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Résumé

Au cours des dernières décennies, les stratégies de commande événementielle ont
attiré une attention considérable en raison de leur application à divers domaines
tels que les systèmes de contrôle en réseau, les processus industriels, la robotique,
les systèmes biologiques, la transmission de données et le traitement du signal, etc.
En commande événementielle, le contrôle n’est mis à jour que si nécessaire, ce qui
favorise une utilisation optimisée des ressources et une économie d’énergie. Tous
ces aspects sont cruciaux pour minimiser les ressources de communication et de
calcul. Cela a conduit à une riche littérature sur la commande événementielle, en
particulier pour des systèmes modélisés par des équations différentielles ordinaires.
Dans cette thèse, notre objectif est de contribuer à la commande basée-événement
d’équations aux dérivées partielles (EDPs), qui modélisent élégamment de nom-
breuses dynamiques physiques, biologiques ou sociales et pour lesquelles il existe
peu de modèles de lois d’échantillonage. À ce titre, nous nous concentrerons sur la
construction de commande événementielle pour trois EDPs spécifiques : les équa-
tions des ondes, de Schrödinger et de réaction-diffusion.

Tout d’abord, nous montrons comment maintenir la stabilité exponentielle de
l’équation des ondes soumise à un terme source d’amortissement distribué et vari-
able dans le temps lorsqu’il est soumis à une loi d’échantillonage, induisant un
amortissement constant sur chaque intervalle d’échantillonnage. Après avoir véri-
fié l’existence et la régularité suffisante des solutions du système en boucle fermée
où la loi d’échantillonage impose les mises à jour, nous établissons une condition
suffisante basée sur des inégalités matricielles pour assurer la stabilité exponentielle
globale de l’état. La preuve s’appuie sur une fonctionnelle de Lyapunov adéquate.
Un autre point important est la démonstration de l’absence du phenomène Zeno,
correspondant à l’accumulation d’instants de mises à jour de la loi de commande.
Ces résultats s’étendent également à une équation des ondes excitée.

Ensuite, nous proposons une loi d’échantillonage statique (dépendant de l’état)
pour l’équation de Schrödinger linéaire soumise à un terme source d’amortissement
localisé. Nous prouvons qu’avec cette loi le phénomène Zeno ne se produit pas et
que la stabilité exponentielle globale est conservée grâce à des estimations d’énergie
qui utilisent une inégalité d’observabilité bien connue. De plus, nous utilisons une
approche similaire pour proposer une loi d’échantillonage dynamique afin d’enrichir
la loi d’échantillonage statique.

Enfin, nous considérons une équation de réaction-diffusion en une dimension
d’espace avec un retard en entrée et soumise à une loi d’échantillonage. Nous
traitons le retard comme une équation de transport, transformant le problème en
un système de contrôle en cascade EDP-EDP puis nous effectuons une émulation
sur le contrôle construit par backstepping. Nous démontrons qu’entre deux instants
d’échantillonage, il existe un temps minimum d’inter-exécution qui garantit le ca-
ractère bien-posé et la stabilité exponentielle du système en boucle fermée. Notre
analyse de stabilité s’appuie sur la propriété de stabilité ISS pour les EDP et utilise
des arguments de petit gain.

Mots clés : Commande événementielle, stabilisation, observabilité, théorie de
Lyapunov, méthode de backstepping, systèmes à retard, équation des ondes, équa-
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tion de Schrödinger, équation de diffusion de réaction.



Abstract

Over the past few decades, event-triggered control strategies have garnered signific-
ant attention due to their potential to deal with diverse domains such as networked
control systems, industrial processes, robotics, biological systems, data transmis-
sion, and signal processing etc. In event-based control paradigm, the control is not
executed unless it is required, leading to optimized resource utilization, and energy
conservation. All of these aspects are crucial when minimizing communication and
computation resources. This has led to a substantial body of literature on event-
based control in particular for systems described by ordinary differential equations.
In this thesis, our objective is to contribute to the event-based control for the field
of partial differential equations (PDEs), that elegantly model many physical, biolo-
gical or social dynamics and for which there exist few designs of event-based control
strategies. As such, we will focus on event-based control for three specific PDEs:
wave equation, Schrödinger equation, and reaction-diffusion equations.

First, we prove how to maintain the exponential stability of the wave equation
under a distributed and time varying damping source term when it is subjected
to an event-triggering mechanism, inducing a constant damping on each sampling
interval. After checking existence and sufficient regularity of the solutions of the
closed loop-system where the event-triggering law imposes the updates, we establish
a sufficient matrix inequality type condition for ensuring the global exponential
stability of the state. The proof relies on an adequate Lyapunov functional, and
besides, an important point is to prove the absence of Zeno behavior by preventing
accumulation points in the sequence of updates. These results extend to an excited
wave equation as well.

Secondly, we introduce the design of a state-dependent (static) event-triggering
mechanism for the linear Schrödinger equation and consider both localized and con-
stant damping source terms. We prove the avoidance of Zeno behavior and the
global exponential stability is established through energy estimates that leverage
some well-known observability inequality. Furthermore, we use a similar approach
to provide a dynamic event-triggering law in order to enrich the static one.

Finally, we propose an event-triggered boundary control strategy for stabilizing
a 1-D reaction-diffusion equation with input delay. We treat the delay as a trans-
port equation, transforming the problem into a cascade of PDE-PDE controlled
systems and then we perform emulation on the backstepping control. We demon-
strate that under the proposed event-triggered boundary control, there exists a min-
imum dwell-time between two triggering times that guarantees the well-posedness
and exponential stability of the closed-loop system. Our stability analysis relies on
Input-to-State stability theory for PDEs and employs small-gain arguments.

Keywords: Event-triggered control, Stabilization, Observability, Lyapunov the-
ory, Backstepping method, time-delay systems, wave equation, schrödinger equation,
reaction diffusion equation.
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Notation and acronyms

Usual sets
• N: set of natural integers, N⋆ := N \ {0}: set of positive integers,

• R: set of real numbers, R+ := {x ∈ R : x ≥ 0}: set of nonnegative real num-
bers,

• C: set of complex numbers, i: complex number s.t. i2 = −1, Re(z): real part
of z ∈ C, Im(z): imaginary part of z ∈ C,

Linear algebra
• Rn×m: space of matrices with n rows and m columns with coefficients in R,

• mi,j: for M ∈ Rn×m, refers to the coefficient on the ith row and jth column,

• M⊤: transposition of a matrix M,

• Sn: space of real symmetric matrices with n rows (M⊤ = M),

• I ∈ Rn×n: is the identity matrix,

• Sn
+: cone of symmetric positive semi-definite matrices, M ∈ Sn

+ ⇔ M ⪰ 0,

• Sn
++: open cone of symmetric positive definite matrices, M ∈ Sn

++ ⇔ M ≻ 0,

• M ⪯ 0 ⇔ −M ⪰ 0, M ≺ 0 ⇔ −M ≻ 0 and M ⪯ N ⇔ N − M ⪰ 0.

• The symbol ⋆ stands for symmetric blocks in symetric partitioned matrix.

Differential analysis
Let Ω ⊂ Rn be an open or compact set, N ∈ N⋆.

• ẋ := dx
dt

: derivative of the vector function t 7→ x(t),

• ∂x: partial differentiation operator with respect to the variable x,

• ∂k
xi1 ,...,xik

:= ∂xi1
· · · ∂xik

: kth partial differentiation operator w.r.t. xi1 , . . . , xik
,

• ∂iu = uxi
= ∂u

∂xi

is the partial derivative of u with respect to the variable xi

• ∇u = (∂x1u, . . . ∂xN
u) and ∆u =

n∑
i=1

∂2u

∂x2
i

.

• Given a compact set Ω, Ck(Ω) denotes the space of functions k−times con-
tinuously differentiable on Ω (where k is an integer such that k ≥ 0). Note
moreover, that

C∞(Ω) = ∩k≥0C
k(Ω).

xv
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• Given an open set Ω, L2(Ω) =
{
u : Ω → R;

∫
Ω |u(x)|2dx < +∞

}
endowed

with the norm:
∥u∥2 = ⟨u, u⟩ =

∫
Ω

|u(x)|2dx

• L∞(Ω) denotes the space of essentially bounded function

• H1(Ω) =
{
u ∈ L2(Ω); ∇u ∈ L2(Ω)n

}
endowed with the norm

∥u∥2
H1(Ω) = ∥u∥2 + ∥∇u∥2 if Ω ⊂ Rn

• H1
0 (Ω) is the closure in H1(Ω) of D(Ω) = C∞

c (Ω), the Fréchet space of C∞

function Ω → R( or C) compactly supported in Ω. It is also defined as the set
of u ∈ H1(Ω) such that u = 0 in the boundary ∂Ω of Ω

• H2(Ω) =
{
z ∈ L2(Ω),∇z ∈ L2(Ω)n, ∂xj

∂xi
z ∈ L2(Ω) ∀i, j ∈ {1, 2, 3, . . . , n}

}
,

which is the set of functions z such that
∫

Ω (|z|2 + |∇z|2 + |∆z|2) is finite.

• The dual space of a Sobolev space H is denoted H ′.

• For integrable functions f : (x, t) 7→ f(x, t) one will often write
∫

Ω f(t) instead
of
∫

Ω f(x, t)dx in the sake of simplicity.

• By C0(A; Ω), we denote the class of continuous functions on A, which take
values in Ω ⊆ R.

• By Ck(A; Ω), where k ≥ 1 is an integer, we denote the class of functions on
A, which take values in Ω and have continuous derivatives of order k. L2(0, 1)
denotes the equivalence class of Lebesgue measurable functions f : [0, 1] → R

such that ∥f∥ =
(∫ 1

0 |f(x)|2dx
)1/2

< ∞.

• For an interval J ⊆ R+, the space C0(J ;L2(0, 1)) is the space of continuous
mappings J ∋ t 7→ u(t, ·) ∈ L2(0, 1). H2(0, 1) denotes the Sobolev space of
functions f ∈ L2(0, 1) with square integrable (weak) first and second-order
derivatives f ′(·), f ′′(·) ∈ L2(0, 1).

• A function f : J → R is called right continuous on an interval J ⊆ R+, if for
every s ∈ J and ε > 0 there exists δ(ε, s) > 0 such that for all τ ∈ J with
s ≤ τ < s+ δ(ε, s) it holds that |f(τ) − f(s)| < ε.

• A right continuous function f : J → R is piecewise C1 on J (and we denote it
as C1

rpw(J,R)) if for every compact K ⊆ J there exists a finite set B ⊂ J ∩K

such that f is C1 on (J ∩ K)\B and all meaningful limits limh→0+(ḟ(s +
h)), limh→0+(ḟ(s−h)), limh→0+(f(s+h)), limh→0+(f(s−h)) exist for all s ∈ J
and are finite.

• The sup-norm is defined by ∥f∥∞ = maxx∈J (|f(x)|) for an interval J ⊆ R+.

• Im(·), Jm(·) with m ∈ Z, denote the modified Bessel and nonmodified Bessel
functions of the first kind.



Notation and accronyms xvii

Abbreviations
ODE Ordinary differential equation.

PDEs Partial differential equations.

ETM Event-Triggering Mechanism.

ETC Event-Triggered Control.

s.t such that.

i.e that is.

resp. respectively.





1
Introduction

“Wise men speak because they have something to say, fools because they have to
say something ”- Plato 370 BC

This thesis explores event-based control strategies, which have gained attention
for their potential applications in various domains. The research focuses on extend-
ing event-based control to partial differential equations (PDEs), specifically address-
ing the wave equation, Schrödinger equation, and reaction-diffusion equations, where
limited designs of event-based control strategies exist, aiming at improving system
performance and resource utilization. In this introductive chapter, we will discuss
the development of an efficient event-triggering mechanism, illustrating its general
form with reference examples from both PDE and ODE context, and highlighting
our contributions to this field.

1.1 On event-based control

1.1.1 What is event-triggered control?
In many modern control applications, controllers are implemented using digital plat-
forms. In this digital setup, the control task involves periodically measuring the
plant’s outputs, calculating new actuator signals, and applying them as represented
in Figure 1.1. This periodic execution allows for the analysis and design of the closed-
loop system using established theories for sampled-data systems. For example, in
networked control systems sensors and/or actuators usually send their data at spe-
cific time intervals determined by a clock, a concept known as time-triggered (or
periodic) control [46, 47].

Figure 1.1: Time-triggered control

1
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Paraphrasing Plato, time-triggered control speaks because it has to say some-
thing, not because it has something to say leading to inefficient usage of resources.
Specifically, performing the control task when the system is operating optimally
and no disturbances are present can be seen as wasteful in terms of computational
resources. Moreover, if the measured outputs and actuator signals need to be trans-
mitted over a shared (potentially wireless) network, this approach can lead to un-
necessary network utilization or increased power consumption for wireless radios.
Event-based control offers a promising alternative to this conventional periodic ap-
proach [88, 47, 115]. Indeed, event-based control is a computer control strategy that
only updates the control value when the system needs attention while preserving
stability and performance. It is a cutting-edge approach to managing systems, that
operates on an asynchronous and event-triggered basis.

Figure 1.2: Control system subject to event-triggering mechanism (ETM).

Instead of continuously measuring and updating control actions, in event-based
control systems, the sensor readings are only taken when a relevant event is detec-
ted or when there is a specific change in the system (Figure 1.2). These events can
be predefined thresholds, sensor measurements reaching a certain value, or other
triggers depending on the system’s requirements. This paradigm is reshaping en-
gineering, robotics [84, 25], and various other fields, providing substantial benefits
in terms of the efficient usage of computational and communication resources such
as power usage, bandwidth, etc (see, e.g., [111, 46, 76]). Consider for instance a
robotic arm in a manufacturing setting. With event-based control, the arm does not
constantly recalibrate its position; it waits until a specific event, like a change in the
object’s position, is detected [84, 25]. This allows the robot to allocate its resources
more effectively, reducing wear and tear, and speeding up tasks.

While event-based control offers many advantages, its implementation can be
complex and requires careful consideration of event detection, system modeling and
controller design. A fundamental issue when dealing with event-triggered controllers
is to avoid any situation where the mechanism could induce infinitely many updates
of the control in a bounded time interval, corresponding to the occurence of a Zeno
phenomenon [42, Chapter 2],[41].
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1.1.2 Zeno phenomenon

Figure 1.3: Zeno Paradox (©Buzzco Associates, inc; TED Ed, YouTube)

The Zeno’s paradox1 is a philosophical paradox that raises questions about motion
and continuity. One of the most famous versions, known as the Dichotomy Paradox,
involves a runner (let us name him Lyapunov) trying to reach a destination as
illustrated in Figure 1.3. The paradox suggests that before Lyapunov can reach the
destination, he must first reach the halfway point (1/2). However, before reaching
the halfway point, he must cover half of that distance (1/4), and so on, leading
to an infinite number of smaller distances that need to be covered before reaching
the destination. The paradox highlights the idea that if we keep dividing distances
into smaller and smaller segments, it becomes unclear how motion and change are
possible in a finite amount of time.

Figure 1.4: Strong Non-Zenoness

In the event-triggered control context, this paradox corresponds to the occurrence of
infinitely many updates (or transmission) of the control in a bounded time interval
[0, T ∗]. As an illustration, for some update instant tk in the finite interval [0, T ∗]
one has lim

k→+∞
tk = T < T ∗. This phenomenon is problematic since it clearly induces

inefficient usage of computational and communication resources. Therefore, in the
design of event-triggering mechanism, one must avoid this behavior. To do so, there
exists many solutions among which one has:

• Dwell-time approach: the event-triggering law includes a triggering con-
dition under which it is possible to obtain a dwell-time (also called inter-
execution time): there exists τ > 0 such that for all k ∈ N, tk+1 − tk ≥ τ
as illustrated in Figure 1.4. Remark that in the periodic framework, the trig-
gering instants are given by tk = kh where h > 0 is the period and then the
dwell-time is τ = h. But one should notice that having a dwell-time only brings
a sufficient condition. That is nevertheless pratically desirable, preventing the
updates to accumulate at infinity.

1https://socratesjourney.org/zenos-paradoxes

https://socratesjourney.org/zenos-paradoxes
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• Accumulation point avoidance: This approach provides an event-triggering
rule under which no accumulation point of the sequence (tk)k∈N is possible. In
other words, this approach ensures that if there is an infinite number of up-
dates or transmissions, the upper time bound T ∗ is infinite, preventing the
system from becoming trapped in a state of perpetual updates and ensuring
efficient resource utilization.

A natural question that may arise around this subject when thinking about
event-triggered control is how can we design the event-triggering mechanism while
preserving stability properties of the control system and avoiding the Zeno phe-
nomenon?

1.1.3 General form of event-triggering mechanism
One of the first alternative to periodic sampling is variable sampling defined as
follows:

tk+1 − tk = Tk ≤ h, ∀k = 0, 1, 2, · · · , (1.1)
where Tk and h are positives numbers. This sampling rule is for example considered
in [37] on sampled-data state-feedback stabilization of linear system with a piecewise-
continuous delay control input and in [100] for energy control of a pendulum. Note
that one recovers the periodic law if the variable sampling Tk is constant and equal
to some positive constant h.

Let us state here that events could be initiated once a function G can be designed
in such a way that [111, 112, 113, 88, 29] t0 = 0

tk+1 = inf
{
t ≥ tk, G(z(t), ek(t)) ≥ 0

} (1.2)

where z is the state of control system and ek(t) denotes the error when sampling.
This sampling error could be the deviation between the last sampled state (or the
parameter of the control system which is sampled like the velocity as we will see in
Chapter 2 or the reaction coefficient [56]) and the current one.

Hence, different kinds of function G are now discussed.

1. Absolute threshold triggering mechanism
The so-called absolute threshold criterion consists of updating the control only
when the norm of the deviation error ek reaches a threshold η > 0, which can
be carefully chosen by the user. Thus the function G is explicitly given by

G(z(t), ek(t)) = ∥ek(t)∥2 − η. (1.3)

This triggering law is introduced in [1] for significant decreases in central
processing unit (CPU) utilization with only minimal control performance de-
terioration; or in [46] in order to reduce the total costs of a mailing system
without losing the tight synchronization between the conveyor belt and the
sheet-feeders. It is also applied for the event-driven control for the diffusion
process using mobile sensor and actuator in [52].
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2. Relative threshold or static triggering mechanism
Another important principle in event-based control involves in adjusting the
threshold applied to the norm of ek(t) based on the energy of state z. The
concept behind this is that when ∥z(t)∥ (that is the energy of the system
at time t) is significant, a larger sampling-induced error can be accepted
without compromising the stability of the closed-loop system. The static
event-triggering rule can be characterized by

G(z(t), ek(t)) = ∥ek(t)∥2 − δ∥z(t)∥2 (1.4)

where δ > 0 is a design parameter that may has to be chosen appropriately.
This concept is known as a relative threshold and was first considered for
nonlinear finite dimensional control system in [111] where the norm of the
deviation ek(t) and the norm of the state z(t) are replaced by K∞

2 functions
under the hypothesis that the controller to be implemented ensures that the
closed-loop system achieves Input-to-State Stability (ISS) with respect to the
measurement errors. This event-triggering mechanism is also considered in [38]
for for semilinear time-fractional diffusion systems with distributed feedback;
in [66] (see also Chapter 2) for the wave equation and in [77] for nonlinear
coupled reaction–diffusion system with finite-time synchronization control.

3. Combination of absolute and relative threshold
In practice, it is common to combine the two previous mechanisms, as this
could reduces the number of updates and facilitates the proof of strong non-
zenoness. Hence, by defining the function G as follows:

G(z(t), ek(t)) = ∥ek(t)∥2 − δ∥z(t)∥2 − η (1.5)

or with the corresponding norm in the state space or K∞ fonctions, one obtains
the triggering mechanism which consists in combining the absolute and relative
threshold triggering mechanisms. We refer to [46, Section V] or to [24] where
the authors presented event-triggered control using dynamical output-based
controllers for linear time-invariant system and established the proof of the
existence of minimum inter-event time preventing the Zeno behavior. We also
refer to [28, 5] for 1-dimensional linear hyperbolic systems of conservation laws
and multidimensional wave equation with in domain damping. We get here the
qualities of both absolute and relative threshold. The Zeno behavior should
be easily avoided and a Lyapunov approach should be possible to get at least
pratical stability.

4. Dynamic triggering mechanism
The dynamic triggering mechanism is obtained by adding an internal dy-
namical variable as introduced in [41] in order to enrich the previous event-
triggering laws. Hence, the dynamic triggering mechanism could be generated

2A continuous function α : [0, a) → R+
0 is said to be of class K if it is strictly increasing and

α(0) = 0. If a = ∞ and α(r) → ∞ as r → ∞, it is said to be of class K∞.
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with a function G defined by:

G(z(t), ek(t)) = ∥ek(t)∥2 − δ∥z(t)∥2 + 1
η
m(t) (1.6)

where
ṁ(t) = −ηm(t) + f(z(t), ek(t)).

f is an appropriate function of the state z and the deviation ek and other
parameters of the control system, η and γ are design parameters. Remark that
we can obtain the static event-triggering mechanism by considering the limite
case of the dynamic one. Dynamic event-triggering mechanism is proposed
in [23] for state-feedback systems with simultaneously guarantee of a finite
Lp-gain from disturbance to output and a strictly positive lower bound on the
inter-event times (implying Zeno-freeness). It is also considered in [128, 50] to
solve the consensus problem for multi-agent systems and in the survey [39] on
a unified event-triggered control and estimation framework. The time-delay
approach has been developed for networked systems with state multiplicative
noise in [130] and in [29, 30] respectively for linear systems with conservation
laws for 2 × 2 hyperbolic system using the backstepping approach. In [65], we
design a dynamic event-triggering law for a linear Schrodinger equation with
in-domain damping.

5. Event-trigger with dead-time zone or time-regularized event-triggered
control
Consider one of the previous event-triggering mechanisms defined by (1.2)
and one of function G in (1.3),(1.4),(1.5),(1.6), but under the assumption that
following the transmission of the measurement, the sensor remains inactive for
a waiting period of Td > 0 seconds. The time-regularized event-triggering rule
is therefore characterized by: t0 = 0

tk+1 = inf
{
t ≥ tk + Td, G(z(t), ek(t)) ≥ 0

}
.

(1.7)

The purpose of introducing a dead-time zone is evidently to prevent the oc-
curence of the Zeno phenomenon, Td being an obvious dwell time. Dead-time
zone event-triggering law was studied in, e.g. [112] for the design of a decentral-
ized dynamic controller for the Linear Time-Invariant (LTI) system; in [113]
for event-triggered output feedback controllers for LTI systems over sensor
controller-actuator networks and in [100] for sampled-data energy control of
a pendulum. We additionally mention [102] for insights into the semilinear
diffusion PDE and [101] where they obtain a dead-time zone event-triggering
law by switching a periodic sampling and a static event-trigger mechanisms.
Note that one danger when dealing with PDEs and using this event-triggering
law concerns the well-posedness of the system. The imposed dwell-time may
exeed a possible limit time T of existence of solution.
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1.1.4 Emulation & co-design approaches
Let us recall that two approaches can be considered in the event-triggered control
framework: emulation and co-design approaches. The strategy where the controller
is a priori given and the event-triggering mechanism has to be designed corresponds
to the emulation approach: see for example [88, 33]. The co-design approach refers
to the situation where the design of both the controller and the event-triggering
mechanism have to be performed, simultaneously: see for instance [105, 47] and
references therein.

Figure 1.5: Emulation & Co-design approaches

1.1.5 Further literature on event-triggered control
Event-based control (ETC) is well studied for classical finite dimensional systems
but has been investigated only recently for infinite dimensional system e.g. described
by partial differential equations. For instance, in the context of finite dimensional
system, we refer to the seminal works [1, 3] or the most recent ones [111, 46, 41] (for
linear systems), [88, 49, 119] (for nonlinear systems), [114] (with dynamic quantiza-
tion), [85] (with high gain approach) and [99] (for the stabilization of event-triggered
control systems affected by measurement noise). ETC for PDEs has gained a lot
of interest during the last few years, and several contributions have since then been
proposed for wide classes of PDEs. In [127, 31] and [33, 17, 5] event-based control
strategies were considered for parabolic and hyperbolic PDE.

For hyperbolic PDEs, [28] proposes an output feedback event-triggered boundary
controller for 1-D linear hyperbolic systems of conservation laws through Lyapunov
techniques. Using the backstepping approach, [30] and [26, 17] introduce dynamic
triggering conditions to the event-triggered boundary controllers for the stabiliza-
tion of coupled 2 × 2 linear hyperbolic systems by full-state feedback and output
feedback, respectively. The methodology is further employed and advanced in [123]
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and [125], the latter proposing an event-triggered adaptive control for coupled hy-
perbolic PDEs. The results on event-triggered control using backstepping-based
methods have been applied to load-moving cable systems [122] and traffic flow con-
trol on connected roads [27].

For parabolic PDEs, [102] proposes a decentralized event-triggered control to
reduce the number of transmitted measurements, while [63] builds on modal de-
composition and comes up with sampled-data and observer-based event triggered
boundary control for 1-D reaction-diffusion systems in the presence of time-varying
input delays. Such a contribution includes a novel switching-based dynamic trigger-
ing condition depending on the finite modes of the estimated state and a suitable
time regularization, allowing the avoidance of the Zeno phenomenon. On the other
hand, using ISS properties for PDEs and small gain arguments, [32] proposes a
backstepping-based full-state feedback ETC strategy for a 1-D reaction-diffusion
system with constant parameters and Dirichlet boundary actuation. In addition,
[94] proposes an observer-based event-triggered backstepping boundary control in
the case of Robin boundary actuation. The ETC strategy includes a dynamic trig-
gering condition under which it is possible to obtain a dwell-time, thus avoiding the
Zeno phenomenon. Moreover, [124] extends the results of [60] and [94] and pro-
poses a novel adaptive event-triggered boundary control for a parabolic PDE-ODE
system with uncertain parameters, whereas [92] goes further with applications to
the Stefan problem. Event-triggered control strategies for other classes of PDEs
(including abstract infinite-dimensional systems [121, 120]) are reported in [55] for
nonlinear Korteweg–de Vries (KdV) under averaged measurements.

In this thesis we are concerned with the emulation approach in an infinite dimen-
sional context, building new bricks to complete the above overview. More precisely,
leveraging on a continuous-in-time control, that ensures the exponential stability of
some PDEs (wave equation, Schrödinger equation and reaction diffusion equation)
by means of a classical viscous damping term or backstepping controller, we propose
a systematic approach for the design of static and dynamic event-triggering rules
allowing to guarantee the well-posedness and the exponential stability of the new
event-triggered closed-loop control system. Furthermore, the avoidance of Zeno phe-
nomenon is addressed thanks to the accumulation point avoidance and the existence
of dwell-time approaches.

1.2 Contributions and structure of this thesis
The remainder of this manuscript falls into three other chapters, devoted to three
different PDEs. The first two chapters concern the multidimensional wave and
Schrödinger equations with event-triggered in-domain dampings. The last one is
about a 1-dimensional reaction diffusion PDE with input delay under event-triggered
backstepping control.

1.2.1 Wave equation
Using an adequate Lyapunov functional, related to the energy of the system, we
propose a sufficient matrix inequality condition to carry out the global exponen-
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tial stability of the wave equation under a static event-triggering mechanism that
updates a damping source term. The damping is distributed in the whole space
but sampled in time. The results are presented in Chapter 2 by adapting our pa-
per [66] and can be viewed as complementary to those developed in [116] and [5].
Indeed, [116] deals with a semi-linear wave equation in one dimensional space di-
mension, while we consider here a linear multi-dimensional wave equation. The
event-triggering rule we present here is simpler and different from the one in [5],
getting rid of any spatial constraints on the stability result and bringing a com-
pletely new and interesting proof around the avoidance of the Zeno phenomenon
based on the notion of accumulation point. Furthermore, we extend the result to
the anti-damped wave equation.

