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世界上只有一种英雄主义，那就是在认清生
活真相后，还依然热爱它

(罗曼 • 罗兰 — 米开朗基罗传, 1907)

There is only one heroism in the world: to see the
world as it is, and to love it.

(Romain Rolland — Life of Michelangelo, 1907)

Il n’y a qu’un héroïsme au monde: c’est de voir le
monde tel qu’il est, et de l’aimer.

(Romain Rolland — Vie de Michel-Ange, 1907)
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Abstract

Interpretable Machine Learning models receive growing interest due to the increas-
ing concerns in understanding the reasoning behind some crucial decisions made by
modern Artificial Intelligent systems. Due to their structure, especially with small
sizes, these interpretable models are inherently understandable for humans. Com-
pared to classical heuristic methods to learn these models, recent exact methods
offer more compact models or better prediction quality. In this thesis, we propose
two novel exact methods via Maximum Boolean Satisfiability (MaxSAT) to learn
optimal interpretable machine learning models.

Our contribution starts with an original MaxSAT-based exact method to learn
optimal decision trees. This method optimizes the empirical accuracy to avoid
overfitting, and also enriches the constraints to restrict the tree depth. Additionally,
we integrate this MaxSAT-based method in AdaBoost, which is a classical Boosting
method to improve the generalization performance. The experimental results show
competitive prediction quality of this MaxSAT-based method compared to state-
of-the-art heuristic and other exact methods. Additionally, clear improvements in
prediction performance are observed after the integration in AdaBoost. Our second
contribution is an original MaxSAT-based exact method to optimize binary decision
diagrams. We introduce an initial Boolean Satisfiability (SAT) encoding to model
binary decision diagrams in limited depth with perfect empirical accuracy. Next,
we present how to adapt the SAT-based model into MaxSAT approach. Finally,
we present a pre-processing for selecting some important features to increase the
scalability of our MaxSAT-based method to optimize binary decision diagrams.
The experimental results show clear advances of our MaxSAT-based method in
prediction quality, compared to state-of-the-art heuristic methods. We also observe
a huge shrink in encoding size and model size in comparison between our approach
and state-of-the-art exact method without losing the prediction performance. In
addition, great reductions in encoding size are displayed after the application of
pre-processing, which boosts the scalability.

Keywords: Interpretable Machine Learning, Maximum Boolean Satisfiability, De-
cision Trees, Decision Diagrams.
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Résumé

Les modèles d’apprentissage interprétables reçoivent un intérêt croissant en raison
de l’augmentation des préoccupations pour comprendre le raisonnement menant
aux décisions cruciales prises par les systèmes modernes d’intelligence artificielle.
En raison de leur structure, en particulier pour des petites tailles, ces modèles
interprétables sont intrinsèquement compréhensibles pour les humains. Par rapport
aux méthodes heuristiques classiques pour apprendre ces modèles, les méthodes
exactes récentes offrent des modèles plus compacts ou atteingnent une meilleure
qualité de prédiction. Dans cette thèse, nous proposons deux nouvelles méthodes
exactes basées sur la Satisfiabilité Booléenne Maximale (MaxSAT) pour apprendre
des modèles d’apprentissage interprétables optimaux.

Notre contribution commence par une méthode exacte originale basée sur MaxSAT
pour apprendre des arbres de décision optimaux. Cette méthode optimise la pré-
cision empirique pour éviter le surapprentissage et prend également en compte des
contraintes pour restreindre la profondeur de l’arbre. De plus, nous intégrons cette
méthode basée sur MaxSAT à la méthode AdaBoost, qui est une méthode standard
de Boosting pour améliorer les performances de généralisation. Les résultats expéri-
mentaux montrent une qualité de prédiction compétitive de cette méthode basée sur
MaxSAT par rapport à des méthodes heuristiques et exactes de l’état de l’art. En
plus, des améliorations des performances de prédiction sont observées après intégra-
tion dans AdaBoost. Notre deuxième contribution est une méthode exacte originale
basée sur MaxSAT pour optimiser les diagrammes de décision binaire. Nous intro-
duisons tout d’abord un encodage de Satisfiabilité Booléenne (SAT) pour modéliser
des diagrammes de décision binaire de profondeur limitée avec une parfaite préci-
sion. Puis, nous présentons comment adapter le modèle en Satisfiabilité Booléenne
Maximale. Finalement, nous présentons un pré-traitement pour la sélection de cer-
taines caractéristiques importantes afin d’augmenter le passage à l’échelle de notre
méthode MaxSAT pour optimiser les diagrammes de décision binaire. Les résultats
expérimentaux montrent des avancées de notre méthode MaxSAT sur la qualité
de prédiction, par rapport aux méthodes heuristiques. Nous observons également
une réduction importante sur la taille d’encodage et la taille du modèle dans les
comparaisons entre notre approche et une méthode exacte de l’état de l’art, sans
perdre en performance de prédiction. De plus, une grande réduction sur la taille
d’encodage est mise en évidence après application du pré-traitement, ce qui renforce
le passage à l’échelle.

Mots-clés : Apprentissage Interprétable, Satisfiabilité Booléenne Maximale, Ar-
bres de Décision, Diagrammes de Décision.
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Introduction

In the last decade, Machine Learning, received a great success in solving many real
world problems. These successes have increased the develpment of eXplainable Ar-
tificial Intelligence (XAI), especially for high stakes decision systems. XAI aims to
produce AI systems that can be understood by human. The goal is to raise the
trust that humans can have in AI systems, by understanding the process leading to
a given decision or prediction. The field of XAI covers a broad spectrum of research.
In this thesis, we are interested in the interpretability of Machine Learning mod-
els. In the literature, two main approaches exist to increase the interpretability of
Machine Learning models. The first one, called post hoc approach, focuses on black-
box models, such as neural networks or deep learning, and considers a posteriori
explanations [Guidotti et al. 2018]. One can produce explanations on the output
of the black-box model to detail the reason of a given prediction or a black-box
inspection to explain how a given black-box works. In the second approach, called
transparency-by-design, the goal is to produce Machine Learning models that can
be understood by humans, based on their simple structure. For instance, Decision
Trees, Decision Sets, or Decision Rules are considered as interpretable by-design
models when they have small size. Some drawbacks of the black-box explanation
approach, that can provide misleading or false explanations, have been highlighted
in [Rudin 2019, Laugel et al. 2019]. For crucial applications, where decisions may
impact individual, such drawbacks raise the need of inherently interpretable Ma-
chine Learning models. In [Rudin et al. 2021], ten challenges for the development of
inherently interpretable Machine Learning models are detailed. The first challeng
concerns how to efficiently compute optimal and sparse Machine Learning models.
This thesis is in-line with this challenge.

There are numerous heuristic methods for interpretable machine learning mod-
els. Although these classical heuristic methods have reduced computation time, the
interpretable machine learning models built are often huge in size, making difficult
to understand how the model works. To insure that machine learning models found
are truly “interpretable”, recently, there is growing interest in exact methods for
those models. Compared to heuristic approaches, exact methods offer the promise
of optimality, for instance in model size, model depth, or accuracy. In this con-
text, combinatorial optimisation methods, such as Constraint Programming, Mixed
Integer Linear Programming, Boolean Satisfiability (SAT), and Dynamic Program-
ming have successfully applied for learning optimal interpretable machine learning
models. These declarative approaches are particularly interesting since they offer
certain flexibility to handle additional requirements when learning a model.

In this thesis, we focus on Maximum Boolean Satisfiability (MaxSAT) approach,
where MaxSAT is an optimisation version of SAT, to learn optimal interpretable
models. A disadvantage of recent SAT-based exact methods is the promise of perfect
empirical accuracy for a given model size, or model depth, which is risk in over-
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fitting. However, MaxSAT-based exact methods could avoid this disadvantage by
optimizing empirical accuracy. Moreover, MaxSAT has a weighted extension, where
weights of clauses could naturally approximate the data distribution of datasets
used in machine learning. In addition, this strength makes MaxSAT-based exact
methods easy to be adapted in Boosting methods.

Thesis Overview

We offer an overview of the thesis, which contains three chapters. Chapter 1
presents a technical background in Boolean Satisfiability, including Boolean Sat-
isfiability (SAT) and its variant Maximum Boolean Satisfiability (MaxSAT). Then,
we present important notions in Machine Learning, including interpretable models
and ensemble methods. Finally, Chapter 1 provides a literature review of recent re-
lated works in interpretable Machine Learning models, including classical heuristic
methods and recent exact methods. Chapter 2 presents our contributions for learn-
ing optimal decision trees via MaxSAT and its integration in AdaBoost. Chapter 3
presents our contributions in optimizing binary decision diagrams via MaxSAT. We
give a summary of the contributions made in this thesis.

1. Learning optimal decision trees via MaxSAT and its integration in
AdaBoost
As a very popular machine learning model, decision tree benefits from its
inherent interpretability, and the wide range of efficient heuristic methods
to compute it. However, due to the explosion in tree size and depth, de-
cision trees found by classical heuristic methods suffers the difficulty in in-
terpretability. This weakness motivates the exact methods to learn optimal
decision trees with guarantees of mathematical optimality in some metrics,
like tree size, tree depth, and accuracy. Some exact methods are SAT-based,
where [Bessiere et al. 2009, Narodytska et al. 2018] optimize the tree size,
and [Avellaneda 2020, Janota & Morgado 2020] optimize the tree depth.
However, all of them must subject to the constraint that the decision tree is
perfectly accurate on the training set, which is often criticized as it may entail
overfitting.

To offset this drawback, we firstly introduce a MaxSAT approach to learn
optimal decision trees by optimizing the accuracy, which is the adaption of
the previous SAT approach [Narodytska et al. 2018]. At first, we introduce
the details of previous SAT encoding, and, we show how to transform the
SAT encoding to MaxSAT to optimize the accuracy. Then, we propose new
constraints to limit the depths. Next, to improve the prediction quality, we in-
tegrate the MaxSAT approach proposed in AdaBoost by adjusting the weights
of soft clauses.

Based on large experimental results, we observe the overfitting phenomenon
of previous SAT approach. Moreover, we observe competitive prediction per-
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formance of the proposed MaxSAT approach compared to state-of-the-art
heuristic and exact methods. Additionally, we perceive clear improvements in
prediction quality after the integration in AdaBoost.

2. Optimizing binary decision diagrams with MaxSAT
By providing compact representations for Boolean functions, binary decision
diagrams are viewed as interpretable in binary classification. Compared to
decision trees, ordered reduced binary decision diagrams could avoid the repli-
cation problem and the fragmentation problem effectively [Oliver 1992, Ko-
havi 1994], which are two major flaws suffered by decision trees. To the best
of our knowledge, the only exact method to learn optimal binary decision dia-
grams is [Cabodi et al. 2021], whose target are binary decision diagrams with
the smallest sizes that classify all examples correctly. However, this target
leads to two drawbacks. The first one is the possible overfitting due to the
perfect accuracy. The second one is the lack of restrictions in depth, making
it possible that the binary decision diagrams learnt are small in size but high
in depth.
To avoid these disadvantages, we propose a MaxSAT-based approach to learn
binary decision diagrams limited in depths with the best empirical accuracy.
At first, we introduce an initial SAT-based model to encode binary decision
diagrams of given depth with perfect accuracy. Then, we lift the SAT-based
model into MaxSAT to optimize the accuracy. In addition, as the complexity
of MaxSAT encoding relates strongly to the corresponding SAT encoding, we
propose two other SAT-based models for the same objective but with tighter
encoding sizes. Finally, to increase the scalability of the proposed MaxSAT
approach, we present an hybrid version that selecting a subset of important
features by heuristic method, then applying the MaxSAT approach proposed.
Our experimental evaluations show the comparison between our MaxSAT ap-
proach for optimal binary decision diagrams with state-of-the-art heuristic
and exact methods. Firstly, compared to heuristic method, our MaxSAT
approach shows clear advantages in prediction quality. Then, compared to
exact method (the MaxSAT approach of learning optimal decision trees), our
MaxSAT approach shows considerable shrink in encoding sizes and model
sizes. Meanwhile, our MaxSAT approach displays competitive prediction per-
formance. Finally, the hybrid version is easier in reporting optimality than
the original one, but still remains competitive in prediction quality.

Publications

The works presented in this thesis were published in two international conferences.
These publications are detailed in Chapter 2 and Chapter 3.

• Learning Optimal Decision Trees with MaxSAT and its integration
in AdaBoost. Hao Hu, Mohamed Siala, Emmanuel Hébrard, Marie-José
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Huguet. In Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI 2020, page 1170–1176. [Hu et al. 2020]

• Optimizing Binary Decision Diagrams with MaxSAT for classifi-
cation. Hao Hu, Marie-José Huguet, Mohamed Siala. In Proceedings of the
Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, page
3767–3775. [Hu et al. 2022]

We are honored that the MaxSAT formulas of learning optimal decision trees
are selected as benchmarks in MaxSAT Evaluation 2021 [Bacchus et al. 2021a] and
2022 [Bacchus et al. 2022]. The descriptions of benchmarks are detailed in the
following document, given in Appendix A.

• Description of Benchmarks on Learning Optimal Decision Trees
and Boosted Trees. Hao Hu, Emmanuel Hébrard, Marie-José Huguet, Mo-
hamed Siala. In MaxSAT Evaluation 2021, page 39-40. [Hu et al. 2021]

We have also presented our work on the optimization of binary decision diagrams
with MaxSAT, at two francophone conferences: JFPC 2022 (Journées Franco-
phones de Programmation par Contraintes) and CNIA 2022 (Conférence Nationale
en Intelligence Artificielle).
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In this chapter, we present technical background and state-of-the-art methods
for Boolean Satisfiability and for Machine Learning. Section 1.1 introduces the
Boolean Satisfiability (SAT) and the Maximum Boolean Satisfiability (MaxSAT)
problems. Section 1.2 presents supervised Machine Learning, and focuses on inter-
pretable machine learning, and ensemble methods. Section 1.3 provides a literature
review of recent related works in interpretable machine learning models. Specifically,
it contains the state-of-the-art methods on Decision Trees and Decision Graphs.
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1.1 SAT and MaxSAT Problems

The Boolean Satisfiability problem (SAT) aims to determine whether a Boolean
formula is satisfiable or not. The SAT problem has a key role in computer science,
in particular because it is the first problem proven to be NP-complete. In this
section, we describe formally some related notions in propositional logic by following
the standard terminology from [Biere et al. 2021]. Furthermore, we describe the
Maximum Boolean Satisfiability problem (MaxSAT), considered in this thesis.

1.1.1 Boolean Satisfiability

An atom x is a propositional (i.e., Boolean) variable. A literal p is either an atom
x, called positive literal, or its negation ¬x, called negative literal. A literal p is
true iff p is positive and its atom is assigned to the value 1, or p is negative and its
atom is assigned to the value 0. Otherwise, the literal p is false, that is ¬p is true.

A clause c is a disjunction of literals (p1 ∨ · · · ∨ pk). We suppose that all literals
in a clause are pairwise distinct, and that literals p and ¬p do not appear in the
same clause. A clause c is satisfied if at least one literal p appearing in the clause
(p ∈ c) is true. Conversely, if none of literals appearing in the clause c is true, then
c is unsatisfied.

A proposition formula represented by conjunctions of clauses c1 ∧ · · · ∧ cn is
said to be in Conjunctive Normal Form (CNF). A CNF formula corresponds to a
SAT instance. The SAT problem consists in determining the satisfiability of a CNF
formula. The goal is to find an assignment for all literals appearing in the CNF
formula that satisfies all clauses in the formula (the formula is satisfied or “SAT” in
short); or to report the failure of finding such assignment (the formula is unsatisfied
or “UNSAT” in short).

There are several complete algorithms to solve the SAT problem. One of the
oldest method is the Davis-Putnam-Logemann-Loveland (DPLL) algorithm [Davis
et al. 1962]. The state-of-the-art method applied in most modern SAT solvers is the
Conflict Driven Clause Learning (CDCL) algorithm [Silva & Sakallah 1996, Silva
& Sakallah 1999, Moskewicz et al. 2001, Eén & Sörensson 2003].

In the DPLL algorithm, the search space is explored via search tree where every
node corresponds to a decision (branching variable selection and value assignment)
restricting the search space to a smaller problem. The search tree is explored in a
Depth-First Search (DFS) scheme. The backtrack to the last node happens when
an “UNSAT” is detected. Then the last decision is reversed and the exploration
is resumed. This kind of backtracking is called chronological backtracking. During
the exploration, two steps are executed at each node of the search tree: search and
propagation. The search step relates to the branching variable selection and value
assignment by heuristic method to explore the search structure. Some classical
heuristics include pure random selection, and maximum occurrences on clauses of
minimum size (MOM) [Zabih & McAllester 1988, Silva 1999]. And the propagation
step relates to the pruning of dead-end branches. The DPLL algorithm uses one
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type of propagation called Unit-propagation (UP), which is triggered in two possible
conditions. The first condition is whenever a clause c has only one unassigned literal
p (c is called as a unit clause), the UP enforces p in c to be true as it is the only
way to make c satisfied. The second condition is when a clause c is unsatisfied by
the assigned literals, the UP return an “UNSAT” of the formula directly.

We describe the principal idea of DPLL algorithm in Algorithm 1.

Algorithm 1: The DPLL Algorithm.
Input: A Set of clauses C = {c1, . . . , cn}.

1 Process DPLL(C):
2 while there is a unit clause c has literal p unassigned do

// Delete the clause c from C due to the unit propagation.

3 C = UnitPropagation(p, c)
4 if C = ∅ then

// All clauses are satisfied, current assignment of literals is a

satisfied assignment.

5 return SAT.
6 if C has unsatisfied clause then
7 return UNSAT.

// Select a decision literal by heuristic.

8 p = SelectDecisionLiteral(C).
// Explore the positive branch.

9 if DPLL(C ∧ {p}) = SAT then
10 return SAT.
11 else

// Explore the negative branch.

12 return DPLL(C ∧ {¬p})

Output: SAT with a satisfied assignment, or UNSAT.

Inspired by DPLL, the major progress of CDCL concerns the conflict analy-
sis when an “UNSAT” is detected. The conflict analysis generates learning clause
based on the implication graph to explain the reason of leading to the failure. In
addition, CDCL uses an alternative backtracking scheme called non-chronological
backtracking (also known as the term backjump) to avoid making the same mistake
again. Meanwhile, a number of new techniques are involved in CDCL. Some rep-
resentative ones include an heuristic in branching variable selection called Variable
State Independent Decaying Sum (VSIDS) [Moskewicz et al. 2001], the usage of
lazy structure for the representation of formulas [Moskewicz et al. 2001], and the
periodically restarting backtrack search [Gomes et al. 1998]. For details of CDCL
algorithm, we refer readers to [Marques-Silva et al. 2021]. The representative CDCL
solvers include Chaff [Moskewicz et al. 2001], MiniSAT [Eén & Sörensson 2003],
and Glucose [Audemard & Simon 2009, Audemard & Simon 2018].

To evaluate the SAT solvers, from 2002, the International Conference on The-
ory and Applications of Satisfiability Testing (SAT) organizes annually the SAT
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Competition1.

1.1.2 Maximum Boolean Satisfiability

The Maximum Boolean Satisfiability problem (MaxSAT) consists in finding an as-
signment of all literals that maximizes the number of satisfied clauses.

A MaxSAT instance is represented by a weighted CNF formula, that is conjunc-
tions of weighted clauses. A weighted clause is a pair (ci, wi), where ci is a clause,
and wi is a positive number indicating its weight. In addition, three variants of
MaxSAT problems are mainly studied in the literature:

• Weighted MaxSAT : The weighted MaxSAT problem deals with a weighted
CNF formula. The objective is to find an assignment that maximizes the sum
of weights of satisfied clauses.

• Partial MaxSAT : The partial MaxSAT problem deals with a CNF formula,
in which all clauses are divided into two sets: soft (or relaxed) clauses, and
hard (or non-relaxable) clauses. The objective is to find an assignment that
maximizes the number of satisfied soft clauses and meanwhile satisfy all hard
clauses.

• Weighted Partial MaxSAT : The weighted partial MaxSAT is the combi-
nation of weighted MaxSAT and partial MaxSAT. It deals with a weighted
CNF formula, where soft clauses are weighted. The objective is to find an
assignment that satisfies all hard clauses, and maximizes the sum of weights
of satisfied soft clauses.

One can note that the MaxSAT problem could be defined as a weighted MaxSAT
problem by considering that all clauses share the same weights, and as Partial
MaxSAT problem by declaring all clauses as soft clauses.

The objective of MaxSAT problem is to maximize the number of satisfied clauses,
or equivalently to minimize the number of unsatisfied clauses (or MinUNSAT).
Similarly, for weighted MaxSAT, the equivalent objective is to minimize the sum
of weights of unsatisfied clauses; for partial MaxSAT, the equivalent objective is
to minimize the number of unsatisfied soft clauses and meanwhile satisfy all hard
clauses declared; and for weighted partial MaxSAT, the equivalent objective is to
minimize the sum of weights of satisfied soft clauses and meanwhile satisfy all hard
clauses declared.

In this thesis we focus on exact method to to solve the MaxSAT problem and
its variants. In exact methods the goal is to compute the optimal solution and
to prove the optimality. These methods could be roughly divided into two main
groups: Branch-and-Bound (BnB) algorithms [Li & Manyà 2021], which directly
tackle MaxSAT with a bounding procedure; and SAT-based algorithms [Bacchus
et al. 2021b], which transform MaxSAT into a sequence of SAT instances and call a

1Learn more details from http://www.satcompetition.org/.

http://www.satcompetition.org/
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modern SAT solver to solve them. In practice, we refer to the MinUNSAT problem
where upper bound is greater than or equal to the minimum number of unsatisfied
clauses, lower bound is smaller than or equal to the minimum number of unsatisfied
clauses. The optimality is reported when the upper bound equals to the lower
bound.

Branch-and-Bound MaxSAT solvers implement the branch-and-bound scheme
and incorporate a look-ahead procedure that detects inconsistent subsets of soft
clauses by applying unit propagation and computes a lower bound. They also
apply some inference rules at each node of the search tree. Some representative
BnB solvers are MaxSatz [Li et al. 2007], MiniMaxSat [Heras et al. 2008], and
Akmaxsat [Kügel 2010]. Especially, a recent solver MaxCDCL [Li et al. 2021]
integrates the clause learning mechanism in the branch-and-bound, which signifi-
cantly accelerates the speed of BnB solvers.

SAT-based MaxSAT solvers are based on a reformulation of the MaxSAT prob-
lem in a sequence of SAT problems, and consider three types of strategies for ex-
ploring the sequence: linear search, core-guided, and minimum hitting-set-based
(MHS-based). We introduce them separately.

Linear search solvers use the upper bound approach of the MinUNSAT prob-
lem, and iteratively query a SAT solver for a better solution than the current best
one. The optimality is reported when no such better solution could be found,
and the current best one is the optimal solution. The representative linear search
solvers include SAT4J-MaxSAT [Berre & Parrain 2010], QMaxSAT [Koshimura
et al. 2012], and Open-WBO [Martins et al. 2014].

Core-guided and MHS-based solvers use the lower bound approach of the Mi-
nUNSAT problem. At first, they consider the input instance as SAT instance,
and obtain an unsatisfied subset of soft clauses (called core) by using a SAT solver.
This core is associated to a given lower bound on the number of unsatisfied clauses.
Then, the solvers relax this core and solve the relaxed instance to identify another
core. This process is repeated until a satisfiable instance is derived indicating the
optimality is reached. The difference between core-guided and MHS-guided solvers
is that core-guided solvers relax a core using cardinality constraints, while MHS-
guided solvers minimizes the number of different clauses from the core by solving
a minimum hitting set instance with an integer programming solver. The repre-
sentative core-guided solvers include MSU1.2 [Marques-Silva & Manquinho 2008],
Open-WBO [Martins et al. 2014], and RC2 [Ignatiev et al. 2019]. The represen-
tative MHS-based solvers include MHS [Saikko et al. 2016], and MaxHS [Davies
& Bacchus 2011, Davies & Bacchus 2013].

Moreover, there is an hybrid version called core-boosted linear search, which
combines the linear search and the core-guided approaches. At first the MinUN-
SAT problem is reformulated with a core-guided solver to produce a lower bound
with limited time. Then, the problem is solved with a linear search solver. The
exchange of information from the core-guided phase and the linear phase tightens
the gap between the lower bound and the upper bound. As a result, this hy-
brid approach could be more effective than either a pure linear search or a pure
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core-guided approach. The representative core-boost linear search solver is Loan-
dra [Berg et al. 2019]. The default time out for core-guided phase of Loandra is 30
seconds.

To evaluate the MaxSAT solvers, from 2006, the International Conference on
Theory and Applications of Satisfiability Testing (SAT) organizes annually the
MaxSAT Evaluation2. Each year, the evaluation collects new MaxSAT benchmarks,
and new open-source MaxSAT solvers.

1.2 Machine Learning

As an important part of Artificial Intelligence (AI), Machine Learning (ML)
could be viewed as a set of algorithms that construct good models from datasets.
Globally, a “model” is a mapping that maps inputs to predictions. A “dataset”
is generally a set of feature vectors, where each feature vector is a description of
an object using a set of features. The number of features of a dataset is called
dimension. In some cases, features are also called as attributes, a feature vector is
also called as an instance, or an example. The process of generating “models” from
“datasets” is called learning or training. The “models” are also called as learners,
or hypotheses.

Based on the existence of labels for examples in the dataset, Machine Learning
could be roughly divided as two major categories: Supervised Learning and
Unsupervised Learning. Supervised Learning needs label information, where
labels reflect the explicit distribution of the datasets, so that the model learnt could
make good predictions for unseen examples. However, the goal of Unsupervised
Learning is to extract implicit information from the datasets, making the labels
are not necessary. For example, Clustering is a typical problem of Unsupervised
Learning, which aims to separate “close” examples of a dataset into several clusters.
In this thesis, we mainly consider Supervised Learning problems.

The mathematical notations used in this section majorly follow [Zhou 2021,
Zhou 2012]. We also refer readers who are not familiar with Machine Learning to
some other classical books, like [Mitchell 1997, Hastie et al. 2009]. For more general
in Artificial Intelligence, we refer readers to [Russell & Norvig 2020].

1.2.1 Basic Knowledge

1.2.1.1 Classification and Regression

Supervised Learning could be separated into two types of problems: Classification
for making discrete predictions, and Regression for making continual predictions.
Especially, if the predictions are limited in two different discrete classes, we call
this classification problem as Binary Classification. Normally, one class is called
positive class, and the other is called negative class.

2Learn more details from https://maxsat-evaluations.github.io/.

https://maxsat-evaluations.github.io/
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A mathematical description for Supervised Learning is as follow. We note a la-
belled dataset (or a set of examples) containing m examples as E = {e1, e2, . . . , em}.
Each example, like the i-th one ei, is a pair of (xi, yi), where xi = (xi1; xi2; . . . ; xid)
is a feature vector of d features, the xij indicates the value of j-th feature for xi.
The value d is the dimension, the corresponding feature space is noted as X . We
denote by F = {f1, . . . , fd} the set of features of the dataset. The value yi is the
label of ei, it could be a discrete class for classification, or a continual value for
regression. We note Y as the ensemble of all possible labels, or label space. The
(unknown) data distribution, denoted by D, as a distribution over the feature space
X , where the feature vectors xi from E are independently and identically distributed
from D. That is, the feature vectors xi share the same implicit data distribution
D, and do not influence each other. The difference between data distributions can
be reflected in the different probabilities of the feature vectors. In practice, this
difference is implied in the different weights of feature vectors in the dataset. In
general, if not specially mentioned, the feature vectors in a dataset share the same
weight, indicating they share the same probability.

The target of Supervised Learning is to find a mapping (i.e., a model) ϕ from
the feature space X to the label space Y, by using the labelled dataset E . We note
ϕ : X 7→ Y, the ϕ(xi) is the prediction made for xi. The learning algorithm that
provides the model is denoted by L. We also note L(E ,D) as the model learnt by
the algorithm L from the dataset E drawn on the distribution D.

For Binary Classification, normally we let Y = {0, 1}. When |Y| > 2, we call
it as Multi-class Classification. When Y ⊆ R, it is Regression. In this thesis,
we mainly consider the Classification problems, especially the Binary Classification
problem.

1.2.1.2 Evaluation Measures

After a model ϕ is learnt from a labelled dataset E = {(x1, y1), (x2, y2), . . . , (xm, ym)},
for example (xi, yi), the prediction ϕ(xi) = yi indicates the model predicts xi cor-
rectly. Otherwise, the prediction is incorrect (or wrong).

We introduce two widely used measures for evaluating the prediction perfor-
mance of a classification model: the accuracy, and the error rate. The accuracy
is the percentage of examples correctly predicted in the whole dataset. In reverse,
the error rate is the percentage of examples wrongly predicted. The accuracy is
defined as follow using the notation at the beginning:

acc(ϕ; E ) = 1
m

m∑
i=1

count(ϕ(xi) = yi) (1.1)

where count(·) is an indicator function, the value is 1 when · is True, or 0 when
it is False. The error rate could be calculated as err(ϕ; E) = 1− acc(ϕ; E ).

More generally, we call the differences between the predictions and the labels as
error. We call the labelled dataset used for learning a model as training set, the
error of the model learnt on training set as training error, or empirical error.
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The error of the model on new unseen examples is called generalization error.
Apparently, we hope the model learnt has small generalization error as it reflects

the general prediction performance. However, as we have no idea for the unseen
examples, we could only minimize the empirical error. But frequently, a model
learnt having small empirical error performs badly in unseen examples. This phe-
nomenon is called overfitting. One major reason of overfitting is the model learnt
is so “strong” in the training set so that it considers some specific properties in the
training set as general properties. The opposite phenomenon of overfitting is called
underfitting, indicating the model does not learn enough general properties from
the training set. Compared to overfitting, underfitting is easy to avoid by reducing
the empirical error. Overfitting is impossible to avoid entirely, we could only try to
“reduce” its possibility.

As it is impossible to list all unseen examples to get the generalization error, we
use some unseen examples in reasonable size as the testing set, and the testing
error as an approximation of generalization error. We assume that all examples
in the testing set has the independently identical distribution to the training set.
In addition, to get “closer” approximation to the generalization error, all examples
in the training set are not recommended to appear in the testing set. However,
in most cases, there is only one labelled dataset E but it needs make training and
testing together. We introduce three widely used methods for splitting the training
set and testing set: the hold-out method, the cross-validation method, and the
bootstrapping method.

Hold-Out Method

The Hold-Out method directly separates the labelled dataset E into two exclusive
subsets, the one is chosen as training set Etrain, the other is chosen as testing set
Etest, where Etrain ∪ Etest = E , and Etrain ∩ Etest = ∅.

There are some attention points for the hold-out method. At first, we should
choose a reasonable ratio for splitting the training and testing set, so that the testing
set split is in sufficient size. In general, to guarantee the fidelity of the evaluation,
the testing set split should contain at least 30 examples. Normally, the split ratio
for training set varies from 2/3 to 4/5 [Mitchell 1997, Zhou 2021]. Moreover, we
should also try to preserve the same distribution of training and testing sets. A
common way is called stratified sampling that keeps the percentage of examples of
all classes in the training and testing sets similar, or equal. But sometimes, pure
random selection is also used as its effectiveness. Finally, to make the evaluation
more stable, generally the splitting process is repeated several times, and the final
training (testing) error is the average value of all training (testing) errors of each
splitting process.

Sometimes in practice, the hold-out method separates the dataset into three
exclusive subsets, the training set, the testing set, and the validation set Eval. The
validation set is used during the training process, as a “substitute” of testing set
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to estimate the performance of the learning model. The use of validation set could
somehow avoid the underfitting, and reduce the possibility of overfitting.

Cross-Validation Method

The Cross-Validation method [Kohavi 1995] at first separates the labelled dataset
E into k exclusive subsets with similar (or same) sizes. That is E = E1∪E2∪· · ·∪Ek,
where for i ̸= j, it has Ei∩Ej = ∅. For each subset Ei, the method choose the left k−1
subsets as the training set, and Ei as the testing set. Then, the method generates
k pairs of training-testing sets for the evaluation. The final training (testing) error
is the average value of the training (testing) errors in k times.

As the cross-validation method strongly relied on the value of k, it is also called
as k-fold cross-validation. The value of k is widely chosen as 5, or 10, considering
the balance of computational time. In addition, similar to the hold-out method,
to make the evaluation more stable, sometimes, cross-validation is also repeated
several times with different random seeds to get the average values.

Cross-validation method is one of the most popular validation method. In this
thesis, 5-fold cross-validation is widely used in the experiments.

Bootstrapping Method

The Bootstrapping method [Efron & Tibshirani 1993] is based on the bootstrap
sampling, which is the sampling with replacement. In detail, for a labelled dataset
E of size m, the method uses the m times of sampling with replacement to generate
a new labelled dataset E ′ of size m. For example, if an example ei from E is chosen
in one time, the method copies the example into E ′ , and then puts this example
back to E to let it possibly chosen in the future.

