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Chapter 1
Introduction

Legged robots occupy a special place in the robotics landscape. It might be because
among all robots, they are by nature the closest to us due to their structure that reminds
us of the animal world. Because of that, when we see them moving we sometimes feel a
kind of empathy as we unconsciously perceive them as their natural counterpart. If not a
proof, the comments under videos of recovery tests after pushes that jokingly complain
about the “mean humans bullying the robot” are still an indication of a feeling shared by
people which is absent when they see other kinds of robotic experiments, like crash tests
of autonomous cars.

Scientists have been trying to understand the inner workings of legged locomotion for
decades. Yet, due to its complexity, obtaining a robust autonomous locomotion in a wide
range of situations is still an open challenge, even if increasingly impressive behaviors
have been shown in recent years. Let us first discuss how the road of legged robotics has
started to better understand how mature it has grown [ST07].

1.1 From scientific attraction to large-scale deployment
The very early stages of legged locomotion date back to the 15th century with Leonardo

da Vinci designing the first anthropomorphic automaton. At the crossing between me-
chanical and anatomical studies, this armored knight was made of wood, leather and brass
and could sit up, wave its arms and moves its head through a cable system [Ros94]. The
first sketch of what could be called a legged vehicle dates from the 18th century with a
carriage structure whose motion transmission was performed by a set of legs pushing on
the ground [Thr85]. Then, a first step toward a proper formalization of legged locomotion
was done in 1850 by the Russian mathematician Chebyshev who presented a model of
kinematic linkage to move a body in a straight way based on alternating contacts with
feet moving up and down [Rai86]. The first quadruped machine appears half a century
later with a patent for the Mechanical Horse by Rygg in 1893, with pedals in a bike-like
manner to power the stepping motion through a set of gears, even if there is no evidence it
was ever built [Rai86]. The same year, Moore built his Steam Man, the earliest successful
biped automaton. It was steam powered and could walk in circle with the guidance of a
swing arm for stability reason [Ros94]. In a similar way than Rygg’s mechanical horse,
the baron of Bechtolsheim designed a striding wagon in 1913 but it was likely never built
[SW89]. Finally, at the dawn of World War I, Thring developed a prototype of legged
tractor as one of the first examples of what we call now hybrid legged machines (com-
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Chapter 1: Introduction

bining legs and wheels) [Thr85]. Even though all these systems involved legs to produce
movement, they still faced limitations so severe that they could not exploit the possibil-
ities offered by legs to their full extent. Simple mechanisms and sets of gears imposed
a fixed gait with predefined foot placements. Moreover, their controls could not perform
any adaptation since it were completely blind to both machine and environment states.
Some of these robots are presented in Fig. 1.1.

(a) Carriage (b) Mechanical horse

(c) Steam man (d) Striding wagon

Figure 1.1: First legged machines before World War I.

Starting from the 1950s, several groups of researchers began to study walking ma-
chines in a systematic way. This lead to the development of increasingly refined systems
in the following decades. Mosher’s Walking Truck was built in 1968 as a vehicle con-
trolled by a human driver using handles and pedals that were hydraulically connected to
the four legs [Mos68]. At a completely different scale, a 15 000 tonnes legged machine
was built in 1969 for use in an open-air coal mine. This Big Muskie had four hydraulic
legs that lifted forwards or backwards all at once to raise the body and move it by one step
[Cox70]. Back to a more human scale, McGhee developed a series of hexapod robots in
the 1970s and 1980s using electric motors, digital control and on-board sensors [Ori+79;
McG+85]. He also developed the Adaptive Suspension Vehicle in 1984, a 2 700 kg ve-
hicle capable of carrying a person using hydraulically-actuated pantograph-shaped legs
[SW89]. Another hexapod called Odex was designed in the 1980s for the power plant in-
spection. It could be equipped with a manipulator and was able to move inside man-made
structures, including narrow passages [Bar87]. Although all these machines were one
step further in terms of capabilities compared to what we have seen previously, they were
limited to walks in laboratories or in controlled conditions. They could not benefit yet
from the advantages of legged locomotion in rough terrains due to limited understanding

2



1.1. From scientific attraction to large-scale deployment

of gaits and lacking advancements in terms of leg coordination control and mechanical
design. Some of these robots are presented in Fig. 1.2.

(a) Walking tractor (b) Walking truck (c) Big Muskie

(d) McGhee hexapods (e) Adaptive Suspension Vehicle (f) Odex

Figure 1.2: Increasingly refined legged machines after the 1950s.

Thanks to improved actuation technologies, innovative control loops and a deeper the-
oretical understanding, the legged machines that followed succeeded in overcoming the
limits of their predecessors and laid the foundations of modern robotics. From 1967 to
the 2000s, the Waseda University has shown a long history of computer controlled biped
robots, such as the WAP-1 that could playback taught movements using artificial rubber
muscles that were pneumatically actuated [LT07]. Their WL-10 RD biped that came later
in the 1980s achieved a quasi-dynamic gait as it could briefly unbalance itself by lean-
ing forwards to transfer support from one foot to another [Tak+85]. These developments
culminated in 1999 with the WABIAN humanoid robot capable of moving while trans-
porting loads with its arms as well as dancing in a dynamic way by waving its arms and
hips [Yam+99]. Still in Japan, the Tokyo Institute of Technology has been developing
a series of quadruped robots since 1976 with their Titan series, such as the Titan VIII
that could use one of its legs as a manipulator arm with the possibility of being equipped
with different end effectors [AH96]. Monopods, single legged robot whose locomotion is
performed through hops, also heavily contributed to the field despite their apparent sim-
plicity. With a series of monopods in the 1980s and 1990s, Raibert achieved for the first
time a highly dynamic motion with a robotic system, going up to 2.2 m/s with the Pogo-
stick [Rai86]. A monopod even went in space with the Hopper PrQP-F that collected
scientific data on Phobos in 1998 [Kem98]. A new innovative subtype of legged robot
makes its appearance in the 1990s with McGeer’s passive walkers that could walk with-
out any kind of actuation thanks to carefully designed mechanical structures that made
use of gravity or an initial impulse to keep their motion going [McG+90]. The ASIMO
biped presented by Honda in 2000 marked the culmination of 20th century robotics with a
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Chapter 1: Introduction

1.2 meter high fully autonomous humanoid robot with 26 degrees of freedom, electrically
actuated and able to detect obstacles with vision, climb stairs and carry 0.5 kg with each
hand [Sak+02]. Compared to hopping monopods or multilleged robots, performances of
biped robots have advanced slower as they are more demanding in terms of control due
to their unstable vertical posture [KV02]. The performances kept getting better and better
over the years with initiatives such as the Humanoid Robotic Programme HRP [Kan+04].
Fig. 1.3 shows some of these robots.

(a) WAP-1 (b) WABIAN (c) Titan VIII

(d) Pogostick (e) Passive walker (f) Asimo

(g) HRP-2 robot of the Gepetto team climbing stairs [Car+16]

Figure 1.3: Improvements in actuator technologies lead to impressive legged robots.
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1.1. From scientific attraction to large-scale deployment

At the fringes between legged robotics and wheeled locomotion, the concepts of
Wheel-With-Legs [Vel+98] (straight rods attached on the rim of a rotating axis) and
Whegs [Alt+01] (a contraction of wheel-leg for curved appendages attached on rotating
axis) were explored in the 2000s as a way to combine the advantages of both structures.
The goal was to go beyond the intrinsically limited locomotion speed of legs while having
better traction capabilities than classic wheels. Despite their mechanical simplicity these
robots were able to move in rough terrains and climb bigger obstacles than they could
do with wheels of the same diameter. Likewise, hybrid legged robots associate wheels
and legs as well, but this time as two different locomotion modes with the possibility to
switch from one to another. They typically have actuated wheels at the tip of their legs.
On even surfaces, they benefit from the efficient wheeled locomotion, yet they can still
climb stairs or navigate in irregular terrains by locking their wheels and walking as a more
classic legged robot would [MKK02]. See some prototypes in Fig. 1.4.

(a) Whegs-I (b) RHex-0

(c) Roller-Walker (d) AZIMUT

Figure 1.4: Innovative robots combining wheeled and legged locomotion.

With the rise of increasingly robust and well-controlled robotic systems, the first con-
siderations for commercial applications of legged robots outside pure research started to
appear. A wide range of fields could make use of such systems when locomotion has
to be performed in complex environments that can not be tackled with more traditional
wheeled approaches. Inspection is one such task. A legged system can replace a human
operator in cases where the target cannot be reached easily, such as the pipe inspection
robot MORITZ that could work even with slopes, curves or pipe junctions [ZP03]. They
can also assist in search and rescue operations in rugged and/or aquatic environments such
as the Asguard robots which uses compliant whegs to climb rubble and swim [EGK08].
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Patrolling harsh and dirty locations like offshore platforms [Geh+21] or mines [Tra+22] is
also a possibility. Alongside inspection, legged robots can assist humans in load-carrying
duties in rough natural terrains [Rai+08]. For now, quadrupeds take most of the spotlight
due to the robustness offered by their four legs compared to bipeds. Some of these robots
are presented in Fig. 1.5.

(a) MORITZ (b) Asguard IV

(c) ANYmal for mine exploration (d) BigDog

Figure 1.5: Fist considerations for commercial applications of legged robots.

As we have seen in recent years, thanks to the successive efforts of hundreds of re-
searchers that tried to tackle the challenges of legged locomotion, legged machines went
from a mere scientific curiosity at the dawn of the 18th century [Thr85] to a technologi-
cal expertise that reached the early stages of large-scale commercial deployment [Dyna;
Dynb; Rob; Zur].

1.2 A dual relation with biology: inspirations and appli-
cations

Understanding how legged animals move so well has been a long-lasting fascination,
especially in light of how difficult it is to reproduce such performances with artificial ma-
chines. Studying animals can be an inspiration to grasp the inner workings of motion
generation and transpose them to the robotics field [MSW20]. The resulting theoretical
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1.3. Challenges of locomotion with legged robots

advancements can sometimes be applied back to the natural world, like for the recon-
struction of the gait of extinct species based on skeletal data [HWM20]. Back in Greek
antiquity, Aristotle was already studying the shape and bone structure of the horses legs
to understand animal motion [Nus+85]. In the second half of the 18th century, Muybridge
used stop-motion photography to document running animals like cats, dogs, horses and
humans to better understand their gait [Muy87]. To go further, Hoyt studied how horses
have a preferred gait pattern for various ranges of locomotion speed to keep their cost of
transport at a minimum [HT81].

Efforts have been made to develop robots that mimic animals as best as possible.
Among all the animals that have been copied, insects are likely the most popular due
to the intrinsic stability offered by their hexapod or octopod locomotion combined with a
structure that is close to the ground and thus lead to a low center of mass. The stick-insects
or cockroaches are especially used as a model because of their ability to move skillfully
on irregular terrains despite their very simple kinematic structure [Cru+91]. Over the
years, plenty of prototypes were built, with various degrees of complexity both in terms
of mechanical structure and control. Mimicking the natural world did not stop at the
structure but also involved new kinds of actuators like McKibben artificial muscles ar-
ranged in pairs for the antagonistic principle [Ker+04]. [Bai+01] went even further in the
biomimetism with Sprawlita, an hexapod robot with a visco-eslastic structure and pneu-
matic actuators that relied on leg compliance to achieve a passive stabilization similar to
the one observed in insects.

Animal behavioral studies also led to innovative control scheme such as the subsump-
tion architecture, a particular type of behavior-based control, which was applied to a small
hexapod in 1989 [Bro89]. A final striking example of bio-inspiration is the climbing robot
Stickybot whose force control strategy worked in conjunction with its gecko-like fingers
to maintain a sufficient level of adhesion [Kim+07].

1.3 Challenges of locomotion with legged robots
As we have seen previously with the history of legged robotics and the way researchers

take inspiration from the natural world to try to understand the motion generation that
comes with it, legged locomotion is still a challenge that is far from being completely
solved. Several key characteristics of this kind of locomotion require carefully designed
mechanical and control architectures to be able to perform tasks in a meaningful way.

First, legged robots have to move around without being directly attached to the ground
so they cannot follow arbitrary motion commands. Their dynamics is an underactuated
problem in the sense that their base, sometimes called free-flyer, has 6 degrees of freedom
(3 for position, 3 for orientation) that are not actuated, with no way to directly regulate
their orientation in the world for instance. As such they have to be controlled indirectly
through the motion of their actuated appendages. This has to be done for task purpose,
like going to a target location or orienting the body in a particular way, but also to keep
balance. Most quadrupeds and bipeds are only dynamically stable when walking in non-
conservative ways so they require careful control to stay upright. A conservative way of
moving would be for instance to only swing one leg at a time with a quadruped, so that the
zero moment point always remains in the support polygon formed by the three remaining
legs, or to move in a slow quasi-static manner with a biped to keep it under the sole of
the only foot in contact. Besides, the control scheme cannot be limited to kinematics as
it can be the case with wheeled robots. Dynamics has to be taken into account to keep
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balance. To do so, the controller has to coordinate multiple degrees of freedom, and
in some cases properly handle redundancy when there are more controllable degrees of
freedom than state variables. This especially tends to be true for humanoid robots with
a high number of actuators, by opposition to quadrupeds which are often only equipped
with the 12 actuators they need to place their point feet as desired in space with respect
to their body. Finally, legged robots are by nature highly nonlinear systems with complex
relationships between joint motor commands and robot posture. Because of that, some
traditional control approaches that rely on linearity cannot be applied, at least without
simplifying assumptions.

1.4 Thesis statement and organization of the manuscript
This thesis contributes to the locomotion of legged robots by developing a control ar-

chitecture able to exploit the dynamical capabilities of a lightweight quadruped capable of
acrobatic movements. The use of complementary filters allows a straightforward sensors
fusion for the estimation of the robot state. Binary matrices make it possible to handle
contact sequences in a generic way to modify the gait pattern on the fly. This information
can then be used to determine footstep locations online using a small set of heuristics. By
reasoning on a prediction horizon a centroidal model predictive control can then find out
which forces should be applied at contact locations to follow a reference state trajectory
and handle disturbances. Next, a whole-body controller translates desired contact forces
and swinging feet trajectories into joint trajectories and feedforward torques. Finally, an
impedance controller provides feedback torques based on the difference between the de-
sired and current joint positions and velocities to obtain the commands sent to the robot.
The modularity of the architecture allows to easily augment some aspects of the scheme
or to replace them to test out other methods, as it will be shown several times in this thesis.

I will try to formulate the inner workings of this baseline architecture and how it
can be augmented to improve its capabilities. In a second part, I will then display the
possibilities offered by this architecture, both in terms of performances and modularity,
through simulations and deployments on a real quadruped robot. These demonstrations
will enable to experimentally qualify the performances and the feasibility of the presented
control scheme.

This thesis is organized in four parts. The first one provides a reviews of legged robots
locomotion and introduces the robot platform and the framework of the study. It includes
two chapters. Chapter 2 presents a literature overview of the approaches used for legged
robots locomotion, based on which our objectives will be positioned. Chapter 3 provides
a general introduction to the Solo quadruped that was regularly used over the thesis, as
well as the Open Dynamic Robot Initiative project that comes with it.

The second part of the thesis describes the various elements of the control scheme. It
is structured in 6 chapters. Chapter 4 provides a brief overview of the nominal control
scheme of the quadruped. Chapter 5 describes the two approaches that were implemented
to perform sensor fusion for position and velocity estimations. Chapter 6 presents the way
the gait is structured and handled as well as two extensions to get an adaptive gait and to
perform contact detection respectively. Chapter 7 introduces the heuristics used to choose
footstep locations online and how polynomial interpolation can generate trajectories for
the swinging feet. Chapter 8 describes the various formulations of centroidal model pre-
dictive controller that were implemented to determine the forces that should be applied
at contact locations, either to move on the ground or for jumping. Chapter 9 presents the
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two whole-body control approaches that were tested out to translate the decisions of the
model predictive control and the foot tracking tasks into commands for the quadruped,
along with several improvements.

The third part of the thesis presents different results in which the control architecture
was deployed. It is structured in 6 chapters. Their presentation follows the chronolog-
ical order of their development, reflecting the opinions we had at each respective step.
Chapter 10 presents the first application of the baseline architecture for trotting at low
speed. Chapter 11 presents a comparison of the variants of model predictive controllers
introduced in Chapter 8 with the improvements of the whole-body architecture explained
in Chapter 9. Chapter 12 showcases how the control architecture can be augmented to
use information about complex environments to carefully place its feet. Chapter 13 high-
lights some preliminary results in simulation using the contact detection of Chapter 6 and
the jumping trajectories of Chapter 8. In Chapter 14, an end-to-end deep-learning-based
approach is deployed on the Solo quadruped to serve as a form of comparison with the
presented model-based architecture.

Finally, a last part presents some conclusions and perspectives of this thesis work.

1.5 Related publications
The work carried out in this thesis has led to the following publications:

• Pierre-Alexandre Léziart, Thomas Flayols, Felix Grimminger, Nicolas Mansard,
and Philippe Souères. “Implementation of a Reactive Walking Controller for the
New Open-Hardware Quadruped Solo-12”. In: IEEE International Conference on
Robotics and Automation (ICRA). 2021, pp. 5007–5013

• Thomas Corbères, Thomas Flayols, Pierre-Alexandre Léziart, Rohan Budhiraja,
Philippe Souères, Guilhem Saurel and Nicolas Mansard
Thomas Corbères et al. “Comparison of predictive controllers for locomotion and
balance recovery of quadruped robots”. In: IEEE International Conference on
Robotics and Automation (ICRA). 2021, pp. 5021–5027

• Pierre-Alexandre Léziart, Thomas Corbères, Thomas Flayols, Steve Tonneau, Nico-
las Mansard, and Philippe Souères. “Improved Control Scheme for the Solo Quadruped
and Experimental Comparison of Model Predictive Controllers”. In: IEEE Robotics
and Automation Letters (RA-L) (2022)

• Fanny Risbourg, Thomas Corbères, Pierre-Alexandre Léziart, Thomas Flayols, Nico-
las Mansard, and Steve Tonneau. “Real time footstep planning and control of the
Solo quadruped robot in 3D environments”. In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). 2022

• Médéric Fourmy, Thomas Flayols, Pierre-Alexandre Léziart, Nicolas Mansard, and
Joan Solà. “Contact Forces Preintegration for Estimation in Legged Robotics using
Factor Graphs”. In: 2021 IEEE International Conference on Robotics and Automa-
tion (ICRA). 2021, pp. 1372–1378

• Michel Aractingi, Pierre-Alexandre Léziart, Thomas Flayols, Julien Perez, Tomi
Silander, and Philippe Souères. “Controlling the Solo12 Quadruped Robot with
Deep Reinforcement Learning”. Submitted to Autonomous Robots. 2022
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Chapter 2
Locomotion of quadruped robots: a
literature review

Over the last decades a wide range of methods have been developed to perform dy-
namic locomotion with legged robots. Some of them are bio-inspired and rather intuitive,
like central pattern generators, while others have a strong theoretical aspect to achieve
formal proofs of stability, like hybrid zero dynamics. These techniques can often be ap-
plied to legged robots with various amount of legs, from monopods to octopods. To keep
this bibliography to a manageable level, the following description of the state-of-the-art
will be limited to developments that have been applied on a quadruped robot.

2.1 Model-based control

2.1.1 CPG-and-reflex based methods

Central pattern generators (CPG) and reflex-based methods are a prime example of
how studying the inner workings of motion generation in the natural world can lead to
the development of control techniques in robotics. Back in 1994, Taga [Tag94] studies
biped locomotion and reveals how locomotor movements emerge as a limit cycle when
using a neural rhythm generator. Simulations are used to show that this motion gener-
ation approach can adapt in real time to a changing environment and remains stable to
some extent, even with delays in the actuation. Taga [Tag95] further strengthens this ap-
proach later with the construction of a human musculo-skeletal system centered on 7 pairs
of neural oscillators. Although initially applied to biped locomotion, what is now widely
known as a central pattern generator is extended to all kinds of legged locomotion in the
following years, including quadrupeds. Tsujita [TTO01] presents an adaptive gait pattern
control for quadrupedal locomotion that relies on nonlinear oscillators with mutual inter-
actions. The signal from touch sensors located on the feet tunes the phase differences
between oscillators which lead to the emergence of an adaptive gait pattern according
to the robot state and the environment. Such touch sensors are also used by Righetti
[RI08] in a more complex CPG architecture. Using insights from dynamical system the-
ory, generic networks of coupled oscillators are assembled to independently control the
swing and stance phases of limbs. This allows to generate various gaits by merely mod-
ifying oscillation parameters. As we have seen, CPGs can be deployed on their own to
achieve robust locomotion on uneven ground, yet they can also be combined with other
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control approaches. Ajallooeian [Aja+13] proposes a modular controller for quadruped lo-
comotion that mixes CPGs with virtual model control for posture control. Virtual springs
are attached to the base and generate virtual forces to correct the base attitude. Similarly,
Barasuol [Bar+13] combines a CPG-inspired trajectory generation for swinging feet with
a null-space based attitude control for the trunk. Proper footholds are found with the prin-
ciple of instantaneous capture points to naturally counteract disturbances. This approach
is augmented a few months later by Focchi [Foc+13] who implements a local elevator
reflex so that the robot can reactively overcome high obstacles. He does so by modifying
the parameters of the CPG-based online trajectory generation to increase foot clearance.
Fukui [Fuk+19] links a simple vestibular sensory feedback (body tilt) to CPGs. The phase
difference between the four legs is then changed to autonomously transition from walking
to trotting, and then to galloping depending on the speed and the disturbances (obstacles,
pulls, additional weights). Massi [Mas+19] applies an evolutionary algorithm to find the
best parameters for a CPG-based control architecture. The oscillators are coupled with
PID feedback controllers and cerebellar-inspired feedforward controllers. Unlike most
CPG controllers, Suzuki [Suz+21] does not use inter-oscillator coupling but rather sen-
sory coupling through bidirectional feedback between the legs and the base. The phases
of all oscillators are thus not modified by their states but rather by the torques of the actu-
ators (legs and actuated spine). This sensory feedback mechanism works well to adapt to
unexpected bodily damage, such as one of the joint getting stuck in a fixed position. To
sum things up, CPG-and-reflex based methods achieve distributed control through a set of
oscillators that generates smooth trajectories. By nature, the resulting movements reach a
limit cycle that is robust against disturbances. However, there are less mathematical tools
to study them than other model-based methods, and no clear design methodology yet.

2.1.2 Heuristic control methods

As their name indicates, heuristic control methods relies on well-defined heuristics to
achieve robust locomotion. In 1986, Raibert [RCB86] applies to quadrupeds the virtual
leg control method he previously deployed on monopeds. If the movements of the four
legs are coordinated, the quadruped gait can be mapped into a gait with a single virtual leg
so that the one-leg algorithms can be used. This approach is rather simple to implement
with no complex models and can produce highly dynamic motion, yet it requires powerful
actuators and has no analytical proof of stability.

Another heuristic approach is the one initially developed for bipeds by Pratt [PDP97].
It creates virtual elements to keep the robot upright and have it move forwards. Then it
computes the necessary torques so that the actuators replicate the effect of those virtual
elements. This virtual model control is reused by Gehring [Geh+13] to control a small
quadruped robot. A set of heuristic terms is defined to choose footsteps location while
motion control relies on low-level joint position tracking and virtual forces that should be
applied to the base to control the posture. Similarly, Winkler [Win+15] attaches virtual
springs and dampers to a HyQ trunk on one side and the desired trajectory on the other
one to pull the robot toward the desired state. They generates virtual forces and torques
that are then converted into desired floating-base accelerations and ultimately translated
into torques through inverse dynamics. Virtual model control has several advantages: it is
an intuitive way of designing a controller, as the virtual elements pull the robot to the goal,
it does not need an accurate model of the environment and is robust against disturbances.
However, one has to make sure that the virtual forces can actually be generated by the
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actuators of the robot.
Finally, Chevallereau [Che+03] presents the hybrid zero dynamics approach which

provides theoretically-sound control algorithms for walking, running and balancing with
a biped. It has the advantage of having one of the most complete theoretical foundation
among locomotion techniques, with analytical proofs of asymptotic stability for walking
and running gaits on the basis of scalar Poincaré return maps [Str18]. Yet it is not so
easy to understand compared to previous approaches. Liu [LSP15] implements such an
approach in simulation to perform a bounding gait with a quadruped robot with point feet.
In the same way than virtual leg control was applied to quadrupeds even though it was
designed for monopeds, here the model is planar so that the two pairs of front and hind
legs are each considered as a single leg, thus returning to a biped case.

2.1.3 Trajectory-based methods

The main idea of trajectory-based methods is to design walking kinematic trajectories
and use dynamic equations to test and prove that locomotion is stable. Those trajectories
were initially designed by trial-and-error or from human recordings but the increase of
computational capabilities now makes it possible to optimize them online. One of the
most used stability criterion for such methods is the zero moment point, also known as
ZMP, that is the point on the ground at which the net moment of the inertial forces and
the gravity forces has no component along the horizontal plane [VB04]. It can be roughly
considered as the projection of the point around which the robot is rotating. Locomotion
is stable if the ZMP remains within the support polygon over time (it can briefly go out).
Another criterion that can be used instead for robot with planar feet is the foot rotation
indicator (FRI) point [Gos99], which is a point on the foot/ground contact surface where
the net ground reaction force would have to act to keep the foot stationary. Thus, the FRI
point must remain within the support polygon during motion to ensure no foot rotation.
As foot rotation is an indication of postural instability, it should be carefully treated in a
dynamically stable walk and avoided altogether for statically stable walks. The position of
the center of pressure (CoP), point of application of the ground reaction forces vector, can
be used as a stability indicator as well [SB04]. Popovic compares these three criterions
(ZMP, FRI, CoP) in [PGH05]. Such trajectory-based approaches provides a well-defined
methodology for proving stability, which is well-suited for expensive robots that should
never fall. However, it can be time-consuming to define proper trajectories if done by
hand and requires an excellent knowledge of the robot dynamics and of the environment.
Even with theoretically valid trajectories, additional online control to handle disturbances
is needed for movements that are not overly conservative.

Kalakrishnan [Kal+11] presents a control architecture for locomotion over rough ter-
rain with a body trajectory optimizer based on the ZMP criterion. For maximum stability,
only one leg moves at a time so that the ZMP can be kept at all time within the sup-
port polygon of the remaining three feet. Ugurlu [Ugu+13] proposes a CoP-based center
of mass trajectory generator to synthesize reliable trot-walking locomotion cycles which
are smooth, continuous and feasible. Along with an active leg compliance controller, it
achieves a repetitive dynamic walk on an uneven surface. De Viragh [Vir+19] adopts a
linear formulation of the ZMP criterion to generate feasible trajectories for a quadruped
robot with actuated wheels on its feet, combining driving, walking and turning. This for-
mulation is exploited by a quadratic programming solver which tries to keep the ZMP
inside the support polygon. Tiseo [TVM19] generates center of mass trajectories by con-
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sidering a quadruped as two bipeds connected with each other (front pair of legs connected
with hind pair) on the basis of a linear inverted pendulum model. The center of mass is
constrained within the support polygon for stability.

2.1.4 Planning methods

Planning methods put a particular emphasis on the planning aspect of legged locomo-
tion. They use privileged information about the robot (models) and/or the environment
(local map of the surroundings) to reason over a prediction horizon in order to take the
best control decisions for a given set of criterion. Based on an accurate 3D model of the
terrain, Kolter [KRN08] generates height and collision maps that allow to extract several
local features of the ground such as the slope or the maximum height. This leads to the
creation of a foot cost map through a linear combination of the features and of the col-
lision map. Future footsteps can ultimately be planned along the desired body path by
solving an optimization problem. Havoutis [Hav+13] uses a depth camera to reconstruct
the height map of the ground in front of the robot from a point cloud. That way the
quadruped can avoid stepping near sudden surface height changes (like steps) by com-
puting the surface gradient and rather prefers to step on flat spots along the body path.
Similarly, Mastalli [Mas+15] reconstructs a local height map of the environment in front
of the robot using a depth camera which is then converted into a reward map, with large
flat areas having a high reward and the edges of height changes having a low one. A body
action planner then computes a sequence of body actions that maximize the cross-ability
of future footsteps. The action plan is found online by searching over a graph built using
a set of predefined body movement primitives. Winkler [Win+15] provides more details
on how the planned sequence of footsteps is processed to generate a body trajectory that
ensures that the robot is dynamically stable. The position of the ZMP is estimated by
modeling the robot as a cart-table. Aceituno-Cabezas [Ace+17] later extends this control
framework by introducing a mixed-integer convex formulation to plan simultaneously
contact locations, gait transitions and motion. Farshidian [Far+17] proposes an optimal
planning and control framework for quadrupedal locomotion. He deploys a multi-level
optimization approach based on dynamic programming to find both the optimal times for
contact switches and the optimal continuous control inputs to perform the motion. The
approach can handle wide gaps where the robot cannot put its feet, forcing the robot to
leap over the hole. Fernbach [Fer+17] presents a kinodynamic contact planner of legged
robots. The planning pipeline can generate trajectories connecting two states of the robot
(start and end locations for instance) while accounting for the state-dependent centroidal
dynamic constraints inherent to legged robots. It exploits a 3D map of the environment
to synthesize collision-free motions that respect the reachable workspace of the effectors
and can include jump phases. Zhang [ZH18] investigates a single-image footsteps and
route planner for legged robots based on perspective and tilt-corrected color and depth
images. To do so, they deploy a convolutional neural network that processes the image to
find the best footholds and handholds (it also works for climbing walls) after a training
using human expert knowledge. Based on the quality of the observed holds, it then out-
puts a rough route to cross the terrain. Fankhauser [Fan+18] proposes a real-time motion
planning pipeline that reconstructs an elevation map of the environment based either on
depth camera or LIDAR data. He exploits the full motion range of the robot by optimiz-
ing its pose along the footstep selection. The planner continuously re-plans the motion
to handle disturbances and dynamic environments, yet its prediction horizon is limited to
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the immediate next step. Finally, Brandao [BFH19] showcases a locomotion planner in
an outdoor industrial environment. His main planner has access to several controllers and
sub-planners and decides which ones to apply on each section of the route to the goal in
order to maximize objectives. It can for instance choose to trot on a clear flat ground to
save energy while switching to a planner that carefully plan footsteps in complex situa-
tions like stepping stones. To sum things up, planning methods offer ways to handle very
complex terrains that require careful footholds, yet they depends on accurate maps of the
ground, with the risk of degraded performances if it is reconstructed online in the case of
poor sensory inputs.

