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Abstract:
In this thesis, we describe and analyze an interplay between dynamical sys-
tems, sparse structures, convex analysis, and functional analysis. We ap-
proach global attractors through an infinite dimensional linear programming
problem (LP), investigate the Koopman and Perron-Frobenius semigroups of
linear operators associated with a dynamical system, and show how a certain
type of sparsity induces decompositions of several objects related to the dy-
namical systems; this includes the global attractor as well as the Koopman
and Perron-Frobenius semigroups.

The first part of this work focuses on sparsity for dynamical systems. We
define a notion of subsystems of a dynamical system and present how the sys-
tem can be decomposed into its subsystems. This decomposition carries over
to many important objects for the dynamical system, such as the maximum
invariant set, the global attractor, or the stable manifold. We present the the-
oretical and practical limitations of our approach. Where those limitations
do not apply, we show that sparsity can be exploited for computational tasks.
One example is the computation of global attractors via the two infinite di-
mensional LPs that we propose. For polynomial dynamical systems, we solve
these LPs in an established line of reasoning via techniques from polynomial
optimization resulting in a sequence of semidefinite programs. This gives rise
to a sequence of outer approximations of the global attractor which converges
to the global attractor with respect to Lebesgue measure discrepancy.

For the Koopman and Perron-Frobenius semigroup, sparsity induces a cer-
tain block structure of these operators. This implies a decomposition of cor-
responding spectral objects such as eigenfunctions and invariant measures.
A direct consequence is that subsystems induce eigenfunctions for the whole
system and invariant measures for the dynamical system induce invariant mea-
sures of the subsystems. However, reversing this result is less straightforward.
We show that for invariant measures this problem can be answered positively
under necessary compatibility assumptions and for eigenfunctions we restrict
to principal eigenfunctions and assume additional regularity.

We complement the sparse investigation of Koopman and Perron-Frobenius
operators with their analysis on reproducing kernel Banach spaces (RKBS).
This follows and extends a path of current research that investigates repro-
ducing kernel Hilbert spaces (RKHS) as domains for Koopman and Perron-
Frobenius operators. We provide a general framework for analysis of these
operators on RKBS including their basic properties concerning closedness and
boundedness. More precisely, we extend basic known properties of these oper-
ators from RKHSs to RKBSs and state new results, including symmetry and
sparsity concepts, on these operators on RKBS for discrete and continuous
time systems.



Keywords: Dynamical system, sparsity, global attractors, polynomial opti-
mization, semidefinite programming, Koopman operator, reproducing kernel
Banach space



Résumé:
Nous décrivons et analysons une interaction entre systèmes dynamiques, struc-
tures parcimonieuses, analyse convexe et analyse fonctionnelle. Nous abordons
les attracteurs globaux à travers un problème d’optimisation linéaire (OL) de
dimension infinie, nous étudions les semigroupes de Koopman et de Perron-
Frobenius d’opérateurs linéaires associés à un système dynamique, et nous
montrons comment un certain type de parcimonie induit des décompositions
de plusieurs objets liés aux systèmes dynamiques ; ceci inclut l’attracteur
global ainsi que les semigroupes de Koopman et de Perron-Frobenius.

La première partie de ce travail se concentre sur la parcimonie pour les
systèmes dynamiques. Nous définissons une notion de sous-systèmes d’un
système dynamique et présentons comment le système peut être décomposé
en ses sous-systèmes. Cette décomposition s’applique à de nombreux objets
importants pour le système dynamique, tels que l’ensemble invariant maximal,
l’attracteur global, ou la varieté stable stable et instable. Nous présentons les
limites de notre approche d’un point de vue théorique et pratique.

Nous montrons que la parcimonie peut être exploitée pour des tâches
de calcul algorithmique. Un exemple est le calcul des attracteurs globaux
via les deux OL de dimension infinie que nous proposons. Pour les sys-
tèmes dynamiques polynomiaux, nous résolvons ces OLs selon un raison-
nement établi via des techniques d’optimisation polynomiale, ce qui donne
lieu à une séquence de programmes semi-définis. Cela occasionne une séquence
d’approximations externes de l’attracteur global qui converge vers l’attracteur
global en ce qui concerne la divergence de la mesure de Lebesgue.

Pour le semigroupe de Koopman et de Perron-Frobenius, la parcimonie in-
duit une certaine structure en blocs de ces opérateurs. Cela implique une dé-
composition des objets spectraux correspondants tels que les fonctions propres
et les mesures invariantes. Une conséquence directe est que les sous-systèmes
induisent des fonctions propres pour le système entier et que les mesures in-
variantes pour le système dynamique induisent des mesures invariantes des
sous-systèmes. Cependant, l’inversion de ce résultat est moins évidente. Nous
montrons que pour les mesures invariantes, ce problème peut être résolu posi-
tivement sous les hypothèses de compatibilité nécessaires et pour les fonctions
propres, nous nous limitons aux fonctions propres principales et supposons
une régularité supplémentaire.

Nous complétons l’étude de parcimonie des opérateurs de Koopman et de
Perron-Frobenius par leur analyse sur des espaces de Banach à noyau repro-
ducteur (RKBS). Cela suit et étend une voie de recherche actuelle qui étudie
les espaces de Hilbert à noyau reproducteur (RKHS) comme domaines pour
les opérateurs de Koopman et de Perron-Frobenius. Nous fournissons un cadre
général pour l’analyse de ces opérateurs sur les RKBS, y compris leurs pro-
priétés de base concernant la continuité et la fermeture. Plus précisément,



nous étendons les propriétés de base connues de ces opérateurs des RKHS
aux RKBS et nous énonçons de nouveaux résultats, y compris les concepts de
symétrie et de parcimonie, sur ces opérateurs sur les RKBS pour les systèmes
à temps discret et continu.

Mots clés : Systèmes dynamiques, parcimonie, attracteurs globaux, opti-
misation polynomiale, programmation semi-définie, opérateur de Koopman,
espace de Banach à noyau reproduisant.
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Chapter 1

Introduction

In nonlinear optimization one is often challenged with of certifying global optimality.
This task is difficult and failing to answer it well can lead to getting stuck within
a local optimum for the optimization problem. One way of circumventing that
problem is constraining to instances where local information around a critical point
is sufficient to certify optimality – such as in convex optimization problems. A
famous subclass of convex optimization problems is the class of linear programming
problems (LP) where even optimality bounds can be obtained via the dual LP.
Since its invention, linear programming has enjoyed great success, a vast variety of
applications and received numerous awards (such as the Nobel prize in economics
for Leonid Kantorovich and Tjalling Koopmans in 1975). The access to fast solvers
such as interior point methods and the simplex method, as well as the growing
number of applications made LPs a desirable problem formulation. This raises the
question

Which optimization problems can be formulated as LPs?

There are several answers to this question because there are as many subtleties
hidden in the meaning of this question. One surprising answer is even “All!” and
the quotation marks are well needed for this response. One such generic linearization
technique is the following: Consider the optimization problem

f∗ := inf
x

f(x)
s.t. x ∈ K

(1.1)

where K is a topological space and f : K → R is a bounded Borel-measurable map.
We formulate the following linear (or conic) program

l∗ := inf
µ

∫
X
f dµ

s.t. µ is a non-negative Borel measure on K
µ(K) = 1.

(1.2)

The condition that µ is a non-negative Borel measure on K is (convex) conic and
the constraint that µ has mass 1 is an affine one. Thus, the optimization problem
(1.2) is indeed a linear programming problem – but infinite dimensional (if K is
non-finite), even if K itself is finite dimensional. And finally, both optimization
problems (1.1) and (1.2) have the same optimal value, i.e.

l∗ = f∗. (1.3)
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The claim (1.3) is easily verified. Let x ∈ K then f(x) =
∫
K
f dδx where δx denotes

the dirac measure in x. The Borel measure δx is feasible for (1.2) and hence l∗ ≤ f∗.
On the other hand, it holds f(x) ≥ f∗ for all x ∈ K, and by monotony of the integral
we get for any non-negative measure µ on K with µ(K) = 1 that∫

K

f dµ ≥
∫
K

f∗ dµ = f∗
∫
K

dµ = f∗,

i.e. f∗ ≤ l∗.
This approach is generic and does not take any specific characteristics of the

optimization problem (1.1) into account. Therefore the reformulation (1.2) does not
provide strong insight into the problem, but if any, its strength lies in formulating
the problem in a different language where different techniques, i.e. linear ones, are
applicable.

In order to overcome the limitations that come along with a generic approach, an
LP formulation of the problem should be adapted to problem-intrinsic properties,
such as regularity and its geometry. The advantages and obstacles of choosing a
linear formulation adapted to the problem can be well distinguished through some
historical turning and crossing points of linear programming and complexity theory.
Linear programming arose in the 1940s and 1950s through work of Kantorovich
and Koopmans on combinatorial transport problems. This was only the starting
point of reformulating about all combinatorial optimization problems as integer
linear programming (ILP) problems. Relaxing the ILPs, by removing the constraint
of the decision variables being integers, leads to LP. This approach was further
vitalized when Dantzig developed the simplex1 algorithm in 1947. The simplex
algorithm enjoys strong practical success but does not have polynomial time worst-
case complexity bounds. This situation changed with the invention of the ellipsoid
method in the 1970s. The ellipsoid method provides a polynomial time algorithm
for solving LPs and we might be tempted to ask if applying the ellipsoid method
to LP relaxations of the ILP formulations of hard combinatorial problems results
in P = NP (where we omit explanation of the complexity classes P and NP, due to
the great popularity the problem). There are two reasons (and both of them will
reappear in different outfits later in the text) why we need to be careful

1. Typically the LP relaxations for (hard) combinatorial optimization problems
are strict relaxations of the combinatorial problem and do not solve them
exactly.

2. The LP relaxation can be of exponential size compared to the original problem
(for example the Dantzig–Fulkerson–Johnson formulation for the travelling
salesman problem).

The second point can be interpreted geometrically, namely, an LP formulation rep-
resents a polyhedral embedding of the combinatorial problem and this polyhedral

1The name “simplex algorithm” for Dantzig’s algorithm was suggested by Theodore Samuel
Motzkin who gave the first explicit example of a non-negative polynomial that is not a sum-of-
squares polynomial. We state his example in (2.32).
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embedding might describe a very complex geometric object. From this perspective,
the first point reads that the “combinatorial quality” of the constraints in the LP
relaxation is not strong enough to represent the combinatorial problem exactly. The
question of whether an LP relaxation does or does not induce a strict relaxation
of the original problem is present in many parts of this thesis – most vividly in
Chapter 5.

As an illustration of an LP relaxation, we borrow the example of matchings in
graphs. Let G = (V,E) be a graph with nodes V and edges E ⊂ {{v1, v2} : v1, v2 ∈
V } and w : E → R+ be a weight function for the edges. A matching M ⊂ E in G
is a collection of disjoint edges in E, i.e. the edges in M do not share nodes. The
weight of a matching M ⊂ E is defined as

w(M) :=
∑
e∈M

w(e).

A maximal matching M∗ is a matching M∗ that has maximal weight among all
matchings, i.e.

w(M∗) = max{w(M) : M matching in G}.

In Figure 1.1 we illustrate a simple example of a graph with weighted edges and a
maximal matching.

Figure 1.1: Example of a graph with weighted edges (left), a maximal matching (middle) and a
non-maximal matching (right).

For the ILP formulation for the problem of finding a maximal matching, we
associate a matching M with a vector xM = (xMe )e∈E ∈ {0, 1}E with xMe = 1 if
e ∈M and xMe = 0 if e /∈M . If we write ω := (w(e))e∈E we can express the weight
w(M) of a matching M by

w(M) =
∑
e∈M

w(e) =
∑
e∈E

xMe w(e).

The condition that M is a matching can be rephrased for xM by the condition∑
e={v,w}∈M

xe ≤ 1 for all nodes v ∈ V.



4 CHAPTER 1. INTRODUCTION

Thus, the ILP for the maximal matching problem reads

w(M∗) = max
x=(xe)e∈E∈{0,1}E

∑
e∈E

xMe w(e)

s.t. ∑
e∈M :v∈e

xe ≤ 1 for all nodes v ∈ V. (1.4)

For the LP relaxation of the ILP (1.4) we replace the constraint x ∈ {0, 1}E be
x ∈ [0, 1]E . The LP relaxation reads

m∗ := max
x∈RE

⟨ω, xM ⟩

s.t. 0 ≤ x ≤ 1
Ax ≤ b,

(1.5)

where ⟨·, ·⟩ denotes the euclidean inner product on Rn, the inequalities are under-
stood componentwise, A ∈ RV×E denotes the incidence matrix of the graph G and
b ∈ Rv the vector with all components equal to 1.

Among the observations and questions concerning the LP (1.5) which catch the
eye are the following:

- Dimensionality: The space for the decision variables is RE , i.e. one dimension
for each of the edges that we could choose in the matching problem.

- Relaxation: The LP (1.5) is a relaxation of the matching problem, i.e. m∗ is
an upper bound for the optimal value of the matching problem.

- Exploiting linearity: How do we make use of the linear structure?

- Duality: How does the dual problem to (1.5) look like and how should it be
interpreted?

- Reconstruction: Given a solution x of (1.5) how do we reconstruct a (corre-
sponding) matching?

- Structure exploitation: There are structures that simplify formulating and
solving the matching problem. How do they look like and can they be recog-
nized from the LP?

The above remarks indicate a guideline through this thesis and can be recog-
nized, clothed in different notions, at many points in this text. To use this guideline
we first have to adapt our viewpoint to dynamical systems. So far we have only
discussed static optimization problems and their LP (relaxation) while this thesis
focuses on dynamical systems. Indeed, LP formulations for certain problems from
dynamical systems – or more generally a linear representation of the dynamical sys-
tem itself – are possible. Our work related to linear reformulations for dynamical
systems is based on two methods, namely the use of so-called occupation measures
and Koopman theory. I would like to express the surprise and joy I had when I
realized some of the many parallels between the LP approach towards combina-
torial optimization problems and Koopman (and occupation measure) analysis for
dynamical systems. It is an amusing fact that this relation seemingly continues
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even to the names of some central creators of the corresponding fields – Tjalling
Koopmans and Bernard Osgood Koopman.

For a brief comparison between the LP relaxation approach for combinatorial
optimization and Koopman analysis for dynamical systems, we should first specify
the latter. A dynamical system is a pair (X, (φt)t∈R+) consisting of a set X and a
family (φt)t∈R+ of maps φt : X → X that satisfy the semiflow property

φt+s = φt ◦ φs for all t, s ∈ R+. (1.6)

For a dynamical system (X, (φt)t∈R+) we can define a corresponding family
(Tt)t∈R+ of Koopman operators Tt for t ∈ R+. The Koopman operators mimic
what we have seen for the matching problem: In the matching problem, the vector
xM ∈ RE observes whether an edge e is chosen or not in a matching. The Koopman
operators also act indirectly via observables. For each function g : X → R the
Koopman operator Tt at time t ∈ R+ is defined as

Ttg := g ◦ φt (1.7)

and hence is linear and represents the evolution of the observation g. Sometimes
this procedure is referred to as lifting and the space where the Koopman operator
acts is called the lifting space. Through the lifting the semiflow property (1.6) of φ
translates into the following semigroup law for the Koopman operators

Tt+s = TtTs for all t, s ∈ R+. (1.8)

The semigroup property (1.8) reminds strongly of exponential maps etA arising from
solutions of linear differential equations

ẋ = Ax, x(0) = x0 ∈ Rn (1.9)

for a given matrix A ∈ Rn×n. In some sense, see [Engel 2006], such a relation is
true also for the Koopman semigroup (Tt)t∈R+ , namely it holds for t ∈ R+

d
dtTtg = A (Ttg) (1.10)

for a linear operator A with

A g(·) := d
dt

∣∣∣∣
t=0

g(φt(·)) (1.11)

for functions g ∈ C(X) for which the limit (1.11) exists. The relation (1.10) unveils
the full linear nature of the Koopman perspective on dynamical systems.

As promised, we will now emphasize striking parallels between linearizations for
static combinatorial problems, at the example of the matching problem, and the
“Koopman linearization” for dynamical systems. Such a comparison should begin
with the simplest characteristic – the dimension of the lifting space.
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Dimension of the lifting space: The idea of lifting is to shift the complexity of
the problem into the lifting space, therefore it should be expected that the lifting
space is of higher dimension than the original one.

Graph matching Koopman operator

For the graph matching problem we The space of all functions g : X → R is
lifted the problem into RE . infinite dimensional whenever X is not

finite.

Relaxation error: This is a central question and relevant throughout this thesis.
The answer is not simple and depends on the formulation and the problem at hand.

For the graph matching problem, the For the Koopman operator from (1.7)
LP (1.5) is indeed a relaxation, see for on the space of all functions from X
instance [Schrijver 2003, Section 18.1]. to R the semiflow (φt)t∈R+ is uniquely
For certain classes of graphs, there is determined by the family (Tt)t∈R+ . As
no relaxation gap, i.e. the LP relax- we will address later in Chapter 6 the
ation solves the original problem ex- space of all functions from X to R is
actly. Whether or not there is a re- not always (computationally) practical
laxation is determined by the geometry and more appropriate choices should be
of the feasible set {x ∈ RE : 0 ≤ x ≤ made. For some of those choices, it has
, Ax ≤ b} for (1.5). For instance, if to be carefully investigated if the Koop-
the graph is bipartite then all extremal man operator is well-defined on a large
points of that set are integer, i.e. corre- enough set of observables.
spond to a matching and thus there is
no relaxation gap! The one who showed
this first was Birkhoff who also proved
influential results on Koopman theory!

How do we make use of the linear structure? One way is by using algorithms
or concepts particularly adapted to linear problems.

An alogrithm particularly suited for For the Koopman operator exploiting
LPs is the simplex algorithm. Another the linear structure manifests in em-
important role for LPs is played by the ploying semigroup and spectral theory
dual LP – which is addressed next. (see for instance Theorem 2.47).

What is the dual? Duality will play an important role in several parts of this
thesis. For linear programs, the duality is expressed through the dual LP and for
operators we consider the adjoint operator.
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In case of the matching problem, du- The adjoint of the Koopman operator
ality allows a short proof of König’s is called the Perron-Frobenius opera-
celebrated matching theorem. Königs tor. This operator is the central object
matching theorem states that the max- in Section 6.1 and describes the evo-
imum size of a matching in a bipartite lution of measures driven by the flow.
graph is the minimum size of a ver- This can be interpreted as the evolution
tex cover1. The argument for König’s of particle distributions. Depending on
matching theorem can be performed whether the evolution of observables
using duality [Schrijver 2003]: Let all or particle distributions is accessible
ω = 1, i.e. all weights w(e) equal from the data it is the Koopman oper-
one. By Birkhoff’s Theorem the opti- ator or the Perron-Frobenius operator
mal value m∗ of LP (1.5) coincides with that is more suited. In many applica-
the maximum size of a matching. By tions, Koopman and Perron-Frobenius
strong duality for (finite dimensional) theory is used to estimate the future
linear programming we obtain state of the system based on sample

trajectories. The most popular method
m∗ = min{⟨y,1⟩ : y ≥ 0, yTA ≥ 1} for the estimation is the so-called dy-

namic mode decomposition (DMD) for
where 1 ∈ RV is the vector with all the Koopman operator, which exists
entries equal to one and AT ∈ RE×V also for the Perron-Frobenius opera-
the adjoint of A. A feasible point tor, where it is sometimes called kernel
y = (yv)v∈V ∈ RV for the dual is in- DMD.
terpreted as choosing a node v if yv >
0. As for the primal problem, the ex-
tremal points for the feasible set of the
dual problem are integer and we get
y ∈ {0, 1}V for any optimal y. The
constraint yTA ≥ 1 represents that the
set of nodes {v : yv = 1} is a node cover
and thus it follows König’s matching
theorem.

How do we relate solutions of the lifted problem/system to objects of the original
problem/system? This question essentially asks how to undo the lifting or what
can be inferred for the original problem/system from its lift. Due to the nature of
the lifts that we consider here, the interpretations are as natural as the lift itself.

From the way we motivated the lift a One way of reconstructing φt(x) from
solution x ∈ RE of the LP (1.5) is in- Tt is choosing a set of observables
terpreted as a matching using the edges g1, . . . , gn : X → R such that g :=
M := {e ∈ E : xe = 1}. For bipar- (g1, . . . , gn) : X → Rn is bijective (with
tite graphs, we have seen that the dual inverse g−1) because then φt(x) is given

1A vertex cover in a graph is a set of vertices C such that each edge in the graph is adjacent to
at least one of the nodes in C.
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problem can be related to vertex cov- by
ers. g−1(Ttg1(x), . . . , Ttgn(x)).

This is the underlying idea of the cele-
brated extended dynamic mode decom-
position (EDMD).

How do we exploit inherent structure, such as sparsity or symmetry? How do
they translate to the lifted formulation? This question is motivated by the com-
putation of solutions for our problems. Despite the linear structure of the lifted
problem/system, computations can get intractable for large or even medium-sized
problem instances, simply due to the high dimensional nature of the linear refor-
mulation/relaxation. Inherent structures such as symmetries or sparsity should not
be overseen in the process of solving, neither in the original nor the linear problem
formulation. In this thesis the focus is on sparse structures – in our context sparsity
means that there are independent substructures inherent in the problem instance.

For graphs it is clear that the match- In the dynamical setting, such decom-
ing problem can be decomposed into positions exist as well. Based on a simi-
matching problems on each of the con- lar idea of disconnected parts of the dy-
nected components of the graph. From namical system we will first define the
the linearization (1.5) this can be in- notion of subsystems for the dynamical
ferred via a block structure in the inci- systems based. For graphs, our notion
dence matrix A and vice versa. of subsystems corresponds to a refined

notion of connected components.

In contrast to the order in which we presented a comparison (or rather the
analogies) between the LP formulation procedure for combinatorial problems and
Koopman lifting for dynamical systems, we will begin this thesis by presenting
decompositions of dynamical systems based on certain sparse structures. In the
second chapter, we apply lifting via the so-called occupation measures to the prob-
lem of computing the global attractor for a dynamical system and we show that this
approach benefits from the sparse decomposition described in Chapter 4 . Sparsity
also translates to Koopman and Perron-Frobenius operators. This is included in
Chapter 6 in which we also investigate reproducing kernel Banach spaces as un-
derlying function space for Koopman and Perron-Frobenius operators, hinting at a
specific approach towards adapted choices of observables.



Chapter 2

Preliminaries

This chapter will cover important definitions, essential objects, and helpful results
that we will work with in the remainder of the text. At the same time, I want
to give a flavor of the re-appearing concept of embracing linear representations of
non-linear tasks. Those small detours in this chapter are not always fundamental
to this thesis, but interesting on their own and hopefully can highlight that concept
from different angles.

In this thesis, the problems at hand arise from dynamical systems and the
presented linear representations are achieved via a natural lift into an infinite di-
mensional framework. This thesis includes two approaches: Occupation measure
formulations for set approximation, and Perron-Frobenius respectively Koopman
lifts of the dynamical system.

In the case of the occupation measure approach, a trajectory is associated with
a certain measure – its corresponding occupation measure. Therefore, we treat the
space M(X) of Borel measures X and its pre-dual, the space of continuous func-
tions, in Section 2.2 where we also illustrate their duality. Further on that line,
methods from polynomial optimization, in the language of real algebraic geometry,
are borrowed. Those concepts allow one to replace positivity constraints for poly-
nomials by sum-of-squares-certificates and we state some of the related results in
Section 2.4.

In Section 2.6 we provide the necessary material for the investigation of the
Perron-Frobenius respectively Koopman operator on reproducing kernel Banach
spaces in Chapter 6. This includes giving a definition of a reproducing kernel
Banach space and stating important duality concepts in that setting.

The other central part of this thesis, the treatment of sparsity for dynamical
systems does not require prior concepts. Therefore, no such section is included in
the preliminaries.

2.1 Dynamical systems
Dynamical systems theory builds the groundwork for most topics in this thesis.
The presented material on dynamical systems is standard and can be found in
any classical text on dynamical systems and/or differential equations. Among the
numerous books on dynamical systems that treat the concepts that are mentioned in
this section in more detail are [Perko 2013, Meiss 2007, Anosov 1988, Teschl 2012,
Bhatia 2006].

We work with topological dynamical systems, that is, the underlying state space
X is always a topological space. In most of the cases, X will be a subset of Rn
equipped with the relative topology inherited from the euclidean topology on Rn.
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Definition 2.1 (Dynamical system). A dynamical system is a pair (X, (φt)t∈G) of
a topological space X based and a topological (semi)group G, such that the following
properties are satisfied

i. φt is a function from X to X for all t ∈ G.

ii. Normalization
φ0 = Id, i.e. φ0(x) = x for all x ∈ X. (2.1)

iii. (Semi) flow property

φt+s = φt ◦ φs for all t, s ∈ G. (2.2)

iv. Continuity
φ : G×X → X is continuous. (2.3)

We call a dynamical system (X, (φt)t∈G) discrete if G is discrete.

In this work G represents time and therefore we treat only the case of G = R be-
ing the real numbers or G = R+ being the non-negative real numbers, respectively,
their discrete analogs G = Z or G = N. In case of discrete dynamical systems,
the time-one map φ1 contains all the information about the system and is typically
denoted by f : X → X, i.e. we consider the system

xk+1 = f(xk), x0 ∈ X.

The reason that it’s sufficient to know the time-one map f in order to know the
whole dynamical system (X, (φn)n∈N) is simply that 1 ∈ N (additively) generates
N respectively Z by n = 1 + . . .+ 1︸ ︷︷ ︸

n times

. For a dynamical system that means

φn(x) = φ1 ◦ · · · ◦ φ1︸ ︷︷ ︸
n times

(x) = (f ◦ · · · ◦ f)(x) =: fn(x).

In the case of continuous time dynamics, the situation is different, there is no
point r ∈ R+ with the property rN := {n · r : n ∈ N} = R+. The semigroup
R+ is not generated by a single element. Nevertheless, the smaller r ∈ (0,∞)
the “denser” is its generated set rN in R+. That motivates the idea of defining
a generating element for the dynamical system via a limit object and leads to an
intimate connection between dynamical systems and ordinary differential equations.

Consider the ordinary differential equation

d
dtx(t) = f(x(t)) , x(0) = x0 ∈ X, (2.4)

where X is a compact subset of Rn and f : X → Rn a smooth vector field. In the
following, we will mostly write ẋ(t) for d

dtx(t) and omit the explicit time depen-
dence whenever this is clear from the context. If X is positively invariant for the
differential equation (2.4), we get a dynamical system on X via the map φ where
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for t ∈ R+ the map φt : X → X is given by

φt(x0) := Solution of (2.4) with initial value x0 at time t. (2.5)

That φ satisfies the properties demanded in Definition 2.1 follows from f being a
vector field (this implies i.), uniqueness of solutions by the Picard-Lindelöf theorem
(this implies ii. and iii.) and the Gronwall Lemma (this implies iv.). This can be
found in [Meiss 2007, Robinson 2003, Lee 2003, Perko 2013] or any classical text on
dynamical systems and manifold theory. For dynamical systems on sets X ⊂ Rn,
where the map t 7→ φt(x) is differentiable for all x, we can define an underlying
differential equation to the dynamical system (X, (φt)t∈R+). For x0 ∈ X we set
f(x0) to

f(x0) := d
dt

∣∣∣∣
t=0

φt(x0) (2.6)

for x0 ∈ X. Then t 7→ φt(x0) is the unique solution to the initial value problem
d
dtx(t) = f(x(t)) with x(0) = x0.

Along with the definition of a dynamical system come very natural objects and
notions concerning the orbit or trajectory of a solution and invariance.

Definition 2.2. Let (X, (φt)t∈R+) be a dynamical system. A set A ⊂ X is called

i. The orbit (or trajectory) of a point x0 ∈ X if A = {φt(x0) : t ∈ R+}.

ii. Positively invariant if φt(A) ⊂ A for all t ∈ R+.

iii. Invariant if φt(A) = A for all t ∈ R+.

Invariance of a set A states that the properties specifying the set A are main-
tained throughout the evolution of the system. Without any doubt, invariance is
therefore a fundamental question for dynamical systems and is of particular impor-
tance when investigating the asymptotic behavior of the dynamics (see Theorem
2.7). Longtime behavior of dynamical systems treats the evolution of the dynamical
system for large t ∈ R, more precisely, the limit case where t tends to infinity. The
classical notions of (Lyapunov) stability and attractiveness are presented now.

Definition 2.3. Let (X, (φt)t∈R+) be a dynamical system. A set A ⊂ X is called

1. stable if for each neighbourhood U of A there exists another neighbourhood V
of A such that

φt(V ) ⊂ U for all t ∈ R+, (2.7)

2. attractive if for all x ∈ X and all neighbourhoods U of A there exists a time
T = T (x) ∈ R+ such that φt(x) ∈ U for all t ≥ T . The set A is called
uniformly attractive if T can be chosen uniformly in x,

3. asymptotically stable, if M is stable and attractive,

4. the basin of attraction of a set B ⊂ X if

A = {x ∈ X : φt(x)→ B as t→∞}, (2.8)
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where φt(x) → B as t → ∞ means that for any neighbourhood U of B there
exists T ∈ R+ such that for all t ≥ T it holds φt(x) ∈ U .

There are several different notions for attractiveness in dynamical systems dating
back to Lyapunov (whose notion we use in this work), Birkhoff and Milnor (see for
instance [Kühner 2021]), among others. In all cases, an outstanding role is played
the smallest among all attractive sets – the attractor – because it gives the best
comprehension of how the system behaves asymptotically.

Definition 2.4 (Global attractor). A compact set A ⊂ X is called a global attractor
if it is the minimal uniformly attracting set, i.e., it is the smallest compact set A
that is uniformly attractive.

Remark 2.5. Despite a related definition, global attractors should not be confused
with another common concept of attractors – the weak attractor. A weak attractor is
the smallest closed set that attracts each trajectory (but not uniformly). Both, weak
and global attractors can have striking differences, for instance, the global attractor
for the differential equation ẋ = −x on Rn is empty, while the weak attractor is
the origin. Another example that illustrates many differences is a dynamical system
that is given by a heteroclinic orbit, connecting an unstable equilibrium point x0,
with a stable equilibrium point x1. As an example, consider the following differential
equation

ẋ = (x+ 1)(1− x), x ∈ X := [−2, 2]. (2.9)

The weak attractor Aw is given by Aw = {−1, 1} while the global attractor A is given
by A = [−1, 1] (the choice X = [−2, 2] is rather arbitrary, the only importance for
this example is that X contains the interval [−1, 1]).

The following remark shows why interest in the global attractor is highly justi-
fied.

Remark 2.6. The global attractor has the following properties.

1. Stability: The global attractor is stable [Robinson 2003] and therefore also
asympotically stable. The weak attractor not necessarily stable. An example
of an unstable weak attractor is a heteroclinic orbit as in (2.9).

2. “Attractors approximate trajectories” [Robinson 2003, p. 276]: Let X be a
compact metric space with metric d. Then for all x ∈ X, T > 0 and ε > 0.
For a global attractor A, there exists t0 = t0(T, ε) ∈ R+ (independent of x!)
and x0 = x0(x, T, ε) ∈ A such that

d(φt(x), φt(x0)) < ε for all t ∈ [t0, t0 + T ].

For weak attractors the time t0 can not be chosen uniformly in x. Again, a
simple example is given by a heteroclinic orbit as in (2.9).

3. Continuity: The global attractor is upper semicontinuous (see [Robinson 2003,
p. 278] for the result and related definitions). That means small changes in
the vector field can not cause a drastic increase in the global attractor. A
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system where a spiraling trajectory turns into a periodic orbit under a small
perturbation is described in [Robinson 2003, p. 267]. Thus, weak attractors
do not enjoy upper semicontinuity.

A natural question that remains is whether the global attractor exists. In the
case where X is compact, the answer is yes. And we can say even more.

Theorem 2.7 ([Robinson 2003, Chapter 10]). Let (X, (φt)t∈R+) be a dynamical
system and X be compact. Then

1. The global attractor exists and is non-empty if X is non-empty.

2. The global attractor is the largest compact invariant set A ⊂ X.

3. If φt is injective for all t ∈ R+ then the dynamical system is invertible on the
global attractor A, i.e. for all x ∈ A we can define φt(x) for all t ∈ R such
that the flow property (2.2) is satisfied on R. Furthermore, φ is continuous
in (t, x) for all (t, x) ∈ R×A.

Next, we connect the attractor with the classical concept of stability via Lya-
punov functions. We will view it from a lifting procedure and we will meet that
perspective again in Chapter 5.

Definition 2.8. For a dynamical system (X, (φt)t∈R+) we call a continuous func-
tion g : X → R

1. a (strict) Lyapunov function if g(x) ≥ 0 for all x ∈ X and g◦φt(x) is (strictly)
decreasing in t whenever g(x) ̸= 0.

2. a Hamilton function if g(φt(x)) = g(x) for all x ∈ X for all t ∈ R+.

Level sets of Hamilton functions provide a partition of the state space X into
positively invariant disjoint sets. Because the intersection of two positively invariant
sets is again an invariant set, level sets of different Hamilton functions can be
intersected to gain finer partitions of X. It was shown in [Mezić 1999, Mezić 2005,
Küster 2021] that for measure preserving systems an ergodic partition, i.e. the
finest partition into invariant sets, can be obtained in this way. To do so, the
authors in [Mezić 1999, Mezić 2005, Küster 2021] started from the reformulation
that Hamilton functions are eigenvectors of the Koopman operator (see Chapter 6)
with eigenvalue 1. That makes available functional analytic decomposition of the
Koopman operator [Küster 2021] and arguments from ergodic theory [Mezić 1999,
Mezić 2005]. This allows for finding a rich set of Hamilton functions in this linear
setting.

A similar observation and strategy appeals for Lyapunov functions. First, it
follows from the definition of a Lyapunov function that its sublevel sets are positively
invariant and, further, that the global attractor is contained in its zero-level set.
The second claim is stated in the following known result.

Lemma 2.9. Let (X, (φt)t∈R+) be a dynamical system with global attractor A and
V a strict Lyapunov function. Then A ⊂ V −1({0}).
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Proof. Let c := max
x∈A

g(x). By compactness of A we can find z ∈ A with V (z) = c.
By Theorem 2.7 2. there exists y ∈ A with φ1(y) = z. Since V is a Lyapunov
function it holds

0 ≤ V (z) = V (φ1(y)) ≤ V (y). (2.10)

Because V is a strict Lyapunov function, the inequality in (2.10) is strict if V (y) > 0.
In that case we get V (y) > V (z) = c = max

x∈A
V (x), which is in conflict with y ∈ A.

We conclude 0 = V (z) = max
x∈A

V (x). Because V is non-negative the statement
follows.

The connection between Lyapunov functions and global attractors is even mu-
tual, as the following theorem shows.

Theorem 2.10 ([Bhatia 2006, Theorem 2.7.1 and Remark 2.7.22]). Let (X, (φt)t∈R+)
be a dynamical system with global attractor A. A closed subset M ⊂ X is asympot-
ically stable if and only if there exists a strict Lyapunov function V with

V (x) = 0 if and only if x ∈M. (2.11)

If desired, V can be chosen such that

V (φt(x)) ≤ e−tV (x) for all x ∈ X. (2.12)

In particular, the global attractor A is the smallest compact set M for which there
exists a strict Lyapunov function V satisfying V −1({0}) = M .

This makes it possible to search for attractors through searching for Lyapunov
functions. To have a handier way of searching for a Lyapunov function we turn
back to the case where X is a smooth submanifold of Rn and the dynamical system
induced by a vector field f : Rn → Rn. If the function V is smooth then condition
(2.12) is equivalent to

V (x) ≥ 0 and ∇V (x) · f(x) ≤ −βV (x) for all x ∈ X (2.13)

where ∇V denotes the gradient of V and ∇V · f its pointwise (euclidean) inner
product with the vector field f . That we can always find smooth Lyapunov functions
is central for the arguments in Section 5.2 and guaranteed by the following inverse
Lyapunov theorem.

Theorem 2.11 ([Teel 2000]). Let X ⊂ Rn be open and bounded and (X, (φt)t∈R+)
be a dynamical system induced by a vector field f on Rn. Let A be the global
attractor for that system. Then there exists a Lyapunov function V ∈ C∞(X) with
V −1({0}) = A that satisfies (2.13).

We want to introduce the following optimization perspective on Lyapunov func-
tions which we will encounter again in Chapter 5. After rearranging (2.13) reads

V ≥ 0 and −∇V · f − βV ≥ 0 on X. (2.14)
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This is now a conic constraint in V in the space of continuously differentiable
functions on X! We consider the order cone induced by the natural order h1 ≤ h2
for functions h1, h2 ∈ C(X) if h1(x) ≤ h2(x) for all x ∈ X. This observation was
the starting point for many important applications in control theory and flourished
further through the influential thesis of Parrilo [Parrilo 2000]. Parrilo considered
sum-of-squares certificates for verifying the non-negativity constraints in (2.14) –
an approach that will appear at many points in this thesis.

2.2 The space of continuous functions and its dual

For a compact set X, the space of continuous functions is denoted by C(X) and
equipped with the supremum norm

∥g∥∞ := sup
x∈X
|g(x)| for g ∈ C(X)

where we omit the dependence on X if the set X is clear from the context. This
turns (C(X), ∥ · ∥) into a Banach space [Rudin 2006]. Further, this space carries
additional algebraic and order structure. The space C(X) inherits multiplication
(pointwise) from the multiplicativity of R. Similarly, for the order, for h1, h2 ∈ C(X)
we say h1 ≤ h2 in C(X) if h1(x) ≤ h2(x) for all x ∈ X. With these additional
structures the space C(X) becomes a commutative Banach algebra [Rudin 1991]
and a Banach lattice [Schaefer 1974] with positivity cone C(X)+ consisting of the
non-negative continuous function. These notions mean that for any h1, h2 ∈ C(X)
the multiplication satisfies the following compatibility with the norm

∥h1 · h2∥∞ ≤ ∥h1∥∞∥h2∥∞

and for the order structure, it holds

0 ≤ h1 ≤ h2 implies ∥h1∥∞ ≤ ∥h2∥∞.

The dual space of (C(X), ∥ · ∥∞) can be identified with the space of signed Borel
measures M(X) by the Riesz-Markov representation theorem [Rudin 2006].

Theorem 2.12 (Riesz-Markov representation theorem). Any linear form L : C(X)→
R with the property L(h) ≥ 0 for any h ∈ C(X)+ can be uniquely represented by a
non-negative Borel measure µ ∈M(X)+ in the form

L(h) =
∫
X

h dµ. (2.15)

The Riesz-Markov representation theorem lets us indicate a path toward poly-
nomial optimization on which we want to characterize linear functionals on polyno-
mials and their geometric support. This path starts with the close relation between
the Riesz-Markov representation theorem and Haviland’s moment problem. Havi-
land’s moment problem asks when is a linear functional L on the ring of polynomials
R[x] induced by a Borel measure as in (2.15)? The answer seems not surprising
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after presenting the Riesz-Markov theorem. Namely, L is represented by a measure
supported on a set K if and only if L(p) ≥ 0 for all polynomials p ∈ R[x] that
are non-negative on K, see for instance [Marshall 2008]. The support supp(µ) of a
Borel measure µ ∈M(X)+ is defined, see for instance [Elstrodt 1996], as

supp(µ) := {x ∈ X : µ(U) > 0 for all open neighbourhoods U of x} (2.16)

and thus contains all the region that essentially carries mass. It holds the following
property, see [Elstrodt 1996], ∫

X

h dµ =
∫

supp(µ)

h dµ. (2.17)

The history on the moment problem will lead to Putinar’s and Schmüdgen’s Pos-
itivstellensätze (Theorems 2.34 and 2.30) in Section 2.4. These Positivstellensätze
are essential for the computational application of the sum-of-squares techniques that
are used in this thesis. Before we concentrate on polynomial optimization in Sec-
tion 2.4, we state the missing connecting piece between the answer to Haviland’s mo-
ment problem and the Riesz-Markov representation theorem: The Stone-Weierstraß
theorem (see for instance [Rudin 1991] or any other book on approximation theory
or function spaces).

Theorem 2.13 (Weierstraß approximation theorem). Let X ⊂ Rn be compact.
The set R[x1, . . . , xn] of polynomials is dense in C(X) with respect to ∥·∥∞, i.e. for
each g ∈ C(X) there exists a sequence (pm)m∈N ⊂ R[x1, . . . , xn] such that

∥g − pm∥∞ → 0 as m→∞.

We end this section by defining the set of continuously differentiable functions
on a compact subset of Rn. Let U ⊂ Rn be open and X = U the closure of U . For
k ∈ N, by Ck(X) we denote the set of k-times continuously differentiable functions
on U whose derivatives up to order k, can be continuously extended on X, that is

Ck(X) := {g ∈ Ck(X) : g(i) extends continuously to X for 0 = 1, . . . , k},

where g(i) denotes the i-th derivative of g, with g(0) := g. The space (Ck(X), ∥·∥Ck),
with the norm

∥g∥Ck := ∥g∥∞ +
k∑
i=1
∥g(i)∥∞

for
∥g(i)∥∞ := sup

x∈X
∥g(i)(x)∥, (2.18)

where ∥g(i)(x)∥ is the operator norm of g(i)(x), is also a Banach algebra. The
Weierstraß approximation theorem holds true as well for (Ck(X), ∥ · ∥Ck), which we
state in the following theorem. When X is not open we define Ck(X) as follows: A
function g belongs to Ck(X) if and only if there exists an open set U ⊃ X, such
that f ∈ Ck(U).
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Theorem 2.14 (Stone-Weierstraß approximation theorem). Let U ⊂ Rn be open
and bounded and X := U its closure. Let k ∈ N. The set R[x1, . . . , xn] of polyno-
mials is dense in (Ck(X), ∥ · ∥Ck).

2.3 Adjoint operators and (dual) conic programs
Duality plays an important role in many parts of this thesis and appears through
dual linear programming problems or adjoint operators. In this section, we provide
the necessary notions and follow [Barvinok 2002].

We begin with the dual space.

Definition 2.15. Let (V, ∥·∥) be a normed real vector space. Its dual space V ∗

consists of all bounded linear forms on V , i.e.

V ∗ = {l : V → R : l is linear, |l(v)| ≤ c ∥v∥ for some c ≥ 0 for all v ∈ V }.

The dual space V ∗ is equipped with the norm

∥l∥V ∗ := sup
∥v∥=1

|l(v)|,

which makes (V ∗, ∥·∥V ∗) a Banach space.

Duality carries over to operators. This leads to the notion of the adjoint oper-
ator.

Definition 2.16. Let V,W be two normed vector spaces and T : V → W be a
bounded linear operator. The adjoint operator of T is denoted by T ∗ and given by

T ∗ : W ∗ → V ∗, T ∗l := l ◦ T.

Remark 2.17. The adjoint T ∗ of a bounded linear operator T is well-defined,
linear, and bounded as well with the same operator norm as T .

Finally, we present a well-established link between duality and optimization at
the example of conic programs. Therefore, we extend the notion of dual spaces to
convex cones.

Definition 2.18. Let V be a normed vector space. A convex cone C ⊂ V is a
convex subset of V such that for all λ ≥ 0 and c ∈ C it holds λc ∈ C. The dual
cone C∗ is defined by all linear forms in V ∗ that are non-negative on C, i.e.

C∗ := {l ∈ V ∗ : l(c) ≥ 0 for all c ∈ C}.

Remark 2.19. The Riesz-Markov representation theorem, see Theorem 2.12, states
that for compact sets X the space of non-negative Borel measures M(X)+ is the
dual cone of the cone of non-negative continuous functions on X.

A special case of the observation from Remark 2.19 is that the dual cone of the
non-negative orthant Rn+ := {x = (x1, . . . , xn) ∈ Rn : xi ≥ 0, i = 1, . . . , n} is again
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Rn+. The cone Rn+ plays a central role in finite dimensional linear programming.
The standard form of finite dimensional LPs is given by

inf
x∈Rn

⟨x, a⟩
s.t. x ≥ 0

Ax = b

(2.19)

where a ∈ Rn is the cost vector, ⟨·, ·⟩ the euclidean inner product, A ∈ Rm×n and
b ∈ Rm. The LP (2.19) generalizes in the following way

p∗ := inf
v∈V

l(v)
s.t. v ∈ C

Tv = w,
(2.20)

where V is a normed vector space, C is a convex cone, l(v) := ⟨v, a⟩ a bounded
linear form , T : V → W a bounded linear operator and w an element of W . An
optimization problem as (2.20) is called a conic program.

Definition 2.20. Let V,W be normed vector spaces, C ⊂ V a convex cone, l ∈
V ∗, T : V → W be a bounded linear operator, and w ∈ W . Then we call the
optimization problem (2.20) a conic optimization problem. To a conic program
(2.20) we associate its dual program

d∗ := sup
w∗∈W ∗,s∈C∗

w∗(w)

s.t. T ∗w∗ + s = l.
(2.21)

One of the fundamental features of the dual program is that it provides lower
bounds on the primal problem.

Theorem 2.21 (Weak duality). Assume that for both the optimization problems
(2.20) and (2.21) the feasible set is non-empty. Then it holds

d∗ ≤ p∗.

For this thesis, we content ourselves with this basic introduction to duality and
conic optimization problems. For a presentation of the rich theory and applications
of linear programming problems, we refer to [Barvinok 2002, Boyd 1997].

2.4 A glimpse at polynomial optimization – real al-
gebra, sum of squares, Positivstellensätze and the
Lasserre hierarchy

In this section, we switch the notation for the underlying set from X to K in order
not to confuse the set with the variable x in the ring of polynomials R[x].
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We start with the following optimization problem

f∗ := inf
x

f(x) (2.22)
s.t. x ∈ K.

for a (compact) set K and a continuous function f : K → R. We will again use the
following related optimization problem that we have encountered in the introduction
section

inf
µ

∫
K
f dµ (2.23)

s.t. µ ∈M(K)+

µ(K) = 1.

whereM(K)+ is the set of (non-negative) Borel measures on K. The great advan-
tage of (2.23) is that it is a linear (or conic) programming problem! This simple
but interesting fact is a direct consequence of the following three facts:

1. Integrating a fixed function f against a (signed) measure µ is linear in µ.

2. The set M(K)+ of non-negative Borel measures is a cone in M(X). Hence,
the condition that µ belongs to M(X)+ is a conic constraint in the vector
space of signed Borel measures on K.

3. The condition µ(K) = 1 can be formulated as the following affine constraint∫
K

1 dµ = 1 (2.24)

where 1 denotes the constant one function 1(x) := 1 for all x ∈ K.

A quick verification, as we have done in the introduction section, reveals that both
problems (2.22) and (2.23) are equivalent. That is, they both have the same optimal
value and there the support supp(µ) for any minimizer of the problem (2.23) is
contained in the set of minimizers for (2.22). Because (2.23) is a conic programming
problem it is useful to state its dual program. By the Riesz-Markov representation
theorem,M(K)+ is the dual cone to the non-negative continuous functions C(K)+,
and hence the dual program has the following form

sup
s,g

s (2.25)

s.t. s ∈ R, g ∈ C(K)+

f − s1 = g

Problem (2.25) searches for the largest lower bound s of f on K and is, therefore,
also equivalent to our original problem (2.22).

But the obtained linear structure came at a price: The problems (2.25) and
(2.23) are infinite dimensional. The complexity of the original problem (2.22) is
now expressed in the infinite dimensional non-negativity constraints µ ∈ M(K)+
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respectively f − s ∈ C(K)+. This is where real algebra enters and allows to flour-
ish the certification of the infinite dimensional non-negativity constraints by the
application of the Positivstellensätze. In the following we will guide through this
main idea – we will briefly visit non-negative polynomials, Hilbert’s 17th problem
and sum-of-squares polynomials, positive polynomials and finally the celebrated
Positivstellensätze by Schmüdgen and Putinar that build the pillar of Lasserre’s
hierarchy for reformulating an polynomial optimization problem as a hierarchy of
semidefinite programs. For detailed and inspiring texts on polynomial optimization,
consult [Lasserre 2001, Lasserre 2009, Marshall 2008] among others.

Towards the Lasserre hierarchy

Before introducing the algebraic structure of polynomial optimization problems,
we want to fix the following simplification in notation: We denote the space of
polynomials R[x1, . . . , xn] in n variables by R[x]. We hope that confusion with a
scalar variable x is avoided by the context of its appearance.

The final goal will be to solve the infinite dimensional conic problems (2.23),
(2.25) via a hierarchy finite dimensional problems, while benefiting from the linear
structure of (2.23), (2.25)! The story begins by trying to efficiently certify mem-
bership of a signed measure µ to M(K)+ in (2.23) respectively to validate the
constraint f − s1 ∈ C(K)+ from (2.25). In [Lasserre 2001] in 2001, Lasserre real-
ized the that this task can be efficiently achieved using Positivstellensätze from real
algebraic geometry.

In order to apply results from real algebraic geometry we need to assume ad-
ditional algebraic structure to the minimization problem (2.22). Here that means
that

1. f is a polynomial

2. K is described by polynomials.

The second condition is made more precise by the notion of semialgebraic sets.

Definition 2.22. A subset K ⊂ Rn is called closed basic semialgebraic if there
exists m ∈ N and polynomials p1, . . . , pm ∈ R[x1, . . . , xn] such that K has the rep-
resentation

K = K(p1, . . . , pm) := {x ∈ Rn : p1(x) ≥ 0, . . . , pm(x) ≥ 0}. (2.26)

The set K is called closed semialgebraic if it is a finite union of closed basic semi-
algebraic sets.

For the minimization problem (2.22) this leads to the notion of polynomial
optimization.

Definition 2.23 (Polynomial optimization problem). The problem

f∗ := inf
x

f(x) (2.27)
s.t. x ∈ K.
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with a polynomial f and K ⊂ Rn a closed basic semialgebraic set is called a poly-
nomial optimization problem.

An informal formulation of Lasserre’s influential result in [Lasserre 2001] is the
following.

Theorem 2.24 (Lasserre hierarchy [Lasserre 2001]; informal). Consider the poly-
nomial optimization problem (2.27) and assume K is compact. There is an ef-
ficient algorithm using (convex) semidefinite programming for approximating the
global minimum f∗.

Remark 2.25. In the context of complexity theory, the word “efficient” often refers
to polynomial running time. In the informal formulation of the Lasserre hierarchy
in Theorem 2.24, the term “efficient” needs to be treated carefully. Many NP hard
problems can be stated as polynomial optimization problems [Boyd 1997, Boyd 2004]
and hence polynomial optimization is NP hard. Therefore, we should not expect
a polynomial running time for an algorithm that solves polynomial optimization
problems exactly. We will address complexity of the Lasserre-hierarchy in Theorem
2.39.

The algorithm referred to in Theorem 2.24 is often called Lasserre-hierarchy
or moment-sums-of-squares and the rest of this section is devoted to giving some
insides into this procedure.

The algebraic linear programming problem Consider the polynomial opti-
mization problem from Definition 2.23 and its linear reformulation (2.25)

sup
s,g

s (2.28)

s.t. s ∈ R, g ∈ C(K)+

f − s1 = g

It seems inopportune that (2.28) does not see the additional algebraic structure
provided by (2.27). We first note that, because f is a polynomial, the term f − s1
is also a polynomial, and we can equivalently replace (2.28) by

sup
s,g

s (2.29)

s.t. s ∈ R, g ∈ R[x]
f − s1 = g

g ≥ 0 on K

This formulation emphasizes the need for an answer to the fundamental question
about which form non-negative polynomials can take.

How can the non-negative polynomials on K be characterized? This
famous question underwent an impressive development. The starting point is built
by natural candidates for non-negative polynomials – the sum-of-squares (SOS)
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polynomial. A polynomial p is SOS if there are m ∈ N and polynomials q1, . . . , qm ∈
R[x] such that p can be written

p =
m∑
i=1

q2
i . (2.30)

The set of all SOS polynomials is denoted by

Σ :=
{

m∑
i=1

q2
i : m ∈ N, q1, . . . , qm ∈ R[x]

}
. (2.31)

In 1888 Hilbert [Hilbert 1888] presented a non-explicit construction of a non-negative
polynomial that is not a sum-of-squares. It took until 1965 for an explicit example
of a non-negative polynomial that is not SOS [Motzkin 1967]. Motzkin presented
the following polynomial M

M(x, y) := 1 + x4y2 + x2y4 − 2x2y2 (2.32)

which is non-negative but not an SOS polynomial. By Hilbert’s abstract construc-
tion, it was clear that Motzkin’s polynomial is not the only non-negative polynomial
that is not SOS. Indeed, SOS polynomials are rare among the non-negative poly-
nomials – in 2006 (and an earlier preprint in 2003) Blekherman [Blekherman 2006]
showed that there are “significantly more non-negative polynomials than SOS”.

These results show in a striking fashion that SOS polynomials are not rich
enough to describe all non-negative polynomials. In his celebrated list of 23 prob-
lems, in 1900, Hilbert asked the following question

Hilbert’s 17th problem: Is every globally non-negative polynomial
p ∈ R[x1, . . . , xn] a sum of squares of rational functions?

This question was very adequate, as was demonstrated by Artin in [Artin 1927] in
1927 by showing that the answer is “yes!” and the powerful field of real algebraic
geometry emerged. Among the very fruitful results from real algebraic geometry are
the celebrated Nichtnegativstellensätze and Positivstellensätze by Krivine, Stengle,
Schmüdgen and Putinar [Marshall 2008], see Theorems 2.29, 2.30 and 2.34. Those
Nichtnegativstellensätze and Positivstellensätze concern non-negativity respectively
positivity on semialgebraic sets K. Thus, the algebraic nature of the set K needs
to be taken into account. One way is to generalize the set of SOS polynomials
to the quadratic module Q(p1, . . . , pm) generated by p1, . . . , pm, see the following
Definition 2.26. And for computations, we are interested in a truncated variant of
Q(p1, . . . , pm) where only polynomials up to a certain degree are considered. For
d ∈ N we denote the set of polynomials of degree at most d by R[x]d.

Definition 2.26. For p1, . . . , pm ∈ R[x] the quadratic module Q(p1, . . . , pm) is
defined by

Q(p1, . . . , pm) :=
{
σ0 +

m∑
i=1

σipi : σ0, σ1, . . . , σm ∈ Σ
}
. (2.33)
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We denote by Qd(p1, . . . , pm) the following part of Q(p1, . . . , pm) that is obviously
contained in R[x]d and given by

Qd(p1, . . . , pm) :=
{
σ0 +

m∑
i=1

σipi : σ0, σ1, . . . , σm ∈ Σ, (2.34)

deg(σ0), deg(σ1p1), . . . ,deg(σmpm) ≤ d
}
.

If the closed basic semialgebraic set K is given by K = K(p1, . . . , pm) as in (2.26)
then all polynomials in Q(p1, . . . , pm) are non-negative on K. But, not surprisingly,
since we have seen the global case – the set Q(p1, . . . , pm) does not cover all non-
negative polynomials on K, even if K is compact.

