
HAL Id: tel-04256428
https://laas.hal.science/tel-04256428v1

Submitted on 24 Oct 2023 (v1), last revised 1 Feb 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Statistical methods for the structural analysis of highly
flexible proteins

Javier González-Delgado

To cite this version:
Javier González-Delgado. Statistical methods for the structural analysis of highly flexible proteins.
Statistics [math.ST]. UT3 : Université Toulouse 3 Paul Sabatier, 2023. English. �NNT : �. �tel-
04256428v1�

https://laas.hal.science/tel-04256428v1
https://hal.archives-ouvertes.fr


THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE
Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 11/10/2023 par :
Javier GONZÁLEZ DELGADO

Statistical methods for the structural analysis of highly flexible proteins

JURY
Yohann DE CASTRO Professeur des Universités Rapporteur
Elodie LAINE Maîtresse de Conférences Rapporteure
Philippe BERTHET Professeur des Universités Examinateur
Nathalie SIBILLE Directrice de Recherche Examinatrice
Pau BERNADÓ Directeur de Recherche Membre invité
Juan CORTÉS Directeur de Recherche Directeur de thèse
Pierre NEUVIAL Directeur de Recherche Directeur de thèse

École doctorale et spécialité :
MITT : Domaine Mathématiques : Mathématiques appliquées

Unité de Recherche :
Institut de Mathématiques de Toulouse, LAAS-CNRS

Directeur(s) de Thèse :
Juan Cortés et Pierre Neuvial

Rapporteurs :
Yohann De Castro et Elodie Laine



ii



iii

Remerciements

Tout d’abord, je tiens à remercier les rapporteurs Yohann de Castro et Elodie Laine pour
avoir consacré leur temps et leurs efforts à la lecture et à l’évaluation de cette thèse.
Je tiens également à exprimer ma gratitude envers les examinateurs Nathalie Sibille et
Philippe Berthet pour avoir accepté de faire partie du jury. Un remerciement spécial à
Pau Bernadó, qui dans la pratique a été mon troisième directeur de thèse. Merci beaucoup
pour ton intérêt, tes efforts et ton implication remarquable.

Je tiens à remercier les personnes qui ont collaboré avec moi sur les projets qui com-
posent cette thèse : Kresten Lindorff-Larsen, Pablo Mier, Amin Sagar et Christophe
Zanon. J’exprime ma gratitude particulière à Alberto González-Sanz, mon voisin de bu-
reau pendant ces trois années, avec qui j’ai également eu le plaisir de travailler. Je salue
tous les autres chercheurs m’ayant fait découvrir la communauté des mathématiques et de
la biologie structurale sous ses plus belles couleurs.

J’exprime ma gratitude envers toutes les personnes de l’Institut de Mathématiques
de Toulouse qui m’ont accompagné pendant ces trois années, en particulier mes collègues
et amis doctorants. Avoir un environnement de confiance, de soutien et de sécurité est
essentiel pendant une thèse, et c’est quelque chose que j’ai eu la chance d’avoir dès le
premier jour. Je vous remercie pour votre affection et votre accueil et je vous souhaite à
toutes et à tous le meilleur pour l’avenir.

Je tiens également à remercier les amis que j’ai eu le plaisir de rencontrer lors de
mon expérience à Toulouse, ainsi que ceux qui étaient déjà présents. Ces années ont
été exceptionnelles grâce à vous. Quiero dar las gracias especialmente a mis padres, por
vuestro apoyo y cariño, por estar siempre.

Par dessus tout, je remercie les deux personnes qui m’ont rendu très heureux en travail-
lant sur ce projet pendant trois ans: mes directeurs de thèse Pierre Neuvial et Juan Cortés.
En plus de vos qualités scientifiques évidentes, votre exceptionnelle qualité humaine a fait
de cette expérience un véritable privilège. Pour m’avoir fait profiter du chemin, je vous
remercie.



iv



v

“Without leaps of imagination or dreaming, we lose the excitement of possibilities.
Dreaming, after all is a form of planning.”

Gloria Steinem



vi



Contents

Chapter 1 Introduction 5
1.1 Intrinsic disorder in proteins . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Protein structure and function . . . . . . . . . . . . . . . . . . . 6
1.1.2 Intrinsically disordered proteins: falling of the structure-function

paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.3 Existing approaches to model IDP . . . . . . . . . . . . . . . . . 9

1.2 The inherent probabilistic nature of flexible proteins . . . . . . . . . . . 11
1.2.1 Background and notation . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Probabilistic structural descriptors . . . . . . . . . . . . . . . . . 14
1.2.3 Statistical tools to compare and characterize ensembles . . . . . 18

1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.1 Local structural analysis of protein ensembles (Part I) . . . . . . 26
1.3.2 Global structural analysis of protein ensembles (Part II) . . . . 30

Part I Local structural analysis of highly flexible proteins 35

Chapter 2
Statistical proofs of the interdependence between nearest neigh-
bor effects on local backbone conformations

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.2 Statistical methodology . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

vii



viii Contents

2.3.1 Influence of the left and right neighbors are statistically inter-
dependent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.2 The physicochemical properties of the nearest neighbors affect
the magnitude of the interdependence . . . . . . . . . . . . . . . 46

2.3.3 Combined neighbor effects are stronger in coil regions . . . . . . 47
2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Chapter 3
Two-sample goodness-of-fit tests on the flat torus based on Wasser-
stein distance

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Optimal transport in Rd/Zd . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Existence of ∥ · ∥p-cyclically monotone mappings . . . . . . . . . 57
3.2.2 Asymptotic behaviour . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.3 Asymptotic normality . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Two-sample goodness-of-fit tests . . . . . . . . . . . . . . . . . . . . . . 62
3.3.1 Geodesic projections into R/Z . . . . . . . . . . . . . . . . . . . 62
3.3.2 p-value upper bounding . . . . . . . . . . . . . . . . . . . . . . . 66

3.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4.1 Small-sample performance . . . . . . . . . . . . . . . . . . . . . 69
3.4.2 Asymptotic performance . . . . . . . . . . . . . . . . . . . . . . 70
3.4.3 Application to protein structure analysis . . . . . . . . . . . . . 71

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Chapter 4
The translated codon effect on local backbone conformations

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2 Incorrectness of the methodology of Rosenberg et al. . . . . . . . . . . . 78
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.1 Structural classification based on DSSP . . . . . . . . . . . . . . 81
4.3.2 Structural classification as non-overlapping regions of the Ra-

machandran space . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.3 Tripeptide-specific (ϕ, ψ) distribution analysis . . . . . . . . . . 83

4.4 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 85



ix

Appendix A
Appendix of Chapter 3

A.1 Geodesics on T2: practical considerations . . . . . . . . . . . . . . . . . 87
A.1.1 Sampling closed geodesics . . . . . . . . . . . . . . . . . . . . . . 87
A.1.2 Projection to a closed geodesic . . . . . . . . . . . . . . . . . . . 89

A.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.2.1 Proofs of Section 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.2.2 Proofs of Section 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.3 Supplementary figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Appendix B
Appendix of Chapter 4

B.1 Proofs of Section 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
B.2 Numerical study of p-value null distribution . . . . . . . . . . . . . . . . 103
B.3 Dispersion of (ϕ, ψ) samples for each secondary structure type . . . . . 105
B.4 Supplementary figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Part II Global structural analysis of highly flexible proteins 107

Chapter 5
WASCO: A Wasserstein-based statistical tool to compare confor-
mational ensembles of intrinsically disordered proteins

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.1 Defining conformational ensembles as a set of probability distri-
butions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.2 Accessing empirical probability distributions from sampled con-
formations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2.3 Distances between local and global structural descriptors . . . . 113
5.2.4 The comparison tool . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2.5 The Jupyter notebook . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



x Contents

5.3.1 Comparison of ensembles produced by MD simulations using
different force-fields . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3.2 Structural impact of SAXS ensemble refinement . . . . . . . . . 120
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Chapter 6
Post-clustering inference under dependence

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.2 Selective inference for clustering under general dependency . . . . . . . 127
6.3 Unknown dependence structures . . . . . . . . . . . . . . . . . . . . . . 131
6.4 Non-maximal conditioning sets . . . . . . . . . . . . . . . . . . . . . . . 136
6.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.5.1 Uniform p-values under a global null hypothesis . . . . . . . . . 139
6.5.2 Super-uniform p-values for unknown Σ . . . . . . . . . . . . . . 139
6.5.3 Power analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.6 Application to clustering of protein structures . . . . . . . . . . . . . . 142
6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Chapter 7
WARIO: Weighted families of contact maps to characterize confor-
mational ensembles of (highly-)flexible proteins

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.2.1 Contact intervals for the Euclidean distance . . . . . . . . . . . 154
7.2.2 Distance to ideal orientations . . . . . . . . . . . . . . . . . . . . 156
7.2.3 Interaction distance . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.2.4 Contact function definition . . . . . . . . . . . . . . . . . . . . . 160
7.2.5 Clustering pipeline and ensemble characterization . . . . . . . . 163
7.2.6 The Jupyter Notebook . . . . . . . . . . . . . . . . . . . . . . . 165

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.3.1 Characterization of CHCHD4 . . . . . . . . . . . . . . . . . . . 166
7.3.2 Characterization of Huntingtin . . . . . . . . . . . . . . . . . . . 167
7.3.3 Characterization of DciA . . . . . . . . . . . . . . . . . . . . . . 171
7.3.4 Characterization of the Tau-5 domain of AR-NTD . . . . . . . . 174



xi

7.4 Methodological meta-analysis of WARIO . . . . . . . . . . . . . . . . . 176
7.4.1 Comparison with distance-based methods . . . . . . . . . . . . . 176
7.4.2 The importance of refining contact definition . . . . . . . . . . . 178

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Appendix C
Appendix of Chapter 5

C.1 Methodology details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
C.1.1 Building a residue-specific reference frame . . . . . . . . . . . . 185
C.1.2 Wasserstein distance: practical implementation . . . . . . . . . . 188
C.1.3 The matrix representation . . . . . . . . . . . . . . . . . . . . . 189

C.2 Additional results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
C.2.1 Comparison of PEP3 ensembles produced by MD simulations

using different force-fields . . . . . . . . . . . . . . . . . . . . . . 190
C.2.2 Assessment of the convergence of MD simulations . . . . . . . . 191
C.2.3 Comparison of ensembles using distance matrices . . . . . . . . 194

C.3 Supplementary figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Appendix D
Appendix of Chapter 6

D.1 Proofs of Section 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
D.2 Proofs of Section 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
D.3 Proofs of Section 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
D.4 Simulations of Sections 6.5.1 and 6.5.2 for further clustering algorithms 212

D.4.1 Uniform p-values under a global null hypothesis . . . . . . . . . 212
D.4.2 Super-uniform p-values for unknown Σ . . . . . . . . . . . . . . 212

Appendix E
Appendix of Chapter 7

E.1 UMAP and HDBSCAN algorithms . . . . . . . . . . . . . . . . . . . . . 217
E.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

E.2.1 Complete characterization of CHCHD4 . . . . . . . . . . . . . . 218
E.2.2 Complete characterization of Huntingtin . . . . . . . . . . . . . 222
E.2.3 Complete characterization of DciA . . . . . . . . . . . . . . . . . 227



xii Contents

E.2.4 Complete characterization of Tau-5R2−R3 . . . . . . . . . . . . . 229

Conclusion and final remarks 237

References 241

Appendix F Introduction en français 269



Résumé

La reconnaissance de la pertinence fonctionnelle des protéines désordonnées a entraîné
un changement de paradigme en biologie structurale. Avec les progrès des méthodes de
simulation et des modèles génératifs, la communauté scientifique a désormais accès à des
ensembles conformationnels à résolution atomique d’un grand nombre de systèmes. Cepen-
dant, l’analyse structurale de ces objets ne peut pas être réalisée en utilisant les mêmes
techniques que celles employées dans l’étude des protéines rigides ou globulaires. Leur na-
ture intrinsèquement probabiliste exige l’adoption d’une perspective plaçant la statistique
comme un prisme fondamental pour comprendre la relation séquence-structure. Dans cette
thèse, nous présentons des outils statistiques pour la caractérisation et la comparaison, à la
fois à l’échelle locale et globale, d’ensembles de protéines hautement flexibles. La stratégie
générale consiste à définir des distributions de probabilité qui capturent avec précision la
variabilité structurale des ensembles, puis à utiliser des techniques statistiques avancées
pour caractériser et comparer de manière appropriée ces descripteurs. Dans certains cas,
l’absence d’outils bien adaptés au problème nous amènera à définir de nouvelles méthodes
statistiques qui seront utiles d’un point de vue plus général. La première partie de la
thèse se concentre sur l’analyse structurale locale. Dans le chapitre 2, nous démontrons
l’interdépendance des influences des acides aminés voisins sur la structure protéique locale.
Ensuite, dans le chapitre 3, nous utilisons la théorie du Transport Optimal pour définir
des tests d’homogénéité à deux échantillons pour des mesures sur le tore plat bidimen-
sionnel, où sont supportées les distributions de probabilité décrivant la structure locale
des protéines. Ces outils sont appliqués dans le chapitre 4 pour évaluer l’effet du codon
traduit sur la conformation locale. La deuxième partie du manuscrit aborde l’analyse
structurale globale. Dans le chapitre 5, nous présentons WASCO, un outil pour comparer
des ensembles de protéines désordonnées basé sur la distance de Wasserstein. Dans le
chapitre 6, nous fournissons des garanties statistiques pour des méthodes classiques de
clustering conformationnel couramment utilisées pour caractériser des ensembles. Plus
précisément, nous étendons la théorie de l’inférence après clustering lorsque les observa-
tions et les variables présentent des structures de dépendance arbitraires. Enfin, nous
concluons en introduisant WARIO dans le chapitre 7, une méthode de caractérisation des
ensembles qui généralise les cartes de contact au cadre des protéines flexibles, en incor-
porant des techniques de clustering avancées qui dévoilent la variabilité des interactions
résidu-résidu. Les méthodes présentées dans cette thèse ont été rendues disponibles à la
communauté sous forme de logiciel open-source, assurant également la reproductibilité des
résultats présentés.
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Abstract

The recognition of the functional relevance of disordered proteins has brought about a
paradigm shift in Structural Biology. With the advancement of simulation methods and
generative models, the scientific community now has access to atomic-resolution confor-
mational ensembles of a large number of systems. However, the structural analysis of
these objects cannot be carried out using the same techniques employed in the study of
rigid/globular proteins. Their intrinsically probabilistic nature demands the move to a
perspective that places statistics as a fundamental prism for understanding the sequence-
structure relationship. In this thesis, we present statistical tools for the characterization
and comparison, at both local and global scales, of ensembles of highly flexible proteins.
The general strategy consists of defining probability distributions that accurately capture
the structural variability of the ensembles, and then employing advanced statistical tech-
niques to appropriately characterize and compare these descriptors. In some cases, the
absence of tools well-adapted to the problem will lead us to the definition of new statistical
methods that will be useful from a more general standpoint. The first part of the thesis
focuses on the local structural analysis. In Chapter 2, we demonstrate the interdepen-
dence of the influences of neighboring amino acids on the local protein structure. Then,
in Chapter 3, we use Optimal Transport theory to define two-sample goodness-of-fit tests
for measures on the two-dimensional flat torus, where the probability distributions that
describe the protein local structure are supported. These tools are applied in Chapter 4
to assess the effect of the translated codon on the local backbone conformation. The sec-
ond part of the manuscript addresses global structural analysis. In Chapter 5, we present
WASCO, a tool for comparing ensembles of disordered proteins based on the Wasser-
stein distance. In Chapter 6, we provide statistical guarantees for classical conformational
clustering methods commonly used to characterize ensembles. More precisely, we extend
the theory of post-clustering inference when observations and variables exhibit arbitrary
dependency structures. Finally, we conclude by introducing WARIO in Chapter 7, an
ensemble characterization method that generalizes contact maps to the framework of flex-
ible proteins, incorporating advanced clustering techniques that unravel the variability
of residue-residue interactions. The methods presented in this thesis are developed with
mathematical rigor and aim to provide statistical guarantees whenever possible. Their
implementation has been made available to the community through open-source software,
also ensuring the reproducibility of the presented results.

Keywords: Intrinsically disordered proteins, Statistics, Bioinformatics.
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Chapter 1

Introduction

1.1 Intrinsic disorder in proteins

Proteins are essential molecules in all living organisms. They play a central role in the
majority of biological processes, operating at the molecular, cellular, and organismal levels.
The term protein was first introduced by the Swedish chemist Jöns Jacob Berzelius in a
letter to the Dutch chemist Gerardus Johannes Mulder in 1838 [118]:

“Or je présume que l’oxyde organique, qui est la base de la fibrine et de l’albumine (et
auquel il faut donner un nom particulier p. ex. protéine) est composé d’un radical

ternaire, combiné avec de l’oxygène dans quelqu’un de ses rapports simples que la nature
inorganique nous présente.”

This letter marked the beginning of a long journey that Structural Biology embarked on to
understand the structure of these macromolecules and connect them to their crucial func-
tions at the higher levels of the living world. Of course, this trip went hand in hand with
the technological advancements that enabled the experimental determination of protein
structure. Following the early X-ray crystallographic techniques, cryo-electron microscopy
(cryo-EM) and Nuclear Magnetic Resonance (NMR) emerged as a major breakthrough for
single-particle reconstruction, solving the three-dimensional structure of a macromolecule
at atomic scale [175]. These advancements have continuously pushed the boundaries of
achievable resolution and enabled the observation of structures with increasing size and
complexity. The more and better we can observe, the richer the approaches and perspec-
tives that allow deciphering what we see. Thanks to Structural Biology, we are able to
make objects at the subatomic scale visible and embrace the “seeing is believing”. However,
understanding what we see needs the involvement of a diverse family of areas of knowledge,
in which, with the recent recognition of the importance of disorder, Mathematics must
take part.

5
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Figure 1.1: Simplified representation of a polypeptide. Peptide bonds, backbone atoms
and side chains are marked in red, black and green respectively.

1.1.1 Protein structure and function

A protein is a macromolecule constituted of amino acid residues linked by peptide bonds.
This type of polymer molecule is also called a polypeptide. An amino acid is a molecule
composed of a carbon atom (α-carbon) attached to a carboxyl group (-COOH), an amine
group (-NH2), one hydrogen and a variable side chain, also called radical. A peptide bond
is a double bond between the carbon of the carboxyl group of one residue and the nitrogen
of the following amine group. A simplified representation of a polypeptide is presented
in Figure 1.1. Note that the formation of peptide bonds allows to distinguish two main
parts in the protein. On one hand, the sequence of nitrogen, α-carbon, hydrogen, carbon
and oxygen atoms that is referred to as backbone, depicted in black in Figure 1.1. One
the other hand, the side chains, that is, the family of different radicals bonded to each α-
carbon, illustrated in green in Figure 1.1. The side chains determine the physico-chemical
properties of amino acids and constitute the fingerprint of the protein.

The sequence of amino acid residues is called the primary structure (Figure 1.2a). For
simplicity, we will also refer to primary structure as sequence. While there are approxi-
mately 500 naturally occurring amino acids known, only 20 of them are found in proteins.
This already hints at the complexity of the world we are delving into, since up to 20L
proteins with a sequence length L are conceivable. For proteins with 100 amino acids, this
implies envisioning up to 10130 possible sequences in a universe containing 1082 atoms.
The impossibility of knowing all proteins highlights the need for intelligent strategies to
understand their behavior based on the available information. Structural Biology seeks
to attain so by deciphering the mechanisms that govern the transformation of the pri-
mary structure into the protein three-dimensional form, that we will generally refer to as
structure. This process is known as folding. During the folding process, some parts of
the sequence adopt relatively stable and well-defined secondary structure elements, being
α-helices, β-sheets the most representative ones Figure 1.2b). The spatial arrangement of
these elements, which are connected by turns and coil region, forms the tertiary structure
(Figure 1.2c). For a in-depth introduction to protein structure, we refer to [175, 271, 1, 56].

Proteins perform numerous functions that are closely related to their structural and
dynamic properties [175]. For instance, enzymes catalyze various types of chemical re-
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(a) (b) (c)

Figure 1.2: Primary (a), secondary (b) and tertiary (c) structure of the protein. In (b,c),
α-helices are depicted in red and β-sheets are marked in yellow.

actions. Other proteins function as nutrient and storage proteins, crucial for the growth
and survival of seeds in many plants. Others enable cell contraction, bind and transport
substances, act as structural proteins to give cells a defined shape, and regulate various
cellular processes. All these functions are often directly dependent on the folded structure
of the protein, also known as native state. The native state is not a fixed conforma-
tion but rather a collection of accessible states that the protein can adopt, depending on
factors such as solvent conditions and temperature. The energies of the native state of
proteins that fold into a well-defined 3D structure present stable global minima. How-
ever, many proteins do not fit this description, presenting relatively flat energy landscapes
with multiple local minima. These proteins, known as Intrinsically Disordered Proteins
(IDP), are in a constant shape-changing and transitioning between different states [139].
The collection of all these conformations is referred to as protein ensemble. The absence
of an equilibrium state requires the classical techniques traditionally used to study the
structure-function relationship to be readapted, opening up to new paradigms that allow
for the understanding of the functional richness conferred by their structural variability.

1.1.2 Intrinsically disordered proteins: falling of the structure-function
paradigm

Until the end of the 20th century, the vast majority of the scientific community sup-
ported the so-called structure-function paradigm: a functional protein requires a stable
and well-defined structure. In addition, protein-protein interactions depend on the precise
complementation of surfaces. Classic models such as the “lock-key” proposed by the No-
bel laureate Emil Fischer in 1894 can be found within this framework [95]. Stating that
unstructured proteins are denatured makes intrinsically disordered proteins challenge that
paradigm [282]. Indeed, although they are devoid of a stable secondary and tertiary struc-
ture in isolation, IDP perform a large diversity of biological functions by exploiting their
intrinsic flexibility [293]. Moreover, IDP can malfunction under certain circumstances,
such as mutations or inconvenient environmental conditions. This phenomenon may in-
duce severe diseases including cancer, cardiovascular or neurodegenerative diseases [288].
All of this justifies the functional relevance of disordered proteins and the need to readapt
the structure-function paradigm to incorporate structural variability.
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Figure 1.3: Figure 1 in [290]. Different levels of order (gray) and disorder (red): (0) no
disorder, (1) disordered termini, (2) disordered linker, (3) disordered loop, (4) disordered
domain, (5) disordered protein with some residual structure, (6) wholly disordered, mostly
collapsed protein and (7) wholly disordered, extended protein.

During the past 20 years, Structural Biology has been incorporating disorder into the
study of proteins. This has led to a shift from the rigid vs. unstructured dichotomy
to considering disorder as a continuum. Indeed, most proteins are neither fully ordered
nor fully disordered but contain ordered and disordered regions at different ratios [290].
This is illustrated in Figure 1.3, extracted from [290]. The passage to continuum also
impacted the study of energy landscapes, that now consider weakly funneled profiles as
a transition between deep energy minima and the rugged landscapes of very disordered
systems [221]. As we can see, disorder manifests with varying intensity and sequence
placement. Furthermore, the failure to fold is encoded by the primary structure, as IDP
exhibit unique sequential properties. Some of them are the compositional bias [289], mani-
festing through residues with low hydrophobicity (for low compaction) and high net charge
(for high charge-charge repulsion), low content of predicted secondary structure [180] or
high sequence variability (low conservation) [113]. This highlights how the folding pro-
cess is strongly related to the protein sequence. Deciphering this relationship is essential
for the development of structure prediction methods from protein sequence, which have
experienced a boom with the arrival of deep learning. This is the case of the well-known
AlphaFold algorithm [147], that can predict protein structure with atomic-level accuracy.
The AlphaFold Protein Structure Database [296] contains a predicted structure for nearly
every protein in the proteome of numerous organisms that have been totally or partially
sequenced, including proteins with intrinsically disordered regions (IDRs). However, IDRs
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present low values of the AlphaFold confidence metric, called predicted local distance dif-
ference test (pLDDT), which means low confidence in the structural predictions, and thus
inaccurate descriptions of these (a priori) disordered regions. Therefore, the study of dis-
ordered proteins requires alternative approaches that intelligently combine experimental,
theoretical and computational methods. An overview of the state-of-the-art is presented
in the following section.

1.1.3 Existing approaches to model IDP

Arguably, the most relevant feature that sets apart the study of ordered proteins and IDP
is the access to experimental data. There is a stark contrast in the quantity of experi-
mentally known structures between both worlds. The Protein Data Bank (PDB) [20] is a
freely accessible data base containing more than 200000 experimental structures of folded
proteins. Its counterpart for disordered systems is the Protein Ensemble Database [168],
an open access repository that includes IDP data, but contains 280 entries so far. In this
context, experimental data cannot provide accurate information of each of the individual
conformations in the ensemble, but only average measurements. This makes experimental
IDP data useful as a restraint to simulate. Indeed, the study of disordered proteins as
conformational ensembles is largely governed by simulation and modeling techniques often
calibrated with experimental data. In the following section, we present a brief overview
of the two major families that integrate the ensemble generation methods. As these tech-
niques are not the focus of this thesis, the outline presents only some of the most relevant
contributions within a broad and diverse field of study. For a more extensive picture of
the existing literature, we refer to the reviews [58, 26, 252, 28, 264, 156].

Ensemble Generation Methods

The first category of computational methods aims at generating representative sets of con-
formations through an effective exploration of the conformational space. The term “effec-
tive” arises from the computational infeasibility of randomly inspecting the complete state
space. In fact, an efficient exploration incorporates information derived from experimen-
tally determined structures, optimizing the computational procedure. The most distinctive
knowledge-based method is Flexible-Meccano (FM) [219], that builds each conformation
by sequentially assembling peptide plane units using a residue-specific coil library ob-
tained from crystallographic structures. Together with Flexible-Meccano, TraDES [93]
is another popular stochastic sampling technique. The conformations produced by these
methods are validated through their adjustment to experimental data, using computa-
tional tools as ENSEMBLE [162], ASTEROIDS [214] or EOM [22, 285]. These techniques
make use of NMR measurable parameters or small-angle scattering of X-rays (SAXS) data.
Although lower in resolution, SAXS is capable of retrieving overall structural and dynamic
information about biological macromolecules, including those that cannot crystallize, like
IDP [94, 136, 160, 234, 273]. However, approaches like Flexible-Meccano fail at capturing
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secondary structure elements that involve multiple consecutive residues in IDP [21, 142].
This limitation was overcome in [88] by refining the experimental calibration using an
extensive coil library of three-residue fragments.

The second big family of methods uses physical models to sample the conformational
space, simulating the dynamic behavior of IDP. The preeminent technique within this con-
text are Molecular Dynamic simulations (MD), that solve Newton’s equations of motion
to recreate the time evolution of the system [155, 231]. Although being capable of suitably
representing the state space of IDP, MD present a major drawback that lies in their exces-
sive computational cost when applied to large molecules. Indeed, the substantial radius of
gyration exhibited by IDP in comparison to folded proteins, as well as their inherent fluc-
tuations, make considerably increase the size of the simulation box containing the protein
and water molecules. A solution to deal with this type of systems is the use of coarse-
grained models, that provide a more simplistic representation of the protein but allow a
wider investigation of the state space [158, 68, 159]. Besides, the accuracy of MD-based
techniques is strongly dependent on the force-fields and solvation models that are em-
ployed, whose determination for flexible proteins is a very active area of research [140, 301].
The performance of MD methods can also be reinforced by integrating experimental data
to narrow down the exploration of the conformational space [71, 179, 309]. Remarkable
hybrid approaches have also been proposed, performing MD simulations with Machine-
Learning-derived potentials, such as CALVADOS [277, 276]. A physical-based alternative
to MD are Monte Carlo methods (MC), among which we might stand out the Markov
chain Metropolis scheme [202], its variant Hamiltonian Switch Metropolis Monte Carlo
[206] adapted to the study of IDR, or ABSINTH [301], an intermediate MC approach
between coarse-grained and all-atom models.

Ensemble Characterization and Comparison Methods

The methods presented below aim at producing ensemble representations of disordered
proteins. Indeed, the vast majority of methodological contributions in the study of flexible
proteins focus on compensating for the lack of experimental data by simulating confor-
mational ensembles. Here, a natural reflection arises: once we are capable of generating
IDP ensembles with indeterminate size, what is next? What do we do with all this data?
How do we transform the output of generative models into concise and interpretable rep-
resentations that allow to understand the sequence-structure relationship in IDP? More
succinctly: how can we characterize and compare ensembles of highly flexible proteins?
To these questions, the only possible answer is to resort to techniques conceived for han-
dling the variability of inherently disordered objects: Probability and Statistics. Random
systems must be described as probabilistic objects, and samples drawn from such systems
must be analyzed using statistical techniques. This idea is schematized in Figure 1.4,
that situates the contribution of this thesis (in purple) with respect to the state-of-the-art
previously described (in blue).
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Figure 1.4: Conformational ensembles conceived as samples of IDP states produced by
knowledge-based and physic-based generative models. This data is featured by probabilis-
tic descriptors and analyzed with statistical tools, aiming at accurately characterizing and
comparing the retrieved ensembles.

The main objective of this thesis is to provide the natural subsequent step to IDP
modeling techniques, making the outputs of generative models interpretable with statis-
tical guarantees. To achieve so, it is essential to define methods that allow for a compact
and interpretable characterization and comparison of IDP ensembles. The applications
that motivate these objectives are numerous and diverse. Among them we might highlight
the posterior analysis of how generative models perform, including their comparison with
experimental data, the relative comparison of force-fields and solvation models or the as-
sessment of the effect of experimental restrains. Some other remarkable applications are
the evaluation of the effect of sequence mutations, that may lead to the incorporation of
IDP to the field of protein design, or the definition of loss functions and compact descrip-
tors required for the development of Machine Learning algorithms. This last point would
be determinant for the extension of structure prediction methods to sequences with IDR.

The development of methods for the characterization and comparison of disordered
ensembles is gaining increasing relevance in Structural Biology, with numerous remarkable
contributions in recent years [167, 7, 59, 57]. These studies, that will be discussed in
more detail in the chapters composing this manuscript, provide interesting and innovative
contributions. However, we believe that they have not yet fully integrated the probabilistic
nature of flexible proteins in a productive manner. Here, we propose to tackle our objective
by placing structural variability at the core and conceiving IDP as inherently probabilistic
objects that need to be analyzed using the most suitable statistical techniques. We detail
this strategy in the following section.

1.2 The inherent probabilistic nature of flexible proteins

The strategy that we present to capture the intrinsic probabilistic nature of flexible pro-
teins consists on (i) defining structural descriptors through probability distributions sup-
ported on well-suited spaces and (ii) characterizing and comparing such distributions with
appropriate statistical techniques, providing statistical guarantees about the behavior of
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the population when possible. We propose to perform such a strategy both at the local
(amino acid scale) and global (entire sequence) levels. Local and global structural descrip-
tors are defined in Section 1.2.2. Then, in Section 1.2.3, we introduce the main statistical
tools that will be used to characterize and compare them. First, we recall some essential
concepts from probability theory and set the notation that will be used throughout the
manuscript. This is presented in the following section, which may be skipped by readers
less interested in mathematical aspects.

1.2.1 Background and notation
This section gathers key notation and definitions that will be assumed throughout the
manuscript. Further specific notation will be presented within each chapter. We start by
defining probability spaces, that is, measure spaces where the measure of the whole space
equals to one [29].

Definition 1.2.1 (Probability space). Let Ω be a non-empty set and Σ a σ-algebra, i.e.
a set of subsets of Ω such that

(i) Ω ∈ Σ,

(ii) Every countable union of elements of Σ is also in Σ,

(iii) The complement of every element of Σ is in Σ.

If P : Σ −→ [0, 1] is such that P(Ω) = 1 and countably additive, that is, P(∪i∈NEi) =∑
i∈N P(Ei) for every countable collection of pairwise disjoint sets {Ei}i∈N ⊂ Σ, then P is

called a probability measure on Σ and the triplet (Ω,Σ,P) is called a probability space.

Let (Ω,Σ,P) be a probability space, E a topological space [210] and T the σ-algebra
generated by the topology of E [29]. Let f : Ω −→ E be a measurable function, i.e. such
that f−1(O) ∈ Σ for all O ∈ T . The push-forward measure of P by f is the mapping
f#P : T −→ [0, 1] such that f#P(O) = (P ◦ f−1)(O) for all O ∈ T . This transformation is
the key to define the probability distribution of a random variable.

Definition 1.2.2 (Random variable, distribution). Let (Ω,Σ,P) be a probability space
and E a topological space. A random variable is a measurable function X : Ω −→ E.
The push-forward measure of P by X, denoted as PX := X#P, is called the (probability)
distribution of X, or the law of X.

For any random variable X defined on a probability space (Ω,Σ,P) and taking values
in a topological space E , we define the support of its distribution as the closed set

supp(PX) = {x ∈ E : PX(Ux) > 0 for all Ux neighborhood of x}.

We will denote as P(E) the set of all probability distributions supported on E , that is,
whose support is a subset of E . Note that the term distribution refers to a random



1.2. The inherent probabilistic nature of flexible proteins 13

variable and the term measure operates directly on a probability space. However, when
Ω is a topological space, we can take Ω = E , Σ = T , X the identity mapping and speak
directly of P as a distribution. As all the spaces considered here will be provided with a
topology, we will use the terms distribution or measure interchangeably throughout the
manuscript, omitting the push-forward of the random variable when the context is clear.
Thus, we will also refer to P(E) as the set of probability measures supported on E .

The concept of random variable can be extended to the case where its image space is
a Cartesian product of topological spaces equipped with the product topology [210]. This
construction can be considered from the combination of two random variables defined on
the same probability space.

Definition 1.2.3 (Joint distribution, marginals). Let (Ω,Σ,P) be a probability space, E
a topological space and X,Y : Ω −→ E two random variables. The joint distribution of X
and Y is the probability distribution of the random variable

(X,Y ) : Ω −→ E × E
ω 7−→ (X(ω), Y (ω)),

that is, the measure PXY = (X,Y )#P ∈ P(E × E). The measures PX and PY are called
the marginal distributions of PXY .

Making implicit the push-forward of random variables, for a pair of measures P,Q ∈
P(E), we denote by Π(P,Q) the set of probability distributions having P and Q as
marginals. We can write Π(P,Q) more precisely as follows

Π(P,Q) = {γ ∈ P(E × E) : px#γ = P, py#γ = Q}, ∀P,Q ∈ P(E),

where px, py : E ×E −→ E are such that px(x, y) = x and py(x, y) = y for all x, y ∈ E . The
elements of Π(P,Q) are also referred to as couplings.

In practical problems, knowing the true underlying distribution P of a random vari-
able X is often impossible. Instead, we usually have access to a sample of X. More pre-
cisely, we define a sample of X as a family of independent random variables X1, . . . , Xn

identically distributed as X (i.e. whose probability distribution is P ). In practice, we
observe a realization of X1, . . . , Xn, that is, the image of the random variables at n points
ω1, . . . , ωn ∈ Ω. Realizations are commonly denoted in lower case letters as x1, . . . , xn,
where xi = Xi(ωi) for all i ∈ {1, . . . , n}. Samples allow to obtain statistically meaningful
information about the population through the empirical measure of P , defined below.

Definition 1.2.4. Let (Ω,Σ,P) be a probability space, E a topological space and T the
σ-algebra generated by the topology of E. Let X : Ω −→ E be a random variable with
distribution P and X1, . . . , Xn a sample of X, for n ∈ N. The empirical measure of P is
the probability measure Pn : T −→ [0, 1] satisfying

Pn(E) = 1
n

n∑
i=1

1{Xi ∈ E} ∀E ∈ T , (1.1)
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where 1{A} denotes the indicator function of the event A.

Note that writing Xi ∈ E as in (1.1) is an abuse of notation, and formally we should
replace it by {ω ∈ Ω : Xi(ω) ∈ E}. For the sake of clarity, the widely accepted notation
in (1.1) will be kept. The empirical measures are the main tool to infer the behavior of
the population measures by only exploiting the information provided by a sample. This
is further described in Section 1.2.3. Besides, the study of empirical measures provides a
well-founded analysis of how the underlying distributions behave as Pn converges almost-
surely [29, Theorem 6.1] and uniformly [29, Theorem 20.6] to P as n grows up to infinity.
We refer to [29] for a deep introduction to Measure theory and Probability. To get familiar
with the main concepts of Topology theory, that we will also be using, we refer to [210].

1.2.2 Probabilistic structural descriptors

The first step of our strategy involves defining suitable structural descriptors that integrate
as much information as possible about the conformational variability of flexible proteins.
We will do this by considering probability distributions well-adapted to the local and global
structure of the system and, above all, whose corresponding random variables provide
accessible realizations. In the words of a physicist, we aim to define random observables
that can be measured in practice on protein models.

Local structural descriptors

The investigation of protein structural and dynamic properties at the local level primarily
involves analyzing the backbone dihedral angles, ϕ and ψ, of individual amino acid residues
along the sequence [39, 175]. An illustration for three consecutive amino acids is presented
in Figure 1.5. The examination of the allowed values and the statistical distribution of
(ϕ, ψ) has been a subject of study for over half a century, starting with the seminal work
by Ramachandran et al. [237, 238]. The analysis of (ϕ, ψ) angles in polypeptide chains
has numerous applications, such as the validation and refinement of structures determined
from biophysical techniques [208, 182], the development of models or scoring functions for
protein structure prediction and design [106, 153, 27, 35, 244, 280] or the investigation
of denatured states of globular [267, 142] and intrinsically disordered proteins [265, 88].
While the values of (ϕ, ψ) are physically restricted for proteins that fold into a stable three-
dimensional structure, they exhibit a high variability for IDP. Consequently, we are led
to consider the pair (ϕ, ψ) as a random variable taking values on the two-dimensional flat
torus T2, which is the Cartesian product of a pair of unit circles. A technical definition
of T2 is presented in Chapter 3, where we also analyze its fundamental geometric and
topological properties. As, indeed, T2 can be equipped with a topology, we are able to
consider the set P

(
T2) of probability distributions supported on T2. Consequently, for a

fixed amino acid, its dihedral angles (ϕ, ψ) will be associated with an element of P
(
T2),

that we will define as the local structural descriptor of the amino acid residue.
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Figure 1.5: The determination of ϕ and ψ torsion angles. Each peptide bond (in orange)
holds six atoms in a plane (in yellow), that fully describe the conformation of the i-th
amino acid. The angle ϕ (resp. ψ) determines the rotation of the polypeptide backbone
around the N -Cα (resp. Cα-C) bond.

Definition 1.2.5 (Local structural descriptor). Let (ϕ, ψ) be the random dihedral an-
gles of an amino acid residue. Its local structural descriptor is defined as the probability
distribution of (ϕ, ψ), which is an element of P(T2).

As previously mentioned, we seek to consider structural descriptors that can be “mea-
sured” or, in other words, whose empirical probability distributions are easy to calculate.
This is the case of (ϕ, ψ) angles, that can be experimentally determined with high res-
olution for rigid proteins or known when conformations are simulated with the methods
presented in Section 1.1.3. This leads us to define the empirical local structural descriptor
of an amino acid residue as the empirical probability distribution of its local structural
descriptor.

Global structural descriptors

Structurally describing an entire sequence is a more complex task. Although some ex-
perimental methods such and X-ray crystallography and cryo-EM, as well as generative
models, are capable of returning the coordinates of all atoms in the protein (for structured
proteins), these coordinates cannot be compared between different conformations since
they do not refer to an absolute reference system in which all states can be expressed.
Furthermore, the structure of a state is invariant under rigid body transformations or,
equivalently, under change of basis in the Euclidean vector space. Therefore, describing
the global structure by using directly the all-atom coordinates would lead us to resort to
the following equivalence relation1. If na denotes the number of atoms in the sequence, two
elements x, y ∈ R3na are equivalent, denoted as x ∼ y, if and only if they are equal up to

1A binary relation ∼ on a set X is said to be an equivalence relation if it is reflexive, symmetric and
transitive. The set of all elements in X that are equivalent to x ∈ X is called the equivalence class of x.
The set of the equivalence classes of all the elements of X is called the quotient set of X by ∼, denoted by
X / ∼ [307].
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Figure 1.6: Illustration of the reference systems Fi, Fj built at the i-th and j-th residues.

a rigid body transformation. Note that, indeed, ∼ is an equivalence relation as the space
of rigid body motions is -among other things- a group. Such space is called the special
Euclidean group of three dimensions and it is usually denoted as SE(3) [135]. Then, we
might define a global structural descriptor for the entire sequence as a probability distri-
bution supported on the quotient space R3na/ ∼. Although mathematically stimulating,
resorting to P(R3na/ ∼) to define structural descriptors is unnecessarily complicated and
verges on mathematical pedantry. To capture the structure of the entire sequence, we
propose to build a reference frame at every amino acid residue using the backbone atoms.
An illustration for a pair of residues is presented in Figure 1.6.

Let L denote the sequence length and Ai the i-th amino acid, for i ∈ {1, . . . , L}. Using
the coordinates of the i-th C, Cα and N atoms we are able to define a reference system that
accounts for the geometrical configuration of the backbone at the i-th residue. The origin
of the reference frame is set at the coordinates of the Cβ atom, i.e. the first atom of the side
chain (recall Figure 1.1) for non-glycine residues. For glycines, we place the origin at the
coordinates of Cα. If we denote as Fi = {−→ei1,−→ei2,−→ei3} the i-th reference system, the global
structure of the ensemble is described by L reference frames F1, . . . ,FL. Note that each
Fi can be formalized as an element of SE(3). Besides the intricacy of comparing frames
across different conformations, that can be solved in some cases, it should be remarked that
relying on SE(3) is extremely complex and requires handling Riemannian geometry. While
this space is widely used in robotics [17, 315, 223], its application in this setting remains
an excessively complicated and impractical task, due, for example, to the non-uniqueness
of its geodesic curves, which hinders the computation of distances [226]. Although some
remarkable contributions dealing with probability distributions and statistics in SE(3)
have been recently proposed [54, 205], we opt to define Euclidean descriptors of the family
{F1, . . . ,FL} that allow their direct comparison across states and efficient computation.

Two different strategies will be followed according to whether ensembles must be com-
pared or characterized. The former will rely on mapping the family {F1, . . . ,FL} to a
Cartesian product of three-dimensional Euclidean spaces. This transformation will yield
the definition of the three-dimensional global structural descriptor of the ensemble.
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Definition 1.2.6 (Three-dimensional global structural descriptor). Let L denote the pro-
tein sequence length and {F1 . . . ,FL} the family of reference frames built at every amino
acid residue. Let

TR3 : SE(3)× L· · · × SE(3) −→ R3 ×
L(L−1)/2
· · · × R3 (1.2)

(F1, . . .FL) 7−→
(−→
R 11, . . . ,

−→
R (L−1)L

)
be the transformation that maps the family of reference frames to all the relative positions
of every residue pair along the sequence. More precisely, −→R ij denotes the coordinates of
the origin of Fj with respect to Fi, for every i < j. The three-dimensional global structural
descriptor of the ensemble is defined as the L(L− 1)/2-tuple(

P11, . . . , P(L−1)L
)
∈ P(R3)×

L(L−1)/2
· · · × P(R3), (1.3)

where Pij ∈ P(R3) is the probability distribution of −→R ij, for every i < j.

Indeed, the definition of a reference frame at every amino acid allows the determi-
nation of the relative position of every residue pair. These positions will be random
variables taking values on R3 and their probability distributions (1.3) will act as global
structural descriptors of the protein ensemble. Note also that the realizations of every−→
R ij are comparable across conformations. Certainly, the mapping (1.2) transforms the
structural configuration of the entire sequence into a set of three-dimensional Euclidean
descriptors that do not depend on the absolute coordinates that were given as input. In
other words, the realizations of −→R ij are accessible and comparable, allowing the defini-
tion of the empirical three-dimensional global structural descriptor of the ensemble as the
family of empirical counterparts of (1.3).

A different approach will be chosen when aiming at characterizing protein ensembles.
In that case, the family of reference frames will be mapped to a Cartesian product of real
intervals. Instead of analyzing all the relative positions of amino acid pairs, we will now
account for their residue-residue interactions.

Definition 1.2.7 (One-dimensional global structural descriptor). Let L denote the protein
sequence length and {F1, . . . ,FL} the family of reference frames built at every amino acid
residue. Let

T[0,1] : SE(3)× L· · · × SE(3) −→ [0, 1]×
L(L−1)/2
· · · × [0, 1] (1.4)

(F1, . . .FL) 7−→
(
ωC11, . . . , ω

C
(L−1)L

)
be the transformation that maps the family of reference frames to a vector of elements in
[0, 1] acting as a proxy for the interaction between the residues i and j > i. The one-
dimensional global structural descriptor of the ensemble is defined as the L(L− 1)/2-tuple(

PC11, . . . , P
C
(L−1)L

)
∈ P([0, 1])×

L(L−1)/2
· · · × P([0, 1]), (1.5)

where PCij ∈ P([0, 1]) is the probability distribution of ωCij , for every i < j.
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The quantities ωCij account for the contact between amino acids at positions i and j > i.
These variables will be conceived as an extension of the classical binary notion of contact,
that is based on a universal threshold for the Euclidean distance [213, 275, 229]. In this
case, the mapping (1.4) will transform the family {F1, . . . ,FL} into a tuple of values that
will vary continuously in [0, 1] and will depend not only on the identity of the interacting
amino acids and their positions in the sequence but also on the relative orientation of Fi
and Fj . Once again, these quantities are comparable between conformations and allow
the definition of the empirical one-dimensional global structural descriptor as the vector
of empirical probability distributions of (1.5).

1.2.3 Statistical tools to compare and characterize ensembles

The structure of protein ensembles will be described by the probability distributions pre-
sented in Definitions 1.2.5, 1.2.6 and 1.2.7. The next step is to find statistical tools that
capture the variability of these distributions as faithfully as possible and provide compact,
clear, and interpretable outcomes accounting for the conformational variability of flexible
proteins and the changes in their secondary structure. Sometimes, suitable tools for this
purpose were already found in the literature, corresponding even to standard methods
used in Biostatistics and applied Mathematics in a wide manner. However, the problems
of comparing and characterizing ensembles naturally give rise to questions for which there
had not yet been a methodological answer. In this case, theoretical contributions that
are applicable in a more general context have been proposed. It should be noted that,
rather than the study of statistical problems, the motivation of this thesis is to provide
answers to open problems in Structural Biology. Nevertheless, this has naturally led to
the development of some mathematical techniques that may be of interest from a broader
perspective. The families of statistical methods employed in this thesis are outlined in the
following sections. We will omit the details about the first group as it comprises standard
techniques commonly used in Structural Biology and Biostatistics. More attention will be
paid to the subsequent ones, whose application in Structural Biology is more novel and
where our methodological contributions have been made.

Clustering on a low-dimensional embedding (used in Chapter 7)

Dimension reduction is a widely employed technique in Biostatistics due to the intrinsic
high dimensionality of biological data. Most of the applications of such theory are related
to the very active fields of neuroimaging [211], single-cell [15, 272] or genetics [83, 81],
among others. Here, we will focus on non-linear dimensionality reduction algorithms,
that have shown efficient empirical performances when identifying underlying structures
in complex data [80, 81, 15, 174, 232, 83]. In particular, we will make use of the Uni-
form Manifold Approximation and Projection (UMAP) algorithm [199]. This choice is
motivated by its ability to preserve the high-dimensional topology of data and efficiently
reveal population structure [81, 83, 15]. For some time now, the combination of non-linear
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dimension reduction algorithms with clustering techniques is becoming a standard pro-
cedure to detect the structures unraveled by the low-dimensional projection and classify
them into well-defined groups. The use of that strategy is supported by its successful
empirical efficiency [82, 2, 15, 83]. In this thesis, we propose to project high-dimensional
data to a low-dimensional UMAP space and perform the HDBSCAN [46] algorithm on the
embedding, which we believe to be one of the most sophisticated density-based techniques.
The main principles of UMAP and HDBSCAN algorithms are explained in Appendix E.1.

Optimal transport (used in Chapters 3-5)

Optimal Transport (OT) is a mathematical theory that has been gaining considerable
relevance in recent years due to its efficient and versatile applicability. In particular,
the popularity of OT has raised through its integration into Machine Learning techniques,
notably in the framework of generative networks [9], robustness [262] or fairness [76, 69, 31],
among others. With some notable exceptions [47, 19, 248, 67, 107], OT has not been widely
used in Structural Biology. Here, we propose to rely on OT to account for differences
between global and local structural descriptors. Let us first introduce the main concepts
of this theory.

Optimal Transport is a specific case of mass transportation, which is the general prob-
lem of matching two probability distributions P , Q supported on a Polish space X , that
is, a separable and completely metrizable topological space [210]. Note that the Euclidean
space of arbitrary dimension is Polish, as well as the two-dimensional flat torus T2, as
shown in Chapter 3. Consequently, this theory is applicable to the distributions that com-
pose the local and global structural descriptors2 defined in Section 1.2.2. The problem of
mass transportation aims at selecting a coupling in Π(P,Q), that is, a joint probability
distribution having P and Q as marginals.

A coupling can be seen as a random mapping, matching every instance in the support
of P to possibly several counterparts in the support of Q with probability weights. This
transformation can be also understood as a reconfiguration of the probability mass of P
to recover the one of Q. More visually, we might think of each marginal distribution as a
sand pile on X . A coupling is a transportation plan transforming one pile into the other,
that specifies how to move each elementary sand mass from the first distribution to recover
the second one. A coupling is said to be deterministic if each instance from P is matched
to a unique instance from Q. In that case, the coupling is localized on the graph of a
(P -almost surely unique3) mapping T : E −→ E that pushes forward P to Q, i.e. such
that T#P = Q. We denote by T (P,Q) the set of measurable mappings pushing forward
P to Q.

Optimal Transport has become a popular tool to define such couplings by selecting the
2As closed subsets of Polish spaces are Polish, this also applies for the distributions composing the

one-dimensional local structural descriptors introduced in Definition 1.2.7.
3That is, if there exists another mapping T ′ ̸= T whose graph localizes the same coupling, it only differs

from T on some set O with P (O) = 0.
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ones that are optimal in some sense. This theory dates back to Monge [207] who in 1781
defined OT maps as functions that transform P into Q with minimal effort according to
a positive cost function c : X × X −→ R+. Formally, transport maps are defined as the
solutions of

inf
T∈T (P,Q)

∫
X
c(x, T (x)) dP (x). (Monge)

One mathematical challenge arises from the push-forward constraint, which makes the
problem infeasible in many general scenarios, especially when distributions P and Q are
not absolutely continuous with respect to the Lebesgue measure [29] or have an imbalanced
number of atoms. This complication motivated the so-called Kantorovich relaxation of the
OT problem introduced by Kantorovich and Rubinshtein in 1958 [154]:

inf
γ∈Π(P,Q)

∫
X ×X

c(x, y) dγ(x, y). (Kantorovich)

Solutions to (Kantorovich) are optimal couplings (non deterministic in general) between
P and Q with respect to the cost c. Contrary to OT maps, they exist under very mild
assumptions, like the non-negativeness of the cost [299]. Note that, since a push-forward
operator can be identified with a coupling, the set of admissible solutions of (Monge) is
included in the set of admissible solutions of (Kantorovich).

The solutions to (Kantorovich) are of particular interest to us as they define a distance
in P(X ) [299]. More precisely, for p ≥ 1, the optimal value

Wp(P,Q) =
(

inf
γ∈Π(P,Q)

∫
X ×X

cp(x, y) dγ(x, y)
) 1

p

(1.6)

is called the p-Wasserstein distance between P and Q, and it represents the minimum
transportation cost needed to reconfigure the mass of P to recover the mass ofQ. Note that
the Wasserstein distance is able to integrate the geometry of the underlying space X if the
cost function is chosen, for instance, as the geodesic distance on X . That makes it a well-
adapted metric to capture the variability of the conformational space and appropriately
compare a pair of structural descriptors.

We conclude by presenting how to solve (Kantorovich) when, in practice, we only
have access to the empirical counterparts of P and Q, denoted by Pn, Qm for n,m ∈ N.
This scenario corresponds to the discrete version of the Kantorovich problem, where the
points of the sample drawn from P are sent to the points of the sample drawn from Q with
probabilities given by a n×m matrix, that we identify with the coupling in (Kantorovich).
Let X,Y be two random variables having P and Q as probability distributions respectively,
X1, . . . , Xn and Y1, . . . , Ym two samples of X and Y and (x1, . . . , xn) and (y1, . . . , ym) two
realizations of such samples. The discrete version of (Kantorovich) corresponds to solving

inf
M∈U(Pn,Qm)

n∑
i=1

m∑
j=1

c(xi, yj)Mij , (1.7)
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where U(Pn, Qm) is the set of real n×m matrices M = (Mij)ij such that ∑n
i=1Mij = m−1

and ∑m
j=1Mij = n−1. Once again, the p-Wasserstein distance between the empirical

measures Pn and Qm is given by

Wp(Pn, Qm) =

 inf
M∈U(Pn,Qm)

n∑
i=1

m∑
j=1

cp(Xi, Yj)Mij

 1
p

. (1.8)

Note that (1.6) is a positive real number whereas (1.8) is a random variable, as it is a func-
tion of the samples drawn from P and Q. Fortunately, the so-called empirical Wasserstein
distance (1.8) presents strong statistical guarantees. In particular, it converges weakly to
the distance between the true measures (1.6) as n and m grow up to infinity under mild
assumptions [299, Corollary 6.9]. This justifies the use of (1.8) to account for the differ-
ences between the local and global structural descriptors by computing the Wasserstein
distance between their empirical counterparts. For these practical applications, we will
set p = 2 due to the well-known statistical properties associated to the quadratic cost, in
particular the uniqueness of the solution to (Kantorovich) under mild assumptions [298,
Theorem 2.12]. For a comprehensive understanding of the mathematical properties of the
Wasserstein distance and the Optimal Transport problem, we refer to [299].

The resolution of the optimization problem (1.7) has become another extensive area
of research. As the objective function and the constraints are linear in the variables of
interest, the discrete formulation of the Kantorovich problem is a linear program. Conse-
quently, it can be solved with a large family of algorithmic tools from linear programming
and combinatorial optimization. Among them, we may highlight the classical Network
Simplex algorithm [24], that is implemented in the more common OT solvers [98, 259]. An-
other popular strategy are Dual Ascent methods [144], notably the well-known Hungarian
algorithm [25]. The primary challenge encountered when dealing with empirical optimal-
transport solutions lies in their high computational complexity and memory requirements.
Solving (1.7) typically demands O((n+m)nm log(n+m)) computer operations. Besides,
for non-standard cost functions, a n × m matrix of coefficients Cij = c(xi, yj) needs to
be stored. In practical problems, notably in Machine-Learning applications, it is usual to
consider entropic regularization schemes, that can reduce the computational complexity
to O(nm) operations [64]. However, these approximations do not overcome memory issues
and loose the mathematical and statistical properties that motivate the use of Wasserstein
distance in the inferential context. For a less technical introduction to OT and a thorough
analysis of the computational aspects discussed below, we point to [228].

Hypothesis testing (used in Chapters 2-6)

Hypothesis testing constitute, along with estimation, the other fundamental pillar of sta-
tistical inference. The objective of such tests is to determine, based on the collected sample
information, whether a certain hypothesis about a population characteristic should be re-
jected or not. Succinctly, to test a hypothesis is to determine whether it is “compatible”
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with what is observed in the sample. More precisely, it involves comparing the validity
of two complementary statements about the population. One of them is called the null
hypothesis (H0), while the other is called the alternative hypothesis (H1). Note that sta-
tistical tests are not symmetric towards H0 and H1 in the sense that they do not choose
the most plausible hypothesis based on the sample. Instead, they just aim to determine
whether there is sufficient evidence to reject what H0 claims. Consequently, the test never
concludes that the null hypothesis is true, but rather that there is no evidence to reject
it. Formally, we can define a statistical test as a measurable partition [61, Definition 15.1]
of the sample space.

Definition 1.2.8 (Hypothesis test). Let (Ω,Σ,P) be a probability space. A hypothesis
test is a measurable partition of Ω in two regions, namely the critical -or rejection- region
(C.R.), that includes the instances that yield the rejection of H0, and its complementary
set, the alternative region (A.R.), composed by the outcomes that do not yield rejection of
H0. The test is characterized by the indicator function of the critical region, also referred
to as test function, π : Ω −→ {0, 1} where

π(ω) =

 1 if ω ∈ C.R.
0 if ω ∈ A.R.

(1.9)

The potential of hypothesis tests comes in terms of the statistical guarantees that they
provide regarding the partition (1.9). More precisely, test functions are built to ensure
the control of the so-called type I error, that is, the probability of rejecting H0 when it is
true.

Definition 1.2.9 (Type I error). Let (Ω,Σ,P) be a probability space and π : Ω −→ {0, 1}
a test function. The type I error of π is defined as the probability of rejecting H0 when it
holds, that is,

P ({ω ∈ Ω : π(ω) = 1 |H0}) = PH0 (C.R.) .

The procedure for constructing a hypothesis test begins by setting an upper bound
on the type I error -the so-called level of significance- and selecting, among all tests that
control it, the one that more efficiently detects the false null hypotheses or, in other words,
the most powerful one.

Definition 1.2.10 (Power). Let (Ω,Σ,P) be a probability space and π : Ω −→ {0, 1} a
test function. The power of π is defined as the probability of rejecting H0 when it is false,
that is,

P ({ω ∈ Ω : π(ω) = 1 |H1}) = PH1 (C.R.) .

Note that the problem of building a hypothesis test relies on the choice of a “good”
critical region. To achieve so, the following considerations must be taken into account:

(i) Discrepancies with the null hypothesis are sought, so the critical region must include
sample values that are unlikely to occur under H0, even though they are possible,



1.2. The inherent probabilistic nature of flexible proteins 23

(ii) Generally, the critical region is determined before analyzing the experimental results
(although this is not always true, as discussed in the next section),

(iii) The critical region is usually expressed in terms of a statistic, that is, a real-valued
measurable function of the sample, known as the test statistic. It measures the
discrepancies between the samples in the critical region and the null hypothesis. The
distribution of the test statistic under H0 is used to ensure the level of significance.

Note that the test function (1.9) provides a binary output “rejection vs. non-rejection”
about H0. However, whether the null hypothesis is rejected or not, it is usually interesting
to “measure the distance” between the sample result and H0. This gives rise to the concept
of p-value.

Definition 1.2.11 (p-value). Let (Ω,Σ,P) be a probability space, π a test function defined
on Ω whose test statistic is a function of a sample X1, . . . , Xn. The p-value associated
with a realization (x1, . . . , xn) is the smallest significance level at which the null hypothesis
H0 is rejected by π.

This value acts as a proxy for the plausibility of the sample under the null hypothe-
sis. If the p-value is large, it means that we are working with samples that have a high
probability of occurring if H0 holds. In this case, there is insufficient evidence against the
null and H0 should not be rejected. However, rejection should be chosen if the p-value is
small. We want to emphasize that the p-value can -and should- be considered as a quanti-
tative indicator of the “credibility” of the null hypothesis. Accordingly, with appropriate
precautions, p-values calculated under the same conditions (e.g. equality of sample sizes)
are quantitatively comparable and provide a correct indicator of which samples contradict
more the validity of H0 within a family of realizations. This point will be key in the
works presented here. Furthermore, it is worth noting that the p-value can also be used
to effectively verify the proper definition of a hypothesis test. Following its definition, a
p-value is statistically valid if and only it is Super-Uniform under H0. A real-valued ran-
dom variable X is said to be Super-Uniform if its cumulative distribution function (CDF)
is upper bounded by that of the Uniform distribution, that is:

P(X ≤ x) ≤ x for all x in [0, 1]

(see e.g. [172, Section 3.3]). Moreover, the closer the p-value distribution under the null
hypothesis is to U[0, 1], the more powerful the corresponding test is. Checking for super-
uniformity of p-values under H0 is essential to ensure the suitability of the corresponding
statistical test.

In this thesis, we mainly focus on a particular case of statistical test, known as two-
sample goodness-of-fit test. In short, it aims at assessing whether two probability distri-
butions are the same. More precisely, for two measures P,Q supported on a Polish space
X , the goal is to test for the following null and alternative hypotheses:

H0 : P = Q vs. H1 : P ̸= Q. (1.10)
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Note that, under this framework, we are only testing for the equality of P and Q, inde-
pendently of the identities of these distributions. The key issue here is the choice of a
suitable test statistic that appropriately accounts for the differences between P and Q and
whose null distribution is known4. The most commonly used approaches to test for (1.10)
are mainly defined for measures supported on the real line (e.g. Kolmogorov-Smirnov and
Wilcoxon statistics). However, testing the equality of distributions supported on more
general spaces is a much less studied problem, and it is crucial in our objective of properly
comparing local structural descriptors. The probability distributions accounting for the
conformational variability of the protein at the amino acid scale (recall Definition 1.2.5)
are supported on the two-dimensional flat torus, which is a non-Euclidean space. In par-
ticular, a test statistic defined to compare distributions in P(T2) needs to be adapted to
the periodicity of their support. This is why the Wasserstein distance (1.6) turns out to
be a well-suited metric to compare measures on T2 if the geodesic distance on such space
is chosen as cost function. In this thesis, we propose two approaches to define two-sample
goodness-of-fit tests in P(T2) using the Wasserstein distance as a test statistic. This will
provide statistical evidence about the discrepancies between local structural descriptors
or, in other words, the statistical significance of changes on local protein structure.

Post-selection inference (used in Chapter 6)

When performing a statistical investigation, a model for the data needs to be previously
specified. This model might be the underlying distribution of the sample, the variables
that explain a given outcome or a hypothesis to be tested. In a more classical -or academic-
context, the model is set prior to collecting the data. This might be the case if, for instance,
observations follow a known physical law. However, in more realistic applications, inference
is performed on a model that is chosen from the data. A straightforward example is
testing for the significance of the features selected by a regression model whose coefficients
have been obtained from data. In this case, the null hypotheses to be tested, that is,
the questions that should be answered through inference, depend on the data. If the
same data are used for the subsequent testing step, the statistical guarantees are not
ensured. This phenomenon is akin to overfitting in prediction tasks. Adapting inferential
statistics to the framework where the model choice is guided by the data is the goal of
post-selection inference. The relevance of this field has greatly increased in recent years,
due to its usefulness in a wide family of areas like causal inference [16], high-dimensional
linear regression [171] or neural networks [300], among others. Here, we focus on selective
hypothesis testing, that addresses the definition of statistical tests when null hypotheses
are chosen from the data. The basis of this theory was rigorously introduced in [97].

In this thesis, we aim at performing inference after clustering by testing for the dif-
ference between cluster means. Clustering algorithms aim to classify observations into
a number of classes, which is usually directly or indirectly predetermined. The outcome

4We commonly refer to the distribution of any random variable under H0 as its null distribution.
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Figure 1.7: Empirical distributions of two groups of observations found after simulating
one sample of size n = 500 drawn from the univariate distribution N (0, 1) + U(−0.2, 0.2)
and classifying it into two groups through a k-means algorithm. Colors indicate the classes
retrieved by the pipeline. This Figure is adapted from [121, Figure 1].

of these methods is highly sensitive to the parameters required by each technique, and
the resulting partition of the space can strongly vary for a given dataset. Although there
are criteria to optimize the calibration of these parameters [278, 251, 119], it should be
emphasized that there is generally no underlying true classification [90]. Clustering algo-
rithms attempt to find classes that compactly represent the distribution of the dataset,
but these groups are not inherent to the population in general and act only as a descrip-
tion of the sample. Post-clustering inference seeks to shed some light on this issue by
providing statistical evidence of the true differences between clusters. The relevance of
this problem can be easily illustrated by simulating a one-dimensional Gaussian random
variable with a uniform noise and asking the classic k-means algorithm [117] to find two
clusters. The result is presented in Figure 1.7. If, as it happens in practice, the underlying
distribution is unknown, it is difficult to visually assess whether both groups correspond
to two different populations. If we try to answer that question by omitting that the null
hypothesis has been chosen by looking at the data, i.e. following the results of a clustering
algorithm, the conclusion will be misleading. Indeed, a classical Z-test retrieves a p-value
below the machine precision (5.87 · 10−67), yielding a strong rejection of the hypothesis of
equal group means. If we perform selective inference, the approach presented in [51] to
test for the difference of cluster means retrieves a p-value equal to 0.84, which is coherent
with the true setting (here known, as the data have been simulated).

Our motivation here is to provide statistical guarantees about the clustering algorithms
that are commonly used to characterize protein ensembles. Indeed, defining a partition of
the conformational space through featuring the states by classical descriptors has become
a standard technique [7, 59, 170, 169]. However, these characterizations lack statistical
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evidence about the true differences between groups, which we believe to be essential to
correctly interpret their output.

1.3 Outline of the thesis

The main objective of this thesis is to define statistical methods for the appropriate char-
acterization and comparison of conformational ensembles of flexible proteins. In Sec-
tion 1.2.2, we have introduced the probabilistic descriptors of the structural variability of
these systems and, in Section 1.2.3, we have detailed the statistical methods we will use to
analyze them. We are left with only one question to address, which is: how? The answer
to this question is developed throughout the chapters that constitute this thesis. The
manuscript is divided into two main parts, dedicated to the structural analysis at local
and global scales, respectively. Within each part, we outline the strategies constructed to
deploy the methods from Section 1.2.3 on the descriptors from Section 1.2.2, and present
the resulting techniques for characterization and comparison. Now, we provide a brief
overview of these methods through a plan of this manuscript, where the main results and
contributions are outlined.

Software availability and reproducibility

The characterization and comparison methods presented in this thesis have been made
freely available to the community. To ensure reproducibility, the code implementing all
the statistical analyses and the data have been equally shared. Links are specified within
each chapter.

1.3.1 Local structural analysis of protein ensembles (Part I)

The first part of the thesis is devoted to the structural analysis of ensembles at the local
level. More precisely, we will study the probability distributions of the dihedral angles
(ϕ, ψ) that define the local structural descriptors. This part is composed of three chapters:

• In Chapter 2, we assess the effect of the neighboring amino acids on (ϕ, ψ) distri-
bution, showing that the identities of left and right residues must be simultaneously
taken into account to describe local structures. This sets fragments of three amino
acids (tripeptides) as the unit brick to analyze protein conformation locally.