Apparently, some examples in the original dataset E are appeared multiple times
in E ′ , and some examples never. The probability that an example is never chosen
within m times is (1− 1

m)m, we have

lim
m→∞

(1− 1
m

)m = 1
e
≈ 0.368 (1.2)

It indicates nearly a third of examples in E are never chosen in E ′ . Therefore,
we could use the new dataset E ′ as the training set, and the set of left examples
E \ E ′ as the testing set. This approach is called as out-of-bag estimate.

The bootstrapping method is useful for those datasets in small sizes. In addition,
as it could generates multiple different training set, it is also widely used in Ensemble
Learning, like Bagging, Random Forest. However, when the dataset is in sufficient
size, the hold-out method and the cross-validation method are more recommended,
as the bootstrapping method changes the distribution of the dataset.
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1.2.2 Interpretable Machine Learning Models

In the last decade, with the great advance in the computational resources, boom-
ing effective accurate Machine Learning algorithms are proposed. Especially in
the field of Neural Networks, like the AlexNet [Krizhevsky et al. 2012], the
Residual-Net [He et al. 2016], the GAN [Goodfellow et al. 2014], the Trans-
former [Vaswani et al. 2017], the Informer [Zhou et al. 2021], etc; and the field
of Ensemble Learning, like the XGBoost [Chen & Guestrin 2016], the Light-
gbm [Ke et al. 2017], the Deep Forest [Zhou & Feng 2017], etc. These algorithms
have big successes in many important sub-fields of Machine Learning, like Computer
Vision, Natural Language Processing, Video Processing, etc.

However, the models learnt via these algorithms are called as “black-box mod-
els” as they lack of interpretability. There are different (non-mathematical) def-
initions of interpretability [Miller 2019, Kim et al. 2016], the core idea is that, with
better interpretability, human could more easily understand why certain decisions
or predictions are made by the model learnt.

Recently, there are explosion of works in Machine Learning for better inter-
pretability. They could be classified as two major categories [Molnar 2022]: In-
trinsic, or Post hoc. The intrinsic interpretability refers to the ML models that
are considered to be interpretable due to their simple structure, like short deci-
sion trees. The post hoc interpretability refers to the application of interpretation
methods after the black-box models learnt. It creates a second model to explain the
black-box model trained. For example, extracting a decision tree for explaining the
predictions made by a trained neural network. The methods of post hoc are also
called as explainable ML. The author of [Rudin 2019] shows some weaknesses of
the explainable ML, and declares the intrinsic models as Interpretable Machine
Learning Models. We follow this definition.

In this thesis, we only focus on Interpretable Machine Learning Models for
binary classification. We introduce some widely-used interpretable ML models as
follow, like Decision Trees, Binary Decision Diagrams, and other popular models,
including Decision List and Decision Set.

1.2.2.1 Decision Trees

Decision Tree (DT) is one of the most popular ML model in supervised learning.
The decision process of decision tree is similar as human: make the decision by a
series of judgements. This simply logical decision process makes the decision tree
intrinsically interpretable.

In general, a decision tree topology is shown in Figure 1.1, which contains a
root node, several branching nodes, and leaf nodes. For each branching node (or
the root node), a feature is selected as the test for the judgement. Depending on
the problem, the leaf node corresponds to a class for classification problem, or to
a real value for regression problem. The number of subtrees for a branching node
(or the root node), equals to the number of different values of the feature selected.
In addition, each subtree indicates a value case of the feature selected. Each path
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Root

Branching Branching

Leaf Leaf Branching Leaf

Leaf Leaf Leaf

Figure 1.1: A general Decision Tree topology

from the root node to a leaf node corresponds to a series of judgements. To make
the prediction for an unseen example, finding the corresponding path from the root
node to a leaf node based its values for the series of tests, and the prediction is the
value associated to the leaf node.

An illustrating example of decision tree for classification is shown in Figure 1.2,
learnt from a small dataset shown in Table 1.1. The small dataset concerning a
family go out to play based on the weather, comes from [Quinlan 1993]. It is easy
to check that the decision tree in Figure 1.2 classifies all examples correctly.

Outlook Temp(> 26◦C?) Humidity(> 75%?) Windy? Play?
sunny false false true Yes
sunny true true true No
sunny true true false No
sunny false true false No
sunny false false false Yes

overcast false true true Yes
overcast true true false Yes
overcast false false true Yes
overcast true false false Yes

rain false true true No
rain false false true No
rain false true false Yes

Table 1.1: A small dataset from [Quinlan 1993]

Outlook

Humidity(> 75%)? Yes Windy?

No Yes No Yes

sunny overcast rain

true false true false

Figure 1.2: An illustrating example of Decision Tree
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The traditional way to learn decision trees is top-down induction based on the
divide and conquer methodology. Briefly, each node corresponds to a subset of
dataset, where the root node corresponds to the entire dataset. For branching
nodes (or the root node), the corresponding subset is split into different pieces for
different subtrees based on the feature associated. The leaf nodes end the split,
when all examples in the subset have the same class, or the subset contains no
examples, or all features in the datasets are used. Detailed algorithm is shown in
the Algorithm 2.

Algorithm 2: The traditional Decision Tree algorithm by top-down in-
duction.

Input: A labelled Dataset E = {(x1, y1), . . . , (xm, ym)};
The feature set of dataset F = {f1, . . . , fd};

1 Process DTGenerate(E , F):
2 Generate a tree node node for E .

// When all examples have same class, end the split

3 if all examples in E has same class c then
4 node is marked as leaf node with class c.
5 return.

// When there is no candidate feature, end the split

6 if F = ∅ then
7 return.
8 Choose the best split feature f∗ from F .
9 for each possible value fv

∗ of f∗ do
10 Generate a subtree for node.
11 Ev ← the subset of examples in E with value fv

∗ of feature f∗.
12 if Ev = ∅ then

// When no examples lead to this value

13 The subtree is marked as leaf node with majority class in E .
14 return.
15 else
16 Use the node from DTGenerate(Ev,F \ f∗) as the subtree.

Output: A Decision Tree with node as the root.

There are various famous heuristic decision tree algorithms, like C4.5 [Quin-
lan 1993], CART(Classification and Regression Tree) [Breiman et al. 1984], etc.
The differences between them is the heuristic of choosing the best split feature (line
8 in Algorithm 2). We show details of the heuristic used in C4.5 and CART in the
section 1.3.1.1 .

There are also variants of the traditional decision tree algorithm. For ex-
ample, unlike using a single feature to make the split, Multivariate Decision
Trees [Murthy et al. 1993, Brodley & Utgoff 1995] proposed using a combination
of features to achieve more complex topology. And some variants [Utgoff 1988, Ut-
goff et al. 1997] proposed applying incremental learning in the decision trees by
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reconstruct partly the topology for new-coming data not learn a new model, to
reduce the training time.

1.2.2.2 Binary Decision Diagrams

Binary Decision Diagram (BDD) is another interpretable ML model in super-
vised learning. Especially, it could only used in binary classification with dataset
full of binary features. The decision process of binary decision diagram is same as
the decision tree by a series of judgements.

As their compact representations for Boolean functions, binary decision dia-
grams are widely studied in hardware design, model checking, and knowledge rep-
resentation [Akers 1978, Moret 1982, Bryant 1986, Knuth 2009]. Considering a
sequence of Boolean variables [x1, . . . , xn], a binary decision diagram is a rooted,
directed, acyclic graph. It contains two types of vertices. A terminal vertex v is as-
sociated to a binary value: value(v) ∈ {0, 1}. A nonterminal vertex v is associated
to a Boolean variable xi and has exact two children: left(v), right(v). Its children
are vertices too, and index(v) ∈ {1, . . . , n} is the index of the Boolean variable
associated to v.

To guarantee a unique binary decision diagram for a given Boolean function,
two restrictions are widely assumed: ordered and reduced. The restriction “or-
dered” indicates for any nonterminal vertex v, it has index(v) < index(left(v))
and index(v) < index(right(v)). The restriction “reduced” indicates the graph con-
tains no nonterminal vertex v with left(v) = right(v), nor does it contains distinct
nonterminal vertices having isomorphic rooted sub-graphs. The Boolean function
represented by the binary decision diagram can be recursively obtained with the
Shannon expansion process [Shannon 1938]. That is, for an ordered reduced binary
decision diagram defined in the sequence of Boolean variables [x1, . . . , xn] having v

as the root node, the Boolean function gv is:

1. If v is a terminal vertex:
gv = value(v).

2. If v is a nonterminal vertex with index(v) = i:

gv(x1, . . . , xn) = ¬xi · gleft(v)(x1, . . . , xi−1, xi+1, . . . , xn)
+ xi · gright(v)(x1, . . . , xi−1, xi+1, . . . , xn).

An example of binary decision diagram is shown in Figure 1.3, where dashed(solid)
line of each vertex indicates the left(right) child. The Boolean function represented
is g(x1, x2, x3) = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3).

We define the depth of the binary decision diagram as the number of nonterminal
vertices of longest path from the root to a terminal node. It is clear that length
of the sequence of Boolean variables is equal or greater than the depth. Therefore,
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x1

x2 x2

x3

0 1

Figure 1.3: An illustrating example of Binary Decision Diagram of depth 3.

the length of the sequence of Boolean variables is equivalent to the maximum depth
of the binary decision diagram.

To make the binary classification, the sequence of Boolean variables used in
the binary decision diagram is changed as a sequence of binary features with the
same length. The nonterminal vertices are associated to binary features, and the
terminal vertices are associated to binary classes. As there are exact two terminal
vertices, they are also called as sink nodes. There are several ways to transform
the multi-value features of the datasets into binary features. A general method
we applied in this thesis is called “one-hot encoding”, which replaces a multi-value
feature with several new binary features. Each new binary feature indicates does
the original multi-value feature equals to a value. Table 1.2 shows the transformed
dataset by the one-hot encoding in the Table 1.1. To simplify the representation,
the value true (false) in the feature, and Y es (No) in the class, are transformed
into 1 (0).

f1 f2 f3 f4 f5 f6 Play?
1 0 0 0 0 1 1
1 0 0 1 1 1 0
1 0 0 1 1 0 0
1 0 0 0 1 0 0
1 0 0 0 0 0 1
0 1 0 0 1 1 1
0 1 0 1 1 0 1
0 1 0 0 0 1 1
0 1 0 1 0 0 1
0 0 1 0 1 1 0
0 0 1 0 0 1 0
0 0 1 0 1 0 1

f∗ Feature Implied
f1 Outlook = sunny?
f2 Outlook = overcast?
f3 Outlook = rain?
f4 Temp(>26◦C?)
f5 Humidity(> 75%?)
f6 Windy?
0 false or No
1 true or Yes

Table 1.2: The transformed binary dataset by one-hot encoding from Table 1.1.

The binary decision diagram of maximum depth 4 classifying all examples in
Table 1.2 correctly is shown in Figure 1.4. In addition, the binary decision tree
corresponding to this binary decision diagram is shown in Figure 1.5. It is clear
that the size (number of vertices) of the binary decision diagram is smaller than
the size of the corresponding binary decision tree.

Compared to the decision tree, the binary decision diagram could avoid the
replication problem and the fragmentation problem effectively [Oliver 1992, Ko-



1.2. MACHINE LEARNING 19

f2

f1

f6
f5

0 1

Figure 1.4: The Binary Decision Diagram
of max depth 4 classifying all examples.

f2

f1 1

f6 f5

1 0 1 0

Figure 1.5: The Decision Tree for the
dataset transformed in Table 1.2.

havi 1994], which are two major flaws suffered by the decision tree [Matheus &
Rendell 1989, Pagallo & Haussler 1990, Rokach & Maimon 2014]. The replication
problem appears when two identical subtrees are in the decision tree. The fragmen-
tation problem appears when only few examples are associated to leave nodes. The
restriction “reduced” of binary decision diagram could avoid the replication prob-
lem entirely, indicating generally the binary decision diagram has more compact
topology than the corresponding decision tree in size. To avoid the fragmenta-
tion problem, [Kohavi & Li 1995] proposed a post-process of merging compatible
subtrees. We show details in the section 1.3.2.

In addition, binary decision diagrams are extended for multi-classification, known
as decision graphs. There are some heuristic algorithms are proposed to learn a de-
cision graph from a dataset. We show details of some heuristic in the section 1.3.2.

1.2.2.3 Some Other Models

Except the decision tree, binary decision diagram, there are also some other In-
terpretable ML models. Here we present two of them, the decision list, and the
decision set model.

Decision List was firstly introduced in [Rivest 1987]. The model contains a list of
distinct rules, by following a if - then - else if - . . . - else relationship. Each
rule is in the format of “πi ⇒ ki”, where ki ∈ Y, corresponding to a conditional
statement: “if the predicate πi is satisfied for an example, then the class predicted
is ki”. The size of decision list is the number of the distinct rules it contains.

The Figure 1.6 shows an example of decision list for the small dataset in Ta-
ble 1.2. The model is comprehensive for human as its logical processes.

IF f2 = 1 THEN Play=1
ELSE IF f1 = 0 ∧ f6 = 0 THEN Play=0
ELSE IF f1 = 1 ∧ f5 = 0 THEN Play=0

ELSE Play=1

Figure 1.6: The Decision List for the small dataset in Table 1.2.



20 CHAPTER 1. FORMAL BACKGROUND & STATE-OF-THE-ART

Decision Set is another rule-based Interpretable ML model, which was first ap-
peared in [Rivest 1987] as an unordered variant of decision list. That is, unlike the
decision list relates the rules by the logic if - then - else if - . . . - else, the rules
in the decision set are all independent. The Figure 1.7 shows the decision set for
the small dataset in Table 1.2.

IF f2 = 1 THEN Play=1
IF f2 = 0 ∧ f1 = 0 ∧ f6 = 0 THEN Play=0
IF f2 = 0 ∧ f1 = 0 ∧ f6 = 1 THEN Play=1
IF f2 = 0 ∧ f1 = 1 ∧ f5 = 0 THEN Play=0
IF f2 = 0 ∧ f1 = 1 ∧ f5 = 1 THEN Play=1

Figure 1.7: The Decision Set for the small dataset in Table 1.2.

It is easy to transform the decision tree or the binary decision diagram into the
decision set, as each path from the root to the leaf node relates to a rule in the
decision set. As the rules are unordered, some rules may overlap. That is, for an
example, there are may be multiple rules are satisfied. In this case, there are two
choices, the one is to apply a tie-break rule to pick the class [Lakkaraju et al. 2016],
the other is to declare an overlap [Ignatiev et al. 2018]. For those examples that
none of the rules is satisfied, the decision set could apply the default rule for the
prediction [Lakkaraju et al. 2016].

1.2.3 Ensemble Methods

Ensemble Methods are a set of algorithms in supervised learning, aim to train
multiple learners and combine them to make predictions [Zhou 2012]. A common
architecture of Ensemble Methods is shown in Figure 1.8. The multiple learners are
called base learners, and each one is learnt from training data by a base learning
algorithm, like decision tree, neural network, etc. In general, an ensemble method
uses a single base learning algorithm to generate base learners, which is called
homogeneous ensemble. Otherwise, when an ensemble method uses multiple
base learning algorithms, it is called heterogeneous ensemble. In this thesis, we
mainly introduce the homogeneous ensembles.

learner 1

learner 2

...

learner n

combinationx y

Figure 1.8: A common architecture of Ensemble Methods. [Zhou 2012]
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1.2.3.1 The Combination Methods

Ensemble Methods could improve the generalization performance of the base learn-
ers. In particular, Ensemble Methods could boost weak learners to strong learners
with good generalizations, even those weak learners are just slightly better than ran-
dom guess. The key reason of this improvement due to the combination methods.
[Dietterich 2000a] attributed three benefits from the combination:

• Statistical Issue: It is often that the training data is limited compared to
the feature space. And there may be several models (hypotheses) with same
accuracy on the training data. The combination of the hypotheses could
reduce the risk of wrongly choosing the best one.

• Computational Issue: It is often that many learning algorithms are stuck in
local optima. The combination of the hypotheses could reduce the risk of
leading to a wrong local minimum.

• Representation Issue: The combination of the hypotheses may be possible
to expand the space of representable functions, and form a more accurate
approximation to the true unknown hypothesis.

For numerical outputs, Averaging is the most popular combination method; For
discrete outputs, Voting is the most widely used combination method. In this thesis,
we use voting since we mainly consider the classification problem. There are mainly
three different voting methods: the majority voting, the plurality voting, and the
weighted voting. We introduce a mathematical description for Ensemble Methods
before presenting them.

In general, for a multi-classification task with the label space Y = {c1, . . . , cN},
we consider an ensemble containing T base learners. And, we note the i-th base
learner as ϕi, the ensemble model as Φ. For a given feature vector x, ϕi(x) is the
prediction made by the i-th base learner, and Φ(x) is the prediction made by the
ensemble after the combination. In addition, ϕj

i (x) is 1 if ϕi(x) = cj , otherwise 0.
The majority voting chooses the class received more than half votes (each base

learner has one vote), or rejects if none of class received more than half votes.

Φ(x) =

cj , if
∑T

i=1 ϕj
i (x) > ⌊T /2 + 1⌋

reject, otherwise
(1.3)

The plurality voting is less strict than the majority voting as it chooses the most
voted class. There is no rejection option in plurality voting.

Φ(x) = carg maxj

∑T
i=1 ϕj

i (x) (1.4)

The weighted voting is a weighted version of plurality voting. Different base
learners have different weights, and the weighted voting finds the class that has the
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highest highest weight. It is reasonable as it should give more power to stronger
base learners in the voting. The weight of ϕi is denoted as wi.

Φ(x) = carg maxj

∑T
i=1 wiϕ

j
i (x) (1.5)

In general, the weights are positive and normalized (wi ≥ 0 and
∑T

i=1 wi = 1)
to realise the weighted averaging.

We shortly explain why the combination could boost weak learners to strong
learners. Assuming the output of all base learners are independent, and each one
makes a correct classification at the probability p. Therefore, the probability of the
ensemble that using majority voting (pmv) is as follow, by guaranteeing at least
⌊T /2 + 1⌋ base learners make correct classifications [Hansen & Salamon 1990]:

pmv =
T∑

k=⌊T /2+1⌋

(
T
k

)
pk(1− p)T −k (1.6)

From [Lam & Suen 1997], when p > 0.5, pmv is monotonically increasing in T ,
and limT →∞ pmv = 1; when p < 0.5, pmv is monotonically decreasing in T , and
limT →∞ pmv = 0; when p = 0.5, pmv = 0.5 for any T .

In practice, the assume that all base learners are independent is not possible.
In general, the base learners are highly related as they are trained on the same
problem. Therefore, to generate an ensemble with good prediction performance, it
needs not only accurate base learners, but also diverse learners. In fact, one core
research of the Ensemble Methods is, how to find a good trade-off between the
accuracy and the diversity of the base learners [Zhou 2012, Brown et al. 2005, Tang
et al. 2006].

There are two major paradigms of Ensemble Methods: The one is to generate
base learners sequentially, the other is to generate base learners in parallel. The
Boosting methods are the representative of the former one, and the Bagging
methods and the Random Forest are the representative of the later one.

[Dietterich 2000b] provides an experimental comparison between Bagging, Boost-
ing, and Random Forest based on decision trees. And [Rokach 2016] provides a
literature review of recent ensemble methods based on decision trees.

1.2.3.2 Boosting

Boosting methods are a family of algorithms generating base learners sequentially.
The general mechanism of Boosting is simple: at first, train a base learner with
the given dataset. Then, adjust the data distribution of the given dataset by the
prediction of the base learner, that is, increase the weights of examples wrongly
predicted so that they have more attentions in the next iterations. Next, use the
adjusted dataset to train a new base learner. Repeat this process until it arrives the
number of iterations preset, and finally combine those base learners. The Algorithm
3 shows this general mechanism [Zhou 2012].
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Algorithm 3: The general mechanism of Boosting methods.
Input: A labelled Dataset E in distribution D;

A base learning algorithm L;
The number of iterations T .

1 D1 = D. // Initialize the data distribution

2 for t = 1, . . . , T do
3 ϕt = L(E ;Dt). // Train a base learner from E under distribution Dt

4 εt = err(ϕt; E ). // Calculate the error rate of ϕt

5 Dt+1 = Adjust_Distribution(Dt, εt). // Adjust the data distribution

Output: Φ(x) = Combine({ϕ1(x), . . . , ϕT (x)}).

There are lots of Boosting methods, some famous of them are AdaBoost(Adaptive
Boosting) [Freund & Schapire 1997, Friedman et al. 2000], GBDT (Gradient-
Boosted Decision Trees) [Friedman 2001, Friedman 2002], XGBooost(eXtreme
Gradient Boosting) [Chen & Guestrin 2016], etc. We introduce the AdaBoost in
detail as it is the representative Boosting method.

Considering the binary classification on classes {−1, +1}, the AdaBoost from [Fre-
und & Schapire 1997] is shown in Algorithm 4, where sign(·) is an sign function,
the value is +1 when · > 0, or −1 when · ≤ 0.

Algorithm 4: The AdaBoost Algorithm.
Input: A labelled Dataset E = {(x1, y1), . . . , (xm, ym)};

A base learning algorithm L;
The number of iterations T .

1 D1 = 1/m. // Initialize the distribution with same weight

2 for t = 1, . . . , T do
3 ϕt = L(E ;Dt). // Train the base learner in t-th round

4 εt = err(ϕt; E ). // Evaluate the error rate of ϕt

// End the iteration if ϕt is weaker than random guess

5 if εt > 0.5 then
6 break.
7 αt = 1

2 ln 1−εt
εt

. // αt is the weight of ϕt in final combination

// Increase the weights of examples wrongly predicted

8 Dt+1(x) = Dt
zt
· exp (αt · count(ϕt(xi) ̸= yi)). // zt is a normalization

factor for the distribution

Output: Φ(x) = sign
(∑T

t=1 αtϕt(x)
)
.

The AdaBoost algorithm uses additive weighted voting for the final prediction,
where the base learners with better prediction performances gain higher weights in
the final voting. In addition, in the AdaBoost algorithm, the base learner trained
in t-th iteration will influence the base learner in the next iteration by updating the
data distribution. That is, the algorithm increases the weights of examples wrongly
predicted by the current base learner, making those examples have more chance to
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be correctly predicted in future iterations.

1.2.3.3 Bagging and Random Forest

As introduced before, the diversity between base learners in an ensemble method is
important to achieve good prediction performance. For a given labelled dataset, a
practical way to generate diverse base learners is to train base learners by different
diverse subsets sampled from the dataset. Meanwhile, each subset should contain
sufficient examples to avoid training base learner with poor prediction performance.

Bagging (Bootstrap AGGregatING) [Breiman 1996] adopts the bootstrap sam-
pling [Efron & Tibshirani 1993] to generate different diverse subsets with duplica-
tion for training base learners. In detail, when a labelled dataset E containing m

given examples, a subset containing m examples with duplication will be gener-
ated by sampling with replacement. This process is repeated T times to generate
T different subsets. The Bagging algorithm uses those T subsets to train T base
learners. Then, in classification, the algorithm combines those base learners by
plurality voting. The Bagging is shown in the Algorithm 5.

Algorithm 5: The Bagging Algorithm.
Input: A labelled Dataset E = {(x1, y1), . . . , (xm, ym)};

A base learning algorithm L;
The number of iterations T .

1 for t = 1, . . . , T do
// Dbs is the bootstrap distribution, indicating the subset of E

2 ϕt = L(E ;Dbs).
Output: Φ(x) = arg maxy∈Y

∑T
t=1 count(ϕt(x) = y).

Compared with Boosting methods, Bagging could train base learners in parallel.
Moreover, unlike Boosting methods need be modified for multi-classification, Bag-
ging could directly adapted in multi-classification, since the diversity comes from
the different subsets generated by bootstrap sampling. There is another advantage
of Bagging indicated by [Breiman 1996], the out-of-bag examples for estimating the
generalization performance.

Random Forest [Breiman 2001] is an extension of Bagging. At first, Random
Forest uses decision trees as the learning algorithm to generate base learners. Then,
to increase the diversity between decision trees generated, the algorithm involves
randomness in the feature selection. That is, during the construction of a base
decision tree, in each split, unlike traditional methods using the whole features as
candidate set, the algorithm randomly chooses a subset of features to choose the
best feature for making the splits. The algorithm to generate a random base decision
tree in the Random Forest follows the procedures of Algorithm 2, but instead of
choosing the best split feature from the whole feature set of the dataset (the line
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8), it uses a subset containing K features selected randomly from the whole feature
set. The K is a preset parameter that imports the randomness.

The term forest was first introduced by [Ho 1995]. There are also lots of variants
of generating random trees with different measures of randomness, some popular are
Extremely Randomized Trees [Geurts et al. 2006], Rotation Forest [Rodríguez
et al. 2006], etc.

1.3 Related Works in Interpretable ML Models

In this section, we provide a literature review of several methods for computing
two Interpretable ML models: decision trees and decision graphs. For each ML
model, we present the traditional heuristic methods and the recent exact methods.
Traditional heuristic methods still obtain great interest due to their scalability. The
exact methods for Interpretable ML models offer guarantee of mathematical opti-
mality, for instance on model size or prediction error, and received lots of interest in
recent papers. In this section, we focus on those exact methods using combinatorial
optimization approaches.

1.3.1 Related Methods for Decision Trees

In this section, we introduce standard heuristic algorithms and several exact com-
binatorial optimization approaches.

1.3.1.1 Traditional Heuristic Algorithms

We present here some traditional top-down heuristic algorithms for decision trees.
The core difference between them is the heuristic of choosing the best feature to
split the dataset.

ID3 and C4.5 Algorithms
The methods C4.5 [Quinlan 1993] and ID3 [Quinlan 1986] are classical heuristic
algorithms to learn decision trees. They are based on top-down induction, as shown
in Algorithm 2. The heuristic used in these methods to choose the best split feature
(line 8 in Algorithm 2) is based on the Gain Ratio. We explain this concept step
by step.

At first, we introduce the concept of information entropy [Shannon 1948], which
is based on the fraction of the different labels of the examples. Considering a labelled
dataset E , we note the rate (in percent) of examples with class cj (j = 1, . . . , |Y|)
as perj , then the information entropy for E is defined as follow.

Ent(E ) = −
|Y|∑
j=1

perj log2 perj (1.7)

The information entropy Ent(E ) is used to measure the purity of a given exam-
ple set. When Ent(E ) has smaller value, the dataset E is purer, indicating more
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examples share same labels. For example, when all examples in E have same class,
then per1 = 1, leading Ent(E ) = 0. Otherwise, the information entropy is positive.

From Algorithm 2, in general, we hope that the subsets of examples become
purer after the split by the feature selected. Therefore, assuming the feature selected
to make the split is f∗, which has V different possible values {f1

∗ , . . . , fV
∗ }. As in

Algorithm 2, we use Ev to denote the subset of examples in E having the value fv
∗

for the feature f∗. The information gain of using feature f∗ as the split for dataset
E is defined as follow.

Gain(E , f∗) = Ent(E )−
V∑

v=1

|Ev|
|E |

Ent(Ev) (1.8)

The information gain uses the factor |Ev|/|E | to reflect that the subsets split with
more examples have more influences. In general, the bigger value of information gain
indicates the bigger improvement in the purity when using f∗ as the split feature.
Therefore, using the feature with the biggest value in information gain is an useful
heuristic to choose the best split feature f, which is f = arg maxf∈F Gain(E , f).

The ID3 algorithm [Quinlan 1986] applies this heuristic to select the best fea-
ture. However, the information gain prefers those features with more different
values, which could easily cause the problem of overfitting. To reduce this disad-
vantage, the C4.5 algorithm proposes the concept called Gain Ratio, which is a
variant of the heuristic information gain. It is defined as follow.

Gain_ratio(E ,f∗) = Gain(E , f∗)
IV (f∗)

IV (f∗) = −
V∑

v=1

|Ev|
|E |

log2
|Ev|
|E |

(1.9)

where the IV (f∗) is called the intrinsic value of the feature f∗. When f∗ has
more values, the value IV (f∗) is generally bigger. The C4.5 algorithm choose the
best split feature f, that f = arg maxf∈F Gain_ratio(E , f).

We show how the heuristic is applied for the toy dataset E given in Table 1.2.
The information entropy of E is:

Ent(E ) = −
1∑

j=0
perj log2 perj = −( 5

12 log2
5
12 + 7

12 log2
7
12) = 0.9799

The information gain of each possible feature for the dataset E are as follow.

Gain(E , f1) = 0.0718 Gain(E , f2) = 0.3436 Gain(E , f3) = 0.0616
Gain(E , f4) = 0.0102 Gain(E , f5) = 0.1043 Gain(E , f6) = 0.0207

Therefore, the first best feature to split is f2. Repeat this process as the ID3
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algorithm propose, the decision tree found is shown in Figure 1.9.
As the dataset in Table 1.2 contains only binary features, there are no great

influences of using the factor of intrinsic values. The decision tree found by using
the Gain Ratio proposed in the C4.5 algorithm is same as the ID3 algorithm, as
the Figure 1.9 shown.

f2

f4 1

f1 0

f6 f5

1 0 1 0

Figure 1.9: The Decision Tree for the
dataset in Table 1.2 by ID3 and C4.5.

w f1 f2 f3 f4 f5 f6 Play?
1 1 0 0 0 0 1 1
3 1 0 0 1 1 1 0
2 1 0 0 1 1 0 0
3 1 0 0 0 1 0 0
1 1 0 0 0 0 0 1
1 0 1 0 0 1 1 1
2 0 1 0 1 1 0 1
2 0 1 0 0 0 1 1
2 0 1 0 1 0 0 1
3 0 0 1 0 1 1 0
2 0 0 1 0 0 1 0
1 0 0 1 0 1 0 1

Table 1.3: A weighted binary dataset
from Table 1.2.

The ID3 and C4.5 algorithm could be easily applied with different data distri-
bution. The idea is when calculating the information entropy, the perj does not
represent the percentage of examples with class cj , but the percentage of the sum
of weights of examples for this class. We consider the toy example E with differ-
ent weights for each example. The new weighted dataset, denoted Ew, is shown in
Table 1.3. Therefore, the perw

0 and perw
1 of Ew are calculated as follow:

perw
0 = 3 + 2 + 3 + 3 + 2

23 = 13
23

perw
1 = 1 + 1 + 1 + 2 + 2 + 2 + 1

23 = 10
23

The information entropy related is

Ent(Ew) = −
1∑

j=0
perw

j log2 perw
j = −(13

23 log2
13
23 + 10

23 log2
10
23) = 0.9877

The decision tree found by the heuristic information gain (ID3 ) is shown in the
left one of Figure 1.10, the heuristic gain ratio (C4.5 ) is shown in the right one.

CART (Classification and Regression Tree) Algorithm
The CART (Classification and Regression Tree) method [Breiman et al. 1984] is
another classical heuristic algorithm to learn a decision tree. The heuristic used to
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f2

f5 1

f1 f1

0 1 0f6

1 0

f2

f4 1

f5 0

f1 f1

0 1 0 f6

1 0

Figure 1.10: The Decision Tree for the weighted dataset in Table 1.3 by ID3 (left)
and C4.5 (right).

choose the best split feature is based on the concept of Gini Index to measure the
purity of a given example set.

Firstly, CART uses the concept Gini Value, which is defined as follow.

Gini(E ) = 1−
|Y|∑
j=1

per2
j (1.10)

As for the information entropy, it is clear that when Gini(E ) has smaller values,
the dataset E is purer. The Gini Index of using feature f∗ as the split for dataset
E is defined as follow by using the Gini Value.

Gini_index(E , f∗) =
V∑

v=1

|Ev|
|E |

Gini(Ev) (1.11)

Similar as the information gain, the Gini Index considers the influence of the
different sizes of subsets after split. The CART algorithm choose the best split
feature f, which is f = arg minf∈F Gini_index(E , f).

We consider the toy example E of Table 1.2. After computing the Gini Index,
the best split feature for E is f2 as it relates to the smallest value.

Gini_index(E , f1) = 0.4095 Gini_index(E , f2) = 0.2031
Gini_index(E , f3) = 0.4431 Gini_index(E , f4) = 0.4911
Gini_index(E , f5) = 0.3844 Gini_index(E , f6) = 0.4702

Repeat this process, the decision tree found is shown the left one in Figure 1.11. The
CART method could be easily applied with different data distribution by changing
the way of calculating the perj values. The right one in Figure 1.11 is the decision
tree found by CART algorithm for the weighted dataset Ew of Table 1.3.
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f2

f6 1

f1 f1

1 f5 0 f4

1 0 0 1

f2

f5 1

f1 f4

0 1 f1 0

f6 0

1 0

Figure 1.11: The Decision Tree for the toy dataset of Table 1.2 (the weighted dataset
of Table 1.3) by CART is shown in the left (right) one.

1.3.1.2 Recent Exact Methods

Recently, there are increasing interests in exact methods to find the optimal decision
trees, which is known as a NP-Hard problem [Hyafil & Rivest 1976]. In particular,
it is essential to specify the goal of each exact method as each one needs an objective
to optimize, indicating the metric of the optimal decision tree. The metrics widely
used are tree size, tree depth, and accuracy leading to the three following goals.