Example 2.27. As an example let p1(x) = (1− x2)3 in one scalar variable x ∈ R
defining the set K = [−1, 1]. Consider the, on K, non-negative polynomial f(x) :=
1− x2. A representation

f = σ0 + σ1(1− x2)3 (2.35)

for σ0, σ1 ∈ Σ would imply σ0(−1) = σ0(1) = f(1) = 0 and even σ′
0(−1) = σ′

0(1) = 0
because σ0 is non-negative and thus −1, 1 are global minimizers of σ0. That means
(1−x2)2 is a factor of σ0, in particular, the right-hand side of (2.35) factors by the
polynomial (1 − x2)2 but the left-hand side does not. Arguably, one might say that
the representation of K by p1(x) = (1− x2)3 is not appropriate and a better choice
would be to represent K by p̂1(x) := 1−x2. In this case we would have f = 1·p̂1 with
the SOS polynomial 1(x) = 1 = 1(x)2 for all x. This is true but trivially sidesteps
the question about representation of non-negative polynomials in the following way:
Let f be non-negative on K = {x ∈ Rn : p1(x) ≥ 0, . . . , pm(x) ≥ 0}, then also

K = K(p1, . . . , pm, f) = {x ∈ Rn : p1(x) ≥ 0, . . . , pm(x) ≥ 0, f(x) ≥ 0},

and there is the trivial representation f = 0 + 0 · p1 + . . . + 0 · pm + 1 · f . The
underlying flaw that happened here was that instead of verifying if f is non-negative,
the knowledge that f is non-negative was already used.

Because the quadratic module Q(p1, . . . , pm) does not contain enough non-
negative polynomials the search for better classes of candidate non-negative polyno-
mials continued. The set Pos(K) of non-negative polynomials on a set K naturally
carries the following properties

1. for any q1, q2 ∈ Pos(K) also q1 + q2 and q1 · q2 are non-negative on K, i.e.

Pos(K) + Pos(K),Pos(K) · Pos(K) ⊂ Pos(K) (2.36)

2. for any p ∈ R[x] the polynomial p2 is non-negative on K, i.e.

Σ ⊂ Pos(K) (2.37)
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3. the polynomial p = −1 is not non-negative on K, i.e.

−1 /∈ Pos(K). (2.38)

The properties (2.36), (2.37), and (2.38) should be satisfied for any set that
reflects non-negativity. In real algebraic geometry, a set that satisfies (2.36), (2.37),
and (2.38) is called a preordering. The smallest preordering containing polynomials
p1, . . . , pm is denoted by

Pre(p1, . . . , pm) :=

 ∑
e=(e1,...,em)∈{0,1}m

σep
e1
1 . . . pem

m : σe ∈ Σ ∀e ∈ {0, 1}m
 .
(2.39)

The preordering Pre(p1, . . . , pm) contains the quadratic module Q(p1, . . . , pm) and
all polynomials in Pre(p1, . . . , pm) are non-negative polynomials on K(p1, . . . , pm)
and that this observation can be partially reversed is the statement of Schmüdgen’s
Positivstellensatz, see Theorem 2.30.

Before moving to a seemingly small but effectively strong restriction to positive
polynomials we want to emphasize that neither the quadratic module Q(p1, . . . , pm)
nor the preordering Pre(p1, . . . , pm) reflect purely geometric properties of the cor-
responding set K = {x ∈ Rn : p1(x) ≥ 0, . . . , pm(x) ≥ 0}. We specify this in the
following remark.

Remark 2.28. The Q(p1, . . . , pm) and Pre(p1, . . . , pm) are not geometric invariants
of the set and K = K(p1, . . . , pm). That is for different representations

K(p1, . . . , pm) = K = K(q1, . . . , ql)

for m, l ∈ N and polynomials p1, . . . , pm, q1, . . . , ql ∈ R[x] the sets Q(p1, . . . , pm) and
Q(q1, . . . , ql) respectively Pre(p1, . . . , pm) and Pre(q1, . . . , ql) differ in general.

A little bit about positive polynomials As Artin [Artin 1927] showed in his
answer to Hilbert’s 17th problem it is possible to represent every globally non-
negative polynomial as sum-of-squares of rational functions. This was further
generalized to non-negative polynomials on closed basic semialgebraic sets in the
Krivine-Stengle Nichtnegativstellensatz.

Theorem 2.29 (Krivine-Stengle Stellensätze; [Marshall 2008]). Let p1, . . . , pm ∈
R[x], K = K(p1, . . . , pm), P = Pre(p1, . . . , pm) and f ∈ R[x]. Then

1. f > 0 on K is equivalent to pf = 1 + q for some p, q ∈ P.

2. f ≥ 0 on K is equivalent to pf = f2m + q for some m ∈ N and p, q ∈ P.

3. f = 0 on K is equivalent to the existence of m ∈ N such that −f2m ∈ P.

4. K = ∅ is equivalent to −1 ∈ P.

The Stellensätze 1. and 2. in Theorem 2.29 contain denominators and the
question about removing the need for denominators remained unanswered until
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Schmüdgen’s Positivstellensatz appeared in [Schmüdgen 1991] in 1991. It is clear
from Hilbert’s construction [Hilbert 1888] that non-negativity alone is not enough
to obtain a denominator-free representation. As Schmüdgen showed, sufficient con-
ditions to remove denominators are compactness and strict positivity.

Theorem 2.30 (Schmüdgen’s Positivstellensatz [Schmüdgen 1991]). Let polyno-
mials p1, . . . , pm ∈ R[x] such that K = K(p1, . . . , pm) is compact. Then for any
polynomial f > 0 on K it holds f ∈ Pre(p1, . . . , pm).

There are at least two perspectives from which it becomes clearer why strictly
positive polynomials are treated significantly easier:

- From an algebraic perspective the positivity of a polynomial f allows divid-
ing by f(x) in a well-defined way (as in [Marshall 2008] in the proof the
Krivine-Stengle Positivstellensatz) or related objects (as in [Prestel 2013] for
the generalized abstract Positivstellensatz).

- A functional analytic perspective realizes the set of non-negative polynomials
with zeros as the boundary in R[x] (with respect to the supremum norm
topology) of the cone of the non-negative polynomials and is, therefore, harder
to distinguish from the complement of this cone via linear separation.

We can also extract the need for compactness from the functional analytic per-
spective: If K is not compact the supremum norm ∥p∥∞ is not well defined for
some p ∈ R[x]. Indeed, Schmüdgen’s Positivstellensatz does not hold without the
compactness assumption, as we present in the following example.

Example 2.31 (Schmüdgen’s Positivstellensazt does not hold without the com-
pactness assumption). Let p1(x) = x3 and f(x) = x + 1 then K = K(p1) = [0,∞)
and f is strictly positive on K. A representation f = σ0 +x3σ1 of f with σ0, σ1 ∈ Σ
as suggested Schmüdgen’s Positivstellensatz is not possible because σ0 has even de-
gree. Therefore, the leading term of x3σ1 would have to equal the leading term x of
f .

Schmüdgen’s original idea of the proof of his Positivstellensatz it embraces the
same guiding principle that flavors several parts of this thesis:

Translating a nonlinear problem into a linear one and borrowing tools from
functional analysis.

Because this guiding principle is beautifully expressed in his proof we want to sketch
the ideas of the proof.

Proof. Sketch of Schmüdgen’s proof of Schmüdgen’s Positivstellensatz. The proof
is based on the combination of two results: The first is a refined Hahn-Banach
argument for separating a polynomial from the preordering Pre(p1, . . . , pm). The
second is that such a separating functional can be represented by a non-negative
measure.

Let us assume that f is positive on K but does not belong to Pre(p1, . . . , pm).
The separation argument [Schmüdgen 1991, Proof of Corollary 3] states that there
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exists a non-trivial linear functional L : R[x] → R (continuous in the finest locally
convex topology on R[x]) with the property

L(f) ≤ 0 and L(p) ≥ 0 for all p ∈ Pre(p1, . . . , pm). (2.40)

By [Schmüdgen 1991, Theorem 1] (see the following Theorem 2.32), this implies
that there exists a non-trivial non-negative measure µ ∈M(K)+ with

L(g) =
∫
K

g dµ for all g ∈ R[x]. (2.41)

Inserting f for g in (2.41) gives

L(f) =
∫
K

f dµ > 0, (2.42)

where the positivity of the right hand side follows from strict positivity of f and
µ being non-negative and non-trivial. Finally, (2.42) contradicts the separation
property (2.40) of L and we conclude the statement.

The main argument, [Schmüdgen 1991, Theorem 1], that concluded Schmüd-
gen’s Positivstellensatz is the following theorem.

Theorem 2.32 ([Schmüdgen 1991, Theorem 1]). Let polynomials p1, . . . , pm ∈ R[x]
such that K = K(p1, . . . , pm) is compact and L : R[x] → R be a linear map. The
map L is representable by a Borel measure µ ∈ M(K)+ if and only if L is non-
negative on Pre(p1, . . . , pm).

We will only sketch its proof in order to emphasize the beautiful interplay be-
tween algebraic and functional analytic arguments and refer to [Schmüdgen 1991]
for the details.

Proof. Sketch. The proof consists of the following steps

1. Define a complex Hilbert space H of (equivalence classes) of polynomials with
an inner product ℓ : H×H → C associated to the linear functional L.

2. For each variable xj for j = 1, . . . , n introduce the multiplication operators
Mj : H → H with p 7→ xj · p, and show that they are well-defined, bounded,
symmetric and commuting.

3. Apply the spectral theorem for the family operators M1, . . . ,Mn to obtain a
spectral measure µ.

4. Show that the measure µ represents L.

Before we start, we pass to the complexification C[x] of R[x] because we want to
use spectral theory. Therefore, we extend L to C[x] = R[x] + iR[x] in the natural
way by L(p+ iq) := L(p) + iL(q) where i denotes the imaginary unit.
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For the first step, we define a bilinear map l from L in the following way

l : C[x]× C[x]→ C, l(p, q) := L(p · q) (2.43)

where q denotes the complex conjugate of q. The map l is symmetric and for all
q1, . . . , qk ∈ C[x] and a1, . . . , an ∈ C satisfies

k∑
r,s=1

arasl(qr, qs) =
∑
r,s=1

arasL(qr · qs) = L

( n∑
r=1

arqr

)
·
(

n∑
r=1

arqr

) ≥ 0, (2.44)

The last inequality in (2.44) follows from the fact that q · q is sum of the squares
of the real part imaginary part of q, and that L is non-negative on real sum-of-
squares. Statement (2.44) means that L is a positive semidefinite kernel on the
set C[x]. Thus, we can associate a reproducing kernel Hilbert space with it (see
Section 2.6.1 for the definition of kernels and reproducing kernel Hilbert spaces).
In this case, it is advantageous to recall the procedure of building a reproducing
kernel Hilbert space from a positive semidefinite kernel. It starts by setting

N := {p ∈ R[X] : L(p2) = 0} (2.45)

to be the set where l fails to have definiteness. By the Cauchy-Schwarz inequality
for the positive semidefinite bilinear form l, the set N is an ideal and we can consider
the inner product space

(H ′ := C[x]/N, l′)

where l′ : H ′×H ′ → C is the induced and well defined bilinear map on H ′ given by

l′(p+N, q +N) := l(p, q) = L(p · q).

The desired complex Hilbert space (H, ℓ) is obtained by completion of (H ′, l′).
For the second step, the goal is to define the operators Mj that multiply by the

monomials xj for j = 1, . . . , n. We begin with defining the multiplication operators
Mj : H ′ → H ′ for j = 1, . . . , n by

Mj(f +N) := xj · f +N. (2.46)

Since N is an ideal it follows that Mj is well defined for all 1 ≤ j ≤ n. Because
C[x] is a commutative algebra, the operators M1, . . . ,Mn are pairwise commuting.
Further, they are self adjoint because

l′(Mj(f +N), g +N) = l(xj · f, g) = L(xj · f · g) = L(f · xj · g)
= l(f, xj · g) = l′(f +N,Mj(g +N)).

The crucial part, which we will only address in Remark 2.33, is showing that the
operators Mj are bounded on H ′ – here the compactness of K becomes essential.
Once it is guaranteed that the operators Mj are bounded (on H ′), they can be
extended to bounded selfadjoint pairwise commuting operators M̂j on the Hilbert
space H and the spectral theorem [Rudin 1991, Theorem 12.22] can be applied.
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The spectral theorem provides a measure µ supported on a compact set K :=
σ(M̂1)× . . .× σ(M̂n) ⊂ Rn, where σ(M̂j) denotes the spectrum of the operator M̂j

for each j = 1, . . . , n, such that for all α1, . . . , αn ∈ N0

l′(M̂α1
1 · · · M̂

αn
n (1 +N), (1 +N)) =

∫
K

xα1
1 · x

αn
n dµ.

But the left-hand side is nothing else than L(xα1
1 · · ·xαn

n ), which shows the desired
representation

L(p) =
∫
K

p dµ for all p ∈ C[x].

Hence µ is our desired measure once we have checked that the support K of µ is
contained in K. Therefore, note that for all h ∈ R[x] and 1 ≤ j ≤ m it holds∫

K

h2pj dµ = L(h2pi) ≥ 0.

Since K ⊂ Rn is compact it follows from the Stone-Weierstraß theorem that for all
h ∈ C(K ) it holds ∫

K

h2pj dµ ≥ 0.

Since each non-negative continuous function has a continuous root it follows that
for all h ∈ C(K )+ ∫

K

hpi dµ ≥ 0,

and hence supp(µ) ⊂ p−1
i ([0,∞)), in particular supp(µ) ⊂

m⋂
i=1

p−1
i ([0,∞)) = K.

The part of Schmüdgen’s proof of his Positivstellensatz that we did not present
in the above proof is the part that shows that the multiplication operators Mj are
bounded. This is addressed in the following remark.

Remark 2.33. In his proof, Schmüdgen had to perform a clever reduction to the
one dimensional moment problem to obtain the desired result that the multiplication
operators Mj from (2.46) are bounded. The arguments become significantly simpler
using the so-called Wörmann’s trick [Marshall 2008] which appeared only in 1998
[Wörmann 1998]. Wörmann showed that the set K(p1, . . . , pm) is compact if and
only if there exists a r ∈ [0,∞) such that

r −
n∑
j=1

x2
j ∈ Pre(p1, . . . , pm). (2.47)

The interesting part in this statement is that compactness implies (2.47). Evoking
Wörmann’s result, the proof of boundedness of the multiplication operators Mj can
be simplified and we will state it here. First note that (2.47) implies that for the
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linear map L from Theorem 2.32 it holds

L

(( n∑
j=1

x2
j

)
· p
)
≤ rL(p) for all p ∈ Pre(p1, . . . , pm). (2.48)

Further, because L is non-negative on Pre(p1, . . . , pm) it holds

0 ≤ L(x2
j · p) ≤ L

(( n∑
j=1

x2
j

)
· p
)

for all p ∈ Pre(p1, . . . , pm). (2.49)

Now, using the notation from the above proof of Schmüdgen’s Positivstellensatz it
holds for all p ∈ C[x]

l′(Mj(p+N),Mj(p+N)) = l′(xj · p+N, xj · p+N) = L(x2
j · p · p)

(2.49)
≤ L

(( n∑
j=1

x2
j

)
· p · p

) (2.48)
≤ rL(pp)

= rl′(p+N, p+N).

This shows that the operators Mj are bounded (with operator norm ∥Mj∥≤
√
r),

which was to be shown.

The condition (2.47) on the preordering Pre(p1, . . . , pm) is called Archimedean
condition in real algebraic geometry. A closer look at the presented proof of The-
orem 2.32 reveals that the Archimedean property is the only property of the set
Pre(p1, . . . , pm) that was used but which is not shared by the quadratic module
Q(p1, . . . , pm). Thus, enforcing the Archimedean property by design gives the cel-
ebrated Putinar’s Positivstellensatz.

Theorem 2.34 (Putinar’s Positivstellensatz [Putinar 1993]). Let p1, . . . , pm ∈ R[x]
such that one of the sets {x ∈ Rn : pj(x) ≥ 0} for j = 1, . . . , n is compact. Then
any f ∈ R[x] with f > 0 on K(p1, . . . , pm) belongs to Q(p1, . . . , pm).

The condition that one of the sets {x ∈ Rn : pj(x) ≥ 0} for j = 1, . . . , n is
compact guarantees that the Archimedean condition is satisfied for the quadratic
module Q(p1, . . . , pm) [Lasserre 2009]. In practice this is often trivially enforced by
adding a redundant constraint pm+1(x) := r2 −

n∑
j=1

x2
j for r ∈ R for which it is a

priori known that K is contained in the closed ball B̄r(0) of radius r centered at
the origin.

Convex formulation for being SOS In the previous paragraphs, we rephrased
the polynomial optimization problem (2.27) into a problem about membership to
the quadratic module Q(p1, . . . , pm). Now we address how we can computationally
verify membership to Q(p1, . . . , pm) and we will do so in a convex fashion.

Let us begin with a sum-of-squares polynomial σ ∈ Σ. Let the degree deg(σ)
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be at most 2d ∈ N and we write

σ =
L∑
l=1

q2
l

for polynomials

ql =
∑

α∈Nn
0 ,|α|≤d

ql,αx
α ∈ R[x] for l = 1, . . . , L

where α = (α1, . . . , αn) ∈ Nn0 denotes a multi-index, |α| :=
n∑
j=1

αi its degree and

xα := (xα1
1 , . . . , xαn

n ). For convenience let us denote the vector of monomials up to
degree d by vd = (xα)|α|≤d ∈ Rs(d) where s(d) :=

(n+d
d

)
is the dimension of R[x]d.

For l = 1, . . . , L let us write

ql =
∑

|α|≤d
cl,αx

α = cT vd,

with coefficients cl := (cl,α)|α|≤d ∈ Rs(d). Then q2
l is given by

q2
l =

∑
|α|,|β|≤d

cl,αcl,βx
α+β = vTd clc

T
l vd.

In other words, we can write
q2
l = vTd Clvd

with a matrix Cl = clc
T
l ∈ Rs(d)×s(d). The matrix Cl is positive semidefinite, which

we denote by Cl ⪰ 0. And for the SOS polynomial
L∑
l=1

q2
l we get

L∑
l=1

q2
l =

L∑
l=1

vTd Clvd = vTd

L∑
l=1

Clvd = vTd Cvd

for the positive semidefinite matrix C =
L∑
l=1

Cl. On the other hand any polynomial

q, that can be written as q = vTd Cvd with C being a positive semidefinite matrix, is
an SOS polynomial and can be found in any text on polynomial optimization. The
argument is writing C = HHT with H ∈ Rs(d)×rank(C) which gives

q = vTd Cvd = vTdHH
T vd =

rank(C)∑
l=1

(
(HT vd)l

)2
.

Thus, we have the following equivalence

σ ∈ Σ if and only there exists 0 ⪯ C ∈ Rs(d)×s(d) with σ = vTd Cvd.
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Simply by comparing the coefficients of σ and vTd Cvd we get

σ =
∑

|γ|≤2d
σγx

γ ∈ Σ if and only there exists C = (cα,β)|α|,|β|≤d ∈ Rs(d)×s(d)

s.t. 0 ⪯ C and σγ =
∑

α+β=γ
Cα,β.

This extends to polynomials q of the form q = σp for σ ∈ Σ and p ∈ R[x] fixed:
We represent σ by a positive semidefinite matrix C as σ = vTd Cvd and comparing
coefficients of q and the polynomial σ · p leads to a linear constraint on the matrix
C. For d ∈ N, we arrive at verifying membership of a polynomial q Qd(p1, . . . , pm)
via the following condition:

A polynomial q satisfies q ∈ Qd(p1, . . . , pm) if and only if there ex-
ist positive semidefinite matrices C0, C1, . . . Cm of size s

(⌊
d
2

⌋)
respectively

s
(⌊

d1
2

⌋)
, . . . , s

(⌊
dm
2

⌋)
that (jointly) satisfy the linear constraint

vTd0C0vd0 +
m∑
j=1

vTdj
Cjvdj

pj = q. (2.50)

By merging the matrices together into a block-diagonal matrix C, by

C :=


C0 0 · · · 0
0 C1 · · · 0
...

... . . . ...
0 0 · · · Cn

 ,

the condition that Cj ⪰ 0 for all j = 0, . . . ,m is represented by C ⪰ 0 and the linear
constraint (2.50) translates to a linear constraint on C. That rephrases the question
about membership to Qd(p1, . . . , pm) as the task of finding a positive semidefinite
matrix satisfying linear constraints. This means that we search for an affine slice
in the convex cone of positive semidefinite matrices – in particular, we search for a
convex set.

The procedure that we have outlined in this paragraph is standard in polynomial
optimization and can be found in any related text, for example [Lasserre 2001,
Lasserre 2009, Lasserre 2015].

Semidefinite programs The penultimate step towards the Lasserre hierarchy is
to extend the feasibility question for the matrix C ⪰ 0 to an optimization problem.
We will consider costs linear in C. The reason is that – because the set of symmetric
positive semidefinite matrices forms a convex cone – this gives a conic optimization
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problem in the sense of Definition 2.20. This special class of conic programs carries
a name – semidefinite program (SDP).

Definition 2.35 (Semidefinite program). Let n, r ∈ N, F0, F1, . . . , Fr ∈ Rn×n and
b1, . . . , br ∈ R. The following optimization problem is called a semidefinite program

P ∗ := sup
C∈Rn×n

⟨F0, C⟩

s.t. ⟨Fi, C⟩ = bj , j = 1, . . . , r
C ⪰ 0

where ⟨A,B⟩ := Tr(AB) =
n∑

i,j=1
aijbij for A,B ∈ Rn×n denotes the trace inner

product on Rn×n. Its dual program (in the sense of conic programs from Section
2.21) has the following form

D∗ := inf
x=(x1,...,xr)∈Rr

bTx

s.t.
r∑
j=1

xjFj − F0 ⪰ 0.

Since the set of positive semidefinite matrices is a convex cone and the cost is
linear in the matrix C, a semidefinite program is convex. By weak duality, it always
holds P ∗ ≥ D∗. For more insights into semidefinite optimization, such as criteria
on strong duality, applications and algorithms, see for example [Blekherman 2012,
Boyd 1997].

The Lasserre hierarchy Now we have all the machinery to state Lasserre’s
hierarchy for polynomial optimization. For a polynomial f ∈ R[x] and a set K =
K(p1, . . . , pm) = {x ∈ Rn : p1(x) ≥ 0, . . . , pm(x) ≥ 0} for given p1, . . . , pm ∈ R[x]
we want to solve the following polynomial optimization problem

f∗ := inf
x

f(x) (2.51)
s.t. x ∈ K.

As we have stated in (2.28) the corresponding conic program

sup
s,g

s

s.t. s ∈ R, g ∈ R[x]
f − s1 = g

g ≥ 0 on K.
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Motivated by Putinar’s Positivstellensatz, this leads to the following optimization
problem

s∗ := sup
s

s (2.52)

s.t. s ∈ R, g ∈ Q(p1, . . . , pm)
f − s1 = g

and indeed, by Putinar’s Positivstellensatz, Theorem 2.34, it holds

s∗ = f∗.

Putting all the previous paragraphs together, we finally arrive at a computa-
tionally tractable algorithm for polynomial optimization problems – this algorithm
is called the Lasserre hierarchy.

Definition and Theorem 2.36 (Lasserre hierarchy for polynomial optimization).
Let p1, . . . , pm ∈ R[x] such that the condition from Putinar’s theorem is satisfied.
Let f ∈ R[x]. The Lasserre hierarchy associated with the polynomial optimization

f∗ := inf
x∈Rn

f(x)

s.t. x ∈ K(p1, . . . , pm)

is given by the following sequence of sum-of-squares programs: For each d ∈ N
consider the optimization problem

s∗
d := sup

s∈R
s (2.53)

s.t. f − s ∈ Qd(p1, . . . , pm).

It holds

s∗
d ≤ s∗

d+1 for all d ∈ N and sd converges to the global optimum f∗ as d→∞.
(2.54)

For each d ∈ N the sum-of-squares program (2.53) can be expressed as a semidefinite
program (2.35).

The statement (2.54) contains the essence why the Lasserre hierarchy so valu-
able – namely it provides a hierarchy of convex problems whose optimal values
monotonously convergent to the global minimum of f on K! The first statement
from (2.54) follows from inclusion Qd(p1, . . . , pm) ⊂ Qd+1(p1, . . . , pm) and the con-
vergence is a direct consequence of Putinar’s Positivstellensatz.

In the following remark, we outline how the SDP representing the SOS program
(2.53) is formed.

Remark 2.37. For each d ∈ N the optimization problem (2.53) can be formulated as
an SDP. To do so we use the semidefinite description around (2.50) of membership
to Qd(p1, . . . , pm). We express the condition f−s1 ∈ Qd(p1, . . . , pm) by the existence
of positive semidefinite matrices C0, . . . , Cm (of corresponding size, see (2.50)), such
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that
vTd0C0vd0 +

m∑
j=1

vTdj
Cjvdj

pj = f − s1. (2.55)

Let f0 denote the constant term in f , then this infers in particular that the constant
term of the left-hand side of (2.55) has to equal f0 − s. The constant term of the
polynomial on the left-hand side is given by

(C0)11 +
m∑
j=1

(Cj)11pj,0

where (Cj)11 denotes the first entry of the matrix Cj for j = 0, . . . ,m and pj,0
denotes the constant term in the polynomial pj. Thus, we can replace the cost term
s in (2.53) by

f0 − (C0)11 +
m∑
j=1

(Cj)11pj,0. (2.56)

The term (2.56) is linear in the positive semidefinite matrix C := diag(C0, . . . , Cm),
as well as the constraint (2.55) and the technical constraint that C is block diagonal
with blocks of the corresponding size. All in all, this gives a semidefinite program-
ming representation of the SOS formulation (2.53).

Remark 2.38. Instead of Qd(p1, . . . , pm) also Schmüdgen’s Positivstellensatz and
a degree d truncation of the preordering Pre(p1, . . . , pm) can be used. The computa-
tional advantage of using Putinar’s Positivstellensatz is that fewer sum-of-squares
polynomials σj are needed and therefore the overall SDP is much smaller.

Complexity of the Lasserre hierarchy Because the Lasserre hierarchy is based
on SDPs its computational complexity is determined by the computational com-
plexity of solving SDPs, which can be done in polynomial time – but the true
complexity is hidden in the size of the SDPs!

Remark 2.39 (Complexity of the Lasserre hierarchy). Solving an SDP with an er-
ror less than ε is polynomial in the size of the appearing matrix blocks and log(ε−1),
see for instance [Lasserre 2009]. This is not in contrast with the fact that polyno-
mial optimization covers many NP hard problems. The reason is twofold: First, the
hierarchy only provides asymptotic convergence, and second, and more importantly,
the complexity is expressed in the size of the matrices appearing in the SDPs in the
Lasserre hierarchy. The reason is simple, the blocks of the matrices for the degree
d level of the hierarchy are of size

s

(
d

2

)
=
(
n+

⌊
d
2

⌋
n

)

and hence grow combinatorially in (d, n).

Even though finite convergence of the Lasserre hierarchy is generic [Lasserre 2015,
Theorem 6.5], the practical limitations for the Lasserre hierarchy arise from the
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truncation level d ∈ N being potentially large. Therefore, obtaining degree bounds
for d is a very active and important topic in polynomial optimization. Recently the
available bound for such the needed degree d ∈ N to guarantee f ∈ Q(p1, . . . , pm)
was strongly improved [Baldi 2022] from being exponential to being polynomial in
the degree of f and its positivity f∗

sup
x∈K(p1,...,pm)

f(x) .

Moment approach and duality for the semidefinite program It is only
natural that the duality between the optimization problem (2.23) and (2.25) relates
to the duality between the primal and the dual SDP. The dual SDP to the SOS
program has a direct interpretation as a moment problem. Therefore, we remind
of the measure formulation for the polynomial optimization problem. It holds

f∗ = inf
µ

∫
K
f dµ (2.57)

s.t. µ ∈M(K)+

µ(K) = 1.

As motivated by Theorems 2.32 and Theorem 2.12 we want to re-view the set
M(K)+ by linear forms satisfying certain positivity constraints. As usual we as-
sume that K is given by K(p1, . . . , pm) and that the condition from Putinar’s Posi-
tivstellensatz is satisfied. The idea is that, by Putinar’s Positivstellensatz, a linear
form L : R[x]→ R is representable by a measure µ if and only if L is non-negative
on Q(p1, . . . , pm).

In the following, we will introduce the needed notation. We begin with repre-
senting a linear form L : R[x]→ R by the sequence y : Nn0 → R given by (yα)α∈Nn

0
via identifying L(xα) with yα. This is motivated by moment sequences of measures,
i.e. for a measure µ ∈M(K)+ and α ∈ Nn0 we denote by

yα :=
∫
K

xα dµ

its α-moment. Reversely, for a given sequence y = (yα)α∈Nn
0

we call the correspond-
ing function

ℓy : R[x]→ R given by ℓy(xα) := yα (2.58)

the Riesz-functional for y. In analogy to Theorem 2.32, the dual version of Putinar’s
Positivstellensatz [Putinar 1993] states that y is the moment sequence of a measure
µ ∈ M(K)+ if and only if its corresponding Riesz-functional ℓy is non-negative
on Q(p1, . . . , pm). As we liked to do before, we want to express this property in
a semidefinite fashion. This will be done using the moment-localizing matrices
M(pjy) for j = 0, . . . ,m defined as follows

(M(pjy)α,β := ℓdy(gijxαxβ) , α, β ∈ Nn0 (2.59)

where we denote p0 := 1 for simpler notation. The infinite matrix M(giy) is
symmetric and for any vector of coefficients c := (cα)α∈Nn

0
with only finitely many
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cα ̸= 0 it holds
cTM(pjy)c = ℓy

(
pj
( ∑
α∈Nn

0

cαx
α)2

︸ ︷︷ ︸
∈Σ

)
≥ 0. (2.60)

We denote the condition (2.60) by M(pjy) ⪰ 0 and the dual version of Putinar’s
Positivstellensatz reads

∫
K

xα dµ


α∈Nn

0

: µ ∈M(K)+

 := {y ∈ RNn
0 : M(pjy) ⪰ 0, j = 0, 1, . . . ,m}.

This motivates the following finite dimensional truncation: For d ∈ N we consider
truncated moment sequences y = (yα)|α|≤d and define the

Md(p1, . . . , pm) := {y ∈ R{α∈Nn
0 :|α|≤d} : Md(pjy) ⪰ 0, j = 0, 1, . . . ,m} (2.61)

where the matrices Md(pjy) for j = 0, . . . ,m are the truncated moment-localizing
matrices, that is

Md(gjy) := ℓdy(gjvdj
vTdj

) (2.62)

where dj := ⌊d−deggj

2 ⌋ and ℓdy : R[x]d → R is defined as the Riesz functional in (2.58)
but only for sequences up to order d. Equipped with these notations we can state
the moment Lasserre hierarchy [Lasserre 2001].

Definition and Theorem 2.40 (Moment hierarchy for polynomial optimization).
Let p1, . . . , pm ∈ R[x] such that the condition from Putinar’s theorem is satisfied.
Let f ∈ R[x]. The moment hierarchy associated with the polynomial optimization

f∗ := inf
x∈Rn

f(x)

s.t. x ∈ K(p1, . . . , pm)

is given by the following sequence programs: For each d ∈ N consider the optimiza-
tion problem

m∗
d := inf

y
ℓdy(f) (2.63)

s.t. y ∈Md(1, p1, . . . , pm).

Analog to (2.53), the problems (2.63) can be formulated as SDPs and the resulting
SDPs are dual to the SDPs for (2.53). By weak duality it holds

s∗
d ≤ r∗

d ≤ f∗ for all d ∈ N and r∗
d ↗ f∗ as d→∞.

2.5 The Koopman and Perron-Frobenius operators

What follows is a typical ergodic theoretic construction that represents a dynamical
system (X, (φt)t∈R+) by a semigroup of linear operators, and is yet another example
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of a lift of a nonlinear problem to a linear formulation. Particularly, with respect
to the flavor of transferring notions and properties of the dynamical system to
functional analytic ones, the book [Eisner 2015] is fantastic.

The idea of Koopman semigroup describes the flow indirectly – via the evolution
of its observables, i.e functions f : X → R. The idea dates back to Bernard Osgood
Koopman in 1931 [Koopman 1931] where Koopman made it possible for operator
theory to enter the domain of ergodic theory. This immensely fruitful idea had
strong impact on related topics varying from number theory, such as the Green-
Tao theorem [Tao 2008], over Billiards [Sinai 1989], statistical physics [Sinai 1989],
decompositions of dynamical systems (as the Jacobs-de Leeuw-Glicksberg decom-
position [Eisner 2015], or the ergodic partition [Mezić 1999]), weather prediction
[Froyland 2021] and more recently in data analysis for dynamical systems [Budisic 2012],
among many other applications of ergodic theory (see for instance [Çömez 2021] for
more (interdisciplinary) examples).

Composition and Koopman operators The Koopman operator is a composi-
tion operator, that means, for a given function φ : X → X and a real or complex-
valued function h : X → C the Koopman operator T of φ acts on h by

Th := h ◦ φ.

The mapping T has the following striking properties:

1. Linearity: T is linear in h! (But not in φ!)

2. Contravariance: Let ϕ : X → X be another map and let T (φ) denote the
Koopman operator for φ and T (ϕ) denote the Koopman operator for ϕ. Then
the Koopman operator T (ϕ ◦ φ) for ϕ ◦ φ is given by

T (ϕ ◦ φ) = T (φ) ◦ T (ϕ).

3. No loss of information: Let F be a function space of complex valued functions
on X such that F separates points, i.e. for all x ̸= y ∈ X there exists h ∈ F
with h(x) ̸= h(y). Then the operator T restricted to F uniquely determines
the map φ.

The last point indicates already that the domain D(T ) on which we define the
Koopman operator T , i.e. the choice of function space F , plays an important role
in the study of the Koopman operator. To be more precise, the underlying function
space F determines which questions about the map φ we can answer through its
Koopman operator T with domain F . For a dynamical system (X, (φg)g∈G) we
define the Koopman semigroup for on a function space F as follows.

Definition 2.41 (Koopman semigroup). Let (X, (φg)g∈G) be a dynamical system
and F be a subset of all functions from X to C. We distinguish the two cases of
discrete time dynamical systems, i.e. G = N, and continuous dynamical systems,
i.e. G = R+.
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1. Discrete time systems: Let f := φ1 : X → X. The Koopman operator T :
D(T )→ F is defined as

Th := h ◦ f with D(T ) := {h ∈ F : h ◦ f ∈ F}. (2.64)

The Koopman semigroup for discrete time systems is the family of operators
(Tn)n∈N0 with corresponding domains D(Tn) = {h ∈ F : h ◦ fn ∈ F}.

2. Continuous systems: The Koopman semigroup (Tt)t∈R+ is the family of oper-
ators Tt : D(Tt)→ F for t ∈ R+, with

Tth := h ◦ φt with D(T ) := {h ∈ F : h ◦ φt ∈ F}. (2.65)

Furthermore, it holds T0 = Id and for t, s ∈ R+ that Tt+sg = TtTsg for all
g ∈ {g ∈ F : g ∈ D(Ts) and Tsg ∈ D(Tt)}

The function space F should be able to reflect the question we might ask on the
dynamical system, such as: Is the flow function φ continuous/smooth, is the system
stable, is it energy preserving, do periodic orbits exist, how do invariant sets look
like, is the system chaotic? In Examples 2.42 and 2.43 we present two natural choices
of function spaces aiming to give functional analytic representations of the above
question. From an application perspective, the space F should be easily accessible.
At the same time, it should be rich enough to contain all important characteristics
of the systems while being adapted enough to clearly single out desirable properties.
Some of those demands on the function space F are working against each other and
that is why finding a good choice of space F is a subtle task. We address a certain
class of candidates for F in Section 6.1.

Two important examples In this thesis, we are mostly concerned with bound-
edness of the Koopman operators. There are two eminent classical examples of
choices for observables, respectively function spaces, for which the Koopman semi-
group consists of bounded operators. One is ergodic theory (see Example 2.42),
which investigates measure preserving systems - therefore spaces of integrable func-
tions are the right choice for the function space F in Definition 2.41. The other
example, Example 2.43, focuses on topological properties. That is why the space
of all continuous functions is a natural and good choice for F .

Example 2.42. Let X be a topological space, B the Borel sigma algebra, and f :
X → X is assumed to be Borel measurable. We choose F = L2(X,B, µ) where µ is
an invariant measure, that is µ(f−1(B)) = µ(B) for all B ∈ B. Then T : F → F is
well defined and if f is essentially invertible, unitary. This describes the classical
ergodic theory setting [Eisner 2015, Sinai 1989] from where many directions can be
explored. A central application is spectral decompositions which are obtained through
the spectral theorem for normal operators on Hilbert spaces and can be interpreted
as diagonalizing the dynamics. The application of the spectral theorem only gives a
glimpse of the rich theory that can be developed from this perspective [Eisner 2015].
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Example 2.43. Here we assume that X is compact and that (X, (φt)t∈R+) is a
dynamical system. The choice F = C(X) gives that the Koopman operator Tt is a
bounded linear operator for all t ∈ R+ (and they carry even more structure as we
will see in Theorems 2.45 and 2.47!).

Both, Examples 2.42 and 2.43 highlight the essential property that the Koopman
operator T respectively Tt for t ∈ R+ is linear despite that we did not enforce any
linear structure on the dynamics nor the space itself! This is a consequence of the
linearity of composition when the output space Z (here Z = R or Z = C) is a vector
space. Nevertheless, this immediately raises questions about related linear objects
or concepts connected to the Koopman operator. We begin with boundedness –
for continuous time systems that leads to one-parameter semigroups of bounded
operators.
Definition 2.44 (One-parameter Semigroup of bounded operators). Let V be a
normed vector space. A family of operators (Ut)t∈R+ is called a one-parameter
semigroup of bounded operators if

1. Ut is a bounded linear operator for all t ∈ R+

2. The family of operators (Ut)t∈R+ satisfies the semigroup property

U0 = Id and Ut+s = UtUs for all t, s ∈ R+. (2.66)

A one-parameter semigroup (Ut)t∈R+ of bounded linear operators is called strongly
continuous if for all g ∈ V

Utg → U0g = g as t→ 0.

The rest of this chapter is devoted to presenting some results on dynamical
systems from a semigroup theory perspective. For detailed semigroup theory for
linear operators, we refer to [Engel 2006].

Motivated by Example 2.43 we focus on the Koopman operator on the space
F = C(X) to further illustrate the “Koopman perspective” on dynamical systems.
We begin with stating that the Koopman semigroup on C(X) for compact sets X
and continuous dynamics is indeed a one-parameter semigroup of bounded linear
operators and it preserves algebraic and order structures of C(X).
Theorem 2.45. Let X be compact and (X, (φt)t∈R+) be a dynamical system. Then
the Koopman semigroup (Tt)t∈R+ on C(X) has the following properties

1. Tt : C(X) → C(X) is well defined for all t ∈ R+ and (Tt)t∈R+ is a strongly
continuous one-parameter semigroup of bounded operators. Furthermore, Tt
is contractive with ∥Tt∥ = 1 for all t ∈ R+.

2. (Tt)t∈R+ determines φ uniquely, that is for another family (ϕt)t∈R+ with Koop-
man operators (St)t∈R+ it holds St = Tt if and only if φt = ϕt for any t ∈ R+.

3. Tt is an algebra homomorphism for all t ∈ R+, that is

Tt1 = 1 and Tt(g · h) = Ttg · Tth for all g, h ∈ C(X).



40 CHAPTER 2. PRELIMINARIES

4. Tt is a Markovian lattice homomorphism for all t ∈ R+, that is

Tt1 = 1 and |Ttg| = Tt|g| for all g ∈ C(X).

Proof. Properties 1., 3. and 4. are verified by direct calculation. The continuity of φ
is only needed to conclude that Tt is well defined and that the Koopman semigroup
is strongly continuous. The second statement follows from Urysohn’s lemma.

It’s a surprising and beautiful result that parts of Theorem 2.45 can be reversed.

Theorem 2.46 (Koopman operators are exactly the Markov operators and algebra
homomorphism; [Eisner 2015, Theorem 4.13], [Arendt 1986, Theorem 3.5]). Let X
be compact and U : C(X) → C(X) be a linear operator. Then the following are
equivalent

1. There exists a map φ : X → X such that Ug = g ◦ φ holds for all g ∈ C(X).

2. U is an algebra homomorphism.

3. U is a Markovian lattice homomorphism.

Additional to its elegance the Koopman lifting gives rise to an interesting ap-
plication, see Theorem 2.47. It concerns continuity of the map φ and states that
for semiflows φ joint and separate continuity coincide. On a topological space X a
map ϕ : R+ ×X → X is called jointly continuous if it’s continuous with respect to
the product topology on R+ ×X, the map ϕ is called separately continuous if the
map ϕt : X → X is continuous for each t ∈ R+ and the map ϕ·(x) : R+ → X is
continuous for x ∈ X. As promised, for semiflows both concepts coincide.

Theorem 2.47 ([Arendt 1986, Lemma 3.2]). Let X be compact and (φt)t∈R+ be
a semiflow on X, i.e. φ satisfies i., ii., iii. from Definition 2.1. Then φ is jointly
continuous if and only if φ is separately continuous.

It is interesting that, in Theorem 2.47, trying to check the implication, that
separate continuity implies joint continuity, is not straightforward. This difficulty
is supported by the proof of the above Theorem 2.47 in [Arendt 1986]. The idea
in the proof is that joint continuity of φ is equivalent to strong continuity of the
Koopman semigroup and separate continuity of φ is equivalent to weak continuity
(see [Engel 2006, Theorem 1.6] for the notion of weak continuity of operator semi-
groups) of the Koopman semigroup. These two properties are still easy to verify,
but the strong argument from operator semigroup theory that is used and that
immediately concludes Theorem 2.47 is the following [Engel 2006]: A semigroup of
bounded linear operators on a Banach space is strongly continuous if and only if it
is weakly continuous.

The generator of the Koopman semigroup We want to end this section by
introducing the generator of the Koopman semigroup for continuous time systems.
The generator of a semigroup is a fundamental object in semigroup theory and its
central role is motivated by the interest of studying the whole semigroup by only a
single operator.
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Definition 2.48 (Generator of a one-parameter semigroup). Let (Ut)t∈R+ be a
strongly continuous one-parameter semigroup of bounded linear operators on V .
The generator A : D(A)→ V is defined as

Av := lim
t→0

Utv − v
t

for v ∈ D(A) := {v ∈ V : lim
t→0

Utv − v
t

exists}. (2.67)

The generator A of a one-parameter semigroup (Ut)t∈R+ generates the semigroup
(Ut)t∈R+ in the sense that Ut = etA in an appropriate meaning and determines the
semigroup uniquely [Engel 2006, Chapter II]. In particular, we can interpret a one-
parameter semigroup on V as the flow map for the linear differential equation

ẋ = Ax , x(0) = v ∈ V.

We use this as a good transition to return back to nonlinear differential equations,
and only refer to [Engel 2006] for the rich theory on the intimate relation between
generators and their corresponding one-parameter semigroups of bounded linear
operators.

Let us consider a dynamical system given as the solution of a differential equa-
tion ẋ = f(x) with x(0) = x0 ∈ Rn. Then f is given by

f(x) = d
dtφt(x)

∣∣
t=0. (2.68)

This analogy to the concept of generator carries over to a relation between the vec-
tor field f generating a dynamical system and the generator of the corresponding
Koopman semigroup. To convince ourselves of such a relation let X ⊂ Rn be com-
pact and positively invariant for (2.68) and (Tt)t≥0 be the corresponding Koopman
semigroup on C(X). Then the generator A of the Koopman semigroup on C(X)
acts on function g ∈ C1(X) in the following way

Ag(x) = lim
t→0

Ttg
∣∣
t=0(x) = d

dt(g ◦ φt)(x)
∣∣
t=0

= ∇g(x) · d
dtφt(x)

∣∣
t=0 = ∇g(x) · f(x) (2.69)

i.e. A acts on g by applying the vector field f to g. This shows that C1(X)
is contained in the domain D(A) of the generator A. Because the space C1(X) is
invariant with respect to the Koopman semigroup the generator isA of the Koopman
semigroup is given by the closure of the operator Bg := ∇g ·f for function g ∈ C(X)
with bounded derivative (see [Engel 2006, Section 3.28] for details and the notion
of closure of an operator).

The Perron-Frobenius semigroup – the adjoint semigroup to the Koop-
man semigroup The adjoint semigroup of the Koopman semigroup is called the
Perron-Frobenius semigroup. While a Koopman operator is defined by composi-
tion with the flow for any function space, its dual, the Perron-Frobenius operator,
is affected by the geometry of the underlying function space. To get acquainted



42 CHAPTER 2. PRELIMINARIES

with the Perron-Frobenius semigroup we revisit the Examples 2.42 and 2.43 of the
Koopman semigroup C(X) and L(X) that we have discussed earlier.

Definition 2.49 (Perron-Frobenius operator on L2(X)). Let X be a topological
space, B the Borel sigma algebra, µ a Borel measure and f : X → X is assumed
to be measurable and essentially invertible. Assume µ is an invariant measure
for the discrete dynamical system given by the discrete evolution f . Let T be the
Koopman operator on L2(X,B, µ) from Example 2.42. The Perron-Frobenius op-
erator P : L2(X,B, µ) → L2(X,B, µ) is defined as the adjoint of T , i.e. for all
g, h ∈ L2(X,B, µ) it holds∫

X

Tg(x)h(x) dµ(x) =
∫
X

g(x)Ph(x) dµ(x).

In the case when X is an open subset of Rn, the invariant measure µ is the
Lebesgue measure and f : X → X is a Diffeomorphism, then the Perron-Frobenius
operator can be expressed explicitly by

Ph(x) = h(f−1)) det(Df(x)−1).

For the Perron-Frobenius operator respectively semigroup on M(X), i.e. the
adjoint to the Koopman operator on C(X), we can express the semigroup explicitly,
too. For doing so we recall the pushforward measure.

Definition 2.50 (Pushforward). Let (X,ΣY , µ) be a measure space and (Y,ΣY ) be
a measurable space. Let ϕ : X → Y be measurable with respect to ΣX and ΣY . The
pushforward measure ϕ#µ is defined by

ϕ#µ(A) := µ(ϕ−1(A))

for all A ∈ σY .

The duality between composition and pushforward is expressed in the dual re-
lation between the Koopman and Perron-Frobenius operators on C(X) respectively
M(X).

Definition 2.51 (Perron-Frobenius semigroup on M(X)). Let (X, (φt)t∈R+) be a
topological dynamical system. The Perron-Frobenius semigroup is the semigroup of
linear operators (Pt)t∈R+ given by

Pt :M(X)→M(X), Pfµ := (φt)#µ.

In contrast to the Koopman semigroup on C(X) the Perron-Frobenius semigroup
on M(X) is not strongly continuous. The strong continuity is inherited to the
adjoint semigroup in reflexive spaces. But in the case of M(X) we check easily
that strong continuity of the Perron-Frobenius semigroup does not hold in general.
Assume for the dynamical system (X, (φt)t∈R+) there exists a x ∈ X such that
φt(x) ̸= x for all 0 ≤ t ≤ ϵ for some ϵ > 0. Then ∥Pfδx − δ∥ = ∥δφt(x) − δx∥ = 2 for
all 0 ≤ t ≤ ϵ.
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As it turns out, see Section 6.1, the class of function spaces that we treat in
the following Section 2.6, provides another class of function spaces on which the
Perron-Frobenius semigroup can be expressed explicitly as well.

2.6 Reproducing kernel Banach spaces
We begin this section with the much better-known concept of reproducing kernel
Hilbert spaces (RKHS). Reproducing kernel Banach spaces (RKBS) is a more recent
generalization of RKHS to a Banach space setting.

2.6.1 Reproducing kernel Hilbert spaces

The results and concepts on reproducing kernel Hilbert spaces present in this sec-
tion can all be found in [Saitoh 2016, Paulsen 2016] or any other book on RKHS
theory and we refer to these books for the details and more inspiring properties and
applications of RKHS.

There are two main perspectives on RKHS: The first one reflects its name:

A reproducing kernel Hilbert space is a space of functions for which there exists
a reproducing function.

The second one is the reason why RKHS has been so popular and powerful in many
machine learning tasks:

The geometry of the Hilbert space can directly be accessed via a single kernel
function k : X ×X → Cn.

We being with the definition of an RKHS via its reproducing property.

Definition 2.52 (Reproducing kernel Hilbert space). Let X be a set. A reproducing
kernel Hilbert space H on X is a Hilbert space (H, ⟨·, ·⟩) of complex valued functions
on X, such that for any h ∈ H the point evaluation h 7→ h(x) is continuous in H.

Because for each x ∈ X the point evaluation is bounded in an RKHS H on X
we can use the Riesz-Fréchet representation theorem to find an element kx such
that

h(x) = ⟨h, kx⟩ for all h ∈ H. (2.70)

This is where the name reproducing originates from. Since the element kx ∈ H is a
function on X it gives rise to the kernel function of the RKHS.

Definition 2.53 (Kernel of an RKHS). Let H be an RKHS on X. The function k
defined

k : X ×X → C, k(x, y) := kx(y) (2.71)

is called the kernel for H. We will use the notation k(x, ·) for the representing
function kx in the following.
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From the reproducing property, we infer the following properties of the kernel
k [Saitoh 2016].

Proposition 2.54. Let k be the kernel for the RKHS H. Let x, y ∈ X. It holds

1. k(x, x) = ∥kx∥2H ≥ 0.

2. The operator norm of the point evaluation in x on H is given by
√
k(x, x).

3. k(x, y) = k(y, x).

4. For all n ∈ N and a1, . . . , an ∈ C and x1, . . . , xn ∈ X it holds
n∑

i,j=1
aiajk(xi, xj) ≥ 0. (2.72)

5. Span{k(x, ·) : x ∈ X} is dense in H.

6. k determines H uniquely: Let H be another RKHS with the same kernel k,
then H = H.

Even though Proposition 2.54 is basic and is found in any literature on RKHS
we state its proof because it is a first illustration of the interaction of kernels and
the inner product in H.

Proof. Because k(x, ·) belongs toH we can apply the reproducing property to k(x, ·)
and get

k(x, x) = ⟨k(x, ·), k(x, ·)⟩ = ∥k(x, ·)∥2H.

This gives the first statement. The second statement follows from the first and the
fact that the point evaluation is represented by k(x, ·). The third follows from the
symmetry of the inner product because, via the reproducing property, we get

k(x, y) = ⟨k(x, ·), k(y, ·)⟩ = ⟨k(y, ·), k(x, ·)⟩ = k(y, x). (2.73)

The trick in (2.72) is that the left hand side in (2.72) is the norm squared of the
element

n∑
i=1

aik(xi, ·) ∈ H, thus non-negative. To verify this we compute

∥∥∥∥∥
n∑
i=1

aik(xi, ·)
∥∥∥∥∥

2

H

= ⟨
n∑
i=1

aik(xi, ·),
n∑
j=1

ajk(xj , ·)⟩ =
n∑

i,j=1
aiaj⟨k(xi, ·), k(xj , ·)⟩

=
n∑

i,j=1
aiajk(xi, xj).

For the 5th statement, we use a Hahn-Banach argument. Let h ∈ H be in the
orthogonal complement of Span{k(x, ·) : x ∈ X}. That implies in particular that
0 = ⟨h, k(x, ·)⟩ = h(x) for all x ∈ X. Hence, h = 0 in H and it follows that
Span{k(x, ·) : x ∈ X} is dense in H. The last statement follows now because
Span{k(x, ·) : x ∈ X} is contained in both Hilbert spaces H and H and is dense in
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both. Further, on Span{k(x, ·) : x ∈ X} the inner products ⟨·, ·⟩H of H and ⟨·, ·⟩H
of H coincide because they can be expressed by

⟨k(x, ·), k(y, ·)⟩H = k(x, y) = ⟨k(x, ·), k(y, ·)⟩H . (2.74)

Thus, H and H coincide on the dense subset Span{k(x, ·) : x ∈ X} and thus coincide
completely.

An important result in RKHS theory is the second mentioned perspective on
RKHS, namely that functions k : X ×X → C that satisfy properties 3. and 4. in
Proposition 2.54 themselves give rise to an RKHS, see Theorem 2.56.
Definition 2.55. Let X be a set. We call a function k : X ×X → Cn a positive
definite kernel if

i. k is symmetric, i.e.

k(x, y) = k(y, x) for all x, y ∈ X.

ii. k is positive definite, i.e. for all n ∈ N, a1, . . . , an ∈ C and x1, . . . , xn ∈ X,
n∑

i,j=1
aiajk(xi, xj) ≥ 0.

We call a kernel strictly positive definite if the left-hand side of the above
inequality is strictly positive whenever (a1, . . . , an) ̸= 0.

The Moore–Aronszajn theorem [Saitoh 2016, Theorem 2.2.], [Paulsen 2016, The-
orem 2.14] states that a kernel function in the sense of Definition 2.55 induces a
unique RKHS.
Definition and Theorem 2.56 (Moore-Aronszajn). Each kernel function k :
X × X → C induces a unique RKHS Hk on X such that k is the kernel for Hk.
The RKHS Hk is given by the completion of{

m∑
n=1

ank(xn, ·) : m ∈ N, x1, . . . , xm ∈ X, a1, . . . , am ∈ R
}

(2.75)

with respect to the following (well-defined) inner product given by〈∑
i

aik(xi, ·),
∑
j

bjk(xj , ·)
〉

:=
∑
i,j

aibjk(xn, xm).

We denote by Hk the RKHS corresponding to k.
The close relation between kernels and RKHS is further outlined by the fact

that the kernel functions inherit regularity (such as continuity and smoothness) to
its RKHS and vice versa [Saitoh 2016, Section 2.1.3]. Another important question
concerns the richness of functions in the RKHS. One way to address this question is
via embeddings into different well-understood spaces. For continuous kernels that
leads to the notion of universal property.



46 CHAPTER 2. PRELIMINARIES

Definition 2.57. Let X be compact. A reproducing kernel Hilbert space H on X
has the universal property if the embedding i : H ↪→ C(X) with i(g) := g is well
defined, bounded, and has a dense range.

Before turning to examples we mention the following short corollary concerning
the kernel being strictly positive definite.

Corollary 2.58. If H has the universal property then the kernel is strictly positive
definite.

Proof. Assume there exist x1, . . . , xn ∈ X and a1, . . . , an ∈ C \ {0} such that
n∑

i,j=1
aiajk(xi, xj) = 0. Then it follows

0 =
n∑

i,j=1
aiajk(xi, xj) = ∥

n∑
i=1

ajk(xi, ·)∥. (2.76)

Hence we have for all f ∈ H the functions values f(x1), . . . , f(xn) satisfy the fol-
lowing relation

n∑
i=1

aif(xi) = ⟨f,
n∑
i=1

aik(xi, ·)⟩ = 0.