2.1.5 Inverse Dynamics, optimization and predictive control

Inverse dynamics allows to design controllers in task space, as opposed to joint space.
Instead of reasoning in terms of joint states, one can define tasks in Cartesian space such
as placing feet at given positions or keeping the base horizontal while tracking a refer-
ence velocity. These tasks are then translated by inverse dynamics into commands at
the joint level. However, practical applications of floating-base inverse dynamics can be
hindered as it depends on precise dynamics models. Buchli [Buc+09] presents an ap-
proach that avoids the need to know the contact forces by computing analytically correct
inverse dynamics torques in the reduced dimensional null-space of the constraints. This
is done by computing an orthogonal decomposition of the constraint Jacobian that ap-
pears next to the vector of contact forces in the equation of the dynamics. Combining
inverse dynamics with some sort of model predictive control (MPC) is a well-spread ap-
proach to optimize the state and control of the robot over a prediction horizon. It can
either directly use a full model of the robot with the equation of the dynamics, which is
called whole-body predictive control, or a reduced model for computational reason such
as centroidal model predictive control. The output of predictive control with a reduced
model is often reprocessed down the line with an instantaneous whole-body controller to
abide by the full dynamics of the robot. For instance, Bledt [BWK17] performs a policy-
regularized MPC with a lumped-mass model with massless legs. Both contact forces and
contact locations are optimized over an horizon of one gait period using heuristics for
regularization. A lower level whole-body controller then handles the tracking. This work
manages to stabilize a wide variety of gaits (bounding, trotting, galloping) in simulation.
A similar two-stages architecture is used by Bellicoso [Bel+17; Bel+18] to first optimize
the center of mass trajectory over the incoming steps to respect the ZMP stability crite-
rion. Then, a whole-body controller tracks the desired motion of the floating base and
swinging legs by reasoning on a hierarchy of tasks to find the contact forces to be ap-
plied on the ground, which are ultimately converted into joint torques. This approach is
further extended in [Bel+19] to perform tasks with a six degrees of freedom robotic arm
installed on the trunk of the quadruped. On the opposite, Neunert [Neu+18] proposes a
single-stage architecture with a whole-body nonlinear model predictive control. He op-
timizes contact locations and timings along the full body dynamics over a half-a-second
prediction horizon to perform trotting, squat jumps and forward jumps. The feat of reach-
ing real-time performances with a whole-body MPC is made possible through multiple
software engineering techniques such as auto-differentiation and multi-threading using a
multi-shooting solver. Di Carlo [Di +18] uses a centroidal MPC to find the contact forces
that should be applied at contact points over the prediction horizon to follow a reference
velocity. Assumptions and simplifications of the full body model allow to formulate the
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problem as a convex quadratic programming optimization. Inverse dynamics is still used
at the low level for the control of the swinging legs. The resulting architecture demon-
strates robust locomotion with several gaits (trotting, pronking, bounding, gallop, flying
trot) and the same set of gains and weights. Kim [Kim+19] refines this approach by keep-
ing the same centroidal MPC but extending the whole-body control to include a strict
hierarchy of tasks. These tasks generate position, velocity and accelerations commands
for the base and the joints through a series of projection in the null-space of tasks of higher
priority. The final contact forces are then optimized by a quadratic program considering
the reaction forces found by the MPC and the base and joint accelerations outputted by
the task hierarchy while satisfying the equation of the full body dynamics. The whole
architecture achieves high speed dynamic locomotion with aerial phases. Fahmi [Fah+19]
presents a passive whole-body control for quadruped that optimizes body and joint accel-
erations as well as the ground reaction forces with a quadratic program. Virtual springs
and dampers are used for trunk and swing leg control tasks, the reference being given
by a higher-level planner that optimizes footstep locations and center of mass trajectory
based on a reconstructed height map of the environment. The controller is said passive
in the sense that the total energy stored in the controller is bounded from below and its
derivative is less than or equal to the rate of energy injected by the control. The architec-
ture achieves robust locomotion over a wide range of terrains (slopes, gaps, stairs) with
crawling and trotting gaits. Villarreal [Vil+20] combines a convolutional neural network
that continuously evaluates the terrain in search of safe footstep locations with a cen-
troidal model predictive controller that optimizes contact forces at said locations. The
wrench exerted by the legs during swing phases is taken into account in the MPC, which
distinguishes it from usual centroidal MPCs which neglect leg inertia. Hamed [HKP20]
proposes an event-based MPC that computes the optimal center of mass trajectories for a
reduced-order linear inverted pendulum model. Here, events define the switch from one
continuous domain to another, in other words the contact switches of the performed trot-
ting gait. The linear inverted pendulum nature of the MPC has the advantage of enabling a
formal asymptotic stability analysis. Full body dynamics and optimal trajectory tracking
are ensured by a QP-based virtual constraints controller. Fawcett [Faw+22] investigates
the use of data-enabled predictive control to capture nonlinear information about the clas-
sic lumped-mass model while avoiding linearization. It does so through a data collection
phase which leads to the construction of Hankel matrices that contain implicit information
about the dynamics of the system. Those are then used in a predictive control framework
to plan trajectories for the center of mass and ground reaction forces. Optimal trajectories
are finally passed to a low-level QP-based nonlinear controller for whole-body motion
control using virtual constraints. Indoor and outdoor walks demonstrate the robustness
of the approach. Finally, to go beyond simplified models and kinodynamic constraints
that are often non-differentiable, Mitchell [Mit+20] captures a statistical representation of
feasible joint configurations to form a structured latent space. Through the use of seman-
tic indicators and learned classifiers, constraints are made differentiable and performing
motion optimization amounts to finding a trajectory in this latent configuration space.
The architecture is successfully deployed to perform a walking gait on a quadruped robot.
Both Fawcett [Faw+22], Mitchell [Mit+20] and other approaches in recent years start to
bridge the gap between more traditional control viewpoints and novel machine learning
perspectives.
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2.2 Data-based control

In the last decade, the rise of machine learning has been an increasingly hot topic for
legged locomotion. It opens a whole new paradigm where, instead of being formulated by
hand, the locomotion model is learned from data either online or during a training phase.
It potentially allows to capture effects that would be hard to model by hand or which
would be untractable for the considered model-based architecture, like non-linearity or
non-convexity. Data-based models can go from full end-to-end networks with sensors
as inputs and joint commands at output, or be limited to a small part of a broader con-
trol architecture. For instance, Pontón [PFB14] deploys machine learning as part of an
architecture that contains classic inverse kinematics, inverse dynamics and trunk stabiliza-
tion. The goal is there to optimize the robustness and energy efficiency of a trotting gait
through a variable impedance policy for the four legs. The final policy learned at discrete
speeds is then generalized for the whole speed range of the quadruped with a Gaussian
process for interpolation. This approach is later extended by Heijmink [Hei+17] by learn-
ing not only the impedance profile over time, but also the gait parameters and gains of
the trunk controller to further diminish the energy consumption of the quadruped when
trotting over a set of terrains. Gehring [Geh+16] presents a learn-through-practice process
to automatically fine tune the parameters of a model-based state-feedback controller. The
training is done in simulation to avoid damaging the robot. Yet, an accurate model of the
compliant actuation system of the quadruped is implemented to keep the sim-to-real gap
as small as possible. In the end, the optimization results were directly applicable to the
real platform. On the contrary, Tan [Tan+18] adopts an end-to-end approach that directly
learns target joint position to perform trotting and galloping gaits. The training is done in
simulation, with a particular care given to the actuator model and a simulation of control
latency, again with the intent to narrow the reality gap. The policy is ultimately deployed
on a real quadruped. Sun [Sun+18] investigates biologically inspired controllers by ap-
plying learning to a CPG-based architecture. The controller includes decoupled CPGs
(one per leg) with sensory feedback and neural reflex mechanisms. The network is ulti-
mately able to generate emergent quadruped locomotion and to adapt its self-organized
gait to the presence of step-like obstacles on the ground. Instead of traditional neural
networks, Lee [LP19] explores the use of a time-dependent genetic algorithm to improve
the convergence performance of functions over time compared to real-coded genetic algo-
rithms. They optimizes the shape of the feet trajectories as well as the parameters of the
impedance controller of the joints. The quadruped is then able to handle flat, sloped and
slightly irregular terrain in simulation. Magana [Mag+19] presents a planning architecture
that uses vision to reconstruct a height map of the environment and to choose online the
best landing positions for the feet. The choice of these positions was previously guided by
heuristics but is now done with a convolutional neural network that processes the discrete
height map. The goal is to replicate the performance obtained with complex heuristics,
but with a computational cost hundred of times lower for real-time purpose. Similarly,
Klamt [KB19] leverages a discrete height map of the environment with a convolutional
neural network to replace the cost function of a navigation task that could require impor-
tant tuning efforts. After training, the network outputs the cost of each cell of the height
map, which is exploited by a search algorithm to find the best path to the goal location.
We have already seen how motion primitives could be used by a trajectory based control
to generate a quadrupedal walking gait. Instead of considering a given set of primitives,
Singla [Sin+19] proposes to learn them. A deep reinforcement learning architecture first
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learns to perform several walking gaits in simulation. From them kinematic motion prim-
itives are extracted through principal component analysis. The trajectory based controlled
finally synthesizes walking gaits by reconstructing joint trajectories from the motion prim-
itives. Back to an end-to-end learning approach, Jain [JIC19] implements a hierarchy of
two neural networks to perform a path following task on a flat ground. The high-level pol-
icy network receives the position and orientation of the quadruped as inputs and outputs
latent commands and a duration during which the low-level policy should follow these
commands. Based on these latent commands and proprioceptive data, the low-level pol-
icy issues target joint positions. After training, the robot can adapt to new paths thanks to
a steering behaviour that automatically emerges in latent space. Jain further develops this
approach in [JIC20] by replacing the position and orientation inputs of the high-level net-
work by depth camera images so that the network learns the latent commands to navigate
curved cliff and maze environments. Bhattacharya [Bha+19] proposes a end-to-end learn-
ing as well using a single deep neural network with the intent to perform bounding with
an active spine. While the policy learns the target joint angle for the spine, it does not do
so for the legs. The action space consists instead of the feet positions expressed in polar
coordinates with respect to their associated shoulder so that the five-bar leg mechanisms
never encounter a singularity. Finally, Ji [Ji+22] investigates the use of two concurrent
networks: a locomotion network to ouput joint target positions and an estimation one to
estimate the robot state such as base velocity, foot height and contact probability. Train-
ing is done in simulation to exploit privileged data from the simulator for the estimation
network. Once deployed on real hardware, the quadruped is able to cross rough terrains
such as hills, slippery areas and bumpy roads.

The next chapter presents the Solo-12 quadruped robot and the collaborative open
framework in which it was developed.
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Chapter 3
The Open Dynamic Robot Initiative

3.1 A project toward open robotics

The very early days of what will be known later as the Open Dynamic Robot Initiative
started back in 2016 at the Max-Planck Institute for Intelligent System [MPI]. The first
investigations aimed to explore the possibilities offered by a wide range of small electric
motors and find the best trade-off between their characteristics. This was done using
a closed-source Texas Instruments evaluation board [TXA]. That was done alongside
others developments intended to test the performance and mechanical design of compact
reduction techniques using timing belts and 3D printing for the casing and other plastic
parts.

The ODRI project itself started in 2019 as a collaboration between the Motion Genera-
tion and Control Group [MGC], the Dynamic Locomotion Group [DLG] and the Robotics
Central Scientific Facility [RCS] at the Max-Planck Institute for Intelligent System [MPI],
the Machines in Motion Laboratory [MML] at New York University’s Tandon School of
Engineering [NYU] and the Gepetto Team [GT] at the Laboratory of Architecture and
Analysis of Systems LAAS-CNRS [LAA]. This project originated in an effort to build
a low cost and low complexity actuator module using brushless motors that can be used
to build different types of torque-controlled robots with mostly 3D printed and off-the-
shelves components. This module, and extensions, can be used to build legged robots or
manipulators, with the intent to provide the community with reliable platforms that can
be easily maintained and repaired and could benefit from numerous contributions in their
development.

All hardware, schematics, electronics, firmware and software are fully available under
the BSD-3-clause license. The entry point of the resources made available is [ODR].
Both a paper describing the actuator module and the first quadruped design [Gri+20] and a
paper describing the TriFinger Manipulator Platform and real-time reinforcement learning
experiments [Wüt+20] have been published in 2020.

The actuator module consists of a brushless motor connected to a 9:1 dual-stage timing
belt transmission to be able to output a reasonable peak torque and high velocity without
going over-the-top. The actuator can output 2.7 Nm joint torque at 12 A. Keeping a
low transmission ratio ensures sufficient transparency to enable accurate torque control
through motor current measurements alone as well as offering enough reversibility for
the actuator to absorb and dampen impacts. This would potentially even allow to send
energy back to the batteries, contrary to the actuators with high reduction ratio found
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on big quadruped or humanoid robots whose gearboxes are way less reversible and can
even break for strong impacts. A high-resolution optical encoder and a 5000 count-per-
revolution coding wheel mounted on the motor shaft provide joint position measurements.
With such an incremental encoder, a short initially procedure is needed at startup to locate
the index of the wheel, contrary to absolute encoders. The whole actuator weights 150 g
for a segment length of 16 cm. Except the motor shaft and timing belts, all parts are either
3D printed or can be bought off-the-shelf. An assembled view of the actuators and of its
individual parts is shown in Fig. 3.1.

(a) Assembled actuator module (b) Component overview

Figure 3.1: Brushless actuator module (a) assembled, and (b) individual parts. Brushless DC
motor 1 , two-part 3D printed shell structure 2 , high resolution encoder 3 , timing belts 4 , and
output shaft 5 . Brushless motor 6 , optical encoder 7 , timing belts 8 , bearings 9 , fasteners
10 , machined parts 11 and 3D printed parts 12 . Figures extracted from [Gri+20].

Rather than using the TI evaluation board we evoked earlier, new open-source driver
boards have been developed to execute dual motor torque control with a mass reduced by
a factor of six (13 g) and a volume by a factor of 10 (23 cm3), as shown in Fig. 3.2.

Figure 3.2: TI Evaluation Board 13 compared to the open-source micro-driver developed by

ODRI 14 . The built-in microprocessor can run an impedance controller at 10 kHz for better
performances compared to a controller done at 1 kHz by the control computer. Figure extracted
from [Gri+20].

The drivers can run an onboard impedance controller at 10 kHz and operate at motor
voltages up to 40 V. The driver boards are managed by a single master board which han-
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dles communications with the control computer, either wired or wireless. An overview of
the control system is presented in Fig. 3.3.

Figure 3.3: Control system overview. An ethernet cable or WiFi can connect a control computer
to the master board at 1 kHz. The master board manages all micro drivers that each control 2
actuators at 10 kHz. Power supply can either be wired or on-board with batteries.

As we hinted at before, the two first platforms built in the framework of ODRI were
the Solo-8, a lightweight (1.9 kg) quadruped with 8 degrees of freedom (2 per leg), and
the TriFinger, a manipulator platform with 3 identical finger modules with 3 actuators
each. Both platforms are shown in Fig. 3.4.

(a) Solo-8 quadruped (b) TriFinger Manipulator Platform

Figure 3.4: Both platforms highlight the possibilities offered even with standardized actuation
modules, either for legged robotics or for object manipulation. Figures extracted from [ODR].

Further developments in 2020 led to a new version of the Solo quadruped called Solo-
12 due to its 12 actuators (3 per leg), which will be described in more details in the next
section. After working on a more compact version of the actuator by placing the timing
belts in a different way, a new biped platform was made available in 2021. It weights
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1.34 kg with 3 actuators per leg and a passive ankle joint. As shown in Fig. 3.5, the
mechanical design keeps the same modular philosophy: the hip abduction-adduction and
hip flexion-extension are both the same triangle-shaped actuators while the legs are just
an elongated version of Solo’s ones. Since the biped has no degree of freedom for the leg
rotation, the robot cannot control its yaw angle. The passive ankle joint with a foot-like
end-effector aims to help stabilize the yaw orientation of the robot with a line contact,
contrary to what we would get with one of Solo’s feet (point contact). It uses the same
onboard electronics than the other ODRI platforms, with a master board to communicate
with the control computer and microdrivers that command 2 actuators each.

(a) Biped (held by a string) (b) CAD model of the biped

Figure 3.5: Design of the 6-DoF biped robot. The reflective markers are used for base estimation
with motion capture. Figures extracted from [ODR].

3.2 The Solo-12 quadruped
Solo-12 is an upgraded version of Solo-8 with 1 additional actuator per leg. It is

otherwise very structurally similar to its predecessor, as seen in Fig. 3.6. Compared to
Solo-8 which had only 2 actuators per leg for the hip flexion-extension and the knee
and could thus only move its feet in a vertical plane, Solo-12 gets rid of this limitation
thanks to hip abduction-adduction. This greatly expands the feet workspace and thus the
robot capabilities as it can now move sideways and better stabilize itself. It also opens
more possibilities for the control of the base orientation. The internal electronics remains
similar to the one of Solo-8, with only two additional micro-drivers to handle the four
added actuators. The workspace of each leg is highlighted in Fig. 3.7.

An autonomy upgrade designed in 2021 allowed the robot to operate without power
and Ethernet wires. Two lithium batteries, one at the front, one at the back, provide
the required 24 V. Space is made on top of the robot to attach a small computer board
like a Raspberry Pi to perform onboard computations. A custom power management
board safely manages the battery packs and can record energy consumption data (voltage,
current, power). The fully autonomous Solo-12 we used at LAAS for experiments is
shown in Fig. 3.8.

Preliminary tests with a replay of a hand-made jumping trajectory reveals the explo-
sivity of the Solo platform, with the base going up to 1.06 m from the ground. As shown
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(a) Default configuration (b) CAD model and dimensions

Figure 3.6: Design of the 12-DoF version of the Solo quadruped. Figures extracted from [ODR].

Figure 3.7: The standard range of motion of the hip abduction-adduction is 215 deg. It extends up
to 325 deg if the hip flexion-extension is moved as well. Figure extracted from [ODR].

in Fig. 3.9, these experiments were done with Solo-8. It remains to be seen how high
Solo-12 can jump with the added weight of 4 actuators, likely depending on how well the
abduction-adduction of the legs can be used for jumping. The Solo platform has promis-
ing dynamical capabilities, now all we need is a control architecture to exploit them,
which will be the subject of the rest of this thesis.
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Figure 3.8: The autonomous version of Solo-12 equipped with motion capture markers. Note that
the knees are reversible by design: here the hind knees are reversed compared to Fig. 3.6a.

Figure 3.9: Snapshots of a vertical jump with Solo-8. Figures extracted from [JMP].
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Chapter 4
Overview of the control architecture

Planner Centroidal MPC Whole-Body Control
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Estimator
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Figure 4.1: Nominal reactive walking control architecture. The low-level proportional-derivative
(PD) controller is directly performed by the motor control board (MCB) of the robot.

This chapter provides a brief overview of the nominal control scheme of the quadruped,
displayed in Fig. 4.1, to which we will refer when describing how the main control blocks
have evolved over the duration of this thesis. This overview outlines the role of each of
these blocks to make it easier for the reader to get a general grasp of how the control archi-
tecture is structured before digging deeper into technical developments in the following
chapters.

The main goal of this control architecture is to track a reference base velocity speci-
fied either by a user or a higher level controller. The only other inputs that the architecture
receives are the sensors measurements that come from the joint encoders and the inertia
measurement unit. The controller processes these inputs to ultimately output torque com-
mands for the 12 actuators of Solo-12. To do so, the computations are split into 5 control
blocks that communicate with each other and that we will describe thereafter.

• Estimator

The aim of the estimator is to reliably estimate the state of the robot and give us access
to quantities that are not directly measured by the joint encoders and the inertia measure-
ment unit. With the encoders, we can get accurate joint positions as well as slightly noisy
joint velocities by using finite difference. The IMU includes an accelerometer and a gy-
roscope to output linear acceleration, angular velocity and orientation of the robot body.
With this set of sensors, only the position and linear velocity remain to be assessed through
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other ways. To do so, the estimator exploits sensor fusion by using either a cascade of
complementary filters or a Kalman filter. If feet in contact are assumed to be immobile,
we can use forward kinematics with joint positions and velocities to get an estimate of the
base velocity. Forward geometry also outputs an estimate of base position with respect
to the feet. The low-accuracy non-drifting assessments coming from forward kinemat-
ics and geometry are merged with highly-accurate IMU acceleration measurements that
would drift when integrated alone, hence resulting in a good quality non-drifting estimates
of base position and linear velocity.

• Planner

The role of the planner is to manage to rhythmic motion of the legs to make the robot
follow the base reference velocity. Discretized contact sequences are used to characterize
the succession of contacts between the feet and the ground. In other words, the planner
manages the sequences of stance and swing phases for each foot that lead to a cyclic
pattern of footsteps for locomotion. During swing phases, feet have to be guided from
their current position on the ground to the next one. So the planner regularly has to chose
at which location each foot should land at the end of its respective swing phase. To do
so, it uses several heuristic terms to determine the target locations on the ground based
on the estimated and reference base velocities. These locations are of particular impor-
tance because pushing on the ground is the only way for the quadruped to interact with its
environment, balance itself and move around. Finally, while feet in contact must stay im-
mobile on the ground, polynomial interpolation is used to generate reference trajectories
in position, velocity and acceleration to guide swinging feet from their current position to
their next target on the ground.

• Model predictive control

Model predictive controllers can generate motion in real time by predicting the behav-
ior of the robot over a prediction horizon. That way, locomotion decisions are taken by
considering the future evolution of the system and incoming events (contact locations and
timings, disturbances, environment, ...). To reduce computational complexity, our MPC
uses a centroidal model of Solo-12. Since quadruped robots tend to have lightweight
limbs, most of their mass is localized in their trunk and, as such, centroidal dynamics can
provide an appropriate approximation of their whole-body dynamics. First, a reference
state trajectory of the base is generated from the reference base velocity given as input
to the control architecture. Then, along with the footstep locations decided by the plan-
ner and the estimated state of the base, this reference trajectory is given as input to the
centroidal MPC. Its goal is to output desired contact forces that should be applied on the
ground to track the reference. Several approaches of increasing complexity are imple-
mented to solve this optimal control problem. Due to its computational cost, the MPC
only runs at 50 Hz in a process parallel compared to the main control loop at 1 kHz. For
this reason, MPC inputs and outputs are only refreshed once every 20 iterations.

• Whole-body control

While the centroidal model of the MPC forgets all notion of joints to consider the
robot as a single lumped mass, in practice, the robot is a poly-articulated system with
multiple joints that have to be controlled. Thus, the role of the whole-body controller
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is to convert the desired contact forces provided by the MPC for feet in stance phase
and the reference feet position, velocity and acceleration given by the planner for feet in
swing phase, into torque, position and velocity commands that are sent to the low-level
impedance controller. Ideally, this conversion would have been done by using inverse
dynamics. Yet, we will present the practical reasons that led us to use a combination
of task-oriented inverse kinematics (IK) and quadratic programming (QP) for real-world
deployment. In fact, a QP problem is solved to find a compromise between tracking the
joint acceleration commands of the IK, taking into account the MPC contact forces and
respecting the equation of dynamics.

• Low-level impedance controller

The low-level impedance controller is the last interface between our control archi-
tecture (1 kHz) and the motor boards that drive the joints with a high-frequency current
loop (10 kHz). It provides feedback torques based on the difference between the desired
and current joint positions and velocities, that are added to the feedforward torques of
the whole-body controller to obtain the final torque commands sent to the motors. The
impedance controller directly runs on the robot control board at 10 kHz with references
from the control loop refreshed at 1 kHz.
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The state of a system consists of a minimal set of parameters that allows to completely
describe its dynamics over time. When its initial state is known and a given command is
applied, the trajectory of the system is defined in an unique manner. On a quadruped
robot, the state is typically composed of the joint angles and velocities together with the
base position, orientation, linear and angular velocities. As a body reference point, the
center of mass (CoM) is sometimes preferred over the geometric center of the base de-
pending on control strategies. Some of those quantities may not directly be measurable
due to their physical nature (the CoM is a virtual point) or to limited sensor data. For
instance, proprioceptive sensors are insufficient for measuring the robot position in the
world. Those variables might however be estimated through other means. For instance,
forward geometry provides an estimate of the CoM position, while sensor fusion can in-
directly reconstruct the position in the world. The task of estimation can thus be summed
up as finding the robot state given available measurements.

In our case, the state of the quadruped has been defined as a configuration vector q
which includes base position qlin, orientation qang and joint angles qa, plus a velocity
vector comprising base linear velocity q̇lin, angular velocity q̇ang, and joint velocities q̇a.
Subscripts u and a denote the underactuated (free-flyer) and actuated (joints) parts of the
state respectively.

q =
[
qu
qa

]
=

qlin
qang
qa

 Configuration vector (5.1)

qlin =
[
x y z

]T
Base position (5.2)

qang =
[
φ θ ψ

]T
Base orientation (roll, pitch and yaw angles) (5.3)

31



Chapter 5: State estimation

o

h
b

l

Figure 5.1: Four frames are used throughout the control architecture: world, local, horizontal and
base frames.

Depending on the needs, qang is sometimes expressed as a quaternion instead of Euler
angles. We mostly use the Euler representation in the architecture even if there are a few
back and forth with the quaternion representation when calling dynamics libraries that
requires it. As a result, the size of the configuration vector varies between 18 and 19 for
our 12 degrees of freedom (DoF) Solo quadruped.

q̇ =
[
q̇u
q̇a

]
=

 q̇lin
q̇ang
q̇a

 Velocity vector (5.4)

q̇lin =
[
ẋ ẏ ż

]T
Base linear velocity (5.5)

q̇ang =
[
φ̇ θ̇ ψ̇

]T
Base angular velocity (5.6)

Contrary to the configuration vector, the size of the velocity vector is always 18 in
our case as both the derivative of quaternion and Euler representations lead to angular
velocities around the x, y and z axes.

Three frames will be mainly used throughout the control architecture: an absolute
world frame, a horizontal frame located at the center of the robot body, with its two first
axes in the horizontal plane and aligned in yaw with the body, and a base frame located
at the center of the body and aligned with it. The first axis of the base frame points in
the forward direction of the body while the second one points laterally to the left. World,
horizontal and base frames are noted with o, h and b respectively. A fourth frame, noted
the local frame l, is used for the model predictive controller and is the equivalent of the
horizontal frame at ground level (see Fig. 5.1). Translation vectors T and rotation matrices
R between these frames are thus defined as:

oTl =
[
x y 0

]T
(5.7)

oRl = R(0, 0, ψ) (5.8)
lTh =

[
0 0 z

]T
(5.9)

lRh = R(0, 0, 0) (5.10)
hTb =

[
0 0 0

]
(5.11)

hRb = R(φ, θ, 0) (5.12)

R(φ, θ, ψ) denotes the 3 by 3 matrix that applies a rotation in roll, pitch and yaw.
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The Solo quadruped is equipped with two kinds of sensors for estimation purpose:
an Inertial Measurement Unit (IMU) attached to the body and incremental encoders at
each joints. Those proprioceptive sensors do not allow to directly measure the whole
state of the robot. Incremental encoders provide a measurement of joint angles qa as
well as joint velocities q̇a through finite difference. The IMU includes an accelerometer
and a gyroscope to output linear acceleration q̈lin, angular velocities q̇ang and orientation
qang. An in-built Kalman filter automatically debiases those quantities with respect to the
gravity vector and provides linear acceleration without gravity.

With this set of sensors, only the position qlin and linear velocity q̇lin remain to be
assessed through other ways.

5.1 Sensor fusion for position and velocity estimation
The goal of sensor fusion is to indirectly assess base position qlin and linear velocity

q̇lin as they are not directly measurable by the set of sensors available on the quadruped
robot. If feet in contact are assumed to be immobile, we can use forward kinematics with
joint position qa and velocity q̇a measured by the encoders to get an estimate of the base
velocity. We define the setM of indexes of feet that have been in contact for long enough
to assume they are properly set on the ground:

M = {i ∈ {1, 2, 3, 4} s.t. i-th foot in contact for more than mctc iterations} (5.13)

The position bTi, orientation bRi and linear velocity ẋi of the i-th foot in its own
frame is evaluated by considering an immobile base with moving joints. Then, we get an
estimate of the base velocity from the average of all velocities obtained for each feet in
M.

∀i ∈M, bTi,
bRi, ẋi = FK(

 0
0
qa

 ,
 0

0
q̇a

)i−th foot frame (5.14)

bq̇FK,Blin = 1
n(M)

∑
i∈M

(
bTi×q̇ang − bRiẋi

)
(5.15)

where FK stands for forward kinematics, bq̇FK,Blin denotes the linear velocity of the
robot body estimated by FK, expressed in base frame and at point B (center of body). A
foot radius compensation term can be used to take into account the fact that the contact is
not punctual but instead rolls on the edge of the round foot as the leg moves (see Fig. 5.2).
With r the foot radius and q̇HFE,i, q̇Knee,i the joint velocities of the Hip Flexion-Extension
(HFE) and Knee of the i-th leg, the previous estimation becomes:

bq̇FK,Blin = 1
n(M)

∑
i∈M

bTi×q̇ang − bRiẋi +

(q̇HFE,i + q̇Knee,i)r
0
0


 (5.16)

Similarly, we can get an estimate of the base position with respect to the contact points
with the ground using forward geometry, to which we add the average of the contact
locations in world frame oTi (refreshed when they are deduced from the known position
of the base with respect to (w.r.t) the world oTb and the position of the feet w.r.t the base
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+ +
dr

dleg

Start of stance phase End of stance phase

Figure 5.2: By default the forward kinematics will only take into account the traveled distance
dleg based on joint angles since the foot frame is located at the center of the foot, without any
consideration for foot radius. However, in practice an additional distance dr has been traveled due
to the foot rolling on the ground as the leg changes its angle. This means the base moves slightly
faster than the forward kinematics thinks depending on foot radius and angular velocity of the
foot, which is taken into account in (5.16).

bTi):

∀i ∈M, hTi = FG(

 0
qang
qa

)i−th foot frame (5.17)

oqFGlin = 1
n(M)

∑
i∈M

(
oTi − hTi

)
(5.18)

There is no compensation of the feet radius here as contact locations are considered
to be at the center of the feet whose positions w.r.t the base are tracked by our controller.

By combining information coming from the encoders with contact locations and the
orientation given by the IMU, we now have estimates of the base position and linear
velocity (oqFGlin and oq̇FK,Blin respectively). These estimates are not highly accurate due
to how they are computed: elasticity in the mechanical structure of the robot leads to
model inaccuracy during forward geometry and kinematics, use of finite difference to
get q̇a and assumption of immobile contact that might not be well respected at all time.
However, they have the advantage that their average value do not drift, as opposed to pure
acceleration or velocity integration. The goal is now to merge this information with the
highly-accurate linear acceleration of the IMU to benefit from the best of both worlds. To
be merged, the various quantities have to be brought to the same location. As it is easier to
change the point at which a velocity is expressed, rather than an acceleration, the merging
will happen at the IMU location, which is off-centered on the body but well-aligned.

The base orientation is known thanks to the IMU so we can express the estimated
velocity oq̇FK,Blin at the IMU location, noted as I , as well as the estimated position of the
IMU through oqFGlin :

oRb = R(qang) (5.19)
oq̇FK,Ilin = oRb

[
bq̇FK,Blin + bTI×bq̇ang

]
(5.20)

oqFGI = oqFGlin + oRb
bTI (5.21)

Then, a cascade of two complementary filters or a single Kalman filter merge at IMU
location the information coming from the FG estimated position, the FK estimated veloc-
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ity and the IMU acceleration, in world frame:
oqfiltI , oq̇filt,Ilin = filter(oqFGI , oq̇FK,Ilin , oRb

bq̈IMU
lin ) (5.22)

These filters are further described in Section 5.2 and Section 5.3. Then, we can switch
back to a velocity expressed at the center of the base in base frame and to the position of
the center of the base in world frame:

bq̇filt,Blin = bRo

[
oq̇filt,Ilin − bTI×bq̇ang

]
(5.23)

oqfiltlin = oqfiltI − oRb
bTI (5.24)

The final estimated configuration and velocity vectors are then obtained by stacking
the previously estimated position oqfiltlin and linear velocity bq̇filt,Blin , with the orientation
oqang and angular velocity bq̇ang measured by the IMU, and the joint positions qa and
velocities q̇a measured by the encoders.

oqfiltlin =


oqfiltlin
oqang
qa

 bq̇filtlin =


bq̇filt,Blin
bq̇ang
q̇a

 (5.25)

5.2 Cascade of complementary filters
A cascade of two complementary filters can be used to fuse position, velocity and

acceleration data coming from different sources. In essence, a complementary filter pro-
cesses information from two inputs, one that is highly accurate but slowly drifts and
another one with lower accuracy, yet without drift. It combines them to get the best
of both worlds by filtering the first input with a high-pass filter to retrieve its accurate
high-frequency variations and the second one with a low-pass filter to only keep the non-
drifting low-frequency components. In our case, for velocity estimation, a pure integration
of the highly accurate IMU linear acceleration would convey quite well the instantaneous
changes of the linear velocity but will inevitably drift slowly over time. On the con-
trary, the velocity estimated through forward kinematics has poor accuracy to fast vari-
ations due the assumption of non-moving punctual contacts that is not always perfectly
respected, joint elasticity and the noise of joint velocity estimates (done through a finite
difference of the position of encoders). Yet its average value does not drift. The same can
be said for the base position estimate through forward geometry, which does not drift but
is less accurate in the short term than the integration of the velocity outputted by the first
complementary filter. The architecture of the whole filter is described in Fig. 5.3.

To define the effect of the complementary filter cf in a generic way, let’s denote by d
a quantity trusted at low frequency, by ḋ its derivative trusted at high frequency and by d̃
the filtered output quantity. dHP and dLP are respectively the internal state of the high-
pass and low-pass filters of the complementary filter. α ∈ [0, 1] is a coefficient which
tunes the trust in both high and low frequency components. ∆t is the time step of the
whole filter.

d̃ = cf(d, ḋ, α) Effect of the filter (5.26)

d+
HP = α(dHP + ∆tḋ) High-pass filtering (5.27)

d+
LP = αdLP + (1− α)d Low-pass filtering (5.28)

d̃ = d+
HP + d+

LP Merging filtered quantities (5.29)
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Figure 5.3: A dual cascaded complementary filter provides base position and velocity estimate
while being easy to tune and simple to implement.

If α = 1, the trust is put entirely on the high frequency quantity. On the contrary, only
the low pass frequency is considered when α = 0. In practice, a trade-off is often made
between both quantities with α ∈ [0.9, 1[ so that the average value of the output remains
close to the one of the non-drifting input while the short term variations follow those of
the highly-accurate drifting input.

From a signal processing point of view, α is directly correlated with the cut frequency
of both filters. α = 0 amounts to a 0 Hz cut frequency since only the high-pass affects the
outpout. On the opposite, α = 1 is equivalent to an infinite cut frequency with a complete
disregard to the high-frequency quantity.