1.2.2 Schrödinger equation
We consider for the first time the design of an event-triggering mechanism for the
multi-dimensional Schrödinger equation subject to a local in domain damping con-
trol. We design first a static and then a dynamic triggering law for the damping.
The following results are tackled: the existence of solution to the closed-loop event-
triggered control system; the avoidance of the Zeno behavior due to the absence of
any accumulation point of the sequence of time instants and the exponential stabil-
ity based on energy estimate exploiting a well-known observability inequality. These
results are presented in our papers [67] and [65] and are detailed in Chapter 3.

1.2.3 Reaction-diffusion equation with input delay
We consider the problem of event-triggered stabilization of a 1-D reaction-diffusion
PDE system with input delay. The approach relies on reformulating the delay
problem as an actuated transport PDE, which cascades into the reaction-diffusion
PDE, and on the emulation of backstepping control originally introduced in [68]
extending the results of [32] to the case of delayed input. We then propose a static
triggering condition that establishes the time instants at which the control value
needs to be updated. It is shown that under the proposed event-triggered boundary
control, there exists a minimal dwell-time (independent of the initial conditions)
between two triggering times which allows to guarantee the avoidance of the Zeno
Phenomenon and the well-posedness of the closed-loop system. The choice of the
space norms (L2-norm for the reaction-diffusion PDE and supremum-norm for the
hyperbolic PDE) is crucial in the design of the triggering policy and for the stability
analysis, which is based on Input-to-State Stability and small-gain arguments. These
results are presented in Chapter 4.
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2
Event-based control of the wave equation

The general problem in this chapter is the study of a multi-dimensional wave equa-
tion under in-domain event-triggered control. We will first recall and detail model-
ing, well-posedness and exponential stability results of a continuous-in-space damped
wave equation before setting and studying the event-triggered control context. This
chapter is based on the journal article [66].

2.1 Model description
Let Ω be an open bounded domain in Rn, with smooth boundary ∂Ω. We consider
the following multi-dimensional controlled wave equation


∂2

t z(x, t) − ∆z(x, t) = f(x, t) ∀ (x, t) ∈ Ω × R+,
z(x, t) = 0 ∀ (x, t) ∈ ∂Ω × R+,
z(x, 0) = z0(x) ∀ x ∈ Ω,
∂tz(x, 0) = z1(x) ∀ x ∈ Ω.

(2.1)

where (z, ∂tz) denotes the state, f is the source term control inputs and (z0, z1)
is the initial data. The wave PDE system arises in fluid dynamics, acoustics and
electromagnetic and models the evolution and the propagation of wave’s amplitude
(water waves, sound waves, seismic waves or light waves) [64].

In this chapter we consider the feedback control input f(x, t) = −α∂tz(x, t), with
α > 0 the damping coefficient. Let us present rapidly here three different settings
to illustrate possible applications.

• In a one-dimensional media, it is called the vibrating cord or string equation
[11, Section 10.3], [74] and can model the dynamics of an elastic slope vibrating
around its rest position and submitted to external friction forces [78, Section 4.3],
tunable through the coefficient α.

Figure 2.1: Vibration of an elastic slope subject to external force

11
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• In two space dimensions, it can be a model to study the vibration of a stretched
membrane like the skin of a drum. The control task consists in the reduction of
the vibrations [51], whereas the control input is assumed to be distributed over
the whole membrane’s surface. Actually, the motivation for incorporating internal
material damping in the wave equation arises first from the fact that inherent (and
small) material damping is always present in real materials. The task of the control
is then to do better than this natural distributed damping, for instance thinking
about using smart materials to compose the membrane: see, for example, [96], [97].

• System (2.1) can also model the process of oil drilling (depicted on Figure 2.2).

In fact, by considering z =
(
ξ
ϕ

)
with the axial ξ and torsional (angular) ϕ vibrations

in the drill string. That is described in [40] by two one-dimensional wave equations:

∂2
t ξ(x, t) − c2

ξ∂
2
xξ(x, t) = −αξ∂tξ(x, t),

∂2
t ϕ(x, t) − c2

ϕ∂
2
xϕ(x, t) = −αϕ∂tϕ(x, t),

where cξ =
√

E
ρ

is the axial velocity, ρ is the pipe mass density, E its Young’s modulus,
cϕ =

√
G
ρ

is the propagation speed of the angle, G is the shear modulus and αξ, αϕ

are the internal damping and the axial distributed damping respectively .

Figure 2.2: Well schematic of oil drilling originally taken from [21].

These applications examples are solely proposed to illustrate the practical utility of
the mathematical models that we are interested in. In the particular situation of
system (2.1), we have here the case where the external force f = −α∂tz is chosen as
the control, making the feedback law only based on the speed ∂tz of the deformation,
which is a part of the complete state’s system (z, ∂tz) and could be viewed as the
linear case of the ones studied (for n = 1) in [89], [14].
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2.2 Existing results
When dealing with PDEs, it is crucial to guarantee their well-posedness since if a
PDE is not well-posed [53, 54], it may not have a unique solution, or its solution
may be very sensitive to small perturbations of source initial or boundary data. In
such cases, the PDE may not have any physical or meaningful interpretation, or it
may be impossible to use numerical methods to compute approximate solutions.

Let us start by the proof of existence and uniqueness of weak and strong solution
to the problem. We refer to the book by Evans [34, Section 7.2] for the definition of
weak solution to hyperbolic system and to the paper [72] (Theorems 2.1 and 2.2) for
the definition of strong and weak solution to the wave equation. In a nutshell, the
notion of strong solution corresponds to the continuity of the solution with respect
to the space variable x and is related to stronger hypotheses on the initial data. Let
us recall the following classical definition.

Definition 2.1: Weak solution to the wave equation

A weak solution by transposition of the system (2.1) is a function

z ∈ C0([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)) (2.2)

such that for all φ ∈ C2(Ω × [0, T ]) verifying

φ(x, T ) = ∂tφ(x, T ) = 0 ∀x ∈ Ω and (2.3)

φ(x, t) = 0 ∀(x, t) ∈ ∂Ω × [0, T ]. (2.4)
one has:∫ T

0

∫
Ω
∇φ(x, t) · ∇z(x, t)dxdt−

∫
Ω
φ(x, 0)z1(x)dx

+
∫

Ω
∂tφ(x, 0)z0(x)dx =

∫ T

0

∫
Ω
∂tφ(x, t)z(x, t)dxdt. (2.5)

To obtain (2.5) we multiply the first line of (2.1) by φ and integrate on Ω ×
[0, T ], performing integrations by parts and using the Green formula (Lemma A.3
in Appendix) and (2.3).

Let us denote the full state of the system (2.1) by

Z = (z, ∂tz)⊤ ∈ R2.

Then

Ż =
(
∂tz
∂2

t z

)
=
(

∂tz
∆z − α∂tz

)
.

Therefore, system (2.1) can be rewritten as
{
Ż = AZ
Z(0) = (z0, z1)⊤ (2.6)
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where the operator A is defined by A =
(

0 I
∆ −α

)
with domain

D(A) = (H2(Ω) ∩H1
0 (Ω)) ×H1

0 (Ω).

Let us denote by H the Hilbert space

H = H1
0 (Ω) × L2(Ω)

equipped with the usual inner product〈(
u
v

)
,

(
ũ
ṽ

)〉
=
∫

Ω
∇u(x)∇ũ(x)dx+

∫
Ω
v(x)ṽ(x)dx

and the norm ∥∥∥∥∥∥
(
u
v

)∥∥∥∥∥∥ =
∫

Ω
|∇u(x)|2dx+

∫
Ω

|v(x)|2dx.

Definition 2.2: Strong solution to the wave equation

We say that z is a strong solution of the system (2.1) if

(z, ∂tz)⊤ ∈ C0([0, T ]; D(A)) (2.7)
and the first equation of 2.1 holds in C([0, T ];L2(Ω)).

The problem of existence and the uniqueness of the wave equation is well-
documented in the litterature. One has the following theorem.

Theorem 2.3: Well-posedness of the damped wave equation [13]

• For T > 0 and for any initial conditions (z0, z1) ∈ H, there exists a
unique weak solution to (2.1) satisfying

z ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)).

• Moreover, for any initial conditions (z0, z1) ∈ D(A), there exists a unique
strong solution to (2.11) satisfying

z ∈ C([0, T );H2(Ω) ∩H1
0 (Ω)) ∩ C1([0, T );L2(Ω)). (2.8)

The proof of Theorem 2.3 is done in [13, Theorem 2.3 and Theorem 3.4], and in
[74, 75] using the semigroup theory.

The control and the stability analysis of the wave equation (2.1) have been widely
studied in the literature. For instance the multiplier method used by [13] and [74], a
micro-local analysis approach by [73] and a backstepping method by [108] are used
to characterize the stability and prove some controllability and stabilization results
of this equation. For intance in [13], it is proved that system (2.1) is exponentially
stable as stated in the following theorem.
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Theorem 2.4: Exponential stability [13]

For all initial state (z0, z1) ∈ H = H1
0 (Ω) × L2(Ω), the solution to the system

(2.1) has its energy decaying exponentially: there exist K, β > 0 such that

E(t) ≤ KE(0)e−βt, (2.9)
where the energy E is defined as the sum of the kinetic and potential energies
by

E(t) = 1
2
(
∥∂tz(t)∥2 + ∥∇z(t)∥2

)
. (2.10)

The proof is based on multiplier technique (see [74]) and consists of multiplying
the equation appropriately to bring out specific expressions such as energy, then
integrating by part in time and space to make the desired estimates.

2.3 ETC for the damped wave equation
In this section, using an adequate Lyapunov functional, related to the energy of the
system, an exponential stability condition for the closed-loop system under event-
triggered control is formulated as a linear matrix inequality to satisfy. The feasibility
of such an inequality is proven to be always guaranteed.

2.3.1 Problem formulation
We are interested by an event-triggering implementation of the control term f(x, t) =
−α∂tz(x, t), so that the control signal applied to the plant is updated only at certain
instants {tk}k∈N, defined by a mechanism. We assume that the control action is held
constant between two successive events. Moreover, differently from classical periodic
sampling techniques, the inter-sampling time tk+1−tk is not assumed to be constant.
Hence the system under study can be illustrated by the block diagram (Figure 2.3)
and described by the following equations :

∂2
t z(x, t) − ∆z(x, t) = −α∂tz(x, tk), for (x, t) ∈ Ω × [tk, tk+1), k ∈ N

z(x, t) = 0, for (x, t) ∈ ∂Ω × R+,
z(x, 0) = z0, ∂tz(x, 0) = z1, for x ∈ Ω.

(2.11)



16 CHAPTER 2. EVENT-BASED CONTROL OF THE WAVE EQUATION

This closed-loop system can then be described in Figure 2.3:

Wave equation in (2.1)

K

ETM

·
·

tk

·

u(t) = K∂tz (x, tk)

Figure 2.3: Block diagram Event-Triggering Mechanism (ETM) for wave equation.

Then, the problem we want to adress consists in design the red box in Figure
2.3, that is to design the event-triggering mechanism while preserving the closed-loop
stability.

Note that tk, k ∈ N are the triggering instants that satisfy

0 = t0 < t1 < · · · < tk < tk+1 < · · · .

Hence, the problem we intend to solve can be summarized as:
Problem 1: Control objective

Design a triggering mechanism in order to guarantee:

1. the well-posedness of the closed-loop system (2.11),

2. the avoidance of Zeno behavior,

3. the exponential stability of the system (2.11).

To address Problem 1, as a stepping stone, we exploit and expand the results
about the continuous-in-time version of system (2.11), correponding to system (2.1).

2.3.2 Definition of the event-triggering mechanism
Let us introduce the error deviation from the speed at the last triggering instant,
for all x ∈ Ω and t ∈ [tk, tk+1):

ek(x, t) = ∂tz(x, t) − ∂tz(x, tk). (2.12)

In this chapter, we will consider a static event-triggering mechanism. That cor-
responds to case presented in the introductive Chapter 1 where we choose the func-
tion G defined in (1.4) as:

G(z(t), ek(t)) = ∥ek(t)∥2 − 2γE(t) = ∥ek(t)∥2 − γ∥∂tz(t)∥2 − γ∥∇z(t)∥2.
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The idea consists in measuring the deviation of the wave’s speed between the last
sampled state and the current one and authorizing it to be in a 2γ proportion of the
current energy. In other words, between two instants tk and tk+1, it holds

∥ek(t)∥2 ≤ 2γE(t), (2.13)

and as soon as this becomes false, an update is generated. More precisely, the
event-triggering rule can be characterized as: t0 = 0

tk+1 = inf
{
t ≥ tk, ∥ek(t)∥2 > 2γE(t)

}
.

(2.14)

where γ > 0 is a design parameter that has to be chosen appropriately.

Remark 2.1 The monitoring of the deviation by the energy will be some thing
good regarding our Lyapunov study. But it is not clear that the Zeno behavior can
be avoided. For instance, in order to facilitate this Zeno phenomenon, the choice
of the combination of the absolute threshold triggering mechanism and the static
event-triggering mechanism (see also (1.5)) is considered for the wave equation with
in-domain damping in [5] where the function G is defined as follows:

G(z(t), ek(t)) = ∥ek(t)∥2 − 2γE(t) − E(0)e−θt

so that the event-triggering algorithm is defined by t0 = 0
tk+1 = inf

{
t ≥ tk, ∥ek(t)∥2 > 2γE(t) + E(0)e−θt

}
.

(2.15)

A comparative study of these two triggering rules will be addressed in the numerical
simulation Section 2.3.6.

Using (2.12), the closed-loop system under consideration can be written as fol-
lows: 

∂2
t z − ∆z = −α∂tz + αek, in Ω × [tk, tk+1),∀k ∈ N

z = 0, on ∂Ω × R+,
z(·, 0) = z0, ∂tz(·, 0) = z1, in Ω.

(2.16)

In the sequel we separate the study of the well-posedness of system (2.16), from the
guarantee of the avoidance of Zeno behavior and the exponential stability of the
closed-loop system.

2.3.3 Well-posedness
Let us begin by defining the maximal time T ∗ under which the system (2.11), or
equivalently (2.16) subjected to the event-triggering law (2.14) has a solution: T ∗ = +∞ if (tk) is a finite sequence,

T ∗ = lim sup
k→+∞

tk if not. (2.17)
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Leveraging on some regularity of the solutions to the wave equation we prove the
following theorem.

Theorem 2.5: Well-posedness of the event-triggered control system

Let Ω be an open bounded domain of class C2. For any initial condition
(z0, z1) ∈ H2(Ω) ∩ H1

0 (Ω) × H1
0 (Ω), there exists a unique strong solution to

(2.11) under the event-triggering mechanism (2.14), satisfying

z ∈ C([0, T ∗);H2(Ω) ∩H1
0 (Ω)) ∩ C1([0, T ∗);H1

0 (Ω)). (2.18)

Proof : First of all, we show by induction the well-posedness on every sampled
interval [tk, tk+1]. From the definition (2.17) of T ∗, this will allow to obtain a unique
solution in the class (2.18).
• Initialization. On the first time interval [0, t1], system (2.11) reads as a basic
wave equation with initial data (z0, z1) ∈ H2(Ω) ∩H1

0 (Ω) ×H1
0 (Ω) and source term

f(x, t) = −αz1(x, t):
∂2

t z − ∆z = −αz1, in Ω × (0, t1),
z = 0, on ∂Ω × (0, t1),
z(·, 0) = z0, ∂tz(·, 0) = z1, in Ω.

Since z1 ∈ H1
0 (Ω), then f ∈ L1([0, t1];H1

0 (Ω)). Thus from Theorem 2.3, it follows
that there exists a unique solution satisfying

z ∈ C([0, t1];H2 ∩H1
0 (Ω)) ∩ C1([0, t1];H1

0 (Ω)).

• Heredity. Let k ≥ 0 be fixed and assume that

z ∈ C([tk, tk+1];H2(Ω) ∩H1
0 (Ω)) ∩ C1([tk, tk+1];H1

0 (Ω)).

Consider now the closed-loop system (2.11) over the next time interval [tk+1, tk+2]:
∂2

t z − ∆z = −αz2k+3, in Ω × (tk+1, tk+2),
z = 0, on ∂Ω × (tk+1, tk+2),
(z(·, tk+1), ∂tz(·, tk+1)) = (z2k+2, z2k+3) in Ω,

where we have denoted by z2k+2 and z2k+3 the position and velocity function values
of the wave at tk+1 given by the previous system over [tk, tk+1]. This is again a wave
equation with source term f(x, t) = −αz2k+3 which belongs to L1([tk+1, tk+2];L2(Ω))
since we assumed z ∈ C1([tk, tk+1];H1

0 (Ω)) and ∂tz(tk+1) = z2k+3. Therefore, ap-
plying again Theorem 2.3 we conclude to the existence and the uniqueness of the
solution z in the same functional spaces on next time interval [tk+1, tk+2].

By induction, this regularity holds for any k ∈ N. Therefore, from the extension
by continuity at the update instants tk, one can conclude that system (2.11), or
equivalently system (2.16), has a unique solution in the class (2.18). ♢
The fact that Theorem 2.5 holds means that we solved item 1 of Problem 1.



2.3. ETC FOR THE DAMPED WAVE EQUATION 19

2.3.4 Avoidance of Zeno behavior
In this section, we address the second item of Problem 1, namely we prove that
we avoid Zeno behavior, where the closed-loop system would generate an infinite
number of updates in a finite time. Before proving that this phenomenon cannot
occur, let us show that the natural energy (2.10) of the closed-loop system has a
useful property stated as follows.

Lemma 2.6: Boundedness of the energy

Let α be the damping coefficient and γ the design parameter for the triggering
law (2.14). For all t ∈ [0, T ∗) the energy E (defined by (2.10)) of the system
(2.16) under the event-triggering mechanism (2.14) verifies:

E(0)e−2α(1+√
γ)t ≤ E(t) ≤ E(0)e2α(1+√

γ)t. (2.19)

Remark 2.2 In this lemma, one should notice that:

1. The inequality E(t) ≥ E(0)e−2α(1+√
γ)t is crucial in the proof of the avoidance

of Zeno behavior as we will see in Theorem 2.8.

2. The inequality E(t) ≤ E(0)e2α(1+√
γ)t is classically used in the energy/Galerkin’s

method to prove the well-posedness of the wave system.

Proof : Let us first calculate the time-derivative of the energy E(t). From now
on, the mute variable x is ghosted in order to ease the reading. From (2.10) one can
write

Ė(t) =
∫

Ω
∂2

t z(t)∂tz(t) +
∫

Ω
∇∂tz(t) · ∇z(t).

Since (2.16) brings ∂2
t z(t) = ∆z(t)−α∂tz(t)+αek(t) in Ω for all t ≥ 0, we get, using

Green’s formula (see Lemma A.3):

Ė(t) =
∫

Ω
∂tz(t)∆z(t) − α

∫
Ω

|∂tz(t)|2 + α
∫

Ω
∂tz(t)ek(t) +

∫
Ω

∇∂tz(t) · ∇z(t)

= −
∫

Ω
∇∂tz(t) · ∇z(t) +

∫
∂Ω

(∂tz∇z · ν) ds− α
∫

Ω
|∂tz(t)|2

+ α
∫

Ω
∂tz(t)ek(t) +

∫
Ω

∇∂tz(t) · ∇z(t).

Since z = 0 on ∂Ω × R+ in (2.16) we get ∂tz(t) on ∂Ω × R+ and we conclude

Ė(t) = −α
∫

Ω
|∂tz(t)|2 + α

∫
Ω
∂tz(t)ek(t) (2.20)

so that one gets
|Ė(t)| ≤ α∥∂tz(t)∥2 + α∥ek(t)∥∥∂tz(t)∥. (2.21)

From the definition (2.17) of T ∗, since t ∈ [0, T ∗), either there exists k such that
t ∈ [tk, tk+1) if the sequence (tk)k≥0 is not finite, or t may be greater than the
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last tk and the definition of (2.14) allows to call tk+1 = T ∗. From (2.13) and
∥∂tz(t)∥2 ≤ 2E(t) we get:

|Ė(t)| ≤ 2αE(t) + α
√

2γE(t)
√

2E(t) or equivalently
|Ė(t)| ≤ 2CE(t) with C = α(1 + √

γ). (2.22)

It follows that −2CE(t) ≤ Ė(t) ≤ 2CE(t).

Gronwall’s Lemma applied on [tk, t] (Lemma A in Appendix) to both inequalities
gives

E(tk)e−2C(t−tk) ≤ E(t) ≤ E(tk)e2C(t−tk). (2.23)
Then taking t = tk+1, it becomes:

E(tk)e−2C(tk+1−tk) ≤ E(tk+1) ≤ E(tk)e2C(tk+1−tk).

Inferring what it gives for E(tk), one can deduce

E(tk−1)e−2C(tk+1−tk−1) ≤ E(tk+1) ≤ E(tk−1)e2C(tk+1−tk−1)

and since t0 = 0, by induction we get:

E(0)e−2Ctk+1 ≤ E(tk+1) ≤ E(0)e2Ctk+1 .

Then inequality (2.23) yields:

E(0)e−2Ctke−2C(t−tk) ≤ E(t) ≤ E(0)e2Ctke2C(t−tk),

showing that (2.19) holds for all t ∈ [0, T ∗). ♢
We will also need the following lemma which bound the term ∥∆z(t)∥.

Lemma 2.7: Intermediate result

For any (z0, z1) ∈ H2(Ω)∩H1
0 (Ω)×H1

0 (Ω), the closed-loop system (2.16) with
(2.14) has a unique solution satisfying z ∈ C([0, T ∗);H2(Ω) ∩ H1

0 (Ω)), then
there exists a constant C∆ > 0 such that ∀t ∈ [0, T ∗)

∥∆z(t)∥ ≤ ∥∆z∥L∞(0,T ∗;L2(Ω)) ≤ C∆, (2.24)

where C∆ depends on ∥z0∥H2(Ω) and ∥z1∥H1
0 (Ω).

Proof : Combining Lemma 2.6 and Theorem 2.1, for all solution to the system{
∂2

t z − ∆z = −α∂tz(tk),
z(0) = z0, ∂tz(0) = z1,

(2.25)

we obtain
∥∇z(t)∥2 + ∥∂tz(t)∥2 ≤ K

(
∥z0∥2 + ∥∂tz1∥2

)
(2.26)

with K = e2α(1+√
γ)T ∗

.
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Let us set w = ∂tz so that w verifies{
∂2

tw − ∆w = 0
w(0) = z1, ∂tw(0) = ∆z0 − αz1.

(2.27)

Therefore, since ∆z0 ∈ L2(Ω), z1 ∈ H1
0 (Ω) we have:

∥∂tv(t)∥2 ≤ K
(
∥z1∥2

H1
0

+ ∥∂t∆z0 − αz1∥2
)

≤ K
(
∥z0∥2

H2 + ∥z1∥2
H1

0

)
This leads to

∥∆z(t)∥2 ≤ K
(
∥∂2

t z(t)∥2 + ∥∂tz(tk)∥2
)

= K
(
∥∂tw(t)∥2 + ∥∂tz(tk)∥2

)
≤ K

(
∥z0∥2

H2∩H1
0

+ ∥z1∥2
H1

0

)
= C∆.

♢

We can now state the following result concerning Zeno behavior. The idea is
to consider the maximal time T ∗ under which we proved that the system (2.11)
subjected to the event-triggering law (2.14) has a solution. From the definition of
T ∗ in (2.17), one can verify that if T ∗ < +∞, then T ∗ is an accumulation point of
the sequence (tk)k≥0 and a Zeno behavior occurs. Thus, avoiding Zeno phenomenon
is a consequence of proving that T ∗ = +∞.

Theorem 2.8: Zeno free

There is no Zeno phenomenon for the system (2.16) under the event-triggering
mechanism (2.14). Equivalently, the maximal time (of existence of solution)
defined by (2.17) is actually T ∗ = +∞.

Proof : By taking inspiration from the reasoning in [111, 41] the proof is based
on the study of the function φ defined on [tk, tk+1) by

φ : t 7→ φ(t) = ∥ek(t)∥2

2γE(t) . (2.28)

The function φ is nonnegative and satisfies φ(tk) = 0 for any k since ek(tk) = 0.
Moreover, it jumps from lim

t→tk+1
φ(t) = 1 to φ(tk+1) = 0 when a triggering event

occurs, according to the law (2.14). Let us estimate the time-derivative of φ:

φ̇(t) =

∫
Ω
ėk(t)ek(t)

γE(t) − Ė(t)∥ek(t)∥2

2γ (E(t))2 . (2.29)

On the one hand, from we have (2.12) ėk(x, t) = ∂2
t z(x, t), using (2.16) and the

Cauchy Schwarz’s inequality, for all t ∈ [tk, tk+1) we have∫
Ω
ėk(t)ek(t) =

∫
Ω

∆z(t)ek(t) − α
∫

Ω
∂tz(t)ek(t) + α∥ek(t)∥2,

≤ ∥ek(t)∥∥∆z(t)∥ + α∥ek(t)∥∥∂tz(t)∥ + α∥ek(t)∥2.
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Then using ∥∂tz(t)∥2 ≤ 2E(t), (2.13) and Lemma 2.7 it follows∫
Ω
ėk(t)ek(t)

γE(t) ≤
C∆

√
2γE(t)

γE(t) +
α
√

2γE(t)
√

2E(t)
γE(t) + 2αφ(t),

leading to ∫
Ω
ėk(t)ek(t)

γE(t) ≤ C∆
√

2√
γE(t)

+ 2α
√
γ

+ 2αφ(t). (2.30)

On the other hand, from (2.22), one has −Ė(t) ≤ 2α(1 + √
γ)E(t) so that

−Ė(t)∥ek(t)∥2

2γ (E(t))2 ≤ 2α(1 + √
γ)φ(t). (2.31)

Gathering (2.30) and (2.31) we obtain:

φ̇(t) ≤ C∆
√

2√
γE(t)

+ 2α
√
γ

+ 2α(2 + √
γ)φ(t).

Let us now recall that from the event-triggering law (2.14), an event occurs if
φ(t) > 1, and as long as φ(t) ≤ 1, no update event is triggered. Hence it follows
that for all t ∈ [tk, tk+1),

φ̇(t) ≤ A+ B√
E(t)

(2.32)

with A = 2α
√
γ

+ 2α(2 + √
γ) and B = C∆

√
2
γ
.

From Lemma 2.6, T ∗ still being the maximal time under which the closed-loop
event-triggered control system has a solution, one has, for all t ∈ [0, T ∗),

E(t) ≥ E(0)e−2Ct ≥ E(0)e−2CT ∗
,

and (2.32) becomes φ̇(t) ≤ A+ BeCT ∗√
E(0)

.

Then ∀k ∈ N, integrating on (tk, tk+1) and using that φ(tk) = 0 and φ(tk+1) = 1
we obtain :

1 ≤

A+ BeCT ∗√
E(0)

 (tk+1 − tk). (2.33)

Finally, let tk → T ∗ as k → +∞ in (2.33), then we get a contradiction if T ∗ ̸= +∞.
Therefore, we need to consider T ∗ = +∞, leading to the absence of any accumulation
points. Thereby, the avoidance of Zeno behavior is guaranteed. ♢
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Remark 2.3 It is quite usual, in the finite dimensional framework, to prove that
there is no Zeno phenomenon in a hybrid system or an event-triggered control loop
using the fact that a minimal dwell time between two triggering instants can be
characterized and independant of the time window. However, one should know that
it is only a sufficient condition, and not a necessary one according to the strict
Zeno phenomenon definition. Here, we follow another route by using the strict
mathematical definition that corresponds to the absence of accumulation points in
the time sequence of updates. Note that the inequality (2.33) gives a dwell time
τ ∗ = 1

A+ BeCT ∗
√

E(0)

which depends unfortunetly on the time T ∗ and the initial condition.