Hence a function g ∈ C(X) with
n∑
i=1

aig(xi) ̸= 0 can not be approximated well by
functions in H. That is a contradiction to the universal property.

Now, we present some examples of RKHS and encounter familiar spaces from
an RKHS point of view.

Example 2.59. The sobolev space H1
0 (0, 1) of square integrable functions on [0, 1]

that vanish in the points 0, 1 and have square integrable derivatives is an example
of an RKHS [Paulsen 2016]. The kernel is given by [Paulsen 2016]

k(x, y) =
{

(1− y)x, x ≤ y
(1− x)y, x ≥ y.

(2.77)

This example is a special case of RKHSs arising from Sobolev spaces from Example
2.63.

Motivated by Section 2.4 on polynomial optimization, we turn to some RKHS
that (densely) contain polynomials.

Example 2.60. The easiest example of an RKHS containing polynomials is the
space R[x]d of polynomials up to a fixed degree d ∈ N (with an arbitrary inner
product). Because this space is a finite dimensional vector space, we can easily turn
it into RKHS. A kernel can be chosen as

k(x, y) := (1 + xT y)d.

Other examples of RKHS that contain all (complex) polynomials are
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1. the Bragmann-Fock space [Rosenfeld 2022] on X = Cn with kernel

k(x, y) := ex̄
T y,

where x̄ denotes the complex conjugate of x ∈ C, consisting of the holomorphic
functions g on Cn with finite integrals∫

Cn

g(z)e−∥z∥2
dz

2. the Bergman space A2(G) of square-integrable holomorphic functions on a
domain G ⊂ Cn. In the case where G ⊂ C is the unit disc, the kernel is given
by

k(z, w) = 1
(1− z̄w)2 .

3. Sobolev spaces, which we treat in Example 2.63.
In the above-mentioned examples, the set of polynomials is even dense with respect
to the corresponding topologies; on the contrary, the RKHSs corresponding to the
Gaussian kernel treated in Example 2.62, does not contain any non-zero polyno-
mial [Dette 2021].

The connection between RKHS and complex analysis touched in the previous
examples is rich [Saitoh 2016, Paulsen 2016]. This story is continued with the fol-
lowing example of Hardy spaces. The Hardy space H2(Dn), where n ∈ N and D is
the unit disc D := {z ∈ C : |z| < 1} in C, consists of all analytic functions on Dn

for which the following norm is finite

∥g∥H2 := sup
0≤r<1

 2π∫
0

|g(reiθ)|2 dθ


1
2

. (2.78)

Example 2.61. The kernel for the Hardy space H2(Dn) with inner product

⟨g, h⟩ := lim
r→1

2π∫
0

g(reiθ)h(reiθ) dθ

is called the Szegö kernel and given by

k(z, w) :=
n∏
i=1

1
1− ziwi

and turns H2(Dn) into an RKHS. Because functions in H2(Dn) can be unbounded
on Dn, an embedding H2(Dn) into C(Dn) is not possible. Nevertheless, H2(Dn)
contains the set of polynomials, which is dense in C(Dn).

Another famous example of RKHS, the Gaussian kernel RKHS, is covered by
the class of RKHS induced by positive definite functions.
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Example 2.62. A map u : Rd → C is called positive definite function if k(x, y) :=
u(x−y) is a positive definite kernel. Thanks to Bochner’s theorem[Katznelson 2004,
p. 150], a positive definite function on Rd can be realized as a Fourier transform of
a finite Borel measure. Namely, in the case where u is continuous, u is a positive
definite function if and only if there exists a finite Borel measure µ on Rd such that

u(x) = µ̂(x) :=
∫
Rd

e−2πix·ξ dµ(ξ).

Let us consider the case µ = w(x)dx where w ∈ L1 ∩ L∞ \ {0} and w ≥ 0 almost
everywhere. Then, if k(x, y) = µ̂(x− y), we have

H =
{
h ∈ C0 ∩ L2 : ĥ ∈ Lp(w−1)

}
.

A very popular example is the Gaussian kernel k(x, y) := exp
(

∥x−y∥2

σ2

)
.

Finally, we mention Sobolev spaces, which not only demonstrate the interplay
between regularity of the kernel function and the functions in the RKHS but also
the need for enough regularity. This example of RKHS recently found strong ap-
plications in optimization [Rudi 2020].

Example 2.63 (Sobolev spaces). For Ω ⊂ Rn open and bounded with C1 boundary.
For k ∈ N we denote by W k,2(Ω) the Sobolev space of square integrable functions
with square-integrable weak derivatives up to order k. The space W k,2(Ω) is a Hilbert
space with inner product for g, h ∈W k,2(Ω)

⟨g, h⟩ :=
k∑
j=0

∫
Ω

g(j)(x)h(j)(x) dx

where g(j) respectively h(j) denotes the j-th weak derivative of g respectively h. If
k > n

2 , the Sobolev embedding [Brézis 2011, Section 9.3] tells that Wk,2(Ω) is a
subspace of C(Ω) and there is a constant C with ∥g∥∞ ≤ C∥g∥Wk,2. From this, it
follows from the Definition 2.52 that W k,2(Ω) is an RKHS.

In the previous example, we only mentioned the Sobolev spaces W k,2(Ω) be-
cause they are Hilbert spaces but clearly the spaces W k,p(Ω) for any p ≥ 1 are
of great importance! This can be seen as motivation for extending the notion of
reproducing kernel Hilbert spaces to Banach spaces. We address such an extension
to reproducing kernel Banach spaces in the next section.

2.6.2 Reproducing kernel Banach spaces

There are several notions of reproducing kernel Banach spaces, but we follow
[Lin 2022] because they provide a unified and general formulation that we find
suited for the context of this thesis. The rest of this section follows, up to small
deviations, the text [Lin 2022].

The concept of RKBS follows the idea of reproducing kernel Hilbert spaces but
aims to extend this concept to (pairs of) Banach spaces. That means we want to
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keep the property of continuous point evaluation but, at the same time, we allow
different geometries than the ones that arise from an inner product on a Hilbert
space.

Definition 2.64 (Reproducing Banach space [Lin 2022]). Let X be a set and B be a
Banach space of complex (or real) valued functions on X. We call B a reproducing
Banach (RBS) space if the point evaluation B ∋ g 7→ g(x) is continuous for all
x ∈ X.

One of the favorite spaces in this text is C(X) and it is nice to see that C(X)
naturally is an RBS.

Example 2.65 (A familiar example of an RBS). Let X be compact. The space
(C(X), ∥ · ∥∞) enjoys bounded point evaluation and hence is an RBS. But C(X) is
not an RKHS and it is not obvious how a reproducing kernel function should be
defined – but it is possible as we will see in Example 2.69.

Related to the above example is the universal property that we have stated in
Definition 2.57 for RKHS.

Definition 2.66. Let X be compact. An RBS H on X has the universal property
if the embedding i : B ↪→ C(X) with i(g) := g is well-defined, bounded, and has a
dense range.

As mentioned in the above example, we should address how a reproducing kernel
function can be incorporated into an RBS. Simply replacing the Hilbert space H
by a Banach space B in the definition of RKHS does not lead to the “reproducing
property” via a kernel yet. The reason is that in Banach spaces the Riesz-Fréchet
representation theorem does not apply and the existence of a kernel function is not
granted. Therefore, the kernel function is incorporated into the definition of RKBS.

Definition 2.67 (RKBS with Kernels [Lin 2022]). A quadruple (B,B′, ⟨·, ·⟩, k) is
called an RKBS with kernel k if B is an RBS on a set X, B′ a Banach space of
complex (or real) valued functions on a set Y , ⟨·, ·⟩ : B × B′ → C a continuous
bilinear form and k : X × Y → C is such that for all x ∈ X we have k(x, ·) ∈ B′

and
g(x) = ⟨g, k(x, ·)⟩ for all g ∈ B. (2.79)

If additionally, B′ is also an RBS and for all y ∈ Y we have k(·, y) ∈ B and

h(y) = ⟨k(·, y), h⟩ for all h ∈ B′ (2.80)

then we call B′ an adjoint RKBS. If Y = X we call (B,B′, ⟨·, ·⟩, k) an RKBS on X
with kernel k.

Now, that we have given a definition of an RKBS, we have to show that it indeed
generalizes the notion of RKHS. This is done in the following remark.

Remark 2.68. If (B,B′, ⟨·, ·⟩, k) is an RKBS with B = B′ = H, where H is a
Hilbert space with scalar product ⟨·, ·⟩, then B is an RKHS with kernel k. Vice
versa, an RKHS H with scalar product ⟨·, ·⟩ with kernel k induces naturally the
RKBS (H,H, ⟨·, ·⟩, k).
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We follow [Lin 2022] and are now able to present the space C(X) as an RKBS.
Interestingly, the kernel is not unique as we will also see in the example of C(X).

Example 2.69 (C(X) as an RKBS.). Let X be compact and C(X) equipped with
the supremum norm ∥ · ∥∞. By Example 2.65, the space C(X) is an RBS but there
is freedom in the choice of B′ and the kernel. The main idea for inducing kernels is
the use of kernel mean embeddings [Lin 2022]: Let k : X ×X → R continuous such
that Span{k(·, x) : x ∈ X} is a dense subset of C(X). We define the RKBS in the
following way: Let B = C(X) and B′ be the space of kernel mean embeddings, i.e.

B′ =

gµ : µ ∈M(X), gµ(x) :=
∫
X

k(y, x) dµ(y)

 (2.81)

and the bilinear form ⟨·, ·⟩ : B × B′ → R is given by

⟨h, gµ⟩ :=
∫
X

h dµ. (2.82)

The condition that Span{k(x, ·) : x ∈ X} is dense in C(X) guarantees that the
bilinear form (2.82) is well defined. Then (B,B′, ⟨·, ·⟩, k) is an RKBS with kernel
k [Lin 2022]. To verify that k is a kernel let x ∈ X. Because for y ∈ X we have
k(x, ·)(y) = k(x, y) =

∫
X
k(x, z) dδy(z), i.e. k(x, ·) = gδx (with the notion from

(2.81)). It follows for all h ∈ C(X)

⟨h, k(x, ·)⟩ = ⟨h, gδx⟩ =
∫
X

h dδx = h(x).

Further, k is an adjoint kernel as well. To check this let µ ∈ M(X). For gµ we
have

gµ(x) =
∫
X

k(y, x) dµ(y) =
∫
X

k(·, x) dµ = ⟨k(·, x), gµ⟩.

Examples of such kernels k for X = [0, 1] are

k(x, y) = 1− |x− y|, k(x, y) = exy or k(x, y) = (1 + y)x.

In the above example, we observe a close relation between B′ and the dual space
M(X) of B = C(X), where it holds B′ ∼=M(X) through identifying gµ with µ. In
general, this relation is less strong and we only get an embedding of B′ into B∗.
This is discussed in the following remark.

Remark 2.70. The continuous bilinear form ⟨·, ·⟩ induces a map

ϕ : B′ → B∗, h 7→ ⟨·, h⟩ (2.83)

where B∗ denotes the dual space of B. The map ϕ is continuous due to the continuity
of ⟨·, ·⟩ and represents how much ⟨·, ·⟩ differs from the natural pairing of B and its
dual B∗. For RKHS, we have H = H′ and the bilinear form is given by the inner
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product and hence the map ϕ is the natural isomorphism between H and its dual
H∗. In contrast, for RKBS with kernel the map ϕ from (2.83) does not need to be
isomorphic.

Remark 2.70 raises the question if the canonical isomorphism between a Hilbert
space and its dual space has its analog for RKBS with kernel (2.83). The class of
RKBS, which is closer to the Hilbert spaces in that sense, is the class of reflexive
RKBS.

Definition 2.71 (Reflexive RKBS). Let B and B′ be Banach spaces and ⟨·, ·⟩ be
a continuous bilinear form on B × B′. We call (B,B′, ⟨·, ·⟩) a dual pairing if B′ is
isomorphic to B∗ via the map ϕ from (2.83). We call (B,B′, ⟨·, ·⟩) reflexive if it is
a dual pairing and B is reflexive.

Pullback kernel Via a pullback, we want to transfer RKBS structure. This will
play an important role when we investigate conjugated dynamical systems.

Lemma 2.72 (Pullback kernel). Let (B,B′, ⟨·, ·⟩, k) be an RKBS on X with kernel
k and ϕ : Y → X be a bijective map. Then (Bϕ,B′

ϕ, ⟨·, ·⟩ϕ, kϕ) is an RKBS on Y
with kernel for

Bϕ := {g ◦ ϕ : g ∈ B} with norm ∥h∥Bϕ
:= ∥h ◦ ϕ−1∥B (2.84)

and
B′
ϕ := {g ◦ ϕ : g ∈ B′} with norm ∥h∥B′

ϕ
:= ∥h ◦ ϕ−1∥B′ , (2.85)

with bilinear form
⟨h, h′⟩ϕ := ⟨h ◦ ϕ−1, h′ ◦ ϕ−1⟩ (2.86)

and kernel
kϕ : Y × Y → K, kϕ(y1, y2) := k(ϕ(y1), ϕ(y2)), (2.87)

where K denotes R or C. Further, the composition operator Tϕ with Tϕg := g ◦ ϕ
defines isometric isomorphisms between B and Bϕ and B′ and B′

ϕ and preservers
the bilinear forms, i.e. ⟨Tϕg, Tϕh⟩ϕ = ⟨g, h⟩ for all g ∈ B and h ∈ B′.

Proof. By definition of Bϕ and B′
ϕ it follows that Tϕ induces isometric isomorphisms

from B to Bϕ and from B′ to B′
ϕ. Hence, Bϕ and B′

ϕ are Banach spaces (of functions
on Y ). Similarly, we see that ⟨Tϕg, Tϕh⟩ϕ = ⟨g, h⟩, and in particular ⟨·, ·⟩ϕ is
continuous on Bϕ × B′

ϕ. It remains to check the reproducing property, this as
well follows from the (pull back) definition, namely, we have for all h = g ◦ ϕ ∈ Bϕ
and y ∈ Y

h(y) = g(ϕ(y)) = ⟨g, k(ϕ(y), ·)⟩ = ⟨Tϕg, Tϕk(ϕ(y), ·)⟩ϕ
= ⟨h, kϕ(y, ·)⟩.

Revisiting the RKHS examples As we have see in Remark 2.68, RKBS with
kernels is a generalization of an RKHS and the example of viewing (C(X), ∥ · ∥∞)
as an RKBS with kernel while (C(X), ∥ · ∥∞) is not even a Hilbert space shows that
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the extension is strict. Further generalizations are also applicable to some of the
Examples 2.60, 2.61 and 2.63.

Remark 2.73. The examples including square integrable functions, such as the
Bergman space A2(G) from Example 2.60, the Hardy space H2(Dn) from Example
2.61, or Sobolev spaces from Example 2.63, can be generalized to classes of different
regularity, by choosing Lp regularity instead of L2 regularity. Keeping the same
bilinear form and kernel combined with Lp duality theory provides an RKBS with
kernel.

We illustrate the above remark with the example of Sobolev spaces.

Example 2.74 (Sobolev spaces revisited). For Ω ⊂ Rn open and bounded with
C1 boundary. For k ∈ N and p ∈ [2,∞) we denote by W k,p(Ω) the Sobolev space
of functions with p-integrable weak derivatives up to order k. The space W k,p(Ω)
is a Banach space with dual space Wk,q(Ω) for 1

p + 1
q = 1. If k > n

p , the Sobolev
embedding [Brézis 2011, Section 9.3] tells that Wk,p(Ω) is a subspace of C(Ω) and
there is a constant C with ∥g∥∞ ≤ C∥g∥Wk,p. In this case, taking the kernel k
obtained from the RKHS situation W k,2(Ω), choosing B = W k,p(Ω), B′ := W k,q(Ω)
and the dual pairing

⟨g, h⟩ :=
k∑
j=0

∫
Ω

g(j)(x)h(j)(x) dx

gives an RKBS with kernel (B,B′, ⟨·, ·⟩, k).

Adjoint operators in RKBS We end this Section by adapting the notion of
adjoint operators to a setting that covers RKBS. Let B and B′ be Banach spaces on
which we have a continuous bilinear form ⟨·, ·⟩ : B × B′ → C. We begin by defining
when a set W ⊂ B is called dense with respect to ⟨·, ·⟩. We say that W ⊂ B is dense
with respect to ⟨·, ·⟩ if

⟨w, g⟩ = 0 for all w ∈W implies g = 0. (2.88)

If B is a Hilbert space, B′ its dual space and ⟨·, ·⟩ the inner product, then (2.88) char-
acterizes density in B. Also parallel to Hilbert spaces, we define adjoint operators
with respect to a bilinear as follows.

Definition 2.75 (Adjoint operator). Let B and B′ be Banach spaces with a con-
tinuous bilinear form ⟨·, ·⟩ : B ×B′ → C. Let T be a linear operator T : D(T )→ B,
such that D(T ) is dense in B with respect to ⟨·, ·⟩. We call T ′ : D(T ′) → B′ the
adjoint operator of T with respect to ⟨·, ·⟩ if D(T ′) is given by

D(T ′) := {y ∈ Y : ∃z ∈ Z with ⟨Tx, y⟩ = ⟨x, z⟩ for all x ∈ D(T )}

and it holds

⟨Tx, y⟩ = ⟨x, T ′y⟩ for all x ∈ D(T ) and y ∈ D(T ′). (2.89)
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In Section 6.1, we investigate continuity of the Koopman and Perron-Frobenius
operator acting on RKBS. It turns out that we cannot expect continuity in gen-
eral. Therefore, we turn to a weaker notion of continuity of an operator, namely,
closedness, and relate it to the domain of the adjoint operator.

Definition 2.76 (Closed operator). Let X and Y be Banach spaces. A linear
operator A : D(A)→ Y with domain D(A) ⊂ X is called closed if

D(A) ∋ xn → x and Axn → y as n→∞ implies x ∈ D(A) and Ax = y.

We call the operator (A,D(A)) closable if it has an extension Ā : D(Ā) → Y , i.e.
D(A) ⊂ D(Ā) and Ā = A on D(A), which is a closed operator.

For Hilbert spaces, the adjoint operator of a densely defined operator is uniquely
defined and always closed [Rudin 1991, Theorem 3.9]. We want to transfer this
result to RKBS and begin with the following lemma.

Lemma 2.77. Let T : B ⊃ D(T )→ B be a densely defined linear operator. Then
T ′ is uniquely determined and a closed operator.

Proof. For all y ∈ D(T ′) we have for all x ∈ D(T ) that ⟨Tx, y⟩ = ⟨x, T ′y⟩. Since
D(T ) is dense in B with respect to ⟨·, ·⟩, the element T ′y is uniquely determined.
To check closeness, let xn ∈ D(T ′) with xn → x and Txn → y as n → ∞. Then
⟨z1, xn⟩ → ⟨z1, x⟩ and ⟨z2, T

′xn⟩ → ⟨z2, y⟩ for all z1, z2 ∈ B. Thus, for all v ∈ D(T )
we have

⟨v, y⟩ ← ⟨v, T ′xn⟩ = ⟨Tv, xn⟩ → ⟨Tv, x⟩. (2.90)

Since T is densely defined (with respect to ⟨·, ·⟩), it follows x ∈ D(T ′) and T ′x =
y.

The following Lemma tells us how we can retrieve information about closedness
of T from the domain of its adjoint.

Lemma 2.78. Let T : B ⊃ D(T ) → B be a densely defined operator. If T ′ is
densely defined then T is closable.

Proof. If T ′ is densely defined we can build its adjoint with respect to the bilinear
form ⟨·, ·⟩′ : B′ × B → K defined by ⟨b′, b⟩ := ⟨b, b′⟩. Then the adjoint T ′′ of T ′ is
closed by Lemma 2.77. We claim that T ′′ is an extension of T . Let x ∈ D(T ), i.e.
we have for each y ∈ D(T ′) that ⟨Tx, y⟩ = ⟨x, T ′y⟩ = ⟨T ′y, x⟩′. But this exactly
states that x ∈ D(T ′′) with T ′′x = Tx.





Chapter 3

Overview, contribution and
embedding into existing work

In this chapter, an overview of the thesis is presented. We want to motivate the
developed results and give insights into this thesis by outlining how it embeds into
existing work and distinguishing its contributions. This section aims at taking a step
back and explaining the ideas using only as much notation as needed. A rigorous
treatment of the mentioned work in this thesis will be done in the corresponding
chapters that follow. This thesis covers four subjects, which we relate in Figure 3.1,

• Sparsity for dynamical systems

• Linear programming problem formulations for computing the global attractor

• Koopman and Perron-Frobenius operators on reproducing kernel Banach spaces

• Sparsity exploitation for the Koopman and Perron-Frobenius operator and
occupation measure linearization techniques.

Figure 3.1: Relation between the several topics in this thesis. For the sake of space, the references
[1,2] represent the references [Schlosser 2021, Schlosser 2022a], [3] represents [Ikeda 2022b], [4]
represents [Schlosser 2020], [5] represents [Wang 2021b] and [6] represents [Schlosser 2022b].
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3.1 Sparsity structures for dynamical systems

Main contribution: We define a notion of subsystems based on certain sparse
structures. We show that many important objects for dynamical systems de-
compose according to such subsystems, see Theorem 4.23 in Chapter 4. Finally,
we demonstrate that subsystems can be efficiently found via the sparsity graph
of the dynamics.

The definitions, notations, concepts, and results concerning dynamical, which
are important systems for this section, are provided in the preliminary Sections 2.1.
A detailed presentation of the results stated in this section is provided in Chapter
4. The presented ideas are based on and extend the text [Schlosser 2020].

To get acquainted with the notion of sparsity that we develop, we will be guided
by two examples displayed in Figures 3.2 and 3.3.

Figure 3.2: Example of a social network graph.

Figure 3.2 is an illustrative representation of a social graph. The nodes repre-
sent people and a connecting edge between two people states that their opinion or
behavior (symmetrically or asymmetrically) influences the other’s.

Applications of (social) networks include epidemiology, political influence, econ-
omy, and climate, to name only a few. Due to the complexity (including their size)
of such networks, reduction techniques are necessary for their understanding and
analysis.

In Figure 3.2 we can identify several distinguished structures of the network.
For instance, the separate network on the right bottom corner, which do not have
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any connecting edge to the rest of the network. Such an autonomous part is a first
step towards what we will call subsystems and relates closely to causality for time
series as in [Granger 1969], [Peters 2022]. We make the following informal definition
of subsystems.

Definition 3.1 (Informal definition of subsystems). A subsystem of a dynamical
system is an ensemble of states that evolve independently from the rest of the system.

In contrast to the subsystem in the right bottom corner in Figure 3.2, another
structure that catches the eye is the dense accumulation of points in the center of the
figure. These highly connected nodes form a very non-sparse part of the network.
One objective will be to characterize what hampers sparsity and the existence of
subsystems. We will see that the antagonists to sparsity are cycles. Thus we should
search for subsystems where there are no (or few) cycles. Graphs without cycles are
trees and in the social network graph from Figure (3.2) we can recognize tree-like
parts in the out-reaching “branches” of the network. Possible scenarios produc-
ing such branches are situations where information flows in a directed way from
some nodes (such as “influencers”, politicians, celebrities, etc.) to their “followers”.
Indeed, sparsity is inherent there because the followers’ opinions do not actively
influence each other. To allow such asymmetric scenarios where the action/opinion
of person A affects person B but not vice versa requires the social network graph
to be directed. In order to keep the illustration simpler we omitted to draw arrows
instead of edges in Figure 3.2.

Figure 3.3 shows a directed graph, representing the energy distribution in an
electrical power grid. An arrow from a node A to a node B indicates that A
provides energy for B. We thank Edgar Fuentes for pointing out to us that radial
distribution networks provide common examples of networks with tree structures,
see [Chakravorty 2001].

Figure 3.3: Example of a radial power grid model.

The situation in the power grid network in Figure 3.3 is less evident but au-
tonomous structures can be found as well – the reason is that the graph in Figure
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3.3 is directed and the power grid is radial, that is, there is no back-flow of energy,
i.e. no cycles in the network graph. We can distinguish nodes that play outstanding
roles concerning the sparse distribution of energy. These can be found in the top
and bottom rows of the power grid network in Figure 3.3. The former nodes evolve
independently from the rest – there is no incoming edge – and the latter ones affect
no other node – there is no outgoing edge. Those nodes allow us to recognize certain
subsystems. In Figure 3.4 two subsystems are presented – one consists of all orange
nodes the other consists of the red nodes. Indeed, from the graph, we conclude that
there is no other node outside the subsystem that influences the subsystem.

Figure 3.4: Examples (orange, red) of subsystems in the power grid from Figure 3.3.

Other large-scale networks that tend to exhibit subsystems are communication
networks, interacting networks, hierarchical networks, citation networks, the in-
ternet, food web, and others. Some of the mentioned examples are discussed in
[Strogatz 2001]. Another interesting class of systems where subsystems appear can
be found in (distributed) multicellular programming [Regot 2011], [Tamsir 2011]
or supply networks such as water networks, data routing, and logistic networks
[Bullo 2019] and traffic networks [Li 2022], [Kwee 2018].

In Figure 3.5 we summarize our approach toward a practical sparse decompo-
sition of dynamical systems. It begins with identifying inherent subsystems and
decoupling the dynamics accordingly. In the next step each subsystem is analyzed
separately before, in the final step, the analysis is merged into an analysis of the
whole system.

To specify the approach to sparse dynamical systems indicated in Figure 3.5,
we divide it into the following main categories:

1. Definition of subsystems

2. Decomposition of the dynamical system according to subsystems and compu-
tational application
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Figure 3.5: Illustration of a decomposition procedure for sparse dynamical systems.

3. Identification of subsystem via the sparsity graph

4. Extension to other classes of systems

5. Limitations for sparse decompositions

6. Comparison with other existing decomposition methods

In the first part we will introduce the notion of subsystems, building up on inves-
tigations by [Chen 2018]. We show how the interplay between subsystems and the
whole system induces decomposition of the dynamical system. We base our inves-
tigation on important characteristics of the dynamical system, such as equilibrium
points, invariant sets, stability analysis, etc., and continue via Lyapunov functions,
stable manifolds, etc. One of our main results in this chapter is that many of those
(but not all!) characteristics can be decomposed according to the sparse structure
as well. Those decompositions give rise to decoupling computational procedures
for the corresponding objects. We specify such decompositions in Section 5.3 for
the LPs from Chapter 5 and in Section 6.3.4 for computational applications to the
Koopman operator. The definition of subsystems that we give in Definition 3.3 is
coordinate-dependent, but in Section 4.5 we present a coordinate-free formulation
of subsystems. The reason for the coordinate dependent definition is that it makes
available a tool from discrete maths, namely the so-called sparsity graph Gf of the
dynamics f . Using the sparsity graph, the identification of subsystems is translated
into the language of graphs and simple algorithms for identifying subsystems can
be formulated. We continue with extensions to other classes of dynamical systems,
such as control systems, time-delay systems, and stochastic ordinary differential
equations. Finally, we give a comparison to existing decomposition techniques for
dynamical systems and point out how they could be combined with the methods
from this thesis.
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Subsystems

In this section, we want to define subsystems of a given continuous time dynamical
system

ẋ = f(x) on Rn for f = (f1, . . . , fn) : Rn → Rn locally Lipschitz continuous.

We restrict to continuous time dynamical systems but discrete time dynamical
systems xk+1 = f(xk) can be treated in the same way. We will often use the
notation [n] for {1, . . . , n} for natural numbers n ∈ N.

The most basic example of a system that decomposes into several systems is a
product system. This will act as the guiding idea for our notion of subsystems for
systems that are not product systems.
Example 3.2 (Product systems and subsystems). Let n1, n2 ∈ N and for i = 1, 2
let fi : Rni → Rni be a Lipschitz continuous vector fields. Consider the dynamical
systems with dynamics ẋi = fi(xi) with flows φ(i). The product system is defined
as the dynamical system on Rn1+n2 ∼= Rn1 ×Rn2 with dynamics f = f1⊗ f2 defined
by

f =: Rn1+n2 → Rn1+n2 with f((x1, x2)) := (f1(x1), f2(x2)). (3.1)

The corresponding flow φ is given by

φ = φ(1) ⊗ φ(2). (3.2)

In the above example we recover the flows φ(1) and φ(2) from the global flow φ
by projecting onto the corresponding coordinates. For a subset of indices I ⊂ [n]
we denote by RI the space

RI := {(xi)i∈I : xi ∈ R}. (3.3)

The corresponding natural projections of Rn onto the canonical coordinates indexed
by I are denoted by

ΠI : Rn → RI , ΠI(x1, . . . , xn) = (xi)i∈I . (3.4)

The essential observation from Example 3.2 is that the two components φ(1)

and φ(2) evolve independently because there is no coupling between their dynamics
f1 and f2. This property motivates our definition of systems.
Definition 3.3 (Induced (sub)system). Let J ⊂ N and f : RJ → RJ . A subsystem
of a dynamical system on RJ with dynamics f is a set of states (xi)i∈I with I ⊂ J
such that fI := ΠI ◦ f = (fi)i∈I only depends on the states (xi)i∈I indexed by I. In
that case, we say the pair (I, fI), or just I when f is clear from the context, induces
a subsystem of (J, f).
Remark 3.4. We specify, what it means for a function to depend only on certain
states, in Section 4 around (4.2).

Our investigation of subsystems was strongly motivated by the text [Chen 2018]
where a decomposition of the reachability set is given for systems of the form as in
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Example 3.5. This example shows the most basic case, in which subsystems strictly
generalize product systems.

Example 3.5. The system on Rn1+n2+n3, where we write x = (x1, x2, x3) with
xi ∈ Rni for i = 1, 2, 3, with dynamics

ẋ1 = f1(x1)
ẋ2 = f2(x1, x2) (3.5)
ẋ3 = f3(x1, x3)

Then the pairs
(I1, f1), (I2, (f1, f2)) and (I3, (f1, f3))

induce non-trivial subsystems, where I1 = {1, . . . , n1}, I2 = {1, . . . , n1 + n2}, I3 =
{1, . . . , n1, n1 +n2 +1, . . . , n1 +n2 +n3}. Note that the whole system is not a product
system.

Remark 3.6. A first observation is that the sets I that induce a subsystem form
a topology on [n], see Lemma 4.4, that is intersections and unions of subsystems
form again subsystems.

Guided by product systems from Example 3.2, the idea of a subsystem is that
we can treat it as a lower dimensional dynamical system.

Let (I, fI) induce a subsystem. we view fI as a vector field on RI by identifying
fI with the map from RI to RI given by

(xi)i∈I 7→ (fi(x))i∈I where x = (x1, . . . , xn) ∈ Rn satisfies ΠI(x) = (xi)i∈I .

For instance we can choose x = (x1, . . . , xn) with xj = 0 whenever j /∈ I.

The semiflow induced by fI : RI → RI is denoted φIt : RI → RI for t ∈ R+.
The flows of the whole system and of a subsystems are connected as follows, see
Corollary 4.6,

φIt ◦ΠI = ΠI ◦ φt. (3.6)

This is rephrased by the commuting diagram in Figure 3.6.
In the next section we show how subsystems can be used to decompose many

(but not all!) important objects in the analysis of dynamical systems.

Decomposition based on subsystems

In this section, we follow two goals: The first one is to show that many properties of
the whole system are inherited by its subsystems. The second and more interesting
one is to reverse this process. That is, we want to infer properties of the whole
system from properties of its subsystems.
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Figure 3.6: Subsystems induce the above commuting diagram.

The simplest objects to consider in that context are equilibrium points x∗ ∈ Rn
with f(x∗) = 0. Let I1, . . . , Ik induce subsystems. It is obvious that fIl

(ΠIl
(x∗)) = 0

for all l = 1, . . . , k, i.e. we have for the set E of equilibrium points that

E ⊂ {x ∈ Rn : fIl
(ΠIl

(x)) = 0 for all l = 1, . . . , k}. (3.7)

To guarantee equality of the two sets in (3.7) we need to make sure that each state
of the system is contained in at least one of the subsystems. This is expressed in
the following condition, which is essential for the decomposition results presented
in this thesis.

For a dynamical system on Rn, we say that (I1, fI1), . . . , (Ik, fIk
) induce a sub-

system decomposition if each pair (Il, fIl
) induces a subsystem and

I1 ∪ . . . ∪ Ik = [n] (3.8)

At the example of determining equilibria points, we illustrate how the condition
(3.8) is applied to gain information about the whole system from its subsystems
only. We show that the two sets in (3.7) coincide. If (3.8) is satisfied and x∗ ∈ Rn
is such that ΠIl

(x∗) is an equilibrium point for subsystem induced by Il, i.e.

fIl
(ΠIl

(x∗)) = 0 for all l = 1, . . . , k,

then x∗ is an equilibrium point for the whole system. In other words, we can identify
all equilibrium points E by

E = {x ∈ Rn : fIl
(ΠIl

(x)) = 0 for all l = 1, . . . , k}.

The right-hand side is computed only based on the equilibrium points for the subsys-
tems. This line of reasoning can be generalized to less trivial cases. We demonstrate
this at the example of stable manifolds. Let x∗ ∈ Rn be an equilibrium point and

S(x∗) :=
{
x ∈ Rn : lim

t→∞
(φt(x)) = x∗

}
the stable manifold for x. By (3.6), for each l = 1, . . . , k we have

φIl
t (ΠIl

(x)) = ΠIl
(φt(x∗))→ ΠIl

(x∗) as t→∞.
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That shows that the projection of the stable manifold onto the subsystem is con-
tained in the stable manifold for the subsystem. In particular, we have

S(x∗) ⊂ {x ∈ Rn : ΠIl
(x) ∈ Sl(ΠIl

(x∗)) for all l = 1, . . . , k} (3.9)

where Sl(ΠIl
(x∗)) denotes the stable manifold in ΠIl

(x∗) for the subsystem induced
by Il. We show now that the two sets in (3.9) coincide. The argument is simple:
Any point x ∈ Rn from the right-hand side of (3.9) satisfies for all l = 1, . . . , k, by
(3.6),

ΠIl
(φt(x)) = φIl

t (ΠIl
(x))→ ΠIl

(x∗) as t→∞.

This shows that φt(x) converges in each coordinate (because of
k⋃
l=1

Il = [n]) to x∗,

i.e φt(x) converges to x∗. We conclude that the two sets in (3.9) are equal.
In Theorem 4.23 we show that not only equilibrium points and stable manifolds

but also reachable sets (this was originally shown by [Chen 2018] for systems of a
specific form), maximal invariant sets and attractors, among others, decompose in
this fashion. The procedure is always as follows

1: Find subsystems: Identify subsystems I1, . . . , Ik with
k⋃
l=1

Il = [n].

2: Compute the object of interest in the subsystem: Let M be the set of
interest for the whole system and M1, . . . ,Mk its analogue for each of the
subsystems induced by I1, . . . , Ik.

3: “Gluing”: As candidate representation of M based on M1, . . . ,Mk we
“glue together” the sets M1, . . . ,Mk, as in (3.9), by

M̃ := {x ∈ Rn : ΠIl
(x) ∈Ml for all l = 1, . . . , k} . (3.10)

4: Verification: In the last step we need to very that M̃ = M .

In Proposition 4.10 we show that such decomposition also carries over to some
important functional characteristics of dynamical systems, such as Lyapunov func-
tions.

Remark 3.7. The above procedure provides a decoupling scheme that can be ap-
plied to numerical algorithms for computing (decomposable) objects of interest. In
Algorithm 1 we formulate this procedure and Theorem 4.25 provides corresponding
convergence properties.
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Coordinate-free formulation

The concept of subsystems from Definition 3.3 is not intrinsic – it depends on the
coordinates the dynamical system is written in. Consider for instance a linear dy-
namical system ẋ = Ax where A has only non-zero entries but is diagonalizable. It
does not allow any non-trivial subsystem but a change of coordinates, that diag-
onalizes A, transforming the system into a dynamical system where all states are
independent.

For a coordinate-free formulation we assume that M is a (compact) smooth
manifold (with boundary) of dimension n and φ a semiflow on M such that M is
positively invariant.

Definition 3.8. We call (N , P ) a subsystem of (M, (φt)t∈R+) if N is a compact
smooth manifold and P : M → N a smooth submersion map, i.e. the derivative of
P has always full rank, such that there exists a flow φN

t on N such that

φN
t ◦ P = P ◦ φt.

Definition 3.8 is motivated by (3.6) and the concept is known as factor systems
in the case where it is not demanded that P is a submersion. We include the
submersion condition on P in order to make sure that N is of a lower dimension
than M , see Remark 4.27. That N has indeed at most the dimension of M follows
because P is a submersion.

For subsystems induced by I1, . . . , Ik according to Definition 3.3 we used the
condition

I1 ∪ . . . ∪ Ik = [n] (3.11)

in order to obtain full information about the system from its subsystems. The
reason why condition (3.11) is helpful, is that for each x ∈ Rn

{y ∈ Rn : ΠIl
(y) = ΠIl

(x), l = 1, . . . , k} = {x}. (3.12)

The statement (3.12) says that there is only one global object y that coincides
with x on each subsystem – and this global object is x itself. Without any extra
effort, we can generalize (3.12) to the coordinate-free definition of subsystems by
replacing the maps ΠIl

by Pl for subsystems (N1, P1), . . . , (Nk, Pk), see Definition
4.28. Corresponding decompositions for the dynamical system hold true under this
concept, but the trade-off for the flexibility in the choice of P is that the treatment
of the nonlinear map P is computationally more challenging because the map P
can not be inferred anymore solely from the sparsity graph of the dynamics.

The sparsity graph of the dynamics

As we have seen in the case of social networks in Figure 3.2 and power grid networks
in Figure 3.3, a representation through a graph is a helpful tool for identifying
subsystems.

The definition of subsystems does not involve any quantitative information
about the dynamics, but only causal dependence on other states in the dynam-
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ics. Thus, it is sufficient to draw a graph that represents only which states are
dynamically connected.

Definition 3.9 (Sparsity graph). Let f = (f1, . . . , fn) : Rn → Rn be a function.
The sparsity graph Gf associated to f is defined by:

1. The set of nodes is {x1, . . . , xn}.

2. For i ̸= j there pair (xi, xj) is an edge if fj depends explicitly on xi .

As an example consider dynamics f : Rn → Rn that are of the form

f = (f1(x1), f2(x1, x2), f3(x1, x3, x4), f4(x1, x4), f5(x1, x4, x5)), (3.13)

The sparsity graph Gf of f is given in Figure 3.7.

Figure 3.7: The sparsity graph of the function from (3.13)

The subsystems for a dynamical system with dynamics f given by (3.13) are
shown in Figure 3.8.

From Figure 3.8 we observe that subsystems containing a state xi have to con-
tain all nodes xj for which there exists a directed path from xj to xi. This leads
to a purely graph-theoretic characterization of subsystems. This is illustrated in
Proposition 3.10, which we will revisit in Chapter 4, as Proposition 4.39, where we
state its proof. To simplify the formulation of Proposition 3.10, we introduce the
following notion: For a sparsity graph Gf of a function f : Rn → Rn and an index
1 ≤ i ≤ n, the past of i refers to all indices 1 ≤ j ≤ n for which there exists a
directed path from xj to xi in Gf .

Proposition 3.10 (Characterization of subsystems). (I, fI) induces a subsystem
if and only if for all i ∈ I the past of i is also contained in I.

From this graph-theoretic characterization of subsystems we can derive several
hierarchies of subsystems based on simple graph algorithms.

Let us review the example from (3.13). Consider the subsystems I1 := {1, 2, 4, 5}
and I2 := {1, 3, 4}. It holds I1 ∪ I2 = {1, 2, 3, 4, 5}, as needed in the decomposition
result Theorem 4.23. Further, for any other family of sets J1, . . . , Jk that induce
subsystems with J1 ∪ . . . ∪ Jk = {1, 2, 3, 4, 5}, there are sets Jl1 and Jl2 with 1 ≤
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Figure 3.8: Sparsity graph Gf for f from (3.13). Nodes colored with the same color
represent a subsystem. The remaining subsystems that are not presented are induced by
(∅, f∅), ({1, 2, 4}, f{1,2,4}), ({1, 2, 3, 4}, f{1,2,4}) and ({1, 2, 3, 4, 5}, f). Any of these can be written
as a union of the subsystems colored in blue, yellow, red, green, and grey respectively.

l1, l2,≤ k such that I1 ⊂ Jl1 and I2 ⊂ Jl2 . In other words, I1 and I2 provide a
minimal subsystem-covering of the whole system. Importantly we can characterize
I1 and I2 as the pasts of single nodes! It holds

I1 := {j : there exists a path in Gf from xj to x5} (3.14)

and
I2 := {j : there exists a path in Gf from xj to x3}. (3.15)

The elements x5 in (3.14) and x3 in (3.15) are characterized by being leaves in the
sparsity graph Gf , i.e. they do not have outgoing edges. Such a result is true for any
sparsity graph (after a potential condensation of the sparsity graph, see Section 4.8
and Proposition 4.47).

State constraints

So far we have considered subsystems for systems defined on Rn. An important
extension is to allow for constraint sets X ⊂ Rn. This can either mean we are
considering the whole system only on an invariant set M or we want to enforce that
the trajectories satisfy certain properties, specified by X, for all positive times in
which case we restrict our attention to the set

M+ := {x0 ∈ X : the trajectory starting from x0 stays in X for all t ∈ R+}.

When a constraint set X is present, a sparse decomposition similar to the uncon-
strained case is possible, but needs to take the sparse structure of X into account as
well. Typically, for a sparse dynamical system arising from applications, the same
sparse structure of the dynamics is inherent in the constraint set X as well, due to
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the sparse nature of the problem. When this is not the case, a sparse decomposition
of the state constraint dynamical system is obtained by an interplay between the
sparse structure of X and the dynamics, see Section 4.4. A graphical illustration
via the sparsity graph Gf,X representing the sparsity of f and X is possible This
carries over to the sparsity graph

Extensions to other classes of dynamical systems

Because of its functional definition, the notion of subsystems carries over to time-
dependent systems, differential inclusions, time-delay systems, hybrid systems, con-
trol systems, and stochastic ordinary differential equations. This is treated in detail
in Section 4.9. To emphasize that the approach for those classes of subsystems is in-
deed parallel to how we treated ordinary differential equations, we consider control
systems as an explanatory example. Let

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn (3.16)

for a vector field f = (f1, . . . , fn) : Rn × Rm → Rn and controls u = (u1, . . . , um) :
R+ → Rm. The idea for a subsystem here is that we want to decouple (4.55) into
smaller systems of the form

(ẋi)i∈I = (fi ((xi)i∈I , (uk)k∈K))i∈I (3.17)

where I ⊂ [n] andK ⊂ [m]. Whenever fI only depends on (xi)i∈I and (uk)k∈K it fol-
lows that any solution (x(·), u(·)) of (3.16) induces indeed a solution (ΠI(x(·)),ΠK(u(·))
for (3.17), since

d
dtΠI(x(t)) = ΠI ẋ(t) = ΠI(f(x(t), u(t)) = fI ((xi(t))i∈I , (uk(t))k∈K)) .(3.18)

But we need to be careful! The control u should be the same function for all
subsystems! A decomposition into subsystems as in (3.18) would tempt us to use
different controls uk in each subsystem depending on the task at hand. To take this
into account we have to add an extra decomposition condition on the control u for
the notion of a control subsystem.

We call I ×K ⊂ [n]× [m] a subsystem if

1. the dynamics of (xi)i∈I only depend on the sates (xi)i∈I and the controls
(uk)k∈K ,

2. none of the controls (uk)k∈K directly affect a state xj for j /∈ I.

With this notion of subsystems for control systems analogous decomposition results
as for the uncontrolled case can be obtained, see Section 4.9.
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Limitations

We want to point out the limitations of decompositions based on subsystems. We
discuss two types of limitations. One is “practical limitations”, which discusses
the practical relevance of subsystems, the other is that many but not all objects
concerning dynamical systems decompose according to subsystems.

Practical limitations A class of seemingly very sparse systems is given by cas-
caded systems, where information is flowing only downstream. They are of practical
relevance as they appear in power flows, see [Chakravorty 2001, Mohr 2020a] and
Figure 3.3, but also in water-energy cascade reservoir systems [Liu 2019], KRAS
pathways in cancer analysis [Zhu 2014]. Another example is given by chemical sys-
tems where products of reactions act as reactants or enzymes for further reactions
downstream, such as the Heinrich-Model and Huang-Ferrell model [Young 2017]
shown in Figure 3.9.

Figure 3.9: Example of a chemical cascade reaction where the product of one reaction acts as
enzyme for the next reaction

It is possible to find small subsystems in cascade systems. They are even of
simple nature. For instance in cascade systems without branching, such as the
Heinrich-Model, the sparsity graph is just a straight path x1 → x2 → . . . → xn
and the subsystems are all of the form I = {x1, . . . , xk} for some 1 ≤ k ≤ n, as
illustrated in Figure 3.10.

Unfortunately, from a purely computational perspective, the smallest subsystem
containing the leaf node xn in that graph is the whole system itself. Thus, for
any family of set I1, . . . , Ik ⊂ [n] that induces subsystems which has the property
I1 ∪ . . . ∪ Ik = [n], it already holds Il = [n] for some 1 ≤ l ≤ k, i.e. we have to
consider the whole system anyway! In such cases subsystems still give more insight
into the dynamics and allow refined analysis but computationally we are not able
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Figure 3.10: Sparsity graph of for the chemical cascade from Figure 3.9. The subsystems are all
of the form I = {x1, . . . , xk} for some 1 ≤ k ≤ n, this is indicated by a circle around the nodes
x1, . . . , xk.

to reduce the dimension. Sparse decomposition in such cases is an active research
direction and different ideas have to be used, see for instance [Tacchi 2020a].

Despite the restrictiveness of our notion of subsystems we find that there is a
large class of systems where sparsity in the sense of subsystems can be beneficially
exploited. Among these examples are the ones mentioned at the beginning of this
Section 3.1 (social networks, radial networks, etc.).

Decomposition limitations Theorem 4.23 provides a list of objects that de-
compose according to subsystems but there are objects for which this is not true.
Among these is the weak attractor (Definition 2.4). The weak attractor is the
smallest compact set that attracts each trajectory of the dynamical system. To
point out why it does not decompose according to the subsystems as in (2.4) let
(X, (φt)t∈R+) be a dynamical system and X be compact. The weak attractor Aw
can be characterized as the set of all accumulations points

Aw =
⋃
x∈X
{y ∈ X : there exists tn ↗∞ such that φtn(x)→ y}. (3.19)

For a fixed x ∈ X and subsystems induced by two index sets I and J let

z = lim
n→∞

(φItn(ΠI(x)) and z̃ = lim
n→∞

(φJt̃n(ΠJ(x))

be accumulation points of the trajectory of the subsystem starting in ΠI(x) and
ΠJ(x) respectively with corresponding sequences of times (tn)n∈N, (t̃n)n∈N ⊂ R+.
The reason why the weak attractor does not decouple in general is that the sequences
(tn)n∈N and (t̃n)n∈N possibly differ. This is the idea of the Example 4.34 where we
state an explicit system for which the weak attractor does not decompose according
to its subsystem. The principle that hampers a decomposition is that there is a
“choice” (of subsequence (tn)n∈N) inherent in the object of interest (here the weak
attractor Aw). This possibly allows having incompatible choices and incompatible
corresponding objects z and z̃ for different subsystems.
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Comparison with other decomposition techniques for dynamical sys-
tems

The increasing interest in large-scale systems has driven research on reducing dy-
namical systems to lower dimensional ones. Many different concepts have emerged.
In this section, we want to compare our approach to some of these methods. We
base our comparison on the following five classifications

1. Exactness: This concerns the question of whether an error is induced by the
decomposition procedure.

2. Additional (stability, regularity, etc.) assumptions: That comparison point is
based on whether the proposed methods require additional assumptions on
the dynamical systems.

3. Generality: Here we want to distinguish decomposition techniques that are
designed for a specific task from decomposition techniques that can be applied
to a variety of problems concerning the dynamical system.

4. Different notion of sparsity: Clearly the underlying notion of sparsity de-
termines the conditions and objectives of the decomposition. Thus we will
differentiate methods based on the underlying concept of sparsity.

5. Performance: This point addresses the computational advantages of the dif-
ferent methods and our measure for reduction is the size of the largest resulting
subsystem.

We will not much discuss the last point, performance, because general state-
ments of how much smaller the considered systems are, are rarely given and such
a statement would heavily depend on the assumed underlying structure. Neverthe-
less, we want to mention a rule of thumb: Allowing a perturbation or assuming
additional conditions on the dynamical system allow more reduction, as can be
expected. Therefore, our sparse decomposition procedure may give rather conser-
vative reductions compared to some approaches that allow perturbations; see for
instance [Anderson 2012a].

What characterizes our method is that it provides exact decompositions into
subsystems according to Theorem 4.23 and we require only minimal assumptions
on f (locally Lipschitz) and the constraint set (compact). Thus, our method applies
to a broad class of problems from dynamical systems (Theorem 4.23) and it transfers
to different classes of dynamical systems (Section 3.1 and 4.9).To find subsystems we
use the sparsity graph of the dynamics. This allows for simple and quick methods
for identifying subsystems. However, our notion of sparsity is restrictive in the sense
that for some arguably sparse systems such as cascade systems without branching,
illustrated in Figures 3.9 and 3.10, only a refined qualitative analysis is possible but
computational savings are small.

In [Anderson 2011a, Anderson 2011b, Al Maruf 2018] reduction techniques are
presented that search for lower dimensional systems, from which approximate so-
lutions of the original system can be constructed or in which stability of the sys-
tem is aimed to be inferred from the stability of the lower dimensional systems.
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The decomposition of the dynamical system into smaller components is motivated
by partitioning the states such that the interaction between the different com-
ponents is minimized. This differs from our approach and can be interpreted as
removing (certain, well-chosen) edges from the sparsity graph. Methods as in
[Anderson 2011a, Anderson 2011b, Al Maruf 2018] potentially allow to consider a
dynamical system only on the sates (xi)i∈I for any subset I ⊂ [n] (whether it in-
duces a subsystem or not). This difference in such techniques compared to ours
becomes evident, for instance, in the Heinrich model illustrated in Figures 3.9 and
3.10 where our approach does not lead to a reduction in dimension, but a split-
ting into the states x1, . . . , xk and xk+1, . . . , xn is feasible within the methods from
[Anderson 2011a, Anderson 2011b, Al Maruf 2018]. The trade-off for partitioning
into smaller systems is that an error is induced when trajectories of the whole
system are approximated by the perturbed partitioned systems. A treatment for
sparse exploitation specifically for systems with sparsity graphs as in Figure 3.10,
was investigated for the region of attraction problem in [Tacchi 2020a].

The analysis of decomposing a system into smaller ones can be refined using
additional assumptions on the system such as dissipation inequalities and compar-
ison systems can be found in [Anderson 2011b, Anderson 2010, Anderson 2012b,
Al Maruf 2018, Dashkovskiy 2011]. Under these additional assumptions, stability
can be verified based on potentially smaller decompositions than obtained with our
approach, see [Anderson 2011b, Dashkovskiy 2011, Al Maruf 2018].

In [Anderson 2012a, Chapter 4 and 6] and [Al Maruf 2018], reduction tech-
niques for certifying the asymptotic stability of the origin are presented. They are
based on comparison systems or dissipation inequalities utilizing additional assump-
tions. From the perspective of our approach, via the sparsity graph, that allows
including and taking into account weights on edges in the sparsity graph and uses
concepts particularly related to the task at hand – in the case of Chapters 4 and 6
in [Anderson 2012a] and [Al Maruf 2018], the authors do so with focus on stability.

Another field concerning a representation of the system by a lower dimensional
one is model reduction. By nature, this approach aims at a low dimensional ap-
proximation of the system by one single other system and therefore carries a more
quantitative character than our approach. In contrast to such quantitative per-
spectives are topological decompositions of dynamical systems, see for instance
[Mischaikow 2002]. There, the system is decomposed according to its attracting,
repelling, or (quasi)periodic parts. Sparsity in this context refers to simple struc-
tures of those objects. Computationally, these structures are typically not easily
accessible just from the vector field and cannot be inferred solely from the sparsity
graph.

Another example of a reduction technique that relates to a different notion
of sparsity is [Elkin 2012, Elkin 2008]. In contrast to our notion of subsystems,
which describes independence of states, the notion of subsystems in [Elkin 2012,
Elkin 2008] treats explicit functional dependence between different states and re-
lates to symmetries in the system.
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3.2 Linear programming problem formulations for at-
tractors

Main contribution: We state two infinite dimensional linear programming prob-
lems that give rise to tight outer approximations of the global attractor, see
Theorems 3.12 and 3.16. We show that, asymptotically, these LPs can be solved
via the moment-SOS-hierarchy, Theorem 3.20.

The definitions, notations, concepts and results concerning dynamical, which
are important systems for this section, are provided in the preliminary Sections 2.1
and 2.4. A detailed presentation of the results stated in this section is provided in
Chapter 5 which presents the results from the texts [Schlosser 2021, Schlosser 2022a,
Schlosser 2020, Wang 2021b].

We present two computational methods for approximating the global attractor
of a dynamical system based on the works [Schlosser 2021, Schlosser 2022a]. Both
methods follow the idea of translating the problem into an infinite dimensional linear
setting and give rise to approximations of the global attractors via hierarchies of
convex optimization problems. The first method, [Schlosser 2021], achieves a linear
formulation through the use of so-called occupation measures. The second approach,
[Schlosser 2022a], is motivated by classical Lyapunov theory and strongly builds up
on [Jones 2021a].

We consider dynamical systems on Rn, induced by the following ordinary dif-
ferential equation

ẋ = f(x), x(0) = x0 ∈ Rn (3.20)

for Lipschitz continuous vector fields f and equip them with a constraint set X ⊂
Rn. The constraint set X focuses our interest on the maximum positively invariant
set M+, i.e. all the points x0 ∈ X whose solution of (3.20) stays in X for all
positive times. We define the global attractor with respect to the dynamical system
(M+, φt

∣∣∣∣
M+

).

Definition 3.11 (Global attractor). For a given compact set X ⊂ Rn we call
a compact set A ⊂ X the global attractor if it is the minimal compact set that
uniformly attracts all solutions of (3.20) that stay in X for all positive times.