• Goal 1 (tree size): For a given set of examples E , find the Decision Tree
with the smallest size (number of nodes) classifying all examples of E correctly.

• Goal 2 (tree depth): For a given set of examples E , find the Decision Tree
with the smallest depth classifying all examples of E correctly.

• Goal 3 (accuracy): For a given set of examples E , find the Decision Tree
restricted in topology (generally in depth) that maximizes the number of ex-
amples of E correctly classified.

In this literature review, we focus on recent exact methods based on combinato-
rial optimization, including Boolean Satisfiability, Maximum Boolean Satisfiability,
Constraint Programming (CP), Mixed Integer Programming (MIP), and Dynamic
Programming (DP). We separate this review on recent exact methods into two parts
chronologically by our contribution [Hu et al. 2020]. In each part, we review those
exact methods by the categories of combinatorial optimization method.

Depending on the different goals, SAT-based exact methods are divided into
two families. At first, [Bessiere et al. 2009, Narodytska et al. 2018] consider the Goal
1, aiming to optimize the tree size. Then, [Avellaneda 2020, Janota & Morgado 2020]
share the Goal 2, purposing to optimize the tree depth. In general, those methods
deal with the binary classification and consider binarized datasets (with only binary
features). The common process of SAT-based methods to find optimal decision trees
in smallest tree sizes (respectively, tree depths) with perfect empirical accuracy, is
based on a sequence of SAT queries. Each SAT query answers the existence of a
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decision tree in given tree size (respectively, tree depth) with perfect accuracy. The
sequence of SAT queries starts from the query of tree size (respectively, tree depth)
of an upper bound received by heuristic methods, continues with the queries of
decreasing tree sizes (respectively, tree depth), until the answer is unsatisfied, and
the last decision tree found is the optimal one.

To reach the Goal 1, [Bessiere et al. 2009] proposes the fist SAT encoding for
decision tree of fixed tree size. At first, the encoding captures the relationship
between tree nodes and features by propositional variables. Then, it realise the
perfect accuracy by ensuring that each pair of examples with opposite classes would
not be lead to the same leaf node. This pioneering work suffers greatly from its
formulation size, making it unrealistic to work for trees with more than fifteen nodes.
After that, [Narodytska et al. 2018] proposes a new SAT encoding for decision tree
of fixed tree size, which significantly reduces the encoding size. The reduction
accounts majorly for the way of realising the perfect accuracy, where the new SAT
encoding ensures all leaf nodes reject all examples with the opposite classes. The
details of this encoding will be introduced in Section 2.2, as it plays an essential
role in our contribution.

A motivation of the Goal 2 is that compared to tree size, the metric tree depth
could not only control the tree structure, but also provide better understanding
by limiting the number of judgements. Additionally, it could avoid producing de-
cision trees with small sizes but with high depths. [Avellaneda 2020] and [Janota
& Morgado 2020] are two SAT encodings to model decision tree in given depth,
which are proposed almost at same time. In [Avellaneda 2020], the author encodes
a full complete binary decision tree in fixed depth. This pre-assumed tree structure
benefits from its preset parent-child relationship. Therefore, this encoding reduces
formulation size by eliminating variables and constraints to describe the connections
between nodes. Analogously, in [Janota & Morgado 2020], the authors propose a
SAT encoding for explicit paths of decision trees, which also contains no constraints
to describe tree topology. This encoding restricts tree depth by the number of steps
in each explicit path, meanwhile, tree size by the number of explicit paths.

The only CP-based exact method [Verhaeghe et al. 2020] focuses on the Goal
3, aiming to optimize empirical accuracy for depth-restricted decision trees. This
method explores the left subtrees and right subtrees of a node in decision tree
independently with a form of AND/OR search tree. In addition, to avoid searching
equivalent subtrees, this method applies a caching system to store the optimal
subtrees already found so that the search space could be reduced.

The MIP-based exact methods include OCT [Bertsimas & Dunn 2017], and
BinOCT [Verwer & Zhang 2017, Verwer & Zhang 2019], where all of them focus
on the Goal 3 to optimize the misclassification. In [Bertsimas & Dunn 2017], the
authors consider to learn optimal classification trees (OCT), where the decision trees
are assumed as multi-variate. The resulting decision trees were shown more accurate
than heuristic trees. The main limitation of this method is the scalability, which is
able to handle datasets with a few thousands examples. In [Verwer & Zhang 2017],
the authors propose similar MIP approach to learn optimal classification trees, but
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as well to learn optimal regression trees. The reductions in formulation size are
achieved in BinOCT [Verwer & Zhang 2019] by applying binary linear program to
learn optimal decision trees. Therefore, this method compute solutions much faster
than the previous MIP methods.

The DP-based exact methods include DL8 [Nijssen & Fromont 2007], DL8.5 [Aglin
et al. 2020], and OSDT [Hu et al. 2019], where all of them also focus on the Goal 3
that minimize the empirical prediction error. In DL8 [Nijssen & Fromont 2007], the
algorithm extracts optimal decision trees by encapsulating the itemset lattices. The
dynamic programming nature arises because once the split feature is determined,
the optimal solutions of the left subtree and the right subtree are independent. To
enforce the depth constraint in DL8, DL8.5 [Aglin et al. 2020] is introduced. This
algorithm uses a branch-and-bound search with caching to safely enumerate trees
under the depth constraint. Both DL8 and DL8.5 have the drawback in the need of
massive memory to deal with datasets in small sizes. A slightly different direction is
to learn Optimal Sparse Decision Tree (OSDT) proposed in [Hu et al. 2019], where
each node in the tree is considered as equal to some numbers of misclassifications.
The aim of this method is to reach a balance between misclassification and number
of nodes.

In our contribution [Hu et al. 2020], which is detailed in Chapter 2, we propose
an original MaxSAT-based encoding extending the SAT encoding of [Narodytska
et al. 2018], to reach the Goal 3, purposing to optimize the accuracy. Then, there
are some new SAT or MaxSAT exact methods with different goals. For the
Goal 1, [Alos et al. 2021] follows the principal encoding in [Narodytska et al. 2018],
but directly finds the optimal decision tree in tree size via MaxSAT approach.
Meanwhile, this method also proposes to generate multiple different decision trees
in optimal size to avoid overfitting. However, slight improvements in generalization
performance are observed from its experimental results. For the Goal 2, [Schidler
& Szeider 2021] proposes a SAT-based local improvement method to optimize tree
depth. The brief idea is to improve an heuristic decision tree iteratively, which
replaces its subtrees with the subtrees of smaller depths with perfect empirical
accuracy found by the SAT-based exact method. In addition, [Shati et al. 2021]
proposes another novel SAT-based exact method to optimize tree depth which treats
numeric features directly without binarized transformation. For the Goal 3, [Shati
et al. 2021] extends their own SAT encoding for decision tree restricted in depth into
MaxSAT formulation to optimize accuracy. The technique to generate soft clauses
shares the same idea as our contribution. Next, a novel DP-based exact method
named MurTree [Demirovic et al. 2022] is proposed to reach the Goal 3. Compared
to previous DP-based methods, this method additionally introduces constraints
on both depth and number of nodes to improve the scalability of decision tree
optimization.
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1.3.2 Related Methods for Decision Graphs

In this section, we introduce standard heuristic algorithms and several exact com-
binatorial optimization approaches for decision graphs.

1.3.2.1 Decision graphs

Decision graphs, also called decision diagrams, are proposed in [Oliver 1992] and
are still studied in Machine Learning [Zhu & Shoaran 2021] and in Combinatorial
Optimization [Bergman et al. 2016]. This model is introduced to face some limi-
tations of decision trees, especially the replication and the fragmentation problem.
Decision graph is a layered directed acyclic graph with a single node at the first
layer (the root note) and one or several nodes at the last layer (sink nodes or leaves,
for instance the labels of the dataset in machine learning context). Each internal
node is associated to a variable (for instance a feature of the dataset). An arc from
a node of a given layer to a node of a next level is valuated by the assignment of
the variable associated to the originating node.

A standard variant of decision graph is binary decision diagram, where each
internal node has only two successors). They are widely studied in hardware de-
sign and model checking [Bryant 1986], and are introduced with details in Sec-
tion 1.2.2.2.. To sum up, binary decision diagrams allow to represent Boolean
function and are adapted for binary classification on binary dataset. In addition,
they are assumed as reduced and ordered, which are described in Section 1.2.2.2.

The Oblivious Read-Once Decision Graph or OODG, introduced in [Ko-
havi 1994], is a variant of decision graph with additional properties.

• The “read-once” property indicates that each feature is selected at most once
along any path from the root to a category node.

• The “levelled” property indicates that the nodes are partitioned into a se-
quence of pairwise disjoint sets, representing the level. The outgoing edges
from each level terminate at the next level.

• The “oblivious” property extends the “levelled” property by setting that all
nodes at a given level are associated to the same feature.

From the definition of OODG, we can highlight some similarities and differ-
ences between it and ordered reduced binary decision diagram. For the similarities,
OODG and binary decision diagram share the same topology. In detail, the category
nodes and the branching nodes in the OODG model relate to the terminal vertices
(leaves) and the non-terminal vertices in binary decision diagram; the combination
of the “read-once” property and “oblivious” properties for OODG are the same
as the “ordered” restriction for binary decision diagram. For the differences, the
OODG is not limited in binary classification, as the leaves nodes in OODG could
be associated to multiple values. In addition, the OODG considers multi-values
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features by allowing multiple outgoing edges for a branching node. However, espe-
cially for binary classification for binary datasets, the OODG could be considered
as equivalent to the binary decision diagram.

Algorithm 6: The algorithm to grow the Oblivious Decision Tree (ODT)
in limited depth.

Input: A labelled Dataset E = {(x1, y1), . . . , (xm, ym)};
The feature set of dataset F = {f1, . . . , fd};
The preset depth d.

// S is the set of sets of examples

1 S = {E}
2 Create a tree node node related to E as the root.
3 while d ≥ 0 do
4 if F = ∅ then
5 d = 0. goto line 8.
6 Choose the best split feature f∗ from F for S.
7 S ′ = {}
8 for each s ∈ S do
9 if s = ∅ then

// The case of node captures no example

10 Label the node related to s as “unknown”.
11 else if d = 0 then

// The case of category node

12 Label the node related to s with the majority class of s.
13 else

// The case of normal branching node

14 Label the node related to s with f∗.
15 for each possible value fv

∗ of f∗ do
16 sv ← the example subset of s with the value fv

∗ of feature f∗.
17 S ′ = S ′ ∪ {sv}.
18 Create a node for sv and link to the node related to s with fv

∗ .

19 S = S ′ . F = F \ f∗. d = d− 1.
Output: An Oblivious Decision Tree with node as the root.

1.3.2.2 Heuristic methods for OODG

To build an OODG for the classification, two heuristic methods: bottom-up induc-
tion [Kohavi 1994] and top-down induction [Kohavi & Li 1995], are proposed. The
objective of the bottom-up induction is to build an OODG with no classification
error from the bottom to the top. The heuristic is to choose the feature leading to
the “narrowest” level in the number of branching nodes. In reverse, the top-down
induction of OODG contains two critical phases. At first, growing an oblivious
decision tree (ODT) by using the mutual information heuristic. Then, merging
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the isomorphic and compatible subtrees in the ODT from top to down to build
the OODG. Unlike the bottom-up induction, the top-down approach could control
the depth of the OODG built as a preset parameter. We introduce the top-down
induction in detail.

The first step of the top-down induction is to grow an oblivious decision tree
(ODT) with heuristic. This process is similar to the traditional decision tree. The
difference between them is the process of the traditional decision tree is recursive,
but the process of the top-down induction for ODT is iterative. The Algorithm 6
shows how to grow an ODT in limited depth. The heuristic to choose the best split
feature for a level (line 6 in Algorithm 6), is based on the mutual information.

To explain the concept of mutual information, we introduce the concept of
conditional entropy [Cover & Thomas 2001] at first. Similar to the information
entropy, conditional entropy is also used to measure the amount of information of
a given example set after a sequence of features is selected. Considering a labelled
dataset E , the conditional entropy for E after the sequence of features [f1, . . . , fl] is
selected is defined as follow:

H(E |f1, . . . , fl) = −
∑

f∗
1 ∈f1,...,f∗

l
∈fl,cj∈Y

∆

∆ = per(cj , f∗
1 , . . . , f∗

l ) log2 per(cj |f∗
1 , . . . , f∗

l )
(1.12)

where f∗
l indicates a general case of all possible values for fl. The per(cj , f∗

1 , . . . , f∗
l )

indicates the percentage of examples with label cj that satisfy the assignments
f1 = f∗

1 , . . . , fl = f∗
l for the whole dataset. The per(cj |f∗

1 , . . . , f∗
l ) indicates the

percentage of examples with label cj for all examples that satisfy the assignments
f1 = f∗

1 , . . . , fl = f∗
l . Similar to the information entropy, the conditional entropy

has smaller value when the sequence of features chosen making E purer. Given
a new feature f∗, the mutual information is defined as the difference between the
original conditional entropy and the updated conditional entropy with f∗:

I(E ; f∗|f1, . . . , fl) = H(E |f1, . . . , fl)−H(E |f1, . . . , fl, f∗) (1.13)

To choose the first feature (when l = 0), the mutual information is defined with
the help of information entropy:

I(E ; f∗) = Ent(E )−H(E |f∗) (1.14)

In general, the bigger value of mutual information indicates the bigger improve-
ment in the purity when adding f∗ into the existing sequence of features. Therefore,
the heuristic to choose the best feature f into the existing feature sequence, which
is f = arg maxf∈F I(E ; f|f1, . . . , fl) in mathematical format.

Therefore, based on the heuristic of the mutual information, when the preset
depth is 3, the sequence of feature of size 3 selected for the small dataset in Table 1.2
is [f2, f4, f1]. The ODT of the depth 3 is shown in Figure 1.12, where the leaf nodes
labelled “u” are the “unknown” nodes indicating they capture no example.
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f2

f4 f4

f1 f1 f1 f1

1 1 u 0 1 u 1 u

Figure 1.12: The Oblivious Decision Tree
(ODT) for the small dataset in Table 1.2.

f2

f4

f1 f1

1 1 1 0

Figure 1.13: The ODT after merging
the compatible subtrees of the root.

To build the OODG by merging subtrees of the ODT generated from top to
down, we introduce the concept of isomorphic and compatible subtrees separately.
Before judging two subtrees are isomorphic or compatible, there is an assume that
the roots of them should be in the same level, indicating they are either branching
nodes associated to the same feature, or category nodes.

Two subtrees are isomorphic if they are both category nodes with same class,
or if the corresponding children are the roots of isomorphic subtrees. For example,
in Figure 1.12, the two subtrees of the leftmost branching node associated to f1 are
isomorphic, same as the two subtrees of the rightmost branching node associated
to f4. Merging isomorphic subtrees reduces the size of the model without changing
the bias of the original decision structure.

Two subtrees are compatible if either at least one root is labelled “unknown”,
or if the corresponding children are the roots of compatible subtrees. As the
“unknown” nodes capture no example, they could match anything when we judge
two subtrees are compatible. For example, in Figure 1.12 the two subtrees of the
root are compatible, the ODT after merging them is shown in Figure 1.13. Merging
compatible subtrees could help assign classes for those “unknown” nodes, which
solves the fragmentation problem of the decision tree. This post-process changes
the bias by assuming that they are likely to behave the same as the corresponding
child in the compatible subtree.

f2

f4

f1 f1

1 0

f4

f1

1 0

Figure 1.14: The OODG of depth 3 that
merges isomorphic and compatible subtrees.

f2

f4

f1

f1

f5

f6

0

1

Figure 1.15: The OODG of depth 5
that classifies all examples correctly.

The corresponding OODG after merging isomorphic and compatible subtrees
of the ODT in Figure 1.12 is shown as the left one in Figure 1.14. It is clear that
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the OODG contains some constant nodes, such the node that all edges emanating
from it terminate at the same node of the next level. For example, the root and
the leftmost branching node associated to f1 are constant nodes. These constant
nodes could be removed as they made useless splits to make the OODG more
compact and readable. The OODG after removing all constant nodes is shown in
the right one in Figure 1.14. In addition, this OODG of depth 3 does not correctly
classify all examples of the small dataset. The OODG with the smallest depth that
well classifies all examples is shown in the Figure 1.15, which is in depth 5, with
[f2, f4, f1, f5, f6] as the sequence of features selected.

1.3.2.3 Recent Exact Methods

As the binary decision diagrams are not widely studied in Machine Learning, there
are not many exact methods for this model. We present our MaxSAT-based ap-
proach [Hu et al. 2022] in Chapter 3. To the best of our knowledge, there are two
other recent exact combinatorial optimization approaches for optimal binary deci-
sion diagram or its variant. The first one is based on Boolean Satisfiability [Cabodi
et al. 2021], which is before our contribution. The other one is based on Mixed
Integer Linear Programming [Florio et al. 2022]. We introduce separately the prin-
cipal ideas of these methods.

In [Cabodi et al. 2021], the authors proposed the first SAT-based approach to
find the optimal binary decision diagrams. In detail, the binary decision diagrams
found are ordered and reduced. The goal is similar as the one proposed in [Naro-
dytska et al. 2018], shown as follow:

• Goal : For a given set of examples E , find the Binary Decision Diagram in
the smallest size (number of nodes) classifying all examples in E correctly.

The principal idea to achieve this objective is to apply an iterative approach.
In each step of the iterative approach, a SAT problem is asked for the existence
of a binary decision diagram of a given size N that classifying all examples in E
correctly. In [Cabodi et al. 2021], the authors proposed the starting lower bound of
the size is 3, it would double the size until the SAT response is found. Then to find
the optimal size, a binary search would be performed between the identified range.

The SAT model of a binary decision diagram in a given size contains two major
categories of constraints: The constraints to form a valid binary decision diagram
in given size; and the constraints to let the model classify all examples correctly.

Briefly speaking, to form a valid binary decision diagram in given size, the
constraints consists of two parts as follow:

• Constraints to describe the parent-children relationship between nodes, in-
cluding for each node (except the root) has at least 1 parent; for the two
terminal nodes must not be a parent of the other; for each node (except the
terminal nodes) has two identical children (the reduced restriction).
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• Constraints to relates the features and nodes, including for each node is as-
sociated to exactly one feature; for preserving the global feature ordering;
for relating the global feature ordering with the nodes by the parent-children
relationship (the ordered restriction).

To let the valid binary decision diagram found classify all examples correctly,
the constraints ensure that each example is predicted correctly along one path in
the binary decision diagram. We refer readers to [Cabodi et al. 2021] for details.

As the first exact combinatorial method for the binary decision diagram, this
SAT-based approach aims to find the optimal model in the smallest size classifying
all examples correctly. However, there are some weakness of this approach. At first,
there is no limit in the (maximum) depth in the proposed SAT model. It possibly
leads to the binary decision diagram found is small in size by deep in depth, which
decreases the interpretability. Then, classifying all examples correctly could easily
raise the overfitting, which affect the generalization performance. Finally, from the
experiments of the paper, the proposed SAT-based approach suffers a lot in the
scalability problem.

In [Florio et al. 2022], the authors proposed the first MILP-based approach
to learn optimal decision diagrams (ODDs). Compared to the binary decision di-
agrams, the decision diagrams found by this approach are more general in the
skeleton. At first, the decision diagrams are not ordered. Then, the topology of
the decision diagrams found is limited by a preset skeleton, which is defined by a
sequence of maximum number of nodes in each layer. For example, (1− 2− 4− 8),
(1− 2− 4− 4− 4), (1− 2− 3− 3− 3− 3− 3) are some different skeletons proposed
in the experiments of the paper. The decision diagrams found are decided by the
activated nodes and their mutual connections. Moreover, the decision diagrams are
designed as multi-variate. That is, a linear combination of multiple features could
be associated to the non-terminal nodes in the decision diagrams. The decision dia-
grams could also be single-variate, too. The final difference is the decision diagrams
found could handle multi-classification by arranging a dedicated terminal node for
each class.

Unlike the SAT-based approach, the MILP-based approach optimizes the com-
bination of accuracy and an additional regularization term in the model size, which
is shown as follow:

• Goal: For a given set of examples E and a preset skeleton, find the Decision
Diagram ϕ with the best value in the objective function as follow:

min (err(ϕ; E ) + α∥ϕ∥)

, where ∥ϕ∥ is the size of the Decision Diagram found (the number of activated
nodes), and α is a regularization parameter to control the penalty of model size.

Briefly speaking, the MILP-based approach firstly introduces the flow variables
to represent the trajectory of the examples within the diagram. Then, it connects
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these flow variables to the design variables that defines the valid topology of de-
cision diagram, and those variables making the splits. We refer readers to [Florio
et al. 2022] for details in the mathematical formulation.

As the first MILP-based approach for optimal decision diagrams, this approach
has a general objective in ML by considering the regularization term. From the
experiments, the authors show the fact that compared to the optimal decision tree,
the optimal decision diagram has a much more balanced data fragmentation.
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In this chapter, we present our contribution to learn optimal decision trees via
MaxSAT approach. This chapter is an extended version of the paper [Hu et al. 2020].
It is divided into six sections. Section 2.1 describes the motivation of this work,
and the target problem. Section 2.2 introduces the details of the SAT encoding
from [Narodytska et al. 2018], which is the essential basic of our research. Section 2.3
introduces the details of the proposed MaxSAT model, and some experimental
results. Section 2.5 shows how we adapt our MaxSAT formulation to the well-
known AdaBoost Algorithm for better performance. Section 2.6 synthesizes the
results obtained by different MaxSAT solvers of the MaxSAT Evaluation 2021 and
2022, used in our MaxSAT formulations. Section 2.7 provides a brief summary this
chapter.
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2.1 Motivation and Problem Description

As a very popular machine learning model, decision tree majorly benefits from its
interpretability, and the wide range of efficient methods to compute it. Several
classic greedy heuristic methods are introduced in Section 1.3.1.1. Those methods
typically build the tree from the top to the bottom, by splitting the datasets with the
features selected by different heuristics, like the highest information gain. However,
those heuristic methods suffer from the difficulty in interpretability, due to the
explosion in tree size and depth. In addition, a complex decision tree leads to the
overfitting problem. Therefore, a simpler (e.g smaller) decision tree is not only
better in interpretability, but is also often more accurate on unknown data.

Recently, several exact methods to learn optimal decision trees are proposed to
offer guarantees of mathematical optimality. Section 1.3.1.2 provides the literature
review of some combinatorial optimization approaches for optimal decision trees.
As mentioned in Section 1.3.1.2, the metrics widely used for optimal decision trees
are tree size, tree depth, and accuracy. Unlike other combinatorial optimization ap-
proaches (Constraint Programming, Mixed Integer Linear Programming, Dynamic
Programming), there are no exact methods based on Boolean Satisfiability (or its
variants) to optimize the accuracy for the decision tree before our research. In fact,
the previous SAT-based exact methods [Bessiere et al. 2009, Narodytska et al. 2018]
optimize the tree size, and, [Avellaneda 2020, Janota & Morgado 2020] optimize
the tree depth. All of them must subject to the constraint that the decision tree
is perfectly accurate on the training set, which is often criticized as it may entail
overfitting.

Corresponding to the Goal 1 (tree size) described in Section 1.3.1.2, the decision
problem solved by the SAT model of [Narodytska et al. 2018] is:

• Pdt(E , N): Given a set of examples E , is there a valid binary decision tree
(each internal node has exactly two children) of size N that classifies correctly
all examples in E?

The SAT approach finds the decision tree with the smallest size by a linear
search of this decision problem. The initial tree size is provided by a heuristic
decision tree method, like ITI [Utgoff et al. 1997]. Then, the tree size decreases
until the answer is unsatisfiable, and, the last decision tree is the optimal one. In
contrast, the optimisation problem considered in our research corresponding to the
Goal 3 (accuracy), is:

• P ∗
dt(E , H): Given a set of examples E , find a valid binary decision tree with

maximum/exact depth H that maximises the number of examples in E that
are correctly classified.

Moreover, the previous SAT-based methods have the limit in scalability. The
principal reasons are the constraint of perfect accuracy and the iterative SAT queries



2.2. DETAILS OF PREVIOUS SAT ENCODING 41

to check the smallest size/depth. Although solving the MaxSAT formula to optimal-
ity is of course harder than solving the corresponding SAT formula, the MaxSAT-
based approach does not need the iterative processes. In addition, the use of in-
complete MaxSAT solver could return the best result within given reasonable time,
even the optimality is not reported.

Finally, the MaxSAT approach can be naturally integrated in AdaBoost to im-
prove the prediction performance. The idea is to update the data distributions by
changing the weights of corresponding soft clauses. This technique still improves
the scalability, as the individual trees of the ensemble can be smaller.

As our MaxSAT model extends the SAT model in [Narodytska et al. 2018],
we introduce the details of the SAT model in the next section. To simplify the
notation, we assume that the set of examples E is binary containing M examples,
and K binary features.

Additionally, for all possible uses of cardinality constraints in this chapter, we
model the cardinality constraints by the sequential counters encodings proposed
in [Sinz 2005].

2.2 Details of Previous SAT Encoding

In this section, we present the SAT encoding previously proposed in [Narodytska
et al. 2018] for solving the decision problem Pdt(E , N), that is to find a valid binary
decision tree of size N that classifies correctly all the examples of the dataset E .
The SAT encoding contains three parts of constraints as follow:

• Part 1: Constraints to encode a valid binary tree of size N .

• Part 2: Constraints to map features (respectively, classes) to internal nodes
(respectively, leaf nodes).

• Part 3: Constraints to classify correctly all examples in E .

We show the details of the constraints in different parts separately.

2.2.1 Encoding a Valid Binary Tree of Given Size

As the encoding considers a valid binary tree, where each internal node has two
children, therefore the size N must be an odd number.

To represent a binary tree of given size, the encoding uses the numbering of
nodes, which is assumed in the breadth-first order from left to right. Namely, the
root node of the tree is numbered as 1. Moreover, for a node i, the number of its
two children ranges from i + 1 to min (2i + 1, N). In addition, the number of the
left child and the one of the right child are consecutive numbers.

To model whether a node i is an internal node or a leaf node, the encoding applies
a propositional variable vi, where vi is true (respectively, false) indicates the node i

is a leaf node (respectively, internal node). For the child-parent relationship between



42 CHAPTER 2. LEARNING OPTIMAL DECISION TREES VIA MAXSAT

Var Description of variables

vi
1 iff node i is a leaf node, and 0 otherwise.
∀i ∈ {1, N}

lij
1 iff node j is the left child of node i, and 0 otherwise.
∀i ∈ {1, N}, and ∀j ∈ LR(i), where LR(i) = even([i + 1, min(2i, N − 1)])

rij
1 iff node j is the right child of node i, and 0 otherwise.
∀i ∈ {1, N}, and ∀j ∈ RR(i), where RR(i) = odd([i + 2, min(2i + 1, N)])

pji
1 iff node i is the parent of node j, and 0 otherwise.
∀i ∈ {1, N − 1}, and ∀j ∈ {2, N}

Table 2.1: Description of propositional variables concerning to tree topology in [Nar-
odytska et al. 2018].

the node i and the node j, three sets of propositional variables, lij , rij , and pji, are
proposed. The definitions of these variables sets are shown in Table 2.1. Note that
lij and rij are defined for even/odd indices as a left/right child must be an even/odd
node. These shortcuts are defined as j ∈ LR(i) and j ∈ RR(i) in Table 2.1.

Example 1 To encode a valid binary tree with 5 nodes (N = 5), fours sets of
variables are introduced, which are {v1, . . . , v5}, {l12, l24, l34}, {r13, r25, r35}, and
{p21, p31, p32, p42, p43, p52, p53, p54}.

With the help of the proposed sets of variables, encoding a valid binary tree of
given size needs several constraints describing the topology. At first, the root must
not be a leaf node as we encode a valid tree.

(¬v1) (2.1)

Then, a leaf node has no children, which is for i = 1, . . . , N − 2:

vi → ¬lij , j ∈ LR(i) (2.2)

Next, the left child and the right child of the node i are numbered consecutively,
which is for i = 1, . . . , N − 2:

lij ↔ rij+1, j ∈ LR(i) (2.3)

Moreover, an internal node must have exact one left and one right child, which
is for i = 1, . . . , N − 2:

¬vi → (
∑

j∈LR(i)
lij = 1) (2.4)

Additionally, when node i is a parent then it must have two child, which is for
i = 1, . . . , N − 2:

pji ↔ lij , j ∈ LR(i)
pji ↔ rij , j ∈ RR(i)

(2.5)
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Finally, to ensure that the topology must be a tree, except the root, all nodes
must have exact one parent, which is for j = 2, . . . , N :

min (j−1,N)∑
i=⌊ j

2 ⌋

pji = 1 (2.6)

Example 2 We continue with the Example 1. Based on Constraints 2.1, 2.2, 2.3,
and 2.4), the following constraints are generated to encode the valid binary tree
structure:

¬v1; v1 → ¬l12; v2 → ¬l24; v3 → ¬l34

l12 ↔ r13; l24 ↔ r25; l34 ↔ r35

¬v1 → (l12 = 1); ¬v2 →(l24 = 1); ¬v3 → (l34 = 1)

Then, the parent-child relations are encoded by Constraints 2.5 and 2.6 as follow:

p21 ↔ l12; p42 ↔ l24; p43 → l34

p31 ↔ r13; p52 ↔ r25; p53 → r35

p21 = 1; p31 + p32 = 1; p42 + p43 = 1; p52 + p53 + p54 = 1

Solving this simple example, the encoding allows only two valid binary trees.
The first one has the node 1 and 2 as internal nodes (the left one of Figure 2.1).
The second one has the node 1 and 3 as internal nodes (the right one of Figure 2.1).

1

2 3

4 5

1

2 3

4 5

Figure 2.1: The two valid binary trees of size 5.

2.2.2 Mapping Features and Classes to Nodes

Given a valid binary tree topology of a given size, it is essential to map features
to internal nodes and to map classes to leaf nodes. Three additional variables are
needed to capture these constraints. At first, a propositional variable arj is intro-
duced to relates each binary feature fr to each node j. Then, another propositional
variable cj is used to indicate if the class associated to leaf node j is positive or neg-
ative. Moreover, to avoid the duplication of feature fr in any paths from the root
until the node j, urj is proposed to store this selection information. The definitions
of these variables sets are shown in Table 2.2.

With the use of these propositional variables, the constraints to map features
(classes) to internal nodes (leaf nodes) are shown as follow. For an internal node,
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Var Description of variables

arj
1 iff feature fr is assigned to node j, 0 otherwise.
∀r ∈ {1, K},∀j ∈ {1, N}

urj
1 iff feature fr is being selected before or in node j, 0 otherwise.
∀r ∈ {1, K},∀j ∈ {1, N}

cj
1 iff class of leaf node j is 1, 0 otherwise.
∀j ∈ {1, N}

Table 2.2: Description of propositional variables for features and classes mapping
in [Narodytska et al. 2018].

exactly one feature is assigned, which is for j = 1, . . . , N :

¬vj → (
K∑

r=1
arj = 1) (2.7)

In reverse, if node j is a leaf node, no feature should be used, which is for
j = 1, . . . , N :

vj → (
K∑

r=1
arj = 0) (2.8)

Then, to judge the feature fr is being selected before or in node j, which is
to avoid the duplication of feature in any paths from the root, we consider the
following constraint, with r = 1, . . . , K, j = 1, . . . , N :

j−1∧
i=⌊ j

2 ⌋

(uri ∧ pji → ¬arj)

urj ↔ (arj ∨
j−1∨

i=⌊ j
2 ⌋

(uri ∧ pji))
(2.9)

The first part indicates for all possible paths to node j, if the feature fr is
selected before or in its parent, it must not being assigned at the node j. The
second part describes that there are two cases for the feature fr to be selected
before or in node j: the first one is that the feature fr is assigned to node j, the
other one is that the feature fr is selected before or in the parent of node j.

2.2.3 Classifying All Examples Correctly

Considering a valid binary decision tree of given size, solving the decision problem
Pdt(E , N) needs constraints for classifying all examples correctly. To ensure the
accuracy is perfect, the idea is that all positive examples must not lead to negative
leaf nodes. Similarly, all negative examples must not lead to positive leaf nodes. In
other words, a positive (resp. negative) leaf node rejects all negative (resp. positive)
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examples.
To remember the selection of a feature fr and its value along the path from

the root to the node j, two variables d0
rj and d1

rj are introduced. Concretely, any
example having fr = 0 (resp. fr = 1) will be rejected by the node j or by one of
its ancestors iff d0

rj = 1 (resp. d1
rj = 1). The definitions of these two variables sets

are shown in Table 2.3.

Var Description of variables

d0
rj

1 iff node j, or one of its ancestor, rejects any example having feature fr = 0,
∀r ∈ {1, K},∀j ∈ {1, N}

d1
rj

1 iff node j, or one of its ancestor, rejects any example having feature fr = 1,
∀r ∈ {1, K},∀j ∈ {1, N}

Table 2.3: Description of propositional variables concerning to classification in [Nar-
odytska et al. 2018].

