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Monique LAURENT Professeur d’Université Membre du Jury
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Kim-Chuan TOH Professeur d’Université Président du Jury
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Résumé
Les certificats de positivité ou Positivstellensätze fournissent des représentations de polynômes

positifs sur des ensembles semialgébriques de basiques, c’est-à-dire des ensembles définis par un
nombre fini d’inégalités polynomiales. Le célèbre Positivstellensatz de Putinar stipule que tout
polynôme positif sur un ensemble semialgébrique basique fermé S peut être écrit comme une com-
binaison pondérée linéaire des polynômes décrivant S, sous une certaine condition sur S légèrement
plus forte que la compacité. Lorsqu’il est écrit comme ceci, il devient évident que le polynôme est
positif sur S, et donc cette description alternative fournit un certificat de positivité sur S.

De plus, comme les poids polynomiaux impliqués dans le Positivstellensatz de Putinar sont des
sommes de carrés (SOS), de tels certificats de positivité permettent de concevoir des relaxations
convexes basées sur la programmation semidéfinie pour résoudre des problèmes d’optimisation
polynomiale (POP) qui surviennent dans diverses applications réelles, par exemple dans la gestion
des réseaux d’énergie et l’apprentissage automatique pour n’en citer que quelques unes. Développée
à l’origine par Lasserre, la hiérarchie des relaxations semidéfinies basée sur le Positivstellensatz de
Putinar est appelée la hiérarchie Moment-SOS.

Dans cette thèse, nous proposons des méthodes d’optimisation polynomiale basées sur des
certificats de positivité impliquant des poids SOS spécifiques, sans ou avec dénominateurs.

La première partie de ce manuscrit se concentre sur les méthodes sans dénominateurs, et basées
sur le Positivstellensatz de Putinar.

Nous proposons une nouvelle hiérarchie Moment-SOS pour résoudre des problèmes d’optimisation
de polynômes creux à grande échelle. Sa nouveauté est d’exploiter simultanément la parcimonie
corrélative et la parcimonie des termes en combinant les avantages de deux cadres existants pour
l’optimisation des polynômes creux. Ce faisant, nous obtenons (i) une hiérarchie à deux niveaux
de relaxations de programmation semidéfinies avec la propriété cruciale de comporter des blocs de
matrices SDP (au lieu d’une seule grande matrice), et (ii) la garantie de convergence vers l’optimum
global sous certaines conditions. Nous démontrons son efficacité et son évolutivité sur plusieurs
instances à grande échelle du célèbre problème Max-Cut et sur certaines instances de l’important
problème industriel de flux de puissance optimal (OPF), impliquant jusqu’à six mille variables et
des dizaines de milliers de contraintes.

Ensuite, nous prouvons que chaque relaxation moment semidéfinie d’un POP contraint peut
être reformulée comme un programme semi-défini faisant intervenir une matrice ayant la propriété
de trace constante (CTP). En conséquence, de telles relaxations peuvent être résolues efficacement
par des méthodes du premier ordre qui exploitent le CTP, par exemple, la méthode de Lagrangien
augmenté basée sur le gradient conditionnel. Nous étendons également ce cadre d’exploitation de
CTP aux POPs à grande échelle avec différentes structures de parcimonie. L’efficacité de cette
méthode est illustrée sur des relaxations de moment de second ordre pour divers programmes
quadratiques à contrainte quadratique générés aléatoirement.

La deuxième partie de ce manuscrit porte sur les méthodes avec dénominateurs, basées sur les
certificats de positivité dus à Putinar et Vasilescu, Reznick, ainsi qu’à Pólya.

Nous revisitons deux certificats de positivité sur des ensembles semialgébriques basiques (éventuellement
non compacts) dus à Putinar et Vasilescu. Nous utilisons la technique de Jacobi pour fournir une
preuve alternative avec un degré effectif lié aux poids SOS dans de tels certificats. En conséquence,
nous pouvons définir une hiérarchie de relaxations semidéfinies pour les POPs généraux. La con-
vergence vers un voisinage de la valeur optimale et la dualité forte sont garanties. Dans une sec-
onde contribution, nous introduisons une nouvelle méthode numérique pour résoudre des systèmes
d’inégalités et d’égalités polynomiales avec éventuellement un nombre indénombrable de solutions.
En prime, on peut appliquer cette méthode pour obtenir des optimiseurs globaux approchés en
optimisation polynomiale.

Nous fournissons ensuite une nouvelle borne sur le degré des poids SOS dans le Positivstellensatz
de Putinar–Vasilescu et obtenons le nouveau Positivstellensatz suivant:

Si f est un polynôme de degré au plus 2df , positif sur l’ensemble semi-algébrique S := {x :
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gi(x) ≥ 0, i ∈ [m]} à intérieur non vide (et avec g1 := R − ‖x‖22 avec R > 0), alors il existe des
constantes positives c̄ et c dépendantes de f, gi telles que pour tout ε > 0, pour tout k ≥ c̄ε−c,

(1 + ‖x‖22)k(f + ε) = σ0 +
m∑
i=1

σigi ,

pour des polynômes SOS σi avec deg(σ0) et deg(σigi) au plus 2(df + k). Ici ‖ · ‖2 désigne la
norme vectorielle `2. En conséquence, nous obtenons une hiérarchie convergente de relaxations
semidéfinies pour les bornes inférieures en optimisation polynomiale sur des ensembles semi-
algébriques compacts basiques. La complexité de cette hiérarchie est O(ε−c) pour une précision
prescrite ε > 0. En particulier, si m = L = 1 alors c = 65, ce qui donne une complexité de calcul
O(ε−65) pour minimiser un polynôme sur la boule unité.

Dans une autre contribution, nous dérivons une variante creuse du Positivstellensatz de Reznick.
Si f est une forme définie positive, le Positivstellensatz de Reznick indique qu’il existe k ∈ N tel
que ‖x‖2k2 f est un SOS. Si nous supposons maintenant que f =

∑p
c=1 fc, où chaque forme fc

dépend d’un sous-ensemble des variables initiales, et supposons que ces sous-ensembles satisfont
la propriété d’intersection courante (RIP). Alors il existe k ∈ N tel que f =

∑p
c=1 σc/H

k
c , où

σc est une somme de carrés de polynômes, Hc est un dénominateur polynomial uniforme, et
les deux polynômes σc, Hc dépendent uniquement des mêmes variables que fc, pour chaque c ∈
[p]. En d’autres termes, le modèle de parcimonie de f se reflète également dans cette version
parcimonieuse du certificat de positivité de Reznick. Nous utilisons ensuite ce résultat pour obtenir
également des certificats de positivité pour (i) les polynômes non négatifs sur tout l’espace et (ii)
les polynômes positifs sur un ensemble semialgébrique basique (éventuellement non compact), en
supposant que les données d’entrée satisfont la RIP. Les deux sont des versions parcimonieuses du
Positivstellensatz de Putinar-Vasilescu.

Enfin, nous considérons la minimisation d’un polynôme sur un ensemble semialgébrique contenu
dans l’orthant positif. Il peut être converti en un POP équivalent en élevant au carré chaque
variable. En utilisant la parité et le concept de largeur de facteur, nous proposons une hiérarchie
de relaxations semidéfinies basée sur l’extension du Positivstellensatz de Pólya par Dickinson–Povh.
Comme caractéristique distinctive et cruciale, la taille maximale de la matrice de chaque relaxation
semidéfinie résultante peut être choisie arbitrairement. De plus, la suite de valeurs renvoyée par la
nouvelle hiérarchie converge vers la valeur optimale du POP d’origine au taux O(ε−c) si l’ensemble
semialgébrique a un intérieur non vide. Nous appliquons la même idée pour une extension du
Positivstellensatz de Handelman pour obtenir une autre hiérarchie de relaxations semidéfinies avec
une taille de matrice maximale prescrite. Lorsqu’elle est appliquée à la certification de la robustesse
des réseaux de neurones multicouches et au calcul de valeurs singulières maximales positives, notre
méthode basée sur le Positivstellensatz de Pólya fournit de meilleures bornes et s’exécute plusieurs
centaines de fois plus rapidement que la hiérarchie Moment-SOS standard.

Mots-clés: optimisation polynomiale, hiérarchie Moment-SOS, taux de convergence, program-
mation semidéfinie, Positivstellensatz de Putinar, Positivstellensatz de Putinar–Vasilescu, Posi-
tivstellensatz de Reznick, Positivstellensatz de Pólya, propriété de trace constante, parcimonie des
variables et des termes
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Abstract

Positivity certificates or Positivstellensätze provide representations of polynomials positive on
basic semialgebraic sets, i.e., sets defined by finitely many polynomial inequalities. The famous
Putinar’s Positivstellensatz states that every positive polynomial on a basic closed semialgebraic
set S can be written as a linear weighted combination of the polynomials describing S, under
a certain condition on S slightly stronger than compactness. When written in this it becomes
obvious that the polynomial is positive on S, and therefore this alternative description provides a
certificate of positivity on S.

Moreover, as the polynomial weights involved in Putinar’s Positivstellensatz are sums of squares
(SOS), such Positivity certificates enable to design convex relaxations based on semidefinite pro-
gramming to solve polynomial optimization problems (POPs) that arise in various real-life appli-
cations, e.g., in management of energy networks and machine learning to cite a few. Originally
developed by Lasserre, the hierarchy of semidefinite relaxations based on Putinar’s Positivstellen-
satz is called the Moment-SOS hierarchy.

In this thesis, we provide polynomial optimization methods based on positivity certificates
involving specific SOS weights, without or with denominators.

The first part of this manuscript focuses on methods without denominators, and based on
Putinar’s Positivstellensatz.

We propose a new Moment-SOS hierarchy for solving large-scale sparse polynomial optimiza-
tion problems. Its novelty is to exploit simultaneously correlative sparsity and term sparsity by
combining advantages of two existing frameworks for sparse polynomial optimization. In doing
so we obtain (i) a two-level hierarchy of semidefinite programming relaxations with the crucial
property to involve blocks of SDP matrices (instead of a single big matrix), and (ii) the guarantee
of convergence to the global optimum under certain conditions. We demonstrate its efficiency and
scalability on several large-scale instances of the celebrated Max-Cut problem and some instances of
the important industrial optimal power flow problem (OPF), involving up to six thousand variables
and tens of thousands of constraints.

Next, we prove that every semidefinite moment relaxation of a constrained POP can be refor-
mulated as a semidefinite program involving a matrix with constant trace property (CTP). As a
result, such relaxations can be solved efficiently by first-order methods that exploit CTP, e.g., the
conditional gradient-based augmented Lagrangian method. We also extend this CTP-exploiting
framework to large-scale POPs with different sparsity structures. Efficiency and scalability are
illustrated on second-order moment relaxations for various randomly generated quadratically con-
strained quadratic programs.

The second part of this manuscript focuses on methods with denominators, based on positivity
certificates due to Putinar and Vasilescu, Reznick, as well as Pólya.

We revisit two certificates of positivity on (possibly noncompact) basic semialgebraic sets due to
Putinar and Vasilescu. We use Jacobi’s technique to provide an alternative proof with an effective
degree bound on the SOS weights in such certificates. As a consequence, we can define a hierarchy
of semidefinite relaxations for general POPs. Convergence to a neighborhood of the optimal value
as well as strong duality and analysis are guaranteed. In a second contribution, we introduce a
new numerical method for solving systems of polynomial inequalities and equalities with possibly
uncountably many solutions. As a bonus, one can apply this method to obtain approximate global
optimizers in polynomial optimization.

We next provide a new degree bound on the SOS weights in Putinar–Vasilescu’s Positivstellen-
satz and obtain the following new Positivstellensatz:

If f is a polynomial of degree at most 2df , nonnegative on the semialgebraic set S := {x :
gi(x) ≥ 0, i ∈ [m]} with nonempty interior (and with g1 := R− ‖x‖22 for some R > 0), then there
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exist positive constants c̄ and c depending on f, gi such that for any ε > 0, for all k ≥ c̄ε−c,

(1 + ‖x‖22)k(f + ε) = σ0 +
m∑
i=1

σigi ,

for some SOS polynomials σi with deg(σ0) and deg(σigi) at most 2(df +k). Here ‖ · ‖2 denotes the
`2 vector norm. As a consequence, we obtain a converging hierarchy of semidefinite relaxations for
lower bounds in polynomial optimization on basic compact semialgebraic sets. The complexity of
this hierarchy is O(ε−c) for prescribed accuracy ε > 0. In particular, if m = L = 1 then c = 65,
which yields a O(ε−65) computational complexity for minimizing a polynomial on the unit ball.

In another contribution we derive a sparse variant of Reznick’s Positivstellensatz. If f is a
positive definite form, Reznick’s Positivstellensatz states that there exists k ∈ N such that ‖x‖2k2 f
is an SOS. Namely, assume that f =

∑p
c=1 fc, where each form fc depends on a subset of the initial

variables, and assume that these subsets satisfy the so-called running intersection property (RIP).
Then there exists k ∈ N such that f =

∑p
c=1 σc/H

k
c , where σc is a sum of squares of polynomials,

Hc is a uniform polynomial denominator, and both polynomials σc, Hc involve the same variables
as fc, for each c ∈ [p]. In other words, the sparsity pattern of f is also reflected in this sparse version
of Reznick’s certificate of positivity. We then use this result to also obtain positivity certificates for
(i) polynomials nonnegative on the whole space and (ii) polynomials nonnegative on a (possibly
noncompact) basic semialgebraic set, assuming that the input data satisfy the RIP. Both are sparse
versions of Putinar–Vasilescu’s Positivstellensatz.

Finally, we consider the minimization of a polynomial on a semialgebraic set contained in the
nonnegative orthant. It can be converted to an equivalent POP by squaring each variable. Using
even symmetry and the concept of factor width, we propose a hierarchy of semidefinite relaxations
based on the extension of Pólya’s Positivstellensatz by Dickinson–Povh. As its distinguishing and
crucial feature, the maximal matrix size of each resulting semidefinite relaxation can be chosen
arbitrarily. Moreover, the sequence of values returned by the new hierarchy converges to the optimal
value of the original POP at the rate O(ε−c) if the semialgebraic set has nonempty interior. When
applied to (i) robustness cerification of multi-layer neural networks and (ii) computing positive
maximal singular values, our method based on Pólya’s Positivstellensatz provides better bounds
and runs several hundred times faster than the standard Moment-SOS hierarchy.

Keywords: polynomial optimization, Moment-SOS hierarchy, convergence rate, semidefinite
programming, Putinar’s Positivstellensatz, Putinar–Vasilescu’s Positivstellensatz, Reznick’s Posi-
tivstellensatz, Pólya’s Positivstellensatz, constant trace property, correlative and term sparsity
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Chapter 1

Introduction

1.1 A brief history of positivity certificates
Deciding nonnegativity of a polynomial is an important and attractive problem throughout

history of the development of real algebraic geometry. In his famous and seminal work [79], Hilbert
characterized all cases where nonnegative polynomials are sums of squares (SOS) of polynomials.
They are the first positivity certificates without denominators. Later Blekherman showed in [19]
that there are significantly more nonnegative polynomials than SOS. In 1927 Artin proved in [7] that
every nonnegative polynomial can be decomposed as a sum of squares of rational functions, thereby
solving Hilbert’s 17th problem. Namely, f is nonnegative if and only if σDf = σN for some SOS
polynomials σN and σD 6= 0. Accordingly, Hilbert–Artin’s Positivstellensatz has a non-prescribed
denominator. Nevertheless, in his celebrated work [175] Reznick provides a representation that
involves a uniform denominator for positive definite forms. Later on, positivity certificates on a
general semialgebraic set, involving denominators, have been proposed by Stengle [192] (see also
Krivine [101]). A basic semialgebraic set S(g, h) can be written as

S(g, h) := {x ∈ Rn : gi(x) ≥ 0 , i ∈ [m]; hj(x) = 0 , j ∈ [l] } , (1.1.1)

where n ∈ N is the dimension of the ambient space, m, l ∈ N are the number of inequality and
equality constraints, and (gi, hj) are polynomials, [m] := {1, . . . ,m}. Stengle and Krivine rely on

P(g, h) :=

 ∑
α∈{0,1}m

σαg
α1
1 . . . gαmm +

l∑
j=1

φjhj : σα ∈ Σ[x], φj ∈ R[x]

 , (1.1.2)

a tool from real algebraic geometry called preordering, associated with the polynomials (gi, hj).
Here R[x] denotes the ring of real polynomials and Σ[x] ⊂ R[x] stands for the set of SOS polyno-
mials. Krivine–Stengle’s Positivstellensatz (or representation of positive polynomials) states that

f ≥ 0 on S(g, h) ⇔ ∃q1, q2 ∈ P(g, h), s ∈ N : q1f = f2s + q2 , (1.1.3)
f > 0 on S(g, h) ⇔ ∃q1, q2 ∈ P(g, h) : q1f = 1 + q2 . (1.1.4)

Notice that the above representations involve a multiplier q1 for f as well as cross-products of the
gi’s in (1.1.2).

When S(g, h) is compact, Schmüdgen proves in [185] that if f > 0 on S(g, h), then f ∈ P(g, h),
yielding the first Positivstellensatz without denominators over a general compact semialgebraic set.

Let

Q(g, h) :=

σ0 +
m∑
i=1

σigi +
l∑

j=1
φjhj : σi ∈ Σ[x], φj ∈ R[x]

 . (1.1.5)

The set Q(g, h) is called the quadratic module associated with the polynomials (gi, hj). In 1993
Putinar [168] refined Schmüdgen’s Positivstelensatz [185] for compact basic semialgebraic sets
(1.1.1) that satisfies an Archimedean condition. The latter states that R−‖x‖22 belongs to Q(g, h)

17
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Table 1.1: Some known Positivstellensätze.

Year Author(s) Statement Compact Denominator

1888
Hilbert-
Artin
[79, 7]

If f is globally nonnegative, then σDf = σN for
some σD, σN ∈ Σ[x]. no yes

(non-prescribed)

1964
Krivine–
Stengle
[101, 192]

If a polynomial f is nonnegative on S(g), then σf =∑
α∈{0,1}m(σα

∏m

i=1 g
αi
i ) for some σ, σα ∈ Σ[x]. no yes

(non-prescribed)

1974 Pólya
[166]

If f is a form and f > 0 on Rn+\{0}, then (
∑

j
xj)kf

has nonnegative coefficients for some k ∈ N. no yes
(prescribed)

1991 Schmüdgen
[185]

If f is positive on S(g) and S(g) is compact, then
f =

∑
α∈{0,1}m(σα

∏m

i=1 g
αi
i ) for some σα ∈ Σ[x]. yes no

1993 Putinar
[168]

If a polynomial f is positive on S(g) satisfying the
Archimedean assumption, then f = σ0 +

∑m

i=1 σigi
for some σi ∈ Σ[x].

yes no

1995 Reznick
[175]

If f is a positive definite form, then ‖x‖2k
2 f ∈ Σ[x]

for some k ∈ N. no yes
(prescribed)

1999
Putinar–
Vasilescu
[170]

If a polynomial f is nonnegative on S(g), then for
every ε > 0, there exists k ∈ N such that θk(f +
εθd) = σ0 +

∑m

i=1 σigi for some σi ∈ Σ[x], where
d := 1 + bdeg(f)/2c and θ := ‖x‖2

2 + 1.

no yes
(prescribed)

2015 Dickinson–
Povh [45]

If a polynomial f is nonnegative on S(g) ⊂ Rn+,
then for every ε > 0, there exists k ∈ N such that
θk(f + εθd) = σ0 +

∑m

i=1 σigi for some σi being
SOS of monomials, where d := 1 + bdeg(f)/2c and
θ := ‖x‖2

2 + 1.

no yes
(prescribed)

for some R > 0; this can be automatically ensured by including the additional redundant constraint
gm+1(x) := R − ‖x‖22 ≥ 0 in the definition of S(g, h). It avoids a multiplier for f and no cross-
product of the gi’s, a highly desirable feature for optimization purposes. Explicitly, Putinar’s
Positivstellensatz states the following result:

Theorem 1.1. (Putinar [168]) Let f, g1, . . . , gm, h1, . . . , hl ∈ R[x]. Assume that Q(g, h) is Archimedean
and f is positive on S(g, h). Then f belongs to Q(g, h).

In Table 1.1 we list some Positivstellensätze.
SOS decompositions of nonnegative polynomials have a distinguishing feature with impor-

tant practical implications: Indeed they are tractable because they can be obtained by solving
a semidefinite program. Semidefinite programming (SDP) is an important class of convex conic
optimization problems that can be solved efficiently, up to arbitrary precision, fixed in advance;
the interested reader is referred to, e.g., [16, Chapter 4]. Namely, writing a polynomial f ∈ R[x]2d
as an SOS boils down [161] to computing the entries of a symmetric (Gram) matrix G with
only nonnegative eigenvalues (denoted by “G � 0”) such that f = v>d Gvd, with vd being the
vector of all monomials of degree at most d. This connection between SOS and SDP promotes
many important applications of optimization, operations research, signal processing, computa-
tional geometry, probability and statistics, control, PDEs, let alone recent applications in quan-
tum information and computer vision. For more details the interested reader is referred to, e.g.,
[208, 202, 214, 184, 183, 36, 34, 194, 154, 193] and references therein.

1.2 A brief history on polynomial optimization
Optimization of polynomials on semialgebraic sets is an important area of applied mathemat-

ics, which initially motivated the introduction of the Moment-SOS hierarchy, based on positiv-
ity certificates with SOS weights. Indeed since the pioneer works of Lasserre [102] and Parrilo
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[157], SOS have now become a powerful tool in polynomial optimization. Given polynomials
f ∈ R[x], g = {gi}mi=1 ⊂ R[x], h = {hj}lj=1 ⊂ R[x], consider the following polynomial optimization
problem (POP):

f? := inf
x∈S(g,h)

f(x) , (1.2.1)

with n variables, m inequality constraints, l equality constraints, and where S(g, h) is defined as
in (1.1.1). In general POP (1.2.1) is non-convex and NP-hard (see Laurent [110]).

Consider first the unconstrained case of POP (1.2.1) corresponding to S(g, h) = Rn. If f − f?
(≥ 0 on Rn) is an SOS polynomial then f? can be obtained by solving a single semidefinite program
(SDP). Obviously denominators are not required in this case. However in general f −f? is an SOS
of rational functions (not polynomials) due to Krivine–Stengle’s Positivstellensatz, and therefore
denominators are required, which yields:

f? = sup
λ,σN ,σD

{λ : σD (f − λ) = σN ; σN , σD ∈ Σ[x] ; σD(0) = 1 } . (1.2.2)

By fixing in advance a bound d on the degree of the denominator σD, one may solve (1.2.2) by SDP
combined with bisection search on λ, and let d increase if there is no solution. The normalization
constraint σD(0) = 1 ensures that neither the denominator σD nor the numerator σN is the zero
polynomial.

In the constrained case, a basic idea is to rather consider

f? = sup{λ ∈ R : f − λ ≥ 0 on S(g, h)} (1.2.3)

and replace the difficult constraint “f − λ ≥ 0 on S(g, h)” with the stronger but more tractable
certificate of positivity on S(g, h) for f−λ. For instance, if S(g, h) in (1.1.1) is compact and assum-
ing with no loss of generality that the Archimedean assumption holds, Putinar’s Positivstellensatz
(Theorem 1.1) provides the decomposition f − λ = σ0 +

∑m
i=1 σigi, with σi ∈ Σ[x]. Then one

obtains the monotone non-decreasing sequence (ρk)k∈N of lower bounds on f? defined by

ρk := sup
λ,σi

{λ : f − λ = σ0 +
m∑
i=1

σigi, σi ∈ Σ[x] , deg(σ0) ≤ 2k , deg(σigi) ≤ 2k} , (1.2.4)

where denominators are not needed. Moreover, by invoking Putinar’s Positivstellensatz, one ob-
tains the convergence ρk ↑ f? as k increases. Introduced by Lasserre in [102], for each fixed k,
(1.2.4) is a semidefinite program and is an SOS strengthening of (1.2.3) (as we restrict the feasible
set). The dual of (1.2.4) is also a semidefinite program which is a Moment relaxation of (1.2.1).
The Moment-SOS hierarchy is the sequence (indexed by k) of semidefinite programs (1.2.4) and
their associated duals. As proved by Nie [147], convergence of (ρk)k∈N to f? is finite for generic
constraints S(g, h), and with the numerical procedure of Henrion and Lasserre [77] one can extract
global minimizers from an optimal solution of the (exact) semidefinite relaxation (dual to (1.2.4))
in the hierarchy. It relies on the flat extension condition of Curto and Fialkow [40, 111]. In the
above-mentioned frameworks, compactness of S(g, h) is crucial.

In this thesis, we treat the case where S(g, h) is not compact by an appropriate use of Putinar–
Vasilescu’s Positivstellensatz stated in Table 1.1 with the uniform denominator (1 + ‖x‖22)k. Fur-
thermore, we discover and exploit that with this uniform denominator one may obtain different
types of Moment-SOS hierarchies with smaller computational complexity than standard ones, hence
with a better efficiency for solving POPs.

1.3 Overview of degree bound and convergence rate
The convergence rate of the Moment-SOS hierarchy to the optimal value of a POP inherently

depends on the complexity of the representation of positive polynomials. Roughly speaking, ob-
taining a lower degree bound on the SOS polynomials involved in the positivity certificate allows
one to improve the convergence rate of the corresponding Moment-SOS hierarchy. How to find
such lower degree bound is an interesting question and goes hand in hand with the quest of improv-
ing the convergence analysis of the Moment-SOS hierarchy. Let us review some of the standard
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results on degree bounds of positivity certificates and the corresponding convergence rates of the
associated Moment-SOS hierarchy.

We denote by Sn−1 the unit sphere in Rn. For each q ∈ R[x], let

δ(q) :=
sup

{
q(x) : x ∈ Sn−1}

inf {q(x) : x ∈ Sn−1}
.

In [175] Reznick provides a Positivstellensatz involving a uniform denominator for positive definite
forms with an explicit degree bound:

Theorem 1.2. (Reznick [175, Theorem 3.12]) Suppose that q ∈ R[x] is a positive definite form of
degree 2d, for some d ∈ N. Then for k ∈ N and

k ≥ 2nd(2d− 1)
4 log 2 δ(q)− n+ 2d

2 , (1.3.1)

‖x‖2k2 q is an SOS of polynomials.

In [175, Theorem 3.12], Reznick guarantees that the SOS decomposition of ‖x‖2k2 q is actually
a sum of powers of linear forms. The degree bound of Reznick’s Positivstellensatz yields a linear
convergence rate of O(ε−1) for the minimization of a polynomial (see [130, Theorem 6]).

Powers and Reznick [167] improve the existing degree bound available for Pólya’s Positivstellen-
satz [165] which is associated with another uniform denominator. Explicitly, if q is a homogeneous
polynomial of degree d positive on the simplex

∆n = {x ∈ Rn : xj ≥ 0 , j ∈ [n] ,
∑
j∈[n] xj = 1} , (1.3.2)

then for all k ∈ N satisfying
k ≥ d(d− 1)‖q‖

2 minx∈∆n
q(x) − d , (1.3.3)

(
∑
j∈[n] xj)kq has positive coefficients. Here for each h =

∑
α hαxα ∈ R[x], we note ‖h‖ :=

maxα
|hα|
cα

with cα := |α|!
α1!...αn! for each α ∈ Nn. This yields a linear convergence rate of O(ε−1)

for the minimization of a homogeneous polynomial on the simplex.
Applying the result of Powers and Reznick, Schweighofer [188] obtains a degree bound for

Schmüdgen’s Positivstellensatz [185] claiming that given a semialgebraic set

S(g) = {x ∈ Rn : gi(x) ≥ 0 , i ∈ [m]} , (1.3.4)

which is a subset of (−1, 1)n and a polynomial f having the minimal value f? > 0 on S(g), then
there exists a real c > 0 depending on g = {gi}i∈[m] such that for all k ∈ N satisfying

k ≥ cd2
f

(
1 +

(
d2
fn

df
‖f‖
f?

)c)
, (1.3.5)

one has f ∈ Pk(g), where Pk(g) is the truncated preordering of order k ∈ N associated with S(g):

Pk(g) := {
∑

α∈{0,1}m σαg
α1
1 . . . gαmm : σα ∈ Σ[x] , deg(σαg

α1
1 . . . gαmm ) ≤ k} . (1.3.6)

Consequently, the corresponding SOS hierarchy of lower bounds (ρpre
k )k∈N, with

ρpre
k := supλ∈R{λ : f − λ ∈ Pk(g)} , k ∈ N , (1.3.7)

converges to f? with the rate O(ε−c). Observe that no denominator is required in this case.
Nevertheless, the representation of f − λ in Pk(g) involves 2m SOS polynomials.

Recently, by relying on polynomial kernel methods, Fang and Fawzi [57] have explicited the
exponent c := 1

2 in (1.3.5) when S(g) is the unit sphere Sn−1. It yields the optimal convergence rate
O(1/k2) for the minimization of a polynomial on this set by using Schmüdgen’s Positivstellensatz.
Following Fang–Fawzi’s method, Laurent and Slot obtain in [112, 191] similar convergence rates
when S(g) is one of the following sets: the standard hypercube [−1, 1]n, the unit ball Bn and the
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Table 1.2: Recent fastest convergence rates in polynomial optimization.

Year Author(s) for com-
plexity

Author(s) for
Positivstellen-
satz

Semialgebraic
set Cone Programming Rate

1995 Reznick [175] Reznick [175] whole space SOS SDP O(ε−1)

2001 Powers–Reznick [167] Pólya [166] simplex nonnegative
orthant LP O(ε−1)

2004 Schweighofer [188] Schmüdgen
[185] compact preordering SDP O(ε−c)

2016 Fawzi–Saunderson–
Parrilo [58]

Schmüdgen
[185]

boolean
hypercube preodering SDP O(ε−1)

2020 Fang–Fawzi [57] Schmüdgen
[185] sphere preodering SDP O(ε−1/2)

2021 Laurent–Slot [112] Schmüdgen
[185] hypercube preodering SDP O(ε−1/2)

2021 Baldi–Mourrain [13] Putinar [168] archimedean quadratic
module SDP O(ε−c)

2021 Slot [191] Schmüdgen
[185] ball, simplex preordering SDP O(ε−1/2)

2022 Mai–Magron [132]
(Proposition 6.1)

Putinar–
Vasilescu [170] general quadratic

module SDP O(ε−c)

2022 Mai–Magron–
Lasserre–Toh [135]

Dickinson–Povh
[45]

contained in
the nonnega-
tive orthant

nonnegative
orthant,
quadratic
module

LP, SDP O(ε−c)

unit simplex ∆n. Let Qk(g) denote the truncated quadratic module of order k ∈ N associated with
S(g), that is:

Qk(g) := {σ0 +
∑m
i=1 σigi : σi ∈ Σ[x] , deg(σ0) ≤ k , deg(σigi) ≤ k} . (1.3.8)

Notice that Pk(g) = Qk(g) if S(g) is the unit ball or the unit sphere.
Applying the degree bound of Laurent and Slot [112], Baldi and Mourrain obtain in [13] poly-

nomial degree bounds for Putinar’s Positivstellensatz which improves the exponential bound given
by Nie and Schweighofer [150].
Theorem 1.3. (Baldi–Mourrain [13]) Let f, g1, . . . , gm be in R[x]. Assume that ∅ 6= S(g) ⊂
(−1, 1)n is Archimedean and that the minimal value f? of f over S(g) is positive. Then there exist
real numbers c1, c2, c3 > 0 depending on g such that for all k ∈ N satisfying

k ≥ c1d
c2
f

(
‖f‖
f?

)c3

, (1.3.9)

one has f ∈ Qk(g).
Accordingly, the corresponding SOS hierarchy of lower bounds (ρmod

k )k∈N, with

ρmod
k := supλ∈R{λ : f − λ ∈ Qk(g)} , k ∈ N , (1.3.10)

converges to f? with the rate O(ε−c). Moreover, the representation of f −λ in Qk(g) involves only
m+1 SOS polynomials which is in deep contrast with the exponential number of SOS polynomials
involved in the representation in Pk(g). Moreover, no denominator is required in this case. Most
of recent convergence rates obtained for polynomial optimization are summarized in Table 1.2.

Recent work by Lombardi, Perucci and Roy [119] provides degree bounds in a quite general
situation. The best degree bounds for Hilbert’s 17th problem in three homogeneous variables
are actually due to Hilbert’s original 1893 paper [79]. Some lower bounds for Hilbert’s 17th
problem (quite far away from the upper bounds) were proved in [20] by Blekherman, Gouveia and
Pfeiffer. Hilbert’s 1893 result and sharp degree bounds for projective curves (i.e., curves defined
by homogeneous polynomials) were proved in [21] by Blekherman, Smith and Velasco.
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Table 1.3: Complexity comparison (in terms of floating-point operations) of several methods for solving
SDP.

Method Software SDP type Convergence rate The most expensive part
per iteration

IP [76]
(second-order)

SDPT3 [196],
Mosek [6] arbitrary O(log(1/ε)) [201]

system of linear equations
solving with complexity
O((smax)6) [200, Table 1]

IP with non-
symmetric cone
[158]
(second-order)

alfonso [159] arbitrary O(log(1/ε))
system of linear equations
solving with complexity
O(η3)

ADMM [24]
(first-order)

SCS [156],
COSMO [60] arbitrary O(ε−1) [81]

positive definite system of
linear equations solving by
LDL>-decomposition with
complexity O((smax)6)

SBM [75]
(first-order) ConicBundle [74] with CTP O(log(1/ε)/ε) [47]

positive definite linear sys-
tem solving with complex-
ity O((smax)6)

CGAL [218]
(first-order)

SketchyCGAL
[219] with CTP O(ε−2)

smallest eigenvalue com-
puting by the Arnoldi it-
eration with complexity
O(smax) [113]

1.4 Computational complexity of the Moment-SOS relax-
ations

So far we have discussed the complexity of each representation in term of degree bounds, which
basically translates to convergence rates for the values returned by the related relaxations. We
next consider the cost of the numerical resolution of a given relaxation.

Computational cost of moment relaxations. The k-th order moment relaxation for POP
(1.2.1) can be rewritten in compact form as the following standard SDP:

τ = inf
X∈S+

{〈C,X〉 : 〈Aj ,X〉 = bj , j ∈ [ζ]} , (1.4.1)

where 〈A,B〉 := trace(AB) is the standard Frobenius inner product, S+ is the set of positive
semidefinite (psd) matrices written in a block diagonal form as follows: X = diag(X1, . . . ,Xω)
with Xj being a block of size s(j), j ∈ [ω], and ζ is the number of affine constraints. We denote
the largest block size by smax := maxj∈[ω] s

(j).
Note that SDP-relaxation (1.4.1) of POP (1.2.1) at step k of the Moment-SOS hierarchy has

ω = m + 1 blocks whose largest size is smax =
(
n+k
n

)
while the number of affine constraints is

ζ = O(
(
n+k
n

)2). Thus the computational cost for solving SDP (1.4.1) grows very rapidly with k.
We say that SDP (1.4.1) has constant trace property (CTP) if there exists a positive real number
a such that trace(X) = a, for all feasible solution X of SDP (1.4.1). We also say that POP (1.2.1)
has CTP when every moment relaxation of POP (1.2.1) has CTP.

In Table 1.3 are listed several available methods for solving SDP (1.4.1). Here we set η :=(
n+2k
n

)
. In particular, observe that two of them, CGAL and SBM, are first-order methods that ex-

ploit CTP. In [219], the authors combined CGAL with the Nyström sketch (named SketchyCGAL),
which requires dramatically less storage than other methods and is very efficient for solving Shor’s
relaxation of large-scale Max-Cut instances.

SDP relaxations of non-convex quadratically constrained quadratic programs. A non-
convex quadratically constrained quadratic (QCQP) program is a special instance of POP (1.2.1)
for which the degree of the input polynomials is at most two. Famous instances of non-convex
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QCQPs include the Max-Cut problem and the optimal power flow (OPF) problem [92]; in addition
we recall that linearly constrained quadratic programs have an equivalent Max-Cut formulation
[106]. They also have applications in deep learning, e.g., the computation of Lipschitz constants
[34] and the stability analysis of recurrent neural networks [54]. On the one hand, local optima
of non-convex QCQPs can be obtained by using local solvers; see e.g., [32]. On the other hand,
the global optimum of QCQPs can be approximated as closely as desired by using moment (SDP)
relaxations. In practice, non-convex QCQPs usually involve a large number of variables (say,
n ≥ 1000) and their associated SDP relaxations (1.4.1) can be classified in two groups as follows:

• The first order relaxation: k = 1 (also known as Shor’s relaxation in the literature). In
this case the number of affine constraints in SDP (1.4.1) is typically not exceeding the largest
block size, i.e., ζ ≤ smax. It can be efficiently solved by most SDP solvers, in particular with
SketchyCGAL [219]. Nevertheless the first order relaxation may provide only a lower bound
of the optimal value of POP (1.2.1). In this case one needs to solve the second and perhaps
even higher order relaxations to obtain tighter bounds on the global optimum.

• The second and higher order relaxations: k ≥ 2. In this case the number of affine
constraints in SDP (1.4.1) is typically much larger than the largest block size (ζ � smax).
Then unfortunately most SDP solvers cannot handle large-scale SDPs of this form.

Common issues of solving large-scale SDP relaxations. When solving the second and
higher order SDP relaxations, SDP solvers often encounter the following issues:

• Storage: Interior-point methods are often chosen by users because of their high accuracy.
These methods are efficient for solving medium-scale SDPs. However they frequently fail due
to lack of memory when solving large-scale SDPs (say, smax > 500 and ζ > 2 × 105 on a
standard laptop). First-order methods (e.g., ADMM, SBM, CGAL) provide an alternative
to interior-point methods to avoid the memory issue. This is due to the fact that the cost
per iteration of first-order methods is much lower than that of interior-point methods.
At the price of losing convexity one can also rely on heuristic methods and replace the full
matrix X in SDP (1.4.1) by a simpler one, in order to save memory. For instance, the Burer-
Monteiro method [28] considers a low rank factorization of X. However, to get correct results
the rank cannot be too low [205] and therefore this limitation makes it useless for the second
and higher order relaxations of POPs. Not suffering from such a limitation, CGAL not only
maintains the convexity of SDP (1.4.1) but also possibly runs with implicit matrix X.

• Accuracy: First-order methods have low convergence rates compared to the interior-point
methods. Their performance depends heavily on the problem scaling and conditioning. As
a result, in solving large-scale SDPs with first-order methods it is often difficult to obtain
numerical results with high accuracy. Therefore, we do not expect the relative gap of the
approximate value (valapprox) returned by first-order SDP solvers w.r.t. the exact value
(valexact), defined by

|valapprox − valexact|
|valexact|

, (1.4.2)

to be smaller than 10−8 (as for interior-point methods) but at least to be smaller than 1%.

1.5 Recent improvements on scalability and efficiency
Overcoming the scalability and efficiency issues mentioned in the previous section has become

a major scientific challenge in polynomial optimization. Many recent efforts in this direction are
mainly developed around the following ideas:

1. SDP-relaxations variants with small maximal matrix size solved efficiently by interior point
methods. This includes correlative sparsity [203, 103], term sparsity [212, 211, 213], symmetry
exploitation [61, 178], Jordan symmetry reduction [26], sublevel relaxations [35].

2. Exploit low-rank structures of SDP-relaxations; see, e.g., [215, 217].
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3. First-order methods to solve SDP-relaxations involving matrix variables of potentially large
size with constant trace [134, 131].

4. Develop convex relaxations that are based on alternatives to semidefinite cones. For example
this includes linear programming (LP) [109, 3], second-order conic programming (SOCP)
[123, 207, 3], copositive programming [162], non-symmetric conic programming [158], relative
entropy programming [51, 142], geometric programming [52].

Sparsity exploitation is one of the notable methods without denominators for reducing the size of
the Moment-SOS relaxations. For POPs in the form

f? := min
x∈S(g)

f(x) , (1.5.1)

where S(g) is defined as in (1.3.4), Waki et al. [203] (resp. Wang et al. [212]) have exploited
correlative (resp. term) sparsity to define appropriate sparse-variants of the associated standard
SOS-relaxations. Roughly speaking, in a given standard SOS-relaxation, they break each matrix
variable into many blocks of smaller sizes and solve the new resulting SDP via an interior-point
solver (e.g., Mosek [5] or SDPT3 [198]). It is due to the fact that the most expensive part of
interior-point methods for a standard SDP:

min
z,A(t)

j

c>z

s.t. z ∈ Rw , A(t)
j ∈ Rq×q ,

A(t)
0 +

∑w
j=1 zjA

(t)
j � 0 , t ∈ [u] ,

is solving a square linear system in every iteration. It has the complexity u(w3q3 + w3q2), which
mainly depends on the matrix size q. Thus one can solve the above SDP efficiently by using
interior-point methods if q, w are small and u is large.

Modern SDP solvers via the interior-point method (e.g. Mosek [4]) can solve an SDP problem
involving matrices of moderate size (say, q ≤ 5, 000) and variables of moderate number (say,
w ≤ 20, 000) in reasonable time on a standard laptop [195]. The SDP relaxations arising from the
Moment-SOS hierarchy typically involve matrices of size

(
n+k
k

)
and variables of number

(
n+2k

2k
)
,

where k is the relaxation order and n is the number of variables for a given POP. For problems with
n ' 200, it is thus possible to compute the first-order SDP relaxation of a quadratically constrained
quadratic problem (QCQP), as one can take k = 1, yielding

(
n+k
k

)
' 200 and

(
n+2k

2k
)
' 20, 000

(in this case, this relaxation is also known as Shor’s relaxation [189]). However, the quality of the
resulting approximation is often not satisfactory and it is then required to go beyond the first-order
relaxation. But for solving the second-order relaxation (k = 2) one is limited to problems of small
size, typically with

(
n+4

4
)
≤ 20, 000 (hence with n ≤ 23) on a standard laptop. Therefore, in view

of the current state of SDP solvers, the dense Moment-SOS hierarchy does not scale well enough.
One possible remedy is to rely on alternative weaker positivity certificates, such as the hierarchy

of linear programming (LP) relaxations based on Krivine–Stengle’s certificates [101, 192, 109] or
the second-order cone programming (SOCP) relaxation based on (scaled) diagonally dominant
sums of squares (DSOS/SDSOS) [3] to bound from below the minimum of f . Even though modern
LP/SOCP solvers can handle much larger size problems by comparison with SDP solvers, they
have been shown to provide less accurate bounds, in particular for combinatorial problems [110],
and do not have the property of finite convergence for continuous problems (not even for convex
QCQP problems [105, Section 9.3]). Below we outline some existing remedies to exploit sparsity
in different settings.

Unconstrained POPs. A first option is to exploit term sparsity for sparse unconstrained prob-
lems, i.e., when S(g) = Rn, and the objective f involves a few terms (monomials). The algorithm
consists of automatically reducing the size of the corresponding SDP matrix by eliminating the
monomial terms which never appear among the support of SOS decompositions [174]. Other
classes of positivity certificates have been recently developed with a specific focus on sparse un-
constrained problems. Instead of trying to decompose a positive polynomial as an SOS, one can
try to decompose it as a sum of nonnegative circuits (SONC), by solving a geometric program [84]
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or a second-order cone program [9, 207], or alternatively as a sum of arithmetic-geometric-mean-
exponentials (SAGE) [33] by solving a relative entropy program. Despite their potential efficiency
on certain sub-classes of POPs (e.g., sparse POPs with a small number of variables and a high
degree), these methods share the common drawback of not providing systematic practical modeling
frameworks for constrained problems.

Correlative sparsity. In order to reduce the computational burden associated with the dense
Moment-SOS hierarchy while keeping its nice convergence properties, one possibility is to take
into account the sparsity pattern satisfied by the variables of the POP [103, 203]. The resulting
algorithm has been implemented in the SparsePOP solver [204] and can handle sparse problems
with up to several hundred variables. Many applications of interest have been successfully handled
thanks to this framework, for instance certified roundoff error bounds in computer arithmetics
[121, 120] with up to several hundred variables and constraints, optimal power flow problems [92]
(where a multi-ordered Lasserre hierarchy was proposed) with up to several thousand variables
and constraints. More recent extensions have been developed for volume computation of sparse
semialgebraic sets [194], approximating regions of attraction of sparse polynomial systems [193],
noncommutative POPs [100], Lipschitz constant estimation of deep networks [34] and for sparse
positive definite functions [133]. In these applications, the cost polynomial and the constraint
polynomials possess a specific correlative sparsity pattern. The resulting sparse Moment-SOS hi-
erarchy is obtained by building blocks of SDP matrices with respect to some subsets or cliques of
the input variables. When the sizes of these cliques are reasonably small, one can expect to handle
problems with a large number of variables. For instance, the maximal size of cliques is less than
10 for some unconstrained problems in [203] or roundoff error problems in [121], and is less than
20 for the optimal power flow problems handled in [92]. Even though correlative sparsity has been
successfully used to tackle several interesting applications, there are still many POPs that cannot
be handled by considering merely correlative sparsity. For instance, there are POPs for which the
correlative sparsity pattern is (nearly) dense or which admits a correlative sparsity pattern with
variable cliques of large cardinality (say, > 20), yielding untractable SDPs.

Term sparsity To overcome these issues, one can exploit term sparsity as described in [206, 212,
211]. The TSSOS hierarchy from [212] as well as the complementary Chordal-TSSOS from [211]
offers some alternative to problems for which the correlative sparsity pattern is dense or nearly
dense. In both TSSOS and Chordal-TSSOS frameworks a so-called term sparsity pattern (tsp)
graph is associated with the POP. The nodes of this tsp graph are monomials (from a monomial
basis) needed to construct SOS strengthenings of the POP. Two nodes are connected via an edge
whenever the product of the corresponding monomials appears in the supports of polynomials
involved in the POP or is a monomial square. Note that this graph differs from the correlative
sparsity pattern (csp) graph used in [203] where the nodes are the input variables and the edges
connect two nodes whenever the corresponding variables appear in the same term of the objective
function or in the same constraint. A two-step iterative algorithm takes as input the tsp graph
and enlarges it to exploit the term sparsity in (1.5.1). Each iteration consists of two successive
operations: (i) a support extension operation and (ii) either a block closure operation on adjacency
matrices in the case of TSSOS [212] or a chordal extension operation in the case of Chordal-TSSOS
[211]. In doing so one obtains a two-level Moment-SOS hierarchy with blocks of SDP matrices. If
the sizes of blocks are relatively small then the resulting SDP relaxations become more tractable
as their computational cost is significantly reduced. Another interesting feature of TSSOS is that
the block structure obtained at the end of the iterative algorithm automatically induces a partition
of the monomial basis, which can be interpreted in terms of sign symmetries of the initial POP.
TSSOS and Chordal-TSSOS allow one to solve POPs with several hundred variables for which
there is no or little correlative sparsity to exploit; see [212, 211] for numerous numerical examples.

1.6 Organization and summary of contributions
The aim of this thesis is to address the above-mentioned complexity and efficiency issues. It

consists of two parts related to positivity certificates without and with denominators, respectively:
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1.6.1 Positivity certificates without denominators
• We provide in Chapter 2 an overview of the concepts and mandatory background related to

the Moment-SOS hierarchy for polynomial optimization, which is of interest in this thesis.

• In Chapter 3, we exploit simultaneously correlative sparsity and term sparsity to improve
scalability issues: (i) Correlative sparsity occurs when a polynomial is a sum of polynomials
involving a subset of the initial variables. (ii) Term sparsity occurs when a polynomial
involves only a few nontrivial terms. The idea is to exploit these different sparsity structures
to derive specific relaxations, where one breaks each matrix variable of the standard (dense)
SDP-relaxation into many blocks of smaller sizes and solve the new resulting SDP via an
interior-point solver (e.g., Mosek, SDPT3). We apply this method to provide tight bounds for
some large-scale optimal power flow problem involving up to six thousand variables and tens
of thousands of constraints.

• In addition to size reduction of the SDP relaxations, as mentioned above, we introduce in
Chapter 4 a new method that enables us to speed up the resolution of the SDP relaxations.
Explicitly, if an equality constrained POP has a sphere constraint of the form R− ‖x‖22 = 0
for some R > 0, the matrix variables involved in the relaxations have a constant trace, a
property that can be further exploited. In Chapter 5, we extend this property to the case
of POPs that have ball constraint of the form R − ‖x‖22 ≥ 0 for some R > 0. The constant
trace property boils down to SDPs where the feasible set of solutions is the intersection of the
semidefinite cone (matrices with nonnegative eigenvalues) and the hyperplane of trace one
matrices. By using first-order methods, this property allows one to solve SDP-relaxations
involving matrix variables of potentially large size.

1.6.2 Positivity certificates with denominators
• Chapter 6 focuses on designing a hierarchy of semidefinite relaxations based on Putinar–

Vasilescu’s Positivstellensatz. It allows one to handle general polynomial optimization prob-
lems over possibly noncompact semialgebraic sets. This Positivstellensatz is obtained by
combining homogenization techniques with Putinar’s Positivstellensatz. Each SOS polyno-
mial weight involved in the representation is replaced by an SOS of rational function with
(prescribed) denominator. We also provide a new numerical method to find a point in a given
basic semialgebraic set that possibly has positive dimension. This method is utilized to find
an approximate optimal solution of the initial POP, yielding more expressiveness.

• We provide in Chapter 7 an improved degree bound for Putinar–Vasilescu’s Positivstellensatz,
namely a polynomial degree bound in the input degrees. As a result (under some mild
conditions) we obtain an O(ε−c) rate of convergence for the sequence of values returned by
the corresponding hierarchy. The methodology consists of the following two steps: First, we
provide a constructive proof of the Positivstellensatz. Then we provide degree bounds for its
explicit SOS weights.

• In Chapter 8, we state a sparse version of Reznick’s Positivstellensatz [175]. The dense
version states that any positive definite form can be decomposed as an SOS of rational
functions with prescribed denominators. In the sparse setting, the form is a sum of forms,
where each summand only depends on a subset of the initial variables, and we obtain a
decomposition into a sum of sparse rational SOS.

• Chapter 9 is dedicated to the minimization of a polynomial over a semialgebraic set con-
tained in the nonnegative orthant. We provide a hierarchy of semidefinite relaxations based
on Pólya’s Positivstellensatz and associated with sums of squares of s-nomials, i.e., linear
combinations of s monomials with real coefficients, where s is prescribed in advance. The
advantage of these SDP relaxations is that the maximal block size s is controllable so that we
can solve them efficiently by using interior-point methods. We also obtain a convergence rate
for this hierarchy which is similar to the one based on Putinar–Vasilescu’s Positivstellensatz.
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Chapter 2

Polynomial optimization and the
Moment-SOS hierarchy

2.1 General notation

With x = (x1, . . . , xn), let R[x] stand for the ring of real polynomials and let Σ[x] ⊂ R[x]
be the subset of sum of squares (SOS) polynomials. Their restrictions to polynomials of degree
at most d and 2d are denoted by R[x]d and Σ[x]d respectively. For α = (α1, . . . , αn) ∈ Nn, let
|α| := α1 + · · · + αn. For d ∈ N, let Nnd := {α ∈ Nn : |α| ≤ d} and N∗d := {u ∈ N : u ∗ d}, for
∗ ∈ {≥,≤, >,<}. For r ∈ N>0, let [r] := {1, . . . , r}. Let (xα)α∈Nn be the canonical monomial
basis of R[x] (sorted w.r.t. the graded lexicographic order) and vd(x) be the vector of monomials of
degree up to d, with length b(n, d) :=

(
n+d
n

)
. When it is clear from the context, we also write b(d)

instead of b(n, d). A polynomial q ∈ R[x]d can be written as q(x) =
∑

α∈Nn
d
qα xα = q>vd(x),

where q = (qα) ∈ Rb(d) is its vector of coefficients in the canonical monomial basis. For q ∈ R[x], let
dqe := ddeg(q)/2e. The l1-norm of a polynomial q is given by the l1-norm of its vector of coefficients
q, that is ‖q‖1 :=

∑
α |qα|. Given a ∈ Rn, the l2-norm of a is ‖a‖2 := (a2

1 + · · ·+ a2
n)1/2.

2.2 Riesz linear functional and moment/localizing matrices

Given a real-valued sequence y = (yα)α∈Nn , let Ly : R[x] → R be the Riesz linear functional
defined by q 7→ Ly(q) :=

∑
α qαyα. Let d be a positive integer. A real infinite sequence (yα)α∈Nn

has a representing measure if there exists a finite Borel measure µ such that yα =
∫
Rn xαdµ(x) for

every α ∈ Nn. In this case, (yα)α∈Nn is called the moment sequence of µ. We denote by supp(µ)
the support of a Borel measure µ.

The moment matrix of order d associated with a real-valued sequence y = (yα)α∈Nn and
d ∈ N>0, is the real symmetric matrix Md(y) of size b(d), with entries (yα+β)α,β∈Nn

d
. The

localizing matrix of order d associated with y = (yα)α∈Nn and q =
∑

γ qγxγ ∈ R[x], is the real
symmetric matrix Md(q y) of size b(d) with entries (

∑
γ qγyγ+α+β)α,β∈Nn

d
.

Example 2.1. Consider the simple case where n = 1, q = 1−x2 and y = (y0, y1, y2, y3, y4). Then
Ly(q) = y0 − y2,

M2(y) =

y0 y1 y2
y1 y2 y3
y2 y3 y4

 and M1(qy) =
[
y0 − y2 y1 − y3
y1 − y3 y2 − y4

]
. (2.2.1)
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2.3 Quadratic module and ideal
Let g := {gi}i∈[m] ⊂ R[x] and h := {hj}j∈[l] ⊂ R[x]. Denote by S(g) and V (h) a basic

semialgebraic set and a real variety defined respectively by

S(g) := {x ∈ Rn : gi(x) ≥ 0 , i ∈ [m] } and
V (h) := {x ∈ Rn : hj(x) = 0 , i ∈ [l] } . (2.3.1)

Set S(g, h) := S(g) ∩ V (h). In other words, we have

S(g, h) = {x ∈ Rn : gi(x) ≥ 0 , i ∈ [m] ; hj(x) = 0 , j ∈ [l] } . (2.3.2)

The quadratic module associated with g is defined by

Q(g) := {σ0 +
m∑
i=1

σigi : σ0 ∈ Σ[x] , σi ∈ Σ[x]} (2.3.3)

and for a positive integer k, the set

Qk(g) := {σ0 +
∑m
i=1 σigi : σ0 ∈ Σ[x]k , σi ∈ Σ[x]k−dgie} (2.3.4)

is the truncation of Q(g) of order k.
Given h = {hj}j∈[l] ⊆ R[x], the set

I(h) := {
l∑

j=1
ψjhj : ψj ∈ R[x]} (2.3.5)

is the ideal generated by h, and the set Ik(h) := {
∑l
j=1 ψjhj : ψj ∈ R[x]2(k−dhje)} is the truncation

of I(h) of order k.
Set Q(g, h) = Q(g) + I(h) and Qk(g, h) = Qk(g) + Ik(h) for k ∈ N.

2.4 The Moment-SOS hierarchy
A polynomial optimization problem (POP) is defined as

f? := inf
x∈S(g,h)

f(x) , (2.4.1)

where S(g, h) are defined as in (2.3.1) for some polynomial f ∈ R[x], g and h defined as in the
previous section. We will assume that POP (2.4.1) has at least one global minimizer.

Set
kmin := max

i,j
{dfe, dgie, dhje } . (2.4.2)

Given a POP of the form (2.4.1), consider the following associated hierarchy of SOS strengthenings
indexed by k ∈ N≥kmin :

ρk := sup
ξ∈R
{ ξ : f − ξ ∈ Qk(g, h)} . (2.4.3)

For each σ ∈ Σ[x]d, there exists G � 0 such that σ = v>d Gvd. Thus for each k ∈ N≥kmin , (2.4.3)
can be rewritten as an SDP:

ρk = sup
ξ,Gi,qj

ξ
∣∣∣∣∣∣

Gi � 0 , f − ξ = v>k G0vk
+
∑
i∈[m] giv>k−dgieGivk−dgie

+
∑
j∈[l] hjv>2(k−dhje)qj

 . (2.4.4)

For every k ∈ N≥kmin , the dual of (2.4.4) reads as

τk := inf
y∈Rb(2k)

Ly(f)

∣∣∣∣∣∣
Mk(y) � 0 , y0 = 1
Mk−dgie(gi y) � 0 , i ∈ [m]
Mk−dhje(hj y) = 0 , j ∈ [l]

 . (2.4.5)
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This primal-dual sequence of semidefinite programs (2.4.5)-(2.4.4) is the so-called Moment-SOS
hierarchy for optimization (also known as “Lasserre’s hierarchy”). If Q(g, h) is Archimedean, i.e.,
R − ‖x‖22 ∈ Q(g, h) for some R > 0, then (ρk)k∈N≥kmin converges to f? by invoking Putinar’s
Positivstellensatz (Theorem 1.1).

Here we slightly abuse terminology and say that there is a “zero duality gap” between (2.4.3)
and (2.4.5) if τk = ρk and τk ∈ R (the abuse of terminology is due to the fact that zero duality gap
can occur with both values being infinite). Slater’s condition, i.e., there exists a feasible point at
which inequality constrains are strict (see, e.g., [25, Section 5.2.3]), on either (2.4.3) or (2.4.5) is a
well-known sufficient condition to ensure zero duality gap. However, in case of equality constraints
in the description (2.3.2) of S(g, h), Slater’s condition does not hold for (2.4.5).

Proposition 2.1. (Josz-Henrion [91]) Let f? be as in (2.4.1) with S(g, h) 6= ∅ as in (2.3.2).
Assume that R − ‖x‖2 ∈ g for some real R > 0. Zero duality gap between the primal (2.4.3) and
dual (2.4.5) holds for sufficiently large k ∈ N, i.e., ρk = τk and τk ∈ R. Moreover, SDP (2.4.5)
has an optimal solution.

In [91] the authors prove that the set of optimal solutions of (2.4.5) is compact and therefore
(2.4.5) has an optimal solution. Although there exist situations where SDP (2.4.3) has no optimal
solution (see for instance the end of [147, Section 3]), the following proposition ensures the existence
of an optimal solution under mild assumptions:

Proposition 2.2. (Lasserre [102, Theorem 3.4 (a)]) If S(g, h) has nonempty interior, then Slater’s
condition on the dual (2.4.5) holds for k ≥ kmin, where kmin is defined as in (2.4.2). In this case,
ρk = τk, τk ∈ R and the primal (2.4.3) has an optimal solution.

The convergence rate of O(k−c) for the sequence (ρk)k∈N follows from Theorem 1.3. For more
details on the Moment-SOS hierarchy and its various applications, the interested reader is referred
to [104].

2.5 Extraction of global minimizers
Let δa stand for the Dirac measure at point a ∈ Rn. The following result is a consequence of

Curto–Fialkow’s Flat Extension Theorem [40, 111].

Proposition 2.3. Let y? be an optimal solution of the SDP (2.4.5) at some order k ∈ N, and
assume that the flat extension condition holds, i.e., rank(Mk−w(y?)) = rank(Mk(y?)) =: r, with
w := maxi,j{dgie, dhje}. Then y? has a representing r-atomic measure µ =

∑r
t=1 λjδa(t) , where

(λ1, . . . , λr) belongs to the standard (r − 1)-simplex and {a(1), . . . ,a(r)} ⊂ S(g, h). Moreover,
τk = f? and a(1), . . . ,a(r) are all global minimizers of POP (2.4.1).

Henrion and Lasserre [77] provide a numerical algorithm to extract the r minimizers a(1), . . . ,a(r)

from Mk(y?) when the assumptions of Proposition 2.3 hold.

2.6 Finite convergence
Second-order sufficient condition. Given (λi)i∈[m] and (γj)i∈[l], let:

x 7→ L(x,λ,γ) := f(x)−
∑
i∈[m]

λi gi(x)−
∑
j∈[l]

γj hj(x), x ∈ Rn.

Given x ∈ S(g, h), let J(x) := { i ∈ [m] : gi(x) = 0 }.

Definition 2.1. (see [152, Chapter 2]) The second-order sufficient condition (S2) holds at x? ∈
S(g, h) under the three following conditions.

• KKT-Lagrange multipliers: There exist λ?i ≥ 0, i ∈ [m], and γj ∈ R, j ∈ [l], such that
∇xL(x?,λ?,γ?) = 0 and λ?i gi(x?) = 0 for all i ∈ [m].
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• Linear independence constraint qualification: The family

{∇gi(x?),∇hj(x?)}i∈J(x?),j∈[l]

is linearly independent.

• Strict complementarity: λ?i + gi(x?) > 0, for all i ∈ [m].

• u>∇2
xL(x?,λ?,γ?) u > 0 for all u 6= 0 such that u>∇gi(x?) = 0 and u>∇hj(x?) = 0,

i ∈ J(x?), for all j ∈ [l].

We say that I(h) is real radical if

I(h) = {f ∈ R[x] : ∃m ∈ N : −f2m ∈ Σ[x] + I(h)} . (2.6.1)

The following proposition provides a sufficient condition to ensure finite convergence of the
sequence (τk)k∈N.

Proposition 2.4. The following statements are true:

1. (Nie [147]) The equality τk = f? occurs generically for some k ∈ N.

2. (Lasserre [105, Theorem 7.5]) If (i) Q(g, h) is Archimedean, (ii) the ideal I(h) is real radical,
and (iii) the second-order sufficient conditions (see Definition 2.1) hold at every global mini-
mizer of POP (2.4.1), then τk = ρk = f? for some k ∈ N and both primal-dual (2.4.3)-(2.4.5)
have optimal solutions.

3. (Lasserre et al. [108, Proposition 1.1] and [105, Theorem 6.13]) If V (h) defined as in (2.3.1)
is finite, τk = ρk = f? for some k ∈ N and both primal-dual (2.4.3)-(2.4.5) have optimal
solutions. In this case, the flatness condition holds at order k.

The first statement of Proposition 2.4 means that with fixed f ∈ R[x], the equality τk = f?

holds for k ∈ N sufficiently large on a Zariski open set (the complement of the zeros of a polynomial)
in the space of the coefficients of gi, hj with given degrees. Note that the real radical property is
not generic and so the condition “I(h) is real radical” must be checked case by case. On the other
hand, if V (h) is the real zero set of a squared system of polynomial equations, i.e., l = n, then
generically V (h) has a finite number of points.



Chapter 3

Exploiting correlative and term
sparsity

Most of the content of this chapter is from [213].
This chapter is concerned with solving large-scale polynomial optimization problems. As is

often the case, the polynomials in the problem description involve only a few monomials of low
degree and the ultimate goal is to exploit this crucial feature to provide semidefinite relaxations
that are computationally much cheaper than those of the standard SOS-based hierarchy [102] or
its sparse version [103, 203] based on correlative sparsity.

Throughout this chapter, we consider large-scale instances of the following polynomial opti-
mization problem (POP):

f? = inf
x
{ f(x) : x ∈ S(g) }, (3.0.1)

where the objective function f is assumed to be a polynomial in n variables x = (x1, . . . , xn)
and the feasible set S(g) ⊆ Rn is assumed to be defined by a finite conjunction of m polynomial
inequalities, namely

S(g) := {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0}, (3.0.2)

for some g = {g1, . . . , gm} ⊂ R[x]. Here “large-scale” means that the magnitude of the number of
variables n and the number of inequalities m can be both proportional to several thousands.

To tackle large-scale POPs, a natural idea is to simultaneously benefit from correlative and
term sparsity patterns. This is the spirit of our contribution. Also in the same vein the work
in [141] combines the (S)DSOS framework [3] with the TSSOS hierarchy but does not provide
systematic convergence guarantees.

Contribution. Our main contribution in this chapter is as follows:

I. For large-scale POPs with a correlative sparsity pattern, we first apply the usual sparse
polynomial optimization framework [103, 203] to get a coarse decomposition in terms of cliques of
variables. Next we apply the term sparsity strategy (either TSSOS or Chordal-TSSOS) to each
subsystem (which involves only one clique of variables) to reduce the size of SDPs even further.
While the overall strategy is quite clear and simple, its implementation is not trivial and needs
some care. Indeed for its coherency one needs to take extra care of the monomials which involve
variables that belong to intersections of variable cliques (those obtained from correlative sparsity).
The resulting combination of correlative sparsity (CS for short) and term sparsity produces what
we call the CS-TSSOS hierarchy – a two-level hierarchy of SDP relaxations with blocks of SDP
matrices, which yields a converging sequence of certified approximations for POPs. Under certain
conditions, we prove that the corresponding sequence of optimal values converges to the global
optimum of the POP.

II. Our algorithmic development of the CS-TSSOS hierarchy is fully implemented in the TSSOS
tool [124]. The most recent version of TSSOS has been released within the Julia programming

35
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language, which is freely available online and documented.1 With TSSOS, the accuracy and scal-
ability of the CS-TSSOS hierarchy are evaluated on several large-scale benchmarks coming from
the continuous and combinatorial optimization literature. In particular, numerical experiments
demonstrate that the CS-TSSOS hierarchy is able to handle challenging Max-Cut instances and
optimal power flow instances with several thousand (' 6, 000) variables on a laptop whenever
appropriate sparsity patterns are accessible. We remark that the CS-TSSOS framework has been
recently extended to handle noncommutative polynomial optimization [210] and complex polyno-
mial optimization [209].

The rest of the chapter is organized as follows: in Section 3.1, we provide preliminary back-
ground on correlative and term sparsity. In Section 3.2, we explain how to combine them to obtain
a two-level CS-TSSOS hierarchy. Its convergence is analyzed in Section 3.3. Eventually, we provide
numerical experiments for large-scale POP instances in Section 6.3.

3.1 Preliminaries
A polynomial f ∈ R[x] can be written as f(x) =

∑
α∈A fαxα with A ⊆ Nn and fα ∈ R,xα =

xα1
1 · · ·xαnn . The support of f is defined by supp(f) := {α ∈ A | fα 6= 0}. We use | · | to denote

the cardinality of a set. For a finite set A ⊆ Nn, let xA be the |A|-dimensional column vector
consisting of elements xα,α ∈ A (fix any ordering on Nn). For a positive integer r, the set of r× r
symmetric matrices is denoted by Sr and the set of r × r positive semidefinite (PSD) matrices is
denoted by Sr+. A matrix A ∈ Sr+ is written as A � 0. For matrices A,B ∈ Sr, let 〈A,B〉 ∈ R
denote the trace inner-product, defined by 〈A,B〉 = trace(A>B), and let A ◦ B ∈ Sr denote
the Hadamard product, defined by [A ◦ B]ij = AijBij . For d ∈ N, let For α ∈ Nn,A,B ⊆ Nn,
let α + B := {α + β | β ∈ B} and A + B := {α + β | α ∈ A,β ∈ B}. For m ∈ N\{0}, let
[m] := {1, 2, . . . ,m}.

3.1.1 Chordal graphs and sparse matrices
In this subsection, we recall some basic results on chordal graphs and sparse matrices which

are crucial for our subsequent development. Our notation and definitions here mostly follow from
[199].

An (undirected) graph G(V,E) or simply G consists of a set of nodes V and a set of edges
E ⊆ {{vi,vj} | vi 6= vj , (vi,vj) ∈ V × V }. For a graph G, we use V (G) and E(G) to indicate the
node set of G and the edge set of G, respectively. The adjacency matrix of a graph G is denoted
by BG for which we put ones on its diagonal. For two graphs G,H, we say that G is a subgraph of
H, denoted by G ⊆ H, if both V (G) ⊆ V (H) and E(G) ⊆ E(H) hold.

Definition 3.1. A graph is called a chordal graph if all its cycles of length at least four have a
chord2.

The notion of chordal graphs plays an important role in sparse matrix theory. Any non-chordal
graph G(V,E) can be always extended to a chordal graph G′(V,E′) by adding appropriate edges
to E, which is called a chordal extension of G(V,E). As an example, in Figure 3.1 the two dashed
edges are added to obtain a chordal extension. The chordal extension of G is usually not unique
and the symbol G′ is used to represent any specific chordal extension of G throughout the chapter.
For graphs G ⊆ H, we assume that G′ ⊆ H ′ always holds in this chapter.

A complete graph is a graph in which any two nodes have an edge. A clique of a graph is a subset
of nodes that induces a complete subgraph. A maximal clique is a clique that is not contained in
any other clique. It is known that for a chordal graph, its maximal cliques can be enumerated
efficiently in linear time in terms of the number of nodes and edges. See e.g. [18, 59, 65] for the
details.

From now on we consider graphs with the node set V ⊆ Nn. Given a graph G(V,E), a
symmetric matrix G with rows and columns indexed by V is said to have sparsity pattern G if
Gβγ = Gγβ = 0 whenever β 6= γ and {β,γ} /∈ E. Let SG be the set of symmetric matrices with

1https://github.com/wangjie212/TSSOS
2A chord is an edge that joins two nonconsecutive nodes in a cycle.

https://github.com/wangjie212/TSSOS
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Figure 3.1: An example of chordal extension
1 2 3

4 5 6

sparsity pattern G. For a matrix in SG, its submatrices/blocks indexed by the maximal cliques of
G play a crucial role, especially in the case when G is a chordal graph (see Theorems 3.1 and 3.2).
The maximal size of blocks is the maximal size of maximal cliques of G, namely, the clique number
of G.

Remark 3.1. For a graph G, among all chordal extensions of G, there is a particular one G′

which makes every connected component of G to be a complete subgraph. Accordingly, the matrix
with sparsity pattern G′ is block diagonal (after an appropriate permutation on rows and columns):
each block corresponds to a connected component of G. We call this chordal extension the maximal
chordal extension. In this chapter, we only consider chordal extensions that are subgraphs of the
maximal chordal extension.

Given a graph G(V,E), the PSD matrices with sparsity pattern G form a convex cone

S |V |+ ∩ SG = {G ∈ SG | G � 0}. (3.1.1)

Once the sparsity pattern graph G(V,E) is a chordal graph, the cone S |V |+ ∩SG can be decomposed
as a sum of simple convex cones thanks to the following theorem and hence the related optimization
problem can be solved more efficiently.

Theorem 3.1 ([2], Theorem 2.3). Let G(V,E) be a chordal graph and assume that C1, . . . , Ct are
the list of maximal cliques of G(V,E). Then a matrix G ∈ S |V |+ ∩ SG if and only if G can be
written as G =

∑t
i=1 Gi, where Gi ∈ S |V |+ has nonzero entries only with row and column indices

coming from Ci for i ∈ [t].

Given a graphG(V,E), let ΠG be the projection from S |V | to the subspace SG, i.e., for G ∈ S |V |,

ΠG(G)βγ =
{
Gβγ , if β = γ or {β,γ} ∈ E,
0, otherwise.

(3.1.2)

The set ΠG(S |V |+ ) denotes matrices that are projections of PSD matrices onto SG. More precisely,

ΠG(S |V |+ ) = {ΠG(G) | G ∈ S |V |+ }. (3.1.3)

One can easily check that the cone ΠG(S |V |+ ) and the cone S |V |+ ∩ SG form a pair of dual cones in
SG (see [199, Chapter 10]). Moreover, for a chordal graph G, the decomposition result for matrices
in S |V |+ ∩ SG given in Theorem 3.1 leads to the following characterization of matrices in the cone
ΠG(S |V |+ ).

Theorem 3.2 ([69], Theorem 7). Let G(V,E) be a chordal graph and assume that C1, . . . , Ct are
the list of maximal cliques of G(V,E). Then a matrix G ∈ ΠG(S |V |+ ) if and only if G[Ci] � 0 for
i ∈ [t], where G[Ci] denotes the principal submatrix of G indexed by the clique Ci.

By Theorem 3.2, to check G ∈ ΠG(S |V |+ ), it suffices to check the positive semidefiniteness of
certain blocks of G. For more details on chordal graphs and sparse matrices, the reader may refer
to [199].
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3.1.2 Correlative sparsity
To exploit correlative sparsity in the Moment-SOS hierarchy for POPs, one proceeds in two

steps: 1) decompose the set of variables into cliques according to the links between variables
emerging in the input polynomial system, and 2) construct a sparse Moment-SOS hierarchy with
respect to the former decomposition of variables [203].

More concretely, we define the correlative sparsity pattern (csp) graph associated with POP
(3.0.1) to be the graph Gcsp with nodes V = [n] and edges E satisfying {i, j} ∈ E if one of
following holds:

(i) there exists α ∈ supp(f) s.t. αi > 0, αj > 0;

(ii) there exists k ∈ [m] such that xi, xj ∈ var(gk), where var(gk) is the set of variables involved
in gk.

Let (Gcsp)′ be a chordal extension of Gcsp and {Ic}pc=1 be the list of maximal cliques of (Gcsp)′ with
nc := |Ic|. Let R[x(Ic)] denote the ring of polynomials in the nc variables x(Ic) = {xj | j ∈ Ic}.
We then partition the constraint polynomials g1, . . . , gm into groups {gi | i ∈ Jc}, c ∈ [p] which
satisfy

(i) J1, . . . , Jp ⊆ [m] are pairwise disjoint and ∪pc=1Jc = [m];

(ii) for any i ∈ Jc, var(gi) ⊆ Ic, c ∈ [p].

Next, with c ∈ {1, . . . , p} fixed, for d ∈ N and g ∈ R[x(Ic)], let Md(y, Ic) (resp. Md(gy, Ic)) be
the moment (resp. localizing) submatrix obtained from Md(y) (resp. Md(gy)) by retaining only
those rows and columns indexed by β = (βi) ∈ Nnd of Md(y) (resp. Md(gy)) with supp(β) ⊂ Ic,
where supp(β) := {i | βi 6= 0}.

Assume that f ∈ R[x] can be written as f = f1 + · · ·+ fp, for some fc ∈ R[x(Ic)]. We denote
kmin := max{dfe, dgie}. Then with k ≥ kmin, the moment hierarchy based on correlative sparsity
for POP (3.0.1) is defined as

ρk := inf Ly(f)
s.t. Mk(y, Ic) � 0, c ∈ [p],

Mk−dgie(giy, Ic) � 0, i ∈ Jc, c ∈ [p],
y0 = 1.

(3.1.4)

In the following, we refer to (3.1.4) as the CSSOS hierarchy for POP (3.0.1).

Remark 3.2. As shown in [103] under some compactness assumption, the sequence (ρk)k≥kmin

monotonically converges to the global optimum f? of POP (3.0.1).

3.1.3 Term sparsity
In contrast to the correlative sparsity pattern which focuses on links between variables, the term

sparsity pattern focuses on links between monomials (or terms). To exploit term sparsity in the
Moment-SOS hierarchy one also proceeds in two steps: 1) decompose each involved monomial basis
into blocks according to the links between monomials emerging in the input polynomial system,
and 2) construct a sparse Moment-SOS hierarchy with respect to the former decomposition of
monomial bases [212, 211].