Attractors play a fundamental role in the analysis of longtime behavior of dy-
namical systems. In control theory they show their importance when a certain
feedback control law is implemented to stabilize the origin – the attractor A pro-
vides a certificate, via A = {0} or A ≠ {0}, of correctness of that control law.
Another example related to this thesis arises from optimization problems

min
x∈X

ϕ(x) (3.21)
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where X ⊂ Rn is a given set. First-order optimization methods often can be
interpreted as discretizations of the gradient flow

ẋ = −∇ϕ(x). (3.22)

Convergence of such first-order methods then naturally relates to attractors. These
are just two examples of a large variety of applications of attractors. Therefore,
many methods for computing the attractor have been created. The classical ap-
proach is via Lyapunov functions, and the second method that we propose falls
into that category. Even in that category, there are many different approaches to-
ward computations of Lyapunov functions, see [Giesl 2015] for a survey. Among
the methods closest related to ours are [Prajna 2004] and [Parrilo 2000, Chapter
7] where polynomial Lyapunov functions are computed, with the difference that
[Prajna 2004] and [Parrilo 2000, Chapter 7] aim at verifying the stability of a given
set while we want to localize the attractor. A similar, but dual perspective is inves-
tigated in [Rantzer 2001] and relates to the occupation measures approach we will
present first. Other existing approaches to approximating global attractors are, for
example, finite time truncations, spatial and temporal discretization or set-oriented
methods [Dellnitz 2002, Dellnitz 2001].

Computing the attractor via occupation measures

In this section, we present the method proposed in [Schlosser 2021]. We follow an
established line of reasoning [Rubio 1975, Vinter 1978, Korda 2014, Jones 2021a].
This approach has two central ingredients: First, point 2 in Theorem 2.7, which
characterizes the global attractor as the largest invariant set in X. And secondly,
the method from [Korda 2014] for computing the maximum positively invariant set
is founded on an infinite dimensional linear programming problem on the space of
measures. The result from [Schlosser 2021] is obtained by merging the LPs from
[Korda 2014] for maximal invariant sets in forward and backward time direction
into one LP. As in [Korda 2014], applying the machinery of the moment-sum-of-
squares hierarchy leads to a hierarchy of finite dimensional semidefinite programs
whose solutions converge to the solution to the infinite dimensional LP.

Historically, the idea of transforming various problems from nonlinear dynam-
ical systems and control into infinite-dimensional LPs dates back at least to the
work [Rubio 1975, Vinter 1978] dedicated to optimal control. Solving these prob-
lems by a hierarchy of semidefinite problems (SDPs) with proven convergence was
proposed in [Lasserre 2008], although SDP approximations to infinite-dimensional
LPs were used already in [Prajna 2004] for the problem of global stabilization.
Since then, this approach was used to tackle a number of problems, including the
region of attraction [Henrion 2013], maximum (control) invariant and reachable
sets [Korda 2014, Magron 2019b] or, more recently, analysis and control of nonlin-
ear partial differential equations [Marx 2018, Korda 2022, Goluskin 2019] or safety
analysis [Miller 2021], to name just a few. Closest to our work from this line of
research is [Goluskin 2018, Goluskin 2020], treating the problem of estimating the
maximum of a given function on the attractor.
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In [Schlosser 2021] we proposed the following LP for computing the volume of
the global attractor

p∗ := sup
µ0,µ̂0,µ+,µ−

µ0(X)

s.t. µ0, µ̂0, µ+, µ− ∈M(X)+∫
X
v1 −∇v1 · f dµ+ =

∫
X
v1 dµ0 ∀v1 ∈ C1(Rn)∫

X
v2 +∇v2 · f dµ− =

∫
X
v2 dµ0 ∀v2 ∈ C1(Rn)

µ0 + µ̂0 = λ
∣∣
X

(3.23)

where M(X)+ denotes the set of non-negative Borel measures on X and λ
∣∣
X

is
the restriction of the Lebesgue measure to X. The primal problem (3.23) can
be naturally motivated via occupation measures based on [Korda 2014], see Sec-
tion 5.1. Unfortunately, it contains less information about the attractor itself, as
is drastically demonstrated in the case when λ(A) = 0. Then the trivial solution
(µ0, µ̂0, µ+, µ−) = (0, 0, 0, 0) is optimal and we cannot infer more than vanishing
Lebesgue volume from this minimizer. On the contrary, we will show that the dual
problem gives more insight into the form of the attractor. The dual problem is
given by

d∗ := inf
w,v1,v2

∫
X
w(x) dx

s.t. (w, v1, v2) ∈ C(Rn)× C1(Rn)× C1(Rn)
w ≥ v1 + v2 + 1
w ≥ 0
v1 −∇v1 · f ≥ 0
v2 +∇v2 · f ≥ 0.

(3.24)

In [Schlosser 2021] we showed the following

Theorem 3.12. Let X be compact. Then

p∗ = d∗ = λ(A)

where λ(A) denotes the Lebesgue volume of the attractor A. Further, for each
feasible point (w, v1, v2) for the dual LP (3.24) it holds

A ⊂ w−1([1,∞)). (3.25)

We present Theorem 3.12 and it’s proof in Chapter 5 in Theorem 5.4.
A closer look at the LP (3.24) and the set in (3.25) reveals, now only using

non-negativity of w, the following bound

λ(w−1([1,∞) \ A)) = λ(w−1([1,∞))− λ(A) ≤
∫
X

w(x) dx− λ(A). (3.26)

In particular, we see that the set w−1([1,∞)) gives a convergent outer approxima-
tion of the global attractor when (w, v1, v2) gets optimal. We formulate this in the



3.2. LP REPRESENTATION OF ATTRACTORS 75

following proposition.
Proposition 3.13. With the notation from Theorem 3.12, let (wk, v1

k, v
2
k) be a

minimizing sequence for the LP (3.24) then the sets Ak := w−1
k ([1,∞)) are outer

approximations of the global attractor A and it holds

λ(Ak \ A)→ 0 as k →∞.

The LPs (3.23) and (3.24) can be interpreted in the following way: For the
primal problem (3.23) we already know an optimal solution, by construction, namely
µ0 = λ

∣∣
A and µ̂0 := λ

∣∣
X\A and µ+, µ− the corresponding occupation measure for

the flow in forward respectively backward in time, see (5.2) for the definition of
occupation measures. For the dual problem the optimal solution, if feasible, would
be of the form

w = χA, v
1 = χRn\M+ and v2 = χRn\M− (3.27)

where χ denotes the indicator function and M+ respectively M− the maximum
positively invariant set for X respectively the maximum positively invariant set
for X in backward time direction. The functions from (3.27) are typically not
continuous and therefore not feasible but from d∗ = λ(A) we conclude that for
any minimizing sequence (wl, v1

l , v
2
l )l∈N for (3.24) it holds wl → χA pointwise,

v1 ≥ 0 on Rn \M+ and v2 ≥ 0 on Rn \M−, see Theorem 5.4 and Lemma 5.3.
This insight on minimizing sequences unveils expected numerical behavior such as
oscillations around the boundary of the attractor and motivates research to reduce
such limitations, as done in [Tacchi 2020b] for volume computation of semialgebraic
sets based on infinite dimensional linear programming.
Remark 3.14. We only guarantee convergent approximations of the attractor with
respect to Lebesgue measure discrepancy. Therefore, we do not have control about
topological properties of the approximations.

Computing the attractor via almost Lyapunov functions

The way we approximate global attractors in [Schlosser 2022a] is based on the
intimate relation between attractors and Lyapunov functions, which is vividly il-
lustrated in Theorem 2.11.

We call a function V : U → R for an open set U ⊂ Rn a Lyapunov function for
the system, induced by ẋ = f(x) for x(0) ∈ U if V ∈ C1(U) and

V ≥ 0 and ∇V · f ≤ −V (3.28)

Theorem 2.11 states the global attractor can be characterized as the smallest set
A for which there exists a Lyapunov function V with A = V −1({0}). Thus,
we can transfer the search for attractors to the search for Lyapunov functions.
Unfortunately, a polynomial approach is limiting when it comes to finding Lya-
punov functions. The reason is that there are polynomial systems where no poly-
nomial Lyapunov function V exists that satisfies V −1({0}) = A for the attrac-
tor [Ahmadi 2018]. In [Jones 2021a] this problem is overcome by relaxing the no-
tion of a Lyapunov function while maintaining desirable properties for computing
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the attractor. Our extension of [Jones 2021a] addresses the missing convergence
guarantee of the proposed computational method. We do so by incorporating ideas
from moment formulations, as in (3.24), resulting in a moment-SOS hierarchy for
approximating global attractors based on the concept of Lyapunov functions from
[Jones 2021a].

We briefly outline the approach presented in [Jones 2021a] and [Schlosser 2022a].
Let us assume that X ⊂ Rn is open, bounded, and positively invariant for (3.20).
We begin with the observation that, by Theorem 2.11, we can search for the attrac-
tor through sublevel sets of Lyapunov functions, therefore it holds

A = inf
V

V −1({0})
s.t. V ∈ C1(X)

V ≥ 0
∇V · f ≤ −V

where A is the global attractor for the dynamical system (X, (φt)t∈R+) induced by
(3.20). As a first step, we modify the cost function, because it is set-valued and
therefore unhandy to optimize. From the monotony of the Lebesgue measure λ we
conclude

λ(A) = inf
V

λ(V −1({0}))
s.t. V ∈ C1(X)

V ≥ 0
∇v · f ≤ −V .

(3.29)

As a next step we would like to replace the search space C1(X) by R[x], but as
mentioned before the class of polynomials is too restrictive for Lyapunov functions.
For this reason, in [Jones 2021a] the notion of Lyapunov function was relaxed to
functions J satisfying

J ≥ 0 and ∇J · f ≤ −J + ε (3.30)

for ε > 0. We call a function that satisfys (3.30) an almost Lyapunov function1.
Searching for functions that satisfy (3.30) is helpful for two reasons. First,

(3.30) is a relaxed Lyapunov condition since any Lyapunov function solves (3.30)
for ε = 0, and hence for all ε > 0. Secondly, by the Weierstraß approximation
theorem, there always exist polynomials satisfying (3.30), see [Jones 2021a]. And
third, (3.30) preserves the following two desirable properties in Lemma 3.15, that
we are used to from Lyapunov functions [Jones 2021a].

Lemma 3.15. Let J ∈ C1(X) satisfy (3.30) then J−1([0, ε]) contains the attractor
and is positively invariant.

Proof. The argument is based directly on Lyapunov analysis, namely, for any func-
tion J satisfying (3.30) we choose a smooth function ρ : R → R with ρ = 0 on
(−∞, ε] and ρ is strictly increasing on (ε,∞). Then V := ρ ◦ J is a Lyapunov
function in the classical sense and thus J−1([0, ε]) = V −1({0}) contains the global
attractor and is positively invariant.

1This is not the same notion of almost Lyapunov functions differs as in [Liu 2020].
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And finally, in [Jones 2021a] the authors showed that the global attractor can be
approximated arbitrarily well by sets J−1([0, ε]) for polynomials J ∈ R[x] satisfying
(3.30). The argument for this result is very instructive for the treatment of the
relaxed constraint (3.30). Namely, for 1

2 > ε > 0 choose a Lyapunov function
V ∈ C1(X) with V (x) ≥ 1 for all x ∈ X with dist(x,A) > ε (that such Lyapunov
functions exist is an easy consequence of Theorem 2.11 and the compactness of
X). Approximating the function V + ε

2 closely enough (in the C1(X) metric) by a
polynomial J results in J satisfying (3.30) and

A ⊂ J−1([0, ε]) ⊂ {x ∈ X : dist(x,A) < ε}.

Following up on this results in the following optimization problem[Jones 2021a] for
computing the global attractor and obtaining outer approximations

λ(A) = inf
J

λ(J−1({0}))
s.t. J ∈ R[x]

J ≥ 0 on X
∇J · f ≤ −J + 1 on X.

(3.31)

Unfortunately, the moment-SOS hierarchy is not applicable yet because the cost
term λ(J−1({0})) is not linear in J , and not even convex. This makes the (3.31)
difficult to optimize. In [Jones 2021a] a heuristic was used to relate the coefficients
of J and the volume λ(J−1({0})). The use of the heuristic prevents convergence
guarantees, which we overcame in [Schlosser 2022a] by linearizing the optimization
problem (3.31) in the fashion of the previous paragraph. We introduce the new
decisions variable w that shall play the role of a smooth approximation of w∗ := χK
for K := J−1([0, ε]). Adding the constraints

w ≥ 0 and w + J ≥ 1 on X (3.32)

does the job for ε = 0, i.e.

λ(A) = inf
w,J

∫
X
w(x) dx

s.t. w ∈ C(X), J ∈ C1(X)
w ≥ 0 on X
w + J ≥ 1 on X
J ≥ 0 on X
∇J · f + J ≤ 0 on X.

(3.33)

But the feasible functions J for the LP (3.33) are exactly the Lyapunov functions
for the system. To verify that the optimal value in the LP (3.33) is indeed λ(A)
let V be a Lyapunov function with V −1({0}) = A. For m ∈ N, the pair (wm, Vm)
given by

wm := max{0, 1− Vm} and Vm := m · V (3.34)

is feasible for (3.33) and wm ↘ χA as m → ∞. By the monotone convergence
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theorem, it follows ∫
X

wm(x) dx→
∫
X

χA(x) dx = λ(A).

Thus, when allowing ε > 0, we relax the problem and should add a penalty to ε. It
turns out that the volume of X is an exact penalty and we can propose the following
infinite dimensional linear programming problem

s∗ = inf
w,J,ε

∫
X
w(x) dx+ ελ(X)

s.t. w ∈ C(X), J ∈ C1(X), ε ≥ 0
w ≥ 0 on X
w + J ≥ 1 on X
J ≥ 0 on X
∇J · f + J ≤ ε on X.

(3.35)

Theorem 3.16. Let X be compact and positively invariant, A be the global attractor
for X and assume that the basin of attraction Bf (A) is open. Then it holds for s∗

from (3.35)
s∗ = λ(A).

Furthermore, for feasible (w, J, ε) for (3.35), the set J−1([0, ε]) provides an outer
approximation of the GA that gets tight when (w, J, ε) gets optimal.

The proof of Theorem 3.16 is based on the LP (3.33) where we have showed
already that the optimal value is given by λ(A). It only remains to show that
adding the slack variable ε does not lead to a relaxation. We show this rigorously
in Theorem 5.11 in Chapter 5.

Remark 3.17. The condition that X is positively invariant in Theorem 3.16 can be
removed, see Theorem 5.11. This is done by adding an additional decision variable
v with the constraint v −∇v · f ≥ 0, as we have used in the LP (3.24).

We want to remind why we added the ε slack variable, even though we already
computed the volume of the global attractor in the LP (3.29).

Remark 3.18. In contrast to the LP (3.29), for the LP (3.35) there always exists
a minimizing sequence consisting (wk, Jk, εk)k∈N of where wk and Jk can be chosen
polynomial for each k ∈ N such that the inequality constraints in (3.35) are strictly
satisfied.

Now that we have stated the infinite dimensional linear programming problems
(3.24) and (3.35), we want to solve them numerically. We approached this task
using the moment-SOS hierarchy because of several preferable properties. Those
properties as well as how the moment-SOS hierarchy is applied is discussed in the
following paragraph.

Solving the infinite dimensional LP

We solved the LPs (3.24) and (3.35) via the established moment-SOS hierarchy
[Lasserre 2009, Lasserre 2015] just as in [Korda 2014, Henrion 2013] for similar
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problems. Therefore, we need to make the following assumption on the polyno-
mial structure of the problem.

Assumption 3.19. The vector field f is polynomial and X = K(p1, . . . , pj) is
a compact basic semi-algebraic set, that is, there exist polynomials p1, . . . , pj ∈
R[x1, . . . , xn] such that X = {x ∈ Rn : pi(x) ≥ 0 for i = 1, . . . , j}. Further we
assume that one of the pi is given by pi(x) = R2

X − ∥x∥22 for some large enough
RX ∈ R.

Conceptually the approach is as elegant as simple: First, we replace the search
space C(X) respectively C1(Rn) by the space of polynomials R[x]. For the dual
problems (3.24) and (3.35) we tighten the non-negativity constraints to an SOS
constraint. Leveraging the Weierstraß approximation theorem and Putinar’s Posi-
tivstellensatz this tightening maintains the optimal value of the problem, see The-
orem 5.7 and Section 5.2. In other words, we can approximate the attractor via
polynomials and SOS constraints. As in the discussion around the Lasserre Hierar-
chy in Section 2.4 we obtain a hierarchy of semidefinite programs by substituting
the infinite dimensional space R[x] by R[x]k, the space of polynomials of degree at
most k, for k ∈ N. For the LP (3.24) this translates to the following hierarchy of
sums-of-squares problem

dk := inf
w,v1,v2,{qi},{ti},{ri},{si}

w′l

s.t. −v1 − v2 + w − 1 = q0 +
j∑
i=1

qipi

w = t0 +
j∑
i=1

tipi

βv1 −∇v1 · f = r0 +
j∑
i=1

ripi

βv2 +∇v2 · f = s0 +
j∑
i=1

sipi

(3.36)

where w′ is the vector of coefficients of the polynomial w and l is the vector of
the moments of the Lebesgue measure over X (i.e., lα =

∫
X x

α dλ(x), α ∈ Nn,∑
i αi ≤ k), both indexed in the same basis of R[x]k; hence w′l =

∫
X
w(x) dλ(x).

The decision variables v1, v2, w are polynomials in R[x]k and all the polynomials
q0, . . . , qj , r0, . . . , rj , s0, . . . , sj , t0, . . . , tj are SOS polynomials such that q0, t0, r0,
s0, qipi, tipi, ripi, sipi are all in R[x]k for all i = 1, . . . , j.

In the following theorem, we state that this leads to a convergent hierarchy
of SDPs which preserves the property of the LP (3.24) that the attractor can be
approximated from feasible points.

Theorem 3.20. Under Assumption 3.19 it holds

dk ≥ dk+1 for all k ∈ N and dk ↘ λ(A) as k →∞.

Further, for k ∈ N and optimal points (wk, v1
k, v

2
k) for the SDP (3.36) (with corre-
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sponding multipliers) it holds w−1
k ([1,∞)) ⊃ A and

λ(w−1
k ([1,∞)) \ A) ≤ dk − λ(A)→ 0 as k →∞.

We present a formal proof of Theorem 3.20 in Chapter 5, see Section 5.1.3.

Remark 3.21. Analogous to the SDPs (3.36) we can formulate a hierarchy of SDPs
for the LP (3.35). Theorem (3.20) holds in a similar way, under the additional
assumption needed in Theorem 3.16. The essential argument is that there exists a
minimizing sequence for the LP ((3.35) which consists of polynomials that satisfy
the inequality constraints in LP ((3.35) with strict inequality, see Remark 3.18
and Chapter 5 Section 5.2. This allows applying Putinar’s Positivstellensatz and
convergence of the SDP hierarchy follows.

We illustrate this method based on the moment-SOS hierarchy in the following
example of the Lorenz system on X = [−10, 10]3.

ẋ = 10(y − x), ẏ = x(28− z)− y, ż = xy − 8
3z

Figure 3.11 shows the outer approximation (drawn in light red) of the global at-
tractor (colored in black) for the Lorenz system.

Figure 3.11: Outer approximations for the Lorenz attractor obtained by degree 8 polynomials,
projected from two angles. The time to solve the corresponding SDP was 0.67s with MOSEK 8.1
running on a machine with 4,2 GHz Intel Core i7 and 32 GB 2400 MHz DDR4 RAM.

Comparison between the different LPs

We want to briefly discuss the differences between the three closely related methods
from [Schlosser 2021], [Jones 2021a] and [Schlosser 2022a].
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As mentioned before, the work in [Schlosser 2022a] builds on [Jones 2021a] and
addresses the missing convergence guarantee of the proposed computational method
in [Jones 2021a]. In [Jones 2021a] an optimization problem is stated whose solution
gives the volume of the GA and provides convergent outer approximations but the
cost term in that optimization problem is difficult to treat and non-convex. For
computations, in [Jones 2021a] the authors replaced that cost function by a convex
cost function based on a heuristic, at the price of guaranteed convergence. Thus,
our approach via the LP (3.35) should be interpreted as a practical extension of the
computational method from [Jones 2021a].

Compared to the approach via occupation measures, the approach via almost
Lyapunov functions has the qualitative advantage that it produces approximations
of the attractor that are positively invariant. In our numerical examples, we ob-
served that this qualitative improvement came at the cost of performance, i.e. the
approximations obtained via the same level in the SOS hierarchy for the LP (3.24)
were closer to the attractor than the ones obtained from the LP (3.35).

In terms of computational complexity the three methods, i.e. the SOS hier-
archy for (3.36), the one for the LP (3.35) and the SOS hierarchy proposed in
[Jones 2021a], are of the same order. This is because all three methods are based
on the moment-SOS hierarchy and only differ in the number of decision variables
in the corresponding LPs. Hence, their computational complexity is of the same
order in each level of the hierarchy.

We summarize the main differences between the methods from [Jones 2021a]
(with and without heuristic), [Schlosser 2021], and [Schlosser 2022a] in the following
table.

[Schlosser 2021] [Jones 2021a] [Jones 2021a] [Schlosser 2022a]
+ heuristic

Convex ✓ ✓ ✓
Invariant sets ✓ ✓ ✓
Convergence ✓ ✓ ✓

The second line, convex problem, refers to the optimization problem being convex,
the third line to the property that the obtained sets are positively invariant, and
the fourth line to the guaranteed convergence of these sets towards the GA.

Computational complexity and exploiting sparsity and symmetry

As a trade-off for the beneficial properties of the moment-SOS hierarchy comes
its computational complexity. We mentioned in Remark 2.39 that the computa-
tional cost for computing ε-optimal solutions of SDPs respectively sums-of-squares
programs is polynomial in the input size. But as for the Lasserre-hierarchy for
polynomial optimization described the size of the appearing SDPs grows combina-
torially in the space dimension n and the level k of the hierarchy. More specifically,
for the SOS program (3.36) the blocks in the corresponding SDP are of size

O
((

n+
⌊
k
2

⌋
n

))
.
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This poses practical limitations already for dynamical systems in a few variables.
For the attractor of the Lorenz system, i.e. n = 3, we were able to compute the
corresponding SDPs up to degree k = 10 polynomials on a usual laptop. For larger
systems, the SDPs easily render intractable for current computing devices. There-
fore, exploiting problem-inherent structure is necessary in order to make larger-sized
problems computationally accessible via the moment-SOS hierarchy. The most pop-
ular concepts for doing so in polynomial optimization are symmetry [Riener 2013]
and sparsity [Lasserre 2015, Chapter 8] and [Wang 2021a]. We cannot directly ap-
ply those techniques to the moment-SOS hierarchies for the optimization problems
(3.24) and (3.35). The reason is that, different to static polynomial optimization,
the polynomial for which we search a SOS for is a decision variable itself. Therefore,
we need to show that we can inherit additional structure from the problem to the
decision variables in (3.24) and (3.35). In our case that would follow the subsequent
guiding principle

If the dynamical system is symmetric/sparse then there exists a minimizing
sequence for (3.24) and (3.35) consisting of symmetric/sparse polynomials.

This allows us to further reduce the search space to symmetric respectively sparse
polynomials and therefore reduce the size of the appearing SDPs. Symmetry was
exploited in such a fashion in [Fantuzzi 2020] for bounding extreme events for dy-
namical systems. In accordance to the decomposition procedure Algorithm 2, we
showed in [Schlosser 2020] that the sparsity concept from Section 3.1 respectively
Chapter 4 can be successfully applied to the SOS programs (3.36) and correspond-
ing programs for computing the maximum positively invariant set and the reachable
set. In [Wang 2021b] we investigated to pair the works [Korda 2014, Henrion 2013,
Schlosser 2021] with a term sparsity concept which proved successful for static poly-
nomial optimization [Wang 2021a].

Extension to computing asymptotic extreme values

The LP representations (3.23) and (3.24) of the attractor allow for further appli-
cations. One is to extend the computation of the attractor to computing extreme
events on the attractor as initiated in [Goluskin 2018, Goluskin 2020]. The LP,
for bounding a function ϕ : Rn → R on the global attractor, from [Goluskin 2018]
reads:

p∗ = inf c
s.t. β > 0, c ∈ R, V ∈ C1(Rn)

V − ϕ ≥ 0 on X
c− V − β∇V · f ≥ 0 on X

(3.37)

It was shown in [Goluskin 2018] that

p∗ ≥ max
x∈A

ϕ(x). (3.38)

If equality holds in (3.38) was an open question in the case when X is not already
positively invariant. Using the LPs (3.23) and (3.24) we can extend the LP 3.37)
to the following one, for which we will show that the optimal value coincides with
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max
x∈A

ϕ(x) even if X is not positively invariant,

q∗ = inf c+ ε
s.t. ε, c ∈ R, J, v ∈ C1(Rn)

c+ J ≥ ϕ on X
J +∇J · f + v ≤ ε on X
J ≥ 0 on X
v −∇v · f ≥ 0 on X.

(3.39)

The LPs (3.37) and (3.39) are related through

1. β = 1 in (3.39),

2. J from (3.39) and J from (3.37) can be transformed into each via V := J + c

the additional decision variables v and ε in (3.39) take care of positive invariance
backward in time direction and ε is the slack variable for the Lyapunov equation,
that we know by now from the LP (3.35).

Proposition 3.22. Let f : Rn → Rn be Lipschitz continuous, φ be the semiflow
corresponding to the differential equation ẋ = f(x), X ⊂ Rn be compact and ϕ :
X → R be continuous. Let A be the global attractor for X and assume that the
basin of attraction Bf (A) of A is open. It holds

q∗ = max
x∈A

ϕ(x).

Proof. Note first that
q∗ ≥ max

x∈A
ϕ(x).

This follows because, as for the LP (3.33), we have V ≤ ε on the global attractor,
and hence it holds for the cost c+ ε

c+ ε ≥ c+ V ≥ ϕ on A.

To show that q∗ is also a lower bound on max
x∈A

ϕ(x), we proceed as in (3.34). Choose
a Lyapunov function V : Rn → [0,∞) with V −1({0}) = A and ∇V · f = −V on
Bf (A), which contains the maximum positively invariant set M+. For v we choose
a function as in [Schlosser 2021, proof of Theorem 2] with

v −∇v · f = 0 on X, v = 0 on M+ and v < 0 on X \M+. (3.40)

Let c∗ := max
x∈A

ϕ(x) then for any δ > 0

(c∗ + δ, δ,m · V,m · v) (3.41)

is feasible for (3.39) for m,∈ N large enough and the corresponding cost is given by
c∗ + 2δ. Since δ > 0 was arbitrary we also p∗ ≤ max

x∈A
ϕ(x) and the statement.
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3.3 Koopman semigroup; reproducing kernel Banach
spaces and sparsity

Main contribution: We define the Koopman and Perron-Frobenius operators on
reproducing kernel Banach spaces and state elementary properties concerning
continuity and boundedness, Theorem 6.7.
For the Koopman and Perron-Frobenius operator on C(X), we show that sub-
systems induce a decomposition of principal eigenvalues and invariant measures,
see Theorems 6.44 and 3.35.

The definitions, notations, concepts and results concerning dynamical, which
are important systems for this section, are provided in the preliminary Sections 2.5
and 2.6.2. A detailed presentation of the results stated in this section is provided
in Chapter 6 which is based on the texts [Ikeda 2022b, Schlosser 2022b].

Koopman theory views dynamical systems (X, (φt)t∈R+) from a lifted perspec-
tive – instead of looking at the flow φ directly, the Koopman semigroup (Tt)t∈R+

describes the evolution of observables g, i.e.

Ttg := g ◦ φt,

see Definition 2.41. The resulting family of operators (Tt)t∈R+ forms a semigroup of
(bounded) linear operators, see Theorem 2.45. This gives access to a fruitful com-
bination of dynamical systems theory and functional analysis. Among the central
objects in the study of the Koopman semigroup is its spectrum σ(Tt) for t ∈ R+. As
much as the Koopman operator itself, does the spectrum depend on the underlying
space of observables. Firstly, if the underlying space is an algebra, the spectrum
inherits the algebraic nature of the Koopman operator. This is illustrated by the
following theorem on the Koopman semigroup on C(X), the space of continuous
functions on X.

Theorem 3.23 ([Schaefer 1974, Theorem 4.4]). Let (X, (φt)t∈R+) be a dynamical
system with X compact and (Tt)t∈R+ be a Koopman semigroup on C(X). For each
t ∈ R+ the point spectrum σp(Tt), defined by

σp(Tt) := {λ ∈ C : there exists 0 ̸= g ∈ C(X) with Ttg = λg}, (3.42)

is multiplicative and the spectrum σ(Tt), defined by

σ(Tt) := {λ ∈ C : λId− Tt is invertible}, (3.43)

is cyclic, i.e. for all reiα ∈ σ(Tt) also r · eikα ∈ σ(Tt) for all k ∈ Z. Furthermore,
for the spectral radius r(Tt) we have r(Tt) = 1 and, in particular, it holds

σ(Tt) ⊂ B1(0).
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Note that, the multiplicativity of the point spectrum σp(Tt) follows because Tt
is an algebra homomorphism, and thus, the product and powers of eigenfunctions
are again eigenfunctions. On the other hand, verifying that the whole spectrum
σ(Tt) is cyclic, requires fine arguments [Schaefer 1974, Theorem 4.4].

Additionally, a decomposition of the spectrum tells if the flow is (eventually)
invertible. This is stated in the following theorem.

Theorem 3.24 (Spectrum of Koopman semigroups; [Scheffold 1971]). Under the
assumptions of Theorem 3.23, one of the following cases holds

i. σ(Tt) ⊂ S1 for all t > 0 which is the case if and only if φt is a bijective map
on X for all t > 0.

ii. for all t > 0 there exists a cyclic set Mt ⊂ S1 with σ(Tt) = {0} ∪Mt. This
is the case, exactly when the global attractor A does not coincide with X, is
given by A = φt(X) for some t ∈ R+ and φs is injective on A for all s ∈ R+.

iii. σ(Tt) = B1(0) for all t > 0.

Theorem 3.24 states that from the spectrum Koopman semigroup alone we
can only infer limited statements about the dynamical systems. Fortunately, the
investigation of the spectrum of the Koopman operator on C(X) (and related spaces
such as Ck(X) or L2(X,µ)) does not end here and has produced many desirable
results – such as ergodic partitioning of the state space [Küster 2015, Mezić 1999,
Mezić 2005] or the concept of principal eigenvalues [Kvalheim 2021], which we will
encounter again in Section 6.3.3.

Another important class of observables for the Koopman semigroup is L2(X,µ)
for some invariant measure µ, see Example 2.42. This setting is one of the pillars
of ergodic theory. Analysis in this context focuses on the asymptotic behavior of
the system but comes at the price that the point evaluation L2(X,µ) ∋ g 7→ g(x)
for x ∈ X may not even be well-defined. The feature of bounded point evaluation
is important for practical applications because it ensures robustness in the mea-
surement process. We view this “restriction” as good and exciting motivation for
investigating different underlying function spaces for the Koopman operator. In
particular, it encourages looking at reproducing kernel Hilbert spaces (or Banach
spaces).

3.3.1 Reproducing kernel Banach space domains

Both Koopman theory and reproducing kernel Hilbert spaces (RKHS) aim to trans-
late problems into a functional analytic setting. There are many texts that investi-
gate this fruitful connection; the following list is only a very short collection of beau-
tiful directions in this area [Budisic 2012, Eisner 2015, Williams 2015, Korda 2018a,
Saitoh 2016, Rudi 2020].

Due to their conceptual resemblance, it is not surprising that there has been
work that merged both fields of Koopman and RKHS theories. Among these
are: [Kawahara 2016, Williams 2015, Rosenfeld 2022, Das 2018, Alexander 2020,
Klus 2020] for dynamic mode decomposition on RKHS, [Ishikawa 2018] for metrics
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on dynamical systems, [Ikeda 2022a, Abanin 2017, Cowen 1995] in complex analy-
sis, [Rosenfeld 2019] for system identification, [Zagabe 2023] for stability analysis,
[Das 2018] for spectral analysis of the Koopman operator, [Das 2021] for compact-
ification of unitary Koopman semigroups and weather prediction [Froyland 2021].

Our work on Koopman theory on reproducing kernel Banach spaces (RKBS)
aims at generalizing the treatment of Koopman theory on RKHS to RKBS and to
lay a base of elementary properties of Koopman operators on RKBS to build on for
future research in this direction. In our opinion, the properties that make RKBS
interesting for Koopman analysis are the following

1. Continuous point evaluation: For all x the point evaluations g 7→ g(x) are
continuous in g with respect to the Banach space norm. This assures robust-
ness, with respect to the observable g, of measurements g(x) in already single
events x.

2. Explicitness: The kernel gives access to the point evaluations and the geome-
try of the space. This allows explicit computations of orthogonal projections,
such as in kernel dynamic mode decomposition [Williams 2015].

For the notion of RKBS we follow [Lin 2022], because their notion of RKBS
unifies several other existing concepts of of RKBS. Furthermore, it follows parallel
ideas to the well-understood case of RKHS. This analogy becomes especially useful
in situations where a technical treatment of RKBS runs the risk of concealing the
underlying arguments.

Our analysis is based on the interplay between the Koopman operator and its
adjoint, the Perron-Frobenius operator. Both operators enjoy different advantages
which we try to transfer through their intimate dual relation.

Definition 3.25. Let (B,B′, ⟨·, ·⟩, k) be an RKBS on X with kernel k. For a con-
tinuous time dynamical system (X, (φt)t∈R+) the Koopman semigroup consists of
the operators Tt for t ∈ R+, which are, as usual, given by Tt : D(Tt)→ B where

Ttg := g ◦ φt for g ∈ D(Tt) := {h ∈ B : h ◦ φt ∈ B}. (3.44)

For discrete time dynamics f : X → X we consider the Koopman operator T :
D(T )→ B with

Tg := g ◦ f for g ∈ D(T ) := {h ∈ B : h ◦ f ∈ B}.

The explicit treatment of the domain D(Tt) respectively D(T ) indicates that it
is not always the case that the Koopman operators Tt will be defined on the whole
space. It can even easily happen that this domain is trivial, as we show in the
following simple example.

Example 3.26. Consider the RKHS (Rn,Rn, ⟨·, ·⟩, k) on X = Rn where ⟨·, ·⟩ de-
notes the euclidean inner product and k be corresponding kernel. For x ∈ Rn we
interpret it as a function x̂ on Rn given by

x̂ : Rn → R, x̂(a) := ⟨a, x⟩.
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That means the RKHS (Rn,Rn, ⟨·, ·⟩, k) consists of linear functionals on Rn. There-
fore, non-linear dynamics f cannot induce a Koopman operator on the RKHS with
a full domain. For instance, let f(x) := ∥x∥ · x be a discrete time dynamics then
D(T ) = {0}.

The domain of the Koopman operator describes how well the RKBS is adapted
to the dynamics and opens up the analysis of the system via the Koopman operator.
Therefore, the interplay between the domain of Tt, boundedness of Tt, and its adjoint
operator, the Perron-Frobenius operator, is the central aspect of our investigation.

For defining the Perron-Frobenius operator on RKBS we are led by the well-
studied case of the Perron-Frobenius operator on the space of measures M(X) for
dynamical systems (X, (φt)t∈R+) on compact sets X. For dirac measures δx in
x ∈ X, the Perron-Frobenius operator Pt on the space of measures M(X) acts by
Ptδx = δφt(x). The Perron-Frobenius operator on RKBS acts in the same way.

Remark 3.27. We will denote the Perron-Frobenius operator on RKBS by Kt

following [Kawahara 2016]. We hope there will not be any confusion due to the
nomenclature because the letter K refers to the operator acting on the kernel func-
tions k(x, ·) and not to Koopman.

Definition 3.28 (Perron-Frobenius operator on RKBS; [Kawahara 2016]). Let
(B,B′, ⟨·, ·⟩, k) be an RKBS on X with kernel k. For a continuous time dynamical
system (X, (φt)t∈R+), we call the semigroup (Kt)t∈R+ the Perron-Frobenius semi-
group, where for t ∈ R+ the operator Kt : Span{k(x, ·) : x ∈ X} → Span{k(x, ·) :
x ∈ X} is defined by

Kt

(
m∑
i=1

aik(xi, ·)
)

:=
m∑
i=1

aik(φt(xi), ·), (3.45)

for a1, . . . , am ∈ R. For discrete time dynamical systems with dynamic f : X → X
the Perron-Frobenius operator Kf : Span{k(x, ·) : x ∈ X} → Span{k(x, ·) : x ∈ X}
is given by

Kfk(x, ·) := k(f(x), ·) for x ∈ X (3.46)

and extended linearly to Span{k(x, ·) : x ∈ X}.

In order to make the definition (3.45) respectively (3.46) meaningful we need to
make the assumption that Span{k(x, ·) : x ∈ X} is linearly independent.

Assumption 3.29. Span{k(x, ·) : x ∈ X} is linearly independent.

Remark 3.30. Note that in order to extend the definition of Kt to the closure of
Span{k(x, ·) : x ∈ X} we need continuity properties of Kt which we will address in
the next section.

We were imprecise when we called the Perron-Frobenius operator the adjoint of
the Koopman operator – it’s rather the other way around!

Proposition 3.31. The Koopman operator T is the adjoint of the Perron-Frobenius
operator K in the sense of Definition 2.75.
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We revisit this result in Section 6.1 in Chapter 6, in Lemma 6.6 where we give
a proof, where the notion of adjoint operator in RKBS is treated with more care.

A frequent encounter for Koopman and Perron-Frobenius operator on RKBS is
the following asymmetry in their properties: The functional description Ttg := g◦φt
can be stated easily but it can be difficult to verify for which g in the function space
B it holds that Ttg is still an element of B. On the other hand, the Perron-Frobenius
operator Kt is defined on the (dense) set Span{k(x, ·) : x ∈ X}, but at the same time
establishing a functional expression for Kth for an arbitrary element h ∈ B′ is not
obvious. In Theorem 6.7 we illustrate that these trade-offs relate to the closability
of the Perron-Frobenius operator. In order to avoid additional notations we present
some of the statements from Theorem 6.7 informally and consider discrete time
dynamical systems.

Let (B,B′, ⟨·, ·⟩, k) be an RKBS on X with kernel and f : X → X be a map.

1. If f̂ : X → X is another map then

KfKf̂ = Kf◦f̂ . (3.47)

2. Under a certain density assumption, see (2.88), it holds

f = f̂ if and only if Kf = Kf̂ . (3.48)

3. The Koopman operator Tf is a closed operator and is bounded if and only
if

D(Tf ) = B. (3.49)

4. If X is compact, the map x 7→ k(x, ·) ∈ B′ is continuous, B embeds
continuously and densely into C(X) and X has infinitely many points
then Kf is not closed.

We give a precise and extended statement and proof of the above results in The-
orem 6.7 of Chapter 6. Here, we only want to emphasize the underlying concepts.

Property (3.47) states that applying the Perron-Frobenius operator is a covariant
functor, a property that is inherited from its natural definition. The property (3.48)
tells us that we maintain all the information about the dynamics when considering
the Perron-Frobenius operator Kf instead of the dynamics f . The condition (3.49)
tells us that the boundedness of Tf is decided by its domain. The last of the above
statements is in a similar direction and shows that in many cases we cannot expect
the Perron-Frobenius operator to be closed. This shows that boundedness of the
Koopman operator is a subtle question whose importance we want to address in
the following paragraph.
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Boundedness of the Koopman and Perron-Frobenius operators From a
practical and theoretical perspective, the boundedness of Tf and Kf is an appealing
property. For applications, it represents robustness with respect to the observables
g ∈ B, respectively k(x, ·) ∈ B′. For theoretical investigations boundedness lies
at the core of spectral analysis or, as stated around (3.49), determines that the
Koopman operator can be defined on any element g ∈ B.

Remark 3.32. One reason why boundedness of the Perron-Frobenius operator on
RKBS is more subtle than for the Perron-Frobenius operator on M(X), is that the
point evaluations in C(X) are extremal points of the unit ball in the dual space
C(X)∗. This geometric characterization of the point evaluations does not have to be
true in RKBSs.

Remark 3.32 emphasizes the importance of the geometry of the RKBS for the
study of the Koopman and Perron-Frobenius operators on such spaces, see for
example Proposition 6.27 in which we give a geometrical condition for the Koopman
semigroup to be contractive.

It is important to point out that our results are conservative. The reason is
that the choice of RKBS should be adapted to the dynamical system. Our work
in [Ikeda 2022b] respectively Section 6.1 aims at providing a framework, examples,
and discussions of natural structures for Koopman and Perron-Frobenius operators
on RKBS, which hopefully can be of help for future work on combining RKBS and
Koopman theory. To bypass the limits of our general treatment we emphasize the
need for specific investigations of adapted choices of RKBS to perform detailed anal-
ysis such as in [Saitoh 2016, Ikeda 2022a, Ishikawa 2021, Abanin 2017, Cowen 1995,
Doan 2017, Chacon 2007, Carswell 2003], to name only a few.

Preservation of structure The lifting process from the dynamical system to the
Koopman operator is natural and should preserve structural properties of the dy-
namical systems, such as symmetry, sparsity, and conjugacy. These three concepts
translate into Koopman language in the following way

1. Symmetry: A bijective map ϕ : X → X is called a symmetry for the discrete
time dynamics f : X → X, if it holds

f ◦ ϕ = ϕ ◦ f.

For the Koopman operator this translates to the following commutation rela-
tion, see [Salova 2019],

TϕTf = TfTϕ (3.50)

where Tf , Tϕ : RX → RX are the Koopman operators for f respectively ϕ and
RX denotes the set of all functions from X to R.

2. Sparsity: Let (X, (φt)t∈R+) be a dynamical system on a cube X ⊂ Rn, in-
duced by a differential equation ẋ = f(x). Let (I, fI) be subsystem with
corresponding flow φIt . We show in Section 6.3 that subsystems (I, fI), see in
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Section 3.1 and Chapter 4 for the notations, induce an intertwining relation

TΠI
Tt = T It TΠI

for all t ∈ R+ (3.51)

for the Koopman operators Tt for the whole system, the Koopman operator
T It for the subsystem and the composition operator TΠI

. See Proposition 6.38
for the precise statement.

3. Conjugacy: We call two discrete time systems f : X → X on a set X and
g : Y → Y on a set Y conjugated if there exists a bijective map ψ : X → Y
such that

ψ ◦ f = g ◦ ψ.

Again, this functional relation between the two maps carries over to a simi-
larity relation of their Koopman operators, namely

TfTψ = TψTg. (3.52)

In Proposition 6.9 and Section 6.2.2 we show that the relations (3.50), (3.51)
and (3.52) translate in dual form to the Perron-Frobenius operator on RKBS. With
the notations from (3.50), (3.51) and (3.52) it holds for RKBS (B,B′, ⟨·, ·⟩, k) on X
with kernel that

1. Symmetry (see Proposition 6.31): LetKf respectivelyKϕ the Perron-Frobenius
operators for f, ϕ : X → X. Then it holds

KfKϕ = KϕKf

2. Sparsity (see Proposition 6.33): Let (BI ,B′
I , ⟨·, ·⟩I , kI) be an RKBS on ΠI(X)

with kernel. Then
KΠI

Kt = KI
tKΠI

where KΠI
: Span{k(x, ·) : x ∈ X} → Span{kI(y, ·) : y ∈ ΠI(X)} with

KΠI
k(x, ·) := kI(ΠI(x), ·) and (Kt)t≥0 the Perron-Frobenius operator for the

whole system and (KI
t )t∈R+ the Perron-Frobenius semigroup for the subsys-

tem.

3. Conjugacy (see Proposition 6.9): Let (Bψ,B′
ψ, ⟨·, ·⟩ψ, kψ) be the pullback RKBS

with respect to ψ, see RKBS on Y with kernel. Let Kf and Kg be the Perron-
Frobenius operators for the two discrete time systems induced by f :→ X and
g : Y → Y . Then

TψKf = KgTψ

where Tψ : B → Bϕ is the composition operator isomorphism from Lemma
2.72.

The second point, sparsity, provides a good transition to the following section,
in which we discuss the spectral decompositions of the Koopman operator on C(X)
for sparse dynamical systems.
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3.3.2 Sparsity structures for Koopman operators

Our approach towards sparse structures of the Koopman semigroup has close con-
nections to the one for symmetry exploitation for Koopman theory in [Salova 2019].
The text [Salova 2019] acted also as a very illustrative guideline for how we wanted
to exploit sparse structure via the Koopman operator – namely through an in-
tertwining relation between the Koopman operators for the whole system and the
Koopman operators for the subsystems.

We address sparsity in the sense of Section 4. For the Koopman on C(X)
and Perron-Frobenius operator on M(X), we are particularly interested in certain
spectral objects such as eigenfunctions and eigenmeasures and their decoupling
into corresponding objects for subsystems. A related approach in the special case
of cascaded systems can be found in [Mohr 2020b].
Definition 3.33. An element g ∈ C(X) (respectively µ ∈ M(X)) is an eigenfunc-
tion (respectively eigenmeasure) with eigenvalue λ ∈ C of the Koopman (respectively
Perron-Frobenius) operator if g ̸= 0 (respectively µ ̸= 0) and for all t ∈ [0,∞) we
have

Ttg = eλtg (respectively Ptµ = eλtµ). (3.53)
We will show that certain eigenfunctions and eigenmeasures can be decomposed

according to subsystems. Therefore, we work with the setting from Chapter 4. We
consider the ordinary differential equation on Rn given by

ẋ = f(x), x(0) = x0 ∈ Rn (3.54)

for a Lipschitz continuous vector field f : Rn → Rn. As usual in this text, we denote
the corresponding semiflow by φt for t ∈ R+. We restrict the dynamics to a subset
X ⊂ Rn which we assume to be positively invariant. We understand sparsity in
the sense of subsystems from Section 3.1 and Chapter 4 and use the corresponding
notion, i.e. a subsystem induced by I ⊂ [n] with flow φI . The Koopman operator
for the subsystem induced by I with corresponding constraint set ΠI(X) is denoted
by T It . Note that by Theorem 4.23 the set ΠI(X) is also positively invariant. For
simplicity, we consider T It to act on C(ΠI(X)); the Perron-Frobenius operator for
the subsystem is denoted by P It acting on M(ΠI(X)).

Sparsity in the language of the Koopman operator The definition of spar-
sity via (3.6)

φIt ◦ΠI = ΠI ◦ φt
translates to

VIT
I
t = TtVI where VI : C(ΠI(X))→ C(X) with VIg := g ◦ΠI . (3.55)

The relation (3.55)) builds the starting point for our investigations. By dualizing we
immediately obtain a corresponding relation between the Perron-Frobenius opera-
tors P It and Pt on M(ΠI(X)) respectively M(X). Regarding eigenvectors of the two
semigroups, as a direct consequence of (3.55) we get the following decomposition
result.
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Figure 3.12: Illustration of sparse decomposition of the Koopman operator: 1. Identification
of subsystems, 2. The subsystems induce a block structure for the Koopman operator (lift), 3.
Exploitation of the block structure via decoupling of the lifted subsystems.

Proposition 3.34 ([Eisner 2015, page 233]). Let X be positively invariant and I
induce a subsystem. Then

1. If g ∈ C(ΠI(X)) is an eigenfunction with eigenvalue λ for the Koopman op-
erator T It for the subsystem then ĝ ∈ C(X) defined by ĝ := g ◦ ΠI is an
eigenfunction with eigenvalue λ of the Koopman operator Tt for the whole
system.

2. If µ ∈ M(X) is an eigenmeasure with eigenvalue λ of the Perron-Frobenius
operator Pt, so is the push forward measure of µ by ΠI , i.e. µI := (ΠI)#µ,
an eigenmeasure with eigenvalue λ for the Perron-Frobenius operator for the
subsystem P It .

Decomposition of eigenvectors In our article [Schlosser 2022b] we intended to
reverse the statement of Proposition 3.34, at least partially. This aims at computing
eigenfunctions and eigenmeasures for the whole system based on computations of
eigenfunctions and eigenmeasures for the subsystems, and vice versa. In Figure
3.12 we illustrate the idea via the simple sparse dynamical system from (3.5), i.e.

ẋ1 = f1(x1)
ẋ2 = f2(x1, x2)
ẋ3 = f3(x1, x3)

For our decomposition result on the Perron-Frobenius operator, Theorem 6.39 in
Chapter 6, we restrict to non-negative eigenmeasures of the Perron-Frobenius semi-
group with eigenvalue λ = 0. These are exactly the invariant measures. Restricting
to invariant probability measures allows us to use the crucial property that a certain
set that we work with is compact. For eigenmeasures with different eigenvalues, the
same construction does not guarantee compactness for the corresponding set.

In Theorem 6.39 we characterize exactly the invariant probability measures that
decompose according to subsystems. Here we state a slightly informal version of
Theorem 6.39.

Theorem 3.35 (Informal). Assume that I1, . . . , IN induce subsystems for (3.54)

such that
N⋃
k=1

Ik = {1, . . . , n} and that X is compact and invariant and decomposes
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accordingly (see Definition 4.17). For k = 1, . . . , N let µk ∈ M(ΠIk
(X)) be an

invariant probability measure for the subsystem induced by Ik. Then there exists an
invariant probability measure µ ∈M(X) such that

(ΠIk
)#µ = µk for all k = 1, . . . , N

if and only if for all k, l ∈ {1, . . . , N}

(ΠIk∩Il
)#µk = (ΠIk∩Il

)#µl

This statement is motivated by the interpretation that the subsystem structure
induces a block-structure of the Koopman respectively Perron-Frobenius operator,
as illustrated in Figure 3.12.

In the case of eigenvectors of the Koopman operator, the situation is more subtle.
The difference is that M(X) as the dual space of C(X) enjoys more compactness
properties than C(X) itself. An essential argument in the proof of Theorem 6.39
was the Markov-Kakutani Fixpoint theorem, which relies heavily on the weak-*
compactness of the unit ball in M(X). For the Koopman operator, we overcome this
problem by restricting to a particular class of dynamical systems, namely systems
with globally asymptotically stable fixed point, and further distinguished spectral
objects – namely principal eigenvectors. Because these eigenvectors are uniquely
determined [Kvalheim 2021] by certain smooth properties, see Definition 6.41, we
show in Theorem 6.44 that the principal eigenvectors can be recovered from the
subsystems.

Computational applications We follow the strategy for computational exploita-
tion of sparsity, from Section 3.1, of decoupling the systems into their subsystems.
In Section 6.3.4 we present computational applications of subsystems based on The-
orems 6.39 and 6.44 to a sparse computation of extremal invariant measures and
extended dynamic mode decomposition (EDMD). For EDMD we observed a lower
computational cost and higher accuracy when we incorporate a priori knowledge on
subsystems. This increase in performance is an effect of reducing the dimension of
the problem and was observed as well in sparse computation for the global attractor
in Section 5.3.

Sparsity and data Starting from [Budisic 2012], Koopman theory became a
powerful tool in data analysis and thus, we should put our decomposition method
into context with other sparse or sparsity promoting data-driven methods for Koop-
man theory. Data analysis got accessible to Koopman theory through the celebrated
DMD. Therefore, we focus on (E)DMD for the following discussion on data-driven
sparse methods for Koopman theory. The strength of our approach, compared to
other sparsification techniques based on data, is that we make use of the inherited
(exact) sparse structure of the dynamical system. Hence, for such cases, the sparse
structure in the data comes naturally and allows lower dimensional treatments of
the system, although it needs to be known a priori. In that respect, our approach
is related to [Baddoo 2021] where physics-informed DMD is investigated and Chap-
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ter 4.5 in [Baddoo 2021] already mentions how EDMD for specific cascade systems
can be decoupled. In the case where prior information on the sparse structure
of the underlying dynamical process, is not available, it is important to incorpo-
rate sparsity in the data. It is possible to directly implement sparsity in dynamic
mode decomposition, which includes restricting to low-rank matrices [Kutz 2016,
Chapter 9] and [Pan 2021, Balakrishnan 2021] or penalizing non-sparsity via ℓ1

[Jovanović 2014, Kutz 2016].



Chapter 4

Sparsity structures and
decompositions for dynamical

systems

In this chapter, we present a decomposition of dynamical systems based on certain
sparse structures. Based on ideas from [Chen 2018], we defined in [Schlosser 2020]
sparse sub-structures, which we will call subsystems. Our goal is to provide a global
analysis of the dynamical system via an interplay of analyzing the subsystems and
their interconnections. The idea for our notion of subsystems is driven by the obser-
vation that in some systems there are families of states that evolve independently
of others. Such families are the subsystems. We will give a precise definition of sub-
systems and show how they can be identified via the so-called sparsity graph of the
dynamics. The main result in this section is that subsystems induce decouplings of
the dynamical systems which give rise to decompositions of several classical objects
from dynamical systems theory.

In terms of complexity, this approach proves beneficial whenever the dynamical
system is sparse and the curse of dimensionality is inherent. Given a dynamical sys-
tem and a related task at hand, we propose the following decoupled computational
approach:

1. Identifying (a good class of) subsystems: This will be done Section 4.7 via
simple graph algorithms.

2. Solving the task on each of the systems obtained from the first step: This
depends on the problem at hand and a compatible method for solving the
task on each subsystem.

3. Combining the results from the second step to a global object/statement/result:
Here the interconnection between the subsystems plays an essential role.

Point 3. in this list, is the main part of the analysis in this chapter. We get back
to point 2. in the next chapters when we merge this procedure with dynamic mode
decomposition, or sum-of-squares technique for approximating the global attractor,
maximum positively invariant sets, and the region of attraction for sparse systems.
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4.1 Subsystems of dynamical systems
In this section, we want to define subsystems of a given continuous time dynamical
system

ẋ = f(x), x0 ∈ Rn for f = (f1, . . . , fn) : Rn → Rn locally Lipschitz continuous.
(4.1)

We further assume that the corresponding flow map φt exists for all t ∈ R+.
We restrict to continuous time dynamical systems but discrete time dynamical

systems xk+1 = f(xk) can be treated in the same way. We will often use the
notation [n] for {1, . . . , n} for natural numbers n ∈ N.

A subsystem of (4.1) consists of certain subsets of the states of the systems.
Therefore, we use the notation RI := ∏

i∈I
in the following definition of subsystems.

Definition 4.1 (Induced subsystem). Let J ⊂ N and f : RJ → RJ . A subsystem
of a dynamical system on RJ with dynamics f is a set of states (xi)i∈I with I ⊂ J
such that fI := ΠI ◦ f = (fi)i∈I only depends on the states (xi)i∈I index by I. In
that case, we say the pair (I, fI), or sometimes just I, induces a subsystem of (J, f).

To make it formally precise what we mean by “the function fj depends on xi”
we define it as follows:

For 1 ≤ i ≤ n, a function g : Rn → Rm does not depend on the coordinate xi
if for all (x1, . . . , xi−1, xi+1, . . . , xn) ∈ Rn−1 and any two xi, x′

i ∈ R it holds

g(x1, . . . , xi−1, xi, xi+1, . . . , xn) = g(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn). (4.2)

For I ⊂ [n] we say g depends on the set of variables (xi)i∈I if g does not depend
on (or is independent of) the remaining variables (xj)j /∈I . We say the function
g depends explicitly on xi if it is not independent of xi.