Nevertheless, we should say that from a pratical point of view, such a dwell time is
not satisfying.

The proof of Theorem 2.8 means that we solved item 2 of Problem 1. It also means
that the result of Theorem 2.5 consequently holds for T ∗ = +∞ as stated in the
following corallary.

Corollary 2.9: Well-podeness

Let Ω be an open bounded domain of class C2. For any initial conditions
(z0, z1) ∈ H2(Ω) ∩ H1

0 (Ω) × H1
0 (Ω), there exists a unique strong solution to

(2.11) under the event-triggering mechanism (2.14), satisfying

z ∈ C([0,+∞);H2(Ω) ∩H1
0 (Ω)) ∩ C1([0,+∞);H1

0 (Ω)). (2.34)

2.3.5 Exponential stability

In this section we address item 3 of Problem 1, that is, we propose sufficient
conditions in order to ensure the exponential stability of system (2.11)-(2.14) or
equilalently (2.16)-(2.14). Let be a tuning parameter ε > 0 and define the following
Lyapunov functional candidate:

V (t) := E(t) + αε

2

∫
Ω

|z(t)|2 + ε
∫

Ω
z(t)∂tz(t). (2.35)

=
∫

Ω
|∂tz(t)|2dx+

∫
Ω

|∇z(t)|2dx+ αε

2

∫
Ω

|z(t)|2 + ε
∫

Ω
z(t)∂tz(t).

The following result can be stated.
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Theorem 2.10: Stability of the event-triggered of the wave equation

Given the damping parameter α > 0, assume there exist positive scalars
γ, λ1, λ2, δ and ε < 1/CΩ such that the following matrix inequality holds:

Φ :=


−λ1 + αεδ δε αε

2 0
⋆ ϕ22

α
2 0

⋆ ⋆ −λ2 0
⋆ ⋆ ⋆ ϕ44

 ≺ 0, (2.36)

with ϕ22 = ε − α + δ + λ2γ, ϕ44 = δ − ε + λ1C
2
Ω + λ2γ, CΩ the constant in

the Poincaré inequality. Then, for any initial condition

(z0, z1) ∈ H2(Ω) ∩H1
0 (Ω) ×H1

0 (Ω),

the closed-loop system (2.11) or (2.16) under the event-triggering mechanism
(2.14) tuned by γ is exponentially stable with decay rate δ. In other words,
there exists K > 0 such that

E(t) ≤ KE(0)e−2δt ∀t > 0. (2.37)

Furthermore, if the above matrix inequality holds with δ = 0, then the closed-
loop system is exponentially stable with a small enough decay rate.

Proof : The relationship between V (t) and E(t) is described thanks to Cauchy-
Schwarz and Poincaré’s inequalities. On the one hand,∣∣∣∣ε ∫

Ω
z(t)∂tz(t)

∣∣∣∣ ≤ ε∥z(t)∥∥∂tz(t)∥ ≤ εCΩ∥∇z(t)∥∥∂tz(t)∥ ≤ εCΩE(t).

By choosing ε < 1/CΩ its follows

V (t) ≥ (1 − εCΩ)E(t).

On the other hand, the same tools bring

V (t) ≤ (1 + εCΩ)E(t) + αεC2
Ω

2 ∥∇z(t)∥2 ≤
(
1 + εCΩ + εαC2

Ω

)
E(t).

Hence we have

(1 − εCΩ)E(t) ≤ V (t) ≤ (1 + εCΩ + εαC2
Ω)E(t). (2.38)

The cornerstone of the proof is now to ensure that there exists δ > 0 such that:

V̇ (t) + 2δV (t) ≤ 0, ∀t ≥ 0

under the assumptions of the Theorem. Thus let us start by computing the time-
derivative of V along the trajectories of (2.11):

V̇ (t) = Ė(t) + αε
∫

Ω
z(t)∂tz(t) + ε

∫
Ω

|∂tz(t)|2 + ε
∫

Ω
z(t)∂2

t z(t). (2.39)
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We already know Ė(t) from (2.20). Since z satisfies (2.16), and using the Green
formula, we also have

ε
∫

Ω
z(t)∂2

t z(t) = ε
∫

Ω
z(t)∆z(t) − αε

∫
Ω
z(t)∂tz(t)dx+ αε

∫
Ω
z(t)ek(t)

= −ε
∫

Ω
|∇z(t)|2 − αε

∫
Ω
z(t)∂tz(t) + αε

∫
Ω
z(t)ek(t).

Therefore

V̇ (t) = −α
∫

Ω
|∂tz(t)|2 + α

∫
Ω
∂tz(t)ek(t) + αε

∫
Ω
z(t)∂tz(t) + ε

∫
Ω

|∂tz(t)|2

− ε
∫

Ω
|∇z(t)|2 − αε

∫
Ω
z(t)∂tz(t) + αε

∫
Ω
z(t)ek(t)

= (ε− α)
∫

Ω
|∂tz(t)|2 − ε

∫
Ω

|∇z(t)|2 + α
∫

Ω
∂tz(t)ek(t) + αε

∫
Ω
z(t)ek(t),

and we obtain:

V̇ (t) + 2δV (t) = αεδ
∫

Ω
|z(t)|2 + (δ − ε)

∫
Ω

|∇z(t)|2 + αε
∫

Ω
z(t)ek(t) + α

∫
Ω
∂tz(t)ek(t)

+ (ε− α + δ)
∫

Ω
|∂tz(t)|2 + 2δε

∫
Ω
z(t)∂tz(t).

Therefore
V̇ (t) + 2δV (t) =

∫
Ω
ψ⊤(x, t)M1ψ(x, t)dx, (2.40)

with ψ =
(
z ∂tz ek ∇z

)⊤
and a symmetric matrix

M1 =


αεδ δε αε

2 0
⋆ ε− α + δ α

2 0
⋆ ⋆ 0 0
⋆ ⋆ ⋆ δ − ε

 .
The goal is to find some conditions under which we want to satisfy V̇ (t)+2δV (t) ≤ 0
or equivalently

∫
Ω
ψ⊤(t)M1ψ(t) ≤ 0 subject to some mathematical constraints.

The first constraint comes from the Poincaré’s inequality ∥z(t)∥2 ≤ C2
Ω∥∇z(t)∥2

(see Lemma A in Appendix) and it is equivalent to∫
Ω
ψ⊤(t)M2ψ(t) ≥ 0, with M2 = diag(−1, 0, 0, C2

Ω).

The second constraint comes from the event-triggering law that imposes (2.14)
reading ∥ek(t)∥2 ≤ 2γE(t), ∀t ∈ [tk, tk+1), i.e., while no triggering event occurs. This
last inequality can be written ∥ek(t)∥2 ≤ γ (∥∂tz(t)∥2 + ∥∇z(t)∥2) or equivalently∫

Ω
ψ(t)⊤M3ψ(t) ≥ 0, with M3 = diag(0, γ,−1, γ).

Using the S-procedure [10, Section 2.6.3], one therefore wants to satisfy the following:

V̇ (t) + 2δV (t) + λ1

∫
Ω
ψ(t)⊤M2ψ(t) + λ2

∫
Ω
ψ(t)⊤M3ψ(t) ≤ 0 (2.41)
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for any two positive scalars λ1 and λ2.

From (2.40), inequality (2.41) reads :∫
Ω
ψ⊤(x, t)(M1 + λ1M2 + λ2M3)ψ(x, t)dx ≤ 0. (2.42)

Hence, by defining Φ as Φ = M1 + λ1M2 + λ2M3, the satisfaction of relation (2.36)
means that relation (2.42) and (2.41) are also satisfied, and therefore one obtains

V̇ (t) + 2δV (t) ≤ 0, ∀t ∈ R+.

That corresponds to have V (t) ≤ e−2δtV (0). Taking (2.38) into account, it follows
that

E(t) ≤ 1 + εCΩ + εαC2
Ω

1 − εCΩ
E(0)e−2δt.

The proof of Theorem 2.10 is complete. ♢

Let us now provide some insights on the matrix inequality (2.36). First, we can
use a change of variable γ̄ = λ2γ and search both λ2 and γ̄ as decision variables of

Φ :=


−λ1 + αεδ δε αε

2 0
⋆ ε− α + δ + γ̄ α

2 0
⋆ ⋆ −λ2 0
⋆ ⋆ ⋆ δ − ε+ λ1C

2
Ω + γ̄

 ≺ 0. (2.43)

This is a sufficient condition allowing to ensure the exponential stability of the
closed loop. In the following proposition we show that there always exists a solution
(λ1, λ2, γ̄, δ) such that (2.43) is satisfied.

Proposition 2.11: Feasibility of the matrix inequality

Given α > 0, condition (2.36) of Theorem 2.10, or equivalently condition
(2.43), enjoys the following properties

(i) Given δ = 0, condition (2.43) is always feasible;

(ii) There always exists a strictly positive scalar δ such that (2.43) is feasible.

Proof : Let us denote by Φ0 the matrix corresponding to Φ in the case δ = 0:

Φ0 :=


−λ1 0 αε/2 0

0 ε− α + γ̄ α/2 0
αε/2 α/2 −λ2 0

0 0 0 −ε+ λ1C
2
Ω + γ̄

 .
Condition (2.43) reads Φ0 ≺ 0 and then implies:

λ1 > 0, λ2 > 0
−ε+ α− γ̄ > 0 ⇐⇒ ε < α − γ̄ (2.44)

ε− λ1C
2
Ω − γ̄ > 0 ⇐⇒ ε > λ1C

2
Ω + γ̄.
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Now, consider λ1, ε and γ̄, satisfying (2.44) and the extra constraint ε < 1/CΩ in
assumptions of Theorem 2.10, which always exist. Then one gets(

−λ1 0
0 ε− α + γ̄

)
≺ 0.

By using the Schur complement (Lemma A.6) on the first 3 × 3 block one obtains:

−λ2 + α2

4
(
ε 1

)(λ−1
1 0
0 −(ε− α + γ̄)−1

)(
ε
1

)
< 0 (2.45)

Therefore, since the quadratic term in the left-hand side of (2.45) is positive, there
always exists a positive value for λ2 such that (2.45) holds.

In summary there exists a solution such that Φ0 ≺ 0 holds. Furthermore, the
tuning parameter γ is easily recovered from γ̄ and λ2.

Consider now δ ̸= 0, then one can write Φ as follows:

Φ = Φ0 + δ


αε ε 0 0
ε 1 0 0
0 0 0 0
0 0 0 1

 . (2.46)

Since there exist ε, γ̄, λ1, λ2 such that Φ0 ≺ 0, it follows that there always exists a
small enough δ > 0 such that Φ ≺ 0. The proof of Proposition 2.11 is complete.

♢

2.3.6 Numerical simulation
We illustrate the efficiency of the event-triggering law proposed in this section by
considering the example of a one-dimensional wave equation (2.1) on Ω = (0, π).
We consider the damping coefficient α = 1 and the initial conditions

z0(x) = sin (x) and z1(x) = sin (2x) (2.47)

that are consistent with the homogeneous boundary data of (2.1).
We aim at comparing the continuous-in-time version of the closed-loop system

versus the event-triggered closed-loop version. In other words we compare the be-
havior of system (2.1) with the one of system (2.11) under the event-triggering rule
(2.14).

The design parameter γ in the event-triggering rule (2.14) plays a key role in
the exponential stability of system (2.11) under the mechanism (2.14). The choice
of γ influences the number of updates imposed by (2.14): the smaller γ, the more
frequent the updates. A feasible solution to condition (2.36) in Theorem 2.10 is
λ1 = 0.1, λ2 = 1, γ = 0.3, δ = 0.25 and ε = 0.6.
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Figure 2.4: Evolution of the L2-norm of the continuous-in-time controller in blue
and the event-triggered controller (in black dashed line) with damping coefficient
α = 1.

To begin with, let us present Figure 2.4 that depicts the evolution of the mag-
nitude of the controller ∥f(t)∥L2(0,π) in the continuous-in-time and the event-triggering
frameworks. We notice that the update times are not regular and there is a large
variation in the magnitude of the continuous-in-time controller allowing to conclude
that the event-triggered control approach is energy efficient.

Now in order to better understand how the sampling acts on the exponential
stability result, we present in Figure 2.5 the repartition of the updates instants, and
the evolution of the natural energy E(t) of the closed-loop system (2.11), for α = 1,
in the following cases:

• Under the continuous-in-time control (blue line)

• Under the event-triggered controller (black dotted line) with tk given by the
event-triggering rule (2.14).

• Under the fixed initial time controller f(t) = −z1 (green line).

• With the controller f(x, t) = −∂tz(x, kτ) (in red) build with periodic sampling
under period τ = 0.5 so that the number of updates is the same as the one
observed during the time T = 3 when following (2.14).

• Under the event-triggered controller with tk given by the event-triggering rule
of [5]( see Remark 2.1) that has an additional term E(0)e−θt (black line) with
θ = 2.5.
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Figure 2.5: Top: Illustration of the event-triggering mechanisms (2.14) and from [5]
for γ = 0.3 and θ = 2.5 and periodic sampling of period τ = 0.5. Bottom: Evolution
of the energy E(t) defined in (2.10)

First, we remark that when the controller is fixed as f(t) = −z1, the energy evolves
as the sinusoidal z1. This corresponds to the first sampling period where the con-
trol is only based on the initial velocity. Second, Figure 2.5 also shows that the
evolution of energy of the event-triggered control system is similar to the one of the
continuous–in-time controlled system and to the one under ad-hoc periodic sampling.
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Nevertheless, it is important to recall that to the best of our knowledge a proof of
the exponential decay rate of the energy in the case of periodic sampling does not
exist. However, as it can be seen, a good choice of the period τ seems to lead to
the exponential decay rate of the corresponding energy. More precisely, using a trial
and error method, one can find that this particular system becomes unstable under
periodic sampling when τ > 1.2.

Let us illustrate the inter-execution time. We chose the same tuning parameter
γ = 0.3 for the event-triggering mechanism (2.15) and our event-triggering mech-
anism (2.14) and take θ = 2.5 in (2.14). Both choices allow the feasibility of the
mandatory matrix inequalities to obtain the exponential stability of the correspond-
ing closed-loop systems.

Figure 2.6: Illustration of the event-triggering mechanisms (2.13) and (2.15) for
γ = 0.3 and θ = 2.5. Periodic sampling of period τ = 0.9.

Figure 2.6 allows to observe the number and the repartition of the time updates
generated by several cases : the event-triggering mechanism (2.14), the one from
(2.15) with θ = 2.5 and a periodic sampling one. The parameter γ is chosen to
allow the exponential stability. The parameter θ has the specificity to be an upper
bound of the best possible decay rate δ and can be chosen large if we aim at a very
efficient exponential decay rate, to the cost of more frequent updates or small, if
the number of updates should be minimized. Finally, the period τ of the periodic
sampling was chosen through a trial-and-error method just to find a value that
brings stability, since we do not have any proof of stability in the periodic case.

Finally, Figure 2.7 illustrates the evolution of the energy of the corresponding
closed-loop systems. Note that the fixed initial control graph corresponds to consider
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Figure 2.7: Evolution of the closed-loop energy E(t) computed in various cases, with
parameters γ = 0.3, θ = 2.5, initial velocity z1(x) = sin(2x), and τ = 0.9 or 1.5.

u(x, t) = −αz1(x) and that we took an initial velocity condition z1(x) = sin(2x).
A trial-and-error method was used to find that for a period τ < 1.2 we obtain
exponential stability and otherwise, there is no stability, as depicted in red in Figure
2.7 (with τ = 0.9 and τ = 1.5).
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2.4 ETC for the anti-damped wave equation
Remark that if we consider α = 0 in system (2.1), corresponding to the undamped
open-loop, the system will be stable. It is however possible to consider an unstable
open-loop system, by adding in the right hand side of (2.1) a source term as, for
example, +b∂tz(x, t) with b > 0, leading to the modified system:

∂2
t z − ∆z = −α∂tz(tk) + b∂tz(x, t), in Ω × [tk, tk+1),

k ∈ N

z = 0, on ∂Ω × R+,
z(·, 0) = z0, ∂tz(·, 0) = z1, in Ω.

(2.48)

where the event-triggering mechanism is defined by the static rule: t0 = 0
tk+1 = inf

{
t ≥ tk, ∥ek(t)∥2 > 2γE(t)

} (2.49)

with the energy of the system also given by

E(t) = 1
2
(
∥∂tz(t)∥2 + ∥∇z(t)∥2

)
. (2.50)

In that case, without control (i.e., α = 0), the energy of the system satisfies

Ė(t) = b
∫

Ω
|∂tz(t)|2,

meaning that if b = 0, the energy will remain constant over time, and if b > 0,
then the system undergoes an excitation source term and the energy can only grow.
Meanwhile, with a continuous-in-time control u(x, t) = −α∂tz(x, t) if one chooses α
such that α > b then one can prove exponential decrease of the energy.

2.4.1 Well-posedness and Avoidance of Zeno behavior
Theorem 2.12: Well-posedness

Let Ω be an open bounded domain of class C2. For any initial conditions
(z0, z1) ∈ H2(Ω) ∩ H1

0 (Ω) × H1
0 (Ω), there exists a unique strong solution to

(2.11) under the event-triggering mechanism (2.14), satisfying

z ∈ C([0, T ∗);H2(Ω) ∩H1
0 (Ω)) ∩ C1([0, T ∗);H1

0 (Ω)). (2.51)

Proof : The proof is constructed by induction and is similar to the one that has
been presented in Theorem 2.5 for the damped wave equation since the nature of
the operator is the same. ♢

As we have recalled in this chapter, in event-triggered control events must be
triggered in such a way that the closed-loop system does not generate an infinite
number of updates in a finite time which is known as the Zeno phemenon.
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To do so, we rewrite the system (2.48) in order to consider the deviation error
ek :


∂2

t z(x, t) − ∆z(x, t) = (b− α)∂tz(x, t) + αek(t), ∀(x, t) ∈ Ω × (0, T ∗),
z(x, t) = 0, ∀(x, t) ∈ ∂Ω × R+,
z(x, 0) = z0(x), ∂tz(x, 0) = z1(x), ∀x ∈ Ω,

(2.52)

with
ek(x, t) = ∂tz(x, t) − ∂tz(x, tk). (2.53)

As for the static case the energy E is bounded as follows.
Lemma 2.13:

Under the event-triggering mechanism (2.49) there exists a constant Cb > 0
such that for all t ∈ [0, T ∗):

E(0)e−2Cbt ≤ E(t) ≤ E(0)e2Cbt. (2.54)

Proof : Using (2.48) and the Green formula (Lemma A.3), the time derivative
of E is reduced to

Ė(t) = (b− α)
∫

Ω
|∂tz(t)|2 + α

∫
Ω
∂tz(t)ek(t) (2.55)

so that one gets

|Ė(t)| ≤ (b+ α)∥∂tz(t)∥2 + α∥ek(t)∥∥∂tz(t)∥. (2.56)

From the definition (2.17) of T ∗, since t ∈ [0, T ∗), either there exists k such that
t ∈ [tk, tk+1) if the sequence (tk)k≥0 is not finite, or t may be greater than the
last tk and the definition of (2.49) allows to call tk+1 = T ∗. From (2.14) and
∥∂tz(t)∥2 ≤ 2E(t) we get:

|Ė(t)| ≤ 2(b+ α)E(t) + α
√

2γE(t)
√

2E(t) or equivalently
|Ė(t)| ≤ 2CbE(t) with Cb = b+ α(1 + √

γ). (2.57)

It follows that −2CbE(t) ≤ Ė(t) ≤ 2CbE(t).
The same reasoning as for the proof of Lemma 2.6 allows to conclude.

♢

We can now state the following result concerning Zeno behavior.
Theorem 2.14:

There is no Zeno phenomenon for the system (2.48) under the event-triggering
mechanism (2.14). Equivalently, the maximal time of existence of solution
defined by (2.17) is actually T ∗ = +∞.
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Proof : The proof is based on the study of the function φ defined on [tk, tk+1)
by

φ : t 7→ φ(t) = ∥ek(t)∥2

2γE(t) . (2.58)

The function φ is nonnegative and satisfies φ(tk) = 0 for any k and jumps from
lim

t→tk+1
φ(t) = 1 to φ(tk+1) = 0 when a triggering event occurs, according to the law

(2.49). Let us estimate the time-derivative of φ:

φ̇(t) =

∫
Ω
ėk(t)ek(t)

γE(t) − Ė(t)∥ek(t)∥2

2γ (E(t))2 . (2.59)

On the one hand, from (2.53), (2.52) and the Cauchy Schwarz’s inequality, for all
t ∈ [tk, tk+1), we have∫

Ω
ėk(t)ek(t) =

∫
Ω

∆z(t)ek(t) + (b− α)
∫

Ω
∂tz(t)ek(t) + α∥ek(t)∥2,

≤ ∥ek(t)∥∥∆z(t)∥ + (b− α)∥ek(t)∥∥∂tz(t)∥ + α∥ek(t)∥2.

Since there exists a constant C∆ > 0 such that ∀t ∈ [0, T ∗)

∥∆z(t)∥ ≤ ∥∆z∥L∞(0,T ∗;L2(Ω)) ≤ C∆, (2.60)

where C∆ depends on ∥z0∥H2(Ω) and ∥z1∥H1
0 (Ω), and ∥∂tz(t)∥2 ≤ 2E(t) it follows∫

Ω
ėk(t)ek(t)

γE(t) ≤ C1
√

2√
γE(t)

+ 2(b− α)
√
γ

+ 2αφ(t). (2.61)

Besides, from (2.57), one has −Ė(t) ≤ 2α(1 + √
γ)E(t) so that

−Ė(t)∥ek(t)∥2

2γ (E(t))2 ≤ 2[b+ α(1 + √
γ)]φ(t). (2.62)

Gathering (2.61) and (2.62) we obtain:

φ̇(t) ≤ C1
√

2√
γE(t)

+ 2(b− α)
√
γ

+ 2[b+ α(1 + √
γ)]φ(t).

Using the same arguments as for the proof of Theorem 2.8, we obtain :

1 ≤

A+ BeCT ∗√
E(0)

 (tk+1 − tk) (2.63)

with A = 2(b− α)
√
γ

+ 2b+ 2α(2 + √
γ) and B = C1

√
2
γ
.

Let tk → T ∗ as k → +∞ in (2.63), then we get a contradiction if T ∗ ̸= +∞.
Therefore, we need to consider T ∗ = +∞, leading to the absence of any accumula-
tion points. Thereby, the avoidance of Zeno behavior is guaranteed. ♢
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2.4.2 Exponential stability
The only necessity to preserve the stability result is to have b smaller than the
damping coefficient α. More specifically, to ensure that LMI (2.36) (in Theorem 2.10)
of the current anti-damping problem is feasible, one only needs b < α and one can
mimic the proof of Theorem 2.10 in the following corresponding Theorem.

Theorem 2.15: Stability of the event-triggered of the wave equation

Given the damping parameter α > b, assume there exist positive scalars
γ, λ1, λ2, δ and ε < 1/CΩ such that the following matrix inequality holds:
Φb,δ ≺ 0 where

Φb,δ :=


−λ1 + (α− b)εδ δε αε

2 0
⋆ ε+ b− α + δ + λ2γ

α
2 0

⋆ ⋆ −λ2 0
⋆ ⋆ ⋆ δ − ε+ λ1C

2
Ω + λ2γ


(2.64)

and CΩ is the constant in the Poincaré inequality (Appendix A.2). Then, for
any initial condition

(z0, z1) ∈ H2(Ω) ∩H1
0 (Ω) ×H1

0 (Ω),

the closed-loop system (2.48) under the event-triggering mechanism (2.49)
tuned by γ is exponentially stable with decay rate δ. In other words, there
exists K > 0 such that

E(t) ≤ KE(0)e−2δt ∀t > 0. (2.65)

Furthermore, if the above matrix inequality holds with δ = 0, then the closed-
loop system is exponentially stable with a small enough decay rate.

Proof : Assuming that α − b > 0 the proof of this theorem is the same as the
one 2.10, relying on the following Lyapunov function:

V (t) := E(t) + (α− b)ε
2

∫
Ω

|z(t)|2 + ε
∫

Ω
z(t)∂tz(t).

Using ψ =
(
z ∂tz ek ∇z

)⊤
, it leads, with the same reasoning, to

∫
Ω
ψ⊤(x, t)Φb,δψ(x, t)dx ≤ 0, (2.66)

where Φb,δ is defined by (2.64).
From there, one can conclude to the feasibility of this LMI condition in the same

way as for the case b = 0
♢
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2.5 Conclusion and Perspectives
In the present chapter, the exponential stability of the damped (and anti-damped)
linear wave equation under an event-triggering mechanism was proved under some
specific conditions. A sufficient matrix inequality-based condition for the exponen-
tial stability of the system was formulated. The avoidance of the Zeno behavior
through the absence of accumulation points in the updates sequence was proved.

This work opens the door for future investigations, as for example:
• Over (under)damping effect
In [16] considering the damped wave equation (2.1), the decay rate

ω(α) = inf{δ; ∃C(δ) > 0 s.t E(t) ≤ CE(0)e−2δt}

is proved to be equal to the spectral abscissa µ(α) of the operator

A : µ(α) = sup{Re(λ) : λ ∈ σ(A)} = −α + Re(
√
α2 − π2).

This allows to characterize the over(under)damping effect when α is less (greater)
than π.

The Lyapunov functional V (2.35) has the advantage to allow us to bypass this
over(under)damping effect thanks to the term αε. But it also has the drawback to
prevent us from seeing that when α grows, even if we expect δ to grow as well, it

doesn’t. Indeed, from (2.46) (Proposition 2.11) one has Φ = Φ0 + δ


αε ε 0 0
ε 1 0 0
0 0 0 0
0 0 0 1


with Φ0 ≺ 0, but α grows implies that we must have δ small to get Φ ≺ 0.

A solution to deal with this effect is to consider all the state (z, ∂tz) in the control
term. The numerical implementation of the new control could be considered.

• Event-triggering mechanism for Aeroelastic system: model of the flow-induced
vibration.

The model of the flow-induced vibration is given by a wave equation with anti-
damping term throughout the 1-D domain (0, 1

c
):

∂2
t z(x, t) − ∂2

xz(x, t) = 2λ∂tz(x, t) − βz(x, t)
z(0, t) = 0
z(1

c
, t) = U(t)

where λ and β are function of free-stream density of the fluid ρ, velocity U and the
Mach number M. In [106], the following control is proposed in other to

U(t) =
∫ 1

c

0
r(1

c
, y)v(y, t)dy + 1

h(1
c
)

∫ 1
c

0
k(1

c
, y)ω(y, t)dt+

∫ 1
c

0
s(1

c
, y)∂tω(y, t)dy


where v(y, t) and ω(y, t) are used to defined the direct and inverse backstepping
transformations. The kernels r, k and s are well known thanks to a three-stage
backstepping transformation.
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For U(t) = U(tk), t ∈ [tk, tk+1), what kind of event-triggered law the sequence
(tk) should follow in order to maintain this exponential decay result and avoid Zeno
behavior?

• Event-based dynamic boundary control of the wave PDE
Event-based control can be considered for other kinds of boundary control in

1-D setting, as the wave PDE compensation with Neumann Actuation:
Ẋ(t) = AX(t) +Bz(0, t)
∂2

t z(x, t) = ∂2
xz(x, t)

∂xz(0, t) = 0
∂xz(D, t) = U(t)

or with Dirichlet actuation
Ẋ(t) = AX(t) +B∂xz(0, t)
∂2

t z(x, t) = ∂2
xz(x, t)

z(0, t) = 0
z(1, t) = U(t)

where (X, z, ∂tz) is the state ans U is the control corresponding to a force on the
string’s boundary. Backstepping technique is used in [69] to design the control U
and the state is proven to be exponentially stable in the sence of the norm:(

|X(t)|2 + u(0, t)2 +
∫ D

0
ux(x, t)2dx+

∫ D

0
ut(x, t)2dx

)1/2

It would be relevant to study these system when they are subjected to event-
triggered control, U(t) becoming U(tk) ∀t ∈ [tk, tk+1).

