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Abstract

Highly-accurate machine learning (ML) image classifiers cannot guarantee that they will not fail
at operation. Thus, their deployment in safety-critical applications such as autonomous vehicles
is still an open issue. The use of fault tolerance mechanisms such as safety monitors (SM)
is a promising direction to keep the system in a safe state despite errors of the ML classifier.
As the prediction from the ML is the core information directly impacting safety, many works
are focusing on monitoring the ML model itself. This thesis focuses on such approaches by
covering all necessary aspects to build, test, and evaluate SM in perception functions built with
ML, which can be summarized into the following: 1) An extensive literature review in which we
introduce a new taxonomy of the existing literature regarding threat identification, requirements
elicitation, detection of failure and reaction, and evaluation. 2) A new baseline framework for
benchmarking such SM, covering the entire pipeline, from data generation to evaluation. 3)
An evolutionary simulation testing of safety-critical perception systems, which is capable of
decreasing, at least 10 times, the amount of time to find a set of hazards in safety-critical
scenarios such as autonomous emergency braking system simulation. 4) A new SM approach for
safety monitoring of ML classifiers.
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Chapter 1

Introduction

A robotic system is autonomous when it can operate in a real-world environment for an extended
period of time without being controlled by humans [Bekey, 2005]. Thanks to recent advances in
Machine Learning (ML), autonomous systems have started to leave the safe environment of re-
search laboratories to perform complex tasks, where failures can have catastrophic consequences.
Examples of such safety-critical autonomous systems include self-driving cars [Calvi, 2019], sur-
gical robots [Haidegger, 2019], and unmanned aerial vehicles in urban environments [Guérin
et al., 2021a], among others. These autonomous systems frequently use large ML models, such
as deep neural networks, to either interpret complex sensor signals (perception [Premebida et al.,
2018]) or to make decisions based on these signals (control [Duan et al., 2016]). This work fo-
cuses on the former and discusses mechanisms to ensure the safety of autonomous systems that
use ML-based perception components.

For many autonomous systems applications, specific essential perception tasks can only be
solved by using ML. For example, in highly uncontrolled settings such as self-driving cars, a
common way to accurately detect and locate pedestrians is to process complex RGB images using
deep neural networks [Brunetti et al., 2018]. Today, this information cannot be obtained from
other sources and is crucial to guarantee the safe behavior of the vehicle. However, despite the
great success of such perception functions, the use of ML presents new dependability challenges
that have been discussed extensively in recent research [Varshney and Alemzadeh, 2017, Faria,
2018, Mohseni et al., 2020]. Some of the recurring safety issues highlighted in these works
include:

1. The lack of well-defined specification: ML models are learned from examples instead of
coded manually. Hence, the boundaries of the operating range are unknown, and one
cannot prove formally that specific safety constraints are always verified.

2. The black-box nature of the models: traceability and transparency of ML predictions are
difficult.

3. The high-dimensionality of data: validation of the complete operational design domain is
impossible.

4. The over-confidence of neural networks: Output scores of neural networks cannot be used
as is to detect failures since it is possible for a model to deliver a wrong output with high
confidence [Gal and Ghahramani, 2016].

For all these reasons, most offline safety activities (fault prevention, fault removal, and fault
forecasting [Avizienis et al., 2004]) are not sufficient to ensure safety and certify such autonomous
systems. However, online fault tolerance mechanisms deliver services despite the presence of
faults and are a promising alternative to improve safety-critical systems using such perception
functions based on ML. This thesis focuses on such approaches, particularly to Safety Monitor
(SM), which goal is to keep the system in an acceptable state during operation despite faults or
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adverse scenarios. As highlighted by Machin et al. [2018], SM are mentioned in the literature
under many different terms, such as safety kernel [Rushby, 1989], safety manager [Pace and
Seward, 2000], autonomous safety system [Roderick et al., 2004], checker [Py and Ingrand, 2004],
guardian agent [Fox and Das, 2000], safety bag [Klein, 1991], or emergency layer [Haddadin et al.,
2011]. All these approaches have been extensively applied in cyber-physical systems, but not to
ML-based functions.

One of the main problems to perform such safety monitoring of ML-based perception func-
tions is that classical SM approaches applied during the design and operation cannot guarantee
that a DNN decision is safe. The reason is that, for some corner cases, ML outputs wrong
decisions that cannot be verified by inspecting the code logic or the sensor values and lead to
hazards Dreossi et al. [2019a]. We can deploy rule-based monitors when redundant observation
sources are applied and safety properties are correctly expressed. However, monitoring an ML
component for vision is particularly complex to find a redundant source of observation. More-
over, it is not apparent to express a safety property at the level of an ML prediction. For these
reasons, this thesis focuses on the challenging task of deploying and evaluating SM for critical
systems using ML for perception functions, such as autonomous vehicles equipped with deep
learning models for critical functions such as road sign classification, pedestrian detection, or
road lane segmentation.

