−1]− [D]uk
6: [Sk] = [C][Pk|k−1][C]T + [R]
7: Find ak using Theorem 5 s.t. : S+([Sk]) � akI.
8: Uk = sup{abs([rk]T [rk]/ak)}
9: κk = mean{sup([rk])− inf([rk])}

10: Find δk s.t.: P(χ2(κkny) > δk) = α.
11: Detection signal : πk = I(Uk > δk).
12: end for
(∗): I(x) is the indicator function which equal to 1 if the conditions x are true
and vanishes otherwise.

4.3.2 Application

Consider again the Bicycle vehicle model (2.22) presented in Chapter 2.
Recall that the simulation presented in this section is a contribution of (Lu
et al., 2021) which had been developed before the optimal version of OUBIKF
(Algorithm 3) was investigated. Therefore, the Beta version of OUBIKF
(Algorithm 2) was applied to the ADFC method for fault detection in this
section. This fact does not change the methodology of the ADFC method
and it is interesting to see that, in the next section, ADFC method can be
applied with the RLBPF to deal with nonlinear system.

Simulation procedure

A discretization with a sampling time T = 0.05s is applied to the Bicycle
vehicle model (2.22) to get (non interval and independent of time instant
k) matrices A, B, C, D according to equations of the dynamical system.
Then, interval matrices [A], [B], [C], [D] are generated in such a way that
M = mid([M ]) and the radii rad([M ]) are chosen at random in [0 ,max_rad]
for M = A,B,C,D and max_rad = 0.5. The covariance matrices [Q] and
[R] are generated in the same way, their diagonal elements being intervals of
positive real numbers.

Variable simulation. Inputs uk's are simulated according to a dynamic
change for N = 864 iterations (Fig.2.7). The initial state is chosen at x0 =
(0, 0)T . At each step k = 1 : N , generate Ak, Bk, Ck, Dk, Qk, Rk according
to uniform distribution in corresponding interval matrices and so that Qk
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and Rk are symmetric positive semi-de�nite. Then wk ∼ N (0, Qk) and vk ∼
N (0, Rk) are simulated. Finally, variable sequences {xk}, {yk} are computed
according to the dynamical system.

Fault generation: Sensor faults are generated in terms of bias vector
bk ∈ Rny added to yk. Let b, b′ ∈ R be constant fault values. Following
types of error can be treated:
• Type 1: bk = b.1 where 1 is the all-ones vector in Rny .
• Type 2: bk = b.ej where ej is the j-th standard unit vector for some
j ∈ {1, ..., ny}.
• Type 3: bk = b.ej + b′.ej′ , with j, j′ ∈ {1, ..., ny}, j 6= j′.

The error terms are added to yk for all k in a range R with length l, i.e.
k ∈ R = r : r + l − 1 for some r in 1 : N − l + 1. Each sequence of yk's
components, e.g. {y1i, y2i, ..., yNi} for some i = 1, ..., ny, is called a chain. So,
the errors occurred on multiple chains of yk (and in the range R) in type 1
and type 3 and only on single chain j in type 2. Moreover, in type 3, two
errors with di�erent values occur on two distinct chains.

Fault detection. Apply Algorithm 7 for N steps. The following choices are
applied inside the algorithm: starting point [x̂0] = ([−0.5, 0.5], [−0.5, 0.5])T ,
initial error covariance bound P0|0 = max{diag(sup([Q]))}I = 0.4412 I,
p = 3, upper bounds ωkI of any set S+([M ]) identi�ed by ωk = ‖Max‖F
(Frobenius norm) where the Max matrix is de�ned in (2.2).

Adjusted fault detection. Use a window size w = 5.

Simulation results

Comparison. In this part, comparisons between the ADFC method and
two others proposed respectively in (Tran, 2017) (method A) and (Raka and
Combastel, 2013) (method B) are provided with concrete cases. The error
range is between the two vertical black lines.

The method A uses the statistic Tk = inf([rk]
TS−1

k [rk]), S+([Sk]) � Sk
with the decision rule: a fault is detected if Tk > δ where the threshold δ
de�ned by P(χ2(Wny) > δ) = α. The �rst disadvantage of this method
is that interval computation can let Tk be negative, consequently no fault
is detected as illustrated in Fig.4.2 according to the Bicycle vehicle model
simulation. The second disadvantage is that a windows size W is arbitrarily
chosen. An example (E) can be built to illustrate this method works quite
well (Fig.4.3) in which Tk is non negative, but then the second disadvantage
is still critical: another choice of W leads to another detection result. The
ADFC method in this case still provides an accurate fault detection (Fig.4.4).

Consider again the Bicycle vehicle model. A result of the detection for
type 1 of error with fault value b = 20 is shown in Fig. 4.5 and 4.6 using the
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Figure 4.2 � Method A - Fault detection to Bicycle vehicle model.

Figure 4.3 � Method A - Example (E) with b = 10 for type 1 of error.

Figure 4.4 � ADFC method - Example (E) with b = 10 for type 1 of error.

ADFC method. The detection signals are very well determined.
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Figure 4.5 � ADFC method - Fault detection to Bicycle vehicle model.

Figure 4.6 � ADFC method - Detection signals for Bicycle vehicle model

The method B is also an adaptive method. It consists in applying in-
terval observer for a linear continuous time dynamic system with additive
and multiplicative disturbances to compute adaptively upper bounds (ubt)
and lower bounds (lbt) of residuals rt, and the fault detection rule is that a
fault is detected if 0 /∈ [lbt, ubt]. Fig.4.7-4.8 present the simulation of this
method applying to Bicycle vehicle model with an as similar as possible set-
ting with that used for ADFC method resulting in Fig.4.5-4.6. The setting
is that: 1-dimension multiplicative and additive disturbances (q = 1, δt =
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dt = sin(2πt)) are used, a bias sensor fault with value b = 20 is added to
all chains of measurements yt in a time range [te1, te2]. This error range is
determined as follow: total time of simulation is [t0, tf ] which corresponds to
N discrete time steps in Fig.4.5, error range [te1, te2] corresponds to discrete
range [722 : 772] by calculating: te1 = 722.tf/N , te2 = 772.tf/N , t0 = 0.

Figure 4.7 � Method B - Fault detection to Bicycle vehicle model.

Figure 4.8 � Method B - Detection signal for Bicycle vehicle model.

Some remarks can be pointed out:
• method B takes the fault detection chain by chain;
• in the error region of 50 time steps, method B detects almost all starts
of faults (e.g. about the �rst 10 time steps as shown in Fig.4.7), except
on chain 3, and after that the detection is degenerated and no more
accurate;
• to compare with the ADFC method, detection signals of method B
in all chains are combined in one in such a way that new detection
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signal is 1 if there is any detection signal in any chain getting value 1
(Fig.4.8).

Then, we redo the simulation in 100 times with error range R chosen ran-
domly as described by the general implementation in the next and obtain
the comparison results shown in Table 4.1.

DR% NDR% FAR% EFF%
Method B 5.90 94.10 4.31 1.59

ADFC method 98.56 1.44 5.67 92.89

Table 4.1 � ADFC method versus Method B.

Further investigation simulation. Now, in order to survey, using
ADFCmethod, how well the detection is when in�uencing factors are changed
(e.g. fault value b, error range R and simulated variable yk), three simula-
tion scenarios are implemented using indicators introduced in Section 4.2.2.
Scenarios 1 and 2 will be treated with the type 1 of error, while the scenario
3 will be implemented with all three types of error.

General implementation. For di�erent types of error of bias vector bk, let
b and b′ take values respectively in discrete sets E and E ′. The error range
R has length l = 50. According to each scenario, type of error and value
of (b, b′), L = 100 times of fault detections are implemented. Indicators
are computed for each of L simulation times and their means are yielded
afterward as representative values that will be shown in result tables.

