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Abstract

Deep reinforcement learning uses simulators as abstract oracles to interact with the

environment. In continuous domains of multi-body robotic systems, differentiable

simulators have recently been proposed, still, they are yet underutilized, even though

we have the knowledge to make them produce richer information. This problem

when juxtaposed with the usually high computational cost of exploration-exploitation

in high dimensional state space can quickly render reinforcement learning algorithms

less effective. In this thesis, we propose to combine learning and simulator-based

optimization such that the quality of both increases while the need to exhaustively

search the state space decreases. We propose to learn value function and state,

and control trajectories through locally optimal runs of a trajectory optimizer. The

learned value function, along with estimates of optimal state and control policies, is

subsequently used in the trajectory optimizer: the value function estimate serves as a

proxy for shortening the preview horizon, while the state and control approximations

serve as a guide in policy search for our trajectory optimizer. The proposed approach

demonstrates a better symbiotic relation, with superlinear convergence, between

learning and simulators, that we need for end-to-end learning of complex poly

articulated systems.

Résumé

L’apprentissage profond par renforcement utilise des simulateurs comme oracles

abstraits pour interagir avec l’environnement. Dans les domaines continus des

systèmes robotiques multi-corps, des simulateurs différentiables ont récemment

été proposés mais sont encore sous-utilisés, même si nous avons les connaissances
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nécessaires pour leur faire produire des informations plus riches. Ce problème,

lorsqu’il est juxtaposé au coût de calcul élevé de l’exploration-exploitation dans

un espace d’état de haute dimension, peut rapidement rendre les algorithmes

d’apprentissage par renforcement impraticables. Dans cette these, nous proposons

de combiner l’apprentissage et les simulateurs de sorte que la qualité des deux

augmente, tandis que la nécessité d’explorer exhaustivement l’espace d’état diminue.

Nous proposons d’apprendre la fonction de valeur, l’état et les trajectoires d’etat et de

contrôle à travers les exécutions localement optimales de l’optimiseur de trajectoire.

La fonction d’valeur apprise, ainsi qu’une estimation des politiques optimales d’état

et de contrôle, est ensuite utilisée dans l’optimiseur de trajectoire l’estimation de la

fonction d’valeur sert de proxy pour raccourcir l’horizon de prévision, tandis que les

approximations d’état et de contrôle servent de guide dans la recherche de politiques

pour notre optimiseur de trajectoire. L’approche proposée démontre une meilleure

relation symbiotique, avec une convergence super linéaire, entre l’apprentissage et

les simulateurs, dont nous avons besoin pour l’apprentissage de bout en bout de

systèmes polyarticulés complexes.
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It starts with ... 1
„I just sit at a typewriter and curse a bit.

— P G Wodehouse

The theory of Reinforcement Learning ( RL ) provides a normative method of animal

behavior based on psychological and neuro-scientific learning mechanisms [SB18;

Wat89; Bar97]. These methods then define how an agent can optimize and achieve

optimal control of its environment. The resulting control is optimal with respect

to an objective function - the objective function is either written positively as a

reward to maximize or negatively as a cost to minimize and is usually combined with

constraints on state and control that characterize behavior. The key characteristics

of RL algorithms - online adaptability, self-learning of features, and sequential

decision-making under uncertainties - often underpin their successful deployment in

robotics. RL has been successfully used to rotate valves with multi-fingered robotic

hands [Zhu+19], construct dynamic locomotion policies for legged robots [Xie+19],

and learn vision-based dynamic manipulation skills with scalable self-supervised

vision-based RL frameworks [Kal+18].

However, the brittleness of the RL agent restricts its applicability to domains

where useful features can be handcrafted or to domains with fully observed, low-

dimensional state space. In continuous high dimensional state space of robotics, the

RL agent may either altogether fail to converge to the optimal solution due to curse

of dimensionality [MA00] or requires clever sampling solutions [Str00; KKR19]. The

overall goal is to learn the solution of an optimal control problem and in the general

landscape of robot learning this can quickly lead to extensive trials and errors. In this

thesis, we propose a radically different formulation of RL for robotics. Our objective
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is to define a basis on which new algorithms more closely related to numerical opti-

mization methods can be formulated with guarantees of convergence and accuracy

that are necessary for tasks that involve learning complex poly-articulated behavior.

This establishes a broad road map for our research. Consequently, we explore the

various aspects of building a framework that binds trajectory optimization and

learning - from the architectural design of neural networks, quantities that can be

learned, theoretical guarantees on learning, and details of practical implementation

of the subsequent framework.

1.1 Motivation

Using RL requires an exhaustive exploration of the environment and in high-

dimensional robotic systems computing large enough datasets can quickly become

infeasible. Consequently providing guarantees of reliability and accuracy can become

challenging. A key feature of our proposition is to take advantage of the capabilities

of Trajectory Optimization ( TO ) solvers. Trajectory Optimization methods [WK88]

also solve an optimal control problem, although they typically do not seek an explicit

representation of the optimal policy but rather for an optimal trajectory. While a

trajectory is a far less expressive object than a policy - in particular, being only able

to lead to open-loop behaviors if not systematically reevaluated - it can also often

be represented in lower dimensions than a policy. This is easy to see - typically a

few polynomials can sufficiently encode information about the trajectory while deep

neural networks are now the standard representations for policy.

Consequently, trajectory optimizers are able to provide local optimum with a few

trials and errors and can reach arbitrary levels of convergence and accuracy. These

are the two criteria not met by RL algorithms. In addition, trajectory optimizers

can also handle explicit constraints on the robot state which can then be used

to certify the behavior of physical systems in real conditions. A key element to

acquiring these properties is the use of derivatives of the objective function within the

evolution model of the system: the derivatives can be evaluated efficiently through

2 Chapter 1 It starts with ...



differentiable simulators. Yet close-loop behaviors then also imply permanent re-

optimization of the robot trajectory given the observed situation and consequently,

the solver may also fall in local minimum with disastrous consequences.

Overall we observe that the limiting factors of both RL and TO hamper efforts to

develop a robust reliable framework for predictive control. This forms the core issue

we tackle in this thesis learning complex poly articulated behavior -

1. with few demonstrations or trials inside a differentiable simulator

2. with high accuracy of predictions

The main question is how to fully exploit the knowledge about the system to learn

in order to improve the efficiency of our algorithm. In this thesis, we try to answer

this question by searching for a new algorithm that can exploit both RL and TO for

better performance.

1.2 Contributions

To achieve our stated objectives, we combine TO with a reinforced learning loop.

This is accomplished by setting an iterative loop in the backdrop of the recursivity

of Bellman’s optimality principle [Bel66] such that learning depends on the data

provided by TO, while the efficient computation of optimal trajectories over a preview

horizon by TO depends on accurate learning. In an abstract way, we can think of this

as a synergistic coupling between learning and trajectory optimization where the

coupling is explicitly formulated to improve trajectory optimization through learning

and vice-versa. We do not try to improve one at the cost of other.

Intuitively, we can reason that since the value function defines a partial ordering

over policies, it can then be said that some policy is better than other policies if its

expected return is greater than the expected return of other policies (from the same

state) - the expected return is, of course, encapsulated in value functions. Therefore,

1.2 Contributions 3



if the optimal value function can be estimated, it becomes relatively easy to estimate

the corresponding optimal policy - if the optimal value function at some state is

known, then the corresponding actions after 1 step search will then be optimal.

Therefore optimal actions from some state can be selected without knowing all

possible future behaviour, if the optimal value function at that state is known. This

is the guarantee provided by Bellman´s optimality equations.

Furthermore, we explicitly focus on learning with high accuracy and with reduced

rollouts. We use trajectory optimization to give us state-value pairs and state-control

trajectories which we learn in a supervised phase using three neural networks

representing the value function, policy function, and the predicted optimal trajectory.

The estimates of value function are subsequently used inside TO at the terminal

position, while the approximation of the optimal policy serves as a guide for TO.

The road-map we set for ourselves is as follows:

• Estimate global value function given a time-dependent estimate of value

function.

• Learn an accurate representation of state-control trajectories that can be used

to warmstart.

• Establish optimality criteria on learning.

• Develop means to use additional information provided by the TO during the

learning phase.

While the algorithm presented in this thesis can be used with any TO, we used

Differential Dynamic Programming (DDP) [May73; XLH17], a particular class of

trajectory optimization. The choice of using DDP is primarily due to its ability

to compute 1st and 2nd order derivatives of the value function. We explicitly use

gradients of the value function during training and we will show that that enables

us to learn with high accuracy and in fewer trials.

4 Chapter 1 It starts with ...



1.3 Thesis Structure

This thesis is organized into two parts. In part 1 corresponding to Chapters 2-4 we

present the theoretical aspects of our work. Chapters 2 focuses on the state-of-art

and background, while in Chapter 3 we present our algorithm.

In the next part, from Chapters 4-6 we present the experimental evaluations of our

work. We summarize and conclude in Chapter 7.

Chapter 2

In this chapter, we first establish notations and foundations that we will use through-

out this thesis. We then present an overview of optimal control and Reinforcement

Learning. We also discuss hybrid methods that combine learning and trajectory

optimization.

Chapter 3

In this chapter, we first describe the general optimal control problem setup. Then

we follow it up with a brief description of the Differential Dynamic Programming

algorithm.

We then describe the algorithms that we developed during the course of this thesis -

DVP, ∆PVP, ∂PVP. Then we define a form of constrained learning - Sobolev Regres-

sion - that we use to learn value function. We give a general introduction to using

1st order regression methods using target gradients.

This chapter marks the end of the theoretical section of our work.

Chapter 4

This is a short standalone chapter where we describe the robots we used to evaluate

our algorithm.

We tested our algorithm in two steps during our thesis. Step 1 consisted in learning

only the global value function, and the second step involved learning state-control

1.3 Thesis Structure 5



trajectories along with the global value function. Therefore, we split our results into

two parts with each part presented in the next two chapters respectively.

Chapter 5

In this chapter, we will present the results of learning value function. We will

discuss the issues of singularities and empirically demonstrate the robustness and

generalization capabilities of our algorithm.

Chapter 6

This chapter will present our results on learning a good initialization of the TO solver.

We will compare the quality of the predictions of our algorithm and show that it can

achieve super-linear convergence in the number of attempts required to compute

and refine a (locally) optimal trajectory.

Chapter 7

Perspectives and Conclusion

1.3.1 Associated Publications

Parts of the thesis especially Chapters 4-7 feature in the following publications.

• Amit Parag, Nicolas Mansard. A Supervised Formulation of Reinforcement

Learning: with super linear convergence properties. 2022 - Under Review at

IROS 2023. 〈hal-03674092v2〉

• Amit Parag, Sébastien Kleff, Léo Saci, Nicolas Mansard, Olivier Stasse. Value

learning from trajectory optimization and Sobolev descent: A step toward

reinforcement learning with superlinear convergence properties. International

Conference on Robotics and Automation (ICRA 2022), May 2022, Philadelphia,

United States.〈hal-03356261v2〉

• Rohan Budhiraja, Amit Parag, Ewen Dantec, Justin Carpentier, Carlos Mastalli,

et al.. Crocoddyl: Fast computation, Efficient solvers,Receding horizon and
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Learning. Journées Nationales de la Robotique Humanoïde, May 2020, Paris,

France. 〈hal-02898916〉
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Optimal Control and

Reinforcement Learning - a

discussion of motion

generation for robots

2

„Come on now, I hear you’re feeling down

Well I can ease your pain

Get you on your feet again

Relax

I’ll need some information first

Just the basic facts

Can you show me where it hurts?

— Pink Floyd

Comfortably Numb
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2.1 Notations

The work presented in this thesis lies at the intersection of Reinforcement Learning

and Trajectory Optimization. It is then necessary to define a common vocabulary

that can be used to elucidate ideas with enough clarity.

We will first concretely define certain terms that we use throughout this thesis.

• Robot - A machine capable of carrying out a complex series of actions au-

tomatically either autonomously or semi-autonomously. Alternatively, in RL

literature, a robot can be thought of as an agent in an environment. We will

use the words robot and agent interchangeably.

• Environment - The world where the agent/robot lives. In Optimal Control for-

mulation, the environment is typically referred to as system. The environment

can either be :

1. Fully observable - The agent can determine the state of the environment

at all times.

2. Partially observable - The agent is partially aware of the state of the

environment.

We refer to the model of the environment as Ω.
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• State Space - The state space is the space of possible values that the agent in

the environment can take. The agent assumes a state within the environment

and can traverse the environment by changing its state. The state space can

either be discrete or continuous. We refer to the state space as X .

• Control Space - The control space is a set of controls that are permissible for

the agent in a given environment. In RL literature, this is referred to as the

Action Space. The control space can also be either discrete or continuous. The

control space is referenced with U .

• State Transition Function - The state transition function governs the evolution

of the system. We will refer to the state transition function as a function

f that takes the current state and action x, u at the current timestep t and

returns the next state x+ of the agent in the environment, i.e x+ = f(x, u, t, Ω)

where x, x+ ∈ X and u ∈ U . The optimal control problem can be defined

with a stochastic evolution, however, in this thesis, we concern ourselves

with deterministic models - in a deterministic setting the probability of the

next state in the state space reached by the robot is either 1 or 0. In OCP

literature the state transition function, f , is often called the system dynamics

and is defined by numerical integration schemes such as Euler or Runge-Kutta

methods through an initial value problem formulated from a mechanical study

of the physical state [Car+19; Fea14]. In a more general term, f is a simulator

of the agent behavior.

We will use these basic notations to establish further definitions.

In the next Section, we give a formal description of Optimal Control.

2.2 Generalized Optimal Control - Problem Formulation

In its generalized formulation, optimal control problems involve the minimization of

some cost functions. The resulting optimization problem can be written as

2.2 Generalized Optimal Control - Problem Formulation 11



minimize
x, u

L(x, u, Ω) (2.1a)

subject to

x0 = x̂, (2.1b)

xt+1 = f(xt, ut)∀t, (2.1c)

xt ∈ X , (2.1d)

ut ∈ U , (2.1e)

gt(xt, ut) ≥ 0, (2.1f)

gT (xT ) ≥ 0 (2.1g)

In the continuous formulation, the state and control variables x, u are infinite-

dimensional vectors in the corresponding state and control space. The starting state

of the system is x0 and x : t ∈ [0, T ]→ xt and u : t ∈ [0, T ]→ ut and f is the state

transition function.

We will drop Ω from hereon.

Cost The cost function in (2.1a) is typically defined as an integral over some

efficiency criteria and is usually written as :

L(x, u) =
∫ T

0
ℓ(xt, ut)dt + ℓT (xT ) (2.2)

where ℓ(.) is the integral cost (Lagragian term) and ℓT (.) is the terminal cost (Mayer

term). This particular form is mostly used in practice and will lead to the resulting

sequential decision problem. The shape of the cost term can be different however

classical algorithms demand the Markovian property to function [Ber12].

Initial Constraint The initial state of the system in (2.1b) is assumed to be given :

x0 = x̂.

