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“Who are you? Who slips into my robot body and whispers to my ghost? ”

Mamoru Oshii, Ghost in the Shell, 1995
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Doctor of Philosophy

A Whole-Body Predictive Control Approach to Biped Locomotion

by Ewen DANTEC

Humanoid robotics has been a very active field of research for the past decades,
with important contributions in various scientific areas such as control engineering,
biomechanics, computer science and mathematics. Nevertheless, performing reli-
able biped locomotion in generic environments still remains a challenge due to the
real-time constraints and non-convexity of the problem. Because of previous tech-
nological limits, early works on walking robots have relied on template models and
simplified dynamics. Given the steady increase in hardware computing capacities,
complex control designs taking into account the whole-body dynamics of the sys-
tem is becoming possible. On the other hand, predictive control algorithms based
on trajectory optimization over a given preview window are proven to be a viable
and robust solution for agile locomotion.

This thesis aims at implementing a whole-body predictive control framework
for generic locomotion on real-world torque-controlled humanoid robots. Our con-
troller was systematically tested on the torque-controlled robot Talos, a heavy hu-
manoid platform with 32 actuated joints. Given the high complexity of the model,
the computation frequency of our optimization solver cannot match the low-level
control frequency of current robotics systems. To mitigate this issue, a first order
feedback policy based on the solver sensitivities has been designed to approximate
the high-level optimal command at the actuation frequency. In a second step, a 3-
D walking controller for uneven terrain crossing is introduced and discussed. Two
different heuristics were used to compute feet trajectories during locomotion: one
based on pre-computed splines and one leveraging a height map of the environment
that penalizes the flying foot velocity with respect to its height. The second heuristic
allows to reduce the feet impedance and to perform push recovery in real time. Both
heuristics have been combined with a high-level contact planner that generates op-
timal contact sequences in cluttered environments. Finally, to overcome the inherent
non-convexity of planning scenarios with obstacles, a memory of motion was used
to warm-start the solver and speed up its convergence.

Keywords: optimal control, biped locomotion, humanoid robotics, motion gen-
eration.
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Résumé en français

Depuis plusieurs décennies, la robotique humanoïde s’est révélée être un do-
maine de recherche très actif avec des contributions importantes dans divers do-
maines scientifiques tels que l’ingénierie de contrôle, la biomécanique, l’informatique
et les mathématiques. Néanmoins, parvenir à générer une locomotion bipède fi-
able dans des environnements génériques reste un défi en raison des contraintes
temps réel du système et de la non-convexité du problème. A cause des limites
technologiques présentes il y a quarante ans, les premiers travaux sur les robots
marcheurs se sont appuyés sur des modèles et des dynamiques simplifiées. Compte
tenu de l’augmentation constante des capacités de calcul de nos ordinateurs, des
schémas de contrôle plus complexes tenant compte de la dynamique du corps com-
plet deviennent possibles. D’autre part, les algorithmes de contrôle prédictif basés
sur l’optimisation de la trajectoire future s’imposent de plus en plus comme une
option viable et robuste pour la locomotion agile.

Cette thèse vise à mettre en oeuvre une approche corps complet de la locomotion
bipède à travers le prisme des méthodes de contrôle predictif. L’approche a été im-
plémentée sur le robot Talos, un humanoïde lourd contrôlé en couple et possédant
32 joints actionnés. Compte tenu de la grande complexité du modèle, la fréquence
de recalcul de notre solveur optimal est trop faible par rapport à celle du contrôle
de bas niveau des plateformes robotiques actuelles. Pour atténuer ce problème, une
politique de rétroaction de premier ordre basée sur les sensibilités du solveur a été
conçue afin d’approximer la commande optimale à la fréquence des actionneurs.
Dans un deuxième temps, un contrôleur de marche adapté à la locomotion en terrain
accidenté est introduit puis discuté. Deux heuristiques différentes ont été utilisées
pour calculer les trajectoires des pieds pendant la marche: la première est basée sur
des splines pré-définies, la seconde utilise une carte de hauteur de l’environnement
qui pénalise la vitesse du pied en vol par rapport à sa hauteur. La seconde heuris-
tique permet de réduire l’impédance des pieds et d’effectuer des mouvements de
rééquilibre après poussée en temps réel. Les deux heuristiques ont été combinées
avec un planificateur de contact de haut niveau capable de définir des séquences
de contact optimaux dans des environnements encombrés. Enfin, pour surmon-
ter la non-convexité inhérente aux scénarios de planification comportant des obsta-
cles, une mémoire du mouvement a été implémenter pour initialiser le solveur et
accélérer sa convergence.

Mots-clés: contrôle optimal, locomotion bipède, robotique humanoïde, généra-
tion de mouvement.
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Chapter 1

Introduction

Robotics is the art of animating articulated machines. This art stands at the cross-
road of numerous fields, from mechatronics to automation, including mathematics,
neuroscience, computer science and biomechanics. At the heart of robotics is the
wish to replicate human action with always more autonomy, so as to substitute hu-
man operators in hazardous or unpleasant work environments. Conversely, study-
ing the way robots move can provide precious insights on the comprehension of the
biological principles of locomotion in humans and animals. In a sense, robotics deals
with the dialectic between executing an action and understanding a movement [Lau-
mond 2013].

An action is primarily defined by its end goal (what to do), whereas a movement
describes the series of motor commands and joint displacements producing the rel-
evant action (how to do). When translating action into movement, three challenges
arise. Suppose that a human subject is asked to drink a glass of water on a table.
Whether the human would be using their left hand, right hand or both to drink the
glass of water is of no importance from an operator viewpoint as long as the task
is completed. This highlights the first challenge in robotics: the operational space
of the task is generally quite big, meaning that there exist numerous solutions, or
numerous sets of movements, to perform one given action.

For a healthy human subject, drinking a glass of water on a table poses no par-
ticular difficulty. However, explaining how they did it, what precise muscles they
used, what nervous impulses they sent, is astonishingly hard. Humans, as all living
beings, seem to perceive the world in terms of actions and results more than move-
ments and executions [Smyth and Wing 2013]. The incredible complexity of even
the simplest motion is hidden from us, and as a consequence we struggle to tell a
machine how exactly it must perform a given task. Transcribing the exact trajectory
of every limb of the body so as to achieve a given motion is a painful problem that
has been first tackled by dancers who wished to record their performances on paper
(using, for example, the Labanotation devised by Rudolf Laban [Knust 1978], see
Fig. 1.1). This inherent complexity can be seen as the second challenge in robotics:
since we do not fully understand the fundamental principles of biological motion,
we struggle to find a right mathematical language to describe it.

Suppose now that an obstacle is blocking the way to the glass, and that the hu-
man subject is again asked to grasp it. If additionally the obstacle is moving on its
own, the subject has to continuously correct their motion based on their perception
of the obstacle in order to execute the task. This ability to adapt the command to
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FIGURE 1.1: An example of Labanotation to transcribe dance mo-
tion [Kleida 2018].

new perceptive inputs is a key feature of autonomy in real-world robotics. Mim-
icking this ability requires to solve very challenging problems each time fresh data
about environmental changes are processed, and to solve it fast enough so that the
corresponding response is still relevant with respect to the current world configura-
tion. Here lies the third challenge in robotics.

The experiment of picking a glass of water illustrates how compromised it seems
to reconcile the viewpoint of the neurobiologist and the roboticist. Humans do not
directly deal with command in motor space, nor do they produce the same exact
motion when asked to perform a task two times in a row, but still appear to obey
some principle of optimality [Todorov and Jordan 2002], even if it is unclear which
criterion is minimized along the trajectory. On the other hand, the roboticist seeks
to reproduce the efficiency, adaptability and robustness of human motion through
mathematical transcription, while the scientific community is not even sure how to
define these features in the first place. Moreover, physical differences between hu-
mans and robots, as well as computational capacities, also prevent complex motions
from being reproduced on artificial platforms.

Robotics used to be divided between two schools of thought, one favouring a
data-driven approach [Brooks 1991], the other relying on trajectory optimization [Bo-
brow 1982; Chernousko 1994]. Data-driven methods take their inspiration from
biology and the structure of neural cortex. Through trial and error, they aim at
encoding the primary components of motion into a statistical or learning process.
Trajectory-based methods, on the other hand, attempt to capture the complexity of
reality inside simpler mathematical structures and solve the problem via classical
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FIGURE 1.2: From left to right: Opportunity (2004-2018), Curiosity
(2012-present) and Perseverance (2021-present).

optimization tools. Both approaches have their disadvantages: data-driven algo-
rithms often give imprecise and rough results at the cost of never-ending training
hours, while trajectory-based algorithms feature high computational load and strug-
gle to discover complex motions based on optimization alone.

The latest developments in robotics tend to blur the lines between these two ap-
proaches. More and more researchers acknowledge that optimization and learning
are, in essence, complementary to each other. Trajectory-based methods can for ex-
ample be used to guide the learning process or refine stochastic policies to make
them dynamically feasible. As often in science, we pierce through by combining the
best of both worlds.

1.1 Motivation

Robotics is already part of our daily lives. The first industrial robot, Unimate,
was built more than 60 years ago, in the continuity of teleoperation research for
nuclear application. Nowadays, most, if all, industrial processes involve the use
of some kind of robots: articulated arms, conveyor belts, and so on. Since 2015,
the robot Pepper has played the role of a receptionist in multiple offices and shops
across Europe and Japan. The automatic vacuum cleaner Roomba has become a
mainstream household item and has already reached its ninth generation. Thanks to
the development of teleoperation technology, remote surgery [Wall and Marescaux
2013] is revolutionizing the field of medical care by connecting patients and sur-
geons across the globe. Finally, space rovers such as Curiosity or Perseverance have
become a key technology for the exploration of foreign celestial bodies, demonstrat-
ing that well-engineered robotic platforms can stay operational way past their initial
mission time even in harsh environments. Curiosity, for example, is still working
fine more than ten years after its landing, despite being initially programmed for a
two-year mission; its predecessor Opportunity had held for 14 years while relying
solely on solar energy to replenish its batteries.

As for humanoid robotics, the first walking biped platform, WABOT-1, was built
by Waseda University in 1972. Nearly thirty years later, the robot Asimo developed
by Honda displayed very robust walking locomotion coupled with autonomous
navigation and pattern recognition skills. In the 2015 DARPA competition, the robot
Atlas from Boston Dynamics completed many complex tasks such as opening a door,
climbing a ladder, manipulating tools or driving a vehicle. A few years later, the
same robot performed dynamic multi-contact motions such as handstands, back-
flips, jumps over obstacles, just to name a few.
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FIGURE 1.3: From left to right: WABOT-1, Asimo, Atlas. These hu-
manoid robots have contributed to advance further the field of legged

robotics.

If humanoid robots are currently so efficient that they can reproduce human
gymnastics, one could wonder why they have not become a common sight in our
everyday life. The answer lies in the lack of robustness, compliance, and replanning
capabilities of current platforms [IEEE Spectrum 2015]. Moving in a dynamic and
uncertain environment requires autonomy, compliance, robustness and adaptability,
each of these being quite hard to describe mathematically. Autonomy could be seen
as the ability to handle high-level orders without being given additional informa-
tion. Compliance describes the tolerance to deviations from a reference equilibrium:
this is an essential feature to deal smoothly with unplanned impact events or grasp-
ing tasks while ensuring stability. Robustness and adaptability both involve being
able to perform well even in non-nominal conditions and adapt quickly to environ-
mental changes.

As compared to other legged systems such as quadrupeds, bipeds are intrin-
sically unstable, similar to a mass attached to a vertical stick. The most impres-
sive demonstrations on biped robots still occur inside the controlled environment
of a laboratory, after countless hours of offline trajectory simulations. Additionally,
human-sized robots feature incredible mechanical and electrical complexity which
make them prone to hardware failures. Some of them, such as the Atlas robot,
are powered through hydraulic actuation, a technology that can generate high and
sharp torque commands but is quite difficult to maintain because of the significant
fluid pressure in its transmission circuit [Lam 2013].

If imitating the human self remains so complicated, why do we bother to try?
In a world designed for human beings, the anthropomorphic form is still the logical
choice for a robot that needs to move autonomously in its environment. Climbing
stairs or ladders, sitting in an armchair, driving, moving a box on a shelf, opening a
trap door... All these actions require two legs and two arms to be performed nomi-
nally. Moreover, a robot similar to humans can, in theory, reproduces the entire range
of actions of anthropomorphic beings, fueling countless potential applications. To
cite some examples, humanoid robots have been proposed to intervene in complex
industrial context such as aircraft manufacturing [Kheddar et al. 2019]. Due to the
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current global population increase, some countries are studying the option of dele-
gating elderly care to humanoid robots [Čaić et al. 2018]; if this kind of services were
to be provided at home, the robot should be expected to move in the safest possi-
ble way across an environment designed for humans. Another possible application
lies in the Urban Search and Rescue (USAR) program launch in 2004 by the De-
partment of Homeland Security of the United States [Messina 2006]. This program
aims at developing rescue robots able to locate, help and extricate entrapped victims
during disaster events. When the environment is highly undefined, cluttered and
hazardous, robots need human-like adaptability to achieve their mission. Lastly, the
use of humanoid robots for space exploration has been examined. In 2011, Robonaut
2 [Diftler et al. 2012] boarded the International Space Station and performed a wide
range of dexterous manipulation tasks, demonstrating that general maintenance ac-
tivities in space can be covered by semi-autonomous robotics. Later in 2017, NASA
organized the Space Robotics Challenge, a programming competition in which the
candidates were asked to complete simple tasks in simulation with the humanoid
robot Valkyrie. Inspired from the movie the Martian, the Space Robotics Challenge
aims at assessing the advantages of using humanoids to establish colonies on extra-
terrestrial objects like Mars or the Moon.

In my personal opinion, robots are one of the most fascinating vector of human
curiosity, in the sense that they give us the capacity to reach and explore uncharted
territories where we cannot yet survive. Because they stand as the embodiement of
many scientific fields, they help us to push even further the boundaries of human
knowledge and capabilities.

1.2 Problem Statement

Despite very promising researches and exciting applications, humanoid robots
are still far from being able to wander freely into the wild. In order to truly become
autonomous and reliable platforms able to move like we do, the locomotion prob-
lem should be thoroughly formulated as a synthesis between the high-level motion
planning and low-level control scheme. Most frameworks in the literature of opti-
mal control treat the system as a reduced model to alleviate computation load, thus
limiting the intrinsic performances of the controller. They also tend to distribute
the complexity of the optimization between a reduced model planning block and
whole-body instantaneous control block, sometimes connected to a stabilizer. This
multi-block scheme can be tedious to work with as all parts of the framework needs
to be synchronised between them.

This thesis seeks to reformulate the locomotion problem as a whole-body model-
based optimization problem where every relevant variable is refined along a pre-
dicted horizon according to some optimal criterion. The end goal is to build a
generalized predictive controller for multi-contact motion generation and execution,
able to leverage the whole dynamics of the system in the preview horizon. To aug-
ment the exploration capacities of this optimization scheme and overcome the non-
convexity of the problem, we also investigate the option of connecting the controller
to a data-based library of motion. By disserting on the state of the art, we will more
accurately refine this objective, justify its importance and explain what are the miss-
ing contributions to reach it. We will then formulate in details the contributions of
this thesis based on the current progresses in optimal control and robotic locomotion.



6 Chapter 1. Introduction

FIGURE 1.4: The humanoid robot Pyrène, first prototype of the Talos
family that we used for most experiments.

The algorithms developed in this thesis have been deployed on the humanoid
robot Pyrène [Stasse et al. 2017], first prototype of the Talos series built by Pal Robotics.
Pyrène is a powerful 95 kg robotic platform able to perform manipulation tasks as
well as locomotion on uneven terrains. It is equipped with electrical motors, an
IMU and two onboard computers (dual i7 CPU at 2.8 GHz). Its kinematic tree is
composed of 32 actuated joints mounted with torque sensors, except for the wrist
joints and head joints. Additionally, force sensors are integrated inside the wrist
and ankle frames. These sensors are a key component to perform torque control on
the robot and make its motions naturally compliant, as opposed to classical position
control schemes that manually encode the compliance inside the impedance gains.
The low-level control framework of Pyrène works at a frequency of 2 kHz, which
means that the robot is expected to receive a torque command every 0.5 ms. Ac-
cording to Pal Robotics benchmarks, the bandwidth of the torque tracking scheme
of Pyrène is 5 Hz.

Although being a prototype, Pyrène is a high-performance scientific platform
benefiting from state-of-the-art technology. The predictive algorithms that we seek
to write are especially relevant to control this kind of robots with heavy limbs and
high inertia.

This thesis is part of the Memmo project, a European scientific collaboration that
aims at developing generic algorithms for complex motion generation in real time.
In the frame of this project, the robot Pyrène has been used as an industrial demon-
strator for aircraft manufacturing in an Airbus factory.
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1.3 Thesis Outline

This thesis is organized as followed. Chapter II introduces the current state of
the art and related works, starting from the problem of trajectory optimization and
reactive control, then detailing recent progresses on online predictive control and
data-driven methods.

Chapter III outlines the numerical framework used to solve our full dynamics
optimal control problem. A Differential Dynamics Programming approach is pre-
sented and briefly commented.

Chapter IV addresses the issue of minimizing the impact of computation load
by approximating the optimal control at a higher frequency with a local feedback
policy. It also unveils the first demonstrations of our control scheme on the torque-
controlled robot Talos.

Chapter V makes use of the tools previously introduced to perform whole-body
locomotion in flat and non-flat environments with the Talos humanoid.

Chapter VI discusses the idea of increasing the compliance and adaptability of
the locomotion scheme by removing the user-defined feet reference and letting the
solver choose where to land its feet. Additionally, it provides a method to deal with
uneven terrain based on a velocity height map combined with a high-level footstep
planner.

Chapter VII introduces the combination of data-based methods and MPC to
tackle the issue of non-convexity in the environment, through the use of a mem-
ory of motion. The demonstration provided here, although simple, is intended to
be a proof of concept and can be easily generalized to more complex multi-contact
motions.

1.4 Contributions

The following papers have been published during the course of this thesis:

Journals

• E. Dantec, M. Taïx and N. Mansard, First Order Approximation of Model Predic-
tive Control Solutions for High Frequency Feedback, in IEEE Robotics and Automa-
tion Letters, vol. 7, no. 2, pp. 4448-4455, April 2022.

Conferences

• R. Budhiraja, A. Parag, E. Dantec, J. Carpentier, C. Mastalli and N. Mansard,
Crocoddyl: Fast computation, Efficient solvers,Receding horizon and Learning, Journées
Nationales de la Robotique Humanoïde, May 2020, Paris, France.

• E. Dantec, R. Budhiraja, A. Roig, T. Lembono, G. Saurel, O. Stasse, P. Fern-
bach, S. Tonneau, S. Vijayakumar, S. Calinon, M. Taïx and N. Mansard, Whole
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Body Model Predictive Control with a Memory of Motion: Experiments on a Torque-
Controlled Talos, IEEE International Conference on Robotics and Automation
(ICRA), May 2021, Xi’an, China.

• S. Kleff, E. Dantec, G. Saurel, N. Mansard and L. Righetti, Introducing Force
Feedback in Model Predictive Control, IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), Nov 2022, Kyoto, Japan.

• E. Dantec, M. Naveau, P. Fernbach, N. Villa, G. Saurel, O. Stasse, M. Taïx
and N. Mansard, Whole-Body Model Predictive Control for Biped Locomotion on a
Torque-Controlled Humanoid Robot, IEEE-RAS International Conference on Hu-
manoid Robots (Humanoids), Nov 2022, Ginowan, Japan.

• N. Villa, P. Fernbach, M. Naveau, G. Saurel, E. Dantec, N. Mansard and O.
Stasse, Torque Controlled Locomotion of a Biped Robot with Link Flexibility, IEEE-
RAS International Conference on Humanoid Robots (Humanoids), Nov 2022,
Ginowan, Japan.
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Chapter 2

State of the Art

2.1 Motion generation for walking robots

2.1.1 A brief history of planning

Let us consider an articulated robot whose task is to cross a cluttered environ-
ment in order to reach a given pose. Motion planning in robotics consists in finding
a feasible path starting from its current pose and ending with the desired pose, with
the constraint of avoiding collisions along the way (collisions with external obsta-
cles and auto-collisions). Rather than considering the problem in the 6-dimensional
operational space of translation and rotation, roboticists solve it in the configuration
space of the robot [Lozano-Perez 1983], that is, the concatenation of all joint posi-
tions of the system. Thus, finding a feasible path for an articulated end effector in a
6-dimensional space amounts to finding a feasible path for a point in the configura-
tion space. A path parametrized by time is called a trajectory, that is, a function that
takes a time variable and returns an element of the state space. Usually this state
space is composed of the configuration space extended by its tangent manifolds,
representing velocity and acceleration. Additionally, a control space can be intro-
duced to define how the user can affect the evolution of the current state. Trajectory
generation aims at computing a set of state and control points parametrized by time
such that the desired pose or configuration is reached at the end of the trajectory.

Let us go back to the geometric motion planning problem, also known as the
piano mover problem (see Fig. 2.1). It is famous for being computationally in-
tractable, even if the mathematics community proved that it was decidable 40 years
ago [Schwartz and Sharir 1983]. In fact, it has been proven that these problems are
often NP-complete or even PSPACE-complete [Hartline and Libeskind-Hadas 2003],
a class of problems believed to be even harder than NP-complete. Deterministic
methods [Canny 1988], which attempt to build an exact representation of the config-
uration space in order to extract connectivity properties, feature exponential running
time at best. Given that a humanoid robot has an average of 30 articulations, such
computational load makes the algorithm unusable in practice. Furthermore, only
the geometry of the problem is tackled by this planning formulation, whereas kine-
matic and dynamic aspects also need to be taken into account to control a robot.

Local methods based on potential fields have thus been developed to solve for
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FIGURE 2.1: Illustration of several classical planning problems en-
countered in robotics.

practical cases [Khatib 1986]. These methods find a collision-free trajectory in real-
time based on a simple gradient descent idea: the goal is an attracting point of
the system while obstacles act as repulsive walls. This approach does not prevent
the robot to get stuck in local minima, a situation that can be met in any maze-
like environment. Stochastic methods based on a clever sampling of the configu-
ration space quickly arose to tackle the issue of locality. Techniques such as prob-
abilistic roadmaps [Kavraki et al. 1996; Amato and Wu 1996] and randomized po-
tential field [Barraquand and Latombe 1991] were proposed as a way to efficiently
solve the planning problem. The first approach consists in building a graph in the
collision-free configuration space and connecting pairs of feasible points; the sec-
ond extends [Khatib 1986] by introducing random configuration sampling to escape
from local minima. However, these methods tend to struggle when the configu-
ration space becomes large, as they heavily rely on blind exploration of the solu-
tion set. Researchers have thus proposed the Rapidly-exploring Random Tree (RRT)
method [LaValle 1998]: the idea is to incrementally build a space-filling tree by sam-
pling vertices in the search space, and bias the growth towards the largest uncharted
areas, or regions of most interest. Under a set of mild conditions, it was proven that
the RRT algorithm converges almost surely toward a non-optimal solution [Kara-
man and Frazzoli 2011]; in this work, a variant of the method, called RRT*, was
proposed for optimal motion planning applications. During the last two decades,
numerous extensions of RRT have been introduced, such as real-time RRT* [Naderi
et al. 2015] for video game applications, closed-loop RRT [Kuwata et al. 2009] for
autonomous driving, kino-dynamic RRT* [Webb and Berg 2013] to efficiently han-
dle controllable linear dynamics, LQR-RRT* Perez et al. 2012 to find optimal paths
for complex systems with underactuated dynamics, and so on. These methods are
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particularly efficient for kino-dynamics trajectory planning [Donald et al. 1993], in
which the aim is to generate a trajectory with bounds on velocity, acceleration and
torque, in addition to kinematic constraints. This special class of planning problems
lies at the heart of modern-day robotics, as bounds on joints and commands are es-
sential to protect the expensive actuation of state-of-the-art articulated systems.

Classical planning methods tackle efficiently the geometrical aspects of the lo-
comotion problem, but fail to account for the intrinsic physics of the movement.
Besides, they cannot predict what the state of the system is going to be in the near
future. In order to design even more efficient walking algorithms, physics needs to
be considered, in particular the relationship between contact forces and acceleration.

2.1.2 Specificities of locomotion planning

Legged robotics is characterized by a set of several specific features: under-
actuation, contact interaction, balance and optimality.

Under-actuation

A walking system is by design under-actuated, meaning that none of its actua-
tors can directly act on its Center of Mass (CoM) position in space. If the system has
enough degrees of freedom, it can control its angular momentum but is still unable
to act on its linear momentum without relying on external forces like contact inter-
action or gravity [Wieber 2006a]. The non-holonomic aspect of angular dynamics
described in [Wieber 2006a] is typically leveraged in the field of space robotics to
control manipulators in weightless environment [Papadopoulos 1993; De Luca and
Oriolo 1997].

Contact interaction

A consequence of under-actuation is that legged robots must apply forces to their
environment in order to move. According to the third law of Newton, the environ-
ment is then exerting an opposite force on the body, resulting in a motion in the
3-dimensional operational space. This contact interaction plays a key role in the
locomotion of all terrestrial beings, as it dictates how they can move and balance
themselves. In most cases, the contact forces are unilateral, or in other words: the ar-
ticulated system can only push against the ground, not pull it. Additionally, friction
bounds limit the way the robot can exert forces on its environment without slipping.

Balance constraint

Locomotion cannot be performed without proper balance over limbs in contact.
In some cases, falling over results in significant hardware damage to the robotic plat-
form. Similarly to an inverted pendulum, biped robots are naturally unstable, which
means that the walking algorithm must actively prevent any loss of balance. Balance
can be ensured by commanding the CoM to remain inside the support polygon of
the limbs in contact, but this leads to very slow and conservative motions, during
which the system is in static equilibrium at any instant. On the other hand, dynamic
tasks like jumping and running can only be executed if the robot temporarily goes
out of static equilibrium. It is then essential to predict the system dynamics in order
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to ensure that static equilibrium can be reached again in the near future.

Optimality criterion

An essential feature of legged locomotion, and more generally of motion gen-
eration, is that living beings perform movements in an efficient fashion, or to put
it another way: they tend to optimize their actions with respect to some given per-
formance criterion. Several optimization models have been proposed to explain the
underlying principles of human motion: some postulate that we minimize the com-
manded torque change [Flash et al. 2013] or energy consumption [Saibene 1990]; oth-
ers argue that hand movement follows the 2/3 power law [Plamondon and Guerfali
1998] which links the curvature of a trajectory to the angular velocity of the body;
lately, the isochrony phenomenon, i.e. the relationship between speed of arm and
trajectory distance has been considered in motion planning [Yokoyama et al. 2018].

All in all, biped locomotion represents a very difficult problem involving kine-
matic and dynamic considerations, non-convexity, nonlinearity, unilateral contacts
and non-holonomic constraints [Wieber 2006a].

2.1.3 First approaches to the locomotion problem

The complexity of walking physics is such that it could not be tackled by pre-
modern computers. As a workaround, researchers have first attempted to solve the
locomotion problem by reducing the movement to its most simple components.

Central Pattern Generators

Preliminary results on walking motion generation for legged systems heavily
rely on simple heuristics like Central Pattern Generator (CPG) [Matsuoka 1987].
The notion of CPG stems from neuro-biology and refers to a neural network found
in the spinal cord of animals that produce oscillatory patterns [Cheng et al. 1998].
Those patterns can be used to set the pace of limb motor behaviors, generating pe-
riodic gaits by the simple combination of nonlinear oscillators. If the method was
first designed for quadrupeds on flat floor, it has been successfully extended to
snake-like robots [Wu and Ma 2010], quadrupeds on rough terrain [Ajallooeian et
al. 2013], swimming fish robots [Yu et al. 2016], hexapods [Bai et al. 2019], and hu-
manoids [Dzeladini et al. 2018]. In a sense, CPGs are an embodiement of the reflex
aspect of the locomotion, without any consideration of kinematic or dynamic con-
straints. They do not consider the dynamic model of the system and are not able to
anticipate changes in trajectory resulting from new environment updates. In other
words, they cannot produce very complex motions and have thus not been exam-
ined further in the frame of this thesis. They provide, however, interesting consid-
erations about the periodic nature of locomotion, and illustrate that walking can be
performed by considering only the essential properties of the system.

Passive walkers

Another interesting approach to biped locomotion consists in leveraging the cyclic
dynamics of passive walking machines [McGeer 1990], i.e. systems built to naturally
display periodic walking motions powered by gravity. These machines usually come
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with no actuators, or just enough to stabilize their gait around a given limit cycle.
The main advantage of passive walkers lies in the efficiency of the design in terms
of energy consumption: as such, they help roboticists and biomechanicians to better
understand the core principles of locomotion and build even more efficient legged
systems.

Many different concepts of passive walkers have been studied during the last
two decades, ranging from the simplest possible model of a point mass attached
to a single leg [Garcia et al. 1998] to 3D passive bipeds with knees [Collins et al.
2001] and efficient anthropomorphic robots able to walk on flat floor with minimum
actuation [Wisse et al. 2007].

Passive walkers are nonetheless limited by the simplicity of their design and
their lack of actuation. They are in essence dynamic machines, meaning that they
cannot perform quasi-static motions nor can they get away from the cyclic trajec-
tory imposed by their mechanical design. They are however useful to get an insight
over what an efficient walking motion looks like. In some ways, building a passive
walker amounts to solving an optimization problem through physics alone, rather
than on a computer.

2.2 Optimization for locomotion

By drawing inspiration from passive walkers, researchers developed gait cy-
cles for actuated bipeds which minimize energy consumption [Channon et al. 1992;
Roussel et al. 1998]. The next step ahead was to rewrite the locomotion planning
problem as an optimization problem, by transcribing high-level walking commands
into costs and system dynamics into constraints. However, the problem of stability
has quickly become prevalent in the study of anthropomorphic locomotion. Indeed,
since the stable support of humanoids is limited to the convex polygon of their feet,
they tend to fall over easily. The immediate solution to this issue consists in gen-
erating a Center of Mass (CoM) trajectory whose projection on the ground remains
inside the support polygon of the feet in contact [Zheng and Shen 1990]. This leads
to a quasi-static locomotion far from human-like gait.