Remark 25. Let τk = max{bk}/Max_width where max{bk} is the maxi-
mum among the bk's components and Max_width is the maximum width
of the diagonal elements of [Q] and [R]. This quantity gives an idea of how
large is the maximum of the actual fault value with respect to some known
quantity causing the fault and propagating according to the dynamic system,
that is the maximum covariance of noises. �

Remark 26. The comments in next parts hold for (b, b′) values belonging
to the considered sets outside of which related comments might be solely
intuitive deductions. �

Scenario 1. Fix variable simulation {yk}k=1:N , for each fault value b in
{0 : 5 : 30}, choose randomly error range R and do L times error genera-
tions. This scenario helps us to consider the method performance in terms
of fault values b and the positions at which errors occur (in R) w.r.t. a given
measurement sample {yk}k=1:N .

Table 4.2 shows that DR has ascending trend as well as b increases while
FAR is rather stable in [1.0 , 1.5](%) with mean 1.25%. This means that the
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b τ DR% NDR% FAR% EFF%
0 0 1.26 98.74 1.03 0.23
5 13.8 5.34 94.66 1.04 4.30
10 27.5 21.12 78.88 1.04 20.08
15 41.3 67.28 32.72 1.17 66.11
20 55.0 94.94 5.06 1.26 93.68
25 68.8 98.64 1.36 1.36 97.28
30 82.5 99.84 0.16 1.42 98.42

Table 4.2 � Fault detection for scenario 1 and type 1 error.

larger the fault value b, the better the fault detection procedure is performed
and, conversely, the b change hardly a�ects the false alarm rate FAR. This
also means that the current choice of a.a.c. κk is appropriate for a fault
detection eliminating well false alarms and dismissing almost all non clear
signs of error existence (a prudent fault detection). For di�erent purposes of
fault detection, κk can be adjusted (see discussions in next part).

Seeing more, EFF represents the e�ectiveness of the fault detection pro-
cedure taking into account both DR and FAR. It has also ascending trend
according to b. Starting at b = 15 (≈ 41× Max_width) EFF begins to
achieve remarkable value (66.11%).

b τ DR% NDR% FAR% EFF%
0 0 0 100 0 0
5 13.8 3.30 96.70 0.01 3.29
10 27.5 17.70 82.30 0.02 17.68
15 41.3 63.54 36.46 0.05 63.49
20 55.0 96.36 3.64 0.06 96.30
25 68.8 99.96 0.04 0.15 99.81
30 82.5 100 0 0.38 99.62

Table 4.3 � Adjusted fault detection for scenario 1 and type 1 error.

Table 4.3 shows that the adjustment procedure eliminates almost all FAR
indexes (at least 73% comparing to those in Table 4.2). Additionally, this pro-
cedure yields a positive e�ect with large fault value (b > 15) and a negative
e�ect otherwise for EFF indexes. In application, if we know that measure-
ment fault value often reaches a threshold (which depends on used sensors),
e.g. 15 units in the Bicycle application, then adjustment procedure is rec-
ommended and vice versa. Thus, the adjustment procedure and the choice
of a.a.c. κk are two tunning factors to make the method suitable.
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Scenario 2 . Fix error range R. For each fault value b in {0 : 5 : 30}, do
L times variable simulations to get measurements yk. This scenario aims to
show the e�ects of di�erent measurement samples {yk}s (k = 1 : N, s = 1 : L)
on the fault detection procedure for a given error range R. Speci�cally, these
e�ects come from random noises existing inside of yk since the later is a
function of {x0, w1 : wk, vk}.

b τ DR% NDR% FAR% EFF%
0 0 3.34 96.66 1.90 1.44
5 13.8 3.08 96.92 2.36 0.72
10 27.5 19.24 80.76 2.41 16.83
15 41.3 82.48 17.52 2.18 80.30
20 55.0 94.74 5.26 2.48 92.26
25 68.8 98.66 1.34 2.28 96.38
30 82.5 99.88 0.12 2.37 97.51

Table 4.4 � Fault detection for scenario 2 and type 1 error.

b τ DR% NDR% FAR% EFF%
0 0 2.8 97.20 1.44 1.36
5 13.8 2.16 97.84 1.84 0.32
10 27.5 14.06 85.94 1.97 12.09
15 41.3 82.42 17.58 1.62 80.80
20 55.0 96.96 3.04 1.82 95.14
25 68.8 99.8 0.20 1.71 98.10
30 82.5 100 0 1.89 98.11

Table 4.5 � Adjusted fault detection for scenario 2 and type 1 error.

In Table 4.4, DR and EFF indexes are not necessarily increasing functions
w.r.t. b but their main trends are always ascending. The FAR index is also
stable in [1.9 , 2.5](%) with mean 2.2%. In addition, in comparison with the
one in Table 4.2 (FAR ∈ [1.0, 1.5](%)), we see that FAR is rather greater
in scenario 2 than in scenario 1. This means that FAR is more a�ected by
random noises than by the position of error range. The adjustment procedure
eliminates more than 18% of FAR indexes comparing Table 4.5 and Table
4.4. It has also positive e�ect or negative e�ect for EFF index according to
the fault value b being greater or smaller than 15.

Scenario 3. For each value of b, choose randomly error range R and
do L times of variable simulations. This scenario combines the two previous
scenarios and will be implemented with three types of error.
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(1) Type 1 error: The sensor faults come to all chains of {yk}, bk = b.1
and τk = τ = b/Max_width with b ∈ {0 : 5 : 30}.

b τ DR% NDR% FAR% EFF%
0 0 1.88 98.12 2.02 -0.14
5 13.8 5.1 94.9 2.02 3.08
10 27.5 17.36 82.64 2.16 15.20
15 41.3 74.06 25.94 2.53 71.53
20 55.0 94.08 5.92 2.36 91.72
25 68.8 98.26 1.74 2.84 95.42
30 82.5 99.82 0.18 2.50 97.32

Table 4.6 � Fault detection for scenario 3 and type 1 error.

b τ DR% NDR% FAR% EFF%
0 0 1.48 98.52 1.53 -0.05
5 13.8 4.54 95.46 1.59 2.95
10 27.5 13.88 86.12 1.69 12.19
15 41.3 72.38 27.62 1.97 70.41
20 55.0 95.38 4.62 1.75 93.63
25 68.8 99.62 0.38 2.13 97.49
30 82.5 99.96 0.04 1.96 98.00

Table 4.7 � Adjusted fault detection for scenario 3 and type 1 error.

It can be pointed out similar comments as those of the two previous
scenarios with this type 1 error although values in result tables must
be di�erent. In addition, the negative value for EFF at b = 0 can be
explained by the fact that, in this case, the fault detection procedure
not only provides no e�ciency gains, but rather a loss.
Another notice is that the FAR does not vanish. Therefore EFF never
reaches 100% although the fault value b can be more higher (than 30)
and DR can reach 100%.
The adjustment procedure eliminates at least 21% of FAR indexes com-
paring Table 4.7 and Table 4.6.

(2) Type 2 error: In this simulation, the sensor faults only occur in one
chain of {yk}, bk = b.ej and τk = τ = b/Max_width with b ∈ {0 :
5 : 60}. The general implementation for scenario 3 is always respected
noticing that the chain j on which the faults occur is chosen randomly
as well at each of L times of variable simulations. This situation corre-
sponds to a single faulty sensor and normally the case where all sensors
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are damaged at the same time is less frequent. This situation is also
necessary for fault isolation in a further phase.

b τ DR% NDR% FAR% EFF%
0 0 4.08 95.92 1.96 2.12
5 13.8 4.54 95.46 2.48 2.06
10 27.5 4.90 95.10 1.82 3.08
15 41.3 11.42 88.58 2.12 9.30
20 55.0 27.92 72.08 2.24 25.7
25 68.8 42.90 57.10 2.40 40.50
30 82.5 51.96 48.04 2.36 49.60
35 96.3 74.72 25.28 2.25 72.50
40 110.0 77.70 22.30 2.10 75.60
45 123.8 84.68 15.32 2.28 82.40
50 137.5 90.24 9.76 3.49 86.75
55 151.3 96.58 3.42 2.71 93.87
60 165.0 98.86 1.14 2.50 96.36

Table 4.8 � Fault detection for scenario 3 and type 2 error.

b τ DR% NDR% FAR% EFF%
0 0 3.28 96.72 1.46 1.82
5 13.8 3.74 96.26 2.01 1.73
10 27.5 3.58 96.42 1.44 2.14
15 41.3 10.26 89.74 1.66 8.60
20 55.0 26.50 73.50 1.74 24.76
25 68.8 42.26 57.74 1.88 40.38
30 82.5 50.40 49.60 1.80 48.60
35 96.3 75.58 24.42 1.64 73.94
40 110.0 78.08 21.92 1.52 76.56
45 123.8 85.22 14.78 1.72 83.50
50 137.5 89.88 10.12 2.91 86.98
55 151.3 96.24 3.76 2.10 94.14
60 165.0 98.18 1.82 2.05 96.13

Table 4.9 � Adjusted fault detection for scenario 3 and type 2 error.