More concretely, let A = supp(f)∪
⋃m
i=1 supp(gi) and Nnk−dgie be the standard monomial basis

for i = 0, . . . ,m. Fixing a relaxation order k ≥ kmin, we define the term sparsity pattern (tsp) graph
associated with POP (3.0.1) or the support set A, to be the graph Gtsp

k with node set Vk,0 := Nnk
and edge set

E(Gtsp
k ) := {{β,γ} | β 6= γ ∈ Vk,0,β + γ ∈ A ∪ (2N)n}, (3.1.5)

where (2N)n := {2α | α ∈ Nn}.
For a graph G(V,E) with V ⊆ Nn, let supp(G) := {β + γ | β = γ or {β,γ} ∈ E}. We define

the graphs G(0)
k,0 := Gtsp

k and, for i ∈ [m], G(0)
k,i is the empty graph with node set Vk,i := Nnk−dgie

and empty edge set. Note that supp(G(0)
k,0) = A ∪ 2Nnk and supp(G(0)

k,i) = ∅ for i ≥ 1. Now for each
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i ∈ {0} ∪ [m], we iteratively define an ascending chain of graphs (G(t)
k,i(Vk,i, E

(t)
k,i))t≥1. To this end,

we start with the initial graph G
(0)
k,i and each iteration consists of two successive operations:

1) support extension. Define F (t)
k,i to be the graph with nodes Vk,i and with (recall g0 = 1)

E(F (t)
k,i ) ={{β,γ} | β 6= γ ∈ Vk,i, (3.1.6)

(β + γ + supp(gi)) ∩ (∪mj=0supp(G(t−1)
k,j )) 6= ∅}, i ∈ {0} ∪ [m].

2) chordal extension. Let

G
(t)
k,i := (F (t)

k,i )
′, i ∈ {0} ∪ [m]. (3.1.7)

Note that F (1)
k,0 has edges {β,γ} with β + γ ∈ A ∪ (2N)n. To summarise, the iterative process is

G
(0)
k,i → · · · → G

(t−1)
k,i

support extension−−−−−−−−−−−→ F
(t)
k,i

chordal extension−−−−−−−−−−−→ G
(t)
k,i → · · · ,

for each i ∈ {0} ∪ [m].

Example 3.1 (support extension). Assume m = 0, k = 2, and consider the graph G with solid
edges shown in Figure 3.2. Then by support extension, the two dashed edges are added to G for
x1x2x3 ∈ supp(G).

Figure 3.2: The support extension of G
x1 x2 x3

x2x3 x1x3 x1x2

1 x2
1

x2
2 x2

3

Let ri := |Nnk−dgie| =
(
n+k−dgie
k−dgie

)
, i = 0, . . . ,m. Then with k ≥ kmin and t ≥ 1, the moment

hierarchy based on term sparsity for POP (3.0.1) is defined as

inf Ly(f)
s.t. B

G
(t)
k,0
◦Mk(y) ∈ Π

G
(t)
k,0

(Sr0+ ),
B
G

(t)
k,i

◦Mk−dgie(giy) ∈ Π
G

(t)
k,i

(Sri+ ), i ∈ [m],
y0 = 1.

(3.1.8)

The notation BG ◦A in (3.1.8) refers to a matrix whose (β,γ)-entry is Aβγ if β = γ or {β,γ} ∈
E(G), and 0 otherwise. We call t the sparse order and in the remainder of this chapter, the TSSOS
hierarchy for POP (3.0.1) refers to the hierarchy (3.1.8).

Remark 3.3. In (3.1.8), one has the freedom to choose a specific chordal extension for any involved
graph G

(t)
k,j. As shown in [212], if one chooses the maximal chordal extension then with k fixed,

the resulting sequence of optimal values of the TSSOS hierarchy (as t increases) monotonically
converges in finitely many steps to the optimal value of the corresponding dense moment relaxation
for POP (3.0.1).

3.2 The CS-TSSOS Hierarchy
When applicable, one can significantly improve the scalability of the Moment-SOS hierarchy

by exploiting correlative sparsity or term sparsity. For large-scale POPs, it is then natural to ask
whether one can combine correlative sparsity and term sparsity to further reduce the size of SDPs
involved in the Moment-SOS hierarchy and to improve its scalability even more. As we shall see
in the following sections, the answer is affirmative.
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3.2.1 The CS-TSSOS Hierarchy for general POPs
Let us continue considering POP (3.0.1)3. A first natural idea to combine correlative sparsity

and term sparsity would be to apply the TSSOS hierarchy for each subsystem (involving one
variable clique) separately, once the cliques have been obtained from the csp graph of POP (3.0.1).
However, with this naive approach convergence may be lost and in the following we take extra care
to avoid this annoying consequence.

Let Gcsp be the csp graph associated with POP (3.0.1), (Gcsp)′ a chordal extension of Gcsp and
{Ic}pc=1 be the list of maximal cliques of (Gcsp)′ with nc := |Ic|. As in Section 3.1.2, the set of
variables x is decomposed into x(I1),x(I2), . . . ,x(Ip). Let J1, . . . , Jp be defined as in Section 3.1.2.

Now we apply the term sparsity pattern to each subsystem involving variables x(Ic), c ∈ [p]
respectively as follows. Let

A := supp(f) ∪
m⋃
i=1

supp(gi) and Ac := {α ∈ A | supp(α) ⊂ Ic} (3.2.1)

for c ∈ [p]. As before, we set kmin := max{dfe, dg1e, . . . , dgme} and g0 := 1. Fix a relaxation order
k ≥ kmin and let Nnck−dgie be the standard monomial basis for i ∈ {0} ∪ Jc, c ∈ [p]. Let Gtsp

k,c be
the tsp graph with nodes Nnck associated with Ac defined as in Section 3.1.3, i.e., its node set is
Nnck and {β,γ} is an edge if β + γ ∈ Ac ∪ (2N)nc . Note that we embed Nnc into Nn via the map
α = (αi) ∈ Nnc 7→ α′ = (α′i) ∈ Nn which satisfies

α′i =
{
αi, if i ∈ Ic,
0, otherwise.

Let us define G(0)
k,c,0 := Gtsp

k,c and G(0)
k,c,i, i ∈ Jc, c ∈ [p] are all empty graphs with nodes Nnck−dgie.

Next, for an integer k ≥ 1, for each i ∈ {0} ∪ Jc, c ∈ [p], we iteratively define an ascending chain
of graphs (G(t)

k,c,i(Vk,c,i, E
(t)
k,c,i))t≥1 with Vk,c,i := Nnck−dgie via two successive operations:

1) support extension. Define F (t)
k,c,i to be the graph with nodes Vk,c,i and with

E(F (t)
k,c,i) = {{β,γ} | β 6= γ ∈ Vk,c,i, (β + γ + supp(gi)) ∩ C

(t−1)
k 6= ∅}, (3.2.2)

where

C
(t−1)
k :=

p⋃
c=1

(∪i∈{0}∪Jc(supp(gi) + supp(G(t−1)
k,c,i ))). (3.2.3)

2) chordal extension. Let

G
(t)
k,c,i := (F (t)

k,c,i)
′, i ∈ {0} ∪ Jc , c ∈ [p]. (3.2.4)

Example 3.2. Let f = 1 + x2
1 + x2

2 + x2
3 + x1x2 + x2x3 + x3 and consider the unconstrained POP:

min{f(x) : x ∈ Rn}. We have n = 3,m = 0 and take the relaxation order k = kmin = 1. The
variables are decomposed into two cliques: {x1, x2} and {x2, x3}. The tsp graphs with respect to
these two cliques are illustrated in Figure 3.3. The left graph corresponds to the first clique: x1
and x2 are connected because of the term x1x2. The right graph corresponds to the second clique: 1
and x3 are connected because of the term x3; x2 and x3 are connected because of the term x2x3. If
we apply the TSSOS hierarchy (using the maximal chordal extension in (3.2.4)) separately for each
clique, then the graph sequences (G(t)

1,c)t≥1, c = 1, 2 (the subscript j is omitted here since there is no
constraint) stabilize at t = 1. However, the added (dashed) edge in the right graph corresponds to
the monomial x2, which only involves the variable x2 belonging to the first clique. Hence we need
to add the edge connecting 1 and x2 to the left graph in order to get the guarantee of convergence
as we shall see in Section 3.3.1. Consequently, the graph sequences (G(t)

1,c)t≥1, c = 1, 2 stabilize at
t = 2.

3Though we only include inequality constraints in the definition of S(g) (3.0.2) for the sake of simplicity, equality
constraints can be treated in a similar way.
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Figure 3.3: The tsp graphs of Example 3.2. The dashed edge is added after the maximal chordal
extension.

1

x2x1

1

x3x2

Let rc,i := b(nc, k − dgie) for all c, i. Then with k ≥ 1, the moment hierarchy based on
correlative-term sparsity for POP (3.0.1) is defined as

ρ
(t)
k := inf Ly(f)

s.t. B
G

(t)
k,c,0
◦Mk(y, Ic) ∈ Π

G
(t)
k,c,0

(Src,0+ ), c ∈ [p],
B
G

(t)
k,c,i

◦Mk−dgie(giy, Ic) ∈ Π
G

(t)
k,c,i

(Src,i+ ), i ∈ Jc , c ∈ [p],
y0 = 1.

(3.2.5)

Proposition 3.1. Fixing a relaxation order k ≥ kmin, the sequence (ρ(t)
k )t≥1 is monotonically

non-decreasing and ρ(t)
k ≤ ρk for all t.

Proof. By construction, we have G(t)
k,c,j ⊆ G

(t+1)
k,c,j for all k, c, j and all t. It follows that each maximal

clique of G(t)
k,c,j is a subset of some maximal clique of G(t+1)

k,c,j . Hence by Theorem 3.2, (3.2.5) with
value ρ(t)

k is a relaxation of (3.2.5) with value ρ(t+1)
k and is clearly also a relaxation of (3.1.4) with

value ρk. Therefore, (ρ(t)
k )t≥1 is monotonically non-decreasing and ρ

(t)
k ≤ ρk for all t.

Proposition 3.2. Fixing a sparse order t ≥ 1, the sequence (ρ(t)
k )k≥kmin is monotonically non-

decreasing.

Proof. The conclusion follows if we can show that G(t)
k,c,j ⊆ G

(t)
k+1,c,j for all k, c, j, t since by Theorem

3.2 this implies that (3.2.5) is a relaxation of (3.2.5) with value ρ(t)
k+1. Let us prove G(t)

k,c,j ⊆ G
(t)
k+1,c,j

by induction on t. For t = 1, from (3.1.5), we have G(0)
k,c,0 = Gtsp

k,c ⊆ Gtsp
k+1,c = G

(0)
k+1,c,0, which

together with (3.2.2)-(3.2.3) implies that F (1)
k,c,j ⊆ F

(1)
k+1,c,j for j ∈ {0} ∪ Jc, c ∈ [p]. It then

follows that G(1)
k,c,j = (F (1)

k,c,j)′ ⊆ (F (1)
k+1,c,j)′ = G

(1)
k+1,c,j . Now assume that G(t)

k,c,j ⊆ G
(t)
k+1,c,j ,

j ∈ {0}∪Jc, c ∈ [p], holds for some t ≥ 1. Then by (3.2.2)-(3.2.3) and by the induction hypothesis,
we have F (t+1)

k,c,j ⊆ F
(t+1)
k+1,c,j for j ∈ {0}∪Jc, c ∈ [p]. Thus G(t+1)

k,c,j = (F (t+1)
k,c,j )′ ⊆ (F (t+1)

k+1,c,j)′ = G
(t+1)
k+1,c,j

which completes the induction.

From Proposition 3.1 and Proposition 3.2, we deduce the following two-level hierarchy of lower
bounds for the optimum f? of (3.0.1) (3.0.1):

ρ
(1)
kmin

≤ ρ
(2)
kmin

≤ · · · ≤ ρkmin

≥ ≥ ≥

ρ
(1)
kmin+1 ≤ ρ

(2)
kmin+1 ≤ · · · ≤ ρkmin+1

≥ ≥ ≥

...
...

...
...

≥ ≥ ≥

ρ
(1)
k ≤ ρ

(2)
k ≤ · · · ≤ ρk

≥ ≥ ≥

...
...

...
...

(3.2.6)

The array of lower bounds (3.2.6) (and its associated SDP relaxations (3.2.5)) is what we call the
CS-TSSOS hierarchy associated with (3.0.1) (3.0.1).
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Example 3.3. Let f = 1 +
∑6
i=1 x

4
i +x1x2x3 +x3x4x5 +x3x4x6 +x3x5x6 +x4x5x6, and consider

the unconstrained POP: min{f(x) : x ∈ Rn}. We have n = 6,m = 0. Let us apply the CS-TSSOS
hierarchy (using the maximal chordal extension in (3.2.4)) to this problem by taking the relaxation
order k = kmin = 2 and the sparse order t = 1. First, according to the csp graph (see Figure 3.4),
we decomposes the variables into two cliques: {x1, x2, x3} and {x3, x4, x5, x6}. Figure 3.5 and
Figure 3.6 illustrate the tsp graphs for the first clique and the second clique, respectively. For the
first clique one obtains four blocks of SDP matrices with respective sizes 4, 2, 2, 2. For the second
clique one obtains two blocks of SDP matrices with respective sizes 5, 10. As a result, the original
SDP matrix of size 28 has been reduced to six blocks of maximal size 10.

If one applies the TSSOS hierarchy (using the maximal chordal extension in (3.1.7)) directly to
the problem by taking k = kmin = 2, t = 1 (i.e., without decomposing variables), then the tsp graph is
illustrated in Figure 3.7. One obtains 11 SDP blocks with respective sizes 7, 2, 2, 2, 1, 1, 1, 1, 1, 1, 10.
Compared to the CS-TSSOS case, there are six additional blocks of size one and the two blocks with
respective sizes 4, 5 are replaced by a single block of size 7.

Figure 3.4: The csp graph of Example 3.3
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Figure 3.5: The tsp graph for the first clique of Example 3.3
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Figure 3.6: The tsp graph for the second clique of Example 3.3
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The CS-TSSOS hierarchy entails a trade-off. Indeed, one has the freedom to choose a specific
chordal extension for any graph involved in (3.2.5). This choice affects the resulting size of blocks
of SDP matrices and the quality of optimal values of corresponding relaxations. Intuitively, chordal
extensions with small clique numbers lead to blocks of small size and optimal values of (possibly)
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Figure 3.7: The tsp graph without decomposing variables of Example 3.3
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low quality while chordal extensions with large clique numbers lead to blocks of large size and
optimal values of (possibly) high quality.

For all c, i, write Mk−dgie(giy, Ic) =
∑

α Dc,i
α yα for appropriate symmetry matrices {Dc,i

α }.
Then for each k ≥ 1, the dual of (3.2.5) reads as:

sup ρ

s.t.
∑p
c=1

∑
j∈{0}∪Jc〈Gc,j ,Dc,j

α 〉+ ρδ0α = fα, ∀α ∈ C
(t)
k ,

Gc,j ∈ S
rc,j
+ ∩ S

G
(t)
k,c,j

, j ∈ {0} ∪ Jc , c ∈ [p],
(3.2.7)

where C
(t)
k is defined in (3.2.3).

Proposition 3.3. Let f ∈ R[x] and S(g) be as in (3.0.2). Assume that S(g) has a nonempty
interior. Then there is no duality gap between (3.2.5) and (3.2.7) for any k ≥ kmin and t ≥ 1.

Proof. By the duality theory of convex programming, this easily follows from Theorem 3.6 of [103]
and Theorem 3.2.

Note that the number of equality constraints in (3.2.7) is equal to the cardinality of C(t)
k . We

next give a description of the elements in C
(t)
k in terms of sign symmetries.

3.2.2 Sign symmetries
Definition 3.2. Given a finite set A ⊆ Nn, the sign symmetries of A are defined by all vectors
r ∈ Zn2 := {0, 1}n such that r>α ≡ 0 (mod 2) for all α ∈ A.

For any α ∈ Nn, we define (α)2 := (α1(mod 2), . . . , αn(mod 2)) ∈ Zn2 . We also use the same
notation for any subset A ⊆ Nn, i.e., (A)2 := {(α)2 | α ∈ A} ⊆ Zn2 . For a subset S ⊆ Zn2 , the
orthogonal complement space of S in Zn2 , denoted by S⊥, is the set {α ∈ Zn2 | α>s ≡ 0 (mod 2) ,∀s ∈
S}.

Remark 3.4. By definition, the set of sign symmetries of A is exactly the orthogonal complement
space (α)⊥2 in Zn2 , which therefore can be essentially represented by a basis of the subspace (A)⊥2
in Zn2 .

For a subset S ⊆ Zn2 , we say that S is closed under addition modulo 2 if s1, s2 ∈ S implies
(s1 + s2)2 ∈ S. The minimal set containing S with elements which are closed under addition
modulo 2 is denoted by 〈S〉Z2 . It is easy to prove 〈S〉Z2 = {(

∑
i si)2 | si ∈ S} which is the subspace

spanned by S in Zn2 .

Lemma 3.1. Let S ⊆ Zn2 . Then (S⊥)⊥ = 〈S〉Z2 .

Proof. It is immediate from the definitions.

Lemma 3.2. Suppose G is a graph with V (G) ⊆ Nn. Then it holds (supp(G′))2 ⊆ 〈(supp(G))2〉Z2 .
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Proof. By definition, we need to show (β + γ)2 ∈ 〈(supp(G))2〉Z2 for any {β,γ} ∈ E(G′). Since in
the process of chordal extensions, edges are added only if two nodes belong to the same connected
component, for any {β,γ} ∈ E(G′) there is a path connecting β and γ in G: {β,υ1, . . . ,υr,γ}
with {β,υ1}, {υr,γ} ∈ E(G) and {υi,υi+1} ∈ E(G), i ∈ [r − 1]. From (β + υ1)2, (υ1 + υ2)2 ∈
(supp(G))2, we deduce that (β + υ2)2 ∈ 〈(supp(G))2〉Z2 because 〈(supp(G))2〉Z2 is closed under
addition modulo 2. Likewise, we can prove (β + υi)2 ∈ 〈(supp(G))2〉Z2 for i = 3, . . . , r + 1 with
υr+1 := γ. Hence (β + γ)2 ∈ 〈(supp(G))2〉Z2 as desired.

Proposition 3.4. Let A be defined as in (3.2.1), C
(t)
k be defined as in (3.2.3) and assume that

the sign symmetries of A are represented by the column vectors of a binary matrix, denoted by R.
Then for any k ≥ 1 and any α ∈ C

(t)
k , it holds R>α ≡ 0 (mod 2) . In other words, (C(t)

k )2 ⊆ R⊥,
where we regard R as a set of the column vectors of R.

Proof. By Lemma 3.1, we only need to prove (C(t)
k )2 ⊆ 〈(A)2〉Z2 . Let us do induction on t ≥ 0. For

t = 0, by (3.2.3), C(0)
k =

⋃p
c=1 supp(G(0)

k,c,0) =
⋃p
c=1 supp(Gtsp

k,c) ⊆
⋃p
c=1(Ac ∪ (2N)nc) ⊆ A ∪ (2N)n.

Hence (C(0)
k )2 ⊆ 〈(A)2〉Z2 . Now assume that (C(t)

k )2 ⊆ 〈(A)2〉Z2 holds for some t ≥ 0. By (3.2.2),
for any c, i and any {β,γ} ∈ E(F (t+1)

k,c,i ), we have (supp(gi) + β + γ) ∩ C
(t)
k 6= ∅, i.e., there exists

α ∈ supp(gi) such that α + β + γ ∈ C
(t)
k , which implies (α + β + γ)2 ∈ (C(t)

k )2. Hence by the
induction hypothesis, (α + β + γ)2 ∈ 〈(A)2〉Z2 . Since 〈(A)2〉Z2 is closed under addition modulo 2
and (α)2 ∈ (A)2, we have (β + γ)2 ∈ 〈(A)2〉Z2 . It follows (supp(F (t+1)

k,c,j ))2 ⊆ 〈(A)2〉Z2 . Because
G

(t+1)
k,c,j = (F (t+1)

k,c,j )′, by Lemma 3.2, we have (supp(G(t+1)
k,c,j ))2 ⊆ 〈(supp(F (t+1)

k,c,j ))2〉Z2 ⊆ 〈(A)2〉Z2 .
From this, (3.2.3) and the fact that 〈(A)2〉Z2 is closed under addition modulo 2, we then deduce
the inclusion (C(t+1)

k )2 ⊆ 〈(A)2〉Z2 which completes the induction.

Remark 3.5. Proposition 3.4 actually indicates that the block structure produced by the CS-TSSOS
hierarchy is consistent with the sign symmetries of the POP.

3.3 Convergence analysis
3.3.1 Global convergence

We next prove that if for any graph involved in (3.2.5), the chordal extension is chosen to be
maximal, then for any relaxation order k ≥ kmin the sequence of optimal values (ρ(t)

k )t≥1 of the
CS-TSSOS hierarchy converges to the optimal value ρk of the corresponding CSSOS hierarchy
(3.1.4). In turn, as the relaxation order k increases, the latter sequence converges to the global
optimum f? of the original POP (3.0.1) (after adding some redundant quadratic constraints) as
shown in [103].

Obviously, the sequences of graphs (G(t)
k,c,j(Vk,c,j , E

(t)
k,c,j))t≥1 stabilize for all j ∈ {0}∪Jc, c ∈ [p]

after finitely many steps. We denote the resulting stabilized graphs by G(∗)
k,c,j , j ∈ {0} ∪ Jc, c ∈ [p]

and the corresponding SDP (3.2.5) with value ρ∗k.

Theorem 3.3. Assume that the chordal extension in (3.2.4) is the maximal chordal extension.
Then for any k ≥ kmin, the sequence (ρ(t)

k )t≥1 converges to ρk in finitely many steps.

Proof. Let y = (yα) be an arbitrary feasible solution of (3.2.5) with value ρ∗k. Note that {yα |
α ∈

⋃p
c=1(∪i∈{0}∪Jc(supp(gi) + supp(G(∗)

k,c,i)))} is the set of decision variables involved in (Qcs-ts
k,∗ ).

Let R be the set of decision variables involved in (3.1.4). We then define a vector y = (yα)α∈R as
follows:

yα =
{
yα, if α ∈

⋃p
c=1(∪i∈{0}∪Jc(supp(gi) + supp(G(∗)

k,c,i))),
0, otherwise.

By construction and sinceG(∗)
k,c,i stabilizes under support extension for all c, i, we have Mk−dgie(giy, Ic) =

B
G

(∗)
k,c,i

◦Mk−dgie(giy, Ic). As we use the maximal chordal extension in (3.2.4), the matrix B
G

(∗)
k,c,i

◦
Mk−dgie(giy, Ic) is block diagonal up to permutation (see Remark 3.1). So from B

G
(∗)
k,c,i

◦Mk−dgie(giy, Ic) ∈
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Π
G

(∗)
k,c,i

(Src,i+ ) it follows Mk−dgie(giy, Ic) � 0 for i ∈ {0}∪ Jc, c ∈ [p]. Therefore y is a feasible solu-
tion of (3.1.4) and so Ly(f) = Ly(f) ≥ ρk. Hence ρ∗k ≥ ρk since y is an arbitrary feasible solution
of (3.2.5) with value ρ∗k. By Proposition 3.1, we already have ρ∗k ≤ ρk. Therefore, ρ∗k = ρk.

To guarantee the global optimality, we need the following compactness assumption on the
feasible set S(g).

Assumption 1. Let S(g) be as in (3.0.2). There exists an M > 0 such that ‖x‖∞ < M for all
x ∈ S(g).

Because of Assumption 1, one has ‖x(Ic)‖22 ≤ ncM
2, c ∈ [p]. Therefore, we can add the p

redundant quadratic constraints

gm+c(x) := ncM
2 − ‖x(Ic)‖22 ≥ 0, c ∈ [p] (3.3.1)

in the definition (3.0.2) of S(g) and set m′ = m+ p, so that S(g) is now defined by

S(g) := {x ∈ Rn | gi(x) ≥ 0, i ∈ [m′]}. (3.3.2)

Note that gm+c ∈ R[x(Ic)] for c ∈ [p].
Then by Theorem 3.6 in [103], the sequence (ρk)k≥kmin converges to the globally optimal value

f? of POP (3.0.1). So this together with Theorem 3.3 gives the global convergence of the CS-TSSOS
hierarchy.

3.3.2 A sparse representation theorem
Proceeding along Theorem 3.3, we are able to provide a sparse representation theorem for a

polynomial positive on a compact basic semialgebraic set.

Theorem 3.4 (sparse representation). Let f ∈ R[x] and S(g) be as in (3.3.2) with the addi-
tional quadratic constraints (3.3.1). Let Ic, Jc be defined as in Section 3.2.1 and A = supp(f) ∪⋃m′
i=1 supp(gi). Assume that the sign symmetries of A are represented by the column vectors of the

binary matrix R. If f is positive on S(g), then

f =
p∑
c=1

(
σc,0 +

∑
i∈Jc

σc,igi

)
, (3.3.3)

for some polynomials σc,i ∈ Σ[x(Ic)], i ∈ {0} ∪ Jc, c ∈ [p], satisfying R>α ≡ 0 (mod 2) for any
α ∈ supp(σc,i), i.e., (supp(σc,i))2 ⊆ R⊥, where we regard R as a set of its column vectors.

That is, (3.3.3) provides a certificate of positivity of f on S(g).

Proof. By Corollary 3.9 of [103] (or Theorem 5 of [68]), there exist polynomials σ′c,i ∈ Σ[x(Ic)], i ∈
{0} ∪ Jc, c ∈ [p] such that

f =
p∑
c=1

(
σ′c,0 +

∑
i∈Jc

σ′c,igi

)
. (3.3.4)

Let k = max{ddeg(σ′c,igi)/2e : i ∈ {0} ∪ Jc, c ∈ [p]}. Let G′c,i be a PSD Gram matrix associated
with σ′c,i and indexed by the monomial basis Nnck−dgie. Then for all c, i, we define Gc,i ∈ Src,i with
rc,i = b(nc, k − dgie) (indexed by Nnck−dgie) by

[Gc,i]βγ :=
{

[G′c,i]βγ , if R>(β + γ) ≡ 0 (mod 2),
0, otherwise,

and let σc,i = (xNnc
k−dgie)>Gc,ix

Nnc
k−dgie . One can easily verify that Gc,i is block diagonal up to

permutation (see also [212]) and each block is a principal submatrix of G′c,i. Then the positive
semidefiniteness of G′c,i implies that Gc,i is also positive semidefinite. Thus σc,i ∈ Σ[x(Ic)].

By construction, substituting σ′c,j with σc,j in (3.3.4) boils down to removing the terms with
exponents α that do not satisfy R>α ≡ 0 (mod 2) from the right hand side of (3.3.4). Since any
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α ∈ supp(f) satisfies R>α ≡ 0 (mod 2), this does not change the match of coefficients on both
sides of the equality. Thus we obtain

f =
p∑
c=1

(
σc,0 +

∑
i∈Jc

σc,igi

)

with the desired property.

3.3.3 Extracting a solution
In the case of dense Moment-SOS relaxations, there is a standard procedure described in [77]

to extract globally optimal solutions when the so-called flatness condition for the moment matrix
is satisfied. This procedure was partially generalized to the correlative sparsity setting in [103,
§ 3.3]. However, in the combined sparsity setting, the corresponding procedure cannot be applied
because we do not have complete information on the moment matrix associated with each clique.
In order to extract a solution in this case, we may add a dense moment matrix of order one for
each clique in (3.2.5):

inf Ly(f)
s.t. B

G
(t)
k,c,0
◦Mk(y, Ic) ∈ Π

G
(t)
k,c,0

(Src,0+ ), c ∈ [p],
M1(y, Ic) � 0, c ∈ [p],
B
G

(t)
k,c,i

◦Mk−dgie(giy, Ic) ∈ Π
G

(t)
k,c,i

(Src,i+ ), i ∈ Jc , c ∈ [p],
y0 = 1.

(3.3.5)

Let y? be an optimal solution of (3.3.5). Typically, M1(y?, Ic) (after identifying sufficiently
small entries with zeros) is a block diagonal matrix (up to permutation). If for all c, every block
of M1(y?, Ic)) is of rank one, then a globally optimal solution x? to (3.0.1) which is unique up to
sign symmetries can be extracted, and the global optimality is certified (see [103, Theorem 3.2]).
Otherwise, the relaxation might be not exact or yield multiple global solutions.

Remark 3.6. Note that (3.3.5) is a tighter relaxation of (3.0.1) than (3.2.5) and so might provide
a better lower bound for (3.0.1).

3.4 Applications and numerical experiments
In this section, we conduct numerical experiments for the proposed CS-TSSOS hierarchy and

apply it to two important classes of POPs: Max-Cut problems and AC optimal power flow (AC-
OPF) problems. Depending on specific problems, we consider two types of chordal extensions
for the term sparsity pattern: maximal chordal extensions and approximately smallest chordal
extensions4. The tool TSSOS which executes the CS-TSSOS hierarchy (as well as the CSSOS
hierarchy and the TSSOS hierarchy) is implemented in Julia. For an introduction to TSSOS, one
could refer to [124]. TSSOS is available on the website:

https://github.com/wangjie212/TSSOS.

In the following subsections, we compare the performances of the CSSOS approach, the TSSOS
approach, the CS-TSSOS approach and the SDSOS approach [3] (implemented in SPOT [140]).
Mosek [6] is used as an SDP (in the CSSOS, TSSOS, CS-TSSOS cases) or SOCP (in the SDSOS
case) solver. All numerical examples were computed on an Intel Core i5-8265U@1.60GHz CPU
with 8GB RAM memory. The timing includes the time required to generate the SDP/SOCP and
the time spent to solve it. The notations used in this section are listed in Table 3.1.

4A smallest chordal extension is a chordal extension with the smallest clique number. Computing a smallest
chordal extension is generally NP-complete. So in practice we compute approximately smallest chordal extensions
instead with efficient heuristic algorithms.

https://github.com/wangjie212/TSSOS
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Table 3.1: Notation
var number of variables
cons number of constraints
mc maximal size of variable cliques
mb maximal size of SDP blocks
opt optimal value
time running time in seconds
gap optimality gap
CE type of chordal extensions used in (3.2.4)
min approximately smallest chordal extension
max maximal chordal extension

0 a number whose absolute value less than 1e-5
- an out of memory error

3.4.1 Benchmarks for unconstrained POPs

The Broyden banded function is defined as

fBb(x) =
n∑
i=1

(xi(2 + 5x2
i ) + 1−

∑
j∈Ji

(1 + xj)xj)2,

where Ji = {j | j 6= i,max(1, i− 5) ≤ j ≤ min(n, i+ 1)}.
The task is to minimize the Broyden banded function over Rn which is formulated as an

unconstrained POP. Using the relaxation order k = 3, we solve the CSSOS hierarchy (3.1.4), the
TSSOS hierarchy (3.1.8) with t = 1 and the CS-TSSOS hierarchy (3.2.5) with t = 1. In the latter
two cases, approximately smallest chordal extensions are used. We also solve the POP with the
SDSOS approach. The results are displayed in Table 3.2.

It can be seen from the table that CS-TSSOS significantly reduces the maximal size of SDP
blocks and is the most efficient approach. CSSOS, TSSOS and CS-TSSOS all give the exact
minimum 0 while SDSOS only gives a very loose lower bound −13731 when n = 20. Due to the
limitation of memory, CSSOS scales up to 180 variables; TSSOS scales up to 40 variables; SDSOS
scales up to 20 variables. On the other hand, CS-TSSOS can easily handle instances with up to
500 variables.

Table 3.2: The result for Broyden banded functions (k = 3)

var CSSOS TSSOS CS-TSSOS SDSOS
mb opt time mb opt time mb opt time opt time

20 120 0 21.7 33 0 4.39 19 0 2.24 −13731 374
40 120 0 44.6 52 0 231 19 0 6.95 - -
60 120 0 81.8 - - - 19 0 13.0 - -
80 120 0 116 - - - 19 0 19.6 - -
100 120 0 151 - - - 19 0 27.0 - -
120 120 0 195 - - - 19 0 34.4 - -
140 120 0 249 - - - 19 0 43.1 - -
160 120 0 298 - - - 19 0 50.2 - -
180 120 0 338 - - - 19 0 63.8 - -
200 120 - - - - - 19 0 72.9 - -
250 120 - - - - - 19 0 106 - -
300 120 - - - - - 19 0 132 - -
400 120 - - - - - 19 0 220 - -
500 120 - - - - - 19 0 313 - -
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3.4.2 Benchmarks for constrained POPs

• The generalized Rosenbrock function

fgR(x) = 1 +
n∑
i=2

(100(xi − x2
i−1)2 + (1− xi)2).

• The Broyden tridiagonal function

fBt(x) =((3− 2x1)x1 − 2x2 + 1)2 +
n−1∑
i=2

((3− 2xi)xi − xi−1 − 2xi+1 + 1)2

+ ((3− 2xn)xn − xn−1 + 1)2.

• The chained Wood function

fcW(x) =1 +
∑
i∈J

(100(xi+1 − x2
i )2 + (1− xi)2 + 90(xi+3 − x2

i+2)2

+ (1− xi+2)2 + 10(xi+1 + xi+3 − 2)2 + 0.1(xi+1 − xi+3)2),

where J = {1, 3, 5, . . . , n− 3} and 4|n.
With the generalized Rosenbrock (resp. Broyden tridiagonal or chained Wood) function as the

objective function, we consider the following constrained POP:{
inf fgR (resp. fBt or fcW)
s.t. 1− (

∑20j
i=20j−19 x

2
i ) ≥ 0, j ∈ [n/20],

(3.4.1)

where 20|n. The generalized Rosenbrock function, the Broyden tridiagonal function and the
chained Wood function involve cliques with 2 or 3 variables, which can be efficiently handled
by the CSSOS hierarchy; see [203]. For them, the CS-TSSOS hierarchy gives almost the same
results with the CSSOS hierarchy. Hence we add the sphere constraints in (3.4.1) to increase the
clique size and to show the difference.

For these problems, the minimum relaxation order k = 2 is used. As in the unconstrained case,
we solve the CSSOS hierarchy (3.1.4), the TSSOS hierarchy (3.1.8) with t = 1 and the CS-TSSOS
hierarchy (3.2.5) with t = 1, and use approximately smallest chordal extensions. We also solve
these POPs with the SDSOS approach. The results are displayed in Tables 3.3–3.5.

From these tables, one can see that CS-TSSOS significantly reduces the maximal size of SDP
blocks and is again the most efficient approach. For the generalized Rosenbrock function, CSSOS,
TSSOS and CS-TSSOS give almost the same optimum while SDSOS gives a slightly loose lower
bound (only for n = 40); for the Broyden tridiagonal function, CSSOS, TSSOS and CS-TSSOS
all give the same optimum while SDSOS gives a very loose lower bound (only for n = 40); for the
chained Wood function, CSSOS, TSSOS and CS-TSSOS all give the same optimum while SDSOS
gives a slightly loose lower bound (only for n = 40). Due to the limitation of memory, CSSOS scales
up to 180 variables; TSSOS scales up to 180 or 200 variables; SDSOS scales up to 40 variables.
On the other hand, CS-TSSOS can easily handle these instances with up to 1000 variables.

3.4.3 The Max-Cut problem
The Max-Cut problem is one of the basic combinatorial optimization problems, which is known

to be NP-hard. Let G(V,E) be an undirected graph with V = [n] and with edge weights wij for
{i, j} ∈ E. Then the Max-Cut problem for G can be formulated as a QCQP in binary variables:{

max 1
2
∑
{i,j}∈E wij(1− xixj)

s.t. 1− x2
i = 0, i ∈ [n].

(3.4.2)

The property of binary variables in (3.4.2) can be also exploited to reduce the size of SDPs arising
from the Moment-SOS hierarchy, which has been implemented in TSSOS.
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Table 3.3: The result for the generalized Rosenbrock function (k = 2)
var CSSOS TSSOS CS-TSSOS SDSOS

mb opt time mb opt time mb opt time opt time
40 231 38.051 126 41 38.049 0.61 21 38.049 0.23 37.625 115
60 231 57.849 232 61 57.845 3.31 21 57.845 0.32 - -
80 231 77.647 306 81 77.641 11.7 21 77.641 0.41 - -
100 231 97.445 377 101 97.436 31.3 21 97.436 0.54 - -
120 231 117.24 408 121 117.23 75.4 21 117.23 0.60 - -
140 231 137.04 495 141 137.03 190 21 137.03 0.75 - -
160 231 156.84 570 161 156.82 367 21 156.82 0.90 - -
180 231 176.64 730 181 176.62 628 21 176.62 1.09 - -
200 231 - - 201 196.41 1327 21 196.41 1.27 - -
300 231 - - - - - 21 295.39 2.26 - -
400 231 - - - - - 21 394.37 3.36 - -
500 231 - - - - - 21 493.35 4.65 - -
1000 231 - - - - - 21 988.24 15.8 - -

Table 3.4: The result for the Broyden tridiagonal function (k = 2)
var CSSOS TSSOS CS-TSSOS SDSOS

mb opt time mb opt time mb opt time opt time
40 231 31.234 168 43 31.234 1.95 23 31.234 0.64 −5.8110 138
60 231 47.434 273 63 47.434 8.33 23 47.434 1.14 - -
80 231 63.634 413 83 63.634 33.9 23 63.634 1.50 - -
100 231 79.834 519 103 79.834 104 23 79.834 1.96 - -
120 231 96.034 671 123 96.034 199 23 96.034 2.30 - -
140 231 112.23 872 143 112.23 490 23 112.23 2.94 - -
160 231 128.43 1002 163 128.43 783 23 128.43 3.67 - -
180 231 144.63 1066 183 144.63 1329 23 144.63 4.46 - -
200 231 - - - - - 23 160.83 4.88 - -
300 231 - - - - - 23 241.83 8.67 - -
400 231 - - - - - 23 322.83 13.3 - -
500 231 - - - - - 23 403.83 19.9 - -
1000 231 - - - - - 23 808.83 57.5 - -

Table 3.5: The result for the chained Wood function (k = 2)
var CSSOS TSSOS CS-TSSOS SDSOS

mb opt time mb opt time mb opt time opt time
40 231 574.51 164 41 574.51 0.81 21 574.51 0.26 518.11 110
60 231 878.26 254 61 878.26 3.61 21 878.26 0.40 - -
80 231 1182.0 393 81 1182.0 15.3 21 1182.0 0.57 - -
100 231 1485.8 505 101 1485.8 43.2 21 1485.8 0.73 - -
120 231 1789.5 516 121 1789.5 88.4 21 1789.5 0.93 - -
140 231 2093.3 606 141 2093.3 195 21 2093.3 1.16 - -
160 231 2397.0 700 161 2397.0 403 21 2397.0 1.39 - -
180 231 2700.8 797 181 2700.8 867 21 2700.8 1.54 - -
200 231 - - 201 3004.5 1238 21 3004.5 1.91 - -
300 231 - - - - - 21 4523.6 3.39 - -
400 231 - - - - - 21 6042.0 5.72 - -
500 231 - - - - - 21 7560.7 7.88 - -
1000 231 - - - - - 21 15155 23.0 - -
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For the numerical experiments, we construct random instances of Max-Cut problems with a
block-band sparsity pattern (illustrated in Figure 3.8) which consists of l blocks of size b and two
bands of width h. Here we select b = 25 and h = 5. For a given l, we generate a random sparse
binary matrix A ∈ Slb+h according to the block-arrow sparsity pattern: the entries out of the
blue area take zero; the entries in the block area take one with probability 0.16; the entries in the
band area take one with probability 2/

√
l. Then we construct the graph G with A as its adjacency

matrix. For each edge {i, j} ∈ E(G), the weight wij randomly takes values 1 or −1 with equal prob-
ability. Doing so, we build 10 Max-Cut instances with l = 20, 40, 60, 80, 100, 120, 140, 160, 180, 200,
respectively5. The largest number of nodes is 5005.

Figure 3.8: The block-band sparsity pattern

h

h

b

b

l blocks

l: the number of blocks; b: the size of blocks; h: the width of bands.

For each instance, we solve the first-order Moment-SOS relaxation (Shor’s relaxation), the
CSSOS hierarchy with k = 2, and the CS-TSSOS hierarchy with k = 2, t = 1 for which the
maximal chordal extension is used. The results are displayed in Table 3.6. From the table we can
see that for each instance, both CSSOS and CS-TSSOS significantly improve the bound obtained
by Shor’s relaxation. Meanwhile, CS-TSSOS is several times faster than CSSOS at the cost of
possibly providing a sightly weaker bound. In addition, CS-TSSOS yields smaller block sizes than
CSSOS.

Table 3.6: The result for Max-Cut instances
instance nodes edges mc Shor CSSOS CS-TSSOS

opt mb opt time mb opt time
g20 505 2045 14 570 120 488 51.2 92 488 19.6
g40 1005 3441 14 1032 120 885 134 92 893 41.1
g60 1505 4874 14 1439 120 1227 183 92 1247 71.3
g80 2005 6035 15 1899 136 1638 167 106 1669 84.8
g100 2505 7320 14 2398 120 2073 262 92 2128 112
g120 3005 8431 14 2731 120 2358 221 79 2443 127
g140 3505 9658 13 3115 105 2701 250 79 2812 153
g160 4005 10677 14 3670 120 3202 294 79 3404 166
g180 4505 12081 13 4054 105 3525 354 79 3666 246
g200 5005 13240 13 4584 105 4003 374 79 4218 262

In this table, only the integer part of optimal values is preserved.

5The instances are available at https://wangjie212.github.io/jiewang/code.html.
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3.4.4 The AC-OPF problem
The AC optimal power flow (AC-OPF) is a central problem in power systems. It can be

formulated as the following POP in complex variables Vi, Sgq , Sij :

inf
Vi,S

g
q ,Sij

∑
q∈G(c2q(<(Sgq ))2 + c1q<(Sgq ) + c0q)

s.t. ∠Vr = 0,
Sglq ≤ Sgq ≤ Sguq , ∀q ∈ G,
υli ≤ |Vi| ≤ υui , ∀i ∈ N,∑
q∈Gi S

g
q − Sdi −Ys

i |Vi|2 =
∑

(i,j)∈Ei∪ERi
Sij , ∀i ∈ N,

Sij = (Y∗ij − ibcij
2 ) |Vi|

2

|Tij |2 −Y∗ij
ViV

∗
j

Tij , ∀(i, j) ∈ E,
Sji = (Y∗ij − ibcij

2 )|Vj |2 −Y∗ij
V ∗i Vj
T∗
ij
, ∀(i, j) ∈ E,

|Sij | ≤ suij , ∀(i, j) ∈ E ∪ ER,
θ∆l
ij ≤ ∠(ViV ∗j ) ≤ θ∆u

ij , ∀(i, j) ∈ E.

(3.4.3)

The meaning of the symbols in (3.4.3) is as follows: N - the set of buses, G - the set of generators, Gi
- the set of generators connected to bus i, E - the set of from branches, ER - the set of to branches,
Ei and ERi - the subsets of branches that are incident to bus i, i - imaginary unit, Vi - the voltage
at bus i, Sgq - the power generation at generator q, Sij - the power flow from bus i to bus j, <(·)
- real part of a complex number, ∠(·) - angle of a complex number, | · | - magnitude of a complex
number, (·)∗ - conjugate of a complex number, r - the voltage angle reference bus. All symbols
in boldface are constants (c0q, c1q, c2q,υ

l
i,υ

u
i , suij ,θ

∆l
ij ,θ

∆u
ij ∈ R,Sglq ,Sguq ,Sdi ,Ys

i ,Yij ,bcij ,Tij ∈ C).
For a full description on the AC-OPF problem, the reader may refer to [10]. By introducing real
variables for both real and imaginary parts of each complex variable, we can convert the AC-OPF
problem to a POP involving only real variables6.

To tackle an AC-OPF instance, we first compute a locally optimal solution with a local solver
and then rely on an SDP relaxation to certify the global optimality. Suppose that the optimal
value reported by the local solver is AC and the optimal value of the SDP relaxation is opt. The
optimality gap between the locally optimal solution and the SDP relaxation is defined by

gap := AC− opt
AC × 100%.

If the optimality gap is less than 1.00%, then we accept the locally optimal solution as globally
optimal. For many AC-OPF instances, the first-order Moment-SOS relaxation (Shor’s relaxation)
is already able to certify the global optimality (with an optimality gap less than 1.00%). Therefore,
we focus on the more challenging AC-OPF instances for which the optimality gap given by Shor’s
relaxation is greater than 1.00%. We select such instances from the AC-OPF library PGLiB [10].
Since we shall go to the second-order Moment-SOS relaxation, we can replace the variables Sij
and Sji by their right-hand side expressions in (3.4.3) and then convert the resulting problem to
a POP involving real variables. The data for these selected AC-OPF instances are displayed in
Table 3.7, where the AC values are taken from PGLiB.

We solve Shor’s relaxation, the CSSOS hierarchy with k = 2 and the CS-TSSOS hierarchy
with k = 2, t = 1 for these AC-OPF instances and the results are displayed in Tables 3.7–3.8.
For instances 162 ieee dtc, 162 ieee dtc api, 500 tamu, 1888 rte, with maximal chordal extensions
Mosek ran out of memory and so we use approximately smallest chordal extensions. As the tables
show, CS-TSSOS is more efficient and scales much better with the problem size than CSSOS. In
particular, CS-TSSOS succeeds in reducing the optimality gap to less than 1.00% for all instances.

6The expressions involving angles of complex variables can be converted to polynomials by using tan(∠z) = y/x
for z = x + iy ∈ C.

https://github.com/power-grid-lib/pglib-opf
https://github.com/power-grid-lib/pglib-opf
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Table 3.7: The data for AC-OPF instances
case name var cons mc AC Shor

opt gap
3 lmbd api 12 28 6 1.1242e4 1.0417e4 7.34%

5 pjm 20 55 6 1.7552e4 1.6634e4 5.22%
24 ieee rts api 114 315 10 1.3495e5 1.3216e5 2.06%
24 ieee rts sad 114 315 14 7.6943e4 7.3592e4 4.36%

30 as api 72 297 8 4.9962e3 4.9256e3 1.41%
73 ieee rts api 344 971 16 4.2263e5 4.1041e5 2.89%
73 ieee rts sad 344 971 16 2.2775e5 2.2148e5 2.75%
162 ieee dtc 348 1809 21 1.0808e5 1.0616e5 1.78%

162 ieee dtc api 348 1809 21 1.2100e5 1.1928e5 1.42%
240 pserc 766 3322 16 3.3297e6 3.2818e6 1.44%

500 tamu api 1112 4613 20 4.2776e4 4.2286e4 1.14%
500 tamu 1112 4613 30 7.2578e4 7.1034e4 2.12%
793 goc 1780 7019 18 2.6020e5 2.5636e5 1.47%
1888 rte 4356 18257 26 1.4025e6 1.3748e6 1.97%
3022 goc 6698 29283 50 6.0143e5 5.9278e5 1.44%

Table 3.8: The result for AC-OPF instances
case name CSSOS CS-TSSOS

mb opt time gap mb opt time gap CE
3 lmbd api 28 1.1242e4 0.21 0.00% 22 1.1242e4 0.09 0.00% max

5 pjm 28 1.7543e4 0.56 0.05% 22 1.7543e4 0.30 0.05% max
24 ieee rts api 66 1.3442e5 5.59 0.39% 31 1.3396e5 2.01 0.73% max
24 ieee rts sad 120 7.6943e4 94.9 0.00% 39 7.6942e4 14.8 0.00% max

30 as api 45 4.9927e3 4.43 0.07% 22 4.9920e3 2.69 0.08% max
73 ieee rts api 153 4.2246e5 758 0.04% 44 4.2072e5 96.0 0.45% max
73 ieee rts sad 153 2.2775e5 504 0.00% 44 2.2766e5 71.5 0.04% max
162 ieee dtc 253 − − − 34 1.0802e5 278 0.05% min

162 ieee dtc api 253 − − − 34 1.2096e5 201 0.03% min
240 pserc 153 3.3072e6 585 0.68% 44 3.3042e6 33.9 0.77% max

500 tamu api 231 4.2413e4 3114 0.85% 39 4.2408e4 46.6 0.86% max
500 tamu 496 − − − 31 7.2396e4 410 0.25% min
793 goc 190 2.5938e5 563 0.31% 33 2.5932e5 66.1 0.34% max
1888 rte 378 − − − 27 1.3953e6 934 0.51% min
3022 goc 1326 − − − 76 5.9858e5 1886 0.47% max



Chapter 4

Exploiting the constant trace
property: Equality constraints

Most of the content of this chapter is from [134].
In the previous chapter, we have combined correlative and term sparsity exploitation to improve

the scalability of the Moment-SOS hierarchy for POP.
Another complementary workaround to improve further the scalability is by exploiting a Con-

stant Trace Property (CTP) of semidefinite relaxations associated with POPs coming from combi-
natorial optimization [75, 219]. This permits to solve a given semidefinite relaxation with ad-hoc
methods, like, e.g., limited-memory bundle methods, instead of the costly interior-point methods.

The present chapter is part of this effort.

Background on SDP with CTP
One way to exploit the CTP of matrices in SDPs is to consider the dual which reduces to

minimize the maximum eigenvalue of a symmetric matrix pencil [75]. For problems of moderate
size one may solve the latter problem with interior-point methods [16]. However for larger-scale
instances, running a single iteration becomes computationally too demanding and therefore one
has to use an alternative method, and in particular first-order methods.

To solve large-scale instances of this maximal eigenvalue minimization problem, two types of
first-order methods can be used: subgradient descent or variants of the mirror-prox algorithm [144],
and spectral bundle methods [75]. In other methods of interest based on non-convex formulations
[27, 93], the problem is directly solved over the set of low rank matrices. These latter approaches
are particularly efficient for problems where the solution is low rank, e.g., for matrix completion
or combinatorial relaxations.

Despite their empirical efficiency, the computational complexity of spectral bundle and low
rank methods is still not completely understood. This is in contrast with methods based on
stochastic smoothing results for which explicit computational complexity estimates are available.
For instance in [42] smooth stochastic approximations of the maximum eigenvalue function are
obtained via rank-one Gaussian perturbations. In [155] Newton’s method is used, assuming that
the multiplicity of the maximal eigenvalue is known in advance.

By combining quasi-Newton methods (e.g. Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
or its so-called “Limited-memory” version (L-BFGS) [151]) with adaptive gradient sampling [30,
99], convergence guarantees are obtained for certain non smooth problems while keeping good
empirical performance [116, 39].

Another hybrid method is the Limited-Memory Bundle Method (LMBM) which combines L-
BFGS with bundle methods [71, 70]: Briefly, L-BFGS is used in the line search procedure to
determine the step sizes in the bundle method. LMBM enjoys global convergence for locally
Lipschitz continuous functions which are not necessarily differentiable.

Finally the more recent SketchyCGAL algorithm [219] also uses limited memory and arithmetic.
It combines a primal-dual optimization scheme together with a randomized sketch for low-rank
matrix approximation. Assuming that zero duality holds, it provides a near-optimal low-rank

53
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approximation. A variant of SketchyCGAL can handle SDPs with bounded (instead of constant)
trace property.

Concerning SDPs coming from relaxations in polynomial optimization, Malick and Henrion [78,
Section 3.2.3] have used the CTP to provide an efficient algorithm for unconstrained polynomial
optimization problems. At last but not least, the CTP trivially holds for Shor’s relaxation [189]
of combinatorial optimization problems formulated as linear-quadratic POPs on the discrete hy-
percube {−1, 1}n. This fact has been exploited in Helmberg and Rendl [75] to avoid solving the
associated SDP via interior-point methods.

Contribution
A novelty with respect to previous efforts is to show that every POP on a compact basic

semialgebraic set has an equivalent equality constrained POP formulation on an Euclidean sphere
(possibly after adding some artificial variables) such that each of its semidefinite relaxations in the
Moment-SOS hierarchy has the CTP. We call CTP-POP such a formulation of POPs. Therefore to
solve each semidefinite relaxation of a CTP-POP one may avoid the computationally costly interior-
point methods in some cases. Indeed as the dual reduces to minimize the largest eigenvalue of a
matrix pencil, one may rather use efficient ad-hoc non smooth methods as those invoked above.

I. In Section 4.2.1, we prove that each semidefinite moment relaxation indexed by k ∈ N:

−τk = sup
X∈S(k)

{〈Ck,X〉 : AkX = bk , X � 0} , (4.0.1)

of the Moment-SOS hierarchy associated with an equality constrained POP on an Euclidean sphere
of Rn has CTP (see Lemma 4.4), i.e.,

∀ X ∈ S(k) , AkX = bk ⇒ trace(X) = ak ,

where Ak : S(k) → Rmk is a linear operator with S(k) being the set of real symmetric matrices
of size

(
n+k
n

)
, Ck ∈ S(k) and bk ∈ Rmk with mk = O

((
n+k
n

)2). Following the framework by
Helmberg and Rendl [75], SDP (4.0.1) boils down to minimizing the largest eigenvalue of a matrix
pencil:

−τk = inf
z∈Rmk

akλ1(Ck −A>k z) + b>k z , (4.0.2)

where λ1(A) stands for the largest eigenvalue of A and A>k denotes the adjoint operator of Ak.
Hence (4.0.2) form what we call a hierarchy of (non smooth, convex) spectral relaxations of

the equality constrained POP on a sphere. Convergence of (τk)k∈N to the optimal value f? of the
initial POP is guaranteed with rate at least O(k−c) (see Theorem 4.1), where c depends only on
the polynomials describing the cost and constraints of the POP.

In addition, existence of an optimal solution of the spectral relaxation (4.0.2) is guaranteed for
sufficiently large k under certain conditions on the POP (see Proposition 4.1). Finally, when the
set of global minimizers of the equality constrained POP on the sphere is finite, we also describe
how to obtain an optimal solution x? via an optimal solution z̄ of (4.0.2).

II. In Section 4.2 we prove that any POP on a compact basic semialgebraic set (including a
ball constraint R − ‖x‖22 ≥ 0) has an equivalent equality constrained POP (called CTP-POP) on
a sphere of Rn+m+1, where m is the number of inequality constraints of the initial POP. This
CTP-POP can be solved by using spectral relaxations (4.0.2).

III. We describe Algorithm 3 to handle a given equality constrained POP on the sphere. It
consists of handling each semidefinite relaxation (4.0.1) by solving the spectral formulation (4.0.2),
with a nonsmooth optimization procedure chosen in advance by the user in our software library,
called SpectralSOS. This library supports the three optimization subroutines LMBM [71, 70],
proximal bundle (PB) [75], and SketchyCGAL [219]. Our default method in Algorithm 3 is LMBM.

IV. Finally, efficiency and robustness of SpectralPOP are illustrated in Section 4.3 on extensive
benchmarks. We solve several (randomly generated) dense equality constrained QCQPs on the
unit sphere by running Algorithm 3 and compare results with those obtained with the standard
Moment-SOS hierarchy. Suprisingly SpectralPOP can provide the optimal value as well as an
optimal solution with high accuracy, and up to twenty five times faster than the semidefinite

https://github.com/maihoanganh/SpectralSOS
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hierarchy. For instance, SpectralPOP can solve the first relaxation of minimization problem of
dense quadratic polynomials on the unit sphere with up to n = 500 variables in about 35 seconds
and up to 1500 variables in about 7000 seconds on a standard laptop computer. We emphasize
that for some problems not randomly generated and scaled so as to fit our optimization framework
on the unit sphere, we could observe a lack of high precision after transferring results (of the scaled
formulation) back to the unscaled initial formulation.

We also provide extended applications of spectral relaxations to the following three decision
problems: deciding nonnegativity of even degree forms, deciding convexity of even degree forms
and deciding copositivity of real symmetric matrices, with very satisfactory results.

In [75], Helmberg and Rendl propose a spectral bundle method (based on Kiwiel’s proximal
bundle method [97]) to solve an SDP relying on the maximal eigenvalue minimization problem
of the form (4.0.2). This method works better than interior-point algorithms for very large-scale
SDPs, when the number of trace equality constraints is not larger than the size of the positive
semidefinite matrix (e.g., Shor’s relaxation of MAXCUT problems). However this method is not
always more efficient than interior-point solvers (e.g., SDPT3) for instance when the SDPs involve
a number of trace equality constraints which is larger than the size of the positive semidefinite
matrix, as reported in [74, Table 1-6]. Unfortunately this latter type of SDP is the generic form
of Moment-SOS relaxations for POPs and thus is not suitable to be solved by Helmberg-Rendl’s
spectral bundle method. By contrast with previous works, our numerical results show that the
combination between Helmberg-Rendl’s spectral formulation and LMBM is cheaper and faster
than Mosek (the currently fastest SDP solver based on interior-point method) while maintaining
the same accuracy when solving moment relaxations of equality constrained POPs on a sphere.

4.1 Background and Preliminary Results
4.1.1 General POPs on basic compact semialgebraic sets

We recall that a POP is of the form

f? := inf{f(x) : x ∈ S(g, h)} , (4.1.1)

where S(g, h) is a basic semialgebraic set defined as follows:

S(g, h) := {x ∈ Rn : gi(x) ≥ 0 , i ∈ [m] ; hj(x) = 0 , j ∈ [l] } (4.1.2)

for some polynomials f, gi, hj ∈ R[x]. Here g := {gi}i∈[m] and h := {hj}j∈[l]. Set dgie :=
ddeg(gi)/2e and dhje := ddeg(hj)/2e.

If S(g, h) is nonempty and compact, then f? < ∞ and POP (4.1.1) has at least one global
minimizer. Next, as we are concerned with POPs on compact feasible sets, we assume that S(g, h) ⊂
B(0, R), where B(0, R) := {x ∈ Rn : R − ‖x‖22 ≥ 0}. In addition, if m 6= 0 then we may and will
assume that g1 := R− ‖x‖22.

4.1.2 POPs on a variety contained in a sphere
We consider a special form of POP (4.1.1) which is of the form

f? := inf { f(x) : x ∈ V (h)} , (4.1.3)

where V (h) is the real variety defined by:

V (h) := {x ∈ Rn : hj(x) = 0 ; j ∈ [l] } , (4.1.4)

for some set of polynomials h := {hj}lj=1 ⊂ R[x]. We assume that h1 := R̄ − ‖x‖22 for some
R̄ > 0, so that V (h) ⊂ ∂B(0, R̄), where ∂B(0, R̄) := {x ∈ Rn : R̄ − ‖x‖22 = 0}. By assuming that
V (h) 6= ∅, f? <∞ and POP (4.1.3) has at least one global minimizer.

Given k ∈ N, define the truncated preordering of order k associated with the variety V (h) in
(4.1.4) as follows:

Pk(h) :=

σ0 +
l∑

j=1
ψjhj : σ0 ∈ Σ[x]k , ψj ∈ R[x]2(k−dhje) , j ∈ [l]

 .
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Remark 4.1. For every k ∈ N, Pk(h) is also the truncated quadratic module Qk(h) associated
with the semialgebraic set V (h) = S(∅, h).

As a consequence of Schweighofer’s main result in [188, Theorem 4], one obtains the following
result:

Lemma 4.1. Let f? be as in (4.1.3) with V (h) as in (4.1.4). There exists c > 0 depending on V
such that for k ∈ N with k ≥ cdcncd, one has

(f − f?) + cd4n2d‖f‖k−1/c ∈ Pk(h) .

Note that in the case of polynomial optimization on the sphere (i.e., h = {R− ‖x‖22} for some
R > 0), one can take c = 1

2 in Lemma 4.1, as a consequence of the convergence result from [57].
Next, consider the hierarchy of semidefinite programs (SDP) indexed by k ∈ N:

ρk := sup { ξ ∈ R : f − ξ ∈ Pk(h)} . (4.1.5)

For every k ∈ N, the dual of (4.1.5) reads

τk := inf
y∈Rb(n,2k)

Ly(f)

s.t. Mk(y) � 0 ; y0 = 1
Mk−dhje(hj y) = 0 , j ∈ [l] .

(4.1.6)

By invoking Lemma 4.1 and Proposition 2.4, one obtains the convergence behavior of the sequence
(ρk)k∈N in the following result.

Theorem 4.1. Let f? be as in (4.1.3) with V (h) 6= ∅ as in (4.1.4). Then:

1. For all k ∈ N, ρk ≤ ρk+1 ≤ f?.

2. The sequence (ρk)k∈N converges to f? with rate at least O(k−1/c).

3. If the ideal I(h) is real radical and the second-order sufficiency conditions (Definition 2.1)
hold at every global minimizer of POP (4.1.3) then τk = ρk = f? for some k and (4.1.5) has
an optimal solution, i.e., f − f? ∈ Pk(h).

4. If V (h) defined as in (4.1.4) is finite, τk = ρk = f? for some k ∈ N and both primal-dual
(2.4.3)-(2.4.5) have optimal solutions. In this case, the flatness condition holds at order k.

With V (h) in lieu of S(g, h), zero duality gap as well as analogues of Proposition 2.1 and 2.3,
also hold.

4.1.3 Spectral minimizations of SDP
Let s, l, sj ∈ N>0, j ∈ [l], be fixed such that s =

∑l
j=1 s

(j). Let S be the set of real symmetric
matrices of size s in a block diagonal form:

X = diag(X1, . . . ,Xl) , (4.1.7)

such that Xj is of size s(j), j ∈ [l]. Let S+ be the set of all X ∈ S such that X � 0, i.e., X has only
nonnegative eigenvalues. Then S is a Hilbert space with scalar product 〈A,B〉 = trace(B>A) and
S+ is a self-dual cone.

Let us consider the following SDP:

−τ = sup
X∈S
{ 〈C,X〉 : AX = b , X � 0 } , (4.1.8)

where A : S → Rm is a linear operator of the form

AX = [〈A1,X〉 , . . . , 〈Am,X〉] ,

with Ai ∈ S, i ∈ [m], C ∈ S is the cost matrix and b ∈ Rm is the right-hand-side vector.
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The dual of SDP (4.1.8) reads:

−ρ = inf
z
{b>z : A>z−C � 0 } , (4.1.9)

where A> : Rm → S is the adjoint operator of A, i.e., A>z =
∑m
i=1 ziAi. The following assumption

will be used in the next two sections:

Assumption 4.1. Consider the following conditions:

1. Zero duality gap of primal-dual (4.1.8)-(4.1.9) holds, i.e., τ = ρ and τ ∈ R.

2. Primal attainability: SDP (4.1.8) has an optimal solution.

3. Dual attainability: SDP (4.1.9) has an optimal solution.

4. Constant trace property (CTP): There exists a > 0 such that

∀ X ∈ S , AX = b⇒ trace(X) = a . (4.1.10)

5. Bounded trace property (BTP): There exists a > 0 such that

∀ X ∈ S , AX = b⇒ trace(X) ≤ a . (4.1.11)

In Assumption 5.3, conditions 1 and 5 (or conditions 1 and 4) imply condition 2. Indeed, if
condition 5 holds, the feasible set of (5.3.25) is compact and if condition 1 holds, the feasible set
of (5.3.25) is nonempty. Moreover, conditions 2 and 5 (or conditions 2 and 4) imply condition
1. Indeed, if conditions 2 and 5 hold, the set of optimal solutions of (5.3.25) is nonempty and
bounded. Then Trnovska’s result [197, Corollary 1] yields condition 1.

Remark 4.2. If condition 5 of Assumption 4.1 holds, by adding a slack variable y and noting
Y = diag(X, y), we obtain an equivalent SDP of (4.1.8) as follows:

−τ = sup
Y∈Ŝ
{〈Ĉ,Y〉 : 〈Âi,Y〉 = bi , Y � 0 , trace(Y) = a} , (4.1.12)

where Ŝ = {diag(X, y) : X ∈ S , y ∈ R}, Ĉ = diag(C, 0) and Âi = diag(Ai, 0). Obviously, SDP
(4.1.12) has CTP.

SDP with Constant Trace Property (CTP)

Recall that λ1(A) stands for the largest eigenvalue of a real symmetric matrix A.

Lemma 4.2. Let conditions 1 and 4 of Assumption 4.1 hold and let ϕ : Rm → R be the function:

z 7→ ϕ(z) := aλ1(C−A>z) + b>z . (4.1.13)

Then:
−τ = inf

z
{ϕ(z) : z ∈ Rm} . (4.1.14)

Moreover if condition 3 of Assumption 4.1 holds, i.e., SDP (4.1.9) has an optimal solution then
problem (4.1.14) has an optimal solution.

The proof of Lemma 4.2 is available in [134, Appendix].
Next, we describe Algorithm 1 to solve SDP (4.1.8), which is based on nonsmooth first-order

optimization methods (e.g., LMBM [71, Algorithm 1]). As shown later on in Section 4.3, this
algorithm works well in almost all cases and with significantly lower computational cost when
compared to the (currently fastest) SDP solver Mosek 9.1.

For X ∈ S, the Frobenius norm of X is defined by ‖X‖F :=
√
〈X,X〉. We denote by ‖A‖ the

operator norm of A, i.e., ‖A‖ := maxX∈S ‖AX‖2/‖X‖F .

Remark 4.3. Before running Algorithm 1, we scale the problem’s input as follows: ‖C‖F =
‖A‖ = a = 1 and ‖A1‖F = · · · = ‖Am‖F .
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Algorithm 1 SDP-CTP
Input: SDP (4.1.8) with unknown optimal value and optimal solution;

method (T) for solving convex nonsmooth unconstrained optimization problems (NSOP).
Output: optimal value −τ and optimal solution X? of SDP (4.1.8).

1: Compute the optimal value −τ and an optimal solution z̄ of the NSOP (4.1.14) by using
method (T);

2: Compute a normalized eigenvector u corresponding to λ1(C−A>z̄) and set X? = auu>.

The fact that Algorithm 1 is well-defined under certain conditions is a corollary of Lemma 4.2
and [134, Lemma A.22].

Corollary 4.1. Let conditions 1 and 4 of Assumption 4.1 hold. Assume that the method (T) is
globally convergent for NSOP (4.1.14) (e.g., (T) is LMBM). Then output −τ of Algorithm 1 is
well-defined. Moreover, if condition 3 of Assumption 4.1 holds, the vector z̄ mentioned at Step 1
of Algorithm 1 exists. In this case, if λ1(C−A>z̄) has multiplicity 1, the output X? of Algorithm
1 is well-defined.

When λ1(C−A>z̄) has multiplicity larger than 1, one can obtain a dual matrix G corresponding
to an optimal solution X? of SDP (4.1.8) as in the following corollary:

Corollary 4.2. Let condition 4 of Assumption 4.1 hold. Let z̄ be an optimal solution of the NSOP
(4.1.14). Define

U := C−A>z̄ ,
G := λ1(U)I−U ,

(4.1.15)

where I is the identity matrix. Then G is positive semidefinite and satisfies

G = A>z? −C , (4.1.16)

for some optimal solution z? of (4.1.9).

Proof. It is not hard to prove that G � 0. Let us prove the other statement. By using Farkas’
lemma, there exists y ∈ Rm such that A>y = I and y>b = a (see [74, Section 2]). Then
G = λ1(U)A>y−C +A>z̄ = A>(λ1(U)y + z̄)−C = A>z? −C, where z? := λ1(U)y + z̄. Since
b>z? = λ1(U)b>y + b>z̄ = ϕ(z̄) = −τ , z? is an optimal solution of (4.1.9).

Largest eigenvalue computation: Step 1 of Algorithm 1 requires the largest eigenvalue and
corresponding eigenvectors of C−A>z to evaluate the function ϕ (resp. ψ) and a subgradient of
the subdifferential ∂ϕ (resp. ∂ψ) given in [134, Proposition A.1] (resp. [134, Proposition A.2]) at
z. Fortunately, solving the eigenvalue problem for C − A>z ∈ S can be done on every block of
C−A>z. Indeed, with X ∈ S as in (4.1.7),

λ(X) = λ(X1) ∪ · · · ∪ λ(Xl) ,

where λ(A) is the set of all eigenvalues λ1(A) ≥ · · · ≥ λt(A) for every real symmetric matrix A
of size t. In particular,

λ1(X) = max{λ1(X1), . . . , λ1(Xl)} .

If u ∈ Rs(j) is an eigenvector of Xj corresponding to the eigenvalue λi(Xj) for some i ∈ [s(j)] and
j ∈ [l], by adding zero entries in u,

ū = (0Rs(1)+···+s(j−1) ,u,0Rs(j+1)+···+s(l) )

is an eigenvector of X = diag(X1, . . . ,Xl) corresponding to λi(Xj).
The interested reader can refer to [181, 115] to solve largest eigenvalue problems of symmetric

matrices of large sizes.
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Remark 4.4. Let conditions 1, 2 and 5 of Assumption 4.1 hold. We keep all notation from Remark
4.2. By applying Lemma 4.2 for SDP (4.1.12) with CTP, one has

−τ = inf{ aλ1(Ĉ− Â>z) + b>z : z ∈ Rm} , (4.1.17)

where Â>z =
∑m
i=1 ziÂi. Note that Ĉ−Â>z = diag(C−A>z, 0). It implies that λ1(Ĉ−Â>z) =

max{λ1(C−A>z), 0}. Thus, (4.1.17) can be rewritten as

−τ = inf{ amax{λ1(C−A>z), 0}+ b>z : z ∈ Rm} . (4.1.18)

In the next section, we consider the spectral formulation (4.1.18) introduced by Ding et al. in
[48, Section 6].

SDP with Bounded Trace Property (BTP)

In the last subsection, we have seen that SDPs with CTP can be solved efficiently with first-order
methods. Similar results can be obtained for the larger class of SDPs with the weaker bounded trace
property (BTP). In particular the semidefinite relaxations of the Moment-SOS hierarchy associated
with a POP on a compact semialgebraic set have the BTP. So in principle there is no need to add
auxiliary “slack” variables to obtain an equivalent CTP-POP, as shown in Remark 4.2. However,
numerical experiments of Section 4.3 suggest that the CTP is a highly desirable property that
justifies addition of auxiliary variables.

The analogue of Lemma 4.2 for BTP reads:

Lemma 4.3. Let conditions 1, 2 and 5 of Assumption 4.1 hold, and let ψ : Rm → R be the
function:

z 7→ ψ(z) := amax{λ1(C−A>z), 0}+ b>z . (4.1.19)

Then
−τ = inf

z
{ψ(z) : z ∈ Rm} . (4.1.20)

Moreover if condition 3 of Assumption 4.1 holds, then problem (4.1.20) has an optimal solution.

The proof of Lemma 4.3 can be found in [134, Appendix].
We next describe Algorithm 2 to solve SDP (4.1.8). As Algorithm 1, it is also based on

nonsmooth optimization methods such as LMBM.

Algorithm 2 SDP-BTP
Input: SDP (4.1.8) with unknown optimal value and optimal solution;

method (T) for solving convex NSOP.
Output: optimal value −τ and optimal solution X? of SDP (4.1.8).

1: Compute the optimal value −τ and an optimal solution z̄ of NSOP (4.1.14) by using method
(T);

2: Compute λ1(C−A>z̄) and a corresponding normalized eigenvector u;
3: Let ξ̄ > 0 such that

ξ̄ =


0 if λ1(C−A>z̄) < 0 ,
ζa if λ1(C−A>z̄) = 0 ,
a otherwise ,

(4.1.21)

for some ζ ∈ [0, 1] such that X? = ξ̄uu> satisfies AX? = b.

The next result is a consequence of Lemma 4.3 and [134, Lemmas A.3, A.4].

Corollary 4.3. Let conditions 1, 2 and 5 of Assumption 4.1 hold. Assume that method (T) is
globally convergent for NSOP (4.1.20) (e.g., (T) is LMBM). Then the output −τ of Algorithm
2 is well-defined. Moreover, if condition 3 of Assumption 4.1 holds, the vector z̄ from Step 1 of
Algorithm 2 exists. In this case, if λ1(C−A>z̄) has multiplicity 1, the output X? of Algorithm 2
is well-defined.
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4.2 Application to polynomial optimization
We consider the following POP:

f? := inf{f(x) : x ∈ S(g, h)} , (4.2.1)

where S(g, h) is defined as in (4.1.2) with m (resp. l) being the number of inequality (resp. equality)
constraints. Assume that S(g, h) ⊂ B(0, R).

Remark 4.5. By setting X := diag(Mk(y),Mk−dg1e(g1y), . . . ,Mk−dgme(gmy)) and using the
upper bound trace(X) ≤ āk with

āk := Rk

(
b(n, k) +

m∑
i=1
‖gi‖1b(n, k − dgie)

)
, (4.2.2)

SDP (2.4.5) can be converted to an equivalent SDP with BTP, thanks to the absolute upper bound
for each moment variable |yα| ≤ R|α|/2, α ∈ Nn. In principle, we can solve this SDP by applying
directly Algorithm 2. However, in our experiments presented in Section 4.3 this method is not only
inefficient but also provides output with low accuracy.

In order to overcome the accuracy issue mentioned in Remark 4.5, we convert every POP to
a CTP-POP (i.e., a new POP formulation with CTP) by adding slack variables associated with
inequality constraints. In the sequel, we consider three particular cases: equality constrained POPs
on a sphere in Section 4.2.1, constrained POPs with single inequality (ball) constraint in Section
4.2.2, and constrained POPs on a ball in Section 4.2.3.

4.2.1 Equality constrained POPs on a sphere
Assume that m = 0 and h1 = R̄ − ‖x‖22. Note that ‖x‖22 = x2

1 + · · · + x2
n is a quadratic

polynomial. In this case, we consider equality constrained POPs on a sphere, presented in Section
4.1.2. We propose to reduce SDP (4.1.6) to an NSOP. For each k ∈ N, let (θk,α)α∈Nn

k
be a sequence

of positive real numbers such that

(1 + ‖x‖22)k =
∑

α∈Nn
k

θk,αx2α ,

and define the diagonal matrix

Pn,k := diag((θ1/2
k,α)α∈Nn

k
) . (4.2.3)

For every k ∈ N, since Pn,k � 0, SDP (4.1.6) is equivalent to SDP:

τk = inf
y∈Rb(n,2k)

Ly(f)

s.t. y0 = 1 ; Pn,kMk(y)Pn,k � 0 ,
Mk−dhje(hj y) = 0 , j ∈ [l] .

(4.2.4)

For every k ∈ N, let ak := (R̄+ 1)k. We will use the following lemma:

Lemma 4.4. For all k ∈ N,

Mk−1((R̄− ‖x‖22) y) = 0 ,
y0 = 1

}
⇒ trace(Pn,kMk(y)Pn,k) = ak .

Proof. Let k ∈ N be fixed. From Mk−1((R̄ − ‖x‖22) y) = 0, Ly(p(R̄ − ‖x‖22)) = 0, for every
p ∈ R[x]2(k−1). For every r ∈ N≤k−1, by choosing p = ‖x‖2r2 ,

Ly(‖x‖2(r+1)
2 ) = −Ly(‖x‖2r2 (R̄− ‖x‖22)) + R̄Ly(‖x‖2r2 ) = R̄Ly(‖x‖2r2 ) .
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By induction, Ly(‖x‖2r2 ) = R̄Ly(‖x‖2(r−1)
2 ) = · · · = R̄kLy(‖x‖2×0

2 ) = R̄ky0 = R̄r, for every
r ∈ N≤k. Thus,

trace(Pn,kMk(y)Pn,k) =
∑

α∈Nn
k

θ
1/2
k,αy2αθ

1/2
k,α = Ly

∑
α∈Nn

k

θk,αx2α


= Ly((1 + ‖x‖22)k) = Ly

(
k∑
r=0

(
k

r

)
‖x‖2r2

)

=
k∑
r=0

(
k

r

)
Ly(‖x‖2r2 ) =

k∑
r=0

(
k

r

)
R̄r = (R̄+ 1)k .