2.2.1 Trajectory optimization based on template models

To produce more complex optimal trajectories while being computationally tractable,
researchers turned to template models and simplified stability criteria. The aim was
to extract the fundamental dynamics of walking in order to be able to predict the
evolution of the system in simple experimental conditions, like flat ground locomo-
tion.

The ZMP criterion

At the heart of biped locomotion stands the need to regulate the centroidal dy-
namics, an essential concept which will be described more precisely in the next chap-
ters. In order to produce dynamic gaits, researchers have proposed walking meth-
ods based on the optimization of the Zero Moment Point (ZMP) [Vukobratovic and
Juricic 1969] trajectory. The ZMP is an imaginary point on the ground at which the
moment of contact forces is null in both horizontal directions. It actually describes a
non-tilting condition for the feet: as long as the ZMP remains inside the convex hull
of the contact points, the robot will not tip over. Likewise, it ensures the dynamic
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stability of the robot, whereas trajectories based on the CoM alone could only ensure
static stability. Dynamic stability guarantees that at each instant in time, the robot
is able to avoid falling and to stop its motion within a few steps. This means that
even if the CoM happens to lay outside of its polygon of support, the control law can
bring the system back to a statically stable configuration. Methods based on ZMP
were successfully deployed on the WL-10RD robot [Takanishi et al. 1989], Honda
robot [Hirai et al. 1998], H5 robot [KAGAMI et al. 2000] and HRP-2 robot [Huang
et al. 2001]. These early works were often limited by the fact that the computed ZMP
trajectory has to be feasible by the robot, meaning that there must exist a joint trajec-
tory that achieves the desired ZMP tracking. To overcome this issue, Huang [Huang
et al. 2001] proposed heuristics based on the generation of hip and feet trajectories
via spline functions, followed by the computation of the optimal ZMP and the selec-
tion of the one hip trajectory resulting in the widest stability margins.

Linear Inverted Pendulum model

One of the first template models successfully used in robotics is the Linear In-
verted Pendulum (LIP) model [Sano and Furusho 1990; Kajita and Tani 1991]. The
main idea behind LIP is to linearize the CoM dynamics by reducing the robot to a
point mass fixed at the end of an inverted pendulum with massless shaft. This sim-
plification however comes with very conservative assumptions like constant CoM
height and zero angular momentum.

The convexity of the LIP formulation has allowed the generation of dynamic
trajectories in real time [Sugihara et al. 2002], a key feature for producing any high-
performance motion. Combined with the ZMP stability criterion, LIP approaches
resulted in efficient real-time preview schemes [Kajita et al. 2003] which can leverage
future information to compute current control outputs. This work marked the be-
ginning of predictive control applied to biped locomotion. It is based on three main
features: (1) A cart-table model with linear dynamics, (2) a predictive control frame-
work whose objective is to track a ZMP trajectory reference over a preview horizon
and (3) an inverse kinematics (IK) controller which produces joint commands so as to
follow the computed ZMP. The predictive control problem is solved through Linear
Quadratic Regulator (LQR) in real-time. Since the cart-table model only loosely ap-
proximates the multibody dynamics of the real robot, the preview control becomes
essential to predict and compensate future errors resulting from model simplifica-
tion.

In the last two decades, many variations of the LIP model were explored. Recent
formulations now integrate CoM height motion [Englsberger and Ott 2012; Koolen
et al. 2016a] or treat it as a disturbance [Brasseur et al. 2015]. Since angular mo-
mentum recovery balance is crucial to biped locomotion [Kuo and Zajac 1993], en-
hanced pendulum models using flywheel were proposed for humanoids [Komura
et al. 2005; Pratt et al. 2006]. Among other LIP extensions, the Spring-Loaded In-
verted Pendulum (SLIP) model was proved to encode the natural running dynam-
ics of animals [Holmes et al. 2006] and thus produced impressive motions on hu-
manoids [Garofalo et al. 2012; Wensing and Orin 2013]. Xiong and Ames [Xiong
and Ames 2019] studied a combination between LIP dynamics and nonlinear SLIP
dynamics, which are more complex to compute online, in order to decouple the pe-
riodic and transitional phases of the walking motion. Mordatch et al [Mordatch et al.
2010] deployed a linearized version of SLIP inside a physics-based locomotion con-
troller. In [Rezazadeh and Hurst 2020], the vertical motion of the SLIP is submitted
to a forced-oscillation scheme to ensure stability, and the dynamics is decoupled into
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vertical and horizontal motions.

Generic stability criterion

ZMP formulations are nonetheless limited to horizontal planes with sufficient
friction. A generalized stability criterion for arbitrary terrain was thus proposed in
[Hirukawa et al. 2006]: the polyhedral Convex Wrench Cone (CWC) corresponding
to the limits imposed on the contact and gravitational wrench applied to the CoM of
the robot. Although the computation of CWC is costly, it only needs to be performed
once for each pre-defined contact, allowing for offline pre-computation [Hirukawa
et al. 2007]. The efficiency of CWC formulation was later improved in [Caron et al.
2015a]. The CWC approach has fueled many works on contact force optimization
and robust balance, such as [Ott et al. 2011; Koolen et al. 2016b; Audren and Khed-
dar 2018]. In [Dai and Tedrake 2016], a convex upper bound of the real centroidal
momentum is minimized in order to plan robust walking motion through convex
optimization using CWC. Other works followed the idea of computing a desired
force trajectory to ensure balance [Hyon et al. 2007] or computing an optimal distri-
bution of contact forces by making use of torque redundancy [Righetti et al. 2011].
The strength of this approach is that it does not require a precise dynamic model to
achieve robust and compliant balance.

While CWC and ZMP provide reliable information about how to ensure stabil-
ity, they do not explain how to recover it after a large disturbance. The concept of
Capture Point (CP) was introduced in [Pratt et al. 2006] as a way to define a point
over which the CoM should be in the near future to prevent falling. CP was later ex-
tended to the 3-dimensional Divergent Component of Motion (DCM) [Englsberger
et al. 2013] and time-varying 3D DCM [Hopkins et al. 2014]. CP was successfully im-
plemented on torque-controlled robots [Englsberger et al. 2011; Koolen et al. 2016b]
and combined with operational space schemes [Ramos et al. 2014]. Similarly, DCM
trajectory generation and tracking approaches were reported in [Englsberger et al.
2014; Griffin and Leonessa 2016; Caron et al. 2019]. The key element to this success
is the decomposition of the centroidal dynamics between stable and unstable parts,
as feedback control is then only needed on the unstable part.

Another notable approach to dynamic walk involves the projection of the com-
plete model on the zero dynamics submanifold, leading to exponentially stable peri-
odic orbits for walking motions [Westervelt et al. 2003; Westervelt et al. 2004; Sreenath
et al. 2011]. This idea, named Hybrid Zero Dynamics (HZD), is particularly useful
for building offline gait libraries [Galliker et al. 2022] or capturing the exact underac-
tuated dynamics of the robot in order to design stable gait feedback controllers [Griz-
zle and Christine 2017].

Template models like the LIP fueled the first approaches toward trajectory opti-
mization in locomotion context. The simplicity of LIP dynamics has allowed to cut
computation load and to develop receding horizon techniques that will later lead to
Model Predictive Control (MPC) theory. On the other hand, dynamic stability crite-
ria like the ZMP or CWC have allowed to consider force and actuation limits in the
optimization problem.

Although elegant, the LIP formulation remains a linear approximation of real
walking dynamics, with no consideration for kinematic feasibility, limbs inertia, or
total angular momentum. Practical implementations of LIP schemes require fine-
tuned tracking control and particular heuristics to enforce feasibility; even yet, the
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original LIP model is not fitted to generate complex multi-contact whole-body mo-
tions on uneven terrain.

2.2.2 Nonlinear fullscale trajectory optimization

The locomotion problem of a full legged robot involves unilateral contact forces,
friction cones, kinematic and dynamic limits, as well as nonlinear dynamics. Pow-
erful nonlinear solvers are required to tackle the whole complexity of this problem.
The algorithms used to solve it can be classified into three main branches [Diehl et al.
2007]:

• Dynamic Programming Methods, based on the solution of a Hamilton-Jacobi-
Bellman equation, compute an optimal feedback policy on the entire state
space. They are usually not tailored for high-dimensional problems as they
tend to become overly expensive to compute.

• Indirect Methods, based either on Pontryagin’s Maximum Principle or Euler-
Lagrange theory, solve an ordinary differential equation before discretizing it
to produce the optimal trajectory. The complexity of the dynamics equations
to solve massively hinders their use in robotics.

• Direct Methods attempt to first discretize the problem, then solve the resulting
finite dimension programming problem using various numerical tools. This
class of methods is particularly popular among the robotics community as a
finite dimension problem is easier to handle than an infinite one.

Among the Direct Methods, three main classes of transcription are commonly
used in robotics:

• Single shooting methods consider only the control as a decision variable and
compute the state by integrating the dynamics, starting from the beginning of
the horizon. This class of algorithms is very sensitive to initial conditions and
behaves poorly with long horizons, so it is not often considered in robotics.

• Multiple shooting methods divide the time horizon into a collection of smaller
intervals and solve the problem on each interval using a single shooting ap-
proach, while enforcing continuity constraints at the bounds of each sub-trajectory.

• Finally, collocation methods discretize simultaneously the state and control
variables and make them match over a finite set of collocation points, then
interpolate between each collocation point using polynomials or splines.

The DDP algorithm

Among significant trajectory optimization techniques, Differential Dynamics Pro-
gramming (DDP) [Mayne 1973] has become quite popular in robotics because of its
second-order convergence rate, linear complexity in horizon length and local opti-
mal feedback policy. The algorithm efficiently exploits the sparsity induced by the
temporal structure of the optimal control problem, allowing for cheap computation
efforts. The simplicity of the DDP formulation is also likely a key factor to explain its
popularity, given that it can lead to efficient and robust implementations dedicated
to any specific system. DDP is considered to be a shooting method based on Bell-
man’s optimality principle [Bellman 1954]. It operates by linearizing the dynamics
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at the second order around an initial trajectory solution, then performing a back-
ward Riccati recursion in order to compute the optimal cost-to-go starting from the
end of the horizon. Finally, a nonlinear forward rollout is performed to retrieve the
trajectory state from the optimal feedback policy. This rollout is essential to fulfill
the dynamics constraints along the trajectory.

Despite its advantages, the DDP formulation faces several dowsides: it cannot
take inequalities constraints into account, unless they are written as quadratic bar-
rier functions. Besides, the algorithm is at its core sequential, even if some interesting
extensions based on decoupling the optimization from the dynamics have been pro-
posed to make it parallelizable [Lantoine and Russell 2012]. Finally, DDP is consid-
ered less numerically robust than other NLP solvers and is sensitive to conditioning
issues.

In the frame of this thesis, an improved version of the DDP algorithm has been
used to generate whole-body trajectories in real-time on a fullscale humanoid robot.
Additionally, the natural feedback policy induced by the Riccati recursion has been
leveraged to bridge the frequency gap between low and high-level controllers. In
our opinion, DDP is the best choice of solvers to implement quickly and easily a
proof of concept of full dynamics predictive control.

DDP-related methods

The DDP algorithm implies the computation of the second order derivative of
the dynamics, which can be difficult to obtain. Simpler versions of the algorithm
omitting this term have been implemented for real-time applications, like the iter-
ative Linear Quadratic Gaussian (iLQG) [Todorov and Li 2005], sometimes called
iterative Linear Quadratic Regulator (iLQR), suited for nonlinear systems subject
to control constraints. The ALTRO solver [Howell et al. 2019] notably uses iLQR
combined with augmented Lagrangian to solve for constrained trajectory optimiza-
tion with unfeasible initial guesses. Similar to DDP is also the Sequential Linear
Quadratic (SLQ) algorithm [Sideris and Bobrow 2005], again based on the resolu-
tion of a sequence of linear quadratic sub-problems via a Riccati approach.

Another way to simplify the DDP is to perform a linear rollout of the dynamics
instead of a nonlinear one. Doing so results in a Sequential Quadratic Program-
ming (SQP) [Nocedal and Wright 2006b] algorithm which may include equality and
inequality constraints, at the price of having to consider a merit function to esti-
mate the violation of constraints induced by the linear approximation. Such a merit
function is usually not easy to write as no generic method exists to define it. Nev-
ertheless, many state-of-the-art NLP solvers are based on SQP paradigm, like Aca-
dos [Verschueren et al. 2020] or SNOPT [Gill et al. 2002].

2.2.3 Contact scheduling

Planning a sequence of feasible contacts in cluttered environments is on its own
a very complex problem whose resolution depends on the model chosen to repre-
sent contact physics. In the realm of soft robotics, bodies are treated as continuously
deformable objects which exhibit spring-damper behavior when coming into con-
tact [Kim et al. 2013]. Despite being a more accurate description of contact physics,
this representation is often viewed as too complex to be embedded into a full con-
trol pipeline. As a consequence, rigib body models are most often used in fullscale
robotics. Under the rigid body assumption, surfaces cannot be deformed and any
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collision results in an impact event in which forces and velocities become discontin-
uous.

Hybrid dynamics

A popular approach to locomotion with rigid contacts consists in optimizing in-
dependently the motion over each contact mode, where the dynamics remains dif-
ferentiable. This amounts to decomposing the locomotion problem into its contact
planning component and whole-body control component. Mixed-Integer Program-
ming (MIP) [Deits and Tedrake 2014] or bilevel optimization [Wampler and Popovic
2009] are widespread tools to solve the contact planning problem. Other methods
leverage sampling-based algorithms like RRT [Perrin et al. 2012] or probabilistic
roadmaps [Tonneau et al. 2018].

Although simpler to implement, hybrid dynamics techniques add another layer
of complexity to the control framework and tend to make the locomotion more con-
servative. Besides, the whole-body feasibility of the contact sequence given by the
planner must be actively enforced.

Implicit dynamics

Solving simulaneously for the contact sequence and whole-body motion appears
as a significant challenge, but allows to explore richer modes of locomotion. Some
works [Posa et al. 2014] proposed to rewrite the hybrid dynamics as complemen-
tarity constraints stating that forces can be non-zero only when collision distance is
null, and vice versa [Brogliato 2016]. Hybrid modes are thus implicitely described
through a state-force relationship rather than integer variables. Another approach is
to smooth the contact constraints [Todorov 2014] and perform continuous optimiza-
tion over contact placements and motion [Mordatch et al. 2012].

Implicit dynamics is a promising angle of work to produce complex multi-contact
trajectories through optimization alone, although it also suffers from poor numerical
conditioning and heavy computational load.

2.2.4 Optimization for whole-body locomotion

Both multiple shooting and collocation methods lead to solving a high-dimensional
NonLinear Problem (NLP) which is overly complex and may contain several local
minima. As a consequence, most multi-contact trajectory optimization problems can
only be solved offline, unless some simplifying heuristics is leveraged. Nevertheless,
direct methods were successfully implemented on various robotics platforms for the
last two decades: in [Schultz and Mombaur 2010], a direct multiple shooting algo-
rithm generates human-like running motions based on multiphase periodic cycles
and pre-specified contact sequence. In [Hereid et al. 2015], a multiple shooting for-
mulation is used to optimize the virtual constraints in gait generation. In [Aller et
al. 2022], the same transcription scheme allows to benchmark sit-to-stand motions
with the humanoid REEM-C. Using a pre-defined contact sequence and a centroidal
model solved through SQP, the robot HRP-2 climbed stairs with handrail in [Ku-
druss et al. 2015].

As for collocation methods, Posa et al. [Posa et al. 2014] used it to generate walk-
ing trajectories without the need of a pre-defined contact sequence. Two years later,
the same authors introduced DIRCON [Posa et al. 2016], a trajectory optimization
algorithm based on collocation and third order integration accuracy. Ma et al. [Ma
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et al. 2019] applied the collocation paradigm to gait planning for quadrupeds. Re-
cently, contact-implicit schemes combined with collocation have been attracting a lot
of interest in the field [Doshi et al. 2018; Manchester et al. 2019], with some of them
reaching real-time capabilities [Aydinoglu and Posa 2022].

As for the DDP algorithm, it was successfully used as a whole-body planning
tool to grasp the full dynamics of the robot in [Neunert et al. 2017]. In [Budhi-
raja et al. 2019], the locomotion problem is separated into actuated and unactu-
ated parts then solved conjointly using an Alternative Descent Method of Multi-
plier (ADMM); the whole-body part of the dynamics is obtained through a DDP
scheme. In [Todorov 2014], the DDP paradigm is embedded into a full simulation
pipeline with relaxed constraints and fast forward dynamics. The technique, orig-
inally not suited to handle inequality constraints, was generalized in [Tassa et al.
2014] to accommodate box inequality constraints on control. It was also extended to
implicit dynamics with a closed form of the backward pass and differentiable con-
tact model in [Chatzinikolaidis and Li 2021], allowing the solver to discover new
contact sequence modes. A promising approach based on a mix of DDP and aug-
mented Lagrangian has recently been proposed to handle inequality constraints [Jal-
let et al. 2022a], but has not been implemented yet on hardware. Similarly to DDP,
SLQ was also integrated into a multi-level optimization framework in [Farshidian
et al. 2016], where the algorithm outputs continuous control command and opti-
mal contact switching times. Trajectory optimization based on iLQG techniques was
reported in [Tassa et al. 2012] where the solver optimizes for state, control and con-
tact forces simultaneously, without the need for prior contact sequence specification.
In [Suh et al. 2022], iLQG is used along a contact-implicit scheme and a stochastic
formulation of the dynamics.

Despite impressive results in terms of gait discovery and multicontact motion
generation, trajectory optimization techniques considering the robot full dynamics
were, until recently, restricted to open-loop applications due to their high compu-
tational load. They typically cannot cope with brutal problem changes or accumu-
lating errors caused by model discrepancy, and are still overall limited to provide
reference trajectories to a low-level tracking control scheme.

2.2.5 Gait libraries

To mimic online re-planning capacities, the idea of gait library [Liu et al. 2013]
was proposed in the literature: it consists in computing offline a comprehensive
dataset of relevant walking trajectories, then selecting and refining online the most
adapted reference motion. Gong et al. [Gong et al. 2019] implemented a gait library
enforced through inverse kinematics feedback on the biped Cassie to produce fast
and robust motions; Nguyen et al. [Nguyen et al. 2020] used a gait library and con-
trol barrier functions to cross stepping stones; Guo et al. [Guo et al. 2021] constructed
a whole-body trajectory library that synthesises an optimal reference based on the
online centroidal prediction. The downside of this class of methods lies in the diffi-
culty to interpolate online the stored trajectories in order to produce a good reference
starting from the current state of the system.
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FIGURE 2.2: Generic structure of mixed control formulations. The
feedback loop on the planner may not exist, depending on the nature
of the planning problem. In the general case, the whole-body control
frequency is one or two orders of magnitude higher than the planner

frequency.

2.3 Mixed control approaches

Mixed control formulations split the locomotion problem between the high-level
planning part (generating a trajectory reference) and low-level whole-body control
part (tracking the reference), as illustrated in Fig. 2.2. Due to their computational
complexity, most optimization solvers cannot run online in closed-loop, or not fast
enough to prevent the system from drifting. A low-level controller is then needed to
follow the desired trajectory and adapt it to environmental variations, model uncer-
tainties, kinematic and dynamic limits, and so on. From a practical point of view, a
robust, compliant and reactive low-level control is the key to any successful imple-
mentation on robotic platforms.

2.3.1 Problem formulation

The goal of the low-level controller is to produce torque commands that guaran-
tee the execution of the reference plan on hardware. First motion control schemes
made use of very simple control frameworks such as Proportional Integral Deriva-
tive (PID) feedback loop to perform trajectory tracking. This framework is especially
dominant in industrial robotics [Arimoto 1984; Islam and Liu 2011] as it is suited for
precise position control. However, PID schemes operate in the joint space of the
robot and are not practical to use from a task-oriented point of view. Besides, they
do not take into account the dynamics of the robot and can only follow reference
motions that are geometrically and dynamically feasible.

The operational space framework [Khatib 1987] was developed in order to focus
on task execution and make the control more intuitive. For each task to be consid-
ered, the relative error is expressed in the relevant task space, which is usually of
smaller dimension, then transcribed into a whole-body control through projection
on the nullspace of higher priority tasks. The formalism of operational space ap-
proach allows to decouple the different tasks and to define a hierarchy among them
by exploiting the system redundancy.

A straightforward application of operational space framework is inverse kine-
matics (IK) control, which consists in finding the joint variation that leads to the
completion of a given task objective, for example a desired end effector position in
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Cartesian space. Kinematic constraints can be enforced at small cost thanks to the
hierarchical aspect of the formulation, leading to fast implementation on real hu-
manoid robots [Gienger et al. 2005; Mansard and Chaumette 2007].

For walking and balancing tasks, IK techniques quickly show their limits since
they do not consider contact interactions and balance constraints. On the other
hand, Inverse Dynamics (ID) makes the connection between the generalized control
torques and joint accelerations, while including contact constraints and underactua-
tion. Extensions of the operational space to ID tasks were quickly proposed to take
into account dynamic feasibility while performing posture objectives [Khatib et al.
2004]. In [Saab et al. 2013], the formalism is generalized to the full dynamics of a
humanoid robot, with reduced formulation of multiple rigid planar contacts.

2.3.2 Low-level control solvers

Operational-space formulations were first solved by computing an analytical so-
lution through nullspace projections based on the dynamically consistent Jacobian
of the task [Khatib et al. 2004; Sentis and Khatib 2005]. Later, this approach was
used to perform compliant balance on the torque-controlled robot Toro [Henze et al.
2016]. In [Lee et al. 2016], a robust and dynamic model-free controller implemented
a force-level operational-space framework with no need for costly model identifica-
tion, thanks to an online dynamics estimation scheme and adaptive control modes.

Limitations of nullspace projection methods include the fact that inequality con-
straints cannot be taken into account in the task formulation. To overcome this issue,
Quadratic Programming (QP) approaches were quickly proposed and implemented
on real platforms. QP stands as a popular local optimization framework that han-
dles well inequality constraints such as friction cone or joint limits. Besides, QP
benefits from efficient off-the-shell solvers and a significant community of users.
First QP implementations [Park et al. 2007] reformulated the balance problem as a
second-order cone programming problem easily solvable with convex solvers. To ar-
bitrate between conflicting tasks and ensure robust balance, a weighting QP scheme
is used in [Collette et al. 2008]. Leveraging smooth weight variations, a whole-body
QP control handled transitional tasks in [Salini et al. 2011]. In order to enforce a
strict hierarchy among tasks, the work of [Kanoun et al. 2009] proposed to solve
a sequence of linear QP problems ordered by priority. Following this idea, hierar-
chical QP [Mansard 2012] was developed to blend the efficiency and generality of
QP with the simplicity of task-function methods: by decoupling motion and force
equations, the control formulation cancels the ill-conditioned parts of the problem
and decreases the computational load, allowing for real-time applications. In [Her-
zog et al. 2014], a hierarchical QP framework is used to perform momentum control
on torque-controlled humanoids. Combined with a walking pattern generator that
outputs optimal centroidal trajectory and contact forces, the same method produced
locomotion on non-planar surfaces [Ramos et al. 2012].

In [Herzog et al. 2016a], the QP formalism was completed with a LQR scheme
that performed receding horizon tracking control. Using a multi-contact high-level
planner, the robot HRP-2 climbed a ladder thanks to a multi-objective model based
QP [Vaillant et al. 2014]. Its successor HRP-4 performed complex and dexterous
manipulation tasks by combining force-task formalism with a multi-robot QP con-
troller [Bouyarmane et al. 2019]. Using admittance control and QP-based wrench
redistribution, HRP-4 also climbed 18.5 cm-height stairs with a LIP model [Caron
et al. 2019]. In a similar vein, the work of [Focchi et al. 2017] demonstrated that di-
rectly optimizing the ground reaction forces through QP greatly improved legged
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locomotion of torque-controlled robots on steep slopes, by contributing to prevent
contact slippage.

The flexibility and efficiency of QP formulation may explain its popularity among
the robotics community. With nowadays off-the-shelf solvers, this class of programs
can easily be solved in a few milliseconds or less, matching the low-level frequency
of current torque-controlled robots (1 kHz or higher). Real-time QP has been com-
bined with operational-space approaches, optimal control techniques, soft contacts,
passivity-based control, wrench distribution schemes, and so on. Its massive use as
an instantaneous control tool is widely acknowledged as a natural evolution of task-
function paradigm and least-square solvers [Wensing et al. 2022].

Mixed control formulations can be considered as state-of-the-art solutions to the
practical problem of locomotion. However, they tend to lead to multi-layered con-
trol schemes with complex interconnections between control blocks. Mixed formu-
lations imply at least two different optimization processes running in parallel, with
no guarantee on the global optimality of the final motion. Additionally, when the
high-level planner generates centroidal trajectories, the whole-body feasibility of the
motion is often difficult to ensure.

2.4 Predictive control

Model Predictive Control (MPC) [Rawlings et al. 2017] provides a general and ef-
ficient toolbox for online re-planning while considering system dynamics and path
constraints. By repeatedly solving a finite-horizon trajectory optimization problem
in close-loop, MPC can deal with the issues of state drift, model uncertainties, unpre-
dicted environment changes and external disturbances. Its performances are deeply
linked to the length of the preview horizon and the computation frequency. MPC is
viewed as a naturally compliant approach thanks to its intrinsic feedback properties.

The choice of the dynamic model to be used inside MPC appears to be of crucial
importance, since a very complex model would drastically affect the re-planning
frequency. As a consequence, first applications of MPC in robotics used template
models and linearized dynamics to speed up trajectory computation. Recently, the
rise in computer power has allowed even more complex MPC schemes to become
viable.

2.4.1 Linear Predictive control

The main idea behind linear Model Predictive Control is to simplify the prob-
lem until standard convex optimization tools can be used to solve it. It often relies
on template models that approximate the real dynamics and make it computation-
ally tractable. In most cases, the angular part of the centroidal dynamics, which is
infamously nonlinear, is neglected as well.

Following the work of Kajita et al. [Kajita et al. 2003], numerous mixed control
formulations based on MPC were proposed to generate robust walking patterns.
The core idea of these approaches consists in computing the centroidal part of the
dynamics along a preview horizon and projecting the solution of the first timestep
to the configuration space via an instantaneous whole-body control, usually a QP
scheme. Thanks to the iterative recomputation of the optimal centroidal trajectory,
the walking motion is continuously adapted to the current state of the system; ad-
ditionally, the instantaneous controller plays the role of a trajectory stabilizer and
guarantees the robustness and the compliance of the general control scheme.



2.4. Predictive control 23

Other works based on LQR formulation proved the reliability of such a frame-
work [Nagasaka et al. 2004; Nishiwaki and Kagami 2006], but they still remain lim-
ited by the complexity of the contact constraints; besides, they need to rely on high-
level adaptation schemes in order to track the reference trajectory [Park and Cho
2000; Huang et al. 2000; Wieber and Chevallereau 2006]. To overcome this issue and
increase robustness, Wieber generalized the LQR of Kajita in the form of a linear
MPC [Wieber 2006b]. Diedam et al. [Diedam et al. 2008] then extended this work by
introducing footstep adaptation in the MPC and using QP rather than LQR to solve
the OCP, allowing inequality constraints to be taken into account. Thanks to this
footstep adaptation, the robot is provided with strong recovery capabilities. Later,
the work of [Herdt et al. 2010] enhanced the flexibility and independancy of the
linear MPC scheme by replacing the ZMP trajectory reference with a user-defined
translation speed. Another notable work on linear MPC considers centroidal dy-
namics with negligible angular momentum variations and establishes a dynamic
balance criterion that is more general than the ZMP [Perrin et al. 2018]. This scheme
allows to generate 3D locomotion with multiple non-coplanar contacts, based on a
succession of convex quadratically constrained QP.

Although simple to implement, linear MPC is based on restrictive hypotheses
that limit its range of applications. It usually neglects the angular momentum of the
trunk, which can be significant during jumping or running. Besides, ensuring the
compatibility of whole-body motions with desired reference trajectory has remained
a challenging task. As the computation power of modern computers has kept on
increasing, the robotics community has turned toward more complex models with
nonlinear dynamics.

2.4.2 Nonlinear Predictive Control with template models

The LIP approach, although computationally tractable, remains a gross approx-
imation of the robot complete dynamics, and is not fitted for complex scenarios in-
volving non-coplanar contacts. Single Rigid Body (SRB) model, on the other hand,
reduces the robot to a unique body with constant inertia while keeping the nonlinear
form of the dynamics. This formulation is particularly adapted to quadruped robots,
since their legs are light with respect to the rest of their structures, but it necessitates
complex nonlinear solvers to handle it. Consequently, SRB is frequently used in tra-
jectory optimization [Winkler et al. 2018] or simplified into linear schemes in order to
become real-time [Di Carlo et al. 2018; Villarreal Magaña et al. 2020; Ding et al. 2020].

In order to handle the nonlinearity of the dynamics in real-time, several Nonlin-
ear MPC (NMPC) frameworks were proposed in the literature. One of them is the
Real-Time Iteration scheme [Diehl et al. 2005], a framework that continuously com-
putes refined approximations of the optimal control through a Newton-type mul-
tiple shooting algorithm. Extensions of this scheme were introduced to automati-
cally cope with footstep placements and local obstacle avoidance on the humanoid
HRP-2 [Naveau et al. 2017]. Rathod et al. [Rathod et al. 2021] deployed the Real-
Time Iteration scheme on the quadruped HYQ and performed terrain adaptation
and disturbance rejections. Since Real-Time Iteration formulations do not scale well
with longer horizons, a condensing NMPC approach with linear complexity over the
horizon length was proposed in [Vukov et al. 2013]. Later, Quirynen et al. [Quiry-
nen et al. 2015] presented a fast NMPC scheme allowing microsecond computation
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thanks to code generation. This scheme is used in [Kamel et al. 2015] for the con-
trol of an aerial drone. In [Bledt and Kim 2019], a regularized nonlinear predictive
control is implemented on the MIT Cheetah 3 to solve for footstep placements and
ground reaction forces.