If we convert (5.28) into its representation in the z-domain, we get the following
transfer function:

H(z) = α

1− (1− α)z−1 (5.30)

For this transfer function the α value that results in a 3 dB cut-off frequency fc is:

α = −β +
√
β2 + 2β with β = 1− cos(2πfc ∆t) (5.31)

While we initially chose a constant value of α over the whole gait cycle for the sake
of simplicity, we eventually had to change to a dynamic α to improve the quality of the
estimation that worsened near contact switches. The estimation of base velocity through
forward kinematics heavily relies on the assumption of an immobile contact point. This
assumption is challenged near contact switches as contacts with the ground are often not
properly established immediately after landing. This is either due to tracking imperfec-
tions or slight slipping when the foot is not well set on the ground and the controller tries
to apply ground reaction forces with the newly enabled contact. As a consequence, only
IMU data is used around contact switches (α = 1). For each foot, we assumed that the
middle of the stance phase is when the immobile assumption has the most chance to be re-
spected. So the trust in forward kinematics is progressively increased as the contact goes
on. Then it is decreased as the next swing phase gets closer, as shown in Fig. 5.4. The
same dynamic value αdyn is used for the (ẋ, ẏ, ż) components of the velocity filter, with
αvel = [αdyn αdyn αdyn]T . Such a use of dynamic α value has already been exploited
on other robotic system, for instance by [Net+09] for a wheeled robot with an online
computation of α depending on assessments of terrain conditions and irregularities.

The forward geometry used for the estimation of the position of the base appeared to
be less sensitive to this phenomenon. So constant α values were used over the whole gait
cycle, with αpos = [0.995 0.995 0.9]T for the (x, y, z) components of the position filter.
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FL and HR

FR and HL

FL and HR

α 1 1
1

1

αdyn αdyn αdyn

Contact quality

Figure 5.4: The values of α vary over the gait sequence to reflect the trust in forward kinematics.
Around contact switches, the quality of the contact is uncertain both for the feet that were already
in stance or the ones that just entered it. So α is set to 1 to only trust the IMU. As the contact is
better established, the trust in forward kinematics increases, so α decreases. The width of the trust
region around contact switches can be adjusted depending on the roughness of the terrain.

5.3 Kalman filter

Contrary to the cascade of two complementary filters which handle position and veloc-
ity estimates sequentially, a single Kalman filter can process the two of them at the same
time in an optimal way. In this context, IMU acceleration is used as the control vector
to make a prediction based on the physical system, while forward kinematics and geome-
try are used as measurements that correct the prediction. Inaccuracies are represented by
process and observation noises.

The state vector x of the Kalman filter is of size n = 6 as it contains the 3 components
of the base position and linear velocity. The control vector u is of size m = 3 for the 3
components of the IMU linear acceleration. The observation vector z is of size o = 6 for
the 3 components of the base linear velocity and base position estimated through forward
kinematics and forward geometry respectively. The observation matrix H used to correct
the prediction done by integrating IMU acceleration and avoid drifting is of size o×n.

A =
[
I3 ∆tI3
03 I3

]
(5.32)

B =
[

1
2∆t2I3
∆tI3

]
(5.33)

H = I6 (5.34)

The process and observation noises are modeled by the covariance of the process noise
Q of size n×n, the covariance of the observation noise R of size o×o and the a posteriori
estimate covariance P of size n×n. A normally distributed noise with cross-correlation
for both process and observation is assumed.
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P = I6 (5.35)

Q =
[
(1

2∆t2σ2
acc)2I3 03

03 (∆tσ2
acc)2

]
(5.36)

R =
[

1
2∆t2I3
∆tI3

]
(5.37)

Prediction step
The predicted a priori state estimate x̂k|k−1 at time k given observations up to and

including time k−1 can be computed with x̂k−1|k−1 the a posteriori state estimate at time
k − 1 given observations up to and including time k − 1, Ak the state-transition model,
Bk the control-input model and uk the control vector at step k:

x̂k|k−1 = Akx̂k−1|k−1 + Bkuk (5.38)

=
[
I3 ∆tI3
03 I3

]
x̂k−1|k−1 +

[
1
2∆t2I3
∆tI3

]
uk (5.39)

The predicted a priori error covariance Pk|k−1 at time k given observations up to and
including time k − 1 can then be computed, with Qk the covariance of the process noise
at time k:

Pk|k−1 = AkPk−1|k−1AT
k + Qk (5.40)

P0|0 = I6 (5.41)

Qk =
[
(1

2∆t2σ2
acc)2I3 03

03 (∆tσ2
acc)2I3

]
(5.42)

with σacc the acceleration variance. Here we assume that uncontrolled forces lead to
acceleration perturbations that are normally distributed without cross-correlation.

Correction step
To correct the prediction with measurements, the innovation ĩk or measurement pre-fit

residual at time k, with Hk the observation model which maps the true state space into
the observed space, is defined as follows:

ĩk = zk −Hkx̂k|k−1 = zk − I6x̂k|k−1 (5.43)

The associated innovation (or pre-fit residual) covariance Sk at time k with Ok the
covariance of the observation noise at time k expresses as follows, assuming that position
and velocity estimates with forward geometry and kinematics have a normally distributed
error without cross-correlation:

Sk = Ok + HkPk|k−1HT
k (5.44)

=
[
σ2
posI3 03
03 σ2

velI3

]
+ HkPk|k−1HT

k (5.45)

with σpos and σvel the position and velocity variances.
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The optimal Kalman gain Kk for the innovation at time k is then:

Kk = Pk|k−1HT
kS−1

k (5.46)

A state estimate is then corrected using the innovation and the optimal gain. We get the
updated a posteriori state estimate x̂k|k at time k given observations up to and including
time k:

x̂k|k = x̂k|k−1 + Kk ĩk (5.47)

Finally, we compute the updated a posteriori estimate covariance Pk|k at time k given
observations up to and including at time k:

Pk|k = (I6 −KkHk)Pk|k−1 (5.48)

In a similar way than for the cascade of complementary filters, the trust in the IMU
acceleration and base linear velocity estimated by forward kinematics can be tuned in real
time depending on the contact switches. This can be done for a Kalman filter by tweaking
the coefficents of the covariance of the observation noise Ok. Setting σvel to infinite (or
at least a high enough value) near contact switches would nullify the impact of the FK-
estimated velocity on the updated a posteriori state estimate x̂k|k. That way, only the IMU
acceleration would impact the velocity estimated through the prediction step.

5.4 Base velocity filtering
The linear velocity of the base can be further filtered to remove periodic oscillations

due to the cyclic nature of the gait. This can be done by using an averaging filter over
the span of a gait period, that will remove all oscillations whose frequency is a multiple
of the gait period, at the cost of introducing a delay of one gait period, which can be
acceptable to improve stability when a fast reaction to state evolution is not required. A
short study of this filter is shown in Fig. 5.5. For instance, this filtered velocity is used for
foot placement decisions, as it will be explained further in Chapter 7.

The resulting linear velocity bq̇winfilt,Blin is defined as follows, with N the number of
samples in the averaging window, in this case the number of time steps in a gait period:

bq̇winfilt,Blin = 1
N

N−1∑
k=0

bqfilt,Blin,t−k (5.49)

In our control architecture, the model predictive controller whose goal is to track a
reference base velocity (both linear and angular) runs at 50 Hz, as shown in Fig. 4.1.
To avoid undesired temporal aliasing effects in the velocity control, the estimated base
velocity given to the MPC is filtered to respect the Nyquist–Shannon sampling criterion
(no frequency higher than half the sampling period in the signal). So, a first order low-pass
filter with a cutoff frequency of 15 Hz is used. A margin of 10 Hz with respect to the limit
of 25 Hz has been chosen because a first order filter does not have an attenuation profile
as steep as the one of higher order filters. The filtered underactuated velocity bq15Hz,B

u,t at
time t is then:

bq15Hz,B
u,t = (1− α) bq15Hz,B

u,t−1 + α bqfilt,Bu,t (5.50)

with α = 0.09 by applying (5.31) with fc = 15 Hz and ∆t = 1 ms.
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Figure 5.5: Responses of an averaging filter to various frequencies and a step input when tuned
to perform a moving average over a gait period of 0.48s. As expected, the filter greatly attenuates
all oscillations whose frequency corresponds to the gait period (-48 dB at ≈ 2 Hz) or multiples of
that frequency. As seen on the step response, the introduced delay is equal to one gait period.

5.5 Reference velocity integration
The position of the robot in world frame is not an observable quantity with the set

of sensors we use, which are limited to encoders and IMU. The position estimate in the
world inevitably suffers from drift as we have no way to directly measure it. Thanks to the
complementary filter or the Kalman filter that merges velocity integration with forward
geometry, it is slower than with a pure velocity integration, but it drifts nonetheless. The
forward geometry provides an estimate of the base position with respect to the contact
points, which is then used to locate newly established contacts, used to locate the base
and so on. Errors in position estimate that are slowly introduced in that loop have no way
to be detected and corrected.

Yet this control architecture focuses on tracking a reference base velocity given by a
user or a higher level controller, so position in world frame is not even required per se as
long as the quadruped moves at the correct velocity in its local frame. The various control
blocks of the architecture could all work in base frame only. Of course, working in a world
frame can be convenient due to the simplicity of handling an immobile frame compared
to a constantly moving one. Working in such a frame for convenience should not lead to
a degradation of the control behaviour due to the use of an unnecessary badly-estimated
quantities. For this reason, we define another “ideal” position of the robot in world frame
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alongside the one estimated by the filters. This position results from the integration of the
reference base velocity given as input to the robot. For now, the reference base velocity is
limited to the horizontal plane: only forward, lateral and yaw (rotation about the vertical
axis) reference velocities are non-zero. Roll, pitch and vertical ones are always 0. At each
control loop, the new position oqu,k = [oxk oyk 0 0 0 oψk]T of the robot in this ideal
world is as follows, with hq?u,k = [hx?k hy?k 0 0 0 hψ̇?k]T the base reference velocity:

oψk = oψk−1 + hψ̇? ∆t (5.51)[
oxk
oyk

]
=
[
oxk−1
oyk−1

]
+
[
cos(oψk) − sin(oψk)
sin(oψk) cos(oψk)

] [
bẋ?
bẏ?

]
(5.52)

When locating the quadruped that way, ox, oy and oψ are perfect quantities, while oz,
oφ and oθ are measured ones (with the complementary or Kalman filters for oz and the
IMU for oφ and oθ). There is no issue going back and forth between this world frame and
the horizontal frame for convenience as oTh and oRh are perfectly known.

5.6 Conclusion
In this chapter we have described a way to reliably estimate the full state of a quadruped

robot using only encoders and IMU, despite the fact that they do not allow to directly
measure all quantities of interest. To do so, we leveraged sensor fusion using a cascade
of complementary filters or a Kalman filter to combine information that would not lead
to satisfactory results independently. The low-accuracy non-drifting assessments com-
ing from forward kinematics have been merged with highly-accurate IMU acceleration
measurements that would drift when integrated alone, hence resulting in a good quality
non-drifting estimates of base position and linear velocity. As a result, we have shown
that even simple estimators and a few number of sensors can provide state estimates that
are good enough to obtain state-of-the-art quadruped locomotion.

The next chapter focuses on how the gait is managed in our control architecture, with
details on transitions between different kinds of gait, with the aim to achieve a real-time
adaptive gait, and on an implementation of contact detection to avoid relying on prede-
fined contact timings.
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Contact sequences are used to characterize a succession of contacts between the feet
and the ground for an animal or robot in motion. Plenty of contact sequences exist to
define the way legged animals move around, each with its own advantages and drawbacks
in terms of speed, stability, cost of transport, etc. A contact sequence is often associated
with a gait such as trot, gallop, bound (see Fig. 6.1). For animals, adapting their gait to
their speed is a key mean to reach an optimized energy cost of transport to go from one
place to another, as shown in Fig. 6.2.
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Figure 6.1: Examples of contact sequences over the span of one period of gait for quadrupeds.
Each black area characterizes a moment during which the associated foot is touching the ground
(stance phase). L and R stand for left and right, F and H stand for front and hind.

Figure 6.2: Horses have a preferred gait pattern for various ranges of locomotion speed to keep
their cost of transport at a minimum (here measured through the quantity of oxygen consumed to
move 1 meter). Figure extracted from [HT81].

44



6.1. Gait structure

6.1 Gait structure
By nature, contact sequences are continuous phenomena. Without particular limita-

tions, there is no constraint to when swing and stance phases can start and end. However,
from a discrete control point of view, such continuous quantities might be inconvenient
to handle as computations would have to properly take into account contact switches that
happen between control steps. For this reason, contact sequences can be discretized for
a given time step (see Fig. 6.3) so that they can be more easily processed by discrete
algorithms.

Figure 6.3: Discretized contact sequence for a quadruped (walking trot).

A discretized contact sequence can be stored in a matrix which contains zeroes (feet
in the air) and ones (feet in contact with the ground). For instance, for the walking trot of
Fig. 6.3, the discretized gait matrix G along 6 time steps can be defined as follow, where
∀i ∈ {1, . . . , 6}, G(i, j) = 1 if foot j ∈ {1, 2, 3, 4} is touching the ground during the i-th
time step, G(i, j) = 0 otherwise:

G =



1 1 1 1
1 0 0 1
1 0 0 1
1 1 1 1
0 1 1 0
0 1 1 0


(6.1)

Past, current and future gait sequences all contain information that can be useful for
control purpose, such as computing the total duration of a contact phase that is not com-
pletely included in the current gait matrix. In that case, we would either need to remember
the past or know which contact phases are planned in the future. For this reason, infor-
mation about the past, current and future gaits are stored in three different matrices: Gp,
Gc and Gf respectively. These matrices have 4 columns, each one containing contact in-
formation for the front left (FL), front right (FR), hind left (HL) and hind right (HR) feet
in that order. Each row corresponds to one discretization time step. The first row of Gc is
the current contact status for all feet.

To move the gait forwards, rows are shifted one step upwards, with the first row of Gc
going at the end of Gp and the first one of Gf going at the end of Gc. If we assume the gait
is kept the same, then the first row of Gf also becomes the last one to keep the cycle going
(see Fig. 6.4).

The size of the current gait matrix Gc has been chosen with the model predictive
control in mind: the length of Gc is also the one of the prediction horizon of the MPC. That
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Gp =


1 0 0 1
1 0 0 1
0 1 1 0
0 1 1 0
0 1 1 0
1 0 0 1

 Gc =


1 0 0 1
1 0 0 1
0 1 1 0
0 1 1 0
0 1 1 0
1 0 0 1

 Gf =


1 0 0 1
1 0 0 1
0 1 1 0
0 1 1 0
0 1 1 0
1 0 0 1



Tim
e

Far past

Recent past

Present

End of horizon

Near future

Far future

Figure 6.4: Transfers of rows between the Gp, Gc and Gf matrices to move the gait forwards. The
first row [1 0 0 1] of Gc expresses the current status of feet, here the FL and HR feet are in contact
with the ground while FR and HL are in swing phase. This phase is planned to last 2 time steps.
Then, a contact switch happens with FR and HL entering stance phase while FL and HR go in
swing phase during 3 time steps. Here the robot is performing a trotting gait with a period of 6
time steps and it will keep doing so for the immediate future, as seen in Gf .

way, the contact status of feet at the i-th time step of the horizon is stored in the i-th row
of Gc. It allows to get at first glance the phases the MPC will consider for optimization.
Past Gp and future Gf gait matrices have the same size than Gc for simplicity as well.
As previously seen in Fig. 4.1, the MPC runs at 50 Hz in a parallel loop while the main
loop of the controller (Estimator, Foostep planner, WBC) runs at 1 kHz. This means the
gait matrices are not as finely discretized as the main loop, with each row corresponding
to 20 iterations. For instance, if the prediction horizon is equal to one gait period with
T = 0.48s, then Gc will have 24 rows (for the 24 time steps of 20 ms in the horizon).

6.2 Gait transition
Gait transition can happen when reacting to external disturbances or environmental

changes to better handle a new situation by adopting a gait with more fitting characteristics
in terms of velocity or stability. We cannot blindly modify the current gait matrix Gc since
it could lead to infeasible scenarios, such as having a foot in a middle of its swing phase
suddenly being commanded to be in contact at the next time step, which would not leave
enough time for the robot to react properly. We can instead modify without risk the future
gait matrix. It is safe to do so because it has no direct effect on the control: the content of
Gp is progressively inserted into Gc one step at a time.

Directly modifying Gc could also degrade the robot behaviour through the decisions
of the MPC since the contact forces it has outputted during the past time steps based on
the contact sequence in Gc might be inappropriate for the new contact sequence. If the
state evolves as expected, the desired contact forces F for a prediction horizon of N time
step would be:

at time k: Fk = [ Fk
0 Fk

1 Fk
2 . . . Fk

N−3 Fk
N−2 Fk

N−1 ]
at time k + 1: Fk+1 = [ Fk+1

0 Fk+1
1 Fk+1

2 . . . Fk+1
N−3 Fk+1

N−2 Fk+1
N−1 ]

≈ [ Fk
1 Fk

2 Fk
3 . . . Fk

N−2 Fk
N−1 Fk+1

N−1 ]

with Fk
i the contact forces desired for the four feet at the i-th time step of the prediction

horizon at time k. Thus, there is a consistency between the forces planned at time step k
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and k+1. However if the contact sequence is modified, then Fk+1 may be greatly different
from Fk, which is a problem because when the MPC planned his forces at step k, it did
so considering it would be able to apply them during the whole prediction horizon. The
applied forces may put the robot in a bad situation for the new contact sequence. With the
nominal behaviour of the controller this effect is minimized because the new sequence is
injected one step at a time from Gf to Gc. That way the MPC can progressively adapt to
the new gait as it is inserted at the end of its horizon.

Not having to carefully modify Gc by modifying Gf instead comes at the price of a
delay since its new content will only be fully taken into account after one duration of the
prediction horizon, which will be less than half a second in practice.

For instance, let’s consider the initial situation of a trotting gait switching to a four-
stance phase:

Gp =



1 0 0 1
1 0 0 1
1 0 0 1
0 1 1 0
0 1 1 0
0 1 1 0


Gc =



1 0 0 1
1 0 0 1
1 0 0 1
0 1 1 0
0 1 1 0
0 1 1 0


Gf =



1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


(6.2)

After 3 time steps, the new gait is now included in the second half of the prediction
horizon:

Gp =



0 1 1 0
0 1 1 0
0 1 1 0
1 0 0 1
1 0 0 1
1 0 0 1


Gc =



0 1 1 0
0 1 1 0
0 1 1 0
1 1 1 1
1 1 1 1
1 1 1 1


Gf =



1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


(6.3)

The transition is finished after 6 time steps, the complete duration of prediction hori-
zon:

Gp =



1 0 0 1
1 0 0 1
1 0 0 1
0 1 1 0
0 1 1 0
0 1 1 0


Gc =



1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


Gf =



1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


(6.4)

6.3 Adaptive trotting gait

By default, the gait of the quadruped is not modified by its current state: gait type and
frequency remain the same, regardless of the situation. As stated earlier, each gait has its
own pros and cons in terms of stability, velocity and cost of transport. So a predefined
gait pattern can hardly be optimal in all situations. Hence, a refinement of the control
architecture would be to adapt this pattern (trotting in our case) to improve both the robot
behavior and the energy consumption.
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6.3.1 Heuristic variation
A first approach could be to use a heuristic to modify the gait frequency in real-time

according to the robot velocity. For trotting, the faster the gait, the easier the base is
kept stable since the pair of diagonally opposed feet in contact with the ground switches
more often. A higher frequency reduces the duration of swing phases and thus limits the
natural tilt of the base since the robot cannot apply momentum along the axis that passes
through its only two punctual contacts. In fact, it has a double beneficial effect as the
base tilts during a shorter duration and the robot is able to correct that tilt more often
as the contact pair switches. However, more frequent swing phases also mean feet have
to move regularly from one contact location to another one, which can lead to a higher
power consumption. So the goal is to properly chose the gait frequency to be fast enough
for stability purpose, but not unnecessarily fast to limit energy consumption.

If we decide that the gait frequency fG varies linearly according to the velocity with
a null frequency when the reference velocity is 0 (no need to move the feet so the robot
stays in a permanent four-stance phase), then we would only have to determine the slope
η of the velocity to frequency relation:

fG = η ‖bq̇?lin‖2 (6.5)

6.3.2 Reinforcement learning
Another possible approach for determining the contact sequences comes from the field

of machine learning with a model-free reinforcement learning (RL) method for adapting
the timings of the stance and swing phases for each foot. In collaboration with Michel
Aractingi, PhD studen co-advised by LAAS-CNRS and Naver Labs, we worked on ap-
plying an hybrid RL/model-based approach to control Solo-12. This work is thoroughly
presented in [Ara+21]. Thanks to the modularity of the architecture, the learned agent can
seamlessly augment the control pipeline.

Based on an initial predefined trotting, the policy can adapt the gait period and the
duration of both stance and swing phases within a period, and therefore the potential
overlap of those phases between the feet. These modifications can lead to variations of
the hard-coded trot that have different properties in terms of speed, energy consumption,
reactivity and robustness. Although the network could directly control all the coefficients
of Gc, it would create an intractable action space with most combinations corresponding
to infeasible gaits. The network would have to experimentally learn the constraints of the
robot dynamics, which would greatly slow down the process. Instead, it uses the fact that
the locomotion is periodic to consider the gait matrix G through parameterized oscillation
functions.

For each foot, a base oscillation is defined as Γ̄(t, τ0, τ1) where t is the considered
time, τ i0 < τ i1 are the timings at which contact switches occur for the i-th foot and T is the
oscillation (i.e gait) period:

Γ̄(t, τ i0, τ i1, T ) =

0 if τ i0 < (t mod T ) < τ i1
1 otherwise

(6.6)

“ mod ” refers to the modulus operation to periodically reset the time to zero accord-
ing to the period T . An oscillation function Γi(t) : R+ → {0, 1} is then defined to
determine the future contact state of the i-th foot as a function of time t. The oscillation
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is parameterized by two switch timing parameters τ is and τ ic which indicate the beginning
of the swing and stance phases of the i-th foot respectively:

∀i ∈ {1, 2, 3, 4}, Γi(t, τ is, τ ic) = δ1,Gc(0,i) Γ̄(t, τ is, τ ic , T i)
+ δ0,Gc(0,i)

(
1− Γ̄(t, τ ic , τ is, T i)

) (6.7)

where the period T i is defined as T i = max(τ is, τ ic) and δi,j refers to the Kronecker
delta, i.e δi,j = 1 if i = j, 0 otherwise.

The network relies on a 4 × 2-dimensional continuous action space to control these
oscillations, noted A = {a1, a2, a3, a4} with ∀i ∈ {1, 2, 3, 4}, ai = (∆τ is,∆τ ic) ∈ R2.
These actions define the displacement of contact switches with respect to the ones of the
nominal trotting gait, τ in = (τ is,n, τ ic,n), whose period is set at the start of the training. That
way the network learns deviations from the nominal values rather than the nominal values
directly, which reduces the exploration space. Finally, all the new coefficients of Gc can
be obtained with Gc(k, j) = Γi( k

NfG
, τ in + ait), where i ∈ {1, 2, 3, 4} and k ∈ {1, . . . , N}

with N the number of rows in Gc (i.e the number of time steps in the prediction horizon
of the MPC).

Figure 6.5: The displacements ai of the nominal contact timings τ in modify the nominal contact
sequence of each foot, highlighted in bold in the lower part of the figure. The dotted lines represent
the timings of contact switches after they have been shifted by the policy, depending on the current
contact status of the foot. The choice yes/no in the bottom half of the figure depend on the current
status of the considered foot Gc(0, j). Figure extracted from [Ara+21].

This policy runs at 10 Hz as a trade-off to give it enough time to execute an action and
receiving useful learning feedback while keeping enough reactivity to adapt the gait in a
meaningful way. During training, it tries to minimize the energy consumption as well as
the velocity tracking error. The network takes as inputs (also called observation ot) the
base height and orientation, base linear and angular velocities, joint angles and velocities,
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feet positions, current and past gait contact sequences. It keeps in memory the inputs and
actions over the past 8 iterations to take advantage of the sequence of observation-action
pairs thanks to self-attention layers. Fig. 6.5 summarizes how the architecture affects Gc
through displacements of contact timings ∆τ .

The policy was successfully trained and deployed in simulation to adapt a nominal
trotting gait for different reference velocities. For low velocities, the policy decreases
the gait frequency, making the stepping slower. On the contrary, for high velocities the
frequency is increased, thereby making the stepping faster which helps stabilizing the
base and following the reference velocity. It performs a trade-off between gait frequency
and energy consumption to follow the velocity command with low error without moving
feet uselessly fast. At zero velocity, an optimal energy saving policy is reached with a
static gait where all feet are in contact with the ground. Examples of the resulting gaits,
due to the policy adaption of the nominal trotting, are shown in Fig. 6.6.

Figure 6.6: (Top) The policy is able to get the robot closer to the desired reference in most cases
by adapting the gait frequency. (Middle) The blue dashed line represents the nominal trotting
frequency (≈ 3 Hz) while the red line indicates the average frequency of all legs after policy adap-
tation. The frequency of stepping is slowed down and sped-up according to the reference velocity
to get a trade-off between energy consumption and tracking performance. (Bottom) Snapshots of
the achieved gaits at different levels of the run, corresponding to the blue, green and orange dots
in the middle graph. Figure extracted from [Ara+21].

6.4 Contact detection
Until now, no online contact detection was performed. All contacts were enabled or

disabled based on a predefined contact timings that we considered as trustfull. For a given
foot i ∈ {1, 2, 3, 4}, if Gc(0, i) = 0 and Gc(1, i) = 1, then it meant the foot would enter
contact with the ground at the next time step. On the opposite, if Gc(1, i) = 0, then contact
would not be expected. This approach works well for trotting indoors on a flat ground
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without obstacles, since the swinging feet tracking is good enough so that the mismatch
with the moment contacts really happen does not hamper the motion. On uneven grounds,
contact mismatches have more chance to be significant enough to be detrimental to the
quality of the behavior, especially if the ground is slippy, like wet grass, or when the robot
walks on obstacles. Because the controller runs with the assumption of a flat ground, if
the target position of a swinging feet is in a depression, the foot will stop in the air a few
centimeters above the ground, then it will hit the floor as the leg suddenly extends due to
the activation of the contact. On the contrary, if it hits an obstacle, like a stair, earlier than
expected, the controller will not react and will try to drive the foot downwards into the
stair to reach the expect position at floor level. This is detrimental to the locomotion as it
creates unexpected ground reaction forces.

Online contact detection would allow to detect if a contact happens too early or too
soon instead of relying on the predefined contact sequence. The content of Gc would then
be changed accordingly:

Gc =



0 1 1 0
0 1 1 0
1 0 0 1
1 0 0 1
1 0 0 1
0 1 1 0


Early contact detection−−−−−−−−−−−→

with first foot
Gc =



1 1 1 0
1 1 1 0
1 0 0 1
1 0 0 1
1 0 0 1
0 1 1 0


(6.8)

Gc =



1 0 0 1
1 0 0 1
1 0 0 1
0 1 1 0
0 1 1 0
0 1 1 0


Late contact detection−−−−−−−−−−→

with first foot
Gc =



0 0 0 1
1 0 0 1
1 0 0 1
0 1 1 0
0 1 1 0
0 1 1 0


(6.9)

In (6.8), the first foot was supposed to touchdown in two time steps. However, early
contact was detected for this foot so the controller decided to start the stance phase earlier
by switching the two first rows to 1. On the opposite, in (6.9), the first foot was supposed
to be in contact, yet no contact was detected. Thus, the controller supposed the contact
was late by switching the first row to 0. The second row kept its value as we assumed the
contact might actually happen at the next time step.

To perform this online detection, we focused on three quantities that we consider to
be well representative of whether a contact has occurred. In fact, we do not want to
always enable a contact immediately after the foot touched the ground, as the foot may
not be well-set on the ground with some remaining velocity. The first quantity is the
estimated ground reaction force at the considered foot. It is part of the equation of the
robot dynamics:

M(q)q̈ + b(q, q̇) = τ + JTc (q)f (6.10)

with M the generalized mass matrix, b the gravitational and nonlinear forces, τ the vector
of efforts including joint torques, Jc the contact Jacobian and f the ground reaction forces.
Assuming low joint inertias, the ground reaction forces can be estimated as follows:

f = −(JTc )†(τ − b) (6.11)

with {·}† the Moore-Penrose pseudo-inverse operator. Even if the estimation is rough, we
do not need high accuracy, as we are merely checking whether there are ground reaction
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forces instead of their exact value. Using the configuration and velocity vectors q, q̇,
we can asses the feet spatial velocities V(q, q̇) (in inertial frame). On the other hand,
the predefined gait schedule in Gc provides expected timings around which contacts are
supposed to happen due to feet motion.

Figure 6.7: The distance from the contact switch is negative before it happens, then positive so
that we can differentiate before/after contact, which we would not be able to do with an absolute
distance.

We need metrics based on these three quantities (contact forces, spatial velocity, ex-
pected timing) to take a decision about the state of the contact. The normal component of
the estimated ground reaction force provides a relevant estimate of the contact state since
it should theoretically be equal to 0 N when the feet in swing phase. In practice we can
still have small non-zero values due to the simplified formula (6.11) we are using. When
a contact is well-set on the ground, we can expect the foot to be immobile so the norm
of the spatial velocity can be used as an indicator of the contact quality. If the terrain is
not excessively rough, contacts can be expected to happen a short moment before or after
their predefined timing so the distance from it (in number of time steps) can be used (see
Fig. 6.7).

Combining these 3 metrics refine the decision process instead of relying on a single
quantity that can be misleading. For instance, when the robot base is immobile, the spatial
velocity of a swinging foot will be close to 0 m/s at the apex of its trajectory. That could
lead to a contact detection if the velocity metrics was the only one being used. This
false positive can be easily avoided by merging this information with the force or timing
metrics. Probabilistic approaches offer a straightforward way to merge these metrics.
Based on the probability density function of a standard normal distribution φ(ρ), with ρ a
metric, we can define the cumulative distribution function Φ(ρ):

φ(ρ) = 1√
2π
e−

ρ2
2 (6.12)

Φ(ρ) = 1√
2π

∫ ρ

−∞
e−

ρ2
2 dt (6.13)

There is no analytical solution to this integral but we can use the numerical approxi-
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mation of the error function erf for a normal distribution of mean 0 and variance 0.5:

erf (ρ) = 2√
2

∫ ρ

0
e−t

2
dt (6.14)

Knowing that Φ(0) = 0.5 by symmetry of the standard normal distribution, we can
then express Φ according to erf :

Φ(ρ) = 1
2

(
1 + erf ( ρ√

2
)
)

(6.15)

In the general case of a normal distribution with mean µ and variance σ, the same
reasoning results in the following probability density function P :

P (ρ, µ, σ) = Φ(ρ− µ
σ

) = 1
2

(
1 + erf (ρ− µ

σ
√

2
)
)

(6.16)

With a normal distribution for each metrics, this leads us to three pairs of parameters to
tune: (µf , σf ), (µV , σV) and (µG, σG). If we assume the contact has no particular reason to
happen late or early on a rough terrain, then µG = 0 and there are 5 remaining parameters
to tune (see Fig. 6.8). In the end, the contact probability Pctc ∈ [0, 1] is obtained by
multiplying the probabilities of all metrics:

Pctc(f ,V ,Gc) = P (fz, µf , σf ) P (‖V‖2, µV , σV) P (Gc, µG, σG) (6.17)

The final decision is made based on a threshold value Pth ∈ [0, 1].

6.5 Conclusion
In this chapter we have described how the gait, i.e the sequence of stance and swing

phase for each foot, is managed to obtain a cyclic pattern of footsteps for the locomotion
of the Solo quadruped. Past, current and future gait matrices allow seamless transition
between different kinds of gaits by letting the whole architecture progressively adapt to
the new desired gait. While the gait follows a predefined trotting pattern by default, we
presented two ways to adapt its characteristics online, either with a heuristic or through
reinforcement learning. Finally, we described the implementation of an online contact
detection to detect and react to contact timing mismatches than can happen when moving
on rough terrain. With it, the predefined gait pattern is not completely trusted anymore
and a probabilistic approach checks if contacts occurred before enabling them.

The next chapter focuses on how the choice of contact locations are made in our con-
trol architecture, with details on the heuristics that are used, on the trajectory generation to
drive the foot from one location to another during swing phases, and on a way to augment
the footstep decision process to use privileged information about the environment.
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(a) Ground reaction force (b) Spatial velocity

(c) Expected contact switch

Figure 6.8: A normal contact force equals to 0 Nm means a low probability of contact while a
spatial velocity equals to 0 m/s means a high one, hence why those curves looks inverted. The
normal distribution for contact timing is centered at a distance of 0 since it corresponds to the
expected timing. Red dotted lines highlight the µf and µV values while the blue arrows illustrates
the effect of σf , σV and σG on the width of the transition between probabilities of 0 and 1.
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The gait is characterized by a sequence of stance and swing phase for each foot. Dur-
ing swing phases, feet have to be guided from their current position on the ground to the
next one. So the control architecture regularly has to chose at which location each foot
should land at the end of its respective swing phase. The locations of footsteps are of
particular importance because pushing on the ground is the only way for the quadruped
to interact with its environment, balance itself and move around.

7.1 Footsteps heuristics
Before generating a trajectory in the air that will be tracked by feet in swing phase,

the way to determine the target locations on the ground must be defined. We decided to
keep a simple heuristic since it was shown to work well in [Kim+19]. It is based on the
Raibert’s heuristics that was initially applied on a monopod and tries to keep the contact
point centered under the shoulder in average, in a similar way to what is done with inverted
pendulums.