For each k ∈ N, we denote by S(k) the set of symmetric matrices of size b(k) and let 〈A,B〉 =
trace(B>A) be the usual scalar product on S(k). For every k ∈ N, letting

X = Pn,kMk(y)Pn,k , (4.2.5)

(4.2.4) can be written in the form:

−τk = sup
X∈S(k)

{〈Ck,X〉 : AkX = bk , X � 0} , (4.2.6)

where Ak : S(k) → Rmk is a linear operator of the form

AkX = [〈Ak,1,X〉 , . . . , 〈Ak,mk ,X〉] ,

with Ak,i ∈ S(k), i ∈ [mk], Ck ∈ S(k) is the cost matrix and bk ∈ Rmk is the right-hand-side
vector. [134, Appendix A.2] describes how to reduce SDP (4.2.4) to the form (4.2.6).

For every k ∈ N, the dual of SDP (4.2.6) reads:

−ρk = inf
z
{b>k z : A>k z−Ck � 0 , } (4.2.7)

where A>k : Rmk → S(k) is the adjoint operator of Ak, i.e., A>k z =
∑mk
i=1 ziAk,i.

From Lemma 4.4 and since h1 = R̄− ‖x‖22, it implies that for every k ∈ N,

∀ X ∈ S(k) , AkX = bk ⇒ trace(X) = ak . (4.2.8)

We guarantee zero duality gap, primal attainability, and dual attainability for primal-dual
(4.2.6)-(4.2.7) in the following proposition:

Proposition 4.1. Let f? be as in (4.1.3). Then:

1. Zero duality gap holds for primal-dual (4.2.6)-(4.2.7) for large enough k ∈ N.

2. SDP (4.2.6) has an optimal solution for large enough k ∈ N.

3. Assume that one of the following two conditions holds:

(a) I(h) is real radical and the second-order sufficiency conditions (Definition 2.1) hold at
every global minimizer of (4.1.3);

(b) V (h) is finite.

Then SDP (4.2.7) has an optimal solution for large enough k ∈ N. In this case, τk = ρk = f?.

Proof. Since (4.1.6) (resp. (4.1.5)) and (4.2.6) (resp. (4.2.7)) are equivalent, the first and second
statements follow from Proposition 2.1. The third statement is due to Theorem 4.1.

By replacing (Ak,Ak,i,bk,Ck,S(k), b(k),mk, τk, ρk, ak) by (A,Ai,b,C,S, s,m, τ, ρ, a), primal-
dual (4.2.6)-(4.2.7) becomes primal-dual (4.1.8)-(4.1.9), we then go back to Section 4.1.3 with l = 1.

We illustrate the conversion from SDP (4.1.6) to SDP (4.2.6) in the following example.
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Example 4.1. Consider a simple example of POP (4.1.3) with n = 1:

−1 = inf{x : 1− x2 = 0} .

Then the second order moment relaxation (k = 2) has the form:

τ2 = inf
y

y1

s.t.

y0 y1 y2
y1 y2 y3
y2 y3 y4

 � 0 ,
[
y0 − y2 y1 − y3
y1 − y3 y2 − y4

]
= 0 , y0 = 1 .

It can be rewritten as
τ2 = inf

y
y1

s.t.

 1 y1 1
y1 1 y1
1 y1 1

 � 0 ,

by removing equality constraints. Obviously, the positive semidefinite matrix of this form has trace
3.

In a different way, according to [134, Appendix A.2], let us note

X =

1 0 0
0
√

2 0
0 0 1

y0 y1 y2
y1 y2 y3
y2 y3 y4

1 0 0
0
√

2 0
0 0 1

 ,
to obtain

−τ2 = sup
X∈S2

{〈C,X〉 : 〈Ai,X〉 = bi , i ∈ [5] , X � 0} ,

where b1 = · · · = b4 = 0, b5 = 1 and

C = −
√

2
4

0 1 0
1 0 0
0 0 0

 , A1 =
√

2
2

0 0 1
0 −1 0
1 0 0

 , A2 = 1
2

 2 0 −1
0 0 0
−1 0 0

 ,
A3 =

√
2

4

0 1 0
1 0 −1
0 −1 0

 , A4 = 1
2

0 0 1
0 0 0
1 0 −2

 , A5 =

1 0 0
0 0 0
0 0 0

 .
Remark that for any X ∈ S(2),

(〈Ai,X〉 = bi , i ∈ [5])⇒ trace(X) = 4 .

Next, we present an alternative iterative method, stated in Algorithm 3, to solve (4.1.3), based
on nonsmooth optimization methods, e.g., LMBM. It performs well in practice for most cases and
with significantly lower computational cost when compared to the (currently fastest) SDP solver
Mosek 9.1.

Algorithm 3 SpectralPOP-CTP
Input: POP (4.1.3) with unknown optimal value f? and optimal solutions;

method (D) for solving SDP with CTP.
Output: increasing real sequence (τk)k∈N and x? ∈ Rn.

1: for k ∈ N do
2: Compute the optimal value −τk and an optimal solution X? of SDP (4.2.6) by using method

(D);
3: Set Mk(y?) := P−1

n,kX?P−1
n,k (relying on (4.2.5)) and extract an atom x? by using Henrion-

Lasserre’s algorithm in [77] from Mk(y?);
4: If x? exists, set τk+j = τk, j ∈ N>0, and terminate.

Note that one can choose method (D) in Algorithm 3 as Algorithm 1 with LMBM solver or
SketchyCGAL.
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Remark 4.6. In practice, to verify that an atom x? extracted in Step 3 of Algorithm 3 is an
approximate optimal solution of POP (4.1.3), with given ε ∈ (0, 1), we check the following inequal-
ities:

|f(x?)− τk| ≤ ε‖f‖max and |hj(x?)| ≤ ε‖hj‖max , j ∈ [m] ,
where ‖p‖max := maxα |pα| for any p ∈ R[x]. We take ε = 0.01 for the experiments in Section 4.3.

Following Proposition 2.3, Corollary 4.1 and Proposition 4.1, we obtain the following corollary:

Corollary 4.4. (i) Sequence (τk)k∈N of Algorithm 3 is well defined and τk ↑ f? as k →∞.
(ii) Assume that condition (a) or (b) of Proposition 4.1.3 holds. If there exists an optimal solution
y? of SDP (4.1.6) for some order k ∈ N such that the flat extension condition holds, x? exists at
the k-th iteration of Algorithm 3. In this case, if X? in the first step of Algorithm 3 is well-defined,
Algorithm 3 terminates at the k-th iteration, x? is an optimal solution of POP (4.1.3) and f? = τk.

In Corollary 4.4, the flat extension condition implies that the SOS problem (4.1.5) has an
optimal solution (due to [102, Theorem 3.4 (b)] and τk = ρk), so that SDP (4.2.7) has an optimal
solution. In this case, X? exists, which in turn implies the existence of x?. In Step 4 of Algorithm
3, if the atom x? exists, then we do not need to increase the relaxation order k. It is due to the
fact that f? = τk ≤ τk+1 ≤ · · · ≤ f?.

Remark 4.7. When Algorithm 1 with LMBM solver is used for method (D) in Algorithm 3, we
have the following cases:

1. If the SDP relaxation (4.1.6) is exact then the value is f? and one indeed may expect that
generically the moment matrix is rank-one, which will yield X? = uu> for some u. Thus,
X? in the first step of Algorithm 3 is well-defined.

2. If the SDP relaxation (4.1.6) is not exact then we only use the relaxation value as a (suppos-
edly accurate) lower bound on the global minimum f?.

Remark 4.8. In practice, we use the following heuristic extraction algorithm when method (D)
in Algorithm 3 is Algorithm 1 with LMBM solver:

1. Obtain a dual matrix G corresponding to an optimal solution X? of SDP (4.2.6) based on
Corollary 4.2;

2. Set Ḡ := Pn,kGPn,k;

3. Obtain an atom x? by using the extraction algorithm of Henrion and Lasserre in [77], where
the matrix V in [77, (6)] is taken such that the columns of V form a basis of the null space
{u ∈ Rb(k) : Ḡu = 0};

4. Verify that x? is an approximate optimal solution of POP (4.1.3) as in Remark 4.6.

This heuristic extraction algorithm performs practically well when the moment matrices are not
rank-one. Note that Ḡ obtained in Step 2 is a Gram matrix corresponding to some moment matrix
Mk(y?). Step 3 is well-defined when the complementary slackness, i.e., Ḡ Mk(y?) = 0, and the
strict complementarity, i.e., rankḠ + rankMk(y?) = b(k), hold (see [48, Section 1.3]). In this
case, the range of Mk(y?), which is the linear span of the columns of V in [77, (6)], is identical
with the null space of Ḡ.

In the two following subsections, we consider POPs on general compact sets as stated in Section
4.1.1.

4.2.2 Constrained POPs with a single inequality (ball) constraint
Assume that m = 1 and g1 = R − ‖x‖22. In this case, g = {R − ‖x‖22}. Let us show that

POP (4.1.1) can be reduced to an equality constrained POP on a sphere. By adding one slack
variable xn+1, the inequality constraint R − ‖x‖22 ≥ 0 can be rewritten as an equality constraint
R− ‖x‖22 − x2

i+n = 0 and so

f? := inf{ f(x) : (x, xn+1) ∈ V (h̄)} , (4.2.9)
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where h̄ := h ∪ {R− ‖x‖22 − x2
n+1} ⊂ R[x, xn+1].

Notice that:

• If x̄? = (x?, x?n+1) is an optimal solution of POP (4.2.9), x? is an optimal solution of POP
(4.1.1).

• Conversely, if x? is an optimal solution of POP (4.1.1), then x̄? :=
(
x?,
√
R− ‖x?‖22

)
is an

optimal solution of POP (4.2.9).

Let us define n̄ := n + 1 and x̄ := (x, xn+1) to ease notation. For every k ∈ N, consider the
order k moment relaxation of (4.2.9):

τ̄k = inf
y∈Rb(n̄,2k)

Ly(f)

s.t. y0 = 1 , Mk(y) � 0 ,
Mk−1((R− ‖x̄‖22) y) = 0 ,
Mk−dhje(hj y) = 0 , j ∈ [l] .

(4.2.10)

The corresponding dual SOS problem indexed by k ∈ N reads:

ρ̄k := sup { ξ ∈ R : f − ξ ∈ Pk(h̄)} , (4.2.11)

where Pk(h̄) is the truncated preodering of all polynomials of the form

σ0 + ψ0(R− ‖x̄‖22) +
l∑

j=1
ψjhj ,

with σ0 ∈ Σ[x̄]k, ψ0 ∈ R[x̄]2(k−1), and ψj ∈ R[x̄]2(k−dhje), j ∈ [l].
The following lemma will be used later on:

Lemma 4.5. If f − f? ∈ Qk(g, h) for some k ∈ N then f − f? ∈ Pk(h̄).

Proof. By assumption, there exist σ0 ∈ Σ[x]k, σ1 ∈ Σ[x]k−1, and ψj ∈ R[x]2(k−dhje), j ∈ [l] such
that

f − f? = σ0 + σ1(R− ‖x‖22) +
l∑

j=1
ψjhj = σ0 + σ1x

2
n+1 + σ1(R− ‖x̄‖22) +

l∑
j=1

ψjhj ,

yielding the result.

Zero duality gap, primal attainability, and dual attainability for primal-dual (4.2.10)-(4.2.11)
are guaranteed in the following proposition:

Proposition 4.2. Let f? be as in (4.1.1) with g = {R− ‖x‖22}. Then:

1. Zero duality gap holds for primal-dual (4.2.10)-(4.2.11) for large enough k ∈ N.

2. SDP (4.2.10) has an optimal solution for large enough k ∈ N.

3. Assume that one of the following two conditions holds:

(a) Q(g, h) is Archimedean, the ideal I(h) is real radical, and the second-order sufficiency
conditions (Definition 2.1) hold at every global minimizer of POP (4.1.1);

(b) V (h) is finite.

Then SDP (4.2.11) has an optimal solution for large enough k ∈ N. In this case, τ̄k = ρ̄k =
f?.

Proof. The first and second statement follow from Proposition 2.1, after replacing S(g, h) by V (h̄).
The third statement is due to Proposition 2.4 and Lemma 4.5.
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For every k ∈ N, according to Lemma 4.4, if Mk−1((R − ‖x̄‖22) y) = 0 and y0 = 1, then one
has

trace(Pn̄,kMk(y)Pn̄,k) = (R+ 1)k , (4.2.12)

where Pn̄,k is defined as in (4.2.3) after replacing n by n̄. Thus SDP (4.2.10) has the CTP. We
now do a similar process as in Section 4.2.1.

Next, we present an iterative method, stated in Algorithm 4, to solve (4.1.1) with g = {R −
‖x‖22}, based on a nonsmooth optimization method such as LMBM.

Algorithm 4 SpectralPOP-CTP-WithSingleBallConstraint
Input: POP (4.1.1) with g = {R− ‖x‖22}, unknown optimal value f? and optimal solutions;

method (D) for solving SDP with CTP.
Output: increasing real sequence (τ̄k)k∈N and x? ∈ Rn.

1: for k ∈ N do
2: Compute the optimal value −τ̄k and an optimal solution y? of SDP (4.2.10) with CTP

(4.2.12) by using method (D);
3: Extract an atom x̄? = (x?, x?n+1) by using Henrion-Lasserre’s algorithm in [77] from

Mk(y?);
4: If x̄? exists, set τ̄k+j = τ̄k, j ∈ N>0, and terminate.

Note that one can choose method (D) in Algorithm 4 as Algorithm 1 with LMBM solver or
SketchyCGAL.

Following Proposition 2.3, Corollary 4.1 and Proposition 4.2, we obtain the following corollary:

Corollary 4.5. (i) Sequence (τ̄k)k∈N of Algorithm 4 is well defined and τ̄k ↑ f? as k →∞.
(ii) Assume that condition (a) or (b) of Proposition 4.2.3 holds. If there exists an optimal solution
y? of SDP (4.2.10) for some order k ∈ N such that the flat extension condition holds, x? exists at
the k-th iteration of Algorithm 4. In this case, if Algorithm 4 terminates at the k-th iteration, x?
is an optimal solution of POP (4.1.1) and f? = τ̄k.

4.2.3 Constrained POPs on a ball
Assume that m > 1 and g1 = R − ‖x‖22. Let us show that POP (4.1.1) can be reduced to

an equality constrained POP on a sphere. After adding m slack variables xn+i, i ∈ [m], every
inequality constraint gi(x) ≥ 0 can be rewritten as an equality constraint gi(x) = x2

i+n and so

f? := inf{ f(x) : (x, xn+1, . . . , xn+m) ∈ V (ĥ)} ,

where ĥ := h ∪ {gi − x2
i+n : i ∈ [m]} ⊂ R[x, xn+1, . . . , xn+m].

Let us take upper bounds bi ≥ sup{gi(x) : x ∈ S({g1}, h)}, i ∈ [m]. For every i ∈ [m], the
bound bi can be computed by solving the order k moment relaxation:

−bi = inf
y∈Rb(n+1,2k)

Ly(−gi)

s.t. y0 = 1 , Mk(y) � 0 ,
Mk−1((R− ‖(x, xn+1)‖22) y) = 0 ,
Mk−dhje(hj y) = 0 , j ∈ [l] ,

(4.2.13)

based on the spectral minimization method presented in the previous section.
For every (x, xn+1, . . . , xn+m) ∈ V (ĥ), x ∈ S(g, h) and x2

n+i = gi(x) ≤ bi , i ∈ [m], since
S(g, h) ⊂ S({g1}, h). Therefore

‖x‖22 +
m∑
i=1

x2
n+i ≤ R̄ with R̄ := R+

m∑
i=1

bi . (4.2.14)

Equivalently V (ĥ) ⊂ Bn+m
R̄

and after adding one more slack variable xn+m+1:

f? := inf{f(x) : x̄ ∈ V (h̄)} , (4.2.15)
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where x̄ := (x, xn+1, . . . , xn+m+1) and

h̄ := ĥ ∪ {R̄− ‖x̄‖22} = h ∪ {gi − x2
i+n : i ∈ [m]} ∪ {R̄− ‖x̄‖22} ⊂ R[x̄] .

Notice that:

• If x̄? = (x?, x?n+1, . . . , x
?
n+m+1) is an optimal solution of POP (4.2.15), x? is an optimal

solution of POP (4.1.1).

• Conversely, if x? is an optimal solution of POP (4.1.1), then

x̄? :=

x?,
√
g1(x?), . . . ,

√
gm(x?),

√√√√R̄−
m∑
i=1

gi(x?)− ‖x?‖22


is an optimal solution of POP (4.2.15).

Note n̄ := n + m + 1 for simplicity. For every k ∈ N, consider the order k moment relaxation
of (4.2.15):

τ̄k = inf
y∈Rb(n̄,2k)

Ly(f)

s.t. y0 = 1 , Mk(y) � 0 ,
Mk−dgie((gi − x2

n+i) y) = 0 , i ∈ [m] ,
Mk−1((R̄− ‖x̄‖22) y) = 0 ,
Mk−dhje(hj y) = 0 , j ∈ [l] .

(4.2.16)

The corresponding dual SOS problem indexed by k ∈ N reads:

ρ̄k := sup { ξ ∈ R : f − ξ ∈ Pk(h̄)} , (4.2.17)

where Pk(h̄) is the truncated preodering of all polynomials of the form

σ0 +
m∑
i=1

ψi(gi − x2
n+i) + ψm+1(R̄− ‖x̄‖22) +

l∑
j=1

ψm+1+jhj

with σ0 ∈ Σ[x̄]k, ψi ∈ R[x̄]2(k−dgie) , i ∈ [m], ψm+1 ∈ R[x̄]2(k−1), and ψm+1+j ∈ R[x̄]2(k−dhje),
j ∈ [l].

We will use the following lemma later on:

Lemma 4.6. If f − f? ∈ Qk(g, h) for some k ∈ N then f − f? ∈ Pk(h̄).

Proof. By assumption, there exist σ0 ∈ Σ[x]k, σi ∈ Σ[x]k−dgie, i ∈ [m], and ψj ∈ R[x]2(k−dhje),
j ∈ [l] such that

f − f? = σ0 +
m∑
i=1

σigi +
l∑

j=1
ψjhj .

It implies that

f − f? = σ0 +
m∑
i=1

σix
2
i+n +

m∑
i=1

σi(gi − x2
i+n) + 0× (R̄− ‖x̄‖22) +

l∑
j=1

ψjhj ,

yielding the result.

Zero duality gap, primal attainability, and dual attainability for primal-dual (4.2.16)-(4.2.17)
are guaranteed in the following proposition:

Proposition 4.3. Let f? be as in (4.1.1). Then:

1. Zero duality gap holds for primal-dual (4.2.16)-(4.2.17) for large enough k ∈ N.

2. SDP (4.2.16) has an optimal solution for large enough k ∈ N.
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3. Assume one of the following two conditions holds:

(a) Q(g, h) is Archimedean, the ideal I(h) is real radical, and the second-order sufficiency
conditions (Definition 2.1) hold at every global minimizer of POP (4.1.1);

(b) V (h) is finite.

Then SDP (4.2.17) has an optimal solution for large enough k ∈ N. In this case, τ̄k = ρ̄k =
f?.

Proof. The first and second statement follow from to Proposition 2.1 after replacing S(g, h) by
V (h̄). The third statement is due to Proposition 2.4 and Lemma 4.6.

For every k ∈ N, according to Lemma 4.4, if Mk−1((R̄− ‖x̄‖22) y) = 0 and y0 = 1,

trace(Pn̄,kMk(y)Pn̄,k) = (R̄+ 1)k , (4.2.18)

where Pn̄,k is defined as in (4.2.3) with n replaced by n̄. Thus SDP (4.2.16) has the CTP. It
remains to follow a process which is similar to the one from Section 4.2.1.

Next, we present an iterative method, stated in Algorithm 5, to solve POP (4.1.1) with g =
{R− ‖x‖22}, based on nonsmooth optimization methods such as LMBM.

Algorithm 5 SpectralPOP-CTP-WithBallConstraint
Input: POP (4.1.1) with g1 = R− ‖x‖22, unknown optimal value f? and optimal solutions;

method (D) for solving SDP with CTP.
Output: increasing real sequence (τ̄k)k∈N and x? ∈ Rn.

1: for k ∈ N do
2: Compute the optimal value bi of SDP (4.2.13) with CTP, i ∈ [m], by using method (D)

and set R̄ := R+
∑m
i=1 bi;

3: Compute the optimal value −τ̄k and an optimal solution y? of SDP (4.2.16) with CTP
(4.2.18) by using method (D);

4: Extract an atom x̄? = (x?, x?n+1, . . . , x
?
n+m+1) by using Henrion-Lasserre’s algorithm in [77]

from Mk(y?);
5: If x̄? exists, set τ̄k+j = τ̄k, j ∈ N>0, and terminate.

As in the single (ball) constraint case, one can choose method (D) in Algorithm 5 as Algorithm
1 with LMBM solver or SketchyCGAL.

Following Proposition 2.3, Corollary 4.1 and Proposition 4.3, we obtain the following corollary:

Corollary 4.6. (i) The sequence (τ̄k)k∈N of Algorithm 5 is well defined and τ̄k ↑ f? as k →∞.
(ii) Assume that either condition (a) or condition (b) of Proposition 4.3.3 holds. If there exists an
optimal solution y? of SDP (4.2.16) at order k ∈ N such that the flat extension condition holds,
then x? exists at the k-th iteration of Algorithm 5 . In this case, Algorithm 5 terminates at the
k-th iteration, x? is an optimal solution of POP (4.1.1) and f? = τ̄k.

4.3 Numerical experiments
Let us report numerical results obtained while relying on algorithms from Section 4.2 to solve

equality constrained QCQPs on a sphere, quartic minimization problems on the unit sphere as well
as further applications to three well-known NP-hard optimization problems on the unit sphere :
deciding nonnegativity/convexity of even degree forms and copositivity of real symmetric matrices.

The experiments are performed in Julia 1.3.1 with the following packages:

• SumOfSquare.jl [216] is a modeling library to write and solve SDP relaxations of POPs, based
on JuMP.jl and the SDP solver Mosek 9.1.

• LMBM.jl solves unconstrained NSOPs with the limited-memory bundle method of Haarala
et al. [71, 70]. LMBM.jl calls Karmitsa’s Fortran implementation of LMBM algorithm [95].
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Table 4.1: Notation

n the number of variables of the POP
m the number of inequality constraints of the POP
l the number of equality constraints of the POP
k the order of the Moment-SOS relaxation or the iteration of Algorithm 3
s the size of the positive semidefinite matrix involved in the SDP relaxation
m the number of trace equality constraints of the SDP relaxation
SumOfSquares SDP relaxation modeled by SumOfSquares.jl and solved by Mosek 9.1
CTP the method described either in Section 4.2.1, Section 4.2.2 or Section 4.2.3
BTP the method described in Remark 4.5

LMBM SDP relaxation solved by spectral minimization, described in Section 4.1.3 with the
LMBM solver

SketchyCGAL SDP relaxation solved by SketchyCGAL
SpectralPOP SDP relaxation handled by CTP or BTP method, with LMBM or SketchyCGAL solver
val the optimal value of the SDP relaxation

gap

the relative optimality gap w.r.t. SumOfSquares, defined by

gap = |val− val(SumOfSquares)|
|val(SumOfSquares)|

∗ there exists at least one optimal solution of the POP, which can extracted by Henrion-
Lasserre’s algorithm in [77]

time the total computation time of the SDP relaxation in seconds
− the calculation did not finish in 3000 seconds or ran out of memory

• SketchyCGAL is a MATLAB package to handle SDP problems with CTP/BTP, implemented
by Yurtsever et al. [219]. We have implemented a Julia version (SketchyCGAL.jl) of SketchyCGAL
to ensure fair comparison with LMBM.jl and SumOfSquare.jl. In this section, SketchyCGAL
is used as a solver for SDP (4.2.6) in Algorithm 3 instead of Algorithm 1 or 2.

We also use the package Arpack.jl, which is based on the implicitly restarted Lanczos’s algorithm,
to compute the largest eigenvalues and the corresponding eigenvectors of real symmetric matrices
of (potentially) large size.

When POPs have equality constraints, SumOfSquare.jl uses reduced forms with Groebner basis
instead of creating SOS multipliers, in order to reduce solving time.

The implementation of algorithms described in Section 4.2 can be downloaded from the link:
https://github.com/maihoanganh/SpectralSOS.

We use a desktop computer with an Intel(R) Core(TM) i7-8665U CPU @ 1.9GHz × 8 and 31.2
GB of RAM. The notation for our numerical results are given in Table 4.1.

4.3.1 Random dense equality constrained QCQPs on the unit sphere
Test problems: We construct several instances of POP (4.1.3) as follows:

1. Take h1 = 1− ‖x‖22 and choose f , hj , j ∈ [l]\{1} with degrees at most 2;

2. Each coefficient of the objective function f is taken randomly in (−1, 1) with respect to the
uniform distribution;

3. Select a random point a ∈ Rn in the unit sphere;

4. For every j ∈ [l]\{1}, all non-constant coefficients of hj are taken randomly in (−1, 1) with
respect to the uniform distribution, and the constant coefficient of hj is chosen such that
hj(a) = 0.

Note that by construction, a is a feasible solution. We use the method presented in Section 4.2.1
(actually the k-th iteration of Algorithm 3) to solve these problems. Numerical results are displayed

https://github.com/maihoanganh/SpectralSOS
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Table 4.2: Numerical results for random dense equality constrained QCQPs on the unit sphere, described
in Section 4.3.1, with (m, l) = (0, 1) and k = 1.

POP size SumOfSquares SpectralPOP (CTP)
(Mosek) LMBM SketchyCGAL

n val time val time val time
50 -6.24844∗ 0.3 -6.24844∗ 0.7 -6.11351 0.7
75 -7.25323∗ 2 -7.25326∗ 0.7 -6.95325 0.8
100 -7.00957∗ 8 -7.00957∗ 0.9 -6.75991 1
125 -9.76963∗ 23 -9.76963∗ 1 -9.39907 1
150 -8.49449∗ 64 -8.49449∗ 1 -8.15382 2
175 -10.7286∗ 140 -10.72866∗ 1 -10.1323 2
200 -11.3521∗ 300 -11.3521∗ 2 -10.4724 3
250 -13.8881∗ 1152 -13.8881∗ 4 -13.5571 5
300 -13.9957∗ 3708 -13.9958∗ 6 -13.8327 12
400 − − -15.7584∗ 15 -15.5036 28
500 − − -17.5838∗ 35 -17.2513 65
700 − − -22.3584∗ 218 -22.0710 355
900 − − -25.6117∗ 621 -25.2435 947
1200 − − -28.3170∗ 1401 -27.8270 2074
1500 − − -30.8475∗ 7120 -30.2347 9020
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Figure 4.1: Efficiency and accuracy comparison for Table 4.2.

in Table 4.2 for the case l = 1 and Table 4.3, 4.4 for the case l = dn/4e. For these results, we
use the Julia version of SketchyCGAL, which runs much faster than the MATLAB version without
compromising accuracy.

Efficiency comparison: In Table 4.2, we minimize quadratic polynomials on the unit sphere.
The SDP relaxation for a POP in n variables involves a matrix of size n+ 1 and 2 trace equality
constraints. In this table, LMBM is the fastest SDP solver while Mosek (the SDP solver used by
SumOfSquares) is the slowest. It is due to the fact that Mosek relies on interior-point methods based
on second order conditions to solve SDP while LMBM and SketchyCGAL only rely on algorithms
based on first order conditions. Note that we use the same modeling technique to generate the
SDP-CTP relaxation solved with either SketchyCGAL or LMBM, so both related modeling times
are the same. The solving time of SketchyCGAL is a bit larger than the one of LMBM in this case.

In Table 4.3 and Table 4.4, we consider random equality constrained QCQPs and solve their
first (k = 1) and second (k = 2) order moment relaxation, respectively. In Table 4.3, the size
of the positive semidefinite matrix (resp. the number of trace equality constraints) involved in
the SDP relaxation is equal to n + 1 (resp. l + 1). In Table 4.4, the matrices involved in the
SDP relaxation have size b(n, 4) and the number of trace equality constraints is O(b(n, 4)2), due
to [134, Appendix A.2]. Thus, the number of trace equality constraints for these SDP relaxations
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Table 4.3: Numerical results for random dense equality constrained QCQPs on the unit sphere, described
in Section 4.3.1, with (m, l) = (0, dn/4e) and k = 1.

POP size SumOfSquares SpectralPOP (CTP)
(Mosek) LMBM SketchyCGAL

n l val time val time val time
50 14 -4.26516 0.4 -4.26516 1 -4.24511 1
60 16 -6.42900∗ 1 -6.42929∗ 1 -6.36177 2
70 19 -5.08320 3 -5.08322 2 -5.01911 3
80 21 -5.35178 5 -5.35178 2 -5.29900 4
100 26 -7.50097 15 -7.50097 10 -7.42432 11
120 31 -5.89903 33 -5.89903 12 -5.81244 18
150 39 -7.44920 127 -7.44921 26 -7.32154 36
200 51 -8.93976 363 -8.93976 51 -8.79487 71
300 76 -12.4295 3753 -12.4295 530 -12.2180 480
400 101 − − -14.7190 2553 -14.4830 2318
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Figure 4.2: Efficiency and accuracy comparison for Table 4.3.

Table 4.4: Numerical results for random dense equality constrained QCQPs on the unit sphere, described
in Section 4.3.1, with (m, l) = (0, dn/4e) and k = 2.

POP size SDP size SumOfSquares SpectralPOP (CTP)
(Mosek) LMBM SketchyCGAL

n l s m val time val time val time
5 3 21 169 -2.43822∗ 0.04 -2.43823∗ 1 -2.43982 1
10 4 66 1475 -1.42006∗ 0.4 -1.42013∗ 1 -1.41268 1
15 5 136 6121 -2.87129∗ 7 -2.87142∗ 2 -2.86744 6
20 6 231 17557 -3.28734∗ 73 -3.28736∗ 5 -3.27733 26
25 8 351 40834 -3.32902∗ 592 -3.32918∗ 13 -3.31634 65
30 8 496 81345 -4.34398∗ 4678 -4.34407∗ 60 -4.32974 294
35 10 666 146521 − − -4.77580∗ 275 -4.75946 450
40 11 861 244812 − − -2.95099 390 -2.91856 1225
45 13 1081 386999 − − -3.95743 1588 -3.88533 2905
50 14 1326 582115 − − -4.01846 6126 − −
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Figure 4.3: Efficiency and accuracy comparison for Table 4.4.

is more than 200 times larger than the matrix size, for almost all instance of Table 4.4. LMBM
and SketchyCGAL still happen to be faster than SumOfSquares in both Table 4.3 and Table 4.4,
but LMBM is not much more efficient than SketchyCGAL. The most expensive step performed
by Mosek (used by SumOfSquares) is to solve a system of linear equations coming from certain
complementarity conditions (see page 13 in [41] for more details). The linear system becomes
harder to solve when the number of trace equality constraints is larger. This is in contrast with
LMBM, which does not need to solve any such large size linear system of equations. By comparison
with LMBM, SketchyCGAL may perform a larger number of operations [219, Algorithm 6.1], as
emphasized later on.

Accuracy comparison: When n ≤ 300 in Table 4.2, n ≤ 300 in Table 4.3 or n ≤ 30 in
Table 4.4, LMBM converges to the exact optimal value of POPs with high accuracy, similarly to
SumOfSquares. Both LMBM and SumOfSquares can extract at least one approximate optimal
solution by Henrion-Lasserre’s algorithm [77], when n ≤ 300 in Table 4.2 or n ≤ 35 in Table 4.4.
Moreover, LMBM can provide an approximate optimal solution even for large-scale problems with
n = 1500 in Table 4.2 (resp. n = 40 in Table 4.4) and in a case in Table 4.3. Unfortunately
SketchyCGAL cannot do the extraction procedure successfully, because of its inaccurate output.

Storage and evaluation comparisons: In Table 4.5 and 4.6, we display some additional in-
formation related to Mosek, LMBM and SketchyCGAL, for the rows n = 5, 10, 15, 20, 25 of Table
4.4:

• storage;

• #A: the number of evaluations of the linear operator A in SDP (4.1.8);

• #A>: the number of evaluations of the adjoint operator A>;

• smax: the largest size of symmetric matrices of which eigenvalues and eigenvectors are com-
puted;

• Neig: the number of symmetric matrices of which eigenvalues and eigenvectors are computed.

Table 4.5 indicates that SumOfSquares requires a bit lower storage than LMBM only for the
cases n = 5, 10. However, SketchyCGAL requires a bit smaller storage than LMBM. Note that
SketchyCGAL performs a large number of evaluations of both A and A> while relying on three
specific primitive computations (see [219, Section 2.3]). Compared to SketchyCGAL, LMBM per-
forms a smaller number of evaluations of both A and A>. For instance, the number of evaluations
of LMBM is ten times smaller than the one of SketchyCGAL for the row n = 25 of Table 4.6.
Because of the large number m of trace equality constraints, the evaluations of A and A> in SDP
relaxations of POPs is more expensive than the simple one related to the first order SDP relaxation
of MAXCUT, which is solved very efficiently by SketchyCGAL (see [219, Section 2.5]).
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Table 4.5: Storage comparisons for the rows n = 5, 10, 15, 20, 25 of Table 4.4.

SumOfSquares SpectralPOP (CTP)
(Mosek) LMBM SketchyCGAL

n storage storage storage
5 80.21 k 1.19 M 679.48 k
10 803.00 k 1.02 M 881.75 k
15 3.74 M 2.44 M 2.29 M
20 12.06 M 6.51 M 6.46 M
25 32.67 M 19.04 M 19.02 M

Table 4.6: Evaluation comparisons for the rows n = 5, 10, 15, 20, 25 of Table 4.4.

SpectralPOP (CTP)
LMBM SketchyCGAL

n #A #A> smax Neig #A #A> smax Neig

5 18 19 21 19 191 2036 12 192
10 26 27 66 27 108 1350 14 109
15 404 405 136 405 205 3383 19 206
20 469 470 231 470 328 6605 24 329
25 336 337 351 337 292 6134 25 293

These specific behaviors mainly come from the subroutines used by LMBM and SketchyCGAL to
compute eigenvalues and eigenvectors. While LMBM computes directly the largest eigenvector (and
corresponding eigenvalue) of the matrix C−A>z involved in the nonsmooth function from (4.1.13),
SketchyCGAL computes indirectly the smallest eigenvalue of the matrix C +A>(y + β(z− b)) in
Step 8 of [219, Algorithm 6.1] while relying on the so-called “ApproxMinEvec” subroutine. When
the ApproxMinEvec subroutine is implemented via [219, Algorithm 4.2], SketchyCGAL provides
approximations of the smallest eigenvalue and eigenvector of each matrix C + A>(y + β(z − b))
by using the randomized Lanczos method. It only requires to compute the smallest eigenvalue and
eigenvector of a tridiagonal matrix of small size (e.g. smax = 42 when n = 25 in Table 4.6 while
the value smax of LMBM is 351). Besides, SketchyCGAL computes v>i (C +A>(y + β(z− b))vi 1

within the loop from Step 5 of [219, Algorithm 4.2] while relying on three primitive computations
(see [219, (2.4)] for more details), which yields a large number of evaluations of A>. For instance,
#A> = 6134 for SketchyCGAL when n = 25 while the value #A> is 337 for LMBM. Because of
its slow convergence, SketchyCGAL also performs a larger number of iterations in Step 6 of [219,
Algorithm 6.1].

Based on the above comparison, we emphasize that LMBM is cheaper and faster than Mosek
or SketchyCGAL while LMBM ensures the same accuracy as Mosek when solving SDP relaxations
of equality constrained QCQPs on the unit sphere.

4.3.2 Random dense QCQPs on the unit ball
Test problems: We construct several samples of POP (4.1.1) as follows:

1. Take g1 = 1− ‖x‖22 and choose f , gi, i ∈ [m]\{1}, and hj , j ∈ [l] with degrees at most 2;

2. Each coefficient of the objective function f is taken randomly in (−1, 1) with respect to the
uniform distribution;

3. Select a random point a ∈ Rn in the unit ball, with respect to the uniform distribution;

4. For each i ∈ [m]\{1}, all non-constant coefficients of gi are taken randomly in (−1, 1) with
respect to the uniform distribution, and the constant coefficient of gi is chosen such that

1the vector vi is updated in Step 6 of [219, Algorithm 4.2]
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Table 4.7: Numerical results of random dense QCQPs on the unit ball, described in Section 4.3.2, with
(m, l) = (1, dn/4e), and k = 2.

POP size SDP size SumOfSquares SpectralPOP
(CTP) (Mosek) CTP (LMBM) BTP (LMBM)

n l s m val time val time val time
5 2 28 281 -0.33125∗ 0.07 -0.33126∗ 1 -0.98254 0.7
10 3 78 2029 -2.30410∗ 0.5 -2.30411∗ 1 -3.64371 5
15 4 153 7702 -2.26182∗ 10 -2.26195∗ 2 -4.21202 134
20 5 253 21000 -2.24031∗ 112 -2.24033∗ 4 -5.77860 1722
25 7 378 47251 -2.88952∗ 1484 -2.88770∗ 15 -6.81243 16185
30 7 528 92049 -4.15791∗ 4694 -4.15798∗ 49 − −
35 9 703 163097 − − -4.10015 150 − −
40 10 903 269095 − − -4.47927 694 − −
45 12 1128 421121 − − -5.50988 849 − −
50 13 1378 628369 − − -5.52884 2086 − −
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Figure 4.4: Efficiency and accuracy comparison for Table 4.7.

gi(a) > 0;

5. For j ∈ [l], all non-constant coefficients of hj are taken randomly in (−1, 1) with respect to
the uniform distribution, and the constant coefficient of hj is chosen such that hj(a) = 0.

Numerical results are displayed in Table 4.7 for the case (m, l) = (1, dn/4e) and Table 4.8 for the
case (m, l) = (dn/8e, dn/8e). We recall the following notation:

• CTP (LMBM): the SDP relaxation is solved via the method described in Section 4.2.2 (the
k-th iteration of Algorithm 4) or Section 4.2.3 (the k-th iteration of Algorithm 5) with the
LMBM solver.

• BTP (LMBM): the SDP relaxation is solved via the method described in Remark 4.5 with
the LMBM solver (Algorithm 2).

In Table 4.7 and Table 4.8, SumOfSquares and BTP solve relaxations involving matrices with the
same size, corresponding exactly to the size of the moment relaxation (2.4.5).

Efficiency and accuracy comparisons: In Table 4.7, we consider POPs which involve a single
inequality (ball) constraint. In this case, CTP (LMBM) is the most efficient and accurate solver.
Numerical results emphasize that SumOfSquares and CTP (LMBM) behave in a similar way as
in Table 4.4. This indicates that converting a POP with a single inequality (ball) constraint to a
CTP-POP by adding one slack variable, and solving the resulting SDP-CTP relaxation by means
of spectral methods allows one to reduce the computing time while ensuring the same accuracy as
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Table 4.8: Numerical results of random dense QCQPs on the unit ball, described in Section 4.3.2, with
(m, l) = (dn/8e, dn/8e), and k = 2.

POP size SDP size SumOfSquares SpectralPOP
(CTP) (Mosek) CTP (LMBM) BTP (LMBM)

n m l s m val time val time val time
10 2 2 105 3711 -3.17792 0.2 -3.18434 31 -4.71914 6
15 2 2 190 11781 -2.14424 6 -2.16250 69 -4.45435 649
20 3 3 190 11781 -2.92513 190 -3.09124 469 -81.3719 2573
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Figure 4.5: Efficiency and accuracy comparison for Table 4.8.

the one obtained with SumOfSquares (Mosek). Note that when we use the method described in
Section 4.2.2, the constant trace in (4.2.12) is always equal to 2k, which is independent of n.

In Table 4.8, CTP (LMBM) provides inaccurate output as it only yields lower bounds, while
SumOfSquares still preserves accuracy. Moreover, CTP (LMBM) is less efficient than SumOfSquares.
We also emphasize that when one relies on the method stated in Section 4.2.3, we obtain a value
of R̄, in (4.2.14), for the sphere constraint of CTP-POP, which becomes larger when n increases.
It implies that the constant trace factor (R̄ + 1)k in (4.2.18) has a polynomial growth rate in R̄.
Thus we minimize a nonsmooth function of the form (4.1.13) with a large constant trace factor a.
The norm of the subgradient of this function at a point near its minimizers is rather large, which
prevents LMBM to perform properly its minimization, by contrast with Table 4.7. This difference
of magnitude is shown in Table 4.9, where we compute the subgradient norms during the last 10
iterations of CTP (LMBM) for the experiments from Table 4.7 and Table 4.8 with n = 10.

In both Table 4.7 and Table 4.8, BTP (LMBM) has the worst performance in terms on effi-
ciency and accuracy. The trace bound (4.2.2) obtained in Remark 4.5 is usually much larger than
the “exact” trace of the optimal solution of the SDP relaxation. The same issue occurs for the
subgradient norm of the nonsmooth function at a point near its minimizers.

According to our experience, LMBM is suitable for spectral minimization of SDP problems with
trace bounds which are small enough and close to the exact trace value of the optimal solution.

Table 4.9: Subgradient norms computed during the last 10 iterations of CTP (LMBM) for the experiments
from Table 4.7 and Table 4.8 with n = 10.

Table 4.7 0.035 0.033 0.028 0.022 0.024 0.019 0.015 0.009 0.007 0.004
Table 4.8 0.871 0.959 0.947 0.792 1.684 0.794 0.579 0.559 0.230 0.916
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Table 4.10: Numerical results for random dense quartics on the unit sphere, described in Section 4.3.3,
with (m, l) = (0, 1) and k = 2.

POP size SDP size SumOfSquares SpectralPOP (CTP)
(Mosek) LMBM SketchyCGAL

n s m val time val time val time
5 21 127 -2.92483∗ 0.02 -2.92485∗ 1 -2.84710 1
10 66 1277 -3.59964∗ 0.4 -3.59964∗ 1 -3.48501 2
15 136 5577 -4.18773∗ 7 -4.18778∗ 12 -4.03882 18
20 231 16402 -3.92438∗ 88 -3.92440∗ 35 -3.67857 87
25 351 38377 -6.36891∗ 711 -6.36894∗ 74 -5.93774 251
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Figure 4.6: Efficiency and accuracy comparison for Table 4.10.

4.3.3 Random dense quartics on the unit sphere
Test problems: We construct several instances of POP (4.1.3) as follows:

1. Take l = 1 and h1 = 1− ‖x‖22 and choose f with degree at most 4;

2. Each coefficient of the objective function f is taken randomly in (−1, 1) with respect to the
uniform distribution.

We use the method presented in Section 4.2.1 to solve these problems. The corresponding numerical
results are displayed in Table 4.10.

Efficiency and accuracy comparisons: Table 4.10 indicates that LMBM is about twice faster
than SumOfSquares when n ≥ 20 as well as SketchyCGAL.While SketchyCGAL can be rather inac-
curate, LMBM has an accuracy which is similar to SumOfSquares (Mosek), yielding the ability to
extract optimal solutions of POPs.

For comparisons in Section 4.3.2 and Section 4.3.3, the coefficients of f have been randomly
generated in (-1,1). However, for some non random problems that were scaled so as to fit the
framework of optimization on the unit sphere, we could observe a lack of precision after transferring
results (of the scaled formulation) back to results in the unscaled initial formulation.

In the next three subsections, we consider further applications of the minimization of forms on
the unit sphere listed in [107].

4.3.4 Deciding the nonnegativity of even degree forms
Given q ∈ R[x], we recall that q is a form of degree d if q =

∑
|α|=d qαxα for some d ∈ N

and qα ∈ R. Given a form q ∈ R[x], q is nonnegative on Rn iff q is nonnegative on the unit
sphere. Moreover, given a polynomial f ∈ R[x]2d, f is nonnegative on Rn iff its homogenization
f̄ := x2d

n+1f( x
xn+1

) is nonnegative on Rn+1. Note that f̄ is a form. Thus, in order to verify the
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Table 4.11: Numerical results for deciding the nonnegativity of even degree forms, described in Section
4.3.4, with k = d.

POP size SDP size SumOfSquares SpectralPOP (CTP)
(Mosek) (LMBM)

n d s m val time val time
5 2 21 127 -2.62353∗ 0.01 -2.62353∗ 1
10 2 66 1277 -6.31389∗ 0.4 -6.31390∗ 1
15 2 126 5577 -12.1405∗ 6 -12.1405∗ 2
20 2 231 16402 -19.9981∗ 76 -19.9981∗ 2
25 2 351 38377 -29.4812∗ 633 -29.4812∗ 4
30 2 496 77377 -40.6934∗ 3471 -40.6934∗ 9
35 2 666 140527 − − -54.2561∗ 24
40 2 861 236202 − − -69.4700∗ 57
45 2 1081 374027 − − -86.4113∗ 127
50 2 1326 564877 − − -105.532∗ 250
5 3 56 1261 -1.56744 0.1 -1.60032 23
5 4 126 7177 -1.35267 1 -1.35315 235

nonnegativity of the polynomial f , we only verify the nonnegativity of its homogenization f̄ on the
unit sphere in Rn+1. Namely, given a form f ∈ R[x] of degree 2d, we consider the following POP:

f? := min
x∈Rn

{f(x) : ‖x‖22 = 1} . (4.3.1)

Note that if d = 1, problem (4.3.1) boils down to computing the minimal eigenvalue of the Gram
matrix associated to f . Thus, we consider the case where d ≥ 2.

Test problems: We construct several instances of the form f of degree 2d as follows:

1. Take fα randomly in (−1, 1) with respect to the uniform distribution, for each α ∈ Nn with
|α| = 2d.

2. Set f :=
∑
|α|=2d fαxα.

We use the method presented in Section 4.2.1 to solve problem (4.3.1). The corresponding numer-
ical results are displayed in Table 4.11.

Efficiency and accuracy comparisons: Table 4.11 shows that LMBM is much faster than
Mosek when n ≥ 20 and d = 2. In these cases, we were able to extract the solution of the resulting
POPs. One can then conclude that f is not globally nonnegative since it has negative value at its
atoms. For higher values of d = 3, 4, LMBM becomes less efficient and accurate than Mosek.

4.3.5 Deciding the convexity of even degree forms
Recall that a polynomial q ∈ R[x] is convex if q(tx+(1−t)y) ≤ tq(x)+(1−t)q(y) for all x,y ∈ Rn

and t ∈ [0, 1]. Moreover, q ∈ R[x] is convex iff the polynomial f(x,y) := q(y)−q(x)−∇q(x)>(y−x)
is globally nonnegative, where ∇q stands for the gradient of q. If q is a form of degree d, f is also
a form of degree d. In this case, the nonnegativity of f can be verified on the unit sphere in R2n.

Given a form q ∈ R[x] of degree 2d, consider the following POP:

f? := min
x,y∈Rn

q(y)− q(x)−∇q(x)>(y− x)

s.t. ‖(x,y)‖22 = 1 .
(4.3.2)

From the previous discussion, q is convex iff f? ≥ 0.
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Table 4.12: Numerical results for deciding the convexity of even degree forms, described in Section 4.3.5,
with k = d.

POP size SDP size SumOfSquares SpectralPOP (CTP)
(Mosek) (LMBM)

n d s m val time val time
5 2 66 1277 -3.87350∗ 0.2 -3.87350∗ 1
7 2 120 4321 -4.44260∗ 3 -4.44280∗ 11
10 2 231 16402 -4.98855∗ 63 -4.98883∗ 17
12 2 325 32826 -4.47495∗ 336 -4.49239∗ 91
5 3 286 34035 -3.89581∗ 53 -3.89586∗ 70

Test problems: We construct several instances of the form q of degree 2d as follows:

1. Take qα randomly in (−1, 1) with respect to the uniform distribution, for each α ∈ Nn with
|α| = 2d.

2. Set q :=
∑
|α|=2d qαxα.

We use the method presented in Section 4.2.1 to solve problem (4.3.2). The corresponding numer-
ical results are displayed in Table 4.12.

Efficiency and accuracy comparisons: Table 4.12 shows that LMBM is about 3 times faster
than Mosek when n ≥ 10 and d = 2. In these cases, one concludes as above that q is nonconvex
since f? is negative. For d = 3 and n = 5, LMBM still returns a value with reasonably high
accuracy (10−5) even though it is slower than Mosek. In this case, one can also certify that q is
nonconvex.

4.3.6 Deciding the copositivity of real symmetric matrices
Given a symmetric matrix A ∈ Rn×n, we say that A is copositive if u>Au ≥ 0 for all u ∈ Rn+.

Consider the following POP:

f? := min
x∈Rn

{(x2)>Ax2 : ‖x‖22 = 1} , (4.3.3)

where x2 := (x2
1, . . . , x

2
n). The matrix A is copositive iff f? ≥ 0.

Test problems: We construct several instances of the matrix A as follows:

1. Take Bij randomly in (−1, 1) with respect to the uniform distribution, for all i, j ∈ [n].

2. Set B := (Bij)1≤i,j≤n and A := 1
2 (B + B>).

We use the method presented in Section 4.2.1 to solve problem (4.3.3). The corresponding numer-
ical results are displayed in Table 4.13.

Efficiency and accuracy comparisons: Table 4.13 indicates that LMBM is twice faster than
Mosek when n ≥ 20. In all cases, we can extract the solutions of the resulting POP and certify
that A is not copositive since f? is negative.
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Table 4.13: Numerical results for deciding the copositivity of real symmetric matrices, described in Section
4.3.6, with k = 2.

POP size SDP size SumOfSquares SpectralPOP (CTP)
(Mosek) (LMBM)

n s m val time val time
10 66 1277 -0.89102∗ 0.2 -0.89102∗ 1
15 136 5577 -0.91701∗ 6 -0.91701∗ 9
20 231 16402 -0.98474∗ 57 -0.98474∗ 19
25 351 38377 -0.97873∗ 558 -0.97873∗ 28



Chapter 5

Exploiting the constant trace
property: Inequality constraints

Most of the content of this chapter is from [131].
The goal of this chapter is to extend the CTP-exploiting framework introduced in the previous

chapter to the case of POPs with inequality constraints. Based on this, we provide a method which
returns the optimal value of the second order moment SDP-relaxation and which is suitable for a
class of large-scale non-convex QCQPs with CTP. Ideally (i) it should avoid memory issues, and
(ii) the resulting relative gap of the approximate value returned by this method w.r.t. the exact
value should be less than 1%.

Contribution. We show that (i) a large class of POPs with inequality constraints have the con-
stant trace property and (ii) this property can be exploited for solving their associated semidefinite
relaxations via appropriate first-order methods. More precisely our contribution is threefold:

I. In Section 5.1.2 we show that if a positive real number belongs to the interior of every
truncated quadratic module associated with the inequality constraints, which is defined later in
(2.3.4), then the corresponding POP has CTP. Moreover, we prove that this condition always holds
when a ball constraint is present.

II. In Section 5.1.3 we provide a numerical procedure to check whether a POP has CTP. It
consists in solving a certain linear program (LP) of the form:

inf
y∈Ra+

{c>y : Ay = b} , (5.0.1)

where c ∈ Ra, A ∈ Rb×a and b ∈ Rb. With this approach we prove in Section 5.1.4 that several
special classes of POPs (including POPs on a ball, annulus, simplex) have CTP.

III. Our final contribution, postponed in Appendices 5.3.1 and 5.3.2, is to handle sparse large-
scale POPs by integrating sparsity-exploiting techniques from Chapter 3 into the CTP-exploiting
framework.

For practical implementation we provide a software library called ctpPOP. It models each
moment SDP-relaxation of POPs as a standard SDP with CTP and then solves this SDP by
CGAL or a spectral method (SM), based on nonsmooth optimization solvers (LMBM [95] or the
Proximal Bundle Method [98]).

In Section 5.2 and Appendix 5.3.3 we provide extensive numerical experiments to illustrate the
efficiency and scalability of ctpPOP with the CGAL solver. In all our randomly generated POPs
with different sparsity structures, the relative gap of the optimal value provided by CGAL w.r.t.
the optimal value provided by Mosek is below 1%. Because of its cheap cost per iteration, CGAL
is more suitable for particularly SDPs of form (1.4.1) with ζ = O((smax)2) (such as the second
order moment SDP-relaxations of POPs) than other solvers (e.g., COSMO).

For instance for minimizing a dense quadratic polynomial on the unit ball with 100 variables,
CGAL returns the optimal value of the second order moment SDP relaxation within 6 hours on
a standard laptop while Mosek (considered as the state-of-the-art SDP solver using interior-point

79
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methods) runs out of memory. Similarly, for minimizing a sparse quadratic polynomial involving
a thousand variables with a ball constraint on each clique of variables, CGAL spends around two
thousand seconds to solve the second order moment SDP-relaxation while Mosek runs again out of
memory. The largest clique of this POP involves 42 variables.

The classical OPF problem without constraints on current magnitudes (as in [90, 63]) can be
formulated as a POP with ball and annulus constraints. For many instances Shor’s relaxation
provides the global optimum. However, for illustration purposes we have compared CGAL and
Mosek for solving the second order CS-TSSOS relaxation from Chapter 3 of the “case89 pegase api”
instance from the PGLib-OPF database1. The largest block size and the number of equality
constraints of this SDP are around 1.7 thousands and 8 millions, respectively. While Mosek failed
because of a memory issue, CGAL still returned the optimal value in two days, and with relative
gap w.r.t. a local optimal value being less than 0.6%.

As in the previous chapter, a POP is defined as

f? := inf{f(x) : x ∈ S(g) ∩ V (h)} , (5.0.2)

where S(g) and V (h) are a basic semialgebraic set and a real variety defined respectively by

S(g) := {x ∈ Rn : gi(x) ≥ 0 , i ∈ [m] }
V (h) := {x ∈ Rn : hj(x) = 0 , i ∈ [l] } , (5.0.3)

for some polynomials f, gi, hj ∈ R[x] with g := {gi}i∈[m], h := {hj}j∈[l]. Also recall that dgie =
ddeg(gi)/2e, dhje = ddeg(hj)/2e and kmin = maxi,j{dfe, dgie, dhje }. We will assume in this
chapter that POP (5.0.2) has at least one global minimizer.

5.1 Exploiting CTP for dense POPs
This section is devoted to developing a framework to exploit CTP for dense POPs. We provide

a sufficient condition for a POP to have CTP, as well as a series of linear programs to check whether
the sufficient condition holds. In addition we show that several special classes of POPs have CTP.

5.1.1 CTP for dense POPs
First let us recall CTP for a POP. To simplify notation, for every k ∈ N≥kmin , denote by S(k)

the set of real symmetric matrices
- of size sk := b(k) +

∑
i∈[m] b(k − dgie),

- in a block diagonal form X = diag(X0, . . . ,Xm), and such that
- X0 (resp. Xi) is of size b(k) (resp. b(k − dgie) for i ∈ [m]).

Letting Dk(y) := diag(Mk(y),Mk−dg1e(g1y), . . . ,Mk−dgme(gmy)), SDP (2.4.5) can be rewrit-
ten in the form:

τk := inf
y∈Rb(2k)

{
Ly(f)

∣∣∣∣ Dk(y) ∈ S(k)
+ , y0 = 1 ,

Mk−dhje(hjy) = 0 , j ∈ [l]

}
, (5.1.1)

where S(k)
+ is the set of positive semidefinite matrices in S(k).

Definition 5.1. (CTP for a POP) We say that POP (5.0.2) has CTP if for every k ∈ N≥kmin ,
there exists ak > 0 and a positive definite matrix Pk ∈ S(k) such that for all y ∈ Rb(2k),

Mk−dhje(hjy) = 0 , j ∈ [l] ,
y0 = 1

}
⇒ trace(PkDk(y)Pk) = ak . (5.1.2)

In other words, we say that POP (5.0.2) has CTP if each moment relaxation (5.1.1) has an
equivalent form involving a psd matrix whose trace is constant. In this case, we call ak the
constant trace and Pk the basis transformation matrix. In the next subsection, we provide a
sufficient condition for POP (5.0.2) to have CTP.

1https://github.com/power-grid-lib/pglib-opf
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Example 5.1. We recall CTP for equality constrained POPs on a sphere in Chapter 4. If g =
∅ and h1 = R − ‖x‖22 for some R > 0, then POP (5.0.2) has CTP with ak = (R + 1)k and
Pk := diag((θ1/2

k,α)α∈Nn
k
), where (θk,α)α∈Nn

k
⊆ R>0 satisfies (1 + ‖x‖22)k =

∑
α∈Nn

k
θk,αx2α, for all

k ∈ N≥kmin .

We now provide a general method to solve a POP with CTP. We first convert the k-th order
moment relaxation (5.1.1) of this POP to a standard primal SDP problem with CTP and then
leverage appropriate first-order algorithms that exploit CTP to solve the resulting SDP problem.

Suppose POP (5.0.2) has CTP. For every k ∈ N≥kmin , letting X = PkDk(y)Pk, (5.1.1) can be
rewritten as

τk = inf
X∈S(k)

+

{〈Ck,X〉 : AkX = bk} , (5.1.3)

where Ak : S(k) → Rζk is a linear operator such that AkX = (〈Ak,1,X〉, . . . , 〈Ak,ζk ,X〉) with
Ak,i ∈ S(k), i ∈ [ζk], Ck ∈ S(k) and bk ∈ Rζk . Appendix 5.3.6 describes how to convert SDP
(5.1.1) to the form (5.1.3).

The dual of SDP (5.1.3) reads

ρk = sup
z∈Rζk

{b>k z : A>k z−Ck ∈ S(k)
+ } , (5.1.4)

where A>k : Rζk → S(k) is the adjoint operator of Ak, i.e., A>k z =
∑
i∈[ζk] ziAk,i.

After replacing (Ak,Ak,i,bk,Ck,S(k), ζk, sk, τk, ρk, ak) by (A,Ai,b,C,S, ζ, s, τ, ρ, a), the primal-
dual (5.1.3)-(5.1.4) has an equivalent formulation as the primal-dual (5.3.25)-(5.3.26); see also
Appendix 5.3.4 with ω = m+ 1 and smax = s(k).

Then two first-order algorithms (CGAL and SM) are leveraged for solving the primal-dual
(5.3.25)-(5.3.26); see Appendix 5.3.4 and Appendix 5.3.5.

5.1.2 A sufficient condition for a POP to have CTP
In this section, we provide a sufficient condition for POP (5.0.2) to have CTP.
For k ∈ N≥kmin , letQ◦k(g) be the interior of the truncated quadratic moduleQk(g), i.e., Q◦k(g) :=

{v>k G0vk +
∑
i∈[m] giv>k−dgieGivk−dgie : Gi � 0, i ∈ {0} ∪ [m]}.

Theorem 5.1. The following statements hold:

1. If one the following equivalent conditions hold for all k ∈ N≥kmin :

R>0 ⊆ Q◦k(g) + Ik(h) ⇔ ∀δ > 0 , δ ∈ Q◦k(g) + Ik(h)
⇔ 1 ∈ Q◦k(g) + Ik(h) , (5.1.5)

then POP (5.0.2) has CTP, as in Definition 5.1.

2. Assume that h = ∅ and S(g) has nonempty interior. Then POP (5.0.2) has CTP if and only
if

R>0 ⊆ Q◦k(g) , ∀k ∈ N≥kmin . (5.1.6)

Proof. 1. Let k ∈ N≥kmin and assume that R>0 ⊆ Q◦k(g) +Ik(h). Then there exists ak > 0 such
that

ak = v>k G0vk +
∑
i∈[m]

giv>k−dgieGivk−dgie +
∑
j∈[l]

hjv>2(k−dhje)uj , (5.1.7)

for some Gi � 0, i ∈ {0}∪ [m] and real vector uj , j ∈ [l]. We denote by G1/2
i the square root

of Gi, i ∈ {0}∪[m]. Then G1/2
i is well-defined and G1/2

i � 0. Set Pk = diag(G1/2
0 , . . . ,G1/2

m ).
Let y ∈ Rb(2k) such that Mk(hjy) = 0, j ∈ [l], and y0 = 1. Then

Ly

∑
j∈[l]

hjv>2(k−dhje)uj

 =
∑
j∈[l]

∑
α∈Nn2(k−dhje)

uj,αLy(hjxα) = 0 . (5.1.8)
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From this and (5.1.7),

ak = Ly(v>k G0vk +
∑
i∈[m] giv>k−dgieGivk−dgie)

= trace(Mk(y)G0) +
∑
i∈[m] trace(Mk−1(giy)Gi)

= trace(G1/2
0 Mk(y)G1/2

0 ) +
∑
i∈[m] trace(G1/2

i Mk−1(giy)G1/2
i )

= trace(PkDk(y)Pk) ,

yielding the first statement.

2. The “if” part comes from the first statement. Let us prove the “only if” part. Assume
that POP (5.0.2) has CTP (Definition 5.1). Let a ∈ S(g), y = (yα)α∈Nn be the moment
sequence of the Dirac measure δa. Let k ∈ N≥kmin be fixed. Since Pk ∈ S(k), Pk =
diag(W0, . . . ,Wm). Then W2

i � 0, i ∈ {0}∪ [m] since Pk � 0. Let us define the polynomial
w := v>k W2

0vk +
∑
i∈[m] giv>k−dgieW

2
ivk−dgie. By assumption,

ak = trace(PkDk(y)Pk)
= trace(W0Mk(y)W0) +

∑
i∈[m] trace(WiMk−1(giy)Wi)

= trace(Mk(y)W2
0) +

∑
i∈[m] trace(Mk−1(giy)W2

i )
= Ly(v>k W2

0vk +
∑
i∈[m] giv>k−dgieW

2
ivk−dgie) =

∫
Rn wdδa(x) = w(a) .

It implies that w − ak vanishes on S(g). Since S(g) has nonempty interior, w = ak, yielding
the second statement.

The following lemma will be used later on.

Lemma 5.1. Let R > 0. For all k ∈ N≥1, one has

(R+ 1)k = (1 + ‖x‖22)k + (R− ‖x‖22)
k−1∑
j=0

(R+ 1)j(1 + ‖x‖22)k−j−1 . (5.1.9)

Proof. Let k ∈ N≥1. Letting a = R + 1 and b = 1 + ‖x‖22, the desired equality follows from
ak − bk = (a− b)

∑k−1
j=0 a

jbk−1−j .

The next result states that the sufficient condition in Theorem 5.1 holds whenever a ball
constraint is present in the POP’s description. For a real symmetric matrix A, denote the largest
eigenvalue of A by λmax(A).

Theorem 5.2. If R − ‖x‖22 ∈ g for some R > 0 then the inclusions (5.1.6) hold and therefore
POP (5.0.2) has CTP.

Proof. Without loss of generality, set gm := R−‖x‖22 and let k ∈ N≥kmin be fixed. By Lemma 5.1,
(R+ 1)k = Θ + gmΛ, where Θ := (1 + ‖x‖22)k and Λ :=

∑k−1
j=0 (R+ 1)j(1 + ‖x‖22)k−j−1. Note that

• Θ =
∑

α∈Nn
k
θαx2α = v>k G0vk for some (θα)α∈Nn

k
⊆ R>0;

• Λ =
∑

α∈Nn
k−1

λαx2α = v>k−1Gmvk−1 for some (λα)α∈Nn
k−1
⊆ R>0.

Here G0 = diag((θα)α∈Nn
k
) and Gm = diag((λα)α∈Nn

k−1
) are both positive definite. Then we have

(R+ 1)k = v>k G0vk + gmv>k−1Gmvk−1. Denote by It the identity matrix of size b(t) for t ∈ N.
Let W be a real symmetric matrix such that

∑
i∈[m−1] giv>k−dgieIk−dgievk−dgie = v>k Wvk.

Since G0 � 0, there exists δ > 0 such that G0 − δW � 0. Indeed,

G0 − δW � 0⇔ Ik � δG−1/2
0 WG−1/2

0 ⇔ 1 > δλmax(G−1/2
0 WG−1/2

0 ) , (5.1.10)

yielding the selection δ = 1/(|λmax(G−1/2
0 WG−1/2

0 )|+ 1). Then

(R+ 1)k = v>k (G0 − δW)vk + δ
∑

i∈[m−1]

giv>k−dgieIk−dgievk−dgie + gmv>k−1Gmvk−1 ,

which implies (R+ 1)k ∈ Q◦k(g), which in turn yields the desired conclusion.
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The next result is a consequence of Theorem 5.2. It states that if a POP has a ball constraint
then the corresponding SOS strengthenings satisfy Slater’s condition.

Corollary 5.1. Assume that R−‖x‖22 ∈ g for some R > 0. Then Slater’s condition holds for SDP
(2.4.4) for all k ≥ kmin. As a consequence, strong duality holds for the primal-dual (2.4.4)-(2.4.5)
for all k ≥ kmin.

Proof. It suffices to prove that SDP (2.4.4) has a strictly feasible solution for all k ≥ kmin. Let
k ≥ kmin be fixed. By [139, Proposition 5.8], there exist σ0 ∈ Σ[x]k, σ ∈ Σ[x]k−1 and λ ∈ R such
that f + λ = σ0 + (R − ‖x‖22)σ. Thus f + λ ∈ Qk(g). By Theorem 5.2, 1 ∈ Q◦k(g) and therefore
f + 1 + λ ∈ Q◦k(g), which yields the desired conclusion.

Remark 5.1. From the proofs of Theorem 5.2 and Theorem 5.1, the constant trace ak and the
basis transformation matrix Pk (Definition 5.1) can be taken as

ak = (R+ 1)k and Pk = diag((G0 − δW)1/2,
√
δIk−dg1e, . . . ,

√
δIk−dgm−1e,G

1/2
m ) .

However, this choice leads to poor numerical properties. In the next section we provide a series of
linear programs inspired from the inclusion in (5.1.5), to obtain a constant trace ak and a basis
transformation matrix Pk that achieve better numerical performance.

5.1.3 Verifying CTP for POPs by solving linear programs
For any k ∈ N≥kmin , let Ŝ(k) be the set of real diagonal matrices of size b(k) and consider the

following LP:

inf
ξ,Gi,uj

ξ
∣∣∣∣∣∣∣

G0 − I0 ∈ Ŝ(k)
+ , Gi − Ii ∈ Ŝ(k−dgie)

+ , i ∈ [m] ,
ξ = v>k G0vk +

∑
i∈[m] giv>k−dgieGivk−dgie
+
∑
j∈[l] hjv>2(k−dhje)uj

 , (5.1.11)

where Ii is the identity matrix for i ∈ {0} ∪ [m].

Lemma 5.2. If LP (5.1.11) has a feasible solution (ξk,Gi,k,uj,k) for every k ∈ N≥kmin , then POP
(5.0.2) has CTP with ak = ξk and Pk = diag(G1/2

0,k , . . . ,G
1/2
m,k).

The proof of Lemma 5.2 is similar to that of Theorem 5.1 with ak = ξk and Gi = Gi,k,
i ∈ {0} ∪ [m].

Since small constant traces are highly desirable for efficiency of first-order algorithms (e.g.
CGAL), we search for an optimal solution of LP (5.1.11) instead of just a feasible solution.

Remark 5.2. One can extend the classes of diagonal matrices Ŝ(k), Ŝ(k−dgie) in (5.1.11) to obtain
a smaller constant trace. For instance, one can define Ŝ(k), Ŝ(k−dgie) to be the class of symmetric
block diagonal matrices with block size two. As shown in [207, Lemma 4.3], (5.1.11) then becomes
a second-order cone program which can be also efficiently solved.

5.1.4 Special classes of POPs with CTP
In this section we identify two classes of POPs whose CTP can be verified by LP (5.1.11).
For I ⊆ [n], let x(I) := {xj : j ∈ I}. For matrices A and B of the same size, the Hadamard

product of A and B, denoted by A ◦B, is the matrix with entries [A ◦B]i,j = Ai,jBi,j .

POPs with ball or annulus constraints on subsets of variables

Consider the following assumption on the inequality constraints of POP (5.0.2).

Assumption 5.1. There exists a nonnegative integer r ≤ m/2 and

• Ri > Ri > 0, Ti ⊆ [n] for i ∈ [r];

• Rj > 0, Tj ⊆ [n] for j ∈ [m]\[2r]
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such that

(1) (∪i∈[r]Ti) ∪ (∪j∈[m]\[2r]Tj) = [n];

(2) gi := ‖x(Ti)‖22 −Ri, gi+r := Ri − ‖x(Ti)‖22 for i ∈ [r];

(3) gi := Ri − ‖x(Ti)‖22 for i ∈ [m]\[2r].

Notice that if Assumption 5.1 holds then POP (5.0.2) has r annulus constraints and (m− 2r)
ball constraints on subsets of variables. Moreover, Q(g) + I(h) is Archimedean due to (1-3) in
Assumption 5.1.

Example 5.2. Assumption 5.1 holds in the following cases:

(1) m = 1, r = 0 and g1 := R1 − ‖x‖22, i.e., S(g) is a ball;

(2) m = n, r = 0 and gi := Ri − x2
i for i ∈ [n], i.e., S(g) is a box;

(3) m = 2, r = 1 and g1 := ‖x‖22 −R1, g2 := R1 − ‖x‖22 (R1 > R1 > 0), i.e., S(g) is an annulus.

Proposition 5.1. If Assumption 5.1 holds then LP (5.1.11) has a feasible solution for every
k ∈ N≥kmin , and therefore POP (5.0.2) has CTP.

Proof. Let Assumption 5.1 hold. It is sufficient to show that (5.1.11) has a feasible solution for
every k ∈ N≥kmin .

Let u = (uj)j∈[n] ⊆ N≤m be defined by

uj := |{i ∈ [r] : j ∈ Ti}|+ |{i ∈ [m]\[2r] : j ∈ Ti}| , ∀ j ∈ [n] . (5.1.12)

Since (∪i∈[r]Ti) ∪ (∪i∈[m]\[2r]Ti) = [n], one has uj ∈ N≥1, j ∈ [n]. Moreover,

‖u ◦ x‖22 =
∑
i∈[r]

‖x(Ti)‖22 +
∑

i∈[m]\[2r]

‖x(Ti)‖22 . (5.1.13)

With R :=
∑
i∈[r](Ri + Ri) +

∑
i∈[m]\[2r]Ri, by replacing x by u ◦ x in Lemma 5.1, one obtains

that for all k ∈ N≥kmin ,

(R+ 1)k = (1 + ‖u ◦ x‖22)k + Λk−1
∑
i∈[m]

δigi , (5.1.14)

where Λk−1 :=
∑k−1
j=0 (R+ 1)j(1 + ‖u ◦ x‖22)k−j−1 and

δi := Ri
Ri −Ri

, δi+r := Ri

Ri −Ri
, i ∈ [r] , and δq = 1 , q ∈ [m]\[2r]. (5.1.15)

It is due to the fact that

R− ‖u ◦ x‖22 =
∑
i∈[r]

(Ri +Ri − ‖x(Ti)‖22) +
∑

i∈[m]\[2r]

(Ri − ‖x(Ti)‖22) , (5.1.16)

and Ri+Ri−‖x(Ti)‖22 = δigi+δi+rgi+r, for all i ∈ [r]. For each k ∈ N≥kmin , let (θk,α)α∈Nn
k
⊆ R>0

and (ηk−1,α)α∈Nn
k−1
⊆ R>0 be such that

(1 + ‖u ◦ x‖22)k =
∑

α∈Nn
k

θk,αx2α and Λk−1 =
∑

α∈Nn
k−1

ηk−1,αx2α ,

and define the diagonal matrices

G(0)
k := diag((θk,α)α∈Nn

k
) and G(i)

k−1 := diag((δiηk−1,α)α∈Nn
k−1

) , i ∈ [m] . (5.1.17)

Then (5.1.14) yields that for every k ∈ N≥kmin :

(R+ 1)k = v>k G(0)
k vk +

∑
i∈[m]

giv>k−1G
(i)
k−1vk−1 .

Hence ((R+ 1)k,G(i)
k ,0) is a feasible solution of (5.1.11), for every k ∈ N≥kmin .
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POPs with inequality constraints of equivalent degree

We say that polynomials q1, . . . , qt are of equivalent degree if dq1e = · · · = dqte.

Assumption 5.2. Let m ≥ 3 and {gi}i∈[m−2] be of equivalent degree. L > 0 and R > 0 are such
that gm−1 = L−

∑
i∈[m−2]

gi and gm = R− ‖x‖22.

Proposition 5.2. If Assumption 5.2 holds then LP (5.1.11) has a feasible solution for every
k ∈ N≥kmin , and therefore POP (5.0.2) has CTP.

Proof. Let Assumption 5.2 hold with u := dgie, i ∈ [n + 1]. For every k ∈ N≥kmin , letting
Λk−1 :=

∑k−1
j=0 (R + 1)j(1 + ‖x‖22)k−j−1 and Θt := (1 + ‖x‖22)t, for t ∈ N, Lemma 5.1 yields

(R+ 1)k = Θk + gmΛk−1. It implies that for every k ∈ N≥kmin ,

(R+ 1)k = (Θk −
L

L+ 1Θk−u) + 1
L+ 1Θk−u

∑
i∈[m−1]

gi + gmΛk−1 . (5.1.18)

It is due to the fact that
∑
i∈[m−1] gi = L. For each k ∈ N≥kmin , let us consider the following

sequences:

• (νk,α)α∈Nn
k
⊆ R>0 such that Θk − L

L+1Θk−u =
∑

α∈Nn
k
νk,αx2α;

• (θk−u,α)α∈Nn
k−u
⊆ R>0 such that 1

L+1Θk−u =
∑

α∈Nn
k−u

θk−u,αx2α;

• (ηk−1,α)α∈Nn
k−1
⊆ R>0 such that Λk−1 =

∑
α∈Nn

k−1
ηk−1,αx2α.

For each k ∈ N≥kmin , define the diagonal matrices G(0)
k := diag((νk,α)α∈Nn

k
),

G(1)
k−u := diag((θk−u,α)α∈Nn

k−u
) , and G(2)

k−1 := diag((ηk−1,α)α∈Nn
k−1

) .

Then (5.1.18) yields that for every k ∈ N≥kmin ,

(R+ 1)k = v>k G(0)
k vk + v>k−uG

(1)
k−uvk−u

∑
i∈[m−1]

gi + v>k−1G
(2)
k−1vk−1gm . (5.1.19)

Hence ((R + 1)k,G(i)
k ,0) is a feasible solution of (5.1.11), for every k ∈ N≥kmin . By using Lemma

5.2, the conclusion follows.

Example 5.3. Let R,L > 0 satisfy R ≥ L2 and

m = n+ 2 , gi = xj for j ∈ [n] , gn+1 = L−
∑
j∈[n]

xj and gn+2 = R− ‖x‖22 . (5.1.20)

Then Assumption 5.2 holds and S(g) is a simplex.

When S(g) is compact, we can always reformulate POP (5.0.2) such that Assumption 5.2 holds.
Suppose S(g) ⊆ B(0, R) for some R > 0. Let u = maxi∈[m]dgie. Set g̃i := gi(1 + ‖x‖22)u−dgie for
i ∈ [m]. Let L be a positive number such that

∑
i∈[m] g̃i ≤ L on S(g). Set g̃m+1 := L−

∑
i∈[m] g̃i

and g̃m+2 := R− ‖x‖22.

Remark 5.3. For the latter case, one can choose any positive number L ≥ (R+ 1)u
∑
i∈[m] ‖gi‖1.