Remark 4.2. We typically consider the initial index set J = [n], hence we talk
about dynamical systems on Rn. Up to relabelling, we can always assume that J is
of this form. That is why in the following we will mostly look at subsystems induced
by (I, fI) for sets I ⊂ [n].

Example 4.3. The trivial subsystems are the empty system, induced by (∅, f∅),
and the full system is induced by ([n], f[n] = f). For a less trivial example let
f : R5 → R5 be given by

f(x1, . . . , x5) =
(

2x1, sin(x1x2), e−x3 1
1 + x2

1x
2
4
, x4 − x1, sin(x2x4)x5

)
.

The subsystems are induced by the sets

∅, {1}, {1, 2}, {1, 3, 4}, {1, 4}, {1, 2, 4}, {1, 2, 4}, {1, 2, 3, 4}, {1, 2, 3, 4, 5}. (4.3)

In the above example, we can observe that the family of sets inducing subsystems
is closed under taking unions and intersections.
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Lemma 4.4. Let (I, fI) and (K, fK) induce subsystems of a system induced by
([n], f). Then (I ∩ K, fI∩K) and (I ∪ K, fI∪K) induce subsystems. Further (I ∩
K, fI∩K) is the largest set contained in (I, fI) and (K, fK) which still induces a
subsystem. The pair (I∪K, fI∪K) is the smallest set containing (I, fI) and (K, fK)
which induces a subsystem.

Proof. It suffices to show that I∩K and I∪K induce subsystems whenever I and K
do. We begin by showing that this is true for I∩K. Let I and K induce subsystems.
Let r ∈ [n] be an index for which fI∩K depends explicitly on xr. Because fI∩K
are components of fI and fK , also fI and fK depend explicitly on xr. Because I
and K induce subsystems, r belongs to I and K, thus r ∈ I ∩K. This shows that
I∩K induces a subsystem. For I∪K the argument is even easier. The functions fI
respectively fK are independent of the variables [n] \ I respectively [n] \K. Thus,
fI∪K is independent of the variables [n]\(I∪K), i.e. I∪K induces a subsystem.

Remark 4.5. Lemma 4.4, together with the fact that ∅ and [n] induce subsystems,
states that the family of subsystems forms a topology on the discrete set [n].

Guided by product systems from Example 3.2, the idea of a subsystem is that
we can treat it as a lower dimensional dynamical system.

Let (I, fI) induce a subsystem. We view fI as a vector field on RI by identifying
fI with the map from RI to RI given by

(xi)i∈I 7→ (fi(x))i∈I where x = (x1, . . . , xn) ∈ Rn satisfies ΠI(x) = (xi)i∈I .
(4.4)

For instance we can choose x = (x1, . . . , xn) with xj = 0 whenever j /∈ I.

Due to the definition of a subsystem, the map (4.4) is indeed independent of the
specific choice of such x. We then can rephrase the definition of subsystems in terms
of a functional relation between f , fI , and ΠI . Namely, (I, fI) induces a subsystem
if and only if

fI ◦ΠI = ΠI ◦ f. (4.5)

The semiflow induced by fI : RI → RI is denoted φIt : RI → RI for t ∈ R+. The
statement of Corollary 4.6 is that by virtue of (4.5) the flows of the whole system
and the subsystem are connected as follows

φIt ◦ΠI = ΠI ◦ φt. (4.6)

The relation (4.6) states that subsystems are so-called factor systems, see for in-
stance [Eisner 2015, Sinai 1989]. This additionally motivates our goal of transferring
properties from one system to the other.

Corollary 4.6. Let (I, fI) induce a subsystem. Then ẋI = fI(xI) induces a well
defined dynamical system and (4.6) holds.
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Proof. Because f is locally Lipschitz continuous the same is true for fI interpreted
as a map from RI to RI as in (4.4). It follows that ẋI = fI(xI) is well defined and
induces a dynamical system on RI . For the second claim let xI ∈ RI and x ∈ Rn
be any vector extending xI to a vector in Rn. Let us denote x = (xI , x̂I) after a
possible relabelling of the components. We have for the curve t 7→ ΠIφt(x)

d
dt(ΠI ◦ φt)(x) = ΠI

d
dtφt(x) = ΠIf(φt(x)) = fI(φt(x)) = fI(ΠI(φt(x)).

Hence for all x̂I we have that ΠIφt(xI , x̂I) solves the differential equation ẏ = fI(y)
with initial condition y(0) = xI . Hence, it follows that ΠIφt(x) = φIt (xI).

By Corollary 4.6 the dynamics fI induce a dynamical system on xI . Hence, we
may consider (I, fI) a dynamical system and can extend the concept of subsystems
also to subsystems themselves.

Lemma 4.7. Let (I, fI) be a subsystem of (J, fJ) and (J, fJ) be a subsystem of
(K, fK). Then (I, fI) is a subsystem of (K, fK).

Proof. From the definition of subsystems we have I ⊂ J ⊂ K and by (4.5)

fI ◦ΠI = ΠI ◦ fJ , fJ ◦ΠJ = ΠJ ◦ fK .

It follows

ΠI ◦ fK = ΠI ◦ΠJ ◦ fK = ΠI ◦ fJ ◦ΠJ = fI ◦ΠI ◦ΠJ = fI ◦ΠI

because for the canonical projections we have ΠA ◦ΠB = ΠA whenever A ⊂ B.

In the following sections, we study the interplay between properties of the whole
system and properties of the subsystems.

4.2 Properties inherited by subsystems

In this section, we investigate some properties that are inherited from the whole
system to the subsystem. This will include equilibrium points, periodic orbits,
invariance, attraction, and stability.

Our main ingredient, now and in the following, is (4.6). Namely, let I ⊂ [n]
induce a subsystem, then

φIt ◦ΠI = ΠI ◦ φt for all t ∈ R+.

Most of the results we mention in this section follow directly from this relation
and some can be found in [Eisner 2015, Chapter 2] and [Sinai 1989, Chapter 1].

For our analysis of subsystems, we begin with the simplest objects – equilibrium
points. A point x∗ ∈ Rn is an equilibrium for the dynamical system (4.1) if and
only

f(x∗) = 0.
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By definition of a subsystem, we get

fI(ΠI(x∗)) = ΠI(f(x∗)) = ΠI(0) = 0, (4.7)

which means that ΠI(x∗) is an equilibrium point for the subsystem induced by
I. In Proposition 4.8, we list some more properties that are inherited by sub-
systems. The statements from Proposition 4.8 follow immediately from (4.6), see
also [Eisner 2015, Sinai 1989]. The notion of positive invariance, attraction, and
stability can be found in Definitions 2.2 and 2.3.
Proposition 4.8. Let I ⊂ [n] induce a subsystem for (4.1). Then,

1. If x∗ ∈ Rn is equilibrium point for the whole system, then ΠI(x∗) ∈ RI is an
equilibrium point for the subsystem.

2. If x ∈ Rn has a periodic orbit with period T > 0 for the whole system, i.e.
φT (x) = x, then ΠI(x) ∈ RI has a periodic orbit with period T > 0 for the
subsystem.

3. If M ⊂ Rn is (positively) invariant under the flow of the whole system then
ΠI(M) ⊂ RI is (positively) invariant under the flow for the subsystem.

4. If M is attractive under the flow of the whole system then ΠI(M) is attractive
under the flow for the subsystem.

5. If M ⊂ Rn is stable under the flow of the whole system then ΠI(M) is stable
under the flow for the subsystem.

6. If M is asymptotically stable under the flow of the whole system then ΠI(M)
is asymptotically stable under the flow for the subsystem.

Proof. The first statement was shown in (4.7). For periodic orbits we use (4.6) and
get for a point x ∈ Rn and T ∈ R+ with φT (x) = x that

φIT (ΠI(x)) = ΠI(φT (x)) = ΠI(x).

To show the third statement, we begin with positive invariance. Let M be positively
invariant, i.e. φt(x) ∈M for all x ∈M and t ∈ R+. It follows for all x ∈M

φIt (ΠI(x)) = ΠI(φt(x)) ∈ ΠI(M),

i.e. that ΠI(M) is positively invariant for the subsystem. For the statement con-
cerning invariance, let t ∈ R+, y ∈ ΠI(M) and x ∈ M with ΠI(x) = y. By
invariance of M there is z ∈ M with φt(z) = x. Hence for ΠI(z) ∈ M we get
φIt (ΠI(z)) = ΠI(φt(z)) = ΠI(x) = y. Since y ∈ M was arbitrary it follows that
ΠI(M) is invariant. To show the fourth statement, let y ∈ RI and x ∈ Rn with
ΠI(x) = y. Because M is attractive, for all t ∈ R+ there exists mt ∈ M such that
∥φt(x)−mt∥2 → 0 as t→∞. For the points ΠI(mt) ∈ ΠI(M), we get∥∥∥φIt (y)−ΠI(mt)

∥∥∥
2

=
∥∥∥φIt (ΠI(x))−ΠI(mt)

∥∥∥
2

= ∥ΠI(φt(x))−ΠI(mt)∥2
= ∥ΠI(φt(x)−mt)∥2 ≤ ∥φt(x)−mt∥2 → 0 as t→∞.
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Where the inequality in the above estimate holds because the projection ΠI is a
contraction. This shows that ΠI(M) is attractive for (I, fI). For 5., let UI ⊂ RI be
an open neighbourhood of ΠI(M). We define

U := {x ∈ Rn : ΠI(x) ∈ U} = {x = (x1, . . . , xn) ∈ Rn : (xi)i∈I ∈ U}.

Then U ⊂ Rn is an open neighbourhood of M and ΠI(U) = UI . By stability of M ,
we can find a neighborhood V of M such that φt(V ) ⊂ U for all t ∈ R+. We claim
that VI := ΠI(V ) is an open neighbourhood of ΠI(M) such that φIt (VI) ⊂ UI for
all t ∈ R+. From M ⊂ V we obtain ΠI(M) ⊂ ΠI(V ) = VI . Since ΠI is an open
map, i.e. it maps open sets to open sets, we get that VI is open. Finally, we get,
again by (4.6),

φIt (VI) = φIt (ΠI(V )) = ΠI(φt(V )) ⊂ ΠI(U) = UI .

This proves 5. The last statement is just a combination of 4. and 5.

Now we show that also the existence of Lyapunov functions (see Definition 2.8)
is inherited from the whole system to its subsystems.

Corollary 4.9. Let I induce a subsystem for (4.1). If there exists a strict Lyapunov
function V : Rn → R for the whole system then there exists a strict Lyapunov func-
tion VI : RI → R+ for the subsystem (I, fI) such that V −1

I ({0}) = ΠI(V −1({0}).

Proof. We use the intimate connection between asymptotically stable sets and strict
Lyapunov functions from Theorem 2.10. Because V is a strict Lyapunov func-
tion the set V −1({0}) is asymptotically stable. By Proposition 4.8 6., the set
ΠI(V −1({0})) is asymptotically stable for the subsystem. Again by Theorem 2.11,
there exists a Lyapunov VI for the subsystem with V −1

I ({0}) = ΠI(V −1({0})).

Conversely to the above Corollary, we show in Proposition 4.15 that Lyapunov
functions and Hamilton functions for the whole system can be obtained from sub-
systems.

Proposition 4.10. Let I induce a subsystem of (4.1). Then

1. If a function V : RI → R+ is a (strict) Lyapunov function for the subsystem
induced by I then V := V ◦ ΠI is a (strict) Lyapunov function for the whole
system.

2. If g is a Hamilton function for the subsystem (I, fI) then g := g ◦ ΠI is a
Hamilton function for the whole system.

Proof. This result is again an immediate consequence of (4.6). Let V be a Lyapunov
function for the subsystem induced by I. For V we get for all x ∈ Rn and t ∈ R+

V (φt(x)) = V (ΠI(φt(x)) = V (φIt (ΠI(x)) ≤ V (ΠI(x)) = V (x).

This shows that V is a Lyapunov function and that V is a strict Lyapunov function
whenever V is. An analog computation for g shows 2.
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We conclude this section by partially reversing points 4.-6. of Proposition 4.8.

Corollary 4.11. Let I induce a subsystem of (4.1) and M ⊂ RI be closed. Then,

1. If M is positively invariant under the flow of the subsystem induced by I then
Π−1
I (M) ⊂ Rn is positively invariant under the flow of the whole system.

2. If M is attractive under the flow of the subsystem induced by I then Π−1
I (M) ⊂

Rn is attractive under the flow of the whole system.

3. If M is asymptotically stable under the flow of the subsystem induced by I then
the set M̃ := Π−1

I (M) ⊂ Rn is asymptotically stable for the whole system.

Proof. The first statement is easily verified: Let x ∈ Π−1
I (MI) and t ∈ R+ then

ΠI(φt(x)) = φIt (ΠI(x)) ∈MI

by positive invariance of MI . Thus, Π−1
I (MI) is invariant. For the second statement,

let x ∈ Rn. Because M ⊂ RI is attractive, for each t ∈ R+ there exist mt =
(mt,i)i∈I ∈M with ∥∥∥φIt (ΠI(x))−mt

∥∥∥
2
→∞ as t→∞. (4.8)

For t ∈ R+ we define the points mt = (mt,1, . . . ,mt,n) ∈ Rn by

mt,j :=
{
mt,j , j ∈ I
(φt(x))j , j /∈ I

where (φt(x))j denotes the j-th component of φt(x) ∈ Rn. By construction we have
mt ∈ Π−1

I (M) and we get by (4.8)

∥φt(x)−mt∥2 =
∥∥∥φIt (ΠI(x))−mt

∥∥∥
2
→∞ as t→∞.

This shows that Π−1
I (M) is attractive. For the third statement, by Theorem 2.10,

we can find a strict Lyapunov function V : RI → [0,∞) for the subsystem induced
by I with M = V −1({0}). By Proposition 4.10 the function V := V ◦ΠI is a strict
Lyapunov function for the whole system with

Π−1
I (M) = Π−1

I (V −1({0})) = V
−1({0}) (4.9)

Therefore, by Theorem 2.10, the set Π−1
I (M) is asymptotically stable under the

flow of the whole system.

We use the above results from Proposition 4.10 and Corollary 4.11 as a transition
to the next Chapter in which we will investigate more properties of the whole system
that can be analyzed through (many) subsystems.
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4.3 Subsystem based decompositions of dynamical sys-
tems

In this section, we reverse the question from the previous section. Now we are
interested in properties of the whole system that can be inferred from the subsystems
only. We begin with the most fundamental question about conserving information
of the original dynamical system when considering only certain subsystems:

Can we recover the flow φ of the whole systems from flows of certain subsystems?

To answer this question, we will use again the relation (4.6). This relation states
that the flow φI of a subsystem induced by I ⊂ [n] tells us the components ΠI ◦φt =
φIt of the flow φ of the whole system. Thus, we can recover the flow φ from a family
of subsystems (I1, fI1), . . . , (Ik, fIk

) if the subsystems cover each state, i.e.

k⋃
l=1

Il = [n]. (4.10)

This leads to the following definition from [Schlosser 2020].

Definition 4.12 (Subsystem decomposition). We say that I1, . . . , Ik ⊂ [n] induces
a subsystem decomposition if Il induces a subsystem for l = 1, . . . , k and (4.10)
holds.

Remark 4.13. We sometimes also say that (I1, fI1), . . . , (Ik, fIk
) is a subsystem

decomposition if I1, . . . , Ik induces a subsystem decomposition.

As claimed, the next lemma shows that for subsystem decompositions we can
reconstruct the flow for the whole system from the flow of the subsystems.

Lemma 4.14. Let I1, . . . , Ik ⊂ [n] induce a subsystem decomposition with corre-
sponding flows φI1 , . . . , φIk . For x0 ∈ Rn the function x(t) := φt(x0) is the unique
map x(·) for which it holds

φIl
t (ΠIl

(x0)) = ΠIl
(x(t)) for l = 1, . . . , k for all t ∈ R+. (4.11)

Proof. That x(·) solves (4.11) follows from (4.6). That I1, . . . , Ik induces a subsys-
tem decomposition implies that each coordinate of a function x(·) solving (4.11) is
uniquely determined, i.e. the whole function x(·) is uniquely determined.

Next, we analyze how we can decompose objects of the whole system into their
counterparts in the subsystems. When decomposing sets according to subsystems
we use a “gluing” procedure. For index sets I1, . . . , Ik ⊂ [n] and sets Ml ∈ RIl for
l = 1, . . . , k we glue together the sets M1, . . . ,Mk to a set S(M1, . . . ,Mk) ⊂ Rn by

S(MI1 , . . . ,MIk
) = {x ∈ Rn : ΠIl

x ∈MIl
for l = 1, . . . , k} (4.12)

Our proposed decoupling procedure is illustrated in Figure 4.1 at an example
of a dynamical system that decomposes into two subsystems.
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Figure 4.1: Illustration of a decomposition procedure for a sparse dynamical system with two
subsystems induced by I and J .

Proposition 4.15 states that, for certain properties, the decomposition (4.12) is
indeed the correct way of “gluing together” sets obtained from the subsystems.

Proposition 4.15. Let I1, . . . , Ik ⊂ [n] induce a subsystem decomposition. Then,

1. x ∈ Rn is an equilibrium point (or has a periodic orbit with period T ) for
the whole system if and only if for all l = 1, . . . , k the point ΠIl

(x) is an
equilibrium point (or has a periodic orbit with period T ) for the subsystem
induced by Il.

2. If for 1 ≤ l ≤ k the set Ml ⊂ RIl is (positively) invariant under the flow
of the subsystem induced by Il then S(M1, . . . ,Mk) is (positively) invariant
under the flow of the whole system.

3. If for 1 ≤ l ≤ k the set Ml ⊂ RIl is compact and attractive under the flow
of the subsystem induced by Il then S(M1, . . . ,Mk) is compact and attractive
under the flow of the whole system.

4. If for 1 ≤ l ≤ k the set Ml ⊂ RIl is asymptotically stable under the flow of the
subsystem induced by Il then S(M1, . . . ,Mk) is asymptotically stable under
the flow of the whole system.

Proof. 1. A point x being an equilibrium point means f(x) = 0. Because
I1, . . . , Ik induces a subsystem decomposition, this is equivalent to fI(x) = 0
for all j = 1, . . . , k. The argument for periodic orbits is similar.

2. If M1, . . . ,Ml are positively invariant for the corresponding subsystems then
for each x ∈ S(M1, . . . ,Mk), i.e. it holds ΠIl

(x) ∈ Ml for all 1 ≤ l ≤ k, we
get for all t ∈ R+

ΠIl
(φt(x)) = φIl

t (ΠIl
(x)) ∈Ml.
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That shows φt(x) ∈ S(M1, . . . ,Ml), i.e. positive invariance of S(M1, . . . ,Ml).
For the statement concerning invariance, it suffices to note that invariance is
the same as positive invariance in forward and in backward time direction.
Positive invariance in backward time direction can be treated via the time-
reversing vector field −f . Note that the dynamical system induced by f and
−f have the same subsystems. Therefore, we can apply the first part of this
statement in the backward time direction as well and conclude the claim about
invariance.

3. Because the sets M1, . . . ,Mk are compact, also the set S(M1, . . . ,Mk) is com-
pact. We use that a compact set is attractive if and only if for all x ∈ Rn
it contains all accumulations points of the trajectory (φt(x))t∈R+ . Therefore,
let 1 ≤ l ≤ k, x ∈M+, R ∋ tm ↗∞ and y ∈ X with φtm(x)→ y. We have

φIl
tm(ΠIl

(x)) = ΠIl
φtm(x)→ ΠIl

(y).

Hence ΠIl
(y) is an accumulation point for the trajectory (φIl

t (ΠIl
(x)))t∈R+ .

Because Ml is compact and attractive, it follows ΠIl
(y) ∈Ml. In other words,

we have y ∈ S(M1, . . . ,Mk), which was to be shown.

4. Because for 1 ≤ l ≤ k, the set Ml is asymptotically stable for the sub-
system (Il, fIl

), we can find, by Theorem 2.10, a strict Lyapunov function
Vl : RIl → [0,∞) with V −1

l ({0}) = Ml. Using the Lyapunov functions
V1, . . . , Vk we construct another strict Lyapunov function V for the whole sys-

tem with V −1({0}) = S(M1, . . . ,Mk). We define by V (x) :=
k∑
l=1

Vl(ΠIl
(x)).

Indeed, we have V (x) ≥ 0, V (x) = 0 if and only if x ∈ S(M1, . . . ,Mk) and
also V (φt(x)) < V (x) for all x /∈ S(M1, . . . ,Mk). Again, from Theorem 2.10
we conclude that S(M1, . . . ,Mk) = V −1({0}) is asymptotically stable.

Combining Propositions 4.8 and 4.15, for the particular case of equilibrium
points, leads to the following corollary.

Corollary 4.16. Let (Rn, (φt)t∈R+) be a dynamical system given by ẋ = f(x) for
a Lipschitz continuous map f : Rn → Rn. Let I1, . . . , Ik ⊂ [n] induce a subsystem
decomposition. An equilibrium point x∗ ∈ Rn is

1. attractive if and only if for all 1 ≤ l ≤ k the point ΠIl
(x∗) is attractive for the

subsystem (Il, fIl
).

2. stable if and only if for all 1 ≤ l ≤ k the point ΠIl
(x∗) is stable for the

subsystem (Il, fIl
).

3. asymptotically stable if and only if for all 1 ≤ l ≤ k the point ΠIl
(x∗) is

asymptotically stable for the subsystem (Il, fIl
).

Proof. The necessity part in the statements follows from Proposition 4.8 4.-6. The
sufficiency in 1. and 3. is treated in Proposition 4.15 3. and 4. It remains to
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show that stability of ΠIl
(x∗) for all l = 1, . . . , k is also sufficient for stability of

x∗. Therefore, let U be an open neighbourhood of x∗, ε > 0 such that Bε(x∗) ⊂ U ,
and 1 ≤ l ≤ k. By stability of ΠIl

(x∗) for the subsystem induced by Il there exists
δl > 0 with

φIl
t (Bδ(ΠIl

(x∗)) ⊂ B ε
n

(ΠIl
(x∗)). (4.13)

We choose δ := min
l=1,...,k

δl > 0. We show that it holds

φt(Bδ(x∗)) ⊂ U (4.14)

for all t ∈ R+, by showing that even φt(Bδ(x∗)) ⊂ Bε(x∗) holds. Let x∗ =
(x∗

1, . . . , x
∗
n) and φt(·) = (φ1,t(·), . . . , φn,t(·)). For each component i = 1, . . . , n

let 1 ≤ l(i) ≤ k such that i ∈ Il(i). Let x ∈ Bδ(x∗). From (4.13) we get

|x∗
i − φi,t(x)| ≤

∥∥∥ΠIl
(x∗)− φIl

t (ΠIl
(x))

∥∥∥
2
<
ε

n
.

We conclude
∥x∗ − φt(x)∥2 ≤

n∑
i=1
|x∗
i − φi,t(x)| < n

ε

n
= ε.

This shows (4.14). Statement 3. is just the combination of 1. and 2.

4.4 Systems with state constraints

So far we have only considered systems on the whole space Rn. With regard to
applications, this is too restrictive and this section aims to extend the notion of
subsystems to state constrained dynamical systems. This means we equip the dy-
namical system (4.1) with a constraint set X ⊂ Rn and we consider only solutions
which stay in X for all positive times. The guiding principle for the decomposition
of the state constraints is:

Feasibility for the whole system should be determined exactly
by feasibility for the subsystems. (4.15)

Our treatment including a constraint set is rather technical therefore we provide a
simple intuition.

Intuition for state constrained subsystems Again we borrow intuition from
product systems. Consider the systems on Rn1 respectively Rn2 respectively Rn1+n2

with dynamics f1 respectively f2 respectively f1⊗f2 from Example 3.2. For i = 1, 2
we additionally equip the subsystems on Rni with dynamics fi with constraint sets
Xi ⊂ Rni . It is natural to demand that both systems should be state constrained
subsystems of their product system with state constraint X := X1 ×X2 ⊂ Rn1+n2 .
The important property is that membership of (x1, x2) to the constraint set X1×X2
can be verified from simultaneous membership of x1 to X1 and x2 to X2. Following
this idea leads to the notion of decomposition for X in Definition 4.17 and relates
closely to the decomposition which we have already seen in (4.12).
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Definition 4.17. We say that the constraint set X decomposes according to a family
of index sets J1, . . . , JN ⊂ [n] if there exist X1 ⊂ R|J1|, . . . , XN ⊂ R|JN | such that

X = S(X1, . . . , XN ) = {x ∈ Rn : ΠJl
(x) ∈ Xl for l = 1, . . . , N}. (4.16)

If X is the constraint set for a dynamical system (4.1) and the sets J1, . . . , JN
induce a subsystem decomposition then a corresponding state constrained subsystem
decomposition is given by the subsystems (Jl, fJl

) equipped the constraint set Xl.

Remark 4.18. The sets X1, . . . , XN from Definition 4.17 seem to be a priori un-
known. But, if we know that X decomposes according to J1, . . . , JN , we can choose

Xl := ΠJl
(X) for 1 ≤ l ≤ N,

in (4.16). Note that X ⊂ {x ∈ Rn : ΠJl
(x) ∈ ΠJl

(X), 1 ≤ l ≤ N} is trivially
satisfied. On the other hand, if X decomposes according to J1, . . . , JN via sets
X ′

1, . . . , X
′
N , then

X ′
l ⊃ ΠJl

(X) for all 1 ≤ l ≤ N (4.17)

To verify (4.17), assume that there is 1 ≤ l ≤ N with X ′
l ⊉ ΠJl

(X), i.e. there
is x ∈ X with ΠJl

(x) /∈ X ′
l . This contradicts that X decomposes according to

J1, . . . , JN via X ′
1, . . . , X

′
N . Now, from (4.17) we conclude

X = {x ∈ Rn : ΠJl
(x) ∈ X ′

l for l = 1, . . . , N}
⊃ {x ∈ Rn : ΠJl

(x) ∈ ΠJl
(X) for l = 1, . . . , N} ⊃ X.

The notion of a set X decomposing accordingly covers the situation where the
set X factors into a cartesian product, see Remark 4.19. Note that a factorization of
X into a cartesian product is not required for X to decompose accordingly because
the sets Jl in Definition 4.17 are allowed to overlap.

Remark 4.19. In the case where X factors into a cartesian product

X = X1 × · · · ×XN with Xl ⊂ Rnl for l = 1, . . . , N

the set X decomposes according to J1, . . . , JN with J1 := {1, . . . , n1} and Jl =
{n1 + . . .+ nl−1 + 1, n1 + . . . nl} for l = 2, . . . , N , namely X = {x ∈ Rn : ΠJl

(x) ∈
Xl for l = 1, . . . , N}.

4.4.1 Subsystem based decompositions for systems with state con-
straints

We return to the question from (4.15). We answer this question in the next lemma.

Lemma 4.20. Let (I1, fI1), . . . , (Ik, fIk
) be a subsystem decomposition with corre-

sponding flows φI1 , . . . , φIk . If the system is equipped with a constraint set X which
decomposes according to the subsystem decomposition I1, . . . , Ik then it holds for
x0 ∈ X and t ∈ R+

φt(x0) ∈ X if and only if φIl
t (ΠIl

(x0)) ∈ ΠIl
(X) for all 1 ≤ l ≤ k. (4.18)
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Proof. By Remark 4.18 it holds z ∈ X if and only if ΠIj (z) ∈ ΠIj (X) for all
1 ≤ j ≤ k. Using (4.11) we conclude that φt(x0) ∈ X if and only if

φ
Ij

t (ΠIj (x0)) = ΠIj (φt(x0)) ∈ ΠIj (X) for all 1 ≤ j ≤ k.

In Theorem 4.23, we will show that the concepts of the following definition allow
a decomposition based on subsystems.

Definition 4.21. Let f : Rn → Rn be Lipschitz continuous and constraint set
X ⊂ Rn. We call a set M ⊂ X

1. positively invariant for X, if M ⊂ X and for all x0 ∈ M the flow φt(x0) is
defined for all t ∈ R+ and φt(x0) ∈ X for all t ∈ R+.

2. maximal invariant in X, if M is the largest positively invariant set for X.

3. pointwise/uniformly attractive for X, if for all x0 in the maximal positively
invariant set M+ for X we have as t → ∞ that dist(φt(x0),M) → 0 point-
wise/uniformly in x0.

4. pointwise/uniformly repelling for X, if M is pointwise/uniformly attractive
for X for the time reversed differential equation.

5. stable for X, if for each open neighbourhood U of M there exists an open
neighbourhood V of M such that φt(V ∩X) ⊂ U ∩X for all t ∈ R+.

6. asymptotically stable for X, if M is stable and attractive.

7. the stable manifold for X of some set N , if M consists of all points x in the
maximum positively invariant set M+ for which it holds dist(φt(x), N) → 0
as t→∞.

8. the unstable manifold for X of N , if M is the stable manifold for X of N for
the time reversed system.

9. global attractor for X, if M is the smallest compact set that uniformly attracts
all bounded subsets of the maximal positively invariant set M+ for X, i.e. for
all R ∈ R+ we have dist(φt(M+ ∩BR(0)),M)→ 0 as t→∞.

10. is called the region of attraction for X of some target set XT with time horizon
T ∈ R+, if

M = {x ∈ X : φt(x) ∈ X for all t ∈ [0, T ] and φT (x) ∈ XT}. (4.19)

11. is called the reachable set for X of some initial set X0 ⊂ X with time horizon
T ∈ R+, if

M = {x ∈ X : it exists x0 ∈ X0 s.t. φt(x0) ∈ X for t ∈ [0, T ], φT (x0) = x}.
(4.20)
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Remark 4.22. If a dynamical system on Rn is not equipped with a constraint set,
we can define the objects from Definition 4.21 with respect to the constraint set
X = Rn. For stable, attractive, and asymptotically stable sets this, then, coincides
with the notion from Definition 2.3.

We recall the “gluing” from (4.12). For index sets I1, . . . , Ik ⊂ [n] and Ml ∈ RIl

for l = 1, . . . , k we glue together the sets M1, . . . ,Mk to a set S(M1, . . . ,Mk) ⊂ Rn
by

S(MI1 , . . . ,MIk
) = {x ∈ Rn : ΠIl

x ∈MIl
for l = 1, . . . , k}

Similarly to Proposition 4.15, we follow the decoupling idea illustrated in Figure
4.1. In the following theorem, we show that this decoupling applies to many of the
notions from Definition 4.21 for systems with state constraints.
Theorem 4.23. Let I1, . . . , Ik induce a subsystem decomposition. Assume that
X ⊂ Rn decomposes according to I1, . . . , Ik via X1 := ΠI1(X), . . . , Xk := ΠIk

(X).
Let M ⊂ X be closed. Then

1. If M is positively invariant for X if and only if for l = 1, . . . , k the set ΠIl
(M)

is positively invariant for Xl under the subsystem (Il, fIl
). Further, if for

l = 1, . . . , k the set Ml is positively invariant for Xl under subsystem (Il, fIl
)

then S(M1, . . . ,Mk) is positively invariant for X under the whole system.

2. The maximum positively invariant set M+ for X is given by

M+ = S(M1, . . . ,Mk) (4.21)

where for 1 ≤ l ≤ k the set Ml is the maximum positively invariant set for Xl

under the subsystem (Il, fIl
).

3. Let XT ⊂ X and T ∈ R+. Assume that XT decomposes according to I1, . . . , Ik
via XT,1, . . . , XT,k. Then the region of attraction RT is given by

RT = S(RT,1, . . . , RT,k) (4.22)

where 1 ≤ l ≤ k the set RT,l is the region of attraction for Xl with target set
XT,l under the subsystem (Il, fIl

).

4. Let XT ⊂ X and T ∈ R+. Assume that X0 decomposes according to I1, . . . , Ik
via X0,1, . . . , X0,k. Then, the reachable set ST for X of X0 is given by

ST = S(ST,1, . . . ,ST,k)) (4.23)

where for l = 1, . . . , k the set ST,l is the reachable set with initial set XT,l
under the subsystem (Il, fIl

).

5. For X compact, the global attractor A for X is given by

A = S(A1, . . . ,Ak) (4.24)

where for l = 1, . . . , k the set Al is the global attractor for Xl under the
subsystem (Il, fIl

).



4.4. SYSTEMS WITH STATE CONSTRAINTS 109

6. For l = 1, . . . , k let Ml be compact and pointwise/uniform attractive for Xl un-
der the subsystem (Il, fIl

) then S(M1, . . . ,Mk) is pointwise/uniform attractive
for X under the whole system.

7. For l = 1, . . . , k let Ml be compact and repelling for Xl for the subsystem
(Il, fIl

) then S(M1, . . . ,Mk) is repelling for X for the whole system.

8. If for l = 1, . . . , k the set Ml is closed and asymptotically stable for Xl un-
der the subsystem (Il, fIl

) for Xl then S(M1, . . . ,Mk) is asymptotically stable
under the whole system.

9. Let N ⊂ X be compact and decompose according to I1, . . . , Ik via N1 :=
ΠI1(N), . . . , Nk := ΠIk

(N). Let V be the stable manifold of N for X. For
1 ≤ l ≤ k let Ml be the stable manifold of Nl for Xl under the subsystem
(Il, fl). Then ΠIl

(V ) ⊂Ml. Further, for the stable manifold V of N for X it
holds

V = S(M1, . . . ,Mk). (4.25)

10. Point 12. holds correspondingly for the unstable manifold.
Proof. 1. The first part of the statement follows from (4.18) in Lemma 4.20. The

second part of the statement is a direct consequence of the first part because
ΠIl

(S(M1, . . . ,Mk)) ⊂Ml for all 1 ≤ l ≤ k.

2. By 1. the set S(M1, . . . ,Mk) is positively invariant for X. By maximality
we have M+ ⊃ S(M1, . . . ,Mk). Again by 1., ΠIl

(M+) is positively invariant
for ΠIl

(X) = Xl under the subystem (Il, fIl
) for all l = 1, . . . , k and hence

ΠIl
(M+) ⊂Ml for all l = 1, . . . , k. This shows

M+ ⊂ S(ΠI1(M+), . . . ,ΠIk
(M+)) ⊂ S(M1, . . . ,Mk) ⊂M+. (4.26)

3. We have to verify that the elements on the right-hand side of (4.22) are exactly
the elements in the region of attraction RT . This follows from Lemma 4.14
and (4.18) in Lemma 4.20 applied to X for t ∈ [0, T ] and XT for t = T .

4. The reachable set ST with initial set XT is the region of attraction for the
time-reversed system with target set XT. The statement follows from 3.

5. By Theorem 2.7, it holds A = M+ ∩M− where M− denotes the maximum
negatively invariant set, i.e. the MPI set for the reversed time direction. By
time reversing, the set M− decouples analog to M+. For l = 1, . . . , k let M+

l

respectively M−
l denote the MPI respectively maximum negatively invariant

set for Xl under the subsystem (Il, fIl
). We get by 2.

A = M+ ∩M− = S(M+
1 , . . . ,M

+
k ) ∩ S(M−

1 , . . . ,M
−
k )

= {x ∈ X : xP(xi) ∈M
+
l ∩M

−
l for l = 1, . . . , k}

= {x ∈ X : xP(xi) ∈ Al for l = 1, . . . , k}

where we used that for the global attractor Al for Xl under the subsystem
(Il, fIl

) we have, by Theorem 2.7, Al = M+
l ∩M

−
l .
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6. In case of uniform attraction, note first that a compact set can only be uni-
formly attractive if the maximum positively invariant set M+ is bounded,
hence compact. Hence, by Theorem 2.7, the global attractor exists and a set
is uniformly attractive if and only if it contains the global attractor. The
statement follows then from 4. For pointwise attraction, note that by 2.,
ΠIl

(M+) is contained in the maximum positively invariant set for Xl under
the subsystem (Il, fIl

). Therefore, we can conclude the statement similarly as
in the proof of Proposition 4.15 3.

7. This follows from the statement for attractive sets reversing by the time di-
rection.

8. For 1 ≤ l ≤ k, we choose, by Theorem 2.10, a strict Lyapunov function
Vl : M+

l → [0,∞) with V −1
l ({0}) = Ml where M+

l is the MPI set for Xl under
the subsystem (Il, fIl

). From hereon, we can follow the proof of Proposition
4.15 4. to conclude the statement.

9. For each l = 1, . . . , k, the map ΠIl
is a contraction and it follows that ΠIl

(V )
is contained in the stable manifold Ml of Nl for Xl for the subsystem (Il, fIl

).
Now we show (4.25). First, we claim that

S(M1, . . . ,Mk) ⊂ V. (4.27)

First note that, by 1., the set S(M1, . . . ,Mk) is positively invariant for X.
For the claim (4.27), it remains to show that for all x ∈ S(M1, . . . ,Mk) it
holds dist(φt(x), N) → 0. Assume this is not the case. Then there exists
x ∈ S(M1, . . . ,Mk), ε > 0 and (tm)m∈N ⊂ R with tm ↗∞ such that

dist(φtm(x), N) > ε for all m ∈ N. (4.28)

By assumption, for all x ∈ S(M1, . . . ,Mk) it holds dist(φIl
tm(ΠIl

(x)), Nl)→ 0
for all l = 1, . . . , k. Since N is compact, so is Nl = ΠIl

(N) for all l = 1, . . . , k.
Hence, (ΠIl

(φtm(ΠIl
(x))))m∈N = (φIl

tm(ΠIl
(x)))m∈N ⊂ RIl is a bounded se-

quence. Therefore, (φtm(x))m∈N ⊂ Rn is bounded and we can find a conver-
gent subsequence (φtmp

(x))p∈N and y ∈ Rn such that φtmp
(x)→ y as p→∞.

For l = 1, . . . , k we have

ΠIl
(y) = lim

p→∞
ΠIl

(φtmp
(x)) = lim

p→∞
φIl
tmp

(ΠIl
(x)) ∈ ΠIl

(N) = Nl.

This states y ∈ N which contradicts (4.28). Next, we show

V ⊂ S(M1, . . . ,Mk). (4.29)

This follows from the first part. Namely, it holds ΠIl
(V ) ⊂ Ml for all l =

1, . . . , k. Therefore we get

V ⊂ S(ΠI1(V ), . . . ,ΠIk
(V )) ⊂ S(M1, . . . ,Mk).
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10. This follows from reversing the time direction in 10.

We end this section with a result about sparse representations of Lyapunov
functions.

Proposition 4.24. Assume I1, . . . , Ik induces a subsystem decomposition. Assume
that there exists a strict Lyapunov function V : Rn → R+ such that for V −1({0})
decomposes according to I1, . . . , Ik. Then, for l = 1, . . . , k, there exists a Lyapunov
function Vl : RIl → R+ for the system induced by Il such that

Ṽ :=
k∑
r=l

Vl ◦ΠIk
(4.30)

is a strict Lyapunov function for the whole system with V −1({0}) = Ṽ −1({0}).

Proof. Let B := V −1({0}). For l = 1, . . . , k, by Corollary 4.9, we can find a strict
Lyapunov function VIl

for the subsystem induced by Il with V −1
Il

({0}) = ΠIl
(B).

The function Ṽ defined by (4.30) is then a strict Lyapunov function for the whole
system and it holds

Ṽ −1({0}) = {x ∈ Rn : ΠIl
(x) ∈ ΠIl

(B), l = 1, . . . , k}
= S(ΠI1(B), . . . ,ΠIk

(B)) = B = V −1({0}), (4.31)

where we used that B decomposes according to I1, . . . , Ik, i.e. it holds B =
S(ΠI1(B), . . . ,ΠIk

(B)) by Remark 4.18.

4.4.2 Application to computational methods

Since our decomposition into subsystems provides an exact decomposition of the
whole system into lower dimensional problems, it is applicable to a general class of
problems and computational methods.

Decomposition methods are beneficial whenever the dimension of the state space
has a huge impact on the computational cost. Due to the curse of dimensionality,
this is the typical case for many applications.

We propose the general procedure in Algorithm 1. Algorithm 1 describes how
we decompose the problem of solving a given (decomposable!) task for the whole
system based on subsystems.

For sparse set approximations, we specify Algorithm 1 to the following Algo-
rithm 2. For a given dynamical system (4.1) let M denote one of the decomposable
sets from Theorem 4.23 (i.e. an equilibrium point, periodic orbit, the MPI set, the
ROA set, the reachable set, the GA, the stable or the unstable manifold). By Theo-
rem 4.23, the gluing step in Algorithm 1 is specified and incorporated in Algorithm
2.

Next, we show that the decoupling procedure preserves certain convergence
properties. We consider the following two (pseudo) metrics on subsets on Rn, one is



112 CHAPTER 4. SPARSE STRUCTURES FOR DYNAMICAL SYSTEMS

Algorithm 1 Decoupling procedure for a decomposable task
1: Input: Dynamics f : Rn → Rn (and constraint set X if needed for the task)

and a method S for (approximately) solving the task for an arbitrary dynamical
system.

2: Subsystem decomposition: Determine sets I1, . . . , Ik ⊂ [n] that induce a sub-
system decomposition (for which X decomposes accordingly).

3: Solve for the subsystems: Solve the task on each subsystem using the given
method S.

4: Glue: Combine the results for the subsystems to a global solution G.
5: return G.

Algorithm 2 Decoupling procedure for computing/approximation the set M for
the whole system on Rn induced by ẋ = f(x).

1: Input: Dynamics f : Rn → Rn (and constraint set X if needed) and a method
S for computing/approximating M for arbitrary systems given their dynamics.

2: Subsystem decomposition: Determine sets I1, . . . , Ik ⊂ [n] that induce a sub-
system decomposition (for which X decomposes accordingly).

3: For each l = 1, . . . , k: Compute/approximate M for each (state constraint)
subsystem Il using S and denote the solution by Ml.

4: Glue the results together via (4.12), i.e.

G := {x ∈ X : ΠIl
(x) ∈Ml for l = 1, . . . , k}.

5: return G.

the Hausdorff distance dist(·, ·) and the other is the Lebesgue measures discrepancy,
defined by

dλ(K1,K2) := λ(K1∆K2) (4.32)

where λ is the Lebesgue measure and K1∆K2 = (K1 \ K2) ∪ (K2 \ K1) is the
symmetric difference between the sets K1 and K2.

Theorem 4.25 ([Schlosser 2020]). Let I1, . . . , Ik induce a subsystem decomposition.
Assume X is compact and decomposes according to I1, . . . , Ik. Let M denote either
the set of equilibria, a periodic orbit, the MPI set, the ROA set, the reachable set,
the GA, the stable, or the unstable manifold. Let M = {x ∈ Rn : ΠIl

(x) ∈ Ml, 1 ≤
l ≤ k} be the decomposition from Theorem 4.23. Let (M (m)

1 )m∈N, . . . , (M (m)
k )m∈N

be a sequence of closed sets with M (m)
l ⊂ RIl for 1 ≤ l ≤ k and

M (m) := S(M (m)
1 , . . . ,M

(m)
k ) = {x ∈ Rn : ΠIl

(x) ∈M (m)
l , 1 ≤ l ≤ k}.

The following hold:

1. in case of Hausdorff distance (induced by any norm on Rn): If M (m)
l ⊃ Ml
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for all 1 ≤ l ≤ k and m ∈ N and

dist(M (m)
l ,Ml)→ 0 as m→∞ for all 1 ≤ l ≤ k, (4.33)

then M (m) ⊃M and

dist(M (m),M)→ 0 , as m→∞. (4.34)

2. In case of Lebesgue measure: It holds

dλ(M,M (m)) = λ(M∆M (m))

≤
k∑
l=1

λ(Ml∆M (m)
l ))λ(Π[n]\Il

(X)). (4.35)

In particular, if M (m)
l converges to Ml with respect to dλ for 1 ≤ l ≤ k, then

M (m) converges to S with respect to dλ as m→∞.

Proof. For the first statement note that the inclusion M
(m)
l ⊃ Ml for all 1 ≤ l ≤

k,m ∈ N implies M (m) ⊃ M . To show the claim (4.34), let us assume it does not
hold. Then there exists ε > 0 and an unbounded subsequence (mr)r∈N such that

dist(M (mr),M) > ε (4.36)

and we find points x(mr) ∈ M (mr)
l with dist(x(mr),M) > ε. From boundedness of

M1, . . . ,Mk and the assumption (4.33) it follows that there exists x ∈ Rn and a
subsequence of (mr)r∈N which we will still denote by (mr)r∈N such that x(mr) → x
as r → ∞. By assumption (4.33) there exist ymr

l ∈ Ml for l = 1, . . . , k with
∥ymr
l − ΠIl

(x(mr))∥ → 0 as r → ∞. Hence, also ymr
l → ΠIl

(x) as r → ∞ for
l = 1, . . . , k. Because M1, . . . ,Mk are closed it follows ΠIl

(x) ∈ Sl for l = 1, . . . , k
and by Theorem 4.23 we get x ∈M . In particular, we get

ε < dist(x(mr),M) ≤ ∥x(mr) − x∥ → 0

as m→∞, which is a contradiction. To conclude (4.35) note that

M∆M (m) ⊂
k⋃
l=1
{x ∈ X : ΠIl

(x) ∈Ml∆M (m)
l }.

Applying the Lebesgue measure to this inclusion gives

λ(M∆M (m)) ≤
k∑
l=1

λ
(
{x ∈ X : ΠIl

(x) ∈Ml∆M (m)
l }

)

≤
k∑
l=1

λ(Ml∆M (m)
l )λ(Πn\Il

(X)).
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4.5 A coordinate-free formulation
The concept of subsystems from Section 4.1 is not intrinsic – subsystems as in
Definition 4.1 depend on the coordinates the dynamical system is written in. For
example, linear dynamics ẋ = Ax where A has only non-zero entries but is diago-
nalizable do not allow any non-trivial subsystem. If a change of coordinates, that
diagonalizes A, preserves the constraint set then for the conjugated system any
subset I ⊂ [n] induces a subsystem. Therefore, the formulation of subsystems is
not coordinate-free.

For a coordinate-free formulation, we assume that M is a smooth manifold of
dimension n and f a vector field on M such that M is positively invariant. The
generated flow is denoted by φt for t ∈ R. We generalize subsystems by means of
factor systems.

Definition 4.26. We call (N , P ) a subsystem if N is a smooth manifold of dimen-
sion less than m and P : M → N a surjective smooth submersion map such that
there exists a flow φN

t on N such that

φN
t ◦ P = P ◦ φt. (4.37)

The concept of coordinate indices I is not well defined in the coordinate-free
setting. Hence, compared to Definition 4.1, we have to specify N (which plays the
role of RI) and the map P (which plays the role of ΠI). That means a subsystem
(I, fI) from Definition 4.1 corresponds to (RI ,ΠI) corresponding to Definition 4.26
where M = Rn.

Remark 4.27. If we drop the condition that N is of lower dimension than M
then a subsystem is (N , P ) is a factor system (see for example [Eisner 2015]). We
restrict to lower dimensional systems because factor systems can be very large and
counter the idea that the subsystem should be of easier nature. One such example is
M = [0, 1] with the trivial dynamics f = 0. Using space filling curves P : [0, 1]→ N
where N is a connected compact manifold (with boundary) of arbitrary dimension
induces a subsystem.

Next, we define subsystem decompositions.

Definition 4.28. We say that subsystems (Nj , Pj) for j in some index set J form
a subsystem decomposition if the map

P := (Pj)j∈J : M →
∏
j∈J
Nj , P (x) := (Pj(x))j∈J (4.38)

is injective.

Remark 4.29. Let I1, . . . , Ik induce a subsystem decomposition according to Defi-
nition 4.12 then the subsystems (RI1 ,ΠI1), . . . , (RIk ,ΠIk

) form a subsystem decom-
position in the sense of Definition 4.28.

In order to consider state constraints X, we do so as in Definition 4.17. We say
that X decomposes according to a subsystem decomposition (Nj ,Πj) for j in some
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index set J if
X = {x ∈M : Pj(x) ∈ Pj(X) for j ∈ J}. (4.39)

Remark 4.30. If X ⊂M = Rn decomposes according to a subsystem decomposition
induced by I1, . . . , Ik then X, in the sense of Definition 4.17, then X decomposes
according to the subsystem decomposition (RI1 ,ΠI1), . . . , (RIk ,ΠIk

) in the sense of
(4.39).

Remark 4.31. Theorem 4.23 can be formulated as a coordinate-free setting under
the assumptions that M is positively invariant, (Nj ,Πj)j∈J form a subsystem de-
composition for which X decomposes accordingly. The arguments are analog to the
ones used in the proof of Theorem 4.23.

Example 4.32. We get back to the introductory example of diagonalizable linear
dynamics ẋ = Ax with matrix A =∈ Rn×n. Further, let us assume there exists n
linearly independent eigenvectors u1, . . . , un of A, with eigenvalues λ1, . . . , λn. Let
v1, . . . , vn be the dual basis to u1, . . . , un, i.e. for i, j = 1, . . . , n we have ⟨vi, uj⟩ =
δij, for the Kronecker delta δij. The flow is given by φt(x) =

n∑
i=1

eλit⟨x, vi⟩ui. For

the system on M = Rn and X = B1(0) we find the subsystem decomposition: For
1 ≤ i ≤ n let (Ni, Pi) with Ni := R and Pi : M → Ni with Pi(x) := ⟨x, vi⟩ and
corresponding flow φ

(Ni)
t (r) := eλitr.

4.6 Limitations

We will discuss two limitations, which are both of different nature. One describes
the restrictiveness of our notion of subsystems. As a result of constraining to causal
independence among the subsystem, many dynamical systems just do not have
subsystems. The second one concerns limitations of the decomposition. Theorem
4.23 shows that many important objects from dynamical systems decouple according
to their subsystems but this is not true for all objects. We will give the example of
the weak attractor.

Definition 4.33 (Weak attractor). Let (X, (φt)t∈R+) be a dynamical system. A
compact set Aw ⊂ X is called a weak attractor if it is the minimal attracting set,
i.e., it is the smallest compact set AW that is attracting.

Example 4.34 (The weak attractor does not decompose). We consider the fol-
lowing (discrete time) dynamical system. Let N := N0 ∪ {β} denote the one-point
compactification of N0 and let X := N 3. The dynamics are given by

xk+1 = xk + 1

yk+1 =
{

0, xk = 3lfor some l ∈ N0

yk = xk, else
(4.40)

zk+1 =
{

0, xk = 2lfor some l ∈ N0

zk = xk, else.
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It decomposes into the subsystem on x, (x, y) and (x, z). The weak attractors for
the three subsystems are given by

A(1)
w = {βx}, A(1,2)

w = {(βx, 0), (βx, βy} and A(1,3)
w = {(βx, 0), (βx, βz)}. (4.41)

Gluing those sets together, by (4.12), would give the set

S(A(1)
w ,A(1,2)

w ,A(1,2)
w ) = {(x, y, z) ∈ X : x ∈ A(1)

w , (x, y) ∈ A(1,2)
w , (x, z) ∈ A(1,3)

w }
= {(βx, 0, 0), (βx, βy, 0), (βx, 0, βz), (βx, βy, βz)}.

But as we will see now, the element (βx, 0, 0) is not contained in the weak attrac-
tor. A trajectory (xk, yk, zk)k∈N0 for initial value (x0, y0, z0) has (βx, 0, 0) as an
accumulation point if and only if the components yk and zk vanish infinitely often
and simultaneously. But yk vanishes only when k = xk = 3l1 and zk only when
k = xk = 2l2 for l1, l2 ∈ N0. For k > 1 this would mean we have two different prime
factorizations of k ∈ N, hence this cannot happen.

4.7 Detecting subsystems via the sparsity graph
Subsystems are determined by the dependence on the states in each other’s dy-
namics. This dependence between one state and the dynamics of another can be
illustrated by a graph, the so-called sparsity graph of the dynamics f . This will
allow us to state a simple algorithm for identifying subsystems of a given dynamical
system.

Definition 4.35 (Sparsity graph). Let f = (f1, . . . , fn) : Rn → Rn be a function.
The sparsity graph Gf associated to f is defined by:

1. The set of nodes is {x1, . . . , xn}.

2. For i ̸= j there pair (xi, xj) is an edge if fj depends explicitly on xi .

The sparsity graphGf of a function f can only tell if there is a causal dependence
of a state xi on a state xj (indirectly through other states) in the dynamical system
induced by ẋ = f(x). The sparsity graph does not include quantitative information.
This is because the sparsity graph forgets about the precise interaction of nodes. In
Figure 4.2 we consider a sparsity graph of the function f : R5 → R5 from Example
4.3.

From the sparsity graph in Figure 4.2 we infer that the underlying vector field
f is of the following form

f = (f1(x1), f2(x1, x2), f3(x1, x3, x4), f4(x1, x4), f5(x1, x5)).

This is consistent with (3.13) but does not tell us more about the explicit form of
functions f1, . . . , f5. Figure 4.3 provides a graphical illustration of all subsystems
for dynamics corresponding to the sparsity graph from Figure 4.2.

Figure 4.3 indicates certain important features related to subsystems. At first,
x1 seems like a source of information – there are only outgoing edges – and is



4.7. DETECTING SUBSYSTEMS VIA THE SPARSITY GRAPH 117

Figure 4.2: The sparsity graph of the function from (3.13)

contained in any non-trivial subsystem. On the other hand, x3 and x5 have the
character of a sink of information – there is no outgoing edge. Further, we see that
any of the subsystems displayed in Figure 4.3 consists of all nodes for which there
exists a directed path in Gf to a distinguished node: The blue resp. yellow resp.
red resp. green resp. grey subsystem consists of all nodes for which there exists a
directed path to x1 resp. x2 resp. x4 resp. x5 resp. x3. The related objects will be
defined and given a name in the following definition.

Definition 4.36 (Predecessor, leaf, Past). Let G be a directed graph with nodes
{x1, . . . , xn}.

1. A node xi is a called predecessor of node xj if xi = xj or there is a directed
path from xi to xj. In that case, xj is called a successor of xi.

2. A node xi is called a leaf if it does not have a successor (i.e., all nodes con-
nected to xi are its predecessors).

3. A node xi is called a root if it does not have a predecessor (i.e., all other nodes
connected to xi are its successors).

4. The set of all indices of predecessors of xi is called the past of xi and denoted
by P (xi) ⊂ [n].

From the Definition 4.36 we conclude the following lemma.

Lemma 4.37. Let Gf be the sparsity graph for the function f : Rn → Rn. The
predecessor and successor relation is transitive: If xk is a predecessor/successor of
xj and xj is a predecessor/successor of xi then xk is a predecessor/successor of xi.
In particular, for a predecessor xk of xi we have P (xk) ⊂ P (xi).