12 Contents



Dynamics Constraints The constraints in (2.1c) impose limitations over the dy-

namical evolution of the system for all time.

State and Control Constraints Additionally, constraints on state and control in

(2.1f) and (2.1g) can be put on the system for instance, to prevent slippage if

contact sequences are being considered. In general, any other equality or inequality

constraint can be formulated, in particular on the terminal state. We will barely

consider that in this thesis.

2.2.1 Solutions

The generalized optimal control problem is a functional optimization problem where

the inputs themselves are functions and the resolution of the problem lies in de-

termining that particular input function and trajectory that optimizes some cost

functional.

To further elucidate, the problem in (2.1) is an optimality decision problem, it is

not a (static) optimization program - often called Non-Linear Programming (NLP)

[Ber97; BSS13] - as it involves an infinite number of variables under an infinite

number of constraints. The optimality conditions are formally described by a set

of partial differential equations (PDEs) - the Hamilton-Jacobi-Bellman equations

(HJB) [Pen92]. When possible directly integrating the HJB PDEs gives the complete

solution of OCP in (2.1), yet it is rarely feasible in practice.

There are two methods for solving the optimal control problem in practice:

1. Indirect Methods - The OCP is rewritten under some kind of differential

equation whose complexity can be numerically handled, typically using more

convenient optimality criteria such as Pontyagrin Maximum Principle [Kop62].

2. Direct Methods - Transcribe the problem into a static optimization problem by

discretizing x and/or u to find the minimum of the objective cost function.
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Both RL and TO can be classified as Direct Methods - TO considering polynomial-

s/discretization of x, u and RL considers a neural network as an approximation of

the optimal policy π. To better understand the connection with RL, we will first

reformulate (2.1) into a deterministic MDP.

2.3 Dynamic Programming and Markov Decision

Process

The overall optimality problem in (2.1) can also be solved via Dynamic Programming.

Based on Hamilton-Jacobi-Bellman equations [Nai02], dynamic programming uses

value function to model the interactions of the robot with the environment and

proceeds to solve the overall optimal control problem by breaking it down into

simpler subproblems in a recursive manner. Note that Dynamic Programming uses

recursion to solve problems by breaking it into smaller sub-problems. It can be used

to not only solve Markov Decision Problems but problems in general where it is

possible to nest sub-problems recursively inside larger problems - this implies that

there is relation between the value of the sub-problems and the value of the overall

problem [CL01].

Reinforcement Learning aims to find the solution to a subset of optimal control

processes solved via dynamic programming that can also be described as a Markov

Decision Process.

Formally, a (deterministic) Markov Decision Process is defined as a tuple of (X ,U , f, l, γ)

• f is the state transition function and next state x+ reached by the robot under

the application of control u in state x where x+, x ∈ X and u ∈ U .

• ℓ is the feedback obtained by the robot at time t for moving from state x

to x+. In RL this is canonically called the reinforcement, r, obtained on
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transitioning to x+ from x under u. Alternately the reinforcement can be

written as r(x+|x, u) = −ℓ(f(x, u), u).

• γ is the discount factor. γ ∈ (0, 1).

A policy is therefore a decision rule π that maps states to controls :

π : x ∈ X → u = π(x) ∈ U (2.3)

As discussed before, in this thesis we consider a deterministic formulation. π can also

be considered stochastic which is convenient to handle multi-modalities however

the proposed algorithms cannot yet handle stochasticity.

Informally, the goal of an RL agent is to search for a policy that optimizes the

discounted sum of rewards over a horizon. The horizon itself can be :

• Finite time horizon T : The problem is characterized by a deadline T and the

RL agent only focuses on the sum of rewards up to that time.

• Infinite time horizon: The problem never terminates but the agent will ei-

ther reach a termination state or rewards closer in time will receive higher

importance or the agent will seek to maximize the average of rewards.

We consider the case of the finite-time horizon to establish two further definitions.

State-Value function In the finite-horizon case, the state value function is written

as :

V (x, t) =
T −1∑
s=t

ℓ(xs, πx(xs)) + ℓT (xT )|xt = x; π (2.4)

where ℓT is the reward function for the final/terminal state at the end of the horizon.

From hereon, we will denote the state value function as the value function - we can
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also write the value function as a function of π, as is done in RL literature, however

for the remainder of this thesis, we will keep this notation.

Note that this value function is time-dependent. We will later use this to show an

equivalence between dynamic programming and trajectory optimization. We would

also note that a related quantity called that state-control value function or quality

function - Q function - can also be defined, but is not necessary for the ideas in this

thesis. We show the Q function in the Appendix 8.1

Optimal Value Function and Optimal Policy The solution to MDP is an optimal

policy π∗ that satisfies :

π∗ ∈ argmaxπ∈ΠV (2.5)

in all states x ∈ X , where Π is some policy of interest. The corresponding value

function is then the optimal value function: V ∗ = V . Furthermore, there is always

atleast one policy that satisfies the above optimality criteria. We denote π∗ as the

collection of all policies that maximize the the value function. Alternatively, we can

think of an optimal policy as any policy that is greedy with respect to V ∗.

Note that MDPs are usually formulated as a maximization problem while OCP is

formulated as a minimization problem however maximization of rewards is identical

to the minimization of cost. The difference is largely anecdotal. We will use the

minimization form in this thesis.

2.3.1 An overview of Reinforcement Learning in robotics

Reinforcement Learning learns forecasts of behavior through trial and error. RL

algorithms can be generally divided into three classes [SB18; KT03]: actor-only,

critic-only, and actor-critic methods, where actor and critic are references to policy

and value function.
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• Actor-only methods such as SRV [Gul90] and REINFORCE [Wil92] optimize

over a parameterized family of policies through policy gradient methods,

however, this can lead to slow learning. Actor-only methods provide two

primary advantages - strong convergence properties due to gradient descent

methods and the ability to generate actions in complete continuous action

spaces. A much broader discussion of methods used to estimate gradients are

given in [PS08; BB01].

• Critic-only methods such as Q-learning [WD92] or SARSA [RN94] learn the

Q function without any explicit function for the policy. These methods tend

to show a lower variance in estimates of expected return [Sut88]. In turn,

the policy is then derived by selecting greedy actions - actions for which the

expected reward is maximum [Sch02]. This results in Critic-only methods

being computationally intensive - if the action space is continuous then one

needs to resort to some optimization procedure in every state to find the action

that maximizes value.

• Actor-Critic methods [Gro+12; Aru+17] combine the advantages of actor-only

and critic-only methods approaches. The parameterized actor brings the advan-

tage of computing continuous actions while the critic supplies the actor with

low-variance knowledge of the performance. However, these methods often

require a large number of samples [Tan+18] followed by considerable tuning.

To mitigate these problems, in [Haa+19] an extension to soft actor-critic ap-

proach [Haa+18] is developed to counter over-sensitivity to hyper-parameters

[Hen+18]. The quality of predictions of the actor itself was examined in

[HFH20] with the conclusion that the actor learns better when learning to

act optimally over a horizon rather than learning the next optimal state. On

the whole, however, actor-critic methods usually show better convergence

properties than critic-only methods [KT03].

At the core of RL lies stochastic gradient methods that when used in other deep

learning methods exhibit different behavior than in RL. For instance, Proximal

Policy Optimization developed by [Sch+17] uses ADAM [KB15], while Advantage
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Actor-Critic in [Sch+17] relies on RMSProp [HSS12]. It is unclear why different

optimizers exhibit different behaviors in RL and whether the theoretical properties of

these optimizers in supervised regression settings generalize to Deep RL algorithms

[HRP18]. A possible way to study this problem, borne by the ideas in this thesis,

would be to replace gradient descent with Sobolev descent [Par+22]. This presents

a very interesting avenue of research.

The immediate concern of this thesis is to use RL effectively in robotics. RL has

been successfully used in robotics from dexterous manipulation [MAW07; AG12],

trajectory and route tracking [NZZ19; Ota+19; Xia+19] , navigation [Kim+20;

Cad+16] and path planning [Gar+09; Ten+09]. In [Kat+16] a pure vision-based RL

method was proposed for highly sensitive movements for a pneumatic five-fingered

arm rotating an object. Hindsight Experience Replay [And+17] was also used for

sample efficient learning on three different tasks - pushing, sliding, and pick-and-

place. Similarly, RL algorithms were successfully used for manipulation in cluttered

environments [BMK19; Joh+19]. In [FLA16] RL was improved to tackle the problem

of trajectory tracking for autonomous vehicles underwater. Similarly, in [Wei+18]

Deep Deterministic Policy Gradient [Lil+15] was trained to track the optimal route

while [Lon+18] presented an a safe and efficient collision avoidance policy while

route tracking. Reducing the probability of collision remains an important task in

RL. In [Wan+18] a hybrid RL model is presented that solves a real-world vision

language navigation task.

RL in robotics is thus characterized by wide-ranging datasets and high sampling

complexity and a primary challenge is then to learn with fewer demonstrations and

trials. A possible way to ameliorate this problem is through the use of underlying

geometric structures of the robotic datasets, for instance recasting inference in

Riemannian or Grassman manifolds as shown in [Cal20] can provide a principled

way of using data in robotics. Similarly, decomposing complex robotic movements

into a series of simpler movement primitives and formulating the learning process

as an information fusion problem to generate complex movement was explored in

[PSC22].
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Either way learning in robotics is characterized by two key issues - sampling in

high dimensional spaces [Dul+21] and hypersensitivity to parameters ( although

hypersensitivity is a far more pervasive problem ). This is the primary motivating

factor behind this thesis. These difficulties are studied and analyzed in [Mah+18a;

Mah+18b] over 450 independent experiments which took over 950 hours of robot

usage with the conclusion that learning performance can be highly sensitive to

different elements of the task setup such as the control space, the control cycle

time ( defined as the time between two subsequent application of controls ), and

system delays. A possible way to counter the over-sensitivity problem [HRP18]

is through Maximum Entropy Deep Reinforcement Learning [Haa+17; Haa18].

MEDRL provides a basis for constructing hierarchical strategies through probabilistic

reasoning that can eliminate the need for extensive tuning.

Conclusion When compared with TO, RL is less prone to getting stuck in local

minima and is much faster at run-time than TO. However, its sample efficiency,

bloated convergence time, and accuracy of predicted policies with respect to HJB

optimality of substructures [Bel66] criteria stand in contrast to that of TO. Whereas

TO strongly integrates the simulator with numerical optimization, RL tends to

idealistically decouple the algorithm from the simulator by considering it as an

abstract oracle. This presents a case to more tightly couple the simulator and the

learning algorithm.

2.4 Direct Methods - Transcription and Resolution

2.4.1 Transcription

To solve the optimality problem described in 2.1 with finite resources, we first need

to transcribe it as an NLP such that a static discretized optimal control problem can

be formulated. There are two classes of transcription methods used to convert the

optimality problem into a general constrained optimization problem - shooting and
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simultaneous [Kel17]. Either of these two methods first transforms the continuous

problem in Section 2.2 into a non-linear programming problem [Bet10]. The primary

difference between shooting and simultaneous methods lies in their implementation

of constraints on system dynamics - shooting methods use simulations to explicitly

enforce the dynamics of the system while simultaneous methods enforce dynamics

at a series of points along the trajectory. Once the problem has been transcribed

various solvers such as SNOPT [GMS05], IPOPT [WB06], FMINCON [Too+93] or

ACADO [HFD11] can be used to compute the solution.

Shooting Methods Shooting methods fall into two classes - single-shooting [Ger03]

and multiple-shooting [Die+06]. Single-shooting methods, also known as Initial

Value Approach [Isl+15], the dynamical system is solved by a numerical integrator.

Typically, it involves some function such zero-order-hold, piecewise linear, piecewise

cubic, or orthogonal polynomials to approximate the control trajectory [Rös19].

Multiple-shooting methods [BP84] such as Differential Dynamic Programming

[May73] work by breaking up a trajectory into a series of segments and using

single shooting to compute the solution for each segment as shown in Figure 2.1. As

these segments get shorter, the relationship between decision variables and the ob-

jective function to be minimized becomes more linear. Usually, in multiple-shooting,

the end of a segment will not necessarily match the beginning of the next segment.

This difference is known as defect or gap [BP84] and is added to the constraint

function such that gaps decrease.

Simultaneous Methods Simultaneous methods represent state trajectory using

decision variables [CB89]. The solution is then computed in a way such that the

constraints on dynamics are satisfied only as special points along the trajectory. Two

commonly used simultaneous methods are direct transcription [Vas10] and direct

collocation [Ged11]. To understand the differences between these methods, we first

need to note that the dynamics constraints can be represented in either derivative

or integral form. The derivative method of representing constraints requires that
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Fig. 2.1.: Single vs Multiple-Shooting [Kel15]. Note that multiple-shooting consists of a
series of single shooting methods but with defect/gap constraints added to make
the resulting trajectory continuous.

the derivative of state with respect to time must be equal to the system dynamics:

ẋ = f(x, u). The integral method requires state trajectory to match the integral of

the dynamics with respect to time: x =
∫

f(x, u).

Direct transcription uses the integral form of the dynamics constraint and the

control and state trajectories are then represented through piecewise-constant and

piecewise-linear functions. Direct collocation methods are slightly different in that

they represent input as a piecewise-linear function of time and the state trajectory is

piecewise-cubic. The value of the state and control at each knot/node point along a

trajectory is then modeled as decision variables. Orthogonal collocation is another

simultaneous method that uses orthogonal polynomials to approximate state and

control function. These methods tend to be fast and lead to accurate numerical

interpolation, differentiation, and integration of the polynomial [BT04]. These

methods are very popular in building quick prototypes since they provide great

flexibility. Yet they tend to be very sensitive to hyperparameters.
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2.4.2 Trajectory Optimization - A literature review

Once the problem has been transcribed, TO solves the optimal control problem while

allowing for the full exploitation of the system dynamics within a prediction horizon.

In a discretized transcription, L(X, U) can be written as an infinite sum of running

cost, ℓ(x, u):

L(X, U) =
+∞∑
k=0

ℓ(xk, uk) (2.6)

where ℓ(x, u) : X × U → R.

Given some initial condition x0 and some input control trajectory ut over a finite

time interval T , trajectory optimization methods [RMM94; AHM22] computes the

long-term but finite-horizon cost of executing that trajectory using standard additive-

cost optimal control objective. For finite time horizon problems of length T , the

L(X, U) is split in two parts:

L(X, U) =
T −1∑
k=0

ℓ(xk, uk) + ℓT (xT ) (2.7)

where ℓT (xT ) is the cost at the terminal state. We denote X∗, U∗ as the optimal

solution to this minimization problem over a finite time horizon T and from the

initial starting state x0.