Indeed, for any z ∈ S(g), and since ‖z‖22 ≤ R,

|zα| =
∏
i∈[n]

|zi|αi ≤
∏
i∈[n]

(1 + ‖z‖22)αi/2 = (1 + ‖z‖22)|α|/2 ≤ (1 +R)t , ∀α ∈ Nn2t .

This implies that for every i ∈ [m],

g̃i(z) ≤ (1 +R)u−dgie
∑

α∈Nn2dgie

|gα||zα| ≤ (1 +R)u−dgie(R+ 1)dgie‖gi‖1 = (1 +R)u‖gi‖1 .

Thus we have
∑
i∈[m] g̃i ≤ (1 +R)u

∑
i∈[m] ‖gi‖1 on S(g).
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Corollary 5.2. With the above notation, S(g ∪ {g̃m+1, g̃m+2}) = S(g) and LP (5.1.11) has a
feasible solution when replacing g by g ∪ {g̃m+1, g̃m+2} for each k ∈ N≥kmin . As a result, POP
(5.0.2) is equivalent to the following POP

f? := inf{f(x) : x ∈ S(g ∪ {g̃m+1, g̃m+2}) ∩ V (h)} (5.1.21)

which has CTP.

Proof. Let g̃ := {g̃i}i∈[m+2]. Then {g̃i}i∈[m] are of equivalent degree, i.e., there exists u ∈ N such
that dg̃ie = u, for all i ∈ [m]. Thus Assumption 5.2 holds with g← g̃, m← m+ 2. By Proposition
5.2, (5.1.11) has a feasible solution with g← g̃ for every order k ∈ N≥kmin . It implies that for every
k ∈ N≥kmin , there exist u(j)

k ∈ Rb(2(k−dhje)), j ∈ [l], and

(η(0)
k,α)α∈Nn

k
⊆ R>0 , (η(i)

k−u,α)α∈Nn
k−u
⊆ R>0 , i ∈ [m+ 1] , (η(m+2)

k−1,α )α∈Nn
k−1
⊆ R>0

such that

1 = v>k diag((η(0)
k,α)α∈Nn

k
)vk +

∑
i∈[m+1] g̃iv>k−u diag((η(i)

k−u,α)α∈Nn
k−u

)vk−u
+g̃m+2v>k−1 diag((η(m+2)

k−1,α )α∈Nn
k−1

)vk−1 +
∑
j∈[l] hjv>2(k−dhje)u

(j)
k .

Let k ∈ N≥kmin be fixed. We define the following polynomials:

• σ0 := v>k diag((η(0)
k,α)α∈Nn

k
)vk =

∑
α∈Nn

k
η

(0)
k,αx2α,

• σi := v>k−u diag((η(i)
k−u,α)α∈Nn

k−u
)vk−u =

∑
α∈Nn

k−u
η

(i)
k−u,αx2α, i ∈ [m+ 1],

• σm+2 := v>k−1 diag((η(m+2)
k−1,α )α∈Nn

k−1
)vk−1 =

∑
α∈Nn

k−1
η

(m+2)
k−1,αx2α,

• ψj := v>2(k−dhje)u
(j)
k , j ∈ [l].

From this and since g̃i := gi(1 + ‖x‖22)u−dgie, for i ∈ [m], one has

1 = σ0 +
∑
i∈[m] σig̃i +

∑
j∈[l] ψjhj = σ0 +

∑
i∈[m] σi(1 + ‖x‖22)u−dgiegi

+g̃m+1σm+1 + g̃m+2σm+2 +
∑
j∈[l] ψjhj .

(5.1.22)

Then there exist (θ(i)
k−dgie,α)α∈Nn

k−dgie
⊆ R>0, i ∈ [m], such that

σi(1 + ‖x‖22)u−dgie =
∑

α∈Nn
k−dgie

θ
(i)
k−dgie,αx2α , i ∈ [m] . (5.1.23)

Thus (5.1.22) becomes

1 = v>k diag((η(0)
k,α)α∈Nn

k
)vk +

∑
i∈[m] giv>k−dgie diag((θ(i)

k−dgie,α)α∈Nn
k−dgie

)vk−dgie
+g̃m+1v>k−u diag((η(m+1)

k−u,α)α∈Nn
k−u

)vk−u
+g̃m+2v>k−1 diag((η(m+2)

k−1,α )α∈Nn
k−1

)vk−1 +
∑
j∈[l] hjv>2(k−dhje)u

(j)
k

∈ Q◦k(g ∪ {g̃m+1, g̃m+2}) + Ik(h) ,

since

• diag((η(0)
k,α)α∈Nn

k
) � 0, diag((θ(i)

k−dgie,α)α∈Nn
k−dgie

) � 0, i ∈ [m],

• diag((η(m+1)
k−u,α)α∈Nn

k−u
) � 0, and diag((η(m+2)

k−1,α )α∈Nn
k−1

) � 0.

It yields that (5.1.11) has a feasible solution with g ← g ∪ {g̃m+1, g̃m+2}, for every order k ∈
N≥kmin .

In case that POP (5.0.2) does not have CTP and S(g) is compact, Corollary 5.2 provides a way
to construct an equivalent POP by including two additional redundant constraints. Then CTP of
this new POP can be verified by LP.
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Algorithm 6 Approximating the optimal value of a dense POP with CTP
Input: POP (5.0.2) and a relaxation order k ∈ N≥kmin

Output: The optimal value τk of SDP (5.1.3)
1: Solve LP (5.1.11) with an optimal solution (ξk,Gi,k,uj,k);
2: Let ak = ξk and Pk = diag(G1/2

0,k , . . . ,G
1/2
m,k);

3: Compute the optimal value τk of SDP (5.1.3) by running an algorithm based on first-order
methods and which exploits CTP.

5.1.5 Main algorithm

Algorithm 6 below solves POP (5.0.2) whose CTP can be verified by LP.
Examples of algorithms based on first-order methods and which exploit CTP are CGAL (Al-

gorithm 8 in Appendix 5.3.4) or SM (Algorithm 10 in Appendix 5.3.5).

5.2 Numerical experiments for dense POPs
In this section we report results of numerical experiments obtained by solving the second

order Moment-SOS relaxation of various randomly generated instances of QCQPs with CTP. The
experiments were performed in Julia 1.3.1 with the following software packages:

• SumOfSquare [216] is a modeling library for solving the Moment-SOS relaxations of dense
POPs, based on JuMP (with Mosek 9.1 as SDP solver).

• TSSOS [212, 211, 213] is a modeling library for solving Moment-SOS relaxations of sparse
POPs based on JuMP (with Mosek 9.1 as SDP solver).

• LMBM solves unconstrained non-smooth optimization with the limited-memory bundle method
by Haarala et al. [71, 70] and calls Karmitsa’s Fortran implementation of the LMBM algo-
rithm [95].

• Arpack [115] is used to compute the smallest eigenvalues and the corresponding eigenvectors
of real symmetric matrices of (potentially) large size, which is based on the implicitly restarted
Arnoldi method.

The implementation of Algorithms 6 and 7 is available online via the link:

https://github.com/maihoanganh/ctpPOP.

We use a desktop computer with an Intel(R) Core(TM) i7-8665U CPU @ 1.9GHz × 8 and 31.2
GB of RAM. The notation for the numerical results is given in Table 5.1.

For the examples tested in this chapter, the modeling time of SumOfSquares, TSSOS and ctpPOP
is typically negligible compared to the solving time of the packages Mosek, CGAL, and LMBM.
Hence the total running time mainly depends on the solvers and we compare their performances
below. As mentioned in the introduction, the current framework differs from our previous work
[134], where we exploited CTP for equality constrained POPs on a sphere, which could be solved by
LMBM efficiently. The reason is that the SDP relaxations of such equality constrained POPs involve
a single psd matrix. For the benchmarks of this section, we consider POPs involving ball/annulus
constraints, and so the resulting relaxations include several psd matrices. Our numerical experi-
ments confirm that for such SDPs, LMBM returns inaccurate values since the gap w.r.t. the value of
Mosek is typically larger than 1% while CGAL (without sketching) performs better for this type
of SDPs in terms of accuracy. As showed in Section 5.2.1, the last columns of Table 5.2 and Table
5.3 illustrate how inaccurate LMBM can be for large problems (n ≥ 20), thus we do not report LMBM
results in the other experiments.

https://github.com/maihoanganh/ctpPOP
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Table 5.1: Notation

n the number of variables of a POP
m the number of inequality constraints of a POP
l the number of equality constraints of a POP
umax the largest size of variable cliques of a sparse POP
p the number of variable cliques of a sparse POP
k the relaxation order of the Moment-SOS hierarchy

t
the sparse order of the sparsity adapted Moment-SOS hierarchy (for TS
and CS-TS)

ω the number of psd blocks of an SDP
smax the largest size of psd blocks of an SDP
ζ the number of affine equality constraints of an SDP
amax the largest constant trace

Mosek
the SDP relaxation modeled by SumOfSquares (for dense POPs) or TSSOS
(for sparse POPs) and solved by Mosek 9.1

CGAL the SDP relaxation modeled by our CTP-exploiting method and solved
by the CGAL algorithm

LMBM the SDP relaxation modeled by our CTP-exploiting method and solved
by the SM algorithm with the LMBM solver

val the optimal value of the SDP relaxation

gap the relative optimality gap w.r.t. the value returned by Mosek, i.e.,
gap = |val− val(Mosek)|/|val(Mosek)|

time the running time in seconds (including modeling and solving time)
− the calculation runs out of space

5.2.1 Randomly generated dense QCQPs with a ball constraint

Test problems: We construct randomly generated dense QCQPs with a ball constraint as fol-
lows:

1. Generate a dense quadratic polynomial objective function f with random coefficients follow-
ing the uniform probability distribution on (−1, 1);

2. Let m = 1 and g1 := 1− ‖x‖22;

3. Take a random point a in S(g) w.r.t. the uniform distribution;

4. For every j ∈ [l], generate a dense quadratic polynomial hj by

(i) for each α ∈ Nn2\{0}, taking a random coefficient hj,α for hj in (−1, 1) w.r.t. the
uniform distribution;

(ii) setting hj,0 := −
∑

α∈Nn2 \{0}
hj,αaα.

Then a is a feasible solution of POP (5.0.2).

The numerical results are displayed in Table 5.2 and 5.3.

Discussion: As one can see from Table 5.2 and 5.3, CGAL is typically the fastest solver and
returns an optimal value of gap within 1% w.r.t. the one returned by Mosek when n ≤ 30. Mosek
runs out of memory when n ≥ 40 while CGAL works well up to n = 100. We should point out that
LMBM is less accurate or even fails to converge to the optimal value when n ≥ 20. The reason
might be that LMBM only solves the dual problem and hence looses information of the primal
problem.
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Table 5.2: Numerical results for minimizing a dense quadratic polynomial on a unit ball

• POP size: m = 1, l = 0; Relaxation order: k = 2; SDP size: ω = 2, amax = 3.

POP size SDP size Mosek CGAL LMBM
n smax ζ val time val time val time
10 66 1277 -2.2181 0.3 -2.2170 0.2 -2.2187 0.3
20 231 16402 -3.7973 4 -3.7947 0.6 -3.7096 7
30 496 77377 -3.6876 3474 -3.6858 104 -3.8530 59
40 861 236202 − − -4.1718 33 -4.7730 179
50 1326 564877 − − -6.3107 1007 -7.3874 139
60 1891 1155402 − − -6.5326 1085 -7.4733 674
70 2556 2119777 − − -7.3379 1262 -9.5223 1486
80 3321 3590002 − − -7.9559 4988 -10.0260 1241
90 4186 5718077 − − -7.3425 5187 -9.4477 5313
100 5151 8676002 − − -7.7374 22451 -10.684 5355

Table 5.3: Numerical results for randomly generated dense QCQPs with a ball constraint

• POP size: m = 1, l = dn/4e; Relaxation order: k = 2; SDP size: ω = 2, amax = 3.

POP size SDP size Mosek CGAL LMBM
n l smax ζ val time val time val time
10 3 66 1475 -2.0686 1.7 -2.0674 0.8 -2.0874 0.3
20 5 231 17557 -3.0103 61 -3.0075 7 -3.0750 18
30 8 496 81345 -3.3293 4573 -3.3249 80 -3.6863 123
40 10 861 244812 − − -4.6977 194 -5.3488 488
50 13 1326 582115 − − -4.2394 951 -6.1325 837
60 15 1891 1183767 − − -5.7793 1387 -7.5718 3781
70 18 2556 2165785 − − -6.1278 4335 -8.1181 15854

5.2.2 Randomly generated dense QCQPs with annulus constraints

Test problems: We construct randomly generated dense QCQPs as in Section 5.2.1, where
the ball constraint is now replaced by annulus constraints. Namely, in Step 2 we take m = 2,
g1 := ‖x‖22 − 1/2 and g2 := 1− ‖x‖22. The numerical results are displayed in Table 5.4 and 5.5.

Discussion: Same remarks as in Section 5.2.1.

5.2.3 Randomly generated dense QCQPs with box constraints

Test problems: We construct randomly generated dense QCQPs as in Section 5.2.1, where the
ball constraint is now replaced by box constraints. Namely, in Step 2 we take m = n, gj :=
−x2

j + 1/n, j ∈ [n].
The numerical results are displayed in Table 5.6 and 5.7.

Discussion: We observe similar behaviors of the solvers as in Section 5.2.1. The important point
to note here is that solving a QCQP with box constraints is less efficient than solving the same
one with ball constraints. This is because the efficiency of CGAL depends on the number of psd
blocks involved in an SDP. For instance, when n = 50, CGAL takes around 1000 seconds to solve
the second order moment relaxation of a QCQP with a ball constraint while it takes around 2100
seconds to solve this relaxation for a QCQP with box constraints.
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Table 5.4: Numerical results for minimizing a dense quadratic polynomial on an annulus

• POP size: m = 2, l = 0; Relaxation order: k = 2; SDP size: ω = 3, amax = 4.

POP size SDP size Mosek CGAL
n smax ζ val time val time
10 66 1343 -3.0295 0.5 -3.0278 1
20 231 16633 -3.6468 69 -3.6458 5
30 496 77873 -3.9108 2546 -3.9079 9
40 861 237063 − − -4.7469 28
50 1326 566203 − − -6.4170 112
60 1891 1157293 − − -5.5841 226
70 2556 2122333 − − -7.9325 730
80 3321 3593323 − − -7.6164 1355
90 4186 5722263 − − -8.1900 3563

Table 5.5: Numerical results for randomly generated dense QCQPs with annulus constraints

• POP size: m = 2, l = dn/4e; Relaxation order: k = 2; SDP size: ω = 3, amax = 4.

POP size SDP size Mosek CGAL
n l smax ζ val time val time
10 3 66 1541 -2.7950 0.5 -2.7934 2
20 5 231 17788 -3.5048 95 -3.5027 10
30 8 496 81841 -3.3964 4237 -3.3937 45
40 10 861 245673 − − -4.6573 140
50 13 1326 583441 − − -3.8236 437
60 15 1891 1185658 − − -4.5246 1076
70 18 2556 2168341 − − -6.2924 4783

Table 5.6: Numerical results for minimizing a dense quadratic polynomial on a box

• POP size: m = n, l = 0; Relaxation order: k = 2; SDP size: ω = n+ 1, amax = 3.

POP size SDP size Mosek CGAL
n smax ζ val time val time
10 66 1871 -2.7197 0.5 -2.7189 1
20 231 20791 -3.3560 98 -3.3501 57
30 496 91761 -4.6372 5150 -4.6242 285
40 861 269781 − − -4.5788 409
50 1326 629851 − − -4.2313 2083
60 1891 1266971 − − -4.0135 5525
70 2556 2296141 − − -5.4019 15172

Table 5.7: Numerical results for randomly generated dense QCQPs with box constraints

• POP size: m = n, l = dn/7e; Relaxation order: k = 2; SDP size: ω = n+ 1, amax = 3.

POP size SDP size Mosek CGAL
n l smax ζ val time val time
10 2 66 2003 -1.8320 0.6 -1.8321 3
20 3 231 21484 -3.1797 175 -3.1781 106
30 5 496 94241 -2.2949 6850 -2.2982 528
40 6 861 274947 − − -3.8651 933
50 8 1326 640459 − − -3.6267 6159
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Table 5.8: Numerical results for minimizing a dense quadratic polynomials on a simplex

• POP size: m = n+ 2, l = 0; Relaxation order: k = 2; SDP size: ω = n+ 3, amax = 5.

POP size SDP size Mosek CGAL
n smax ζ val time val time
10 66 2003 -1.9954 0.3 -1.9950 7
20 231 21253 -1.5078 58 -1.5055 116
30 496 92753 -2.0537 2804 -2.0480 377
40 861 271503 − − -2.3034 950
50 1326 632503 − − -1.8366 9539

Table 5.9: Numerical results for randomly generated dense QCQPs with simplex constraints

• POP size: m = n+ 2, l = dn/7e; Relaxation order: k = 2; SDP size: ω = n+ 3, amax = 5.

POP size SDP size Mosek CGAL
n l smax ζ val time val time
10 2 66 2135 -1.0605 0.4 -1.0606 176
20 3 231 21946 -1.6629 72 -1.6628 512
30 5 496 95233 -1.0091 6206 -1.0249 1089
40 6 861 276669 − − -0.3256 2314
50 8 1326 643111 − − -1.4200 10035

5.2.4 Randomly generated dense QCQPs with simplex constraints

Test problems: We construct randomly generated dense QCQPs as in Section 5.2.1, where the
ball constraint is now replaced by simplex constraints. Namely, in Step 2 we take g such that
(5.1.20) holds with L = R = 1. The numerical results are displayed in Table 5.8 and 5.9.

Discussion: Again we observe a behavior of the solvers similar to that in Section 5.2.1. One
can also see that solving a QCQP with simplex constraints by CGAL is significantly slower than
solving the same one with box constraints. For instance, when n = 50, CGAL takes 2100 seconds
to solve the second order moment relaxation for a QCQP with box constraints while it takes 9500
seconds with simplex constraints.

5.2.5 Numerical comparison between CGAL and ADMM

In Table 5.10, we make a numerical comparison between CGAL (with our CTP-exploiting
method) and COSMO, an SDP solver based on ADMM (see Table 1.3), on some randomly generated
dense QCQPs with a ball constraint (as in Section 5.2.1).

Discussion: Table 5.10 indicates that both CGAL and COSMO provide approximate values with
gap within 1% w.r.t. the ones returned by Mosek when n ≤ 30. In addition, COSMO is slightly more
accurate for n ∈ {20, 30} while CGAL offers an increasing speedup when n ≥ 30.

5.2.6 Dense POPs with a ball constraint

We construct randomly generated dense POPs as in Section 5.2.1, with input data of degree
d ∈ {3, 4}.

The numerical results, displayed in Table 5.11, indicate that CGAL returns an optimal value
with gap within 1% w.r.t. the one of Mosek, and is faster when the largest block size increases.
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Table 5.10: Numerical comparison with ADMM (COSMO) on randomly generated dense QCQPs with a
ball constraint

• POP size: m = 1, l = dn/4e; Relaxation order: k = 2; SDP size: ω = 2, amax = 3.

POP size SDP size Mosek CGAL COSMO
n l smax ζ val time val time val time
10 3 66 1475 -2.3153 0.7 -2.3134 0.1 -2.3125 0.2
20 5 231 17557 -3.6585 57 -3.6562 7 -3.6582 5
30 8 496 81345 -4.6221 4670 -4.6177 69 -4.6230 91
40 10 861 244812 − − -4.9932 173 -4.9989 532
50 13 1326 582115 − − -5.0394 524 -5.0418 2468
60 15 1891 1183767 − − -5.3537 735 -5.3548 6176

Table 5.11: Numerical results for randomly generated dense POPs with a ball constraint

• POP size: m = 1, l = dn/4e; SDP size: ω = 2.

POP size SDP size Mosek CGAL
n l d k amax smax ζ val time val time

15 4 3 2 3 136 5581 -3.0127 5 -3.0089 1
3 4 816 288933 − − -3.0021 290

10 3 4 2 3 66 1280 -2.0327 0.3 -2.0194 0.6
3 4 286 35443 -1.9337 41 -1.9310 16

5.3 Appendix
5.3.1 Exploiting CTP for POPs with CS

In this section, we extend the CTP-exploiting framework to POPs with sparsity. For clarity of
exposition we only consider correlative sparsity (CS). However, in Appendix 5.3.2 we also treat term
sparsity (TS) [212] as well as correlative-term sparsity (CS-TSSOS) [213]. Since the methodology
is very similar to that in the dense case described earlier, we omit details and only present the
main results.

To make this appendix self-contained, we recall some basic facts already stated in Chapter 3
on exploiting CS for POP (5.0.2) initially proposed in [203] by Waki et al.

For α ∈ Nn, let supp(α) := {j ∈ [n] : αj > 0}. For I ⊆ [n], let x(I) := {xj : j ∈ I}
and NId := {α ∈ Nnd : supp(α) ⊆ I}. Assume I ⊆ [n]. Given y = (yα)α∈Nn2d , the moment
(resp. localizing) submatrix associated with I of order d is defined by Md(y, I) := (yα+β)α,β∈NI

d

(resp. Md(qy, I) := (
∑

γ qγyα+β+γ)α,β∈NI
d

for q ∈ R[x(I)]). Let vId := (xα)α∈NI
d

with length
b(|I|, d) :=

(|I|+d
n

)
. For matrices A and B of same sizes, the Hadamard product of A and B,

denoted by A ◦B, is the matrix with entries [A ◦B]i,j = Ai,jBi,j .

POPs with CS

Assume that {Ic}c∈[p] (with nc := |Ic|) are the maximal cliques of (a chordal extension of) the
correlative sparsity pattern (csp) graph associated with POP (5.0.2), as defined in [203].

Let {Jc}c∈[p] (resp. {Wc}c∈[p]) be a partition of [m] (resp. [l]) such that for all i ∈ Jc,
gi ∈ R[x(Ic)] (resp. i ∈Wc, hi ∈ R[x(Ic)]), c ∈ [p]. For each c ∈ [p], let mc := |Jc|, Rc := |Wc| and
gJc := {gi : i ∈ Jc}, hWc

:= {hi : i ∈ Wc}. Then Q(gJc) (resp. I(hWc
)) is a quadratic module

(resp. an ideal) in R[x(Ic)], for c ∈ [p].
For each k ∈ N≥kmin , consider the following sparse SOS strengthening:

ρcs
k := sup

ξ : f − ξ ∈
∑
c∈[p]

(Qk(gJc) + Ik(hWc))

 . (5.3.1)
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It is equivalent to the SDP:

ρcs
k = sup

ξ,G(c)
i
,dgie(c)


ξ

∣∣∣∣∣∣∣∣∣∣∣

G(c)
i � 0 , i ∈ {0} ∪ Jc , c ∈ [p] ,

f − ξ =
∑
c∈[p]

(
(vIck )>G(c)

0 vIck
+
∑
i∈Jc gi(v

Ic
k−dgie)

>G(c)
i vIck−dgie

+
∑
j∈Wc

hj(vIc2(k−dhje))
>u(c)

j

)


. (5.3.2)

The dual of (5.3.2) reads

τ cs
k := inf

y∈Rb(2k)

Ly(f)

∣∣∣∣∣∣
Mk(y, Ic) � 0 , c ∈ [p] , y0 = 1 .
Mk−dgie(gi y, Ic) � 0 , i ∈ Jc , c ∈ [p] ,
Mk−dhje(hj y, Ic) = 0 , j ∈Wc , c ∈ [p]

 . (5.3.3)

It is shown in [103, Theorem 3.6] that convergence of the primal-dual (5.3.2)-(5.3.3) to f? is
guaranteed if there are additional ball constraints on each clique of variables.

Exploiting CTP for POPs with CS

For every c ∈ [p], we denote by S(c,k) the set of real symmetric matrices of size b(nc, k) +∑
i∈Jc b(nc, k − dgie) in a block diagonal form: X = diag(X0, (Xi)i∈Jc) such that X0 is a block of

size b(k, nc) and Xi is a block of size b(nc, k − dgie) for i ∈ Jc.
Consider POP (5.0.2) with CS described in Section 5.3.1. For every c ∈ [p] and for every

k ∈ N≥kmin , letting Dk(y, Ic) := diag(Mk(y, Ic), (Mk−dgie(giy, Ic))i∈Jc) for y ∈ Rs(2k), SDP (5.3.3)
can be rewritten as

τ cs
k := inf

y∈Rb(2k)

{
Ly(f)

∣∣∣∣ Dk(y, Ic) � 0 , j ∈ [p] , y0 = 1 ,
Mk−dhje(hj y, Ic) = 0 , j ∈Wc , c ∈ [p]

}
. (5.3.4)

We define CTP for POP with CS as follows.

Definition 5.2. (CTP for a POP with CS) We say that POP (5.0.2) with CS has CTP if for
every k ∈ N≥kmin and for every c ∈ [p], there exists a positive number a(c)

k and a positive definite
matrix P(c)

k ∈ S(c,k) such that for all y ∈ Rb(2k),

Mk−dhje(hiy, Ic) = 0 , j ∈Wc ,
y0 = 1

}
⇒ trace(P(c)

k Dk(y, Ic)P(c)
k ) = a

(c)
k . (5.3.5)

The following result provides a sufficient condition for a POP with CS to have CTP.

Theorem 5.3. Assume that there is a ball constraint on each clique of variables, i.e.,

∀ c ∈ [p], Rc − ‖x(Ic)‖22 ∈ g for some Rc > 0 . (5.3.6)

Then one has R>0 ⊆ Q◦k(gJc), for all k ∈ N≥kmin and for all c ∈ [p]. As a consequence, POP
(5.0.2) has CTP.

The proof of Theorem 5.3 being very similar to that of Theorem 5.2 by considering each clique
of variables, is omitted.

Again by considering each clique of variables, the following result can be obtained from Theorem
5.3 in the same way Corollary 5.1 was obtained.

Corollary 5.3. If (5.3.6) holds then Slater’s condition for SDP (5.3.2) holds for all k ∈ N≥kmin .

We are now in position to provide a general method to solve POPs with CS which have CTP.

Consider POP (5.0.2) with CS described in Section 5.3.1. Assume that POP (5.0.2) has CTP
and let k ∈ N≥kmin be fixed.

Letting
Xc = P(c)

k Dk(y, Ic)P(c)
k , c ∈ [p] , (5.3.7)
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SDP (5.3.4) can be rewritten as

τ cs
k = inf

Xc∈S(c,k)
+

∑
c∈[p]

〈Cc,k,Xc〉 :
∑
c∈[p]

Ac,kXc = bk , c ∈ [p]

 , (5.3.8)

where for every c ∈ [p], Ac,k : S(c,k) → Rζk is a linear operator of the form

Ac,kX = (〈Ac,k,1,X〉, . . . , 〈Ac,k,ζk ,X〉)

with Ac,k,i ∈ S(c,k), i ∈ [ζk], Cc,k ∈ S(c,k), c ∈ [p] and bk ∈ Rζk . See Appendix 5.3.6 for the
conversion of SDP (5.3.4) to the form (5.3.8).

The dual of SDP (5.3.8) reads

ρcs
k = sup

y∈Rζ

{
b>k y : A>c,ky−Cc,k ∈ S(c,k)

+ , c ∈ [p]
}
, (5.3.9)

where A>c,k : Rζ → S(c,k) is the adjoint operator of Ac,k, i.e., A>c,kz =
∑
i∈[ζ] ziAc,k,i, c ∈ [p]. By

Definition 5.2, it holds that for every k ∈ N≥kmin ,

∀ Xc ∈ S(c,k) , c ∈ [p]∑
c∈[p]Ac,kXc = bk

}
⇒ trace(Xc) = a

(c)
k , c ∈ [p] . (5.3.10)

After replacing (Ac,k,Ac,k,i,bk,Cc,k,S(c,k), ζk, τ
cs
k , a

(c)
k ) by (Ac,Ai,c,b,Cc,S(c), ζ, τ, ac), SDP

(5.3.8) then becomes SDP (5.3.28); see Appendix 5.3.4 with ωc = mc+1 and smax = maxc∈[p] b(nc, k).
If there is a ball constraint on each clique of variables then by Corollary 5.3, strong duality

holds for the pair (5.3.8)-(5.3.9), for every k ∈ N≥kmin .
The two algorithms (CGAL and SM) based on first-order methods are then leveraged to solve

the primal-dual (5.3.8)-(5.3.9); see Appendix 5.3.4 and Appendix 5.3.5.

Verifying CTP for POPs with CS via LP

As in the dense case, we can verify CTP for a POP with CS via a series of LPs.
For every k ∈ N≥kmin and for every c ∈ [p], let Ŝ(c,k) be the set of real diagonal matrices of size

b(nc, k) and consider the following LP:

inf
ξ,Gi,ui

ξ
∣∣∣∣∣∣∣

G0 − I0 ∈ Ŝ(c,k)
+ , Gi − Ii ∈ Ŝ(c,k−dgie)

+ , i ∈ Jc ,
ξ = (vIck )>G0vIck +

∑
i∈Jc gi(v

Ic
k−dgie)

>GivIck−dgie
+
∑
j∈Wc

hj(vIc2(k−dhje))
>uj

 , (5.3.11)

where Ii is the identity matrix, for every i ∈ {0} ∪ Jc.

Lemma 5.3. Let POP (5.0.2) with CS be described in Section 5.3.1. If LP (5.3.11) has a feasible
solution (ξ(c)

k ,G(c)
i,k ,u

(c)
i,k), for every k ∈ N≥kmin and for every c ∈ [p], then POP (5.0.2) has CTP

with P(c)
k = diag(G1/2

0,k , (G
1/2
i,k )i∈Ji) and a(c)

k = ξ
(c)
k , for k ∈ N≥kmin and for c ∈ [p].

The proof of Lemma 5.3 is similar to that of Lemma 5.2.
For instance, for POPs with ball or annulus constraints on subsets of each clique of variables,

CTP can be verified by LP.

Proposition 5.3. Let POP (5.0.2) with CS be described in Section 5.3.1. Let (Ti)i∈[r]∪([m]\[2r]) be
as in Assumption 5.1 and further assume that for every c ∈ [p], (∪q∈Jc∩[r]Tq)∪ (∪q∈Jc\[2r]Tq) = Ic.
Then LP (5.3.11) has a feasible solution for every k ∈ N≥kmin , and therefore POP (5.0.2) has CTP.

Proof. To prove that POP (5.0.2) has CTP on each clique of variables, it is sufficient to show that
(5.3.11) has a feasible solution, for every k ∈ N≥kmin and for every c ∈ [p] due to Lemma 5.3.

For every c ∈ [p], let u(c) = (u(c)
i )i∈Ic ⊆ N≤|Jc| be defined by

u
(c)
i = |{q ∈ Jc ∩ [r] : i ∈ Tq}|+ |{q ∈ Jc\[2r] : i ∈ Tq}| , i ∈ Ic . (5.3.12)
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For every c ∈ [p], one has u(c)
i ∈ N≥1, i ∈ Ic, according to (∪q∈Jc∩[r]Tq) ∪ (∪q∈Jc\[2r]Tq) = Ic.

Moreover,
‖u(c) ◦ x(Ic)‖22 =

∑
i∈Jc∩[r]

‖x(Ti)‖22 +
∑

i∈Jc\[2r]

‖x(Ti)‖22 , ∀c ∈ [p] . (5.3.13)

For every c ∈ [p], with R(c) :=
∑
i∈Jc∩[r](Ri + Ri) +

∑
i∈Jc\[2r]Ri, by replacing x (resp. R) by

u(c) ◦ x(Ic) (resp. R(c)) in Lemma 5.1, we obtain

(R(c) + 1)k = (1 + ‖u(c) ◦ x(Ic)‖22)k + Λ(c)
k−1

∑
i∈Jc

δigi , ∀c ∈ [p] , ∀k ∈ N≥kmin , (5.3.14)

where Λ(c)
k−1 :=

∑k−1
r=0(R(c) + 1)r(1 + ‖u(c) ◦ x(Ic)‖22)k−r−1 and

δi := Ri
Ri −Ri

, δi+r := Ri

Ri −Ri
, i ∈ Jc ∩ [r] and δq = 1 , q ∈ Jc\[2r]. (5.3.15)

It is due to the fact that

R(c) − ‖u(c) ◦ x(Ic)‖2 =
∑

i∈Jc∩[r]

(Ri +Ri − ‖x(Ti)‖22) +
∑

i∈Jc\[2r]

(Ri − ‖x(Ti)‖22) , (5.3.16)

and Ri + Ri − ‖x(Ti)‖22 = δigi + δi+rgi+r, i ∈ Jc ∩ [r]. For every c ∈ [p], for each k ∈ N≥kmin , let
(θ(c)
k,α)α∈NIc

k
⊆ R>0 and (η(c)

k−1,α)α∈NIc
k−1
⊆ R>0 be such that

(1 + ‖u(c) ◦ x(Ic)‖22)k =
∑

α∈NIc
k

θ
(c)
k,αx2α and Λ(c)

k−1 =
∑

α∈NIc
k−1

η
(c)
k−1,αx2α ,

and define the diagonal matrices

G(c,0)
k := diag((θ(c)

k,α)α∈NIc
k

) and G(c,i)
k−1 := diag((δiη(c)

k−1,α)α∈NIc
k−1

) , i ∈ Jc . (5.3.17)

For every c ∈ [p], (5.3.14) yields that for every k ∈ N≥kmin ,

(R(c) + 1)k = (vIck )>G(c,0)
k vIck +

∑
i∈Jc

gi(vIck−1)>G(c,i)
k−1vIck−1 . (5.3.18)

Hence ((R(c) + 1)k,G(c,i)
k ,0) is a feasible solution of (5.3.11), for every k ∈ N≥kmin and for every

c ∈ [p].

Main algorithm

Algorithm 7 below solves POP (5.0.2) with CS and whose CTP can be verified by LP.

Algorithm 7 Approximating the optimal value of a POP with CS and CTP
Input: POP (5.0.2) with CS and a relaxation order k ∈ N≥kmin

Output: The optimal value τ cs
k of SDP (5.3.8)

1: for c ∈ [p] do
2: Solve LP (5.3.11) to obtain an optimal solution (ξ(c)

k ,G(c)
i,k ,u

(c)
c,k);

3: Let a(c)
k = ξ

(c)
k and P(c)

k = diag((G(c)
0,k)1/2, . . . , (G(c)

m,k)1/2);
4: Compute the optimal value τ cs

k of SDP (5.3.8) by running an algorithm based on first-order
methods and which exploits CTP.

In Step 4 of Algorithm 7 the two algorithms CGAL (Algorithm 9 in Appendix 5.3.4 or SM
(Algorithm 11 in Appendix 5.3.5) are good candidates.
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5.3.2 Exploiting CTP for POPs with TS and CS-TS
In this section, we restate the main results of TS in [212] and CS-TSSOS in [213]. Similarly to

dense POPs and POPs with CS, one can easily exploit CTP for POPs with TS and CS-TS. The
central reason is that the diagonal of each moment/localizing matrix in a given moment relaxation
of a dense POP (resp. POP with CS) does not change when TS (resp. CS-TS) is exploited.

Term sparsity (TS)

Fix a relaxation order k ∈ N≥kmin and a sparse order t ∈ N\{0}. We compute as in [212, Section
5] the following block diagonal (up to permutation) (0, 1)-binary matrices: G(0)

k,t of size b(k); G(i)
k,t

of size b(k − dgie), i ∈ [m]; H(j)
k,t of size b(k − dhje), j ∈ [l]. Then we consider the following sparse

moment relaxation of POP (5.0.2):

τ ts
k,t := inf

y∈Rb(2k)

Ly(f)

∣∣∣∣∣∣∣
G(0)
k,t ◦Mk(y) � 0 , y0 = 1 ,

G(i)
k,t ◦Mk−dgie(gi y) � 0 , i ∈ [m] ,

H(j)
k,t ◦Mk−dhje(hj y) = 0 , j ∈ [l]

 . (5.3.19)

One has τ ts
k,t−1 ≤ τ ts

k,t ≤ τk ≤ f?, for all (k, t). Moreover, we have the following theorem.

Theorem 5.4. (Wang et al. [212, Theorem 5.1]) For each k ∈ N≥kmin , the sequence (τ ts
k,t)t∈N\{0}

converges to τk (the optimal value of SDP (2.4.5)) in finitely many steps.

The dual of (5.3.19) reads

ρts
k,t = sup

ξ,Qi,Ui

ξ
∣∣∣∣∣∣∣∣∣

Q̄i = G(i)
k,t ◦Qi � 0 , i ∈ {0} ∪ [m] ,

Ūi = H(i)
k,t ◦Ui , i ∈ [l] ,

f − ξ = v>k Q̄0vk +
∑
i∈[m] giv>k−dgieQ̄ivk−dgie

+
∑
j∈[l] hjv>k−dhjeŪjvk−dhje

 . (5.3.20)

Correlative-Term sparsity (CS-TSSOS)

The basic idea of correlative-term sparsity is to exploit term sparsity for each clique. The clique
structure of the initial set of variables is derived from correlative sparsity (Section 5.3.1).

Fix a relaxation order k ∈ N≥kmin . For every sparse order t ∈ N\{0} and for every c ∈ [p], we
compute the following block diagonal (up to permutation) (0, 1)-binary matrices (see [213]): G(0)

k,t,c

of size b(nc, k); G(i)
k,t,c of size b(nc, k− dgie), i ∈ Jc; H(j)

k,t,c of size b(nc, k− dhje), j ∈Wc. Then let
us consider the following CS-TSSOS moment relaxation:

τ cs-ts
k,t := inf

y∈Rb(2k)

Ly(f)

∣∣∣∣∣∣∣
G(0)
k,t,c ◦Mk(y, Ic) � 0 , c ∈ [p] , y0 = 1 ,

G(i)
k,t,c ◦Mk−dgie(gi y, Ic) � 0 , i ∈ Jc , c ∈ [p] ,

H(j)
k,t,c ◦Mk−dhje(hj y, Ic) = 0 , j ∈Wc , c ∈ [p]

 . (5.3.21)

One has τ cs-ts
k,t−1 ≤ τ cs-ts

k,t ≤ τ cs
k ≤ τk ≤ f?, for all (k, t). Moreover, we have the following theorem.

Theorem 5.5. (Wang et al. [213]) For each k ∈ N≥kmin , the sequence (τcs-ts
k,t )t∈N\{0} converges to

τcs
k (the optimal value of SDP (5.3.3)) in finitely many steps.

The dual of (5.3.21) reads

ρcs-ts
k,t = sup

ξ,Q(c)
i
,U(c)
i


ξ

∣∣∣∣∣∣∣∣∣∣∣∣∣

Q̄(j)
i = G(i)

k,t,c ◦Q(c)
i � 0 , i ∈ {0} ∪ Jc , c ∈ [p] ,

Ū(c)
i = H(i)

k,t,c ◦U(c)
i , i ∈Wc , c ∈ [p] ,

f − ξ =
∑
c∈[p]

(
(vIck )>Q̄(c)

0 vIck
+
∑
i∈Jc gi(v

Ic
k−dgie)

>Q̄(c)
i vIck−dgie

+
∑
j∈Wc

hj(vIck−dhje)
>Ū(c)

j vIck−dhje
)


. (5.3.22)
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Table 5.12: Numerical results for minimizing a random quadratic polynomial with TS on the unit ball

• POP size: m = 1, l = 0; Relaxation order: k = 2; Sparse order: t = 1; SDP size: ω = 4, amax = 3.

POP size SDP size Mosek CGAL
n smax ζ val time val time
10 56 937 -1.5681 4 -1.5527 0.7
20 211 13722 -2.4275 36 -2.3996 1
30 466 68357 -3.0748 1930 -3.0577 8
40 821 214842 − − -3.6999 20
50 1276 523177 − − -4.1603 128
60 1831 1083362 − − -4.1914 655
70 2486 2005397 − − -4.9578 1461
80 3241 3419282 − − -5.6452 7253

Table 5.13: Numerical results for randomly generated QCQPs with TS and a ball constraint

• POP size: m = 1, l = dn/4e; Relaxation order: k = 2; Sparse order: t = 1; SDP size: ω = 4,
amax = 3.

POP size SDP size Mosek CGAL
n l smax ζ val time val time
10 3 56 1105 -0.60612 0.7 -0.60550 2
20 5 211 14777 -2.3115 47 -2.3097 17
30 8 466 72085 -2.8344 3102 -2.8321 112
40 10 821 223052 − − -3.4081 476
50 13 1276 539765 − − -3.3552 1845
60 15 1831 1110827 − − -3.5620 2992

5.3.3 Numerical experiments for sparse POPs
In this section we report results of numerical experiments for sparse POPs with the same

settings and notations as in Section 5.2.

Randomly generated QCQPs with TS and ball constraints

Test problems: We construct randomly generated QCQPs with TS and a ball constraint as
follows:

1. Generate a quadratic polynomial objective function f such that for α ∈ Nn2 with |α| 6= 2,
fα = 0 and for α ∈ Nn2 with |α| = 2, the coefficient fα is randomly generated in (−1, 1)
w.r.t. the uniform distribution;

2. Take m = 1 and g1 := 1− ‖x‖22;

3. Take a random point a in S(g) w.r.t. the uniform distribution;

4. For every j ∈ [l], generate a quadratic polynomial hj by

(i) setting hj,α = 0 for each α ∈ Nn2\{0} with |α| 6= 2;
(ii) for each α ∈ Nn2\{0} with |α| = 2, taking a random coefficient hj,α for hj in (−1, 1)

w.r.t. the uniform distribution;
(iii) setting hj,0 := −

∑
α∈Nn2 \{0}

hj,αaα.

Then a is a feasible solution of POP (5.0.2).

The numerical results are displayed in Table 5.12 and 5.13.
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Table 5.14: Numerical results for minimizing a random quadratic polynomial with TS on a box

• POP size: m = n, l = 0; Relaxation order: k = 2; Sparse order: t = 1; SDP size: amax = 3.

POP size SDP size Mosek CGAL
n ω smax ζ val time val time
10 22 56 1441 -1.0539 3 -1.0519 14
20 42 211 17731 -1.3925 93 -1.3802 161
30 62 466 81871 -2.2301 4392 -2.2128 567
40 82 821 246861 − − -2.5209 1602
50 102 1276 585701 − − -3.0282 2583
60 122 1831 1191391 − − -3.0470 10858

Table 5.15: Numerical results for randomly generated QCQPs with TS and box constraints

• POP size: m = n, l = dn/7e; Relaxation order: k = 2; Sparse order: t = 1.; SDP size: ω = n + 1,
amax = 3.

POP size SDP size Mosek CGAL
n l ω smax ζ val time val time
10 2 22 56 1553 -0.77189 0.2 -0.77214 9
20 3 42 211 18364 -1.7962 71 -1.8009 150
30 5 62 466 84201 -1.8529 5814 -1.8625 650
40 6 82 821 251787 − − -2.1930 2994
50 8 102 1276 595909 − − -2.4655 8397

Discussion: The behavior of solvers is similar to that in the dense case.

Randomly generated QCQPs with TS and box constraints

Test problems: We construct randomly generated QCQPs with TS as in Section 5.3.3, where
the ball constraint is now replaced by box constraints. The numerical results are displayed in Table
5.14 and 5.15.

Discussion: Again the behavior of solvers is similar to that in the dense case.

Randomly generated QCQPs with CS and ball constraints on each clique of variables

Test problems: We construct randomly generated QCQPs with CS and ball constraints on each
clique of variables as follows:

1. Take a positive integer u, p := bn/uc+ 1 and let

Ic =


[u], if c = 1 ,
{u(c− 1), . . . , uc}, if c ∈ {2, . . . , p− 1} ,
{u(p− 1), . . . , n}, if c = p ;

(5.3.23)

2. Generate a quadratic polynomial objective function f =
∑
c∈[p] fc such that for each c ∈ [p],

fc ∈ R[x(Ic)]2, and the coefficient fc,α,α ∈ NIc2 of fc is randomly generated in (−1, 1) w.r.t.
the uniform distribution;

3. Take m = p and gi := −‖x(Ii)‖22 + 1, i ∈ [m];

4. Take a random point a in S(g) w.r.t. the uniform distribution;
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Table 5.16: Numerical results for minimizing a random quadratic polynomial with CS and ball constraints
on each clique of variables

• POP size: n = 1000, m = p, l = 0, umax = u + 1; Relaxation order: k = 2; SDP size: ω = 2p,
amax = 3.

POP size SDP size Mosek CGAL
u p ω smax ζ val time val time
11 91 182 91 222712 -240.54 124 -240.37 98
16 63 126 171 550692 -205.45 1389 -205.19 280
21 48 96 276 1107682 − − -175.60 321
26 39 78 406 1955879 − − -165.65 559
31 33 66 561 3167072 − − -149.10 973
36 28 56 741 4758727 − − -140.21 1315
41 25 50 946 6839993 − − -126.55 1926

Table 5.17: Numerical results for randomly generated QCQPs with CS and ball constraints on each clique
of variables

• POP size: n = 1000, m = p, l = 143, umax = u + 1; Relaxation order: k = 2; SDP size: ω = 2p,
amax = 3.

POP size SDP size Mosek CGAL
u p ω smax ζ val time val time
11 91 182 91 235023 -224.15 163 -224.09 204
16 63 126 171 572905 -192.45 1830 -192.30 335
21 48 96 276 1139460 − − -162.79 537
26 39 78 406 2005124 − − -148.77 1014
31 33 66 561 3239573 − − -142.38 2115
36 28 56 741 4862292 − − -124.97 5304

5. Let r := bl/pc and

Wc :=
{
{(c− 1)r + 1, . . . , cr}, if c ∈ [p− 1] ,
{(p− 1)r + 1, . . . , l}, if c = p .

(5.3.24)

For every c ∈ [p] and every i ∈Wc, generate a quadratic polynomial hi ∈ R[x(Ic)]2 by

(a) for each α ∈ NIc2 \{0}, taking a random coefficient hi,α of hi in (−1, 1) w.r.t. the uniform
distribution;

(b) setting hi,0 := −
∑

α∈NIc2 \{0}
hc,αaα.

Then a is a feasible solution of POP (5.0.2).

The numerical results are displayed in Table 5.16 and 5.17.

Discussion: The number of variables is fixed as n = 1000. We increase the clique size u so that
the number of variable cliques p decreases accordingly. Again results in Table 5.16 and 5.17 show
that CGAL is faster and returns an optimal value of gap within 1% w.r.t. the one returned by
Mosek (for u ≤ 16). Moreover Mosek runs out of memory when u ≥ 21.

Randomly generated QCQPs with CS and box constraints on each clique of variables

Test problems: We construct randomly generated QCQPs with CS as in Section 5.3.3, where
ball constraints are now replaced by box constraints. Namely, in Step 3 we take m = n, gj :=
−x2

j + 1/u, j ∈ [n].
The numerical results are displayed in Table 5.18 and 5.19.
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Table 5.18: Numerical results for minimizing a random quadratic polynomial with CS and box constraints
on each clique of variables

• POP size: n = m = 1000, l = 0, umax = u+1; Relaxation order: k = 2; Constant trace: amax ∈ [3, 4].

POP size SDP size Mosek CGAL
u p ω smax ζ val time val time
11 91 1181 91 313361 -204.89 443 -204.69 753
16 63 1125 171 720323 -163.11 3082 -162.88 3059
21 48 1095 276 1380918 − − -147.92 5655
26 39 1077 406 2357161 − − -131.00 8889

Table 5.19: Numerical results for QCQPs with CS and box constraints on each clique of variables

• POP size: n = m = 1000, l = 143, umax = u + 1; Relaxation order: k = 2; Constant trace:
amax ∈ [3, 4].

POP size SDP size Mosek CGAL
u p ω smax ζ val time val time
11 91 1181 91 325672 -187.01 402 -186.98 1915
16 63 1125 171 742536 -142.16 4323 -142.27 4126
21 48 1095 276 1412696 − − -131.14 5334
26 39 1077 406 2406406 − − -113.44 8037

Discussion: The number of variables is fixed as n = 1000. We increase the clique size u so that
the number of variable cliques p decreases accordingly. From results in Table 5.16 and 5.17, one
observes that when the largest size of variable cliques is relatively small (say u ≤ 11), Mosek is the
fastest solver. However when the largest size of variable cliques is relatively large (say u ≥ 21),
Mosek runs out of memory while CGAL still works well.

Randomly generated QCQPs with CS-TSSOS and ball constraints on each clique of
variables

Test problems: We construct randomly generated QCQPs with CS-TSSOS and ball constraints
on each clique of variables as follows:

1. Take a positive integer u, p := bn/uc+ 1 and let (Ic)c∈[p] be defined as in (5.3.23);

2. Generate a quadratic polynomial objective function f =
∑
c∈[p] fc such that for each c ∈ [p],

fc ∈ R[x(Ic)]2 and the nonzero coefficient fc,α with α ∈ NIc2 and |α| = 2 is randomly
generated in (−1, 1) w.r.t. the uniform distribution;

3. Take m = p and gi := −‖x(Ii)‖22 + 1, i ∈ [m];

4. Take a random point a in S(g) w.r.t. the uniform distribution;

5. Let r := bl/pc and (Wc)c∈[p] be as in (5.3.24). For every c ∈ [p] and every i ∈ Wc, generate
a quadratic polynomial hi ∈ R[x(Ic)]2 by

(a) for each α ∈ NIc2 \{0} with |α| 6= 2, taking hi,α = 0;
(b) for each α ∈ NIc2 with |α| = 2, taking a random coefficient hi,α of hi in (−1, 1) w.r.t.

the uniform distribution;
(c) setting hi,0 := −

∑
α∈NIc2 \{0}

hc,αaα.

Then a is a feasible solution of POP (5.0.2).

The numerical results are displayed in Table 5.20 and 5.21.
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Table 5.20: Numerical results for minimizing a random quadratic polynomial with CS-TSSOS and ball
constraints on each clique of variables

• POP size: n = 1000, m = p, l = 0, umax = u+ 1; Relaxation order: k = 2; Sparse order: t = 1; SDP
size: amax = 3.

POP size SDP size Mosek CGAL
u p ω smax ζ val time val time
11 91 364 79 169654 -160.05 163 -160.01 498
16 63 252 154 448354 -135.78 1422 -135.74 768
21 48 192 254 939619 − − -117.17 1605
26 39 156 379 1705763 − − -106.26 3150

Table 5.21: Numerical results for QCQPs with CS-TSSOS and ball constraints on each clique of variables

• POP size: n = 1000, m = p, l = 143, umax = u + 1; Relaxation order: k = 2; Sparse order: t = 1;
SDP size: amax = 3.

POP size SDP size Mosek CGAL
u p ω smax ζ val time val time
11 91 364 79 180303 -155.91 158 -155.87 604
16 63 252 154 468290 127.42 1707 -127.36 1053
21 48 192 254 939619 − − -114.85 2877
26 39 156 379 1751556 − − -102.30 6878

Discussion: The behavior of solvers is similar to that in Section 5.3.3. Here, we also emphasize
that our framework is less efficient than interior-point methods for most benchmarks presented in
[213]. The two underlying reasons are that (1) the block size of the resulting SDP relaxations is
small, in which case Mosek performs more efficiently, e.g., for the benchmarks from [213, Section
5.2], and (2) it is harder to find the constant trace, e.g., for the benchmarks from [213, Section 5.4].
Thus our proposed method complements that in [213] when the block size of the SDP relaxations
is large and/or when CTP can be efficiently verified.

Randomly generated QCQPs with CS-TSSOS and box constraints on each clique of
variables

Test problems: We construct randomly generated QCQPs with CS-TSSOS as in Section 5.3.3,
where ball constraints are now replaced by box constraints. Namely, in Step 3 we take m = n,
gj := −x2

j + 1/u, j ∈ [n]. The numerical results are displayed in Table 5.22 and 5.23.

Discussion: The behavior of solvers is similar to that in Section 5.3.3.

Table 5.22: Numerical results for minimizing a random quadratic polynomial with CS-TSSOS and box
constraints on each clique of variables

• POP size: n = m = 1000, l = 0, umax = u + 1; Relaxation order: k = 2; Sparse order: t = 1;
Constant trace: amax ∈ [3, 4].

POP size SDP size Mosek CGAL
u p ω smax ζ val time val time
11 91 2362 79 248335 -126.15 151 -126.04 1982
16 63 2250 154 601081 -100.75 2225 -100.64 7323
21 48 2190 254 1191001 − − -87.804 10734
26 39 2154 379 2080265 − − -81.908 20294
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Table 5.23: Numerical results for QCQPs with CS-TSSOS and box constraints on each clique of variables

• POP size: n = m = 1000, l = 143, umax = u + 1; Relaxation order: k = 2; Sparse order: t = 1;
Constant trace: amax ∈ [3, 4].

POP size SDP size Mosek CGAL
u p ω smax ζ val time val time
11 91 2362 79 258984 -114.53 325 -114.27 482
16 63 2250 154 621017 -96.199 4450 -96.079 1245
21 48 2190 254 1220027 − − -83.013 8204
26 39 2154 379 2126058 − − -74.532 27600

5.3.4 Conditional gradient-based augmented Lagrangian
SDP with CTP

Let s, l, s(j) ∈ N≥1, j ∈ [ω], be fixed such that s =
∑ω
j=1 s

(j). Let S be the set of real symmetric
matrices of size s in a block diagonal form: X = diag(X1, . . . ,Xω), such that Xj is a block of size
s(j), j ∈ [ω]. Let smax := maxj∈[ω] s

(j). Let S+ be the set of all X ∈ S such that X � 0, i.e., X has
only nonnegative eigenvalues. Then S is a Hilbert space with scalar product 〈A,B〉 = trace(B>A)
and S+ is a self-dual cone.

Let us consider the following SDP:

τ = inf
X∈S+

{ 〈C,X〉 : AX = b} , (5.3.25)

where A : S → Rζ is a linear operator of the form AX = [〈A1,X〉, . . . , 〈Aζ ,X〉], with Ai ∈ S,
i ∈ [ζ], C ∈ S is the cost matrix and b ∈ Rζ is a vector.

The dual of SDP (5.3.25) reads

ρ = sup
y∈Rζ

{b>y : A>y−C ∈ S+ } , (5.3.26)

where A> : Rζ → S is the adjoint operator of A, i.e., A>y =
∑
i∈[ζ] yiAi.

The following assumption will be used later on.

Assumption 5.3. Consider the following conditions:

1. Strong duality of primal-dual (5.3.25)-(5.3.26) holds, i.e., ρ = τ and ρ ∈ R.

2. Constant trace property (CTP): ∃a > 0 : ∀ X ∈ S , AX = b⇒ trace(X) = a.

For X ∈ S, the Frobenius norm of X is defined by ‖X‖F :=
√
〈X,X〉. We denote by ‖A‖

the operator norm of A, i.e., ‖A‖ := maxX∈S ‖AX‖2/‖X‖F . The smallest eigenvalue of a real
symmetric matrix D is denoted by λmin(D).

Algorithm. In [219], Yurtsever et al. stated Algorithm 8 (see below) to solve SDP (5.3.25) with
CTP. This procedure is based on the augmented Lagrangian paradigm combined together with the
conditional gradient method.

The convergence of the sequence (Xt)t∈N in Algorithm 8 to the set of optimal solutions of SDP
(5.3.25) is guaranteed as follows:

Theorem 5.6. [219, Fact 3.1 ] Consider SDP (5.3.25) such that Assumption 5.3 holds. Let
(Xt)t∈N be in the output of Algorithm 8. Then Xt � 0, for all t ∈ N and ‖AXt − b‖2 → 0,
|〈C,Xt〉 − τ | → 0 as t→∞, with the rate of order O(1/

√
t).

Remark 5.4. In order to achieve the best convergence rate for Algorithm 8, we scale the problem’s
input as follows: ‖C‖F = ‖A‖ = a = 1 and ‖A1‖F = · · · = ‖Aζ‖F .
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Algorithm 8 CGAL-SDP-CTP
Input: SDP (5.3.25) such that Assumption 5.3 holds; Parameter K > 0.
Output: (Xt)t∈N.

1: Set X0 := 0S and y0 := 0Rζ .
2: for t ∈ N do
3: Set βt :=

√
t+ 1 and ηt := 2/(t+ 1);

4: Take an eigenvector ut corresponding to λmin(C +A>(yt−1 + ηt(AXt−1 − b)));
5: Set Xt := (1− ηt)Xt−1 + ηtautu>t ;
6: Select γt as the largest γ ∈ [0, 1] such that:
7: γ‖AXt − b‖22 ≤ βtη2

t a
2‖A‖2 and ‖yt−1 + γ(AXt − b)‖2 ≤ K;

8: Set yt = yt−1 + γt(AXt − b).

Remark 5.5. Given ε > 0, the for loop in Algorithm 8 terminates when:

|〈C,Xt−1〉 − (aλmin(C +A>(yt−1 + ηt(AXt−1 − b)))− b>yt−1)|
1 + max{|〈C,Xt−1〉|, |aλmin(C +A>(yt−1 + ηt(AXt−1 − b)))− b>yt−1|}

≤ ε (5.3.27)

and ‖AXt−1−b‖2/max{1, ‖b‖2} ≤ ε. In our experiments, we choose ε = 10−3. Note that the left
hand side in (5.3.27) is the relative gap between the primal and dual approximate values obtained
at each iteration.

Remark 5.6. To save memory at each iteration, we can run Algorithm 8 with an implicit Xt by
setting wt := AXt−b. In this case, Step 5 becomes wt := (1− ηt)wt−1 + ηt[A(autu>t )− b]. Thus
we only obtain an approximate dual solution yt of SDP (5.3.25) when Algorithm 8 terminates.

In Appendix 5.3.4, we provide an analogous method to solve an SDP with CTP on each subset
of blocks.

SDP with CTP on each subset of blocks

Let p ∈ N≥1, sc, ωc ∈ N, c ∈ [p], and s(i,c) ∈ N≥1, i ∈ [ωp], c ∈ [p], be fixed such that
sc =

∑
i∈[ωc] s

(i,c), c ∈ [p]. For every c ∈ [p], let S(c) be the set of real symmetric matrices of size sc
in a block diagonal form: Xc = diag(X1,c, . . . ,Xωc,c), such that Xi,c is a block of size s(i,c), i ∈ [ωc].
Let smax := maxi∈[ωp],c∈[p] s

(i,c). For every c ∈ [p], let S(c)
+ be the set of all Xc ∈ S(c) such that

Xc � 0. Then for every c ∈ [p], S(c) is a Hilbert space with scalar product 〈A,B〉 = trace(B>A)
and S(c)

+ is a self-dual cone.
Let us consider the following SDP:

τ = inf
Xc∈S(c)

+

∑
c∈[p]

〈Cc,Xc〉 :
∑
c∈[p]

AcXc = b

 , (5.3.28)

where Ac : S(c) → Rζ is a linear operator of the form AcX = [〈A1,c,X〉, . . . , 〈Aζ,c,X〉], with
Ai,c ∈ S(c), i ∈ [ζ], Cc ∈ S(c), c ∈ [p], and b ∈ Rζ .

The dual of SDP (5.3.28) reads

ρ = sup
y∈Rζ

{
b>y : A>c y−Cc ∈ S(c)

+ , c ∈ [p]
}
, (5.3.29)

where A>c : Rζ → S(c) is the adjoint operator of Ac, i.e., A>c z =
∑
i∈[ζ] ziAi,c, c ∈ [p].

The following assumption will be used later on:

Assumption 5.4. Consider the following conditions:

1. Strong duality of primal-dual (5.3.28)-(5.3.29) holds, i.e., ρ = τ and ρ ∈ R.

2. Constant trace property (CTP): there exist ac > 0 and c ∈ [p], such that

∀ Xc ∈ S(c) , c ∈ [p] ,∑
c∈[p]AcXc = b

}
⇒ trace(Xc) = ac , c ∈ [p] . (5.3.30)
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Recall that λmin(D) stands for the smallest eigenvalue of a real symmetric matrix D. We
denote by

∏
c∈[p] S(c) the set of all X = diag(Xc)c∈[p] such that Xc ∈ S(c), for c ∈ [p]. Let C :=

diag(Cc)c∈[p] and let A :
∏
c∈[p] S(c) → Rζ be a linear operator of the form: AX =

∑
c∈[p]AcXc,

for all X = diag(Xc)c∈[p] ∈
∏
c∈[p] S(c). Then for every X = diag(Xc)c∈[p] ∈

∏
c∈[p] S(c), we have

〈C,X〉 =
∑
c∈[p]〈Cc,Xc〉 and AX = [〈A(1),X〉, . . . , 〈A(ζ),X〉], where A(i) := diag((Ai,c)c∈[p]), for

i ∈ [ζ].
SDP (5.3.28) can be rewritten as τ = infX∈

∏
c∈[p]

S(c)
+
{ 〈C,X〉 : AX = b}.

The dual operator A> : Rζ →
∏
c∈[p] S(c) of A reads A>z = diag((A>c z)c∈[p]). Note ∆c :=

{Xc ∈ S(c)
+ : trace(Xc) = ac} , for c ∈ [p].

Algorithm. In order to solve SDP (5.3.28) with CTP on each subset of blocks, we use [218,
Algorithm 1] due to Yurtsever et al. to describe Algorithm 9 with the following setting: X ←
∆ :=

∏
c∈[p] ∆c, K ← {b}, p ← ζ, Ax ← AX, f(x) ← 〈C,X〉, λ0 ← 1, λk ← βk, σk ← γk.

DYk+1 ← K, Lf ← 0, r̄k+1 ← b, D2
X ← 2

∑
c∈[p] a

2
c , vk ← C + A>zk, arg minx∈X 〈vk, x〉 ←

arg minX∈∆〈C +A>zk,X〉.
With fixed zk, we have:

min
X∈∆
〈C +A>zk,X〉 = min

diag((Xc)c∈[p])∈
∏

c∈[p]
∆c

∑
c∈[p]
〈Cc +A>c zk,Xc〉

=
∑
c∈[p]

min
Xc∈∆c

〈Cc +A>c zk,Xc〉 =
∑
c∈[p]

acλmin(Cc +A>c zk) .

Let u(c)
k be a uniform eigenvector corresponding to λmin(Cc + A>c zk), for c ∈ [p]. Then one has

diag((acu(c)
k (u(c)

k )>)c∈[p]) ∈ arg minX∈∆〈C+A>zk,X〉. Thus we can set sk ← diag((acu(c)
k (u(c)

k )>)c∈[p])
in [218, Algorithm 1].

Algorithm 9 CGAL-SDP-CTP-Blocks
Input: SDP (5.3.28) such that Assumption 5.4 holds; Parameter K > 0.
Output: ((X(t)

c )c∈[p])t∈N.
1: Set (X(0)

c )c∈[p] := (0S)c∈[p] and y0 := 0Rζ .
2: for t ∈ N do
3: Set βt :=

√
t+ 1 and ηt := 2/(t+ 1);

4: Set zt := yt−1 + ηt(
∑
c∈[p]AcX

(t−1)
c − b);

5: for c ∈ [p] do
6: Take a uniform eigenvector u(c)

t corresponding to λmin(Cc +A>c zt);
7: Set X(t)

c := (1− ηt)X(t−1)
c + ηtacu(c)

t (u(c)
t )>;

8: Select γt as the larges γ ∈ [0, 1] such that:
9: γ‖

∑
c∈[p]AcX

(t)
c −b‖22 ≤ βtη2

t (
∑
c∈[p] a

2
c)‖A‖2 and ‖yt−1+γ(

∑
c∈[p]AcX

(t)
c −b)‖2 ≤ K;

10: Set yt = yt−1 + γt(
∑
c∈[p]AcX

(t)
c − b).

Relying on [218, Theorem 3.1], we guarantee the convergence of the sequence ((X(t)
c )c∈[p])t∈N

in Algorithm 9 to the set of optimal solutions of SDP (5.3.28) in the following theorem:

Theorem 5.7. Consider SDP (5.3.28) such that Assumption 5.4 holds. Let ((X(t)
c )c∈[p])t∈N be the

output of Algorithm 9. Then X(t)
c � 0, for all c ∈ [p] and for all t ∈ N and

∥∥∥∑c∈[p]AcX
(t)
c − b

∥∥∥
2
→

0 and
∣∣∣∑c∈[p]〈Cc,X(t)

c 〉 − τ
∣∣∣→ 0 as t→∞ with the rate O(1/

√
t).

Remark 5.7. Before running Algorithm 9, we scale the problem’s input as follows: ‖C‖F =
‖A‖ = a1 = · · · = ap = 1 and ‖A(1)‖F = · · · = ‖A(ζ)‖F .
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Remark 5.8. Given ε > 0, the for loop in Algorithm 9 terminates when:

|
∑
c∈[p]〈Cc,X(t−1)

c 〉 −
∑
c∈[p](acλmin(Cc +A>c zt)− b>yt−1)|

1 + max{|
∑
c∈[p]〈Cc,X(t−1)

c 〉|, |
∑
c∈[p](ajλmin(Cc +A>c zt)− b>yt−1)|}

≤ ε

and ‖
∑
c∈[p]AcX

(t−1)
c − b‖2/max{1, ‖b‖2} ≤ ε. In our experiments, we choose ε = 10−2.

Remark 5.9. To save memory at each iteration, we can run Algorithm 9 with implicit X(t)
c ,

c ∈ [p], by setting wt :=
∑
c∈[p]AcX

(t)
c − b. In this case, Step 7 becomes wt := (1 − ηt)wt−1 +

ηt[
∑
c∈[p]Ac(acu

(c)
t (u(c)

t )>) − b]. Thus we only obtain an approximate dual solution yt of SDP
(5.3.28) when Algorithm 9 terminates.

5.3.5 Spectral method
SDP with CTP

Consider SDP with CTP described in Appendix 5.3.4. The following assumption will be used
later on.

Assumption 5.5. Dual attainability: SDP (5.3.26) has an optimal solution.

Lemma 5.4. Let Assumption 5.3 hold and let ϕ : Rζ → R be a function defined by y 7→ ϕ(y) :=
aλmin(C−A>y) + b>y. Then,

τ = sup
y∈Rζ

ϕ(y) . (5.3.31)

Moreover, if Assumption 5.5 holds, then problem (5.3.31) has an optimal solution.

Notice that ϕ in Lemma 5.4 is concave and continuous but not differentiable in general. The
subdifferential of ϕ at y reads: ∂ϕ(y) = {b − aAU : U ∈ conv(Γ(C − A>y))}, where for each
A ∈ S, Γ(A) := {uu> : Au = λmin(A)u , ‖u‖2 = 1}.

Next, we describe Algorithm 10 to solve SDP (5.3.25), which is based on nonsmooth first-order
optimization methods (e.g., LMBM [71, Algorithm 1]).

Algorithm 10 Spectral-SDP-CTP
Input: SDP (5.3.25) with unknown optimal value and optimal solution;

method (T) for solving convex nonsmooth unconstrained optimization problems (NSOP).
Output: the optimal value τ of SDP (5.3.25).

1: Compute the optimal value τ and an optimal solution ȳ of the NSOP (5.3.31) by using method
(T).

Corollary 5.4. Let Assumption 5.3 hold. Assume that the method (T) is globally convergent for
NSOP (5.3.31) (e.g., (T) is LMBM). Then output τ of Algorithm 10 is well-defined. Moreover, if
Assumption 5.5 holds, the vector ȳ mentioned at Step 1 of Algorithm 10 exists.

SDP with CTP on each subset of blocks

Consider SDP with CTP on each subset of blocks described in Appendix 5.3.4.
The following assumption will be used later on.

Assumption 5.6. Dual attainability: SDP (5.3.29) has an optimal solution.

Lemma 5.5. Let Assumption 5.4 hold and let ψ : Rζ → R be a function defined by y 7→ ψ(y) :=
b>y +

∑
c∈[p] ajλmin(Cc −A>c y). Then,

τ = sup
y∈Rζ

ψ(y) . (5.3.32)

Moreover, if Assumption 5.6 holds, then problem (5.3.32) has an optimal solution.
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Proof. From (5.3.28) and Condition 4 of Assumption 5.4,

τ = inf
Xc∈S(c)

+

∑
c∈[p]

〈Cc,Xc〉
∣∣∣∣ ∑c∈[p]AcXc = b ,
〈Ic,Xc〉 = ac , c ∈ [p]

 , (5.3.33)

where Ic ∈ S(c) is the identity matrix, for c ∈ [p]. Note that 〈Ic,Xc〉 = trace(Xc), for Xc ∈ S(c),
c ∈ [p]. The dual of this SDP reads

ρ = sup
(ξ,y)∈Rp+ζ

∑
c∈[p]

acξc + b>y : Cc −A>c y− ξcIc ∈ S(c)
+ , c ∈ [p]

 . (5.3.34)

It implies that ρ = supξ,y {
∑
c∈[p] acξc + b>y : ξc ≤ λmin(Cc − A>c y) , c ∈ [p] }. From this, the

result follows since ρ = τ .

Proposition 5.4. The function ψ in Lemma 5.5 has the following properties:

1. ψ is concave and continuous but not differentiable in general.

2. The subdifferential of ψ at y satisfies: ∂ψ(y) = b +
∑
c∈[p] aj∂ψj(y), where for every c ∈ [p],

ψc : Rζ → R is a function defined by ψc(y) = λmin(Cc−A>c y) and ∂ψc(y) = {−AcU : U ∈
conv(Γ(Cc −A>c y))}.

Proof. It is not hard to prove the first statement. Indeed, ψ is a positive combination of z 7→ b>z,
ψc, c ∈ [p], which are convex, continuous functions. The second statement follows by applying the
subdifferential sum rule and notice that the domains of z 7→ b>z, ψc, c ∈ [p], are both Rn.

Next, we describe Algorithm 11 to solve SDP (5.3.28), which is based on nonsmooth first-order
optimization methods (e.g., LMBM [71, Algorithm 1]).

Algorithm 11 Spectral-SDP-CTP-Blocks
Input: SDP (5.3.28) with unknown optimal value and optimal solution;

method (T) for solving NSOP.
Output: the optimal value ρ of SDP (5.3.28).

1: Compute the optimal value τ and an optimal solution ȳ of the NSOP (5.3.32) by using method
(T).

The fact that Algorithm 11 is well-defined under certain conditions is a corollary of Lemma 5.5
and [134, Lemma A.2].

Corollary 5.5. Let Assumption 5.4 hold. Assume that the method (T) is globally convergent for
NSOP (5.3.32) (e.g., (T) is LMBM). Then output τ of Algorithm 11 is well-defined. Moreover, if
Assumption 5.6 holds, the vector ȳ involved at Step 1 of Algorithm 11 exists.

5.3.6 Converting the moment relaxation to the standard SDP
The dense case

Let k ∈ N≥kmin be fixed. We will present a way to transform SDP (5.1.1) to the form (5.1.3).
By adding slack variables y(i) ∈ Rs(2(k−dgie)), i ∈ [m], SDP (5.1.1) is equivalent to

τk := inf
y,y(i)

Ly(f)

∣∣∣∣∣∣
Wk(y,y(1), . . . ,y(m)) ∈ S(k)

+ ,
Mk−dgie(y(i)) = Mk−dgie(gi y) , i ∈ [m] ,
Mk−dhje(hj y) = 0 , j ∈ [l]

 , (5.3.35)

where Wk(y,y(1), . . . ,y(m)) := diag(Mk(y),Mk−dg1e(y(1)), . . . ,Mk−dgme(y(m))).
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Let V = {Mk(z) : z ∈ Rs(2k)} and Vi = {Mk−dgie(z) : z ∈ Rs(2(k−dgie))}, i ∈ [m]. Then V
and Vi, i ∈ [m], are the linear subspaces of the spaces of real symmetric matrices of size s(k) and
s(k − dgie), i ∈ [m], respectively.

Denote by V⊥, V⊥i , i ∈ [m], the orthogonal complements of V, Vi, i ∈ [m], respectively. In
[134, Appendix A.2 ], we show how to take a basis {Âj}j∈[r] of V⊥. Similarly we can take a basis
{Â(i)

j }j∈[ri] of V⊥i , i ∈ [m]. Here r = dim(V⊥) and ri = dim(V⊥i ), i ∈ [m].
Notice that if X0 is a real symmetric matrix of size s(k), then X0 = Mk(y) for some y ∈ Rs(2k)

if and only if 〈Âj ,X0〉 = 0, j ∈ [r]. It implies that if X = diag(X0, . . . ,Xm) ∈ S(k), then there
exist y and y(i), i ∈ [m], such that X = Wk(y,y(1), . . . ,y(m)) ⇔ 〈Ā,X〉 = 0 , Ā ∈ B1, where B1
involves matrices Ā defined as

• Ā = diag(Âj ,0, . . . ,0) for some j ∈ [r];

• Ā = diag(0, Â(1)
j , . . . ,0) for some j ∈ [r1];

• . . .

• Ā = diag(0,0, . . . , Â(m)
j ) for some j ∈ [rm].

Notice that

|B1| = r +
∑
i∈[m] ri = b(k)(b(k) + 1)

2 − b(2k)

+
∑
i∈[m]

(
b(k − dgie)(b(k − dgie) + 1)

2 − b(2(k − dgie))
)
.

(5.3.36)

The constraints Mk−dgie(y(i)) = Mk−dgie(gi y), i ∈ [m], of SDP (5.3.35) are equivalent to y(i)
α =∑

γ∈Nn2dgie
giyα+γ , α ∈ Nn2(k−dgie), i ∈ [m]. They can be written as 〈Ā,Wk(y,y(1), . . . ,y(m))〉 = 0,

for Ā ∈ B2, where B2 involves matrices Ā defined by Ā = diag(Ã,0, . . . ,0, Ã(i),0, . . . ,0), with
Ã = (Ãµ,ν)µ,ν∈Nn

k
being defined as follows:

Ãµ,ν =


gi,γ if µ = ν , µ + ν = α + γ ,
1
2gi,γ if µ 6= ν , (µ,ν) ∈ {(µ1,ν1), (ν1,µ1)}

with (µ1,ν1) = minimal({(µ̄, ν̄) ∈ (Nnk )2 : µ̄ + ν̄ = α + γ}) ,
0 otherwise,

(5.3.37)

and Ã(i) = (Ã(i)
µ,ν)µ,ν∈Nn

k−dgie
being defined as follows:

Ã(i)
µ,ν =


−1 if µ = ν , µ + ν = α ,

− 1
2 if µ 6= ν , (µ,ν) ∈ {(µ1,ν1), (ν1,µ1)}

with (µ1,ν1) = minimal({(µ̄, ν̄) ∈ (Nnk )2 : µ̄ + ν̄ = α}) ,
0 otherwise,

(5.3.38)

for some α ∈ Nn2(k−dgie) and i ∈ [m]. Notice that |B2| =
∑
i∈[m] b(2(k − dgie)). Here minimal(T )

is the minimal element of T , for every T ⊆ N2n with respect to the graded lexicographic order.
The constraints Mk−dhje(hj y) = 0, j ∈ [l], can be simplified as

∑
γ∈Nn2dhje

hj,γyα+γ =
0, α ∈ Nn2(k−dhje), j ∈ [l]. They are equivalent to the following trace equality constraints:
〈Ā,Wk(y,y(1), . . . ,y(m))〉 = 0 , Ā ∈ B3, where B3 involves matrices Ā = diag(Ã,0, . . . ,0), with
Ã = (Ãµ,ν)µ,ν∈Nn

k
being defined as follows:

Ãµ,ν =


hj,γ if µ = ν , µ + ν = α + γ ,
1
2hj,γ if µ 6= ν , (µ,ν) ∈ {(µ1,ν1), (ν1,µ1)}

with (µ1,ν1) = minimal({(µ̄, ν̄) ∈ (Nnk )2 : µ̄ + ν̄ = α + γ}) ,
0 otherwise.
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Notice that |B3| =
∑
j∈[l] b(2(k − dhje)).