• Chapter 3 introduces two approaches to perform two-sample goodness-of-fit tests on
P(T2), using Optimal Transport theory and Wasserstein distance. These methods
will be the main tool to account for statistically significant differences between local
structural descriptors. We also illustrate their utility to reject Flory’s isolated pair
hypothesis [99].
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• Finally, in Chapter 4, we present a less trivial application of the methods introduced
in Chapter 3, that is, the assessment of the translated codon effect on (ϕ, ψ) distri-
butions. This chapter arises in response to the work of Rosenberg et al. [249], where
the same problem was analyzed but using an inadequate methodology.

Interdependence between nearest neighbor effects (Chapter 2)

The structural analysis of conformational ensembles, both at the local and the global level,
must be built upon a solid foundation of how sequence influences the amino acid structure.
Flory’s isolated-pair hypothesis [99], that states that the (ϕ, ψ) angles of a given residue are
independent of the identity of its neighbors, has already been refuted by the community
in numerous studies [40, 225, 66, 260, 149, 204] (although, as shown in Chapter 3, none
of these approaches provide statistical evidence for its rejection). However, an important
question remains unclear: are the effects of the left and right neighbors independent?
In other words, can the local structure of a protein be described based on two amino
acid fragments (dipeptides), or should the unit block be the tripeptide? Contradictory
answers have been proposed regarding this issue [109, 27, 129, 244], but none of them has
been based on a well-grounded methodology that provides statistical guarantees about the
distribution of (ϕ, ψ). Here, we aim to test for the independence of neighbors effects.

Let C denote the identity of an amino acid residue and L,R the identities of its left and
right neighbor in the sequence, respectively. From the works [280, 244], we can show that
the local structural descriptor given the whole tripeptide, denoted by P (ϕ, ψ |L,C,R), can
be obtained from the ones given the left and right dipeptides as

P (ϕ, ψ |L,C,R) = P (ϕ, ψ |L,C)P (ϕ, ψ |C,R)
S P (ϕ, ψ |C) , (1.11)

where S is a normalization constant, if and only if the following hypothesis holds

L and R independent given C and (ϕ, ψ). (1.12)

Note that (1.11) corresponds to stating that the influences of the left and right neighbors
on (ϕ, ψ) distribution can be independently considered to reconstruct it. As it is an
equivalent statement, we propose to test for (1.12) using a classical χ2 independence
test [172]. Methodologically, a suitable approach to condition on {C, ϕ, ψ} is proposed,
mainly consisting on intelligently discretizing T2 and performing one test per subdivision
and value of C. Then, all p-values are corrected for multiplicity [125] and stratified by
residue identity. Our results unequivocally demonstrate the coupled effects of the left and
right neighbors, indicating that they cannot be considered independently of each other.
Besides, we show that the magnitude of the interdependence, measured in terms of p-
values, is affected by the physicochemical properties of the nearest neighbors and the
structural origin of the data. These observations represent a fundamental step towards
understanding sequence-structure relationships in peptides and proteins.
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Two-sample tests to compare local structures (Chapter 3)

The structural investigation of (ϕ, ψ) angles involves quantifying the expected magnitude
of structural effects associated with local changes in the sequence. In this context, the
definition of a suitable distance between distributions on T2 whose statistical significance
can be assessed is essential. In this chapter, we aim to test the hypotheses

H0 : P = Q vs. H1 : P ̸= Q, (1.13)

for a pair of local structural descriptors P,Q ∈ P(T2). As previously stated, distributions
will be compared using the 2-Wasserstein distance (1.6), that integrates the underlying
geometry of the conformational space at the local level. As the study of Optimal Transport
in T2 has not completely been addressed, we start by extending the main results of this
theory to the flat torus of arbitrary dimension, denoted by Td. In particular, we show the
uniqueness under mild assumptions of the solution of (Kantorovich) in P(Td), and derive
a Central Limit Theorem (CLT) for the fluctuations of the empirical transportation cost.
We justify why the proposed CLT is not suitable to define an asymptotic goodness-of-fit
test for (1.13), motivating the exploration of alternative approaches.

The strategy to define a two-sample test for (1.13) should rely on rejecting the null
hypothesis when the Wasserstein distance between the empirical counterparts of P and Q
is “too big” or, in other words, too improbable under H0. If we denote as X1, . . . , Xn and
Y1, . . . , Ym two independent samples identically distributed as P and Q respectively, this
yields the definition of the following critical region

C.R. = {(x1, . . . , xn; y1, . . . , ym) : W2
2 (Pn, Qm) ≥ cnm(α)}, (1.14)

where xi (resp. yj) denotes a realization of Xi (resp. Yj) for i = 1, . . . , n (resp. j =
1, . . . ,m). The threshold cnm(α) > 0 must be chosen to ensure the type I error control
at level α ∈ [0, 1] through the null distribution of the test statistic. However, knowing
the distribution of W 2

2 (Pn, Qm) under H0 remains still an open and non-trivial problem,
especially when the ground space has dimension higher than one. That intrinsic difficulty
led us to search for alternative approaches that exploit the scenarios where a Wasserstein-
based test statistic with known distribution can be defined. We propose two strategies in
that regard, that we outline in the following paragraphs.

The first approach consists on bypassing the dimension problem by projecting Pn and
Qm to the one-dimensional closed geodesics of T2, that are closed spirals isomorphic to
the circle S1 [36]. Then, we define a test statistic based on the 2-Wasserstein distance
to compare measures on S1 whose null distribution we can derive. We show that this
distribution does not depend on the identities of P and Q under H0 or, in other words,
that the defined statistic is distribution-free under the null. This allows the definition
of a two-sample goodness-of-fit test for a pair of geodesic projections of Pn and Qm.
The strategy to define a p-value for the two-dimensional test is to (i) choose a family of
randomly-selected closed geodesics on T2, (ii) for each geodesic, project Pn and Qm and
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retrieve a p-value for the equality of their projections and, finally, (iii) aggregate all the
p-values by Bonferroni aggregation [32], obtaining a well-defined p-value for (1.13). We
conclude by showing the consistency of the test under fixed alternatives, i.e. that its power
tends to one as the sample sizes n,m grow up to infinity.

The second approach aims to directly compare the structural descriptors in the two-
dimensional space. Due to the inability to construct an exact or asymptotic test based
on (1.14), we propose to find an upper bound for its associated p-value. Note that up-
per bounding a p-value yields statistically valid hypothesis testing. Indeed, if the upper
bound is smaller than the significance level, so will be the true -and unknown- p-value
and rejection with type I error control will be ensured. In other words, this corresponds
to have Super-Uniform p-values. However, a price to pay comes in terms of power loss.
Succinctly, the idea is to first upper bound the deviations of the statistic from its expecta-
tion and then show that, under the null, this expectation presents a fast convergence rate
to zero. This yields the definition of a two-sample test that is asymptotically consistent
at level α [292, Definition 14.2]. That means that the statistical guarantees are ensured
at the limit n,m → ∞ so, in practice, that the test can be performed for large sample
sizes. However, the finite sample conservativeness of this test becomes advantageous in
our application context, making it complementary to the geodesic projection approach.

A numerical analysis is performed to illustrate the relative efficiency of both approaches
and compare them to other alternative techniques from the literature. Besides, we demon-
strate their suitability to detect differences on local structural descriptors, using a struc-
tural database of three-residue fragments extracted from experimentally-determined high-
resolution protein structures [88] to reject the Flory’s isolated pair hypothesis.

The codon effect on local structure (Chapter 4)

We conclude the first part of the manuscript by presenting a practical application of the
methods introduced in Chapter 3. Numerous biological processes, such as mRNA splicing,
translational rates and protein folding, have demonstrated the relevance of synonymous
codon usage [220, 44]. Although the relation between synonymous codons and secondary
structure in translated proteins has been extensively investigated [218, 258], Rosenberg
et al. [249] took a more detailed approach by evaluating the impact of codon identity on
the distribution of (ϕ, ψ) dihedral angles within secondary structure elements. Their work
aimed to determine whether there are significant differences when synonymous codons are
used, through the implementation of a statistical test for measures on P(T2). However,
their statistical methodology is formally incorrect, casting doubt on the obtained results.

In this Chapter, we first demonstrate that the p-values defined in [249] are statistically
invalid by proving that their distribution is not Super-Uniform under the null hypothesis
(recall Section 1.2.3). Besides, we show that these p-values are highly conservative for
large values of the statistic, yielding an important number of false negatives and thus
ignoring substantial differences that might appear between local structural descriptors.
Moreover, the multiple testing procedure used in [249] fails to control the False Discovery
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Rate (FDR) as it needs the p-values to be Super-Uniform under the null [247]. The techni-
cal inaccuracies in this study prompted us to investigate the codon effect with appropriate
statistical tools. This was the motivation to implement the methods presented in Chap-
ter 3 to properly test for significant differences between codon-specific local structural
descriptors.

Our results confirm the influence of the codon on (ϕ, ψ) distributions, but differ from
those of [249] in the strength of significance of the differences depending on the secondary
structure type. Besides, we evaluated the impact of structural classification and local
sequence context on these findings. The results revealed that codon-specific effects exhibit
similar levels of significance across different regions of T2. However, these effects may be
more pronounced for specific secondary structure types, such as β-strands compared to
α-helices. Furthermore, the results suggest that synonymous codon effects are amplified
when considering the context of the local sequence, following the conclusions of Chapter 2.

1.3.2 Global structural analysis of protein ensembles (Part II)

The second part of the manuscript is devoted to the structural analysis of flexible pro-
teins at the global level. We make use of the global structural descriptors defined in
Section 1.2.2 to define statistical tools to compare and characterize conformational ensem-
bles, and provide the classical clustering techniques with statistical guarantees. This part
includes three chapters, outlined below.

• Chapter 5 presents WASCO, a Wasserstein-based statistical tool to compare confor-
mational ensembles of highly flexible proteins. The main idea of WASCO is to use
Wasserstein distance to compare the three-dimensional global structural descriptors
(Definition 1.2.6), also integrating the local-level information through the techniques
presented in Chapter 3. We show the usefulness of the method to compare different
force-fields within MD simulations or to assess the effect of refinement with experi-
mental data.

• Chapter 6 is devoted to the study of post-clustering inference when data present
arbitrary dependence structures between features and observations. This work, that
is the natural extension of the framework in [104, 51], provides the classical clustering
techniques for ensemble characterization with statistical guarantees about the true
differences between the retrieved groups of conformations.

• Chapter 7 presents WARIO, a contact-based characterization of conformational en-
sembles. The method adapts the classical contact maps that characterize folded
structures to the ensemble framework, by characterizing a flexible protein through
a weighted family of contact maps, built from the one-dimensional global structural
descriptors (Definition 1.2.7). The applicability of WARIO is illustrated with the
characterization of several conformational ensembles of IDP.
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A Wasserstein-based tool to compare protein ensembles (Chapter 5)

The comparison of conformational ensembles is an essential problem in Structural Biology.
When dealing with ensembles of highly-flexible proteins, the existing tools proposed in
the literature are based on averaged descriptors across the set of conformations [167,
131]. However, reducing complex distributions to their mean usually entails considerable
loss of information and hides relevant features that might distinguish the systems. In
this Chapter, we present a comparison technique that integrates the whole variability of
the conformational space and makes use of the Wasserstein distance to account for the
differences between the entire probabilistic descriptors.

The main idea of WASCO is to compute the Wasserstein distance between the three-
dimensional global structural descriptors of a pair of ensembles (Definition 1.2.6). More
precisely, for every pair of residues at positions i < j on the sequence, the method computes
the distance Wij = W2(PAij;n, PBij;m), where PAij;n (resp. PBij;m) denotes the ij component
of the empirical global structural descriptor for ensemble A (resp. B). The quantity
Wij is the distance between the relative position distribution of residues i, j of both en-
sembles. The same idea is carried out to compare all the local structural descriptors
(Definition 1.2.5) for every residue along the sequence. If PAi;n (resp. PBi;m) denotes the
i-th component of the empirical local structural descriptor for ensemble A (resp. B),
WASCO computes the quantities Wi = W2(PAi;n, PBi;m), to which we associate the p-value
upper bound introduced in Chapter 3. Note that this formulation yields a clear and
compact representation of the results through a triangular matrix, having as entries the
quantities Wij in the lower triangle and the distances Wi along the diagonal. Combining
all the structural discrepancies at the local and the global level in the same representation
allows to clearly stand out the more relevant residue-specific differences and assess the
relation between changes on (ϕ, ψ) distributions at the amino acid level and structural
disagreements at the entire sequence scale.

The variability in experimental and simulated structures causes uncertainties and sta-
tistical noise that may substantially bias the distance estimation. Therefore, the computed
differences between global and local structural descriptors are corrected to filter such noise
and highlight the relevant discrepancies between the ensembles. This filtering is carried
out by estimating and removing the so-called intra-ensemble differences, that is, the coun-
terparts of the quantitiesWij andWi calculated between independent samples of the same
ensemble. We also use the intra-ensemble differences to define a final score that allows
to quantitatively interpret the computed Wasserstein distances using the noise as a ref-
erence. Besides, we define an overall distance that accounts for the difference between
all the global and local structural descriptors (i.e. a distance in their product space), by
properly aggregating the quantities Wij and Wi after the noise correction.

We demonstrate the usefulness of WASCO to compare conformational ensembles (i)
produced from MD simulations using different force fields, and (ii) before and after re-
finement with experimental SAXS data. We also show the applicability of the method to
assess the convergence of MD simulations, and discuss further potential applications such
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as in machine-learning-based approaches. One of the assets of this tool is its easy-to-use
implementation as a Jupyter notebook, that has been made available to the community.

Post-clustering inference under dependence (Chapter 6)

A common strategy to characterize protein ensembles is to partition the conformational
space through the implementation of clustering algorithms [7, 59, 170, 169]. However,
as discussed in Section 1.2.3, the output of clustering techniques lacks of interpretabil-
ity due to their high sensitivity to the pipeline parameters and the non-availability of an
underlying true classification. This issue can be overcome by resorting to the theory of
post-clustering inference, which provides statistical guarantees about the differences be-
tween cluster means. The mathematical techniques that allow such a selective testing are
highly dependent on the clustering algorithm and the distribution of the data. Recently,
the seminal work of Gao et al. [104] introduced the framework to perform inference af-
ter hierarchical clustering when observations are independent and identically distributed
as p-dimensional Gaussian random variables with a spherical covariance matrix. This
corresponds to the following matrix normal model [127]:

X ∼MN n×p(µ, In, σ2Ip), (1.15)

where X is a n × p matrix whose rows are vectors of features in Rp, the means of the p-
dimensional Gaussian vectors are given by the rows of the n×p matrix µ, the n×n identity
matrix accounts for the independence of observations and σIp is the covariance matrix of
features for every row. Under (1.15), the authors in [104] defined a p-value that controls
the selective type I error, that is, the probability of rejecting equality of cluster means
conditionally to the fact that these clusters have been found. Besides, the authors showed
that asymptotically over-estimating σ yields asymptotic control of the selective type I
error, providing a suitable estimator that can be used in practice. Dealing with parameter
estimation compatible with selective type I error control is a very remarkable and novel
contribution, that had been overlooked in previous relevant works in the field [173, 243].
Recently, this approach was adapted to k-means clustering in [51] and to the feature-level
framework, that is, the identification of the variables that contain a true signal, in [121].

Although the contributions [104, 51] are highly relevant from a statistical perspective,
their application to realistic problems remains limited. Indeed, the model (1.15) requires
the variables to be independent and to have equal variance, which is very unlikely to hold
in practice. In particular, the descriptors commonly used in clustering techniques applied
to protein structures are usually Euclidean distances between all the Cα atoms along the
sequence. Even if these quantities can be considered as p-dimensional Gaussian random
variables, their strong correlation prevents the assumption of (1.15). Besides, conforma-
tions may exhibit temporal dependence when generated with physical-based approaches,
such as MD simulations. Consequently, a model admitting dependence structures between
variables and observations is required in this framework. In this Chapter, we extend the
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framework presented in [104, 51] to the general matrix normal model

X ∼MN n×p(µ,U,Σ), (1.16)

where U encodes the dependency between observations and Σ the covariance between fea-
tures. We define a p-value that controls the selective type I error under (1.16) for hierar-
chical and k-means clustering algorithms. Furthermore, we generalize the over-estimation
of σ to the matrix framework, showing that there is a partial order -the so-called Loewner
partial order [127]- in the space of Hermitian matrices for which asymptotically over-
estimating Σ ensures the asymptotic control of the selective type I error. We also provide
an estimator of Σ that can be used in practice under some assumptions, that we show to
be satisfied for several common models of dependence between observations. In addition to
illustrating the numerical performance of the presented test with simulations on synthetic
data, we demonstrate how the method provides statistical guarantees after clustering real
data from protein ensembles whose conformations are featured with Gaussian descriptors.

A contact-based characterization of protein ensembles (Chapter 7)

The last contribution of the thesis is a method for characterizing conformational ensembles
of highly-flexible proteins. Existing methods in the literature can be classified into two
main families: clustering-based approaches and averaging-based approaches. The first
ones propose an interesting idea that integrates the probabilistic nature of disordered
ensembles. Furthermore, following the work proposed in Chapter 6, these methods can
be provided with statistical guarantees about the differences between clusters. Together
with using Cα-Cα distances to feature conformations, states are often compared using
root-mean-square deviation (RMSD) [241, 185]. Classifying states in that way tends to
group conformations based on good alignments, i.e. whose structures are globally similar.
This approach, which makes sense for conformational ensembles of ordered/structured
proteins, does not provide suitable characterizations here due to the high conformational
variability of the system: IDP conformations do not align well. Consequently, forcing such
an alignment does not yield clear and interpretable partitions of the conformational space.
On the other hand, averaging-based approaches considerably reduce spatial variability and
mask relevant but infrequent structural features of the system. The unsuitability of all
these methods is illustrated in Chapter 7.

We propose to address the question of how to properly characterize a disordered en-
semble by going back to the origins of structural characterization: contact maps. Contact
and distance maps have served as one of the main tools for characterizing the structure
of rigid proteins [229, 213, 275], demonstrating their suitability to detect structural do-
mains [250, 164, 255, 137]. They consist on a binary triangular matrix (Cij)ij , where
Cij = 1 if the Euclidean distance between the i-th and j-th Cα atoms is below a given
threshold, and Cij = 0 otherwise. Although they reveal as very useful tools to characterize
rigid structures, their naive extension to conformational ensembles, consisting on estimat-
ing contact probabilities by averaging binary contacts across every conformation, loses
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the contact patterns outside the diagonal that appear for sets of conformations with low
occupancy. We believe that contact information should remain the key to characterizing
the conformational variability of flexible proteins, but the average-based extension must
be replaced by a more intelligent approach to unravel the structural complexity of IDP.
The message we propose is clear: use contacts, but cluster first.

Chapter 7 introduces WARIO, a contact-based characterization of conformational en-
sembles of highly flexible proteins. This method exploits the potential of contact maps
by wisely integrating the statistical behavior of disordered systems. This is done by first
performing a well-adapted clustering algorithm that unravels how residue-residue inter-
actions manifest across the protein dynamic. To do so, we feature conformations by the
one-dimensional global structural descriptors (Definition 1.2.7), that is, by a continuous
function taking values in [0, 1] that acts as a proxy for the interaction between every
residue pair. This function integrates sequence information and the relative orientation
between the interacting amino acids, which we show to be crucial to correctly account
for the formation of local structural motifs. Then, every group of conformations is de-
scribed by its representative contact configuration. In short, a conformational ensemble is
characterized by a weighted family of contact maps, accounting for its structural diversity
through a set of contact patterns that appear with a given frequency along the confor-
mational fluctuations of the protein. We illustrate the usefulness of WARIO through four
examples of flexible proteins, and we compare it with the classical clustering approaches
that use distances to feature conformations.
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Chapter 2

Statistical proofs of the
interdependence between nearest

neighbor effects on local backbone
conformations

Backbone dihedral angles ϕ and ψ are the main structural descriptors of proteins
and peptides. The distribution of these angles has been investigated over decades as
they are essential for the validation and refinement of experimental measurements,
as well as for structure prediction and design methods. The dependence of these
distributions, not only on the nature of each amino acid but also on that of the
closest neighbors, has been the subject of numerous studies. Although neighbor-
dependent distributions are nowadays generally accepted as a good model, there is
still some controversy about the combined effects of left and right neighbors. We
have investigated this question using rigorous methods based on techniques from
inferential statistics. Our results unambiguously demonstrate that the influence
of left and right neighbors cannot be considered independently. Consequently,
three-residue fragments should be considered as the minimal building blocks to
investigate polypeptide sequence-structure relationships.

This work has been published in Journal of Structural Biology, 214(4): 107907, 2022,
with Pau Bernadó, Pierre Neuvial and Juan Cortés. It is presented here with minor
changes for the sake of coherence in the manuscript.
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2.1 Introduction

The main variables to locally investigate protein structural and dynamic properties are the
backbone ϕ and ψ dihedral angles of each of the amino acid residues along the sequence [39,
175] (see Figure 2.1 for an illustration). The allowed values of this pair of angles and
its statistical distribution have been studied over half a century, since the seminal work
by Ramachandran et al. [237, 238]. Several applications have motivated the detailed
analysis of ϕ and ψ angles in polypeptide chains, such as the validation and refinement
of structures determined from biophysical techniques [208, 182] and the development of
models or scoring functions for protein structure prediction and design [106, 153, 27, 35,
244, 280]. The study of local structural preferences of polypeptides is also essential for the
investigation of denatured states of globular proteins [267, 142] and intrinsically disordered
proteins (IDPs) [265, 88].

Each amino acid type has a particular distribution of the ϕ and ψ angles [274, 261,
70, 128, 6]. These distributions are relatively similar for all natural amino acids, with the
exception of glycine and proline. While glycine lacks a side chain, thus providing enhanced
conformational variability, proline has a cyclic side chain, which severely restricts the ac-
cessible ϕ and ψ values [122]. Some early work assumed that the distribution depends only
on the amino acid type, independently of the context, which is usually referred to as Flory’s
isolated-pair hypothesis [99, 321]. Despite its simplicity, Flory’s isolated-pair hypothesis
has been very useful to interpret Small Angle Scattering data reporting on the overall size
of disordered and denatured proteins [161]. However, the availability of residue-specific
information provided my Nuclear Magnetic Resonance (NMR) measurements, such as
residual/scalar couplings and chemical shifts, evidenced that the conformational prefer-
ences of individual amino acid residues is influenced by their nearest neighbors [40, 225].
A wide variety of short peptides have been used in order to rationalize and quantify the
effects exerted by the nearest neighbors [66, 216, 217, 149, 281, 260]. The ensemble of these
studies identified aromatic and β-branched amino acids as having the strongest influence
on the structure of their neighbors due to their steric hindrance [225, 149], although the
role of solvation has been also pointed out by some authors [10]. Nearest neighbor ef-
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Figure 2.1: (a) Illustration of a three-residue fragment indicating the ϕ and ψ angles of the
central residue. Only heavy atoms are represented, and the R corresponds to each amino
acid side chain. (b) Distributions of the ϕ-ψ angles for an alanine residue with different
neighbors.

fects were found particularly significant in several cases of repeated amino acids along the
sequence [204, 203].

Various theoretical/computational approaches, building on experimentally-determined
protein structures, have also been developed to investigate sequence-dependent structural
preferences and to integrate them within predictive methods [150, 105, 27, 35, 244, 280].
In addition, the inability of simple single-residue-based coil models to recapitulate NMR
data supports the influence of the sequence context in defining conformational ensembles
of disordered and denatured proteins [266, 222, 142, 143, 21, 129, 88]. Finally mention that
molecular dynamics simulations of simple tripeptides showed that the nearest neighbors
influence the relative population between the regions of the Ramachandran space and
the transitions rates between them [314]. Overall, these experimental and computational
studies provide strong evidence for the effect of the nearest neighbors in defining the
conformational preferences of a given amino acid residue.

An additional question arises when investigating nearest neighbor dependence: is the
influence of left and right neighbors interdependent? This is an important issue as it
determines whether the influence exerted by both neighbors can be studied separately.
Contradictory answers have been given to this question. For instance, Griffiths et al. [109]
postulated that electrostatic interactions between the left and right neighbors significantly
affect the conformation of the central residue. Betancourt and Skolnick [27] directly con-
sidered three-residue fragments for the analysis of neighbor dependence, thus implicitly
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assuming that left and right neighbors cannot be dissociated for this analysis. Results by
Huang et al. [129] also suggested that left and right residues have to be simultaneously
taken into account in order to appropriately estimate NMR residual dipolar couplings
(RDCs) measured in IDPs. Conversely, independence of adjacent residues has been as-
serted by other authors, although only descriptive or statistically vague methods have
been applied in this regard. Rata et al. [244] stated independence after visual comparison
of two density estimations, and Shen et al. [265] based their analysis on an amino acid
clustering approach, valid only under the independence hypothesis.

We have implemented statistical hypothesis testing methods [172] to investigate the
interdependence between nearest neighbor effects on backbone dihedral angles. These sta-
tistical tests make it possible to prove the interdependence of neighbor effects, by assessing
the independence of two categorical variables. Data for our analyses were extracted from
a non-redundant set of experimentally-determined high-resolution protein structures. We
constructed two datasets from three-residue fragments (called tripeptides from now on)
depending on the structural context: considering all tripeptides in all structures, and con-
sidering only fragments from coil regions (i.e. tripeptides not contained in α-helices or
β-strands). In the following, we will refer to these datasets as All and Coil, respectively.
We would like to clarify here that although it is well known that statistical models to
investigate disordered or unfolded proteins are in general more accurate when they are
built from restricted structural datasets that do not contain secondary structure elements
[274, 266, 142], we decided to perform the statistical tests for restricted and unrestricted
datasets with the aim of analyzing differences.

The chapter is organized as follows:

• In Section 2.2.1, the collection of the tripeptide data is detailed.

• Section 2.2.2 presents the statistical methodology implemented to assess the inter-
dependence of neighboring effects. First, the general testing procedure is detailed.
Then, the strategy to evaluate the impact of polarity and size on the strength of
interdependence is described.

• In Section 2.3, we present and discuss the results of our analyses, highlighting the
statistical significance of the interdependence of neighboring effects. We show that
both the physicochemical properties of the nearest neighbors and the structural
origin of the data affect the magnitude of the interdependence.

2.2 Methods
2.2.1 Data collection
A database of three-residue fragments (tripeptides) was built from a curated database
of experimentally-determined high-resolution protein structures. More precisely, we used
protein domains from the SCOPe 2.07 release [49]. In order to remove highly-redundant
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sequences, we used the 95% sequence-identity-filtered subset of these domains. In addition
to structures determined by X-ray crystallography (with a resolution below 3Å), SCOPe
also contains structures from NMR experiments. For each input file from NMR exper-
iments containing more than one model, a distance filter was applied to corresponding
tripeptides in each model to avoid repetitions in the database. A tripeptide structure was
considered sufficiently different from another one already extracted from the same file, and
was thus added to the database, if it met at least one of the two following criteria: the
RMSD on ϕ and ψ angles was above 0.2 radians, or one of the dihedral angles differed by
more than 0.6 radians. In total, 6,740,433 tripeptide structures were extracted. Tripep-
tides were classified by sequence (i.e. 8,000 tripeptide classes) and the backbone dihedral
angles were collected in a dataset called All, since no additional structural criteria were
considered for filtering.

A structurally filtered dataset, called Coil, was generated by removing tripeptides
contained in α-helices or β-strands. For this, DSSP [151, 283] was employed to assign
secondary structure labels to each amino acid residue in the structures extracted from
the SCOPe database. A tripeptide was included in the filtered subset if none of its three
residues had a DSSP code of H or E. Note that π-helices or 3-10-helices, which are relatively
rare in our database, were not filtered out because they are usually small and can be
observed inserted into coil regions. The secondary structure filtering reduced the number
of tripeptide structures to 3,141,877, which is less than half the size of the All dataset.

For the analyses in this work, for both All and Coil datasets, we considered only
tripeptides involving peptide bonds in trans conformation, which corresponds to the vast
majority of the instances. Therefore, tripeptides involving at least one peptide bond in
cis conformation were removed. We treated the cases of glycine and proline separately.
We excluded from the datasets tripeptide sequences for which the number of available
structures was very low, and thus not statistically interpretable. The number of required
structures depends on each test, and is detailed in Section 2.2.2.

It should be noted that, in order to collect enough data for the analyses, we were less
restrictive in the construction of the datasets compared to previous studies (e.g. [244, 280]).
Nevertheless, this is acceptable in our case since our aim is not to develop a (differentiable)
statistical potential, but to perform statistical tests, and because our implementation of
these tests is reasonably resilient to noise. For the sake of rigor, we generated more
restrictive (supposedly higher-quality) datasets considering only structures determined by
X-ray crystallography with a resolution below 2Å. We performed the same analyses using
these datasets, but considering only tripeptides for which the amount of data allowed a
correct implementation of the statistical tests. Overall, the analyses (restricted to a small
number or tripeptides sufficiently represented in the so filtered datasets) led to the same
conclusions regarding the interdependent effects of left and right neighbors. These results
are not presented here.
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2.2.2 Statistical methodology
Assessing interdependence between left and right neighbors

We aimed at assessing whether the distribution of (ϕ, ψ), which depends on the three
amino acids L, R and C, can be separately inferred from the information of L-C and C-R
dipeptides, or the information on the tripeptide L-C-R is unavoidably required. Ting et
al. [280] stated that, under the hypothesis

L and R independent given C and (ϕ, ψ), (indep)

the probability density of (ϕ, ψ) given the whole tripeptide, f(ϕ, ψ |L,C,R), can be ob-
tained from the information of the densities given by the left and right dipeptides as

f(ϕ, ψ |L,C,R) = f(ϕ, ψ |L,C) f(ϕ, ψ |C,R)
S f(ϕ, ψ |C) , (2.1)

where S is a normalization constant. Moreover, Rata et al. [244] proved the reciprocal
implication. We have thus the following equivalence:

L and R independent given C and (ϕ, ψ)
⇔ (2.2)

f(ϕ, ψ |L,C,R) = f(ϕ, ψ |L,C) f(ϕ, ψ |C,R)
S f(ϕ, ψ |C)

which is proved as follows. Letting

1
S

= P (L,C) P(C,R)
P(C) P(L,C,R) , (2.3)

we have

P(φ,ψ |L,C,R) P(φ,ψ |C)
P(φ,ψ |L,C) P(φ,ψ |C,R) = P(φ,ψ, L,C,R) P(φ,ψ,C)

P(φ,ψ, L,C) P(φ,ψ,C,R)
P(L,C) P(C,R)
P(L,C,R) P(C)

= P(L,R, φ, ψ ,C)
P(φ,ψ,C)

P(φ,ψ,C)
P(L,φ, ψ,C)

P(φ,ψ,C)
P(R,φ, ψ,C)

1
S

= P(L,R |φ,ψ,C)
S P(L |φ,ψ,C) P(R |φ,ψ,C) ,

so that the conditional independence of L and R given C and (φ,ψ) is indeed equivalent
to (2.1).

If Equation (2.1) is false, then, the probability density of (ϕ, ψ) of a central residue for
a given tripeptide cannot be inferred from the information on the corresponding dipep-
tides (at least via the functional form stated in [280]). According to the equivalence (2.2),
disproving hypothesis (indep) is enough to disprove (2.1). In order to test (indep), one
can perform a χ2 independence test between the categorical variables L and R for each
fixed value of C and (ϕ, ψ). This requires a proper discretization of the space T2, in order
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to obtain a set of values for (ϕ, ψ) that accurately represent the bi-dimensional random
variable and that allow the implementation of the statistical test. Generally, a finer or
coarser discretization entails a more or less faithful representation of the angular variable
(ϕ, ψ), which ideally is continuous on T2. Consequently, an optimal discretization proce-
dure will be the thinnest one allowing contingency matrices of the maximum dimension
and with a number of points sufficiently large for the independence tests to be performed
correctly. We propose three different discretization methods, whose parameters should be
optimized. The three methods are based on:

(D1) The choice of a representative set

R = {(ϕi, ψi)}i∈1,...,Nrep ⊂ T2 .

(D2) For each representative value (ϕi, ψi) ∈ R, the choice of the set of points Ri =
{(ϕij , ψij)}j∈1,...,Ji for which (ϕij , ψij) ≡ (ϕi, ψi) ∀ j ∈ 1, . . . , Ji, where a ≡ b means
that, in terms of the discretization, a and b belong to the same space subdivision.

The three proposed methods were built as follows and are illustrated in Figure (2.2):

(I) R is a homogeneous square grid and Ri are the points belonging to the i-th cell.

(II) R is a homogeneous square grid and Ri are the points in the vertex-centered ball
BT2 ((ϕi, ψi), ri).

(III) R is a subset of the data set sampled uniformly and without replacement, and the
Ri are the points in the ball BT2 ((ϕi, ψi), ri).

For method I, the only parameter is the size a = 2π/
√
Nrep of the square grid. It was

chosen as the smallest value allowing maximum dimension contingency matrices with a
large enough number of points. Due to physicochemical constraints, the whole T2 space
is not accessible, and thus we limited ourselves to regions with non negligible density. To
do so, a grid cell was kept only if it contained a minimum number of data points (i.e. if
Ji ≥ Nmin). For the analyses presented here, we chose Nmin = 500 and Nrep = 30.

For methods II and III, the radius ri of each ball depends on (ϕi, ψi), and was deter-
mined in order to include a specific number Ji = J of points in the ball, the same for all
partitions. This allowed a discretization for which each subdivision had the same number
of data points, and thus for which all the tests performed were comparable. In order to
maintain a certain control on how (ϕ, ψ) values are identified together, a maximum radius
R was established and only balls with ri < R were kept. The number of points J at
each ball was chosen to guarantee contingency matrices with maximum dimension while
providing a thin and reliable discretization. For method III, the number of representa-
tive points Nrep was also chosen according to the same considerations. Here, we chose
J = Nrep = 1000 and R = 0.1.
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(a) Method I. (b) Method II. (c) Method III.

Figure 2.2: The three proposed discretization methods.

It should be recalled that we do not need to perform tests over the whole T2 space.
As the hypothesis (indep) is conditional to C and the continuous random variable (ϕ, ψ),
it is equivalent to the hypothesis

L and R independent given C = c and (ϕ, ψ) = (ϕ0, ψ0)
for all amino-acids c and all ϕ0, ψ0 ∈ [−π, π].

Therefore, rejecting (indep) means rejecting the independence of L and R for any fixed
values of C and (ϕ, ψ). Consequently, implementing tests for a subset of the discretized
space will properly answer our question if a significant result is retrieved.

The independence test was performed for the two aforementioned datasets, All and
Coil, using the three proposed discretization methods, whose corresponding parameters
were chosen according to the previously specified considerations. Given a central amino
acid, one test was performed per point (ϕ0, ψ0) of the chosen grid, associating a distribution
of p-values to each central residue. For methods II and III, sample sizes were fixed and
therefore p-values can be quantitatively compared.As a large number of test was performed,
a multiplicity adjustment was implemented [32]. Finally, an overall p-value for each amino
acid was defined as the minimum adjusted p-value across the discretization.

Simulation of non-rejecting tests: The intrinsic randomness of discretization method III
allows to simulate the proportion of non-rejecting tests for a given central amino acid.
For s = 1, . . . , Nsim = 100, we sample a representative set Rs, perform the independence
test across Rs and compute the proportion p̃s of p-values higher than a fixed threshold
α = 0.05. The set of all p̃1, . . . , p̃Nsim constitute a sample of the proportion of non-
rejecting tests for the given amino acid. As p-values are quantitatively comparable, so
are the proportions p̃s. This corresponds to comparisons presented in Figure 2.6(b,d,f),
between the two databases, in Section 2.3.

Polarity and size effect on interdependence: AUC score

We assessed whether properties such as the polarity and the size of the neighbors affect
the strength of the interdependence. Note that some previous studies on nearest neighbor
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effects (not dealing with interdependence) divided amino acid types into only two classes
[225]: those involving aromatic and beta-branched side chains (FHITVWY) and the others,
with the exception of glycine and proline. The large size of our databases enabled a
finer classification. Consequently, we chose six representative amino acids for each of the
following groups:

• Polar (P): Arg, Lys, Asp, Glu, Asn, Gln.
• Hydrophobic (H): Ala, Ile, Leu, Met, Phe, Val.
• Small (S): Ala, Ser, Thr, Asp, Asn, Cys.
• Large (L): Phe, Tyr, Trp, Arg, Ile, Lys.

The strategy was to repeat the independence test for all central amino acid types, but
restricting the admissible settings of neighbors identities to those in these groups. For
polarity (resp. size) we computed (indep) p-values when left and right neighbors belonged
to the settings P-P, P-H, H-P and H-H (resp. L-L, L-S, S-L and S-S). However, reducing
the number of classes that the categorical variables L and R induces a power loss. In
other words, if the information about the variables whose independence we want to assess
is trimmed-down, the test will have less information to state any result with the same
evidence. Nevertheless, relative comparisons between two groups of p-values for the same
number of classes are allowed, and statistically informative.

To facilitate a more direct comparison between settings, we defined a score representing
the strength of the interdependence of neighbors in a given configuration. For a given
setting CL-X-CR, where CL, CR ∈ {P,H} (for polarity) or CL, CR ∈ {L, S} (for size),
let FCL,CR

Nrep
denote the empirical cumulative distribution function (ECDF) of the p-values

retrieved after testing hypothesis (indep) across a fixed discretization of size Nrep. Then,
the Area Under the Curve (AUC) of FCL,CR

Nrep
is defined as

AUC(CL, CR) =
Nrep∑
i=1

(p(i+1) − p(i))FCL,CR
Nrep

(p(i)), (2.4)

where p(i) is the i-th smallest p-value, for i = 1, . . . , Nrep, and p(Nrep+1) = 1. If the AUC
for a given setting is close to 1, then the corresponding p-values are concentrated towards
zero and, therefore, the statistical evidence that (indep) has to be rejected is high.

2.3 Results and discussion
2.3.1 Influence of the left and right neighbors are statistically interde-

pendent
First, we assessed the significance of combined effects exerted by the nearest neighbors.
As detailed in Section 2.2.2, we equivalently evaluated the independence of the left and
right amino acid identities given a central residue in a defined conformation (ϕ,ψ). We
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Figure 2.3: Radar plots showing the interdependence score (AUC) between neighbors with
different physicochemical properties: (left) polarity/hydrophobicity, (right) size. P, H, L
and S stand for polar, hydrophobic, large and small, respectively.

implemented one χ2 (chi-square) test of independence per central amino acid residue and
value of (ϕ,ψ), by discretizing the Ramachandran space and carrying out one test per
subdivision. Then, the results of all tests across the discretization grid were summarized
by a p-value, which quantifies the plausibility of the observed data assuming independence
for each amino-acid type. Hence, p-values close to zero provide strong statistical evidence
for the interdependence of the influence of the left and right nearest neighbors. The
obtained p-values were lower than 10−10 for all amino acid types, from both All and
Coil datasets. This implies the interdependence of the left and right nearest neighbors in
determining the (ϕ, ψ) angles of the central residue.

2.3.2 The physicochemical properties of the nearest neighbors affect the
magnitude of the interdependence

Figure 2.3 shows radar plots with AUC values for possible combinations of neighbors
depending on their polarity (left plot) and size (right plot), and averaged for all amino
acid types at the central position. General trends can be observed from this representation:
(i) Interdependence is stronger when both neighbors are polar. This can be justified by
the presence of attractive or repulsive electrostatic interactions between them, which may
constrain the conformational space for the central residue, and that strongly depend on
the specific pair of neighbors [204]. Adjacent charged amino acids can also modify the
solvation energy and perturb the central residue [10]. (ii) Interdependence is weaker when
both neighbors are large. This observation is less intuitive. A possible explanation would
be that when both neighbors are large (regardless of their type), the conformational space
of the central residue is more constrained [55], and thus, other effects due to the nature of
each neighbor are less visible. The contrary occurs when at least one of the neighbors is
small, as the central residue exhibits a less constrained conformational space.

Nevertheless, exceptions to these above-described general trends emerged when the
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strength of the interdependence was analyzed individually for each amino acid. Case-by-
case results comparing the four settings for each central residue are shown in Figures 2.4
(for polarity) and 2.5 (for size). The AUC values for each group were also compared with
the “free" setting, for which no physicochemical properties are imposed to neighbors (i.e.
considering all possible neighbors). They illustrate the very diverse degrees of interdepen-
dence depending on the central amino acid and the properties of the nearest neighbors,
which highlights the need to take into account (at least) three-residue fragments to locally
describe backbone conformational preferences. Due to how the score has been defined,
one must not compare AUC values between different individual plots, but only inside each
plot. All the differences between AUC scores were statistically significant.

Our analyses performed on the Coil dataset showed that, for 14 out of the 20 amino
acids, dependence is stronger when both neighbors are polar than when they are both
hydrophobic. With respect to size effect, for 16 out of 20 central residues dependence
was found stronger when both neighbors were small than when they were large. No
relationship was found between amino acids not following both general trends. However,
more detailed analyses showed that amino acids that did not follow the general trend were
among those for which the amount of data was more limited. This may suggest that with
additional data, the general trend would probably be more widely satisfied. With respect
to mixed neighbors settings, no clear general trend was found among all central amino
acids. In all cases, all the corresponding AUC scores were significantly different to the
“free" setting ones, showing that both polarity and size do affect interdependence also
when neighbors have mixed properties. Moreover, all plots in Figures 2.4 and 2.5 were
strongly asymmetrical with respect to the vertical axis, which evidences that polarity and
size effects have a non-negligible directional component.

2.3.3 Combined neighbor effects are stronger in coil regions

We implemented two approaches to quantitatively assess whether neighbor interdepen-
dence is influenced by the structural origin of the datasets. The first approach lies in
comparing the computed p-value distributions for each dataset (All and Coil). Here, a
distribution of p-values is associated to each central amino acid (one test is performed at
each point of its discretized Ramachandran space, recall Section 2.2.2 for details). More-
over, sample sizes are fixed for both datasets and thus p-values for All and Coil are now
quantitatively comparable. Consequently, we can compare each pair of distributions and
evaluate whether the interdependence of neighbors is stronger in one of the two data sets.
Three representative examples of this comparison are shown in Figure 2.6(a,c,e) with ala-
nine, glutamic acid and leucine as the central residue. p-value density estimates show
that the independence hypothesis is more significantly rejected (i.e. interdependence is
stronger) for the Coil dataset (Kolmogorov-Smirnov test states highly significant discrep-
ancies). Note that the scales in Figure 2.6 vary between the three amino acids in order to
better reflect the different behaviour of All and Coil distributions. Comparisons between
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different plots are not really relevant.
The second approach simulates the proportion of statistically non-significant tests for

both datasets (the lower this proportion, the more interdependent the left and right neigh-
bors). Figure 2.6(b,d,f) exemplifies this approach using the same central residues. These
figures shows that the simulated distribution corresponding to the Coil dataset is sig-
nificantly closer to zero than that of the All dataset, substantiating our aforementioned
conclusion. This observation contradicts the statements in [244], who suggested that the
correlated effects of left and right neighbors were weak, especially in coil regions. Never-
theless, their statements about the lack of interdependence were based on vague statistical
analyses compared to the rigorous statistical approach presented above.

2.4 Conclusions

We have investigated local sequence effects on the distribution of the ϕ-ψ angles, which
are the main descriptors of polypeptide conformations, using rigorous statistical meth-
ods on datasets built form experimentally-determined high-resolution protein structures.
Results of our analyses corroborate the large amount of experimental and computational
studies describing the influence of the nearest neighbors, thus providing additional evi-
dence for the rejection of Flory’s isolated-pair hypothesis, including in disordered regions.
Furthermore, our results unambiguously demonstrate coupled effects of the left and right
neighbors, which cannot be considered independently of each other. This observation clar-
ifies questions still open on this subject, and represents a fundamental step to understand
sequence-structure relationships in peptides and proteins.

These results also have several direct implications for methodological developments in
the context of molecular modeling and protein design. The most obvious one concerns
sampling algorithms that use ϕ-ψ distributions to model flexible regions in proteins, such
as loops or intrinsically disordered regions [21, 219, 88, 13]. More accurate conformational
ensemble models will be obtained when explicitly considering coupled neighbor dependen-
cies. The parameterization of the constants associated with backbone torsion angles in
force-fields used for molecular dynamics simulations, and more particularly in the case of
coarse-grained models, would also benefit from protocols that consider the local sequence
context (i.e. going beyond residue-specific parameterization). Regarding structure pre-
diction algorithms applied to globular proteins, although modern machine-learning-based
algorithms mostly exploit evolutionary-conserved pairwise residue contacts, the incorpora-
tion of local structural constraints and preferences are crucial to obtain accurate solutions
[147]. Thus, our observations suggest that the performance of these algorithms could be
improved by explicitly considering triplets of consecutive amino acids for the conception
of the neural network architecture.

This work focused on studying the interdependent effects of the nearest neighbors along
the sequence (i.e. residues i± 1). It would be very interesting extend the analysis to more
distant neighbors (i±n, with n = 2, 3, 4, . . . ). Unfortunately, the amount of experimental
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data currently available does not allow such an analysis in a general case. With the increase
of available data from experimental techniques and/or high quality models generated by
simulation or structural prediction methods, such an analysis seems feasible in the near
future. It should be noted, however, that non-trivial mathematical challenges would also
arise in addressing this question, which would require new methodological developments.

Software availability
The code implementing the statistical tests described in this chapter as well as the datasets
are freely available:

• Software: https://gitlab.laas.fr/moma/STINA,
• Data: https://moma.laas.fr/static/data/tripeptide_angles_data.tar.
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Figure 2.4: For each central amino acid type, comparison of the interdependence score
(AUC) between the four possible polarity combinations for neighbors (where P stands
for polar and H for hydrophobic). In gray, the same score when no physicochemical
properties are imposed. Polar and hydrophobic central residues correspond to red and
green plots respectively. Blue plots correspond to central residues not belonging to any of
both categories.
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Figure 2.5: For each central amino acid type, comparison of the interdependence score
(AUC) between the four possible size combinations for neighbors (where L stands for
large and S for small). In gray, the same score when no physicochemical properties are
imposed. Large and small central residues correspond to red and green plots respectively.
Blue plots correspond to central residues not belonging to any of both categories.
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Figure 2.6: (a,c,e) Distribution of (-log10-scaled) p-values for the independence hypothesis
tests performed on the All (red) and Coil (blue) datasets, for a fixed central residue.
Dashed line indicates a level of significance of 0.05. (b,d,f) Distribution of the proportion
of non-significant tests for a fixed central residue for the All and Coil datasets.



Chapter 3

Two-sample goodness-of-fit tests
on the flat torus based on

Wasserstein distance

Local protein structure is defined by two variable dihedral angles that take val-
ues from probability distributions on the flat torus. The goal of this chapter is to
provide the space P(R2/Z2) with a metric that quantifies local structural modifica-
tions due to changes in the protein sequence, and to define associated two-sample
goodness-of-fit testing approaches. Due to its adaptability to the geometry of the
underlying space, we focus on the Wasserstein distance as a metric between dis-
tributions. We extend existing results of the theory of Optimal Transport to the
d-dimensional flat torus Td = Rd/Zd, in particular a Central Limit Theorem for the
fluctuations of the empirical optimal transport cost. Moreover, we propose different
approaches for two-sample goodness-of-fit testing for the one and two-dimensional
case, based on the Wasserstein distance. We prove their validity and consistency
and assess their performance by numerical experiments on synthetic data and pro-
tein structure data. The tests developped in this chapter are implemented in the
R package torustest.

This work has been published in Electron. J. Statist., 17(1): 1547–1586, 2023, with
Alberto González-Sanz, Juan Cortés and Pierre Neuvial. It is presented here with minor
changes for the sake of coherence in the manuscript.
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3.1 Introduction
When it comes to measure the distance between two probability distributions, the well
known Wasserstein distance, derived from the theory of Optimal Transport (OT), provides
both strong theoretical guarantees –it metrizes weak convergence [299]– and attractive
empirical performance [228]. Most of the applications of such theory are related to the
very active field of machine learning, notably in the framework of generative networks [9],
robustness [262] or fairness [76], among others.

From a statistical point of view, one of the main caveats of the theory of OT comes
from the curse of dimensionality: the rate of convergence of the empirical Wasserstein
distance decreases as n−1/d with the dimension d [100]. Another important issue is the
asymptotic behavior of the fluctuations of the empirical optimal transport cost. For prob-
ability measures supported in Rd, it has been proved, using Efron–Stein’s inequality that,
for the cost L2, the difference

√
n(W2

2 (Pn, Q) − EW2
2 (Pn, Q)) is asymptotically Gaussian

[77]. Recently, the proofs have been extended to some general costs in Rd, including the
cost Lp, for p > 1 [74]. Concerning statistical goodness-of-fit tests based on Wasserstein
distance, the one-sample case has already been addressed in [114] and, when the proba-
bility distributions are defined over R, two-sample tests can be derived from [72, 209].

In this chapter, we focus on the d-dimensional flat torus Td := Rd/Zd where, even
from the purely theoretical point of view, OT has not been completely addressed, besides
the work in [60], [193] or, more recently, in [187]. However, this space appears naturally
when the probability measures are periodic (e.g. for distributions of angles). The main
objective of this chapter is (1) to extend recent existing OT results to the space of prob-
ability measures on the flat torus P(Td), especially a Central Limit Theorem (CLT) for
the fluctuations of the empirical optimal transport cost, and (2) to address in particular
the two-dimensional case, by constructing two-sample goodness-of-fit tests based on the
Wasserstein distance.

The analysis of (ϕ, ψ) distributions has several important applications, such as the
validation or refinement of protein structures determined from biophysical techniques
[208, 182], the prediction of some biophysical measurements to complement experiments
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[265], and the development of potential energy models or scoring methods for protein
structure modeling, prediction and design [27, 244, 280]. In this context, the definition of
a suitable distance between distributions on T2 is essential. This would allow to quantify
the expected magnitude of structural effects associated with local changes in the sequence,
and therefore to develop improved versions of the aforementioned modeling and predic-
tion techniques. Nevertheless, this has not been done satisfactorily in previous works. For
example, significant differences between two laws are stated after visual comparison of
two empirical distributions in [244] and [265], and the Hellinger distance is used to com-
pare distributions on a non-periodic [−π, π] × [−π, π] in [280]. Powerful statistical tests
remain to be defined and implemented in order to state such differences, being based on
a metric that takes geometry into consideration. As many other commonly-used metrics,
Hellinger distance ignores the underlying geometry of the space. Here, we propose to use
the Wasserstein distance, whose advantageous geometrical and mathematical properties
are described in [228], [298] and [299], to define goodness-of-fit testing techniques for two
measures on T2, allowing a more accurate study of the distribution of protein local con-
formations.

This chapter is organized as follows:

• Section 3.2 starts by introducing the general framework of measures on the flat torus
in general dimension, followed by the precise formulation of the optimal transport
problem. Section 3.2.1 is devoted to the study of the shape of the solutions, recalling
that they are the gradients of periodic convex functions and showing the uniqueness
of the potential in Corollary 3.2.2. Section 3.2.2 proves through Theorem 3.2.5
that the optimal transport potentials converge, up to an additive constant, when
the measures converge weakly. This result implies that the method of [77] based
on Efron–Stein’s inequality can be applied to derive a Central Limit Theorem, see
Theorem 3.2.6 in Subsection 3.2.3. Finally, we show how the previously defined CLT
does not allow the definition of an asymptotic test.

• Section 3.3 shows how Wasserstein distance can be used to define two-sample goodness-
of-fit tests in the two-dimensional flat torus. We propose two testing approaches.
The first one, introduced in Subsection 3.3.1, consists in testing the equality of two
measures projected into a finite number of closed geodesics on T2. The second,
presented in Subsection 3.3.2, is a conservative procedure based on upper-bounding
the exact p-values. This is possible thanks to a concentration inequality given in
Theorem 3.3.7, together with faster convergence rates for the expectation.

• Section 3.4 reports numerical experiments illustrating the relevance of these theoret-
ical results, first with synthetic data and then with real data from protein structures,
showing that our methods behave well in both cases.

To facilitate reading, the proofs are relegated to Appendix A, but in some cases the
intuition behind the proof is provided in the main text for clarity.
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3.2 Optimal transport in Rd/Zd

Let Td := Rd/Zd be defined as the quotient space derived from the equivalence relation
xRy if x−y ∈ Zd. For each x ∈ Rd we denote as x ∈ Td its equivalence class and reserve
the notation τ for the canonical projection map x 7→ τ(x) = x. The topology of the
quotient space is defined as the finest one that makes τ continuous. With this topology,
the space Td is a Polish space with the distance derived from the Euclidean norm ∥ · ∥,

d(x,y) := inf
p∈Zd

∥x− y + p∥. (3.1)

Note that the last claim is true since the projection map τ is in fact a metric identification,
(Rd, ∥ · ∥) is a Banach space and Zd is a closed subset, then it is complete, metrizable
through d and separable.

Set p > 1. For two probability measures P,Q ∈ P(Td), a probability measure π ∈
P(Td × Td) is said to be an optimal transport plan for the cost dp between P and Q if it
solves

Tp(P,Q) := inf
γ∈Π(P,Q)

∫
Td×Td

dp(x,y)dγ(x,y), (3.2)

where Π(P,Q) is the set of probability measures γ ∈ P(Td × Td) such that γ(A × Rd) =
P (A) and γ(Td ×B) = Q(B) for all Borel measurable subsets A,B of Td.

The Kantorovich problem (3.2) can be formulated in a dual form, as follows

Tp(P,Q) = sup
(f,g)∈Φp(P,Q)

∫
Td
f(x)dP (x) +

∫
Td
g(y)dQ(y), (3.3)

where

Φp(P,Q) = {(f, g) ∈ L1(P )× L1(Q) : f(x) + g(y) ≤ dp(x,y) ∀x,y ∈ Td}.

The element ψ ∈ L1(P ) is said to be an optimal transport potential from P to Q for
the cost dp if there exists φ ∈ L1(Q) such that the pair (ψ,φ) solves (3.3). Recall from
[299] that the solutions of (3.3) are pairs (f, g) of dp-conjugate dp-concave functions. This
means that

f(x) = inf
y∈Td
{d(x,y)p − g(y)} and g(y) = fd

p(y) = inf
x∈Td
{d(x,y)p − f(x)}. (3.4)

Furthermore, since Td is a Polish space, then Theorem 4.1 in [299] implies that there exists
a solution π∗ of (3.2). Additionally, Theorem 5.10 in [299] establishes that supp(π∗) is
dp-cyclically monotone. This means that for any finite sequence {(xk,yk)}nk=1 ⊂ supp(π∗)
and any bijection σ : {1, . . . , n} → {1, . . . , n}, the following inequality holds:

n∑
k=1

dp(xk,yk) ≤
n∑
k=1

dp(xk,yσ(k)).
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Note that, if Q is a probability measure in Td, its support is defined as the closed set
supp(Q) ⊂ Td composed by x ∈ Td such that for any neighborhood Ux of x it holds that
Q(Ux) > 0. The interior of the support is denoted by XQ.

With the same obvious notation we can define a ∥·∥p-cyclically monotone set. Note that
for p = 2, ∥·∥2-cyclical monotonicity is equivalent to the concept of cyclical monotonicity in
convex analysis, described in [246]. Recall that a set A ⊂ Rd×Rd is cyclically monotone if
for every finite sequence {(xk,yk)}nk=1 ⊂ A and every bijection σ : {1, . . . , n} → {1, . . . , n}
it holds that

n∑
k=1
⟨xk,yk⟩ ≥

n∑
k=1
⟨xk,yσ(k)⟩.

Consequently, the concept of dp (resp. ∥ · ∥p) -cyclical monotonicity is the natural gener-
alization, to other spaces and costs, of cyclical monotonicity.

In some cases, that we will study later on, there exists some measurable map T such
that the optimal transport plan π satisfies π = (I × T ) #P , where the symbol T#P
denotes the push forward measure of P through T , which is defined by T#P (A) :=
P (T−1(A)), for all measurable A ⊂ Td, and I denotes the identity map. Therefore,
the problem becomes equivalent to the following Monge formulation:

Tp(P,Q) = inf
T#P=Q

∫
Td
dp(x, T (x))dP (x). (3.5)

3.2.1 Existence of ∥ · ∥p-cyclically monotone mappings

A cyclically monotone map is the natural generalization of a non decreasing function in
the real line (as being the gradient of a convex function, see [246]). Cyclical monotonicity
provides a powerful tool for statistical studies, see [114, 73, 53] among others. The existence
of cyclically monotone maps between probability measures in Rd has been investigated, in
parallel, by [63] and [41], with the restrictive assumption of finite second order moment,
relaxed in [194]. For periodic measures, the celebrated result of [60] showed the existence of
such maps. The concept of cyclically monotone map also appears naturally when solving
an optimal transport problem with quadratic cost in Rd. Therefore, for any potential
cost ∥ · ∥p, the natural generalization is the one of ∥ · ∥p-cyclically monotone. In fact,
the existence of a ∥ · ∥p-cyclically monotone mapping between probability measures with
finite moment of order p > 1 was proved in [102]. To the authors’ knowledge, no previous
work has dealt with the existence of ∥ · ∥p-cyclically monotone mappings between periodic
probability measures. Consequently, the main result of this section is Theorem 3.2.1,
which shows the existence and uniqueness of a ∥ · ∥p-cyclically monotone preserving map
Sp between periodic measures, for p > 1, and relates it with the solution of (3.5). Then,
Theorem 3.2.2 guarantees, under certain assumptions of regularity on the support of P ,
that the solution of (3.3) is unique up to an additive constant.

Note that, in practice, a probability P ∈ P(Td) defines a periodic measure µP ∈M(Rd)
w.r.t. any p ∈ Zd. In other words, Tp#µP = µP , for all p ∈ Zd, where Tp : Rd → Rd
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is the shift operator x 7→ x + p. A measure µP is periodic if it is the natural extension
of some probability measure P ∈ P(Td). As anticipated, the goal of this section is to
show the existence of ∥ · ∥p-cyclically monotone mappings between two periodic measures
µP , µQ ∈ M(Rd) absolutely continuous w.r.t. the Lebesgue measure on Rd, denoted as
µP , µQ ≪ ℓd. As commented before, [60] established the existence of a ∥ · ∥2-cyclically
monotone map (which a.s. is the gradient of a convex function φ) such that ∇φ#µP = µQ.
Theorem 1.25 in [256] entails that there is a unique solution of the Monge problem in the
torus, described by the relation T = x−∇f(x), where the sum is to be intended modulo
Zd and f is an optimal transport potential for the quadratic cost. Note that this is a quite
similar relation (between potentials and transport) to the one in the quadratic transport
problem in Rd.

The proof of Theorem 3.2.1 starts by realizing that since Td is a Polish space, then
Theorem 4.1 in [299] implies that there exists a solution π∗ of (3.2). Furthermore, Theorem
5.10 in [299] establishes that supp(π∗) is dp-cyclically monotone, which implies that the
set

Γ = {(x + p,y + p) : (x,y) ∈ supp(π∗), x ∈ [0, 1]d, d(x,y) = ∥x−y∥ and p ∈ Zd} (3.6)

is cyclically monotone. Corollary 3.5 in [102] implies that this cyclically monotone set is
contained in the graph of a ∥ · ∥p-differential

∂∥·∥p
φp(x) = {y : φp(z) ≤ φp(x) + ∥z− y∥p − ∥x− y∥p, for all z ∈ Rd}

of a ∥·∥p-concave function φp (defined as in (3.4) but replacing dp with ∥·∥p). In conclusion,
the a.s. uniqueness of this ∥ · ∥p-differential ends the proof.

Theorem 3.2.1. Let P,Q ∈ P(Td) be probability measures such that µP ≪ ℓd. Then,
there exists a unique solution Tp of (3.5). Moreover, there exists a µP -a.e. defined ∥ · ∥p-
cyclically monotone map Sp such that

• the relation Tp ◦ τ = τ ◦ (Sp) holds µP -almost surely,

• and Sp#µP = µQ.

The following result gives the uniqueness, up to additive constants, of the optimal
transport potential, where the assumptions are given with respect to its associated peri-
odic measures. In particular, we need to have negligible boundary of µP which means that
the boundary of its support has Lebesgue measure 0, ℓd(∂ supp(µP )) = 0. The proof inves-
tigates the intrinsic relation between the optimal transport potentials and the previously
described Tp, which allows the use of general results for the uniqueness of ∥ · ∥p-concave
functions (see [74]) which have the same gradient a.s. in a connected domain of Rd.

Theorem 3.2.2. Let P,Q ∈ P(Td) be probability measures with connected support such
that their associated periodic measures satisfy µP , µQ ≪ ℓd with negligible boundary. Then,
there exists a unique, up to an additive constant, dp-concave function fp solution of (3.3).
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The assumption of connected support can be relaxed, via [270, Theorem 2], to the
setting where both measures have disconnected support. If the supports of µP and µQ
decompose into closures of connected open components

supp(µP ) =
⋃
i∈I
Xi,µP , supp(µQ) =

⋃
j∈J
Xj,µQ , (3.7)

where I is finite index set and J is a countable index set, then, assuming for all non-empty
proper I ′ ⊂ I and J ′ ⊂ J that∑

i∈I′

µP (Xi,µP ) ̸=
∑
j∈J ′

µQ(Xj,µQ), (3.8)

it follows by [270, Lemma 5] that no degenerate transport plan exists. Hence, invoking
Theorem 2 in [270] in conjunction with Theorem 3.2.2, yields an extension of the unique-
ness result to measures with disconnected support.

Corollary 3.2.3. Let P,Q ∈ P(Td) be probability measures such that their associated
periodic measures satisfy µP , µQ ≪ ℓd with negligible boundary where (3.7) and (3.8) hold.
Then, there exists a unique, up to an additive constant, dp-concave function fp solution of
(3.3).

The importance of Corollary 3.2.3 mainly lies in that it enables the study of the
asymptotic behavior of the potential, allowing us to apply Arzelá-Ascoli like reasoning, as
explained in the following section.

3.2.2 Asymptotic behaviour
This section deals with the asymptotic properties of the transport map and potentials.
We consider two sequences of probability measures {αn}n∈N, {βn}n∈N ⊂ P(Td) converging
weakly to P and Q respectively,

αn
w−→ P and βn

w−→ Q.

Since Td is compact, here the weak convergence is in the sense that for every continuous
function h ∈ C(Td),

∫
h(x)dαn(x) →

∫
h(x)dP (x). Once again, thanks to that com-

pactness the existence of moments of any order is always fulfilled for P ∈ P(Td). As a
consequence, Theorem 7.12 in [298] implies that αn w−→ P if and only if the p-Wasserstein
distance Wp(αn, P ) := (Tp(αn, P ))

1
p tends to 0. An analogous reasoning implies the con-

vergence Tp(αn, βn)→ Tp(P,Q) for the two-sample case.
The idea of this section is to take advantage of the fact that any dp-concave function

f is continuous whereby it is finite. Moreover, it has bounded continuity modulus, so we
can apply Arzelá-Ascoli’s Theorem by fixing the constants.

Lemma 3.2.4. Every dp-concave function f is Lipschitz (in its definition domain dom(f))
with constant L = 2 p d

p−1
2 , with respect to the metric (3.1).
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The proof of the next Theorem first proceeds by choosing the sequence {an}n∈N to
guarantee the uniform boundedness of the sequence {(fn, gn)}n∈N of solutions of (3.3).
This, together with Lemma 3.2.4 and Arzelá-Ascoli’s Theorem, implies that {(fn, gn)}n∈N
is relatively compact. The uniqueness of solutions of (3.3), described in Theorem 3.2.2,
allows us to conclude.

Theorem 3.2.5. Let P,Q ∈ P(Td) be probability measures with connected supports whose
associated periodic measures satisfy µP , µQ ≪ ℓd with negligible boundary. Let {αn}n∈N
and {βn}n∈N ⊂ P(Td) be two sequences of probability measures converging weakly to P and
Q respectively. Denote by (fn, gn) (resp. (f, g)) the solution of the dual problem between
αn and βn (resp. P and Q). Then there exists a sequence of real numbers {an}n∈N such
that fn + an → f uniformly on the compact sets of XP .

3.2.3 Asymptotic normality
This section is devoted a proof of a Central Limit Theorem (CLT) for the fluctuations of
the empirical optimal transport cost. Recall that the previous section proves that, under
certain regularity assumptions, there exists a unique optimal transport potential from P

to Q. Let fp be such a potential. We will use Efron-Stein’s inequality to derive that
√
n (Tp(Pn, Q)− ETp(Pn, Q)) w−→ N(0, σ2

p(P,Q)),

with
σ2
p(P,Q) = Var(fp(X)). (3.9)

Then, we will see that the same holds in the two sample case. The idea is not new: it
has already been used with the same goal in [77] for the quadratic cost in Rd, and in its
extension to general costs in [74]. Moreover, when using regularized optimal transport,
[200] showed that the same technique can be applied. A similar result, but using the idea
in [75] of differentiating the supremum in the functional sense by applying the general
result of [65], yields also a CLT on the torus for p ≥ 2, see [134].

Theorem 3.2.6. Let P,Q ∈ P(Td) be probability measures with connected supports such
that their associated periodic measures satisfy µP , µQ ≪ ℓd with negligible boundary. Then,
for any p > 1, we have

√
n (Tp(Pn, Q)− ETp(Pn, Q)) w−→ N(0, σ2

p(P,Q)),

and, if m = m(n) satisfies that m −→ +∞ and n
n+m → λ ∈ (0, 1) as n→∞,√

nm
n+m (Tp(Pn, Qm)− ETp(Pn, Qm)) w−→ N

(
0, (1− λ)σ2

p(P,Q) + λσ2
p(Q,P )

)
,

where σ2
p(P,Q) and σ2

p(Q,P ) are defined in (3.9) and satisfy√
nm
n+mVar(Tp(Pn, Qm)) −→ (1− λ)σ2

p(P,Q) + λσ2
p(Q,P ). (3.10)
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It is clear that the limit of Theorem 3.2.6 degenerates to 0 when P = Q. Suppose
now that P ̸= Q are satisfying the assumption of Theorem 3.2.6. The limit, in the one-
sample case, is degenerate if and only if Var(fp(X)) = 0. Since the optimal transport
potentials are unique up to additive constants, see Theorem 3.2.2, we can suppose that
E(fp(X)) = 0. Thus, the degeneracy is equivalent to E(fp(X)2) = 0, hence fp = 0 P -a.s.
and the same holds for fdp

p . This implies, in particular, that Wp(P,Q) = 0 which occurs
only if P = Q.