• Event-triggered boundary control of the wave equation
Consider system

∂2
t z(x, t) − ∆z(x, t) = 0 ∀ (x, t) ∈ Ω × (0, T ),
z(x, t) = 0 ∀ (x, t) ∈ Γ0 × (0, T ),
∂νz(x, t) = −α(x)∂tz(x, t) ∀ (x, t) ∈ Γ1 × (0, T ),
z(x, 0) = z0(x) ∀ x ∈ Ω,
∂tz(x, 0) = z1(x) ∀ x ∈ Ω,

where the damping parameter α ∈ L∞(Ω) satisfies

α(x) = (x− x0) · ν(x) ≥ α0 > 0, ∀x ∈ Γ1.

with Γ1 a suitable part of the boundary ∂Ω. For x0 /∈ Rn \ Ω̄, we can choose

Γ1 = {x ∈ ∂Ω, (x− x0) · ν(x) > 0}

and if Γ1 and Γ0 = ∂Ω \ Γ1 are such that Γ0 ∩ Γ1 = ∅.
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Note that one of the difficulty in the well-posedness of the system (2.5), is the
fact that the initial data (z0, z1) have to satisfy the compatibility conditions with
the boundary data:

z0(x) = 0 for all x ∈ Γ0

∂νz0(x) = α(x)z1 for all x ∈ Γ1.

We refer to [117] where this problem is well adressed. Moreover, the origin of the
closed-loop system is proved to be globally exponentially stable in [117, 13].

The event-triggerred control system in this case could reads:

∂2
t z(x, t) − ∆z(x, t) = 0 ∀ (x, t) ∈ Ω × (0, T ),
z(x, t) = 0 ∀ (x, t) ∈ Γ0 × (0, T ),
∂νz(x, t) = −α(x)∂tz(x, tk) ∀ (x, t) ∈ Γ1 × [tk, tk+1),
z(x, 0) = z0(x) ∀ x ∈ Ω,
∂tz(x, 0) = z1(x) ∀ x ∈ Ω.

(2.67)

with the event-triggering rule which can be defined as follows: t0 = 0,

tk+1 = inf
{
t ≥ tk, ∥∂tz(x, t) − ∂tz(x, tk)∥2

L2(Γ1) − γE(t) − ν0 ≥ 0
}
, (2.68)

where γ, ν0 are design parameters. In the event-triggering framework, one will need
to carefully adress the following items.

1. Since the control is defined on the boundary, it becomes essential to rigorously
establish the well-posedness of the system (2.67). Particularly, when dealing
with the ETM, it is important to note that the compatibility conditions of the
solution on the boundaries Γ0 and Γ1 at time tk are no longer preserved.

2. For the avoidance of Zeno behavior, the difficulty is that the operator associ-
ated to the system is unbounded therefore Lemma 2.6 is no longer valid. This
led us to add the ν0 parameter in the event-triggering law (2.68) (which is the
event-triggering mechanism (1.5) introduced in the Introductive Chapter 1).

3. With the event-triggering law (2.68) one may expect exponential convergence
to an attractor because of ν0.



3
Event-based control of the linear

Schödinger system

3.1 Introduction

3.1.1 Some ingredients on the Schrödinger equation
The Schrödinger equation, for x ∈ Ω ⊂ RN and t ≥ 0

i∂tz(x, t) + ∆z(x, t) = f(x, t),

most known in quantum theory, arises for instance in nonlinear optics for laser beam
propagation [2] or in cold atom physics to describe Bose Einstein condensation. Its
solution z describes the shape of the probability wave function that governs the
motion of quantum particles, and the equation specifies how these waves are altered
by external influences f [110]. A partial list of concrete applications of the linear
Schrödinger equation includes:

• Particle in a Box: The linear Schrödinger equation appears in the study of
a particle confined within a box potential [20, 48]. This scenario is used to
model quantum systems such as electrons in a one-dimensional semiconductor
or atoms trapped in an optical lattice and is important in the design of devices
such as quantum wells and quantum dots.

• Quantum Tunneling: A phenomenon where a particle can pass through a
potential barrier that classically it would not have enough energy to overcome
is called quantum tunneling. The linear Schrödinger equation allows us to
calculate the probability of tunneling for a particle encountering a potential
barrier. This application has practical implications in various fields, such as
scanning tunneling microscopy, where quantum tunneling is exploited to image
and manipulate individual atoms on surfaces [43].

• Bose-Einstein Condensates: The linear Schrödinger equation is used to study
the behavior of ultra-cold quantum gases, particularly in the context of Bose-
Einstein condensates (BECs) [129]. BECs are a state of matter that occurs at
extremely low temperatures, where a large number of bosonic particles occupy
the same quantum state.

39
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In addition to all these applications, let us mention, even if it is not the subject of
our studies, the nonlinear Schrödinger equation (NLSE), which finds applications in
various fields of physics, including quantum mechanics, nonlinear optics, and fluid
dynamics [110, 9]. It is typically written as:

iℏ
∂ψ(x, t)
∂t

= − ℏ2

2m
∂2ψ(x, t)
∂x2 + V (x)ψ(x, t) + g|ψ(x, t)|2ψ(x, t)

where ψ represents the complex wave function, t is time, x is space, ℏ is the reduced
Planck constant, m is the particle mass, V (x) is the potential, and g is a nonlinear
coefficient. The NLSE describes phenomena such as solitons, which are localized
wave packets that maintain their shape during propagation, and self-focusing or
self-defocusing effects due to nonlinearities. Applications of the NLSE include mod-
eling optical fibers, where it describes the propagation of intense laser pulses, as
well as Bose-Einstein condensates and superfluids. It is also used in the study of
quantum turbulence, nonlinear wave phenomena, and other nonlinear systems where
the interactions between particles or waves lead to rich and complex dynamics.

These applications demonstrate how the Schrödinger equation provides a power-
ful mathematical tool for describing and analyzing various quantum phenomena and
systems. This justifies the extensive study of this equation in many aspects, includ-
ing the well-posedness [12], the exact controllability [79], the observability [87], and
the stabilization or stability analysis by multiplier techniques and constructing en-
ergy functionals [80] or by backstepping approach via the boundary actuation and
measurements [70].

Furthermore, there exists a huge litterature on the control of the Schrödinger
equation and one may distinguish several kinds of Schrödinger equation

• The finite dimensional Schrödinger equation

d

dt
z(t) = − i

ℏ
[H0 − ε(t) · µ]z(t).

where z(t) ∈ RN is unitary evolution operator of the system at time t, and H0
is the free Hamiltonian, µ is the dipole operator, and ε(t) is the control func-
tion at time t. This equation fully describes the coherent quantum dynamics
of molecular systems in interaction with electric laser fields in the dipole ap-
proximation or with spin systems have a magnetic field that varies with time.
We refer to [15] where the authors present a perspective of progress about the-
oretical insights, technological improvements and adaptive feedback control in
the laboratory.

• Another form of finite dimensional Schrödinger equation is

d

dt
φ = (H0 + u(t)H1)φ, φ(0) = φ0, |φ0|N = 1

where φ ∈ RN , H0 is the free Hamiltonian andH1 the interaction Hamiltonian.
H0 and H1 are Hermitian matrices so that the state of the system verifies the
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conservation of probability: |φ(t)|N = 1 ∀t ≥ 0 and therefore it evolves on
the unit sphere of CN : S = {x ∈ CN ; |x|N = 1}. The control problem of
this last equation is considered in [6] (for LaSalle invariance principle’s based
convergence analysis),[7] (for global practical stabilization of the eigenstates
by explicit feedback laws) and [82] (for an overview of some properties of a
quantum harmonic oscillator).

• When we consider the free HamiltonianH0 = −∆+V one obtain the Schrödinger
PDE for which one has an extensive study in many aspects, including the
well-posedness [12], the exact controllability [79], the observability [87], and
the stabilization or stability analysis by multiplier techniques and constructing
energy functionals [80] or by backstepping approach via the boundary actu-
ation and measurements [70].

3.1.2 Problem description
Let us consider Ω ⊂ RN , an open bounded domain with smooth boundary ∂Ω. For
any x0 ∈ RN , the set

Γ0 = {x ∈ ∂Ω, (x− x0) · ν(x) > 0} (3.1)

where ν(x) denotes the unit outward normal vector to Ω at x ∈ ∂Ω and · the scalar
product in RN . This set is shown in Figure 3.1, originally taking from [117].

Figure 3.1: The set Γ0 is an open part of the boundary ∂Ω.

Let us consider the following closed-loop control system with source term in-
domain f(x, t) = −iα(x)z(x, t) :

i∂tz(x, t) + ∆z(x, t) = f(x, t) (x, t) ∈ Ω × R+,
z(x, t) = 0 (x, t) ∈ ∂Ω × R+

z(x, 0) = z0(x) x ∈ Ω.
(3.2)
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In system (3.2), the damping coefficient α ∈ L∞(Ω;R) satisfies that there exist α0
and α1 ∈ R+ such that{

0 < α ≤ α1 = ∥α∥L∞(Ω) a.e. in Ω
∃α0 > 0 : α ≥ α0 a.e. in ω ⊂ Ω, (3.3)

where ω ⊂ Ω is a neighborhood of Γ0 in Ω. This means that the damping will not
necessarily act on the whole domain Ω, but at least over a geometrically constrained
sub domain ω of Ω.

As in Chapter 2, dealing with the wave equation, a similar event-triggering mech-
anisms can be considered for the damped Schrödinger equation.

3.2 Results in continuous-in-time framework
Before working on system (3.2), let us recall basic results about the classical Schrödinger
equation 

i∂tw(x, t) + ∆w(x, t) = f(x, t) (x, t) ∈ Ω × (0, τ),
w(x, t) = 0 (x, t) ∈ ∂Ω × (0, τ)
w(x, 0) = w0(x) x ∈ Ω.

(3.4)

For instance, it has been proved in [12, 80] the following theorems.
Theorem 3.1: Classical energy estimate

For any initial condition w0 ∈ L2(Ω) and source date f ∈ L1(0, τ, L2(Ω)), there
exists a unique weak solution to (3.4) w ∈ C0(0, τ ;L2(Ω)) ∩C1(0, τ ; (H2(Ω) ∩
H1

0 (Ω))′) such that

∥w∥L∞(0,τ ;L2(Ω)) ≤ ∥w0∥ + ∥f∥L1(0,τ ;L2(Ω)). (3.5)

Proof : To demonstrate formally that the solution to the equation (3.10) satisfies
the inequality (3.5), we will use a classical energy method. The key to this method
is to multiply the original equation by an appropriate function, integrate over space-
time, and apply Hölder’s and Young’s inequalities to obtain the desired estimate.
Firstly, we multiply equation (3.4) by w, where w is the complex conjugate of w,
and integrate over Ω:∫

Ω
w(t)(i∂tw(t) + ∆w(t)) =

∫
Ω
w(t) f(t).

Integration by parts, leads to

i
∫

Ω
w∂tw dx =

∫
Ω

∇w · ∇w dx+
∫

Ω
w f dx.

Taking the imaginary part of this equation and using Im(iZ) = −Re(Z), ∀Z ∈
C, we find:

−
∫

Ω
Re(w(t)∂tw(t)) =

∫
Ω

Im(w(t)f(t)).
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Since
d

dt
∥w(t)∥2 = 2Re

(∫
Ω
w(t)∂tw(t)

)
then we obtain thanks to the Cauchy-Schwarz’s inequality:

d

dt

(
∥w(t)∥2

)
= −2

∫
Ω

Im(w(t)f(t))

≤ 2∥w(t)∥∥f(t)∥
d
dt

∥w(t)∥2

2∥w(t)∥ = d

dt
∥w(t)∥ ≤ ∥f(t)∥.

Henceforth, for all t ∈ (0, τ), by integrating on (0, t) we obtain

∥w(t)∥ ≤ ∥w(0)∥ +
∫ τ

0
∥f(s)∥ ds = ∥w0∥ + ∥f∥L1(0,τ,L2(Ω)).

♢
Moreover, the following observability inequality is investigated in [87].

Lemma 3.2: Observability inequality[87]

Let τ > 0 be given and ω ⊂ Ω be the neighborhood of Γ0 ⊂ ∂Ω with γ0
defined in (3.1). There exists Cobs > 0 such that the solution to the system
3.4 with f = 0 satisfies

∥w(0)∥2 ≤ Cobs

∫ τ

0

∫
ω

|w(x, t)|2dxdt. (3.6)

The proof of this lemma is very important in the proof of local (and exact)
controllability results. We refer to [87, 79] where the multiplier technique together
with the Holmgren’s Uniqueness Theorem (or an interpolation inequality) are used
to obtain this inequality.

Now, back to Equation (3.2), the well-posedness and exponential stability are
already documented in the literature [12, 87, 79, 80].

Theorem 3.3: Well-posedness ([12])

For any initial conditions z0 ∈ L2(Ω), there exists a unique weak solution to
(3.2) satisfying

z ∈ C0(R+;L2(Ω)) ∩ C1([0, T ]; (H2(Ω) ∩H1
0 (Ω))′). (3.7)

Moreover, for any initial data z0 ∈ H2(Ω)∩H1
0 (Ω), the unique strong solution

to (3.2) satisfies

z ∈ C0(R+;H2(Ω) ∩H1
0 (Ω)) ∩ C1(R+;L2(Ω)). (3.8)

As in chapter 1,Theorem 3.2 is proven by using the Hilde-Yossida Theorem.
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Theorem 3.4: Stability [80]

Let Ω ⊂ RN be an open bounded domain with boundary of class C3. Let
x0 ∈ RN and ω ⊂ Ω a neighborhood of Γ̄0 in Ω. Assume that α ∈ L∞(Ω)
satisfies (3.3). For any initial condition in L2(Ω), there exist Ccont > 0 and
δ > 0 such that the weak solution z to (3.2) verifies for all t > 0

E(t) := 1
2∥z(t)∥2 ≤ CcontE(0)e−2δt. (3.9)

Idea of the proof of Theorem 3.4: We give here a sketch of the proof of
Theorem 3.4 because it will pave the way for the more intricate setting with the
event-triggering mechanism later. Indeed, the proof relies on some energy estimate
which can be obtained thanks to the observability inequality (3.6) and the classical
estimate (3.5) on the solution to the Schrödinger equation.

Let us set the solution z = y+ ϕ to the system (3.2) as the sum of two variables
y = y(x, t) and ϕ = ϕ(x, t) which satisfy

i∂ty + ∆y = −iαz in R+,
y = 0 on ∂Ω × R+,
y(·, 0) = 0 in Ω,

(3.10)

and 
i∂tϕ+ ∆ϕ = 0 in Ω × R+,
ϕ = 0 on ∂Ω × R+,
ϕ(·, 0) = z0 in Ω.

(3.11)

As proved, for example, in [79, 87] and recalled in Lemma 3.2, the solution
to system (3.11) with w ≡ ϕ satisfies the observability inequality: for all ω ⊂ Ω
neighborhood of Γ0 ⊂ ∂Ω and τ > 0, here exists Cobs > 0 such that the solution to
(3.11) satisfies

∥z0∥2 = ∥ϕ(0)∥2 ≤ Cobs

∫ τ

0

∫
ω

|ϕ(x, t)|2dxdt. (3.12)

Moreover, the classical estimate (3.5) holds for w ≡ y and w0 ≡ 0: Any solution
y to the system (3.10) satisfies:

∥y∥L∞(0,τ ;L2(Ω)) ≤ ∥αz∥L1(0,τ ;L2(Ω)). (3.13)
We will also need to prove that the following energy estimate holds.
Lemma 3.5: Energy estimate [80]

There exista a time τ > 0 and a constant Cτ > 0 such that

E(τ) ≤ Cτ

∫ τ

0

∫
Ω
α(x)|z(x, t)|2 dx dt (3.14)

for every solution to (3.10) with initial data z0 ∈ L2(Ω) and α satisfying (3.3)
aIn fact, we will prove that (3.14) holds for any τ > 0 and some constant Cτ = C(τ) > 0.
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Remark 3.1 This critical Lemma is the cornerstone of the proof in [80] since it
bounds the energy E at time τ > 0 by the integral of something which can vanish
outside ω ⊂⊂ Ω.

As we will be employing the concept outlined in the proof of Lemma 3.5 within
the context of event-triggered control, let us proceed to furnish the proof for this
lemma.

Proof : The time-derivative of E(t) along the trajectories of system (3.2) is
given by

Ė(t) = Re
(∫

Ω
z̄(t)∂tz(t)

)
= Re

∫
Ω

(
iz̄(t)∆z(t) − iα(x)|z(t)|2

)
.

By the Green’s formula (Lemma A.3 in Appendix) with z = 0 on ∂Ω, and since α
takes its values in R,

Ė(t) = −
∫

Ω
α(x)|z(t)|2 ≤ 0. (3.15)

Using this non-increasing character of the energy E(·), we get

E(τ) ≤ E(0) = 1
2∥z0∥2. (3.16)

Recalling that z = y + ϕ, combining (3.16) and the observability inequality (3.12)
and using the condition on the damping coefficient α (3.3) and the fact that for any
a, b ∈ R, |a− b|2 ≤ 2(a2 + b2), we obtain

E(τ) ≤ Cobs

2

∫ τ

0

∫
ω

|ϕ(x, t)|2 dx dt,

≤ Cobs

∫ τ

0

∫
ω

|z(t)|2 dt+ Cobs

∫ τ

0

∫
ω

|y(t)|2 dt,

≤ Cobs

α0

∫ τ

0

∫
Ω
α(x)|z(t)|2 dt+ Cobs

∫ τ

0

∫
Ω

|y(t)|2 dt,

≤ Cobs

α0

∫ τ

0

∫
Ω
α(x)|z|2 dt+ Cobs∥y(t)∥2

L∞(0,τ ;L2(Ω)).

Using the classical estimate (3.13), the Cauchy-Schwarz’s inequality and (3.3), we
have

∥y∥2
L∞(0,τ ;L2(Ω)) ≤ ∥αz∥2

L1(0,τ ;L2(Ω))

≤
(∫ τ

0

(∫
Ω

|α(x)z(x, t)|2 dx
)1/2

dt

)2

,

≤ ∥α∥∞τ
∫ τ

0

∫
Ω
α(x)|z(x, t)|2 dxdt,

≤ α1τ
∫ τ

0

∫
Ω
α(x)|z(x, t)|2 dxdt.
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Therefore,

E(τ) ≤ Cobs

α0

∫ τ

0

∫
Ω
α(x)|z(x, t)|2 dx dt+ α1τCobs

∫ τ

0

∫
Ω

|α(x)|z(x, t)|2dx dt

≤ Cτ

∫ τ

0

∫
Ω
α(x)|z(x, t)|2 dx dt,

with Cτ = (1/α0 + α1τ)Cobs. ♢

The proof of Theorem 3.4 comes from Lemma 3.5, the identity (3.15) and the
invariance by translation property of the Schrödinger equation.

Indeed, integrating (3.15) on [0, τ ], we obtain:

E(τ) − E(0) ≤ −
∫ τ

0

∫
Ω
α(x)|z(x, t)|2dxdt. (3.17)

We can rewrite (3.14) as follows

−
∫ τ

0

∫
Ω
α(x)|z(t)|2dxdt ≤ − 1

Cτ

E(τ),

Combining this last inequality with (3.17), we get

E(τ) ≤ aE(0)

with
a = Cτ

1 + Cτ

.

Next, we use the fact that the linear Schrödinger equation is invariant by transla-
tion in time, and this argument applies on the interval [(n−1)τ, nτ ], for n = 1, 2, . . . ,
yields:

E(nτ) ≤ aE((n− 1)τ) ≤ · · · ≤ anE(0) = e−nτδE(0),

where we set an = exp (−nτ 1
τ

ln
(

1
a

)
) and δ = 1

τ
ln
(

1
a

)
= 1

τ
ln
(
1 + 1

Cτ

)
> 0.

It is therefore possible to have τ very small.
Now, for every positive time t, there exists n ∈ N∗ such that (n− 1)τ < t ≤ nτ.

Using (3.16) and integration on [(n− 1)τ, t] we have:

E(t) ≤ E((n− 1)τ)
≤ e−(n−1)τδE(0)
≤ e−nτδeτδE(0).

Since e−nτδ ≤ e−δt for t ≤ nτ , and eτδ = 1/a, we get

E(t) ≤ 1
a
e−δtE(0)

so that (3.9) holds for Ccont = 1
a

= 1 + 1
Cτ

and δ = 1
τ

ln
(
1 + 1

Cτ

)
.
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3.3 Static event-based control for the damped
Schrödinger equation

In this section, based on our paper [67], considering a possibly locally damped
Schrödinger equation, we design an event-triggering update mechanism for the
damping, aiming at maintaining the exponential stability of the closed-loop system.

3.3.1 Definition of the static event-triggering mechanism
We are interested by the implementation of the control term u = −iαz, so that the
control signal applied to the plant is updated only at certain instants {tk}k∈N, defined
by an event-triggering law. We assume that the control action is held constant
between two successive updates. Furthermore, differently from classical periodic
sampling techniques, the inter-sampling time tk+1−tk is not assumed to be constant.
The closed-loop system can then be described for all t ∈ [tk, tk+1) as follows1:

i∂tz + ∆z = −iαz(tk), in Ω × [tk, tk+1), k ∈ N

z = 0, on ∂Ω × R+,
z(·, 0) = z0 in Ω

(3.18)

where 0 = t0 < t1 < · · · < tk < tk+1.

Therefore, we can summarize the problem we intend to solve as the one of design-
ing a simple triggering condition in order to guarantee i) the well-posedness of the
closed-loop system (3.18), ii) the avoidance of any Zeno behavior and iii) the expo-
nential stability of the closed loop.

In order to expand the event-triggering strategy developed in the context of finite-
dimensional systems as for example in [111, 88, 41], let us introduce the following
deviation between the last sampled state and the current one ∀x ∈ Ω and t ∈
[tk, tk+1):

ek(x, t) = z(x, t) − z(x, tk). (3.19)

In the sequel, we use the shortcut notation ek(t) or ek. Therefore, we can characterize
the event-triggering law as:

tk+1 = inf
{
t ≥ tk such that ∥ek(t)∥2 > γ∥z(t)∥2

}
(3.20)

where γ > 0 is a design parameter. In other words, as soon as the deviation term
gets larger than a 2γ−proportion of the energy since E(t) = 1

2∥z(t)∥2, an update
event is generated. This yields:

∥ek(t)∥2 ≤ γ∥z(t)∥2, t ∈ [tk, tk+1). (3.21)

This triggering law corresponds to the static event-triggering mechanism defined in
(1.4). In the following we split the study into three steps.

1The dependence in x and t is omitted to simplify.
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3.3.2 Well-posedness of the closed-loop system
As in the previous chapter, the maximal time T ∗ under which the system (3.18)
subjected to the event-triggering law (3.20) has a solution is defined by T ∗ = +∞ if (tk) is a finite sequence,

T ∗ = lim sup
k→+∞

tk if not. (3.22)

The absence of Zeno behavior will actually be stemming from the proof that T ∗ =
+∞ since no accumulation point of the sequence (tk)k≥0 will therefore be possible.

Leveraging on some regularity of the classical solutions to the Schrödinger equa-
tion we state the following first result:

Theorem 3.6: Well-posedness

Let Ω be an open bounded domain of class C2. For any initial conditions
z0 ∈ H2(Ω) ∩H1

0 (Ω), there exists a unique strong solution to (3.18) under the
event-triggering mechanism (3.20), satisfying

z ∈ C0([0, T ∗);H2(Ω) ∩H1
0 (Ω)) ∩ C1([0, T ∗);H1

0 (Ω)). (3.23)

Proof : The well-posedness on every sampled interval [tk, tk+1] is proven by in-
duction.
• Initialization. On the first time interval [0, t1], the control system (3.18) reads
simply 

i∂tz + ∆z = −iα(x)z0, in Ω × (0, t1),
z = 0 on ∂Ω × (0, t1),
z(0) = z0, in Ω.

(3.24)

This is a Schrödinger equation with initial data z0 ∈ H2(Ω)×H1
0 (Ω) compatible with

Dirichlet boundary data and source term f(x, t) = −iα(x)z0(x). Since z0 ∈ H1
0 (Ω)

and α ∈ L∞(Ω),
f ∈ L1(0, t1;H2(Ω) ×H1

0 (Ω)).
Then, Theorem 3.8 allows to deduce that there exists a unique solution satisfying

z ∈ C([0, t1];H2(Ω) ∩H1
0 (Ω)) ∩ C1([0, t1];H1

0 (Ω)).

• Heredity. Let us bring to the forefront that this solution is continuous-in-time
and satisfies z(t1) ∈ H2(Ω) ∩ H1

0 (Ω) so that system (3.18) considered on the next
time interval [t1, t2) has an initial condition in H2(Ω) ∩H1

0 (Ω) compatible with the
homogeneous Dirichlet boundary data and a source term iαz(t1) ∈ L1(t1, t2;H2(Ω)∩
H1

0 (Ω)).
Hence, the same reasoning holds again and the heredity is proved similarly at

any step k ∈ N.
• Conclusion. By induction, the following regularity holds for any k ∈ N,

z ∈ C0([tk, tk+1];H2(Ω) ∩H1
0 (Ω)) ∩ C1([tk, tk+1];H1

0 (Ω)).

Therefore, from the extension by continuity at the update instants tk, one can
conclude that (3.18) has a unique solution in the class (3.23). ♢



3.3. STATIC ETM FOR THE DAMPED SCHRÖDINGER 49

3.3.3 Avoidance of Zeno behavior
In event-triggering mechanism framework the Zeno free phenomenon is challenging
particularly when the static and dynamical algorithms are used. For instance, in
[33, Definition 2], [28, Definition 3], [5] the combination of the absolute and the
relative threshold allowed the authors to ease the proof of the avoidance of the Zeno
phenomenon. When the event-triggering law is built on the comparison between an
error term (the difference of the state value at the last triggering instant and the
current one) and a proportion of the energy, it was usually added a term exponen-
tially decreasing and depending on the initial condition as in [5, 33, 55]. Some recent
exceptions to these approaches is detailed in [66] for the wave equation presented
in chapter 2. The current chapter deals with Schrödinger equation and follows the
same route in order to prove the absence of Zeno phenomenon without any extra
exponential term in the event-triggering law. Hence, using an observability inequal-
ity for the linear Schrödinger equation, the exponential stability of the closed-loop
system under state-based event-triggered control is established. Furthermore, fol-
lowing the same reasoning as in [66] the avoidance of Zeno behavior is guaranteed
thanks to the absence of accumulation points in the sequence of time updates.

In this section, the proof of the absence of Zeno behavior, based on the proof
that the maximal time of existence of a solution to the closed-loop system can only
be T ∗ = +∞ is developed.

Let us show that the natural energy of the closed-loop system, defined in (3.9),
has a useful property stated in the following lemma.

Lemma 3.7: Energy boundedness

Under the event-triggering law (3.20), for all t ∈ (0, T ∗) , the solution to sys-
tem (3.18) has an energy

E(t) = 1
2∥z(t)∥2

that satisfies:
E(0)e−2Ct ≤ E(t) ≤ E(0)e2Ct (3.25)

with C = α1(1 + √
γ) > 0.

Proof : Using (3.19), the closed-loop system (3.18) can be re-written as:
i∂tz + ∆z = −iαz + iαek, in Ω × [tk, tk+1),
z = 0, on ∂Ω × R+,
z(·, 0) = z0, in Ω.

(3.26)

The time-derivative of E(t) along the trajectories of system (3.26) is given by

Ė(t) = Re
(∫

Ω
z̄(t)∂tz(t)

)
= Im

(∫
Ω
iz̄(t)∂tz(t)

)
= −Im

∫
Ω

(
z̄(t)∆z(t) + iα(x)|z(t)|2 + iα(x)ek(t)z̄(t)

)
.