Let ∪j∈[3]Bj = (Āi)i∈[ζk−1], where

ζk = 1 +
∑
j∈[3] |Bj | = 1 + b(k)(b(k) + 1)

2 − b(2k)

+
∑
i∈[m]

b(k − dgie)(b(k − dgie) + 1)
2 +

∑
j∈[l]

b(2(k − dhje)) .

The final constraint y0 = 1 can be rewritten as 〈Āζk ,Wk(y,y(1), . . . ,y(m))〉 = 1 with Āζk ∈ S(k)

having zero entries except the top left one [Āζk ]0,0 = 1. Thus we select real vector bk of length tk
such that all entries of bk are zeros except the final one bk,ζk = 1.

The function Ly(f) =
∑

γ fγyγ is equal to 〈C̄,Wk(y,y(1), . . . ,y(m))〉 with C̄ := diag(C̃,0, . . . ,0),
where C̃ = (C̃µ,ν)µ,ν∈Nn

k
is defined by

C̃µ,ν =


fγ if µ = ν , µ + ν = γ ,
1
2fγ if µ 6= ν , (µ,ν) ∈ {(µ1,ν1), (ν1,µ1)}

with (µ1,ν1) = minimal({(µ̄, ν̄) ∈ (Nnk )2 : µ̄ + ν̄ = γ}) ,
0 otherwise.

By writing X̄ = Wk(y,y(1), . . . ,y(m)), SDP (5.3.35) has the standard form

τk = inf
X̄∈S(k)

+

{ 〈C̄, X̄〉 : ĀX̄ = bk} , (5.3.39)

where Ā : S(k) → Rζk is a linear operator of the form ĀX =
[
〈Ā1,X〉, . . . , 〈Āζk ,X〉

]
. Since

〈U,V〉 = 〈P−1
k UP−1

k ,PkVPk〉, for all U,V ∈ S(k), by noting X = PkX̄Pk, SDP (5.3.39) can be
written as (5.1.3) with Ak,i = P−1

k ĀiP−1
k , i ∈ [ζk], and Ck = P−1

k C̄P−1
k .

The sparse case

Let k ∈ N≥kmin be fixed. We will present a way to transform SDP (5.3.4) to the form (5.3.8).
Doing a similar process as in Appendix 5.3.6 on every clique, by noting (5.3.7), for every c ∈ [p],
the constraints {

Dk(y, Ic) � 0 , y0 = 1 ,
Mk−dhje(hj y, Ic) = 0 , j ∈Wc ,

(5.3.40)

become ÂcXc = b̂c for some linear operator Âc : S(c,k) → Rζ̂c and vector b̂c ∈ Rζ̂c . Moreover,
Ly(fc) = 〈Cc,Xc〉 for some matrix Cc ∈ S(c,k) since fc ∈ R[x(Ic)], for every c ∈ [p]. Then from
(5.3.7), the objective function of SDP (5.3.4) is Ly(f) =

∑
c∈[p]〈Cc,Xc〉.

Next we describe the constraints depending on common moments on cliques. For every α ∈
∪c∈[p]NIck , note T (α) := {c ∈ [p] : α ∈ NIck }. In other words, T (α) indices the cliques sharing the
same moment yα. For α ∈ ∪c∈[p]NIck such that |T (α)| ≥ 2, for every c ∈ T (α), let Â(α)

c ∈ S(c,k) be
such that 〈Â(α)

c ,Xc〉 = yα It implies the constraints 〈Â(α)
j0
,Xj0〉 − 〈Â

(α)
i ,Xi〉 = 0, i ∈ T (α)\{j0},

for every α ∈ ∪c∈[p]NIck such that |T (α)| ≥ 2, for some j0 ∈ T (α). We denote by ÃX = 0Rζ̃ all
these constraints with X = diag((Xc)c∈[p]).

Set ζ :=
∑
c∈[p] ζ̂c+ζ̃ and b = [(b̂c)c∈[p],0Rζ̃ ] ∈ Rζ . Define the linear operatorA :

∏
c∈[p] S(c,k) →

Rζ such that AX = [(ÂcXc)c∈[p], ÃX], for all X = diag(Xc)c∈[p] ∈
∏
c∈[p] S(c). From (5.3.7), the

affine constraints of SDP (5.3.4) are now equivalent to AX = b.
Let A(i) := diag((Ai,c)c∈[p]) ∈

∏
c∈[p] S(c), i ∈ [ζ], be such that

AX = [〈A(1),X〉, . . . , 〈A(ζ),X〉] ,

for all X = diag(Xc)c∈[p] ∈
∏
c∈[p] S(c). For every c ∈ [p], define Ac : S(c) → Rζ as a linear

operator of the form AcX := [〈A1,c,X〉, . . . , 〈Aζ,c,X〉]. Then AX =
∑
c∈[p]AcXc, for all X =

diag(Xc)c∈[p] ∈
∏
c∈[p] S(c). Hence we obtain the data (Cc,k,Ac,k,bk, ζk) = (Cc,Ac,b, ζ) of the

standard form (5.3.8) by plugging k.
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Chapter 6

Polynomial optimization over
noncompact semialgebraic sets

Most of the content of this chapter is from [130].
In this chapter, we focus on polynomial optimization on noncompact semialgebraic sets by

relying on positivity certificates involving denominators. The main motivation is to voluntarily
avoid the big-ball trick which reduces the problem to the compact case. The big-ball “trick” is to
simply assume that the global minimum is attained in some a priori known ball B(0, R) centered
at zero of radius R > 0 potentially large. Therefore, by adding this additional constraint to the
definition of the feasible set, one is back to the compact case. Why? This “trick” has definitely
some merit since in some practical applications such an R can be sometimes determined with ad-
hoc arguments. However, it is not satisfactory from a mathematical point of view. Indeed after
one has found a minimizer x? ∈ B(0, R), one is still left with the question: Is really x? a global
minimizer? Was R chosen sufficiently large? In other words, in doing so one does not obtain an
certificate that x? is a global minimizer. As we will see in this chapter, we deal with the challenge
to adapt some certificates of positivity on noncompact sets already available in the literature, to
turn them into a practical algorithm.

Let us recall the Positivstellensatz [170] of Putinar and Vasilescu in the following theorem:

Theorem 6.1. (Putinar–Vasilescu[170, Corollary 4.3 and 4.4]) Let θ ∈ R[x] be the quadratic
polynomial x 7→ θ(x) := 1 + ‖x‖22, and denote by p̃ ∈ R[x, xn+1] the homogeneous polynomial
associated with p ∈ R[x], defined by x 7→ p̃(x) := x

deg(p)
n+1 p(x/xn+1).

1. Let f ∈ R[x] such that f̃ > 0 on Rn+1\{0}. Then θkf ∈ Σ[x] for some k ∈ N.

2. Let f, g1, . . . , gm ∈ R[x] satisfy the following two conditions:

(a) f = f0 + f1 such that deg(f0) < deg(f1) and f̃1 > 0 on Rn+1\{0};
(b) f > 0 on S(g).

Then θ2kf ∈ Q(g) for some k ∈ N.

As a consequence, they also obtain:

Corollary 6.1. (Putinar–Vasilescu [170, Final remark 2]) Let θ := 1 + ‖x‖22.

1. Let f ∈ R[x]2d be such that f ≥ 0 on Rn. Then for all ε > 0, there exists k ∈ N such that
θk(f + εθd) ∈ Σ[x].

2. Let f ∈ R[x] such that f ≥ 0 on S(g). Let d ∈ N such that 2d > deg(f). Then for all ε > 0,
there exists k ∈ N such that θ2k(f + εθd) ∈ Q(g).

Marshall [138, Corollary 4.3] states a slightly more general result but with no explicit d, and
Schweighofer [187, Corollary 6.3] provides a new algebraic proof of Marshall’s result. To summarize,
for every polynomial f nonnegative on a general basic semialgebraic set S(g), one obtains the
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following representation result: for a given ε > 0, there exist a nonnegative integer k and SOS
polynomials σ0, σ1, . . . , σm, such that

f + εθd = σ0 + σ1g1 + · · ·+ σmgm
θk

. (6.0.1)

Although this representation is theoretically attractive, their previous proofs are not constructive
and do not provide any explicit algorithm, especially in polynomial optimization.

Contribution. As already mentioned, our approach is to treat the noncompact case frontally
and avoid the big-ball trick. Our contribution is threefold:

I. In Section 6.1 we first provide an alternative proof of (6.0.1), with an explicit degree bound
on the SOS weights, by relying on Jacobi’s technique in the proof of [85, Theorem 7]; this is
crucial as it has immediate implications on the algorithmic side. More precisely, the degrees of
SOS weights σi are bounded above by k+d−dgie. First, one transforms the initial polynomials to
homogeneous forms, then one relies on Putinar’s Positivstellensatz for the compact case, and finally
one transforms back the obtained forms to dehomogenized polynomials. As a consequence, with
ε > 0 fixed, arbitrary, this degree bound allows us to provide hierarchies (ρik(ε))k∈N, i = 1, 2, 3
for unconstrained polynomial optimization (m = 0 and i = 1, see Section 6.2.1) as well as for
constrained polynomial optimization (m ≥ 1 and i = 2, 3, see Section 6.2.2). Computing each ρik(ε)
boils down to solving a single SDP, with strong duality property. For k sufficiently large, ρik(ε)
becomes an upper bound for the optimal value f? of the corresponding polynomial optimization
problem (POP) minx∈S(g) f(x). If this problem has an optimal solution x?, the gap between ρik(ε)
and f? is at most εθ(x?)d. The related convergence rates are also analyzed in these sections.

II. In Section 6.2.3, we provide a new algorithm to find a feasible solution in the set S(g, h)
defined in (1.1.1). The idea is to include appropriate additional spherical equality constraints
ϕt := ξt−‖x− at‖22, t = 0, . . . , n, in S(g, h) so that the system S(g, h ∪ {ϕ0, . . . , ϕn}) has a unique
real solution. The nonnegative reals (ξt)t=0,...,n are computed with an adequate Moment-SOS
hierarchy. Moreover, this solution might be extracted in certain cases by checking whether some
(moment) matrix satisfies a flat extension condition.

III. Finally we use this method to approximate a global minimizer of f on S(g, h). Namely, we
fix ε > 0 small and find a point in S(g ∪ {ρik(ε)− f}, h). This procedure works in certain cases,
even if the set of minimizers is infinite. This is in deep contrast with the extraction procedure
of [77] (via some flat extension condition) which works only for finite solution sets. Assuming
that the set of solutions is finite, one may compare our algorithm with the procedure from [77]
as follows. On the one hand, the latter extraction procedure provides global optimizers, provided
that one has solved an SDP-relaxation with sufficiently large “k” (so as to get an appropriate rank
condition). On the other hand, our algorithm that adds spherical equality constraints “divides”
the problem into n + 1 SDP relaxations with additional constraints but with smaller order “k”
(which is the crucial parameter for the SDP solvers). Numerical examples are provided in Section
6.3 to illustrate the difference between these two strategies.

For clarity of exposition, most proofs are omitted, they are available in [130, Appendix].

6.1 Representation theorems
In this section we provide two exact representations of globally nonnegative polynomials and

polynomials nonnegative on basic semialgebraic sets (not necessarily compact). The representa-
tions are obtained thanks to a perturbation argument as well as existing representations for positive
definite forms. Let θ := 1 + ‖x‖22.

6.1.1 Globally nonnegative polynomials
Let us note ‖q‖1 :=

∑
α |qα| for a given q ∈ R[x]. The following result provides a representation

of globally nonnegative polynomials.
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Theorem 6.2. Let f ∈ R[x]2d be nonnegative on Rn. Then for every ε > 0, for kε ∈ N and

kε ≥
2(n+ 1)d(2d− 1)

4 log 2 (ε−1‖f‖1 + 1)− n+ 1 + 2d
2 ,

one has
θkε
(
f + εθd

)
∈ Σ[x]kε+d . (6.1.1)

Proof. The proof consists of three steps:

1. Associate a positive definite form to the globally nonnegative polynomial f .

2. Use Reznick’s representation from Theorem 1.2 to get a representation of this homogeneous
form.

3. Transform back the homogeneous polynomial together with its representation to the original
polynomial.

Let f̃ = x2d
n+1f(x/xn+1) be the degree 2d homogenization of f . Since f is globally nonnegative, f̃

is nonnegative on Rn+1. Let ε > 0 be fixed. We claim that

f̃ + ε‖(x, xn+1)‖2d2 ∈ R[x, xn+1]

is positive definite, i.e., is homogeneous and positive on Rn+1\{0}. Since

‖(x, xn+1)‖2d2 = (x2
1 + · · ·+ x2

n + x2
n+1)d ,

the polynomial ‖(x, xn+1)‖2d2 is homogeneous of degree 2d on Rn+1. From this and since f̃ is
homogeneous of degree 2d, f̃ + ε‖(x, xn+1)‖2d2 is homogeneous of degree 2d. For every (x, xn+1) ∈
Rn+1\{0}, ‖(x, xn+1)‖2 > 0. From this and since f̃ is nonnegative on Rn+1,

f̃(x, xn+1) + ε‖(x, xn+1)‖2d2 > 0 ,

for all (x, xn+1) ∈ Rn+1\{0}. In addition, it is not hard to show that

inf{f̃(x, xn+1) + ε‖(x, xn+1)‖2d2 : (x, xn+1) ∈ Sn} ≥ ε

and
sup{f̃(x, xn+1) + ε‖(x, xn+1)‖2d2 : (x, xn+1) ∈ Sn}

≤ sup{f̃(x, xn+1) : (x, xn+1) ∈ Sn}+ ε

≤ ‖f̃‖1 + ε .

Thus, δ(f̃ + ‖.‖2d2 ) ≤ (‖f̃‖1 + ε)/ε = (‖f‖1 + ε)/ε. From this and by applying Theorem 1.2 with
p = f̃ + ε‖(x, xn+1)‖2d2 , for kε ∈ N and

kε ≥
2(n+ 1)d(2d− 1)

(4 log 2) (ε−1‖f‖1 + 1)− n+ 1 + 2d
2 ,

there exists σ̃ε ∈ Σ[x, xn+1]kε+d such that

‖(x, xn+1)‖2kε2 (f̃ + ε‖(x, xn+1)‖2d2 ) = σ̃ε .

By replacing xn+1 by 1, one has

θkε(f + εθd) = σ̃ε(x, 1) .

Let us note σε(x) := σ̃ε(x, 1), for every x ∈ Rn. Since σ̃ε ∈ Σ[x, xn+1]kε+d, it follows that
σε ∈ Σ[x]kε+d, yielding the desired result.
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6.1.2 Polynomials nonnegative on a basic semialgebraic set
We recall the definition of the truncated quadratic module of order d associated with S(g):

Qd(g) :=

σ0 +
m∑
j=1

σigi : σ0 ∈ Σ[x]d , σi ∈ Σ[x]d−dgie

 .

For every q ∈ R[x], let us define

d1(q) := 1 + bdeg(q)/2c and d2(q) := ddeg(q)/2e = dqe.

The following result provides a degree bound for the SOS weights of [169, Theorem 1].

Theorem 6.3. Let g = {g1, . . . , gm} ⊂ R[x] and f ∈ R[x] such that f is nonnegative on S(g). Let
ε > 0 and d ∈ N be such that at least one of the following two conditions is satisfied:
(i) d ≥ d1(f);
(ii) d ≥ d2(f) and gm := f + λ for some real λ ≥ 0.
Then there exist kε ∈ N such that

θkε
(
f + ε θd

)
∈ Qkε+d(g) . (6.1.2)

The detailed proof of Theorem 6.3 relies on Jacobi’s technique in his proof of [85, Theorem 7]
and is available in [130, Appendix]. This proof consists of three steps:

1. Associate a homogeneous polynomial f̃ to the polynomial f .

2. Use Putinar’s Positivstellensatz (Theorem 1.1 (i)) to obtain a representation of f̃ .

3. Transform back the representation of f̃ to obtain a representation of f .

Remark 6.1. Theorem 6.3 is an extension of Putinar’s Positivstellensatz to (possibly) noncompact
sets S(g), and so does not require the Archimedean condition. The price to pay for such an extension
is the presence of the multiplier θkε in front of f and the perturbation term ε θd. Note that (ii)
involves a tighter bound for d, compared to (i), since d1(f) ≥ d2(f). The counterpart is that (ii)
requires to include the additional constraint f + λ ≥ 0, for some λ ≥ 0.

Complexity of Putinar–Vasilescu’s Positivstellensatz. For each q ∈ R[x]2r, we denote
‖q‖max,r := max

α
{|qα|/cn+1(α, 2r − |α|)}. Let us recall cn(α) := |α|!

α1!...αn! for each α ∈ Nn. By re-
lying on Baldi–Mourrain’s result (Theorem 1.3) after the homogenization trick, it is straightforward
to analyze the complexity of Putinar–Vasilescu’s Positivstellensatz:

Proposition 6.1. Assume that all assumptions of Theorem 6.3 hold and 0Rn ∈ S(g). Then there
exist real numbers cj > 0 depending on g such that for all kε ∈ N satisfying

kε ≥ c1d
c2
(
ε−1‖f‖

)c3 − d , (6.1.3)

one has θkε
(
f + ε θd

)
∈ Qkε+d(g).

The proof of Proposition 6.1 is similar to [130, Appendix].

Discussion about the ε parameter. The (arbitrary small) positive parameter ε in Theorem
6.2 and Theorem 6.3 ensures the positivity of polynomials over the respective considered domain Rn
or S(g), excluding the origin in the homogenized representations. However these representations
can still hold, even when ε = 0, as illustrated in the following two examples:

Example 6.1. (i) Motzkin’s polynomial f = x4
1x

2
2 + x2

1x
4
2 + 1− 3x2

1x
2
2 is globally nonnegative but

not SOS. However, θf is SOS since

θf = 2( 1
2x

3
1x2 + 1

2x1x
3
2 − x1x2)2 + (x2

1x2 − x2)2 + (x1x
2
2 − x1)2

+ 1
2 (x3

1x2 − x1x2)2 + 1
2 (x1x

3
2 − x1x2)2 + (x2

1x
2
2 − 1)2 .

(ii) Let f =
(
x2

1 + x2
2
)
x2

1x
2
2−3x2

1x
2
2 and g = x2

1+x2
2−4. It is not hard to show that f is nonnegative

on the noncompact set S(g). Moreover, f = 1
4x

2
1x

2
2
(
x2

1 + x2
2
)

+ 3
4x

2
1x

2
2g. Thus, θ0f ∈ Q3 (g).
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However, the certificate (6.1.1) for global nonnegativity with ε = 0 is not true in general,
as shown in the following lemma. This is due to the fact that any SOS multiplier for Delzell’s
polynomial must have a zero at the “bad point”, so one can not find any globally positive multiplier.

Lemma 6.1. The nonnegative dehomogenized Delzell’s polynomial [43]:

f = x4
1x

2
2 + x4

2x
2
3 + x2

1x
4
3 − 3x2

1x
2
2x

2
3 + x8

3

satisfies that θkf /∈ Σ[x] for all k ∈ N.

Proof. Assume by contradiction that θKf ∈ Σ[x] for some K ∈ N. Note that n = 3 here. We
denote by f̃ the degree 8 homogenization of f , i.e.,

f̃ = x2
4(x4

1x
2
2 + x4

2x
2
3 + x2

1x
4
3 − 3x2

1x
2
2x

2
3) + x8

3 .

Then ‖(x, xn+1)‖2K2 f̃ ∈ Σ[x, xn+1]. As shown in [176, Section 6], it is impossible. This contradic-
tion yields the conclusion.

The certificate (6.1.2) for global nonnegativity on basic semialgebraic sets with ε = 0 is also
not true in general, as shown in the following lemma:

Lemma 6.2. With n = 1, let f = x and g = {x3,−x3}. Then f = 0 on S(g) = {0}. It follows
that f is nonnegative on S(g), but:
(i) θkf /∈ Q(g) for all k ∈ N and;
(ii) for every ε > 0, θk(f + εθ) ∈ Qk+1(g) for all k ∈ N with k ≥ max{2 , ε−2/4− 1}.

Proof. We will show statement (i). Assume by contradiction that there exists k ∈ N such that
θkf ∈ Q(g). Then there exists qj(x) ∈ R[x], j = 0, . . . , r such that

θkf =
m∑
j=1

qj(x)2 + q0(x)x3.

Assume that qj(x) = aj + bjx + x2dj(x), where aj , bj ∈ R and dj ∈ R[x], j ∈ [r]. From this and
since θk = 1 + x2e(x) for some e ∈ R[x], one has

(1 + x2e(x))x =
r∑
j=1

a2
j + 2

r∑
j=1

ajbjx+ x2p(x) ,

for some q ∈ R[x]. By comparing coefficients of monomials 1 and x in the two sides of the above
equality,

r∑
j=1

a2
j = 0 and 2

r∑
j=1

ajbj = 1. It implies that aj = 0, j ∈ [r], and 2
r∑
j=1

ajbj = 1. It follows

that 0 = 1. It is impossible.
Let us prove the statement (ii). Let ε > 0 and k ∈ N, k ≥ 2. Since θk = 1 + kx2 + x4e(x) for

some e ∈ R[x]2k−4, one has

θk(f + εθ) = (1 + kx2 + x4e(x))(ε+ x+ εx2) = ε+ x+ ε(k + 1)x2 + x3q(x) ,

for some q ∈ R[x]2k−2. Assume that k ≥ ε−2/4− 1. Then

θk(f + εθ) = ε− 1
4ε(k + 1) +

(
x
√
ε(k + 1) + 1

2
√
ε(k + 1)

)2

+ x3q(x) ∈ Qk+1(g) .

From Lemma 6.1 and Lemma 6.2, we conclude that the strict positivity of the ε parameter is
necessary in general although the certification with ε = 0 may happen in many cases.

When the certificate (6.1.1) with ε = 0 occurs, one has the following remark about the exponent
of θ in (6.1.1).
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Remark 6.2. If n = 2, there does not exist a fixed K ∈ N such that for all nonnegative f ∈ R[x]6
, θKf is SOS. Indeed, assume by contradiction that there exists such a K. Then, the degree
6 homogenization f̃ of f would be a positive ternary sextic such that ‖(x, xn+1)‖2K2 f̃ is SOS. By
using [177, Theorem 1] and the fact that the homogeneous Motzkin’s polynomial is a positive ternary
sextic which is not SOS, we obtain a contradiction.

In (6.1.1) with ε = 0, the multiplier θkε can be replaced with other SOS multipliers; see, e.g.,
Leep-Starr’s polynomial [114, Example 2]. With the multiplier θ := x2

1 + x2
2 + x2

3 and the homoge-
nized Delzell’s polynomial D, Schabert provides in [182, Example 4.4] the exact SOS decomposition
of the product Θ(x1, x2, x3)D(x1, x2, x3, x4).

6.2 Polynomial optimization
In this section, we exploit the two representations from Theorem 6.2 and Theorem 6.3 to con-

struct new hierarchies of semidefinite programs for POPs of the form f? = inf{f(x) : x ∈ Ω} where
Ω = Rn for the unconstrained case and Ω = S (g) for the constrained case (with no compactness
assumption), respectively. Instead of solving the original problem, we are rather interested in the
perturbed problem:

f?ε := inf{f(x) + ε θ(x)d : x ∈ Ω} , (6.2.1)

where ε > 0 is fixed, θ(x) := 1+‖x‖22, and 2d ≥ deg (f). Now, assume that the optimal value f? of
the original problem is attained at some x? ∈ Ω. It is not difficult to show that if Ω is unbounded,
the polynomial f + ε θd is coercive on Ω, i.e.

lim
x∈Ω , ‖x‖2→∞

(
f(x) + εθ(x)d

)
=∞ ,

(see more in [12]). Indeed, it is due to the fact that f is bounded from below by f? on Ω and
θ(x)d →∞ as ‖x‖2 →∞. Thus, the optimal value f?ε of the perturbed problem (6.2.1) is always
attained at some global minimizer x?ε even if Ω is noncompact. Then:

f? + ε θ(x?)d = f(x?) + ε θ(x?)d
≥ f?ε = f(x?ε) + ε θ(x?ε)d ≥ f(x?ε) ≥ f?.

Thus, f? ∈ [f?ε − ε θ(x?)
d
, f?ε ], i.e., f?ε is a perturbation of f? and the gap between both of them

is at most ε θ(x?)d. Next, observe that:

f?ε = sup{λ ∈ R : f + ε θd − λ ≥ 0 on Ω}
= sup{λ ∈ R : θk(f + ε θd − λ) ≥ 0 on Ω}, k ∈ N .

The following hierarchies are based on the simple idea of replacing constraint “θk(f + εθd − λ) ≥
0 on Ω” by relaxed constraint“θk(f + εθd − λ) is in the truncated quadratic module associated
with Ω”.

6.2.1 Unconstrained case
Given f ∈ R[x]2d, let us consider the following problem:

f? := inf
x∈Rn

f(x) . (6.2.2)

In the sequel, we assume that f? > −∞ and let ε > 0 be fixed. Consider the hierarchy of
semidefinite programs indexed by k ∈ N:

τ1
k (ε) := inf Ly(θk(f + εθd))

s.t. y = (yα)α∈Nn2(d+k)
⊂ R ,

Mk+d(y) � 0 ,
Ly(θk) = 1 .

(6.2.3)
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Theorem 6.4. For every k ∈ N, the dual of (6.2.3) reads:

ρ1
k(ε) := sup{λ ∈ R : θk(f − λ+ εθd) ∈ Σ[x]k+d} . (6.2.4)

The following statements hold:

1. The sequence (ρ1
k(ε))k∈N is monotone non-decreasing.

2. Assume that f? in (6.2.2) is attained at x? ∈ Rn. Then there exists K ∈ N such that
f? ≤ ρ1

k(ε) ≤ f? + ε θ(x?)d for all k ≥ K. In particular, K is upper bounded by O(ε−1) as
ε ↓ 0.

Proof. 1. Let k ∈ N and fix ε̄ > 0, arbitrary. By (6.2.4), there exists a real λ̄ such that

ρ1
k(ε)− ε̄ ≤ λ̄ and θk(f − λ̄+ εθd) ∈ Σ[x]k+d .

Since θ ∈ Σ[x]1, θk+1(f − λ̄+ εθd) ∈ Σ[x]k+d+1. By (6.2.4), ρ1
k+1(ε) ≥ λ̄ ≥ ρ1

k(ε) − ε̄. This
implies that ρ1

k+1(ε) ≥ ρ1
k(ε).

2. By (6.2.2), f − f? is nonnegative. By Theorem 6.2, there exists K ∈ N and K = O(ε−1) as
ε ↓ 0 such that

θK(f − f? + εθd) ∈ Σ[x]K+d .

Let k ≥ K be fixed. Since θ ∈ Σ[x]1, one has

θk(f − f? + εθd) = θK+(k−K)(f − f? + εθd) ∈ Σ[x]k+d .

By (6.2.4), f? ≤ ρ1
k(ε). Thus, f? ≤ ρ1

k(ε) for all k ≥ K. Let k ∈ N and fix ε̄ > 0, arbitrary.
By (6.2.4), there exists a real λ̄ such that

ρ1
k(ε)− ε̄ ≤ λ̄ and θk(f − λ̄+ εθd) ∈ Σ[x]k+d .

It follows that f − λ̄+ εθd ≥ 0 on Rn. From this,

f? + εθ(x?)d = f(x?) + εθ(x?)d ≥ λ̄ ≥ ρ1
k − ε̄ .

This implies f? + εθ(x?)d ≥ ρ1
k(ε), the desired result.

We guarantee strong duality for previous primal-dual problems:

Proposition 6.2. Let k ∈ N. Then τ1
k (ε) = ρ1

k(ε). Moreover, if τ1
k (ε) > −∞ then the optimal

value ρ1
k(ε) is attained.

Proof. By Slater’s constraint qualification [25, Section 5.2.3], it suffices to show that (6.2.3) admits
a strictly feasible solution. Let us denote by µ the measure with density χ[0,1]nθ

−k with respect
to the Lebesgue measure, where χA is the characteristic function of a given set A ⊂ Rn. Set
yα :=

∫
xαdµ for all α ∈ Nn. We claim that yα ∈ R for all α ∈ Nn, Ly(θk) = 1 and Mk+d(y) � 0.

Indeed, for all α ∈ Nn

|yα| = |
∫

xαχ[0,1]nθ
−kdx| = |

∫
[0,1]n xαθ−kdx|

≤
∫

[0,1]n |x1|α1 . . . |xn|αnθ−kdx ≤ 1 ,

since θ−k ≤ 1. Thus, yα ∈ R for all α ∈ Nn. In addition,

Ly(θk) =
∫
θkχ[0,1]nθ

−kdx =
∫

[0,1]n
dx = 1 .

Let p ∈ Rs(d+k)\{0} be fixed. We state that p>Md+k(y)p > 0. Assume by contradiction that
p>Md+k(y)p ≤ 0. One has

0 ≥ p>Md+k(y)p =
∫

p>vd+kv>d+kpdµ
=
∫

p>vd+kv>d+kpχ[0,1]nθ
−kdx =

∫
[0,1]n (p>vd+k)2

θ−kdx ≥ 0 .

It follows that p>vd+k = 0 on [0, 1]n, thus p = 0 yielding a contradiction. From this, (yα)α∈Nn
d+k

is a feasible solution of (6.2.3) with Mk+d(y) � 0. By strong duality, the conclusion follows.
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6.2.2 Constrained case
Consider the following problem:

f? := inf
x∈S(g)

f(x) , (6.2.5)

where f ∈ R[x], g = {g1, . . . , gm} ⊂ R[x]. Assume that S(g) 6= ∅ and f? > −∞. Let ε > 0 be
fixed.

Unknown lower bound

Let d := bdeg(f)/2c+ 1 and consider the hierarchy of semidefinite programs indexed by k ∈ N:

τ2
k (ε) := inf Ly(θk(f + εθd))

s.t. y = (yα)α∈Nn2(d+k)
⊂ R ,

Mk+d(y) � 0 ,
Mk+d−dgie(giy) � 0, i ∈ [m] ,
Ly(θk) = 1 .

(6.2.6)

Theorem 6.5. For every k ∈ N, the dual of (6.2.6) reads:

ρ2
k(ε) := sup{λ ∈ R : θk (f − λ+ ε θd) ∈ Qk+d(g)} . (6.2.7)

The following statements hold:

1. The sequence (ρ2
k(ε))k∈N is monotone non-decreasing.

2. Assume that problem (6.2.5) has an optimal solution x?. Then there exists K ∈ N such that
f? ≤ ρ2

k(ε) ≤ f? + ε θ(x?)d for all k ≥ K. In particular, K is upper bounded by O(ε−c)− d
as ε ↓ 0, for some c > 0 depending on g.

The proof of Theorem 6.5 relies on Theorem 6.3 (i) and is similar to Theorem 6.4. The upper
bound on K is based on Proposition 6.1.

We guarantee strong duality for previous primal-dual problems:

Proposition 6.3. There exists K ∈ N such that τ2
k (ε) = ρ2

k(ε) for all k ≥ K. Moreover, if
τ2
k (ε) > −∞, the optimal value ρ2

k(ε) is attained.

The proof of Proposition 6.3 can be found in [130, Appendix].

Remark 6.3. If S(g) has nonempty interior then strong duality holds for all orders k of the primal-
dual problems (6.2.6)-(6.2.7). Indeed, by constructing a sequence of moments from the Lebesgue
measure on an open ball contained in S(g), one can find a strictly feasible solution of (6.2.6) and
then apply Slater’s constraint qualification [25, Section 5.2.3].

Known lower bound

Assume that gm := f − f for some real f ≤ f? and let d := ddeg(f)/2e. We then obtain
the same conclusion as Theorem 6.5 with replacing here τ2

k (ε) and ρ2
k(ε) by τ3

k (ε) and ρ3
k(ε),

respectively. The proof relies on Theorem 6.3 (ii) and is similar to Theorem 6.4. Note that here
gm = (f − f?) + (f? − f) with f − f? ≥ 0 on S(g) and f? − f ≥ 0. The upper bound on K is also
based on Proposition 6.1.

The next proposition states that strong duality is guaranteed for each relaxation order k.

Proposition 6.4. Let k ∈ N. Then τ3
k (ε) = ρ3

k(ε). Moreover, if τ3
k (ε) > −∞ then the optimal

value ρ3
k(ε) is attained.

The proof of Proposition 6.4 can be found in [130, Appendix].
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Remark 6.4. A lower bound f of problem (6.2.5) can be obtained by solving the following SDP:

sup{λ ∈ R : θk (f − λ) ∈ Qk+d(g)} , k ∈ N .

Assume that we know a lower bound f of problem (6.2.5). By adding the inequality constraint
f − f ≥ 0 in S(g), we obtain the same semialgebraic set, i.e. S(g ∪ {f − f}) = S(g). Thus,
the two problems inf{f(x) : x ∈ S(g)} and inf{f(x) : x ∈ S(g ∪ {f − f})} are identical and the
primal-dual SDP relaxations with values ρ3

k(ε) and τ3
k (ε) of the latter one satisfy strong duality for

each relaxation order k.

General case. Since gi ≥ 0 on S(g) and −gi ≥ 0 on S(g) is equivalent to gi = 0 on S(g), S(g)
can be rewritten as S(g, h) with g = {g1, . . . , gm} is the set of polynomials involved in the inequality
constraints and h = {h1, . . . , hl} is the set of polynomials involved in the equality constraints; in
addition, Rn = S({0}, ∅). Consider the general POP:

f? := inf
x∈S(g,h)

f(x) , (6.2.8)

with f? ∈ R and define

(d, i) =


(ddeg(f)/2e, 1) if S(g, h) = Rn ,

(1 + bdeg(f)/2c, 2) if S(g, h) 6= Rn and lower bound f is unknown ,
(ddeg(f)/2e, 3) otherwise and set gm := f − f .

For fixed ε > 0, one considers the following SDP relaxation of POP (6.2.8)

τ ik(ε) := inf Ly(θk(f + εθd))
s.t. y = (yα)α∈Nn2(d+k)

⊂ R ,
Mk+d−dgie(giy) � 0 , i = 0, . . . ,m ,
Mk+d−dhje (hjy) = 0 , j ∈ [l] ,
Ly(θk) = 1 ,

(6.2.9)

where g0 := 1. Its dual is the semidefinite program:

ρik(ε) := sup{λ ∈ R : θk(f − λ+ εθd) ∈ Qk+d(g, h)} (6.2.10)

The zero-duality gap between SDP (6.2.9) and SDP (6.2.10) is guaranteed for large enough k.

Remark 6.5. The condition τ ik(ε) > −∞ is always satisfied whenever k is sufficently large. Indeed
by weak duality, when ε is fixed and k is sufficiently large then τ ik(ε) ≥ ρik(ε) ≥ f? > −∞. However,
when k is small, τ ik(ε) = −∞ may happen.

Let us now assume that the POP (6.2.8) has an optimal solution x?. Then ρik(ε) ∈ [f?, f? +
εθ(x?)d] when ε > 0 is fixed and k is sufficiently large. Moreover, the gap between ρik(ε), and f? is
at most ε θ(x?)d. Therefore, ρik(ε) is indeed an approximation of f?. In practice, (ρik(ε))k∈N often
converges to the optimal value f?ε := min{f(x) + ε θ(x)d : x ∈ S(g, h)} after finitely many steps
(see Section 6.3).

Remark 6.6. (i) The term θd in both (6.2.9) and (6.2.10) can be replaced by ϕd(x, 1) where ϕd :
Rn+1 → R is a positive form of degree 2d. For instant, one can select ϕd(x, 1) = x2d

1 + · · ·+x2d
n +1.

(ii) Let r ∈ N be fixed. For every k divisible by 2r, the term θk appearing in both (6.2.9) and
(6.2.10) can be replaced by ψr(x, 1)k/(2r) where ψr : Rn+1 → R is a coercive positive form of degree
2r. For instant, one can select ψr(x, 1) = x2r

1 + · · ·+ x2r
n + 1.

Relation between classical optimality conditions and nonnegativity certificates. When
ρik(0) = f?, the constraint qualification conditions hold at x?.

Proposition 6.5. Assume that ρik(0) = f? for some k ∈ N, i.e., there exists σi ∈ Σ[x], i = 0, . . . ,m

and φj ∈ R[x], j ∈ [l] such that θk(f − f?) = σ0 +
m∑
i=1

σigi +
l∑

j=1
φjhj. Then the constraint

qualification conditions hold at x?:
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1. σi(x?) ≥ 0 and gi(x?) ≥ 0, for all i ∈ [m];

2. σi(x?)gi(x?) = 0, for all i ∈ [m];

3. θ(x?)k∇f(x?) =
m∑
i=1

σi(x?)∇gi(x?) +
l∑

j=1
φj(x?)∇hj(x?).

The proof of Proposition 6.5 is similar to [105, Theorem 7.4].
If we take an arbitrary small ε > 0 then ρik(ε) is arbitrary close to f? for large enough k.

However, if one sets ε = 0, the statement “ρiK(0) = f? for some K ∈ N” is not true in general as
stated in the following proposition:

Proposition 6.6. If the first order optimality condition fails at a global minimizer of problem
(6.2.8), then ρik(0) < f? for all k ∈ N.

The proof of Proposition 6.6 is similar to [147, Proposition 3.4].
By applying Proposition 6.6 to POP min{x : x3 = 0}, we obtain the statement (i) of Lemma

6.2. Indeed, the first order optimality condition fails at the global minimizer 0 of this problem.
Therefore, the positivity of ε ensures convergence of (ρik(ε))k∈N to the neighborhood [f?, f? +
εθ(x?)d] of the optimal value f?. As proved by Huang, Nie and Yuan in [83], ρiK(0) = f? for some
K ∈ N when some optimality conditions hold at every global minimizer of (6.2.8). In many cases,
ρiK(0) = f? with K = 0, 1 when the KKT conditions hold (see Example 6.1 and [146, Example
4.4] with xn = 1). However, the KKT conditions are not enough for this conjecture due to the fact
that the minimizer x? = (0, 0, 0) of dehomogenized Delzell’s polynomial in Lemma 6.1 satisfies the
KKT conditions and ρik(0) < f? for all k ∈ N in this case.

Reducing the noncompact case to a compact case. Consider the POP: f? := inf{f(x) :
x ∈ S(g, h)} where the feasible set S(g, h) is possibly noncompact, and the associated perturbed
POP: f?ε := inf{f(x) + εθ(x)d : x ∈ S(g, h)} with fixed ε > 0. Here one assumes that f? is
attained at x? and 2d > deg(f). As in Section 6.2, f? ∈ [f?ε − ε θ(x?)

d
, f?ε ]. Suppose that a

point x̄ in S(g, h) is known. It is not hard to show that f + εθd is coercive and therefore with
C := f(x̄) + εθ(x̄)d, the set S({C − f − εθd}) is compact. Moreover,

f?ε = inf{f(x) + εθ(x)d : x ∈ S(g ∪ {C − f − εθd}, h)} . (6.2.11)

Note that the quadratic module associated with the constraint set of POP (6.2.11) is Archimedean
and so f?ε can be approximated as close as desired by the Moment-SOS hierarchy. This approach is
similar in spirit to that of [88]. However, determining a point x̄ in S(g, h) is not easy in general. The
hierarchy (6.2.10) relying on Putinar–Vasilescu’s Positivstellensatz goes beyond this restriction.

In a different way, if one relies on the big ball trick, we consider the following POP, for all
ε > 0:

f̂∗ε := inf{f(x) : x ∈ S(g ∪ {1− ε‖x‖22}, h)} . (6.2.12)

Obviously, one has f̂∗ε ↓ f? as ε ↓ 0. The quadratic module associated with the constraint set of
POP (6.2.12) is Archimedean and f?ε can be approximated by the Moment-SOS hierarchy:

ρk(ε) := sup{λ ∈ R : f − λ ∈ Q(g ∪ {1− ε‖x‖22}, h)} , k ∈ N , ε > 0 . (6.2.13)

Thus the SOS weight of 1−ε‖x‖22 appears in the SOS decomposition of f−λ. However, the hierarchy
(6.2.10) relying on Putinar–Vasilescu’s Positivstellensatz does not require such SOS weight in the
decomposition of f − λ, but requires a perturbation εθd and a multiplier θk.

6.2.3 Global optimizers
In this section we introduce a new method to find an approximation of a feasible point of a

basic semialgebraic set S(g, h) as defined in (1.1.1). We then apply this method to obtain an
approximation of a global minimizer x? associated to f? = min{f(x) : x ∈ S(g, h)} via finding a
feasible solution of S(g ∪ {ρik(ε)− f}, h).
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Remark 6.7. Let ε > 0 be fixed and k ∈ N be sufficiently large such that ρik(ε)is an upper bound
of f?. Let x? be a global minimizer of f on S(g, h) and let x̄ ∈ S(g ∪ {ρik(ε)− f}, h). Then
x̄ ∈ S(g, h) and f? ≤ f(x̄) ≤ ρik(ε) ≤ f? + εθ(x?)d.

Let us consider an arbitrary small ε > 0. The difference between ρik(ε) and f? will be as close as
desired to εθ(x?)d for large enough k. Assume that the solution set S(g ∪ {f? − f}, h) is finite and
denote by y?ε an optimal solution of SDP (6.2.9). In practice, when k is sufficiently large, y?ε satisfies
numerically the flat extension condition defined in Section 2.5. One may then use the algorithm
of Henrion and Lasserre [77] to extract numerically the support of a representing measure for y?ε
which may include global minimizers of f? = min{f(x) : x ∈ S(g, h)} (see the same extraction in
[89, Section 3.2]). However we cannot guarantee the success of this extraction procedure in theory
because the set S(g ∪ {ρik(ε)− f}, h) may not be zero dimensional when ρik(ε) > f?. For example,
if f = ‖x‖22 and S(g, h) = Rn, S(g ∪ {ρik(ε)− f}, h) is a closed ball centered at the origin with
radius ρik(ε)1/2. The following method aims at overcoming this issue from both theoretical and
algorithmic sides. For further application cases of the flat moment criterion, we refer the interested
reader to the framework from [171], which is based on altering the bottom right part of the moment
matrix.

The Adding-Spherical-Constraints method (ASC): For a ∈ Rn and r ≥ 0, let B(a, r)
(resp. ∂B(a, r)) be the closed ball (resp. sphere) centered at a with radius r, i.e.,

B(a, r) = {x ∈ Rn : ‖x− a‖2 ≤ r} (resp. ∂B(a, r) = {x ∈ Rn : ‖x− a‖2 = r}) .

The following result provides an efficient way to find a sequence of additional spherical equality
constraints for a given semialgebraic set such that (i) the resulting set is a singleton (i.e. it contains
a single real point), and (ii) this point is solution of a non-singular system of linear equations.

Lemma 6.3. Assume that S(g, h) 6= ∅. Let (at)t=0,1,...,n ⊂ Rn such that at − a0, t ∈ [n] are
linearly independent in Rn. Let us define the sequence (ξt)t=0,1,...,n ⊂ R+ as follows: ξ0 := min{‖x− a0‖22 : x ∈ S(g, h)} ,

ξt := min{‖x− at‖22 : x ∈ S(g, h ∪ {ξj − ‖x− aj‖22 : j = 0, . . . , t− 1})} ,
t ∈ [n] .

(6.2.14)

Then there exists a unique real point x? in S(g, h ∪ {ξt − ‖x− at‖22 : t = 0, . . . , n}) which satisfies
the non-singular linear system of equations

(at − a0)>x? = −1
2(ξt − ξ0 − ‖at‖22 + ‖a0‖22), t ∈ [n] . (6.2.15)

The proof of Lemma 6.3 is available in [130, Appendix]. Geometrically speaking, we find a

a0a1

a2
x?

S(g, h)

I

i

Figure 6.1: Illustration of Lemma 6.3.

sequence of spheres ∂B(at, ξ1/2
t ), t = 0, . . . , n, such that the intersection between these spheres

and S(g, h) is the singleton {x?} (see Figure 6.1). Next, we use Lasserre’s hierarchy to compute
the optimal values ξt, t = 0, . . . , n of problem (6.2.14).
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Theorem 6.6. Assume that S(g, h)∩B(0, R1/2) 6= ∅ for some R > 0. Let (at)t=0,1,...,n ⊂ Rn such
that at − a0, t ∈ [n] are linearly independent in Rn. Assume that the Moment-SOS hierarchies
associated with the following POPs: ξ0 := min{‖x− a0‖22 : x ∈ S(g ∪ {R− ‖x‖22}, h)} ,

ξt := min{‖x− at‖22 : x ∈ S(g, h ∪ {ξj − ‖x− aj‖22 : j = 0, . . . , t− 1})} ,
t ∈ [n] ,

(6.2.16)

have finite convergence, and let w := max{dgie, dhje, 1}. For every k ∈ N, consider the following
semidefinite programs:

η0
k := inf

y∈Rs(2(k+w))
Ly(‖x− a0‖22)

s.t. Mk+w−dgie(giy) � 0 ,
Mk+w−1((R− ‖x‖22)y) � 0 ,
Mk+w−dhje(hjy) = 0 ,
y0 = 1 ,

ηtk := inf
y∈Rs(2(k+w))

Ly(‖x− at‖22)

s.t. Mk+w−dgie(giy) � 0 ,
Mk+w−dhje(hjy) = 0 ,
Mk+w−1((ηjk − ‖x− aj‖22)y) = 0 , j = 0, . . . , t− 1 ,
y0 = 1 ,

t ∈ [n] .

(6.2.17)

Then there exists K ∈ N such that for all k ≥ K, ηtk = ξt, t = 0, . . . , n. Moreover, there exist
t ∈ {0, . . . , n} and K̃ ∈ N such that for all k ≥ K̃, the solution y of SDP (6.2.17) with value ηtk
satisfies the flat extension condition, i.e., rank (Mk+w(y)) = rank (Mk(y)). In addition, y has a
representing rank (Mk(y))-atomic measure µ and supp (µ) ⊂ S (g, h).

The proof of Theorem 6.6 is available in [130, Appendix].
Remark 6.8. The Moment-SOS hierarchy of each POP (6.2.16) has finite convergence when one
of the following conditions is satisfied:

1. (Lasserre [105, Theorem 7.5]) The ideal I(h) is real radical, and the second-order sufficient
condition holds at every global minimizer of each POP in (6.2.16).

2. (Lasserre et al. [108, Proposition 1.1] and [105, Theorem 6.13]) The real variety V (h) (=
S(∅, h)) is finite.

Remark 6.9. In the final conclusion of Theorem 6.6, when y has a representing rank(Mk(y))-
atomic measure µ, we may use the extraction algorithm from [77] to obtain the atomic support of
µ.

Based on Theorem 6.6, Algorithm 6.2.3 below finds a feasible point in a nonempty (possibly
noncompact) semialgebaric set S (g, h).
Proposition 6.7. Let the assumptions of Theorem 6.6 hold. For k sufficiently large, Algorithm
6.2.3 terminates and x̄ ∈ S(g, h).
Proof. The proof follows from Theorem 6.6 and Remark 6.9.

In Algorithm 6.2.3, step 1 computes the radius L1/2 of the ball B(0, L1/2) which has non-empty
intersection with S(g, h). Then step 2 checks the flat extension condition and extracts the solution
x̄.
Remark 6.10. At step 2 in Algorithm 6.2.3, for k sufficiently large, the rank of the moment
matrix rank(Mk+w(y)) decreases to one when t goes from 0 to n. Indeed, for each t between 0
and n, we replace the semialgebraic set S(g, h) by its intersection with the t spheres ∂B(aj , ξ1/2

j ),
j = 0, . . . , t − 1. This intersection includes the support of the measure with moments y. Since
S(g, h) ∩

⋂n
j=0 ∂B(aj , ξ1/2

j ) = {x?}, this support converges to {x?} when t goes from 0 to n.
Thus for large enough k, the solution y of SDP (6.2.17) with value ηnk has a representing measure
supported on x? = (ye1 , . . . , yen). Here ei, i ∈ [n] is canonical basis of Rn.
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Algorithm 12 PolySys
Input: S(g, h) 6= ∅, (at)t=0,1,...,n ⊂ Rn such that at − a0, t ∈ [n] are linearly independent, ε > 0
and k ∈ N.
Output: x̄.
Begin with t := 0 and do:

1: Solve SDP (6.2.10) with f = ‖x‖22 to obtain ρik(ε). Set L := ρik(ε) and go to step 2.
2: Solve SDP (6.2.17) to obtain ηtk and an associated solution y.

a: If t ≤ n and rank (Mk+w(y)) = rank (Mk(y)), i.e., y has a representing measure µ, extract
supp(µ) from y by using the algorithm from [77]. Take x̄ ∈ supp(µ) and stop.
b: If t ≤ n and rank (Mk+w(y)) 6= rank (Mk(y)), set t := t+ 1 and do again step 2.
c: If t = n+ 1, stop.

Table 6.1: Decrease of the moment matrix rank in Algorithm 6.2.3.
t at ηt0 rank(M1(y)) rank(M0(y)) x̄
0 0R4 2.0000 5 1 −
1 e1 1.0000 3 1 −
2 e2 2.9997 3 1 −
3 e3 1.9998 1 1 (0.9999, 0.0001, 0.5028, -0.8611)
4 e4 1.3089 1 1 (1.0000, 0.0002, 0.4968, 0.8329)

The decrease of the moment matrix rank in Algorithm 6.2.3 for the kissing number problem
with g1 = x2

1 +x2
2 +x2

3 +x2
4−2x1x3−2x2x4−1, h1 = x2

1 +x2
2−1 and h2 = x2

3 +x2
4−1 is illustrated

in Table 6.1. Here ei, i ∈ [4] is the canonical basis of R4. In this example, rank(M1(y)) decreases
from 5 to 1 when t goes from 0 to 4 and M1(y) fulfills the flat extension condition at from t = 3.

Remark 6.11. ASC can be used to find an approximation of a real point in S(g, h) even if S(g, h)
is positive dimensional. This is illustrated later on by our numerical experiments from Section 6.3
(see the polynomial systems corresponding to Id 6, 7, 8 and 13).

Obtaining a minimizer by using the ASC method: We rely on the following algorithm to
find the value ρik(ε) of SDP (6.2.10), which approximates f? = min{f(x) : x ∈ S(g, h)}, together
with an approximation x̄ of a minimizer x? for this problem.

Algorithm 13 PolyOpt
Input: f , S(g, h) 6= ∅, ε > 0 and k ∈ N.
Output: ρik(ε) and x̄.

1: Solve SDP (6.2.10) to obtain ρik(ε).
2: Compute x̄ in S(g ∪ {ρik(ε)− f}, h) by using Algorithm 6.2.3 and stop.

Proposition 6.8. If POP f? := inf{f(x) : x ∈ S(g, h)} admits an optimal solution at x?, then
for k large enough, Algorithm 6.2.3 terminates and f? ≤ ρik(ε) ≤ f? + εθ(x?)d. Moreover, for k
large enough, x̄ ∈ S(g, h) and f? ≤ f(x̄) ≤ f? + εθ(x?)d if the assumption of Theorem 6.6 holds
for S(g ∪ {ρik(ε)− f}, h).

In practice, one performs Algorithm 6.2.3 several times by updating k := k+1 until one obtains
x̄ in S(g ∪ {ρik(ε)− f}, h). Obviously, one has f? + εθ(x?)d ≥ ρik(ε) ≥ f(x̄) ≥ f?.

6.3 Examples
In this section, we report results obtained after solving some instances of POP (6.2.8) with

Algorithm 6.2.3. As before, let us note g = {g1, . . . , gm} and h = {h1, . . . , hl} the sets of polynomi-
als involved in the inequality constraints and the equality constraints, respectively. In particular,
the resulting set S(g, h) is unbounded for all examples. The experiments are performed with both
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MATLAB R2018a/Yalmip and Julia 1.1.1/JuMP to model the semidefinite optimization problems
and Mosek 8.0 to solve these problems. The codes for Algorithm 6.2.3 (PolySys) and Algorithm
6.2.3 (PolyOpt) can be downloaded from the link: https://github.com/maihoanganh. In these
codes, we always set a0 := 0Rn and a1, . . . ,an as the canonical basis of Rn. We use a desktop
computer with an Intel(R) Pentium(R) CPU N4200 @ 1.10GHz and 4.00 GB of RAM. The input
data given in Table 6.2 include examples of unconstrained and constrained POPs. The correspond-
ing output data, the exact results and timings are given in Table 6.3. In these tables, the SOS
hierarchy (6.2.10) is solved by optimization models in Yalmip (Y) and JuMP (J). The symbol “−”
in a column entry indicates that the calculation did not finish in a couple of hours.

Id 1-5 are unconstrained POPs. Id 6-12 are POPs with inequality constrains, Id 13-18 are POPs
with equality constraints and Id 19-25 are POPs with both inequality and equality constraints.
Id 8, 11 and 12 correspond to examples from Jeyakumar et al. [88, 87]. Id 9 and 10 are selected
from Demmel et al. [44]. Id 13-17 come from Greuet et al. [67]. Id 23, 24 and 25 are POPs
constructed from some inequalities issued from Mathematics competitions mentioned in [190, 50],
yielding noncompact POPs with known optimal values and optimizers.

Even though the sets of minimizers associated to Id 6, 7, 8 and 13 are positive dimensional,
we can still extract a single approximate optimal solution by using our ASC algorithm. Note
that ASC computes a real point x̄ in S(g ∪ {ρik(ε)− f}, h) which is an outer approximation of
{x? ∈ S(g, h) : f(x?) = f?} for k sufficiently large.

In Table 6.3, Algorithm 6.2.3 terminates at some order k ≤ 5 for all POPs except Id 16.
Note that for Id 16, the global minimum does not satisfy the KKT conditions. Thus the method
of Demmel et al. [44, 149] and Nie’s [148] cannot be used to solve this POP. Moreover, the
convergence rate of (ρik(ε))k∈N in Id 16 is very poor when ε ≤ 10−5. We overcome this issue by
fixing k, multiplying ε by 10, and solving again the relaxations. The computational cost that we
must pay here is due to the largest gap ε θ(x?)d between ρik(ε) and f?. This behavior is illustrated
in Table 6.4.

In Id 18, even if the ideal I(h) is not radical and V (h) is not equidimensional (the assumptions
required to apply the framework in [67] are not guaranteed) our ASC method can still extract one
solution of the problem.

For Id 21, we can improve the quality of the approximation ρik(ε) of the optimal value f? by
fixing k = 1, dividing ε by 10, and solving again the relaxations. This is illustrated in Table 6.5.

We emphasize that we can customize the ε parameter for different purposes. On the one hand,
one increases ε to improve the convergence speed of the sequence (ρik(ε))k∈N to the neighborhood
[f?, f?+εθ(x?)d] of f? (see Table 6.4). On the other hand, one decreases ε to improve the accuracy
of the approximate optimal value ρik(ε) and the approximate optimal solution x̄ (see Table 6.5).

Our numerical benchmarks also show that modeling in JuMP is faster and provides more
accurate outputs than modeling in Yalmip. In particular, the JuMP implementation is the only
one which provides solutions for Id 11, 12, 17 and 23.

Let us now denote by kε the smallest nonnegative integer such that ρikε(ε) ≥ f
?, for each ε > 0.

The graph of the function ε−1 7→ kε on (0, 100] for Id 9 and Id 16 is illustrated in Figure 6.2. Here
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Figure 6.2: Plot of the complexity.
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Table 6.2: Examples of POPs.
Id reference input data
1 Motzkin f = x2

1x
2
2(x2

1 + x2
2 − 1) g = ∅ h = ∅

2 Robinson f = x6
1 + x6

2 − x4
1x

2
2 − x2

1x
4
2 − x4

1 − x4
2 − x2

1 − x2
2 + 3x2

1x
2
2

g = ∅ h = ∅
3 Choi-Lam f = x4

1x
2
2 + x4

2 + x2
1 − 3x2

1x
2
2 g = ∅ h = ∅

4 Lax-Lax
f = x1x2x3 − x1(x2 − x1)(x3 − x1)(1− x1)− x2(x1 − x2)(x3 − x2)(1−
x2)− x3(x1 − x3)(x2 − x3)(1− x3)− (x1 − 1)(x2 − 1)(x3 − 1)
g = ∅ h = ∅

5 Delzell f = x4
1x

2
2 + x4

2x
2
3 + x2

1x
4
3 − 3x2

1x
2
2x

2
3 + x8

3 g = ∅ h = ∅
6 Modified Motzkin f = (x2

1 + x2
2 − 3)x2

1x
2
2 g = {x2

1 + x2
2 − 4} h = ∅

7 [82, Example 4.3] f = x4
1 + x4

2 + x4
3 − 4x1x

3
3 g = {1− x4

1 + 1
2x

4
2 − x4

3} h = ∅
8 [88, Example 3.1] f = x2

1 + 1 g = {1− x2
2, x

2
2 − 1/4} h = ∅

9 [44, Example 4.5] f = x2
1 + x2

2 g = {x2
1 − x1x2 − 1, x2

1 + x1x2 − 1, x2
2 − 1} h = ∅

10 [44, Example 4.4] f = − 4
3x

2
1 + 2

3x
2
2 − 2x1x2 g = {x2

2 − x2
1,−x1x2} h = ∅

11 [87, Section 5.2] f = 1 +
8∑
j=2

((xj − x2
j−1)2 + (1− x2

j ))

g = {x1, . . . , x8} h = ∅

12 [87, Section 5.3]
f = 1 +

3∑
l=1

((x2l−x2
2l−1)2 + (1−x2l−1)2 + 90(x2

2l+2−x2l+1)2 + (x2l+1−

1)2 + 10(x2l + x2l+2 − 2)2 + 1
10 (x2l − x2l+2)2)

g = {x1, . . . , x8} h = ∅
13 [67, Example A.2] f = (x2

1 + x2
2 − 2)(x2

1 + x2
2) g = ∅ h = {(x2

1 + x2
2 − 1)(x1 − 3)}

14 [67, Example A.5] f = x6
1 + x6

2 + x6
3 + 3x2

1x
2
2x

2
3 − x2

1(x4
2 + x4

3)− x2
2(x4

3 + x4
1)− x2

3(x4
1 + x4

2)
g = ∅ h = {x1 + x2 + x3 − 1}

15 [67, Example A.6]
f = x1x2x3x4−x1(x2−x1)(x3−x1)(x4−x1)−x2(x1−x2)(x3−x2)(x4−
x2)− x3(x2 − x3)(x1 − x3)(x4 − x3)− x4(x2 − x4)(x3 − x4)(x1 − x4)
g = ∅ h = {x1, x2 − x3, x3 − x4}

16 [67, Example A.4] f = (x1 + 1)2 + x2
2 g = ∅ h = {x3

1 − x2
2}

17 [67, Example A.8]
f = 1

6

5∑
j=1

(x2
j + x2

j+5) g = ∅

h = {x6 − 1, xj+6 − xj+5 − 1
6 (x2

j+5 − xj) : j ∈ [4]}
18 self made f = x6

1 + x2
2 g = ∅ h = {(x2

1 + x2
2)(1− x1x2)2}

19 [62, Example 2] f = x2
1 + x2

2 + x2
3 + x2

4 g = { 1
8 − x4}

h = {x1 + x2 + x3 + x4 − 1}
20 self made f = x3

1 − x2
2 g = {x1, x2} h = {(x1x2 + 1)(x1 − x2)2}

21 self made f = x4
1 − 3x2 g = {x1, x2} h = {(x2 − x2

1)(2x2
1 − x2)}

22 AM-GM inequal-
ity f = x1 + x2 + x3 g = {x1, x2, x3} h = {x1x2x3 − 1}

23 [190, USSR
Olimpiad 1989]

f = (x1 + x2)(x2 + x3) g = {x1, x2, x3}
h = {x1x2x3(x1 + x2 + x3)− 1}

24 [50, IMO 1990]

f = x1(x1 +x2 +x3)(x1 +x3 +x4)(x1 +x2 +x4)+x2(x1 +x2 +x3)(x2 +
x3 +x4)(x1 +x2 +x4) +x3(x1 +x2 +x3)(x1 +x3 +x4)(x3 +x2 +x4) +
x4(x4 + x2 + x3)(x1 + x3 + x4)(x1 + x2 + x4) − 1

3 (x1 + x2 + x3)(x1 +
x3 + x4)(x1 + x2 + x4)(x2 + x3 + x4)
g = {x1, x2, x3, x4} h = {x1x2 + x2x3 + x3x4 + x4x1 − 1}

25 [50, IMO 2000] f = −(x1x2 − x2 + 1)(x2x3 − x3 + 1)(x3x1 − x1 + 1)
g = {x1, x2, x3} h = {x1x2x3 − 1}



126CHAPTER 6. POLYNOMIAL OPTIMIZATION OVER NONCOMPACT SEMIALGEBRAIC SETS

Table 6.3: Numerical experiments with ε = 10−5.

Id f? {x? ∈ S(g, h) : f(x?) = f?} k ρik(ε) x̄ time (s)

1 − 1
27 { 1√

3 (±1,±1)} 2 -0.0369 (0.5713, 0.5713) Y: 2.65
J: 2.58

2 -1 {(±1,±1), (0,±1), (±1, 0)} 2 -0.9999 (-0.0000, -0.9967) Y: 2.90
J: 2.91

3 0 {(±1,±1), (0, 0)} 1 0.0000 (-0.0000, -0.0000) Y: 3.26
J: 0.22

4 0 {(1, 0, 0), (0, 1, 0), (0, 0, 1),
(1, 1, 0), (0, 1, 1), (1, 0, 1)} 1 0.0000 (0.00, 0.00, 0.99) Y: 4.22

J: 0.30

5 0 {(0, 0, 0)} 2 0.0000 (0.00, 0.00, 0.00) Y: 65.58
J: 31.84

6 0 {(0, t), (t, 0) : |t| ≥ 2} 1 0.0062 (2.0000, 0.0000) Y: 4.47
J: 3.10

7 1 − 4√27
{(0, t, 0) : t ∈ R} ∪
{t(1, 0, 4√3) : |t| ≤ 1/ 4√4} 1 -1.2793 (0.70, -0.00, 0.93) Y: 3.96

J: 1.94

8 1 {0} × (
[

1
2 , 1
]
∪
[
−1,− 1

2

]
) 1 1.0000 (0.0000, -0.5081) Y: 3.41

J: 2.58

9 5+
√

5
2 {(± 1+

√
5

2 ,±1)} 2 3.6182 (1.6181, 1.0000) Y: 4.72
J: 2.53

10 0 {(0, 0)} 5 Y: -0.0005
J: -0.0002 (0.0000, 0.0000) Y: 10.08

J: 3.82

11 1 {(1, . . . , 1)} 0 Y: −
J: 1.0072

Y: −
J: (0.95, 0.96, 0.96,
0.96, 0.97, 0.97, 0.97,
0.97)

Y: −
J: 2265.71

12 1 {(1, . . . , 1)} 0 Y: −
J: 1.0072

Y: −
J: (0.98, 0.99, 0.99,
0.99, 0.99, 0.99, 0.96,
0.98)

Y: −
J: 2642.23

13 -1 {(t,±
√

1− t2) : t ∈ [−1, 1]} 2 -0.9999 Y: (1.0000, 0.0000)
J: (0.3663, -0.9304)

Y: 8.46
J: 3.99

14 0 { 1
3 (1, 1, 1)} 2 0.0000 (0.33, 0.33, 0.33) Y: 39.25

J: 6.92

15 0 {(0, 0, 0, 0)} 1 0.0000 (0.00, . . . , 0.00) Y: 11.06
J: 4.19

16 1 {(0, 0)}

5
10
15
20

0.9771
0.9802
0.9857
0.9918

J: −
J: −
J: −
J: −

J: 1.83
J: 4.49
J: 15.38
J: 154.60

17 1 Y: 1.3216
J: 1.4883

Y: −
J: (1.19, 0.78, 0.46,
0.20, 0.00, 1.0, 0.96,
0.99, 1.08, 1.24)

Y: 1846.74
J: 639.97

18 0 {(0, 0)} 1 0.0000 (0.0000, 0.0000) Y: 2.55
J: 0.34

19 13
48 {( 7

24 ,
7

24 ,
7

24 ,
1
8 )} 0 0.2708 (0.29, 0.29, 0.29, 0.12) Y: 24.44

J: 17.02

20 − 4
27 {( 2

3 ,
2
3 )} 1 -0.1487 (0.6518, 0.6526) Y: 20.52

J: 2.03

21 −9 {(
√

3, 6)} 1 Y: -8.0171
J: -8.5578

Y: (1.4172, 4.0172)
J: (1.5280, 4.6701)

Y: 7.60
J: 2.52

22 3 {(1, 1, 1)} 2 3.0000 (1.00, 1.00, 1.00) Y: 8.57
J: 3.89

23 2 {(1,
√

2− 1, 1)} 5 Y: −
J: 2.0000

Y: −
J: (0.99, 0.41, 0.99)

Y: −
J: 201.29

24 81
16 { 1

2 (1, 1, 1, 1)} 0 5.0625 (0.49, 0.49, 0.49,
0.49)

Y: 11.37
J: 2.18

25 -1 {(1, 1, 1)} 1 -0.9974 (1.0, 1.0, 1.0) Y: 35.33
J: 7.45
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Table 6.4: Numerical experiments for Id 16 with various values of ε.
ε ρi5(ε) x̄ time (s)

10−4 Y: 0.9492
J: 0.9778

J: −
Y: −

Y: 4.47
J: 2.02

10−3 Y: 0.9528
J: 0.9783

J: −
Y: −

Y:4.62
J: 1.59

10−2 Y: 0.9550
J: 0.9884

J: −
Y: −

Y: 4.45
J: 1.29

10−1 Y: 1.0479
J: 1.0774 (0.0000, 0.0000) Y: 17.64

J: 3.76

Table 6.5: Numerical experiments for Id 21 with various values of ε.
ε ρi1(ε) x̄ time (s)

10−6 Y: -8.2078
J: -8.9392

Y: (1.4525, 4.2199)
J: (1.6593, 5.5069)

Y: 8.46
J: 3.10

10−7 Y: -8.4889
J: -8.9935

Y: (1.5116, 4.5701)
J: (1.7086, 5.8387)

Y: 8.34
J: 2.61

10−8 Y: -8.4915
J: -8.9968

Y: (1.5122, 4.5739)
J: (1.7158, 5.8873)

Y: 8.37
J: 2.70

10−9 Y: -7.9335
J: -8.9949

Y: (1.4026, 3.9346)
J: (1.7113, 5.8572)

Y: 8.30
J: 2.54

Id 9 (resp. Id 16) is an example of POP such that the global minimums satisfy the KKT condition
(resp. do not satisfy the KKT condition). We can experimentally compare the complexity of
Algorithm 6.2.3 in both cases. For Id 9, the function seems to increase as slowly as a constant
function, which is in deep contrast with Id 16, where the function increases more quickly and seems
to have a step-wise linear growth. Theorem 6.5 states that kε ≤ O(ε−c) as ε ↓ 0 for some c > 0
independent from ε.
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Chapter 7

On the complexity of
Putinar–Vasilescu’s
Positivstellensatz

Most of the content of this chapter is from [132].
In the previous chapter, we have applied Putinar–Vasilescu’s Positivstellensatz to design a

hierarchy of SDP relaxations that solves POPs over noncompact semialgebraic sets. In this chapter,
we provide a constructive proof of the degree bound for Putinar–Vasilescu’s Positivstellensatz. It
allows us to analyze the convergence rate of the corresponding hierarchy of SDP relaxations.

For a positive m ∈ N, let us consider the polynomial optimization problem (POP):

f? := inf
x∈S(g)

f(x) , (7.0.1)

where f ∈ R[x] and
S(g) := {x ∈ Rn : gi(x) ≥ 0 , i ∈ [m]} , (7.0.2)

for some g = {gi}i∈[m] ⊂ R[x]. Here R[x] denotes the ring of real polynomials in vector of variables
x = (x1, . . . , xn) and [m] stands for the set {1, . . . ,m}. Assume that f has degree at most 2df
for some positive df ∈ N. Recall that the set S(g) is a conjunction of finitely many polynomial
inequalities, and therefore is called a basic semialgebraic set.

Problem (7.0.1) can be written as

f? = supλ∈R{λ : f − λ > 0 on S(g)} . (7.0.3)

We can replace the inequality constraint of problem (7.0.3) by an equality constraint, if one can
represent positive polynomials on S(g). Assume that S has nonempty interior and a ball constraint
is present, i.e., g1 = R − ‖x‖22 for some R > 0. Our first (minor) contribution is to rely on the
representation of polynomials positive on S stated by Putinar and Vasilescu [169], to obtain

f − λ =
σ0 +

∑
i∈[m] σigi

(1 + ‖x‖22)k , (7.0.4)

for some k ∈ N, σi ∈ Σ[x], i ∈ [m], being such that deg(σ0) ≤ 2(k+ df ) and deg(σigi) ≤ 2(k+ df ).
Here Σ[x] denotes the set of sum-of-squares (SOS) polynomials and deg(·) stands for the degree of
a polynomial. Such a representation of positive polynomials is called a Positivstellensatz.

After bounding the degrees of the SOS polynomials involved in (7.0.4), we obtain the following
hierarchy of relaxations indexed by k ∈ N:

ρ
(0)
k := sup

λ,σi

λ

s.t. λ ∈ R , σi ∈ Σ[x] ,
(1 + ‖x‖22)k(f − λ) = σ0 +

∑
i∈[m] σigi ,

deg(σ0) ≤ 2(k + df ) , deg(σigi) ≤ 2(k + df ) .

(7.0.5)

129
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Problem (7.0.5) can be solved numerically using semidefinite programming [16]. As usual, one can
show that for each k ∈ N, ρ(0)

k is a lower bound of f?, that the sequence (ρ(0)
k )k∈N is monotone

nondecreasing, and converges to f?.
In the present chapter, we answer the following two interesting questions:

1. How fast does (ρ(0)
k )k∈N converge to f?? We show the convergence rate O(k−1/c) for some

constant c > 0 depending on f and gi.

2. Is there any explicit example to illustrate this rate of convergence? If S(g) is the unit ball,
i.e., m = 1 and g1 = 1−‖x‖22, the sequence (ρ(0)

k )k∈N converges to f? with the rate O(k−1/65).

Our contribution is concerned with the case of basic semialgebraic sets having nonempty inte-
riors. Basically one obtains a convergence rate similar in spirit and magnitude of Schweighofer’s
bound c̄ε−c, but still based on the quadratic module Qk(g) defined as in (1.3.8) (not the pre-
ordering Pk(g) defined as in (1.3.6)) thanks to the prescribed denominator (1 + ‖x‖22)k involved in
Putinar–Vasilescu’s Positivstellensatz.

Before showing explicitly our contribution, we restate the original result of Putinar and Vasilescu
(without degree bound) in (6.1).

Contribution. The construction of the hierarchy of semidefinite relaxations (7.0.5) is based on
the Positivstellensatz stated in Corollary 7.2. More explicitly, if S(g) has nonempty interior such
that g1 = R − ‖x‖22 for some R > 0 and f is of degree at most 2df such that f is nonnegative
on S, then there exist positive constants c̄ and c depending on f, gi such that for all ε > 0, for all
k ≥ c̄ε−c,

(1 + ‖x‖22)k(f + ε) = σ0 +
∑
i∈[m] σigi , (7.0.6)

for some σi ∈ Σ[x] being such that deg(σ0) ≤ 2(k + df ) and deg(σigi) ≤ 2(k + df ).
In order to prove (7.0.6), we provide a degree bound on the weighted SOS polynomials for the

homogenized Putinar–Vasilescu’s Positivstellensatz [169]. This is stated in Theorem 7.1 as follows:
If f, g1, . . . , gm are homogeneous polynomials of even degrees such that S(g) has nonempty interior
and f is nonnegative on S(g), then there exist positive constants c̄ and c depending on f, gi such
that for all ε > 0, for all k ≥ c̄ε−c,

‖x‖2k2 (f + ε‖x‖2df2 ) = σ0 +
∑
i∈[m] σigi , (7.0.7)

for some homogeneous SOS polynomials σi being such that deg(σ0) = deg(σigi) = 2(k+ df ). Here
a polynomial q is homogeneous of degree 2t if q(λx) = λ2tq(x) for all x ∈ Rn and each λ ∈ R.
Remark that the original version of Putinar–Vasilescu’s Positivstellensatz in [169] does not include
any degree bound on the weighted SOS polynomials σi involved in the representation (7.0.7). Our
proof of Theorem 7.1 consists of three main steps:

1. Construct iteratively some positive “weight” functions ψi such that f + ε −
∑
i∈[m] ψigi is

positive on [−1, 1]n. The idea of this step is similar in spirit to the proof of the inductive
property in [186, Proposition 3.1] and relies on the Lojasiewicz inequality.

2. Approximate
√
ψi with the multivariate Bernstein polynomial qi on [−1, 1]n such that the

polynomial H = f + ε−
∑
i∈[m] q

2
i gi is positive on the unit sphere Sn−1.

3. Apply Reznick’s Positivstellensatz [175] to the homogenization of H.

The complexity analysis of every step is derived to get the final degree bound c̄ε−c.
Afterwards, we obtain in Corollary 7.1 the same degree bound for the dehomogenized Putinar–

Vasilescu’s Positivstellensatz. This improves the bound O(exp(ε−c)) obtained in the previous
chapter, based on Nie–Schweighofer’s complexity result [150] for Putinar’s Positivstellensatz [168].
Corollary 7.1 yields the convergence rate O(ε−c) for the corresponding hierarchy of relaxations for
polynomial optimization on general (not necessarily compact) basic semialgebraic sets.

Remark 7.1. Concerning the assumption that the semialgebraic set S(g) has nonempty interior,
a technique from [1] maybe helps us remove this assumption1.

1Tien-Son Pham, Personal communication, 2021.
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Technical insights. We start to recall the two main steps in the proof of Nie and Schweighofer
[150] for the degree bound of SOS polynomials involved in Putinar’s Positivstellensatz:

1. Find a large enough k ∈ N such that the polynomial

F = f + ε− λ
∑
i∈[m](gi − 1)2kgi (7.0.8)

is positive on [−1, 1]n. An estimate k ≥ O(ε−c) is obtained. Here ε > 0 measures how close
the polynomial f (assumed to be nonnegative on S(g)) is to have a zero on S(g).

2. Apply Schmüdgen’s Positivstellensatz to F on [−1, 1]n.

Notice that Schweighofer’s degree bound of Schmüdgen’s Positivstellensatz is exponential in the
degree of the given positive polynomial (ndf in (1.3.5)). Accordingly, Nie and Schweighofer obtain
an exponential bound nO(ε−c) in the second step since deg(F ) ∼ Ck as k → ∞ for some positive
constant C.