Consider Table 4.8. Since the faults occur only on one chain of {yk}, it is
obvious that, for each corresponding value b, the EFF indexes of Table
4.8 are lower than those of Table 4.6. Until b = 35 (≈ 96×Max_width)
EFF reaches a remarkable value 72.50%. This is also the threshold
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beyond which the adjustment procedure has a positive e�ect on EFF.
FAR remains stable in a modest range ([1.8 , 3.5](%)). In addition,
from b = 60 the EFF almost reaches its maximum value (96.36%) (the
greatest value of EFF will be around 97% due to the existence of FAR).

(3) Type 3 error. Let b = 10.m and b′ = 10.(m+ 1) for m = 1, 2, 3, then
τk = τ = max{b, b′}/Max_width. The chains j and j′ at which the
faults occur are chosen randomly as well as the error range R at each
of L times of variable simulations. This setting, while still being of the
multiple error type, can represent an intermediate situation between
the settings of type 1 and type 2 error previously presented.

(b, b′) τ DR% NDR% FAR% EFF%
(10,20) 55.0 44.72 55.28 6.53 38.19
(20,30) 82.5 81.34 18.66 6.57 74.77
(30,40) 110.0 99.46 0.54 6.82 92.64

Table 4.10 � Fault detection for type 3 error.

(b, b′) τ DR% NDR% FAR% EFF%
(10,20) 55.0 42.84 57.16 5.29 37.55
(20,30) 82.5 79.38 20.62 5.33 74.05
(30,40) 110.0 98.82 1.18 5.59 93.23

Table 4.11 � Adjusted fault detection for type 3 error.

The following remarks are valid for all cases already simulated above.

Remark 27. FAR does not vanish even in the fault free case (b = 0). This
fact implies that there are other reasons (than fault) causing FAR. Actually,
in this case, the error range degenerates to length 0, all 1-value detection
signals are false detected signals, DR and NDR are not de�ned and FAR
must be recomputed, e.g. according the �rst row of Table 4.6: FAR =
[2.02× (N − 50) + 1.88× 50] /N ≈ 2.01. However, we can think that b has
a very small (non zero) value and thus results remain unchanged. �

Remark 28. The factors causing FAR are multiple. Two of these factors that
di�er from one simulation to another are random noises and random error
ranges, which can therefore be called speci�c factors. Some other factors that
exist for all the simulations, and which can therefore be called general factors,
are: the model performance (how well the model describes the dynamics of
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the vehicle), the conservatism of interval computations, the lack of knowledge
on the exact coe�cient matrices Ak, Bk, Ck,... and the performance of the
χ2-statistic test (with α signi�cance level). �

Remark 29. Let de�ne the magnitude of fault (MF) be the maximum of
absolute values of bk's components. Then, DR and EFF have ascending
trends according to the MF while FAR is rather stable in some range with
positive values. �

Remark 30. There is a threshold for good/bad result of EFF and for posi-
tive/negative e�ect of the adjustment procedure to the EFF, e.g.: b ≥ 15 for
type 1, b ≥ 35 in type 2, max{b, b′} > 30 in type 3. �

Remark 31. The adjustment procedure and the choice of a.a.c. κk are two
tuning factors for an appropriate fault detection. �

Discussion

For a further discussion, other a.a.c κk can be chosen to improve EFF
index for small values b, e.g. b < 35 and according to the type 2 error
framework. To this end, and since the choice (4.6) of κk provides rather
good results, it is proposed to use some scales of κk. The a.a.c. now becomes
κ̃k = λkκk, where λk > 0 is a scale parameter.

For simple experiments, the λk's are chosen identically in {0.7, 0.3} for
all k ≥ 1, brie�y named λ. The simulation results are shown in Tables 4.12-
4.13. Only the type 2 error with the adjustment procedure is simulated.
Both cases of λ are applied for common data samples when error range is
randomly changed and L times of variable simulations are executed.

b τ DR% NDR% FAR% EFF%
0 0 5.84 94.16 4.39 1.45
5 13.8 5.88 94.12 4.62 1.26
10 27.5 13.30 86.70 4.58 8.72
15 41.3 29.52 70.48 4.42 25.10
20 55.0 53.56 46.44 5.01 48.55
25 68.8 68.10 31.90 3.99 64.11
30 82.5 77.94 22.06 3.84 74.10
35 96.3 85.08 14.92 4.43 80.65
40 110.0 94.12 5.88 4.71 89.41

Table 4.12 � Adjusted fault detection for type 2 error using a.a.c. κk with
scale parameter λ = 0.7

.
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From Tables 4.12 and 4.13, it is noticed that FAR increases when the
parameter scale λ decreases. EFF rises up for small values b (< 35) depending
on the decrease of λ and inversely for EFF with larger values b.

When λ = 0.7 (Table 4.12), the values of the FAR index disperse in
[3.8 , 5.1](%), and thus EFF = DR− FAR does not overpass 96.2% even if
DR reaches its maximum value (100%). In addition, compared to Table 4.9
(λ = 1), EFF in Table 4.12 increases considerably for many fault values
b < 35 (starting at 10) and begins to achieve a remarkable rate (64.11%)
starting at b = 25. However, the EFF does not increase in the case b = 5;
this is due to the fact that Tables 4.9 and 4.12 display the simulation results
of the di�erent samples. The case b = 0 is not comparable (see Remark 27).

b τ DR% NDR% FAR% EFF%
0 0 24.64 75.36 25.14 -0.50
5 13.8 37.12 62.88 24.52 12.60
10 27.5 61.84 38.16 25.12 36.72
15 41.6 84.50 15.50 24.08 60.42
20 55.0 95.46 4.54 24.72 70.74
25 68.8 99.42 0.58 24.83 74.59
30 82.5 99.82 0.18 24.06 75.76
35 96.3 99.84 0.16 23.96 75.88
40 110.0 99.92 0.08 25.25 74.67

Table 4.13 � Adjusted fault detection for type 2 error using a.a.c. κk with
scale parameter λ = 0.3

When λ = 0.3 (Table 4.13), the FAR range is [23.9 , 25.3](%), EFF is
never beyond 76.1% and increases again for all b < 35 (unless b = 0) w.r.t
Table 4.12.

In summary, depending on the applications requiring a low FAR or a
high EFF for a �ne fault detection (detecting error with small fault value),
di�erent a.a.c. κ̃k's are chosen suitably thanks to the scale parameter λk > 0.
We also notice that a non constant (adaptive) scale parameter λk can also be
applied. Whether or not λk could be chosen in an optimal way, under some
criteria, can be issues in a future work.

Furthermore, the modi�ed EFF index proposed by EFF = c1 × DR −
c2 × FAR with c1, c2 two constants in [0, 1] can be applied to control the
importance of the two indexes DR and FAR so that a compromise between
them is achieved.
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4.3.3 Fault detection based on ADFCmethod and RLBPF
for nonlinear system

In this section, the ADFC method is extended to a more general frame-
work, including the nonlinear dynamical system. It can be applied with any
interval �lter, e.g. RLBPF, requiring only that the measurement dynamic is
noisy with additive Gaussian noises.