Equivalence with MDP This minimization problem is exactly equivalent to the

maximization of the accumulated sum of rewards problem over a time discrete finite-

horizon, albeit a discount factor. The additive cost function can then be thought of

as a negative cumulative reward or negative reinforcement over a horizon. Under

these conditions, the search for an optimal policy in RL can be said to be equivalent

to the search for an optimal control trajectory in TO [KZG22; Ber12; Ber97].
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2.4.3 Model Predictive Control

The solution computed by TO is a fixed trajectory that cannot be directly applied

in open-loop due to the problem of robustness when modeling any relevant robotic

dynamical system. A controller is then hand-tuned to rigidly track if the accuracy

is acceptable in the operation context. Yet the optimal policy can be evaluated by

systematic re-evaluation of a new trajectory for each new measured state, x̂. Model

Predictive Control methods use trajectory optimization as feedback policy. MPC

methods execute the following steps sequentially :

1. Measure the current state x̂

2. Optimize trajectory from that current state.

3. Execute the first action, u0, from that optimized trajectory.

4. Allow dynamics to evolve for one step and repeat.

A standard approach is to use trajectory optimization for optimization over a horizon

longer than T through receding horizon MPC. Since the trajectory optimization

problem is formulated over a finite-horizon, then it is typical to continue solving for

T step horizon problem at each evaluation of the controller.

While MPC enables recovery to strong disturbances, TO is commonly used to plan

complex open-loop trajectories [MZP22] since the problem can be too complex to

be solved by MPC in real-time. The effectiveness of model-based techniques can

be seen in their successful application over a variety of complex tasks, including

locomotion and manipulation [Di +18; Kui+16; Koe+15; Bel+21; Neu+18].

The level of autonomy provided by these methods offers a viable solution that

can solve large-scale optimal control problems over a receding finite-horizon while

dealing efficiently with constraints, non-linearity, uncertainties, and unforeseen

perturbations [Hub+11]. For instance, in [WFK22; Sma+22], we see the successful

deployment of a fast MPC based on Quadratic Programming (QP) formulation

for the task of locomotion in simulated bipedal systems. Similarly, TO is used to
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compute trajectories for dexterous manipulation and whole body locomotion of the

REEM-C robots in [LRM22; AHM22] respectively. To account for uncertainties under

contact, the authors of [DZZ21] propose chance complementarity constraints that

changes stochastic constraints into deterministic constraints while in [LBS22], the

authors show a robust framework that can tackle the issue of slippage in unknown

environments.

Despite their wide use, several challenges need to be addressed :

1. Non-linearities in the robot model can force TO in local minima [BBV04]. This

automatically leads to suboptimal solutions. Escaping from these local minima

can be done through Entropy-based DDP [SWT22] or RRT [NKH16].

2. A problem which we also tackle in this thesis is to reduce the number of

iterations needed by the solver to converge to a (locally) optimal solution.

This is usually done by either reformulating the OCP as a convex optimization

problem or providing the solver with a good guess. Warmstarting the solver

typically involves either learning offline some representations of the optimal

behavior via Reinforcement Learning (RL) or supervised regression [Man+18;

Lem+20; Lid+22a], or re-using the solution computed in the previous control

cycle as warmstart [DBS05].

3. The computational cost is also a function of the complexity of the task which

scales with the cube of the dimensionality of the system, with the result

that MPC has mostly been applied to systems with fewer degrees of freedom

[Neu+16; GM16; HD10].

Recent works such as [Hut+17; Dan+21] have tried to target more complex

robots such as quadrupeds or bipeds by focusing on a more accurate modeling

of system dynamics and a more advanced (stronger, more robust, faster)

simulation of poly-articulated behavior [TET12; HLH18]. The computational

efficiency also scales with the preview horizon of the OCP. This is easy to

see - the computational cost of computing a locally optimal trajectory over a
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larger preview horizon is much higher than the cost incurred in computing

trajectories over a short preview horizon.

4. Particular care must be put on an efficient implementation of rigid body

dynamics, for instance for complex systems more efficient numerical optimal

controls such as [Car+19; Kim+19] that can work at higher frequencies are

needed.

2.5 Hybrid Methods

Hybrid solutions lie at the intersection of learning and TO. Combinations of these

can be divided broadly into two categories depending on their goals.

Learning some function to enhance the performance of TO In this approach, the

primary goal is to boost the performance of TO either by speeding up the computation

time or by improving the quality of computed solutions. Either way, this usually

involves learning a function offline through a library and subsequently using it online

inside TO: the library of representations itself is generated through simulations or

through offline solving of OCP.

The learned function can represent the dynamics of the system to alleviate the

problem of designing controllers for tasks with complex non-linear dynamics [LKS15]

or a cost function to allow for re-planning with hindsight [Tam+17] or value function

either to improve the quality in sampling-based planning [Bha+14] or reducing

planning horizons [Low+19].

Much closer to our work is [Zho+13], where the authors propose to learn the global

value function through Gaussian Mixture Models (GMM) and Nearest Neighbor

through (locally) optimal runs of TO. The learned value function is then used inside

TO as a proxy for terminal cost. This is also the primary reason why we chose to

learn the global time-independent value function - estimates of the global value
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function, V ∗ when used as a proxy for terminal cost can turn short horizon problem

into infinite-horizon optimal control problem [CA98; HL02; ETT11] with theoretical

guarantees of optimal behavior as long as the estimated value function accurately

reflects global value function. Similarly, in [VMR22; DKT19], the authors learn the

value function for one step model predictive controller.

Learning a library of trajectories to provide initial guesses to warmstart predictive

controllers has been extensively explored in works such as [Man+18; Lem+20;

MT14; Lid+22a]. The critical importance of warmstarts is easy to see - in general,

predictive control is dependent on the resolution of a large nonlinear optimization

problem at each control cycle, therefore the absence of a good initial guess can slow

down convergence or fail to avoid poor local optima. However, providing a good

warmstart implies learning in continuous domains which is usually challenging - the

RL training time may be excessively long and its convergence is strongly dependent

on the exploration strategy.

Leverage TO to speed up the training of RL. To speed up training time, the authors

of [Zha+19] developed an exploration strategy that made the RL agent effectively

recognize "good" trajectories by asynchronous episodic control. Similarly [LK13]

and its successor [LK14] proposed to bias the exploration strategy in RL toward

low-cost regions by using DDP to guide policy search ( GPS ) to avoid the problem

of falling in poor local optima during the search for complex policies with hundreds

of parameters.

While GPS has spawned numerous variants such as [Bue+18; ML16; Yah+17;

Men+19; Tag+22; Lev+16] to name a few, guiding policy search was recast as a

teacher-student problem where the OCP solver acts as a teacher [CFH20; Kah+17].

The idea was further refined in [Zha+16] where the offline trajectory optimization

phase was replaced with MPC. A similar variant of GPS uses path integral to optimize

the individual instance trajectories and later combines them into a single policy

[Che+17]. In [Vie+18] guided policy search was used to learn contact-rich dynamics

for underactuated systems along locally optimal trajectories in a sample-efficient
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manner and was tested on real robots. In [MT14], the authors combine a trajectory

optimizer with a policy learning phase through the Alternative Direction Method of

Multipliers.

The key limiting factor here is the use of canonical methods of RL and its dependency

on the quality of guiding samples. This is where our method differs from previous

works on learning a good initialization. We use supervised regression to learn

guiding samples provided by DDP while the value function approximator refines the

quality of trajectories computed by DDP.

2.6 Discussion

In the preceding sections, we showed the equivalence of discrete-time optimal

control problem with shooting transcription and Markov Decision Process in the

deterministic case. Under this equivalence, we can establish a notion of comple-

mentarity between RL and TO - search for an optimal policy can be thought of as a

search of optimal trajectory.

Then, we discussed methods that explicitly solve discrete-time OCP through TO-

based methods while solutions to MDP were discussed under RL approaches. The

primary advantages of RL: speed of inference, and the ability to approximate complex

policies: are negated by slow convergence and over-sensitivity to hyper-parameters

leading to brittleness and sample inefficiency. The sample inefficiency in RL also

comes from using differentiable simulators as abstract oracles and failing to fully

exploit the available knowledge of the system, whereas TO combines optimization

algorithms with simulators.

This is the central theme of this thesis - exploit the knowledge of the system as much as

possible - for an end-to-end learning framework. We think this is a good direction to

explore. To that end, we combine TO in a reinforced learning loop with the aim of

improving the quality of TO while improving the accuracy of predictions. The work

we present in this thesis is much more aligned with the hybrid solutions we discuss
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in Section 2.5. Our proposed method learns value functions and warmstarts for

model predictive control which gets improved iteratively. We learn value functions

primarily because of its importance.

In a Markov Decision Process value functions are unique fixed points of Bellman

operators and govern interactions of RL agent with its environment [Kam+12]. This

is where the algorithmic implementations of RL fail to realize its mathematical

foundations: an extensive analysis in [Ily+20] showed that value function estimates

never match the true value function and only marginally guide the search for the

policy. The mathematical foundation is the maximization of some stochastic objective

function based on the governing dynamics of the system and RL usually proceeds

by estimating the 0th order gradient of that objective [SB18; Sch+17]. This is also

where our implementation of the learning process slightly differs from the canonical

methods used in robot learning or learning in general. We explicitly use 1st order

Sobolev regression [Cza+17] to learn the value function [Par+22]. Learning in

Sobolev Spaces has the added benefit of imparting more interpretability to the

hidden layers and minimizes the problem of local minima1.

1The problem of local minima is closely related to information bottleneck in DNNs studied in [TPB01].
The theory of information bottleneck suggests that the hidden layers in DNNs trade-off between
keeping enough information about the input variables for the prediction of the learned function
and a concise representation of the learned function itself [ST17; TZ15]. This is where using higher
order derivatives of the target function in the learning process can be quite useful.
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„I am so clever that sometimes I don’t understand

a single word of what I am saying..

— Oscar Wilde

The Happy Prince and Other Tales
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3.1 Differential Dynamic Programming

Differential Dynamic Programming refers to a general class of dynamic programming

algorithms that iteratively solve finite-horizon discrete-time optimal control problems

described in (3.1) by using locally quadratic models of cost and dynamics [May73;

LS92] and show quadratic convergence. Current research has shown that DDP

can effectively compute solutions in high dimensional state spaces by successfully

producing trajectories for UAM vehicles [TMT14].

There are three canonical ways to view the DDP algorithm :

• As a 2-pass algorithm

– A backward pass to backpropagate the value derivatives and a forward

pass to rollout the dynamics

• As iterative linear quadratic regulator - iLQR

– Dynamic Programming applied in the tangent (differential space). Classic

DDP requires second-order derivatives of the dynamics, which are usually

the most expensive part of the computation. If only the first-order terms

are kept, one obtains a Gauss-Newton approximation known as iterative

Linear-Quadratic Regulator - iLQR [Cho+75].

• As sparse sequential quadratic programming - Sparse SQP.

– Optimal way of using sparsity in quadratic programming by solving

a sequence of optimization subproblems, each of which optimizes a
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quadratic model of the objective function subject to a linearization of the

constraints to induce sparsity [Bet93].

DDP is a second-order shooting method that can admit quadratic convergence under

mild assumptions for any system with smooth dynamics. It has also been shown to

have convergence properties similar or better than Newton’s methods performed in

the entire control sequence [LS92].

Recall that under shooting transcription, the optimal control objective is exactly

equivalent to a Markov Decision Process. The objective function to be minimized is

:

L(X, U) =
T −1∑
k=0

ℓ(xk, uk) + ℓT (xT ) (3.1)

where ℓT (xT ) is the cost at the terminal state and X∗, U∗ are the optimal solution

pairs to this minimization problem over a finite time horizon T and from the initial

starting state x0.

DDP takes advantage of the recursivity of Bellman’s Optimality Principle [Bel66] by

adding the condition, VT (xT ) = ℓT (xT ), where VT (xT ) is the value function at the

terminal step xT . In each iteration, it numerically solves the optimal control problem

described above by performing a backward and a forward pass on the current

estimate of the state-control trajectories (X, U) : a backward phase to estimate the

value function as quadratic fit along the current candidate trajectory, a forward

phase to refine the candidate trajectory based on the value function.

To construct a quadratic fit of the value function, DDP measures the deviations from

the current candidate trajectory through Taylor’s expansion [XLH17], discarding

terms beyond second-order. It then returns a quadratic approximation of the cost-to-

go and the hessian, gradient at every step along the preview horizon. In the next

few sections, we quickly formulate the quadratic approximation and comment on

the overall complexity of the DDP algorithm.
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3.1.1 Quadratic Approximation

DDP searches locally for the optimal state and control sequences for the OCP in

(3.10) through a forward pass or rollout phase and a backward pass to compute a

local solution to (3.10) using a quadratic Taylor expansion. To obtain a quadratic

approximation of the value function, we need to first define a Q function that can

measure perturbations of (3.10).

Let Q(δx, δu) be the measure of deviation of l(xi, ui) + Vi+1(f(xi, ui)) around the

current candidate state-control trajectories xi, ui. The Q function is a scalar function

taking vector inputs and expresses the change in cost that results from perturbing a

point in the nominal trajectory. The goal of the DDP algorithm is to find perturbations

that minimize the Q function.

Therefore,

Q(δx, δu) = l(xi + δx, ui + δu)− ℓ(xi, ui)

+ Vi+1(f(xi + δx, ui + δu))− Vi+1(f(xi, ui))
(3.2)

With a quadratic approximation and dropping terms beyond the 2nd order, DDP

rewrites Q(δx, δu) as :

Q(δx, δu) ≈


1

δx

δu


T 

0 QT
x QT

u

Qx Qxx Qxu

Qu Qux Quu




1

δx

δu

 (3.3)

where the expansion coefficients are :
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Qx = ℓx + fT
x V ′

x

Qu = ℓu + fT
u V ′

x

Qxx = ℓxx + fT
x V ′

xxfx + V ′
xfxx

Quu = ℓuu + fT
u V ′

xxfu + V ′
xfuu

Qux = ℓux + fT
u V ′

xxfx + V ′
xfux

(3.4)

The subscripts {}x, {}u, {}xx, {}uu, {}ux are the 1st, 2nd order derivatives with respect

to the state and control variables. The primes denote the values at the next time

step.

Minimizing the quadratic approximation in (3.3) with respect to δu, we have :

δu∗ = arg min
δu

Q(δx, δu) = k + Kδx (3.5)

where k = −Q−1
uu Qu and K = −Q−1

uu Qux are the feed forward and feedback terms.

The corresponding recursive updates to the 1st and 2nd derivatives of the value

function, which we denote by Vx(i), Vxx(i) are done as follows :

Vx(i) = Qx + KT Quuk + KT Qu + QT
uxk

Vxx(i) = Qxx + KT QuuK + KT Qu + KT Qux + QT
uxK

(3.6)

At the end of this backward pass, we now know the quadratic approximation of the

value function along the horizon.
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3.1.2 Line Search

Once the backward pass is completed, the proposed locally-linear policy is evaluated

with a forward pass by integrating the dynamics along the computed feed-forward

and feedback terms k, K :

ûi = ui + αki + Ki(x̂i − xi)

x̂i+1 = f(x̂i, ûi)
(3.7)

where x1 = x1 and {x̂i, ûi} is the new candidate state-control pair. α is a backtrack-

ing search parameter, set to 1 and iteratively reduced. Backtracking line search is a

common technique employed to ensure that the generated trajectory converges to a

local minimum, i.e. at every iteration of DDP we obtain a trajectory with a lower

total cost.