Considering the constraints for the feature selection at first, there is no feature
selected before the root, therefore, with r = 1, . . . , K:

d0
r1 = 0, d1

r1 = 0 (2.10)

Then, to obtain the selection of a feature fr = 0 along the path from the root
to node j, with j = 1, . . . , N , r = 1, . . . , K:

d0
rj ↔ (

j−1∨
i=⌊ j

2 ⌋

((pji ∧ d0
ri) ∨ (ari ∧ rij))) (2.11)

This constraint implies two cases. The first one is that one ancestor of the
node j already rejected any example having fr = 0, and the second one is that the
rejection occurs exactly in the parent of node j. In the decision tree, as the value 0
leads the example to the left child, choosing the right child indicates the rejection.

Analogously, to obtain the selection of a feature fr = 1 along the path from the
root to node j, with j = 1, . . . , N , r = 1, . . . , K,

d1
rj ↔ (

j−1∨
i=⌊ j

2 ⌋

((pji ∧ d1
ri) ∨ (ari ∧ lij))) (2.12)

To classify all positive examples correctly, let a positive example eq (note as
eq ∈ E+), and the value of feature fr for eq be σ(r, q) ∈ {0, 1}. For every leaf node
j, with j = 1, . . . , N :

vj ∧ ¬cj →
K∨

r=1
d

σ(r,q)
rj (2.13)

That is, any positive example must be rejected by the leaf node associated with the
negative class.
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Similarly, to classify all negative examples correctly, let a negative example eq

(note as eq ∈ E−). For every leaf node j, with j = 1, . . . , N :

vj ∧ cj →
K∨

r=1
d

σ(r,q)
rj (2.14)

That is, any negative example must be rejected by the leaf node associated with
the positive class.

Example 3 Continuing with the Example 2. The Table 2.4 gives a binary dataset
from [Narodytska et al. 2018]. Solving the decision problem Pdt(E , N) with N = 5
produces the binary decision tree of size 5 given in Figure 2.2. This tree classifies
all examples of Table 2.4 correctly. The constraints 2.13 and 2.14 rule out that the
second valid binary tree given in Figure 2.1 as it does not ensure perfect classification
for this dataset.

Ex. L C E S H
e1 1 0 1 0 0
e2 1 0 0 1 0
e3 0 0 1 0 1
e4 1 1 0 0 0
e5 0 0 0 1 1
e6 1 1 1 1 0
e7 0 1 1 0 0
e8 0 0 1 1 1

Table 2.4: A toy dataset from [Nar-
odytska et al. 2018].

L

C 0

1 0

Figure 2.2: The decision tree classi-
fying all examples in Table 2.4.

As mentioned before, we consider a dataset E containing M examples and K

binary features. The encoding size (on the number of literals) of a target decision
tree with N nodes is in O(K × N2 + M × N × K). The term M × N results
from the constraints 2.13 and 2.14, each contains O(K) literals. The term K ×N2

depends. on the remaining constraints. In comparison, the previous model pre-
sented in [Bessiere et al. 2009], is in O(K × N2 × M2 + N × K2 + K × N3),
this proposed model is far lighter.

2.3 MaxSAT Model Proposed

In this section, we consider the optimisation problem P ∗
dt(E , H), the goal is to find

a valid binary decision tree with maximum/exact depth H that maximises the
number of examples in E that are correctly classified. We present MaxSAT model,
based on previous SAT model, for this optimization problem. In the experimental
evaluation, we first outline the overfitting phenomenon of optimal decision tree with
perfect accuracy. Then, we show the comparison between the proposed MaxSAT
approach with some state-of-the-art heuristics and exact methods.
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The previous SAT encoding for the decision problem Pdt(E , N), considers deci-
sion trees of given size N . However, the optimisation problem P ∗

dt(E , H) considers
the maximum/exact depth H of decision trees. Then, three adaptions are proposed
to solve the optimisation problem P ∗

dt(E , H) by considering a similar optimisation
problem P ∗

dt(E , N) defining as follow:

• P ∗
dt(E , N): Given a set of examples E , find a valid binary decision tree of size

N that maximises the number of examples in E that are correctly classified.

The three adaptions to solve the problem P ∗
dt(E , H) are the following:

• Adaption 1: Solve the optimisation problem P ∗
dt(E , N) via an adapted MaxSAT

encoding.

• Adaption 2: Add new constraints to control the maximum/exact depth H of
the tree of given size N .

• Adaption 3: Add new constraints to encode the relaxation of the tree size
with N as an upper bound.

We present the three adaptions separately in the next paragraphs.

2.3.1 Maximising Examples Correctly Classified

By transforming the previous SAT encoding to MaxSAT encoding, the target of
the first adaption is to change the original decision problem Pdt(E , N) to be solved
into the optimized version P ∗

dt(E , N).
As we introduced before, the previous SAT encoding contains three parts of con-

straints, where the constraints of classifying correctly all examples matter. There-
fore, to realise the first adaption, except the constraints of classifying examples, all
constraints (Constraints 2.1- 2.12) are kept as hard clauses. Then, to classify each
example, we introduce one Boolean variable bq for every example eq ∈ E to indicate
whether the example eq is correctly classified or not. The definition of bq is shown
Table 2.6.

Next, we link the bq variable with the constraints of classifying examples (Con-
straints 2.13, 2.14) as hard clauses. That is, for every positive example eq ∈ E+,
and every leaf node j, with j = 1, . . . , N :

bq → (vj ∧ ¬cj →
K∨

r=1
d

σ(r,q)
rj ) (2.15)

And, for every negative example eq ∈ E−, and every leaf node j, with j =
1, . . . , N :

bq → (vj ∧ cj →
K∨

r=1
d

σ(r,q)
rj ) (2.16)
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Finally, in order to model the objective of maximizing the number of examples
that are correctly classified, each literal bq is declared as a soft clause. Clearly,
based on the definition of bq, the number of satisfied soft clauses is equal to the
number of correctly classified examples.

Example 4 The Figure 2.3 shows the decision tree of size 9 found when solving
the P ∗

dt(E , N) optimisation problem on the dataset of Table 2.5. Meanwhile, the
smallest decision tree with perfect accuracy via the SAT encoding approach is also
in size of 9.

f1 f2 f3 f4 f5 f6 Play?
1 0 0 0 0 1 1
1 0 0 1 1 1 0
1 0 0 1 1 0 0
1 0 0 0 1 0 0
1 0 0 0 0 0 1
0 1 0 0 1 1 1
0 1 0 1 1 0 1
0 1 0 0 0 1 1
0 1 0 1 0 0 1
0 0 1 0 1 1 0
0 0 1 0 0 1 0
0 0 1 0 1 0 1

Table 2.5: A binary dataset (previ-
ously introduced in Table 1.2)

f2

f3 1

f5 f6

1 0 1 0

Figure 2.3: An optimal decision tree
of size 9 for the dataset in Table 2.5 .

Solving the optimisation problem P ∗
dt(E , N) with other smaller values of N pro-

duces other optimal decision trees. Figure 2.4 shows two new optimal decision trees
in size 5 (the left one) and 7 (the right one) maximising the accuracy for the same
dataset containing 12 examples. The decision tree in size 5 correctly classifies 10
examples, and the other correctly classifies 11 examples.

f1

1 f5

1 0

f3

f5 0

1 f2

0 1

Figure 2.4: Two optimal decision trees in size 5 and 7 maximising examples for the
dataset in Table 2.5.

Example 4 shows that the decision trees in small sizes do not lose a lot in the
accuracy. However, compared with the decision trees found via previous SAT model,
they could provide better interpretability by profiting their simple topologies.
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2.3.2 Controlling Depth for Tree of Given Size

The proposed MaxSAT encoding solves the optimisation problem P ∗
dt(E , N), the

second adaption aims to control the depth H for the tree of given size N . As a
matter of fact, there exist different topologies for a binary decision tree of a given
size. For instance, Figure 2.5 shows the two extreme situations of the binary tree
topology using the same size N = 7: a complete (balanced) binary tree (the left
one of depth H = 2), and a fully unbalanced binary tree (the right one of depth
H = 3). Note that we count the depth of binary tree from the root as depth 0.

1

2 3

4 5 6 7

depth 2

1

2 3

4 5

6 7

depth 3

Figure 2.5: Two valid binary trees in size 7 with different depths.

Var Description of variables

bq
1 iff example eq is correctly classified, 0 otherwise
∀q ∈ {1, M}

depthjt
1 iff the node j is in depth t, 0 otherwise
∀j ∈ {1, N}, ∀t ∈ DS(j), where DS(j) = [⌈log(j + 1)⌉ − 1, ⌈(j − 1)/2⌉]

mj
1 iff at least j nodes are used to construct the tree, 0 otherwise
∀j ∈ {3, N}

Table 2.6: Description of all new propositional variables for MaxSAT encoding.

In binary tree, the corresponding depth of a given node j varies in an interval
reflecting these two extreme situations.

• the upper bound of the depth is associated to the fully unbalanced tree, which
is ⌈(j − 1)/2⌉.

• the lower bound of the depth is associated to the complete (balanced) tree,
which is ⌈log(j + 1)⌉ − 1.

For example, as shown in Figure 2.5, the node 6 and node 7 could be in depth
3 or depth 2. To reflect this property between node and its depth, we introduce a
Boolean variable depthjt to indicate the node j is in depth t or not. The definition
of depthjt is given in Table 2.6. The depth interval for a node j is defined as DS(j)
in this Table.

Example 5 Considering a valid binary tree with 7 nodes (N = 7), from the previ-
ous SAT encoding, there are four sets of variables for the tree structure: {v1, . . . , v7},
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{l12, l24, l34, l36, l46, l56}, {r13, r25, r35, r37, r47, r57}, {p21, p31, p32, p42, p43, p52, p53, p54,

p63, p64, p65, p74, p75, p76}. The variables controlling the depth are {depth10, depth21,

depth31, depth42, depth52, depth62, depth63, depth72, depth73}.

In order to control the maximum allowed depth of the tree with a given size,
we introduce the following constraints. At first, we notice that the root is always
at depth 0:

(depth10) (2.17)

Then, each node must be at only one depth, which is for j = 1, . . . , N :∑
t∈DS(j)

depthjt = 1 (2.18)

Next, the children relationship implies the increasing of the depth. In detail, if
node i is in depth t, and node j is a child of node i, then node j must be in depth
t + 1, which is for i = 1, . . . , N :

depthit ∧ lij → depthj(t+1), j ∈ LR(i)
depthit ∧ rij → depthj(t+1), j ∈ RR(i)

(2.19)

Finally, to control the tree topology with H as the maximum depth, we set that
all possible nodes at depth H must be leaf nodes, which is for j ∈ [2H, min(2H+1−
1, N)]:

depthjH → vj (2.20)

The interval of the index of possible nodes in the depth H is also based on the
two extreme situations, where 2H corresponds to the fully unbalanced situation,
and the min(2H+1 − 1, N) corresponds to the complete (balanced) situation.

In addition, the following constraint can be added if H is given as an exact
depth instead of an upper bound. The idea is that not only all possible nodes in
the depth H must be leaf nodes, but also at least one node is in the depth H:

min(2H+1−1,N)∨
j=2H

depthjH = 1 (2.21)

Example 6 Continuing with Example 5, the following specific constraints are gen-
erated based on Constraints 2.17, 2.18, and 2.19:

depth10; depth10 = 1; depth21 = 1; depth31 = 1; depth42 = 1; depth52 = 1;
depth62 + depth63 = 1; depth72 + depth73 = 1;

depth10 ∧ l12 → depth21; depth21 ∧ l24 → depth42; depth31 ∧ l34 → depth42;
depth10 ∧ r13 → depth31; depth21 ∧ r25 → depth52; depth31 ∧ r35 → depth52;
depth31 ∧ l36 → depth62; depth42 ∧ l46 → depth63; depth52 ∧ l56 → depth63;
depth31 ∧ r37 → depth72; depth42 ∧ r47 → depth73; depth52 ∧ r57 → depth73;
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Considering the maximum depth is 3, we have the following constraints:

depth63 → v6; depth73 → v7

Solving this simple example, the encoding allows five different topologies, where
one of depth 2 (the left one in Figure 2.5), and four of depth 3 (the right one of
Figure 2.5 and three additional trees in Figure 2.6).

1

2 3

4 5

6 7

1

2 3

4 5

6 7

1

2 3

4 5

6 7

Figure 2.6: The other three valid binary trees in size 7 of depth 3.

If we add the constraints to control the tree topology of exact depth 3, from
Constraint 2.21:

depth63 ∨ depth73 = 1;

Then, the topologies allowed by the encoding only correspond to the four trees of
depth 3. The tree of depth 2 is avoided, as the depth62 and depth72 must be false.

To combine the constraints of controlling the depth into the MaxSAT encoding,
we simply keep these constraints as hard clauses, as they could be viewed as an
extension of structural constraints.

2.3.3 Limiting Tree Size in Given Interval

After the first and second adaption, the MaxSAT encoding could not only solve
the optimisation problem P ∗

dt(E , N), but also control its maximal or exact depth.
However, this encoding could not solve the final problem P ∗

dt(E , H) as it models the
tree with given size. In this section, we show the final adaption to build a decision
tree with an upper bound on the size instead of the exact size.

There is a relationship between the size and the depth in a valid binary tree.
That is, when the depth of a valid binary tree is given, the size of the tree is in a
corresponding interval. In details, for the maximum depth H, the upper bound of
the size is 2H − 1. Moreover, if H is set as exact depth, we additionally get the
lower bound of the size as 2H + 1. Recall that the size of a valid binary decision
tree can only be an odd number starting from 3. In common, suppose that N is an
upper bound of the tree size, we introduce a Boolean variable mj to indicate that
there are at least j (j ∈ {3, 5, . . . , N}) nodes to construct the tree. The definition
of mj is given in Table 2.6. The constraints for controlling the tree size, are then
the following:
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As at least 3 nodes are necessary to build a valid tree, so we need to enforce
variable m3 to be true. Then, if at least j + 2 nodes are used to construct the tree,
it must use at least j nodes, which is for j ∈ [1, N − 2]:

mj+2 → mj (2.22)

Next, we apply the following simple rule to adapt each constraint set as hard
clauses: we look at each hard clause C from the encoding separately, and consider
j as the largest node index used in C. We simply replace the original hard clause C
by the two cases:

mj → C, if j is odd;
mj+1 → C, if j is even;

(2.23)

That is, if j is odd (respectively even) and at least j (respectively j + 1) nodes
are used, then the hard clause C is held. The use of Constraints 2.22 and 2.23
allows the tree size is restricted by an upper bound, which is applicable to control
the maximum tree depth. In addition, to set a lower bound N l to limit tree size
in a given interval, we simply enforce mN l

as true indicating at least N l nodes are
used. This adaption could help control the exact tree depth.

Example 7 Considering we control the maximum depth of the target decision trees
between 2 and 3, then, the corresponding intervals to limit the tree size are [3, 7]
and [3, 15]. In addition, for exact depth H = 3, we simply change the interval as
[7, 15], which increases the lower bound.

For the toy dataset of Table 2.5, solving the optimisation problem P ∗
dt(E , H)

with H ≤ 2 produces the decision tree given in the left part of Figure 2.7. This
decision tree maximises the number of examples correctly classified (11/12). Solving
the optimisation problem with H ≤ 3 gives the decision tree on the right part of
Figure 2.5. This tree correctly classifies all examples (12/12) of the dataset.

f1

f3 f5

1 0 1 0

f3

f1 f6

1 f5 f2 0

1 0 1 0

Figure 2.7: The optimal decision trees of maximum depth 2 and 3, that maximise
the number of correctly classified examples for the dataset of Table 2.5.

To simplify the notation, we refer to the MaxSAT encoding applying the three
adaptions to find the decision tree with maximum depth as MaxSAT-DT-max, and
with exact depth as MaxSAT-DT-exact.
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2.4 Experimental Results

In this section, we present our large experimental studies to evaluate our proposi-
tions on different levels. The source code (developed in Python) and datasets are
available online at https://gitlab.laas.fr/hhu/maxsat-decision-trees. The
outline of the experiments contains two parts. The first experiment aims to high-
light the overfitting behaviour of the decision trees found via the existing SAT ap-
proach. In the second experiment, we evaluate the prediction performance between
our propositions (MaxSAT-DT-max and MaxSAT-DT-exact) with the state-of-the-art
heuristic and exact methods. Here the heuristic method used is CART [Breiman
et al. 1984], and the exact method is DL8.5 [Aglin et al. 2020]. Both of them are
described in Section 1.3.1.

We perform experiments on datasets from CP4IM1. The dataset are binarized
with the classical one-hot encoding. In Table 2.7, we present the characteristic of
these datasets. In detail, the column M indicates the number of examples in the
dataset, the column Korig indicates the original number of features, the column
K indicates the number of binary features after binarization, and the column pos

indicates the percentage of positive examples in the dataset.

Dataset M Korig K pos

anneal 812 42 89 0.77
audiology 216 67 146 0.26
australian 653 51 124 0.55

cancer 683 9 89 0.35
car 1728 6 21 0.30

cleveland 296 45 95 0.54
hypothyroid 3247 43 86 0.91

kr-vs-kp 3196 36 73 0.52
lymph 148 27 68 0.55

mushroom 8124 21 112 0.52
tumor 336 15 31 0.24

soybean 630 16 50 0.15
splice-1 3190 60 287 0.52

tic-tac-toe 958 9 27 0.65
vote 435 16 48 0.61

Table 2.7: Detailed information of datasets from CP4IM used in experiments.

We ran all experiments on a cluster using Xeon E5-2695 v3@2.30GHz CPU
running xUbuntu 16.04.6LTS.

2.4.1 The Overfitting Phenomenon

The first experiment aims to show the existence of the overfitting phenomenon
for the SAT approach of learning optimal decision trees with perfect accuracy

1https://dtai.cs.kuleuven.be/CP4IM/datasets/

https://gitlab.laas.fr/hhu/maxsat-decision-trees
https://dtai.cs.kuleuven.be/CP4IM/datasets/
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from [Narodytska et al. 2018]. However, the tendency of the increase of the train-
ing accuracy could not be obtained directly by applying the SAT method, because
during the iterative process of decreasing the tree size, all the decision trees found
have perfect accuracy. To solve this problem, we learn decision trees with our
MaxSAT encoding (just applying the Adaption 1, solving the optimisation problem
P ∗

dt(E , N)), by increasing the tree size starting from 3 until we find the size that
classifies correctly all examples in the training set. The final decision tree obtained
via the MaxSAT model is in the same size as the optimal decision tree found via the
previous SAT approach, as it is the decision tree in the smallest size with perfect
accuracy.

Considering the scalability of the SAT method, in this experiment, for each
dataset, we use the hold-out method to split the training and testing set. Following
the experiment topology in [Narodytska et al. 2018], we choose 3 different small
ratios r = {0.05, 0.1, 0.2} to generate the training set, and the remaining examples
are used as the testing set. This process is repeated 10 times with different random
seeds to avoid the influence of random seeds. The MaxSAT solver we used is
RC2 [Ignatiev et al. 2019], which is an effective complete MaxSAT solver. For
each training process, the solver is left with no time limit until it finds the optimal
solution (in terms of training accuracy).

Figure 2.8: The tendency of the training accuracy (left) and testing accuracy (right)
with the increase of tree size for the dataset “breast-cancer” in different ratios.

In Figure 2.8, we report the average training accuracy and testing accuracy of
the decision trees with the increase of tree size for the dataset “breast-cancer” us-
ing different sampling ratios, where the left one indicates the training accuracy, the
right one indicates the testing accuracy. We observe clearly the improvement of
training accuracy with the growth of tree size, until reaching a perfect classifica-
tion. However, the testing accuracy shows that the perfect decision tree overfits the
training set, since the smaller trees, while less accurate on the training set have bet-
ter testing accuracy. The results for the other dataset are detailed in Appendix A.
This overfitting phenomenon is not remarkable for every dataset, but we almost
systematically observe a plateau whereby the testing accuracy stays constant at
best while the training accuracy increases.
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2.4.2 Comparison with Different Methods

In the second experiment, we compare the prediction of our propositions (MaxSAT-
DT-max and MaxSAT-DT-exact) with the CART method as a state-of-the-art heuris-
tic (with the scikit-learn Python library [Pedregosa et al. 2011]), and DL8.5 as the
state-of-the-art exact method (via its Python package in version 0.0.9). Except for
the maximum depth, all parameters are kept to their default values for all models.

As the MaxSAT approach faces less scalability problem, for each dataset, we
use stratified sampling to preserve the class distribution with 5-fold cross-validation.
This process is repeated 10 times with different random seeds to avoid the influence
of random seeds. Unlike the first experiment, the MaxSAT solver we used in this
experiment is Loandra [Berg et al. 2019], which is the winner of incomplete solver in
the MaxSAT Evaluation 2019. In fact, a complete MaxSAT solver could not scale
well on the datasets we used, as it only return the solution when the optimality is
reported. Whereas, the incomplete MaxSAT solver can return the best solution, or
report optimality within limited time.

For each experiment, the timeout for training is set to 15 minutes, and the
memory limit is set to 16GB. The candidate maximum depths are restricted to
H ∈ {2, 3, 4} for CART, DL8.5, and MaxSAT-DT-max. For MaxSAT-DT-exact, the
candidate depths are used as exact depths.

Table 2.8 reports the average training accuracy of the different methods, and
Table 2.9 reports the average testing accuracy. Each row corresponds to 50 runs
for a given dataset with a given depth (5-fold cross-validation with 10 different
random seeds). The column “Acc” stands for accuracy in percent, the column
“Opt” indicates the percentage of reporting optimality, and the column “Time”
indicates the run-time in seconds. The value “MO” corresponds to a memory out,
and the value “TO” is a timeout. The best values between different methods are
marked in blue. Moreover, for methods MaxSAT-DT-exact and MaxSAT-DT-max,
their training and testing accuracy are marked with “∗” if they are within 3% points
of the best.

We do not report exact run time of CART as it takes only few seconds. At first,
from the results in Table 2.8 and 2.9, we observe that the methods MaxSAT-DT-
exact and MaxSAT-DT-max are competitive with both heuristic and exact methods
in prediction performance. Although both MaxSAT-DT approaches could not always
report optimality within limited time, it is close to the optimal solution obtained by
DL8.5. In addition, we observe that DL8.5 needs massive memory for deep trees,
while the two MaxSAT-DT methods do not. Indeed, as a dynamic programming
based approach, DL8.5 benefits its effectiveness in run time, but also suffers from
the trade-off between time and memory. For instance, for a maximum depth of 5,
DL8.5 runs out of memory on 6 datasets, even when lifting the memory limit into
50GB. This scalability problem explains why we consider small depths.
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Datasets H
MaxSAT-DT-exact MaxSAT-DT-max CART DL8.5
Acc Opt Time Acc Opt Time Acc Acc Time

anneal
2 83.19 86 593.71 83.19 94 530.45 81.48 83.19 0.03
3 85.06* 0 TO 85.05* 0 TO 81.60 86.26 1.76
4 86.11* 0 TO 85.79 0 TO 82.68 89.10 73.53

audilogy
2 95.44 100 25.84 95.44 100 25.17 94.91 95.44 0.04
3 97.87* 0 TO 97.84* 0 TO 97.33 98.07 2.42
4 94.43 36 706.00 99.43* 34 777.25 98.89 99.90 46.33

australian
2 87.00* 12 866.79 87.00* 12 883.78 86.68 87.01 0.06
3 87.83* 0 TO 87.79* 0 TO 86.88 89.00 6.96
4 88.44* 0 TO 88.19* 0 TO 89.04 MO MO

cancer
2 94.94 100 2.90 94.94 100 3.19 94.42 94.94 0.02
3 96.66* 20 842.64 96.66* 7 844.62 95.66 96.67 0.71
4 97.70* 0 TO 97.39* 0 TO 96.91 98.10 20.38

car
2 85.53 100 3.48 85.53 100 3.95 85.53 85.53 0.01
3 89.24 96 591.65 89.24 74 700.19 88.48 89.24 0.03
4 91.60* 0 TO 91.47* 0 TO 89.62 92.31 0.31

cleveland
2 80.94* 0 TO 80.95 0 TO 78.20 80.95 0.03
3 83.95 0 TO 85.00* 0 TO 85.78 87.20 2.99
4 85.57 0 TO 85.31 0 TO 88.32 92.77 134.72

hypothyrold
2 97.84 100 130.88 97.84 100 131.56 97.84 97.84 0.04
3 98.13* 0 TO 98.13* 0 TO 98.12 98.14 2.95
4 98.36* 0 TO 98.35* 0 TO 98.38 98.44 121.92

kr-vs-kp
2 86.92 100 130.88 86.92 100 131.56 77.49 86.92 0.03
3 93.60* 0 TO 93.61* 0 TO 90.43 93.81 1.60
4 93.80* 0 TO 94.20* 0 TO 94.09 95.50 67.18

lymph
2 86.07 100 31.32 86.07 100 35.98 84.58 86.07 0.01
3 91.71* 0 TO 91.78* 0 TO 89.97 92.81 0.44
4 94.51* 0 TO 94.87* 2 868.11 94.88 99.00 7.75

mushroom
2 96.90 100 89.89 96.90 100 132.94 92.71 96.90 0.09
3 99.73* 0 TO 99.69* 0 TO 96.55 99.90 4.94
4 100 100 354.33 99.99* 96 388.80 99.92 100 28.65

tumor
2 83.07 100 17.16 83.07 100 17.74 82.82 83.07 0.01
3 86.32* 0 TO 86.44* 0 TO 84.81 86.58 0.10
4 87.45* 0 TO 87.71* 0 TO 87.45 90.22 1.57

soybean
2 91.27 100 8.54 91.27 100 8.56 89.29 91.27 0.01
3 95.46* 0 TO 95.50* 0 TO 92.23 95.51 0.20
4 97.14* 0 TO 97.05* 0 TO 94.39 98.02 3.58

splice-1
2 84.13* 0 TO 84.17* 0 TO 84.04 84.31 0.50
3 84.06 0 TO 85.90 0 TO 91.31 92.98 81.01
4 86.21 0 TO 83.91 0 TO 95.43 MO MO

tic-tac-toe
2 71.12 100 99.50 71.12 100 92.00 70.92 71.12 0.01
3 77.45* 0 TO 76.94* 0 TO 75.70 78.65 0.08
4 82.05 0 TO 81.33 0 TO 83.82 86.65 1.14

vote
2 96.22 100 3.49 96.22 100 3.61 95.63 96.22 0.01
3 97.39* 0 TO 97.35* 0 TO 96.91 97.50 0.23
4 98.50* 0 TO 98.51* 0 TO 98.03 99.18 4.04

Table 2.8: Evaluation of the training accuracy between the MaxSAT-DT-max,
MaxSAT-DT-exact, CART, and DL8.5.
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Datasets H MaxSAT-DT-exact MaxSAT-DT-max CART DL8.5

anneal
2 82.16* 82.05* 81.09 82.31
3 84.23* 84.29* 81.22 85.26
4 83.71* 84.50* 80.94 86.42

audilogy
2 94.82* 94.49* 94.56 94.92
3 93.72* 93.91* 94.16 93.53
4 94.70 94.08* 94.51 94.50

australian-credit
2 84.72* 84.89* 86.59 84.81
3 84.92* 85.31* 84.99 85.33
4 85.00* 85.31* 85.44 MO

breast-cancer
2 93.97 93.92* 93.89 93.88
3 94.07* 94.45 93.80 94.14
4 94.05 93.95* 93.79 93.66

car
2 85.53 85.53 85.53 85.53
3 87.49* 87.49* 87.65 87.49
4 89.69* 89.84* 87.93 90.69

heart-cleveland
2 71.59* 71.60* 72.71 71.53
3 76.08 76.09 79.37 75.85
4 75.11 75.82* 76.55 78.15

hypothyrold
2 97.84 97.84 97.84 97.84
3 97.83* 97.83* 97.87 97.86
4 97.98* 98.04* 98.10 97.87

kr-vs-kp
2 86.92 86.92 76.75 86.92
3 93.57* 93.56* 90.43 93.75
4 93.69* 94.10* 94.09 95.36

lymph
2 79.16* 79.42* 80.85 79.07
3 80.95* 80.45* 79.05 81.80
4 80.53* 81.71* 82.15 80.28

mushroom
2 96.90 96.90 92.71 96.90
3 99.97 99.66* 96.53 99.90
4 100 99.98* 99.90 100

primary-tumor
2 79.55* 79.82* 80.15 80.06
3 82.79* 82.61* 79.83 83.27
4 82.74* 83.24* 81.72 83.30

soybean
2 91.27 91.27 87.94 91.27
3 94.29* 94.19* 90.46 94.35
4 95.30* 96.04* 92.46 96.17

splice-1
2 83.44* 83.22* 84.04 82.80
3 83.62 85.60 90.96 92.83
4 85.87 83.18 95.25 MO

tic-tac-toe
2 67.45* 67.51* 68.22 67.59
3 73.54 73.42* 72.04 72.22
4 78.15* 78.04* 80.97 80.30

vote
2 94.94* 94.98* 95.44 94.84
3 94.16* 94.18* 94.67 93.95
4 94.64 94.25* 94.57 93.61

Table 2.9: Evaluation of the testing accuracy between the MaxSAT-DT-max,
MaxSAT-DT-exact, CART, and DL8.5.

2.5 Boosting the Model

In this section, we explain how the MaxSAT-DT approaches are well adapted to
implement the classical Boosting method AdaBoost presented in Section 1.2.3.2.
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The motivation of this adaption is to improve the generalization performance of
MaxSAT-DT approaches. Then, we conduct an experimental evaluation to show the
impact of the proposed integration of the MaxSAT-DT approaches in AdaBoost.

2.5.1 Integration in AdaBoost

Before explaining details of the integration of MaxSAT-DT approaches in AdaBoost,
we briefly show the natural resemblance between MaxSAT-DT approaches and Boost-
ing methods. As described in Section 1.2.3.2, the core of Boosting methods is to
adjust the data distribution by the predictions made in each iteration. Meanwhile,
the MaxSAT formulas generated by MaxSAT-DT could approximate the data dis-
tribution by the weights of their soft clauses. In Section 2.3.1, we present that
each soft clause indicates whether the corresponding example is correctly classified
or not. Originally, we consider that all soft clauses share the same weight, which
is equivalently viewed as an average data distribution. In this section, we use the
weighted partial MaxSAT to allow different weights for the soft clauses, so that the
data distribution is approximated.

In details, the MaxSAT formula used to learn the decision tree at the iteration
t is identical to the one at the previous iteration, except for the weight associated
to each soft clause bq. Therefore, to approximate the data distribution Dt of the
iteration t, we associate every soft clause bq to a positive integer weight wt

q. We set
all weights at the first iteration with the value 1 as initial distribution, indicating
the equal importance of each example. Then, the weight for the next iteration wt+1

q ,
is calculated based on wt

q in two steps.
Firstly, we update and normalize the weights:

ŵt+1
q =

wt
q ∗ factort

q∑M
q=1(wt

q ∗ factort
q)

(2.24)

where factort
q is an updating factor based on the predictions made by the deci-

sion tree ϕt learnt in the iteration t for the example eq = (xq, yq):

factort
q =

exp (−αt) if ϕt(xq) = yq

exp (αt) if ϕt(xq) ̸= yq

(2.25)

The value αt = 1
2 ln 1−εt

εt
is the weight of ϕt in the final voting of AdaBoost, and

the value εt is the error rate of ϕt in the example set (see Algorithm 4 for details).
The second step is to discretize the weight ŵt+1

q as follow, as the weighted partial
MaxSAT could only accept positive integer weights:

wt+1
q = round( ŵt+1

q

minq∈[1,...,M ](ŵt+1
q )

) (2.26)

We recall the readers that the final prediction made by AdaBoost is Φ(x) =
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sign
(∑T

t=1 αtϕt(x)
)
, where T is the number of iterations preset.

2.5.2 Experimental Results

In order to show the influence of the integration of MaxSAT-DT approach in Ad-
aBoost, we make this experiment to compare it with the original MaxSAT-DT ap-
proach. In addition, to check the differences between different ensemble methods,
we also compare our integration of MaxSAT-DT in Adaboost with the integration
of MaxSAT-DT approach in Bagging, and with the AdaBoost based on CART, . To
simplify the notation, we refer the integration of MaxSAT-DT approach in AdaBoost
as MaxSAT-DT-adaboost (or DT-ada in short), the integration of MaxSAT-DT in
Bagging as MaxSAT-DT-bagging (or DT-bag in short), and the AdaBoost based
in CART as CART-adaboost (or CART-ada in short).

We fix the the parameters of the decision trees for different methods. That
is, for each ensemble method, the decision tree learnt in each iteration shares the
same parameters. In particular, we use the decision tree found via MaxSAT-DT-max
approach as the base learner in the ensemble methods. The candidate maximum
depths are H ∈ {2, 3, 4}. The MaxSAT solver used is Loandra, and the timeout is
set to 15 minutes. For each ensemble method, we set 21 as the number of learners
as it is quite reasonable size, and an odd number could avoid ties in the voting
phase.

