
HAL Id: tel-03841305
https://laas.hal.science/tel-03841305v2

Submitted on 16 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Offensive and defensive approaches for wireless
communication protocols security in IoT

Romain Cayre

To cite this version:
Romain Cayre. Offensive and defensive approaches for wireless communication protocols security
in IoT. Networking and Internet Architecture [cs.NI]. INSA de Toulouse, 2022. English. �NNT :
2022ISAT0022�. �tel-03841305v2�

https://laas.hal.science/tel-03841305v2
https://hal.archives-ouvertes.fr

THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ FÉDÉRALE
TOULOUSE MIDI-PYRÉNÉES

Délivré par :
l’Institut National des Sciences Appliquées de Toulouse (INSA de Toulouse)

Présentée et soutenue le 30/06/2022 par :
Romain CAYRE

Offensive and defensive approaches for wireless communication
protocols security in IoT

JURY
Aurélien FRANCILLON Professeur des universités Rapporteur
Mathieu CUNCHE Maître de conférences Rapporteur
Mohamed KAANICHE Directeur de recherche Directeur de thèse
Guillaume AURIOL Maître de conférences Co-directeur de thèse
Vincent NICOMETTE Professeur des universités Examinateur
Maryline LAURENT Professeure des universités Examinatrice
Valérie VIET TRIEM
TONG

Professeure des universités Examinatrice

Damien CAUQUIL Ingénieur Examinateur
Géraldine MARCONATO Ingénieure Membre invitée du jury
Romain VIGNER Ingénieur Membre invité du jury

École doctorale et spécialité :
EDSYS : Informatique 4200018

Unité de Recherche :
Laboratoire d’analyse et d’architecture des systèmes

Directeur(s) de Thèse :
Guillaume AURIOL et Mohamed KAÂNICHE

Rapporteurs :
Aurélien FRANCILLON et Mathieu CUNCHE

Acknowledgments

During these last three years, this research work has occupied most of my thoughts
and learned me a lot about myself. For me, these three years have been one of the
most exciting and beautiful chapter of my life, and I realize how lucky I have been
to be surrounded and supported by amazing people that helped me to become the
person I am today, and forged my passion for science and computer security. These
few words are dedicated to them: my colleagues, my friends and my family.

First, I want to thank Liviu Nicu and Mohamed Kaâniche, CNRS Research
Directors at the Laboratory of Analysis and Architecture of Systems, for welcoming
me in the laboratory, and Hélène Waeselynck, Team Leader, for allowing me to
perform this research work in the Tolérance aux Fautes et Sûreté de fonctionnement
(TSF) team. This environment was a perfect match for me, and it allowed me
to work in a stimulating place, surrounded by brilliant and inspiring people. I
also would like to sincerely thank Aurélien Francillon, Matthieu Cunche, Marilyne
Laurent, Damien Cauquil and Romain Vigner for accepting to share their expertise
with me and review this PhD thesis. Thanks to them, I enjoyed every second of my
PhD defense, and it was a real pleasure and honor for me to present them my work
and answer their questions. I’m very proud that they consider this work as a relevant
contribution to IoT security, and I’ve been particularly touched by their words and
encouragements. I would like to express special thanks to my rapporteurs, Aurélien
Francillon and Matthieu Cunche, for their valuable feedback on this manuscript,
and to Damien Cauquil for his inspiring contributions to wireless security and the
time he regularly took during this thesis to provide me some feedback and sharing
his technical expertise with me.

I want to warmly thank my supervisors for their advices, their constant support
and their friendship. There are no words strong enough to say to Vincent Nicomette
how precious his humanity, his advices and his kindness were for me. I want him to
know how grateful and respectful I am for the incredible work he did and the person
he is. I want to express to Guillaume Auriol my friendship and my appreciation
of the constant efforts he made to support me during this research work. Without
him, his scientific advices, his empathy and his sense of humor, these three years
would have been way more difficult, and I’m already missing our passionated talks
about computer science, teaching, electronics or physics. I also would like to thank
Mohamed Kaâniche for his kind and caring support and the great value of his
scientific expertise. His feedback and advices have been incredibly useful for me,
and learned me a lot about what a research work is and how to conduct it properly.
Finally, I want to express to Geraldine Marconato how pleasant it was to work with
her, and how valuable her feedback, her advices and her enthusiasm was for me.
I wish her the best for her new career at Airbus, and hope she will continue to
build collaboration between the academic and the industrial world, allowing other
students to discover how beautiful and stimulating computer science can be.

ii Acknowledgments

Much credit of this work is to be given to my colleagues and friends, especially
Jonathan Roux, Florent Galtier and Clement Chaine. I want to thank sincerely
Jonathan Roux for his warm welcome during my internship, his constant support
during this thesis and the inspiring ideas he shared with me. I want him to know
that his empathy, his optimism and his kindness helped me a lot during the un-
avoidable periods of doubts that happened during this research work. I want to
thank Florent Galtier for his help on many topics covered by this thesis. Collab-
orating with him during these three years was a pleasure, and I hope he enjoyed
these stimulating conversations as much as I do. I also want to highlight the im-
pressive work performed by Clement Chaine during his internship and thank him
for his support and his enthusiasm. Last but not least, many PhD students and
supervisors from the LAAS-CNRS TSF team contributed to make these three years
a beautiful experience, and I want them to know how proud I am to have been a
member of such a great research team.

Moreover, I would like to thank my friends, who were always here for me during
this PhD thesis. A lot of them took care of me during these three years, probably
more than myself. Thanks to Alicia Vigny for being the wonderful friend I needed
during these years, and welcoming me with a warm tea and a lot of love when I
needed it. Thanks to Pierre Lefebvre for his constant support and his ability to turn
every moment, even the worst one, into a good joke. It was incredibly precious for
me. Thanks to Cédric Guerri and Rose-Hélène Michon for every second we spent
together and for the exciting discussions about science, flowers, theater, litterature,
politics, movies and life. I want to thank Pierre-Hugo Coste for his delicious toasted
sandwiches and for his friendship. Thanks to Damien Gales for sharing with me
way too much stimulating documentaries and for contributing to make humanity
better. Thanks to Pauline Cayzac for all the beautiful moments we spent together.

Finally, I want to warmly thank my brother and my parents for their constant
support and love. Their presence during my PhD defense contributed a lot to this
wonderful experience, and they have always been here when I needed them. I want
them to know how proud I am of our family and how much I love them.

Contents

List of Figures viii

List of Tables ix

Introduction 1

I Internet of Things security overview 5

1 Internet of things: a security perspective 7
1.1 General context . 7
1.2 Wireless communication protocols 10
1.3 Security threats . 13

1.3.1 Hardware-related threats . 13
1.3.2 Software-related threats . 15
1.3.3 Network-related threats . 16

1.4 Mitigations . 18
1.5 Challenges and contributions . 20

2 State of the art of wireless security 25
2.1 Auditing tools . 25

2.1.1 Hardware tools . 26
2.1.2 Software tools . 31

2.2 Protocol attacks . 34
2.2.1 Bluetooth Low Energy . 34
2.2.2 Zigbee . 36
2.2.3 Proprietary protocols . 37
2.2.4 Cross-technologies attacks . 39

2.3 Defensive approaches . 42
2.3.1 Signal-based approaches . 42
2.3.2 Packet-based approaches . 43

2.4 Outline . 44

II Low-level attacks 47

3 Cross-protocol attacks 49
3.1 Motivations . 50
3.2 Overview of wireless protocols . 52

3.2.1 Digital modulation . 52
3.2.2 Bluetooth Low Energy (BLE) 52

iv Contents

3.2.3 Zigbee . 55
3.3 The WazaBee attack . 58

3.3.1 Assumptions . 58
3.3.2 Attack overview . 59
3.3.3 Correspondence table generation 60
3.3.4 Requirements . 60

3.4 Benchmarks . 64
3.5 Attack scenarios . 66

3.5.1 Experimental setup . 66
3.5.2 Scenario A: injecting 802.15.4 frames using a smartphone . . 66
3.5.3 Scenario B: performing complex Zigbee attacks from a BLE

tracker device . 69
3.5.4 Conclusion . 70

3.6 RadioSploit: implementing pivoting attacks on a recent smartphone 70
3.6.1 Firmware reverse engineering and patching 70
3.6.2 Protocols support . 73
3.6.3 Conclusion . 76

3.7 Counter-measures . 76
3.8 Conclusion . 77

4 InjectaBLE: injecting malicious traffic into established Bluetooth
Low Energy connections 79
4.1 Motivations . 80
4.2 Bluetooth Low Energy . 81

4.2.1 Overview . 81
4.2.2 Link layer internals . 82

4.3 Adversary model and attack overview 86
4.4 InjectaBLE: injecting arbitrary frames in an established connection . 87

4.4.1 Clock (in)accuracy . 87
4.4.2 Window widening . 88
4.4.3 Injecting an arbitrary packet 88
4.4.4 Checking the injection success 89
4.4.5 Implementation . 91

4.5 Attack scenarios . 92
4.5.1 Scenario A: illegitimately using a device functionality 92
4.5.2 Scenario B: hijacking the Peripheral role 93
4.5.3 Scenario C and D: hijacking the Central, the Peripheral or

both of them simultaneously (Man-in-the-Middle attack) . . 94
4.6 Sensitivity analysis . 95

4.6.1 Experiment 1: Hop Interval 95
4.6.2 Experiment 2: Payload size 97
4.6.3 Experiment 3: distance . 97

4.7 Counter-measures . 99
4.8 Conclusion . 100

Contents v

5 Mirage: an offensive auditing framework 103
5.1 Motivations . 104
5.2 Key Principles . 105

5.2.1 Providing an unified API . 105
5.2.2 Modularity and reusability 106
5.2.3 Genericity . 107
5.2.4 Low level analysis . 107

5.3 Architecture overview . 108
5.3.1 Main software components 109
5.3.2 Generic communication architecture 109
5.3.3 Modules and scenarios . 111
5.3.4 Chaining operator . 113

5.4 Protocols and modules . 113
5.4.1 Bluetooth and Bluetooth Low Energy 113
5.4.2 Zigbee . 115
5.4.3 Enhanced ShockBurst and Mosart 116
5.4.4 Wifi . 116
5.4.5 IR protocols . 117
5.4.6 Adding new protocols and modules 117

5.5 Experimentations . 118
5.5.1 Experiment 1: Auditing a Bluetooth Low Energy smart lighbulb118
5.5.2 Experiment 2: Attacking a randomized keyboard 122

5.6 Conclusion . 126

III Intrusion detection and prevention 129

6 OASIS, an Intrusion Detection System embedded in Bluetooth
Low Energy controllers 131
6.1 Motivations . 132
6.2 Detection of low level BLE attacks 133

6.2.1 Detection strategies . 134
6.2.2 Detection requirements . 138

6.3 Framework design . 139
6.3.1 Main guidelines . 139
6.3.2 Embedded detection software 140
6.3.3 Architecture of the Oasis framework 142
6.3.4 Framework usage . 144

6.4 Controllers instrumentation . 145
6.4.1 Broadcom and Cypress Bluetooth controllers 145
6.4.2 Nordic SemiConductors SoftDevice 147

6.5 Experiments . 147
6.5.1 Experimental setup . 148
6.5.2 Experiment Results . 150

vi Contents

6.6 Discussions . 150
6.7 Conclusion . 152

7 Reactive-jamming based firewall 155
7.1 Motivations . 156
7.2 Context and prerequisites . 157

7.2.1 Threat model . 157
7.2.2 Jamming taxonomy . 157
7.2.3 Objectives and challenges . 158

7.3 Approach overview . 160
7.3.1 Global architecture . 160
7.3.2 Reactive jamming . 161
7.3.3 Correction algorithm . 165
7.3.4 Decision and transmission . 167

7.4 Experiments . 167
7.4.1 Experiment 1: Zigbee, basic filtering 168
7.4.2 Experiment 2: Zigbee, attack filtering 168
7.4.3 Experiment 3: Enhanced ShockBurst, basic filtering 169
7.4.4 Experiment 4: Enhanced ShockBurst, attack filtering 169
7.4.5 Experimental conclusion . 170

7.5 Discussion and Limitations . 170
7.5.1 Genericity and extension to other protocols 170
7.5.2 Performance issues . 171
7.5.3 Critical environments . 172

7.6 Conclusion . 173

Conclusion and future work 175

Bibliography 181

List of Figures

2.1 Typical Software Defined Radio architecture 26

3.1 Bluetooth Low Energy Link Layer packet format 53
3.2 I/Q representation of a 2-FSK modulation 54
3.3 Bluetooth Low Energy communication channels 55
3.4 Physical Protocol Data Unit format 56
3.5 Temporal representation of O-QPSK modulated signal with half sine

pulse shaping . 57
3.6 I/Q representation of O-QPSK modulation with half sine pulse shaping 58
3.7 802.15.4 communication channels . 58
3.8 WazaBee architecture . 63
3.9 Targeted Zigbee network . 67
3.10 Forged data packets injection from a OnePlus 6T smartphone 68
3.11 Complex attack workflow from a BLE tracker 70
3.12 CYW20735 IoT development board 71
3.13 RadioSploit interface . 74
3.14 Mosart decoding using double bit strategy 75

4.1 Bluetooth Low Energy protocol stack 81
4.2 Initiation of a BLE connection . 83
4.3 Two consecutive connection events 84
4.4 Connection update procedure . 85
4.5 Attack overview . 86
4.6 Window widening for a Peripheral receiving the next connection event 89
4.7 Three possible outcomes of an injection attempt 90
4.8 Description of the Peripheral hijacking 94
4.9 Description of the Man-in-the-Middle attack 94
4.10 Experimental setup . 97
4.11 Experiment Results . 98

5.1 Key principles of Mirage framework 106
5.2 Global architecture of Mirage framework 108
5.3 Generic communication architecture of Mirage framework 110
5.4 Architecture overview of a module 111
5.5 Example of sequential execution . 114
5.6 IRma hardware schematics . 117
5.7 Example of randomized keyboard on a banking website 122
5.8 Mouse movements and actions extracted from eavesdropped traffic . 124
5.9 Cropped screenshot indicating the randomized keyboard layout . . . 125

viii List of Figures

5.10 Retrieving the credentials by combining mouse movements and ma-
licious screenshot . 126

6.1 Embedded detection software overview 140
6.2 Oasis Framework architecture . 142
6.3 Embedded detection software integration in proprietary stacks . . . 146

7.1 Jammers taxonomy . 158
7.2 Global architecture overview . 161
7.3 Reactive jamming operations . 162
7.4 Reactive Jamming experimental setup 163
7.5 Reactive Jamming experiment results 164
7.6 Zigbee packet corrupted by the reactive jammer 165
7.7 Hardware architecture . 168

List of Tables

3.1 Block/PN sequence correspondence table 56
3.2 Correspondence table of PN sequences 61
3.3 Zigbee and BLE common channels 62
3.4 Reception and transmission primitives assessment results 64

4.1 Frame format for LE 1M . 82
4.2 CONNECT_REQ PDU . 83

5.1 Messages format related to color modification 120

6.1 Targets used for each experiment . 148
6.2 Experimental results . 151

Introduction

In the recent years, there has been a fundamental shift in the world linked to the
rapid and massive expansion of a new kind of devices, so-called connected objects,
that are spreading everywhere in our daily life. These new devices aim to provide
connectivity to a wide variety of physical objects used in our daily life, allowing them
to provide new features and an improved user-experience. The interconnection of
these cyber-physical systems is commonly named Internet of Things. The fast and
early adoption of these new devices by end-users shows that there is a real interest
for these emerging technologies. A wide variety of devices, from smartwatches to
medical devices, are already deployed in the wild and massively used by the general
public and the professional circles.

This situation is a real game changer for computer science: indeed, many char-
acteristics of these new devices challenge numerous assumptions and models com-
monly used in computer science, especially from a security perspective. The most
obvious impact of this technology is linked to the fact that a connected device is
intended to interact with the physical world using sensors or actuators by design.
As a consequence, an attacker able to compromise such a system could cause con-
siderable damages, not only to the system itself or the data it processes, but also
to the physical world. Depending on the considered objects, the consequences of
such an attack may be critical: for example, a compromised medical device could
cause severe injuries or even death in extreme cases. These new risks dramatically
highlight the necessity of securing these devices.

Another key characteristic of these devices is that they are generally limited in
terms of resources: most of them being dedicated to a mobile use, they are mostly
based on embedded systems with limited resources and optimized for low energy
consumption. While this choice is logical according to the functional constraints of
these devices, it has severe consequences upon the security of these systems. Indeed,
multiple security approaches that are commonly implemented on traditional systems
cannot be easily embedded in such devices because of their computational cost. For
example, many mitigation measures aiming at hardening traditional systems, such
as ASLR or cryptography, are too costly to apply to these types of devices (because
of the balance between resources and functional requirements).

Another characteristic of these technologies is related to the connectivity they
provide. Indeed, each connected object needs to interact with other systems, using
a given communication medium. While any type of medium could theoretically be
used, the use of wireless communication protocols to provide this connectivity is a
common practice in the Internet of Things industry. From a functional perspective,
this choice is coherent and relevant: it allows the development of a wide variety of
devices, including mobile devices such as smartwatches, with very few constraints
regarding their interconnection. This choice has led to the development of multiple

2 Introduction

wireless communication protocols in recent years, engaged in a fierce competition to
conquer this new market and meet the technical requirements of these new devices.

However, the emergence of these new wireless communication protocols intro-
duces many challenges from a security perspective. Indeed, no standard solution
has yet emerged, leading to the co-existence of dozens of heterogeneous protocols in
the same environments. Some of these protocols, such as Zigbee, Thread or Blue-
tooth Low Energy are well known, their specifications being publicly available, while
others, such as ANT or Enhanced ShockBurst, are proprietary and poorly docu-
mented, resulting in black box technologies that are extremely difficult to evaluate
and secure. The interconnection of connected objects using these wireless proto-
cols also generates complex and dynamic topologies, mainly due to the fact that
many of them are dedicated to mobile use. Moreover, because the multiple wireless
communication protocols commonly used in IoT are based on peer-to-peer com-
munications, there are generally no gateways nor central nodes to comprehensively
monitor and analyze traffic to identify and mitigate threats.

The new paradigm emerging from the complex interconnection of connected ob-
jects, exchanging potentially sensitive data through heterogeneous wireless commu-
nication protocols sharing similar frequency bands or physical layers, raises multiple
issues from a security perspective. First, evaluating the attack surface associated
with the deployment of wireless technologies is a challenging task. While a con-
siderable number of threats inherent to wireless media have already been studied
and discussed in the literature, the increasing number of vulnerabilities recently dis-
covered in wireless protocol stacks shows that further investigations are needed to
accurately identify these threats. This involves developing a deeper understanding
of the internals of these stacks, as well as innovative methods to analyze the lower
layers, which are generally difficult to instrument or monitor. Second, the specific
threats linked to the co-existence of these protocols in the same environment due
to the IoT context have not been actively studied for now. New attack vectors
may take advantage of this situation, exploiting the wild deployment of mobile con-
nected devices to reach new targets. Finally, the relevance of the deployed security
models in this new context can also be questioned : for example, classic mitigations
such as perimetric security could be potentially defeated by an attacker exploiting
these types of attack vectors. Similarly, deploying traditional security solutions
such as intrusion detection systems (IDS) or intrusion prevention systems (IPS) is
extremely difficult because of multiple factors, such as the absence of central node,
the dynamic nature of IoT environments and the heterogeneity of wireless proto-
cols. Adapting these solutions to this new context is another challenge that remains
unsolved for now.

This PhD thesis is a contribution to the identification and mitigation of the
potential security issues related to the design of these wireless communication pro-
tocols and their co-existence in IoT environments. It mainly focuses on the security
of peer-to-peer wireless communication protocols commonly used in IoT, such as
Zigbee or Bluetooth Low Energy, especially from a low level perspective. More pre-
cisely, the background research question that motivated this work is the following

3

one: how to identify, assess and mitigate the new threats linked to the deployment
of peer-to-peer wireless communication protocols in the IoT context ?

This PhD thesis explores this problem both from an offensive and a defensive
perspective. The offensive contributions are mainly focused on vulnerability analy-
sis, highlighting critical low level attack vectors in wireless communication protocols
commonly used in IoT, such as Bluetooth Low Energy or Zigbee. We also contribute
to the field by providing offensive tools as open-source software, facilitating future
research works on IoT security. The defensive contributions are dedicated to Intru-
sion Detection and Prevention in IoT wireless networks, exploring two innovative
approaches adapted to the IoT context in order to both detect and prevent attacks
targeting the wireless protocols. More precisely, the contributions of this PhD thesis
are the following ones:

• We discovered and explored a new attack vector which could be critical in
the context of IoT, allowing to take advantage of a transceiver dedicated
to a given wireless protocol to perform pivoting attacks targeting another
wireless protocol that is not natively supported, by exploiting similarities in
their physical layers. We have demonstrated multiple critical attack scenarios
based on this vector and implemented them on several off-the-shelf devices,
including a smartphone or a connected object.

• We discovered a critical injection vulnerability in the Bluetooth Low En-
ergy protocol design, which is currently deployed on a wide number of de-
vices, allowing to perform multiple critical offensive scenarios. We practically
demonstrated its feasibility and highlighted that every Bluetooth Low Energy-
enabled device implementing the specification is vulnerable.

• We designed and implemented an offensive auditing framework for wireless
communication protocols, aiming at standardizing the development of offen-
sive tools and allowing to interact with up to six wireless protocols. This
framework currently supports a wide variety of offensive hardware tools and
implements a large number of attacks that can be easily customized and com-
bined to build complex attack workflows, considerably facilitating both the
vulnerability analysis of these protocols and the evaluation of defensive solu-
tions.

• We designed a decentralized Intrusion Detection System embedded in Blue-
tooth Low Energy devices, and showed that it can efficiently detect low level
vulnerabilities targeting the protocol. We implemented a defensive instrumen-
tation framework aiming at facilitating the development of detection modules
and the analysis of the internals of the wireless stacks.

• We built an experimental wireless firewall based on a reactive jamming ap-
proach, allowing to monitor, intercept or drop the traffic generated by two
widely used wireless protocols. We performed a set of preliminary experi-
ments demonstrating that it may efficiently prevent low level attacks.

4 Introduction

Let us note that the contributions of these research works covered the security of
Internet of Things in various contexts, from smart home to smart factory. Moreover,
these research works have been co-directed by the LAAS-CNRS laboratory and
Apsys.Lab, which is a company specialized in Aircraft Security and Industry 4.0,
allowing us to take into account an insightful industrial perspective.

This document is divided into three main parts. Part I describes the context
of Internet of Things from a security perspective and introduce the state of the
art of wireless security, Part II describes the offensive contributions and discuss
their impact upon the security of connected objects while Part III introduces our
defensive contributions aiming to explore new Intrusion Detection and Prevention
approaches.

Part I

Internet of Things security
overview

Chapter 1

Internet of things: a security
perspective

Contents
1.1 General context . 7
1.2 Wireless communication protocols 10
1.3 Security threats . 13

1.3.1 Hardware-related threats . 13
1.3.2 Software-related threats . 15
1.3.3 Network-related threats . 16

1.4 Mitigations . 18
1.5 Challenges and contributions 20

This first chapter introduces the context of this PhD thesis, highlights the chal-
lenges that have motivated this work and outlines the contributions.

We first introduce the context of Internet of Things expansion, underlining its
main characteristics and guidelines. Then, we discuss the impact of this situa-
tion from a security perspective, underlining the security issues linked to this new
paradigm. Finally, we discuss the scientific challenges implied by this situation that
have motivated this work and introduce our contributions.

1.1 General context

In the recent years, a new kind of devices has been actively developed and deployed
both in public and professional environments, named "connected objects". These
devices aim to implement new features into physical objects by providing them
with connectivity, their interconnection with existing networks and especially the
Internet network forming the so-called "Internet of Things" (or IoT).

Providing relevant definitions of terms like connected objects or Internet of
Things is already a challenge, considering the increasing amount of heterogeneous
technologies used in the wild that are making use of these terms. Indeed, depend-
ing on the use case involved, from health care to domotics, it seems that multiple
visions of Internet of Things coexist, and we lack a global picture that could harmo-
nize these specific visions. This situation has been discussed multiple times in the
literature these past few years, without leading to a consensus as far as we know.

8 Chapter 1. Internet of things: a security perspective

In this work, we will use the definitions proposed by B. Dorsemaine et al. in [Dorse-
maine 2015], which attempt to embrace the variety of use cases and technologies in
general definitions.

(1) Connected object. Sensor(s) and/or actuator(s) carrying out a specific func-
tion and that are able to communicate with other equipment. It is part of an in-
frastructure allowing the transport, storage, processing and access to the generated
data by users or other systems.

(2) Internet of Things. Group of infrastructures interconnecting connected ob-
jects and allowing their management, data mining and the access to the data they
generate.

From these definitions, we can underline the key aspects that define a connected
object and its environment:

• Interaction with the physical world through sensor(s) and/or actuator(s),

• Capacity to communicate with other equipment,

• Data generation and processing,

• Part of an infrastructure dedicated to the transport, storage, processing and
access to the data.

While these key aspects are obviously very general, they already provide us a
good overview of the implications resulting from this deployment. First, we can
note that these systems are able to interact with the physical world using sensor(s)
or/and actuator(s). From a functional perspective, this capability allows a lot of
new exciting use cases and applications by expanding the limits of the computing
world. These systems being already deployed and massively used, we can already
observe in our daily life how useful and innovative they can be. For example, a
smartwatch can monitor your heart rate during a sport session or record indicators
allowing to improve your sleep quality. A connected insulin pump may considerably
improve the life quality of diabetics people. Your connected alarm may alert you
during a burglary attempt. Some of these devices, such as a connected pacemaker,
can even sometimes save lives. However, from a security perspective, we can also
note that this capability opens up a new critical attack surface, allowing a potential
attacker to impact the physical world and cause severe damages. Your smartwatch
can now be compromised, allowing an attacker to collect sensitive information about
your health state or your position. A security flaw in the connected alarm system
may allow to disable it remotely, facilitating the physical intrusion. Finally, health
systems such as insulin pumps or pacemakers could be used to hurt or even kill
their user if they are compromised. The ambivalence of this situation dramatically
highlights the necessity to build secure and reliable connected objects, especially
when the attack impact is high. Indeed, the compromise of such systems being
relatively simple in most cases, the risk level is directly related to the impact.

1.1. General context 9

The second aspect mentioned in these definitions is the capacity to communi-
cate with other equipment, which is indeed a key characteristic of these devices.
This communication may allow to control the device and its actuators or collect
data from the sensors. It can theoretically be based on any kind of mediums, from
wired to wireless mediums such as Radio Frequencies (RF) or Infrared (IR). The
wide variety of communication mediums available gives a great flexibility to IoT
designers, allowing them to adopt the solution that is the most suited to fit their
requirements. For example, a static sensor in a building may be connected to the
company network using Ethernet, while a mobile smartwatch could use Bluetooth
Low Energy to allow a direct communication with the user’s smartphone while sav-
ing power. However, this multiplicity of communications protocols complicates the
security analysis of IoT environments, and leads to the co-existence of heteroge-
neous technologies increasing the complexity of such environments. In this work,
we mainly focus on wireless communication protocols such as Zigbee or Bluetooth
Low Energy, that have been widely deployed in IoT environments in the recent
years: we introduce these protocols and discuss their impact upon IoT security in
section 1.2.

The third key aspect emphasized by these definitions is the fact that connected
objects are intended to generate and process data. In the recent years, we have
observed the development of data-oriented technologies and approaches, aiming at
analyzing and exploiting huge amount of data to achieve different objectives. In-
ternet of Things is especially interesting according to these new technologies, as it
may allow to provide valuable data sets that could lead to exciting new applications
and use cases. On the other hand, the undeniable value of data generated and pro-
cessed by connected devices could become a privileged target for attackers, leading
to significant security risks. Indeed, some connected objects such as medical or
sport oriented devices, process sensitive or personal data, sometimes without a full
understanding of the associated risks by the end-user. In this context, preserving
the privacy of users becomes a priority, and protecting the confidentiality, integrity
and availability of the data processed and generated by connected objects remains
a significant challenge.

Finally, the fourth key aspect underlined by these definitions is the existence
of an infrastructure allowing the interconnection of connected objects, the so-called
Internet of Things. In the current state of connected objects deployment, we can
note that this infrastructure cannot be assimilated to a traditional network based on
an homogeneous and standardized technology, such as the IP network. The Internet
of Things is mainly composed of an interconnection of multiple networks, based on
very heterogeneous technologies. This situation generates a lot of complexity and
requires the deployment of equipment aiming at allowing communications between
heterogeneous communication protocols, such as gateways. Some specific use cases
linked to IoT generate even more complexity in the resulting environments: for
example, some devices being dedicated to a mobile use, they can lead to complex
and dynamic network topologies, in which it is difficult to identify whether the
presence of a given node is legitimate or not. From the previous observations,

10 Chapter 1. Internet of things: a security perspective

we already know how critical this infrastructure is from a security perspective:
the complexity resulting from this interconnection makes it especially difficult to
analyze and secure, and we obviously need security-oriented research to adapt to
this situation and secure the Internet of Things.

This high level overview of the Internet of Things underlines both the incredi-
ble potential of connected objects from a functional perspective and the significant
risks it raises from a security perspective: securing these networks and devices is
obviously a major concern. However, the fast expansion of the Internet of Things
is a game changer for computer science, as it deeply impacts various aspects of
computing. The fast emergence of new heterogeneous technologies, their massive
interconnection, the wide range of new use cases and applications, the generation
of complex and dynamic topologies, create a new computing paradigm which sig-
nificantly differs from the previous one, and question some of the assumptions that
support our existing security models.

1.2 Wireless communication protocols

One of the most significant evolution linked to the Internet of Things is the rapid
and massive development of wireless communication protocols. Indeed, the flexi-
bility provided by these wireless protocols is especially interesting according to the
constraints of connected objects, and resulted in a widespread adoption of these
technologies. It has also lead to the design and deployment of a large amount of
new wireless communication protocols, that are competing to win this new IoT
market by fitting the requirements of connected objects and continuously releasing
new features.

The chaotic deployment of these protocols in IoT environments resulted in a
sensitive situation from a security perspective, and highlights significant scientific
challenges that must be solved to protect these environments. In the current section,
we highlight some of the characteristics of these protocols and how they impact IoT
security.

The first thing that must be noted is linked to the proliferation of heteroge-
neous wireless technologies, that prevent a global understanding of the associated
risks. Some of these technologies, such as Zigbee [Zig 2015] or Bluetooth Low En-
ergy [Blu 2019], are well documented and their specification is publicly available,
while others are based on proprietary technologies and only provide a partial, or
even no documentation at all. For example, some protocols only provide the spec-
ification of the upper layers of the corresponding stacks, and do not disclose any
information about the lower layers: this situation is quite common in the wild,
and applies to various protocols such as LoRA [LoR 2017] or ANT [Dyn 2014].
In the worst case, the protocols are not documented at all, and only a costly and
time-consuming reverse engineering process may allow to acquire enough knowl-
edge about their internals to estimate the risks associated to their deployment
while raising potential legal issues. This situation is especially bad from a security

1.2. Wireless communication protocols 11

perspective, as identifying the corresponding security risks obviously requires a deep
technical understanding of the protocols internals. More precisely, the risks linked
to the lowest layers are especially difficult to estimate, as they are hard to analyze
using common security approaches.

This proliferation of heterogeneous communication protocols also raises some
significant issues regarding the interconnection of the corresponding networks. This
situation leads to the deployment of multi-protocols gateways aiming at allowing
communications between heterogeneous technologies. As an example, the Phillips
Hue connected lightbulbs [Philips 2022] being based on Zigbee protocol, a WiFi to
Zigbee gateway is needed to control the lightbulb from a computer or a smartphone.
This situation increases the complexity of IoT environments and dramatically ex-
pands the attack surface, because they imply the deployment of complex devices
interacting with multiple protocols at the same time, that are only necessary be-
cause of the lack of standardization of IoT protocols. These gateways being gen-
erally connected to private or professional networks also induce an attack surface
expansion for such networks, allowing a potential attacker to use this IoT gateway
as an intermediary to perform pivoting attacks targeting them.

Some of the wireless communication protocols that are commonly used in IoT
provide a set of security features, that could theoretically mitigate a wide number
of threats. For example, 802.15.4-based communications can be encrypted using
AES at multiple levels, from Network to Application layers. Similarly, Bluetooth
Low Energy pairing and bonding mechanisms allow the nodes to securely negociate
cryptographic parameters and settings to establish a secure communication based on
state-of-the-art encryption. Unfortunately, configuring and enabling such security
mechanisms is generally not trivial and may have an impact on user experience. This
situation, combined to the lack of expertise in security of IoT manufacturers, may
result to the deployment of insecure wireless networks because of technical errors
or bad practices. A typical example is the use of default credentials or example
keys, which was found to be a recurrent problem in IoT networks, as illustrated
by the Mirai botnet [Antonakakis 2017]. It is also quite common to observe the
use of custom security implementations, especially cryptography implemented upon
applicative layers, that may be flawed and cannot protect efficiently the lower layers
of the protocols. For example, the number of Bluetooth Low Energy-enabled devices
that are using poorly or not encrypted at all communications is surprisingly high,
as noted by C. Zuo et al. in a qualitative study of the percentage of BLE devices
activating encryption mechanisms [Zuo 2019].

The fast evolution of protocols also induces a latency between the protocol
specification and its practical implementations in the wild. This is especially visible
with the Bluetooth Low Energy protocol, that introduced significant security fixes
in the latest versions of its specification [Blu 2019], while a vast majority of BLE-
enabled devices are implementing older versions of the stack and can’t be easily
patched, leaving them vulnerable to known attacks.

It must also be noted that a significant part of connected objects are based on
tiny embedded systems with limited resources, that could considerably complicate

12 Chapter 1. Internet of things: a security perspective

the use of traditional mitigation techniques. This is a main limitation to IoT security
as a significant part of our existing security mechanisms are costly in terms of
resources, and cannot be easily applied to such embedded systems. While this
situation may evolve in the future, it’s obviously mandatory to take into account
the vast amount of connected objects that are already deployed in the wild and
cannot be easily patched because of hardware or software limitations. We can
also underline the sensitivity of some security mechanisms such as the software
updates mechanisms from a security perspective, as it is absolutely mandatory to
fix potential security issues after the device deployment while being a critical feature
that can potentially be abused by an attacker, especially if the update is performed
over the air through a wireless communication protocol.

Another problem is linked to the dynamicity of networks and topologies in
IoT environments. Indeed, we already mentioned the fact that some connected
objects being dedicated to a mobile use, they tend to generate complex and dynamic
environments, which can’t be easily monitored. The increasing number of wireless
protocols allowing peer-to-peer communications makes this situation even worse,
as no central point may allow an exhaustive monitoring or filtering of traffic. This
situation disqualifies many traditional network security approaches, and requires
the development of new defensive strategies that are more suited to this kind of
systems.

A more subtle issue is linked to the co-existence of these wireless protocols in
the same environments. Indeed, no standard being adopted yet, multiple wireless
protocols may coexist in the same environments. However, a wireless medium is
open by design: the direct consequence is that some protocols may share the same
frequency bands, or use similar modulation schemes. This is especially visible in
the 2.4GHz ISM band, which is overcrowded because of the co-existence of multiple
heterogeneous wireless protocols. While this situation is well known from a func-
tional perspective, and has lead to the development of a set of techniques aiming at
limiting the interference between these different protocols [Chiasserini 2003] (e.g.,
the frequency hopping algorithms used by Bluetooth), it may lead to new security
threats that are especially difficult to anticipate. Estimating the attack surface
exposed by a given protocol implies to take into account the potential interactions
between this protocol and the others that may co-exist in the environments, and
that could be abused by an attacker.

The main concern that emerges from these observations is the obsolescence of
several existing security models in this new context. Indeed, the highlighted char-
acteristics, especially the combination of heterogeneous, dynamical and de-
centralised networks deeply question some classical security models or techniques
while introducing significant challenges to design new ones. We can also note that
the deployment of connected objects introduces a significant new attack surface,
targeting both the IoT-related technologies and the traditional systems they may
be interconnected with.

1.3. Security threats 13

1.3 Security threats

In this section, we highlight the most significant security threats induced by the
deployment of connected objects.

While some of these devices are based on architectures and technologies that are
quite similar to traditional computers and are not very constrained in terms of re-
sources (e.g., smart fridge, connected thermostat, domestic alarm), we focus in this
work on the specific threats raised by connected objects based on small embedded
systems that are limited in term of resources (e.g., smartwatches, lightbulb, keyfob)
as we consider them as significantly different from more traditional technologies to
justify a dedicated analysis.

The main characteristics of these devices are the following ones:

• they rely on embedded hardware with very limited resources,

• they are optimized for low energy consumption,

• they are using bare metal firmware or lightweight real time operating systems,

• they are using wireless communication protocols to interact with other sys-
tems.

We can classify the security threats linked to these systems in three main cat-
egories: the hardware-related threats, the software-related threats and the
network-related threats.

1.3.1 Hardware-related threats

Connected objects being physically deployed in the wild, they are especially exposed
to hardware-level attacks according to the high probability that an attacker could
gain a physical access to them. As a consequence, we must obviously take into
account the security threats that could result from hardware-level manipulations
aiming at breaking the device security.

A typical design of such embedded system is composed of one (or several) micro-
controllers, connected to sensors and/or actuators and communicating using a radio
transceiver dedicated to a specific wireless protocol. The most interesting target for
a hardware attack is obviously the main micro-controller, that could be attacked
using several strategies.

A typical issue that has been observed in practice is the abuse of debugging
features [Vishwakarma 2018]. Indeed, programming and debugging the software
embedded in such devices can generally be performed using debugging physical
interfaces, such as JTAG or SWD. If these features have not been properly disabled
by the manufacturer, or if the chip security can be bypassed to gain access to these
debugging features, it allows an attacker to gain a privileged access to the micro-
controller itself. This privileged access could result in a code execution through a
malicious firmware installation [Bettayeb 2019] or an unauthorized access to secrets
or sensitive data such as cryptographic secret information or personal data.

14 Chapter 1. Internet of things: a security perspective

Some specific hardware attacks can also be used to inject faults to the micro-
controller, allowing to generate unexpected behaviour that may compromise the
security of the software running. For example, glitching the micro-controller power
delivery during a short amount of time could result to a misinterpretation of some
instructions or to bypass some instructions [Timmers 2017]. Depending on the
software architecture, such a behaviour could lead to bypass some software secu-
rity checks or access privileged section of code [Timmers 2016]. Similar offensive
techniques, such as laser injection, could lead to similar results.

Some electronic components can also be abused by exploiting an unexpected
source of information, such as electromagnetic leaks, power consumption or vibra-
tions, that could reveal sensitive information about the running algorithms or the
data processed. These attacks, known as side-channel attacks [Le 2008], may allow
to infer information by analyzing the resulting traces, and could lead to the acqui-
sition of secrets. This situation is especially critical when it involves cryptographic
algorithms, as previous works [Lo 2017, Gandolfi 2001, Genkin 2016] have already
demonstrated that such attack could allow to recover an encryption key by monitor-
ing the power consumption or electromagnetic leaks generated during an encryption
process. In [Camurati 2018], G. Camurati et al. also demonstrated that in some
conditions, electromagnetic leakage from digital logic can be mixed with the ra-
dio carrier, allowing to remotely collect sensitive information by analyzing radio
emissions, and constituting what the authors call screaming channels.

Attacking surrounding components could also lead to security issues. For exam-
ple, the presence of flash or memory chips may allow an attacker to read arbitrary
content, such as firmware or cryptographic material, and under some specific con-
ditions to write arbitrary data to these memories. Similarly, the communications
between components is generally based on standard protocols such as I2C or SPI,
that could be monitored or instrumented to leak some information or generate
unexpected behaviour [Khelif 2021].

Some devices could also be targeted by hardware implants, that could allow an
attacker to install a backdoor or collect sensitive data when the device is in use
[Bojovic 2019,FitzPatrick 2016]. Depending on the system targeted, such implants
may seriously compromise the security of connected devices while being difficult to
identify and mitigate for a non expert.

Damaging or destroying some specific components, including mechanical ones,
could also help an attacker to achieve a specific objective. It could be used to
perform a denial of service of a specific security system, or bypass some defensive
measures. For example, this kind of attack has already been used in the past to
perform lockpicking targeting connected smartlocks, allowing to bypass the multiple
software-level checks that were implemented.

While all these threats may require a physical access, it must also be noted
that hardware level vulnerabilities can potentially be attacked from software com-
ponents [Kocher 2019,Lipp 2018]. For example, performing some specific operations
from software may generate an unexpected behaviour at the hardware level, such
as the generation of a glitched signal in an adjacent line, that could potentially

1.3. Security threats 15

be exploited by an attacker to perform a privilege escalation or attack a sensitive
component.

1.3.2 Software-related threats

Connected objects are making use of software components, exposing them to a set
of software-related threats. However, giving a general overview of these threats is a
difficult task, because the software architecture greatly depends on the considered
objects: some of them may embed an operating system, exposing a software stack
similar to traditional computing, whereas others may use bare metal firmware or
lightweight real-time operating system.

The devices embedding operating systems are mainly exposed to the same
threats as a traditional system exposed over the Internet network: the services
and applications that are remotely accessible may be exploited to gain remote code
execution or leak data. These vulnerabilities are mainly implementation dependent,
and may be linked to memory corruption issues [Tsoutsos 2018] (e.g., buffer over-
flow, use after free ...) or insufficiently sanitized inputs (e.g., code injection, format
string) [Ray 2012]. We can also note that this kind of systems generally exposes a
web interface, allowing to configure them or to control their behaviour easily. In
this situation, such web application generally becomes a privileged target as it may
be vulnerable to various web vulnerabilities (e.g., local or remote file inclusion, XSS,
CSRF) [Singh 2019, Lai 2008] and potentially exposed over the Internet network.
This is especially critical if the targeted web application has a privileged access over
the system in order to trigger specific behaviours, allowing the attacker to divert or
abuse these features. Similarly, some services that are considered as insecure, such
as telnet or FTP, are sometimes exposed by such devices [Pa 2015], increasing the
risks of compromise.

Unfortunately, multiple examples over the past few years have highlighted the
presence of severe vulnerabilities in this kind of devices: as an example, the IoT
search engine shodan.io [SHO 2009], that continuously scans Internet to identify IoT
devices, reveals the presence of a significant number of surveillance cameras that
can be accessed remotely without authentication all around the globe. It also high-
lights a typical issue in IoT devices: a vast amount of devices makes use of default
credentials or configuration settings, allowing attackers to gain control over them
easily using automated tools. For example, the Mirai botnet [Antonakakis 2017]
takes advantage from this situation by exploiting a wordlist of default credentials
to compromise IoT cameras.

On the other hand, a significant amount of devices are based on tiny embed-
ded systems with not enough resources to run a full operating system, and are
based on bare-metal firmwares or lightweight real time operating systems. In this
situation, the main software threats are related to insecure firmware implementa-
tions [Cui 2013]. These firmwares being generally developed using low level lan-
guages such as C or C++, they are especially prone to introduce memory-related
issues, such as buffer overflow, format string or use-after-free. Depending on the

16 Chapter 1. Internet of things: a security perspective

context, this kind of vulnerabilities may result to leak sensitive data from mem-
ory, alter the execution flow or even code execution in some cases. We can note
that exploiting such software issues in this kind of device is generally easier than
in traditional systems, as they generally don’t include typical security mechanisms
aiming at complicating the exploitation such as ASLR, W⊕X or stack canaries.

We must also underline that one of the biggest issue linked to IoT devices is
the lack of secure and efficient update mechanisms. Indeed, it may be difficult,
and sometimes impossible, to update the software components running on this kind
of devices. This situation is common in the wild, resulting in devices which are
difficult to maintain and may embed outdated or vulnerable software components.
This is very problematic as the software industry mainly relies on automatic software
updates to fix software-related vulnerabilities. Deploying such an automatic process
in the IoT ecosystem is especially hard, because these devices don’t necessarily
include an IP connectivity and may be deployed in environments without network
access. When the security mechanisms allowing to update the software components
are embedded, they should also be efficiently hardened and secured to avoid being
abused by an attacker to install malicious updates [Bettayeb 2019]: this kind of
attack is especially critical as it may lead to a remote code execution and a full
control over the device.

Let us note that some software vulnerabilities can also be related to software
components that are less visible, such as the ones which are involved in the net-
work management: for example, a Bluetooth Low Energy protocol stack could be
vulnerable to a buffer overflow that can be triggered over the air [Garbelini 2020].
We still consider this kind of implementation-dependent issues as software vulner-
abilities even if the network is involved in their exploitation, as they are not linked
to the communication technology design itself and can theoretically be patched by
software.

1.3.3 Network-related threats

Because of the connectivity they provide, connected objects are also exposed to
network-related threats. These threats are mainly linked to the communication
protocol design: we do not consider here the potential vulnerabilities linked to a spe-
cific implementation of the protocol stack [Garbelini 2020,Armis 2017,Armis 2018],
as they can be considered as software-related. We also mainly focus on wireless
communication protocols because of their omnipresence in IoT networks. However,
some of the threats we mentioned could also be relevant for a wired protocol.

The first threat that must be taken into account is jamming, that allows an at-
tacker to impact the availability. Jamming attacks allows to corrupt a transmitted
message by transmitting a malicious signal simultaneously: generally, it abuses fea-
tures such as CRC, that aims to detect errors during the transmission. Such features
are common in wireless protocols because of the high probability of interferences,
especially in overcrowded frequency bands such as the 2.4 GHz ISM band. The ad-
versary jamming signal corrupts the legitimate message by introducing some bitflips

1.3. Security threats 17

in the demodulated bitstream, forcing the surrounding receivers to drop the frame
because of an invalid CRC. Multiple jamming strategies can be used [Xu 2005],
from the simplest (such as continuous jamming [Shintani 2020], that transmits a
strong signal continuously on the target channel) to the more complex ones (e.g.,
reactive jamming [Bräuer 2016,Schulz 2017], that selectively jams specific messages
by identifying a specific pattern on-the-fly to take the jamming decision).

Sniffing is another major network-related threat, especially in a wireless context
which is open by definition. Indeed, an attacker may perform an eavesdropping
attack allowing him to impact the confidentiality of the communications. Even if
the transmitted packets are encrypted, such an attack may still allow an attacker
to acquire some knowledge about the network, by exploiting some specific fields
that are transmitted in plaintext [Newlin 2016a] or some metadata such as the
RSSI. We can note that, depending on the targeted protocol, performing this kind
of attack can be more or less complex from a technical perspective: for example,
sniffing Bluetooth communications is a non trivial task [Ryan 2013a,Cauquil 2017b,
Cauquil 2019] because of the use of a channel hopping algorithm. We can also
underline that sniffing is commonly involved in more complex attack workflows, for
example to collect some information needed to perform active operations later (e.g.,
spoofing a specific node may require to acquire some knowledge about the device
to mimic, such as address or payloads).

Another threat that can have a severe impact is traffic injection, when an at-
tacker injects some malicious messages into the network to trigger a specific be-
haviour or achieve a malicious objective. Such injections can be more or less diffi-
cult depending on the targeted protocol and the mitigation they provide, and may
involve some complementary actions (e.g., spoofing a device, disrupting a legitimate
node, etc). Moreover, they can be performed from various setups: as an example,
packet in packet attack [Goodspeed 2011b] can be used to perform a packet injection
with low privileges from upper layers. An injection doesn’t necessarily require the
ability to modulate a signal according to the protocol specification: a physical layer
replay attack, that can be assimilated to an injection attack, can be performed by
transmitting a signal previously collected, even if the attacker is not able to decode
it. We can also note the existence of a specific class of attacks, named overshad-
owing attacks [Wilhelm 2012, Yang 2019], that could be assimilated to a complex
packet injection: the attacker transmits a signal simultaneously to a legitimate one,
which is carefully synchronized and crafted to alter the transmitted symbols in real
time and generate a specific malicious message during demodulation.

Another main threat targeting communication protocols is Man-in-the-Middle
attacks, where the attacker is able to present himself as an intermediary between
two (or more) nodes, allowing him to transparently manipulate the traffic. Such
an attack may impact both the confidentiality, the availability and the integrity
as the attacker can modify the frames, drop them or inject fake ones. Multiple
configurations may allow to achieve such an attack: for example, it can be performed
by abusing routing mechanisms (e.g., Wormhole attack [Hu 2006]), or link layer
procedures (e.g., GATTacker [Jasek 2016] or BTLEJuice [Cauquil 2016]). A Man-

18 Chapter 1. Internet of things: a security perspective

in-the-Middle setup can also be exploited to attack only one side of the targeted
communication, resulting in an hijacking attack, that could impersonate a specific
device during a communication with another one.

The coexistence of several wireless protocols in the same frequency bands, which
is a common situation in IoT environments, can also lead to specific threats. For
example, a malicious code in a compromised device may exploit this kind of similar-
ities to perform pivoting attacks, allowing the compromised node to perform eaves-
dropping or injection attacks targeting a different protocol [Jiang 2018,Jiang 2017].
This kind of threats is especially difficult to anticipate, as it is linked to unexpected
interactions between wireless communication protocols.

1.4 Mitigations

The high number and variety of high impact threats previously mentioned dramat-
ically highlights the necessity to secure connected objects. One of the first key
requirement to mitigate security threats is to have methodologies and tools allow-
ing to efficiently identify and analyze them. For example, vulnerability scanning,
fuzzing and auditing are commonly used from a defensive perspective in order to
identify potential security weaknesses. However, the particular situation of IoT
significantly complicates the development of this kind of methodologies and tools.
The wide number of heterogeneous technologies, including proprietary ones, pre-
vents the design of a generic or global approach and leads to the multiplicity of
methods and tools covering only a small fraction of threats.

The identification and analysis of hardware-related threats are especially dif-
ficult to cover, as they may involve costly analysis equipment and knowledge in
electronics and physics that might be outside of the core skills of a security analyst.
Similarly, auditing network-related threats, especially the ones linked to the link
and physical layer of wireless protocols, implies the manipulation of costly hard-
ware to collect and analyze RF signals, while involving very specific skills in physics
and signal processing. The IoT context also raises significant issues complicating
software-related threats identification, because of the lack of instrumentation tools
targeting embedded systems, the use of heterogeneous hardware architectures and
the significant differences between a bare-metal firmware and a regular process run-
ning on a standard operating system. Globally, we lack a systematic approach
allowing to efficiently detect security vulnerabilities, both from a software, hard-
ware and network perspective, and we can’t easily deploy previous approaches in
this context because of specific constraints.

Once identified, fixing the vulnerabilities remains a significant challenge, espe-
cially if the concerned system is already deployed in the wild. We previously men-
tioned issues about software updates, that are the usual way to fix vulnerabilities
once the system has been deployed but can be tricky to implement in practice de-
pending on the concerned system and the technologies in use (e.g., some connected
objects are not connected to Internet) and may themselves introduce security vul-

1.4. Mitigations 19

nerabilities. Fixing hardware-related vulnerabilities is even more complicated, as it
generally implies physical actions targeting the device such as component replace-
ments or PCB modifications: as a consequence, only a small subset of hardware
vulnerabilities are corrected in deployed devices, as it implies product recalls and
massive costs from the manufacturers (generally, manufacturers correct them in the
next hardware revisions). The security threats linked to communication protocols,
especially when they are linked to the protocol design itself, lead to similar issues,
as the only way to fix them is to write a new version of the specification. The
consequence is the massive presence of insecure protocol stacks in the wild, that are
outdated and can’t be fixed without replacing the hardware.

Another approach that could be used to secure these devices is the deploy-
ment of Host-based mitigations, aiming to detect malicious code (e.g., antivirus)
or prevent the exploitation of security flaws (e.g., anti-exploit techniques such as
ASLR or stack cookies). However, embedding such programs in IoT devices is a
real challenge because of the use of tiny embedded systems with very limited re-
sources and simplified hardware architectures. Moreover, programs like antivirus
may be based on signature-based approaches and could require regular update of
their database, which has already been pointed out as difficult in this context. The
technical limitations in terms of speed and memory on some systems also complicate
the deployment of mitigations based on cryptography, and could have a significant
impact upon the functional performance in such constrained systems.

Complementary approaches could be the deployment of Network-based miti-
gations, such as IDS, IPS or firewalls. While these technologies are common in
traditional networks, they are also difficult to apply to IoT communication proto-
cols. Indeed, most of these technologies are supposed to be placed at a strategic
location in the monitored network, such as a router or a central point, facilitating
the monitoring and filtering of the traffic. However, the massive use of peer-to-peer
communication protocols in IoT considerably complicates the deployment of such
surveillance nodes, as no central point can be instrumented to perform traffic anal-
ysis. Deploying a system which is able to exhaustively monitor the peer-to-peer
communications in an IoT environment implies to install sniffers or probes, which
are limited by the radio range they cover, their localization and the hardware they
use. Moreover, let us note that some protocols use complex physical layers (e.g.,
Bluetooth, based on a channel hopping algorithm) that could considerably increase
the complexity and the cost of a sniffer. Similarly, the presence of heterogeneous
protocols makes the situation even worst as it implies the use of several different
sniffers or the deployment of generic RF hardware such as Software Defined Radio,
which is costly and implies a significant effort of engineering. Moreover, it’s espe-
cially difficult for such a monitoring system to selectively filter or remove malicious
packets as the probes are only passive nodes and don’t play an active role in the
packet routing. Last but not least, the presence of mobile nodes generates dynamic
environments, where identifying whether the presence of a specific node is legiti-
mate or not remains a non-trivial task: it increases the complexity of behavioural
approaches.