One notable difference in our proof is that the weight λ(gi − 1)k in (7.0.8) is replaced by a
non-differentiable positive function ψi. Surprisingly, we can prove that the square root

√
ψi is a

Lipschitz continuous function. Thus each
√
ψi can be approximated with a Bernstein polynomials

qi on [−1, 1]. Here, the advantage of using Bernstein polynomials is that the approximation error
between

√
ψi and qi decreases with a rate which only depends on a Lipschitz constant of

√
ψi, and

|qi| is upper bounded by the supremum of
√
ψi on [−1, 1]n.

Next, we apply Reznick’s Positivstellensatz to the homogeneous polynomial H̃ obtained from
the homogenization of

H := f + ε−
∑
i∈[m] q

2
i gi , (7.0.9)

being such that the bounds of H̃ and H on the unit sphere are the same. The important point to
note here is that the degree bound of Reznick’s Positivstellensatz is quadratic in the degree of H̃ and
linear in the ratio δ(H̃) (see (1.3.1)). This is in deep contrast with Schmüdgen’s Positivstellensatz,
as there is no exponential dependency in these two quantities. This leads to the difference between
our convergence rate O(ε−c) and Nie–Schweighofer’s rate O(exp(ε−c)).

One may ask whether with the same techniques from our proof, one could improve the existing
degree bound for Putinar’s Positivstellensatz. We have tried to apply the degree bound (1.3.3)
of Pólya’s Positivstellensatz to H after a change of coordinate, but unfortunately this leads to
the same bound as Nie and Schweighofer. The underlying reason is that the norm ‖q‖ in (1.3.3)
depends on the coefficients of q. In our situation, q coincides with H and the coefficients of H
are bounded by a value involving the coefficients of the Bernstein polynomials. The bound on
the largest coefficient, even for a univariate Bernstein polynomial, seems to be exponential in the
approximation order t, namely,

(2t
t

)
∼ 4t√

πt
as t → ∞. The same issue occurs when we apply the

degree bound of Schmüdgen’s Positivstellensatz instead of the one of Pólya’s Positivstellensatz.

7.1 Representation theorems and degree bounds
In this section, we derive representations of polynomials nonnegative on semialgebraic sets

together with degree bounds. We extend these representations to the set of continuous functions
being nonnegative on compact domains.

7.1.1 Polynomials nonnegative on general semialgebraic sets
We analyze the complexity of Putinar–Vasilescu’s Positivstellensatz [169] in the following the-

orem:

Theorem 7.1. (Homogenized representation) Let g1, . . . , gm be homogeneous polynomials of even
degrees such that the semialgebraic set

S := {x ∈ Rn : g1(x) ≥ 0 . . . , gm(x) ≥ 0} (7.1.1)
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has nonempty interior. Let f be a homogeneous polynomial of degree 2df for some df ∈ N such
that f is nonnegative on S. Then there exist positive constants c̄ and c depending on f, g1, . . . , gm
such that for all ε > 0, for all k ∈ N satisfying

k ≥ c̄ε−c , (7.1.2)

there exist homogeneous SOS polynomials σ0, . . . , σm such that

deg(σ0) = deg(σ1g1) = · · · = deg(σmgm) = 2(k + df ) (7.1.3)

and
‖x‖2k2 (f + ε‖x‖2df2 ) = σ0 + σ1g1 + · · ·+ σmgm . (7.1.4)

In particular, if m = 1 and g1 = x2
n − ‖x′‖22 with x′ := (x1, . . . , xn−1), then c = 65. Moreover,

each SOS polynomial σi involved in (7.1.4) can be chosen as the (single) square of a homogeneous
polynomial, for i ∈ [m].

The proof of Theorem 7.1 is postponed to Subsection 7.1.4. In Theorem 7.1, all polynomials
are assumed to have even degrees. Next, we provide two corollaries where each polynomial can
have odd degree.

The following corollary is a direct consequence of Theorem 7.1.

Corollary 7.1. (Dehomogenized representation) Let g1, . . . , gm be polynomials such that the semi-
algebraic set

S := {x ∈ Rn : g1(x) ≥ 0 . . . , gm(x) ≥ 0} (7.1.5)

has nonempty interior. Let f be a polynomial nonnegative on S. Denote df := bdeg(f)/2c + 1.
Then there exist positive constants c̄ and c depending on f, g1, . . . , gm such that for all ε > 0, for
all k ∈ N satisfying

k ≥ c̄ε−c , (7.1.6)

there exist SOS polynomials σ0, . . . , σm such that

deg(σ0) ≤ 2(k + df ) and deg(σigi) ≤ 2(k + df ) , i ∈ [m] , (7.1.7)

and
θk(f + εθdf ) = σ0 + σ1g1 + · · ·+ σmgm , (7.1.8)

where θ := 1 + ‖x‖22. Moreover, if m = 1 and g1 = 1− ‖x‖22, then c = 65.

Proof. The proof of Corollary 7.1 is similar to the proof of [130, Theorems 4 and 5]. We recall the
basic ingredients. Let S̃ be a homogenized version of S, defined by

S̃ := {(x, xn+1) ∈ Rn+1 : g̃i(x, xn+1) ≥ 0 , i ∈ [m]} , (7.1.9)

with g̃i(x, xn+1) := x
2dgie
n+1 gi(x/xn+1) being the degree-2dgie homogenization of gi, for i ∈ [m].

Then the proof consists of three steps:

1. Prove that the degree-2df homogenization of f , denoted by f̃ , is nonnegative on S̃.

2. Use Theorem 7.1 to obtain a representation of f̃ together with the degree bound on SOS
polynomials.

3. Obtain a representation of f by evaluating the representation of f̃ at xn+1 = 1.

To apply Theorem 7.1, we need to show that if S has nonempty interior, then S̃ has nonempty
interior. This statement holds since when a belongs to the interior of S, one has g̃i(a, 1) = gi(a) > 0,
implying that (a, 1) belongs to the interior of S̃.

Note that the ice cream constraint x2
n+1 − ‖x‖22 is the degree-2 homogenization associated to

the ball constraint 1− ‖x‖22.
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7.1.2 Polynomials nonnegative on compact semialgebraic sets
The following corollary is deduced from Corollary 7.1.

Corollary 7.2. Let g1, . . . , gm be polynomials such that g1 := R − ‖x‖22 for some R > 0 and the
semialgebraic set

S := {x ∈ Rn : g1(x) ≥ 0 . . . , gm(x) ≥ 0} (7.1.10)

has nonempty interior. Let f be a polynomial nonnegative on S. Denote df := bdeg(f)/2c + 1.
Then there exist positive constants c̄ and c depending on f, g1, . . . , gm such that for all ε > 0, for
all k ∈ N satisfying

k ≥ c̄ε−c , (7.1.11)

there exist SOS polynomials σ0, . . . , σm such that

deg(σ0) ≤ 2(k + df ) and deg(σigi) ≤ 2(k + df ) , i ∈ [m] , (7.1.12)

and
(1 + ‖x‖22)k(f + ε) = σ0 + σ1g1 + · · ·+ σmgm . (7.1.13)

Moreover, if m = 1 and L = 1, then c = 65.

Proof. By using Corollary 7.1, there exist positive constants c̄ and c depending on f, g1, . . . , gm
such that for all ε > 0, for all k ∈ N satisfying k ≥ c̄ε−c, there exist SOS polynomials σ0, . . . , σm
such that

deg(σ0) ≤ 2(k + df ) and deg(σigi) ≤ 2(k + df ) , i ∈ [m] . (7.1.14)

and
θk(f + εθdf ) = σ0 + σ1g1 + · · ·+ σmgm , (7.1.15)

where θ := 1 + ‖x‖22. In addition,

(R+ 1)df − θdf = (R− ‖x‖22)
df−1∑
j=0

(R+ 1)df−1−jθj = s1g1 , (7.1.16)

where s1 =
∑df−1
j=0 (R+ 1)df−1−jθj is an SOS polynomial of degree 2(df − 1). From this,

θk[f + ε(R+ 1)df ] = θk(f + εθdf ) + εθk[(R+ 1)df − θdf ]
= σ0 + (εs1θ

k + σ1)g1 +
∑m
i=2 σigi ,

(7.1.17)

which yields the desired result.

Remark 7.2. In Corollary 7.2, if m = 1 and L > 0, we still obtain c = 65. Indeed, up to a
scaling, one can always assume L = 1.

Remark 7.3. We can apply the technique used in the proof of Corollary 7.2, which consists of
replacing the perturbation εθdf by ε, to represent polynomials nonnegative on Rn. Let us consider
an arbitrary large positive constant L and a polynomial f of degree 2df which is nonnegative on Rn.
Then, thanks to [130, Theorem 3.2], for any ε > 0, for all k ∈ N such that k ≥ O(ε−1), θk(f+εθdf )
is an SOS polynomial, so that θk(f+ε) = σ0 +σ1(R−‖x‖22) for some SOS polynomials σi, i = 0, 1.
This is the so-called “big ball trick”. This representation yields a linear convergence rate O(ε−1)
for the minimization of polynomials on Rn.

Remark 7.4. (Removing the denominator in Putinar–Vasilescu’s Positivstellensatz) Let f, gi ∈
R[x] with g1 := 1. Set d = bdeg(f)/2c + 1. Assume that f ≥ 0 on S(g) ⊂ {x ∈ Rn : 1 ≥ ‖x‖22}.
Then f ∈ R[x, xn+1] is nonnegative on S(g) × R. Let ψ(x, xn+1) := 1 + ‖(x, xn+1)‖22. Putinar–
Vasilescu’s Positivstellensatz yields that there is k ∈ N such that

ψk(f + εψd) =
m∑
i=1

σigi
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for some SOS σi in R[x, xn+1]. Setting xn+1 =
√

1− ‖x‖22, we get ψ = 2 so

f + ε2d = 1
2k

m∑
i=1

σi(x,
√

1− ‖x‖22)gi .

By removing all terms which are not polynomial, we obtain

f + ε2d = 1
2k

m∑
i=1

[ai + bi(1− ‖x‖22)]gi . (7.1.18)

for some SOS ai, bi in R[x]. It is due to the fact that each σi(x,
√

1− ‖x‖22) is a sum of the
following squares:

(u+ v
√

1− ‖x‖22)2 = u2 + v2(1− ‖x‖22) + 2uv
√

1− ‖x‖22 ,

for some u, v ∈ R[x]. Based on the degree bound for Putinar–Vasilescu’s Positivstellensatz in
Corollary 7.1, we obtain a similar one for representation (7.1.18).

7.1.3 Preliminary material
This subsection presents some important lemmas that we use to prove the main results.
Given Ω ⊂ Rn, the distance of a ∈ Rn to Ω is denoted by dist(a,Ω). Denote by B(a, r) (resp.

B◦(a, r)) the closed (resp. open) ball centered at a ∈ Rn with radius r > 0.
We recall the  Lojasiewicz inequality in the following lemma:

Lemma 7.1. Let g : U → R be an analytic function on an open set U ⊂ Rn and Z := {x ∈ K :
g(x) = 0} for some compact set K ⊂ U . Then there exists α > 0 and C > 0 such that

d(x, Z)α ≤ C|g(x)| , ∀x ∈ K .

As a consequence of Lemma 7.1, we obtain the following result:

Lemma 7.2. ( [22, Corollary 2.6.7]) Let r > 0 and the semialgebraic set S := {x ∈ Rn : gi(x) ≥
0 , i ∈ [m]}, where g1, . . . , gm are polynomials. Then there exist positive constants α and C such
that, for all x in B(0, r),

dist(x, S)α ≤ −C min{g1(x), . . . , gm(x), 0} . (7.1.19)

Given an open set U ⊂ Rn and a differentiable function ϕ : U → R, denote by ∇ϕ(x) =
[∂x1ϕ(x), . . . , ∂xnϕ(x)] the gradient of ϕ at x ∈ U . Given x = (x1, . . . , xn) ∈ Rn, let x′ :=
(x1, . . . , xn−1).

As mentioned in [164, Theorem 3.8], one can prove that α ∈ {1, 2} in Lemma 7.1 if g is a
quadratic polynomial. The following lemma states an instance of this result:

Lemma 7.3. ( Lojasiewicz inequality with ice cream constraint) Let g := x2
n − ‖x′‖22 and Z :=

{x ∈ Rn : g(x) = 0}. Then for all x ∈ Rn,

dist(x, Z)2 ≤ |g(x)|
2 . (7.1.20)

Proof. If x ∈ Z, both sides of (7.1.20) are zeros. Let x ∈ Rn\Z be fixed. Then d(x, Z)2 =
miny{‖x − y‖22 : g(y) = 0}. Assume that (y, µ) ∈ Rn × R satisfies the Karush–Kuhn–Tucker
conditions: {

∇y‖x− y‖22 = µ∇yg(y) ,
g(y) = 0 .

(7.1.21)

The first condition of (7.1.21) implies that 2(x−y) = µ

[
−2y′
2yn

]
, so x′−y′ = −µy′ and xn− yn =

µyn. Assume that µ /∈ {1,−1}. Then y′ = x′
1−µ and yn = xn

1+µ . Since g(y) = y2
n − ‖y′‖22 = 0,

yn = ±‖y′‖2.
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Let us consider the first case yn = ‖y′‖2. Then xn
1+µ = ‖x′‖2

1−µ . It implies that µ = xn−‖x′‖2
xn+‖x′‖2 .

Note that xn 6= −‖x′‖2 since g(x) 6= 0. From this, y′ = (xn+‖x′‖2)x′
2‖x′‖2 and yn = xn+‖x′‖2

2 . Thus,
‖x− y‖22 = (xn−‖x′‖2)2

2 .
Similarly, if we consider the case yn = −‖y′‖2, then ‖x− y‖22 = (xn+‖x′‖2)2

2 .
Let us consider the case of µ ∈ {1,−1}. Assume that µ = 1. Then x′ = 0 and yn = xn

2 .
From this and the fact that 0 = g(y) = y2

n − ‖y′‖22, we obtain ‖y′‖22 = x2
n

4 . It implies that
‖x− y‖22 = ‖y′‖22 + (xn − yn)2 = x2

n

4 + x2
n

4 = x2
n

2 = (xn−‖x′‖2)2

2 . Thus, ‖x− y‖22 = (xn−‖x′‖2)2

2 .
Similarly, if we consider the case µ = −1, then ‖x− y‖22 = (xn+‖x′‖2)2

2 .
Thus,

d(x, Z)2 ≤ 1
2 min{(xn − ‖x′‖2)2, (xn + ‖x′‖2)2}

≤ 1
2
√

(xn − ‖x′‖2)2(xn + ‖x′‖2)2

= 1
2 |x

2
n − ‖x′‖22| =

|g(x)|
2 ,

(7.1.22)

yielding (7.1.20).

A real-valued function f : U → R for some U ⊂ Rn is called L-Lipschitz (or Lipschitz)
continuous on K ⊂ U if there exits a real L > 0 such that |f(x) − f(y)| ≤ L‖x − y‖2, for all
x, y ∈ K. In this case, L is called the Lipschitz constant of f on K. Given an open set U ⊂ Rn, a
function f : U → R is called locally Lipschitz continuous on K ⊂ U if for every x ∈ K there exists
a neighborhood W ⊂ U of x such that f is Lipschitz continuous on W ∩K.

The following lemma is similar in spirit to [163, Section 2.4, Lemma 2]:

Lemma 7.4. Given an open set U ⊂ Rn, if the function f : U → R is locally Lipschitz on a
compact set K ⊂ U , then f is Lipschitz on K.

Proof. Since f is locally Lipschitz on K, for each x ∈ K there is some rx > 0 and Lx > 0 such
that B(x, rx) ⊂ U and f is Lx-Lipschitz on B(x, rx) ∩K. Then the sets B(x, 1

2rx), x ∈ K form
an open cover of K. Due to the compactness of K, there exists a finite subsequence of B(x, 1

2rx),
x ∈ K covering K. For convenience, denote these by B(xk, 1

2rk) and Lk := Lxk , k ∈ [l]. Let
M := supx∈K |f(x)|, r := 1

2 mink∈[l] rk, L0 := 2M
r and L := max{L0, Lk : k ∈ [l]}. Then L is

a Lipschitz constant of f on K. To see this, pick x,y ∈ K. If ‖x − y‖2 ≥ r then we see that
|f(x)−f(y)|
‖x−y‖2 ≤ 2M

r = L0 ≤ L. If ‖x − y‖2 < r, then for some xk we have x ∈ B(xk, 1
2rk). Then

y ∈ B(xk, rk) and so |f(x)− f(y)| ≤ Lk‖x− y‖2 ≤ L‖x− y‖2.

Lemma 7.5. (Kirszbraun’s theorem [96]) If U is a subset of Rn and f : U → R is a Lipschitz
continuous function, then there is a Lipschitz continuous function F : Rn → R that extends f and
has the same Lipschitz constant as f . Moreover the extension is provided by

F (x) := infu∈U{f(u) + Lf‖x− u‖2} , (7.1.23)

where Lf is the Lipschitz constant of f on U .

Given Ω ⊂ Rn, denote by C(Ω) the set of continuous functions from Ω to R. We recall basic
properties of the multivariate Bernstein polynomials described, e.g., in [80, 73].

Definition 7.1. (Multivariate Bernstein polynomials) Let d ∈ Nn and f ∈ C([0, 1]n). The poly-
nomials

Bf,d(x) :=
∑d1
k1=0 · · ·

∑dn
kn=0 f

(
k1
d1
, . . . , kndn

)∏n
j=1

[(
dj
kj

)
x
kj
j (1− xj)dj−kj

]
(7.1.24)

are called the multivariate Bernstein polynomials of f .

Note that deg(Bf,d) =
∑
j∈[n] dj and the binomial identity implies

supx∈[0,1]n |Bf,d(x)| ≤ supx∈[0,1]n |f(x)| . (7.1.25)
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Lemma 7.6. (Error bound) If f ∈ C([0, 1]n) is L-Lipschitz, namely |f(x) − f(y)| ≤ L‖x − y‖2
on [0, 1]n, then for all d ∈ Nn, the inequality

|Bf,d(x)− f(x)| ≤ L
2 (
∑n
j=1

1
dj

) 1
2 (7.1.26)

holds for all x ∈ [0, 1]n.

Proof. Let x ∈ [0, 1]n be fixed. To simplify the notation, we define bj :=
(
dj
kj

)
x
kj
j (1− xj)dj−kj , for

j ∈ [n], and k = (k1
d1
, . . . , kndn ). Then, we have:

|Bf,d(x)− f(x)|2 ≤ (
∑
|f(k)− f(x)|b1 . . . bn)2

≤ L2 (
∑
‖k− x‖2b1 · · · bn)2

≤ L2 (∑ ‖k− x‖22b1 · · · bn
)

(
∑
b1 · · · bn)

= L2∑(
∑
r(
kr
dr
− xr)2)b1 · · · bn

= L2∑
r(
∑

(krdr − xr)
2b1 · · · bn)

= L2∑
r
xr(1−xr)

dr
≤ L2∑

r
1

4dr .

(7.1.27)

For the first inequality, we have used the multinomial identity 1 =
∏
j [xj+(1−xj)]dj =

∑
b1 . . . bn

and the triangle inequality. For the second one, we have used the fact that f is L-Lipschitz.
For the third one, we use that for all a,b ∈ Rn and all c ∈ Rn+, one has (

∑
akbkck)2 ≤(∑

a2
kck
) (∑

b2kck
)
. The last equality comes from the identities

∑dr
kr=0(kr−drxr)2br = drxr(1−xr)

and
∏
j 6=r(

∑dj
kj=0 bj) = 1. The last inequality is obtained by noticing that we have xr(1 − xr) ≤

1/4.

Let e := (1, . . . , 1) ∈ Rn. As a consequence of Lemma 7.6, we obtain the following result after
a change of coordinates.

Lemma 7.7. If f ∈ C([0, 1]n) is L-Lipschitz, namely |f(x)− f(y)| ≤ L‖x−y‖2 on [−1, 1]n, then
for all k ∈ N≥1, the inequality∣∣∣∣By 7→f(2y−e),ke

(
x + e

2

)
− f(x)

∣∣∣∣ ≤ L(nk
) 1

2

(7.1.28)

holds for all x ∈ [−1, 1]n. Moreover, we have

supx∈[−1,1]n |By7→f(2y−e),ke
(x+e

2
)
| ≤ supx∈[−1,1]n |f(x)| . (7.1.29)

Proof. Define g : [0, 1]n → R by g(x) := f(2x − e). Let us compute a Lipschitz constant of g.
With x,y ∈ [0, 1]n, by the Lipschitz continuity of f , we have

|g(x)− g(y)| = |f(2x− e)− f(2y− e)|
≤ L‖2x− e− 2y + e‖2
= 2L‖x− y‖2 .

(7.1.30)

Then 2L is a Lipschitz constant of g. Let k ∈ N≥1. Using Lemma 7.6, we get that for all x ∈ [0, 1]n,

|Bg,ke(x)− g(x)| ≤ 2L
2 (
∑n
j=1

1
k ) 1

2 = L(nk ) 1
2 . (7.1.31)

Let y ∈ [−1, 1]n. Then y+e
2 ∈ [0, 1] implies that

|Bg,ke( y+e
2 )− f(y)| = |Bg,ke( y+e

2 )− g( y+e
2 )| ≤ L(nk ) 1

2 . (7.1.32)

yielding (7.1.28).
In addition, from (7.1.25),

supy∈[−1,1] |Bg,ke( y+e
2 )| = supx∈[0,1]n |Bg,ke(x)|

≤ supx∈[0,1]n |g(x)|
= supy∈[−1,1] |g( y+e

2 )| = supy∈[−1,1] |f(y)| ,
(7.1.33)

which yields (7.1.29).
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7.1.4 The proof of Theorem 7.1
Recall that [l] := {1, . . . , l} for l ∈ N≥1. Given real value functions g, h, we use the notation

{g ∗ h} = {x ∈ Rn : g(x) ∗ h(x)}, where ∗ ∈ {=,≥,≤, >,<}. Given a real value function q on
Ω ⊂ Rn, note ‖q‖Ω := supx∈Ω |q(x)|. With Ω ⊂ Rn, denote by int(Ω) the interior of Ω.

Given U, V ⊆ Rn and r ∈ R, note U + V = {u + v : u ∈ U , v ∈ V } and rU = {ru : u ∈ U}.
Given a function f : U → R and A ⊂ U ⊂ Rn such that A = −A, f is called even on A if
f(−x) = f(x) for all x ∈ A.

To begin the proof, let us fix ε > 0. By assumption, deg(f) = 2df , deg(gi) = 2dgi for some
d, dgi ∈ N, for i ∈ [m].

Construction of the positive weight functions

For j ∈ [m], define
Sj := {x ∈ Rn : gi(x) ≥ 0 , i ∈ [j]} . (7.1.34)

Obviously, we have Sm = S. Note S0 := Rn and fm := f .
We will prove that there exist functions ϕ̄m : Rn → R such that the following conditions hold:

1. ϕ̄m is positive, even and bounded from above by Cϕ̄m = r̄mε
−rm on B(0,

√
n+m) for some

positive constants r̄m and rm independent of ε.

2. ϕ̄m is Lipschitz with Lipschitz constant Lϕ̄m = t̄jε
−tm for some positive constants t̄m and

tm independent of ε.

3. fm−1 := fm + ε
2 − ϕ̄

2
mgm satisfies:

(a) fm−1 ≥ 0 on Sm−1 ∩B(0,
√
n+m− 1);

(b) fm−1 ≤ Cfm−1 on B(0,
√
n+m), where Cfm−1 = c̄m−1ε

−cm−1 for some positive constants
c̄m−1 and cm−1 independent of ε;

(c) fm−1 is Lipschitz on B(0,
√
n + m) with Lipschitz constant Lfm−1 = l̄m−1ε

−lm−1 for
some positive constants l̄m−1 and lm−1 independent of ε.

Let
Mm := inf

x∈Sm∩B(0,
√
n+m)

f(x) + ε
2

gm(x) . (7.1.35)

The constant Mm is a positive real number. Let Cgm = ‖gm‖B(0,
√
n+m). We claim that

ε
2Cgm

< Mm <∞. Indeed, if z is a feasible solution of (7.1.35), z ∈ S yielding f(z) ≥ 0 so that

f(z) + ε
2

gm(z) ≥ ε

2gm(z) ≥
ε

2Cgm
. (7.1.36)

From this, we have Mm > ε
2Cgm

. On the other hand, there exists a ∈ Rn such that gi(a) > 0 for
i ∈ [m] since S has nonempty interior. For i ∈ [m], since gi is homogeneous, a = 0 yields gi(a) = 0.
It implies that a 6= 0. With ā = a

‖a‖2 ∈ Bn ⊂ B(0,
√
n+m), we obtain gi(ā) > 0 for i ∈ [m] since

gi(ā) = gi

(
a
‖a‖2

)
= gi(a)
‖a‖2dgi2

> 0 , ∀i ∈ [m] . (7.1.37)

Thus, ā is a feasible solution of (7.1.35) which yields

ε

2Cgm
≤Mm ≤

f(ā) + ε
2

gm(ā) ≤
Cf + ε

2
gm(ā) <∞ , (7.1.38)

where Cf := ‖f‖B(0,
√
n+m).

Let ψm : Rn → R be the function defined by

ψm(x) :=
{

max{Mm,
f(x)+ ε

2
gm(x) } if gm(x) < 0 ,

Mm otherwise.
(7.1.39)
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The function f + ε
2 −ψmgm is nonnegative on Sm−1∩B(0,

√
n+m). Namely, we claim that

f + ε

2 − ψmgm ≥ 0 on Sm−1 ∩B(0,
√
n+m) . (7.1.40)

Let y ∈ Sm−1 ∩B(0,
√
n+m). If gm(y) < 0, then

f(y) + ε
2 − ψm(y)gm(y) = f(y) + ε

2 − gm(y) max{Mm,
f(y)+ ε

2
gm(y) }

≥ f(y) + ε
2 − gm(y) f(y)+ ε

2
gm(y) = 0 .

(7.1.41)

Otherwise, gm(y) ≥ 0 gives

f(y) + ε
2 − ψm(y)gm(y) = f(y) + ε

2 − gm(y)Mm{
≥ f(y) + ε

2 − gm(y) f(y)+ ε
2

gm(y) = 0 if gm(y) > 0 ,
= f(y) + ε

2 ≥ 0 if gm(y) = 0 ,
(7.1.42)

since y ∈ S is a feasible solution of (7.1.35).

The function ψm is positive, even on B(0,
√
n+m) and continuous on Sm−1∩B(0,

√
n+m).

It is easy to see that ψm is bounded from below by Mm and continuous on B(0,
√
n+m)\{gm = 0}

since the max function (t1, t2) 7→ max{t1, t2} is continuous.
We claim that ψm is continuous on Sm−1 ∩B(0,

√
n+m)∩{gm = 0}. Indeed, let us consider a

sequence (yl)l ⊂ Sm−1∩B(0,
√
n+m)∩{gm < 0} such that yl → ȳ ∈ Sm−1∩B(0,

√
n+m)∩{gm =

0}. Then gm(yl) → 0− and f(yl) → f(ȳ) ≥ 0 (since ȳ ∈ S) yielding that f(yl)+ ε
2

gm(yl) → −∞. It
implies that max{Mm,

f(yl)+ ε
2

gm(yl) } → Mm. Thus, ψm = Mm on a sufficiently small neighborhood of
any point in Sm−1∩B(0,

√
n+m)∩{gm = 0}. On the other hand, ψm is even, i.e., ψm(x) = ψm(−x)

due to the fact that f, g1, . . . , gm are even and B(0,
√
n+m) = −B(0,

√
n+m).

The upper bound of ψm depends on ε. It follows from (7.1.38) that ψm = Mm on B(0,
√
n+

m) ∩ {gm ≥ 0} and so is bounded from above by f(ā)+ ε
2

gm(ā) .
Let us compute an upper bound of ψm on Sm−1 ∩ B(0,

√
n + m) ∩ {gm < 0}. Let y ∈

Sm−1 ∩ B(0,
√
n + m) be such that gm(y) < 0 and f(y)+ ε

2
gm(y) > Mm. Then ψm(y) = f(y)+ ε

2
gm(y) . By

using the  Lojasiewicz inequality (see Lemma 7.2), there exist Cm > 0 and αm > 0 depending on
g1, . . . , gm such that for all x ∈ Sm−1 ∩B(0,

√
n+m) ∩ {gm < 0},

dist(x, S)αm ≤ −Cm min{g1(x), . . . , gm(x), 0} = −Cmgm(x) . (7.1.43)

Let δm = 1
Cm

( ε
2Lf )αm , where Lf is a Lipschitz constant of f on B(0,

√
n + m). Consider the

following two cases:

• Case 1: gm(y) ≤ −δm < 0. Then

ψm(y) =
f(y) + ε

2
gm(y) =

−f(y)− ε
2

−gm(y) ≤ Cf
−gm(y) ≤

Cf
δm
≤ CmCf

(
2Lf
ε

)αm
. (7.1.44)

• Case 2: −δm ≤ gm(y) < 0. Let z ∈ S such that dist(y, S) = ‖y − z‖2. Then (7.1.43) turns
to −f(y) ≤ ε

2 according to

−f(y) ≤ −f(z) + Lf‖y− z‖2 ≤ Lf dist(y, S)
≤ Lf (−Cmgm(y))

1
αm ≤ Lf (Cmδm)

1
αm = ε

2 .
(7.1.45)

From this, we obtain

Mm <
f(y) + ε

2
gm(y) =

−f(y)− ε
2

−gm(y) ≤
ε
2 −

ε
2

−gm(y) = 0 < Mm . (7.1.46)

The contradiction indicates that this case does not occur.
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Thus, the bound is given as follows

sup
x∈Sm−1∩B(0,

√
n+m)

ψm(x) ≤ max
{
f(ā) + ε

2
gm(ā) , CmCf

(
2Lf
ε

)αm}
=: Cψm . (7.1.47)

Moreover, we obtain the inclusion

Sm−1 ∩B(0,
√
n+m) ∩ {ξm ≥Mm} ∩ {gm ≤ 0} ⊂ {gm ≤ −δm} , (7.1.48)

where ξm(x) = f(x)+ ε
2

gm(x) . Let ϕm be the square root of ψm, i.e., ϕm(x) :=
√
ψm(x). Then ϕm is

well-defined on B(0,
√
n + m) since ψm is positive. Moreover, ϕm is finitely bounded from above

on Sm−1 ∩B(0,
√
n+m) by Cϕm :=

√
Cψm and ϕm is continuous on Sm−1 ∩B(0,

√
n+m) since

ξm is continuous on Sm−1 ∩B(0,
√
n+m).

The function ϕm is Lipschitz continuous on Sm−1 ∩B(0,
√
n+m− 1). Keep in mind that

ψm is defined by the constant function Mm and the function ξm. Since ϕm takes the constant
value

√
Mm on B(0,

√
n+m)\({ξm ≥Mm}∩{gm ≤ 0}), ϕm is Lipschitz continuous on B(0,

√
n+

m)\({ϕm ≥Mm} ∩ {gm ≤ 0}) with zero Lipschitz constant.
On the other hand, ϕm =

√
ξm on B(0,

√
n+m) ∩ {ξm ≥Mm} ∩ {gm ≤ 0}. As a consequence

of (7.1.48), we have

Sm−1 ∩B(0,
√
n+m) ∩ {ξm ≥Mm} ∩ {gm ≤ 0}

= Sm−1 ∩B(0,
√
n+m) ∩ {ξm ≥Mm} ∩ {gm ≤ −δm} .

(7.1.49)

It implies that

ϕm(x) =
{√

ξm(x) if x ∈ Sm−1 ∩B(0,
√
n+m) ∩ {ξm ≥Mm} ∩ {gm ≤ −δm} ,√

Mm if x ∈ (Sm−1 ∩B(0,
√
n+m))\({ξm ≥Mm} ∩ {gm ≤ −δm}) .

(7.1.50)

The second equality is due to the fact that ϕm =
√
Mm on (Sm−1 ∩ B(0,

√
n + m))\({ξm ≥

Mm} ∩ {gm ≤ 0}) and

(Sm−1 ∩B(0,
√
n+m))\({ξm ≥Mm} ∩ {gm ≤ 0})

= (Sm−1 ∩B(0,
√
n+m))\[Sm−1 ∩B(0,

√
n+m) ∩ {ξm ≥Mm} ∩ {gm ≤ 0}]

= (Sm−1 ∩B(0,
√
n+m))\[Sm−1 ∩B(0,

√
n+m) ∩ {ξm ≥Mm} ∩ {gm ≤ −δm}]

= (Sm−1 ∩B(0,
√
n+m))\({ξm ≥Mm} ∩ {gm ≤ −δm}) .

(7.1.51)

Let Lgm be a Lipschitz constant of gm on B(0,
√
n+m). Set

wm := min
{

1, δm
2Lgm

,
εδ2
m

8Cgm [LfCgm + (Cf + ε
2 )Lgm ]

}
. (7.1.52)

and
Wm :=

(
B(0,

√
n+m− 1) ∩ {ξm ≥Mm} ∩ {gm ≤ −δm}

)
+ wmBn . (7.1.53)

Then B(0,
√
n+m− 1) ∩ {ξm ≥Mm} ∩ {gm ≤ −δm} ⊂Wm. Next, we prove that

Wm ⊂ B(0,
√
n+m) ∩ {ξm ≥

Mm

2 } ∩ {gm ≤ −
δm
2 } . (7.1.54)

Let y ∈Wm. Then y = z+wmu for some z ∈ Sm−1∩B(0,
√
n+m−1)∩{ξm ≥Mm}∩{gm ≤ −δm}

and for some u ∈ Bn. Combining ‖z‖2 ≤
√
n + m − 1, 0 < wm < 1 and ‖u‖2 ≤ 1, one has

‖y‖2 ≤ ‖z‖2 + wm‖u‖2 ≤
√
n+m, yielding y ∈ B(0,

√
n+m). Since gm(z) ≤ −δm, we have

gm(y) ≤ gm(z) + Lgm‖y− z‖2 ≤ −δm + Lgmwm‖u‖2 ≤ −δm + Lgm
δm

2Lgm
≤ −δm2 . (7.1.55)
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Thus y ∈ {gm ≤ − δm2 }. This in turn implies

|ξm(y)− ξm(z)|
=

∣∣∣ f(y)+ ε
2

gm(y) −
f(z)+ ε

2
gm(z)

∣∣∣
= |(f(y)+ ε

2 )gm(z)−(f(z)+ ε
2 )gm(y)|

|gm(y)||gm(z)|
≤ 2

δ2
m
|(f(y) + ε

2 − f(z)− ε
2 )gm(z) + (f(z) + ε

2 )(gm(z)− gm(y))|
≤ 2

δ2
m

[|f(y)− f(z)||gm(z)|+ (|f(z)|+ ε
2 )|gm(z)− gm(y)|]

≤ 2
δ2
m

[Lf‖y− z‖2Cgm + (Cf + ε
2 )Lgm‖z− y‖2]

≤ 2
δ2
m

[LfCgm + (Cf + ε
2 )Lgm ]wm‖u‖2 ≤ ε

4Cgm
≤ Mm

2 .

(7.1.56)

Since ξm(z) ≥ Mm, we obtain ξm(y) ≥ ξm(z) − |ξm(y) − ξm(z)| ≥ Mm − Mm

2 = Mm

2 , yielding
y ∈ {ξm ≥ Mm

2 }, which concludes the proof of (7.1.54) and ensures that
√
ξm is well-defined on

Wm.
Let us prove that

√
ξm is Lipschitz on Wm. Let y, z ∈Wm such that y 6= z. Then

|
√
ξm(y)−

√
ξm(z)|

‖y−z‖2
= |ξm(y)−ξm(z)|

‖y−z‖2(
√
ξm(y)+

√
ξm(z))

≤

∣∣∣ f(y)+ ε
2

gm(y) −
f(z)+ ε

2
gm(z)

∣∣∣
2
√

Mm
2 ‖y−z‖2

≤ |(f(y)+ ε
2 )gm(z)−(fm(z)+ ε

2 )gm(y)|
2gm(y)gm(z)

√
ε

4Cgm
‖y−z‖2

≤ 2|(f(y)+ ε
2 )gm(z)−(fm(z)+ ε

2 )gm(y)|
δ2
m

√
ε

4Cgm
‖y−z‖2

= 2|(f(y)+ ε
2−f(z)− ε2 )gm(z)+(f(z)+ ε

2 )(gm(z)−gm(y))|
δ2
m

√
ε

4Cgm
‖y−z‖2

≤ 2[|f(y)−f(z)||gm(z)|+(|f(z)|+ ε
2 )|gm(z)−gm(y)|]

δ2
m

√
ε

4Cgm
‖y−z‖2

≤ 2[Lf‖y−z‖2Cgm+(Cf+ ε
2 )Lgm‖z−y‖2]

δ2
m

√
ε

4Cgm
‖y−z‖2

≤ 2[LfCgm+(Cf+ ε
2 )Lgm ]

δ2
m

√
ε

4Cgm

=: L√
ξm
.

(7.1.57)

Thus, L√
ξm

is a Lipschitz constant of
√
ξm on Wm.

Set K := Sm−1∩B(0,
√
n+m−1), K1 := K∩{ξm ≥Mm}∩{gm ≤ −δm} and K2 := K\({ξm ≥

Mm} ∩ {gm ≤ −δm}). Note that K = K1 ∪K2 and K1 ∩K2 = ∅. From (7.1.50), ϕm =
√
ξm on

K1 and ϕm =
√
Mm on K2.

To conclude that ϕm is Lipschitz on K according to Lemma 7.4 (see Figure 7.1), it is sufficient
to prove that ϕm is locally Lipschitz on K.

Explicitly, we will show that for all z ∈ K, ϕm is Lipschitz on B(z, wm2 ) ∩ K with Lipschitz
constant L√

ξm
. Let z ∈ K. Let u, v ∈ B(z, wm2 ) ∩K and consider the following cases:

• Case 1: u,v ∈ K1. Then u,v ∈ Wm by definition of Wm. Moreover, ϕm(u) =
√
ξm(u) and

ϕm(v) =
√
ξm(v). In this case, by the Lipschitz continuity of

√
ξm on Wm,

|ϕm(u)− ϕm(v)| = |
√
ξm(u)−

√
ξm(v)| ≤ L√

ξm
‖u− v‖2 . (7.1.58)

• Case 2: u,v ∈ K2. In this case, ϕm(u) = ϕm(v) =
√
Mm, so that

|ϕm(u)− ϕm(v)| = 0 ≤ L√
ξm
‖u− v‖2 . (7.1.59)

• Case 3: u ∈ K1 and v ∈ K2. We claim that B(z, wm2 ) ⊂ Wm. Let q ∈ B(z, wm2 ). Then
‖q − u‖2 ≤ ‖q − z‖2 + ‖z − u‖2 ≤ wm yielding q ∈ u + wmBn ⊂ K1 + wmBn ⊂ Wm.
Then u,v ∈ B(z, wm2 ) ⊂ Wm. Moreover, ϕm(u) =

√
ξm(u) and ϕm(v) =

√
Mm. According

to the continuity of ξm on B(z, wm2 ) ⊂ Wm and the convexity of B(z, wm2 ), there exists
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wm
2

ξm = Mm gm = − δm2 gm = 0

K

U

ξm > Mm

z

u vy

Wm

wm

W

A1C1 V1

Figure 7.1: Illustration for the proof of the Lipschitz continuity of ϕm on K (rectangle). Here
K = Sm−1 ∩B(0,

√
n+m− 1) and U = K + wm

2 B◦(0, 1) with the notation of Lemma 7.4.

y ∈ B(z, wm2 ) ∩ {ξm = Mm} ∩ {tu + (1− t)v : t ∈ [0, 1]}. Then with y = λu + (1− λ)v for
some λ ∈ [0, 1], we have

|ϕm(u)− ϕm(v)| ≤ |ϕm(u)− ϕm(y)|+ |ϕm(y)− ϕm(v)|
≤ |

√
ξm(u)−

√
ξm(y)|+ |

√
Mm −

√
Mm|

≤ L√
ξm
‖u− y‖2

≤ L√
ξm
‖u− λu− (1− λ)v‖2

≤ L√
ξm

(1− λ)‖u− v‖2 ≤ L√ξm‖u− v‖2 .

(7.1.60)

From the proof of Lemma 7.4, the Lipschitz constant of ϕm on K is given by

Lϕ̄m := max
{

4Cϕm
wm

, L√
ξm

}
, (7.1.61)

Here we have covered K by a finite sequence of balls with radii wm2 and centers lying on K.

The function ϕm has a Lipschitz continuous extension ϕ̄m. Let ϕ̄m : Rn → R be the
function defined by

ϕ̄m(x) := inf
y
{ϕm(y) + Lϕ̄m‖x− y‖2 : y ∈ Sm−1 ∩B(0,

√
n+m− 1)} . (7.1.62)

By Kirszbraun’s theorem (stated in Lemma 7.5), ϕ̄m is Lipschitz continuous with Lipschitz constant
Lϕ̄m and ϕ̄m = ϕm on Sm−1 ∩B(0,

√
n+m− 1).

The function ϕ̄m is even, positive and has a finite upper bound on B(0,
√
n + m) de-

pending on ε. Let us prove that ϕ̄m is even. Consider

ϕ̄m(−x) = inf
y
{ϕm(y) + Lϕ̄m‖ − x− y‖2 : y ∈ Sm−1 ∩B(0,

√
n+m− 1)} . (7.1.63)

Let y be any feasible solution of (7.1.63). Since g1, . . . , gm−1 are even, Sm−1 ∩ B(0,
√
n + m) is

symmetric, i.e., Sm−1 ∩B(0,
√
n+m) = −Sm−1 ∩B(0,

√
n+m), it turns out that −y is a feasible
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solution of (7.1.63). Thus,

ϕ̄m(−x) = inf−y{ϕm(−y) + Lϕ̄m‖ − x + y‖2 : −y ∈ Sm−1 ∩B(0,
√
n+m− 1)}

= infy{ϕm(y) + Lϕ̄m‖y− x‖2 : y ∈ Sm−1 ∩B(0,
√
n+m− 1)} = ϕ̄m(x) , (7.1.64)

where the latter inequality is due to the fact that ϕm is even (since ξm, gm are even). From this,
ϕ̄m is even. It is not hard to show that ϕ̄m ≥

√
Mm since ϕm ≥

√
Mm.

Let us estimate the upper bound of ϕ̄m on B(0,
√
n + m). Let x ∈ B(0,

√
n + m) and y ∈

Sm−1 ∩B(0,
√
n+m− 1). From (7.1.62), we get

ϕ̄m(x) ≤ ϕm(y) + Lϕ̄m‖x− y‖2 ≤ Cϕm + (2(
√
n+m)− 1)Lϕ̄m =: Cϕ̄m . (7.1.65)

Thus,
supx∈B(0,

√
n+m) ϕ̄m(x) ≤ Cϕ̄m . (7.1.66)

Set fm−1 := f + ε
2 − ϕ̄

2
mgm.

From (7.1.40) and since ϕ̄m = ϕm =
√
ψm on Sm−1 ∩ B(0,

√
n + m − 1), fm−1 ≥ 0 on

Sm−1 ∩ B(0,
√
n + m − 1). Since ϕ̄m is Lipschitz continuous, fm−1 is Lipschitz continuous on

B(0,
√
n+m).

A bound and a Lipschitz constant of fm−1 on B(0,
√
n + m) both depend on ε. Let us

compute an upper bound of |fm−1| on B(0,
√
n+m). Let y ∈ B(0,

√
n+m). Then

|fm−1(y)| ≤ |f(y)|+ ε
2 + ϕ̄m(y)2|gm(y)| ≤ Cf + ε

2 + CgmC
2
ϕ̄m =: Cfm−1 . (7.1.67)

Thus,
‖fm−1‖B(0,

√
n+m) ≤ Cfm−1 . (7.1.68)

We now estimate the Lipschitz constant of fm−1 on B(0,
√
n + m). Let y, z ∈ B(0,

√
n + m)

such that y 6= z. Then

|fm−1(y)−fm−1(z)|
‖y−z‖2

≤ |f(y)−f(z)|+|ϕ̄m(y)2gm(y)−ϕ̄m(z)2gm(z)|
‖y−z‖2

≤ Lf + |ϕ̄m(y)2gm(y)−ϕ̄m(z)2gm(y)|
‖y−z‖2

+ |ϕ̄m(z)2gm(y)−ϕ̄m(z)2gm(z)|
‖y−z‖2

= Lf + |gm(y)||ϕ̄m(y)+ϕ̄m(z)||ϕ̄m(y)−ϕ̄m(z)|+ϕ̄m(z)2|gm(y)−gm(z)|
‖y−z‖2

≤ Lf + 2CgmCϕ̄mLϕ̄m‖y−z‖2+C2
ϕ̄m

Lgm‖y−z‖2
‖y−z‖2

= Lf + 2CgmLϕ̄mCϕ̄m + LgmC
2
ϕ̄m =: Lfm−1 .

(7.1.69)

Then, Lfm−1 is a Lipschitz constant of fm−1 on B(0,
√
n+m).

Notice that Cϕ̄m , Lϕ̄m , Cfm−1 , Lfm−1 are obtained by composing finitely many times the fol-
lowing operators: “+”, “−”, “×”, “÷”, “| · |”,“(x1, x2) 7→ max{x1, x2}”, “(x1, x2) 7→ min{x1, x2}”,
“(·)αm” and “

√
·”, where all arguments possibly depend on ε. Without loss of generality we can

assume Cϕ̄m = r̄mε
−rm , Lϕ̄m = t̄mε

−tm , Cfm−1 = c̄m−1ε
−cm−1 , Lfm−1 = l̄m−1ε

−lm−1 for some r̄m,
rm, t̄m, tm, c̄m−1, cm−1, l̄m−1, lm−1 large enough and independent of ε.

Backward induction. Repeating the above process (after replacing fj by fj−1) several times,
we obtain functions ϕ̄j : Rn → R, j = m,m− 1, . . . , 1, such that,

1. ϕ̄j is positive, even and bounded from above by Cϕ̄j = r̄jε
−rj on B(0,

√
n + j) for some

positive constants r̄j and rj independent of ε.

2. ϕ̄j is Lipschitz with Lipschitz constant Lϕ̄j = t̄jε
−tj for some positive constants t̄j and tj

independent of ε.

3. fj−1 := fj + ε
2m−j+1 − ϕ̄2

jgj satisfies:

(a) fj−1 ≥ 0 on Sj−1 ∩B(0,
√
n+ j − 1);
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(b) fj−1 ≤ Cfj−1 on B(0,
√
n + j), where Cfj−1 = c̄j−1ε

−cj−1 for some positive constants
c̄j−1 and cj−1 independent of ε;

(c) fj−1 is Lipschitz on B(0,
√
n + j) with Lipschitz constant Lfj−1 = l̄j−1ε

−lj−1 for some
positive constants l̄j−1 and lj−1 independent of ε.

Then
f0 = f1 + ε

2m − ϕ̄
2
1g1

=
(
f2 + ε

2m−1 − ϕ̄2
2g2
)

+ ε
2m − ϕ̄

2
1g1

= f2 +
(

ε
2m−1 + ε

2m
)
− ϕ̄2

2g2 − ϕ̄2
1g1

= · · · = fm + ε
∑m
i=1

1
2i −

∑m
i=1 ϕ̄

2
i gi

= f + ε
2

1− 1
2m

1− 1
2
−
∑m
i=1 ϕ̄

2
i gi

= f + ε(1− 1
2m )−

∑m
i=1 ϕ̄

2
i gi .

(7.1.70)

From this and since f0 ≥ 0 on S0 ∩B(0,
√
n) = B(0,

√
n) ⊃ [−1, 1]n, we obtain

f + ε−
m∑
i=1

ϕ̄2
i gi ≥

ε

2m on [−1, 1]n . (7.1.71)

Polynomial approximations for the weight functions

Approximating with Bernstein polynomials. For each i ∈ [m], we now approximate ϕ̄i on
[−1, 1]n with the following Bernstein polynomials:

B
(d)
i (x) = By7→ϕ̄i(2y−e),de

(
x + e

2

)
, d ∈ N , (7.1.72)

with e = (1, . . . , 1) ∈ Rn. By using Lemma 7.7, for all x ∈ [−1, 1]n, for i ∈ [m],

|B(d)
i (x)− ϕ̄i(x)| ≤ Lϕ̄i

(
n

d

) 1
2

, d ∈ N , (7.1.73)

and the following inequality holds for all x ∈ [−1, 1]n, for i ∈ [m]:

|B(d)
i (x)| ≤ supx∈[−1,1]n |ϕ̄i(x)| ≤ Cϕ̄i . (7.1.74)

For i ∈ [m], let

di := 2ui with ui =
⌈2C2

giC
2
ϕ̄inL

2
ϕ̄i(m+ 1)222m

ε2

⌉
, (7.1.75)

where Cgi := ‖gi‖B(0,
√
n+i), for i ∈ [m]. Then for all x ∈ [−1, 1]n,

|B(di)
i (x)− ϕ̄i(x)| ≤ Lϕ̄i

(
n
di

) 1
2

≤ Lϕ̄i

(
n

4C2
gi
C2
ϕ̄i
nL2
ϕ̄i

(m+1)222m

ε2

) 1
2

= ε
2CgiCϕ̄i (m+1)2m .

(7.1.76)

Converting to homogeneous approximations. For i ∈ [m], we write B(di)
i =

∑ndi
j=0 h

(j)
i such

that h(j)
i is a homogeneous polynomial with deg(h(j)

i ) = j. Set pi := 1
2 [B(di)

i (x) + B
(di)
i (−x)], for

i ∈ [m]. Then pi =
∑nui
t=0 h

(2t)
i , for i ∈ [m], since h(j)

i (x) = h
(j)
i (−x) if j is even and h

(j)
i (x) =

−h(j)
i (−x) otherwise. Since ϕ̄i is even, ϕ̄i(x) = 1

2 [ϕ̄i(x) + ϕ̄i(−x)]. It implies that for x ∈ [−1, 1]n,
for i ∈ [m],

|pi(x)− ϕ̄i(x)| = | 12 [B(di)
i (x) +B

(di)
i (−x)]− 1

2 [ϕ̄i(x) + ϕ̄i(−x)]|
≤ 1

2 |B
(di)
i (x)− ϕ̄i(x)|+ 1

2 |B
(di)
i (−x)− ϕ̄i(−x)|

≤ ε
4CgiCφ̄i (m+1)2m + ε

4CgiCϕ̄i (m+1)2m = ε
2CgiCϕ̄i (m+1)2m .

(7.1.77)
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and

|pi(x)| ≤ 1
2(|B(di)

i (x)|+ |B(di)
i (x)|) ≤ 1

2(Cϕ̄i + Cϕ̄i) = Cϕ̄i . (7.1.78)

Set qi :=
∑nui
t=0 h

(2t)
i ‖x‖

2(nui−t)
2 . Then qi is a homogeneous polynomial of degree 2nui and qi = pi

on Sn−1, for i ∈ [m]. Thus for i ∈ [m], |qi(x)− ϕ̄i(x)| ≤ ε
2CgiCϕ̄i (m+1)2m and |qi(x)| ≤ Cϕ̄i , for all

x ∈ Sn−1. From these and (7.1.71), for all x ∈ Sn−1,

f(x) + ε−
∑m
i=1 qi(x)2gi(x)

= f(x) + ε−
∑m
i=1 ϕ̄i(x)2gi(x) +

∑m
i=1 gi(x)[ϕ̄i(x)2 − qi(x)2]

≥ ε
2m −

∑m
i=1 |gi(x)||ϕ̄i(x) + qi(x)||ϕ̄i(x)− qi(x)|

≥ ε
2m −

∑m
i=1 Cgi(|ϕ̄i(x)|+ |qi(x)|) ε

2CgiCϕ̄i (m+1)2m

≥ ε
2m −

∑m
i=1 2CgiCϕ̄i ε

2CgiCϕ̄i (m+1)2m

= ε
2m −

mε
(m+1)2m = ε

(m+1)2m .

(7.1.79)

Moreover, for all x ∈ Sn−1,

f(x) + ε−
∑m
i=1 qi(x)2gi(x) ≤ Cf + ε+

∑m
i=1 C

2
ϕ̄iCgi =: CF . (7.1.80)

Applying the global positivity certificate

Set D := maxi∈[m]{2nui + dgi , df} and

F = ‖x‖2(D−df )
2 (f + ε‖x‖2df2 )−

∑m
i=1 giq

2
i ‖x‖

2(D−2nui−dgi )
2 . (7.1.81)

Then F is a homogeneous polynomial of degree 2D and for all x ∈ Sn−1,

CF ≥ F (x) = f(x) + ε−
∑m
i=1 qi(x)2gi(x) ≥ ε

(m+1)2m . (7.1.82)

It implies that F is a positive definite form of degree 2D with infx∈Sn−1 F (x) ≥ ε
(m+1)2m and

supx∈Sn−1 F (x) ≤ CF . There is no loss of generality in assuming CF = bε−b for some large enough
b > 0 independent of ε. Similarly assume that D ≥ dε−d for some large enough d > 0 independent
of ε. From this,

δ(F ) ≤ bε−b

ε
(m+1)2m

= b(m+ 1)2mε−b−1 . (7.1.83)

Set

K̄ := 2ndε−d(2dε−d − 1)
4 log 2 b(m+ 1)2mε−b−1 . (7.1.84)

Then

K̄ ≥ 2nD(2D − 1)
4 log 2 δ(F )− n+ 2D

2 . (7.1.85)

Clearly there exist positive constants c̄ and c independent of ε such that c̄ε−c ≥ K̄. Let K ∈ N
and K ≥ c̄ε−c ≥ K̄. According to Lemma 1.3.1, there exists a homogeneous SOS polynomial s0 of
degree 2(D +K) such that ‖x‖2K2 F = s0. It implies that

‖x‖2(D−df+K)
2 (f + ε‖x‖2df2 ) = s0 +

∑m
i=1 giq

2
i ‖x‖

2(D−2nui−dgi+K)
2

= s0 +
∑m
i=1 gisi ,

(7.1.86)

where si := q2
i ‖x‖

2(D−2nui−dgi+K)
2 is a homogeneous SOS polynomial such that deg(gisi) = 2(K+

D), for i ∈ [m]. Set k = D − df +K. Then ‖x‖2k2 (f + ε‖x‖2df2 ) = s0 +
∑m
i=1 gisi with deg(s0) =

deg(gisi) = 2(k + df ), for i ∈ [m].
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The case of the ice cream constraint. Assume that m = 1 and g1 = x2
n − ‖x′‖22 with

x′ := (x1, . . . , xn−1). We shall show that c = 65. Using Lemma 7.3, we can take αm = 2 in
(7.1.43). We then obtain the following asymptotic equivalences as ε→ 0+:

δm ∼ R1ε
2 ⇒ Cψm ∼ R2ε

−2 ⇒ Cϕm ∼ R3ε
−1 ⇒ wm ∼ R4ε

5 ⇒ L√
ξm
∼ R5ε

− 9
2

⇒ Lϕ̄m ∼ R6ε
−6 ⇒ Cϕ̄m ∼ R7ε

−6 ⇒ um ∼ R8ε
−26 ⇒ dm ∼ R9ε

−26

⇒ CF ∼ R10ε
−12 ⇒ D ∼ R11ε

−26 ⇒ b = 12⇒ d = 26⇒ K̄ ∼ R12ε
−65

⇒ c = 65.

(7.1.87)

for some Rj > 0 independent of ε, j ∈ [12]. This completes the proof of Theorem 7.1.

7.2 Polynomial optimization
This section is concerned with some applications to polynomial optimization.
Consider the following POP:

f? := inf
x∈S(g)

f(x) , (7.2.1)

where f ∈ R[x] and
S(g) = {x ∈ Rn : gi(x) ≥ 0 , i ∈ [m]} , (7.2.2)

for some g = {gi}i∈[m] ∈ R[x]. Recall that θ = 1 + ‖x‖22.

7.2.1 General case
In this subsection, we improve the convergence rate of the Moment-SOS hierarchy described in

[130, Theorem 4.3], based on Putinar–Vasilescu’s Positivstellensatz [169].

Theorem 7.2. Let f, g1, . . . , gm be polynomials such that f? defined as in (7.2.1) and S(g) defined
as in (7.2.2) satisfy that S(g) has nonempty interior and f? > −∞. Let ε > 0 and denote g0 := 1.
Let d := bdeg(f)/2c+ 1. Consider the hierarchy of semidefinite programs indexed by k ∈ N:

τ
(ε)
k := inf Ly(θk(f + εθd))

s.t. y = (yα)α∈Nn2(d+k)
⊂ R ,

Mk+d(y) � 0 ,
Mk+d−dgie(giy) � 0, i ∈ [m] ,
Ly(θk) = 1 .

(7.2.3)

For every k ∈ N, the dual of (7.2.3) reads as:

ρ
(ε)
k := supλ∈R{λ : θk (f − λ+ ε θd) ∈ Qk+d(g)} , (7.2.4)

where Qr(g) is defined as in (1.3.8). The following statements hold:

1. For all k ∈ N,
ρ

(ε)
k ≤ ρ

(ε)
k+1 ≤ f

? . (7.2.5)

2. Assume that problem (7.2.1) has an optimal solution x?. Then there exist positive constants
c̄ and c depending on f, g1, . . . , gm such that for all k ≥ c̄ε−c,

0 ≤ ρ(ε)
k − f

? ≤ εθ(x?)d . (7.2.6)

3. Strong duality holds for all orders k of the primal-dual problems (7.2.3)-(7.2.4).

The proof of Theorem 7.2 is exactly the same as the proof of [130, Theorem 7]. The second
statement relies on Corollary 7.1. The third statement is due to the Slater condition [201, Theorem
3.1] since S(g) has nonempty interior (see in detail [130, Proposition 2 and Remark 3]).
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7.2.2 Compact case
In this subsection, we consider the case when S(g) is compact by assuming that a ball constraint

is present. We can then remove the perturbation term εθd in the hierarchy based on Putinar–
Vasilescu’s Positivstellensatz, described in the previous subsection.

Theorem 7.3. Let f, g1, . . . , gm be polynomials such that f? defined as in (7.2.1) and S(g) defined
as in (7.2.2) satisfy that S(g) has nonempty interior and f? > −∞. Denote g0 := 1. Let d :=
bdeg(f)/2c+1. Assume that g1 = R−‖x‖22 for some R > 0. Consider the hierarchy of semidefinite
programs indexed by k ∈ N:

τ
(0)
k := inf Ly(θkf)

s.t. y = (yα)α∈Nn2(d+k)
⊂ R ,

Mk+d(y) � 0 ,
Mk+d−dgie(giy) � 0, i ∈ [m] ,
Ly(θk) = 1 .

(7.2.7)

For every k ∈ N, the dual of (7.2.7) reads as:

ρ
(0)
k := supλ∈R{λ : θk (f − λ) ∈ Qk+d(g)} , (7.2.8)

where Qr(g) is defined as in (1.3.8). The following statements hold:

1. For all k ∈ N,
ρ

(0)
k ≤ ρ

(0)
k+1 ≤ f

? . (7.2.9)

2. There exist positive constants c̄ and c depending on f, g1, . . . , gm such that

0 ≤ f? − ρ(0)
k ≤

(
c̄

k

) 1
c

(7.2.10)

3. Strong duality holds for all orders k of the primal-dual problems (7.2.7)-(7.2.8).

Proof. The first and third statements of Theorem 7.3 can be proved similarly to the ones of
Theorem 7.2. Let us prove the second statement. By using Corollary 7.2, there exist positive
constants c̄ and c depending on f, g1, . . . , gm such that for any ε > 0, for all k ≥ c̄ε−c,

θk(f − f? + ε) ∈ Qk+d(g) . (7.2.11)

Let K ∈ N. Set ε = ( c̄
K ) 1

c . Then ε > 0 and K = c̄ε−c, so that

θK(f − f? + ε) ∈ QK+d(g) . (7.2.12)

It implies that f? − ε is a feasible solution of (7.2.8) with relaxation order K, yielding

0 ≤ f? − ρ(0)
K ≤ f

? − (f? − ε) = ε =
(

c̄

K

) 1
c

. (7.2.13)

Hence the desired result follows.

Remark 7.5. The authors’ bounds in Theorems 7.2 and 7.3 are only for worst cases. In fact, for
generic cases of polynomials, the Moment-SOS hierarchy based on Putinar’s Positivstellensatz (in
[102]) has finite convergence [147].



Chapter 8

A sparse version of Reznick’s
Positivstellensatz

Most of the content of this chapter is from [133].
Inspired by correlative sparsity due to Waki et al. [203, 103] and Putinar–Vasilescu’s Posi-

tivstellensatz that is applied for polynomial optimization in the previous two chapters, we prove
a sparse version of Reznick’s Positivstellensatz. Accordingly we obtain some representations that
involve uniform denominators and quadratic modules in the sparse setting.

Exploiting sparsity pattern. Let n,m ∈ N>0. For T ⊂ [n], denote by R[x(T )] (resp. Σ[x(T )])
the ring of polynomials (resp. the subset of SOS polynomials) in the variables x(T ) := {xj : j ∈ T}.
Also denote by R[x(T )]t (resp. Σ[x(T )]t) the restriction of R[x(T )] (resp. Σ[x(T )]) to polynomials
of degree at most t (resp. 2t). For W ⊂ [m], we note gW := {gi : i ∈W}.

Designing alternative hierarchies for solving f? := inf{f(x) : x ∈ S(g)}, significantly (compu-
tationally) cheaper than their dense version (1.2.4), while maintaining convergence to the optimal
value f? is a real challenge with important implications.

One first such successful contribution is due to Waki et al. [203] when the input polynomial
data f, gi are sparse, where by sparse we mean the following:

Assumption 8.1. The following conditions hold:

(i) Running intersection property (RIP): [n] =
⋃p
c=1 Ic with p ∈ N≥2, Ic 6= ∅, c ∈ [p], and for

every c ∈ {2, . . . , p}, there exists sc ∈ [c− 1], such that Îc ⊂ Isc , where Îc := Ic ∩
(⋃c−1

j=1 Ij

)
.

Note that s2 = 1 and w.l.o.g, set Î1 := ∅. Denote nc := |Ic| and n̂c := |Îc|, c ∈ [p].

(ii) Structured sparsity pattern for the objective function1: f =
∑p
c=1 fc where fc ∈ R[x(Ic)]deg(f),

c ∈ [p].

(iii) Structured sparsity pattern for the constraints: [m] =
⋃p
c=1 Jc and for every i ∈ Jc, gi ∈

R[x(Ic)], c ∈ [p].

(iv) Additional redundant quadratic constraints: There exists R > 0 such that ‖x‖22 ≤ R for all
x ∈ S(g) and R− ‖x(Ic)‖22 ∈ gJc , c ∈ [p].

With τ (≤ n) being the maximum number of variables appearing in each index subset Ic,
i.e., τ := max{nc : c ∈ [p]}, Table 8.1 displays the respective computational complexity of the
sparse hierarchy of Waki et al. [203] and the dense hierarchy of Lasserre [102] for SDPs with same
relaxation order k ∈ N. Obviously the sparse hierarchy provides a potentially high computational
saving when compared to the dense one. In addition, convergence of the hierarchy of Waki et al. to
the optimal value of the original POP was proved in [103], resulting in the following sparse version
of Putinar’s Positivstellensatz:

1If there are fc in the sum f such that deg(fc) > deg(f), we can always remove the high degree redundant term
in fc which cancel with each other to make degree of fc at most deg(f).

147
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Table 8.1: Comparing the computational complexity of the sparse and dense hierarchies.

SDP of order k sparse hierarchy dense hierarchy
number of variables O(τ2k) O(n2k)
largest size of SDP matrix O(τk) O(nk)

Theorem 8.1. (Lasserre, Waki et al.) Let Assumption 8.1 hold. If a polynomial f is positive on
S(g), then there exist σ0,c ∈ Σ[x(Ic)]k, σi,c ∈ Σ[x(Ic)]k−dgie, i ∈ Jc, c ∈ [p] such that

f =
p∑
c=1

(
σ0,c +

∑
i∈Jc

σi,cgi

)
. (8.0.1)

Compactness of the feasible set S(g) is a crucial ingredient of the proof in [103]; shortly after,
Grimm et al. [68] provided another (simpler) proof where int(S(g)) 6= ∅ is not needed, but where
compactness of S(g) is still a crucial assumption.

Motivation for sparse representations on noncompact sets. We remark that Theorem 8.1
requires the additional redundant quadratic constraints (Assumption 8.1 (iv)), which is slightly
stronger than just assuming the compactness of S(g). When S(g) is compact, we can always add
these constraints but we need to know the radius R > 0 of a ball centered at the origin and
containing S(g). In this case, adding such constraints increases the number of positive semidefinite
matrices from m to m+ p in each SDP. In addition, it may be hard to verify compactness of S(g)
and obtain such a radius R.

To the best of our knowledge, in the noncompact case there is still no Positivstellensatz allowing
one to build hierarchies for POPs satisfying:

- the RIP and the structured sparsity pattern from Assumption 8.1 (i)-(iii),
- and a guarantee of convergence to the global optimum.
In fact we provide Examples 6.1, 8.3, and 8.4, which show that in both unconstrained and

constrained cases, there exist sparse nonnegative polynomials which do not have a sparse SOS-
based decomposition (8.0.1) à la Putinar. Such examples have been our motivation to investigate
existence of sparse representations in the noncompact case, as well as to construct converging
SDP-hierarchies for sparse polynomial optimization in general.

Contribution. Our contribution is threefold:
I. We first provide a rational SOS representation for a positive definite rational form which is

a sum of sparse rational functions with uniform denominators, satisfying the structured sparsity
pattern and the RIP stated in Assumption 8.1 (i). This representation is provided in Theorem 8.2.
As a direct consequence, we obtain a sparse version of Reznick’s Positivstellensatz in Corollary 8.1.

II. Then, we provide two positivity certificates for arbitrary small perturbations of – globally
nonnegative polynomials in Corollary 8.2 – and polynomials nonnegative on a (possibly noncom-
pact) basic semialgebraic set in Corollary 8.3, when the input data satisfy a similar sparsity pattern.
These two certificates are obtained via a sparse version of Putinar–Vasilescu’s Positivstellensatz
and do not require the additional constraints from Assumption 8.1 (iv).

III. In Section 8.2, we build up a hierarchy of semidefinite relaxations for polynomial opti-
mization based on the sparse version of Putinar–Vasilescu’s Positivstellensatz. Convergence of the
hierarchy is guaranteed and illustrated on minimization of random quadratic forms on the nonneg-
ative orthant. However a naive implementation of this hierarchy leads to a heavy computational
burden when the number of variables is larger than 10.

Illustrations of such positivity certificates for polynomials nonnegative on noncompact basic
semialgebraic sets are provided in Example 8.1, 6.1, 8.3 and 8.4, for which positivity certificates
(1.2.4) do not exist.
The existence of such sparse SOS-representations is proved by combining different tools:
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(a) First, we use an idea similar to that developed in Grimm et al. [68] (in the compact case) to
prove that a sparse positive definite form can be decomposed as SOS of sparse positive definite
rational forms; as expected the noncompact case is technically more involved. This yields a
sparse version of Hilbert-Artin’s representation theorem in the case of positive definite forms.

(b) Next, we use generalizations of Schmüdgen’s Positivstellensatz presented by Schweighofer [187],
Berr-Wörmann [17], Jacobi [85], and Marshall [136, 137], for a finitely generated R-algebra in
each term of the sum, to obtain again a sparse version, this time of Reznick’s Positivstellensatz
for positive definite forms.

(c) Finally we combine the homogenization/dehomogenization method that we already used in
[130] together with limit tools, to provide the two sparse versions of Putinar–Vasilescu’s Posi-
tivstellensatz.

We acknowledge that the computational benefits are so far rather limited and that the present
contribution is essentially theoretical, as it provides a sparse analogue of Reznick’s Positivstellen-
staz. In our opinion, the sparse analogue of Putinar’s Positivstellenstaz is still the “champion”
algorithm to beat. Indeed the versatility of its power, which applies to both dense (but of modest
size) problems and large size sparse problems, is yet to be surpassed. So the practical benefits
of sparse Reznick Positivstellensatz are not immediately available with its obvious (but naive)
implementation. In order to address this computational issue, we propose to use a sampling
technique in the spirit of that advocated by Parrilo and Löfberg [118] for polynomial optimization,
and briefly described in Section 8.2.3. In our context it allows us to avoid clearing denominators
and its efficiency is illustrated on some numerical experiments presented in Section 8.2.4. Its com-
plete validation for rational functions is beyond the scope of the present chapter and we believe
that in view of the appealing form of our sparse version of Reznick’s Positivstellensatz, additional
investigation of powerful algorithmic implementations are worth pursuing.

8.1 Representation theorems
8.1.1 Notation and definitions

A function h is homogeneous of degree t if h(λx) = λth(x) for all x ∈ Rn and each λ ∈ R.
Therefore a homogeneous polynomial can be written as h =

∑
|α|=t hαxα. A function f : Rn → R

is even if f(x) = f(−x) for all x. A rational function h is the ratio of two polynomials and denote
by R(x) the space of all rational functions. A homogeneous rational function (also called be a
rational form, or form in short) can be written as the ratio of two homogeneous polynomials.

The degree-d homogenization h̃ of h ∈ R(x1, . . . , xn) is a homogeneous rational function in
R(x1, . . . , xn+1) of degree d defined by h̃(x, xn+1) = xdn+1h(x/xn+1). A rational positive definite
form of degree t is a homogeneous rational function of degree t which is positive everywhere except
at the origin. Equivalently, a homogeneous rational function h of degree t is a rational positive
definite form of degree t if and only if there exists ε > 0 such that h ≥ ε‖x‖2t2 .

For (i, j) ∈ N2, we denote the Kronecker delta function by

δi,j :=
{

1 if i = j ,
0 if i 6= j .

When Assumption 8.1 (i) holds, define

Φc :=
{
‖x(Îc)‖

2(1−δc,1)
2

∏p
j=c+1 ‖x(Îj)‖

2δc,sj
2 if c ∈ [p− 1] ,

‖x(Îc)‖
2(1−δc,1)
2 if c = p .

Obviously, one has Φc ∈ R[x(Ic)], for each c ∈ [p].

8.1.2 A key result
Let us state the first main result of this chapter which is of independent interest and very

useful in proving our representation results. In particular it yields a sparse version of Reznick’s
Positivstellensatz as a particular case.
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Theorem 8.2. Let Assumption 8.1 (i) hold. Let f ∈ R(x) be a positive definite rational form of
degree 2d with d ∈ N>0 such that

f =
p∑
c=1

qc

‖x(Ic)‖2kc2
,

where qc ∈ R[x(Ic)] is homogeneous of degree 2(d+ kc) for some kc ∈ N, c ∈ [p]. Then there exist
k ∈ N and σc ∈ Σ[x(Ic)]d+k(1+deg(Φc)/2), c ∈ [p], such that

f =
p∑
c=1

σc
‖x(Ic)‖2k2 Φkc

. (8.1.1)

The proof of Theorem 8.2 can be found in [133, Section 4].
As a consequence, we obtain the following sparse version of Reznick’s Positivstellensatz.

Corollary 8.1. Let Assumption 8.1 (i) hold. Assume that f is a positive definite form of degree
2d with d ∈ N>0 and f =

∑p
c=1 fc, where fc ∈ R[x(Ic)] is homogeneous of degree 2d, c ∈ [p]. Then

there exist k ∈ N and σc ∈ Σ[x(Ic)]d+k(1+deg(Φc)/2), c ∈ [p], such that

f =
p∑
c=1

σl
Hk
c

, (8.1.2)

where Hc := ‖x(Ic)‖22 Φc, c ∈ [p].

To prove Corollary 8.1, we apply Theorem 8.2 with kc = 0, c ∈ [p]. The representation (8.1.2)
can still hold even when f is not a positive definite form, as illustrated in the following example.

Example 8.1. Let f = f1 + f2, where

f1 := x2
4(x4

1x
2
2 + x4

2x
2
3 + x2

1x
4
3 − 3x2

1x
2
2x

2
3) + x8

3

is the so-called Delzell’s polynomial and f2 := x2
1x

2
2x

2
3x

2
5. The polynomial f1 is nonnegative, but not

SOS as shown in [176, Section 6]. Let I1 := {1, 2, 3, 4} and I2 := {1, 2, 3, 5}. Then f1 ∈ R[x(I1)]
and f2 ∈ R[x(I2)] are nonnegative and homogeneous of degree 8. Since f1 is nonnegative then f is
nonnegative. The following statements hold:

1. f is a nonnegative form, but is not positive definite;

2. f /∈ Σ[x(I1)] + Σ[x(I2)], but f ∈ Σ[x(I1)]6
‖x(I1)‖22Φ1

+ Σ[x(I2)]6
‖x(I2)‖22Φ2

.

The first statement follows from the fact that f(0, 0, 0, 1, 1) = 0, ensuring that f is not a positive
definite form.
Proof of the second statement: Assume by contradiction that f = σ1 + σ2 for some σc ∈ Σ[x(Ic)],
c = 1, 2. Evaluation at x5 = 0 yields f1 = σ1 + σ2(x1, x2, x3, 0), so that f1 is an SOS, which is
impossible. Thus, f /∈ Σ[x(I1)] + Σ[x(I2)]. However, (x2

1 + x2
2 + x3

3)f1 is SOS according to [182,
Example 4.4], so (x2

1 + x2
2 + x2

3)f ∈ Σ[x(I1)]5 + Σ[x(I2)]5. Note that Φ1 = Φ2 = x2
1 + x2

2 + x2
3.

Therefore

f ∈ Σ[x(I1)]5
Φ1

+ Σ[x(I2)]5
Φ2

⊂ Σ[x(I1)]6
H1

+ Σ[x(I2)]6
H2

.

Remark 8.1. A possibly simpler proof of Corollary 8.1 based on Carathéodory’s the-
orem.
In [14, Chapter I, Section 3], Barvinok provides a simple proof of Reznick’s theorem, based on
Carathéodory’s theorem. The basic idea is that a large enough power of the linear form 〈v,x〉2k is
a Dirac function on the unit sphere, centered at v. Therefore ‖x‖2k2 f (which is the same as f on
the unit sphere, and strictly positive) can naturally be written as a positive combination of Dirac
functions, which can be in turn decomposed as a positive weighted sum of powers of linear forms.
Compared to Reznick’s proof, this simple proof has a less constructive flavor. It is due to the fact
that we need to know the power of the linear form 〈v,x〉2k to construct the convex hull of such
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Dirac functions in order to apply Carathéodory’s theorem. If the shape of the uniform denomina-
tors involved in Reznick’s result is not available, finding such convex hull is hard and unnatural.
To prove our sparse version of Reznick’s result via the application of Carathéodory’s theorem, we
would need to construct the Dirac functions of the form σc/H

k
c . However these Dirac unctions are

complicated because each denominator Hk
c depends on the RIP. In our proof, we obtain the general

form of Hc via inductions. In case that such denominators Hk
c are known in advance, it might be

possible to prove our result in a simpler way.

8.1.3 Global nonnegativity
When Assumption 8.1 (i) holds, define the following polynomials, for each c ∈ [p]:

• θc := ‖x(Ic)‖22 + 1 and θ̂c := ‖x(Îc)‖22 + 1;

• Dc :=
{
θ̂

1−δc,1
c

∏p
j=c+1 θ̂

δc,sj
j if c < p ,

θ̂
1−δc,1
c if c = p ;

• Θc := θcDc and ωc := deg(Θc)/2.