By the Green’s formula (Lemma A.3 in Appendix) with z = 0 on ∂Ω, and since α
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takes its values in R,

Ė(t) = −
∫

Ω
α(x)|z(t)|2 + Re

(∫
Ω
α(x)ēk(t)z(t)

)
. (3.27)

Recalling that 2E(t) = ∥z(t)∥2 and using the inequality (3.21) which, is a con-
sequence of the definition of the event-triggering law, one can calculate from (3.27)
using the Cauchy Schwarz’s inequality (see Lemma A.1 in Appendix):

|Ė(t)| ≤ α1∥z(t)∥2 + α1∥ek(t)∥∥z(t)∥
≤ 2α1E(t) + 2α1

√
γE(t)

|Ė(t)| ≤ 2CE(t) (3.28)

with
C = α1(1 + √

γ). (3.29)
This shows that −2CE(t) ≤ Ė(t) ≤ 2CE(t). By Gronwall’s Lemma on [tk, t], the
second inequality gives

E(t) ≤ E(tk) exp
(∫ t

tk

2Cdu
)
,∀t ≥ tk,

that is E(t) ≤ E(tk)e2C(t−tk). By applying also Gronwall’s Lemma to the first in-
equality one gets: E(t) ≥ E(tk)e−2C(t−tk). Hence, for any t ∈ [tk, tk+1)

E(tk)e−2C(t−tk) ≤ E(t) ≤ E(tk)e2C(t−tk). (3.30)

Then taking t = tk+1, inequality (3.30) becomes :

E(tk)e−2C(tk+1−tk) ≤ E(tk+1) ≤ E(tk)e2C(tk+1−tk).

Inferring (3.30) for E(tk) allows to deduce:

E(tk−1)e−2C(tk+1−tk−1) ≤ E(tk+1) ≤ E(tk−1)e2C(tk+1−tk−1).

Since t0 = 0, by induction we get:

E(0)e−2Ctk+1 ≤ E(tk+1) ≤ E(0)e2Ctk+1 .

Then inequality (3.30) yields:

E(0)e−2Ctke−2C(t−tk) ≤ E(t) ≤ E(0)e2Ctke2C(t−tk),

showing that (3.25) holds for all t ∈ R+. ♢
We will also require the following lemma, which provides an upper bound for the
term |∆z(t)|. This lemma is analogous to Lemma 2.7 in Chapter 2.

Lemma 3.8: Intermediate result

For any z0 ∈ H2(Ω) ∩H1
0 (Ω), the closed-loop system (3.18) with (3.20) has a

unique solution satisfying z ∈ C([0, T ∗);H2(Ω) ∩ H1
0 (Ω)), then there exists a

constant C∆ > 0 such that ∀t ∈ [0, T ∗)

∥∆z(t)∥ ≤ C∆ = C∥z0∥2
H2(Ω)∩H1

0 (Ω). (3.31)
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Proof : Combining Lemma 3.7 and Theorem 3.6, for all solution to the system{
i∂tz + ∆z = −iα(x)z(tk),
z(0) = z0,

(3.32)

we obtain
∥z(t)∥2 ≤ C∥z0∥2 with C = e2α1(1+√

γ)T ∗
. (3.33)

Let us set w = ∂tz so that w verifies{
i∂tw + ∆w = 0
w(0) = i∆z0 − αz0.

(3.34)

Therefore, since z0 ∈ H2 ∩H1
0 (Ω) we have:

∥∂tz(t)∥2 = ∥w(t)∥2

≤ C∥z0∥2
H2(Ω)∩H1

0 (Ω)

This leads to

∥∆z(t)∥2 = ∥ − i∂tz(t) − iαz(tk)∥2

= C∥z0∥2
H2(Ω)∩H1

0 (Ω) = C∆.

♢

We can now present the main result of this section regarding the strong non-
zenoness. This theorem is similar to Theorem 2.8.

Theorem 3.9: Zeno free

There is no Zeno phenomenon for the system (3.18) under the event-triggering
mechanism (3.20).
Equivalently, the maximal time defined by (3.22) is T ∗ = +∞.

Proof : Following the same reasoning as in [111, 41], the proof is based on the
study of the function φ defined on [tk, tk+1) by the ratio

φ : t 7→ φ(t) = ∥ek(t)∥2

2γE(t) .

φ is a non negative function that satisfies, ∀k ∈ N, φ(t+k ) = 0 and jumps from
φ(t−k+1) = 1 to φ(t+k+1) = 0, where φ(t−k+1) is the value of φ before the update in time
tk φ(t+k+1) is the one after the update in time tk+1. Of course, we need to assume
that E(t) ̸= 0 ∀t ∈ [tk, tk+1), recalling that E(t) = 0 would mean stopping the
updates since, then, E remains null. Let us study the time-derivative of φ :

φ̇(t) = Re (
∫

Ω ∂tek(t)ēk(t))
γE(t) − Ė(t)∥ek(t)∥2

2γ (E(t))2 . (3.35)
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We have from (3.19), ∂tek = ∂tz a.e. in Ω, and using equation (3.26) and the
Cauchy Schwarz’s inequality we get, ∀t ∈ [tk, tk+1),

Re
(∫

Ω
∂tek(t)ēk(t)

)
= Im

(∫
Ω

∆z(t)ēk(t)
)

− Re
(∫

Ω
αz(t)ēk(t) + α|ek(t)|2

)
≤ ∥ek(t)∥∥∆z(t)∥ + α1∥ek(t)∥∥z(t)∥ + α1∥ek(t)∥2.

Since for any z0 ∈ H2 ∩ H1
0 (Ω), the closed-loop system (3.26) under the event-

triggering mechanism (3.20) has a unique solution z ∈ C0([0, T ∗);H2(Ω) ∩H1
0 (Ω)),

then from Lemma 3.8, there exists a constant C∆ > 0 such that ∀t ∈ [0, T ∗),

∥∆z(t)∥ ≤ ∥∆z∥L∞(0,T ;L2(Ω)) ≤ C∆. (3.36)

Then using ∥z(t)∥2 = 2E(t) and (3.21) it follows :

Re (
∫

Ω ∂tek(t)ēk(t)dx)
γE(t) ≤

C∆

√
2γE(t)

γE(t) +
α1

√
2γE(t)

√
2E(t)

γE(t) + 2α1φ(t)

≤ C∆
√

2√
γE(t)

+ 2α1√
γ

+ 2α1φ(t). (3.37)

On the other hand, using (3.28) we get:

−Ė(t)∥ek(t)∥2

2γ (E(t))2 ≤ 2α1(1 + √
γ)φ(t). (3.38)

Gathering the terms (3.37) and (3.38) we have:

φ̇(t) ≤ C∆
√

2√
γE(t)

+ 2α1√
γ

+ 2α1(2 + √
γ)φ(t).

Since φ(t) ≤ 1 from the event-triggering law, it follows

φ̇(t) ≤ C∆
√

2√
γE(t)

+ 2α1√
γ

+ 2α1(2 + √
γ),

or equivalently,
φ̇(t) ≤ A+ B√

E(t)

with A = 2α1√
γ

+ 2α1(2 + √
γ) and B = C∆

√
2
γ

.

Using Lemma 3.7 one has ∀t ∈ [0, T ∗], E(t) ≥ E(0)e−2Ct ≥ E(0)e−2CT ∗
, and

then φ̇(t) ≤ A + BeCT ∗
√

E(0)
. Therefore, ∀k ∈ N, integrating on [tk, tk+1] knowing that

φ(tk) = 0 and lim
k→tk+1

φ(t) = 1 we obtain:

1 ≤

A+ BeCT ∗√
E(0)

 (tk+1 − tk). (3.39)
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Now let tk → T ∗ as k → +∞ in (3.39), then we get a contradiction if T ∗ ̸= +∞. We
therefore get T ∗ = +∞ leading to the absence of any accumulation points. Hence,
the avoidance of Zeno behavior is guaranteed. ♢

3.3.4 Exponential stability
Let us now propose sufficient conditions to ensure the exponential stability of system
(3.18)-(3.20).

Inspired by the energy estimate (3.14) concerning the continuous setting, we
start with the following Lemma for our event-triggered setting.

Lemma 3.10: Energy estimate

Consider the solution z to system (3.18) with α satisfying (3.3). For any τ > 0
there exist some constants K1, K2 > 0 such that

E(τ) ≤ K1

∫ τ

0

∫
Ω
α(x)|z(t)|2dxdt+K2

∫ τ

0
E(t)dt. (3.40)

Proof : Let τ > 0 and let us recall that the time-derivative of E(t) is

Ė(t) = −
∫

Ω
α(x)|z(t)|2 + Re

(∫
Ω
α(x)ēk(t)z(t)

)
.

From the condition (3.3) on function α, we get

Ė(t) ≤ α1∥ek(t)∥∥z(t)∥.
Then, using (3.21) we get

Ė(t) ≤ α1
√
γE(t).

Integrating this relation on we get:

E(τ) ≤ E(0) + 2α1
√
γ
∫ τ

0
E(t)dt. (3.41)

Inspired by the proof of Theorem 3.4, we introduce the variables y and ϕ such
that z = y + ϕ where z is solution to (3.26) and y = y(x, t) and ϕ = ϕ(x, t) are
solution to the following systems

i∂ty + ∆y = −iαz + iαek in Ω × [tk, tk+1),
y = 0 on ∂Ω × R+,
y(·, 0) = 0 in Ω,

(3.42)

and 
i∂tϕ+ ∆ϕ = 0 in Ω × R+,
ϕ = 0 on ∂Ω × R+,
ϕ(·, 0) = z0 in Ω.

(3.43)

Furthermore, for system (3.43) the observability inequality given Lemma 3.2
holds for w ≡ ϕ and f ≡ 0.
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Hence, from (3.41), inequality (3.21), and the fact that ϕ = z − y and that for
any a, b ∈ R, |a− b|2 ≤ 2(a2 + b2), we have:

E(τ) ≤ 1
2∥z0∥2 + 2α1

√
γ
∫ τ

0
E(t)dt

= 1
2∥ϕ(0)∥2 + 2α1

√
γ
∫ τ

0
E(t)dt

≤ Cobs

2α0

∫ τ

0

∫
ω
α(x)|ϕ(x, t)|2dxdt+ 2α1

√
γ
∫ τ

0
E(t)dt

≤ Cobs

α0

∫ τ

0

∫
Ω
α(x)|z(t)|2dt+ Cobsα1

α0
∥y∥2

L∞(0,τ ;L2(ω)) + 2α1
√
γ
∫ τ

0
E(t)dt.

Using classical energy estimate (3.13), on the Schrödinger equation (3.42), with
source term −iαz + iαek, we have

∥y∥2
L∞(0,τ ;L2(ω)) ≤ ∥α(ek − z)∥2

L1(0,τ ;L2(Ω))

≤ 2τα2
1

∫ τ

0
∥ek(t)∥2dt+ 2τα1

∫ τ

0

∫
Ω
α(x)|z(t)|2dt.

From the event-triggering mechanism, one has (3.21), so that

∥y∥2
L2(0,τ ;L2(ω)) ≤ 4τα2

1γ
∫ τ

0
E(t)dt+ 2τα1

∫ τ

0

∫
Ω
α(x)|z(t)|2dt.

Hence,

E(τ) ≤
(
Cobs

α0
+ 2τCobsα

2
1

α0

)∫ τ

0

∫
Ω
α(x)|z(t)|2dt+

(
2α1

√
γ + 4τCobsα

3
1γ

α0

)∫ τ

0
E(t)dt.

Therefore we get inequality (3.40) with

K1 = Cobs

α0

(
1 + 2τα2

1

)
;K2 = 2α1

√
γ + 4τCobsα

3
1γα

−1
0 . (3.44)

♢
Then we can state and prove the following main exponential stability result.

Theorem 3.11: Exponentially stability

There exists γ0 > 0 such that for all γ ∈ (0, γ0), for any initial condition
z0 ∈ H2(Ω) ∩H1

0 (Ω), the closed-loop system (3.18) under the event-triggering
mechanism (3.20) is exponentially stable with decay rate δ > 0. In other
words, there exists K > 0 such that

E(t) ≤ KE(0)e−2δt, ∀t > 0. (3.45)

Proof : In the sake of clarity, we will first prove this result in the simpler
situation where ω = Ω before detailing the general case where one only knows that
α may vanish away from the Γ0 boundary.

• Globally non-vanishing damping.
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When the damping function does not vanish in Ω, one sets ω = Ω. In that case,
one obtains from (3.27), inequality (3.21) on the damping, the Cauchy-Schwarz’s
inequality and the event-triggering law (3.20) that

Ė(t) ≤ (−2α0 + 2α1
√
γ)E(t).

Thus, recalling that α0 < α1 and choosing γ small enough, there exists

δ = α0 − α1
√
γ > 0

such that
Ė(t) ≤ −2δE(t)

and (3.45) holds.
• Locally non-vanishing damping.
In the general case, the damping may vanish outside ω and we will need to use

Lemma 3.10. Integrating (3.27) on [0, τ ], we obtain:

E(τ) − E(0) ≤ 2α1
√
γ
∫ τ

0
E(t)dt−

∫ τ

0

∫
Ω
α(x)|z(t)|2dt. (3.46)

We can rewrite (3.40) of Lemma 3.10 as follows

−
∫ τ

0

∫
Ω
α(x)|z(t)|2dxdt ≤ − 1

K1
E(τ) + K2

K1

∫ τ

0
E(t)dt,

Combining this last inequality with (3.46), we get(
1 + 1

K1

)
E(τ) ≤ E(0) +

(
2α1

√
γ + K2

K1

) ∫ τ

0
E(t)dt.

It brings by Gronwall’s Lemma,

E(τ) ≤ K1

K1 + 1 exp
[

K1

K1 + 1

(
2α1

√
γ + K2

K1

)
τ
]
E(0),

that can be written as E(τ) ≤ peK3τE(0) with

p = K1

K1 + 1 , K3 = K1

K1 + 1

(
2α1

√
γ + K2

K1

)
.

Next, we use the fact that the linear Schrödinger equation is invariant by transla-
tion in time, and this argument applies on the interval [(n−1)τ, nτ ], for n = 1, 2, . . . ,
yields (denoting a = peK3τ ):

E(nτ) ≤ aE((n− 1)τ) ≤ · · · ≤ anE(0) = e−nτκE(0),

where we set an = exp (−nτ 1
τ

ln
(

1
a

)
) and κ = 1

τ
ln
(

1
a

)
. Note that κ > 0 if and only

if a < 1, so that we must have peτK3 < 1 which is equivalent to

τ < − ln p
K3

=
(K1 + 1) ln

(
K1+1

K1

)
(
2K1α1

√
γ +K2

) .
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Now, for every positive time t, there exists n ∈ N∗ such that (n− 1)τ < t ≤ nτ.
Using (3.46) and integration on [(n− 1)τ, t] we have:

E(t) ≤ E((n− 1)τ) + 2α1
√
γ
∫ t

(n−1)τ
E(s)ds

≤ e−nτκeτκE(0) + 2α1
√
γ
∫ t

0
E(s)ds.

Since e−nτκ ≤ e−κt for t ≤ nτ , and eτκ = 1/a, we get

E(t) ≤ 1
a
e−κtE(0) + 2α1

√
γ
∫ t

0
E(s)ds.

Then by Gronwall’s Lemma, it follows:

E(t) ≤ 1
a
e−κte2α1

√
γtE(0)

and if γ ≤ κ2

4α2
1

then
2δ = κ− 2α1

√
γ ≥ 0

and we obtain E(t) ≤ 1
a
e−2δtE(0). The proof of Theorem 3.17 is complete. ♢

Remark 3.2 The existence of a suitable design parameter γ depends on the domain
ω.

1. If ω = Ω, then the design parameter has to satisfy γ ∈ (0, α2
0

α2
1
) where α0 and

α1 are given in (3.3).

2. If ω ⊂ Ω, then the design parameter γ is solution to the inequatility κ −
2α1

√
γ ≥ 0, which can be also written:

P (β) = 4τCobsα
3
1

α0(K1 + 1)β
2 + 4α1β + 1

τ
ln
(

K1

K1 + 1

)
≤ 0 (3.47)

where β = √
γ, K1 is given by (3.44), Cobs is the contant of observability (3.12).

Since we have α0(K1+1)
4τCobsα3

1
ln
(

K1
K1+1

)
< 0, then it is guaranteed that (3.47) admits two

opposit sign roots, allowing to find β (thus γ) such that P (β) ≤ 0.

3.3.5 Numerical simulation
We consider the one-dimensional Schrödinger equation (3.18) on Ω = (0, π) with ini-
tial condition z(x, 0) = z0(x) = sin(x), x ∈ [0, π] compatible with the homogeneous
Dirichlet boundary condition. For numerical simulations, we use the divided differ-
ences on a uniform grid for the space variable and the discretization with respect to
time was done using the Crank Nicolson scheme.

We stabilize the system under the event-triggering mechanism (3.20).
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Figure 3.2: Damping coefficient α

Let ω = (0, π/2) be a neighborhood of x0 = 0. We define

α(x) =
1, if x ∈ [0, π/2],

sin(x), if x ∈ (π/2, π]

This α satisfies condition (3.3) with α0 = α1 = 1. Using [87, Theorem 2.2 and
equation (5.5)] we select the constants Cobs = 2.8, τ = 5 we get K1 = 30 and from
(3.47), γ ∈ (0, 0.041).

A simulation is done with an appropriate γ = 0.04 and Figure 3.5 allows to
compare the very much alike imaginary part Im(z) of the numerical solution z of
the continuous-in-time closed-loop systems (3.2) (top) and the event-triggered one
(3.18)-(3.20) (bottom). It also illustrates the guarantee of the exponential stability
of the solution as proved by in Theorem 3.11. This is confirmed even more clearly
with Figure 3.4 where we depicted the evolution of the energy of the solution to
systems (3.18) and (3.2).
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Figure 3.3: Imaginary part of the numerical solution to the closed-loop system
(3.18) under the event-triggering mechanism (3.20) with γ = 0.04 (bottom), and
the solution the continuous closed-loop system (3.2)(top).
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Figure 3.4: Time-evolution of the L2−norm of the solution to the closed-loop system
(3.18) under the event-triggering rule (3.20) (dotted black) and to the continuous-
in-time system (3.2) (solid line).
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3.4 Dynamic ETC for the Schrödinger equation
subject to constant or localized damping

With the goal of enriching the static event-triggering mechanism (state-based trig-
gering condition) designed in section 3.3, we propose here a dynamic event-triggering
rule, similarly to the one introduced for general framework of nonlinear finite-
dimentional control system in [41] and in [131, 85] using small-gain and high gain
methods. This new dynamic rule consists in introducing an additional internal dy-
namic variable to the static law. It is worthwhile to mention that the dynamic
event-triggering strategy has already been extended to PDE framework in [30] for
a coupled 2 × 2 linear hyperbolic system, in [123] for sandwich hyperbolic PDE
systems and in [93] for a class of reaction-diffusion PDEs with Robin actuation.

3.4.1 Definition of a dynamic event-triggering mechanism
Inspired by the emulation approach introduced in the context of ordinary differential
equation in [111, 88, 41], a state-dependent criterion was proposed in the previous
section taking the shape of the static event-triggering mechanism (3.20). In this
section, we propose to enrich our event-triggering mechanism (3.20) by adding an
internal scalar dynamic variable m satisfying the following differential equation

ṁ(t) = −ηm(t) + 2γE(t) − ∥ek(t)∥2, for t ≥ tk (3.48)

with m(t0) = 0 and m(t−k ) = m(tk) = m(t+k ) and η > 0 a design parameter.
Then, we can describe the event-triggering law under consideration, starting from

t0 = 0 by
tk+1 = inf

{
t ≥ tk, ∥ek(t)∥2 − 2γE(t) > 1

θ
m(t)

}
(3.49)

where γ > 0 and θ > 0 are design parameters as well. This triggering law corres-
ponds to the one defined by G given by (1.6).

Remark 3.3 When the design parameter θ tends to +∞ in the dynamic rule (3.49),
we obtain the static rule (3.20). Note that the signal m(t) can be considered as a
filtered value of the difference 2γE(t) − ∥ek(t)∥2.

Similarly to [41], one gets the following result.
Lemma 3.12:

Using the definition of the event-triggering mechanism (3.49), it follows, for
all t ∈ [0, T ∗), k ≥ 0 that

m(t) ≥ 0 and ∥ek(t)∥2 ≤ 1
θ
m(t) + 2γE(t). (3.50)

Proof : Indeed, between two triggering instants tk, tk+1, from (3.49), we have

1
θ
m(t) + 2γE(t) − ∥ek(t)∥2 ≥ 0.
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Combined to (3.48), this inequality brings

1
θ
m(t) + ṁ(t) + ηm(t) ≥ 0, i.e ṁ(t) ≥ −

(1
θ

+ η
)
m(t)

for all t ∈ [tk, tk+1). Therefore, for all t ∈ [tk, tk+1]

m(t) ≥ m(tk)e−( 1
θ

+η)(t−tk). (3.51)

Since m(t0) = 0, it follows from (3.51) that m(t) ≥ 0 for all t ∈ [0, t1]. The same
reasonning will give m(t) ≥ 0 for t ∈ [t1, t2] and then we obtain successively in the
future intervals m(t) ≥ 0 for all t ∈ [0, T ∗). ♢

Remark 3.4 The dynamic event-triggering mechanism is frequently constructed
with m(t) ≤ 0 as in [33, 30, 93, 123] but we will follow the same approach as
in [41, 56] where m(t) is positive.

Remark 3.5 For a given state z(tk) of the event-triggered control system (3.18),
since m(t) ≥ 0, the next execution time tk+1 given by the dynamic rule (3.49) comes
later than the one given by the static rule (3.20). Thus, we can hope less frequent
updates with this dynamic law.

As in section 3.3, we want to ensure 1) the well-posedness, 2) the absence of Zeno
and 3) the exponential stability of the closed loop subjected to the event-triggering
mechanism (3.49)-(3.48).

3.4.2 Well-posedness and absence of Zeno behavior
Leveraging on some regularity of the classical solutions to the Schrödinger equation
we get the following theorem.

Theorem 3.13: Well-posedness of the event-triggered control system

Let Ω be an open bounded domain of class C2. For any initial conditions
z0 ∈ H2(Ω) ∩H1

0 (Ω), there exists a unique solution to (3.18) under the event-
triggering mechanism (3.49), satisfying

z ∈ C0([0, T ∗);H2(Ω) ∩H1
0 (Ω)) ∩ C1([0, T ∗);L2(Ω)). (3.52)

Proof : The proof is constructed by induction and is similar to the one that
has been presented in for proving Theorem 3.3.2 for the static event-triggering law
(3.20). ♢

Before proving that the Zeno phenomenon cannot occur, let us state the following
intermediate result which is the equivalent version of Lemma 3.7 in the dynamic
event-triggering mechanism framework.
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Lemma 3.14: Intermediate result

Under the event-triggering law (3.49), for all t ∈ [0, T ∗) one has:

2γθE(0) ≤ e2Kt (2γθE(t) +m(t)) , (3.53)

with
K = 1

2 max
{

3α1 + 2
θ

+ α1γ ; α1γ + 1
θ

+ η
}
. (3.54)

Proof : Let us start with the fact that from (3.19), the event-triggered closed-
loop system also reads:

i∂tz + ∆z = −iαz + iαek, in Ω × [tk, tk+1),
z = 0, on ∂Ω × R+,
z(·, 0) = z0, in Ω.

(3.55)

Performing the Green formula with z = 0 on ∂Ω, the time-derivative of E(t)
along the trajectories of system (3.55) is given by:

Ė(t) =Re
(∫

Ω
z̄(t)∂tz(t)

)
=Im

(
−
∫

Ω
z̄(t)∆z(t)

)
− Im

(∫
Ω
iα(x)|z(t)|2

)
+ Im

(
i
∫

Ω
α(x)ek(t)z̄(t)

)
Ė(t) = −

∫
Ω
α(x)|z(t)|2 + Re

(∫
Ω
α(x)ēk(t)z(t)

)
.

Then, we use (3.3), along with Cauchy-Schwarz and Young’s inequalities, to obtain∣∣∣Ė(t)
∣∣∣ ≤ α1∥z(t)∥2 + α1∥ek(t)∥∥z(t)∥

≤ 3α1

2 ∥z(t)∥2 + α1

2 ∥ek(t)∥2. (3.56)

Hence,

|2γθĖ(t)+ṁ(t)| ≤ γθ
(
3α1∥z(t)∥2 + α1∥ek(t)∥2

)
+ηm(t)+2γE(t)+∥ek(t)∥2. (3.57)

From (3.50) and using ∥z(t)∥2 = 2E(t), we get ∀t ∈ [tk, tk+1),

|2γθĖ(t) + ṁ(t)| ≤ 6α1θγE(t) + ηm(t) + 2γE(t) + (α1θγ + 1)
(1
θ
m(t) + 2γE(t)

)
,

≤
(
6α1θγ + 4γ + 2α1θγ

2
)
E(t) +

(
α1γ + 1

θ
+ η

)
m(t),

≤ 2θγ
(

3α1 + 2
θ

+ α1γ
)
E(t) +

(
α1γ + 1

θ
+ η

)
m(t),

so that with K defined by (3.54), we can write ∀t ∈ [tk, tk+1),

|2γθĖ(t) + ṁ(t)| ≤ 2K (2γθE(t) +m(t)) .
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From there,

− 2K (2γθE(t) +m(t)) ≤ 2γθĖ(t) + ṁ(t)
Ḟ (t) = 2γθĖ(t) + ṁ(t) + 2K (2γθE(t) +m(t)) ≥ 0

and one gets that F (t) = e2Kt(2γθE(t) + m(t)) satisfies Ḟ (t) ≥ 0 so that for any
t ≥ tk, F (t) ≥ F (tk). Inferring this inequality for F (tk) up to t0 = 0, one obtains

F (t) ≥ F (tk) ≥ F (tk−1) ≥ · · ·F (t1) ≥ F (0).

Using the fact that m(t0) = 0, we get (3.53) for all t ∈ [0, T ∗) and the lemma is
proved. ♢

We can now provide the main result on the fact that our event-triggering law
does not generate some infinite sequence of updates in finite time.

Theorem 3.15: Avoidance of the Zeno phenomenon

There is no Zeno phenomenon for the system (3.18) under the event-triggering
mechanism (3.49). In other words, following (3.49), there will not be infinitely
many updates of the control of system (3.18) over any bounded time interval.

Proof : The proof is done by contradiction and mimics that one of Theorem 3.9.
Let us assume that T ∗ defined by 3.22 is such that T ∗ < +∞. Let us also define
and study the evolution of the following function :

φ : t ∈ [tk, tk+1) 7→ φ(t) = θ∥ek(t)∥2

2γθE(t) +m(t) . (3.58)

As in [41, 67], the proof is based on the study of φ in the interval [0, T ∗]. This
function φ is non negative and satisfies, ∀k ∈ N, φ(tk) = 0 and jumps from φ(t−k+1) =
1 to φ(t+k+1) = 0, where φ(t−k+1) is the value of φ before the update and φ(t+k+1) is
the one after. The time-derivative of φ reads:

φ̇(t) =
θ d

dt
∥ek(t)∥2

2γθE(t) +m(t) − φ(t) 2γθĖ + ṁ(t)
2γθE(t) +m(t) . (3.59)

On the one hand, (3.19) and (3.18) imply that

i∂tek(t) = i∂tz(t) = −∆z(t) − iα(x)z(t) + iα(x)ek(t)

so that we have by Cauchy-Schwarz’s inequality:

1
2
d

dt
∥ek(t)∥2 = Im

∫
Ω
iēk(t)∂tek(t)

= Im
∫

Ω
ēk(t) (−∆z(t) − iα(x)z(t) + iα(x)ek)

≤ ∥∆z(t)∥∥ek(t)∥ + α1∥ek(t)∥∥z(t)∥ + α1∥ek(t)∥2.