We selected datasets where MaxSAT-DT approach do not perform well in the
previous experiment. Moreover, considering the computational time, we use the
hold-out method with the ratio r = 0.8 to split the training set, and the rest are
used as testing set. This process is also repeated 10 times with different random
seeds to avoid the influence of random seeds.

The results are presented in Table 2.10, where the accuracy are shown in per-
centage, and the best values are marked in blue. Moreover, the accuracy are marked
with “∗” if they are within 3% points of the best. The results clearly show that,
compared with MaxSAT-DT-max approach, the MaxSAT-DT-adaboost method does
improve the prediction performance (both in training and testing accuracy) for
almost all instances. For example, for the dataset “car” and “tic-tac-toe”, the
improvement in prediction accuracy is more than 10%. The method MaxSAT-DT-
bagging obtains better prediction quality compared to MaxSAT-DT-max approach,
reflecting the effectiveness of ensemble methods. However, it presents worse pre-
diction compare to MaxSAT-DT-adaboost. In addition, compared with the boosted
trees based on CART, MaxSAT-DT-adaboost is competitive in prediction quality
(both in training and testing accuracy).

2.6 Performance of Different MaxSAT Solvers

Fortunately, we are honored that the MaxSAT formulas of MaxSAT-DT-max and
MaxSAT-DT-adaboost are selected as benchmarks for the MaxSAT Evaluation (MSE)
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Datasets H
Testing accuracy Training accuracy

DT-max DT-ada CART-ada DT-bag DT-max DT-ada CART-ada DT-bag

anneal
2 80.98 80.98 83.99 80.98 83.20 83.36* 85.21 83.17
3 82.82 84.90* 86.81 82.82 84.90 88.60 88.26 85.00
4 82.82 84.82* 87.55 83.30 85.52 90.14* 91.05 85.81

australian
2 87.12 87.20 85.98 89.20 86.56 89.98 93.84 85.89
3 87.88 87.54* 87.05 88.72 87.33 89.66 93.80 87.03
4 87.88 87.88* 85.91 89.14 88.48 90.21 99.31 87.03

car
2 84.68 96.53 95.29 84.68 85.75 97.47 96.27 85.75
3 87.86 95.44* 97.83 89.92 89.15 97.10* 98.84 91.08
4 90.46 98.36* 98.67 95.02 91.24 98.70* 99.91 95.30

cleveland
2 73.33 78.33* 79.83 76.85 80.93 90.25 90.13 85.22
3 78.33 83.70 81.17 81.48 83.90 93.97 99.15 88.37
4 85.0 80.17 77.83 83.89 83.47 96.09 100 90.07

tumor
2 82.35 82.35 81.91 82.03 82.84 86.19* 87.05 83.25
3 82.65 84.48 80.74 84.31 86.34 90.92 89.96 87.77
4 80.88 79.14 78.97 84.80 86.57 88.81 93.77 89.59

tic-tac-toe
2 68.91 77.14* 78.08 71.27 70.98 80.39* 82.61 72.37
3 74.61 94.69 93.01 81.46 76.86 95.96* 96.31 89.46
4 76.74 94.49* 96.94 85.26 81.31 95.80 100 85.37

Table 2.10: Evaluation of the different Ensemble Methods.

in 2021 [Bacchus et al. 2021a] and 2022 [Bacchus et al. 2022]. In this section,
we present a summary of the performance of different MaxSAT solvers on our
benchmarks executed during MSE 2021 and MSE 2022. In MSE, the competition
between MaxSAT solvers is organized in three main tracks: complete tracks, in-
complete tracks and incremental tracks (new in 2022). Depending on the type of
MaxSAT formula, there are two sub-tracks in both complete and incomplete tracks,
corresponding to unweighted and weighted formula.

The descriptions of the proposed benchmarks are detailed in [Hu et al. 2021] and
is given in Appendix B. Our benchmarks (unweighted and weighted formula) are
used in both complete and incomplete tracks. Our unweighted instances are pro-
duced by the MaxSAT-DT-max approach and our weighted instances are produced
by the MaxSAT-DT-adaboost approach.

In the complete tracks of MSE, a time out is imposed (300 seconds) for all
MaxSAT solvers. The vast majority of MaxSAT solvers could not report solution
in this time limit. Meanwhile, the solver logs do not show sufficient valuable in-
formation to make provable analysis. Additionally, in MSE 2022, our weighted
instances are used in the new incremental track. However, similarly to the com-
plete track, the results of the incremental track do not produce sufficient valuable
information. Therefore, we focus majorly on the results of the incomplete track to
compare different MaxSAT solvers on our unweighted and weighted instances.
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2.6.1 Incomplete Unweighted Track

The incomplete unweighted track uses the MaxSAT formulas generated by MaxSAT-
DT-max. Overall, the benchmarks we provided contain the formulas for 15 datasets
from CP4IM. Considering the number of different benchmarks, the MaxSAT Evalu-
ation chooses part of the benchmarks to evaluate the MaxSAT solvers. The bench-
marks are randomly chosen for each track. Therefore, we present the summary of
evaluations separately by years.

In MSE 2021, six MaxSAT solvers are evaluated in the incomplete unweighted
track. These solvers are Exact [Devriendt 2021], Loandra [Berg et al. 2019],
SATLike-c and its variant SATLike-ck with control of steps [Lei et al. 2021,
Cai & Lei 2020], StableResolve [Reisch et al. 2020], and TT-Open-WBO-Inc-
21(“TT-WBO” in short) [Martins et al. 2014, Martins et al. 2021]. Table 2.11
shows the evaluation of these MaxSAT solvers with 300 seconds as the time limit.
In this table, the benchmarks are identified by the combination of dataset and
the maximum depth, which are shown in the column “Dataset/H”. The column
“Best” indicates the smallest number of unsatisfied soft clauses between the different
MaxSAT solvers, where 0 indicates that all soft clauses are satisfied (for example,
there is no unsatisfiable clauses for benchmarks “vote/5” and “lymph/6”). Each
cell gives the ratio in percent between the best result and the result of each MaxSAT
solver. The value in brackets is the number of unsatisfiable clauses obtained by the
considered solver. An higher ratio indicates a better performance of corresponding
MaxSAT solver. Two special cases need attention. The first case is when the
MaxSAT solver could not obtain a solution in the time limit, the ratio is then set
to 0 (for example, it is the case for the solver Exact on benchmark splice-1/5 ).
The second case is when the best value is 0, the ratio is calculated with (best_value
+1) / (corresponding_value +1). The best MaxSAT solver for each benchmark is
marked in blue. In addition, we add a summary row to count, for each MaxSAT
solver, the number of benchmarks with the best value.

From Table 2.11, we observe that the MaxSAT solver with the best perfor-
mance on our benchmarks is SATLike-c and its variant SATLike-ck, which is
a hybrid solver combining the local search algorithm “SATLike” and the “Open-
WBO” MaxSAT solver. Then, Loandra and TT-Open-WBO-Inc-21 rank the
second best efficient MaxSAT solvers. Moreover, we observe that, in general, Loan-
dra performs well for benchmarks with small maximum depths (like 3, 4), but badly
for benchmarks with large maximum depths (like 5, 6).

In MSE 2022, three new MaxSAT solvers are evaluated in the incomplete un-
weighted track. The new MaxSAT solvers are DT-Hywalk [Zheng et al. 2022b,
Zheng et al. 2022a], noSAT-MaxSAT (noSAT in short) [Lübke & Schupp 2022],
and NuWLS-c [Chu et al. 2022]. The comparison of these different MaxSAT
solvers with 300 seconds as time limit are shown in Table 2.12. The columns are
the same as in Table 2.11. The column “TT-OpenWBO-Inc-*” (TT-WBO-*
in short) indicates the different variants of the MaxSAT solver TT-Open-WBO-
Inc [Nadel 2020] (TT-Open-WBO-Inc-i indicates the application of IntelSAT
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Dataset/H Best Exact Loandra SATlike-c Satlike-ck StableResolve TT-WBO

australian/3 67 0.38 (179) 0.99 (68) 1.00 (67) 0.99 (68) 0.92 (73) 1.00 (67)

tumor/3 40 0.66 (61) 0.98 (41) 1.00 (40) 0.85 (47) 0.67 (60) 0.89 (45)

soybean/3 22 0.47 (48) 1.00 (22) 0.85 (26) 1.00 (22) 0.31 (73) 1.00 (22)

splice-1/3 1176 0.96 (1225) 0.93 (1265) 1.00 (1176) 0.92 (1282) 0.85 (1389) 0.85 (1387)

vote/3 6 0.64 (10) 1.00 (6) 0.88 (7) 0.88 (7) 0.58 (11) 0.88 (7)

anneal/4 90 0.59 (153) 1.00 (90) 0.95 (95) 0.95 (95) 0.75 (120) 0.95 (95)

hypothyroid/4 46 0.10 (475) 0.03 (1612) 1.00 (46) 0.22 (211) 0.46 (102) 0.30 (157)

tumor/4 36 0.64 (57) 1.00 (36) 0.95 (38) 0.90 (40) 0.31 (118) 0.95 (38)

soybean/4 12 0.18 (73) 1.00 (12) 1.00 (12) 0.54 (23) 0.18 (73) 1.00 (12)

tic-tac-toe/4 161 0.55 (296) 0.98 (165) 0.79 (204) 1.00 (161) 0.70 (230) 0.79 (204)

vote/4 2 0.18 (16) 0.60 (4) 1.00 (2) 1.00 (2) 0.25 (11) 0.75 (3)

cancer/5 12 0.15 (87) 0.43 (29) 1.00 (12) 0.65 (19) 0.07 (179) 0.81 (15)

cleveland/5 32 0.25 (132) 0.89 (36) 1.00 (32) 0.83 (39) 0.41 (79) 1.00 (32)

splice-1/5 1122 0.00 (-) 1.00 (1122) 0.90 (1250) 0.88 (1280) 0.49 (2300) 0.87 (1297)

tic-tac-toe/5 134 0.52 (261) 1.00 (134) 0.81 (165) 0.77 (175) 0.58 (230) 0.82 (163)

vote/5 0 0.10 (9) 0.25 (3) 0.33 (2) 0.33 (2) 0.01 (95) 0.25 (3)

anneal/6 94 0.23 (411) 0.19 (500) 1.00 (94) 1.00 (94) 0.56 (170) 1.00 (94)

australian/6 109 0.00 (-) 0.35 (316) 0.88 (124) 1.00 (109) 0.53 (205) 0.86 (127)

car/6 121 0.24 (504) 0.39 (313) 1.00 (121) 0.49 (246) 0.31 (395) 0.91 (133)

cleveland/6 27 0.37 (75) 0.23 (121) 1.00 (27) 0.64 (43) 0.35 (78) 1.00 (27)

lymph/6 0 0.02 (40) 0.08 (12) 0.13 (7) 0.08 (11) 0.01 (74) 0.13 (7)

soybean/6 7 0.03 (237) 0.53 (14) 0.29 (27) 1.00 (7) 0.11 (74) 0.29 (27)

tic-tac-toe/6 164 0.49 (338) 0.57 (287) 0.72 (227) 1.00 (164) 0.46 (360) 0.72 (227)

Best Count - 0/23 7/23 13/23 8/23 0/23 7/23

Table 2.11: The evaluation of all MaxSAT solvers in incomplete unweighted track
of MaxSAT Evaluation 2021.

[Nadel 2022], TT-Open-WBO-Inc-is indicates the usage of IntelSAT and tuned
for shorter invocations, and TT-Open-WBO-Inc-g indicates the usage of Glucose
4.1 [Audemard & Simon 2018]).

From Table 2.12, we observe that the MaxSAT solver with the best performance
in our benchmarks is Loandra. The difference between the Loandra solver in MSE
2022 and the one in MSE 2021 is the pre-processing step. The latest variant
of Loandra employs a recent extension of MaxPRE [Korhonen et al. 2017], which
enables stronger reasoning to improve the upper bound of the number of unsatisfied
clauses. Meanwhile, we observe that five benchmarks are used both in MSE 2021
& MSE 2022. These benchmarks are marked in cyan. From the comparison of
best values found by the solvers in two years, we observe the great improvement
of MaxSAT solvers. For example, for benchmark “splice-1/5” and “car/6”, the
best values in 2021 are respectively 1122 and 121, but the best values in 2022 are
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respectively 853 and 42, which directly shows the progress of MaxSAT solvers.

2.6.2 Incomplete Weighted Track

The incomplete weighted track uses the MaxSAT formulas generated by MaxSAT-
DT-adaboost. Considering the number of different benchmarks, each year the MSE
chooses randomly part of the benchmarks for the incomplete weighted track. We
present the summary of evaluations separately by years.

In MSE 2021, all MaxSAT solvers evaluated in unweighted track also join the
weighted track. Additionally, Open-WBO-Inc-bmo-complete (Open-WBO-c in
short) [Joshi et al. 2021] and its variant Open-WBO-Inc-bmo-satlike (Open-
WBO-s in short) are also evaluated in weighted track. Table 2.13 shows the evalu-
ation of different MaxSAT solvers with 300 seconds as time limit. The columns are
the same as for the tables shown in unweighted track. From Table 2.13, we observe
that Loandra is the MaxSAT solver with the best performance, which is far more
efficient than others in the weighted track.

In MSE 2022, all MaxSAT solvers in unweighted track also join the weighted
track. Same as the weighted track in 2021, Open-WBO-Inc-bmo-complete
and its variant Open-WBO-Inc-bmo-satlike are then evaluated. The details
of the evaluation are shown in Table 2.14, where the columns are the same as in
the previous tables. From Table 2.14, we observe that Loandra is also the most
efficient solver in the weighted track in 2022. Meanwhile, DT-Hywalk shows its
competitive performance compared to Loandra for benchmarks in smaller sizes.
In addition, we also observe that there are three shared benchmarks used both in
MSE 2021 & MSE 2022, which are marked in cyan. However, unlike the unweighted
track, the results do not show progress in the best values. But, it could also be the
cause of the small number of shared benchmarks.

2.7 Summary of Chapter

In this chapter, we firstly introduced details of the previous SAT approach of
learning decision trees in the smallest size with perfect accuracy from [Narodytska
et al. 2018]. Then, we propose the three adaptions to transform the SAT encod-
ing into MaxSAT to find decision trees of depths restricted with best prediction
accuracy, aiming to avoid overfitting and increase the generalization performance.
Next, we propose the integration of our MaxSAT approach in AdaBoost to improve
the prediction performance. Our computational experiments demonstrate at first
the competitive prediction quality of our MaxSAT approach comparing with state-
of-the-art heuristic and exact methods. Moreover, the progress in generalization
performance is observed in the results of the integration of AdaBoost. At the end,
we briefly summarized the performance of different MaxSAT solvers in MaxSAT
Evaluation 2021 & 2022 on the formulas generated by our MaxSAT approach.
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In this chapter, we present our contribution to optimize binary decision dia-
grams with MaxSAT for classification. This chapter is an extended version of the
paper [Hu et al. 2022] and contains five sections. Section 3.1 explains the mo-
tivation and the target problem. Section 3.2 introduces an essential proposition
from [Knuth 2009] relating the binary decision diagram and the truth table for the
same Boolean function. Section 3.3 presents the details of the proposed MaxSAT
model to learn the optimal binary decision diagrams for classification, and some
experimental results. Section 3.5 proposes a simple heuristic pre-processing step to
increase the scalability of the proposed MaxSAT model. Section 3.6 briefly sum-
marizes this chapter.

3.1 Motivation and Problem Description

The advantages of binary decision diagrams justify their possible substitution for
decision trees in interpretable machine learning, although they fail to gain enough
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interest as decision trees. In fact, compared to decision trees, binary decision
diagrams could avoid the replication problem and fragmentation problem effectively,
which are two flaws of decision trees explained in Section 1.2.2.2.

To the best of our knowledge, [Cabodi et al. 2021] is the only exact method
of learning optimal binary decision diagrams before our research. This SAT-based
exact method extends the core of SAT encoding for decision tree proposed in [Nar-
odytska et al. 2018] to learn binary decision diagrams. The target of this approach
is to learn optimal binary decision diagrams with the smallest sizes (number of
nodes) that correctly classify all examples, which leads to two drawbacks. The first
drawback is the possible overfitting due to the perfect accuracy. The other is the
lack of restraint in depth of the binary decision diagram learnt, possibly leading the
diagram learnt is small in size but high in depth. As the considered binary decision
diagrams are ordered, this drawback equivalently indicates that this approach could
not limit the number of different features used.

To offset these drawbacks, we consider a new target to learn binary decision
diagram controlled by depth that optimizes the accuracy. In detail, this target
could be described as the following optimisation problem:

• P ∗
bdd(E , H): Given a set of examples E , find a binary decision diagram of depth

H that maximises the number of examples in E that are correctly classified.

This problem shares same objective with P ∗
dt(E , H), the optimisation problem

proposed to learn optimal decision trees in chapter 2. Therefore, inspired by the
solving methodology of our previous research, we firstly introduce a SAT-based
model to find the binary decision diagrams with the smallest number of features
classifying all examples correctly, which is described as the following decision prob-
lem:

• Pbdd(E , H): Given a set of examples E , is there a binary decision diagram of
depth H that classifies correctly all examples in E?

Then, we introduce a lifted MaxSAT-based model to solve the optimisation
problem P ∗

bdd(E , H). An additional motivation of our research is to face some scal-
ability issues highlighted in Chapter 2. In practice, as the binary decision diagrams
have smaller sizes than the corresponding decision trees, the MaxSAT formula for
optimizing binary decision diagrams is lighter than the one for decision trees with
the same objective. The shrink of encoding size could reduce the time to report opti-
mality, or deal with larger datasets within same limited time. Moreover, in order to
increase the scalability of our MaxSAT approach, we propose a heuristic extension
based on a simple pre-processing step. The details are shown in Section 3.5.

Almost at the same time, [Florio et al. 2022] proposes the first MILP-based
exact method for learning optimal decision diagrams. However, we consider this
method is quite incomparable because of the difference in the topology. In [Florio
et al. 2022], the decision diagrams are limited by a preset skeleton, and are not
ordered. We refer readers to Section 1.3.1.2 that provides the literature review of
the exact methods for optimal (binary) decision diagrams.
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Before introducing the details of the proposed SAT & MaxSAT encoding for op-
timal binary decision diagrams, we present an essential proposition from [Knuth 2009]
in the next section. As in Chapter 2, we consider binary datasets E containing M

examples, and K binary features.
Additionally, for all possible uses of cardinality constraints in this chapter, we

model the cardinality constraints by the sequential counters encodings proposed
in [Sinz 2005].

3.2 An Essential Proposition

In this section, we present an essential proposition from [Knuth 2009], which relates
the truth table and the binary decision diagram of the same Boolean function.
In other words, this proposition shows how to build the binary decision diagram
structure by the corresponding truth table.

Firstly, we introduce the basic idea and notations for a truth table. Let g be a
Boolean function defined over a sequence of n Boolean variables [x1, . . . , xn]. The
function g can be represented by a truth table, which is a binary string of size 2n

listing values of all assignments of the n variables. A truth table β of length 2n is
called to be of order n.

Then, we describe the subtables of a truth table, which are defined recursively.
A truth table β of order n ≥ 1 can be represented by β0β1, where β0 and β1 are
truth table of order n− 1, indicating the left and right part of β. Therefore, β0 and
β1 are called the subtables of β. The subtables of subtables are also considered as
subtables, and a table is considered as a subtable of itself. All the subtables are
unique without duplication.

Next, we explain the concept of bead. A bead of order n (n ≥ 1) is a truth table
β of order n that does not contain identical subtables. More formally, β = β0β1
is a bead if β0 ̸= β1. Equivalently speaking, bead is a restricted truth table that
avoids identical left and right parts. Especially, 0 and 1 are two special values that
happens to be bead. In addition, the beads of a Boolean function g are the subtables
of its truth table that happens to be bead.

Example 8 Considering a Boolean function g1(x1, x2, x3) = (x1∨x2∨x3)∧ (¬x1∨
x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3), the associated truth table βg1 is 01111010 and is of
order 3 (its size is 8 = 23).

The subtables of βg1 are {01111010, 0111, 1010, 01, 11, 10, 0, 1}. Duplicated sub-
tables are eliminated. For instance the subtable 1010 of this example, produces only
one subtable 10.

In the set of subtables of βg1, 01111010, 0111, 01, 10, 0, and 1 are beads; 1010
and 11 are not beads.

The proposition that links binary decision diagram and truth table is based on
the concept of beads, it is described as follow:
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Proposition 1 All vertices of a binary decision diagram, are in one-to-one corre-
spondence with the beads of the Boolean function g it represents.

Based on Proposition 1, we can produce the binary decision diagram of a
Boolean function, by combining its beads and its sequence of variables.

Example 9 Continuing with Example 8, the beads of Boolean function g1(x1, x2, x3)
are {01111010, 0111, 01, 10, 0, 1}. We can represent all the subtables of the truth ta-
ble of the function g1 as illustrated in the left one of Figure 3.1. From Proposition 1,
we can remove subtables that are not beads as their corresponding nodes have the
left and right child, and produce the binary decision diagram illustrated in the mid-
dle one of Figure 3.1. Then, we can replace the beads by vertices associated with
the sequence of Boolean variables [x1, x2, x3]. The final binary decision diagram for
g1(x1, x2, x3) is shown in the right part of Figure 3.1.

01111010

0111 1010

01 11 10

0 1

01111010

0111

01 10

0 1

x1

x2

x3 x3

0 1

Figure 3.1: The binary decision diagram for Boolean function g1(x1, x2, x3).

Function(Input): Output Description
FirstHalf(string s): string Returns the first half of s
SecondHalf(string s): string Returns the second half of s
IsBead(string s): Boolean Returns True iff s is a bead
LeadToZero(string s): Boolean Returns True iff s contains only 0
LeadToOne(string s): Boolean Returns True iff s contains only 1

Table 3.1: Some predefined functions in the algorithm.

Finally, we describe the algorithm to construct a binary decision diagram of
maximum depth H using the beads of the truth table β associated to a sequence
of variables [x1, x2, . . . , xH], based on the proposition 1. The detailed algorithm is
described in Algorithm 7, and some predefined functions are listed in Table 3.1.

The algorithm creates nodes level by level in a breadth-first way. In detail,
firstly, the binary decision diagram built is defined by the combination of a list of
nodes and a list of edges. Each node is a pair (node_id, variable). The value of
node_id is a unique integer called the id of the node, which is non-negative for
non-terminal nodes. There are two terminal nodes: the node (−1, 1) associated to
the value 1 (i.e., positive class in the context of binary classification), and the node
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Algorithm 7: GenBDD(β,X ), an algorithm to construct a BDD from a
given string β and variable sequence X .

Input: String β, variable sequence X = [x1, . . . , xH].
1 nodes← {}; edges← {}; T ← {}
2 nodes.append((−1, 1)); nodes.append((−2, 0))
3 q ← Queue()
4 q.put((β, 0, 1, ∅)))
5 while not q.empty() do
6 (s, parent_id, level, direction)← q.pop())
7 if Length(s) > 1 and IsBead(s) then

// When the current string s is a Bead.
8 if s ̸∈ T then

// s is a new string, i.e., not seen before
9 T.append(s)

10 index← T.index(s) + 1
11 nodes.append((index, xlevel))
12 index← T.index(s) + 1
13 if parent_id ≥ 1 then
14 edges.append((parent_id, index, direction))

// Put the left and right child into the queue.
15 q.put((FirstHalf(s), index, level + 1, left))
16 q.put((SecondHalf(s), index, level + 1, right))
17 else if Length(s) > 1 and not IsBead(s) then

// When the current string s is not a Bead.
18 if LeadToOne(s) or LeadToZero(s) then

// s leads to sink nodes
19 if LeadToOne(s) then
20 sink ← −1
21 else
22 sink ← −2
23 if p = 0 then
24 edges.append((1, sink, left))
25 edges.append((1, sink, right))
26 else
27 edges.append((parent_id, sink, direction))
28 else

// Otherwise put the left child into the queue.
29 q.put((FirstHalf(s), parent_id, level + 1 , direction))
30 else

// The current string is a sink node.
31 if s = 1 then
32 sink ← −1
33 else
34 sink ← −2
35 edges.append((parent_id, sink, direction))

Output: BDD(nodes, edges)
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(−2, 0) associated to the value 0 (i.e., negative class in binary classification). Each
edge is a tuple (p, c, direction), where p is the id of the parent node, c is the id of
the child node, and direction ∈ {left, right}) indicates if c is the left or right child
of p.

Algorithm 7 uses a FIFO queue q, in which each item follows the format
(str, parent_id, current_level, direction). The first item pushed in the queue is
a special case indicating the root, denoted by (β, 0, 1, ∅), since the root has no
parent.

At each iteration of the main loop, the algorithm pops an element of format
(s, parent_id, level, direction) from the queue at Line 6. If s is a bead, the algo-
rithm creates a new node at Line 11 associated with the level level if s is seen for
the first time. The set of edges is updated in Line 14 accordingly. The set of left
and right children of s are added in the queue in Lines 15 and 16.

When the current string s is not a bead of size > 1, there might be two cases
where s leads directly to a terminal node. Either s contains only 0s, or s contains
only 1s. Depending on the size of s, the two cases are handled in two parts of the
algorithm: from Line 17 to Line 27, and from Line 30 to Line 34, The case where
s is not a bead that do not lead to a terminal node, only one child of s is added to
the queue without creating nodes (since s is not a bead). The algorithm ends when
all the elements of the queue are treated.

3.3 Proposed SAT and MaxSAT Models

In this section, we present our approach of learning optimal binary decision dia-
grams for binary classification. At first, we describe a SAT-based model to solve the
decision problem Pbdd(E , H). Then, two improved versions are proposed to reduce
the encoding size. Next, we show how to lift the SAT-based model into MaxSAT
model to solve the optimisation problem P ∗

bdd(E , H). In addition, we propose a
post-processing procedure to merge compatible subtrees. Finally, we provide an ex-
perimental study to evaluate empirically our models and the compare them between
state-of-the-art heuristic and exact methods.

3.3.1 An Initial SAT Model: BDD1

As Proposition 1 shows, a binary decision diagram of depth H could be constructed
by the combination of a sequence of Boolean variables of size H: [x1, . . . , xH], and a
truth table β of order H associated to a Boolean function. For binary classification,
in order to build a binary decision diagram of depth H, we aim to find a sequence of
binary features of size H that maps one-to-one the sequence of Boolean variables.
To build the binary decision diagram for binary classification, instead of using the
sequence of Boolean variables, we consider to find a sequence of binary features of
same size that maps one-to-one the sequence of Boolean variables.

To solve the classification problem Pbdd(E , H), we need to find the feature or-
dering of size H, and a truth table β associated to a Boolean function that correctly



3.3. PROPOSED SAT AND MAXSAT MODELS 73

classifies all examples of the dataset E . Therefore, the SAT encoding contains two
parts:

• Part 1: Constraints to select features of the dataset into the feature ordering
of size H.

• Part 2: Constraints to generate a truth table that classifies correctly all ex-
amples of E with the feature ordering found in the previous part.

We introduce two sets of Boolean variables. These sets are described in Table
3.2. Variables ai

r indicate whether the feature fr is selected as i-th feature in the
feature ordering. Variables cj stores the information of the j-th value of the truth
table/ The definitions of these two Boolean variables are shown in Table 3.2.

Description of The Variables

ai
r

1 iff feature fr is selected as i-th feature in the feature ordering, 0 otherwise
∀i ∈ {1, H}, ∀r ∈ {1, K}

cj
1 iff j-th value of the truth table is 1, 0 otherwise
∀j ∈ {1, 2H}

Table 3.2: Description of the Boolean variables used in the SAT encoding of a
binary decision diagram.

Using these sets of variables, we present the constraints of Part 1 that capture
the ordered restriction. At first, any feature fr can be selected at most once to
avoid the duplication, which is for r = 1, . . . , K:

H∑
i=1

ai
r ≤ 1 (3.1)

Then, there is exactly one feature selected for each index of the feature ordering:

K∑
r=1

ai
r = 1 (3.2)

Next, to avoid the first feature selected to make useless splits, we need to ensure
that the truth table found is a bead.

2H−1∨
j=1

(cj ⊕ cj+2H−1) (3.3)

Now, we explain the constraints of Part 2 that generate a truth table classi-
fying all examples correctly. First, we consider the relationship observed between
the values of a truth table and the assignments of the given sequence of Boolean
variables. As each value in the truth table corresponds to a unique assignment, we
can define a function rel(i, j) to obtain the value of the i-th feature in the feature
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ordering of the size H, when given the j-th value in the truth table.

rel(i, j) = ⌊j − 1
2H−i

⌋ mod 2, i ∈ [1, H], j ∈ [1, 2H ] (3.4)

A typical example is the first value of the truth table, which is reachable for
the assignment that all features are assigned as zero. The usage of this relationship
function is to decide if an example could arrive at a given value in the truth table
with the given feature ordering. In detail, for an example eq ∈ E , we denote its
value of feature fr as σ(r, q). If σ(r, q) = rel(i, j), then, for example eq, the feature
fr can be at the i-th position in the feature ordering to let the example reach the
j-th value in the truth table. Oppositely, σ(r, q) ̸= rel(i, j) indicates that if feature
fr is selected as the i-th one in the feature ordering, the j-th value in the truth
table is not reachable for the example eq.

To classify all examples correctly, the idea is to ensure that no example following
an assignment leads to a value in the truth table with its opposite class. Thus, we
propose the following constraints for classification. Let eq be a positive example
(noted as eq ∈ E+), for all values in the truth table, with j = 1, . . . , 2H :

¬cj →
H∨

i=1

K∨
r=1

(ai
r ∧ rel(i, j)⊕ σ(r, q)) (3.5)

That is, for each positive example eq, any negative j-th value in the truth table
must contain at least one feature fr in its corresponding position i that raise the
inequality between σ(r, q) and rel(i, j), so that eq must not lead to any negative
value. Analogously, we apply this idea to negative examples, which considers any
positive values in the truth table. Let eq be a negative example eq (noted as
eq ∈ E−), for all values in the truth table, with j = 1, . . . , 2H :

cj →
H∨

i=1

K∨
r=1

(ai
r ∧ rel(i, j)⊕ σ(r, q)) (3.6)

Example 10 At first, we recall the binary dataset in Table 3.3 used in Example 3
and the decision tree of size 5 that classifies all of the examples shown in Figure 3.2.
The dataset contains 4 binary features numered from left to right.

We consider to encode a binary decision diagram with depth H = 2. There-
fore, two sets of variables are introduced, including {a1

1, a2
1, a1

2, a2
2, a1

3, a2
3, a1

4, a2
4} and

{c1, c2, c3, c4}.
Using the propositional variables described, the Constraints 3.1, 3.2 and 3.3 are:

a1
1 + a2

1 ≤ 1, a1
2 + a2

2 ≤ 1, a1
3 + a2

3 ≤ 1, a1
4 + a2

4 ≤ 1,

a1
1 + a1

2 + a1
3 + a1

4 = 1, a2
1 + a2

2 + a2
3 + a2

4 = 1,

(c1 ⊕ c3) ∨ (c2 ⊕ c4)

We now detail the constraints for classification (i.e., Constraint 3.5 and 3.6).
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Ex. L C E S H
e1 1 0 1 0 0
e2 1 0 0 1 0
e3 0 0 1 0 1
e4 1 1 0 0 0
e5 0 0 0 1 1
e6 1 1 1 1 0
e7 0 1 1 0 0
e8 0 0 1 1 1

Table 3.3: The toy dataset from [Naro-
dytska et al. 2018].

L

C 0

1 0

Figure 3.2: The decision tree classifying
all examples of Table 3.3.

The example e1 (Table 3.3) is a negative one: e1 ∈ E−, we then apply Constraint 3.6.
We remind the feature vector of e1 is (1010). For the value of variable c1, we have:

c1 →(a1
1 ∧ 0⊕ 1) ∨ (a1

2 ∧ 0⊕ 0) ∨ (a1
3 ∧ 0⊕ 1) ∨ (a1

4 ∧ 0⊕ 0)
∨(a2

1 ∧ 0⊕ 1) ∨ (a2
2 ∧ 0⊕ 0) ∨ (a2

3 ∧ 0⊕ 1) ∨ (a2
4 ∧ 0⊕ 0)

This could be simplified as the following clause:

¬c1 ∨ a1
1 ∨ a1

3 ∨ a2
1 ∨ a2

3

Similarly, we could generate other classification constraints for each example.