Thus, in Chapter 2, we present an extensive literature review on the safety monitoring of
perception functions using ML in a safety-critical context. We introduce a new taxonomy of the
existing literature to represent the main considerations when designing such monitors: threat
identification, requirements elicitation, detection of failure and reaction, and evaluation. We
highlight the ongoing challenges linked to these SMs and ideas for future work as well.

An important challenge is to define how to properly assess the efficiency of such SMs in the
context of safety-critical applications. Thus, in Chapter 3, we propose a new baseline frame-
work for benchmarking monitors applied to ML image classifiers. Furthermore, the proposed
framework covers the entire pipeline, from data generation to evaluation. Our approach mea-
sures monitor performance with a broader set of metrics than usually proposed in the literature.
Moreover, we benchmark three different monitor approaches in 79 benchmark datasets contain-
ing five categories of out-of-distribution (OOD) data for vision-based tasks defined in Chapter 2:
class novelty, noise, anomalies, distributional shifts, and adversarial attacks. Our results indicate
that these monitors are no more accurate than a random monitor.

To deal with OOD threats, literature usually applies data augmentation techniques or SM
such as OOD detectors to increase robustness. Evaluating such solutions using traditional
metrics can be misleading since not all OOD data lead to failures in the perception system.
Hence, testing a perception system should be more reliable if using images captured by the
system at runtime instead of just measuring ML performances on a dataset. However, the
amount of time spent to generate diverse test cases during a simulation of perception components
can grow quickly since it is a combinatorial optimization problem. Therefore, in Chapter 4,
aiming to provide a solution for this challenging task, we present SiMOOD, an evolutionary
simulation testing of safety-critical perception systems, which comes integrated into the CARLA
simulator. Unlike related works that simulate scenarios that raise failures for control or specific
perception problems such as adversarial and novelty, we provide an approach that finds relevant
OOD perturbations that can lead to hazards in safety-critical perception systems. Moreover,
our approach can decrease, at least 10 times, the amount of time to find a set of hazards in
safety-critical scenarios such as autonomous emergency braking system simulation.

Recent works confirmed, theoretically and empirically, that such OOD detectors tend to
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perform spurious detections resulting in high rates of false positives/negatives regarding the
detection. Recent findings indicate that errors provoked by OOD data are mostly impossible to
be detected without prior knowledge [Ye et al., 2021], and any OOD detection algorithm without
a model selection module tends to be incomplete [Gulrajani and Lopez-Paz, 2020]. Therefore, in
Chapter 5, we introduce SENA, a similarity-based error-checking of neural activations. SENA
is an SM for ML-based classifiers and it is divided into two steps: 1) it verifies the similarity
between activation function values from an incoming image and a set of activation function
values extracted from true positives and false negatives from the ML predictions during the
training; 2) it uses a statistical core extraction process [Ferreira et al., 2019] to select a minimal
subset of the most representative true positive activation function values to be compared at
runtime. The first experiments without any further optimization indicate that this method has
competitive performance with state-of-the-art data-based monitors. Finally, in Chapter 6, we
conclude with a summary of the contributions with perspectives and thoughts for future work.
Here is a list of accepted/under-review articles listed in reverse chronological order:

• RS Ferreira, J Guérin, J Guiochet, H Waeselynck, “SENA: Similarity-based Error-checking
of Neural Activations”, (under review at ECAI 2023), submitted on 05/2023.

• RS Ferreira, J Guérin, K Delmas, J Guiochet, H Waeselynck, “Safety Monitoring of Ma-
chine Learning Perception Functions: a Survey”, (under review at the Journal of Compu-
tational Intelligence), submitted in 07/2022.

• J Guérin, K Delmas, RS Ferreira, J Guiochet, “OOD detection is not all you need”, 37th
AAAI Conference on Artificial Intelligence (AAAI 2023).

• RS Ferreira, J Guérin, J Guiochet, H Waeselynck, “SiMOOD: evolutionary testing SiMu-
lation with Out-Of-Distribution images”, 27th IEEE Pacific Rim International Symposium
on Dependable Computing (PRDC 2022).

• J Guérin, RS Ferreira, K Delmas, J Guiochet, “Unifying Evaluation of Machine Learn-
ing Safety Monitors”, The 33rd IEEE International Symposium on Software Reliability
Engineering (ISSRE 2022).

• RS Ferreira, J Arlat, J Guiochet, H Waeselynck, “Benchmarking Safety Monitors for Image
Classifiers with Machine Learning”, 26th IEEE Pacific Rim International Symposium on
Dependable Computing (PRDC 2021).