20 Chapter 1. Internet of things: a security perspective

We can also note that security models and assumptions aiming at protecting tra-
ditional networks are also challenged by this new paradigm. For example, perimeter
security, which is a very common security model applied in a wide amount of net-
works, must be questioned considering the deployment of personal mobile devices
that could easily have been compromised outside of the perimeter and used as
intermediary by an attacker.

Unfortunately, we must also underline that some key obstacles that significantly
complicate the development and deployment of suited mitigations can’t be solved by
a technical approach. There is an economic constraint linked to the time-to-market:
various competitors try to conquer this new IoT market, leading the manufactur-
ers to continuously release new systems and features, sometimes without adequate
attention to security requirements. Indeed, building a secure IoT system would
require a significant amount of work, from the design to the deployment, that is
costly and more difficult to promote compared to new functional features. We can
also note that most of manufacturers involved in this new market don’t have a lot of
experience about security: contrarily to the software industry, they are not familiar
with the security requirements and don’t benefited from the learning effects linked
to previous attacks.

1.5 Challenges and contributions

The various observations we developed in the previous sections highlights that the
deployment of connected objects, especially when they support peer-to-peer wireless
communication protocols, leads to the development of new threats while consider-
ably complicating both their identification and their mitigation. Multiple indicators
seems to indicate that a significant attack surface emerges from this particular con-
text. For example, in the past few years, a wide number of Bluetooth vulnerabilities
have been reported, some of them being present in the wild for several years: it ob-
viously shows that their impact dramatically changes in the context of IoT, as these
protocols are becoming a central part of connected objects connectivity. Moreover,
a protocol stack is a very complex system involving multiple intricated components
and layers interacting together. Some threats may be linked to very low level compo-
nents of these stacks, which are very difficult to analyze from a security perspective
as they are especially difficult to instrument and involve skills and technologies that
are trans-disciplinary: it results in a new attack surface which remains unknown and
particularly difficult to explore. In this context, the background research question
that motivated this work is the following one: how to identify, assess and mitigate
the new threats linked to the deployment of peer-to-peer wireless communication
protocols in the IoT context ?

More accurately, we focused on the following objectives inferred from this re-
search question:

• Understanding the internals of heterogeneous wireless communication proto-
cols used in IoT, including proprietary or poorly documented ones, as well

1.5. Challenges and contributions 21

as the use cases they cover, the guidelines motivating their design and their
evolution over time.

• Designing tools and methodologies allowing to identify and assess security
threats linked to the design of these heterogeneous protocols and their coex-
istence in the same environments.

• Identifying and analyzing the new unexplored attack surface involved by the
complex intrication of hardware and software components in a protocol stack.

• Understanding the consequences of IoT context upon our existing defensive
models and adapting them or designing new ones allowing to fit these new
constraints.

Matching these objectives involves to overcome multiple challenges. First, we
need to solve the technical constraints linked to the heterogeneity and complexity
of wireless protocols: we must especially build tools and methodologies allowing
to analyze these protocols and challenge their security assumptions. Testing the
security of the lowest layers, especially the physical layer, is very challenging because
most of the existing hardwares, softwares and libraries are not designed to perform
security research and don’t allow to access the low level components nor performing
non-standard actions, which is necessary to efficiently identify threats.

We must also identify and evaluate both the differences and similarities between
these protocols, highlighting the potential interactions between them and the risks
associated. The environments being dynamic and decentralized, it also makes tradi-
tional defensive approaches unpractical, forcing us to rethink them and build suited
defensive systems that fit the connected objects constraints.

From our perspective, solving these challenges implies to adopt a trans-
disciplinary approach allowing to take into account both the signal processing,
hardware and software components, as well as their interactions. The intersec-
tion between these components, especially when they are designed and developed
according to very different engineering fields and tend to be considered as black
boxes, are very critical and could lead to a significant attack surface that is es-
pecially difficult to evaluate. We must also keep in mind the particular context
that leads to the deployment of these protocols, and the impact it has upon the
environments where these technologies are deployed: critical attack vectors could
be linked to the chaotic deployment of heterogeneous technologies and especially
the unexpected interactions between them. We also tried to combine and explore
ideas and approaches from different technical areas, both from an offensive and
defensive perspective. For example, we actively explored the use of techniques that
are generally used in an offensive context, such as code injection or jamming, to
achieve defensive objectives and circumvent some technical issues linked to protocol
stacks. More generally, we consider that the research works we initiated from an
offensive perspective highlighted some specific weaknesses and issues, that allowed
us to feed our thoughts about the development of defensive solutions for IoT and

22 Chapter 1. Internet of things: a security perspective

underlined some specific issues and challenges that must be solved to build relevant
mitigations. Similarly, we explored different perspectives linked to this central the-
matic, from signal analysis to software reverse engineering, allowing us to gain a
better understanding of the big picture of IoT security.

In this PhD thesis, we mainly focused on the lowest layers of these protocols,
especially the link layer and the physical layer, and explored various challenges re-
lated to these technologies, both from an offensive and a defensive perspective. The
offensive-oriented research works we produced were mainly focused on vulnerabil-
ity analysis, and highlighted several critical attack vectors linked to the way IoT
wireless communication protocols are designed and to their co-existence, while pro-
viding a significant set of open-source tools aiming at facilitating the reproducibility
of our work and future research work in this field. Our defensive work was focused
on the specific issues linked to the monitoring and filtering of this kind of protocols
and explored two innovative approaches aiming at facilitating the design of IDS and
IPS suited for this context.

Our contributions are the following ones:

• We discovered a new attack vector, allowing to divert a transceiver dedicated
to a given protocol to interact with non natively supported ones, that could
be easily abused to perform pivoting attacks or covert-channel attacks. This
attack vector mainly abuses the physical similarities between wireless pro-
tocols coexisting in the same environments. We explored the threats linked
to this vector by demonstrating multiple critical attack scenarios based on it
and implemented it on various off-the-shelf devices, including a smartphone
and various connected objects, sometimes with very low privileges. We first
demonstrated the feasibility of this kind of attack from a Bluetooth Low En-
ergy transceiver targeting Zigbee networks, resulting in an offensive strategy
named WazaBee. Then, we enlarged the scope to cover various other proto-
cols, and showed that building such pivot attacks is practically feasible and
could target a lot of IoT protocols deployed in the 2.4 ISM band.

• We discovered and practically implemented a critical injection vulnerability in
the Bluetooth Low Energy protocol design, linked to a protocol feature dedi-
cated to compensate clocks desynchronization and named InjectaBLE. Every
device which is compliant with the BLE specification is vulnerable to this in-
jection by design, as it is linked to the protocol design itself. We showed that
multiple critical scenarios can be implemented using this vulnerability, leading
to a full compromission of the communication between two BLE devices.

• We designed and implemented an offensive auditing framework aiming at
facilitating the security analysis of wireless communication protocols and the
development of offensive tools. We designed the framework to be generic,
modular and easily customizable, and successfully implemented support for
dozens of heterogeneous hardware and up to six wireless protocols. It allows
to easily perform and implement wireless attacks targeting these protocols,

1.5. Challenges and contributions 23

while allowing to build complex attack workflows combining multiple attacks.
We actively used and improved it all along this thesis, because it considerably
facilitates both the vulnerability analysis of protocols and the evaluation of
defensive solutions.

• We designed a decentralized Intrusion Detection System embedded in Blue-
tooth Low Energy controllers, allowing to detect up to six critical design-
related vulnerabilities while providing a very low level access to the instru-
mented stacks. We implemented a defensive framework aiming at facilitating
both the development of detection modules and the analysis of the internals
of wireless stacks.

• We built an experimental wireless firewall based on a reactive jamming ap-
proach, aiming at circumventing the issues linked to the absence of central
node in peer-to-peer wireless communication protocols. The firewall was suc-
cessfully implemented and tested on two common IoT protocols, demonstrat-
ing that this approach is generic and can successfully intercept and drop
malicious traffic. We performed a set of preliminary experiments showing
promising results to prevent wireless attacks.

In chapter 2, we introduce the state of the art of wireless security while chapters 3
to 6 present our contributions.

Chapter 2

State of the art of wireless
security

Contents
2.1 Auditing tools . 25

2.1.1 Hardware tools . 26
2.1.2 Software tools . 31

2.2 Protocol attacks . 34
2.2.1 Bluetooth Low Energy . 34
2.2.2 Zigbee . 36
2.2.3 Proprietary protocols . 37
2.2.4 Cross-technologies attacks . 39

2.3 Defensive approaches . 42
2.3.1 Signal-based approaches . 42
2.3.2 Packet-based approaches . 43

2.4 Outline . 44

This chapter presents the state of the art of wireless communication protocols
security. It first focuses on the offensive tools, both from a software and hardware
perspective, highlighting the main issues related to these tools. Then, it introduces
the most relevant protocol-related attacks targeting several widely used protocols
such as Zigbee or Bluetooth, as well as some proprietary protocols. We also intro-
duce the existing strategies allowing to perform pivoting attacks from a transceiver
supporting natively a given protocol to interact with another wireless technology.
Finally, we discuss the defensive researches focused on Intrusion Detection Systems
and Intrusion Prevention Systems in IoT wireless networks.

2.1 Auditing tools

Analyzing the security of wireless communication protocols requires the use of ded-
icated tools, allowing to monitor or interact with the targeted protocol. In the
recent years, multiple research works in this area have contributed to the develop-
ment of such tools, allowing to facilitate the analysis of wireless communications.
In this section, we first introduce the hardware tools that can be used in an secu-
rity context, then we present the corresponding software tools. In both cases, we

26 Chapter 2. State of the art of wireless security

discuss the pros and cons of these tools, then we highlight some general issues and
limitations that must be solved to improve the reliability and efficiency of wireless
security analysis.

2.1.1 Hardware tools

Testing the security of wireless communication protocols may imply the use of
dedicated hardware devices, aiming to interact with the protocol. More precisely, a
security researcher may analyze a given protocol from various perspectives, that can
be complementary and allow to perform different kind of attacks or analyze different
aspects of the protocol: various hardware may provide different capabilities, that
can be more or less suited to the situation. Two main category of hardware are
commonly used to analyze the security of a wireless protocol: Software Defined
Radios and dedicated transceiver.

2.1.1.1 Software Defined Radios

The most powerful and flexible hardware components that can be used to interact
with wireless protocols are Software Defined Radios. These devices aim to provide
a generic radio interface by allowing the user to access the RF signal directly, both
in transmission and reception. The Digital Signal Processing (DSP) components
(e.g., mixers, filters, modulators) that are usually implemented in hardware can be
instead implemented in software.

Figure 2.1: Typical Software Defined Radio architecture

These devices are generally based on an IQ modulator/demodulator, illustrated
in figure 2.1 allowing to provide a very generic way to interact with the RF signals.

2.1. Auditing tools 27

It offers a great flexibility to the user as it allows to manipulate the signal at a very
low level, and can be used to modulate or demodulate a wide variety of wireless
protocols. Such a property is especially interesting from a security perspective as it
may theoretically be used to implement a given protocol stack from scratch entirely
in software, giving the security analyst a significant control over the whole stack
architecture, from the lower to the upper layers.

While most of Software Defined Radios are based on the same kind of archi-
tecture, they greatly vary in terms of price, depending on the RF characteristics
provided by the underlying hardware. The cheaper SDR device that can be found
is RTL-SDR [RTL-SDR 2022], a low-cost DVB-T USB dongle based on a Realtek
RTL2832U chip that can be diverted to act as an SDR. This device is widely used
because of its low cost but presents several significant limitations: it can only be
used as a receiver (no transmission capabilities are provided), it can only process
sub-1GHz signals and present a limited bandwidth of 2.4 MHz.

Another SDR device which is commonly used during security analysis is HackRF
one from Great Scott Gadgets [greatscottgadgets 2022]. This device provides a good
compromise between its price and the provided capabilities, as it can be used in
reception or transmission mode, on a frequency range of 1 MHz to 6 GHz with a
bandwidth up to 20 MHz. The project being based on open-hardware, it has built
a consequent community of hackers and radio-amateurs in the recent years, and has
been widely used both in academic researches [Roux 2018,Yuniati 2019,Galtier 2020]
and technical contexts. It is also supported by a lot of DSP tools and provides its
own open-source software environment, allowing to easily record, transmit or replay
an arbitrary signal. It has also been extended to support wide band monitoring [Os-
smann 2017] using a sweep-based strategy. However, the device still suffers from
several limitations, mainly linked to its half duplex nature (reception and transmis-
sion can’t occur at the same time) and its low sampling rate that don’t allow to
interact with complex modulations or high throughput protocols. The communica-
tion with the host being based on USB, it also implies a speed limit, complicating
the monitoring of some protocols (for example, Bluetooth uses a frequency hopping
algorithm that can’t be followed by such a device because of its limited speed to
switch frequency). Finally, it is based on a combination of Complex Programmable
Logic Device (CPLD) and micro-controller, which is a less flexible architecture than
Field-Programmable Gate Array (FPGA), which are generally used in SDR.

BladeRF [Nuand 2022] presents similar capabilities, while extending the band-
width to 56 MHz and allowing a full duplex mode using Multiple-Input Multiple-
Output (MIMO) technology. It also includes an Altera Cyclone 4 FPGA. Myri-
adRF [MyriadRF 2022] also released two SDR devices, the Lime SDR and Lime
SDR mini, which are also based on an Altera Cyclone 4 FPGA and cover a fre-
quency band from 100kHz to 3.8GHz with a bandwidth up to 61.44 MHz. These
devices are especially interesting from a security perspective as they are designed
as open-hardware and rely on an open-source tooling, facilitating the prototyping
of security tools while offering a good compromise between price and quality.

Finally, USRP devices [Research 2022] from Ettus Research have to be men-

28 Chapter 2. State of the art of wireless security

tioned, as they are probably the most commonly used SDR devices in research
works. Multiple series have been released over the years, providing various features
such as High Speed Ethernet connectivity, multiple channels or wide bandwidth,
allowing to reach very good performances thanks to their FPGA-based design. How-
ever, these devices are generally very expensive compared to other SDR and are
generally bulky and fragile, complicating their use in mobile-oriented applications
or outdoor use.

We can also note the existence of experimental research works aiming at divert-
ing commodity hardware dedicated to a specific protocol (e.g., WiFi) to turn them
into a SDR, allowing the transmission or reception of arbitrary signals. In 2018,
Schulz et al. [Schulz 2018a] presented during MobiSys conference an experimental
approach based on Nexmon framework [Schulz 2018b], allowing to patch the Wi-Fi
firmware of BCM4339 devices installed in Nexus 5 smartphones and BCM43455c0
devices installed in Raspberry Pi B3+ computers in order to transmit arbitrary IQ
signals in the 2.4 GHz and 5 GHz frequency bands, abusing calibration features.
However, it seems limited to specific WiFi Broadcom chips and can only be used
as a transmitter.

While these devices are interesting because of their genericity and flexibility,
they also suffer from significant limitations that must be taken into account. First,
they imply a significant amount of work as they require to implement the proto-
col stacks from scratch, including the Digital Signal Processing components which
implies specific knowledge in physics and signal processing. Moreover, they also
force to perform most of the signal analysis in the Host, which may require a big
amount of resources to process some complex protocols. Similarly, the implementa-
tion on the Host also implies the introduction of delays linked to the Device to Host
transmission, especially when using USB connection: these delays may complicate
the analysis of specific protocols that require a fast processing (e.g., exhaustively
monitoring a Bluetooth connection is impossible on most of SDR because of the
use of a channel hopping algorithm which requires fast frequency changes). These
constraints can sometimes be solved using a specific kind of device (e.g., some
USRP provide fast Ethernet connection to limitate the transmission delays) or by
implementing time-sensitive components of the stack in the device directly, but it
obviously impacts both the genericity and flexibility of these devices.

2.1.1.2 Dedicated transceivers

An alternative solution to interact with a protocol is to use a dedicated transceiver,
generally embedded in a System on Chip (SoC) or a dongle. Such devices are
generally dedicated to one or two specific protocols and may provide various features
depending on the underlying hardware and the embedded software: we can note
that multiple devices used for security testing have required the development of
custom firmware, in order to add specific capabilities (e.g., KillerBee [Wright 2009]
firmware providing injection feature for RZUSBStick) or provide a low level control
over the device (e.g., RFStorm firmware for nRF24 chips [Newlin 2016b]).

2.1. Auditing tools 29

The most straightforward way to interact with a given protocol is to use com-
modity hardware specially designed for this protocol. For example, standard WiFi
dongles can be used to perform some attacks targeting the WiFi technology. Sim-
ilarly, some Bluetooth Low Energy attacks (e.g., BTLEJuice [Cauquil 2016] or
GATTacker [Jasek 2016]) are making use of standard HCI dongle, used to per-
form Bluetooth Low Energy communications. However, these devices generally
present several limitations that must be highlighted. First, some features which
are necessary for performing security analysis are not standard and linked to pro-
prietary implementations. For example, performing some specific WiFi attacks
implies the use of a non-standard mode named "monitoring", allowing to forward
every received frames to the Host even if the MAC address included in the frame
doesn’t match the receiver configuration: depending on the used hardware, this
feature may be available or not, making some specific models and vendors more
relevant from a security perspective. Similarly, some Bluetooth Low Energy at-
tacks [Cauquil 2016,Jasek 2016] rely on spoofing a targeted device and require the
capability to set an arbitrary BD address. The Bluetooth specification doesn’t in-
clude a standard way to perform such a modification, resulting in the absence of this
feature in some devices while others implement it using vendor-specific commands.
Second, these devices being generally dedicated to a regular use of the protocol,
they generally provide a high level API which can significantly complicate their
use for security testing. For example, a Bluetooth dongle exposes a HCI interface
that only allows to manipulate the highest layers of the protocol, so it is not rele-
vant to analyze the security of the link layer or the physical layer. Similarly, some
proprietary protocols rely on security by obscurity and hide the implementation of
the lowest layers: for example, the ANT specification [Dyn 2014] only provides the
specification of upper layers and the ANT transceivers only provide a high level
API, complicating the analysis of the low level layers.

Another strategy which is commonly used in security testing of wireless proto-
cols is the use of a commodity hardware which has been diverted to unlock new
capabilities, generally to gain access over the lowest layers of the protocol. These
strategy generally rely on the use of custom firmware [Newlin 2016a,Newlin 2016b]
specially dedicated to security testing, or the patching of existing proprietary
firmwares [Schulz 2018b,Mantz 2019]. In 2009, J. Wright released at Toorcon 11 the
KillerBee framework [Wright 2009], dedicated to security analysis of 802.15.4 com-
munications, especially Zigbee. For this purpose, he developed a custom KillerBee
firmware for the Atmel RZUSBStick including injection and jamming features which
were not natively provided by the manufacturer. T. Goodspeed has also discovered
a vulnerability in the nRF24L01+ chip, that facilitates sniffing and frame injection
on a set of protocols (such as Bluetooth Low Energy or Enhanced ShockBurst) using
Gaussian Frequency Shift Keying modulation. He was able to divert the use of a
register dedicated to the address selection to select an arbitrary preamble [Good-
speed 2011a]. Exploiting this vulnerability allowed him to add a promiscuous mode
for the Enhanced ShockBurst, which is not natively supported by the chip. However,
it is also possible to divert the use of this register to detect specific preambles used

30 Chapter 2. State of the art of wireless security

by different wireless technologies, as long as similar modulations and bit rates are
used. This vulnerability has been used by M. Newlin to develop a firmware named
RFStorm [Newlin 2016b] aiming to add advanced sniffing capabilities for the En-
hanced ShockBurst and Mosart protocols to the nRF24 chip [Newlin 2016a]. This
custom firmware can be flashed to nRF24-based dongles, such as Logitech Unifying
dongles or Crazy Radio PA.

A similar vulnerability has also been identified by D. Cauquil in another chip
from Nordic SemiConductors, named nRF51. This chip supports Bluetooth Low
Energy communication, and abusing this vulnerability allowed D. Cauquil to im-
plement a custom firmware for the BBC:MicroBit [Cauquil 2017c], an educational
device embedding nRF51 chip, allowing him to add Bluetooth Low Energy sniff-
ing and jamming capabilities [Cauquil 2017b]. Similarly, a powerful Bluetooth
Low Energy sniffer named Sniffle has also been implemented by S. Qasim Khan in
[Qasim Khan 2019], based on Texas Instruments Bluetooth Low Energy transceivers
(TI CC1352/CC26x2). It increases the probability of successfully synchronizing
the sniffer with a connection by tracking the targeted device during its advertising
phase, while supporting the new physical layers (LE 2M and LE coded) introduced
in the latest versions of the specification.

Some research works have also focused on reverse engineering and patching the
native firmware used by commodity hardware, in order to gain access to low level
features. In [Schulz 2018b], M. Schulz provided a framework called Nexmon, aim-
ing to facilitate the patching of BCM4339 WiFi chip from Broadcom embedded
in the Nexus 5 smartphone. He demonstrated that patching the firmware of this
chip may allow the implementation of advanced low level attacks, such as reactive
jamming [Schulz 2017] or covert channel attacks. A similar work has been realized
for Cypress and Broadcom Bluetooth chips in [Mantz 2019], where D. Mantz et al.
demonstrated that vendor-specific HCI commands could be abused by an attacker to
patch the native firmware, allowing the instrumentation and implementation of low
level attacks targeting the Bluetooth protocol [Antonioli 2019]. In [Vanhoef 2014],
M. Vanhoef et al. demonstrated a similar strategy allowing to add low level capa-
bilities to Atheros AR7010 and AR9271 WiFi chips. He showed that implementing
a custom firmware into those chips may allow to perform low level WiFi attacks,
such as Jamming, unfair channel usage or channel-based Man-in-the-Middle.

The latest strategy that can be used is the design and development of a dedicated
hardware, optimized for performing security testing. This approach has been used
for the Ubertooth One device from Great Scott Gadgets, an open-hardware dongle
based on the TI CC2400 transceiver. It implements the sniffing strategy proposed
by M. Ryan in [Ryan 2013a] for Bluetooth Low Energy and the research work from
D. Spill et al. [Spill 2007] allowing to sniff Bluetooth BR/EDR packets. Multiple
proprietary Bluetooth and Bluetooth Low Energy sniffers have also been developed,
such as the Bluefruit LE Sniffer [Adafruit 2014] from AdaFruit, allowing to follow
a Bluetooth Low Energy connection, or the Ellisys Bluetooth Explorer [Ell 2021],
a device allowing wide-band monitoring of Bluetooth BR/EDR and Bluetooth Low
Energy communications. During their research work targeting proprietary pro-

2.1. Auditing tools 31

tocols used by wireless keyboards, T. Schroeder and M. Moser [Schroeder 2010]
developped a specific hardware allowing to sniff packets transmitted by these input
devices. Another security-oriented RF dongle named Yard Stick One [Atlas 2012]
has also been released, based on a TI CC1111 transceiver. It allows the analysis of
wireless protocols using the sub-1GHz frequency band, and can interact with sev-
eral modulation schemes such as 2-FSK, 4-FSK or ASK. A dedicated open-source
firmware, named RFCat, has been released and allow to easily manipulate such
dongle from a python library.

While these dedicated transceivers obviously allow a wide range of use cases,
we can highlight the heterogeneity of these devices, their separated development
and the various capabilities they provide. Some of them allow high level operations
but can’t be used to investigate the lower layers, while others are focused on low
level capabilities but may imply a significant work of tooling and can be limited
in term of usability. Moreover, a significant part of transceivers diverted using
vulnerabilities are dependent of specific hardware and can’t be easily maintained (for
example, Broadcom has fixed some of the insecure vendor-specific commands that
allowed InternalBlue patching, forcing the maintainer to bypass the new firmware
design [Classen 2021]). This chaotic development also leads to a wide variety of
custom tools presenting various limitations, implementing different features and
exposing custom API. It also significantly impacts the development of associated
software tools.

2.1.2 Software tools

A wide variety of software tools have been developed in the recent years, aiming at
interacting with previously mentioned hardware to perform wireless security testing.

2.1.2.1 Physical layer analysis

Multiple softwares have been developed to interact with Software Defined Radios.
One of the main software used in this field is GNU Radio [GNU 2021], an open-
source toolkit aiming at providing easy to use Digital Signal Processing blocks
in order to process and analyze RF signals from a wide range of SDR devices.
Multiple projects have been built on top of this software, aiming at interacting
with specific wireless protocols by implementing the corresponding demodulators
and modulators (M. Newlin first implemented a Enhanced ShockBurst sniffer using
GNU Radio [GRN 2016] for analyzing wireless keyboards security). A similar tool,
named PothosFlow [POT 2021], has also been released, and has been used by some
security researchers to analyze specific protocols (for example, during his research
work on ANT protocol, T. Szakaly [Szakaly 2016] built an ANT sniffer [ANT 2016]
based on this software suite to analyze ANT-FS communications).

Some specific tools are also commonly used to analyze RF signals. Spectrum
analyzer, such as GQRX [GQR 2013], allows to visualize the RF Spectrum in a
convenient way. A set of tools are also dedicated to the analysis of RF signals,

32 Chapter 2. State of the art of wireless security

and can be used to analyze the physical layer of a wireless protocol. For example,
Inspectrum [INS 2021] can be used to visualize a captured signal with different
representations to infer the symbol rate or the modulation scheme. Universal Ra-
dio Hacker [Pohl 2018] is another reverse-engineering oriented toolkit, that can be
used to capture signals and perform an advanced analysis to identify physical pa-
rameters such as the modulation scheme, the encoding in use or the symbol rate.
While these softwares are generally developed to support multiple devices and make
use of generic backends such as SoapySDR [SOA 2022], we can also note the ex-
istence of specific tools dedicated to a given hardware. For example, the HackRF
maintainers provide a set of command-line tools [greatscottgadgets 2022] that can
be used to easily manipulate HackRF one to receive and transmit signals or per-
form a wide-band monitoring using a sweeping strategy [Ossmann 2017]. Similarly,
Myriad RF provides several tools allowing to perform simple signal analysis using
LimeSDR [MyriadRF 2022] devices. We can also note the existence of complemen-
tary tools that are not directly related to SDR but can be relevant during a reverse
engineering process targeting a wireless protocols, such as Reveng [REV 2022], that
allows to automatically identify the CRC algorithm in use by providing a set of
sample packets, or Scapy [SCA 2022], a python library facilitating the dissection
and construction of arbitrary packets from various protocols.

2.1.2.2 Link Layer analysis and attacks

Similarly, most of the dedicated transceivers that have been developed or di-
verted in a security perspective comes with their own library, allowing to ma-
nipulate them from a Host device. For example, Ubertooth [Spill 2012] one pro-
vides a set of command-line tools allowing to sniff Bluetooth BR/EDR and Blue-
tooth Low Energy packets. Similarly, D. Cauquil provided a python tool named
BTLEJack [Cauquil 2018] that can be used to sniff or jam Bluetooth Low En-
ergy connections using a Micro:Bit embedding his custom firmware. S. Qasim
Khan released a set of python scripts that can be used to interact with Sniffle
firmware [Qasim Khan 2019], providing features such as sniffing, connection estab-
lishment or advertising for the Bluetooth Low Energy protocol. J. Wright imple-
mented a python framework named KillerBee [Wright 2009], allowing to weaponize
multiple 802.15.4 transceivers (including the RZ USB Stick embedding KillerBee
firmware) to perform packets injection, eavesdropping or wardriving. M. Newlin
released a python library [Newlin 2016b] facilitating the interaction with nRF24
devices embedding the RFStorm firmware, while the Yard Stick One can also be
manipulated using a python library named RFCat [RFC 2021]. We can note that
maintaining, documenting and improving these tools and libraries is a very difficult
task, as most of them have been developed by a single security researcher or small
security teams to fit the constraints of a specific project. As an example, some of the
projects previously mentioned are broken at the time of writing because of outdated
dependencies or the use of Python 2, which is no longer maintained. The variety of
hardware and software tools leads to an uncoordinated effort and complicates the

2.1. Auditing tools 33

use of these libraries and tools.
Finally, some software tools have been developed to perform a specific attack

or implement high level features that may be relevant during a security analysis.
For example, a tool named JackIt [JAC 2020] has been developed, implementing
a subset of MouseJack [Newlin 2016a] vulnerabilities targeting Logitech Unifying
mouse and keyboards. It relies on the python library provided by M. Newlin to
interact with a nRF24 dongle embedding the RFStorm firmware [Newlin 2016b] and
perform a keystroke injection attack. Similarly, multiple tools have been built over
the HCI interface for Bluetooth Low Energy, allowing to interact with standard
Bluetooth dongles. While some tooling is generally provided by the Bluetooth
stack implemented on the Host (for example, the BlueZ [BLU 2000] linux stack
provides a set of command line tools such as gatttool, hcitool and bluetoothctl),
they are generally difficult to use and not very flexible, as they can’t be easily
customized nor integrated into a custom workflow without significant modification.
As a consequence, several alternative tools have been developed to fill this gap.
For example, evilsocket provided BLEAH [BLE 2019], an information gathering
tool allowing to connect to a Bluetooth Low Energy device to collect the services
and characteristics exposed by the GATT server, and displaying them in a human-
readable format. Another tool, named nRF Connect [NRF 2022] and released
by Nordic SemiConductors, is available on Android and iOS, and can be used to
perform information gathering targeting Bluetooth Low Energy devices. It allows
to scan the advertisements transmitted by BLE devices, establish a connection with
them and interact with the GATT server easily. It also provides basic features to
mimick a simple Bluetooth Low Energy device. While this device implement a
significant number of features useful from a security perspective, it is proprietary
and can’t be easily customized nor automated.

Two major tools have also been released, allowing to perform Man-in-the-Middle
attacks targeting Bluetooth Low Energy devices. BTLEJuice [Cauquil 2016], re-
leased by D. Cauquil, takes advantage of the fact that a device stops advertising
when it enters connected mode to perform a connection with the target device, ex-
pose a cloned version of the device and wait for an incoming connection from another
device to setup a Man-in-the-Middle scenario. Similarly, GATTacker [Jasek 2016],
developed by S. Jasek, exploits a race condition by advertising cloned advertising
packets faster than the legitimate spoofed device to capture the connection before
it and establish a Man-in-the-Middle scenario. While these tools implement a very
relevant attack from a security perspective, they are significantly limited by the
high level libraries they rely on. Indeed, both are based on two nodeJS libraries
called bleno [BLE 2018] and noble [NOB 2018]. These libraries allow to implement
Bluetooth Low Energy Peripherals and Centrals, but they are not designed to be
used together and imply the use of two different operating systems. To address
this issue, GATTacker’s developer rewrote the code of these libraries, resulting in
a non standard forked version which is especially difficult to maintain, while the
architecture of BTLEJuice was composed of two software components running on
different OS and communicating thanks to a complex WebSockets architecture,

34 Chapter 2. State of the art of wireless security

significantly increasing the complexity of the tool. The use of high level software
components and libraries, which are not suited for security analysis, is a recurrent
issue of these tools. Some projects, such as PyBT [PYB 2015] from Mike Ryan,
have tried to interact directly with the HCI interface, but are still incomplete and
require a significant effort of engineering to be efficiently used in a security context.

2.2 Protocol attacks

In this section, we present the state of the art of offensive security for various wireless
communication protocols used in IoT. We first present the major attacks that have
been identified for Bluetooth Low Energy, Zigbee and various proprietary protocols
such as Enhanced ShockBurst or ANT. We also discuss the existing strategies that
could be leveraged during a cross protocol pivoting attack, aiming at exploiting a
given protocol to interact with another one which is not natively supported.

2.2.1 Bluetooth Low Energy

In the past few years, multiple attack strategies and tools targeting the BLE pro-
tocol have been released.

Sniffing a Bluetooth Low Energy connection is a non-trivial task, because of
the channel hopping algorithm used by the devices when they are in connected
mode. In [Ryan 2013a], M. Ryan demonstrated that a specific connection can be
easily sniffed if the sniffer successfully receives the packet initiating the connection
which includes the initial channel hopping parameters. He also showed that an
attacker may be able to retrieve the parameters of an already established connection
by monitoring specific events. This approach was then improved by D. Cauquil
in [Cauquil 2017b] to infer the channels to listen to.

In [Cauquil 2019], D. Cauquil also adapted the sniffing strategy to deal with a
new algorithm based on a pseudo-random generator that has been introduced in
the BLE 5.0 specification [Blu 2019], called channel selection algorithm #2. Finally,
a new tool named Sniffle has also been released [Qasim Khan 2019] by S. Qasim
Khan. It provides interesting features such as support for the new physical layers
introduced in the BLE 5.0 specification or a mode allowing to follow the target
device hopping along the advertising channels. Since these channels are used to
broadcast data and indicate the presence of a specific device, the probability of a
successful sniffing is increased. Sniffing Bluetooth Low Energy advertisements is
easier because it only relies on three advertising channels with predictable parame-
ters. Several works have focused on the privacy of Bluetooth Low Energy protocol,
especially by leveraging the passive observation of these advertisements to acquire
privacy-sensitive information [Celosia 2020b,Celosia 2020a,Celosia 2019].

Multiple active attacks have also been presented in recent years. First, jamming-
based attacks have been explored by Brauer et al. in [Bräuer 2016], they demon-
strated an attack allowing to selectively jam advertisements. D. Cauquil also pre-
sented a new offensive tool named BTLEJack [Cauquil 2018] allowing to disrupt an

2.2. Protocol attacks 35

existing connection by jamming packets transmitted by one of the devices involved
in a connection, called Slave. The direct consequence of this jamming strategy is a
disconnection of the other device, named Master, allowing the attacker to synchro-
nise with the Slave instead of the legitimate device, resulting in hijacking the Master
role during an established connection. However, this strategy cannot be used to hi-
jack the Slave role, which could also be relevant from an offensive perspective, and,
being based on a jamming technique, is highly invasive and visible.

Second, two major tools, GATTacker [Jasek 2016] by S. Jasek and BTLE-
Juice [Cauquil 2016] by D. Cauquil, can be used to perform a Man-in-the-Middle
attack. GATTacker clones the advertisements transmitted by the target device
(called Peripheral) to indicate its presence and tries to advertise them faster, forc-
ing the device initiating the connection (also known as Central) to connect on a
cloned Peripheral controlled by the attacker. The approach adopted by BTLEJuice
directly establishes a connection with the target Peripheral, forcing it to stop adver-
tising, then it exposes a cloned Peripheral to the Central. Both of these strategies
are based on advertisements spoofing: as a consequence, they can only perform a
Man-in-the-Middle attack if the connection is not already established.

Multiple studies have also addressed the security of authentication and encryp-
tion mechanisms in BLE connections. In 2013, M. Ryan presented CRACKLE
[Ryan 2013b], a tool exploiting a weakness in the first version of the BLE pairing
process to quickly bruteforce the keys involved in the BLE connected mode secu-
rity. In [Antonioli 2019], Antonioli et al. introduced an attack named KNOB (Key
Negotiation of Bluetooth), to downgrade the key entropy from 16 to 7 bytes, which
drastically reduces the attacker’s effort to bruteforce the key. In [Antonioli 2020],
they also analysed the Cross-Transport Key Derivation, a mechanism allowing to
share keys between Bluetooth Classic and BLE, and demonstrated four attacks
named BLUR attacks abusing this feature, allowing to impersonate a device, ma-
nipulate traffic or establish a malicious session. Similarly, Wu et al. demonstrated
BLESA [Wu 2020a], an active attack abusing the reconnection process of an already
paired Central to impersonate the corresponding Peripheral and transmit some un-
encrypted spoofed data. Von Tschirschnitz et al. presented a method confusion
attack [von Tschirschnitz 2021] aiming at forcing the pairing of two devices using
different methods. While some of these attacks can be used to impersonate a device,
none of them can hijack such a device during an established BLE connection.

Previous research have also focused on discovering vulnerabilities that are linked
to the stack implementation rather than the protocol specification, such as Blue-
borne [Armis 2017] in 2017 or BleedingBit [Armis 2018] in 2018. Also, in [Gar-
belini 2020], Garbelini et al. presented a fuzzing framework named SweynTooth
targeting various BLE stacks, discovering a dozen of vulnerabilities. While their
consequences are generally severe, they are related to specific implementations and
cannot be generalised.

36 Chapter 2. State of the art of wireless security

2.2.2 Zigbee

Multiple attacks targeting the Zigbee protocol have also been discovered in the past
few years. Zigbee is a very commonly used protocol in Internet of Things, its lower
layers being based on 802.15.4 specification.

One of the major contribution to Zigbee offensive security is the presentation at
ToorCon 11 by J. Wright, who presented both its KillerBee [Wright 2009] frame-
work and a set of attacks allowing to impact a Zigbee network. He presented several
solutions allowing to recover the encryption key of a Zigbee network, so-called Net-
work Key. Indeed, Zigbee keys can be pre-installed in devices by the manufacturer,
but can also be provisioned using Over the Air (UTA) procedure. He suggested to
dump the RAM of a node to recover the key if the pre-installed method is used, and
noted that extracting the key during an OTA provisioning process is trivial as the
key is transmitted in plaintext, allowing a passive attacker to recover it by sniffing
packets. He also noted that 802.15.4 doesn’t provide any anti-replay mechanism,
allowing an attacker to replay previously observed packets even without knowing
the network key. He also described a Denial of Service attack based on flooding
fake Association Request packets to the network’s center node, named Coordina-
tor. These packets being transmitted in plain text, they are easy to inject from an
attacker’s perspective and don’t require the acquisition of the network key. The
coordinator provides a new address for each fake Association Request, leading to
a fast consumption of the address space: as a result, a legitimate End Device try-
ing to associate with the network is rejected because no address is available. The
provided framework allows to easily manipulate the traffic by providing injection,
sniffing and jamming primitives.

In [Zillner 2015], T. Zillner et al. present at BlackHat 2015 a new offensive
framework named SecBee [SEC 2015] and multiple attacks targeting Zigbee net-
works. They mainly studied security mechanisms involved by Zigbee and noted
that even if encryption can be performed at multiple layers (especially the Network
and Link Layer), only the Network Key is used in practice. They also noted the ex-
istence of default keys provided as examples in the specifications, that could be used
in the wild for badly configured networks. They also propose an offensive strategy
based on the transmission of a Reset To Factory Settings command packet, forcing
the targeted node to perform a new association with the network. They were then
able to impersonate the Coordinator and enroll the corresponding node into a ma-
licious network. They also underline that a jamming attack could trick a user into
initiating a new pairing.

In [Cao 2016], X. Cao et al. discuss the impact of denial of services attacks
exploiting energy depletion to consume the legitimates nodes energy and disrupt
a Zigbee network. They propose several strategies allowing to perform such an
attack. They noted that some mechanisms, especially those related to processing
security headers, are costly in term of energy resources and that injecting mali-
cious packets including malformed security headers could lead to such a denial of
service. They also proposed the exploitation of channel sensing and contention

2.2. Protocol attacks 37

based access nature of the IEEE 802.15.4 CSMA/CA protocol: by continuously
flooding the link, the attacker may disallow any legitimate use of the link by legit-
imate nodes, while forcing them to monitor it continuously. They noted that such
a consumption attack may result in resetting some security-related values in the
targeted nodes, situation that could be abused to perform more complex attacks.
In [Vidgren 2013b], Vidgren et al. proposed an attack, allowing to force an End
Device into polling mode by spoofing a Router or Coordinator node and continu-
ously answering to poll requests from the targeted End Device, forcing it to stay
awake and consume its battery life. In [Olawumi 2014], Olawumi et al. described
another Denial of Service attack based on artificially incrementing the sequence
number using a malformed encrypted packet to desynchronize the legitimate node’s
sequence numbers and force the rejection of legitimate frames. In [Krivtsova 2016],
I. Krivtsova et al. presented a broadcast storm attack targeting a Zigbee network
by flooding Broadcast frames. It forces every legitimate node to retransmit the
malicious broadcast packets, impacting both their power consumption and the link
usage. This attack is especially effective as it amplifies the malicious traffic by
abusing broadcast mechanism.

Finally, some attacks are also linked to specific implementations of the Zigbee
stack. XBee is one of the most popular implementation of Zigbee, and includes
its own proprietary mechanisms over Zigbee. In [Vaccari 2017], I. Vaccari et al.
noted the existence of proprietary XBee packets allowing to remotely transmit AT
commands to XBee node, allowing an attacker to remotely alter the configuration
of the node. Such a situation is especially critical as it may allow to perform
Denial of Service, Hijacking or Man-in-the-Middle attacks by forcing the node to
join a malicious network. Similarly, in [Ronen 2017], Ronen et al. show that a
vulnerability affecting Philips Hue light bulbs allows an attacker to control the
connected objects and corrupt their firmware in order to create an IoT worm.

2.2.3 Proprietary protocols

In this subsection, we describe the known attacks that have been presented in
the recent years, targeting several proprietary protocols commonly used in wireless
devices and connected objects. Indeed, a significant amount of devices relies on
proprietary communication protocols to communicate, complicating their security
analysis. For example, the ANT protocol is wildly used by fitness and sport-oriented
devices, such as heart rate sensors or sport-oriented smartwatches. Only the higher
layers of the protocol are documented, requiring an extensive reverse engineering
process to analyze the corresponding communications. Similarly, wireless keyboards
have massively made use of proprietary protocols over the years, and several severe
security flaws linked to the design of these protocols have been found recently.

38 Chapter 2. State of the art of wireless security

2.2.3.1 ANT protocol

ANT protocol is a proprietary wireless communication protocol commonly used
in fitness and sport-oriented devices. The upper layers are documented but no
specification is available for the lowest layers, especially the physical and the link
layer. Two main protocols are built over ANT: ANT+ and ANT-FS. ANT+ is a
protocol aiming at facilitating the interconnection between devices, by providing a
default ANT configuration that is publicly available and can be used by any ANT+
compliant device. ANT-FS aims to facilitate file sharing between ANT-enabled
devices, and is commonly used to provide over the air firmware update.

As far as we know, the most advanced work about ANT protocol security is
the presentation at DEFCON 24 by T. Szakaly [Szakaly 2016]. He presented the
ANT protocol internals and highlighted several serious security issues. He noted
that some security mechanisms provided by the protocol seems to rely on security
by obscurity and could be easily bypassed, such as the pairing bit mechanism or
the network key. Similarly, he noted that fundamental security measures such as
encryption can’t be used in ANT+ protocol, which is the most commonly used im-
plementation of ANT. He also reverse engineered the ANT-FS protocol and showed
that the packets are transmitted in plain text over the air and can be easily sniffed
using an SDR device. He highlighted that authentication methods provided by
ANT-FS can be bypassed and managed to setup a Man-in-the-Middle attack be-
tween two ANT-FS devices. Similarly, B. Dixon presented at DEFCON 27 an
attack aiming to cheat in e-cycling by injecting ANT+ data to an ANT+ don-
gle [Dixon 2019].

2.2.3.2 Enhanced ShockBurst, Logitech Unifying and Mosart

Wireless input devices, such as wireless keyboards and mices, are generally based
on proprietary wireless protocols. Most of them seem to be derived from the Shock-
Burst and Enhanced ShockBurst protocols, two variants of a proprietary protocol
provided by Nordic SemiConductors based on a Gaussian Frequency Shift Keying
(GFSK) modulation in the 2.4GHz ISM band. While the Enhanced ShockBurst is
well documented, several manufacturers, such as Logitech, Microsoft or HP, seem to
implement their own undocumented proprietary applicative layers over ShockBurst
or Enhanced ShockBurst protocol.

These kind of devices have been actively studied in the recent years, as they are
especially critical from a security perspective. The first major contribution to this
field is Keykeriki, presented at the CanSecWest 2010 conference by T. Schroeder
and M. Moser [Schroeder 2010]. They both studied old protocols using the 24MHz
frequency band and new protocols based on the 2.4 GHz ISM band, and built a
custom hardware allowing them to sniff these proprietary protocols. They high-
lighted several security issues linked to these protocols, such as weak encryption
used by Microsoft keyboards (the address can be easily eavesdropped and is used
as input key by a custom XOR-based encryption, allowing the attacker to decrypt
the traffic) or Logitech mouse packets being transmitted without encryption.

2.2. Protocol attacks 39

M. Newlin has presented his own research about wireless mices security at DE-
FCON 24 [Newlin 2016a]. He presented MouseJack, a set of critical vulnerabilities
targeting wireless mices from multiple manufacturers (e.g., Microsoft, Logitech,
Amazon, HP, EagleTek). He demonstrated several security attacks allowing to
inject unencrypted packets (allowing to inject arbitrary keystrokes), bypass some
encryption mechanisms allowing to force valid encrypted packets without knowing
the encryption key, force a malicious pairing, perform a denial of service and in some
specific cases, eavesdrop the keystrokes-related packets, allowing to build a wire-
less keylogger. He also significantly contributed to tooling by releasing RFStorm
firmware for nRF24 dongle, as we previously mentioned in the tool section.

In 2019, M. Mengs released Logitacker [LOG 2019], a set of critical vulnerabil-
ities targeting the Logitech Unifying protocol. He mainly focused his work on the
pairing process used to share the encryption key between the dongle and the wire-
less keyboard, and highlighted that this process is insecure and could be passively
eavesdrop by an attacker, allowing him to recover the key by applying simple trans-
formations to the collected data. He also published several bypasses for some of
the MouseJack security patches, allowing to inject malicious packets to a Logitech
Unifying dongle. He also released a custom firmware implementing these attacks
on a nRF52840 dongle from Nordic SemiConductors.

2.2.3.3 Other protocols

Various other proprietary protocols have also been analyzed by security researchers.
For example, S. Kamkar presented OpenSesame [OPE 2015], an attack based on
a custom hardware he built by diverting a toy computer to open garage doors.
The attack exploits the fact that the corresponding wireless protocol relies on fixed
codes and doesn’t use preamble to quickly bruteforce it using a De Bruijn sequence
transmitted continuously, allowing to dramatically reduce the bruteforce duration.
He also presented at DEFCON 23 [Kamkar 2015] a complex replay attack aiming
to break rolling codes based protocols (generally used by car keys) by jamming two
consecutive valid signals, then replaying the first one to allow access to the user,
while being able to replay the second one which is still valid.

D. Cauquil also presented RadioBit [Cauquil 2017a], a custom firmware for the
BBC:MicroBit allowing to interact with several RF protocols using a simple python
CLI, including ShockBurst, Enhanced ShockBurst and a proprietary protocol used
by a mini-drone, the Cheerson CX-10. He managed to hijack the legitimate remote
to control the drone by flooding control commands faster than the legitimate device.

2.2.4 Cross-technologies attacks

This subsection briefly presents different attack strategies to carry out a pivoting
attack. Firstly, the case of IoT devices supporting multiple radio protocols is dis-
cussed, then an overview of the few existing research works that considered such an
attack on a device supporting a single specific radio protocol is presented.

40 Chapter 2. State of the art of wireless security

2.2.4.1 Multi-protocol devices

A pivoting attack aims at taking advantage of the coexistence of multiple protocols
in the same environment in order to compromise new objects. The most natural
approach for this attack is to compromise an object supporting multiple radio com-
munication protocols, allowing to perform the attack using the provided API. As
an example, in [Bachy 2015], Bachy et al. compromise a smart-TV using HbbTV
communication protocol, then use it to reconfigure the firewall embedded in the
ADSL box using LAN protocols (Ethernet or WiFi).

Several hardware devices allow such attacks to be carried out. For instance,
Software Defined Radio devices are designed for a generic purpose, allowing com-
munications through multiple protocols, regardless of their modulation and fre-
quency bands. However, so far, these devices are only used for prototyping and
experimentation purposes.

There are also chips that integrate different wireless devices. For example,
B-L475E-IOT01A [IOT 2018], based on the STM32L4 micro controller intended
for IoT devices, supports multiple wireless protocols (such as Bluetooth, WiFi or
NFC). Similarly, the CC2652R [CC2 2019] from Texas Instruments is compliant
to multiple radio technologies in the ISM band. The compromise of such a chip
greatly facilitates the implementation of a pivoting attack targeting one of the
wireless protocols supported by the chip. However, such chips are expensive and
their use is quite specific, which limits their deployment in IoT networks.

2.2.4.2 Single-protocol devices

Since most connected objects only embed one wireless device, the practical imple-
mentation of a pivoting attack is much more complex. We are not aware of existing
research specifically addressing this issue from an offensive perspective. However,
some contributions explored related topics.

The most relevant contributions are related to Cross-Technology Communica-
tions (CTC) solutions, that are aimed providing a communication system between
two single-protocol devices supporting heterogeneous wireless communication pro-
tocols. However, to our knowledge these contributions did not investigate the use
of this technology in security or in an offensive perspective. There are two main
categories of CTC, named Packet-level CTC and Physical layer CTC.

The Packet-level CTC approach relies on some information linked to the packets.
As an example, K. Chebrolu et al. purposely adapt the packet duration in order to
encode data [Chebrolu 2009], while the FreeBee [Kim 2015] approach by S. Min Kim
is based on the time interval between beacon frames. From an offensive perspective,
these approaches could be interesting to exfiltrate some data, but they are not
relevant for pivoting attacks. Other limitations, such as a low data throughput, are
inherent to these approaches and hamper their practical use.

Physical layer CTC approaches consist in emulating a technology using the
signal generated by another one. As an example, Z. Li et al. simulate a Zigbee
frame using a WiFi transceiver [Li 2017]. Similarly, W. Jiang et al. have presented

2.2. Protocol attacks 41

an approach named BlueBee [Jiang 2017], allowing to simulate Zigbee frames using
a BLE transceiver, and another approach called XBee [Jiang 2018], enabling to
receive Zigbee frames from a BLE receiver. However, these solutions have major
limitations that prevent their use in an offensive perspective. As an example, the
selection of a Zigbee channel by BlueBee is based on the channel hopping algorithm
of BLE connected mode, so it requires to establish a BLE connection with another
BLE device. Similarly, adding a specific identifier before the data included in the
frame is needed in order to receive a Zigbee frame using XBee, so it requires the
cooperation of the Zigbee transmitter. These constraints can be easily addressed if
the use of CTC is legitimate and deliberate, however they prevent the use of these
solutions in a context of attack and especially for pivoting attacks.

The Packet-in-Packet strategy [Goodspeed 2011b], proposed by T. Goodspeed
et al. consists in encapsulating a complete radio frame into an application-level
payload: a misidentification of the beginning of the encapsulating frame by the
receiver (e.g., due to interferences causing bitflips during the demodulation) can
lead to the interpretation of the encapsulated frame. This strategy is particularly
interesting for bypassing software checks performed at the protocol layer, and may
thus allow attackers to access and control the lower layers of the radio device. The
authors highlight a possible use of this attack to perform a pivoting attack, e.g., to
inject radio traffic corresponding to a wireless protocol different from the protocol
natively supported by the radio device, under certain specific conditions. However,
this strategy can only be applied to a limited number of protocols, and can only
be achieved if the modulations used have similar characteristics (frequency bands,
bandwidth, etc). For instance, M. Millian and V. Yadav discuss the possibility of en-
capsulating 802.15.4 traffic into 802.11 frames [Millian 2015]. However, they stress
the difficulty of such a strategy due to the differences between the two technologies.

T. Goodspeed [Goodspeed 2011a] has also discovered the vulnerability in the
nRF24L01+ chip we mentioned earlier, that allows to sniff and inject packets on
various protocols based on Gaussian Frequency Shift Keying modulation. The at-
tack abuses a chip register initially designed to hold an address, that can be diverted
to select an arbitrary preamble and sniff Enhanced ShockBurst frames without prior
knowledge of the address. However, it is also possible to divert the use of this reg-
ister to detect specific preambles used by different wireless technologies, as long as
similar modulations and bit rates are used. This vulnerability has been used by M.
Newlin to develop a firmware aiming to add advanced sniffing capabilities for the
Enhanced ShockBurst and Mosart protocols to the nRF24 chip [Newlin 2016a].

D. Cauquil has also disclosed a similar vulnerability in other Nordic Semicon-
ductors chips [Cauquil 2017b], and has developed a similar tool for the nRF51.
He was then able to implement communication primitives for a proprietary pro-
tocol not initially supported by the chip, allowing it to control a mini-drone
[Cauquil 2017c]. An implementation of these primitives has been integrated into
the radiobit [Cauquil 2017a] project.

Finally, in [Camurati 2022], G. Camurati et al. demonstrated that shaping ar-
bitrary signals out of electromagnetic noise is possible from unprivileged software,

42 Chapter 2. State of the art of wireless security

and can be used to transmit arbitrary signals from a smartphone. They demon-
strate the practicability of such an attack to interact with several protocols. While
this result is one of the most promising work related to this topic, the attack is
constrained in term of power, frequency and bandwidth by the properties of the
leakage and can only transmit arbitrary signals. Similarly, in [Bratus 2016], Bratus
et al. discuss this kind of cross-technology attacks by illustrating it on simple modu-
lations and proposes a classification of physical layers to facilitate the identification
of such strategies. We can also note the existence of research works leveraging a
similar strategy in other areas, aiming at diverting specific file formats to imitate
other ones [Koch 2022,Albertini 2013] (so-called polyglot files).