For the negative example e1, whose feature vector is (1010):

¬c1 ∨ a1
1 ∨ a1

3 ∨ a2
1 ∨ a2

3, ¬c2 ∨ a1
1 ∨ a1

3 ∨ a2
2 ∨ a2

4,

¬c3 ∨ a1
2 ∨ a1

4 ∨ a2
1 ∨ a2

3, ¬c4 ∨ a1
2 ∨ a1

4 ∨ a2
2 ∨ a2

4,

For the negative example e2, whose feature vector is (1001):

¬c1 ∨ a1
1 ∨ a1

4 ∨ a2
1 ∨ a2

4, ¬c2 ∨ a1
1 ∨ a1

4 ∨ a2
2 ∨ a2

3,

¬c3 ∨ a1
2 ∨ a1

3 ∨ a2
1 ∨ a2

4, ¬c4 ∨ a1
2 ∨ a1

3 ∨ a2
2 ∨ a2

3,

For the positive example e3, whose feature vector is (0010):

c1 ∨ a1
3 ∨ a2

3, c2 ∨ a1
3 ∨ a2

1 ∨ a2
2 ∨ a2

4,

c3 ∨ a1
1 ∨ a1

2 ∨ a1
4 ∨ a2

3, c4 ∨ a1
1 ∨ a1

2 ∨ a1
3 ∨ a2

1 ∨ a2
2 ∨ a2

4,

For the negative example e4, whose feature vector is (1100):

¬c1 ∨ a1
1 ∨ a1

2 ∨ a2
1 ∨ a2

2, ¬c2 ∨ a1
1 ∨ a1

2 ∨ a2
3 ∨ a2

4,

¬c3 ∨ a1
3 ∨ a1

4 ∨ a2
1 ∨ a2

2, ¬c4 ∨ a1
3 ∨ a1

4 ∨ a2
3 ∨ a2

4,



76 CHAPTER 3. OPTIMIZING BDD VIA MAXSAT

For the positive example e5, whose feature vector is (0001):

c1 ∨ a1
4 ∨ a2

4, c2 ∨ a1
4 ∨ a2

1 ∨ a2
2 ∨ a2

3,

c3 ∨ a1
1 ∨ a1

2 ∨ a1
3 ∨ a2

4, c4 ∨ a1
1 ∨ a1

2 ∨ a1
3 ∨ a2

1 ∨ a2
2 ∨ a2

3,

For the negative example e6, whose feature vector is (1111):

¬c1 ∨ a1
1 ∨ a1

2 ∨ a1
4 ∨ a2

1 ∨ a2
2 ∨ a2

3 ∨ a2
4, ¬c4,

¬c2 ∨ a1
1 ∨ a1

2 ∨ a1
3 ∨ a1

4, ¬c3 ∨ a2
1 ∨ a2

2 ∨ a2
3 ∨ a2

4,

For the negative example e7, whose feature vector is (0110):

¬c1 ∨ a1
2 ∨ a1

3 ∨ a2
2 ∨ a2

3, ¬c2 ∨ a1
2 ∨ a1

3 ∨ a2
1 ∨ a2

4,

¬c3 ∨ a1
1 ∨ a1

4 ∨ a2
2 ∨ a2

3, ¬c4 ∨ a1
1 ∨ a1

4 ∨ a2
1 ∨ a2

4,

For the positive example e8, whose feature vector is (0011):

c1 ∨ a1
3 ∨ a1

4 ∨ a2
3 ∨ a2

4, c2 ∨ a1
3 ∨ a1

4 ∨ a2
1 ∨ a2

2,

c3 ∨ a1
1 ∨ a1

2 ∨ a2
3 ∨ a2

4, c4 ∨ a1
1 ∨ a1

2 ∨ a2
1 ∨ a2

2,

An assignment satisfying all constraints is the following:

a1
1 = 1, a2

1 = 0, a1
2 = 0, a2

2 = 1,a1
3 = 0, a2

3 = 0, a1
4 = 0, a2

4 = 0
c1 = 1, c2 = 0,c3 = 0, c4 = 0

This assignment indicates that the feature ordering is [L, C], and the truth table
found is 1000. Table 3.4 illustrates the relationship between the values of truth table
and the assignments of the given feature ordering. Figure 3.3 shows the correspond-
ing binary decision diagram, which provides more compact representation than the
decision tree shown in Figure 3.2.

x1 =L x2 =C
0 0 c1 = 1
0 1 c2 = 0
1 0 c3 = 0
1 1 c4 = 0

Table 3.4: Truth table solution for the binary decision
diagram of depth 2 classifying all examples of Table 3.3.

L

C

1 0

Figure 3.3: The built bi-
nary decision diagram.

To simplify the notation, in the following, we refer to this proposed SAT en-
coding for the problem Pbdd(E , H) as BDD1. We now present a theoretical analysis
of the model size for BDD1. As we consider the dataset E contains M examples
with K binary features, the encoding size of BDD1 (in the number of literals) for
the binary decision diagram of depth H is in O(M × H × K × 2H). The term
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M × 2H results from Constraints 3.5 and 3.6, each contains O(H ×K) literals. For
the remaining constraints, it is in O(H ×K) for Constraints 3.1 and 3.2, O(2H) for
Constraint 3.3.

The encoding size of BDD1 is quite huge due to the size of clauses generated by
the constraints for classification. The massive amount of encoding size makes BDD1
impractical in practice.

3.3.2 A Second SAT Model: BDD2

In order to reduce the encoding size of BDD1, we propose to replace the original
constraints for classification (i.e., Constraint 3.5 and 3.6), as they are the key factor
of the high complexity. Another idea to realize the perfect classification is to let
every positive (respectively, negative) example following an assignment that arrives
at a positive (respectively, negative) value of the truth table.

As defined in the previous subsection, Equation 3.4 describes the relationship
between the value of the i-th feature in the feature ordering and the j-th value in
the truth table. This equation is effective to verify whether an example is in the
correct way to a given value of the truth table. However, it fails to provide any
information in which value of the truth table that the example leads to. Therefore,
we introduce a new set of Boolean variables dq

i to catch the value of example eq for
the i-th feature selected in the feature ordering. The definition of dq

i is shown in
Table 3.5.

Description of The Variables

dq
i

1 iff for example eq, the value of the i-th feature selected in
the feature ordering is 1, 0 otherwise
∀i ∈ {1, H}, ∀q ∈ {1, M}

Table 3.5: Description of new propositional Boolean variables for the improved SAT
encoding for binary decision diagrams.

We then propose constraints to relate the variables dq
i and ai

r based on the
values of features of each example. For each example eq ∈ E , with i = 1, . . . , H,
r = 1, . . . , K:

ai
r → dq

i if σ(q, r) = 1
ai

r → ¬dq
i if σ(q, r) = 0

(3.7)

With the conjunction of variables dq
i , one capture which value in the truth table

that the example leading to. Therefore, fir each eq ∈ E+, we have 2H constraints
to ensure it is correctly classified:

¬dq
1 ∧ ¬dq

2∧ · · · ∧ ¬dq
H−1 ∧ ¬dq

H → c1

¬dq
1 ∧ ¬dq

2∧ · · · ∧ ¬dq
H−1 ∧ dq

H → c2

. . .

dq
1 ∧ dq

2∧ · · · ∧ dq
H−1 ∧ ¬dq

H → c2H−1

dq
1 ∧ dq

2∧ · · · ∧ dq
H−1 ∧ dq

H → c2H

(3.8)
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That is, for any positive example following an assignment of the feature ordering,
they lead to a positive value in the truth table. For the 2H implication constraints,
only one condition of them is satisfied, which indicates the real path of example eq.
Similarly, for any eq ∈ E−, we also have 2H constraints to ensure that it leads to a
negative value in the truth table:

¬dq
1 ∧ ¬dq

2∧ · · · ∧ ¬dq
H−1 ∧ ¬dq

H → ¬c1

¬dq
1 ∧ ¬dq

2∧ · · · ∧ ¬dq
H−1 ∧ dq

H → ¬c2

. . .

dq
1 ∧ dq

2∧ · · · ∧ dq
H−1 ∧ ¬dq

H → ¬c2H−1

dq
1 ∧ dq

2∧ · · · ∧ dq
H−1 ∧ dq

H → ¬c2H

(3.9)

Example 11 Similarly to the beginning of Example 10, we firstly generate the same
constraints as Constraints 3.1, 3.2 and 3.3. Next, the constraints generated based
on Constraint 3.7 are:

For the negative example e1, whose feature vector is (1010):

¬a1
1 ∨ d1

1, ¬a1
2 ∨ ¬d1

1, ¬a1
3 ∨ d1

1, ¬a1
4 ∨ ¬d1

1,

¬a2
1 ∨ d1

2, ¬a2
2 ∨ ¬d1

2, ¬a2
3 ∨ d1

2, ¬a2
4 ∨ ¬d1

2,

For the negative example e2, whose feature vector is (1001):

¬a1
1 ∨ d2

1, ¬a1
2 ∨ ¬d2

1, ¬a1
3 ∨ ¬d2

1, ¬a1
4 ∨ d2

1,

¬a2
1 ∨ d2

2, ¬a2
2 ∨ ¬d2

2, ¬a2
3 ∨ ¬d2

2, ¬a2
4 ∨ d2

2,

For the positive example e3, whose feature vector is (0010):

¬a1
1 ∨ ¬d3

1, ¬a1
2 ∨ ¬d3

1, ¬a1
3 ∨ d3

1, ¬a1
4 ∨ ¬d3

1,

¬a2
1 ∨ ¬d3

2, ¬a2
2 ∨ ¬d3

2, ¬a2
3 ∨ d3

2, ¬a2
4 ∨ ¬d3

2,

For the negative example e4, whose feature vector is (1100):

¬a1
1 ∨ d4

1, ¬a1
2 ∨ d4

1, ¬a1
3 ∨ ¬d4

1, ¬a1
4 ∨ ¬d4

1,

¬a2
1 ∨ d4

2, ¬a2
2 ∨ d4

2, ¬a2
3 ∨ ¬d4

2, ¬a2
4 ∨ ¬d4

2,

For the positive example e5, whose feature vector is (0001):

¬a1
1 ∨ ¬d5

1, ¬a1
2 ∨ ¬d5

1, ¬a1
3 ∨ ¬d5

1, ¬a1
4 ∨ d5

1,

¬a2
1 ∨ ¬d5

2, ¬a2
2 ∨ ¬d5

2, ¬a2
3 ∨ ¬d5

2, ¬a2
4 ∨ d5

2,

For the negative example e6, whose feature vector is (1111):

¬a1
1 ∨ d6

1, ¬a1
2 ∨ d6

1, ¬a1
3 ∨ d6

1, ¬a1
4 ∨ d6

1,

¬a2
1 ∨ d6

2, ¬a2
2 ∨ d6

2, ¬a2
3 ∨ d6

2, ¬a2
4 ∨ d6

2,
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For the negative example e7, whose feature vector is (0110):

¬a1
1 ∨ ¬d7

1, ¬a1
2 ∨ d7

1, ¬a1
3 ∨ d7

1, ¬a1
4 ∨ ¬d7

1,

¬a2
1 ∨ ¬d7

2, ¬a2
2 ∨ d7

2, ¬a2
3 ∨ d7

2, ¬a2
4 ∨ ¬d7

2,

For the positive example e8, whose feature vector is (0011):

¬a1
1 ∨ ¬d8

1, ¬a1
2 ∨ ¬d8

1, ¬a1
3 ∨ d8

1, ¬a1
4 ∨ d8

1,

¬a2
1 ∨ ¬d8

2, ¬a2
2 ∨ ¬d8

2, ¬a2
3 ∨ d8

2, ¬a2
4 ∨ d8

2,

To make the classification, the constraints generated based on Constraint 3.8
and 3.9 are shown as follow:

e1 ∈ E− : d1
1 ∨ d1

2 ∨ ¬c1, d1
1 ∨ ¬d1

2 ∨ ¬c2, ¬d1
1 ∨ d1

2 ∨ ¬c3, ¬d1
1 ∨ ¬d1

2 ∨ ¬c4,

e2 ∈ E− : d2
1 ∨ d2

2 ∨ ¬c1, d2
1 ∨ ¬d2

2 ∨ ¬c2, ¬d2
1 ∨ d2

2 ∨ ¬c3, ¬d2
1 ∨ ¬d2

2 ∨ ¬c4,

e3 ∈ E+ : d3
1 ∨ d3

2 ∨ c1, d3
1 ∨ ¬d3

2 ∨ c2, ¬d3
1 ∨ d3

2 ∨ c3, ¬d3
1 ∨ ¬d3

2 ∨ c4,

e4 ∈ E− : d4
1 ∨ d4

2 ∨ ¬c1, d4
1 ∨ ¬d4

2 ∨ ¬c2, ¬d4
1 ∨ d4

2 ∨ ¬c3, ¬d4
1 ∨ ¬d4

2 ∨ ¬c4,

e5 ∈ E+ : d5
1 ∨ d5

2 ∨ c1, d5
1 ∨ ¬d5

2 ∨ c2, ¬d5
1 ∨ d5

2 ∨ c3, ¬d5
1 ∨ ¬d5

2 ∨ c4,

e6 ∈ E− : d6
1 ∨ d6

2 ∨ ¬c1, d6
1 ∨ ¬d6

2 ∨ ¬c2, ¬d6
1 ∨ d6

2 ∨ ¬c3, ¬d6
1 ∨ ¬d6

2 ∨ ¬c4,

e7 ∈ E− : d7
1 ∨ d7

2 ∨ ¬c1, d7
1 ∨ ¬d7

2 ∨ ¬c2, ¬d7
1 ∨ d7

2 ∨ ¬c3, ¬d7
1 ∨ ¬d7

2 ∨ ¬c4,

e8 ∈ E+ : d8
1 ∨ d8

2 ∨ c1, d8
1 ∨ ¬d8

2 ∨ c2, ¬d8
1 ∨ d8

2 ∨ c3, ¬d8
1 ∨ ¬d8

2 ∨ c4,

An assignment satisfying all constraints corresponds to:

d1
1 = 1, d1

2 = 0, d2
1 = 1, d2

2 = 0,d3
1 = 0, d3

2 = 0, d4
1 = 1, d4

2 = 1,

d5
1 = 0, d5

2 = 0, d6
1 = 1, d6

2 = 1,d7
1 = 0, d7

2 = 1, d8
1 = 0, d8

2 = 0,

a1
1 = 1, a2

1 = 0, a1
2 = 0, a2

2 = 1,a1
3 = 0, a2

3 = 0, a1
4 = 0, a2

4 = 0
c1 = 1, c2 = 0,c3 = 0, c4 = 0

It is easy to observe that this assignment constructs the same binary decision
diagram as the one obtained in Example 10 and shown in Figure 3.3.

We refer to this improved SAT encoding for the problem Pbdd(E , H) as BDD2.
The complexity of encoding size (the number of literals) of the BDD2 model is in
O(M × H × (2H + K)), for a binary decision diagram of depth H. The term
O(M × H × K) results from Constraint 3.7. To make the classification for each
example, there are 2H clauses containing H + 1 literals, which account for the term
O(M ×H × 2H).

Recall that the complexity of the encoding size of BDD1 is O(M ×H ×K× 2H).
Compared to BDD1, we observe a clear theoretical advantage of BDD2 in terms of the
encoding size, thus the scalability. In addition, the additional Constraint 3.7 is in
format of 2-SAT, which is easily propagated.
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3.3.3 A Third SAT Model: BDD3

As analysed in the end of the previous subsection, compared to BDD1, BDD2 ben-
efits a lot from its classification constraints (Constraints 3.8 and 3.9). However,
as each clause in the constraints for classification is (H + 1)-SAT, we are afraid of
the problem of scalability when the depth H grows. Observe, however, that there
are massive duplication of information in the conditions of the classification con-
straints. To view directly the duplication, consider a simple case that classifying
a positive example eq by the binary decision diagram of depth 4. The constraint
for classification is generated based on Constraint 3.8. In Figure 3.4, we list all
duplicated part of the constraints, by using boxes of different colors.

¬dq
1 ∧ ¬dq

2 ∧ ¬dq
3 ∧ ¬dq

4 → c1 ¬dq
1 ∧ ¬dq

2 ∧ ¬dq
3 ∧ dq

4 → c2

¬dq
1 ∧ ¬dq

2 ∧ dq
3 ∧ ¬dq

4 → c3 ¬dq
1 ∧ ¬dq

2 ∧ dq
3 ∧ dq

4 → c4

¬dq
1 ∧ dq

2 ∧ ¬dq
3 ∧ ¬dq

4 → c5 ¬dq
1 ∧ dq

2 ∧ ¬dq
3 ∧ dq

4 → c6

¬dq
1 ∧ dq

2 ∧ dq
3 ∧ ¬dq

4 → c7 ¬dq
1 ∧ dq

2 ∧ dq
3 ∧ dq

4 → c8

dq
1 ∧ ¬dq

2 ∧ ¬dq
3 ∧ ¬dq

4 → c9 dq
1 ∧ ¬dq

2 ∧ ¬dq
3 ∧ dq

4 → c10

dq
1 ∧ ¬dq

2 ∧ dq
3 ∧ ¬dq

4 → c11 dq
1 ∧ ¬dq

2 ∧ dq
3 ∧ dq

4 → c12

dq
1 ∧ dq

2 ∧ ¬dq
3 ∧ ¬dq

4 → c13 dq
1 ∧ dq

2 ∧ ¬dq
3 ∧ dq

4 → c14

dq
1 ∧ dq

2 ∧ dq
3 ∧ ¬dq

4 → c15 dq
1 ∧ dq

2 ∧ dq
3 ∧ dq

4 → c16

Figure 3.4: All duplication in the constraints for classification of depth H = 4.

Simply from Figure 3.4, we observe the duplication of conjunctions. For ex-
ample, the only difference between the implications for c1 and c9 (c2H−1+1) is the
negation for the variable dq

1. To avoid the duplication in the conjunction, for the
common case of depth H, we consider the most basic condition of all the conjunc-
tions of the last 2 literals, which are listed as follow:

¬dq
H−1 ∧ ¬dq

H , ¬dq
H−1 ∧ dq

H , dq
H−1 ∧ ¬dq

H , dq
H−1 ∧ dq

H

To catch this information and make the propagation easier, we introduce a new
propositional Boolean variable bq

ij to replace the value of the j-th conjunction in
order of binary digits of the last i literals for example eq ([dq

H , . . . , dq
H−i+1]). The

definition of variable bq
ij is shown in Table 3.6.

We propose constraints to relate the variables bq
ij and the conjunctions of dq

i .
At first, we link the 4 most basic conjunctions in size of 2 as we mentioned before.
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Description of The Variables

bq
ij

1 iff for example eq, the value of the j-th conjunction of the last i literals is 1,
the conjunction order is same as the order of binary digits
with i = 2, . . . , H, j = 1, . . . , 2i, q = 1, . . . , M .
∀i ∈ {2, H}, ∀j ∈ {1, 2i}, ∀q ∈ {1, M}

Table 3.6: Description of new Boolean variables for the advanced SAT encoding for
binary decision diagrams.

For each example eq ∈ E :

¬dq
H−1 ∧ ¬dq

H ↔ bq
21, ¬dq

H−1 ∧ dq
H ↔ bq

22,

dq
H−1 ∧ ¬dq

H ↔ bq
23, dq

H−1 ∧ dq
H ↔ bq

24
(3.10)

Next, we consider the general case for the conjunctions of several literals. As-
suming H ≥ 3, for each example eq ∈ E , i = 2, . . . , H − 1, j = 1 . . . , 2i, we have the
following constraints:

¬dq
H−i ∧ bq

ij ↔ bq
(i+1)j

dq
H−i ∧ bq

ij ↔ bq
(i+1)(j+2i)

(3.11)

With the usage of variables bq
ij , we can simply rewrite the original constraints

for classification of Figure 3.4 for each positive example eq as follow:

bq
H1 → c1, bq

H2 → c2,

. . .

bq
H(2H−1) → c2H−1, bq

H2H → c2H

(3.12)

For negative examples, the idea of transformation is the same.

Example 12 Consider encoding a binary decision diagram with depth H = 3 by
the improved encoding. We can list the constraints for classification of a general
example eq (assuming eq is positive), based on Constraint 3.8:

¬dq
1 ∧ ¬dq

2 ∧ ¬dq
3 → c1, ¬dq

1 ∧ ¬dq
2 ∧ dq

3 → c2,

¬dq
1 ∧ dq

2 ∧ ¬dq
3 → c3, ¬dq

1 ∧ dq
2 ∧ dq

3 → c4,

dq
1 ∧ ¬dq

2 ∧ ¬dq
3 → c5, dq

1 ∧ ¬dq
2 ∧ dq

3 → c6,

dq
1 ∧ dq

2 ∧ ¬dq
3 → c7, dq

1 ∧ dq
2 ∧ dq

3 → c8.

Therefore, we have eight 4-SAT clauses. For this new encoding, the Con-
straints 3.10 and 3.11 are:

¬dq
2 ∧ ¬dq

3 ↔ bq
21, ¬dq

2 ∧ dq
3 ↔ bq

22, dq
2 ∧ ¬dq

3 ↔ bq
23, dq

2 ∧ dq
3 ↔ bq

24,

¬dq
1 ∧ bq

21 ↔ bq
31, ¬dq

1 ∧ bq
22 ↔ bq

32, ¬dq
1 ∧ bq

23 ↔ bq
33, ¬dq

1 ∧ bq
24 ↔ bq

34,

dq
1 ∧ bq

21 ↔ bq
35, dq

1 ∧ bq
22 ↔ bq

36, dq
1 ∧ bq

23 ↔ bq
37, dq

1 ∧ bq
24 ↔ bq

38,
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Moreover, the original eight 4-SAT clauses are rewritten as the following:

bq
31 → c1, bq

32 → c2, bq
33 → c3, bq

34 → c4,

bq
35 → c5, bq

36 → c6, bq
37 → c7, bq

38 → c8

We refer to this new SAT encoding as BDD3. The complexity of the encoding size
(the number of literals) of BDD3 is in O(M × H × (2H + K)), that is the same
complexity as the SAT model BDD2. However, for BDD3, we successfully transform
all constraints into clauses of 3-SAT or 2-SAT, which could possibly do better
in the propagation when H grows bigger. However, we could not guarantee the
improvement in execution time. Therefore, we propose to compare BDD1, BDD2 and
BDD3 with an experimental study in Section ??.

3.3.4 MaxSAT Transformation

In previous subsections, we presented three SAT encodings to solve the decision
problem Pbdd(E , H). We now present the MaxSAT transformation for the target
optimisation problem P ∗

bdd(E , H) described in Section 3.1. That is, given a set of
examples E , find a binary decision diagram of depth H that maximises the number
of examples correctly classified.

The technique to transform the SAT encoding of binary decision diagrams into
a MaxSAT encoding is quite simple. The key is to keep structural constraints
as hard clauses, and classification constraints as soft clauses. All the SAT
encodings that we proposed can be transformed, but we consider BDD2 and BDD3
as they have a lighter encoding size. In detail, as constraints for selecting features,
Constraints 3.1, 3.2 and 3.3 are kept as hard clauses. For BDD2, Constraint 3.7
is kept as hard clause. Then, to classify the examples, we declare all clauses of
Constraints 3.8 and 3.9 as soft clauses. The reason is that for any example eq, the
number of satisfied soft clauses associated to eq is either 2H , which indicates eq is
correctly classified, or 2H − 1, which indicates eq is wrongly classified. Therefore,
the objective of maximising the number of satisfied soft clauses is equivalent to
maximising the number of examples that are correctly classified. For BDD3, the
difference is to keep Constraints 3.10 and 3.11 as hard clauses, then declare all
clauses of Constraints 3.12 as soft clauses.

To simplify the notation, we refer to the MaxSAT encoding based on BDD2 as
MaxSAT-BDD2, and the MaxSAT encoding based on BDD3 as MaxSAT-BDD3.

3.3.5 Merging Compatible Subtrees

Considering a binary decision diagram found by a MaxSAT solver associated to the
truth table β. Based on the feature ordering, there might exist some values in β that
capture no example, which is equivalent to the “unknown” nodes for the OODG
method presented in Section 1.3.2. In fact, such values are decided by the MaxSAT
solver in an arbitrary way, giving a certain bias for unseen examples. Inspired
by the process of merging compatible subtrees applied to the OODG method, we
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propose a post-processing procedure to merge the compatible subtrees for the binary
decision diagrams found via the MaxSAT approach. This will result in changing
the arbitrary values decided by MaxSAT solver in the truth table β.

The post-processing contains the three following phases, where phase 2 and
phase 3 are adaptations of Algorithm 7:

1. Update the truth table β by replacing the values of β that capture no example
with a special value “u”.

2. From top to the bottom, for each level, check the existence of the beads, where
“u” can be used to match 1 or 0, and create a node for each bead.

3. Then, for each level, after creating the nodes, we check the matches between
all subtables of the next level. For matched ones, update the corresponding
beads of current level to eliminate the “u” values.

Example 13 Assume that the truth table β found via a MaxSAT model is 00010111,
and the feature ordering found is [f1, f2, f3]. We apply the first phase, and assume
that the updated truth table β

′ is u0u1011u. Then, as β
′ is a bead, we create a

root node at the level 1. Next, we check the subtables of β
′ (u0u1 and 011u), and

we move to the next level as they do not match. For level 2, we create a node
for u0u1 and a node for 011u as they are all beads. Then, phase 3 is repeated.
That is, we check all subtables of the next level, which are {u0, u1, 01, 1u}. We
observe several matches: u0 and 1u, u1 and 01. Then, the original beads u0u1
and 011u are updated as 1001 and 0110 Therefore, the updated beads of β

′ are
{u0u1011u, 1001(u0u1), 0110(011u), 10, 01, 0, 1}.

Figure 3.5 shows the binary decision diagram built by the truth table β that
is found via a given MaxSAT model. To make the comparison, the left part of
Figure 3.6 shows how the truth table β

′ is updated (with unknown values), and the
right one shows the binary decision diagram after the merging post-processing.

00010111

0001 0111

01

0 1

f1

f2 f2

f3

0 1

Figure 3.5: A binary decision diagram found by a MaxSAT solver.

3.4 Experimental Results

In this section, we present our large experimental studies to evaluate our proposi-
tions on different levels. The source code (developed in Python) and datasets are
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u0u1011u

u0u1
1001

011u
0110

10 01

0 1

f1

f2 f2

f3 f3

0 1

Figure 3.6: The binary decision diagram after merging compatible subtrees. The
left one shows how the truth table β

′ is updated.

available online at https://gitlab.laas.fr/hhu/bddencoding. The outline of
the experiments contains three parts. At first, we make preliminary experiments
on the three proposed SAT models (BDD1, BDD2, and BDD3), to confirm the theo-
retical study of the reduction of the encoding size of BDD2 and BDD3 compared to
BDD1. Moreover, we underline the difference between BDD2 and BDD3. Secondly,
we evaluate the prediction performance between the proposed MaxSAT-BDD models
(MaxSAT-BDD2 and MaxSAT-BDD3) and the heuristic methods (ODT and OODG
from [Kohavi & Li 1995]). In the third experiment, we compare our best MaxSAT-
BDD model with the exact method of learning optimal decision trees via MaxSAT
(that we presented in Chapter 2), in terms of prediction quality, model and encoding
size.

Same as the experiments made in Section 2.4, we also consider datasets from
CP4IM1. These datasets are binarized by the classical one-hot encoding. In Ta-
ble 3.7, we give the characteristics of these datasets. In detail, the column M

indicates the number of examples in the dataset, the column Korig indicates the
original number of features, the column K indicates the number of binary features
after binarization, and the column pos indicates the percentage of positive examples
in the dataset.

All experiments are run on a cluster using Xeon E5-2695 v3@2.30GHz CPU
with xUbuntu 16.04.6LTS.

3.4.1 Comparison of Different SAT Encodings

The first experiment aims to compare the encoding size between different SAT
encodings (BDD1, BDD2, and BDD3) for the binary decision diagrams. We consider to
find an optimal binary decision diagram having the perfect accuracy in the training
set with the minimum depth. We use a simple linear search by solving multiple
times the decision problem Pbdd(E , H), which decreases the depth when a binary
decision diagram of depth H exists, and increases the depth in reverse. We set the
initial depth H0 = 7.

1https://dtai.cs.kuleuven.be/CP4IM/datasets/

https://gitlab.laas.fr/hhu/bddencoding
https://dtai.cs.kuleuven.be/CP4IM/datasets/
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Dataset M Korig K pos

anneal 812 42 89 0.77
audiology 216 67 146 0.26
australian 653 51 124 0.55

cancer 683 9 89 0.35
car 1728 6 21 0.30

cleveland 296 45 95 0.54
hypothyroid 3247 43 86 0.91

kr-vs-kp 3196 36 73 0.52
lymph 148 27 68 0.55

mushroom 8124 21 112 0.52
tumor 336 15 31 0.24

soybean 630 16 50 0.15
splice-1 3190 60 287 0.52

tic-tac-toe 958 9 27 0.65
vote 435 16 48 0.61

Table 3.7: Detailed information of datasets from CP4IM used in experiments.

Considering the scalability problem, for each dataset, we use the hold-out method
to split the training and testing set. We choose 5 different small splitting ratios
r = {0.05, 0.1, 0.15, 0.2, 0.25} to generate the training set. The remaining exam-
ples are used as the testing set. This process is repeated 10 times with different
random seeds to avoid the influence of random seeds. The SAT solver we used is
Kissat [Biere et al. 2020], which is the winner of SAT competition 2020. For each
training process, we set 20 hours as the global timeout for the SAT solver.

Table 3.8 reports the average results of all instances that are solved to opti-
mality by at least one encoding within the given global limited time. In detail, for
the training process (with perfect accuracy), the column “dopt” indicate the aver-
age optimal depth. The encoding size (the number of literals) is given in column
“E_Size”, where the values are in thousands (103). The column “Time” indicates
the run-time in seconds of successful runs. In addition, the column “Acc” indicates
the average testing accuracy of the 5 random seeds in percent. The value “N/A”
indicates the lack of results cause the timeout. Table 3.8 only reports results of in-
stances solved by at least one encoding. However, some instances can not be solved
to optimality even by the most efficient models (for example, dataset “anneal” for
other ratios except 0.05). The last row summarizes briefly the average results of
each encoding for all instances solved. To improve the readability of the table, the
best values between the three SAT encodings are marked in blue.