From Theorem 3.13, it follows that for all z0 ∈ H2(Ω) ∩ H1
0 (Ω), the closed-loop

system (3.55) under the event-triggering mechanism (3.49) has a unique solution
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z ∈ C0([0, T ∗);H2(Ω) ∩ H1
0 (Ω)). Then from Lemma 3.8 there exists a constant

C∆ = C∆(T ∗, ∥z0∥H2(Ω)∩H1(Ω)) > 0 such that ∀t ∈ [0, T ∗),

∥∆z(t)∥ ≤ ∥∆z∥L∞(0,T ;L2(Ω)) ≤ C∆. (3.60)

By Young’s inequality and (3.3) it follows:

d

dt
∥ek(t)∥2 ≤ 2C∆∥ek(t)∥ + 3α1∥ek(t)∥2 + α1∥z(t)∥2.

On the other hand, dealing with the numerator of the second term of (3.59), we
obtain (3.57). Re-organizing terms in (3.59), we get

(2γθE(t) +m(t))φ̇(t) ≤ 2C0θ∥ek(t)∥ + 3α1θ∥ek(t)∥2

+ 2α1θE(t) + φ(t) (6θγα1 + 2γ)E(t)
+ φ(t)(θα1γ + 1)∥ek(t)∥2 + φ(t)ηm(t). (3.61)

In (3.61), several terms have to be handled. First, from (3.50) we have

θ∥ek(t)∥ ≤
√
θ
√

(2θγE(t) +m(t))

so that using Lemma 3.14 we can write, for all t ∈ [0, T ∗),

θ∥ek(t)∥
2γθE(t) +m(t) ≤

√
θ√

2γθE(t) +m(t)
≤

√
θ√

2γθE(0)e−2Kt
≤ eKT√

2γE(0)
. (3.62)

Moreover, one should notice that

E(t)
2γθE(t) +m(t) ≤ 1

2γθ and m(t)
2γθE(t) +m(t) ≤ 1. (3.63)

Therefore, back to (3.61), deviding by (2γθE(t) +m(t)), recalling

φ(t) = θ∥ek(t)∥2

2γθE(t) +m(t)

and using (3.62) and (3.63), we obtain

φ̇(t) ≤ 2C∆e
KT ∗√

2γE(0)
+ 3α1φ(t) + α1

γ
+
(

3α1 + 1
θ

)
φ(t) + θα1γ + 1

θ
φ2(t) + ηφ(t).

Finally, denoting

a0 = 2C∆e
KT ∗√

2γE(0)
+ α1

γ
, a1 = 6α1 + η + 1

θ
, a2 = α1γ + 1

θ
,

we can actually write
φ̇(t) ≤ a0 + a1φ(t) + a2φ

2(t),
which gives, by integration over (tk, tk+1)
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tk+1 − tk ≥
∫ tk+1

tk

φ̇(t)
a0 + a1φ(t) + a2φ2(t)dt

and after a change of variable s = φ(t)

tk+1 − tk ≥
∫ 1

0

ds

a0 + a1s+ a2s2

using the fact that φ(tk) = 0, lim
t→t−

k+1

φ(tk+1) = 1.

One gets
1 ≤ 1

A
(tk+1 − tk) (3.64)

where A =
∫ 1

0

ds

a0 + a1s+ a2s2 > 0 since a0, a1, a2 > 0.
Since we assumed that T ∗ < +∞, passing to the limit tk → T ∗ as k → +∞

in (3.64) leads to a contradiction. We therefore obtained T ∗ = +∞, ensuring the
absence of any accumulation points and the avoidance of Zeno behavior. ♢

Remark 3.6 Differently from the usual literature dealing with event-triggered con-
trol for finite-time dimension systems, the proof of Theorem 3.15 is not based on
the existence of a dwell-time (see for example [41, 29]) which is a sufficient but
not necessary condition. One could consider that A =

∫ 1

0

ds

a0 + a1s+ a2s2 is
a dwell time, but then one should notice that as a0, it is dependent on T ∗ and the
initial condition through E(0). Then taking another route, proving that there exists
no accumulation point for the sequence (tk)k≥0 is actually necessary and sufficient.

3.4.3 Exponential stability analysis
This section addresses the problem of the exponential stability of system (3.18)-
(3.49). In order to prove the stability of the closed loop, we consider the Lyapunov
candidate function defined by :

W (t) = E(t) +m(t), (3.65)

with the energy E defined in (3.9) and the internal state m defined in (3.48).
We can first take inspiration from [79, 80] in order to bound the functional W ,

defined in (3.65) as we did for the energy in Lemma 3.10. This is reported in the
following intermediate Lemma.

Lemma 3.16: Energy-like estimate

Consider the solution z to system (3.18)-3.49. For any τ > 0 there exist some
constant K1 and K2 > 0 such that W (t) = E(t) +m(t), satisfies:

W (τ) ≤ K1

∫ τ

0

∫
Ω
α(x)|z(t)|2dxdt+K2

∫ τ

0
W (t)dt. (3.66)
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Proof : As for Lemma 3.5 and Lemma 3.10, the proof will rely strongly on
an observability inequality proved for this Schrödinger equation with internally loc-
alized damping in [80] and recalled in Lemma 3.2. Beware that the damping’s
non-vanishing set ω has to be a neighborhood of Γ0 ⊂ ∂Ω.

Let τ > 0 and let us recall that from the time-derivative of E(t) in (3.56) we
have, since m(t) ≥ 0,

Ẇ (t) = −
∫

Ω
α(x)|z(t)|2 + Re

(∫
Ω
α(x)ēk(t)z(t)

)
− ηm(t) + 2γE(t) − ∥ek(t)∥2 (3.67)

≤ Re
(∫

Ω
α(x)ēk(t)z(t)

)
+ 2γE(t).

From (3.3), (3.50), Cauchy-Schwarz and Young’s inequalities we get

Ẇ (t) ≤ α1

(
∥ek(t)∥2

2√
γ

+
√
γ∥z(t)∥2

2

)
+ 2γE(t)

≤ α1

2√
γ

(
2γE(t) + 1

θ
m(t)

)
+ (α1

√
γ + 2γ)E(t),

yielding,

Ẇ (t) ≤ C1W (t), with C1 = max{2α1
√
γ + 2γ ; α1/(2θ

√
γ)}.

Integrating on [0, τ ], and knowing that W (0) = E(0) since m(0) = 0 we get

W (τ) ≤ E(0) + C1

∫ τ

0
W (t)dt. (3.68)

Consider the solution z to (3.18) as z = y+ϕ the sum of two variables y = y(x, t)
and ϕ = ϕ(x, t) satisfying (3.10) and (3.11).

Taking advantage of this important result, from (3.68), under assumption (3.3)
and the fact that ϕ = z − y, recalling that for any a, b ∈ R, |a − b|2 ≤ 2(a2 + b2),
we can write using the observability inequality (3.12):

W (τ) ≤ 1
2∥z0∥2 + C1

∫ τ

0
W (t)dt

≤ 1
2∥ϕ(0)∥2 + C1

∫ τ

0
W (t)dt

≤ Cobs

2α0

∫ τ

0

∫
ω
α(x)|ϕ(x, t)|2dxdt+ C1

∫ τ

0
W (t)dt

≤ Cobs

α0

∫ τ

0

∫
Ω
α(x)|z(t)|2dt+ Cobsα1

α0
∥y∥2

L∞(0,τ ;L2(ω)) + C1

∫ τ

0
W (t)dt.

Using classical energy estimate (3.13), on the Schrödinger equation (3.10), for a
source term −iαz + iαek, one obtains

∥y∥2
L∞(0,τ ;L2(ω) ≤ ∥α(ek − z)∥2

L1(0,τ ;L2(Ω))

≤ 2τα2
1

∫ τ

0
∥ek(t)∥2dt+ 2τα1

∫ τ

0

∫
Ω
α(x)|z(t)|2dt.
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From (3.50), we have ∀t ∈ [tk, tk+1), ∥ek(t)∥2 ≤ C2W (t) with C2 = max{2γ; 1
θ
},

thus

∥y∥2
L∞(0,τ ;L2(ω)) ≤ 2τα2

1C2

∫ τ

0
W (t)dt+ 2τα1

∫ τ

0

∫
Ω
α(x)|z(t)|2dt.

Hence,

W (τ) ≤
(
Cobs

α0
+ 2τCobsα

2
1

α0

)∫ τ

0

∫
Ω
α(x)|z(t)|2dt+

(
C1 + 2τCobsα

3
1C2

α0

)∫ τ

0
W (t)dt.

Therefore we get inequality (3.66) with

K1 = Cobs

α0

(
1 + 2τα2

1

)
;K2 = C1 + 2τCobsα

3
1C2

α0
. (3.69)

♢

Finally, the main exponential stability result is proven by using the Lyapunov
functional candidate W defined in (3.65) and by studying its time-derivative along
the trajectories of the closed-loop system. The result is reported in the theorem
below.

Theorem 3.17: Exponential stability

There exists γ > 0 such that for any initial condition z0 ∈ H2(Ω) ∩ H1
0 (Ω),

the closed-loop system (3.18) with damping coefficient satisfying (3.3), and
under the event-triggering mechanism (3.49), is exponentially stable. In other
words, there exist an overshoot constant K > 0 and a decay rate δ > 0 such
that

E(t) ≤ KE(0)e−2δt, ∀t > 0. (3.70)

Proof : We use the following Lyapunov functional candidate W (t) = E(t) +
m(t), (also defined in (3.65)). In the proof we consider two cases depending on the
damping.

• Globally non-vanishing damping. Let us discuss the case where the damping
does not vanish in Ω (corresponding to ω = Ω). Performing the Cauchy-Schwarz
and Young’s inequalities and using (3.3) we get from (3.50) and (3.67)

Ẇ (t) ≤ −α0∥z(t)∥2 + α1∥z(t)∥∥ek(t)∥ − ηm(t) + 2γE(t) − ∥ek(t)∥2

≤ (2γ − 2α0)E(t) + α1

2ε∥z(t)∥2 +
(
α1ε

2 − 1
)

∥ek(t)∥2 − ηm(t)

≤
(

−2α0 + α1εγ + α1

ε

)
E(t) +

(
−η + α1ε

2θ − 1
θ

)
m(t),

with α1ε > 2 . Setting δ1 = 1
2 min

{
2α0 − α1εγ − α1

ε
; η − α1ε

2θ + 1
θ

}
we obtain

Ẇ (t) ≤ −2δ1W (t). (3.71)
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Choosing ε = 1/√γ, and in order to have δ1 > 0, easy calculations prove that we
can pick the tuning parameters γ, η and θ such that

0 < γ <
α2

0
α2

1
, γ <

α2
1

4 and ηθ >
α2

1
2α0

− 1. (3.72)

Noticing that from the definition of W (t) one gets E(t) ≤ W (t) and performing
the usual integration calculations, we obtain that for all t ≥ 0,

E(t) ≤ e−2δ1tW (0).

Finally, since m(0) = 0, we get E(t) ≤ e−2δ1tE(0) proving that (3.70) holds with
K = 1 and δ = δ1 in the case of non-vanishing damping in Ω.

• Locally non-vanishing damping. In the general case, one has ω ⊊ Ω, with ω
being only a neighborhood of Γ0, and the damping α = α(x) may vanish outside ω.
We will thus need to use Lemma 3.16. Let τ > 0. Integrating (3.67) on [0, τ ], we
can write:

W (τ) −W (0) = −
∫ τ

0

∫
Ω
α(x)|z(t)|2dx+ Re

(∫ τ

0

∫
Ω
α(x)ēk(t)z(t)

)
(3.73)

− η
∫ τ

0
m(t) + 2γ

∫ τ

0
E(t) −

∫ τ

0
∥ek(t)∥2. (3.74)

We can rewrite (3.66) of Lemma 3.16 as follows

−
∫ τ

0

∫
Ω
α(x)|z(t)|2dxdt ≤ − 1

K1
W (τ) + K2

K1

∫ τ

0
W (t)dt.

Combining this inequality with (3.73), and using the usual tricks, we get(
1 + 1

K1

)
W (τ) ≤ W (0) + K2

K1

∫ τ

0
W (t)dt− η

∫ τ

0
m(t) +

(
α1ε

2 − 1
) ∫ τ

0
∥ek(t)∥2

+
(

2γ + α1

ε

) ∫ τ

0
E(t)

so that using (3.50),(
1 + 1

K1

)
W (τ) ≤ W (0) + K2

K1

∫ τ

0
W (t) +

(
α1γε+ α1

ε

) ∫ τ

0
E(t)dt

+
(

−η + α1ε

2θ − 1
θ

) ∫ τ

0
m(t).

Since W (0) = E(0), using (3.69) and by selecting ε = 1√
γ

and K3 = 2α1
√
γ we

assume that
ηθ >

α1

2√
γ

− 1

so that we can write:(
1 + 1

K1

)
W (τ) ≤ E(0) +

(
K2

K1
+K3

) ∫ τ

0
W (t). (3.75)
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It brings by Gronwall’s Lemma,

W (τ) ≤ K1

K1 + 1 exp
[

K1

K1 + 1

(
K3 + K2

K1

)
τ
]
E(0),

that can be written as
W (τ) ≤ pecτE(0)

with
p = K1

K1 + 1 , c = K1

K1 + 1

(
K3 + K2

K1

)
= K1K3 +K2

K1 + 1 .

Next, we apply the invariance by translation in time of the linear Schrödinger
equation on the interval [(n− 1)τ, nτ ], for n = 1, 2, . . . , to get (denoting a = pecτ ):

W (nτ) ≤ aW ((n− 1)τ) ≤ · · · ≤ anE(0) = e−nτκE(0),

where we set an = exp (−nτ 1
τ

ln
(

1
a

)
) and κ = 1

τ
ln
(

1
a

)
. Note that κ > 0 if and only

if a < 1, so that we must have peτc < 1 which is equivalent to

τ < − ln p
c

=
(K1 + 1) ln

(
K1+1

K1

)
(K1K3 +K2)

. (3.76)

Now, for every positive time t, there exists n ∈ N∗ such that (n− 1)τ < t ≤ nτ.
Using integration on [(n− 1)τ, t] we have:

W (t) ≤ W ((n− 1)τ) + C1

∫ t

(n−1)τ
W (s)ds ≤ e−nτκeτκE(0) + C1

∫ t

0
W (s)ds. (3.77)

Since e−nτκ ≤ e−κt for t ≤ nτ , and eτκ = 1/a, we get

W (t) ≤ 1
a
e−κtE(0) + C1

∫ t

0
W (s)ds.

Then by Gronwall’s Lemma, it follows, for 2δ = κ− C1,

E(t) ≤ W (t) ≤ 1
a
e−2δtE(0)

and some calculations prove that we can insure δ > 0 if

1
τ

ln
(
K1 + 1
K1

)
− K1K3 +K2

K1 + 1 > C1 (3.78)

where K1 and K2 are defined by (3.69) and K3 = 2α1
√
γ appears in (3.75).

The proof of Theorem 3.17 is complete as soon as we can ensure that (3.78) can
be obtained for a good choice of the tuning parameters γ, η and θ of the event-
triggering law.
Notice first that (3.76) gives

1
τ

ln
(
K1 + 1
K1

)
>

(K1K3 +K2)
K1 + 1 (3.79)
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so that (3.78) becomes true if C1 = max{2α1
√
γ + 2γ ; α1/(2θ

√
γ)} can be chosen

small enough. Then let us take θ > 0 large enough to have C1 = 2α1
√
γ + 2γ,

positive constant that can be as small as needed when choosing γ > 0 small enough
to satisfies:

2τα1(K1 + 1)√γ + 2τ(1 + 2τCobsα
−1
0 α3

1)γ − (K1 + 1) ln
(
K1 + 1
K1

)
< 0. (3.80)

♢

3.4.4 Numerical example
Consider the one-dimensional Schrödinger equation (3.18) under the event-triggering
mechanism (3.49) on Ω = (0, π) with initial condition

z0(x) = sin(x), x ∈ [0, π].

We use the divided differences on a uniform grid for the space variable and the
discretization with respect to time through Crank Nicolson scheme is performed.
Let ω = (0, π/10) be a neighborhood of x0 = 0. We define α0 = α1 = 1. With
respect to (3.3), we select the same damping coefficient as section 3.3.5, as follows:

α(x) =
1, if x ∈ [0, π/2],

sin(x), if x ∈ (π/2, π].

For γ = 0.13, η = 0.7 and θ = 15, in the case of a globally non-vanishing
damping (corresponding to ω = Ω and the damping does not vanish in Ω), the
inequality (3.72) is verified. In Figure 3.5 we compare the imaginary part Imz of
the numerical solution z of the continuous-in-time closed-loop systems (3.2) (top)
and the dynamic event-triggered one (3.18)-(3.49) (bottom). It also illustrates the
guarantee of the exponential stability of the solution as studied in Theorem 3.17.
This is confirmed even more clearly with Figure 3.6 where we depicted the time-
evolution of the energy of the solution to systems (3.18) under the static (3.20) and
dynamic (3.49) event-triggering mechanism (ETM).
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Figure 3.5: Imaginary part of the solution: of the closed-loop system (3.18) under the
event-triggering mechanism (3.49) (bottom), and of the solution of the continuous-
in-time closed-loop system (3.2) (top).
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Figure 3.6: Time-evolution of the energy E(t) and the Lyapunov function W (t).
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3.5 Conclusion and perspectives
We considered the problem of exponential stabilization for a locally damped lin-
ear Schrödinger equation under static and dynamic event-triggering mechanisms.
Thanks to some regularity of the classical solution to the Schrödinger equation we
prove the well-posedness of the closed-loop system. We also proved absence of ac-
cumulation points in the updates sequence leading to the avoidance of the Zeno
behavior. Furthermore, in order to ensure the exponential stability of the closed
loop we exploited classical observability inequality results. An illustrative example
based on the one-dimensional Schrödinger equation demonstrates the efficiency of
the results that were the source of geometrical conditions for the location of the
damping’s action. This work paves the way for future works on event-triggering
control as described bellow.

• The boundary damping control for the Schrödinger PDE
The context we studied until now is corresponding to a bounded control operator

that was sampled according to a event-triggering law. What about studying a case
where the control operator is unbounded. For example starting from boundary
control action.

Event-triggering mechanism can be designed for the boundary damping control
for the Schrödinger PDE

i∂tz + ∆z = 0 in Ω × [0,∞)
∂νz = −(x− x0) · ν(x)∂tz on Γ0 × [0,∞)
z = 0 on Γ1 × [0,∞)
z(x, 0) = z0(x) in Ω

where ν(x) denotes the unit outward normal vector to Ω at x ∈ Γ,

Γ0 = {x ∈ Γ, (x− x0) · ν(x) > 0}
Γ1 = Γ ∖ Γ0 = {x ∈ Γ, (x− x0) · ν(x) ≤ 0}

and the initial data’s space is

H1
Γ0(Ω) = {z ∈ H1(Ω), z = 0 on Γ1}.

Let us consider the event-triggering law defined by t0 = 0 and

tk+1 = inf
{
t ≥ tk, ∥z(x, t) − z(x, tk)∥2

L2(Γ1) − γEb(t) − η0 ≥ 0
}
,

with
Eb(t) = 1

2

∫
Ω

|∇z(x, t)|2dx.

This problem is very challenging since

a- For the avoidance of the Zeno behavior, Lemma 3.7 or Lemma 3.14 will
no longer be obtained as in this boundary case the corresponding control
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operator is unbounded. One way to deal with this issue could be to consider, as
proposed, the combination of absolute and relative threshold event-triggering
law.

b- We could only expect pratical stability, that is, a convergence to an attractor
of size depending on η0 and not an exponential stability forwards 0.

• 1 − D boundary control of linear Schrödinger equation via Backstepping ap-
proach

Consider in (0, 1) × R+ the system
∂tz(x, t) + i∂2

xxz(x, t) = 0
∂xz(0, t) = 0
z(1, t) = U(t).

A backstepping transformation is used in [70] to exponentially stabilize this sys-
tem by considering the target plant:

∂tu(x, t) + i∂2
xxu(x, t) + λu(x, t) = 0,

∂xu(0, t) = 0
u(1, t) = 0.

The approach is then based spectral theory. The obtained controller is given by

U(t) = z(1, t) =
∫ 1

0
k(1, x)z(x, t)dx (3.81)

where k is the kernel of the backstepping transformation.
We could propose to construct an event-triggering mechanism (tk) allowing to

update the feedback law (3.81) and to ensure the exponential decay result and
avoidance Zeno behavior of the closed-loop system.

One can consider the Schrödinger equation formally as a heat equation with an
imaginary diffusion coefficient and solve the stabilization problem using the method
presented in [31] for reaction-diffusion equation.

• ODE-Schrödinger cascade system
Consider the cascade ODE-Schrödinger equation defined by

Ẋ(t) = AX(t) +Bu(0, t), t > 0
∂tu(x, t) = −i∂2

xxu(x, t), x ∈ (0, 1), t > 0
∂xu(0, t) = CX(t)
u(1, t) = U(t).

In [95] a two step backstepping transformation,

U(t) =
∫ 1

0
[k(1, y)+q(1, y)−

∫ 1

0
k(1, l)q(l, y)dl]u(y, t)dy+γ(t)−

∫ 1

0
k(1, y)γ(t))dyX(t)

exponentially stabilizes the system. Then the question to construct an event-
triggering mechanism U(t) := U(tk) ∀t ∈ (tk, tk+1), where (tk) is appropriately
chosen according to some event/threshold.
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• The Schrödinger equation with saturating distributed input
Consider for α > 0, the one dimentional linear Schrödinger equation subject to

a cone-bounded nonlinearity (for example a saturation input)
∂tz(x, t) = i∂xxz(x, t) − ασ(z(x, t)) (x, t) ∈ (0, 1) × R+,
z(0, t) = z(1, t) = 0 ∀t ∈ R+

z(x, 0) = z0(x) ∀x ∈ (0, 1).
(3.82)

Thanks to the nonlinear semigroup theory (see [83] for a good introduction), for
any initial conditions z0 ∈ H2(Ω) ∩ H1

0 (0, 1), there exists a unique strong solution
to (3.82) satisfying

z ∈ C0([0, T ];H2(Ω) ∩H1
0 (0, 1)) ∩ C1([0, T ];L2(0, 1)). (3.83)

Moreover one can prove that the system is semi-globally exponentially stable. An
event-triggering mechanism (tk) can be designed to update the feedback law −ασ(z)
and to ensure the exponential decay result and avoidance Zeno behavior of the
closed-loop system.





4
ETC of reaction-diffusion PDE with input

delay

4.1 Introduction
A delay system refers to a dynamic setup where the output behavior depends not
only on the current input but also on past inputs or states, introducing a time delay
into the system response. This time-delay effect is common in various natural and
engineered processes such as in network-controlled systems, teleoperation,biology
machining processes, rolling mills, cooling systems, chemical processes, traffic dy-
namics, supply networks, automotive propulsion, 3D printing and additive manufac-
turing, irrigation channels, and population dynamics [107, 104, 8] and can signific-
antly affect the system stability [103]. In this chapter, we will focus on a particular
class of systems described reaction-diffusion partial differential equations (PDEs):

ut(x, t) = uxx(x, t) + λu(x, t)

which model several physical phenomena arising in biology [118, 86]; in chemistry
[44] etc, the consideration of long delay inputs is particularly important. The
presence of delay in the inputs may imply situations where there is a substan-
tial time lag between an event occurring and its impact being felt in the system.
This phenomenon is often observed in processes involving propagation, transport,
communication delays, distribution of chemicals in biological tissues as highlighted
in [81, 103, 35]. For real-world examples of input delays, during the COVID-19
pandemic, before the development of commercial rapid tests, it would take a couple
of days for both an individual and public health authorities to receive test results.
That may be viewed as a typical sensor delay. And then it would take even longer
for the authorities to agree on a public health action. Some drugs also take days to
produce their effects. These are all input delays in the context of reaction-diffusion
PDEs.

The design of an event-triggering mechanism becomes crucial in this context due
to the inherent complexities of delay systems. Event-triggered control ensures that
responses are initiated only when specific conditions are met or when an event occurs,
which can be particularly effective in situations where the time delay is significant.
By judiciously activating responses based on these triggers, system resources can be
conserved, and the system’s performance and stability can be improved.

77
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The stabilization of the unstable reaction-diffusion PDEs under arbitrarily long
input delay is a challenging problem, first formulated and solved in [68] using the
backstepping method for PDEs as the stabilization of a hyperbolic (transport) PDE,
modeling the delay, which cascades into the reaction-diffusion PDE. Since then,
control design for delay compensation (including known or unknown constant/time-
varying delays) has evolved considerably and several results have been proposed
for reaction-diffusion PDEs, see, e.g., [36, 45, 90, 62, 98]and [4, 22, 126] and the
references therein.

4.2 Continuous-in-time framework overview
We consider the following scalar reaction-diffusion PDE with known constant input
delay D > 0; and a state u = u(x, t) evolving over the space domain (0, 1)


ut(x, t) = uxx(x, t) + λu(x, t) ∀ (x, t) ∈ (0, 1) × R+,

u(0, t) = 0 ∀ t ∈ R+,

u(1, t) = U(t−D) ∀ t ≥ D

u(x, 0) = u0(x) ∀ x ∈ (0, 1),

(4.1)

where λ ∈ R, and U(t) ∈ R is the control input.
We pose this delay problem as an actuated transport PDE (modeling the delay

phenomenon) which cascades into the boundary of the reaction-diffusion PDE,

ut(x, t) = uxx(x, t) + λu(x, t) ∀ (x, t) ∈ (0, 1) × R+,

u(0, t) = 0 ∀ t ∈ R+,

u(1, t) = v(0, t) ∀ t ∈ R+,

vt(x, t) = 1
D
vx(x, t) ∀ (x, t) ∈ (0, 1) × R+,

v(1, t) = U(t) ∀ t ∈ R+,

u(x, 0) = u0(x) ∀ x ∈ (0, 1),
v(x, 0) = v0(x) ∀ x ∈ (0, 1),

(4.2)

where u(·, t) and v(·, t) are respectively, the reaction-diffusion PDE and the transport
PDE states at time t, u0 , v0 are given functions, belonging to appropriate spaces
to be specified later from Subsection 4.3.2.

For x ∈ [0, 1] and t ∈ R+, the solution of the input delay dynamics is given as

v(x, t) = v0
(

1
D
t+ x

)
for t ≤ D(1 − x)

and
v(x, t) = U(t+D(x− 1)) for t ≥ D(1 − x)

so that the output
v(0, t) = U(t−D)

gives the delayed input.
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4.2.1 Backstepping stabilization
PDE backstepping method [69] makes use of a Volterra (or a Fredholm) transform-
ation to map the PDE system into a suitable target PDE system on which one can
perform Lyapunov stability analysis. An alternative method for stabilization of a
parabolic PDE with input delay is modal decomposition [90, 62, 22] which relies
on separating a finite-dimensional unstable part from a stable infinite-dimensional
part of the PDE. Then, one applies the classical predictor-based techniques to the
finite-dimensional system and uses for example, spectral analysis, the pole-shifting
theorem, and Lyapunov-based techniques. Let us also mention the Both of the afore-
mentioned methods have been the object of further advances, which include, on the
one hand, the Fredholm backstepping control for coupled parabolic PDEs with in-
put/output delays [19], and on the other hand, finite-dimensional observer-based
control design for parabolic PDEs with delays and sampled-data (using spectral
reduction and LMIs-based stability conditions) [61], among others.