These research works present some first techniques and experimental results that
illustrate the practical feasibility of pivoting attacks targeting wireless protocols.
However, these techniques have several limitations which strongly restrict their use:
they require an active cooperation of other devices, or the modulation of the native
protocol and the pivoting protocol must be similar and sometimes depend on the
use of specific chips (such as Nordic SemiConductors nRF24 and nRF51 chips).

2.3 Defensive approaches

In this section, we present some of the research works that have implemented de-
fensive approaches adapted to this new wireless communication protocols. Several
studies discuss the relevance of classical security approaches and investigate new
mitigation measures, especially intrusion detection systems. We mainly focus on
intrusion detection oriented works, as we explored this specific topic in our defensive
contributions.

2.3.1 Signal-based approaches

Some works have focused on exploiting physical level indicators to identify security
threats: they analyze the RF signals linked to the wireless communication proto-
cols to protect in order to detect intrusions. For example, Roux et al. [Roux 2018]
provide a protocol-independent approach based on the analysis of the physical layer
using Software Defined Radios, to monitor wireless communications and detect in-
trusion attempts. They rely on the sweep features provided by HackRF one tooling
to monitor wide frequency bands and identify malicious behaviours using a Machine
Learning-based approach. While the approach is especially interesting because of
its genericity and because it doesn’t rely on prior knowledge of the protocols, the
results seem less convincing in the overcrowded 2.4 GHz band, which is widely used
by IoT devices. In [Fragkiadakis 2012], A. Fragkiadakis et al. exploited a metric
based on Signal-to-Interference-plus-Noise-Ratio (SINR) to detect denial of service
attacks based on jamming techniques. They evaluate their approach on a standard
WiFi network. Another approach by P. Umashankar et al. [Ghugar 2018] relies on
analyzing some physical-layer based metrics to calculate a specific trust value per
node, allowing to detect periodic jamming attacks.

2.3. Defensive approaches 43

Some physical approaches also try to fingerprint nodes based on their physical
transmission characteristics, allowing to identify spoofing attacks. Some of these fin-
gerprinting approaches [Hall 2005,Ur Rehman 2012,Köse 2019] exploit the transient
of transmitted signals in order to identify artifacts linked to imperfections of the
transmitter. The main limit of such an approach is the need of expensive devices,
as the transient signal must be captured at a high sampling rate. In [Brik 2008],
fingerprinting is performed by comparing the received signal with the correspond-
ing ideal waveform and using the error as an indicator. Such an approach seems
effective but is obviously dependent of prior knowledge of the modulation scheme to
calculate the ideal waveform. Similarly, in [Helluy-Lafont 2020], E. Helluy-Lafont
et al. use timing indicators linked to frequency hopping and frequency deviation to
identify Bluetooth nodes. In [Galtier 2020], F. Galtier et al. provide a fingerprint-
ing approach aiming at detecting spoofers by analyzing the DSP of the received
signals. They demonstrate the relevance of such an approach on Bluetooth Low
Energy and Zigbee nodes.

2.3.2 Packet-based approaches

Some works also exploit higher level indicators to perform detection in multiple pro-
tocols. In [Siby 2017], S. Siby et al. monitor traffic of several protocols using dedi-
cated transceivers (e.g., Ubertooth, RZUSBStick) in order to automatically identify
and classify the nodes. The solution is however especially difficult to maintain as
it relies on specific transceiver for each monitored protocol. In [Tournier 2020], J.
Tournier et al. use an abstract representation of packets to monitor and analyze
heterogeneous wireless protocols, providing a tool named IoTMAP which is able to
analyze BLE, Zigbee and 6LowPAN networks.

However, most of Intrusion Detection approaches focus on a specific proto-
col. For example, in [Miettinen 2016], M. Miettinen et al fingerprint devices using
WiFi link layer indicators and identify vulnerabilities based on a CVE database.
In [Raza 2013], S. Raza et al. focus on 6LowPAN and provid a Network Intrusion
Detection System named SVELTE allowing to detect routing attacks, which relies
on monitoring software embedded both in the nodes and in a 6LowPAN router. In
[Jokar 2016], F. Sadikin et al. propose a Zigbee Intrusion Detection System combin-
ing rule-based intrusion detection and machine learning-based anomaly detection
to cover efficiently both known and unknown attacks.

In the specific case of Bluetooth Low Energy, we already highlighted several ma-
jor research works [Ryan 2013a, Cauquil 2017b, Cauquil 2019] focused on allowing
eavesdropping of Bluetooth Low Energy communication, which is not trivial because
of the use of channel hopping algorithms. Although these works are not necessarily
focused on a defensive perspective, they are still relevant for BLE Intrusion De-
tection, as most of existing defensive works rely on them to monitor BLE traffic.
Unfortunately, these passive approaches suffer from several serious limitations that
have a consequent impact on the completeness and representativity of monitored
communications. First, most of these sniffers are only capable of monitoring one

44 Chapter 2. State of the art of wireless security

connection at a time. G. del Arroyo et al. have attempted in [Gutierrez del Ar-
royo 2017] to solve this issue by implementing an opportunistic algorithm based
on a scheduler in the Ubertooth one that allows monitoring multiple connections
simultaneously. While this work looks promising, it is still limited by the underly-
ing hardware and may miss some packets depending on the environment. Second,
most existing implementations are unstable, partially because of the use of various
heuristics, that are not suitable for some devices (for example, some smartphones
change the channel map frequently, making it difficult for the sniffer to infer this
parameter). As far as we know, comprehensive monitoring of the Link Layer traf-
fic of BLE communications from an external probe, especially in connected mode,
remains an open challenge. This has a consequent impact on the research works
aiming at developing intrusion detection systems for this protocol: since most of
them are based on the aforementioned sniffers, they generally rely on advertise-
ments monitoring only, limiting their scope to spoofing or denial of services attacks
targeting the advertising mode. In [Wu 2020b], J. Wu et al. presented BlueShield,
an approach to detect spoofing attacks by profiling monitored devices using multi-
ple features inferred from the advertisements packets. In [Sung 2016], Y. Sung et
al. explored the use of Received Signal Strength Indicators (RSSI) to detect intrud-
ers. In [Yaseen 2019], M. Yaseen et al. presented MARC, a framework to detect
Man-in-the-Middle attacks, by exploiting four features inferred from advertisement
packets such as the advertising interval or RSSI levels. Other research works also
explore the analysis of traffic in connected mode. In [Newaz 2020], A. Newaz et
al. combine an n-gram-based approach with various machine learning techniques
to detect various attacks by analyzing irregular traffic-flow patterns on Personal
Medical Devices. Similarly, in [Lahmadi 2020], A. Lahmadi et al. explore the use
of Machine Learning techniques to identify Man-in-the-Middle attacks by building
a model of legitimate behaviors based on features such as RSSI, channels numbers
or distance. While these works provide interesting results regarding traffic analysis,
they performed offline detection on datasets, and are difficult to deploy in practice.

Some works also focused on building IDS for Bluetooth Low Energy Mesh net-
works. In [Lacava 2021], A. Lacava et al. provide a distributed IDS based on the
deployment of watchdogs nodes within the network, capable of collecting local traffic
and detecting attacks using cooperative decision making. Furthermore, in [Krzysz-
toń 2020], M. Krzyszton et al. perform simulations to choose optimal placements
for watchdogs in this type of cooperative IDS. The distributed approach adopted
by these research works are especially relevant for Mesh networks, but seems diffi-
cult to apply to existing Bluetooth Low Energy devices, that generally do not use
routing mechanisms.

2.4 Outline

In the previous sections, we highlighted several research topics, issues and challenges
that have motivated the contributions of this work. In this section, we present

2.4. Outline 45

the structure of the following chapters, the corresponding contributions and our
scientific positioning for every covered topic. The following chapters are splitted
into two main parts: the first part describes our offensive contributions, while the
second presents our defensive contributions.

The first offensive contribution we introduce in chapter 3 is an exploration of
cross-technology pivoting attacks. Indeed, we have highlighted in subsection 2.2.4
that existing approaches, such as Cross Technology Communications, are not suited
for an offensive context because of serious limitations. While these limitations, such
as the need of a cooperation between nodes, are not problematic from a functional
perspective, they disallow the use of such strategy in an offensive context. In this
chapter, we explore this topic from an offensive perspective and demonstrate that
implementing cross-protocol pivoting attacks is feasible and must be considered as
a serious threats for wireless communication protocols. We introduce WazaBee,
an attack aiming at diverting Bluetooth Low Energy transceivers to receive and
transmit 802.15.4 packets, and discuss the implementation of such pivoting attacks
on off-the-shelf devices such as smartphones or connected objects.

The chapter 4 introduce our second offensive contribution, named InjectaBLE,
which is a critical low level injection attack targeting the Bluetooth Low Energy
protocol. Indeed, we highlighted in 2.2.1 that existing Bluetooth Low Energy
attacks present several limitations: for example, hijacking the Slave’s role or estab-
lishing a Man-in-the-Middle during an established connection is not possible using
existing approaches. We demonstrate in this chapter that our injection strategy
allows to perform new kind of attacks, solving the mentioned limitations, while be-
ing especially difficult to fix as it is linked to a fundamental Bluetooth Low Energy
low level mechanism. We demonstrate its feasibility, evaluate the impact of several
parameters on its success and propose some counter-measures allowing to limit its
impact.

The third contribution, presented in chapter 5, aims to provide a framework for
offensive development, solving issues linked to the current state of offensive tool-
ing in wireless security. Indeed, in 2.1 we presented the wide variety of available
hardware tools, exposing various capabilities and APIs, while discussing the limits
of existing software tools, such as the use of high level libraries. This situation is
problematic, because it generates a chaotic environment with outdated or unmain-
tained tools impacting the reproducibility of security research in wireless security.
We present Mirage, an offensive framework allowing to facilitate the reproducibility
of such researches by providing a generic, modular and user-friendly framework,
which can be easily extended to add new attacks, protocols or hardware drivers. It
also allow the design of complex attack workflows combining several attacks.

The second part is dedicated to the exploration of innovate defensive solutions,
especially on intrusion detection and prevention in peer-to-peer wireless communi-
cation protocols. In 2.3, we highlighted how difficult it is to exhaustively monitor
Bluetooth Low Energy communications using an external probe performing sniff-
ing, and how it impacts existing intrusion detection approaches. In chapter 6, we
present an innovative detection approach based on embedding detection modules

46 Chapter 2. State of the art of wireless security

directly in Bluetooth Low Energy controllers, resulting in a decentralised IDS de-
sign. We highlight the main technical challenges that complicate the deployment
of such a system and describe Oasis, a modular and generic framework aiming at
facilitating the instrumentation of proprietary Bluetooth Low Energy controllers.

Our second defensive contribution focuses on the development of a firewall ded-
icated to peer-to-peer wireless communication protocols. Indeed, as far as we know,
very few research works have explored this topic. It is indeed especially difficult to
filter the wireless traffic in such protocols because of the absence of central point
that could be used to efficiently analyze and filter packets. In chapter 7, we explore
the use of offensive techniques such as reactive jamming in order to build a generic
filtering strategy that could be used to mitigate wireless attacks, and demonstrate
its feasibility on Zigbee and Enhanced ShockBurst networks.

Part II

Low-level attacks

Chapter 3

Cross-protocol attacks

Contents
3.1 Motivations . 50
3.2 Overview of wireless protocols 52

3.2.1 Digital modulation . 52
3.2.2 Bluetooth Low Energy (BLE) 52
3.2.3 Zigbee . 55

3.3 The WazaBee attack . 58
3.3.1 Assumptions . 58
3.3.2 Attack overview . 59
3.3.3 Correspondence table generation 60
3.3.4 Requirements . 60

3.4 Benchmarks . 64
3.5 Attack scenarios . 66

3.5.1 Experimental setup . 66
3.5.2 Scenario A: injecting 802.15.4 frames using a smartphone . . 66
3.5.3 Scenario B: performing complex Zigbee attacks from a BLE

tracker device . 69
3.5.4 Conclusion . 70

3.6 RadioSploit: implementing pivoting attacks on a recent
smartphone . 70

3.6.1 Firmware reverse engineering and patching 70
3.6.2 Protocols support . 73
3.6.3 Conclusion . 76

3.7 Counter-measures . 76
3.8 Conclusion . 77

In this chapter, we focus on a specific threat for IoT environments that has
been seldom studied from an offensive perspective until now. It takes advantage
of similarities in the physical layers of heterogeneous wireless technologies, which
may co-exist in the same environment. We investigate the possibility to divert
the behaviour of a given device dedicated to a specific radio protocol, to make it
communicate through another radio protocol not initially supported by the device,
in order to perform malicious activities. The feasibility of such communications

50 Chapter 3. Cross-protocol attacks

between heterogeneous protocols has been explored in some previous works, com-
monly called Cross Technology Communications. However, existing solutions always
assume a cooperation from the surrounding devices to allow such a transmission.
This assumption is not realistic from an offensive perspective, which makes such at-
tacks very unlikely. The approach investigated in this chapter does not rely on this
assumption, thus increasing its practical feasibility. Specifically, the proposed ap-
proach, called cross-technology pivoting attack, allows to establish a communication
channel between chips supporting BLE, and other wireless protocols such as Zigbee,
Enhanced ShockBurst or Mosart, in order to perform various types of attacks. The
ubiquity and wide deployment of BLE devices make these attacks critical as the
attack surface of targeted wireless networks is significantly increased.

3.1 Motivations

In chapter 1, we highlighted several issues and challenges related to the security
of wireless communication protocols in the context of Internet of Things. One of
the main consequences of the expansion of IoT devices is the chaotic deployment
of heterogeneous wireless communication protocols. This deployment leads to the
co-existence of multiple wireless protocols in the same environments, which may
introduce serious security risks. Indeed, even if these protocols are not supposed to
interact together, they generally share the same frequency bands and rely on similar
technology. Moreover, the context of Internet of Things leads to the formation
of complex environments, which are decentralized, heterogeneous and dynamic.
This situation is problematic because it dramatically increases the attack surface
exposed by IoT environments, and opens the opportunity to attackers to set up
novel offensive strategies that are difficult to anticipate from a defensive point of
view.

This situation leads us to analyze the specific security threats that could be
linked to this co-existence, and especially the ones resulting from unexpected in-
teractions between heterogeneous protocols. More precisely, we focus our work on
cross-protocol pivoting attacks: we explored the feasibility of diverting a specific
transceiver dedicated to a given wireless protocol to interact with another wireless
protocol, which is not natively supported by the chip. We believe the consequences
of such pivoting attacks, would be critical, because 1) they open the possibility of
new offensive strategies quite difficult to detect, because not considered as for now,
and 2) they can be deployed at a large scale because the vast majority of con-
nected objects embed at least one radio technology, that could possibly be remotely
diverted.

As an example, such a strategy can be used to perform covert channel attacks
or to exfiltrate data to an illegitimate remote receiver by means of a corrupted
object, by communicating through a wireless protocol that is not supposed to be
monitored in the targeted environment. It can also be used to perform traditional
attacks targeting a radio protocol RP1 (man in the middle, sniffing, spoofing, etc)

3.1. Motivations 51

from a device supporting another radio protocol RP2 and that is not considered as
a potential source of attack for the RP1 protocol.

We focused our work on BLE chips that are widely deployed in many environ-
ments, because they are embedded in the BLE-connected smartphones and smart
devices. In a first time, we analyzed how a Bluetooth Low Energy transceiver could
interact with a 802.15.4 -based protocol such as Zigbee, which is based on a different
modulation scheme. While several works in the signal processing community have
explored this kind of interactions between heterogeneous protocols, as mentioned in
section 2.2.4, we noted that the existing approaches are not suited for an offensive
use. Indeed, these techniques have several limitations which strongly restrict their
use: they require an active cooperation of other devices, or the modulation of the
native protocol and the pivoting protocol must be similar and sometimes depend
on the use of specific chips (such as Nordic SemiConductors nRF24 and nRF51
chips). While these assumptions are acceptable from a functional perspective, it is
not realistic in an offensive context where a compromised node would try to lever-
age such strategy to attack surrounding devices. Our main contribution, named
WazaBee, allows to reliably transmit and receive 802.15.4 packets from a diverted
BLE transceiver without requiring any cooperation from surrounding devices. The
attack takes advantage of some characteristics of the BLE protocol to allow some
BLE devices to communicate using 802.15.4 -based protocols not initially supported
by these devices. The consequences of this attack are critical because the vulner-
ability is not specific to some BLE chips but is rather related to the design and
implementation of the underlying radio protocols. As a consequence, the attack is
not implementation dependent and may potentially be used with the majority of
BLE chips. In addition, the attack can be implemented easily which increases the
level of the threat.

Second, we also explored the practical feasibility of implementing such pivoting
attacks on off-the-shelf devices, especially mobile devices such as smartphones or
connected objects. Indeed, this kind of device is more likely to be compromised
because their mobility could be leveraged by an attacker to compromise devices
which can’t be easily accessed without pivoting attacks. We focused on diverting
the proprietary firmware of a BCM4375 Bluetooth controller embedded in a Sam-
sung Galaxy S20 smartphone, and managed to implement several cross-technology
pivoting attacks targeting Zigbee (using WazaBee strategy), but also proprietary
protocols used by wireless keyboards such as Enhanced ShockBurst or Mosart. Our
proof of concept, named RadioSploit, is a combination of firmware patches allowing
to divert the targeted Bluetooth controller and an Android application providing a
user interface to perform pivoting attacks. From our perspective, this work high-
lights the practical feasibility of such pivoting attacks and could increase awareness
about the need to develop efficient protection mechanisms to prevent and mitigate
this type of attack which could have critical consequences on the security of IoT
environments.

52 Chapter 3. Cross-protocol attacks

3.2 Overview of wireless protocols

In this section, we introduce some definitions that are useful to understand the
pivoting attack presented in this chapter. Then, we briefly present some background
information about the BLE and Zigbee protocols lower layers.

3.2.1 Digital modulation

Digital modulation is defined as the process of transforming a digital signal (the
modulating signal) to adapt it to the transmission channel. This transformation
consists in modifying the characteristics of a sine wave, called a carrier, according
to the data to be transmitted. The resulting signal is called the modulated signal.

The modulated signal is defined by the following equation:

s(t) = A(t) cos(2πfct + φ(t)) (3.1)

where A(t), fc, and φ(t) represent the amplitude, frequency and phase of the
signal, respectively.

Formula (3.1) can be also be written as follows:

s(t) = I(t) cos(2πfct) − Q(t) sin(2πfct) (3.2)

with:

• I(t) = A(t) cos(φ(t)) "In-phase component"

• Q(t) = A(t) sin(φ(t)) "Quadrature component"

As a consequence, the state of a modulated signal at a given time can be rep-
resented by a vector in the complex plan: the norm of the vector represents the
amplitude of the signal, while its argument corresponds to its phase.

Note also that equation (3.2) demonstrates that it is possible to control the
instantaneous phase, the instantaneous frequency and the amplitude of a carrier
wave by manipulating the amplitude of I and Q signals. This property is the basis
of a so-called I/Q modulator.

3.2.2 Bluetooth Low Energy (BLE)

The Bluetooth Low Energy protocol, or BLE, is a simplified variant of the Bluetooth
protocol, introduced in version 4.0 of the Bluetooth specification [Blu 2019]. In
particular, it is optimised for energy saving and is commonly used in IoT networks,
due to its low complexity and its wide deployment. It is also supported by default
by most smartphones and computers.

In this chapter, we focus on the lower layers of the protocol, notably the physical
layer. The physical layer of the protocol (PHY layer) describes a single packet
format, illustrated in figure 3.1 and composed of the following fields:

3.2. Overview of wireless protocols 53

• Preamble: one byte field corresponding to series of alternating bits (0x55),
used to synchronise the receiver at the start of the frame,

• Access Address: 4 bytes field, allowing to identify a specific connection or
an advertisement,

• Protocol Data Unit (PDU): field of variable size made up of a link-layer
header (LL Header) and the data to be transmitted,

• Cyclic Redundancy Check (CRC): 3 bytes field for integrity checking
based on cyclic redundancy code.

Figure 3.1: Bluetooth Low Energy Link Layer packet format

When a frame is transmitted, the data from the upper layers is prefixed with
a header by the link layer (LL), and is encapsulated into the PDU field. The
corresponding CRC is appended to the PDU. A transformation called whitening
is then applied, allowing the generation of a pseudo-random sequence, in order
to avoid the presence of long repeated sequences of 1 or 0, which could alter the
transmission of the modulated signal. Finally, the preamble and the Access Address
are included before the PDU and the frame is then processed by the modulator.

The physical layer of the BLE protocol is based on a frequency modulation,
called Gaussian Frequency Shift Keying (GFSK), operating in the ISM band (from
2.4 to 2.5 GHz). It is a variant of the 2-Frequency Shift Keying (2-FSK) modulation
in which a gaussian filter is applied to the modulating signal to avoid abrupt changes
in frequency upon symbol changes.

A 2-FSK modulation consists in encoding two symbols (0 and 1 for binary data)
by two different frequencies defined by the following formulas:

F0 = fc − ∆f = fc − m

2Ts
(3.3)

F1 = fc + ∆f = fc + m

2Ts
(3.4)

• fc is the frequency of the carrier, called central frequency,

54 Chapter 3. Cross-protocol attacks

• ∆f is the modulation deviation (defined as the lag between the frequency
encoding the symbol and the frequency of the carrier),

• m is the modulation index (a value between 0 and 1 characterizing the mod-
ulation),

• Ts is the symbol duration (the inverse of the data rate).

This modulation provides a modulated signal whose signal envelope amplitude
is constant and its phase is continuous over time. In addition, the instantaneous
phase φ(t) and the instantaneous frequency f(t) are linked as follows:

f(t) = 1
2π

dφ(t)
dt

(3.5)

Thus, the variation of instantaneous frequency can be inferred by observing the
direction of rotation of the instantaneous phase: an increase in frequency (encoding
the value 1) will cause a counter-clockwise rotation of the phase, while a decrease
in frequency (encoding the value 0) will cause the phase to rotate clockwise. Such a
modulation can thus be represented in the complex plan by observing the direction
of rotation of the phase, as illustrated in Figure 3.2.

Counter-clockwise
rotation: 1

Clockwise
rotation: 0

Q
(quadrature)

I
(In-phase)

f↗

f↘

Figure 3.2: I/Q representation of a 2-FSK modulation

BLE specification states that the modulation index must be set between 0.45
and 0.55. The symbol duration Ts depends on the mode in use. Indeed, the first
versions of the specification required a data rate of 1 Mbit/s (i.e., Ts = 10−6s).
However, version 5 introduced two new operating modes for the physical layer: LE
Coded, that is out of the scope of this work, and LE 2M, operating at 2 Mbits/s
(i.e., Ts = 5 × 10−7s).

The central frequency depends on the communication channel. Indeed, the
specification proposes 40 communication channels in the ISM frequency band (from
2.4 to 2.5 GHz), each with a bandwidth of 2 MHz, illustrated in figure 3.3. Three
of these channels (37, 38 and 39) were initially dedicated to the broadcasting of
announcement messages (advertising channels) while the other 37 channels were
dedicated for data exchange in connected mode (data channels). However, the

3.2. Overview of wireless protocols 55

addition of new modes, LE Coded and LE 2M, introduces the possibility to use
data channels as secondary advertising channels. Each channel being identified by
a number k ∈ [0..39]. The channels 37, 38 and 39 respectively use the frequencies
2402, 2426 and 2480 MHz. The other channels, from 0 to 36, are spaced of 2MHz
from 2404MHz skipping those frequencies.

Figure 3.3: Bluetooth Low Energy communication channels

3.2.3 Zigbee

Zigbee is one of the most widespread wireless protocols in IoT networks. Its low
power consumption, the low cost of radio devices and the ability to build complex
topologies make it particularly attractive for IoT systems. It is compliant with
the IEEE 802.15.4 standard [IEE 2020] which defines the physical and link layers.
Its specification mainly describes the upper layers of the protocol stack (i.e., the
network and application layers). In this chapter, we focus on the lower layers, and
more specifically on the 802.15.4 standard physical layer. This layer (called PHY)
defines the format of the frames (named Physical Protocol Data Unit, or PPDU),
as follows (an illustration is provided in figure 3.4):

• Preamble: 4 consecutive null bytes field (0x00 0x00 0x00 0x00), used to
synchronise the receiver with the beginning of the frame,

• Start of Frame Delimiter (SFD): one byte field of value 0x7A, indicating
the beginning of the frame,

• Length (PHR): one byte field encoding the size in bytes of the Protocol
Service Data Unit,

• Protocol Service Data Unit (PSDU): field of variable length, encapsu-
lating the frame at link layer (or MAC). This frame is composed of a header,
(MHR), the data to be encapsulated, transmitted by the upper layers, as well
as a two bytes field, the Frame Check Sequence (FCS), used to check the
integrity of the received frame.

Acccording to the 802.15.4 standard, a spread spectrum technique (Direct Se-
quence Spread Spectrum or DSSS) is applied to the generated frame before it is

56 Chapter 3. Cross-protocol attacks

Figure 3.4: Physical Protocol Data Unit format

processed by the modulator. Each byte is split into two blocks of 4 bits, the Least
Significant Bits (LSB) and the Most Significant Bits (MSB). Each of these blocks
is then substituted by a pseudo-random sequence of 32 bits, called PN sequence
(Pseudorandom Noise) according to the correspondences presented in Table 3.1.
The bits of this sequence are also called chips.

Block PN Sequence
(b0b1b2b3) (c0c1 ... c30c31)

0000 11011001 11000011 01010010 00101110
1000 11101101 10011100 00110101 00100010
0100 00101110 11011001 11000011 01010010
1100 00100010 11101101 10011100 00110101
0010 01010010 00101110 11011001 11000011
1010 00110101 00100010 11101101 10011100
0110 11000011 01010010 00101110 11011001
1110 10011100 00110101 00100010 11101101
0001 10001100 10010110 00000111 01111011
1001 10111000 11001001 01100000 01110111
0101 01111011 10001100 10010110 00000111
1101 01110111 10111000 11001001 01100000
0011 00000111 01111011 10001100 10010110
1011 01100000 01110111 10111000 11001001
0111 10010110 00000111 01111011 10001100
1111 11001001 01100000 01110111 10111000

Table 3.1: Block/PN sequence correspondence table

PN sequences are then provided as input of the modulator. The physical layer
of the 802.15.4 standard is based on a phase modulation called Offset Quadrature
Phase Shift Keying (or O-QPSK) with half sine pulse shaping in the ISM band. This
modulation corresponds to a variant of the Quadrature Phase Shift Keying phase
modulation, which consists in encoding the binary input information by modulating
the phase of the carrier. Four phase values are used to transmit four symbols, each
symbol being composed of two consecutive bits. In the specific case of Zigbee and
O-QPSK modulation, each symbol is composed of 2 chips.

To generate a 802.15.4 compliant signal, it is necessary to independently control
the In-phase and Quadrature components used to modulate the even bits and the
odd bits, respectively. The first step consists in transforming the binary message to

3.2. Overview of wireless protocols 57

−1
0
1

m(t)

−1
0
1

I(t)

−1
0
1

Q(t)

−1
0
1

I(t)cos(2πfct)

−1
0
1

Q(t)sin(2πfct)

−1
0
1

s(t)

Figure 3.5: Temporal representation of O-QPSK modulated signal with half sine
pulse shaping

be modulated into two sequences of half sine pulses of duration Ts = 2Tb (where Tb

corresponds to half the duration of a symbol): a 1 bit is encoded by a positive half
sine pulse while a 0 is encoded by a negative half sine pulse. As a result, I(t) is a
sequence of half sine pulses representing the even bits while Q(t) is a sequence of half
sine pulses representing the odd bits. The Quadrature component is also temporally
delayed of Tb in order to avoid some drawbacks linked to QPSK modulation.

Then, the modulated signal s(t) can be generated from the In-Phase and
Quadrature signals using formula 3.2. This modulation generates a signal with
continuous phase jumps, evolving linearly during the period of a Tb chip: the in-
stantaneous phase of the modulated signal thus becomes continuous as a function
of time and the amplitude of the signal’s envelope remains constant, as shown in
figure 3.5. Thus, at each sampling instant, there are only two possible transitions
to the following state: +π

2 and −π
2 . The transition to be made depends on: 1)

the value of the previous bit, 2) whether an even bit or an odd bit is currently
modulated, and 3) the current state. For instance, if the current state corresponds
to symbol 11 and if one wishes to modulate an odd bit set to 1, one will take the
transition to state 01, which will cause a linear increase of +π

2 in the instantaneous
phase during the period Tb. The constellation diagram is represented in Figure 3.6.

The 802.15.4 standard specification indicates a data rate of 2 Mchips/s in the
ISM band, which corresponds to Tb = 5 × 10−7s. Consequently, the data rate
corresponding to the bits of the PPDU before the substitution of the PN sequences
corresponds to 250 kbits/s. The carrier wave frequency (called central frequency
as in BLE) depends on the communication channel used. The 802.15.4 standard
proposes use of 16 communication channels, from 11 to 26 with a 2 MHz bandwidth
per channel, illustrated in figure 3.7. Two consecutive channels are spaced 3 MHz
apart. The following formula gives the relationship between the central frequency

58 Chapter 3. Cross-protocol attacks

Q
(quadrature)

I
(In-phase)

11

00

01

10

1

01

0

1

0
1

0

phase transition (odd bits)

phase transition (even bits)

Figure 3.6: I/Q representation of O-QPSK modulation with half sine pulse shaping

fc (in MHz) and the channel number k (from 11 to 26):

fc = 2405 + 5(k − 11) (3.6)

Figure 3.7: 802.15.4 communication channels

3.3 The WazaBee attack

This section describes the WazaBee attack and its architecture, which aims to divert
the use of the radio device embedded in the BLE chip in order to send and receive
802.15.4 frames (in particular Zigbee frames). We first describe the attack principle
and its theoretical foundations, then we detail the various requirements related to
the legitimate operation of the chip that must be taken into account for the attack
to be successful and we provide some solutions to fulfil these requirements.

3.3.1 Assumptions

We consider that the attacker has already compromised a BLE chip and is able to
run arbitrary code on it. This chip compromise may be performed using various
techniques, such as network attacks (e.g., attack of an Over The Air update process

3.3. The WazaBee attack 59

[Bettayeb 2019]), exploitation of vulnerabilities inherent to the object itself and
its firmware allowing some remote code execution [Armis 2017, Armis 2018], or
physical attacks allowing to flash the device [Vishwakarma 2018]. This compromise
is considered as a prerequisite to the WazaBee attack, and is out of the scope of
this work.

3.3.2 Attack overview

The Wazabee attack relies on the existence of a close relationship between GFSK
and O-QPSK, the modulations used by BLE and Zigbee protocols. The following
subsections explain how to switch from one modulation to another.

3.3.2.1 From GFSK to MSK modulation

As explained in previous sections, BLE uses a Gaussian Frequency Shift Keying
modulation with a modulation index m between 0.45 and 0.55. This characteristic
allows us to assimilate the BLE modulation to a specific case of GFSK, called GMSK
(Gaussian Minimum Shift Keying) with a modulation index m = 1

2 . The signal
generated by a GMSK modulation has a constant amplitude and a phase evolving
continuously over time. Moreover, a GMSK modulation is a MSK modulation
(Minimum Shift Keying) whose modulating signal is shaped by a Gaussian filter. If
we neglect the effect of the Gaussian filter, BLE modulation can be assimilated to
MSK modulation, which changes linearly and continuously the phase of −π

2 when
modulating a 0-bit and of +π

2 when modulating a 1-bit.

3.3.2.2 From MSK to O-QPSK modulation

As explained in section 3.2.2, an O-QPSK modulation with half sine pulse shap-
ing shares with the MSK modulation the property of a constant amplitude and a
continuous phase. Moreover, the modulation of each bit generates a ±π

2 continuous
and linear phase transition. Both MSK and O-QPSK modulations are thus very
close. In a more formal way, the research work of [Pasupathy 1979] shows the the-
oretical equivalence between MSK and O-QPSK with half sine pulse shaping, if an
encoding strategy is purposely chosen, such as Ts(MSK) = Tb(OQP SK).

3.3.2.3 From BLE to Zigbee

If we neglect the effect of the Gaussian filter (which will result in more progressive
phase transitions), we can make the hypothesis that BLE modulation can be ap-
proximated by a MSK modulation, which is close to the O-QPSK modulation used
by the Zigbee devices. To sum up, we can make the following hypotheses:

• It should be possible to control the input message of a GFSK modulator com-
patible with the BLE specification to generate a modulated signal correspond-
ing to a binary sequence that can be interpreted by a O-QPSK demodulator
(with half sine pulse shaping) compatible with the 802.15.4 standard.

60 Chapter 3. Cross-protocol attacks

• An arbitrary message modulated by an O-QPSK modulator (with half sine
pulse shaping) compatible with the 802.15.4 standard should generate a mod-
ulated signal corresponding to a binary sequence interpretable by a GFSK
demodulator compatible with BLE specification.

In the following, we outline how these hypotheses can be verified.

3.3.3 Correspondence table generation

The first problem to be addressed consists in establishing a correspondence table
between the PN sequences used by the 802.15.4 standard (which results from an
interpretation of the signal as a phase modulation, the O-QPSK with half sine
pulse shaping) and their interpretation by a MSK frequency modulation. From
this correspondence table, it will then be possible to build a binary sequence to be
provided as input to a BLE compliant modulator to generate a modulated signal
close to the one expected by a 802.15.4 demodulator, but also possible to interpret
an 802.15.4 frame as a frequency modulated signal that can be demodulated by a
BLE demodulator.

The generation of MSK sequences consists in encoding each phase transition
of the O-QPSK modulation with a 1-bit if it corresponds to a counter-clockwise
rotation of the vector representing the signal in the complex plan (+π

2 increase of
the instantaneous phase) or with a 0-bit if it corresponds to a clockwise rotation
(−π

2 decrease in the instantaneous phase).
Algorithm 1 illustrates this encoding technique. By applying this algorithm to

the 16 PN sequences, it is possible to build the correspondence table 3.2.
Let us note that a sequence of length n encoded in O-QPSK has an equivalent

of length n−1 encoded in MSK, because this one represents the transitions between
phases.

3.3.4 Requirements

The practical implementation of such an attack requires to take into account a
number of requirements, related to BLE physical layer characteristics described in
previous sections. Our objective is to implement primitives to send and receive
802.15.4 frames on a chip supporting BLE 5.0 specification. For that purpose, we
have to control the following elements:

• Data rate: the duration of one symbol encoded in the MSK modulation must
be identical to the duration of one bit encoded by the O-QPSK modulation,
i.e., Ts(MSK) = Tb(OQP SK). It is thus necessary to configure the modulator
and the demodulator used by the chip in order to use a 2 Mbits/s data rate,
the same data rate as the 2Mchips/s of the 802.15.4 standard,

• Central frequency: BLE used channel central frequency must match the
frequency of the Zigbee channel,

3.3. The WazaBee attack 61

Output: mskSequence[31]
Input: oqpskSequence[32];

1 evenStates[4]← {1, 0, 0, 1};
2 oddStates[4]← {1, 1, 0, 0};
3 currentState← 0;
4 i← 1;
5 while i < 32 do
6 if i is odd then
7 if oqpskSequence[i] = oddStates[(currentState + 1) mod 4] then
8 currentState← (currentState + 1) mod 4;
9 mskSequence[i− 1]← 1;

10 else
11 currentState← (currentState− 1) mod 4;
12 mskSequence[i− 1]← 0;
13 end
14 else
15 if oqpskSequence[i] = evenStates[(currentState + 1) mod 4] then
16 currentState← (currentState + 1) mod 4;
17 mskSequence[i− 1]← 1;
18 else
19 currentState← (currentState− 1) mod 4;
20 mskSequence[i− 1]← 0;
21 end
22 end
23 i← i + 1;
24 end

Algorithm 1: Algorithm of a PN sequence conversion

Block PN Sequence - MSK encoding
b0b1b2b3 (m0m1 ... m29m30)

0000 1100000011101111010111001101100
1000 1001110000001110111101011100110
0100 0101100111000000111011110101110
1100 0100110110011100000011101111010
0010 1101110011011001110000001110111
1010 0111010111001101100111000000111
0110 1110111101011100110110011100000
1110 0000111011110101110011011001110
0001 0011111100010000101000110010011
1001 0110001111110001000010100011001
0101 1010011000111111000100001010001
1101 1011001001100011111100010000101
0011 0010001100100110001111110001000
1011 1000101000110010011000111111000
0111 0001000010100011001001100011111
1111 1111000100001010001100100110001

Table 3.2: Correspondence table of PN sequences

• Modulator input: to implement an emission primitive, it is necessary to
control (directly or indirectly) the data sent to the modulator of the chip, in
order to be able to provide the PN sequences encoded in MSK,

62 Chapter 3. Cross-protocol attacks

• Demodulator output: to implement a reception primitive, it is necessary to
detect the reception of a 802.15.4 frame and to retrieve (directly or indirectly)
the data output from the demodulator of the chip.

Controlling the data rate is quite easy since the introduction in version 5.0
of a new LE 2M mode for BLE physical layer, which allows to use a data rate
of 2Mbits/s, which perfectly corresponds to our needs. Therefore, it should be
possible to satisfy this first requirement on any chip implementing version 5.0 of
the Bluetooth specification.

The second requirement is to control the BLE central frequency according to the
Zigbee channel targeted by the attack. Several solutions can be implemented to solve
this problem according to the possibilities offered by the chip and the available API.
Indeed, most of the chips supporting BLE version 5.0 allow to arbitrarily choose a
frequency in the 2.4 to 2.5 GHz band, in this case, it is possible to directly select
the central frequency of the targeted Zigbee channel. If the chip does not allow such
a functionality, it is then possible to select a BLE channel whose central frequency
corresponds to a Zigbee channel: only a subset of the Zigbee channels will then be
available, those which overlap channels defined in the Bluetooth specification.

These channels are indicated in Table 3.3. Such diversion of the use of BLE
channels is made possible because both Zigbee and BLE channels share the same
characteristics (2MHz bandwidth) and because the LE 2M mode allows the use of
data channels as secondary advertising channels, thus allowing a direct transmission
or reception on the channel via the advertising mode (the connected mode indeed
implements a channel hopping algorithm that complicates a lot the implementation
of this attack and requires the cooperation of another device).

Zigbee Channels BLE Channels central frequency (fc)
12 3 2410 MHz
14 8 2420 MHz
16 12 2430 MHz
18 17 2440 MHz
20 22 2450 MHz
22 27 2460 MHz
24 32 2470 MHz
26 39 2480 MHz

Table 3.3: Zigbee and BLE common channels

The third requirement is to be able to control the data provided as an input
to the chip modulator: an arbitrary succession of PN sequences (encoded in MSK)
must be provided in order to implement a transmission primitive. The main diffi-
culty is related to the whitening process, which applies a transformation algorithm
on the data to be transmitted, thus modifying the frame before its modulation.
This functionality can be disabled on some chips, thus allowing a direct control
on the bits transmitted to the modulator. However, even in the absence of this
possibility, the whitening algorithm is reversible because it is based on a simple
linear feedback shift register: it is thus possible to build a sequence of bits which,
once the transformation has been applied, corresponds to the PN sequences, by first

3.3. The WazaBee attack 63

applying the de-whitening algorithm on the sequences that must be transmitted.
In these two cases, the PN sequences to be transmitted to generate the expected
802.15.4 frame can be encapsulated in the payload of a BLE packet, for instance in
the advertising data (the LE 2M mode allows the transmission of large advertising
packets with a payload of up to 255 bytes).

The fourth requirement, which is crucial to build a reception primitive, is to
detect 802.15.4 frames and to decode these frames to retrieve the symbols corre-
sponding to PN sequences. For that purpose, the Access Address of the BLE chip
must be configured: this Access Address is used as a pattern to detect a legitimate
BLE frame. The Access Address value can be set with the PN sequence (encoded
in MSK) corresponding to the 0000 symbol, in order to detect the preamble of a
802.15.4 frame (this preamble is composed of 4 null-bytes, i.e., eight 0000 symbols).
The integrity check must be deactivated, because the 802.15.4 frames are not valid
BLE frames (the chip must allow this deactivation so that a reception primitive can
be implemented) and to configure the size of the frame to the maximum available
size. At this stage, the dewhitening problem has to be solved: it must be ideally
disabled, and if this is not possible, a whitening algorithm must be applied to the
frame in order to extract the output bits of the demodulator. The conversion to the
original Zigbee symbols can be done very simply by using Hamming distance. Each
received packet is split into 31-bits blocks and for each block, a Hamming distance
is calculated in order to find which PN sequence encoded in MSK fits the best the
received block. The use of the Hamming distance allows here to cope with two
difficulties: bit errors caused by the approximation presented previously, but also
interference due to the channel, that may generate bitflips during transmission.

Figure 3.8 illustrates the WazaBee architecture allowing to fit this requirements:

Figure 3.8: WazaBee architecture

64 Chapter 3. Cross-protocol attacks

Note that the equivalence of O-QPSK modulation with half sine pulse shaping
and MSK modulation should in theory enable a "symmetric" pivoting attack, i.e, to
also divert the use of Zigbee chips to attack the BLE protocol. However, this strat-
egy is quite difficult to implement, because Zigbee protocol stack implementation
prevents us from finely controlling the 802.15.4 modulator input or demodulator
output, mainly due to the Direct Sequence Spread Spectrum functionality, which
performs the operation of transforming symbols into chip sequences. It would be
necessary to be able to control the input of the modulator and the output of the
demodulator, which does not seem to be easily achievable with existing devices.

3.4 Benchmarks

Channels
Reception primitive Transmission primitive

nRF52832 CC1352-R1 nRF52832 CC1352-R1
valid corrupted valid corrupted valid corrupted valid corrupted

11 100 0 100 0 98 0 100 0
12 100 0 100 0 100 0 100 0
13 100 0 100 0 95 1 100 0
14 100 0 100 0 97 3 100 0
15 99 1 100 0 100 0 100 0
16 100 0 97 0 90 3 100 0
17 98 1 99 0 94 3 96 0
18 95 2 100 0 91 2 95 0
19 100 0 100 0 97 0 100 0
20 100 0 100 0 100 0 100 0
21 98 2 100 0 100 0 100 0
22 95 2 98 0 100 0 100 0
23 97 0 96 0 100 0 100 0
24 99 1 100 0 100 0 100 0
25 100 0 100 0 100 0 100 0
26 97 2 100 0 98 1 100 0

Table 3.4: Reception and transmission primitives assessment results

It is important to validate the WazaBee attack on chips from different man-
ufacturers. We have chosen two different chips, nRF52832 designed by Nordic
SemiConductors and CC1352-R1 designed by Texas instruments. Let us note that
the attack does not depend on the chips we used, as it only exploits similarities
between the physical layers used by the protocols themselves.

Additionally, we are aware that the TI CC1352-R1 chip natively supports
802.15.4-based protocols, however, of course, we only used its BLE capabilities
during our experiments. In this section, we describe the proof of concept imple-
mentations, and present the experiments carried out to evaluate the quality of the
Zigbee communications achieved with WazaBee.

The first implementation was carried out on the nRF52832 chip, which chip
offers great flexibility in the configuration of the embedded radio component BLE
5.0, and is compliant with the LE 2M PHY layer. Its radio API is similar to
the nRF51 one. This nRF51 API is well known to the security community for
having been massively hijacked in recent years in order to develop offensive tools

3.4. Benchmarks 65

dedicated to BLE and Enhanced ShockBurst (BTLEJack [Cauquil 2018], radio-
bit [Cauquil 2017a], ...). The prototype was implemented on a development board
proposed by AdaFruit integrating this chip, the Adafruit Feather nRF52 Bluefruit
LE. The second implementation was carried out on the CC1352-R1 chip manufac-
tured by Texas Instruments. The main motivation was to test the approach on a
chip offering less configuration possibilities than the nRF52 chip. The chip natively
supports several protocols, including BLE and 802.15.4. Obviously, only the Blue-
tooth API was used for the implementation. This API being common to several
chips from Texas Instruments, the implementation of the attack should be similar
on other systems from the same manufacturer.

Ð
The two custom firmwares implemented in the context of these bench-
marks are respectively available at:
https://github.com/RCayre/wazabee_nrf52 and https://github.
com/RCayre/wazabee_ti.
A simple Command Line Interface has also been developed and can be
found here:
https://github.com/RCayre/wazabee_cli.

Two experiments were carried out in order to assess the reception and transmis-
sion primitives previously described. The first experiment, dealing with reception,
consisted in transmitting one hundred 802.15.4 frames with a payload including a
counter (incremented with each frame) using a Zigbee transmitter (AVR RZUSB-
Stick Atmel). The development board implementing the WazaBee attack, spaced
from the transmitter by a distance of 3 meters, received and decoded the corre-
sponding frames, then calculated the FCS corresponding to the received frame to
assess its integrity. For each Zigbee channel, the frames were classified into three cat-
egories: not received, received with integrity corruption, received without integrity
corruption. The results are shown in table 3.4.

It can be seen that the reception primitive of WazaBee has a very satisfactory
reception rate for the two implementations on all channels, with an average of 98.63
% of the frames received without integrity corruption for nRF52832 and 99.38 %
for CC1352-R1. In both cases, there is a slight decrease in the reception rate for
channels 17, 18, 21, 22 and 23, which can be explained by the interference with WiFi
channels 6 and 11, used in our experimental environment. It can also be observed
that the CC1352-R1 presents a more stable reception than the nRF52832, without
any integrity corruption of the received frames while the nRF52832 missed 0.69 %
of the frames.

The transmission primitive was assessed under similar conditions: the develop-
ment board implementing WazaBee was configured to transmit one hundred frames
including a counter, and a 802.15.4 receiver (the RZUSBStick) was placed 3 me-
ters away. Each transmitted frame could also be classified into three categories: not
received, received with integrity corruption and received without integrity corrup-
tion. The experiment was performed on all Zigbee channels, and the corresponding

https://github.com/RCayre/wazabee_nrf52
https://github.com/RCayre/wazabee_ti
https://github.com/RCayre/wazabee_ti
https://github.com/RCayre/wazabee_cli

66 Chapter 3. Cross-protocol attacks

results are shown in table 3.4.
In both cases and for all channels, the rate of valid frames received without in-

tegrity corruption by the RZUSBStick is very satisfactory, with an average of 97.5%
for nRF52832 and 99.44 % for CC1352-R1. We observe a similar phenomenon to
the one observed during the assessment of the reception primitive for channels 17
and 18, related to the simultaneous use of WiFi channel number 6 in our experi-
mental environment. The rate of corrupted frames received is also slightly higher
for nRF82832 (with an average of 0.81 % while the CC1352-R1 did not miss any
frame).

3.5 Attack scenarios

In this section, we demonstrate the WazaBee attack by describing two attack scenar-
ios we actually carried out. Two main attack scenarios, considering various devices,
have been implemented. The first scenario illustrates the implementation of a sub-
set of the WazaBee primitives on an unrooted Android phone, using an high level
API. The second scenario presents the implementation of WazaBee on a commer-
cial BLE tracker device in order to perform complex Zigbee attacks. We purposely
chose these devices in order to illustrate the critical impact of the WazaBee attack.
Indeed, Android phones and BLE trackers are very common devices, that anyone
may possess. The successful implementation of WazaBee on these devices shows
that this attack may actually be deployed easily and massively.

3.5.1 Experimental setup

A main experimental setup is used for the two attack scenarios, based on a simple
domotic Zigbee network with the PANID 0x1234, illustrated in figure 3.9.

This network is composed of two XBee (a commercial implementation of ZigBee)
transceivers. The first one (16-bits address 0x0063) is an end device simulating a
sensor transmitting an integer (e.g., the temperature) every two seconds while the
second one (16-bits address 0x0042) is a coordinator which acknowledges the data
and displays it on a HTML graph. The channel 14, which matches the 2420 MHz
frequency, is used.

3.5.2 Scenario A: injecting 802.15.4 frames using a smartphone

The first attack scenario was the injection of arbitrary 802.15.4 frames into our net-
work, using an unrooted Android smartphone. For instance, an attacker could use a
malware installed on an employee’s phone to launch such an attack remotely, allow-
ing him to perform multiple active attacks targeting Zigbee networks. It could also
allow to exfiltrate discreetly sensitive data using a protocol that is not monitored.

As mentioned earlier, implementing the two primitives of the WazaBee attack
requires the attacker to gain control over the lowest layers of the BLE protocol
stack. However, the aim of the experiment is to test if an attacker that can only

3.5. Attack scenarios 67

Figure 3.9: Targeted Zigbee network

interact via an high level API could be able to implement at least a subset of the
attack. As a consequence, this scenario was evaluated with the following contraints:
1) the smartphone is unrooted; 2) the attacker has only access to standard Android
API with common permissions, and 3) the attack should be compliant with any
BLE 5-compliant device, without the need to divert specific hardware components
(e.g., InternalBlue [Mantz 2019]).

According to the specification, the received frames including a wrong CRC are
dropped at the controller level and are not delivered to the host. Therefore, the
received 802.15.4 frames are considered as invalid BLE frames and are filtered in the
controller and not forwarded to the host. As a consequence, the implementation
of the reception primitive is not possible without a low-level access allowing to
collect invalid frames. The implementation of the transmission primitive is also
tricky, because we only have an indirect control over the frequency and the payload
content using a high level API. However, the extended advertising feature allows a
partial implementation of the transmission primitive. Indeed, this feature has some
interesting properties: it allows the transfer of large amount of data, it can use the
37 data channels without the need to initiate a BLE connection, it can use the LE
2M physical layer and it is based on predictable frame formats.

If the device uses LE 1M as primary physical layer and LE 2M as secondary
physical layer, it initially transmits ADV_EXT_IND advertisements at 1 MBits/s
on the primary advertising channels (37,38 and 39), indicating on which secondary
advertising channel and the offset to the start time the extended advertisement
will be transmitted. The channel selection is based on a pseudo-random algorithm
named Channel Selection Algorithm #2 [Blu 2019], and is not directly controllable
by the user. Then, the advertiser transmits the extended advertisement embedding
the data provided by the user (AUX_ADV_IND) at 2 Mbits/s on the selected
channel.

Diverting this feature in order to transmit 802.15.4 frames can be achieved us-
ing the strategy mentioned above to forge the advertising data. We first need to
choose the PN sequences (encoded in MSK) corresponding to the frame to trans-
mit. Then, we need to add some padding bytes before the frame (because of the

68 Chapter 3. Cross-protocol attacks

multiple headers included before the data) and apply the dewhitening function to
the resulting data. As this operation depends on the channel, it allows to select a
specific Zigbee channel: in our case, we want to transmit data at 2420 MHz (Zigbee
channel 14), which corresponds to BLE channel 8, so we perform the dewhitening
operation using this BLE channel as input. The output is then cropped to remove
the padding bytes, then the result is provided as advertising data. We use a man-
ufacturer data field to encapsulate our forged frame, resulting in a padding size of
16 bytes. Then, the extended advertising can be enabled using the smallest time
interval in order to increase the probability that the channel selection algorithm
picks our target channel.

We implemented this approach in an android application running on an unrooted
OnePlus 6T smartphone, that fully supports the extended advertising feature. We
were able to inject forged data packets to our target zigbee network, as illustrated
in figure 3.10.

Figure 3.10: Forged data packets injection from a OnePlus 6T smartphone

This approach is entirely compliant with the specification and only uses an high
level API, meaning every BLE 5 device is able to inject 802.15.4 frames into at
least eleven channels (especially those which have common frequencies with BLE
data channels) in the 2.4-2.5GHz ISM band. As a result, it increases the attack
surface of 802.15.4 -based protocols.

As we have chosen to implement the attack on a smartphone with limited per-
missions, it was not possible to implement the reception primitive. However, let us
note that attackers with higher privileges may be able to gain a low level access and
easily implement the two primitives. For example, InternalBlue [Mantz 2019] allows
to patch firmwares of Broadcom and Cypress controllers, which are common in off-
the-shelf devices. If the attackers are able to reverse engineer the target firmware
to identify the functions allowing to match the requirements mentioned in 3.3.4,
they can easily write malicious patches and add custom code to the firmware imple-
menting WazaBee primitives. We demonstrate such an implementation in section
3.6.

3.5. Attack scenarios 69

3.5.3 Scenario B: performing complex Zigbee attacks from a BLE
tracker device

The second attack scenario illustrates the possibility to perform complex Zigbee
attacks by abusing a BLE smart object. The impact of such an attack could be
significant, as it may allow an attacker to build complex attacks involving legitimate
BLE devices, that will not be identified as a potential threat to 802.15.4 networks.
For example, an employee’s mobile device (e.g., a smart watch, a tracker) could
be infected outside the company in order to carry out a complex attack when the
device is within range of the company’s Zigbee network.

Our attack was performed on a commercial BLE tracker device, called Gablys
Lite, which is based on a nRF51822 chip. It requires a physical access to the
device, as we used some unprotected debug pins providing a Serial Wire Debug
(SWD) to flash a new firmware. Note that a similar attack could be performed
using BLE vulnerabilities such as OTA updates abuse, which do not require this
physical access.

The nRF51822 chip is similar to nRF52832, but it doesn’t support LE 2M,
which is a key requirement of WazaBee attack. However, as the Enhanced Shock-
Burst protocol at 2 Mbits/s is supported by the chip, it can be used as an alternative
for LE 2M physical layer. This solution has a direct impact on the reception quality,
but it is sufficient to successfully conduct a complex active attack.