Our initial motivation to prove Theorem 3.2.6 was to find an asymptotic distribution of
Tp(Pn, Qm) allowing the definition of a two-sample goodness-of-fit test. Even for measures
supported on the real line, the only asymptotic results account for the case P ̸= Q, provid-
ing the asymptotic behaviour of the Wasserstein statistic under the alternative hypothesis.
The idea of switching H0 and H1 and testing for similarities has been studied in several
previous works, all considering measures supported on R. Gaussian deviations from the
true distance T2(P,Q) are proved in [76], which allows testing of T2(P,Q) ≥ ∆0, for a
given threshold ∆0. In the same way, the earlier work [101] introduced such an asymp-
totic test for assessing similarities based on the trimmed Wasserstein distance, allowing
sample dependency.

Unfortunately, the same strategy can not be applied in our case, as the derived CLT
for measures supported on T2 (Theorem 3.2.6) only states Gaussian deviations from the
mean. Indeed, if we use (3.10), we could consider the statistic

Tp(Pn, Qm)− ETp(Pn, Qm)√
Var(Tp(Pn, Qm))

w−→
P ̸=Q

N(0, 1), (3.11)

where, in practice, the variance and expectation could be estimated by bootstrapping the
given samples (as long as bootstrap consistency is ensured). The recent works of [133] and
[187] show that, in small dimension –d = 2, 3 and at most 4–, the value ETp(Pn, Qm) can
be substituted by the population Tp(P,Q). That gives rise to

Tp(Pn, Qm)− Tp(P,Q)√
Var(Tp(Pn, Qm))

w−→
P ̸=Q

N(0, 1), (3.12)

see [133, Example 5.7] for general p or [187, Corollary 8] for p = 2. However, for dimension
d > 4 and p = 2, this substitution is no longer valid [188, Proof of Proposition 21].

When P ̸= Q, the statistics in (3.11), (3.12) converge in law to a standard Gaussian
distribution. This is illustrated in Figure A.4. However, one would expect the statistic to
be stochastically larger under P ̸= Q than under P = Q, allowing the distinction of the
null and the alternative hypotheses. Nevertheless, due to the aforementioned degeneracy
of Theorem 3.2.6 when P = Q, this condition fails to be satisfied and no asymptotic test
can be implemented from this result. Further discussion about this issue can be found
in Section 3.5. Therefore, the rest of this paper is devoted to alternative approaches to
define suitable two-sample goodness-of-fit tests for measures supported on T2.
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3.3 Two-sample goodness-of-fit tests
Let us first formulate the problem. Denote by (X1, . . . , Xn) and (Y1, . . . , Ym) two indepen-
dent and identically distributed random samples of laws P,Q ∈ P(T2) respectively, and
by Pn, Qm their corresponding empirical probability measures. We aim to test

H0 : P = Q against H1 : P ̸= Q (3.13)

via the definition of a statistic Tnm = T (Pn, Qm), representing an estimate of discrepancy
between Pn and Qm, together with the critical region

R = {(x1, . . . , xn; y1, . . . , ym) : Tnm ≥ cnm(α)}, (3.14)

where xi (resp. yj) denotes a realization of Xi (resp. Yj) for i = 1, . . . , n (resp. j =
1, . . . ,m). The critical value cnm(α) in (3.14) is given for a fixed significance level α by

cnm(α) = inf{t > 0 : Fnm(t) ≥ 1− α}, (3.15)

where Fnm is the distribution function of the statistic Tnm under H0. We are therefore
considering the test

πnm =
{

1 if Tnm ≥ cnm(α)
0 otherwise (3.16)

Equivalently, a p-value for this test is pnm = 1 − Fnm(Tnm). Ideally, we would like Tnm
to be Tp(Pn, Qm). However, knowing the distribution of the latter statistic under H0
remains an open problem. The one-sample case in Rd has recently been addressed in
[114], but approaches for two-sample testing in arbitrary dimension, and for measures
on more general spaces, have not already been proposed to the best of our knowledge.
The lack of solutions may be explained by the intrinsic difficulty of characterizing the
distribution of Tp(Pn, Qm) when P = Q especially when the dimension is larger than one.
In the next subsections, we propose two alternative approaches to define (3.16), both based
on the 2-Wasserstein distance, that allow two-sample goodness-of-fit testing for measures
on T2.

3.3.1 Geodesic projections into R/Z

Our first approach for testing the equality of two measures P , Q on R2/Z2 is to test the
equality of their geodesic projections. This bypasses the dimension problem and allows the
implementation of testing techniques based on Wasserstein distance for one-dimensional
spaces. Geodesics on T2 are the images by the canonical projection τ of straight lines on
R2 [36]. Lines with irrational slope map to geodesics which are dense on T2, and only
lines with rational slope map to closed geodesics on the torus, which are closed spirals
isomorphic to R/Z (see [36, Figure VII.10] for an illustration).
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The strategy is to project Pn and Qm into Ng closed geodesics, and to test the equality
of each pair of projected measures, which will be supported on R/Z. These geodesics can
be chosen a priori by the practitioner, or sampled from the set of all closed geodesics on
T2. We propose a sampling method in Appendix A.1.1. This method prioritizes simpler
geodesics (that is, with a smaller number of revolutions over the torus) in order to ease
computational implementation. The algorithm we used to project samples on T2 to a
given geodesic is described in Appendix A.1.2. To avoid repetition of the same test, and
to ensure independence between the computed p-values, we require all the Ng geodesics
to be different.

In this section, we propose a two-sample Wasserstein test to assess the equality of
two measures supported on the circle, and state how to combine the resulting Ng-tuple of
p-values into a global p-value for the bi-dimensional problem. From now on, to simplify
notation, we will denote by T2 any squared Wasserstein distance, the ground space being
inferred from the corresponding measures.

Two-sample goodness-of-fit test on R/Z

Optimal Transport on the circle has been recently studied in detail in [132], where the
limit laws of the one and two-sample empirical Wasserstein distance for measures on R/Z
are derived. However, the considered statistics are not distribution-free, so that only
one-sample goodness-of-fit tests can be derived from these results. Still, the authors of
[132] also propose a b-out-of-n bootstrap approach, for b = o(n), to define a two-sample
goodness-of-fit test. Unfortunately, type I error fails to be controlled since the boot-
strapped p-value under the null hypothesis is (substantially) stochastically smaller than a
uniform random variable. This can be observed by simple numerical experiments based
on the implementation proposed by [132], for example by comparing two equally-sized
samples from a Uniform distribution. We believe that this is due to a lack of consistency
of the two-sample bootstrap for the proposed statistic. In order to bypass this issue, we
now propose a convenient alternative approach based on a distribution-free two-sample
statistic.

Let P c, Qc ∈ P(R/Z) and P cn, Q
c
m be their corresponding empirical probability mea-

sures. We aim to test

H0 : P c = Qc against H1 : P c ̸= Qc.

If R/Z is parameterized by the set [0, 1) with the geodesic distance

dR/Z(x, y) = min{|x− y|, 1− |x− y|},

the cumulative distribution functions of P c, Qc, denoted as F , G respectively, can be
defined as in [132] as

F (t) = P c([0, t]), G(t) = Qc([0, t]) ∀ t ∈ [0, 1). (3.17)
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Then, we can write

T2(P c, Qc) = inf
α∈R

∫ 1

0

(
F−1(t)− (G− α)−1(t)

)2
dt, (3.18)

where the pseudo-inverse is defined as H−1(s) = inf{t : H(t) > s}, for any distribution
function H. The formulation (3.18) was first proved in [236] for discrete measures, and
extended to arbitrary measures in [78]. It shows how the Optimal Transport problem on
the circle reduces to the same problem on [0, 1) ⊂ R if both measures are relocated on the
real line choosing as origin the minimizing element α. This is well illustrated in [132]. We
first remark that if one of the two measures is the uniform law on R/Z, the infimum on
(3.18) has an explicit formulation.

Lemma 3.3.1. Let P c ∈ P(R/Z), and F be its cumulative distribution function. Let U
be the uniform distribution on R/Z. Then,

T2(P c, U) =
∫ 1

0

(
F−1(t)− t− α0(F )

)2
dt,

where the optimal origin is given by

α0(F ) =
∫ 1

0
(F−1(t)− t) dt.

If we replace P c and F by their empirical counterparts, P cn and Fn, Lemma 3.3.1 allows
the definition of the statistic T2(P cn, U), which is distribution-free when P c = U .

Lemma 3.3.2. Let P c ∈ P(R/Z), P cn be its empirical probability measure, and U be the
uniform distribution on R/Z. Then, if P c = U ,

n T2(P cn, U) w−→
n

∫ 1

0
B(t)2 dt−

(∫ 1

0
B(t) dt

)2
,

where B is a standard Brownian bridge, and the weak convergence is understood as con-
vergence of probability measures on the space of right-continuous functions with left limits.

Lemma 3.3.2 can be used to define a one-sample goodness-of-fit uniformity test, based
on the squared Wasserstein distance on the circle. This would complement the work in
[132], where such a test was introduced for the 1-Wasserstein distance. As our aim here
is to define a two-sample test, we adapt the idea of [239] to compare two measures on
the circle, by considering the 2-Wasserstein distance between G−1

m (Fn) and the uniform
distribution. We can therefore consider the statistic

T cnm = nm

n+m
T2(Gm#P cn, U) = (3.19)

nm

n+m

∫ 1

0

(
Gm(F−1

n (t))− t− α0(F−1
n (Gm))

)2
dt,

which is also distribution-free when P c = Qc. The following result is the counterpart of
Lemma 3.3.2.
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Proposition 3.3.3. Let P c, Qc ∈ P(R/Z), having continuous and strictly increasing cu-
mulative distribution functions. Let P cn, Qcm be their corresponding empirical probability
measures, and Fn, Gm be their empirical cumulative distribution functions. If n

m → λ

when n,m→∞ for some λ ∈ [0,∞) then, under P c = Qc, it holds that

T cnm = nm

n+m
T2(Gm#P cn, U) w−→

n,m

∫ 1

0
B(t)2 dt−

(∫ 1

0
B(t) dt

)2
.

Consequently, with the notation of the beginning of Section 3.3, we propose the test

πcnm =
{

1 if T cnm ≥ ccnm(α)
0 otherwise (3.20)

where the critical value ccnm(α) is given by

ccnm(α) = inf {t > 0 : F cnm(t) ≥ 1− α} ,

with F cnm denoting the distribution function of T cnm under H0. Equivalently, a p-value
for this test is pcnm = 1 − F cnm(T cnm). Following Proposition 3.3.3, the critical value or,
equivalently, the p-value for a given sample, can be approximated with arbitrary precision
using a Monte Carlo algorithm. The following result guarantees the consistency of (3.20).

Proposition 3.3.4 (Consistency). Let P c, Qc ∈ P(R/Z) having continuous and strictly
increasing cumulative distribution functions. If P c ̸= Qc, it holds

lim
n,m→∞

P (πcnm = 1) = 1 for any α > 0.

Combining a Ng-tuple of tests on R/Z

Consider the problem of testing the equality of Ng pairs of projections of Pn and Qm
into Ng different closed geodesics. Instead of a single statistic, we now have a sam-
ple (T cnm,1, . . . , T cnm,Ng

) of statistics which, under the null hypothesis, are identically dis-
tributed as T cnm (by Proposition 3.3.3). Equivalently, one can think of a sample of p-values
(p1, . . . , pNg ) which, following (3.20), are given by

pi = 1− F cnm(T cnm,i) i = 1, . . . , Ng. (3.21)

These individual p-values can be aggregated as follows:

pNg = Ng

Ng

min
i=1

pi. (3.22)

This aggregation is akin to the Bonferroni correction for Family Wise Error Rate (FWER)
control in multiple testing [32]. As such, pNg defined in (3.22) is a valid p-value for the
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two-dimensional test, regardless of the possible dependencies between the Ng individual
p-values. This implies that the two-dimensional test

πgnm,Ng
=
{

1 if pNg ≤ α
0 otherwise (Ng-geod)

controls the type I error for any α > 0 (see Appendix A.2.2 for a proof). Regarding con-
sistency under fixed alternatives, by construction, (Ng-geod) will fail to detect differences
between two measures on T2 whose projected distributions are identical for all the Ng

geodesics considered. Therefore, πgnm,Ng
will not be consistent under such alternatives,

which, are arguably very unlikely in practice if Ng is large enough. Otherwise, consistency
is guaranteed.

Proposition 3.3.5 (Consistency). Let P,Q ∈ P(T2) such that µP , µQ ≪ ℓ2 and P ci
(resp. Qci), i = 1, . . . , Ng, be the circular projected distributions of P (resp. Q) to Ng

closed geodesics of T2. If P ci ̸= Qci for at least one i ∈ {1, . . . , Ng}, it holds

lim
n,m→∞

P
(
πgnm,Ng

= 1
)

for any α > 0.

Remark 3.3.6. The assumption in Proposition 3.3.3 that the projected measure P c ∈
P(R/Z) has continuous and strictly increasing cumulative distribution function is satisfied
if the underlying measure P ∈ P(T2) satisfies µP ≪ ℓ2. See Appendix A.2.2 for a proof.

The time complexity of (Ng-geod) is O(n+m). Indeed, n+m operations are needed to
computeGm(F−1

n (t)) and F−1
n (Gm(t)) for a given t. Therefore, computing the test statistic

(3.19) can be done in O(n + m) operations, where the complexity constant depends on
the number of subdivisions of [0, 1] set by the numerical integration method chosen to
compute (3.19). Moreover, the time complexity of the algorithm described in Appendix
A.1.1 to sample closed geodesics is also O(n + m) in practice, as a consequence of the
distribution from which the geodesics are drawn. This is empirically illustrated in Figure
A.5.

3.3.2 p-value upper bounding
If we set T2(Pn, Qm) as the statistic Tnm for the test (3.16), the p-value for a given sample
would be given by

PH0(T2(Pn, Qm) ≥ tnm), (3.23)

where tnm denotes the statistic realization. The goal of this section is to find an upper
bound for (3.23), which will itself be a valid p-value for (3.16) if it controls type I error (that
is, if it remains with probability 1−α over a fixed significance level α under H0). We will
also require the power of the corresponding test to tend to 1 under fixed alternatives. We
start by upper bounding the deviations of the statistic from the mean. Using McDiarmid’s
inequality [195], we obtain the following result, which extends to the two-sample case the
inequality in [306, Proposition 20], for the quadratic cost.
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Theorem 3.3.7. Let P,Q ∈ P(T2) and Pn, Qm be two empirical probability measures of
laws P , Q respectively. Then, for all t ∈ R, we have

P (T2(Pn, Qm)− ET2(Pn, Qm) > t) ≤ exp
(
− nm

n+m
8t2
)
. (3.24)

After that, we study the convergence speed of the expectation under the null hypoth-
esis. Using directly the results exposed in [100], only bounds of order

ET2(Pn, Qm) = O
(
n− 1

2 +m− 1
2
)

(3.25)

can be expected. However, the recent work in [5] shows that the convergence of the mean
(3.25) becomes faster under some regularity assumptions. On the one hand, we require
the density of the induced periodic measure µP to be Hölder continuous5 and absolutely
continuous w.r.t. the Lebesgue measure ℓ2 in R2. On the other hand, we require the set
supp(P ) to be connected and to have C1 boundary, in the sense that it can be locally
parameterized by a C1 curve.

Assumption 1. (1) P ∈ P(T2) is supported in a connected set with C1 boundary, with
µP ≪ ℓ2. (2) Its probability density p is Hölder continuous and bounded from below in its
support (p(x) ≥ λ > 0 for all x ∈ supp(µP )).

If Assumption 1 is satisfied, then from Lemma B.1 and Theorem 6.3. in [5] we can
derive the following asymptotic bound for the two-sample null expectation.

Lemma 3.3.8. Let P = Q ∈ P(T2) satisfy Assumption 1 and m = m(n) be a sequence
such that m −−−→

n→∞
∞ and n

m → λ ∈ (0, 1). Then, we have

lim sup
n→∞

n

log(n) ET2(Pn, Qm) ≤ 1
4π

(
1 + 1

λ

)
. (3.26)

Note that Assumption 1 is not especially restrictive. It is satisfied by any continuously
differentiable density, whose connected support can be locally given by the graph of a
continuously differentiable function. Examples include bivariate von Mises distributions
or uniform distributions in connected smooth sets.

The idea to define the test is to combine Theorem 3.3.7 with Lemma 3.3.8 and upper
bound (3.23) for sufficiently large sample sizes. If we take the limit for the expectation in
(3.24) under the null, we have the following result.

Proposition 3.3.9. Let P,Q ∈ P(T2) and Pn, Qm be two empirical probability measures
of laws P , Q respectively. For all ε > 0, there exists Nε ∈ N such that for all n,m ≥ Nε,
we have

PH0 (T2(Pn, Qm) > t) ≤ exp
(
− nm

n+m
8(t− ε)2

)
=: ξnm,ε(t) ∀ t > 0. (3.27)

5A function f : Rn → R is said to be locally Hölder continuous in a compact set X for some α > 0 if,
for every x ∈ X, there exists some ϵ > 0 such that |f(x) − f(y)| ≤ C∥x − y∥α if y ∈ X and ∥y − x∥ < ϵ.
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For a fixed ε > 0, the bound (3.27) can be used to define a test (3.16) for any α > 0
as follows:

πubnm,ε =
{

1 if ξnm,ε (T2(Pn, Qm)) ≤ α
0 otherwise (UB)

By Proposition 3.3.9, the test (UB) will control type I error for all n,m ≥ Nϵ. In prac-
tice, the threshold Nε depends on the unspecified constant hidden in (3.26), which is
dragged from the results in [5]. The following result shows that, nevertheless, asymptotic
consistency at level α of (UB) is guaranteed.

Proposition 3.3.10 (Asymptotic consistency at level α). Let P,Q ∈ P(Z2). The test
(UB) is asymptotically of level α. If P = Q, we have, for any ε > 0,

lim
n,m→∞

P
(
πubnm,ε = 1

)
≤ α for any α > 0. (3.28)

Under fixed alternatives, the test is consistent if T2(P,Q) > ε:

lim
n,m→∞P

(
πubnm,ε = 1

)
= 1 for any α > 0.

The last result ensures asymptotic consistency at level α if the two compared measures
are further than ε in the squared 2-Wasserstein distance. This can be used to calibrate
the sensibility of (UB) if the practitioner possesses some prior information about the
differences that the test should accept. This would ensure smaller Nε without implying a
power decrease. For the simulation and case studies presented here, we will set ε to the
machine precision εm = 2.2 ·10−16 (for a standard double-precision floating-point format).
The corresponding Nε should be affordable thanks to Lemma 3.3.8, responsible of the
satisfactory power of (UB). Due to the improved convergence speed of the expectation,
we will have sharp bounds (3.27) for reasonable sample sizes, allowing the detection of
differences for our practical purposes. This is illustrated in Section 3.4.2.

The computational complexity of (UB) is given by the numerical algorithm solving
the Optimal Transport problem. Here, we used the Fast Network Simplex for Optimal
Transport [34], which has O((n + m)2) time complexity and O((n + m)2) memory cost,
due to the cost matrix computation.

3.4 Numerical experiments

This section is devoted to assess the performance of the two-sample goodness-of-fit tests
(Ng-geod) and (UB), and to show how they can be implemented to evaluate differences on
protein structure data. In Section 3.4.1 and 3.4.2, we evaluate the relative efficiency of both
tests, comparing their performance with other methods not based on Optimal Transport.
Section 3.4.3 illustrates one possible application to protein structure investigations, by
stating statistical evidence of nearest neighbors effects on local protein conformations.



3.4. Numerical experiments 69

3.4.1 Small-sample performance

To make an informative analysis of the performance of tests (Ng-geod) and (UB), we
studied how their power function behaves for alternatives converging to the null hypothesis.
We also assessed whether the proposed approach to define a Wasserstein test on the circle
contributes to a better power. In particular, we compared the power function of (Ng-geod)
with variations of the same test. On the one hand, to evaluate whether the choice of an
optimal origin to relocate the measures on [0, 1) is advantageous, we considered the same
statistic (3.19) but with α0 being random and uniformly chosen in [0, 1]. It is easy to check
that the modified statistic is distribution-free under the null, by proceeding analogously
to Proposition 3.3.3. On the other hand, to study whether the use of Wasserstein distance
for the one-dimensional statistic contributes to a better power, we relocated the measures
in [0, 1) (again after choosing a random origin on R/Z) and compared them with the well-
known Anderson-Darling two-sample statistic. To study the effect of the number Ng of
geodesics, we performed the test (Ng-geod) for Ng ∈ {2, 3, 4, 5}. We also compared all
the previous approaches with the two-dimensional extension of the Kolmogorov-Smirnov
two-sample test proposed by Fasano and Franceschini [92], defined for measures supported
on R2. This allows the assessment of whether taking into account the geometry of the
underlying space contributes to a better performance.

For the small-sample case, we compared samples of size n = m = 50 drawn from a
bivariate von Mises (bvM) distribution [189] of means µ = ν = 0.5, and concentration
parameters κ1, κ2, κ3 with equally-sized samples drawn from a uniform distribution on T2.
The density of the bvM cosine model is given by

f(φ,ψ) = c(κ1, κ2, κ3)(exp(κ1 cos(φ− µ) + κ2 cos(ϕ− ν)−
κ3 cos(φ− µ− ψ + ν)),

where the explicit form of the normalization constant c(κ1, κ2, κ3) is stated in [189]. The
null hypothesis corresponds to the case κ1 = κ2 = κ3 = 0. For the converging alternatives,
we distinguished two scenarios:

(a) No dependence structure: κ3 = 0 and κ1 = κ2 ∈ [0, 3] as varying parameter.

(b) Only dependence structure: κ1 = κ2 = 0 and κ3 ∈ [0, 3] as varying parameter. Here,
the marginal laws are uniform distributions on [0, 1] [189].

The rejection probability was estimated as the proportion of rejections at level α = 0.05
among 5000 repetitions of each test for a fixed value of the corresponding varying param-
eter. Results for both scenarios are shown in Figure 3.1, where ‘W-geodesic’ stands for
the test (Ng-geod), ‘Naive W-geodesic’ for its random origin variation, ‘AD-geodesic’ for
the comparison with the Anderson-Darling two-sample statistic, and ‘Upper bound’ for
the test (UB).
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Figure 3.1: Empirical power of two-sample goodness-of-fit tests for measures supported
on T2, under bivariate von Mises (BvM) alternatives with no dependence structure and
different marginal laws (a) and with equal marginal laws and dependence structure (b).
The simulated samples had sizes n = m = 50. The empirical power corresponds to the
proportion of rejections at level α = 0.05 (dashed line) among 5000 repetitions of the test
for fixed concentration parameters.

The first conclusion that we can state after Figure 3.1 is that the test (UB) has zero
power for small sample sizes. This was expected by Proposition 3.3.9, as large values
of n,m are required to ensure sharp bounds. However, some interesting conclusions can
be extracted regarding the other tests. First, the test (Ng-geod) has power α under
H0. Indeed, further simulations confirmed that the approach described in Section 3.3.1.0
ensures the uniformity of the combined p-value’s null distribution. Together with the
illustrated consistency of test (Ng-geod), we can observe the considerable gain in power
when comparing measures with the Wasserstein statistic (3.19) by choosing an optimal
origin on the circle. The choice of a random origin (‘Naive W-geodesic’ curve) or the use of
techniques that do not rely on Optimal Transport (‘AD-geodesic’ or Fasano-Franceschini
curve) notably reduce the test power, specially when differences are presented on the
dependence structure (Figure 3.1b). Finally, the choice of the number Ng of geodesics
seems to have an effect on power. As one could have expected, increasing the number of
geodesic projections improves the test’s ability to detect slighter differences. Consequently,
the practitioner is entitled to indefinitely increase Ng, paying back on computation time
(or implementation complexity, if geodesics are randomly chosen, see Appendix A.1.1).

3.4.2 Asymptotic performance

This section is devoted to assess the suitability of the upper bound testing technique
(UB) when large sample sizes are available. Here, we studied the relative efficiency of
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Figure 3.2: Empirical power of two-sample goodness-of-fit tests for measures supported
on T2, under bivariate von Mises (BvM) alternatives with no dependence structure and
different marginal laws (a) and with equal marginal laws and dependence structure (b).
The empirical power corresponds to the proportion of rejections at level α = 0.05 (dashed
line) among 1000 repetitions of each test for fixed concentration parameters.

tests (UB) and (Ng-geod) for the same converging alternatives as in Section 3.4.1, with
n = m ∈ {1000, 1500, 2000}. Results are shown in Figure 3.2, where the parameter of
interest (κ1 = κ2 or κ3) took values in {0.1, 0.2, . . . , 4}, and the empirical power was
estimated as the proportion of rejections at level α = 0.05 among 1000 test repetitions.

Figure 3.2 shows that the test (UB) is powerful when sample sizes are large enough.
As its corresponding p-value has been defined as an upper bound of the actual p-value
(3.23), it will be quite a conservative test and, therefore, relatively less efficient than
(Ng-geod). This is illustrated in both panels. In any case, the test (UB) can be useful
in practice. Besides the detection of big differences, the practitioner may be interested in
the acceptance of small and controlled discrepancies between samples, which may be due,
for instance, to experimental inaccuracies. In scenarios where a less conservative method
as (Ng-geod) may detect such differences, one might prefer to rely on a test method that
allows slight dissimilarities and stands out only the more relevant ones. Consequently,
even if the test (UB) is clearly less efficient than our first candidate (Ng-geod), we believe
it can be of interest in some practical scenarios, such as several situations appearing in
Structural Biology problems. This is further discussed in Section 3.5.

3.4.3 Application to protein structure analysis

A method to accurately compare local structural preferences in conformational ensemble
models of proteins is useful to investigate sequence-structure-function relationships, allow-
ing for instance to understand the effect of mutations. For most amino acid types (for



72 Chapter 3. Wasserstein tests on the flat torus

all excepting proline and glycine), the distribution of ϕ and ψ angles is supported on the
same subset of T2, which, even if there exist some physically forbidden regions due to
strong repulsive forces between non-bonded atoms at short distance, is connected and has
a smooth boundary. We can also assume that density is continuously differentiable and
strictly positive in its support, so that Assumption 1 is satisfied.

The aim of this section is to make use of the tests (Ng-geod) and (UB) to show that
the distribution of (ϕ, ψ) does not depend only on the amino acid type, but also on the
sequence context, and particularly on the closest neighbors. This corresponds to rejecting
Flory’s isolated-pair hypothesis [99]. Even if the importance of the closest neighbors
effect is widely accepted in the Structural Biology community [150, 105, 27, 244, 280],
only purely descriptive methods have been employed to state so, and no goodness-of-fit
techniques have been used to the best of our knowledge. For a given amino acid C, we
denote by PC the distribution of (ϕ, ψ) supported on T2. If we take into account the
identities L,R of C’s left and right neighbors, the distribution of (ϕ, ψ) is now given by
PLCR. The objective is to test

H0 : PC = PLCR against H1 : PC ̸= PLCR (3.29)

to assess whether nearest neighbors significantly affect dihedral angles distributions. An
example of two samples drawn from PC and PLCR is depicted in Figure 3.3. For the
analysis presented here, we used the structural database of three-residue fragments (also
called tripeptides) presented in Section 2.2.1, that were extracted from experimentally-
determined high-resolution protein structures [88]. The large available sample sizes allow
us to illustrate the asymptotic behaviour of (UB). We selected the 71 tripeptides L-C-R
for which the database contained more than 3000 points. For each one, we compared
the corresponding sample of (ϕ, ψ) values with an equally-sized sample drawn from PC
(sampled from the sub-database containing (ϕ, ψ) values from tripeptides having C as
central amino-acid). The data were rescaled to [0, 1] × [0, 1] before applying the tests.
As the p-values for the test (Ng-geod) are computed by Monte Carlo simulation, they
are lower-bounded by 1/NMC , where NMC is the number of Monte Carlo replicas [230].
This point is important here, as due to the large number of performed tests, we had to
correct p-values for multiplicity [125]. The results are depicted in Figure 3.4, where we
show the empirical cumulative distribution function of both tests’ corrected p-values, for
three increasing ranges of sample sizes.

From Figure 3.4, we can state that the geodesic projection test (Ng-geod) strongly
rejects the null hypothesis at level α = 0.05 for the three considered sample size ranges,
being all p-values truncated to the Monte Carlo precision. Repeating the same analysis for
Ng = 3, 4 did not change the shape of the (Ng-geod) p-values curves, which was expected
as higher values of Ng yield a power increase. A clear asymptotic behaviour is observed
for the upper bound technique (UB), as power at level α tends to one when sample sizes
increase. Note that, for the largest range of sample sizes, (UB) is relatively more efficient
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Figure 3.3: (a) Sample and kernel density estimate of alanine (ϕ, ψ) distribution when the
identity of its left and right neighbor is not taken into account. (b) Sample and kernel
density estimate of (ϕ, ψ) distribution corresponding to tripeptide Ser-Ala-Ser (a fragment
of the three consecutive amino-acids serine, alanine, serine).

than (Ng-geod), due to the Monte Carlo truncation. Both procedures lead to rejection
of the null hypothesis, and therefore to the statement that nearest neighbors effect on
(ϕ, ψ) distributions is statistically significant. This analysis suggests that both (Ng-geod)
and (UB) are suitable for assessing differences on local protein structures, as the available
sample sizes (which may be up to ∼ 105 in some practical scenarios) are large enough to
state significant conclusions.

3.5 Discussion

The main goal of this work was to define suitable two-sample goodness-of-fit tests for
measures on T2. This naturally led us to enrich the existing theoretical results [60, 187,
193] on Optimal Transport for periodic measures. In particular, we studied the shape
of the solutions to the Monge problem (3.5), which allowed the extension of a Central
Limit Theorem to Td, for any p > 1. Our original inspiration when first investigating
these theoretical results was to use the Central Limit Theorem 3.2.6 to define a two-
sample asymptotic test. However, the derived limit distribution degenerates when P = Q

and prevents such an application. Nevertheless, the Wasserstein distance on T2 for the
quadratic cost was used to define two efficient testing techniques, which address our initial
goals.

The first approach bypasses the dimension problem by projecting the measures to
closed geodesics on T2 and subsequently test their equality. This required the investiga-
tion of how to project samples on closed geodesics and, moreover, how to conveniently
sample closed geodesics. The answers we propose here, notably in Sections A.1.1 and
A.1.2, together with their supplied practical implementations, may be of interest in fur-
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Figure 3.4: Empirical cumulative distribution function of p-values corresponding to test
hypotheses (3.29) with (Ng-geod) (‘W-marginal’) and (UB) (Upper bound) testing meth-
ods, for 71 different combinations of L,C,R. To illustrate the asymptotic behaviour, p-
values were classified in three ranges of sample sizes. For each test method, p-values were
corrected for multiplicity using Holm-Bonferroni correction [125]. Marginal test p-values
were computed with a Monte Carlo simulation of NMC = 5000 replicas. The black dashed
line indicates an arbitrary significance level of α = 0.05.

ther practical situations. Furthermore, they suggest one possible extension of the Sliced
Wasserstein distance [33] to the two-dimensional flat torus. As closed geodesics on T2

are isomorphic to R/Z, the equality of the projected measures is assessed through a two-
sample Wasserstein test on the circle which, to the best of our knowledge, is the only
efficient procedure proposed up to now.

The second proposed approach consists in upper-bounding the exact p-values (3.23).
This is possible thanks to the derived concentration inequalities (3.24) for the two-sample
empirical Wasserstein distance with the quadratic cost, and to the improved convergence
speed of its expectation, as shown in Lemma 3.3.8. As with any upper-bounding tech-
nique, the corresponding test is conservative and only efficient for large sample sizes, which
reduces its range of application. However, this test could be relevant in some practical
scenarios. For example, Molecular Dynamics simulations (which simulate the temporal
evolution of the structure of a protein using force-fields based on physical models), pro-
duce samples on T2 that may present small and meaningless differences when re-running
simulations multiple times with slightly different initial conditions. In such a situation,
we expect that the first technique (Ng-geod) will reject the equality of their corresponding
distributions, while the conservative test (UB) will accept differences between indepen-
dent replicas of the same simulation. Consequently, (UB) will only detect more important
discrepancies, which are the only ones of interest for practical purposes.

Regarding the practical implementation of both tests, some differences appear with
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respect to computing time. The main advantage of (Ng-geod) is the explicit formulation
of Wasserstein distance on one-dimensional spaces, which avoids the use of any Optimal
Transport solver. As a result, its time complexity is linear in the sample size. However, the
statistic null-distribution must be simulated with the desired precision, which may slow
down the procedure. Note that, in any case, this distribution can be simulated once and
be tabulated for any further implementation. The time complexity of (UB) exclusively
lies on the Optimal Transport solver chosen to compute Wasserstein distance. For very
large sample sizes, this might lead to a substantially slower process.

The issue of two-sample goodness-of-fit testing studied in Section 3.3 remains largely
open. Our contribution in this respect is to propose easily implementable goodness-of-fit
testing approaches that are built on top of state-of-the-art tools in Optimal Transport.
Finding the exact or asymptotic distribution of the Wasserstein statistic in general di-
mension remains one of the main unsolved problems of the theory of Optimal Transport,
preventing the construction of more efficient two-sample goodness-of-fit tests. An asymp-
totic approach for measures supported on a finite set has been presented in [268] and,
in the one-dimensional case, [23] have obtained a CLT under the null P = Q for devi-
ations of Wp(Pn, Qn) from the true distance Wp(P,Q) (instead of E(Wp(Pn, Qn))). The
results of [23] are already quite challenging mathematically, and extensions to higher di-
mensions are clearly beyond the scope of the present work. Altogether, we believe that
the goodness-of-fit tests defined in this paper constitute a relevant building block for
the study of the sequence-structure-function relationship in proteins, and in particular
for Intrinsically Disordered Proteins (IDPs), allowing their structural investigation with
mathematical guarantees. Furthermore, the interest of the techniques here presented may
go beyond the Structural Biology community, as they allow solving the goodness-of-fit
testing problem for two distributions lying in general periodic spaces, which appears in
various application domains.

Software availability
The statistical tests presented in this chapter are implemented in the R package torustest,
available at https://github.com/gonzalez-delgado/torustest. The package also includes
the algorithms introduced in Appendix A.1. Empirical Wasserstein distances were com-
puted using the R package transport [259].
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Chapter 4

The translated codon effect on
local backbone conformations

Rosenberg et al. [249] conducted a highly relevant work exploring the relationship
between the identity of synonymous codons and the distribution of backbone dihe-
dral angles in translated amino acids. They stated that the nature of the codon has
a significant influence on the local protein conformation. However, the statistical
methodology implemented in [249] presents important incorrectness that prevents
the correct interpretation of the results. More precisely, the implemented proce-
dure to define p-values is unsuitable to correctly perform statistical tests. Following
this observation, we repeated the analyses using the data provided by Rosenberg
et al., but applying the statistical hypothesis testing methods presented in Chap-
ter 3. Our analyses show that synonymous codons have a non-negligible effect on
(ϕ, ψ) distributions of translated amino acid residues, as suggested by Rosenberg
et al., but differ regarding the strength of significance of the differences between
distributions depending on the secondary structure type. They also indicate that
synonymous codon effects are stronger when considered in the context of the local
sequence.

This work has been submitted and is available at bioRxiv 2022.11.29.518303, Statistical
tests to detect differences between codon-specific Ramachandran plots, with Pablo Mier,
Pau Bernadó, Pierre Neuvial and Juan Cortés. It is presented here with minor changes
for the sake of coherence in the manuscript.
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4.1 Introduction

In their recent work, Rosenberg et al. [249] studied the dependence between the identity of
synonymous codons and the distribution of the backbone dihedral angles of the translated
amino acids. It has been shown that the use of synonymous codons is highly relevant
in multiple biological processes including, among others, mRNA splicing, translational
rates and protein folding [220, 44]. While the correlation between synonymous codons and
secondary structure in translated proteins has been widely studied [218, 258], Rosenberg et
al. evaluated the effect of codon identity on a finer scale, analyzing whether the distribution
of (ϕ, ψ) dihedral angles within secondary structure elements is significantly altered when
synonymous codons are used. However, their statistical methodology is formally incorrect,
casting doubt on the obtained results. The origin of the incorrectness is described in
Section 4.2. Then, using the methodology introduced in Chapter 3, we reanalyzed the
data presented in [249]. Our results, presented in Section 4.3, confirm the influence of the
codon on the distribution of the dihedral angles, but differ from those of Rosenberg et al.
in the strength of significance of the differences depending on the secondary structure type.
Finally, we assessed whether these findings may be affected by the structural classification
or the local sequence context. These additional analyses show that codon-specific effects
have similar significance in different areas of Ramachandran space, although the effect may
be stronger for a particular type of secondary structure, such as β-strands compared to
α-helices. They also indicate that synonymous codon effects are stronger when considered
in the context of the local sequence.

4.2 Incorrectness of the methodology of Rosenberg et al.

The goal of Rosenberg et al. was to assess the effect of synonymous codons on the distribu-
tion of (ϕ, ψ) dihedral angles by comparing codon-specific Ramachandran plots. Keeping
the notation of [249], if (c, c′) denotes a pair of synonymous codons and X a type of
secondary structure, they aimed at testing the null hypothesis H0,(c,c′)|X that both codon-
specific distributions are the same. To do so, the authors introduced a metric to quantify
differences between the distributions corresponding to different codons. Then, to assess
the significance of such differences, Rosenberg et al. proposed to draw B = 25 pairs of
bootstrapped samples, and to compare them with their synonymous codon counterparts
using a permutation test procedure, with K = 200 permutations. For each bootstrap
sample b ∈ {1, . . . , B}, if nb denotes the number of permutations where the permuted
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metric is larger than the base metric (obtained from non-permuted data), they proposed
the quantity

p(c,c′),X = 1 +∑B
b=1 nb

1 +BK
(4.1)

as a p-value for H0,(c,c′)|X . We can reformulate (4.1) in order to gain insight into its
statistical behavior. First, let us define

pb = 1 + nb
1 +K

, (4.2)

which is a well-defined p-value for the b-th permutation test. Letting

pB = 1
B

B∑
b=1

pb , (4.3)

we can show that, for sufficiently large K, p(c,c′),X is approximately the empirical mean of
the B p-values associated to individual permutation tests. The following result is proved
in Appendix B.

Proposition 4.2.1. Let p(c,c′),X be the p-value defined in (4.1) for a given null hypothesis
H0,(c,c′)|X , and pb be the p-value for the b-th permutation test, defined in (4.2), for b =
1, . . . , B. Let pB be the empirical mean of (pb)1≤b≤B. Then for any K > 0, it holds that:

0 ≤ pB − p(c,c′),X ≤
1
K
. (4.4)

However, pB is not a valid p-value. Let us recall that a p-value p is statistically valid
if and only its distribution under the null hypothesis is Super-Uniform [172, Section 3.3].
A random variable is said to be Super-Uniform if is stochastically greater than a uniform
random variable or, in other words, if its cumulative distribution function (CDF) F is
upper bounded by that of the Uniform distribution (denoted by U[0, 1] below), that is:

F (x) ≤ x for all x in [0, 1]. (4.5)

Moreover, the closer the p-value distribution under the null hypothesis is to U[0, 1], the
more powerful the corresponding test is. Condition (4.5) is satisfied for classical permu-
tation p-values such as pb (with the CDF getting closer to the U[0, 1] distribution as K
increases), but not for averages of p-values like pB, as we show below. Instead, all the
pb could be correctly aggregated by taking their minimum and correcting the result for
multiple testing (Bonferroni aggregation).

Proposition 4.2.2. Let U1, . . . , Un be n real-valued random variables uniformly distributed
on [0, 1]. For all n ≥ 2, their empirical mean Un = 1

n

∑n
i=1 Ui is not super-uniform.
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Figure 4.1: Simulation of the null distribution of p(c,c′),X for K = 200 and B = 25, chosen
in [249]. Left panel (a): histogram and kernel density estimate. Right panel (b): empirical
Cumulative Distribution Function (CDF). Red lines: asymptotic Gaussian distribution
N (1/2, 1/

√
12B); green lines: uniform distribution on [0, 1].

The proof of Proposition 4.2.2 is presented in Appendix B. If the pb were independent,
then, by the Central Limit Theorem (e.g. [29, Theorem 27.1]), the distribution of pB would
be asymptotically Gaussian N (1/2, 1/

√
12B) as B tends to infinity. This distribution

does not verify (4.5), and therefore tests based on such a distribution are mathematically
invalid. In the setting of [249], the pb are not independent since they have been computed
by bootstrapping from one initial sample. However, for small values of B (including
the choice B = 25 in [249]), the null distribution of (4.1) deviates only slightly from
the asymptotic independence setting. This is illustrated in Figure 4.1, where the null
distribution of (4.1) is simulated using the parameters chosen in [249]. Details on the
simulation and further analyses of the effect of K and B are included in Appendix B.

The empirical distribution of p(c,c′),X presented in Figure 4.1 does not satisfy Condition
(4.5). Moreover, it is extremely conservative for large values of the statistic realization
that is, low p-values, yielding an important number of false negatives and thus ignoring
substantial differences appearing between the compared samples.

Finally, since the scores p(c,c′),X are not valid p-values, they cannot be incorporated in
a multiple testing procedure [247]. In particular, the Benjamini-Hochberg procedure [18]
used in [249] needs the p-values to be Super-Uniform under the null hypothesis to control
the False Discovery Rate (FDR). Consequently, using and adjusting (4.1) for multiplicity
will yield misleading analyses of the overall behaviour of all the null hypotheses and
therefore, inaccurate results when the specificities of individual amino acids are studied a
posteriori.

Beyond the above-mentioned methodological issues, the approach proposed in [249]
presents several practical limitations. It needs, on the one hand, a prior parametric es-
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timation of the underlying densities, whose parameters would need to be optimized. On
the other hand, it requires a substantial reduction of sample sizes, which may imply an
important loss of information in some cases and thus a substantial power reduction. In-
deed, the maximum sample size in [249] is set to Nmax = 200, whereas, for instance, the
median sample size for α-helical conformations is 1414 and only 1.16% of the samples have
sizes below Nmax. The goodness-of-fit tests presented in Chapter 3 are non-parametric
and use the information provided by entire datasets, as the test statistic is based on the
2-Wasserstein distance. Here, we implemented the testing procedure (Ng-geod) intro-
duced in Section 3.3.1, to detect differences between the codon-specific Ramachandran
plots provided in [249].

4.3 Results
In Section 4.3.1, we present the results of implementing (Ng-geod) to detect differences
between codon-specific (ϕ, ψ) distributions stratified by DSSP classification. Then, in
Section 4.3.2, we repeat the same analysis with a less restrictive classification based only
on conformational regions of the Ramachandran space. Finally, we consider the case
where (ϕ, ψ) distributions are defined for triplets of amino acids, following the conclusions
of Chapter 2.

4.3.1 Structural classification based on DSSP

For each amino acid, we tested all the pairwise differences between all the (ϕ, ψ) distri-
butions of synonymous codons. To facilitate the comparison with the results in [249], we
kept only pairs of samples with sizes n,m ≥ 30 and we divided all conformations according
to their secondary structure according to DSSP [151]: Extended strand (E) and α-helix
(H). We also performed the analysis for all the conformations not belonging to any of
these classes, which we named Others. The same multiplicity correction as in [18] was
performed to the computed p-values. The results are presented in Figure 4.2.

The p-value distributions presented in Figure 4.2 indicate that significant differences
between codon-specific Ramachandran plots are found for a substantial number of tested
hypotheses: 78% for H, 87% for E and and 92% for Others. The results for α-helical
structures strongly differ from those presented in [249], where no significant difference was
retrieved (see Figure 4 in the original study). In addition, the proportion of significant dif-
ferences for E is also considerably higher than in [249], where only 39% of the synonymous
pairs were identified as structurally distinct. We believe that the observed discrepancies
originate from the above-discussed methodological incorrectness of the methods applied in
the original study, and in particular the substantial lack of power of the chosen statistic.

Results presented in Figure 4.2 clearly show how the effect of codon on the (ϕ, ψ)
distribution is stronger for less rigid structural elements, as suggested in [249]. Indeed, we
observe that the null hypothesis is more strongly rejected for extended strand structures



82 Chapter 4. The translated codon effect on local backbone conformations

Rejection proportion:

 E: 0.87    H: 0.78    Others: 0.92

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4
BH p−value

E
C

D
F

Secondary structure E H Others

Figure 4.2: Empirical cumulative distribution function (ECDF) of corrected p-values cor-
responding to testing the equality of (ϕ, ψ) distribution pairs corresponding to different
synonymous codons, for conformations in extended strand (E, red), α-helix (H, green)
and other (Others, blue) secondary structures. The dashed blue line corresponds to a
target FDR set to 0.05, determining the proportion of rejections among each set of tested
hypotheses.

than for α-helical ones, but even more strongly in regions that do not belong to any of
these categories (blue curve in Figure 4.2). Outside H and E structures, (ϕ, ψ) angles are
less constrained, making them potentially more sensitive to the translated codon. These
differences in dihedral angle restrictions can be illustrated by measuring the dispersion
of (ϕ, ψ) samples belonging to each secondary structure. We defined an estimator D
measuring the concentration of one sample around its torus barycenter, which confirmed
the previous statements. See, for instance, the average values for the three secondary
structures: D̄Others = 0.06 > D̄E = 0.01 > D̄H = 0.002. Details and further analyses are
provided in Appendix B.

4.3.2 Structural classification as non-overlapping regions of the Ramachan-
dran space

The results presented above, as those of Rosenberg et al., were based on the structural
classification provided by DSSP. We performed the same analyses using a less restrictive
classification, only considering conformational regions on the Ramachandran space based
on non-overlapping angular intervals and disregarding the formation of hydrogen bonds:

A = (−180◦, 0◦]× (−120◦, 50◦] , B = (−180◦, 0◦]× (−50◦, 240◦] . (4.6)
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Figure 4.3: Empirical cumulative distribution function (ECDF) of corrected p-values cor-
responding to testing the equality of (ϕ, ψ) distribution pairs corresponding to different
synonymous codons, for conformations in A and B classes, defined by the angular inter-
vals (4.6). The dashed blue line indicates an arbitrary level of significance of α = 0.05,
determining the proportion of rejections among each set of tested hypotheses.

Note that classes A and B are not limited to α-helices and extended strands. For instance,
poly-l-proline type II (PPII) structures are included in B. Moreover, a substantial number
of conformations that were not classified as α-helical (H) or extended stand (E) by DSSP
(named ‘Others’ in Figure 4.2) belong now to the A or B classes. More precisely, 37.69%
and 44.41% of ‘Others’ conformations are now contained in A or B, respectively.

The corresponding results are presented in Figure 4.3. They show that the differences
on the rejection power between extended and helical conformations disappear in this case.
This indicates that codon-specific effects have similar significance in different areas of Ra-
machandran space, although the effect may be stronger for a particular type of secondary
structure, such as β-strands compared to α-helices.

4.3.3 Tripeptide-specific (ϕ, ψ) distribution analysis

Rosenberg et al. considered codon-specific Ramachandran plots corresponding to amino
acids with arbitrary neighbors. However, the invalidity of Flory’s Isolated Pair Hypothesis
[99] and the interdependence of neighbor effects have been demonstrated in -besides several
studies [216, 260, 280]- Section 3.4.3 and Chapter 2 respectively.

The consideration of neighboring residues is particularly relevant here, because the
dataset in [249] exhibits important discrepancies in the proportion of left and right neigh-
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Figure 4.4: Empirical cumulative distribution function (ECDF) of p-values, corrected
for multiplicity, corresponding to testing the equality of every synonymous codon (ϕ, ψ)
distribution pairs, for conformations in extended strand (E) and α-helix (H) secondary
structures. Each line type corresponds to the same analysis performed in one different
database. The dashed blue line indicates the cumulative distribution function of a uniform
distribution.

boring amino acid types among synonymous codons (see Figure B.3 in Section B.4). When
repeating the analyses by considering codon-specific Ramachandran plots for triplets of
amino acids, the overall conclusions do not change. However, subtle differences appear if
we analyze results more in detail. Here, we illustrate how the codon effect was found to
be stronger when neighbors were considered. The quantitative comparison of p-values in
both cases (with and without fixing neighbors) is possible only if sample sizes are similar.
Therefore, we repeated the analysis for the single-amino-acid Ramachandran plots but
reducing sample sizes to n = 50, which is the average sample size in the datasets con-
sidering triplets. More precisely, for each pair of synonymous codons, we extracted and
compared 20 pairs of subsamples of size n = 50. Then, the distribution of p-values for the
subsampled single-amino-acid datasets can be compared to the ones obtained from the
tripeptide datasets. Such comparison is presented in Figure 4.4.

The distributions of p-values presented in Figure 4.4 show that, for comparable sample
sizes, the deviations encountered between the distributions for synonymous codons are
larger when tripeptides are considered. Indeed, p-values for the analysis using triplets
are substantially closer to zero than the ones considering single amino acids. This means
that the effect of codon is stronger when neighbors are taken into account or, equivalently,
that ignoring neighbor identities -as in [249]- underestimates the codon effect on (ϕ, ψ)
distributions.
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4.4 Discussion and conclusions
Although quantitatively different, our results, based on an appropriate statistical method-
ology, confirm those presented in the original study by Rosenberg et al. [249], indicating
that the nature of the codon has some influence on the fine details of the local conformation
in proteins. While the correlation between synonymous codons and secondary structure in
the translated proteins is a well known phenomenon, differences at the (ϕ, ψ) level for the
most populated conformational states remain an intriguing and somehow counterintuitive
observation. In fact, we cannot exclude artifacts related to the procedures. In particular,
the nature of the dataset used could explain some of the subtle differences that we have
observed. This dataset was derived from a limited set of Escherichia coli proteins for
which the structure has been experimentally determined, and it was assumed that the
gene used for the production of the protein was the same as in the original organism,
which is a reasonable assumption in this case, but probably not in general. Moreover,
high-resolution crystallographic structures are elucidated in a highly-packed context and
at low temperature, severely reducing their inherent conformational fluctuations.

We believe that the detailed understanding of the codon effect on the fine structural
features of proteins will only be achieved when extensive structural databases including
the corresponding gene sequence are available. With the availability of extensive and
accurate datasets, the comparative analysis of codon-specific Ramachandran plots at the
amino acid and/or triplet level will be possible using the statistical methods presented
here, thus enabling an unambiguous assessment on the influence of the gene sequence on
polypeptide structure.

Software availability
The code that reproduces the analyses presented in this chapter is available at
https://github.com/gonzalez-delgado/synco. The two testing procedures defined in Chap-
ter 3 for assessing differences between (ϕ, ψ) distributions are implemented in the R pack-
age torustest, available at https://github.com/gonzalez-delgado/torustest.
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A.1 Geodesics on T2: practical considerations
This Section is devoted to address some practical questions that arise when defining the
test proposed in Section 3.3.1. In Appendix A.1.1, we propose a sampling method to
prevent the practitioner from explicitly choosing the Ng geodesics, letting them be chosen
randomly with respect to a given distribution. In Section A.1.2, we propose an algorithm
to project a pair of samples on T2 to a given closed geodesic.

A.1.1 Sampling closed geodesics
As the closed geodesics on T2 are given by the canonical projections of straight lines on R2

with rational slope, sampling from the set of all closed geodesics is equivalent to sampling
from Q, which is a countable set. This prevents the sampling to be uniform, in the sense
that geodesics can not be equiprobable. Indeed, if P(q) = c for all q ∈ Q, by countable
additivity P(Q) = ∑

q∈Q c, which is zero if c = 0 and ∞ otherwise. In consequence, as
we have to assign different weights to rational slopes, we will opt for simpler geodesics
to be more probable, in order to ease computational implementations. To achieve so, we
can consider the random variable Q = A/B, studied in detail in [227], where B follows a

87
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Figure A.1: Histograms representing the distribution of the random variable Q, for dif-
ferent values of the parameter p. For p = 0.1 (a), rationals with small values of A and B

have more weight and, therefore, simpler geodesics are prioritized.

geometric distribution of parameter p and, for a given denominator B = b, A is uniform
on {0, 1, . . . , b}. Note that Q maps into Q ∩ [0, 1]. As p increases, A and B take smaller
values and the corresponding geodesics revolt less over the torus. Conversely, when p→ 0,
P(Q = q) → 0 for all q ∈ Q ∩ [0, 1], and Q is asymptotically equiprobable [227]. However,
small values of p yield extremely high values of A and B and, consequently, unmanageable
geodesics with a too-big number of revolutions. The distribution of Q for different values
of the parameter p is illustrated in Figure A.1. Here, we will ask p ≥ 0.1 for computational
simplicity.

Note that rationals in Q∩[0, 1] yield to straight lines in R2 whose director vector (B,A)
lies in the first (eq. fifth) octant. To cover all the set of closed geodesics, we uniformly
assign an octant to each realization of Q and transform its coordinates appropriately. As
we would like all the Ng p-values to be independent, we must only accept samples with Ng

different geodesics. This may be a problem if Ng is too big, and might require decreasing
the value of p. Nevertheless, for a small number (≲ 30) of geodesics we can keep p ∼ 0.1
and easily get samples with no repetitions. If one needs to perform the test for large values
of Ng, we recommend to explicitly choose geodesics a priori to avoid this problem, leaving
the sampling method for controlled values of Ng. The complete sampling procedure is
described in Algorithm 1, which takes Ng and p as arguments and retrieves Ng director
vectors. In Algorithm 1,MNg×2(Z) denotes the set of (Ng×2)-matrices with entire entries
and we define g̊cd as

g̊cd(b, a) =
{

gcd(b, a) if a ̸= 0,
b otherwise,

for a, b ∈ Z with b ̸= 0.
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Algorithm 1 Geodesics sampling
Require: Ng ∈ N, p = 0.1
Ensure: G ∈MNg×2(Z)
G← 0 ∈MNg×2(Z)
while |{i = 1, . . . , Ng : Gik = Gjk ∀ k ∈ {1, 2} for any j ∈ {1, . . . , Ng}\{i} }| > 0 do

for i← 1 to Ng do
b← G(p)
a← U({0, 1, . . . , b})
u← (b, a)/g̊cd(b, a) ▷ Director vector in R2.
o← U({1, 2, 3, 4}) ▷ Octant of the upper semi-circle.
if o = 2 then

u← (a, b)/g̊cd(b, a)
else if o = 3 then

u← (−b, a)/g̊cd(b, a)
else if o = 4 then

u← (−a, b)/g̊cd(b, a)
end if
Gi· ← u

end for
end while

A.1.2 Projection to a closed geodesic
Let a, b ∈ Z, with b ̸= 0, and u = (b, a) the director vector of a straight line r0

u containing
the origin (0, 0). Let Ib be the real interval (min(b, 0),max(b, 0)), being Ia analogously
defined. We aim to project a pair of samples into the geodesic given by the canonical
projection of r0

u. To do so, we first consider the finite set Pu of the points in Ib× Ia where
r0
u cuts the lines x = zb, y = za for zb ∈ Ib ∩ Z and za ∈ Ia ∩ Z:

Pu = {(x, z) : x ∈ Ib, z ∈ Z} ∩ {(z, y) : y ∈ Ia, z ∈ Z} ∩ r0
u.

An example is presented in Figure A.2a. Then, we consider the set Lu of straight lines
of director vector u and containing the points of Pu ∪ {(0, 1), (1, 0), (0, 0)} transferred to
[0, 1]× [0, 1] by subtracting the integer part of its coordinates. If we denote rpv the straight
line containing p = (px, py) ∈ R2 and having v as director vector, we can write Lu as
follows

Lu = {rqu : q = (px − [px] , py − [py]) , p ∈ Pu ∪ {(0, 1), (1, 0), (0, 0)}}.

This is illustrated in Figure A.2b. In a first step, each point in [0, 1]×[0, 1] will be projected
to the closest straight line in Lu. Then, projections (xu, yu) outside [0, 1] × [0, 1] will be
replaced by the elements (x′

u, y
′
u) ∈ [0, 1] × [0, 1] such that (xu, yu)R(x′

u, y
′
u), where R is
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Figure A.2: First steps of the projection algorithm for the closed geodesic corresponding
to the straight line of director vector u = (2, 3). The three points in black constitute the
ensemble Pu. In (b), points of Pu are transferred to [0, 1] × [0, 1] by subtracting to their
coordinates their integer parts. The blue lines are the elements of Lu.

the one defined in the beginning of Section 3.2. These two steps are depicted in Figure
A.3.

The last step is to relocate all the projections on R/Z. To do so, we put the segments
Lu ∩ ([0, 1]× [0, 1]) in order, following the spiral path. This corresponds to transfer back
the points to the straight line r0

u of Figure A.2a. Let (xu, yu) ∈ rpu ∈ Lu. The element
tu ∈ R/Z will be parameterized as

tu = ∥p̃∥+ ∥(xu, yu)∥
∥u∥

∈ [0, 1),

where p̃ ∈ Pu ∪ {(0, 0)} is the one such that px = p̃x − [p̃x] and py = p̃y − [p̃y].
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Figure A.3: Projection to the closed geodesic given by the director vector u = (2, 3) of a
pair of samples of size n = m = 30 drawn from a uniform distribution on T2. Black lines
are the elements of Lu. In (a), the given samples distinguished by colors. In (b), their
projections to the closest line in Lu are represented by colored crosses. In (c), projections
outside [0, 1]× [0, 1] are relocated in [0, 1]× [0, 1] according to the equivalence relation R.
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A.2 Proofs
A.2.1 Proofs of Section 3.2
Proof of Theorem 3.2.1. Recall that we denote the interior of the support of a measure µ
(over Td or Rd) as Xµ. Since Td is a Polish space, Theorem 4.1 in [299] implies that there
exists a solution π∗ of (3.2). Additionally, Theorem 5.10 in [299] establishes that supp(π∗)
is dp-cyclically monotone. More precisely, by Theorem 5.10 in [299], this support lies on
the graph of the dp-differential

∂d
p
f(x) = {y : f(z) ≤ f(x) + dp(z,y)− dp(x,y), for all z ∈ Td}

of a function f solving (3.3). Its graph is denoted by ∂dp
f = {(x,y) : y ∈ ∂dp

f(x)}. These
definitions of dp-differential and dp-concave functions apply verbatim to ∥ · ∥p-differential
and ∥ · ∥p-concave functions with the obvious notation. Let Γ be the set defined in (3.6),
{(xk + pk,yk + pk)}nk=1 ⊂ Γ be a sequence and σ : {1, . . . , n} → {1, . . . , n} be a bijection.
Then, the definition of Γ implies that

n∑
k=1
∥xk − yk∥p =

n∑
k=1

dp(xk,yk)

≤
n∑
k=1

dp(xk,yσ(k))

≤
n∑
k=1
∥xk + pk − yσ(k) − pσ(k)∥p,

which means that Γ is ∥ · ∥p−cyclically monotone. Therefore, Γ ⊂ ∂∥·∥p
φp, for some

∥ · ∥p-concave function φp. Now, recall from Theorem 3.3 and Proposition 3.4 in [102],
that

1. The set of differentiablity

dom(∇φp) =
{

x ∈ Rd : ∂∥·∥p
φp =

{
x−

(1
p
∥∇φp(x)∥

) 2−p
p−1
∇φp(x)

}}

has full Lebesgue measure in dom(φp) = {x ∈ Rd : φp(x) ∈ R} ⊃ XµP ,

2. The relation Sp(x) = x −
(

1
p∥∇φp(x)∥

) 2−p
p−1 ∇φp(x) defines a Borel function in

dom(∇φp), and

3. The equality {Sp(x)} = {y : (x,y) ∈ Γ} holds for all x ∈ dom(∇φp).

Since Γ ⊂ ∂∥·∥p
φp, this means that, for all x ∈ dom(∇φp), there exists an unique yx =

Sp(x) such that (x,yx) ∈ Γ. We observe that, due to the fact that µP ≪ ℓd, the measure
γ∗ = (Id × Sp)#µP on Rd × Rd is well defined, its support is ∥ · ∥p-cyclically monotone
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and its first marginal is µP . We claim that the second marginal is µQ. Let (x,y) ∈ π∗

be such that x + p ∈ dom(∇φp), for all p ∈ Zd. Then, for any representative pair, call it
(x,y) ∈ Rd, there exist p,p′ ∈ Zd such that (x + p,y + p′) ∈ Γ. Since

{Sp(x) + p} = {y + p : (x,y) ∈ Γ}
= {y : (x + p,y) ∈ Γ}
= {Sp(x + p)} = {y + p′},

the relation y = Sp(x) holds. Since x + p ∈ dom(∇φp), for all p ∈ Zd, which is the
intersection of sets of full µP -measure, the relation y = Sp(x) happens µP−a.e. This
means that π∗ = (Id × Sp(̄·))#P , which proves automatically the claim. Consequently,
the existence is proven.

The uniqueness follows from the proof of Corollary 2.4. in [102]. Indeed, we can define
the set

S =
⋃

π∗ solving (3.2)
Γ(π∗),

where Γ(π∗) is defined as in (A.1) for each π∗ solving (3.2). Therefore, taking any finite
sequence {(xk+pk,yk+pk)}nk=1 ⊂ S, there exists at most n different probability measures
πk, for k = 1, . . . , n, such that (xk + pk,yk + pk) ∈ Γ(πk). As all of them are solutions of
(3.2) we have, due to the linearity of the optimization in (3.2) and the convexity of the set
Γ(P,Q), that the mean π0 = 1

n

∑n
k=1 πk is also a solution. Then, its support is contained

in a dp-cyclically monotone set, and Γ(π0) is ∥ · ∥p-cyclically monotone, since it contains
the sequence {(xk + pk,yk + pk)}nk=1 ⊂ S. Consequently, S is ∥ · ∥p-cyclically monotone.

To conclude, repeating the previous arguments, there exists a ∥ · ∥p-concave function
fS such that S ⊂ ∂dfS . Moreover, for any other φp, defined as before, it holds that
∂dφp ⊂ ∂dfS . Then, the equality

x−
(1
p
∥∇φp(x)∥

) 2−p
p−1
∇φp(x) = x−

(1
p
∥∇fS(x)∥

) 2−p
p−1
∇fS(x)

holds µP -a.e. This proves the uniqueness of Sp and, consequently, the one of Tp

Proof of Theorem 3.2.2. We set (x,y) ∈ Γ and observe that d(x,y) = ∥x − y∥. Since
(x,y) ∈ supp(π∗), Theorem 5.10 in [299] establishes that if (f, g) solves (3.3), it holds

f(x) = inf
y∈Td
{d(x,y)p − g(y)}.

Since, for each (x,y), there exists p ∈ Zd such that d(x,y) = ∥x−y−p∥, we can directly
replace y by y + p in the infimum without altering any of the terms. This yields the
equality

f(y) = inf
z,y∈∈Rd z=x

{∥z− y∥p − g(y)},
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and allows to define the following periodic ∥ · ∥d-concave function in Rd:

φ̂p(x) = inf
y∈∈Rd

{∥x− y∥p − g(y)} = f(x).

We claim that ∇φ̂p = ∇φp for µP -a.e., which implies the equality of both φ̂p and φp, in
each connected component of supp(µP ). By assumption, supp(µP ) = ⋃

p∈Zd p + A is a
union of connected sets. By periodicity we can restrict our study to the connected set
A, where the claim yields ∇φ̂p = ∇φp for ℓd-a.e. We can apply Theorem 2.6 in [74] to
conclude that φp = φ̂p + C in A, thus in supp(µP ). We prove now the claim. Let π∗ be a
measure solving (3.2), we know (from Theorem 5.10 in [299]) that its support lies in the
graph of ∂dp

f . Therefore, we can define the following ∥ · ∥p-cyclically monotone set (note
that this is true by repeating the same arguments as for Γ):

Γ(∂dp
f) = {(x + p,y + p) :

(x,y) ∈ ∂dp
f, x ∈ [0, 1]d, d(x,y) = ∥x− y∥ and p ∈ Zd}, (A.1)

which satisfies the relation Γ(π∗) ⊂ Γ(∂dp
f), with the notation of the proof of Theo-

rem 3.2.1. Recall that the relation Γ(π∗) ⊂ ∂∥·∥p
φp also holds. Moreover, by defini-

tion we have Γ(∂dp
f) ⊂ ∂∥·∥p

φ̂p. Since µP -a.e. the sets ∂∥·∥p
φ̂p(x) and ∂∥·∥p

φp(x) are
singletons, and, for µP -a.e. x, there exists at least one y ∈ Rd such that (x,y) ∈
Γ(π∗), then ∂∥·∥p

φ̂p(x) = ∂∥·∥p
φp(x). This implies that the functions Sp(x) = x −(

1
p∥∇φp(x)∥

) 2−p
p−1 ∇φp(x) and Ŝp(x) = x−

(
1
p∥∇φ̂p(x)∥

) 2−p
p−1 φ̂p(x) are equal µP -a.e., which

proves the claim. Note that, under continuity of the optimal transport potential, their
uniqueness only need to be fulfilled µP -a.e.

Proof of Lemma 3.2.4. Set x, z ∈ dom(f). Then, by definition

|f(x)− f(z)| = | inf
y∈Td
{dp(x,y)− g(y)} − inf

y∈Td
{dp(z,y)− g(y)}|

= | inf
y∈Td
{dp(x,y)− g(y)}+ sup

y∈Td

{−dp(z,y) + g(y)}|

≤ sup
y∈Td

|dp(x,y)− dp(z,y)}|.