Consider the system (4.2) with additive measurement noises :

(Σ) :

{
xk = fk(xk−1, uk, wk) ,

yk = hk(xk, uk) + vk + f sk ,
k ∈ N∗,

where xk ∈ Rnx and yk ∈ Rny represent state variables and measures re-
spectively, uk ∈ Rnu inputs, wk ∈ Rnx state disturbances/noises, vk ∈ Rny

measurement noises, f sk ∈ Rny additive sensor fault vectors.
Assumptions (A2):
• Given [uk], [wk], [yk], [µk], [Σk], fk, hk, k = 1, 2, 3, ... and [x0] 3 x0. Note
that the measurements are given as intervals [yk] due to the sensor
precision and thus assume further that [yk] 3 yk with probability 1.
• uk ∈ [uk], wk ∈ [wk], yk ∈ [yk].
• vk ∼ N (µk,Σk) where µk ∈ [µk], Σk ∈ [Σk].
Now, we consider the following straightforward but useful property for the

development in the next. Its proof is straightforward and hence is omitted.

Lemma 7. Consider system (Σ) with assumptions (A2) and f sk = 0 for all
k ∈ N∗. Let rk = yk − hk(xk, uk)− µk be the residual. Then, for all k ≥ 1:

(i) yk ∼ N (mk,Σk) where mk = hk(xk, uk) + µk.
(ii) rk ∼ N (0,Σk) where Σk ∈ [Σk].

Then, the extension of the ADFC method is based on the following lemma.

Lemma 8. Consider system (Σ) with assumptions (A2). For any interval
�lter providing interval estimates [x̂k|k], assuming that [x̂k|k] 3 xk at every
k ≥ 1, then:

(i) [x̂k+1|k]
M
= [fk+1]

(
[x̂k|k], [uk+1], [wk+1]

)
contains the real state xk+1,

(ii) [r̂k+1]
M
= [yk+1] − [hk+1]

(
[x̂k+1|k], [uk+1]

)
− [µk+1] contains the residual

rk+1 ∼ N (0,Σk+1) with Σk+1 ∈ [Σk+1] with probability 1.

Proof. The proof of the lemma bases on the inclusion function property in
interval analysis, that is: f(x) ∈ [f ]([x]),∀x ∈ [x]. By assumption, [x̂k+1|k] 3
fk+1(xk, uk+1, wk+1) = xk+1, [hk+1]([x̂k+1|k], [uk+1]) 3 hk+1(xk+1, uk+1) and

108 CHAPTER 4



[µk+1] 3 µk+1. Thus, [r̂k+1] 3 rk+1 with certainty ensured by the inclusion
function property. By assumptions, rk+1 is random and [yk] 3 yk with prob-
ability 1, therefore [r̂k+1] can be seen in general as random and we conclude
probabilistically that the fact [r̂k+1] 3 rk+1 holds true with probability 1.

Remark 32. The notation [x̂k|k], k ≥ 1, denotes the interval estimate pro-
vided by the corresponding interval �lter at the end of the time instant k,
while [x̂k+1|k] denotes the propagation box at the next iteration being apt
to further estimation techniques to obtain [x̂k+1|k+1]. Note that [x̂k+1|k] and
[x̂k+1|k+1] can be coincident depending on the �lter used. �

Remark 33. The assumption [x̂k|k] 3 xk at every k ≥ 1 is strong and related
to the performance and convergence of the �lter. Practically, an interval �lter
that has the O(%) measuring the percentage of xk ∈ [x̂k|k] greater than some
level (e.g. 80% or 90%) can be suited to the fault detection procedure of the
ADFC method, unless missed conditions may cause certain false alarms. �

In contrast, in previous sections, the residual term is determined by
rk = yk − hk(x̂k, uk) − µk where x̂k is an estimate of unknown real state
xk and hk is a linear function. Thus, rk can be computed explicitly at each
time step as well as its distribution under the standard (SKF) assumptions.
Consequently, with additional bounded uncertainties, the covariance of [rk]
is also well determined as some calculable matrix [Sk].

In a more general framework, estimates x̂k might be unknown (or unused)
and hk might be complex (so, for instance, even if x̂k is Gaussian then the
distribution of hk(x̂k) might be not determined). Then, by considering rk =
yk − hk(xk, uk)− µk, although it is unknown, we can compute [r̂k] such that
[r̂k] 3 rk ∼ N (0,Σk), Σk ∈ [Σk] with probability 1 (Lemma 8). This implies
that [r̂k] ⊃ [Σk] and [r̂k] must be greater considerably than [Σk] in order
to contain rk with such a certainty. Thus, if we want to use the statistic
Uk = sup{abs([r̂k]T [r̂k]/ak)} with some ak such that S+([Σk]) � akI, then
ak must be a compromise between [r̂k] and [Σk], says a function of them
ak = φk([r̂k], [Σk]). In the development of this section, a simple proposition
for ak is that

ak = λ1 ∗mean{width([r̂k])} so that S+([Σk]) � akI, (4.7)

where λ1 ∈ (0, 1) is a scaling factor changing from application to application
and the function mean{x} provides the mean value of the vector x over its
components.

Then, the ADFC method proposed in the previous section can be applied
to the novel framework as shown in the following algorithm using scaling
factors λ1, λ2 where the last one is discussed in the previous section.
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Algorithm 8 ADFC method to nonlinear system

1: Initialization:
2: α, λ1, λ2, [x̂0|0] ≡ [x0], fk, hk, [uk], [wk], [yk], [µk], [Σk], k = 1, 2, ..., N .
3: for k = 1, 2, 3, ...N do
4: Use RLBPF (Algorithm 6) to get: [x̂k|k−1]
5: [r̂k] = [yk]− [hk]([x̂k|k−1], [uk])− [µk]
6: ak = λ1 ∗mean{width([r̂k])}
7: Uk = sup{abs([rk]T [rk]/ak)}
8: κk = mean{sup([rk])− inf([rk])}
9: Find δk s.t.: P(χ2(λ2κkny) > δk) = α.

10: Detection signal : πk = I(Uk > δk).
11: end for

4.3.4 Application

Consider the Quarter vehicle model presented in Section 3.6. In this part,
the simulation will perform in N = 5000 iteration steps while all other set-
tings remain unchanged comparing to those of Section 3.6. For the fault
detection purpose, a fault b = 0.02 is added to the simulated observed mea-
surements in a range R with length l = 200 and the following choices are
used: λ1 = 0.02, λ2 = 10, α = 0.03.

A simulation result is �gured out in Figures 4.9 - 4.11. In the error range,
the residual deviate from 0 (Fig. 4.9) and most of the statistics Uk (blue line)
passe over the adaptive thresholds δk (red line) (Fig. 4.10).

Figure 4.9 � ADFC method - Residual [r̂k] for the Quarter vehicle model
with sensor fault.
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Figure 4.10 � ADFC method - Fault detection to the Quarter vehicle model.

Figure 4.11 � ADFC method - Detection signal for Quarter vehicle model.

Then the fault detection procedure is replicated for L = 100 times where
the error range R is chosen randomly and indicators DR, NDR, FAR, EFF
are yielded as their corresponding means after L times of simulations (Table
4.14). For a fault value b = 0.02, the e�ciency index (EFF) is about 66%.

b DR(%) NDR(%) FAR(%) EFF (%)
0.02 67.715 32.285 1.2762 66.439

Table 4.14 � ADFC method - Fault detection to Quarter vehicle model.
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4.4 Conclusion and perspective

An adaptive approach to sensor fault detection applied to linear or non-
linear discrete time dynamical system is proposed. The approach combines
OUBIKF or RLBPF with a new hypothesis testing method using χ2-statistics
with adaptive degrees of freedom. Theoretical framework is developed. Nu-
merous tuning techniques are also presented, in particular the choice of ak
with a scaling factor (in nonlinear case), the choice of a.a.c. κk with param-
eter scale λk, the adjustment procedure for fault detection and the modi�ed
EFF index. A great �exibility of adjusting these factors makes the approach
highly �tted to multiple applications.

In the chapter, simulation applications are presented based on the Bicycle
vehicle model (linear case) and the Suspension model (nonlinear case). The
simulation results show that the ADFC method has worked quite well in
either cases and its performance depends on fault magnitudes and scenarios
under consideration.