Note that Θc ∈ Σ[x(Ic)]ωc , for each c ∈ [p]. We next state the following sparse version of Putinar–
Vasilescu’s Positivstellensatz for polynomials nonnegative on Rn.

Corollary 8.2. Let f be a nonnegative polynomial such that the conditions (i) and (ii) of As-
sumption 8.1 hold. Let ε > 0 and d ≥ deg(f)/2. Then there exist k ∈ N and σc ∈ Σ[x(Ic)]d+kωc ,
c ∈ [p], such that

f + ε

p∑
c=1

θdc =
p∑
c=1

σc
Θk
c

. (8.1.3)

The proof of Corollary 8.2 can be found in [133, Section 4].
The representation (8.1.3) can still hold even if ε = 0, as illustrated in the following examples.

Example 8.2. Let f = f1 + f2, where

f1 := 8 + 1
2x

2
1x

4
2 + (x2

1 − 2x3
1)x3

2 + (2x1 + 10x2
1 + 4x3

1 + 3x4
1)x2

2 + 4(x1 − 2x2
1)x2

is the so-called Leep-Starr’s polynomial and f2 := x2
1x

2
3. Let I1 := {1, 2} and I2 := {1, 3}, so that

f1 ∈ R[x(I1)] and f2 ∈ R[x(I2)]. As shown in [114, Example 2], f1 is nonnegative but not an SOS.
In addition, f2 is an SOS, so that f is nonnegative.

We claim that f /∈ Σ[x(I1)] + Σ[x(I2)]. Indeed, assume by contradiction that f = σ1 + σ2 for
some σc ∈ Σ[x(Ic)], c = 1, 2. Evaluation at x3 = 0, yields f1 = σ1 + σ2(x2, 0), so that f1 is an
SOS, which is impossible.

However, (x2
1 + 1)2f1 is a sum of three squares of polynomials according to [114, Example 2],

so (x2
1 + 1)2f ∈ Σ[x(I1)]5 + Σ[x(I2)]5. Note that D1 = D2 = x2

1 + 1. Thus,

f ∈ Σ[x(I1)]5
D2

1
+ Σ[x(I2)]5

D2
2

⊂ Σ[x(I1)]7
Θ2

1
+ Σ[x(I2)]7

Θ2
2

.

Example 8.3. As shown in [100, Example 5.2], the nonnegative polynomial

f = x2
1 − 2x1x2 + 3x2

2 − 2x2
1x2 + 2x2

1x
2
2 − 2x2x3 + 6x2

3 + 18x2
2x3 − 54x2x

2
3 + 142x2

2x
2
3

satisfies f ∈ R[x(I1)] + R[x(I2)] and f /∈ Σ[x(I1)] + Σ[x(I2)], with I1 = {1, 2} and I2 = {2, 3}.
However, f ∈ Σ[x(I1)]4

Θ1
+ Σ[x(I2)]4

Θ2
, where Θ1 = (x2

2 +1)(x2
1 +x2

2 +1) and Θ2 = (x2
2 +1)(x2

2 +x2
3 +1).

It is due to the fact that f = σ1
D1

+ σ2
D2

, where D1 = D2 = x2
2 + 1 and σ1, σ2 are SOS polynomials

given in [133, Appendix].
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8.1.4 Positivity on a semialgebraic set

We next state our second main result, namely a sparse version of Putinar–Vasilescu’s Posi-
tivstellensatz for polynomials nonnegative on (possibly noncompact) basic semialgebraic sets.

Corollary 8.3. Let f ∈ R[x] be nonnegative on S(g) such that the conditions (i), (ii) and (iii)
of Assumption 8.1 hold. Let ε > 0 and d ≥ 1 + bdeg(f)/2c. Then there exist k ∈ N, σ0,c ∈
Σ[x(Ic)]d+kωc and σi,c ∈ Σ[x(Ic)]d+kωc−dgie, i ∈ Jc, c ∈ [p], such that

f + ε

p∑
c=1

θdc =
p∑
c=1

σ0,c +
∑
i∈Jc σi,cgi

Θk
c

. (8.1.4)

The proof of Corollary 8.3 can be found in [133, Section 4].

Example 8.4. Let f = f1 + f2, where f1 = x1x2 and f2 = x2
2x3. Let g = {g1, g2, g3}, where

g1 = x3
2, g2 = −g1 and g3 = x3. It is not hard to show that f = 0 on S(g), so that f ≥ 0 on S(g).

By noting I1 := {1, 2} and I2 := {2, 3}, one has {f1, g1, g2} ⊂ R[x(I1)] and {f2, g3} ⊂ R[x(I2)].
We claim the following statements:

1. f /∈ Σ[x(I1)] + g1R[x(I1)] + Σ[x(I2)] + g3Σ[x(I2)];

2. for every ε > 0,

f + ε(θ2
1 + θ2

2) ∈ Σ[x(I1)]2k+2 + g1R[x(I1)]4k+1

Θk
1

+ Σ[x(I2)]2k+2 + g3Σ[x(I2)]4k+3

Θk
2

,

for some k ∈ N depending on ε.

Proof of the first statement: Assume by contradiction that there exist σ1 ∈ Σ[x(I1)], ψ1 ∈ R[x(I1)]
and σ2, σ3 ∈ Σ[x(I2)] such that f = σ1 +ψ1g1 +σ2 +σ3g3. Evaluation at x1 = 1 and x3 = 0 yields

x2 = σ1(1, x2) + ψ1(1, x2)x3
2 + σ2(x2, 0) ∈ Σ[x2] + x3

2R[x2] ,

which is impossible due to [130, Lemma 3.3 (i)].
Proof of the second statement: With ε > 0 fixed,

f1 + εθ2
1 = x1x2 + ε(1 + x2

1 + x2
2)2 = x1x2 + ε+ εx2

1 + σ4 ,

for some σ4 ∈ Σ[x(I1)]2. Let k ∈ N≥2 be fixed. Then Dk
1 = (1 + x2

2)k = 1 + kx2
2 + x4

2σ5 for some
σ5 ∈ Σ[x2]k−2, which implies

Dk
1 (f1 + εθ2

1) = x1x2 + εx2
1 + εkx2

2 + σ6 + ψ2x
3
2 ,

for some σ6 ∈ Σ[x(I1)]k+2 and ψ2 ∈ R[x(I1)]2k+1. Assume that k ≥ ε−2/4. Then

Dk
1 (f1 + εθ2

1) = x2
1
(
ε− 1

4εk
)

+
(
x2
√
εk + x1

2
√
εk

)2
+ σ6 + ψ2x

3
2

∈ Σ[x(I1)]k+2 + g1R[x(I1)]2k+1 ,

which implies f1 + εθ2
1 ∈

Σ[x(I1)]2k+2+g1R[x(I1)]4k+1
Θk1

. We also have

f2 + εθ2
2 ∈

Σ[x(I2)]2k+2 + g3Σ[x(I2)]4k+3

Θk
2

since f2 ∈ g3Σ[x(I2)]1, proving the second statement.
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8.1.5 General case
For f ∈ R[x], define

d :=
{

ddeg(f)/2e if S(g) = Rn ,
1 + bdeg(f)/2c if S(g) 6= Rn . (8.1.5)

For l ∈ [p], let us note

Q(gJc)[x(Ic)]k =
{
σ0,c +

∑
i∈Jc

σi,cgi

∣∣∣∣ σ0,c ∈ Σ[x(Ic)]k,
σi,c ∈ Σ[x(Ic)]k−dgie , i ∈ Jc

}
(8.1.6)

the truncated quadratic module of order k associated with the polynomials gJc = {gi : i ∈ Jc}.
Gathering the two situations from Corollary 8.2 and Corollary 8.3, we obtain the following

general statement.

Theorem 8.3. Let f ∈ R[x] be nonnegative on S(g). Let us suppose that the conditions (i) and
(ii) of Assumption 8.1 hold if S(g) = Rn, otherwise let us suppose that the conditions (i), (ii) and
(iii) of Assumption 8.1 hold. Let us fix ε > 0 and let d be defined as in (8.1.5). Then there exists
k ∈ N such that

f + ε

p∑
c=1

θdc ∈
p∑
c=1

Q(gJc)[x(Ic)]d+kωc
Θk
c

. (8.1.7)

8.2 Application to polynomial optimization
Based on Theorem 8.3, we build up two hierarchies of SDP relaxations for unconstrained sparse

POPs and sparse POPs on possibly noncompact basic semialgebraic sets.
Consider the general POP:

f? := inf
x∈S(g)

f(x) . (8.2.1)

When the condition (i) of Assumption 8.1 holds, with d defined as in (8.1.5) one notes:

• ψd :=
∑p
c=1 θ

d
c ;

• φ :=
∏p
c=1 Θc;

• φc := φ/Θc =
∏p
r=1,r 6=c Θr, c ∈ [p].

Let ε > 0 be fixed. Let us suppose that the conditions (i) and (ii) of Assumption 8.1 hold if
S(g) = Rn, otherwise let us suppose that the conditions (i), (ii) and (iii) of Assumption 8.1 hold.

8.2.1 Semidefinite relaxations
Consider the hierarchy of semidefinite programs indexed by k ∈ N:

ρsparse
k (ε) := sup

{
λ ∈ R : φk(f − λ+ εψd) ∈

p∑
c=1

φkcQ(gJc)[x(Ic)]d+kωc

}
. (8.2.2)

Theorem 8.4. The following statements hold:

1. The sequence (ρsparse
k (ε))k∈N is monotone non-decreasing.

2. Assume that problem (8.2.1) has an optimal solution x?. Then there exists K ∈ N such that
f? ≤ ρsparse

k (ε) ≤ f? + εψd(x?) for all k ≥ K.

The proof of Theorem 8.4 can be found in [133, Section 4].
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8.2.2 Duality
For every k ∈ N, the dual of (8.2.2) reads:

τ sparse
k (ε) := inf

y
Ly(φk(f + εψd))

s.t. y = (yα)α∈Nn2(d+pkmaxc ωc)
⊂ R ,

Md+kωc(φkcy, Ic) � 0 , c ∈ [p] ,
Md+kωc−ui(φkcgiy, Ic) � 0 , i ∈ Jc , c ∈ [p] ,
Ly(φk) = 1 .

(8.2.3)

We guarantee strong duality for the pair of primal-dual problems (8.2.3)-(8.2.2).

Proposition 8.1. Assume that S(g) has nonempty interior. Let k ∈ N. Then τ sparse
k (ε) =

ρsparse
k (ε). Moreover, if τ sparse

k (ε) > −∞, the optimal value ρsparse
k (ε) is attained.

The proof of Proposition 8.1 can be found in [133, Section 4].

Remark 8.2. The condition τ sparse
k (ε) > −∞ is always satisfied whenever k is sufficently large.

Indeed by weak duality, when ε is fixed and k is sufficiently large then τ sparse
k (ε) ≥ ρsparse

k (ε) ≥
f? > −∞. However, when k is small, τ sparse

k (ε) = −∞ may happen.

8.2.3 Sampling technique
Even though our sparse variant of Reznick’s Positivstellensatz has an appealing shape, the

computational benefits can be limited in the context of polynomial optimization. It is due to the
very large number of constraints involved in the SDP relaxations when we clear the denominators
in these certificates. To avoid this explosion of SDP constraints, one possible route is to use the
sampling technique suggested in Parrilo and Löfberg [118] for semidefinite relaxations in polynomial
optimization. To state that two polynomials are identical, instead of equating their coefficients
one rather states that their respective values at sufficiently many points are equal.

More explicitly, in our context we take a sample (ai)Ni=1 ⊂ Rn and consider the following SDP
relaxations indexed by k ∈ N:

ρsample
k,N (ε) := sup λ

s.t f(ai)− λ+ ε
p∑
c=1

θc(ai)d =
p∑
c=1

σ0,c(ai)+
∑

j∈Jc
σj,c(ai)gj(ai)

Θc(ai)k ,

i ∈ [N ] ,
σ0,c ∈ Σ[x(Ic)]d+kωc ,
σj,c ∈ Σ[x(Ic)]d+kωc−dgje , j ∈ Jc , c ∈ [p] .

(8.2.4)

It is not hard to see that
ρsparse
k (ε) ≤ ρsample

k,N (ε) ≤ ρsample
k,N−1(ε) . (8.2.5)

Since the denominators Θk
c have fixed forms, their evaluations Θc(ai)k become constants in SDP

(8.2.4). Thus, we do not need to clear the denominators as in the SDP (8.2.2) with value ρsparse
k (ε).

The constraints

f(ai)− λ+ ε

p∑
c=1

θc(ai)d =
p∑
c=1

σ0,c(ai) +
∑
j∈Jc σj,c(ai)gj(ai)

Θc(ai)k
, i ∈ [N ] ,

directly provide linear constraints on the coefficients of the polynomial weights σj,c.
The underlying rationale behind (8.2.4) comes from the following observation in the case of

sparse polynomial optimization, i.e., without denominators. Let us consider the simplified equality
constraint:

p∑
c=1

fc =
p∑
c=1

(σ0,c +
∑
i∈Jc

σi,cgi) , (8.2.6)

with σ0,c ∈ Σ[x(Ic)]k and σi,c ∈ Σ[x(Ic)]k−dgie.
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The polynomials involved in both left-hand side and right-hand side of (8.2.6) have degree less
than 2k.

If we do not exploit sparsity, we need to sample N =
(2k+n

n

)
points (ai)Ni=1 ⊂ Rn, in order to

potentially obtain a set of equality constraints equivalent to (8.2.6). Let us consider the multi-
dimensional Vandermonde matrix associated to (ai)Ni=1, with rows indexed by all monomials of
degree ≤ 2k. If this Vandermonde matrix is invertible, then the set of equations obtained after
sampling is equivalent to (8.2.6) as a consequence of Theorem 4.1 from [153], namely the N points
are in this case so-called “polynomially poised” if and only if they do not belong to a common
algebraic hypersurface of degree ≤ 2k.

If we exploit sparsity, we can do a similar reasoning with the multi-dimensional sparse Van-
dermonde matrix, with rows indexed by all sparse monomials of degree ≤ 2k. In this case, the
number of rows is upper bounded by

∑p
c=1

(2k+c
c

)
, and so is the number of required sample points.

By using Theorem 4.1 from [153], the points are poised if and only if the Vandermonde matrix is
non-singular, which guarantees a unique sparse interpolating polynomial of degree ≤ 2k passing
through the data points.

Obtaining similar equivalent conditions in the case of rational function evaluation is left for
future work. Our numerical experiments presented in the following section suggest that we obtain
the same value as ρsparse

k (ε) with (8.2.4), after selecting a large enough number N of samples.

8.2.4 Numerical experiments
The main goal of this section is to illustrate the correctness of our representation results, on

a sample of nontrivial polynomials involving up to 10 variables. Let us report the numerical
results obtained with SDP (8.2.2) to approximate the minimum of quadratic polynomials on the
nonnegative orthant. The quadratic polynomials are generated randomly as follows:

1. Take u ∈ N, p := bn/uc and

Ic =


{1, . . . , u} if c = 1 ,
{u(c− 1), . . . , uc} if c ∈ {2, . . . , p− 1} ,
{u(p− 1), . . . , n} if c = p .

(8.2.7)

2. Let f =
∑p
c=1 fc such that fc ∈ R[x(Ic)]2, c ∈ [p]. For each c ∈ [p], the coefficient fc,α of fc is

generated randomly in (0, 1) with respect to the uniform distribution, for every α ∈ NIc2 \{0}
and fc,0 = 0.

3. Take m = n and gj := xj , j ∈ [n]. Then S(g) is the nonnegative orthant which is a
noncompact set. Set J1 = I1 and Jc = Ic\ ∪c−1

i=1 Ii, for c = 2, . . . , p.

4. Take a sequence (ai)Ni=1 ⊂ [−1, 1]n of uniformly random sample points as mentioned in
Section 8.2.3.

With the above setting, the conditions (i), (ii) and (iii) of Assumption 8.1 hold and the optimal
value of the corresponding POP (8.2.1) should be f? = 0.
The experiments are performed with the JuMP Julia package [53], relying on the Mosek solver
[41] to solve the SDP relaxation (8.2.2). We use a desktop computer with an Intel(R) Core(TM)
i7-8665UCPU @ 1.9GHz×8 and 31.2 GB of RAM. The numerical results are displayed in Table
5.16 with the following information:

• nummat: number of semidefinite matrices involved in SDP (8.2.2);

• numcons: number of constraints involved in SDP (8.2.2);

• val: the optimal value of SDP (8.2.2);

• time: the total time in seconds;

• the symbol “−” means that the SDP solver runs out of memory.
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Table 8.2: Numerical results obtained when solving the SDP relaxations (8.2.2), (8.2.4) associated to the
minimization of quadratic forms on the nonnegative orthant with ε = 10−5 and k = 1.

POP SDP size ρsparse
k (ε) ρsample

k,N (ε)
size (JuMP+Mosek) (JuMP+Mosek)
n u nummat numcons val time N val time
5 2 10 432 3.0× 10−5 3 100 3.0× 10−5 3
7 2 14 2368 6.0× 10−5 3 140 6.0× 10−5 4
10 3 20 22528 9.0× 10−5 109 200 9.0× 10−5 17
12 4 22 229520 − − 240 1.0× 10−4 65
15 5 29 1157120 − − 300 1.3× 10−4 2601

For n ≤ 10, the optimal value obtained at the first order SDP relaxations (8.2.2) and (8.2.4)
is very close to the exact optimal value of POP (8.2.1). Besides the solver runs out of memory
for n ≥ 12 when we compute ρsparse

k (ε) as the number of equality constraints in SDP (8.2.2) is
already very large even for k = 1. This large number of constraints arises while computing the
common denominator within the sparse representation. Explicitly, it is the number of terms
of the polynomial φk(f − λ + εψd), according to (8.2.2). This number is upper bounded by(
n+2d+k deg(φ)

n

)
, where d is the smallest positive integer such that 2d > deg(f). Note that k needs

to be sufficiently large to ensure that the cone
p∑
c=1

φkcQ(gJc)[x(Ic)]d+kωc in (8.2.2) is well-defined,

namely 2(d + k min
c∈[p]

ωc) ≥ max
i∈[m]

deg(gi). Nevertheless, we still obtain the optimal value of SDP

relaxation (8.2.4) for n ≥ 12 by using the sampling technique from Section 8.2.3. The value is
also close to the exact optimal value of POP (8.2.1). The number of constraints involved in SDP
(8.2.4) is equal to the sample size N which is much smaller than the one involved in SDP (8.2.2).



Chapter 9

Exploiting nonnegativity of
variables

In the previous three chapters, we have relied on uniform denominators to solve POPs over
possibly noncompact semialgebraic sets. In this chapter, we present another advantage related
to uniform denominators. More explicitly, such denominators enable us to decompose the Gram
matrices, arising in the SOS strengthenings of POPs over the nonnegative orthant, into finitely
many smaller ones with prescribed sizes.

For each A ⊂ Nn, denote vA(x) = (xα)α∈A. We say that a polynomial q is even in each
variable if for every j ∈ [n], q(x1, . . . , xj−1,−xj , xj+1, . . . , xn) = q(x1, . . . , xj−1, xj , xj+1, . . . , xn).
A polynomial q is called a SOS of monomials if q =

∑
α∈Nn λαx2α for some λα ≥ 0. Accordingly,

if q is an SOS of monomials, then q = v>d diag(u)vd for some d ∈ N and u ∈ Rb(n,d)
+ .

Factor width: Originally defined in [23], the factor width of a real positive semidefinite matrix
G is the smallest integer s for which there exists a real matrix P such that G can be decomposed as
G = PP> and each column of P contains at most s nonzeros. In this case, if u is a vector of several
monomials in x, the SOS polynomial u>Gu can be written as u(x)>Gu(x) =

∑
i(q>i u(x))2, where

qi is the i-th column of P. It is not hard to prove that the Gram matrix of each square (q>i u(x))2

has size at most s since qi has at most s nonzeros. Thus, if an SOS polynomial has Gram matrix
of factor width at most s, it can be written as a sum of SOS polynomials with Gram matrix sizes
at most s. The inverse also holds true thanks to eigen decomposition. The applications of factor
width for polynomial optimization can be found in, e.g., [3, 141].

POP with nonnegative variables: In the present chapter, we focus on the following POP on
the nonnegative orthant:

f? := inf
x∈S

f(x) , (9.0.1)

where f is a polynomial and S is a semialgebraic set defined by

S := {x ∈ Rn : xj ≥ 0 , j ∈ [n] , gi(x) ≥ 0 , i ∈ [m]} , (9.0.2)

for some gi ∈ R[x], i ∈ [m] with gm := 1. Letting q̌(x) := q(x2) (with x2 := (x2
1, . . . , x

2
n)) whenever

q ∈ R[x], it follows immediately that problem (9.0.1) is equivalent to solving

f? = inf
x∈Š

f̌(x) , (9.0.3)

where Š is a subset of Rn defined by

Š := {x ∈ Rn : ǧi(x) ≥ 0 , i ∈ [m]} . (9.0.4)

157
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Contribution. Our contribution is twofold:
I. In our first contribution, we provide in Corollary 9.2 a degree bound for the extension of

Pólya’s Positivstellensatz originally stated in [45]. Explicitly, if
- f̌ , ǧ1, . . . , ǧm are polynomials even in each variable,
- Š defined as in (9.0.4) has nonempty interior, ǧ1 = R− ‖x‖22 for some R > 0,
- f̌ is of degree at most 2df , each ǧi is of degree at most 2dgi , and f̌ − f? is nonnegative on Š,

then there exist positive constants c̄ and c depending on f̌ , ǧi such that for all ε > 0, for all
k ≥ c̄ε−c,

(1 + ‖x‖22)k(f̌ − f? + ε) =
∑
i∈[m] σiǧi , (9.0.5)

for some σi being SOS of monomials such that deg(σiǧi) ≤ 2(k + df ). (Here ǧm := 1.)
Consequently, the resulting LP-hierarchy of lower bounds (ρPól

k )k∈N for POP (9.0.3):

ρPól
k := sup

λ,ui
λ

s. t. λ ∈ R , ui ∈ Rb(n,ki)+ , i ∈ [m] ,
θk(f̌ − λ) =

∑
i∈[m] ǧiv>ki diag(ui)vki .

(9.0.6)

where ki := k + df − dgi , for i ∈ [m]. converges to f? with a rate at least O(ε−c). This linear
hierarchy is originally stated by Dickinson and Povh in [46] without convergence rate.

Unfortunately, for large relaxation order k this LP is potentially ill-conditioned (see for instance
Example 9.2). In order to address this issue, we replace each diagonal Gram matrix diag(uj) in LP
(9.0.6) by a Gram matrix of factor width at most s ∈ N>0 to obtain a semidefinite relaxation, which
is tighter than LP (9.0.6). Namely, consider the following SDP indexed by k ∈ N and s ∈ N>0:

ρPól
k,s := sup

λ,Gij

λ

s. t. λ ∈ R , Gij � 0 , j ∈ [b(n, ki)] , i ∈ [m] ,

θk(f̌ − λ) =
∑
i∈[m] ǧi

(∑
j∈[b(n,ki)] v

>
A(s,ki)
j

GijvA(s,ki)
j

)
.

(9.0.7)

where each A(s,d)
r ⊂ Nnd , chosen as in Section 9.2.2, is such that (A(s,d)

r )r∈[b(n,d)] covers Nnd , i.e.,

∪b(n,d)
r=1 A

(s,d)
r = Nnd , (9.0.8)

and the cardinal number of A(s,d)
r is at most s. Here ǧm := 1. We call s the factor width upper

bound associated with the semidefinite relaxation (9.0.7). It is easy to see that the size of each
Gram matrix Gij in (9.0.7) is at most s. In addition, due to (9.0.8), we obtain the following
estimate for every s ∈ [b(n, k)]:

ρPól
k = ρPól

k,1 ≤ ρPól
k,s ≤ f? , (9.0.9)

so that for every fixed s ∈ N>0, τPól
k,s → f? as k increases, with a rate at least O(ε−c). Notice that

when s = 2, (9.0.7) becomes an SOCP thanks to [123, Lemma 15].
We emphasize that in our semidefinite relaxation (9.0.7), for fixed k the size of Gram matrices

Gij can be bounded from above by any s ∈ N>0 while the maximal matrix size of the standard
semidefinite relaxation for POP (9.0.1) (defined as in Section 2.4) is fixed for each relaxation order
k. Nevertheless, since we convert (9.0.1) to the form (9.0.3) (so as to use Corollary 9.2), the
degrees of the resulting objective and constraint polynomials are doubled, i.e., deg(f̌) = 2 deg(f)
and deg(ǧi) = 2 deg(gi).

However, numerical experiments in Sections 9.3 and 9.4.7 suggest that our method works better
than existing methods on examples of POPs with nonnegative variables. For instance, for 20-
variable dense POPs on the nonnegative orthant, the standard SOS-relaxations based on Putinar’s
Positivstellensatz provide a lower bound for f? in 356 seconds while we can provide a better lower
bound in 5 seconds.

Next, in Sections 9.4.6 and 9.4.6 we provide two convergent hierarchies of linear and semidef-
inite relaxations for POPs on the nonegative orthant, that exploit correlative sparsity, and with
properties similar to those of (9.0.6) and (9.0.7). Accordingly, for POPs on the nonnegative orthant
with up to 1000 variables, we can provide lower bounds in 19 seconds which are better than those
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obtained in 56360 seconds with the sparsity-adapted version of the standard SOS-relaxations of
Waki et al. [203].

II. In our second contribution, we provide a degree bound for an extended version of Handel-
man’s Positivstellensatz to arbitrary compact basic semialgebraic sets. More explicitly, Corollary
9.3 states the following result. If

- f̌ , ǧ1, . . . , ǧm are polynomials even in each variable,
- Š defined as in (9.0.4) has nonempty interior, ǧ1 = R− ‖x‖22 for some R > 0,
- ǧi is of degree at most 2dgi and f̌ − f? is nonnegative on Š,

then there exist positive constants c̄ and c depending on f̌ , ǧi such that for all ε > 0, for all
k ≥ c̄ε−c,

(f̌ − f?) + ε =
∑
i∈[m]

∑k−dgi
j=0 σij ǧiǧ

j
1 , (9.0.10)

for some σij being SOS of monomials such that deg(σij ǧiǧj1) ≤ 2k. (Here ǧm := 1.)
When compared with the extension of Pólya’s Positivstellensatz in (9.0.5), the one of Handel-

man’s Positivstellensatz in (9.0.10) does not have multiplier (1 + ‖x‖22)k but its number of SOS
of monomials is

∑m
i=1(k − dgi + 1) becomes larger when k increases. In contrast, the extension

of Pólya’s Positivstellensatz involves the same multiplier and its number of SOS of monomials is
m+ 1, so does not depend on k.

As a consequence, we obtain in Section 9.2.2 the rate of convergence for the hierarchy of linear
relaxations (9.2.8) based on the extension of Handelman’s Positivstellensatz. In addition, we also
propose a new hierarchy of semidefinite relaxations in (9.2.22) based on even symmetry and the
concept of factor width similarly to the one relying on Pólya’s Positivstellensatz. A sparse version
of this semidefinite hierarchy is also obtained in Section 9.4.6.

As shown in Sections 9.3 and 9.4.7, these hierarchies of semidefinite relaxations have the same
numerical behavior as the ones based on Pólya’s Positivstellensatz. In almost all cases, the ones
based on the extension of Handelman’s Positivstellensatz are several times slower but provide
slightly better accurate bounds, compared to the ones based on the extension of Pólya’s Posi-
tivstellensatz.

Related works
Exploiting sparsity: Structure exploitation in (9.0.7), is comparable to term sparsity and cor-
relative sparsity (see Chapter 3) but here we can deal with dense POPs of the form (9.0.1). More-
over, the maximal block sizes involved in the sparsity-exploiting SDP relaxations mainly depend
on the POP itself as well as on the relaxation order. By comparison, the maximal block size of
our SDP relaxations is controllable. Under mild conditions, the rate of convergence ρHan

k,s → f? as
k increases, is at least O(ε−c).

Dickinson–Povh’s hierarchy of linear relaxations: Dickinson and Povh state in [45] a spe-
cific constrained version of Pólya’s Positivstellensatz. Explicitly, if f, g1, . . . , gm are homogeneous
polynomials, S is defined as in (9.0.2), and f is positive on S\{0}, then

(
∑
j∈[n] xj)kf =

∑
i∈[m] σigi , (9.0.11)

for some homogeneous polynomials σi with positive coefficients. (Here gm := 1.) They also
construct a hierarchy of linear relaxations associated with (9.0.11).

The extension of Pólya’s Positivstellensatz restated in Corollary 9.2 is indeed analogous to
(9.0.11). However the approach is different and importantly, the result is more convenient as we
provide degree bounds for the SOS of monomials involved in the representation. Similarly, our
corresponding linear relaxations (9.2.6) are the analogues to those of Dickinson and Povh [46].
As shown in Example 9.2 and other examples in Sections 9.3 and 9.4.7, this hierarchy of linear
relaxations usually have a poor numerical behavior in practice when k is large. Our new hierarchy
of semidefinite relaxations (9.2.19) is used to improve this issue.
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DSOS and SDSOS: Recent work of Ahmadi and Majumdar [3] presents two alternative cones
for SOS cones, namely, DSOS and SDSOS, which involve factor widths at most 2 and are more
tractable than SOS cones. In the unconstrained case of POP (9.0.3), our semidefinite hierarchy
based on the extension of Pólya’s Positivstellensatz can be seen as a generalization of DSOS and
SDSOS while using the notion of factor width, see Remark 9.17. In fact, to obtain our semidefinite
relaxations for the constrained case (9.0.3), we replace each SOS of monomials involved in the
certificate (9.0.5) by an SOS polynomial whose Gram matrix has factor width at most s; see
Remark 9.10.

9.1 Representation theorems
In this section, we derive representations of polynomials nonnegative on semialgebraic sets

together with degree bounds.

9.1.1 Polynomials nonnegative on general semialgebraic sets
Extension of Pólya’s Positivstellensatz: We analyze the complexity of the extension of
Pólya’s Positivstellensatz in the following theorem:

Theorem 9.1. (Homogenized representation) Let g1, . . . , gm be homogeneous polynomials such
that g1, . . . , gm are even in each variable. Let S be the semialgebraic set defined by

S := {x ∈ Rn : g1(x) ≥ 0 . . . , gm(x) ≥ 0} . (9.1.1)

Let f be a homogeneous polynomial of degree 2df for some df ∈ N such that f is even in each
variable and nonnegative on S. Then the following statements hold:

1. For all ε > 0, there exists Kε ∈ N such that for all k ≥ Kε, there exist homogeneous SOS of
monomials σi satisfying

deg(σ0) = deg(σ1g1) = · · · = deg(σmgm) = 2(k + df ) (9.1.2)

and
‖x‖2k2 (f + ε‖x‖2df2 ) = σ0 + σ1g1 + · · ·+ σmgm . (9.1.3)

2. If S has nonempty interior, there exist positive constants c̄ and c depending on f, gi such that
for all ε > 0, one can take Kε = c̄ε−c.

The proof of Theorem 9.1 is postponed to Section 9.4.2.
Note that some other homogeneous representations for globally nonnegative polynomials even

in each variable have been studied in [64, 72, 37].

Remark 9.1. The Gram matrix associated with each SOS of monomials is diagonal. In other
word, it is a block-diagonal matrix with maximal block size one. It would be interesting to know for
which types of input polynomials we could obtain other representations involving SOS with block-
diagonal Gram matrices of very small maximal block size, similarly to Theorem 9.1. Some of them
have been discussed in [66, 123] that includes SOS of binomials, trinomials, tetranomials and SOS
of any s-nomials. We emphasize that such representations allow one to build up SDP relaxations
of small maximal matrix size that can be solved efficiently by using interior-point methods as shown
later in Section 9.3.

The following corollary is a direct consequence of Theorem 9.1.

Corollary 9.1. (Dehomogenized representation) Let g1, . . . , gm be polynomials even in each vari-
able. Let S be the semialgebraic set defined by (9.1.1). Let f be a polynomial even in each variable
and nonnegative on S. Denote df := bdeg(f)/2c+ 1. Then the following statements hold:
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1. For all ε > 0, there exists Kε ∈ N such that for all k ≥ Kε, there exist SOS of monomials σi
satisfying

deg(σ0) ≤ 2(k + df ) and deg(σigi) ≤ 2(k + df ) , i ∈ [m] , (9.1.4)

and
θk(f + εθdf ) = σ0 + σ1g1 + · · ·+ σmgm , (9.1.5)

where θ := 1 + ‖x‖22.

2. If S has nonempty interior, there exist positive constants c̄ and c depending on f, gi such that
for all ε > 0, one can take Kε = c̄ε−c.

The proof of Corollary 9.1 is similar to the proof of [132, Corollary 1].

9.1.2 Polynomials nonnegative on compact semialgebraic sets
In this section, we provide a representation of polynomials nonnegative on semialgebraic sets

when the input polynomials are even in each variable. We also derive in Section 9.4.5 some sparse
representations when the input polynomials have correlative sparsity.

Extension of Pólya’s Positivstellensatz

The following corollary is deduced from Corollary 9.1.

Corollary 9.2. Let f, gi, S, df be as in Corollary 9.1 such that g1 := R − ‖x‖22 for some R > 0.
Then the following statements hold:

1. For all ε > 0, there exists Kε ∈ N such that for all k ≥ Kε, there exist SOS of monomials σi
satisfying (9.1.4) and

(1 + ‖x‖22)k(f + ε) = σ0 + σ1g1 + · · ·+ σmgm . (9.1.6)

2. If S has nonempty interior, there exist positive constants c̄ and c depending on f, gi such that
for all ε > 0, one can take Kε = c̄ε−c.

Corollary 9.2 can be proved in the same way as [132, Corollary 2].

Remark 9.2. If we remove the multiplier (1 + ‖x‖22)k in (9.1.6), Corollary 9.2 is no longer true.
Indeed, let n = 1, f := (x2− 3

2 )2 and assume that f = σ0 +σ1(1−x2) for some SOS of monomials
σi, i = 0, 1. Note that f is even and positive on [−1, 1]. We write σi := ai + bix

2 + x4ri(x) for
some ai, bi ∈ R+ and ri ∈ R[x]. It implies that

x4 − 3x2 + 9
4 = (a0 + b0x

2 + x4r0(x)) + (a1 + b1x
2 + x4r1(x))(1− x2) . (9.1.7)

Then we obtain the system of linear equations: 9
4 = a0 + a1 and −3 = b0 − a1 + b1. Summing

gives − 3
4 = a0 + b0 + b1. However, a0 + b0 + b1 ≥ 0 since ai, bi ∈ R+. This contradiction yields

the conclusion. Thus, Putinar’s Positivstellensatz with SOS of monomials does not exist when the
input polynomials are even in each variable. However, we are still able to exploit term sparsity/even
symmetry for Putinar’s Positivstellensatz in this case as shown later in Proposition 9.1.

It is not hard to see that with the multiplier (1 + x2)2, we obtain the Pólya’s Positivstellensatz
as follows:

(1 + x2)2f = σ̄0 + σ̄1(1− x2) , (9.1.8)

where σ̄0 := x8 and σ̄1 := x4 + 15
4 x

2 + 9
4 are SOS of monomials.

We prove in the following proposition the existence of block-diagonal Gram matrices in Putinar’s
Positivstellensatz when the input polynomials are even in each variable:
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Proposition 9.1. Let f, g1, . . . , gm be polynomials in R[x] such that f, gi are even in each variable.
Assume that there exists a decomposition:

f =
∑m
i=1 giv>diG

(i)vdi , (9.1.9)

for some di ∈ N and real symmetric matrices G(i) = (G(i)
α,β)α,β∈Nn

di
. For every i ∈ [m], define

Ḡ(i) := (Ḡ(i)
α,β)α,β∈Nn

di
, where:

Ḡ
(i)
α,β :=

{
G

(i)
α,β if α + β ∈ 2Nn ,

0 otherwise .
(9.1.10)

Then Ḡ(i) are block-diagonal up to permutation and

f =
∑m
i=1 giv>diḠ

(i)vdi . (9.1.11)

Moreover, if G(i) � 0, then Ḡ(i) � 0.

Proof. The proof is inspired by [61, Section 8.1]. Removing all terms in (9.1.9) except the terms
of monomials x2α, α ∈ Nn, we obtain (9.1.11). It is due to the fact that f, gi only have terms of
the form x2α, α ∈ Nn and

v>diG
(i)vdi =

∑
α,β∈Nn

di

G
(i)
α,βxα+β . (9.1.12)

Next, we show the block-diagonal structure of Ḡ(i). For every γ ∈ {0, 1}n, define

Λ(i)
γ := {α ∈ Nndi : ,α− γ ∈ 2Nn} . (9.1.13)

Then Λ(i)
γ ∩Λ(i)

η = ∅ if γ 6= η and Nndi := ∪γ∈{0,1}nΛ(i)
γ . In addition, for all α,β ∈ Λ(i)

γ , α+β ∈ 2Nn.
Moreover, if α,β ∈ Nndi and α + β ∈ 2Nn, then there exists γ ∈ {0, 1}n such that α,β ∈ Λ(i)

γ . It
implies that all blocks on the diagonal of Ḡ(i) must be

(Ḡ(i)
α,β)

α,β∈Λ(i)
γ
, γ ∈ {0, 1}n . (9.1.14)

This yields the desired results.

Remark 9.3. The block-diagonal structure in Proposition 9.1 can be obtained by using TSSOS
[212]. For general input polynomials f, gi, we cannot ensure that the maximal block size in this
form is upper bounded or possibly goes to infinity as each di increases. However, as shown in
Remark 9.2, we cannot obtain blocks of size one for this form. In order to improve this, we provide
another representation with diagonal Gram matrices in the next corollary.

Extension of Handelman’s Positivstellensatz

The following corollary is a consequence of Theorem 9.1.

Corollary 9.3. (Dense representation without multiplier) Let f, gi, S be as in Corollary 9.1 such
that g1 := R − ‖x‖22 for some R > 0 and gm := 1. Denote dgi := ddeg(gi)/2e. Then the following
statements hold:

1. For all ε > 0, there exists Kε ∈ N such that for all k ≥ Kε, there exist SOS of monomials
σi,j satisfying

deg(σi,jgj1gi) ≤ 2k (9.1.15)

and
f + ε =

∑m
i=1
∑k−dgi
j=0 σi,jg

j
1gi . (9.1.16)

2. If S has nonempty interior, then there exist positive constants c̄ and c depending on f, gi such
that for all ε > 0, one can take Kε = c̄ε−c.
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Proof. Denote df := bdeg(f)/2c+1. With an additional variable xn+1, we first define the following
homogeneous polynomials:

f̄ := ‖(x, xn+1)‖2df2 f( x
√
R

‖(x,xn+1)‖2 ) and ḡi := ‖(x, xn+1)‖2dgi2 gi( x
√
R

‖(x,xn+1)‖2 ) . (9.1.17)

It is not hard to prove that f̄ is nonnegative on the semialgebraic set {(x, xn+1) ∈ Rn+1 :
ḡi(x, xn+1) ≥ 0 , i ∈ [m]}, so that Theorem 9.1 yields the representation

‖(x, xn+1)‖2k2 (f̄ + ε‖(x, xn+1)‖2df2 ) = σ1ḡ1 + · · ·+ σmḡm , (9.1.18)

for some SOS of monomials σi. By replacing xn+1 by
√
R− ‖x‖22, we obtain the results.

Remark 9.4. The number of SOS of monomials in the representation (9.1.16) is
∑m
i=1(k−dgi+1)

which becomes larger when k increases, while the number of SOS of monomials in the representation
(9.1.6) is m + 1, thus does not depend on k. However, a large number of Gram matrices is not a
computational issue, since the complexity of interior-point methods mainly depend on the maximal
block sizes of the Gram matrices and are still efficient when their number is large.

Remark 9.5. With f being defined as in Remark 9.2, the following decomposition is an instance
of the extended Handelman’s Positivstellensatz:

f = η0 + η1(1− x2) + η2(1− x2)2 , (9.1.19)

where η0 = 1
4 , η1 = η2 = 1 are SOS of monomials. Note that the degrees of these SOS of monomials

are zero while the degrees of the ones from (9.1.8) for the extension of Pólya’s Positivstellensatz
are 8 and 4.

Remark 9.6. In Section 9.4.3, we provide some variations of Pólya’s and Handelman’s Posi-
tivstellensatz where the input polynomials are not required to be even in each variable. Moreover,
the weighted SOS polynomials of these representations are still associated with Gram matrices of
factor width one thanks to a change of monomial basis.

9.2 Polynomial optimization on the nonnegative orthant:
Compact case

This section is concerned with some applications of the extensions of Pólya’s and Handelman’s
Positivstellensatz for polynomial optimization on compact semialgebraic subsets of the nonnegative
orthant. The noncompact case is postponed to Section 9.4.4. Moreover, Section 9.4.6 is devoted to
some applications of the sparse representation provided in Section 9.4.5 for polynomial optimization
with correlative sparsity.

Consider the following POP:
f? := inf

x∈S
f(x) , (9.2.1)

where f ∈ R[x] and

S = {x ∈ Rn : xj ≥ 0 , j ∈ [n] , gi(x) ≥ 0 , i ∈ [m]} , (9.2.2)

for some gi ∈ R[x], i ∈ [m], with gm = 1.
Throughout this section, we assume that f? > −∞ and problem (9.2.1) has an optimal solution

x?.

Remark 9.7. Every general POP in variable x = (x1, . . . , xn) can be converted to the form
(9.2.1) by replacing each variable xj by the difference of two new nonnegative variables x+

j − x
−
j .

In particular, if there are several constraints xj ≥ aj, we can obtain an equivalent POP on the
nonnegative orthant by defining new nonnegative variables yj := xj − aj. However, we restrict
ourselves to POPs on the nonnegative orthant in this chapter.
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Recall that q̌(x) := q(x2), for a given polynomial q. In this case, q̌ is even in each variable.
Then POP (9.2.1) is equivalent to

f? := inf
x∈Š

f̌ , (9.2.3)

where
Š = {x ∈ Rn : ǧi(x) ≥ 0 , i ∈ [m]} , (9.2.4)

with x?2 being an optimal solution.
Let θ := 1 + ‖x‖22. Denote df := deg(f) + 1, dgi := deg(gi), i ∈ [m] and let diag(·) stand for

the vector of diagonal entries of a square matrix.

9.2.1 Linear relaxations
Based on the extension of Pólya’s Positivstellensatz

Consider the hierarchy of linear programs indexed by k ∈ N:

τPól
k := inf

y
Ly(θkf̌)

s. t. y = (yα)α∈Nn2(df+k)
⊂ R , Ly(θk) = 1 ,

diag(Mki(ǧiy)) ∈ Rb(n,ki)+ , i ∈ [m] ,

(9.2.5)

where ki := k + df − dgi , i ∈ [m]. Note that ǧm = 1.

Remark 9.8. The optimal value τPól
k only depends on the subset of variables {y2α : α ∈ Nndf+k},

i.e., the optimal value of LP (9.2.5) does not change when we assign each of the other variables with
any real number. It is due to the fact that θ, f̌ , and ǧi only have nonzero coefficients associated to
the monomials x2α for some α ∈ Nn.

Theorem 9.2. Let f, gi ∈ R[x], i ∈ [m], with gm = 1 and g1 := R −
∑
j∈[n] xj for some R > 0.

Consider POP (9.2.1) with S being defined as in (9.2.2). For every k ∈ N, the dual of (9.2.5)
reads as:

ρPól
k := sup

λ,ui
λ

s. t. λ ∈ R , ui ∈ Rb(n,ki)+ , i ∈ [m] ,
θk(f̌ − λ) =

∑
i∈[m] ǧiv>ki diag(ui)vki .

(9.2.6)

The following statements hold:

1. For all k ∈ N,
ρPól
k ≤ ρPól

k+1 ≤ f? . (9.2.7)

2. The sequence (ρPól
k )k∈N converges to f?.

3. If S has nonempty interior, there exist positive constants c̄ and c depending on f, gi such that
0 ≤ f? − ρPól

k ≤
(
k
c̄

)− 1
c .

The proof of Theorem 9.2 relies on Corollary 9.2 and can be proved in almost the same way as
the proof of [132, Theorem 4].

Based on the extension of Handelman’s Positivstellensatz

Consider the hierarchy of linear programs indexed by k ∈ N:

τHan
k := inf

y
Ly(f̌)

s. t. y = (yα)α∈Nn2k ⊂ R , y0 = 1 ,
diag(Mkij ((ǧiǧ

j
1)y)) ∈ Rb(n,kij)+ , i ∈ [m] , j ∈ {0} ∪ [k − dgi ] ,

(9.2.8)

where kij := k − dgi − j, for i ∈ [m], for j ∈ {0} ∪ [k − dgi ]. Note that ǧm = 1.
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Theorem 9.3. Let f, gi ∈ R[x], i ∈ [m], with gm = 1 and g1 := R −
∑
t∈[n] xt for some R > 0.

Consider POP (9.2.1) with S being defined as in (9.2.2). For every k ∈ N, the dual of (9.2.8)
reads as:

ρHan
k := sup

λ,uij
λ

s. t. λ ∈ R , uij ∈ Rb(n,kij)+ , i ∈ [m] , j ∈ {0} ∪ [k − dgi ] ,
f̌ − λ =

∑
i∈[m]

∑k−dgi
j=0 ǧiǧ

j
1v>kij diag(uij)vkij .

(9.2.9)

The following statements hold:

1. For all k ∈ N, ρHan
k ≤ ρHan

k+1 ≤ f?.

2. The sequence (ρHan
k )k∈N converges to f?.

3. If S has nonempty interior, there exist positive constants c̄ and c depending on f, gi such that
0 ≤ f? − ρHan

k ≤
(
k
c̄

)− 1
c .

The proof of Theorem 9.3 relies on Corollary 9.3 and can be proved in almost the same way as
the proof of Theorem 9.2.

9.2.2 Semidefinite relaxations
In this subsection, we construct the sparsity pattern A(s,d)

j ⊂ Nnd inspired by even symmetry
reduction in Proposition 9.1.

We write Nn = {α1,α2, . . . ,αr,αr+1, . . . } such that

α1 < α2 < · · · < αr < αr+1 < . . . . (9.2.10)

Let
Wj := {i ∈ N : i ≥ j , αi + αj ∈ 2Nn} , j ∈ N>0 . (9.2.11)

Then for all j ∈ N>0, Wj 6= ∅ since j ∈ Wj . For every j ∈ N, we write Wj := {i(j)1 , i
(j)
2 , . . . } such

that j = i
(j)
1 < i

(j)
2 < . . . . Let

T (s,d)
j = {α

i
(j)
1
, . . . ,α

i
(j)
s
} ∩ Nnd , j, s ∈ N>0 , d ∈ N . (9.2.12)

For every s ∈ N>0 and d ∈ N, define A(s,d)
1 := T (s,d)

1 and for j = 2, . . . , b(n, d), define

A(s,d)
j :=

{
T (s,d)
j if T (s,d)

j \A(s,d)
l 6= ∅ , ∀l ∈ [j − 1] ,

∅ otherwise .
(9.2.13)

Note that ∪b(n,d)
j=1 A

(s,d)
j = Nnd and |A(s,d)

j | ≤ s. Here | · | stands for the cardinality of a set. Then
the sequence

(α + β)(α,β∈A(s,d)
j

) , j ∈ [b(n, d)] (9.2.14)

are overlapping blocks of size at most s in (α + β)(α,β∈Nn
d

). Note that α + β ∈ 2Nn for all
α,β ∈ A(s,d)

j .

Example 9.1. Consider the case of n = d = s = 2. The matrix (α + β)(α,β∈N2
2) can be written

explicitly as 
(0,0) (1, 0) (0, 1) (2,0) (1, 1) (0,2)
(1, 0) (2,0) (1, 1) (3, 0) (2, 1) (1, 2)
(0, 1) (1, 1) (0,2) (2, 1) (1, 2) (0, 3)
(2,0) (3, 0) (2, 1) (4,0) (3, 1) (2,2)
(1, 1) (2, 1) (1, 2) (3, 1) (2,2) (1, 3)
(0,2) (1, 2) (0, 3) (2,2) (1, 3) (0,4)

 . (9.2.15)
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In this matrix, the entries in bold belong to 2N2. Then A(2,2)
1 = {(0, 0), (2, 0)}, A(2,2)

2 = {(1, 0)},
A(2,2)

3 = {(0, 1)}, A(2,2)
4 = {(2, 0), (0, 2)}, A(2,2)

5 = {(1, 1)} and A(2,2)
6 = ∅. The blocks (α +

β)(α,β∈A(2,2)
j

), j ∈ [5], are as follows:[
(0,0) (2,0)
(2,0) (4,0)

]
,
[
(2,0)

]
,
[
(0,2)

]
,

[
(4,0) (2,2)
(2,2) (0,4)

]
,
[
(2,2)

]
. (9.2.16)

For all B = {β1, . . . ,βr} ⊂ Nn such that β1 < · · · < βr, for every h =
∑

γ hγxγ ∈ R[x] and
for every y = (yα)α∈Nn ⊂ R, let us define

vB :=

xβ1

. . .
xβr

 and MB(hy) := (
∑

γ hγyγ+βi+βj )i,j∈[r] . (9.2.17)

Based on the extension of Pólya’s Positivstellensatz

Consider the hierarchy of semidefinite programs indexed by s ∈ N>0 and k ∈ N:

τPól
k,s := inf

y
Ly(θkf̌)

s. t. y = (yα)α∈Nn2(df+k)
⊂ R , Ly(θk) = 1 ,

MA(s,ki)
j

(ǧiy) � 0 , j ∈ [b(n, ki)] , i ∈ [m] ,
(9.2.18)

where ki := k + df − dgi , i ∈ [m]. Here ǧm = 1.

Remark 9.9. If we assume that θ = 1 then (9.2.18) becomes a moment relaxation based on
Putinar’s Positivstellensatz for POP (9.0.3). Here each constraint Mki(ǧiy) � 0 is replaced by
the constraint MA(s,ki)

j

(ǧiy) � 0. If s is large enough, (9.2.18) corresponds to an SDP relaxation
obtained after exploiting term sparsity (see [212]).

Theorem 9.4. Let f, gi ∈ R[x], i ∈ [m], with gm = 1 and g1 := R −
∑
j∈[n] xj for some R > 0.

Consider POP (9.2.1) with S being defined as in (9.2.2). For every s ∈ N>0 and for every k ∈ N,
the dual of (9.2.18) reads as:

ρPól
k,s := sup

λ,Gij

λ

s. t. λ ∈ R , Gij � 0 , j ∈ [b(n, ki)] , i ∈ [m] ,

θk(f̌ − λ) =
∑
i∈[m] ǧi

(∑
j∈[b(n,ki)] v

>
A(s,ki)
j

GijvA(s,ki)
j

)
.

(9.2.19)

The following statements hold:

1. For all k ∈ N and for every s ∈ N>0, ρPól
k = ρPól

k,1 ≤ ρPól
k,s ≤ f?.

2. For every s ∈ N>0, the sequence (ρPól
k,s )k∈N converges to f?.

3. If S has nonempty interior, there exist positive constants c̄ and c depending on f, gi such that
for every s ∈ N>0 and for every k ∈ N, 0 ≤ f? − ρPól

k,s ≤
(
k
c̄

)− 1
c .

4. If S has nonempty interior, for every k ∈ N and for every s ∈ N>0, strong duality holds for
the primal-dual problems (9.2.18)-(9.2.19).

Proof. It is not hard to prove the first statement. The second and third one are due to the first
statement of Theorem 9.2. The final statement is proved similarly to the third statement of [132,
Theorem 4].

Remark 9.10. In order to construct the semidefinite relaxation (9.2.19), the SOS of monomi-
als in the linear relaxation (9.2.6) are replaced by a sum of several SOS polynomials associated
to Gram matrices of small sizes. This idea is inspired by [215], where the authors replace the
first nonnegative scalar by an SOS polynomial in the linear relaxation based on Krivine–Stengle’s
Positivstellensatz.
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Remark 9.11. At fixed s ∈ N>0, the sequence (ρPól
k,s )k∈N may not be monotonic w.r.t. k, and

similarly at fixed k ∈ N.

Example 9.2. (AM-GM inequality) Consider the case where n = 3, f = x1 + x2 + x3 and
S = {x ∈ R3 : xj ≥ 0 , j ∈ [3] , x1x2x3 − 1 ≥ 0 , 3− x1 − x2 − x3 ≥ 0}. Using AM-GM inequality,
we have

f(x) ≥ 3(x1x2x3)1/3 ≥ 3 , ∀x ∈ S , (9.2.20)

yielding f? = 3. We solve SDP (9.2.18) with Mosek and report the corresponding numerical results
in Table 9.1. The table displays τPól

2,4 = 2.9999 which is very close to f?. However, τPól
17 = τPól

17,1 =
1.5030 is smaller than τPól

16 = τPól
16,1 = 2.4000, which violates the theoretical inequality (9.2.7). The

underlying reason is that the matrix A used to define the convex polytope P = {x ∈ Rn : x ≥
0 , Ax ≤ b} in the equivalent form minx∈P c>x of LP (9.2.5) is ill-conditioned, and the solver is
not able to solve accurately the LP corresponding to τPól

17 .

Based on the extension of Handelman’s Positivstellensatz

Consider the hierarchy of semidefinite programs indexed by s ∈ N>0 and k ∈ N:

τHan
k,s := inf

y
Ly(f̌)

s. t. y = (yα)α∈Nn2k ⊂ R , y0 = 1 ,

M
A

(s,kij)
r

((ǧiǧj1)y) � 0 , r ∈ [b(n, kij)] , i ∈ [m] , j ∈ {0} ∪ [k − dgi ] ,
(9.2.21)

where kij := k − dgi − j, for i ∈ [m], for j ∈ {0} ∪ [k − dgi ]. Note that ǧm = 1.

Theorem 9.5. Let f, gi ∈ R[x], i ∈ [m], with gm = 1 and g1 := R −
∑
j∈[n] xj for some R > 0.

Consider POP (9.2.1) with S being defined as in (9.2.2). For every s ∈ N>0 and for every k ∈ N,
the dual of (9.2.21) reads as:

ρHan
k,s := sup

λ,Gijr

λ

s. t. λ ∈ R , Gijr � 0 , j ∈ [b(n, kij)] , i ∈ [m] , j ∈ {0} ∪ [k − dgi ] ,

f̌ − λ =
∑
i∈[m]

∑k−dgi
j=0 ǧiǧ

j
1
(∑

r∈[b(n,kij)] v
>
A

(s,kij)
r

GijrvA(s,kij)
r

)
.

(9.2.22)

The following statements hold:

1. For all k ∈ N and for every s ∈ N>0, ρHan
k = ρHan

k,1 ≤ ρHan
k,s ≤ f?.

2. For every s ∈ N>0, the sequence (ρHan
k,s )k∈N converges to f?.

3. If S has nonempty interior, there exist positive constants c̄ and c depending on f, gi such that
for every s ∈ N>0 and for every k ∈ N, 0 ≤ f? − ρHan

k,s ≤
(
k
c̄

)− 1
c .

4. If S has nonempty interior, for every k ∈ N and for every s ∈ N>0, strong duality holds for
the primal-dual problems (9.2.21)-(9.2.22).

The proof of Theorem 9.5 is based on Theorem 9.3 and similar to the proof of Theorem 9.3.

Remark 9.12. To make the use of the extended Handelman’s Positivstellensatz, we need at least
one ball constraint ǧ1 := R − ‖x‖22 for some R > 0. Thus, Theorem 9.5 is applicable only when
the domain S of POP (9.2.1) is compact. To deal with the noncompact case, we might combine it
with the so-called “big ball trick”.

9.2.3 Obtaining an optimal solution
A real sequence (yα)α∈Nnt has a representing measure if there exists a finite Borel measure µ

such that yα =
∫
Rn xαdµ(x) is satisfied for every α ∈ Nnt .

Next, we discuss about the extraction of an optimal solution x? of POP (9.2.1) from the optimal
solution y = (yα)α∈Nn2(df+k)

of the semidefinite relaxations (9.2.18).
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Table 9.1: Numerical values (in the first subtable) and computing time (in the second subtable)
for τPól

k,s in Example 9.2

k
s 1 2 3 4 5 6 7 8

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.4999 2.9999 2.9999 2.9999 2.9999 2.9999
3 1.0000 0.9999 0.9999 2.7454 2.8368 2.8383 2.9999 2.9999
4 1.4399 1.4999 1.4999 1.4999 1.4999 1.4999 2.9999 2.9999
5 1.8615 1.9961 1.9999 1.9999 1.9999 1.9999 2.9999 2.9999
6 2.1999 2.4526 2.4998 2.4999 2.4999 2.4999 2.4999 2.4999
7 2.3971 2.8090 2.9633 2.9950 2.9996 2.9999 2.9999 2.9999
8 2.4109 2.9022 2.9989 2.9999 2.9999 2.9999 2.9999 2.9999
9 2.5161 2.9137 2.9997 2.9999 2.9999 2.9999 2.9999 2.9999
10 2.5896 2.9520 2.9993 2.9999 2.9999 2.9999 2.9999 2.9999
11 2.6210 2.9607 2.9983 2.9999 2.9999 2.9999 2.9999 2.9999
12 2.6937 2.9615 2.9973 2.9998 2.9999 2.9999 2.9999 2.9999
13 2.7330 2.9662 2.9977 2.9999 2.9999 2.9999 2.9999 2.9999
14 2.7390 2.9687 2.9974 2.9999 2.9999 2.9999 2.9999 2.9999
15 2.3704 2.9697 2.9972 2.9998 2.9999 2.9999 2.9999 2.9999
16 2.4000 2.9710 2.9971 2.9997 2.9999 2.9999 2.9999 2.9999
17 1.5030 2.9723 2.9968 2.9999 2.9999 2.9999 2.9999 2.9999
18 0.5833 2.9732 2.9966 2.9996 2.9999 2.9999 2.9999 2.9999
19 0.8121 0.0000 0.0000 2.9995 2.9999 2.9999 2.9999 2.9999
20 0.7457 0.0000 0.0000 2.9994 2.9999 2.9999 2.9999 2.9999

k
s 1 2 3 4 5 6 7 8

0 1.1 1.3 1.0 1.0 1.0 1.1 1.0 1.0
1 1.1 1.1 1.1 1.2 1.1 1.1 1.1 1.1
2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
3 1.1 1.1 1.1 1.1 1.1 1.1 1.5 1.1
4 1.1 1.2 1.1 1.1 1.1 1.1 1.2 1.2
5 1.1 1.1 1.1 1.2 1.2 1.3 1.2 1.3
6 1.2 1.2 1.2 1.3 1.3 1.5 1.3 1.2
7 1.4 1.2 1.2 1.4 1.4 1.6 1.6 1.4
8 1.2 1.2 1.3 1.3 1.5 1.4 1.8 1.9
9 1.3 1.2 1.3 1.4 1.5 1.7 1.7 1.6
10 1.3 1.3 1.5 1.8 1.7 1.9 2.2 1.9
11 1.3 1.5 1.4 1.9 1.9 2.0 2.2 2.3
12 1.3 1.7 1.8 2.1 2.2 2.3 2.7 2.6
13 1.4 1.6 1.9 2.2 2.3 2.4 2.9 3.4
14 1.2 1.5 2.0 2.5 2.6 2.9 3.5 3.8
15 1.2 1.6 2.3 2.8 3.1 3.5 4.2 5.0
16 1.3 2.5 2.8 3.5 3.9 4.4 5.9 7.1
17 1.4 2.3 3.8 5.3 6.2 7.2 7.9 9.7
18 1.6 2.9 5.2 7.2 7.9 9.7 10.6 12.3
19 1.5 2.7 4.1 9.8 13.3 14.0 14.1 16.6
20 1.4 3.4 4.8 12.6 16.5 20.8 24.5 27.2
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Remark 9.13. A naive idea is to define the new sequence of moments u = (uα)α∈Nn2(df+k)
given

by uα := y2
α, for α ∈ Nn2(df+k). Obviously, if y has a representing Dirac measure δz? , then u has a

representing Dirac measure δz?2 . In this case, we take x? := z?2. However, there is no guarantee
that u has a representing measure in general even if y has one.

Based on Remark 4.8, we use the following heuristic extraction algorithm:

Algorithm 14 Extraction algorithm for POPs on the nonnegative orthant
Input: precision parameter ε > 0 and an optimal solution (λ,Gij) of SDP (9.2.19).
Output: an optimal solution x? of POP (9.2.1).

1: For j ∈ [b(n, km)], let Ḡj = (w(j)
pq)p,q∈Nn

km
such that (w(j)

pq)p,q∈A(s,km)
j

= Gj and w
(j)
pq = 0 if

(p,q) /∈ (A(s,km)
j )2. Then Ḡj � 0 and

v>Nn
km

ḠjvNn
km

= v>
A(s,km)
j

GjvA(s,km)
j

; (9.2.23)

2: Let G :=
∑
j∈[b(n,km)] Ḡj . Then G is the Gram matrix corresponding to σm in the SOS

decomposition
θk(f̌ − λ) =

∑
i∈[m] ǧiσi , (9.2.24)

where σi are SOS polynomials and ǧm = 1;
3: Obtain an atom z? ∈ Rn by using the extraction algorithm of Henrion and Lasserre in [77],

where the matrix V in [77, (6)] is taken such that the columns of V form a basis of the null
space {u ∈ Rωk : Gu = 0};

4: Verify that z? is an approximate optimal solution of POP (9.2.3) by checking the following
inequalities:

|f̌(z?)− λ| ≤ ε‖f̌‖max and ǧi(z?) ≥ −ε‖ǧi‖max , i ∈ [m] , (9.2.25)

where ‖q‖max := maxα |qα| for any q ∈ R[x].
5: If the inequalities (9.2.25) hold, set x? := z?2.

9.3 Numerical experiments
In this section we report results of numerical experiments obtained by solving the Moment-

SOS relaxations of some random and nonrandom instances of POP (9.0.1). Other results for some
random instances of POP (9.0.1) can be found in Section 9.4.7. Notice that our relaxations from
Section 9.2 are to deal with dense POPs while the ones from Section 9.4.6 are for POPs with
correlative sparsity.

For numerical comparison purposes, recall the semidefinte relaxation based on Putinar’s Posi-
tivstellensatz for solving POP (9.0.1) indexed by k ∈ N:

τPut
k := inf

y
Ly(f)

s. t. y = (yα)α∈Nn2k ⊂ R , y0 = 1 ,
Mk−dgie(giy) � 0 , i ∈ [m̄] ,

(9.3.1)

and its sparse version:

τ spPut
k := inf

y
Ly(f)

s. t. y = (yα)α∈Nn2k ⊂ R , y0 = 1 ,
MNIc

k−dgie
(giy) � 0 , i ∈ Jc , c ∈ [p] .

(9.3.2)

Here m̄ := m + n and gm+j := xj , j ∈ [n]. Here gm := 1 and m ∈ Jc ⊂ [m̄], for c ∈ [p]. As
shown by Baldi and Mourrain [13], the sequence (τPut

k )k∈N converges to f? with the rate of at
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Table 9.2: The notation

Pb the ordinal number of a POP instance
Id the ordinal number of an SDP instance
n the number of nonnegative variables in POP (9.0.1)
mineq the number of inequality constraints of the form gi ≥ 0 in POP (9.0.1)
meq the number of equality constraints of the form gi = 0 in POP (9.0.1)

Put the SDP relaxation based on Putinar’s Positivstellensatz (9.3.1) modeled
by TSSOS and solved by Mosek 9.1

Pól the SDP relaxation based on the extension of Pólya’s Positivstellensatz
(9.2.19) modeled by our software InterRelax and solved by Mosek 9.1

Han
the SDP relaxation based on the extension of Handelman’s Positivstellen-
satz (9.2.22) modeled by our software InterRelax and solved by Mosek
9.1

spPut the SDP relaxation for a sparse POP based on Putinar’s Positivstellensatz
(9.3.2) modeled by TSSOS and solved by Mosek 9.1

spPól
the SDP relaxation for a sparse POP based on the extension of Pólya’s
Positivstellensatz (9.4.81) modeled by our software InterRelax and
solved by Mosek 9.1

spHan
the SDP relaxation for a sparse POP based on the extension of Han-
delman’s Positivstellensatz (9.4.83) modeled by our software InterRelax
and solved by Mosek 9.1

k the relaxation order
s the factor width upper bound used in SDP (9.0.7) and SDP (9.4.81)
d the sparsity order of the SDP relaxation (9.4.81)
nmat the number of matrix variables of an SDP
msize the largest size of matrix variables of an SDP
nscal the number of scalar variables of an SDP
naff the number of affine constraints of an SDP
val the value returned by the SDP relaxation
∗ there exists at least one optimal solution of the POP, which can be ex-

tracted by Algorithm 14 or 9.4.6
time the running time in seconds (including modeling and solving time)
∞ the SDP relaxation is unbounded or infeasible
− the calculation runs out of space

least O(ε−c) when POP (9.0.1) has a ball constraint, e.g., g1 := R − ‖x‖22 for some R > 0. If
g1 = R−

∑
j∈[n] xj for some R > 0, then (τPut

k )k∈N still converges to f? due to Jacobi-Prestel [86,
Theorem 4.2] (see also [8, Theorem 1 (JP)]).

Remark 9.14. If we assume that g1 := R −
∑
j∈[n] xj for some R > 0, SDP (9.3.1) may be

unbounded when k is too small since its variables y are possibly unbounded. This issue occurs later
on, see, e.g., Section 9.3.1. However, if we assume that g1 := R−‖x‖22 for some R > 0, then SDP
(9.3.1) is feasible for any order k ≥ 1 (see Section 9.4.7).

The experiments are performed in Julia 1.3.1. We rely on TSSOS [212] to solve the Moment-SOS
relaxations of sparse POPs.

The implementation of our method is available online via the link:

https://github.com/maihoanganh/InterRelax.

We use a desktop computer with an Intel(R) Core(TM) i7-8665U CPU @ 1.9GHz × 8 and 31.2
GB of RAM. The notation for the numerical results is given in Table 9.2.

9.3.1 Dense QCQPs
Test problems: We construct randomly generated dense quadratically constrained quadratic
programs (QCQPs) in the form (9.0.1)-(9.0.2) as follows:

https://github.com/maihoanganh/InterRelax
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Table 9.3: Numerical results for randomly generated dense QCQPs.

Id Pb POP size Put Pól Han
n mineq meq k val time k s val time k s val time

1 1 20 2 0 1 ∞ 0.0 0 17 -1.99792∗ 1 2 5 -1.99792 12 2 -1.99792 92
3 2 20 5 0 1 ∞ 0.03 1 20 -0.265883∗ 9 3 1 -0.265883 14 2 -0.350601 342
5 3 20 5 4 1 ∞ 0.02 1 7 -0.429442 5 3 7 -0.429430 96 2 -0.431543 356
7 4 30 2 0 1 ∞ 0.0 0 20 -2.31695∗ 2 2 10 -2.31695 18 2 -2.31695 3545
9 5 30 7 0 1 ∞ 0.2 0 31 -1.79295 45 3 20 -1.79295 23810 2 -2.13423 15135
11 6 30 7 6 1 ∞ 0.1 1 31 -1.56374 54 3 15 -1.56374 23612 2 -1.56374 12480

Id Put Pól Han
nmat msize nscal naff nmat msize nscal naff nmat msize nscal naff

1 1 21 22 231 5 17 232 231 17 5 255 2312 22 231 1 10626
3 1 21 25 231 44 20 1604 1771 0 1 2344 17714 25 231 1 10626
5 1 21 29 231 330 7 1688 1771 345 7 1945 17716 25 231 925 10626
7 1 31 32 496 11 21 497 496 22 10 530 4968 32 496 1 46376
9 1 31 37 496 32 31 5116 5456 396 20 5650 545610 37 496 1 46376
11 1 31 43 496 32 31 5302 5456 561 15 5836 545612 37 496 2977 46376

1. Take a in the simplex

∆n := {x ∈ Rn : xj ≥ 0 , j ∈ [n] ,
∑
j∈[n] xj ≤ 1} (9.3.3)

w.r.t. the uniform distribution.

2. Let g1 := 1−
∑
j∈[n] xj and g2 := 1.

3. Take every coefficient of f and gi, i = 2, . . . ,m, in (−1, 1) w.r.t. the uniform distribution.

4. Update gi(x) := gi(x)− gi(a) + 0.125, for i = 2, . . . ,mineq.

5. Update gi+mineq(x) := gi+mineq(x) − gi+mineq(a) and set gi+meq+mineq = −gi+mineq , for i ∈
[meq].

Here m = mineq + 2meq with mineq (resp. meq) being the number of inequality (resp. equality)
constraints except the orthogonal constraints xj ≥ 0. If mineq = 2 and meq = 0, we obtain the
case of the minimization of a polynomial on the simplex ∆n. The point a is a feasible solution of
POP (9.0.1).

The numerical results are displayed in Table 9.3.

Discussion: Table 9.3 shows that Pól and Han are typically faster and more accurate than Put.
For instance, when n = 20, mineq = 5 and meq = 0, Put takes 342 seconds to return the lower
bound −0.350601 for f?, while Pól only takes 9 seconds to return the better bound −0.265883 and
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an approximate optimal solution. It is due to the fact that Pól has 44 matrix variables with the
maximal matrix size 20, while Put has 25 matrix variables with the maximal matrix size 231 in
this case. In addition, Han provides slightly better bounds than Pól in Pb 3 and the same bounds
with Pól in the others. Moreover, Pól runs about five times faster than Han in Pb 5 and 6.

9.3.2 Sparse QCQPs
Test problems: We construct randomly generated QCQPs in the form (9.0.1)-(9.0.2) with cor-
relative sparsity as follows:

1. Take a positive integer u, p := bn/uc+ 1 and let

Ic =


[u], if c = 1 ,
{u(c− 1), . . . , uc}, if c ∈ {2, . . . , p− 1} ,
{u(p− 1), . . . , n}, if c = p ;

(9.3.4)

2. Generate a quadratic polynomial objective function f =
∑
c∈[p] fc such that for each c ∈ [p],

fc ∈ R[x(Ic)]2, and the coefficient fc,α,α ∈ NIc2 of fc is randomly generated in (−1, 1) w.r.t.
the uniform distribution;

3. Take a random point a such that for every c ∈ [p], a(Ic) belongs to the simplex

∆(c) := {x(Ic) ∈ Rnc : xj ≥ 0 , j ∈ Ic ,
∑
j∈Ic xj ≤ 1} (9.3.5)

4. Let q := bmineq/pc and

Jc :=
{
{(c− 1)q + 1, . . . , cq}, if c ∈ [p− 1] ,
{(p− 1)q + 1, . . . , l}, if c = p .

(9.3.6)

For every c ∈ [p] and every i ∈ Jc, generate a quadratic polynomial gi ∈ R[x(Ic)]2 by

(a) for each α ∈ NIc2 \{0}, taking a random coefficient Gi,α of hi in (−1, 1) w.r.t. the
uniform distribution;

(b) setting gi,0 := 0.125−
∑

α∈NIc2 \{0}
gj,αaα.

5. Take gic := 1−
∑
i∈Ic xi, for some ic ∈ Jt, for c ∈ [p];

6. Let r := bmeq/pc and

Wc :=
{
{(c− 1)r + 1, . . . , cr}, if c ∈ [p− 1] ,
{(p− 1)r + 1, . . . , l}, if c = p .

(9.3.7)

For every c ∈ [p] and every i ∈Wc, generate a quadratic polynomial hi ∈ R[x(Ic)]2 by

(a) for each α ∈ NIc2 \{0}, taking a random coefficient hi,α of hi in (−1, 1) w.r.t. the uniform
distribution;

(b) setting hi,0 := −
∑

α∈NIc2 \{0}
hi,αaα.

7. Take gi+mineq(x) := hi and set gi+meq+mineq = −hi, for i ∈ [meq].

Here m = mineq + 2meq with mineq (resp. meq) being the number of inequality (resp. equality)
constraints except the orthogonal constraints xj ≥ 0. The point a is a feasible solution of POP
(9.0.1).

The numerical results are displayed in Table 9.4.
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Table 9.4: Numerical results for randomly generated QCQPs with correlative sparsity of n = 1000 and
d = deg(f) = 2.

Id Pb POP size spPut spPól spHan
u mineq meq k val time k s val time k s val time

1 1 10 201 0 1 ∞ 1.5 0 10 -128.906 15 2 7 -128.660 202 2 -129.061 385
3 2 10 201 200 1 ∞ 2.0 1 12 -65.3195 51 3 10 -65.3050 2834 2 -66.0696 475
5 3 20 201 0 1 ∞ 3.6 0 15 -65.9794 19 2 15 -65.8646 246 2 -66.1306 56360
7 4 20 201 200 1 ∞ 9 1 22 -38.2061 319 3 20 -38.2035 21468 2 − −

Id spPut spPól spHan
nmat msize nscal naff nmat msize nscal naff nmat msize nscal naff

1 100 12 1201 7491 299 10 7889 7491 599 7 9288 74912 1300 78 1 135641
3 100 12 1401 7491 1299 12 39920 43813 4184 10 41419 359264 1300 78 15577 135641
5 50 22 1201 12481 399 15 25407 25109 399 15 13978 124816 1250 253 1 630231
7 50 22 1401 12481 1149 22 108641 113428 3574 20 109990 1007518 1250 253 50513 630231

Discussion: Similarly to the previous discussion, spPól and spHan in Table 9.4 are also much
faster and more accurate than spPut. For instance, when u = 20, mineq = 201 and meq = 0, spPól
takes 20 seconds to return the lower bound −65.9794 of f?, while spPut takes 56360 seconds to
return a worse bound of −66.1306. In this case, spPól has 399 matrix variables with maximal
matrix size 15, while spPut has 1250 matrix variables with maximal matrix size 253. In particular,
spHan provides slightly better bounds than spPól for Pb 1, 2, 4 while it is seven (resp. five) times
slower than spPól in Pb 4 (resp. Pb 2).

9.3.3 Stability number of a graph
In order to compute the stability number α(G) of a given graph G, we solve the following POP

on the unit simplex:
1

α(G) = min
x∈Rn+

{x>(A + I)x :
∑
j∈[n] xj = 1} , (9.3.8)

where A is the adjacency matrix of G and I is the identity matrix.

Test problems: We take some adjacency matrices of known graphs from [180]. The numerical
results are displayed in Tables 9.5 and 9.6. Note that in Table 9.6 we solve POP (9.3.8) with an
additional unit ball constraint 1 − ‖x‖22 ≥ 0. The columns under “val” show the approximations
of α(G).

Discussion: The graphs from Table 9.5 are relatively dense so that we cannot exploit term
sparsity or correlative sparsity for POP (9.3.8) in these cases. For the graph GD02 a in Table 9.5,
Pól and Han provide better bounds for α(G) compared to the ones returned by the second order
relaxations of Put. In Table 9.6, Put provides negative values for the first order relaxations. The
additional unit ball constraint does not help to improve the bound for the second order relaxation
for Id 2. Besides, Table 9.5 shows that Han provides slightly better bounds than Pól for johnson16-
2-4, but its value is less accurate than the corresponding one from Table 9.6.
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Table 9.5: Numerical results for stability number of some known graphs in [180].