The mean value theorem yields the inequality ap− bp ≤ p|a− b|(ap−1 + bp−1), which holds
for any a, b ≥ 0. Then, the triangle inequality for d leads to

|f(z)− f(x)| ≤ p d(z,x) sup
y∈Td

|dp−1(x,y) + dp−1(z,y)}

≤ 2 p d(z,x) sup
z,x∈Td

(
dp−1(z,x)

)
≤ 2 p d

p−1
2 d(z,x)

where the d
p−1

2 term comes from the trivial bound of the diameter of Td. This concludes
the proof.
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Proof of Theorem 3.2.5. Set p̄ ∈ XP and assume that fp(p̄) = 0. Set ϵm → 0 and consider
the sequence of balls Bϵm(p̄) ⊂ supp(P ), centered at p̄ with radius ϵn. Since the ball is a
continuity set of P , after Portmanteau’s Theorem, Pn w−→ P implies that for each m there
exists a nm such that Pn gives mass to Bϵm(p̄) for all n ≥ mn. Then, we can extract a
sequence p̄n → p̄ such that p̄n ∈ XPn . As a consequence, we have that fn(p̄n) ∈ R, and
we can set an = −fn(p̄n) and define hn = fn + an. Recall from Lemma 3.2.4 that all such
functions are L-Lipschitz in their respective domains. Kirszbraun’s Theorem (Theorem B
in [166]) implies that, without loss of generality, we can consider that hn (resp. fp) are 2p-
Lipschitz functions defined in the whole Td. The previous reasoning implies that {hn}n∈N
is point-wise bounded for the compact sequence {p̄n}n∈N. Since all such functions are
2p-Lipschitz, then Arzelá-Ascoli’s Theorem concludes that every subsequence {hnk

}k∈N
admits a convergent subsequence {hnkj

}j∈N. Let h be one of those limits. Note that the
dp−conjugation is continuous in the sense that

|hdp

n (x)− hdp(x)| = | inf
y
{dp(y,x)− hn(x)} − inf

y
{dp(y,x)− h(x)}|

≤ sup
y
{hn(x)− h(x)} = ∥hn − h∥∞,

for all y ∈ Td. By assumption, we have

An =
∫
hndαn +

∫
hd

p

n dβn −
∫
fpdα−

∫
fd

p

p dβ → 0,

and∫
hdα+

∫
hd

p
dβ =∫
hd(α− αn) +

∫
hd

p
d(β − βn) +

∫
(hn − h)dαn +

∫
(hdp

n − hd
p)dβn.

Then, the inequality |
∫

(hn−h)dαn| ≤ ∥hn−h∥∞ gives
∫
hdα+

∫
hd

p
dβ = 0. The function

h is thus an optimal transport potential. The uniqueness described in Theorem 3.2.2 and
the fact that p̄n → p̄ and hn(p̄n) = fp(p̄) = 0 conclude that fp is the unique possible limit
of such subsequences in dom(fp).

Proof of Theorem 3.2.6. Note that as Theorem 3.2.5 holds, since probability measures are
supported in a compact set, the torus, then the reasoning of [77] can be imitated. Here
the main steps of the proof for the one-sample case are given. For further details about
the proof we refer to the original text.

Efron-Stein inequality, see Chapter 3.1 in [37], states that if (X ′
1, . . . , X

′
n) is an inde-

pendent copy of (X1, . . . , Xn), then we have the bound

Var(f(X1, . . . , Xn)) ≤
n∑
i=1

E(f(X1, . . . , Xn)

− f(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn).)2

+.



A.2. Proofs 95

Moreover, if X1, . . . , Xn are i.i.d, such inequality can be written as

Var(f(X1, . . . , Xn)) ≤ nE(f(X1, . . . , Xn)− f(X ′
1, . . . , Xn))2

+.

Set the empirical measures Pn = 1
n

∑n
k=1 δXk

and P ′
n = 1

n(δX′
1
+∑n

k=2 δXk
), and the values

Rn = Tp(Pn, Q) −
∫
fpdPn and R′

n = Tp(P ′
n, Q) −

∫
fpdP

′
n. Let fn and f ′

n be solutions of
the dual problem (3.3) of Tp(Pn, Q) and Tp(P ′

n, Q) respectively. Then from (3.3) we derive
that

(Rn −R′
n)+ ≤

1
n
|fn(X1)− fp(X1)− fn(X ′

1) + fp(X ′
1)|

+ |f ′
n(X1)− fp(X1)− f ′

n(X ′
1) + fp(X ′

1)|,

which together with Theorem 3.2.5 yields

n(Rn −R′
n)+

a.s.−−→ 0.

Since the probability measures are supported in the torus, which is compact, then n2E(Rn−
R′
n)2

+ → 0. Finally, we conclude by the so-called Efron-Stein’s inequality.

A.2.2 Proofs of Section 3.3
Proof of Lemma 3.3.1. If G is the distribution function of the uniform distribution on
R/Z, we have that

(G− α)−1(t) = inf{s : s > t+ α} = t+ α. (A.2)

Plugging (A.2) in (3.18), we have

T2(P c, U) = inf
α∈R

∫ 1

0

(
F−1(t)− t− α

)2
dt, (A.3)

where the optimal value for α can be found by analytically minimizing the function

H(α) =
∫ 1

0

(
F−1(t)− t− α

)2
dt =

∫ 1

0

(
F−1(t)− t

)2
dt+

α2 − 2α
∫ 1

0

(
F−1(t)− t

)
dt,

which satisfies H ′(α) = 0⇔ α =
∫ 1

0
(
F−1(t)− t

)
dt.

Proof of Lemma 3.3.2. Let D([0, 1]) denote the Banach space of right-continuous func-
tions on [0, 1] with left limits. Donsker’s Theorem [30, Theorem 14.3], states the weak
convergence in D([0, 1]) of the empirical process

√
n(Fn − F ) for n→∞ to the standard

Brownian bridge B(F (t)). As the operator h : D([0, 1]) −→ R defined as

h(f) =
∫ 1

0

(
f(t)−

∫ 1

0
f(s) ds

)2
dt =

∫ 1

0
f(t)2 dt−

(∫ 1

0
f(s) ds

)2
(A.4)
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is continuous, the continuous mapping Theorem [291, Theorem 1.3.6] yields that

nT2(P cn, U) w−→
n

∫ 1

0
B(t)2 dt−

(∫ 1

0
B(t) dt

)2
, (A.5)

when P c = U , which concludes the proof.

Proof of Proposition 3.3.3. Keeping the notation of the proof of Lemma 3.3.2, after The-
orem 1 in [239] we have that, when P c = Qc,√

nm

n+m

(
G−1
m (Fn)− I

)
w−→
n,m

B(t), (A.6)

in D([0, 1]), where I denotes the identity function. Finally, using the same arguments as
in the proof of Lemma 3.3.2, the result is proved.

Proof of Proposition 3.3.4. Note that

P(πcnm = 1) = P (T cnm ≥ ccnm(α)) = P
(
T2(Gm#Pn, U) ≥ n+m

nm
ccnm(α)

)
.

On one hand, we have that

ccnm(α) = inf{t > 0 : F cnm(t) ≥ 1− α} = inf{t > 0 : PH0(T cnm > t) ≤ α} =
nm

n+m
inf{t > 0 : PH0(T2(Gm#Pn, U) > t) ≤ α}.

Under the null hypothesis, Gm#Pn w→ U . Thus, T2(Gm#Pn, U)→ 0 in probability (recall
Section 3.2.2). In consequence, for every ε > 0 and every α > 0, we have

n+m

nm
ccnm(α) ≤ ε (A.7)

for sufficiently large n,m. On the other hand, when P c ̸= Qc, T2(Gm#Pn, U)→ T2(G#P,U) >
0 in probability which, together with (A.7), proves the result.

Size of (Ng-geod). Let us prove that (Ng-geod) controls the type I error at any significance
level α > 0. Indeed, if H0 denotes the null hypothesis (3.13), we have

PH0

(
πgnm,Ng

= 0
)

= PH0

(
Ng

min
i=1

pi ≤
α

Ng

)
= PH0

Ng⋃
i=1

{
pi ≤

α

Ng

} ≤
Ng∑
i=1

PH0

(
pi ≤

α

Ng

)
= Ng

α

Ng
= α, (A.8)

where the first equality in (A.8) is ensured as every pi follows a uniform distribution under
the null.
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Proof of Proposition 3.3.5. Suppose that P cj ̸= Qcj w.l.o.g. for some j ∈ {1, . . . , Ng}. After
(Ng-geod), we have

P(πgnm,Ng
= 1) = P

(
Ng

min
i=1

pi ≤
α

Ng

)
≥ P

(
pj ≤

α

Ng

)
.

Then, as the right side of the previous inequality tends to 1 after Proposition 3.3.4, so
does the left side, which ends the proof.

Proof of Remark 3.3.6. Suppose that µP ≪ ℓ2 and project with respect a given direction
e1. As an immediate consequence of the monotone convergence theorem, ℓ2(A × R) = 0,
for any Lebesgue null set A ⊂ R. Consequently, by hypothesis 0 = µP (A × R) = µ1

P (A).
Here, µ1

P is the projected measure of µP to the direction e1. Then, for any null set B in
R/Z the leveraged set B̃ = ⋃

s∈Z(s + B) is a Lebesgue null set, so that µ1
P (B̃) = 0 and

P c(B) = 0.

Proof of Theorem 3.3.7. Note that T2(Pn, Qm) = T (X1, . . . , Xn, Y1, . . . , Ym) is a function
of X1, . . . , Xn and Y1, . . . , Ym. For each x1, . . . ,xn,y1, . . . ,ym ∈ Td and x′ ∈ Td let π and
π′ be both joint measures such that

T :=
∑
i,j

d(xi − yj)2πi,j = T (x1, . . . ,xn,y1, . . . ,ym)

s.t.
∑
i,j

πi,j = 1
n
, j = 1, . . . ,m,

∑
i,j

πi,j = 1
m
, i = 1, . . . , n,

and

T ′ :=
∑
j

d(x′
1 − yj)2π′

1,j +
∑
i>1,j

d(xi − yj)2π′
i,j = T (x′

1, . . . ,xn,y1, . . . ,ym)

s.t.
∑
i,j

π′
i,j = 1

n
, j = 1, . . . ,m,

∑
i,j

π′
i,j = 1

m
, i = 1, . . . , n.

Then we have that

T ′ ≤
∑
j

d(x′
1 − yj)2π1,j +

∑
i,j

d(xi − yj)2πi,j ,
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which implies

T ′ − T ≤
∑
j

(
d(xi − yj)2 − d(x1 − yj)2

)
π1,j

≤
∑
j

1
2π1,j = 1

2n,

where the second inequality comes from the fact that d2(x,y) ≤ 1/2 in Td. By symmetry
we also obtain the reverse inequality. Doing the same with y′

1 and y1 we obtain the bound
1

2m . By using McDiarmid’s inequality, see [195], we derive that

P (T2(Pn, Qm)− ET2(Pn, Qm) > t) ≤ exp
(
− nm

n+m
8t2
)
.

Proof of Proposition 3.3.9. Let P = Q. After Lemma 3.3.8, for every ε > 0 these exists
Nε ∈ N such that for all n,m ≥ Nε, ET2(Pn, Qm) ≤ ε. Using explicitly the convergence
speed, we can find the relationship between ε and Nε:

logNε

Nε
= ε

C
, (A.9)

where C > 0 is an unspecified constant. Then, directly from Theorem 3.3.7, we can bound
(3.23) as

PH0 (T2(Pn, Qm) > t) ≤ exp
(
− nm

n+m
8(t− ET2(Pn, Qm))2

)
≤

exp
(
− nm

n+m
8(t− ε)2

)
,

for all n,m ≥ Nε.

Proof of Proposition 3.3.10. Let us first prove that (UB) is asymptotically of level α. Let
ε > 0 and Nε ∈ N such that for all n,m ≥ Nε, the test (UB) controls type I error. As we
are taking the limit n,m → ∞, we can choose n,m large enough such that they surpass
Nε. Then, consistency is ensured by Proposition 3.3.9.

To conclude, we prove the consistency under fixed alternatives such that T2(P,Q) > ε.
First, note that

P(πubnm,ε = 1) = P
(
T2(Pn, Qm) ≥ ε+

√
−n+m

8nm logα
)

= P
(√

mn

n+m
(T2(Pn, Qm)− T2(P,Q)) ≥

√
mn

n+m
(ε− T2(P,Q)) +

√
−1

8 logα
)
.
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Now, (3.12) implies, under the alternative, the stochastically boundedness of the left hand
side. However, the right hand side is clearly unbounded if T2(P,Q) > ϵ. Consequently,

lim
n,m→∞

P(πubnm,ε = 1) = 1,

which concludes the proof.

A.3 Supplementary figures
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Figure A.4: Normalized asymptotic deviations from the mean of squared Wasserstein
distance between two bivariate von Mises distributions of same means (µ, ν) = (0, 0) and
different concentration parameters (κ1, κ2, κ3) = (0, 0, 0) and (κ1, κ2, κ3) = (2, 2, 0). The
figures show the corresponding histograms and the associated kernel density estimates, for
different sample sizes.
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Figure A.5: Empirical time complexity of (Ng-geod) for Ng = 2, 3, 4. Each point cor-
responds to the average computation time per test among 200 repetitions of (Ng-geod)
for two equally sized samples drawn from a bivariate von Mises distributions of equal
means (µ, ν) = (0, 0) and different concentration parameters (κ1, κ2, κ3) = (0, 0, 0) and
(κ1, κ2, κ3) = (1, 1, 0). The lines correspond to a linear regression performed for each
value of Ng.
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B.1 Proofs of Section 4.2

Proof of Proposition 4.2.1. Recalling that the p-value for the b-th permutation test is pb =
nb+1
K+1 , we have

p(c,c′),X = 1 +∑B
b=1 nb

1 +BK
= 1 +∑B

b=1(pb(K + 1)− 1)
1 +BK

= (K + 1)∑B
b=1 pb − (B − 1)

1 +BK
(B.1)

= B(K + 1)pB − (B − 1)
1 +BK

. (B.2)

Therefore, we obtain

p(c,c′),X − pB = pB(B(K + 1)− (1 +BK))− (B − 1)
1 +BK

= (B − 1)(pB − 1)
1 +BK

. (B.3)

Since 0 ≤ pb ≤ 1 for all b, we have 0 ≤ pB ≤ 1 as well, so that

0 ≤ pB − p(c,c′),X ≤
(B − 1)
1 +BK

≤ 1
K
, (B.4)

where the last inequality holds for any B and K since (B − 1)K ≤ 1 +BK.
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Proof of Proposition 4.2.2. Let U be a random variable uniformly distributed in [0, 1].
As a consequence of Theorem 1 in [235], a random variable X taking values in [0, 1] is
super-uniform if and only if

E(u(U)) ≤ E(u(X)) for all non-decreasing function u. (B.5)

Therefore, it suffices to find a non-decreasing function u such that E(u(U)) > E(u(Un))
for all n ≥ 2. Let u : [0, 1] −→ [0, 1] be such that u(t) = t2 for all t ∈ [0, 1]. Then, as
E(Un) = E(U) and E(X2) = Var(X) + E(X)2 for any real-valued random variable X, it
suffices to prove that

Var
(
Un
)
< Var(U) = 1

12 ∀n ≥ 2 . (B.6)

First, we have

Var
(
Un
)

= 1
n2 Var

(
n∑
i=1

Ui

)
= 1
n2

 n∑
i=1

Var(Ui) + 2
∑
i<j

Cov(Ui, Uj)

 = (B.7)

1
12n + 2

n2

∑
i<j

Cov(Ui, Uj) = 1
12n + 1

n2

∑
i<j

(E(UiUj)− E(Ui)E(Uj)) = (B.8)

1
12n + 2

n2

∑
i<j

(
E(UiUj)−

1
4

)
= 1

12n −
1

2n2

(
n

2

)
+ 2
n2

∑
i<j

E(UiUj) . (B.9)

As the expectation of the product of two random variables defines an inner product on
the set of random variables equally supported, we can apply Cauchy–Schwarz inequality
and upper bound the last expectation in (B.9) as

E(UiUj) ≤
√
E(U2

i )E(U2
j ) = 1

3 . (B.10)

However, the maximum 1
3 is achieved if and only if both random variables are equal.

Indeed, an equality in (B.10) holds if and only if the two variables are linearly dependent
[11]. If, what’s more, they are identically distributed, linear dependence is equivalent to
equality. Consequently, at least one of the pairs i < j must satisfy E(UiUj) < 1

3 or, on the
contrary, we would have U1 = · · · = Un, contradicting the hypothesis n ≥ 2. Therefore,
we can upper bound (B.9) as

Var(Un) < 1
12n −

1
2n2 + 2

3n2

(
n

2

)
= 1

12n + 1
6n2

(
n

2

)
= 1

12 ∀n ≥ 2 , (B.11)

which concludes the proof.
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B.2 Numerical study of p-value null distribution

In this section, we illustrate the behaviour of the non-uniform p-values p(c,c′),X under the
null hypothesis. As explained in Section 4.2, the B individual p-values pb, b = 1, . . . , B,
are not independent as they are computed by bootstrapping from one initial sample. If,
on the contrary, the pb were computed from independent samples, the empirical mean pB
would converge in distribution to a Gaussian (Theorem 27.1 in [29]):

√
12B

(
pB −

1
2

)
D−→

B→∞
N (0, 1) . (indep)

We aim at analysing how the dependence induced by bootstrapping alters the asymptotic
distribution of (indep), as well as the effect of the number B of bootstrap iterations and
the number K of permutations for each individual test. We simulated the distribution
of p(c,c′),X under the null hypothesis following the algorithm detailed in [249] (see Full
procedure in Methods Section, end of p. 7). The original samples were drawn from a
uniform distribution and had fixed sizes N = 2000. Bootstrapped samples were extracted
with size Nmax = 200. For the independence scenario, we replaced the bootstrapped
samples by new equally sized samples drawn from a uniform distribution. As the explicit
form of the test statistic is not provided in [249], we used the Wilcoxon statistic to illustrate
the behaviour of p(c,c′),X . For each pair of values of K,B, the null distribution of p(c,c′),X
was simulated with 200 Monte Carlo iterations. Results are presented in Figure B.1, where
the empirical distribution is compared to the asymptotic independence scenario (indep).

The first row in Figure B.1 shows the null distribution of p(c,c′),X if samples are not
bootstrapped but drawn independently at each iteration b = 1, . . . , B. The encountered
empirical distribution matches the Gaussian (indep) more faithfully as K increases, which
was expected as the difference ∥p(c,c′),X − pB∥ is upper bounded by 1/K. In the same
way, we should expect that the simulated p(c,c′),X distributions are closer to the real (and
unknown for this dependency scenario) null distribution of pB when moving from the left
to the right column in Figure B.1. When samples are bootstrapped as in [249], dependency
between the pb appears and as B increases (from the second to the last row in Figure B.1)
values deviate from the independence scenario (indep). When B remains small (as for
B = 25, the value chosen in [249]), the deviation from (indep) is slight. This can be
explained as Nmax ≪ N , and bootstrapping few times samples with small size compared
to the one of the original sample is close to drawn samples independently from the entire
population. As B increases, so does the dependency between the individual p-values.
This dilates the empirical distribution of p(c,c′),X and extends the difference to (indep). A
similar phenomenon was observed in [85] when studying the effect of unobserved covariates
on the null distribution of p-values.
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Figure B.1: Simulation of the null distribution of p(c,c′),X for different values of parameters
K (in columns) and B (in rows). The first row corresponds to the independence scenario
(indep), whose asymptotic standard Gaussian density is depicted in red in all cases. The
blue line corresponds to the non-parametric kernel density estimate of the encountered
empirical distribution. Note that, for the sake of comparison to (indep), the presented
p-values have been re-scaled as

√
12B(p(c,c′),X − 0.5).
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B.3 Dispersion of (ϕ, ψ) samples for each secondary struc-
ture type

Let X1, . . . , Xn be n independent and identically distributed (i.i.d.) real-valued random
variables. The sample variance, defined as

S2
X = 1

n

n∑
i=1

(Xi −Xn)2 , (B.12)

is a measure of dispersion for X1, . . . , Xn or, conversely, of its concentration around its
empirical mean Xn. To define an analogous estimator of (B.12) for n i.i.d. random
variables {(ϕi, ψi)}ni=1 taking values on the two-dimensional flat torus T2, we may consider

S2
(ϕ,ψ) = 1

n

n∑
i=1

dT2((ϕi, ψi), (ϕn,F , ψn,F ))2 , (B.13)

where d2
T denotes the geodesic distance on the torus [107] and (ϕn,F , ψn,F ) denotes the

sample barycenter (or Fréchet mean). However, the computation of Fréchet mean on
the torus is not a trivial task. As our aim here is not theoretical, we will replace the
barycenter (ϕn,F , ψn,F ) by the extrinsic barycenter on T2 [148], which is defined through
a transformation to the Euclidean space R4 as

(ϕn,E , ψn,E) = (atan2(sϕ, cϕ), atan2(sψ, cψ)) ,

where atan2(y, x) is the θ ∈ [−π, π) such that cos θ = x and sin θ = y, and

(cϕ, sϕ, cψ, sψ) = 1
n

n∑
i=1

(sinϕi, cosϕi, sinψi, cosψi)

is the Euclidean mean of the transformed sample. In conclusion, our dispersion estimator
is defined as

D = 1
n

n∑
i=1

dT2((ϕi, ψi), (ϕn,E , ψn,E))2 , (B.14)

which can be easily implemented. We computed (B.14) for every codon-specific Ramachan-
dran plot with more than 30 points (the same criteria as to perform the statistical test).
The results, classified by secondary structure as in Figure 4.2, are presented in Figure
B.2. The empirical distributions of (B.14) clearly illustrate how α−helical conformations
(H) are highly restricted, the corresponding dihedrals being strongly concentrated around
its barycenter. The dispersion of (ϕ, ψ) considerably increases for extended strand (E),
and even more for the remaining DSSP structure classes merged together. These dif-
ferences may be summarized by the average dispersion D for each secondary structure:
D̄Others = 0.06 > D̄E = 0.01 > D̄H = 0.002, as stated in Section 4.3.1.
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Figure B.2: Empirical distribution (boxplots, violin plots) of (B.14), for conformations in
extended strand (E, green), α-helix (H, blue) and other (Others, red) secondary structures.
Values higher than the 0.95 quantile for each group were excluded.
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Chapter 5

WASCO: A Wasserstein-based
statistical tool to compare

conformational ensembles of
intrinsically disordered proteins

The structural investigation of intrinsically disordered proteins (IDPs) requires en-
semble models describing the diversity of the conformational states of the molecule.
Due to their probabilistic nature, there is a need for new paradigms that under-
stand and treat IDPs from a purely statistical point of view, considering their con-
formational ensembles as well-defined probability distributions. In this chapter,
we define a conformational ensemble as an ordered set of probability distributions
and provide a suitable metric to detect differences between two given ensembles
at the residue level, both locally and globally. The underlying geometry of the
conformational space is properly integrated, one ensemble being characterized by
a set of probability distributions supported on the three-dimensional Euclidean
space (for global-scale comparisons) and on the two-dimensional flat torus (for
local-scale comparisons). The inherent uncertainty of the data is also taken into
account to provide finer estimations of the differences between ensembles. Addi-
tionally, an overall distance between ensembles is defined from the differences at
the residue level. We illustrate the interest of the approach with several examples
of applications for the comparison of conformational ensembles: (i) produced from
molecular dynamics (MD) simulations using different force fields, and (ii) before
and after refinement with experimental data. We also show the usefulness of the
method to assess the convergence of MD simulations, and discuss other potential
applications such as in machine-learning-based approaches. The numerical tool has
been implemented in Python through easy-to-use Jupyter Notebooks available at
https://gitlab.laas.fr/moma/WASCO.
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This work has been published in Journal of Molecular Biology, 168053, 2023, with
Amin Sagar, Christophe Zanon, Kresten Lindorff-Larsen, Pau Bernadó, Pierre Neuvial
and Juan Cortés. It is presented here with minor changes for the sake of coherence in the
manuscript.
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5.1 Introduction
The comparison of protein structures is a crucial problem in structural biology. In the
early works [241, 185], the use of root-mean-square deviation (RMSD) was introduced
and discussed as a metric between conformations of folded proteins, and later extended to
its ensemble version [43]. More recently, Lindorff-Larsen and Ferkinghoff-Borg [176] de-
fined three metrics that allow overall comparison between ensembles of ordered/structured
systems, with stronger mathematical guarantees, but using RMSD as a distance between
individual conformations, which complicates its extension to disordered structures. Cazals
et al. [47] used a graph-based representation of the conformational space based on a set
of low-energy conformations (i.e. local minima of the potential energy landscape) and
compared them with the more suitable Wasserstein distance. To do so, they used the
least-RMSD as ground metric between conformations. The methods presented in [176]
and [47] are well suited to examine conformational ensembles of molecules that present a
well-characterized energy landscape. However, their application to molecules with energy
landscapes where low-energy conformations are difficult to identify, as it is the case of
IDPs, is inappropriate.

A few recent works have dealt with the comparison of conformational ensembles of
IDPs. Huihui and Ghosh [131] focused on averaged conformational properties over en-
sembles as informative descriptors of their function. They proposed a sequence-decoration
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metric that classifies IDPs using only their primary structure together with their charge
configuration. The same idea of comparing average descriptors was applied by Lazar et
al. [167], who proposed an ensemble comparison tool based on differences between average
pairwise distances. Due to the huge conformational variability of IDPs, it is, however,
important to take into account both the average properties as well as the distribution
around those averages. Describing IDP conformations as being drawn from probability
distributions determining their structure may yield to an important loss of information
(or even misleading results) if the whole distribution is reduced to its mean. Even when
comparing two (possibly multivariate) Gaussian distributions, the difference between the
two depends both on the means and variances [163, 318]; thus, methods for comparing
ensembles should ideally include also higher order moments of the probability distribu-
tions. This is why a statistical approach that integrates the entire probability law defining
an ensemble is crucial to correctly capture the existing differences between disordered
ensembles.

The probability distributions describing the ensembles need to be compared using a
suitable metric, well-adapted to the geometric features of the underlying spaces. The
Wasserstein distance [299], sometimes called “earth mover’s distance”, integrates the ge-
ometry of the space where the distributions are supported and provides strong mathe-
matical guarantees. Moreover, it has a physical interpretation, as it is defined as the
minimum transportation cost needed to reconfigure the mass of one probability distribu-
tion to recover the other. All this makes Wasserstein distance substantially preferable to
other metrics currently used in the literature (e.g. Kullback-Leibler divergence, Helliger
distance), as discussed in Section 5.2.

In this chapter, we define a set of probability distributions that characterize at local
and global level the highly variable conformations in an ensemble of disordered proteins,
and to which we can have access in practice. These probability laws can then be com-
pared using the Wasserstein distance, allowing the identification of residue-specific and
overall discrepancies. We also propose an approach to integrate the intrinsic uncertainty
of the data within the metric, which enables a more clear identification of the relevant
differences between the ensembles. The method has been implemented inside a purely non-
parametric framework, avoiding model assumptions, dimensionality reduction or further
simplifications that may yield significant loss of information.

In the following sections, we provide an overall description of the proposed methodol-
ogy, which is further detailed in Appendix C, together with several cases of applications
that illustrate how our method identifies residue-specific and overall discrepancies between
conformational ensembles of IDPs or flexible peptides generated for example by molecular
dynamics simulations or stochastic sampling techniques. Finally, we discuss current limi-
tations and possible extensions of WASCO, as well as the great potential interest of this
type of metric for its integration in machine-learning-based (ML-based) methods applied
to generate or to refine conformational ensembles of IDPs.
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5.2 Methods
Due to the intrinsic probabilistic nature of IDPs, descriptors of their conformational en-
sembles should be conceived from a purely statistical point of view. To do so, we seek to
locally and globally describe conformational ensembles using well-defined probability dis-
tributions and to develop statistical tools allowing their comparison. The main questions
to answer are therefore: (1) which is the best way to define those probability distributions?
and (2) how these distributions have to be compared to provide quantitative information
about similarities and differences between ensembles?

5.2.1 Defining conformational ensembles as a set of probability distri-
butions

IDP ensembles can be described at both local and global scales, providing complementary
information. We aim at defining an ordered set of probability distributions that account
for the highly variable structure of the ensemble and, above all, that can be estimated in
practice from a set of sampled conformations.

The most important aspects of the local structure can be described by the dihedral
angles (φ,ψ) for each amino acid residue along the sequence. Therefore, for each residue,
the ensemble is locally characterized by a two-dimensional random variable (φ,ψ) or, in
other words, by a probability distribution supported on the two-dimensional flat torus T2

[189, 35]. If we denote such distribution as P li , for the residue at the i-th position, we
define the local structural descriptor of an ensemble as the L-tuple

(P l1, . . . , P lL), P li ∈ P(T2) for all i = 1, . . . , L, (5.1)

where L is the sequence length and P(T2) denotes the space of probability distributions
supported on T2.

Describing the global structure is a less trivial task. The use the absolute positions of
the atoms and an absolute reference frame for the entire ensemble is not an appropriate
description as it is sensitive to rigid-body motions. Therefore, our approach uses the
relative positions of all pairs of residues along the sequence, which are invariant under rigid-
body motion. More precisely, we define the position of a given residue as the position of its
Cβ atom when it exists and of its Cα atom otherwise. If i, j ∈ {1, . . . , L}, i ̸= j, denote two
different sequence positions, let −−→Ri,j be the three-dimensional random variable determining
the relative position of j-th residue with respect to the i-th one. If we denote P gi,j the
probability distribution associated to −−→Ri,j , we define the global structural descriptor of an
ensemble as the (L(L− 1)/2)-tuple

(P g1,2, P
g
1,3, . . . , P

g
L−1,L), P gi,j ∈ P(R3) for all i = 1, . . . , L− 1, j = i+ 1, . . . , L, (5.2)

where L is the sequence length and P(R3) denotes the space of probability distributions
supported on the three-dimensional Euclidean space.
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5.2.2 Accessing empirical probability distributions from sampled con-
formations

Estimating the local structural descriptor (5.1) is immediate as we have direct access to
dihedral angles (φ,ψ) from the sample of conformations. Therefore, the local structural
descriptor will be estimated by its empirical counterpart

(P l1;n, . . . , P
l
L;n), (5.3)

where each P li,n, i = 1, . . . , L, is the empirical probability distribution of P li , and n is the
number of conformations constituting the sample. Such empirical probability distributions
are commonly represented through Ramachandran maps [237].

Obtaining a sample of −−→Ri,j from the set of conformations is less direct. To compute a
set of comparable −−→Ri,j vectors from all conformations, their coordinates must be expressed
on the same reference system. To do so, we first define a reference frame at the i-th residue,
using only the positions of the i-th C ′, Cα and NH atoms. This frame, whose construction
is detailed in the Supplementary Information (SI), is a meaningful representation of the
spatial pose of each residue.

The reference frame associated to each residue i ∈ {1, . . . , L} allows to express the
relative positions of all residues j ̸= i with respect to i. Moreover, the definition of a
reference system allows the superposition of all the conformations in the ensemble. This
is illustrated in Figure 5.1, for three conformations. Consequently, for every j ̸= i, we will
have access to n realizations of the random variable −−→Ri,j or, in other words, to a point
cloud in the three-dimensional Euclidean space, representing a sample drawn from the
distribution of P gi,j . Therefore, the global structural descriptor of the ensemble (5.2) will
be estimated by its empirical counterpart

(P g1,2;n, P
g
1,3;n, . . . , P

g
L−1,L;n), (5.4)

where P gi,j,n is the empirical probability distribution of P gi,j , for all i = 1, . . . , L − 1, j =
i+ 1, . . . , L. An example of a pair of samples of −−→Ri,j is presented in Figure C.8.

5.2.3 Distances between local and global structural descriptors

After defining the local and global structural descriptors of an ensemble as an ordered
set of probability distributions, the choice of a suitable metric allowing inter-ensemble
comparisons becomes the subsequent question to deal with. The basic properties that
such a metric should have are:

1. Satisfying the mathematical properties that define a distance (i.e. being 0 if and only
if the two compared distributions are identical, symmetry and triangle inequality),

2. Integrating the geometry of the underlying space.
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(a) (b)

Figure 5.1: Illustration of how samples of global structural descriptors are obtained, for
a pair of positions i, j along the sequence. In (a), the reference frame is built for every
conformation at residue i. In (b), all the frames are superimposed using this reference
frame. Then, for any j ̸= i, the vectors −→ri,j constitute a sample of −−→Ri,j .

The use of metrics between probability distributions is not new in structural biology.
For instance, Ting et al. [280] used Hellinger distance to detect differences between (φ,ψ)
distributions. However, this metric does not take into account the geometry of the un-
derlying space (in particular here, its periodicity). A symmetrized Kullback-Leibler (KL)
or the Jensen-Shannon (JS) divergence was used in [176, 279] to compare ensembles of
ordered systems. This metric has a firm interpretation, based on information theory (in
particular the JS divergence is the square of a metric). However, it still misses the geomet-
rical reliability and does not satisfy triangle inequality, which makes comparisons between
multiple ensembles difficult to interpret.

Besides satisfying conditions 1 and 2, the Wasserstein distance, derived from the theory
of Optimal Transport (OT), provides both strong theoretical guarantees [299] and attrac-
tive empirical performance [228]. Informally, it represents the minimum transportation
cost needed to reconfigure the mass of one probability distribution to recover the other.
We refer to [228] for an in-depth introduction to OT. Most of the applications of OT
are related to the very active field of machine learning (ML), notably in the framework
of generative networks [9], robustness [262] or fairness [76], among others. With some
notable exemptions [47, 19, 248, 67, 107], Wasserstein distance has not been widely used
in structural biology. More related to our work, in [47], Cazals et al. used Wasserstein
distance to compare energy landscapes sampled from conformational ensembles. We might
also refer to our work [107] presented in Chapter 3 introducing statistical tests to assess
differences between (ϕ, ψ) distributions. The incorporation of the underlying geometry to
its definition makes it a well-adapted metric to measure distances between local and global
structural descriptors of the ensembles. Details and important considerations regarding
its practical computation in this context are given in Appendix C.
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5.2.4 The comparison tool

Consider two ensembles A, B, associated to two protein sequences of equal length L,
and let nA, nB be their number of conformations, respectively. We define the differences
between local structural descriptors of A and B as the L-tuple of Wasserstein distances

(W l,A,B
1 , . . . ,W l,A,B

L ) =
(
W(P l,A1;nA

, P l,B1;nB
), . . . ,W(P l,AL;nA

, P l,BL;nB
)
)
, (5.5)

where P l,Ai;nA
(resp. P l,Bi;nB

) denotes the i-th distribution of the empirical local structural
descriptor (5.3) of ensemble A (resp. B). Statistical tests to assess whether any W l,A,B

i

is significantly different from zero have been defined in Chapter 3. The second of the
introduced techniques (UB) is better adapted to our problem, as it only detects the more
important discrepancies and accepts slight differences that may arise from experimental
or computational procedures. This is discussed in detail in Section 3.5. Consequently,
together with the L-tuple (5.5) of distances comparing local structural descriptors, we are
able to supply a L-tuple of (UB) p-values (corrected for multiplicity [125]) accounting for
the statistical significance of the corresponding distances:

(pA,B1 , . . . , pA,BL ). (5.6)

Recall that a small p-value pA,Bi indicates strong evidence that the true distance that
W l,A,B
i estimates is different from zero. In other words, small p-values show significant

differences between the corresponding local structural descriptors. Therefore, the vector
(5.6) enables the identification of those residues where the differences are more important,
and those residues for which differences can be assigned as non-significant.

Analogously, the difference between global structural descriptors of A and B is defined
as the (L(L− 1)/2)-tuple

(Wg,A,B
1,2 , . . . ,Wg,A,B

L−1,L) =
(
W(P g,A1,2;nA

, P g,B1,2;nB
), . . . ,W(P g,AL−1,L;nA

, P g,BL−1,L;nB
)
)
, (5.7)

where P g,Ai,j;nA
(resp. P g,Bi,j;nB

) denotes the i, j distribution of the empirical global structural
descriptor (5.4) of ensemble A (resp. B). In this case, we are not able to provide a vector
of p-values assessing the significance of the global differences. This is due to the intrinsic
limitations of the Optimal Transport theory when the ground space has dimension d ≥ 3.
Note that (5.7) can be more naturally represented as a triangular (L−1)× (L−1) matrix
W g,A,B, whose elements are given by (W g,A,B)ij = Wg,A,B

i,j . Graphically, the matrix
W g,A,B is represented using a color scale to fill the coefficients according to distance
values. As the diagonal will remain empty, it will be filled with the local distances (5.5).
This will also allow to assess whether changes on local structural descriptors are related
with changes in global structural descriptors and to compare both scales within the same
representation.
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Accounting for uncertainty

The variability in experimental and simulated structures causes uncertainties and statisti-
cal noise that may substantially bias the distance estimation. For example, when running
a MD simulation, independent replicas of the same simulation setup may results in non-
negligible differences that distort the analysis of the comparison matrices. The same may
occur when comparing two uniformly chosen subsets of conformations from an ensemble
generated by stochastic sampling techniques [219, 88]. In order to soften the effect of
uncertainty and to obtain net estimates of the differences between a pair of ensembles, we
will use (if available) independent replicas of the same ensemble. These replicas may also
be produced by uniform subsampling of the set of conformations. However, special care
must be taken when subsampling MD trajectories as the convergence of the simulation
must be ensured for the subsamples to be representative of the entire ensemble.

Let A1, . . . , AnI (resp. B1, . . . , BnI ) be nI independent replicas of ensemble A (resp.
B). The corrected difference between local structural descriptors of A and B is defined as
the L-tuple

(W̃ l,A,B
1 , . . . , W̃ l,A,B

L ), (5.8)

where each corrected distance is defined as

W̃ l,A,B
i =

(
1
nI

nI∑
s=1
W l,As,Bs
i − 1

2(nI − 1)

nI∑
s=2

(
W l,A1,As
i +W l,B1,Bs

i

))
+
, for all i = 1, . . . , L,

(5.9)
where, for any real number x, (x)+ = x if x > 0 and (x)+ = 0 otherwise. The first term in
(5.9) is an average of nI Wasserstein distances between nI paired independent replicas of A
and B. As it was shown in [269], an average of Wasserstein distances between sub-samples
of the same population is a pertinent estimate of the Wasserstein distance between the
two entire populations that, in addition, conserves the properties that mathematically
define a distance. Therefore, this first term estimates the Wasserstein distance between
the entire populations of A and B (conceived as the union of all independent replicas),
softening the variability. To this brutto inter-ensemble difference, we subtract an average
of the Wasserstein distances between independent replicas of the same population (intra-
ensemble). Note that, for the sake of computational simplicity, we just compared the first
replica of each ensemble with the subsequent ones. This alignment is arbitrary and can be
set otherwise. Of course, distances between all pairs of replicas can be added to this term.
The more combinations are added to (5.9), the finer will be the estimate of the (unknown)
true Wasserstein distance between the ensembles but, as replicas are independent, different
alignments for a given number of combinations should not yield substantial discrepancies
on the quality of this estimate. The same applies if nI is different for A and B; both terms
in (5.9) can be accordingly adapted. As it is illustrated in Section 5.3, the use of corrected
distances (5.9) contribute to reduce the noise coming from structural uncertainty and help
to emphasize residue-specific differences in the matrix representation. For the distances
between global structural descriptors, the correction is performed analogously.
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Setting an interpretable scale

When defining an absolute distance or score between conformational ensembles, providing
the clues to ease its interpretation is crucial. The problem of interpreting unbounded
metrics with no intrinsic reference values has been widely discussed since the introduction
of RMSD for the comparison of pairs of conformations [241, 185]. Here, we do not seek
to define any cutoff to binarize the resulting matrices, but to provide a more informative
continuous scale. To do so, we aim at quantifying the magnitude of the inter-ensemble
distances compared to the intra-ensemble ones, using the uncertainty estimate as a ref-
erence. If we denote as W l,A,B

inter (resp. W l,A,B
intra ) the first (resp. second) term in (5.9), the

score
W̃ l,A,B
i

W l,A,B
intra

=

(
W l,A,B

inter −W
l,A,B
intra

)
+

W l,A,B
intra

, (5.10)

corresponds to the relative difference between the inter-ensemble and intra-ensemble dif-
ferences. Once again, this score is analogously defined for differences between global
structural descriptors.

An overall distance between ensembles

In some situations, it may be of interest to perform overall comparisons between multiple
ensembles. To do so, moving from a residue-specific analysis to a comparison at the whole
structure level might be preferable. The definition of a score for the overall ensemble
has been addressed for ordered systems [176]. Here, we propose to define such a score by
aggregating all the residue-specific distances computed using the above-described methods.
We recall that if d1, . . . , dL are L distances defined on L metric spaces X1, . . . ,XL, the
function

√
d2

1 + · · ·+ d2
L is a distance on the product space X1 × · · · × XL. Consequently,

OW l,A,B =
(

L∑
i=1

(
W l,A,B
i

)2
)1/2

(5.11)

is a distance on the product space of all dihedral angles along the sequence and, therefore,
serves to quantify the overall local discrepancy between a pair of ensembles. Analogously,

OWg,A,B =

L−1∑
i=1

L∑
j=i+1

(
wijWg,A,B

i,j

)2
1/2

, withwij > 0 for all i, j ∈ {1, . . . , L},

(5.12)
is a distance on the product space of all pairwise relative positions of the residues in
both ensembles, and serves to quantify the overall global discrepancy. Note that we have
assigned a positive weight wij to each global distance in (5.12). This allows to consider
distances between specific residue pairs as more relevant than the others when computing
the overall discrepancy [124]. For instance, we can highlight differences between global
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structural descriptors that appear for residue pairs that are far from each other in the
sequence, i.e. large |i − j|, and neglect distances between neighboring residue pairs, i.e
small |i − j|. This can be done by choosing wij as an appropriate increasing function of
|i− j|, as

wij = w(i, j) = 1
tanh 1 tanh

( |i− j|
L− 1

) 1
2

, (5.13)

which satisfies wi,i = 0 for all i and w1,L = wL,1 = 1.
The drawback of this definition of the overall distance is that it does not take into

account the previously mentionned uncertainty. To solve this problem, the same strategy
to define a global score can be performed by replacing each W l,A,B

i (resp. Wg,A,B
i,j ) by its

corresponding corrected distance W̃ l,A,B
i (resp. W̃g,A,B

i,j ) in (5.11) (resp. (5.12)). How-
ever, this strategy makes the triangle inequality for the overall metric no longer satisfied.
Both scores can be implemented by the practitioner and used depending on the specific
comparison context.

5.2.5 The Jupyter notebook

The WASCO comparison tool has been implemented through an easy-to-use Jupyter Note-
book. It is available at https://gitlab.laas.fr/moma/WASCO, together with its installation
guidelines and detailed implementation instructions. The notebook takes a pair of ensem-
bles as input and returns the comparison results through the matrix defined in Section
5.2.4, containing global and local differences. Users can choose to correct the computed
distances by uncertainty (5.9). When independent replicas are not provided as input, sub-
sampling is used to emulate them. If this correction is performed, results are displayed in
the interpretable scale (5.10). The overall scores (5.11), (5.12), aggregating the corrected
distances, are also returned by the tool.

Ensembles can be provided as input in several of the most common data formats.
WASCO accepts one .xtc file per replica, together with a .pdb file including the topology
information of the molecule, one multiframe .pdb file per replica or a folder per replica
containing one .pdb file per conformation. The user can also choose to compare ensembles
for sequence segments (of equal length) instead of the entire sequence. Details are provided
in the notebook documentation.

Due to the large number of Wasserstein distances to be computed (L(L− 1)/2 +L per
pair of replicas), the computation time might be considerably high. The number of con-
formations constituting the ensemble also has a significant impact, due to computational
limitations of the existing OT algorithms when sample sizes and dimension increase. In
order to return results within a reasonable amount of time, WASCO computes Wasserstein
distances in parallel. The required CPU time depends on the number of conformations,
replicas and sequence length of the ensembles. For small proteins of L ∼ 30 and ensembles
of reasonable size nA, nB ∼ 104, the CPU time using 20 threads is less than 15 minutes
using a standard computing server. However, for larger proteins of L ∼ 150 and large

https://gitlab.laas.fr/moma/WASCO
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ensembles with nA, nB ∼ 105, the CPU time using 20 threads goes up to some hours. Ad-
ditionally, comparing large ensembles of substantially longer sequences (L ≫ 150) might
cause memory problems, as all pairwise relative positions for every conformation need to
be stocked. Therefore, the suitability of the sizes of the ensembles must be considered be-
fore launching WASCO. Adapting WASCO to longer sequences with large conformational
ensembles remains an objective for future work.

The output of WASCO is given through a matrix, whose entries are the values of
the score (5.10) computed for local and global distances, when independent replicas are
provided. Otherwise, the matrix depicts the values of the non-corrected inter-ensemble
distances (5.5), (5.7). The values for the discrepancies between the global structural
descriptors (5.4) are provided in the lower triangle. The differences between the local
structural descriptors (5.3) are displayed along the diagonal. Details on the interpretation
of the matrix are given in Section C.1.3 and illustrated in Figure C.4. These guidelines
are also presented in the software documentation.

5.3 Results

In this section, we present several applications to illustrate the different possibilities en-
abled by WASCO. In all cases, the distances between local and global structural descriptors
were corrected for uncertainty using (5.9), as independent replicas were available. The re-
sults are depicted through the score (5.10), representing the relative difference between the
inter-ensemble distances and the uncertainty. Both overall local and global discrepancies
between pairs of ensembles were computed plugging the corrected distances in (5.11) and
(5.12). The weight function (5.13) was used to highlight differences between residue pairs
far from each other in the sequence and reduce differences between neighboring amino
acids. Note that this weighting is considered only to compute the overall distance (5.12),
and not to depict distance values in the matrix representation, which correspond to the
interpretable scale (5.10). An additional analysis illustrating the application of WASCO
to assess the convergence of MD simulations is included in Section C.2.2.

5.3.1 Comparison of ensembles produced by MD simulations using dif-
ferent force-fields

We applied WASCO to compare the results of MD simulations using different force-fields
presented in [140] for two flexible peptides showing a significant propensity to form poly-
l-proline type II (PPII) structures. Four different force-fields, having demonstrated rela-
tively good performances to simulate IDPs were applied: AMBER ff99SB-disp, AMBER
ff99SB-ILDN, CHARMM36IDPFF, and CHARMM36m (details and references to these
force-fields can be found in [140]). For simplicity, we will refer to these force-fields as disp,
ildn, c36idp and c36m, respectively. As independent replicas for each simulation were
available, we could perform the correction for uncertainty (5.9).
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Figure 5.2 presents the output of WASCO for several pairwise comparisons of con-
formational ensembles of Histatin-5 (Hst5) obtained with the different force-fields. The
matrices and the overall dissimilarities suggest that the generated structures are closer (in
Wasserstein distance) when they are simulated using c36idp and c36m (which we can de-
fine as group-I), or disp and ildn (group-II). This is not surprising as group-I are versions of
CHARMM and group-II are versions of AMBER. Indeed, matrices (a) and (b), comparing
force fields inside group-I and inside group-II respectively, present overall global differences
which are small compared to those of panels (c) and (d), which compare force-fields of
different groups. The same conclusion can be reached by comparing the magnitude of the
scales of both pairs of matrices. The two remaining comparisons (ildn vs. ildn and c36m
vs. disp) are not included in Figure 5.2 as the corresponding matrices are qualitatively
equivalent to (c) and (d). Similar observations have been made when comparing ensembles
of folded proteins generated using related force-fields [192, 279].

Matrices returned by WASCO also allow a residue-specific analysis of the distances.
In Figure 5.2, panels (c) and (d) show that the most relevant global differences appear in
regions close to the diagonal (i.e. between residue pairs close in the sequence), where the
inter-ensemble corrected distances rise up to 6-7 times the intra-ensemble ones. This is
not the case when comparing force-fields inside the same group, as the largest differences
appear in more internal matrix regions (i.e. between residue pairs more distant in the
sequence). However, these corrected differences represent less than the half of the intra-
ensemble distances. The information displayed on the diagonal allows the detection of the
residues where the local conformation change more abruptly between force-fields. These
local changes are restricted to smaller regions, contrary to the observed behaviour of global
differences, which appeared for more extent regions inside the lower triangle and not for
isolated pairs of amino acids. In some cases, substantial local distances appear in residues
where global structure also changes (see, for example, residues next to the N-terminus in
(a,c)). However, this correspondence is not observed in all matrices. We repeated the same
analysis for MD simulations of PEP3 with the same force-fields. Results are presented in
Section C.2.1.

5.3.2 Structural impact of SAXS ensemble refinement

Using Hst5 as an example, we applied WASCO to evaluate the structural impact of SAXS
refinement with the Ensemble Optimization Method (EOM)[22] on the resulting ensemble.
We first compared the Hst5 ensemble simulated with Flexible-Meccano [219, 21] with
the refined one using previously reported SAXS data[253]. The results are presented in
Figure 6.4. Note that a previous EOM analysis of these data suggested that Hst5 in
solution is slightly more extended that the random coil model generated with Flexible-
Meccano [253]. Small but non-negligible differences were observed at the central part of
the peptide (from residues 6 to 13). Most probably, the SAXS-based refinement selected
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Figure 5.2: Comparison of Molecular Dynamics simulations of Hst5 ensemble using dif-
ferent force-fields. The color scale W̃/Wintra corresponds to the score (5.10), representing
the relative difference between the inter-ensemble distances and the uncertainty.
The coefficients in the lower-triangle (in red) correspond to the global differences. The
coefficients along the diagonal (in blue) correspond to the local differences. Blue stars
indicate that the corresponding local corrected distance is significantly different from
zero (the associated p-value (5.6) is smaller than α = 0.05). Note the different scales

used in the different plots.

conformations with an extended central region to account for the overall expansion of
peptide in the solution [22]. Moreover, we observed highly significant local distances that
propagate locally towards the interior of the matrix. In other words, these residues with
large local distances conformationally influence their closest neighbours. Intriguingly, this
propagation seems to only occur locally towards the C-terminus.
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Figure 5.3: Comparison of Hst5 ensemble before and after filtering with experimental
SAXS data. The color scale W̃/Wintra corresponds to the score (5.10), representing the
relative difference between the inter-ensemble distances and the uncertainty. The coeffi-
cients in the lower triangle (in red) correspond to the global differences. The coefficients
along the diagonal (in blue) correspond to the local differences. Blue stars indicate that
the corresponding local corrected distance is significantly different from zero (the associ-
ated p-value (5.6) is smaller than α = 0.05).

We next assessed whether the direction in which conformations are built have a struc-
tural effect and change the refined ensemble. To do so, we generated two Hst5 ensembles
using a stochastic sampling method similar to Flexible-Meccano but using a different strat-
egy [88], where the chains were built either from N-to-C or from C-to-N. When using these
two ensembles to fit the experimental curve, the resulting distance matrices displayed very
similar features for local and global distances (Figure C.9(a,b)), suggesting that the chain-
building direction does not have a relevant effect. In both cases, a systematic increase in
the distances is observed for the central residues, as observed in the previous analysis
(Figure 6.4).

In a recent study, ENCORE was used to show that refined ensembles were closer
to each other than different input ensembles [279]. This can also be illustrated using
WASCO, by comparing the Hst5 ensembles generated in both directions before and after
the filtering with SAXS data (Figure C.9(c,d)). These comparisons clearly showed that
both global and local differences were smaller for the refined ensembles than for the input
ones, as observed when comparing the maximum values of the corresponding color scales.
As we were comparing very similar ensembles, we expected the distances to be small.
Nevertheless, we observe one significant local difference on the diagonal in Figure C.9c
that disappeared after refinement.
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5.4 Discussion

We have presented a novel method to compare conformational ensemble models of highly
flexible proteins. WASCO is based on a non-parametric framework: local and global
structural descriptors of the conformational space are defined as distributions and do not
rely on probabilistic or statistic models. This allows capturing the entire variability of the
ensemble without information loss. The distributions are compared using the Wasserstein
distance, which has strong mathematical guarantees and respects the geometry of the
underlying space. To this metric, we incorporated the structural uncertainty presented
in experimental and simulated ensembles. Using this strategy, WASCO highlights the
relevant differences between ensembles. We have illustrated several possible applications
of WASCO as an additional tool for the investigation of IDPs and flexible peptides. It
provides complementary information with respect to other tools to analyze and compare
conformational ensembles based on global descriptors, such as the radius of gyration [286]
or secondary structure propensities [140]. Besides, the presented approach is advantageous
with respect to simpler comparison techniques based on average descriptors, such as the
difference of median distance matrices introduced in [167]. This is illustrated with an
example in Section C.2.3. Thanks to its accuracy to identify differences between ensembles,
WASCO has great potential interest for integration into ML-based methods for generating
or refining conformational ensembles of IDPs [178, 138, 316]. More precisely, metrics based
on WASCO can be used to evaluate the performance of these methods, or as a loss function
when training neural network models.

WASCO has been implemented in an open-source Jupyter Notebook, which enables an
easy use of the methods as well as their adaptation or extension to particular needs. The
main drawback of the current implementation is its limitation to deal with considerably
large ensembles of long IDPs. Adapting WASCO to larger chains remains for future
work. Other interesting directions for future work will be the extension of WASCO to
compare ensembles of multi-domain proteins, and to operate with coarse-grained models.
The extension of WASCO to compare ensembles for chains of different length is also an
interesting but challenging work. Note however that the Jupyter Notebook enables the
user to select sequence fragments of equal length for the comparison.

Software availability

WASCO has been implemented as an easy-to-use Jupyter Notebook, available at
https://gitlab.laas.fr/moma/WASCO.
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Chapter 6

Post-clustering inference under
dependence

The recent work by Gao et al. [104] laid the foundation for post-clustering infer-
ence. For the first time, the authors established a theoretical framework allowing to
test for differences between means of estimated clusters. Additionally, they studied
the estimation of unknown parameters while controlling the selective type I er-
ror. However, their theory was developed for independent observations identically
distributed as p-dimensional Gaussian variables with spherical covariance matrix.
Here, we aim at extending this framework to a more convenient scenario for practi-
cal applications, where arbitrary dependence structures between observations and
features are allowed. We show that a p-value for post-clustering inference under
general dependency can be defined, and assess the theoretical conditions allowing
the compatible estimation of one covariance matrix. The theory is developed for
hierarchical agglomerative clustering algorithms with several types of linkages, and
for k-means algorithm. We illustrate our method with synthetic data and real data
of protein structures.
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6.6 Application to clustering of protein structures . . . . . . . 142
6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.1 Introduction
Post-selection inference has gained substantial attention in recent years due to its poten-
tial to address practical problems coming from various scientific disciplines. The problem
of using data to answer a question that has been chosen based on the same data was
formalized in [97], where the basis of selective hypothesis testing was rigorously set with
the definition of the selective type I error. This paved the way to perform selective test-
ing when null hypotheses are chosen through clustering algorithms, bypassing the naive
data splitting that reveals unsuitable in this context. However, their proposed approach,
referred to as data carving, as well as more recent approaches like data fission [173] are
difficult to implement in practice because they require knowledge of the covariance struc-
ture between variables. Moreover, they often involve the non-trivial calibration of a tuning
parameter that controls the proportion of information allocated for model selection and
for inference. The seminal work [104] established for the first time a theoretical framework
allowing selective testing after clustering, when observations are independent and iden-
tically distributed as p-dimensional Gaussian random variables with spherical covariance
matrix. This corresponds to the following matrix normal model [127]:

X ∼MN n×p(µ, In, σ2Ip), (6.1)

where µ ∈ Mn×p(R) and σ > 0. Under (6.1), the authors in [104] defined a p-value that
controls the selective type I error when testing for a difference in means between a pair
of estimated clusters. This p-value can be efficiently computed for hierarchical clustering
algorithms with common linkage functions. Moreover, the authors in [104] made another
remarkable contribution by addressing the estimation of σ while controlling the selective
type I error, which had been overlooked in previous works [173, 243] and that is essential
in real problems. They showed that if σ is asymptotically over-estimated the p-value is
asymptotically super-uniform, and provided an estimator σ̂ that can be used in practice.

Despite the notable contribution of [104], the model (6.1) is somewhat limited in more
complex applications. In real problems, features describing observations are unlikely to be
independent and have identical variance, but rather present more general covariance struc-
tures Σ. In the same way, observations might present non-negligible dependence structures
when, for instance, they are drawn from time series models or simulated with physical
models involving time evolution. The practical motivation of the present work is to per-
form inference after clustering protein conformations. Protein structures are non-static
and their conformational variability is essential to understand the relationship between
sequence, structure and function [157]. Due to the high complexity of the conformational
space, clustering techniques have emerged as powerful tools to characterize the structural
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variability of proteins, by extracting families of representative states [59, 8, 263, 224].
Usually, Euclidean distances between pairs of amino acids are considered as p-dimensional
descriptors of protein conformations [59, 167, 45]. These distances are highly correlated
and hardly match the model (6.1). Moreover, protein data is often simulated with Molec-
ular Dynamics approaches that recreate the time-evolution of the protein according to
physical models [3]. In that case, independence between observations is not admissible.

Accordingly, our aim is to go one step further and extend the framework introduced
in [104] to a more general setting where arbitrary dependence structures between observa-
tions and features are admitted. We present a straightforward adaptation of [104] where
the model (6.1) is extended to

X ∼MN n×p(µ,U,Σ), (6.2)

where µ ∈Mn×p(R), U ∈Mn×n(R) and Σ ∈Mp×p(R). Our techniques follow the same
reasoning steps as the ones in [104] and show that a p-value for testing differences between
estimated cluster means can be defined under (6.2). The Chapter is organized as follows:

• In Section 6.2, we present the definition of a p-value for post-clustering inference
under the general model (6.2), and show that its efficient computation is straight-
forward if it is achievable under (6.1).

• In Section 6.3, we explore the scenarios that allow the asymptotic over-estimation of
either U or Σ while respecting the asymptotic control of the selective type I error.
We provide an estimator that can be used in several common practical scenarios.

• In Section 6.4 we revisit the framework presented in Section 6.2 when, for technical
reasons, additional information is imposed to the conditioning event that defines
the p-value. This allows in particular to perform selective inference after k-means
clustering, following the work in [51].

• In Section 6.5, we illustrate all the results through numerical experiments on syn-
thetic data. Finally, in Section 6.6, we show how this theory can be applied to
perform inference after clustering protein structures.

6.2 Selective inference for clustering under general depen-
dency

In [104], the authors consider the problem of selective inference after hierarchical clustering
in the case of independent observations and features. Here, we aim to extend the method to
admit general dependence structures. We consider n observations of p features drawn from
the matrix normal distribution (6.2), where U and Σ are required to be positive definite.
Each row of X is a vector of features in Rp. The dependence between such features is
given by Σ, and U encodes the dependency between observations. If observations are
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independent with unit variance, we have U = In, and if features are independent with
equal variance we can write Σ = σ2Ip for a given σ > 0. These two assumptions define
the model in [104]. Here, we show that this model can be generalized to arbitrary U, Σ,
defining a p-value that controls the selective type I error rate for clustering.

Let us first recall the setting introduced in [104]. We will denote by Xi (resp. µi) the
i-th row of X (resp. µ) and, for a group of observations G ⊆ {1, . . . , n}, XG will denote
the submatrix of X with rows Xi for i ∈ G. We also consider the mean of G in X, denoted
by

µG = 1
|G|

∑
i∈G

µi, (6.3)

and its empirical counterpart
X̄G = 1

|G|
∑
i∈G

Xi. (6.4)

From now on, we use the notation M = (Mij)ij to denote real matrices. Let C be a
clustering algorithm, x a realization of the random variable X and Ĉ1, Ĉ2 an arbitrary
pair of clusters in C(x). The goal of post-clustering inference is to assess the null hypothesis

H
{Ĉ1,Ĉ2}
0 : µĈ1

= µĈ2
(6.5)

by controlling the selective type I error for clustering at level α, i.e. by ensuring that

P
H

{Ĉ1,Ĉ2}
0

(
reject H{Ĉ1,Ĉ2}

0 based on X at level α
∣∣∣∣ Ĉ1, Ĉ2 ∈ C(X)

)
≤ α ∀α ∈ [0, 1].

(6.6)
The ideal scenario to define a p-value for (6.5) satisfying (6.6) would be to only condition
on the event {Ĉ1, Ĉ2 ∈ C(X)}, which is the broader conditioning set that allows selective
type I error control. However, making the p-value analytically tractable often needs the
refinement of the conditioning set by adding more technical events (see Section 6.4). In
[104], the authors consider a test statistic of the form ∥X̄Ĉ1

− X̄Ĉ2
∥2 and introduce the

quantity

p(x;
{
Ĉ1, Ĉ2

}
) = P

H
{Ĉ1,Ĉ2}
0

(
∥X̄Ĉ1

− X̄Ĉ2
∥2 ≥ ∥x̄Ĉ1

− x̄Ĉ2
∥2
∣∣∣∣ Ĉ1, Ĉ2 ∈ C(X),

π⊥
ν(Ĉ1,Ĉ2)X = π⊥

ν(Ĉ1,Ĉ2)x , dir
(
X̄Ĉ1

− X̄Ĉ2

)
= dir

(
x̄Ĉ1
− x̄Ĉ2

))
, (6.7)

where π⊥
ν = In − ννT /∥ν∥22, dir(u) = u/∥u∥21 {u ̸= 0} and the components of ν(Ĉ1, Ĉ2)

are defined as
ν(Ĉ1, Ĉ2)i = 1

{
i ∈ Ĉ1

}
/|Ĉ1| − 1

{
i ∈ Ĉ2

}
/|Ĉ2|. (6.8)

Theorem 1 in [104] proves that (6.7) is a p-value for (6.5). Moreover, if C is a hierarchical
clustering algorithm the p-value (6.7) can be explicitly characterized and efficiently com-
puted for several types of linkages. Otherwise, it can be approximated with a Monte Carlo
procedure.
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Here, we aim at extending (6.7) for the general model (6.2). The main idea is to replace
the norm ∥·∥2 in the test statistic by the more general norm

∥x∥VĈ1,Ĉ2
=
√
xTV−1

Ĉ1,Ĉ2
x, ∀x ∈ Rp, (6.9)

where VĈ1,Ĉ2
∈ Mp×p(R) integrates the information about the scale matrices in (6.2).

Let us first introduce some notation. For a pair of non-overlapping groups of observations
G1,G2 ⊆ {1, . . . , n}, we define the p(|G1|+ |G2|) column vector

XG1,G2 = (vec(XT
G1), vec(XT

G2)), (6.10)

which concatenates the column vectors of observations in G1 with the ones in G2. Simi-
larly, we denote as UG1,G2 the principal submatrix of U containing the rows and columns
in G1 ∪ G2. Finally, we consider DG1,G2 ∈ Mp×p(|G1|+|G2|) the linear operator verifying
DG1,G2XG1,G2 = X̄G1 − X̄G2 , that we can write explicitly as the block matrix

DG1,G2 =
(

1
|G1|Ip

|G1|
· · · 1

|G1|Ip −
1

|G2|Ip
|G2|
· · · − 1

|G2|Ip
)
. (6.11)

We can now define the matrix VG1,G2 in (6.9) as

VG1,G2 = DG1,G2(UG1,G2 ⊗Σ)DT
G1,G2 , (6.12)

where ⊗ denotes the Kronecker product of matrices. Note that (6.9) is a well-defined norm
if and only if VG1,G2 is a positive definite matrix, which here is guaranteed as DG1,G2 has
full rank and U and Σ are positive definite [127]. The following result extends Theorem
1 in [104] by proving that the quantity

pVĈ1,Ĉ2
(x;

{
Ĉ1, Ĉ2

}
) = P

H
{Ĉ1,Ĉ2}
0

(
∥X̄Ĉ1

− X̄Ĉ2
∥VĈ1,Ĉ2

≥ ∥x̄Ĉ1
− x̄Ĉ2

∥VĈ1,Ĉ2

∣∣∣∣ Ĉ1, Ĉ2 ∈ C(X),

π⊥
ν(Ĉ1,Ĉ2)X = π⊥

ν(Ĉ1,Ĉ2)x , dirVĈ1,Ĉ2

(
X̄Ĉ1

− X̄Ĉ2

)
= dirVĈ1,Ĉ2

(
x̄Ĉ1
− x̄Ĉ2

))
,

(6.13)

where dirVĈ1,Ĉ2
(u) = u/∥u∥VĈ1,Ĉ2

1 {u ̸= 0}, is a computationally tractable p-value for
(6.5) that controls the selective type I error rate for arbitrary dependence structures U,Σ.
Theorem 6.2.1. Let x be a realization of X and G1,G2 ∈ P({1, . . . , n}) with G1 ∩G2 = ∅.
Then, pVG1,G2

(x; {G1,G2}) is a p-value for the test H{G1,G2}
0 : µG1 = µG2 that controls the

selective type I error for clustering (6.6) at level α. Furthermore, it satisfies

pVG1,G2
(x; {G1,G2}) = 1− Fp

(
∥x̄G1 − x̄G2∥VG1,G2

, SVG1,G2
(x; {G1,G2})

)
, (6.14)

where Fp(t,S) is the cumulative distribution function of a χp random variable truncated
to the set S and

SVG1,G2
(x; {G1,G2}) =

{
ϕ ≥ 0 : G1,G2 ∈ C

(
π⊥
ν(G1,G2)x+ ϕ

1
|G1| + 1

|G2|

 ν(G1,G2)dirVG1,G2
(x̄G1 − x̄G2)

 . (6.15)
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Theorem 6.2.1 is proved in Appendix D.1. One can easily verify that replacing U = In
and Σ = σ2Ip in Theorem 6.2.1 yields exactly Theorem 1 in [104]. The only difference is
that, here, the information about the variance has been extracted from the statistic null
distribution, which now remains the same independently of U,Σ, and moved it into the
test statistic itself by making it dependent on the scale matrices. Note that this formulation
replaces the Euclidean distance considered in [104] by the Mahalanobis distance [184].
Recall that, if x, y ∈ Rp and P is a probability distribution supported on Rp with covariance
matrix C, the Mahalanobis distance between x and y with respect to P is given by ∥x−y∥C ,
where ∥·∥C is defined as (6.9). Consequently, the formulation in Theorem 6.2.1 corresponds
to consider as statistic the Mahalanobis distance between the empirical means X̄Ĉ1

and
X̄Ĉ2

with respect to the null distribution of their difference X̄Ĉ1
−X̄Ĉ2

, which is a centered
multivariate normal of covariance matrix VĈ1,Ĉ2

(see proof of Theorem 6.2.1). That
distance generalizes to multiple dimensions the idea of quantifying how many standard
deviations away a point is from the mean of its distribution, and therefore integrates the
dependence structure between columns and rows in X.