From Table 3.8, we observe the great improvements in terms of encoding size
and run-time of BDD2 and BDD3 compared to BDD1. From the average value, we
observe that the encoding size of BDD1 is more than 12 times smaller than the
encoding size of BDD2, and more than 9 times smaller than the one of BDD3. The
run-time of BDD1 is almost 5 times larger than the run-time of BDD2, and 4 times
for BDD3. Theses results confirm the massive reduction as the theoretical analysis
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Datasets r BDD1 BDD2 BDD3
Acc dopt E_Size Time Acc dopt E_Size Time Acc dopt E_Size Time

anneal 0.05 N/A N/A N/A N/A 68.65 6.3 94.34 192.74 67.44 6.3 128.99 191.85

audilogy

0.05 75.99 2.0 8.25 0.46 76.86 2.0 8.32 0.07 76.86 2.0 8.32 0.07
0.1 91.22 2.5 28.58 0.84 90.97 2.5 20.14 0.07 90.41 2.5 20.82 0.08
0.15 92.54 2.8 53.68 1.39 93.3 2.8 32.6 0.09 93.08 2.8 34.28 0.12
0.2 90.46 3.1 115.39 4.65 90.0 3.1 46.96 0.17 89.89 3.1 50.3 0.23
0.25 92.94 3.6 235.28 31.79 92.45 3.6 68.14 0.39 92.52 3.6 74.75 0.54

australian 0.05 80.21 3.3 85.36 21.65 79.02 3.3 33.58 0.54 79.94 3.3 36.5 0.58
0.1 N/A N/A N/A N/A 77.46 6.2 152.12 7473.32 75.35 6.2 192.69 6358.56

cancer

0.05 86.97 2.7 35.52 0.49 86.69 2.7 20.37 0.08 87.0 2.7 21.98 0.1
0.1 89.97 4.0 231.55 4.95 89.24 4.0 60.08 0.55 90.54 4.0 70.85 1.09
0.15 90.7 5.2 1048.1 156.32 90.29 5.2 129.32 3.72 90.03 5.2 166.25 6.62
0.2 91.53 6.4 3907.14 10224.45 91.57 6.4 264.95 55.2 91.88 6.4 368.31 53.17
0.25 N/A N/A N/A N/A 92.16 6.4 351.21 200.12 92.03 6.4 491.52 203.52

car 0.05 N/A N/A N/A N/A 80.18 7.6 194.25 1924.9 78.67 7.6 320.01 1840.89

cleveland

0.05 68.19 2.5 14.06 0.86 64.72 2.5 10.3 0.07 65.25 2.5 10.77 0.07
0.1 68.58 3.8 91.48 121.11 69.29 3.8 29.36 0.92 69.03 3.8 33.37 1.01
0.15 72.53 4.8 276.5 800.35 70.83 4.8 56.3 15.07 71.71 4.8 68.38 14.21
0.2 N/A N/A N/A N/A 68.78 6.1 108.99 2616.23 68.86 6.1 143.96 2547.35
0.25 N/A N/A N/A N/A 68.74 6.9 181.28 16405.46 67.61 6.9 251.67 22367.9

hypothyrold 0.05 96.26 5.0 1318.04 319.09 96.3 5.0 182.24 2.98 96.56 5.0 233.26 3.04

lymph

0.05 67.23 2.0 3.33 0.13 68.79 2.0 3.39 0.07 68.79 2.0 3.39 0.07
0.1 67.69 2.6 11.08 0.46 70.37 2.6 7.9 0.07 70.75 2.6 8.47 0.07
0.15 70.16 3.4 34.11 2.83 71.98 3.4 15.24 0.16 71.83 3.4 17.44 0.29
0.2 70.34 3.9 69.76 21.77 72.94 3.9 22.36 0.62 71.51 3.9 26.6 0.59
0.25 72.23 5.1 230.83 410.1 68.48 5.1 39.11 4.31 69.82 5.1 50.54 5.7

mushroom

0.05 99.55 5.3 5180.35 3774.19 99.48 5.3 600.28 28.32 99.53 5.3 749.65 42.64
0.1 99.81 5.8 15236.92 12552.47 99.87 5.8 1387.26 116.07 99.82 5.8 1790.16 168.06
0.15 99.87 5.9 24750.11 20616.09 99.86 5.9 2136.23 210.98 99.85 5.9 2772.52 334.37
0.2 99.97 6.0 35038.71 29342.71 99.92 6.0 2922.49 278.23 99.94 6.0 3812.44 573.5
0.25 99.96 6.0 43816.89 33787.52 99.95 6.0 3651.83 437.4 99.95 6.0 4764.82 669.58

soybean 0.05 80.52 3.9 57.35 2.94 78.58 3.9 17.79 0.21 79.7 3.9 22.37 0.26
0.1 84.47 5.9 708.43 1391.79 82.22 5.9 74.81 7.46 81.64 5.9 111.37 8.47

tic-tac-toe 0.05 64.46 5.9 235.73 41.18 66.37 5.9 38.27 5.62 66.51 5.9 62.82 6.25
0.1 72.68 7.6 2061.03 18589.3 74.61 7.6 215.21 2846.24 72.49 7.6 353.61 2690.43

vote

0.05 90.89 2.1 6.07 0.27 91.09 2.1 5.67 0.08 91.09 2.1 5.81 0.08
0.1 91.93 2.6 19.87 0.57 91.63 2.6 13.35 0.08 91.76 2.6 15.07 0.1
0.15 92.27 3.4 69.67 1.2 92.27 3.4 27.5 0.16 92.57 3.4 34.07 0.27
0.2 92.35 4.1 206.77 26.43 92.44 4.1 47.57 0.71 92.29 4.1 63.6 1.1
0.25 93.0 4.9 539.23 348.56 92.42 4.9 81.31 3.4 91.96 4.9 115.79 4.53

Average – 84.77 4.18 4112.88 4018.15 83.35 4.55 342.37 841.87 83.24 4.55 448.91 976.86

Table 3.8: Evaluation of different SAT encodings (BDD1, BDD2, and BDD3) for finding
binary decision diagram of perfect accuracy with the smallest depth.

made before. Meanwhile, compared to BDD2, we observe that BDD3 does not make a
breakthrough in reducing the run-time as the trade-off between the searching and
propagation. In addition, the optimal depths found between these SAT encodings
(except BDD1 as there are some N/A values) are identical, but there are some slight
differences in the testing accuracy. This fact is explained by the different structures
of the binary decision diagrams with the optimal depths.
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3.4.2 Comparison with Existing Heuristic Approaches

In the second experiment, we consider solving the optimisation problem P ∗
bdd(E , H)

by the MaxSAT-BDD approaches, where the prediction performance is the major
metric to be evaluated.

The structure of this experiment contains two parts. The first part is to compare
the differences between MaxSAT-BDD2 and MaxSAT-BDD3 in terms of prediction
performance and the effectiveness of reporting optimality, which is an extension of
the previous experiment. The second part is the core of this experiment, which
is to evaluate the prediction performance between the best MaxSAT-BDD approach
and existing heuristic methods (ODT and OODG from [Kohavi & Li 1995]). As
described in Section 1.3.2, after merging the isomorphic and compatible subtrees
of ODT, the OODG method changes the bias for those “unknown” nodes, which
makes no difference in the training examples but affects the prediction for unseen
examples. Similarly, in Section 3.3.5, we described the post-processing of merg-
ing compatible subtrees for the binary decision diagrams found via the MaxSAT
approach. Therefore, in this experiment, we consider the following three different
biases for the MaxSAT-BDD deciding those “unknown” nodes:

• By assigning for each unknown node the majority class of examples in its
parent (denoted as MaxSAT-BDD-P).

• By merging compatible subtrees (MaxSAT-BDD-C).

• By using the class decided by the MaxSAT solver (MaxSAT-BDD-S).

In these experiments, we face lighter scalablity problem than the previous one,
and, for each dataset, we use the classical random 5-fold cross-validation with 5
different seeds. The MaxSAT solver we used is Loandra [Berg et al. 2019], which is
an efficient incomplete MaxSAT solver. For each experiment of MaxSAT-BDD, the
time limit for generating formulas is set to 15 minutes and the time limit for the
solver is also set to 15 minutes.

For the fist part of these experiments (comparison between MaxSAT-BDD2 and
MaxSAT-BDD3), we consider H ∈ {2, 3, 4, 5, 6, 7, 8}, as a wide range of depths could
be better to perceive the differences. For the second part of these experiments
(comparison between the best MaxSAT-BDD and heuristic methods), the candidate
depths are restricted to H ∈ {2, 3, 4, 5, 6} concerning the scalability.

Table 3.9 and 3.10 report the average results of all instances for the MaxSAT-
BDD2 and MaxSAT-BDD3 approaches. Each line presents average values over 25
runs (5-folds with 5 random seeds). In detail, the column “Opt” indicates the per-
centage of instances that report optimality, where 0% indicates that all runs reach
the time-out condition. The column “U” indicates the percentage of “unknowned”
values in the truth table found, the column “Train” indicates the average training
accuracy, the column “Test-S” indicates the average testing accuracy under the
bias of MaxSAT-BDD-S, the column “Test-P” indicates the average testing accu-
racy under the bias of MaxSAT-BDD-P, the column “Test-C” indicates the average
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testing accuracy under the bias of MaxSAT-BDD-C. Then, the column “E_Size”
indicates the encoding size (the number of literals) in thousands (103). Moreover,
the time for generating formulas in seconds is given in column “Time_F”, and
the run-time used by the MaxSAT solver in seconds is given in column “Time_S”.
The value “TO” indicates the timeout. To improve the readability of the table, the
best values of comparable metrics between MaxSAT-BDD2 and MaxSAT-BDD3 are
marked in blue.

From Table 3.9 and 3.10, we can underline some observations. Firstly, although
both MaxSAT-BDD approaches share the same complexity theoretically, MaxSAT-
BDD2 produces formulas with lighter encoding sizes than MaxSAT-BDD3, and the
differences grow bigger when the depth grows. The difference in the time of gener-
ating formulas also reflects this fact. Nevertheless, from the results in the percentage
of reporting optimality and the run-time used by the MaxSAT solver, the increase
of encoding size to reduce the propagation time used in MaxSAT-BDD3 approach
does not show clear advantage in improving the percentage of finding optimal solu-
tions and the prediction performance. Therefore, in the following experiments, we
use only MaxSAT-BDD2 as it is the most effective MaxSAT-based approach, and we
denote it directly as MaxSAT-BDD.

Another observation is there are slight differences (less than 5%) between the
testing accuracy under different biases, although the percentage of “unknown” val-
ues is quite high for some cases. This observation suggests that the optimal solutions
are somewhat robust to the different biases. In addition, we also notice that for all
datasets (except one instance), MaxSAT-BDD report optimality when the depth is
equal to 2.

We now present the results of the second part of this experiment, which is the
comparison between MaxSAT-BDD2 (the best MaxSAT-BDD approach) and heuristic
approaches in terms of prediction performance. Figure 3.7 shows the comparison
of the average training accuracy between OODG and MaxSAT-BDD model. In this
figure, different datasets are marked with different colors, and different depths are
labelled with points of different sizes. From this scatter plot, we observe that at
first the average training accuracy of both approaches improve with the increase
of depth. Moreover, and more importantly, the MaxSAT-BDD model shows clear
remarkable advantage in training accuracy than the heuristic OODG.

The Figure 3.8 shows the average testing accuracy of MaxSAT-BDD with differ-
ent biases, ODT, and OODG using different depths averaged over all datasets. The
white line and green triangle of each box indicate the median and the average values,
respectively. Clearly, the MaxSAT-BDD models have better generalization perfor-
mance than the heuristic methods ODT and OODG. This is particularly apparent
with small depths. Meanwhile, increasing the depth improves the predictions for
all methods as expected. However, this improvement in prediction performance of
MaxSAT-BDD approach is not as significant as the improvement of ODT and OODG
methods.
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Figure 3.7: Comparison between the average training accuracy of OODG and
MaxSAT-BDD.

3.4.3 Comparison with the Exact Decision Tree Approach

As the results of previous experiment comparing the MaxSAT-BDD with the heuristic
methods shown, MaxSAT-BDD displayed its attraction in prediction performance. In
this experiment, the purpose is to make the comparison between MaxSAT-BDD and
the exact method learning optimal decision trees via MaxSAT (denoted as MaxSAT-
DT, presented in Chapter 2), which we consider as the state-of-the-art method.
Unlike the previous experiment applied several different biases for MaxSAT-BDD,
we consider only the bias of merging compatible subtrees (MaxSAT-BDD-C) since
no substantial difference was observed between different biases.

In detail, we follow the same settings of the previous experiment. That is, for
each dataset, we use random 5-fold cross-validation with 5 different seeds. The
candidate depths selected are H ∈ {2, 3, 4, 5, 6}, where each depth corresponds
respectively to the number of different selected features for MaxSAT-BDD, and to
the maximum depth of the decision tree for MaxSAT-DT. The incomplete MaxSAT
solver used is Loandra, and for each experiment, the time limit for generating
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Figure 3.8: The average testing accuracy of methods with different biases in differ-
ent depths: MaxSAT-BDD-P, MaxSAT-BDD-C, MaxSAT-BDD-S, ODT, OODG
(respectively from left to right).

Figure 3.9: Comparison between the average prediction performance of MaxSAT-
BDD and MaxSAT-DT, the left (right) scatter indicates the training accuracy (testing
accuracy).

formulas and the time limit for the solver are both set to 15 minutes.
Based on results given in Tables 3.11, the Figure 3.9 illustrates the prediction

performance between MaxSAT-BDD and MaxSAT-DT, where the left scatter shows
the training accuracy, and the right scatter shows the testing accuracy. From this
figure, we observe that MaxSAT-BDD is competitive to MaxSAT-DT in terms of
prediction quality. In most cases, the training and testing accuracy of these two
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Datasets H MaxSAT-BDD MaxSAT-DT
Train Test Size E_Size Train Test Size E_Size F_d

anneal

2 82.92 82.19 5 24.09 83.18 82.14 6.84 52.72 2.88
3 84 83.55 7 37.21 85.07 84.66 12.68 126.18 5.76
4 84.58 83.84 9.4 52.06 86.05 84.78 18.68 315.45 8.64
5 85.33 83.92 11.72 71.08 86.44 84.88 23.88 865.26 11.08
6 86.26 83.70 14.68 99.47 87.6 85.76 39.16 2666.67 17.32

audiology

2 94.91 94.92 4 10.59 95.49 94.92 7 31.35 3
3 96.78 95.84 5.04 16.41 97.82 95.56 11.56 88.75 5.28
4 97.73 95.56 6.96 22.56 99.51 94.54 19.08 272.15 8.68
5 98.40 94.44 9.88 29.82 99.95 93.98 27 915.29 11.72
6 99.17 95.84 14.28 39.59 99.86 94.08 24.12 3323.61 10.88

australian

2 86.70 85.94 4.72 26.79 86.93 85.33 6.68 59.65 2.84
3 87.45 84.81 5.32 41.15 88.09 84.87 13.08 146.15 5.68
4 88.45 86.03 7.4 56.85 88.74 85.18 17.48 377.62 7.92
5 89.36 85.91 10.44 75.9 89.28 84.75 22.52 1076.35 10.08
6 90.05 85.7 17.32 102.49 89.49 84.84 27.08 3433.64 12.20

cancer

2 93.88 93.59 4 20.29 94.91 94.2 7 45.56 3
3 95.02 93.91 5.84 31.37 96.6 94.73 15 110.85 6.96
4 96.06 95.49 7.96 43.89 97.34 94.17 21 283.77 9.44
5 95.94 93.74 10.68 59.91 97.99 94.35 29.32 800.89 13.20
6 96.84 94.35 14.8 83.83 98.87 93.41 45.72 2536.91 19.88

car

2 85.53 85.53 4 13.32 85.53 85.53 6.84 32.01 2.92
3 88.40 87.41 5.08 21.95 89.25 87.45 12.68 71.83 5.64
4 89.84 88.54 6.84 34.44 91.62 89.68 20.36 162.46 7.68
5 91.13 89.91 9.6 55.79 93.78 92.77 29.56 389.68 10.24
6 93.51 92.99 13.36 97.06 95.8 95.06 31.96 1044.54 10.88

cleveland

2 79.04 72.57 4 9.48 80.76 72.84 7 25.57 3
3 85.07 83.37 6 14.73 85.68 76.55 12.84 68.93 5.72
4 86.32 79.46 7.84 20.55 86.77 76.75 17.80 200.76 8.04
5 88.65 78.72 13.08 27.89 87.26 74.45 23.96 646.75 10.84
6 90.74 77.29 21.04 38.66 88.58 75.81 28.84 2284.76 13.08

hypothyroid

2 97.84 97.84 4 92.65 97.84 97.84 5.96 182.20 2.48
3 98.09 98.04 5.12 142.78 98.14 97.82 9.72 402.98 4.32
4 98.27 98.13 6.72 200.09 98.38 98.01 15.40 885.51 7.12
5 98.30 98.05 9.28 274.03 98.45 98 20.04 2016.31 8.92
6 98.37 97.95 13.68 385.4 98.46 97.91 33.16 4957.57 14.04

kr-vs-kp

2 77.83 77.01 4 77.88 86.92 86.92 7 155.09 3
3 90.43 90.43 5.28 120.54 93.81 93.79 12.44 342.99 5.08
4 94.09 94.09 7.56 170.28 94.32 94.14 17.24 753.78 7.12
5 94.34 94.18 9.52 236.39 94.85 94.69 25.40 1717.14 10.20
6 92.80 92.55 11.52 339.35 93.91 93.69 29.32 4227.67 12.20

lymph

2 84.46 83.23 4 3.5 86.01 79.27 7 12.33 3
3 86.76 78.35 5.92 5.55 91.93 80.54 14.68 36.65 6.64
4 90.54 82.4 8.72 7.86 94.56 78.46 20.20 117.94 8.88
5 93.51 83.6 13.52 10.94 97.09 82.46 27.08 413.09 11.88
6 95.88 84.82 17.64 15.74 99.59 80.92 46.60 1550.34 18.96

mushroom

2 95.13 95.13 4 299.19 96.9 96.9 7 565.27 3
3 97.74 97.77 6.8 458.1 99.9 99.9 13.72 1227.18 6.24
4 98.78 98.74 9 635.09 100 100 19.80 2603.94 9.08
5 98.63 98.57 11.32 853.68 100 100 23.40 5571.14 10.64
6 97.28 97.10 14.6 1165.88 100 100 27.56 12376.90 12

tumor

2 82.80 81.6 4 3.72 82.92 81.01 6.76 10.46 2.88
3 83.84 80.43 5.3 6.02 86.16 82.97 13.88 27.24 6.08
4 85.52 82.49 8.64 9.04 87.89 82.85 20.92 76.40 9.16
5 87.51 85.83 13.32 13.79 90.1 79.34 47.80 239.09 16.84
6 88.57 81.12 19.84 22.44 90.34 81.31 37.32 838.63 15.04

soybean

2 90.48 90.48 4 10.79 91.27 91.27 7 25.55 3
3 91.39 90.41 6.52 16.99 95.45 94.7 15 62.30 7
4 93.24 93.21 9.04 24.54 97.25 95.9 22.20 160.18 9.88
5 94.31 92.95 11.92 35.34 97.96 95.3 40.60 455.33 15.72
6 96.07 95.52 14.88 53.41 98.27 96.03 33.40 1459.87 14.40

splice-1

2 84.04 84.04 4 296.61 84.22 83.17 6.92 555.22 2.96
3 87.25 86.94 5.44 449.04 87.79 87.37 11.32 1231.59 4.64
4 88.3 88.04 7.24 608.3 86.52 85.64 16.60 2717.90 7.12
5 71.99 70.53 10.28 783.9 77.37 76.32 21.88 6226.75 9.48
6 62.92 61.89 16.28 996.27 60.36 58.95 29.40 15406.05 12.28

tic-tac-toe

2 71.05 68.35 4 9.25 71.1 67.49 5.96 22.31 2.48
3 74.91 72.36 6.16 15.01 77.15 73.55 11.48 51.98 5.20
4 76.87 74.22 8.84 22.88 82.47 78.68 20.60 125.10 8.44
5 81.86 80.31 13.88 35.67 83.08 79.50 28.44 328.33 11.16
6 84.82 80.08 24.16 59.52 84.25 80.86 38.12 979.46 13.24

vote

2 95.68 95.22 3.76 7.2 96.21 95.03 7 18.33 3
3 96.69 94.57 5.56 11.38 97.39 93.79 13.96 46.55 6.04
4 97.40 94.39 8.16 16.49 98.62 94.57 21.16 126.45 9.32
5 98.21 94.57 12.4 23.83 99.47 93.84 30.52 381.95 12.96
6 98.93 93.98 18.44 36.2 99.62 94.76 35.40 1292.44 14.88

Table 3.11: Comparison of model size and encoding size between MaxSAT-BDD and
MaxSAT-DT.



94 CHAPTER 3. OPTIMIZING BDD VIA MAXSAT

approaches are close.
In addition, Table 3.11 presents the complementary results of the evaluation. In

detail, the column “Size” indicates the model size (number of nodes of the model),
which reflects the interpretability of the model found. The column “E_Size” in-
dicates the encoding size (the number of literals in thousands (103)). The column
“F_d” indicates the average number of different features used in the decision tree.
The best values are marked in blue.

From the results shown in Table 3.11, we observe that the binary decision di-
agrams found via MaxSAT-BDD always have smaller model size than the decision
trees found via MaxSAT-DT. The same phenomenon is observed for the differences
in encoding size. Moreover, such differences in model size and encoding size grow
bigger when the depth increases. The reduction in model size provides better inter-
pretability, while the lighter encoding size implies more chance to report optimality
within same limited time.

We highlight a particular observation that for the dataset “car” and “hypothy-
roid” in depth 2, the binary decision diagrams found share the same optimal train-
ing accuracy with the decision trees found. However, meanwhile, for the cases men-
tioned, compared to the optimal binary decision diagrams found via MaxSAT-BDD,
the optimal decision trees found via MaxSAT-DT make some useless splits, which is
reflected by the average number of different features used in the decision trees. To
illustrate this phenomenon, we present, in Figure 3.10, the binary decision diagram
and the decision tree found for the dataset “car” of depth 2 . Both model share
the same training accuracy, but the decision tree makes one more split (the split of
“f3,2”) without increasing the prediction performance.

f3,0

f5,0

1 0

f3,0

f5,0 f3,2

1 0 0 1

Figure 3.10: The illustrating example showing the useless split made by decision
tree found via MaxSAT-DT.

3.5 Heuristic MaxSAT Model

From the experiments made in previous section, although compared to MaxSAT-
DT, MaxSAT-BDD approach profits a lot in encoding size. However, it still suffers
from the scalability problem by reporting optimality when depth increases within
limited time. The encoding size of MaxSAT-BDD is in O(M × H × (2H + K)),
where the number of examples M and the depth H are fixed when dataset and
the depth are preset. Therefore, to increase the scalability of MaxSAT-BDD, we
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Figure 3.11: Comparison of heuristic MaxSAT-BDD and original MaxSAT-BDD in
testing accuracy.

aim to reduce the number of features K. For this purpose, we propose to apply a
pre-processing step to select a subset of (important) features, leading to a heuristic
version of the MaxSAT-BDD approach. By doing this, the search space is greatly
reduced by focusing only on the selected features.

For the pre-processing step of feature selection, we choose to run CART [Breiman
et al. 1984], as its efficiency to build a decision tree of given depth H. Then, the
features selected in the decision tree are used as the subset of important features
for the MaxSAT-BDD model. Meanwhile, other methods of feature selection are also
applicable for the pre-processing step, but are not considered in this study.

The experimental evaluation follows the same settings as the previous one. That
is, for each dataset, we use random 5-fold cross-validation with 5 different seeds. The
candidate depths selected are H ∈ {2, 3, 4, 5, 6}. The incomplete MaxSAT solver
used is Loandra, and for each experiment, the time limit for generating formulas
and the time limit for the solver are both set to 15 minutes.

Figure 3.11 shows the average testing accuracy of the heuristic MaxSAT-BDD
and the MaxSAT-BDD without the pre-processing. We observe that the heuristic
version is very competitive to the original exact MaxSAT-BDD in terms of learn-
ing generalization. This is particularly clear for datasets with a large number of
features.

Moreover, Figure 3.12 presents the difference between the heuristic MaxSAT-
BDD and the CART, where the left scatter shows the training accuracy, and the right
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scatter shows the testing accuracy. From this figure, we observe that CART almost
always gets better training accuracy, which is reasonable as it decides the subset
of important features. However, the heuristic MaxSAT-BDD is still competitive in
terms of generalisation.

Figure 3.12: Comparison between the average prediction performance of heuristic
MaxSAT-BDD and CART, the left (right) scatter indicates the training accuracy
(testing accuracy).

In addition, Table 3.12 displays all details of the results of evaluation be-
tween heuristic MaxSAT-BDD, the original one (exact MaxSAT-BDD), and the CART
method. As excepted, compared to the original MaxSAT-BDD, the heuristic version
has favorable advantage in the encoding size, which helps handle larger problems.
The column “Opt” indicates the percentage of instances solved to optimality (for
the given subset of selected features). From the results, we observe that it is far eas-
ier for heuristic MaxSAT-BDD to report optimality than the original version, which
is natural as it treat with fewer candidate features.

3.6 Summary of Chapter

In this chapter, we firstly introduced an essential proposition to build a binary
decision diagram via the corresponding truth table. Then, with the help of the
proposition, we proposed three progressive SAT encodings to find binary decision
diagrams in smallest depths with perfect accuracy. Next, we presented how the
SAT encodings are adapted to MaxSAT encodings to optimize the accuracy of
binary decision diagrams in given depth. Meanwhile, we explained how to apply
the post-processing of merging compatible subtrees to the MaxSAT models. Our
computational experiments demonstrate the efficiency of our MaxSAT approach to
learn optimal binary decision diagrams in terms of prediction performance, model
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size, and encoding size. At the end, we showed an heuristic version based on feature
selection, to increase the scalability of our MaxSAT approach without losing the
prediction quality.
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Conclusions

We brought contributions to MaxSAT-based exact methods to learn optimal inter-
pretable machine learning models, specifically in optimal decision trees and optimal
binary decision diagrams.

• Optimal Decision Trees
By adapting the previous SAT encoding of the literature, we propose the
first MaxSAT-based exact method to learn optimal decision trees aiming to
optimize the empirical accuracy. Then, we introduce some new constraints
to restrict the tree depth. Finally, benefiting from the nature of MaxSAT
framework, we integrate the proposed encoding in boosting techniques to
improve the generalization performance.

The initial motivation behind this work is to avoid the overfitting issue and
to address the scalability issue. The experimental results at first confirm
the exist of overfitting phenomenon in previous SAT approach. Secondly,
they show that a larger tree topology could be explored with our MaxSAT
approach. Meanwhile, the decision trees found obtain good prediction quality
compared to heuristic method and a recent state-of-the-art exact method. At
last, clear improvements in generalization performance are observed after the
integration of boosting technique.

• Optimal Binary Decision Diagrams
In particular, we propose the first MaxSAT-based exact method to learn op-
timal binary decision diagrams, which optimizes the empirical accuracy. At
first, we introduce an initial SAT encoding to model binary decision dia-
grams in limited depth with perfect accuracy. Then, we present how to adapt
the SAT-based model into MaxSAT approach. Finally, we present a pre-
processing for selecting some important features to increase the scalability of
our MaxSAT-based approach.

The initial motivation behind this work is to obtain more compact inter-
pretable machine learning models. Compared to state-of-the-art heuristic
methods, the experimental results show clear advances of our MaxSAT-based
method in prediction quality. Furthermore, a huge shrink in formulation size
and model size is observed in the comparison between our MaxSAT-based
method and state-of-the-art exact method with competitive prediction per-
formance. Additionally, great reductions in encoding size are displayed after
the application of pre-processing, which somehow reduces the scalability issue.
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Future Works

There are a number of potential valuable future research directions in the filed of
exact methods to learn optimal interpretable machine learning models. We present
some interesting directions that strongly relate to our contributions.

• Optimal Multi-Variate Decision Trees via MaxSAT
Currently, recent exact methods mostly aims to find optimal single-variate
decision trees, where each branching node corresponds to a single feature. It
would be interesting to propose a MaxSAT-based exact method to learn opti-
mal multi-variate decision trees [Murthy et al. 1993, Brodley & Utgoff 1995],
in which each branching node corresponds to a combination of multiple fea-
tures. The usage of multi-variate could grow the search space, leading to
optimal decision trees with better prediction quality, but without the growth
in structure.

• Integration of Incremental Learning in Learning Optimal Decision
Trees
To the best of our knowledge, current exact methods of learning optimal deci-
sion trees are mostly declarative and independent. The property declarative
is that each mathematical formulation corresponds to a search problem of
finding a decision tree restricted for a given dataset. The property indepen-
dent is that there is no connection between mathematical formulations for
similar search problems, like finding decision trees with different depths but
for the same dataset, or finding decision trees with same restrictions but for
different datasets. In addition, in general exact methods suffers the scalability
problem, it would be interesting to integrate incremental learning of decision
trees [Utgoff et al. 1997] in exact methods. This integration could somehow
improve the scalability of exact methods when treating a large dataset part
by part incrementally.

• Optimal Multi-Variate Decision Graphs via MaxSAT
In the literature review of exact methods for optimal decision graph, we men-
tion a recent MILP-based exact method [Florio et al. 2022], where the decision
graphs found are multi-variate. The advantage of multi-variate has been de-
scribed in the first direction. Based on the MaxSAT-based exact method we
proposed, it would be interesting to propose new variables and constraints to
realise the multi-variate structure.

• Faster Solvers for Learning Optimal Interpretable Machine Learn-
ing Models
As current SAT-based or MaxSAT-based exact methods to learn optimal inter-
pretable machine learning models are generally suffers the scalability problem,
it would be an interesting direction to explore faster specific solvers for such
problems. One possible way is to integrate some machine learning methods
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into the branching heuristic of solvers for choosing variables during the search
process [Bengio et al. 2021]. This idea is not limited for SAT or MaxSAT
solvers, but for all solvers based on search.
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Appendix A

Detailed Results for the
Overfitting Phenomenon

In this appendix, we present the detailed results for the overfitting phenomenon of
previous SAT method to learn optimal decision trees with perfect empirical accu-
racy, which is described in Section 2.4.

We recall the experimental setting. We use hold-out method to split training
and testing set, we choose 4 different ratios r = {0.05, 0.1, 0.2, 0.5} (in Section 2.4
only three small ratios are chosen, but here we show additional results) to generate
training set, and the remaining examples are set as testing set. This process is
repeated 10 times with different ratios, and the complete MaxSAT solver we used is
RC2. Although it should not set time limit until the solver finds optimal solution,
considering the scalability, for each experiment, the global time limit for the solver
is 30 hours.

We present the tendency of average training and testing accuracy separately
by the dataset, where the left figure indicates the training accuracy, and the right
figure indicates the testing accuracy. In each figure, the x-axis indicates the tree
size of the decision tree found, and the y-axis indicates the accuracy. We mention
the basic information of each dataset at the same time.

• “anneal”, 812 examples, 42 original features, 89 binarized features:

• “audilogy”, 216 examples, 66 original features, 146 binarized features:
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• “austrlian-credit”, 653 examples, 51 original features, 124 binarized features:

• “breast-cancer”, 683 examples, 9 original features, 89 binarized features:

• “car”, 1728 examples, 6 original features, 21 binarized features:

• “heart-cleveland”, 296 examples, 45 original features, 95 binarized features:



107

• “hypothrid”, 3247 examples, 43 original features, 86 binarized features:

• “kr-vs-kp”, 3196 examples, 36 original features, 73 binarized features:

• “lymph”, 147 examples, 27 original features, 68 binarized features:

• “mushroom”, 8124 examples, 21 original features, 112 binarized features:
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• “primary-tumor”, 336 examples, 15 original features, 31 binarized features:

• “soybean”, 630 examples, 16 original features, 50 binarized features:

• “splice-1”, 3190 examples, 60 original features, 287 binarized features:

• “tic-tac-toe”, 958 examples, 9 original features, 27 binarized features:
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• “vote”, 435 examples, 16 original features, 48 binarized features:

The overfitting phenomenon is not remarkable for every dataset, but we almost
systematically observe a plateau whereby the testing accuracy stays constant at
best while the training accuracy increases.
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I. INTRODUCTION

Decision Trees are one of the most essential models in
machine learning, as they are both intrepretable and effective
to compute. Unlike traditional top-down heuristic induction for
computing decision trees, recently, several exact methods have
been introduced to find optimal decision trees via different
declarative methods, such as Constraint Programming [4],
Boolean Satisfiablity(SAT) [3], and MaxSAT [2]. The objec-
tive of the MaxSAT approach is to find decision trees with
limited depths that maximize the number of examples correctly
classified. It performs better in prediction for unseen data
than the SAT approach, as the SAT approach requires perfect
accuracy leading to overfitting.

As other exact methods of learning optimal decision trees,
the MaxSAT approach also has scalability issues. However,
incomplete MaxSAT solvers can produce high quality solu-
tions within a limited time. In addition, the MaxSAT approach
can be easily adapted to classic Boosting methods such as
AdaBoost [1], to improve the prediction performance. The
adaptation is realized by updating the weights of soft clauses
corresponding to examples to update the data distribution of
each iteration in AdaBoost.

II. MAXSAT APPROACH OF LEARNING OPTIMAL
DECISION TREES

A. Problem Definition

The problem solved by the MaxSAT approach is the fol-
lowing optimization problem:

P (E , N): Given a set of examples E , find a full binary
decision tree of size N that maximizes the number of examples
in E that are correctly classified.

Since non-binary features can always be transformed as
binary features, binary decision trees can handle all data sets.
Moreover, to limit the tree depth described in the Introduction,
constraints for controlling the size and depth of the tree can
be posted in the MaxSAT approach.

To solve P (E , N), for each example eq � E , the MaxSAT
approach introduces a Boolean variable bq , where bq is true
if and only if eq is correctly classified. Then, all bq are set
as soft clauses and other constraints are set as hard clauses.
Therefore, assuming the set of examples E used is consistent,
the unweighted MaxSAT formulation is used.

B. MaxSAT Encoding

The MaxSAT encoding in [2] is largely based on the SAT
model from [3] that it extends. The SAT encoding consists of
three parts:

• Part 1: Constraints on the structure of a valid binary tree
in fixed size.

• Part 2: Constraints for mapping features (respectively,
classes) to internal nodes (respectively, leaf nodes).

• Part 3: Constraints for correctly classifying all examples
in the example set.

To lift the SAT model into a MaxSAT encoding, for each
example eq , every constraint of Part 3 concerning eq is linked
to a variable bq acting as the blocking literal. Then, to achieve
the limit in maximum(or exact) depth for decision trees found,
two more parts of constraints are added:

• Part 4: Constraints for controlling trees in fixed depth.
• Part 5: Constraints for controlling tree size under an

upper bound not a fixed sized.
Finally, all constraints mentioned are set as hard clauses,

and all blocking literal bq as soft clauses. There is no weight
function on the clauses as in this case we try to learn the tree
with optimal accuracy and no example is more important than
the others.

III. ADABOOST ADAPTATION

A. AdaBoost Algorithm

Boosting methods are a family of ensemble methods, which
train multiple dependent classifiers with the same data set
and then combine them to get better predictions than a
single classifier. As a typical Boosting method, AdaBoost [1]
builds T classifiers in a sequence of T iterations. At each
iteration t, AdaBoost learns a classifier ht and updates the
data distribution of the (t + 1)-th iteration Dt+1 based on the
t-th data distribution Dt using the equation 1:

Dt+1(xq) =
Dt(xq)

Zt
�
�

exp(��t) if ht(xq) = cq

exp(�t) if ht(xq) �= cq

(1)

In equation 1, each example eq = (xq, cq) is a 2-tuple,
where xq denotes the value vector for all features of this
example, and cq � {0, 1} denotes its class. The coefficient
�t = 1

2 ln( 1��t

�t
) helps the previously misclassified examples

gain more importance in the next iteration, where �t is the
error rate of t-th iteration. Zt is a normalization factor.
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The final predictor is a weighted vote where every classifier
ht is associated with a weight �t, which is calculated as
follows:

H(xq) = 1 if
T�

t=1

�tg(ht(xq)) > 0 and 0 otherwise (2)

where g(0) = �1, g(1) = 1. The function H denotes the
aggregated predictor.