Id Pb POP size Put Pól Han
n k val time k s val time k s val time

1 GD02 a 23 1 ∞ 0.02 0 25 13.0000 1 2 25 13.0000 12 2 13.0110 394
3 johnson8-2-4 28 1 ∞ 0.03 0 30 7.00000 1 2 30 6.99999 14 2 7.00000 2098
5 johnson8-4-4 70 1 ∞ 1 0 72 5.00000 5 2 72 5.00001 86 2 − −
7 hamming6-2 64 1 ∞ 0.5 0 66 1.99999 3 2 66 1.99999 68 2 − −
9 hamming6-4 64 1 ∞ 0.6 0 66 12.0000 3 2 66 12.0000 510 2 − −
11 johnson16-2-4 120 1 ∞ 0.6 0 122 15.0001 54 2 122 15.0000 7812 2 − −

Id Put Pól Han
nmat msize nscal naff nmat msize nscal naff nmat msize nscal naff

1 1 24 25 300 1 24 301 300 1 24 326 3002 24 300 301 17550
3 1 29 30 435 1 29 436 435 1 29 466 4354 29 435 436 35960
5 1 71 72 2556 1 71 2557 2556 1 71 2629 25566 71 2556 2557 1150626
7 1 65 66 2145 1 65 2146 2145 1 65 2212 21458 65 2145 2146 814385
9 1 65 66 2145 1 65 2146 2145 1 65 2212 214510 65 2145 2146 814385
11 1 121 122 7381 1 121 7382 7381 1 121 7504 738112 121 7381 7380 9381251
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Table 9.6: Numerical results for stability number of some known graphs in [180] with an additional unit
ball constraint.

Id Pb POP size Put Pól Han
n k val time k s val time k s val time

1 GD02 a 23 1 -0.62896 0.02 0 13 13.0000 1 2 13 13.0000 12 2 13.0170 442
3 johnson8-2-4 28 1 -0.30434 0.03 0 23 7.00000 1 2 23 7.00000 14 2 7.00000 3010
5 johnson8-4-4 70 1 -0.14056 1 0 70 5.00000 10 2 70 5.00000 86 2 − −
7 hamming6-2 64 1 -0.32989 1 0 64 2.00000 7 2 64 2.00000 78 2 − −
9 hamming6-4 64 1 -0.11764 0.6 0 64 12.0000 6 2 64 12.0000 710 2 − −
11 johnson16-2-4 120 1 -0.08982 26 0 121 15.0000 75 2 121 15.0026 7412 2 − −

Id Put Pól Han
nmat msize nscal naff nmat msize nscal naff nmat msize nscal naff

1 1 24 26 300 12 13 302 300 12 13 327 3002 25 300 301 17550
3 1 29 31 435 7 23 437 435 7 23 467 4354 30 435 436 35960
5 1 71 73 2556 2 70 2558 2556 2 70 2630 25566 72 2556 2557 1150626
7 1 65 67 2145 2 64 2146 2145 2 64 2213 21458 66 2145 2146 814385
9 1 65 67 2145 2 64 2146 2145 2 64 2213 214510 66 2145 2146 814385
11 1 121 123 7381 1 121 7383 7381 1 121 7505 738112 122 7381 7380 9381251
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Table 9.7: Numerical results for some instances of MAXCUT problems.

Id Pb POP size Put Pól Han
n k val time k s val time k s val time

1 burma14 14 1 30310.915 0.2 1 16 30302.000 1 3 16 30301.999 12 2 30301.999 4
3 gr17 17 1 25089.044 0.2 1 19 24986.000 1 3 19 24985.999 24 2 24985.999 24
5 fri26 26 1 22220.657 0.4 1 28 22218.000 12 3 28 22217.999 286 2 22217.999 1970
7 att48 48 1 799281.420 1 1 50 798857.049 1129 3 50 798890.722 36008 2 − −

Id Put Pól Han
nmat msize nscal naff nmat msize nscal naff nmat msize nscal naff

1 1 15 29 130 15 15 666 680 16 15 787 6802 15 120 1681 3060
3 1 18 35 171 18 18 1123 1140 19 18 1295 11404 18 171 2908 5985
5 1 27 53 378 27 27 3628 3654 28 27 4007 36546 27 378 9829 27405
7 1 49 97 1225 49 49 20777 20825 50 49 22003 208258 30 465 13486 40920

9.3.4 The MAXCUT problems
The MAXCUT problem is given by:

max
x∈{0,1}n

x>W(e− x) , (9.3.9)

where e = (1, . . . , 1) and W is the matrix of edge weights associated with a graph (see [38, Theorem
1]).

Test problems: The data of graphs is taken from TSPLIB [173].
The numerical results are displayed in Table 9.7. Note that all instance of matrix W are dense.

Discussion: The behavior of our method is similar to that in Section 9.3.1.

9.3.5 Robustness certification of deep neural networks
In [172], the robustness certification problem of a multi-layer neural network with ReLU acti-

vation function is formulated as the following QCQP:

l?y(x̄, ȳ) := max
x0,...,xL

(cy − cȳ)>xL

s.t. xit(xit −Wi−1
t xi−1) = 0 , xit ≥ 0 , xit ≥Wi−1

t xi−1 ,
t ∈ [mi] , i ∈ [L]

−ε ≤ x0
t − x̄t ≤ ε , t ∈ [m0] ,

(9.3.10)

where we use the same notation as in [172, Section 2] and write Wi−1 =

Wi−1
1
. . .

Wi−1
mi

.

We say that the network is certifiably ε-robust on (x̄, ȳ) if l?y(x̄, ȳ) < 0 for all y 6= ȳ.
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Table 9.8: Information for the training model (9.3.11).

Dataset BHPD
Number of hidden layers L = 2
Length of an input 13
Number of inputs 506
Test size 20%
Number of classes k = 3
Numbers of units in layers m = (13, 20, 10)
Number of weights 490
Opimization method Adadelta algorithm2

Accuracy 70%
Batch size 128
Epochs 200

Table 9.9: Numerical results for robustness certification on BHPD, n = 43, mineq = 43, meq = 30 and
d = deg(f) = 2.

Id Pb spPut spPól spHan
k val time k s val time k s val time

1
y = 1 1 88.1571 0.4 1 35 -11.8706 625 3 35 − 13642 2 − −

3
y = 2 1 208.934 0.4 1 35 -13.3240 518 3 35 − 12704 2 − −

Id spPut spPól spHan
nmat msize nscal naff nmat msize nscal naff nmat msize nscal naff

1,3 23 22 117 737 297 35 46233 28195 308 35 47629 96702,4 97 595 14431 86285

Test problems: To obtain an instance of weights Wi, we train a classification model by using
Keras1. Explicitly, we minimize a loss function as follows:

min
W0,...,WL−1

1
2
∑

(x0,y0)∈D ‖f(x0)− ey0‖22 , (9.3.11)

where the network f is defined as in [172, Section 2] and ey0 has 1 at the y0-th element and zeros
at the others. Here the input set D is a part of Boston House Price Dataset (BHPD). The class
label y0 is assigned to the input x0. We classify the inputs from BHPD into 3 classes according to
the MEDian Value of owner-occupied homes (MEDV) in $1000 as follows:

y0 =


1 if MEDV < 10 ,
2 if 10 ≤ MEDV < 20 ,
3 otherwise .

(9.3.12)

We also take a clean input label pair (x̄, ȳ) /∈ D with ȳ = 3 from BHPD.
As shown in [35, Section 4.2], POP (9.3.10) has correlative sparsity. To use our method,

we convert (9.3.10) to a POP on the nonnegative orthant by defining new nonnegative variables
z̄t := x0

t − x̄t + ε. Here we choose ε = 0.1. More detailed information for our training model are
available in Table 9.8.

The numerical results are displayed in Table 9.9.

Discussion: Compared to spPut, spPól and spHan provide better upper bounds in less total
time. Moreover, in Table 9.9, the values returned by spPut with k = 1 are positive and are much

1https://keras.io/api/models/model_training_apis/

https://keras.io/api/models/model_training_apis/
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larger than the negative ones returned by spPut with k = 2. Since in Table 9.9, the upper bounds
on l?y(x̄, ȳ) are negative, for all y 6= ȳ, l?y(x̄, ȳ) must be negative. Thus, we conclude that this
network is certifiably ε-robust on (x̄, ȳ).

9.4 Appendix
9.4.1 Preliminary material

For each q =
∑

α qαxα ∈ R[x], we note ‖q‖ := maxα
|qα|
cα

with cα := |α|!
α1!...αn! for each α ∈ Nn.

This defines a norm on the real vector space R[x]. Moreover, for p1, q2 ∈ R[x], we have

‖q1q2‖ ≤ ‖q1‖‖q2‖ , (9.4.1)

according to [188, Lemma 8].
We recall the following bound for central binomial coefficient stated in [94, page 590]:

Lemma 9.1. For all t ∈ N>0, it holds that
(2t
t

) 1
22t ≤ 1√

πt
.

Define the simplex

∆n := {x ∈ Rn : xj ≥ 0 , j ∈ [n] ,
∑
j∈[n] xj = 1} . (9.4.2)

We recall the degree bound for Pólya’s Positivstellensatz [165]:

Lemma 9.2. (Powers and Reznick [167]) If q is a homogeneous polynomial of degree d positive
on ∆n, then for all k ∈ N satisfying

k ≥ d(d− 1)‖q‖
2 minx∈∆n

q(x) − d , (9.4.3)

(
∑
j∈[n] xj)kq has positive coefficients.

Let us recall the concept and the properties of polynomials even in each variable in [182,
Definition 3.3]. A polynomial q is even in each variable if for every j ∈ [n],

q(x1, . . . , xj−1,−xj , xj+1, . . . , xn) = q(x1, . . . , xj−1, xj , xj+1, . . . , xn) . (9.4.4)

If q is even in each variable, then there exists a polynomial q̃ such that q = q̃(x2
1, . . . , x

2
n).

Indeed, let q =
∑

α∈Nn qαxα be a polynomial even in each variable. Let j ∈ [n] be fixed. Then
q(x) = 1

2 (q(x) + q(x1, . . . , xj−1,−xj , xj+1, . . . , xn)). It implies that qα = 0 if αj is odd. Thus,
q =

∑
α∈Nn q2αx2α since j is arbitrary in [n]. This yields q̃ =

∑
α∈Nn q2αxα.

For convenience, we denote x2 := (x2
1, . . . , x

2
n). Moreover, if q is even in each variable and

homogeneous of degree 2dq, then q̃ is homogeneous of degree dq. Conversely, if q is a polynomial
of degree at most 2d such that q is even in each variable, the degree-2d homogenization of q is even
in each variable.

9.4.2 The proof of Theorem 9.1
Proof. Let ε > 0. By assumption, deg(f) = 2df , deg(gi) = 2dgi for some df , dgi ∈ N, for j ∈ [m].

Step 1: Converting to polynomials on the nonnegative orthant. We claim that f̃ is
nonnegative on the semialgebraic set

S̃ := {x ∈ Rn : xj ≥ 0 , j ∈ [n] , g̃i(x) ≥ 0 , i ∈ [m]} . (9.4.5)

Let y ∈ S̃. Set z = (√y1, . . . ,
√
yn). Then gi(z) = g̃i(z2) = g̃i(y) ≥ 0, for i ∈ [m]. By assumption,

f̃(y) = f̃(z2) = f(z) ≥ 0. It implies that f̃ + ε(
∑n
j=1 xj)df is homogeneous and positive on S̃\{0}.

To prove the first statement, we proceed exactly as in the proof of [45, Theorem 2.4] for
f̃ + ε(

∑n
j=1 xj)df and derive the bound on the degree of polynomials having positive coefficients
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when apply Pólya’s Positivstellensatz. To obtain (9.1.3), we replace x by x2 in the representation
of f̃ + ε(

∑n
j=1 xj)df .

We shall prove the second statement. Assume that S has nonempty interior. Set m̄ := m+ n
and gm+j := x2

j with dgm+j := 1, j ∈ [n]. Then g̃m+j := xj , j ∈ [n], and

S̃ := {x ∈ Rn : g̃i(x) ≥ 0 , i ∈ [m̄]} . (9.4.6)

Note that deg(g̃i) = dgi , i ∈ [m̄]. Since S has nonempty interior and ∪nj=1{x ∈ Rn : xj = 0} has
zero Lebesgue measure in Rn, S\(∪nj=1{x ∈ Rn : xj = 0}) also has nonempty interior. Then there
exists a ∈ S\(∪nj=1{x ∈ Rn : xj = 0}) such that gi(a) > 0, i ∈ [m]. Let b = (

√
|a1|, . . . ,

√
|an|).

Then b ∈ (0,∞)n and b2 = (|a1|, . . . , |an|). Since each gi is even in each variable, g̃i(b) = gi(b2) =
gi(a) > 0, i ∈ [m], yielding S̃ has nonempty interior.

Step 2: Construction of the positive weight functions. We process similarly to the proof
of [132, Theorem 1] (see [132, Appendix A.2.1]) to obtain functions ϕ̄j : Rn → R, j ∈ [m̄], such
that,

1. ϕ̄j is positive and bounded from above by Cϕ̄j = r̄jε
−rj on B(0,

√
n + j) for some positive

constants r̄j and rj independent of ε.

2. ϕ̄j is Lipschitz with Lipschitz constant Lϕ̄j = t̄jε
−tj for some positive constants t̄j and tj

independent of ε.

3. The inequality

f̃ + ε−
m̄∑
i=1

ϕ̄2
i g̃i ≥

ε

2m̄ on [−1, 1]n , (9.4.7)

holds.

Note that we do not need to prove the even property for each weight ϕ̄i above.

Step 3: Approximating with Bernstein polynomials. For each i ∈ [m̄], we now approx-
imate ϕ̄i on [−1, 1]n with the following Bernstein polynomials defined as in [132, Definition 1]:

B
(d)
i (x) = By7→ϕ̄i(2y−e),de

(
x + e

2

)
, d ∈ N , (9.4.8)

with e = (1, . . . , 1) ∈ Rn. By using [132, Lemma 6], for all x ∈ [−1, 1]n, for i ∈ [m̄],

|B(d)
i (x)− ϕ̄i(x)| ≤ Lϕ̄i

(
n

d

) 1
2

, d ∈ N , (9.4.9)

and for all x ∈ [−1, 1]n, for i ∈ [m̄]:

|B(d)
i (x)| ≤ supx∈[−1,1]n |ϕ̄i(x)| ≤ Cϕ̄i . (9.4.10)

For i ∈ [m̄], let

di := 2ui with ui =
⌈2C2

g̃iC
2
ϕ̄inL

2
ϕ̄i(m̄+ 1)222m̄

ε2

⌉
, (9.4.11)

where Cg̃i is an upper bound of |g̃i| on B(0,
√
n+ i). Set qi := B

(di)
i , i ∈ [m̄]. Then for all

x ∈ [−1, 1]n,
|qi(x)− ϕ̄i(x)| = |B(di)

i (x)− ϕ̄i(x)|

≤ Lϕ̄i
(
n
di

) 1
2

≤ Lϕ̄i

(
n

4C2
g̃i
C2
ϕ̄i
nL2
ϕ̄i

(m̄+1)222m̄

ε2

) 1
2

= ε
2Cg̃iCϕ̄i (m̄+1)2m̄ .

(9.4.12)
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Step 4: Estimating the lower and upper bounds of f̃(x) + ε −
∑m̄
i=1 qi(x)2g̃i(x) on ∆n.

From these and (9.4.7), for all x ∈ ∆n,

f̃(x) + ε−
∑m̄
i=1 qi(x)2g̃i(x)

= f̃(x) + ε−
∑m̄
i=1 ϕ̄i(x)2g̃i(x) +

∑m̄
i=1 g̃i(x)[ϕ̄i(x)2 − qi(x)2]

≥ ε
2m̄ −

∑m̄
i=1 |g̃i(x)||ϕ̄i(x) + qi(x)||ϕ̄i(x)− qi(x)|

≥ ε
2m̄ −

∑m̄
i=1 Cg̃i(|ϕ̄i(x)|+ |qi(x)|) ε

2Cg̃iCϕ̄i (m̄+1)2m̄

≥ ε
2m̄ −

∑m̄
i=1 2Cg̃iCϕ̄i ε

2Cg̃iCϕ̄i (m̄+1)2m̄

= ε
2m̄ −

m̄ε
(m̄+1)2m̄ = ε

(m̄+1)2m̄ .

(9.4.13)

Thus,
f̃ + ε−

∑m̄
i=1 q

2
i g̃i ≥ ε

(m̄+1)2m̄ on ∆n . (9.4.14)

Step 5: Estimating the upper bound of ‖qi‖. For i ∈ [m̄], we write

qi = B
(2ui)
i =

∑2ui
k1=0 · · ·

∑2ui
kn=0 ϕ̄i

(
k1−ui
ui

, . . . , kn−uiui

)
×
∏n
j=1

[(2ui
kj

) (xj+1
2

)kj ( 1−xj
2

)2ui−kj
]
.

(9.4.15)

Then
deg(qi) ≤ 2nui , (9.4.16)

for i ∈ [m̄]. From (9.4.1), we have

‖qi‖ ≤
∑2ui
k1=0 · · ·

∑2ui
kn=0

∣∣∣ϕ̄i (k1−ui
ui

, . . . , kn−uiui

)∣∣∣
×
∏n
j=1

[(2ui
kj

) 1
22ui ‖xj + 1‖kj‖1− xj‖2ui−kj

]
≤

∑2ui
k1=0 · · ·

∑2ui
kn=0 Cϕ̄i

∏n
j=1

((2ui
ui

) 1
22ui

)
= Cϕ̄i

((2ui
ui

) 2ui+1
22ui

)n
≤ Cϕ̄i

(
2ui+1√
πui

)n
=: Tqi .

(9.4.17)

The second inequality is due to ‖xj + 1‖ = ‖1 − xj‖ = 1 and
(2ui
ui

)
≥
(2ui
kj

)
, for kj = 0, . . . , 2ui.

The third inequality is implied from Lemma 9.1.

Step 6: Converting to homogeneous polynomials. Thanks to (9.4.14), we get

f̃ + 2ε−
∑
i∈[m̄](q2

i + ε
m̄Cg̃i

)g̃i ≥ ε
(m̄+1)2m̄ on ∆n , (9.4.18)

since |g̃i| ≤ Cg̃i on ∆n. Note that f̃ , g̃i are homogeneous polynomials of degree df , dgi , respectively.
For each q ∈ R[x]d, q̂ is a d-homogenization of q if

q̂ =
∑d
t=0 h

(t)(
∑
j∈[n] xj)d−t , (9.4.19)

for some h(t) is the homogeneous polynomial of degree t satisfying q =
∑d
t=0 h

(t). In this case,
q̂ = q on ∆n.

Let pi := q̂2
i + ε

m̄Cg̃i
(
∑
j∈[n] xj)4nui with q̂i being a 2nui-homogenization of qi, for i ∈ [m̄]. Then

pi is a homogeneous polynomial of degree 4nui,

pi = q2
i + ε

m̄Cg̃i
≥ ε

m̄Cg̃i
on ∆n , (9.4.20)

and
‖pi‖ ≤ ‖qi‖2 + ε

m̄Cg̃i
≤ T 2

qi + ε
m̄Cg̃i

=: Tpi . (9.4.21)

Set D := max{df , 4nui + dgi : i ∈ [m̄]} and

F := (
∑
j∈[n] xj)D−df (f̃ + 2ε(

∑
j∈[n] xj)df )

−
∑
i∈[m̄] g̃ipi(

∑
j∈[n] xj)D−4nui−dgi .

(9.4.22)
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Then F is a homogeneous polynomial of degree D and

F = f̃ + 2ε−
∑
i∈[m̄](q2

i + ε
m̄Cg̃i

)g̃i ≥ ε
(m̄+1)2m̄ on ∆n , (9.4.23)

Moreover,
‖F‖ ≤ ‖

∑
j∈[n] xj‖D−df (‖f̃‖+ 2ε‖

∑
j∈[n] xj‖df )

+
∑
i∈[m̄] ‖g̃i‖‖pi‖‖

∑
j∈[n] xj‖D−4nui−dgi

≤ ‖f̃‖+ 2ε+
∑
i∈[m̄] Tpi‖g̃i‖ =: TF ,

(9.4.24)

since ‖
∑
j∈[n] xj‖ = 1.

Step 7: Applying the degree bound of Pólya’s Positivstellensatz. Using Lemma 9.2, we
obtain:

• For all k ∈ N satisfying
k ≥ D(D − 1)TF

ε
(m̄+1)2m̄

=: K0 , (9.4.25)

(
∑
j∈[n] xj)kF has positive coefficients.

• For each i ∈ [m̄] and for all k ∈ N satisfying

k ≥ 4nui(4nui − 1)Tpi
ε

m̄Cg̃i

=: Ki , (9.4.26)

(
∑
j∈[n] xj)kpi has positive coefficients.

Notice that Ki, i = 0, . . . , m̄, are obtained by composing finitely many times the following op-
erators: “+”, “−”, “×”, “÷”, “| · |”, “d·e”, “(x1, x2) 7→ max{x1, x2}”, “(x1, x2) 7→ min{x1, x2}”,
“(·)αm” and “

√
·”, where all arguments possibly depend on ε. Without loss of generality, let c̄, c be

positive constants independent of ε such that c̄ε−c ≥ max{K0, . . . ,Km̄}.
Let k ≥ c̄ε−c be fixed. Multiplying two sides of (9.4.22) with (

∑
j∈[n] xj)k, we get

s0 = (
∑
j∈[n] xj)D−df+k(f̃ + 2ε(

∑
j∈[n] xj)df )

−
∑
i∈[m̄] g̃isi(

∑
j∈[n] xj)D−4nui−dgi ,

(9.4.27)

where s0 := (
∑
j∈[n] xj)kF and si := (

∑
j∈[n] xj)kpi are homogeneous polynomials having nonneg-

ative coefficients. Replacing x by x2, we obtain:

‖x‖2(D−df+k)
2 (f + 2ε‖x‖2df2 ) = σ0 +

∑
i∈[m] giσi , (9.4.28)

where
σ0 = s0(x2) +

∑
j∈[n] g̃j+m(x2)sj+m(x2)‖x‖

2(D−4nuj+m−dgj+m )
2

= s0(x2) +
∑
j∈[n] x

2
jsj+m(x2)‖x‖

2(D−4nuj+m−dgj+m )
2 ,

(9.4.29)

and
σi = si(x2)‖x‖2(D−4nui−dgi )

2 , i ∈ [m] , (9.4.30)

are SOS of monomials. Set K = D − df +K. Then ‖x‖2K2 (f + 2ε‖x‖2df2 ) = σ0 +
∑m
i=1 giσi with

deg(σ0) = deg(giσi) = 2(K + df ), for i ∈ [m]. This completes the proof of Theorem 9.1.

9.4.3 Variations of Pólya’s and Handelman’s Positivstellensatz
For every t ∈ N, denote

v̄t(x) := vt( 1
2 (x + e), 1

2 (x− e)) = ( 1
2|α+β| (x + e)α(x− e)β)(α,β)∈N2n

t
, (9.4.31)

where e := (1, . . . , 1) ∈ Rn.
As a consequence of Corollary 9.2, the next proposition shows that the weighted SOS polyno-

mials in Putinar–Vasilescu’s Positivstellensatz can be associated with diagonal Gram matrices via
a change of monomial basis.
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Proposition 9.2. (Putinar–Vasilescu’s Positivstellensatz with diagonal Gram matrices) Let g1, . . . , gm
be polynomials such that g1 := R − ‖x‖22 for some R > 0 and gm := 1. Let S be the semialgebraic
set defined by

S := {x ∈ Rn : g1(x) ≥ 0 . . . , gm(x) ≥ 0} . (9.4.32)

Let f be a polynomial of degree at most 2df such that f is nonnegative on S. Denote dgi :=
ddeg(gi)/2e. Then the following statements hold:

1. For all ε > 0, there exists Kε ∈ N such that for all k ≥ Kε, there exist vectors η(i) ∈
Rb(2n,k+df−dgi )

+ satisfying

(‖x‖22 + n+ 2)k(f + ε) =
∑m
i=1 giv̄>k+df−dgi

diag(η(i))v̄k+df−dgi . (9.4.33)

2. If S has nonempty interior, then there exist positive constants c̄ and c depending on f, gi such
that for all ε > 0, one can take Kε = c̄ε−c.

Proof. Take two vectors of n variables y = (y1, . . . , yn) and z = (z1, . . . , zn). Given q ∈ R[x],
denote the polynomial q̂(y, z) = q(y2 − z2) ∈ R[y, z]. Let ĝm+1 := 1

2 (L + n) − ‖(y, z)‖22 and
dgm+1 := 1. Define

Ŝ := {(y, z) ∈ R2n : ĝi(y, z) ≥ 0 , i ∈ [m+ 1]} (9.4.34)

Note that ĝ1 := R − ‖y2 − z2‖22 and ĝm := 1. Since f ≥ 0 on S, replacing x by y2 − z2 gives
f̂ ≥ 0 on Ŝ. From this and Corollary 9.2, there exist η(i) ∈ Rb(2n,k+df−dgi )

+ such that

(‖(y, z)‖22 + 1)k(f̂ + ε) =
∑m+1
i=1 ĝivk+df−dgi (y, z)> diag(η(i))vk+df−dgi (y, z) . (9.4.35)

With y = 1
2 (x + e) and z = 1

2 (x− e), it becomes

1
2k (‖x‖22 + n+ 2)k(f + ε) =

∑m+1
i=1 giv̄>k+df−dgi

diag(η(i))v̄k+df−dgi . (9.4.36)

Here gm+1(·) := ĝm+1( 1
2 (·+ e), 1

2 (· − e)) = 1
2g1(·). Indeed, since y2 − z2 = x, f̂(y, z) = f(x) and

ĝi(y, z) = gi(x), for i ∈ [m]. Since y2 + z2 = 1
2 (x2 + e), ‖y‖22 + ‖z‖22 = 1

2 (‖x‖22 + n). This implies
that

ĝm+1(y, z) = 1
2 (L+ n)− ‖(y, z)‖22 = 1

2 (R− ‖x‖22) = 1
2g1(x) . (9.4.37)

Moreover, if a belongs to the interior of S, then ( 1
2 (a + e), 1

2 (a − e)) belongs to the interior of Ŝ.
Thus, the desired result follows.

As a consequence of Corollary 9.3, the next proposition states a new representation associated
with diagonal Gram matrices for a polynomial positive on a compact semialgebraic set without
assumption on even property.

Proposition 9.3. (Representation without even symmetry) Let f, gi, S, dgi be as in Proposition
9.2. Then the following statements hold:

1. For all ε > 0, there exists Kε ∈ N such that for all k ≥ Kε, there exist vectors η(i,r) ∈
Rb(2n,k−dgi−r)+ satisfying

f + ε =
∑m
i=1
∑k−dgi
r=0 gig

r
1v̄>k−dgi−r diag(η(i,r))v̄k−dgi−r . (9.4.38)

2. If S has nonempty interior, then there exist positive constants c̄ and c depending on f, gi such
that for all ε > 0, one can take Kε = c̄ε−c.

The proof of Proposition 9.3 relies on Corollary 9.3 and can be proved in almost the same way
as the proof of Proposition 9.2.
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Remark 9.15. Representation (9.4.38) in Proposition 9.3 is similar in spirit to the one of Roebers
et al. in [179, (3), page 4]. The difference here is that the weight of each constrained polynomial
gi, i /∈ {1,m}, in (9.4.38) is the polynomial∑k−dgi

r=0 gr1v̄>k−dgi−r diag(η(i,r))v̄k−dgi−r , (9.4.39)

which does not involve gi. This is in contrast with the weight associated to each gi in [179, (3),
page 4], which is of the form σi(Ui − gi), where Ui is an upper bound of gi on the ball {x ∈ Rn :
g1(x) ≥ 0} and σi is a univariate polynomial, e.g., σi(t) = t2ξ for some ξ ∈ N.

Remark 9.16. In view of Propositions 9.2 and 9.3, replacing the standard monomial basis vt by
the new basis v̄t can provide a Positivstellensatz involving Gram matrix of factor width 1. Thus,
ones can build up hierarchies of semidefinite relaxations with any maximal matrix size, based on
both representations (9.4.38) and (9.4.33). However, expressing the entries of the basis v̄t is a
time-consuming task within the modeling process. A potential workaround is to impose (9.4.38)
and (9.4.33) on a set of generic points similarly to [109, Section 2.3]. This needs further study.

9.4.4 Polynomial optimization on the nonnegative orthant: Noncom-
pact case

Linear relaxations

Given ε > 0, consider the hierarchy of linear programs indexed by k ∈ N:

τPól
k (ε) := inf

y
Ly(θk(f̌ + εθdf ))

s. t. y = (yα)α∈Nn2(df+k)
⊂ R , Ly(θk) = 1 ,

diag(Mki(ǧiy)) ∈ Rb(n,ki)+ , i ∈ [m] ,

(9.4.40)

where ki := k + df − dgi , i ∈ [m]. Here ǧm = 1. Note that

diag(Mki(ǧiy)) = (
∑

γ∈Nn2dgi
y2α+γ ǧi,γ)α∈Nn

ki
. (9.4.41)

Theorem 9.6. Let f, gi ∈ R[x], i ∈ [m], with gm = 1. Consider POP (9.2.1) with S being defined
as in (9.2.2). Let ε > 0 be fixed. For every k ∈ N, the dual of (9.4.40) reads as:

ρPól
k (ε) := sup

λ,ui
λ

s. t. λ ∈ R , ui ∈ Rb(n,ki)+ , i ∈ [m] ,
θk(f̌ − λ+ εθdf ) =

∑m
i=1 ǧiv>ki diag(ui)vki .

(9.4.42)

Here ǧm = 1. The following statements hold:

1. For all k ∈ N, ρPól
k (ε) ≤ ρPól

k+1(ε) ≤ f?.

2. There exists K ∈ N such that for all k ≥ K, 0 ≤ f? − ρPól
k (ε) ≤ εθ(x?2)df .

3. If S has nonempty interior, there exist positive constants c̄ and c depending on f, gi such that
for all k ≥ c̄ε−c, 0 ≤ f? − ρPól

k (ε) ≤ εθ(x?2)df .

The proof of Theorem 9.6 relies on Corollary 9.1 and is exactly the same as the proof of Theorem
6.5.

Semidefinite relaxations

Given ε > 0, consider the hierarchy of semidefinite programs indexed by s ∈ N>0 and k ∈ N:

τPól
k,s (ε) := inf

y
Ly(θk(f̌ + εθdf ))

s. t. y = (yα)α∈Nn2(df+k)
⊂ R , Ly(θk) = 1 ,

MA(s,ki)
j

(ǧiy) � 0 , j ∈ [b(n, ki)] , i ∈ [m] ,
(9.4.43)

where ki := k + df − dgi , i ∈ [m]. Here ǧm = 1.
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Theorem 9.7. Let f, gi ∈ R[x], i ∈ [m], with gm = 1. Consider POP (9.2.1) with S being defined
as in (9.2.2). Let ε > 0 be fixed. For every k ∈ N and for every s ∈ N>0, the dual of (9.4.43) reads
as:

ρPól
k,s (ε) := sup

λ,Gij

λ

s. t. λ ∈ R , Gij � 0 , j ∈ [b(n, ki)] , i ∈ [m] ,

θk(f̌ − λ+ εθdf ) =
∑
i∈[m] ǧi

(∑
j∈[b(n,ki)] v

>
A(s,ki)
j

GijvA(s,ki)
j

)
.

(9.4.44)

The following statements hold:

1. For all k ∈ N>0 and for every s ∈ N>0, ρPól
k = ρPól

k,1 (ε) ≤ ρPól
k,s (ε).

2. For every s ∈ N>0, there exists K ∈ N such that for every k ∈ N satisfying k ≥ K,
0 ≤ f? − ρPól

k,s (ε) ≤ εθ(x?2)df .

3. If S has nonempty interior, there exist positive constants c̄ and c depending on f, gi such that
for every s ∈ N>0 and for every k ∈ N satisfying k ≥ c̄ε−c, 0 ≤ f? − ρPól

k,s (ε) ≤ εθ(x?2)df .

4. If S has nonempty interior, for every s ∈ N>0 and for every k ∈ N strong duality holds for
the primal-dual problems (9.4.43)-(9.4.44).

The proof of Theorem 9.7 is based on Theorem 9.6, Theorem 7.2 and the inequalities ρPól
k (ε) ≤

ρPól
k,s (ε) ≤ ρ

(ε)
k , where ρ

(ε)
k is defined as in (7.2.4). For each q ∈ R[x]d, denote the degree-d

homogenization of q by xdn+1q( x
xn+1

) ∈ R[x, xn+1].

Remark 9.17. Let (λ,Gij) be a feasible solution of (9.4.44) and consider the case of m = 1.
Then the equality constraint of (9.4.44) becomes

θk(f̌ − λ+ εθdf ) =
∑
j∈[b(n,km)] v>A(s,km)

j

GmjvA(s,km)
j

. (9.4.45)

It implies that the degree-2df homogenization of f̌ − λ + εθdf belongs to the cone k-DSOSn+1,2df
(resp. k-SDSOSn+1,2df ) when s = 1 (resp. s = 2) according to [3, Definition 3.10]. More generally,
the polynomial θk(f̌ − λ + εθdf ) belongs to the cone of SOS polynomials whose Gram matrix has
factor width at most s (see [3, Section 5.3]).

9.4.5 Sparse representation theorem
For every I = {i1, . . . , ir} ⊂ [n] with i1 < · · · < ir, denote x(I) = (xi1 , . . . , xir ).
We will make the following assumptions:

Assumption 9.1. With p ∈ N>0, the following conditions hold:

1. There exists (Ic)c∈[p] being a sequence of subsets of [n] such that ∪c∈[p]Ic = [n] and

∀c ∈ {2, . . . , p} , ∃rc ∈ [c− 1] : Ic ∩ (∪c−1
t=1It) ⊂ Irc . (9.4.46)

Denote nc := |Ic|, for c ∈ [p].

2. With m ∈ N>0 and (gi)i∈[m] ⊂ R[x], there exists (Jc)c∈[p] being a finite sequence of subsets
of [m] such that ∪c∈[p]Jc = [m] and

∀c ∈ [p] , (gi)i∈Jc ⊂ R[x(Ic)] . (9.4.47)

3. For every c ∈ [p], there exists ic ∈ Jc and Rc > 0 such that

gic := Rc − ‖x(Ic)‖22 . (9.4.48)

The condition (9.4.46) is called the running intersection property (RIP).
Let θc := 1 + ‖x(Ic)‖22, c ∈ [p].
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Extension of Pólya’s Positivstellensatz

We state the sparse representation in the following theorem:

Theorem 9.8. Let g1, . . . , gm be polynomials such that g1, . . . , gm are even in each variable and
Assumption 9.1 holds. Let S be the semialgebraic set defined by

S := {x ∈ Rn : g1(x) ≥ 0 . . . , gm(x) ≥ 0} . (9.4.49)

Let f = f1 +· · ·+fp be a polynomial such that f is positive on S and for every c ∈ [p], fc ∈ R[x(Ic)]
is even in each variable. Then there exist d, k ∈ N, hc ∈ R[x(Ic)], σ0,c, σj,c ∈ R[x(Ic)], for j ∈ Jc
and c ∈ [p], such that the following conditions hold:

1. The equality f = h1 + · · · + hp holds and hc is a polynomial of degree at most 2d which is
even in each variable.

2. For all i ∈ Jc and c ∈ [p], σ0,c, σi,c are SOS of monomials satisfying

deg(σ0,c) ≤ 2(k + d) and deg(σi,cgi) ≤ 2(k + d) (9.4.50)

and
θkchc = σ0,c +

∑
i∈Jc σi,cgi . (9.4.51)

Proof. Let ε > 0. Similarly as in Step 1 of the proof of Theorem 9.1, f̃ = f̃1 + · · ·+ f̃m is positive
on the semialgebraic set S̃ defined as in (9.4.5). For every c ∈ [p], let J̃c := Jc ∪ (m + Ic). Recall
that g̃m+j := xj , j ∈ [n]. By applying [68, Lemma 4], there exist polynomials sc, qi,c ∈ R[x(Ic)],
for j ∈ J̃c and c ∈ [p], such that

f̃ =
∑p
c=1(sc +

∑
i∈J̃c q

2
i,cg̃i) , (9.4.52)

and for all c ∈ [p], sc is positive on the set

{x(Ic) ∈ Rnc : xj ≥ 0 , j ∈ Ic , g̃ic(x) = Rc −
∑
j∈Ic xj ≥ 0} . (9.4.53)

Set hc := sc(x2) +
∑
i∈J̃c qi,c(x

2)2g̃i(x2), c ∈ [p]. Let d ∈ N such that 2d − 1 ≥ max{deg(hc) :
c ∈ [p]}. Then f =

∑p
c=1 hc with hc ∈ R[x(Ic)]2d being even in each variable and positive on the

semialgebraic set
Sc := {x(Ic) ∈ Rnc : gi(x) ≥ 0 , i ∈ Jc} . (9.4.54)

Note that gic := Rc − ‖x(Ic)‖22 with ic ∈ Jc. By applying Corollary 9.2, there exists kc ∈ N
such that for all K ≥ kc, there exist σ0,c, σi,c ∈ R[x(Ic)], i ∈ Jc, such that σ0,c, σi,c are SOS of
monomials satisfying

deg(σ0,c) ≤ 2(K + d) and deg(σi,cgi) ≤ 2(K + d) (9.4.55)

for all i ∈ Jc, and
θKc hc = σ0,c +

∑
i∈Jc σi,cgi . (9.4.56)

Set k = max{k(c) : c ∈ [p]}. Finally, we obtain the desired results.

Remark 9.18. In Theorem 9.8, it is not hard to see that f has a rational SOS decomposition

f =
∑
c∈[p]

σ0,c+
∑

i∈Jc
σi,cgi

θkc
. (9.4.57)

This decomposition is simpler than the ones provided in [133] and thus is more applicable to poly-
nomial optimization.

Another sparse representation without denominators can be found in the next theorem. How-
ever, the number of SOS of monomials is not fixed in this case.
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Extension of Handelman’s Positivstellensatz

We process similarly to the proof of Theorem 9.8 and apply Corollary 9.3 to obtain the following
theorem:

Theorem 9.9. (Sparse representation without multiplier) Let f, g1, . . . , gm be as in Theorem 9.8.
Assume that gm := 1 and m ∈ Jc, for all c ∈ [p]. Denote dgi := ddeg(gi)/2e. Then there exist
k ∈ N, SOS of monomials σi,j,c ∈ R[x(Ic)], for j = 0, . . . , k − dgi , i ∈ Jc and c ∈ [p], satisfying

deg(σi,j,cgjicgi) ≤ 2k (9.4.58)

and
f =

∑
c∈[p]

∑
i∈Jc

∑k−dgi
j=0 σi,j,cg

j
ic
gi . (9.4.59)

9.4.6 Sparse polynomial optimization on the nonnegative orthant
Consider the following POP:

f? := inf
x∈S

f(x) , (9.4.60)

where f ∈ R[x] and

S = {x ∈ Rn : xj ≥ 0 , j ∈ [n] , gi(x) ≥ 0 , i ∈ [m]} , (9.4.61)

for some gi ∈ R[x], i ∈ [m], with gm = 1. Assume that f? > −∞ and problem (9.4.60) has an
optimal solution x?.

Then POP (9.4.60) is equivalent to

f? := inf
x∈Š

f̌ , (9.4.62)

where
Š = {x ∈ Rn : ǧi(x) ≥ 0 , i ∈ [m]} , (9.4.63)

with optimal solution x?2.
We will make the following assumptions:

Assumption 9.2. With p ∈ N>0, the first two conditions of Assumption 9.1 and the following
conditions hold:

1. For every c ∈ [p], there exist ic ∈ Jc and Rc > 0 such that

gic = Rc −
∑
j∈Ic xj . (9.4.64)

2. There exist fc ∈ R[x(Ic)], for c ∈ [p], such that f = f1 + · · ·+ fp.

Linear relaxations

Based on the extension of Pólya’s Positivstellensatz: Consider the hierarchy of linear
programs indexed by k, d ∈ N:

τ spPól
k,d := inf

y,y(t)
Ly(f̌)

s. t. y = (yα)α∈Nn2d ⊂ R , y(c) = (y(c)
α )α∈Nn2(d+k)

⊂ R , c ∈ [p] ,
diag(Md(y, Ic)) = diag(Md(θkcy(c), Ic)) , c ∈ [p] ,
diag(M

k
(d)
i

(ǧiy(c), Ic)) ∈ Rb(nc,k
(d)
i

)
+ , i ∈ [m] , c ∈ [p] , y0 = 1 ,

(9.4.65)

where k(d)
i := k + d− dgi .
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Theorem 9.10. Let f, gi ∈ R[x], i ∈ [m], with gm = 1. Consider POP (9.4.60) with S being
defined as in (9.4.61). Let Assumption 9.2 hold. The dual of SDP (9.4.65) reads as:

ρspPól
k,d := sup

λ,uc,w(c)
i

λ

s. t. λ ∈ R , uc ∈ Rb(nc,d) , w(c)
i ∈ Rb(nc,k

(d)
i

)
+ , i ∈ Jc , c ∈ [p] ,

f̌ − λ =
∑
c∈[p] hc , hc = v>NIc

d

diag(uc)vNIc
d
, c ∈ [p] ,

θkchc =
∑
i∈Jc ǧiv

>
NIc
k
(d)
i

diag(w(c)
i )vNIc

k
(d)
i

, c ∈ [p] .

(9.4.66)

The following statements hold:

1. For all k ∈ N and for every s ∈ N>0, ρspPól
k−1,d ≤ ρ

spPól
k,d ≤ ρspPól

k,d+1 ≤ f?.

2. One has
sup{ρspPól

k,d : (k, d) ∈ N2} = f? . (9.4.67)

Proof. It is fairly easy to see that the first statement holds. Let us prove the second one. Let
ǧic := Rc − ‖x(Ic)‖22 and ε > 0. Then f̌ − (f? − ε) > 0 on S. By applying Theorem 9.8, there
exist d, k ∈ N, hc ∈ R[x(Ic)], σ0,c, σj,c ∈ R[x(Ic)], for j ∈ Jc and c ∈ [p], such that the following
conditions hold:

1. The equality f̌ − (f? − ε) = h1 + · · ·+ hp holds and hc is a polynomial of degree at most 2d
which is even in each variable.

2. For all i ∈ Jc and c ∈ [p], σ0,c, σi,c are SOS of monomials satisfying

deg(σ0,c) ≤ 2(k + d) and deg(σi,cǧi) ≤ 2(k + d) (9.4.68)

and
θkchc = σ0,c +

∑
i∈Jc σi,cǧi . (9.4.69)

It implies that there exists uc ∈ Rb(nc,d), w(c)
i ∈ Rb(nc,k

(d)
i

)
+ such that

hc = v>NIc
d

diag(uc)vNIc
d

and σi,c := v>NIc
k
(d)
i

diag(w(c)
i )vNIc

k
(d)
i

, (9.4.70)

for i ∈ Jc and c ∈ [p]. It implies that (f? − ε,uc,w(c)
i ) is an optimal solution of LP (9.4.66). Thus

ρPól
k,d ≥ f? − ε, yielding (9.4.67).

Based on the extension of Handelman’s Positivstellensatz: Consider the hierarchy of
linear programs indexed by k ∈ N:

τ spHan
k := inf

y
Ly(f̌)

s. t. y = (yα)α∈Nn2k ⊂ R , y0 = 1 ,
diag(Mkij ((ǧiǧ

j
ic

)y, Ic)) ∈ Rb(nc,kij)+ , c ∈ [p] , i ∈ [m] , j ∈ {0} ∪ [k − dgi ] ,
(9.4.71)

where kij := k − dgi − j, for i ∈ [m], for j ∈ {0} ∪ [k − dgi ].

Theorem 9.11. Let f, gi ∈ R[x], i ∈ [m], with gm = 1. Consider POP (9.4.60) with S being
defined as in (9.4.61). Let Assumption 9.2 hold. The dual of SDP (9.4.71) reads as:

ρspHan
k := sup

λ,w(c)
ij

λ

s. t. λ ∈ R , w(c)
ij ∈ Rb(nc,kij)+ , c ∈ [p] , i ∈ Jc , j ∈ {0} ∪ [k − dgi ] ,

f̌ − λ =
∑
c∈[p]

∑
i∈Jc

∑k−dgi
j=0 ǧiǧ

j
ic

v>NIc
kij

diag(w(c)
ij )vNIc

kij

.

(9.4.72)

The following statements hold:
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1. For all k ∈ N, ρspHan
k ≤ ρspHan

k+1 ≤ f?.

2. The sequence (ρspHan
k )k∈N converges to f?.

The proof of Theorem 9.11 relies on Theorem 9.9 and is similar to Theorem 9.3.

Semidefinite relaxations

For every I ⊂ [n], we write NI = {α(I)
1 ,α

(I)
2 , . . . ,α

(I)
r ,α

(I)
r+1, . . . } such that

α
(I)
1 < α

(I)
2 < · · · < α(I)

r < α
(I)
r+1 < . . . . (9.4.73)

Let
W

(I)
j := {i ∈ N : i ≥ j , α

(I)
i + α

(I)
j ∈ 2NI} , j ∈ N>0 , I ⊂ [n] . (9.4.74)

Then for all j ∈ N>0 and for all I ⊂ [n], W (I)
j 6= ∅ since j ∈ W (I)

j . For every j ∈ N and for every
I ⊂ [n], we write W (I)

j := {i(j)1,I , i
(j)
2,I , . . . } such that i(j)1,I < i

(j)
2,I < . . . . Let

T (s,d)
j,I = {α(I)

i
(j)
1,I
, . . . ,α

(I)
i
(j)
s,I

} ∩ NId , I ⊂ [n] , j, s ∈ N>0 , d ∈ N . (9.4.75)

For every s ∈ N>0, for every d ∈ N and for every I ⊂ [n], define A(s,d)
1,I := T (s,d)

1,I and for
j = 2, . . . , b(|I|, d), define

A(s,d)
j,I :=

{
T (s,d)
j,I if T (s,d)

j,I \A
(s,d)
l,I 6= ∅ , ∀l ∈ [j − 1] ,

∅ otherwise .
(9.4.76)

Note that ∪b(|I|,d)
j=1 A(s,d)

j,I = NId and |A(s,d)
j,I | ≤ s. Then the sequence

(α + β)(
α,β∈A(s,d)

j,I

) , j ∈ [b(|I|, d)] (9.4.77)

are overlapping blocks of size at most s in (α + β)(α,β∈NI
d
).

Example 9.3. Consider the case of n = d = s = 2, I1 = {1} and I2 = {2}. Matrix (α+β)(α,β∈N2
2)

is written explicitly as in (9.2.15). We obtain two blocks:

(α + β)(α,β∈NI12 ) =

(0,0) (1, 0) (2,0)
(1, 0) (2,0) (3, 0)
(2,0) (3, 0) (4,0)

 (9.4.78)

and

(α + β)(α,β∈NI22 ) =

(0,0) (0, 1) (0,2)
(0, 1) (0,2) (0, 3)
(0,2) (0, 3) (0,4)

 (9.4.79)

Then A(2,2)
1,I1 = {(0, 0), (2, 0)}, A(2,2)

2,I1 = {(1, 0)}, A(2,2)
3,I1 = ∅ and A(2,I2)

1,2 = {(0, 0), (0, 2)}, A(2,2)
2,I2 =

{(0, 1)}, A(3,2)
2,I2 = ∅.

For every I ⊂ [n], with B = {β1, . . . ,βr} ⊂ NI such that β1 < · · · < βr, for every h =∑
γ∈NI hγxγ ∈ R[x(I)] and y = (yα)α∈Nn ⊂ R, denote MB(hy, I) := (

∑
γ∈NI hγyγ+βi+βj )i,j∈[r].

Based on the extension of Pólya’s Positivstellensatz: Consider the hierarchy of linear
programs indexed by k, d ∈ N and s ∈ N>0:

τ spPól
k,d,s := inf

y,y(c)
Ly(f̌)

s. t. y = (yα)α∈Nn2d ⊂ R , y(c) = (y(c)
α )α∈Nn2(d+k)

⊂ R , c ∈ [p] ,
diag(Md(y, Ic)) = diag(Md(θkcy(c), Ic)) , c ∈ [p] , y0 = 1 ,
M
A

(s,k(d)
i

)
j,Ic

(ǧiy(c), Ic) � 0 , j ∈ [b(nc, k(d)
i )] , i ∈ Jc , c ∈ [p] ,

(9.4.80)

where k(d)
i := k + d− dgi .
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Theorem 9.12. Let f, gi ∈ R[x], i ∈ [m], with gm = 1. Consider POP (9.4.60) with S being
defined as in (9.4.61). Let Assumption 9.2 hold. The dual of SDP (9.4.80) reads as:

ρspPól
k,d,s := sup

λ,uc,G(c)
i,j

λ

s. t. λ ∈ R , uc ∈ Rb(nc,d) , G(c)
i,j � 0 , j ∈ [b(nc, k(d)

i )] , i ∈ Jc , c ∈ [p] ,

f̌ − λ =
∑
c∈[p] hc , hc = v>NIc

d

diag(uc)vNIc
d
, c ∈ [p] ,

θkchc =
∑
i∈Jc ǧi

(∑
j∈[b(nc,k(d)

i
)] v
>

A
(s,k(d)

i
)

j,Ic

G(c)
i,jv

A
(s,k(d)

i
)

j,Ic

)
, c ∈ [p] .

(9.4.81)

The following statements hold:

1. For all k, d ∈ N and for every s ∈ N>0, ρspPól
k,d = ρspPól

k,d,1 ≤ ρ
spPól
k,d,s ≤ f?.

2. For every s ∈ N>0, sup{ρspPól
k,d,s : (k, d) ∈ N2} = f?.

Proof. It is not hard to prove the first statement. The second one is due to the second statement
of Theorem 9.10 and the inequalities ρspPól

k,d ≤ ρspPól
k,d,s ≤ f?.

Based on the extension of Handelman’s Positivstellensatz: Consider the hierarchy of
linear programs indexed by k ∈ N and s ∈ N>0:

τ spHan
k,s := inf

y
Ly(f̌)

s. t. y = (yα)α∈Nn2k ⊂ R , y0 = 1 ,
M
A

(s,kij)
r,Ic

((ǧiǧjic)y, Ic) � 0 ,

c ∈ [p] , i ∈ Jc , j ∈ {0} ∪ [k − dgi ] , r ∈ [b(nc, kij)] ,

(9.4.82)

where kij := k − dgi − j, for i ∈ [m], for j ∈ {0} ∪ [k − dgi ].

Theorem 9.13. Let f, gi ∈ R[x], i ∈ [m], with gm = 1. Consider POP (9.4.60) with S being
defined as in (9.4.61). Let Assumption 9.2 hold. The dual of SDP (9.4.82) reads as:

ρspHan
k,s := sup

λ,G(c)
ijr

λ

s. t. λ ∈ R , G(c)
ijr � 0 , c ∈ [p] , i ∈ Jc , j ∈ {0} ∪ [k − dgi ] , r ∈ [b(nc, kij)] ,

ˇ f̌ − λ =
∑
c∈[p]

∑
i∈Jc

∑k−dgi
j=0 ǧiǧ

j
ic

(∑
r∈[b(nc,kij)] v

>
A

(s,kij)
r,Ic

G(c)
ijrvA(s,kij)

r,Ic

)
.

(9.4.83)
The following statements hold:

1. For all k ∈ N and for every s ∈ N>0,

ρspHan
k = ρspHan

k,1 ≤ ρspHan
k,s ≤ f? . (9.4.84)

2. For every s ∈ N>0, the sequence (ρspHan
k,s )k∈N converges to f?.

Proof. It is not hard to prove the first statement. The second one is due to the second statement
of Theorem 9.11 and the inequalities ρspHan

k ≤ ρspHan
k,s ≤ f?.

Obtaining an optimal solution

In other to extract an optimal solution of POP (9.4.60) with correlative sparsity, we first extract
atoms on each clique similarly to Algorithm 14 and then connect them together to obtain atoms
in Rn. Explicitly, we use the following heuristic extraction algorithm:
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Algorithm 15 Extraction algorithm for sparse POPs on the nonnegative orthant
Input: precision parameter ε > 0 and an optimal solution (λ,uc,G(c)

i,j ) of SDP (9.4.81).
Output: an optimal solution x? of POP (9.4.60).

1: For c ∈ [p], do:
a: For j ∈ [b(nc, k(d)

m )], let Ḡ(c)
j = (w(c,j)

pq )p,q∈NIc
k
(d)
m

such that (w(c,j)
pq )

p,q∈A(s,k(d)
m )

j,Ic

= G(c)
m,j and

w
(c,j)
pq = 0 if (p,q) /∈ (A(s,k(d)

m )
j,Ic

)2. Then Ḡ(c)
j � 0 and

v>NIc
k
(d)
m

Ḡ(c)
j vNIc

k
(d)
m

= v>
A(s,k(d)

m )
j,Ic

G(c)
m,jv

A(s,k(d)
m )

j,Ic

; (9.4.85)

b: Let G(c) :=
∑
j∈[b(nc,k(d)

m )] Ḡ
(c)
j . Then G(c) is the Gram matrix corresponding to σm,c in the

rational SOS decomposition

f̌ − λ =
∑
c∈[p]

∑
i∈Jc

σi,cǧi

θkc
. (9.4.86)

where each σi,c is an SOS polynomial and ǧm = 1;
c: Obtain an atom z?(c) ∈ Rnc by using the extraction algorithm of Henrion and Lasserre in
[77], where the matrix V in [77, (6)] is taken such that the columns of V form a basis of the
null space {u ∈ Rωk : G(c)u = 0};

2: Let z? ∈ Rn such that z?(Ic) = z?(c), for c ∈ [p].
3: If z? exists, verify that z? is an approximate optimal solution of POP (9.4.62) by checking the

following inequalities:

|f̌(z?)− λ| ≤ ε‖f̌‖max and ǧi(z?) ≥ −ε‖ǧi‖max , i ∈ [m] , (9.4.87)

where ‖q‖max := maxα |qα| for any q ∈ R[x].
4: If the inequalities (9.4.87) hold, set x? := z?2.
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Table 9.10: Numerical results for positive maximal singular values.

Id Pb POP size Put Pól
m n k val time k s val time

1 1 4 16 1 47.48110 0.02 0 17 30.18791 12 2 30.18791 16
3 2 5 25 1 168.4450 0.04 0 26 91.28158 0.74 2 91.28158 877
5 3 6 36 1 4759.12 0.2 0 37 2462.03 0.96 2 − −
7 4 7 49 1 1777.53 0.5 0 50 970.202 28 2 − −

Id Put Pól
nmat msize nscal naff nmat msize nscal naff

1 1 17 38 153 1 17 138 1532 17 153 154 4845
3 1 26 27 351 1 26 327 3514 26 351 352 23751
5 1 37 38 703 1 37 668 7036 37 703 704 91390
7 1 50 51 1275 1 50 1227 12758 50 1275 1276 292825

9.4.7 Numerical experiments
In this section we report results of numerical experiments for random instances with the same

settings and notation as in Section 9.3.

Positive maximal singular values

Test problems: We generate a matrix M as in [54, (12)]. Explicitly,

M :=


D 0 0 . . . 0

CB D 0 . . . 0
CAB CB D . . . 0
. . . . . . . . . . . . . . .

CAm−2B CAm−3B CAm−4B . . . D

 , (9.4.88)

where A,B,C,D are square matrices of size r = m. Every entry of A,B,C,D is taken uniformly
in (−1, 1). In order to compute the positive maximal singular value σ+(M) of M, we solve the
following POP on the nonnegative orthant:

σ+(M)2 = max
x∈Rn+

{x>(M>M)x : ‖x‖22 = 1} . (9.4.89)

Note that n = m× r = m2.
The numerical results are displayed in Table 9.10. The columns of val show the approximations

of σ+(M)2.

Discussion: The behavior of our method is similar to that in Section 9.3.1.

Stability number of a graph

Let us consider POP (9.3.8) which returns the stability number of a graph G.
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Table 9.11: Numerical results for stability number of randomly generated graphs.

Id Pb POP size Put Pól
n k val time k s val time

1 1 10 1 ∞ 0.01 0 11 3.00000 12 2 3.02305 0.6
3 2 15 1 ∞ 0.01 0 16 5.00000 14 2 5.01898 10
5 3 20 1 ∞ 0.02 1 21 5.00001 46 2 5.02951 119
7 4 25 1 ∞ 0.04 1 26 6.00000 108 2 6.05801 1064

Id Put Pól
nmat msize nscal naff nmat msize nscal naff

1 1 11 12 66 1 11 67 662 11 66 67 1001
3 1 16 17 136 1 16 137 1364 16 136 137 3876
5 1 21 22 231 21 21 1562 17716 21 231 232 10626
7 1 26 27 351 26 26 2952 32768 26 351 352 23751

Test problems: We generate the adjacency matrix A = (aij)j,j∈[n] of the graph G by the
following steps:

1. Set aii = 0, for i ∈ [n].

2. For i ∈ [n], for j ∈ {1, . . . , i− 1}, let us select aij = aji uniformly {0, 1}.

The numerical results are displayed in Table 9.11.
Note that the columns of val show the approximations of α(G).

Discussion: The behavior of our method is similar to that in Section 9.3.1. Note that the graphs
from Tables 9.11 are dense so that we cannot exploit term sparsity or correlative sparsity for POP
(9.3.8) in these cases. Moreover, for all graphs in Table 9.11, spPól provides the better bounds for
α(G) compared to the ones returned by the second order relaxations of Put.

Remark 9.19. In Pb 3, 4 of Table 9.11, Pól with k = 1 provides a better bound than Pól with
k = 0. As shown in Remark 9.9, each SDP relaxation of Pól with k = 0 and sufficiently large s
corresponds to an SDP relaxation obtained after exploiting term sparsity.

Deciding the copositivity of a real symmetric matrix

Given a symmetric matrix A ∈ Rn×n, we say that A is copositive if u>Au ≥ 0 for all u ∈ Rn+.
Consider the following POP:

f? := min
x∈Rn+

{x>Ax :
∑
j∈[n] xj = 1} . (9.4.90)

The matrix A is copositive iff f? ≥ 0.

Test problems: We construct several instances of the matrix A as follows:

1. Take Bij randomly in (−1, 1) w.r.t. the uniform distribution, for all i, j ∈ {1, . . . , n}.

2. Set B := (Bij)1≤i,j≤n and A := 1
2 (B + B>).

The numerical results are displayed in Table 9.12.
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Table 9.12: Numerical results for deciding the copositivity of a real symmetric matrix.

Id Pb POP size Put Pól
n k val time k s val time

1 1 10 1 -1.45876 0.004 0 8 -0.94862∗ 12 2 -0.94862 0.2
3 2 15 1 -1.41319 0.007 0 13 -0.65197∗ 14 2 -0.65197 10
5 3 20 1 -1.40431 0.02 0 20 -0.98026∗ 16 2 -0.98026 89
7 4 25 1 -1.34450 0.03 0 19 -0.97345∗ 28 2 -0.97345 519

Id Put Pól
nmat msize nscal naff nmat msize nscal naff

1 1 11 12 66 4 8 67 662 11 66 67 1001
3 1 16 17 136 4 13 137 1364 16 136 137 3876
5 1 21 22 231 2 20 232 2316 21 231 232 10626
7 1 26 27 351 8 19 352 3518 26 351 352 23751

Discussion: The behavior of our method is similar to that in Section 9.3.1. In all cases, we can
extract the solutions of the resulting POP and certify that A is not copositive since f? is negative.

Deciding the nonnegativity of an even degree form on the nonegative orthant

Given a form q ∈ R[x], q is nonnegative on Rn+ iff q is nonnegative on the unit simplex

∆ := {x ∈ Rn+ :
∑
j∈[n] xj = 1} . (9.4.91)

Given a form f ∈ R[x] of degree 2d, we consider the following POP:

f? := min
x∈∆

f(x) . (9.4.92)

Note that if d = 1, problem (9.4.92) boils down to deciding the copositivity of the Gram matrix
associated to f . Thus, we consider the case where d ≥ 2.

Test problems: We construct several instances of the form f of degree 2d as follows:

1. Take fα randomly in (−1, 1) w.r.t. the uniform distribution, for each α ∈ Nn with |α| = 2d.

2. Set f :=
∑
|α|=2d fαxα.

The numerical results are displayed in Table 9.13.

Discussion: The behavior of our method is similar to that in Section 9.3.1. In these cases, we
were able to extract the solution of the resulting POPs. One can then conclude that f is not
nonnegative on the nonnegative orthant since it has negative value at its atoms.

Minimizing a polynomial over the boolean hypercube

Consider the optimization problem:

min
x∈{0,1}n

f(x) , (9.4.93)



194 CHAPTER 9. EXPLOITING NONNEGATIVITY OF VARIABLES

Table 9.13: Numerical results for deciding the nonnegativity of an even degree form on the nonegative
orthant, with d = 2.

Id Pb POP size Put Pól
n k val time k s val time

1 1 5 2 -1.87958 0.001 0 8 -0.68020∗ 12 3 -0.68020 0.06
3 2 10 2 -1.87491 0.1 0 11 -0.87524∗ 54 3 -0.87524 10
5 3 15 2 -2.01566 6 0 44 -0.86938∗ 796 3 -0.86938 7675

Id Put Pól
nmat msize nscal naff nmat msize nscal naff

1 6 21 22 126 31 6 72 1262 6 56 232 462
3 11 66 67 1001 111 11 617 10014 11 268 2212 8008
5 16 136 137 3876 213 44 2637 38766 16 816 9317 54264

where f is a polynomial of degree at most 2d. It is equivalent to the following POP on the
nonnegative orthant:

min
x∈Rn+

{f(x) : xj(1− xj) = 0 , j ∈ [n]} , (9.4.94)

Test problems: We construct several instances by taking the coefficients of f randomly in
(−1, 1) w.r.t. to the uniform distribution.

The numerical results are displayed in Table 9.14.

Discussion: The behavior of our method is similar to that in Section 9.3.1. Note that Pól with
order k = 0 provides worse bounds than Put with order k = 2. However, as shown in Table 9.14,
Pól with order k = 1 provides the same bounds as Put with order k = 2.
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Table 9.14: Numerical results for minimizing polynomials over the boolean hypercube, with d = 1.

Id Pb POP size Put Pól
n k val time k s val time

1 1 10 1 -4.61386 0.008 1 11 -4.34345 12 2 -4.34345 0.2
3 1 20 1 -15.4584 0.02 1 21 -14.9455 44 2 -14.9455 108
5 3 30 1 -29.3433 0.1 1 31 -27.6311 416 2 -27.6311 8068

Id Put Pól
nmat msize nscal naff nmat msize nscal naff

1 1 11 21 66 11 11 276 2862 6 56 232 462
3 1 21 41 231 21 21 1751 17714 21 231 4621 10626
5 1 31 61 496 31 31 5426 54566 31 496 14881 46376
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Chapter 10

Conclusion and Perspectives

10.1 Achievements

10.1.1 General discussion
We have provided several methods that use positivity certificates with and without denomina-

tors, for solving POPs on compact and non-compact basic semi-algebraic sets.
On the one hand, we have exploited correlative-term sparsity and constant trace property for

the Moment-SOS hierarchy based on Putinar’s Positivstellensatz without denominator. On the
other hand, we have relied on Putinar–Vasilescu’s Positivstellensatz with uniform denominator
to provide an appropriate Moment-SOS hierarchy for solving POPs on noncompact semialgebraic
sets.

It is worth pointing out that correlative-term sparsity enables us to reduce the matrix sizes
involved in the SDP relaxations, and hence to solve them efficiently with interior-point methods.
Besides, one advantage of exploiting constant trace property is to benefit from a class of first-order
methods to speed up the resolution of the SDP relaxations. The sparse setting for methods based
on Reznick’s Positivstellensatz with uniform denominators has been also considered. We emphasize
that the same uniform denominator allows us to control the sizes of the SDP relaxations for POPs
on the nonnegative orthant.

On the theoretical side, we have proved that methods with uniform denominators can have
polynomial time complexity, similarly to methods without denominators. On a practical side,
the efficiency of our methods has been illustrated on real-life problems arising from engineering,
machine learning, and power networks.

10.1.2 Discussion and perspectives specific to each chapter
We list the detailed conclusions for each chapter:

• In Chapter 3 we have introduced the CS-TSSOS hierarchy, a sparse variant of the Moment-
SOS hierarchy, to solve large-scale real-world nonlinear optimization problems whose input
data are sparse polynomials. In addition to its theoretical convergence guarantees, CS-TSSOS
allows one to make a trade-off between the quality of optimal values and the computational
efficiency by controlling the types of chordal extensions and the sparse order k.

By fully exploiting sparsity, CS-TSSOS allows one to go beyond Shor’s relaxation and solve
the second-order Moment-SOS relaxation associated with large-scale POPs to obtain more
accurate bounds. Indeed CS-TSSOS can handle second-order relaxations of POP instances
with thousands of variables and constraints on a standard laptop in few minutes. Such
instances include the optimal power flow (OPF) problem, an important challenge in the
management of electricity networks. In particular, our plan is to perform advanced numerical
experiments on HPC cluster, for OPF instances with larger numbers of buses [56].

Some additional further potential research directions are listed below:

197



198 CHAPTER 10. CONCLUSION AND PERSPECTIVES

1) The standard procedure of extracting optimal solutions for the dense Moment-SOS hierar-
chy does not apply to the CS-TSSOS hierarchy. It would be interesting to develop a procedure
for extracting (approximate) solutions from partial information of moment matrices.

2) Recall that chordal extension plays an important role for both correlative and term spar-
sity patterns. It turns out that the size of the resulting maximal cliques is crucial for the
overall computational efficiency of the CS-TSSOS hierarchy. So far, we have only considered
maximal chordal extensions (for convergence guarantee) and approximately smallest chordal
extensions. It would be worth investigating more general choices of chordal extensions.

3) The CS-TSSOS strategy could be adapted to other applications involving sparse polyno-
mial problems, including deep learning [34].

4) At last but not least, a challenging research issue is to establish serious computationally
cheaper alternatives to interior-point methods for solving SDP relaxations of POPs. The re-
cent work [219] which reports spectacular results for standard SDPs (and Max-Cut problems
in particular) is a positive sign in this direction. Such a computationally cheaper alternative
is presented in Chapter 5, Appendix 5.3.

• In Chapter 4 we have provided a nonsmooth hierarchy of SDP relaxations for optimization
of polynomials on varieties contained in a Euclidean sphere. The advantage of this hierarchy
is to circumvent the hard constraints involved in the standard SDP hierarchy (4.1.6) by
minimizing the maximal eigenvalue of a matrix pencil. This in turn boils down to solving
an unconstrained convex nonsmooth optimization problem by LMBM and to computing
largest eigenvalues by means of the modified Lanczos’s algorithm. Our numerical experiments
indicate that solving this nonsmooth hierarchy is more efficient and more robust than solving
the classical semidefinite hierarchy by interior-point methods, at least for a class of interesting
POPs, including equality constrained QCQPs on the sphere, QCQPs with a single inequality
(ball) constraint, and minimization of quartics on the sphere. Our CTP framework can be
further applied for an interesting class of noncommutative polynomial optimization problems
[129], in particular for eigenvalue maximization problems arising from quantum information
theory, where the variables are unitary operators [143].

Eventually, we have tried to use spectral methods to solve SDP relaxations of QCQPs in-
volving inequalities only, systems of polynomial equations, MAXCUT problems, 0/1 linear
constrained quadratic problems and computation of stability numbers of graphs. However,
our preliminary experiments for these problems have not been convincing in terms of effi-
ciency and accuracy. In order to improve upon these results, one possible remedy would be
to index the moment matrices by alternative Legendre/Chebychev bases, rather than with
the standard monomial basis.

• In Chapter 5, we have proposed a general framework for exploiting the constant trace prop-
erty in solving large-scale SDPs, typically SDP-relaxations arising from the Moment-SOS
hierarchy for POPs with CTP. Extensive numerical experiments strongly suggest that with
this CTP formulation, the CGAL solver based on first-order methods is more efficient and
more scalable than Mosek without exploiting CTP, especially when the block size is large. In
addition, the optimal value returned by CGAL is typically within 1% w.r.t. the one returned
by Mosek.

We have also integrated sparsity-exploiting techniques into the CTP-exploiting framework
in order to handle large-scale POPs. For SDP-relaxations of large-scale POPs with a term
and/or correlative sparsity pattern, and in applications for which only a medium accuracy
of optimal solutions is enough, we believe that our framework should be very useful.

As a topic of further investigation, we would like to improve the LP-based formulation for
verifying CTP, for instance by relying on more general second-order cone programming.
We also would like to generalize the CTP-exploiting framework to noncommutative POPs
[29, 100, 210] which have attracted a lot of attention in the quantum information community.
Another line of research would be to investigate whether CTP could be efficiently exploited
by interior-point solvers.
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• In Chapter 6, we have established two representations of (i) globally nonnegative polyno-
mials and (ii) polynomials nonnegative on semialgebraic sets, based on the homogeneous
representations of [175] and [170]. These representations have a distinguishing feature. They
can be converted into a practical numerical scheme for approximating the global minimum,
yielding converging appropriate hierarchies of semidefinite relaxations for unconstrained and
constrained polynomial optimization problems.

We have also introduced a new method (based on adding spherical constraints (ASC)) to
solve systems of polynomial equalities and inequalities, and to obtain global solutions of
polynomial optimization problems as well. In view of its practical efficiency, a topic of
further investigation is to provide a more detailed comparison with other methods for solving
polynomial systems.

• In Chapter 7 we have provided a new degree bound on the sum-of-squares (SOS) polynomials
involved in Putinar–Vasilescu’s Positivstellensatz. The resulting associated Moment-SOS
hierarchy provides a sequence of lower bounds that converges to the global minimum (with
prescribed accuracy ε > 0) at an O(ε−c) rate.

A topic of further investigation is the analysis of the convergence rate of the Moment-SOS
hierarchy for lower bounds in some special cases of basic (compact) semialgebraic sets. A
first natural idea is to find the explicit constant α in the  Lojasiewicz inequality stated in
Lemma 7.2. We could then proceed analogously to the proof of the rate O(ε−65) for the min-
imization of a polynomial on the unit ball. It would be interesting to investigate whether our
convergence analysis would be improved after replacing Bernstein approximations involved
in our proof by Jackson kernels from [11, 145].

• In Chapter 8, we have provided:

1) a sparse version for Reznick’s Positivstellensatz (resp. Putinar–Vasilescu’s Positivstellen-
satz) for positive definite forms (resp. nonnegative polynomials).

2) a sparse version of Putinar–Vasilescu’s Positivstellensatz for polynomials that are nonneg-
ative on a possibly noncompact basic semialgebraic set.
All these certificates involve sums of squares of rational functions with uniform denomina-
tors. For additional efficiency, our positivity certificates have been combined with appropriate
sampling (evaluation) techniques (to impose that two polynomials are identical). The full
computational benefit of such sampling techniques remains to be investigated.

• In Chapter 9 we have considered the case of dense POPs on the nonnegative orthant. By
applying a positivity certificate involving SOS of monomials for a POP with input poly-
nomials being even in each variable, one obtains a specific hierarchy of linear relaxations.
Afterwards we replace each SOS of monomials by an SOS associated with a block-diagonal
Gram matrix, where each block has a prescribed size. This ensures a practical efficiency of
the corresponding hierarchy of SDP relaxations. Its convergence is still maintained with a
O(ε−c) rate, similar to the one of Baldi and Mourrain [13].

As a topic of further applications, we would like to use this methodology for solving large-scale
POPs for phase retrieval and feedforward neural networks.

10.2 Additional future research directions

10.2.1 Deep Neural networks

Robustness certification. Evaluation and certification of robustness of Deep Neural Networks
(DNNs) has become an important issue (DNNs), especially in view of certain of their applications.
We refer the interested readers to [160, 31, 117, 15] for some recent research advances on DNNs.
Figure 10.1 illustrates a neural network with two hidden layers.
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Figure 10.1: A two hidden layer neural network.

The widely used ReLU activation function (x 7→ max(0, x)) can be modeled by polynomial
(in)equalities. As a result, robustness certification of such DNNs problem can be formulated as
maximizing a linear function with linear and quadratic polynomial constraints, as described, e.g.,
in [172]. A promising research track is to take advantage of special structures of the objective
and constraining polynomials to find a Positivstellensatz adapted to this situation. In Chapter 9,
we have exploited nonnegativity of variables involved in the robustness certification problems. In
the context of DNNs, the idea is to also exploit sparsity of the constraints which arise from their
structure.

Matrix singular values and phase retrieval. We also intend to improve the approach of
Chapter 9, to obtain tighter upper bounds for positive maximal singular values of a given matrix.
Such bounds are very useful in the stability analysis of recurrent neural networks [55, 54]. Com-
puting such singular values boils down to maximizing a quadratic polynomial over the intersection
of the unit sphere and the nonnegative orthant. Another important application is phase retrieval,
which can be similarly formulated as a (nonconvex) optimization problem involving quadratic poly-
nomials, with several hidden structures. Another possibility is to develop a hierarchy of semidefinite
relaxations similar to the one based on Pólya’s Positivstellensatz in Chapter 9.

Finally, we also envision to adapt the method of chapters 4 and 5 that exploits the constant
trace property to certify robustness of multi-layer neural networks, to compute positive maximal
singular values, and to solve phase retrieval problems at global optimality.

10.2.2 Rates of convergence
An important challenge in polynomial optimization is to provide rates of convergence for various

convex relaxations, and notably for the Moment-SOS hierarchy of semidefinite relaxations (and
some variants described in this thesis). That is, the goal is to provide explicit bounds on the degrees
of the polynomials involved in the various Positivstellensätze. We will particularly investigate (i)
how different types of positive weights in the Positivstellensätze affect the convergence rate and
(ii) if the corresponding hierarchies of semidefinite relaxations have finite convergence.

In addition to a theoretical interest in its own, analyzing the convergence rate also provides
useful insights about the practical efficiency of the underlying semidefinite relaxations. A higher
convergence rate is likely to yield a smaller computational effort to approximate closely the optimal
value. Moreover, if the hierarchy has finite convergence, then the optimal value can be computed
exactly.

One possibility is to follow the methodology that we have used to obtain the convergence rates of
Putinar–Vasilescu’s and Dickinson–Povh’s Positivstellensatz in chapters 7 and 9, respectively, and
which proceeds in two steps: (i) provide a constructive existence proof for the Positivstellensatz,
and (ii) provide degree bounds of its explicit SOS weights.

Another possibility is to use Fritz–John optimality conditions as in our recent works [127, 128,
126]. Developed directly from the works of Nie–Demmel–Sturmfels [149] and Demmel–Nie–Powers
[44], this method allows us to guarantee finite convergence and to compute global minimizers of
POPs even when the Karush–Kuhn–Tucker conditions no longer hold.
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[166] G. Pólya. Über positive darstellung von polynomen, vierteljahresschrift der naturforschenden
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