7.1.1 Footstep locations in horizontal frame
The chosen footsteps planner is limited to the horizontal plane of the floor since we

made the assumption that the floor is flat. It continuously outputs the footstep locations

55



Chapter 7: Footstep Planner

of each foot hr?i ,∀i ∈ {1, 2, 3, 4} in the horizontal frame depending on the current and
reference velocities of the body.

∀i ∈ {1, 2, 3, 4}, hr?i = rsh,i + rsym + rfb + rc (7.1)

• rsh,i defines the default foothold location of i-th foot when the quadruped is immo-
bile and without velocity reference. This location is the projection on the ground of the
shoulder joint associated with this foot. We neglect the roll and pitch angles of the base to
use constant values (projection obtained when the base is horizontal) so rsh is as follows
for the Solo quadruped, with rsh,i the i-th column:

rsh =

0.195 0.195 −0.195 −0.195
0.150 −0.150 0.150 −0.150

0 0 0 0

 (7.2)

• rsym is a term that is used to maintain the current horizontal linear velocity of the
robot by moving the footstep location in the direction the robot is currently moving. It is
defined as:

rsym = Tstance
2

hq̇lin = Tstance
2


hẋ
hẏ
0

 (7.3)

with Tstance the duration of the next incoming stance phase. This symmetry term is
added to rsh to make the gait symmetric with respect to the shoulders when moving. If
the base moves forwards at speed q̇lin then with only rsh, feet would land under their
associated shoulder and would spend the whole stance phase “behind” the shoulder as the
base keeps moving forwards while the foot in contact does not move. On the contrary,
with this term, feet land at a position rsym with respect to the shoulder, in the direction of
the motion. That way if the base keeps a constant velocity, the contact will be right under
the shoulder at half the stance phase and at a distance -rsym with respect to the shoulder at
its end. It ensures the contact is centered on the shoulder on average for balance reason.
For an inverted pendulum, this would lead to identical landing and leaving angle.
• rfb is the feedback term for the linear velocity. It slightly modifies the position of

footholds to help the quadruped reduce the difference between its current velocity hq̇lin
and the target reference velocity hq̇?lin. It is defined as follows:

rfb = k (hq̇lin − hq̇?lin) = k


hẋ− hẋ?
hẏ − hẏ?

0

 (7.4)

This feedback term is added to the previous ones to make it easier for the robot to reach
the reference velocity. The only way the quadruped can interact with its environment is
by pushing on the ground with its feet (it cannot pull). As per Newton’s second law, if
the quadruped wants to move in a given direction it has to apply a force in the inverse
direction. So the feedback term makes it easier to do that by shifting the desired location
of footsteps in the inverse direction of the velocity error (hq̇?lin − hq̇lin). For instance if
the robot is not moving fast enough forwards then the feedback term will slightly shift the
footsteps backwards so that it’s easier to push on the ground backwards and as a result to
increase its forward velocity. If the robot is pushed to the right by an external force with
the reference velocity going forwards then the feet will move on the right to push on the
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ground in that direction and reduce the lateral velocity. The value of this coefficient k is
set to 0.03 m/(m/s), which was the value used by [Kim+19].
• The last term rc, called centrifugal term, is related to rotation, in our case along the

vertical axis. It is defined as follows:

rc = 1
2

√
h

g
hq̇lin×hq̇?ang = 1

2

√
h

g


hẏ hψ̇?

−hẋ hψ̇?

0

 (7.5)

A centrifugal term is added to the footstep planner to make it easier to compensate
the centrifugal effect when the robot is turning about the vertical axis by adjusting the
location of footsteps accordingly. The 1

2

√
h
g

coefficient is associated with the use of an
inverted pendulum model. The hq̇lin×hq̇?ang part of rc shifts the feet in the direction of the
centrifugal force that appears when moving in the horizontal plane while rotating along
the vertical axis. It helps the robot keep moving by making it easier to compensate this
force by pushing on the ground in that direction. For instance, if the robot is moving
forwards while turning left then the centrifugal effect is applied sideways in the right
direction. q̇lin×q̇?ang with q̇lin = [1 0 0]T and q̇?ang = [0 0 1]T results in [0 − 1 0]T
which shifts the feet in the right direction in horizontal frame, as expected. Note that the
angular velocity that is used is the reference one and not the current one. It could also
be seen as a way to help the quadruped reach the reference angular velocity in a way
similar to what the feedback term does for the linear velocity. If q̇ang = [0 0 0]T and
q̇?ang = [0 0 1]T then using q̇lin×q̇ang would lead to a zero rc. It might be more difficult
to start turning without having the feet shifted sideways, compared to q̇lin× q̇?ang which
shifts the feet to the right.

Remark: The shoulder term rsh,i can be replaced by Rz(Tstance2
hψ̇)rsh,i so that the

rotation of the body is taken into account in a similar way than what the symmetric term
rsym does with the linear velocity to keep footsteps centered on the shoulder in average
(see Fig. 7.1).

(a) Current heuristics (b) With new term

Figure 7.1: Expected feet placement with and without the new heuristics term. Here the robot is
just at the beginning of the stance phase for the front right and hind left feet, with q̇lin = [0 0 0]T
and q̇ang = [0 0 q̇ang,z]T . The red rectangles represent the expected orientation of the body at the
end of the stance phase. By shifting the feet with the new term in (b), shoulders would be more
centered on the contacts on average, compared to what is obtained with the current heuristic (a).

7.1.2 Footstep locations in world frame
Now that footstep locations in horizontal frame at the start of the next incoming stance

phase have been defined, we add another term to take into account the time remaining
until it starts. With only the previous terms, whether a foot is just at the start of its swing
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phase or almost at the end, the desired target location returned by the footstep planner is
the same. If the quadruped is moving forwards at the reference velocity then during the
whole duration of the swing phase the target position will be at hr?i with respect to the
shoulder projection in the horizontal frame. Except that, with the base moving in world
frame, the target location is moving as well. As such, at the start of each swing phase, the
associated foot will target a position [x y 0]T + hr?i in world frame but, by the end of the
swing phase, this position becomes [x y 0]T + hr?i + Tswing

hq̇lin, due to the movement of
the base. With the assumption that current and reference velocities do not change much
over one period of gait, feet could directly aim for their final target location by taking into
account the movement of the base during their swing phase.

With the assumption that the quadruped moves with constant linear and angular ve-
locities during the remaining duration of the swing phase then the predicted movement
is:

- if hψ̇? 6= 0:

hxpred(tr) =
∫ tr

0

(
hẋ cos(hψ̇ t)− hẏ sin(hψ̇ t)

)
dt (7.6)

hypred(tr) =
∫ tr

0

(
hẋ sin(hψ̇ t) + hẏ cos(hψ̇ t)

)
dt (7.7)

hxpred(tr) =
hẋ sin(hψ̇ tr) + hẏ

(
cos(hψ̇ tr)− 1

)
hψ̇

(7.8)

hypred(tr) =
−hẋ

(
cos(hψ̇ tr)− 1

)
+ hẏ sin(hψ̇ tr)

hψ̇
(7.9)

- otherwise if hψ̇? = 0:

hxpred(tr) = hẋ tr (7.10)
hypred(tr) = hẏ tr (7.11)

The remaining duration tr for the swing phase of a foot can be directly retrieved using
information contained in the gait matrix Gc (∆t×number of remaining rows with 0). This
prediction term is:

hrpred =


hxpred
hypred

0

 (7.12)

The desired location of footsteps is the sum of all the terms that were introduced.
Symmetry, feedback and centrifugal terms are the same for all feet contrary to the shoulder
and prediction terms.

In the end, we get corresponding footstep positions for each step of the gait matrix
Gc: the current feet positions hri for feet that are currently in stance phase and the future
desired footstep locations hr?i for incoming stance phases. With:

Gc =



1 0 0 1
1 0 0 1
0 1 1 0
0 1 1 0
0 1 1 0
1 0 0 1


(7.13)
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we get:

rG =



hr1 0 0 hr4
hr1 0 0 hr4
0 hr?2

hr?3 0
0 hr?2

hr?3 0
0 hr?2

hr?3 0
hr?1 0 0 hr?4


(7.14)

These positions can be obtained in world frame as well with a direct change of frame:

∀i ∈ {1, 2, 3, 4}, ori = oRh
hri + oTh (7.15)

The body of the quadruped is moving w.r.t the world while the active contacts remain
immobile, so they move w.r.t the horizontal frame in the opposite direction to what was
shown in (5.52):

∀i ∈ {1, 2, 3, 4} s.t Gc(0, i) = 1, hri,k = Rz(−∆t ψ̇?)

hri,k−1 −∆t


hẋ?
hẏ?

0


 (7.16)

7.1.3 Maximum reachable velocity
For a standard trotting gait with the two pairs of diagonally opposed feet in contact al-

ternatively, there is a hard limit q̇lin,max on the velocity the robot can reach before the legs
enter in singularity. This limit is linked to the duration of stance phases Tstance, the height
h of the base and the maximum extension L of legs. In the limit case, the legs reach sin-
gularity just at touchdown when entering stance phase, and at the end of the stance phase
when leaving the ground. This will be obtained using rsym if the robot moves at constant
velocity q̇lin,max with the reference velocity being q̇lin,max, with a contact centered on the
shoulder in average. In that case, the robot travels a distance d = q̇lin,max Tstance over a
single stance. This distance is also equal to d =

√
L2 − h2 by geometric reconstruction

(see Fig. 7.2). If h = 22 cm, L = 28 cm and Tstance = 0.24 s, we obtain vmax ≈ 1.44
m/s in a perfect scenario with the base horizontal. If the base tilts a bit, for instance with
a pitch angle of 5◦, hind shoulders are raised up to h = 23.7 cm, so the legs can extend
less further and vmax falls down to 1.24 m/s. This maximum velocity is actually lowered
by various parameters: the natural tilt of the base in roll and pitch during motion, a non-
constant velocity during a single stance phase, and the rfb and rc terms of the heuristics
which shift the contact so that it is not perfectly centered on the shoulder. The lower the
base, the more efforts the knee actuators have to apply. So, further lowering the base to go
faster is not a satisfying solution. Increasing the gait frequency can be a solution as long
as the controller manages to handle it (feet tracking performances, base stabilization).
Making the robot able to handle full flight phases would be another way to go beyond that
limit.
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q̇lin,max

L

q̇lin,max

L
h

d

(a) Start of contact (b) End of contact

Figure 7.2: Limit cases for which legs are in singularity, right at the beginning (a) and at the end
of their stance phase (b). The robot moves at velocity q̇lin,max to the right (side view). Contacts
have to stay inside the bounds of the red cone to avoid leg singularity. If for a given velocity
this constraint is not respected, one can either lower the base to widen the cone or increase gait
frequency to decrease the duration of stance phase so that feet land closer to the shoulder projection
and get back in the cone.

7.2 Swing phase trajectory generator

During swing phases feet have to be guided from their current position to their next
target position on the ground outputted by the footstep planner. To do so, we use poly-
nomial interpolation, one for each foot, to generate a parabolic trajectory in the air, both
in position, velocity and acceleration. Each foot is managed independently based on the
contact sequence stored in the gait matrix Gc. The trajectory generation is done in world
frame (the ideal one in which the robot moves at reference velocity) so that the target po-
sition of the interpolation is constant in a stationary frame instead of having to deal with
position, velocity and acceleration in a moving body frame.

The foot trajectory generator keeps feet in stance phase at the positions received as
inputs. It receives [ori,x ori,y 0]T from the footstep planner and outputs as position, velocity
and acceleration targets [ori,x ori,y 0]T , [0 0 0] and [0 0 0]T respectively. Feet in swing
phase are led from their previous contact position to the next one using polynomials. The
[or?i,x or?i,y 0] location of the next contact is decided by the footstep planner as well. Note
that the height of the target location is always zero following our assumption of moving
on a flat ground.

7.2.1 Polynomial interpolation

For brevity purpose, we focus on a single foot to avoid having i indexes in all variables.
The polynomial interpolation is done from the current state of the associated foot

[xf ẋf ẍf yf ẏf ÿf zf żf z̈f ] to reach the desired position on the ground [x?f y?f 0]. The
control time step is denoted by ∆t, the expected duration of the swing phase by t1 and
the time elapsed since the start of the swing phase by t0 ∈ [0, t1]. This information is
processed to output a command [x?f ẋ?f ẍ?f y?f ẏ?f ÿ?f z?f ż?f z̈?f ] for the foot.

For the x component, the generator tunes a 5-th order polynomial function X to have
X (t0) = xf , Ẋ (t0) = ẋf and Ẍ (t0) = ẍf while having X (t1) = x?f , Ẋ (t1) = 0 and
Ẍ (t1) = 0. The generator can then output [x?f ẋ?f ẍ?f ] by computingX (t0+∆t), Ẋ (t0+∆t)
and Ẍ (t0 + ∆t). The same happens with a polynomial function Y for the y component to
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output [y?f ẏ?f ÿ?f ]. For instance, the coefficients of the X polynomial are as follows:

X (t) =
5∑
i=0

ai t
i (7.17)

a5 = − ẍf T
2
s +6 ẋf t1+12xf−12x?f

2 T 5
s

a4 = 3 ẍf T 2
s +16 ẋf t1+30xf−30x?f

2 T 4
s

a3 = −3 ẍf T 2
s +12 ẋf t1+20xf−20x?f

2 T 3
s

a2 = ẍf
2

a1 = ẋf

a0 = xf

(7.18)

Command for the z component is deterministic and there is no feedback unlike the
x and y components for which the current position, velocity and acceleration of the foot
are taken into account. The z trajectory is made of two 5-th order polynomial that do not
change and defined in such a way that Z(0) = Ż(0) = Z̈(0) = 0 and Z(t1) = Ż(t1) =
Z̈(t1) = 0 with Z( t12 ) = hapex. hapex is a constant value that sets the desired apex height
of feet during their swing phases. The switch from one polynomial to the other happens
at t1/2. The shape of all trajectories are highlighted in Fig. 7.3.

Due to these characteristics, the trajectory generated can be described as a bell-shaped
trajectory that goes from the initial position of the foot to its target trajectory while re-
specting non-slipping constraints during take-off and landing (no horizontal speed) and
trying to land softly (0 final velocity and acceleration for z).

To keep this slipping-avoidance property, the target position on the ground [or?i,x or?i,y 0]
is locked tlock seconds before landing. Basically [or?i,x or?i,y 0] is not updated if t0 >
(t1− tlock). Changing the desired position on the ground just before landing would create
a non-negligible horizontal speed to correct the position of the foot in order to land at
the new position. It is required because the target position is always changing since it
is linked to the current velocity of the robot through the symmetry term of the footstep
planner and this velocity is never exactly the same from one time step to another. This
locking mechanism is illustrated in Fig. 7.4.

The tracking of the trajectory in swing phase is not perfect so at the next iteration the
foot will not be in the commanded state. It could be possible to compute new coefficients
for each iteration so that the polynomial starts at the new state of the foot and ends up at
the desired location on the ground, as in Fig. 7.5. However, as we will see later, a foot
tracking task in the whole-body controller is in charge of finding the adequate torques,
joint positions and joint velocities to follow the commands of the trajectory generator.
These are then tracked by the low-level impedance controller that runs on the embarked
control board of the robot. So by taking into account the estimated state of the foot
at each iteration, we would have two layers of feedback: one through the polynomial
that guides the foot towards the next target position in the air, and another one through
the impedance controller which drives the joints toward the reference joint positions and
velocities that corresponds to the next target position in the air. This can result in stability
issues with two feedbacks working toward the same goal, especially since they run at
different frequencies: the trajectory generator runs at 1 kHz while the onboard impedance
runs at 10 kHz. As a consequence, we do not include feedback in the foot trajectory
generator. In other words, at the start of the swing phase the trajectory generator receives
[or?i,x or?i,y 0] to update the position of the foot and then the command of the generator
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is supposed to be perfectly followed. As such, we just need to compute the coefficients
of the polynomial once and then use [X (∆t) Ẋ (∆t) Ẍ (∆t)], [X (2∆t) Ẋ (2∆t) Ẍ (2∆t)]
and so on. To work well, this assumes a good enough tracking by the low-level impedance
controller so that joints are not too far from their reference state.

So far, the horizontal velocity command for the swinging feet only becomes 0 m/s
right when the contact happens with Ẋ (t1) = 0 and Ẏ(t1) = 0 as limit conditions for the
interpolation. With imperfect tracking, a foot in swing phase could still have a small hori-
zontal velocity at touchdown and drag on the ground. To decrease the risk of this happen-
ing at the start or end of the swing phase, we added a margin Tm during which swinging
feet only move vertically so that the horizontal motion only occurs in the [Tm, t1 − Tm]
interval, as shown in Fig. 7.6. The width of the margin must be reasonable since it de-
creases the time during which feet in swing phase move horizontally, hence increasing
the necessary speed to go from one location to another one in the imparted time, as well
as decreasing the maximum velocity the robot can reach before its legs reach singularity
during motion, as shown in Fig. 7.7.

7.2.2 Extension with contact detection
The use of the online contact detection presented in Section 6.4 leads to the intro-

duction of additional features in the footstep planner to be properly exploited. With it,
contacts can be detected and thus enabled earlier or later than the expected end of the
swing phase. If a swinging foot lands on a stair-like object at time tc earlier than ex-
pected, then the contact is enabled at position [X (tc) Y(tc) FGz(q)] rather than the target
position on the ground [or?i,x or?i,y 0] that should have been reached at time t1 (see Fig. 7.8).
It relieves the assumption that contact heights are always 0, which could work on a flat
ground but not on a rough terrain with bumps, holes or steps of various height. Note that
we use forward geometry to assess the height of the contact instead of using Z(tc).

Without information about the environment, we cannot know if an early or late contact
is a single occurrence or if we encountered a long-lasting change of the ground so we
decided to keep to flat ground assumption by principle. So when a foot lands at a non-
zero height ori,z, the height of the next footstep location or?i,z will still be Z(t1) = 0. That
way, if there is a single stair-like object separating two large flat areas, after the transition
from one to the other, the robot will not try to put its feet back at the previous height.

If there is an unexpected depression at the target location, the foot will stop in the air
a few centimeters above the ground. Without contact detection, that case would not be
taken into account and the legs would just quickly extends as the contact gets enabled
and the controller tries to apply forces on the ground. The trajectory generator is thus
modified to extend the reference trajectory beyond the end of the swing phase at position
or?i . If the contact is late, the foot is slowly lowered at constant velocity until the ground is
met. To avoid stopping the momentum of the foot at the end of the swing phase, and then
moving once the controller realizes the contact is late, we modify the limit conditions of
the interpolation so that the swing trajectory ends with a small vertical velocity Ż(t1) 6= 0,
the same velocity that is used to lower the foot after the swing phase for late contacts.

Ż(t1) = −hapex
Ts

(7.19)
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(e) Reference trajectory for Ẍ
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(f) Reference trajectory for Z̈

Figure 7.3: Shape of the reference trajectories in position, velocity and acceleration along the x and
z axis generated through polynomial interpolation for a 0.24s long swing phase. The trajectories
along y are similar to the ones along x and are thus not represented.
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Figure 7.4: The target position on the ground is locked a few milliseconds before landing (here 4
ms for a 24 ms swing phase) to ensure the foot has no horizontal velocity at touchdown.

0.00 0.05 0.10 0.15 0.20 0.25

Time [s]

0.3

0.4

0.5

0.6

0.7

P
os
it
io
n
X

[m
]

Initial trajectory

Figure 7.5: New trajectories can be computed online to bring a swinging foot from its current
position to the target even if it deviates from the initial trajectory.
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(a) Comparison of reference trajectories for X with and without vertical phase
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(b) Trajectory in the air (X − Z graph) with and without vertical phase. The
scale of both axis is the same to better represent the shape.

Figure 7.6: Shape of the reference trajectories in position generated through polynomial interpo-
lation for a 0.24s long swing phase with a vertical phase of 0.04 s at the start and end. With it,
even with imperfect tracking the swinging foot has more time to stop moving horizontally before
touchdown due to the vertical landing approach, yet it forces the foot to move faster in the air due
to the shorter horizontal motion. The trajectory along y is similar to the one along x and is thus
not represented.
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(a)

(b)

(c)

(d)

t = t1

t = t1 − Tm

t = 0

t = Tm

q̇lin,max

Figure 7.7: Limit cases similar to the ones of Fig. 7.2 for which legs are almost in singularity right
at the beginning (a) and at the end (c) of their stance phase. The blue arc delimits the range of
the leg. If this happens in a situation with no vertical phase for the swinging feet motion, then
introducing a vertical phase will lead to singularity issues. Indeed, in (b), since the foot has to
reach its final horizontal position sooner at the end of the swing phase due the phase with only
vertical motion (see top right corner of Fig. 7.6a), the leg has to extend further forwards, which
is not possible if the robot is already at its limit. Similarly, in (d), since the foot has to stay at
the same horizontal position longer at the start of the swing phase while the foot is moving only
vertically (see bottom left corner of Fig. 7.6a), the leg has to extend further backwards. As a
consequence, to make this movement possible, we would either have to decrease the velocity of
the robot or decrease the duration of the vertical phase.
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f1

(a) Due to the assumption of a flat ground and
the lack of exteroception, the swinging foot
aims for a target at ground level.

f1

f2

(b) Without online contact detection the swing-
ing foot keeps trying to reach the target until
the predefined end of the swing phase. As a
consequence of an unexpected ground reaction
force, the base is tilted.

f1

f2

(c) With online contact detection the early im-
pact is detected and the foot enters stance phase
at an updated location.

Figure 7.8: Online contact detection allows the controller to detect early or late impacts when
walking on rough terrain. That way, the robot can react accordingly and avoid disturbing base
stability by applying undesired forces on the ground (early contact) or trying to apply forces in
vain with the foot still in the air (late contact).
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7.3 Using information about the environment

Blind controllers, such as the one we are using, do not exploit from data or sensors
that would allow them to get information about their environment. Yet some of them are
still able to drive a robot through rough terrain thanks to their sheer robustness. So long
as the environmental conditions are not overly harsh, they manage to react in real time
to perturbations to maintain balance, such as when climbing stairs or navigating on un-
even terrains with the assumption of a flat ground. However, blind controllers remains
insufficient in circumstances where the environment contains deep holes or steps too high
to climb: basically obstacles that are out of range of their designed capabilities. Those
controllers can sometimes be augmented with exteroceptive sensors or priviledged infor-
mation about the environement to simultaneously plan the motion and footstep locations
several steps ahead. It can allow the robot to overcome complex situations while respect-
ing its dynamics as long as hardware capabilities are sufficient to produce the desired
motion.

Such an augmentation of the baseline architecture was developed in a collaborative
effort led by Fanny Risbourg and Thomas Corbères to implement a 3-stage locomo-
tion framework able to navigate on complex 3D terrains. The first stage consists of a
contact planner formulated as a Mixed-Integer Program to choose on which surfaces to
step on, based on a set of available surfaces in the environment (see Fig. 7.9). Then, a
quadratic program optimizes the footsteps locations coming from the heuristics presented
in Section 7.1 to respect the limits of the chosen surfaces. Finally, an improved trajectory
generator using 3D Bézier curves drives the swinging feet from one location to another
under collision-avoidance constraints. Thanks to the modularity of the architecture, this
framework can seamlessly augment the control pipeline. The whole implementation is
presented in details in [Ris+22].

Figure 7.9: Contact planning with a mixed-integer program using a set of available convex sur-
faces, for each foot independently and using heuristics as a baseline. Figure extracted from
[Ris+22].

In this framework, the environment is the union of m disjoint quasi-flat contact sur-
faces S = ⋃m

j=1 Sj . A quasi-flat contact surface is a surface for which the opposite of
the gravity vector is contained in the normal friction cone at each. These surfaces can
be either directly given to the robot as ground truth or reconstructed from exteroceptive
measurements using a camera or a LIDAR for instance. The contact plan consists of a list
of contact surfaces for each foot and for each contact phase in the planning horizon.

A set of n variables ai = [a1
i , · · · , ami ] ∈ {0, 1}m, 1 ≤ i ≤ n is defined such that

aji = 0 implies that the i-th footstep position ri belongs to the j-th contact surface, aji = 1
otherwise. The following mixed integer problem is then solved to find the contact surfaces
to aim for:
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find R = [r1, · · · , rn] ∈ R3×n

A = [a1, · · · , an] ∈ {0, 1}n×m

min `(R)
s.t. R ∈ I ∩ F

∀i, 1 ≤ i ≤ n :
card(ai) = m− 1
∀j, 1 ≤ j ≤ m :

Sjri ≤ sj +Maji1.

(7.20)

where ` is a quadratic objective function to minimise, I is a user-defined convex set
of initial constraints, F is a convex set of feasibility constraints, M ∈ Rn is a sufficiently
large number, and Sj ∈ Rh×3 and sj ∈ Rh are respectively a constant matrix and a vector
defining the h half-spaces bounding the surface to check whether ri lies within surface
Sj . The constraint card(ai) = m − 1 guarantees that at each step the position planned
lies exactly on one contact surface, with card(ai) is the number of non-zero coefficients
in ai (cardinality).

The cost function ` includes the distance between the 2D feet positions ri optimized
in R and the 2D target feet positions r?i given by the Raibert heuristics as well as the
distance between ri and its associated shoulder.

`(R) = ‖r?i − ri‖2 + 0.1‖rsh,i − ri‖2 (7.21)

Then, given the current state of the robot and the target contact surfaces chosen by
the mixed-integer problem, we compute the next contact locations of the swinging feet
ri, 1 ≤ i ≤ n on said surfaces, this time using the whole footsteps heuristics as introduced
in Section 7.1. Each position variable is defined with an offset εi = [εi,x εi,y εi,z]T ∈ R3

with respect to the heuristic locations that depends on the reference velocity q?u:

ri(q?u) + εi =

r
?
i,x(q?u)
r?i,y(q?u)

0

+

εi,xεi,y
εi,z

 (7.22)

The reference velocity q?u is updated with an offset ξ = [ξi,x ξi,y]T ∈ R2, resulting in
q?,+u :

q?,+u =
[
ξx + q?u,x
ξy + q?u,y

]
(7.23)

The QP problem is written as follows:

min
ε,ξ

1
2(

n∑
i=1
‖εi‖2 + 1000 ‖ξ‖2)

s.t. ∀1 ≤ i ≤ n, Si(ri(q?,+u ) + εi) ≤ si
(7.24)

where Si and si are associated with surface Si that has been selected for the i-th
contact. The goal of this quadratic problem is to satisfy at best the surface constraints
while minimising the violation of the heuristics in the least-square sense.

Once the target position on the surface has been determined, the swing trajectory is
computed as a compromise between a reference obtained from the polynomial interpo-
lation described in Section 7.2 and the adjustments required to avoid collisions with the
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Collisison-free Bezier curve
Reference curve
Initial surface
Final surface
Collision half-plane with margins

Figure 7.10: When climbing a stair, using a predefined bell-like trajectory would lead to a collision
with the edge of the step. A security margin can instead be taken by using a Bezier curve whose
control points are modified by a QP problem. Figure extracted from [Ris+22].

environment (see Fig. 7.10). To do so, the control points of a 3D Bézier curve are mod-
ified by a quadratic program. The resulting commands are then sent to the whole-body
control as replacements of the blind polynomial interpolation.

This augmented pipeline was successfully deployed on the quadruped to handle envi-
ronments more complex than a simple flat ground, such as stairs, stepping stones or small
bridges. As the goal was to test the architecture before implementing a full online detec-
tion, the positions of surfaces in the environment were known and the robot was located
thanks to a motion capture system (see Fig. 7.11).

Figure 7.11: Only surfaces bounded in yellow were available for footstep locations to mimic
stepping stones or bridges without the risk of having actual holes in case of a failure. Figure
extracted from [Ris+22].

In this collaboration my contribution was focused on integrating this planning scheme
in the control architecture and on helping to the realization of the experiments.

7.4 Conclusion
In this chapter we have first described how the footstep planner uses several heuris-

tic terms to determine target locations on the ground with the main assumption of a flat
ground. It is based on the Raibert heuristics so that contacts are centered on their asso-
ciated shoulder projection in average. The planner works over the whole sequence con-
tained in the gait matrix Gc so that the controller can directly aim for the final position of
incoming contacts instead of reasoning in a moving body frame. Then, we explained how
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polynomial interpolation is used to generate reference trajectories in position, velocity
and acceleration to guide swinging feet from their current position to their next target on
the ground. We showed how the online contact detection presented in Section 6.4 leads to
the introduction of new features to exploit early or late contact detections. The most no-
table of them is the switch from purely 2D contacts due to the assumption of a flat ground
to 3D contacts that can handle terrains with various heights. Finally, we presented how
the control architecture can be augmented to leverage information about the environment
in order to navigate complex terrains that would be out of range of our baseline blind
controller.

The next chapter will focus on the different kinds of centroidal model predictive con-
trollers that were implemented to obtain forces that should be applied at contact points to
follow the reference base velocity. It uses information coming from previously described
control elements to perform an optimization over a prediction horizon.
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Centroidal Model Predictive Control
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As locomotion decisions must be taken by considering the future evolution of the sys-
tem [KE08], a wide range of quadruped controllers leverages a model predictive controller
(MPC) to generate the motion in real time by predicting the behavior of the robot over a
prediction horizon. Then, a whole-body controller (WBC) converts those decisions into
actuator commands to follow the movement. MPCs usually exploit a reduced model of
the dynamics to limit the computational complexity. Since quadruped robots tend to have
lightweight limbs, most of their mass is localized in their trunk and, as such, centroidal
dynamics [OGL13] can provide an appropriate approximation of their whole-body dy-
namics. It describes the dynamics of the center of mass of the robot due to its interactions
with the environment and corresponds to the under-actuated dynamics [CBM17]:
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mc̈ =
nc∑
i=1

fi +mg (8.1a)

Iω̇ + ω × (Iω) =
nc∑
i=1

(ri − c)× fi (8.1b)

with c the position of the CoM, ω the angular velocity of the body, m the total mass
of the robot, I its inertia matrix, and g the gravity vector. nc is the number of 3D forces
fi applied at the contact points ri.

8.1 Reference state trajectory

8.1.1 Locomotion on the ground
The reference velocity hq̇?u that is sent to the robot is expressed in its horizontal frame

(see Fig. 5.1). It has 6 dimensions: 3 for the linear velocity and 3 for the angular one.

hq̇?u = [hẋ? hẏ? hż? φ̇? θ̇? ψ̇?]T (8.2)

The velocity vector of the robot is:

hq̇u = [hẋ hẏ hż φ̇ θ̇ ψ̇]T (8.3)

Strictly speaking, the angular velocities in roll, pitch and yaw (φ̇, θ̇, ψ̇) should be
replaced by angular velocities around the axes of the horizontal frame (ωhx, ωhy, ωhz). We
decided to keep the former notation since it is more in line with the idea of controlling
roll, pitch and yaw angles. Moreover, with the assumption of small angles with a base
that remains almost horizontal, those quantities are close to each other.

At the start each of iteration of the MPC, the current position and orientation of the
robot define a new frame in which the solver will work. This frame is similar to the
horizontal frame h, with the x axis pointing forwards, the y axis pointing laterally to the
left and the z axis upwards. However, it is at ground level rather than being centered on
the robot body. As a result, instead of working in terms of position, rotation and velocity
along the x, y and z axes of the world frame, the solver will work in this new local frame,
noted l, as already presented in Fig. 5.1. The relations between l and the other frames are:

oTl =
[
x y 0

]T
(8.4)

oRl = R(0, 0, ψ) = Rz(ψ) (8.5)
lTh =

[
0 0 z

]T
(8.6)

lRh = R(0, 0, 0) = I3 (8.7)

withRz(ψ) the 3 by 3 rotation matrix by an angle ψ about the vertical axis. The initial
conditions of the solving process express as follows:

lqu,0 = [lcx lcy
lcz

lφ lθ 0]T (8.8)
lq̇u,0 = [lẋ lẏ lż lφ̇ lθ̇ lψ̇]T (8.9)

with c = [lcx lcy
lcz] the position of the CoM in local frame. In the rest of the thesis,

the first three components of q contain the position of the base center, but here for the
centroidal MPC, we are working with the position of the CoM.
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When the robot is in its default initial position, we compute the offset ∆c0 between
the center of the base qlin and the center of mass c and keep it in memory (c0 = qlin,0 +
∆c0). We later assume that this offset is constant instead of recomputing it at each new
configuration of the robot.

∀t ct = qlin,t + ∆c0 (8.10)

In practice, with the knees bent in the same direction, this offset is slightly downwards
and backwards with no lateral component due to the lateral symmetry of the robot. With
the knees bent in opposite direction, this offset is only downwards due to the front-back
symmetry. In (8.9) we assume that the linear velocity of the center of mass is the one of
the body. The state vector of the robot and the reference state vector at step k are then:

Xk =
[
lqu,k
lq̇u,k

]
X?
k =

[
lq?u,k
lq̇?u,k

]
(8.11)

The reference velocity is supposed to be constant over the prediction horizon in the
local frame of the robot, so it has to be properly rotated to be consistent with its future
orientation. At time step k of the prediction horizon, the reference velocity vector is
defined as follows:

∀k ∈ [1, nsteps], lq̇?u,k =
[
Rz(k ∆t lψ̇?)
Rz(k ∆t lψ̇?)