The ADFC method is developed however in the framework of (additive)
sensor fault systems. Extend this method to deal with other kinds of fault
(e.g. actuator faults) and with fault identi�cation is a perspective of our
future research.
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Chapter 5

Active Fault Diagnosis based on

Adaptive Degrees of Freedom

χ2-statistic method

5.1 Introduction

Fault diagnosis is becoming nowadays an increasingly indispensable func-
tionality for modern systems. Including the fault detection as a non negligi-
ble task, fault diagnosis is characterized by its ability of fault isolation and
identi�cation with which the system can have adaptive actions in time.

In the �eld of model-based fault diagnosis, two approaches are known:
passive and active fault diagnosis (AFD). The passive approach has been
introduced very earlier in 1970's from (Beard, 1971; Jones, 1973; Mehra and
Peschon, 1971) and investigated by a massive researches since then. It is
referred to (Chen and Patton, 1999) and (Ding, 2013) for a panorama of the
passive approach. In contrast, the active approach has been developed more
recently and remains a new and dynamic research branch. (Chen and Patton,
1999), a well-known textbook on model-based fault diagnosis for dynamical
system, does not yet mention the notion of active fault diagnosis. (Camp-
bell and Nikoukhah, 2004), a textbook speci�ed in auxiliary signal design
for failure detection, does use active failure detection as key terminology.
H. Niemann et al. in their papers since 2005 ((Niemann, 2005), (Niemann
and Poulsen, 2005), (Stoustrup and Niemann, 2010), (Niemann and Poulsen,
2014),...) use the AFD terminology. To the best of our knowledge until now,
(Pun£ochá° and �kach, 2018) is a rather complete and recent survey about
the active approach devoting to use this terminology.

A key idea of AFD is to use auxiliary input signals that are injected into
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the monitored system in order to improve the quality of decision making
stage of the fault diagnosis. This technique was investigated in several re-
searches around 1990, well before the publication of the AFD terminology
(Pun£ochá° and �kach, 2018). Also, according to this survey, AFD approach
can be classi�ed into groups based on di�erent relevant features, e.g.: deter-
ministic (norm bounded)/probabilistic (based on uncertainty description),
�xed/variable �nite time interval or in�nite time interval (based on the length
of time interval in which auxiliary signals are designed). A list up to date
and non exhaustive of related researches can be found in (Pun£ochá° and
�kach, 2018) and (Tan et al., 2021).

The relevant issue of AFD approach in the literature is that the injec-
tion of auxiliary signals into the monitored system disturbs the outputs to
be controlled both in the fault-free case as well as in the faulty case (Nie-
mann and Poulsen, 2014). It should be ensured that auxiliary signals do
not drive the monitored system out of desired control performance speci�ca-
tions (Pun£ochá° and �kach, 2018). Therefore, there is a trade-o� between
the fault diagnosis quality improvement and a minimal disturbance of the
controlled outputs.

In this chapter, we present a novel AFD method based on the Adaptive
degrees of freedom χ2-statistic (ADFC) method already developed in Chapter
4. The novel one also uses designed auxiliary signals to enhance fault detec-
tion performance as well as provide the ability of localization and estimation
of the detected fault. It uses the ADFC method as its main fault detector,
called ADFC detector, and therefore deals with a dynamical system with
mixed uncertainties. More precisely, in this development, a linear discrete
time system with mixed uncertainties is concerned and sensor fault context is
treated. The most relevant di�erence is that, in the novel method, auxiliary
signals are not injected into the monitored system but provided only to the
diagnoser whenever a fault is detected. Thanks to characteristics of ADFC
detector, using these auxiliary signals, the diagnoser can decide whether the
detected signal is a false alarm or not. In the case of positive con�rmation,
the diagnoser localizes and estimates the detected fault. Then, the estimated
fault is returned backwardly to the diagnoser to compensate for the actual
fault e�ect to the next iteration. Beside the fault identi�cation and fault
estimation functionalities, the diagnoser enhances the fault detection by:

(1) reducing false alarms,
(2) compensating for the fault e�ect to the next diagnosis,
(3) tuning the ADFC detector (by its tuning parametes) to increase rea-
sonably its detection rate.

Furthermore, since auxiliary signals are not injected to the monitored sys-
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tems, the undesired system disturbance due to auxiliary signals is avoided.
Once an actual fault is correctly diagnosed, what action will be made regard-
ing the diagnostic information is a matter of a separate scheme.

The chapter is organized as follows. In Section 5.2, the considered prob-
lem is formulated. Section 5.3 presents the main contribution which is the
proposed AFD method. Section 5.4 applies the method to the Bicycle vehicle
application. Finally, Section 5.5 provides the chapter conclusion with some
discussions and perspectives.

5.2 Problem formulation

In this section, a description of the problem formulation for the fault diag-
nosis purpose is addressed. Based on that, objectives, scope and methodology
of a resolution can be determined. In general, a standard fault diagnosis res-
olution addresses both the fault detection and isolation (FDI) and the fault
estimation (FE).

The system under consideration is the same of (4.1) presented in Chapter
4. The assumptions (A1) are also considered in this development. Further-
more, additional assumptions are also required in the following.

Assumption F1. The fault vector is of the form of single fault, that is
f bk = b.ej ≡ f bk,j where b ∈ R and ej is the j-th standard unit vector for some
j ∈ {1, ..., ny}.

Assumption F2. For each chain j ∈ {1, ..., ny}, there exists a value
b∗j > 0 so that the detection signal πk is such that

P
(
πk = 1

∣∣|b| ≥ b∗j
)
≥ p∗j and P

(
πk = 0

∣∣|b| < b∗j
)
≥ p̃∗j ,

where p∗j , p̃
∗
j are acceptable probabilities (e.g. p

∗
j = p̃∗j = 0.95).

Remark 34. The assumption F1 is considered as it is the simplest but
indispensable case for a FDI and FE problem. The notation f bk,j used in this
chapter is dedicated to designate a vector depending on k, b and j and not
the j-th element of the vector f bk . �

Remark 35. The assumption F2 raises naturally for any fault detection
method. As the fault value b has a large magnitude, the fault is detected
easily (πk = 1) and vice versa. Thus, such thresholds b∗j 's always exist. The
values b∗j , p

∗
j and p̃

∗
j are chosen based on the application and the considered

scenario. �

Problem 1. Given a linear discrete time-variant dynamical system with
assumptions (A1), (F1) and (F2), for a detected fault, determine (isolate)
the chain on which it occurs and estimate its value. �
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The Problem 1 focuses on the diagnosis (isolation and estimation) of large
faults (|b| ≥ b∗j) which are detected almost always (with high probabilities)
and some moderate ones (|b| < b∗j) which are detected occasionally (with
small probabilities). The detected signals (πk = 1) include also false alarms.
Beside the ability of isolation and estimation of the real faults, a good fault
diagnosis scheme might help to reduce false alarms.

Problem 2. Given a linear discrete time-variant dynamical system with
assumptions (A1), (F1) and (F2), detect (diagnosis if possible) incipient
faults, i.e. the ones with small fault values (|b| < b∗j), in the early stage. �

Incipient faults are naturally harder to detect. The Problem 2 can be
seen as solved (or partially solved) by a scheme which has the ability to:

1. Reduce thresholds b∗j 's to smaller values (as small as possible value or
a reasonable one),

2. Solve the Problem 1 using reduced thresholds b∗j 's with good/acceptable
performance,

3. Reduce false alarms.

A perfect solution to Problem 2 which can detect all incipient faults might
be unrealistic.

5.3 Active Fault Diagnosis Scheme for Adap-

tive degrees of freedom χ2-statistic method

In this section, an AFD scheme to a discrete dynamical system based
on the ADFC method dealing with sensor additive single fault is developed.
This scenario corresponds to the type 2 of error in Chapter 4. The proposed
scheme focuses to handle the Problem 1 and solves partially the Problem 2.

5.3.1 Motivation

ADFC method is a fault alarm (detection) method that can detect mul-
tiple and single faults with magnitudes beyond a threshold. The fault values
can be positive or negative. Consequently, it is compatible to the system
(4.1) with assumptions (A1), (F1) and (F2). These properties are illus-
trated thanks to the following example.