In this chapter, we consider the backstepping approach. Then, consider the
backstepping transformation

w(x, t) = u(x, t) −
∫ x

0
k(x, y)u(y, t)dy, (4.3)

z(x, t) = v(x, t) −D
∫ x

0
q(x, y)v(y, t)dy −

∫ 1

0
γ(x, y)u(y, t)dy, (4.4)

for x ∈ [0, 1], where γ(x, y), k(x, y) and q(x, y) are the kernels and will be given
later. With this transformation we want to map the system (4.2) into the target
system: 

wt(x, t) = wxx(x, t)
w(0, t) = 0
w(1, t) = z(0, t)
Dzt(x, t) = zx(x, t)
z(1, t) = 0

(4.5)

with initial conditions

w0(x) = u0(x) −
∫ x

0
k(x, y)u0(y)dy, (4.6)

z0(x) = v0(x) −
∫ 1

0
γ(x, y)u0(y)dy −D

∫ x

0
q(x, y)v0(y)dy. (4.7)

This backstepping transformation is a Voltera invertible transformation whose in-
verse reads:

u(x, t) = w(x, t) +
∫ x

0
l(x, y)w(y, t)dy, (4.8)

v(x, t) = z(x, t) +
∫ 1

0
δ(x, y)w(y, t)dy +D

∫ x

0
p(x, y)z(y, t)dy. (4.9)

The controller U(t) can be determined thanks to the direct and inverse backstep-
ping transformations. To do so, we will need the explicit expressions of the kernels
k, γ and q for the direct transformation (4.3) and l, δ and p for the inverse one.
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Let us start with the kernels l, δ and p by calculating the time and spatial de-
rivatives of the transformation (4.8)

ut(x, t) =wt(x, t) +
∫ x

0
l(x, y)wt(y, t)dy

=wxx(x, t) +
∫ x

0
l(x, y)wyy(y, t)dy

=wxx(x, t) + [l(x, y)wx(y, t)]x0 −
∫ x

0
ly(x, y)wy(y, t)dy

=wxx(x, t) + [l(x, y)wx(x, t) − ly(x, y)w(y, t)]x0 +
∫ x

0
lyy(x, y)w(y, t)dy

ut(x, t) =wxx(x, t) + l(x, x)wx(x, t) − lx(x, x)w(x) − l(x, 0)wx(0, t)

+ ly(x, 0)w(0, t) +
∫ x

0
lyy(x, y)w(y, t)dy,

and using the classical formula:

d

dx

∫ x

0
f(x, y)dy = f(x, x) +

∫ x

0
fx(x, y)dy,

the spatial derivatives of u are given by:

ux(x, t) =wx(x, t) + l(x, x)w(x, t) +
∫ x

0
lx(x, y)w(y, t)dy

uxx(x, t) =wxx(x, t) + w(x, t) d
dx
l(x, x) + l(x, x)wx(x, t) + lx(x, x)w(x, t)

+
∫ x

0
lxx(x, y)w(y, t)dy

Therefore, from the reaction diffusion subsystem we obtain

ut(x, t) − uxx(x, t) − λu(x, t) = wxx(x, t) + l(x, x)wx(x, t) − ly(x, x)w(x, t)

− l(x, 0)wx(0, t) + ly(x, 0)w(0, t) +
∫ x

0
lyy(x, y)w(y, t)dy − wxx(x, t)

− w(x, t) d
dx
l(x, x) − l(x, x)wx(x, t) − lx(x, x)w(x, t) −

∫ x

0
lxx(x, y)w(y, t)dy

− λw(x, t) − λ
∫ x

0
l(x, y)w(y, t)dy,

which gives, using
d

dx
l(x, x) = lx(x, x) + ly(x, x),

and the boundary condition w(0, t) = 0 :

ut − uxx − λu = −
(
λ+ 2 d

dx
l(x, x)

)
w(x, t)

+
∫ x

0
[lyy(x, y) − lxx(x, y) − λl(x, y)]w(y, t)dy − l(x, 0)wx(0, t) = 0.
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This equation should be valid for all u, so we must have:
lyy(x, y) = lxx(x, y) + λl(x, y)
l(x, 0) = 0
d

dx
l(x, x) = −λ

2 .
(4.10)

The two last equations imply l(x, x) = −λ
2x. The solution to system (4.10) is given

by:

l(x, y) = −λy
J1
(√

λ(x2 − y2)
)

√
λ(x2 − y2)

, (4.11)

on T := {(x, y) : 0 ≤ y ≤ x ≤ 1} where J1(·) denotes the Bessel function of first
kind (we refer to [71, Appendix A] for an introduction to Bessel function).

For the transport subsystem, from

v(x, t) = z(x, t) +
∫ 1

0
δ(x, y)w(y, t)dy +D

∫ x

0
p(x, y)z(y, t)dy and Dzt = zx

one has:

vt(x, t) = 1
D
zx(x, t) +

∫ 1

0
δ(x, y)wxx(y, t)dy +D

∫ x

0
p(x, y) 1

D
zy(y, t)dy

= 1
D
zx(x, t) + [δ(x, y)wx(y, t)]10 −

∫ 1

0
δy(x, y)wy(y, t)dy +

∫ x

0
p(x, y)zy(y, t)dy

= 1
D
zx(x, t) + [δ(x, y)wx(y, t) − δy(x, y)w(y, t)]10 +

∫ 1

0
δyy(x, y)w(y, t)dy

+
∫ x

0
p(x, y)zy(x, y)dy

= 1
D
zx(x, t) +

∫ 1

0
δyy(x, y)w(y, t)dy +

∫ x

0
p(x, y)zy(y, t)dy

+ δ(x, 1)wx(1, t) − δy(x, 1)w(1, t) − δ(x, 0)wx(0, t) + δy(x, 0)w(0).

Therefore, multiplying by D we obtain:

Dvt =zx(x, t) +D
∫ 1

0
δyy(x, y)w(y, t)dy

+Dp(x, x)z(x, t) −Dp(x, 0)z(t, 0)

−D
∫ x

0
py(x, y)z(y, t)dy +Dδ(x, 1)wx(1, t)

−Dδy(x, 1)w(1, t) −Dδ(x, 0)wx(0, t).

Moreover the space derivative of v is given by:

vx(x, t) = zx(x, t) +
∫ 1

0
δx(x, y)w(y, t)dy +Dp(x, x)z(x, t) +D

∫ x

0
px(x, y)z(y, t)dy



82CHAPTER 4. ETC OF REACTION-DIFFUSION PDE WITH INPUT DELAY

so that for all v one gets

Dvt(x, t) − vx(x, t) =
∫ 1

0
[Dδyy(x, y) − δx(x, y)]w(x, t)dy

−D
∫ x

0
[py(x, y) + px(x, y)] z(x, t)dy

−Dp(x, 0)z(0, t) +Dδ(x, 1)wx(1, t)
−Dδy(x, 1)z(0, t) −Dδ(x, 0)wx(0, t),

where we use the boundary condition w(t, 0) = z(t, 0). Then we obtain
Dδyy(x, y) = δx(x, y)
py(x, y) = −px(x, y)
p(x, 0) = −δy(x, 1)
δ(x, 1) = 0, δ(x, 0) = 0

whose solution is given (using Separation of Variables [71, Chapter 3]) by

δ(x, y) = 2
∞∑

n=1
e−Dn2π2x sin(nπy)

∫ 1

0
sin(nπζ)l(1, ζ)dζ, (4.12)

and

p(x, y) = −δy(x− y, 1). (4.13)

Using the same strategy on the direct transformation (4.3)-(4.4), we will obtain

γ(x, y) = 2
∞∑

n=1
eD(λ−n2π2)x sin(nπy)

∫ 1

0
sin(nπζ)k(1, ζ)dζ, (4.14)

with

k(x, y) = −λy
I1
(√

λ(x2 − y2)
)

√
λ(x2 − y2)

, (4.15)

on T := {(x, y) : 0 ≤ y ≤ x ≤ 1}, where I1(·) denotes the modified Bessel function
of first kind. In addition

q(x, y) = −γy(x− y, 1). (4.16)

From the boundary condition z(t, 1) = 0 (in (4.4) and (4.2)) one has

v(1, t) −D
∫ 1

0
q(1, y)v(y, t)dy −

∫ 1

0
γ(1, y)u(y, t)dy = 0

which leads to the controller

U(t) =
∫ 1

0
γ(1, y)u(y, t)dy +D

∫ 1

0
q(1, y)v(y, t)dy. (4.17)
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This continuous-time controller obtained by the Backstepping approach (see also
[68]) is used to guarantee the global exponential stability of the closed-loop system
(4.2) in H1−norm as stated in the following theorem.

Theorem 4.1: Existence of solution and global exponential stability
([68])

Consider the closed-loop system (4.2) and the control law (4.17). If the initial
conditions are such that (u0, v0) ∈ L2(0, 1) × H1(1, 1 + D), then the system
has a unique solution

(u, v) ∈ C((0,∞);L2(0, 1) ×H1(1, 1 +D))

and there exists a positive continuous function M : R2 → R+ such that

E(t) ≤ M(λ,D)ecDE(0)e− min(2,c)t, ∀t ≥ 0

for any c > 0, where

E(t) =
∫ 1

0
u2(x, t)dx+

∫ 1+D

1

(
v2(x, t) + v2

x(x, t)
)
dx.

A H1−norm based Lyapunov approach is used in [68] to prove this theorem, but
for the design of the triggering policy and for the stability analysis we will base our
approach on Input-to-State stability and small-gain arguments [58].

4.3 Event-triggering boundary control

4.3.1 Problem formulation
Under the emulation approach, the boundary controller is perfectly known (i.e., the
nominal control given in (4.17)). We aim at stabilizing closed-loop system (4.2) on
events while updating the controller U(t) (4.17) at certain time {tj}j defined by an
event-triggered mechanism. To that end, we consider the following event-triggered
boundary control:

Ud(t) =
∫ 1

0
γ(1, y)u(y, tj)dy +D

∫ 1

0
q(1, y)v(y, tj)dy, ∀t ∈ [tj, tj+1). (4.18)

The updates times {tj}j form an increasing sequence and are such that the value
of the control is held constant between two successive events and is updated when
some triggering condition is verified. The chosen event-triggering law will be given
later and depends on the evolution of the system’s state. Thus, the boundary value
of the state is modified as v(t, 1) = Ud(t), for all t ∈ [tj, tj+1), j ≥ 0.

Note that Ud(t) = U(t) + d(t) with U(t) given by (4.17) and d given by:

d(t) =
∫ 1

0
γ(1, y) (u(y, tj) − u(y, t)) dy +D

∫ 1

0
q(1, y) (v(y, tj) − v(y, t)) dy (4.19)

where d can be viewed as an actuation deviation (or input holding error).
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Therefore, the control problem we aim at handling can be reformulated as follows:

ut(x, t) = uxx(x, t) + λu(x, t),
u(0, t) = 0,
u(1, t) = v(0, t),
vt(x, t) = 1

D
vx(x, t),

v(1, t) = Ud(t),

(4.20)

with Ud(t) being defined in (4.18) for all t ∈ [tj, tj+1), j ≥ 0.
Since we need to assess the impact of the deviation d(t) to the closed-loop system

under the event-triggered implementation, we use the previous backstepping trans-
formations so that we can work on a target system with desired stability properties
and that exhibits the deviation d(t) at the boundary. The backstepping transform-
ation is defined in (4.3)-(4.4). Hence, the system (4.20) is transformed into the
following target system: 

wt(x, t) = wxx(x, t),
w(0, t) = 0,
w(1, t) = z(0, t),
zt(x, t) = 1

D
zx(x, t),

z(1, t) = d(t),

(4.21)

with initial conditions w0 (4.6) and z0 (4.7). Notice that when d(t) = 0, the target
system (4.21) is evidently globally exponential stable.

It is worth recalling that the backstepping transformation (4.3)-(4.4) is invertible
with inverse transformation given by (4.8)-(4.9). Using the inverse transformation,
we can rewrite (4.18) and (4.19) as a function of the states w and z, i.e.,

Ud(t) =
∫ 1

0
δ(1, y)w(y, tj)dy +D

∫ 1

0
p(1, y)z(y, tj)dy, (4.22)

and for all t ∈ [tj, tj+1), j ≥ 0

d(t) =
∫ 1

0
δ(1, y) (w(y, tj) − w(y, t)) dy +D

∫ 1

0
p(1, y) (z(y, tj) − z(y, t)) dy. (4.23)

4.3.2 Well-posedness
System (4.21) can be subdivided into two subsystems for all t ∈ [tj, tj+1), j ≥ 0 and
x ∈ (0, 1): the heat subsystem

ut(x, t) = uxx(x, t) + λu(x, t)
u(0, t) = 0
u(1, t) = v(0, t)
u(0, x) = u0(x)

(4.24)

and the transport subsytem 
Dvt(x, t) = vx(x, t)
v(1, t) = Ud(t)
v(0, x) = v0(x).

(4.25)
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Similar to [28] and [57], in this chapter we deal with a linear hyperbolic equation
subject to a discontinuous boundary input. The discontinuous signal gets into the
reaction-diffusion PDE through the boundary. Consequently, the well-posedness
study requires to extend the case in [32] along with [28, 57] in order to be able to
construct the solution for the closed-loop PDE-PDE system. This is done by means
of the following proposition.

Proposition 4.2: Well-posedness

For every initial data v0 ∈ C1
rpw([0, 1],R) and u0 ∈ L2(0, 1), there exist unique

solutions u, v to (4.20) with the following properties:

• v is the unique solution to (4.25) in the sense of characteristics on [0, 1]×
[0, T ∗). Moreover,

∀t ∈ [0, T ∗), v(·, t) ∈ C1
rpw([0, 1],R)

and for all x ∈ [0, 1], v(·, x) ∈ C1
rpw([0, T ∗),R).

• u ∈ C0 ([0, T ∗);L2(0, 1)) with u(·, t) ∈ C2([0, 1]) for t ∈ (0, T ∗) and
u ∈ C1(Ĩ × [0, 1]) where Ĩ = [0, T ∗) \{tj : j = 0, 1, 2, ...}, which also
satisfies (4.20) for t ∈ Ĩ.

Proof : Let us focus first on the v-system of (4.25). Following similar arguments
as in [28], let us define for k ∈ N, the interval

∆k := [kD, (k + 1)D] ⊂ [0, T ∗),

where D is the time for the transport equation with velocity 1/D to cross the spatial
domain [0, 1]. By the method of characteristics, the explicit solution of (4.25), for a
given initial data v(·, kD) ∈ C1

rpw([0, 1],R) is as follows:

v(x, t) =

v
(

1
D

(t− kD) + x, kD
)
, kD ≤ t < kD +D(1 − x)

Ud(t+D(x− 1)), kD +D(1 − x) ≤ t ≤ (k + 1)D,
(4.26)

for all t ∈ ∆k, k ∈ N. It follows then, from (4.26), that v is well-defined on
∆k × [0, 1]. Moreover, by definition of Ud (being a piecewise constant function and
assuming Ud(t) ∈ C1

rpw(∆k,R)) we have that Ud(t+D(x− 1)) belongs to C1
rpw with

respect to both t and x.
In addition, v

(
1
D

(t − kD) + x, kD
)

belongs to C1
rpw with respect to both t

and x. Therefore, from (4.26) it holds that v(·, t) ∈ C1
rpw([0, 1],R) for all t ∈

∆k and v(·, x) ∈ C1
rpw(∆k,R) for all x ∈ [0, 1].

This yields v(0, t) ∈ C1
rpw(∆k,R) which constitutes an allowable boundary in-

put for the u-system (4.24). Indeed, since it is piecewise continuous with the re-
quired regularity properties, we can apply [59, Theorem 4.10] for system (4.20) on
the interval ∆k. We obtain then, that for any initial data u(kD, ·) ∈ L2(0, 1),
there exists a unique function u ∈ C0 (∆k;L2(0, 1)) with u(·, t) ∈ C2([0, 1]) for t ∈
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∆k\{kD, (k + 1)D} and u ∈ C1(Ĩk × [0, 1]) where Ĩk = ∆k\{tj : j = 0, 1, 2, ...},
k ∈ N which also satisfies (4.20) for t ∈ Ĩk.

Therefore, by the step-by-step method, we can construct the solution for all
[0, T ∗), i,e.,

• solutions v on [0, T ∗)×[0, 1] such that for all t ∈ [0, T ∗), v(·, t) ∈ C1
rpw([0, 1],R)

and for all x ∈ [0, 1], v(·, x) ∈ C1
rpw([0, T ∗),R);

• u ∈ C0 ([0, T ∗);L2(0, 1)) with u(·, t) ∈ C2([0, 1]) for t ∈ (0, T ∗) and u ∈
C1(Ĩ × [0, 1]) where Ĩ = [0, T ∗) \{tj : j = 0, 1, 2, ...} which also satisfies (4.24) for
t ∈ Ĩ.

This concludes the proof. ♢
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4.3.3 Event-triggered control strategy
In this section we introduce the event-triggered boundary control law and the main
results: avoidance of the Zeno phenomenon and exponential stability of the event-
triggered controlled system. The event-triggered boundary control considered in
this chapter involves a triggering condition and the backstepping boundary feed-
back which is applied as Zero-Order Hold (the value of the feedback is held constant
during each discrete time interval). The proposed event-triggering condition is based
on the evolution of the magnitude of the actuation deviation and the energy of the
coupled reaction-diffusion and transport system’s state.

Definition 4.3: Definition of the event-triggered boundary control

Let β > 0 be a design parameter and define the following set:

H(tj) := {t > tj : |d(t)| > β max
tj≤s≤t

(∥w(·, s)∥) + β max
tj≤s≤t

(∥z(·, s)∥∞)} (4.27)

where w and z are the solution of (4.21) for all t ≥ tj and d(t) is defined by
(4.23).
The event-triggered boundary control is defined by considering the following
components:
I) (The event-triggering condition) The times of the events tj ≥ 0 with t0 = 0
form a finite or countable set of times which is determined by the following
rules for any j ≥ 0:

a) if H(tj) = ∅ then the set of the times of the events is {t0, ..., tj}.

b) if H(tj) ̸= ∅, then the next event time is given by:

tj+1 := inf H(tj). (4.28)

II) (The control action) The boundary feedback law is defined by,

Ud(t) =
∫ 1

0
δ(1, y)w(y, tj)dy +D

∫ 1

0
p(1, y)z(y, tj)dy, (4.29)

for all t ∈ [tj, tj+1).

Remark 4.1 In Definition 4.3, we use the L∞- norm for the transport PDE sub-
system. It is worth recalling that in [68], a Lyapunov-based stability analysis is
performed using the H1-norm for the transport PDE subsystem (instead of the
L2- norm) mainly due to the unboundedness of the operator in the interconnec-
tion parabolic-transport PDEs. One may indeed have trace terms that cannot be
estimated using the L2- norm. Therefore, H1-norm turned out to be suitable in that
work. Nevertheless, in this event-triggered framework, working with Lyapunov-based
techniques using the H1-norm would be problematic as this needs to have regularity
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on the initial data and solutions to be at least absolutely continuous. This is not
possible in the present setting as we deal with piecewise-constant input signals in the
transport PDE and discontinuities propagating through the spatial domain. There-
fore, a L∞- norm is suitable for the transport PDE subsystem, thanks to which it is
possible: i) to rely on the required regularity for the analysis for the well-posedness
(as established in Subsection 4.3.2) of the overall closed-loop system, ii) to obtain a
suitable ISS estimate allowing a subsequent small-gain-based stability analysis (see
Section 4.3.5).

4.3.4 Avoidance of the Zeno Phenomenon

In contrast to the method presented in Chapters 2 and 3, where we establish the
avoidance of Zeno behavior through proof by contradiction, the focus of this chapter
shifts. Here, we will give a demonstration showcasing the existence of a minimum
dwell-time between two distinct triggering times. Importantly, this dwell-time is
entirely independent of both the initial condition and the time T ∗ = limj→+∞(tj).

Theorem 4.4: Minimal dwell-time

Consider the closed-loop system (4.20) with the event-triggered boundary con-
trol (4.28)-(4.29) in Definition 4.3 with β > 0 be given. Then, there exists a
minimal dwell-time between two triggering times, i.e. there exists a constant
τ > 0 (independent of the initial conditions u0, v0 and of T ∗) such that

tj+1 − tj ≥ τ, for all j ≥ 0.

Proof : Let us focus on the deviation of actuation given in (4.23), expressed
in terms of the dynamics of the target system (4.21) and the kernels of the inverse
transformation. We recall the formula here:

d(t) =
∫ 1

0
δ(1, y) (w(y, tj) − w(y, t)) dy +D

∫ 1

0
p(1, y) (z(y, tj) − z(y, t)) dy.

Proposition 4.2 in conjunction with the backstepping transformations (4.3) allow to
assert that target system is well-posed as d(t) can be proved to belong to C1

rpw([0, T ∗),R).
Following similar arguments as in [57, Section 3], it can be further proved that the
following differential equation holds, for t ∈ (tj, tj+1), j ≥ 0:

ḋ(t) = −
∫ 1

0
δ(1, y)wt(y, t)dy −D

∫ 1

0
p(1, y)zt(y, t)dy

= −
∫ 1

0
δ(1, y)wyy(y, t)dy −

∫ 1

0
p(1, y)zy(y, t)dy

= − δ(1, 1)wy(1, t) + δ(1, 0)wy(0, t) + δy(1, 1)w(1, t)
− δy(1, 0)w(0, t) − p(1, 1)z(1, t) + p(1, 0)z(0, t)

−
∫ 1

0
δyy(1, y)w(y, t)dy +

∫ 1

0
py(1, y)z(y, t)dy. (4.30)



4.3. EVENT-TRIGGERING BOUNDARY CONTROL 89

Knowing that w(0, t) = 0, and from (4.12)-(4.13), one has δ(1, 1) = δ(1, 0) = 0 and
−δy(1, 1) = p(1, 0). Moreover, w(1, t) = z(0, t) and z(1, t) = d(t), we get

ḋ(t) = −p(1, 1)d(t) −
∫ 1

0
δyy(1, y)w(y, t)dy +

∫ 1

0
py(1, y)z(y, t)dy. (4.31)

Thus, the following inequality holds for t ∈ (tj, tj+1):

|ḋ(t)| ≤ a0|d(t)| +
∫ 1

0
|δyy(1, y)w(y, t)|dy +

∫ 1

0
|py(1, y)z(y, t)|dy. (4.32)

with a0 = p(1, 1) > 0 as we will show in the following.
Since from (4.13), p(1, 1) = −δy(0, 1) and from the boundary condition and the

inverse transformation (4.11), we obtain:

u(1, t) = v(0, t) ⇒ w(1, t) +
∫ 1

0
l(1, y)w(y, t)dy = z(0, t) +

∫ 1

0
δ(0, y)w(y, t)dy

⇒
∫ 1

0
[l(1, y) − δ(0, y)]w(y, t)dy = 0 since w(1, t) = z(0, t) from (4.21)

⇒ l(1, y) = δ(0, y) ∀y ∈ [0, 1]
⇒ ly(1, y) = δy(0, y), ∀y,

then a0 := p(1, 1) = −δy(0, y) = −ly(1, 1). Using (4.11) and (4.13) together with the

fact that d

dρ
(ρ−1J1(ρ)) = −ρ−1J2(ρ) and lim

ρ→0

Jn(ρ)
ρn

= 1
2nn! (see for example [71])

we get:
l(1, y) = −λyρ−1(y)J1(ρ(y)) with ρ(y) =

√
λ(1 − y2)

and

ly(1, y) = −λ
J1
(√

λ(1 − y2)
)

√
λ(1 − y2)

− λ2y2J2
(√

λ(1 − y2)
)

λ(1 − y2)

ly(1, 1) = −λ lim
y→1

J1
(√

λ(1 − y2)
)

√
λ(1 − y2)

− λ2 lim
y→1

J2
(√

λ(1 − y2)
)

λ(1 − y2)

= −λ lim
ρ→0

J1 (ρ)
ρ

− λ2 lim
ρ→1

J2 (ρ)
ρ2 = −λ

2 − λ2

8 ,

so that we obtain the explicit value of a0:

a0 = λ

2 + λ2

8 . (4.33)

Using the absolute continuity of d(t) on (tj, tj+1), we get from (4.32), for all t ∈
[tj, tj+1)

|d(t)| ≤ ea0(t−tj)|d(tj)|

+
∫ t

tj

ea0(t−tj) ×
( ∫ 1

0
|δyy(1, y)w(y, s)|dy +

∫ 1

0
|py(1, y)z(y, s)|dy

)
ds.

(4.34)
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Therefore, from the Cauchy–Schwarz inequality and the fact d(tj) = 0, we get the
following estimate:

|d(t)| ≤
(∫ 1

0
|py(y, t)|dy

) ∫ t

tj

∥z(·, s)∥∞e
a0(t−s)ds

+ ∥δyy(1, ·)∥L2

∫ t

tj

∥w(·, s)∥ea0(t−s)ds.
(4.35)

Moreover, it holds for all t ∈ [tj, tj+1)

|d(t)| ≤ Γa0(t− tj)
(
a1 max

tj≤s≤t
(∥z(s, ·)∥∞) + a2 max

tj≤s≤t
(∥w(s, ·)∥L2)

)
, (4.36)

where
Γa0(s) := 1

a0

(
ea0s − 1

)
> 0, (4.37)

a1 :=
∫ 1

0
|py(1, y)|dy, (4.38)

a2 := ∥δyy(1, ·)∥L2 . (4.39)

Using (4.36) and assuming that an event is triggered at t = tj+1, we have

|d(tj+1)| ≤ Γa0(tj+1 − tj)
(
a1 max

tj≤s≤tj+1
(∥z(·, s)∥∞) + a2 max

tj≤s≤tj+1
(∥w(·, s)∥L2)

)
,

(4.40)

which, together with Definition 4.3, yields the following inequality:

β
(

max
tj≤s≤tj+1

(∥z(s, ·)∥∞) + max
tj≤s≤tj+1

(∥w(s, ·)∥L2)
)

≤ Γa0(tj+1 − tj)
(
a1 max

tj≤s≤tj+1
(∥z(s, ·)∥∞) + a2 max

tj≤s≤tj+1
(∥w(s, ·)∥L2)

)
,

Therefore, we get easily

0 < β

max{a1, a2}
≤ Γa0(tj+1 − tj). (4.41)

Using the definition (4.37) and from (4.41), we can conclude, for all j ≥ 0

tj+1 − tj ≥ 1
a0

ln
(

1 + a0β

max{a1, a2}

)
=: τ > 0, (4.42)

which is a minimal dwell-time (independent on the initial conditions and of T ∗ ).
This concludes the proof. ♢

Theorem 4.4 allows to conclude that T ∗ = limj→+∞(tj) = +∞ and therefore we
can apply Proposition 4.2 to finally get the following well-posedness result of the
closed-loop system (4.20).
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Corollary 4.5:

For every initial data v0 ∈ C1
rpw([0, 1],R) and u0 ∈ L2(0, 1), there exist a

unique solution (u, v) to (4.20) with the following properties:

• v is the unique solution to (4.25) on R+×[0, 1]. Moreover, for all t ∈ R+,
v(·, t) ∈ C1

rpw([0, 1],R) and for all x ∈ [0, 1], v(x, ·) ∈ C1
rpw(R+,R).

• u ∈ C0 (R+;L2(0, 1)) with u(t, ·) ∈ C2([0, 1]) for t ∈ R+ and
u ∈ C1(I × [0, 1]) where I = R+\{tj : j = 0, 1, 2, ...} which also satisfies
(4.20) for t ∈ I.

Proof : It is an immediate consequence of Proposition 4.2 and Theorem 4.4
(which guarantees that no Zeno solution can appear). ♢

4.3.5 Exponential stability

In this section, we derive the exponential stability result for the closed-loop system
(4.20). To that end, we seek an Input-to-State Stability (ISS) property of the target
system (4.21) with respect to the deviation d(t), and we follow small-gain arguments.