The main goal of this attack is to perform a denial of service targeting the
sensor, in order to spoof it and inject fake data into the display interface. We used
an existing attack targeting XBee nodes in order to perform a denial of service,
allowing to inject a new configuration through remote AT commands [Vaccari 2017].
The attack is divided into four main steps:

• Active scanning: the device transmits a Beacon Request on a channel and
waits for a Beacon from the coordinator. If no Beacon is received before the
timeout expires, the device selects the next channel. If a Beacon is received,
the channel, the PanID and the coordinator’s address are collected and saved,

• Eavesdropping: the device sniffs the legitimate frames in order to collect
the sensor’s address,

• Remote AT command injection: the device forges a remote AT command,
using coordinator’s address as source and sensor’s address as destination. It
allows to force the sensor to use another channel,

• Fake data injection: the device transmits fake data frames, mimicking the
sensor’s behaviour.

This attack was implemented successfully, as illustrated in figure 3.11. This experi-
ment shows that WazaBee’s primitives can be combined to conduct complex attack
scenarios, and also that a legitimate commercial device can be modified and used
to perform this kind of offensive strategies.

70 Chapter 3. Cross-protocol attacks

Figure 3.11: Complex attack workflow from a BLE tracker

3.5.4 Conclusion

The two attack scenarios illustrated in the previous subsections are not exhaustive,
but they illustrate the critical impact of WazaBee attack, and especially the consid-
erable number of legitimate devices that may be diverted in order to attack 802.15.4
networks. Depending on the corrupted device and the privilege level gained, an at-
tacker may be able to implement the two primitives or only a subset of WazaBee
attack. However, scenario A underlines the fact that even with a partial implemen-
tation, an attacker would be able to achieve interesting objectives, such as leaking
sensitive data or disrupting legitimate nodes. These offensive strategies could also
be combined in order to perform complex attack scenarios. Finally, these two sce-
narios also underline that the attack is easy to implement on various devices and
may be used easily in the wild.

3.6 RadioSploit: implementing pivoting attacks on a
recent smartphone

In this section, we explore the feasibility of diverting a BCM4375 Bluetooth con-
troller embedded in a Samsung Galaxy S20 smartphone to implement WazaBee,
resulting in a wide attack surface. We also successfully implemented other cross-
technology pivoting attacks targeting Enhanced ShockBurst and Mosart, two pro-
prietary protocols commonly used by wireless keyboards.

3.6.1 Firmware reverse engineering and patching

3.6.1.1 InternalBlue framework

The InternalBlue framework [Mantz 2019] takes advantage of some vendor-specific
commands and allows to easily dump, analyse and patch firmware embedded in
Bluetooth controllers from Broadcom and Cypress, which are common in the wild.
First, it allowed us to dynamically instrument the firmware to understand its inter-
nals.

3.6. RadioSploit: implementing pivoting attacks on a recent
smartphone 71

Second, we used it to patch some specific functions to integrate our customized
receive and send primitives and to add support for new protocols. Note that the
use of this framework requires root access on the smartphone as it needs to send
arbitrary commands to the Bluetooth controller using the Host-Controller Interface.
We also had to replace one of the patched official Broadcom file by an older one,
as some of these patches removed support of some specific commands used by
InternalBlue [Classen 2021].

3.6.1.2 Methodology

We focused our analysis on a recent Bluetooth controller, the BCM4375 chip from
Broadcom. This chip is embedded in many smartphones, such as Samsung Galaxy
S10 or S20. We have chosen this specific chip for the following reasons: first, it
supports Bluetooth 5 and especially the LE 2M physical layer, which is needed
to implement Zigbee and Enhanced ShockBurst support. It is also compatible
with InternalBlue, which considerably facilitates the process of firmware reverse
engineering and patching. We also analysed the firmware of the CYW20735 IoT
develoment board, illustrated in figure 3.12. Indeed, the symbols associated to this
firmware are already known, allowing to easily identify the main functions and to
understand their behaviour.

Figure 3.12: CYW20735 IoT development board

We have partially reverse engineered these firmwares, especially the functions
linked to the RF hardware configuration and to BLE scanning and advertising tasks.
This process was conducted using both static and dynamic analysis with IDA Pro
and InternalBlue. We also identified several common functions that are present

72 Chapter 3. Cross-protocol attacks

in both firmwares: this allowed us to take advantage of the known symbols of the
CYW20735 firmware to infer relevant information about the BCM4375 firmware.

3.6.1.3 Diverting scanning and advertising tasks

We have focused our work on the Bluetooth Low Energy stack, and more partic-
ularly on the features related to advertisements, such as scanning or advertising.
Indeed, these features do not require the establishment of a connection as a pre-
requisite to send and receive packets. Therefore, they are good candidates to be
diverted, in order to implement receive and send primitives for other wireless proto-
cols. They are implemented in the firmware as tasks, consisting of several functions
and callbacks.

First, we identified the main functions linked to the configuration of the RF
hardware, the reception callback (extendedScanTaskRxDone) used by the scanning
task and the transmission function (extendedAdvTaskProgHw) used by the adver-
tising task. Second, we modified some specific instructions in these functions to
redirect the execution flow to our own code stored in RAM, allowing us to 1)
configure the RF hardware; 2) gain direct access to the raw demodulator output
thanks to a memory mapped register and 3) gain indirect access to the modulator
input by storing our complete packet into an advertisement packet payload, using
Packet-in-Packet attack [Goodspeed 2011b].

3.6.1.4 RF hardware configuration

In order to implement our reception and transmission primitives to support other
wireless protocols, we must be able to perform the following operations: a) choose
an arbitrary preamble, b) choose an arbitrary frequency, c) select a 2Mbps data
rate, d) receive data from the demodulator output, e) send data to the modulator
input.

We mainly identified the configuration function linked to the setup of LE 2M
physical layer (le2m_program2MAdvMode). The BLE access address being used as
a pattern to match the beginning of a BLE packet, we used it to select an arbi-
trary preamble to synchronize with packets from other wireless protocols using a
2Mbps data rate. The whitening operation was configured using a specific function
(bcsulp_setupWhitenning) which has been modified to disable this feature, al-
lowing us to manipulate the demodulator output and the modulator input without
requiring additional data processing. Two different registers are used to select the
frequency, one being used by the scanning task and the other one by the advertising
task. However, both of them allow to select an arbitrary frequency in the 2.4 to 2.5
GHz band by providing an offset from 2402 MHz, specified in MHz (as an example,
selecting 2410 MHz implies to write a 8MHz offset to one of these registers).

We were able to implement both a reception and a transmission primitive by
diverting these features, allowing us to handle arbitrary GFSK packets using a
2Mbps data rate. We then used these primitives to add support for several non-
native protocols, such as Zigbee, Mosart and Enhanced ShockBurst.

3.6. RadioSploit: implementing pivoting attacks on a recent
smartphone 73

3.6.1.5 Host/Controller communication

We introduced these new offensive capabilities directly in the Bluetooth Controller
by patching its firmware with InternalBlue. However, they have to be handled from
the smartphone, also known as Host. Therefore, we had to find a way to establish
a communication between the Controller and the Host to build a relevant API.

The Bluetooth specification describes an interface named Host Controller
Interface (HCI), allowing Host to Controller communication using com-
mands and Controller to Host communication using events. We identi-
fied two functions allowing to allocate a buffer describing an event mes-
sage (bthci_event_AllocateEventAndFillHeader) and send it to the Host
(bthci_event_AttemptToEnqueueEventToTransport) : we mostly used them to
send the received packets to the smartphone. We also discovered that HCI com-
mands are handled using an array of function pointers: the command identifier
is used to calculate an index, allowing to call the corresponding function into the
firmware. We found two unused command identifiers and stored our own functions’
addresses at the right places in this array, allowing us to expose a simple API that
can be used to control the receiver mode and transmit a given packet.

These modifications allowed us to implement a user-friendly API, which can
then be easily manipulated from the smartphone using the HCI. We implemented
an experimental Android application, illustrated in figure 3.13 allowing to interact
with the controller to trigger the new offensive capabilities we added: we monitor
HCI events by parsing in real time the Bluetooth HCI snoop log and we can also
send commands to the controller by writing the raw command message directly to
/dev/ttySAC1.

Ð
Both the patches and the application are released as open source soft-
wares, available at:
https://github.com/RCayre/radiosploit (for the Android applica-
tion)
and at:
https://github.com/RCayre/radiosploit_patches (for the con-
troller patches).

3.6.2 Protocols support

3.6.2.1 Implementation

We implemented Zigbee protocol support using WazaBee attack. We added a cor-
respondence table in the firmware, allowing to map each Zigbee symbol to the
corresponding GFSK demodulated binary sequence. We also added helper func-
tions allowing to automatically perform this conversion when a Zigbee packet is
received or sent. Every Zigbee packet starts with a 4 bytes-long preamble which is
composed of zeros: as a consequence, we generated the GFSK bytes sequence cor-

https://github.com/RCayre/radiosploit
https://github.com/RCayre/radiosploit_patches

74 Chapter 3. Cross-protocol attacks

Figure 3.13: RadioSploit interface

responding to the zero symbol and used it as preamble to synchronise the receiver
with Zigbee frames. Selecting a specific Zigbee channel is straightforward, as the
offset we have to write in the frequency selection register depends directly on the
Zigbee channel number.

We also implemented support for proprietary protocols used by wireless key-
boards, such as Mosart or Enhanced ShockBurst. Mosart is a proprietary protocol
commonly used by wireless mice and keyboards from various manufacturers. It is
based on a GFSK modulation scheme using a 1 Mbps datarate. A Mosart packet
consists of a 2-byte preamble (0x5555), a 4-byte address, a variable length payload
and a 2-byte CRC. One of the major issues we encountered in implementing this
protocol is related to the RF hardware of BCM4375 chip: even though BLE natively
supports a physical layer using 1 Mbps data rate, the firmware does not expose any
function to select an arbitrary access address if 1 Mbps data rate is used. We as-
sume that the access address used in LE 1M advertising mode is hard-coded in the
RF hardware and cannot be easily changed from the firmware, which complicates
the implementation of the reception primitive.

However, as we mentioned in subsection 3.6.1.4, the access address can be chosen
arbitrarily if the LE 2M physical layer is used. We solved this problem by using LE
2M and duplicating every bit: as an example, the 2-byte preamble 0x5555 at 1 Mbps
becomes 0x33333333 with 2 Mbps data rate, as illustrated in figure 3.14. We have
implemented helper functions to select one bit over two in the demodulator output

3.6. RadioSploit: implementing pivoting attacks on a recent
smartphone 75

Figure 3.14: Mosart decoding using double bit strategy

to decode a received Mosart packet and to duplicate each bit of the sent packets
before their transmission to the modulator input. Other simple transformations are
also performed in these functions, allowing to deal with scrambling and endianness.

We also implemented support of Enhanced ShockBurst protocol. It is a pro-
prietary protocol using a GFSK modulation at 2Mbps, used by many keyboard or
mouse protocols, such as Logitech Unifying. Each packet starts with a preamble
of 0xAA or 0x55, followed by a 5-byte address, a payload and a CRC. Since the
modulation scheme it uses is identical to the one used in BLE, it is quite easy
to implement the primitives described above to communicate using this protocol.
Some minor differences, such as the endianness, can be easily solved with a simple
transformation applied to the modulator input and the demodulator output. Syn-
chronizing the receiver with Enhanced ShockBurst packets is straightforward if the
address is known, as we can use its first bytes as preamble. Without prior knowl-
edge of this address, we first configure our receiver with an arbitrary preamble to
get large demodulated buffers, in which we then search for valid packets to extract
the embedded addresses.

3.6.2.2 Evaluation

We evaluated our implementation by performing several experiments. We were
able to reproduce the attack scenarios mentioned in section 3.5. We first used our
primitives to passively monitor traffic to identify the network PanID and nodes’
addresses. Then, we injected a fake configuration to perform a denial of service
attack targeting a specific sensor and spoofed it by transmitting fake data to the
visualizer.

We evaluated the two Mosart primitives by implementing several attacks from
MouseJack [Newlin 2016a], a set of vulnerabilities targeting wireless keyboards and
mice. Indeed, the Mosart protocol does not use encryption, so we were able to
implement a wireless keylogger allowing to passively collect keystrokes and inject
arbitrary keystrokes to a vulnerable Mosart dongle.

Similarly, we evaluated Enhanced ShockBurst primitives by reproducing Mouse-
Jack vulnerabilities. We could get the address of a Logitech wireless mouse, and
then sniff its communications or inject malicious packets to trigger mouse clicks
or arbitrary movements. Let us note that M. Newlin identified multiple critical

76 Chapter 3. Cross-protocol attacks

vulnerabilities in [Newlin 2016a] that could be triggered using these primitives, al-
lowing a fake device to be paired with a dongle without user interaction or to inject
unencrypted keystrokes. Most of these issues were supposed to be fixed, but during
our experiments, we encountered recent devices which are still vulnerable to some
of them.

3.6.3 Conclusion

In this section, we presented a practical implementation of pivoting attacks by di-
verting a Bluetooth chip embedded in a smartphone to communicate over different
wireless protocols, demonstrating the practical feasibility of such attack strategies
on a standard mobile phone.We were able to implement WazaBee attack we pre-
sented earlier in this chapter, but also proprietary protocols such as Mosart or
Enhanced ShockBurst.

We consider that it shows how critical are these attacks from a security perspec-
tive, as it does not require any expensive or specific equipment, takes advantage
of the ubiquity of Bluetooth devices and is mobile. For example, compromising
an employee’s smartphone could lead an attacker to pivot on different other pro-
tocols used by a company to carry out passive or active attacks, such as injecting
keystrokes on a distant computer, or inserting a malicious node in a ZigBee network.

3.7 Counter-measures

WazaBee attack is inherent to the wireless protocols and their modulations, even
if some conditions need to be fulfilled to be implemented on some specific chips.
As a consequence, we should consider every BLE 5 device as potentially vulnerable
and the environments exposed to BLE devices should be designed and monitored
with the assumption that some attacks could potentially be carried out through
802.15.4 networks. Several counter-measures could be investigated either to limit
the impact of the attack, or to prevent or detect it.

As explained in section 3.3.4, the practical implementation of WazaBee requires
controlling some features of the BLE chips. Making it difficult or impossible for
an attacker to control these features (such as the deactivation of the CRC or the
setting of a precise channel frequency), by chip manufacturers, would complicate the
task of the attacker, and especially the implementation of the reception primitive.
However, such counter-measures should only be considered as a first barrier for an
attacker and not as efficient adequate solutions, as illustrated in our scenario A in
section 3.5 which only uses an high level API in order to implement the transmission
primitive.

Some other common counter-measures, such as cryptographic techniques, that
most of the 802.15.4 -based protocols provide, should be systematically used. If
these techniques are implemented, even if the WazaBee attack is still possible, the
task of the attacker would be much more complicated. Unfortunately, the correct
implementation of these counter-measures is not trivial and it highly depends on

3.8. Conclusion 77

the protection of the keys. Note that some known attacks [Vidgren 2013a] aiming
at breaking the 802.15.4 encryption can be performed using WazaBee and also that
the attacker can still perform denial of service attacks [Cao 2016].

Finally, some defensive solutions dedicated to the IoT context, to monitor and
detect in real time attacks targeting wireless protocols, can also be considered. In-
deed, the existence of such offensive strategies motivates the deployment of intrusion
and prevention detection systems based on the analysis of radio communications.
Such systems could simultaneously monitor multiple wireless protocols (even those
which are not deployed in the legitimate environment) such as the solution pro-
posed in [Siby 2017], or could be protocol agnostic, such as the intrusion detection
approaches proposed in [Roux 2018, Rajendran 2019]. These intrusion detection
systems are designed to monitor the physical layers of communication protocols (by
monitoring signal strength on different frequency bands) and are based on the mod-
eling of legitimate communications and therefore detect accidental faults (in [Rajen-
dran 2019]) or malicious activities (in [Roux 2018]) by identifying deviations from
legitimate behavior.

More generally, the wireless attacks investigated in this chapter may impact
other protocols, depending on the compatibility between their modulations and
channel coding, along with the programmability of the underlying hardware. In-
deed, if the frequencies overlap, while the modulations are similar enough to be
able to control what is received by one protocol from an emission of the other, the
two protocols are by design vulnerable to pivoting techniques. In section 3.6, we
demonstrated that proprietary protocols such as Mosart and Enhanced ShockBurst
could also be easily targeted by such offensive strategies.

Let us note that evaluating accurately the similarities between two modulations
is an open challenge. Therefore, it might be interesting for companies wishing to
introduce a new wireless protocol inside their environment to carefully study the
possible compatibilities with other protocols while analysing the risks on their infras-
tructure. It would also be useful for protocol designers to consider such possibilities
of cross-protocol interactions when creating new wireless standards, to reduce the
risks of pivoting attacks using their protocol as basis.

3.8 Conclusion

In this chapter, we have highlighted a new pivoting attack strategy, called Waz-
aBee, allowing the legitimate operation of a chip intended to communicate via BLE
to be diverted in order to send and receive Zigbee communications (actually, our
approach is compliant with all 802.15.4 frames). The results obtained during the
two evaluations carried out for the transmission and reception primitives proved
to be highly stable and reliable. The direct consequence of this attack is a con-
siderable increase in the attack surface, each system communicating via a protocol
based on the 802.15.4 standard (Zigbee, 6LoWPan ...) being potentially acces-
sible from a component supporting BLE, a particularly widespread technology in

78 Chapter 3. Cross-protocol attacks

IoT environments. We also performed multiple experiments with different archi-
tectures and from different manufacturers demonstrating the practical feasibility
of such pivoting attacks, including an implementation on a recent smartphone that
has been weaponized to attack both Zigbee (using WazaBee attack) and proprietary
protocols used by wireless keyboards by diverting its Bluetooth controller.

With the rapid expansion of connected objects and the development of multiple
wireless communication protocols, the impact of these pivoting attacks on informa-
tion systems security seems particularly critical. The coexistence of these protocols
in the same environments, as well as certain characteristics of connected objects
(such as mobility) are aggravating factors and raise questions about the use of this
type of offensive strategies in attack scenarios. One can thus consider the use of
this type of attack to try to pivot from a compromised system to another more
difficult to access, but also in other types of attacks using covert channels, where
the attacker could exploit these send and receive primitives to exfiltrate sensitive
data via non monitored wireless protocols.

�
Multiple scientific articles have been published to present this research
work, both in national and international conferences:

• Romain Cayre, Florent Galtier, Guillaume Auriol, Vincent
Nicomette, Geraldine Marconato. WazaBee : attaque de
réseaux Zigbee par détournement de puces Bluetooth
Low Energy. Symposium sur la Sécurité des Technologies de
l’Information et des Communications (SSTIC 2020), Jun 2020,
Rennes, France. [FR] [Cayre 2020]

• Romain Cayre, Florent Galtier, Guillaume Auriol, Vincent
Nicomette, Mohamed Kaâniche, et al.. WazaBee: attack-
ing Zigbee networks by diverting Bluetooth Low Energy
chips. IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN 2021), Jun 2021, Taipei (virtual), Tai-
wan. [EN] [Cayre 2021d]

• Romain Cayre, Florent Galtier. Attaques inter-protocolaires
par détournement du contrôleur Bluetooth d’un télé-
phone mobile. GT Sécurité des Systèmes, Logiciels et Réseaux,
May 2021, En ligne, France. [FR] [Cayre 2021a]

• Romain Cayre, Géraldine Marconato, Florent Galtier, Mo-
hamed Kaâniche, Vincent Nicomette, et al.. POSTER: Cross-
protocol attacks: weaponizing a smartphone by diverting
its Bluetooth controller. 14th ACM Conference on Security
and Privacy in Wireless and Mobile Networks, Jun 2021, Abu
Dhabi, United Arab Emirates. [EN] [Cayre 2021e]

Chapter 4

InjectaBLE: injecting malicious
traffic into established
Bluetooth Low Energy

connections

Contents
4.1 Motivations . 80
4.2 Bluetooth Low Energy . 81

4.2.1 Overview . 81
4.2.2 Link layer internals . 82

4.3 Adversary model and attack overview 86
4.4 InjectaBLE: injecting arbitrary frames in an established

connection . 87
4.4.1 Clock (in)accuracy . 87
4.4.2 Window widening . 88
4.4.3 Injecting an arbitrary packet 88
4.4.4 Checking the injection success 89
4.4.5 Implementation . 91

4.5 Attack scenarios . 92
4.5.1 Scenario A: illegitimately using a device functionality 92
4.5.2 Scenario B: hijacking the Peripheral role 93
4.5.3 Scenario C and D: hijacking the Central, the Peripheral or

both of them simultaneously (Man-in-the-Middle attack) . . 94
4.6 Sensitivity analysis . 95

4.6.1 Experiment 1: Hop Interval 95
4.6.2 Experiment 2: Payload size 97
4.6.3 Experiment 3: distance . 97

4.7 Counter-measures . 99
4.8 Conclusion . 100

80
Chapter 4. InjectaBLE: injecting malicious traffic into established

Bluetooth Low Energy connections

In this chapter, we focus on the security of Bluetooth Low Energy protocol,
which is widely deployed in connected objects, but also smartphones, tablets and
computers. More specifically, we analyze the security of the low level mechanisms
the protocol relies on, especially those related to Link Layer time management.

Indeed, multiple offensive research works focusing on this protocol have been
released in the recent years, as we presented in Section 2.2.1. However, we noted
that some attacks that could be relevant from an offensive perspective, such as
hijacking the Peripheral role or performing a Man-in-the-Middle attack targeting
an established connection, are missing in the literature. In this work, we present
a new critical Bluetooth Low Energy attack, named InjectaBLE, allowing to inject
arbitrary packets into an established connection. While the injection is critical in
itself, it also can be used as a basis to perform complex offensive scenarios that were
not possible until now, from Peripheral Hijacking to Man-in-the-Middle targeting
an established connection. This attack relies on a race condition that leverages some
fundamental clock synchronization features of BLE protocol, making it especially
difficult to fix without significantly impacting the specification. We describe this
new injection attack, evaluate the impact of several key parameters upon its success
and demonstrate its practical feasibility by means of four critical offensive scenarios
taking advantage of this new injection strategy.

4.1 Motivations

Several wireless communication protocols have been developed in recent years to
implement these services, among them the Bluetooth Low Energy (BLE) protocol.
BLE provides a lightweight protocol stack and allows devices to communicate easily
and reliably with a minimal energy consumption, which fits perfectly the constraints
of connected objects. It is also widely deployed in smartphones, computers and
tablets, enabling direct communications without the need for additional gateways
in the network. As a result, many IoT devices already rely on BLE to communicate
with their environment.

The growing interest for this technology also raises legitimate concerns about the
security of BLE. In the recent years, the security of this protocol has been actively
studied both from an offensive and a defensive perspective, highlighting serious flaws
in its specification [Blu 2019] and in various implementations. Some papers focused
on eavesdropping a BLE connection [Ryan 2013a,Cauquil 2017b,Qasim Khan 2019],
which is not straightforward because of the use of a channel hopping algorithm,
while other papers described active attacks such as jamming [Bräuer 2016], hi-
jacking [Cauquil 2018] or Man-in-the-Middle attacks [Cauquil 2016, Jasek 2016].
However, to our knowledge, all state of the art offensive techniques described so far
require the attack to be carried out before the targeted BLE connection is estab-
lished, or are based on highly invasive techniques such as jamming. Even if some
papers mention a theoretical non invasive injection-based attack in an established

4.2. Bluetooth Low Energy 81

connection [Ryan 2013a] or consider it difficult to achieve [Santos 2019], it has never
been implemented in practice and the new offensive capabilities provided by this
strategy have not been studied.

In this chapter, we demonstrate the practical feasibility of such an attack, which
significantly increases the attack surface of the BLE protocol. We present a novel
approach named InjectaBLE allowing to perform an arbitrary frame injection into
an already established BLE connection. We first explain its theoretical foundations,
and then present various experiments illustrating its feasibility.

Four critical offensive scenarios that take advantage of this injection attack are
investigated: we show that an attacker can use our approach to stealthily trigger
a specific feature of a device, hijack any role involved in the targeted connection
or perform a Man-in-the-Middle attack during the connection. We demonstrate
that most of these scenarios, that were considered unrealistic until now, are in
fact quite easy to perform and could have serious consequences on the security of
any BLE device compliant to Bluetooth Core Specification irrespective of how it is
implemented. We finally discuss the impact of this attack and potential mitigation
measures.

4.2 Bluetooth Low Energy

This Section presents a brief overview of the BLE protocol as well as some more de-
tailed descriptions of the Link layer (LL), which are directly related to our injection
attack.

4.2.1 Overview

Bluetooth Low Energy is a lightweight variant of Bluetooth, dedicated to devices
needing low energy consumption. Its protocol stack is depicted in Figure 4.1.

Figure 4.1: Bluetooth Low Energy protocol stack

82
Chapter 4. InjectaBLE: injecting malicious traffic into established

Bluetooth Low Energy connections

The stack is split into two major parts: the Controller and the Host. The lowest
layers are included in the Controller, while the highest ones are handled by the Host.

The physical layer is based on a Gaussian Frequency Shift Keying modulation.
Three main modes can be used in BLE: an uncoded physical layer with a bitrate of
1 Mbit/s or 2 Mbits/s (respectively called LE 1M and LE 2M), or a coded physical
layer using a 250 kbits/s or 500 kbits/s bitrate (called LE Coded). BLE operates in
the ISM band from 2.4 to 2.5 GHz, and defines 40 channels, each with a bandwidth
of 2 MHz. Three channels (37, 38 and 39) are dedicated to the advertising mode
(allowing devices to broadcast data using some packets named advertisements),
while the 37 others channels (numbered from 0 to 36) are dedicated to the connected
mode, which is used when a connection is established between two devices.

Every BLE-based application using the connected mode is built on top of the
ATT and GATT layers. These layers define a client / server model, providing a
generic solution to exchange data between devices. An ATT server is a database
of attributes. Each attribute is composed of an identifier, a type and a value. An
ATT client is able to interact with this database using some requests: for example,
a Read Request allows the client to read a given attribute, while a Write Request
allows to modify the value of an attribute. The GATT level provides an additional
layer of abstraction to define some services including characteristics and creates
generic profiles for a given type of device.

The Security Manager provides a set of pairing and bonding procedures to ne-
gotiate multiple keys dedicated to increase the security level of the connection. One
of the most important keys is the Long Term Key, which allows to establish an
AES-CCM encryption over the Link Layer to avoid eavesdropping. The Generic
Access Profile (GAP) introduces four different roles, describing the device’s be-
haviour. Regarding the connected mode, two roles are defined. The Peripheral role
corresponds to a device that can transmit advertisements and is connectable, while
the Central role corresponds to a device that can receive advertisements and es-
tablish a connection with another device. The Peripheral is also called Slave as it
plays a slave role in a BLE connection; the Central is called Master.

4.2.2 Link layer internals

Our injection-based attack mainly relies on the exploitation of some specific features
of the Link Layer. This subsection provides a detailed description of these features.

4.2.2.1 Frame format

Every BLE frame transmitted using the LE 1M mode is based on the format de-
scribed in table 4.1:

Preamble Access Address Protocol Data Unit (PDU) CRC
1 byte 4 bytes variable 3 bytes

Table 4.1: Frame format for LE 1M

4.2. Bluetooth Low Energy 83

Access addr. CRCInit WinSize WinOffset Interval Latency Timeout Ch. Map Hop Inc. SCA
4 bytes 3 bytes 1 byte 2 bytes 2 bytes 2 bytes 2 bytes 5 bytes 5 bits 3 bits

Table 4.2: CONNECT_REQ PDU

The preamble is used by the receiver to detect the start of a BLE frame. The
Access Address indicates the mode in use, either advertising mode or connected
mode. The Protocol Data Unit is a variable field containing the data to transmit.
Finally, a 3 bytes CRC is used for integrity checking.

4.2.2.2 Initiating a connection

When a Peripheral is not in a connected state, it broadcasts some advertisements
on the advertising channels. The payload generally includes some information al-
lowing to identify the device, such as the device name. To establish a connection
with a Peripheral, the Central transmits a dedicated type of advertisement named
CONNECT_REQ right after the reception of an advertisement from the Periph-
eral. The corresponding LL PDU, described in Table 4.2, includes some parameters
used during the connection. The Access Address field is used by both devices for
every frame transmitted during the connection.

4.2.2.3 Channel selection

The Channel Map and Hop Increment fields (cf. Table 4.2) are used by the channel
selection algorithm. Indeed, a BLE connection uses a channel hopping mecha-
nism to avoid interference with other BLE connections or wireless communication
protocols. Two main channel selection algorithms are currently usable: Channel
Selection Algorithm #1 is based on a simple modular addition, while Channel Se-
lection Algorithm #2 is based on a pseudo-random generator. Both of them can
be predicted by an attacker to sniff an established connection (see [Ryan 2013a]
and [Cauquil 2019]). In our study we consider Channel Selection Algorithm #1,
which is the most commonly used algorithm, however the proposed approach can
be easily adapted to the second algorithm.

4.2.2.4 Transmit window

Figure 4.2: Initiation of a BLE connection

84
Chapter 4. InjectaBLE: injecting malicious traffic into established

Bluetooth Low Energy connections

Two fields WinSize and WinOffset (cf. Table 4.2) are used to define the transmit
window. Indeed, the first frame of the connection is transmitted on the first selected
channel by the Central to the Peripheral at time t0 during the transmit window
defined by formula 4.1: tstart ≤ t0 ≤ tstart + dsize

tstart = tinit + 1250µs + doffset

(4.1)

With tinit the end of transmission time of the CONNECT_REQ frame, doffset =
WinOffset × 1250µs and dsize = WinSize × 1250µs.

t0 indicates the beginning of the first connection event, and is used as a time
reference for next connection events. This initial phase is illustrated in Figure 4.2.

4.2.2.5 Connection events

Let us consider a connection event that starts at the time tn of frame transmission
from the Central to the Peripheral, called the anchor point. t0 corresponds to the
first anchor point. When the Peripheral receives the frame, it waits during the inter-
frame spacing (150µs) before sending a frame to the Central. A bit named More
Data (MD) in the header of frames allows to indicate that more data is available
and will be transmitted during the connection event. If the device does not have
data to transmit, it will transmit an empty frame.

The time between two consecutive anchor points is given by the Hop Interval
parameter, according to the formula 4.2:

dconnInterval = HopInterval × 1250µs (4.2)

Each time a connection event is closed, the next channel is selected according
to the channel selection algorithm in use. Each connection event is also identified
by a 16-bit unsigned integer named connection event count. Figure 4.3 illustrates
two typical consecutive connection events.

SM

150µs
dconnInterval = HopInterval x 1250µs

Connection event #n

SM

dconnInterval = HopInterval x 1250µs

Connection event #n+1

tn+1 tn+2tn

150µs

Figure 4.3: Two consecutive connection events

4.2. Bluetooth Low Energy 85

M S

doffset=WinOffset x 1250µs dsize=WinSize x 1250µs

M S M S

HopIntervalold x 1250µs HopIntervalnew x 1250µs HopIntervalnew x 1250µs

Transmit window
Connection event #(instant-1)

tinstant-1 tinstant

Connection event #instant Connection event #instant+1

tinstant+doffset

Figure 4.4: Connection update procedure

4.2.2.6 Acknowledgement and flow control

Each BLE frame transmitted during a connection includes two 1 bit fields in the
header of the LL PDU, indicating respectively the Sequence Number (SN) and the
Next Expected Sequence Number (NESN). Each device also has two 1 bit counters,
respectively named transmitSeqNum and nextExpectedSeqNum. The transmitSe-
qNum counter is incremented by one (modulo 2) if the previously transmitted data
is acknowledged. The nextExpectedSeqNum is incremented by one (modulo 2) when
the next expected frame has been received.

4.2.2.7 Updating the parameters during the connection

The BLE protocol provides possibilities to update the parameters used by the chan-
nel selection algorithm. A Central is generally able to manage multiple connections
simultaneously, and may need to modify a connection in order to optimise the fol-
lowing of multiple connections. It may also consider a given channel noisy due
to high frame loss rate during transmission on that channel and may choose to
blacklist it (i.e. mark it as unused). The Link Layer provides two main control
frames, CONNECT_UPDATE_IND and CHANNEL_MAP_IND, to update the
Hop Interval and the Channel Map respectively.

These frames include the new value of the field to update, and a two bytes
field named instant. When the Peripheral receives one, it starts the corresponding
procedure, and waits for the time when instant equals to connection event count.
Then:

• In the case of a connection update, a transmit window similar to the one in
the initiation of the connection is computed from the WinOffset and WinSize
values of the CONNECT_UPDATE_IND frame. The new interval is then
applied to the next connection events, as shown in Figure 4.4.

• In the case of a channel map update, the new channel map is used for next
connection events.

86
Chapter 4. InjectaBLE: injecting malicious traffic into established

Bluetooth Low Energy connections

4.2.2.8 Slave latency

The slave latency field (cf. Table 4.2), that is initially proposed by the Central in
the CONNECT_REQ packet and can be updated in a connection update procedure,
allows the Peripheral to avoid entering the listening mode at every connection event
in order to decrease its energy consumption.

4.3 Adversary model and attack overview

This section presents a novel type of attack targeting BLE protocol, allowing the
injection of arbitrary frames into an established connection. As seen in Section
4.2, the BLE protocol provides a connected mode, allowing the involved devices to
communicate only at some specific time, making injection-based attacks difficult to
perform by design. According to the specification [Blu 2019], one of the involved
devices can expand the receiving window to compensate clock inaccuracy. However,
this also opens the possibility for an attacker to abuse this feature by performing a
race condition attack (see Figure 4.5). We focused our work on analysing the feasi-
bility of such an injection, and explored techniques allowing to solve the following
technical challenges:

• (C1) identify when a malicious frame could be injected,

• (C2) investigate how to inject a malicious frame without altering
the connection state consistency,

• (C3) check if the attack is successful or not.

Legitimate
Master

Legitimate
Slave

Legitimate
Master

Receive
window

Legitimate
Slave

Malicious
Master

Figure 4.5: Attack overview

From an offensive perspective, the attack presented in this chapter has a signif-
icant impact: indeed, although several attacks targeting BLE security have already
been investigated in several studies, none of them have made it possible to interfere
with an established connection without breaking the communication, at least for
one of the concerned devices. The results presented in this chapter show that such
an attack is possible and can then be used to perform a wide set of critical offen-
sive scenarios, including an illegitimate use of victim device features and hijacking
attacks. We believe that this new offensive capability may consequently impact the

4.4. InjectaBLE: injecting arbitrary frames in an established
connection 87

availability, confidentiality and integrity of any BLE communication. Indeed, the
vulnerability presented in this chapter is related to the receiving window expansion
described in the protocol specification, so any BLE device is potentially vulnera-
ble, independently of its stack implementation. The threat is all the more serious
as the attack is straightforward on common BLE chips and can be performed as
soon as an attacker is within radio range of the targeted connection. The attack
is also compatible with all versions of BLE, from 4.0 to 5.2. The adversary model
considered is as follows:

• the attacker must be within the radio range of the target,

• the attacker uses a standard BLE 4.0 or BLE 5.0 device,

• the attacker is capable of passively sniffing the traffic, and actively crafting
and transmitting spoofed packets on BLE channels,

• the attacker does not need to exploit any BLE vulnerability on the target
devices.

As far as encrypted communications are concerned, the vulnerability being re-
lated to the design of the BLE Link Layer, it is independent of the security mech-
anisms provided by the protocol. Therefore, exploiting the race condition to inject
a frame in an encrypted connection remains technically possible. Indeed, even if
the attacker cannot obtain the Long Term Key used for encryption by some other
mean, he can still inject an invalid packet, leading to a denial of service. As a
consequence, enabling the security mechanisms provided by BLE limits the impact
of the attack but the vulnerability itself (race condition allowing to inject a frame)
remains, with at least an impact on availability.

4.4 InjectaBLE: injecting arbitrary frames in an estab-
lished connection

In this section, we present the InjectaBLE attack, allowing to inject arbitrary frames
in an established connection. Performing such an attack requires to identify a
specific time when a frame can be successfully injected by the attacker, called the
injection point. Subsections 4.4.1 and 4.4.2 describe the specific features of the
Link Layer that make it possible to find such an injection point (challenge C1 of
Section 4.3). Subsection 4.4.3 describes how to inject the well-formed frame without
altering the consistency of the connection state (challenge C2) and Subsection 4.4.4
describes how to check whether the injection is successful or not (challenge C3).

4.4.1 Clock (in)accuracy

As mentioned earlier, the start of transmission of a Central frame in a given con-
nection event is used as a time reference, named anchor point. Theoretically, given

88
Chapter 4. InjectaBLE: injecting malicious traffic into established

Bluetooth Low Energy connections

an anchor point tn, the next anchor point should occur at tn+1 according to the
formula 4.3.

tn+1 = tn + dconnInterval (4.3)

An attacker cannot inject a frame at this specific time, as this frame would collide
with the legitimate Central’s packet. However, the legitimate devices involved in
an established connection use multiple timers based on a clock named Sleep Clock.
As this clock can introduce a drift in time, the Peripheral cannot assume that its
Sleep Clock is perfectly synchronised with the Central’s and should listen for an
extra time before and after the timing estimated from the anchor point.

4.4.2 Window widening

The specification introduces a concept named window widening, which consists in
extending the listening time of a given device to compensate clocks inaccuracies.
In the specific case of Peripheral’s Link Layer receiving the next connection event,
the window widening w is computed using formula 4.4.

w = SCAM + SCAS

1000000 × (tnextAnchor − tlastAnchor) + 32µs (4.4)

• SCAM : sleep clock accuracy of Central’s LL (in ppm),

• SCAS : sleep clock accuracy of Peripheral’s LL (in ppm),

• tnextAnchor : predicted next anchor point time (in µs),

• tlastAnchor : last observed anchor point time (in µs).

If the Peripheral transmits a frame for every connection event (i.e. Peripheral
latency equals to 0), the formula can be rewritten:

w = SCAM + SCAS

1000000 × dconnInterval + 32µs (4.5)

A Slave latency greater than 0 increases the interval between the last observed
anchor point and the predicted next anchor point, resulting in a larger window. In
that case, equation 4.5 can be considered as the minimal window widening.

As a consequence, given a predicted anchor point tn+1, the Peripheral accepts
the Central’s packet initiating the connection event if it is transmitted during the
receive window from tn+1 − w to tn+1 + w, as illustrated in figure 4.6.

4.4.3 Injecting an arbitrary packet

A frame transmitted in the previously mentioned receive window being considered
as a Central packet by the Peripheral, this feature allows a race condition attack,
in which an attacker can inject an arbitrary frame in an established connection by
transmitting it at the beginning of the receive window.

4.4. InjectaBLE: injecting arbitrary frames in an established
connection 89

M S

ww

tn tn+1tn+1-w tn+1+w

M

Receive window

S

HopInterval x 1250µs

Figure 4.6: Window widening for a Peripheral receiving the next connection event

For this injection to be successful, the attacker has first to be synchronised with
the connection: as mentioned in the related work, multiple approaches already exist
to passively sniff a connection. Second, the attacker must forge a valid frame to
inject. It will be considered as new data by the Peripheral if its Sequence Number
(denoted as SNa) equals the Next Expected Sequence Number counter of the Periph-
eral’s Link Layer (denoted as NESNs). Similarly, the NESN bit in the attacker
frame (denoted as NESNa) should indicate that the previous frame transmitted
by the Peripheral (denoted as SNs) was successfully received. Thus, the attacker
should have observed in the connection event preceding the injection attempt a
frame transmitted by the Peripheral and extracted the SNs and NESNs bits. The
SNa and NESNa bits of the injected frame are then set according to the equation
4.6. SNa = NESNs

NESNa = (SNs + 1) mod 2
(4.6)

Third, the attacker has to calculate the receive window to transmit the injected
frame as soon as possible during this window. He can use equation 4.5 to estimate
the window widening. The Central’s Sleep Clock Accuracy can be extracted from the
CONNECT_REQ packet or from control packets embedding this information (e.g.,
LL_CLOCK_ACCURACY_REQ or LL_CLOCK_ACCURACY_RSP). The Pe-
ripheral’s Sleep Clock Accuracy can be estimated at 20 ppm, which is the worst case
from the attacker’s perspective.

4.4.4 Checking the injection success

In order to perform various attacks requiring the injection of multiple frames, the
attacker must be able to identify whether the injection of each frame is successful
or not. This is not straightforward as even a successful injection does not always
provoke an observable change in the behaviour of the Peripheral receiving the frame.
Therefore, we need an heuristic that only relies on the observation of the parameters
of the Link Layer, to indicate whether the injection is successful or not.

An injected frame is considered as valid by the Peripheral if:

90
Chapter 4. InjectaBLE: injecting malicious traffic into established

Bluetooth Low Energy connections

M

ta

da

ta+da

Receive window

tm

M

tm tm

Minj

M

Receive window Receive windowa) b) c)

da da

ta ta+da ta+data

MinjMinj

Figure 4.7: Three possible outcomes of an injection attempt

• the injected frame is transmitted before the Central’s one during the receive
window,

• the CRC of the injected frame equals the calculated one.

Let’s consider an injection attempt with ta the start time of the injected frame
transmission (i.e., the beginning of the attack), da the transmission duration of the
injected frame and tm the beginning of the legitimate Central’s frame transmission.

An injection attempt may result in three different situations, as illustrated by
figure 4.7:

a. the injected frame is transmitted in the receive window before the start of
transmission of the legitimate frame (ta + da < tm)

b. the injected frame is transmitted in the receive window, but the end of the
frame collides with the legitimate frame (ta + da ≥ tm)

c. the legitimate frame is transmitted before the injected frame (ta ≥ tm)

In situation a), the injection attempt is successful, because the two conditions
are met. Situation b) can result in a successful injection if the collision does not
corrupt the injected frame, otherwise the CRC is invalid and the injection attempt
fails. Indeed, a collision might not result in a corruption when the power of the
injected signal is by far superior to the power of the legitimate signal from the
Peripheral’s perspective. It can also happen if the modification resulting from the
superposition of two signals doesn’t change the result of the heuristic used by the
demodulator to demodulate the injected signal. This is possible in some configura-
tions, depending on the phase difference between the injected and legitimate signals
from the Peripheral’s perspective, along with the previously mentioned power dif-
ference. Situation c) leads to a failed injection attempt, because the first condition
is not fulfilled.

Since an injection attempt may or may not be successful depending on the situ-
ation, the attacker can build an heuristic allowing him to know if a given injection
was successful. This heuristic is based on the two previously mentioned conditions:

• the injected frame is transmitted before the Central’s one during the receive
window: a direct observation of the legitimate packet transmitted by the
Central is usually not possible because the attacker transmits its own injected

4.4. InjectaBLE: injecting arbitrary frames in an established
connection 91

packet at the same time. However, the Peripheral’s response can be used to
infer this information indirectly. Indeed, if the injected frame was transmitted
before the legitimate one, the Peripheral will consider the start of transmission
of the injected frame as the new anchor point. Consequently, the Peripheral
will transmit its own frame 150 µs after the end of transmission of the injected
frame. If ts is the start of transmission of the Peripheral’s response, this
requirement can be expressed as :

ta + da + 150 − 5 < ts < ta + da + 150 + 5

We empirically estimated a window width of 10µs, resulting in the 5µs in
the above formula. This estimation has been established by injecting some
specific packets that have an observable impact on the Peripheral device (e.g.,
transmitting a response, terminating the connection).

• the CRC of the injected frame equals the computed one: similarly, the attacker
cannot directly check if a collision occurs and corrupts the injected frame
during the transmission because he cannot listen to the channel during the
injection. However, the Peripheral’s response can also be used to infer this
information, because if the frame was received by the Peripheral with a CRC
field that does not match the calculated one, the Peripheral will not change
its nextExpectedSeqNum counter to indicate that the last received frame must
be transmitted again, resulting in a NESN field equal to the one used in
the previous frame transmitted by the Peripheral. If SN ′s is the SN field
of Peripheral’s response and NESN ′s is the NESN field of the Peripheral’s
reponse, this requirement can be expressed as:

((SNa + 1) mod 2 = NESN ′s) ∧ (NESNa = SN ′s)

Finally, the global heuristic that allows the attacker to detect the success of the
injection can be expressed by the propositional formula 4.7:

(ta + da + 150 − 5 < ts < ta + da + 150 + 5)∧
((SNa + 1) mod 2 = NESN ′s) ∧ (NESNa = SN ′s)

(4.7)

with ta the start of the transmission of the injected frame, da the duration of the
transmission of the injected frame, ts the start of transmission of the Peripheral’s
response, SN ′s the SN field of the Peripheral’s response, NESN ′s the NESN field
of the Peripheral’s response.

4.4.5 Implementation

We have developed a proof of concept in order to easily perform the InjectaBLE
attack and evaluate it. It has been implemented on a development dongle embed-
ding a nRF52840 chip from Nordic Semiconductor. This chip natively supports

92
Chapter 4. InjectaBLE: injecting malicious traffic into established

Bluetooth Low Energy connections

BLE 5.0 and allows a low level access to the Radio peripheral, which eases the
implementation.

The dongle communicates with the Host using a custom USB protocol, allow-
ing to transmit commands to the embedded software. A lightweight BLE snif-
fer has been implemented, based on previous works [Ryan 2013a, Cauquil 2017b]
and [Qasim Khan 2019] on BLE connection eavesdropping. When a new connec-
tion is detected by the sniffer, it synchronises with the channel hopping algorithm
and transmits the received packets to the Host. Then, if a specific command is
transmitted to the dongle, it starts the injection process and tries to inject the
malicious frame defined in the command:

• before the injection, the window widening in use is estimated using formula
4.5.

• the dongle performs an injection attempt as soon as possible during the win-
dow previously defined.

• the heuristic defined in formula 4.7 is then used to check whether the injection
was successful or not.

• if the injection attempt fails, a new one is prepared.

• if the injection attempt succeeds, a notification is transmitted to the Host
indicating the number of injection attempts before a successful injection.

Based on this main feature, the dongle also exposes an API allowing to perform
the various scenarios described in Section 4.5. A minimal BLE stack has also
been implemented, to mimic the behaviour of the different roles involved in the
connection.

Ð
This custom firmware is released as open-source software under
MIT license and can be found here: https://github.com/RCayre/
injectable-firmware.

4.5 Attack scenarios

This Section describes and illustrates four main scenarios allowing an attacker to
achieve interesting offensive objectives, such as illegitimately using a device func-
tionality, hijacking any device involved in the connection or performing a Man-in-
the-Middle attack during an established connection.

4.5.1 Scenario A: illegitimately using a device functionality

This first attack scenario can be considered as the straightforward application of the
injection attack. Indeed, IoT devices based on BLE usually implement the Periph-
eral role, so our injection approach may be used to trigger a specific functionality
exposed by the targeted device. More specifically, injecting ATT Requests allows

https://github.com/RCayre/injectable-firmware
https://github.com/RCayre/injectable-firmware

4.5. Attack scenarios 93

the attacker to interact with the ATT server, which is used in BLE as a generic
application layer. Note that any ATT request supported by the target device could
be possibly injected.

For example, an attacker could inject a Read Request targeting a specific han-
dle: if the injection is successful, the Peripheral will generate and transmit a Read
Response containing the data. It may allow him to extract interesting information
from a given characteristic: depending on the type of device, this could have a crit-
ical impact on confidentiality. Similarly, an attacker could inject a Write Request
or a Write Command to a given device. These ATT requests allow to modify the
value of a given characteristic: as a consequence, the attacker is able to trigger a
specific behaviour of the device, which could result in a critical impact on integrity
or availability.

To illustrate the impact of this attack scenario, we have performed injection
attacks targeting three commercial devices: a lightbulb, a keyfob and a smartwatch.
We reverse engineered these devices to identify the type of ATT requests and the
corresponding payloads used to trigger their main features. We then forged and
injected malicious traffic triggering the following features:

• lightbulb: turning the bulb on and off, changing its colour, changing its bright-
ness,

• keyfob: making the keyfob ring,

• smartwatch: transmitting a forged SMS to the watch.

4.5.2 Scenario B: hijacking the Peripheral role

This second attack scenario is aimed at hijacking the Peripheral role. If this attack
succeeds, the Peripheral is forced to exit the connection, allowing the attacker to
replace it without breaking the connection from the Central’s perspective.

This attack scenario is based on the injection of a Link-layer control packet:
these packets are used by devices to control the connections. More specifically, the
attack is based on the injection of a LL_TERMINATE_IND packet that is used
by a device to indicate to the other one that the connection should be terminated.
Since the packet injection is ignored by the Central and accepted by the Peripheral,
it forces the Peripheral to exit the connection. However, the Central is not aware of
the fact that the legitimate Peripheral is not present anymore: this situation allows
the attacker to imitate the Peripheral behaviour in order to hijack the connection.
To do so, the attacker must wait during the inter-frame spacing (150 µs) after the
end of transmission of a Central’s packet before transmitting its frame, and carefully
set the SN and NESN fields. This attack scenario is illustrated in figure 4.8.

This scenario has been successfully implemented for the three previously men-
tioned devices. All of them exposed a characteristic corresponding to the Device
Name which allowed us to transmit a forged value "Hacked" when a Read Request
targeting this characteristic was received. Let us note that such a scenario may

94
Chapter 4. InjectaBLE: injecting malicious traffic into established

Bluetooth Low Energy connections

TERMINATE
IND

M S

Receive window

HopInterval x 1250µs HopInterval x 1250µs HopInterval x 1250µs

M S M S

Connection event #n Connection event #n+1 Connection event #n+2

M

Connection ev.

Injection attempt The slave exits the
connection The attacker imitates the slave's behaviour

150µs 150µs

Figure 4.8: Description of the Peripheral hijacking

have critical consequences depending on the type of target: as an example, an in-
sulin pump or a pacemaker could be hijacked, allowing the attacker to transmit
fake health data.

... M S

HopIntervalold x 1250µs
Connection event #(instant)

M S

WinOffset x 1250 µs WinSize x 1250 µs

M S

HopIntervalnew x 1250µs

M S

HopIntervalold x 1250µs

HopIntervalnew x 1250µs

Connection event #(instant+1)

Connection event #
(instant)

Connection event #
(instant-1)

The attacker can synchronise with the Master,
the Slave or both of them simultaneously

M

HopIntervalold x 1250µs

CONNECT
UPDATE

Connection event #n

Receive window

S

Injection attempt

Figure 4.9: Description of the Man-in-the-Middle attack

4.5.3 Scenario C and D: hijacking the Central, the Peripheral or
both of them simultaneously (Man-in-the-Middle attack)

We have explored two other attack scenarios, based on the same approach. The
scenario C consists in hijacking the Central role. While this kind of hijacking attack
was already possible using the BTLEJack tool [Cauquil 2018], its strategy is based
on jamming and can easily be detected by a monitoring system. Our approach
only requires the injection of a single malicious frame, making it more discrete and
reliable. Scenario D allowed us to carry out a Man-in-the-Middle attack without
interrupting the connection. Indeed, previous approaches to perform Man-in-the-
Middle attacks [Cauquil 2016, Jasek 2016] could only be used before the initiation
of the connection, which limits drastically their usability. In other words, using our
strategy, an attacker could establish a Man-in-the-Middle attack at any time, even
if a connection is already established between two legitimate devices. This strategy
is critical as long term connections are very common in BLE communications, and
massively used by devices such as smartwatches or trackers.

These two scenarios use a similar approach, which is based on the injection of
a CONNECTION_UPDATE PDU as described in Section 4.2.2: it can be used by

4.6. Sensitivity analysis 95

the Central at any time during the connection in order to modify the parameters of
the channel selection algorithm, and especially the Hop Interval. The attack relies
on a simple idea: the attacker injects a forged CONNECTION_UPDATE PDU
containing arbitrary parameters, indicating to the Peripheral that the connection
parameters will change at a given time. When that time is reached, the Peripheral
waits during the window offset specified by the attacker, ignoring the legitimate
Central’s frame, then uses the new parameters while the Central continues to use
the old ones, allowing the attacker to synchronise with the Peripheral and hijack the
Central role or to synchronise with both of them, resulting in a Man-in-the-Middle.
In the first case (e.g., Central hijacking) the legitimate Central no longer receives
any response after the time at which the parameters are changed, so it leaves the
connection due to timeout. Note that this approach is particularly powerful because
it could also be used to hijack the Peripheral role, in a similar way to scenario B,
since the attacker knows both the old and the new parameters. This approach is
illustrated in figure 4.9.

We evaluated experimentally the Central hijacking using the three previously
mentioned devices: with the Central’s role successfully hijacked, it allowed us to
trigger the same features as in scenario A. Similarly, scenario D was evaluated on
our three commercial devices, allowing us to arbitrarily modify the data exchanged
between the legitimate devices: for example, a SMS transmitted by the smartphone
to the smartwatch has been modified on the fly, or the RGB values describing the
colour of the lightbulb have also been altered on the fly.

4.6 Sensitivity analysis

We conducted several experiments to validate our attack. The objective was
twofold: test its feasibility in a realistic environment and analyse the impact of
different parameters upon the attack success rate. We focused on three main pa-
rameters that may have a significant impact on the attack success: the Hop Interval,
the payload size and the distance between the attacker and the target Peripheral.
One parameter at a time was changed and its impact on the attack success was as-
sessed by monitoring the number of injection attempts before a successful injection.