Proof. The first statement follows just by patching paths together, namely the one
from xk to xj and the one from xj to xi.
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Figure 4.3: Sparsity graph Gf for f from (3.13). Nodes colored with the same color rep-
resent a subsystem. The remaining subsystems, which are not presented, are induced by
(∅, f∅), ({1, 2, 4}, f{1,2,4}), ({1, 2, 3, 4}, f{1,2,4}) and ({1, 2, 3, 4, 5}, f). Any of these can be written
as a union of the subsystems colored in blue, yellow, red, green, and grey respectively.

In Definition 4.36, we defined the past of a node xi as all the nodes the dynamics
of xi (indirectly) depend on. This similarity to subsystems is manifested in the
following corollary, which states that the pasts of nodes are the building blocks for
subsystems.

Corollary 4.38. For a state xi, the past P (xi) induces the smallest subsystem
containing xi. In particular, if I induces a subsystem then I contains the pasts
P (xi) of all its nodes xi for all I ∈ I.

Proof. We have already noted, right before Definition 4.35 of the sparsity graph,
that a subsystem containing xi has to contain all states (xj)j∈P (xi) corresponding
to its past P (xi). Let us prove that (P (xi), fP (xi)) indeed induces a subsystem, and
hence the minimal one containing xi. Assume this is not the case. That means that
fP (xi) does not only depend on the variables xP (xi). Hence, there exists j ∈ P (xi)
and k ∈ [n]\P (xi) such that fj depends on xk. That means that xk is a predecessor
of xj in the sparsity graph of f , in particular, xk is in the past of xj and hence has
to be contained in the subsystem by the first part of the proof.

This gives rise to the following characterization of subsystems.

Proposition 4.39 (Characterization of subsystems). (I, fI) induces a subsystem
if and only if I contains all the pasts of its nodes.

Proof. By Corollary 4.38, it follows that a subsystem contains all the pasts of its
nodes. Now, suppose I ⊂ [n] is such that all pasts P (xi) ⊂ I for all i ∈ I. Let
us assume (I, fI) does not induce a subsystem. That means it exists a component
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i ∈ I such that fi also depends on a node xj with j /∈ I. But fi depending on xj
means that j is a predecessor of i, in particular, j ∈ P (xi) which contradicts our
assumption.

Remark 4.40. Referring to Remark 4.5, we formulate some of the concepts from
Definition 4.36 by topological concepts. Let Tf := {I ⊂ [n] : I induces a subsystem}
be the subsystem topology on [n]. Then, by Corollary 4.38, the past P (xi) is the
smallest open neighborhood of i ∈ [n]. Furthermore, an index i ∈ [n] is a leaf
respectively root if and only if {i} is open respectively closed in that topology.

4.7.1 The sparsity graph of systems with state constraints

In Section 4.4.1 we had to include the sparsity structure of the constraint set X into
the subsystems as well. Therefore, the sparsity graph for state constrained system
has to depend on X as well as on the dynamics f .

Definition 4.41 (The sparsity graph Gf,J ). Let Gf be the sparsity graph of f
and J a family of index sets J1, . . . , JN ⊂ {1, . . . , n} for which X decomposes
accordingly. The graph Gf,J has the nodes x1, . . . , xn and (xi, xl) is an edge of
Gf,J if (xi, xl) is an edge in Gf or if there exists 1 ≤ r ≤ N such that i, l ∈ Jr.

Such as the sparsity graph Gf determines subsystems, and so does the sparsity
graph Gf,J determine state constrained subsystems. We now investigate how to
deduce a subsystem decomposition, for systems with and without state constraints,
from the sparsity graph Gf respectively Gf,J .

4.8 Constructing a subsystem decomposition
In this Section, we treat the question of finding subsystems of a given dynamical
system. That is an important task because a good choice of subsystems is essential
for a lower dimensional or more differentiated treatment of the dynamical system.

Our decomposition will be based solely only the sparsity graph Gf respectively
Gf,J from the previous section. We observe that their strongly connected compo-
nents cannot be further decomposed into smaller subsystems. Thus, contracting
the strongly connected components allows for a simple way of finding a subsystem
decomposition.

4.8.1 Strongly connected components of the sparsity graph

Definition 4.42 (Strongly connected component; [Cormen 2022]). In a directed
graph G we call a set of nodes C

1. strongly connected, if for each two nodes x, y ∈ C there exists a path from x
to y and a path from y to x.

2. strongly connected component, if C is strongly connected and maximal with
this property, i.e. C can not be extended to a larger set that is still strongly
connected.
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From a sparsity perspective, strongly connected sets C of a sparsity graph de-
scribe ensembles of states that are fully influencing each other.

Remark 4.43. Strongly connected sets can be formulated via the notation from
the previous section, namely: A set C is strongly connected if and only if we have
P (x) ⊃ C for all x ∈ C. In particular, any subsystem either contains a strongly
connected component or is disjoint from it.

From a subsystem perspective, Remark 4.43 motivates not to distinguish be-
tween the nodes in a strongly connected component. This is why we will introduce
the condensation graph in the following subsection.

4.8.2 The condensation graph

In this section, we describe a method of merging multiple nodes in a graph to a
single node. This is called node contraction.

Definition 4.44 (Node contraction; [Diestel 2017]). Let G = (V,E) be a (directed)
graph with nodes V and edges E. Let W1, . . . ,Wk ⊂ V be pairwise disjoint sets of
nodes and fix elements ωi ∈ Wi for i = 1, . . . , k. The graph G′ = (V ′, E′) obtained

by contracting W1, . . . ,Wk is given by the nodes V ′ := {ω1, . . . , ωk}∪V \
k⋃
i=1

Wi and

(v1, v2) for v1, v2 ∈ V ′ is an edge if one of the following holds:

1. v1, v2 ∈ V and (v1, v2) ∈ E

2. v2 ∈ V and v1 = ωi for some 1 ≤ i ≤ k and there exists w ∈ Wi such that
(wi, v) ∈ E

3. v1 ∈ V and v2 = ωi for some 1 ≤ i ≤ k and there exists w ∈ Wi with
(v, wi) ∈ E.

Figure 4.4: Example of a sparsity graph (left) and its condensation graph (right). The strongly
connected components are C1 = {x4, x5, x6}, C2 = {x1, x2}. The graph on the right arises from
the sparsity graph (left) by contracting each of the strongly connected components C1 and C2.
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The objects that we want to contract are the strongly connected components.
After contracting them, the graph has a much simpler structure – it is a forest, i.e.
acyclic.

Lemma 4.45 ([Tarjan 1972]). Let G be a directed graph and G′ be the condensation
graph of G obtained from contracting each of the connected components to a single
node. Then G′ is acyclic.

The forest structure in the condensation graph is useful because we can directly
infer important objects. In our case, these are the leaves. We will use the leaves of
the condensation graph of the sparsity graph to construct subsystem decomposition
via their past. For that result, we provide the following Lemma.

Lemma 4.46. Any directed graph without cycles has at least one leaf. Furthermore,
for directed graphs without cycles, any node is a predecessor of a leave.

Proof. Let W be a maximal path in the graph, i.e. a path that cannot be extended
in G. Let x be the last node in W . We claim that x is a leaf. If x is not a leaf then
there exists an edge (x, y) in G for some node y. By maximality of W we cannot
add y to W , which means the edge (x, y) has been used before in W . This means
that W has visited x before, i.e. there is a part of W that connects x to itself, i.e. a
cycle – contradiction. For the remaining statement let y be an arbitrary node. We
can choose a longest path containing this node which has to end in a leaf x, hence
y is a predecessor of x.

4.8.3 Construction of a subsystem decomposition

We use the condensation graph from the previous section to give a simple algorithm
for finding a subsystem decomposition.

Proposition 4.47. Let Gf be the sparsity graph of f and let v1, . . . , vm be leaves of
its condensation graph, where the connected components W1, . . . ,Wk ⊂ {x1, . . . , xn}
have been contracted to ω1, . . . , ωk. The pasts P (v1), . . . , P (vm) induce a subsystem
decomposition (where for 1 ≤ i ≤ k each wi is re-placed by the nodes Wi it repre-
sents).

Proof. By Corollary 4.38, the pasts P (v1), . . . , P (vm) induce subsystems. It remains
to show that P (v1), . . . , P (vm) induces a subsystem decomposition, i.e. that

[n] =
m⋃
l=1

P(vl). (4.42)

Let 1 ≤ i ≤ n. If xi ∈ Wl for some 1 ≤ l ≤ k then i ∈ P(vl) because of the
strong connectivity of Wl, vl ∈ Wl, and the definition of the condensed sparsity
graph. If xi /∈W1 ∪ · · · ∪Wk then xi is a node in the condensed sparsity graph. By
Lemma 4.46 it follows that xi is a predecessor for a leaf. Hence also in this case
i ∈

m⋃
l=1

P(vl).
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For systems with state constraints, the construction is analog where instead
of the sparsity graph Gf we use Gf,J for a family J of index sets for which X
decomposes accordingly. In Algorithm 4.8.3 we state the procedure.

Algorithm 3 Computation of a subsystem decomposition
1: Input: The sparsity graph Gf of f and a family J of index sets for which X

decomposes accordingly.
2: Compute the graph Gf,J from Definition 4.41
3: Compute the strongly connected components W1, . . . ,Wk of Gf,J
4: Build the condensed graph Gf,J of Gf,J : Contract each of the strongly con-

nected components Wi to wi (see Definition 4.44).
5: Find the leaves v1, . . . , vm in Gf,J .
6: Define I1, . . . , Im: Set Il := P(vl) for l = 1, . . . ,m (where for 1 ≤ i ≤ k each wi

is re-placed by the nodes Wi it represents).
7: return I1, . . . , Im inducing a subsystem decomposition.

Remark 4.48. The complexity of the Algorithm 4.8.3 is at most linear in n, the
number of states, and the number of edges m in the graph Gf,J . This is because
the strongly connected components can be found by a depth first search in O(n +
m) [Cormen 2022] Section 22.5). All the remaining tasks, such as building the
sparsity graph, the condensation graph, and finding the leaves, are simple and can
also be performed in O(n+m).

The largest appearing state space dimension based on the subsystem decompo-
sition obtained from Algorithm 4.8.3 is given by the largest number of predecessors
of a node in the graph Gf,J . This number is given by

ω := max
l
|P(vl)|. (4.43)

where |P(vl)| is the number of predecessors of the node vj in the sparsity graph
Gf,J . We formulate this statement precisely in the following theorem.

Theorem 4.49. Let J be a family of index sets for which X decomposes accord-
ingly. Algorithm 4.8.3 gives a subsystem decomposition induced by I1, . . . , Ik for
which X decomposes accordingly such that the largest subsystem contains ω nodes,
i.e.

max
l=1,...,m

|Il| = ω,

where ω is given by (4.43).

Proof. We will show that

1. I1, . . . , Im induce a subsystem decomposition for which X factors accordingly,
and

2. the largest number of variables in each of these subsystems is at most ω.
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That I1, . . . , Im induces a subsystem decomposition can be verified similarly to
Proposition 4.47 because the sparsity graph Gf is a subgraph of Gf,J . To show (1)
it remains to check that X decomposes accordingly. Let us write J = {J1, . . . , JN}
for some N ∈ N. For 1 ≤ r ≤ N and i, j ∈ Jr, the two nodes xi and xj form a circle
in the graph Gf,J . Therefore, the nodes (xj)j∈Jr get contracted in the condensation
graph of Gf,J for all r = 1, . . . , N and each of the sets Il can be written as

Il =
⋃
l∈Zk

Jl,

where the sets Z1, . . . , Zm form a partition of {1, . . . , N}. We claim that X decom-
poses according to I1, . . . , Im via

X = {x ∈ Rn : ΠIk
(x) ∈ Yk, k = 1, . . . ,m} (4.44)

where for k = 1, . . . ,m the sets Yk are given by

Yk := {y ∈ RIk : x ∈ Rn,ΠJl
(x) ∈ Xl, l ∈ Zk}.

We conclude (4.44) via

X = {x ∈ Rn : ΠJl
(x) ∈ Xl, l = 1, . . . , N} = {x ∈ Rn : ΠJl

(x) ∈ Xl, l ∈
m⋃
k=1

Zk}

= {x ∈ Rn : ΠIk
(x) ∈ Yk, k = 1, . . . ,m},

because X decomposes according to J1, . . . , JN . To verify our second claim 2., recall
that each set Ik ⊂ [n] corresponds to the past of a node vk in the condensation graph
of Gf,J . Because the condensation graph contracts only the strongly connected
components, Ik is nothing else than the past of the node xik with xik = vk in the
sparsity graph Gf,J .

Corollary 4.50. If there are no state constraints, then the Algorithm 4.8.3 is op-
timal in the following sense: For any other subsystem decomposition, induced by
index sets Ĩ1, . . . , Ĩl ⊂ [n], it holds

max
k=1,...,l

|Ĩk| ≥ ω.

Proof. If there are no state constraints we do not need the additional family of
index sets J in Algorithm 4.8.3. Let I1, . . . , Im be the output of Algorithm 4.8.3.
As in the proof of Theorem 4.49, we see that for each 1 ≤ k ≤ m there exists xk
with Ik = P (xk). By Corollary 4.38, the set P (xk) induces the smallest subsystem
containing xk. Now, let Ĩ1, . . . , Ĩl induce another subsystem decomposition. Then,
for each 1 ≤ k ≤ m it holds xk ∈ Ĩl for some l. And thus, by minimality of P (xk),
it holds Ik = P (xk) ⊂ Ĩl. It follows with Theorem 4.49

max
k=1,...,l

|Ĩk| ≥ max
k=1,...,m

|Ik| = ω.
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As input for Algorithm 4.8.3 we used a family J of index sets for which X de-
composes accordingly. In applications the sparsity of the dynamics often comes with
the same sparse structure for X, i.e. X decomposes according to any subsystem
decomposition. But this might not always be the case. Finding the best decompo-
sition of X, i.e. a decomposition that minimizes ω from (4.43), is a delicate task.
We address a suboptimal procedure based on factoring X into a cartesian prod-
uct motivated from Remark 4.19. We say that index sets J1, . . . , JN ⊂ {1, . . . , n}
induce a factorization of X if J1, . . . , JN is a partition of {1, . . . , n} and

X = {x ∈ Rn : ΠJl
(x) ∈ PJl

(X) for l = 1, . . . , N}.

As noted in Remark 4.19, X decomposes according to the family J of index sets
J1, . . . , JN if J1, . . . , JN induce a factorization. We propose to use a minimal fac-
torization J as input to Algorithm 4.8.3 in order to obtain a fine subsystem de-
composition. The existence of a minimal factorization is assured by the following
lemma from [Schlosser 2020].

Lemma 4.51. There exists a minimal factorization for X; that is there exist index
sets J1, . . . , JN that induce a factorization of X, such that for any other factorization
induced by J̃1, . . . , J̃Ñ we have for all l = 1, . . . , Ñ that J̃l = ⋃

k:Jk⊂J̃l

Jk.

4.9 Extensions to other systems
In this section, we show that the notion of subsystems and corresponding decompo-
sitions of the whole system extend naturally to time dependent systems, differential
inclusions, time-delay, stochastic, hybrid, and control systems. The idea is the same:
For a system with solution map φ, a set of indices I ⊂ [n] induces a subsystem if
ΠI ◦φ(x0) coincides with the solution for the subsystem to the initial value ΠI(x0).

We get started with the case of time dependent systems.

Remark 4.52 (Time dependent systems). The extension to time-dependent sys-
tems ẋ(t) = f(t, x(t)), x(0) = x0 is immediate. We treat t as an additional state
xn+1(t) := t, i.e. ẋn+1 = 1, xn+1(0) = 0 and reduce to the autonomous case.
Because in ẋN+1 = 1 none of the states x1, . . . , xn appear, the node xn+1 is a root.

4.9.1 Subsystems for time-delay systems

We consider the following time-delay system

ẋ(t) = f(x(t), x(t− τ1), . . . , x(t− τl)), x(−s) = x0(s) for s ∈ [0, τl] (4.45)

for t ∈ R+, a continuous initial function x0 : [−τl, 0], delays 0 < τ1 ≤ τ2 ≤ . . . ≤ τl
and a Lipschitz continuous map

f : Rn × (Rn)l → Rn, f(x, y1, . . . , yl) ∈ Rn. (4.46)

Under the above assumptions existence and uniqueness hold for (4.45), see for
instance [Fridman 2014].
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We follow a familiar structure from Section 4.1, by first defining what a system
means.

Definition 4.53. A set I ⊂ [n] induces a subsystem for (4.45) if fI = ΠI ◦ f only
depends on the variables xI , y1

I , . . . , y
l
I . A family of sets I1, . . . , Ik ⊂ [n] induces a

subsystem decomposition if I1, . . . , Ik induce subsystems and
k⋃
j=1

Ij = [n].

For a set I that induces a subsystem, we want to define a time-delay system
on Rn whose solutions correspond to the projection ΠI ◦ x(·) for solutions x(·) of
(4.45). Therefore, we view fI as a map in the following way

Let (I, fI) induce a subsystem for (4.45). We view fI as a map

fI : RI × RI × · · · × RI → RI , fI(xI , ylI , . . . , ylI) := f(x, y1, . . . , yl) (4.47)

for xI , y1
I , . . . , y

l
I ∈ RI and x, y1, . . . , yl ∈ RI such that ΠI(x) = xI ,ΠI(y1) =

y1
I , . . . ,ΠI(yl) = ylI .

Proposition 4.54. Let I ⊂ [n] induce a subsystem for the time-delay system (4.45).
Then for any solution x(·) of (4.45) the function w := ΠI ◦ x(·) solves

ẇ(t) = fI(w(t), w(t− τ1), . . . , w(t− τl)), w(−s) = ΠI(x(s)) for s ∈ [0, τl]. (4.48)

Proof. We just check (4.48) using the assumption on f respectively fI . We have

ẇ(t) = ΠI(ẋ(t)) = ΠI (f(x(t), x(t− τ1), . . . , x(t− τl)))
= fI((xi(t))i∈I , (xi(t− τ1))i∈I , . . . , (xi(t− τl))i∈I)
= fI(w(t), w(t− τ1), . . . , w(t− τl)).

The initial condition is satisfied by definition of w.

To obtain a decomposition result as in Theorem 4.23 it is important that solu-
tions of the subsystems give rise to solutions of the whole system.

Proposition 4.55. Let I1, . . . , Ik induce a subsystem decomposition. Let x0(·) :
[−τl, 0] → Rn be continuous and x1(·), . . . , xk(·) be solutions of (4.48) with corre-
sponding initial values xj(·) = ΠIj ◦ x0(·). Then the solution x(·) of (4.45) is the
unique function with xj(·) = ΠIj ◦ x(·) for all j = 1, . . . , k.

Proof. Proposition (4.54) shows that xj(·) = ΠIj ◦x(·) is satisfied for all j = 1, . . . , k.
That I1, . . . , Ik induce a subsystem decomposition implies that a function z(·) with
ΠIj ◦ z(·) = xj(·) for all j = 1, . . . , k, is unique.

Remark 4.56. Based on Propositions 4.54 and 4.55 we can apply the techniques
from the previous sections, including the decomposition from Section 4.4.1 also to
time-delay systems.
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Remark 4.57 (Sparsity graph). For time-delay systems, the sparsity graph of f
from (4.45) has nodes x1, . . . , xn and an edge from xi to xj if ẋj depends on at least
one of the values xi(t), xi(t − τ1), . . . , xi(t − τl), i.e. fj depends on at least one of
the values xi(t), xi(t− τ1), . . . , xi(t− τl).

4.9.2 Subsystems for stochastic differential equations

Consider a stochastic differential equation of the following form

dXt = f(t,Xt) dt+ σ(t,Xt) dBt (4.49)

with given initial random variable X0, (Bt)t∈R+ a m-dimensional Brownian motion
and f : Rn → Rn, σ = (σi,j) i=1,...,n

j=1,...,m
: Rn → Rn×m being measurable with

∥f(x)∥2 +
n∑

i,j=1
|σi,j(x)| ≤ C(1 + ∥x∥2) for all x ∈ Rn (4.50)

for a constant C ∈ R and

∥f(x)− f(y)∥2 +
n∑

i,j=1
|σij(x)− σij(y)| ≤ D ∥x− y∥2 for all x, y ∈ Rn (4.51)

for some constant D. We refer to [Øksendal 2003] for our notation of stochastic
ordinary differential equation, as well as for the existence and uniqueness of a solu-
tion (Xt)t∈R+ of (4.49) under the above conditions, see for instance [Øksendal 2003,
Section 5].

Definition 4.58. A set I ⊂ [n] induces a subsystem for the stochastic differential
equation (4.49) if fI = ΠI ◦f and σI := ΠI ◦σ := (σi,j)i∈I,1≤j≤m depend only on the
variables xI . A family of sets I1, . . . , Ik ⊂ [n] induces a subsystem decomposition if

I1, . . . , Ik induce subsystems and
k⋃
j=1

Ij = [n].

As usual, for I ⊂ [n] that induces a subsystem, we treat fI respectively σI as
a function on RI and we get a corresponding stochastic differential equation (4.52)
induced by fI and σI .

Proposition 4.59. Let I induce a subsystem for (4.49) and (Xt)t≥0 be the solution
of (4.49). For t ∈ R+ let Wt := ΠI ◦Xt. Then the stochastic process (Wt)t∈R+ is
the unique solution of

dYt = fI(Yt) dt+ σ(Yt) dBt, Y0 = ΠI(X0). (4.52)

Proof. That (Xt)t∈R+ solves (4.49) means that for 0 ≤ t ≤ s it holds, [Øksendal 2003],

Xs −Xt =
s∫
t

f(Xr) dr +
s∫
t

σ(Xr) dBr. (4.53)
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Based on (4.53) we verify the corresponding integral equation for (Wt)t∈R+ , i.e. let
0 ≤ t ≤ s then

Ws −Wt = ΠI (Xs −Xt) = ΠI

 s∫
t

f(Xr) dr +
s∫
t

σ(Xr) dBr


=

s∫
t

ΠI(f(Xr)) dr +
s∫
t

(ΠI ◦ σ)(Xr) dBr

=
s∫
t

fI(r,Wr) dr +
s∫
t

σI(r,Xr) dBr.

This proves the claim.

For a subsystem decomposition, we can recover the solution from the subsystem
solution.

Proposition 4.60. Let I1, . . . , Ik ⊂ [n] induce a subsystem decomposition for (4.49)
and let (W 1

t )t∈R+ , . . . , (W k
t )t∈R+ be the solutions of the corresponding subsystem

equation (4.52). Then (Xt)t∈R+ is the unique stochastic process with W j
t = ΠIj ◦Xt

for all t ∈ R+ and all j = 1, . . . , k.

Proof. By Proposition 4.59 it holds W j
t = ΠIj ◦Xt for all t ∈ R+ and j = 1, . . . , k.

Because I1, . . . , Ik induce a subsystem decomposition, a function Y with ΠIj (Y ) =
W j
t for all j = 1, . . . , k is uniquely determined for each t ∈ R+.

Remark 4.61 (Sparsity graph). For stochastic differential equations (4.49) the
sparsity graph has nodes x1, . . . , xn and there is an edge from xi to xj if fj depends
on xi or σjl depends on xi for some 1 ≤ l ≤ n.

4.9.3 Subsystems for hybrid systems

For hybrid systems, we follow the notation and solution concept from [Goedel 2012].
We consider the equation {

ẋ ∈ F (x), x ∈ C
x+ ∈ G(x), x ∈ D

(4.54)

for disjoint continuity and jump sets C,D ⊂ Rn, set valued maps F,G : Rn ⇒ Rn,
and initial value x(0) = x0 ∈ Rn.

Definition 4.62. A set I ⊂ [n] induces a subsystem for (4.54) if FI = ΠI ◦ F and
GI = ΠI ◦G only depend on the variables xI .

We get the following expected proposition.

Proposition 4.63. Let I ⊂ [n] induce a subsystem for (4.54) assume that C and
D decompose according to I, [n] \ I (see Definition 4.17). Let ϕ be a solution of
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(4.54). Then ΠI ◦ ϕ is a solution for the hybrid subsystem{
ẏ ∈ FI(y), y ∈ ΠI(C)
y+ ∈ GI(y), y ∈ ΠI(D)

with initial value yj(0) = ΠI(x0).

Proof. The statement follows basically from Lemma 4.14 by separating the dynam-
ics in its continuous part on C and its discrete part on D. Note that Lemma 4.14,
such as most other results in this chapter, holds true for the discrete time case as
well.

Remark 4.64. Because the maps F and G are set-valued we do not have unique-
ness of solutions, therefore a reconstruction of a global solution from solutions of
the subsystem might not be possible. The reason is that in different subsystems,
incompatible solutions can be selected.

Remark 4.65 (Sparsity graph). For hybrid systems (4.54) we build the sparsity
graph based on decompositions of C and D as for state constrained systems in
Definition 4.41. Therefore, assume that C decomposes according to J1, . . . , JN ⊂ [n]
and D decomposes according to U1, . . . , UM ⊂ [n]. The sparsity graph for the hybrid
system (4.54) has the nodes x1, . . . , xn and there is an edge from xi to xj if Πj ◦ F
depends on xi or Πj ◦G depends on xi or i, j ∈ Jl for some 1 ≤ l ≤ N or i, j ∈ Ur
for some 1 ≤ r ≤M .

4.9.4 Subsystems for control systems

In this section, we define subsystems for control systems of the form

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn (4.55)

for a continuous vector field f = (f1, . . . , fn) : Rn × Rm → Rn, which is Lipschitz
continuous in x, and controls u = (u1, . . . , um) : R+ → Rm. We call x(·), u(·) a
solution of (4.55) if the pair satisfied (4.55).

For control systems, we have to include the control u into the notion of a sub-
system.

Definition 4.66. A set I × K ⊂ [n] × [m] induces a subsystem for (4.55) if fI
depends only on xI and uK . A family of set I1 × K1, . . . , IN × KN ⊂ [n] × [m]
induces a subsystem decomposition if

n⋃
l=1

Il = [n] and Kl ∩Kr = ∅ for all l ̸= r.

If I ×K induces a subsystem for (4.55) then we can treat fI as a control vector
field on RI with control inputs (uk)k∈K .

Proposition 4.67. Let I × K induce a subsystem for (4.55) and x(·), u(·) be a
solution of (4.55). Then ΠI ◦ x(·),ΠK ◦ u(·) is a solution for the control subsystem

ẏ(t) = fI(y(t), vK(t)), y(0) = ΠI(x0). (4.56)
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Proof. We compute

d
dtΠI(x(t)) = ΠI (ẋ(t)) = ΠI(f(x(t), u(t))) = fI(xI(t), uK(t))

= fI(ΠI(x(t)),ΠK(u(t)))

with initial value ΠI(x(0)) = ΠI(x0).

For subsystem decompositions, we can reconstruct the system from its subsys-
tem solutions.

Proposition 4.68. Let I1 × K1, . . . , IN × KN be a subsystem decomposition for
4.55 and (x1(·), u1(·)), . . . , (xN (·), uN (·)) be solutions of the corresponding control
subsystem equation (4.56). Then there is a unique function x(·) and a control
function u(·) that solve (4.55) and satisfy ΠIl

◦ x(·) = xl(·) and ΠKl
◦ u(·) = ul(·)

for all 1 ≤ l ≤ N .

Proof. Uniqueness of the function x(·) follows from
N⋃
l=1

Il = [n]. To show existence

we define the control u = (u1, . . . , um) by

ui(t) = uli(t) (4.57)

for t ∈ R+ and l such that i ∈ Kl. If there is no 1 ≤ l ≤ N with i ∈ Kl (i.e.
f is independent of the control input ui) we set ui(t) = 0. The condition from
Definition 4.66 that the sets K1, . . . ,KN are pairwise independent implies that u is
well defined. Next we claim that x(·), u(·) solves (4.55). Let i ∈ [n] and 1 ≤ l ≤ N
with i ∈ Il we have

ẋi(t) = fi(xI(t), uK(t)) = (fIl
(xI(t), uK(t)))i = (f(x(t), u(t)))i = fi(x(t), u(t))

by our choice of u(·) in (4.57) and the fact that Il induces a subsystem

Remark 4.69 (Sparsity graph). The sparsity graph for the control system (4.55)
has the nodes x1, . . . , xn and u1, . . . , um, an edge from xi to xj if fj depends on xi
and an bi-directed edge between xi and uj if fi depends on uj.

Remark 4.70. It is possible to merge the notions of subsystems for the different
systems from this section. Thus, we can treat stochastic control systems or time-
delay hybrid systems, etc.





Chapter 5

Linear programming problems
for global attractors

In this chapter, we present the linear programming problem representations of global
attractors from [Schlosser 2021, Schlosser 2022a]. We concentrate on continuous
time dynamical systems. Treating discrete time systems is possible in a similar
fashion and treated in [Schlosser 2021].

We consider dynamical system induced by differential equations

ẋ = f(x), x(0) = x0 ∈ Rn (5.1)

for a Lipschitz continuous vector field f on Rn. We denote the corresponding semi-
flow of solutions to (5.1) by φ. The dynamical system on Rn is equipped with a
constraint set X. That is, we are only concerned about those trajectories which
stay in X for all positive times. This leads to the following notion of the maximum
positively invariant set and global attractor for X.

Definition 5.1 (Maximum positively invariant and global attractor for X). For a
dynamical system (Rn, (φt)t∈R+) and a compact set X ⊂ Rn we call the set

M+ = {x0 ∈ X : φt(x0) ∈ X for all t ∈ R+}

the maximum positively invariant (MPI) set for X. The global attractor (GA) for
X is the smallest compact set A ⊂ X that uniformly attracts M+, i.e.

lim
t→∞

dist(φt(M+),A) = 0,

where dist denotes the Hausdorff distance with respect to the euclidean norm in Rn.

In the following, we present two infinite dimensional linear programming prob-
lems that represent the global attractor for X.

5.1 An occupation measure approach
This section is based on the text [Schlosser 2021]. The method strongly builds on the
work [Korda 2014] and combines it with a characterization of the global attractor
as the maximum invariant (i.e. positively invariant in forward and backward time
direction) set.

We follow an established line of reasoning via so-called occupation measures,
allowing for a linear but infinite dimensional representation of the dynamical system
via measures [Rubio 1975, Vinter 1978, Korda 2014, Henrion 2013, Lasserre 2008].
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5.1.1 A linear programming problem for global attractors

In [Korda 2014] a linear programming problem (LP) for approximating the maxi-
mum positively invariant set M+ was presented. Theorem 2.7 shows that the global
attractor is characterized as the largest set that is positively invariant forward and
backward in time. Hence, combining the LP for the maximum positively invari-
ant set (in forward time) with the same LP in reversed time direction gives the
global attractor. To motivate the resulting LP we follow the construction from
[Korda 2014]. For an initial measure µ0 ∈ M(X) and a discount factor β > 0, let
µ be the discounted occupation measure. That is, for a measurable set C ⊂ X the
value µ(C) is defined by

µ(C) :=
∫
X

∞∫
0

e−βtIC(φt(x)) dt dµ0(x). (5.2)

Then µ is a well defined measure on X that measures the discounted average time
spent in C (one can think of sampling initial conditions at random from the prob-
ability distribution given by µ0). From (5.2) and integration by parts, we get the
following relation for all v ∈ C1(Rn)

∫
X

∇v · f dµ =
∫
X

∞∫
0

e−βt∇v(φt(x))f(φt(x)) dt dµ0(x)

=
∫
X

∞∫
0

e−βt ∂

∂t
v(φt(x)) dt dµ0(x)

= −
∫
X

v dµ0 + β

∫
X

∞∫
0

e−βtv(φt(x)) dµ0(x) = β

∫
X

v dµ−
∫
X

v dµ0.

We call the equation∫
X

∇v · f dµ = β

∫
X

v dµ−
∫
X

v dµ0 for all v ∈ C1(Rn) (5.3)

the (continuous-time) Liouville’s equation. The Liouville equation can also be seen
as a direct application of basic semigroup theory: For v ∈ C1(Rn), Av := ∇v · f
is the action of the generator of the Koopman semigroup Ttv := v ◦ φt. The
adjoint semigroup is given by the push forward Ptρ(C) := ρ(φ−1

t (C)) for measurable
sets C ⊂ X. Hence, we can read the occupation measure µ (5.2) as the Laplace
transform µ =

∞∫
0
e−βtPtµ0 dt of µ0. Thus, µ solves the resolvent equation (βId −

A∗)−1µ0 = µ ([Engel 2006] Theorem 1.10), which is nothing else than the Liouville
equation (5.3).

Liouville equation and the global attractor We recall first that, by Theorem
2.7, the global attractor is given by the intersection of the maximum positively



5.1. AN OCCUPATION MEASURE APPROACH 133

invariant in forward and backward time direction. Therefore, we focus on the
maximum positively invariant set M+ first.

In [Korda 2014] it was shown that for any pair (µ, µ0) satisfying the Liouville
equation (5.3), it holds supp(µ0) ⊂ M+. Thus, to characterize the set M+, we
could maximize the support µ0 among pairs of measures (µ, µ0) that satisfy the
Liouville equation. This results in the set M+, see [Korda 2014]. Indeed, we can
always choose a measure µ0 with support supp(µ0) = M+ and µ its corresponding
occupation measure (5.2). However, maximization of the support of a measure
is computationally challenging. In order to circumvent this obstacle, we follow
the same strategy as in [Korda 2014]. Instead of maximizing the support we will
maximize the mass µ0(X) under the condition that µ0 is dominated by the Lebesgue
measure λ which is equivalent to µ0 + µ̂0 = λ

∣∣
X

for a µ̂0 ∈ M(X). That gives the
following linear programming problem

λ(M+) = sup
µ0,µ̂0,µ

µ0(X)

s.t. µ0, µ̂0, µ ∈M(X)∫
X
βv −∇v · f dµ =

∫
X
v dµ0 ∀v ∈ C1(Rn)

µ0 + µ̂0 = λ
∣∣
X

(5.4)

That the optimal value of the above LP is indeed the Lebesgue volume of M+
is shown in [Korda 2014]. To turn to the global attractor we add the invariance
conditions for the reversed time direction. That is imposed by adding the Liouville
equation (5.3) induced by the vector field −f . This yields the following LP

sup
µ0,µ̂0,µ+,µ−

µ0(X)

s.t. µ0, µ̂0, µ+, µ− ∈M(X)∫
X
βv1 −∇v1 · f dµ+ =

∫
X
v1 dµ0 ∀v1 ∈ C1(Rn)∫

X
βv2 +∇v2 · f dµ− =

∫
X
v2 dµ0 ∀v2 ∈ C1(Rn)

µ0 + µ̂0 = λ
∣∣
X

(5.5)

From the construction of (5.5), we immediately derive the following bound.

Proposition 5.2. λ(A) is a lower bound for (5.5).

Proof. For a measurable set C let µ0(C) := λ(A∩C) and µ̂0(C) := λ ((X \ A) ∩ C).
Then µ0, µ̂0 ∈ M(X) and µ0 + µ̂0 = λ

∣∣
X

. Let µ+ and µ− be the correspond-
ing occupation measures with discount factor β > 0 defined by (5.2) forward
and backward in time. So (µ0, µ̂0, µ+, µ−) is feasible and has objective value
µ0(X) = λ(A ∩X) = λ(A) = λ

∣∣
X

(A).
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5.1.2 The dual LP

The dual LP of (5.5) is given by

inf
w,v1,v2

∫
X
w dλ

s.t. (w, v1, v2) ∈ C(Rn)× C1(Rn)× C1(Rn)
−v1 − v2 + w ≥ 1
w ≥ 0
βv1 −∇v1 · f ≥ 0
βv2 +∇v2 · f ≥ 0

(5.6)

The following important lemma provides geometric insight about the feasible
points of the LP (5.6) and is from [Korda 2014, Lemma 3].

Lemma 5.3. Let (w, v1, v2) be feasible for the dual LP (5.6) and M+ respectively
M− denote the maximum positively respectively negatively invariant set. It holds
v1 ≥ 0 on M+, v2 ≥ 0 on M− and hence w ≥ 1 on A.

The above lemma indicates what the optimal solution of the dual LP should look
like, i.e., that w = IA. Since IA is not continuous on X (if A is not a connected
component of X), which implies that the solution to (5.6) is not attained; however,
a minimizing sequence exists and its infimum is equal to the supremum in the primal
problem (5.5), i.e., there is no duality gap. This is formalized in the following crucial
result.

Theorem 5.4. For all β > 0 there is no duality gap and the optimal value of
(5.5) and (5.6) is given by λ(A). The infimum in the dual program is not attained
unless A = X. For a feasible solution (v1, v2, w) of the dual problem we have
A ⊂ w−1([1,∞)).

This statement shows that the global attractor can be approximated by super-
level sets of functions w obtained from the dual problem and as the feasible solutions
approach the optimum this approximation gets tight.

Before turning to a more explicit construction, we give a short argument for a
proof of Theorem 5.4 by using [Korda 2014]. Because the global attractor is given by
the intersection of the sets M+ and M−, we can first apply the linear programming
problem from [Korda 2014] to find M+ and in the next step apply the same problem
to the dynamical system with reversed time direction to find the part of M− laying
in M+. Since it was shown in [Korda 2014] that there is no duality gap in each
step, there will be no duality gap for the LPs (5.5) and (5.6). The arguments used
in [Korda 2014] use infinite-dimensional LP theory while we will give a constructive
proof. In the case of regularizing discount factor β > Lip(f) we will construct a
sequence of feasible solutions (v1

m, v
2
m, wm)m∈N such that wm → IA in L1(X,λ); in

particular this is a minimizing sequence by Lemma 5.2.
Before proving Theorem 5.4, let us state the following result [Lee 2003, Theorem

2.29].

Proposition 5.5. For each closed set C ⊂ Rn there exists a bounded function
p ∈ C∞(Rn) such that p−1({0}) = C and p(x) ≥ 0 for all x ∈ Rn.



5.1. AN OCCUPATION MEASURE APPROACH 135

Proof. of Theorem 5.4 We start with the easy part, namely that the superlevel sets
w−1([1,∞)) give outer approximations of the global attractor A. By Lemma 5.3 we
have w(x) ≥ 1 on A. For the rest we only cover the case β > Lip(f) and additionally
assume that the derivative of f is locally Lipschitz continuous as well. We need these
technical assumptions in order to guarantee that our construction gives a sufficient
regular function (namely C1). Note that the general case is covered by applying
the arguments from [Korda 2014] twice, as mentioned above. The idea is that we
will define suitable functions v1

m, v
2
m that satisfy the equation βv1

m−∇v1
mf ≥ 0 and

βv2 + ∇v2 · f ≥ 0 respectively and build a minimizing sequence based on those
functions. Through the functions v1 and v2 we want to recognize which points
leave X. Without loss of generality we can assume f being globally Lipschitz
with globally Lipschitz derivative, because, under our assumptions, one can always
modify f outside of X to obtain a globally Lipschitz function on Rn coinciding
with f on X. We denote the corresponding flow also by φ. Note that this flow
exists for all times t ∈ R and initial values x0 ∈ Rn and we have x /∈ M+ if and
only if φt(x) /∈ X for some t ∈ R+. Let us choose p ∈ C∞(Rn) bounded such that
p−1({0}) = X and p > 0 everywhere else. For x ∈ Rn define

v1(x) := −
∞∫

0

e−βtp(φt(x)) dt. (5.7)

Then v1(x) < 0 if and only if there exists a time t ∈ R+ for which we have φt(x) /∈ X.
In particular v1 < 0 on X \M+. We will see that v1 satisfies βv1 − ∇v1 · f ≥ 0
on X. We have ∥∂xφt(x)∥ ≤MeLip(f)t for some M > 0 and all t ∈ R+. Thanks to
β > Lip(f) we can interchange integration and differentiation and get for all x ∈ Rn

Dv1(x) = −
∞∫

0

e−βt∂x (p(φt(x))) dt = −
∞∫

0

e−βtDp(φt(x))∂xφt(x) dt.

Further

βv1(x) = −β
∞∫

0

e−βtp(φt(x)) dt p.i.= −p(x) +
∞∫

0

e−βtDp(φt(x))f(φt(x)) dt

= −p(x)−
∞∫

0

e−βtDp(φt(x))∂xφt(x)f(x) dt = −p(x) +Dv1(x)f(x),

where we have used in the third line the following relation

∂x0φt(x0) · f(x0) = ∂tφt(x0) = f(φt(x0)).

This is the only part where we needed f to have a locally Lipschitz continuous
derivative. Since p is vanishing on X we have βv1−∇v1 ·f = 0 on X and v1(x) < 0
for x /∈ M+. Proceeding similarly backward in time we find v2 ∈ C1(Rn) that
satisfies βv2 + ∇v2 · f ≥ 0 on X and v2(x) < 0 for x /∈ M−. In particular the
triple (v1

m, v
2
m, wm) := (m · v1,m · v2,max{0, 1 + m · v1 + m · v2}) is feasible and

as m → ∞ we have wm ↘ IA. It follows from the monotone convergence theorem
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that
∫
X
wm dλ→

∫
X
IA dλ = λ(A). By Proposition 5.2 we know that λ(A) is a lower

bound for the primal problem while the above shows that λ(A) is an upper bound
of the dual problem. Weak duality, Theorem 2.21, gives that λ(A) is the optimal
value for both the primal and dual LP.

Note that for β > Lip(f) we have constructed a feasible solution (v1, v2, w) such
that w−1([1,∞)) = w−1({1}) = A.

5.1.3 Solving the LPs via semidefinite programming

We approach the problem of computationally solving the infinite dimensional LP
(5.6) via techniques from polynomial optimization. In order to do so, we assume
more algebraic structure on the dynamical system.

Assumption 5.6. The vector field f is polynomial and X is a compact basic semi-
algebraic set, that is, there exist polynomials p1, . . . , pj ∈ R[x1, . . . , xn] such that
X = {x ∈ Rn : pi(x) ≥ 0 for i = 1, . . . , j}. Further we assume that one of the pi is
given by pi(x) = R2

X − ∥x∥22 for some large enough RX ∈ R.

We will only state the procedure for the dual LP (5.6) because this will pro-
vide guaranteed outer approximations of the global attractor, while this is not the
case for the primal problem. In order to solve the infinite dimensional problem
we first replace the space of continuous functions with the space of polynomials;
this is justified by the Stone-Weierstraß theorem. Then we truncate the degree
of the polynomials to get tightenings of the dual problem in form of finite dimen-
sional semidefinite programs (SDPs). Where the SDPs arise from the application
of Putinar’s Positivstellensatz to reformulate positivity as a sum-of-squares con-
straint. The corresponding tightenings truncated at degree k ∈ N for the problem
in continuous time read as

dk := inf
v1,v2,w,{qi},{ti},{ri},{si}

w′l

s.t. −v1 − v2 + w − 1 = q0 +
j∑
i=1

qipi

w(x) = t0 +
j∑
i=1

tipi

βv1 −∇v1 · f = r0 +
j∑
i=1

ripi

βv2 +∇v2 · f = s0 +
j∑
i=1

sipi

(5.8)

where w′ is the vector of coefficients of the polynomial w and l is the vector of the
moments of the Lebesgue measure over X (i.e., lα =

∫
X x

α dλ(x), α ∈ Nn, ∑i αi ≤
k), both indexed in the same basis of R[x]k; hence w′l =

∫
X
w(x) dλ(x). The decision

variables v1, v2, w are polynomials in R[x]k whereas q0, . . . , qj , r0, . . . , rj , s0, . . . , sj ,
t0, . . . , tj are sum-of-squares of polynomials with degrees such that q0, t0, r0, s0, qipi,
tipi, ripi, sipi are all in R[x]k for all i = 1, . . . , j. These sum-of-squares optimization
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problems translate directly to convex SDPs (see, e.g., [Lasserre 2009, Parrilo 2000])
with high-level modeling software available (e.g., Yalmip [Löfberg 2004], Glop-
tipoly [Henrion 2009]). That this procedure leads to a convergent hierarchy of
optimization problems is stated in the following theorem.
Theorem 5.7. For all k ∈ N we have dk ≥ dk+1 and dk → λ(A) as k → ∞.
Further, let (wk, v1

k, v
2
k) be optimal for the SDP (5.8) then for

Ak := {x ∈ X | min{v1
k(x), v2

k(x)} ≥ 0}, (5.9)

it holds Ak ⊃ A and
lim
k→∞

λ(Ak \ A) = 0. (5.10)

Proof. The inequality dk ≥ dk+1 follows immediately since the set of feasible el-
ements is monotonically increasing with k. To prove the convergence of dk to
λ(A) as k → ∞, note first that any triple (v1, v2, w) that is feasible for the
problem (5.8) is feasible for the original dual LPs (5.6). Hence, we have dk ≥
λ(A) for all k ∈ N. Let ε > 0 and (v1, v2, w) be feasible for the dual LP (5.6).
Then (v1 + ε, v2 + ε, w + ε) is strictly feasible and by compactness and the Stone-
Weierstraß theorem we can find polynomials ν1, ν2, ω ∈ R[x1, . . . , xn] such that
max{∥v1− ν1∥∞, ∥∇v1−∇ν1∥∞},max{∥v2−ν2∥∞, ∥∇v2−∇ν2∥∞} < β

1+β ε in the
continuous time case and ∥w − ω∥∞ < ε. By the triangle inequality we see that
(ν1, ν2, ω) is also strictly feasible with objective value∫

X

ω dλ ≤
∫
X

w dλ+ ελ(X).

Since ε > 0 was arbitrary we see that the optimal value is unchanged when
restricting the decision variable to polynomials. From Putinar’s Positivstellen-
satz [Putinar 1993] it follows now the convergence of dk to λ(A) as k → ∞. For
the remaining claim note first that Ak always contains A by Lemma 5.3. To verify
(5.10) we use again Lemma 5.3 and see wk ≥ 1 on Ak. From feasibility we have
w ≥ 0 on X and it follows

λ(Ak \ A) = λ(Ak)− λ(A) =
∫
Ak

1 dx− λ(A) ≤
∫
Ak

wk(x) dx− λ(A)

≤
∫
X

w(x) dx = dk − λ(A),

and this converges to zero, as k →∞, by the already proven part of the statement.

The asymptotic convergence to the global attractor was proven for all parame-
ters β > 0. But when computing an outer approximation the choice of this parame-
ter has a quantitative effect. Note that the limit case β = 0, in the primal problem,
corresponds to the problem of finding an invariant measure, while large values of β
respectively α give high discounting, i.e. the occupation measure takes short time
evolution of the system more into account.
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Numerical examples Additionally to the Lorenz system shown in Figure 3.11,
we present two more numerical examples, one of which has also a strange attractor
and the other one has a stable limit cycle. The system with strange attractor has
discrete time, and is given by the Hénon map, scaled such that the attractor is
inside the unit box,

xm+1 = 2
3(1 + ym)− 2.1x2

m, ym+1 = 0.45xm. (5.11)

As mentioned, the treatment of discrete time systems is similar and we refer to
[Schlosser 2021] for the details. The second example is the Van–der-Pol oscillator

ẋ = 2y, ẏ = −0.8x− 10(x2 − 0.21)y. (5.12)

The numerical approximations of the attractors were generated by simulation
of very long trajectories, discarding the initial portions. The SDP problems were
solved using MOSEK. The figures Fig. 5.1 and Fig. 5.2 show the outer approx-
imations of the global attractors given by Ak from Theorem 5.7 arising from the
tightening SDPs with degree bound k = 8 and k = 10 for the Hénon map and
k = 12 for the Van der Pol oscillator.

Figure 5.1: Outer approximations for the Hénon attractor. Left: β = − log(0.05) and degree 8
polynomials. Right: The figure shows the intersection of the approximations obtained by degree
6,8 and 10 polynomials.

Although we know that the optimal values dk =
∫
wk of the tightening SDPs

decrease monotonically to λ(A) it is not guaranteed that the sets Ak are monoton-
ically shrinking towards the global attractor. And it is not to be expected that the
sequence of sets Ak shows such a monotone decay. But that on the other hand al-
lows us to get better results by combining lower degree approximations with higher
degree ones. In addition to that, the freedom of the choice of the scalar parameter
β respectively α allows further refinement. The right pane of Figure 5.1 shows the
intersection of the outer approximations obtained by the tightening SDPs up for
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degrees 4, 6 and 8 and a scalar grid of the parameter α. For the Hénon map the
outer approximation is given by the grey colored area.

We expect that more complicated topological structures, such as holes, require
higher degree polynomials to be identified by our approach. Since we only gave a
guaranteed convergence in terms of Lebesgue measure discrepancy, we may not have
full control of all topological properties of the outer approximations of the global
attractor1. The Van der Pol oscillator is an example where the global attractor
is given by an asymptotically stable limit cycle. Hence, the solutions to the SDP
tightenings have to detect the limit cycle and hence this is connected to the task of
finding holes which we have also seen for the Hénon map. Here it is important to
choose the set X a bit more carefully. For the left pane in Figure (5.3) we chose
X = {(x1, x2) ∈ R2 : 0.4 ≤ ∥(x1, x2)∥2 ≤ 2} so that the limit cycle is included in
X but the initial value (0, 0) corresponding to the trivial solution x(t) = y(t) = 0
for all t is not included. The difference is that if (0, 0) is in X, then the limit cycle
and its whole interior are the global attractor. This is detected by our approach as
shown in the right pane of Figure 5.3. The reason why in that case the attractor is
the much larger set is that the interior of the limit cycle is the unstable manifold
of the equilibrium point (0, 0), hence contained in the global attractor.

Figure 5.2: Outer approximations of the global attractor for the Van der Pol oscillator. Left:
approximation with X = {x | 0.4 ≤ ∥x∥2 ≤ 2} (fixed point (0, 0) not included), degree 12 polyno-
mials and β = 0.05. Right: approximation with X = {x | ∥x∥2 ≤ 2} (fixed point included), degree
12 polynomials and β = 2.

The figures in Fig. 5.2 show that the global attractor is detected well. But our
numerical examples also showed that one has to be careful with numerical issues
because, in the case of the Van der Pol oscillator for lower degree polynomials, the

1Getting a guaranteed asymptotic control for the topological properties of the attractor would
require convergence in the Hausdorff metric. Proving such convergence remains a challenging and
so far elusive task for the moment-sum-of-squares approach, here as well as in previous works
(e.g., [Korda 2014, Henrion 2013]).
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graph of min{v1, v2} is very flat around the global attractor which leads to possible
round off issues when depicting the superlevel set Xk = min{v1, v2}−1([0,∞)).
In such situations, in order to obtain provable outer approximation, more careful
post-processing of the solutions to the SDP is required, e.g., using the methods of
[Henrion 2013, Korda 2014].

5.2 A convex almost Lyapunov function approach

The work that we present in this section combines two existing approaches for
approximating global attractors. One is the approach from [Schlosser 2021] from
the previous Section 5.1. The other is [Jones 2021a] based on Lyapunov theory.
In [Jones 2021a], the authors propose the following optimization problem

inf
J

λ
(
J−1([0, 1])

)
s.t. J ∈ C1(Rn)

J(x) ≥ 0 on X
∇J · f ≤ −(J − 1) on X

∅ ≠ J−1 ([0, 1]) ⊂ X̊.

(5.13)

This approach provides converging supersets J−1 ([0, 1]) of the global attractor
which have the desirable property of being positively invariant. However, the
method from [Jones 2021a] has the disadvantage that the optimization problem
(5.13) is not convex and not computationally tractable without the use of heuris-
tics. Incorporating such heuristics came at the price of losing guaranteed conver-
gence [Jones 2021a]. We marry both approaches [Jones 2021a, Schlosser 2021] by
combining their techniques and, by doing so, get converging outer approximations
of the global attractor consisting of positively invariant sets based on convex opti-
mization via sum-of-squares techniques.

We begin with following the line of reasoning from [Jones 2021a] and specify the
type of Lyapunov functions we are interested in.

Definition 5.8. Let U ⊂ Rn be open. A function V ∈ C1(U) is called an exponential
Lyapunov function for the dynamical system induced by f if for all x ∈ U

V (x) ≥ 0 and ∇V (x) · f(x) ≤ −V (x). (5.14)

We call V an exponential Lyapunov function for a set A ⊂ U if V is an exponential
Lyapunov function in the above sense and A := V −1({0}).

In this section, with regard to Theorem 2.11, we make the following assumption
on the basin of attraction of A (see Definition 2.3), which we denote by Bf (A).

Assumption 5.9. We assume Bf (A) ⊂ Rn is open, where A is the GA for X.

Let M+ still denote the maximum positively invariant set. We infer directly
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from Theorem 2.11 that the global attractor A can be characterized as follows

A = inf
V

V −1({0})
s.t. V ∈ C1(Rn)

V ≥ 0 on M+
∇V · f ≤ −V on M+.

(5.15)

Using the ideas from Section 5.1 we can relate the optimization problem (5.15) to
the following LP.

p∗
0 = inf

∫
M+

w(x) dx

s.t. (w, V ) ∈ C(M+)× C1(Rn)
w + V ≥ 1 on M+
w ≥ 0 on M+
V ≥ 0 on M+
∇V · f ≤ −V on M+

(5.16)

Proposition 5.10. We have p∗
0 = λ(A) for p∗

0 from (5.16).

Proof. For any feasible (w, V ) the function V is an exponential Lyapunov function
for the GA A. By Theorem 2.11 we have A ⊂ V −1({0}), i.e. V = 0 on A. In
particular from w + V ≥ 1 on M+ it follows w ≥ 1 on A and by non-negativity of
w, we have

∫
M+

w(x) dx ≥ λ(A). That means p∗
0 ≥ λ(A). To construct a minimizing

sequence for (5.16) let 0 ≤ V ∈ C1(Bf (A)) be an exponential Lyapunov function
for A, i.e. V −1({0}) = A, satisfying ∇V · f ≤ −V , according to Theorem 2.11. It
holds M+ ⊂ Bf (A) and hence for k ∈ N the function wk := max{0, 1 − k · V } is
continuous on M+ with wk + k · V ≥ 1, i.e. the pair (wk, k · V ) is feasible for (5.16)
for all k ∈ N. For x ∈ A we have V (x) = 0, thus wk(x) = max{0, 1 − k · V (x)} =
max{0, 1} = 1, and for x /∈ A we have V (x) > 0, i.e. wk(x) = {0, 1 − kV (x)} ↘ 0
as k → 0. By the monotone convergence theorem it follows

∫
M+

wk(x) dx → λ(A),

hence p∗
0 ≤ λ(A).

In the next step, we want to get rid of the explicit dependence on the unknown
set M+. Again we do so, as in Section 5.1, by adding the additional decision variable
v and the constraint βv − ∇v · f ≥ 0 on X for a discounting factor β > 0. The
resulting LP has the form

λ(A) = inf
w,V,v

∫
X
w(x) dx

s.t. (w, V, v) ∈ C(Rn)× C1(Rn)× C1(Rn)
w + V − v ≥ 1 on X
w ≥ 0 on X
V + v ≥ 0 on X
∇V · f + V + v ≤ 0 on X
βv −∇v · f ≥ 0 on X

(5.17)

where only known data (i.e. f and X appears).
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In the final step, regarding the previous section and how the LP (5.6) was solved,
we would like to replace the search spaces C(Rn) and C1(Rn) by the space of polyno-
mials R[x1, . . . , xn] and then use the machinery from polynomial optimization as in
Section 5.1.3. Unfortunately, there exist polynomial dynamical systems, i.e. where
f is polynomial, for which there does not exist a polynomial exponential Lyapunov
function [Ahmadi 2018]. But in [Jones 2021a, Goluskin 2018], the authors showed
that (slightly) relaxing the notion of exponential Lyapunov function allows for fea-
sible polynomial candidates for such functions.