We will begin by establishing intermediary outcomes that we will subsequently
leverage to demonstrate the exponential stability of the system. These outcomes
will pertain to the following heat subsystem defined in (0, 1) × R


wt(x, t) = wxx(x, t)
w(0, t) = 0
w(1, t) = z(0, t)
w(0, x) = w0(x)

(4.43)

and the transport subsytem


Dzt(x, t) = zx(x, t)
z(1, t) = 0
z(0, x) = z0(x).

(4.44)

We define the following quantities for all t ≥ 0:

∥w∥[0,t] := max
0≤s≤t

(
∥w(·, s)∥L2eδs

)
, (4.45)

∥z∥[0,t] := max
0≤s≤t

(
∥z(·, s)∥∞e

δs
)
. (4.46)
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Lemma 4.6: ISS-like estimate for the heat and transport PDEs

For every ε > 0, there exists δ > 0 such that the solution to systems (4.44)
and (4.43) the following inequalities hold:

∥w∥[0,t] ≤ ∥w0∥L2 + 1√
3(1 + ε)∥z∥[0,t], (4.47)

∥z∥[0,t] ≤eD∥z0∥∞ + eD(µ+1+ε) max
0≤s≤t

(
|d(s)|eδs

)
. (4.48)

Proof : Exponential L2−stabilization results of parabolic PDEs is adressed
thanks to the backstepping method in [59]. The system

yt(x, t) = pyxx(x, t) + cy(x, t)
y(0, t) = U(t)
y(1, t) = 0
y(x, 0) = y0(x)

(4.49)

or equivalently (with the change of unknown x 7→ 1 − x)
yt(x, t) = pyxx(x, t) + cy(x, t)
y(1, t) = U(t)
y(0, t) = 0
y(x, 0) = y0(x)

(4.50)

is transformed into the system
wt(x, t) = pwxx(x, t) −Kw(x, t)
w(0, t) = w(1, t) = 0
w(x, 0) = w0(x)

(4.51)

throught the backstepping transformation:

y(x, t) = w(x, t) +
∫ 1

x
l(x, s)w(s, t)ds ∀(x, t) ∈ R × (0, 1).

The eigenvalues and eigenfunctions of system (4.51) are

λn = K + pn2π2

ϕn(x) =
√

2 sin(πnx) ∀n ∈ N.

Henceforth, using the L2
r-stability result ([59, Theorem 5.3]) where

L2
r(0, 1) :=

{
f : [0, 1] → R/∥f∥2

r =
∫ 1

0
r(x)|f(x)|2dx

}
,

one has for r(x) = p(x) = 1, K = 0, a1 = b1 = 1, a2 = b2 = 0, d1(t) = 0 and
d0(t) = z(t, 0),

∥w(·, t)∥L2 ≤ e−π2t∥w0∥L2 +G max
0≤s≤t

(|z(s, 0)|), (4.52)
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with

G = p(0)
b2

1 + b2
2

√√√√ ∞∑
n=1

1
λ2

n

|b1ϕ′
n(0) − b2ϕn(0)|2 =

√
2
π

√√√√ ∞∑
n=1

1
n2 = 1√

3
.

Regarding the transport subsystem (4.44), we can derive an ISS estimate ex-
pressed in the sup-norm of the state by applying [59, Proposition 3.2] on ISS estimate
in Lp−norm and take the limit since limp→∞ ∥z∥p = ∥z∥∞ for

ε1(x) ≡ ε2(x) ≡ ε3(x) ≡ 1, R(x) ≡ φ(x) ≡ 0, a = 0, f = 0

and r(x) = e−Dσx one gets for all t ≥ 0 and µ > 0:

∥z(·, t)∥∞ ≤e−µ(t−D)+D∥z0∥∞ + eD(1+µ) max
0≤s≤t

(|d(s)|) . (4.53)

Using the Fading memory inequality (see Appendix A.5) or [59, Lemma 7.1], we
guarantee that there exists δ > 0 such that the following fading memory estimates
holds for all t ≥ 0:

∥w(·, t)∥eδt ≤∥w0∥ + 1√
3(1 + ε) max

0≤s≤t
(∥z(s, ·)∥∞e

δt), (4.54)

∥z(·, t)∥∞e
δt ≤ eD∥z0∥∞ + eD(µ+1)(1 + ε) max

0≤s≤t

(
|d(s)|eδs

)
. (4.55)

Using (4.54)-(4.55) and the definitions (4.45)-(4.46), we get for all t ≥ 0 the
inequalities (4.47) and (4.48). ♢
In the proof of the main stability result of this section, we will also need to estimate
the deviation d(t) defined in (4.23).We will prove the following estimate which is
a conversion of an ISS-like inequality in the max-formulation to a Fading Memory
Inequality.

Lemma 4.7:

For every ε > 0, β > 0, there exists a constant δ > 0 such that the following
inequality holds:

max
0≤s≤t

(
|d(s)|eδs

)
≤β(1 + ε)∥w∥[0,t] + β(1 + ε)∥z∥[0,t]. (4.56)

Proof : From Definition 4.3, events are triggered to guarantee, for all tj ≥ 0
and t ≥ tj.

|d(t)| ≤ β max
tj≤s≤t

(∥w(s, ·)∥L2) + β max
tj≤s≤t

(∥z(s, ·)∥∞). (4.57)

Notice that (4.57) can be read as e.g.,

|d(t)| ≤ e(−π(t−tj))|d(tj)| + β max
tj≤s≤t

(∥w(s, ·)∥L2) + β max
tj≤s≤t

(∥z(s, ·)∥∞),

knowing that that |d(tj)| = 0. Using again the fading memory estimate (|d(t)|
being locally bounded which is indeed guaranteed by the triggering law), then the
following inequality holds for all t ≥ 0:

|d(t)| ≤ e−δt|d(0)| + β(1 + ε) max
0≤s≤t

(∥w(s, ·)∥L2e−δ(t−s))

+ β(1 + ε) max
0≤s≤t

(∥z(s, ·)∥∞e
−δ(t−s))

(4.58)
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with δ, ε as in (4.54)-(4.55). Hence, since |d(0)| = 0 we obtain the following estimate:

|d(t)|eδt ≤β(1 + ε) max
0≤s≤t

(∥w(s, ·)∥L2eδs)

+ β(1 + ε) max
0≤s≤t

(∥z(s, ·)∥∞e
δs).

(4.59)

Using definitions (4.45)-(4.46), we get (4.56). ♢
Now, we can state and prove the main result of this section.

Theorem 4.8: Exponential stability

Let β > 0 be a design parameter (involved in the triggering condition (4.28))
that is selected in such a way that the following condition is fulfilled:

β <
e−D(

1 +
√

3
3

) . (4.60)

Then, the closed-loop system (4.20) with event-triggered boundary control
(4.28)-(4.29) is globally exponentially stable. More specifically, there exist
constants M, δ > 0 such that:

∥u(·, t)∥ + ∥v(·, t)∥∞ ≤ Me−δt (∥u0∥L2 + ∥v0∥∞) , (4.61)

for all t ≥ 0.

Proof : By virtue of condition (4.60), there exist constants ε, µ > 0, such that

β
(

1√
3(1 + ε)3eµD + (1 + ε)2eµD)

)
eD < 1. (4.62)

Indeed, the existence of ϵ, and µ > 0 is guaranteed since the function

h1(ε, µ) := β
(

1√
3(1 + ε)3eµD + (1 + ε)2eµD)

)
eD

is continuous at (0, 0) and satisfies h1(0, 0) < 1. Condition (4.62), in turn, implies
the following condition:

β(1 + ε)2eD(µ+1) < 1. (4.63)

Therefore, using (4.56) along with (4.47)-(4.48), we get

∥w∥[0,t] ≤ ∥w0∥L2 + 1√
3(1 + ε)∥z∥[0,t], (4.64)

and

∥z∥[0,t] ≤eD∥z0∥∞ + eD(µ+1)(1 + ε)2β∥w∥[0,t]

+ eD(µ+1)(1 + ε)2β∥z∥[0,t].
(4.65)

From (4.65) and since (4.63) holds, we have

∥z∥[0,t] ≤
(
1 − β(1 + ε)2ϕ

)−1
eD∥z0∥∞ + β(1 + ε)2ϕ

(
1 − β(1 + ε)2ϕ

)−1
∥w∥[0,t],

(4.66)
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where

ϕ := eD(1+µ). (4.67)
Then,

∥w∥[0,t] ≤ ∥w0∥L2 + 1√
3(1 + ε)

(
1 − β(1 + ε)2ϕ

)−1
eD∥z0∥∞

+ 1√
3β(1 + ε)3ϕ

(
1 − β(1 + ε)2ϕ

)−1
∥w∥[0,t].

(4.68)

Therefore,

∥w∥[0,t] ≤ (1 − β(1 + ε)3ψ)−1∥w0∥L2

+ 1√
3(1 + ε)

(
1 − β(1 + ε)3ψ

)−1
×
(
1 − β(1 + ε)2ϕ

)−1
eD∥z0∥∞,

(4.69)

where
ψ := 1√

3ϕ(1 − β(1 + ε)2ϕ)−1. (4.70)

On the other hand, from (4.64) and (4.66), we have

∥z∥[0,t] ≤
(
1 − β(1 + ε)2ϕ

)−1
eD∥z0∥∞ + β(1 + ε)2ϕ

(
1 − β(1 + ε)2ϕ

)−1
∥w0∥L2

+ 1√
3β(1 + ε)3ϕ

(
1 − β(1 + ε)2ϕ

)−1
∥z∥[0,t],

(4.71)

and since (4.62) holds, then

∥z∥[0,t] ≤ (1 − β(1 + ε)3ψ)−1
(
1 − β(1 + ε)2ϕ

)−1
eD∥z0∥∞

+ β(1 + ε)2(1 − β(1 + ε)3ψ)−1ϕ
(
1 − β(1 + ε)2ϕ

)−1
∥w0∥L2 .

(4.72)

Combining (4.69) and (4.72), we get

∥w∥[0,t] + ∥z∥[0,t] ≤ (1 − β(1 + ε)3ψ)−1
(

1 + β(1 + ε)2ϕ
(
1 − β(1 + ε)2ϕ

)−1
)

∥w0∥L2

+ (1 − β(1 + ε)3ψ)−1
(
1 − β(1 + ε)2ϕ

)−1
(1 + 1√

3(1 + ε))eD∥z0∥∞.

(4.73)

Hence,

∥w(·, t)∥ + ∥z(·, t)∥∞ ≤ M0e
−δt∥w0∥

+M0(1 + 1√
3(1 + ε))eDe−δt∥z0∥∞,

(4.74)

with
M0 := (1 − β(1 + ε)3ψ)−1

(
1 − β(1 + ε)2ϕ

)−1
.

Furthermore

∥w(·, t)∥ + ∥z(·, t)∥∞ ≤ M1e
−δt (∥w0∥ + ∥z0∥∞) , (4.75)
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with
M1 := M0(1 + 1√

3(1 + ε))eD).
Next, we use the estimates of the backstepping transformations, i.e.,

∥w(·, t)∥ ≤ k̃∥u(·, t)∥, (4.76)
∥u(·, t)∥ ≤ l̃∥w(·, t)∥, (4.77)

∥z(·, t)∥∞ ≤ γ̃∥u(·, t)∥ + q̃∥v(t, ·)∥∞, (4.78)
∥v(·, t)∥∞ ≤ δ̃∥w(·, t)∥ + p̃∥z(t, ·)∥∞, (4.79)

with
k̃ := 1 +

(∫ 1

0

(∫ x

0
|k(x, y)|2dy

)
dx
)1/2

,

l̃ := 1 +
(∫ 1

0

(∫ x

0
|l(x, y)|2dy

)
dx
)1/2

and
γ̃ := ∥γ(x, ·)∥L2 ,

q̃ := 1 +D max
0≤x≤1

∫ x

0
|q(x, y)|dy,

δ̃ := ∥δ(x, ·)∥L2

and
p̃ := 1 +D max

0≤x≤1

∫ x

0
|p(x, y)|dy.

The proof of the inequalities (4.76),(4.77),(4.78) and (4.79) are quite similar
and we will just provide the one of (4.77). It is based on the inverse backstepping
transformation (4.8), the triangular inequality and the Cauchy-Schwarz inequality,
and we have:∫ 1

0
|u(x, t)|2dx ≤

∫ 1

0
|w(x, t)|2dx+

∫ 1

0

[(∫ x

0
|l(x, y)|2dy

)1/2 (∫ 1

0
|w(y, t)|2dy

)1/2]2

dx,

∥u(·, t)∥2
L2 ≤ ∥w(·, t)∥2

L2

(
1 +

∫ 1

0

(∫ x

0
|l(x, y)|2dy

)
dx
)
.

Taking the square root of both sides, we get:

∥u(·, t)∥L2 ≤
√

∥w(·, t)∥2
L2 ·

√
1 +

(∫ 1

0

(∫ x

0
|l(x, y)|2dy

)
dx
)

≤ ∥w(·, t)∥L2 ·

1 +
√(∫ 1

0

(∫ x

0
|l(x, y)|2dy

)
dx
)

= l̃∥w(·, t)∥.

Hence, from (4.75), along with (4.76)-(4.77) and (4.78)-(4.79), we finally obtain,
for all t ≥ 0

∥u(·, t)∥L2 + ∥v(·, t)∥∞ ≤ Me−δt (∥u0∥L2 + ∥v0∥∞) , (4.80)
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with
M := M1M2M3,

where M1 is as in (4.75),
M2 := max{(l̃ + δ̃), p̃}

and
M3 := max{(k̃ + γ̃), q̃}.

This concludes the proof. ♢

Remark 4.2 The small-gain condition β
(

1+
√

3√
3

)
eD < 1 from (4.60) is a delay-

dependent condition which involves also the parameter β of the triggering condition
(4.28). Notice that the larger D, the smaller β should be chosen to preserve the
theoretical guarantees. This implies sampling faster, thus the boundary control
input is updated more often. It is worth mentioning, however, that larger values of
β can be taken (eventually violating (4.60)) and may be used in practice since the
obtained estimates are conservative.

4.3.6 Simulation example
We illustrate the results by considering the reaction-diffusion PDE (4.20)

ut(x, t) = uxx(x, t) + λu(x, t),
u(0, t) = 0,
u(1, t) = v(0, t),
vt(x, t) = 1

D
vx(x, t),

v(1, t) = Ud(t),

with λ = 12, input delay D = 0.5, and initial condition

u0(x) =
3∑

n=1

√
2
n

sin(nπx) + 3(x2 − x3), v0(x) = 0, x ∈ [0, 1].

For the numerical simulations, we implement an implicit Euler scheme for the para-
bolic subsystem combined with the two-step Lax–Wendroff method for the hyper-
bolic subsystem. The discretization with respect to space and time is done with
steps ∆x = 1 × 10−3 and ∆t = 1 × 10−4, respectively. We run simulations on a time
horizon T = 1.

We stabilize the system on events under the event-triggered control (4.28)-(4.29)
where the parameter β = 0.05 is selected according to (4.60) in Theorem 4.3.5.
Conditions (4.62)-(4.63) (used just in the stability analysis) are also verified with
e.g., ε = 0.1 and µ = 0.1. Since the event-triggering condition is monitored in terms
of the states of the target system (4.21) and the kernel of the inverse transformation,
their numerical solutions are also found according to (4.3)-(4.4), along with the
explicit expressions (4.11)-(4.13). In addition, using (4.42), we compute the minimal
dwell-time τ = 7.3 × 10−3.
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Figures 4.1 and 4.2 show the numerical solution of the closed-loop system (4.20)
with continuous-time boundary control (4.17) and with event-triggered control (4.28)-
(4.29), respectively. The time-evolution of control functions under the continuous
and event-triggered case is shown in Figure 4.3. The control value is kept constant
between event times and updated according to the triggering law. We obtained in
total 29 updates within the considered time horizon.

Figure 4.1: Numerical solutions of the closed-loop system with λ = 12, delay D =
0.5, initial condition u0(x) = ∑3

n=1

√
2

n
sin(nπx) + 3(x2 − x3), v0(x) = 0, x ∈ [0, 1]

and under the continuous-time boundary control (4.17) . The parabolic subsystem
is depicted on the top and the transport PDE is depicted on the bottom.
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Figure 4.2: Numerical solutions of the closed-loop system with λ = 12, delay
D = 0.5, initial condition u0(x) = ∑3

n=1

√
2

n
sin(nπx)+3(x2−x3), v0(x) = 0, x ∈ [0, 1]

and under the event-triggered control (4.28)-(4.29) with β = 0.05. The parabolic
subsystem is depicted on the top and the transport PDE is depicted on the bot-
tom. The piecewise-constant signal appears at the boundary and the discontinuities
propagate along the spatial domain.
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Figure 4.3: Time-evolution of the continuous-time boundary control (4.17) (red line)
and the event-triggered boundary control(4.28)-(4.29) (black line).



4.4. CONCLUSION AND PERSPECTIVES 101

4.4 Conclusion and perspectives
An event-triggered boundary control was proposed for the stabilization of a 1-D re-
action diffusion equation with input delay. The delay is treated as a transport PDE,
thus the problem is reformulated as a cascade PDE-PDE controlled system. We
performed emulation on the backstepping control and proposed a state dependent
event-triggering mechanism. The existence of a minimal dwell-time (independent of
the initial conditions) between two triggering times is proved in order to exclude the
Zeno phenomenon. Henceforth, we ensured the well-posedness of the closed-loop
system and, thanks to the Input-to-State stability theory for PDEs and small-gain
arguments, the global exponential stability is guaranteed.

In future work, one may design event-triggering mechanism for the following
context.

• Boundary stabilization of a class of linear parabolic partial integro-differential
equations (PIDEs) in one dimension

Using [109] and [69, Chapter 14] one can extend the results in this chapter to
the following partial integro-differential equations defined in (0, 1) × R+:



∂tz(x, t) = ∂xxz(x, t) + b(x)∂xz(x, t) + λ1(x)z(x, t)
+g1(x)z(0, t) +

∫ x

0
f1(x, y)z(y, t)dy

z(0, t) = 0
z(1, x) = v(1, t)
z(0, t) = z0(x)
∂tv(x, t) = ∂xv(x, t) + λ2(x)v(x, t) + g2(x)v(0, t) +

∫ x
0 f2(x, y)v(y, t)dy

v(1 +D, t) = U(t),

where b(x), λ1(x), λ2(x), g1(x), g2(x), f1(x, y) and f2(x, y) are arbitrary continuous
functions.

• Delay compensated event-triggered gain scheduling for the reaction-diffusion
system with time and space varying reaction coefficients

Inspired by [56], an event-triggering mechanism can be design for the scalar
reaction-diffusion system with time and space-varying reaction coefficient subject to
input delay D > 0:


ut(t, x) = εuxx(t, x) + λ(t, x)u(t, x), for (t, x) ∈ R+ × (0, 1),
ux(t, 0) = qu(t, 0), for t ∈ R+,
u(t, 1) = U(t−D) or ux(t, 1) = U(t−D), for t ∈ R+

u(0, x) = u0(x) for x ∈ (0, 1) .

where ε > 0, q ∈ (−∞,+∞] (the case q = +∞ is interpreted as the Dirichlet
case), and λ ∈ C 0(R+ × [0, 1]) with λ[t] ∈ C 1([0, 1]). Here, u : [0,∞) × [0, 1] → R

represents the system state, and U(t) ∈ R is the control input. Moreover, the
reaction coefficient λ ∈ C 0(R+ × [0, 1]) is bounded and Lipschitz with respect to
time.

• Observer-based event-based control for more complex coupled reaction-diffusion
systems with varying coefficients and subject to input/output delays
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Consider in (0, 1) × R+ the system

∂tz(x, t) = 1
h(x)

(
− d

dx

(
a(x)dφ(x)

dx

)
+ b(x)φ(x

)
z(x, t)

∂xz(t, 0) = 0
∂xz(t, 1) = U(t−D)
z(0, t) = z0(x)
U(θ) = ϕ(θ), θ ∈ [−D, 0].

where h(x), a(x), and b(x) are real-valued, sufficiently smooth functions defined on
[0, 1], with h(x) > 0 and a(x) > 0. The function U(t) represents the control input,
and D > 0 denotes a time lag.

• Boundary stabilization of First-order Hyperbolic PIDEs
For (x, t) ∈ (0, 1) × R+, and g(x) and f(x, y) two known coefficient functions

belonging to C[0, 1], consider the first-order PIDE with an input delay D > 0
ut(x, t) = ux(x, t) + g(x)u(0, t)

∫ x

0
f(x, y)u(y, t)dy

u(t, 1) = U(t−D)
u(0, x) = u0(x)

(4.81)

which can be written as a couple of two transport equations:

ut(x, t) = ux(x, t) + g(x)u(0, t)
∫ x

0
f(x, y)u(y, t)dy

u(1, t) = v(0, t),
Dvt(x, t) = vx(x, t),
v(t, 1) = U(t)
u(0, x) = u0(x),
v(0, x) = v0(x).

(4.82)

Thanks to the backstepping method, in [91] the following delay-compensated con-
troller

U(t) =
∫ 1

0
γ(1, y)u(y, t) dy +D

∫ 1

0
q(1 − y)v(y, t) dy

allows to design a delay-adaptive feedback control (D is replaced with estimated
delay D̂(t))

U(x, t) =
∫ 1

0
γ(1, y, D̂(t))u(y, t) dy + D̂(t)

∫ 1

0
q(1 − y, D̂(t))v(y, t) dy

in order to exponentially stabilizes the system under the delay-adaptive control.
One may design an event-triggering mechanism U(x, t) := U(x, tk) ∀t ∈ (tk, tk+1),
where (tk) is appropriately chosen according to some event/threshold.
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Conclusion

In this thesis, we addressed the problem of exponential stability for different types of
linear partial differential equations under event-triggering mechanisms. Specifically,
we design static and dynamic event-triggered control to some linear PDE: the wave
equation, the Schrödinger equation and a 1-D reaction-diffusion equation with input
delay.

For the wave equation, we derived a sufficient matrix inequality-based condition
for exponential stability under a static event-triggered damping (and anti-damping)
controller using an adequate Lyapunov functional. Moreover, we ensured the avoid-
ance of Zeno behavior by showing the absence of accumulation points in the update
sequence and consequently we guarantee the well-posedness of the system.

Concerning the Schrödinger equation, a static and a dynamic event-triggering
mechanism was proposed to determine when the stabilizing control needs to be
updated in digital implementations, while reducing the use of computational re-
sources. The event-triggering conditions are such that the exponential stability and
well-posedness are maintained while the occurence of Zeno behavior is avoided.

For the 1-D reaction-diffusion equation with input delay, we formulated a cas-
cade PDE-PDE controlled system by treating the delay as a transport PDE. We
introduced a static event-triggering mechanism, ensuring the existence of a minimal
dwell-time between triggering times to prevent the Zeno phenomenon. Thanks to the
Input-to-State stability theory for PDEs and small-gain arguments, we guarantee
global exponential stability for the closed-loop event-triggered control system.

This work paves the way for forthcoming research endeavors within the event-
triggering control. Future works may consider the event-based control in the con-
text of aeroelastic systems (modeling flow-induced vibration), dynamic boundary
control, and boundary damping control for both linear and nonlinear wave and
Schrödinger equations. The small-gain approach together with ISS technique used
in the context of the 1-D reaction-diffusion equation with input delay could be exten-
ded to more general parabolic and hyperbolic systems including integro-differential
systems, as well as reaction-diffusion PDE with time and space-varying reaction
coefficients. Furthermore, it could be interesting to consider observer-based event-
triggered control problem for the wave and the Schrödinger equations and apply
event-based control techniques to other PDEs, such as nonlinear transport equa-
tions, Kuramoto-Sivashinsky equations, Navier–Stokes equations, Euler-Bernoulli
equations, Ginzburg-Landau equations, and Beam’s equation, among others. Event-
based control in interconnected control systems and PDEs subject to input nonlin-
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earity, such as saturation, could also be explored. Finally, one should consider the
implementation of our algorithms in real-world examples, which requires precision
in the PDEs, including coefficients, physical parameters, etc., and adaptation of the
proposed event-triggered law.



A
Appendix: Useful inequalities and

identities

Lemma A.1: Cauchy-Schwarz’s inequality

For any u, v ∈ L2(Ω) it holds∫
Ω
u(x)v(x)dx ≤ ∥u∥∥v∥.

Lemma A.2: Poincaré’s inequality [34]

Let Ω be a bounded, connected, open subset of Rn, of class C1. There exists
a constant CΩ > 0, depending only on the dimension n and on the diameter
of the domain Ω, such that for each function z ∈ H1

0 (Ω),

∥z∥ ≤ CΩ∥∇z∥.

Lemma A.3: Green’s formula

Let Ω ⊂ Rn, n ≥ 2, be a bounded domain with Lipschitz boundary, then for
all u ∈ H2(Ω) and v ∈ H1(Ω),
∫

Ω
∇v(x) · ∇u(x)dx = −

∫
Ω
v(x)∆u(x)dx +

∫
∂Ω
u(s) ∇v(s) · ν(s)ds,

where ν is the outward pointing unit normal vector field.
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Lemma A.4: Gronwall’s Inequality

Let u be a real-valued continuous functions defined on an interval I of the
form [a,∞) or [a, b] or [a, b) with a < b.
• Differential form. If u is differentiable in (a, b) and satisfies the differential
inequality u̇(t) ≤ β(t)u(t)∀t ∈ I, then

u(t) ≤ u(a) exp
(∫ t

a
β(s)ds

)
,∀t ∈ I.

• Integral form. If β is non-negative, α is non-decreasing and if u satisfies
∀t ∈ I, the integral inequality u(t) ≤ α(t) +

∫ t

a
β(r)u(r)dr then

u(t) ≤ α(t) exp
(∫ t

a
β(r)dr

)
,∀t ∈ I.

Lemma A.5: Fading memory Lemma [59, Lemma 7.1, page 186 ]

For every σ > 0,M ≥ 0, ε > 0, there exists a constant δ ∈ (0, σ) with the
following property: If φ : R+ → R+ and y : R+ → R+ are locally bounded
functions for which there exists a constant γ ≥ 0 such that the following
inequality holds for all t0 ≥ 0 and t ≥ t0

φ(t) ≤ M exp (−σ(t− t0))φ(t0) + γ sup
t0≤t≤t

(y(s)), (A.1)

then the following inequality holds for all t ≥ 0

φ(t) ≤ M exp(−δt)φ(0) + γ(1 + ε) sup
0≤t≤t

(y(s) exp(−δ(t− s)). (A.2)

Lemma A.6: Schur complement Lemma [10]

The Hermitian block matrix
(
Q S
S⊤ R

)
is negative definite if and only if

Q ≺ 0 and R − S⊤Q−1S ≺ 0 (A.3)

which is equivalent to

R ≺ 0 and Q− SQ−1S⊤ ≺ 0. (A.4)
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Lemma A.7: S-Procedure, [10]

Let F0, · · · , Fp be quadratic functions of the variable η ∈ Rn :

Fi(η) = η⊤Tiη + 2uTiη + vi, where Ti = T⊤
i , i = 0, · · · , p.

We consider the following condition:

F0(η) ≥ 0 subject to Fi(η) ≥ 0, i = 1, · · · , p. (A.5)
If there exist τ1 ≥ 0, · · · , τP ≥ 0 such that for all η,

F0(η) −
p∑

i=1
τiFi(η) ≥ 0 (A.6)

then (A.5) holds. In the case p = 1, the condition is necessary and sufficient.

Lemma A.8: Finsler’s Lemma [10, 18]

Let x ∈ Rn, Q ∈ Sn and H ∈ Rn×m such that rank(H) < n. The following
statements are equivalent:

• η⊤Qη < 0, Hη = 0, ∀η ̸= 0

• H⊥⊤
QH⊥ ≺ 0

• ∃µ ∈ R : Q− µH⊥H⊥ ≺ 0

• ∃X ∈ Rn×m : Q+ X H + H⊥X ⊥ ≺ 0
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