Analogously, computing the p-value (6.13) depends only on the characterization of the
one-dimensional set

ŜVĈ1,Ĉ2
= SVĈ1,Ĉ2

(x;
{
Ĉ1, Ĉ2

}
) =

{
ϕ ≥ 0 : Ĉ1, Ĉ2 ∈ C

(
x′

VĈ1,Ĉ2
(ϕ)
)}

, (6.16)

where SVĈ1,Ĉ2
(x, ·) is defined in (6.15) and where

x′
VĈ1,Ĉ2

(ϕ) = π⊥
ν(Ĉ1,Ĉ2)x +

 ϕ
1

|Ĉ1| + 1
|Ĉ2|

 ν(Ĉ1, Ĉ2)dirVĈ1,Ĉ2
(x̄Ĉ1

− x̄Ĉ2
). (6.17)

The set (6.17) is the analogous set of x′(ϕ) in [104, Equation (13)] for the norm (6.9), and
its interpretation is equivalent. Indeed, we can rewrite both x′(ϕ) and (6.17) as

x′(ϕ) = x + ν(Ĉ1, Ĉ2)
∥ν(Ĉ1, Ĉ2)∥22

(
ϕ− ∥x̄Ĉ1

− x̄Ĉ2
∥2
)

dir(x̄Ĉ1
− x̄Ĉ2

), (6.18)

x′
VĈ1,Ĉ2

(ϕ) = x + ν(Ĉ1, Ĉ2)
∥ν(Ĉ1, Ĉ2)∥22

(
ϕ− ∥x̄Ĉ1

− x̄Ĉ2
∥VĈ1,Ĉ2

)
dirVĈ1,Ĉ2

(x̄Ĉ1
− x̄Ĉ2

). (6.19)

Consequently, we can interpret (6.17) as a perturbed version x′(ϕ) of x, but where the
perturbation is based on the norm (6.9) instead of ∥·∥2, i.e. the points are pulled apart
or pushed together using ∥x̄Ĉ1

− x̄Ĉ2
∥VĈ1,Ĉ2

as a reference instead of ∥x̄Ĉ1
− x̄Ĉ2

∥2. Thus,
the set (6.16) is analogously defined as the set of non-negative ϕ for which applying the
clustering algorithm C to the perturbed data set x′

VĈ1,Ĉ2
(ϕ) yields Ĉ1 and Ĉ2. As shown

in [104], the set
Ŝ =

{
ϕ ≥ 0 : Ĉ1, Ĉ2 ∈ C(x′(ϕ))

}
, (6.20)

can be explicitly characterized for hierarchical clustering. Fortunately, we don’t need to
re-adapt the work in [104] to the set (6.16), as its points are given by a scale transformation
of the points in Ŝ.
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Lemma 6.2.2. Let x be a realization of X and Ĉ1, Ĉ2 an arbitrary pair of clusters in
C(x). Let Ŝ denote the set (6.20) defined in [104, Equation (12)]. Then,

ŜVĈ1,Ĉ2
=
∥x̄Ĉ1

− x̄Ĉ2
∥VĈ1,Ĉ2

∥x̄Ĉ1
− x̄Ĉ2

∥2
Ŝ, (6.21)

where ŜVĈ1,Ĉ2
is defined in (6.16).

Consequently, the work in [104, Section 3] can be applied here to characterize the set
(6.16) and, therefore, to compute the p-value defined in (6.13). An explicit character-
ization of (6.16) is possible when C is a hierarchical clustering algorithm with squared
Euclidean distance, along with either single linkage or a linkage satisfying a linear Lance-
Williams update [104, Equation 20], e.g. average, weighted, Ward, centroid or median
linkage functions. Otherwise, the p-value (6.13) can be approximated with a Monte Carlo
procedure, adapting the importance sampling approach presented in [104, Section 4.1].
Following the same notation, we sample

ω1, . . . , ωN
i.i.d.∼ N

(
∥x̄Ĉ1

− x̄Ĉ2
∥VĈ1,Ĉ2

, 1
)

and approximate (6.13) as

pVĈ1,Ĉ2
(x;

{
Ĉ1, Ĉ2

}
) ≈

∑N
i=1 πi 1

{
ωi ≥ ∥x̄Ĉ1

− x̄Ĉ2
∥VĈ1,Ĉ2

, Ĉ1, Ĉ2 ∈ C(x′(ωi))
}

∑N
i=1 πi 1

{
Ĉ1, Ĉ2 ∈ C(x′(ωi))

} , (6.22)

for πi = f1(ωi)/f2(ωi), where f1 is the density of a χp random variable, and f2 is the
density of a N (∥x̄Ĉ1

− x̄Ĉ2
∥VĈ1,Ĉ2

, 1) random variable.

6.3 Unknown dependence structures
The selective inference framework introduced for model (6.2) in Section 6.2 assumes that
both scale matrices U and Σ are known, which is a quite unrealistic scenario. Under the
independence assumption made in [104], where Σ = σ2Ip and U = In, the authors showed
in Theorem 4 that over-estimating σ yields asymptotic control of the selective type I error,
and provided such an estimator σ̂ that can be used in practice. Under the general model
(6.2), the scale matrices U and Σ are non-identifiable:

X ∼MN np(µ,U,Σ)⇔ vec(X) ∼ Nnp(vec(µ),U⊗Σ). (6.23)

This makes their simultaneous estimation an arduous task in practice. Non-unique Maxi-
mum Likelihood Estimates (MLE) exist for U and Σ [84], which depend on each other and
can be computed through an iterative algorithm. However, even in the unlikely scenario
where we had access to enough realizations of X, the interdependence of the computed
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MLEs would still prevent us from assessing the control of selective type I error after esti-
mation. In this Section, we investigate the situation where only one of the scale matrices
is known, and assess theoretical conditions that allow asymptotic control of the selective
type I error when estimating the other one. We also provide an estimator that satisfies
these conditions for some common dependence models.

Let us recall that, for the model (6.2), we have

X ∼MNn×p(µ,U,Σ)⇔ XT ∼MNp×n(µT ,Σ,U). (6.24)

Therefore, the methods presented in this Section can be equally applied to estimate U
or Σ when the other is known, by transposing X if needed. From now on, we assume
that the dependence structure between observations U is known, and study under which
conditions we can suitably estimate Σ. In other words, if Σ̂(x) is an estimate of Σ for a
given realization x of X, we study under which conditions the p-value

pV̂G1,G2
(x; {G1,G2}) = 1− Fp

(
∥x̄G1 − x̄G2∥V̂G1,G2

; SV̂G1,G2
(x; {G1,G2})

)
, (6.25)

where V̂G1,G2 = DG1,G2(UG1,G2 ⊗ Σ̂(x))DT
G1,G2

, asymptotically controls the selective type I
error. Theorem 6.3.1 generalizes Theorem 4 in [104] for the estimation of Σ under model
(6.2) by relying on the Loewner partial order, defined below. The proof is included in
Appendix D.2.

Definition 6.3.1 (Definition 7.7.1 in [127]). Let A,B be two square matrices of equal
size. The binary relation A ⪰ B if and only if A,B are Hermitian and A− B is positive
semidefinite is called the Loewner partial order between square matrices.

Theorem 6.3.1. For n ∈ N, let X(n) ∼MNn×p(µ(n),U(n),Σ). Let x(n) be a realization
of X(n) and Ĉ

(n)
1 , Ĉ

(n)
2 a pair of clusters estimated from x(n). Let ⪰ denote the Loewner

partial order between square matrices [127], i.e. A ⪰ B if and only if A,B are Hermitian
and A−B is positive semidefinite. If Σ̂

(
X(n)

)
is a positive definite estimator of Σ such

that
lim
n→∞

P
H

{
Ĉ

(n)
1 ,Ĉ

(n)
2

}
0

(
Σ̂
(
X(n)

)
⪰ Σ

∣∣∣∣ Ĉ(n)
1 , Ĉ

(n)
2 ∈ C

(
X(n)

))
= 1, (6.26)

then, for any α ∈ [0, 1], we have

lim sup
n→∞

P
H

{
Ĉ

(n)
1 ,Ĉ

(n)
2

}
0

(
pV̂

Ĉ
(n)
1 ,Ĉ

(n)
2

(
X(n);

{
Ĉ

(n)
1 , Ĉ

(n)
2

})
≤ α

∣∣∣∣ Ĉ(n)
1 , Ĉ

(n)
2 ∈ C

(
X(n)

))
≤ α,

(6.27)
where pV̂

Ĉ
(n)
1 ,Ĉ

(n)
2

is defined in (6.25).

Note that the Loewner partial order is a natural extension to Hermitian matrices of
the usual order in R. If we replace Σ by σ2Ip in Theorem 6.3.1, the condition Σ̂ ⪰ Σ
becomes σ̂ ≥ σ, as in [104, Theorem 4]. We aim now at providing an estimator of Σ
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satisfying the conditions in Theorem 6.3.1. The asymptotic properties of such an estimator
strongly depend on the asymptotic dependence structure between observations, given by
the sequence of matrices {U(n)}n∈N of Theorem 6.3.1. Let us first consider

Σ̂ = Σ̂ (X) = 1
n− 1

(
X− X̄

)T
U−1

(
X− X̄

)
, (6.28)

where X̄ is a n× p matrix having as rows the mean across rows of X, i.e.

X̄ = 1n ⊗
1
n

n∑
k=1

Xk, (6.29)

where 1n is a column n-vector of ones. We can also write (6.28) element-wise:

Σ̂ij = 1
n− 1

n∑
l,s=1

(
Xli − X̄i

) (
U−1

)
ls

(
Xsj − X̄j

)
, ∀ i, j ∈ {1, . . . , p} , (6.30)

where X̄i = 1
n

∑n
k=1Xki. Note that the estimator Σ̂ is a positive definite matrix if the

matrix X− X̄ has full rank. In that case, (6.28) satisfies the conditions of Theorem 6.3.1
if we make some assumptions about how the matrices µ(n) and U(n) in Theorem 6.3.1
grow up as n increases. We first adopt the assumptions about {µ(n)}n∈N made in [104] to
prove the equivalent of Theorem 6.3.1 for the independence scenario.

Assumption 2 (Assumptions 1 and 2 in [104]). For all n ∈ N, there are exactly K∗

distinct mean vectors among the first n observations, i.e.{
µ

(n)
i

}
i=1,...,n

= {θ1, . . . , θK∗} . (6.31)

Besides, the proportion of the first n observations that have mean vector θk converges to
πk > 0, i.e.

lim
n→∞

1
n

n∑
i=1

1
{
µ

(n)
i = θk

}
= πk, (6.32)

for all k ∈ {1, . . . ,K∗}, where ∑K∗
k=1 πk = 1.

If observations are independent and we set U(n) = In, Assumption 2 is the only
requirement for (6.28) to asymptotically over-estimate Σ in the sense of Theorem 6.3.1.
However, for general U(n), the quantities

1
n

n∑
l,s=1

(
U (n)

)−1

ls
1{µ(n)

l = θk}1{µ(n)
s = θk′} (6.33)

are also required to converge as n tends to infinity. Furthermore, we need to know its
limit explicitly to assess whether Σ̂ ⪰ Σ asymptotically. This requires relatively strong
conditions on the sequence {U(n)}n∈N that can be difficult to verify for a given model of
dependence, as well as an additional mild condition on the sequence {µ(n)}n∈N, needed
for non-diagonal U(n). Let’s begin by stating the latter.
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Assumption 3. If U(n) is non-diagonal for all n ∈ N, for any k, k′ ∈ {1, . . . ,K∗}, the
proportion of the first n observations at distance r ≥ 1 in X(n) having means θk and θk′

converges, and its limit converges to πkπk′ when the lag r tends to infinity. More precisely,

lim
n→∞

1
n

n−r∑
i=1

1 {µi = θk} 1 {µi+r = θk′} = πrkk′ −→
r→∞

πk πk′ . (6.34)

Note that we are asking the proportion of pairs of observations having a given a pair
of means to approach the product of individual proportions (6.32) when both observations
are far away in X(n). Stronger conditions need to be imposed to the sequence {U(n)}n∈N.
Together with Assumptions 2 and 3, the following Assumption is a sufficient condition for
(6.33) to converge with tractable limit.

Assumption 4. Let
{

U(n)
}
n∈N

be a sequence of real positive definite matrices, and let
(U (n))−1

ij denote the i, j entry of (U(n))−1 for any n ∈ N. Then, every superdiagonal of
(U(n))−1 defines asymptotically a convergent sequence, whose limits sum up to a real value.
More precisely, for any i ∈ N and any r ≥ 0,

lim
n→∞

(
U (n)

)−1

i i+r
= Λi i+r, where lim

i→∞
Λi i+r = λr and

∞∑
r=0

λr = λ ∈ R. (6.35)

Moreover, for each r ≥ 0, the sequence
{

(U (n))−1
i i+r

}
n∈N

satisfies any of the following
conditions:

(i) It is dominated by a summable sequence i.e.
∣∣∣∣(U (n)

)−1

i i+r
− Λi i+r

∣∣∣∣ ≤ αi ∀n ∈ N, with
{αi}∞i=1 ∈ ℓ1,

(ii) For each i ∈ N, it is non-decreasing or non-increasing.

If Assumptions 2, 3 and 4 hold for a given pair of sequences {µ(n)}n∈N, {U(n)}n∈N,
the following result ensures that (6.28) asymptotically over-estimates (in the sense of the
Loewner partial order) the dependence structure Σ between features.

Proposition 6.3.2. Let X(n) ∼ MNn×p(µ(n),U(n),Σ), where µ(n) and U(n) satisfy As-
sumptions 2, 3 and 4 for some K∗ > 1. Let Σ̂ be the estimator defined in (6.28). Then,

lim
n→∞

P
(
Σ̂
(
X(n)

)
⪰ Σ

)
= 1. (6.36)

The proof of Proposition 6.3.2 makes use of the following Lemma, that makes explicit
the need of Assumptions 2, 3 and 4. Both results are proved in Appendix D.2.

Lemma 6.3.3. Let X(n) ∼MNn×p(µ(n),U(n),Σ), where µ(n) and U(n) satisfy Assump-
tions 2, 3 and 4 for some K∗ > 1. Then,

lim
n→∞

1
n

n∑
l,s=1

(
U (n)

)−1

ls
1{µ(n)

l = θk}1{µ(n)
s = θk′} = 2(λ− λ0)πkπk′ + λ0πkδkk′ , (6.37)
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for any k, k′ ∈ {1, . . . ,K ′}, and where πk, πk′ and λ0, λ are defined in Assumptions 2 and
4 respectively.

Finally, it suffices to estimate Σ using an independent and identically distributed copy
of X(n) to have (6.26) provided (6.36). Our final result comes as an immediate consequence
of the previous statement and Proposition 6.3.2.

Proposition 6.3.4. Let X(n) ∼ MNn×p(µ(n),U(n),Σ), where µ(n) and U(n) satisfy As-
sumptions 2, 3 and 4 for some K∗ > 1. Let x(n) be a realization of X(n) and Ĉ(n)

1 , Ĉ(n)
2 a

pair of clusters estimated from x(n). Let Y(n) an independent and identically distributed
copy of X(n). Then, the estimator Σ̂

(
Y(n)

)
defined in (6.28) satisfies the conditions of

Theorem 6.3.1, i.e.

lim
n→∞

P
H

{Ĉ
(n)
1 ,Ĉ

(n)
2 }

0

(
Σ̂
(
Y(n)

)
⪰ Σ

∣∣∣∣ Ĉ(n)
1 , Ĉ

(n)
2 ∈ C

(
X(n)

))
= 1. (6.38)

Assessing whether a model of dependence satisfies the hypotheses of Proposition 6.3.4
(more precisely, Assumption 4) is not trivial as it requires full knowledge of how the inverse
matrices

(
U(n)

)−1
grow up when dimension increases. However, we are able to show that

Assumption 4 is satisfied for some simple dependence models and, consequently, that
selective type I error can be controlled when Σ is estimated in such cases. The following
remarks are proved in Appendix D.2.

Remark 6.3.5 (Diagonal). Let U(n) = diag(λ1, . . . , λn). If the sequence {λn}n∈N is
convergent, then the sequence {U(n)}n∈N satisfies Assumption 4.

Remark 6.3.5 trivially covers the case of independent observations. Besides, if the
matrix X is transposed, any general dependence structure between observations U can
be estimated if independent features with known variances are provided. Another simple
model that satisfies Assumption 4 is the one defined by constant variances and covariances
(also known as compound symmetry). In that case, U(n) is the sum of a constant and a
diagonal matrix.

Remark 6.3.6 (Compound symmetry). Let a, b ∈ R with b ̸= a ≥ 0. If U(n) = b1n×n +
(a− b) In, where 1n×n is a n× n matrix of ones, then {U(n)}n∈N satisfies Assumption 4.

We can extend the complexity of U(n) to auto-regressive covariance structures of any
lag. This is mainly thanks to the fact that the inverses of such matrices are tractable and
banded, i.e. their non-zero entries are confined to a centered diagonal band. Under model
(6.2), assuming that U(n) is the covariance matrix of an auto-regressive process of order
P means that

1√
Σjj

X
(n)
ij = 1√

Σjj

P∑
s=1

βsX
(n)
i−s j + εi, ∀ j ∈ {1, . . . , p}, (6.39)
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where {εi}i=1,...,n are i.i.d univariate centered normal variables and {βs}s=1,...,P ⊂ R are
the model coefficients. Then, for any j ∈ {1, . . . , p}, the entries of U(n) would be given by

Uii′ = Cov
(
Xij√
Σjj

,
Xi′j√

Σjj

)
, ∀i, i′ ∈ {1, . . . , n}, ∀ j ∈ {1, . . . , p}. (6.40)

If the model (6.39) is assumed, the covariance matrix U(n) and its inverse have a tractable
structure. For example, for the simplest auto-regressive process where P = 1, and the
i-th observation depends linearly only on the (i − 1)-th one, the entries of U(n) have the
form U

(n)
ij = σ2ρ|i−j|, for σ > 0. To ensure the the positive definiteness of U(n), we need

|ρ| < 1 (see the form of eigenvalues in [284]). This is equivalent to ask the the process to
be stationary. Then, the inverse of U(n) is a tridiagonal matrix of the form

(
U(n)

)−1
= 1
σ2(1− ρ2)



1 −ρ
−ρ 1 + ρ2 −ρ

−ρ . . . . . .
. . . . . . . . .

. . . 1 + ρ2 −ρ
−ρ 1


. (6.41)

The super and sub-diagonals trivially satisfy condition (i) in Assumption 4 with λ±1 =
−ρ/(1− ρ2). Then, the entries of the main diagonal define the sequences

σ2(1− ρ2)
{(
U (n)

)−1

ii

}
n∈N

=

 {1, 1, . . .} if i = 1,
{ξ1, . . . , ξi−1, 1, 1 + ρ2, 1 + ρ2, . . .} if i > 1,

for every i ∈ N, where the entries σ2(1 − ρ2) (U (n))−1
ii = ξn for i > n can be chosen as

needed. Note that these sequences do not satisfy condition (i) in Assumption 4, but they
are non-decreasing (choosing appropriately the ξk). Consequently, Assumption 4 holds
and we have Λ11 = 1/(σ2((1 − ρ2)), Λii = λ0 = (1 + ρ2)/(σ2((1 − ρ2)) for all i > 1 and,
finally, λ = (1 − ρ)2/(σ2((1 − ρ2)). For any P ≥ 1, the inverse matrices are banded with
2P + 1 non-zero diagonals and we can follow the same reasoning. However, for P > 2, we
need to require the coefficients β1, . . . , βP to have the same sign.

Remark 6.3.7 (Auto-regressive). Let U(n) be the covariance matrix of an auto-regressive
process of order P ≥ 1 such that, if P > 2, βkβk′ ≥ 0 for all k, k′ ∈ {1, . . . , P}. Then, the
sequence {U(n)}n∈N satisfies Assumption 4.

6.4 Non-maximal conditioning sets
The methodology presented in Section 6.2 sets up the framework to perform selective infer-
ence after hierarchical clustering. Exploring its adaptation to further clustering algorithms
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involves, as shown in [51], the redefinition of p-values by constraining the conditional event
that define (6.7) and (6.13). In this Section, we revisit the procedure of post-clustering
inference introduced in Section 6.2 and rewrite it in a more general form that allows its
straightforward adaptation to the scenario where more conditioning is imposed.

When defining a p-value for (6.5) that controls the selective type I error (6.6), one
may think on conditioning only on having selected the pair of clusters that define the null
hypothesis, i.e. on the event

M̂12(X) = M12(X; {Ĉ1, Ĉ2}) = {Ĉ1, Ĉ2 ∈ C(X)}. (6.42)

However, this is not enough to ensure its analytical tractability. When considering a
matrix normal distribution for the p-dimensional observations, two further conditions are
imposed as shown in [104]. Following Section 6.2, this yields conditioning on the event

M̂12(X) ∩
{

π⊥
ν(Ĉ1,Ĉ2)X = π⊥

ν(Ĉ1,Ĉ2)x , dirVĈ1,Ĉ2

(
X̄Ĉ1

− X̄Ĉ2

)
= dirVĈ1,Ĉ2

(
x̄Ĉ1
− x̄Ĉ2

)}
,

(6.43)
which is the maximal event for which any analytically tractable p-value has been shown
to control (6.6) under the general model (6.2). If we denote by T̂12(X) = T12(X; {Ĉ1, Ĉ2})
the second set in (6.43), we can rewrite (6.13) as

pVĈ1,Ĉ2
(x; {Ĉ1, Ĉ2}) = P

H
{Ĉ1,Ĉ2}
0

(
∥X̄Ĉ1

− X̄Ĉ2
∥VĈ1,Ĉ2

≥ ∥x̄Ĉ1
− x̄Ĉ2

∥VĈ1,Ĉ2

∣∣∣∣
M̂12(X) ∩ T̂12(X)

)
. (6.44)

Then, from Theorem 6.2.1 and its proof we can rewrite the truncation set in (6.14) as

SVĈ1,Ĉ2
(x; {Ĉ1, Ĉ2}) =

{
ϕ ∈ R : M̂12

(
x′

VĈ1,Ĉ2
(ϕ)
)}

, (6.45)

where x′
VĈ1,Ĉ2

(ϕ) is defined in (6.17). Consequently, (6.13) is analytically tractable as

pVĈ1,Ĉ2
(x; {Ĉ1, Ĉ2}) = 1− Fp

(
∥x̄Ĉ1

− x̄Ĉ2
∥VĈ1,Ĉ2

,

{
ϕ ≥ 0 : M̂12

(
x′

VĈ1,Ĉ2
(ϕ)
)})

,

(6.46)
where Fp is defined in Theorem 6.2.1. Uncoupling M̂12(X) and T̂12(X) in (6.44) allows
us to characterize the null distribution of the p-value in terms of the conditioning event
(6.42). This is useful to study the scenarios where, for technical reasons, subsets of (6.42)
are chosen to define the p-value for (6.5). That was the case in [51], where the frame-
work of [104] under model (6.1) was adapted to perform selective inference after k-means
clustering. To allow the efficient computation of their truncation set, they conditioned
-on T̂12(X) and- on all the intermediate clustering assignments for the n observations [51,
Equation (9)], which is a subset of (6.42). In accordance with (6.45) and (6.46), this more
restrictive conditioning yielded the same p-value (6.7) as in [104] except from a different
truncation set, based on the finer conditioning event. The following result characterizes
this framework under our general model (6.2) and for any non-maximal conditioning event.
Thus, it is a generalization of Theorem 6.2.1.
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Theorem 6.4.1. Let x be a realization of X and G1,G2 ∈ P({1, . . . , n}) with G1 ∩G2 = ∅.
Let ∅ ≠ E12(X) ⊂M12(X) = M12(X; {G1,G2}), T12(X) = T12(X; {G1,G2}) and

pVG1,G2
(x; {G1,G2};E12) = P

H
{G1,G2}
0

(
∥X̄G1 − X̄G2∥VG1,G2

≥ ∥x̄G1 − x̄G2∥VG1,G2

∣∣∣∣
E12(X) ∩ T12(X)) . (6.47)

Then, pVG1,G2
(x; {G1,G2};E12) is a p-value for the test H{G1,G2}

0 : µG1 = µG2 that controls
the selective type I error for clustering (6.6) at level α. Furthermore, it satisfies

pVG1,G2
(x; {G1,G2};E12) = 1− Fp

(
∥x̄G1 − x̄G2∥VG1,G2

,
{
ϕ ≥ 0 : E12

(
x′

VG1,G2
(ϕ)
)})

,

(6.48)
where Fp(t,S) is the cumulative distribution function of a χp random variable truncated
to the set S and x′

VG1,G2
(ϕ) is defined in (6.17).

Note that, following (6.46), replacing E12(X) by M12(X) yields exactly Theorem 6.2.1.
We omit the proof of (6.48) as it is identical to the one of (6.14) in Theorem 6.2.1. The
control of the selective type I error is proved in Appendix A.2.2.

Once again, the efficient computation of (6.48) depends on the efficient computation
of the truncation set E12(x′

VG1,G2
(ϕ)). As we showed for the maximal conditioning event

in Lemma 6.2.2, it suffices to characterize the truncation set when the perturbed dataset
x′ is defined with respect to any norm.

Lemma 6.4.2. Let x be a realization of X and Ĉ1, Ĉ2 an arbitrary pair of clusters in
C(x). Let x′ denote the set (6.19) defined in [104, Equation (12)]. Then,

E12

(
x′

VĈ1,Ĉ2
(ϕ)
)

=
∥x̄Ĉ1

− x̄Ĉ2
∥VĈ1,Ĉ2

∥x̄Ĉ1
− x̄Ĉ2

∥2
E12

(
x′(ϕ)

)
. (6.49)

We omit the proof of Lemma 6.4.2 as it is identical to the one of Lemma 6.2.2. In
[51], the authors characterized E12(x′(ϕ)) when E12 are all the intermediate clustering
assignments of a k-means algorithm. That allows us once again to benefit from their
efficient computation procedure and compute the truncation set under model (6.2) using
Lemma 6.4.2. Consequently, we are able to perform selective inference after k-means
clustering when observations and features have arbitrary dependence structures. The
estimation procedure presented in Section 6.3 remains identical for this case.

6.5 Numerical experiments

This section is devoted to assess the performance of the test for the difference of cluster
means in different scenarios simulated with synthetic data. We consider the following
three settings for the scale matrices U and Σ:
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(a) U = In and Σ is the covariance matrix of an AR(1) model, i.e. Uij = σ2ρ|i−j|, with
σ = 1 and ρ = 0.5.

(b) U is a compound symmetry covariance matrix, i.e. U = b+ (a− b)In, with a = 0.5
and b = 1. Σ is a Toeplitz matrix, i.e. Σij = t(|i− j|), with t(s) = 1 + 1/(1 + s) for
s ∈ N.

(c) U is the covariance matrix of an AR(1) model with σ = 1 and ρ = 0.1. Σ is a
diagonal matrix with diagonal entries given by Σii = 1 + 1/i.

We simulate matrix normal data in settings (a), (b) and (c) and perform k-means and
hierarchical agglomerative clustering (HAC) with average, centroid, single and complete
linkages. In Section 6.5.1 we illustrate the uniformity of the p-values (6.13) under a global
null hypothesis when both scale matrices are known. In Section 6.5.2, we consider the case
where the dependence between observations is known and the covariance matrix between
features Σ is estimated. We show, as proved in Section 6.3, that p-values are super-uniform
for large enough sample sizes. Finally, in Section 6.5.3 we assess the relative efficiency of
the four linkages in terms of power, for the three dependence scenarios.

6.5.1 Uniform p-values under a global null hypothesis
To illustrate the null distribution of p-values, we followed the same steps as in [104, Section
5.1]. For n = 100 and p ∈ {5, 20, 50}, we simulated M = 2000 samples drawn from model
(6.2) in settings (a), (b) and (c) with µ = 0n×p a zero matrix, so the null hypothesis (6.5)
holds for any pair of clusters in C(X). For each simulated sample, we used k-means and
HAC to estimate three clusters and tested (6.5) for two randomly selected clusters. Results
for HAC with average linkage are displayed in Figure 6.1, where the empirical cumulative
distribution functions (ECDF) of the simulated p-values are shown. The results for k-
means and HAC with centroid, single and complete linkage are analogous to those for
average linkage and we present them in Appendix D.4.1. The p-values for HAC with
complete linkage are computed as their Monte Carlo approximation (6.22) with N = 2000
iterations. In all cases, the p-values follow a uniform distribution when the null hypothesis
(6.5) holds, excluding a slight deviation from uniformity found for HAC with complete
linkage under (c). The reasons explaining this deviation rely on the difficulty of simulating
independent realizations of auto-regressive processes (see Appendix D.4.1).

6.5.2 Super-uniform p-values for unknown Σ
In this section, we illustrate that p-values (6.25) are asymptotically super-uniform when
Σ is asymptotically over-estimated in the sens of Loewner partial order, as proved in
Theorem 6.3.1. We used the estimator (6.28) that asymptotically over-estimates Σ if
Assumptions 2, 3 and 4 hold, which for the three dependence scenarios (a), (b) and (c)
is guaranteed following Remarks 6.3.5, 6.3.6 and 6.3.7 respectively. The estimate was
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Figure 6.1: Empirical cumulative distribution functions (ECDF) of p-values (6.13) with C
being a hierarchical clustering algorithm with average linkage. The ECDF were computed
from M = 2000 realizations of (6.2) under the three dependence settings (a), (b) and (c)
with µ = 0n×p, n = 100 and p ∈ {5, 20, 50}.

computed using an independent and identically distributed copy of the sample where the
clustering was performed, following Proposition 6.3.4.

We followed the same steps as in [104, Section D.1]. For n = 500 and p = 10, we
simulated M = 5000 samples drawn from (6.2) in settings (a), (b) and (c) with µ being
divided into two clusters:

µij =

 δ
j if i ≤ n

2 ,

− δ
j otherwise,

∀ i ∈ {1, . . . , n}, ∀ j ∈ {1, . . . , p}, (6.50)

with δ ∈ {4, 6}. For k-means and HAC with average, centroid, single and complete
linkage we set C to chose three clusters. Then, we kept the samples for which (6.5) held
when comparing two randomly selected clusters. Results for HAC with average linkage
are presented in Figure 6.2. The results for k-means and HAC with centroid, single and
complete linkage are analogous and we present them in Appendix D.4.2. All simulations
illustrate the asymptotic super-uniformity of p-values (6.13) under the null hypothesis,
when Σ is asymptotically over-estimated using (6.28). Moreover, as the distance between
clusters δ decreases, the over-estimation is less severe and the null distribution of p-values
approaches the one of a uniform random variable.

It is important to remark that Figure 6.2 serves only to illustrate the validity of The-
orem 6.3.1, but in no way to interpret the conservativeness of p-values when Σ is over-
estimated. The deviation from uniformity of the null distribution of (6.25) or, equivalently,
the power of the corresponding test, depends on the measure of the conditioning set, which
in Figure 6.2 is determined by the frequency of iterations satisfying (6.5).
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Figure 6.2: Empirical cumulative distribution functions (ECDF) of p-values (6.13) with C
being a hierarchical clustering algorithm with average linkage. The ECDF were computed
from M = 5000 realizations of (6.2) under the three dependence settings (a), (b) and (c)
with n = 500, p = 10 and µ given by (6.50) with δ ∈ {4, 6}. Only samples for which the
null hypothesis held were kept, as described in Section 6.5.2.

6.5.3 Power analysis
We conclude the numerical simulations on synthetic data by assessing the relative efficiency
of the five clustering algorithms considered in terms of power. As in [104, Section 5.2], we
consider the conditional power of the p-value (6.13), which is the probability of rejecting
the null (6.5) for a randomly selected pair of clusters when it holds. To estimate the
conditional power, we simulated M = 5000 samples drawn from (6.2) under the three
settings (a), (b) and (c) with µ dividing the n = 50 observations into three true clusters:

µij =


− δ

2 if i ≤ ⌊n3 ⌋,√
3δ
2 if ⌊n3 ⌋ < i ≤ ⌊2n

3 ⌋,
δ
2 otherwise,

∀ i ∈ {1, . . . , n}, ∀ j ∈ {1, . . . , p}, (6.51)

for p = 10 and 14 evenly-spaced values of δ ∈ [4, 10.5]. Then, we estimated the conditional
power as the proportion of rejections at level α = 0.05 among the samples for which
the null hypothesis (6.5) did not hold (which were above the 90% of n in all settings).
Figure 6.3 depicts the conditional power as a function of δ for the three scenarios (a), (b)
and (c) and the five considered clustering algorithms. The p-values for HAC with complete
linkage were estimated using the approximation (6.22) with N = 2000 iterations.

Figure 6.3 shows that, in all cases, conditional power increases with the distance be-
tween true clusters. Regarding HAC, we observe that average linkage presents the best
relative efficiency among the four considered linkages in all the dependence settings, fol-
lowed closely by complete linkage, which seems to weaken in (b). This might suggest that
conditional power depends on the scale matrices and some scenarios might strongly differ
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Figure 6.3: Conditional power for the test proposed in Section 6.2 under model (6.2) with
the three dependence settings (a), (b) and (c) and the mean matrix defined in (6.51). The
conditional power is estimated as the proportion of rejection at level α = 0.05 among the
subset of the M = 5000 realizations of (6.2) for which the null hypothesis (6.5) holds.

from the overall observed behavior. Indeed, the qualitative difference between average or
complete linkage and centroid or single linkage that is observed in (a) and (c) consider-
ably lessens in (b). In (a) and (c), the performance of single linkage is undoubtedly the
lowest, and large differences between clusters are required to attain satisfactory levels of
conditional power. However, single linkage shows the second best performance in (b).

The relative efficiency of the k-means algorithm in terms of conditional power is one
of the worst among all the considered algorithms. This behavior was already pointed out
by the authors in [51], that referred to the fact that conditioning on too much information
entails a loss of power [141, 181, 50, 97]. Recall that the truncation set for k-means
post-clustering inference defined in [50] is non-maximal to allow its efficient computation
(see Section 6.4 and [51, Equation (9)]). This approach, although respecting the selective
type I error as shown in Theorem 6.4.1, sacrifices the efficiency in terms of power of the
corresponding test as illustrated in Figure 6.3.

6.6 Application to clustering of protein structures

Proteins are dynamic molecules essential in all living organisms. Their numerous functions
are closely related to their non-static structure, which exhibits high variability within
numerous protein families [175, 265, 88]. The characterization of such intrinsic structural
complexities represents a highly active area of research in the field of Structural Biology. In
this pursuit, clustering methods of protein conformations have provided valuable insights
into this challenging problem [59, 8]. One of the main descriptors that are considered to
characterize a conformation is the set of pairwise Euclidean distances between every pair
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Figure 6.4: Average pairwise distances between every pair of amino acids across the confor-
mations of each cluster. The clusters were found after performing hierarchical clustering
with average linkage on the protein data presented in Section 6.6.

of amino acids along the protein sequence [229, 213, 167], usually referred to as distance
maps. As these distances are strongly correlated, assuming a constant diagonal covariance
matrix as in [104] seems very unrealistic. Instead, we opt for the more convenient model

X ∼MN n×p(µ, In,Σ), (6.52)

where Σ can be estimated using (6.28). Each row of X corresponds to a protein confor-
mation, featured by a vector of Euclidean distances between every pair of amino acids,
which constitute the columns of X. We performed hierarchical agglomerative clustering
with average linkage (as it showed the best relative efficiency in Section 6.5.3) to estimate
six clusters among n = 2000 conformations of the protein ensemble Hst5. The correspond-
ing sequence is 24 amino acids long, so p = 23 · 24/2 = 276. Data were simulated with
Flexible-Meccano [219, 21] and refined using previously reported SAXS data [253]. Note
that Flexible-Meccano is a sampling algorithm that simulates independent conformations,
contrary to Molecular Dynamics simulation techniques that present temporal dependence
between observations. This justifies our choice of U = In. Moreover, we had access to an
independent replica of the simulated ensemble that we used to estimate Σ, as it is usual
for generated protein ensembles. Figure 6.4 shows the average distance map across all con-
formations in a given cluster or, in other words, the empirical cluster means X̄Ĉ1

, . . . , X̄Ĉ6
as defined in (6.4). Table 6.1 presents the p-values corresponding to every pair of clusters,
corrected for multiple testing using Holm adjustment [125].
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Cluster 1 2 3 4 5

2 2.187589·10−4

3 3.039844·10−11 1.41·10−3

4 1.070993·10−10 0.300540 2.98464·10−4

5 3.038979·10−16 0.093018 6.015797·10−5 0.105446
6 1.729616·10−6 0.010612 9.290826·10−9 2.105·10−3 5.624624·10−5

Table 6.1: p-values (6.13) computed under model (6.52) retrieved after testing (6.5) on
the protein data presented in Section 6.6. The hierarchical clustering algorithm was set
to find six clusters using average linkage. In blue, p-values that do not reject the null at
level α = 0.05.
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Figure 6.5: HAC dendogram for the Hst5 protein ensemble data, with the six estimated
clusters marked with colored rectangles.

The p-values presented in Table 6.1 show significant differences between the most part
of the average distance maps depicted in Figure 6.4. It is interesting to look at the non-
rejecting pair of clusters at level α = 0.05, marked in blue in Table 6.1, that might suggest
that clusters 2, 4 and 5 could be merged into a single group. Indeed, when looking at
the corresponding empirical means X̄Ĉ2

, X̄Ĉ4
in Figure 6.4, we appreciate that these two

clusters are characterized by high distances between pair of amino acids far away from each
other in the sequence, which indicate a lack of interactions between the sequence termini
and a more extended structure of the corresponding conformations. This feature appears
as an exclusive and prominent characteristic of clusters 2, 4 and 5, which might explain
the non-rejection of the corresponding nulls. For the rest of rejecting pairs of clusters,
clear differences in distance patterns are retrieved in Figure 6.4, accounting for significant
changes on Hst5 structure between the corresponding groups. Results in Table 6.1 are
coherent with the HAC dendogram, presented in Figure 6.5, showing that clusters 2, 4,
and 5 form a subgroup that is promptly separated from the rest.
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6.7 Discussion

The seminal work [104] laid the foundation for selective inference after clustering by in-
troducing the theoretical framework allowing to test differences between cluster means,
conditioning on having estimated those clusters. Furthermore, the authors tackled the
problem of estimating unknown parameters while controlling the selective type I error,
which had been overlooked in previous works [173, 243] but is crucial for the practical ap-
plication of this theory. Their contribution paved the way into extending post-clustering
inference to more general frameworks that arise in complex real applications, where ob-
servations or features present non-negligible dependence structures. In this Chapter, we
generalize the model considered in [104] to non-independent observations and features, as
well as the adequate estimation of the dependence structure, from the uni-dimensional
case in [104] to the matrix framework presented here. These extensions, presented in Sec-
tions 6.2 and 6.3 respectively, and numerically illustrated in Sections 6.5 and 6.6, represent
the main contributions of this Chapter.

The theoretical framework presented in Section 6.2 covers any known dependence struc-
ture for observations and features. The main idea is to replace the Euclidean norm in [104]
by the Mahalanobis distance with respect to the null distribution of the difference of means
(6.9) to define the test statistic (Theorem 6.2.1). This removes the information about the
variance from the statistic null distribution, which is now independent of U and Σ. Al-
though the simultaneous estimation of both scale matrices Σ and U is difficult to manage
under (6.2), we have to set the framework allowing the estimation of one of them when
the other is known. The key idea is to redefine the asymptotic over-estimation in terms
of the Loewner partial order, which maintains the asymptotic control of the selective type
I error (Theorem 6.3.1). Following Proposition 6.3.4, an i.i.d. copy of X is required to
estimate Σ. Resorting to data splitting here is unfeasible if U is not block diagonal with
identical blocks. Nevertheless, in numerous practical applications several copies of X are
naturally available, as it is the case in the analysis of simulated protein ensembles pre-
sented in Section 6.6. To allow post-clustering inference in real scenarios, we provided an
estimator of Σ that asymptotically over-estimates Σ when U satisfies Assumptions 2, 3
and 4. Future work would consist on showing that these assumptions are satisfied for new
models of dependence between observations, besides the one presented in Remarks 6.3.5,
6.3.6 and 6.3.7.

A model that generalizes the auto-regressive structure is the Toeplitz covariance ma-
trix, whose entries depend only in the distance to the main diagonal Uij = t(|i−j|), where
t is any real-valued function. Assessing whether the inverse of U(n) satisfies the conditions
in Assumption 4 is challenging and we were not able to state so in general. Extensive work
has been done on the asymptotic behavior of continuous functions of Toeplitz matrices
[108]. However, it mainly concerns their average behavior rather than their element-wise
one. Further results more adapted to our problem appear if we impose U(n) to be banded.
In that case, the entry-wise convergence of the elements

(
U(n)

)−1

i i+r
has been assessed in
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[62] for the tridiagonal case. This, together with the exponential decay of the entries of
banded matrices [79], is enough to prove the first part of Assumption 4 for tridiagonal
Toeplitz matrices. Unfortunately, the existing results do not ensure that any of the condi-
tions (i) or (ii) in Assumption 4 holds. Assessing that remaining step is mathematically
very challenging and it is out of the scope of the present Chapter.

Clustering is a multidimensional method that incorporates information from p descrip-
tors to classify n observations. However, the encountered groups are often distinguished
by a subset of variables, whose determination is essential in various fields of applica-
tion [215, 295]. The framework presented in [104] was adapted to feature-level post-
clustering inference in [121], testing for the difference of the g-th coordinate of cluster
means, for a fixed g ∈ {1, . . . , p}. In that case, clustering is performed on the complete
dataset X but the inference is carried out on the g-th column, modelled by a n-dimensional
Gaussian of covariance matrix σ2

gIn, for a σg > 0. Note that the possible dependence
structure between features is not taken into account for inference, but only the covariance
between observations. Following a similar reasoning as in [104], the authors in [121] define
a p-value that controls the selective type I error, but whose efficient analytic computation is
not proposed, resorting to Monte Carlo approximation. Following the strategy presented
here, adapting the framework of [121] to arbitrary dependence between observations is
straightforward, but it would entail the same limitations regarding the efficient computa-
tion of the p-value. The analytical determination of the truncation set would be a highly
valuable contribution. Additionally, the non-trivial extension of the over-estimation strat-
egy presented in Section 6.3 to this framework would be essential to allow the practical
implementation of the feature-level selective test.

Another potential avenue for exploration would involve adapting the efficient compu-
tation of the truncation set, as presented in [104, 51], to other clustering algorithms. The
combination of dimensionality reduction algorithms, such as t-SNE [294] and UMAP [199],
with clustering techniques has gained immense popularity in various fields of Biology due
to its remarkable empirical efficiency [59, 82, 8, 83, 15, 2]. A notable contribution would
be to develop methods that avoid computationally expensive Monte Carlo approximations
and efficiently compute the truncation set in scenarios where, for example, C represents
the composition of a dimensionality reduction algorithm with hierarchical or k-means
clustering.

As discussed in Section 6.4, performing analytically tractable post-clustering inference
needs the addition of technical events to the conditioning set, paying a price in power.
Investigating whether these conditions might be relaxed is an interesting path for future
research. The problem of power loss due to extra conditioning is not exclusive to this
method. Techniques like data fission [173] need to calibrate the conditioning information
and consequences in terms of power are analogous. However, it is still unknown whether
power loss is more drastic in one method or the other. A substantial contribution would be
to establish a framework allowing for a proper comparison of this effect when performing
post-clustering inference using data fission and the approach proposed in [104]. Never-
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theless, extending this comparison to practical applications would be unfeasible as long
as the estimation of the covariance structure with statistical guarantees cannot be carried
out in both methods.

Software availability
The methods introduced in the present Chapter are implemented in the R package PCIdep,
available at https://github.com/gonzalez-delgado/PCIdep. The package makes use of the
R package clusterpval, providing the approaches of [104], and the R package KmeansInference,
providing the approaches of [51].
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Chapter 7

WARIO: Weighted families of
contact maps to characterize
conformational ensembles of

(highly-)flexible proteins

The high conformational variability of flexible proteins makes their structural char-
acterization a non-trivial task. Commonly used approaches to describe proteins
based on a single structure are unsuitable in this context. Although some ex-
tensions have been proposed based on average-based techniques, their practical
applicability remains limited to proteins that fluctuate around a stable conforma-
tion, but they are not capable of disentangling the underlying the variability of
the highly-flexible system such as intrinsically disordered proteins. This Chapter
proposes to extend the classical contact maps to the ensemble framework by incor-
porating the intrinsic probabilistic nature of disordered proteins. In that regard,
an ensemble is characterized through a weighted family of contact maps. To do so,
conformations are first described with a refined definition of contact that suitably
accounts for the geometry of the inter-residue interactions and the sequence con-
text. Then, a clustering algorithm is performed to retrieve representative groups.
The performance of the method is illustrated through its application to characterize
conformational ensembles of highly flexible proteins and compare it to other exist-
ing approaches. Its implementation as an easy-to-use Jupyter notebook is available
at https://gitlab.laas.fr/moma/WARIO.
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7.1 Introduction
Proteins are dynamic molecules essential in all living organisms. In many cases, their
functions are intricately linked to their non-static structure, which can exhibit signif-
icant variability within large protein families, such as intrinsically disordered proteins
(IDPs) [175, 265, 88]. Therefore, understanding the relationship between protein sequence
and functional spectrum requires a suitable characterization of their structural behavior.
Contact and distance maps have served as one of the main tools for characterizing the
structure of rigid proteins [229, 213, 275], demonstrating their suitability to detect struc-
tural domains [250, 164, 255, 137]. More recently, contact maps have become the key
tool of numerous Machine Learning models for structure prediction [116, 317, 4, 145, 304,
302, 233, 91, 52]. Indeed, contact maps provide a simplified and reliable representation
of the protein structure and, consequently, their accurate prediction can assist de novo
protein modeling [111]. However, the highly variable structural features that disordered
systems exhibit are very unlikely to be captured by classical contact maps. Their naive
extension to conformational ensembles, consisting on estimating contact probabilities by
averaging binary contacts across every conformation, has been used to describe interaction
propensities in ordered systems [201, 312, 112, 57]. However, in the presence of structural
disorder, this approach looses its suitability. More precisely, it ignores the contact patterns
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outside the diagonal that appear for sets of conformations with low occupancy. This can
be easily illustrated with an example. Figure 7.1 shows the average contact map for all the
conformations in an ensemble of CHCHD4, one of the proteins used as an example in this
work (see Section 7.3 for more explanations on this protein). Contact was defined as the
binary indicator of the pairwise Euclidean distance between Cβ atoms (Cα for glycines)
being smaller than 8Å. Following Figure 7.1, the frequency of a long-range contact among
the states of CHCHD4 is negligible. However, as it will be shown throughout this work,
this contradicts the real structural behavior of the system. In short, the methods com-
monly used to describe the structure of folded proteins are unsuitable in this context.
Consequently, the characterization of disordered ensembles represents a non-trivial task
that requires novel approaches integrating the statistical behavior of these systems.

Figure 7.1: Contact probability map for CHCHD4 ensemble. Each contact probability
is estimated as the proportion of contacts at threshold 8Å using the Euclidean distance
between the Cβ (Cα for glycine) atoms.

The methodological contributions for the characterization of conformational ensembles
may be classified into two major families: average-based approaches and clustering-based
approaches. The first family includes methods that adapt descriptors commonly applied
to folded structures by averaging them across the set of conformations. In [167], the
authors propose to use the median Cα-Cα distances and their standard deviations to con-
struct a matrix-based characterization of the ensemble. Another interesting approach is
RING [191], where structured proteins are represented as a graph with edges accounting
for the interactions between amino acids. An important feature of this work is the in-
corporation of the relative orientation between interacting residues. RING was recently
extended to its ensemble version [57] by averaging the descriptors used for the structured
case. However, reducing the high conformational variability of flexible proteins to aver-
aged descriptors yields important loss of information and hides relevant structural features.
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This phenomenon was also discussed in Chapter 5 regarding the comparison of protein
ensembles.

Clustering-based techniques constitute another important family of works in the lit-
erature, often incorporating the projection of structural descriptors into low-dimensional
spaces. In recent years, the use of advanced statistical methods has demonstrated its
potential in dealing with complex probabilistic systems that appear in various areas of Bi-
ology [126]. One of these techniques are non-linear dimensionality reduction algorithms,
such as t-SNE [294] or UMAP [199], which have shown efficient empirical performances
when identifying underlying structures in complex data [80, 81, 15, 174, 232, 83]. This mo-
tivates their combination with clustering algorithms that detect such structures and clas-
sify them into well-defined groups. Indeed, this strategy is becoming a standard technique
supported by its successful empirical efficiency [82, 2, 110, 15, 83]. Conformational spaces
can be thought as high-dimensional manifolds with non-Euclidean geometries. Conse-
quently, these techniques emerge as very attractive tools for unraveling structural features
within conformational ensembles of disordered proteins. Two recent works [8, 59] com-
bine t-SNE and UMAP with clustering algorithms to describe the structural variability of
ensembles of highly flexible proteins. The main idea is to perform clustering on the low-
dimensional space to provide representative families of conformations accounting for the
structural distribution of the ensemble. Conformations are featured by commonly-used
descriptors as all-atom coordinates and compared using RMSD [242, 186], whose suitabil-
ity to compare non-folded conformations is dubious. The same strategy of clustering Cα
coordinates based on RMSD dissimilarity was already performed in [177] to describe and
compare ensembles of globular proteins. Backbone torsion angles and Euclidean distances
between all residue pairs are also employed in [59] to feature conformations. The use of
pairwise distances as structural descriptors has been widely incorporated to characterize
protein ensembles [167, 45, 254, 130, 131]. Although being suitable to describe their over-
all structural patterns, clustering pairwise distances tends to generate clusters that match
conformations with good alignments (see e.g. [8, Figure 5]). The same occurs when com-
paring conformations using overall metrics such as RMSD. As it is shown in this Chapter,
these approaches loose the information of contacts that appear between pairs of residues in
infrequent states, and misses finer patterns that take part into the structural variability of
the ensemble. Together with Cα coordinates, inter-residue Lennard-Jones contact energies
have been also proposed in the recent work [8] to feature conformations, also compared
using RMSD.

We believe that, rather than aligning highly flexible states, a faithful characterization
of disordered ensembles should classify conformations based on how residue-residue inter-
actions manifest themselves in protein dynamics. In that regard, we opt for a strategy that
exploits the potential of contact maps but that is wisely adapted to the statistical behavior
of the system. This is done by first performing a well-adapted clustering algorithm that
unravels the underlying conformational variability of the system and then characterizing
such distribution through its representative contact motifs. We propose to characterize a
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Figure 7.2: Overview of the pipeline implementing WARIO.

conformational ensemble by a weighted family of contact maps, representing its structural
diversity through a set of contact patterns that appear with a given frequency along the
dynamics of the protein. To do so, HDBSCAN [46] clustering is performed on the con-
formational space featured with contact-based information, passing through an UMAP
low-dimensional space. To avoid the arbitrariness of contact thresholds, contact are re-
defined as a continuous weight function in [0, 1] that acts as proxy for the interaction
between residue pairs. This weight will be a function of their Euclidean distance, the
distance between their relative orientation and a set of empirically-determined ideal ori-
entations, their distance on the sequence (range) and their identities. The incorporation
of relative orientation is shown crucial for an accurate detection of local structural motifs,
which is essential for the structural analysis of intrinsically disordered proteins (IDPs).
In addition to the contact pattern, several descriptors associated to each cluster are pro-
vided, like secondary structure propensities or average radius of gyration. The pipeline
describing the method, that we named WARIO, is illustrated in Figure 7.2.

This Chapter is organized as follows:

• Section 7.2 we detail the methodology defining the complete clustering pipeline.

– In Section 7.2.1, we start by relaxing the threshold-based contact definition for
Euclidean distances through the introduction of sequence dependent contact
intervals.

– We continue by addressing the role of relative orientation in short-range con-
tacts in Section 7.2.2 and how it can be combined with the Euclidean distance
to define a metric accounting for residue-residue interactions. The precise form
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of this combination is determined through empirical analysis of the interactions
between amino acids. This is presented in Section 7.2.3.

– Then, in Section 7.2.4, we define the contact function for amino acid pairs as
a decreasing function of their interaction distance, whose form is once again
empirically calibrated.

– In Section 7.2.5 we detail how clustering is performed on the previously featured
data. That allows us to define the ensemble characterization as a weighted
family of contact maps. Then, each cluster can be futher analyzed through
several proposed descriptors.

– Section 7.2.6 presents the implementation in Python of the complete pipeline
as an easy-to-use Jupyter notebook.

• Section 7.3 is devoted to show the performance of the method on conformational
ensembles of four highly flexible proteins. In Section 7.4, we provide a meta-analysis
of the methodology defining WARIO. First, in Section 7.4.1, we discuss how WARIO
complements other existing distance-based approaches as EnGens [59]. We also
demonstrate that refining the contact definition by removing arbitrary thresholds
and incorporating relative orientation significantly improves the performance of the
method. This is presented in Section 7.4.2.

• In Section 7.5, we discuss the suitability and possible extensions of the method, as
well as its great potential for its integration in machine-learning-based (ML-based)
methods applied to generate or to refine conformational ensembles of IDPs.

7.2 Methods
This section details the methodology that defines WARIO. To calibrate the functional
form of functions that describe contact and interaction between amino acids, we made use
of a set of 15177 experimentally-determined high-resolution structures of protein domains
extracted from the SCOPe 2.07 release [49]. Throughout this section, this set will be
referred to as the structural database.

7.2.1 Contact intervals for the Euclidean distance
Contact between amino acids is usually defined by setting universal thresholds to the Eu-
clidean distance between their positions [212]. By universal, we mean that these thresholds
are fixed independently of the amino acids identities or their distance along the sequence.
However, when looking at how contact distances distribute in nature, we directly observe
that residue-residue interactions concentrate around distance values that change according
to these parameters. To account for this, we computed the Euclidean distance between
every pair of Cα atoms (Cβ for glycines) for every structure in the structural database,
and represented their empirical distribution stratifying residue identities and range (the
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Figure 7.3: Empirical distribution of the Euclidean distance between (a-e) Ala-Ala and
(f-j) Lys-Val residues in the empirical database, stratified by range groups. Distributions
are depicted through a histogram and a kernel density estimate. Vertical dashed and
dotted lines indicate the lower and upper limits of the contact intervals for the Euclidean
distance respectively.

distance between both residues along the sequence in number of amino acids). Figure 7.3
presents the encountered distributions truncated to the interval [0Å, 10Å] for two pairs of
residues at ranges in {1, 2, 3, 4} and [5,∞).

Figure 7.3 illustrates how the residue-residue Euclidean distance truncated to [0Å, 10Å]
is not identically distributed across amino acid identities and ranges. Distance val-
ues concentrate around sequence dependent maxima with sequence dependent variance.
Therefore, contact descriptors computed from Euclidean distance must take this informa-
tion into account and avoid universal thresholds that contradict the empirical behavior.
The sequence-specific distance distributions presented in Figure 7.3 allow us to relax the
threshold-based definition of contact for Euclidean distances. Let Ai, Aj denote a pair
of amino acid identities and Sij = 1, 2, . . . denote a sequence range. Let fR3

ij denote the
density function of the Euclidean distance distribution for Ai-Aj pairs at range Sij esti-
mated from the empirical database and truncated to the interval [0Å, 10Å]. The Euclidean
contact interval for Ai-Aj pairs at range Sij is defined as the real interval

CR3
ij (Ai, Aj , Sij) = CR3

ij = [∆R3
a;i,j ,∆R3

b;i,j ], (7.1)

where ∆R3
a;i,j is the abscissa smaller than 8Å presenting the highest maximum of fR3

ij and
∆R3
b;i,j is the closest abscissa from the right to ∆R3

a;i,j presenting a minimum of fR3
ij . Both

limits are depicted in Figure 7.3 with dashed and dotted lines respectively. For low maxi-
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mum prominences6 (as in Figure 7.3(j)) the Euclidean contact interval is set to [6Å, 8Å] by
default. Note that, as distance distributions are not significantly different when varying
Sij ≥ 5, we are setting CR3

ij (Ai, Aj , S) = CR3
ij (Ai, Aj , S′) for every S, S′ ≥ 5. The complete

list of contact intervals and the counterparts of Figure 7.3 for every amino acid pair and
range class are available at https://gitlab.laas.fr/moma/WARIO.

The intervals (7.1) allow a continuous description of residue-residue interactions by
removing binary contact classifications. The upper limit of (7.1) represents the distance
value at which the interaction probability starts to be significant, and continuously in-
creases until reaching the lower limit of (7.1), beyond which interaction occurs with high
probability. Replacing thresholds by intervals is the key idea to define continuous functions
accounting for contact forcefulness that increase smoothly as the interaction probability
starts to be significant. Their explicit applicability in this work is detailed in the following
sections.

7.2.2 Distance to ideal orientations

Relative orientation plays a determinant role in residue-residue interactions [183, 313, 57,
146]. This idea was already incorporated in RING [191, 57], where contact thresholds
were defined by integrating the values of backbone angles mediating multiple types of
interactions. Here, we propose to capture this effect through a meaningful representation
of the spatial pose of each amino acid. This can be achieved by defining a residue-specific
reference frame at each Cβ atom (Cα for glycines) as it was done in Chapter 5. The detailed
construction of the reference system is included in C.1.1. An outline of its definition is
presented here. To encode the angular configuration of the backbone at the residue level,
we first define a virtual atom C̃β, which exists also for glycines. The position of C̃β is an
estimate of the position of the true Cβ when it exists, but it is defined for every residue
using only the coordinates of the Cα, C and N atoms. We denote as −→C and −→N the
vectors going from Cα to C and N atoms, respectively, and we define −−→CN = −→N −−→C . The
residue-specific reference frame is defined as follows:

−→e1 =
−→
C̃β/∥

−→̃
Cβ∥

−→e2 = −−→CN/∥−−→CN∥ × −→e1
−→e3 = −→e1 ×−→e2 .

(7.2)

An illustration of (7.2) is presented in Figure 7.4. Note that the third basis vector −→e3
is parallel to −−→CN under the hypothesis that the atoms C, N , Cα and C̃β form a perfect
tetrahedron. Let L denote the sequence length and i ∈ {1, . . . , L} the position of the
i-th residue. Denoting as Fi = {−→e1,i,

−→e2,i,
−→e3,i} the reference system (7.2) built on the i-th

6The difference between the maximum value and the one of its nearest minimum. Here, maxima with
prominences lower than 0.05 are neglected.

https://gitlab.laas.fr/moma/WARIO
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C̃β

−→e1

−→e2

−→e3

N

C

−→
C Cα

−→
N

Figure 7.4: The three vectors {−→e1 ,
−→e2 ,
−→e3} defining the reference frame, built from the

virtual atom C̃β and vectors −→C and −→N .

residue, its relative orientation with respect to another residue at position j ̸= i will be
measured by considering the angles between the first and third basis vectors:

θ1;i,j = arccos⟨−→e1,i,
−→e1,j⟩, θ3;i,j = arccos⟨−→e3,i,

−→e3,j⟩, (7.3)

where ⟨· , ·⟩ denotes the inner product in R3. The reason why the angles (7.3) were chosen to
capture the role of orientation in residue-residue interactions is that they present preferred
configurations in nature. This was observed in the structural database for short range
contacts i.e. for Sij = |i − j| < 5. Figure 7.5 depicts an example of the empirical
distribution of (7.3) when the Euclidean distance between both amino acids has crossed
the upper limit of the contact interval (7.1) i.e. it is smaller than ∆R3

b;i,j . Indeed, residues
beyond the upper limit present preferred relative orientations that are specific to their
identities and range. These preferred orientations might not be unique, as in Figure 7.5(c-
d) and represent the contact poses with highest probability in nature. For each pair
of amino acid identities and range class, we took up to three maxima from the density
estimates of the empirical distributions of (7.3). The maximum with the highest density
value was always kept, and the subsequent maxima were kept if their prominence with
respect to the first maximum was not negligible. We refer to these maxima as the ideal
orientations for Ai-Aj pairs at range Sij , and we denote them as

θ∗
1;i,j = θ∗

1;i,j(Ai, Aj , Sij) and θ∗
3;i,j = θ∗

3;i,j(Ai, Aj , Sij) (7.4)

for the angles between the first and third basis vectors respectively. Note that (7.4)
are non-empty subsets of [0◦, 180◦] containing up to three values. The complete list of
θ∗

1;i,j and θ∗
3;i,j sets and their corresponding counterparts of Figure 7.5 are available at

https://gitlab.laas.fr/moma/WARIO.
Following the fact that the angles (7.3) concentrate around a set of sequence-specific

ideal orientations when both amino acids interact, it is possible to define how close to the
ideal contact setting is the relative orientation of a pair of residues. For two amino acids
at positions i ̸= j in the sequence, this is done by considering the distance between the

https://gitlab.laas.fr/moma/WARIO
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Figure 7.5: Empirical distribution of angles (7.3) computed from the empirical database
for pairs of residues at Euclidean distance smaller than ∆R3

b (Ai, Aj , Sij), stratified by
amino acid identities and range. In (a-b), distributions for Ala-Cys pairs at range 4 and,
in (c-d), distributions for Ile-Trp pairs at range 1. The significant maxima of the kernel
density estimates (red curves) are marked with a dashed black line.

pair {Fi,Fj} and its ideal orientation:

d2
θ∗({Fi,Fj}) = 1

4 h
(

min
θ∈θ∗

1;i,j

|θ1;i,j − θ|
)2

+ 1
4 h

(
min
θ∈θ∗

3;i,j

|θ3;i,j − θ|
)2

, (7.5)

where h(x) = sin(x) if x ≤ 90◦ and h(x) = 1 − cos(x) otherwise. This choice makes h
a monotonic function on [0◦, 180◦]. Note that the quantity dθ∗({Fi,Fj}) in (7.5) takes
values in [0, 1], with dθ∗({Fi,Fj}) = 0 being a perfect match to the ideal orientation and
dθ∗({Fi,Fj}) = 1 the strongest disagreement with such setting. Remark also that we have
omitted the explicit dependence of (7.5) on Ai, Aj and Sij to lighten notation. As we
mentioned before, preferred orientations were only found when Sij = |i− j| < 5. We refer
to this setting as short-range and to the case Sij ≥ 5 as long-range. Consequently, the
relative orientation of the residue pair will only be considered for short-range interactions.
In that case, we need to find a suitable strategy to combine distance and orientation
information to correctly account for contact. This is addressed in the following section.
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7.2.3 Interaction distance

The aim of this Section is to define a suitable equilibrium between Euclidean and orienta-
tion distances that correctly acts as proxy for the interaction between residue pairs. Let
i ̸= j denote two sequence positions and Fi, Fj the i-th and j-th reference frame defined
in (7.2). We denote by dR3(Fi,Fj) the Euclidean distance between the positions of both
residues. We propose to combine dR3(Fi,Fj) with (7.5) as

(1− ωθ∗)2 d2
R3(Fi,Fj) + ω2

θ∗ d2
θ∗({Fi,Fj}), (7.6)

where the weight ωθ∗ ∈ [0, 1] governs the distance-orientation balance. Of course, the
main problem here is the suitable choice of ωθ∗ . This should be done by considering the
following guidelines:

(i) Relative orientation must only be considered for short-range interactions,

(ii) Relative orientation must only be considered when both residues are close in Eu-
clidean distance, i.e. closer than the upper limit of their Euclidean contact inter-
val (7.1),

(iii) Relative orientation must significantly enhance the contact forcefulness if it is close
to the ideal setting, and remain ineffective otherwise.

The first conclusion that can be extracted is that for ωθ∗ to satisfy (i − iii) it must
be a function of the pair of frames, the amino acid identities and the sequence range
ωθ∗ = ωθ∗(Fi,Fj , Ai, Aj , Sij). To lighten notation, we will omit the explicit dependence
on range and residue identities and write only ωθ∗ = ωθ∗(Fi,Fj). The first point (i) can
be easily guaranteed by asking ωθ∗ = 0 if Sij ≥ 5. For long-range interactions, contact
will be exclusively encoded by the Euclidean distance between both residues. Ensuring
(ii) remains to ask ωθ∗ to be a decreasing function of d2

R3(Fi,Fj), whose smooth decay
concentrates in the Euclidean contact interval (7.1). Finally, satisfying (iii) demands
that ωθ∗ is also decreasing with dθ∗({Fi,Fj}). Note that the word significantly has been
added in (iii). In other words, ωθ∗ needs to calibrate distance and orientation in a way
that they are comparable beyond the Euclidean contact interval when orientation plays a
non-negligible role. This can be ensured if the following relation holds

(1− ωθ∗)2 d2
R3(Fi,Fj) ∼ ω2

θ∗ d2
θ∗({Fi,Fj}) for all dR3(Fi,Fj) ≤ ∆R3

a;i,j , (7.7)

where ∆R3
a;i,j is the lower limit of the Euclidean contact interval for Ai-Aj pairs at range

Sij , defined in (7.1). All these conditions are verified if the following functional form is
chosen to define ωθ∗ .

ωθ∗(Fi,Fj) =

 1− tanh
[
4
(
d2
θ∗ ({Fi,Fj}) + gij

(
d2
R3 ({Fi,Fj})

))2] if Sij < 5,
0 otherwise,

(7.8)
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where

gij(x) = 1
2

(
x

∆R3
b;i,j

) dR
3

ij
2

for all x ≥ 0 and dR
3

ij =
log

(
argtanh

(
1/∆R3

a;i,j

))
log

(
argtanh

(
∆R3
a;i,j/∆R3

b;i,j

)) , (7.9)

where ∆R3
a;i,j (resp. ∆R3

b;i,j) is the lower (resp. upper) limit of the Euclidean contact interval
for Ai-Aj pairs at range Sij , defined in (7.1). With this, it is possible to define the
interaction distance between the pair of residues Ai-Aj with frames Fi, Fj at range Sij in
the sequence as the function

dint ({Fi,Fj}) = (1− ωθ∗ ({Fi,Fj}))2 d2
R3(Fi,Fj) + ω2

θ∗ ({Fi,Fj}) d2
θ∗ ({Fi,Fj}) , (7.10)

where we have omitted the dependence on amino acid identities and range for simplicity
and ω2

θ∗ ({Fi,Fj}) is defined in (7.8). A clear visualization of the orientation weight (7.8)
and the interaction distance (7.10) is presented in Figure 7.6 for Ala-Ala pairs at range 3.
The curves in Figure 7.6 show the definition (7.8) satisfies conditions (i− iii). Note first
that for Euclidean distances greater than the upper limit of the Euclidean contact interval,
orientation is not considered to describe interaction. Its contribution smoothly increases
when crossing the Euclidean contact interval from right to left, becoming comparable
to the one of the Euclidean distance after crossing the lower limit. The rise of ωθ∗ is
stronger when the relative orientation of {Fi, Fj} gets closer to its ideal setting, and
weaker otherwise. Indeed, orientation has no effect in the worst scenario dθ∗({Fi,Fj}) = 0.
In other words, the role of orientation is to enhance the contact forcefulness defined by
the Euclidean distance when it is close to the ideal setting. It is important to remark that
dependence of ωθ∗ on Euclidean distance and orientation occurs smoothly in all directions.
This is possible thanks to the definition of Euclidean contact intervals (7.1), that allows
to concentrate the smooth variation of ωθ∗ within a sequence dependent range of values
extracted in accordance to the observed empirical behavior.