This method works by introducing a step-size parameter α that is applied to the

control policy. The purpose of α is to regularize the trajectory and ensure that the

new trajectory is of lower cost than the previous one. Note that if α = 0, the state

and control trajectories are not modified. This backward-forward process is repeated

until convergence to the (locally) optimal trajectory.

3.1.3 Complexity and Regularization

DDP uses the value function V along with its derivatives Vx, Vxx to iteratively

invert the block diagonal components. The inverted Hessian also characterizes

the direction during Newton’s descent. The line search then computes the next

candidate trajectories for the optimal solution based on the descent direction. While

typically, this is done by approximating the dynamics xt+1 = f(xt, ut) as linear, DDP

performs the forward pass on the exact non-linear dynamics and not its linearized

version. This is done to ensure the feasibility of the corresponding solutions, unlike
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the classical Newton step which tends to produce discontinuities in the solution.

Under a linearized approximation of dynamics, the DDP solution is identical to the

Newton Step. Although DDP searches in the space of control trajectories U ∈ Rm×N ,

it solves the m dimensional problem N times. This difference is even more apparent

when considering N Hessians of size m×m rather than a larger Nm×Nm matrix.

This immediately shows that the factorization complexities are of the order O(Nm3)

and O(N3m3).

Furthermore, in order to guarantee a descent direction, additional regularization is

used when the hessian loses positive definiteness, for instance by adding a Tikhonov

regularization term [GHO99] in (3.5). Additionally when the cost terms are least

squares residuals, then the Hessians can be approximated through the square of

the Jacobian, i.e ℓxx ≈ rT
x r, where r is the residual that models the cost. We also

use this idea to design the architecture of our neural networks. This approximation

corresponds to the Gauss-Newton variation and is referred to as iLQR. The regu-

larization parameter and α are adapted online following a Levenberg-Marquardt

heuristic [Mor78].

3.1.4 Discussion

DDP is an iterative improvement scheme that finds a locally optimal trajectory

from a fixed starting point. In every iteration, a quadratic approximation of the

time-dependent value function is constructed over some horizon of length T . By

iteratively moving toward the minima of the quadratic approximations, the trajectory

is progressively improved toward a local optimum with superlinear convergence.

The DDP algorithm is relatively cheap and simple to implement and also takes

advantage of the sparsity pattern of the problem. Additionally, it also provides, along

with the solution, a linear feedback term that can be used to correct the control

sequence when the observed trajectory deviates from the optimal one. In particular,

this allows the solution to be robust to some amount of external noise.
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However, DDP based methods provide limited convergence guarantees (no globaliza-

tion strategies ) or require a significant amount of iterations of the DDP algorithm to

converge to a feasible solution. This forms a major limiting factor in the deployment

of DDP for online Model Predictive Control for instance. The reader is also invited

to consult [CM+19] for a tutorial on the DDP solver.

DDP exploits the 1st and 2nd order estimates of the value function. This then allows

access to the superlinear convergence rate if we are able to provide derivatives of

ℓ and f along the preview horizon. In practice, DDP computes time-dependent

estimates of the value function along a finite preview horizon. The time dependence

of the value function makes DDP unsuitable for infinite-horizon problems and leads

to significant performance degradation.

This limitation was examined and an alternate scheme to estimate the global time-

independent value function was proposed in [Low+19] through a plan online and

learn offline - POLO - framework. POLO tightly couples local trajectory optimization

with global value function learning to overcome the drop in performance when using

an approximate value function. Computing the optimal value function exactly is not

tractable except in a few cases such as LQR [SR98]. The POLO framework overcome

intractability by using the popular fitted-value iteration [Lut+21] to approximate

the global value function through locally optimal runs of a trajectory optimizer.

The trajectory optimization computes the solution over some predefined horizon of

length T which then generates the targets for fitting the value approximation.

We build upon this idea to estimate the global value function and use it inside DDP

to formulate an infinite-horizon problem by replacing the terminal cost, ℓT , with the

global value function, V ∗, that remains solvable with finite resources. Furthermore,

we also learn estimates of state and control trajectories which we then use to provide

a good initialization to DDP.

This brings us to the three main contributions of this thesis -

• DVP
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– Estimating value function at∞ horizon.

– Supervised classical regression

• ∆DVP

– Estimating value function at∞ horizon.

– Supervised Sobolev descent: using gradients in training

• ∂PVP

– Estimating value function at∞ horizon.

– Supervised Sobolev descent - using gradients in training.

– Learning state-control trajectories for warmstarting.

3.2 Differential Value Programming - DVP

To estimate the value function at an infinite-horizon such that the finite-horizon

problem can be turned into an infinite-horizon MPC, we first need to formulate and

subsequently exploit, the algorithmic principles of Bellman’s Optimality conditions

to build DVP.

3.2.1 Algorithmic Principles

Bellman’s principle of optimality [Bel66; Bel54; Dre02] divides a sequential decision

process into a series of smaller subproblems. Formally it can be stated as follows :
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The Principle of Optimality

An optimal policy has the property that whatever the initial state and the initial

decision is, the remaining decisions must constitute an optimal policy with regard

to the state resulting from the first decision.

The optimality principle allows us two insights.

The first insight is that we do not need to consider the past when optimizing the

OCP from any given state. This allows us to define a cost-to-go or the net objective

cost from some given state xi as :

Ji(xi, ui:T −1) =
T −1∑
t=i

ℓ(xt, ut) + ℓT (xT ) (3.8)

where ui:T −1 are the decisions taken from xi to arrive at the terminal state xT .

This is due to a forward simulation of the system dynamics. The optimality principle

can be restated as - the optimal trajectory from some xi only depends on finding the

optimal control sequence ui:T −1. In turn, this allows us to define the value function

Vi as the minimum cost-to-go from the state xi :

Vi(xi) = min
u:i:T −1

Ji(xi, ui:T −1) (3.9)

The second insight lies in the optimality of substructures: if we consider the optimal

trajectory from some state x0 to xT , then any sequence of sub-trajectory xi, ..., xT of

this optimal trajectory is also optimal.

The optimality of sub-structures along with the value function, Equation 3.9, allows

us to make recursive decisions of the form :
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Vi(xi) = min
ui

[ℓ(xi, ui) + Vi+1(f(xi, ui))] (3.10)

The recursivity provided by Bellman’s optimality principle associates a value function

Vi to each feasible state xi for the optimization problem. Therefore V0 is the solution

for the OCP at state x0. This property of recursive optimality is important. To

estimate the global value function, we use an approximation of the value function

as a proxy to represent the truncated horizon end, ℓT (xT ). This implies that we

should be able to evaluate an approximation of the value function and its first and

second order derivatives at the end of the horizon. The solver will then return a

refined approximation of the value function at the beginning of the horizon, and its

derivatives.

3.2.2 Algorithm

Cost-to-go learning The first iteration of DVP simply generates a batch of optimal

trajectories of horizon length T . We then learn the value function by supervised

learning. The result of this first iteration is a neural network approximating the

cost-to-go for a horizon of T, denoted by V i=0
α . The superscript of V i

α denotes the

V α at iteration i.

Iterative value learning DVP then proceeds by iteratively building upon its estimates

of value functions. In the subsequent iterations, we replace the terminal cost with

the approximated value predicted by the neural network. So at the end of every

iteration, (3.10) is changed to:

V i(x) = min
u

T −1∑
k=0

l(xk, uk) + V i−1
α (xT ) (3.11)

where i is the iteration number, i ≥ 2, V i−1
α is the value function approximated in the

previous iteration. Should each iteration result in a perfect training, the ith iteration
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would lead to the approximation of the cost-to-go for an horizon of (i + 1)×T which

would tend toward the global V ∗ as i increases. The algorithm is summarized in

Algorithm 1.

Algorithm 1: DVP
Algorithm parameters: horizon length T , iterations i, sample size s;
Initialize Vα;
Initialize DDP ;
foreach i do

Sample s trajectories from DDP ;
Train Vα through (3.15a) ;
Update DDP terminal cost ℓT ← Vα

end foreach

Estimating the global value function and providing guarantees on its convergence to

the infinite-horizon effectively removes time dependence from the value function.

This induces an invariance that can then be mathematically shown to force states at

the end of the finite prediction horizon to be in some neighborhood of an invariant

terminal region.

Another important point to note would be that in MDP formulation, value functions

are the interactions between the agent and an external environment and are there-

fore unique fixed points of their corresponding Bellman operators. A fundamental

property of the Bellman operator is that it is a contraction in the value function

space in the∞-norm [Put94]. Therefore, starting from any bounded initial function,

with repeated applications of the operator, the value function converges to the

time-independent value function. This invariance effectively turns the prediction

horizon from finite to infinite which is solvable with finite resources as long as Vα can

provide good enough estimates of value function at infinite-horizon. The guarantees

on stability and convergence to the infinite horizon then involves proving that the

Jacobian linearization of the system at the terminal region is stabilizable. While the

full mathematical proof is beyond the scope of this thesis, the reader is invited to

consult [CA98].
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The implementation of our algorithm merits discussion on three primary aspects -

architecture of Vα, sampling strategy, and choice of regression method. We discuss

the choice of regression method in Section 3.3.

3.2.3 Architecture of Vα

DDP is a second-order algorithm. It computes the 2nd and 1st order derivatives of

the value function in the backward pass and therefore requires V
′

α and V
′′

α in every

iteration of our algorithm. We had initially designed Vα as a feed-forward network

with one output that models the value function. However, double differentiating Vα

did not prove to be feasible. To overcome this, we initially reduced the size of Vα

- fewer hidden layers and fewer units - however the lack of depth in the network

prevented us from obtaining a fair representation of the value function. Computing

the hessian of a feed-forward network with one output proves to be computationally

slow, especially for use in MPC and learning depends on the depth of the hidden

layers, we use Gauss-Newton approximation to design Vα as the squared sum of

residuals :

V (x|α) = R(x|α)2 (3.12)

This immediately allows us to write the 1st and 2nd order derivatives as :

V ′(x|α) = 2R′(x|α)T R(x|α) (3.13)

V ′′(x|α) ≈ 2R′(x|α)T R′(x|α) (3.14)

We implement this with a feed-forward network with 3 hidden layers of 64 units

and hyperbolic tangent activation applied to every layer. The final layer outputs a

three-vector residual. Modeling the value function as the output of Gauss-Newton

approximation seemingly imparts a more physical interpretation to the hidden layers

as compared to a simple feed-forward network. It also provides us with the added
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benefit of not having to resort to the time consuming automatic differentiation for

computing the Hessian of Vα, since now it can be estimated through (3.14).

3.3 DVP with Sobolev Descent - ∆DVP

The DVP algorithm, in Algorithm 1, we initially developed was tested with classical

regression. However, classical regression failed to improve the gradients of Vα with

respect to the input that DDP demands. In the majority of applications of deep neural

networks, classical regression usually consists in receiving a dataset of input-output

pairs from a ground truth function and computing a loss to encourage the network

to generate the same output as the ground truth function for some given input. In

the traditional supervised setting, many of these ground truth functions may have an

unknown analytic form. However in many other scenarios we do know the analytic

form or are able to compute the ground truth gradients (or higher order derivatives)

or the gradients are simply observables as is the case in [Rus+15; HVD+15; Jad+17;

HMD15].

While the function approximation theoretically guarantees that neural networks can

learn arbitrarily well, the accuracy and generalization capabilities yet depend on

the quality (exactness and density) of the training dataset. This is where Sobolev

learning differs from classical regression. It closely follows the work in [Hor91] that

examined the approximation capabilities of multi-layered feed-forward networks and

proved the universal approximation theorems for neural networks in Sobolev spaces

- a Sobolev space is a metric space that measures the closeness or the distances

between functions in terms of their differences in values and differences in the

values of their derivatives.

More formally, a Sobolev Space is a vector space of functions equipped with a norm

that is a combination of Lp norms of the functions together with its derivatives up

to a given order [AF03]. An interesting result provided in [Hor91] showed that a

feed-forward network with sigmoid activation can approximate both the value of
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the target function and the derivatives of the function arbitrarily well. This is the

key insight of Sobolev training - in the training phase, the neural network is not only

trained on the output of the function but also the derivatives of the function.

Incorporating derivative information in function approximation to make more

physics-informed neural networks has been previously explored in numerous con-

texts. In [WAP17] Bayesian optimization is assimilated with information about the

gradient and Hessian to improve the predictive power of Gaussian Processes. The

derivatives of the approximators ( with respect to inputs ) have also been used

to either penalize model complexity [Rif+11] for effective knowledge discovery

or to encode invariances by making symmetry aware neural networks [Sim+91]

or to provide additional learning in attention distillation for Convolutional Neural

Networks [ZK16]. Somewhat closer to our approach is the use of Sobolev training

in Reinforcement Learning to match the derivatives of the critic with the target

derivatives using small sigmoid-based architectures [TE07; FAP12; FA12; Wer92].

Sobolev learning has been shown to lead to better generalization and imparts

more interpretability to neural networks albeit at a higher computation cost, as it

constrains training by forcing neural networks to fit a target slope [MT92]. However,

encoding the target derivative information in neural networks has been shown,

empirically, to increase robustness against noise, as proven in, [Mas93] and mitigates

the problem of increased computation cost by being more data efficient [LO97].

3.3.1 Sobolev Regression

Let f be a learnable function. For training points xi, we assume that we have access

to the output values f(xi) and the j−th order derivatives of f with respect to xi.

The training dataset, therefore, consists of (K + 2) tuples :

{(xi, f(xi), D1
xf(xi), ....., DK

x f(xi)}Ni=1.

Let m be some neural network parameterized by θ. The loss function in this case is

then composed of two terms:
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Fig. 3.1.: Illustration of Sobolev training of order 2. Diamond nodes m and f indicate
parameterized functions where m is trained to approximate f . Green nodes
receive supervision and the losses l2, l1, l are backpropagated to train m.

lf =
N∑

i=1
λ(m(xi|θ), f(xi)) (3.15a)

ld =
N∑

i=1

K∑
j=1

λj(Dj
xm(xi|θ), Dj

xf(xi)) (3.15b)

lf in (3.15a) is identical to the traditional loss used in classical regression that

penalizes the difference between the output of the target function f(xi) and the

output of the neural network m(xi|θ) with some norm λ. The second loss function, ld

in (3.15b), is the Sobolev loss that measures the errors of the j−th order derivatives

and constraints m to encode information about the derivatives of the target function

in its own derivatives. Figure 3.1 shows compute graph for back-propagation during

Sobolev training of order 2.
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This led to our second attempt where we modified our initial algorithm to include

Sobolev training, since we already have access to the derivatives of the value function

- both 1st and 2nd. Our new modified algorithm can then be written as

Algorithm 2: ∆DVP

Algorithm parameters: horizon length T , iterations i, sample size s;
Initialize Vα;
Initialize DDP ;
foreach i do

Sample s trajectories from DDP ;
Train Vα through (3.15b) ;
Update DDP terminal cost ℓT ← Vα

end foreach

Notice that the training part now includes derivatives through 3.15b. In theory, we

can include the 2nd order derivatives too in training, however, this largely depends

on the time-computation-accuracy requirement trade-off. In practice, we do not use

the Hessian in training.