B. Integration in the MaxSAT Approach

To integrate AdaBoost in the MaxSAT approach, the key
idea is to update the data distribution by updating the weights
of soft clauses corresponding to examples. The final weighted
voting follows the original AdaBoost algorithm in Equation 2.

As the weighted MaxSAT formulation allows only positive
integer weights, weights updated from Equation 1 are approx-
imated. We set all weights at the first iteration with the value
1 as initial distribution. Then, two steps of approximation are
made to calculate the positive integer weight wt+1

q of soft
clause bq in (t+1)-th iteration based on wt

q , the corresponding
weight in previous iteration. Firstly, we update and normalize
the weights:

ŵt+1
q =

wt
q � factort

q�M
q=1(w

t
q � factort

q)
(3)

where factort
q is the factor based on the prediction:

factort
q =

�
exp(��t) if ht(xq) = cq

exp(�t) if ht(xq) �= cq

(4)

Secondly, we discretize the weight ŵt+1
q as follows:

wt+1
q = round(

ŵt+1
q

mini�{1,...,M}(ŵ
t+1
i ))

) (5)

IV. BENCHMARK INSTANCES

There are two first-level folders in the zip archive. The first
one is named “decision-tree” and contains 60 WCNF files that
correspond to learning optimal decision trees with 4 different
maximum depths for 15 datasets. These benchmarks are suited
to the unweighted incomplete track. The other is named
“adaboost” and contains 120 WCNF files that correspond to
learning boosted trees with 4 different maximum depths for 6
datasets in 5 different iterations. These benchmarks are suited
to the weighted incomplete track.

Both first-level folders contains several second-level folders,
which correspond to the names of the encoded ML datasets.
Each second-level folder contains all WCNF files correspond-
ing to this dataset. The datasets we used to generate WCNF are
from CP4IM1. More precisely, they are binarized with the one-
hot-encoding. Since AdaBoost greatly improves the training
and test accuracy in some cases, we selected the datasets
in which classic decision trees performed poorly to generate

1https://dtai.cs.kuleuven.be/CP4IM/datasets/

WCNF for AdaBoost. Further information on those datasets is
given in Table I, where #s indicates the number of instances,
#fb indicates the number of binarized features.

TABLE I
INFORMATION OF DATASETS FOR LEARNING OPTIMAL BOOSTED TREES.

Dataset anneal australian car heart tumor tic-tac-toe
#s / #fb 812/89 653/124 1728/21 296/95 336/31 958/27

The name of each WCNF file follows the format: for-
mula ratio seed atleast size maxdepth reduced incomplete
type.WCNF.

• ratio: The sample ratio used when generating a training
set using the hold-out method.

• seed: The seed used to make the stratified sampling. By
default, we use 2021.

• size: The upper bound on the size of the decision tree.
• maxdepth: The upper bound on the depth of the decision

tree.
• type: The application of the decision tree generation

problem encoded by this WCNF file. There are two
possible types:

– tree: This WCNF is for learning a classic decision
tree.

– adaboost iter: This WCNF is for learning decision
tree for the (iter)-th iteration of AdaBoost.
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Appendix C

Résumé Étendu

Dans cette annexe, nous décrivons les contributions principales de la thèse.

C.1 Introduction

Au cours de la dernière décennie, l’apprentissage automatique a remporté de grands
succès pour resoudre de nombreux problèmes du monde réel. Ces succès ont accru le
besoin d’explications en Intelligence Artificielle (IA), en particulier pour les systèmes
d’aide à la décision ayant un impact sur les individus. Le domaine de (Explanaible
AI ou XAI) inclut un large spectre de recherche dont un des buts est de produire
des systèmes d’IA compréhensibles par les humains afin d’augmenter la confiance
qu’ils peuvent avoir dans les systèmes d’IA. L’objectif est de pouvoir comprendre
le processus conduisant à une décision ou à une prédiction donnée.

Dans cette thèse, nous nous intéressons à l’interprétabilité de l’apprntissage au-
tomatique. Dans la littérature, deux approches principales existent pour augmenter
cette interprétabilité. La première approche, appelée post hoc, se concentre sur des
modèles de type boîte noire, par exemple les réseaux de neurones ou le deep learn-
ing, et considère des explications a posteriori [Guidotti et al. 2018]. Elle peut pro-
duire des explications sur la sortie du modèle de boîte noire pour détailler la raison
d’une prédiction donnée ou une inspection de boîte noire pour expliquer comment
fonctionne le modèle boîte noire. La deuxième approche est appelée transparence-
by-design. Son objectif est de produire des modèles d’apprentissage compréhensibles
pour les humains, grâce aux leurs structures simples. Par exemple, les arbres de
décision, ou les règles de décision sont considérés comme des modèles interprétables
lorsqu’ils sont de petite taille.

Certains inconvénients de l’approche post hoc qui peut fournir des explications
trompeuses ou fausses, ont été mis en évidence dans [Rudin 2019, Laugel et al. 2019].
Pour les applications cruciales, où les décisions peuvent avoir un impact sur les in-
dividus, de tels inconvénients soulèvent la necessité de modèles transparents en ap-
prentissage automatique. Dans [Rudin et al. 2021], dix défis pour le développement
de modèles d’apprentissage interprétables intrinsèquement sont détaillés. Le pre-
mier défi concerne la manière d’apprendre efficacement des modèles d’apprentissage
optimaux et parcimonieux. Cette thèse s’inscrit dans cet défi.

Il existe de nombreuses méthodes heuristiques permettant d’obtenir des mod-
èles d’apprentissage interprétables. Bien ces méthodes heuristiques classiques aient
un temps de calcul réduit, les modèles d’apprentissage interprétables construits
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sont souvent de grande taille, ce qui rend difficile la compréhension de son fonc-
tionnement. Récemment, de nombreuses méthodes exactes ont été proposées pour
obtenir des modèles interprétables. Par rapport aux méthodes heuristiques, les
méthodes exactes offrent la promesse d’une optimalité, par exemple sur la taille
de modèle ou sa précision. Dans ce contexte, les méthodes d’optimisation com-
binatoire, telles que la programmation par contraintes, la programmation linéaire
mixte en nombres entiers, la satisfaisabilité booléenne (SAT) et la programmation
dynamique ont été appliquées avec succès pour l’apprentissage de modèles inter-
prétables optimaux. Ces approches déclaratives sont particulièrement intéressantes
car elles offrent une certaine flexibilité pour gérer des exigences supplémentaires
pendant l’apprentissage d’un modèle.

Dans cette thèse, nous nous concentrons sur une approche basée sur la Satisfi-
abilité Booléenne Maximale (MaxSAT), pour apprendre des modèles interprétables
optimaux, où MaxSAT est une version d’optimisation de SAT, Un inconvénient des
méthodes exactes basées sur SAT est la recherche d’une précision empirique parfaite
pour une taille donnée de modèle ce qui présente un risque de sur-apprentissage ou
overfitting. Ainsi, il s’agit d’étudier si les méthodes exactes basées sur MaxSAT
peuvent éviter cet inconvénient en optimisant la précision empirique. De plus, le
formalisme MaxSAT a une extension permettant l’utilisation de clauses pondérées,
où les poids des clauses peuvent naturellement se rapprocher de la distribution des
exemples composant les jeux de données utilisés dans l’apprentissage. Cette ex-
tension rend les méthodes exactes basées sur MaxSAT faciles à adapter avec les
méthodes d’apprentissage d’ensemble de type Boosting.

Cette thèse présente deux contributions principales :

1. Une nouvelle formalisation avec MaxSAT pour apprendre des arbres de déci-
sions optimaux, et son extension basée sur AdaBoost. .

2. Une nouvelle formalisation avec MaxSAT pour apprendre des diagrammes de
décisions binaires optimaux.

Nos contributions sont évaluées par une approche expérimentale. Nous décrivons
ces contributions et les résultats obtenus dans les sections suivantes.

C.2 Arbres de décision optimaux par MaxSAT et inte-
gration dans AdaBoost

En tant que modèle d’apprentissage très populaire, les arbres de décision bénéfi-
cient principalement de leur interprétabilité et du large éventail de méthodes ef-
ficaces pour les calculer. Plusieurs méthodes heuristiques classiques construisent
généralement l’arbre de haut en bas, en divisant les ensembles de données avec des
caractéristiques sélectionnées par différentes métriques heuristiques. Cependant,
ces méthodes heuristiques souffrent de la difficulté d’interprétabilité, en raison de
l’explosion de la taille et de la profondeur des arbres générés.
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Récemment, plusieurs méthodes exactes d’apprentissage d’arbres de décision op-
timaux ont été proposées pour offrir des garanties d’optimalité. La Section 1.3.1.2
fournit la revue de la littérature de certaines approches d’optimisation combina-
toire pour les arbres de décision optimaux. Dans ces approches, les critères large-
ment utilisées pour déterminer des arbres de décision optimaux sont la taille de
l’arbre, la profondeur de l’arbre et la précision. Contrairement à d’autres approches
d’optimisation combinatoire, il n’existe pas de méthodes exactes basées sur la Sat-
isfaisabilité Booléenne (ou ses variantes) pour optimiser la précision de l’arbre de
décision. En fait, les précédentes méthodes exactes en satisfisfiabilité booléenn
visent à garantir la précision parfait sur un ensemble d’entrainment et sont basées
sur SAT [Bessiere et al. 2009, Narodytska et al. 2018]. Ces méthodes optimisent
la taille des arbres, et [Avellaneda 2020, Janota & Morgado 2020] optimisent la
profondeur des arbres permettant d’obtenir une precision parfaite sur l’ensemble
d’entrainement, ce qui est souvent critiqué car cela peut entraîner un phénomène
d’overfitting.

Par exemple, le problème decision résolu par le modèle SAT en [Narodytska
et al. 2018] est:

• Pdt(E , N): Pour un ensemble d’exemples E donné, existe-t-il un arbre de déci-
sion binaire valide (chaque nœud interne a exactement deux enfants) de taille
N , qui classifie correctement tous les exemples de E?

Ce modèle SAT pour le problème Pdt(E , N) [Narodytska et al. 2018] s’appuie
sur trois familles de contraintes (les détails sont dans la Section 2.2) :

• Partie 1: Contraintes pour encoder un arbre binaire valide de taille N .

• Partie 2: Contraintes pour relier les attributs (respectivement, les classes)
aux nœuds internes (respectivement, nœuds feuilles).

• Partie 3: Contraintes pour classifier tous les exemples correctement.

Pour répondre au risque d’overfitting, les approches MaxSAT peuvent être util-
isées pour maximiser le nombre d’exemples correctement classifiés. De plus, la réso-
lution de problème MaxSAT peut s’appuyer sur l’utilisation de solvers MaxSAT dit
incomplets, ce qui augmente l’extensibilité, grâce aux meilleurs resultats obtenus
dans des temps limités.

Dans cette thèse, le problème d’optimisation considéré est le suivant :

• P ∗
dt(E , H): Pour un ensemble d’exemples E donné, trouver un arbre de déci-

sion binaire valide de profondeur maximale/exacte fixée H, qui maximise le
nombre d’exemples de E correctement classifiés.

Trois adapatations sont proposées pour arriver à résoudre le problème d’optimisation
P ∗

dt(E , H) :
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• Adapatation 1: Modèle MaxSAT pour résoudre le problème d’optimisation
P ∗

dt(E , N) : Pour un ensemble d’exemples E donné, trouver un arbre de dé-
cision binaire valide de taille N , qui maximise le nombre d’exemples de E
correctement classifiés.

• Adapatation 2: Ajouter des contraintes pour contrôler la profondeur max-
imale/exacte de l’arbre de taille donnée N . Cette adaptation consiste à pro-
poser un modèle MaxSAT pour résoudre le problème P ∗

dt(E , N, H): trouver un
arbre de décision binaire de taille N avec une profondeur maximale/exacte
H, qui maximise le nombre d’exemples de E correctement classifiés.

• Adapatation 3: Ajouter des contraintes pour encoder la relaxation de la
taille de l’arbre avec N comme borne supérieure. Cette adaptation consiste
à proposer un modèle MaxSAT pour résoudre le problème P ∗

dt(E , [N l, N ], H):
trouver un arbre de décision binaire dont la taille est dans [N l, N ], avec une
profondeur maximale/exacte H, qui maximise le nombre d’exemples de E cor-
rectement classifiés.

L’intégration de ces trois adaptations permet de résoudre le problème P ∗
dt(E , H)

visé. Plus précisément, on peut résoudre le problème P ∗
dt(E , [3, 2H+1−1], H) pour la

contrainte sur la profondeur maximale, et le problème P ∗
dt(E , [2H + 1, 2H+1−1], H)

pour la contrainte sur la profondeur exacte. Additionellement, le modèle MaxSAT
peut être intégré dans AdaBoost pour améliorer les performances de prédiction.
L’idée est de mettre à jour les distributions de données en modifiant les poids des
clauses souples correspondantes. Les détails sont decrits dans la Section 2.5.

C.2.1 Modèle MaxSAT proposé

C.2.1.1 Modèle MaxSAT adapaté pour P ∗
dt(E , N)

Comme nous l’avons introduit précédemment, le modèle SAT de la littérature con-
tient trois familles de contraintes, où les contraintes de classifier correctement tous
les exemples sont importantes. Par conséquent, pour réaliser la première adapta-
tion, les contraintes (Contraintes de Partie 1 et Partie 2 ) sont conservées comme
des clauses dures. Ensuite, pour classer chaque exemple (Contraintes de Partie
3 ), nous proposons une variable booléenne bq pour chaque exemple eq ∈ E , où bq

est vrai si et seulement si l’exemple eq est correctement classifié.
Ensuite, nous relions la variable bq aux contraintes de classification des exemples

(Contraintes de Partie 3 ) en tant que clauses dures. Autrement dit, pour tout
exemple positif eq ∈ E+, et tout nœud feuille j, avec j = 1, . . . , N :

bq → (vj ∧ ¬cj →
K∨

r=1
d

σ(r,q)
rj ) (C.1)

Pour tout exemple negatif eq ∈ E−, et tout nœud feuille j, avec j = 1, . . . , N :
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bq → (vj ∧ cj →
K∨

r=1
d

σ(r,q)
rj ) (C.2)

Les eexpressions dans les parenthèses sont des contraintes de classification pour
l’exemple eq dans le nœud feuille j. Afin de modéliser l’objectif de maximisation du
nombre d’exemples correctement classifiés, chaque littéral bq est déclaré comme une
clause souple. D’après la définition de bq, le nombre de clauses souples satisfaites
est égal au nombre d’exemples correctement classifiés.

C.2.1.2 Contraintes pour contrôler la profondeur de l’arbre de taille
fixée

La seconde adaptation vise à contrôler la profondeur H pour un arbre ayant une
taille donnée N . En effet, il existe des topologies différentes pour un arbre de
décision binaire avec la même taille. Par exemple, la Figure C.1 montre les deux
situations extrêmes de la topologie d’un arbre binaire utilisant la même taille N = 7
: un arbre binaire complet (équilibré) (celui de gauche de profondeur H = 2), et un
arbre binaire totalement déséquilibré (celui de droite de profondeur H = 3). Notez
que nous comptons la profondeur de l’arbre à partir de la racine comme profondeur
0.

1

2 3

4 5 6 7

depth 2

1

2 3

4 5

6 7

depth 3

Figure C.1: Deux arbres binaires valides de taille 7 avec des profondeurs différentes.

Dans un arbre binaire, la profondeur correspondante d’un nœud j donné varie
dans un intervalle reflétant ces deux situations extrêmes (les noeuds sont numérotés
par niveau).

• la borne supérieure de la profondeur est associée à l’arbre entièrement déséquili-
bré, qui est ⌈(j − 1)/2⌉.

• la borne inférieure de la profondeur est associée à l’arbre complet (équilibré),
qui est ⌈log(j + 1)⌉ − 1.

Pour refléter cette propriété entre le nœud et sa profondeur, nous introduisons
une variable booléenne depthjt pour indiquer que le nœud j est en profondeur t ou
pas, depthjt est vrai si et seulement si le nœud j est en profondeur t. Les idées
principales pour exprimer les contraintes controlant la profondeur des noeuds sont
données ci-dessous (les détails sont dans la Section 2.3) :
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• La racine doit toujours être à la profondeur 0.

• Chaque nœud doit être à une seule profondeur.

• La relation de l’augmentation de la profondeur. En détail, si le nœud i est en
profondeur t, et le nœud j est un enfant du nœud i, alors le nœud j doit être
en profondeur t + 1.

• Pour contrôler H comme la profondeur maximale, tous les nœuds possibles
à la profondeur H doivent être des nœuds feuilles.

• Pour contrôler H comme la profondeur exacte, il faut qu’au moins d’un
nœud se trouve à la profondeur H.

Pour combiner les contraintes de contrôle de la profondeur dans le modèle
MaxSAT, nous gardons simplement ces contraintes comme des clauses dures,
parce qu’elles sont considérées comme une extension des contraintes structurelles.

C.2.1.3 Contraintes pour relaxer la taille de l’arbre

Après la première et la seconde adaptation, le modèle MaxSAT peut non seulement
résoudre le problème d’optimisation P ∗

dt(E , N), mais aussi contrôler la profondeur
maximale ou exacte. La dernière adaptation vise à relaxer la taille de l’arbre pour
résoudre notre problème d’optimisation original P ∗

dt(E , H).
Rappelons l’exemple de la Figure C.1, il existe une relation entre la taille et la

profondeur dans un arbre binaire valide. Autrement dit, lorsque la profondeur d’un
arbre binaire valide est donnée, la taille de l’arbre est dans un intervalle correspon-
dant. En détail, pour la profondeur maximale H, la borne supérieure de la taille
est 2H − 1. De plus, si H est la profondeur exacte, la borne inférieure de la taille
est 2H + 1. Rappelons que la taille d’un un arbre binaire valide ne peut être qu’un
nombre impair à partir de 3.

Supposons que la borne supérieure de la taille est N , nous introduisons une
variable booléenne mj , qui est vrai si et seulement si au moins j noeuds sont utilisés
pour construire l’arbre. Les idées principales pour les contraintes de relaxation de
la taille de l’arbre sont proposées ci-dessous (les détails sont dans la Section 2.3) :

• Au moins 3 noeuds sont utilisés pour construire l’arbre.

• Si au moins j + 2 nœuds sont utilisés pour construire l’arbre, il doit utiliser
au moins j nœuds.

• Pour chaque clause dure, supponsons que j est le noeud de plus grand index,
il faut vérifier mj est vrai (ou mj+1 si j est un nombre pair) avant de vérifier
si la clause dure est satisfaite.

• Pour respecter la borne inférieure de la taille N l, il faut mettre mN l
à

vrai, pour contraindre à utiliser au moins N l noeuds.
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C.2.2 Expérimentations

Nous considerons trois expérimentations pour évaluer nos contributions :

• Experimentation 1: Mettre en évidence le comportement d’overfitting des
arbres de décision obtenus avec l’approche SAT de la littérature.

• Experimentation 2: Evaluer les performances de prédiction entre notre
modèle MaxSAT avec des méthodes de l’état de l’art : une méthode heuris-
tique (CART [Breiman et al. 1984]) et une méthode exacte (DL8.5 [Aglin
et al. 2020]).

• Experimentation 3: Evaluer les performances de prédiction entre notre
modèle MaxSAT initial et son integration dans AdaBoost [Freund & Schapire 1997].

Nos experimentations portent sur les jeux de données de CP4IM1. Ces jeux
de données sont binarisés avec l’encodage “one-hot” classique. Nous avons exé-
cuté toutes les experimentations sur un cluster utilisant un processeur Xeon E5-
2695 v3@2.30GHz exécutant xUbuntu 16.04.6LTS. Le solver MaxSAT utilisé est
Loandra [Berg et al. 2019].

Les détails sur les protocoles expérimentaux et les résultats sont dans la Sec-
tion 2.4. Nous résumons ci-après les observations principales.

La première observation issue de l’Experimentation 1 est la vérification de
l’existence du phénomène d’overfitting pour des arbres de décision optimaux obtenus
avec l’approche SAT de la littérature. Des résultats détaillés sont dans l’Appendix A.

La deuxième observation issue de l’Experimentation 2 est que notre modèle
MaxSAT obtient une performance de prédiction compétitive par rapport aux méth-
odes de l’état de l’art (heuristique et exacte). Bien que notre modèle MaxSAT ne
peut pas toujours obtenir la solution optimale dans le temps limite fixé (15 min-
utes), la solution trouvée est proche de la solution optimale trouvée par la méthode
exacte DL8.5 de la littérature. Par ailleurs, DL8.5 souffre de limitation de mé-
moire, alors que notre modèle MaxSAT bénéficie d’une meilleure évolutivité. Les
résultats détaillés sont présentés dans les Table 2.8 et 2.9 en Section 2.4.

La dernière observation issue de l’Experimentation 3 est que l’integration de
notre modèle MaxSAT dans AdaBoost permet d’améliorer la performance de pré-
diction du modèle MaxSAT initial. Pour quelques jeux de données, l’amélioration
de la précision augmente de plus de 10%. Les résultats détaillés sont présentés dans
la Table 2.10 en Section 2.5.

1https://dtai.cs.kuleuven.be/CP4IM/datasets/

https://dtai.cs.kuleuven.be/CP4IM/datasets/
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C.3 Diagrammes de décision binaires optimaux par
MaxSAT

Les diagrammes de décision binaires (BDD) sont un autre modèle d’apprentissage
interprétable en apprentissage supervisé. En particulier, ils peuvent être utilisés
pour la classification binaire avec un des données caractérisées par des attributs
binaires. En tant que représentation compacte des fonctions booléennes, les dia-
grammes de décision binaires sont largement étudiés dans la conception de circuits
numériques, la vérification de modèles ou la représentation des connaissances [Ak-
ers 1978, Moret 1982, Bryant 1986, Knuth 2009]. La Figure C.2 fournit un exemple
de diagramme de décision binaire de profondeur 3 pour répresenter la fonction
booléenne g(x1, x2, x3) = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3). Dans cet exemple, la
séquence de variables booléennes choisie est [x1, x2, x3] et la profondeur du BDD est
égale à la longueur de la séquence de variables booléennes.

x1

x2 x2

x3

0 1

Figure C.2: Un exemple
illustrant le BDD de pro-
fondeur 3.

f2

f1

f6
f5

0 1

f2

f1 1

f6 f5

1 0 1 0

Figure C.3: Le BDD avec accuracy parfait pour les
données dans Table 1.2 (à gauche), et l’arbre de dé-
cision correspondant (à droite).

Les diagrammes de décision binaire permettent d’éviter le problème de répli-
cation et le problème de fragmentation dans la classification binaire [Oliver 1992,
Kohavi 1994], qui sont deux défauts majeurs dont souffrent les arbres de déci-
sion [Matheus & Rendell 1989, Pagallo & Haussler 1990, Rokach & Maimon 2014].
Le problème de réplication apparaît lorsque deux sous-arbres identiques se trouvent
dans l’arbre de décision. Un exemple illustratif est dans la Figure C.3, qui montre
le BDD est plus compact que l’arbre de décision correspondant pour éviter le prob-
lème de réplication. Le problème de fragmentation apparaît lorsque seuls quelques
exemples sont associés aux noeuds feuilles. Pour éviter ce problème, [Kohavi 1994]
a proposé une post-traitement de fusion de sous-arbres compatibles. Des détails
sont fournis dans la Section 1.3.2.

Les avantages des diagrammes de décision binaires justifient leur possible sub-
stitution aux arbres de décision dans l’apprentissage interprétable, malgré qu’ils ne
suscitent pas autant d’intérêt que les arbres de décision. A notre connaissance, [Ca-
bodi et al. 2021] est la seule méthode exacte récente pour apprendre des diagrammes
de décision binaires optimaux avant notre recherche. L’objectif de cette approche est
d’apprendre des diagrammes de décision binaires optimaux de plus petites tailles
(en nombre de noeuds) avec la précision parfaite, ce qui conduit à deux incon-
vénients. Le premier est le possible overfitting en raison de l’objectif de précision
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parfaite. L’autre est le manque de controle dans la profondeur du diagramme de
décision binaire appris, pouvant produire des diagrammes de petite taille mais de
grande profondeur.

Pour éviter ces inconvénients, nous considérons une nouvelle cible consistant à
apprendre un diagramme de décision binaire de profondeur limitée qui optimise la
précision. Cette cible s’exprime comme le problème d’optimisation suivant :

• P ∗
bdd(E , H): Pour un ensemble d’exemples E donné, trouver un diagramme de

décision binaire avec la profondeur H, qui maximise le nombre d’exemples de
E correctement classifiés.

Inspirés par la méthodologie de résolution de nos recherches précédentes P ∗
dt(E , H),

nous introduisons d’abord un modèle SAT pour trouver le diagramme de décision
binaire nécessitant le plus petit nombre d’attributs (la profondeur d’un BDD est
égale au nombre d’attributs utilisés pour l’apprentissage) pour classifier correcte-
ment tous les exemples, qui est décrit comme le problème décision suivant:

• Pbdd(E , H): Pour un ensemble d’exemples E donné, existe-t-il un diagramme
de décision binaire avec la profondeur H, qui classife correctement tous les
exemples de E?

Ensuite, nous introduisons un modèle MaxSAT basé sur le modèle SAT pour
résoudre le problème d’optimisation P ∗

bdd(E , H), en utilisant la même technique que
celle mise en oeuvre pour notre modèle MaxSAT apprenant des arbres de décision.

C.3.1 Modèle SAT et MaxSAT proposé

C.3.1.1 Une proposition essentielle

Avant d’introduire le modèle SAT ou MaxSAT proposé, nous en expliquons le
principe qui est basé sur proposition essentielle vient de [Knuth 2009]. Ctte propo-
sition présente comment construire un diagramme de décision binaire en utilisant
sa table de vérité. Des détails sont dans la Section 3.2.

Nous présentons un exemple pour illustrer l’idée principale. Pour la fonction
booléenne g1(x1, x2, x3) = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3), la
table de vérité correspondant est 01111010. Avec la séquence de variables booléen-
nees [x1, x2, x3], la proposition nous permet de construire le diagramme de décision
binaire dans la partie à droite en Figure C.4.

01111010

0111 1010

01 11 10

0 1

01111010

0111

01 10

0 1

x1

x2

x3 x3

0 1

Figure C.4: Le BDD pour la fonction booléenne g1(x1, x2, x3).
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C.3.1.2 Modèle SAT proposé pour Pbdd(E , H)

En s’appuyant sur la proposition précédente, un diagramme de décision binaire
de profondeur H peut être construit par la combinaison d’une suite de variables
booléennes de taille H : [x1, . . . , xH], et d’une table de vérité associée à une fonc-
tion booléenne. Pour la classification binaire, nous cherchons ainsi à trouver une
séquence d’attributs binaires de taille H qui mappe un-par-un la séquence de vari-
ables booléennes. En résumé, pour résoudre le problème de décision Pbdd(E , H), il
faut trouver une séquence d’attributs binaires de taille H, et une table de vérité
associée à une fonction booléenne qui classifie correctement tous exemples de E . Le
modèle SAT proposé s’appuie sur deux familles de contraintes:

• Partie 1: Contraintes pour relier les attributs du jeu de données à la séquence
d’attributs de taille H.

• Partie 2: Contraintes pour générer la table de vérité, qui classifie correcte-
ment tous les exemples de E avec la séquence d’attributs choisi.

Pour encoder ces contraintes, nous proposons trois ensembles de variables booléen-
nees. La variable ai

r est vrai si et seulement si l’attribut fr est relié à la i-ème
position de la séquence d’attributs. La variable cj est vrai si et seulement si la
j-ème valeur dans la table de vérité est 1. La variable dq

i est vrai si et seulement
si pour l’exemple eq, la valeur de i-ème attribut dans la séquence d’attributs est 1.

Pour encoder les contraintes de Partie 1, les idées principales sont données ci-
dessous (les détails sont dans la Section 3.3.1):

• Chaque attribut fr peut être relié au plus une fois.

• Exactement un attribut est relié à chaque position de la séquence d’attributs.

• Pour éviter que la racine fasse une scission inutile, il faut garantir que la table
de vérité générée est un bead (la partie gauche et partie droite sont différentes).

Pour encoder les contraintes de Partie 2, d’abord, nous proposons des con-
traintes pour relier la variable dq

i et la variable ai
r par la valeur d’attribut fr

d’exemple eq. Nous notons σ(q, r) la valeur de l’attribut fr pour un exemple eq, les
contraintes proposées sont les suivantes:

ai
r → dq

i si σ(q, r) = 1
ai

r → ¬dq
i si σ(q, r) = 0

(C.3)

Ensuite, pour classifier correctement tous les exemples, l’idée principale est pour
chaque exemple positif (negatif) suite à une affectation de la séquence d’attributs,
ils conduisent à une valeur positive (negative) dans la table de vérité. Les 2H

contraintes permettant de garantir qu l’exemple positif eq soit correctement classifié
sont données ci-dessous:
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¬dq
1 ∧ ¬dq

2∧ · · · ∧ ¬dq
H−1 ∧ ¬dq

H → c1

¬dq
1 ∧ ¬dq

2∧ · · · ∧ ¬dq
H−1 ∧ dq

H → c2

. . .

dq
1 ∧ dq

2∧ · · · ∧ dq
H−1 ∧ ¬dq

H → c2H−1

dq
1 ∧ dq

2∧ · · · ∧ dq
H−1 ∧ dq

H → c2H

(C.4)

De la même manière, les 2H contraintes pour garantir que l’exemple négatif eq

soit correctement classifié sont données ci-dessous:

¬dq
1 ∧ ¬dq

2∧ · · · ∧ ¬dq
H−1 ∧ ¬dq

H → ¬c1

¬dq
1 ∧ ¬dq

2∧ · · · ∧ ¬dq
H−1 ∧ dq

H → ¬c2

. . .

dq
1 ∧ dq

2∧ · · · ∧ dq
H−1 ∧ ¬dq

H → ¬c2H−1

dq
1 ∧ dq

2∧ · · · ∧ dq
H−1 ∧ dq

H → ¬c2H

(C.5)

C.3.1.3 Modèle MaxSAT pour P ∗
bdd(E , H)

La technique pour transformer le modèle SAT des diagrammes de décision binaires
vers un modèle MaxSAT est simple. Le principe est de conserver les contraintes
structurelles (Partie 1) comme des clauses dures et les contraintes de classification
(Partie 2 sauf Constrainte C.3) comme des clauses souples. La raison est que
pour tout exemple eq, le nombre de clauses souples satisfaites associées à eq est soit
2H , ce que indique que eq est classifié correctement, soit 2H − 1, ce que indique
que eq est mal classifié.

Par conséquent, l’objectif de maximiser le nombre de clauses souples satisfaites
équivaut à maximiser le nombre d’exemples correctement classifiés, ce qui résout le
problème d’optimisation P ∗

bdd(E , H).

C.3.2 Expérimentations

Nous considerons deux expérimentations pour évaluer nos contributions:

• Experimentation 1: Comparer les performances de prédiction entre notre
modèle MaxSAT avec la méthode heuristique OODG [Kohavi & Li 1995].

• Experimentation 2: Comparer les performances de prédiction, les tailles de
modèles, et les tailles d’encodage entre notre modèle MaxSAT pour les BDD
avec le modèle MaxSAT que nous avons proposé pour les arbres de décision [Hu
et al. 2020]).

Comme précédemment, nos experimentations portent sur les jeux de données
binarisés de CP4IM. Toutes les experimentations sont exécutées sur un cluster
utilisant un processeur Xeon E5-2695 v3@2.30GHz fonctionnant sous xUbuntu
16.04.6LTS. Le solver MaxSAT utilisé est Loandra [Berg et al. 2019]. Les détails
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sur les protocoles expérimentaux et les résultats sont fournis dans la Section 3.4.
Nous résumons ci-après les observations principales.

La première observation issue de l’Experimentation 1 est que notre modèle
MaxSAT obtient toujours de meilleures performances de prédiction par rapport
à la méthode heuristique OODG.

La deuxième observation issue de l’Experimenatation 2 est que notre modèle
MaxSAT pour les BDD obtient des performances de prédiction compétives par
rapport au modèle MaxSAT pour les arbres de décision. En complément, notre
modèle MaxSAT pour les BDD obtient un encodage plus léger que l’encodage pour
les arbres de décision, et le BDD trouvé par notre modèle MaxSAT est plus compact
en taille que l’arbre de décision trouvé par notre modèle MaxSAT générant des
arbres de décision. Les résultats détaillés sont dans la Table 3.11 en Section 3.4.
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