As for humanoid robots, first NMPC applications were concerned with the ex-
act resolution of the 3D biped centroidal dynamics [Orin et al. 2013]. The key point
of the approach is to consider the CoM not as a point mass, but as a 3D body with
inertia depending on the robot configuration. Consequently, contact forces have an
impact on the variation of angular momentum. Such a formulation is often called a
walking pattern generator, and its function is generally to compute optimal CoM, an-
gular momentum and ground forces trajectories respecting the contact constraints.
It is then up to the whole-body low-level control to design a limb motion that will
satisfy the high-level centroidal trajectory.

An efficient pattern generator based on centroidal dynamics was reported in [Hirukawa
et al. 2007], where the state and control are optimized over a reference CoM trajec-
tory and force distributions. A MPC formulation of this walking pattern genera-
tor was proposed and demonstrated in [Carpentier et al. 2016], where the control
scheme is able to handle arbitrary 3D contacts and can work without reference tra-
jectories. In [Ponton et al. 2016], the centroidal dynamics non-convexity is relaxed
so as to be embedded inside a constrained QP, while feet reachability constraints are
approximated as ellipse regions. This convex approximation is then combined with
a foostep contact planner based on mixed integer programming, allowing push re-
covery and online adaptation of the contact sequence. However, the experimental
results are limited to simulation, and the method is not formulated as a MPC despite
a reduced computation load (100 ms for 5 iterations).

Similarly to linear MPC, nonlinear centroidal MPC faces the challenge of kine-
matic feasibility and low-level control adaptation. High-level walking pattern gen-
erators often have to rely on dynamic stabilizer to filter the desired CoM trajectory
and produce stable locomotion. Tackling the walking problem as a whole requires
to increase the complexity of the model even further.

2.4.3 Full kinematics MPC

The weakness of the centroidal approach lies in the feasibility constraints (kine-
matic limits, footstep length, momentum match between full kinematics and cen-
troidal dynamics), as for each optimal CoM trajectory there is no guarantee that a
feasible whole-body motion exists to achieve it [Carpentier and Mansard 2018b].
In [Dai et al. 2014], the centroidal dynamics and whole-body kinematics of the hu-
manoid Atlas are conjointly solved in order to enforce the kinematic limits along
the horizon; yet the approach is not quite real-time and cannot be formulated as a
MPC. Using a SLQ scheme and a multi-processing estimation of the value function,
Farshidian et al. [Farshidian et al. 2017] achieved real-time computation of the CoM
dynamics and full kinematics of the HyQ quadruped. Such an approach is repeated
in [Grandia et al. 2019] with a DDP-based solver that provides a Riccati feedback pol-
icy suited to bridge the gap between the high-level MPC and low-level actuation. In
this work, hard constraints are approximated through relaxed barriers functions.

Another interesting approach is presented in [Meduri et al. 2022], where the mo-
tion plan is decomposed into its centroidal dynamics part and full kinematics part.
The two problems are then solved alternatively until a kino-dynamic consensus is
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reached [Herzog et al. 2016b]. Experiments on real hardware have demonstrated a
MPC frequency of 20 Hz on the quadruped Solo12.

Compared to MPC with generic template models, MPC schemes based on kine-
matics preview partly solve the feasibility issue. Nevertheless, such an approach
does not consider the complete dynamics of the system nor the effects of contact in-
teraction, which are key points in multi-contact scenarios with heavy robots. More-
over, MPC with full kinematics preview still relies on fine-tuned whole-body con-
trollers to produce optimal torque commands and robustify the motion.

2.4.4 Full dynamics MPC

Full dynamics MPC, although overly complex, can leverage the full potential of
the robot dynamics, ensuring long-term balance and recovery from strong perturba-
tions [Corbères et al. 2021]. For robots with heavy limbs, it is best to take into account
the inertia of the end-effectors and their effects on angular momentum inside the tra-
jectory preview. Besides, full dynamics MPC can directly provide the actuation with
an optimal torque command, in case the robot is torque-controlled. Reduced MPC
schemes that rely on template models have to use instantaneous tracking controllers
(for example, a QP framework) to cast the centroidal solution over the whole-body
configuration, usually at the price of approximating kinematics and dynamics fea-
sibility. On the other hand, full dynamics MPC approaches have to face the curse
of dimensionality; as a consequence, they usually work with shorter time horizons,
thus hindering their predictive properties. As re-planning frequency is critical to
ensure reactivity and robustness, a very efficient trajectory optimization technique
must be chosen to solve the optimal control problem. Most recent works on full dy-
namics MPC implement DDP-based algorithms like iLQR or SLQ, or Gauss-Newton
approximations to speed up the computation of dynamics.

In [Erez et al. 2013], a whole-body MPC framework generates biped locomotion
in simulation, with a working frequency of 30 Hz for 500 ms of horizon. Such per-
formances are obtained thanks to an iLQG scheme combined with MuJoCo, a very
powerful physics engine that enables contact smoothing methods. A more simple
approach was taken in [Mason et al. 2016], where a full dynamics LQR is set to track a
reference walking motion computed offline by inverse dynamics, using the ZMP bal-
ance criterion. The control scheme is based on a linearization of the problem around
key positions, and is thus very fast to compute online. Experimental results include
balancing and biped walking on the hydraulic torque-controlled humanoid Sarcos.
A SLQ formulation is leveraged in [Neunert et al. 2016] to solve a full-dynamics
unconstrained MPC problem in real-time; the resulting feedforward and feedback
gains are directly applied inside the low-level actuation, without relying on addi-
tional tracking controllers. Hardware demonstrations involve a hexacopter and a
ballbot, both systems being highly dynamic and unstable.

One of the first demonstrations of full dynamics MPC on high-dimensional hard-
ware reached a frequency of 190 Hz for a predicted horizon of half a second [Ne-
unert et al. 2018]. Using explicit contact dynamics, contact locations and timings
are optimized along the state and control trajectories, which are then tracked by a
customized PD feedback loop. The optimization scheme, solved through a Gauss-
Newton multiple shooting approach, was successfully deployed on the quadrupeds
HyQ and ANYmal. In [Mastalli et al. 2022a], the low-level feedback policy is a direct
output of the full-body MPC executed at 40 Hz on the torque-controlled ANYmal.
This work notably paves the way for the use of local Riccati policies in low-level
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torque control for locomotion tasks. Mastalli et al. [Mastalli et al. 2022b] also pre-
sented a novel DDP scheme based on inverse dynamics and embedded it inside a
full locomotion-perception framework for quadrupeds. This approach benefits from
lower computation costs on derivatives and a higher convergence rate at the price
of having to solve dynamics equality constraints. Using a primal-dual interior point
method with Gauss-Newton approximation, a full dynamics MPC with timing op-
timization is solved in [Katayama and Ohtsuka 2022] at a frequency of 400 Hz and
produces jumping motions on the quadruped Unitree. Regarding humanoid robots,
the first demonstration of whole-body MPC took place on the HRP-2 platform, us-
ing a DDP scheme without closing the loop on the state measurement [Koenemann
et al. 2015]. Later, biped locomotion leveraging the full dynamics of the robot was
performed in [Galliker et al. 2022] with an offline gait computed through hybrid
zero dynamics. Yet, the walking motion was limited to 2 dimensions and relied on
high-level reference trajectories for state and control, either defined heuristically or
extracted from an external gait library.

In order to find a compromise between computation costs and prediction capac-
ities, some works resorted to a mix of template models and whole-body models.
In [Li et al. 2021], a hierarchy of models is used inside a single optimization frame-
work and the resulting MPC is benchmarked on simulation with quadruped, biped
and quadrotor. For legged locomotion, the current stance and next flying phase are
implemented through a whole-body model, while subsequent phases are modeled
as a reduced template. In [Yeganegi et al. 2022], a reduced MPC with 2 s horizon is
implemented along a full-body MPC with 0.3 s horizon, solved through iLQG. The
resulting scheme was tested in simulation with humanoid robots subject to unpre-
dicted pushes and delays.

Although very recent, full dynamics MPC is now mature enough to produce
robust and adaptable walking motions on heavy quadrupeds. Still, experimen-
tal demonstrations involving humanoids are lacking, as biped locomotion is much
more difficult to perform due to its intrinsic instability and reduced support area.

2.5 Learning motion: a policy-based approach to robotics

Most recent breakthroughs in legged robotics were driven by convex optimiza-
tion and ever-increasing onboard computational power. Trajectory-based approaches
have become more and more complex, taking into account the whole dynamics of
the system, sometimes also discovering new modes of locomotion on the fly. How-
ever, they are still limited by real-time constraints and tend to exhibit local optimal
solutions when the problem becomes too complex. Overall, they struggle to perform
an exhaustive search of the solution space.

On the other hand, policy-based methods are becoming an interesting alternative
to optimization in robotics. The aim of such approaches is to build an accurate rep-
resentation of the mapping between current state and desired control through sta-
tistical or learning processes over large chunks of data. Despite impressive results
in terms of policy inference and adaptation to unmodeled dynamics, they remain
limited by their sensitivity to hyper-parameters, their reliance on extensive training
datasets and their costly repetitions of trials and errors. Moreover, they do not scale
up well and are difficult to implement on real hardware, particularly on humanoids,
as they are not suited to handle constraints.
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In order to tackle these issues, the robotics community has started to explore
hybrid solutions, either by attempting to identify the model parameters of the op-
timization scheme through learning or by guiding the optimization with relevant
learned cues. Some works have also proposed to reverse roles and use model opti-
mization as a search guide for learning. Others have explored the option of leverag-
ing Reinforcement Learning (RL) to compute end-to-end control policies based on
extensive offline training in simulation.

2.5.1 Learning end-to-end

Biological systems exhibit great compliance properties stemming from the adap-
tive impedance of their neuromuscular system [Selen et al. 2009]. To reproduce such
compliance in robotics amounts to the use of time-varying PID gains, an approach
often labeled gain scheduling. However, finding the optimal gains with respect to
the completion of some given task remains a difficult issue. Some authors suggested
to synthesize a variable impedance control scheme with RL, making it tractable for
a various range of applications on real hardware [Buchli et al. 2011].

Relying only on data exploitation to design an end-to-end controller remains
nonetheless a challenge in robotics. In order to accumulate relevant locomotion
data, one must choose between learning through trial-and-error on very expensive
hardware or using approximate simulations that are difficult to transfer into the real
world. In this context, differentiable simulators are a key element of successful RL
implementation because they speed up the computation of gradient-based learning
while ensuring numerical stability [Degrave et al. 2019]. It was also proposed to em-
bed the entire physics simulation inside a neural network layer [Avila Belbute-Peres
et al. 2018]. However, the sheer dimension of the state space is still problematic.
Relying too much on gradients to guide the search tends to overstrain the learning
strategy and to produce conservative motions. Conversely, reference-free methods
lead to tedious explorations based on trial-and-error heuristics.

Despite those difficulties, impressive demonstrations of sim-to-real learning of
legged locomotion are on the rise. In [Siekmann et al. 2021], the biped Cassie exe-
cuted a set of different gaits learned by a policy network enforcing periodic costs.
In [Hwangbo et al. 2019], the quadruped ANYmal tracked high-level velocity com-
mands and performed push recovery thanks to a neural network strategy entirely
trained in simulation. Using nothing but a deep RL policy trained on simulation,
the biped robot HRP5 followed a footstep sequence and achieved walking, turning
in place and stairs climbing [Singh et al. 2022].

End-to-end RL is nonetheless at a very early stage of maturity, and cannot yet ex-
hibit reliable performances on biped platforms. Its convergence time, lack of gener-
alization and inability to handle constraints still hinder its development at a broader
scale.

2.5.2 Speeding up model-based approaches through learning

Since model-based optimization struggles to face the non-convexity of legged
dynamics, it has been proposed to alleviate the computation load by learning offline
the most complex parts of the problem, then using the learned function online inside
an optimal solver. Some works choose to learn the value function of Riccati-based
optimal control problem [Tamar et al. 2016; Lowrey et al. 2018; Deits et al. 2019],
other focus on learning the algorithm initialization [Mansard et al. 2018; Melon et al.
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2021], or cost functions [Tamar et al. 2017]. A different angle of work consists in using
learning to overcome the nonlinearity of the dynamics: such an approach is lever-
aged in [Lenz et al. 2015] where a real-time MPC with learned dynamics is designed
and tested in simulation over a wide range of tasks. In a similar vein, discontinuous
contact dynamics can be learned through implicit representations [Pfrommer et al.
2020].

One of the most pending issues in reduced model approaches is the gap be-
tween computing an optimal centroidal reference and finding a whole-body motion
to follow this reference. As for kinematics feasibility, some works rely on proxy
constraints derived from rough approximations for footstep feasibility [Perrin et
al. 2012; Naveau et al. 2017] or pre-computation of contact transitions [Orthey and
Stasse 2013]. In [Carpentier et al. 2017], the authors proposed to learn whole-body
feasibility constraints for locomotion with the aim of implementing them as a cost
inside the centroidal optimization. Using deep RL techniques, the authors of [Pan-
dala et al. 2022] learned the unmodeled whole-body dynamics constraints of their
quadruped system and have integrated it inside a centroidal MPC. Another ap-
proach to the problem consists in replacing the whole-body low-level control with a
trajectory adaptation scheme generated via deep RL [Gangapurwala et al. 2021]: the
proposed solution is robust to unmodeled dynamics and embeds an exteroceptive
feedback of the terrain map, so as to enforce adaptation to various environments.

Another popular use of data-driven methods in model-based robotics is to learn
footstep planning in cluttered environments, through supervised learning [Kalakr-
ishnan et al. 2011], neural network classifier [Cauligi et al. 2021] or RL approaches
[Tsounis et al. 2020; Gangapurwala et al. 2021]. Since state-of-the-art algorithms
like mixed-integer programming are still unable to perform online re-planning of
contact sequence, such learning schemes are essential to achieve adaptable and re-
active walk on real robots. Using attention-based encoder trained end-to-end, the
quadruped ANYmal recently completed an hour-long hike through the Alps [Miki
et al. 2022].

2.5.3 Leveraging model-based optimization to guide data exploration

Robotics is characterized by the huge dimension of its state-space. As a conse-
quence, learning-based strategies can spend a major amount of time exploring un-
feasible or uninteresting chunks of the solution space, or even get stranded in local
minima. Guided policy search methods attempt to draw the policy learning process
toward regions of greatest interest, usually regions which minimize a given cost.
In [Levine and Koltun 2013], a DDP algorithm generates guiding samples for a neu-
ral network that performs various robotics motions. in [Tsounis et al. 2020], gradient
methods are used to help the training of the footstep planning policy. Similarly,
in the work of [Mordatch and Todorov 2014], trajectory optimization and function
approximation are blended together using an alternating direction method of multi-
pliers.

Other approaches use reduced models to fit data in simulation and perform
an exhaustive search of the state space in order to extract relevant motion heuris-
tics [Bledt and Kim 2020]. The adaptation laws are then applied back online on the
quadruped mini Cheetah, exhibiting increased performances.
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Policy-based methods, blended or not with optimization, provide a promising
angle of work to tackle the inherent complexity of locomotion by outsourcing it to
a library of data built through offline training or data compilation. Nevertheless,
they remain an unknown territory with very poor theoretical ground and tedious
training work, with a higher environmental impact due to the heavy use of computer
resources.

2.6 Thesis formulation

Recent developments in robotics have lead to outstanding real-world demonstra-
tions that seem to pave the way for widespread applications of versatile legged plat-
forms. While the first successful walking achievements relied on basic linear opti-
mization and overly simplified models or instantaneous tracking of offline-computed
trajectories, new approaches dare to take into account the whole complexity of the
model and to solve conjointly for planning and control in a cluttered environment.
The increase of computational performances due to Moore’s law has played an im-
portant role in recent breakthroughs, allowing to deal with even more complex
problems online. Still, state-of-the-art methods for locomotion remain based on
mixed control formulations with a decomposition of the problem into more tractable
blocks.

We believe that now is the time to develop full dynamics optimal control algo-
rithms for high-performance locomotion on various terrains. In the frame of this
thesis, we formulate three propositions that we wish to argue:

• High-level planning and low-level control can be synthetized into a single op-
timization framework that is cheap to implement on real hardware.

• Full dynamics MPC can produce robust and reliable locomotion on heavy
robots.

• Full dynamics MPC can be combined with learning methods to increase its
exploration capacities.

Our contributions to the field of robotics are both theoretical and experimental.
First, we proved that the Riccati matrix produced by the backward pass of a DDP
scheme can be interpreted as a local and optimal feedback policy with regard to
the initial state of the problem. This policy, computed at no additional cost, can
fill the frequency gap between the high and low-level control of our framework,
allowing more dynamic motions to be performed online on the robot. Furthermore,
we showed that the backward pass of the DDP can be derived with respect to any
other parameters to extract a new set of sensitivities acting as a whole-body control
feedback loop.

Second, we demonstrated that a MPC integrating the whole dynamics of the sys-
tem into the horizon can perform locomotion on generic terrains with a fullscale hu-
manoid robot, thanks to strategic user-defined hints that help the solver to converge
in one iteration only.

In a third step, we studied how to reduce the number of pre-computed references
needed to walk in order to inject more flexibility into the control. Push recovery on
flat floor was successfully performed on the robot, and stairs climbing without feet
references was investigated in simulation.

Finally, we managed to connect our whole-body MPC scheme to an offline li-
brary of motion so as to handle the issue of local minima arising from non-convex
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scenarios. Collision avoidance in real time was successfully demonstrated on the
robot using a MOCAP target tracked by an end-effector.



31

Chapter 3

Mathematical tools for robotics

This chapter introduces various useful mathematical tools which will be used
in the rest of this manuscript. Our main focus is on system modeling and optimal
control methods with a particular emphasis on DDP algorithm.

3.1 Optimal control formulation

The generalized continuous OCP in trajectory-based methods is defined as the
minimization of a terminal cost `T and the integral of a cost ` over a given horizon
of size T > 0:

min
x,u

∫ T
0

`(x(t),u(t),t)dt + `T (x(T ))

s.t. x(0) = x0

∀t ∈ [0, T ], ẋ(t) = f (x(t),u(t))

(3.1)

In this equation, f describes the dynamics of the system, x(t)1 the state of the
system at time t and u(t) the control variable of the system. x : t 7→ x(t) and
u : t 7→ u(t) represent the state and control trajectories over the entire horizon
[0, T ]. The integral and terminal costs ` and `T are encoding the tasks the robot is
bound to perform (reference tracking, regularization, etc.).

An OCP for locomotion classically involves feasibility constraints on state and
control, but such constraints are difficult to deal with in real-time context. Several
recent works have proposed methods to directly handle hard constraints in high-
dimensional OCP [Howell et al. 2019; Kazdadi et al. 2021], but we nevertheless
choose to formulate our constraints inside the cost function through penalty bar-
riers, for the sake of computation load.

As already discussed, three main approaches exist to solve problem (3.1): Dy-
namic Programming, Indirect Methods and Direct Methods.

1For the sake of readability, in the following sections and chapters, we will denote Ab = ∂A
∂b , except

when not suitable (e.g. ∂∆u
∂x ). Bold capital letters indicate matrices and bold letters indicate vectors.
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Dynamic programming

This approach relies on the formulation of a Hamilton-Jacobi-Bellman partial
differential equation linking current action with future cost value. Given a policy
π(x, t) = u, we can define the continuous Value function to be the minimal possible
cost-to-go starting from x and t:

v(x, t) = min
π

( ∫ T
t

`(x(t), π(x(t), t), t)dt + `T (x(T ))
)

x(t) = x.
(3.2)

By splitting the integral of the running cost into two sub-intervals of size δt and
T − (t + δt) and by taking the first-order approximation of the first integral, we end
up with:

v(x, t) = min
π

( ∫ t+δt

t
`(x(t), π(x(t), t))dt +

∫ T
t+δt

`(x(t), π(x(t), t))dt

+ `T (x(T ))
)

≈ min
π

(
`(x(t), π(x, t))δt + v(x(t + δt), t + δt)

)
.

(3.3)

Now, the first-order approximation of the Value function writes:

v(x(t + δt), t + δt) ≈ v(x(t), t) + f (x(t),u(t))>vx(x(t), t)δt + vt(x(t), t)δt. (3.4)

Re-injecting in (3.3) and taking δt→ 0 results in the continuous Hamilton-Jacobi-
Bellman equation:

−vt(x, t) = min
u

(
`t(x,u) + f (x,u)>vx(x, t)

)
π∗(x) = argmin

u

(
`t(x,u) + f (x,u)>vx(x, t)

)
.

(3.5)

For high-dimension states and non-smooth costs, this equation is especially chal-
lenging to solve; moreover, it provides an optimal policy over the entire state space
when it would be simpler to compute only an optimal control trajectory. Being
too expensive to be tractable for real-time systems, this approach is rarely taken in
robotics, unless it is combined with direct or indirect methods.

Indirect methods

Indirect methods involve the formulation of the Maximum Principle of Pon-
tryaguin and the resolution of a boundary value problem based on the calculus of
variations. The objective is to describe the local solutions of the Hamilton-Jacobi-
Bellman equation by a set of differential equations subjected to initial and termi-
nal constraints. The resulting problem is then numerically solved before being dis-
cretized.
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Indirect methods classically start by defining the Hamiltonian of the dynamic
system as:

H(x(t),u(t),λ(t), t) = `(x(t),u(t), t) + λ(t)> f (x(t),u(t)), (3.6)

with λ : t 7→ λ(t) the co-state trajectory. Pontryaguin’s Maximum Principle then
asserts that the optimal state, co-state and control trajectories verify the following
optimality conditions:

ẋ∗ =
∂H
∂λ

(x∗,u∗,λ∗)

−λ̇∗ = ∂H
∂x

(x∗,u∗,λ∗)

0 =
∂H
∂u

(x∗,u∗,λ∗)

u∗ = argmin
u

H(x∗,u,λ∗)

(3.7)

with the boundary conditions:

x∗(0) = x0

λ∗(T ) = ∂`T
∂x

(x(T )).
(3.8)

The Hamiltonian formulation is closely linked to the Hamilton-Jacobi-Bellman
approach as the co-state trajectory represents the Value function gradient. The so-
lution of the two-point boundary problem is generally computed through shooting
methods or collocation. Because the system remains highly nonlinear, the differ-
ential equations involved in the formulation can be very tough to handle, and any
change in the way the control arcs are distributed across the horizon requires an en-
tirely new problem setup, hard to warm-start.

Direct methods

As discussed before, direct methods have gain popular interest among the robotics
community because they turn the continuous formulation into a NLP, a class of prob-
lems for which many powerful solvers exist, including ones that efficiently treat in-
equality constraints. Direct methods involve a finite dimensional parameterization
of the control and sometimes of the state, depending on the transcription. They are
particularly suited for low-dimensional problems but tend to feature heavy compu-
tational load in high dimension. Moreover, they do not exploit the sparsity of the
dynamics and the temporal causality of the state and control trajectories.

Once transcripted, the resulting NLP can be solved with fast and efficient SQP
frameworks like Acados [Verschueren et al. 2020] or MUSCOD [Diehl et al. 2007], or
with constrained iterative solvers like interior-point methods [Wächter and Biegler
2006] or Augmented Lagrangian [Nocedal and Wright 2006a]. The last two ap-
proaches revolve around converting the inequality constraints into penalty terms
inside the objective function, then solving a sequence of unconstrained optimization
problems whose minima tend toward the desired solution.
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3.1.1 Transcription of the continuous problem

Problem (3.1) is of infinite dimension and needs to be transcribed in order to
become tractable by classical optimization tools. In the frame of this thesis, a direct
transcription approach is implemented, meaning that we first discretize the continu-
ous OCP to turn it into a nonlinear program then solve it through a multiple shooting
method.

We thus divide the interval [0, T ] into T sub-intervals of width δt, where the
state xt at the end of each sub-interval is computed as the forward integration of
the dynamics given a constant control ut over [t, t + δt]. Here we arbitrarily choose
to represent the control over each sub-interval as a constant, but it can be described
by a polynom if the dimension of the problem is not a limiting factor. Similarly,
the discretization time step is considered constant in the following, but can be of
varying size in some works of the literature. Abusing the notations, we end up with
a discretized NLP of the form:

min
x,u

( T−1

∑
t=0

`t(xt,ut) + `T(xT)
)

s.t. x0 = x̂0

∀t = 0..T − 1, xt+1 = f (xt,ut),

(3.9)

with x̂0 the initial state of the system, and f now representing an integrated dy-
namics function. The optimization now takes place over a finite set of state and
control variables, which can be written as discretized trajectories: x = (xt)t=0..T and
u = (ut)t=0..T−1, with xt ∈ Rnx and ut ∈ Rnu .

3.1.2 The DDP algorithm

The resulting problem is typically nonlinear and non-convex due to the com-
plexity of the dynamics f and costs `. DDP will solve this NLP recursively through
a two-step process involving a backward pass to compute the optimal flow from the
terminal conditions and a forward pass to roll out the state and control trajectories.
In a sense, the DDP formulation is the synthesis between a direct transcription and
a dynamic programming approach, leveraging the best of both worlds.

Bellman’s optimality principle in discrete case

DDP is based in essence on a discrete version of the Bellman’s optimality princi-
ple, which states that any suffix of an optimal policy constitutes in itself an optimal
policy. Put it another way, DDP solves a set of smaller and simpler unconstrained
linear QP subproblems linked through a Riccati recursion.

Following this principle, we define the value function at time t to be the minimal
possible cost-to-go starting from x at t:

vt(x) = min
{us}T−1

s=t

( T−1

∑
s=t

`s(xs,us) + `T(xT)
)

s.t. xt = x

∀s = t..T − 1, xs+1 = f (xs,us).

(3.10)

Using this notation, the Bellman equation can be written as:
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vt(x) = min
u

(
`t(x,u) + vt+1( f (x,u))

)
. (3.11)

In other words, the recursion of the value function turns a minimization over
a sequence of controls into a minimization over a single control, knowing already
what form takes the optimal cost-to-go starting at the next time step. This idea is the
key component of Dynamic Programming. Likewise, the optimal policy at time t is
simply:

u∗t (x) = argmin
u

(
`t(x,u) + vt+1( f (x,u))

)
. (3.12)

Equation (3.11) illustrates that the optimal flow of the value function can be
computed recursively inside a backward pass, starting from the terminal condition
vT(x) = `T(x) and going toward the initial state x0. Once an optimal policy is
computed across the whole horizon, the optimal step can be obtained by line search
along this direction inside a forward pass, going from 0 to T.

Computing the backward recursion

As the problem is still nonlinear and non-convex, the DDP algorithm proceeds
by computing a quadratic approximation of the value function and linear approx-
imation of the policy in the backward pass. Given trajectory candidates (x, u) and
perturbations (∆x, ∆u), we define the Q-value to be the resulting variation of the
cost-to-go caused by the perturbation:

qt(∆x, ∆u) = `t(x+ ∆x,u+ ∆u) + vt+1( f (x+ ∆x,u+ ∆u))

−
(
`t(x,u) + vt+1( f (x,u))

)
.

(3.13)

Minimizing the Q-value with respect to ∆u gives the optimal policy based on the
state perturbation. By approximating the Q-value with a Taylor development at the
second order of the costs and dynamics, we obtain:

∆u∗(∆x) = argmin
∆u

qt(∆x, ∆u)

≈ argmin
∆u

1
2

 1
∆x
∆u

>  0 q>x,t q>u,t
qx,t Qxx,t Qxu,t
qx,t Qux,t Quu,t

 1
∆x
∆u


= −Q−1

uu,t(qu,t +Qxu,t∆x),

(3.14)



36 Chapter 3. Mathematical tools for robotics

with the following derivatives terms, ∀t = 0..T − 1:

qx,t = `x,t +F
>
x,tvx,t+1

qu,t = `u,t +F
>
u,tvx,t+1

Qxx,t = Lxx,t +F
>
x,tVxx,t+1Fx,t + vx,t+1Fxx,t

Qxu,t = Lxu +F
>
x,tVxx,t+1Fu,t + vx,t+1Fxu,t

Quu,t = Luu +F
T
u,tVxx,t+1Fu,t + vx,t+1Fuu,t

Vxx,t = Qxx,t +Qxu,tQ
−1
uu,tQxu,t

vx,t = qx,t +Qxu,tQ
−1
uu,tqu,t,

(3.15)

and the following terminal conditions:

Vxx,T = Lxx,T

vx,T = `x,T.
(3.16)

In the previous equations, (Lxx,Lux,Lxu,Luu) stand for the Hessians of the cost
function whereas (`x, `u) represent its gradients. In the same way, (Fx,Fu,Fxx,Fuu,Fxu)
are the dynamics derivatives with respect to state and control variables. It is worth
to note that the Gauss-Newton approximation used in (3.14) becomes exact in case
the problem has linear dynamics and quadratic costs. The DDP is then equivalent
to a LQR scheme. In nonlinear cases however, this quadratic approximation consti-
tutes one of the weak points of the algorithm.

Computing the forward pass

The computation of the backward pass results in a linear feedback policy of the
form:

∆u∗t (∆xt) = kt +Kt∆xt

kt = −Q−1
uu,tqu,t

Kt = −Q−1
uu,tQux,t

(3.17)

From there, the forward pass can be performed on the linearized dynamics or
nonlinear one, depending on the structure of the problem. Using the linearized dy-
namics turns the DDP into a Newton descent algorithm with strong convergence
guarantees on convex problems, but at the price of higher computation cost since the
matrix (Fx,Fu) are usually very large. Moreover, a merit function on the expected
cost decrease has to be implemented in order to deal with the linear approximation
of the rollout, and such a function is often non trivial to write. Conversely, using
a nonlinear rollout cancels the need of a merit function and ensures that the state
trajectory is feasible, meaning that there is no gap in the dynamics between shooting
knots.