7.2.4 Contact function definition
This section is devoted to define contact between amino acids as a continuous function
taking values in [0, 1] and correctly acting as an indicator of their interaction strength. In
other words, contact will be defined as a decreasing function of the interaction distance:

ωCij({Fi,Fj}) = tij (dint({Fi,Fj})) with tij : [0,∞) −→ [0, 1] decreasing. (7.11)

The contact function ωCij will take values close to 1 (resp. 0) when the interaction distance
between residues at positions i ̸= j is close to (resp. far from) 0. Once again, we will
ask the contact function to decrease smoothly with dint and to concentrate its decay
inside an empirically determined interval. To calibrate its functional form, we proceed
analogously to the previous sections and start by computing the empirical distribution
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Figure 7.6: For Ala-Ala pairs at range 3, (a) the weight function (7.8) and (b) the interac-
tion distance (7.10). Both quantities are depicted as a function of the Euclidean distance
between residue positions and stratified by distance to the ideal orientation. Dashed and
dotted vertical lines indicate respectively the lower and upper limit of the Euclidean con-
tact interval.

of the interaction distance (7.10) for every pair of amino acids at ranges in {1, 2, 3, 4}
extracted from the structural database. The results for Ala-Ala and Lys-Val pairs are
presented in Figure 7.7.

Figure 7.7 illustrates the effect of incorporating (7.5) to the Euclidean distance when
accounting for short-range residue-residue interactions. If we compare panels in Figure 7.7
with their counterparts of Figure 7.3, we see how the interaction distance (7.10) enhances
-by translating their Euclidean distance value to the left- those residue pairs whose relative
orientation is close to the ideal one. This translation is very clear for pairs at range 1, for
which the uni-modal distributions of Figure 7.3 become bi-modal in Figure 7.7, but it also
appreciable for ranges higher than one, where the probability mass moves to smaller dis-
tance values thanks to the residue pairs with low values of (7.5). Note that the shift is more
visible for contacts at range 1 due to the high concentration of the distance distribution
around its mean. Indeed, distances and orientations between consecutive residues are very
physically restricted. For longer ranges, the shift is equally present but less appreciable
through Figure 7.7 due to the higher variance of the distance distributions. To conclude,
defining (7.10) allows us to filter residue-residue interactions that, besides corresponding to
amino acids close in Euclidean distance, present ideal relative orientations. We introduce
now the analogous contact interval of (7.1) for the interaction distance (7.10). Let Ai,
Aj denote a pair of amino acid identities and Sij = 1, 2, . . . denote a sequence range. Let
f int
ij denote the density function of the interaction distance distribution for Ai-Aj pairs at

range Sij estimated from the structural database and truncated to the interval [0Å, 10Å].
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Figure 7.7: Empirical distribution of the interaction distance (7.10) between (a-e) Ala-Ala
and (f-j) Lys-Val residues in the empirical database, stratified by range groups. Distribu-
tions are depicted through a histogram and a kernel density estimate. Dashed and dotted
vertical lines indicate respectively the lower and upper limit of the contact interval.

The contact interval for Ai-Aj pairs at range Sij is defined as the real interval

C int
ij (Ai, Aj , Sij) = C int

ij = [∆int
a;i,j ,∆int

b;i,j ], (7.12)

where ∆int
a;i,j is the smaller abscissa presenting a maximum of f int

ij and ∆b;i,j is the closest
abscissa from the right to ∆int

a;i,j presenting a minimum of f int
ij . As the interaction distance

(7.10) corresponds to the Euclidean one for Sij ≥ 5, we have

∆int
a;i,j = ∆R3

a;i,j , ∆int
b;i,j = ∆R3

b;i,j for all Sij ≥ 5.

Then, we choose the decreasing function tij in (7.11) to concentrate its smooth decay in
(7.12). This can be done by choosing

tij(x) = 1−tanh

( x

∆int
b;i,j

)dint
ij

 for all x ≥ 0 and dint
ij =

log
(
argtanh

(
1/∆int

a;i,j

))
log

(
argtanh

(
∆int
a;i,j/∆int

b;i,j

)) .
(7.13)

The curve of tij is illustrated in Figure 7.8 for Ala-Ala pairs at range 3. It shows how the
contact function (7.11) represents a relaxation of the classical step function based on a
universal threshold. Here, contact is described by a continuous function whose transition
from low to high values is smooth and concentrated inside an empirically determined
sequence-specific interval.
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pairs at range 3. Vertical dashed and dotted lines indicate respectively the lower and
upper limit of the contact interval.

7.2.5 Clustering pipeline and ensemble characterization

This section details the clustering algorithm for the ensemble characterization. First, data
will be featured by the contact function values for every pair of amino acid residues along
the sequence. Consequently, an ensemble corresponding to a protein of length L and
having n conformations will be described by the n× L(L− 1)/2 matrix

WC =



ωC11;1 ωC12;1 · · · ωCij;1 · · · ωCL(L−1);1
ωC11;2 ωC12;2 · · · ωCij;2 · · · ωCL(L−1);2

...
...

...

ωC11;n ωC12;n · · · ωCij;n · · · ωCL(L−1);n


, (7.14)

where ωCij;k denotes the value of ωCij defined in (7.11) for the k-th conformation, for k ∈
{1, . . . , n}. Note that this formulation is equivalent to consider each conformation as a
graph , as it was explicitely done in RING [191, 57]. Here, the set of nodes is given by
the set of residues and every pair of residues at positions i,j is linked by an edge weighted
by ωCij;k. This is the idea depicted in Figure 7.2. Then, clustering the rows of (7.14)
comes down to clustering the set of graphs. Note that the graph representation is just
an alternative visualization of the data, but the presented methodology does not resort to
elements of graph theory.

The clustering algorithm performed on (7.14) is based on the combination of a di-
mensionality reduction technique with an efficient clustering method, similarly to state-
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of-the-art approaches [59, 8]. Here, we choose UMAP [199] to first embed the data (7.14)
into a 10-dimensional space. This choice is motivated by its ability to preserve the high-
dimensional topology of data and efficiently reveal population structure [81, 83]. Then,
we apply the clustering algorithm HDBSCAN [46] to the embedding, which we believe to
be one of the most sophisticated density based techniques. One of its practical advantages
in this context is that it takes as input parameter the minimum cluster occupancy and
selects automatically the retrieved number of classes. This seems more natural in our
setting as the practitioner might have more intuition in the desired “resolution” of the
characterization through the setting of a minimum number of conformations rather than
through the direct choice of a number of classes.

Once the clustering is performed, each class is characterized through a cluster-specific
contact map. Let K be the number of retrieved classes and Ck ⊂ {1, . . . , n} be the subset
of conformations constituting the k-the cluster, for k ∈ {1, . . . ,K}. Of course Ck ∩Ck′ = ∅
for all k ̸= k′. Keeping with the notation of (7.14), we define the k-th cluster-specific
ω-contact map as the (L− 1)× (L− 1) matrix

W Ck
=

 1
|Ck|

∑
l∈Ck

ωCij;l


ij

for i < j ∈ {1, . . . , L}. (7.15)

where |Ck| denotes the cardinal of Ck. The matrix (7.15) is the average of all the rows
in (7.14) that belong to the k-th cluster, represented in matrix form. Its entries are the
cluster averages of the contact function (7.11) values for every pair of residues along the
sequence, and it accounts for the contact patterns that dominate the cluster. To the
matrix (7.15) we can assign a weight pk given by the cluster occupancy proportion

pk = |Ck|
n
. (7.16)

This allows us to define the ensemble characterization as the K-tuple of weighted cluster-
specific ω-contact maps:

E =
((
W C1 , p1

)
, . . . ,

(
W CK

, pK
))
. (7.17)

The representation (7.17) provides a compact characterization of how residue-residue inter-
actions distribute within the ensemble. Instead of averaging contacts across conformations
as in Figure 7.1, WARIO first disentangles their underlying distribution through the clus-
tering algorithm and represent it as a weighted family of representative motifs. Thanks
to the proportions (7.16), it is easy to extract a representative family of conformations by
sampling from the distribution

Prep(E) = p1U(C1) + · · ·+ pKU(CK), (7.18)

where U(Ck) denotes the discrete uniform distribution on Ck, for k ∈ {1, . . . ,K}. Note
that the HDBSCAN algorithm might not classify every conformation. In that case, before
sampling from (7.18) the proportions (7.16) must be normalized to one.
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Every cluster of conformations can be analyzed a posteriori through any suitable de-
scriptor. Here, we propose to evaluate the secondary structure propensities based on the
structural classification provided by DSSP [152] and to compute the cluster average ra-
dius of gyration. These descriptors provide a preliminary picture of the class family that
characterizes the ensemble, beyond the contact patterns that define each group. More
specific descriptors that align with the practitioner’s needs can be easily added to the
post-clustering analysis, using methods implemented in tools like SOURSOP [165].

7.2.6 The Jupyter Notebook

WARIO has been implemented through an easy-to-use Jupyter Notebook. It is available at
https://gitlab.laas.fr/moma/WARIO, together with its installation guidelines and detailed
implementation instructions. The notebook takes a confrontational ensemble as input
and returns the ensemble characterization (7.17). The data featurization is performed
at a first stage, allowing the user to adjust the resolution of the clustering algorithm
afterwards. Then, clustering is performed and results are saved and depicted. Cluster-
specific secondary structure propensities and average radius of gyration are also provided.

Ensembles can be given as input in several of the most common data formats. WARIO
accepts one .xtc file together with a topology file in any format admitted by MDTraj [196],
one multiframe .pdb file or a folder containing one .pdb file per conformation. The user
can also choose to characterize sequence segments instead of the ensemble entire sequence.
Details are provided in the notebook documentation. It should be noted that the current
implemention of WARIO requires an all-atom representation of the protein backbone. Its
extension to coarse-grained models represents a future work.

The main output of WARIO is given through a weighted set of ω-contact maps de-
picting the interaction patterns that characterize each cluster. Together, a plot with
cluster-specific DSSP propensities and average radius of gyration is provided. The note-
book also allows to create new files -in the same format as the one provided by the user-
to divide conformations by clusters. These files can be used for further analysis of the
retrieved contact patterns and the computation of any other descriptor that aligns with
the practitioner’s needs.

7.3 Results

This section is devoted to illustrate the ability of WARIO to characterize ensembles of
highly-flexible proteins. We implement the pipeline described in Section 7.2 to four en-
sembles drawn from Molecular Dynamics (MD) simulations and presenting high structural
variability. The corresponding results are presented in the following four sub-sections. We
do not present detailed explanations about the MD techniques implemented to generate
the ensembles, as the aim of this Section is to evaluate the performance of the presented
methodology.

https://gitlab.laas.fr/moma/WARIO
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7.3.1 Characterization of CHCHD4

We first applied WARIO to characterize the intrinsically disordered domain of the protein
ensemble CHCHD4 (Coiled-Coil-Helix-Coiled-Coil-Helix Domain Containing 4). This pro-
tein plays a crucial role in the import of intermembrane space-targeted proteins [123, 96].
An example is the case of the CHCHD4-AIF complex, which is responsible for regulating
the import and correct folding of cysteine-containing proteins in the mitochondrial inter-
membrane space [115, 245]. As it was recently shown, this complex is also involved in lung
cancer development [240]. Only the folded domain of CHCHD4 (residues 45-109) has been
experimentally resolved [12]. However, the interaction with AIF involves exclusively the
intrinsically disordered N-terminal of CHCHD4 (27 residues) [115], that we characterize
here and refer to as simply “CHCHD4” from now on.

We made use of a MD trajectory drawn from the concatenation of 50 independent
simulations of 200 ns each (Ha-Duong et al., unpublished). The ensemble contained n =
100050 conformations and the sequence had L = 27 amino acids. We set the minimum
cluster size to the 1% of the total number of conformations. WARIO identified 23 clusters
with different levels of occupancy. The two most populated clusters contain approximately
the 20% and 16% of conformations, and the remaining 21 clusters contain around 1-3%
of conformations each. The overall cluster distribution can be visualized through the
projection to a 2-dimensional UMAP space. This type of representation gives us a general
outlook of how weights (7.16) distribute across the ensemble characterization (7.17), but its
analysis cannot be extended further due to the non-trivial interpretation of the coordinates
in UMAP space. It is provided in Appendix E.2.

When looking at the ensemble characterization (7.17) for CHCHD4, the first overall
conclusion that we can extract is that the two more occupied clusters do not present long-
range contacts. Nevertheless, all the remaining low occupied groups of conformations
presented specific contact motifs far from the diagonal of (7.15). That emphasizes the
need of fine clustering algorithms implemented of suitable data accounting for contact
information. Broader characterizations might miss low populated clusters whose contact
patterns may be determinant for the practitioner’s interest. Let us first take a look at
the two most populated clusters of CHCHD4. Their corresponding ω-contact maps are
presented in Figure 7.9. We also depict 10 conformations randomly selected from the
cluster and aligned at the residues presenting prominent contact patterns.

Indeed, conformations in clusters 20 and 22 (Figure 7.9) present only short-range
residue residue interactions. Contact specificities appear at the C-terminal (cluster 20)
and at residues 17-21 (cluster 22). The absence of long-range contacts in the most occupied
classes equally manifest when looking at the cluster average radius of gyration, which is
substantially larger for clusters 20 and 22 (15.36Å, 13.98Å respectively) than for the rest of
low-occupied groups, presenting values around 10-12Å. These remaining groups contain
the 1−3% of conformations each and are characterized by long-range contact patterns.
Four examples are presented in Figure 7.10. Indeed, contacts between amino acids far



7.3. Results 167

1 3 5 7 9 11 13 15 17 19 21 23 25

Sequence position
2

4
6

8
10

12
14

16
18

20
22

24
26

Se
qu

en
ce

 p
os

iti
on

Cluster #20 with 20.06% of occupation

0.2

0.4

0.6

0.8

Av
er

ag
e 

co
nt

ac
t f

un
ct

io
n

CHCHD4 contact-based clustering

(a) Cluster-specific ω-contact map. (b) Alignment at res. 24-
26.

1 3 5 7 9 11 13 15 17 19 21 23 25

Sequence position

2
4

6
8

10
12

14
16

18
20

22
24

26
Se

qu
en

ce
 p

os
iti

on

Cluster #22 with 16.32% of occupation

0.2

0.4

0.6

0.8

Av
er

ag
e 

co
nt

ac
t f

un
ct

io
n

CHCHD4 contact-based clustering

(c) Cluster-specific ω-contact map. (d) Alignment at res. 17-
21.

Figure 7.9: (a,c) Cluster-specific ω-contact maps (7.15) for the two most populated clusters
of CHCHD4. (b,d) 10 conformations randomly selected from each cluster (a,c respectively)
and aligned at residues exhibiting off-diagonal contact patterns.

away from each other in the sequence stand out in the ω-contact maps. In some cases,
clusters are characterized by the presence of structural motifs at some given residues, as
for cluster 8 (Figure 7.10(c,d)). The complete family of ω-contact maps for CHCHD4
as well as the secondary structure propensities and average radius of gyration for every
cluster are presented in Appendix E.2.

7.3.2 Characterization of Huntingtin

The N-terminal region of huntingtin, the so-called exon-1, is the causative agent of Hunt-
ington’s disease, a deadly neurodegenerative pathology [257]. This fragment, which we will
call huntingtin from now on, contains a poly-glutamine tract, poly-Q, that is flanked by 17
amino acids (N17) at N- and and a proline rich region at C-. Importantly, when the num-
ber of glutamines in the poly-Q exceeds a pathological threshold of 35, the protein forms
large aggregates in neurons that cause the pathology. The structural changes occurring
in the protein above the threshold have been the object of an intense research [287, 87].
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(c) Cluster-specific ω-contact map. (d) Alignment at res. 21-
25.
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(e) Cluster-specific ω-contact map. (f) Alignment at res. 16-
24.
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(g) Cluster-specific ω-contact map. (h) Alignment at res. 8-
12, 22-26.

Figure 7.10: Left column: CHCHD4 cluster-specific ω-contact maps (7.15). Right column:
10 CHCHD4 conformations randomly selected from the cluster in the same row, left col-
umn, and aligned at residues exhibiting off-diagonal contacts.
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Here, we aim at characterizing a 20 microsecond MD trajectory of a pathogenic construct
encompassing the N17, a poly-Q tract of 46 glutamines and 5 prolines. Details of this
simulation can be found in the original publication [87]. The trajectory analysed contains
n = 96000 conformations.

Here, the sequence had L = 68 amino acids and WARIO found K = 43 clusters (almost
twice as for CHCHD4 with 27 residues). The main overall difference with respect to the
previous analysis is the lack of prominent clusters in terms of occupancy. For Huntingtin,
all the 43 clusters presented comparable sizes of around 1-3% the number of conformations
when setting to the 1% of n the minimum cluster size. Once again, the overall distribution
of the weights (7.16) can be illustrated by projecting (7.14) to a two-dimensional UMAP
space (see Appendix E.2).

The ensemble characterization (7.17) for Huntingtin gathers the family of structural
configurations yielded by the helix displacement across the protein dynamic. Each cluster-
specific ω-contact maps account for a different helical pattern at a given sequence subset,
as illustrated in Figure 7.11 for four examples (see Appendix E.2 for the complete charac-
terization). Among the 43 clusters, very few long-range contacts appear and the structural
dynamic is mainly governed by the short-range helical motifs appearing close to the diago-
nal. This is also appreciated when looking at how secondary structure DSSP propensities
evolve across clusters (see Appendix E.2).

This analysis serves also to assess the effect of the clustering resolution, calibrated by
the choice of the minimum cluster size. In some cases, the detection of very few frequent
structural motifs or contact patterns might be essential, and those might be unnoticed
if the resolution is not low enough. Look, for example, at the cluster-specific ω-contact
map for the 11-th cluster, presented in Figure 7.12(a) and corresponding to the 2.56% of
conformations. Besides the long-range contacts appearing between ∼50-55 and ∼60-65
residues, a contact pattern that characterizes β-sheet structures leans out around residue
35. This is barely appreciated as its corresponding (7.11) average value remains around
0.1-0.2. Nevertheless, that means that between 10% and 20% of cluster 11 conformations
might present this extended motif at that sequence segment. This can be confirmed by
refining the clustering resolution and looking at how conformations belonging to the 11-th
cluster spread out among the new partition.

We repeated the clustering algorithm by setting the minimum cluster size to the 0.1% of
the total number of conformations. WARIO retrieved now 440 clusters, which is probably
a too fine representation of the conformational variability. However, re-calibrating the
clustering resolution in that way is useful to extract determinant contact patterns that
might be hidden inside the broader classification. The new cluster 144 is a subset of the
previous cluster 11 and it contains the 0.2% of the conformations. Its ω-contact map
is depicted in Figure 7.12(b), where the β-sheet contact pattern has clearly stood out.
Indeed, that structural motif appears when looking at random conformations extracted
from the cluster, as shown in Figure 7.12(c). Among the 440 cluster-specific ω-contact
maps, the one in Figure 7.12(b) was the only presenting β-sheet motifs at any sequence
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(a) Cluster-specific ω-contact map. (b) Alignment at res. 1-
25.
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(c) Cluster-specific ω-contact map. (d) Alignment at res. 1-
25.
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(e) Cluster-specific ω-contact map. (f) Alignment at res. 45-
55.
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(g) Cluster-specific ω-contact map. (h) Alignment at all res.

Figure 7.11: Left column: Huntingtin cluster-specific ω-contact maps (7.15). Right col-
umn: 10 Huntingtin conformations randomly selected from the cluster in the same row,
left column, and aligned at residues exhibiting off-diagonal contacts.
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Figure 7.12: (a, resp. b) Cluster-specific ω-contact map for the 11-th (resp. 144-th) cluster
of Huntingtin characterization after setting to the 1% (resp. 0.1%) of n the minimum
cluster size. (c) Ten conformations randomly selected from the 144-th cluster and aligned
at the extended sheet structure.

segment. That shows how WARIO is capable of detecting that 192 conformations among
the 96000 that constitute the ensemble present a particular contact pattern that is specific
and exclusive to them.

7.3.3 Characterization of DciA

Here we illustrate an example of a protein ensemble with a longer sequence. We con-
sider the DciA protein having L = 157 amino acids. DciA is a gene that exhibits
widespread prevalence among diverse bacterial species, encompassing a significant num-
ber of pathogenic strains like Vibrio cholerae, Yersinia pestis, Mycobacterium tuberculosis,
and Pseudomonas aeruginosa. Notably, in the case of Pseudomonas aeruginosa, in-depth
investigations have provided evidence of a direct and specific interaction between the
DciA gene and DnaB protein. Remarkably, experimental knockout of the DciA gene has
been found to induce a consequential impediment in the initiation of replication [42, 190].
Structurally, DciA presents a folded N-terminal domain at residues 1-111, and a disordered
C-terminal region at residues 112-157 [48]. We implemented WARIO to extract a family
of weighted contact motifs that elucidates the structural variability of DciA disordered
domain. Data were drawn from a MD simulation, whose details can be found in [48, Sec-
tion 2.6]. The retrieved conformational ensemble was refined by experimental SAXS data
reported in [48], leading to a sub-ensemble containing n = 1034 conformations.

After setting to the 2% of n the minimum cluster size, WARIO retrieved a char-
acterization (7.17) containing 18 cluster-specific ω-contact maps (see Appendix E.2 for
the two-dimensional UMAP projection). A prominent cluster in terms of occupancy was
found, containing the 38.59% of conformations, followed by the second most occupied class
with the 11.51% of conformations. Their cluster-specific ω-contact maps are presented in
Figure 7.13, together with an illustration of then randomly selected conformations. As we
found in Section 7.3.1 for CHCHD4, the most occupied clusters do not present long-range
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(a) Cluster-specific ω-contact map. (b) Alignment at res. 10-
40.
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(c) Cluster-specific ω-contact map. (d) Alignment at res. 5-
40.

Figure 7.13: (a,c) Cluster-specific ω-contact maps (7.15) for the two most populated clus-
ters of DciA. (b,d) 10 conformations randomly selected from each cluster (a,c respectively)
and aligned at residues presenting helical motifs near the N-terminal.

contacts in the disordered domain. At residues 112-157, the only structural motif is an
helix between residues 95 and 105 for cluster 17, which does not appear for cluster 9. Both
clusters also differ at the starting residue for the N-terminal helix (see Figure 7.13(b,d)).

The remaining 16 clusters captured the off-diagonal contact patterns that appear along
the structural evolution of DciA, as well as the formation of helical motifs in different
segments of the disordered domain. Their occupation oscillates between the 1% and 3% of
the total number of conformations. Four examples are depicted in Figure 7.14. Cluster 1
in panels (a,b) is mainly characterized by contacts between 127-134 and 138-146 residues.
A similar motif appear in cluster 2 between residues 120-127 and 122-130, as shown in
panels (c,d). From cluster 7 we may highlight the off-diagonal contact appearing between
residues 100-105 and 128-130 (panels (e,f)). Finally, cluster 8 presents a disordered domain
with helical residues between position 130 and 140, as illustrated in panels (g,h). The
complete characterization (7.17) for DciA is included in Appendix E.2, together with the
cluster-specific secondary structure propensities and average radii of gyration.
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(a) Cluster-specific ω-contact map. (b) Alignment at res. 127-
146.
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(c) Cluster-specific ω-contact map. (d) Alignment at res. 120-
130.
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(e) Cluster-specific ω-contact map. (f) Alignment at res. 100-
105, 130-135.
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(g) Cluster-specific ω-contact map. (h) Alignment at res. 135-
140.

Figure 7.14: Left column: DciA cluster-specific ω-contact maps (7.15). Right column: 10
(3 for panel (f)) DciA conformations randomly selected from the cluster in the same row,
left column, and aligned at residues exhibiting off-diagonal contacts.
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7.3.4 Characterization of the Tau-5 domain of AR-NTD

For a last example, WARIO was applied to characterize the R2 and R3 partially helical
regions in the transactivation unit 5 (Tau-5) domain (residues 350-448) of the disordered
AR-NTD (Androgen Receptor N-terminal Transactivation Domain) [320]. We made use
of a MD trajectory of the R2 and R3 regions of Tau-5 in its apo form, from now on
denoted by Tau-5R2−R3, extracted from [319] and containing n = 57144 conformations.
The sequence length was L = 56 residues. After setting the minimum cluster size to
the 0.5% of the total number of conformations, WARIO characterized the ensemble with
63 cluster-specific weighted ω-contact maps (see Appendix E.2 for the two-dimensional
UMAP projection). Three of them had significantly higher occupancies than the rest,
containing the 8.44%, 5.25% and 3.9% of conformations (clusters 62, 0 and 61 respectively).
Let us first take a look at clusters 0 and 61, whose specific contact patterns are presented
in Figure 7.15. In contrast to the behavior that we observed for widely populated clusters
in Sections 7.3.1 and 7.3.3, the second most occupied group of conformations presents
a very specific pattern of long-range contacts (panel (a) in Figure 7.15). Moreover, the
C-terminal region at residues 25-56 presents a very precise alignment across the cluster
conformations (see Figure 7.15(b)). Cluster 61 is characterized by the lack of long-range
contacts and the presence of helical structure near the N-terminal (see panels (c,d) in
Figure 7.15), as well as in some other sequence segments.

When looking at the most occupied cluster, we encounter a similar behaviour as the
one for the 11-th cluster of Huntingtin (Figure 7.12). Indeed, the 62-th cluster-specific
ω-contact map (panel (a) in Figure 7.16) does not present long-range contacts but short
helical structures at some sequence segments. However, we can make out the contact
pattern of a β-sheet near the C-terminal, with low contact function values. By repeating
the same strategy as in Section 7.3.2, and re-implementing the clustering algorithm setting
to the 0.1% of n the minimum cluster size, a subset of the 62-th cluster is retrieved whose
main characteristic is the presence of a β-sheet structure at the end of the sequence.
This is illustrated in Figure 7.16(b,c). This shows again the pertinence of re-adjusting
the calibration parameter when looking for very specific and low frequent structures is of
interest.

Some examples of the remaining ω-contact maps for Tau-5R2−R3 are presented in Fig-
ure 7.17. The first overall conclusion that we can extract is that the ensemble characteriza-
tion (7.17) for Tau-5R2−R3 is mostly determined by the contact patterns in the C-terminal
region at residues 25-56. Indeed, long-range residue-residue interactions present very spe-
cific motifs across clusters that yield adequate alignments for residues at such domain (see
panels (b,d,f) in Figure 7.17). Note that, specially for clusters 6, 22 and 45, the protein
tends to fold at the C-terminal, presenting a β-sheet alike contact pattern. Note first that
the residues at which that motif appears are not the same as the ones in Figure 7.15(b,c),
where the pattern is slightly relocated some residues up along the diagonal. once again
illustrates the idea that the β-sheets in Figure 7.17(b,c) are exclusive to the corresponding
group of conformations and thus that WARIO distinguishes slightly different motifs with
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(a) Cluster-specific ω-contact map. (b) Alignment at res. 25-
56.
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(c) Cluster-specific ω-contact map. (d) Alignment at res. 5-
15.

Figure 7.15: (a,c) Cluster-specific ω-contact maps (7.15) for the second and third most
populated clusters of Tau-5R2−R3. (b,d) 10 conformations randomly selected from each
cluster (a,c respectively) and aligned at residues presenting off-diagonal contacts.
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Figure 7.16: (a, resp. b) Cluster-specific ω-contact map for the 62-th (resp. 375-th) cluster
of Tau-5R2−R3 characterization after setting to the 0.5% (resp. 0.1%) of n the minimum
cluster size. (c) Ten conformations randomly selected from the 375-th cluster and aligned
at the extended sheet structure.
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high precision. Besides, there is a difference in terms of secondary structure when compar-
ing the C-terminal patterns in Figures 7.15(c) and 7.17(a,c,g). See, for instance, the DSSP
secondary structure average propensities for the 375-th cluster (Figure 7.16(b,c), for the
finer minimum cluster size) and the 45-th cluster in Figure 7.17(g,h). They are presented
in Figure 7.18. Note that the DSSP classification stands out extended sheet structure (E)
at residues 46-50, 53,56 in cluster 375 (panel (a)) that are not present in cluster 45 (panel
(b)). Consequently, despite the visual similarity of the C-terminal region in the ω-contact
maps of Figures 7.16(b) and 7.17(g), the partition made by WARIO distinguishes contacts
that entail the formation of secondary structure from those who do not. The complete
characterization (7.17) for Tau-5R2−R3 is presented in Appendix E.2.

7.4 Methodological meta-analysis of WARIO

This section analyzes the performance of WARIO from a methodological perspective, eval-
uating the relevance of the choices made in Section 7.2 and comparing the suitability of the
method with respect to other existing approaches in the literature. First, in Section 7.4.1,
we compare WARIO with the approach presented in [59], where data is featured by all
the Euclidean distances between residue pairs. Then, in Section 7.4.2, we illustrate how
relaxing the definition of contact and adapting it to the sequence context of the interacting
amino acids has a significant impact on the ensemble characterization.

7.4.1 Comparison with distance-based methods

The classification strategy that combines a dimensionality reduction technique with a clus-
tering algorithm has already been used in previous works to partition ensembles of flexible
proteins [8, 59]. One of the most commonly used descriptors to feature conformations is
the set of all residue-residue Euclidean distances. For instance, it has been used in [59] to
find representative families of conformations. Here, we implement the UMAP+HDBSCAN
pipeline on the data featured with pairwise Euclidean distances between all Cβ atoms (Cα

for glycines) to characterize CHCHD4 and compare the output with the results presented
in Section 7.3.1.

The clustering pipeline on the distance dataset retrieved 10 clusters, among which
one contained the 67% of conformations. Recall that WARIO retrieved 23 clusters for
CHCHD4 where the two most occupied clusters contained the 20% and 16% of states.
In Figure 7.19 we present the average distance maps for the four most occupied distance
clusters, together with 30 random conformations drawn from each one and aligned at all
residues.

Even if the classification technique in [59] is basically identical to the one presented
here, it is clear that the partition of the set of conformations will strongly depend on how
states are described. If the algorithm is provided with all the pairwise distances, clusters
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(a) Cluster-specific ω-contact map. (b) Alignment at res. 25-
56.
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(c) Cluster-specific ω-contact map. (d) Alignment at res. 25-
56.
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(e) Cluster-specific ω-contact map. (f) Alignment at res. 25-
56.
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(g) Cluster-specific ω-contact map. (h) Alignment at res. 25-
35.

Figure 7.17: Left column: Tau-5R2−R3 cluster-specific ω-contact maps (7.15). Right col-
umn: 10 Tau-5R2−R3 conformations randomly selected from the cluster in the same row,
left column, and aligned at residues exhibiting off-diagonal contacts.
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Figure 7.18: Average DSSP secondary structure propensities and average radius of gyration
across cluster conformations. In (a), cluster 375 after setting to the 0.1% of n the minimum
cluster size. In (b), cluster 45 after setting to the 0.5% of n the minimum cluster size.

will tend to group conformations having similar global structures or, in other words, to
match conformations with good alignments. We believe that this strategy is ill-suited
to the context of highly-flexible proteins, as the complex variability of the conformations
might intrinsically contradict the fact that structures can be globally classified into well-
defined groups with aligned conformations. This is reflected in Figure 7.19, where we
can see how groups are rather constructed to put together conformations that align well,
but the classification remains broad when compared to the structural diversity found in
Section 7.3.1, where the target was not the global structural alignment but the detection
of common contact patterns manifesting locally. Consequently, we believe that the use
of pairwise distances as conformational features might be suitable to classify states when
the objective is to find well aligned groups of structures, which is not really relevant for
highly-flexible proteins. However, contact information needs to be taken into account
when trying to disentangle the whole structural variability of the protein through the
detection of all local interaction patterns that appear with low frequencies, and that are
missed when distances are considered.

7.4.2 The importance of refining contact definition

We assessed whether the effort made in Section 7.2 to define contact as a continuous
function that integrates sequence and geometrical information is worth it to characterize
ensembles. To do so, we kept the same strategy of characterizing an ensemble by a
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(c) Average distance map (d) Alignment at all res.
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(e) Average distance map (f) Alignment at all res.
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Figure 7.19: Left column: CHCHD4 cluster-specific average distance maps after imple-
menting the UMAP+clustering pipeline to the set of all Euclidean residue-residue dis-
tances. Right column: 30 CHCHD4 conformations randomly selected from the cluster in
the same row, left column, and aligned at all residues.
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weighted family of contact maps, but starting from the classical contact definition i.e. by
considering the matrix

C =



c11;1 c12;1 · · · cij;1 · · · cL(L−1);1
c11;2 c12;2 · · · cij;2 · · · cL(L−1);2

...
...

...

c11;n c12;n · · · cij;n · · · cL(L−1);n


, (7.19)

where cij,k = 1{dR3(Fki ,Fkj ) ≤ 8Å} and Fki denotes the i-th reference frame (7.2) for the
k-th conformation. As the entries of (7.19) are binary, we chose the Jaccard distance to
project the data into the 10-dimensional UMAP space. Then, the clustering was performed
using the Euclidean distance between points in the low-dimensional space. Of course,
using the classical contact definition based on thresholds imposes the need of metrics that
are well-defined for this type of data. The choice of such metric is not straightforward
and neither is its suitability in the low-dimensional projection. Whether we can correctly
compare points in the UMAP space with the Euclidean distance when the high-dimensional
space is {0, 1}p is not a trivial question to address. Moving to the continuous scenario
removes these issues and ensures a less intrincate implementation of the entire clustering
pipeline using exclusively the Euclidean distance between points.

We observed a significant disagreement between methods when looking at the number
of classified conformations. When using (7.14), WARIO classified the 78% of conforma-
tions. This proportion decreased to 65% when using (7.19). The number of retrieved
clusters was almost the same as in Section 7.3.1, where WARIO found 23 classes versus
the 22 retrieved here, using the same value for the minimum cluster size: the 1% of n.
When looking at the cluster-specific contact maps, we find similar contact trends when
comparing both approaches. We can identify groups of conformations similarly classified
with both approaches by detecting visually matching contact maps. Three examples are
presented in Figure 7.20. This was expected as the definition proposed in Section 7.2 is a
refinement of the classical one, and no extreme disagreements should appear.

However, remarkable differences appear when diving into short-range contacts, for
which relative orientation played a role in the interaction distance (7.10). To illustrate
this, we focus on the last row of Figure 7.20. Both contact maps seem to indicate the
presence of helical motifs near the C-terminal. We already showed it in Figure 7.10(c,d) for
the continuous contact definition. Conformations belonging to the corresponding cluster
exhibit α-helix structure at residues 21-24, which is confirmed by the DSSP propensities
presented in Figure 7.21(a). However, despite the visual similarity of panels (e) and (f) in
Figure 7.20, we can appreciate that values for the continuous contact function (panel (e))
are slightly higher at the C-terminal than the ones for the binary definition (panel (f)).
This means that residues 21-24 are closer in interaction distance (7.10) than in Euclidean
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Figure 7.20: Left (resp. right) column: cluster-specific ω-contact maps (resp. average
contact maps) for CHCHD4 after performing the UMAP+clustering pipeline on (7.14)
(resp. (7.19)). Maps in the same row are those who visually match each other among
both classification techniques.

distance. In other words, taking relative orientation into account enhances contact iden-
tification when it is close to the preferred behavior observed in nature.

Indeed, the proportion of α-helix structures at 21-24 in cluster 6 for the binary contact
clustering (see Figure 7.21(b)) is considerably smaller. This can be alternatively illustrated
by looking at the conformations from such cluster, shown in Figure 7.22, which differ from
the structured behavior depicted in Figure 7.10(d). Consequently, redefining contact as
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a continuous function (7.11) that integrates sequence information and relative orientation
is crucial to make the classification coherent in terms of secondary structure.
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(a) UMAP+HDBSCAN on (7.14).
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(b) UMAP+HDBSCAN on (7.19).

Figure 7.21: Average DSSP secondary structure propensities across cluster conformations
after performing the UMAP+HDBSCAN pipeline on (7.14), for cluster 8 (a) and on (7.19),
for cluster 6 (b), for the CHCHD4 ensemble.

Figure 7.22: 10 conformations randomly selected from cluster 6 after performing the
UMAP+HDBSCAN pipeline on (7.19) for CHCHD4, aligned at residues 21-24.
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7.5 Discussion

The method presented here provides a compact and meaningful characterization of an
ensemble through a weighted family of contact maps. The idea of using a graph-based
characterization built from contact information to characterize ensembles was already
presented in [57]. However, due to the high structural variability of highly flexible pro-
teins, there is a need to previously cluster the contact distribution to correctly account
for the complexity of the conformational space. Rather than implementing average-based
approaches, WARIO first unravels the most determinant interaction patterns that charac-
terize the ensemble and then represent them as easily interpretable cluster-specific contact
maps, to which we can add a weight accounting for their frequency in the protein dynam-
ics. This is done after refining the contact definition and getting rid of the threshold-based
setting that has been commonly used. We have illustrated the importance of adapting
these thresholds to the sequence context and make them dependent on the relative ori-
entation of the pair of residues. This last point is essential to correctly account for local
structural motifs that appear at the short-range level. We believe that the usefulness
of incorporating orientation to capture long-range contacts is less evident, due to their
questionable interest regarding the structural analysis of IDP. Besides, we are not able to
empirically determine whether preferred orientation settings exist in that context. The
suitability of WARIO to detect how residue-residue interactions distribute across confor-
mations has been illustrated for four ensembles of disordered proteins. This is possible
thanks to the use of contact information to feature conformations, while avoiding global
descriptors as pairwise distances. WARIO has been implemented through an easy-to-use
Jupyter notebook, which has been made available to the community.

The proposed ensemble characterization (7.17) is clearly defined and easily inter-
pretable. Nevertheless, it strongly depends on the minimum cluster size that is given
as input to HDBSCAN. The output dependence on hyper-parameters is an intrinsic char-
acteristic of every clustering algorithm and cannot be avoided in any case. The best thing
we can do is to provide interpretability to these parameters and ensure that their varia-
tion has a clear meaning within the biological context. In our case, the minimum cluster
size is easily interpretable as the resolution of the ensemble characterization (7.17). The
smaller the size, the finer the classification will be and less frequent contact patterns will
be detected, as illustrated in Figures 7.12 and 7.16. However, too low resolutions will
result in redundant group classifications that are more difficult to interpret. The choice
of the clustering resolution should be made based on the practitioner’s needs, and its po-
tential readjustment can be studied in each case. It is important to emphasize that there
is no “true number of clusters" in the ensemble, and every classification algorithm aims
at easily representing the diversity of the system states rather than revealing an inherent
population grouping that does not actually exist.

An effective solution to deal with the dependence on the minimum cluster size would
be to incorporate statistical techniques that provide evidence of differences between the
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encountered clusters. In other words, procuring evidence of whether the resolution is too
high and several clusters can be merged together into a larger one, or vice versa. This
problem is an actively growing field of study in selective inference [97] and is referred to
as post-clustering inference. However, these methods are highly dependent on the type
of algorithm that is used and on the interdependence of the observations and descriptors
employed. Despite remarkable recent advances [104, 51], their application to evaluate the
output of WARIO remains a distant prospect for now.

The applicability of WARIO can be directly extended to the study of protein complexes
and protein-protein interactions between systems with varying levels of disorder. Note
that, however, WARIO operates in all-model representation of the protein backbone. This
is essential for the definition of the residue-specific reference systems and, therefore, for
the integration of relative orientation to the contact functions. A potential avenue for
future work would be the adaptation of WARIO to coarse-grain models and the non-
trivial assessment of relative orientations in that context.

Software availability
WARIO has been implemented as an easy-to-use Jupyter Notebook, available at
https://gitlab.laas.fr/moma/WARIO.
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C.1 Methodology details

C.1.1 Building a residue-specific reference frame

Reference frame definition

We seek to define a reference frame that determines the global pose (position and orienta-
tion) of a given residue and that allows to describe the relative pose of other residues along
the sequence. As we want this reference system to be universally defined (independently
of the residue identity), we first define a virtual atom C̃β, which exists also for glycines.
The position of C̃β is an estimate of the position of the true Cβ when it exists, but it
is defined for every residue using only the atoms that are always present. Its definition
allows the construction of a universal frame that locally represents the geometry of the
backbone.
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Figure C.1: (a) Illustration of vectors and angles involved in the construction of the
residue-specific reference frame. The vector −→Cβ can be determined from vectors −→C and
−→
N together with the angles θN (the only depicted for simplicity), θC and θCN . (b) The
three vectors {−→e1 ,

−→e2 ,
−→e3} defining the reference frame, built from the virtual atom C̃β and

vectors −→C and −→N .

Let −→C and −→N be the vectors going from Cα to C and N atoms, respectively. If a Cβ
atom is present, let −→Cβ denote the vector going from Cα to Cβ. In such case, −→Cβ can be
determined using the vectors −→C ,−→N and −→C ×−→N together with their angles with respect to−→
Cβ, denoted θC , θN and θCN respectively. See Figure C.1a for an illustration. This can
be done by solving the following linear system, whose unknown variables are the three
coordinates of Cβ.


∥
−→
N ∥ ∥

−→
Cβ∥ cos θN = −→N · −→Cβ

∥
−→
C ∥ ∥

−→
Cβ∥ cos θC = −→C · −→Cβ

∥
−→
C ×

−→
N ∥ ∥

−→
Cβ∥ cos θCN = (−→C ×−→N ) · −→Cβ.

(C.1)

To define a universal Cβ, denoted C̃β, we will estimate fixed values for θN , θC and θCN
from all non-glycine residues of a set of protein structures and define the C̃β coordinates as
the solution of (C.1), independently of the residue identity. Details on angles estimation
are given in the following section. Consequently, for a given residue, the virtual atom C̃β
is determined from the coordinates of its Cα, N and C atoms. This allow us to define
a reference system at each sequence position through the following three vectors, where−−→
CN = −→N −−→C .


−→e1 =

−→
C̃β/∥

−→̃
C β∥

−→e2 = −−→CN/∥−−→CN∥ × −→e1
−→e3 = −→e1 ×−→e2 .

(C.2)
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Figure C.2: From left to right: empirical distributions of θC , θN and θCN respectively,
extracted from a set of 15177 protein structures, considering all non-glycine residues. The
red line corresponds to a kernel density estimate, whose maximum (vertical black dashed
line) was used as angle estimate. The blue dashed line depicts the theoretical value of
each angle under the hypothesis that the four atoms bound to the Cα form a regular
tetrahedron.

Once the reference system of the i-th residue, denoted Fi = {−→e1,i,
−→e2,i,
−→e3,i}, has been

built, its origin will be placed at the Cβ atom when it exists, or at the Cα otherwise. This
allows the computation of relative positions and distances with respect to Cβ atoms for
all non-glycine residues.

Estimation of θC , θN and θCN

We estimated three fixed values for θC , θN and θCN , to be replaced in the linear system
(C.1). After that, the vector

−→
C̃β is determined for each residue along the sequence by

solving (C.1) after plugging in the corresponding coordinates of Cα, C and N atoms. As
mentioned in the previous section, this allows the definition of a residue-specific reference
frame, built independently of the residue identity.

To estimate the three angles, we used a set of 15177 experimentally-determined high-
resolution structures of protein domains extracted from the SCOPe 2.07 release [49]. For
each structure, θC , θN and θCN were computed and stored for every non-glycine residue.
The three corresponding histograms, together with a kernel density estimate, are presented
in Figure C.2, for all residue types. The residue-specific counterparts of Figure C.2 did
not show important fluctuations from the overall densities. Therefore, for simplicity, we
did not estimate three angles per residue type, but three universal values.

The three distributions of Figure C.2 show that all the angle distributions are strongly
concentrated around their kernel density maximum. Consequently, these values were cho-
sen as an estimate of θC , θN and θCN . Due to the symmetry of the empirical distributions,
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choosing the mean would provide similar estimates. Figure C.2 depicts the theoretical an-
gle values under the hypothesis that C, N , Cβ and H (when present) are the vertices of
a regular tetrahedron, with Cα as its centroid. One could think of using these values as
estimates, but the deviation from the experimental value of θCN is too high, showing how
the fluctuations from the regular polyhedron are not homogeneous along its faces.

C.1.2 Wasserstein distance: practical implementation

The Wasserstein distance can be easily computed from a pair of samples drawn from the
corresponding probability distributions. However, a major drawback of the algorithms
that compute the Wasserstein distance is their inability to handle large datasets (≳ 103

points). The current implementations in Python [98] or R [259] only admit datasets with
≲ 5 ·103 points, which is usually not enough for conformational ensembles of IDPs. To the
best of our knowledge, there are no existing algorithms that solve an OT problem for large
sample sizes and that are easily implementable, considerably fast (which, in our case, is
essential due to the large number of Wasserstein distances to compute), and that accept
non-euclidean ground distances (like the distance in the torus).

Here, we propose an approximation method to “simplify" the input empirical distri-
butions and compute the Wasserstein distance from a pair of smaller samples sizes. The
efficiency of this approach in terms of error is illustrated via simulations on real protein
data, but we provide no theoretical bounds. The proposed algorithm consists in cluster-
ing the original distribution and defining its clustered version as a discrete probability
distribution supported on the set of clusters whose mass is given by the proportion of
points assigned to each cluster. Then, the Wasserstein distance is computed between the
pair of clustered distributions, whose samples have admissible sizes. The method is imple-
mented for both local and global structural descriptors, which are empirical probability
distributions supported on T2 and R3 respectively.

The accuracy in terms of relative and mean-square error is presented in Figure C.3.
Note that the approximation algorithm has a considerably better performance when im-
plemented for local structural descriptors, which was expected due to the boundedness of
the corresponding ground space. Accuracy in R3 is slightly worse, as cloud points rep-
resenting the relative position of residues are in general more disperse, and therefore the
clustered distribution needs a larger number of centroids to better capture its variabil-
ity. Nevertheless, we observe that, in both cases, the error estimates for a proportion of
∼ 10% of clusters with respect to the entire dataset size (the proportion we will be using
in practice) are acceptable for our practical purposes. To enrich the interpretation, we
performed the same accuracy analysis but by computing the Wasserstein distance between
subsamples drawn uniformly from the corresponding datasets. As shown in Figure C.3,
the effect of clustering significantly improves the quality of the approximation.
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Figure C.3: From left to right (columns): relative and mean square error estimates of the
Wasserstein distance between the clustered distribution as an estimate of the Wasserstein
distance between the original datasets. In abscissas, the proportion of the number of
clusters with respect to the entire dataset size. The first row (a,b) corresponds to samples
drawn from local structural descriptors (dihedral angles) and the second (c,d) to samples
drawn from global structural descriptors (pairwise relative positions of residues).

C.1.3 The matrix representation
The result of the comparison analysis is represented through a matrix, W. We will denote
by Wij the entries of W, where i, j ∈ {1, . . . , L}. The matrix will be lower triangular (i.e.
Wij = 0 if j > i). Figure C.4 illustrates the main elements of the matrix representation,
which are described below.

1. The matrix is headed by a title describing the comparison, introduced by the user.

2,3. Below the title, the overall local and global discrepancies are depicted (equations
(5.11) and (5.12) respectively). By default, they are computed by aggregating and
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weighting the corrected distances as described in Section 5.2.4. These features can
be modified by the user.

4,5. The matrix entries are represented using two independent color scales, for local and
global differences. Both scales correspond to the score (5.10), which can be com-
puted when several independent replicas of each ensemble are available. Otherwise,
distances cannot be corrected by uncertainty and the scale will correspond to the
(non-corrected) inter-ensemble local and global distances (equations (5.5) and (5.7)
respectively).

6. The entries Wij for i < j correspond to the scores (5.10) computed for the i, j-th
global structural descriptors, i.e. the score comparing the relative position distribu-
tion of the i-th and j-th residues in the two ensembles. If no independent replicas
are available, the entry corresponds to the i, j-th global distance in (5.7).

7. The entriesWii correspond to the scores (5.10) computed for the i-th local structural
descriptors, i.e. the score comparing the (ϕ, ψ) distribution of the i-th residue in the
two ensembles. If no independent replicas are available, the entry corresponds to
the i-th local distance in (5.5).

8. The entries Wii are marked with a star if their associated p-value (5.6) is less than
the significance level α = 0.05.

9. The axes labels correspond to the residue position, counting from the N-terminal,
relative to the sequence segment that is being compared (and not to the absolute
position in the entire sequence).

C.2 Additional results
C.2.1 Comparison of PEP3 ensembles produced by MD simulations us-

ing different force-fields

We replicated the analysis described in Section 5.3.1 for MD simulations of PEP3 using the
same force-fields. Results are presented in Figure C.5. Here, the discrimination between
the two force-field families is not observed. Nonetheless, we still observe that structures
simulated with disp and ildn are very close in Wasserstein distance (Figure C.5b). In-
deed, the overall global dissimilarity is substantially smaller than these of the remaining
comparisons. Only inter-ensemble corrected differences representing about 20% of the
intra-ensemble ones appear for residues at the C-terminus. The distances between c36idp
and c36m are now higher than for Hst5, and corrected differences of the same magnitude
than the intra-ensemble ones appear in the interior of the matrix. The same behavior is
observed when comparing force-fields of different groups for PEP3. See, for instance, that



C.2. Additional results 191

1 2 3 4 5 6 7
Residue number

1
2

3
4

5
6

7
R

e
si

d
u
e
 n

u
m

b
e
r

Overall global dissimilarity = 0.221
Overall local dissimilarity = 2.55

0.00

0.05

0.10

0.15
R

3
W

/ 
W

in
tr
a

1.0

1.5

T
2
W

/ 
W

in
tr
a

a7 (c36idp - c36m) Wasserstein matrix1

2
3

4 5

6

7

8

9

Figure C.4: Schematic representation of the output of WASCO. All the elements marked
with numbers are described in Section C.1.3.

substantial differences arise between relative positions of residues at opposite terminus in
panel (d), which are highly weighted when computing the overall global discrepancy. One
intriguing observation is that while there are substantial differences between disp and ildn
(and between c36idp and c36m), simulations with c36idp and c36m used the same water
model (the CHARMM-modified TIP3P water model) and the disp and ildn simulations
also used very similar water models (TIP4P-D and a slightly variant of this) [140]. Over-
all, these results are complementary to those presented in [140], which mainly focused on
secondary structure differences among ensembles, and they show the ability of WASCO
to identify differences at both local and global scales.

C.2.2 Assessment of the convergence of MD simulations

Ensemble comparisons have previously been used to assess convergence in MD simulations
of folded proteins [120, 279, 192]. We here propose to use the overall ensemble distances
(5.11), (5.12) to examine the convergence of an MD simulation of a disordered protein.
Moreover, this can be done on-the-fly to assess whether the simulation can be stopped.
Let T denote the current simulation time and let 0 < t1 < t2 < · · · < tk = T be k time
points. If we denote by At the conformational ensemble simulated up to time t, we can
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Figure C.5: Comparison of Molecular Dynamics simulations of PEP3 ensemble using dif-
ferent force fields. The color scale W̃/Wintra corresponds to the score (5.10), representing
the relative difference between the inter-ensemble distances and the uncertainty. The coef-
ficients in the lower-triangle (in red) correspond to the global differences. The coefficients
along the diagonal (in blue) correspond to the local differences. Blue stars indicate that
the corresponding local corrected distance is significantly different from zero (the associ-
ated p-value (5.6) is smaller than α = 0.05).

compute the online overall distances

OW l
i = OW l,Ati−1 ,Ati , (C.3)

defined in (11) of the main text, for all i = 2, . . . , k. Analogously, we compute the online
overall global distances

OWg
i = OWg,Ati−1 ,Ati , (C.4)
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as defined in (12) of the main text.
For each i, OW l

i (resp. OWg
i ) corresponds to the overall local (resp. global) distance

between the ensemble from t = 0 to t = ti and the ensemble from t = 0 to t = ti−1. In
other words, (C.3) (resp. (C.4)) is the distance between the ensembles simulated up to time
ti−i and up to time ti. Consequently, it quantifies whether the new simulated trajectories
between ti−1 and ti yielded a non-negligible contribution to the ensemble structure (if
(C.3) is not small) or, otherwise, whether proceeding the simulation up to ti does not
yield any substantial contribution (if (C.3) is close to zero). Then, the representation of

20 40 60 80
Time evolution wrt total simulation time (%)

4

6

8

10

12

On
lin

e 
ov

er
al

l g
lo

ba
l d

ist
an

ce Force field
c36idp
c36m
disp
ildn

20 40 60 80
Time evolution wrt total simulation time (%)

0.25

0.50

0.75

1.00

1.25

1.50

On
lin

e 
ov

er
al

l l
oc

al
 d

ist
an

ce Force field
c36idp
c36m
disp
ildn

(a) PEP3

20 40 60 80
Time evolution wrt total simulation time (%)

50

100

150

200

On
lin

e 
ov

er
al

l g
lo

ba
l d

ist
an

ce Force field
AMBER99SB*-ILDN-tip4pD
AMBER99SB*-ILDN-tip4p2005

20 40 60 80
Time evolution wrt total simulation time (%)

1

2

3

4

5

On
lin

e 
ov

er
al

l l
oc

al
 d

ist
an

ce Force field
AMBER99SB*-ILDN-tip4pD
AMBER99SB*-ILDN-tip4p2005
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Figure C.6: (a) Online convergence analysis for PEP3 ensemble simulated with force-
fields c36idp, c36m, disp and ildn. (b) Online convergence analysis for K-18 domain
of Tau ensemble simulated with AMBER ff99SB*-ILDN and TIP4P-D water model. In
abscissas, the percentage of simulation time, divided in 20 equally spaced time intervals.
In ordinates, the overall distances between the ensembles simulated at the extremes of the
time intervals. The left (resp. right) column presents the evolution of OWg

i (resp. OW l
i)

with respect to time.
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OW l
i, OW

g
i with respect to the ti indicates whether the simulation has converged or not.

Note that the distances OW l
i, OW

g
i can never be equal to zero, as they are empirical

distances which converge to zero when the sample size tends to infinity. Therefore, the
profiles will approach a non-zero plateau under convergence, whose ordinate will decrease
when sample size increases. The criteria to assume convergence will be therefore the reach
of such a plateau at a reasonable ordinate, meaning that it must be small enough if sample
sizes are considerably large. Nevertheless, this criteria provides a stronger evidence of non-
convergence, as the achievement of an asymptote for (C.4), even if necessary, may not be
sufficient to guarantee convergence. If we resolve that the simulation must keep going until
time T ′ > T , it suffices to add OW l,AT ,AT ′ and OWg,AT ,AT ′ to each curve and recheck.

Figure C.6a presents the evolution of the online overall distances for PEP3 simulated
with the four force-fields introduced in Section 5.3.1. We observe that all the curves exhibit
an asymptote at a value close to zero after 80% of simulation time, which is compatible
with convergence in all cases. This is not the case for the simulation in Figure C.6b,
corresponding to a 1,000 ns simulation of the K-18 domain of Tau using the AMBER
ff99SB*-ILDN force-field and the TIP4P-D water model (Sthitadhi Maiti and Matthias
Heyden, unpublished). Here, we clearly observe that curves do not reach an asymptote
and present a decreasing behavior during all the time evolution. This result was expected
due to the length of the protein (129 amino acids) and the reduced simulated time.

C.2.3 Comparison of ensembles using distance matrices
As it is discussed in Section 5.1, the use of average descriptors to compare IDP ensembles
may yield a substantial loss of information when the underlying distributions describing
their structure exhibit a high and complex variability. The work presented in [167] com-
putes the median Cα-Cα distance for every pair of residues i < j, denoted d̄ij , as well
as its corresponding standard deviation, denoted σij . If d̄Aij , σAij (resp. d̄Bij , σBij ) denote
the previously defined descriptors for ensemble A (resp. B), the difference between both
ensembles is given by a matrix with entries Mij , where

Mij =


∆d̄ij = |d̄Aij − d̄Bij | if i < j,

∆σij = |σAij − σBij | if j > i,

0 otherwise.
(C.5)

In [167], the entries Mij are neglected if they are not significantly different from zero
(according to a Mann-Whitney-Wilcoxon test for the distance distributions). Here, we
skipped this step for simplicity. We computed the matrix with entries Mij for the compar-
ison analysis presented in Section 5.3.1, using one replica per ensemble. The counterpart
of Figure 5.2 is depicted in Figure C.7. As could be anticipated, the conclusions stated
in Section 5.3.1 are difficult to extract from the matrices in Figure C.7. First, the overall
behaviour between force-fields suggested by Figure 5.2 is not observed in the distance
matrices, as the corresponding color scales do not present significant discrepancies in the
distance magnitudes between comparisons (see, on the contrary, the differences between
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Figure C.7: Comparison of Molecular Dynamics simulations of Hst5 ensemble using differ-
ent force-fields, using the methodology described in [167]. The matrix entries correspond
to the absolute differences defined in (C.5).

rows in Figure 5.2). When looking at the differences located in the interior of the matri-
ces, some similarities might arise between Figures 5.2 and C.7 for the top left comparison
(c36idp vs. c36m), where the more important discrepancies appear between residues close
to the N-terminus. However, the remaining comparisons exhibit contradictory behaviors
between both methods, as the regions where the more relevant discrepancies appear differ.
See, notably, comparisons on the bottom row. In Figure 5.2, only residues close to each
other present big changes on their relative position, and no discrepancies are found in the
interior region of the matrix. The opposite behavior is found in Figure C.7. The fact
that the distance matrix (C.5) ignores the uncertainty (intra-ensemble distances) might
partially explain the encountered discrepancies between methods.
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C.3 Supplementary figures

Ensemble
hst5 - c36idp (run 0)

hst5 - disp (run 0)

Figure C.8: Two samples of −→R 3,10 corresponding to a pair of ensembles of Hst5 simulated
with force-fields CHARMM36IDPSFF (c36idp) and AMBER ff99SB-disp (disp). Each
sample is represented by a point cloud in the three-dimensional euclidean space.
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Figure C.9: Comparison of Hst5 ensembles before and after filtering with experimental
SAXS data. The ensemble was simulated from (a) N-to-C or from (b) C-to-N. (c) Compar-
ison of Hst5 ensembles generated from N-to-C and C-to-N. (d) comparison of the N-to-C
and C-to-N SAXS refined. In all matrices, The color scale W̃/Wintra corresponds to the
score (5.10), representing the relative difference between the inter-ensemble distances and
the uncertainty. The coefficients in the lower triangle (in red) corresponds to the global
differences. Coefficients along the diagonal (in blue) correspond to the local differences.
Blue stars indicate that the corresponding local corrected distance is significantly different
from zero (the associated p-value (5.6) is smaller than α = 0.05).
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D.1 Proofs of Section 6.2

Proof of Theorem 6.2.1. We use the same steps as in the proof of Theorem 1 in [104]. We
begin by deriving the null distribution of the test statistic ∥X̄G1 − X̄G2∥VG1,G2

under the
null H{G1,G2}

0 . First, we have

X ∼MNn×p(µ,U,Σ)⇔ XT ∼MNp×n(µT ,Σ,U)⇔ vec(XT ) ∼ Nnp(vec(µT ),U⊗Σ),
(D.1)

where vec(XT ) is a column vector concatenating the n vectors of p-dimensional observa-
tions that constitute X. If we restrict vec(XT ) to the observations (6.10) in G1 ∪ G2 , we
have

XG1,G2 ∼ Np(|G1|+|G2|)(µG1,G2 ,UG1,G2 ⊗Σ) (D.2)

where µG1,G2 = (vec(µTG1
), vec(µTG2

)). Then, we can apply the linear transformation DG1,G2

(6.11) to obtain the difference of means and get

X̄G1 − X̄G2 = DG1,G2XG1,G2 ∼ Np
(
µ̄G1 − µ̄G2 ,DG1,G2(UG1,G2 ⊗Σ)DT

G1,G2

)
, (D.3)
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that, under H{G1,G2}
0 , gives

X̄G1 − X̄G2

H
{G1,G2}
0 ∼ Np (0,VG1,G2) , (D.4)

where we replaced VG1,G2 by its definition (6.12). UG1,G2 is positive definite as it is a
principal submatrix of U. The Kronecker product of two positive definite matrices is also
positive definite and, as DG1,G2 is a full rank linear operator, VG1,G2 is positive definite [127,
Observation 7.1.8]. Consequently, VG1,G2 is invertible and defines the norm (6.9) in Rp.
This, together with (D.4), yields

∥X̄G1 − X̄G2∥2VG1,G2

H
{G1,G2}
0 ∼ χ2

p. (D.5)

Let us now build the p-value for H{G1,G2}
0 , by slightly adapting the reasoning in [104]. On

one hand, for any ν ∈ Rn, we have

X = π⊥
ν X + (In − π⊥

ν X) = π⊥
ν X +

(
∥XT ν∥VG1,G2

∥ν∥22

)
ν dirVG1,G2

(XT ν)T . (D.6)

Following (6.8), XT ν(G1,G2) = X̄G1 − X̄G2 and ∥ν(G1,G2)∥22 = 1/|G1| + 1/|G2|. Thus, we
can write

X = πν(G1,G2)⊥X +

∥X̄G1 − X̄G2∥VG1,G2
1

|G1| + 1
|G2|

 ν(G1,G2) dirVG1,G2
(X̄G1 − X̄G2)T . (D.7)

On the other hand, from the proof in [104] we have πν(G1,G2)⊥X ⊥⊥ XT ν(G1,G2), which
implies

∥X̄G1 − X̄G2∥VG1,G2
⊥⊥ πν(G1,G2)⊥X (D.8)

and, from the independence of the length and direction (in any norm) of a centered
multivariate normal vector (D.4), we have

∥X̄G1 − X̄G2∥VG1,G2
⊥⊥ dirVG1,G2

(X̄G1 − X̄G2). (D.9)

We can now plug (D.7) in the definition of our p-value (6.13) and, applying (D.8) and
(D.9), we can derive

pVG1,G2
(x; {G1,G2}) = P

H
{G1,G2}
0

(
∥X̄G1 − X̄G2∥VG1,G2

≥ ∥x̄G1 − x̄G2∥VG1,G2

∣∣∣∣
∥X̄G1 − X̄G2∥VG1,G2

∈ SVG1,G2
(x; {G1,G2})

)
, (D.10)

where the set SVG1,G2
(x; {G1,G2}) is defined in (6.15). Consequently, if we denote by

Fp(t,S) the cumulative distribution function of a χp random variable truncated to the set
S, from (D.10) and (D.5) we have

pVG1,G2
(x; {G1,G2}) = 1− Fp

(
∥x̄G1 − x̄G2∥VG1,G2

, SVG1,G2
(x; {G1,G2})

)
, (D.11)

which proves the first statement (6.14). The control of selective type I error is proved
identically to the reasoning in the proof of [104, Theorem 1].



D.2. Proofs of Section 6.3 201

Proof of Lemma 6.2.2. Let us first show that the perturbed data sets x′(ϕ), defined in [104,
Equation (13)] and x′

VĈ1,Ĉ2
(ϕ), defined in (6.17) are the same up to a scale transformation,

i.e. that

x′
VĈ1,Ĉ2

(ϕ) = x′
(
∥x̄Ĉ1

− x̄Ĉ2
∥2

∥x̄Ĉ1
− x̄Ĉ2

∥VĈ1,Ĉ2

ϕ

)
∀ϕ ≥ 0. (D.12)

Note first that we can write(
∥x̄Ĉ1

− x̄Ĉ2
∥2

∥x̄Ĉ1
− x̄Ĉ2

∥VĈ1,Ĉ2

ϕ− ∥x̄Ĉ1
− x̄Ĉ2

∥2

)
dir(x̄Ĉ1

− x̄Ĉ2
) =(

ϕ− ∥x̄Ĉ1
− x̄Ĉ2

∥VĈ1,Ĉ2

)
dirVĈ1,Ĉ2

(x̄Ĉ1
− x̄Ĉ2

), (D.13)

where dir(u) = u/∥u∥21{u ̸= 0}. Replacing (D.13) in (6.19), we have (D.12). Finally, it
suffices to remark that

ŜVĈ1,Ĉ2
=
{
ϕ ≥ 0 : Ĉ1, Ĉ2 ∈ C

(
x′

VĈ1,Ĉ2
(ϕ)
)}

={
ϕ ≥ 0 : Ĉ1, Ĉ2 ∈ C

(
x′
(
∥x̄Ĉ1

− x̄Ĉ2
∥2

∥x̄Ĉ1
− x̄Ĉ2

∥VĈ1,Ĉ2

ϕ

))}

=
{∥x̄Ĉ1

− x̄Ĉ2
∥VĈ1,Ĉ2

∥x̄Ĉ1
− x̄Ĉ2

∥2
ϕ : Ĉ1, Ĉ2 ∈ C(x′(ϕ))

}
=
∥x̄Ĉ1

− x̄Ĉ2
∥VĈ1,Ĉ2

∥x̄Ĉ1
− x̄Ĉ2

∥2
Ŝ,

which concludes the proof.