]
lq̇?u (8.12)

with ∆t the time step of the MPC. Contrary the estimator, planner and whole-body
control which run at 1 kHz and thus use ∆t = 1 ms, the MPC runs only at 50 Hz so in
this chapter ∆t = 20 ms. There is no rotation about the roll and pitch axes for lq̇?u,k due
to the assumption that the trunk is almost horizontal.

Then, an integration similar to the one that has been done for the prediction term of
the footstep planner in Section 7.1 is performed to get the reference position vector for all
time steps of the prediction horizon:

- if lψ̇? = 0:
∀k ∈ [1, nsteps], lq?u,k = lqu,0 + k ∆t lq̇?u (8.13)

- otherwise if lψ̇? 6= 0:

lx?k = lcx +
lẋ? sin(k ∆t lψ̇?) + lẏ?

(
cos(k ∆t lψ̇?)− 1

)
lψ̇?

(8.14)

ly?k = lcy +
−lẋ?

(
cos(k ∆t lψ̇?)− 1

)
+ lẏ? sin(k ∆t lψ̇?)

lψ̇?
(8.15)

lz?k = lcz + k ∆t lż? (8.16)

lφ?k = lφ+
φ̇? sin(k ∆t lψ̇?) + lθ̇?

(
cos(k ∆t lψ̇?)− 1

)
lψ̇?

(8.17)

lθ?k = lθ +
−lφ̇?

(
cos(k ∆t lψ̇?)− 1

)
+ lθ̇? sin(k ∆t lψ̇?)

lψ̇?
(8.18)

lψ?k = 0 + k ∆t lψ̇? (8.19)

Previous equations could be used in a general case for which there is a velocity control
for all linear and angular components. However, in our case, since we want the quadruped
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to move around while keeping the trunk horizontal and at constant height, we want a
velocity control in x, y and ψ and a position control in z, φ and θ to keep ∀t, lz(t) = h?

and lφ(t) = lθ(t) = 0. In other words and as previously pointed out in Section 5.5, the
reference body velocity given to the robot by a user or a higher-level controller is limited
to the horizontal plane: only forward, lateral and yaw reference velocities are non-zero.
Roll, pitch and vertical ones are always 0:

lż?k = 0 and lz?k = h (8.20)
lφ̇?k = 0 and lφ?k = 0 (8.21)
lθ̇?k = 0 and lθ?k = 0 (8.22)

To sum up:

∀k ∈ [1, nsteps], X?
k =



lcx +
lẋ? sin(k ∆t lψ̇?)+lẏ?(cos(k ∆t lψ̇?)−1)

lψ̇?

lcy + −lẋ?(cos(k ∆t lψ̇?)−1)+lẏ? sin(k ∆t lψ̇?)
lψ̇?

h
0
0

k ∆t lψ̇?
lẋ? cos(k ∆t lψ̇?)− lẏ? sin(k ∆t lψ̇?)
lẋ? sin(k ∆t lψ̇?) + lẏ? cos(k ∆t lψ̇?)

0
0
0
lψ̇?



(8.23)

The MPC solvers will optimize with contact forces so that the predicted trajectory of
the center of mass stays close to the reference trajectory. We define the optimization state
vector as:

Xk = Xk −X?
k (8.24)

8.1.2 Jumping

Whereas we imposed a 0 vertical velocity with a fixed body height reference in the
previous section for walking purpose, this choice should be modified to generate a jump
trajectory for the center of mass. The implementation of a jump phase is seamless by
inserting rows full of 0s the content of the gait matrix Gc, corresponding to phases of the
gait sequence for which all feet are in swing phase. The duration of the jump is noted
TJ . This duration directly sets the apex height of the jump as well as the vertical velocity
of the body that needs to be reached just before the four feet leave the ground. These
values come from the trajectory of a mass in ballistic fall under the effect of the gravity.
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θ
Fmax

L τmax
τmax

L

Figure 8.1: The angle that a leg makes with the ground for a given height of the base can be com-
puted assuming that Hip Flexion-Extension and Knee joints have the same angle. The maximum
force that can be applied by the leg along the vertical axis can then be obtained with a projection
knowing leg length L and actuator limit τmax.

Assuming the jump lasts from t = 0 to t = TJ , with g = 9.81m/kg/s2:

lz?(t) = 1
2 g t (TJ − t) + h (8.25)

lż?(t) = g (TJ2 − t) (8.26)

lz?(TJ2 ) = g
T 2
J

8 + h (8.27)

lż?(0) = g
TJ
2 = lż?0 (8.28)

These values of lz? and lż? could directly be included in X?
k. However, it might be

difficult for the solver to find the correct motion to jump, that is lowering the base before
the jump and suddenly raising it to reach the target vertical velocity. Moreover, the solver
has no information about actuators capabilities which impact the maximum vertical accel-
eration of the base, so it cannot know how much the base should be lowered according to
actuators limits. Besides, this pre-jump motion would go against the reference trajectory
lz?(t) = h? and lż?(t) = 0 so it would lead to a high tracking error and the solver might
not find a proper solution due to the shape of the cost function.

A way to help the solver find a proper solution could be to modify the pre-jump refer-
ence trajectory to include this lowering and raising of the base. How much the base needs
to be lowered depends on the vertical acceleration applied during the raising phase, which
is directly linked to the contact forces. The amount of force that can be applied on the
ground is limited by actuator capabilities, depending on the angle θleg ∈ ]0, π2 ] made by
the legs with the ground. This angle can be directly computed for a given height of the
base assuming Hip-Flexion Extension (HFE) and Knee joints have the same values and
opposite sign (see Fig. 8.1). The higher θleg, the less force can be applied:

θleg = cos−1(zlow2L ) (8.29)

Fz,max = τmax
L sin(θleg)

(8.30)

z̈max = −g + 4Fz,max
m

(8.31)

At the lowest position, the vertical velocity is null. At the end of the raising phase, it
should be equal to lż?0 . So if we aim for a constant acceleration from the lowest position,
we get:

ż(tmax) = z̈max tmax + 0 = lż?0 =⇒ tmax =
lż?0
z̈max

(8.32)
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Knowing the raising time, we can deduce how much the base will raise before reaching
the target velocity that makes the jump happen:

z(tmax)− zlow = z̈max
t2max

2 (8.33)

If we want the jump to happen at the reference height h? then we can replace z(tmax)
by h in (8.33) and express tmax according to zlow using previous equations:

h? − zlow =
lż?,20

2z̈max
(8.34)

=
lż?,20

2(−g + 4τmax
mL sin(cos−1( zlow2L )))

(8.35)

=
lż?,20

2(−g + 4τmax

mL

√
1−

z2
low

4L2

) (8.36)

This equation can be solved numerically to get zlow(TJ) for a whole range of TJ using
(8.28) to replace lż?,20 . We can also get z̈max(TJ) and tmax(TJ) from (8.34) and (8.32)
respectively:

z̈max =
lż?,20

2(h? − zlow) (8.37)

tmax = 2(h? − zlow)
lż?0

(8.38)

We can now generate the raising trajectory (t ∈ [−tmax, 0]) using polynomial interpo-
lation and link it to the ballistic fall of (8.28).

lz̈?(t) = z̈max (8.39)
lż?(t) = z̈max(t− tmax) (8.40)

lz?(t) = z̈max
2 (t− tmax)2 (8.41)

There are no particular force or acceleration constraints for the lowering phase (t ∈
[−3 tmax,−tmax]). We chose to make it last 2tmax to slowly lower the base. Limit condi-
tions for the polynomial interpolation are as follows:

lz?(−3tmax) = h? lż?(−3tmax) = 0 lz̈?(−3tmax) = 0
lz?(−tmax) = zlow

lż?(−tmax) = 0 lz̈?(−tmax) = z̈max
(8.42)

The coefficients of the polynomial corresponding to the lowering section are as fol-
lows: 

a5 = −3 T 5
J g

5

16384 (h?−zlow)4

a4 = 15 T 4
J g

4

4096 (h?−zlow)3

a3 = −5 T 3
J g

3

256 (h?−zlow)2

a2 = 0
a1 = 0
a0 = h?

(8.43)

In the end, the final pre-jump position, velocity and acceleration trajectories along the
vertical axis follow the profiles described in Fig. 8.2.
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(a) Reference trajectory for the base height
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(b) Reference trajectory for the base vertical velocity
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(c) Reference trajectory for the base vertical acceleration

Figure 8.2: Reference trajectories in position, velocity and acceleration along the vertical axis to
perform a 0.64s-long jump, with τmax = 2.5 Nm. The jumping sequence is divided into lowering,
raising and flying phases.
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8.2 Linear convex Quadratic Programming

The lumped-mass model presented in (8.1a) and (8.1b) can be used to perform model
predictive control over a prediction horizon. Using this model, the solver can predict
how the system will react to ground reaction forces and will adjust them so that the pre-
dicted state trajectory follows the reference trajectory given as input. This is illustrated in
Fig. 8.3. As we said earlier, the MPC works in the local frame l, which is a projection at
ground level of the horizontal frame h at the start of each optimization. The gait matrix
Gc is used to known which feet are in contact at each step of the prediction horizon, with
the footstep planner providing the contact locations r. We define the set of feet in contact
as:

C =
{
i ∈ {1, 2, 3, 4} s.t. Gc(0, i) = 1

}
(8.44)

o

l

Reference trajectory

Predicted trajectory

Contact force

Contact location

Figure 8.3: The MPC optimizes contact forces at footstep locations so that the state trajectory
predicted using the lumped-mass model follows the reference one.

8.2.1 Assumptions, dynamics and constraints

Recall that the lumped-mass model (centroidal dynamics) used by the MPC can be
written in world frame as follows:

m lc̈ =
∑
i∈C

lfi −

 0
0
mg

 (8.45)

d

dt
(lI lω) =

∑
i∈C

(lr?i − lc)×lfi (8.46)

with lfi the ground reaction forces, lr?i the location of contact points given by the
footstep planner, lc̈ = lq̈lin the acceleration of the center of mass, lI the rotational inertia
tensor and lw = lq̇ang the angular velocity of the body. As written, this model is nonlinear.
We can however approximate it by a linear one with a few assumptions, the first one being
that roll and pitch angles are small. It follows that:

lω ≈
[
lφ̇ lθ̇ lψ̇

]T
(8.47)

lI ≈ bI (8.48)
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The second assumption is that states are close to the desired trajectory, so in (8.46) the
position of the center of mass lc can be replaced by the desired position for the center of
mass lc?. The last assumption is that pitch and roll velocities are small. In the end:

d

dt
(lI lω) = lI lω̇ + lω×(lI lω) ≈ lI lω̇ (8.49)

With these assumptions, (8.46) is simplified into:

lI


lφ̇
lθ̇
lψ̇

 =
∑
i∈C

(lr?i − lc?)×lfi (8.50)

After discretization of (8.45) and (8.50), the evolution of state variables for k ∈
[0, nsteps − 1] becomes:

Ck =
{
i ∈ {1, 2, 3, 4} s.t. Gc(k, i) = 1

}
(8.51)

lxk+1
lyk+1
lzk+1

 =


lxk
lyk
lzk

+ ∆t


lẋk
lẏk
lżk

 (8.52)


lφk+1
lθk+1
lψk+1

 =


lφk
lθk
lψk

+ ∆t


lφ̇
lθ̇
lψ̇

 (8.53)


lẋk+1
lẏk+1
lżk+1

 =


lẋk
lẏk
lżk

+ ∆t

∑
i∈Ck

lfi,k
m
−

0
0
g


 (8.54)


lφ̇k+1
lθ̇k+1
lψ̇k+1

 =


lφ̇k
lθ̇k
lψ̇k

+ ∆t
lI−1 ∑

i∈Ck
[lr?i,k − lc?k]×lfi,k

 (8.55)

An alternative integration scheme can directly include the effect of ground reaction
forces in (8.52) and (8.53) so that position and orientation are directly modified instead of
waiting 1 time step for the velocities to be changed.

lxk+1
lyk+1
lzk+1

 =


lxk
lyk
lzk

+ ∆t


lẋk
lẏk
lżk

+ ∆t2
2

∑
i∈Ck

lfi,k
m
−

0
0
g


 (8.56)


lφk+1
lθk+1
lψk+1

 =


lφk
lθk
lψk

+ ∆t


lφ̇
lθ̇
lψ̇

+ ∆t2
2

lI−1 ∑
i∈Ck

[lr?i,k − lc?k]×lfi,k

 (8.57)

For simplicity, we will use the first integration scheme in the following.
In terms of constraints, friction cone conditions to avoid slipping are linearized to the

first order, as illustrated in Fig. 8.4:

∀k ∈ [0, nsteps − 1],∀i ∈ Ck, |fxi,k| ≤ µ f zi,k and |f yi,k| ≤ µ f zi,k (8.58)

with µ the Coulomb friction coefficient. An upper limit has to be set for contact forces
to respect hardware limits (maximum torque of actuators). This limit is only applied to
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fi

Figure 8.4: The friction cone is linearized to the first order along the x and y axes to enforce it in
matrix form as a constraint in a linear optimization problem.

the z component since it will also limit the force along x and y due to the friction cone
contraints.

∀k ∈ [0, nsteps − 1],∀i ∈ Ck, f zi,k ≤ fmax (8.59)

The quadruped cannot pull on the ground, it can only push, so the normal component
of the contact forces has to be positive:

∀k ∈ [0, nsteps − 1], ∀i ∈ Ck, f zi,k ≥ 0 N (8.60)

To be sure that there is no slipping, we could impose a minimal non-zero vertical
component of the contact forces because if it is close to 0 N the friction cone is small so
on the real robot slipping could happen.

8.2.2 Quadratic Programming formulation
Applying our assumptions to the lumped-mass model, the system can be expressed

as a linear dynamics with equality and inequality constraints. The evolution of the state
vector of the robot over time can be described as follows:

∀k ∈ [0, nsteps − 1],Xk+1 = Ak Xk + Bk Fk + g (8.61)

with Xk defined as in (8.11) by stacking position, orientation, linear velocity and
angular velocity and g = [0 0 0 0 0 0 0 0 − 9.81 ∆t 0 0 0]T as the gravity vector. The
contact forces vector Fk always includes the forces applied at the four feet even if some of
them are not touching the ground. In that case we will set the problem in such a way that
forces for such feet are not considered in the solving process since they are nonexistent.
With fxi,k, f yi,k and f zi,k the components along the x, y and z axes of the local frame l for the
i-th foothold at time step k, the force vector expressed:

∀k ∈ [0, nsteps − 1], Fk =


f1,k
f2,k
f3,k
f4,k

 (8.62)

∀i ∈ {1, 2, 3, 4}, fi,k =

fxi,k
f yi,k
f zi,k

 (8.63)
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A quadratic programming solver such as OSQP solves convex quadratic programs of
the form:

minimize 1
2X

TPX + QTX
subject to l ≤ AX ≤ u (8.64)

where X ∈ Rn is the optimization variable, the objective function is defined by a
positive semidefinite matrix P ∈ Sn+ and vector Q ∈ Rn, the linear constraints are defined
by matrix A ∈ Rm×n and vectors l and u so that li ∈ R ∪ {−∞} and ui ∈ R ∪ {+∞},
∀i ∈ {1, . . . ,m}.

The goal of the MPC is to find contacts forces Fk that should be applied to have the
state vector Xk of the robot as close as possible to X?

k. The solver will output at the end of
the optimization process the vector X that minimizes the cost function locally (globally in
the best case). Using a convex quadratic program, we have the guarantee to convergence
at the global minimum. The QP problem can be written in a simple way by putting both
Fk (the output of the MPC) and Xk = Xk −X?

k (quantity that should be minimized) in
the optimization vector. For brevity, let’s consider a case with only 3 time steps in the
prediction horizon:

X =



X1
X2
X3
F0
F1
F2


(8.65)

In order to construct the matrix A that appears in (8.64), let us express the state evo-
lution and both equality and inequality constraints as MX = N and Klow ≤ LX ≤ Kup,
where matrix M is defined as:

M =



−I12 012 012 B0 012 012
A1 −I12 012 012 B1 012
012 A2 −I12 012 012 B2
012 012 012 E0 012 012
012 012 012 012 E1 012
012 012 012 012 012 E2


(8.66)

and matrix N is defined as:

N =



−g
−g
−g

012×1
012×1
012×1


+



−A0X0
012×1
012×1
012×1
012×1
012×1


+

 I12 012 012 012 012 012
−A1 I12 012 012 012 012
012 −A2 I12 012 012 012




X?
1

X?
2

X?
3

012×1
012×1
012×1


(8.67)

with matrix Ak at time step k defined as follows:

Ak =


I3 03 ∆t I3 03
03 I3 03 ∆t I3
03 03 I3 03
03 03 03 I3

 (8.68)
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Making the assumption that roll and pitch angles are small, the inertia matrix of the
robot in local frame l at time step k is:

lIk = Rz(∆t k lψ̇?) bI (8.69)

Matrix Bk at time step k is defined as follows:

Bk = ∆t


03 03 03 03
03 03 03 03

I3/m I3/m I3/m I3/m
lI -1
k [lr?1,k − lc?k]× lI -1

k [lr?2,k − lc?k]× lI -1
k [lr?3,k − lc?k]× lI -1

k [lr?4,k − lc?k]×


(8.70)

with (lri,k− lc?k) the vector in local frame going from the desired position of the center
of mass at time step k to the position of the i-th foothold, and [rk,i − lc?k]× the associated
skew-symmetric matrix. Then, matrix Ek for time step k is defined as follows:

Ek =


e1,k 03 03 03
03 e2,k 03 03
03 03 e3,k 03
03 03 03 e4,k

 (8.71)

with ei,k = 03 if the i-th foot is touching the ground during time step k, ei,k = I3
otherwise. In fact, if ei,k = I3 then with M X = N we are setting the constraint that
fi,k = [0 0 0]T (no reaction force since the foot is not touching the ground).

Now that M and N have been defined, let’s define L and K in LX ≤ K to express the
friction cone inequality constraint on the force. First, matrix L is defined as:

L =

020×12 020×12 020×12 Fµ 020×12 020×12
020×12 020×12 020×12 020×12 Fµ 020×12
020×12 020×12 020×12 020×12 020×12 Fµ

 (8.72)

with:

Fµ =


G 05×3 05×3 05×3

05×3 G 05×3 05×3
05×3 05×3 G 05×3
05×3 05×3 05×3 G

 and G =


1 0 −µ
−1 0 −µ
0 1 −µ
0 −1 −µ
0 0 −1

 (8.73)

To enforce the maximum normal reaction force fmax of (8.59), we have:

Klow =

KF
KF
KF

 with KF =


Kf
Kf
Kf
Kf

 and Kf =


−∞
−∞
−∞
−∞
−fmax

 (8.74)

The matrix Kup is defined as 060×1. Now that all matrices have been defined, we can
formulate the QP problem as in (8.64).

l =
[

N
Klow

]
≤ A =

[
M
L

]
X ≤ u =

[
N
Kup

]
(8.75)
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8.2.3 Cost function
The QP solver tries to find a vector X that minimizes the cost function 1

2X
T PX+QTX

under constraints l ≤ AX ≤ u. Matrices P and Q define the shape of the cost function.
The goal of the MPC is to find which contact forces should be applied at contact points so
that the predicted trajectory of the center of mass is as close as possible to the reference
trajectory. With previous notation, it amounts to minimize |X−X?|. This quantity is not
directly available as a matrix product of the form 1

2X
T P X + QTX. However, we can

minimize (X−X?)2 instead by using XT PX. Remember that the placement of X−X?

in X is:

X =



X1
...

Xnsteps
F0
...

Fnsteps−1


=



X1 −X?
1

...
Xnsteps −X?

nsteps

F0
...

Fnsteps−1


(8.76)

so the upper left block of P can be diagonal:

P =


WX ,1 0 ∗

. . . ∗
0 WX ,nsteps ∗
∗ ∗ ∗ ∗

 (8.77)

with ∀k ∈ [1, nsteps], WX ,k being a 12 by 12 diagonal matrice with coefficients ≥ 0
so that the deviation from the reference trajectory increases the value of the cost function
and thus pushes the solver into minimizing the error (Xk −X?

k)2. For safety reason, for
energy consumption and to limit actuator heating, it is better to keep the contact forces
low if possible. That is why a small regularization term is added to slightly penalize the
norm of contact forces. Since the square root function is not directly available in the
matrix product of the cost function, we regularize the square of the norm instead (‖fk,i‖2).

P =



WX ,1 0 ∗ ∗ ∗
. . . ∗ ∗ ∗

0 WX ,nsteps ∗ ∗ ∗
∗ ∗ ∗ WF,0 0
∗ ∗ ∗ . . .
∗ ∗ ∗ 0 WF,nsteps−1


(8.78)

With ∀k ∈ [0, nsteps − 1], WF,k 12 by 12 diagonal matrices with coefficients ≥ 0.
There is no cross-coupling between X and force components so both the upper-right and
lower-left corners of P are zeros.

As the optimization is supposed to be uniform over the whole prediction horizon,
all WX ,k are equal. It is the same for all WF,k. Coefficient at position (i, i), ∀i ∈
[1, . . . , 12], in WX ,k weights the deviation of the i-th component of the state vector from
the reference trajectory. Remember that components of the state vector are in this order:
[lx ly lz lφ lθ lψ lẋ lẏ lż lφ̇ lθ̇ lψ̇]. Coefficient at position (i, i), ∀i ∈ [1, 12], in WF,k
weights the i-th component of the force vector for regularization purpose. Remember that
components of the force vector are in this order: [lfx0 lf y0 lf z0 lfx1 lf y1 lf z1 lfx2 lf y2 lf z2 lfx3 lf y3 lf z3 ].
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To properly regularize the norm of contact forces ‖fi,k‖2 = (fxi,k)2 + (f yi,k)2 + (f zi,k)2, the
coefficients for the x, y and z components have to be equal. If no leg is privileged (to
mimic a wounded leg we could try to apply less force with it) then all coefficients on the
diagonal of WF,k are equal and ∀k ∈ [0, nsteps − 1], WX ,k = wfI12 with wf ∈ R+

The matrix Q in QT X only contains zeroes since there is no reason to push Xk −X?
k

or Fk into being as negative/positive as possible. For instance if a coefficient of Q was
positive then the solver would try to have the associated variable as negative as possible to
have a high negative product between the coefficient and the variable since that minimizes
the cost. As a consequence, Q = 024 nsteps×1.

The cost function during the optimization process is then:

cost(X) =
nsteps∑
k=1

( 11∑
i=0

[
wiX (Xi

k −Xi,?
k )2

]
+ wf

3∑
i=0

[
(fxi,k)2 + (f yi,k)2 + (f zi,k)2

])
(8.79)

These costs are illustrated in Fig. 8.5.

Xk −X?
k

(a) Cost on state error

‖f1‖

‖f4‖

(b) Cost on contact forces

Figure 8.5: One cost (a) penalizes the error between the reference and predicted state trajectories
while the other one (b) acts as a regularization to minimize contact forces when possible.

In the end, the desired reaction forces that need to be applied at contact locations over
the prediction horizon are stored in f0. These forces are expressed in the local frame l yet
they can easily be brought back to the world frame since oRl is known. The same applies
for the next desired position of the robot X1 that is stored in X1 and can be retrieved by
adding X?

1 to X1. It is expressed in the local frame as well.

8.3 Differential Dynamic Programming

Differential dynamic programming (DDP) can solve nonlinear parametric optimal
control problems (OCP) by using locally-quadratic models of the dynamics and cost func-
tions. DDP can be exploited to solve the same linear problem than Section 8.2 by applying
the assumptions that allowed us to linearize the system, but also in a more general way to
take into account nonlinearities by lifting those assumptions.
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8.3.1 Optimal control problem
The optimal control problem can be written as follows:

min
{X},{F}

T∑
t=0

`t(Xt,Ft|r?t ) + `T (xT )

s.t. Xt+1 = H(Xt,Ft|r?t )
Xt ∈ F
Ft ∈ K

(8.80)

where `t and `T are respectively the running and the terminal costs. {X} and {F}
are the state and contact forces decision variables, discretized at the optimization nodes
indexed by t. As in Section 8.2, the state vector {X} includes the position, orientation,
linear and angular velocities of the base. {X} has to remain in the feasibility manifold
F to ensure that a valid whole-body movement that can achieve X exists. The control
vector F contains the 3D forces at each contact point, constrained by the friction cone K.
r? stores the position of footsteps at which contact forces are applied.

With the same assumptions than in Section 8.2 and the use of the footstep locations r?

given by the footstep planner, the optimal control problem ends up with a similar linear
discretized centroidal dynamics:

Xt+1 = H(Xt,Ft|rt) = A Xt + B(X?
t , r

?
t ) Ft (8.81a)

A =
[
I6 ∆tI6
06 I6

]
(8.81b)

Xt =
[
lct

lΘt
lċt

lΘ̇t

]T
(8.81c)

B(X?
t , r

?
t ) = ∆t


. . . 0 . . .

. . . 0 . . .

. . . I3/m . . .

. . . lI -1[lr?i,t − lc?t ]× . . .

 (8.81d)

Ft =


f1,t
f2,t
f3,t
f4,t

 (8.81e)

where ∆t is the integration time between the nodes, m and I are mass and inertia of the
body, I6 is the identity matrix of size 6, lc? is the position of the CoM in local frame and
lΘ = (φ, θ, ψ) is the orientation of the body (Euler angles). 3D forces fi are applied at
the contact points r?i . The i-th column of B is disabled when the i-th foot is not in contact
(i /∈ C). [. . . ]× is used to denote a 3x3 skew-symmetric matrix in order to express the
cross product as matrix multiplication.

For the DDP solver, each time step of the prediction horizon is associated with a node
which contains the state evolution model. The organization of these nodes is highlighted
in Fig. 8.6.

To solve the OCP formulation described above, we use the library Crocoddyl [Mas+20]
which provides a multiple shooting DDP solver. As written in (8.80), there is no inequal-
ity constraint in the formulation because the solver does not support them. Inequalities
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H H H
X1 X2 X3

r? r? r?

X0

r?

f0 f1 f2

Figure 8.6: Factor graph displaying the correlations between the decision variables of the linear
MPC. Example with a prediction horizon of 3 time steps.

such as the friction cone constraint will instead be enforced through the cost function: if
respected, their cost will be equal to 0, otherwise it will raise up very quickly. This cannot
guarantee that inequalities constraints will be respected, but it can be expected that the
solver will not violate them too much because of the high cost that appears in that case.

8.3.2 Running and terminal costs
Four running costs are included in the cost function for all time steps:

• quadratic cost `t,X on the error between predicted and desired state vectors to track
the desired state trajectory

`t,X = ‖Xt −X?
t‖2 (8.82)

• quadratic cost `t,F on the norm of ground reaction forces to be minimized if possible
(regularization) as in (8.79). This cost only applies to the feet that are in stance
phase at time t (i ∈ Ct). We can also regulate the vertical force around a constant so
that the weight of the robot tends to be supported evenly by all legs in stance phase:

`t,f =
∑
i∈Ct
‖fi,t − f?i,t‖2=

∑
i∈Ct

(fxi,t)2 + (f yi,t)2 +
(

f zi,t −
mg

n(Ct)

)2

(8.83)

• barrier cost `t,K to avoid slipping by enforcing friction cone constraints. It only
applies to the feet that are in stance phase at time t (i ∈ Ct).

`t,K =
∑
i∈Ct
‖



fxi,t − µf zi,t
−fxi,t − µf zi,t
f yi,t − µf zi,t
−f yi,t − µf zi,t
−f zi,t

f zi,t − f zmax



+

‖2 (8.84)

• barrier cost `t,kin to enforce kinematic limits on the distance between shoulders and
their associated foot. That way, contact forces do not lead to an unfeasible motion
for the whole-body control (∀t,Xt ∈ F). It only applies to the feet that are in stance
phase at time t (i ∈ Ct) and is illustrated in Fig. 8.7

`t,kin =
∑
i∈Ct
‖
(
‖rsh,i,t − ri,t‖2−d2

lim

)+
‖2 (8.85)

with {·}+ = max({·}, 0), µ the Coulomb friction coefficient, rsh,i,t the position of the
i-th shoulder at time t, dlim a limit distance (80% of the leg limit). Since constraints are
enforced through a quadratic penalization using {·}+, there is no guarantee that they will
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dlim

Figure 8.7: The barrier cost is enabled as soon as the footstep locations get too far from their
associated shoulder to avoid breaking kinematics limit and produce a movement that the whole-
body control will not be able to follow.

be respected. In practice, with a small margin for µ, this approximation works well and
no slipping occurs. Just like (7.2), positions of shoulders in the base frame are as follows:

rsh,0 =

0.195 0.195 −0.195 −0.195
0.150 −0.150 0.150 −0.150

0 0 0 0

 (8.86)

Then, with the assumption of small angles and qlin,t the position of the center of the
body at time t, we get:

∀i ∈ {1, 2, 3, 4}, rsh,i,t = qlin,t +

 1 −ψt 0
−ψt 1 0
−φt θt 0

 rsh,0,i (8.87)

In the end, the weighted cost function is:

`t(Xt,Ft|rt) = w2
X `t,X (Xt) + w2

f `t,f (Ft) + wK`t,K(Ft) + wkin`t,kin(Xt|rt) (8.88)

with wX , wf , wK and wkin weight vectors for the various components.

8.3.3 Cost derivatives and Hessian matrices
The derivatives of the cost function and the Hessians can then be obtained by derivat-

ing (8.88) with respect to the state X and control F. They are used by the DDP solver to
get locally-quadratic models of the dynamics. First, the cost derivative with respect to X
is:

LX = ∂`t
∂X

= w2
X (Xt −X?

t )12×1 (8.89)

For each i ∈ Ct such that (‖rsh,i,t − ri,t‖2−d2
lim)+

> 0, terms are added to LX:

LX += wkin



rxsh,i,t
rysh,i,t
rzsh,i,t

rysh,i,0 r
z
sh,i,t

−rxsh,i,0 rzsh,i,t[
- sin(ψt) rxsh,i,t - cos(ψt) rxsh,i,t
cos(ψt) rysh,i,t - sin(ψt) rysh,i,t

] [
rxsh,i,0
rysh,i,0

]
06×1


12×1

(8.90)
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with the operator += used to denote that the term on the right is added to LX. Then,
the cost derivative with respect to F is:

∀i ∈ C, LF,i = ∂`i,t
∂F

= wK



(fxi,t − µf zi,t)+ − (−fxi,t − µf zi,t)+

(f yi,t − µf zi,t)+ − (−f yi,t − µf zi,t)+

−µ
(

(fxi,t − µf zi,t)+ + (−fxi,t − µf zi,t)+ + (f yi,t − µf zi,t)+

+(−f yi,t − µf zi,t)+ + (−f zi,t)+ + (f zi,t − fz,max)+
)


3×1

+ w2
f (fi,t − f?i,t)

(8.91)
The Hessian matrix LXX is:

LXX = ∂2`t
∂X2 = diag(w2

X )12×12 (8.92)

For each i ∈ Ct such that (‖rsh,i,t − ri,t‖2−d2
lim)+

> 0, terms are added to LXX:

LXX += wkin



1 0 0 0 0 γ1 01×6
0 1 0 0 0 γ2 01×6
0 0 1 rysh,i,0 -rxsh,i,0 0 01×6
0 0 rysh,i,0 r

x,2
sh,i,0 + ry,2sh,i,0 -rxsh,i,0 r

y
sh,i,0 0 01×6

0 0 -rxsh,i,0 -rxsh,i,0 r
y
sh,i,0 0 0 01×6

γ1 γ2 0 0 0 rx,2sh,i,0 + ry,2sh,i,0 01×6
06×1 06×1 06×1 06×1 06×1 06×1 06×6


12×12

(8.93)

with
[
γ1
γ2

]
=
[
- sin(ψ) - cos(ψ)
cos(ψ) - sin(ψ)

] [
rxsh,i,0
rysh,i,0

]
The Hessian matrix LFF is:

∀i ∈ C,Fi = int(



fxi,t − µf zi,t
−fxi,t − µf zi,t
f yi,t − µf zi,t
−f yi,t − µf zi,t
−f zi,t

f zi,t − fz,max



+

> 0) =



Fi,0
Fi,1
Fi,2
Fi,3
Fi,4
Fi,5


with int(true) = 1, int(false) = 0

(8.94)

∀i ∈ C, LFF,i = ∂2`i,t
∂F2 = wK

 Fi,0 + Fi,1 0 µ(Fi,1 −Fi,0)
0 Fi,2 + Fi,3 µ(Fi,3 −Fi,2)

µ(Fi,1 −Fi,0) µ(Fi,3 −Fi,2) µ2∑5
j=0Fi,j

+ w2
f I3

(8.95)

The derivatives of the dynamics are simply ∂H
∂X = A and ∂H

∂F = B.