The DDP algorithm classically implements a nonlinear rollout combined with a
line search scheme, whose role is to select the longest possible step along the descent
direction so as to produce a significant cost decrease. Given an optimal feedback
policy (k,K), initial trajectory (x,u), resulting trajectory (x∗,u∗) and a line search
parameter 0 ≤ α ≤ 1 initialized at 1, the forward pass writes:
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x∗0 = x0

u∗t = ut + αkt +Kt(x
∗
t − xt)

x∗t+1 = f (x∗,u∗).
(3.18)

Feasibility-prone DDP algorithm

An improved version of the DDP algorithm is proposed in [Mastalli et al. 2020],
where the gaps in the dynamics are represented by extra variables at no added cost.
This new algorithm benefits from two main improvements with respect to the stan-
dard version.

• First, it can be initialized with dynamically unfeasible trajectory guesses. In
practice, DDP is warm-started with only a control trajectory, and a rollout is
performed to compute the initial state trajectory. With feasibility-prone DDP, it
is possible to warm-start the algorithm with both control and state trajectories,
even if they do not match.

• Second, the new formulation does not close the gaps in the dynamics during
the early steps of forward rollout, and as a consequence features better global-
ization capacity similar to multiple shooting schemes.

The algorithm operates by linearizing (3.9) in order to obtain a QP formulation:

min
∆x,∆u

T−1

∑
t=0

˜̀t(∆xt, ∆ut) + ˜̀T(∆xT)

s.t. ∆x0 = f0

˜̀T(∆xT) =
1
2

∆x>TLxx,T∆xT + `x,T∆xT

∀t = 0..T − 1,
∆xt+1 = Fx,t∆xt +Fu,t∆ut + ft+1

˜̀t(∆xt, ∆ut) =
1
2

[
∆x>t
∆u>t

]> [
Lxx,t Lxu,t
Lux,t Luu,t

] [
∆xt
∆ut

]
+
[
`x,t `u,t

] [∆xt
∆ut

]
.

(3.19)

In this formulation, the vectors ft represent the gaps in the dynamics, that is to
say, the difference between the rollout state and the shooting state: ft+1 = f (xt,ut)−
xt+1. It is worth to notice that the second-order derivatives of the dynamics are ne-
glected so as to alleviate computational load during online execution, but this does
not affect the generality of the method.

Since the problem to solve is now quadratic, it features constant Hessians and
linear Jacobians with respect to decision variables. Instead of defining the Jacobian
of the value function at the current shooting knot, we compute it at the state reached
at the end of the previous sub-interval, so as to propagate the deviation due to gaps
in dynamics:
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v̂x,t = vx,t + Vxx,tft

= qx,t −Qxu,tkt + Vxx,tft.
(3.20)

Taking into account the simplified dynamics, the new derivatives inside the back-
ward pass become, ∀t = 0..T − 1:

qx,t = `x,t +F
>
x,tv̂x,t+1

qu,t = `u,t +F
>
u,tv̂x,t+1

Qxx,t = Lxx,t +F
T
x,tVxx,t+1Fx,t

Qxu,t = Lxu,t +F
T
x,tVxx,t+1Fu,t

Quu,t = Luu,t +F
T
u,tVxx,t+1Fu,t.

(3.21)

Once a descent direction is computed, a modified nonlinear rollout is performed
in order to keep the gaps open during the first iterations. Given a step length 0 ≤
α ≤ 1, the forward pass writes:

x∗0 = x0 − (1− α)f0

u∗t = ut + αkt +Kt(x
∗
t − xt)

x∗t+1 = f (x∗,u∗)− (1− α)ft.
(3.22)

Note that a step of size α = 1 brings the solver to a feasible solution, behav-
ing like classical DDP. It is nonetheless interesting to take a smaller step in order to
mimic the behavior of a multi shooting solver.

In summary, the FDDP algorithm efficiently solves optimal control problems by
taking advantage of their intrinsic sparse structure and has better globalization prop-
erties than classical DDP. Main contributions of the total computational load result
from the inversion of Q and F matrices inside the backward pass. The FDDP algo-
rithm was used in the frame of this thesis to generate whole-body optimal trajecto-
ries for locomotion tasks. Moreover, the feedback gains produced by the backward
pass, sometimes called Ricatti gains, were leveraged to synthetize a low-level feed-
back policy at no additional cost.

3.2 System modeling

Two classes of models are primarily used in the field of optimal control: cen-
troidal model and whole-body model. The first one projects the complexity of the
dynamics unto the CoM motion, while the second takes into account the full dynam-
ics of every joints of the robot. Centroidal approaches are favored when computation
load is required to be low; on the other hand, whole-body approaches, even if expen-
sive to compute, allow to produce more complex motions while ensuring feasibility
along the preview horizon.

These models have in common that they both deal with contact dynamics and
positions of end effectors in contact. Before discussing models, we first clarify how
to represent rigid body motion in robotics.
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3.2.1 Body pose representation

The placement of a body in Cartesian space is described by a translation and an
orientation, for a total of six DoF. Given an orthogonal frame and origin point, any
translation can be represented by a vector r ∈ R3. As for orientation, roboticists
commonly use the rotation Lie group SO(3), defined by:

SO(3) =
{
R | R ∈ R3×3,R>R = RR> = I, |R| = 1

}
. (3.23)

The rotation group is a 3-dimensional manifold with differentiable structure. To
any rotation is associated a unit vector ū = (ū1, ū2, ū3) ∈ R3 and an angle θ ∈ R so
that:

R = exp(θū×)

s.t. ū× =

 0 −ū3 ū2
ū3 0− ū1
−ū2 ū1 0


exp(X) =

∞

∑
i=0

X i

i!
.

(3.24)

Equivalently, it is possible to retrieve the unit vector ū and angle θ from a rotation
R thanks to the logarithmic function :

θū× = log(R)

=
θ

2 sin(θ)
(R> −R)

s.t. 1 + 2 cos(θ) = tr(R), θ 6= 0,−π < θ < π.

(3.25)

The matrix ū× belongs to the tangent space of SO(3) at the identity, which forms
the Lie algebra of skew-symmetric tensors, defined as:

so(3) = TISO(3) =
{
A | A ∈ R3×3,A> = −A

}
. (3.26)

Elements of the Lie algebra so(3) can be seen as infinitesimal rotations. Equa-
tions (3.24) and (3.25) show that so(3) and SO(3) are tightly related through expo-
nential and logarithmic mappings.

In order to formulate geometric tasks involving a desired goal orientation, it is
necessary to choose a standardized metric over SO(3). A widely used metric lever-
ages the logarithm of rotation matrix. For practical computation, it is faster to define
a compact logarithm function that returns an element of R3 rather than of so(3):

log(R) =
θ

2 sin(θ)

R2,1 − R1,2
R0,2 − R2,0
R1,0 − R0,1


s.t. 1 + 2 cos(θ) = tr(R), θ 6= 0,−π < θ < π.

(3.27)

We can now define a proper metric to measure the distance between two rota-
tionsR1 andR2:
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`R(R1,R2) = || log(R>2 R1)||. (3.28)

Likewise, the Lie group SE(3) is an usual representation for rigid body motion
in robotics:

SE(3) =
{
P | P =

[
R r

01×3 1

]
,R ∈ SO(3), r ∈ R3

}
. (3.29)

The Lie algebra of SE(3) is denoted se(3) and describes velocity motion:

se(3) =
{
S | S =

[
ū× v
01×3 0

]
, ū× ∈ so(3),v ∈ R3

}
. (3.30)

Again, for the sake of conciseness, elements of se(3) are practically represented
as 6-dimensional vector known as spatial velocity. This vector is the concatena-
tion of a linear velocity and an angular velocity expressed in Plücker coordinates
(see [Featherstone 2008]). This notation allows to define a simple metric on the ve-
locity of an end effector.

3.2.2 Contacts as holonomic constraints

Two main approaches exist to describe contact interaction in robotics: visco-
elastic representation and rigid body representation. The first one considers that
colliding surfaces are deformable and allows to define a relationship between stress
and strain acting at the contact point. In practice, a non-linear string and damper
model is often used to represent this relationship [Marhefka and Orin 1999]. Unfor-
tunately, the visco-elastic approach needs high stiffness gains to accurately describe
contact physics, leading to poor numerical conditioning of the OCP.

On the other hand, the rigid body representation models contacts as springs with
infinite stiffness, resulting in impact events at wich forces and velocities are discon-
tinuous. Despite this downside, rigid body representation is widely used in robotics
and leads to hybrid dynamics schemes where contact modes and transitions are pre-
defined by the user, or given by a high-level planner. In the frame of this thesis, we
have chosen to represent contacts with rigid bodies rather than soft ones.

Contacts between two rigid bodies obey the principles of unilaterality and non-
penetration. If the bodies do not slide with respect to each other, the exerted forces
lay inside the friction constraint cone, giving rise to an inequality constraint on force.
The constraint is said to be holonomic as it can be written in the form φ(q) = 0 with
φ(q) signed distance function between bodies and J = ∂φ

∂q the Jacobian of contact.
In the following section, we examine the case of an end effector coming in contact

with a planar ground, in the classical Cartesian world frame. We denote z ∈ R the
coordinate of the end effector along the normal to the ground, µ a friction parameter
depending on materials in contact and f c = ( f c

x , f c
y , f c

z ) ∈ R3 the force that the end
effector exerts on the ground. Then, the non-penetration constraint can be written
as a complementary condition of the form:

z̈ ≥ 0, f c
z = 0 or z̈ = 0, f c

z ≥ 0. (3.31)

If the vertical acceleration of the end effector is strictly positive, then the contact
is about to be broken and no normal force is applied; on the contrary, a non-null force
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FIGURE 3.1: Left: modeling a 3D punctual contact. Right: modeling
a 6D planar contact. The red arrows represent 3D forces.

can only be applied if the vertical acceleration is null. Lastly, the vertical acceleration
cannot be negative as it would mean the end effector will penetrate the ground in
the immediate future. In the same way, the end effector cannot pull on the ground,
so the exerted force must stay positive.

3D contacts

Let us examine the case of a punctual end effector in contact with the ground
(see Fig. 3.1, left). In this simple case, the system is applying a 3D force on a precise
point, and in case of non-slippage this force is bound by the following constraints:

f c
z ≥ 0 (3.32a)

||f c
x,y|| ≤ µ f c

z . (3.32b)

Equations (3.32a) and (3.32b) represent respectively the unilaterality condition
and non-slippage condition. As the non-slippage condition is nonlinear, it is usual
in robotics to consider a linear approximation based on a quadratic cone:

| f c
x |, | f c

y | ≤ µ f c
z . (3.33)

We thus stick to this approximation in the following sections.

6D contacts

In case the robot has rectangular feet, contacts are usually not limited to one
point but rather are made across all the area under the foot. As it is not possible
in practice to reconstruct the resulting forces by integrating the pressure and stress
fields under the foot, rectangular contacts are classically modeled by considering
that each vertice of the foot applies on the ground a 3D force laying inside a friction
cone. The sum of all these forces reported to the center of the foot link results in a
contact wrench λ = (f c, τ ) ∈ R6, concatenation of linear and angular forces (see
Fig. 3.1, right). It is then possible to write the equivalent contact wrench constraints
as [Caron et al. 2015b]:
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f c
z > 0 (3.34a)

| f c
x |, | f c

y | ≤ µ f c
z (3.34b)

|τx| ≤W f c
z (3.34c)

|τy| ≤ L f c
z (3.34d)

τmin ≤τz ≤ τmax, (3.34e)

with W, L respectively the half width and half length of the foot, and :

τmin = −µ(W + L) f c
z + |W f c

x − µτx|+ |L f c
y − µτy|

τmax = µ(W + L) f c
z − |W f c

x + µτx| − |L f c
y + µτy|.

Equations (3.34a) and (3.34b) describe the same unilaterality and non-slippage
conditions as in the 3D case. Equations (3.34c) and (3.34d) represent a non-tilting
condition linked to the stability bounds of the local center of pressure. Finally, (3.34e)
sets bounds over the admissible yaw torque so that the feet does not rotate around
its vertical axis.

3.2.3 Centroidal model

Contact forces determine the rate of change of linear centroidal momentum in
legged locomotion, whereas whole-body motions affect the rate of change of angular
momentum. Let us define mr, the total mass of our multi-body system, c ∈ R3 its
center of mass and L ∈ R3 its angular momentum. We assume that the number
of end effectors in contact with the ground is nc, with (ri)

nc
i=1 their 3-D respective

position. The under-actuated dynamics of this system is classically written as:

mrc̈ =
nc

∑
i=1
fi −mrg (3.35)

L̇ =
nc

∑
i=1

(ri − c)× fi + τi, (3.36)

with (fi, τi) ∈ R6 the unilateral contact wrench acting on the robot at contact i. As
the name suggests, this dynamics is under-actuated because no command can act
directly on c, only contact forces. Expressing the resulting contact wrench at the
origin of the world frame gives:[

f c

τ c

]
:=
[

∑nc
i=1 fi

∑nc
i=1 ri × fi + τi

]
. (3.37)

Instead of focusing on CoM dynamics, a better option to guarantee dynamic sta-
bility is to examine the ZMP dynamics, which coincides with the Center of Pressure
(CoP) [Sardain and Bessonnet 2004] in flat ground conditions. The ZMP criterion
typically makes the connection between the inertia of all body segments of the robot
and the resulting contact forces and torques at the limb’s extremities. Assuming the
normal to the ground, n, is aligned with the gravity vector g, the ZMP is defined as
the point on the ground where both horizontal components of the total contact mo-
ment are null. To put it another way, the moment resulting from the contact forces is
parallel to nwhen expressed at the ZMP.
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We then defineM c
z to be the moment of the contact forces expressed at the ZMP

and zp = (zx, zy, 0)> the ZMP coordinates in world frame. By expressing M c
z at the

origin and using the ZMP definition, we have:

M c
z ×n = (τ c − zp × f c)×n

=

τc
x − zy · f c

z
τc

y + zx · f c
z

0


= 0.

(3.38)

Thus the ZMP coordinates writes:

zp =

−
τc

y
f c
z

τc
x

f c
z

0

 (3.39)

On the robot Pyrène, two 6-D force sensors located close to the ankles measure
the left and right wrenches applied on the system by contact interactions. When
both feet are in contact, we first compute the local center of pressure of each foot,
then deduce the global center of pressure:

zp =
∑2

i=1Ri · z
p
i + ri

∑2
i=1 fi

, (3.40)

whereRi ∈ SO(3) is the rotation of foot i and zp
i its local center of pressure.

The ZMP is defined only inside the convex hull of the support polygon, and in
general should not come close to the edges of its support in order to avoid foot tilting
and ensure the robustness of the locomotion. It is usual in robotics to define tight
security margins for the ZMP, so that it remains close to the center of the support
polygon.

3.2.4 Whole-body model

Given a free-flyer system with nj actuated joints and np contacts with the envi-
ronment, we define q ∈ Q := SE(3)×Rnj to be the configuration vector of size nq,
accounting for the placement of the free-flyer joint in SE(3) and the concatenation of
all angular joint positions. Consequently, q̇ ∈ Q̄ := se(3)×Rnj is the velocity vector
of size nv laying in the tangent space ofQ, and q̈ of size nv is the acceleration vector.
We then classically define the state of the robot to be x = (q>, q̇>)> ∈ X of size nx
and the control to be u = τ ∈ Rnj , the vector of joint torques.

Similarly to [Featherstone 2008], we consider the dynamics of the multi-body
system to be the result of the Euler-Lagrange equations:

M (q)q̈ + b(q, q̇) = S>τ +
np

∑
i=1
Ji(q)

>λi. (3.41)

In (3.41), M ∈ Rnv×nv is the joint-space inertia matrix and b ∈ Rnv the gener-
alized nonlinear forces accounting for centrifugal, Coriolis, and gravitational terms.
For i = 1..np, λi ∈ R6 and Ji ∈ R6×nv stand for the contact force and contact Jacobian
at contact i. The joint torques τ are mapped to the actuated part of the dynamics
thanks to the actuation matrix S =

[
0 Inj

]
∈ Rnj×nv . Similarly to the centroidal
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model case, the dynamics is under-actuated because the command (here, the torque
vector) cannot act directly on the free-flyer joint acceleration, due to the six first lines
of S> being null.

3.3 Constrained multi-contact dynamics

Given an end effector i in contact with the ground, we denote p ∈ SE(3) its
placement (position and orientation), v = ṗ ∈ se(3) its spatial velocity and Ji ∈
R6×nv its contact Jacobian. Assuming non-slippage condition, the acceleration of the
end effector is null:

v̇ =
∂Jiq̇

∂t
= J̇iq̇ + Jiq̈ = 0. (3.42)

By combining this equality with the multi-body dynamics equation (3.41), we
obtain the Karush-Kuhn-Tucker (KKT) conditions of the rigid contact dynamics:

[
M J>c
Jc 0

] [
q̈
−λ

]
=

[
S>τ − b
−J̇cq̇

]
, (3.43)

where Jc = (J>1 · · ·J>np
)> ∈ R6np×nv represents the concatenation of contact Ja-

cobian matrices and λ = (λ>1 · · ·λ>np
)> ∈ R6np represents the concatenation of all

contact wrenches.
Equation (3.43) can be interpreted as an optimal condition for the primal and

dual trajectories q̈ and λ to be solution of the following convex optimization prob-
lem [Budhiraja et al. 2018]:

q̈∗ = argmin
q̈

1
2
||q̈ − q̈ f ree||M

s.t. J̇iq̇ + Jiq̈ = 0.
(3.44)

This equation is obtained by applying Gauss’s principle of least constraint to
the unconstrained dynamics typically written as Mq̈ f ree = τg, with τg sum of the
actuation and generalized forces. It has a unique solution only with Jc is full rank,
which is not the case when considering more than one contact.

The formulation presented in (3.43) has two advantages: first, it integrates the
contact constraint at the level of the dynamics, whereas most control schemes in the
literature tackle it inside the optimization process. Second, it allows to express the
concatenated contact forces as a function of state and control:

[
q̈
−λ

]
=

[
M J>c
Jc 0

]−1 [
S>τ − b
−J̇cq̇

]
=

[
y(q, q̇, τ )
−g(q, q̇, τ )

]
. (3.45)

Using clever Cholesky decomposition, the blockwise KKT matrix can be effi-
ciently inverted during the integration of the dynamics. In case the KKT matrix is
not invertible, for example when Jc is not full rank, a damped Cholesky decompo-
sition can be used in order to approximately solve Gauss’s principle of least action.
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More details are available in [Mastalli et al. 2020].

All in all, (3.43) can finally be written under a discrete, integrated and force-free
dynamics formulation:

xi+1 = f (xi,ui)

λi = g(xi,ui)

Fx = −
[
M J>c
Jc 0

]−1
[

∂τg
∂x
∂a0
∂x

]

Fu = −
[
M J>c
Jc 0

]−1
[

∂τg
∂u

∂a0
∂u ,

] (3.46)

with a0 = J̇cq̇ desired acceleration in the constrained space, ∂τg
∂x , ∂τg

∂u derivatives of
the classical Recursive Newton-Euler Algorithm and ∂a0

∂x , ∂a0
∂u kinematics derivatives

of the frame acceleration [Carpentier and Mansard 2018a].

3.4 FDDP formulation with contacts

Compared to the classical DDP implementation, our formulation includes con-
tact forces inside the problem, which then writes [Budhiraja et al. 2018]:

min
x,u

( T−1

∑
t=0

`t(xt,ut,λt) + `T(xT)
)

s.t. x0 = x̂0

∀t = 0..T − 1, xt+1 = f (xt,ut),
λt = g(xt,ut).

(3.47)

With such a formulation, the Gauss-Newton approximation of theQ coefficients
become, ∀t = 0..T − 1:

qx,t = `x,t +G
>
x,t`λ,t +F

>
x,tv̂x,t+1

qu,t = `u,t +G
>
u,t`λ,t +F

>
u,tv̂x,t+1

Qxx,t = Lxx,t +G
>
x,tLλλ,tGx,t +F

T
x,tVxx,t+1Fx,t

Qxu,t = Lxu,t +G
>
x,tLλλ,tGu,t +F

T
x,tVxx,t+1Fu,t

Quu,t = Luu,t +G
>
u,tLλλ,tGu,t +F

T
u,tVxx,t+1Fu,t.

(3.48)

The backward pass is then followed by a nonlinear forward pass described by (3.46).
In this approach, contact forces are interpreted as hidden variables resulting from
optimal state and control trajectories.

3.5 The Crocoddyl library

Our FDDP solver is implemented with the optimal control library Crocoddyl [Mastalli
et al. 2020] and use the library Pinocchio [Carpentier et al. 2019] to enable fast com-
putations of costs, dynamics and their derivatives.
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FIGURE 3.2: Structure of an OCP problem implemented in the
Crocoddyl framework

Crocoddyl represents the OCP horizon by a set of T successive knots separated
by a timestep δt (see Fig. 3.2). Each knot contains an invariant action model and
its corresponding action data. The action model of knot t typically encompasses a
contact model that defines the dynamics f at time t · δt in the future, an actuation
model that describes the relationship between control and effective joint torque, and
a cost model that contains the cost function `t. All corresponding numerical values
and derivatives are stored inside the related action data. The last action model, also
called terminal model, is not actuated and only contains the final cost model `T.

Contact and cost models can be modified on the fly to match the user’s needs. In
particular, it is cheap and easy to disable or enable a precise cost according to new
sensor measures or high-level commands. The horizon paradigm then allows to plan
in advance a change in the problem formulation, by updating the corresponding
action models starting from the end of the preview window and going toward the
first knot.

Crocoddyl implements analytical and sparse derivative schemes via Pinocchio.
A multi threading approach is taken to compute these derivatives and further reduce
the computational load. All in all, Crocoddyl is a fast, flexible and efficient optimal
control framework to generate multi-contact trajectories on fullscale robots.

3.6 Conclusion

In this section were presented essential mathematical tools that will be leveraged
in the following parts of this thesis to perform optimal control on a real humanoid
robot. In particular, we have thoroughly described the principles of the feasibility-
prone DDP algorithm and have showed how to combine it with a clever formulation
of the dynamics which directly takes care of the contact constraints. In our opinion,
DDP is one of the most relevant optimization algorithms to solve a whole-body pre-
dictive control problem for three main reasons:

• it exploits the sparsity of the dynamics to perform a very efficient KKT matrix
inversion;
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• it can be warm-started easily with infeasible trajectories, and produce feasible
solutions in only one iteration;

• it computes a set of state feedback gains at no additional cost.

The main drawbacks of our DDP implementation include its inability to handle
inequality and equality constraints, forcing the user to implement quadratic-barrier
functions to take them into account. Moreover, since we neglect the Hessian of the
dynamics, we do not benefit from a quadratic convergence of the algorithm.

Additionally, we have presented in detail how to model centroidal and whole-
body dynamics, with a focus on ZMP computation. If the centroidal approach will
not be used in the frame of this thesis, it remains useful to keep the formulation in
mind in order to better understand how contact forces affect CoM motions. On the
other hand, the ZMP is an essential criterion to ensure dynamic stability: as a conse-
quence, this criterion would be thoroughly examined when discussing locomotion
experiments.





49

Chapter 4

A High-Frequency Whole-Body MPC
scheme

In this chapter, a predictive control scheme based on the full dynamics of the sys-
tem is introduced and tested on the real platform Pyrène. The scheme leverages a
first-order approximation of the optimal policy to bridge the frequency gap between
the high-level MPC and the low-level control of the robot. Additionally, it provides
mathematical hindsight on how to extract useful sensibilities from the DDP formu-
lation in order to adapt the control to a fast variation of a high-level parameter. The
results contained in this chapter were published in [Dantec et al. 2022a].

4.1 Motivation

The lack of computational power on mobile robots is a well-known challenge
when it comes to implementing a real-time MPC scheme to perform complex mo-
tions. Currently the best solvers are barely able to reach 100 Hz for computing
the control of a whole-body legged model, while modern robots are expecting new
torque references in less than 1 ms. This frequency discrepancy gives rise to control
latency and instability in the MPC scheme, leading to failures on real robots. Such
an issue is usually tackled by using a handcrafted low-level tracking control whose
inputs are the low-frequency trajectory computed by the MPC, but this approach
adds another layer of complexity which should be carefully fine-tuned.

The DDP framework introduced in the previous chapter provides a good solu-
tion for whole-body control problems, although it cannot reach the low-level fre-
quency of torque-controlled robots. When closing the loop on state measurements,
the optimal control comes with a latency that can trigger instabilities if the sensitiv-
ity of the problem to initial state is significant. On the other hand, it is known that
the control solution of a constraint LQR is a continuous piece-wise affine function
of the initial state [Bemporad et al. 2002]. Following these observations, we propose
to deduce the optimal feedback policy from the OCP formulation and we show the
connection between this policy and the DDP-induced Riccati gains. The important
step is to demonstrate that Riccati gains can be interpreted as the sensitivities of the
optimal solution with respect to the initial state of the OCP, and as such can be used
to interpolate the optimal control between two DDP computations. While we are
only interested in getting the derivative of the initial control with respect to any ex-
ternal parameter, our proposed derivation leads to a more efficient backward pass
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to compute the corresponding gain, and elegantly connects it with the Riccati ma-
trix. This is necessary as we are proposing to use it for high-frequency control. For
small state changes, this is equivalent to computing a new solution of the MPC at a
much higher frequency, reaching the expected computation of the low- level control.
The same approach can be generalized to any parameter of the OCP, leading to a set
of Riccati-like feedback gains which can be computed at low cost by extending the
classical DDP backward pass.

4.2 Sensitivity analysis of the DDP backward pass

Suppose that our OCP includes a parameter θ that depends on time. If the vari-
ation of θ is non-negligible over the computation duration of the OCP, then the
optimal solution is no longer correct since it has been computed over an outdated
value of θ. Determining the sensitivity of the OCP with respect to θ will allow us
to approximate a control correction proportional to the variation of the parameter.
Such approach, where the optimization problem is differentiated, has already been
studied for contact simulation [Le Lidec et al. 2021] and neural network applied to
QP [Amos and Kolter 2017].

4.2.1 Sensitivity as partial derivative of the OCP

Let us view the discretized OCP described by (3.9) as a classical nonlinear prob-
lem parametrized by a given θ ∈ Rnθ . For an horizon of T > 0 knots, we define the
optimal state and control trajectory to be x∗ = (x∗t )t=0..T and u∗ = (u∗t )t=0..T−1. For
the sake of simplicity we denote by z∗ = (x∗, u∗) ∈ Rnz with nz = Tnu + (T + 1)nx
solution of the following discretized problem:

P(θ) = z∗ = argmin
z

J (z,θ)

s.t. h(z,θ) = 0,
(4.1)

with J : Rnz ×Rnθ → R the total cost function and h : Rnz ×Rnθ → R(T+1)·nx the
T + 1 discretized dynamics constraints given by xt+1 = f (xt,ut) ∀t = 0..T − 1 and
x0 = f0.

In order to be able to apply the KKT optimality conditions, we must assume
some regularity qualifications under which a constrained minimizer also satisfies the
KKT conditions. We now assume that J and h are continuously twice differentiable,
and that the Mangasarian-Fromovitz constraint qualification holds for our nonlinear
problem. This means that the gradient of the equality constraint Hz ∈ Rnz×(T+1)·nx ·
is of full rank at z∗, or in other words, the gradients of each individual constraint in
h are linearly independent at z∗.

From here we write the Lagrangian of the problem as

L(z,ν,θ) = J (z,θ) + νTh(z,θ), (4.2)

with ν ∈ R(T+1)·nx the dual variable of the Lagrangian. Then, the KKT optimality
conditions state that if z∗ is solution of the problem (4.1) for θ, the gradients of the
Lagrangian are null at z∗:
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Lz(z∗,ν,θ) = Jz(z∗,θ) + νTHz(z
∗,θ) = 0

h(z∗,θ) = 0.
(4.3)

Finally we suppose that for each ν ∈ R(T+1)·nx satisfying the KKT conditions and
each ∆z 6= 0 ∈ Rnz so that ∆z>Hz(z∗,θ) = 0, we have the following inequality:

∆zTLzz(z∗,ν,θ)∆z > 0 (4.4)

Under these assumptions, Shapiro [Shapiro 1988] showed that the function P(·)
is directionally differentiable and that for each θ ∈ Rnθ , ∆θ ∈ Rnθ , there exists ν
verifying the KKT conditions such that P ′(θ; ∆θ), derivative along the direction ∆θ,
is the unique solution of the following quadratic program:

argmin
∆z

(1
2

∆zTLzz(z,ν,θ)∆z + ∆zTLzθ(z,ν,θ)∆θ
)

s.t. ∆z>Hz(z,θ) = 0
(4.5)

Since in our case, the Lagrangian multiplier ν is unique due to the upper diagonal
form of the constraints matrix, it turns out we can easily compute the directional
derivative of our problem along the direction ∆θ, and from it immediately deduce
the sensitivities of problem (4.1) under a KKT-like shape:[

∂∆z
∂θ
∂ν
∂θ

]
= −

[
Lzz HT

z

Hz 0

]−1 [Lzθ
0

]
(4.6)

In this equation, ∂ν
∂θ is the derivative of a Lagrangian multiplier increment we are not

interested in. On the other hand, ∂∆z
∂θ ∆θ is the correction to apply to the state and

control trajectories when the parameter error is ∆θ. As literally solving (4.6) would
be inefficient to find the derivatives, we now show how to exploit the DDP structure
to evaluate the sensitivities.

4.2.2 Sensitivity computation

Equation (4.6) is very similar to the descent direction given by the QP described
in (3.19). To illustrate this point, let us solve (3.19) by Lagrangian method rather
than dynamic programming. To simplify notations, we rewrite the equation in a
more compact form:

min
∆z
J (∆z)

s.t. h(∆z) = 0,
(4.7)

with ∆z = (∆x, ∆u) and h : Rnz → R(T+1)·nx the T + 1 dynamics constraints given
by ht+1 = ∆xt+1 − (Fx,t∆xt + Fu,t∆ut + ft+1) ∀t = 0..T − 1 and h0 = ∆x0 − f0.
Additionally, we denote by f = (f>0 , ..,f>T )> the concatenated dynamic drift.