3.3.2 Sampling the State Space

The classic control systems we use to establish the basic properties of our algorithm

hardly require any clever sampling strategies. For computationally inexpensive

systems such as Unicycle and Cart-Pole it is easy to compute large datasets by

uniformly sampling for s initial configurations from the state space and keeping only

the nodes estimated at horizon T .

The problem with this approach lies in the observation that Vα is only used to

provide the cost-to-go (along with derivatives) at the terminal state. The terminal

state reached by the manipulator is invariably near the target: computing a dataset

sampled uniformly from the state space, is wasteful if the trained approximator

is only used at the terminal position. On the other hand, the obvious solution of

sampling for starting configurations that are near the target position more often

than not leads to over-fitting.
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Fig. 3.2.: Adaptive sampling for the Manipulator Arm for the pose reaching task.

The second restriction in sampling is related to the dimensionality of the state

space of the system under consideration. With an increase in dimensionality, it

becomes infeasible to compute huge datasets. This problem when compounded by

the corresponding training time, even though the training loop is supervised, can

lead to bloated training time.

A possible way to ameliorate this problem is through adaptive sampling. In Figure

3.2, we show adaptive sampling for the End Effector pose-reaching task. The state

space is 14 dimensional and the goal is to reach the target from various initial

configurations sampled from the state space.

Through adaptive sampling we define 3 bounded boxes, near the static target

position, shown in red, to constrain the possible terminal state reached by DDP (

EE position and velocity) to be in the vicinity of the target. For each possible target

position, shown in blue, we apply inverse kinematics to establish the corresponding

joint space samples. This subsequently allows us to define initial conditions for our

OCP. The dataset so generated is extremely accurate. The primary problem with this

approach lies in its use of inverse kinematics to generate samples, in every training

iteration.
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Fig. 3.3.: Nodes computed along a trajectory by DDP. The curve is the state-trajectory
computed by DDP from a starting position to a goal. Each node on the curve is a
state.

Another aspect of the sampling lies in the utilization of the state trajectories com-

puted by DDP. DDP provides us with its estimation of time-dependent value function

at each node/state for every state trajectory. We use the notation of node to denote

any state in the state trajectory. In the Optimal Control literature, nodes are used

interchangeably with knots points of a state trajectory.

Let us consider some optimal control task where the state-trajectory computed by

DDP looks like Figure 3.3. It is easy to see that each state trajectory gives us T state-

value pairs. Of this, we generally keep the node with the highest preview horizon and

discard the rest - since DDP computes the time-dependent value function for every

node in the state trajectory the most reliable estimate is the node with the highest

preview horizon. This effectively implies that we can use the time dependence of the

value functions provided by DDP to establish a notion of the quality of the dataset.

For example, consider a state trajectory such as shown in Figure 3.3. Each node

along the trajectory would then be written as x0, x1, ....., xT , where x0 and xT are

the initial starting state and the terminal position reached. DDP computes for node

in this state trajectory three corresponding quantities - the value function from the
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Fig. 3.4.: Illustration of refine sub-sampling approach to generate a dataset for the Manipu-
lator Pose reaching task, shown here in End-Effector Space.
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state, the gradient of the value function and the hessian of the value function -

V, V ′, V ′′. This value function is, of course, a time dependent quantity.

Therefore, for x0, DDP would compute v(x0|T ), v′(x0|T ), v”(x0|T ). For x1, DDP

computes v(x0|T−1), v′(x0|T−1), v”(x0|T−1) and so on for each xi in the trajectory.

For the terminal state, xT , the value function ( and its gradient and hessian ) would

be estimated at a planning horizon of 1 : v(x0|1), v′(x0|1), v”(x0|1).

Therefore, the state with the highest fidelity is x0 and its corresponding {vx0 , v′
x0 , v′′

x0}

since it is estimated over a planning horizon of T . The nodes nearer the target would

be of lesser quality since they are estimated by DDP over shorter and shorter preview

horizons. The terminal state, xT , with {vxT , v′
xT

, v
′′
xT
} would be of the poorest quality

since the corresponding preview horizon from xT is 1.

Effectively, for one run of DDP with a preview horizon T , we get T observations

and T target triplets in decreasing order of precision. Therefore the subset of this

instance of data with the highest fidelity would yield 1 target triplets. For s runs of

DDP, the purest dataset would be of the order of s× 1.

To gauge the extent to which nodes with smaller preview horizons while not relying

on adaptive sampling, we initially sample uniformly for s locally optimal trajectories.

Of this, we sub sample the first k nodes, {x0, x1, ..., xk} from every state sequence

for our training datasets. Thus the size of the training dataset is s× k. The terminal

node/state, xT , from every state sequence is used in subsequent iterations as the

initial starting configuration to sample for the new dataset. Figure 3.4 shows the

distribution of the training datasets across the iterations in the End- Effector cartesian

space for the manipulator pose estimation task. As we see, in higher iterations the

data tends to become more concentrated around the target.
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3.3.3 Conclusion

Both Algorithm 1 and 2 focus on learning the value function - the first algorithm

with classical regression and the second with Sobolev regression. The learned value

function was then used in lieu of terminal cost.

An interesting point to note here would be using Vα to provide the cost-to-go at

every node along the state trajectory: effectively providing optimal value function

estimates at every state and not just the terminal position. We did not do this for

two reasons :

• DDP requires also requires 1st and 2nd order derivatives of the value function.

Therefore, using Vα for next-step optimal control would also involve differenti-

ating the neural network at every step. This would immediately increase the

computation time.

Consider some (locally) optimal trajectory computed over a preview horizon

of length T . Assuming that the solver took N iterations/roll-outs to compute

and refine its estimates of that trajectory, then it is simple to see that if Vα

were substituted for cost-to-go at every step it would require differentiating

the neural network at least T ×N × 2 times.

• Vα is ultimately function approximation, therefore even small errors in esti-

mates of value function could lead to divergence later on. Therefore, the safest

way to incur as little divergence as possible seemed to be using Vα only at the

terminal position. To quote Aristotle - The least initial deviation from the truth

is multiplied later a thousandfold.

This leads us to the final contribution of the work presented in this thesis.
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3.4 Differential Policy Value Programming - ∂PVP

As noted before, in the first iteration of ∆DVP we simply compute a batch of optimal

trajectories of horizon length T. We use this to learn the global value function.

Additionally, we can use this offline database to learn state and control trajectories

which are then used to warmstart ( i.e provide good initial guesses) DDP in the

forward pass phase. This allows DDP in avoiding poor local optima while speeding

up the convergence and also improves its performance in real-time in MPC.

Learning state-control trajectories along with global value function was the aim of

our work. Our original goal was to bind TO and learning in a synergistic coupling

through a reinforced loop and to accomplish that we build our algorithm in 3 steps

over the course of numerous experiments. Algorithm 2 augments Algorithm 1 by

adding a Sobolev loss term thereby taking advantage of additional information

provided by the TO.

This brings us to our final contribution which we call ∂PVP. The algorithmic imple-

mentation is shown in Algorithm 5, where we also learn state-control trajectories,

along with the value function. This synergistic coupling is reinforced in that the

performance of Vα, Xβ , Uγ depends on the quality of data provided by DDP and the

quality of computations of DDP depends on accurate predictions from Vα, Xβ, Uγ .

By setting off an iterative loop, we force TO and learning to depend on each other.

The purpose of utilizing Bellman’s optimality principle is to ensure that the quality

of both TO and learning remains guided by optimality.

The parameters of Algorithm 5 show that the empirical convergence of ∂PVP is a

function of T, s and i - given some initial planning horizon T , the neural network

Vα should approximate the value function over a horizon of T × i. Therefore, as

we iteration, i.e as i increases, Vα should, at least empirically, asymtote to the value

function at infinite horizon.

Note that we can warmstart DDP in every iteration i > 1, however, this depends on

the quality of learning and the capability to generalize which has to be established
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Algorithm 3: ∂PVP

Algorithm parameters: horizon length T , iterations i, sample size s;
Initialize Vα, Xβ, Uγ;
Initialize DDP ;
foreach i do

Sample s trajectories from DDP ;
Train Vα through (3.15b) ;
Train Xβ through (3.15a) ;
Train Uγ through (3.15a) ;
Update DDP terminal cost ℓT ← Vα ;
Warmstart DDP through Xβ, Uγ

end foreach

empirically. The iterations i are equivalent to the concept of episodes in RL. We will

use iterations and episodes interchangeably.

Sampling - The sampling strategies we employed in Algorithm 1 and 2 cannot

be used with the complete algorithm in 5 since we now have to accommodate

for learning state-control trajectories too. So we uniformly sample for s points in

the state space as starting positions for DDP to compute an offline database for

training.

3.4.1 Design of Vα, Xβ, Uγ

The primary difference between ∆DVP and ∂PVP is that in ∂PVP we are also learning

warmstarts along with the value function. This brings us to the question how to

design Vα, Xβ , Uγ such that learning is computationally efficient. We experimented

with numerous designs of Vα, Xβ, Uγ some of which we now describe.

Design 1 Implement Vα, Xβ, Uγ as the outcome of a three-headed feed-forward

network with common hidden layers. This was specifically done to test the trade-off

between the training time of a multi-headed network and the theoretical advantages

of enabling the multiple heads to benefit from the rich information encoded in
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the common hidden layers. However, this resulted in a bloated computation time

of parameter updates during the training phase. The practical benefits of shorter

training time far outweighed the theoretical advantages of common hidden layers.

Design 2 Connect Vα, Xβ, Uγ sequentially such that the output of the previous

network is the input of the next network. In this design, Vα models the relation

x → v, Xβ learns the state trajectory from with input as v through v → XS

and Uγ infers the control sequence from the trajectory predicted by Xβ through

XS → US.

Design 3 As actor-critic esque setup between Vα and Xβ, Uγ , where the output from

Xβ goes back to Vα and Vα predicts the value function associated with each node in

every state trajectory. We could not find an efficient way to enforce this architecture

- the corresponding loss computed by DDP could not be efficiently packed into a

tensor architecture and back-propagated since gradient descent has now to account

for the parameters, α, β of both Vα and Xβ.

Design 4 Connect Xβ , Uγ either through common hidden layers or through sequen-

tial connection either Xβ → Uγ or through Uγ → Xβ. Vα is learned separately.

However, none of these experiments led to any conclusive results and more often

than not led to severe performance degradation. Taking advantage of the rich

information in common hidden layers proved too difficult. Similarly, we thought

that by inducing any relation between Vα, Xβ , Uγ would lead to better performance.

However, it frequently led to either vanishing or exploding gradients problem

[Hoc98] which is a common problem in time series data since modeling the state

trajectory and control trajectory can also be thought of as learning a time series data

[Wen+20]. Inspired by the design of Long Term Short Memory (LTSM) architectures

[Yu+19], we further explored adding specific time connections. This again proved

to be extremely challenging as it required providing guarantees on the derivatives of

LTSM. This has been a pervasive problem - designing complex architectures is easy
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however differentiating them ( output of those architectures with respect to input )

always led to nonsensical gradients.

We obtained the best results by learning the three different quantities - value

function, state trajectory, and control trajectory - on three different feed-forward

networks Vα, Xβ, Uγ trained individually. Xβ and Uγ are implemented with simple

deep feed-forward networks with 6 hidden layers with ReLU, ELU, Tanh alternately

applied while Vα was implemented with a residual network with 3 outputs and Tanh

activation as described in Section 3.2.3.

Note that DDP also provides us with derivatives of the control trajectory that can

be used for Sobolev regression during training of Uγ . However, this places a huge

computational burden on the automatic differentiation engine as we now have to

calculate the Jacobian of the output of Uγ with respect to the input. We were unable

to find an efficient way to differentiate Uγ dues to curse of dimensionality. To avoid

an increase in training time, we choose classical regression in (3.15a) for the training

of Xβ and Uγ .

3.4.2 Discussion

The formulation of ∂PVP was devised to combine the benefits of function approxi-

mation and trajectory optimization. This is a major research avenue and is being

actively pursued culminating in works such as [Zho+13; Lid+22a; Tou09; Dub+20].

In [Man+18], the authors combine a local trajectory optimization with a sampling-

based motion planner to learn better control policy. Their cyclic approach is quite

similar to our proposed algorithm in that the learned control policy is used to

warmstart the MPC to generate better sample trajectories. Similarly, in [MT14] the

authors leverage the high-fidelity solutions obtained by trajectory optimization to

speed up the training of neural network controllers.

The two learning problems are coupled using the Alternating Direction Method

of Multipliers (ADMM). This coupling enables the trajectory optimizer to act as a
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teacher, gradually guiding the network toward better solutions. These two ideas

form a core inspiration for our work. We use this as building blocks to formulate

∂PVP such that the performance of the optimal control solver can be enhanced by

initializing the search, i.e warmstarts, and placing a guiding term in the cost function

through an approximation of the global value function.

The importance of obtaining a fair representation of the global value function is

primarily based on the view that RL-based approximations of the value function in

robotics often suffer from the curse of dimensionality, low accuracy, and low effi-

ciency. Additionally, using the value function as a final cost for the MPC computation

is guaranteed to produce the optimal behavior as long as the trajectory terminates

in an area where the terminal cost accurately reflects the value function [Zho+13]

since it effectively turns the problem into infinite-horizon MPC [CA98; HL02].

Given a planning horizon, Bellman’s equation yields a time-dependent value function,

defined recursively as the optimal cost-to-go. This time dependence, however, implies

that the planning horizon of states at the tail end of the trajectory is extremely short,

which in turn may cause myopic behavior in these states. A fine-tuned terminal cost

function, ℓT , mitigates this problem by effectively informing the controller about

all events that lie beyond its planning horizon. However, designing a handcrafted

ℓT is both problematic and difficult. On the other hand, replacing ℓT with an

approximation of V ∗ leads to a quasi-infinite prediction horizon that guarantees

convergence as was shown in [CA98]. The guarantee of asymptotic stability is

a huge improvement upon moving horizon methods [PY93] or receding horizon

approaches [MM90] or methods that place a terminal inequality constraint [MM93]

such that the states are on the boundary of a terminal region at the end of a variable

prediction horizon.

We note that while convergence guarantees can be made, the number of iterations

required by ∂PVP to converge depends on primarily the initial planning horizon. It

is easy to see that the length of the planning horizon corresponds to steps taken

to reach infinite-horizon - the bigger the step the quicker you converge to a steady

state. Once the terminal cost function has been replaced by the steady-state value
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function, the TO should dramatically improve its performance especially when it is

warmstarted. This is what we will empirically test and demonstrate in the remainder

of this thesis.

3.5 Conclusion

This marks the end of the theoretical section of the thesis. To summarize the

important points of our algorithm ∂PVP :

• ∂PVP learns the global value function and warmstarts in an iterative manner

by constantly replacing the terminal cost with the latest approximation of the

global value function.