8.3.4 Implementation
The MPCs are implemented using Crocoddyl [Mas+20] which provides several solvers

based on Differential Dynamic Programming (DDP). Computational efficiency is ensured
with multi-threading, C++ template programming and sparsity exploitation. We limit the
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number of iterations of the multiple-shooting DDP solver to 10 since, from our tests, it
appears that the residual value starts to stagnate after a few iterations.

The MPC runs in a parallel process distinct from the main loop of the controller. That
way, it can run at a lower frequency (50 Hz) without hampering the higher frequency
of the other control blocks (1 kHz). Every 20 ms, data about the problem that should be
solved (robot state, reference trajectory, footsteps positions) is sent to the parallel process,
which retrieves them in a shared memory and starts solving. Then, every main loop (every
1 ms) we check in the shared memory if a new result is available. If there is one, then the
main loop retrieves the contact forces that should be applied at contact points, otherwise
it uses a temporary result (for instance the result of the previous solving if feet contact
statuses have not changed). As a whole, we also tried to avoid allocations of memory at
runtime by creating all “big” matrices at initialization and only updating their content.

8.4 Relieving linearity assumption with DDP
In Section 8.3, we kept the same assumptions than in Section 8.2 to get a similar linear

problem and check that the results given by a convex QP solver and a multi-shooting
DDP solver were the same. One of the key assumptions was that predicted and reference
states were close to each other so that we could replace (lr?i − lc)× lfi by (lr?i − lc?)×
lfi in (8.46). This removed the nonlinearity of the cross-product since both lc and lfi
are optimization variable. It also simplified the problem with constant lever arms for
the ground reaction forces (both lr?i and lc? are given as inputs) instead of having them
modified as the optimization goes by.

Most things remain exactly the same than in Section 8.3 for the formulation of the
optimal control problem, with only (8.81d) replaced by:

B(Xt, r
?
t ) = ∆t


. . . 0 . . .

. . . 0 . . .

. . . I3/m . . .

. . . lI -1[lr?i,t − lct]× . . .

 (8.96)

The derivatives of the dynamics according to the state is no more simply ∂H
∂X = A but:

∂H
∂X

= A + ∆t


03 03 03 03
03 03 03 03
03 03 03 03

-lI -1∑
i∈Ct I3×fi,t 03 03 03

 (8.97)

since with b(X) = lI -1∑
i∈C(lr?i,t − lct)×lfi:

∂B
∂X

= ∆t


03 03 03 03
03 03 03 03
03 03 03 03

∂b
∂cx

∂b
∂cy

∂z
∂cx

03 03 03

 (8.98)

And for example with the cx variable:

∂b

∂cx
= -lI -1 ∑

i∈Ct

1
0
0

×
fxi,t
f yi,t
f zi,t

 (8.99)
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because (u×v)′ = u′×v + u×v′ and ∂c
∂cx

=


∂cx
∂cx
∂cy
∂cx
∂cz
∂cx

 =

1
0
0



8.5 Optimizing footsteps locations with DDP
We can go even further in the nonlinearity to exploit the possibilities offered by the

DDP approach compared to the convex QP problem that has to be linear. We can for
instance consider footstep locations as part of the optimization problem instead of using
those determined by the heuristics of the footstep planner. This all-in-one optimization
would allow a completely heuristic-free choice of footstep location without the need to
formulate the heuristics described in Chapter 7. The three MPC variants introduced so far
are illustrated in Fig. 8.8.

(a) Linear (b) Nonlinear (c) Footsteps optimization

Figure 8.8: Summary of the differences between MPC variants. The front-left and hind-right feet
are first in contact, with a switch to the front-right and hind-left feet later in the prediction hori-
zon. Both linear (a) and nonlinear (b) variants use footsteps locations defined by heuristics (green
dots) while the one optimizing footsteps locations (c) works around the reference projections of
shoulders on the ground (orange dotted circles). (a) relies on the reference trajectory of the CoM
(red dotted line) while the two others use instead the predicted one (blue line) that results from the
application of (8.1a).

The OCP is thus changed from (8.80) to:

min
{X},{F},{r}

T∑
t=0

`t(Xt,Ft|rt) + `T (xT )

s.t. Xt+1 = H(Xt,Ft|rt)
Xt ∈ F
Ft ∈ K

(8.100)

Footstep locations r are now a decision variable. To sum up, we now have three
variants of MPC, for which the nature of the lever arms in (8.81d) varies, as recapped in
Table 8.1.

To include footstep locations in the optimization process, plain state variables whose
values can only be changed at impact time are added. This is implemented as a specific
dynamic function inserted in the time line at the beginning of each contact phase:

rt+1 = G(∆rt|Xt,Ft) = rt + ∆rt (8.101)

where ∆rt is the step length taken by the corresponding foot during the previous flying
phase. The size of ∆rt depends on the number of contacts that are modified.

For the DDP solver, each time step of the prediction horizon is associated with a node
which contains the state evolution model. Contact switches are instantaneous and are done
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MPC Variant Footsteps Locations CoM Traj. Lever arm

Linear Heuristics Reference [r?i − c?]×

Nonlinear Heuristics Predicted [r?i − c]×

Footsteps Optimized Predicted [ri − c]×

Table 8.1: Differences between MPC variants

independently of the state evolution, they are thus modeled by another set of nodes G that
are inserted between model nodes H when contact switches occur. The organization of
these nodes is highlighted in Fig. 8.9.

H H H
G

X1 X2 X3

r r r′ r′

X0

r

f0 f1 f2

u

Figure 8.9: Factor graph displaying the correlations between the decision variables of the nonlinear
MPC which optimizes footstep locations. Example with a prediction horizon of 3 time steps and
a contact switch occurring at the 2nd time step.

The positions of footsteps is included even in the nodes for model evolutionH so that
the information is transmitted for the lever arms, cost, derivatives and Hessians computa-
tion. The ground is assumed flat so the height of contacts is always 0 in local frame. Only
8 variables are thus needed to process the 4 contacts. Compared to (8.81c), the new state
vector is:

Xt =



lct
lΘt
lċt
lΘ̇t
lrt

 with ∀t, rt =



rx1,t
ry1,t
rx2,t
ry2,t
rx3,t
ry3,t
rx4,t
ry4,t


(8.102)

Only G nodes are responsible for changes of footsteps positions, so compared to
(8.81b) the new state evolution matrix is:

A =

 I6 ∆tI6 06×8
06 I6 06×8

08×6 08×6 I8

 (8.103)

Cost derivatives and Hessian matrices are again slightly different than for the previous
MPCs, due to the addition of the new footstep variables in the state vector.

For each i ∈ Ct such that (‖rsh,i,t − ri,t‖2−d2
lim)+

> 0 (in that case, δi = 1, 0 other-

93



Chapter 8: Centroidal Model Predictive Control

wise), terms are added to LX that is now of size 18×1 due to the new footsteps variables:

LX += wkin



012×1
rxsh,1,t δ1
rysh,1,t δ1
rxsh,2,t δ2
rysh,2,t δ2
rxsh,3,t δ3
rysh,3,t δ3
rxsh,4,t δ4
rysh,4,t δ4


18×1

(8.104)

Terms are also added to LXX which is now of size 18×18, with γ1 and γ2 defined as in
(8.93):

LXX += wkin

[
012×12 LXX,fsteps

(LXX,fsteps)T 08×8

]
18×18

(8.105)

LXX,fsteps =



-δ1 0 -δ2 0 -δ3 0 -δ4 0
0 -δ1 0 -δ2 0 -δ3 0 -δ4
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

-γ1δ1 0 -γ1δ2 0 -γ1δ3 0 -γ1δ4 0
0 -γ2δ1 0 -γ2δ2 0 -γ2δ3 0 -γ2δ4


(8.106)

New coefficients also appear in the derivative of the state dynamics compared to
(8.97):

∂H
∂X

= A + ∆t


03 03 03 03 03×2 03×2 03×2 03×2
03 03 03 03 03×2 03×2 03×2 03×2
03 03 03 03 03×2 03×2 03×2 03×2

-lI -1∑
i∈Ct I3×fi,t 03 03 03 Γ4δ4 Γ4δ4 Γ4δ4 Γ4δ4

 (8.107)

∀i ∈ {1, 2, 3, 4}, Γi = -lI -1

1 0
0 1
0 0

×fi,t (8.108)

8.6 Optimising footsteps timings with DDP
For the sake of completeness, let’s briefly focus on a fourth MPC variant that has yet

to be tested. Its OCP formulation includes contact timings as a decision variable on top
of previous ones. The solver can now optimize not only the footstep locations r but their
timings Ts as well. The idea behind that is that the solver might prefer to delay or hasten
a contact switch to better track the reference trajectory of the center of mass in some
situations.

min
{X},{F},{r},{Ts}

T∑
t=0

`t(Xt,Ft|rt) + `T (xT )

s.t. ∀t Xt+1 = H(Xt,Ft|rt)
∀t Xt ∈ F
∀t Ft ∈ K

(8.109)
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From a stability point of view, the shorter the duration until the next contact switch,
the less time the base has to deviate from the reference due to the inherent instability of
having only two punctual contacts. As pointed out in Section 6.3, a higher gait frequency
limits the natural tilting of the base since the robot cannot apply momentum along the
axis that goes through its two only punctual contacts. In fact, it has a double beneficial
effect with the base tilting during a shorter duration and the robot being able to correct
that tilt more often as the contact pair switches. However, shorter swing phases can im-
ply higher feet velocities in the air, especially if the solver decides to take long steps.
This effect can be controlled by adding an additional term `hvel in the cost function to
penalize the horizontal velocity of swinging feet. The maximum velocity can be sim-
ply estimated through interpolation, knowing the start and end locations of the current or
incoming swing phases. The challenge remains to find the proper equilibrium between
base stability and feet timings to avoid having the solver overly focused on one of them,
which would be detrimental to the general behavior of the robot. In term of implemen-
tation, this optimization can be done by setting the integration time between DDP nodes
as an optimization variable so that the number of nodes is always the same and it is only
the duration between them that changes to shorten or lengthen a contact phase. The dis-
cretization fineness can however deteriorate if the time step between nodes is increased
too much. Another way to do it is to keep the duration between nodes the same but to
add or remove some nodes on the fly to tune the duration of contact phases. This avoids
the fineness issue but means the changes of duration are incremental and not continuous
anymore since the time step between nodes becomes the minimum time quantum.

8.7 Conclusion
In this chapter we have first described how the reference state trajectory of the base

is generated from the reference base horizontal velocity (forward, lateral, rotation around
vertical axis) given by a user or a higher level controller. This trajectory is given along
with footstep locations as inputs to a centroidal model predictive controller whose goal
is to output desired contact forces that should be applied to track the reference. This
reference trajectory can be augmented along the vertical axis both in position and velocity
to perform jumping motions. We presented several ways of increasing complexity to
solve this optimal control problem. It started from an initial convex quadratic program
which forced us to formulate several assumptions to get a linear problem, notably that
reference and predicted states are close from each other. Then, the same problem was
solved, this time using differential dynamic programming to prove that similar results
could be obtained with this approach. From there on, we were able to relieve one of the
linearity assumptions thanks to the capability of DDP to handle nonlinear problems. We
went even further by including footsteps locations as part of the optimization problem
instead of considering them as given by the footstep planner of Chapter 7 to get a all-
in-one problem that avoids the need to formulate heuristics. Finally, we hinted at a way
to include footstep timings as part of the optimization as well to allow a more complete
control of the gait by the solver.

The next chapter focuses on the different kinds of whole-body controllers that were
implemented to combine both desired contact forces coming for the MPC and the feet
commands from the swing phase trajectory generator. The goal is to convert these quanti-
ties into joint torques, positions and velocities for the low-level impedance controller with
still the overall goal to follow the reference horizontal base velocity.
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Model predictive control allows to take locomotion decisions considering the future
evolution of a system. By reasoning over a prediction horizon, future events such as con-
tact switches can be taken into account before they even happen to obtain an improved
behavior compared to instantaneous controllers that only act according to the current state.
Yet due to real-time computational requirements, these predictive controllers often have
to use simplified models to ease computations. In our case, the centroidal model of the
MPC forgets all notion of joints to consider the robot as a single lumped mass. The evo-
lution of the system is then only guided by the inertia, gravity and the ground reaction
forces at contact points. However in practice the robot is a poly-articulated system with
multiple joints that have to be controlled. Thus, the role of the whole-body controller is
to convert the desired contact forces provided by the MPC and the reference feet posi-
tion, velocity and acceleration given by the trajectory generators into torque, position and
velocity commands that are sent to the low-level impedance controller.

9.1 Task-Space Inverse Dynamics
Task Space Inverse Dynamics allows to perform task-orientated optimization-based

inverse-dynamics control. To this end we used the rigid multi-body dynamics library
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Pinocchio. Unlike the MPC it does not consider a centroidal model of the robot over a
prediction horizon but instead its whole poly-articulated model with each link having its
own mass and inertia instantaneously. It reasons over a weighted set of tasks that should
be performed while respecting constraints and enforcing the whole-body dynamics. In
our case, five kinds of tasks are being used to track the desired contact forces of the MPC
and the feet commands of the swing trajectory generator, with the ultimate goal to follow
the reference horizontal base velocity:

• Contact tasks for feet in contact with the ground to inform the solver that these feet
should not move and that they can be used to apply forces on the ground.

• Force tasks to have the contact forces close to the desired contact forces outputted
by the MPC. These tasks are associated with the contact tasks.

• Tracking tasks for feet in swing phase to follow the 3D trajectory in position, ve-
locity and acceleration generated by the foot trajectory generator, in order to land
at the positions desired by the footstep planner.

• Tracking task for the trunk to follow the reference horizontal velocity given by the
user or higher level controller

• Posture task for all legs to get back to a default position if some degrees of freedom
are not used.

One instance of the first three task is initially created and assigned to each foot. Then
during the gait these tasks are enabled or disabled depending on the state of the feet. In
swing phase only the tracking task is active while in stance phase only contact and force
tasks are enabled. There exists a single posture task for the body and the legs which is
always active and affect the whole body.

A weight is assigned to each task to make it more or less important compared to the
other ones. “Contact + Force” and 3D tracking are never active at the same time so they
do not compete with each other. As the posture task is just intended to be use as a form of
regularization, it should not interfere with the other tasks. Its weight is kept at least 10−2

times less than the others to mimic a hierarchical solver: the relative weight is so small
that it does not impact the other tasks even if in practice all tasks are considered together
during the solving process.

If the i-th foot is in stance phase then the force reference of its force task is updated
with the desired contact force fi outputted by the MPC. If the i-th foot is in swing phase
then its tracking task is updated with the desired position [X ? Y? Z?], velocity [Ẋ ? Ẏ? Ż?]
and acceleration [Ẍ ? Ÿ? Z̈?] outputted by the foot trajectory generator associated with this
foot, as described in Section 7.2.

The inverse dynamics solver is first updated with the current state of the quadruped
(position, orientation and velocity of the base as well as positions and velocities of the
joints). It then tries to find the accelerations for both the underactuated dynamics (base)
and the actuated one (joints) using the contact forces to minimize the cost function (weighted
sum of task errors) while respecting the constraints (contacts, dynamics equations, torque
limits). Joint torques can be retrieved at the end of the optimization with the accelerations
and the contact forces. These torques are then sent to the low-level impedance controller
along with the desired joint positions and velocities.
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The decision variables y of the Task-Space Inverse Dynamics are the base and joint
accelerations q̈, the ground reaction forces F and the joint torques τ .

y =

q̈
F
τ

 (9.1)

All tasks are associated with an error ‖Ay − a‖2 to minimize that depends on the
decision variables y. For the contact force task:

‖AFy− aF‖2 = ‖
[
0 I 0

]
y− F?‖2 = ‖F− F?‖2 (9.2)

For the feet tracking task:

‖Afeety− afeet‖2 = ‖
[
J 0 0

]
y− ẍ?feet‖2 = ‖Jq̈ − ẍ?feet‖2 (9.3)

For the posture task of the base:

‖Abasey− abase‖2 = ‖
[
[Iu 0a] 0 0

]
︸ ︷︷ ︸

only underactuated

y− q̈?base‖2 = ‖q̈u − q̈?u‖2 (9.4)

For the posture task of the legs:

‖Aposty− apost‖2 = ‖
[
[0u Ia] 0 0

]
︸ ︷︷ ︸

only actuated

y− q̈?post‖2 = ‖q̈a − q̈?a‖2 (9.5)

Considering the error of a task function e, we can impose a second order linear dy-
namic for the evolution of the error by applying an acceleration ë = Kd ė+Kp e. So, for
the feet tracking and posture tasks, using estimation from forward kinematics, forward
geometry and encoder measurements, the task reference will be:

ẍ?feet =

Ẍ
?

Ÿ?
Z̈?

+Kd,feet

Ẋ
? − Ẋ FK

Ẏ? − ẎFK
Ż? − ŻFK

+Kp,feet

X
? −X FG

Y? − YFG
Z? −ZFG

 (9.6)

q̈?u = 0 +Kd,base(q̇?u − q̇u) +Kp,base(q?u − qu) (9.7)
q̈?a = 0 +Kd,post(0− q̇a) +Kp,post(q?a − qa) (9.8)

The goal of the solver is to minimize the following cost function:

min
y

∑
i

wi‖Aiy− ai‖2 (9.9)

such that

 J 0 0
Mu −JT

u 0
Ma −JT

a −I

 y =

−J̇q̇
−hu
−ha

 (9.10)

[
0 Fµ 0
0 0 I

]
︸ ︷︷ ︸

B

y ≤
[

0
τmax

]
︸ ︷︷ ︸

b

(9.11)

where subscripts u and a refer to the underactuated and actuated parts respectively. M
is the generalized mass matrix, h the vector of the gravitational and nonlinear terms and
J the contact Jacobian.
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The first line in (9.10) comes from the assumption of non-moving rigid contacts, dif-
ferentiated twice. If contact points do not move, then contact point velocities are null
(Jq̇ = 0), so contact point accelerations are null (Jq̈ + J̇q̇ = 0). The second and third
lines in (9.10) are the equation of the dynamics Mq̈ + h = ST τ + JTF with the un-
deractuated and actuated parts separated. For the inequalities, (9.11) enforces friction
cone constraints for contacts and ensures that torques remain under the maximum values
that the actuators can produce. Matrix Fµ is similar to (8.73) used for the friction cone
constraint in the MPC.

Fµ =


G 05×3 05×3 05×3

05×3 G 05×3 05×3
05×3 05×3 G 05×3
05×3 05×3 05×3 G

 and G =


1 0 −µ
−1 0 −µ
0 1 −µ
0 −1 −µ
0 0 −1

 (9.12)

For computational efficiency, the size of the problem can be reduced by expressing τ
according to q̈ and F in (9.10).q̈

F
τ


︸ ︷︷ ︸

y

=

 I 0
0 I

Ma −JT
a


︸ ︷︷ ︸

D

[
q̈
F

]
︸︷︷︸

ȳ

+

 0
0
ha


︸ ︷︷ ︸

d

(9.13)

The reformulated problem is then:

min
ȳ

∑
i

wi‖AiDȳ + Aid− ai‖2 (9.14)

such that

[
J 0

Mu −JT
u

]
ȳ =

[
−J̇q̇
−hu

]
(9.15)

BD ȳ ≤ b−Bd (9.16)

Once the optimization is over, the joint torques τ can be directly retrieved from the
optimization vector y. Target joint positions and velocities are obtained by integrating
twice the acceleration q̈ over the duration of one time step from the joint positions and
velocities used as input for the whole-body control.

On that point, two feedback schemes can be considered. First, we can choose to use
a direct feedback from the robot by providing the WBC with the joint positions qmesa and
velocities q̇mesa measured by the encoders. In that case, the state of the robot given to the
whole-body model is similar to the real-world one. The targets given to the impedance
controller will thus be the current joint state with a small increment from the integration:

q̇?a,k = q̇mesa + ∆t q̈?a,k (9.17)

q?a,k = qmesa + ∆t q̇?a,k (9.18)

Otherwise, we can choose to use a hybrid control with feedback only on the underac-
tuated part of the state. For the actuated part, the WBC loops on itself with joint positions
and velocities that are simply the targets of the previous iteration. In this case, only the
impedance controller performs feedback on the measured positions and velocities.

q̇?a,k = q̇?a,k−1 + ∆t q̈?a,k (9.19)

q?a,k = q?a,k−1 + ∆t q̇?a,k (9.20)
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(a) Direct feedback from the robot using encoders measurements
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Figure 9.1: Comparison of the two feedback schemes that can be use for the actuated part of the
state. The PD controller is directly performed by the motor control board (MCB) of the robot.

However, even if we managed to get a trotting gait working at low speed (≤ 0.5m/s)
in simulation with such Task Space Inverse Dynamics schemes, stability issues were en-
countered when deploying the architecture on the real robot with either of the two feed-
backs. It seemed that the whole-body control was not able to generate proper commands
for the impedance controller to track the feet motion.

We cannot state for sure the causes of those instabilities since we did not study them
extensively. Yet our hypothesis is that they are linked to how central the robot dynam-
ics is in the scheme when adopting an inverse dynamics approach. Indeed, though the
approach can work well in simulation, because the dynamic model used to compute the
commands is exactly the same as the one used by the simulator to compute the response
of the system, this is no longer true when dealing with the real robot because of model
errors and simplifications. Hence the struggle to regulate a system that does not evolve
as expected. For this reason, we decided to implement the well tested IK + QP strategy
instead of a sole inverse dynamics scheme, as in [Kim+19]. Inverse kinematics, which
relies purely on geometric quantities that are well-known, is less sensitive to those errors
in the dynamics model. Furthermore, another point that likely aggravates this issue is that
Solo-12 is a lightweight quadrupedal robot with almost direct-drive actuators (reduction
ratio of 9). As pointed out and studied in [SHV+06], coupling among the links is more
significant with direct-drive robots and achieving high performances with such actuators
is particularly challenging. So as we did not manage to run the inverse dynamics faster
than 500 Hz, it might have been insufficient to avoid instability due to the fast dynamics
of the actuators.
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9.2 Transition to Inverse Kinematics with a QP problem
The whole-body control relies on two successive blocks: inverse kinematics (IK) and

a torque computation (Fig. 9.2). First, the IK computes the joint accelerations to perform
a set of position and velocity tasks, based on which a QP problem is solved to find a
compromise between tracking these joint accelerations and taking into account the MPC
decisions and the equation of dynamics. This QP problem has to balance decisions that
might be conflicting since the instantaneous decisions of the IK are done without knowing
what has been decided by the MPC that works on a prediction horizon. In that sense, this
approach is less “all-in-one” than the task-space inverse dynamics which performs both
steps at once.

9.2.1 Computing desired accelerations

The first step is to compute command accelerations q̈IK by IK of the full model of the
quadruped. The IK scheme is defined by 3 tasks:

• Keep the base at constant height and follow the reference horizontal velocity (3
DoF for base position)

• Keep the base orientation horizontal and follow the reference yaw angular velocity
(3 DoF for base orientation)

• Follow the reference trajectory of the swing feet while maintaining feet in stance
phase immobile (3 DoF per leg, 12 DoF in total)

For a quadruped robot with 18 DoF, these tasks fully constrain the system but are
compatible as the number of DoF is sufficient to satisfy each of them independently. As
all tasks are compatible, we prefer to discard the hierarchical inverse kinematic scheme
introduced in [Kim+19], which relied on a series of projections in the null space of tasks
of higher priority. In our case, these projections are not required because tasks do not
overlap. We implement instead the following simpler resolution. By stacking all the
task functions in a global vector according to the above description order, a global task
Jacobian of size 18 by 18 can be defined as:

ẋ =



ẋlin
ẋang
ẋ1
ẋ2
ẋ3
ẋ4


= Jq̇ =



oRb 0 0 . . . 0
0 oRb 0

oRb
bT1×oRb J1

. . . ...
oRb

bT2×oRb 0 J2
. . .

oRb
bT3×oRb

... . . . J3 0
oRb

bT4×oRb 0 . . . 0 J4





q̇lin
q̇ang
q̇1
q̇2
q̇3
q̇4


(9.21)

with oRb the rotation matrix from base to world frame, bTi the position of the i-th foot
in base frame (∀i ∈ {1, 2, 3, 4}), Ji the Jacobian of the i-th foot. q̇ is the time derivative
of the configuration vector q (6D base + 12 joints), while ẋ is the time derivative of the
state vector in task space. As such, ẋlin, ẋang are the base linear and angular velocities
in world frame, ẋi the velocity of the i-th foot in world frame, q̇lin, q̇ang the base linear
and angular velocities in base frame and q̇i the joint velocities of the i-th leg. Rather than
directly inverting the whole matrix J, it is sufficient to invert analytically only the J−1

i

102



9.2. Transition to Inverse Kinematics with a QP problem

Inverse
Kinematics

QP
Joint

accelerations

Feedforward
torques

Joint
references

Robot
state

Feet and base
references
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Figure 9.2: Whole-body control scheme with its two successive steps: inverse kinematics and
solving of a QP problem

matrices as other quantities are known, which is more computationally efficient:

J-1 =



bRh 0 0 0 0 0
0 bRh 0 0 0 0

-J-1
1 J-1

1 [bT1]× J-1
1 0 0 0

-J-1
2 J-1

2 [bT2]× 0 J-1
2 0 0

-J-1
3 J-1

3 [bT3]× 0 0 J-1
3 0

-J-1
4 J-1

4 [bT4]× 0 0 0 J-1
4


(9.22)

Ji are 3 by 3 invertible matrices except when the i-th leg is in singularity, that is when
the knee joint is aligned with the upper leg. In practice a damped pseudo-inverse is used
to avoid near-zero singular values that would lead to numerical instabilities when legs are
near singularities [Bus04].

With x?, ẋ?, ẍ? the stacked desired positions, velocities and accelerations of all tasks
and Kp, Kd their position and velocity feedback gains, the command acceleration in task
space is computed as (9.6)-(9.8) to impose a second-order linear dynamics for the reduc-
tion of the task errors:

ẍcmd = Kp(x? − x) +Kd(ẋ? − ẋ) + ẍ? (9.23)

The command joint accelerations can then be obtained:

q̈IK = J-1(ẍcmd − J̇q̇) (9.24)

These accelerations are sent to the second step of the whole-body control to compute
feedforward torque commands.

9.2.2 Computing reference positions and velocities
As Solo-12 motors are current controlled without torque feedback, the low level con-

troller consists of a joint-level impedance controller, as shown in Fig. 4.1. The joint
positions and velocities commands q?a and q̇?a can be retrieved from the actuated part of
qcmd and q̇cmd , defined as:

qcmd
k = qcmd

k−1 + J-1 (x?−x) (9.25)

q̇cmd = J-1 ẋ? (9.26)

9.2.3 Feedforward torques computation
For the computation of feedforward torques, a quadratic programming solver which

relies on relaxation variables δq̈ and δF is used to find contact forces F = FMPC + δF and
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accelerations q̈ = q̈IK+δq̈ that are as close as possible to the force references provided by
the MPC and the command accelerations computed by the IK, while taking into account
the underactuated part of the dynamics.

min
δq̈,δF

δTq̈Q1δq̈ + δTFQ2δF (9.27)

s.t. FMPC + δF ∈ K (9.28)

S(M(
[
q̈IK,u
q̈IK,a

]
+
[
δq̈
0

]
) + g + C) = SJTc (FMPC + δF) (9.29)

with subscripts u and a refering to the underactuated and actuated parts respectively, M
the generalized mass matrix, g the gravitational force, C the nonlinear forces, S the ma-
trix selecting the underactuated dynamics, Jc the augmented contact Jacobian and K the
friction cone linearized to the first order. We can separate the variables between the unac-
tuated part (base) and the actuated joints:

M =
[

N Mu

MT
u Ma

]
18×18

JTc =
[
Ju
Ja

]
18×12

(9.30)

Similarly to the IK, we can use a more computationally efficient way to compute
feedforward torques from the reaction forces FMPC outputted by the MPC and the ac-
celerations q̈IK . It is possible to transform the quadratic programming problem into an
equivalent problem faster to solve as it amounts to a few matrix inversions. In a way, this
is similar to how one of the constraints was integrated into the cost function in Section 9.1
through a change of optimization variable. Using the underactuated part of (9.29) δq̈ can
be expressed as an affine function of δF:

δq̈ = Λ δF + γ (9.31)
Λ = N-1Ju (9.32)
γ = N-1 (JuFMPC − (Nq̈IK,u + Muq̈IK,a + gu + Cu)) (9.33)

Nq̈IK,u + Muq̈IK,a + gu + Cu can be computed by a cheap Recursive Newton-Euler
Algorithm (RNEA) evaluation [CVM+19]. δq̈ is then replaced in (9.27) using (9.31):

min
δF

δTFUδF + 2δTFv (9.34)

s.t. FMPC + δF ∈ K (9.35)

with:

U = ΛTQ1Λ +Q2 (9.36)

v = ΛTQ1γ (9.37)

FMPC+δF ∈ K is equivalent to FMPC+δF =
[
(G1λ1)T (G2λ2)T (G3λ3)T (G4λ4)T

]T
where ∀k ∈ {1..4}, λk ∈ R4,+ and Gk are the edges of the linearized friction cone of the
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k-th foot with friction coefficient µ. The final QP problem is thus of the form:

min
λ

1
2λ

TGT UGλ+ (GTv−GTU FMPC)Tλ (9.38)

s.t. ∀k ∈ {1..4}, ∀i ∈ {1..4}, λk,i ≥ 0 (9.39)

Gkλk =

µ µ -µ -µ
µ -µ µ -µ
1 1 1 1



λk,1
λk,2
λk,3
λk,4

 (9.40)

λ =


λ1
λ2
λ3
λ4

 G =


G1 0 0 0
0 G2 0 0
0 0 G3 0
0 0 0 G4

 (9.41)

This last problem is a box-QP [Dos97; Ye97]. Box constraints are easier to handle
than generic linear constraints, and lead to simpler and more efficient implementations. In
particular, box-QP algorithms are straightforward to implement, do not imply computing
the Lagrange multipliers, and have a much better worst-case performance than regular QP
(linear versus exponential) [NW06]. Once δF has been determined, δq̈ can be deduced
from (9.31). The multi-body dynamics can be written as:[

τu
τa

]
= M(q̈IK +

[
δq̈
0

]
) + g + C− JTc (FMPC + δF) (9.42)

Since we only want joint torques, only τa has to be computed so (9.42) is reduced to:

τa = MT
u (q̈IK,u + δq̈) + Maq̈IK,a + ga + Ca − JTa (FMPC + δF) (9.43)

These joint torques τa are then sent to the low-level impedance controller. Compared
to the previous approach based on inverse dynamics, this one was successfully deployed
on the robot. It allowed the robot to trot around at low speed but failed to reach velocities
higher than 0.5 m/s.

9.3 Improving the IK + QP architecture

9.3.1 Removing position feedback
Both in Section 9.1 and Section 9.2, the tasks of the whole-body control included the

estimated position of the base in world frame, as part of the feedback scheme through
the tracking task of the base with a position error multiplied by a gain in (9.23), and to a
lesser extent to the feet tracking whose position is related to the base one. The footstep
planner and swinging feet trajectory generator of Chapter 7 also involved this estimated
position since future footstep locations depends on the position of the base at the time of
the decision.

Without any exteroceptive sensors, the body position in world frame is not an observ-
able quantity. It can still be estimated through a mix of velocity integration and forward
geometry to avoid drift coming from pure integration, yet it will still drift slowly due
to imperfect sensor measurements and forward geometry: the immobile contact point
assumption does not take into account slipping and rolling around the foot radius. As a
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result, this position estimation will have poor accuracy compared to other more accessible
quantities like the velocity estimation. Because of that, leaving this position in the control
scheme may deteriorate the quality of the behavior due to all the undesired estimation
noise it is bringing with it when, at second glance, it should not even be necessary since
the overall goal of the architecture is to track a desired base velocity. That is why the
“ideal” world frame was introduced in Section 5.5 with a robot moving in the world at its
reference velocity. It allows to keep using a world frame for convenience for the footstep
planner and the foot trajectory generator, without introducing undesired estimation noise.
Base position is removed as well from the tasks of the whole-body control, to leave only
the base velocity component in the base tracking task, as illustrated in Fig. 9.3.

Velo
cit

y tas
k

Feet
tracking

task

Orientation task

o

h
b

Figure 9.3: Tasks and frames of the WBC without base position feedback.

9.3.2 Removing joint feedback
To further continue this redesign of the feedback mechanisms in the control architec-

ture, we can now focus on low-level quantities: joint positions and velocities. As pointed
out at the end of Section 9.1, for inverse dynamics, we could either use a direct feedback
from the robot by providing the WBC with the joint positions and velocities measured by
the encoders, or adopt a hybrid approach with feedback only on the underactuated part of
the state. For the actuated part, the WBC would then loops on itself by integrating twice
the reference joint accelerations to get joint positions and velocities for impedance control
and for obtaining the robot state at its next iteration. The inverse kinematics + QP scheme
can benefit from a similar approach by discarding the encoders measurements as well,
relying only on command quantities for joint positions and velocities. To this end, there
is no need to integrate twice the reference joint accelerations as the IK directly provides
target positions (9.26) and velocities (9.25) that can be used for the next iteration.