As usual, the optimum of (4.7) is characterized by the gradients of the associated
Lagrangian vanishing. Writing the Lagrangian under the expression:

L(∆z,ν) = J (∆z) + νTh(∆z), (4.8)
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and assuming the KKT matrix is invertible, the solution of QP (4.7) takes the follow-
ing simple form: [

∆z
ν

]
= −

[
Lzz HT

z

Hz 0

]−1 [Jz
f

]
. (4.9)

Equation (4.9) is nearly the same as (4.6), except that the inverted KKT matrix
is multiplied by (−Jz,−f ) rather than (−Lzθ, 0). Since DDP can be interpreted as
an efficient operator to evaluate the multiplication by the KKT inverse, finding the
sensitivities of the problem amounts to computing the DDP backward pass while
replacing the terms (Jx,Ju,f ) of (3.21) with (Lxθ,Luθ, 0). This immediately leads
to the following modified backward pass, ∀t = 0..T − 1:

Qxθ,t = Lxθ,t +F
>
x,tVxθ,t+1 (4.10a)

Quθ,t = Luθ,t +F
>
u,tVxθ,t+1 (4.10b)

Vxθ,t = Qxθ,t −Qxu,tKθ,t (4.10c)

Kθ,t = −Q−1
uu,tQuθ,t, (4.10d)

with the following terminal condition:

Vxθ,T = Lxθ,T. (4.11)

The gain matrix Kθ can be viewed as the derivative of the feedforward gain kt
in (3.17). Similarly, the terms vx, qx and qu of (3.15) have been replaced by Vxθ,Qxθ

andQuθ in (4.10). Propagating the forward pass based on (4.6) then gives:

∂∆ut

∂θ
=Kt

∂∆xt

∂θ
+Kθ,t

∂∆xt+1

∂θ
= Fx,t

∂∆xt

∂θ
+Fu,t

∂∆ut

∂θ
.

(4.12)

Equation (4.12) provides the sensitivity of the control command with respect to
the variation of θ. The only limitation to this approach is that the matrix (Lxθ,t,Luθ,t)
should be simple to compute; ideally, only (lx,t, lu,t) should depend on θ for the
method to be efficient. If (Lxx,t,Lux,t,Luu,t) are also depending on θ, 3-dimensional
matrices start to intervene in the sensitivity computation, making it difficult to han-
dle.

In what follows, we are mostly interested by ∂u0
∂θ , sensitivity of the first control

with respect to the parameter θ. Since the OCP (3.9) has the same derivatives as the
LQR (3.19) at each knot, the sensitivity of both problems are equal:

∂u∗0
∂θ

=
∂∆u∗0

∂θ
. (4.13)

A feedback policy can then be obtained from (4.12) when θ is measured at a
higher frequency than the DDP solves (4.7). We examine two cases, where θ is re-
spectively the initial statex0 and desired position of the end effector r∗. The first case
is motivated by the need to mitigate the latency issue which arises when recomput-
ing the MPC over a new state measurement; the second case has been selected to
highlight the genericity of the approach through the implementation of a common
end-effector tracking task.
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Sensitivity over the initial state

We consider first the case where θ = x0, initial measured state in the discrete
OCP described by (3.9). By deriving the forward pass equation in (3.18), it is straight-
forward to deduce the derivative of the first optimal control with respect to initial
state:

∂u∗0
∂x0

=K0. (4.14)

This equation shows, as it is already known, that the Riccati gains K0 can be
interpreted as the sensitivity of the optimal policy to initial state. Given that the cur-
rent state of the robot is provided at a sufficiently high frequency, the Riccati gains
act as a feedback term which approximates the optimal control between two LQR
computations.

Sensitivity over a desired end effector position

In the following paragraph, the concatenated dual variables are defined as ν =
(ν>0 · · · ν>T )> ∈ RT·nx . Let us develop the Lagrangian of the LQR in (4.8) under the
form:

L(∆x, ∆u,ν) =
T−1

∑
t=0

˜̀t(∆xt, ∆ut) + ˜̀T(∆xT)

+

ν0
· · ·
νT

>


∆x0 − f0
· · ·

∆xt+1 −Fx,t∆xt −Fu,t∆ut − ft+1
· · ·


s.t. ˜̀T(∆xT) =

1
2

∆x>TLxx,T∆xT + `x,T∆xT

∀t = 0..T − 1,

˜̀t(∆xt, ∆ut) =
1
2

[
∆x>t
∆u>t

]> [
Lxx,t Lxu,t
Lux,t Luu,t

] [
∆xt
∆ut

]
+
[
`x,t `u,t

] [∆xt
∆ut

]
.

(4.15)

The derivatives of this Lagrangian with respect to state and control write:

Lx,T = `x,T +Lxx,T∆xT + νT

∀t = 0..T − 1,

Lx,t = `x,t +Lxx,t∆xt +Lxu,T∆ut −F>x,tνt+1 + νt

Lu,t = `u,t +Luu,t∆ut +Lux,t∆xt −F>u,tνt+1.

(4.16)

Let us suppose that the cost function contains a term that penalizes the Cartesian
position r ∈ R3 of an end effector with respect to a desired position r∗. We write this
term `r(x) = a(r(x)− r∗), with a : R3 → R+ a differentiable activation function,
for example the square norm.

With this cost formulation, the only Lagrangian derivatives depending on r∗ are
Lx,t, ∀t = 0..T, because they contain the term `x,t in which lays the derivative of `r.
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We neglect here the dependency of Lxx over r∗, as computing it would mean to ma-
nipulate heavy 3-D matrices. We note Jee =

∂r
∂x the Jacobian of the end effector and

A ∈ R3×3 the Hessian of the activation function. Then, the Lagrangian derivative
with respect to r∗ writes, ∀t = 0, T:

Lxr,t = −Jee(xt)
>A. (4.17)

Consequently, the backward pass resulting in the computation of the final sensi-
tivityKr,0 is, ∀t = 0..T − 1:

Qxr,t = −Jee(xt)
>A+F>x,tVr,t+1 (4.18a)

Qur,t = F>u,tVr,t+1 (4.18b)
Vr,t = Qxr,t −Qxu,tKr,t (4.18c)

Kr,t = −Q−1
uu,tQur,t, (4.18d)

with the following terminal condition:

Vr,T = −Jee(xT)
>A. (4.19)

This backward pass is simpler to compute as compared to the classical DDP back-
ward pass, and results in a feedback gain Kr,0 corresponding to an error on the
desired position of the end effector.

4.3 Whole-body MPC formulation

In this section, we describe the formulation of our whole-body predictive control
scheme and explain how the Riccati gains are used in practice to approximate the
optimal control at the low-level frequency of the robot. The control problem to be
solved is defined as a simple reaching task with the left hand.

4.3.1 OCP formulation

As highlighted before, we formulate our OCP under the form of a discretized
NLP, similar to (3.9), with f being the discrete dynamics defined in Sec. 3.3. The run-
ning cost function does not depend on time and writes ` = ∑5

i=1 wi`
i, with (wi)

5
i=1 a

set of weighting scalars. The five different terms are defined as:

• State regularization cost:
`x(x) = (x− xd)

>Bx(x− xd) with Bx a positive definite weight matrix and
xd the default initial state. This cost prevents state drift and excessive velocity
spikes during the motion.

• Control regularization cost:
`u(u) = (u− ud)

>Bu(u− ud) with Bu a positive definite weight matrix and
ud the gravity-compensating torque in default state. This cost prevents exces-
sive control spikes during the motion.

• Hand translation cost:
`r(x) = aL(r(x)− r∗) with r(x) ∈ R3 current end effector position, r∗ ∈ R3

desired end-effector position and aL : s 7→ log(1 + ||s||
α ) a logarithmic acti-

vation function. In a neighbourhood of r∗, the activation function acts as the
squared norm function, while toward infinity its gradient tends to zero. As
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a consequence, a target too far away results in a weak attraction. The width
factor α is taken equal to 0.2.

• Kinematic limit cost:
`b(x) = 1

2 ||max(x− xu,0)||2 + 1
2 ||min(x− xl ,0)||2 with xu the upper bound

and xl the lower bound of the joints positions and velocities. The goal of this
cost is to keep the joints away from their kinematic limits. Upper and lower
bounds include safety margins that can be tuned by the user, depending on the
application.

• CoM tracking cost:
`com(x) = ||c(x)− c∗||2 with c(x) current CoM and c∗ desired CoM. This cost
is implemented to prevent the CoM from drifting away of its support polygon.
The desired CoM is deduced from the initial state.

The terminal cost function `T is identical to the running cost function, except that
there is no control regularization cost nor kinematic limit cost. The role of this termi-
nal cost is to approximate an infinite horizon problem through a single knot. To do
so, the weight of the reaching task in `T is usually increased to force the completion
of the motion at the end of the preview horizon.

During the execution of the task, the contact phases are imposed and the CoM
position reference remains fixed in the center of the support polygon, so as to prevent
the CoM from drifting out of balance. The friction constraint described in (3.33) is
then trivially respected. Similarly, the default state xd and default control ud do not
change during the execution of the MPC. The only quantity likely to vary in our
reaching experiments is the desired end effector position r∗.

4.3.2 Cost parametrization

`x `u `r `b `com

Running costs 0.02 0.001 25 1000 500
Terminal costs 0.02 250 500

TABLE 4.1: Cost weights of our reaching OCP.

The weight distribution selected to perform the reaching task is presented in Ta-
ble 4.1. The weight matrix Bu is the identity matrix, while the weight matrix Bx
is described in Table 4.2 is carefully tuned to penalize critical behaviors like tilting
torso or swinging base. The regularization weights on the left arm are reduced in
order to focus on the reaching task.

Broadly speaking, the shape of the solution produced by the MPC varies contin-
uously with respect to the weights of the cost functions. This means that the weights
selected in this chapter could be tuned to favor one behavior over another, depend-
ing on the user’s needs. Our approach first aims at establishing a general proof of
concept of our whole-body predictive control framework, through the completion
of simple tasks in a compliant and robust way.

4.3.3 Model and timings

The whole-body model includes 22 actuated joints (12 for the legs, 8 for the arms,
2 for the torso), plus the free flyer joint state: this results in a state dimension of size
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Base pose Base angle Leg Torso Left Arm Right Arm

Position 100 10000 500 500 50 500
Velocity 10 10 10 10 1 10

TABLE 4.2: Diagonal terms of the weight matrixBx.

nx = 57 (nq = 29, nv = 28) and control dimension of size nu = nj = 22. Since the
complexity of the DDP increases as the cube of the state and control dimensions,
using such a complex model does not allow to choose a very long preview horizon.

As the computational cost of the DDP algorithm is linear with respect to the
number of knots, a compromise must be found between the predictive capacities of
the MPC and its computational load. Because the DDP is initialized with the pre-
vious computed trajectories shifted by one knot, only one iteration of the algorithm
is needed to generate a satisfying solution. Still, this one iteration can be costly de-
pending on the choice of time parameters. Intuitively, a horizon length of 1 s appears
to be a relevant guess to perform simple tasks like reaching an object or stepping for-
ward. Besides, we would like to match approximately the MPC time computation
and OCP timestep, because one control cycle is theoretically equivalent to one knot
in the horizon. However, one must keep in mind that the Crocoddyl library uses
for now a simple explicit Euler scheme to integrate the dynamics; as a consequence,
long timesteps may lead to accuracy loss and control instabilities. More advanced
integration schemes for DDP are under development [Jallet et al. 2022b], and we can
expect in the near future to be able to reduce the number of knots in the horizon
while safely increasing the timestep length to keep a constant preview period.

For all these reasons, we chose to work with an OCP composed of 100 knots sep-
arated by a 10 ms timestep. With this specific time parametrization, the dynamics of
the robot is previewed over 1 s in the future, while one iteration of DDP takes about
13 ms. Experimentally, this choice of parameters has produced satisfying results in
simulation and on the real robot.

4.3.4 Riccati interpolation of the MPC

Our DDP scheme produces the optimal control along with the sensitivities as-
sociated with the initial state of the robot and desired position of the end-effector.
The first sensitivity K0 = ∂u0

∂x0
is directly obtained during the backward pass of the

DDP, at no additional cost. The second sensitivity Kr = ∂u0
∂r is computed through

the modified backward pass described in Sec. 4.2.2.
The resulting feedback policy is a first order Taylor development of the MPC.

Suppose that the MPC has been solved at a given observed state (x0, r0), with
u0 = mpc(x0, r0) the resulting optimal command. Before the next MPC computa-
tion ends, a new observation (x̂, r∗) is measured, but cannot be used directly by the
OCP solver. Our linear feedback scheme will then approximate the MPC solution
between two recomputations:

mpc(x̂, r∗) ≈ mpc(x0, r0) +K0(x̂− x0) +Kr(r
∗ − r0) (4.20)

It has been estimated that the Riccati gains might be too stiff to be actually used
for feedback [Mason et al. 2016]. Yet we see here that they are nothing more than
a linear interpolation of the MPC feedback, and, for a sufficiently high frequency,



4.3. Whole-body MPC formulation 57

FIGURE 4.1: Left: matrix of the absolute Riccati gain K0 for a whole-
body OCP involving end-effector tracking and biped stabilization.
Right: matrix of the absolute placement (translation and rotation)
gains for a whole-body OCP involving tracking a reference placement
with the left hand while stabilizing balance. On the robot, only the
first 3 columns of this matrix is used (corresponding to position feed-

back).

they lead to a fair numerical approximation of the MPC, hence are not stiffer than
the MPC itself.

The structures of typical feedback gains for initial state and tracking target are
presented in Fig. 4.1. It is interesting to note that the Riccati matrix for initial state
presents a strong diagonal in position: the most contributing correction of a given
joint torque strongly depends on the position error of this joint. It can also be noted
that the feedback correction associated to the base position of the robot is very high,
and affects mainly the leg controls. This is expected since the legs are the main
drivers of the robot base position. Finally, one can notice that the velocity feedback
coefficients of the Riccati matrix are small compared to the position feedback terms,
which is reassuring since velocity estimates are typically more noisy, and LQR con-
trollers tend to create brutal velocity feedbacks [Mason et al. 2016].

One could wonder how the local policy deduced from the Riccati gains would
compare against a hand-tuned whole-body controller meant to track the desired ref-
erence state x∗. This comparison was briefly discussed in [Mastalli et al. 2022a],
where it was shown that a tracking controller with fixed gains does not perform
better than our state-feedback scheme. Since our solution comes with no additional
tuning and no performance loss, it is, in our opinion, the best choice to generate a
low-level control policy on the robot.

4.3.5 Control scheme overview

The MPC process is described in Alg. 1. The OCP is first solved until convergence
before starting the motion (line 9). The DDP algorithm is initialized with the constant
state and control trajectories defined by the reference state x̂ and reference control
u = RNEA(x̂) (lines 2 and 3). These references represent the initial state of the robot
before MPC launch and the corresponding gravity-compensated torque command,
obtained through the Recursive Newton-Euler Algorithm [Featherstone 2008]. This
warm-start is typically not feasible, but our improved version of the DDP scheme
allows us to handle it.
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At each control cycle, a single DDP iteration is performed, using the previous
solution as an initial warm-start at lines 14 and 15, before iterating with the latest
sensor measurements at line 16. The classical way to warm-start the solver is to
shift the previous solution by one knot and use x̂ as the initial state [Diehl et al.
2005]. Aside from the measured state given by joint encoders and base IMU, the
solver updates the tracking target position r∗ obtained from motion capture cam-
era. Once the OCP is solved (line 17), the feedback gains (K0,Kr), initial measures
(x0, r0) and feedforward torque u0 are sent to the low-level control block (line 18),
where the linear feedback loop is computed. The resulting command u is forwarded
to a torque-control scheme composed of a proportional-derivative feedback on the
joint torque measurement τ̂ , plus a feedforward term that compensates for the in-
trinsic joint dynamics (motor inertia, high frictions, inner flexibility of the harmonic
drive...). This dynamics is typically not considered inside the high-level whole-body
model, but should nonetheless be taken into account when implementing motions
on the real platform. All in all, the low-level torque feedback loop allows to consider
that every joint behaves as an ideal joint from the viewpoint of the MPC.

To stop the tracking motion, the user disables the corresponding cost starting
from the end of the horizon, and receding toward the first knot at each control cycle
(line 22). With such an approach, the robot smoothly goes to initial configuration
as the task function changes continuously from tracking to standing still. This il-
lustrates one of the advantages of the preview horizon, which can be leveraged to
inform the solver about future changes in problem formulation.

Algorithm 1 MPC algorithm for goal tracking

Require: T, Ttot
1: - Measure initial state x̂
2: - Initialize reference state: xd ← x̂
3: - Initialize reference control: ud ← RNEA(x̂)
4: - Initialize target CoM: c∗ ← CoM(x̂)
5: - Build preview horizon with T action models
6: - Set target r∗ in OCP
7: - x← (xd)

T
i=0

8: - u← (ud)
T−1
i=0

9: - x∗, u∗, K[0]← ddp.solve(x, u) until convergence
10: - Initialize control cycle counter: ic ← 0
11: while True do
12: - Update target r∗ in OCP
13: - Measure new state x̂
14: - x[0 : T − 1]← x[1 : T]
15: - u[0 : T − 2]← u[1 : T − 1]
16: - x[0] = x̂
17: - x∗, u∗,K0,Kr ← ddp.solve(x, u) with only one iteration
18: - Publish optimal policy x∗0 ,u∗0 ,K0, r∗

19: - x, u← x∗, u∗

20: - ic ← ic + 1
21: if ic >= Ttot and ic <= Ttot + T then
22: - Deactivate hand translation cost in action model number T− (ic − Ttot)
23: end if
24: end while
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FIGURE 4.2: Diagram of the ROS implementation of our control
scheme.

The architecture is illustrated in Fig. 4.2, and is composed of two parallel pro-
cesses running on independent CPUs at different frequencies: one for the whole-
body MPC, the other for the low-level feedback control. In addition, a motion cap-
ture system (MOCAP) measures at 100 Hz the position of the target to be reached
and sends it to the other two nodes. ROS publisher-subscriber architecture is used to
build the communication framework between all running processes to synchronize
their different frequencies. Thus, every ROS node uses the latest available data on
the topics it subscribes to, and publishes the output once computation is done.

4.4 Experimental results

The experiments evaluate the interest of the linear feedback for direct state feed-
back using ∂u0

∂x0
(H1) and direct feedback to the target position r∗ using ∂u0

∂r (H2). A
video summarizing the experimental results is available at https://gepettoweb.l
aas.fr/articles/dantec22.html.

In order to benchmark these feedbacks, three different experimental protocols
were set up on Pyrène. For all experiments, the MPC node is running on a pow-
erful external computer (AMD Ryzen 5950X, 16 cores and 4.9 GHz with 64 GB of
RAM) whereas the low-level control node is running on the robot internal computer.
Thanks to the efficiency of the Pinocchio and Crocoddyl libraries, the OCP is solved
at approximately 70 Hz in each case.

Two of the experiments are based on the same whole-body tracking task, which
requires the robot to reach a moving target with the end effector while balancing on
both feet. The third experiment consists in testing the robustness and compliance
of the control with respect to external disturbances. In all cases, the robot state is
estimated by an observer provided by the manufacturer. No other additional filter
were added to the state estimation block. Neck and wrist joints are kept fixed in
position control for practical reasons.

https://gepettoweb.laas.fr/articles/dantec22.html
https://gepettoweb.laas.fr/articles/dantec22.html
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FIGURE 4.3: Experiment A: whole-body tracking experiment: with-
out Riccati gains, the desired torque oscillations become too large af-
ter 3.6 seconds, and the securities of the robot are triggered, shutting
down all motors. With Riccati gains, the torque trajectory remains

stable.

4.4.1 Experiment A: Riccati feedback experiment

To test (H1), the whole-body tracking task was performed with and without the
use of Riccati gains in the low-level control loop. For this experiment, the target r∗

is not estimated from sensor but set to an arbitrary sinusoidal trajectory. Fig. 4.3
shows that the MPC alone produces higher reaction spikes (due to delay) which will
eventually trigger the robot inner securities on torque and velocity. With the Riccati
gains, the oscillatory peaks remain limited. Tracking accuracy can then be safely
improved by raising the weight of the tracking cost, leading to Fig. 4.4. Note that
without Riccati gains, it is not safe to use such weights on the robot.

We also experimented with a fixed gain matrix. While our robot is torque con-
trolled (i.e. low-level motor controllers feedback on measured torques), we have
copied the PD gains typically used when the robot is position controlled. Yet the
behavior in simulation remains unstable and similar to no feedback, as shown in
Fig. 4.5. This tends to illustrate that the off-diagonal Riccati terms in Fig. 4.1 cannot
be ignored.

4.4.2 Experiment B: disturbances experiment

Our second experimental protocol aims at showing that direct state feedback
(H1) alone produces a decent control policy able to stabilize the robot under external
disturbances. The experiment consists in launching the MPC with no goal-tracking
cost, then shutting it down and applying external disturbances to the robot. The
policy sent to the low-level control then becomes u = u0 +K0(x̂−x0), with x̂ being
the only varying quantity. This formulation is approximating the optimal stabilizing
policy around x0. Here (u0, K0, x0) are drawn from the last DDP computation of
the high-level control. As can be seen in Fig. 4.6, the Riccati gains efficiently reject
the perturbations and produce a smooth stabilizing torque in response to it. While
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FIGURE 4.4: Experiment A: tracking plot for the MPC scheme with
Riccati gains. Tracking weights are two times higher than in Fig. 4.3

(50 instead of 25).

FIGURE 4.5: Experiment A (in simulation): tracking plot for the MPC
scheme with Riccati gains, with constant gains and no gains.
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FIGURE 4.6: Experiment B: the MPC is shut down and external dis-
turbances are manually applied on the left arm and shoulder. Distur-

bances start at t = 2.4 s and continue up until t = 20 s.

FIGURE 4.7: Experiment B: snapshot of the robot behavior subjected
to external disturbances.
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our goal is not to promote a purely linear feedback, this experiment illustrates how
large the stable domain of our linear policy can be.

4.4.3 Experiment C: placement feedback experiment

Our third experimental protocol aims at testing (H2) by implementing a feedback
policy on the target position, as described in (4.20). This time the MOCAP system is
used to provide the desired placement of the end effector at a frequency of 100 Hz.
Given that this frequency is similar to the MPC node frequency, the target feedback
is small compared to the feedforward term u0. To better observe the feedback ef-
fect, the MPC has been shut down so that the drift in desired placement becomes
significant over time.

The resulting plots of experiment C are presented in Fig 4.8 and Fig. 4.9: first,
the MPC node is started and the OCP is solved at approximately 70 Hz. Then, at
t = 18 s, we shut down the MPC but keep the target moving to illustrate the effect of
the placement feedback gains. From this moment the control is only due to state and
target feedbacks. Finally, starting from t = 38 s, external disturbances are applied to
the left arm the robot.

Using the sensitivities to approximate the optimal solution is relevant as long as
the current OCP, defined by the current state and target position, does not vary too
much from the OCP computed just before shutting down the MPC. The architecture
of this scheme is the same as in Fig. 4.2, without the MPC node to update the terms
(u0, r0,x0,K0,Kr). Switching off the MPC and relying only on the Riccati gains lead
the robot state to remain in the vicinity of the initial state used by the MPC node
to compute the last OCP solution. As a consequence, the accuracy of the tracking
decreases after the MPC shutdown. Nevertheless, placement gains provide a coarse
approximation of the optimal control and are sufficient to move the end effector
toward the desired target and reject external perturbations, as observed in Fig. 4.9.

Figure 4.10 provides the computation cost of the DDP and the extra loop com-
putingKr. As expected,Kr is much cheaper to compute as it always corresponds to
back-propagating only 3 columns, as opposed to the classical backward pass which
works with the nx columns of Kt. As can be observed on Fig. 4.10, the computation
of one DDP iteration can take up to 17 ms, and approximately 13.5 ms on average.
Despite random time spikes, the control remains stable thanks to the Riccati feed-
back on state and target position.
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FIGURE 4.8: Experiment C: placement feedback state and control
plots: MPC is shut down at t = 18 s, and external disturbances start

to be applied at t = 38 s.

FIGURE 4.9: Experiment C: placement feedback tracking plot.
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FIGURE 4.10: Experiment C: placement feedback time plot.

FIGURE 4.11: Experiment C: snapshot of the robot reaching a MO-
CAP target while being subjected to external disturbances.

4.5 Conclusion

This chapter has highlighted the idea that the classical feedback gains obtained
during the Riccati recursion of the DDP can be used as sensitivities with respect to
the initial state of the OCP. These gains allow to interpolate the optimal control at
2 kHz in order to produce dynamic yet stable motions that would otherwise fail
because of the MPC computation latency. The importance of the Riccati feedback
loop has been illustrated on a whole-body tracking movement on the full scale hu-
manoid robot Pyrène. Additionally, other sensitivities can be computed and used at
2 kHz in order to adapt the control to a rapidly changing parameter, e.g. the desired
end effector position. This is especially useful to deduce at high frequency a good
approximation of the optimal policy when small disturbances are observed by fast
sensors.
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This work paves the way for the implementation of a real-time whole-body torque
MPC with dynamic contacts, able to perform challenging tasks like walking or inter-
acting with the environment, at arbitrary high feedback frequency. The MPC scheme
was proven to be compliant against unexpected disturbances, a key feature for the
implementation of a walking controller. The next step to be taken consists in build-
ing a preview horizon with varying contact constraints representing single support
and double support phases during locomotion or manipulation tasks.

An interesting extension to the whole-body MPC framework is to study the rel-
evance of force feedback applied to manipulation tasks with contact. On this mat-
ter, we have collaborated with Sebastien Kleff on a whole-body sanding experiment
with Pyrène and have published the results in [Kleff et al. 2022]. In order to not over-
load the manuscript, we will not discuss this work in the frame of this thesis, but we
mention it nonetheless as a promising research direction for future developments.
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Chapter 5

Locomotion with foot references

Humanoid robots have now been walking for more than 50 years, using vari-
ous heuristics ranging from simple passive walking schemes to complete locomo-
tion frameworks which involve footstep optimization and push recovery strategies.
Robot models are getting more and more sophisticated with numerous occurrences
of full dynamics predictive approaches on quadruped hardwares [Neunert et al.
2018; Katayama and Ohtsuka 2022; Mastalli et al. 2022b; Mastalli et al. 2022a]1. Yet,
few demonstrations of full dynamics schemes have taken place on biped hardwares.

This chapter presents a whole-body MPC framework for locomotion on flat and
uneven terrain, illustrated by real-world experiments on the torque-controlled plat-
form Pyrène. Our experimental validation shows good and promising results for
dynamic locomotion at different gaits as well as 10 cm height stairstep crossing.
The method is fully generic and can be combined with a high-level footstep plan-
ner for locomotion in cluttered environments. The mathematical tools previously
introduced are used to build a hybrid dynamic problem over a receding horizon;
wrench cone constraints are approximated by convex regularization and foot ref-
erence trajectories are hand-tuned splines set to minimize end effector velocity at
take-off and landing. The results contained in this chapter were published in [Dan-
tec et al. 2022b].

5.1 Motivation

Locomotion of biped robots are characterized by unstable dynamics, physical
limitations of contact forces and, in some cases, non-negligible inertial effects. Pre-
dictive control, in particular ZMP preview schemes, has proven to be a suited tech-
nique to tackle the locomotion problem, because of its ability to handle constrained
dynamics and to replan the motion on the fly, starting from the next sampling state.
A crucial question is to identify which control problem should be solved online to
perform robust walking, or in other words, which level of model complexity should
be considered to maximize robustness. Classical approaches based on template
models quickly show their limits in terms of genericity and versatility. Because such
methods rely on specific heuristics to ensure dynamic feasibility, intrinsic compli-
ance and control stability, they tend to result in complex software architectures that
are time-consuming to implement on hardware. Besides, they typically neglect the

1Papers from C. Mastalli are also part of the Memmo Project.
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effect of limbs inertia in the preview horizon, although it is significant for heavy
robots like Pyrène.

On the other hand, we argue that our whole-body predictive control framework
is more compact and generic enough to handle various locomotion situations with
few to no tuning efforts. In order to provide a preliminary proof of concept, we wish
to design a walking formulation based on pre-computed foot trajectories and to test
it on different scenarios. The locomotion problem, as compared to the tracking task
presented in Chap. 4, includes contact switch events whose dynamics is discontin-
uous and complex to integrate, yet our control framework is robust enough to deal
with such disturbances. Due to the huge computational power demanded by our
solver, it is particularly essential to implement the Riccati feedback policy presented
in Chap. 4 inside the low-level part of the controller.

5.2 Walking MPC formulation

This section introduces the formulation of our whole-body MPC for generalized
locomotion on uneven ground. As in Chap. 4, we leverage the Riccati feedback gains
inside our low-level control block to approximate the optimal torque command at
2 kHz. The key point of the locomotion problem is to ensure that the contact forces
remain inside a stable contact wrench cone taking into account friction constraints
and CoP constraints. Contact transitions are handled by defining in advance all
the contact models along the horizon, following a hybrid dynamics approach. A
receding strategy is then implemented to shift the horizon of the problem at each
control cycle.

5.2.1 OCP formulation

Similar to Sec. 4.3.1, the OCP formulation is based on contact-constrained dy-
namics f and cost ` = ∑6

i=1 wi`i. Three cost terms in ` have already be introduced
in Sec. 4.3.1: state regularization `x, control regularization `u and kinematics limit
cost `b. These particular terms remain unchanged in our walking OCP, save for their
respective weights which have been tuned to improve the walk.