Example 6. Return to the Bicycle vehicle model simulation in Chapter 4
with scenario 3 and type 2 error. All settings are unchanged unless the
ADFC method (Algorithm 7) will be applied with the use of the OUBIKF
(Algorithm 3) and the scale parameter λk = a

−1/2
k as mentioned in the related
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-40 100 100 100 98.24
-35 100 100 100 97.92
-30 100 100 100 97.18
-25 100 99.56 100 96.76
-20 99.70 98.64 100 96.52
-15 92.86 89.62 64.98 35.16
-10 48.34 38.76 22.22 16.22
-5 15.46 10.92 10.10 6.84
0 6.9 3.88 9.36 7.52 (FAR(%))
5 14.44 10.94 14.50 11.32
10 49.12 40.84 15.04 8.52
15 94.30 91.50 67.22 38.34
20 99.56 98.42 100 96.42
25 100 99.76 100 97.02
30 100 99.98 100 97.32
35 100 100 100 97.92
40 100 99.98 100 98

Table 5.1 � Detection rate of ADFC detector applied for Bicycle vehicle
model.

discussion, where ak is such that S+([Sk]) � akI (Algorithm 7). The results
after L = 100 times of simulations are shown in the following table, where
DR(%) stands for detection rate.

It is shown in Table 5.1 that the ADFC method functions with either
positive or negative fault values, the thresholds mentioned in assumptions
(F2) are determined as b∗1 = b∗2 = b∗3 = b∗4 = 20 with probabilities beyond
0.96. The values of these thresholds are reduced remarkably thanks to the
use of scale parameter λk (remaining only 20 from 55 of Table 4.8).

Note that in the case of b = 0, there is in fact no fault, thus the cor-
responding detection rates shown in the table are actually false alarm rate
(FAR(%)) which notation is noted right next to them. �

In the framework of system (4.1) and assumptions (A1), (F1), (F2),
ADFC method is applied together with OUBIKF where the later is used as
a residual generator providing [rk] = yk − [ŷk]. The whole fault detection
process of this method is summarized in Algorithm 7 and called in brief the
ADFC detector as mentioned so far.

Let k ≥ 1, yk = y0
k + f sk where y0

k is the fault-free measurement. In the
faulty case, f sk = b.ej0 with b 6= 0 and j0 ∈ {1, ..., ny}. In the same manner,
one gets [rk] = [r0

k] + f sk and [x̂k|k] = [x̂0
k|k] + Kkf

s
k . The developed AFD
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scheme is motivated by following questions:

(Q1) Given that the ADFC detector has detected the existence of the sensor
fault f sk = b.ej0 , what happens if one can add (by chance!) a quantity
f̃k = −b.ej0 to the measurement yk to obtain ỹk then rerun the ADFC
detector with ỹk ?

(Q2) In the same manner, what happens if one adds each of following quan-
tities:
� f̃ 1

k = b1ej0 where b1.b > 0,
� f̃ 2

k = b2ej0 where b2.b < 0,
� f̃ 3

k = b3ej where j 6= j0 ?

Assuming that the ADFC detector has a good enough performance, for
(Q1), detection signal πk equals 0 with the use of ỹk. Then consider (Q2).
In the �rst case, the fault value has been augmented its magnitude by an
additive term of the same sign, so the ADFC detector gives πk = 1 with high
probability. In the second case, regarding assumption (F2), one gets with
high probability that πk = 0 if |b2 + b| < b∗j0 and πk = 1 if |b2 + b| ≥ b∗j0 . For
the last case, it is worthy to note that:

� add a term b3 to the j-th element of yk is equivalent to add b3 to the
j-th element of [rk],

� the statistic used in ADFC detector is Uk = sup{abs([rk]T [rk]/ak)}.
Since j 6= j0, by assumption, the j-th element of [rk], says [rk,j], is fault-free.
Therefore, [rk,j] is centered nearby 0. With the additive term b3, whatever
it is negative or positive, [rk,j] deviates more from 0 while its width remains
unchanged provided that |b3| is not too small. This implies that Uk takes a
greater value while the threshold δk determined by P[χ2(κkny) > δk] = α is
unchanged since κk, ny and α are unchanged (Algorithm 7). Thus, πk = 1
also in this case of (Q2).

5.3.2 Methodology and Scheme

In the considered framework, a sensor fault is characterized by a fault
value b and the chain j on which it occurs. Denote a detection signal obtained
by applying a sensor fault f bk,j to the ADFC detector as πk(f bj ). In addition,
since the ADFC detector performs also with the multi faults case, in the next
we also use the notation πk(f bj + f b

′
j′ ), j 6= j′ to designate the detection signal

associated to faults occurring on two di�erent chains.
Let ∆ ∈

[
0 , minj=1:ny{b∗j}

]
and M ∈ N∗ so that M.∆ is superior the

maximum fault magnitude we want to estimate (and obviously superior all
thresholds b∗j 's of assumption (F2)). Generate auxiliary signals, says �ctive
faults, as follows:
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f̃−Mk,1 = −M.∆.e1 , . . . , f̃Mk,1 = M.∆.e1 ,

f̃−Mk,2 = −M.∆.e2 , . . . , f̃Mk,2 = M.∆.e2 ,

. . .

f̃−Mk,ny
= −M.∆.eny , . . . , f̃Mk,ny

= M.∆.eny ,

(5.1)

or brie�y,
f̃ qk,j = q.∆.ej , q = −M : M , j = 1 : ny. (5.2)

If a fault occurs on a chain j0 ∈ {1, ..., ny}, says f bk,j0 = b.ej0 6= 0 and
assuming that 0 ≤ |b| ≤M.∆, there exists a q∗ ∈ {−M, ...,M} so that

q∗∆ < b ≤ (q∗ + 1)∆ .

Therefore:

0 < |b+ (−q∗∆)| ≤ ∆ and 0 ≤ |b+ [−(q∗ + 1)∆]| ≤ ∆,

which imply that

πk

(
f bj0 + f̃ bij0

)
= 0 , bi = −(q∗+ i)∆ , i ∈

{
−
⌊
x∗j0/∆

⌋
+ 1 :

⌊
x∗j0/∆

⌋}
(5.3)

with high probability regarding discussions of (Q1) and (Q2) in the previous
section. Also, we have with high probability

πk

(
f bj0 + f̃ bij0

)
= 1 , bi = −(q∗ + i)∆ , i /∈

{
−
⌊
x∗j0
∆

⌋
+ 1 :

⌊
x∗j0
∆

⌋}
πk

(
f bj0 + f̃ q∆j

)
= 1 , q ∈ {−M : M} , j 6= j0 .

The developed AFD scheme for ADFC method is explanatory via the
diagram in Fig.5.1 and Algorithm 9. Regarding Fig.5.1, the ADFC detector
includes OUBIKF as its residual generator and the fault detection part of
AFD block without auxiliary signals and fault diagnosis part. It provides only
detection signal πk at each iteration. From the �gure, we note that when a
fault occurs at a time instant k, it follows the feedback [x̂k|k] and a�ects the
residual at next iterations. Thus πk+1 re�ects not only the existence of f sk+1

but also the e�ect of previous fault f sk . The AFD scheme consists in using
�ctive faults as auxiliary inputs and providing them only to the AFD block
and not to the monitored system (plant). Thanks to these auxiliary inputs,
the ADFC detector produces a signature matrix

Sk =

[
πk

(
f sj0 + f̃ q∆j

)
j,q

]
≡
[
πqk,j

]
, j = 1 : ny, q = −M : M,
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where j, q are row and column indexes respectively. Then the AFD block is
equipped with a fault diagnosis part decoding Sk to decide whether πk equals
0 or 1, f sk is 0 or takes which estimated value. After that, the estimated fault
f̂ sk is sent backwardly to OUBIKF in order to compensate for the fault e�ect
to [x̂k|k] as an interval estimate for the real state xk and to the fault diagnosis
at the next iteration. Without this fault feedback process, the fault diagnosis
has a poor performance.