Relying on this kind of ideal feedback by reusing the command as the state of the robot
at the next iteration has the advantage of removing a source of noise in the scheme. The
noisy joint velocities that are estimated through finite difference of the increments of joint
encoders could degrade the feet velocity estimation that is used for the feet tracking task of
the WBC. A small noise at the hip and knee level is amplified when computing the velocity
at the tip of the leg. Furthermore, this approach avoids the risk of instability brought by
a double feedback loop that tries to track the same reference with two controllers at two
different frequencies. Typically, the WBC runs at 1 kHz while the impedance controller
runs at 10 kHz. If not properly controlled, the effect of this double feedback could be more
prominent due to the fast dynamics of Solo’s almost direct-drive actuators. A thorough
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frequency study would be needed to better ascertain the limits of this phenomenon in the
case of Solo-12.

A drawback that has to be noted is that by removing this feedback, the impedance
controller is now the only one ensuring the tracking of joint state since the torques out-
putted by the WBC are no longer computed with the measured position of actuators. So
these torques will not necessarily act to reduce the tracking error even if it gets bigger.

9.3.3 Compensation term for contact forces
As the MPC works with a centroidal model of the robot, it does not take into account

the inertia effects that result from leg movements nor the nonlinear effects. Hence the
contact forces computed by the MPC will not compensate or benefit from the forces re-
lated to these effects to stabilize the base and follow the reference velocity. As a result,
while the left side of (9.29) includes the inertia of the base, the inertia of the joints, the
nonlinear effects and the gravitational force, the MPC forces on the right side only take
into account the inertia of the base and the gravitational force. If the inertia of the joints
and the nonlinear effects are non-negligible, as it seems to be the case when the upper-leg
joints are in motion at high speed, the QP will not work around an equilibrium point be-
cause the left and right sides of (9.29) may be widely different (requiring substantial δq̈
or δF to respect the constraint).

To limit this effect, we introduced a compensating term Fcomp that is added to the
contact forces of the MPC to diminish the offset between both side of the equation, so
that the QP starts working closer to the equilibrium and (δq̈, δF) are lower. Instead of
considering FMPC + δF, we consider FMPC + Fcomp + δF with:

Fcomp = (JTu )† (Cu + Muq̈IK,a) (9.44)

where Muq̈IK,a accounts for the effect of joints inertia on the base dynamics. {·}†
denotes the pseudo-inverse operator. As seen in Fig. 9.4, adding this compensation term
resulted in a reduction of the oscillation of the linear velocity by a factor of roughly 2.
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(a) Forward velocity oscillations
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(b) Roll oscillations
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(c) Pitch oscillations

Figure 9.4: The compensation of contact forces reduces oscillations in forward velocity, roll and
pitch.

9.4 Low-level impedance controller
The low-level impedance controller is the last interface between our control archi-

tecture and the motor boards that drive the joints with a high-frequency current loop. It
accepts target torques, joint positions and velocities as inputs and returns a final desired
torques for the actuators.

τ ?mot = τ ? +Kp(q?a − qa) +Kd(q̇?a − q̇a) (9.45)

These torques are then converted into current references using the motor torque con-
stant Kτ = 0.025 Nm/A and the reduction ratio R = 9:

I?mot = τ ?mot
Kτ R

(9.46)

Using only target positions and velocities in (9.45) would force to have high Kp and
Kd gains to move properly, as the torque commands would only be generated through
tracking error. This would be akin to position control, with a very stiff behavior of the
joints. It is for instance the case in [Kum+21] with the A1 quadruped for which aKp value
up to 50 is used, as their neural networks only provides position targets. On the opposite,
torque control with τ ? alone would quickly diverge as these torques are computed with
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a model that does not perfectly fit the reality, so the robot would not move as expected
due to torque constants that are not exactly the same for all motors, the elasticy of the
mechanical structure, unmodeled phenomena, and so on. In the end, combining torque
commands with target positions and velocities is beneficial to the locomotion for two
reasons. Compared to a pure torque command, taking into account position and velocity
errors helps correcting model inaccuracies and unexpected events. It also enables the use
of lower gains because τ ? provides most of the torque amount even without any tracking
error. As a result, we can achieve a more compliant behavior of the joints to dampen
impacts with the ground. In practice, we use Kp = 3 Nm/rad and Kd = 0.3 Nm/(rad/s)
for all joints.

9.5 Conclusion
In this chapter, we have described how the whole-body controller has evolved over the

duration of this thesis. Our initial implementation consisted of a Task Space Inverse Dy-
namics that allowed to perform task-oriented optimization-based inverse dynamics. How-
ever, instability issues during real-world deployment led us to switch to a combination of
inverse kinematics with a quadratic program. We then presented several improvements to
this architecture, such as removing base position and joint feedbacks, and adding a com-
pensation term to take into account inertia effects due to leg movements. Those changes
resulted in a reduction of base oscillations and thus increased the velocity the robot could
reach before falling. We also briefly evoked the low-level impedance controller which
computes the final torque commands sent to the motors, based on the difference between
the desired and current joint positions and velocities, and the feedforward torques of the
whole-body controller.

The next part of the thesis presents various implementation results in which the control
architecture described so far was deployed.
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Chapter 10
Validation of the baseline architecture
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10.1 Introduction
This chapter presents a validation of the Inverse Kinematics + Quadratic Program-

ming scheme that was presented in Section 9.2. It replaces the Inverse Dynamics that we
initially tried to deploy on the quadruped, but did not succeed, as explained at the end of
Section 9.1. At that point, no controller had yet been successfully ran to move around
with a real Solo quadruped since our Inverse Dynamics failed when we went from simu-
lation to reality. As a secondary goal, if the deployment is successful, we want to assess
the effectiveness of the IK + QP scheme in terms of reachable velocities and robustness
to disturbances.

We will first present preliminary results obtained in simulation using a full model
of the quadruped provided by the Open Dynamic Robot Initiative [ODR] based on the
expected dimensions and weights of the various components of the Solo-12 quadruped.
This model is shown in Fig. 10.1. Then, we will describe the experimental results obtained
by deploying the controller the Solo-12 robot built at LAAS while choosing its reference
velocity with a joystick and disturbing the robot by pushing it with a stick.
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Figure 10.1: Solo-12 walking in simulation on a flat ground. Each link has its own mass and
inertia, computed beforehand based on the CAD model of the assembly. The visual mesh is also
used for collision checks by default. It would potentially be possible to fasten the simulation by
using collision capsules instead if it ever proved to be a problem.

10.2 Simulation setup
The control framework was implemented in Python for ease of use and prototyping.

Achieving real time performance was made possible by exploiting NumPy vectorial ca-
pabilities, using libraries that provides Python bindings for their C implementation and
compiling computation intensive parts (coded in C++ with Python bindings).

The main control loop (footstep planner, foot trajectory generators, whole-body con-
trol and state estimator) runs at 500 Hz on a i7-7700 CPU (3.60 GHz) while the MPC
runs at 50 Hz in a parallel process and communicates with the main loop through a shared
memory. Low-level kinematics and dynamics computation were performed using the
Pinocchio library that provides standard rigid body operations and algorithms for poly-
articulated systems [CVM+19], [Car+19]. The MPC variant that is used here is the linear
convex quadratic programming one that was presented in Section 8.2. It exploits the
sparcity of its constraint matrices using the OSQP solver [Ste+20]. The simulation envi-
ronment was set up using PyBullet which offers contacts simulation and a Python API to
send torques and retrieve relevant data [CB20].

Before testing the proposed control scheme on the real hardware we assessed its sta-
bilization capabilities in a simulated environment for a walking trot gait with period set
to 0.32s. The first scenario consists of a straight walk followed by a turn on a flat ground
with an external perturbation force of +5 N along X at t = 9s and another one of +5
N along Y at t = 11s. The perturbations are directly applied at the center of the base
in the simulator. The second scenario places the robot on a rough terrain: the ground is
full of small bumps whose height is random (uniform distribution between 0 and 5 cm),
as shown in Fig. 10.2. In both scenarios the reference velocity is initially zero. During
the first phase of the motion, where the robot is moving forwards, its velocity is slowly
increased, up to 1.5 m/s in the first scenario, and up to 1 m/s in the second one. Then,
in the second phase, the angular velocity is increased up to 0.4 rad/s. These reference
velocity profiles are represented by dotted orange lines in Fig. 10.4b and Fig. 10.5b.
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Figure 10.2: Solo-12 quadruped walking in simulation on a rough terrain.

10.3 Simulation results
Simulation results for both scenarios are shown in Fig. 10.4 and Fig. 10.5 respectively.

In scenario 1 the robot reaches its reference forward velocity of 1.5 m/s and returns to its
nominal behaviour after both external perturbations. As the robot moves faster it gets in-
creasingly tilted in pitch despite a reference angle at 0◦. This may be due to a compromise
with other quantities in the cost function of the MPC which leads to a minima with a non-
zero pitch angle in average. Scenario 2 highlights a limit of the proposed control scheme:
the ground is supposed to be flat so feet can slip during stance phase when landing on
an unexpected tilted surface such as the sides of bumps. Since the controller expects to
work in nominal conditions (flat ground), the contact forces it wants to apply can be out
of the friction cone of the actual tilted surface. Without knowledge of the environment a
possible solution would be to continuously check for slipping during stance phases and
react accordingly if such an event is detected, as done in [Blo+13].
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10.4 Experimental setup
Experiments were performed indoors on a flat ground. Small rubber bands were

glued on the robot feet to improve friction with the plastic flooring. To be conserva-
tive, we used a friction coefficient of 0.9 with the actual coefficient assessed around 1.0.
Ground truth was retrieved thanks to a motion capture system consisting of a set of 20
infrared cameras spread around the workspace that track at 200 Hz 9 reflective markers
installed on top of the robot base. Cut frequencies f vc and fpc of the velocity and position
complementary filters were set to 3 Hz and 0.4 Hz respectively. The MPC weights cho-
sen for position, orientation, linear velocity and angular velocity errors are respectively
[2.0, 2.0, 20.0, 0.25, 0.25, 10.0, 0.2, 0.2, 0.2, 0.0, 0.0, 0.3]. They are the same as the ones
used for Mini Cheetah [MIT] and worked out of the box for us. The weights for contact
force regularization were set to 1 × 10-5 for all components. To perform inverse kine-
matics we used Kp = 100 and Kd = 2

√
Kp = 20 for all tasks. In the initial formulation

of the QP problem (9.27) we used 0.1 and 1.0 for the weights of the acceleration and
contact force relaxation variables (Q1 and Q2 respectively). For the on-board impedance
controller, all joints shared the same proportional feedback control gains of 6 Nm/rad and
0.2 Nm/(rad/s) respectively. The performed gait was a trot with a period of 0.32s. During
the experiments the robot was powered via an external power supply. Communications
with the robot (sensors data retrieval and command sending) were done using an Ethernet
link to the control desktop computer.

10.5 Experimental results
Fig. 10.6 presents the results of an experiment during which the Solo-12 quadruped

is controlled by a user with a joystick (until t = 18s). The robot performs first a lateral
walk to the right then to the left, a clockwise rotation along the vertical axis and finally a
short walk forwards. The robot is then ordered to stay immobile (zero velocity command)
while it is being pushed sideways by the user (after t = 18s).

Thanks to the motion capture ground truth we can assess both the quality of estimation
and the reference tracking. The quality of the height estimation seems greatly influenced
by the variation of others quantities both in orientation and velocity. This can be explained
by slight slippings of feet which produce an undesired swaying motion in pitch. Estima-
tion of other quantities seems robust to perturbations except during lateral walks at t = 8s
and t = 11s. The velocity reference given by the user is correctly followed when the
quadruped does not have to face external perturbations.

In the second half of the experiment the robot manages to recover from the four side-
ways perturbations that it receives at t = 22s, t = 23s, t = 24.5s and t = 26.5s. The
third push also transmits a rotating motion to the robot. In all cases it counters the un-
desired velocity and returns to a nominal behavior in less than half a second. A video of
locomotion and push recovery is available online1.

1https://gepettoweb.laas.fr/articles/leziart2021.html
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10.6 Conclusion
This chapter reports our first experimental results, validating the various control blocks

that have been implemented so far on a real robot after prior confirmation in simulation.
The set of heuristics used in the footstep planner reacts accordingly to changes of the ref-
erence and measured base velocities. The rest of the implementation reproduces what is
now a well-known control architecture for quadruped robots, with a combination of cen-
troidal predictive control and instantaneous whole-body control, as previously described.
These experiments also confirm that performing inverse kinematics by stacking compat-
ible WBC tasks in a single Jacobian that is then inverted is a valid way to avoid a hier-
archical scheme with successive projections in null spaces of tasks with higher priorities.
We have been able to obtain a robust trotting gait at low velocity on a flat ground. With
this controller, the robot can walk on small obstacles on the ground without falling despite
the level ground assumption, as well as handle reasonable pushes with a stick.

However, the maximum velocity the robot can reach with this controller is still far
from the state of the art for quadrupeds of that size, which can go above 3 m/s such
as in [Kim+07] with a similar control architecture or [Ji+22] with neural networks, both
deployed on the Mini-Cheetah platform. For what we have now, with base velocities
lower than 0.5 m/s, the full capabilities of Solo-12 are far from being reached yet. For
comparison, a standard human walk is around 1.4 m/s. These experiments were primarily
done to confirm the soundness of the approach before building further upon it. As such,
what has been shown in this chapter will act as a baseline for future developments. In the
next chapter, we will show how the improvements presented in Section 9.3, that were not
implemented in Chapter 10, allow both to reach higher velocities with the linear MPC and
to deploy the other MPC variants of Section 8.4 and Section 8.5.
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11.1 Introduction
In this chapter, we compare the performances of the three MPC variants that were

presented in Chapter 8, whose real world deployment relies on our improved control
architecture. The MPC first variant presented in Section 8.2 is based on the assumptions
of small pitch and roll angles and angular velocities. The trajectory of the center of mass
is also assumed to follow its reference perfectly. Foot placements are not part of the
optimization problem. They are obtained beforehand, based on the heuristics described in
Chapter 7. A first assumption that can be lifted is to consider the predicted trajectory of the
center of mass, instead of the reference one, to compute the lever arms with the contact
point on the ground, as described in Section 8.4. The problem is then no more linear,
due to the cross product of the lever arms involving an optimization variable (predicted
trajectory of the CoM). Furthermore, another assumption can be lifted by considering the
location of footsteps as optimization variables of the optimal control problem, instead
of taking them as granted using the heuristics of the footstep planner, as described in
Section 8.5. The linear centroidal MPC, tested in the previous chapter and solved with
convex linear quadratic programming, has been rewritten in Section 8.3 to be solved with
differential dynamic programming so that all variants use the same solver.

While the general control architecture is the same as in the previous chapter, efforts
have been made to improve the nominal behavior in terms of stability and robustness
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by using the developments presented in Section 9.3. Formerly, base oscillations during
motion hampered real-world deployments by impacting the consistency of desired contact
forces and footsteps locations over a gait period. These oscillations limited the maximum
velocity the robot could reach to less than 0.5 m/s and made unstable the variant that
optimizes footstep locations. Reducing their amplitude was especially helpful for the
stability of results.

To sum up, the overall objective is to evaluate whether the nonlinear centroidal MPC
scheme optimizing footholds performs better than a more modular scheme that uses a
heuristic for foot placement and relies on a simplified model. Depending on how well
the heuristic-free MPC can perform on the real robot compared to variants that rely on
hand-defined heuristics, it could be a way to relieve the need for expert knowledge at the
cost of losing modularity by centralizing decisions in a single control module.

11.2 Experimental setup
Experiments were first performed indoors on a flat carpet-like material. Ground truth

was retrieved thanks to a motion capture system comprising 20 infrared cameras spread
around the workspace that track 13 reflective markers, installed on top of the robot base,
at 200 Hz. During the experiments the robot was powered via an external power supply.
Communications with the robot (sensors data retrieval and command sending) were done
using an Ethernet link to the control desktop computer. Out of the prototyping phase, all
control blocks were converted from Python to C++ for computational efficiency, except
for the main loop which calls them, which allowed it to go from 500 Hz to 1 kHz. MPCs
were implemented using Crocoddyl [Mas+20] as in [Cor+21]. For real-time purpose, they
all run in a parallel process called at 50 Hz. Desired contact forces are retrieved after a
delay due to the solving time (≈ 2 ms for the linear and nonlinear MPCs, ≈ 6 ms for
the footsteps MPC). The QP problem in the WBC is solved with OSQP [Ste+20]. The
MPC weights chosen for position, orientation, linear velocity and angular velocity errors
are respectively [2.0, 2.0, 10, 0.25, 0.25, 10, 0.2, 0.2, 0.2, 0, 0, 0.3]. The weights for contact
force regularization were set to 5×10-5 for all components. To perform inverse kinematics
we used Kp = 10, Kd = 2

√
Kp = 6.3 and a weight of 1 for all tasks. For the QP problem

(9.27) we usedQ1 = 0.1I6 andQ2 = 10I12 for the weights of the acceleration and contact
force relaxation variables. For the on-board impedance controller, all joints shared the
same proportional and derivative feedback control gains of 3 Nm/rad and 0.3 Nm/(rad/s)
respectively. The performed gait was a trot with a period of 0.48s as it proved to be
a good trade-off for evaluating the MPC performances. A faster gait would be naturally
more stable due to the faster switching between diagonally opposed pairs of contacts, thus
making the MPC role less crucial. A slower gait proved to be harder to stabilize because
the base can tilt too much during a single swing phase, which can harldy be corrected
(with two contact points we can only act along an axis). Deployment of the last MPC
variant on the robot was made possible thanks to the reduction of velocity oscillations that
resulted from the compensating contact forces described in Section 9.3. They improved
the consistency of the footsteps optimization which was previously diverging. As the
estimated velocity of the base influences footsteps positions over the prediction horizon,
the smaller the oscillations, the less these positions are modified over the span of a gait
period.
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Figure 11.1: Top view of the robot trajectory in the two considered scenarios obtained by integra-
tion of the reference velocity.

11.3 Experimental results

11.3.1 Indoor tests

Performances are compared for the two scenarios shown in Fig. 11.1. During the
first scenario the quadruped goes straight forwards. The velocity command is slowly
increased during 4 seconds, stays at 0.8 m/s during 2 seconds, then goes back down to
0 m/s in 4 seconds. During the second scenario the quadruped performs several turns
in a row. The velocity command goes up to 0.5 m/s forwards with ±0.8 rad/s along
the vertical axis to produce a S-shaped trajectory. Polynomial interpolation generates
command profiles that are continuous both in velocity and acceleration. Motion capture
data is reported in Fig. 11.3 and Fig. 11.4. Linear and non-linear variants lead to very
close behaviors over the whole movement in both scenarios. Differences with the variant
that optimizes footsteps location are noticeable but the values and amplitudes of errors
and oscillations with respect to the references are roughly the same. The oscillations of
the forward velocity around its reference have a maximum amplitude of around 0.15 m/s
during the high-velocity phase of the first scenario. Lateral velocity tracking seems stable
during both tests with an amplitude of roughly 0.1 m/s, even during the turn in scenario
2, and with a shift of the average value toward the outside of the turns. For the considered
angular velocities (up to±0.8 rad/s), turning does not impact forward velocity tracking in
a noticeable way. Joint torques estimated through current measurements peak at 2.1 Nm
during the high-velocity phase. Actuators can deliver up to 2.5 Nm at 12 A, so hardware
capabilities are not fully exploited yet [Gri+20]. There is still way to improve the control
architecture and reach higher velocities.

11.3.2 Outdoor test

In complement to indoor locomotion, the different controllers were tested on wet
grass, as shown in Fig. 11.2. The quadruped was powered by 2 on-board batteries, one
at the front, one at the back, that were not included in the model. Their weight of 100 g
acted as an additional perturbation. The robot managed to follow the velocity profile up to
0.8 m/s without falling with each MPC variant. The lack of contact detection on this wet
and bumpy surface resulted in numerous foot slipping when the robot tried to apply forces
with a foot that had not properly landed. As seen on Fig. 11.5, the most notable slipping
occurs at 6.6 s for the linear MPC, with peak lateral and angular velocities of -0.5 m/s and
1.3 rad/s respectively. The terrain also leads to larger oscillations around the reference
values compared to indoors, especially during the high-velocity phase. Currently, neither
the footsteps heuristics of the first two variants nor the footsteps optimization of the last
one are design for handling a non-flat ground (slope, stairs, bumps). They could be ex-
tended either by using privileged information about the environment or by implementing
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some sort of online slope detection. Friction cone constraints would have to be refactored
as well to match non-horizontal surfaces, hence why performances were only compared
on a flat ground. Moreover, applying a repeatable disturbance to a walking quadruped is
not trivial in practice, contrary to simulation. Slight differences in direction, strength or
duration of the push can lead to widely different behaviors, especially depending on the
gait status. If it happens at the beginning of a swing phase, the controller can directly
react and adjust footsteps positions accordingly. However, if it occurs near touchdown,
then it is too late to widely modify contact location. For these reasons, robustness to dis-
turbances was not compared during our experiments. Videos of both indoor and outdoor
tests is available online1.

Figure 11.2: Trotting gait on wet grass. Connection with the robot was done by Wifi with the same
computer than we used indoors. Previous experiments showed that packet loss did not hamper the
behavior for distance under 25 m.

11.4 Discussion
As explained in Chapter 9, our first attempt in designing the whole-body control block

of this architecture was to implement an inverse dynamics (ID) that could directly handle
both position and velocity for the base and the feet, and ground reaction forces, as in sim-
ulation [Cor+21]. However, using this approach we did not achieve a stable behavior on
the real robot. This could be due to the sensitivity of ID to mismatches between model
and hardware. Moreover, Solo-12 is a lightweight quadrupedal robot with almost direct-
drive actuators. As studied in [SHV+06], coupling among links is more significant with
the fast dynamics of such actuators. So, as we did not manage to run the ID faster than
500 Hz, it might have been insufficient to avoid instability. For this reason, we decided
to use instead the approach proposed in [Kim+19], that includes an IK to compute the
joint accelerations to perform the position and velocity tasks, described in Section 9.2,
based on which a QP problem is solved to find a compromise between tracking these
joint accelerations and taking into account MPC decisions and the equation of dynamics
(9.27)-(9.29). This QP problem has to balance decisions that might be conflicting since

1https://gepettoweb.laas.fr/articles/leziart2022.html
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Figure 11.3: Forward, lateral and angular velocity profiles for the first scenario of Fig. 11.1.

the instantaneous decisions of the IK are done without knowing what has been decided
by the MPC that works on a prediction horizon. Finding the right balance is not trivial, as
mainly relying on IK (Q1 � Q2) would remove the predictive aspect of the architecture,
whereas mainly relying on the MPC (Q2 � Q1) would instead hamper the feet tracking
tasks. Both simulations and experimental tests show that the implementation of the three
MPC variants leads to quite similar behaviors, contrary to what we could have expected
a priori. Now that the whole architecture has been refined and the ID replaced by an
IK+QP scheme, the margin for behavioral improvement has been reduced, so the gains of
using nonlinearity and footsteps optimization might have been somehow smoothed out,
at least for the considered velocities. The quadruped falls at higher velocities due to the
legs reaching singularity during motion. Our controller does not handle flight phases yet
(no feet in contact) so the velocity the robot can reach is limited by the gait frequency
and the dimensions of the legs. A key result is to have shown that a centroidal MPC
which optimizes footsteps location online can be successfully deployed on our quadruped
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Figure 11.4: Forward, lateral and angular velocity profiles for the second scenario of Fig. 11.1.

robot, which was an important objective following [Cor+21]. The question of optimizing
all the variables in the same MPC or treating them in separate blocks arises. On the one
hand, modularity can be preferred with footsteps decisions that are independent from the
computation of contact forces by the MPC. With the first and second variants, the plan-
ner with simple heuristics could be replaced by another control system to explore new
paradigms. It could go from a neural network that implicitly learns adaptive heuristics
during its training [Mag+19], to more path-planning oriented approaches that leverage in-
formation about the environment to place the feet at the best locations [Son+21]. Gait type
and period could be tuned as well since the MPC does not have any notion of gait per se.
On the other hand, all-in-one optimization with the third variant avoids the need to for-
mulate heuristics and let the possibility to tackle more extensive and difficult challenges,
such as an optimization of footsteps timings as well [Cor+21].
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Figure 11.5: Forward, lateral and yaw velocities during the outdoor tests. Due to a lack of motion
capture system outdoors, represented quantities are the estimated ones.

11.5 Conclusion
This chapter reports experimental results that validate the improvements done to the

nominal control architecture of Solo-12 to reduce base oscillations. Three variants of a
centroidal MPC previously tested in simulation only were deployed on the real robot.
The overall improvement of the architecture also increased the maximum velocity the
quadruped could reach, from 0.5 m/s in Chapter 10 up to 1 m/s.

The central result is to have shown that comparable performances can be obtained
both in simulation and on real hardware with all MPC variants, either with the nonlinear
centroidal MPC scheme optimizing footholds or the modular scheme that relies on heuris-
tics for foot placement and on a simplified model. In view of the modifications that were
made to implement these controllers on the real robot, the reasons for this difference have
been thoroughly discussed. We also discussed the interest of using a modular architecture
versus a more global optimization scheme.
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12.1 Introduction

The results presented in this chapter are assessing the implementation of a planning
scheme that augments the proposed control architecture by using privileged information
about the environment to simultaneously plan the motion and footstep locations several
steps ahead. It provides elements for the robot to overcome situations that would be too
complex for the baseline heuristics, while respecting its kinematic constraints, as long as
hardware capabilities are sufficient to produce the desired motion. Such situations appears
when the assumption of a flat ground and the sheer robustness of the controller are not
enough anymore, such as terrains with deep holes or steps too high to climb with the
nominal feet swinging motion.

Several stages of the scheme presented in Section 7.3 have to be validated. The first
one chooses on which surfaces to step on based on a set of available surfaces in the envi-
ronment. Then, a quadratic program optimizes the footsteps locations to respect the lim-
its of chosen surfaces. Finally, an improved trajectory generator using 3D Bézier curves
drives swinging feet from one location to another under collision-avoidance constraints.

Preliminary tests were done in simulation using the physics engine PyBullet with the
full model of the robot, as in Chapter 10, to confirm that the pipeline was working properly
before deploying it on the robot.
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12.2 Experimental setup
Experiments were first performed indoors with a motion capture system comprising

20 infrared cameras spread around the workspace. They are used to locate the robot by
tracking 13 reflective markers installed on top of the robot base, at 200 Hz. Solo-12 has no
exteroceptive sensors yet so there is no other way to get an accurate position of the base
with respect to the surfaces in the environment so that there is no misalignment between
the actual robot position and the position used by the planner.

Similarly, the challenge of detecting and reconstructing available surfaces for the first
stage of the planner is also circumvented with the motion capture. The exact location
of surfaces in the world is defined before the experiment, we then ensure the physical
obstacles are correctly placed to fit these locations with the help of infrared markers.
The next 6 steps of the robot are planned every 160 ms, while the robot whole-body
control is computed at 1 kHz as during the previous experiments of Chapter 11. Several
environments were built to perform qualitative evaluations of the framework:

• Flat terrain to assess the overall robustness of the controller to perturbations.

• Straight hole on the ground, up to 15cm wide, to show the ability to avoid a forbid-
den area between two contact surfaces while maintaining balance for any angle of
approach.

• Bridge-like structures with two non-parallel 10cm-wide walkways that make foot
positions more challenging to find by forcing contacts to move away from the ver-
tical of the shoulders to land in allowed areas.

• Straight stairs to show the usefulness of the collision avoidance module that modi-
fies the swing trajectories to avoid hitting the edges of steps.

• Stepping stones to illustrate the necessity of the contact plan and check if the foot-
step plan is adapted fast enough to handle quick changes of the reference velocity.
The stepping stone were rectangles of 22 cm by 11 cm, either flat or with a height
of 6 cm.

12.3 Experimental results
During experiments, the robot managed to recover from strong perturbations on flat

ground and could cross a hole materialized by a line drawn on the ground, go back-
and-forth and turn over it (Fig. 12.1a). It successfully walked on a drawn bridge which
required to move its left feet away from his right one (Fig. 12.1b). The stairs were climbed
up an down with varying angles of approach and the robot could turn in the middle of
the stairs without falling (Fig. 12.1c). On stepping stones the robot managed to place
correctly its feet and maintain its balance even with quick variations in the reference
velocity, for example when deciding to stop or to turn in the middle of the challenging
area (Fig. 12.1d).

A video that highlights some of these experiments as well as simulation results is
available online1.

1https://gepettoweb.laas.fr/articles/risbourg_corberes_2022.html
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(a) Straight hole (b) Bridges

(c) Straight stairs (d) Stepping stones

Figure 12.1: Situations that were considered to evaluate the planning framework. The planner is
given the yellow areas as available surfaces. Feet are not supposed to land in red areas since they
are not part of the set of available surfaces to choose from. Pictures extracted from [Ris+22].

(a) t = 0 s (b) t = 2 s

(c) t = 4 s (d) t = 6 s

Figure 12.2: The quadruped successfully crosses the area with stepping stones. Knowing the
location of available surfaces, it avoids landing its feet in the holes, even when turning on the spot.
Snapshots extracted from [RIS].
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(a) t = 0 s (b) t = 5 s

(c) t = 11 s (d) t = 15 s

(e) t = 23 s (f) t = 29 s

Figure 12.3: The quadruped first climbs the stairs while being oriented perpendicular to the steps.
At the top, it turns right then left and goes down while being oriented diagonally. It success-
fully goes back to the initial position without falling or hitting the edges of the steps. Snapshots
extracted from [RIS].

12.4 Conclusion
This chapter reported experimental results that validate a planning scheme added on

top of the baseline control architecture. Using exteroceptive information about the lo-
cation of potential contact surfaces in the environment, it allows the robot to overcome
situations that would be to complex to handle with a blind heuristic walk. It serves as a
proof of concept for what could be a future improvement of the autonomous navigation
capabilities of Solo-12, once exteroceptive sensors combined with a surface detection
pipeline are installed and deployed.

132



Chapter 13
Contact detection for rough terrains and
jumping motion

In this chapter we present early results of the online contact detection described in
Section 6.4. We compare performances during locomotion on rough terrain, in simulation,
with and without this detection. Without this detection, contacts are enabled or disabled
based on predefined contact timings that are considered as trustful. This works well for
trotting indoors on a flat ground without obstacles since the swinging feet tracking is
good enough. On uneven grounds, contact mismatches have more chance to be significant
enough to be detrimental to the quality of the locomotion. Because the controller runs with
the assumption of a flat ground, if the target position of a swinging feet is in a depression,
the foot will stop in the air a few centimeters above the ground, then it will hit the floor
as the leg suddenly extends due to the activation of the contact. On the contrary, if it hits
an obstacle, like a stair, earlier than expected, the controller will try to reach the target
position at floor level, thus will apply unexpected forces on the obstacle. Online contact
detection would allow to detect if a contact happens too early or too late instead of relying
on the predefined contact sequence. So, in such cases, we can expect an improvement of
the robot behavior. These tests in simulation are a way to partially validate the approach
for future real-world deployments.

This contact detection has another application in the case of jumping motion. Due to
control inaccuracies, in practice the flight duration for each foot only roughly corresponds
to the expected one. It can be caused either by a slightly wrong vertical velocity at takeoff,
or by an unexpected evolution of the base orientation in the air which make feet touch the
ground earlier or later than expected. A safe way to avoid contact mismatches in such
cases is to simply not activate contacts and to only rely on the impedance controller to
dampen the impact. With online detection, we could actively act to absorb the impact and
stabilize the base with individual feet once they have been detected as in contact. This will
also partially validate the method presented in Section 8.1.2 to produce jumping motion.

13.1 Simulation setup for the height field
The control architecture is deployed in simulation in the physics engine PyBullet.

It is overall similar to the one that was used for the comparison on model prediction
controllers in Chapter 11, except with an additional contact detector which checks at each
iteration whether a new contact has been detected or not, based on the method and metrics
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presented in Section 6.4. To test the relevance of contact detection, we do not use a flat
ground has we did so far but a height-field instead: the ground is divided into cells and
each cell is given a random height between 0 cm and 5 cm, using an uniform distribution.
The robot is placed on a flat area at the start of the simulations for easier initialization. An
example of height field is displayed in Fig. 13.1.

Figure 13.1: Random height-field loaded in simulation. The 3D model of the ground is generated
at the start of the simulation. Different distributions of steps can be obtained by changing the value
of the random seed if variability is desired.

The apex height of the swing trajectories is set to 10 cm to have enough margin to
avoid mid-flight collision when going from a 0 cm step to a 5 cm step. The reference
velocity profile slowly climbs up to 1 m/s forwards in 8 s and then maintains this value.