4.6.1 Experiment 1: Hop Interval

Our first experiment focused on the Hop Interval parameter. Indeed, this param-
eter is directly involved in the estimation of the window widening as indicated in
equation 4.5. Theoretically, as the attack relies on a race condition based on this
window with the legitimate Central, the injection should be more difficult when the
Hop Interval value is lower.

According to the specification, the theoretical Hop Interval range is from 6 to
3200. However, we chose to focus on six different values from 25 to 150 for two
main reasons:

96
Chapter 4. InjectaBLE: injecting malicious traffic into established

Bluetooth Low Energy connections

• We wanted to focus on the worst case of an injection attempt, which occurs
when the injected frame collides with the legitimate frame, which means con-
sidering low Hop Interval values. Since the injected frame used during this
experiment was 22 bytes long over the air (i.e., 176 µs of transmission time
using the LE 1M physical layer), none of the window widening values calcu-
lated from the tested Hop Intervals allowed an injected frame to be entirely
transmitted without a collision.

• We wanted to conduct our experiment on target real-life devices and most of
them do not allow the use of high Hop Interval values, because the resulting
connections could be extremely unstable and break quickly. We thus used the
Hop Interval values in the range supported by a connected lightbulb, which
was the commercial device supporting the widest range of Hop Interval values
we were able to find.

To be able to precisely tune the Hop Interval parameter, we used a modified
version of the open-source Mirage framework to simulate a Central device, because
of its capability to access the HCI on a low level. This framework is one of our
offensive contribution, it is presented in chapter 5.

We reversed the communication protocol built over GATT used by this light-
bulb, then selected a Write Request allowing to turn the light off as our injection
frame. The corresponding payload is 14 bytes long, making the entire frame 22
bytes long. We chose a frame with a visible effect on the device to validate our
heuristic.

The experimental setup was quite simple: the legitimate Peripheral and Central
devices and the attacker were placed on the three vertices of an equilateral triangle,
with 2 meters edges. The Central initiates connections with the Peripheral repeat-
edly while the attacker synchronises with these connections and starts the injection
attack at a specific connection event. The experiment was conducted in a realistic
environment, including several other BLE devices and multiple WiFi routers. Let
us note that synchronising the attack tool with a connection is not trivial, espe-
cially in such a noisy environment. For each Hop Interval value, we performed 25
injection attacks, and monitored the number of injection attempts required before
a successful injection. The results are presented in figure 4.11.

The attack was successful for every tested connection. The variance of the num-
ber of unsuccessful attempts decreases quickly between 25 and 100, and stabilises
afterwards. Similarly, the median value remains at a low value less than 4. These
results show that the injection is always feasible even with small Hop Intervals, and
the number of injection attempts required before a successful injection is generally
low. The experiment confirms that the Hop Interval has a significant impact on the
injection attack success. However, the injection is more reliable with higher values.

4.6. Sensitivity analysis 97

1m 1m 1m 1m 2m 4m

2m
A B C D E F

Figure 4.10: Experimental setup

4.6.2 Experiment 2: Payload size

This experiment was focused on the payload size of the injected frame, and was in-
tended to empirically confirm that injecting shorter frames increases the probability
of success.

The experimental setup and the environment are similar to the one presented
above. We selected four different values of payload size: 4, 9, 14 and 16, which
correspond to frames that have an observable effect on the target lightbulb (such
as disconnecting it, turning it off, or changing its colour), allowing to confirm the
success of an injection attempt independently from our success detection heuristic.

We repeated the experiment 1, this time with a fixed Hop Interval of 75, and
iterating over the different payload sizes. The results are displayed in figure 4.11.

Similarly to experiment 1, we observe higher reliability when the payload size
decreases, which is consistent with the theory as a smaller portion of the injected
frame collides. The number of injection attempts required before a successful in-
jection remains very low (less than 3 for the median).

4.6.3 Experiment 3: distance

Our last experiment was conducted to evaluate the impact of the distance between
the attacker and the legitimate Peripheral. Theoretically, since the distance impacts
the signal strength of the injection from the Peripheral’s perspective, it may lower
even more the success rate when a collision with the legitimate frame occurs. We
used the same lightbulb as Peripheral, but used a smartphone as legitimate Central
to get closer to a real-life scenario. The phone was used to establish 25 connections
per tested distance, using its default Hop Interval value equal to 36. As we chose
to only inject the 22 bytes long Write Request allowing to turn the bulb off, this
Hop Interval value doesn’t allow for collision-free transmissions.

The experimental setup was slightly different from the one used in experiments 1
and 2: we placed the lightbulb and the phone within two meters of each other, then
we tested six different positions for the attacker, from 1 to 10 meters, as illustrated
in figure 4.10. This allowed us to evaluate the attack success when the attacker is
closer to the Peripheral than the legitimate Central (position A), when they are at
the same distance (position B) and when the attacker is further (positions C,D,E
and F).

98
Chapter 4. InjectaBLE: injecting malicious traffic into established

Bluetooth Low Energy connections

Figure 4.11: Experiment Results

The results are presented in figure 4.11. They show a significant impact of
the distance between the attacker and the Peripheral on the reliability, as the
variance increases when the distance is higher. It validates our assumption that
the attacker has an higher probability to quickly perform a successful injection if
closer to the target. However, let us note that each tested connection leads to a
successful injection: it means that the attacker can perform a successful attack from
every location, including position F which is 10 meters away from the Peripheral,
while the legitimate Central is only 2 meters away. This experiment highlights the
practical feasibility of the attack, and shows that, even under adverse conditions in
a realistic environment, the attack is still possible.

We also tested the attack effectiveness behind a wall, to evaluate the impact of
obstacles. The experimental setup was very similar to the distance experiment: the
lightbulb (legitimate Peripheral) and the phone (legitimate Central) were placed
within two meters of each other in the same room, while the attacker was located
at four different positions behind a wall, from 2 to 8 meters from the Peripheral.
Similarly to the other experiments, we established 25 connections per tested distance
and measured the number of injection attempts needed before a successful injection.
Results are presented in figure 4.11: as expected, the presence of a wall increases
the number of injection attempts needed to perform a successful injection, and the
variance increases with the distance. However, even if the attack requires more
attempts, we managed to successfully inject a frame for every connection we tested,
even in the worst case from the attacker’s perspective. These results show that this
attack is realistic and could be carried out even if the attacker is not in the same

4.7. Counter-measures 99

room as the target.

4.7 Counter-measures

The InjectaBLE attack exploits a vulnerability that is inherent to the BLE pro-
tocol specification. As a result, we should consider every BLE communication as
potentially vulnerable and the environments exposed to BLE devices should be de-
signed and monitored with the assumption that some attacks could potentially be
carried out through legitimate communications. Several counter-measures could be
investigated either to limit the impact of the attack, or to prevent or detect it.

As explained in section 4.2.2, the practical implementation of the InjectaBLE
attack requires injecting arbitrary frames at specific moments. Three solutions
could be investigated. Each one requires more or less deep changes in the BLE
stack or in the usage of BLE chips. These changes may not be appropriate from the
user’s point of view in the case of an industrial environment, because of a possibly
high number of devices to reprogram and the cost of certification processes.

The first solution deals with some communication time parameters of the stack
itself. For example, by reducing the duration of the widening windows the possibil-
ity for an attacker to inject a frame at the right time will be mechanically reduced.
However it should be noted that such an approach requires changes to the BLE
standard which could have side effects on the reliability and stability of the com-
munications. The second solution is slightly less restrictive. Without going as far as
modifying the BLE standard, it requires to systematically activate the encryption
mechanisms defined in BLE specification. If all frames are correctly encrypted, an
attacker will not be able to easily sniff the connection parameters and forge a valid
frame. In this specific case, the vulnerability is still present, even if its impact is
limited to Denial of Service attacks. While this solution could be straightforward,
it is not in reality. It must be noted that the majority of BLE communications are
poorly or not at all encrypted today (see [Zuo 2019] for a qualitative study of the
percentage of BLE devices activating encryption mechanisms). As a consequence, in
most cases, this counter-measure requires end-users to reprogram all their devices,
which could be tricky, especially in the context of industrial devices.

During our experiments, we noticed that some manufacturers do not use the
native protocol encryption but rather choose to implement their own over the GATT
application layer. We strongly advise against this solution, since in this case the
LL control frames will not be encrypted and we have already demonstrated in our
attack scenarios that an attacker could achieve interesting objectives by injecting
this kind of frames, such as initiating a Man-in-the-Middle and not forwarding the
legitimate traffic to perform a denial of service.

The last solution is based on a non intrusive approach. Defensive solutions ded-
icated to the IoT context could be considered to monitor and detect in real time
or not attacks targeting wireless protocols. An Intrusion Detection System (IDS)
designed to monitor BLE Link Layer could be able to detect, at the right instant,

100
Chapter 4. InjectaBLE: injecting malicious traffic into established

Bluetooth Low Energy connections

the presence of double frames: the legitimate Central frame and the attacker one.
For instance, the IDS proposed in [Roux 2018] is able to identify deviations from
legitimate behaviour by monitoring the radio activity of the wireless environment.
F. Galtier et al. also propose, in [Galtier 2020], an IDS able to fingerprint legiti-
mate devices (based on physical characteristics of the radio signals) and to detect
inappropriate fingerprints related to the attacker frames. Monitoring solutions de-
signed to detect BLE spoofing attacks, such as [Wu 2020b] or [Yaseen 2019], may
also detect behavioural anomalies in the communication between the devices, for
example variations in the timing between packet emissions or change of BLE pro-
file, and hence detect the injection attempts. Machine Learning oriented solutions
can also be relevant, as in [Lahmadi 2020], where A. Lahmadi et al. used Neural
Networks to build an attacker model, and detect Man-in-The-Middle attacks.

4.8 Conclusion

In this chapter, we demonstrated the feasibility of a new injection attack named
InjectaBLE targeting the BLE protocol, allowing to inject malicious frames into
an established connection. This attack significantly increases the attack surface of
BLE communications, because it exploits a vulnerability of the specification itself
independently of the stack implementations, and can be achieved quite easily using
common BLE chips. We analysed the impact of multiple factors on the attack suc-
cess rate and demonstrated that exploiting this weakness could allow an attacker to
perform critical attack scenarios that were not realistic until now, such as Periph-
eral hijacking or Man-in-the-Middle attack targeting established connections. We
also performed sensitivity analyses that showed that this injection always succeeds
in various experimental conditions.

Activating the BLE native cryptographic mechanisms can efficiently mitigate
this attack. However, in practice, the vast majority of commercial devices do not
use encryption, making them vulnerable by design to InjectaBLE. The results pre-
sented in this chapter clearly highlight the need to generalise the systematic use of
encryption in BLE communications.

The new offensive capabilities provided by InjectaBLE open opportunities for
other critical attack scenarios that need to be carefully investigated. For example,
being able to hijack the Peripheral role may potentially allow an attacker to transmit
an ATT notification indicating that the ATT server structure has been modified:
it could be used to expose a malicious keyboard profile instead of the original one,
and inject keystrokes to the Central by implementing HID over GATT protocol.

4.8. Conclusion 101

�
Two scientific articles have been published to describe this research
work, both in national and international conferences:

• Romain Cayre, Florent Galtier, Guillaume Auriol, Vincent
Nicomette, Mohamed Kaâniche, et al.. InjectaBLE : injec-
tion de trafic malveillant dans une connexion Bluetooth
Low Energy. Symposium sur la sécurité des technologies de
l’information et des communications (SSTIC 2021), Jun 2021,
Rennes (en ligne), France. [FR] [Cayre 2021b]

• Romain Cayre, Florent Galtier, Guillaume Auriol, Vincent
Nicomette, Mohamed Kaâniche, et al.. InjectaBLE: Injecting
malicious traffic into established Bluetooth Low Energy
connections. IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN 2021), Jun 2021, Taipei (vir-
tual), Taiwan. [EN] [Cayre 2021c]

Chapter 5

Mirage: an offensive auditing
framework

Contents
5.1 Motivations . 104
5.2 Key Principles . 105

5.2.1 Providing an unified API . 105
5.2.2 Modularity and reusability 106
5.2.3 Genericity . 107
5.2.4 Low level analysis . 107

5.3 Architecture overview . 108
5.3.1 Main software components 109
5.3.2 Generic communication architecture 109
5.3.3 Modules and scenarios . 111
5.3.4 Chaining operator . 113

5.4 Protocols and modules . 113
5.4.1 Bluetooth and Bluetooth Low Energy 113
5.4.2 Zigbee . 115
5.4.3 Enhanced ShockBurst and Mosart 116
5.4.4 Wifi . 116
5.4.5 IR protocols . 117
5.4.6 Adding new protocols and modules 117

5.5 Experimentations . 118
5.5.1 Experiment 1: Auditing a Bluetooth Low Energy smart lighbulb118
5.5.2 Experiment 2: Attacking a randomized keyboard 122

5.6 Conclusion . 126

In this chapter, we introduce a new offensive auditing framework named Mi-
rage, that aims at facilitating the development of offensive tools targeting wireless
communication protocols. Indeed, we presented in Section 2.1 the wide variety of
hardware and software tools present in the wild. A major issue we noted is that
these tools provide heterogeneous API and capabilities, while sometimes relying on
components and libraries which are not suited for offensive security. This situation

104 Chapter 5. Mirage: an offensive auditing framework

significantly impacts the reproducibility of security research and leads to redundant
or poorly-written code, which is difficult to extend, maintain and document.

The main goal of Mirage framework is to provide a generic, modular and user-
friendly development environment allowing to easily perform wireless attacks. It
significantly facilitates the prototyping and implementation of offensive tools by pro-
viding a generic way to interact with underlying hardware, while including several
user-friendly and customizable modules implementing various attacks and protocol-
specific behaviours. Moreover, it has been designed to facilitate the integration of
new hardware tools and protocols. At the time of writing, Mirage supports up to
6 wireless protocols, from Bluetooth Low Energy to Enhanced ShockBurst, and a
wide number of hardware tools (e.g., Sniffle, BTLEJack, RFStorm, RZUSBStick)
while providing dozens of offensive modules.

5.1 Motivations

In the specific context of IoT, reliable and efficient tools and relevant experimental-
based methodologies are needed to analyze and assess the security of connected
devices. Many different exploitation frameworks and exploits have been released in
recent years, such as Killerbee [Wright 2009] or BTLEJack [Cauquil 2018]. However,
conducting security audits of IoT devices is still a challenging task for multiple
reasons.

The multiplicity and the heterogeneity of wireless communication protocols used
by IoT devices has led to the development of various offensive radio frequency (RF)
components (e.g., Ubertooth, Micro:Bit, Yard Stick One) [Spill 2012,Cauquil 2017c,
Atlas 2012]: every hardware component has its own specificities and APIs, leading
the security analyst to develop time-consuming and low value source code to perform
such experimental analyses. Moreover, two distinct types of hardware components
are commonly used to analyse wireless communications: Software Defined Radios
or low cost Systems On Chip adapted to RF communications. However, they have
various limitations in terms of efficiency. Software Defined Radios are interesting
because of their genericity and because they are highly customizable. However, they
involve a large amount of effort to implement the protocols stacks. On the other
hand, the System on Chips are generally not designed for security analysis, implying
the development of customized offensive firmware, often poorly documented and
poorly tested.

As a result, security analysts generally make use of high-level libraries that
have not been developed with a security perspective in mind, or create their own
libraries, resulting in a lack of modularity and flexibility. This generates costly
duplicate developments and sometimes leads to poorly written code.

The code of these tools becomes more complex, and as a consequence, more likely
to be error-prone. Simplicity, reusability and modularity are three character-
istics of modern software development according to McCall’s Factor Model [P. Ca-
vano 1978], and the previously mentioned constraints have a significant impact on

5.2. Key Principles 105

these characteristics (e.g., the development of complex architectures or the use of
custom firmware).

The aforementioned problems have a big impact on the reproducibility of secu-
rity audits based on penetration testing techniques, which is a key requirement in
this context [Dalalana Bertoglio 2017]. Indeed, the use of non standard libraries
and software tools as well as the heterogeneity of hardware components make a
systematic approach difficult. It is imperative to provide a tool to efficiently carry
out experimental security audits for IoT devices. Unfortunately, to our knowledge,
such a tool does not exist yet.

To fill this gap, this chapter presents the design and the implementation of an
original open source attack-oriented framework to support the security analysis of
IoT devices, named “Mirage”. This framework, written in Python, targets com-
monly used wireless IoT communication protocols. The primary objective is to
provide a modular and flexible software environment for the development of secu-
rity assessment tools, similarly to the popular Metasploit framework [MET 2022].
However, providing such a framework is a more difficult task because of IoT speci-
ficities (e.g., the large amount of protocols and offensive RF hardware components
used).

As a result, the proposed framework is designed to interface with any kind of
RF components thanks to a versatile communication architecture. It provides an
unified API to analyse the lower layers of various wireless protocols, and can be
easily extended to support new protocols. Finally, Mirage allows complex attack
scenarios to be implemented, by the combination and chaining of different modular
software components.

5.2 Key Principles

The proposed attack-oriented framework named Mirage is aimed at developing a
modular and flexible software environment allowing to address the main constraints
inherent to this type of offensive security tools, especially the heterogeneity of RF
hardware components commonly used in the IoT world and the lack of low level
attack-oriented libraries covering IoT wireless communication protocols. Four main
principles, illustrated in figure 5.1 have guided and motivated our work, and are
discussed in the following subsections.

5.2.1 Providing an unified API

Nowadays, conducting experimental-based security audits of connected objects im-
plies that security analysts must use at the same time several different software
tools, each providing its own API and documentation, and potentially using spe-
cific file formats. Moreover, each of these tools has its own limitations.

As a consequence, the analyst has to learn a lot of technical information that
is not directly linked to the audit workflow and is generally neither relevant nor
reusable. In addition, they must install the different, and potentially dependent,

106 Chapter 5. Mirage: an offensive auditing framework

Figure 5.1: Key principles of Mirage framework

tools and libraries, leading to increasingly complex solutions. This situation in-
volves rewriting many non-reusable codes to work together or to integrate specific
functionalities.

Our framework is designed to seamlessly integrate the different software compo-
nents and provide a unified API. Indeed, each software component can be configured
via a similar interface and uses the same type of display, logging and output mech-
anisms. The multiple components used to manipulate the wireless communication
protocols closely follow the same lines and expose a common API. In addition, the
framework architecture requires developers to follow these guidelines while devel-
oping audit modules or implementing new protocols.

This approach facilitates the interactions between different pieces of code while
harmonising the use and implementation of attacks.

5.2.2 Modularity and reusability

Modularity is one of the main features of our framework. Indeed, some attacks
targeting a specific protocol implement similar elementary actions and behaviours.
For example, fuzzing and cloning a Bluetooth Low Energy devices involve the same
type of actions: the tool must scan the RF environment to find the target device,
then connect to that device and discover the services and features, etc. Finally, the
specific behaviour (fuzzing the device or simulating a similar one) can be triggered.

To prevent code redundancy and facilitate maintenance, the framework is de-
signed to divide complex attacks scenarios into small functional modules. There-
fore, in the aforementioned use cases, attacks could be broken down into small code
units: a scanner, a connection module and a discovery module are provided and
can be used in both scenarios, avoiding code redundancy. Mirage allows existing

5.2. Key Principles 107

modules to be directly reused in a new attack implementation, but also to be exe-
cuted sequentially using a chaining operator similar to the pipe operator in UNIX
environments. This behaviour allows to quickly generate complex attack workflows
by controlling the combination of several modules.

This modular approach allows us to cover a large amount of existing attack
tools without rewriting them all in our framework. Therefore, a security analyst
can really focus on his attack workflow without having to write a lot of irrelevant
code.

5.2.3 Genericity

Many different RF hardware components are nowadays used to perform experimen-
tal based security audits. However, each offers different features and APIs, and a
significant part of an analyst’s work is devoted to understanding the functionalities
provided by a specific component and implementing the corresponding methods.
As a result, one of the most important guidelines for us was to design an archi-
tecture able to manage these multiple hardware components while following the
aforementioned principles, e.g., by providing a unified API to use them.

Each wireless communication protocol commonly used in IoT devices has its own
specificities. However, we have identified similar behaviours. As a consequence,
we have chosen to design a generic communication architecture that allows new
protocols to be easily integrated or existing ones to be manipulated. Currently, this
architecture is functional and we have successfully integrated twelve heterogenous
hardware components related to several protocols such as Bluetooth Low Energy,
Wifi, Zigbee, Enhanced ShockBurst and Infrared radiation (IR).

5.2.4 Low level analysis

As mentioned above, many different attack tools use high-level libraries. These
libraries are generally not designed for security analysis, and they potentially suffer
from constraints and limitations that may have a significant impact on the tools
design.

As a consequence, it is necessary to allow the security analyst to work on the
lower layers of the communication protocol stacks. To address this problem, we
have implemented flexible and modular protocol stacks, allowing to deeply modify
the behaviour of the protocols and easily manipulate the lower layers accessible by
software.

This approach has been successful in the implementation of Bluetooth Low En-
ergy Man-in-the-Middle attacks. Working at a lower level allowed us to avoid
the limitations implied by the previously mentioned libraries: our Man-in-the-
middle implementation does not require multiple operating systems or need to fully
clone the GATT layer of the device to work, allowing us to redirect the packets
without simulating an entire BLE device. As a result, the limitations of BTLE-
Juice [Cauquil 2016] and GATTacker [Jasek 2016] tools linked to the use of high-level

108 Chapter 5. Mirage: an offensive auditing framework

libraries have been avoided, considerably simplifying the attack design.

5.3 Architecture overview

Figure 5.2: Global architecture of Mirage framework

This section describes the key features of our framework: the main software
components and the generic communication architecture. Then, we focus on the
modularity of our framework by presenting the concepts of Modules and Scenarios
and introducing the chaining operator designed to execute modules sequentially in
a pipe, as does the UNIX shell with commands.

5.3. Architecture overview 109

5.3.1 Main software components

Mirage framework is composed of four main components, as shown in Figure 5.2:

a. The core component (“core”): this component includes the core mecha-
nisms of our framework to load, configure and execute the modules, but also
to manage the background tasks, signals and configuration files. It provides
an unique entrypoint, allowing the framework to be used from a command line
interface or directly from the shell environment via the execution of scripts.

b. The internal libraries (“libs”): this component is in charge of imple-
menting the wireless protocol stacks, and provides a generic communication
architecture to easily integrate new protocols. It provides some display and
logging mechanisms and some utilities and helpers functions (e.g., modules
and background tasks manipulation, time management).

c. The attacks and tools (“modules”): these software components, called
“modules”, are independent and implement the attacks and tools provided by
the framework. They provide a specific service such as protocol sniffing or
active attacks, and can be used independently or sequentially thanks to the
chaining operator.

d. The callbacks (“scenarios”): some modules, such as Man-in-the-Middle
attacks or devices simulation, implement some complex behaviours and pro-
vide a standardised API to quickly customize their execution. The scenarios
are specialised classes composed of bindings methods providing simple APIs.

5.3.2 Generic communication architecture

One key feature of our framework is its generic communication architecture. Indeed,
many of the wireless communication protocols commonly used by IoT devices have
their own specificities, but several similar patterns can be extracted and have made
it possible to design a generic architecture. Moreover, many different RF hardware
components can be used to communicate with a given protocol, and our architecture
must be flexible enough to integrate them easily.

Our design defines a generic way to handle multiple protocols in order to provide
a unified API, but also allows the implementation of the specific behaviour of each
protocol, while handling multiple RF devices and their key characteristics.

Mirage communication architecture is composed of three main software com-
ponents, depicted in Figure 5.3. The Device class manages the interfacing with
the various RF hardware components. As a result, several classes can inherit this
abstract class and implement the main methods for sending or receiving a specific
frame as a binary representation, check if the hardware component is connected and
ready to use, and initialize the component. However, some devices provide addi-
tional features which can be implemented as independent methods. Their method
names must be added to sharedMethods, a class attribute that is an array listing

110 Chapter 5. Mirage: an offensive auditing framework

Figure 5.3: Generic communication architecture of Mirage framework

the specific features available. An instance attribute called capabilities can also
be provided and defines some high level capabilities of the device, indicating the
available functionalities. This class is not directly available in the modules, but the
specific behaviour implemented as shared methods can be directly used.

Another class named Receiver can be defined. It is able to instantiate the right
Device class according to the interface parameter, provided by the end user, and
communicate directly with it. One main method is needed, called _convert. It
converts a binary frame provided by the device into an abstract representation.
This mechanism allows the programmer to provide a rich interface to user while
manipulating frames (e.g., including dissectors, builders or converters). The class
Receiver exposes two methods to get the received frames, and allows the user to
register some callback functions which can be triggered at the reception of a specific
frame, at the reception of a given number of frames or at each received frame and
can be run in a background thread or in foreground.

The abstract class Emitter provides mechanisms similar to Receiver for emit-
ting frames. It also includes a _convert method, and the child classes have to
implement it to convert an abstract frame object into a binary representation. It
exposes one main method, send, for sending frames from the modules.

The Emitter and Receiver classes include First In First Out data structures
(the send and receive queues) to temporarily store the abstract representation of
the frames. The Emitter class includes a background thread for converting these
objects into binary frames thanks to the _convert method previously mentioned
and transmits the resulting bytes array to the corresponding Device’s method

5.3. Architecture overview 111

(send). Another thread is launched in background by the Receiver class and
gets the received frames from Device’s recv method, converts them into their
corresponding abstract representations and populates the receive queue.

Finally, it should be noted that end users cannot directly instantiate the De-
vice’s classes. According to the design pattern called Registry, devices linked to a
specific interface are instantiated only once by an Emitter or Receiver instance,
and the same device can be used by multiple emitters or receivers. Methods cor-
responding to specific behaviours cannot be directly called by the users, but they
are provided by the Emitter and Receiver classes which implement the design
pattern called Proxy.

This design presents some interesting properties: 1) the most common actions
(e.g. receiving and sending frames) are facilitated, and the API provided is the same
for each protocol; 2) it allows specific features provided by the hardware components
to be easily manipulated, without looking at their respective APIs; 3) the frames
are manipulated as an abstract representation, allowing powerful mechanisms such
as dissectors to be added.

5.3.3 Modules and scenarios

The modules are the key elements of our framework: they are used to implement
the attacks and tools. They inherit and extend a class called core.Module, to
quickly prototype and develop an offensive strategy.

Figure 5.4: Architecture overview of a module

As shown in Figure 5.4, every module must implement the init method, allowing

112 Chapter 5. Mirage: an offensive auditing framework

the input parameters to be initialized as a dictionary and providing three main
instance attributes, used by the core component to classify them:

• technology: this attribute indicates the wireless communication protocol
targeted by the module. The corresponding emitters and receivers are auto-
matically selected according to its value.

• type: this attribute is used to provide the type of tool implemented by the
module. It allows the module to be easily classified.

• description: this attribute is a short string describing the role of the module.

The module behaviour can be customized by passing named arguments as in-
puts. These arguments are defined as the keys of a dictionary called args, and the
corresponding values are used to provide default values.

The init method is called by the constructor when the module class is instanti-
ated. The modules are dynamically loaded and instantiated by the class Loader,
included in the core component. This class lists the files included in the modules
sub-directory, instantiates the modules classes it founds and classifies them.

This mechanism is automatically executed at the beginning of the execution,
allowing the user to focus on the development of the module.

Another main method, called run, must be implemented. This is the main
method of a module, it contains the code that implements the attack or tool be-
haviour. This method is called at the beginning of the module execution. It returns
a dictionary composed of a boolean value (indicating whether the module execution
is successful or not) and a dictionary (providing the potential output parameters),
which can be easily generated thanks to two helpers methods, called ok (if the ex-
ecution is successful) and nok (if an error occurred during the module execution).
If some specific actions need to be performed before or after the module execution,
the developer can implement two additional methods named prerun and postrun.

Finally, some complex modules such as Man-in-the-Middle attacks can be highly
customized by filling an input argument named “SCENARIO”. It allows to provide
a name corresponding to a child class of core.Scenario. It allows to easily cus-
tomize the behaviour of a module by providing some callback methods, called if the
module triggers the corresponding event. An event named “onKey” is automatically
triggered if a key is pressed, which provides a basic user interface during execution
of a module.

This design allows new attacks or tools to be easily prototyped or developed
while ensuring a high level of modularity. Indeed, this approach forces the de-
velopers to follow the framework guidelines, which leads to a modular software
environment. However, it is flexible enough to allow complex developments and the
scenarios allow the developer to provide an elegant way to customize the behaviour
of this module without changing the corresponding code.

5.4. Protocols and modules 113

5.3.4 Chaining operator

Another key feature has been added to our framework, to easily combine different
modules to set up complex attack workflows: the chaining operator, called “pipe”.
Indeed, several attacks are composed of the same type of actions. For example,
cloning a device or launching a fuzzing attack imply the use of similar actions,
such as scanning the RF environment or connecting to the device. While it is still
possible to use existing modules in a new module, a common need is to sequentially
execute existing modules to compose customised attack workflows without writing
a module. So, we have included a chaining operator inspired by the pipe operator,
commonly used in UNIX environments.

The chaining operator included in our framework operates in a similar manner,
allowing a data pipeline to be created between two modules. Every module can
be customised by passing named parameters as inputs and can generate named
parameters as outputs: as a result, our operator allows to sequentially execute two
modules and propagate the outputs from the first module to the inputs of the second
one, according to their name. If an output is not used by the next module in the
pipeline, it will be stored to be used later by a next module included in the pipeline.

If a module included in the pipeline fails, sequential execution is interrupted.
Several modules make use of the classes Emitter and/or Receiver mentioned
previously. Therefore, if a given interface is used by a module, each subsequent
module included in the pipeline using an Emitter or a Receiver based on the same
interface does not need to re-instantiate these classes but automatically reuses the
existing ones (according to the design pattern called Registry). This mechanism
allows a complex attack workflow to be divided into simpler actions, leading to
a powerful and modular approach. An example of such an execution is shown
in Figure 5.5, illustrating the cloning of a Bluetooth Low Energy advertiser by
combining a scanning module allowing to gather information of the targeted device
and an advertising module allowing to transmit similar advertisements.

5.4 Protocols and modules

Several protocols commonly used by IoT devices have been integrated into our
framework, and several different modules have been developed. In the following
subsections, we present an overview of this work by describing the protocol stacks
included in Mirage and their corresponding modules. Finally, we underline the
development process to integrate a new protocol or add a new attack module.

5.4.1 Bluetooth and Bluetooth Low Energy

A lot of work has been done to integrate Bluetooth devices, especially Bluetooth
Low Energy devices. Indeed, this technology is often used by connected objects
because of its low power consumption and its massive integration in smartphones
and tablets.

114 Chapter 5. Mirage: an offensive auditing framework

Figure 5.5: Example of sequential execution

A partial implementation of a Bluetooth Classic stack is included in Mirage.
It implements a subset of Bluetooth layers (especially those used to inquiry and
connect to devices) and works by communicating directly with the Host Controller
Interface (HCI), without requiring the use of an external library. As a result, it
makes it easy to use an HCI device such as Bluetooth dongles. Moreover, some
providers provide an interesting feature in order to develop attack modules: they
include in their hardware design some vendor-specific HCI frames allowing to change
the unique address used to identify Bluetooth device, so-called BD address. As a
result, this functionality has been included in Mirage and makes it easy to spoof a
BD address and impersonate the identity of a targeted device. However, a lot of
additional work is required to provide a complete stack due to the multiplicity of
application layers supported by this technology.

Currently, two main modules related to this technology can be used in our
framework: bt_info and bt_scan. The first module allows useful information
about the specified interface to be displayed, while bt_scan allows to launch an
inquiry scan and identify the visible Bluetooth devices in the RF environment.

Many software components have been implemented in our framework, to per-
form security audits on Bluetooth Low Energy devices. Indeed, the Bluetooth Low
Energy stack inherits from the Bluetooth Classic one, allowing to reuse some inter-
esting features (e.g., BD address spoofing) while adding an exhaustive Bluetooth
Low Energy stack implementation. This stack can directly use the Host Controller
Interface without requiring additional libraries, and it also provides several dissec-

5.4. Protocols and modules 115

tors and helpers functions to easily analyze and generate data from upper layers,
such as the Attribute Protocol (ATT) and Generic Attribute Profile (GATT) lay-
ers. A complete GATT server has been implemented, allowing to easily simulate a
BLE device using the Peripheral role.

Multiple sniffers have been implemented in Mirage to eavesdrop Bluetooth Low
Energy communications: Sniffle, nRF sniffer, Ubertooth and BTLEJack are sup-
ported. We also added support for nRF52840 dongle embedding our custom But-
teRFly firmware, allowing to perform InjectaBLE attack easily. An experimental
Software Defined Radio architecture is also implemented, allowing to modulate and
demodulate BLE packets using an HackRF One. All these hardware components
are fully supported by Mirage and a unified API to control them is provided. Some
additional features have been included in a custom version of BTLEJack firmware,
allowing to easily sniff and selectively jam advertisements, both versions are fully
supported by our framework. A PCAP writer is also provided, allowing Bluetooth
Low Energy sniffed frames to be exported to a PCAP file.

Some of these devices can jam BLE communications, and BTLEJack or But-
teRFly are also able to hijack such a communication. These features can be directly
used by the framework and the various hijacking attacks can be combined with some
active modules commonly used with HCI dongles, to highly customize the attack
workflow.

Many different modules, have been included and can be used together to perform
complex actions. ble_info lists the available interfaces. ble_mitm, ble_hijack
and ble_jam allow active attacks to be performed, while ble_sniff can be used
to passively eavesdrop the communications. Some modules are also provided in
order to execute legitimate actions such as ble_scan, ble_adv, ble_connect,
ble_discover, ble_pair, ble_master or ble_slave: all these modules ex-
pose some specific scenarios events, allowing to deeply customize their behaviour.
ble_crack performs a CRACKLE attack [Ryan 2013b] allowing to break the vul-
nerable legacy pairing to retrieve the Long Term Key, while ble_monitor allows
to monitor the HCI packets generated by a smartphone, facilitating the analysis
of Android applications involving BLE communications.

5.4.2 Zigbee

Since two security frameworks targeting the Zigbee protocol (called Killer-
bee [Wright 2009] and Secbee [SEC 2015]) have been published in recent years,
a partial implementation of the Zigbee stack developed from scratch is included in
the framework as a proof of concept. It allows the user to interact with a RZUS-
BStick from Atmel using Killerbee firmware, but an experimental Software Defined
Radio backend has also been implemented, allowing to send and receive 802.15.4
frames from a HackRF One. Six corresponding modules are provided, allowing to
display information about an interface (zigbee_info), scan the RF environment
to identify target networks (zigbee_scan), sniff Zigbee frames on a given channel
(zigbee_sniff), inject Zigbee frames (zigbee_inject) or run a Denial of Service

116 Chapter 5. Mirage: an offensive auditing framework

attack by flooding a Zigbee router with association frames (zigbee_floodassoc)
or performing a deauthentication attack (zigbee_deauth).

5.4.3 Enhanced ShockBurst and Mosart

Several relevant works focusing on Enhanced ShockBurst and Mosart protocols have
been published in the recent years [Newlin 2016a,Schroeder 2010,LOG 2019]. These
protocols are widely used by input devices such as mice or keyboards, and many vul-
nerabilities targeting this kind of hardware have recently been published, allowing
to inject keystrokes or mouse-related frames.

As a result, Mirage includes a partial Enhanced ShockBurst stack and a com-
plete Mosart stack, allowing the user to easily sniff and inject frames. It interacts
with a CrazyRadio PA dongle or a Logitech Unifying dongle embedding the RF-
Storm nRF Research firmware developed and released by Bastille Networks, but
an experimental SDR backend also allows to sniff and inject Enhanced ShockBurst
packets using HackRF One. Several dissectors are provided to analyze mouse move-
ments or keystrokes, and a Ducky Script interpreter has been added to facilitate
attacks targeting keyboards, which is the Domain Specific Language defined to de-
scribe keystrokes injection in the USB Rubber Ducky hardware [RUB 2021]. Finally,
a generic component (named mouse_visualizer) allows to generate a graphical
view of mouse movements and can be combined with the previously mentioned
sniffer.

Several attack modules are provided for both Enhanced ShockBurst and
Mosart protocols. The interfaces can be enumerated thanks to esb_info and
mosart_info, esb_scan and mosart_scan allow to scan the channels in or-
der to identify devices, esb_sniff and mosart_sniff are used to sniff the frames
on a given channel. Some active modules are also provided, such as esb_ptx
and esb_prx that allow to mimick a specific Enhanced ShockBurst role, and
can be customized using scenarios logitech_encrypted_keystrokes_injection
and logitech_unencrypted_keystrokes_injection to perform keystrokes in-
jections targeting Logitech keyboards and mice. Similarly, Mosart attacks can be
performed using mosart_keylogger (allowing to sniff keystrokes over the air) and
mosart_keyinjector (allowing to inject keystrokes). Both protocols also include
a module dedicated to raw injection, esb_inject and mosart_inject.

5.4.4 Wifi

Wifi is a well-known technology in terms of offensive security, so we have decided to
focus on other protocols more specific to IoT and to implement a minimal stack as
a proof of concept. Currently, this stack allows to control management frames such
as deauthentication, disassociation or probe frames. As a result, four main modules
have been included in our framework: wifi_info provides some useful information
about the interface used, wifi_scan allows to discover access points and stations,
wifi_deauth allows to run a denial of service attacks by injecting deauthentication

5.4. Protocols and modules 117

or disassociation frames while wifi_rogueap simulates an access point (without
accepting connections).

5.4.5 IR protocols

Infrared Radiations are widely used by manufacturers to control connected objects:
it’s probably one of the cheapest technology available for short range communi-
cations. As a result, we integrate many protocols based on this physical layer in
Mirage (e.g., RC5 or Sony).

Figure 5.6: IRma hardware schematics

As far as we know, no specific hardware has been released targeting these IR
protocols. As a consequence, we have designed and implemented a custom hardware
component named IRma based on an Arduino, allowing easy sniffing and manipu-
lation of IR frames. The corresponding firmware and schematics are open source
and can be quickly reproduced and improved. The corresponding schematics are
illustrated in figure 5.6.

Three main modules are provided by Mirage to manipulate these protocols:
ir_info (displays useful information about an IR interface), ir_sniff (passively
eavesdrop an IR frame) and ir_inject (injects an IR frame).

5.4.6 Adding new protocols and modules

One of the main advantages of our framework is that a new protocol can
be easily added. First, the developer has to implement a new child class of
libs.wireless.Device, allowing interaction with a given specific hardware. This
class should provide only four main methods: a) init (initializing the hardware
component), b) isUp (indicating if the hardware can be used), c) recv (allowing
to receive frames) and d) send (allowing to transmit frames). As a result, develop-
ing a driver is straightforward. Some specific features can also be added by creating

118 Chapter 5. Mirage: an offensive auditing framework

a new method and appending its name to the array sharedMethods, allowing
them to be called from a module environment.

At least one of the two child classes of libs.wireless.Receiver or
libs.wireless.Emitter must be implemented. They initialize the device previously
defined in their constructor and must implement the _convert method, allowing
to convert a binary frame into an abstraction or a abstract representation of a frame
into an array of bytes. As a result, the protocol is fully integrated and can be used
from modules.

Developing an attack targeting this new protocol implies creating a new python
file in the modules sub-directory. A child class of core.Module with the same
name will be created into this file, allowing the core.Loader component to find
this new module. The developer has to integrate an init method and provide the
main necessary attributes (technology, type, description and args). Then, he
can instantiate the previously created Emitter and Receiver and implement his
attack by developing the corresponding run method.

5.5 Experimentations

In this section, we present two experiments illustrating the efficiency and relevancy
of our framework, both to perform security audits and to build complex attack
workflows. It also shows how simple it is, using this framework, to perform such
security analyses, that have so far been quite complex to carry out, using hetero-
geneous and sometimes incompatible tools. It should be noted that many other
experiments have been performed using our framework, such as security audits of
connected objects or the evaluation of an Intrusion Detection System for IoT. The
framework also allowed us to discover up to 20 new vulnerabilities targeting various
commercial products.

5.5.1 Experiment 1: Auditing a Bluetooth Low Energy smart ligh-
bulb

This subsection is dedicated to the presentation of a security audit of a smart
connected bulb that we performed with our framework. The main objective of
this experiment was first to reverse engineer the communication protocol of the
bulb in order to evaluate its attack surface. The bulb is managed, through a BLE
communication, by an Android application running on a smartphone.

This application allows the bulb user to choose its color, change its brightness,
turn it on or off, and update its firmware.

5.5.1.1 Information gathering

First of all, it was necessary to use this Android application to register the bulb
in the application and activate the various legitimate functionalities of the bulb.
During these operations, the framework was used to analyze and understand the

5.5. Experimentations 119

following behaviours: a) change brightness, b) change temperature, c) switch on/off,
d) change color and e) update firmware.

After this first analysis, the next step consists in identifying the list of the ATT
server attributes, stored in the bulb, as well as their GATT abstractions, under the
form of primary, secondary services and characteristics.

To do this, it was necessary to dump the ATT and GATT databases. The
following modules were used:

a. ble_scan (in order to scan the environment to identify the advertisements
of connected objects within radio range),

b. ble_connect (in order to establish a connection to a specific object),

c. ble_discover (in order to enumerate the services, characteristics and at-
tributes associated to the ATT/GATT layers of a specific object).

The first step was to launch the ble_scan module, whose outputs were the
following ones:

$ sudo mirage ble_scan
[INFO] Module ble_scan loaded !
[SUCCESS] HCI Device (hci0) successfully instanciated !

Devices found
BD Address Name Company

XX:XX:XX:39:8E:07 Salon Texas Instruments Inc.

This scan enabled to obtain three interesting information items: the BD ad-
dress, the manufacturer of the transceiver as well as the name of the object. These
information items were extracted from the advertising packets. In this study, the
name of the smart bulb is “Salon”, its BD address is XX:XX:XX:39:8E:07 and
the manufacturer name is “Texas Instruments Inc.”.

The next step was to perform a connection to the object and then dump the ser-
vices, characteristics of the object (at the GATT level). The chaining operator inte-
grated in Mirage allowed us to easily combine two existing modules (ble_connect
and ble_discover) to obtain the structure of the high level protocol layers, i.e.
GATT layer. It is also possible to export this information in a .cfg file, by setting
the GATT_FILE parameter of the ble_discover module.

$ sudo mirage "ble_connect|ble_discover"
ble_connect1.TARGET=XX:XX:XX:39:8E:07
ble_discover2.GATT_FILE=/tmp/gatt.cfg

The output of the module indicates that three services (quite common for most
connected object) are available on the smart bulb: a) Generic Access (handles

120 Chapter 5. Mirage: an offensive auditing framework

0x0001 to 0x000b), b) Generic Attribute (handles 0x000c to 0x000f), c) Device
Information (handles 0x0010 to 0x001e).

Three other services, specific to the bulb, are also available from handles 0x001f
to 0x002f, 0x0030 to 0x0039 and 0x003a to 0xFFFF.

Furthermore, two interesting features are associated with the first service:
DataTransmit (handle 0x0020) and DataReceive (handle 0x0023).

5.5.1.2 Reverse-engineering of the communication protocol

In order to accurately identify the behaviour of the object, a Man-In-The-Middle
attack was performed, while the different functionalities of the bulb were activated
thanks to the Android application on the smartphone. The Man-In-The-Middle
attack allowed us to analyze the traffic corresponding to these functionalities. At
first, since no specific scenario was loaded in the Man-In-The-Middle module, the
default behaviour was applied (redirection and logging of the packets).

$ sudo mirage ble_mitm TARGET=XX:XX:XX:39:8E:07 SHOW_SCANNING=no
MITM_STRATEGY=preconnect

This attack allowed us to identify the format of the command messages. They
are triggered by a Write Request to the handle of value 0x0021 (which corresponds
to the DataTransmit characteristics, identified during the previous step of the
analysis).

The messages format is as follows:

0x55 identifier – 1 byte parameter 0x0d 0x0a

Every action is performed using a specific identifier (e.g., 0x10 for switching
on or off, 0x13 for color modification ...) and the corresponding parameter. As
an example, the messages intended to modify the color include the identifier 0x13,
followed by three bytes corresponding to the hexadecimal RGB code of the required
color, as shown in Table 5.1.

Table 5.1: Messages format related to color modification

Color modification (Red) 55 13 ff 00 00 0d 0a
Color modification (Green) 55 13 00 ff 00 0d 0a
Color modification (Blue) 55 13 00 00 ff 0d 0a

To confirm our assumptions, we performed a connection to the bulb and executed
the ble_master module, allowing us to easily replay these messages. Then, an-
other Man-In-The-Middle attack was also performed, in which our framework was
able to modify on the fly the different commands sent by the smartphone applica-
tion to the bulb (for instance, the color Red and Green were exchanged, as well as
the switch on/off action).

5.5. Experimentations 121

5.5.1.3 Obtaining a firmware dump

The last step of our security audit was to analyze the firmware update procedure
of the bulb. Indeed, when connecting the smartphone application, a dialog box
proposes to update the firmware of the bulb over the air. To analyze this update
process, we used the ble_sniff module:

$ sudo mirage ble_sniff CHANNEL=37 SNIFFING_MODE=newConnections
INTERFACE=microbit0

The data dumped during this sniffing attack allowed us to identify eight different
steps of the update process (mostly Read Requests and Write Commands on different
handles).

Once these messages are exchanged, the Master starts to write, by means of
Write Commands, in the handle 0x0040, values formatted as follows:

000017deffff0500007c42424242ffffffff
0100ffffffffffffffffffffffffffffffff
0200000102030405060708090a0bffffffff
[...]

By analyzing the format of these messages, we were able to understand that
the first two bytes represent a counter, followed by the contents of the firmware,
sent by 16 bytes data blocks. The attack scenario slave_lightbulb was then
built, (based on the ble_slave module) in order to dump the whole firmware in
the “firmware.bin” file. Creating an identical clone of the bulb can offer many
advantages. First, it enables to simulate the behaviour of the object to be audited.
It may also be used to perform a denial of service attack of the legitimate object.

Such a strategy could easily be instantiated in our framework, thanks to the
following chained execution: a) ble_scan (dumping of advertisement data),b)
ble_connect (connection to the bulb), c) ble_discover (dumping of GATT ser-
vices and characteristics in a .cfg file), d) ble_adv (sending advertisements) and e)
ble_slave (creation of a BLE Slave using the same GATT data and implementing
the slave_lightbulb scenario). This example illustrates the relevance of introducing
a chaining operator, which allows complex attack workflow to be designed without
writing a single line of code.

$ sudo mirage "ble_scan|ble_connect|ble_discover|ble_adv|ble_slave"
ble_scan1.TARGET=XX:XX:XX:39:8E:07
ble_discover3.GATT_FILE=/tmp/gatt.cfg ble_adv4.INTERFACE=hci1
ble_slave5.SCENARIO=slave_lightbulb

After the information collection phase and the creation of the BLE slave, the
latter was executed and produced the following output:

122 Chapter 5. Mirage: an offensive auditing framework

[...]
[SUCCESS] HCI Device (hci1) successfully instanciated !
[INFO] Importing GATT layer datas from /tmp/gatt.cfg ...
[INFO] Scenario loaded !
[INFO] Updating connection handle : 68
[INFO] Master connected : 73:5E:A2:21:C7:9D
[...]
[INFO] Sending notification (1)...
[INFO] Sending notification (2)...
[INFO] Starting firmware recuperation ...
[INFO] Writing 0...[INFO] Write Command : handle = 0x40 /value =
000017deffff0500007c42424242ffffffff[...]

After this operation, the firmware was dumped and available in the “/tmp/-
firmware.bin” file.

5.5.2 Experiment 2: Attacking a randomized keyboard

This subsection is dedicated to the presentation of a complex attack workflow,
aiming at exploiting a Logitech wireless mouse to extract the credentials entered
in a banking website. The attack is quite complex as it aims to break a security
measure integrated by the website: indeed, it provides a visual keyboard to enter
the password, which is randomized every time the page is refreshed. This behaviour
is illustrated in figure 5.7.

Figure 5.7: Example of randomized keyboard on a banking website

We illustrate here how our framework can be used to perform complex attack
scenarios, combining several exploits to build an advanced offensive strategy. The
attacker is present within the radio range and targets a victim using a wireless Log-
itech mouse vulnerable to MouseJack keystrokes injection attack while connecting
to its bank account.

5.5. Experimentations 123

5.5.2.1 Information gathering

Logitech Unifying is based on Enhanced ShockBurst: Mirage provides a set of mod-
ule that can be used to interact with Enhanced ShockBurst-based protocols. First,
the attacker performs a scanning operation using esb_scan module to discover
both the address of the targeted mouse and the channel in use.

$ sudo mirage esb_scan
[INFO] Module esb_scan loaded !

Address Channels Protocol

E8:46:F9:2F:A4 74 logitech

[INFO] Mirage process terminated !

5.5.2.2 Capturing the mouse movement

Once the address has been identified, the attacker can combine esb_sniff and
mouse_visualizer to sniff the mouse traffic while the victim is entering its
password on the wireless keyboard displayed on the banking website. The
mouse_visualizer module then extracts the speed vector embedded in the cap-
tured mouse packets to generate an animated image representing the mouse move-
ment.

$ sudo mirage "esb_sniff|mouse_visualizer"
esb_sniff1.TARGET=E8:46:F9:2F:A4 esb_sniff1.TIME=5
esb_sniff1.MOUSE_FILE=/tmp/mouse.capture
mouse_visualizer2.GIF_FILE=/tmp/mouse.gif
[INFO] Module esb_sniff loaded !
[INFO] Module mouse_visualizer loaded !
[INFO] Sniffing mode enabled !
[INFO] Channels: 0-99
[INFO] Looking for an active channel for E8:46:F9:2F:A4...
[SUCCESS] Channel found: 8
[PACKET] [CH:8] << ESB - Logitech Mouse Packet | x=0 | y=-1 >>
[PACKET] [CH:8] << ESB - Logitech Mouse Packet | x=0 | y=-1 >>
[PACKET] [CH:8] << ESB - Logitech Mouse Packet | x=1 | y=-2 >>
[...]
[PACKET] [CH:8] << ESB - Logitech Mouse Packet | x=-1 | y=0 >>
[PACKET] [CH:8] << ESB - Logitech Mouse Packet | x=-1 | y=0 >>
[SUCCESS] Sniffed mice datas are saved as /tmp/mouse.capture (CFG
file format)
[INFO] Importing mice datas from /tmp/mouse.capture ...
[INFO] Mirage process terminated !

124 Chapter 5. Mirage: an offensive auditing framework

It produces the capture illustrated in figure 5.8, where the blue line indicates
the mouse movement while the red dots indicated the mouse clicks.

Figure 5.8: Mouse movements and actions extracted from eavesdropped traffic

5.5.2.3 Injecting arbitrary keystrokes

The last step performed by the attacker aims at taking a screenshot of the vic-
tim’s browser to get the current keyboard layout. To do so, the attacker can
exploit a MouseJack [Newlin 2016a] vulnerability allowing to inject unencrypted
keystrokes to the dongle. The attack is implemented in a Mirage scenario named
logitech_unencrypted_keystrokes_injection and can be easily customized
by providing a DuckyScript describing the keys sequence to inject.

First, the attacker sets up a netcat listening on port 1324 on a server he owns
(in our case, we will use malicious-server.com) :

$ sudo nc -l -p 1234 > /tmp/victim.png < /dev/null

The following DuckyScript, once injected on a Linux machine, opens a terminal,
takes a screenshot and sends it to the malicious server. Of course, this script could
be adapted to match another operating system:

CTRL ALT T
DELAY 500
STRING gnome-screenshot -f /tmp/out.png

5.5. Experimentations 125

Figure 5.9: Cropped screenshot indicating the randomized keyboard layout

DELAY 500
ENTER
STRING nc malicious-server.com 1234 < /tmp/out.png
DELAY 500
ENTER
DELAY 500
ALT F4

The DuckyScript can then be injected using the following Mirage command:

$ sudo mirage esb_ptx
SCENARIO=logitech_unencrypted_keystrokes_injection
DUCKYSCRIPT=/tmp/duckyscript TARGET=E8:46:F9:2F:A4

Once the injection has been performed, the attacker has received the screenshot
and can extract the randomized keyboard layout, illustrated in figure 5.9.

5.5.2.4 Retrieving the credentials

Once the mouse movements have been collected and the screenshot has been re-
ceived, it is trivial for the attacker to retrieve the credentials entered by the victim
by combining the acquired data. Figure 5.10 illustrates how this combination may
allow to infer the login (in our example, 1234) and the password (4382).

126 Chapter 5. Mirage: an offensive auditing framework

Figure 5.10: Retrieving the credentials by combining mouse movements and mali-
cious screenshot

5.6 Conclusion

In this chapter, we presented a new security audit and penetration testing frame-
work called Mirage dedicated to IoT devices, focusing on the analysis of widely
used wireless communication protocols. It offers a flexible software environment
for developing new tools and attacks thanks to a modular architecture and the
introduction of a chaining operator. We also described a generic communication
architecture that allows new protocols to be easily integrated and provides a unified
API for multiple technologies. Then, we highlighted multiple protocols and mod-
ules already included in Mirage, demonstrating that several existing attacks could
be easily integrated into our framework and sometimes improved, thanks to a low
level architecture. Finally, we described two experiments to demonstrate its usabil-
ity and efficiency, both to perform security audits or complex attack workflows. It
should also be noted that our framework has been successfully used to evaluate an
Intrusion Detection System dedicated to IoT. It has been useful in easily automat-
ing the generation of intrusion attempts in a smart-homes context, leading to an
efficient evaluation process.