• Three different neural networks are used to represent the value function, state,

and control trajectory from some given initial state - Vα, Xβ, Uγ .

• Vα is a residual network that maps value functions as a squared sum of

residuals and is trained through Sobolev regression.

• Xβ, Uγ are trained through classical regression.

In the next chapters, we show the results of the empirical evaluation of ∂PVP. For

better organization we show the empirical evaluations of ∂PVP in two parts - ∂PVPv

for results regarding value function and ∂PVPx,u for results regarding learning

warmstarts. In Chapter 5 we show ∂PVPv and in Chapter 6 results of ∂PVPx,u are

presented.
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Part II

Experimental Evaluations





Experimental Setup 4
„Billions of bilious blue blistering barnacles in a

thundering typhoon!.

— Captain Haddock

Tintin

Contents

4.1 Unicycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Cart-Pole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Inverted Pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 7 dof Manipulator Arm . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

This is a short standalone chapter where we describe the robot models we use to

empirically evaluate ∂PVP - 3 classic control systems and a manipulator arm. We

then discuss the organization of the next chapters.

4.1 Unicycle

The Unicycle in Fig 4.1 features a kinematic model of evolving on the 2D horizontal

plane either driving forward or turning on the spot. Denoting the configuration

vector q = (x, y, θ) of dimension n = 3, the Unicycle model reads:

61



Fig. 4.1.: The Unicycle problem is formulated in 2D.

ẋ = v cos(θ) (4.1)

ẏ = v sin(θ) (4.2)

θ̇ = ω (4.3)

where the control u = (v, ω) includes the unconstrained longitudinal and angular

velocities. The task is to reach the goal position q = (0, 0, 0) while minimizing the

residual sum of errors:

L = w1||q||2 + w2||u||2 (4.4)

w1, w2 represent the weights on q and u

The Unicycle system is inherently subject to non-holonomic constraints. This non-

holonomy leads to instabilities in learning which we shall discuss later.
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Fig. 4.2.: Cart-Pole - apply control forces such that the pole reaches the vertical position.

4.2 Cart-Pole

A Cart-Pole1 is a classical dynamical system where an underactuated pole is attached

on top of a 1D actuated cart. The task is to balance the pole around its unstable

equilibrium (upper position) by controlling the horizontal forces acting on the cart

[Flo07] as shown in Fig 4.2.

The velocity that is reduced or increased by the applied force is not fixed and it

depends on the angle the pole is pointing. The center of gravity of the pole varies

the amount of energy needed to move the cart underneath it. The cost function to

be minimized is:

L = w1||x||2 + w2||u||2 (4.5)

where x = (q, q̇) is the configuration and the control u is force exerted on the cart

and w1, w2 are the corresponding weights. The configuration space is 4 dimensional

and describes the cart position and its velocity and the position and angular velocities

of the pole.

1We use the Open Ai gym implementation of the dynamical model.
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Fig. 4.3.: Pendulum. The optimal control task is to reach an unstable equilibrium position.
The inverted pendulum is fixed at one joint.

4.3 Inverted Pendulum

The inverted pendulum1 swing-up problem in Fig 4.3 consists in bringing the

pendulum from a random position to its upper equilibrium and maintaining it

upright. The cost function we use is similar to the Cart-Pole cost function, with u

representing the torque applied about the pendulum’s rotation axis and w1, w2 the

weights :

L = w1||x||2 + w2||u||2 (4.6)

where x = (q, q̇) is the configuration and the control u is joint torque exerted on the

cart. The configuration space is 2 dimensional and describes the angle and angular

velocity of the pendulum. The joint torque u is not explicitly limited in our case,

although such constraints can be, in principle, enforced.
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Fig. 4.4.: The 7 dof manipulator arm. The goal is to reach the red target.

4.4 7 dof Manipulator Arm

The manipulator arm introduced by KUKA is based on the developments of the

German Space Center (DLR) in targeting direct machine-human interactions. The

manipulator arm has 7 joints with corresponding control units and consequently

allows 1 redundant degree of freedom ( 6+1 in total ). Therefore, the configuration

space is 14 dimensional with x = (q, q̇)

We formulate the optimal control problem as a static End Effector (EE) pose reaching

OCP task from an initial q0. We use a quadratic cost on translation and state limits.

Additionally, we regularize the state and torque controls :

min
x,u

∑
w1||q − q0||2 + w2||q̇||2 + w3||u||2 + w4||p(q)− p∗||2 (4.7)

where q, q0 are the joint position and the initial joint position respectively, u is the

torque control term and p(q), p∗ denote the end-effector position and the desired

end-effector position respectively. Note that w1, w2, w3, w4 are weights.
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4.5 Discussion

In this chapter, we presented the robot models that we will use to empirically

evaluate our algorithm in the next two chapters. The classic control systems we

use were decided based on their simplicity, however, non-holonomy and instability

led to us to a much greater understanding of certain features regarding practical

implementation. In Chapter 5 we discuss the results obtained in learning value

function while in Chapter 6 we show the results obtained in learning warmstarts.
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∂PVPv - Estimating global

value function

5

„To see a World in a Grain of Sand

And a Heaven in a Wild Flower

Hold Infinity in the palm of your hand

And Eternity in an hour

— William Blake

Auguries of Innocence
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In this Chapter, we show the results of learning the value function. We will discuss

the convergence of our algorithm ∂PVP and the impact of Sobolev regression. In

Section 5.1 we summarize the problem statement and establish the experimental

setup. In Sections 5.2 we illustrate our results on classic control problems. Finally,

in Section 5.4 we show the application of our algorithm on the more demanding 7

dof manipulator, which will be the topic of the next chapter.

5.1 Problem Statement and Experimental Setup

Recall that our primary algorithm for learning the value function is a composition of

two algorithms - one to learn the global value function and the other to obtain fair

estimates of warmstarts. The algorithmic formulation of ∂PVP that learns the global

value function is ∂PVPv was shown in Algorithm 2. We also recall it here :

Algorithm 4: ∂PVPv

Algorithm parameters: horizon length T , iterations i, sample size s;
Initialize Vα;
Initialize DDP ;
foreach i do

Sample s locally optimal trajectories using DDP ;
Train Vα through (3.15b) ;
Update DDP terminal cost ℓT ← Vα

end foreach

The two primary hyperparameters are the size of the dataset - s -, and the initial

planning horizon - T . For the classic control system, we typically set s = 100 in

each iteration or episode i of ∂PVPv. The initial preview horizon, T , was set to 60

timesteps.

We also show the results of different preview horizons in Section 5.2.2. For the

classic control systems, the starting positions (corresponding to x0 in ddp problem

in Crocoddyl shown in 8.2.1 ), were randomly sampled from their state space. For

the 3 classic control systems, we computed a validation dataset V ∗ by sampling for
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locally long optimal trajectories. We use this dataset V ∗ to establish a ground truth

reference.

For the manipulator arm, randomly sampling for starting positions from its space

space would lead to infeasible configurations. For that reason, we use Inverse

Kinematics [KB06] and Adaptive Sampling [Buc88] at the beginning of ∂PVPv and

subsequently use refined subsampling as mentioned in Chapter 3.3.2 to sample for

starting configurations for the pose reaching task. The experiments performed in

this Chapter did not involve learning warmstarts.

5.2 Estimates of Value Function - Classic Control

5.2.1 Overall Convergence

Figure 5.1 and Figure 5.10 respectively illustrate the value function learned by our

algorithm and the corresponding mean squared error with respect to the ground truth

value function established by V ∗. Convergence to 10−5 is obtained for Pendulum

and Cart-Pole systems, and convergence to 10−3 is obtained for the Unicycle (which

would eventually reach the same accuracy with more iterations).

For the Pendulum case, just 1 iteration is sufficient for ∂PVPv to achieve convergence.

For Cart-Pole, ∂PVPv takes a few more iterations to converge to a good enough

approximation of the global value function. For systems with regions of local minima

like unicycle, achieving convergence requires relatively more iterations.

Figure 5.2 quantifies the convergence through validation loss at the end of every

iteration. As noted before, we also used the idea of Bellman Residuals [Bel66] to

establish a similarity measure between two successive approximations - i, i + 1 - of

the value function through Vα :

ℓi = ||V i+1
α − V i

α||2 (5.1)
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(a) Unicycle.

(b) Cart-Pole

(c) Pendulum

Fig. 5.1.: Value Functions learned by Vα after 1, 5 and 10 iterations. V ∗ is the validation
dataset computed by sampling for locally long trajectories. The x, y axis represents
q1, q2 of the state space of the robot. The dot in the center is the goal position.
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Fig. 5.2.: Validation Losses for Unicycle, Cart-Pole, Pendulum

Fig. 5.3.: Bellman Residuals for Unicycle, Cart-Pole, Pendulum
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where V i+1
α and V i

α are the value function approximated by the neural network, Vα,

at iterations i + 1 and i.

This criteria helps us establish the convergence of ∂PVPv. In Figure 5.3 it is easy to

see that as the value function estimates come closer to the optimal value function,

the difference in successive estimates decreases. Residuals between two successive

value functions can be a good indication of prediction. Upon or near convergence,

the higher iterations of ∂PVPv should not show much difference between their

behaviors. This residual quantifies the progress of the algorithm to an optimal

estimate of V ∗ and should be used as stopping criteria to end the ∂PVPv loop. We

see that the algorithm easily reaches an accuracy of 1e− 6 which is unusual for a

typical RL algorithm, as discussed more comparatively in Section 5.3.

5.2.2 Influence of horizon length

In this Section, we discuss two results regarding the impact of the initial horizon

length T . While convergence is readily achieved when T is higher as seen through

Figures 5.4, 5.5 and 5.6 it can become increasingly difficult to achieve full conver-

gence when ∂PVPv is started at lower values of T. We suspect that at lower T, the

training data shown to the neural network is so corrupted that ∂PVPv finds it difficult

to estimate V ∗. Short horizons lead to important differences between the cost-to-go

and the value, hence to a poor approximation of the value in early iterations of

∂PVPv. This is illustrated in Figure 5.7, where the truncation to a short horizon

leads to trajectories far from the optimum. Once the value is properly estimated,

the bundle of trajectories converges closer to the optimum (on the unicycle, the

convergence is not perfect despite an accurate convergence to the value, due to

non-holonomy). The trajectories, shown in Figure 5.7, generated by ∂PVPv when

trained under moderate to high horizons are far better than those computed by the

solver alone.

Consequently, ∂PVPv converges faster when T increases. For the considered system,

the typical duration of an episode (until system steady state) is 150 seconds, and
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Fig. 5.4.: Impact of different initial preview horizons T on ∂PVPv for Unicycle. Evolution of
MSE between V i

α and V ∗ under different runs of T .

Fig. 5.5.: Impact of different initial preview horizons T on ∂PVPv for Cart-Pole. Evolution
of MSE between V i

α and V ∗ under different runs of T
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Fig. 5.6.: Impact of different initial preview horizons T on ∂PVPv for Pendulum. Evolution
of MSE between V i

α and V ∗ under different runs of T.

∂PVPv shows proper convergences for T ≥ 40. For smaller T , the convergence is

slower or even fails to reach a global optimum.

5.2.3 Robust Convergence

We empirically establish the stability and robustness of our algorithm by forcing

∂PVPv to learn a corrupted dataset at the first iteration by adding a predefined

perturbation to the optimal data sampled using DDP. We find that ∂PVPv requires

only a few iterations to converge back to the ground truth. Figure 5.8a, Figure

5.8b and Figure 5.8c illustrates the convergence of ∂PVPv under various levels

of initialization noise. Robustness against noise also augments the generalization

capabilities of ∂PVPv. This is what we observe in Figure 5.9 - multiple trajectories

computed by ∂PVPv with V 10
α serving as terminal cost.
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Fig. 5.7.: State trajectories computed by ∂PVPv and DDP for different initial preview hori-
zons T.

5.2.4 Convergence Issues: Singularities

The considered control systems show evident symmetries not expected by the

algorithm and these symmetries come with singular points - i.e initial states from

which multiple ( typically symmetric ) optimal trajectories exist. As we can see

in Figures 5.10a and 5.10b, the algorithm quickly learns the overall topology of

the value function across state space. As the number of iterations increases, the

algorithm seems to refine the inherent symmetry in the topology. We observe that

the iterative aspect of ∂PVPv allows it to learn value function over long horizons

quite well despite initialization in the short horizons. However, there seem to

be regions in the configuration space difficult to handle. We suspect that the non-

holonomic constraints in the Unicycle environment lead to singularities which in turn

destabilizes learning. With more learning, the algorithm overcomes the presence

of singularities. By the 10th iteration, the algorithm had narrowed the location of

singularities to be symmetrically distributed around the goal position.

In our initial experiments, we understood singularities as special points in the state

space from which, as noted above, multiple optimal trajectories are possible. This,
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(a) ∂PVPv with noise initialization. Shown here for Unicycle

(b) ∂PVPv with noise initialization. Shown here for Cart-Pole

(c) ∂PVPv with noise initialization. Shown here for Pendulum

Fig. 5.8.: Illustration of the evolution of mean squared error between Vα for Unicycle,
Cart-Pole, Pendulum under different noise initialization. The colors indicate the
noise added to the initial dataset.
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Fig. 5.9.: Unicycle trajectories computed by ∂PVPv from multiple starting configurations.
The goal is to reach the center/origin. The x, y axes denote q1, q2 of the state
space for Unicycle. The colors of the trajectory do not imply any properties.
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in turn, confuses the solver. However, our experiments showed that it not trivial to

narrow down the origin of causes that destabilize learning.

We, therefore, use the term ’singularities’ as a blanket word that covers all situations

that can destabilize learning - from pathological behaviour of the solver, inaccuracy

of hessians computed by the solver, to issues due to initialization in short horizon.

This, of course, has the detrimental effect of not knowing precisely the nature or the

cause of the problem, which, in turn, can be frustrating to resolve. This was one

of the major problems we faced in estimating the global value function. Since the

presence of these singularities seemed to destabilize learning, we modeled these

points as outliers by tuning the cost weights in the corresponding optimal control

problem such that the resulting value function computed by DDP was below 1. This

normalization trick alleviated the problems associated with learning, however, it

required extensive tuning.

5.2.5 Importance of Sobolev Loss

Our experiments with Sobolev learning corroborate the generalization capabilities

and confirm that Sobolev regression requires fewer training epochs than classical

regression, see Figure 5.12. Sobolev training requires only 64 samples to achieve a

higher accuracy than classical regression on the 0th order output.

The effect of Sobolev training is also seen in the improvement of the quality of

gradients, especially with our residual network. As mentioned in Chapter 3 for our

experiments with value function we designed Vα as a 3 layered residual network

with hyperbolic tangent as an activation function and 64 units in each hidden layers.