Foot placement cost

The fourth cost is a foot placement term whose role is to track a reference place-
ment trajectory p∗(t) ∈ SE(3), ∀t = 0..T. For each foot, the placement cost writes:

`p(x, t) = aL(p(x)− p∗(t)), (5.1)

with p(x) ∈ SE(3) foot placement when the robot state is x. Function aL represents
the logarithmic activation function introduced in Sec. 4.3.1, here applied to a resid-
ual of dimension 6. The rotation part of residual p(x)− p∗(t) is computed through
the rotation logarithm introduced in Sec. 3.2.1.

Wrench tracking cost

In order to regulate the contact forces during support phases, a wrench tracking
cost was implemented inside our control framework. Its role is to approximate the
6-D contact constraints summarized in (3.34). For each contacting foot, one wrench
cost function is defined, similarly to the foot placement cost. As usual, we denote by
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λ = (f , τ ) the contact wrench, (W, L) half-width and half-length of the rectangular
feet and µ the friction parameter. We also define fmin, fmax to be the minimum and
maximum normal forces of the contact interaction. All inequality constraints defined
by (3.34) can then be concatenated into a single expression [Caron et al. 2015b]:

bl ≤ Acλ ≤ bu

bl
i =

{
−∞ if i 6= 5
fmin else

bu
i =

{
0 if i 6= 5
fmax else

(5.2)

In this inequality, bl ∈ R17 and bu ∈ R17 are the corresponding lower and upper
bounds of the constraints, with−∞ the virtual numerical limit of the machine. Ac ∈
R17×6 is the following matrix:

Ac =


A1
A2
A3
A4



A1 =


1 0 −µ 0 0 0
−1 0 −µ 0 0 0
0 1 −µ 0 0 0
0 −1 −µ 0 0 0
0 0 1 0 0 0

 ,A2 =


0 0 −W 1 0 0
0 0 −W −1 0 0
0 0 −L 0 1 0
0 0 −L 0 −1 0

 ,

A3 =


W L −µ(L + W) −µ −µ −1
W −L −µ(L + W) −µ µ −1
−W L −µ(L + W) µ −µ −1
−W −L −µ(L + W) µ µ −1

 ,

A4 =


W L −µ(L + W) µ µ 1
W −L −µ(L + W) µ −µ 1
−W L −µ(L + W) −µ µ 1
−W −L −µ(L + W) −µ −µ 1

 .

(5.3)

A1 encodes the friction cone and minimal force constraint represented by (3.34a)
and (3.34b). A2 encodes the local CoP constraint in (3.34c) and (3.34d). Lastly,A3,A4
encode the yaw minimum and maximum torque values represented by (3.34e).

Inequality (5.2) describes a linearized wrench cone with 4 facets. The lineariza-
tion of friction cones has been historically used in the frame of linear predictive con-
trol with template models. Since the DDP algorithm handles nonlinear costs, it is
possible to use instead the true quadratic cone defined by ||fx,y|| < µ fz. Yet, doing
so is unlikely to improve the solution in a significant way, since the DDP scheme
does not allow to precisely take into account such inequality constraints. We then
chose to stick with the 4-facet representation.

Using quadratic barrier costs to approximate the wrench cone constraints makes
the problem too hard to solve in real time, as the solver struggles to discover the
optimal contact forces in just one iteration. Unfortunately, the computation load of
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FIGURE 5.1: Force reference trajectory during double support (DS)
and single support (SS) phases.

the whole-body MPC does not allow to perform more than one iteration at each con-
trol cycle. Thus, the solver appears to need more information to converge quickly
toward a reliable solution. At first, we tried to introduce a reference wrench trajec-
tory λ∗ = (0, 0, f ∗, 0, 0, 0) with f ∗ a normal force reference equal to mrg, weight of
the robot in simple support phases, and half the weight in double support phases.
This approach lead to very brutal contact transitions as the solver attempted to fol-
low a discontinuous force trajectory, switching from 0 to mrg/2 and then to mrg. A
simple interpolation was then added to smooth the behavior of the robot between
contact modes. The reference was selected to be λ∗(t) = (0, 0, f ∗(t), 0, 0, 0) where
f ∗(t) is equal to mrg during single support phases and switches continuously from
mrg− fmin to fmin during double support phases (see Fig. 5.1). Here, fmin is a secu-
rity margin and should be read as the minimum force reference at contact just before
take-off.

The final wrench tracking cost is then defined by:

`λ(x,u, t) = ||Ac(λ− λ∗(t))||2, (5.4)

with every wrench expressed in the local frame of the contact foot. One alternative
formulation of this cost consists in replacing the matrix Ac with a diagonal weight
matrix of size 6× 6 to regularize individually each component of the wrench. This
alternative has been tested on the robot but has not resulted in stable motions. In
fine, matrix Ac represents a set of empirically stabilizing gains with off-diagonal
terms that cannot be cut off. The role of cost `λ is to ensure that the contact con-
straint residual Acλ does not diverge too much from the residuals computed from
the normal force reference f ∗(t).

Local CoP regularization cost

The wrench tracking cost alone does not prevent occasional breakings of the
non-tipping constraint during contact transition. Practically speaking, it has been
observed in simulation and on the robot that the local CoP constraints described by
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FIGURE 5.2: Left foot CoP constraint |τy| ≤ L fz for simulated walk
with and without CoP regularization. Blue plain line is |τy|, red dot-
ted line is L fz. Bottom plot shows violations of the constraint during
contact switch, which translate into oscillating ankles in simulation.

On the real robot, those constraints violations lead to falling.

inequalities (3.34c) and (3.34d) are violated during contact switches, although the
wrench tracking cost `λ should regularize the contact torque to zero. To address this
behavior, a local CoP regularization cost defined for each foot has been added to the
formulation:

`cop(x,u) =
1

2W2

(∣∣∣τy

fz

∣∣∣2 + ∣∣∣τx

fz

∣∣∣2). (5.5)

The idea behind this cost is to force the non-tipping inequalities | τy
L fz
| < | τy

W fz
| ≤ 1

and | τx
W fz
| ≤ 1 by penalizing the corresponding quantities, with typically L > W. In

order to be more conservative, W can be set smaller than the half-width of the foot,
which is equivalent to increasing the CoP cost weight.

The effect of this cost is illustrated in Fig. 5.2, where a walking motion was per-
formed in simulation with and without the CoP regularization. When | fz| is low,
typically near contact transition, constraints (3.34c) and (3.34d) are harder to respect,
and it becomes critical to penalize | τx

fz
| and | τy

fz
|. We see here that the minimum mar-

gin imposed by fmin is implemented so that cost `cop does not become ill-conditioned
when f ∗ tends toward 0.

5.2.2 Cost parametrization

The weight distribution used to perform locomotion is presented in Table 5.1.
Compared to Chap. 4, the state and control weights have been multiplied by 5 in
order to enhance motion regularization. The goal was to mitigate sharp velocity and
control spikes occuring at contact switches.
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`x `u `p `b `λ `cop

Running costs 0.1 0.005 1000 1000 0.001 10
Terminal costs 0.1 1000

TABLE 5.1: Cost weights of our walking OCP.

The weight matrix Bu is again the identity matrix, while the new weight matrix
Bx is described in Table 5.2. Compared to the previous chapter, Bx has been mod-
ified to reduce legs position impedance while still penalizing swing base motion.
These weights have been deployed on the robot and have resulted in robust walk-
ing motions at different gaits, on flat ground and uneven terrain.

Apart from the tuning of the cost weights, one empirical heuristics has been used
to improve the walking motion. We activate the foot placement cost of each foot
during the corresponding swing phases, but also during double support phases. In
theory, the placement constraint induced by the contact dynamics should nullify the
effect of this cost during double supports, but we found out that letting the cost
active lead to more stable contact transitions.

Base pose Base angle Leg Torso

Position 0 10000 10 100
Velocity 10 10 10 10

TABLE 5.2: Diagonal terms of the weight matrixBx.

5.2.3 Model and timings

The size of the horizon to be considered for locomotion is of critical importance.
When it comes to centroidal planning and capturability of the LIP system, a 2-step
preview horizon is sufficient to ensure balance [Zaytsev et al. 2015]. As for whole-
body biped walking, it seems preferable to encompass at least one full step inside
the preview horizon. Biological studies on biped walking in natural environments
suggest that humans maintain a look-ahead of ∼ 1.5 s when planning for their next
set of actions [Matthis et al. 2018].

Likewise, we choose to generate an horizon of 150 knots separated by a 10 ms
timestep, for a total of 1.5 s prediction window. From a theoretical point of view, it
seems preferable to have a timestep as close as possible to the average computation
time of one DDP iteration. Indeed, each control cycle should correspond to a one
knot shift of the preview horizon. From an empirical perspective however, we no-
ticed that lowering the timestep length in simulation results in more dynamic walk-
ing motions: this is actually to be expected, since a lower timestep translates into a
shorter preview horizon, given a constant number of knots. As a consequence, the
robot is asked to perform the same motion in much less time, and it can only suc-
ceed by being more dynamic. Finally, it has been observed that a timestep higher
than 10 ms tends to produce control instabilities on the robot, particularly at con-
tact transitions. It is likely that our Euler integration scheme struggles with long
timesteps coupled with brutal changes in dynamics. In the light of this observation,
we choose to stick to a 10 ms timestep, as in Chap. 4.
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Finding the optimal frequency at which the whole-body MPC should be recom-
puted is an open problem to this day. In the case of centroidal schemes deployed on
humanoid robots, it has been suggested that a sampling frequency of up to 200 ms
is acceptable for CoM and CoP tracking [Villa et al. 2019]. However, as far as whole-
body control is concerned, fast update frequency empirically leads to better perfor-
mances, as our preview scheme deals with both centroidal and actuator dynamics.
In order to cut the computation load as much as possible, we choose to use a re-
duced robot model including a total of 14 torque-controlled joints: 6 for each leg and
2 for the torso, resulting in nx = 41 and nu = 14. The arm joints are controlled in
position and remain fixed during the walking motion. From the viewpoint of the
high-level MPC, the arm joints do not exist. It has been demonstrated that including
the arms in the model allows for a better control of the centroidal angular momen-
tum of the robot [Khazoom and Kim 2022]. Using only a half-body model makes
the locomotion more difficult as the legs and torso alone have to compensate for the
heavy inertia of the upper body. Nevertheless, our control scheme was proven able
to handle this issue.

5.2.4 Receding horizon strategy

In order to leverage the predictive capabilities of our MPC scheme, a receding
horizon strategy was implemented to perform robust locomotion on Pyrène. We
consider a preview horizon composed of T action models, which encodes the OCP
that will be solved through DDP. We also consider two other sets of action models,
named walking cycle horizon and standing linear horizon. The walking horizon is
composed of a periodic sequence encoding 2 consecutive steps, while the standing
horizon is composed of only double support phases. Inside walking and standing
horizons are encapsulated the reference wrench trajectories for smooth transitions
between single and double supports.

The receding process is described in Alg. 2 and in Fig. 5.3. The OCP initialization
step and update step are the same as in Alg. 1, so for the sake of clarity these steps
are not detailed in Alg. 2, but summarized in lines 4 and 10. The user first defines
a single support timing Ts, double support timing Td and total horizon length T. At
initialization, the three different horizons are built using Double Support (DS) and
Single Support (SS) models (lines 1, 2 and 3). SS models are themselves divided be-
tween Left Foot support (LF) and Right Foot support (RF) models. At each MPC
update, the preview horizon recedes and its last action model becomes a copy of
the current action model belonging to the walking cycle (line 12). The walking cycle
loops on itself as long as the user intends to keep on moving. To stop the locomotion,
the user needs to update a boolean parameter that will connect the end of the pre-
view horizon to the standing horizon (line 22). The standing horizon will begin to be
depleted only when the walking cycle comes to the end of a step, to ensure contact
continuity (line 11). Once the standing horizon is fully browsed, the structure of the
problem ceases to change and the robot remains in resting position. With this sort of
architecture, the user does not have to plan in advance how long they intend to walk.

During double support phase, at each control cycle, the reference trajectories for
future swing feet are updated over the entire horizon using a minimum jerk Bezier
curve. The final placement of each swing foot is set to be the current placement of
the other foot in support phase, plus a desired 3-D translation (δx, δy, δz). These
curves are tuned so that during landing and take-off, foot velocity and acceleration
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Algorithm 2 Receding horizon algorithm for locomotion

Require: T, Td, Ts
1: - Build preview horizon with T DS models
2: - Build walking cycle with 2Td DS and 2Ts SS models
3: - Build standing horizon with T double support models
4: - Solve OCP with preview horizon until convergence
5: - Initialize counter for walking knots: iw ← 0
6: - Initialize counter for standing knots: is ← 0
7: - Initialize state of motion boolean: IsWalking← True
8: while True do
9: - Measure new state x̂, set new warm-start from previous solution

10: - Recede preview horizon by one knot
11: if IsWalking or (walking model number iw is not DS) then
12: - Last model of preview horizon becomes walking model number iw
13: - iw ← iw + 1
14: if iw = 2(Td + Ts) then
15: - iw ← 0
16: end if
17: if First model of preview horizon is DS then
18: - Update reference feet trajectories along horizon
19: end if
20: else if not(IsWalking) then
21: if is < T then
22: - Last model of preview horizon becomes standing model number is
23: - is ← is + 1
24: end if
25: end if
26: - Perform one DDP iteration, publish optimal policy
27: end while

FIGURE 5.3: Receding horizon strategy combining a preview hori-
zon, a walking cycle horizon, and a standing horizon. DS stands for
Double Support, LF for Left Foot support, RF for Right Foot support.
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are colinear to the normal of the contact surface. As a consequence, the entire foot
area is making contact with the ground at the same time.

Empirically, we found out that fixing δz = 1 cm leads to a more stable walk on
flat ground. This amounts to triggering the contact landing event when the foot ref-
erence is 1 cm above the ground. Doing so tends to make the foot go firmly against
the ground, hence improving its stability. On the contrary, switching to double sup-
port after the foot actually made contact often results in motion failure, because the
robot tries to go through the ground and thus applies a non-modeled force that can
push it out of balance.

5.2.5 Robotic Operating System (ROS) architecture

Our MPC is embedded inside a ROS node that subscribes to the actual state of
the robot measured at 2 kHz, and that publishes a feedforward optimal torque u0,
Riccati gains K0 and last computed initial state x0 at 60 Hz. The final torque sent to
the low-level control combines the feedforward control with a state feedback based
on the Riccati gains and last measured state x∗:

u = u0 +K0(x0 − x∗). (5.6)

This ROS scheme is identical to the one presented in Fig. 4.2, except that there
is no MOCAP node or feedback on the desired end effector position. As before, the
desired intensity of current at each controlled joint motor is computed through a
proportional-derivative feedback on the joint torque measurement.

5.3 Experimental results

Our MPC locomotion framework was extensively tested on the humanoid robot
Pyrène. Due to the critical problem of computation time, the MPC still runs on a
powerful external computer (AMD Ryzen 5950X, 16 cores and 4.9GHz with 64 GB
of RAM), whereas the low-level control runs on the embedded CPU of the robot.

The proposed control scheme was evaluated in two locomotion scenarios: in
the first one, the robot performs a straight walk on flat floor with two sets of gait
timings; in the second one, the robot climbs up and down a 10 cm-high step. In
both experiments, the exact same cost weights were used on the robot, and the
only varying parameters were the feet trajectory and gait timings. Since the reg-
ularization weights for the base pose have been set to 0, the robot is free to trans-
late vertically and horizontally. This demonstrates the adaptability of the MPC
framework, which can produce relevant stable trajectories over a wide range of 3-
D dynamic motions. A video of all the experimental results is available at https:
//gepettoweb.laas.fr/articles/dantechumanoid22.html.

The following table presents the different gait parameters used during experi-
mental validation.

Gait 1 Gait 2 Stairstep

Forward step length δx 10 cm 20 cm 30 cm
Width btw. feet δy 20 cm 20 cm 20 cm

Single support time 1.1 s 1.5 s 3 s
Double support time 0.3 s 0.75 s 2 s

TABLE 5.3: Gait parametrization for the locomotion experiments.

https://gepettoweb.laas.fr/articles/dantechumanoid22.html
https://gepettoweb.laas.fr/articles/dantechumanoid22.html
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5.3.1 Walking on flat floor

The results of the walking experiment are presented in figures 5.4 to 5.8. Ad-
ditionnally, a snapshot of the 20 cm forward gait is displayed in Fig. 5.9. Fig. 5.4
shows the tracking of the desired feet trajectories over time. The Bezier curves used
to generate the reference in position are only followed during swing phases, hence
are not relevant during support phases. The reference in X-axis and Y-axis are pre-
cisely tracked during swing phases, but noisy oscillations can be observed at the
edges of support phases, at take-off and landing. These oscillations are likely caused
by inconsistent base pose estimation at contact switches, but could also be the con-
sequence of a drift in calibration.

Figure 5.5 shows that a normal force is measured just before contact landing.
This means that the foot impacts the ground before the solver predicts it. As no
step or timing adaptation has been introduced in our framework yet, such behavior
is for now difficult to avoid. Nevertheless, the MPC is able to cope with such un-
known disturbances and produce a stable walking trajectory, thanks to its intrinsic
compliance which helps to damp the impact.

Figures 5.6 and 5.7 show that the predicted CoP, computed from the forces pre-
dicted by the solver, matches the CoP based on the sensor forces. During the motion,
the solver generates its own CoP trajectory to minimize the user-tuned cost function.
It is interesting to notice that when the foot lands, the predicted CoP in Y axis may
sometimes go outside the feet support area, although the real CoP remains inside.
In this case, the low-level torque feedback loop is acting as a low-pass filter that
smooths the control sharp edges.

Ideally, the CoP should stay close to the center of the support polygon, so as
to maximize its robustness margins. In practice, the measured CoP goes very close
to the front edge of the feet, as can be seen in Fig. 5.6. This behavior results from
the weak regularization of contact wrenches, which does not prevent the CoP from
crossing user-defined limits. One possible way to improve the locomotion would
then be to compute a better reference for the CoP, adapted to each gait, using a
centroidal model; however, this would come with an additionnal layer of complexity
and would contradict the initial motivation based on the idea of encompassing the
whole locomotion inside one unique control block. Another solution would be to
use a solver able to tackle strict inequalities on forces.

Finally, Fig. 5.8 indicates that one iteration of DDP is computed in less than 15 ms,
but features brutal spikes of 50 ms that happen at contact switches, when the struc-
ture of the problem suddenly changes. We do not know yet what causes these sig-
nificant delays, but we suspect that bad CPU cache management is involved in some
way. Despite these unexpected time overflows, the motions produced by our frame-
work remain stable because the approximated Riccati policy takes over while the
high-level control is computing.
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FIGURE 5.4: Measured and desired feet position during locomotion
on flat floor.

FIGURE 5.5: Predicted vs measured normal forces in left and right
feet during locomotion on flat floor. The foot is touching the ground

before landing as can be seen in the zoomed window.
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FIGURE 5.6: CoP trajectory in X axis compared to actual feet position
during locomotion on flat floor. The foot of the robot is 20 cm long.

FIGURE 5.7: CoP trajectory in Y axis compared to actual feet position
during locomotion on flat floor. The foot of the robot is 10 cm wide.
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FIGURE 5.8: Time computation of one DDP iteration during locomo-
tion on flat floor.

FIGURE 5.9: Snapshot of the walk experiment with 20 cm step. As
the walk is quasi-static, the robot tries to keep its CoM as much as
possible over the supporting foot in swing phases, generating high

roll motions.
.
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5.3.2 Stairstep crossing

The main objective of the stair experiment is to demonstrate the versatility of
the proposed framework. Compared to the walking experiment, only the feet tra-
jectories and contact timings have been modified, while the wrench trajectory re-
mains the same. Figures 5.10 to 5.13 illustrate the results of this experiment, while
Fig. 5.14 shows a snapshot of the stairstep crossing motion. Given the gait timings
(3 s for double support, 2 s for simple support), one full step does not hold inside
our preview horizon: as a consequence, the motion is quasi-static since the predic-
tive control works in a nearly blind way, without being able to see contact landing
before the foot takes off. Shorter gaits timings were attempted on simulation but
were considered too hazardous to be passed on the robot. Walking the stairstep in
a dynamic way remains a challenging task for a whole-body MPC subjected to very
harsh computation constraints.

Figure 5.10 highlights an essential issue caused by a bad estimation of the base of
the robot: during the last 5 seconds of the motion, whereas the right foot is in support
phase and not moving, the actual foot position in Y shows brutal discontinuities of
1 cm when the left foot is creating and breaking contact. The estimated base of the
robot shows the exact same discontinuities at the same time. The low quality of
the base estimation negatively affects the feet tracking task, and as a consequence
feet may be far above the ground during transition from single support to double
support. This results in important impacts at contact transition, as can be seen in
Fig. 5.13, where a spike force of 800 N is measured at t = 24 s.

Similarly to the flat floor experiment, the predicted CoP trajectory briefly goes
outside the foot area when landing occurs, as seen in Fig. 5.12. This issue is also no-
ticeable in Fig. 5.13 where the lateral forces during contact switches feature several
peaks corresponding to contact mismatches caused by blind time-scheduled transi-
tions and model uncertainties.

FIGURE 5.10: Measured and desired feet position during stairstep
crossing. Bad pose estimation is highlighted at the end of the right

foot trajectory.
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FIGURE 5.11: CoP trajectory in X axis compared to actual feet position
during stairstep crossing. The foot of the robot is 20 cm long.

FIGURE 5.12: CoP trajectory in Y axis compared to actual feet position
during stairstep crossing. The foot of the robot is 10 cm wide.
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FIGURE 5.13: Predicted vs measured normal forces in left and right
feet during stairstep crossing.
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FIGURE 5.14: Snapshot of the stairstep crossing experiment.

5.4 Conclusion

This chapter introduced the first application of whole-body MPC for the loco-
motion of a biped robot. The proposed framework can be adapted to cross obsta-
cles like stairstep by simply adjusting the feet reference trajectories and locomotion
gaits. It has proven to be robust against model uncertainties, imprecise state esti-
mation and unexpected latency in data transmission, caused for example by contact
switches. The key to implementing this MPC on a real platform lies in the approx-
imation of the wrench cone constraints treated as regularization costs and the use
of Riccati-based feedback policy inside the low-level control of the robot. The latter
improvement allows us to increase the frequency of the control scheme to 2 kHz.
Without this additional state feedback loop, the motion could not be executed on
the real robot, as the update frequency would not be high enough. Our single-block
framework can be extended to any given task at the (small) price of designing and
tuning specific costs adapted to the goal.

Although this whole-body MPC architecture produced promising results, we
still need to prove that it can outperform state-of-the-art centroidal walking con-
trollers. The proposed method used to cope with wrench cone constraints results in
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dynamically unfeasible predicted CoP trajectories, even if the filtering effect of the
low-level control allows for such solutions to be executed on the robot. Moreover, ro-
bustness margins cannot to be implemented inside the current framework, resulting
in very conservative motions for challenging tasks like walking on uneven terrain.
The behavior of the robot at contact transitions needs to be studied more thoroughly,
so as to eliminate those brutal discontinuities in torques and forces. All in all, the
curse of dimensionality remains an overwhelming constraint that our Riccati-based
feedback scheme cannot attenuate entirely. On this matter, it would have been in-
teresting to integrate the arm joints to the problem formulation, in order to benefit
from additionnal DoF to control the total angular momentum of the system. Un-
fortunately, our current computer configuration does not have enough power yet to
handle such a complex model.

A significant limitation of the proposed scheme lays in the high impedance of
the feet tracking task. Walking as demonstrated in this chapter amounts to guide
the robot by its feet like a puppeteer, whereas it would be preferable to give the
robot the ability to decide autonomously how to move in its environement. Besides,
push recovery cannot be done while tracking user-defined foot references, unless a
fast high-level footstep planner provides stabilizing contacts in case of strong distur-
bances. These limitations will be tackled in the next chapter of this thesis, where a
trajectory-free MPC scheme will be developed.
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Chapter 6

Walking without thinking

In the previous chapter, a walking scheme based on the use of pre-defined foot
trajectories has been implemented on the robot Talos. Part of the locomotion com-
plexity is captured by these high-level references that the user should tune depend-
ing on the environment they wish to cross. Yet, this approach implies to tune a
stiff cost to accurately track the references, which artificially increases the controlled
impedance of the flying foot. We seek now to write a trajectory-free algorithm in
which the solver can decide by itself where the robot feet should go in order to walk
safely on cluterred terrain. The aim is to reduce the impedance of the controller with
respect to end effector placements and to make the formulation more generic.

6.1 Motivation

Classical control methods for locomotion involve tracking a stable reference tra-
jectory with QP or MPC schemes, depending on the problem size. If such ap-
proaches have produced satisfying results on numerous robotics platforms, they
are in general not suited to face strong external disturbances. The work of [Wieber
2006b] shows that a trajectory-free MPC scheme is able to reject stronger distur-
bances than a control scheme that simply tracks a user-defined CoP reference. In-
stead of trying to follow at any cost an outdated CoP trajectory, it is way more rele-
vant to recompute a new one in order to recover from an unexpected push. To reach
this objective, the cost function of the optimal formulation in [Wieber 2006b] is set
to minimize the CoM jerk while maintaining the CoP inside the support polygon.
Following this approach, the work of [Herdt et al. 2010] proposed to enhance the
flexibility of the walking scheme by letting the solver choose where to step on. This
work advocates for the idea of a walking without thinking formulation of locomotion,
where the user provides a desired CoM reference (final position or current veloc-
ity) along with a set of feasible regions to step on, or a sequence of contact points
provided by a contact planner. In [Herdt et al. 2010], feasible regions for the next
supporting foot are computed offline and derived online under the form of simple
linear approximations of the robot kinematic limits. In case of strong pushes, the
robot is able to keep its balance as long as it can stop its motion within one step. For
even stronger pushes, computing the capture region [Pratt et al. 2006] and ensuring
that the robot reaches it within a few steps may constitute a viable solution to avoid
falling.

In order to enhance the reactivity and adaptability of our control scheme, we
aim at transposing this walking without thinking approach to our whole-body MPC
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formulation. The objective is to execute a high-level locomotion task (go to a given
point across a cluttered terrain) with a minimal set of user-defined inputs (typically
only the terrain structure and the desired final pose). In the work of [Herdt et al.
2010], real-time capacities are achieved through clever linear simplifications, paving
the way for a linear centroidal MPC that can adapt contact placements online. In
the context of whole-body predictive control, it implies that the solver must decide
both the impact location and the trajectory of the feet in flying phase. The compu-
tational burden increases as the OCP must now encompasses some terms to push
the flying foot away from collision, in coordination with the centroidal behavior. In
this chapter, we propose to use a new cost introduced in [Assirelli et al. 2022] for
quadruped locomotion without foot references. We adapt the walking OCP formu-
lated in Chap. 5 by including this cost and experimentally validate its feasibility and
interest on the robot Pyrène.

6.2 Trajectory-free MPC formulations

This section extends the walking controller presented in Sec. 5.2. The structure
of the controller remains the same, and only some few changes are made to the cost
functions in charge of shaping the desired locomotion solution. More specifically,
five cost terms remain unchanged with respect to the previous chapter: state and
control regularization costs (`x and `u), kinematic limit cost (`b), wrench tracking
cost (`λ) and CoP regularization cost (`cop). These terms relate to generic locomotion
in any kind of terrain.

Two different trajectory-free control formulations are examined in the frame of
this thesis. The first one is designed to withstand strong external disturbances on flat
floor while minimizing the distance to a user-defined CoM goal. It supposes that the
floor is an infinite flat walkable surface, and as a consequence does not need to be
provided with feasible stepping areas or feasible contact points. The second one
aims at crossing cluttered environments like stepping stones or stairs, without the
requirement to compute splines joining each contact placement. As for the second
one, a high-level contact planner combined with a map of the environment is needed
to define a feasible contact sequence across obstacles.

Both formulations leverage the receding horizon strategy introduced in Sec. 5.2.
They also share the same reduced robot model composed of 14 actuated joints, 12
for legs and 2 for torso. We stick to the same time parametrization as used on the
previous walking OCP: the preview horizon is made of 150 knots separated by a
10 ms timestep.

6.2.1 Push recovery formulation

Our push recovery formulation is based on the idea of reducing the foot con-
trolled impedance of the walking scheme. Foot controlled impedance can be viewed
as the relation between a variation in foot position and the corresponding control
correction. From this perspective, the walking scheme introduced in Chap. 5 dis-
plays a very stiff foot impedance, because the weight of the associated tracking cost
is very high compared to the overall weight distribution. As a consequence, the
MPC penalizes very harshly any deviation from the reference foot trajectory. This
means that the robot cannot leave the path given by the user, unless a high-level
trajectory planner is implemented to adapt to any environmental variation or com-
mand update. Moreover, absorbing unexpected strong pushes is impossible, as the
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resulting error in foot tracking would lead to a spike in control response that would
trigger the actuation safeguards.

On the contrary, a lower foot controller impedance will enhance the compliance
and the flexibility of the scheme, allowing to perform push recovery with very minor
changes in the control law. On flat ground, the impedance can be relaxed along both
horizontal directions, except when the feet are close to each other. In this precise
case, a geometric barrier cost must be implemented to avoid foot collision.

Placement foot costs

Theoretically, the flying foot altitude needs to be at ground level with horizontal
orientation at the beginning of each contact phase. Due to the inherent compliance
of the MPC scheme, the distance between ground and foot can be a little higher than
zero at contact time: this tends to favor stability at contact transitions, as observed in
Chap. 5. Following this idea, we seek to penalize the foot altitude with the following
cost term:

`z(x) = aL(z(x)), (6.1)

with z(x) height of flying foot when the robot state is x, and aL logarithmic activa-
tion function introduced in Sec. 4.3.1. This cost is only active during double support
phases. Its goal is to bring down the foot at the end of the flying phase, so as to
mitigate the impact event.

Additionally to this cost term, we define a rotation cost function `R = ||log(R)||2
whose role is to bring the rotation of the flying foot equal to zero. In future work,
the rotation reference could be set to change according to the user’s needs, but for
the sake of the demonstration we consider it fixed for now.