13.2 Simulation results for the height field
Fig. 13.2 highlights trajectory tracking performances of the quadruped on random

height field with and without online contact detection. In both cases the quadruped
reaches the end of the scenario without falling. State oscillations are lower for all compo-
nents when using the online contact detection, which points out the interest of the method.
This can be explained because the whole behavior is impacted when a contact is early or
late compared to what the baseline controller was expecting. For instance, if the contact
is actually late because the foot stopped above a hole in the ground, without contact de-
tection the contact will be enabled anyway and the controller will plan and act as if it
could apply a force on the ground with this foot. Yet, until the leg extends and touches
the floor, the base will not be stabilized as expected, causing a tilt in roll or pitch, and the
quadruped will push less than expected on the floor, thus decreasing the velocity tracking
performances. The online contact detection avoids such situations as the contact is not
enabled and the rest of the controller knows this foot cannot be used. On the contrary, for
early contacts, the controller can immediately react and do not apply unexpected forces on
the ground while trying to reach a target position that is inside the ground. The displayed
height of the base is the ground truth in world frame. It appears higher than the reference
value since steps have a height between 0 and +5 cm and the controller tries to keep the
base at the reference height (here ≈ 0.19 cm) with respect to the contact points.
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Figure 13.2: Comparison of tracking performances with (red) and without (blue) online contact
detection compared to the reference trajectories (dotted black).
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13.3 Simulation setup for jumping
For the jumping tests, the robot relies on the approach that was described in Sec-

tion 8.1.2. It is placed on a flat ground and given a gait sequence that includes a flight
phase, as follows:

G =



1 1 1 1...
...

...
...

1 1 1 1
0 0 0 0...

...
...

...
0 0 0 0



Pre-jump phase

Flying phase

(13.1)

The corresponding reference state trajectory is given to the MPC for solving. The
contact forces profile over the whole horizon is then retrieved and kept in memory to be
played without replanning each 20 ms as we usually do during walking. This is done to
ensure consistency of the force profile during the critical pre-jump phase. Otherwise, as
times goes by and the ballistic phase gets closer, lines of 1s appear at the end of the gait
matrix and the MPC starts to consider the post-touchdown stabilization at the expense of
the jump phase. This changes a bit the force profile as the tracking error is spread equally
over the whole horizon. Ideally we could tune down or disable the post-touchdown error
so that the MPC entirely focus on reaching the proper velocity at the beginning of the
ballistic phase. The reference vertical velocity is also given to the whole-body control for
its base velocity task.

Two scenarios are investigated. First, the robot jumps on the spot to reach a height of
0.6 m, corresponding to a flight phase of 0.56 s. Then, it also tries to jump up to 0.6 m, but
this time while moving forwards with a target velocity of 0.8 m/s during the flight phase,
which would correspond to a total displacement of around 0.6 m forwards.

13.4 Simulation results for jumping
As shown in Fig. 13.3, the quadruped follows the expected jumping sequence, with an

initial lowering phase followed by a sudden rising to reach a sufficient vertical velocity to
leave the ground in a jumping motion. Fig. 13.4 reports the tracking performances of the
robot during this scenario. As we can see, in its lowest vertical position, the base almost
touches the ground. How much the base is lowered depends on the vertical velocity to
reach at the beginning of the flying phase, which itself depends on the desired duration of
the flight phase. This means a flight phase of 0.56 s is a limit for the current rising rate of
the base. To perform longer flight phase we would have to make the base accelerate faster
so that the base does not have to lower as much. Tracking quality for all quantities is
good during the whole pre-jump phase, until t = 0.96 s, with roll and pitch close to 0 and
height and vertical velocity following what has been outputted by the trajectory planner.
During the flight phase, orientation slowly drifts from the reference. This is expected as
the robot does not have any contact point anymore to apply forces and stabilize the base,
and we do not try to stabilize base orientation through limb motion. Yet the most notable
tracking error is in height and vertical velocity. The base only goes up to 40 cm at the
apex of its ballistic trajectory at t = 1.2 s. The vertical motion of the base in the air is
decided by the vertical velocity at takeoff. Although velocity tracking is excellent during
the rising phase, up to the supposed start of the flight phase, there is a sudden loss of
velocity at takeoff, which might be due to a poor transition between standing and flying
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phases. This is a point that should be investigated in the future since it impacts the whole
following flight phase. Another interesting aspect to note in this scenario is the relevance
of online contact detection. Because the vertical velocity was lower than expected, the
base went back to its initial height far earlier than expected at t ≈ 1.4 s. The moment
at which contact is detected clearly appears in height graph, when the reference ballistic
trajectory at 0.45 m suddenly goes down to the standing base height at around 0.2 m. This
detection enables the controller to immediately apply contact forces on the ground to
nullify the negative vertical velocity, as it can be seen in Fig. 13.5. Without online contact
detection, this would have happened only after the expected end of the flight phase, that
is t = 1.52 s.

In the second scenario, the quadruped successfully jumps forwards, as shown in
Fig. 13.6. Again, Fig. 13.7 reveals that tracking performances are good until the very
start of the flight phase, where there is a sudden loss of velocity both for the forward and
vertical components. As a result, the quadruped does not jump as high nor as far as it
should: 0.45 m upwards and 0.35 forwards instead of 0.6 m and 0.6 m respectively. The
flight phase also ends earlier than expect, around t = 1.35 s, yet the online detection al-
lows an immediate reaction to stabilize the base by applying forces on the ground (see
Fig. 13.8).

13.5 Conclusion
This chapter reports simulation results that validate the relevance of online contact de-

tection for locomotion on rough terrain or for jumping motion. On rough terrain, tracking
performances are improved because online contact detection allows to ascertain if a con-
tact happens too early or too late instead of relying on the predefined contact sequence. In
such cases the controller receives the information and can react accordingly. This online
detection also allows to detect early or late touchdown after a flight phase that are caused
by a non-perfect velocity tracking during the pre-jump phase.

This chapter also explores early results for jumping motions that happen when provid-
ing the MPC with a ballistic trajectory for the vertical position and velocity components.
The control architecture successfully performed on-the-spot and forward jump although
not as high or as far as expected due to a velocity loss at takeoff that will have to be
investigated.
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(a) t = 0 s (b) t = 0.75 s (c) t = 1 s

(d) t = 1.25 s (e) t ≈ 1.4 s (f) t = 1.75 s

Figure 13.3: First scenario: jumping on the spot in simulation. From an initial position (a), the base
is first lowered to a minimum height (b), before suddenly rising up to reach the desired velocity at
the start of the flight phase (c). In the air, the base follows a ballistic trajectory (d). Touchdown (e)
is detected by the online contact detection, which allows the controller to react as soon as possible
to absorb the impact and stabilize the base (f).
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Figure 13.4: Height, vertical velocity, roll and pitch angles of the base during the flight phase.
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Figure 13.5: Contact forces components specified by the MPC and the WBC after trade-off with
the joint accelerations of the IK. Only the three components of the contact forces for the front
right (FR) foot are represented for better visualization since, due to the symmetric nature of the
problem, the force profiles of the four feet are similar.

140



13.5. Conclusion

(a) t = 0 s (b) t = 0.75 s (c) t = 1 s

(d) t = 1.25 s (e) t ≈ 1.4 s (f) t = 1.75 s

Figure 13.6: Second scenario: forward jump in simulation. From an initial position (a), the base
is first lowered to a minimum height (b), before suddenly rising up to reach the desired velocity at
the start of the flight phase (c). In the air, the base follows a ballistic trajectory (d). Touchdown (e)
is detected by the online contact detection, which allows the controller to react as soon as possible
to absorb the impact and stabilize the base (f).
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Figure 13.8: Contact forces components specified by the MPC and the WBC after trade-off with
the joint accelerations of the IK. Only the three components of the contact forces for the front right
(FR) and hind right (HR) feet are represented for better visualization since, due to the symmetric
nature of the problem, the force profiles on the left side of the body are similar.
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14.1 Introduction
In this chapter, we present the results of a work that was done withing the framework

of the PhD thesis of Michel Aractingi, in collaboration between the Gepetto team and
Naver Labs Europe [NAV]. It explores how reinforcement learning could be used either
to augment our model-based architecture or to deploy an independent data-based control
architecture independent that would be able to make the Solo quadruped walk around. A
possible augmentation, as already been hinted at in Section 6.3.2, could be to modify the
gait characteristics online with a neural network to go beyond the use of a predefined gait
sequence. Another data-based architecture was later developed to achieve locomotion
in various situations (flat and sloped grounds with bumps, stairs) and track a reference
velocity. This time, the goal was to train an end-to-end architecture that would control the
quadruped on its own instead of being grafted to the model-based architecture.

To do so, a two-stage hierarchical deep reinforcement learning architecture was trained
to perform tasks. A low-level policy learns desired joint angle targets based on an elabo-
rate reward function with multiple cost terms related to the desired behavior of the robot.
A high-level policity then learns to determine the parameters of these cost terms to dy-
namically adapt the low-level policy.

Preliminary training and tests were done in simulation using the physics engine Raisim
[HLH18] with the full model of the robot. The transfer capabilities were first checked in
PyBullet [CB21] to ensure the trained policies were robust enough to handle the difference
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in robot behavior linked to a change of simulator. Then, the architecture was deployed on
the real robot.

14.2 Overview of the data-based architecture

As a brief overview of the deep reinforcement learning architecture, let us outline the
state and action spaces of both low-level and high-level policies.

First, the state space considered by the low-level policy consists of the orientation
of the base, the linear and angular velocities of the base, the joint angles and velocities.
Alongside these quantities, a history of the joint angle errors and joint velocities is used so
that the network can better figure out the situation the robot is in, based on what happened
in the past time steps, and ultimately take better decisions. The history of joint angle
errors is more informative than mere joint angles as it can be used to infer the contact
state of the feet. Finally, the network actions for the two last time steps are considered
as well, again for a better understanding of the temporal behavior of the robot. These
actions are the joint angle targets that are fed to the low-level impedance controller of the
robot, with the joint velocity targets remaining at zero. To make learning easier for the
network, the policy does not directly learn the absolute value of joint angle targets but
rather the offset from nominal joint angles that correspond to the default configuration of
the quadruped.

The high-level policy uses the same state space. However its action space is different.
It modifies the locomotion parameters to modulate the behavior of the low-level policy,
with the idea that the behavior of the robot can be tuned online while still producing stable
locomotion. If not commanded by a user or a higher-level controller, the reference base
velocity can be included in the action space to perform autonomous navigation to a target
location. The apex height of feet swinging trajectories is included in the action space so
that the policy can lift the feet higher on complex terrains while keeping them low on flat
terrains to save energy. The penalization of the deviation from the nominal joint angles is
also part of the action space to affect the stride length as needed. Finally, the high-level
policy controls the proportional and derivative gains of the impedance controllers to make
the control stiffer or more compliant depending on the variations of the environment, as a
way to increase robustness.

14.3 Experimental setup

Both the low-level and the high-level policies are run with at same frequency of 100
Hz. They are trained over 300 million samples with the Proximal Policy Optimization
(PPO) approach [Sch+17]. Among all terms of the cost function, the weights of penalties
are progressively increased so that the robot first learns to walk and run before trying to
optimize its energy consumption. If they would be fully enabled from the start the robot
would not properly learn, preferring to not move at all to keep the energy consumption
penalty at a minimum. For better transfer to the real robot and to avoid overtraining,
random uniform noise is added to the robot dynamics and state observations. This noise
is progressive as well, starting with noiseless simulations and increasing in magnitude as
the training progresses. The goal is to have the network produce a robust behavior even
if the model does not perfectly fit the real system, as it is inevitably the case (all motors
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have slightly different characteristics and they vary as coils get warmer, the model does
not include joint friction, inertia matrices are not perfectly accurate, ...).

The performance was first assessed in simulation. The Solo-12 quadruped was able to
adapt its step length and gait sequence online to move up to 1.5 m/s on a flat ground, with
in that case a gait period of 0.26 s and a flying phase of 0.04 s that naturally emerges from
the movements of the legs. The architecture was tested as well on more complex terrains
displayed in Fig. 14.1, such as stairs, hills and bumpy ground. In all those cases, the high-
level policy adapted the locomotion parameters to tweak the behavior of the low-level
policy and ultimately generated a successful motion.

(a) Hills (b) Steps

(c) Height-field (d) Stairs

Figure 14.1: Examples of complex terrains the policies are trained on. The red dots represent the
discretization of the surroundings that is given to the high-level policity to find suitable locomotion
parameters. Graphical credits to Michel Aractingi.

14.4 Experimental results
The low-level policy was successfully transferred on the real Solo-12, for now without

the high-level policy that modifies the locomotion parameters online. The transfer led
to relevant movements on the first try. This seems to indicate that the randomization
during training combined with the fast dynamics of Solo-12 (low inertia actuators with
fast bandwidth) are suitable for direct sim-to-real transfer. Fig. 14.2 highlights some
snapshots of the policy in action.
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(a) t = 0 s (b) t = 1 s

(c) t = 2 s (d) t = 3 s

(e) t = 5 s (f) t = 7 s

(g) t = 9 s (h) t = 29 s

Figure 14.2: Solo-12 walking indoors and outdoors with the presented RL controller.
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14.5 Conclusion
This chapter reports simulation and experimental results that validate an end-to-end

deep reinforcement learning architecture trained for the Solo-12 quadruped. It is though-
provoking to compare the behavior obtained with such a data-based architecture compared
to the model-based one developed throughout this thesis. It manages to reach similar
forward velocities (≈ 1 m/s) than what was obtained in Section 11. Overall, the motion
seems smoother with this architecture in the sense that legs and base movements are less
sharp. The way the feet hit the floor is softer, which might be partially linked to the
joint velocity targets being always zero. The base wobbles more, yet in a more natural
or animal way compared to the data-based behavior which keeps the base close to the
horizontal during the whole motion (reference for roll and pitch angles are kept at zero
in the whole-body control). Even if it is still work in progress, the clear difference in
obtained behaviors is already particularly interesting.

This work resulted in a paper that was submitted to Autonomous Robots, including a
more thorough simulation study. While the network design, implementation and training
were done by Michel Aractingi, my contribution consisted in regular discussions about
control choices (state and action quantities, costs) exploiting my robotics knowledge and
his expertise in machine learning, as well as in providing him with the low-level code and
interface to run the neural network for real-world deployment.
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Chapter 15
Conclusion

The work done in the framework of this thesis contributed to the locomotion of legged
robots by developing a control architecture that is able to exploit the dynamical capabil-
ities of a lightweight quadruped robot. We mainly explored the use of a model-based
predictive control approach to reason over a prediction horizon. This type of approach
relies on the knowledge of incoming events (contact locations and timings, disturbances,
environment, ...) and on a model of the robot to predict the evolution of its state in the
near future and ultimately take the best control decisions for a given set of criteria. In
our case, this prediction was done using a centroidal model of the robot to find out which
forces should be applied at contact locations to follow a reference state trajectory and
handle disturbances. An instantaneous whole-body controller would then convert these
contact forces and swinging feet trajectories into low-level commands. The accent was
put on the possibilities offered by this architecture, both in terms of performances and
versatility, through simulations and deployments on a real quadruped robot. We also em-
phasized how various aspects of the scheme could be augmented with or replaced by other
approaches.

15.1 Contributions
As part of the Open Dynamic Robot Initiative project, we implemented a model-based

control architecture to exploit the dynamical capabilities of the lightweight open-source
quadruped robot Solo-12.

• We implemented an estimator that leverages sensor fusion to reliably estimate the
state of the robot by combining information coming from the encoders and the in-
ertia measurement unit. The low-accuracy non-drifting assessments coming from
forward kinematics have been merged with highly-accurate IMU acceleration mea-
surements that would drift when integrated alone, hence resulting in good quality
non-drifting estimates of base position and linear velocity. To do so, we used ei-
ther a cascade of complementary filters or a Kalman filter. That way, we showed
that a reduced set of sensors and straightforward estimators can still provide state
estimates that are good enough to obtain state-of-the-art quadruped locomotion.

• Then, we described how our use of binary matrices allowed us to obtain cyclic pat-
terns of footsteps during locomotion with seamless transitions between different
kinds of gaits. While the gait follows a predefined pattern by default, we presented
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a way to adapt its characteristics online with a neural network trained by reinforce-
ment learning. We also explained how a probabilistic approach was implemented to
go beyond predefined contact timings and instead perform an online contact detec-
tion to detect and react to contact timing mismatches that can happen when moving
on rough terrain.

• Based on contact information, we implemented a small set of heuristics to deter-
mine target footstep locations on a flat ground. We then presented how polynomial
interpolation can be used to generate reference trajectories in position, velocity and
acceleration to guide swinging feet from their current position to their next target
on the ground, and how it could be linked with online contact detection. Moreover,
we described an augmentation of this baseline scheme with mixed-integer program-
ming to choose contact locations in 3D space from a set of known surfaces in the
environment. This allowed to navigate complex terrains that would be out of range
of the previous blind controller.

• Next, we outlined how to obtain reference state trajectories from the reference hori-
zontal base velocity given by a user or a higher level controller, including a possible
augmentation along the vertical axis to generate jumping motions. This trajectory
is given along with footstep locations as inputs to a centroidal model predictive
controller whose goal is to output desired contact forces that should be applied to
track the reference. We presented and compared several approaches of increasing
complexity to solve this optimal control problem. Starting from an initial convex
quadratic program, we relieved some linearity assumptions and even included foot-
step locations as part of the optimization problem by using differential dynamic
programming. Finally, we hinted at a way to include footstep timings as part of the
optimization as well to allow a more complete control of the gait by the solver.

• Lastly, we described our successive implementations of whole-body controllers,
from Task Space Inverse Dynamics that allows to perform task-oriented optimization-
based inverse dynamics to a combination of inverse kinematics with a quadratic
program. We presented several improvements to the initial architecture, such as
removing base position and joint feedbacks, and a compensation term to take into
account inertia effects due to leg movements. Those resulted in a diminution of
base oscillations and thus increased the velocity the robot could reach.

These developments led to a number of implementation results:

• The initial baseline control architecture was validated with a deployment on a real
Solo-12 quadruped after prior confirmation in simulation. We were able to obtain
a robust trotting gait at low velocity (up to 0.5 m/s) on a flat ground. Despite the
assumption of a flat ground, the robot was able to walk on small obstacles spread
on the ground while handling reasonable pushes. The work done up to this point
was presented at the IEEE ICRA conference 2021 [Léz+21].

• We validated the improvements done to the nominal control architecture to reduce
base oscillations, which allowed to compare three variants of centroidal model pre-
dictive controllers with live experiments. Alongside an increase of the maximum
velocity up to 1 m/s, we discussed the comparable performances that were obtained
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with all MPC variants. The preliminary implementation of these MPCs in sim-
ulation by Thomas Corbères was presented at the IEEE ICRA conference 2021
[Cor+21]. The following improvements done to the control architecture to be able
to deploy them on the real robot and their experimental comparison will be pre-
sented at the IEEE/RSJ IROS conference 2022 and have been published in the IEEE
Robotics and Automation Letters [Léz+22].

• We reported how the planning scheme based on mixed-integer programming per-
formed when combined with the baseline control architecture. With it, Solo-12 was
able to overcome situations it would have failed in, such as stairs, stepping stones
or bridge-like structures. In this work led by Fanny Risbourg and Thomas Corbères
that will be presented at the IEEE/RSJ IROS conference 2022 [Ris+22], my contri-
bution was in the integration in the control architecture and to the realization of the
experiments.

• We showed in simulation that the robot benefits from online contact detection when
walking on rough terrain, with better velocity tracking performances and reduced
roll and pitch oscillations compared to the use of predefined timings for contact
switches. This online detection was also exploited to validate jumping motions in
simulation to detect touchdown of individual feet at the end of the ballistic phase.

Two other notable collaborations happened during this thesis:

• While exploring how reinforcement learning could be used to augment the model-
based architecture, like what was presented to modify the gait characteristics online,
an independent data-based architecture was trained and deployed on Solo-12. In
this work led by Michel Aractingi, my contribution consisted in regular discussions
about control choices to combine our respective expertise as well as in providing
the low-level code to run the neural network into for simulation in PyBullet and
real-world deployment. This work has been submitted to Autonomous Robots.

• The work on state estimation was further pursued by Médéric Fourmy with a more
complex estimator based on factor graph with IMU and contact forces pre-integration,
which is more computationally demanding but leads to better performances, no-
tably for base position reconstruction over time. My contribution in this endeavor
is mostly experimental to log relevant quantities and retrieve datasets by running
the control architecture in specific scenarios. This work was presented at the IEEE
ICRA conference 2021 [Fou+21].

15.2 Perspectives

The work we have done so far has laid the foundations of a model-based control
architecture for quadruped robots. However, a lot of alleys have yet to be explored either
to improve current performances (maximum velocity, robustness, ...) or to extend the
scheme with new features. Here we present a few of the next projects that we wish to
undertake.
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15.2.1 Short term
We presented ongoing work in simulation showing that the tracking performances

of the robot benefited from online contact detection when walking on rough terrain. A
short-term goal would be to confirm this assessment on a real Solo-12 walking in an
environment cluttered with steps of different height. Along this contact detection, early
jumping motions have been shown by extending the reference state trajectory generation
with a ballistic profile in position and velocity along the vertical axis. We also plan to
deploy these motions on Solo-12 to exploit its dynamical capabilities. To do so, work
has to be done on the pre-jump phase to ensure that the linear and angular velocities of
the body at the start of the ballistic phase correspond to the planned ones. We also have
to work on landing strategies to get an adaptive leg posture in flight phase that allows to
absorb the impact at touchdown even if the base is unexpectedly tilted in roll or pitch.
Open-loop replays of jumping trajectories have already shown that Solo-8 could jump
on the spot up to 106 cm high [JMP]. Although Solo-12 is heavier due to 4 additional
motors, batteries and electronics for power management, we can still expect impressive
movements if its actuation is pushed to its limits.

15.2.2 Mid term
In a later stage, we would like to better explore how flight phases can be integrated

into the gait for locomotion purpose. This would be done for instance to switch from a
trot to a flying trot at higher velocity to go past the kinematic limit of the legs that caps
the maximum velocity the robot can reach for a given gait period before reaching leg
singulary. We could also try to find the right trade-off between duration of flight phases
and change of the gait frequency. Having flight phases as part of the gait would also be a
way to try out gallop, which is the gait pattern horses switch to for gait efficiency purpose
(cost of transport) at high velocity [HT81].

Further investigating our initial implementation of inverse dynamics for whole-body
control would also be a mid term goal. As we did not achieve stable locomotion when
deploying this scheme on the robot, we decided to switch to an inverse kinematics strat-
egy, combined with quadratic programming to ensure the equation of the dynamics is
respected. Currently, this QP problem has to balance decisions that might be conflicting
since the instantaneous decisions of the IK are done without knowing what has been de-
cided by the MPC that works on a prediction horizon. This also adds a layer of complexity
to the scheme with an approach that is less “all-in-one” than the task-space inverse dy-
namics which performs both steps at once. On top of that, the current scheme introduces
additional parameters that have to be properly tuned so that the trade-off is not unbalanced
toward either the MPC or the IK. We believe this topic would be worth digging into now
that we have a better understanding of the whole control architecture.

15.2.3 Longer term
In the long term, broader aspects could be explored. As we have pointed out in Chap-

ter 5 about state estimation, the onboard sensors are currently limited to joint encoders
and an inertia measurement unit. With them, we can assess the base height, base orien-
tation in roll and pitch and base linear and angular velocities, yet the absolute position
of the base in the world and its yaw orientation are not observable. They can be recon-
structed through forward geometry and velocity integration, but they will inevitably drift
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as time goes by. Information about obstacles in the environment is inaccessible as well.
Adding new exteroceptive sensors on Solo-12 would open new possibilities from a con-
trol perspective. Cameras and LIDARs installed on top of the base could provide rich
information about the robot surroundings, either for localization or obstacle detection.
Instead of relying on privileged knowledge, the contact surfaces that were used to handle
complex situations in Chapter 7 could instead be detected on the fly. It would also open
the way for simultaneous localization and mapping, and a whole range of navigation tasks
by acting on the reference base velocity with a higher level position controller. Without
going that far, other simpler exteroceptive sensors could be integrated. For instance, a
low-resolution camera attached under the body and pointing downwards could contribute
to the base velocity estimation through a measure of optical flux, as long as the texture of
the ground is not overly homogenous.

On another aspect, the rise of data-based methods in recent years and the increas-
ingly impressive results obtained with them are thought-provoking. Even if end-to-end
machine learning approaches now achieve robust and efficient locomotion, one can still
wonder how the principles and techniques developed in this field could be retrieved to
contribute to existing model-based architectures. Their capacity to extract relevant in-
formation from datasets could potentially allow to capture effects that would be hard to
model or which would be untractable for some model-based architectures. Some ap-
proaches already try to bridge the gap between more traditional control viewpoints and
those novel machine learning perspectives. To go beyond simplified models and kinody-
namic constraints that are often non-differentiable, Mitchell [Mit+20] captures a statistical
representation of feasible joint configurations to form a structured latent space. Through
the use of semantic indicators and learned classifiers, constraints are made differentiable
and performing motion optimization amounts to finding a trajectory in this latent config-
uration space. Fawcett [Faw+22] investigates the use of data-enabled predictive control to
capture nonlinear information about the classic lumped-mass model while avoiding lin-
earization. It does so through a data collection phase which leads to the construction of
Hankel matrices that contain implicit information about the dynamics of the system. In
a way, such methods circumvent some of the interrogations evoked in this thesis about
choosing the right model with the relevant assumptions since there they are directly en-
coded in the network or matrices. Beyond replacing previously hand-formulated models
in our centroidal MPC or WBC, data-based methods bring adaptivity to other elements.
We have briefly presented a way to implement an adaptive gait pattern with reinforcement
learning. It could be applied to other points of the architecture to augment our heuristics
in the estimator or footsteps planner, to provide adaptive weights in the MPC and WBC
solvers or to tune joint impedance gains on the fly.

Finally, seeing the complexity brought by a two-stage architecture with a centroidal
MPC combined with a WBC, especially to ensure their respective decisions are well taken
into account, it would be worth investigating all-in-one whole-body predictive control.
It has already been achieved on other platforms such as ANYmal [Neu+18], although
computational efficiency is paramount to reach real-time performances due to the size of
the optimization problem. Some data-based methods that we talked about earlier might
be a way to fasten the solving process, either by encapsulating part of the model or by
providing a warm-start trajectory to start the optimization close from the optimal solution
[Man+18].
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Abstract
Since Antiquity, humans have tried to understand the functioning of legged locomotion by

adopting multidisciplinary approaches. In recent years, this question has become central in robotics,
where the development of legged robots has boomed thanks to advances in mechatronics and in-
creased computer power. However, due to the complexity of the problem, obtaining a robust
autonomous locomotion in a wide range of situations is still an open problem, even if increas-
ingly impressive performances are obtained. Several key characteristics of this kind of locomotion
require carefully designed mechanical and control architectures to be able to perform tasks in a
meaningful way. Legged robots have to move around without being attached to the ground. Their
dynamics is an underactuated problem and, as such, they have to be controlled indirectly through
the motion of their actuated appendages. This has to be done for task purpose, like going to a tar-
get location or orienting the body in a particular way, but also to keep balance. Most quadrupeds
and bipeds are only dynamically stable when walking in non-conservative ways so they require
careful control to stay upright. To do so, the controller has to take into account the dynamics of
the robot while coordinating multiple degrees of freedom. This is a challenge with legged robots
that are by nature highly nonlinear systems.

Over the last decades a wide range of methods have been developed to perform dynamic loco-
motion with legged robots. Some of them are bio-inspired and rather intuitive, like central pattern
generators, while others have a strong theoretical aspect to achieve formal proofs of stability, like
hybrid zero dynamics. Recently, the rise of machine learning also opens a whole new paradigm
where, instead of being formulated by hand, the locomotion model is learned from data either
online or during a training phase. It potentially allows to capture effects that would be hard to
model or which would be untractable for some model-based architectures. In this thesis, we rather
explore a predictive model-based approach which reasons over a prediction horizon to take the
best control decisions for a given set of criterion. This kind of approach has already led to efficient
locomotion with a wide range of quadruped robots.

This thesis contributes to the locomotion of legged robots by developing a control architecture
able to exploit the dynamical capabilities of a lightweight quadruped robot. The use of comple-
mentary filters allows a straightforward sensors fusion for the estimation of the robot state. Binary
matrices make it possible to handle contact sequences in a generic way to modify the gait pattern
on the fly. This information can then be used to determine footstep locations online using a small
set of heuristics. By reasoning on a prediction horizon a centroidal model predictive control can
then find out which forces should be applied at contact locations to follow a reference state trajec-
tory and handle disturbances. Next, a whole-body controller translates desired contact forces and
swinging feet trajectories into joint trajectories and feedforward torques. Finally, an impedance
controller provides feedback torques based on the difference between the desired and current joint
positions and velocities to obtain the commands sent to the robot. The modularity of the archi-
tecture allows to easily augment some aspects of the scheme or to replace them to test out other
methods, as it will be shown several times in this thesis.

This control scheme is implemented in a real-time framework and successfully deployed on the
Solo-12 quadruped. The possibilities offered by this architecture, both in terms of performances
and versatility, are validated through simulations and experiments. Several applications allowed
us to quantify the interest and relevance of the presented scheme for the locomotion control of
lightweight quadruped robots.
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Résumé
Depuis l’Antiquité, l’humanité tente de comprendre le fonctionnement de la locomotion à pat-

tes en adoptant des approches multidisciplinaires. Ces dernières années, cette question est devenue
centrale en robotique, où le développement des robots à pattes a connu un essor considérable grâce
aux progrès de la mécatronique et à l’augmentation de la puissance des ordinateurs. Cependant,
en raison de la complexité du problème, l’obtention d’une locomotion autonome robuste dans un
large éventail de situations reste un problème ouvert, même si des performances de plus en plus
impressionnantes sont obtenues. Les robots à pattes doivent se déplacer sans être attachés au sol,
ils doivent donc être contrôlés indirectement via le mouvement de leurs membres actionnés. Cela
doit être fait pour accomplir une tâche, comme se rendre à un endroit cible ou orienter le corps
d’une certaine manière, mais aussi pour garder l’équilibre. La plupart des quadrupèdes et des
bipèdes ne sont que dynamiquement stables lorsqu’ils marchent de manière non conservative, ce
qui demande un contrôle minutieux pour rester debout. Pour ce faire, le contrôleur doit prendre en
compte la dynamique du robot tout en coordonnant plusieurs degrés de liberté. C’est un défi pour
les robots à pattes qui sont par nature des systèmes hautement non linéaires.

Au cours des dernières décennies, un large panel de méthodes a été développé pour obtenir une
locomotion dynamique avec de tels robots. Certaines d’entre elles sont bio-inspirées et plutôt in-
tuitives, comme les réseaux locomoteurs spinaux, tandis que d’autres ont un fort aspect théorique
afin d’obtenir des preuves formelles de stabilité, comme la dynamique hybride zéro. Récemment,
l’essor de l’apprentissage automatique offre également un nouveau paradigme où, au lieu d’être
formulé à la main, le modèle de locomotion est appris à partir de données, soit en ligne, soit pen-
dant une phase d’entraînement. Dans cette thèse, nous explorons plutôt une approche prédictive
basée modèle qui raisonne sur un horizon de prédiction pour prendre les meilleures décisions de
contrôle selon certains critères. Ce type d’approche a déjà abouti à une locomotion efficace pour
une large gamme de robots quadrupèdes.

Cette thèse contribue à la locomotion des robots à pattes en développant une architecture de
contrôle capable d’exploiter les capacités dynamiques d’un robot quadrupède léger. L’utilisation
de filtres complémentaires permet une fusion simple des capteurs pour l’estimation de l’état du
robot. Des matrices binaires permettent de traiter les séquences de contact de manière générique
afin de modifier la démarche à la volée. Cette information peut ensuite être utilisée pour déterminer
la position des pas en ligne en utilisant un ensemble réduit d’heuristiques. En raisonnant sur un
horizon de prédiction, une commande prédictive centroïdale peut alors déterminer les forces qui
doivent être appliquées aux points de contact pour suivre une trajectoire de référence et gérer les
perturbations. Ensuite, un contrôleur corps complet traduit les forces de contact souhaitées et les
trajectoires de balancement des pieds en trajectoires articulaires et en couples moteurs. Enfin,
un contrôleur d’impédance fournit des couples de rétroaction basés sur la différence entre les
positions et les vitesses articulaires souhaitées et actuelles. La modularité de l’architecture permet
d’étendre facilement certains de ses aspects ou de les remplacer pour tester d’autres méthodes,
comme cela sera montré à plusieurs reprises dans cette thèse.

Ce schéma de contrôle est implémenté en temps réel et déployé avec succès sur le quadrupède
Solo-12. Les possibilités offertes par cette architecture, tant en termes de performances que de
polyvalence, sont validées par des simulations et des expériences. Plusieurs applications nous ont
permis de quantifier l’intérêt et la pertinence du schéma présenté pour le contrôle de la locomotion
de robots quadrupèdes légers.
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