The final residual layer contains 3 units. Empirically, we find that the advantage of

modeling the value function as a squared residual lead to faster and more stable

convergence during Sobolev training as shown in Figure 5.11. It seems that a simple

feed-forward neural network, i.e a model with one output, is more unstable than

Vα. The gradients of the residual network are also more accurate than those of

feed-forward network as shown on Figure 5.13. Additionally, we benefit from being
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(a) Unicycle

(b) Cart-Pole

(c) Pendulum

Fig. 5.10.: Illustration of evolution of mean squared error between Vα after 1, 5 and 10
iterations and V ∗ for Unicycle, Cart-Pole, Pendulum
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Fig. 5.11.: Sobolev Loss Curves

Fig. 5.12.: Comparison of 0th loss curve during training - Sobolev and classical.
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(a) Gradients of Feed Forward Network modeling value function with one output

(b) Gradients computed by DDP for locally long optimal trajectories - V ′∗

(c) Gradients of Vα

Fig. 5.13.: Illustration of gradients of a simple feed-forward network, V ′∗ and V ′
α

able to make Gauss approximation of the Hessian, since computing exact Hessians of

the neural network can become prohibitively expensive when the number of hidden

layers increases.

5.2.6 Conclusion

We have established the basic properties of our algorithm in the preceding sections.

We have shown that ∂PVPv converges to V∗ (Section 5.2.1) with high accuracy even
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with short rollouts (Section 5.2.2) wrong initialization (5.2.3) and singularities

(Section 5.2.4. We also showed that this is in part also due to the proper use of

derivatives in learning and in the trajectory optimization through a residual network

(Section 5.2.5.

We will now compare our algorithm with a classical algorithm of RL - the solver

PPO.

5.3 Comparison with PPO

In Figure 5.14, shows the qualitative comparison of the value functions predicted for

Unicycle, Pendulum, and Cart-Pole by ∂PVPv and PPO against ground truth V ∗. PPO

properly captures the overall shape and the spread of the topology but overestimates

it. This is to be expected since policy gradient methods often fail to accurately model

value function as empirically established in [Ily+20].

From our experience, PPO was also more sensitive to small changes, either to the

environment parameters (e.g seed, discount factor, learning rate ) or algorithm hy-

perparameters which limited the experiments we have been able to carry out. From

a practical perspective, using the DDP solver to act as the environment for the PPO

agent is not straightforward and required excessive and extremely time-consuming

tuning from adjusting the discount factor to the learning rate. While theoretically,

PPO should converge with any discount factor, we observed a performance degrada-

tion for discount factors below 0.9 or above 0.99. This is not a limitation we observe

with ∂PVPv. Similarly, the training time for PPO is usually vastly greater than

∂PVPv and depends drastically on hyperparameters. In our experiments, PPO took

approximately 55, 37, 20 minutes to converge while ∂PVPv required 8, 5, 6 minutes

of training for Unicycle, Cart-Pole, and the Pendulum problems.

In conclusion, PPO does not manage to build but a coarse approximation of the value

function. This inaccuracy in modeling the value function then has a negative impact

on the accuracy of the corresponding policy as shown in Figure 5.15. On the other
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(a) Unicycle

(b) Pendulum

(c) Cart-Pole

Fig. 5.14.: Comparison of value functions between the solver, ∂PVP and PPO, shown here
for Unicyce, Pendulum, Cart-Pole
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(a) State Trajectories computed by PPO for the Unicycle goal reaching task.

(b) State Trajectories computed by ∂PVPv for the identical Unicycle goal reaching task.

Fig. 5.15.: Comparison of state trajectories computed by PPO and ∂PVPv. x0, x1, x2 denote
the 3 dimensions of the unicycle system.

hand, this allows us to better evaluate the accuracy of our algorithm which manages

to quickly reach accuracy levels out of the scope of derivative-free RL solvers.

We will now show how ∂PVPv scales to higher dimensional system.
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5.4 Application to the 7 dof Manipulator Arm

In this section, we show the scaling of our algorithm1. We consider a 7 dof manip-

ulator, controlled in torque, where the robot state x = (q, q̇) concatenates at the

joint configuration and velocity and u = Zq are the joint torques. Torque control

[Lam11] is seen as an important feature that allows robots to physically interact

with their environments rather than in the usual controlled settings of factories and

laboratories. However, it also raises important challenges, in particular instability, to

levels that are not meant for position-controlled robots. We know that RL algorithms

are typically strongly impacted by this instability and this is the reason why we chose

to quantify the performance of our algorithm on the torque-controlled manipulator

arm. The optimal control task and the manipulator itself is described in more detail

in Chapter 4.4. The dynamics are computed using Pinocchio [Car+19] and policy

trials are validated with Bullet [CB21].

5.4.1 Results

Computing a huge validation dataset that can be used in lieu of V ∗ is infeasible

for the 7 dof manipulator arm. We have to rely on Bellman residuals to measure

the convergence of ∂PVPv for the EE pose-reaching task. In each iteration of the

supervised Sobolev training phase, 100 locally optimal samples of horizon length

150 were drawn from the 14-dimensional configuration space. Figure 5.17 shows

the difference in predictions between two successive iterations, i.e mean squared

error between V i+1
α and V i

α. We see that the residual stabilizes by the 10th iteration

thus signifying that the algorithm has converged. We see the smoothness of the

predicted value function, and its gradients, across the state space at convergence in

Figure 5.18. The smoothness of the value function then allows the corresponding

policy to behave smoothly, rather than develop jerky motions.

1The work presented here was done in collaboration with Sebastien Kleff
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The primary feature of ∂PVPv is that as iterations increase, the approximated value

function asymptotes to the global time-independent value function. So, when used as

a proxy for terminal cost functional, ∂PVPv tends to drive the locally optimal solver

toward the globally optimal solution. This immediately constrains the corresponding

trajectories to satisfy the Hamilton-Jacobi-Bellman criteria of optimal sub-structures:

sub-solutions of an indefinite horizon optimal control problem should also be optimal

solutions to the corresponding definite horizon sub-problems. We can see this quite

easily in Figure 5.16b for the EE trajectory computed by ∂PVPv (in orange) and the

ground truth EE trajectory computed by DDP at horizon 1000 (shown in blue). The

EE trajectories for the truncated horizon problem are co-incident with the infinite

horizon trajectory.

The trajectories computed with ∂PVPv and DDP, for the truncated horizon, also

maintain the recursive optimality and stability when used online in simulation. The

∂PVPv terminal cost can also serve as a highly stable anchor that allows for quick

re-planning online under external disturbances. Figure 5.19 shows the evolution

of mean squared errors between EE trajectories computed by ∂PVPv and DDP at

infinite-horizon when external perturbations are injected in the system. We observe

that ∂PVPv recovers quickly when perturbed at intervals2. In Figure 5.16a we show

the generalizability of our algorithm to compute optimal trajectories for different

starting configurations. We approximate the terminal value function with the 10th

iteration of ∂PVPv.

We discussed the two sampling strategies - Adaptive and refined sub-sampling - in

Chapter 3.3.2. We experimented extensively to define a general sampling strategy

that can be used in any system. One of our primary focuses was to reduce the overall

training time and for that reason, we experimented with sub-sampling for more

states from the state trajectory computed by DDP and creating a weighted dataset

for learning. In our experiments with refined sub-sampling, we often encountered

the problem of overfitting [Yin19]. However, this problem can be mitigated to some

extent by utilizing the initial configurations generated in every iteration. In Figure

2The corresponding video is available at https://peertube.laas.fr/w/16ocWJHhVwxNr4qYkjGNEX?
start=3m39s
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5.20, we see the trajectories computed as ∂PVPv iterates. In the initial iteration, the

estimate provided by the neural network is far from V ∗ and leads to divergence in

the corresponding state trajectory. The trajectories for i < 6 seem to diverge at the

terminal position effectively implying that the learning converges on the 6th iteration.

The state trajectory computed by ∂PVPv at i = 6 is coincident with a locally long

ground truth reference.

On the other hand, the data provided by adaptive sampling led to much better

generalization, albeit at the expense of slightly higher computation costs incurred

due to using Inverse Kinematics. The advantage provided by adaptive sampling is

exactly the opposite of refined sub-sampling - refined sub-sampling concentrates the

data around the target position as seen in Figure 3.4 whereas adaptive sampling, in

Figure 3.2, provides a much more varied samples. For the results that we showed

here, we used the more general Adaptive sampling approach, described in 3.3.2, to

compute initial starting positions across the configuration space.

5.5 Discussion and Conclusion

In this Chapter, we showed key results regarding the foundational practical im-

plementation of our algorithm. To summarize, the main features of ∂PVPv are

:

• converges stably and quickly

• adjusts to noise during training

• uses gradients for better generalization

• faster and more data efficient than standard RL algorithms

• scales to difficult problems such as torque controlled 7 dof end-effector pose

reaching task
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(a) Trajectories computed by ∂PVPv, shown here for the End-Effector.

(b) End-Effector trajectories computed by ∂PVPv (orange) after 10 iterations and a locally long DDP
(blue) trajectory.

Fig. 5.16.: Ilustration of End-Effector trajectories computed by ∂PVPv and DDP.
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Fig. 5.17.: Bellman Residuals for manipulator arm

• provides stability when used online, even when perturbations are injected into

the system

• estimates value function comparatively than PPO

The iterative supervised learning phase combined with Sobolev regression enforces

the stability of predictions and produces consistent results. Learning in the backdrop

of Bellman’s optimality principle makes the convergence of learning less dependent

on hyperparameters (e.g discount factor, learning rate ). However, we also need

derivatives and this prevents us yet from applying the algorithm to any problem.

Interestingly enough, numerous subtleties in the implementation of the algorithm

such as the design of the value function approximator or use of 2nd order derivatives

and singularities make the implementation quite complex. Similarly, formulating a

general-purpose sampling strategy that can be used with any system remains quite

challenging. The need for a general-purpose sampling scheme can be seen as a

strategy to optimally explore the environment. In our formulation, this exploration

is done by the Trajectory Optimizer that not only gives us the next state as is usual in

classical RL algorithms but also the states along a preview horizon. Usually, the first

state in a state trajectory is by far more reliable than other states and we use this

first state in training while discarding the rest. This is one the core reasons behind

the need for a proper sampling strategy - to make the algorithm more data efficient

than it currently is.
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(a) Value functions predicted by V i=9
α . (left) Predicted value functions for random starting configura-

tions in 14-dimensional state space, shown for q1, q̇1 . (right) Slice of value function with only
q1, q̇1 randomly sampled from the configuration space

(b) Slice of V
′9

θ at q1 (left) and q̇1 (right). q1, q̇1 were randomly sampled for the configuration space.

Fig. 5.18.: Illustration of predictions, value, and gradients of value, for the manipulator
arm.
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(a) Model Predictive Control without perturbation

(b) Model Predictive Control with perturbations manually injected into the system

Fig. 5.19.: Illustration of MSE for manipulator arm in MPC.
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Fig. 5.20.: Multiple trajectories computed by ∂PVPv with the refine sub-sample approach.

92 Contents



∂PVPx,u - Learning

Warmstarts

6

„A good speech isn’t one where we can prove he’s

telling the truth. It’s one in which nobody else

can prove he’s lying!

— Sir Humphrey Appleby

Yes Minister
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In this Chapter, we show the results of learning warmstarts. In Section 6.1 we

summarize the problem statement and establish the experimental setup. In Sections

6.2 we show our results of learning state-control trajectories for the 3 classic control

systems and the 7 dof Manipulator arm. We discuss the key role played by warmstarts

before concluding in Section 6.3.
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6.1 Problem statement and Experimental Setup

6.1.1 Introduction

In the previous Chapter, we used a value function approximator Vα to learn the

time-dependent value function. We kept replacing the terminal cost with Vα and

iterating with Sobolev regression to force the value function estimates toward infinite

horizon.

In this chapter, we use two additional function approximators Xβ, Uγ to learn the

corresponding state-control trajectories, which we then use to warm-start DDP in

subsequent iterations. We also learn the value function, but the results regarding

the properties of Vα are identical to those shown in the previous Chapter.

Recall that the complete algorithm that we use is :

Algorithm 5: ∂PVP

Algorithm parameters: horizon length T , iterations i, sample size s;
Initialize Vα, Xβ, Uγ;
Initialize DDP ;
foreach i do

Sample s trajectories from DDP ;
Train Vα through (3.15b) ;
Train Xβ through (3.15a) ;
Train Uγ through (3.15a) ;
Update DDP terminal cost ℓT ← Vα ;
Warmstart DDP through Xβ, Uγ

end foreach

In this Chapter, we show the results regarding the training of Xβ, Uγ , and the

subsequent effect DDP has when warmstarted.

A few important points of interest in learning warmstarts are as follows :

1. Xβ, Uγ are used to provide initial guesses to the trajectory optimizer. This

immediately leads to a trade-off between the quality of predictions, training

time, the predefined level of precision inside our choice of trajectory optimizer,
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and the number of iterations eventually required by the trajectory optimizer to

converge to a solution.

2. Architectural design leads to numerous trade-offs between ease of training,

accuracy, and learning time.

3. The DDP solver provides us with Riccati Gains which can be used for Sobolev

Regression for Uγ . However, this immediately leads to another trade-off be-

tween the dimensionality of Uγ and precision - it may become computationally

infeasible to include Riccati Gains in the training loop since it would then

require differentiating Uγ with respect to some state input x0.

These points allow us to define the experimental objective and setup for ∂PVP.

6.1.2 Experimental objectives and setup outline

Our primary goal was to minimize the training time such that ∂PVP achieves super-

linear convergence in the number of iterations taken by DDP to solve any problem

when warmstarted. In our experiments, we observed that the precision of trajectories

predicted by Xβ, Uγ increases only slightly as ∂PVP iterates. This allows us flexibility

in defining the number of training epochs in every iteration, which we need if the

dimensionality of the problem under consideration increases. Therefore, we choose

to learn and improve state-control trajectories only in the initial and final iterations

of ∂PVP: the total number of iterations is dependent on the user. We found this

training strategy, where estimations of value functions are refined at every iteration,

whereas estimation of state-control trajectories is refined only at the start and end

to be good enough for our purposes.

In our initial experiments, we chose to enforce connections between Vα, Xβ, Uγ .

Yet, the efficiency also strongly depends on practical implementation choices, in

particular, the network architecture. Empirical evaluations led us to believe that the

simplest approach can lead to better results. So we decided to learn representations

of the value function, state, and control trajectories on 3 separate neural networks.
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To enforce a shorter training time, we discarded the use of second-order derivatives

of the value function in the previous chapter. Experiments with Riccati Gains yielded

precisely the identical consideration. To keep training time to a minimum, we

precluded the use of first-order but high-dimensional derivatives of the control

trajectory. Therefore, Xβ, Uγ were trained using classical 0th order regression.

In the next section, we compare the state-control trajectories predicted by Xβ, Uγ at

the end of ∂PVP with the corresponding ones from DDP.

6.2 Results

Our initial experiments were conducted on the Unicycle problem to establish bench-

marks because of the simplicity ( we thought ! ) of the corresponding optimal control

problem. In Figure 6.1, we see the control and state trajectories predicted by Uγ , Xβ

for 4 different starting configuration. We observe that even though the quality of

warm-start provided by Uγ , Xβ is good enough, there is hardly any appreciable de-

crease in the number of roll-outs/iterations required by DDP when warmstarted. In

Figure 6.2a we warmstart ∂PVP for 500 different starting configurations to compare

the number of roll-outs needed by cold-started DDP. We hardly see any appreciable

difference between the roll-outs required by ∂PVP and DDP.