5.6. Conclusion 127

Ð
The framework is publically available as an open-source project and
can be found here: https://github.com/RCayre/mirage. The doc-
umentation of the project can be found at the following address:
https://homepages.laas.fr/rcayre/mirage-documentation.

It is actively maintained and regularly extended: we also plan to integrate
new protocols such as ZWave, ANT+ or LoRaWAN, and add relevant modules to
analyze a complete wireless environment such as for network topology inference. We
also consider that such a framework is also relevant from a defensive perspective,
especially by exploiting passive modules allowing to efficiently monitor wireless
environments.

�
Two scientific articles describing this contribution have been published,
both in national and international conferences:

• Romain Cayre, Jonathan Roux, Eric Alata, Vincent Nicomette,
Guillaume Auriol. Mirage : un framework offensif pour
l’audit du Bluetooth Low Energy. Symposium sur la Sécurité
des Technologies de l’Information et des Communications (SSTIC
2019), Jun 2019, Rennes, France. [FR] [Cayre 2019b]

• Romain Cayre, Vincent Nicomette, Guillaume Auriol, Eric Alata,
Mohamed Kaâniche, et al.. Mirage: towards a Metasploit-
like framework for IoT. 2019 IEEE 30th International Sym-
posium on Software Reliability Engineering (ISSRE), Oct 2019,
Berlin, Germany. [EN] [Cayre 2019a]

https://github.com/RCayre/mirage
https://homepages.laas.fr/rcayre/mirage-documentation

Part III

Intrusion detection and
prevention

Chapter 6

OASIS, an Intrusion Detection
System embedded in Bluetooth

Low Energy controllers

Contents
6.1 Motivations . 132
6.2 Detection of low level BLE attacks 133

6.2.1 Detection strategies . 134
6.2.2 Detection requirements . 138

6.3 Framework design . 139
6.3.1 Main guidelines . 139
6.3.2 Embedded detection software 140
6.3.3 Architecture of the Oasis framework 142
6.3.4 Framework usage . 144

6.4 Controllers instrumentation 145
6.4.1 Broadcom and Cypress Bluetooth controllers 145
6.4.2 Nordic SemiConductors SoftDevice 147

6.5 Experiments . 147
6.5.1 Experimental setup . 148
6.5.2 Experiment Results . 150

6.6 Discussions . 150
6.7 Conclusion . 152

In this chapter, we focus on the security of one of the most commonly used IoT
protocols, BLE, and specifically on the detection of low level attacks. We explore
the feasibility of building an embedded Intrusion Detection System for this protocol,
as well as detection heuristics suited for these attacks, and to include them inside
the BLE controllers. This embedded approach solves multiple technical challenges
related to the protocol design, and can be easily deployed on multiple BLE-enabled
devices in the wild. We also introduce Oasis, a generic framework allowing to
patch various BLE controllers to include these detection heuristics. We describe
its modular architecture, how we successfully implemented it on five widely used
BLE chips embedding heterogeneous stacks, and how we used it to detect up to six
critical low level attacks.

132
Chapter 6. OASIS, an Intrusion Detection System embedded in

Bluetooth Low Energy controllers

6.1 Motivations

In the past few years, the Bluetooth Low Energy protocol has been widely used in a
variety of use cases, due to its massive deployment, low complexity and versatility.
As a consequence, the security of this protocol has become a major concern. Multi-
ple critical vulnerabilities [Armis 2018,Garbelini 2020,Armis 2017,Antonioli 2019],
have been discovered recently, illustrating the growing interest for this technology.
Some of these vulnerabilities [Armis 2018, Garbelini 2020, Armis 2017] are related
to the stack implementation and can potentially be patched by the manufacturers,
while others [Antonioli 2019,Cauquil 2018,Jasek 2016,Cauquil 2016] are related to
the protocol design itself and cannot be easily fixed without modifying the specifi-
cation [Blu 2019].

This situation highlights the need to develop defensive measures, especially In-
trusion Detection Systems (IDS), to detect this kind of wireless attacks. However,
building such IDS is a major challenge. Indeed, the BLE protocol design introduces
many technical constraints which are difficult to solve. Firstly, the protocol is dif-
ficult to monitor by an external probe, mainly because it uses a channel hopping
algorithm during connections. As a consequence, a BLE connection may use any of
the 40 channels in the 2.4GHz ISM band, requiring an IDS to continuously monitor
the wide frequency band in order to comprehensively analyze the traffic, which in-
creases the cost and complexity of such a system. Moreover, the wireless nature of
the protocol introduces some issues related to the potential difference of perception
between the external probe and the nodes themselves: unlike a wired medium of
communication, many factors can impact on the completeness and representativ-
ity of the monitored traffic, such as the probe’s position in the environment or its
sensitivity. As the protocol is also mainly used to establish peer to peer communi-
cations, it’s not possible to easily monitor the traffic from a central node. Finally,
many BLE devices are intended for mobile use, resulting in a dynamic environment
in which it is difficult to identify whether the presence of a given node is legitimate
or not.

In this context, a relevant approach would be to build an IDS embedded in the
devices, allowing to monitor the BLE traffic locally to detect attacks. However,
designing such a system is challenging for many reasons: first, a typical BLE stack
is splitted into two parts: the Host, which manages the application layers of the
protocol, and the Controller, which is in charge of the lower layers. These two
components can be integrated into different chips and communicate with each other
using a standardized interface named Host Controller Interface (HCI).

Instrumenting the Host side of the stack to detect attacks could be interesting
because it is generally straightforward to implement. However, this strategy suffers
from serious limitations. First, most low level traffic is hidden from the Host by
design: this is problematic because many existing attacks [Cauquil 2018] abuse
the lower layers of the stack and cannot be detected effectively by such a system.
Another problem is related to the existence of non standard implementations of the
stack, that may expose a proprietary API to interact with the Controller instead of

6.2. Detection of low level BLE attacks 133

the HCI API: this situation cannot be ignored as it is common in many IoT devices.
According to these constraints, instrumenting the Controller is probably the

most powerful way to detect BLE attacks, as it allows to monitor low level traffic to
identify low level attacks while being able to detect attacks targeting upper layers.
This strategy takes advantage relevant features that the controller can access, such
as the RSSI or CRC validity, and is also suited to carry out some low level defensive
actions to prevent a detected attack. However, instrumenting the Controller is non
trivial. First, controller implementations are generally proprietary and not docu-
mented: the only way to understand and instrument their internals is to manually
reverse engineer the corresponding firmware, which is a time-consuming, tedious
and error-prone process. These controllers are also implemented on many different
chips based on heterogeneous architectures. They are also difficult to instrument,
as manufacturers generally do not provide any easy way to patch them to include
defensive code. Finally, a protocol stack implementation is time sensitive by design,
resulting in an optimized code which can be difficult to modify and improve.

In this chapter, we propose a novel approach to design an IDS for BLE attacks
by embedding detection mechanisms directly into the BLE controllers, based on
the identification of relevant features at the controller level that can be used to
successfully characterize the occurrence of attacks. To the best of our knowledge,
this is the first solution exploring this direction. We assess the relevance of our
detection approach by means of 6 of the main low level structural attacks targeting
BLE protocol. We designed 6 intrusion detection modules for these attacks, em-
bedded them into various BLE controllers and successfully detected these attacks
with very good false positive and negative rates. In particular, we are the first to
propose a detection strategy for critical attacks such as BTLEJack [Cauquil 2018].
We also provide a generic and modular framework named Oasis, dedicated to the
development of these intrusion detection modules. We have implemented it on sev-
eral different boards embedding heterogeneous controllers’ architectures, including
commercial products such as smartphones and IoT devices. To do so, we reverse
engineered the internals of three major BLE stacks embedded in various chips and
developed a set of automatic reverse engineering tools, allowing to automatically
identify the main functions and memory areas required to implement the Oasis
framework.

6.2 Detection of low level BLE attacks

In this section, we describe six major low level attacks related to the protocol design
and discuss how these attacks can be characterized and detected using appropriate
features at the BLE controller level. Finally, we list the requirements needed to em-
bed detection heuristics in the controller and how they motivated the development
of our detection framework Oasis.

134
Chapter 6. OASIS, an Intrusion Detection System embedded in

Bluetooth Low Energy controllers

6.2.1 Detection strategies

In this subsection, we briefly present six major low level attacks targeting the BLE
protocol, and present our detection strategy for each one. We focus on attacks that
are related to the protocol design itself and cannot be easily fixed without changing
the specification.

6.2.1.1 GATTacker and BTLEJuice: Man-in-the-Middle attacks

Attacks presentation: Two main strategies have been developed in order to
perform a Man-in-the-Middle attack targeting a BLE connection. They are both
based on a spoofing strategy targeting the advertisements transmitted by a Periph-
eral before the initiation of the connection, even if they adopt different approaches
to perform this operation. GATTacker [Jasek 2016] exploits the fact that a Central
node trying to initiate a connection with a Peripheral node transmits its Connec-
tion Request just after the reception of an advertisement packet transmitted by the
Peripheral. As a consequence, the GATTacker approach advertises spoofed adver-
tisements packets faster than the legitimate Peripheral to maximize the probability
of receiving the Connection Request before the legitimate device. Once the Central
is connected to the attacker fake Peripheral, the attacker initiates a connection using
a second dongle with the legitimate Peripheral to establish the Man-in-the-Middle
attack. BTLEJuice [Cauquil 2016] approach is based on the fact that a Peripheral
stops transmitting advertisements if it is involved in a connection: the attacker uses
a first dongle to establish a connection with the target Peripheral, forcing him to
stop transmitting its advertisements. Then, the attacker uses a second dongle to
expose a spoofed Peripheral, waiting for a Central to initiate a connection.

Detection strategies In advertising mode, a device which is able to transmit
advertisements follows a hopping pattern along the three advertising channels and
broadcasts its frames. The time between each advertising event (an advertising
event being defined by a complete cycle of hopping along the three channels) is
defined by the advInterval, which is an integer chosen by the device and multiple
of 0.625ms, and by a random delay named advDelay between 0 and 10ms, which is
automatically generated by the Link Layer for each advertising event. After every
transmission, the advertising device briefly listens to the channel, for possible Scan
Request or Connection Request transmitted by another device.

Our strategy to detect GATTacker is based on the idea that a Peripheral trans-
mitting advertisements must follow this specific channel hopping pattern. If an
attacker is transmitting advertisements simultaneously, a node monitoring the ad-
vertising channels as a Scanner or a Central should receive both the legitimate and
the spoofed advertisements and be able to detect that the received packets are not
compliant with the protocol specification, indicating the presence of a malicious
node.

In order to detect this situation, we first estimate the advInterval, in absence
of attacks, for each device transmitting advertisements. This estimation is based

6.2. Detection of low level BLE attacks 135

on a sliding window which is filled with the duration between two consecutive
advertisements from the same device received on the same channel: once the window
has been completely filled, the minimum value in the window is considered as our
advInterval estimate (keeping the minimum value allows us to minimize the impact
of the random advDelay parameter). Then we set a detection threshold to the
advInterval value minus the maximum advDelay value, which represents the worst
legitimate case. Each time a new packet is received, a new estimate is calculated
with this method, and if the calculated value is lower than the detection threshold,
an alert is raised indicating the presence of a malicious node.

The BTLEJuice attack is more difficult to detect because a node monitoring the
advertising channel has no guarantee to observe the Connection Request transmitted
by the attacker. Therefore, we choose to adopt another strategy, allowing the
target Peripheral to detect its own spoofing by an attacker. When a connection is
established, the Peripheral simultaneously maintains the connection and also scans
the advertisements. During this scan operation, the Peripheral checks if its own
address is included in the advertisements packets. If this situation is detected, it
means that an attacker is trying to perform a BTLEJuice attack and an alert is
raised.

While these strategies provide effective detection, they have some limitations
that should be highlighted. The GATTacker detection must be able to correctly
estimate the legitimate advInterval before it can detect an attacker node: as a
consequence, the detection requires that the monitoring device has been able to fill
its sliding window to estimate the interval before the attack begins. This learning
phase could probably be reduced or removed in a controlled environment, where
the monitoring devices could use pre-defined advInterval values for each monitored
Peripheral. Likewise, the BTLEJuice detection requires that the target Peripheral
is able to simultaneously maintain a connection and scan the advertisements. Most
controllers should be able to perform these operations simultaneously, but it may be
problematic for some specific controllers that only implement a subset of BLE roles
(as an example, some BLE stacks from Nordic SemiConductors only implement the
Peripheral role and cannot perform scanning).

6.2.1.2 Continuous Jamming attack

Attack presentation: A common security issue observed when using a wireless
communication protocol is related to the fact that the medium is open by design,
allowing an attacker to impact the availability by attacking the link itself. One of
the simplest strategies for performing such a Denial of Service attack is to transmit
a jamming signal, that interferes with legitimate traffic and introduces integrity
errors, resulting in invalid CRCs that force legitimate nodes to drop the corrupted
frames.

While multiple jamming strategies [Bräuer 2016, Shintani 2020] are available,
we focus here on a simple jammer design aiming at attacking the advertising chan-
nels by transmitting a strong signal on the corresponding frequencies. Advertising

136
Chapter 6. OASIS, an Intrusion Detection System embedded in

Bluetooth Low Energy controllers

channels are indeed an interesting target for an attacker, as they are both used to
indicate the presence of devices and to initiate connections: as a result, a continuous
jammer targeting these channels can have a serious impact on the nodes present in
the environment by disrupting any attempt to initiate a connection or scan. This
offensive strategy is also interesting from a cost perspective, because it doesn’t re-
quire following the channel hopping pattern of a connection and targets pre-defined
channels, considerably reducing both the cost and complexity of the jammer.

Detection strategy: An obvious solution to detect such an attack would be to
analyze the physical layer to detect the jamming signal. However, this solution
cannot be easily used by an Intrusion Detection System embedded in legitimate
nodes because most existing BLE controllers do not allow a direct access to the
physical layer. It would also require complex analysis because the attacker has very
few constraints regarding the jammer design, and is not forced to be compliant
with the protocol specification. Another way to detect this attack is to monitor its
consequences at the Link Layer level: indeed, a successful jamming attack causes
packet corruptions, resulting in invalid CRCs. Since any device compliant with
the specification is able to check the CRC validity, our detection strategy is based
on this verification: every second, the nodes implementing the Scanner or the
Central roles (i.e. being able to scan advertisements) compute the number of packets
received without integrity corruption per second on a given channel, the frames with
an invalid CRC being ignored. If this value is equal to zero during more than a
predefined threshold number of computations (set to 5 in our experiments) for a
given channel, we consider that the channel is being jammed and an alert is raised.

Note that this strategy detects an environment without any traffic as a false
positive: although this situation rarely occurs, it should be taken into account
from a defensive perspective. One way to distinguish this legitimate situation from
an attack would be to estimate both the number of corrupted and non-corrupted
packets per second, and to raise the alert only if the number of non-corrupted
packets per second is equal to zero while the number of corrupted packets per
second is not equal to zero. However, this variant could lead to false negatives if
the attacker jams the preamble of the packets, causing the embedded IDS to not
receive them at all and not raise any alerts. If the environment can be controlled,
inserting a non-connectable Advertiser device could be a good compromise, allowing
the first strategy to be applied without the risk of false positives.

6.2.1.3 BTLEJack attack

Attack presentation: Another attack that may have a significant impact on
availability is named BTLEJack [Cauquil 2018]. This attack, presented by D.
Cauquil, is a jamming approach allowing to jam an established connection or to
hijack the Master role under certain circumstances. The attacker first synchronizes
with an established connection, then transmits a jamming signal when the Slave
sends a reply to the Master at each connection event. The attack exploits a counter

6.2. Detection of low level BLE attacks 137

mechanism to detect a link loss by incrementing the counter value every missed or
invalid packet. When this counter reaches a predefined threshold, the Master con-
siders the connection as lost and exits, allowing the attacker to interrupt it or, in the
worst case, to hijack the Master role if the Slave does not disconnect immediately
after the Master disconnection.

Detection strategy: From a Central node perspective, detecting this attack can
be performed easily: unlike a normal connection loss, the Central receives frames
including an invalid CRC on multiple consecutive connection events during an at-
tack, instead of receiving no packets in a legitimate scenario. This situation has a
very low probability of occurrence in a legitimate situation, as the channel hopping
algorithm ensures the use of multiple channels distributed along the wide ISM band.
The detection strategy consists in raising an alert when the consecutive received
frames with integrity corruption counter reaches the value of the connection counter
minus one.

6.2.1.4 KNOB attack

Attack presentation: The KNOB attack, presented by D. Antonioli et al [An-
tonioli 2019], allows an attacker performing a Man-in-the-Middle attack to inject a
low entropy value during the pairing process. Indeed, the pairing process includes
a protocol for entropy negotiation, allowing each involved device to indicate how
many entropy bytes can be used during key generation. As a result, an attacker
can perform an entropy downgrade attack, by setting this number of bytes to 7
bytes instead of 16 in the case of BLE. As a consequence, the key can easily be
bruteforced, which compromises the security of the future communications between
the involved devices.

Detection strategy: This attack can be detected by both a Central or a Periph-
eral using a simple passive strategy. When a Pairing Request (i.e. the packet type
used to negotiate the entropy value) is received, the entropy value field is extracted
from the packet payload and an alert is raised if the value is less than 10 bytes
of entropy. Even if the protocol technically allows such a lower value to be used
legitimately, considering that a device should not be allowed to use an entropy value
low enough to allow a bruteforce seems a reasonable assumption from a security
perspective. The Pairing Request being transmitted by the Controller to the Host,
let us note that this detection strategy could be implemented at the Host level.

6.2.1.5 InjectaBLE attack

Attack presentation: The last attack we focus on is our new injection attack
targeting BLE communications named InjectaBLE, that we presented in chapter 4.
This attack abuses a feature that allows two devices communicating together to

138
Chapter 6. OASIS, an Intrusion Detection System embedded in

Bluetooth Low Energy controllers

compensate potential clock drift: when a Peripheral enters reception mode to re-
ceive a packet from the Central during a connection, it listens during a short window
(named window widening) after and before the theoretical instant, allowing an at-
tacker to exploit a race condition and inject a malicious packet before the legitimate
Central node. This attack is critical, especially if the connection is not encrypted,
as it allows any role of the communication to be hijacked or a Man-in-the-Middle
to be performed by injecting carefully chosen frames.

Detection strategy: This attack can be detected by the targeted Peripheral
itself by monitoring the interval between two consecutive received packets. We are
able to detect if a packet is injected by comparing the last interval to the legitimate
connection interval: if the interval is less than the theoretical interval minus an
empirically estimated threshold, we consider the frame as malicious and raise an
alert. This strategy may lead to false positives if the devices use clocks with an
important drift.

6.2.2 Detection requirements

The previously mentioned detection strategies give us an overview of the require-
ments needed to implement detection heuristics at the controller level.

To embed efficient detection mechanisms at this level, we need to instrument:

• the packet reception mechanisms: most of our detection strategies re-
quire access to link layer packets, especially the received ones. Both adver-
tisements and data packets must be collected, with some relevant metadatas
such as CRC validity or RSSI.

• the time management mechanisms: we need to collect timestamps as
accurately as possible in order to estimate intervals between packets, as ex-
pected by GATTacker or InjectaBLE detection modules. We also need to be
able to run code regularly, independently of packet reception, for example to
compute the number of valid packets per second (e.g., Continuous Jamming
detection).

• the connection and device management mechanisms: some of our
detection strategies need to use some data handled by the controller related
to connections (e.g., the connection interval for InjectaBLE detection) or to
the local device (e.g. the BD address for BTLEJuice detection). As some of
our detection strategies are restricted to specific roles, we also need to be able
to know in real time what role our instrumented device is currently using, and
trigger the execution of certain code when an event occurs (e.g., connection
initiation).

• the high level operations: we need to be able to instrument the high
level operations of the controller, for example to trigger the scan mode once
a connection is established for BTLEJuice detection.

6.3. Framework design 139

Obviously, the implementation of these mechanisms can be very heterogeneous
depending on the stack used: to avoid developing multiple detection modules de-
pending on the stack, this motivates the development of a generic framework with
wrappers allowing to instrument the stacks and exposing a homogeneous API.

6.3 Framework design

In this section, we describe the design of Oasis, a generic and modular framework
allowing to patch controllers in order to embed intrusion detection mechanisms.
We first introduce the main guidelines that guided its development. Then, we
describe its global architecture and the structure of the generated code that is used
to patch the controllers. Finally, we briefly describe the implementations of its main
components and a typical use case of this framework.

6.3.1 Main guidelines

In subsection 6.2.2, we highlighted the minimal requirements needed to embed the
previously mentioned detection strategies into controllers. However, many con-
troller implementations are proprietary and not documented: the direct conse-
quence of this situation is that it is not possible to instrument the source code.
It is therefore necessary to find a way to interact with the BLE stack by patching
the firmware binary while running our own code without disrupting the legitimate
behavior of the stack.

This situation motivated the development of a framework generating a detec-
tion software, that must be able to run independently from the controller, without
altering its normal behavior. This implies carefully choosing the hooked functions
to avoid adding delays in time sensitive components, but also finding a way to in-
ject our code and data in memory without impacting the controller execution. Our
framework must also be user-friendly, i.e., allows a developer to easily implement
a new detection module without requiring a deep understanding of the underlying
controller architecture. To this end, it provides an user-friendly environment to
allocate memory, collect features or react to a specific event.

The controllers are also heterogeneous, and cannot be instrumented without
writing specific code for each of them. However, a detection module implements a
logic which is independent of the underlying implementation, and the corresponding
code has to be written only once. As a consequence, every target-specific wrapper
must expose an homogeneous API, facilitating the development of target-agnostic
components. As a consequence, one of the key principles that has guided our
framework design is the genericity.

Moreover, some controllers only implement a subset of the BLE specification:
as an example, some IoT oriented controllers only implement the Peripheral role.
As some of our detection strategies only work if the device uses a specific role, only
a subset of the generated code by the framework needs to be embedded. Given this
situation and the strong constraints in terms of time and memory associated with

140
Chapter 6. OASIS, an Intrusion Detection System embedded in

Bluetooth Low Energy controllers

the embedded approach, modularity should be a fundamental design guideline of
our framework. Similarly, extending the framework to add a new target or a new
detection module should be as straightforward as possible.

6.3.2 Embedded detection software

Oasis framework allows to generate an embedded detection software ready to be
loaded into the chip memory. This embedded software instruments the target con-
troller by patching specific functions to extract relevant features, then forwards
these features to the selected detection modules, that analyze them and potentially
raise an alert if an attack is detected. Although the software interacts with the BLE
stack, it is designed to run without interfering with the legitimate behavior: as a
consequence, the software uses and manages its own memory space, independently
from the main firmware.

The detection software is composed of three main components, as illustrated by
Figure 6.1: a target-specific wrapper, a core and a set of detection modules. They
are described in the following sections.

Figure 6.1: Embedded detection software overview

6.3.2.1 Target-specific wrapper

The wrapper is the target-specific component for interacting with the controller.
It is composed of two main systems: 1) an event management system to react to
specific events (e.g., packet reception, packet transmission, connection initiation)
and to extract all available low level features from the controller, and 2) an action
management system, to trigger specific actions in the controller (e.g., sending an
event to the Host, entering a specific state).

6.3. Framework design 141

The event management system is composed of a set of wrapper functions corre-
sponding to the monitored events. It instruments the controller by patching some
specific instructions of the BLE stack to redirect the execution flow to a trampo-
line function, that saves the context and calls the corresponding wrapper function.
Once the wrapper function has been executed, the trampoline function restores
the context, executes the instruction altered by the patch and redirects the execu-
tion flow to the next instruction in the stack. This mechanism allows to call the
corresponding wrapper function when a specific event occurs. Then, the wrapper
function extracts all available features and propagates them to the event processing
system implemented in the Core component.

The action management system is composed of a set of functions to trigger
a specific action in the instrumented controller. Depending on the instrumented
stack, it can make a function call, mimic an HCI command transmitted by the
Host or modify a variable in the controller memory.

This component is the only one that depends on the target: therefore, each
implemented wrapper exposes a similar API, allowing the target-independent com-
ponents to interact with the controller in a standardized and unified way.

6.3.2.2 Core

The Core is the central component of the detection software. It is composed of an
event processing system, a set of libraries and an instrumentation system.

The event processing system handles the different events monitored by the de-
tection software. When the wrapper generates a specific event, the Core collects the
features extracted by the wrapper and possibly infers some complementary features
from the extracted ones (e.g., the Core can infer the advInterval used by an Adver-
tiser or a Peripheral from the timestamps of the advertisements received from that
device). Then, the event processing system propagates the event and a structure
containing the collected features to the loaded detection modules by executing the
corresponding callbacks.

The Core also exposes an instrumentation system, that can be used by the detec-
tion modules to interact with the controller. This system propagates the function
calls to the wrapper, allowing to enter a specific state or trigger an action in a
generic way. It also provides various libraries facilitating the modules development.
The Core exposes a custom memory allocator, allowing to dynamically allocate
and release memory without interfering with the native memory management (the
embedded detection software manages its own independent memory), a hashmap
implementation and a logging system, allowing to send detection alerts to the Host.

6.3.2.3 Detection modules

The detection modules implement the detection strategies: they are generally re-
sponsible for analyzing the features provided by the Core component to detect
attacks. They can declare a set of callbacks that are executed when a specific event

142
Chapter 6. OASIS, an Intrusion Detection System embedded in

Bluetooth Low Energy controllers

occurs, for example when a packet is received or a connection is initiated. They
also have access to features collected and inferred using a specific structure, and
can trigger various behaviors using the instrumentation API.

Each module is independent, and can be considered as a small embedded detec-
tion software. With this design, the user can choose which modules to include in
the embedded detection software. A system of dependencies also allows to compile
and flash only a subset of the framework features, depending on the selected mod-
ules requirements. This is particularly relevant given the constraints in time and
memory inherent to an embedded approach.

6.3.3 Architecture of the Oasis framework

Figure 6.2: Oasis Framework architecture

The Oasis framework allows to generate the aforementioned embedded detection
software and to inject it into the memory. The framework is composed of four main
components, as shown in Figure 6.2: the Firmware analyzer, the Build system, the
Patcher and the Monitor. They are described in the following section.

6.3.3.1 Firmware analyzer

To instrument a specific controller, the framework relies on a set of source code and
configuration files describing a target, including the wrapper source code, linker
scripts and configuration files. These files describe all the information needed by
the framework to patch the controller firmware, inject the detection software code
into the memory and interact with the controller.

Identifying the information needed to generate these files generally requires re-
verse engineering of the controller firmware, most of them being proprietary and
not documented. Since this process is tedious and error-prone when performed

6.3. Framework design 143

manually, the role of the firmware analyzer is to automate this reverse engineering
task and the generation of the corresponding target-specific files.

The process is divided into two main steps. The first one is dedicated to re-
verse engineering the provided firmware while the second one uses the collected
information to generate the source and configuration files describing the target.
The reverse-engineering step is mainly based on an automated static analysis of
the firmware binary which tries to identify the relevant functions, variables and
structures by means of regular expressions describing specific instruction patterns
or values and leveraging some empirical knowledge about code structure. It exploits
the fact that different firmwares may share many similarities because of code reuse,
which allows us to automate the analysis of several firmwares sharing the same
controller architecture.

Once the firmware is analyzed, the tool generates the target’s configuration
and source code files needed to instrument it. It automatically disassembles the
functions linked to a specific event to identify instructions to patch, allowing to
build the list of firmware instructions to patch. The wrapper source code, linker
files and configuration files are then automatically generated from the previously
extracted information.

6.3.3.2 Build system

Once generated, the target is provided as input to the build system, with the target-
agnostic software components (e.g., the Core and the selected detection modules).
The build system is composed of a set of scripts for generating the final list of
instruction patches and binary blobs that will be injected into the memory, using
common tools such as the GNU gcc compiler and assembler.

The build system performs the following steps:

• Detection modules compilation: each selected module is compiled with-
out linking, which allows to generate the corresponding binary blobs.

• Modules callbacks generation: for each selected module, the build sys-
tem lists the callbacks needed by the module. Then, a glue C source code
including the module callbacks as function pointers for every event is gen-
erated, allowing the Core to redirect the execution flow to the right module
callback when the event occurs.

• Trampoline functions generation: for each patch required to instru-
ment the target, the build system generates a trampoline function to save the
context, restore it and execute the removed instruction.

• Compilation and linking: the whole embedded software (including the
core, the target wrapper, the detection modules, the glue code and the tram-
poline functions) is compiled and linked. A dependency mechanism allows to
compile only the required software components if the selected modules do not
use some components.

144
Chapter 6. OASIS, an Intrusion Detection System embedded in

Bluetooth Low Energy controllers

• Symbols extraction: each symbol contained in the compiled binary is
extracted from the binary and stored in a temporary file containing the symbol
name, its address and its content.

• Patches generation: the final list of patches and binary blobs is gener-
ated, by combining the symbols previously extracted from the binary and the
patches that must be applied to the controller firmware to instrument it.

6.3.3.3 Patcher and monitor

Finally, once the list of patches has been generated, the framework can inject them
into the memory using the patcher system. Depending on the type of controller
used, it may use a different backend to execute the patching process: for example,
the Broadcom and Cypress stacks are patched using InternalBlue while Zephyr and
Nordic Semiconductors stacks are patched using openOCD.

Similarly, the framework re-uses these backends to facilitate debugging and to
monitor logs and detection alerts. Using the list of patches, the monitor is able to
map a given symbol to its address in memory, thus allowing user-friendly debugging
of the embedded software.

6.3.4 Framework usage

The framework can be easily used or extended thanks to the different components
previously mentioned. A typical workflow is composed of the following steps:

• Generating the target-specific files (optional): if the target-specific
files have not been previously generated (the framework includes a set of
pre-generated files for various targets), the users can dump the firmware and
use the firmware analyzer to automatically perform the reverse engineering
process and generate the corresponding target-specific files.

• Selecting detection modules: users can easily select the modules they
want to include in the final embedded detection software, or write their own
modules using standard C code. Other software components do not require
any modifications if the existing collected features are sufficient to perform
the detection.

• Building and patching the embedded detection software: the users
can then execute the build system to build the corresponding embedded
detection software, then they can inject it into the memory using the patcher.

• Monitoring the embedded detection software: the users can debug
the embedded detection software or monitor the generated logs and detection
alerts using the monitor.

6.4. Controllers instrumentation 145

Ð
The source code of Oasis is available as open-source software under MIT
license. It can be downloaded from the following repository: https://
github.com/RCayre/oasis

6.4 Controllers instrumentation

We focused our work on three heterogeneous and widely used BLE stacks: the
Broadcom/Cypress stack, embedded in a large number of Bluetooth chips from
these manufacturers, the SoftDevice from Nordic SemiConductors, embedded in
their BLE-enabled chips (e.g., nRF51 and nRF52 families), and the BLE stack
included in the open-source OS named Zephyr.

In this section, we briefly present the internals and the instrumentation method-
ology we applied to the two proprietary stacks, illustrated in Figure 6.3, as they
required a significant reverse engineering effort. For each stack analyzed, we per-
formed a partial reverse engineering targeting a representative set of firmwares
implementing the stack. This allowed us to identify the underlying software archi-
tecture, the implementation of the features listed in our detection requirements 6.2.2
and the memory mapping.

6.4.1 Broadcom and Cypress Bluetooth controllers

Bluetooth-enabled chips from Broadcom and Cypress use a proprietary stack based
on a real time Operating System named ThreadX. The chips involved, based on
a ARM Cortex M3 processor, are common in the wild and can be embedded in
various types of devices, such as smartphones (e.g., Nexus 5, Samsung Galaxy
S20), computers (e.g., Raspberry Pi) or IoT devices (e.g., FitBit Charge). These
chips are poorly documented, but several works [Classen 2019, Mantz 2019] have
partially documented their internals.

The BLE features are implemented as tasks, representing a specific state (e.g.,
connection, scan). A task is described by a set of functions linked to a specific event
(initialisation, packet reception, packet transmission,...) and listed in a specific
callbacks table. The tasks are managed by a software component named Bluetooth
Core Scheduler, which allows to start, stop and schedule them. We hooked the
initialisation and packet processing functions linked to each BLE task, allowing us to
analyze the received and transmitted packets in real time while being able to detect
the active GAP role. We also extracted from some radio configuration functions
the structures used to store relevant features such as connection parameters or BD
address.

A specific thread handles the high level operations, especially the HCI manage-
ment. Every HCI command is processed by the thread and leads to the execution
of a specific function, which is stored in a table of function pointers indexed by the
command opcode. The HCI events are generated using an allocation function that
allocates and initializes the event buffer while another function allows their trans-
mission. We hooked both the commands processing thread, allowing us to inject

https://github.com/RCayre/oasis
https://github.com/RCayre/oasis

146
Chapter 6. OASIS, an Intrusion Detection System embedded in

Bluetooth Low Energy controllers

Figure 6.3: Embedded detection software integration in proprietary stacks

arbitrary commands to trigger high level operations, and the HCI events functions,
used to build our logging system by passing detection alerts to the Host.

The firmware is stored in ROM, but the manufacturers have included a mech-
anism named PatchRam for updating it: a specific memory area in RAM can be
used to store a limited number of ROM changes. Manufacturer patches are written
in a dedicated RAM area, then a specific ROM instruction of the original firmware
is patched using PatchRam to redirect the execution flow to the updated function
in RAM. These mechanisms are triggered using vendor-specific HCI commands, al-
lowing us to easily divert them to patch the existing firmware and inject our own
code into memory. The embedded detection software code and data are stored in
the manufacturer’s patch section of RAM, while the patchRam mechanism can be
used to modify the firmware instructions in ROM to setup our hooks. InternalBlue
tool makes this process much easier, so it is used as a backend by our framework
to patch and monitor these chips.

6.5. Experiments 147

6.4.2 Nordic SemiConductors SoftDevice

Nordic SemiConductors designed a custom proprietary controller for its BLE-
enabled chips (e.g., nRF51 and nRF52 families, based on ARM processors), named
SoftDevice. These chips are commonly used in IoT devices, and multiple versions
of the SoftDevice can be found in the wild.

The SoftDevice is provided by the manufacturer as a binary blob, which is
loaded in the lowest parts of the ROM. The user application is flashed in the upper
part of the ROM, and communicates with the SoftDevice using a non-standard
proprietary API based on supervisor calls. A typical application initializes the
SoftDevice, configures it to enable the needed BLE features, then monitors the
events transmitted by the controller by calling a specific function in an infinite
loop. The SoftDevice manages the low level operations: a single packet processing
function is called by the radio interrupt when a packet is received or transmitted,
which is able to identify the current GAP role and the current radio operation using
a set of internal variables and structures. We also identified a set of configuration
functions aiming at storing relevant features such as connection parameters in the
internal structures.

We mainly hooked packet processing and configuration functions in the Soft-
Device component, and extracted various features from the internal structures we
identified. The function used by the application to collect the SoftDevice events has
also been hooked, allowing us to generate the right supervisor call when we need to
trigger a high level action. Similarly, we hook the entry point of the application to
execute our initialization routine, allowing us to initialize the memory and configure
a timer to facilitate time-management operations.

The strategy to patch the firmware and inject our code into the memory is based
on the modification of the firmware binary. The firmware instructions to patch are
altered in the binary itself, then the code and the memory of our detection software
are appended at the end of the firmware. We also inject a decreased stack pointer
initialization value in the interrupt vector, allowing us to set aside a specific zone
of the RAM to avoid conflicts between the memory used by the SoftDevice, the
application and our detection software. This modified firmware is flashed into the
chip’s ROM using openOCD, then the memory zone is copied from the ROM to the
reserved RAM zone by our initialization hook.

6.5 Experiments

We performed several experiments to evaluate our detection strategies. For each
attack, we flashed the corresponding detection module on multiple chips and gen-
erated both legitimate and malicious traffic in a realistic environment to estimate
the detection performance. Each experiment was performed under similar condi-
tions, with all the detection boards connected to a central gateway that monitors
detection logs while regularly generating attacks and legitimate traffic.

148
Chapter 6. OASIS, an Intrusion Detection System embedded in

Bluetooth Low Energy controllers

6.5.1 Experimental setup

Targets
Ra Ne Ga D1 D2

GATTacker ✓ ✓ ✓ ✓
BTLEJuice ✓ ✓ ✓
Jamming ✓ ✓ ✓ ✓
KNOB ✓ ✓ ✓
InjectaBLE ✓ ✓ ✓
BTLEJack ✓ ✓

Table 6.1: Targets used for each experiment

Our experiments were conducted on five different targets: BCM4345C0 embed-
ded on Raspberry Pi 3+ board, BCM4339 embedded on a Nexus 5 smartphone,
Gablys, a smart keyfob with an nRF51822 controller, CYW20735 embedded on an
IoT development kit, nRF51422 embedded on a nRF51 Development kit embedding
various SDK examples (e.g., Scanner and Peripheral), respectively called Ra, Ne,
GA, D1 , D2 in Table 6.1. For each experiment, the targets were selected according
to their support of the roles required by our detection modules.

6.5.1.1 Experiment 1 - Gattacker

The attacks were carried out using two HCI dongles and the Mirage offensive frame-
work presented in chapter 5 (ble_mitm module with flood strategy). The attacks
targeted a connected lightbulb, located at two meters from the detection boards.

We performed 250 attacks, with a duration between 10 and 30 seconds randomly
generated for each attack. Every attack was followed by a 30 second period without
attack, resulting in 250 periods of legitimate traffic. Since the detection is based
on the Scanner role, each detection board was configured to perform a scanning
operation during the whole experiment.

6.5.1.2 Experiment 2 - BTLEJuice

We performed the attacks using two HCI dongles and the Mirage offensive frame-
work (ble_mitm module with pre-connect strategy) targeting the detection boards
themselves. Similarly, we generated legitimate connections representing legitimate
traffic using the ble_master module of Mirage.

We performed 250 attacks and 250 legitimate connections for each detection
board. Each attack duration was also randomly picked up between 10 and 30
seconds, while each legitimate connection was conducted during 5 seconds. Since
detection is based on the Peripheral role being able to simultaneously maintain
the connection and scan the environment, we selected targets supporting these
constraints.

6.5. Experiments 149

6.5.1.3 Experiment 3 - Jamming

The attack was carried out using an HackRF one transmitting random data on the
frequency used by one of the three advertising channels (hackrf_transfer utility).

We performed 250 attacks, targeting a randomly selected advertising channel
with a random duration between 10 and 30 seconds. Each attack was followed by
30 second period without attack, corresponding to the legitimate traffic phases. A
connected lightbulb was present during the whole experiment in the environment.
Since the detection strategy is based on the Scanner role, each target was configured
to perform a scanning operation during the whole experiment.

6.5.1.4 Experiment 4 - KNOB

As far as we know, there is no implementation of this attack over the air, the
Proof of Concept presented in the paper [Antonioli 2019] being implemented as
an InternalBlue patch mimicking the behavior of the attack. We developed our
own over-the-air implementation by modifying the Mirage framework to allow the
transmission of a Pairing Request with an arbitrary maxKeySize field.

We conducted 250 attacks (i.e. 250 connections with the transmission of a
Pairing Request using a maxKeySize of 7 bytes) and 250 legitimate connections (i.e.
250 connections with the transmission of a Pairing Request using a maxKeySize of
16 bytes). Each target simulated a Peripheral role.

6.5.1.5 Experiment 5 - InjectaBLE

The attack requires sniffing a connection, which is a non-trivial task [Ryan 2013a,
Cauquil 2019], and can sometimes fail due to sniffer desynchronization: as a result,
performing a fully automated experiment could lead to invalid results (e.g., an
attack failure being considered as a false negative) and we chose to manually monitor
the experiment. This allowed us to control the injection success but had an impact
on the number of attacks that could be performed in a reasonable amount of time.

We performed 100 attacks (i.e. 100 successful injections during a connection)
and mimicked 100 legitimate behaviors (i.e. 100 legitimate packets transmission
during a connection, with different packet types and lengths) per target. This sam-
ple is statistically large enough to derive relevant conclusions about the efficiency
of our approach to detect such attacks.

6.5.1.6 Experiment 6 - BTLEJack

Similarly to InjectaBLE, BTLEJack attack requires sniffing a connection and relies
on a jamming strategy, introducing a serious risk of desynchronization or failure.
As a consequence, we also chose to manually monitor the experiment to control the
success of the attack.

We performed 100 attacks for each target, an attack being defined as a connec-
tion which has been successfully disrupted by BTLEJack. We also performed 100

150
Chapter 6. OASIS, an Intrusion Detection System embedded in

Bluetooth Low Energy controllers

legitimate connections per board (i.e. a connection without attack). Each target
simulated a Central role, connecting repeatedly to the connected lightbulb.

6.5.2 Experiment Results

For each experiment performed, we compute the number of true positives (i.e.
detection alert raised during an attack sequence, noted TP), false positives (i.e.
detection alert raised during a legitimate sequence, noted FP), true negatives (i.e.
no detection alert during a legitimate sequence, noted TN) and false negatives
(i.e. no detection alert during an attack sequence, noted FN) by target. We also
compute the Recall and the Precision using the following formulas:

Recall = TP

TP + FN
Precision = TP

TP + FP

The results for each experiment are listed in Table 6.2. Multiple observations can
be made from these results. First, we can emphasize that our detection strategies are
relevant to successfully detect attacks, as illustrated by the very good Recall values
we obtained (ranging from 0.94 and 1.0). Moreover, these experiments have been
conducted in realistic conditions, using standard offensive hardware and software:
from our perspective, these experiments and the associated results can be considered
as representative of a real attacker using standard tooling.

Similarly, the high Precision values, all between 0.87 and 1.0, show that our
detection strategies generate only a very small amount of false positives. In ad-
dition, four of our six experiments have a precision value equal to 1.0 for every
tested target. The detection strategies that rely solely on advertisements passive
monitoring (e.g., GATTacker and Jamming) generate slightly more false positives:
this can be explained by the fact that they have to compute some estimates that
may be impacted by some environment changes inherent to these intensively used
channels.

Finally, we can point out that the results of a given experiment are globally
homogeneous for each tested target. This shows that our detection modules are, as
expected, independent of the underlying wrapper implementations. Even if some of
our strategies cannot be systematically implemented on every target due to role re-
quirements, these experiments also demonstrate that these defensive detections can
be implemented on various types of devices, including a smartphone, a Raspberry
Pi and a commercial connected object with very limited resources.

6.6 Discussions

In this chapter we focused our work on low level attacks, which are difficult to
detect and mitigate by design. However, from our perspective, our approach could
be easily applied to any kind of active attacks targeting the Bluetooth Low En-
ergy protocol. Indeed, implementing the detection at the lowest level accessible by
software allows to detect low level attacks as illustrated by this work, but is also

6.6. Discussions 151

Experiment Target TP FP TN FN Recall Precision

GATTacker

Ra 250 0 250 0 1.0 1.0
Ne 250 0 250 0 1.0 1.0
D1 250 0 250 0 1.0 1.0
D2 250 19 231 0 1.0 0.93

BTLEJuice
Ga 245 0 250 5 0.98 1.0
D1 239 0 250 11 0.96 1.0
D2 250 0 250 0 1.0 1.0

Jamming
Ra 238 9 241 12 0.95 0.96
Ne 250 13 237 0 1.0 0.95
D1 247 13 237 3 0.99 0.95
D2 250 39 211 0 1.0 0.87

KNOB
Ga 247 0 250 3 0.99 1.0
D1 250 0 250 0 1.0 1.0
D2 249 0 250 1 0.99 1.0

InjectaBLE
Ra 99 0 100 1 0.99 1.0
D1 100 0 100 0 1.0 1.0
D2 94 0 100 6 0.94 1.0

BTLEJack Ne 95 0 100 5 0.95 1.0
D1 98 0 100 2 0.98 1.0

Table 6.2: Experimental results

relevant to detect attacks targeting the upper layers or being linked to a specific
vulnerable implementation, as this approach gives access to the entire traffic re-
ceived and transmitted by the node. More importantly, we also consider that our
approach is generic enough to be extended to other wireless communication proto-
cols that are commonly used by IoT devices, such as Zigbee or ShockBurst. Indeed,
the constraints related to this type of protocols, such as the dynamicity of the en-
vironment or the absence of a central node, are effectively solved by an embedded
detection performed locally by the nodes themselves. Similarly, the instrumentation
of the lowest layers can provide access to a large number of features, allowing to
build effective detection modules for different types of attacks. We believe that the
methodology applied to build our detection modules, based on the analysis of the
impact of the attack on the low level features accessible by the embedded detec-
tion software, can also be generalized to other wireless technologies. The fact that
we have successfully implemented such an approach for the Bluetooth Low Energy
protocol, which provides many features and makes use of complex mechanisms such
as channel hopping, seems encouraging to implement such a strategy on simpler
wireless protocols.

Some limitations and open challenges of this approach can also be highlighted.
First, implementing the detection on local nodes complicates the collection of alerts,
especially if those alerts are to be handled by a centralized SOC.

However, this problem can be solved by establishing a secure communication

152
Chapter 6. OASIS, an Intrusion Detection System embedded in

Bluetooth Low Energy controllers

channel dedicated to alert reporting between a central monitoring node and the
local nodes detecting the malicious traffic. Such a channel could also be used to
exploit the decentralized nature of our embedded approach, allowing nodes to share
knowledge about the detected threats or to coordinate more complex detection
algorithms involving multiple devices. From the perspective of generalizing this
detection design to other wireless protocols, Cross Technology Communications
could be a promising solution to establish a secure communication channel between
local devices embedding heterogeneous wireless protocols.

Another limitation comes from the need to write target specific code to in-
strument heterogeneous stacks. When the implementation is proprietary, which is
common in practice, one must also reverse engineer the target stack to understand
and instrument its internals. Note, however, that the growing number of open
source wireless stack implementations (e.g., Zephyr, NimBLE) may limit the im-
pact of this issue in the future. Some manufacturers may also choose to integrate
some detection modules in their proprietary stack, as we demonstrated that our
embedded detection approach is lightweight and can even be implemented in small
IoT devices with very limited resources.

6.7 Conclusion

In this chapter, we presented a new embedded detection approach for the Bluetooth
Low Energy protocol, based on the instrumentation of the controller to take control
over the lowest layers of the stack. We demonstrated the feasibility and relevance
of this local embedded detection approach by conducting several experiments under
realistic conditions on various targets, including smartphones and IoT devices with
limited resources, representative of heterogeneous devices embedding this wireless
technology. We were able to detect up to six critical low level attacks, including
various attacks targeting the connected mode which were difficult to detect with
existing strategies.

We also provide a modular, generic and user friendly framework for instru-
menting various Bluetooth Low Energy controllers, suitable for collecting low level
detection features and released as open-source. We consider this framework to be
an important contribution to the security community, as it provides a simple way
to instrument Bluetooth Low Energy controllers, and could facilitate research work
in various areas such as vulnerability research or intrusion detection.

6.7. Conclusion 153

�
This research work has been presented in the following scientific article:

• Romain Cayre, Clément Chaine, Guillaume Auriol, Vincent
Nicomette, Géraldine Marconato. OASIS: un framework
pour la détection d’intrusion embarquée dans les con-
trôleurs Bluetooth Low Energy. Symposium sur la Sécurité
des Technologies de l’Information et des Communications (SSTIC
2022), Jun 2022, Rennes, France. [FR] [Cayre 2022]

Chapter 7

Reactive-jamming based firewall

Contents
7.1 Motivations . 156
7.2 Context and prerequisites . 157

7.2.1 Threat model . 157
7.2.2 Jamming taxonomy . 157
7.2.3 Objectives and challenges . 158

7.3 Approach overview . 160
7.3.1 Global architecture . 160
7.3.2 Reactive jamming . 161
7.3.3 Correction algorithm . 165
7.3.4 Decision and transmission . 167

7.4 Experiments . 167
7.4.1 Experiment 1: Zigbee, basic filtering 168
7.4.2 Experiment 2: Zigbee, attack filtering 168
7.4.3 Experiment 3: Enhanced ShockBurst, basic filtering 169
7.4.4 Experiment 4: Enhanced ShockBurst, attack filtering 169
7.4.5 Experimental conclusion . 170

7.5 Discussion and Limitations . 170
7.5.1 Genericity and extension to other protocols 170
7.5.2 Performance issues . 171
7.5.3 Critical environments . 172

7.6 Conclusion . 173

Packet filtering is a key requirement for various defensive systems, such as fire-
wall or Intrusion Prevention Systems. However, the deployment of peer-to-peer
wireless communication protocols significantly complicates the use of such tech-
niques, because a node can communicate with another node without requiring the
use of a central point, which is traditionally instrumented to perform filtering. In
this chapter, we explore a novel approach to solve this issue and implement packet
filtering in this kind of wireless networks. We combine reactive jamming techniques,
allowing to corrupt the unfiltered packet on the fly to prevent its reception before
its analysis, and a correction algorithm allowing to recover the initial data from
the corrupted one to analyze its content and classify the packet as malicious or

156 Chapter 7. Reactive-jamming based firewall

legitimate. We describe the key components of our firewall architecture and per-
form several preliminary experiments, showing promising results to block malicious
traffic in Zigbee and Enhanced ShockBurst networks.

7.1 Motivations

The most efficient approaches to preventing network level intrusion attempts mostly
rely on packet filtering. From Intrusion Prevention Systems to firewalls, the ability
to analyze the traffic in real time to identify malicious traffic and block it on the fly
is a key requirement for many defensive mechanisms. While these capabilities are
easy to implement in wired networks and most WiFi networks, which generally rely
on routers and central points that can be easily instrumented to filter the traffic,
they are particularly difficult to deploy on most wireless communication protocols
commonly used by the Internet of Things.

Indeed, most of these protocols allow nodes to perform peer-to-peer communi-
cations, and do not require the use of central points: this leads to decentralized
environments where any node can communicate with any other node, which leads
to wireless topologies that do not rely on central points and are especially diffi-
cult to analyze and instrument to perform packet filtering. Because the wireless
packet is transmitted directly to its destination without routing mechanisms or an
intermediary by design, implementing packet analysis and filtering is not trivial
and becomes a significant challenge to solve in order to efficiently mitigate wireless
attacks targeting these protocols.

To implement packet filtering on such wireless technologies, we explored the use
of various reactive jamming techniques from a defensive perspective. Indeed, even if
the design of these protocols makes packet filtering non-trivial due to the lack of cen-
tral points, the alteration of traffic reception in a wireless network has already been
partially covered by offensive research works. Several offensive techniques can be
used to block or alter traffic on the fly (e.g., Man-in-the-Middle attacks, Overshad-
owing). While some of these techniques are protocol-dependent, a jamming-based
approach is interesting because it can be performed on most wireless protocols, as
they generally implement an integrity checking mechanism, providing this approach
a genericity which is relevant in the context of heterogeneous protocols we analyzed.
Indeed, since our strategy relies on the capability to correct the corrupted frames,
we need to exploit a way to check the validity of our correction.

While some previous works already explored the use of friendly jam-
ming [Vilela 2011,Shen 2013], most of them covered confidentiality protection and
targeted WiFi networks. In this work, we explore the use of defensive jamming
from a different perspective, targeting packet filtering capabilities that could be
used both for Intrusion Prevention systems and firewalls.

We propose to build a flexible and generic jammer that can be implemented
on low cost off-the-shelf transceivers, allowing to efficiently filter wireless packets
from various protocols. Moreover, we describe the design of a simple hardware

7.2. Context and prerequisites 157

and an embedded software allowing to perform our defensive jamming approaches,
and demonstrate their feasibility by carrying out several preliminary experiments
protecting Zigbee and Enhanced ShockBurst communications.

7.2 Context and prerequisites

In this section, we present the context and introduce some pre-requisites that are
needed to fully understand our approach. We first describe the threat model we
consider, then we present the various types of jammers described in the literature.
Finally, we present the objectives and challenges linked to this approach.

7.2.1 Threat model

In this work, we consider an attacker who is able to perform active attacks by
transmitting malicious packets to a given wireless network. The attacker has both
transmission and reception capabilities. The transmitted packets have to be com-
pliant with the packet format of the targeted protocol, but the attacker has no time
constraints (for example, starvation attacks by ignoring the Clear Channel Assess-
ment are allowed as he can transmit at any time without being compliant with the
protocol) and has control over any field composing the transmitted packet (allowing
Link-Layer level spoofing attacks).

7.2.2 Jamming taxonomy

Jamming strategies mainly focus on attacking the availability of a wireless com-
munication by transmitting an arbitrary signal on the channel in use during the
packets transmissions involved in the targeted communication. The main objec-
tive is generally to corrupt the packet content by transmitting simultaneously, and
prevent the legitimate nodes from receiving the targeted packet, or to force the
receiver to drop it at reception (which is common when a CRC is used to check
packet integrity). While the attacker can use a packet transmission to force a col-
lision with the packet and generate some bitflips on the receiver side, he can also
transmit a signal which is not compliant with the targeted protocol (e.g., noise or
arbitrary waveform). Several jammer designs have been discussed in the literature
in the recent years, leading to the following taxonomy (presented by W. Xu et al
in [Xu 2005] and illustrated in figure 7.1):

• Constant jammer: a constant jammer continuously transmits an arbitrary
radio signal on the targeted channel.