High-fly cost

Without foot reference to track, we need a new heuristics to avoid collision with
the ground during flying phase. The foot should follow a bell curve when making
a step forward, so that it does not scratch against the ground. To tackle this require-
ment, we consider the following intuition, introduced in [Assirelli et al. 2022]: foot
scratching is caused by high lateral foot velocity combined with low or null foot
height. Penalizing lateral foot velocity with respect to foot height appears to be a
logical heuristics to deal with this kind of motion. Our high-fly cost would then
write:

` f ly(x) = ||vx,y(x)e−γz(x)||2, (6.2)

with vx,y(x) lateral foot velocity (coordinates x and y) and γ = 300 a weighting fac-
tor related to the sensibility to foot height. For an empirical viewpoint, the use of
exponential to penalize lateral velocity has been observed to produce good results
as compared to linear or quadratic norms.

To better visualize the effect of this cost, one might take a look at Fig. 6.1, which
shows the gradient of a simplified 2-D version of ` f ly. The solver will tend to explore
the opposite direction of the plotted gradient, and as a consequence will favor high
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FIGURE 6.1: 2-D plot of the high-fly cost gradient with respect to al-
titude and lateral velocity. The vectors are pointing toward the direc-
tion of steepest increase. For the sake of the demonstration, the cost

plotted here is simplified as: `(vx, z) = v2
xe−2z.

foot altitude when the absolute lateral velocity is high.

Collision avoidance cost

Because the foot position is unconstrained during flying phase, self-collision
must be actively avoided. Those self-collisions are very likely on the Pyrène robot,
because the CoM of its legs is externally shifted by a few centimers with respect to
the roll joint. As a consequence, the natural resting position of the legs, obtained
when the robot is lifted and no static friction is considered, results in feet collision.
To prevent this behavior, a self-collision avoidance cost is written as:

`col(x) =
Nl

∑
i=1

Nr

∑
j=1

b(||rl
i − rr

j ||). (6.3)

In this cost, Nl = Nr = 3 stands for the number of collision points on left and
right foot frames: toe, center and heel of the foot. Likewise, rl

i and rr
i are the collision

point translations for left and right frame. This makes for a total of 9 collision pairs.
Finally, b : s 7→ ||max(dm − s, 0)||2 is a quadratic barrier cost that gets activated only
when the distance between frames goes below a given threshold dm > 0. On Pyrène,
this threshold has been taken equal to 20 cm, a bit wider than the natural distance
between feet in half-sitting configuration.

CoM position cost

This cost encompasses the user-defined position of the robot at the end of its
motion. It is similar to the CoM tracking cost presented in Sec. 4.3.1, save for the fact
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that we use a smoothed absolute value norm instead of a quadratic one. Given s =
(s1, s2, s3) ∈ R3, this pseudo-norm, which we also call activation function, writes:

a1(s) =
3

∑
i=1

√
s2

i + ε. (6.4)

An infinitesimal parameter ε is added in order to make the activation differen-
tiable at the origin. In practice, we work with ε = 0.01. Denoting c∗ to be the desired
final position, the CoM cost is then:

`com(x) = a1(c(x)− c∗). (6.5)

The aim of a1(·) is to prevent the cost gradient from becoming too high when the
desired position goes far away from the current one. Thanks to this pseudo-norm,
the gradient remains approximately constant with respect to the CoM task residual.

Putting this CoM tracking cost in the running model of our OCP would tend to
produce brutal motions toward the goal c∗, which can be unreachable within the
span of the horizon. Besides, it would put too much constraint on the CoM motion,
whereas the goal is to maximize the flexibility of the formulation. For these reasons,
the CoM cost is only added to the terminal model of our walking OCP.

CoM velocity cost

In order to smooth the CoM trajectory and avoid brutal motions toward the end
goal, we have added a regularization term on CoM velocity:

`vcom(x) = ||ċ(x)||2. (6.6)

It should be noted that this cost also tend to prevent falls at the end of the hori-
zon. Indeed, falls are characterized by a loss of balance and the CoM velocity rapidly
diverging until ground impact. However, if combined with a too high weight, this
cost can hinder the natural oscillation of the CoM from one supporting foot to an-
other.

6.2.2 Stairs formulation

The previous OCP is limited to flat ground locomotion and cannot consider ob-
stacle avoidance because it does not integrate information about the robot surround-
ings. Since it supposes that the entire ground is a stepping surface, it does not require
a contact planning algorithm. In the case of cluttered terrains, however, it is crucial
to ensure that the sequence of contacts belongs to a set of stable surfaces. As a conse-
quence, some stiffness must be injected again into the control of the foot placement
at the end of flying phases, to prevent landing at forbidden locations. Nevertheless,
we still aim at generating motions from previous to next contact without relying
on hand-crafted references, by defining a generic high-fly cost that can adapt to the
terrain structure.

As it would be too difficult to solve for contact locations and whole-body control
at once, we need to rely on an external contact planner that will provide optimal
foot placements in real-time. Given only the next contact to reach and the switching
instant, the control block must compute a stable whole-body policy to achieve the
desired task.
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Final placement foot cost

Let us suppose that at each instant, the placement of the next contact p∗ ∈ SE(3)
is made available to the solver. Our placement cost simply writes:

`p(x) = aL(p(x)− p∗), (6.7)

with p(x) current placement of the flying foot and aL the logarithmic activation func-
tion defined in Sec. 4.3.1 for hand tracking. As in Chap. 5, this cost is only active
during flying phase of current foot and double support phase, then get deactivated
during the flying phase of the opposite foot. Final placement p∗ remains constant
during flying phase and is only updated during double support phase, in order to
avoid brutal trajectory changes while the robot stands on one leg.

Similarly to the walking formulation of Chap. 5, the rotation reference in p∗ is
kept equal to the identity so as to freeze the angular motion of the flying foot. The
translation part of p∗ will be provided by a high-level contact planner which reasons
over the feasible set of contact surfaces in the environment.

High-fly cost

Let us suppose that the next contact is located on top of a stairstep, such that a
direct trajectory from current to next contact will result in the foot colliding with it.
If we introduce a collision cost between the stairs and the foot, the OCP to solve is
geometrically non-convex. This problem formulation has been studied on simula-
tion but resulted in inconsistent motions, because the DDP algorithm could not cross
the obstacle with only one iteration per control cycle. No good compromise could
be found between the vertical repulsive field of the stairs and the attracting point of
the desired contact.

For this reason, we have considered a generalization of the high-fly cost intro-
duced for flat ground walking to hint a collision-free path to the solver. This idea
partly stems from the concept of local potential fields introduced in [Khatib 1986] to
deal with collision avoidance. Rather than penalizing the position of the end effector
when it comes close to obstacles, we penalize here its velocity toward the obstacle.
Our approach amounts to smooth the height map of the environment to seamlessly
guide the solver in the region of most interest.

Let us introduce the sigmoid activation function, a S-shaped curve function mostly
used in the context of artificial neural network. In the context of kinematic planning,
this function will act as a smooth interpolation of an angular stairstep. The sigmoid
and its first derivative are defined by:

s(x) =
h

1 + e−(x−xh)/w

s′(x) =
s(x)(h− s(x))

wh
,

(6.8)

with h height, w width of the sigmoid and xh the x-coordinate of half-height. This
function is of class C∞ and its derivatives are very simple, leading to cheap gradi-
ent computation. It tends toward h at infinity and toward 0 at minus infinity (see
Fig. 6.2).

Given a height collision map represented by a sigmoid function, we need to com-
pute the distance between the sigmoid curve and the flying end effector. For the sake
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FIGURE 6.2: Sigmoid height map (in blue) interpolating a stairstep
obstacle (in black). The rectangular shape is the robot foot. p f is the
foot position, pr the witness point on the sigmoid closest to p f , and

pv is the point of the sigmoid at x f .

of simplification, the following considerations will take place in 2-D, but the same
mathematics principles apply in the 3-D world.

We define pr = (xr, s(xr)) ∈ R2 to be the witness point of the foot, that is to say,
the point on the sigmoid closest to p f = (x f , z f ) ∈ R2, the foot position in world
frame. Likewise, we defined pv = (x f , s(x f )) ∈ R2 to be the point on the sigmoid
with the same horizontal coordinate as the foot (see Fig. 6.2). Finally, d stands for the
Euclidean distance between pr and p f :

d2 = min
x

(
s(x)− z f

)2
+
(
x− x f

)2

=
(
s(xr)− z f

)2
+
(
xr − x f

)2
(6.9)

Unfortunately, no analytical formula of d or xr can be found by classical methods,
as it amounts to finding the root of a function mixing polynoms and exponentials.
If we derive (6.9) with respect to x and nullify the gradient, we end up with a refor-
mulation of xr:

xr = x f + (z f − s(xr))s(xr)
(h− s(xr))

hw
. (6.10)

Reinjecting this into the expression of the Euclidean distance, we obtain:
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d2 =
(
s(xr)− z f

)2
+
(
(z f − s(xr))s(xr)

(h− s(xr))

hw

)2

=
(
s(xr)− z f

)2
(

1 +
(

s(xr)
(h− s(xr))

hw

)2)
.

(6.11)

This expression of this Euclidean distance is particularly difficult to deal with.
An easier approach is to penalize the distance d̃ = |s(x f )− z f | between p f and pv.
Intuitively speaking, this should also hint the solver to raise the foot if it is coming
too close to the sigmoid. When the foot is above the sigmoid curve (i.e. z f > s(x f )),
it is immediate to notice that z f > s(xr) as well, because the segment (p f ,pr) must be
perpendicular to the tangent of the sigmoid curve at pr. From (6.9) we deduce that
xr > x f since s(x)(h− s(x)) is always positive, which allows us to state that d̃ > d.
It appears clearly that we overestimate the real Euclidean distance to the curve by
making such an approximation. Nevertheless, our guess is that using a high weight
on the high-fly cost or shifting the sigmoid forward with respect to the obstacle may
mitigate the error caused by making this approximation. In any case, we write our
cost term as:

` f ly(x) = vx,y(x)e−γd̃(x). (6.12)

It is worth noting that in case h = 0, this cost amounts to the high-fly cost in-
troduced in the flat ground formulation. This illustrates the genericity of the ap-
proach, which can handle different terrain configurations based on a smoothed ve-
locity height map of the surroundings.

6.2.3 Cost parametrization

Regarding the push recovery formulation, the weight distribution for state reg-
ularization, control regularization and kinematic limits are set to be the same as in
the formulation of Sec. 5.2. The other weights used on the robot are presented in Ta-
ble 6.1. The cost on collision avoidance, foot height and foot rotation are particularly
high to enforce them as constraints. The weight of the high-fly cost is also high to
favor vertical foot motion during lateral translation.

`z `R `λ `cop ` f ly `col `com `vcom

Run. costs 1000 1000 0.001 10 1000 3000 500
Ter. costs 1000 1000 1000 3000 100 500

TABLE 6.1: Cost weights of the push recovery OCP on flat ground.

As for the stairs formulation, the weight distribution used on the robot is pre-
sented in Table 6.2. Again, weights associated to `x, `u and `b are identical to the
ones used in previous OCP formulations. The weight on placement cost is high
enough to attract the flying foot toward the next contact point, but low enough to
not trigger brutal control spikes that may overshoot the robot inner securities.
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`p `λ `cop ` f ly

Run. costs 200 0.001 10 1000
Ter. costs 200 1000

TABLE 6.2: Cost weights of the stairs climbing OCP.

FIGURE 6.3: ROS architecture for locomotion scheme with contact
planner.

6.2.4 ROS architecture with contact planner

The MPC node for push recovery and stairs climbing implements a similar ver-
sion of the receding horizon algorithm introduced in Alg. 2. The only notable change
is that there is no computation of the reference foot trajectories at each control cycle,
but rather an update on the next desired foot position.

As for the push recovery formulation, the ROS architecture is similar to the one
used in Chap. 5 for locomotion with feet references. The MPC node still computes
the optimal torque, Riccati gains and last computed initial state at a frequency of
60− 70 Hz, then sends it to the low-level control running at 2 kHz.

Concerning the stairs formulation, a contact planner node has been added to the
usual ROS scheme, as can be seen in Fig. 6.3. This new node receives the current feet
placements (rLF, rRF) from the MPC node and computes the next eight feasible con-
tacts which will bring the robot as close as possible to an user-defined goal contact
position. In practice, since the OCP horizon only covers two steps at best, the final
placement foot cost of our stairs formulation takes as reference input the next left
and right planned contacts (r∗LF, r∗RF).

Our contact planner [Tonneau et al. 2019] runs at a frequency of approximately
10 Hz thanks to a Mixed-Integer Program (MIP) scheme based on the Gurobi Op-
timizer software [Gurobi Optimization, LLC 2023], a modern off-the-shell tool for
solving complex combinatorial optimization problems. MIP approaches address the
multi-contact planning problem on uneven terrain by performing continuous foot-
step optimization on convex surfaces while using integer variables to select the ap-
propriate surfaces. Although mixing integer and continuous variables result in a
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much harder planning problem, powerful commercial solvers like Gurobi can still
provide global solutions in reasonable time. A MIP scheme was successfully de-
ployed on Atlas to plan biped footstep sequences on stepping stones in [Deits and
Tedrake 2014]. Similarly, MIP was integrated inside a complete multi-legged loco-
motion scheme based on centroidal dynamics in [Aceituno-Cabezas et al. 2018].

6.3 Experimental results

The proposed controller was validated through locomotion experiments on the
robot Pyrène and on simulation. In both cases, the MPC node and contact planner
node are running on a powerful CPU (AMD Ryzen 5950X, 16 cores and 4.9 GHz with
64 GB of RAM).

Our experimental setup aims at testing two assumptions: first, the trajectory-
free locomotion scheme is flexible enough to perform push recovery in real time
(A1); second, feet reference trajectory can be replaced by potential height map to
deal with obstacles during uneven terrain crossing (A2).

6.3.1 Push recovery experiment (A1)

To validate (A1), the robot was set to walk on flat floor while being subjected to
violent external disturbances. Gait timings were fixed at 0.2 s for double support
time and 0.8 s for single support time. Given that the total horizon length is 1.5 s,
this choice of timings allows to predict the dynamics of a full step plus half of one.
The desired terminal CoM position of the robot was set to 1 m forward its initial
configuration.

Experimental results for push recovery are presented in figures 6.4 to 6.7. Ad-
ditionally, a snapshot of the experiment is displayed in Fig. 6.8. Figure 6.5 shows
that the walking motion is dynamic, or in other words, the CoM trajectory in Y re-
mains almost always outside of the support polygon. After approximately 10 steps
forward, the robot base is pushed several times from different angles using a stick.
The first push is particularly visible at t ≈ 17.5 s on Fig. 6.4 and 6.5: it can be ob-
served that the robot CoM brutally goes from 5 to -15 cm in Y axis and 100 to 110 cm
in X-axis. After the push, the CoP goes near its boundaries in order to absorb the
energy of the disturbance. The measured CoP trajectory oscillates a lot and even
briefly goes out of the support polygon in Fig. 6.5, meaning that the contact foot is
tilting. Despite nearly losing its balance, the robot manages to recover and to keep
on moving forward. Figure 6.6 displays the same oscillatory pattern for the mea-
sured vertical force of the right foot. It also features a sharp spike of 200 N in lateral
forces, corresponding to the moment when the robot dissipates the energy coming
from the disturbance.

It can be noticed on Fig. 6.6 that the left foot force measures along X-axis do
not match the solver predictions. Moreover, the force profile is very different from
the right foot measures along X-axis. One possible explanation for this observation
is that the left foot force sensor is badly calibrated along the X direction. Another
interesting insight is that the measured weight of the robot is slighlty higher than
the predicted one, as can be seen on left foot force measures along Z-axis. There is a
clear discrepancy between our dynamics model and the real physics of the robot.

Starting from t = 10 s, small vertical forces are exerted on the foot in flying
phase in Fig. 6.6. This means that the robot is dragging its feet toward the end goal.
The high-fly cost actually does not prevent the flying foot to make contact with the
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ground when lateral velocity is insufficient. As a consequence, when the robot is
close to its desired CoM, its feet tend to brush against the ground.

A second push is observable at t ≈ 22 s and makes the robot overshoot its CoM
target located at (x = 100 cm, y = 0 cm). After these disturbances, the robot slowly
goes back to the desired pose, without reaching it completely. To achieve better
tracking precision, the weight on the final CoM position task may be increased rel-
atively to the user’s needs. However, this gain in precision could hinder the whole
compliance of the system and result in abrupt motions.

At the beginning of the experiment, the robot also drifts toward the left (see
Fig. 6.4). This behavior may be caused by bad kinematic or dynamic calibration, as it
has been observed on the Pyrène robot in Chap. 5 and with other walking controllers
based on centroidal dynamics. Due to successive impact events, it is frequent to
observe a drift in the torque offsets of the low-level control, which then requires a
recalibration process.

Finally, the computation load of the experiment is presented in Fig. 6.7. Average
time computation matches the one obtained during locomotion with foot references
in Chap.5. Similarly, time spikes of up to 50 ms are visible at contact transitions, but
they do not affect the overall quality of the motion. The push event at t = 17.5 s is
barely noticeable on the time plot.

FIGURE 6.4: CoP and CoM trajectories along X axis for the push re-
covery experiment on flat floor. The foot of the robot is 20 cm long.
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FIGURE 6.5: CoP and CoM trajectories along Y axis for the push re-
covery experiment on flat floor. The foot of the robot is 10 cm wide.

FIGURE 6.6: Predicted vs measured forces in left and right feet during
push recovery experiment.
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FIGURE 6.7: Time computation of one DDP iteration during push re-
covery experiment.

FIGURE 6.8: Snapshot of the push recovery experiment. The robot
walks without disturbance in the first 4 images, then gets pushed by a
stick and recovers from the fall by stepping aside. The push happens
approximately in the lower left frame, at t ≈ 17.5 s. The video of the
experiment is available at https://peertube.laas.fr/w/gtbFKTS8T

A6wtwegeSrrBt

https://peertube.laas.fr/w/gtbFKTS8TA6wtwegeSrrBt
https://peertube.laas.fr/w/gtbFKTS8TA6wtwegeSrrBt
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6.3.2 Stairs experiment (A2)

The experimental validation of (A2) was performed in simulation1 with a stairs
model of six 10 cm-high stairsteps, except for the first one whose height is 6 cm. The
robot is expected to perform 30 cm-length steps in order to put its foot in the center
of the next stairstep. The final base position given to the contact planner was fixed
to be at the top of the stairs. The gait timings were fixed at 1.5 s for single support
phase and 1 s for double support phase.

During each double support phase, the sigmoid parameters were updated based
on the next contact position to fit the form of the stairstep to climb. If r∗ = (r∗x, r∗y , r∗z ) ∈
R3 is the desired contact position provided by the contact planner, then the height
of the sigmoid is set to h = r∗z + 0.03 and its half-height coordinate is set to xh =
r∗x − 0.16. The width of the sigmoid remains constant at w = 0.01. Thanks to this
heuristics, the robot can climb stairsteps of different heights using the same locomo-
tion parameters.

The results of the stairs experiment are presented in figures 6.9 to 6.12. A snap-
shot of the experiment is displayed in Fig. 6.13. Figures 6.9 and 6.10 show that the
CoP trajectory remains inside its support limits, save for some isolated spikes of con-
trol caused by contact switches. The motion is very conservative since CoM and CoP
plots are roughly the same. A drift in Y-axis can be observed on Fig. 6.10: this drift is
caused by the contact planner as can be seen on Fig. 6.12, where the desired contact
positions tend to go left.

Figure 6.11 displays the simulated contact forces exerted on left and right feet.
Contrary to Fig. 6.6, the measured lateral forces along X-axis match the predicted
forces of both feet. This advocates for a bad sensor calibration on the real robot
during the locomotion experiments of Chap.5. Numerous force spikes are visible at
contact landing but do not hinder the execution of the motion. Similarly to the stairs
climbing experiment with reference trajectories, the flying foot makes contact with
the stairstep a little bit before the solver actually decides to switch to double support.
Interestingly enough, the DDP solver chooses to briefly overshoot on vertical forces
at transition between double and single supports. This phenomenon is caused by
a very brutal foot takeoff with high upward acceleration. In this case, the solver
tries to minimize as soon as possible the distance between current and desired foot
locations.

Feet trajectories are shown in Fig. 6.12 along with desired feet locations on stairs.
The foot placement cost brings the flying end effector close to the target location
given by the contact planner, but fails to reach it precisely. The weight on place-
ment cost was chosen as a compromise between the distance to the target at the end
of flying phases and the motion abruptness at takeoff. As a consequence, the foot
is slighlty above the stairstep when the solver switches to double support, but the
compliance of the control scheme allows to handle this discrepancy.

The flying foot trajectory between initial and next contact may be considered er-
ratic, with unnecessary motion along Y-axis and brutal acceleration at takeoff. This
behavior is very difficult to prevent with our current problem formulation because
we would need to regularize the end effector acceleration, which amouts to solving
the dynamics at the 4th order.

1We did not have the time to transfer the experiment on the real robot, but hope to be able to do it
before the thesis defense.
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In brief, the motion is performed in simulation with a gait timing twice as fast
as compared to Chap. 5. The general behavior of the solver is satisfactory, with very
little unnecessary motions like torso tilting or excessive base swing. The decrease
in foot controlled impedance boosted the flexibility of the robot at the price of its
tracking precision. On the downside, upward feet velocity is high during take-off
and low during landing, when the desired contact placement is near and the effect
of the tracking cost weakens.

Due to unplanned logistic delays, we did not have the experimental time to
perform stairs climbing with Pyrène using this walking formulation. This remains
nonetheless a work in progress, and we expect to get new results on this matter in
the following weeks after the completion of the thesis manuscript.

FIGURE 6.9: CoP and CoM trajectories along X axis for the stairs
climbing experiment. The foot of the robot is 20 cm long.
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FIGURE 6.10: CoP and CoM trajectories along Y axis for the stairs
climbing experiment on flat floor. The foot of the robot is 10 cm wide.

FIGURE 6.11: Predicted vs measured forces in left and right feet dur-
ing stairs climbing experiment.
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FIGURE 6.12: Feet trajectories during stairs climbing experiment.
Stairsteps are displayed in black, left foot trajectory in red, right foot
trajectory in blue. Axis are in cm. Desired feet positions are displayed

by spherical points.

FIGURE 6.13: Snapshot of the stairs climbing experiment in simula-
tion. A video of the experiment is available at https://peertube.l

aas.fr/w/89oA2BnRte2cJvVxVA4U9Q.

6.4 Conclusion

This chapter has proposed and validated a whole-body locomotion control scheme
working with minimal high-level references on flat and uneven terrain. The in-
creased flexibility of the control policy allowed to perform dynamic walking motions
and push recovery on the humanoid robot Pyrène. Combined with a closed-loop
contact planner and a velocity height map, the same controller could climb stairs in
simulation and avoid obstacles in a reactive manner. Further experimental work on
the real robot is ongoing.

https://peertube.laas.fr/w/89oA2BnRte2cJvVxVA4U9Q
https://peertube.laas.fr/w/89oA2BnRte2cJvVxVA4U9Q
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Nevertheless, gains in flexibility come with precision loss at the task level: to cite
an example, the CoM goal was not exactly reached in experiment (A1). In order to be
able to compute on the fly a satisfying trajectory, the solver should still be provided
with relevant optimization guidelines which depend on the problem structure. In
the case of experiment (A2), these guidelines are represented by a finely tuned veloc-
ity height map which gives hints about how the solver needs to move its end effec-
tors. From a certain viewpoint, the reference trajectories used in Chap. 5 have been
translated into a potential field mapping the terrain configuration. Still, potential
fields contain way less information about the desired motion and do not constrained
tighlty the end effector velocity and acceleration, contrary to reference trajectories.
The problem is, as a consequence, much harder to solve. Whether reference-based
or potential-based methods are more relevant to dynamic locomotion remains to be
decided. Reference-based approach allows for precise completion of high-level tasks
at the price of a higher impedance, while potential-based approach favors flexibility
over kinematic precision. In case of a reduced impedance scheme, fine gain scaling
may mitigate the issue of precision by increasing placement weights near the target;
however, such an heuristics quickly leads to overfitting issues and is equivalent to
defining a reference trajectory for gains rather than for end effector.

A drawback of trajectory-free methods is that constraining acceleration is diffi-
cult without the use of a reference. The solver can allow very abrupt motion while
we would have prefered smooth transitions from initial to desired positions. In or-
der to fix this behavior, it may be necessary to consider minimizing the jerk of the
dynamics, or equivalently the change in force and control. Doing so may allow to
get rid of the wrench reference cost and to replace it with a penalization on force
derivatives. Unfortunately, including the jerk inside our optimal control scheme
would make the computation load explode, with little hope of reaching real-time
capacities on complex systems. So far, jerk approaches have been considered only
in the frame of instantaneous control [Gazar et al. 2021], or for reduced whole-body
models limited to simple manipulation tasks [Kleff et al. 2022].

In the frame of this chapter, contact optimization is outsourced to an external
planning block, but this fact contradicts the orginal paradigm of solving the loco-
motion problem through one fullscale optimization process. In its current form, our
DDP formulation cannot handle contact adaptation and is bound to follow fixed
modes of contact, under the supervision of its user. A major solver improvement is
needed to gain further autonomy and adaptability.
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Chapter 7

A Memory of Motion for non-convex
scenarios

This chapter aims at combining the previously introduced model-based opti-
mization tools with data-driven strategies applied to problem initialization. As
gradient-based algorithms struggle to escape local minima in real time, practical
non-convex scenarios, which in our experience are problematic as soon as realistic
constraints such as obstacles are considered, additionally require whole-body warm-
starts in order to converge toward the global solution. In this chapter, a library of
trajectories is built offline and accessed online by a MPC solver that refines in real
time the proposed solution before executing it on the robot. The task to complete
consists in reaching a moving target with the hand while avoiding a fixed obstacle.
Although simple, this task cannot be performed without the help of a memory of
motion, for the presence of the obstacle breaks the convexity of the reaching prob-
lem.

7.1 Motivation

An OCP for locomotion or manipulation typically features nonlinear costs and
constraints that need to be tackled by dedicated solvers. Solving this kind of prob-
lem at the frequency of the system actuation is extremely challenging, despite the
ever-increasing computational power of current machines. Applications of MPC in
robotics have yet been limited by computational limits, as complexity scales at least
with the cube of the system dimension. Moreover, nonlinearities in the robot model
make the OCP non-convex, resulting in two main consequences: the computational
load increases again, and local minima start to appear in the problem.

Efficient numerical tools for optimal control still require several costly iterations
to converge, in particular when it comes to whole-body control. Direct transcrip-
tion methods [Hargraves and Paris 1987; Pardo et al. 2016], in which both state and
control are treated as variables, are common to solve such problem. Others tran-
scriptions of the OCP are now considered to be more suitable to MPC, in particular
shooting methods like DDP or iLQR. Efficient solvers based on DDP have already
been implemented [Grandia et al. 2019; Howell et al. 2019; Mastalli et al. 2022a] and
are able to deal with nonlinear costs, constraints and dynamics. Nevertheless, it re-
mains a challenge to reduce the number of iterations needed to converge. Currently,
state-of-the-art whole-body planning algorithms remain too slow to provide an op-
timal solution in a reactive way, given new information updates. One approach to
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enhance reactivity is to formulate the DDP scheme as a more convex problem [Ma-
jumdar et al. 2020], easier to solve. Another one consists in providing the solver
with a good initial guess [Mansard et al. 2018], so as to start the optimization process
as close as possible to the desired solution. With the second method, the question
arises as to how this initial guess should be computed, and how much information
it should contain.

Outsourcing the complexity of the problem to an offline data library has first
been proposed in [Stolle and Atkeson 2006], where the stored control solutions are
selected online through a nearest-neighbor approach. Many different quantities can
be pre-computed to alleviate the computational load of optimization algorithms, e.g.
value function [Zhong et al. 2013; Lowrey et al. 2018], system dynamics [Lenz et
al. 2015], contact feasibility [Orthey and Stasse 2013], or cost function [Tamar et al.
2017]. In particular, it has been shown in [Mansard et al. 2018] that learning the state
and control trajectories to warm-start an MPC produces better results than learning
the optimal control policy. In a similar vein, the work of [Lembono et al. 2020a]
compares several regression algorithms for learning a good warm-start from a pre-
computed database in the context of locomotion. Such a learned initialization is
often called a Memory of Motion and is articulated between two phases: first learn
offline, then refine online.

In the frame of the present chapter, we will be using a Memory of Motion strat-
egy to overcome the non-convexity of a typical obstacle avoidance task. As our
feasibility-prone DDP algorithm is particularly suited to handle unfeasible warm-
starts, combining it with a learned initialization is straightforward and efficient.

7.2 Building a Memory of Motion

Our goal is to create a library of trajectory solutions for a whole-body OCP in-
volving a reaching task, similar to Chap. 4. Let us re-examine the control problem
defined by (3.9). As the transcription of this equation is non-convex for complex
robots, the behavior of the OCP solver cannot be guaranteed: it may get stuck in a
poor local minima if the initial warm-start happens to be in the wrong convergence
basin. The MPC needs to be augmented with an external process to infer proper
candidate initialization. The problem of inferring the warm-start is formulated as a
regression problem g(θ) = z where the input task θ contains any relevant state or
sensor measures, and the output z represents the corresponding state and control
trajectories. Such a memory of motion relies on a dataset of optimal trajectories built
off-line and encoded by machine learning.

7.2.1 Dataset generation

Our dataset is generated by a sampling-based planner that builds an extensive
library of state trajectories dedicated to the task to perform, ensuring that a solu-
tion is obtained if it exists. The approach leverages an efficient path planning al-
gorithm for configuration spaces with multiple constraints, namely the Constrained
Bi-directional RRT (CBIRRT) [Berenson et al. 2009]. This algorithm extends the Bi-
directional RRT (BiRRT) approach and allows to explore the constraint space mani-
folds of the problem via a clever projection strategy. It has proven to be particularly
efficient to find bridges between two constraint manifolds.