[C][B]

[A]

[D]

System

fs
k

K

AFD Block

Fault Detection

Fault Diagnosis

OUBIKF

Pre-designed

Auxiliary

signals

u

+

+

+

+

[x̂k|k−1]

+

+

[x̂k|k] = [x̂0
k|k] +Kk(f

s
k − f̂s

k)

yk = y0k + fs
k

[ŷk] − +

+

[rk] = [r0k] + fs
k

−

f̂s
k

ADFC DETECTOR

Figure 5.1 � Active Fault Diagnosis diagram using ADFC detector.

The function of the fault diagnosis part of the AFD block as a signature
matrix decoder is speci�ed in Algorithm 9. When Sk has no zero element,
all yielded detection signals are 1, in particular,

πk

(
f bj0 + f̃ bij0

)
= 1 , bi = −(q∗ + i)∆ , i ∈

{
−
⌊
x∗j0/∆

⌋
+ 1 :

⌊
x∗j0/∆

⌋}
.

which contradicts (5.3). In other words, it is almost the case that πk(f bj0) = 1
for all b nearby and including 0. Therefore, the detected signal πk = 1 (line
3 of Algorithm 9) initially dispatched is a false alarm with high probability.
When Sk has at least one zero element, the error chain is estimated as the
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Algorithm 9 AFD scheme for ADFC method

1: Initialization:
∆, M , B∗ = {b∗j , j = 1 : ny}, λ,
[x̂0|0],P0|0, [A], [B], [C], [D], [Q], [R], α, uk, yk, k = 1, 2, ..., N .

2: for k = 1, 2, 3, ...N do
3: Use ADFC detector (Algorithm 7) to get detection signal: πk
4: if πk = 1 then
5: q = −M : M ; j = 1 : ny; ỹqk,j = yk + q.∆.ej;

6: Rerun ADFC detector with {ỹqk,j} to get Sk =
[
πqk,j
]
,

7: if Sk has no zero element then
8: πk = 0
9: else

10: ĵ0 = argmaxj=1:ny

∑M
q=−M πqk,j ;

11: Find I0 ⊂ {−M : M} so that πq
k,̂j0

= 0 for all q ∈ I0

12: b̂ = −mean {I0} .∆ ; f̂ sk = b̂.êj0
;

13: if |b̂| ≤ λ.min{B∗} then
14: πk = 0
15: else
16: f̂ sk = sign(b̂).max{|b̂|,mean(B∗)}.êj0

17: [x̂k|k] = [x̂k|k]−K.f̂ sk
18: end if
19: end if
20: end if.
21: end for

Note: The parameters in the second line of the initialization are required
only for ADFC detector (Algorithm 7).

one on which Sk has the maximum number of zero elements, denoted by
ĵ0. That is because a single fault at a chain j0 may a�ect the behavior of
residual [rk] on another chain j 6= j0, however its e�ects on the chain j0 is
the stronger. Then, the fault is estimated as the additive inverse of the mean
of all �ctive faults f̃ q∆

k,ĵ0
with which πk

(
f bj0 + f̃ q∆

ĵ0

)
= 0.

Denote the estimated fault as f̂ sk = b̂.êj0
and the diagnosed detection

signal as π̂k. The diagnosis is called r-accurate if

ĵ0 ≡ j0 and |b̂− b| ≤ r , (5.4)

where r > 0 is a predetermined radius. This condition is also called the
r-accuracy.
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Next, in order to eliminate more false alarms and reinforce the estimation
accuracy, a regularization is performed. Regarding the assumption (F2),
ideally a fault value b ≥ b∗j0 is detected and hence b̂ must be at least close to
min{b∗j , j = 1 : ny}. So, if the estimated value b̂ is such that

|b̂| ≤ λ.min{b∗j , j = 1 : ny}, λ ∈ [0, 1],

we consider that it is not consistent with assumption (F2) and hence b̂ is
replaced by 0 and π̂k = 0 is dispatched. In the case that

λ.min{b∗j , j = 1 : ny} < |b̂| ≤ mean{b∗j , j = 1 : ny},

we consider that there is something intervening and lessening the estimated
value b̂. So b̂ is replaced by mean{b∗j , j = 1 : ny} and π̂k = 1 is dispatched.
The value mean{b∗j , j = 1 : ny} is chosen as the replacing value for b̂ because
the actual faulty chain j0 is not known, otherwise b∗j0 could be used. Finally,
the estimated fault is fed backwardly to ADFC detector by subtracting the
amount Kf̂ sk to [x̂k|k].

5.4 Application

In this section, consider again the Bicycle vehicle model which is applied
in the Chapter 4 using the ADFC method. All parameters related to the
model remain unchanged and the OUBIKF (Algorithm 3) is used inside the
ADFC detector (Algorithm 7). Here, the case of single sensor faults is applied
to diagnosis. The threshold values b∗j 's mentioned in assumption (F2) are
taken from Example 6: b∗j = 20, ∀j = 1 : ny with probabilities beyond 0.96.
So, the ADFC detector has been tuned by the use of the scale parameter
λk = a

−1/2
k to match the goals of increasing of detection rates and decreasing

of thresholds b∗j 's. Other parameters chosen for AFD scheme 9 are: ∆ = 5,
M = 12, λ = 0.5 and signi�cance level α = 0.03.

Recall that the AFD scheme is dedicated to diagnose faults beyond thresh-
olds b∗j 's as the Problem 1 has been formulated. Thus, in order to illustrate
the function of the scheme as well as its performance, a fault value b = −25
is �xed. Then, the four di�erent faults f sk,j = −25ej are tested corresponding
to the four chains j = 1 : 4 of the measurements yk. In each case, an error
range of length 50 (time instants) are randomly chosen in which the fault
occurs. Then the ADFC detector (Algorithm 7) is performed without and
with AFD scheme. Thanks to that we can answer to several questions:

(1) Does the AFD scheme enhance the fault detection of ADFC detector ?
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(2) Does the AFD scheme help to reduce false alarms ?

(3) How well is the fault diagnosis provided by the AFD scheme ?

The �rst two questions are answered positively thanks to Fig.5.2 and
Tables 5.2-5.3 using evaluation indexes (DR, NDR, FAR, EFF) de�ned in
Section 4.2.2. By these, the faults are totally detected in the error range (DR
= 100%) by the ADFC detector. In addition, applying the AFD scheme, it
reduces the false alarm rate (FAR) from about 8.6% to about 1% and hence
the e�cient (EFF) indexes are augmented to 99%.

Chain DR (%) NDR (%) FAR (%) EFF (%)
1 100 0 8.6 91.4
2 100 0 8.6 91.4
3 100 0 8.7 91.3
4 100 0 8.7 91.3

Table 5.2 � Detection performance without AFD technique

Chain DR (%) NDR (%) FAR (%) EFF (%)
1 100 0 0.7 99.3
2 100 0 1.0 99.0
3 100 0 1.0 99.0
4 100 0 1.0 99.0

Table 5.3 � Detection performance with AFD technique

To deal with the question (3) above, we measure the fault diagnosis per-
formance by the accuracy rate Ar de�ned by

Ar =
∑
k∈Rj

I(|b̂(k)− b(k)| ≤ r)I(ĵ = j)

|Rj|
× 100% , (5.5)

where r > 0 is a predetermined radius, I(.) is the indicator function, Rj is
the error range corresponding to the fault chain j, |Rj| is the length of Rj,
b̂(k) and ĵ are estimates of actual values b(k) and j, k is the time instant.
So, Ar is the percentage of fault estimates in Rj satisfying (5.4).
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Figure 5.2 � Detection signals without (left) and with (right) AFD technique
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The simulation results related to the question (3) are given by Table 5.4.
From the last row of the table, it is shown that all estimated chains are
correct and all estimated fault values b̂(k) are away from the actual faults
b(k) at most a radius of r = ∆ = 5. The second row of the Table provides
the accuracy percentage corresponding to the radius r = ∆/2.