• Deceptive jammer: a deceptive jammer continuously transmits packets
on the targeted channel.

• Random jammer: a random jammer transmits an arbitrary radio signal
during a random duration on the targeted channel, then stops transmitting
during a random duration.

158 Chapter 7. Reactive-jamming based firewall

• Reactive jammer: a reactive jammer only transmits an arbitrary radio
signal when a packet transmission is detected on the targeted channel.

Figure 7.1: Jammers taxonomy

While constant jammers and deceptive jammers are efficient to exhaustively
disrupt the traffic and present a simple design, they also imply a significant power
consumption as they continuously transmit the jamming signal even if the legiti-
mate nodes are not transmitting. The random jammer design aims to decrease the
energy consumption by alternating transmission phase during a random period and
sleep phase. The most efficient design is obviously the reactive jammer as it only
transmits the jamming signal when a legitimate packet has been detected, leading
to a minimized energy consumption and a more discrete attack. However, it also
implies to increase the jammer complexity while relying on real time requirements
as the jammer must quickly switch from receive to transmit mode to corrupt the
detected packet before the transmission was terminated. In this work, we focus on
a specific reactive jamming approach, relying on packet transmission.

7.2.3 Objectives and challenges

Our objective is to evaluate the feasibility of performing packet filtering on wireless
peer-to-peer communications by using reactive jamming techniques. Ideally, the
defensive system we aim to build should allow the following operations for multiple
wireless protocols:

7.2. Context and prerequisites 159

• prevent legitimate nodes within the defensive systems from receiving packets
that have not been analyzed by the system (O1),

• process the received packets to perform a security analysis in real time (O2),

• make a decision based on the previous analysis to forward the analyzed packet
to legitimate nodes or block it (O3).

Achieving O1 is not trivial because of the nature of the wireless medium and
the peer-to-peer topology used by the protocols we consider in this work, especially
if we want to build a generic approach that could be used to prevent intrusions on
multiple heterogeneous protocols. While Man-in-the-Middle strategies seem suited
for this operation, they generally rely on exploiting the characteristics of a specific
protocol.

Jamming techniques are interesting because they can prevent the packet from
being received (by corrupting the preamble or the synchronization pattern) or pre-
vent the received packet from being processed by the receiver if an integrity checking
mechanism is implemented (by corrupting any field implied in the CRC computa-
tion). Jamming is particularly interesting because of the genericity of such an
approach, which can be applied to most of wireless protocols. Indeed, our main
goal is to force the initial packet to be dropped, allowing us to analyze it before it
is received and to forward it to the surrounding receivers only if it is considered as
legitimate by our firewall.

However, even if jamming a packet can efficiently prevent its reception or its
processing by the surrounding receivers, it is also a destructive operation: by design,
a packet which has been jammed is partly corrupted, raising a new challenge for
the defensive system. Indeed, O2 implies that the defensive system must be able
to correctly receive the packet to analyze it: as a consequence, a solution must
be found to recover the packet content and in particular the corrupted parts that
have been impacted by the jamming. Our approach relies on a correction algorithm
that allows to recover the initial data from the corrupted packet by exploiting some
knowledge about the jamming process and the targeted protocol.

Similarly, if the defensive system classifies the packet as legitimate, we need to
forward it to the legitimate receiver without jamming it a second time. As a conse-
quence, once the decision has been taken to forward a packet, the jammer must be
temporarily disabled to allow the transmission of this legitimate packet to perform
O3. Such an operation is obviously sensitive from a security perspective, as it should
not allow the transmission of an unknown packet during the jammer inactivity. Our
approach aims to minimize this window by implementing this mechanism at a very
low level.

Such an approach is promising from a defensive perspective because it allows
packet filtering on peer-to-peer wireless protocols without implying any modification
of the monitored devices or requiring changes to the protocol specification. However,
it also raises significant challenges that must be overcome to make the approach
practical:

160 Chapter 7. Reactive-jamming based firewall

• The jamming process must efficiently corrupt the packet to prevent its recep-
tion by surrounding nodes while allowing the correction algorithm to recover
the corrupted part with a high success rate in a minimal amount of time,

• The packet filtering process must minimize the timing overhead to stay com-
pliant with the timing constraints of the filtered protocols and have a minimal
impact on the communication stability and availability,

• The firewall must ensure that the traffic is exhaustively blocked and analyzed.

In the next sections, we present the design of our approach, its implementation
and the preliminary experiments we carried out to evaluate its feasibility.

7.3 Approach overview

In this section, we present our approach and its implementation. First, we introduce
a high level overview of the architecture. Then, we describe the key components
that are combined in the global architecture, from the reactive jamming to the
correction algorithm.

7.3.1 Global architecture

Our approach relies on the combination of two transceivers (so-called nodes in the
next sections). The first node implements the jamming mechanism while the second
one is dedicated to the reception of the corrupted frames, the correction and the
decision mechanism.

Figure 7.2 describes the two states machines representing the behaviour of each
node and the interactions between them:

• The jammer node implements a reactive jamming mechanism, which is
synchronized on a specific pattern indicating the start of a packet transmis-
sion (e.g., a preamble). When this pattern is received, the node performs a
transition from reception to transmission mode to transmit a jamming signal
during a short amount of time, aiming at corrupting the transmitted packet
to prevent its reception by surrounding receivers.

• The correction node implements the analysis and decision process, allowing
to classify a packet as malicious or legitimate. First, it receives the frame
which has been corrupted by the jammer, and relies on a correction algorithm
aiming at recovering the initial data (before its corruption by the jammer
node). Once the packet has been corrected, it is analyzed according to the
firewall rules to classify it as a legitimate packet or a malicious one. If the
packet is considered as legitimate, the correction node disables the jammer
node temporarily and retransmits the packet to the surrounding receivers.

7.3. Approach overview 161

Figure 7.2: Global architecture overview

7.3.2 Reactive jamming

7.3.2.1 Requirements and design

While several jamming techniques could be used to efficiently prevent the reception
of a packet by the surrounding receivers, our approach requires the ability to recover
the initial data from the corrupted one in a minimum amount of time. As a result,
the jamming node must meet the following requirements:

• The jamming signal must be destructive enough to efficiently corrupt every
transmitted frame,

• The jamming signal must be short enough to preserve most of the received
frame,

162 Chapter 7. Reactive-jamming based firewall

• The jamming signal must target a predictable portion of the packet to allow
a fast correction by the correction node.

Figure 7.3: Reactive jamming operations

As a result, we need to find the right balance between these two opposite re-
quirements, and ensure that we are able to target a specific portion of the frame.
These requirements justify the use of a reactive jammer, which is less destructive
than most of other jammer types and can achieve high precision for matching a
specific portion of the packet because of the synchronization mechanism.

The reactive jammer we designed implements the following operations in a loop,
as illustrated by figure 7.3:

• it waits for the synchronization pattern on the targeted channel,

• it switches from reception to transmission mode, when the synchronization
pattern is detected,

• it transmits an arbitrary packet during a specific amount of time,

• it switches to reception mode.

7.3.2.2 Evaluation

We empirically evaluated our reactive jammer implementation to check that the
previously mentioned requirements could be achieved. To perform this experiment,
we programmed three nRF52840 chips (respectively named CJAM , CRX and CT X

to match the following experimental setup, illustrated in figure 7.4:

• CJAM implements the previously mentioned reactive jamming algorithm. The
synchronization pattern is set to 0x11 0x22 0x33 0x44. The considered
chip is able to configure the interval needed to switch from RX mode to TX
mode (fast or normal) and the data rate (1Mbit/s using GFSK modulation
or 2Mbit/s using GFSK modulation). We tested the following configurations:

7.3. Approach overview 163

a) fast mode, 1Mbit/s, b) normal mode, 1Mbit/s, c) fast mode, 2Mbit/s and
d) normal mode, 2Mbit/s.

• CT X transmits 1000 frames (using GFSK modulation at 1Mbit/s or 2Mbit/s)
using the following (arbitrary) format: 0x11 0x22 0x33 0x44 0x01 0x02
0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0a 0x0b 0x0c 0x0d 0x0e
0x0f 0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19 0x1a
0x1b 0x1c 0x1d 0x1e 0x1f 0x20 0x21 0x22 0x23 0x24 0x25 0x26
0x27 0x28 0x29. A frame is transmitted every 0.5s at 2430MHz.

• CRX receives the frames transmitted by CT X and corrupted by CJAM (using
GFSK modulation at 1Mbit/s or 2Mbit/s) at 2430MHz. For each received
frame, every bit composing the frame is compared to the original version: if
a bitflip occurs at position n, a counter linked to bit n is incremented by one.

Figure 7.4: Reactive Jamming experimental setup

We obtained the following results, illustrated in figure 7.5.
The results show that our jammer implementation seems promising to meet the

previously mentioned requirements.
First, we can note that our jammer managed to corrupt a very large number of

frames in all modes: only 8 frames out of 1000 have been received without corruption
for 1Mbit/s in fast mode and 1 uncorrupted frame out of 1000 for 1Mbit/s in normal
mode, while every frame has been corrupted at 2Mbit/s in both evaluated modes.
These results seem promising to ensure that no frame can be transmitted without
being corrupted when the reactive jammer is enabled, which is a key requirement
for our defensive system.

Second, we can clearly observe that for each tested mode, the majority of the
corruption occurs in a specific zone of the frame, especially for the 2Mbit/s data rate
where each corrupted bit is included between the 96th bit and the 113th bit (for the
fast mode) and between the 273th and the 347th bit (for the normal node). This
property is particularly interesting for us, as it shows that using a reactive jamming
strategy allows to achieve high timing precision and to corrupt a predictable zone
of the packet.

164 Chapter 7. Reactive-jamming based firewall

Figure 7.5: Reactive Jamming experiment results

Finally, we can observe that the jamming duration directly depends on the mode
used. The fast mode allows to quickly switch from reception mode to transmission
mode and from the transmission mode to reception mode, allowing to significantly
reduce the duration of radio transmission to the minimum time needed to transmit
the packet. At 2Mbit/s, the duration of jamming is 8.5us in fast mode and 37us in
normal mode, leading to the corruption of 17 bits and 37 bits respectively.

We can conclude that the requirements we previously mentioned can be achieved
using this strategy: it shows that it is possible to both prevent surrounding receivers
from receiving a valid frame while limiting the corrupted zone to a small amount
of time, where its position in the frame can be predicted to allow for potential
correction. Since our experiment showed better results for 2Mbit/s, we focused on
wireless protocols which are compatible with this data rate to build our prototype.

7.3. Approach overview 165

Figure 7.6: Zigbee packet corrupted by the reactive jammer

7.3.3 Correction algorithm

In the previous section, we highlighted that our reactive jamming approach could be
used to target a specific zone of the transmitted frame, and could efficiently corrupt
this zone without impacting the rest of the frame, especially when the data rate
is set to 2Mbit/s. Thanks to this property, we were able to build two correction
algorithms, implemented on a nRF52840 chip acting as receiver and allowing to
recover the initial data from the corrupted one. The first algorithm is dedicated to
Zigbee protocol while the second one allows the correction of Enhanced ShockBurst
frames.

7.3.3.1 Zigbee

Our Zigbee receiver implementation relies on WazaBee attack, presented in chap-
ter 3. Indeed, we showed that 802.15.4 can be received using 2Mbit/s MSK, which
can be implemented on nRF52840 chips.

Both the receiver and the jammer have been synchronized on the chip sequence
equivalent to 0 symbol. It allows to synchronize them on the first 4 bits composing
the preamble of a 802.15.4 frame. Then, the jammer is configured to use normal
mode: this configuration allows to corrupt a specific zone of the packet, located
between the start of frame delimiter and the length field, as illustrated by figure 7.6.

This configuration corrupts the Start of Frame Delimiter, a 1-byte long field
using a constant value (0xA7), and the 1-byte long length field. Indeed, even if the
switching time is higher using normal mode than fast mode, it matches these two
fields and corrupt only a small portion of the frame because of the chips sequences
used by 802.15.4-based protocols. This situation is ideal because these fields are
both critical to correctly analyze the frame, forcing the surrounding receivers to
drop it if they are corrupted, and also trivial to correct because they can be inferred
easily from the uncorrupted part of the packet.

The correction algorithm first corrects the Start of Frame Delimiter: it compares

166 Chapter 7. Reactive-jamming based firewall

the field value received with 0xA7. If the comparison fails, the correction algorithm
considers that the field has been corrupted and sets it to 0xA7.

Then, it reconstructs the length field, by applying an iterative process checking
the integrity of the frame. Initially, the field value is set to zero, then a FCS integrity
check is performed according to this assumption. If the check fails, the field value
is incremented by one and the checking is performed again until a matching FCS
value is found.

To evaluate our correction algorithm, we transmitted 255 Zigbee frames embed-
ding a counter value and compared the corrected frames with the transmitted ones.
Our results show that only two frames could not be corrected, leading to a success
rate of 99.21%.

7.3.3.2 Enhanced ShockBurst

Similarly, we built another correction algorithm for Enhanced ShockBurst protocol,
and mainly focused our work on Logitech Unifying, the protocol used by Logitech
for their wireless keyboards and mices.

This protocol uses a Gaussian Frequency Shift Keying modulation at 2Mbit/s,
which is supported by our nRF52840 chip. A typical Enhanced ShockBurst packet
is composed of a 1-byte long preamble, a 5-bytes long address, a 9-bits long header,
a payload with a variable length and a 2-bytes long CRC. By configuring the jammer
to use the first three bytes of the targeted address as the synchronization pattern,
we observed that the jamming signal corrupts the two least significant bits of the
11th byte, the 12th byte and the three most significant bits of the 13th byte.

Multiple observations can be made in this situation. First, if the frame has
a null payload length, the time needed to switch from reception to transmission
mode is too long to corrupt the frame. While it may be theoretically problematic,
this situation is uncommon for regular frames and only the acknowledgment frames
use such small payloads: as a result, our approach is still relevant to prevent the
reception of packets containing significant data. Second, because of the varying
length of the packets, the jamming signal can corrupt the CRC, the payload or
both. Finally, the jamming signal corrupts up to 13 bits of the received frame: as
a consequence, it is not trivial to correct the frame in a short amount of time.

Our correction algorithm aims to minimize the time needed to perform the
correction. As a consequence, we first use the length embedded in the frame to
check the position of the corruption zone in the packet. If it only occurs in the CRC,
correcting the frame is trivial because we only need to calculate a new CRC from
the unaltered data. If it occurs in the CRC and in the payload or in the payload
only, we perform a bruteforce algorithm by iterating over possible values for the
corrupted bits until we found a valid CRC check. As this operation is obviously
time consuming and introduces a significant overhead, we tried to minimize its use
by saving the corrected frames in an hashmap indexed by the CRC value. Indeed,
the Logitech Unifying protocol transmits some frames regularly, containing the
same data and the same CRC. As a result, this approach allows us to correct the

7.4. Experiments 167

frame without performing the costly bruteforce computation if it has previously
been observed and corrected by exploiting the payloads saved in the hashmap.

7.3.4 Decision and transmission

Thanks to the reactive jammer and the receiver previously described, we can prevent
surrounding receivers from receiving frames from Zigbee and Enhanced ShockBurst
transmitters. We are also able to correct the received frames to recover the initial
data from the corrupted one. However, we need to implement the decision mecha-
nism checking whether the frame is malicious or not and whether it must be blocked
or transmitted to legitimate receivers.

In this work, we mainly focus on evaluating the feasibility of a filtering mecha-
nism targeting packets transmitted over the air. As a consequence, we have only im-
plemented a basic proof of concept decision algorithm relying on pattern matching.
For every frame, the decision to classify it as malicious or legitimate is performed
by checking a set of basic filtering rules. Typically, a rule evaluates if the packet
contains a specific value, by analyzing the bytes at a specific position or analyzing
the full packet. Obviously, this decision algorithm could be significantly improved
by implementing a more expressive set of rules, allowing to process a stream of
packets instead of analyzing them one by one (making the resulting firewall state-
ful). However, our implementation allows us to focus on the filtering mechanism
itself and allows to perform basic filtering operations efficiently.

If the decision algorithm classifies the frame as legitimate, it must be trans-
mitted again without being corrupted by the jammer. However, such operation is
sensitive from a security perspective as it may open a window to an attacker to
transmit unfiltered packets: as a consequence, the window must be short enough to
prevent this kind of attack. We implemented a Master/Slave architecture, allowing
to minimize the duration of this transmission window. The correction node acts as
master, and can disable the reactive jammer (acting as slave) temporarily by tog-
gling the state of a GPIO pin. When a frame is considered as legitimate, the master
disables the jammer by setting the pin to zero, transmits the legitimate frame and
sets the pin to one to enable the jammer again.

We implemented this hardware architecture by combining six nRF52840 dongles
and connecting the three pairs of chips together (one chip acting as a Master while
the other acts as a Slave), as illustrated in figure 7.7. We implemented three firewalls
in parallel to enable packet filtering on three channels simultaneously, as we plan to
work on a future implementation targeting the Bluetooth Low Energy advertising
channels.

7.4 Experiments

We implemented multiple experiments to evaluate the relevance of this packet filter-
ing approach. We performed two experiments for each evaluated protocol, ZigBee
and Enhanced ShockBurst, that are described in the following subsections.

168 Chapter 7. Reactive-jamming based firewall

Figure 7.7: Hardware architecture

7.4.1 Experiment 1: Zigbee, basic filtering

This first experiment has been carried out on channel 10 (2410 MHz) to evaluate
our approach on Zigbee. We configured an XBee node as transmitter, dedicated
to the transmission of 802.15.4 beacons. Every beacon includes a counter value,
incrementing on each frame. We also installed two meters away a RZUSBStick
receiving the packets using the zigbee_sniff module included in Mirage framework
(this contribution is presented in chapter 5).

The firewall was also installed two meters away from the two other nodes, and
configured to consider as legitimate only the frame containing a zero in the least
significant byte of the counter. We transmitted 500 packets and checked that the
only ones being received by the RZUSBStick were the allowed ones. As expected,
we observed that every received frame with a valid FCS matches the filtering rules.

7.4.2 Experiment 2: Zigbee, attack filtering

Our second experiment was performed using a similar setup, but two XBee nodes
were configured to communicate together while the RZUSBStick was configured
as a transmitter to mimic an attacker. The main goal of this experiment was to
check if our approach can prevent a Zigbee attack. We focused on a remote AT
injection attack [Vaccari 2017]: indeed, XBee nodes are vulnerable to a configuration
injection attack, where an attacker can spoof the address of another node to inject
a malicious configuration using remote AT commands, leading to a denial of service

7.4. Experiments 169

or a Man-in-the-Middle in the worst case.
We configured our firewall to allow every frame except if it includes the "AT"

string (0x4154 in hexadecimal), which is an indicator of a remote AT configuration
packet. We performed ten attacks and managed to block them without altering the
legitimate traffic between XBee nodes.

7.4.3 Experiment 3: Enhanced ShockBurst, basic filtering

Similarly to experiment 1, we evaluated Enhanced ShockBurst packet filtering by
setting up a basic Enhanced ShockBurst network. The Enhanced ShockBurst net-
work was simulated by two nRF24 devices embedding the RFStorm nRF Research
firmware [Newlin 2016b], allowing to receive and transmit Enhanced ShockBurst
packet. The first transceiver acted as a transmitter by sending Enhanced Shock-
Burst frames including a counter value, while the second one acted as a passive
receiver.

Our firewall was installed two meters away from the Enhanced ShockBurst nodes
and configured using the same rules we used in experiment 1. We also managed to
block every unauthorized frames, every frame being received by the receiver with a
valid CRC matching the filtering rules.

7.4.4 Experiment 4: Enhanced ShockBurst, attack filtering

This last experiment was dedicated to the filtering of a known Logitech Unifying at-
tack, the unencrypted keystrokes injection presented in MouseJack [Newlin 2016a].
We installed a wireless keyboard from Logitech and the paired dongle as our le-
gitimate Enhanced ShockBurst network, and performed the attack using Mirage
framework 5 and a nRF24 chip embedding RFStorm firmware.

Some modifications were needed to implement this attack filtering: indeed, Log-
itech Unifying implements a lazy channel hopping algorithm. When a packet trans-
mitted by the keyboard is not acknowledged by the dongle in a short period after
the transmission, it considers the channel as noisy and enables the channel hop-
ping algorithm to find another channel. Similarly, the dongle needs to regularly
receive Keep Alive packets embedding a timeout value: if no packet has been re-
ceived when the timer reaches the last timeout value received, the dongle enables
channel hopping mode. To prevent legitimate devices from enabling this channel
hopping algorithm, we modified our firewall implementation to acknowledge every
frame transmitted by the keyboard before correcting the received frames: as the
acknowledgment frames use zero length payload, this operation does not require to
disable the jammer. Similarly, every Keep Alive packet transmitted by the key-
board is modified to increase the timeout value, compensating the overhead linked
to the correction algorithm.

The firewall was configured to detect and block every unencrypted keystroke-
related packet by checking that the packet type is equal to 0xC1. The legitimate
keystrokes transmitted by the keyboard are not affected by the rule because they

170 Chapter 7. Reactive-jamming based firewall

are encrypted and use a different packet type to transmit the encrypted payload.
We performed ten injection attacks, and managed to block them systematically
without affecting the traffic linked to legitimate keyboard behaviour. However, we
noted a significant latency for each legitimate keypress, which is probably linked to
the overhead induced by our correction algorithm. While the experiment can be
considered as successful, this algorithm must be significantly optimized to reduce
this latency and makes it usable in a realistic context.

7.4.5 Experimental conclusion

While the results we observed during these experiments seem promising, we consider
that further work is needed to consider the approach as realistic. First, we noted
that it introduces some latency, especially in Enhanced ShockBurst experiments,
suggesting that the correction algorithm must be significantly improved to reduce
the time cost. Similarly, we only performed preliminary experiments at a small
scale, and the approach may be evaluated in other environments composed of a high
number of nodes interacting at a higher speed. We also consider that a sensitivity
analysis is needed to evaluate the impact of several parameters, such as the firewall
position or the TX power.

7.5 Discussion and Limitations

In this section, we discuss the limitations and perspectives of our firewall approach.
We first analyze the genericity provided by the approach and underline some chal-
lenges that need to be solved to extend it to other protocols. We also discuss the
impact of its deployment on the performance of wireless networks and the challenges
that must be solved to allow its deployment in critical environments.

7.5.1 Genericity and extension to other protocols

By implementing and evaluating a proof of concept of our approach to perform
packet filtering on Zigbee and Enhanced ShockBurst networks, we demonstrated
the feasibility of such an approach. The main advantage of this approach is that it
doesn’t require any modification of the concerned devices or networks, and packet
filtering can be performed transparently by deploying the firewall in the targeted
environment.

A few clarifications must be made to avoid misinterpretation of this work. Ob-
viously, an attacker passively monitoring the environment could apply a similar
strategy to correct the frames himself: as a result, this approach is not designed
to protect the confidentiality of wireless traffic. Let us note that the firewall is
only intended to prevent the reception of unfiltered and potentially malicious traf-
fic by legitimate surrounding receivers, while being able to recover the initial data
from the corrupted one: only active attacks can be efficiently mitigated by such an
approach.

7.5. Discussion and Limitations 171

We can also note that the correction node requires the presence of an integrity
checking mechanism (e.g., CRC or FCS) to check the validity of the corrected
data. While the presence of such mechanism is common in wireless communication
protocols, we can note that some basic protocols (e.g., OOK-based communications
in the 433MHz frequency band) do not provide any solution to check the packet
integrity. As a result, such an approach could not be deployed to filter packets
transmitted using these simple technologies.

We can also highlight that the approach can be considered as generic as it relies
on a low level approach which could theoretically be applied to any wireless protocol
providing an integrity checking mechanism. However, let us note that a minimal
amount of knowledge about the targeted protocol is needed, especially the over
the air packet format and the CRC computation algorithm used. Similarly, some
specific modulation schemes (e.g., OFDM) that transmit multiple symbols at the
same time could significantly complicate the deployment of this approach in a way
allowing both the jamming and an effective correction process.

Another significant issue is linked to potential timing requirements linked to the
targeted protocol. Indeed, if the monitored protocol implies the transmission of
packets at specific times, the fact that the approach introduces a latency by design
could lead to timing issues. As an example, the Bluetooth Low Energy protocol
relies on strict timing requirements: if a connection request is received, the reception
instant is used as a timing reference for the resulting connection. If the connection
request is filtered by the firewall but considered as legitimate and retransmitted, it
could introduce a desynchronization between the two concerned nodes because of
the latency.

Finally, another issue could be related to the protocol design itself. While some
attacks can be easily characterized using Link Layer level features that can be col-
lected by the firewall, some basic protocols that do not provide any security features
could be targeted by attacks that cannot be distinguished from legitimate traffic.
For example, a keystrokes injection attack targeting a Mosart network cannot be
easily separated from a legitimate keystroke packet transmitted by the keyboard.
The approach could potentially use complementary information inferred from the
physical layer level to identify malicious traffic (e.g., exploiting RF fingerprinting
techniques), but the impact of jamming upon the physical signal must be evaluated
carefully to make such a solution practical.

7.5.2 Performance issues

One of the significant issues introduced by the approach is the latency induced
by the correction, decision and retransmission algorithm. We observed such a be-
haviour in the legitimate keystrokes retransmission in experiment 4 7.4.4, where
the latency was induced by the costly bruteforce approach. As a result, minimizing
the complexity and time cost of the correction and decision algorithms is a key
requirement to make the approach practical.

Several solutions could be used to decrease the cost of the correction algorithm.

172 Chapter 7. Reactive-jamming based firewall

First, the zone corrupted by the reactive jammer could be minimized to reduce
the number of bits to correct, leading to a faster computation. Our experiments
were limited by the nRF52840 hardware, which is a half duplex architecture that
systematically introduces a specific switching time from reception to transmission
mode: implementing the reactive jammer in a dedicated hardware (e.g., FPGA,
SDR) could allow the reduction of the jamming duration. A full duplex archi-
tecture would be probably more effective to minimize the duration between the
synchronization pattern detection and the jamming signal transmission. Similarly,
implementing the reactive jammer on a dedicated hardware could also allow to
target more precisely a predictable zone of the packet, which could be corrected
with a low complexity algorithm (e.g., jamming a length field or a static field).
Finally, acquiring more knowledge about the protocol could facilitate the correc-
tion by providing information about specific fields formats, allowing to exploit this
knowledge to check in priority some values: for example, a counter value could be
easily guessed from the previous received packets without exhaustively bruteforcing
the field.

Another significant timing issue is linked to the duration between the synchro-
nization pattern detection and the jamming signal transmission, which is deeply
linked to the transceiver architecture. We observed in experiment 4 7.4.4 that this
interval can be greater than the packet transmission duration for short frames, re-
sulting in a jamming signal transmitted lately after the end of transmission of the
packet. While this situation was not critical in this case, it could have a greater
impact if the protocol intensively uses short packets. Reducing this interval proba-
bly requires the use of a dedicated hardware with a very low level control over the
transceiver, increasing the cost of the solution.

7.5.3 Critical environments

We already noted that the approach may induce some latency, but it also artificially
generates a central point that can be considered as a bottleneck for the network
or a single point of failure. Moreover, the impact of this firewall deployment in
a complex network has not been exhaustively explored, and the potential attack
surface remains unclear. As a result, we consider at the time of writing that the
approach is not suited for critical environments, especially those that require high
availability.

Further experiments are needed to validate the practicality of the approach in
a realistic environment. We plan to explore the impact of multiple parameters by
performing a sensitivity analysis. For example, the firewall position may have a
significant impact on the jamming success: as the security of the approach mainly
relies on this jamming mechanism, we must provide some guarantees of its efficiency
under various context. Similarly, evaluating the impact of a high number of nodes
and communications on the system is mandatory to ensure the scalability of the
approach.

Other parameters could also be interesting to evaluate. We explored the deploy-

7.6. Conclusion 173

ment of a single firewall in the environment, but the cooperation of several packet
filtering probes deployed at different locations could also be a relevant direction to
improve the coverage and minimize the number. It implies to analyze the impact of
the coexistence of multiple jammers in the same environment, and check the impact
upon the correction algorithm performance. Similarly, such an approach could also
be deployed in a mobile context, where the firewall aims to protect a single user
embedding the defensive system.

7.6 Conclusion

In this work, we explored the feasibility of exploiting offensive techniques, especially
reactive jamming, to perform over the air packet filtering in wireless communication
networks. In the context of Internet of Things, where most of protocols allow peer
to peer communications, implementing such a system is not trivial while remaining
a key component of an intrusion prevention strategy or firewalling strategy.

We have demonstrated the feasibility of preventing surrounding receivers from
receiving unfiltered and potentially malicious traffic, while being able to recover
the initial data from the corrupted one to analyze it and classify it as malicious or
legitimate. We implemented this solution and were able to block in real time some
attacks targeting Zigbee and Enhanced ShockBurst protocol. While we consider
that the approach must be significantly improved and evaluated in depth to become
practical in a realistic environment, we have chosen to include these preliminary
results as they seem promising and could motivate the exploration of related topics.
Moreover, we also think that the techniques we have explored could be of interest
in other contexts, both from a defensive and offensive perspective.

Conclusion and future work

Conclusion

In this PhD thesis, we explored several dimensions of the security of peer-to-peer
wireless communication protocols in the context of the Internet of Things, both
from an offensive and defensive perspective. The main guideline that motivated
this research work was to understand in depth the peculiarities of this new context,
how these new wireless protocols significantly impact security of modern devices
and lead us to rethink both our defensive approaches and the threats we need to
anticipate. In our opinion, the massive expansion of connected devices must be
considered as a fundamental game changer in the computer science, especially from
a security perspective, and we hope that this research work could contribute to a
better understanding of this new situation, by highlighting the new types of threats
taking advantage of wireless communications used in the Internet of Things and
potential suitable defensive solutions to detect and prevent these threats.

During this research work, we tried to always keep in mind several ideas, that
deeply impacted our analysis of the context and our approach. First, we take
very seriously the reproducibility of our scientific work, which is a key scientific
requirement from our perspective. As a result, we tried to be as comprehensive
and transparent as possible when describing our methodology, our experimental
setups or the tools we used. We also published and documented the source code of
the tools we developed during this PhD thesis as open-source software, in an effort
to facilitate both the reproducibility of our own work and allow other researchers
to explore new directions thanks to the reuse, modification and distribution of
these tools. We have also actively tried to explore this research theme in a cross-
disciplinary and interdisciplinarity perspective. This led us to analyze multiple
works from other fields, from signal processing to electronics, that brought us new
insights and perspectives during our own research work. We also worked on this
research theme both from an offensive and a defensive perspective and exploited
the dialectical relationship between these two complementary points of view. Our
offensive perspective constantly feeds and challenges our defensive analysis, and
both aspects have enriched the other in stimulating ways. Finally, we have tried
to give a solid experimental dimension to this work, by privileging experiments in
realistic environments and using commercial off-the-shelf devices, while minimizing
the use of simulations, with the aim of staying as close as possible to the complexity
of real world scenarios.

Our offensive contributions have been mainly focused on the new threats raised
by the specific context of Internet of Things, especially the ones linked to the way
the lowest layers of wireless protocols are designed. In chapter 3, we analyzed the
similarities between the modulation schemes that are commonly used by wireless
protocols. We demonstrated that an attacker could take advantage of these similar-

176 Conclusion and future work

ities to divert a transceiver dedicated to a given protocol to perform cross protocols
attacks targeting another protocol which is not natively supported, or perform
covert channel attacks exploiting this situation. The attack strategy we discov-
ered, named WazaBee, showed the practical feasibility of diverting a Bluetooth
Low Energy transceiver to perform attacks targeting Zigbee. We also illustrated
the impact of such attacks by implementing and evaluating this strategy on a recent
and popular smartphone, while extending it to proprietary protocols used by wire-
less keyboards and mice. It allowed us to perform several critical attack scenarios,
such as sensor spoofing or wireless keylogger. With the co-existence of heteroge-
neous wireless protocols in the same environments and the mobility provided by
multiple connected objects, we consider that these threats are realistic and should
be seriously considered in the attack surface of wireless devices.

Our second offensive contribution, presented in chapter 4, focused on the lowest
layers of the Bluetooth Low Energy protocol, which is massively deployed in most
smartphones, laptops and connected objects. We highlighted a serious structural
weakness in the connected mode provided by the protocol, allowing to inject mali-
cious traffic into an established connection. The vulnerability we discovered being
the first one to provide injection capabilities to the attacker, it allows for a sig-
nificant number of critical scenarios leveraging these capabilities, such as hijacking
any node involved in the connection or establishing a Man-in-the-Middle attack.
We performed a sensitivity analysis to evaluate the impact of three key parameters
on the success of the attack, and demonstrated that the injection could be easily
exploited in a realistic context. We also implemented a custom firmware to execute
this attack from a cheap nRF52840 chip, and made its source code available as
open-source software to facilitate future offensive research works aiming at analyz-
ing the low layers of Bluetooth Low Energy stacks, which are particularly difficult
to analyze and secure.

Finally, our third offensive contribution (introduced in chapter 5) was motivated
by the current situation of wireless security tooling, which relies on a large amount
of hardware devices and software codes providing various capabilities and expos-
ing heterogeneous APIs. We developed a generic and modular framework named
Mirage, to harmonize both the use of heterogeneous hardware and facilitate the
development of offensive modules. It also allows to easily combine multiple attack
modules to build complex attack workflows. It provides a generic architecture, al-
lowing the support of multiple protocols, from Bluetooth Low Energy to Zigbee,
and the development of up to 20 offensive modules. The development of this tool
allowed us to improve significantly the implementation of some existing offensive
strategies while being a valuable resource to analyze wireless protocols and evaluate
our other contributions. It has also been used by other researchers to analyze the se-
curity of Bluetooth Low Energy [Claverie 2021,von Tschirschnitz 2021], facilitating
research related to wireless security.

While highlighting these new types of threats taking advantage of the lower
layers of wireless communication protocols, we also worked on the detection and
prevention of wireless attacks. Our defensive contributions have been dedicated

177

to exploring innovative designs for Intrusion Detection and Prevention Systems
adapted to this new context. Our first defensive contribution was to explore the
feasibility of implementing an Intrusion Detection System directly embedded in
Bluetooth Low Energy controllers, allowing to collect and analyze multiple low level
indicators to detect wireless attacks. We present this contribution in chapter 6. We
designed an embedded detection software that hooks into multiple functions of the
controller’s firmware to detect the occurrence of specific events and instrument the
controller to detect intrusion attempts. This embedded approach allowed us to
avoid the significant issues associated with the monitoring of Bluetooth Low En-
ergy communications with an external probe, which is a non trivial task because
of the use of a channel hopping algorithm in connected mode. In this research,
we designed a lightweight and modular detection framework named Oasis, allowing
to facilitate the development of embedded detection modules in popular Bluetooth
Low Energy controllers, while automating some difficult tasks such as the reverse
engineering of firmware, the compilation of embedded detection software or the
patching process. Using this approach, we successfully implemented our detection
software on heterogeneous Bluetooth Low Energy stacks embedded in various de-
vices from smartphones to connected objects to detect up to six critical low level
attacks, such as BTLEJack [Cauquil 2018] or KNOB [Antonioli 2019]. We evalu-
ated the approach in realistic conditions, achieving very good recall and precision
values.

Our second defensive contribution, presented in chapter 7, aims to explore the
feasibility of packets filtering in peer-to-peer wireless communication protocols by
leveraging offensive techniques. We developed an experimental approach based on
reactive jamming, allowing to prevent surrounding receivers from receiving and pro-
cessing an unfiltered packet by corrupting it using a jamming signal, while allowing
our defensive system to receive the corrupted frame, correct it to recover the initial
data and analyze it. Once analyzed, the defensive system retransmits the packet to
surrounding receivers if it is classified as legitimate, or raises an alert if the packet
is considered as malicious. We successfully implemented a proof of concept of such
packet filtering system for ZigBee and Enhanced ShockBurst protocols, and were
able to block wireless attacks such as remote configuration injections or keystroke
injections on the fly while allowing legitimate communications. While additional
experiments are needed to accurately assess the impact of such a filtering scheme
on the stability and availability of wireless communications, these preliminary re-
sults seem promising and contribute to extending defensive capabilities to prevent
intrusion attempts targeting wireless networks.

Future work

We believe that this research highlights new challenges for wireless security and
opens new perspectives for this research field. We were able to demonstrate the
practical feasibility of cross-protocol pivoting attacks for several protocols, by di-

178 Conclusion and future work

verting Bluetooth Low Energy transceivers from off-the-shelf devices. While this
obviously highlights a new attack surface that could be considered critical in the
context of mobile devices deployment and co-existence of heterogeneous wireless
protocols, the impact of this type of attacks remains unclear for now. We consider
that formalizing the similarities between the physical layers used by wireless pro-
tocols is a key requirement to anticipate this new type of threats, and we plan to
generalize our analysis to other protocols by listing and evaluating protocol charac-
teristics that could be leveraged to attack another technology which is not natively
supported by a specific transceiver. Modeling the factors that lead to similar at-
tacks and the proximity between two physical layers can efficiently anticipate the
risk involved by these similarities and discover new cross-protocol attacks. We also
plan to investigate the use of some physical properties, such as harmonics, to in-
teract with protocols using a different frequency band. Moreover, let us note that
even if some protocols cannot be easily imitated from a specific transceiver, they
could be vulnerable to other offensive cross-protocol strategies such as jamming:
such scenarios must also be investigated to comprehensively analyze such threats.
Finally, some transceivers may implement debugging or calibration features that
could potentially be diverted to manipulate the transmitted signal at a low level:
investigating this type of mechanisms also seems relevant to develop a better un-
derstanding of the threat.

Similarly, new perspectives emerge from InjectaBLE attack, which allows to
inject malicious traffic into an established Bluetooth Low Energy connection. We
have demonstrated several critical scenarios that take advantage of this vulnerabil-
ity to acquire new offensive capabilities, such as Slave Hijacking for example. The
existence of such scenarios could lead to the discovery of new risks that are not
anticipated for now. Since Bluetooth Low Energy is a complex protocol, it provides
a large number of complex features that could potentially be exploited or diverted.
For example, the HID over GATT specification defines the behaviour of applica-
tion layers when communicating with input devices such as a mouse or a keyboard,
which are obviously dangerous: an attacker could use the privileged position ac-
quired by hijacking a trusted connected object to force the use of a new GATT
profile describing an HID device, allowing critical scenarios such as keystrokes in-
jection. Investigating the feasibility of such complex attack scenarios combining
several structural vulnerabilities and affecting various layers is especially relevant
in our perspective to improve the security of Bluetooth Low Energy protocol. We
also observed that multiple other wireless protocols rely on similar features, allow-
ing the transmission of frames only at specific times: a better understanding of the
internals of these protocols could potentially lead to similar race condition based in-
jection techniques. As future work, we plan to formalize the low level reception and
transmission mechanisms used by wireless protocols and their timing requirements
in order to automate the analysis and discovery of such vulnerabilities.

The development of Mirage was a key aspect of this PhD thesis, as it provided
us with a simple and flexible way to implement wireless attacks and build offensive
scenarios. This capability was valuable when exploring defensive solutions, as it

179

allowed us to easily evaluate our approaches in realistic conditions. Obviously,
we plan to extend the framework by including new protocols and complementary
modules, while improving the support of various hardware components. We also
wish to include new modules facilitating the analysis of physical layers and the
reverse engineering of proprietary protocols: the experimental Software Defined
Radio support we already implemented could be improved to perform real time
low level analysis, that could be relevant both from an offensive and defensive
perspective. We consider that this evolution could enable the development of hybrid
monitoring approaches leveraging indicators extracted from various layers, that
could be relevant in a defensive perspective to detect spoofing attacks.

On the defensive side, we have shown the relevance of deploying an embedded
approach on the nodes themselves to detect intrusion attempts, and explored asso-
ciated tools to facilitate the implementation of such strategy. We plan to extend
this strategy to other wireless protocols, as we believe that this Intrusion Detection
System design is particularly relevant in the context of IoT. We also want to ex-
plore an extension of such design, by establishing a secure wireless communication
between these local detection nodes to allow the implementation of a decentralized
and distributed Intrusion Detection System, that could take advantage of the co-
operation between multiple local detection nodes to detect more complex attacks
or perform distributed computations, allowing to implement detection algorithms
requiring more resources. Let us note that the deployment of this approach to mul-
tiple protocols could potentially take advantage of cross-technology communication
techniques to allow the establishment of a secure wireless communication channel
between heterogeneous protocols. Similarly, embedding the detection software at
the lowest level that can be accessed by software in the node itself may allow the
implementation of prevention techniques. The embedded software could interact
with the stack to trigger specific behaviours to prevent the intrusion attempt after
an alert was raised by the detection algorithm: we plan to explore this new direction
in a future work.

Finally, the research we have initiated with our reactive-jamming based firewall
has provided promising preliminary results, that motivate complementary work in
this direction. First, we consider that a substantial optimization work is needed to
make the approach practical, allowing to minimize the timing overhead generated
by the correction and decision algorithm. We also plan to explore the use of a
dedicated full duplex hardware embedding a custom algorithm (e.g., SDR with an
implementation at FPGA level) to avoid the problems associated with the current
hardware architecture, that relies on simple transceivers. Moreover, the use of
reactive jamming techniques could also allow to filter some specific packets without
requiring the use of a correction algorithm if the malicious packet signature can
be anticipated: exploring these complementary strategies could significantly reduce
the performance issues and allow an extension to protocols with strong timing
requirements. Finally, combining this packet filtering approach with a physical layer
analysis (e.g., signal-based fingerprinting techniques) could allow to block malicious
traffic transmitted by a spoofer even if it cannot be identified as malicious at a Link

180 Conclusion and future work

Layer level: obviously, such a hybrid approach requires accurate assessment of the
impact of jamming on the transmitted signal and the design of lightweight and
efficient physical layer analysis algorithms.

Bibliography
[Adafruit 2014] Adafruit. Bluefruit LE Sniffer tutorial by AdaFruit, 2014.

Available at https://learn.adafruit.com/introducing-the-adafruit-
bluefruit-le-sniffer. (Cited in page 30.)

[Albertini 2013] Ange Albertini. Polyglottes binaires et implications. In Symposium
sur la Sécurité des Technologies de l’Information et des Communications
(SSTIC 2013), 2013. (Cited in page 42.)

[ANT 2016] ANT Security Resources GitHub repository, 2016. Available
at https://github.com/sghctoma/antfs-poc-defcon24/. (Cited in
page 31.)

[Antonakakis 2017] Manos Antonakakis, Tim April, Michael Bailey, Matt Bern-
hard, Elie Bursztein, Jaime Cochran, Zakir Durumeric, J. Alex Halder-
man, Luca Invernizzi, Michalis Kallitsis, Deepak Kumar, Chaz Lever, Zane
Ma, Joshua Mason, Damian Menscher, Chad Seaman, Nick Sullivan, Kurt
Thomas and Yi Zhou. Understanding the Mirai Botnet. In Proceedings of
the 26th USENIX Security Symposium, 2017. (Cited in pages 11 and 15.)

[Antonioli 2019] Daniele Antonioli, Nils Ole Tippenhauer and Kasper B Ras-
mussen. The KNOB is Broken: Exploiting Low Entropy in the Encryption
Key Negotiation Of Bluetooth BR/EDR. In 28th USENIX Security Sympo-
sium (USENIX Security 19), pages 1047–1061, 2019. (Cited in pages 30, 35,
132, 137, 149, and 177.)

[Antonioli 2020] Daniele Antonioli, Nils Ole Tippenhauer, Kasper Rasmussen and
Mathias Payer. BLURtooth: Exploiting Cross-Transport Key Derivation in
Bluetooth Classic and Bluetooth Low Energy, 2020. (Cited in page 35.)

[Armis 2017] Armis. Blueborne Technical White Paper. https://go.armis.com/
hubfs/BlueBorneTechnicalWhitePaper.pdf, 2017. (Cited in pages 16, 35,
59, and 132.)

[Armis 2018] Armis. BleedingBit Technical White Paper. https://go.armis.com/
hubfs/BLEEDINGBIT-TechnicalWhitePaper.pdf, 2018. (Cited in pages 16,
35, 59, and 132.)

[Atlas 2012] Atlas. SubGHz or Bust, 2012. Available at https://
media.blackhat.com/bh-us-12/Briefings/Atlas/BH_US_12_Atlas_
GHZ_Workshop_Slides.pdf. (Cited in pages 31 and 104.)

[Bachy 2015] Y. Bachy, F. Basse, V. Nicomette, E. Alata, M. Kaâniche, J. Courrège
and P. Lukjanenko. Smart-TV Security Analysis: Practical Experiments.
In 2015 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, pages 497–504, June 2015. (Cited in page 40.)

https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-sniffer
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-sniffer
https://github.com/sghctoma/antfs-poc-defcon24/
https://go.armis.com/hubfs/BlueBorne Technical White Paper.pdf
https://go.armis.com/hubfs/BlueBorne Technical White Paper.pdf
https://go.armis.com/hubfs/BLEEDINGBIT - Technical White Paper.pdf
https://go.armis.com/hubfs/BLEEDINGBIT - Technical White Paper.pdf
 https://media.blackhat.com/bh-us-12/Briefings/Atlas/BH_US_12_Atlas_GHZ_Workshop_Slides.pdf
 https://media.blackhat.com/bh-us-12/Briefings/Atlas/BH_US_12_Atlas_GHZ_Workshop_Slides.pdf
 https://media.blackhat.com/bh-us-12/Briefings/Atlas/BH_US_12_Atlas_GHZ_Workshop_Slides.pdf

182 Bibliography

[Bettayeb 2019] Meriem Bettayeb, Qassim Nasir and Manar Abu Talib. Firmware
Update Attacks and Security for IoT Devices: Survey. In Proceedings of the
ArabWIC 6th Annual International Conference Research Track, ArabWIC
2019, New York, NY, USA, 2019. Association for Computing Machinery.
(Cited in pages 13, 16, and 59.)

[BLE 2018] Bleno Library GitHub repository, 2018. Available at https://github.
com/noble/bleno/. (Cited in page 33.)

[BLE 2019] BLEAH GitHub repository, 2019. Available at https://github.com/
evilsocket/bleah/. (Cited in page 33.)

[BLU 2000] BlueZ Website, 2000. Available at http://www.bluez.org/. (Cited in
page 33.)

[Blu 2019] Bluetooth SIG. Bluetooth Core Specification, 2019. (Cited in pages 10,
11, 34, 52, 67, 80, 86, and 132.)

[Bojovic 2019] Petar D Bojovic, Ilija Basicevic, Milos Pilipovic, Zivko Bojovic and
Milena Bojovic. The rising threat of hardware attacks: USB keyboard attack
case study. 2019. (Cited in page 14.)

[Bratus 2016] Sergey Bratus, Travis Goodspeed, Ange Albertini and Debanjum S.
Solanky. Fillory of PHY: Toward a Periodic Table of Signal Corruption
Exploits and Polyglots in Digital Radio. In 10th USENIX Workshop on
Offensive Technologies (WOOT 16), Austin, TX, August 2016. USENIX
Association. (Cited in page 42.)

[Brik 2008] Vladimir Brik, Suman Banerjee, Marco Gruteser and Sangho Oh. PAR-
ADIS : Physical 802 . 11 Device Identification with Radiometric Signatures.
2008. (Cited in page 43.)

[Bräuer 2016] S. Bräuer, A. Zubow, S. Zehl, M. Roshandel and S. Mashhadi-Sohi.
On practical selective jamming of Bluetooth Low Energy advertising. In
2016 IEEE Conference on Standards for Communications and Networking
(CSCN), pages 1–6, 2016. (Cited in pages 17, 34, 80, and 135.)

[Camurati 2018] Giovanni Camurati, Sebastian Poeplau, Marius Muench, Tom
Hayes and Aurélien Francillon. Screaming Channels: When Electromag-
netic Side Channels Meet Radio Transceivers. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, CCS
’18, page 163–177, New York, NY, USA, 2018. Association for Computing
Machinery. (Cited in page 14.)

[Camurati 2022] Giovanni Camurati and Aurélien Francillon. Noise-SDR: Arbi-
trary modulation of electromagnetic noise from unprivileged software and its
impact on emission security. In IEEE, editor, S&P 2022, 43rd IEEE
Symposium on Security & Privacy, 22-26 May 2022, San Francisco, CA,

https://github.com/noble/bleno/
https://github.com/noble/bleno/
https://github.com/evilsocket/bleah/
https://github.com/evilsocket/bleah/
http://www.bluez.org/

Bibliography 183

USA, San Francisco, 2022. © 2022 IEEE. Personal use of this material is
permitted. However, permission to reprint/republish this material for adver-
tising or promotional purposes or for creating new collective works for resale
or redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the IEEE. (Cited in
page 41.)

[Cao 2016] Xianghui Cao, Devu Manikantan Shila, Yu Cheng, Zequ Yang, Yang
Zhou and Jiming Chen. Ghost-in-ZigBee: Energy Depletion Attack on
ZigBee-Based Wireless Networks. IEEE Internet of Things Journal, vol. 3,
no. 5, pages 816–829, 2016. (Cited in pages 36 and 77.)

[Cauquil 2016] Damien Cauquil. BtleJuice: The Bluetooth Smart MiTM frame-
work. In DEF CON, volume 24, 2016. (Cited in pages 17, 29, 33, 35, 80, 94,
107, 132, and 134.)

[Cauquil 2017a] Damien Cauquil. Radiobit, a BBC Micro:Bit RF firmware, 2017.
https://github.com/virtualabs/radiobit. (Cited in pages 39, 41,
and 65.)

[Cauquil 2017b] Damien Cauquil. Sniffing BTLE with the Micro:Bit. PoC or
GTFO, vol. 17, pages 13–20, 2017. (Cited in pages 17, 30, 34, 41, 43,
80, and 92.)

[Cauquil 2017c] Damien Cauquil. Weaponizing the BBC Micro:Bit. In DEF CON,
volume 25, 2017. Available at https://media.defcon.org/DEFCON25/
DEFCON25presentations/DEFCON25-Damien-Cauquil-Weaponizing-the-
BBC-MicroBit-UPDATED.pdf. (Cited in pages 30, 41, and 104.)

[Cauquil 2018] Damien Cauquil. You’d better secure your BLE devices or
we’ll kick your butts ! In DEF CON, volume 26, 2018. Available
at https://media.defcon.org/DEFCON26/DEFCON26presentations/
DEFCON-26-Damien-Cauquil-Secure-Your-BLE-Devices-Updated.pdf.
(Cited in pages 32, 34, 65, 80, 94, 104, 132, 133, 136, and 177.)

[Cauquil 2019] Damien Cauquil. Defeating Bluetooth Low Energy 5 PRNG
for fun and jamming. In DEF CON, volume 27, 2019. Available
at https://media.defcon.org/DEFCON27/DEFCON27presentations/
DEFCON-27-Damien-Cauquil-Defeating-Bluetooth-Low-Energy-5-
PRNG-for-fun-and-jamming.PDF. (Cited in pages 17, 34, 43, 83, and 149.)

[Cayre 2019a] Romain Cayre, Vincent Nicomette, Guillaume Auriol, Eric Alata,
Mohamed Kaâniche and Geraldine Marconato. Mirage: towards a
Metasploit-like framework for IoT. In 2019 IEEE 30th International Sym-
posium on Software Reliability Engineering (ISSRE), Berlin, Germany, Oc-
tober 2019. (Cited in page 127.)

 https://github.com/virtualabs/radiobit
https://media.defcon.org/DEF CON 25/DEF CON 25 presentations/DEF CON 25 - Damien-Cauquil-Weaponizing-the-BBC-MicroBit-UPDATED.pdf
https://media.defcon.org/DEF CON 25/DEF CON 25 presentations/DEF CON 25 - Damien-Cauquil-Weaponizing-the-BBC-MicroBit-UPDATED.pdf
https://media.defcon.org/DEF CON 25/DEF CON 25 presentations/DEF CON 25 - Damien-Cauquil-Weaponizing-the-BBC-MicroBit-UPDATED.pdf
https://media.defcon.org/DEF CON 26/DEF CON 26 presentations/DEFCON-26-Damien-Cauquil-Secure-Your-BLE-Devices-Updated.pdf
https://media.defcon.org/DEF CON 26/DEF CON 26 presentations/DEFCON-26-Damien-Cauquil-Secure-Your-BLE-Devices-Updated.pdf
https://media.defcon.org/DEF CON 27/DEF CON 27 presentations/DEFCON-27-Damien-Cauquil-Defeating-Bluetooth-Low-Energy-5-PRNG-for-fun-and-jamming.PDF
https://media.defcon.org/DEF CON 27/DEF CON 27 presentations/DEFCON-27-Damien-Cauquil-Defeating-Bluetooth-Low-Energy-5-PRNG-for-fun-and-jamming.PDF
https://media.defcon.org/DEF CON 27/DEF CON 27 presentations/DEFCON-27-Damien-Cauquil-Defeating-Bluetooth-Low-Energy-5-PRNG-for-fun-and-jamming.PDF

184 Bibliography

[Cayre 2019b] Romain Cayre, Jonathan Roux, Eric Alata, Vincent Nicomette and
Guillaume Auriol. Mirage : un framework offensif pour l’audit du Bluetooth
Low Energy. In Symposium sur la Sécurité des Technologies de l’Information
et des Communications (SSTIC 2019), pages 229–258, Rennes, France, June
2019. (Cited in page 127.)