D.2 Proofs of Section 6.3

Proof of Theorem 6.3.1. The proof follows the same steps as the one of [104, Theorem 4].
In the same way, we will simplify notation by using p̂n to denote pV̂

Ĉ
(n)
1 ,Ĉ

(n)
2

(
X(n);

{
Ĉ

(n)
1 , Ĉ

(n)
2

})
,

pn to denote pV
Ĉ

(n)
1 ,Ĉ

(n)
2

(
X(n);

{
Ĉ

(n)
1 , Ĉ

(n)
2

})
, V̂n to denote V̂

Ĉ
(n)
1 ,Ĉ

(n)
2

and Vn to denote
V
Ĉ

(n)
1 ,Ĉ

(n)
2

. If we show that

Σ̂
(
X(n)

)
⪰ Σ ⇒ p̂n ≥ pn, (D.14)

then the result follows using the same reasoning as in the proof of [104, Theorem 4],
replacing the usual order ≥ in R by the Loewner partial order ⪰ between matrices. Con-
sequently, we only need to prove (D.14). First note that, as the Kronecker product is
distributive, we have

Σ̂
(
X(n)

)
⪰ Σ ⇒ V̂n ⪰ Vn. (D.15)
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Next, by Corollary 7.7.4(a) and Theorem 7.7.2(a) in [127], we can write

V̂n ⪰ Vn ⇔ V−1
n ⪰ V̂−1

n

⇒
(
X(n)

Ĉ
(n)
1
−X(n)

Ĉ
(n)
2

)T
V−1
n

(
X(n)

Ĉ
(n)
1
−X(n)

Ĉ
(n)
2

)
≥
(
X(n)

Ĉ
(n)
1
−X(n)

Ĉ
(n)
2

)T
V̂−1
n

(
X(n)

Ĉ
(n)
1
−X(n)

Ĉ
(n)
2

)
⇔ ∥X(n)

Ĉ
(n)
1
−X(n)

Ĉ
(n)
2
∥Vn ≥ ∥X(n)

Ĉ
(n)
1
−X(n)

Ĉ
(n)
2
∥V̂n

. (D.16)

Let us then state that, if Fp(t, c,S) denotes the cumulative distribution function of a c ·χp
distribution truncated to the set S, for c > 0, it follows that

Fp(t, c, aS) = Fp
(
t

a
,
c

a
,S
)
, (D.17)

for any a > 0. With a slight abuse of notation we write Fp(t, 1,S) = Fp(t,S) where Fp(t,S)
is the CDF involved in (6.14). Consequently, taking

a =
∥X(n)

Ĉ
(n)
1
−X(n)

Ĉ
(n)
2
∥V̂n

∥X(n)
Ĉ

(n)
1
−X(n)

Ĉ
(n)
2
∥Vn

≤ 1, (D.18)

we have

1− p̂n = Fp
(
∥X(n)

Ĉ
(n)
1
−X(n)

Ĉ
(n)
2
∥V̂n

, SV̂n

)
= Fp

(
∥X(n)

Ĉ
(n)
1
−X(n)

Ĉ
(n)
2
∥V̂n

, aSVn

)
= Fp

(1
a
∥X(n)

Ĉ
(n)
1
−X(n)

Ĉ
(n)
2
∥V̂n

,
1
a
, SVn

)
= Fp

(
∥X(n)

Ĉ
(n)
1
−X(n)

Ĉ
(n)
2
∥Vn ,

1
a
, SVn

)
≤ Fp

(
∥X(n)

Ĉ
(n)
1
−X(n)

Ĉ
(n)
2
∥Vn , 1 , SVn

)
= 1− pn,

(D.19)

where the last inequality follows from Lemma A.3 in [104]. This shows (D.14). We
conclude by proving the statement (D.17). First, if we denote by f(t, c,S) the probability
density function of a c · χp distribution truncated to the set S, we have

f(t, c, aS) = 1
a
f

(
t

a
,
c

a
,S
)
. (D.20)

Indeed, following the first lines of the proof of [104, Lemma A.3], we can rewrite f(t, c, aS)
as

f(t, c, aS) = tp−1 1{t ∈ aS}∫
up−1 exp(− u2

2c2 ),1{t ∈ aS} du
exp

(
− t2

2c2

)
, (D.21)

that we can easily express in terms of t/a as

f(t, c, aS) =
(
t
a

)p−1
1{ ta ∈ S}∫ (u

a

)p−1 exp(− (u/a)2

2(c/a)2 ),1{ ta ∈ S} du
exp

(
− (t/a)2

2(c/a)2

)
= 1
a
f

(
t

a
,
c

a
,S
)
,

(D.22)
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where the last equality follows from taking the variable change y = u/a in the integral.
Finally, we have

Fp(t, c, aS) =
∫ t

0
f(x, c, aS) dx = 1

a

∫ t

0
f

(
x

a
,
c

a
,S
)
dx =∫ t

a

0
f

(
u,
c

a
,S
)
du = Fp

(
t

a
,
c

a
,S
)
,

which proves (D.17).

Proof of Remark 6.3.5. The case of diagonal matrices is straightforward as both U(n) and
(U(n))−1 are defined by a sequence {λi}i∈N. Every diagonal entry of the inverse satisfies
(U (n))−1

ii = 1
λi

for all n ∈ N and, as we asked the λi to converge to λ, which is strictly
positive due to the positive definiteness of U(n), Assumption 4 is satisfied.

Proof of Remark 6.3.6. Let U(n) = b1n×n + (a − b) In. Note that, as U(n) is positive
definite, the coefficients a, b verify a > b. This follows the fact that maxi,j |Aij | ≤ maxiiAii
for any positive definite matrix A. Following the Sherman–Morrison formula [14], we can
derive an explicit expression for the sequence of inverse matrices:(

U(n)
)−1

= 1
a− b

In + −b
(a− b)(nb+ a− b) , ∀n ∈ N. (D.23)

Consequently, for every r ≥ 0 and every i ∈ N, we have

(
U(n)

)−1

i i+r
=


1
a−b + −b

(a−b)(nb+a−b) if r = 0,
−b

(a−b)(nb+a−b) if r > 0,

which are monotone, so condition (ii) in Assumption 4 is satisfied. Then, we have

Λi i+r =

 1
a−b if r = 0,
0 if r > 0,

for all i ∈ N, λ0 = 1/(a− b) and λr = 0 for r > 0. Consequently, Assumption 4 holds.

Proof of Remark 6.3.7. The inverse of an auto-regressive covariance matrix of lag P ≥ 1 is
banded with 2P−1 non-zero diagonals. Its explicit form is derived in [297] for a stationary
process of any lag, and the cases P ≤ 3 are discussed in detail in [308]. From these results
we can derive the behavior of the sequences {(U (n))−1

i i+r} as n increases. The diagonal
elements define the sequences

σ2
{(
U (n)

)−1

ii

}
n∈N

= {1 +∑i−1
k=1 β

2
k, 1 +∑i−1

k=1 β
2
k, . . .} if i ≤ p+ 1,

{0, i−1. . ., 0, 1, 1 + β2
1 , 1, 1 + β2

1β
2
2 , . . . , 1 +∑p

k=1 β
2
k, 1 +∑p

k=1 β
2
k, . . .} if i > p+ 1,
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where the sums are taken as zero if the upper limit of summation is zero. Note that these
sequences do not satisfy condition (i) in Assumption 4 as, even if each sequence reaches
its limit after a finite number of terms, the index of the term where the limit is reached
diverges with i. In other words, we can dominate the sequence, but not by a summable
one. However, for all i ∈ N the series are non-decreasing so condition (ii) is satisfied and
we have

σ2 Λii =

 1 +∑i−1
k=1 β

2
k if i ≤ p+ 1

1 +∑p
k=1 β

2
k if i > p+ 1.

Then, σ2 λ0 = 1 + ∑p
k=1 β

2
k. The sequences outside the main diagonal show a similar

behavior, but they are not positive in general. As, following the same reasoning, they do
not satisfy condition (i) in Assumption 4, we force them to satisfy condition (ii). For any
0 < r ≤ P , we have

σ2
{(
U (n)

)−1

i i+r

}
n∈N

=
{−βr +∑i−(r+1)

k=1 βkβk+r, −βr +∑i−(r+1)
k=1 βkβk+r, . . .} if i ≤ p+ 1,

{0, i−1. . ., 0,−βr + β1β1+r,−βr + β1β1+r + β2β2+r, . . . ,

−βr +∑p−r
k=1 βkβk+r,−βr +∑p−r

k=1 βkβk+r, . . .} if i > p+ 1.
(D.24)

For these sequences to satisfy condition (ii) we need them to be non-decreasing or non-
increasing. For P ≤ 2 this is always satisfied but, for P > 2, we need to require all the βk
to have the same sign. In that case, condition (ii) holds and we have

σ2Λi i+r =

−βr +∑i−(r+1)
k=1 βkβk+r ifi ≤ p+ 1,

−βr +∑p−r
k=1 βkβk+r ifi > p+ 1,

and, consequently, σ2λr = −βr+∑p−r
k=1 βkβk+r. As the sequence {λr}∞r=1 is non-zero for for

a finite number of terms (due to the bandedness of the inverse matrix), its sum converges
and Assumption 4 is satisfied.

Proof of Lemma 6.3.3. We start by rewriting the sum in (6.37) as a sum along each diag-
onal. Using the symmetry of (U(n))−1 we have,

lim
n→∞

1
n

n∑
l,s=1

(
U (n)

)−1

ls
1{µ(n)

l = θk}1{µ(n)
s = θk′}

= lim
n→∞

1
n

n−1∑
r=1

n−r∑
i=1

(
U (n)

)−1

i i+r
1{µ(n)

i = θk}1{µ
(n)
i+r = θk′} (D.25)

+ lim
n→∞

1
n

n−1∑
r=1

n−r∑
i=1

(
U (n)

)−1

i i+r
1{µ(n)

i+r = θk}1{µ
(n)
i = θk′} (D.26)

+ lim
n→∞

1
n

n∑
i=1

(
U (n)

)−1

i i
1{µ(n)

i = θk}1{µ
(n)
i = θk′}, (D.27)
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where (D.25),(D.26) and (D.27) are respectively the sums along all the superdiagonals,
subdiagonals and along the main diagonal. Let’s detail the general reasoning that we use
to show that the three quantities converge. Let {a(n)

i }i∈N be a double sequence such that
limn→∞ a

(n)
i = ai ∈ R, and let {b(n)

i }i∈N be a binary Cesàro summable double sequence, i.e.
such that limn→∞

1
n

∑n
i=1 b

(n)
i = b and b

(n)
i ∈ {0, 1} for all i, n ∈ N. Let’s first show that,

if {a(n)
i }n∈N satisfies any of the conditions (i) or (ii), and the sequence {a(1)

i −ai}∞i=1 ∈ ℓ1,
we can write

lim
n→∞

1
n

n∑
i=1

a
(n)
i b

(n)
i = lim

n→∞
1
n

n∑
i=1

ai b
(n)
i . (D.28)

First, note that

lim
n→∞

1
n

n∑
i=1

a
(n)
i b

(n)
i = lim

n→∞
1
n

n∑
i=1

(
a

(n)
i − ai

)
b

(n)
i + lim

n→∞
1
n

n∑
i=1

ai b
(n)
i . (D.29)

Therefore, it suffices to show that the first term in (D.29) is zero to have (D.28). Using
Hölder’s inequality, we have

lim
n→∞

1
n

∣∣∣∣∣
n∑
i=1

(
a

(n)
i − ai

)
b

(n)
i

∣∣∣∣∣ ≤ lim
n→∞

1
n

n∑
i=1

∣∣∣(a(n)
i − ai

)
b

(n)
i

∣∣∣
≤ lim

n→∞

(
n∑
i=1

(
a

(n)
i − ai

)2
) 1

2

lim
n→∞

1
n

(
n∑
i=1

b
(n)
i

) 1
2

.

On one hand,

lim
n→∞

1
n

(
n∑
i=1

b
(n)
i

) 1
2

= lim
n→∞

1√
n

lim
n→∞

(
1
n

n∑
i=1

b
(n)
i

) 1
2

= 0.

On the other hand, let us show that

lim
n→∞

n∑
i=1

(
a

(n)
i − ai

)2
= 0 (D.30)

if {a(n)
i }n∈N satisfies any of the conditions (i) or (ii). If {a(n)

i }n∈N satisfies (i), the sequence
{(a(n)

i − ai)2}n∈N is dominated by the sequence {α2
i }i∈N, which is summable as ℓ1 ⊂ ℓ2.

Then, (D.28) holds following the Dominated Convergence Theorem [311, Theorem 9.20]. If
{a(n)

i }n∈N is non-increasing, then a(n+1)
i −ai ≤ a(n)

i −ai implies (a(n+1)
i −ai)2 ≤ (a(n)

i −ai)2

and ã
(n)
i := (a(n)

i − ai)2 is a non-increasing and non-negative sequence. Similarly, if
{a(n)

i }n∈N is non-decreasing, then a(n+1)
i −ai ≥ a(n)

i −ai implies (a(n+1)
i −ai)2 ≤ (a(n)

i −ai)2

and ã(n)
i is again a non-increasing and non-negative sequence. Then, the sequence z(n)

i :=
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ã
(1)
i − ã

(n)
i is non-negative and non-decreasing. Thus, following the Monotone Convergence

Theorem [311, Theorem 8.5], we have

lim
n→∞

n∑
i=1

z
(n)
i = lim

n→∞

n∑
i=1

(a(1)
i − ai)2, (D.31)

which implies (D.30) if the limit in the right side of (D.31) exists and is finite. This is
guaranteed if we ask the sequence {a(1)

i −ai}∞i=1 to be summable. This always holds in our
case as we can arbitrarily define the entries

(
U (n)

)−1

i i+r
for i > n. Consequently, if we write

{
(
U (1)

)−1

i i+r
}∞i=1 = {

(
U (1)

)−1

1 1+r
,Λ2 2+r,Λ3 3+r, . . .}, the sequence {

(
U (1)

)−1

i i+r
− Λi i+r}∞i=1

is trivially summable. This proves (D.28).
Now, if we have that lim

i→∞
ai = a, let us show that

lim
n→∞

1
n

n∑
i=1

ai b
(n)
i = ab. (D.32)

First, let separate the sum in (D.32) as

1
n

n∑
i=1

ai b
(n)
i = 1

n

n∑
i=1

(ai − a) b(n)
i + a

n

n∑
i=1

b
(n)
i . (D.33)

The right term tends to ab when n → ∞. Let’s show that the first term tends to zero.
For any i0 ∈ N, we can write

∣∣∣∣∣ 1n
n∑
i=1

(ai − a) b(n)
i

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

i0−1∑
i=1

(ai − a) b(n)
i

∣∣∣∣∣+
∣∣∣∣∣∣ 1n

n∑
i=i0

(ai − a) b(n)
i

∣∣∣∣∣∣ (D.34)

≤ sup
i<i0
|ai − a|

1
n

i0−1∑
i=1

b
(n)
i + sup

i≥i0
|ai − a|

1
n

n∑
i=i0

b
(n)
i ≤ C

n
+ sup
i≥i0
|ai − a|

1
n

n∑
i=i0

b
(n)
i , (D.35)

where C is a real constant. Then, following the definition of limit, when can choose i0 as
the one such that for all i ≥ i0 we have |ai − a| ≤ 1

n . Therefore,∣∣∣∣∣ 1n
n∑
i=1

(ai − a) b(n)
i

∣∣∣∣∣ ≤ C

n
+ 1
n2

n∑
i=i0

b
(n)
i , (D.36)

which tends to zero when n → ∞ using that {b(n)
i }i ∈ N has Cesàro sum b. Thus,

we have (D.32). As the sequences (U (n))−1
i i+r have limits Λi i+r when i → ∞, following

Assumption 3, and the products of indicator functions are Cesàro summable thanks to
Assumptions 2 and 3, we can use (D.28) and (D.32) to rewrite the three limits in (D.25),
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(D.26), (D.27) as

lim
n→∞

1
n

n∑
l,s=1

(
U (n)

)−1

ls
1{µ(n)

l = θk}1{µ(n)
s = θk′}

= lim
n→∞

n−1∑
r=1

λr (πrkk′ + πrk′k) + λ0πkδkk′ = 2(λ− λ0)πkπk′ + λ0πkδkk′ , (D.37)

where the last limit is derived following the same reasoning as to prove (D.32). This
concludes the proof.

Proof of Proposition 6.3.2. We start by proving the element-wise convergence in proba-
bility of (6.28). More precisely, we show that

Σ̂(n)
ij

p→ Σij + λ0

K∗∑
k=1

πk
(
θki − θ̃i

) (
θkj − θ̃j

)
, (D.38)

for all i, j ∈ {1, . . . , p}, where Σ̂(n)
ij is the ij entry of Σ̂

(
X(n)

)
and we have defined θ̃i =∑K∗

k=1 πkθki. Recall that all the quantities in (D.38) have been defined in Assumptions 2
and 4. To prove (D.38), it suffices to show, following the same reasoning as in the proof
of [104, Lemma C.1], that

lim
n→∞

E
(
Σ̂(n)
ij

)
= Σij + λ0

K∗∑
k=1

πk
(
θki − θ̃i

) (
θkj − θ̃j

)
and Var

n→∞

(
Σ̂(n)
ij

)
= 0. (D.39)

Indeed, (D.39) implies convergence in mean of Σ̂(n)
ij towards the limit of its expectation

and, following Markov’s inequality, convergence in probability. Let start by rewriting Σ̂(n)
ij .

Following (6.30), we can write

Σ̂(n)
ij = 1

n− 1

n∑
l,s=1

X
(n)
li X

(n)
js

(
U (n)

)−1

ls
− 1
n− 1 X̄

(n)
j

n∑
l,s=1

X
(n)
li

(
U (n)

)−1

ls

− 1
n− 1 X̄

(n)
i

n∑
l,s=1

X
(n)
sj

(
U (n)

)−1

ls
+ 1
n− 1 X̄

(n)
i X̄

(n)
j

n∑
l,s=1

(
U (n)

)−1

ls
. (D.40)

For simplicity, we denote as A(n)
ij , B(n)

ij , C(n)
ij and D(n)

ij the four terms in (D.40) respectively.
First, let us derive their asymptotic expectations.

E
(
A

(n)
ij

)
= 1
n− 1

n∑
l,s=1

(
U (n)

)−1

ls
E
(
X

(n)
li X

(n)
sj

)

= 1
n− 1

n∑
l,s=1

(
U (n)

)−1

ls
µ

(n)
li µ

(n)
sj + Σij

n− 1

n∑
l,s=1

(
U (n)

)−1

ls
U

(n)
sl

=
K∗∑

k,k′=1

1
n− 1

n∑
l,s=1

(
U (n)

)−1

ls
1{µ(n)

l = θk}1{µ(n)
s = θk′} θkiθk′j + n

n− 1Σij .
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Using Lemma 6.3.3, we have

lim
n→∞

E
(
A

(n)
ij

)
= 2(λ− λ0)

K∗∑
k=1

πkθki

K∗∑
k=1

πkθkj + λ0

K∗∑
k=1

πkθkiθkj + Σij . (D.41)

Then,

E
(
B

(n)
ij

)
= 1
n(n− 1)

n∑
l,s,r=1

(
U (n)

)−1

ls
E
(
X

(n)
li X

(n)
rj

)

= 1
n(n− 1)

n∑
l,s,r=1

(
U (n)

)−1

ls
µ

(n)
li µ

(n)
rj + Σij

n− 1 = 1
n

n∑
r=1

µ
(n)
rj

1
n− 1

n∑
l,s

(
U (n)

)−1

ls
µ

(n)
li + Σij

n− 1

=
K∗∑
k=1

1
n

n∑
r=1

1{µ(n)
r = θk}θkj

K∗∑
k=1

1
n− 1

n∑
l,s=1

(
U (n)

)−1

ls
1{µ(n)

l = θk}θki + Σij

n− 1 .

Using the same reasoning as to prove Lemma 6.3.3, we have

lim
n→∞

1
n− 1

n∑
l,s=1

(
U (n)

)−1

ls
1{µ(n)

l = θk} = (2(λ− λ0) + λ0)πk.

This, together with Assumption 2, yields

lim
n→∞

E
(
B

(n)
ij

)
= lim

n→∞
E
(
C

(n)
ij

)
= (2(λ− λ0) + λ0)

K∗∑
k=1

πkθkj

K∗∑
k=1

πkθki, (D.42)

where B(n)
ij and C

(n)
ij have the same expectation by symmetry. Finally,

E
(
D

(n)
ij

)
= 1
n2(n− 1)

n∑
l,s=1

(
U (n)

)−1

ls

n∑
r,r′=1

E
(
X

(n)
ri X

(n)
r′j

)
1

n− 1

n∑
l,s=1

(
U (n)

)−1

ls

 1
n2

n∑
r,r′=1

µ
(n)
ri µ

(n)
r′j + Σij

n2

n∑
r,r′=1

U
(n)
rr′

 .
Using the same reasoning as to prove Lemma 6.3.3, we have

lim
n→∞

1
n− 1

n∑
l,s=1

(
U (n)

)−1

ls
= 2(λ− λ0) + λ0. (D.43)

Moreover, we state that

lim
n→∞

1
n2

n∑
l,s=1

U
(n)
ls = 0. (D.44)

We prove (D.44) at the end of the proof. This claim, together with (D.43) and Assump-
tion 2, yields

lim
n→∞

E
(
D

(n)
ij

)
= (2(λ− λ0) + λ0)

K∗∑
k=1

πkθki

K∗∑
k=1

πkθkj . (D.45)
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Consequently, following (D.41), (D.42) and (D.45), we have

lim
n→∞

E
(
Σ̂(n)
ij

)
= Σij + λ0

[
K∗∑
k=1

πkθkiθkj −
K∗∑
k=1

πkθki

K∗∑
k=1

πkθkj

]

= Σij + λ0

K∗∑
k=1

πk
(
θki − θ̃i

) (
θkj − θ̃j

)
. (D.46)

This is the first statement in (D.39). To prove the second one, we show that the variance of
each term in (D.40) tends to zero. To do so, we need the explicit form of the non-centered
4-th moments of a Gaussian distribution. More precisely, if X1, . . . , X4 are four Gaussian
random variables with E(Xi) = µi and Cov(Xi, Xj) = σij , for i, j ∈ {1, . . . , 4}, we need
the explicit form of the quantity

E (X1X2X3X4)− E (X1X2) E (X3X4) . (D.47)

The first term can be derived using the moment generating function of a 4-dimensional
normal distribution

M(X1,...,X4)(t1, . . . , t4) = exp

 4∑
i=1

µi ti + 1
2

n∑
i,j=1

σij ti tj

 ,
and computing

E (X1X2X3X4) =
∂M(X1,...,X4)(t1, . . . , t4)

∂ t1 · · · ∂ t4

∣∣∣∣∣
0

.

Doing so, and using E(XiXj) = µiµj + σij , we can derive

E (X1X2X3X4)− E (X1X2) E (X3X4) =
σ13σ24 + σ14σ23 + µ1µ4σ23 + µ1µ3σ24 + µ2µ3σ14 + µ2µ4σ13. (D.48)

We are ready to prove that Var
(
Σ̂(n)
ij

)
tends to zero. First, using Var(X) = E(X2)−E(X)2,

we have

Var
(
A

(n)
ij

)
= 1

(n− 1)2

n∑
l,s,k,r=1

(
U (n)

)−1

sl

(
U (n)

)−1

kr
[E (XliXsj XriXkj)−

E (XliXsj)E (XkiXrj)] . (D.49)
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Using (D.48), we can separate (D.49) into the following six terms:

Var
(
A

(n)
ij

)
= ΣiiΣjj

(n− 1)2

n∑
l,s,k,r=1

(
U (n)

)−1

ls

(
U (n)

)−1

kr
U

(n)
lk U (n)

sr (D.50)

+
Σ2
ij

(n− 1)2

n∑
l,s,k,r=1

(
U (n)

)−1

ls

(
U (n)

)−1

kr
U

(n)
lr U

(n)
sk (D.51)

+ Σjj

(n− 1)2
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(
U (n)
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(
U (n)

)−1

kr
U (n)
sr µ

(n)
li µ

(n)
ki (D.52)

+ Σij
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U (n)
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U (n)
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+ Σij
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(
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(
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+ Σii
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(
U (n)
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(
U (n)
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U
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rj . (D.55)

Each of these terms tend to zero when n→∞. For (D.50), we have

ΣiiΣjj
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(
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(n− 1)2 ΣiiΣjj −→
n→∞

0.

Identically we can show that (D.51) tends to zero. For (D.52), we have
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where the limit is derived using Lemma 6.3.3. The same reasoning is used to show that
(D.53), (D.54) and (D.55) tend to zero when n→∞. Therefore, we have limn→∞ Var

(
A

(n)
ij

)
=

0. The same strategy, together with (D.43) and (D.44), is used to show that lim
n→∞

Var
(
B

(n)
ij

)
=

lim
n→∞

Var
(
C

(n)
ij

)
= lim

n→∞
Var

(
D

(n)
ij

)
= 0. Consequently, we have (D.38). Note that the sum

in (D.38) can be written as the ij term of a matrix. Indeed, we have

Σ̂(n)
ij − Σij

p→ λ0
(
ΘT diag(π1, . . . , πK∗) Θ

)
ij
, (D.56)
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where Θ is a p×K∗ matrix having as entries Θij = θij − θ̃j . As λ0, π1, . . . , πK∗ ≥ 0, the
matrix λ0(ΘT diag(π1, . . . , πK∗) Θ) is positive semi-definite, so the entries of Σ̂

(
X(n)

)
−Σ

converge in probability to the entries of a positive semi-definite matrix. Note that, as both
Σ̂
(
X(n)

)
and Σ are positive definite, the eigenvalues of their difference are real. Finally,

since the eigenvalues depend continuously on the entries of the matrix, the eigenvalues of
Σ̂
(
X(n)

)
−Σ converge in probability to the eigenvalues of a positive semi-definite matrix,

which are non-negative. Therefore, we have (6.36).
Let us conclude by showing (D.44). To do show, note that we can write,

1 = 1
n

n∑
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(
U (n)
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i i+r
U
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i i
U

(n)
i s .

Using the same reasoning as in the proof of Lemma 6.3.3, we have

1 = 2 lim
n→∞

n−1∑
r=1

λr

 lim
n→∞

1
n

n∑
i,s=1

U
(n)
i+r s

+ λ0 lim
n→∞

1
n

n∑
i,s=1

U
(n)
i s ,

which diverges unless the third limit is finite, which implies (D.44).

D.3 Proofs of Section 6.4
Proof of Theorem 6.4.1. As mentioned after Theorem 6.4.1, we omit the proof of (6.48)
as it is identical to the one of (6.14). Here, we show that the p-values defined using a
non-maximal conditioning set E12(X) ⊂M12(X) as (6.47) control the selective type I error
for clustering (6.6). First, note that we have

P
H

{G1,G2
0

(
pVG1,G2

(x; {G1,G2};E12) ≤ α
∣∣∣∣E12(X) ∩ T12(X)

)
= α (D.57)

following (6.47), for any α ∈ (0, 1). For simplicity, we will denote

A = 1
{
pVG1,G2

(x; {G1,G2};E12) ≤ α
}
. (D.58)

Then, following a similar reasoning as in the proof of [104, Theorem 1] and the tower
property of conditional expectation, we can write
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{G1,G2}
0

[
E
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∣∣∣∣E12(X) ∩ T12(X)
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]
= E

H
{G1,G2}
0

[
α

∣∣∣∣M12(X)
]

= α,

where the third equality follows from the fact E12(X) ⊂ M12(X) and the last equality
follows from (D.57).
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D.4 Simulations of Sections 6.5.1 and 6.5.2 for further clus-
tering algorithms

D.4.1 Uniform p-values under a global null hypothesis
Figure D.1 is the counterpart of Figure 6.1 for k-means and HC with centroid, single and
complete linkage. As mentioned in Section 6.5.1, the encountered empirical distributions
for the p-values (6.13) match the one of a uniform random variable in all cases, excluding
HC with complete linkage and dependence setting (c) (panel (i) in Figure D.1). We postu-
late that the slight deviation from uniformity is an artefact coming from the noise that ap-
pears when simulating independent samples from an auto-regressive process. To illustrate
so, we simulated M samples of size n = 10 drawn from a univariate AR(1) process with
σ = 1 and ρ = 0.9, concatenated the M samples into a sample of size nM and computed
its auto-correlation. Results are presented in Figure D.2 for M ∈ {103, 5 · 103, 104, 5 · 104}.
They show how, when M is not large enough, the observed auto-correlation at lags higher
than n exceeds the confidence intervals, although the corresponding observations have
been independently simulated. Consequently, either large sample sizes or number of simu-
lations are required to reduce the noise, that make the simulated p-values in Figure D.1(i)
deviate from perfect independence and thus prevent their ECDF to converge to the CDF
of a uniform random variable. The same effect is illustrated in Figure D.3, where the
ECDF of the p-values (6.13) is displayed after performing HC with average linkage in the
setting of Section 6.5.1, for the dependence scenario (c) and different number of simula-
tions K ∈ {200, 500, 1000, 2000}. In Figure D.3 we observe how increasing the number
of iterations -and thus reducing the noise illustrated in Figure D.2- makes the computed
ECDF approximate to the diagonal. As it is appreciated in Figure D.1, the encountered
noise seems to have a more substantial effect when p-values are computed by Monte Carlo
approximation. Note that this phenomenon does not contradict the fact that p-values are
uniformly distributed under the global null, but shows that in some cases the noise effect
prevents us from correctly simulating their distribution.

D.4.2 Super-uniform p-values for unknown Σ
Figure D.4 is the counterpart of Figure 6.1 for k-means and HC with centroid, single
and complete linkage. As mentioned in Section 6.5.2, the encountered p-values (6.13)
are stochastically larger than a uniform random variable in all cases. Note that the
empirical distribution for HC with complete linkage and dependence setting (c) (panel
(i) in Figure D.1) shows a more severe separation from the diagonal. This is explained
due to the noise effect discussed in Section D.4.1. Regarding the simulation for k-means
clustering, a larger sample size was needed to illustrate a super-uniform null distribution.
We set n = 1000 and δ = {10, 12} in that case. For computational speeding-up we chose
p = 2.
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Figure D.1: Empirical cumulative distribution functions (ECDF) of p-values (6.13) with
C being a hierarchical clustering algorithm (HC) with centroid (a-c), single (d-f) and
complete (g-i) linkage and a k-means algorithm (j-l). The ECDF were computed from
K = 2000 realizations of (6.2) under the three dependence settings (a), (b) and (c) with
µ = 0n×p, n = 100 and p ∈ {5, 20, 50}.
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Figure D.2: Auto-correlation functions of M concatenated samples of size n = 10 drawn
from an AR(1) process with σ = 1 and ρ = 0.1, as described in Section D.4.1.
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Figure D.3: Empirical cumulative distribution functions (ECDF) of p-values (6.13) com-
puted from K iterations of hierarchical clustering with average linkage in the conditions
described in Section D.4.1.
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Figure D.4: Empirical cumulative distribution functions (ECDF) of p-values (6.13) with C
being a hierarchical clustering algorithm with average linkage. The ECDF were computed
from K = 5000 realizations of (6.2) under the three dependence settings (a), (b) and (c)
with n = 500, p = 10 and µ given by (6.50) with δ ∈ {4, 6}. Only samples for which the
null hypothesis held were kept, as described in Section 6.5.2.
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E.1 UMAP and HDBSCAN algorithms
The Uniform Manifold Approximation and Projection (UMAP) algorithm was introduced
in the very technical work [199], together with a more accessible and fully detailed doc-
umentation [198]. UMAP is a graph layout algorithm incorporating several theoretical
foundations that provide it with a robust and well-established framework. Succintly, the
UMAP algorithm builds a graph in the high dimensional space and then performs an
optimization step to find the most similar graph in a lower dimension. UMAP begins
by building balls centered at each point and connecting points whose corresponding balls
overlap. This yields the representation of the dataset as a simplicial complex, that cap-
tures many of the main topological properties of the high-dimensional space [86]. To deal
with the arbitrariness of the radius choice, the connections are made probabilistic and the
edges of the graph are weighted. The resulting graphical representation is projected into
a lower-dimensional space via a force-directed graph layout algorithm. The optimization
procedure is similar to the one of t-SNE [294], but it effectively preserves a more substan-
tial amount of global structure [310]. UMAP has found numerous applications in various
domains, such as genetics [80, 82], single-cell [15, 272] or neuroimaging [211]. Besides, its
popularity is steadily increasing due to its demonstrated empirical efficiency, especially in
enhancing the performance of clustering methods [2].
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HDBSCAN [46] is a hierarchical version of the DBSCAN [89] clustering algorithm. It
is a density-based method, so it performs better than classical distance-based techniques
like k-means when clusters have arbitrary shapes and sizes, or in the presence of noise or
outliers. The algorithm initially follows a similar approach to that of DBSCAN. It involves
a density-based transformation of the space, akin to DBSCAN, and subsequently performs
single linkage clustering on the transformed space. However, an alternative strategy is car-
ried out to avoid the use of an epsilon value to define a cutoff level for the dendrogram,
enabling the identification of the more stable or persistent clusters. Instead of the cut-
off parameter, HDBSCAN needs the choice of the minimum cluster size, which is more
intuitive and interpretable in practical scenarios. This, together with its remarkable com-
putational efficiency, has made HDBSCAN a very popular algorithm often implemented
in combination with dimensionality reduction techniques [7, 59, 82]. For a complete ex-
planation of the algorithm details, we refer to the HDBSCAN documentation [197].

E.2 Results
This Section presents the complete characterizations of the protein ensembles studied in
Section 7.3. For each one of the examples, we first present the two-dimensional UMAP
embedding of conformations featured by contact functions. Points are coloured accord-
ing to the HDBSCAN classification, illustrating the overall distribution of the cluster
occupancies. Then, the complete family of weighted ω-contact maps is presented for the
ensemble. Finally, we show the secondary structure propensities for the conformations of
each cluster, together with their average radius of gyration.

E.2.1 Complete characterization of CHCHD4
Two-dimensional UMAP projection
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Complete family of weighted ω-contact maps
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Secondary structure propensities and average radii of gyration
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E.2.2 Complete characterization of Huntingtin

Two-dimensional UMAP projection

Complete family of weighted ω-contact maps
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Secondary structure propensities and average radii of gyration
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E.2.3 Complete characterization of DciA

Two-dimensional UMAP projection

Complete family of weighted ω-contact maps
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Secondary structure propensities and average radii of gyration
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E.2.4 Complete characterization of Tau-5R2−R3

Two-dimensional UMAP projection
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Complete family of weighted ω-contact maps
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Secondary structure propensities and average radii of gyration
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Conclusion and final remarks

The works presented in this thesis provide statistical methods for comparing and charac-
terizing conformational ensembles of highly flexible proteins. The overall approach is con-
structed from a perspective that places the intrinsic probabilistic nature of these systems
at the forefront, relying on mathematical techniques that capture the complex variability
of conformational spaces and, whenever possible, provide statistical evidence about the
true structural nature of the proteins under consideration. Furthermore, the methods
presented here are strictly non-parametric, that is, they do not require the assumption
of any specific model. We hope that this type of developments, which avoid reducing
distributions to averages, will become a standard approach in the structural analysis of
disordered proteins. Their utility and effectiveness in capturing their conformational com-
plexity have been clearly demonstrated. We would also like to highlight the relevance of
statistical inference in this type of problems. While descriptive methods are informative,
their robustness diminishes if they are not provided with guarantees regarding the popula-
tion behavior of the studied systems. In many areas of application, statistical guarantees
are often overlooked, usually due to the theoretical complexity of their appropriate imple-
mentation. However, we believe that assessing the significance of the obtained conclusions
is essential for a proper understanding of the observed phenomena. In this regard, the
testing methods presented in Chapters 3 and 6 are aimed to take a first step in performing
inference on protein structures, which we believe should be further pursued in future re-
search. These methods, although motivated by open problems in Structural Biology, are
generally applicable to problems in other fields of research and have also purely theoretical
interest. We conclude by outlining several directions for further research.

Inference at the global scale

The presented techniques for the local structural analysis of flexible proteins are pro-
vided with statistical guarantees (Part I). Extending statistical inference to the global
scale is a very challenging task due to the mathematical complexity of the underlying
theory. A very remarkable contribution would be to provide WASCO (Chapter 5) with
evidence about how significant are the differences between the three-dimensional global
structural descriptors. This would require testing the equality of distributions supported
on the three-dimensional Euclidean space, using the Wasserstein distance as a test statis-

237



238 Conclusion and final remarks

tic. Characterizing the null distribution of the Wasserstein distance when the dimension
of the ground space is higher than one is a non-trivial open problem, which would yield
the definition of goodness-of-fit tests applicable to a large variety of practical problems.
Regarding ensemble characterization, performing post-clustering inference on the output
of WARIO (Chapter 7) would constitute an enriching contribution. Nevertheless, the work
presented in Chapter 6 already represents a relevant progress in adapting this theory to
more realistic problems, allowing for arbitrary dependence structures between observations
and features. Incorporating this technique to WARIO would require its extension to non-
Gaussian random variables and more sophisticated clustering algorithms that integrate
dimensionality reduction. Although this represents a mathematically complex endeavor,
it would greatly advance the applicability of selective inference in real-world problems.

Broaden the applicability to more complex systems

The comparison and characterization methods have been conceived for conformational
ensembles at all-atom resolution. However, atomistic simulations frequently face compu-
tational limitations, due to the extensive spatial and temporal scales involved in thermo-
dynamic and kinetic phenomena [305, 38]. This is sometimes overcome by reducting the
dimensionality of the system and simulating a simplified representation of the molecule
through the so-called coarse-grained models. However, the basis of the global structural
descriptors defined here are the residue-specific reference frames built at every amino acid
along the backbone (recall Section 1.2.2), that are defined using the all-atom coordinates.
These frames are essential to have access to the residue-residue relative positions and ori-
entations that integrate the global structural analyses. The adaptation of such reference
systems to the coarse-grained framework, ensuring that orientation is properly accounted
for, presents an intriguing avenue for future research. This approach would pave the way
for the comparison and characterization of ensembles in more complex systems, such as
proteins with longer sequences, or multi-domain proteins. The frames presented in Sec-
tion 1.2.2 may also be adapted to more complex frameworks where, instead of reducing
resolution, dimension is increased. This might be of interest for the study of the global
structure of RNA molecules, whose role on the translation of the DNA genetic information
into proteins has been proved essential [103]. Note that once a reference system at every
sequence unit is properly defined, the adaptation of WASCO is straightforward. The same
applies for the comparison of angular distributions, where the statistical tests presented
in Chapter 3 might be extended to the flat torus of general dimension.

Furthermore, the computational optimization of the software implementing WASCO
and WARIO would be an important contribution as it would enhance their applicability
to larger systems. In this regard, an essential point would be to deal with the inherent
computational complexity of the existing optimal transport solvers, especially for non-
Euclidean spaces where the transportation cost is given as an n × m matrix, with n

and m being the sample sizes. This aspect represented a great challenge in this thesis
when considering the incorporation of orientation into comparison methods like WASCO,
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since defining descriptors in non-Euclidean spaces with higher dimensions renders the
computation of Wasserstein distances unfeasible in practice.

Integration to Machine-Learning techniques

The development of structure prediction methods has become highly relevant in recent
years, especially with the arrival of AlphaFold [147]. However, as we pointed out in
Chapter 1, their applicability within the context of flexible proteins remains questionable.
A natural extension of the methods presented in this thesis is their integration into Machine
Learning (ML) techniques for predicting the structure of intrinsically disordered proteins.
These algorithms require two fundamental elements. The first one is a loss function that
quantifies the differences between the objects to be predicted. A potential choice might
be the overall metric defined from the output of WASCO (Chapter 5), which is a well-
adapted distance to quantify discrepancies between pairs of IDP ensembles. The second
requirement is a compact representation of the objects under study which can be fed
into neural networks. The raw data produced by generative models are too complex and
hinder this task. Instead, the weighted families of contact maps presented in Chapter 7
provide a compact ensemble characterization whose integration into ML models might be
well-suited.
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Appendix F

Introduction en français
F.1 Le désordre intrinsèque des protéines

Les protéines sont des molécules essentielles dans tous les organismes vivants. Elles jouent
un rôle central dans la majorité des processus biologiques, opérant au niveau moléculaire,
cellulaire et de l’organisme. Le terme protéine a été introduit pour la première fois par
le chimiste suédois Jöns Jacob Berzelius dans une lettre adressée au chimiste néerlandais
Gerardus Johannes Mulder en 1838 [118]:

“Or je présume que l’oxyde organique, qui est la base de la fibrine et de l’albumine (et
auquel il faut donner un nom particulier p. ex. protéine) est composé d’un radical

ternaire, combiné avec de l’oxygène dans quelqu’un de ses rapports simples que la nature
inorganique nous présente.”

Cette lettre a marqué le début d’un long voyage que la biologie structurale a entrepris
pour comprendre la structure de ces macromolécules et les relier à leurs fonctions cru-
ciales aux niveaux supérieurs du monde vivant. Bien entendu, ce voyage est allé de pair
avec les progrès technologiques qui ont permis la détermination expérimentale de la struc-
ture des protéines. Après les premières techniques de cristallographie aux rayons X, la
cryo-microscopie électronique (cryo-EM) et la résonance magnétique nucléaire (RMN) ont
constitué une avancée majeure pour la reconstruction d’une seule particule, permettant
de résoudre la structure tridimensionnelle d’une macromolécule à l’échelle atomique [175].
Ces progrès ont continuellement repoussé les limites de la résolution réalisable et ont
permis l’observation de structures de taille et de complexité croissantes. Plus nous pou-
vons observer et mieux nous pouvons observer, plus les approches et les perspectives
qui permettent de déchiffrer ce que nous voyons sont riches. Grâce à la biologie struc-
turelle, nous sommes en mesure de rendre visibles des objets à l’échelle subatomique et
d’adopter le principe “voir, c’est croire”. Cependant, comprendre ce que nous voyons né-
cessite l’implication d’une famille diversifiée de domaines de connaissance, dans laquelle,
avec la reconnaissance récente de l’importance du désordre, les mathématiques doivent
prendre part.
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Figure F.1: Représentation simplifiée d’un polypeptide. Les liaisons peptidiques, les
atomes du squelette et les chaînes latérales sont marqués respectivement en rouge, noir et
vert.

F.1.1 La structure et la fonction des protéines

Une protéine est une macromolécule constituée de résidus d’acides aminés liés par des
liaisons peptidiques. Ce type de molécule polymère est également appelé polypeptide.
Un acide aminé est une molécule composée d’un atome de carbone (α-carbone) attaché
à un groupe carboxyle (-COOH), un groupe amine (-NH2), un hydrogène et une chaîne
latérale variable, également appelée radical. Une liaison peptidique est une double liaison
entre le carbone du groupe carboxyle d’un résidu et l’azote du groupe amine suivant. Une
représentation simplifiée d’un polypeptide est présentée dans la figure F.1. Notons que
la formation de liaisons peptidiques permet de distinguer deux parties principales dans la
protéine. D’une part, la séquence d’atomes d’azote, de carbone α, d’hydrogène, de carbone
et d’oxygène, appelée squelette, représentée en noir dans la Figure F.1. D’autre part, les
chaînes latérales, c’est-à-dire la famille des différents radicaux liés à chaque α-carbone, il-
lustrée en vert dans la Figure F.1. Les chaînes latérales déterminent les propriétés physico-
chimiques des acides aminés et constituent l’empreinte digitale de la protéine.

La séquence des résidus d’acides aminés est appelée structure primaire (Figure F.2a).
Par souci de simplicité, nous appellerons également la structure primaire séquence. Bien
que l’on connaisse environ 500 acides aminés naturels, seuls 20 d’entre eux se retrouvent
dans les protéines. Cela donne déjà une idée de la complexité du monde dans lequel nous
nous plongeons, car il est possible de concevoir jusqu’à 20L protéines avec une longueur
de séquence L. Pour des protéines de 100 acides aminés, cela implique d’envisager jusqu’à
10130 séquences possibles dans un univers contenant 1082 atomes. L’impossibilité de con-
naître toutes les protéines met en évidence la nécessité de stratégies intelligentes pour
comprendre leur comportement sur la base des informations disponibles. La biologie struc-
turale cherche à y parvenir en décryptant les mécanismes qui régissent la transformation
de la structure primaire en la forme tridimensionnelle de la protéine, que nous appellerons
généralement structure. Ce processus est connu sous le nom de folding. Au cours du pro-
cessus de repliement, certaines parties de la séquence adoptent des éléments de structure
secondaire relativement stables et bien définis, les plus représentatifs étant les hélices α
et les feuilles β Figure F.2b). L’arrangement spatial de ces éléments, qui sont reliés par
des tours et des bobines, forme la structure tertiaire (Figure F.2c). Pour une introduction
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(a) (b) (c)

Figure F.2: Structure primaire (a), secondaire (b) et tertiaire (c) de la protéine. En (b,c),
les hélices α sont représentées en rouge et les feuilles β sont marquées en jaune.

approfondie à la structure des protéines, nous nous référons à [175, 271, 1, 56].
Les protéines remplissent de nombreuses fonctions qui sont étroitement liées à leurs

propriétés structurelles et dynamiques [175]. Par exemple, les enzymes catalysent divers
types de réactions chimiques. D’autres protéines jouent le rôle de protéines nutritives et de
stockage, cruciales pour la croissance et la survie des graines dans de nombreuses plantes.
D’autres encore permettent la contraction des cellules, lient et transportent des substances,
agissent comme des protéines structurelles pour donner aux cellules une forme définie et
régulent divers processus cellulaires. Toutes ces fonctions dépendent souvent directement
de la structure repliée de la protéine, également connue sous le nom d’“état natif”. L’état
natif n’est pas une conformation fixe, mais plutôt un ensemble d’états accessibles que la
protéine peut adopter, en fonction de facteurs tels que les conditions du solvant et la
température. Les énergies de l’état natif des protéines qui se replient dans une struc-
ture 3D bien définie présentent des minima globaux stables. Cependant, de nombreuses
protéines ne correspondent pas à cette description et présentent des paysages énergétiques
relativement plats avec de multiples minima locaux. Ces protéines, connues sous le nom de
protéines intrinsèquement désordonnées (IDP), sont dans une forme constante, changeant
et passant d’un état à l’autre [139]. L’ensemble de ces conformations est appelé ensemble
de protéines. L’absence d’un état d’équilibre nécessite de réadapter les techniques clas-
siques traditionnellement utilisées pour étudier la relation structure-fonction, en s’ouvrant
à de nouveaux paradigmes qui permettent de comprendre la richesse fonctionnelle conférée
par leur variabilité structurale.

F.1.2 Protéines intrinsèquement désordonnées: chute du paradigme structure-
fonction

Jusqu’à la fin du 20e siècle, la grande majorité de la communauté scientifique soutenait le
paradigme dit structure-fonction: une protéine fonctionnelle nécessite une structure stable
et bien définie. En outre, les interactions protéine-protéine dépendent de la complémen-
tation précise des surfaces. Les modèles classiques, tels que le “lock-key” proposée par le
lauréat du prix Nobel Emil Fischer en 1894, s’inscrivent dans ce cadre [95]. En affirmant
que les protéines non structurées sont dénaturées, les protéines intrinsèquement désordon-
nées remettent en cause ce paradigme [282]. En effet, bien qu’elles soient dépourvues de
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Figure F.3: Figure 1 dans [290]. Différents niveaux d’ordre (gris) et de désordre (rouge):
(0) pas de désordre, (1) terminaisons désordonnées, (2) lien désordonné, (3) boucle dé-
sordonnée, (4) domaine désordonné, (5) protéine désordonnée avec une certaine structure
résiduelle, (6) protéine entièrement désordonnée, en grande partie effondrée et (7) protéine
entièrement désordonnée et étendue.

structure secondaire et tertiaire stable de manière isolée, les PDI remplissent une grande
diversité de fonctions biologiques en exploitant leur flexibilité intrinsèque [293]. De plus,
les IDP peuvent mal fonctionner dans certaines circonstances, telles que des mutations
ou des conditions environnementales inappropriées. Ce phénomène peut induire des mal-
adies graves, notamment des cancers, des maladies cardiovasculaires ou neurodégénéra-
tives [288]. Tout ceci justifie la pertinence fonctionnelle des protéines désordonnées et la
nécessité de réadapter le paradigme structure-fonction pour intégrer la variabilité struc-
turale.

Au cours des 20 dernières années, la biologie structurale a intégré le désordre dans
l’étude des protéines. Cela a conduit à passer de la dichotomie rigide vs. non struc-
turé à la prise en compte du désordre comme un continuum. En effet, la plupart des
protéines ne sont ni totalement ordonnées ni totalement désordonnées, mais contiennent
des régions ordonnées et désordonnées dans des proportions différentes. rapports [290].
C’est ce qu’illustre la figure F.3, extraite de [290]. Le passage au continuum a également
eu un impact sur l’étude des paysages énergétiques, qui considèrent désormais les pro-
fils faiblement entonnoirs comme une transition entre les minima énergétiques profonds
et les paysages accidentés des systèmes très désordonnés [221]. Comme nous pouvons
le constater, le désordre se manifeste avec une intensité et un placement séquentiel vari-
ables. En outre, l’échec du repliement est codé par la structure primaire, car les IDP
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présentent des propriétés séquentielles uniques. Certaines d’entre elles sont le biais de
composition [289], qui se manifeste par des résidus à faible hydrophobicité (pour un faible
compactage) et à charge nette élevée (pour une forte répulsion charge-charge), un faible
contenu de structure secondaire prédite [180] ou une forte variabilité de séquence (faible
conservation) [113]. Cela met en évidence le fait que le processus de repliement est forte-
ment lié à la séquence de la protéine. Le décryptage de cette relation est essentiel pour
le développement de méthodes de prédiction de la structure à partir de la séquence des
protéines, qui ont connu un essor avec l’arrivée de l’apprentissage profond. C’est le cas du
célèbre algorithme AlphaFold [147], qui peut prédire la structure des protéines avec une
précision au niveau atomique. La base de données AlphaFold sur la structure des pro-
téines [296] contient une structure prédite pour presque toutes les protéines du protéome
de nombreux organismes qui ont été totalement ou partiellement séquencés, y compris
les protéines comportant des régions intrinsèquement désordonnées (IDR). Cependant, les
IDR présentent de faibles valeurs de la métrique de confiance AlphaFold, appelée test de
différence de distance locale prédite (pLDDT), ce qui signifie une faible confiance dans
les prédictions structurelles et donc des descriptions inexactes de ces régions désordonnées
(a priori). Par conséquent, l’étude des protéines désordonnées nécessite des approches
alternatives qui combinent intelligemment des méthodes expérimentales, théoriques et in-
formatiques. Un aperçu de l’état de l’art est présenté dans la section suivante.

F.1.3 Approches existantes pour modéliser les IDP

L’accès aux données expérimentales est sans doute la caractéristique la plus pertinente
qui différencie l’étude des protéines ordonnées de celle des PDI. Il existe un contraste
frappant entre les deux mondes en ce qui concerne la quantité de structures connues ex-
périmentalement. La Protein Data Bank (PDB) [20] est une base de données librement
accessible qui contient plus de 200 000 structures expérimentales de protéines repliées.
Son équivalent pour les systèmes désordonnés est la Protein Ensemble Database [168],
une base de données en libre accès qui comprend des données IDP, mais qui contient 280
entrées à ce jour. Dans ce contexte, les données expérimentales ne peuvent pas fournir
d’informations précises sur chacune des conformations individuelles de l’ensemble, mais
seulement des mesures moyennes. C’est pourquoi les données expérimentales IDP sont
utiles en tant que contrainte à la simulation. En effet, l’étude des protéines désordonnées
en tant qu’ensembles conformationnels est largement régie par des techniques de simula-
tion et de modélisation souvent calibrées avec des données expérimentales. Dans la section
suivante, nous présentons un bref aperçu des deux grandes familles qui intègrent les méth-
odes de génération d’ensembles. Ces techniques n’étant pas l’objet de cette thèse, l’aperçu
ne présente que quelques-unes des contributions les plus pertinentes au sein d’un champ
d’étude vaste et diversifié. Pour un aperçu plus complet de la littérature existante, nous
nous référons aux reviews [58, 26, 252, 28, 264, 156].
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Méthodes de génération d’ensembles

La première catégorie de méthodes informatiques vise à générer des ensembles représen-
tatifs de conformations par une exploration efficace de l’espace conformationnel. Le terme
“efficace” s’explique par le fait qu’il n’est pas possible d’inspecter au hasard l’espace d’état
complet. En fait, une exploration efficace incorpore des informations dérivées de struc-
tures déterminées expérimentalement, optimisant ainsi la procédure de calcul. La méth-
ode basée sur la connaissance la plus distinctive est Flexible-Meccano (FM) [219], qui
construit chaque conformation en assemblant séquentiellement des unités de plan pep-
tidique à l’aide d’une bibliothèque de bobines spécifiques aux résidus obtenue à partir
de structures cristallographiques. Avec Flexible-Meccano, TraDES [93] est une autre
technique d’échantillonnage stochastique populaire. Les conformations produites par ces
méthodes sont validées par leur ajustement aux données expérimentales, à l’aide d’outils
informatiques tels que ENSEMBLE [162], ASTEROIDS [214] ou EOM [22, 285]. Ces
techniques utilisent des paramètres mesurables par RMN ou des données de diffusion
des rayons X aux petits angles (SAXS). Bien que sa résolution soit plus faible, le SAXS
est capable de récupérer des informations structurelles et dynamiques globales sur les
macromolécules biologiques, y compris celles qui ne peuvent pas se cristalliser, comme
l’IDP [94, 136, 160, 234, 273]. Cependant, des approches comme Flexible-Meccano ne
parviennent pas à capturer les éléments de structure secondaire qui impliquent plusieurs
résidus consécutifs dans l’IDP [21, 142]. Cette limitation a été surmontée dans [88] en
affinant la calibration expérimentale à l’aide d’une vaste bibliothèque de fragments à trois
résidus.

La deuxième grande famille de méthodes utilise des modèles physiques pour échantil-
lonner l’espace conformationnel, en simulant le comportement dynamique de la PDI. La
technique prééminente dans ce contexte est la simulation dynamique moléculaire (MD),
qui résout les équations du mouvement de Newton pour recréer l’évolution temporelle du
système [155, 231]. Bien que capables de représenter convenablement l’espace d’état de
la PDI, les MD présentent un inconvénient majeur qui réside dans leur coût de calcul
excessif lorsqu’elles sont appliquées à des molécules de grande taille. En effet, le rayon de
giration important présenté par l’IDP par rapport aux protéines repliées, ainsi que leurs
fluctuations inhérentes, font considérablement augmenter la taille de la boîte de simulation
contenant la protéine et les molécules d’eau. Une solution pour traiter ce type de systèmes
est l’utilisation de modèles à gros grains, qui fournissent une représentation plus simpliste
de la protéine mais permettent une investigation plus large de l’espace d’état [158, 68, 159].
En outre, la précision des techniques basées sur la MD dépend fortement des champs de
force et des modèles de solvatation utilisés, dont la détermination pour les protéines flex-
ibles est un domaine de recherche très actif [140, 301]. Les performances des méthodes
MD peuvent également être renforcées par l’intégration de données expérimentales pour
restreindre l’exploration de l’espace conformationnel [71, 179, 309]. Des approches hy-
brides remarquables ont également été proposées, réalisant des simulations MD avec des
potentiels dérivés de l’apprentissage automatique, tels que CALVADOS [277, 276]. Les
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Figure F.4: Les ensembles conformationnels sont conçus comme des échantillons d’états
IDP produits par des modèles génératifs basés sur la connaissance et la physique. Ces
données sont caractérisées par des descripteurs probabilistes et analysées à l’aide d’outils
statistiques, dans le but de caractériser et de comparer avec précision les ensembles
récupérés.

méthodes de Monte Carlo (MC) constituent une alternative physique à la MD, parmi
lesquelles on peut citer le schéma de Metropolis de la chaîne de Markov [202], sa vari-
ante Hamiltonian Switch Metropolis Monte Carlo [206] adaptée à l’étude de l’IDR, ou
ABSINTH [301], une approche MC intermédiaire entre les modèles à gros grains et les
modèles à tous les atomes.

Méthodes de caractérisation et de comparaison des ensembles

Les méthodes présentées ci-dessous visent à produire des représentations d’ensemble de
protéines désordonnées. En effet, la grande majorité des contributions méthodologiques
dans l’étude des protéines flexibles se concentrent sur la compensation du manque de don-
nées expérimentales par la simulation d’ensembles conformationnels. Ici, une réflexion
naturelle s’impose: une fois que nous sommes capables de générer des ensembles IDP de
taille indéterminée, quelle est la suite? Que faisons-nous de toutes ces données? Com-
ment transformer les résultats des modèles génératifs en représentations concises et in-
terprétables qui permettent de comprendre la relation séquence-structure dans la PDI?
Plus succinctement: comment pouvons-nous caractériser et comparer des ensembles de
protéines hautement flexibles? La seule réponse possible à ces questions est de recourir à
des techniques conçues pour traiter la variabilité des objets intrinsèquement désordonnés:
Les probabilités et les statistiques. Les systèmes aléatoires doivent être décrits comme
des objets probabilistes, et les échantillons tirés de ces systèmes doivent être analysés à
l’aide de techniques statistiques. Cette idée est schématisée dans la Figure F.4, qui situe
la contribution de cette thèse (en violet) par rapport à l’état de l’art précédemment décrit
(en bleu).

L’objectif principal de cette thèse est de fournir l’étape suivante naturelle aux tech-
niques de modélisation IDP, en rendant les résultats des modèles génératifs interprétables
avec des garanties statistiques. Pour ce faire, il est essentiel de définir des méthodes qui
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permettent une caractérisation et une comparaison compactes et interprétables des en-
sembles de PDI. Les applications qui motivent ces objectifs sont nombreuses et diverses.
Parmi elles, on peut citer l’analyse a posteriori des performances des modèles génératifs,
y compris leur comparaison avec les données expérimentales, la comparaison relative des
champs de force et des modèles de solvatation ou l’évaluation de l’effet des restrictions
expérimentales. D’autres applications remarquables sont l’évaluation de l’effet des mu-
tations de séquence, qui peut conduire à l’incorporation de la PDI dans le domaine de
la conception des protéines, ou la définition des fonctions de perte et des descripteurs
compacts requis pour le développement d’algorithmes d’apprentissage automatique. Ce
dernier point serait déterminant pour l’extension des méthodes de prédiction de structure
aux séquences avec IDR.

Le développement de méthodes pour la caractérisation et la comparaison d’ensembles
désordonnés prend de plus en plus d’importance en biologie structurale, avec de nom-
breuses contributions remarquables ces dernières années [167, 7, 59, 57]. Ces études, qui
seront discutées plus en détail dans les chapitres composant ce manuscrit, apportent des
contributions intéressantes et innovantes. Cependant, nous pensons qu’elles n’ont pas
encore intégré de manière productive la nature probabiliste des protéines flexibles. Nous
proposons ici de nous attaquer à notre objectif en plaçant la variabilité structurelle au cen-
tre et en concevant les PDI comme des objets intrinsèquement probabilistes qui doivent
être analysés à l’aide des techniques statistiques les plus appropriées. Nous détaillons cette
stratégie dans la section suivante.

F.2 La nature probabiliste inhérente des protéines flexibles

La stratégie que nous présentons pour capturer la nature probabiliste intrinsèque des
protéines flexibles consiste à (i) définir les descripteurs structurels par des distributions
de probabilité supportées sur des espaces bien adaptés et (ii) caractériser et comparer
ces distributions avec des techniques statistiques appropriées, en fournissant des garanties
statistiques sur le comportement de la population lorsque c’est possible. Nous proposons
d’appliquer cette stratégie à la fois au niveau local (échelle des acides aminés) et au
niveau global (séquence entière). Les descripteurs structurels locaux et globaux sont définis
dans la section F.2.2. Ensuite, dans la section F.2.3, nous présentons les principaux
outils statistiques qui seront utilisés pour les caractériser et les comparer. Tout d’abord,
nous rappelons quelques concepts essentiels de la théorie des probabilités et définissons
la notation qui sera utilisée tout au long du manuscrit. Ces notions sont présentées dans
la section suivante, qui peut être omise par les lecteurs moins intéressés par les aspects
mathématiques.
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F.2.1 Contexte et notation
Cette section rassemble les notations clés et les définitions qui seront supposées tout au long
du manuscrit. Des notations spécifiques supplémentaires seront présentées dans chaque
chapitre. Nous commençons par définir les espaces de probabilité, c’est-à-dire des espaces
de mesure où la mesure de l’ensemble entier est égale à un [29].

Definition F.2.1 (Espace de probabilité). Soit Ω un ensemble non vide et Σ une Σ-
algèbre, c’est-à-dire un ensemble de sous-ensembles de Ω tel que

(i) Ω ∈ Σ,

(ii) Toute union dénombrable d’éléments de Σ est également dans Σ,

(iii) Le complément de chaque élément de Σ est dans Σ.

Si P : Σ −→ [0, 1] est tel que P(Ω) = 1 et dénombrablement additif, c’est-à-dire que
P(∪i∈NEi) = ∑

i∈N P(Ei) pour toute collection dénombrable d’ensembles disjoints par paire
{Ei}i∈N ⊂ Σ, alors P est appelé un mesure de probabilité sur Σ et le triplet (Ω,Σ,P) est
appelé un espace de probabilité.

Soit (Ω,Σ,P) un espace de probabilité, E un espace topologique [210] et T l’algèbre
σ générée par la topologie de E [29]. Soit f : Ω −→ E une fonction mesurable, c’est-à-
dire telle que f−1(O) ∈ Σ pour tout O ∈ T . La mesure push-forward de P par f est
l’application f#P : T −→ [0, 1] telle que f#P(O) = (P ◦ f−1)(O) pour tout O ∈ T . Cette
transformation est la clé pour définir la distribution de probabilité d’une variable aléatoire.

Definition F.2.2 (Variable aléatoire, distribution). Soit (Ω,Σ,P) un espace de probabilité
et E un espace topologique. Une variable aléatoire est une fonction mesurable X : Ω −→ E.
La mesure de P par X, notée PX := X#P, est appelée la distribution (de probabilité) de
X, ou la loi de X.

Pour toute variable aléatoire X définie sur un espace de probabilité (Ω,Σ,P) et prenant
des valeurs dans un espace topologique E , nous définissons le support de sa distribution
comme étant l’ensemble fermé

supp(PX) = {x ∈ E : PX(Ux) > 0 pour tout Ux voisinage de x}.

Nous désignerons par P(E) l’ensemble de toutes les distributions de probabilité sup-
portées sur E , c’est-à-dire dont le support est un sous-ensemble de E . On notera que le
terme distribution fait référence à une variable aléatoire et que le terme mesure opère di-
rectement sur un espace de probabilité. Cependant, lorsque Ω est un espace topologique,
nous pouvons prendre Ω = E , Σ = T , X l’application identité et parler directement de
P comme d’une distribution. Comme tous les espaces considérés ici seront dotés d’une
topologie, nous utiliserons indifféremment les termes distribution ou mesure tout au long
du manuscrit, en omettant le push-forward vers l’avant de la variable aléatoire lorsque le
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contexte est clair. Ainsi, nous ferons également référence à P(E) comme étant l’ensemble
des mesures de probabilité supportées sur E .

Le concept de variable aléatoire peut être étendu au cas où son espace image est un pro-
duit cartésien d’espaces topologiques équipés de la topologie du produit [210]. Cette con-
struction peut être considérée comme la combinaison de deux variables aléatoires définies
sur le même espace de probabilité.

Definition F.2.3 (Distribution jointe, marginales). Soit (Ω,Σ,P) un espace de probabilité,
E un espace topologique et X,Y : Ω −→ E deux variables aléatoires. La distribution jointe
de X et Y est la distribution de probabilité de la variable aléatoire

(X,Y ) : Ω −→ E × E
ω 7−→ (X(ω), Y (ω)),

c’est-à-dire la mesure PXY = (X,Y )#P ∈ P(E × E). Les mesures PX et PY sont appelées
distributions marginales de PXY .

En rendant implicite la “push forward” des variables aléatoires, pour une paire de
mesures P,Q ∈ P(E), nous dénotons par Π(P,Q) l’ensemble des distributions de prob-
abilité ayant P et Q comme marginales. Nous pouvons écrire Π(P,Q) plus précisément
comme suit

Π(P,Q) = {γ ∈ P(E × E) : px#γ = P, py#γ = Q}, ∀P,Q ∈ P(E),

où px, py : E × E −→ E sont tels que px(x, y) = x et py(x, y) = y pour tous x, y ∈ E . Les
éléments de Π(P,Q) sont également appelés couplages.

Dans les problèmes pratiques, il est souvent impossible de connaître la véritable dis-
tribution sous-jacente P d’une variable aléatoire X. Au lieu de cela, nous avons générale-
ment accès à un échantillon de X. Plus précisément, nous définissons un échantillon de
X comme une famille de variables aléatoires indépendantes X1, . . . , Xn identiquement dis-
tribuées comme X (c’est-à-dire dont la distribution de probabilité est P ). En pratique,
nous observons une réalisation de X1, . . . , Xn, c’est-à-dire l’image des variables aléatoires
en n points ω1, . . . , ωn ∈ Ω. Les réalisations sont généralement désignées en lettres minus-
cules par x1, . . . , xn, où xi = Xi(ωi) pour tout i ∈ {1, . . . , n}. Les échantillons permettent
d’obtenir des informations statistiquement significatives sur la population grâce à la mesure
empirique de P , définie ci-dessous.

Definition F.2.4. Soit (Ω,Σ,P) un espace de probabilité, E un espace topologique et T
l’algèbre σ générée par la topologie de E. Soit X : Ω −→ E une variable aléatoire avec une
distribution P et X1, . . . , Xn un échantillon de X, pour n ∈ N. La mesure empirique de
P est la mesure de probabilité Pn : T −→ [0, 1] satisfaisant

Pn(E) = 1
n

n∑
i=1

1{Xi ∈ E} ∀E ∈ T , (F.1)

où 1{A} désigne la fonction indicatrice de l’événement A.
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Notons que l’écriture de Xi ∈ E comme dans (F.1) est un abus de notation, et formelle-
ment nous devrions la remplacer par {ω ∈ Ω : Xi(ω) ∈ E}. Par souci de clarté, la
notation largement acceptée dans (F.1) sera conservée. Les mesures empiriques sont le
principal outil permettant d’inférer le comportement des mesures de population en ex-
ploitant uniquement les informations fournies par un échantillon. Ce point est décrit plus
en détail dans la section F.2.3. En outre, l’étude des mesures empiriques fournit une
analyse bien fondée du comportement des distributions sous-jacentes lorsque Pn converge
presque sûrement [29, Théorème 6.1] et uniformément [29, Théorème 20.6] vers P au fur et
à mesure que n croît jusqu’à l’infini. Nous renvoyons à [29] pour une introduction appro-
fondie à la théorie des mesures et aux probabilités. Pour se familiariser avec les principaux
concepts de la théorie de la topologie, que nous utiliserons également, nous nous référons
à [210].