Chain 1 2 3 4

Ar (%)
r = 5/2 86 100 78 98
r = 5 100 100 100 100

Table 5.4 � The Ar(%) accuracy rate

Apart from the three questions discussed above, the fact that AFD scheme
using estimated fault to feed backwardly into [x̂k|k] increases the estimation
performance of the OUBIKF as the results shown in Fig.5.3-5.4. In the
�rst �gure, the estimate intervals between two vertical black lines (the error
range) deviate from the real states, even no longer contain these states and,
in addition, the widths of these estimate intervals increase. In contrast, in
the later �gure, the estimate intervals still track the real states well with
reasonable widths.

Figure 5.3 � Active fault diagnosis - State estimates without fault estimation.
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Figure 5.4 � Active fault diagnosis - State estimates using fault estimation.

5.5 Conclusion and perspective

In this chapter, an AFD scheme is developed for ADFC method. It can be
considered as an extension and improvement of the ADFC detector to make
it become an advanced detector or says a diagnoser using auxiliary signals.
All standard functionalities of a fault diagnoser are concerned, included FDI
and FE.

The most relevant characteristic of the scheme is that auxiliary signals
are not injected into the monitored system but provided only to the diag-
noser. This is also the key di�erence of the scheme with other AFD methods.
This helps to avoid additional disturbances due to auxiliary signals on the
monitored system. In addition, auxiliary signals are designed o�-line and
only injected into the diagnoser once a detected signal (πk = 1) is dispatched
at a time instant k. Then, the generated signature matrix is analyzed to
provide decisions about the fault candidate without delay of any �nite time
(instant) interval in which the diagnoser waits reactions of the monitored
system being injected. This implies that the developed scheme can provide
an on-line fault diagnosis with no delay in time instant and with computation
time depending only on the computer performance.

Another important characteristic of the scheme is the compensation for
the actual fault e�ect to the diagnosis at the next iteration by using the esti-
mated fault as a feedback to the diagnoser. It is important for the developed
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scheme because without it, the diagnosis performance of the scheme degrades
severely. It may be also a good additional strategy for several existing AFD
methods.

As an initial development proper for the ADFC method, the scheme has
its limits needed to be solved in future researches. In the scheme, only the
case of single fault is treated. Thus, multiple fault diagnosis is an important
extension of the scheme. Secondly, there is a number of faults which are ne-
glected by the initial detection of the ADFC detector. An additional scheme
aiming to deal with these neglected faults is then a potential improvement
of the one studied in this chapter. Finally, a control feedback design for the
case of a fault already diagnosed (detected, localized and estimated) might
be an interesting and signi�cant issue to be investigated.
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Chapter 6

Conclusion

The thesis is structured with two main parts contributing in two major
subjects after a preamble chapter, namely State of the art (Chapter 1), and
followed by a global conclusion of the thesis (Chapter 6). In the �rst part,
the former subject is concerned the state estimation or �ltering problem in a
framework of mixed uncertainties, while in the second part, the later subject
deals with fault diagnosis based on results developed in the �rst one.

Throughout the thesis, discrete time dynamical systems are investigated.
The linear case is studied in Chapter 2 which results in the Optimal Up-
per Bound Interval Kalman Filter (OUBIKF). The nonlinear case is under
consideration in Chapter 3 and this study produces the so-called Reinforced
Likelihood Box Particle Filter (RLBPF). Then, these two �lters are used in
development of fault diagnosis methods in a uni�ed framework correspond-
ing to the passive approach in Chapter 4 and the active approach in Chapter
5. The uni�ed framework is based on the Adaptive Degrees of Freedom χ2-
statistic (ADFC) method applied to either linear or nonlinear system as a
passive stochastic adaptive approach and extended as the main part, called
ADFC detector, of the Active Fault Diagnosis (AFD) scheme applied to lin-
ear system. Furthermore, a global uni�ed framework applied to the whole
study is the mixed uncertainty context to which the dynamical systems un-
der consideration either linear or nonlinear and either in �ltering or diagnosis
problems are concerned. In this context, for linear case, bounded-error uncer-
tainty is considered for system matrices (Ak, Bk, Ck, Dk) with known inputs
uk's and additive Gaussian noises with bounded-error uncertainty covari-
ance matrices are taken into account in state and measurement dynamics.
For nonlinear case, similar additive Gaussian noise assumptions are consid-
ered for the measurement dynamic, while the bounded-error uncertainty is
applied to system inputs uk and state dynamic disturbances wk contained
in known intervals [uk], [wk], given that dynamic functions f, h are already
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known. Thus, the thesis contribution in this context is a generalization of
classical (set-membership and stochastic) approaches using interval analysis
in the viewpoint that point values of variables/parameter-matrices are special
cases of corresponding interval values.

A literature background is introduced in the �rst chapter of the thesis.
This review provides basic notions used in the followed chapters involving
the standard Kalman Filter, the Bayesian �ltering approaches, the particle
�ltering and the fault diagnosis. This introduction matches completely the
development of the OUBIKF and RLBPF for the �ltering part and of the
ADFC method and AFD scheme for the fault diagnosis part. Also, a math-
ematical background is presented in the beginning of Chapter 2 which pro-
vides consistent notations and de�nitions applied in the whole study as well
as necessary properties recalled or developed concisely in a theorem-proof
structure. Furthermore, the proposed methods are all summarized in corre-
sponding Algorithms which favor the comprehension and re-implementation
of them. The method e�ciency and performance are illustrated numerically
by automotive benchmark models (Bicycle vehicle model for linear case and
Suspension model for nonlinear case) throughout the thesis. Some academic
examples are also provided. The thesis also proposes indicator indexes and/or
scenarios in order to evaluate developed methods in comparison with others.

The essential advantages of the developed �lters pointed out via simula-
tions can be summarized as follows: the computation cost and the resulted
interval estimate widths are remarkably reduced while guaranteed estimates
are preserved (i.e. interval estimates contain the real states with high per-
centage O%). In the passive approach, the ADFC method is shown to be
e�cient in fault detection of either single or multiple additive faults and ei-
ther positive or negative fault values thanks to adaptive threshold technique
and tuning factors. In the active approach, the ADFC method is enhanced
and embedded in the AFD scheme using predesigned auxiliary signals to-
gether with the fault estimate feedback to reduce the false alarms, increase
the detection rate, localize the fault and estimate its value.

Some other advantages of the proposed methods can be rediscovered at
the end of corresponding chapters with more detailed discussions. Besides
strong points, the thesis contributions have several limitations leading to a
number of potential future researches presented below.

In the �ltering part, the OUBIKF concerns the interval Kalman �lter-
ing in which �eld a number of issues are not investigated systematically,
especially those related to �lter convergence, system/�lter stability, con-
troller/observer design using interval estimates. In another view, investigate
the robust control aspect of the OUBIKF is also an interesting research. The
RLBPF, in principle, can be implemented with any state and measurement
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continuous dynamical functions, unless conditions under which the �lter pro-
vide a good performance or guaranteed results, e.g. with C-stability, are not
pointed out. The control factors c1, c2, c3, ε, SmF, ScF, on the one hand,
make the �lter be more e�cient, �exible and suitable for numerous applica-
tions, on the other hand, they are subject to future studies about optimal
choices and/or automatic adaptive choices of them either by analytical or
machine learning method. Investigation of RLBPF on some concrete classes
of state and measurement dynamical functions (e.g. L-Lipschitz, L2,...) is
also a potential research perspective. The score function J as well as the
method weighting it may be improved and the number of particles applied
in the partition step is an issue of the �lter.

About the fault diagnosis part, the ADFC method is developed however
in the framework of (additive) sensor fault systems. Extend this method to
deal with other kinds of fault (e.g. actuator faults) and with fault identi�-
cation is a perspective of our future research. In the AFD scheme, only the
case of single fault is treated. Thus, multiple fault diagnosis is an important
extension of the scheme. Secondly, following the scheme, there is a number
of faults which are neglected by the initial detection of the ADFC detector.
An additional scheme aiming to deal with these neglected faults is then a po-
tential improvement of the present study. Finally, a control feedback design
for the case of a fault already diagnosed (detected, localized and estimated)
might be an interesting and signi�cant issue to be investigated.
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