From the state trajectory given by our planning algorithm, we infer a control
trajectory by simply computing the quasi-static torques corresponding to the state
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FIGURE 7.1: Pyrène performing collision avoidance in real time, in
simulation and with the real platform. In simulation, the blue shape
encapsulating the left arm is an inflated capsule used to compute col-
lision distance with the yellow pole. The video of the experiment is
available at https://peertube.laas.fr/w/rakM3PzkmXhrVA1wgTWFM

8?start=37s.

sequence. In other words, we perform a pass of Recursive Newton-Euler Algorithm
with null acceleration to generate our control warm-start.

7.2.2 Decoding the memory

The dataset that we build offline is stored in the format {θi, zi}, ∀i = 0 · · ·Nm,
where Nm = 1000. Given a new task θ̂, we rely on a Nearest Neighbor (NN) strat-
egy to compute the closest θi to θ̂ in the dataset and output the corresponding z as
the warm-start. The NN algorithm implements an Euclidean metric on an efficient
data structure based on K-D tree [Bentley 1975]. Gaussian Process Regression (GPR)
was shown in [Lembono et al. 2020a] to perform much better than NN in produc-
ing DDP warm-starts for unimodal tasks. Yet the task considered in this chapter is
multimodal, i.e., there exist several qualitatively different trajectories to achieve one
given task. For such high redundancy problem, GPR performs poorly as observed
in [Lembono et al. 2020b], hence NN was chosen instead to perform the reaching
task. More advanced memory encoding should be considered in future works, but

https://peertube.laas.fr/w/rakM3PzkmXhrVA1wgTWFM8?start=37s
https://peertube.laas.fr/w/rakM3PzkmXhrVA1wgTWFM8?start=37s
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this is not limiting for the experimental scope tackled in this chapter.

The candidate trajectories z given by memory inference is not directly compara-
ble to the current solution of our MPC scheme. In order to measure the interest of
the memory, we need to refine this candidate by performing a few DDP iterations on
it using the same OCP formulation as in the MPC. The goal of this refining process
is also to smooth the candidate trajectory and to make it feasible before sending it to
the MPC.

7.3 Obstacle avoidance MPC formulation

This section describes the complete formulation of a MPC scheme for target
tracking in cluttered environments. The main contribution of this section lays in
the addition of a memory of motion to the general control framework. At run time,
a good initialization is frequently inferred from the memory, then refined (as ex-
amplified by Fig. 7.3) and provided to the MPC as a potential best solution to the
current problem configuration. Finally, a Riccati feedback block is integrated inside
the low-level control of the framework in order to speed up the MPC frequency and
be able to use the whole-body model of the robot.

The OCP structure presented in the following corresponds to the one used for
evaluating the interest of a memory of motion in Sec. 7.4.1. It will be also imple-
mented inside our MPC framework to experimentally validate the importance of
warm-starting the solver online.

7.3.1 OCP formulation

Our OCP is built on top of the one presented in Sec. 4.3.1. To the five cost func-
tions already introduced in previous sections (state and control regularizations, CoM
position, end effector tracking and kinematic limits), we add a sixth cost for collision
avoidance with external obstacles.

Collision avoidance cost

Given a pair of collision between bodies A and B, we denote dAB(x) to be the
minimal distance between these two objects in configuration x. Defining dmin as a
distance threshold for the cost activation, the collision penalization function writes:

lcol(x) =

{
(dAB(x)− dmin)2 if dAB(x) < dmin

0 otherwise.
(7.1)

The distance dAB(t) is computed from the two body placements using standard
proximity algorithm [Pan et al. 2012]. In order to simplify the problem, we only con-
sider collisions between the end effector (left arm of the robot) and a fixed obstacle
in the environment, while modeling both arm and obstacle with inflated capsules
(see Fig. 7.1). Capsule collisions are indeed easier to deal with because the minimal
distance between them are the minimal distance between their core segments, plus
their respective radius. We expect that this approach should be able to nicely gen-
eralize at least from a theoretical viewpoint [Montaut et al. 2022], but would lead to
challenging computational perspectives.
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7.3.2 Model and timings

Two different models were used to perform obstacle avoidance in the frame of
this thesis. The first one includes only 6 joints, 4 for the left arm and 2 for the torso.
This very simple model leads to a computation-light OCP which can be solved in a
few milliseconds. The resulting MPC scheme was deployed on the real robot with-
out the integration of the Riccati feedback loop. The second model is identical to the
one used in Chap. 4, with 22 actuated joints (12 for the legs, 8 for the arms, 2 for the
torso), plus the free flyer joint state. This second MPC needs to be paired with the
Riccati feedback scheme to produce stable motions, since its computational load is
much higher.

Regardless of the model, both OCP are composed of 100 knots separated by a
10 ms time step. With this specific time parametrization, the dynamics of the robot
is previewed over 1 s in the future, with a mean time computation of 3 ms for the
reduced model and 13-15 ms for the complete model. Again, only one DDP iteration
is performed to compute the next control [Diehl et al. 2005], so a warm-start close to
the optimal solution becomes essential in case of non-convexity.

7.3.3 Cost parametrization

The weight distribution introduced in Table 7.1 was selected to perform obstacle
avoidance in real time with the fullscale model. Most weights are identical to the
ones used in Chap. 4, because the task to complete is very similar in both cases.
Collision avoidance weight is set to be high in order to implement the cost as a hard
constraint.

`x `u `r `b `com `col

Running costs 0.02 0.01 5 1000 500 10000
Terminal costs 0.02 50 500 10000

TABLE 7.1: Cost weights of our collision avoidance OCP.

Compared to the reaching OCP formulated in Sec. 4.3.1, the control weight is in-
creased to penalize abrupt motions caused by updates in warm-start when the target
is far from the end effector. The control matrix Bu is again the identity matrix, and
the state matrixBx is presented in Table 7.2. The velocity weights inBx are increased
to smooth the reaching motion. Torso displacements are also heavily penalized to
favor arm motions.

Base pose Base angle Leg Torso Left Arm Right Arm

Position 100 500 500 10000 20 500
Velocity 100 100 100 100 1000 100

TABLE 7.2: Diagonal terms of the weight matrix Bx for full collision
experiment.

7.3.4 Control scheme overview

The structure of the MPC algorithm including a memory of motion is presented
in Alg. 3. Every 15 ms or so, the OCP is updated by setting the initial state to the
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latest estimated state x̂ (line 23), and by updating the position of the target to reach
(line 12). In our previous MPC formulations, we used the current solution shifted
by one knot as a warm-start for the DDP solver (line 20 and 21). This initialization is
acceptable for simple problems like reaching a target in a collision-free environment
or walking on flat ground. However, when the structure of the problem changes
radically, for example when an end effector target goes from one side of an obstacle
to another, the optimal solution can be impossible to retrieve with a gradient-based
algorithm starting in the wrong convergence basin. Figure 7.3 indeed illustrates that
a bad warm-start may get the solver stuck in poor local minima, despite the fact that
a better trajectory exists.

Algorithm 3 MPC algorithm for goal tracking with obstacle avoidances

Require: T, Ttot
1: - Measure initial state x̂
2: - Initialize reference state: xd ← x̂
3: - Initialize reference control: ud ← RNEA(x̂)
4: - Initialize target CoM: c∗ ← CoM(x̂)
5: - Build preview horizon with T action models
6: - Set target r∗ in OCP
7: - x← (xd)

T
i=0

8: - u← (ud)
T−1
i=0

9: - x∗, u∗, K[0]← ddp.solve(x, u) until convergence
10: - Initialize iteration counter: ic ← 0
11: while True do
12: - Update target r∗ in OCP
13: - Measure new state x̂
14: - Publish r∗, x̂ to memory node
15: - Get new trajectory xe, ue and corresponding cost cost(xe, ue)
16: if cost(xe, ue) < cost(x, u) then
17: - x← xe

18: - u← ue

19: else
20: - x[0 : T − 1]← x[1 : T]
21: - u[0 : T − 2]← u[1 : T − 1]
22: end if
23: - x[0] = x̂
24: - x∗, u∗,K0 ← ddp.solve(x, u) with only one iteration
25: - Publish optimal policy x∗0 ,u∗0 ,K0
26: - x, u← x∗, u∗

27: - ic ← ic + 1
28: if ic >= Ttot and ic <= Ttot + T then
29: - Deactivate hand translation cost in action model number T− (ic − Ttot)
30: end if
31: end while

The memory of motion described in Sec. 7.2 is implemented to provide the MPC
with alternative trajectories when the previous warm-start strategy fails to perform
the task. Given a target to reach, obstacle positions and state estimate, the memory
infers the corresponding state and control trajectory and further refines this candi-
date by several DDP iterations, using the same DDP solver as for the MPC. In order
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FIGURE 7.2: Diagram of the ROS architecture of the collision avoid-
ance scheme. (x0, r∗) are the initial state and current target position
sent to the memory node. (x,u) are the current optimal state and
control trajectories produced by the MPC. (xe,ue) are the warm-start

trajectories computed by the memory of motion.

to output a good refined warm-start in a reasonable amount of time, we chose to
limit the refinement computation to 2 iterations. This operation is performed inside
the memory of motion node, and as a consequence does not appear on Alg. 3. The
average frequency of the memory node is about 10 Hz, which is slow as compared
to the MPC. Further work may include an optimization of the NN algorithm used to
infer a solution from our library of trajectories.

Once received by the MPC, the cost of the warm-start is compared against the
cost of the current MPC trajectory (line 16). The memory warm-start is accepted by
the MPC if its cost is lower than the current solution (line 17 and 18). At the end of
the programmed motion, the tracking cost is sequentially removed from the OCP,
starting from the end of the horizon (line 29).

The implementation needs three parallel processes to run simultaneously: the
MPC, the memory and the low-level torque control. The ROS architecture of our
control framework is presented in Fig. 7.2.

7.4 Experimental results

As a first step, the effect of the memory of motion was evaluated on simula-
tion with a reduced robot model composed of 6 joints (left and arm torso), with no
free-flyer. Later, the same robot model was used to perform collision avoidance on
Pyrène without the integration of the Riccati feedback loop. Results were published
in [Dantec et al. 2021]. This work provided a preliminary proof of concept of our
memory scheme, but was limited to a simple model with fixed base, similar to a
robotic arm. A whole-body version of the same algorithm including 22 actuated
joints, a free-flyer base and a Riccati feedback policy has later been developed to
confirm that obstacle avoidance could be done with more complex dynamics. We
present here this improved MPC version running on the real robot and highlight
some key experimental results.
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FIGURE 7.3: Comparison of convergence speed of the OCP solver
(left) with and (right) without warm-start, for a grid sampling of the
target position, while the initial configuration is always the same. The
metric is the number of iterations to convergence, with an upper limit
of 100 iterations. The arm initial position is on the bottom left corner

of each picture. The obstacle (a pole) is highlighted in yellow.

7.4.1 Memory evaluation

In order to understand how the initialization improves the behavior of the DDP
solver when facing a non-convex scenario, let us consider the end-effector reaching
problem described in Sec. 7.3.1, and illustrated by Fig. 7.1. For the sake of the demon-
stration, the model used here has only 6 joints, but the problem stays essentially the
same when going fullscale.

In simulation, the OCP is solved several hundred times with slightly different
target positions: while the X coordinate of the targets remains at coordinate 0.07 m,
the Y and Z coordinates are bound to go respectively from 0.1 m to 0.5 m and from -
0.2 m to 0.2 m (in the robot frame). The obstacle is a 2 cm diameter vertical pole set at
coordinate (x = 0.6 m, y = 0.3 m). This set of problems is solved in two ways: first
with a memory warm-start corresponding to the current target position, secondly
with a static initialization identical for all target positions. The number of iterations
until convergence is chosen as a metric to compare the behavior of the solver with
and without memory. If this number exceeds 100, we consider that the optimal so-
lution was not found by the solver. The results of this experiment is presented in
Fig. 7.3.

As the arm starts from the bottom left corner, the left target configurations are
easier to reach. Without memory, the solver cannot reach the target in less than 100
iterations when it is located at the right side of the obstacle. Practically speaking,
the arm becomes stuck in front of the pole because the DDP algorithm finds the best
local compromise between the repulsive obstacle cost and attractive hand target cost.
Even if the FDDP algorithm benefits from some globalization capacities thanks to its
multiple shooting formulation, it is not enough to deal with strongly non-convex
scenarios.

With a memory initialization, one can observe that the number of iterations until
convergence generally decreases, no matter whether the target is at the left or right
side of the obstacle. Configurations previously unreachable can now be achieved in
a reasonable amount of iterations. However, a fraction of them remain impossible
to reach by the solver, even with memory initialization. Those configurations are
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especially challenging because the target is located at the opposite of the initial pose
of the arm with respect to the obstacle.

In summary, the use of a memory warm-start allows our solver to speed up the
convergence process and get out of tricky local minima arising from non-convexity.
Even if some problem configurations could still not be solved with such an approach,
the quality of the memory of motion was deemed good enough to be coupled with
a whole-body MPC.

7.4.2 Whole-body obstacle avoidance

The objectives of the obstacle avoidance experiment is to prove that a memory
of motion can be used to warm-start online the whole-body MPC in order to escape
from local minima arising in non-convex manipulation scenarios. The experimental
protocol consists in reaching a moving target with the left hand while it goes behind
a pole-like obstacle of 2 cm radius and 2 m long, placed in coordinates (x = 0.6 m,
y = 0.3 m) (see Fig. 7.1). To take into account security margins, the collision thresh-
old in cost `col is fixed to dmin = 0.15 m. This means that the solver will start to
consider the obstacle when the end effector is less than 15 cm away from the center
of the pole. The target to track r∗(t) = (r∗x, r∗y(t), r∗z ) is moving along the Y-axis ac-
cording to a sinusoid motion going from r∗y = −0.1 m to 0.7 m, with r∗x = 0.65 m
and r∗z = 1 m fixed X and Z coordinates. The particular geometry of this reaching
task results in a challenging non-convex problem to solve for the DDP. The resulting
movement is depicted in Fig. 7.1.

The resulting plots of the full collision avoidance experiment are presented in
figures 7.4 to 7.6. As can be seen on Fig. 7.4, the commanded torques sent to the
low-level control feature some brutal discontinuities at a regular frequency. Such
discontinuities are also observed at the same instants on Fig. 7.5. Each time the tar-
get to track goes behind the obstacle, the MPC becomes stranded in a local minimum
until a circumventing solution is provided by the memory node. However, this so-
lution tends to be very different to the one computed by MPC, and it triggers a sharp
change in control, proportional to the distance between end effector and target. The
solver then tries to bridge the distance as fast as possible, resulting in a very dynamic
motion.

The memory solution is taken into account each time its cost becomes lower than
the trajectory computed at the last control cycle, as can be observed in Fig. 7.6. When
the arm is blocked by the obstacle, the target keeps on moving away from it, result-
ing in an increase of the total DDP cost. The spikes in the DDP cost plot match the
control discontinuities of Fig. 7.4 and dynamic avoidance motions of Fig. 7.5.

Lastly, one can notice that the target is not reached perfectly in Fig. 7.5, although
the obstacle is correctly avoided. This is because the weight of the tracking task is
too low to incite the solver to come closer. A higher weight would cause sharper
control spikes during memory updates and would make the motion too brutal to
be executed. Indeed, sharp controls tend to produce high joint accelerations which
trigger the low-level security fuses of the robot. Several workarounds have been
tested to mitigate this issue, including an increase in arm joint velocity weights or
the introduction of a end effector velocity penalization, but none of them produced
satisfying results in simulation or on the real platform.
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FIGURE 7.4: Measured positions and commanded torques of the left
arm joints during collision avoidance experiment.

FIGURE 7.5: Tracking of the desired end effector position during col-
lision avoidance experiment.
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FIGURE 7.6: Comparison between total DDP cost and memory cost
during collision avoidance experiment, as performed in line 16 of

Alg. 3.

7.5 Conclusion

This chapter introduced a strategy to incorporate an efficient DDP initialization
scheme based on a memory of motion inside our whole-body MPC implementation.
This scheme has allowed to complete reaching tasks in cluttered environments with
the Pyrène platform, using a reduced model and a fullscale model of the robot. Ex-
periments showed that a MPC framework without memory struggles to perform
obstacle avoidance in real time and tends to remain stranded in local minima, at the
points where collision cost and target tracking cost reach a compromise. In weak
non-convex scenarios, the memory of motion still helped to reduce the number of
iterations needed to converge toward a global solution.

Our implementation of MPC with memory of motion suffers from significant
control discontinuities at memory initialization, caused by the high impedance of
our tracking cost. A lower impedance would lead to lower precision performances
and a more conservative control scheme. One solution to counter this behavior
would be to penalize fast control changes inside the OCP, but such an approach
requires to consider the 4th order of the whole-body dynamics, which is too costly
to compute online on current hardwares.

For simple reaching task involving only one obstacle, it is likely that a MPC
based on simple potential fields could perform collision-free tracking of a target,
as was demonstrated in Chap. 6. A memory of motion, however, may be needed for
any complex scenario in cluttered environments, where local field methods may get
stuck more easily. This memory of motion comes with the price of having to com-
pute offline a whole library of trajectories for each particular task to perform. An in-
teresting perspective would then be to develop a better memory based on advanced
RL techniques rather than RRT algorithms. In the light of recent RL achievements, it
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may be relevant to write a generic framework combining a MPC scheme for online
refinement with a data-driven warm-start policy to boost globalization capacities.

A natural extension of this chapter is to study how the complexity of the formu-
lation scales with the number and structure of obstacles. For the sake of the proof,
the obstacle considered here is very simple and the corresponding collision test is
cheap to compute inside the OCP. More challenging scenarios involving multiple
obstacles would call for efficient collision detection heuristics [Montaut et al. 2022].



115

Chapter 8

Conclusion and perspectives

This thesis has proposed a complete solution to leverage the whole-body sys-
tem dynamics inside a predictive control of a real humanoid robot, along with the
experimental validation of the concept. The resulting control formulation is able to
generate complex whole-body motions in real-time for both manipulation and loco-
motion, and has proven to be generic, adaptable and robust to model discrepancies.

This achievement relied on several theoretical cornerpieces, in particular an effi-
cient optimal control solver, a generalization of the Riccati gains for high frequency
feedback, and the use of a memory of motion for globalization. It also benefited from
key technological advances, in particular high frequency torque control [Stasse et al.
2017], efficient rigid body dynamics computations and derivatives [Carpentier et al.
2019] and a fast DDP solver implementation [Mastalli et al. 2020].

Chapter 4 introduced the key feature of our optimal control formulation: a first-
order state feedback policy based on the Riccati gains computed inside the DDP
backward pass. This simple feedback scheme has allowed to approximate the op-
timal torque command at the low-level control frequency, unlocking new dynamic
motions that could not be done with current MPC frequency. Moreover, we showed
that other relevant feedback policies can be deduced by derivating the backward
pass with respect to key task parameters, like the desired position of the end effector.
Computing generic sensitivities is particularly interesting in case a high-frequency
measure of the given parameter is available to the user.

Next, the Riccati feedback policy has been integrated into a locomotion scheme in
Chapter 5. Thanks to a clever contact forces regularization scheme and hand-crafted
feet splines, the humanoid Pyrène performed locomotion on flat floor at different
gaits and climbed a 10 cm-high stairstep, despite significant model differences and
drifting base estimator. All motions were executed with the same set of gains to
illustrate the genericity of the approach.

In order to increase the flexibility of the control scheme, another approach to lo-
comotion was proposed in Chapter 6, consisting in replacing the user-defined feet
trajectories with a foot velocity cost depending on the distance to a given obsta-
cle, ground or stairs. The goal was to free the solver from the foot placement con-
straint and to make it able to adapt on the fly to violent disturbances that require
sidestepping to be dissipated. Thanks to this scheme, push recovery on flat floor
was performed on the robot Pyrène. Using a high-level contact planner to define the
sequence of next contacts, the same robot climbed 6 stairsteps in simulation without
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relying on hand-crafted references to avoid collisions with its environment. Addi-
tional experimental work is on-going to transfer the motion on the real robot.

Finally, the extension to non-convex scenarios was studied in Chapter 7. A mem-
ory of motion was built offline and tested to warm-start online the optimal control
solver in order to reach a moving target while avoiding obstacles. The main goal
was to demonstrate that a whole-body MPC scheme can easily be combined with
learning strategies to overcome non-convexity an improve performances without
burdening computational load.

In the context of this work, a major amount of time was spent into seeking the
correct formulation of the full dynamics MPC. As our framework merges together
the planning block and control block, every parameter of the problem has to be care-
fully tuned with respect to each other in order to produce a robust walking motion.
As such, one of our main objectives was to identify the minimum set of cost func-
tions that leads to a satisfying solution, so as to reduce the tuning effort on the robot.
Still, the number of weights to tune is proportional to the number of controlled joints,
which can quickly increase for complex machines.

Timing parameters, as well as costs, were the subject of an intensive exploratory
work in simulation. We have tested numerous combinations of gait parameters,
horizon length, iteration number, integration timestep and contact switch before
finding the right recipe for locomotion. While the novelty of the approach for hu-
manoid robots explains in part the difficulty of parameter tuning, we also foresee
that more advanced theoretical solvers, such as one able to account for hard con-
straints, would allow to alleviate the experimental burden.

Perspectives

The present work can be seen as a proof of concept for whole-body dynamics
MPC on real humanoid robots. Whether this control solution performs better than
current state-of-the-art approaches to locomotion still remains to be demonstrated.
On flat ground, centroidal pattern generators display very advanced performances
that may be impossible to exceed with whole-body approaches. When it comes to
more complex locomotion scenarios, no generic benchmark is available to compare
the performances of our MPC against other control frameworks. In our opinion,
the advantage of whole-body predictive control mainly lies in its capacity to tackle
a wide range of manipulation and locomotion tasks inside a single control block,
while providing a reduced implementation effort. In any case, the comparison of
our MPC framework against state-of-the-art walking schemes should be made from
this perspective.

Our optimal control solver combined with a low-level Riccati feedback policy
allowed us to reach satisfactory control frequency on the robot Pyrène, but at the
price of some compromises. The upper body part was not taken into account inside
the model, and our DDP algorithm does not consider the Hessian of the dynamics,
even if doing so ensures a quadratic convergence rate. Despite these simplifica-
tions, the whole-body optimization still needs to run on a powerful external CPU,
whereas centroidal approaches can be embedded very easily. At the current state
of development, the heavy computational load and lack of robustness margins of
our MPC scheme may hinder its deployment on modern robots. It is still unclear if
the performances of the predictive scheme could be improved by increasing again
its working frequency, or which horizon length needs to be considered. A better
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compromise is certainly to be found between preview capacities and computational
load. A short term perspective would be to enhance the computation efficiency of
the general scheme, and we propose here some avenues for future development on
this subject.

We believe that a lot of time could be gained by optimizing the sparsity of the
backward pass inside the DDP algorithm, by using code generation techniques or by
working on parallelizing the formulation [Laine and Tomlin 2019]. Using a variable
timestep inside our horizon could be another lever to reduce the computation load
by cutting the number of knots, but this research path requires to develop better
integration schemes able to cope with longer timesteps. Moreover, the question is
open as to how the horizon should recede when the control knots are separated by
variable time intervals. The adaptation may also be done at the level of the model:
hence, mixed control solutions, based on the combination of a short horizon account-
ing for whole-body dynamics and long-term horizon with centroidal preview, may
offer interesting insights to save computation time [Li et al. 2021]. Aside from any
frequency optimization discussion, we believe this work paves the way for the use of
complex dynamics inside preview control locomotion frameworks. Because swing
leg motion drastically affects angular momentum during walking, we advocate that
taking into account the whole-body dynamics is necessary for heavy robots with
high-inertia links.

On a more deep note, this thesis poses the general question of how to correctly
formulate a control problem in the field of legged robotics. Whole-body dynamics
MPC is still a very recent approach to locomotion, and not very well understood. In
this work, a major amount of efforts has been spent in cost engineering and weight
tuning, in an attempt to provide a first experimental validation of the concept of
whole-body predictive control. The effect of these costs on the shaping of the solu-
tion needs to be understood more precisely in future developments. Likewise, the
nature of the high-level references given to the solver is to be studied thoroughly.
These references represent the information provided by the user to hint the desired
optimal behavior to the solver, but it is still unclear if they can be generalized to
perform any set of tasks. In this work, constant references for state and control were
used along all experiments, but they tend to favor more conservative motions and
do not prevent sharp spikes of torques during contact switches. An interesting so-
lution to this issue consists in computing the dynamics to the 4th order, so as to be
able to penalize jerk and acceleration in the cost function. Again, such an approach
is hindered by the computational limits of current hardwares. This motivates even
more the development of efficient optimization solvers leveraging parallelization
techniques or fast sparse computation.

An alternative perspective on problem formulation is to integrate sensor feed-
back into the optimization process, as an extension to state feedback. The collabora-
tive work of [Kleff et al. 2022] has taken a first step in this direction by introducing
joint torque measures into the state, which amounts to modeling observation delays
in sensors. Other information (touch, visual...) could be considered inside the frame-
work to enhance the reactivity of the control with respect to unexpected changes in
the environment. The question is then open as to how the huge amount of incoming
data should be filtered to keep the optimization tractable.

In addition to costs, references and measures, contact optimization should be
carefully considered when formulating the locomotion problem. This thesis has
adopted a hybrid dynamics viewpoint, where contact timings are decided before-
hand. The resulting framework is relatively simple to implement but requires to be
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combined with an external planner to decide the optimal contact sequence ahead.
Future perspectives on this matter include the integration of contact optimization
into the control framework to further enhance the autonomy, reactivity and generic-
ity of our approach. The motivation is to build an extensive and general scheme to
tackle seamlessly all sort of manipulation and locomotion problems, with minimal
changes in weights and cost functions. To this end, several paths can be explored.
The first one consists in performing mixed-integer optimization directly inside the
whole-body solver, at the price of having to use linear simplifications to make the
problem tractable. A more promising solution would be to leverage an implicit con-
tact formulation based on linear complementarity constraint inside the locomotion
problem, so as to be able to continuously optimize force and control in the same
process. However, this would mean to increase the state size along with the com-
plexity of the resulting algorithm, hindering its deployment for real-time systems.
On this topic, Augmented Lagrangian solvers [Jallet et al. 2022a] may provide the
key to fast and efficient exploration of the hybrid modes of locomotion. Other possi-
ble approaches include the use of Monte-Carlo Tree Search to further accelerate the
optimization of contact modes [Zhu et al. 2022], or leveraging efficient differentiable
contact dynamics inside the simulation pipeline [Todorov et al. 2012].

Stepping aside from a purely software-oriented viewpoint, the importance of
hardware design for robotics should also be considered when it comes to develop-
ing optimal policies. In our example, extensive tests of our MPC framework on the
robot Pyrène were hindered by frequent hardware failures which prompted time-
consuming reparations. To make things worse, it was sometimes difficult to tell if a
particular behavior on the robot was caused by miscalibration, bad pose estimation
or issues in the control law. Additionally, the heavy legs of Pyrène prevent it from
doing very fast swing motions required when performing dynamic locomotion like
running or jumping. To reach even higher performances, a promising angle of work
would be to optimize conjointly the design of the robot with the control law used to
make it move, as proposed in the work of [Fadini et al. 2022].

The integration of whole-body dynamics inside a predictive control framework
contributes to show the limits of model-based optimization. Techniques like MPC,
which exhibit local convergence at best, struggle to cope with huge search space
dimensions. MPC actually amounts to solving repeatedly a very expensive control
problem while starting from the previous computed solution: as such, it can hardly
discover online a global optimum that stands far from its initial point in trajectory
space. Besides, optimization schemes heavily rely on gradients to converge toward
the optimum, but these gradients are difficult to define for discrete contact modes of
locomotion.

On the other hand, RL techniques offer a complementary support for optimiza-
tion by alleviating some parts, if all, of the problem, and boosting its exploration ca-
pacities. While full RL pipelines are starting to become common in robotics, particu-
larly in the realm of quadruped locomotion, they still suffer from unpredictable con-
vergence patterns, unstable behaviors and the inability to handle hard constraints.
They are also very hard to scale to realistic applications and generally involve expert
knowledge to be guided toward regions of most promising interest. Besides, data-
based techniques have the disadvantage of operating like a black box solver and do
not offer relevant insights on the complexity of human motion. In our opinion, the
combination of RL and trajectory optimization has the potential to cancel the dow-
sides of both frameworks while strengthening their respective advantages. Using
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optimization techniques to guide the RL agent through supervised learning allows
to quickly discover relevant solutions and to learn how to generalize from future
partial observations. Similarly, leveraging the synergy between local model-based
control and global policy learning appears as a promising research direction [Mor-
datch et al. 2015; Lowrey et al. 2018]. Under this approach, the policy evaluated
online is refined through optimization to enforce hard constraints and ensure stabil-
ity. The resulting trajectories are plugged back into the learning process to accelerate
value function learning. Another interesting angle of work consists in differentiat-
ing optimal problems with respect to tunable parameters so as to enable end-to-end
learning of optimal policies, dynamics or value function [Jin et al. 2020]. Despite
some recent achievements, hybrid techniques have not yet been implemented on
fullscale systems performing in complex environments, partly because a common
theoretical framework between RL and optimization remains to be built.

As research follows its way, we are approaching a level of autonomy in legged
robotics that may be sufficient to let robots become our everyday life companions.
User-friendly quadrupeds are already available to purchase and their potential ap-
plications in industrial, rescue or military contexts are on the rise. Humanoids are
expected to follow the same path in the coming years, if we consider the latest
impressive demonstrations of human-robot collaboration performed by Boston Dy-
namics. To the best of our knowledge, these demonstrations rely on a MPC frame-
work with centroidal dynamics and full kinematics preview coupled with whole-
body instantaneous control and cutting-edge actuation technology. Aside from these
results, a pending question in robotics remains to decide which kind of autonomous
behavior is to be implemented, on which robot, for which application. Genericity
may indeed be reached at the price of efficiency, and perhaps there is a compromise
to be found between a versatile but clumsy robot and a very precise but specialized
machine.
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