The resolution of this discrepancy seems to be in the predefined precision factor in

our DDP solver. Crocoddyl, by default, operates at 1e− 9 precision. If the precision

factor is reset to 1e− 6, then we see in Figure 6.2b the number of roll-outs required

by ∂PVP to be significantly lower1. This was the only unexpected result since the

precision factor should not play that much of a role.

That is what we observe in Figure 6.3 for Cart-Pole balancing task, Figure 6.4 for

the Inverted Pendulum problem and the End-Effector pose reaching task in Figure

6.5. The precision factor of 1e− 9 does not seem to play that much of a role and our

1Overall, I conclude dark wizards and dementors to involved with the unicycle problem
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Fig. 6.1.: Warmstarts provided by Uγ , Xβ for the goal-reaching task from different starting
configurations in the Unicycle problem.

algorithm achieves super-linear convergence in the number of roll-outs required to

solve an optimal control problem.

6.3 Discussion and Conclusion

This chapter marks the end of the experimental evaluations of learning warmstarts.

We showed the critical role of warmstarts in Trajectory Optimization and how it can

lead to superlinear convergence in the number of attempts required by trajectory

optimizer to converge to a solution. In particular, we studied

1. the role of learning state-control trajectories for warmstart in reducing the

number of iterations required by DDP to converge.

2. the trade-offs between the accuracy of the learned representation of state-

control trajectories and the effect it has in trajectory optimizer.
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(a) ∂PVP vs DDP at precision of 1e − 9. The average number of rollouts across 500 tasks required by
∂PVP is 15.3 while DDP requires 19.812 rollouts to solve one task.

(b) ∂PVP vs DDP at 1e − 6. The average number of rollouts required across 500 tasks are 4.03 and
9.706 by ∂PVP and DDP respectively.

Fig. 6.2.: Illustration of roll-outs required for the unicycle task from 500 different starting
configurations at precision factors of 1e− 9 and 1e− 6
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(a) Trajectories predicted by Uγ , Xβ vs those of DDP

(b) Histogram of rollouts required by ∂PVP and DDP across 500 tasks

Fig. 6.3.: Cart-Pole : warmstart and roll-out - ∂PVP and DDP.
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(a) Trajectories predicted by Uγ , Xβ vs those of DDP

(b) Histogram of roll-outs required by ∂PVP and DDP across 500 tasks

Fig. 6.4.: Pendulum : warm-start and roll-out - ∂PVP and DDP.
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(a) End Effector trajectories predicted by Xβ vs DDP

(b) Histogram of roll-outs required by ∂PVP and DDP across 500 pose reaching tasks.

Fig. 6.5.: 7 dof Manipulator pose reaching task : warm-start and roll-out - ∂PVP and DDP.
200 were drawn from the 14 dimensional configuration space in each of the 20
iterations. This resulted in our TO computing 10347 rollouts overall. The training
phase lasted 61 minutes.
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3. the choice of the architectural design of ∂PVP given trade-offs between preci-

sion, computation time - of sampling for data and training in an iterative loop

- and extraction of useful information from hidden layers.

Our original goal was to develop a new paradigm for RL algorithms that takes

advantage of the rich data provided by simulation-based TO to prevent an exhaustive

exploration of the state space. In the preceding Chapter, we first showed practical

implementation and empirical evaluations of our proposed method to learn the

global time-independent value function. We also showed that replacing terminal

cost with the time-independent value function induces stability and tries to enforce

optimality of the corresponding state-control trajectories computed by TO.

However, learning value function still does not lead to superlinear convergence - the

trajectory optimizer still requires quite a few iterations to converge to a solution.

This is where the second part of our algorithm is important - providing a good guess

to the TO improves its efficiency. Overall, the nature of ∂PVP allows it to improve,

in each iteration, the estimate of the global value function. This, in turn, improves

the trajectory computed by TO. Subsequently, the refined and improved trajectories

improve the learning of state-control trajectories by Xβ, Uγ , and consequently as

the predictions of Xβ, Uγ become more accurate, the greater their role becomes

in reducing the number of rollouts required by TO. This is the central aspect that

we were trying to achieve with our algorithm - an iterative loop between learning

and TO such that in each iteration, the learning ( of value function, state-control

trajectories ) improve along with the quality of computations of TO.

While theoretically, at the end of the iterative loop, TO coupled with learning should

allow for optimality and superlinear convergence since the HJB conditions should,

in principle, force the predictions to optimality criteria, in practice, however, the

implementation of ∂PVP is not so straightforward. Numerous experiments were

needed to establish the degrees of efficiency of sampling approaches, design of neural

networks, early stopping criteria during the learning phase along with extensive

tuning of the robotic systems itself. The practical implementation of ∂PVP also

guides our choice of the architectural design of Xβ, Uγ and the associated increase
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in training time precludes the use of Riccati Gains during training. Certain factors

such as the stopping criteria in the DDP instance that we were using, also seemed

to play a role, which we did not foresee in our initial experiments. This opens up a

discussion on the accuracy required for real-world robotic systems, which we believe

has to be established in an ad-hoc manner, depending on the system and the task in

consideration - for instance, in grasping tasks far more accuracy is required than in

reaching a target. On the whole, our contributions in the two preceding chapters

provide a foundation for the further development of efficient RL-based approaches

in robotics.

With the insights gained from our experiments, we can establish a road-map for the

future of ∂PVP :

• Develop an efficient sampling approach for any n dimensional system.

• Incorporate the mathematical structure of TO in the design of the neural

networks, for instance using time as an input state during learning.

• Explore the reliability of the data computed by TO for training in the initial

iterations.

• Design a supervised training method that explicitly uses HJB equations and

symmetries in loss functions.

• Engineer an automated identification protocol that can recognize singularities

such that its impact during training is minimized.

• For faster deployment on a cluster and to remove the overhead, the C + +

version of deep learning libraries should be directly used to close the gap

between TO and learning.

We conclude in the following Chapter.
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Conclusion 7
„One last time.

Relax, have a drink with me.

One last time.

Let’s take a break tonight.

And then we’ll teach them how to say goodbye.

To say goodbye.

You and I.

— G. Washington

in Alexander Hamilton

The primary aim of this thesis was to devise an end-to-end learning framework for

robotics. To that end, we reformulated reinforcement learning as a combination

of the iterative supervised learning phase, with emphasis on value functions and

warmstarts - ∂PVP. This allowed for a reduction in trials needed to find an optimal

solution. The iterative supervised learning phase enforced the stability of predictions

through Sobolev regression while learning in the backdrop of recursive optimality

further reduced the dependence on the hyperparameters.

Our goals have been to :

• Develop a learning approach such that a neural network Vα represents V ∗.

• Learn representations of state-control trajectories through locally optimal runs

of a Trajectory Optimizer.

We then used Vα to provide the cost-to-go at the terminal position. This effectively

allowed us to formulate an infinite-horizon problem that can remain solvable with
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finite resources. Using function approximation to learn state-control trajectories was

much more straightforward. The iterative nature of our algorithm frequently led to

trade-offs between precision and training time. For that reason, we discarded the use

of derivatives of control and the second-order derivatives of the value function. Vα,

Xβ, Uγ were initially implemented as the outcome of a three-headed feed-forward

network with common hidden layers. This was specifically done to test the trade-off

between the training time of a multi-headed network and the theoretical advantages

of enabling the multiple heads to benefit from the rich information encoded in

the common hidden layers. However, this resulted in a bloated computation time

for parameter updates during the training phase. The practical benefits of shorter

training time far outweighed the theoretical advantages of common hidden layers.

For our experiments, we decided to learn the three different quantities - value

function, state trajectory, and control trajectory - on three different feed-forward

networks.

There are a few points that should establish some perspective going forward.

Singularities The presence of singularities can very quickly destabilize learning

and can lead to either exploding gradients or vanishing gradients during training. This

has been one of the major peeves we faced in our experiments. Although there are

no good ways to ameliorate this issue, we decided to model singularities as outliers

in our dataset, which immediately led to another problem. We had to extensively

hand-tune the weights of state and torque regularization terms in each of the classic

control systems and the 7 dof arm such that the value function computed by DDP

for the majority of initial starting configurations remained less than 1. We were in

effect normalizing the dataset. In this case, singularities in the state space of any

robot would have a corresponding value function (far) greater than 1. The problem

then becomes the extensive hand-tuning required for any system. This has been

particularly impactful on toy problems, especially with the unicycle, and we also get

an indication that with more complex systems such as the 7 dof arm, there may be

many more hidden problems.
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Physics Informed Architectures of Neural networks The feasibility of deep learning

algorithms is often the result of their generalization capabilities and sample efficiency.

In continuous high-dimensional domains such as robotics where the underlying

processes are known, the problem of learning an accurate representation while

maintaining sample efficiency can become quickly intractable. Therefore the use

of Group Equivariant Neural Networks (GENNs) [Ger+21]: a neural network is

equivariant if the learned representation transforms under transformations of input

in a linear predictable manner: should augment robot learning. The equivariance

property itself is enforced by encoding symmetries and invariances in the architecture

of the neural network and is useful for three reasons :

• Equivariance to a symmetry transformation leads to conservation laws which

can be used to place additional constraints for accurate modeling, for instance,

conservation of Hamiltonian in [GDY19]. Another idea would be to incorporate

Noether’s theorem since it can alleviate the problem of sequence prediction

over long time horizons.

• Induced parameter sharing due to symmetries decreases the number of train-

able parameters.

• Incorporating physical priors and inductive biases in learning automatically

reduces data dependence making GENNs sample efficient.

In robotics we know the physical laws that drive motion and computing large

datasets for learning is infeasible, therefore encoding inductive biases in learning

should lead to sample efficiency.

Learning with Differentiable Simulators and Contact Phases One of the last things

that we tried to do ( and probably still doing ) was to run ∂PVP with contact

phases. This would have shown the scalability of our algorithm. However, this

implies using a physics differentiable simulator such as NimblePhysics [DHO22] or

DojoSim [How+22] inside the DDP instance we use. However, a recent comparison

of the fidelity of gradients computed by these simulators [DHO22] hamper the
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deployment of our algorithm for more complicated scenarios. On the other hand,

in [Lid+22b], the authors proposed leveraging randomized smoothing to augment

differentiable physics which can then be used to efficiently compute gradients in

some neighbourhood. This is an avenue to be explored in the future.

Thank you.
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Appendix 8

8.1 Q-Function

In discounted infinite horizon problems, for any policy π, the state-control value

function Q : X × U → R is defined as :

Q(x, u) = E[
∑

t>=0
γtr(xt, ut)|x0 = x, u0 = u, ut = π] (8.1)

∀t ≥ 1. Under application of policy π, the corresponding optimal Q function is :

Q∗(x, u) = maxπQ(x, u) (8.2)

V function and Q function are related in the following way.

Q(x, u) = r(x, u) + γ
∑

x+∈X
p(x+|x, u)V (x+) (8.3)

V (x) = Q(x, π(x)) (8.4)

Q∗(x, u) = r(x, u) + γ
∑

p(x+|x, u)V ∗(x+) (8.5)

V ∗ = Q∗(x, π∗(X) = maxQ∗(x, u) (8.6)
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Fig. 8.1.: Whole Body contact sequence computed by Crocoddyl

8.2 The Loco3D project : Crocoddyl - Contact Robot

Control by Differential Dynamic Programming

Library

Locomotion in complex environment - Loco3D - is a suite of frameworks with the

objective to plan, adapt and execute multi-contact sequence locomotion movements

in an environment that allows for dynamic changes [Car+17]. The Loco3D project

follows a modular approach to the task of complex motion generation. A short sum-

mary of the modules, along with its associated publications, is presented below.

• Contact Sequence Planner in [Ton+18; Fer+17].

• Centroidal Pattern generator introduced in [Car+16].

• Whole Body Motion Generator described in [Mas+20].

• Low-level Torque Control methods shown in [BL15]
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Fig. 8.2.: Assembling ActionModels with corresponding ActionDatas to form the global
optimal control problem.

Crocoddyl is an open-source optimal control library1 developed as part of the Loco3D

project. The solvers are written in C++ with Python bindings [Mas+20]. The solvers

of Crocoddyl are based on a variant of the DDP algorithm proposed in [Bud+18].

For a deeper dive into Crocoddyl, the reader should consult [Bud19].

8.2.1 Features of Crocoddyl

The primary features of Crocoddyl are as follows:

• Efficient Rigid Body Algorithms: The central dynamics engine of Crocoddyl

is Pinocchio [Car+19]. The choice of using Pinocchio is due to its fast and

efficient implementations of Rigid Body Algorithms on Lie Algebra [Fea14]. In

turn, this allows Crocoddyl to reduce its own computation time.

1https://github.com/loco-3d/crocoddyl

8.2 The Loco3D project : Crocoddyl - Contact Robot Control by

Differential Dynamic Programming Library
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• Analytical Derivatives: Crocoddyl implements analytic derivatives as opposed

to numerical finite differences methods to compute dynamical derivatives

based on [CM18].

• Transcription vs Resolution: Crocoddyl handles problem resolution sep-

arately from problem transcription to allow for flexibility in the choice of

solvers.

• Multi Threading: The computation time of Crocoddyl is further decreased by

using multi-threading for computing derivatives.

• Feasibility Prone DDP: An important feature of Crocoddyl is its ability to

handle infeasible guesses that can occur whenever there are gaps between

nodes in the trajectory. The FDDP solver that we use for our own experiments

can expand and improve upon its own search as opposed to the classic DDP

solver. The full list of solvers available in Crocoddyl is shown in Table 8.2.1.

Contact-Constrained DDP Solver [Bud+18]

KKT based Solver see [Man19]

Feasibility Prone DDP Solver see [Man19]

Control Limited Box DDP Solver proposed in [TMT14]

Box KKT Solver KKT based control-limited resolution of

the full horizon

Crocoddyl decomposes the global problem through a series of Action Models with

their corresponding problem-specific datas called Action Datas. A basic layout

is shown in Figure 8.2. An Action Model contains an invariant description of

the problem such as dynamics or costs or constraints. The Data classes store the

problem-dependent quantities such as values and derivatives information.

Therefore, a stack of Action Models together describes the global problem. The

global problem is then written as a Shooting Problem. Once a problem is defined

inside the Shooting Problem class, different solvers in Table 8.2.1 can be used to

find the solution. Therefore, the optimal control task in Crocoddyl is written as :
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1 ddp_problem = ShootingProblem (x0 , [ Running_Models ], TerminalModel )

The list of Action Models inside the ShootingProblem class is collectively known as

the Running_Models over a preview horizon while the Terminal_Model is also an

Action Model but at the end of the preview horizon.

8.2 The Loco3D project : Crocoddyl - Contact Robot Control by
Differential Dynamic Programming Library
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