[Cayre 2020] Romain Cayre, Florent Galtier, Guillaume Auriol, Vincent Nicomette
and Geraldine Marconato. WazaBee : attaque de réseaux Zigbee par dé-
tournement de puces Bluetooth Low Energy. In Symposium sur la Sécurité
des Technologies de l’Information et des Communications (SSTIC 2020),
Rennes, France, June 2020. (Cited in page 78.)

[Cayre 2021a] Romain Cayre and Florent Galtier. Attaques inter-protocolaires par
détournement du contrôleur Bluetooth d’un téléphone mobile. In GT Sécurité
des Systèmes, Logiciels et Réseaux, En ligne, France, May 2021. (Cited in
page 78.)

[Cayre 2021b] Romain Cayre, Florent Galtier, Guillaume Auriol, Vincent
Nicomette, Mohamed Kaâniche and Géraldine Marconato. InjectaBLE :
injection de trafic malveillant dans une connexion Bluetooth Low Energy. In
Symposium sur la sécurité des technologies de l’information et des commu-
nications (SSTIC 2021), Rennes (en ligne), France, June 2021. (Cited in
page 101.)

[Cayre 2021c] Romain Cayre, Florent Galtier, Guillaume Auriol, Vincent
Nicomette, Mohamed Kaâniche and Géraldine Marconato. InjectaBLE: In-
jecting malicious traffic into established Bluetooth Low Energy connections.
In IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN 2021), Taipei (virtual), Taiwan, June 2021. (Cited in page 101.)

[Cayre 2021d] Romain Cayre, Florent Galtier, Guillaume Auriol, Vincent
Nicomette, Mohamed Kaâniche and Géraldine Marconato. WazaBee: attack-
ing Zigbee networks by diverting Bluetooth Low Energy chips. In IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN 2021),
Taipei (virtual), Taiwan, June 2021. (Cited in page 78.)

[Cayre 2021e] Romain Cayre, Géraldine Marconato, Florent Galtier, Mohamed
Kaâniche, Vincent Nicomette and Guillaume Auriol. POSTER: Cross-
protocol attacks: weaponizing a smartphone by diverting its Bluetooth con-
troller. In 14th ACM Conference on Security and Privacy in Wireless and
Mobile Networks, Abu Dhabi, United Arab Emirates, June 2021. Prix du
meilleur poster à la conférence WiSec 2021. (Cited in page 78.)

[Cayre 2022] Romain Cayre, Clément Chaine, Guillaume Auriol, Vincent
Nicomette and Géraldine Marconato. OASIS: un framework pour la dé-
tection d’intrusion embarquée dans les contrôleurs Bluetooth Low Energy. In

Bibliography 185

Symposium sur la Sécurité des Technologies de l’Information et des Com-
munications (SSTIC 2022), Rennes, France, June 2022. (Cited in page 153.)

[CC2 2019] CC2652R Data Sheet, 2019. http://www.ti.com/lit/ds/symlink/
cc2652r.pdf. (Cited in page 40.)

[Celosia 2019] Guillaume Celosia and Mathieu Cunche. DEMO: Himiko: A human
interface for monitoring and inferring knowledge on Bluetooth-Low-Energy
objects. WiSec 2019 - 12th Conference on Security and Privacy in Wireless
and Mobile Networks, May 2019. Poster. (Cited in page 34.)

[Celosia 2020a] Guillaume Celosia and Mathieu Cunche. DEMO: Venom: a Visual
and Experimental Bluetooth Low Energy Tracking System. WiSec 2020 - 13th
ACM Conference on Security and Privacy in Wireless and Mobile Networks,
July 2020. Poster. (Cited in page 34.)

[Celosia 2020b] Guillaume Celosia and Mathieu Cunche. Discontinued Privacy:
Personal Data Leaks in Apple Bluetooth-Low-Energy Continuity Protocols.
Proceedings on Privacy Enhancing Technologies, vol. 2020, pages 26 – 46,
July 2020. (Cited in page 34.)

[Chebrolu 2009] Kameswari Chebrolu and Ashutosh Dhekne. Esense: Communi-
cation through Energy Sensing. In Proceedings of the 15th Annual Inter-
national Conference on Mobile Computing and Networking, MobiCom ’09,
page 85–96, New York, NY, USA, 2009. Association for Computing Machin-
ery. (Cited in page 40.)

[Chiasserini 2003] C.F. Chiasserini and R.R. Rao. Coexistence mechanisms for in-
terference mitigation in the 2.4-GHz ISM band. IEEE Transactions on Wire-
less Communications, vol. 2, no. 5, pages 964–975, 2003. (Cited in page 12.)

[Classen 2019] Jiska Classen and Matthias Hollick. Inside Job: Diagnosing Blue-
tooth Lower Layers Using off-the-Shelf Devices. In Proceedings of the 12th
Conference on Security and Privacy in Wireless and Mobile Networks, WiSec
’19, page 186–191, New York, NY, USA, 2019. Association for Computing
Machinery. (Cited in page 145.)

[Classen 2021] Jiska Classen. InternalBlue Android documentation, 2021. Avail-
able at https://github.com/seemoo-lab/internalblue/blob/master/
doc/android.md. (Cited in pages 31 and 71.)

[Claverie 2021] Tristan Claverie, Nicolas Docq and José Lopes-Esteves. Analyse
des propriétés de sécurité dans les implémentations du Bluetooth Low En-
ergy. In Symposium sur la Sécurité des Technologies de l’Information et des
Communications (SSTIC 2021), 2021. (Cited in page 176.)

http://www.ti.com/lit/ds/symlink/cc2652r.pdf
http://www.ti.com/lit/ds/symlink/cc2652r.pdf
https://github.com/seemoo-lab/internalblue/blob/master/doc/android.md
https://github.com/seemoo-lab/internalblue/blob/master/doc/android.md

186 Bibliography

[Cui 2013] Ang Cui, Michael Costello and Salvatore Stolfo. When firmware mod-
ifications attack: A case study of embedded exploitation. 2013. (Cited in
page 15.)

[Dalalana Bertoglio 2017] Daniel Dalalana Bertoglio and Avelino Zorzo. Overview
and open issues on penetration test. Journal of the Brazilian Computer
Society, vol. 23, 12 2017. (Cited in page 105.)

[Dixon 2019] Brad Dixon. How to cheat at virtual cycling using USB
hacks. In DEF CON, volume 27, 2019. Available at https://
media.defcon.org/DEFCON27/DEFCON27presentations/DEFCON-27-
Brad-Dixon-Cheating-in-eSports-How-to-cheat-at-virtual-
cycling-using-USB-hacks.pdf. (Cited in page 38.)

[Dorsemaine 2015] Bruno Dorsemaine, Jean-Philippe Gaulier, Jean-Philippe Wary,
Nizar Kheir and Pascal Urien. Internet of Things: A Definition amp; Taxon-
omy. In 2015 9th International Conference on Next Generation Mobile Ap-
plications, Services and Technologies, pages 72–77, 2015. (Cited in page 8.)

[Dyn 2014] DynaStream. ANT Specification, 2014. (Cited in pages 10 and 29.)

[Ell 2021] Ellisys. Ellisys Bluetooth Explorer datasheet, 2021. Accessed: 2022-03-21.
(Cited in page 30.)

[FitzPatrick 2016] Joe FitzPatrick. The Tao of hardware, the Te of implants. Black
Hat, USA, 2016. (Cited in page 14.)

[Fragkiadakis 2012] Alexandros Fragkiadakis, Sofia Nikitaki and Panagiotis
Tsakalides. Physical-layer intrusion detection for wireless networks using
compressed sensing. In 2012 IEEE 8th International Conference on Wireless
and Mobile Computing, Networking and Communications (WiMob), pages
845–852, 2012. (Cited in page 42.)

[Galtier 2020] Florent Galtier, Romain Cayre, Guillaume Auriol, Mohamed
Kaâniche and Vincent Nicomette. A PSD-based fingerprinting approach to
detect IoT device spoofing. In 25th IEEE Pacific Rim International Sympo-
sium on Dependable Computing (PRDC 2020), Perth, Australia, December
2020. (Cited in pages 27, 43, and 100.)

[Gandolfi 2001] Karine Gandolfi, Christophe Mourtel and Francis Olivier. Electro-
magnetic Analysis: Concrete Results. In Çetin K. Koç, David Naccache and
Christof Paar, editors, Cryptographic Hardware and Embedded Systems —
CHES 2001, pages 251–261, Berlin, Heidelberg, 2001. Springer Berlin Hei-
delberg. (Cited in page 14.)

[Garbelini 2020] Matheus E. Garbelini, Chundong Wang, Sudipta Chattopadhyay,
Sun Sumei and Ernest Kurniawan. SweynTooth: Unleashing Mayhem over
Bluetooth Low Energy. In 2020 USENIX Annual Technical Conference

https://media.defcon.org/DEF CON 27/DEF CON 27 presentations/DEFCON-27-Brad-Dixon-Cheating-in-eSports-How-to-cheat-at-virtual-cycling-using-USB-hacks.pdf
https://media.defcon.org/DEF CON 27/DEF CON 27 presentations/DEFCON-27-Brad-Dixon-Cheating-in-eSports-How-to-cheat-at-virtual-cycling-using-USB-hacks.pdf
https://media.defcon.org/DEF CON 27/DEF CON 27 presentations/DEFCON-27-Brad-Dixon-Cheating-in-eSports-How-to-cheat-at-virtual-cycling-using-USB-hacks.pdf
https://media.defcon.org/DEF CON 27/DEF CON 27 presentations/DEFCON-27-Brad-Dixon-Cheating-in-eSports-How-to-cheat-at-virtual-cycling-using-USB-hacks.pdf

Bibliography 187

(USENIX ATC 20), pages 911–925. USENIX Association, July 2020. (Cited
in pages 16, 35, and 132.)

[Genkin 2016] Daniel Genkin, Lev Pachmanov, Itamar Pipman and Eran Tromer.
ECDH Key-Extraction via Low-Bandwidth Electromagnetic Attacks on PCs.
In CT-RSA, 2016. (Cited in page 14.)

[Ghugar 2018] Umashankar Ghugar, Jayaram Pradhan, Sourav Bhoi, Rashmi Sa-
hoo and Sanjaya Panda. PL-IDS: physical layer trust based intrusion detec-
tion system for wireless sensor networks. International Journal of Informa-
tion Technology, vol. 10, pages 1–6, 04 2018. (Cited in page 42.)

[GNU 2021] GNU Radio website, 2021. Available at https://www.gnuradio.org/.
(Cited in page 31.)

[Goodspeed 2011a] Travis Goodspeed. Promiscuity is the nRF24L01+’s
Duty. Available at http://travisgoodspeed.blogspot.com/2011/02/
promiscuity-is-nrf24l01s-duty.html, 2011. (Cited in pages 29 and 41.)

[Goodspeed 2011b] Travis Goodspeed, Sergey Bratus, Ricky Melgares, Rebecca
Shapiro and Ryan Speers. Packets in packets: Orson Welles’ in-band sig-
naling attacks for modern radios. pages 7–7, 08 2011. (Cited in pages 17,
41, and 72.)

[GQR 2013] GQRX Website, 2013. Available at https://gqrx.dk/. (Cited in
page 31.)

[greatscottgadgets 2022] greatscottgadgets. GitHub repository of HackRF One.
https://github.com/greatscottgadgets/hackrf, 2022. Accessed: 2022-
03-21. (Cited in pages 27 and 32.)

[GRN 2016] gr-nordic GitHub repository, 2016. Available at https://github.com/
BastilleResearch/gr-nordic/. (Cited in page 31.)

[Gutierrez del Arroyo 2017] Jose Gutierrez del Arroyo, Jason Bindewald, Scott
Graham and Mason Rice. Enabling Bluetooth Low Energy Auditing through
Synchronized Tracking of Multiple Connections. Int. J. Crit. Infrastruct.
Prot., vol. 18, no. C, page 58–70, sep 2017. (Cited in page 44.)

[Hall 2005] Jeyanti Hall, Michel Barbeau and Evangelos Kranakis. Radio Frequency
Fingerprinting for Intrusion Detection in Wireless Networks. IEEE Trans.
Dependable Secure Comput., 2005. (Cited in page 43.)

[Helluy-Lafont 2020] Étienne Helluy-Lafont, Alexandre Boé, Gilles Grimaud and
Michaël Hauspie. Bluetooth devices fingerprinting using low cost SDR. In
Sixth International Workshop on Internet of Things: Networking Applica-
tions and Technologies, Paris, France, June 2020. (Cited in page 43.)

https://www.gnuradio.org/
http://travisgoodspeed.blogspot.com/2011/02/promiscuity-is-nrf24l01s-duty.html
http://travisgoodspeed.blogspot.com/2011/02/promiscuity-is-nrf24l01s-duty.html
https://gqrx.dk/
https://github.com/greatscottgadgets/hackrf
https://github.com/BastilleResearch/gr-nordic/
https://github.com/BastilleResearch/gr-nordic/

188 Bibliography

[Hu 2006] Yih-Chun Hu, Adrian Perrig and David B Johnson. Wormhole attacks
in wireless networks. IEEE journal on selected areas in communications,
vol. 24, no. 2, pages 370–380, 2006. (Cited in page 17.)

[IEE 2020] IEEE Standard for Low-Rate Wireless Networks. IEEE Std 802.15.4-
2020 (Revision of IEEE Std 802.15.4-2015), pages 1–800, 2020. (Cited in
page 55.)

[INS 2021] Inspectrum GitHub Repository, 2021. Available at https://github.
com/miek/inspectrum. (Cited in page 32.)

[IOT 2018] B-L475E-IOT01A Data Brief, 2018. https://www.st.com/resource/
en/data_brief/b-l475e-iot01a.pdf. (Cited in page 40.)

[JAC 2020] JackIt GitHub Repository, 2020. Available at https://github.com/
insecurityofthings/jackit. (Cited in page 33.)

[Jasek 2016] Sławomir Jasek. Gattacking Bluetooth Smart Devices. In BlackHat
USA, 2016. Available at http://gattack.io/whitepaper.pdf. (Cited in
pages 17, 29, 33, 35, 80, 94, 107, 132, and 134.)

[Jiang 2017] Wenchao Jiang, Zhimeng Yin, Ruofeng Liu, Zhijun Li, Song Min Kim
and Tian He. BlueBee: A 10,000x Faster Cross-Technology Communication
via PHY Emulation. In Proceedings of the 15th ACM Conference on Em-
bedded Network Sensor Systems, SenSys ’17, New York, NY, USA, 2017.
Association for Computing Machinery. (Cited in pages 18 and 41.)

[Jiang 2018] Wenchao Jiang, Song Min Kim, Zhijun Li and Tian He. Achieving
Receiver-Side Cross-Technology Communication with Cross-Decoding. In
Proceedings of the 24th Annual International Conference on Mobile Com-
puting and Networking, MobiCom ’18, page 639–652, New York, NY, USA,
2018. Association for Computing Machinery. (Cited in pages 18 and 41.)

[Jokar 2016] Paria Jokar. Intrusion Detection and Prevention for ZigBee-Based
Home Area Networks in Smart Grids. IEEE Transactions on Smart Grid,
vol. PP, pages 1–1, 08 2016. (Cited in page 43.)

[Kamkar 2015] Samy Kamkar. Drive It Like You Hacked It. In DEF CON, vol-
ume 23, 2015. Available at https://samy.pl/defcon2015/2015-defcon.
pdf. (Cited in page 39.)

[Khelif 2021] Mohamed Amine Khelif, Jordane Lorandel and Olivier Romain. Non-
invasive I2C Hardware Trojan Attack Vector. In 2021 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), pages 1–6, 2021. (Cited in page 14.)

[Kim 2015] Song Min Kim and Tian He. FreeBee: Cross-Technology Communi-
cation via Free Side-Channel. In Proceedings of the 21st Annual Interna-
tional Conference on Mobile Computing and Networking, MobiCom ’15,

https://github.com/miek/inspectrum
https://github.com/miek/inspectrum
https://www.st.com/resource/en/data_brief/b-l475e-iot01a.pdf
https://www.st.com/resource/en/data_brief/b-l475e-iot01a.pdf
https://github.com/insecurityofthings/jackit
https://github.com/insecurityofthings/jackit
http://gattack.io/whitepaper.pdf
https://samy.pl/defcon2015/2015-defcon.pdf
https://samy.pl/defcon2015/2015-defcon.pdf

Bibliography 189

page 317–330, New York, NY, USA, 2015. Association for Computing Ma-
chinery. (Cited in page 40.)

[Koch 2022] Luke Koch, Sean Oesch, Mary Adkisson, Sam Erwin, Brian Weber and
Amul Chaulagain. Toward the Detection of Polyglot Files. arXiv preprint
arXiv:2203.07561, 2022. (Cited in page 42.)

[Kocher 2019] Paul C. Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Michael
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz
and Yuval Yarom. Spectre Attacks: Exploiting Speculative Execution. 2019
IEEE Symposium on Security and Privacy (SP), pages 1–19, 2019. (Cited
in page 14.)

[Köse 2019] Memduh Köse, Selçuk Taşcioğlu and Ziya Telatar. RF Fingerprinting
of IoT devices based on transient energy spectrum. IEEE Access, vol. 7,
pages 18715–18726, 2019. (Cited in page 43.)

[Krivtsova 2016] Irina Krivtsova, Ilya Lebedev, Mikhail Sukhoparov, Bazhayev
Nurzhan, Igor Zikratov, Aleksandr Ometov, Sergey Andreev, Pavel Masek,
Radek Fujdiak and Jiri Hosek. Implementing a Broadcast Storm Attack on a
Mission-Critical Wireless Sensor Network. pages 297–308, 05 2016. (Cited
in page 37.)

[Krzysztoń 2020] Mateusz Krzysztoń and Michał Marks. Simulation of watchdog
placement for cooperative anomaly detection in Bluetooth Mesh Intrusion
Detection System. Simulation Modelling Practice and Theory, vol. 101,
page 102041, 2020. Modeling and Simulation of Fog Computing. (Cited
in page 44.)

[Lacava 2021] Andrea Lacava, Emanuele Giacomini, Francesco D’Alterio and
Francesca Cuomo. Intrusion Detection System for Bluetooth Mesh Networks:
Data Gathering and Experimental Evaluations. In 2021 IEEE International
Conference on Pervasive Computing and Communications Workshops and
other Affiliated Events (PerCom Workshops), pages 661–666, 2021. (Cited
in page 44.)

[Lahmadi 2020] Abdelkader Lahmadi, Alexis Duque, Nathan Heraief and Julien
Francq. MitM Attack Detection in BLE Networks using Reconstruction and
Classification Machine Learning Techniques. In MLCS 2020-2nd Workshop
on Machine Learning for Cybersecurity, 2020. (Cited in pages 44 and 100.)

[Lai 2008] Jung-Ying Lai, Jain-Shing Wu, Shih-Jen Chen, Chia-Huan Wu and
Chung-Huang Yang. Designing a taxonomy of web attacks. In 2008 Inter-
national Conference on Convergence and Hybrid Information Technology,
pages 278–282. IEEE, 2008. (Cited in page 15.)

[Le 2008] Thanh-Ha Le, Cécile Canovas and Jessy Clédiere. An overview of side
channel analysis attacks. In Proceedings of the 2008 ACM symposium on

190 Bibliography

Information, computer and communications security, pages 33–43, 2008.
(Cited in page 14.)

[Li 2017] Zhijun Li and Tian He. WEBee: Physical-Layer Cross-Technology Com-
munication via Emulation. In Proceedings of the 23rd Annual International
Conference on Mobile Computing and Networking, MobiCom ’17, page 2–14,
New York, NY, USA, 2017. Association for Computing Machinery. (Cited
in page 40.)

[Lipp 2018] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul C. Kocher, Daniel
Genkin, Yuval Yarom and Michael Hamburg. Meltdown: Reading Kernel
Memory from User Space. In USENIX Security Symposium, 2018. (Cited
in page 14.)

[Lo 2017] Owen Lo, William J. Buchanan and Douglas Carson. Power analysis
attacks on the AES-128 S-box using differential power analysis (DPA) and
correlation power analysis (CPA). Journal of Cyber Security Technology,
vol. 1, no. 2, pages 88–107, 2017. (Cited in page 14.)

[LOG 2019] LogiTacker GitHub Repository, 2019. Available at https://github.
com/RoganDawes/LOGITacker. (Cited in pages 39 and 116.)

[LoR 2017] LoRa Alliance, Inc. LoRaWan Specification, 2017. (Cited in page 10.)

[Mantz 2019] Dennis Mantz, Jiska Classen, Matthias Schulz and Matthias Hollick.
InternalBlue - Bluetooth Binary Patching and Experimentation Framework.
Proceedings of the 17th Annual International Conference on Mobile Systems,
Applications, and Services, Jun 2019. (Cited in pages 29, 30, 67, 68, 70,
and 145.)

[MET 2022] Metasploit website, 2022. Available at https://www.metasploit.com.
(Cited in page 105.)

[Miettinen 2016] Markus Miettinen, Samuel Marchal, Ibbad Hafeez, N. Asokan,
Ahmad-Reza Sadeghi and Sasu Tarkoma. IoT Sentinel: Automated
Device-Type Identification for Security Enforcement in IoT. CoRR,
vol. abs/1611.04880, 2016. (Cited in page 43.)

[Millian 2015] Michael C. Millian and Vibhu Yadav. Packet-in-packet Exploits on
802 . 15 . 4. 2015. (Cited in page 41.)

[MyriadRF 2022] MyriadRF. MyriadRF website (Lime SDR manufacturer).
https://myriadrf.org/, 2022. Accessed: 2022-03-21. (Cited in pages 27
and 32.)

[Newaz 2020] AKM Iqtidar Newaz, Amit Kumar Sikder, Leonardo Babun and
A. Selcuk Uluagac. HEKA: A Novel Intrusion Detection System for Attacks

https://github.com/RoganDawes/LOGITacker
https://github.com/RoganDawes/LOGITacker
https://www.metasploit.com
https://myriadrf.org/

Bibliography 191

to Personal Medical Devices. In 2020 IEEE Conference on Communications
and Network Security (CNS), pages 1–9, 2020. (Cited in page 44.)

[Newlin 2016a] Marc Newlin. MouseJack : White Paper. In DEF CON, volume 24,
2016. Available at https://github.com/BastilleResearch/mousejack/
blob/master/doc/pdf/DEFCON-24-Marc-Newlin-MouseJack-Injecting-
Keystrokes-Into-Wireless-Mice.whitepaper.pdf. (Cited in pages 17,
29, 30, 33, 39, 41, 75, 76, 116, 124, and 169.)

[Newlin 2016b] Marc Newlin. RFStorm nRF24LU1+ Research Firmware
GitHub repository, 2016. https://github.com/BastilleResearch/nrf-
research-firmware. (Cited in pages 28, 29, 30, 32, 33, and 169.)

[NOB 2018] Bleno Library GitHub repository, 2018. Available at https://github.
com/noble/noble/. (Cited in page 33.)

[NRF 2022] NRF Connect presentation webiste, 2022. Available at
https://www.nordicsemi.com/Products/Development-tools/nRF-
Connect-for-desktop/. (Cited in page 33.)

[Nuand 2022] Nuand. Nuand website (BladeRF manufacturer). https://www.
nuand.com/, 2022. Accessed: 2022-03-21. (Cited in page 27.)

[Olawumi 2014] Olayemi Olawumi, Keijo Haataja, Mikko Asikainen, Niko Vidgren
and Pekka Toivanen. Three practical attacks against ZigBee security: Attack
scenario definitions, practical experiments, countermeasures, and lessons
learned. In 2014 14th International Conference on Hybrid Intelligent Sys-
tems, pages 199–206, 2014. (Cited in page 37.)

[OPE 2015] OpenSesame website, 2015. Available at https://samy.pl/
opensesame. (Cited in page 39.)

[Ossmann 2017] Michael Ossmann, Dominic Spill and Great Scott Gadgets. What’s
on the wireless? Automating rf signal identification. Technical Report, Tech.
rep, 2017. (Cited in pages 27 and 32.)

[P. Cavano 1978] Joseph P. Cavano and James A. McCall. A framework for the
measurement of software quality. ACM SIGSOFT Software Engineering
Notes, vol. 3, pages 133–139, 11 1978. (Cited in page 104.)

[Pa 2015] Yin Minn Pa Pa, Shogo Suzuki, Katsunari Yoshioka, Tsutomu Mat-
sumoto, Takahiro Kasama and Christian Rossow. IoTPOT: Analysing the
Rise of IoT Compromises. In 9th USENIX Workshop on Offensive Tech-
nologies (WOOT 15), 2015. (Cited in page 15.)

[Pasupathy 1979] S. Pasupathy. Minimum shift keying: A spectrally efficient mod-
ulation. IEEE Communications Magazine, vol. 17, no. 4, pages 14–22, July
1979. (Cited in page 59.)

 https://github.com/BastilleResearch/mousejack/blob/master/doc/pdf/DEFCON-24-Marc-Newlin-MouseJack-Injecting-Keystrokes-Into-Wireless-Mice.whitepaper.pdf
 https://github.com/BastilleResearch/mousejack/blob/master/doc/pdf/DEFCON-24-Marc-Newlin-MouseJack-Injecting-Keystrokes-Into-Wireless-Mice.whitepaper.pdf
 https://github.com/BastilleResearch/mousejack/blob/master/doc/pdf/DEFCON-24-Marc-Newlin-MouseJack-Injecting-Keystrokes-Into-Wireless-Mice.whitepaper.pdf
 https://github.com/BastilleResearch/nrf-research-firmware
 https://github.com/BastilleResearch/nrf-research-firmware
https://github.com/noble/noble/
https://github.com/noble/noble/
https://www.nordicsemi.com/Products/Development-tools/nRF-Connect-for-desktop/
https://www.nordicsemi.com/Products/Development-tools/nRF-Connect-for-desktop/
https://www.nuand.com/
https://www.nuand.com/
https://samy.pl/opensesame
https://samy.pl/opensesame

192 Bibliography

[Philips 2022] Philips. Philips Hue website. https://www.philips-hue.com, 2022.
Accessed: 2022-03-21. (Cited in page 11.)

[Pohl 2018] Johannes Pohl and Andreas Noack. Universal Radio Hacker: A Suite
for Analyzing and Attacking Stateful Wireless Protocols. In 12th USENIX
Workshop on Offensive Technologies (WOOT 18), Baltimore, MD, August
2018. USENIX Association. (Cited in page 32.)

[POT 2021] PothosFlow GitHub repository, 2021. Available at https://github.
com/pothosware/PothosFlow/. (Cited in page 31.)

[PYB 2015] PyBT GitHub repository, 2015. Available at https://github.com/
mikeryan/PyBT. (Cited in page 34.)

[Qasim Khan 2019] Sultan Qasim Khan. Sniffle: A sniffer for Bluetooth 5
(LE), 2019. Available at https://hardwear.io/netherlands-2019/
presentation/sniffle-talk-hardwear-io-nl-2019.pdf. (Cited in
pages 30, 32, 34, 80, and 92.)

[Rajendran 2019] Sreeraj Rajendran, Wannes Meert, Vincent Lenders and S. Pollin.
Unsupervised Wireless Spectrum Anomaly Detection with Interpretable Fea-
tures. IEEE Transactions on Cognitive Communications and Networking,
vol. PP, pages 1–1, 04 2019. (Cited in page 77.)

[Ray 2012] Donald Ray and Jay Ligatti. Defining code-injection attacks. Acm
Sigplan Notices, vol. 47, no. 1, pages 179–190, 2012. (Cited in page 15.)

[Raza 2013] Shahid Raza, Linus Wallgren and Thiemo Voigt. SVELTE: Real-time
intrusion detection in the Internet of Things. Ad Hoc Networks, vol. 11,
no. 8, pages 2661–2674, 2013. (Cited in page 43.)

[Research 2022] Ettus Research. Ettus Research website (USRP manufacturer).
https://www.ettus.com/, 2022. Accessed: 2022-03-21. (Cited in page 27.)

[REV 2022] RevEng Website, 2022. Available at https://sourceforge.net/
projects/reveng/. (Cited in page 32.)

[RFC 2021] RFCat GitHub Repository, 2021. Available at https://github.com/
atlas0fd00m/rfcat. (Cited in page 32.)

[Ronen 2017] E. Ronen, A. Shamir, A. Weingarten and C. O’Flynn. IoT Goes
Nuclear: Creating a ZigBee Chain Reaction. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 195–212, May 2017. (Cited in page 37.)

[Roux 2018] Jonathan Roux, Eric Alata, Guillaume Auriol, Mohamed Kaâniche,
Vincent Nicomette and Romain Cayre. Radiot: Radio communications in-
trusion detection for iot-a protocol independent approach. In 2018 IEEE 17th
International Symposium on Network Computing and Applications (NCA),
pages 1–8. IEEE, 2018. (Cited in pages 27, 42, 77, and 100.)

https://www.philips-hue.com
https://github.com/pothosware/PothosFlow/
https://github.com/pothosware/PothosFlow/
https://github.com/mikeryan/PyBT
https://github.com/mikeryan/PyBT
https://hardwear.io/netherlands-2019/presentation/sniffle-talk-hardwear-io-nl-2019.pdf
https://hardwear.io/netherlands-2019/presentation/sniffle-talk-hardwear-io-nl-2019.pdf
https://www.ettus.com/
https://sourceforge.net/projects/reveng/
https://sourceforge.net/projects/reveng/
https://github.com/atlas0fd00m/rfcat
https://github.com/atlas0fd00m/rfcat

Bibliography 193

[RTL-SDR 2022] RTL-SDR. RTL-SDR website. https://www.rtl-sdr.com/,
2022. Accessed: 2022-03-21. (Cited in page 27.)

[RUB 2021] Ducky Script Quick Reference, 2021. Available at https://
docs.hak5.org/usb-rubber-ducky-1/the-ducky-script-language/
ducky-script-quick-reference. (Cited in page 116.)

[Ryan 2013a] Mike Ryan. Bluetooth: With Low Energy Comes Low Security. In
7th USENIX Workshop on Offensive Technologies (WOOT 13), Washington,
D.C., August 2013. USENIX Association. (Cited in pages 17, 30, 34, 43, 80,
81, 83, 92, and 149.)

[Ryan 2013b] Mike Ryan. How Smart is Bluetooth Smart ? 2013. (Cited in pages 35
and 115.)

[Santos 2019] Aellison Santos, José Filho, Avilla Silva, Vivek Nigam and Iguatemi
Fonseca. BLE injection-free attack: a novel attack on bluetooth low energy
devices. Journal of Ambient Intelligence and Humanized Computing, 09
2019. (Cited in page 81.)

[SCA 2022] Scapy Website, 2022. Available at https://scapy.net. (Cited in
page 32.)

[Schroeder 2010] Thorsten Schroeder and Max Moser. Keykeriki resources, 2010.
Available at http://www.remote-exploit.org/articles/keykeriki_v2_
0__8211_2_4ghz/. (Cited in pages 31, 38, and 116.)

[Schulz 2017] Matthias Schulz, Efstathios Deligeorgopoulos, Matthias Hollick and
Francesco Gringoli. Demonstrating reactive smartphone-based jamming:
demo. Proceedings of the 10th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, 2017. (Cited in pages 17 and 30.)

[Schulz 2018a] Matthias Schulz, Jakob Link, Francesco Gringoli and Matthias Hol-
lick. Shadow Wi-Fi: Teaching smartphones to transmit raw signals and
to extract channel state information to implement practical covert channels
over Wi-Fi. In Proceedings of the 16th Annual International Conference on
Mobile Systems, Applications, and Services, pages 256–268, 2018. (Cited in
page 28.)

[Schulz 2018b] Matthias Schulz, Daniel Wegemer and Matthias Hollick. The
Nexmon firmware analysis and modification framework: Empowering re-
searchers to enhance Wi-Fi devices. Computer Communications, vol. 129,
pages 269–285, 2018. (Cited in pages 28, 29, and 30.)

[SEC 2015] SecBee GitHub repository, 2015. Available at https://github.com/
Cognosec/SecBee/. (Cited in pages 36 and 115.)

https://www.rtl-sdr.com/
https://docs.hak5.org/usb-rubber-ducky-1/the-ducky-script-language/ducky-script-quick-reference
https://docs.hak5.org/usb-rubber-ducky-1/the-ducky-script-language/ducky-script-quick-reference
https://docs.hak5.org/usb-rubber-ducky-1/the-ducky-script-language/ducky-script-quick-reference
https://scapy.net
 http://www.remote-exploit.org/articles/keykeriki_v2_0__8211_2_4ghz/
 http://www.remote-exploit.org/articles/keykeriki_v2_0__8211_2_4ghz/
https://github.com/Cognosec/SecBee/
https://github.com/Cognosec/SecBee/

194 Bibliography

[Shen 2013] Wenbo Shen, Peng Ning, Xiaofan He and Huaiyu Dai. Ally friendly
jamming: How to jam your enemy and maintain your own wireless connec-
tivity at the same time. In 2013 IEEE Symposium on Security and Privacy,
pages 174–188. IEEE, 2013. (Cited in page 156.)

[Shintani 2020] Aiku Shintani. The Design, Testing, and Analysis of a Constant
Jammer for the Bluetooth Low Energy (BLE) Wireless Communication Pro-
tocol. PhD thesis, California Polytechnic State University, San Luis Obispo,
06 2020. (Cited in pages 17 and 135.)

[SHO 2009] shodan.io: Search Engine for the Internet of Everything, 2009. Avail-
able at https://www.shodan.io/. (Cited in page 15.)

[Siby 2017] Sandra Siby, Rajib Ranjan Maiti and Nils Ole Tippenhauer. IoTScan-
ner: Detecting Privacy Threats in IoT Neighborhoods. In Proceedings of
the 3rd ACM International Workshop on IoT Privacy, Trust, and Security,
IoTPTS ’17, page 23–30, New York, NY, USA, 2017. Association for Com-
puting Machinery. (Cited in pages 43 and 77.)

[Singh 2019] Ankit Singh, Aditi Sharma, Nikhil Sharma, Ila Kaushik and Bharat
Bhushan. Taxonomy of attacks on web based applications. In 2019 2nd Inter-
national Conference on Intelligent Computing, Instrumentation and Control
Technologies (ICICICT), volume 1, pages 1231–1235. IEEE, 2019. (Cited in
page 15.)

[SOA 2022] Soapy SDR GitHub Repository, 2022. Available at https://github.
com/pothosware/SoapySDR. (Cited in page 32.)

[Spill 2007] Dominic Spill and Andrea Bittau. BlueSniff: Eve Meets Alice and
Bluetooth. In First USENIX Workshop on Offensive Technologies (WOOT
07), Boston, MA, August 2007. USENIX Association. (Cited in page 30.)

[Spill 2012] Dominic Spill. Ubertooth One website, 2012. http://ubertooth.
sourceforge.net/. (Cited in pages 32 and 104.)

[Sung 2016] Yunsick Sung. Intelligent Security IT System for Detecting Intruders
Based on Received Signal Strength Indicators. Entropy, vol. 18, no. 10, pages
1–16, October 2016. (Cited in page 44.)

[Szakaly 2016] Tamas Szakaly. Help, I’ve got ANTs !!! In DEF CON, vol-
ume 24, 2016. Available at https://media.defcon.org/DEFCON24/
DEFCON24presentations/DEFCON24-Tamas-Szakaly-Help-I-got-
ANTS.pdf. (Cited in pages 31 and 38.)

[Timmers 2016] Niek Timmers, Albert Spruyt and Marc Witteman. Controlling PC
on ARM Using Fault Injection. In 2016 Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC), pages 25–35, 2016. (Cited in page 14.)

https://www.shodan.io/
https://github.com/pothosware/SoapySDR
https://github.com/pothosware/SoapySDR
 http://ubertooth.sourceforge.net/
 http://ubertooth.sourceforge.net/
 https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEF CON 24 - Tamas-Szakaly-Help-I-got-ANTS.pdf
 https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEF CON 24 - Tamas-Szakaly-Help-I-got-ANTS.pdf
 https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEF CON 24 - Tamas-Szakaly-Help-I-got-ANTS.pdf

Bibliography 195

[Timmers 2017] Niek Timmers and Cristofaro Mune. Escalating Privileges in Linux
Using Voltage Fault Injection. In 2017 Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC), pages 1–8, 2017. (Cited in page 14.)

[Tournier 2020] Jonathan Tournier, François Lesueur, Frédéric Le Mouël, Laurent
Guyon and Hicham Ben-Hassine. IoTMap: A protocol-agnostic multi-layer
system to detect application patterns in IoT networks. In 10th International
Conference on the Internet of Things (IoT 2020), Malmö, Sweden, October
2020. (Cited in page 43.)

[Tsoutsos 2018] Nektarios Georgios Tsoutsos and Michail Maniatakos. Anatomy
of memory corruption attacks and mitigations in embedded systems. IEEE
Embedded Systems Letters, vol. 10, no. 3, pages 95–98, 2018. (Cited in
page 15.)

[Ur Rehman 2012] S. Ur Rehman, K. Sowerby and C. Coghill. RF fingerprint ex-
traction from the energy envelope of an instantaneous transient signal. In
2012 Australian Communications Theory Workshop (AusCTW), pages 90–
95, 2012. (Cited in page 43.)

[Vaccari 2017] Ivan Vaccari, Enrico Cambiaso and Maurizio Aiello. Remotely Ex-
ploiting AT Command Attacks on ZigBee Networks. Security and Commu-
nication Networks, vol. 2017, pages 1–9, 10 2017. (Cited in pages 37, 69,
and 168.)

[Vanhoef 2014] Mathy Vanhoef and Frank Piessens. Advanced Wi-Fi Attacks Using
Commodity Hardware. In Proceedings of the 30th Annual Computer Security
Applications Conference, ACSAC ’14, page 256–265, New York, NY, USA,
2014. Association for Computing Machinery. (Cited in page 30.)

[Vidgren 2013a] N. Vidgren, K. Haataja, J. L. Patiño-Andres, J. J. Ramírez-
Sanchis and P. Toivanen. Security Threats in ZigBee-Enabled Systems: Vul-
nerability Evaluation, Practical Experiments, Countermeasures, and Lessons
Learned. In 2013 46th Hawaii International Conference on System Sciences,
pages 5132–5138, 2013. (Cited in page 77.)

[Vidgren 2013b] Niko Vidgren, Keijo Haataja, José Luis Patiño-Andres, Juan José
Ramírez-Sanchis and Pekka Toivanen. Security Threats in ZigBee-Enabled
Systems: Vulnerability Evaluation, Practical Experiments, Countermea-
sures, and Lessons Learned. In 2013 46th Hawaii International Conference
on System Sciences, pages 5132–5138, 2013. (Cited in page 37.)

[Vilela 2011] Joao P Vilela, Matthieu Bloch, Joao Barros and Steven W McLaugh-
lin. Wireless secrecy regions with friendly jamming. IEEE Transactions on
Information Forensics and Security, vol. 6, no. 2, pages 256–266, 2011. (Cited
in page 156.)

196 Bibliography

[Vishwakarma 2018] Gopal Vishwakarma and Wonjun Lee. Exploiting JTAG and
its mitigation in IOT: A survey. Future Internet, vol. 10, page 121, 12 2018.
(Cited in pages 13 and 59.)

[von Tschirschnitz 2021] M. von Tschirschnitz, L. Peuckert, F. Franzen and
J. Grossklags. Method Confusion Attack on Bluetooth Pairing. In 2021
2021 IEEE Symposium on Security and Privacy (SP), pages 213–228, Los
Alamitos, CA, USA, may 2021. IEEE Computer Society. (Cited in pages 35
and 176.)

[Wilhelm 2012] Matthias Wilhelm, Jens B Schmitt and Vincent Lenders. Practical
message manipulation attacks in IEEE 802.15. 4 wireless networks. In MMB
& DFT 2012 Workshop Proceedings, pages 29–31, 2012. (Cited in page 17.)

[Wright 2009] Joshua Wright. KillerBee: Practical ZigBee Exploitation Framework,
2009. Available at http://www.willhackforsushi.com/presentations/
toorcon11-wright.pdf. (Cited in pages 28, 29, 32, 36, 104, and 115.)

[Wu 2020a] Jian-Liang Wu, Yuhong Nan, V. Kumar, Dave Tian, Antonio Bianchi,
M. Payer and D. Xu. BLESA: Spoofing Attacks against Reconnections in
Bluetooth Low Energy. In WOOT @ USENIX Security Symposium, 2020.
(Cited in page 35.)

[Wu 2020b] Jianliang Wu, Yuhong Nan, Vireshwar Kumar, Mathias Payer and
Dongyan Xu. BlueShield: Detecting Spoofing Attacks in Bluetooth Low En-
ergy Networks. In 23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2020), pages 397–411, San Sebastian, Octo-
ber 2020. USENIX Association. (Cited in pages 44 and 100.)

[Xu 2005] Wenyuan Xu, Wade Trappe, Yanyong Zhang and Timothy Wood. The
Feasibility of Launching and Detecting Jamming Attacks in Wireless Net-
works. In Proceedings of the 6th ACM International Symposium on Mobile
Ad Hoc Networking and Computing, MobiHoc ’05, page 46–57, New York,
NY, USA, 2005. Association for Computing Machinery. (Cited in pages 17
and 157.)

[Yang 2019] Hojoon Yang, Sangwook Bae, Mincheol Son, Hongil Kim, Song Min
Kim and Yongdae Kim. Hiding in plain signal: Physical signal overshad-
owing attack on {LTE}. In 28th USENIX Security Symposium (USENIX
Security 19), pages 55–72, 2019. (Cited in page 17.)

[Yaseen 2019] Muhammad Yaseen, Waseem Iqbal, Imran Rashid, Haider Abbas,
Mujahid Mohsin, Kashif Saleem and Yawar Abbas Bangash. MARC: A
Novel Framework for Detecting MITM Attacks in eHealthcare BLE Systems.
Journal of Medical Systems, vol. 43, no. 11, page 324, 2019. (Cited in
pages 44 and 100.)

 http://www.willhackforsushi.com/presentations/toorcon11-wright.pdf
 http://www.willhackforsushi.com/presentations/toorcon11-wright.pdf

Bibliography 197

[Yuniati 2019] Yetti Yuniati, Ardian Ulvan and Sitronella Nur Fitriani. Signal anal-
ysis of remote control (RC) UAV used software defined radio (SDR) HackRF
One. Query: Journal of Information Systems, vol. 3, no. 01, pages 62–68,
2019. (Cited in page 27.)

[Zig 2015] Zigbee Alliance. ZigBee Specification, 2015. (Cited in page 10.)

[Zillner 2015] T. Zillner. ZigBee Exploited: The good , the bad and the ugly. In
BlackHat, 2015. (Cited in page 36.)

[Zuo 2019] Chaoshun Zuo, Haohuang Wen, Zhiqiang Lin and Yinqian Zhang. Auto-
matic fingerprinting of vulnerable ble iot devices with static uuids from mo-
bile apps. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, pages 1469–1483, 2019. (Cited in pages 11
and 99.)

Abstract
In the recent years, a new kind of devices, so-called connected objects, has been actively
deployed, spreading everywhere in our daily life. These devices aim to interact with the
physical world while providing a connectivity which is generally based on a new generation
of wireless communication protocols such as Zigbee, Bluetooth Low Energy or Thread. The
rapid and massive deployment of these new wireless technologies in the context of Internet of
Things introduces new challenges from a security perspective. These challenges are mainly
linked to the heterogeneity of these protocols, the decentralized and dynamical environments
where they are deployed, and their co-existence in the same environments.This PhD thesis
is a contribution to the security of wireless communication protocols, both from an offensive
and a defensive perspective. We especially focus on the lower layers of the protocol stacks,
which are very difficult to analyze.

The first offensive contribution of this work highlights some critical vulnerabilities which
are linked to the design of the protocols and can’t be fixed easily without significantly
modifying the specification. We present the InjectaBLE vulnerability allowing an attacker
to inject arbitrary packets into an established Bluetooth Low Energy connection. We also
show that exploiting this vulnerability may allow the attacker to divert some low level
mechanisms in order to perform complex attacks, such as hijacking or man-in-the-middle
attacks.

We also worked on the security risks linked to the co-existence of heterogeneous wireless
communication protocols in the same environments. Our second offensive contribution
demonstrates the feasibility of diverting a Bluetooth Low Energy transceiver in order to
interact with other protocols such as Zigbee or Enhanced ShockBurst, which are not natively
supported by the chip. We highlight the practical feasibility of implementing such a strategy
on multiple devices, including smartphones and connected objects, and we show that this
offensive strategy allow pivoting attacks or covert-channel attacks, which are especially
difficult to anticipate and mitigate.

The existence of such offensive strategies which are linked to the low level internals of
the wireless communication protocols, requires the development of efficient mitigations, es-
pecially intrusion detection and prevention strategies. However, designing such mitigations
remains a complex challenge because of the decentralization and dynamicity of wireless
environments where connected objects are deployed. Our defensive contributions introduce
two innovative defensive approaches, facilitating the deployment of Intrusion Detection
Systems and Intrusion Prevention Systems in such environments. Our first contribution,
named Oasis, demonstrates the feasibility of embedding detection mechanisms directly
into the connected objects. We mainly show that such a defensive strategy allows the
extraction of low level indicators which can be analyzed to perform a reliable detection
of the main protocol attacks targeting the Bluetooth Low Energy protocol. Our second
defensive contribution focuses on the intrusion prevention challenge, and introduces an
approach based on reactive jamming to efficiently filter malicious traffic. We show the
genericity of these prevention strategy by implementing it in practice on two wireless
protocols commonly used in IoT: Zigbee and Enhanced ShockBurst.

Keywords— IoT, Security, Internet of Things, Protocols, Wireless Networks

Résumé
Ces dernières années, nous avons pu assister à l’émergence d’un nouveau type de systèmes
informatiques, nommés objets connectés. Ces systèmes sont caractérisés par leur capacité
à interagir avec le monde physique et par leur connectivité, celle ci étant généralement
basée sur une nouvelle génération de protocoles de communication sans fil tels que Zigbee,
Bluetooth Low Energy ou Thread. Le déploiement rapide et massif de ces nouvelles tech-
nologies de communication sans fil dans le contexte de l’Internet des Objets introduit de
nouveaux défis pour la sécurité, liés à l’hétérogénéité des protocoles, la nature dynamique et
décentralisée des environnements dans lesquels ils sont déployés ainsi que leur co-existence
dans les mêmes environnements. Cette thèse se concentre sur la sécurité de ces nouveaux
protocoles de communication sans fil, tant d’un point de vue offensif que défensif, et no-
tamment sur les problématiques liées aux couches inférieures des piles protocolaires, dont
l’analyse est particulièrement complexe.

La première contribution offensive de ces travaux met en évidence l’existence de vul-
nérabilités critiques liées au design des protocoles eux mêmes, qui ne peuvent être corrigées
sans modifier significativement la spécification. Nous présentons notamment la vulnérabilité
InjectaBLE, permettant à un attaquant d’injecter des paquets arbitraires au sein d’une com-
munication Bluetooth Low Energy établie. Nous démontrons également que l’exploitation
de cette vulnérabilité permet à l’attaquant de détourner des mécanismes bas niveau du
protocole pour mettre en place des attaques plus complexes, telles que des usurpations
d’identité ou la mise en place d’une attaque de l’homme du milieu.

Nous nous sommes également intéressé aux problématiques de sécurité résultant de la
co-existence de protocoles sans fil hétérogènes au sein des mêmes environnements. Notre
seconde contribution offensive démontre la possibilité de détourner le fonctionnement d’une
puce Bluetooth Low Energy afin d’interagir avec des protocoles non nativement supportés
par celle ci, tels que Zigbee, Enhanced ShockBurst ou Mosart. Nous montrons notamment
que ce détournement est réalisable en pratique sur de nombreux équipements incluant des
smartphones et des objets connectés, et qu’il peut permettre la mise en place d’attaques
pivots et d’attaques par canaux cachés, difficiles à anticiper et corriger.

L’existence de telles stratégies d’attaque liées aux fonctionnement même des couches
inférieures des protocoles sans fil nécessite la mise en place de contre-mesures efficaces, et
notamment de stratégies de détection et de prévention adaptées. Cependant, leur mise
en place reste aujourd’hui particulièrement complexe, notamment du fait de la nature
décentralisée et dynamique des environnements concernés. Nos contributions défensives
proposent deux approches défensives innovantes, destinées à faciliter le déploiement de
système de détection et de prévention d’intrusion dans de tels environnements. Notre
première contribution, Oasis, démontre la faisabilité d’embarquer des mécanismes de
détection directement au sein des objets connectés. Nous montrons notamment que
cette approche permet la collecte d’indicateurs bas niveau dont l’analyse permet une
détection efficace des principales attaques protocolaires visant le protocole Bluetooth
Low Energy. Notre seconde contribution défensive s’intéresse à la problématique de la
prévention d’intrusion, et propose une approche basée sur une stratégie de brouillage réactif
permettant de filtrer efficacement le trafic malveillant. Nous illustrons notamment la
généricité de cette stratégie de prévention en l’implémentant sur deux protocoles communs
de l’IoT: Zigbee et Enhanced ShockBurst.

Mots clés— IoT, Sécurité, Internet des Objets, Protocoles, Réseaux sans fil

	Offensive and defensive approaches for wireless communication protocols security in IoT
	Contents
	List of Figures
	List of Tables
	Introduction
	I Internet of Things security overview
	Internet of things: a security perspective
	General context
	Wireless communication protocols
	Security threats
	Hardware-related threats
	Software-related threats
	Network-related threats

	Mitigations
	Challenges and contributions

	State of the art of wireless security
	Auditing tools
	Hardware tools
	Software tools

	Protocol attacks
	Bluetooth Low Energy
	Zigbee
	Proprietary protocols
	Cross-technologies attacks

	Defensive approaches
	Signal-based approaches
	Packet-based approaches

	Outline

	II Low-level attacks
	Cross-protocol attacks
	Motivations
	Overview of wireless protocols
	Digital modulation
	Bluetooth Low Energy (BLE)
	Zigbee

	The WazaBee attack
	Assumptions
	Attack overview
	Correspondence table generation
	Requirements

	Benchmarks
	Attack scenarios
	Experimental setup
	Scenario A: injecting 802.15.4 frames using a smartphone
	Scenario B: performing complex Zigbee attacks from a BLE tracker device
	Conclusion

	RadioSploit: implementing pivoting attacks on a recent smartphone
	Firmware reverse engineering and patching
	Protocols support
	Conclusion

	Counter-measures
	Conclusion

	InjectaBLE: injecting malicious traffic into established Bluetooth Low Energy connections
	Motivations
	Bluetooth Low Energy
	Overview
	Link layer internals

	Adversary model and attack overview
	InjectaBLE: injecting arbitrary frames in an established connection
	Clock (in)accuracy
	Window widening
	Injecting an arbitrary packet
	Checking the injection success
	Implementation

	Attack scenarios
	Scenario A: illegitimately using a device functionality
	Scenario B: hijacking the Peripheral role
	Scenario C and D: hijacking the Central, the Peripheral or both of them simultaneously (Man-in-the-Middle attack)

	Sensitivity analysis
	Experiment 1: Hop Interval
	Experiment 2: Payload size
	Experiment 3: distance

	Counter-measures
	Conclusion

	Mirage: an offensive auditing framework
	Motivations
	Key Principles
	Providing an unified API
	Modularity and reusability
	Genericity
	Low level analysis

	Architecture overview
	Main software components
	Generic communication architecture
	Modules and scenarios
	Chaining operator

	Protocols and modules
	Bluetooth and Bluetooth Low Energy
	Zigbee
	Enhanced ShockBurst and Mosart
	Wifi
	IR protocols
	Adding new protocols and modules

	Experimentations
	Experiment 1: Auditing a Bluetooth Low Energy smart lighbulb
	Experiment 2: Attacking a randomized keyboard

	Conclusion

	III Intrusion detection and prevention
	OASIS, an Intrusion Detection System embedded in Bluetooth Low Energy controllers
	Motivations
	Detection of low level BLE attacks
	Detection strategies
	Detection requirements

	Framework design
	Main guidelines
	Embedded detection software
	Architecture of the Oasis framework
	Framework usage

	Controllers instrumentation
	Broadcom and Cypress Bluetooth controllers
	Nordic SemiConductors SoftDevice

	Experiments
	Experimental setup
	Experiment Results

	Discussions
	Conclusion

	Reactive-jamming based firewall
	Motivations
	Context and prerequisites
	Threat model
	Jamming taxonomy
	Objectives and challenges

	Approach overview
	Global architecture
	Reactive jamming
	Correction algorithm
	Decision and transmission

	Experiments
	Experiment 1: Zigbee, basic filtering
	Experiment 2: Zigbee, attack filtering
	Experiment 3: Enhanced ShockBurst, basic filtering
	Experiment 4: Enhanced ShockBurst, attack filtering
	Experimental conclusion

	Discussion and Limitations
	Genericity and extension to other protocols
	Performance issues
	Critical environments

	Conclusion

	Conclusion and future work
	Bibliography