For ε > 0 we call a function J ∈ C1(Bf (A)) an ε-almost Lyapunov function if

J ≥ 0 and ∇J · f ≤ −J + ε. (5.18)

Almost Lyapunov functions still carry important properties of the attractor, namely
the set J−1([0, ε]) contains the attractor, is positively invariant (see Lemma 3.15)
and there exist polynomials p ∈ R[x] that satisfy (5.18) on X (see the discussion
after Lemma 3.15))! The parameter ε can be interpreted as an indicator of how far
J is from being an exponential Lyapunov function since 0-almost Lyapunov func-
tions are exactly exponential Lyapunov functions. Because we are still interested
in exponential Lyapunov functions we will add a penalty to ε. As it turns out,
penalizing ε by the factor λ(X) leads to an exact penalty function in the following
LP with discounting factor β > 0

p∗ = inf
w,J,ε,v

∫
X
w(x) dx+ ελ(X)

s.t. (w, J, ε, v) ∈ C(X)× C1(Rn)× [0,∞)× C1(Rn)
w + J − v ≥ 1 on X
w ≥ 0 on X
J ≥ 0 on X
∇J · f + J + v ≤ ε on X
βv −∇v · f ≥ 0 on X

(5.19)

The main result in this section is that the LP (5.19) gives the volume of the GA,
i.e. p∗ = λ(A), and induces tight outer approximations of the GA via J−1([0, ε]).
This is stated in the following Theorem.

Theorem 5.11. Let X be compact and f : Rn → Rn be a locally Lipschitz contin-
uous vector field. Let A be the global attractor for the dynamical system induced by
f with constraint set X. Then, for any β > 0, we have for p∗ in (5.19)

p∗ = λ(A).

Furthermore, for any feasible (w, J, ε, v) we have J−1([0, ε]) is positively invariant
and

A ⊂ K := J−1([0, ε]) ∩ v−1([0,∞)) ∩X (5.20)
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with
λ(K \ A) ≤

∫
X

w(x) dx+ ελ(X)− p∗ (5.21)

which converges to zero as (w, J, ε, v) gets optimal for (5.19).

Proof. The essential observation is that any feasible (w, J, ε, v) satisfies v ≥ 0 on
M+. This follows from Lemma 5.3) by the last constraint in (5.19). It follows that
∇J · f ≤ ε− J on M+, and hence J ≤ ε on A and J−1([0, ε]) is positively invariant
and contains A by Lemma 3.15, as well as we have w + J ≥ 1 on M+, and hence
w ≥ 1− ε on A. That gives∫

X

w(x) dx+ ελ(X) ≥ (1− ε)λ(A) + ελ(X)

≥ (1− ε)λ(A) + ελ(A) = λ(A),

i.e. p∗ ≥ λ(A). The remaining inequality λ(A) ≤ p∗ is the technical part of this
proof. We begin by using a construction from [Schlosser 2021] to find a function
v ∈ C1(Rn) with

βv −∇v · f = 0, v = 0 on M+ and v < 0 on X \M+. (5.22)

We show that for any (w, J) feasible for (5.16) and ε > 0 we can find k = k(ε) ∈ N
such that (w̃, J̃ , 2ε, k · v) is feasible for (5.19), where w̃ and J̃ are such that the
corresponding cost for (w̃, J̃ , 2ε, k ·v) is close to the cost of (w, J) for the LP (5.16).
Since w is only non-negative on M+ but (5.19) requires to be non-negative on X we
choose w̃ with w̃(x) := max{ŵ− r ·dist(x,M+), 0} for r > 0 large enough (where ŵ
is any continuous extension of w to X, which exists by Tietze’s extension theorem)
such that ∫

X

w̃(x) dx ≤
∫
M+

w(x) dx+ ε. (5.23)

To construct J̃ let U1 := J−1([−ε/2,∞))∩X ⊃M+ and U2 := J−1((−∞,−ε])∩X.
By [Lee 2013] Theorem 2.29 we can find a non-negative function ϕ ∈ C1(Rn) with
ϕ = 0 on U1 ⊃M+ and ϕ ≥ min

x∈X
J(x) on U2. Then the function J̃ := J+ε+ϕ is C1,

is non-negative and J̃ (and its derivative) coincides with J + ε (and its derivative)
on M+. Now we consider the choice of k such that (w̃, J̃ , 2ε, k · v) becomes feasible
for (5.19), i.e. also the first and fourth constraint in (5.19) are satisfied. Because
on M+ we have w + J + ε ≥ 1 + ε > 1, ∇J · f + J ≤ 0 < ε, w̃ = w, J̃ = J and
∇J̃ = ∇J , there is an open neighbourhood U of M+ such that

w̃ + J̃ > 1 and ∇J̃ · f + J̃ < 2ε on U (5.24)

Because v is non-positive and vanishes exactly on M+ ⊂ U1 we have −v ≥ ρ on
X \ U for some ρ > 0. Let k ∈ N with

k ≥ ρ−1 max
x∈X\U

{1− w̃(x)− J̃(x),∇J̃(x) · f(x) + J̃(x)− 2ε}. (5.25)
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By non-positivity of v and (5.24) we have

w̃ + J̃ − k · v > 1 and ∇J̃ · f + J̃ + k · v < 2ε on U

For x ∈ X \ U we get by our choice of k, (5.25), that

w̃(x) + J̃(x)− k · v(x) ≥ w̃(x) + J̃(x) + kρ
(5.25)
≥ 1

and similarly for the constraint ∇J̃ · f + J̃ + k · v ≤ 2ε. Therefore, (w̃, J̃ , 2ε, k · v) is
feasible for (5.19). Using (5.23) we can bound the corresponding cost

∫
X
w̃(x) dx+

2ελ(X) by ∫
X

w̃ dx+ 2ελ(X) ≤
∫
M+

w(x) dx+ ε+ 2ελ(X).

Since ε > 0 was arbitrary we conclude p∗ ≤ p∗
0 = λ(A). Finally, it remains to show

A ⊂ K, for K given by (5.20), and the estimate (5.21) for any feasible (w, J, ε, v).
From Lemma 3.15 it follows J−1([0, ε]) contains the attractor. For v−1([0,∞)) this
is true as well because property A ⊂ M+ ⊂ v−1([0,∞)) (see the first line of the
proof). Hence, it follows

A ⊂ J−1([0, ε]) ∩ v−1([0,∞)) ∩X = K.

Further, by definition of K, we obtain from the first constraint in the LP (5.19)

w ≥ 1− J + v ≥ 1− ε on K. (5.26)

Non-negativity of w now gives∫
X

w(x) dx+ ελ(X) ≥
∫
K

1− ε dx+ ελ(X)

= (1− ε)λ(K) + ελ(X) ≥ λ(K).

Subtracting p∗ = λ(A) on both sides finishes the proof.

Remark 5.12. The method in [Jones 2021a] treats minimal attractors and not
global attractors in the sense of Definition 5.1. But both concepts are closely related
and coincide under the additional assumption A ⊂ X̊ ⊂ X ⊂ Bf (A). Assuming
less, namely on that X ⊂ Bf (A) for the minimal attractor A then removing the
decision variable v and the constraint βv −∇v · f ≥ 0 in the LP (5.19) leads to an
LP representation of the minimal attractor.

Remark 5.13. The dual problem of the LP (5.19) acts on the space of Borel mea-
sures on X. We did not include the dual problem here for two reasons. First, as for
the LP (5.5), it gives less insight into the global attractor; see the discussion before
Theorem 3.12. Second, in contrast to the LP (5.5), here the measure formulation
does not give more geometric insight into the problem – the geometric interpretation
is obtained from the Lyapunov approach in the LP (5.19).
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Solving the LP The LP (5.19) can be solved via the moment-sum-of-squares
hierarchy as we did for the LP LP (5.6) as in Section 5.1.3. A careful look at the
proof of Theorem 5.11 reveals that we have constructed a minimizing sequence that
satisfies the inequality constraints in (5.19) strictly. As in the proof for the con-
vergence of SOS-hierarchy for the LP (5.6), utilizing the Weierstraß approximation
theorem and Putinar’s Positivstellensatz, shows convergence for the corresponding
SOS hierarchy for the LP (5.19). For details, we refer to [Schlosser 2022a].

Numerical examples We illustrate the approach from this section by three nu-
merical examples that have been used in [Schlosser 2021, Jones 2021a]. One is the
following globally asymptotically stable system with attractor A = {(0, 0)}, which
does not allow for a polynomial Lyapunov function[Ahmadi 2011]

ẋ(t) = −2y(t)
(
−x(t)4 + 2x(t)2y(t)2 + y(t)4

)
−

2x(t)(x(t)2 + y(t)2)
(
x(t)4 + 2x(t)2y(t)2 − y(t)2

)
ẏ(t) = 2x(t)

(
x(t)4 + 2x(t)2y(t)2 − y(t)4

)
−

2y(t)(x(t)2 + y(t)2)
(
−x(t)4 + 2x(t)2y(t)2 + y(t)4

)
. (5.27)

The other two examples are the Van der Pol oscillator from (5.12) and the Hénon
map from (5.11).

For the Van der Pol oscillator, as in [Jones 2021a] and [Schlosser 2021], the
method from this Section works very well and the performance is comparable with
the method in[Jones 2021a], see Figure 5.3. In our numerical examples, the approx-
imation from the occupation measures approach from Section 5.1 performs slightly
better than the method from this Section.

Figure 5.3: Outer approximations (black) of the attractor (red) for the Van der Pol oscillator
for X = {x : 0.4 ≤ ∥x∥2 ≤ 2}. Left: approximation, degree 12 polynomials, and β = 0.2. Right:
approximation for polynomials up to degree 16 and β = 0.2.

For the system (5.27) we notice some numerical instabilities in the decision
variable ε in the LP 5.19 when solving the corresponding SDPs using Yalmip
[Löfberg 2004] and Mosek [ApS 2019] (Figure 5.4 left). Using bisection in ε ≥ 0
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(for small ε) and solving the corresponding SDPs for fixed ε avoided the mentioned
numerical issues.

Figure 5.4: Outer approximations (black) of the attractor A = {(0, 0)} and trajectories starting
from (1, 1), (1, −1), (−1, 1), (−1, −1) (red) for (5.27) for X = [−1, 1]2. Left: approximation by
degree 16 polynomials and β = 0.2, the obtained ε∗ in the corresponding SDP is too small and
causes incorrect behavior of the set J−1([0, ε∗]), see the white “holes”. Right: Outer approximation
using bisection on ε and polynomials up to degree 16 with discounting parameter β = 0.2.

For the Hénon map we utilized freedom of choice in the parameter β > 0. This
discounting parameter β > 0 can be tuned and several solutions corresponding to
different values of β can be intersected to improve the quality of the approximation.
Similarly, we can introduce a parameter γ > 0 to the “almost Lyapunov” constraint
by considering ∇J · f ≤ ε − γ · J . As for β, small values of γ describe less/slower
discounting/decay and should be used when the dynamics towards the attractor is
slow. The intersection of solutions for different values of β and γ for the Hénon
map is illustrated on the right in Figure 5.5.

Figure 5.5: Outer approximations (gray) of the attractor (red) for the Hénon map for
X = [−1, 1]2. Left: approximation, degree 6 polynomials and β = − log(0.002), γ = 0.05.
Right: Intersection of approximation by degree 8 polynomials obtained by different values
β = − log(0.001), − log(0.002), − log(0.01) and γ = 0.002, 0.05, 0.2.
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Figure 5.6: Interconnection of Van-Der Pol oscillators in a cherry structure.

5.3 Sparse LPs

We have shown in Theorem 5.7 the approximations that we obtain from the SOS
hierarchies (5.8) satisfy the conditions in 2. in Theorem 4.25. Thus, for sparse
dynamical systems, we can decouple the computation of the GA into its computa-
tion on the subsystems according to Algorithm 2 and get sparse convergent (with
respect to Lebesgue measure discrepancy) outer approximations of the global at-
tractor. The same is true for the outer approximations obtained via the LP (5.19)
by [Schlosser 2022a, Theorem 3].

We assume that Assumption 5.6 is satisfied and immediately obtain the following
result as a corollary from Theorem 4.25.

Corollary 5.14. Algorithm 2, where in step 2 we use the SDP hierarchy (5.8),
produces converging outer approximations of the global attractor A, i.e. S(k) ⊃ A
for all k ∈ N and

dλ(S(k),A) = λ(S(k)∆A)→ 0 as k →∞.

When using Algorithm 4.8.3 and the minimal factorization J from Lemma 4.51,
for selecting a subsystem decomposition in step 1 in Algorithm 2, the complexity of
the corresponding SDPs is determined by the largest number of variables appearing
in one of the subsystem, i.e. ω from Theorem 4.49.

Proof. This follows immediately from the convergence result Theorem 5.7 and The-
orem 4.25. The complexity statement follows because the largest occurring SDP,
i.e. the SDP involving the most variables, is induced by the subsystems contain-
ing the most states. Its complexity is determined by the number of states in the
subsystem. By Theorem 4.49, that number is given by ω.

The above Corollary is true in the same way for computations of the ROA set
via [Henrion 2013] and the MPI set via [Korda 2014] due to the analog convergence
results [Henrion 2013, Theorem 6] and [Korda 2014, Theorem 7].

Numerical examples In [Schlosser 2021], we consider the artificial cherry inter-
connection of Van der Pol oscillators as in Figure 5.6. We haveN states x1, . . . , xN ∈
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R2. For the leaf nodes x2, . . . , xN , the dynamics is

ẋi1 = 2xi2
ẋi2 = −0.8xi1 − 10((xi1)2 − 0.21)xi2 + δix

1
1.

For the root note x1, the dynamics is

ẋ1
1 = 2x1

2

ẋ1
2 = −0.8x1

1 − 10((x1
1)2 − 0.21)x1

2.

We illustrate the decoupling procedure by computing outer approximations of
the MPI set of this system with respect to the constraint set [−1.2, 1.2]2N . We carry
out the computation for degree k = 8 in the SOS hierarchy and N = 10, resulting
in a total dimension of the state-space equal to 20. The optimal decoupling in this
case is into subsystems (x1, xi), i = 2, . . . , N , each of dimension four. Figure 5.7
shows the sections of the MPI set outer approximations when the value at the root
node is fixed at [0.5,−0.1]. The computation time was 12 seconds.2 Next we carried
out the the computation with k = 8 and N = 26, resulting in state-space dimension
of 52. Figure 5.8 shows the sections of the MPI set outer approximations when
the value at the root node is fixed at [0.5,−0.1]. The total computation time was
40.3 seconds. It should be mentioned that these problems in dimension 20 or 52
are currently intractable without structure exploitation. Here the sparse structure
allowed for decoupling in 9 respectively 25 problems in 4 variables, which were
solved in less than a minute in total.

TSSOS: Exploiting term sparsity In [Wang 2021b] we explored the applica-
tion of TSSOS – term sparsity sum-of-squares – from [Wang 2021a, Wang 2020] for
dynamical systems. The sparsity type that we consider in Chapter 4 and that was
applied to the previous numerical examples is of correlation type. In contrast to
this, term sparsity investigates “algebraic” sparsity in the exponents of the appear-
ing polynomials (that includes the dynamics f as well as the polynomial description
of the constraint set X). At each level of the SOS hierarchy, this allows inducing
a second hierarchy with the goal of exploiting term sparse structures and reduc-
ing computation time, see [Wang 2021a, Wang 2020] for details and applications.
In [Wang 2021b] we illustrate by numerical examples that TSSOS can help reduce
computation time in some cases. The approach provides a trade-off between compu-
tational costs and solution accuracy. However, under certain symmetry conditions
for the problem (i.e. symmetries in the dynamics and the constraint set) this ap-
proach enjoys convergence (in each level of the SOS hierarchy) and recovers the sign
symmetry reduction [Wang 2021b, Theorem 3.11].

2All computations were carried out using YALMIP [Löfberg 2004] and MOSEK running on
Matlab and 4.2 GHz Intel Core i7, 32 GB 2400MHz DDR4.
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Figure 5.7: Van der Pol oscillators in a cherry structure: The figure shows the outer approxima-
tions of the MPI set for k = 8 and N = 10 for the subsystems given by the cherry–branches.
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Figure 5.8: Van der Pol oscillators in a cherry structure: The figure shows the outer approxima-
tions of the MPI set for k = 8 and N = 26 for the subsystems given by the cherry–branches



Chapter 6

Koopman semigroup – sparsity
structures and domains of
reproducing kernel spaces

The Koopman lifting procedure, see Section 2.5, results in a linear operator (semi-
group) representation of the dynamical system. The first part of this chapter con-
tains our analysis for Koopman and Perron-Frobenius operators on reproducing
kernel Banach spaces from [Ikeda 2022b]. In the second part, we transfer sparsity
structures of the dynamical system to “block structures” of these operators, this
part is based on [Schlosser 2022b].

6.1 Koopman and Perron-Frobenius analysis on RKBS;
discrete time systems

We begin this section with discrete dynamical systems, i.e. we consider a map
f : X → X. We will define the Koopman operators and their adjoint operators
on reproducing kernel Banach spaces (B,B′, ⟨·, ·⟩, k). Apart from the Koopman lift,
RKBSs provide a different way of lifting the dynamics into a linear setting. The
main idea is that we can define an operator Kf transporting the dynamics f into
the RKBS. This is done via the feature map x 7→ k(x, ·) by

Kfk(x, ·) := k(f(x), ·). (6.1)

We illustrate this in Figure 6.1.
There is a beautiful connection between the operator Kf and the Koopman

operator on the RKBS. Namely, it turns out, that the Koopman operator is the
adjoint of the operator Kf . In the following we exploit this relation between those
two operators.

6.1.1 Definitions of the Koopman and Perron-Frobenius operator

To guarantee that the map Kf from (6.1) is well defined, it is useful to assume
that k(x1, ·), . . . , k(xn, ·) are linearly independent for any n ∈ N and any choice of
pairwise distinct point x1, . . . , xn ∈ X.

Assumption 6.1. We assume that the set {k(x, ·) : x ∈ X} ⊂ B′ is linearly
independent.



152 CHAPTER 6. KOOPMAN SEMIGROUP

Figure 6.1: Illustration of the operator Kf .

Remark 6.2. For RKHS the {k(x, ·) : x ∈ X} is linearly independent if and
only if k is a strictly positive kernel, that is, the kernel k satisfies for all n ∈ N,
(a1, . . . , an) ∈ Cn \ {0}, (x1, . . . , xn) ∈ Xn

n∑
i,j=1

aiajk(xi, xj) > 0.

Definition 6.3 (Koopman and Perron-Frobenius operator). Let (B,B′, ⟨·, ·⟩, k) be
an RKBS with kernel such that Assumption 6.1 is satisfied. Let f : X → X be given
dynamics. The Koopman operator Tf : B ⊃ D(Tf )→ B is defined by

Tfg := g ◦ f for g ∈ D(Tf ) := {h ∈ B : h ◦ f ∈ B}. (6.2)

The Perron-Frobenius operator Kf : Span{k(x, ·) : x ∈ X} → Span{k(x, ·) : x ∈
X} ⊂ B′ is defined by

Kfk(x, ·) := k(f(x), ·) for x ∈ X (6.3)

and extended linearly to Span{k(x, ·) : x ∈ X}.

Remark 6.4. It is shown in [Cowen 1995, Theorem 1.4] that if a bounded operator
K leaves the set {k(x, ·) : x ∈ X} invariant then K is a Perron-Frobenius operator.

Assumption 6.1 guarantees that extending (6.3) linearly to Span{k(x, ·) : x ∈ X}
is well defined. To define the adjoint operator of the Perron-Frobenius operator Kf ,
we first need that Kf is densely defined. Therefore, we recall the notion of density
from [Lin 2022] – a set W ⊂ B respectively W ′ ⊂ B′ is called dense with respect to
⟨·, ·⟩ if

⟨w, g⟩ = 0 for all w ∈W implies g = 0 (6.4)
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and analog for W ′

⟨v, w′⟩ = 0 for all w′ ∈W ′ implies v = 0. (6.5)

In the case of W = B and W ′ = B′, the conditions (6.4) and (6.5) state that
the bilinear form ⟨·, ·⟩ is non-degenerate. Condition (6.4) is a reformulation of the
map ϕ from (2.83) being injective and (6.5) states that we can embed B into (B′)∗,
the dual space of B′. Hence, the conditions (6.4) and (6.5) describe foremost an
algebraic property of the bilinear form ⟨·, ·⟩ and therefore should not be mistaken
with the notion of density with respect to the topologies on B and B′.

Remark 6.5. The set Span{k(x, ·) : x ∈ X} is dense in B′ with respect to ⟨·, ·⟩
because for any g ∈ B with 0 = ⟨g, h⟩ for all h ∈ B′, we have in particular g(x) =
⟨g, k(x, ·)⟩ = 0, i.e. g is the zero function. For reflexive RKBS, in particular RKHS,
we get also that B is dense in B.

The following result states that the Perron-Frobenius operator is adjoint (with
respect to ⟨·, ·⟩) to the Koopman operator and extends the result from the RKHS
setting in [Rosenfeld 2020]. Note that we use the notation A′ for the adjoint with
respect to a bilinear form ⟨·, ·⟩ and A∗ for the classical adjoint operator.

Lemma 6.6. Let (B,B′, ⟨·, ·⟩, k) be an RKBS with kernel satisfying Assumption
6.1. Then Kf is densely defined with respect to ⟨·, ·⟩ and we have Tf = K ′

f .

Proof. Since we assume that the set {k(x, ·) : x ∈ X} is linearly independent the
Perron-Frobenius operator is well defined. By Remark 6.5 Span{k(x, ·) : x ∈ X} is
dense in B′ with respect to ⟨·, ·⟩ and by Lemma 2.77 the adjoint of Kf exists and is
unique. To check that Tf is the adjoint of Kf let g ∈ D(K ′

f ) then for all x ∈ X we
have

K ′
fg(x) = ⟨K ′

fg, k(x, ·)⟩ = ⟨g,Kfk(x, ·)⟩ = ⟨g, k(f(x), ·)⟩
= g(f(x)) = Tfg(x).

This shows that Tf is at least an extension of K ′
f . For g ∈ D(Tf ), i.e. g ∈ B such

that g ◦ f ∈ B we have

⟨g,Kfk(x, ·)⟩ = ⟨g, k(f(x), ·)⟩ = g(f(x)) = (g ◦ f)(x)
= ⟨g ◦ f, k(x, ·)⟩ = ⟨Tfg, k(x, ·)⟩.

Hence we have K ′
f = Tf .

6.1.2 Basic properties

In Theorem 6.7 we present a collection of fundamental properties of the Koopman
and Perron-Frobenius operator on RKBS. Before stating these properties, we want
to put them into context with existing results for Koopman and Perron-Frobenius
operators on RKHS. The first three statements in Theorem 6.7 transfer from classi-
cal arguments for composition operators; in particular it shows that the information
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about the dynamical system is incorporated in the Koopman operator (statement
3. in Theorem 6.7). Statement 4. is an extension from existing results for the
RKHS setting and can be found in [Rosenfeld 2019, Paulsen 2016]. Statement 6.
is a transfer of a classical result for adjoint operators to the RKBS setting and
statement 8. relates to kernel-mean embeddings from [Klus 2020].

Theorem 6.7. Let f, f̃ : X → X be two maps and (B,B′, ⟨·, ·⟩, k) be an RKBS on
X with kernel k satisfying Assumption 6.1. Then

1. KfKf̃ = Kf◦f̃

2. if f is a bijection then K−1
f = Kf−1

3. If B is dense in B with respect to ⟨·, ·⟩ then

f = f̂ if and only if Kf = Kf̂ .

4. Tf is closed (with respect to the weak as well as norm topology). In particular,
Tf is bounded if and only if D(Tf ) = B.

5. Assume X is compact and B has the universal property (see Definition 2.57),
f : X → X is continuous and one of the following holds

(a) The map ϕ from (2.83) is an isomorphism
(b) x 7→ k(x, ·) ∈ B′ is continuous

Then, if X contains infinitely many elements, the operator Kf is not closed
with respect to ⟨·, ·⟩.

6. If Tf is densely defined then Kf is closable. If the map ϕ from (2.83) is an
isomorphism and B is reflexive then the converse is true as well, i.e. if Kf is
closable then Tf is densely defined.

7. Assume the map ϕ from (2.83) is an isomorphism. If D(Tf ) = B then Kf

can be extended to a bounded operator on B′. If, in addition, B is reflexive
then the converse is true as well.

8. Under the assumptions of point 5., the operator Kf can be extended to

D :=


∫
X

k(x, ·) dµ(x) : µ ∈M(X)

 (6.6)

by

K̄f

∫
X

k(x, ·) dµ(x)

 :=
∫
X

k(f(x), ·) dµ(x) for µ ∈M(X). (6.7)

where M(X) denotes the set of Borel measures on X.
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Proof. We have for all x ∈ X

KfKf̃k(x, ·) = Kfk(f̃(x), ·) = k(f(f̃(x)), ·) = k((f ◦ f̃)(x), ·)
= Kf◦f̃k(x, ·).

Hence KfKf̃ = Kf◦f̃ on Span{k(x, ·) : x ∈ X} and if follows the first statement.
In particular it follows K−1

f = Kf−1 if f is invertible. For the third statement for
f = f̂ it is obvious that also Kf = Kf̂ . Assume now Kf = Kf̂ . Then for x ∈ X
and all h ∈ B

0 = ⟨h, (Kf −Kf̂ )k(x, ·)⟩ = ⟨h, k(f(x), ·)− k(f̂(x), ·)⟩.

Hence, since we assumed B to be dense in B with respect to ⟨·, ·⟩, it follows
k(f(x), ·) = k(f̂(x), ·). From Assumption 6.1, it follows f(x) = f̂(x). The fourth
statement follows from Tf = K ′

f (by Lemma 6.6), Lemma 2.77 and the closed graph
theorem. We will show the fifth statement at last once we have proven 8. For 6.,
if Tf is densely defined then B := T ′

f is a closed extension of Kf . If (B,B′, ⟨·, ·⟩)
is reflexive then the second statement in 6. follows directly from [Ikeda 2022b,
Proposition B.8]. For 7., assume that D(Tf ) = B then by 4. we have that Tf is
bounded. The idea is to use the adjoint of Tf together with the isomorphism ϕ to
define a natural candidate for an extension of Kf . We define the bounded operator
T := ϕ−1T ∗

f ϕ : B′ → B′, where T ∗
f : B∗ → B∗ denotes the (classical) adjoint of Tf .

We claim that T extends Kf . To check this let x ∈ X and g ∈ B, then by definition
of ϕ and Lemma 6.6

⟨g, Tk(x, ·)⟩ = ⟨g, ϕ−1T ∗
f ϕk(x, ·)⟩ = (T ∗

f ϕk(x, ·))(g)
= (ϕk(x, ·))(Tfg) = ⟨Tfg, k(x, ·)⟩
= ⟨g,Kfk(x, ·)⟩.

From which it follows Tk(x, ·) = Kfk(x, ·) because ϕ is injective (or in other words,
B is dense in B with respect to ⟨·, ·⟩). For the second statement of 7. we assume
that Kf has a bounded extension K : B′ → B′ and B reflexive and want to show
that Tf is bounded. The idea is very similar but the adjoint of K is an operator on
B′∗ ∼= B∗∗ and in order to find an operator on B we use that B is reflexive. That B
is reflexive means that the map

J : B → B∗∗, J(b)(b∗) := b∗(b) (6.8)

is an isomorphism. We define the candidate operator

U := J−1(ϕ∗)−1K∗ϕ∗J : B → B. (6.9)

The operator U from (6.9) is bounded and we claim that U = Tf . To check this let
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g ∈ B and x ∈ X. Then playing with the definition of ϕ, ϕ∗ and J gives

Ug(x) = ⟨Ug, k(x, ·)⟩ = ϕ(k(x, ·))(Ug)

= ϕ(k(x, ·))
(
J−1(ϕ∗)−1K∗ϕ∗Jg

)
=
(
(ϕ∗)−1K∗ϕ∗Jg

)
(ϕ(k(x, ·))

= (K∗ϕ∗Jg) (ϕ−1ϕ(k(x, ·)) = (K∗ϕ∗Jg)k(x, ·)
= (ϕ∗Jg)(Kk(x, ·)) = (ϕ∗Jg)k(f(x), ·)
= Jg(ϕk(f(x), ·)) = ϕ(k(f(x), ·))(g)
= ⟨g, k(f(x), ·) = g(f(x)) = Tfg(x).

To show statement 8., we separate the two cases of assumptions (a) and (b) from
5. In the case of (b) note first that the (Bochner) integrals in (6.6) and (6.7) exist
due to the continuity assumptions on k and f . By choosing µ to be a dirac delta
δy for some y ∈ X we get

K̄fk(y, ·) = K̄f

∫
X

k(x, ·) dδy(x)

 =
∫
X

k(f(x), ·) dδy(x) = k(f(y), ·).

That shows that K̄f extends Kf . It remains to show that (6.7) is well defined.
That means whenever there are two measures µ, ν ∈M(X) with∫

X

k(x, ·) dµ(x) =
∫
X

k(x, ·) dν(x) (6.10)

then also
∫
X
k(f(x), ·) dµ(x) =

∫
X
k(f(x), ·) dν(x). This follows trivially once we have

shown that the representation of (6.10) is unique, i.e. (6.10) implies µ = ν. From
(6.10) we get for all g ∈ B by continuity of the bilinear form∫

X

g(x) dµ(x) =
∫
X

⟨g, k(x, ·)⟩ µ(x) =
〈
g,

∫
X

k(x, ·) dµ(x)
〉

=
〈
g,

∫
X

k(x, ·) dν(x)
〉

=
∫
X

g(x) dν(x).

The universal property together with the Riesz-Markov representation theorem im-
plies now that µ = ν. Now assume (a) from 5 instead of (b). The isomorphism
ϕ is defined by ϕ : B∗ → B′ with b∗(b) = ⟨b, ϕ(b∗)⟩ for all b∗ ∈ B∗. To show that
we can extend Kf by (6.7), we first show that the argument in (6.7) as well as
the proposed image have representations based on the embedding i : B → C(X)
(more precisely its adjoint i∗ : M(X) → B∗), the isomorphism ϕ, and b ∈ B, and
the Perron-Frobenius operator Pf on M(X) from (6.46). Note that, here the term
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∫
X
k(x, ·) dµ(x) is understood in the weak sense, that is, for each g ∈ B we have

⟨g,
∫
X

k(x, ·) dµ(x)⟩ :=
∫
X

⟨g, k(x, ·)⟩ dµ(x) =
∫
X

g(x) dµ(x). (6.11)

Next, we claim that
∫
X
k(x, ·) dµ(x), is nothing else than ϕ(i∗µ) for all µ ∈ M(X).

This can be seen as follows: For any g ∈ B we have

⟨g, ϕ(i∗µ)⟩ = (i∗µ)(g) =
∫
X

i(g)(x) dµ(x) =
∫
X

g(x) dµ(x)

(6.11)= ⟨g,
∫
X

k(x, ·) dµ(x)⟩.

Similarly for the right-hand side of (6.7). Namely, for any g ∈ B〈
g,

∫
X

k(f(x), ·) dµ(x)
〉

=
∫
X

g(f(x)) dµ(x) =
∫
X

g dPfµ

= (i∗(Pfµ))(g) = ⟨g, ϕ(i∗(Pfµ))⟩.

where Pf denotes the Perron-Frobenius operator on M(X) from (2.51). That means
(6.7) states that we want to extend Kf to the range of ϕ ◦ i∗, i.e. D, by setting

K̄f (ϕ(i∗µ)) := ϕ(i∗Pfµ)). (6.12)

First let us check that this is well defined. The universal property implies i∗ is
injective and hence ϕ ◦ i∗ is injective, too – hence (6.12) is well defined. Finally, to
see that K̄f is indeed an extension of Kf we have show that K̄fk(x, ·) = k(f(x), ·)
for all x ∈ X. As in the previous case we use that ϕ(i∗δx) = k(x, ·) for any x ∈ X,
from which it follows

K̄fk(x, ·) = K̄f (ϕ(i∗δx)) = ϕ(i∗(Pfδx)) = ϕ(i∗δf(x))
= k(f(x), ·).

This shows 8. under assumption (b) from 5. Last, it remains to show 5. The
property that is important in this proof is that weak* convergence of measures µn
to µ ∈M(X), denoted by µn ∗

⇀ µ, implies〈
g,

∫
X

k(x, ·) dµn(x)
〉
→ ⟨g,

∫
X

k(x, ·) dµ(x)⟩ (6.13)

for all g ∈ B. This follows directly from the weak* convergence of µn, namely〈
g,

∫
X

k(x, ·) dµn(x)
〉

=
∫
X

g dµn →
∫
X

g dµ = ⟨g,
∫
X

k(x, ·) dµ(x)⟩.
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We use the extension K̄f of Kf from 8. and show K̄f = Kf if Kf was closed
with respect to ⟨·, ·⟩. But this will lead to a contradiction because we will see
that the domain of K̄f is strictly greater than the domain of Kf . Let µ ∈ M(X).
We may assume that µ represents a non-negative measure – otherwise, apply the
Hahn-Jordan decomposition to µ. By scaling we may assume that µ is a probability
measure. Then for n ∈ N there exist x(n)

1 , . . . , x
(n)
kn
∈ X and λ

(n)
1 , . . . , λ

(n)
kn
≥ 0 with

kn∑
i=1

λ
(n)
i = 1 such that

µn :=
kn∑
i=1

λ
(n)
i δ

x
(n)
i

∗
⇀ µ as n→∞. (6.14)

By continuity of the Perron-Frobenius operator Pf on M(X) from (6.46) we then
also have

kn∑
i=1

λ
(n)
i δ

f(x(n)
i ) = Pfµn

∗
⇀ Pfµ (6.15)

For for any g ∈ B we get from (6.14)

⟨g,
kn∑
i=1

λ
(n)
i k(x(n)

i , ·)⟩ =
〈
g,

∫
X

k(x, ·) dµn(x)
〉
→
〈
g,

∫
X

k(x, ·) dµ(x)
〉

and from (6.15)

⟨g,Kf

kn∑
i=1

λ
(n)
i k(x(n)

i , ·)⟩ = ⟨g,
kn∑
i=1

λ
(n)
i k(f(x(n)

i ), ·)⟩ =
〈
g,

∫
X

k(f(x), ·) dµn(x)
〉

=
〈
g,

∫
X

k(x, ·) dPfµn(x)
〉
→
〈
g,

∫
X

k(x, ·) dPfµ(x)
〉

Because we assumed that Kf was closed with respect to ⟨·, ·⟩ it follows in particular
that

∫
X
k(x, ·) dµ(x) ∈ D(Kf ) = Span{k(x, ·) : x ∈ X}. That means we can find

m ∈ N, y1, . . . , ym ∈ X, a1, . . . , am ∈ R with∫
X

k(x, ·) dµ(x) =
m∑
i=1

aik(yi, ·) in B′, (6.16)

which means for all g ∈ B we have∫
X

g dµ =
m∑
i=1

aig(yi) =
∫
X

g d

(
m∑
i=1

aiδyi

)
.

From the universal property it follows µ =
m∑
i=1

aiδyi , i.e. µ is atomic. Since µ was

arbitrary that means all Borel measures µ ∈ M(X) are atomic – but this is not
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true when X contains infinitely many points, see [Ikeda 2022b, Lemma C.1].

Remark 6.8 (Invariant kernels). An easy (but restrictive, see [Das 2019]) setting
that guarantees boundedness of the operator Tf on an RKHS H with kernel k is
invariance of k, i.e. for all x, y ∈ X it holds

k(f(x), f(y)) = k(x, y). (6.17)

In this case Tf and Kf are isometries, due to∥∥∥∥∥Kf

n∑
i=1

aik(xi, ·)
∥∥∥∥∥

2

=
∥∥∥∥∥
n∑
i=1

aik(f(xi), ·)
∥∥∥∥∥

2

=
n∑

i,j=1
aiajk(f(xi), f(xj))

=
n∑

i,j=1
aiajk(xi, xj) = ∥k(x, ·)∥2

for all n ∈ N and a1, . . . , an ∈ C. More generally, by the same arguments, the
Perron-Frobenius operator is bounded with ∥Kt∥ ≤M if and only if we have

n∑
i,j=1

aiajk(f(xi), f(xj)) ≤M
n∑

i,j=1
aiajk(xi, xj). (6.18)

In contrast to (6.17) the condition (6.18) is typically not easily verified.

One possibility of defining an RKBS, such that the Koopman operators are
bounded, uses conjugacy and follows the classical concept for dynamical systems
that sometimes (local) charts give better insight into the dynamics. In the following
proposition, we use the notation from Lemma 2.72 in the preliminary section.

Proposition 6.9. Let f : X → X and (B,B′, ⟨·, ·⟩, k) be an RKBS on X with
kernel. Let g : Y → Y such that there exists a bijective function ϕ : Y → X with
ϕ◦g = f ◦ϕ. Let (Bϕ, B′

ϕ, ⟨·, ·⟩ϕ, kϕ) be the corresponding pullback RKBS with kernel
from Lemma 2.72. Then for the Perron-Frobenius operators Kf on B′ and Kg on
B′
ϕ it holds

TϕKf = KgTϕ. (6.19)

In particular if Kf is bounded on B′ then so is Kg with ∥Kg∥ = ∥Kf∥.

Proof. By Lemma 2.72 we have that Tϕ is an isometric isomorphism. Hence, it
remains to show (6.19). For any x ∈ X we have

TϕKfk(x, ·) = Tϕk(f(x), ·) = k(f(x), ϕ(·)) = k(ϕ(g(ϕ−1(x)), ϕ(·))
= kϕ(g(ϕ−1(x)), ·) = Kgkϕ(ϕ−1(x), ·) = Kgk(x, ϕ(·))
= KgTfk(x, ·)
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6.1.3 Examples

In this section, we present several examples from the literature. Example 6.10
recovers the case of the Koopman operator acting C(X) from an RKBS perspective.
Other examples treat holomorphic dynamics, as Example 6.11, point out limitations
of the approach, as in [Ishikawa 2021] or Examples 6.13 and 6.12, or Sobolev spaces
in Example 6.14.

Those examples, particularly the limiting ones, demonstrate that not any RKBS
fits the dynamical system at hand, and properties of the dynamical system, such as
linearity or regularity, have to be considered for the choice of the kernel.

We start with the classical example of the Koopman operator on C(X). We
view C(X) as an RKBS as in Example 2.69.
Example 6.10 (C(X) as an RKBS.). As in Example 2.69, for compact X, we
view C(X) equipped with the supremum norm ∥ · ∥∞ as an RKBS with a kernel
k : X × X → R continuous such that Span{k(·, x) : x ∈ X} is a dense subset
of C(X). For the Koopman operator Tf for a continuous discrete time dynamics
f : X → X, it holds D(Tf ) = B = C(X) because g ◦ f is continuous whenever g is.
And hence Kf can be extended to a bounded operator on B′ by Theorem 6.7. For
the examples k(x, y) = 1−|x−y|, k(x, y) = exy and k(x, y) = (1+y)x for X = [0, 1]
we get

Kf :


1− |x− ·| 7→ 1− |f(x)− ·|
ex· 7→ ef(x)·

(1 + ·)x 7→ (1 + ·)f(x).

(6.20)

In the next example, we consider Hardy spaces Hp(D) from Example 2.61 and
Remark 2.73, where p ≥ 1 and D is the unit disc D ⊂ C.
Example 6.11. The Hardy space Hp(D) consists of all analytic functions on D
for which the following norm is finite

∥g∥Hp := sup
0≤r<1

 2π∫
0

|f(reiθ)|p dθ


1
p

. (6.21)

The kernel is given by the Szegö kernel k(z, w) := 1
1−zw̄ and turns B := Hp(D)

into an RKBS where we take the dual-pairing ⟨·, ·⟩ of Hp(D) and its topological
dual space (with respect to the norm ∥·∥Hp) and we set B′ := Span{k(z, ·) : z ∈ D}
where the closure is taken in the topological dual space of Hp(D). By [Cowen 1995,
Theorem 3.6] a holomorphic automorphism f : D → D has a bounded Koopman
operator on Hp(D) with ∥Tf∥p = 1+|f(0)|

1−|f(0)| . For dynamics given by a Möbiustransform
f(z) := λ z−a

1−zā for a, λ ∈ C with |λ| = 1 and |a| < 1 we define the map ϕ(z) := z−γ
1−zγ̄

with the unique fixed point γ ∈ D of f . It can be shown that the pull-back kernel
kϕ is an invariant kernel for f and thus Tf is an isometry (see Remark 6.8) on
the pullback RKBS (see Lemma 2.72) and Kf and can be extended to an isometry
on the same space as well. In [Russo 2022] the authors go further and consider
weighted composition operators on the Hardy space and show stronger boundedness
results for this setting.
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The following example shows that even a small perturbation can cause the
Koopman operator of the perturbed system to have a trivial domain on the same
RKBS for which the unperturbed system induces a bounded Koopman operator.

Example 6.12. Consider the dynamical system on [0, 1] given by the linear map
f : [0, 1] → [0, 1] with f(x) := qx for some 0 < q < 1. Because f is linear we
are tempted to use the RKBS H = R (interpreted as an RKBS on a set X = {x}
containing only one single element x) with the euclidean inner product. Let us
consider the following perturbed system given by

g(x) := sin(q arcsin(x)).

Differentiating f and g shows that, around the origin, g behaves similarly to f and
since the origin is attracting we could guess that both systems are closely related -
which is true but we need to use the right concept of relatedness. First, we note
that R does not work as an RKHS for g anymore because g is not linear and Tg
will have trivial domain D(Tg) = {0}. This is connected to the problem that the
Perron-Frobenius is not well defined because Span{k(x, ·) : x ∈ X} is not linearly
dependent (due to the finite dimension of R). The maps f and g are conjugated
by the function ψ : [0, 1] → [0, 1] given by ψ(x) = 1

π arcsin(x)) because we have
ψ ◦g = f ◦ψ. Hence, we can apply Lemma 6.9 and define a kernel kψ by kψ(x, y) =
π−2 arcsin(x) arcsin(y). Thus, Tg is well defined and bounded on the corresponding
RKHS Hψ.

In the above example, we have seen a case where the domain of the Koopman
operator is trivial. Cases in which the domain of the Koopman operator can be large,
even the whole space, but where the Koopman can never be compact are RKHS
induced by positive definite maps u : Rd → Cd with kernel k(x, y) := u(x − y)
from Example 2.62. In [Ikeda 2022a] it is shown that under certain conditions on
the spectral density w of u (see Example 2.62 for the role of w), no composition
operator is compact on H.

The class of RKHS induced by positive definite functions includes the class of
shift-invariant kernels. This class covers the important and popular example of the
Gaussian kernel RKHS.

Example 6.13 (Shift invariant kernels). A kernel k on Rn (or any group) is called
shift invariant if for all x, y, a ∈ Rn we have k(x + a, y + a) = k(x, y). Kernels of
the form

k(x, y) = h(∥x− y∥) (6.22)

for some positive definite function h, are typical examples for shift-invariant kernels.
A function h is called positive definite if the corresponding kernel (6.22) is positive
definite. For example the Gauss kernel with parameter σ > 0 given by

k(x, y) = 1
σ
√

2π
e− ∥x−y∥2

2σ2 (6.23)

is positive definite and the corresponding RKHS is dense in the space of continuous
functions on Rn that vanish at infinity, see [Sriperumbudur 2011]. In [Ishikawa 2021]
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it was shown that for the Gaussian kernel RKHS, the only dynamics that induce
bounded Koopman and Perron-Frobenius operators are affine ones. Nevertheless,
Koopman analysis has been successfully applied to forecasting in [Kawahara 2016,
Alexander 2020] and system identification in [Rosenfeld 2019] in this setting.

In Examples 2.63 and 2.74, we interpreted Sobolev spaces of high enough reg-
ularity as RKBS. We state a simple condition for which diffeomorphisms induce
bounded Koopman and Perron-Frobenius operators on these spaces.

Example 6.14 (Sobolev space). For Ω ⊂ Rn open and bounded with C1 boundary.
For k ∈ N and p ∈ [2,∞) we denote by W k,p(Ω) the Sobolev space from Example
2.74. We assume k > n

p so that B := Wk,p(Ω) turns into an RKBS with the
universal property, see Example 2.63. For simplicity we treat the case n = k = 1,
p > 1 and Ω = (0, 1). In this case, the kernel can be given explicitly, see 2.77,
and we can investigate the Perron-Frobenius operator directly Kf . Nevertheless,
it is easier to verify that the Koopman operator is bounded. By Theorem 6.7 the
boundedness of the Koopman operator is equivalent to D(Tf ) = B. We show that
for Ω = (0, 1) ⊂ R and diffeomorphic f : [0, 1] → [0, 1] such that f ′ and 1

f ′ are
bounded we indeed have D(Tf ) = B. For g ∈ B ∩ C1(U) we get

∥Tfg∥pLp =
1∫

0

g(f(x))p dx =
f(1)∫
f(0)

g(y)p 1
f ′(f−1(y)) dy ≤ ∥

1
f ′ ∥∞∥g∥

p
Lp

and from (Tfg)′ = (g ◦ f)′ = g′ ◦ f · f ′ we get

∥(Tfg)′∥pLp =
1∫

0

g′(f(x))pf ′(x)p dx =
f(1)∫
f(0)

g′(y)pf ′(f−1(y))p−1 dy

≤ ∥f ′∥p−1
∞ ∥g′∥pLp .

This shows that Tf
∣∣
H∩C1(U) : H∩C1(U)→ H is a bounded operator. Since H∩C1(U)

is dense in H we can uniquely extend Tf
∣∣
H∩C1(U) to a bounded operator T on H.

Using that Tf is closed (see Theorem 6.7 4.) it follows that T = Tf , i.e. that Tf
is bounded and it follows from Theorem 6.7 7. that Kf = T ∗

f is bounded, too. We
refer to [Menovschikov 2021] for detailed investigations of composition operators on
Sobolev spaces.

6.2 The Koopman and Perron-Frobenius semigroup on
RKBS for continuous time systems

In this section, we define the Koopman and Perron-Frobenius semigroups for contin-
uous time dynamical systems (X, (φt)t∈R+) – similar to the discrete case. In contrast
to the discrete time case, we want to investigate the infinitesimal generator in ad-
dition to the semigroup, see Definition 2.48 for the definition of the generator. We
relate the generator to the vector field f inducing the dynamical system. Finally,
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we give a geometric condition under which the Koopman and Perron-Frobenius
semigroup are strongly continuous and consist of bounded operators. In the last
part of this chapter, we mention how symmetry and sparsity of the dynamical sys-
tem are transferred to the Koopman and Perron-Frobenius semigroup based on the
treatment of those semigroups on C(X) in [Salova 2019, Schlosser 2022b]

6.2.1 Koopman and Perron-Frobenius one-parameter semigroup
on RKBS and their generators

We begin with the definition of the Koopman and Perron-Frobenius semigroup.

Proposition 6.15. Let (B,B′, ⟨·, ·⟩, k) be an RKBS with kernel k and (Tt)t∈R+ be
the Koopman operator for a dynamical system with semiflow φ. Let {k(x, ·) : x ∈ X}
be linearly independent. Then we define the Perron-Frobenius semigroup of linear
operators (Kt)t∈R+ with Kt : Span{k(x, ·) : x ∈ X} → Span{k(x, ·) : x ∈ X} for
t ∈ R+ by linearly extending

Ktk(x, ·) = k(φt(x), ·). (6.24)

Further K ′
t = Tt for t ∈ R+.

Proof. For each t the operator Tt coincides with the composition operator Tφt from
Section 6.1. So the result follows from Definition 6.3 and Lemma 2.78.

Remark 6.16. As mentioned in the proof of Proposition 6.15 for each t ∈ R+
the operator Tt coincides with Tφt from Section 6.1. Similarly for Kt = Kφt. In
particular, Theorem 6.7 holds for Tt and Kt for each t ∈ R+.

We should not expect continuity of the map t 7→ Tt respectively t 7→ Kt with
respect to the operator norms. This is illustrated by our guiding examples of the
Koopman semigroup on C(X) from Example 2.43 and on L2(X,µ) from Example
2.42. As long as the spaces C(X) and L2(X,µ) are not finite dimensional or the
system is not trivial, then t 7→ Tt is not continuous on C(X) respectively L2(X,µ)
with respect to the operator norm. Further, norm continuity of the semigroup
would imply that the generator is bounded, see [Engel 2006, Theorem 2.12] and
we have already seen in (2.69) that the generator for the Koopman semigroup is a
differential operator and thus unbounded in many situations. We, therefore, begin
with addressing strong continuity of the semigroup in Remark 6.17, see Definition
2.44 the definition of strong continuity.

Remark 6.17. If the map x 7→ k(x, ·) ∈ B′ is continuous then the Perron-Frobenius
semigroup (Kt)t∈R+ is strongly continuous on Span{k(x, ·) : x ∈ X}. This follows
because for any n ∈ N, a1, . . . , an ∈ R respectively C and x1, . . . , xn we have

∥(Kt − Id)
(

n∑
i=1

aik(xi, ·)
)
∥ ≤

n∑
i=1
|ai|∥k(φt(xi), ·)− k(xi, ·)∥

which converges to 0 as t→ 0, due to continuity of φ and x 7→ k(x, ·).
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For differentiability properties of the orbits of the semigroups we turn to their
generators. The generator A of the Koopman semigroup and C of the Perron-
Frobenius semigroup are defined by

Ah := lim
t→0

1
t

(Tth− h) , Cg := lim
t→0

1
t

(Ktg − g) (6.25)

whenever the limit exists.

Remark 6.18. To treat the Perron-Frobenius semigroup from a semigroup per-
spective we would like to apply generator theorems, such as the Hille-Yosida theo-
rem [Engel 2006, Theorem 3.5]. Unfortunately, those generator theorems typically
require knowledge of the closedness and domain of the generator. In the case of
the operator C, the closedness is less accessible. On the contrary closedness of the
generator of the Koopman semigroup is known for RKHS, see Remark 6.19, but we
lack a priori information about the domain of the generator.

For the Koopman semigroup, we get, as in (2.69), that A is given by the direc-
tional derivative in direction of the vector field f . If we assume that X ⊂ Rn is
open and that the dynamical system (X, (φt)t∈R+) induced by a differential equa-
tion ẋ = f(x) then, it holds for all x ∈ X and each h ∈ C1(X) for which Ah is
defined

Ah(x) = ⟨Ah, k(x, ·)⟩ = ⟨lim
t→0

Uth− h
t

, k(x, ·)⟩ = lim
t→0

1
t
⟨Uth− h, k(x, ·)⟩

= lim
t→0

h(φt(x))− h(x)
t

= d
dt

∣∣∣∣
t=0

h(φt(x)) = Dh(x) d
dt

∣∣∣∣
t=0

φt(x) (6.26)

= Dh(x)f(x).

Remark 6.19. In the case that Y is an RKHS consisting of continuously differen-
tiable functions the generator A from (6.26) is a closed operator, see [Rosenfeld 2019,
Theorem 4.2].

The asymmetry between the Koopman and Perron-Frobenius semigroup carries
over to their generators: The description for the generator C is less explicit on a
general element g ∈ B′, on the other hand, we can certify certain elements belonging
to its domain. In [Rosenfeld 2019], for RKHS, it was shwon that certain path-
integrals belong to the domain of the infinitesimal generator C of (Kt)t∈R+ . We
define those path integrals also for RKBS now.

Definition 6.20. Let T > 0 and t 7→ k(φt(x), ·) ∈ B′ be continuous on [0, T ]. For
x ∈ X and IT,x ∈ B∗ be defined by

IT,xg :=
T∫

0

g(φt(x)) dt. (6.27)
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We can identify IT,x with the element in B′ given by

b′
T,x :=

T∫
0

k(φt(x), ·) dt. (6.28)

Remark 6.21. The continuity assumption in Definition 6.20 is used to guarantee
that the (Riemann) integral (6.28) exists. Because φ is continuous by assumption,
the continuity of t 7→ k(φt(x), ·) holds if the feature map x 7→ k(x, ·) continuous. In
order to weaken regularity assumptions on the feature map Bochner’s theorem on
Bochner integrals can be evoked – in our case of RKBS, this would typically require
more regularity of the space B and B′, such as reflexivity for example.

Assumption 6.22. We assume that the feature map x 7→ k(x, ·) ∈ B′ is continuous.

Now we would like to extend Kt to IT,x, as we did in Theorem 6.7 8., by

KtIT,x =
T∫

0

k(φt+s(x), ·) ds. (6.29)

In order to guarantee that (6.29) is well defined we will use the universal property.
Assumption 6.23. We assume that X is compact and B satisfies the universal
property from Definition 2.66, i.e. that B is dense in C(X).
Lemma 6.24. Under Assumptions 6.1, 6.22 and 6.23, the term KtIT,x from (6.29)
is well defined.

Proof. We want to argue as in Theorem 6.7 8. Therefore, it suffices to note that

IT,x =
∫
X
k(y, ·) dµ(y) for the measure µ given the action

∫
X
g dµ =

T∫
0
g(φt(x)) dt for

g ∈ C(X). The result follows from Theorem 6.7 8.

Finally, we can show that IT,x is contained in the domain of the generator C of
the Perron-Frobenius semigroup following the arguments from the RKHS setting
in [Rosenfeld 2020].
Proposition 6.25. Under Assumptions 6.1–7, for T > 0 and x ∈ X, we have
IT,x ∈ D(C), where C denotes the generator of the Perron-Frobenius semigroup. In
particular, C is densely defined.

Proof. By Lemma 6.24 the element IT,x is contained in the domain of Kt for all
t ∈ R+. For the generator of the Perron-Frobenius semigroup, we get as t→ 0

1
t

(KtIT,x − IT,x) = 1
t

 T∫
0

k(φt+s(x), ·)− k(φs(x), ·) ds


= 1

t

 T+t∫
T

k(φt(x), ·) ds−
t∫

0

k(φt(x), ·) ds


→ k(φT (x), ·)− k(x, ·),
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i.e. IT,x ∈ D(C) and CIT,x = k(φT (x), ·) − k(x, ·). To check that C is densely
defined let x ∈ X. Since D(C) is a linear subspace we have 1

T IT,x ∈ D(C) for all
T > 0 and by definition of IT,x we get k(x, ·) = lim

T→0
1
T IT,x ∈ D(C). Hence, C is

densely defined.