F.2.2 Descripteurs structuraux probabilistes

La première étape de notre stratégie consiste à définir des descripteurs structuraux appro-
priés qui intègrent autant d’informations que possible sur la variabilité conformationnelle
des protéines flexibles. Nous le ferons en considérant des distributions de probabilité bien
adaptées à la structure locale et globale du système et, surtout, dont les variables aléa-
toires correspondantes fournissent des réalisations accessibles. En d’autres termes, nous
cherchons à définir des observables aléatoires qui peuvent être mesurés en pratique sur des
modèles de protéines.

Descripteurs structuraux locaux

L’investigation des propriétés structurales et dynamiques des protéines au niveau local im-
plique principalement l’analyse des angles dièdres du squelette, ϕ et ψ, des résidus d’acides
aminés individuels le long de la séquence [39, 175]. Une illustration pour trois acides am-
inés consécutifs est présentée dans la Figure F.5. L’examen des valeurs autorisées et de la
distribution statistique de (ϕ, ψ) a fait l’objet d’études depuis plus d’un demi-siècle, com-
mençant par le travail fondateur de Ramachandran et al. [237, 238]. L’analyse des angles
(ϕ, ψ) dans les chaînes de polypeptides a de nombreuses applications, telles que la valida-
tion et l’affinement de structures déterminées par des techniques biophysiques [208, 182],
le développement de modèles ou de fonctions de notation pour la prédiction et la con-
ception de la structure des protéines [106, 153, 27, 35, 244, 280] ou l’étude des états
dénaturés des protéines globulaires [267, 142] et des protéines intrinsèquement désordon-
nées [265, 88]. Alors que les valeurs de (ϕ, ψ) sont physiquement restreintes pour les
protéines qui adoptent une structure tridimensionnelle stable, elles présentent une grande
variabilité pour les protéines intrinsèquement désordonnées (IDP). Par conséquent, nous
sommes amenés à considérer la paire (ϕ, ψ) comme une variable aléatoire prenant des
valeurs sur le tore plat bidimensionnel T2, qui est le produit cartésien d’une paire de
cercles unitaires. Une définition technique de T2 est présentée au chapitre 3, où nous



280 Appendix F. Introduction en français

N

H

Cα

H
R

C

O

N

H

C
Cα

O

N

H

Cα

H
R

C

OR
H

ϕ Ψ

i i+1i-1

Figure F.5: La détermination des angles de torsion ϕ et ψ. Chaque liaison peptidique (en
orange) comporte six atomes dans un plan (en jaune), qui décrivent entièrement la con-
formation de l’acide aminé i-ème. L’angle ϕ (resp. ψ) détermine la rotation du squelette
polypeptidique autour de la liaison N -Cα (resp. Cα-C).

analysons également ses propriétés géométriques et topologiques fondamentales. Comme
T2 peut en effet être doté d’une topologie, nous sommes en mesure de considérer l’ensemble
P
(
T2) des distributions de probabilité supportées sur T2. En conséquence, pour un acide

aminé donné, ses angles dièdres (ϕ, ψ) seront associés à un élément de P
(
T2), que nous

définirons comme le descripteur structural local du résidu d’acide aminé.

Definition F.2.5 (Descripteur structural local). Soit (ϕ, ψ) les angles dièdres aléatoires
d’un résidu d’acide aminé. Son descripteur structural local est défini comme la distribution
de probabilité de (ϕ, ψ), qui est un élément de P(T2).

Comme mentionné précédemment, nous cherchons à considérer des descripteurs struc-
turaux qui peuvent être “mesurés”, ou en d’autres termes, dont les distributions de prob-
abilité empiriques sont faciles à calculer. C’est le cas des angles (ϕ, ψ), qui peuvent être
déterminés expérimentalement avec une grande résolution pour les protéines rigides ou
connus lorsque les conformations sont simulées avec les méthodes présentées dans la Sec-
tion F.1.3. Cela nous conduit à définir le descripteur structural local empirique d’un résidu
d’acide aminé comme la distribution de probabilité empirique de son descripteur structural
local.

Descripteurs structuraux globaux

La description structurelle d’une séquence entière est une tâche plus complexe. Bien
que certaines méthodes expérimentales telles que la cristallographie aux rayons X et la
cryo-EM, ainsi que des modèles génératifs, soient capables de fournir les coordonnées
de tous les atomes de la protéine (pour les protéines structurées), ces coordonnées ne
peuvent pas être comparées entre différentes conformations car elles ne se réfèrent pas
à un système de référence absolu dans lequel tous les états peuvent être exprimés. De
plus, la structure d’un état est invariante sous les transformations de corps rigides ou, de
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Figure F.6: Illustration des systèmes de référence Fi et Fj construits au niveau des résidus
i-ème et j-ème.

manière équivalente, sous le changement de base dans l’espace vectoriel euclidien. Par
conséquent, décrire la structure globale en utilisant directement les coordonnées de tous
les atomes nous conduirait à recourir à la relation d’équivalence suivante7. Si na désigne
le nombre d’atomes dans la séquence, deux éléments x et y ∈ R3na sont équivalents, notés
x ∼ y, si et seulement s’ils sont égaux jusqu’à une transformation de corps rigide près.
Notez que, en effet, ∼ est une relation d’équivalence car l’espace des mouvements de corps
rigides est - entre autres - un groupe. Un tel espace est appelé le groupe spécial euclidien
de trois dimensions et est généralement noté SE(3) [135]. Ensuite, nous pourrions définir
un descripteur structural global pour l’ensemble de la séquence comme une distribution
de probabilité supportée sur l’espace quotient R3na/ ∼. Bien que mathématiquement
stimulant, recourir à P(R3na/ ∼) pour définir des descripteurs structuraux est inutilement
compliqué et frôle la pédanterie mathématique. Pour capturer la structure de l’ensemble de
la séquence, nous proposons de construire un référentiel à chaque résidu d’acide aminé en
utilisant les atomes du squelette. Une illustration pour une paire de résidus est présentée
dans la Figure F.6.

Soit L la longueur de la séquence et Ai le i-ème acide aminé, pour i ∈ {1, . . . , L}. En
utilisant les coordonnées des atomes C, Cα et N du i-ème résidu, nous pouvons définir
un système de référence qui tient compte de la configuration géométrique du squelette
au niveau du i-ème résidu. L’origine du repère de référence est fixée aux coordonnées
de l’atome Cβ, c’est-à-dire le premier atome de la chaîne latérale (voir Figure F.1) pour
les résidus non-glyciniques. Pour les glycines, nous plaçons l’origine aux coordonnées de
l’atome Cα. Si nous notons Fi = {−→ei1,−→ei2,−→ei3} le i-ème système de référence, la struc-
ture globale de l’ensemble est décrite par L cadres de référence F1, . . . ,FL. Notez que
chaque Fi peut être formalisé comme un élément de SE(3). Outre la complexité de la

7Une relation binaire ∼ sur un ensemble X est dite une relation d’équivalence si elle est réflexive,
symétrique et transitive. L’ensemble de tous les éléments de X qui sont équivalents à x ∈ X est appelé
la classe d’équivalence de x. L’ensemble des classes d’équivalence de tous les éléments de X est appelé
l’ensemble quotient de X par ∼, noté X / ∼ [307].
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comparaison de cadres entre différentes conformations, qui peut être résolue dans certains
cas, il convient de noter que s’appuyer sur SE(3) est extrêmement complexe et nécessite
la manipulation de la géométrie riemannienne. Bien que cet espace soit largement utilisé
en robotique [17, 315, 223], son application dans ce contexte reste une tâche excessive-
ment compliquée et impraticable, en raison, par exemple, de la non-unicité de ses courbes
géodésiques, ce qui entrave le calcul des distances [226]. Bien que certaines contributions
remarquables traitant de distributions de probabilité et de statistiques dans SE(3) aient
été récemment proposées [54, 205], nous préférons définir des descripteurs euclidiens de la
famille {F1, . . . ,FL} qui permettent leur comparaison directe entre les états et un calcul
efficace.

Deux stratégies différentes seront suivies en fonction de la nécessité de comparer ou
de caractériser les ensembles. La première reposera sur la mise en correspondance de la
famille {F1, . . . ,FL} avec un produit cartésien d’espaces euclidiens tridimensionnels. Cette
transformation aboutira à la définition du descripteur structural global tridimensionnel de
l’ensemble.

Definition F.2.6 (Descripteur structural global tridimensionnel). Soit L la longueur de
la séquence de la protéine et {F1, . . . ,FL} la famille de systèmes de référence construits à
chaque résidu d’acide aminé. Soit

TR3 : SE(3)× L· · · × SE(3) −→ R3 ×
L(L−1)/2
· · · × R3 (F.2)

(F1, . . .FL) 7−→
(−→
R 11, . . . ,

−→
R (L−1)L

)
la transformation qui mappe la famille de cadres de référence à toutes les positions relatives
de chaque paire de résidus le long de la séquence. Plus précisément, −→R ij représente les
coordonnées de l’origine de Fj par rapport à Fi, pour chaque i < j. Le descripteur
structural global tridimensionnel de l’ensemble est défini comme le L(L− 1)/2-uplet(

P11, . . . , P(L−1)L
)
∈ P(R3)×

L(L−1)/2
· · · × P(R3), (F.3)

où Pij ∈ P(R3) est la distribution de probabilité de −→R ij, pour chaque i < j.

En effet, la définition d’un repère de référence à chaque acide aminé permet la détermi-
nation de la position relative de chaque paire de résidus. Ces positions seront des variables
aléatoires prenant des valeurs dans R3 et leurs distributions de probabilité (F.3) serviront
de descripteurs structuraux globaux de l’ensemble des protéines. Notez également que les
réalisations de chaque −→Rij sont comparables entre les conformations. En effet, la trans-
formation (F.2) convertit la configuration structurelle de l’ensemble de la séquence en un
ensemble de descripteurs euclidiens tridimensionnels qui ne dépendent pas des coordonnées
absolues fournies en entrée. En d’autres termes, les réalisations de −→Rij sont accessibles
et comparables, permettant la définition du descripteur structural global tridimensionnel
empirique de l’ensemble en tant que famille des contreparties empiriques de (F.3).
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Une approche différente sera choisie lorsque l’objectif est de caractériser les ensembles
de protéines. Dans ce cas, la famille de cadres de référence sera mise en correspondance
avec un produit cartésien d’intervalles réels. Au lieu d’analyser toutes les positions relatives
des paires d’acides aminés, nous tiendrons désormais compte des interactions entre résidus
qui apparaissent dans chaque conformation de protéine.

Definition F.2.7 (Descripteur structural global unidimensionnel). Soit L la longueur
de la séquence de protéine et {F1, . . . ,FL} la famille de cadres de référence construits à
chaque résidu d’acide aminé. Soit

T[0,1] : SE(3)× L· · · × SE(3) −→ [0, 1]×
L(L−1)/2
· · · × [0, 1] (F.4)

(F1, . . .FL) 7−→
(
ωC11, . . . , ω

C
(L−1)L

)
la transformation qui mappe la famille de cadres de référence à un vecteur d’éléments
dans [0, 1], agissant comme un proxy pour l’interaction entre les résidus i et j > i. Le
descripteur structural global unidimensionnel de l’ensemble est défini comme le L(L−1)/2-
uplet (

PC11, . . . , P
C
(L−1)L

)
∈ P([0, 1])×

L(L−1)/2
· · · × P([0, 1]), (F.5)

où PCij ∈ P([0, 1]) est la distribution de probabilité de ωCij , pour chaque i < j.

Les quantités ωCij tiennent compte du contact entre les acides aminés aux positions i et
j > i. Ces variables seront conçues comme une extension de la notion classique binaire de
contact, qui est basée sur un seuil universel pour la distance euclidienne [213, 275, 229].
Dans ce cas, la transformation (F.4) transformera la famille {F1, . . . ,FL} en un tuple
de valeurs qui varieront de manière continue dans [0, 1] et dépendront non seulement de
l’identité des acides aminés en interaction et de leur position dans la séquence, mais aussi de
l’orientation relative de Fi et Fj . Une fois de plus, ces quantités sont comparables entre les
conformations et permettent la définition du descripteur structural global unidimensionnel
empirique sous forme du vecteur de distributions de probabilité empiriques de (F.5).

F.2.3 Outils statistiques pour comparer et caractériser les ensembles

La structure des ensembles de protéines sera décrite par les distributions de probabilité
présentées dans les Définitions F.2.5, F.2.6 et F.2.7. La prochaine étape consiste à trouver
des outils statistiques qui capturent le plus fidèlement possible la variabilité de ces distri-
butions et fournissent des résultats compacts, clairs et interprétables tenant compte de la
variabilité conformationnelle des protéines flexibles et des changements dans leur structure
secondaire. Parfois, des outils appropriés à cette fin ont déjà été trouvés dans la littérature,
correspondant même à des méthodes standard utilisées en biostatistique et en mathéma-
tiques appliquées de manière générale. Cependant, les problèmes de comparaison et de
caractérisation des ensembles soulèvent naturellement des questions auxquelles il n’y avait
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pas encore de réponse méthodologique. Dans ce cas, des contributions théoriques applica-
bles dans un contexte plus général ont été proposées. Il convient de noter que, plutôt que
l’étude de problèmes statistiques, la motivation de cette thèse est de fournir des réponses
à des problèmes ouverts en biologie structurale. Néanmoins, cela a naturellement conduit
au développement de certaines techniques mathématiques qui peuvent être d’intérêt d’un
point de vue plus large. Les familles de méthodes statistiques utilisées dans cette thèse
sont décrites dans les sections suivantes. Nous omettrons les détails sur le premier groupe
car il comprend des techniques standard couramment utilisées en biologie structurale et
en biostatistique. Nous porterons davantage d’attention aux suivantes, dont l’application
en biologie structurale est plus novatrice et où nos contributions méthodologiques ont été
faites.

Clustering sur un espace de basse dimension (utilisé dans le chapitre 7)

La réduction de dimension est une technique largement utilisée en biostatistique en raison
de la dimension intrinsèquement élevée des données biologiques. La plupart des applica-
tions de cette théorie sont liées aux domaines très actifs de la neuroimagerie [211], de la
biologie cellulaire unique [15, 272] ou de la génétique [83, 81], entre autres. Ici, nous nous
concentrerons sur les algorithmes de réduction de dimension non linéaires, qui ont montré
des performances empiriques efficaces pour identifier les structures sous-jacentes dans des
données complexes [80, 81, 15, 174, 232, 83]. En particulier, nous utiliserons l’algorithme
Uniform Manifold Approximation and Projection (UMAP) [199]. Ce choix est motivé par
sa capacité à préserver la topologie en haute dimension des données et à révéler efficace-
ment la structure des populations [81, 83, 15]. Depuis quelque temps, la combinaison
d’algorithmes de réduction de dimension non linéaires avec des techniques de clustering
est devenue une procédure standard pour détecter les structures révélées par la projection
en basse dimension et les classer en groupes bien définis. L’utilisation de cette stratégie est
étayée par son efficacité empirique réussie [82, 2, 15, 83]. Dans cette thèse, nous proposons
de projeter des données en haute dimension dans un espace UMAP en basse dimension et
d’appliquer l’algorithme HDBSCAN [46] sur cet espace, que nous considérons comme l’une
des techniques basées sur la densité les plus sophistiquées. Les principes fondamentaux
des algorithmes UMAP et HDBSCAN sont expliqués dans l’Annexe E.1.

Le transport optimal (utilisé dans les chapitres 3-5)

Le Transport Optimal (TO) est une théorie mathématique qui a gagné une importance
considérable ces dernières années en raison de son applicabilité efficace et polyvalente. En
particulier, la popularité du TO a augmenté grâce à son intégration dans les techniques
d’apprentissage automatique, notamment dans le cadre des réseaux générateurs [9], de la
robustesse [262] ou de l’équité [76, 69, 31], entre autres. À quelques exceptions notables
près [47, 19, 248, 67, 107], le TO n’a pas été largement utilisé en biologie structurale. Dans
cette thèse, nous proposons de nous appuyer sur le TO pour rendre compte des différences
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entre les descripteurs structuraux globaux et locaux. Commençons par introduire les
principaux concepts de cette théorie.

Le Transport Optimal est un cas spécifique de transport de masse, qui est le problème
général de faire correspondre deux distributions de probabilité P etQ définies sur un espace
polonais X , c’est-à-dire un espace topologique séparable et complètement métrisable [210].
À noter que l’espace euclidien de dimension arbitraire est polonais, tout comme le tore
plat bidimensionnel T2, comme cela a été montré dans le chapitre 3. Par conséquent,
cette théorie est applicable aux distributions qui composent les descripteurs structuraux
locaux et globaux8 définis dans la Section F.2.2. Le problème du transport de masse
vise à sélectionner un couplage dans Π(P,Q), c’est-à-dire une distribution de probabilité
conjointe ayant P et Q comme marginales.

Un couplage peut être vu comme une correspondance aléatoire, faisant correspondre
chaque instance du support de P à éventuellement plusieurs contreparties du support
de Q avec des poids de probabilité. Cette transformation peut également être comprise
comme une reconfiguration de la masse de probabilité de P pour récupérer celle de Q.
Plus visuellement, on pourrait penser à chaque distribution marginale comme un tas de
sable sur X . Un couplage est un plan de transport transformant un tas en l’autre, qui
spécifie comment déplacer chaque masse élémentaire de sable de la première distribution
pour récupérer la seconde. Un couplage est dit déterministe si chaque instance de P est
appariée à une unique instance de Q. Dans ce cas, le couplage est localisé sur le graphe
d’une application (P -presque sûrement unique9) T : E −→ E qui envoie P vers Q, c’est-à-
dire que T#P = Q. Nous notons par T (P,Q) l’ensemble des applications mesurables qui
envoient P vers Q.

Le Transport Optimal est devenu un outil populaire pour définir de tels couplages
en sélectionnant ceux qui sont optimaux d’une certaine manière. Cette théorie remonte
à Monge [207] qui, en 1781, a défini les applications de TO comme des fonctions qui
transforment P en Q avec un effort minimal selon une fonction de coût positive c : X ×
X −→ R+. Formellement, les applications de transport sont définies comme les solutions
de

inf
T∈T (P,Q)

∫
X
c(x, T (x)) dP (x). (Monge)

Un défi mathématique surgit de la contrainte de la push-forward, ce qui rend le problème
irréalisable dans de nombreux scénarios généraux, en particulier lorsque les distributions
P et Q ne sont pas absolument continues par rapport à la mesure de Lebesgue [29] ou ont
un nombre d’atomes déséquilibré. Cette complication a motivé la relaxation du problème
de TO appelée relaxation de Kantorovich, introduite par Kantorovich et Rubinshtein en

8Comme les sous-ensembles fermés d’espaces polonais sont également polonais, cela s’applique égale-
ment aux distributions composant les descripteurs structuraux unidimensionnels locaux introduits dans la
Définition F.2.7.

9C’est-à-dire que s’il existe une autre correspondance T ′ ̸= T dont le graphe localise le même couplage,
elle ne diffère de T que sur un ensemble O avec P (O) = 0.
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1958 [154]:
inf

γ∈Π(P,Q)

∫
X ×X

c(x, y) dγ(x, y). (Kantorovich)

Les solutions à l’équation (Kantorovich) sont des couplages optimaux (en général non
déterministes) entre P et Q par rapport au coût c. Contrairement aux cartes de TO, elles
existent sous des hypothèses très légères, comme la non-négativité du coût [299]. Notez
que, puisqu’un opérateur de push-forward peut être identifié avec un couplage, l’ensemble
des solutions admissibles de l’équation (Monge) est inclus dans l’ensemble des solutions
admissibles de l’équation (Kantorovich).

Les solutions de (Kantorovich) nous intéressent particulièrement car elles définissent
une distance dans P(X ) [299]. Plus précisément, pour p ≥ 1, la valeur optimale

Wp(P,Q) =
(

inf
γ∈Π(P,Q)

∫
X × X cp(x, y) dγ(x, y)

) 1
p

(F.6)

est appelée la distance de Wasserstein p entre P et Q, et elle représente le coût minimum de
transport nécessaire pour reconfigurer la masse de P afin de récupérer la masse deQ. Notez
que la distance de Wasserstein est capable d’intégrer la géométrie de l’espace sous-jacent X
si la fonction de coût est choisie, par exemple, comme la distance géodésique sur X . Cela
en fait une métrique bien adaptée pour capturer la variabilité de l’espace conformationnel
et comparer de manière appropriée une paire de descripteurs structuraux.

Nous concluons en présentant comment résoudre (Kantorovich) lorsque, en pratique,
nous n’avons accès qu’aux équivalents empiriques de P etQ, notés Pn etQm pour n,m ∈ N.
Ce scénario correspond à la version discrète du problème de Kantorovich, où les points
de l’échantillon tiré de P sont envoyés aux points de l’échantillon tiré de Q avec des
probabilités données par une matrice n ×m, que nous identifions avec le couplage dans
(Kantorovich). Soient X et Y deux variables aléatoires ayant respectivement P et Q
comme distributions de probabilité, X1, . . . , Xn et Y1, . . . , Ym deux échantillons de X et
Y et (x1, . . . , xn) et (y1, . . . , ym) deux réalisations de tels échantillons. La version discrète
de (Kantorovich) correspond à résoudre

inf
M∈U(Pn,Qm)

n∑
i=1

m∑
j=1

c(xi, yj)Mij , (F.7)

où U(Pn, Qm) est l’ensemble des matrices réelles n×mM = (Mij)ij telles que ∑n
i=1Mij =

m−1 et ∑m
j=1Mij = n−1. Une fois de plus, la distance de Wasserstein p entre les mesures

empiriques Pn et Qm est donnée par

Wp(Pn, Qm) =

 inf
M∈U(Pn,Qm)

n∑
i=1

m∑
j=1

cp(Xi, Yj)Mij

 1
p

. (F.8)

Notez que (F.6) est un nombre réel positif tandis que (F.8) est une variable aléatoire, car
elle dépend des échantillons tirés de P et de Q. Heureusement, la distance de Wasserstein
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empirique susmentionnée (F.8) présente de solides garanties statistiques. En particulier,
elle converge faiblement vers la distance entre les mesures réelles (F.6) à mesure que n
et m augmentent jusqu’à l’infini sous des hypothèses légères [299, Corollaire 6.9]. Cela
justifie l’utilisation de (F.8) pour prendre en compte les différences entre les descripteurs
structuraux locaux et globaux en calculant la distance de Wasserstein entre leurs équiv-
alents empiriques. Pour ces applications pratiques, nous fixerons p = 2 en raison des
propriétés statistiques bien connues associées au coût quadratique, en particulier l’unicité
de la solution de (Kantorovich) sous des hypothèses légères [298, Théorème 2.12]. Pour une
compréhension approfondie des propriétés mathématiques de la distance de Wasserstein
et du problème du transport optimal, nous vous renvoyons à [299].

La résolution du problème d’optimisation (F.7) est devenue un autre domaine de
recherche étendu. Comme la fonction objectif et les contraintes sont linéaires dans les
variables d’intérêt, la formulation discrète du problème de Kantorovich est un programme
linéaire. Par conséquent, il peut être résolu avec une grande variété d’outils algorith-
miques issus de la programmation linéaire et de l’optimisation combinatoire. Parmi eux,
nous pouvons souligner l’algorithme classique du Simplexe en réseau [24], qui est implé-
menté dans les solveurs OT les plus courants [98, 259]. Une autre stratégie populaire est
celle des méthodes de Dual Ascent [144], notamment le célèbre algorithme hongrois [25].
Le principal défi rencontré lors de la manipulation de solutions empiriques de transport
optimal réside dans leur complexité computationnelle élevée et leurs besoins en mémoire.
La résolution de (F.7) demande généralement O((n+m)nm log(n+m)) opérations infor-
matiques. De plus, pour des fonctions de coût non standard, une matrice de coefficients
Cij = c(xi, yj) de taille n×m doit être stockée. Dans les problèmes pratiques, notamment
dans les applications d’apprentissage automatique, il est courant de considérer des schémas
de régularisation entropique, qui peuvent réduire la complexité computationnelle à O(nm)
opérations [64]. Cependant, ces approximations ne résolvent pas les problèmes de mémoire
et perdent les propriétés mathématiques et statistiques qui motivent l’utilisation de la dis-
tance de Wasserstein dans le contexte inférentiel. Pour une introduction moins technique
à l’OT et une analyse approfondie des aspects computationnels discutés ci-dessous, nous
renvoyons à [228].

Test d’hypothèse (utilisé dans les chapitres 2-6)

Les tests d’hypothèses, tout comme l’estimation, constituent l’autre pilier fondamental
de l’inférence statistique. L’objectif de ces tests est de déterminer, en se basant sur les
informations collectées dans l’échantillon, si une certaine hypothèse concernant une car-
actéristique de la population doit être rejetée ou non. En résumé, tester une hypothèse
revient à déterminer si elle est “compatible” avec ce qui est observé dans l’échantillon. Plus
précisément, cela implique de comparer la validité de deux énoncés complémentaires sur
la population. L’un d’entre eux est appelé l’hypothèse nulle (H0), tandis que l’autre est
appelé l’hypothèse alternative (H1). Il convient de noter que les tests statistiques ne sont
pas symétriques par rapport à H0 et H1 dans le sens où ils ne choisissent pas l’hypothèse
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la plus plausible en se basant sur l’échantillon. Au lieu de cela, leur objectif est simple-
ment de déterminer s’il existe suffisamment de preuves pour rejeter ce que H0 affirme.
Par conséquent, le test ne conclut jamais que l’hypothèse nulle est vraie, mais plutôt qu’il
n’y a pas suffisamment de preuves pour la rejeter. Formellement, nous pouvons définir
un test statistique comme une partition mesurable [61, Definition 15.1] de l’espace des
échantillons.

Definition F.2.8 (Test d’hypothèse). Soit (Ω,Σ,P) un espace de probabilité. Un test
d’hypothèse est une partition mesurable de Ω en deux régions, à savoir la région critique
-ou de rejet- (C.R.), qui comprend les instances qui conduisent au rejet de H0, et son
complémentaire, la région alternative (A.R.), composée des résultats qui ne conduisent
pas au rejet de H0. Le test est caractérisé par la fonction indicatrice de la région critique,
également appelée fonction de test, π : Ω −→ {0, 1} où

π(ω) =

 1 si ω ∈ C.R.
0 si ω ∈ A.R.

(F.9)

Le potentiel des tests d’hypothèses réside dans les garanties statistiques qu’ils offrent
en ce qui concerne la partition (F.9). Plus précisément, les fonctions de test sont conçues
pour garantir le contrôle de ce qu’on appelle l’erreur de type I, c’est-à-dire la probabilité
de rejeter H0 lorsqu’elle est vraie.

Definition F.2.9 (Erreur de type I). Soit (Ω,Σ,P) un espace probabiliste et π : Ω −→
{0, 1} une fonction de test. L’erreur de type I de π est définie comme la probabilité de
rejeter H0 lorsqu’elle est vraie, c’est-à-dire

P ({ω ∈ Ω : π(ω) = 1 |H0}) = PH0 (C.R.) .

La procédure de construction d’un test d’hypothèse commence par fixer une limite
supérieure pour l’erreur de type I, appelée niveau de signification, et choisir, parmi tous
les tests qui la contrôlent, celui qui détecte le plus efficacement les fausses hypothèses
nulles, ou en d’autres termes, le plus puissant.

Definition F.2.10 (Puissance). Soit (Ω,Σ,P) un espace probabiliste et π : Ω −→ {0, 1}
une fonction de test. La puissance de π est définie comme la probabilité de rejeter H0
lorsqu’elle est fausse, c’est-à-dire

P ({ω ∈ Ω : π(ω) = 1 |H1}) = PH1 (C.R.) .

Il convient de noter que la construction d’un test d’hypothèse repose sur le choix d’une
“bonne” région critique. Pour ce faire, les considérations suivantes doivent être prises en
compte:

(i) Les divergences par rapport à l’hypothèse nulle sont recherchées, de sorte que la
région critique doit inclure des valeurs de l’échantillon qui sont peu probables de se
produire sous H0, même si elles sont possibles,
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(ii) En général, la région critique est déterminée avant d’analyser les résultats expéri-
mentaux (bien que cela ne soit pas toujours vrai, comme discuté dans la section
suivante),

(iii) La région critique est généralement exprimée en termes d’une statistique, c’est-à-
dire une fonction mesurable à valeurs réelles de l’échantillon, appelée statistique de
test. Elle mesure les divergences entre les échantillons dans la région critique et
l’hypothèse nulle. La distribution de la statistique de test sous H0 est utilisée pour
garantir le niveau de signification.

Il convient de noter que la fonction de test (F.9) fournit une sortie binaire « rejet vs
non-rejet » concernant H0. Cependant, que l’hypothèse nulle soit rejetée ou non, il est
généralement intéressant de “mesurer la distance” entre le résultat de l’échantillon et H0.
Cela donne lieu au concept de p-valeur.

Definition F.2.11 (p-valeur). Soit (Ω,Σ,P) un espace probabiliste, π une fonction de
test définie sur Ω dont la statistique de test est une fonction d’un échantillon X1, . . . , Xn.
La p-valeur associée à une réalisation (x1, . . . , xn) est le plus petit niveau de signification
auquel l’hypothèse nulle H0 est rejetée par π.

Cette valeur agit comme un proxy pour la plausibilité de l’échantillon sous l’hypothèse
nulle. Si la p-valeur est grande, cela signifie que nous travaillons avec des échantillons ayant
une forte probabilité de se produire si H0 est vrai. Dans ce cas, il n’y a pas suffisamment
de preuves contre la nullité et H0 ne devrait pas être rejetée. Cependant, le rejet devrait
être choisi si la p-valeur est petite. Nous tenons à souligner que la p-valeur peut -et
doit- être considérée comme un indicateur quantitatif de la “crédibilité” de l’hypothèse
nulle. En conséquence, avec les précautions appropriées, les p-valeurs calculées dans les
mêmes conditions (par exemple, égalité des tailles d’échantillons) sont quantitativement
comparables et fournissent un indicateur correct des échantillons qui contredisent le plus
la validité de H0 au sein d’une famille de réalisations. Ce point sera essentiel dans les
travaux présentés ici. De plus, il convient de noter que la p-valeur peut également être
utilisée pour vérifier efficacement la bonne définition d’un test d’hypothèse. Conformément
à sa définition, une p-valeur est statistiquement valide si et seulement si elle est super-
uniforme sous H0. Une variable aléatoire réelle X est dite super-uniforme si sa fonction
de répartition cumulative (CDF) est majorée par celle de la distribution uniforme, c’est-
à-dire:

P(X ≤ x) ≤ x pour tout x dans [0, 1]

(voir, par exemple, [172, Section 3.3]). De plus, plus la distribution des p-valeurs sous
l’hypothèse nulle est proche de U [0, 1], plus le test correspondant est puissant. Vérifier
la super-uniformité des p-valeurs sous H0 est essentiel pour garantir l’adéquation du test
statistique correspondant.

Dans cette thèse, nous nous concentrons principalement sur un cas particulier de test
statistique, connu sous le nom de test de bonne adéquation à deux échantillons. En bref, il
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vise à évaluer si deux distributions de probabilité sont identiques. Plus précisément, pour
deux mesures P et Q prises en charge sur un espace polonais X , l’objectif est de tester les
hypothèses nulle et alternative suivantes:

H0 : P = Q vs. H1 : P ̸= Q. (F.10)

Notez que, dans ce cadre, nous testons uniquement l’égalité de P et Q, indépendamment
de l’identité de ces distributions. La question clé ici est le choix d’une statistique de
test appropriée qui tienne compte adéquatement des différences entre P et Q et dont la
distribution nulle est connue10. Les approches les plus couramment utilisées pour tester
(F.10) sont principalement définies pour les mesures prises en charge sur la ligne réelle
(par exemple, les statistiques de Kolmogorov-Smirnov et de Wilcoxon). Cependant, tester
l’égalité de distributions prises en charge sur des espaces plus généraux est un problème
beaucoup moins étudié, et cela revêt une grande importance dans notre objectif de com-
parer correctement les descripteurs structuraux locaux. Les distributions de probabilité
rendant compte de la variabilité conformationnelle de la protéine à l’échelle des acides
aminés (cf. la Définition F.2.5) sont prises en charge sur le tore plat bidimensionnel, qui
est un espace non euclidien. En particulier, une statistique de test définie pour comparer
des distributions dans P(T2) doit être adaptée à la périodicité de leur support. C’est
pourquoi la distance de Wasserstein (F.6) s’avère être une mesure appropriée pour com-
parer les mesures sur T2 si la distance géodésique sur un tel espace est choisie comme
fonction de coût. Dans cette thèse, nous proposons deux approches pour définir des tests
de bonne adéquation à deux échantillons dans P(T2) en utilisant la distance de Wasserstein
comme statistique de test. Cela fournira une évidence statistique des divergences entre les
descripteurs structuraux locaux ou, en d’autres termes, de la signification statistique des
changements dans la structure protéique locale.

Inférence post-sélection (utilisée dans le chapitre 6)

Lorsque l’on effectue une enquête statistique, un modèle pour les données doit être préal-
ablement spécifié. Ce modèle peut être la distribution sous-jacente de l’échantillon, les
variables qui expliquent un résultat donné ou une hypothèse à tester. Dans un contexte
plus classique, le modèle est défini avant la collecte des données. Cela peut être le cas
si, par exemple, les observations suivent une loi physique connue. Cependant, dans des
applications plus réalistes, l’inférence est effectuée sur un modèle qui est choisi à partir des
données. Un exemple simple est de tester la signification des caractéristiques sélectionnées
par un modèle de régression dont les coefficients ont été obtenus à partir des données.
Dans ce cas, les hypothèses nulles à tester, c’est-à-dire les questions auxquelles l’inférence
doit répondre, dépendent des données. Si les mêmes données sont utilisées pour l’étape de
test subséquente, les garanties statistiques ne sont pas assurées. Ce phénomène est simi-
laire au surajustement dans les tâches de prédiction. Adapter les statistiques inférentielles

10Nous faisons généralement référence à la distribution de toute variable aléatoire sous H0 comme sa
distribution nulle.
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Figure F.7: Distributions empiriques de deux groupes d’observations obtenues après avoir
simulé un échantillon de taille n = 500 prélevé dans la distribution univariée N (0, 1) +
U(−0, 2, 0, 2) et l’avoir classifié en deux groupes à l’aide d’un algorithme de k-means. Les
couleurs indiquent les classes obtenues par le pipeline. Cette figure est adaptée de [121,
Figure 1].

au cadre où le choix du modèle est guidé par les données est l’objectif de l’inférence post-
sélection. La pertinence de ce domaine a considérablement augmenté ces dernières années
en raison de son utilité dans de nombreuses disciplines telles que l’inférence causale [16], la
régression linéaire en haute dimension [171] ou les réseaux neuronaux [300], entre autres.
Ici, nous nous concentrons sur les tests d’hypothèses sélectifs, qui abordent la définition
de tests statistiques lorsque les hypothèses nulles sont choisies à partir des données. Les
bases de cette théorie ont été introduites de manière rigoureuse dans [97].

Dans cette thèse, notre objectif est de réaliser une inférence après la phase de re-
groupement en testant les différences entre les moyennes des groupes. Les algorithmes de
regroupement visent à classer les observations en un certain nombre de classes, qui est
généralement déterminé directement ou indirectement. Les résultats de ces méthodes sont
très sensibles aux paramètres requis par chaque technique, et la partition résultante de
l’espace peut fortement varier pour un jeu de données donné. Bien qu’il existe des critères
pour optimiser le réglage de ces paramètres [278, 251, 119], il convient de souligner qu’en
général, il n’y a pas de classification vraie sous-jacente [90]. Les algorithmes de regroupe-
ment cherchent à trouver des classes qui représentent de manière compacte la distribution
de l’ensemble de données, mais ces groupes ne sont pas inhérents à la population en général
et ne servent que de description de l’échantillon. L’inférence après la phase de regroupe-
ment vise à éclairer cette question en fournissant des preuves statistiques des véritables
différences entre les groupes. La pertinence de ce problème peut être facilement illustrée
en simulant une variable aléatoire gaussienne unidimensionnelle avec un bruit uniforme
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et en demandant à l’algorithme classique des k-means [117] de trouver deux groupes. Le
résultat est présenté dans la Figure F.7. Si, comme c’est le cas en pratique, la distribution
sous-jacente est inconnue, il est difficile d’évaluer visuellement si les deux groupes corre-
spondent à deux populations différentes. Si nous essayons de répondre à cette question en
omittant que l’hypothèse nulle a été choisie en regardant les données, c’est-à-dire en suiv-
ant les résultats d’un algorithme de regroupement, la conclusion sera trompeuse. En effet,
un test Z classique renvoie une p-valeur inférieure à la précision machine (5.87·10−67), con-
duisant à un rejet fort de l’hypothèse de moyennes de groupe égales. Si nous effectuons une
inférence sélective, l’approche présentée dans [51] pour tester les différences de moyennes
de groupe renvoie une p-valeur égale à 0.84, ce qui est cohérent avec la configuration réelle
(ici connue, car les données ont été simulées).

Notre motivation ici est de fournir des garanties statistiques sur les algorithmes de
regroupement couramment utilisés pour caractériser les ensembles de protéines. En ef-
fet, définir une partition de l’espace conformationnel en caractérisant les états par des
descripteurs classiques est devenu une technique standard [7, 59, 170, 169]. Cependant,
ces caractérisations manquent de preuves statistiques sur les véritables différences entre
les groupes, que nous considérons essentielles pour interpréter correctement leur résultat.

F.3 Plan de la thèse

Le principal objectif de cette thèse est de définir des méthodes statistiques pour la car-
actérisation et la comparaison appropriées des ensembles conformationnels de protéines
flexibles. Dans la Section F.2.2, nous avons introduit les descripteurs probabilistes de la
variabilité structurelle de ces systèmes, et dans la Section F.2.3, nous avons détaillé les
méthodes statistiques que nous utiliserons pour les analyser. Il ne nous reste qu’une ques-
tion à aborder: comment? La réponse à cette question est développée tout au long des
chapitres qui composent cette thèse. Le manuscrit est divisé en deux parties principales,
consacrées à l’analyse structurale à l’échelle locale et globale, respectivement. À l’intérieur
de chaque partie, nous exposons les stratégies mises en place pour déployer les méthodes
de la Section F.2.3 sur les descripteurs de la Section F.2.2, et présentons les techniques
résultantes pour la caractérisation et la comparaison. Nous fournissons maintenant un
bref aperçu de ces méthodes à travers un plan de ce manuscrit, où les principaux résultats
et contributions sont mis en évidence.

Disponibilité du logiciel et reproductibilité

Les méthodes de caractérisation et de comparaison présentées dans cette thèse ont été
mises à disposition de la communauté. Pour garantir la reproductibilité, le code implé-
mentant toutes les analyses statistiques ainsi que les données ont été partagés de manière
équitable. Les liens sont spécifiés dans chaque chapitre.
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F.3.1 Analyse structurale locale des ensembles de protéines (Partie I)
La première partie de la thèse est consacrée à l’analyse structurale des ensembles au niveau
local. Plus précisément, nous étudierons les distributions de probabilité des angles dièdres
(ϕ, ψ) qui définissent les descripteurs structuraux locaux. Cette partie se compose de trois
chapitres:

• Dans le chapitre 2, nous évaluons l’effet des acides aminés voisins sur la distribution
de (ϕ, ψ), montrant que les identités des résidus gauches et droits doivent être prises
en compte simultanément pour décrire les structures locales. Cela définit les frag-
ments de trois acides aminés (tripeptides) comme la brique unitaire pour analyser
la conformation des protéines localement.

• Le chapitre 3 introduit deux approches pour réaliser des tests de correspondance de
deux échantillons sur P(T2), en utilisant la théorie du transport optimal et la distance
de Wasserstein. Ces méthodes seront l’outil principal pour prendre en compte les
différences statistiquement significatives entre les descripteurs structuraux locaux.
Nous illustrons également leur utilité pour rejeter l’hypothèse de la paire isolée de
Flory [99].

• Enfin, dans le chapitre 4, nous présentons une application moins triviale des méth-
odes introduites dans le chapitre 3, à savoir l’évaluation de l’effet du codon traduit
sur les distributions de (ϕ, ψ). Ce chapitre fait suite au travail de Rosenberg et
al. [249], où le même problème a été analysé mais en utilisant une méthodologie
inadaptée.

Interdépendance entre les effets des voisins les plus proches (Chapitre 2)

L’analyse structurale des ensembles conformationnels, tant au niveau local que global, doit
reposer sur une base solide concernant la manière dont la séquence influence la structure
des acides aminés. L’hypothèse de la paire isolée de Flory [99], qui affirme que les angles
(ϕ, ψ) d’un résidu donné sont indépendants de l’identité de ses voisins, a déjà été réfutée par
la communauté dans de nombreuses études [40, 225, 66, 260, 149, 204] (bien que, comme
le montre le chapitre 3, aucune de ces approches ne fournisse de preuve statistique de son
rejet). Cependant, une question importante reste sans réponse: les effets des voisins de
gauche et de droite sont-ils indépendants? En d’autres termes, la structure locale d’une
protéine peut-elle être décrite à partir de deux fragments d’acides aminés (dipeptides),
ou l’unité de base devrait-elle être le tripeptide? Des réponses contradictoires ont été
proposées à ce sujet [109, 27, 129, 244], mais aucune d’entre elles n’a été basée sur une
méthodologie solide qui fournit des garanties statistiques sur la distribution de (ϕ, ψ). Ici,
nous visons à tester l’indépendance des effets des voisins.

Soit C l’identité d’un résidu d’acide aminé et L,R les identités de ses voisins de gauche
et de droite dans la séquence, respectivement. À partir des travaux [280, 244], nous
pouvons montrer que le descripteur structurale locale donné par le tripeptide complet,
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noté P (ϕ, ψ, |, L, C,R), peut être obtenu à partir des descripteurs donnés par les dipeptides
de gauche et de droite comme

P (ϕ, ψ |L,C,R) = P (ϕ, ψ |L,C), P (ϕ, ψ |C,R)
S, P (ϕ, ψ |C) , (F.11)

où S est une constante de normalisation, si et seulement si l’hypothèse suivante est vérifiée

L et R sont indépendants étant donné C et (ϕ, ψ). (F.12)

Notez que (F.11) revient à affirmer que les influences des voisins de gauche et de droite
sur la distribution de (ϕ, ψ) peuvent être considérées indépendamment pour la reconstru-
ire. Comme il s’agit d’une déclaration équivalente, nous proposons de tester (F.12) à
l’aide d’un test d’indépendance classique χ2 [172]. Méthodologiquement, une approche
appropriée pour conditionner {C, ϕ, ψ} est proposée, consistant principalement à discré-
tiser intelligemment T2 et à effectuer un test par subdivision et valeur de C. Ensuite, tous
les p-valeurs sont corrigés pour la multiplicité [125] et stratifiés par l’identité du résidu.
Nos résultats démontrent de manière indéniable les effets couplés des voisins de gauche
et de droite, indiquant qu’ils ne peuvent pas être considérés indépendamment les uns des
autres. De plus, nous montrons que l’ampleur de l’interdépendance, mesurée en termes de
p-valeurs, est affectée par les propriétés physico-chimiques des voisins les plus proches et
l’origine structurelle des données. Ces observations représentent une étape fondamentale
vers la compréhension des relations séquence-structure dans les peptides et les protéines.

Tests à deux échantillons pour comparer les structures locales (Chapitre 3)

L’investigation structurale des angles (ϕ, ψ) implique de quantifier l’amplitude attendue
des effets structuraux associés aux changements locaux dans la séquence. Dans ce contexte,
la définition d’une distance appropriée entre les distributions sur T2, dont la signification
statistique peut être évaluée, est essentielle. Dans ce chapitre, nous visons à tester les
hypothèses

H0 : P = Q vs. H1 : P ̸= Q, (F.13)

pour une paire de descripteurs structuraux locaux P,Q ∈ P(T2). Comme précédemment
mentionné, les distributions seront comparées à l’aide de la distance de Wasserstein 2 (F.6),
qui intègre la géométrie sous-jacente de l’espace conformationnel au niveau local. Comme
l’étude du Transport Optimal dans T2 n’a pas encore été complètement abordée, nous
commençons par étendre les principaux résultats de cette théorie au tore plat de dimension
arbitraire, noté Td. En particulier, nous montrons l’unicité sous des hypothèses modérées
de la solution de (Kantorovich) dans P(Td), et nous dérivons un Théorème Central Limite
(TCL) pour les fluctuations du coût de transport empirique. Nous justifions pourquoi le
TCL proposé n’est pas adapté pour définir un test asymptotique de bonté d’ajustement
pour (F.13), ce qui motive l’exploration d’approches alternatives.
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La stratégie pour définir un test à deux échantillons pour (F.13) doit reposer sur le rejet
de l’hypothèse nulle lorsque la distance de Wasserstein entre les contreparties empiriques
de P et Q est “trop grande” ou, en d’autres termes, trop improbable sous H0. Si nous
notons X1, . . . , Xn et Y1, . . . , Ym deux échantillons indépendants identiquement distribués
selon P et Q respectivement, cela conduit à la définition de la région critique suivante

C.R. = {(x1, . . . , xn; y1, . . . , ym) : W2
2 (Pn, Qm) ≥ cnm(α)}, (F.14)

où xi (resp. yj) désigne une réalisation de Xi (resp. Yj) pour i = 1, . . . , n (resp. j =
1, . . . ,m). Le seuil cnm(α) > 0 doit être choisi pour garantir le contrôle de l’erreur de type
I au niveau α ∈ [0, 1] grâce à la distribution nulle de la statistique du test. Cependant, la
connaissance de la distribution de W 2

2 (Pn, Qm) sous H0 demeure un problème ouvert et
non trivial, en particulier lorsque l’espace de base a une dimension supérieure à un. Cette
difficulté intrinsèque nous a conduit à rechercher des approches alternatives qui exploitent
les scénarios où une statistique de test basée sur la distance de Wasserstein à distribution
connue peut être définie. Nous proposons deux stratégies à cet égard, que nous décrivons
dans les paragraphes suivants.

La première approche consiste à contourner le problème de dimension en projetant Pn
et Qm sur les géodésiques fermées unidimensionnelles de T2, qui sont des spirales fermées
isomorphes au cercle S1 [36]. Ensuite, nous définissons une statistique de test basée
sur la distance de Wasserstein 2 pour comparer les mesures sur S1 dont nous pouvons
dériver la distribution nulle. Nous montrons que cette distribution ne dépend pas des
identités de P et Q sous H0 ou, en d’autres termes, que la statistique définie est sans
distribution sous l’hypothèse nulle. Cela permet de définir un test de bonne adéquation
à deux échantillons pour une paire de projections géodésiques de Pn et Qm. La stratégie
pour définir une valeur de p pour le test bidimensionnel est de (i) choisir une famille
de géodésiques fermées sélectionnées aléatoirement sur T2, (ii) pour chaque géodésique,
projeter Pn et Qm et obtenir une valeur de p pour l’égalité de leurs projections, et enfin,
(iii) agréger toutes les p-valeurs par agrégation de Bonferroni [32], obtenant ainsi une p-
valeur bien définie pour (F.13). Nous concluons en montrant la cohérence du test sous des
alternatives fixes, c’est-à-dire que sa puissance tend vers un lorsque les tailles d’échantillon
n et m tendent vers l’infini.

La deuxième approche vise à comparer directement les descripteurs structuraux dans
l’espace bidimensionnel. En raison de l’incapacité à construire un test exact ou asympto-
tique basé sur (F.14), nous proposons de trouver une borne supérieure pour sa p-valeur
associée. Il convient de noter qu’une borne supérieure d’une p-valeur donne des tests
d’hypothèses statistiquement valides. En effet, si la borne supérieure est inférieure au
niveau de signification, il en ira de même pour la vraie -et inconnue- p-valeur et le re-
jet avec un contrôle de l’erreur de type I sera assuré. En d’autres termes, cela revient
à avoir des p-valeurs Super-Uniformes. Cependant, il en résulte une perte de puissance.
En résumé, l’idée est de d’abord majorer les écarts de la statistique par rapport à son
espérance, puis de montrer que, sous l’hypothèse nulle, cette espérance présente un taux
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de convergence rapide vers zéro. Cela conduit à la définition d’un test à deux échantillons
qui est asymptotiquement consistant au niveau α [292, Definition 14.2]. Cela signifie que
les garanties statistiques sont assurées à la limite n,m → ∞, de sorte que, en pratique,
le test peut être effectué pour des tailles d’échantillons importantes. Cependant, la con-
servativité de cet essai à l’échantillon fin devient avantageuse dans le contexte de notre
application, le rendant complémentaire à l’approche de projection géodésique.

Une analyse numérique est réalisée pour illustrer l’efficacité relative des deux approches
et les comparer à d’autres techniques alternatives de la littérature. De plus, nous dé-
montrons leur pertinence pour détecter les différences entre les descripteurs structuraux
locaux, en utilisant une base de données structurales de fragments de trois résidus extraits
de structures de protéines à haute résolution déterminées expérimentalement [88] pour
réfuter l’hypothèse de la paire isolée de Flory.

L’effet du codon sur la structure locale (Chapitre 4)

Nous concluons la première partie du manuscrit en présentant une application pratique
des méthodes introduites dans le Chapitre 3. De nombreux processus biologiques, tels que
l’épissage de l’ARN, les taux de traduction et le repliement des protéines, ont démontré
la pertinence de l’utilisation de codons synonymes [220, 44]. Bien que la relation entre
les codons synonymes et la structure secondaire des protéines traduites ait été largement
étudiée [218, 258], Rosenberg et al. [249] ont adopté une approche plus détaillée en évaluant
l’impact de l’identité des codons sur la distribution des angles dièdres (ϕ, ψ) au sein des
éléments de structure secondaire. Leur travail visait à déterminer s’il existe des différences
significatives lorsque des codons synonymes sont utilisés, grâce à la mise en œuvre d’un
test statistique pour des mesures sur P(T2). Cependant, leur méthodologie statistique est
formellement incorrecte, jetant le doute sur les résultats obtenus.

Dans ce chapitre, nous démontrons d’abord que les p-valeurs définies dans [249] sont
statistiquement invalides en prouvant que leur distribution n’est pas Super-Uniforme sous
l’hypothèse nulle (voir Section F.2.3). De plus, nous montrons que ces p-valeurs sont très
conservatrices pour de grandes valeurs de la statistique, entraînant un nombre important
de faux négatifs et ignorant ainsi des différences substantielles qui pourraient apparaître
entre les descripteurs structuraux locaux. De plus, la procédure de tests multiples utilisée
dans [249] échoue à contrôler le taux de découverte de fausses hypothèses (FDR) car
elle nécessite que les p-valeurs soient Super-Uniformes sous l’hypothèse nulle [247]. Les
inexactitudes techniques de cette étude nous ont incités à étudier l’effet du codon avec
des outils statistiques appropriés. C’est la motivation qui nous a poussés à mettre en
œuvre les méthodes présentées dans le Chapitre 3 pour tester correctement les différences
significatives entre les descripteurs structuraux locaux spécifiques aux codons.

Nos résultats confirment l’influence du codon sur les distributions de (ϕ, ψ), mais dif-
fèrent de ceux de [249] en ce qui concerne la force de signification des différences selon
le type de structure secondaire. De plus, nous avons évalué l’impact de la classification
structurelle et du contexte de la séquence locale sur ces résultats. Les résultats ont révélé
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que les effets spécifiques aux codons présentent des niveaux de signification similaires dans
différentes régions de T2. Cependant, ces effets peuvent être plus prononcés pour des types
de structure secondaire spécifiques, tels que les feuillets β par rapport aux hélices α. De
plus, les résultats suggèrent que les effets de codons synonymes sont amplifiés lorsqu’on
prend en compte le contexte de la séquence locale, ce qui va dans le sens des conclusions
du Chapitre 2.

F.3.2 Analyse structurale globale des ensembles de protéines (Partie II)

La deuxième partie du manuscrit est consacrée à l’analyse structurale des protéines flex-
ibles au niveau global. Nous utilisons les descripteurs structuraux globaux définis dans
la Section F.2.2 pour développer des outils statistiques permettant de comparer et de
caractériser les ensembles conformationnels, tout en fournissant aux techniques de re-
groupement classiques des garanties statistiques. Cette partie comprend trois chapitres,
décrits ci-dessous.

• Le chapitre 5 présente WASCO, un outil statistique basé sur la distance de Wasser-
stein pour comparer les ensembles conformationnels de protéines hautement flex-
ibles. L’idée principale de WASCO est d’utiliser la distance de Wasserstein pour
comparer les descripteurs structuraux globaux tridimensionnels (Définition F.2.6),
en intégrant également l’information au niveau local grâce aux techniques présentées
dans le chapitre 3. Nous démontrons l’utilité de la méthode pour comparer différents
champs de force au sein de simulations de dynamique moléculaire ou pour évaluer
l’effet de l’affinement avec des données expérimentales.

• Le chapitre 6 est consacré à l’étude de l’inférence post-regroupement lorsque les don-
nées présentent des structures de dépendance arbitraires entre les caractéristiques et
les observations. Ce travail, qui constitue l’extension naturelle du cadre de [104, 51],
offre aux techniques de regroupement classiques la caractérisation d’ensemble avec
des garanties statistiques sur les véritables différences entre les groupes de confor-
mations obtenus.

• Le chapitre 7 présente WARIO, une caractérisation des ensembles conformationnels
basée sur les contacts. La méthode adapte les cartes de contacts classiques qui
caractérisent les structures repliées au cadre des ensembles, en caractérisant une
protéine flexible à travers une famille pondérée de cartes de contacts, construites
à partir des descripteurs structuraux globaux unidimensionnels (Définition F.2.7).
L’applicabilité de WARIO est illustrée par la caractérisation de plusieurs ensembles
conformationnels de protéines intrinsèquement désordonnées (IDP).
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Un outil basé sur la distance de Wasserstein pour comparer les ensembles de
protéines (Chapitre 5)

La comparaison des ensembles conformationnels est un problème essentiel en biologie struc-
turale. Lorsqu’il s’agit d’ensembles de protéines hautement flexibles, les outils existants
proposés dans la littérature se basent sur des descripteurs moyennés sur l’ensemble des con-
formations [167, 131]. Cependant, réduire des distributions complexes à leur moyenne en-
traîne généralement une perte considérable d’informations et masque des caractéristiques
pertinentes qui pourraient distinguer les systèmes. Dans ce chapitre, nous présentons une
technique de comparaison qui intègre l’ensemble de la variabilité de l’espace conforma-
tionnel et utilise la distance de Wasserstein pour tenir compte des différences entre les
descripteurs probabilistes complets.

L’idée principale de WASCO est de calculer la distance de Wasserstein entre les de-
scripteurs structuraux globaux tridimensionnels de deux ensembles (Définition F.2.6). Plus
précisément, pour chaque paire de résidus aux positions i < j dans la séquence, la méth-
ode calcule la distanceWij =W2(PAij;n, PBij;m), où PAij;n (resp. PBij;m) désigne le composant
ij du descripteur global structural empirique de l’ensemble A (resp. B). La quantité
Wij est la distance entre la distribution de la position relative des résidus i, j des deux
ensembles. La même idée est appliquée pour comparer tous les descripteurs structuraux
locaux (Définition F.2.5) pour chaque résidu le long de la séquence. Si PAi;n (resp. PBi;m)
désigne le i-ème composant du descripteur local structural empirique de l’ensemble A

(resp. B), WASCO calcule les quantités Wi =W2(Pi;nA, P i;mB), auxquelles nous asso-
cions la borne supérieure de la valeur p introduite au Chapitre 3. Remarquez que cette
formulation permet une représentation claire et compacte des résultats sous la forme d’une
matrice triangulaire, ayant comme entrées les quantités Wij dans le triangle inférieur et
les distances Wi le long de la diagonale. En combinant toutes les différences structurales
aux niveaux local et global dans la même représentation, on peut clairement mettre en
évidence les différences spécifiques aux résidus les plus pertinentes et évaluer la relation
entre les variations des distributions (ϕ, ψ) au niveau des acides aminés et les désaccords
structuraux à l’échelle de la séquence entière.

La variabilité dans les structures expérimentales et simulées entraîne des incertitudes et
du bruit statistique qui peuvent biaiser considérablement l’estimation de la distance. Par
conséquent, les différences calculées entre les descripteurs structuraux globaux et locaux
sont corrigées pour filtrer ce bruit et mettre en évidence les désaccords pertinents entre
les ensembles. Cette correction est effectuée en estimant et en supprimant les différences
intra-ensemble, c’est-à-dire les équivalents des quantités Wij et Wi calculées entre des
échantillons indépendants du même ensemble. Nous utilisons également les différences
intra-ensemble pour définir un score final qui permet d’interpréter quantitativement les
distances de Wasserstein calculées en utilisant le bruit comme référence. De plus, nous
définissons une distance globale qui tient compte de la différence entre tous les descripteurs
structuraux globaux et locaux (c’est-à-dire une distance dans leur espace produit), en
agrégeant correctement les quantités Wij et Wi après la correction du bruit.
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Nous démontrons l’utilité de WASCO pour comparer des ensembles de conformation
(i) produits à partir de simulations de dynamique moléculaire utilisant différentes forces, et
(ii) avant et après le raffinement avec des données expérimentales SAXS. Nous montrons
également l’applicabilité de la méthode pour évaluer la convergence des simulations de
dynamique moléculaire et discutons d’autres applications potentielles telles que dans les
approches basées sur l’apprentissage automatique. Un des avantages de cet outil est sa
mise en œuvre conviviale sous forme de cahier Jupyter, qui a été rendue disponible à la
communauté.

Inférence post-clustering sous dépendance (Chapitre 6)

Une stratégie courante pour caractériser les ensembles de protéines consiste à partitionner
l’espace conformationnel en mettant en œuvre des algorithmes de regroupement [7, 59,
170, 169]. Cependant, comme discuté dans la Section F.2.3, la sortie des techniques de re-
groupement manque d’interprétabilité en raison de leur grande sensibilité aux paramètres
du pipeline et de l’absence d’une classification sous-jacente véritable. Ce problème peut
être résolu en ayant recours à la théorie de l’inférence post-regroupement, qui fournit
des garanties statistiques concernant les différences entre les moyennes des groupes. Les
techniques mathématiques qui permettent un tel test sélectif dépendent fortement de
l’algorithme de regroupement et de la distribution des données. Récemment, le travail
fondateur de Gao et al. [104] a introduit le cadre permettant de réaliser une inférence
après un regroupement hiérarchique lorsque les observations sont indépendantes et iden-
tiquement distribuées en tant que variables aléatoires gaussiennes de dimension p avec
une matrice de covariance sphérique. Cela correspond au modèle de matrice normal suiv-
ant [127]:

X ∼MN n×p(µ, In, σ2Ip), (F.15)

où X est une matrice de dimensions n× p dont les lignes sont des vecteurs de caractéris-
tiques dans Rp. Les moyennes des vecteurs gaussiens p-dimensionnels sont données par
les lignes de la matrice n× p µ, la matrice identité n× n tient compte de l’indépendance
des observations, et σIp est la matrice de covariance des caractéristiques pour chaque
ligne. En vertu de (F.15), les auteurs de l’article [104] ont défini une p-valeur qui contrôle
l’erreur de type I sélective, c’est-à-dire la probabilité de rejeter l’égalité des moyennes des
groupes à condition que ces groupes aient été trouvés. De plus, les auteurs ont montré
qu’une surestimation asymptotique de σ permet de contrôler asymptotiquement l’erreur
de type I sélective, fournissant un estimateur approprié qui peut être utilisé en pratique.
Traiter l’estimation des paramètres compatible avec le contrôle de l’erreur de type I sélec-
tive est une contribution très remarquable et novatrice, qui avait été négligée dans les
travaux précédents pertinents dans le domaine [173, 243]. Récemment, cette approche a
été adaptée à la classification k-means dans [51] et au cadre au niveau des caractéristiques,
c’est-à-dire l’identification des variables contenant un vrai signal, dans [121].

Bien que les contributions de [104, 51] soient très pertinentes d’un point de vue statis-
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tique, leur application à des problèmes réalistes reste limitée. En effet, le modèle (F.15)
suppose que les variables sont indépendantes et ont une variance égale, ce qui est très
improbable dans la pratique. En particulier, les descripteurs couramment utilisés dans
les techniques de regroupement appliquées aux structures de protéines sont générale-
ment les distances euclidiennes entre tous les atomes Cα le long de la séquence. Même
si ces quantités peuvent être considérées comme des variables aléatoires gaussiennes p-
dimensionnelles, leur forte corrélation empêche l’hypothèse de (F.15). De plus, les con-
ceptions peuvent présenter une dépendance temporelle lorsqu’elles sont générées avec des
approches basées sur la physique, telles que les simulations MD. Par conséquent, un modèle
admettant des structures de dépendance entre les variables et les observations est requis
dans ce cadre. Dans ce chapitre, nous étendons le cadre présenté dans [104, 51] au modèle
matriciel normal général

X ∼MN n×p(µ,U,Σ), (F.16)

où U code la dépendance entre les observations et Σ la covariance entre les caractéris-
tiques. Nous définissons une valeur p qui contrôle l’erreur de type I sélective sous (F.16)
pour les algorithmes de regroupement hiérarchique et k-means. De plus, nous général-
isons la surestimation de σ au cadre matriciel, montrant qu’il existe un ordre partiel - le
soi-disant ordre partiel de Loewner [127] - dans l’espace des matrices hermitiennes pour
lesquelles la surestimation asymptotique de Σ assure le contrôle asymptotique de l’erreur
de type I sélective. Nous fournissons également un estimateur de Σ qui peut être utilisé
en pratique sous certaines hypothèses, que nous montrons être satisfaites pour plusieurs
modèles courants de dépendance entre les observations. En plus d’illustrer les perfor-
mances numériques du test présenté avec des simulations sur des données synthétiques,
nous montrons comment la méthode fournit des garanties statistiques après le regroupe-
ment de données réelles provenant d’ensembles de protéines dont les conformations sont
caractérisées par des descripteurs gaussiens.

Une caractérisation basée sur les contacts des ensembles de protéines (Chapitre 7)

La dernière contribution de la thèse est une méthode pour caractériser les ensembles con-
formationnels de protéines hautement flexibles. Les méthodes existantes dans la littérature
peuvent être classées en deux grandes familles: les approches basées sur le regroupement
et les approches basées sur la moyenne. Les premières proposent une idée intéressante qui
intègre la nature probabiliste des ensembles désordonnés. De plus, à la suite du travail
présenté au chapitre 6, ces méthodes peuvent être dotées de garanties statistiques concer-
nant les différences entre les groupes. En utilisant les distances Cα-Cα pour caractériser
les conformations, les états sont souvent comparés en utilisant la déviation quadratique
moyenne (RMSD) [241, 185]. Classer les états de cette manière a tendance à regrouper
les conformations en fonction des bonnes alignements, c’est-à-dire dont les structures sont
globalement similaires. Cette approche, qui a du sens pour les ensembles conformationnels
de protéines ordonnées/structurées, ne fournit pas de caractérisations appropriées ici en
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raison de la grande variabilité conformationnelle du système: les conformations des pro-
téines IDP ne s’alignent pas bien. Par conséquent, forcer un tel alignement ne donne pas de
partitions claires et interprétables de l’espace conformationnel. D’autre part, les approches
basées sur la moyenne réduisent considérablement la variabilité spatiale et masquent les
caractéristiques structurales pertinentes mais peu fréquentes du système. L’inadéquation
de toutes ces méthodes est illustrée au chapitre7.

Nous proposons d’aborder la question de la manière de caractériser correctement un
ensemble désordonné en revenant aux origines de la caractérisation structurale: les cartes
de contact. Les cartes de contact et de distance ont servi d’outils principaux pour car-
actériser la structure des protéines rigides [229, 213, 275], démontrant leur aptitude à
détecter les domaines structuraux [250, 164, 255, 137]. Elles consistent en une matrice
triangulaire binaire (Cij)ij , où Cij = 1 si la distance euclidienne entre les atomes Cα de
i-ème et le j-ème résidu est inférieure à un seuil donné, et Cij = 0 sinon. Bien qu’elles se
révèlent être des outils très utiles pour caractériser des structures rigides, leur extension
naïve aux ensembles conformationnels, consistant à estimer les probabilités de contact
en moyennant les contacts binaires sur l’ensemble des conformations, perd les motifs de
contact en dehors de la diagonale qui apparaissent pour des ensembles de conformations à
faible occupation. Nous croyons que les informations sur les contacts doivent rester la clé
pour caractériser la variabilité conformationnelle des protéines flexibles, mais l’extension
basée sur la moyenne doit être remplacée par une approche plus intelligente pour dévoiler
la complexité structurale des protéines IDP. Le message que nous proposons est clair:
utilisez les contacts, mais faites clustering d’abord.

Le chapitre 7 présente WARIO, une caractérisation basée sur les contacts des ensem-
bles de protéines hautement flexibles. Cette méthode exploite le potentiel des cartes de
contact en intégrant intelligemment le comportement statistique des systèmes désordon-
nés. Pour ce faire, nous utilisons d’abord un algorithme de regroupement bien adapté qui
révèle comment les interactions résidu-résidu se manifestent à travers la dynamique de la
protéine. Pour ce faire, nous caractérisons les conformations par les descripteurs struc-
turaux globaux unidimensionnels (Définition F.2.7), c’est-à-dire par une fonction continue
prenant des valeurs dans [0, 1] qui fait office de proxy pour l’interaction entre chaque paire
de résidus. Cette fonction intègre les informations de séquence et l’orientation relative
entre les acides aminés en interaction, que nous montrons être cruciale pour prendre cor-
rectement en compte la formation de motifs structuraux locaux. Ensuite, chaque groupe
de conformations est décrit par sa configuration de contact représentative. En bref, un
ensemble conformationnel est caractérisé par une famille pondérée de cartes de contact,
tenant compte de sa diversité structurale à travers un ensemble de motifs de contact qui
apparaissent avec une fréquence donnée le long des fluctuations conformationnelles de la
protéine. Nous illustrons l’utilité de WARIO à travers quatre exemples de protéines flexi-
bles, et nous le comparons aux approches classiques de clustering qui utilisent les distances
pour caractériser les conformations.
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