Under additional smoothness properties of the kernel, we can even verify that
the points k(x, ·) belong to D(C). To make this precise we restrict to RKHS H and
fix the following preliminaries. Let X ⊂ Rn be open and let the kernel k be C1. Let
∂xik denote the derivative of k with respect to the first variable in direction of the
i-th standard basis vector ei. By [Saitoh 2016, Theorem 2.6] we have ∂xik(x, ·) ∈ H
for all i = 1, . . . , n and fixed x, and further

∂xik(x, ·) = lim
h→0

1
h

(k(x+ hei, ·)− k(x, ·)) (6.30)

converges in H – in other words the feature map x 7→ k(x, ·) ∈ H is C1. In par-
ticular, we get that for fixed x the map t 7→ Ktk(x, ·) = k(φt(x), ·) is continuously
differentiable if φ is the flow is differentiable in t. If φ is induced by a differential
equation ẋ = f(x) for a locally Lipschitz continuous vector field f = (f1, . . . , fn)
we get k(x, ·) ∈ D(C) and

Ck(x, ·) = d
dt

∣∣∣∣
t=0

Ktk(x, ·) = d
dt

∣∣∣∣
t=0

k(φt(x), ·)

=
n∑
l=1

∂xl
k(x, ·)fl(x) ∈ Span{k(x, ·) : x ∈ X} ⊂ H. (6.31)

Remark 6.26. For the generator A of the Koopman semigroup it is not clear
whether k(x, ·) is in the domain of A. If so, A acts on k(x, ·) by

Ak(x, ·) =
n∑
i=1

∂yik(x, ·)fi(·),

where ∂yi denotes the derivative of k with respect to the second variable in the
direction of ei. Hence, it is not a priori clear whether Ak(x, ·) is an element of H.

In Proposition 6.27 we give a geometric condition on the generator C that
assures boundedness of the Koopman and Perron-Frobenius semigroup.

Proposition 6.27. Let X ⊂ Rn be open and H be an RKHS on X with kernel
k ∈ C1(X ×X) (X, (φt)t∈R+) be a dynamical system induced by a locally Lipschitz
vector field f : X → Rn. Assume Assumption 6.1. For ω > 0 the following are
equivalent

1. The Koopman semigroup is a strongly continuous semigroup with ∥Ut∥ ≤ eωt

for all t ∈ R+

2. The Perron-Frobenius semigroup can be extended to a strongly continuous
semigroup (K̄t)t∈R+ of bounded operators on H with ∥K̄t∥ ≤ eωt for all t ∈ R+
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3. For all n ∈ N, a1, . . . , an ∈ R respectively C and x1, . . . , xn ∈ X we have

Re
∑
i,j,l

aiajfl(xi)∂xl
k(xi, xj) ≤ ω

n∑
i,j=1

aiajk(xi, xj). (6.32)

Proof. Since Tt = K∗
t for all t ∈ R+, i.e. the Koopman semigroup is the adjoint

semigroup of the Perron-Frobenius semigroup, the strong continuity of one semi-
group implies the strong continuity of the other, [Engel 2006, p. 9], because H is
reflexive. In the rest of the proof, we show that 2. and 3. are equivalent. The
essential observation is that for g ∈ Span{k(x, ·) : x ∈ X} we have by (6.31) for all
t ∈ R+

d
dt∥Ktg∥2 = d

dt⟨Ktg,Ktg⟩ = ⟨ d
dtKtg,Ktg⟩+ ⟨Ktg,

d
dtKtg⟩

= ⟨CKtg,Kt⟩+ ⟨Ktg, CKtg⟩ = 2Re⟨CKtg,Kt⟩. (6.33)

Representing g as g :=
n∑
i=1

aik(xi, ·) and evaluating in t = 0 gives

d
dt∥Ktg∥2

∣∣
t=0 = 2Re⟨

n∑
i=1

ai

n∑
l=1

∂xl
k(xi, ·)fl(xi),

n∑
j=1

ajk(xj , ·)⟩

= 2Re
∑
i,j,l

aiajfl(xi)∂xl
k(xi, xj). (6.34)

Equation (6.34) is the central object connecting 2. and 3. We begin by showing that
3 implies 2. To do so, we first show that ∥Ktg∥ ≤ eωt∥g∥ for all g ∈ Span{k(x, ·) :
x ∈ X}. Condition (6.32) implies for g =

n∑
i=1

aik(xi, ·) by (6.34)

d
dt∥Ktg∥2

∣∣
t=0 ≤ 2ω

n∑
i,j=1

aiajk(xi, xj) = 2ω∥g∥2. (6.35)

Because g ∈ Span{k(x, ·) : x ∈ X} was arbitrary in (6.35), Span{k(x, ·) : x ∈ X}
is Kt invariant for all t ∈ R+ and (Kt)t∈R+ is a semigroup we get for the map
u : R+ → R+, u(t) := ∥Ktg∥2 that

u̇(t) = d
dt∥Ktg∥2 = d

ds∥KsKtg∥2
∣∣
s=0 ≤ 2ω∥Ktg∥2 = 2ωu(t).

By Gronwall’s lemma it follows u(t) ≤ e2ωtu(0) = e2ωt∥g∥2, i.e. ∥Ktg∥ =
√
u(t) ≤

eωt∥g∥ for all g ∈ Span{k(x, ·) : x ∈ X}. That shows ∥Kt∥ ≤ eωt on Span{k(x, ·) :
x ∈ X}. Further, Kt is strongly continuous on Span{k(x, ·) : x ∈ X} by Remark
6.17. Because Span{k(x, ·) : x ∈ X} is dense in H, it follows then that (Kt)t∈R+ can
be extended to a strongly continuous semigroup on H, see [Engel 2006, Proposition
1.3], with the desired growth bound. For the remaining implication, 2. implies 3.,
we argue similarly. From ∥Kt∥ ≤ eωt we get

∥Ktg∥2 ≤ e2ωt∥g∥2 (6.36)
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for all g ∈ Span{k(x, ·) : x ∈ X}. Evaluating (6.36) in t = 0 we see that both sides
coincide. For the derivative with respect to t in t = 0 this implies

d
dt∥Ktg∥2

∣∣
t=0 ≤

d
dte

2ωt∥g∥2
∣∣
t=0 = 2ω∥g∥2. (6.37)

Choosing g =
n∑
i=1

aik(xi, ·) the inequality (6.37) coincides with (6.32) by (6.34).

Remark 6.28. In Proposition 6.27, we made strong use of the explicit computation
of

∥
n∑
i=1

aik(xi, ·)∥2 =
n∑
i=1

aiajk(xi, xj). (6.38)

Such an explicit expression of (6.38) is not available in RKBS in general. Hence,
a similar result on RKBS (B,B′, ⟨·, ·⟩, k) would require further explicit knowledge of
expressing the norm in B′ by k.

The condition (6.32) is a geometric condition that connects the dynamics f
with the kernel k. For ω = 0 and n = 1 and real RKHS H it resembles a Lyapunov
condition and at first only states that k(φt(x), x) is decreasing in time. Due to the
symmetry of k, it follows for all x ∈ X,

d
dt

∣∣∣∣
t=0

k(φt(x), φt(x)) = ∇xk(x, x)f(x) +∇xk(x, x)f(x) ≤ 0

which means that V (x) := k(x, x) = ∥k(x, ·)∥2 is a Lyapunov function. The con-
dition (6.32) for ω = 0 extends this concept to the full RKHS because it states
that V̂ (g) := 1

2∥g∥
2 is decaying in time since for all t ∈ R+, we have d

dt V̂ (Ktg) =
Re⟨CKtg,Ktg⟩ ≤ 0, that is just a reformulation of the Perron-Frobenius semigroup
being contractive on H.

6.2.2 Symmetry and sparsity patterns

In this section, we describe how the symmetry concept from [Salova 2019] for Koop-
man operators carries over to RKBS. Similarly for the concept of factor systems as
in [Eisner 2015, Schlosser 2022b].

Definition 6.29 (Symmetry). A map ψ : X → X is called a symmetry for the
discrete time dynamical system induced by f : X → X if ψ ◦ f = f ◦ ψ.

Remark 6.30. Typically, the map ψ is assumed to be invertible. In that case,
we have ψ−1 ◦ f ◦ ψ = f . For continuous time systems (X, (φt)t∈R+), symmetry
means that ψ ◦ φt = φt ◦ ψ for all t ∈ R+. In other words, ψ maps solutions of the
dynamical system to, again, solutions of the dynamical system. If the continuous
time dynamical system is induced by the differential equation ẋ = f(x) then an
invertible smooth map ψ : X → X is a symmetry if f = (Dψ−1 ◦ ψ) · (f ◦ ψ).

The next proposition states that symmetries induce a commutation relation
between the Koopman and Perron-Frobenius operators and their corresponding
operators induced by the symmetry map.
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Proposition 6.31. Let f : X → X be the (discrete) dynamics, (B,B′, ⟨·, ·⟩, k) be
an RKBS on X with kernel k and ψ a symmetry for f . Let Tψ and Kψ be the
Koopman and Perron-Frobenius operator with respect to ψ on the RKBS. Then, the
relation

TfTψ = TψTf (6.39)

holds on the set

{g ∈ B : g ∈ D(Tf ) ∩D(Tψ), Tfg ∈ D(Tψ), Tψg ∈ D(Tf )}

and
KψKf = KfKψ on Span{k(x, ·) : x ∈ X}. (6.40)

Proof. This follows directly from the definition of symmetry. We only show it for
the Perron-Frobenius operator. For x ∈ X we have

KψKfk(x, ·) = Kψk(f(x), ·) = k(ψ(f(x)), ·) = k(f(ψ(x)), ·) = Kfk(ψ(x), ·)
= KfKψk(x, ·).

The commutation relation (6.39) in Proposition 6.31 is particularly useful when
the domains of Tψ and Tf are known. The easiest case is when both Tψ and Tf
induce bounded operators, i.e. when D(TΨ) = D(Tf ) = B.

For sparsity, we follow the notion of factor systems, see [Eisner 2015, p. 15] and
its application to Koopman operators in [Schlosser 2022b]

Definition 6.32 (Factor system). Let f : X → X be a discrete dynamical system
on X and (B,B′, ⟨·, ·⟩, k) be an RKBS. We call a triple (Y,Π, F ) a factor system if
Y is a set, Π : X → Y and F : Y → Y such that

Π ◦ f = F ◦Π. (6.41)

By similar arguments to the symmetry case, we get the following proposition.

Proposition 6.33. Let f : X → X be a discrete dynamical system, (Y,Π, F ) be
a factor system, (B,B′, ⟨·, ·⟩, k) be an RKBS on X and (BY ,B′

Y , ⟨·, ·⟩Y , kY ) be an
RKBS for Y . Let KΠ : Span{k(x, ·) : x ∈ X} → Span{kY (y, ·) : y ∈ Y } defined by
linear extension of KΠk(x, ·) := kY (Π(x), ·). Then

KΠKf = KFKΠ. (6.42)

For the Koopman operators Tf and Tf corresponding to f and F and TΠ : D(TΠ)→
B defined by TΠg := g ◦Π on D(TΠ) := {g ∈ BY : g ◦Π ∈ B} we have TfTΠ = TΠTf
on

{g ∈ B : g ∈ D(TΠ) ∩D(Tf ), D(TΠ) ∈ D(Tf ), Tfg ∈ D(TΠ)}. (6.43)

Proof. The proof is similar to the proof of Proposition 6.31. For all x ∈ X we have

KΠKfk(x, ·) = KΠk(f(x), ·) = k(Π(f(x)), ·) = k(F (Π(x)), ·) = KFKΠk(x, ·)
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and we get (6.42). Similarly for the Koopman operator we have for all g in the set
given in (6.43)

TfUΠg = Tf (g ◦Π) = g ◦Π ◦ f = g ◦ F ◦Π = TΠTfg.

The commutation and intertwining relations in Propositions 6.31 and 6.33, even
though being similar, should be interpreted differently. For symmetries the com-
mutation relation (6.40) implies that the operators share eigenspaces - which can
be exploited for dynamic mode decomposition as in [Salova 2019, Prashant 2006].
Sparsity on the other hand intends to reduce the dynamical system to another
(preferably lower dimensional) one and to exploit the structure of the system on Y
computationally, as we did in [Schlosser 2022b].

6.3 Sparse structures for the Koopman and Perron-
Frobenius operator

In this section we return to sparsity from Chapter 4 and investigate how it translates
to spectral objects of the Koopman semigroup on C(X). Because we focus on
subsystems, we return to dynamical systems on Rn, i.e. we assume that

(Rn, (φt)t∈R+) (6.44)

is a dynamical system and we refer to Section 3.1 for the notion of subsystems.

Remark 6.34. We focus on continuous time systems but the treatment of discrete
time dynamical systems is the same – we only have to replace the continuous time
objects with their discrete time analogs.

In this section, we restrict the dynamics to a compact set X ⊂ Rn. And carry
the following assumption in this section.

Assumption 6.35. X is positively invariant.

We focus on the Koopman semigroup on C(X), the space of continuous functions
on X, respectively the Perron-Frobenius semigroup on M(X), the space of Borel
measures on X. We recall the Definitions 2.41 and 2.51.

Definition 6.36. The Koopman semigroup (Tt)t∈R+ is the family of operators Tt :
C(X)→ C(X) for t ∈ R+ which are given by

Ttg := g ◦ φt. (6.45)

The Perron-Frobenius semigroup (Pt)t∈R+ is the adjoint semigroup of the Koopman
semigroup and consists of the operators Pt :M(X)→M(X) for t ∈ R+ given by

Pt = (φt)#. (6.46)

We introduced the Koopman and Perron-Frobenius semigroups in the Prelimi-
nary section in Section 2.5. For more of the many inspiring results and applications
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Figure 6.2: Illustration of intertwining between Tt and T I
t via VI from (6.48).

of Koopman theory there are many texts to mention, among these are [Budisic 2012,
Eisner 2015, Koopman 1931, Küster 2021, Mezić 1999, Kühner 2021, Korda 2018a].

6.3.1 Sparse properties of the Koopman operator induced by sub-
systems

In the following, we will be most interested in eigenfunctions and eigenmeasures,
i.e. eigenvectors of the Koopman and Perron-Frobenius operators respectively.

Definition 6.37. We say g ∈ C(X) respectively µ ∈M(X) is an eigenfunction re-
spectively eigenmeasure with eigenvalue λ ∈ C of the Koopman respectively Perron-
Frobenius operator if g ̸= 0 respectively µ ̸= 0 and for all t ∈ [0,∞) we have
Ttg = eλtg and Ptµ = eλtµ respectively. For the Perron-Frobenius operator, an
eigenmeasure with eigenvalue λ = 0 is called an invariant measure.

Eigenfunctions respectively eigenmeasures are the simplest elements correspond-
ing to the spectrum of the two semigroups. They allow to generalize the concept of
“diagonalizing” the dynamics or give insight into ergodic properties of the dynam-
ical system, see for example [Budisic 2012, Eisner 2015].

If an index set I ⊂ {1, . . . , n} induces a subsystem then the Koopman semi-
group T It for a subsystem acts on C(ΠI(X)). The corresponding Perron-Frobenius
operator for the subsystem is denoted by P It . In Proposition 6.38 we state that the
Koopman respectively Perron-Frobenius operator for the whole systems are inter-
twined with the corresponding operators for the subsystem. We say an operator
V : W → Z intertwines an operator S : Z → Z with T : W →W if

SV = V T. (6.47)

We will see that operators VI : C(ΠI(X)) → C(X) and V ∗
I : M(X) → M(ΠI(X))

given by
VIg := g ◦ΠI and V ∗

I µ := (ΠI)#µ (6.48)

intertwine Tt and T It respectively P It and Pt for all t ∈ R+. That the operator VI
from (6.48) intertwines Tt and T It is a consequence of the functorial nature of the
Koopman operators and is illustrated in Figure 6.2.
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Proposition 6.38 ([Eisner 2015, p. 208, 233]). Let X be positively invariant and
I induce a subsystem. Then

1. VI is injective and intertwines Tt and T It and V ∗
I intertwines P It and Pt for

all t ∈ R+. If X is compact then V ∗
I is the dual of VI and surjective.

2. If g ∈ C(ΠI(X)) is an eigenfunction with eigenvalue λ for the Koopman opera-
tor T It for the corresponding subsystem then ĝ ∈ C(X) defined by ĝ := g◦ΠI is
an eigenfunction with eigenvalue λ of the Koopman operator Tt for the whole
system.

3. If µ ∈ M(X) is an eigenmeasure with eigenvalue λ of the Perron-Frobenius
operator Pt, so is the push forward measure of µ by ΠI , i.e. µI := (ΠI)#µ,
an eigenmeasure with eigenvalue λ for the Perron-Frobenius operator for the
subsystem P It .

The statements 2. and 3. in the following Proposition 6.38 is a direct conse-
quence of the intertwining property 1.

The converse question – constructing eigenfunctions for the subsystem from
eigenfunctions for the whole system and analog constructing eigenmeasures for the
whole system from eigenmeasures for the subsystem – is less straightforward. We
treat that problem in Sections 6.3.2 and 6.3.3 in Theorems 6.39 and 6.44.

6.3.2 Construction of eigenmeasures from eigenmeasures of sub-
systems

Now, we present that for given invariant measures for subsystems satisfying neces-
sary compatibility conditions we can construct (or glue together) those measures to
obtain an invariant measure for the whole system.

Theorem 6.39. Let (I1, fI1), . . . , (IN , fIN
) induce a subsystem decomposition and

assume that X is compact and factors according to I1, . . . , IN . For k = 1, . . . , N let
µk ∈ M(ΠIk

(X)) be an invariant probability measure for the subsystem induced by
Ik. Then there exists an invariant probability measure µ ∈M(X) such that

(ΠIk
)#µ = µk for all k = 1, . . . , N (6.49)

if and only if for all k, l ∈ {1, . . . , N}

(ΠIk∩Il
)#µk = (ΠIk∩Il

)#µl. (6.50)

Proof. Necessity of (6.50) follows from ΠIk
◦ ΠIl

= ΠIl
◦ ΠIk

= ΠIk∩Il
because for

any k, l ∈ {1, . . . , N} we get

(ΠIk∩Il
)#µk = (ΠIl

◦ΠIk
)#µk = (ΠIl

)#(ΠIk
)#µk = (ΠIl

)#µk

= (ΠIl
)#(ΠIk

)#µ = (ΠIl
◦ΠIk

)#µ.

Replacing the roles of k and l and using that ΠIk
and ΠIl

commute we see that
(ΠIk∩Il

)#µk = (ΠIl
◦ΠIk

)#µ = (ΠIk∩Il
)#µl, i.e. (6.49). For the sufficiency part we
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consider the set

K := {µ ∈M(X)+ : µ(X) = 1, (ΠIk
)#µ = µk, k = 1, . . . , N} (6.51)

and will show that it is non-empty, convex, compact (with respect to the weak-∗

topology), and Pt-invariant for all t ∈ R+. The result then follows from the Markov-
Kakutani theorem [Eisner 2015, Theorem 10.1]. To show that K is non-empty we
recall that by [Ambrosio 2013, Lemma 2.1] it is possible to glue two probability
measures with coinciding common marginals together “along the marginal”. That
means for probability measures µ ∈M(X×Y ) and ν ∈M(X×Z) with (ΠX)#µ =
(ΠX)#ν there exists a probability measure γ ∈M(X × Y × Z) with (ΠX×Y )#γ =
µ and (ΠX×Z)#γ = ν. The compatibility condition (6.50) guarantees that the
common marginals of the measures µk coincide and we can apply [Ambrosio 2013,
Lemma 2.1] (inductively) to glue together the measures µk to a probability measure
γ ∈ M(Rn). Note that the measure γ is not invariant already. A careful look
at the proof of [Ambrosio 2013, Lemma 2.1] reveals that the condition that X
decomposes according to I1, . . . , IN assures that the support of such a glued measure
γ is contained in X. Hence, the set K is non-empty. To check convexity and
weak-∗ closedness note that for each 1 ≤ k ≤ n the operators (ΠIk

)# : M(X) →
M(ΠIk

(X)) are linear, bounded and continuous with respect to the weak-* topology.

It follows that K is convex and weak-* closed. Hence, the set W =
N⋂
k=1

(V ∗
Ik

)−1({µk})

is weak-∗ closed and convex as the intersection of weak-* closed convex sets. The
constraint µ(X) = 1 implies that K is a (closed, convex) subset of the set of
probability measures – hence it is compact with respect to the weak-∗ topology. To
check that K is Pt invariant for all t ∈ R+ let µ ∈ K, t ∈ R+ and 1 ≤ k ≤ N . Then
Ptµ(X) = µ(φ−1

t (X)) = µ(X) = 1 and

(ΠIk
)#Ptµ = (ΠIk

)#(φt)#µ = (ΠIk
◦ φt)#µ = (φIk

t ◦ΠIk
)#µ

= (φIk
t )#(ΠIk

)#µ
(6.51)= P It µk = µk

where the last equality holds because µ is an invariant measure for the subsystem,
i.e. P It µk = µk. That shows invariance of K with respect to Pt for all t ∈ R+.
Further, for all t, s ∈ R+ the operators Pt and Ps commute, due to

PtPs = Pt+s = PsPt. (6.52)

Because the operators Pt are bounded for all t ∈ R+ they are also continuous
with respect to the weak-∗ topology and we can apply the Markov-Kakutani theo-
rem [Eisner 2015, Theorem 10.1] to the family of operators (Pt)t∈R+ and the set K
from (6.51). This gives a measure µ ∈ K that satisfies Ptµ = µ for all t ∈ R+, i.e.
µ is an invariant probability measure with the given marginals (ΠIk

)#µ = µk for
k = 1, . . . , N .



174 CHAPTER 6. KOOPMAN SEMIGROUP

6.3.3 Eigenfunctions of the Koopman operator based on eigenfunc-
tions of subsystems

For two topological spaces X and Z we have a canonical way of projecting a measure
inM(X×Z) to measures inM(X) andM(Z). For functions g ∈ C(X×Z) it is not
so clear how to project g onto C(X) and C(Z). The evaluation map g(·, ·) 7→ g(x0, ·)
for some x0 ∈ X does not send eigenfunctions to eigenfunctions in general. But
we will see that the so-called principal eigenvalues have a certain decomposition
property. The decomposition of principal eigenfunctions will be based on their
uniqueness; we use such uniqueness results from [Kvalheim 2021].

Definition 6.40. For systems with globally exponentially attractive fixed point x∗

we call an eigenfunction g ∈ C1(X) principal eigenfunction for the Koopman oper-
ator if Dg(x∗) ̸= 0.

The set of eigenfunctions of the Koopman operator can be large. The method
from [Korda 2020b] provides a possibility of constructing arbitrarily many eigen-
functions. Therefore, principal eigenfunctions are motivated by the important at-
tempt to single out some very characteristic eigenfunctions. The underlying idea is
to find a “basis” of eigenfunctions, in the sense that all other eigenfunctions can be
constructed by products and sums of the functions in the “basis”. If g and h are
eigenfunctions with eigenvalues λ, θ ̸= 0 then for any r > 0 also gr and g · h are
eigenfunction with eigenvalue rλ and λ + θ. However, if g and h are differentiable
and non-constant and r > 1 then

Dgr(x∗) = rgr−1(x∗)Dg(x∗) = 0

as well as
D(g · h)(x∗) = h(x∗)∇g(x∗) + g(x∗)∇h(x∗) = 0

because g(x∗) = h(x∗) = 0 for non constant g and h. Thus the condition∇g(x∗) ̸= 0
restricts to eigenfunctions that are not obtained by powers or products of other
eigenfunctions.

The vectors ∇g(x∗) for a principal eigenfunction g are limited to certain val-
ues [Kvalheim 2021]. To specify the values ∇g(x∗) can take we assume from now
on that the dynamical system (6.44) is induced by a differential equation

ẋ = f(x) , x(0) = x0 ∈ X (6.53)

for a C1 function f : Rn → Rn.
For a principal eigenfunction g with eigenvalue λ we have g(φt(x)) = eλtg(x)

and differentiating this relation at t = 0 with respect to g gives

∇g(x) · f(x) = λg(x).

Differentiating this relation with respect to x and evaluating in x∗ gives

∇g(x∗)TDf(x∗) = ∇g(x∗)TDf(x∗)+(D2g(x∗))T f(x∗) = ∇(∇g ·f)(x∗) = λ∇g(x∗)
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where we have used that f(x∗) = 0 because x∗ is an equilibrium point. We see that
λ is an eigenvalue of Df(x∗)T and g(x∗) a corresponding eigenvector.

Definition 6.41. We call a function g ∈ C1(X) a principal eigenfunction of the
Koopman operator tangential to a vector 0 ̸= v ∈ Rn if ∇g(x∗) = v.

The following lemma addresses the eigenvectors of DfI(x∗) for subsystems in-
duced by I.

Lemma 6.42. Let I induce a subsystem for f . Then for any x ∈ X

Df(x)T ·DΠT
I = DΠT

I ·DfI(ΠI(x))T and DΠI ·Df(x) = DfI(ΠI(x))DΠI(x)
(6.54)

where the derivative DΠI of ΠI is the (constant) matrix with rows consisting of
the standard basis vectors (ei)i∈I and · denotes the matrix product. In particular,
if w = (wi)i∈I is an eigenvector of DfI(ΠI(x))T with eigenvalue λ then so is w for
Df(x)T , for

w := DΠT
I w =

{
wk, k ∈ I
0, else

(6.55)

and if v is an eigenvector of Df(x) with eigenvalue λ and ΠI(v) ̸= 0 then ΠI(v) is
an eigenvector of DfI(ΠI(x)) with eigenvalue λ.

Proof. From the subsystem equation (4.5) it follows from linearity of ΠI

DΠI ·Df = D(ΠI ◦ f) = D(fI ◦ΠI) = (DfI ◦ΠI) ·DΠI . (6.56)

We obtain (6.54) by taking the transpose in (6.56). If w is an eigenvector of DfI(x)T
with eigenvalue λ then we get

Df(x)Tw = Df(x)T ·DΠT
I w = ΠT

I ·DfI(x)Tw = λΠT
I w = λw.

If v is an eigenvector of Df(x) with eigenvalue λ we have by (6.54)

DfI(ΠI(x))ΠI(v) = DfI(ΠI(x)) ·DΠIv = DΠI ·Df(x)v = λDΠI(v) = λΠI(v).

The condition ΠI(v) ̸= 0 guarantees that ΠI(v) is an eigenvector of DfI(ΠI(x)∗)T .

For the uniqueness of eigenfunctions, the concept of resonance is crucial. It
is motivated by the property that for eigenfunctions g1, . . . , gk with eigenvalues

λ1, . . . , λk and r1, . . . , rk ∈ N we have
k∏
i=1

gri
i is an eigenfunction with eigenvalue

k∑
i=1

riλi.

Definition 6.43 (Resonance condition; [Mezić 2017] p. 12). We say a matrix
A ∈ Cn×n with eigenvalues λ1, . . . , λn (with algebraic multiplicity) is resonant if
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there exists some i ∈ {1, . . . , n} and m1, . . . ,mn ∈ N with
n∑
j=1

mj ≥ 2 such that

λi =
n∑
j ̸=i

mjλj .

We say A is resonant of order k if (m1, . . . ,mn) can be chosen such that
n∑
j=1

mj ≤ k.

Non-resonance (of order k), i.e. not being resonant (of order k), and regularity
is what is needed to guarantee the existence and uniqueness of principal eigen-
functions [De la Llave 1999, Kvalheim 2021]. Uniqueness allows us to verify that
the principal eigenfunction uniquely corresponds to a principal eigenfunction for a
subsystem and vice versa.

Theorem 6.44. Assume there exists a globally exponentially stable fixed point x∗

and let I induce a subsystem. Assume Df(x∗)T is diagonalizable and, for simplic-
ity, that all eigenvalues λ1, . . . , λn have algebraic multiplicity one with corresponding
eigenvectors v1, . . . , vn. Assume that the eigenvalues are non-resonant of order k
with k > max

i,j

Re(λi)
Re(λj) . Assume f is k-times continuously differentiable. Then there

exist n uniquely determined principal eigenfunctions of the whole system tangential
to v1, . . . , vn and exactly |I| pairwise distinct principal eigenfunctions for the sub-
system, each tangential to one of the vectors ΠI(vj) for some j, and they induce
principal eigenfunctions for the whole system.

Proof. By [Kvalheim 2021, Proposition 6], the assumptions guarantee the existence
and uniqueness of n principal eigenfunctions g1, . . . , gn tangential to v1, . . . , vn.
Next, we show that the assumption on non-resonance of Df(x∗) carries over to
DfI(ΠI(x∗)) and we can use [Kvalheim 2021, Proposition 6] for the subsystem as
well. By Lemma 6.42 we get that the spectrum of DfI(ΠI(x∗)) is contained in the
spectrum of Df(x∗). Further, it also follows from Lemma 6.42 that the geometric
multiplicity of each eigenvalue λ for DfI(ΠI(x∗)) is at most the geometric multiplic-
ity of λ for Df(x∗), i.e. at most 1. Non-resonance (of order k) of DfI(ΠI(x∗)) fol-
lows now from non-resonance (of order k) of Df(x∗). For each basis of eigenvectors
w1, . . . , w|I| of DfI(ΠI(x∗))T , we use [Kvalheim 2021, Proposition 6], to guarantee
the existence and uniqueness of |I| many principal eigenfunctions h1, . . . , h|I| tan-
gential w1, . . . , w|I|. It remains to show that each of the w1, . . . , w|I| can be chosen
to be of the form wj = ΠI(vi(j)) for 1 ≤ j ≤ |I| and some 1 ≤ i(j) ≤ n. Lemma
6.42 states that for j = 1, . . . , |I|, the vectors DΠT

I wj are eigenvectors of Df(x∗)T .
From the assumption that all eigenvalues λ of Df(x∗) have algebraic (hence also
geometric) multiplicity one, it follows that there exist unique i(j) ∈ {1, . . . , n} and
0 ̸= rj ∈ R such that rjDΠT

I wj = vi(j). That means rjhj is a principal eigenfunc-
tion tangential to rjwj = ΠI(DΠT

I (rjwj)) = ΠI(vi(j)). And Proposition 6.38 implies
that g̃j := rjhj ◦ ΠI is a principal eigenfunction (because ∇g̃j(x∗) = vi(j) ̸= 0) of
the whole system.

The following corollary addresses the question of whether we can find all the
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principle eigenfunctions by searching for them in subsystems. The answer is posi-
tive.

Corollary 6.45. let (I1, fI1), . . . , (IN , fIN
) induce a subsystem decomposition. Un-

der the assumptions from Theorem 6.44 any principal eigenfunction for the whole
system is already a principal eigenfunction for one of the subsystems.

Proof. Let g be a principal eigenfunction of the whole system with w := ∇g(x∗).
Then w is an eigenvector of Df(x∗)T with eigenvalue λ. Hence, λ is also an eigen-

value of Df(x∗). Let v be its corresponding eigenvector. From
N⋃
k=1

Ik = {1, . . . , n} it

follows that for at least one k ∈ {1, . . . , N} we have ΠIk
(v) ̸= 0. From Lemma 6.42

we get that λ is an eigenvalue of DfIk
(ΠIk

(x∗)) (with eigenvector ΠIk
(v)). Hence,

λ is also an eigenvalue of DfIk
(ΠIk

(x∗))T . As in the proof of Theorem 6.44, we see
that there exists an eigenfunction h with eigenvalue λ for the subsystem induced
by Ik such that g̃ := h ◦ ΠIk

is an eigenfunction (with eigenvalue λ) of the whole
system. Because we assumed that the eigenvalues are simple, by scaling, we get
∇g̃(x∗) = ∇g(x∗). The uniqueness of principal eigenfunctions implies g̃ = g. That
shows that g is induced by a principal eigenfunction from a subsystem, namely
h.

Finding eigenfunctions for the subsystems is not answered by Theorem 6.44 and
remains a general task (as for finding invariant measures). A partial answer to
that question is given in [Korda 2020b] or by the use of Laplace averages for which
Proposition 6 and Remark 14 from [Kvalheim 2021] provide a condition under which
the Laplace averages exist.

Remark 6.46. A coordinate-free formulation of the results in this Section and
the previous Section 6.3.2 is only partially possible. The coordinate-free notion of
subsystems from Section 4.5 allows for generalizing Theorem 6.44 and Corollary
6.45 because we did not really need the fact that the map ΠI is a projection. The
situation is different in Theorem 6.39, where we used in [Ambrosio 2013, Lemma
2.1] which is based on a cartesian decomposition of the space.

Remark 6.47. We consider smooth factor systems instead of factor systems –
where no smoothness is assumed – in order to rule out pathologies for Π as for
instance space-filling curves. Since the dimension of the image of a smooth map
can not exceed the dimension of the domain (by Sard’s theorem, for instance) we
see that for smooth factor systems the dimension of Y is necessarily at most the
dimension of X. Further smoothness is needed in order to formulate an analog
version of Theorem 6.44 where regularity played an essential role.

6.3.4 Computational applications to dynamic mode decomposition
and invariant measures

In the spirit of Section 4.4.2, we show that a priori knowledge of subsystems can
be used to reduce computational complexity dynamic mode decomposition (DMD)
and of computation of invariant measures.
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Figure 6.3: Illustration of sparse EDMD: 1. Identification of subsystems, 2. The subsystems
induce a block structure for the Koopman operator (lift), 3. Exploitation of the block structure
via decoupling of the subsystems.

6.3.4.1 Sparse dynamic mode decomposition

In this section, we describe how extended dynamic mode decomposition (EDMD)
([Schmid 2010]) can benefit from exploiting subsystems, i.e. in this context utilizing
knowledge of subsystems. Theorems 6.39 and 6.44 indicate that this allows to still
capture (some) important spectral properties of the dynamical system.

The idea is simple: Instead of applying the EDMD to the whole system we use
EDMD separately for each of the separate subsystems. This is illustrated by Figure
6.3.

Depending on the choice of the dictionary, i.e. functions Ψ = (ψ1, . . . , ψl) on
which we apply EDMD, this comes with the following advantage

1. In case the number l of dictionary functions is fixed: On a lower dimensional
space the same number of dictionary functions allows a better resolution of
the geometry of the space. For example, if we choose a dictionary with 1000
radial basis functions (as used to obtain Figures 6.4, 6.5 and 6.6) for the whole
state space R6 as well as for R2 and respectively R4 we get a better geometric
description of the spaces R2 and R4 compared to R6, allowing a finer EDMD
approximation; see Figures 6.4, 6.5 and 6.6.

2. In case the number l of dictionary functions depends on the dimension of
the space: Typically l is larger for larger dimensions. This, for instance, is
the case when the dictionary consists of (trigonometric) polynomials up to a
certain degree. The dimension of the space of polynomials of degree up to d
in dimension n is given by

(n+d
n

)
and hence grows combinatorial in the space

dimension n. This relates to the curse of dimensionality and underlines the
beneficial impact of lowering the dimension of the space.

This leads to a sparse EDMD stated in Algorithm 6.3.4.1.

Remark 6.48. For a sparse EDMD based purely on data, without any a priori
knowledge of sparsity of the system, we propose to first infer the sparsity graph
based on [Granger 1969, Peters 2022] and to use this graph subsequently within
Algorithm 6.3.4.1.

We will illustrate the algorithm at the example of the coupled Duffing equations
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Algorithm 4 Sparse dynamic mode decomposition
1: Input: snapshots Y = [y1, . . . , ym], Y + = [y+

1 , . . . , y
+
m] ∈ Rn×m where y+

k =
ϕ(yk) for k = 1, . . . ,m for the underlying (unknown) dynamics ϕ.

2: Determine subsystems I1, . . . , IN
3: Split the snapshots into snapshots of the subsystems:

For j = 1, . . . , N and k = 1, . . . ,m split yk into yk(j) := ΠIj (yk) and split y+
k

into y+
k (j) := ΠIj (y+

k ).
4: Choose dictionaries:

For each j = 1, . . . , N choose a dictionary: Ψ(j) = (ψ(j)
1 , . . . , ψ

(j)
lj

)T .
5: Compute the lifted states: For each j = 1, . . . , N compute

Ylift(j) := [Ψ(j)(y1(j)), . . . ,Ψ(j)(ym(j))],
Y +

lift(j) := [Ψ(j)(y+
1 (j)), . . . ,Ψ(j)(y+

m(j))]

6: Compute approximation matrices for the Koopman operators for the subsys-
tems:
For j = 1, . . . , N compute K(j) for the Koopman operator on the subsystem
induced by Ij based on the corresponding snapshots and dictionaries, i.e.

K(j) ∈ arg min
A∈Rlj ×lj

∥∥∥Y +
lift(j)−AYlift(j)

∥∥∥2
(6.57)

7: return K(1), . . . ,K(N).

(6.58) and (6.59)

ẋ1
1 = 1

2x
1
2

ẋ1
2 = −1

2δx
1
2 − 2x1

1(β + α)(x1
1)2 (6.58)

for δ = 0.5, β = −1 and α = 1 and for x2, x3 the dynamics is for i = 2, 3 for γ1 = 1
and γ2 = 2

ẋi1 = 1
2x

i
2

ẋi2 = −δxi2 − 2xi1(β + α)(xi1)2 + 1
2γix

1
1. (6.59)

For a simpler notation, we denote the pairs (xi1, xi2) ∈ R2 by xi ∈ R2. Then we use
the subsystems induced by I1 = {1}, I2 = {1, 2} and I3 = {1, 3} representing the
subsystems on the sates x1 = (x1

1, x
1
2) and (x1, xi) = (x1

1, x
1
2, x

i
1, x

i
2) for i = 2, 3.

For our numerical example we chose Ψ, Ψ(1), Ψ(2) and Ψ(3) to be a dictionary
of l = 1000 (350 respectively) thin-plate radial basis functions of the form ϕi(x) =
∥x − ci∥2 log(∥x − ci∥) with uniformly at random sampled centers ci ∈ [−1, 1]6,
ci ∈ [−1, 1]4 and ci ∈ [−1, 1]2 for the corresponding subsystems.
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The approximations of the Koopman operator for the subsystems can be used
for state estimation or computation of (principal) eigenfunctions. This is based on
(4.6), Proposition 6.38, and Theorem 6.44. We illustrate state estimation in Figures
6.4, 6.5 and 6.6 based on classical EDMD on the whole system and the sparse EDMD
from Algorithm 6.3.4.1 for the coupled Duffing equations (6.58) and (6.59). We use
500 sample trajectories sampled by step size 0.25 for 25 time steps. Figures 6.4, 6.5
and 6.6 display a comparison of the state estimation via EDMD and sparse EDMD.
For the initial value x0 = (−0.3,−0.3, 0.7, 0.5, 0.3, 0.2), we compare estimations of
the whole state x0(t) = (x1

0(t), x2
0(t), x3

0(t)) obtained by classical EDMD on the
whole system with estimations of the states based on the sparse EDMD. For the
sparse approach, we estimate the state x1

0(t), using only K(1), the approximation of
the Koopman operator on the subsystem induced by I1 = {1}, the dictionary Ψ(1)

and snapshots x(1)(k) = ΠI1(x(k)) = x1(k), the state x2
0(t), using K(2) obtained

from the dictionary Ψ(2) and snapshots x(2)(k) = ΠI2(x(k)) = (x1, x2) and similarly
for x3

0(t), using based on the subsystem induced by I3, for 25 time steps.

Figure 6.4: DMD approximations based on the whole system and on the subsystem induced by
I = {1, 2} for (6.58) with initial value x0 = (−0.3, −0.3, 0.7, 0.5, 0.3, 0.2), trained on the same data.
Left: DMD approximation for x1

1, right: DMD approximation for x1
2. For the DMD for the whole

system, 1000 randomly generated radial basis functions were used while 350 radial basis functions
were sufficient for the subsystem.

Eigenfunction computation Related to the sparse EDMD are principal eigen-
functions. Without further restrictions, the system (6.58), (6.59) does not satisfy
the assumptions of Theorem 6.44, because the equilibrium point x∗ = (0, 0) is
not exponentially attracting. Therefore, we want to present a decomposition of
the principal eigenfunctions by an example that has the same sparse structure as
the systems (6.58), (6.59) but where the principal eigenfunctions can be calculated
explicitly.
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Figure 6.5: DMD approximations based on the whole system and on the subsystem induced by
I = {1, 2, 3, 4} for (6.58) with initial value x0 = (−0.3, −0.3, 0.7, 0.5, 0.3, 0.2), trained on the same
data with randomly generated 1000 radial basis functions. Left: DMD approximation for x2

1, right:
DMD approximation for x2

2.

We consider the following system given by

ẋ = −2x
ẏ = −4y − x2

ż = −z + 5x3

It has the same sparsity structure as (6.4), (6.59), that is the subsystems act on
x, (x, y) and (x, z). The origin is exponentially globally asymptotically stable and
hence the assumptions of Theorem 6.44 are satisfied. The subsystem on (x, y) can
be found in [Perko 2013] and [Lan 2013] and we find the principal eigenfunctions

ϕ1(x, y, z) = x

ϕ2(x, y, z) = y + 1
4 ln(x2)x2 (6.60)

ϕ3(x, y, z) = z + x3.

To check that the functions ϕ1, ϕ2, ϕ3 are principal eigenfunctions we note first that
they are C1 and satisfy ∇ϕi(0, 0, 0) ̸= 0 for i = 1, 2, 3. That they are eigenfunctions
can be checked using the explicit solution to the subsystem on (x, y), see [Lan 2013],
or by verifying the generator condition (6.53). In accordance to Theorem 6.44, we
see that the function ϕ1 only depends on x, i.e. arises from the principal eigenfunc-
tion of the system ẋ = −2x, namely from the identity function on R. Similarly,
the principal eigenfunctions ϕ2 and ϕ3 depend only on (x, y) and (x, z) respectively,
and hence arise from principal eigenfunctions for their corresponding subsystems –
as it has to be the case, according to Theorem 6.44.
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Figure 6.6: DMD approximations based on the whole system and on the subsystem induced by
I = {1, 2, 5, 6} for (6.58) with initial value x0 = (−0.3, −0.3, 0.7, 0.5, 0.3, 0.2), trained on the same
data with randomly generated 1000 radial basis functions. Left: DMD approximation for x3

1, right:
DMD approximation for x3

2.

6.3.4.2 Sparse computation of invariant measures

In this section, we propose a sparse computation of invariant measures for the
approach from [Magron 2019a] and [Korda 2021] for polynomial dynamical systems
based on convex optimization. Before stating the approach we want to shortly
present the underlying idea. For this purpose, it is easier to consider discrete time
dynamical systems, i.e. xk+1 = f(xk) for some continuous function f : Rn → Rn.
A measure µ on X is invariant if and only if we have

⟨g, µ⟩ =
∫
X

g dµ =
∫
X

g ◦ f dµ = ⟨g ◦ f, µ⟩ (6.61)

for all g in (a dense subset of) C(X). To follow [Korda 2021] we formulate the
following linear optimization problem for extremal invariant probability measures

p∗ := min
µ

⟨G,µ⟩ =
∫
X
G dµ

s.t. µ ∈M(X)+
µ(X) = 1
⟨g, µ⟩ = ⟨g ◦ f, µ⟩ for all g ∈ C(X)

(6.62)

Where G ∈ C(X) represents a cost and can be used to identify specific invariant
measures that we are interested in. Assume I1, . . . , IN induce a subsystem decom-
position and the cost G is adapted to the sparse structure – that means G can be
written as

G =
N∑
k=1

Gk for Gk ∈ C(ΠIk
(X)) for k = 1, . . . , N. (6.63)
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We formulate corresponding sparse linear programming problems (6.64) and (6.65)

p∗
1 := min

µ

∫
X
G dµ

s.t. µ ∈M(X)+
µ(X) = 1∫
X
h ◦ fIk

dµ =
∫
X
h dµ for all h ∈ C(ΠIk

(X)) for k = 1, . . . , N

(6.64)
and

p∗
2 := min

µ1,...,µN

N∑
k=1
⟨Gk, µk⟩

s.t. µk ∈M(ΠIk
(X))+ k = 1, . . . , N

⟨1, µk⟩ = 1 k = 1, . . . , N
⟨h ◦ fIk

, µk⟩ = ⟨h, µk⟩ ∀h ∈ C(ΠIk
(X)) for k = 1, . . . , N

⟨h, µk⟩ = ⟨h, µl⟩ ∀h ∈ C(ΠIk∩Il
(X)) for k, l = 1, . . . , N .

(6.65)
The linear programming problem (6.64) is clearly a relaxation of (6.62) since

invariance is only required for the marginals corresponding to the subsystems. The
linear programming problem (6.65) is a reduction to a vector of measures on lower
dimensional spaces, and is what we recommend for practical computations, while
(6.64) allows more degrees of freedom.

Proposition 6.49. Let (I1, fI1), . . . , (IN , fIN
) induce a subsystem decomposition

and for which X decomposes accordingly. Let G ∈ C(X) such that G can be written
as in (6.63). Then for (6.62) we have p∗ = p∗

1 = p∗
2 from (6.64) and (6.65).

Further, there exists an invariant measure µ for the whole system with p∗ = ⟨G,µ⟩
such that µ is optimal for (6.64) and µk := (ΠIk

)#µ for k = 1, . . . , N form an
optimal (feasible) point for (6.65).

Proof. First note that the feasible sets for (6.62), (6.64) and (6.65) are weak-∗

compact and the cost terms are weak-∗ continuous and therefore minimizers exist.
We have already noted that (6.64) is a relaxation of (6.62), i.e. p∗

1 ≤ p∗. We also
see that each feasible point µ for (6.64) induces a feasible point (µ1, . . . , µN ) for
(6.65) by µk = (ΠIk

)#µ. It follows

p∗
2 ≤ p∗

1 ≤ p∗ (6.66)

and it remains to show p∗
2 ≥ p∗. Therefore, let (µ1, . . . , µN ) be feasible for (6.65).

Theorem 6.39 implies that we can find an invariant measure µ for the whole system
with corresponding marginals (µ1, . . . , µN ). Since G is sparse we get

p∗ ≤ ⟨G,µ⟩ =
N∑
k=1
⟨Gk ◦ΠIk

, µ⟩ =
N∑
k=1
⟨Gk, (ΠIk

)#µ⟩ =
N∑
k=1
⟨Gk, µk⟩.

Since (µ1, . . . , µN ) was an arbitrary feasible point for (6.65) we get p∗ ≤ p∗
2. In

fact, we have shown that an optimal point (µ1, . . . , µN ) for (6.65) is induced by an
optimal point µ for (6.62). The same measure is also optimal for (6.62).
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Remark 6.50 (Numerical solution of the measure LPs). In [Schlosser 2022b],
we show that the sparse LP (6.65) can be solved via the moment-approach from
[Korda 2021, Magron 2019a] leading to a convergent hierarchy of semidefinite pro-
grams. That approach is dual to the sum-of-squares hierarchy we have discussed in
Section 5.1.3. For details on this duality we refer to [Lasserre 2009, Korda 2021,
Magron 2019a]. In [Schlosser 2022b], we also mention that for particle methods the
reconstruction of a global measure from (extremal) measures for the subsystem is
obtained naturally, see [Schlosser 2022b, Lemma 15.]



Chapter 7

Perspectives

In Section 4.6, we state limitations of our approach towards sparsity from a theo-
retical and practical perspective. This raises the question if there is a more general
notion of subsystems that allows for decomposing dynamical systems that are less
sparse and which extends the list of objects that can be decomposed. A natural way
of addressing this task is by trying to make use of information on the dynamical
system that remained invisible to our approach – such as the quantitative relation
between the states and their dynamics. It is clear, that incorporating quantita-
tive elements of the dynamics into a practical approach is delicate and requires
different tools from analysis. There has been done promising work in that direc-
tion [Anderson 2012a, Mischaikow 2002, Elkin 2008, Al Maruf 2018]. Therefore, it
is intriguing to me to investigate how our approach can be merged with such tech-
niques. In [Wang 2021b] we examined one path in that direction and many more
interesting ways are yet to be explored.

Another quantitative extension, for our methods on computing the global at-
tractor from Chapter 5, concerns effectiveness and convergence rates of the pro-
posed numerical method. Work in this direction could build up on [Korda 2017,
Korda 2018b] and the recent improvements on the effectiveness of moment-sum-of-
squares hierarchy [Baldi 2022]. In this line of reasoning, the LP (5.19) seems more
appealing than the LP (5.6). The reason is that Theorem 2.11 induces smooth
candidate solutions for (5.19) and convergence analysis can be paired with approx-
imation rates for polynomial approximation of smooth maps.

A qualitative improvement of our results on approximation of the global at-
tractor could aim towards topological properties of the global attractor and its
approximations. An open question, that remains challenging for all set approxima-
tions via sum-of-squares methods, is the convergence of the approximations with
respect to the Hausdorff distance. In this thesis, we only consider the much weaker
convergence with respect to Lebesgue measure discrepancy zero. In that situa-
tion, many topological properties of the approximated object are not necessarily
maintained for its approximations. In contrast to this, convergence with respect to
the Hausdorff distance preserves many such properties and is therefore desirable.
A possibility to address topological properties in a different way is through inner
approximations of the global attractor. Inner approximations of the region of at-
traction and the maximum positively invariant via sum-of-squares methods have
been treated in [Korda 2013, Jones 2021b, Oustry 2019]. However, inner approxi-
mations of global attractors by basic semialgebraic sets can be very limited – for
instance when the global attractor is the orbit of a non-algebraic curve or when the
attractor is a “strange attractor”.

Interesting and challenging tasks are given by extending our computation of the
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global attractor to different classes of systems such as partial differential equations
and control systems. A promising path for an extension in this direction could fol-
low [Korda 2022, Henrion 2020], where occupation measures are utilized providing
approaches toward partial differential equations and applications in control sys-
tems. In the case of control systems, the computation of attractors could be used
to glimpse at controller design.

In view of the active field of data science, it is intriguing to formulate a data-
driven variant of our methods from Chapter 5. A related path was explored in
[Korda 2020a] for computing control-invariant sets from data. Pillars of such an
approach include sampling theory and data-analysis-based optimization. For the
latter, there have been recent beautiful results in [Rudi 2020] that connect closely
to sum-of-squares methods.

The field of data science is already well intertwined with Koopman and Perron-
Frobenius theory. Currently, the most popular method in data analysis inspired by
Koopman theory is dynamic mode decomposition. In our work on Koopman theory
on reproducing kernel Banach spaces, we did not investigate the dynamic mode
decomposition in reproducing kernel spaces [Kawahara 2016]. But this direction
of research is versatile and many open and practically important problems remain.
Among these are, first of all, choosing a “good” reproducing kernel space, as well
as profound spectral analysis including spectral properties of the dynamic mode
decomposition.

When we considered classical extended dynamic mode decomposition for sparse
dynamical systems in Section 6.3.4.1, we assumed to know the sparse structure of the
dynamical system. Practically, this situation is restrictive because dynamic mode
decomposition is often used as a purely data-driven approach without further knowl-
edge of the system. In Section 3.3.2, we discussed existing attempts for exploiting
evidence of sparse data. A possible approach, that connects closer to our work on
sparse structures of the Koopman operator, is to infer sparsity from the data first,
and then apply the sparse dynamic mode decomposition from Section 6.3.4.1. Such
a perspective could build on inferring a sparsity graph from data, which has been in-
vestigated, for instance, by [Harnack 2017, Paluš 2018, Granger 1969, Peters 2022].

Finally, the numerical examples we performed are scientific ones. I would be
happy to test or see if – or hopefully that – the methods developed in this work can
be beneficial for certain practically relevant problems.
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Notation

Z The integers

N The positive integers

N0 The non-negative integers

[n] The set {1, . . . , n} for n ∈ N

X ∼= Y The spaces X and Y are isomorphic

Id Identity map Id(x) := x

g ⊗ h Product of functions g and h defined by (g ⊗ h)(x, y) := (g(x), h(y))

R The real numbers

R+ The non-negative real numbers

C The complex numbers

z The complex conjugate of a complex number z

fn The n-fold composition of f with itself, fn = f ◦ · · · ◦ f︸ ︷︷ ︸
n times

R[x] The ring of real polynomials

deg(p) The degree of a polynomial p

xα For a multi-index α ∈ N denotes the monomial xα := (xα1
1 , . . . , xαn

n )

|α| The degree |α| := α1 + . . .+ αn for a multi-index α ∈ Nn0

R[x]d The ring of polynomials of degree at most d

Σ The set of sums-of-squares polynomials, see (2.31)

Q(p1, . . . , pm) The quadratic module generated by p1, . . . , pm, see (2.33)

Pre(p1, . . . , pm) The preordering generated by p1, . . . , pm, see (2.39)

K(p1, . . . , pm) The set {x ∈ Rn : p1(x) ≥ 0, . . . , pm(x) ≥ 0}

1 The constant one function, i.e. 1(x) := 1 for all x



d
dt Time derivative

ẋ Time derivative of a curve x : (a, b)→ Rn

C(X) Space of continuous functions on X

C(X)+ Space of non-negative continuous functions on X

∥ · ∥ Norm

∥·∥2 Euclidean norm on Rn

Br(x) Ball of radius r centered at x

Br(M) Set of all points with distance less than r to M

S unit sphere in C

∥ · ∥∞ Supremum norm (of a function or a vector)

∥ · ∥∞,X Supremum norm (of a function) on a set X

Ck(X) Space of k-times continuously differentiable functions on X

C∞(X) space of smooth functions on X

∇ Gradient operator

Dg Derivative of a function g

∇g · f Pointwise euclidean inner product of ∇g and a vector field f

M(X) Space of signed Borel measures on X

M(X)+ Space of (non-negative) Borel measures on X

⟨g, µ⟩ the integral
∫
X
g dµ for g ∈ C(X) and µ ∈M(X)

h# Pushforward of a map h

rank Rank of a matrix

A ⪰ 0 The matrix A is positive semidefinite

X The closure of X (with respect to a given topology)

X̊ The interior of X (with respect to a given topology)

dist(A,B) one-sided Hausdorff distance between sets A and B (in Rn)

given by sup
x∈A

inf
y∈B
∥x− y∥2

|A| Cardinality of a set A



H (reproducing kernel) Hilbert space

⟨·, ·⟩ Inner product, dual pairing or bilinear form

B (reproducing kernel) Banach space

B′ adjoint space for a reproducing kernel Banach space

(B,B′, ⟨·, ·⟩, k) Reproducing kernel Banach space with kernel (see Definition 2.67)

V ∗ Dual space of a normed vector space V

T ∗ Adjoint operator of an operator T between two normed vector spaces

RI
∏
i∈I

R for an index set I

ΠI Projection from Rn onto RI , given by ΠI(x1, . . . , xn) = (xi)i∈I

fI ΠI ◦ f , see Definition 4.1

(I, fI) Subsystem, see Definition 4.1
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