• Raul Sena Ferreira, “Towards safety monitoring of ML-based perception tasks of au-
tonomous systems”, The 31st IEEE International Symposium on Software Reliability En-
gineering Workshops (ISSREW 2020).





Chapter 2

Safety Monitoring of Machine
Learning Perception Functions

As shown in Figure 1, an SM for ML perception function, often inspects either the inputs or
outputs of an ML model. However, monitoring ML in a safety context is still an open issue.
Thus, in this chapter, we propose a survey of all major issues and current research on the safety
monitoring of ML-based perception functions.

Relatively little research has been conducted specifically on the safety monitoring of ML-
based perception functions. Recently, two surveys focused on the safety of deep learning per-
ception components in autonomous systems. Muhammad et al. [2020] analyzed recent deep
learning perception works related to autonomous driving safety (e.g., lane detection, pedestrian
detection, collision avoidance). They highlight the current issues and propose several recom-
mendations. They also briefly discuss deep learning research areas related to safety, such as
SM. Although the objectives and application context are similar, our survey is about safety
monitoring, i.e., additional components to ensure the safety of the system, whereas Muhammad
et al. [2020] discusses approaches to enhance safety by improving the robustness of deep neural
networks (DNN) in a realistic vehicular environment. On the other hand, Rahman et al. [2021]
presented a survey about the safety monitoring of perception functions. They organize existing
approaches to detect runtime failures in three categories:

1. Approaches that use past examples of failures to predict future ones.

2. Approaches that detect inconsistencies in the perception outputs.

3. Approaches that are based on uncertainty estimation.

Our work differs from Rahman et al. [2021] by organizing the existing safety monitoring literature
in a top-down fashion, i.e., starting from the requirements, then the design, and finally the
assessments of SMs. This methodology allows highlighting the specific areas where research is
lacking to reach the expected levels of integrity and to discuss some fields of the literature (e.g.,
recovery and evaluation) that were not addressed in other surveys.

Many recent works from different fields of ML have the potential to be used to build successful
SMs. This chapter aims to present such approaches and discuss them in the context of the
implementation of SMs. Thus, this chapter is organized based on the main safety considerations
when designing SMs:

• What threats are being addressed by safety monitors? (Section 2.1)

• How to derive monitor requirements from safety objectives? (Section 2.2)

• Which detection mechanisms can be used? (Section 2.3)

• Which recovery actions can be used? (Section 2.4)



6CHAPTER 2. SAFETY MONITORING OF MACHINE LEARNING PERCEPTION FUNCTIONS

Figure 1: Safety Monitors for Machine Learning-based Perception Functions. In
modern autonomous systems, state estimation provided by deep learning models cannot be trusted
to make safety-critical decisions. Therefore, specific fault tolerance approaches should be imple-
mented to ensure that failures of the ML perception function will not lead to catastrophic out-
comes.

• How are safety monitors evaluated? (Section 2.5)

For each of these themes, the main challenges are presented along with existing approaches to
tackle them (Figure 2). Although classic SM mechanisms can be useful to ensure the safety of
such autonomous systems, this chapter focuses on the specificities related to ML perception.

2.1 What threats are being addressed by SM?

Understanding the potential threats for a given problem is crucial to design an SM and providing
a relevant evaluation protocol. For example, if the safety analysis of a system reveals that a threat
is likely to occur, it should be reflected in the evaluations conducted to test the monitor. For
example, different kinds of threats can affect the performance of ML-based perception functions.
In particular, offline threats are introduced during the development phase of the ML model, and
runtime threats occur during live operations.

Offline threats usually come from data inconsistency and problems in the software engineering
process. Some examples of offline threats include inadequate ML pre-processing and/or feature
engineering [Alasadi and Bhaya, 2017], label noise [Bekker and Goldberger, 2016], inadequate
ML testing [Breck et al., 2017], and bad model maintenance [Sculley et al., 2015]. Although this
chapter focuses specifically on approaches to prevent runtime threats, it is crucial to ensure that
proper software engineering practices are observed during the development of safety monitors.
Therefore, testing and maintenance are crucial steps in developing efficient monitors.

The objective of a SM is to detect when an ML perception model is wrong and to implement
corrective actions to ensure that erroneous predictions will not lead to catastrophic events. For
example, different kinds of input data can lead to errors from an ML model, and we refer to
the event of receiving such input as a runtime threat. This section presents a taxonomy of the
runtime threats for perception functions, inspired by the existing literature [Pimentel et al.,
2014, Chakraborty et al., 2018, Granese et al., 2021, Shen et al., 2021]. Different kinds of faulty
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Figure 2: Taxonomy of the current research on Safety Monitoring of Machine
Learning Perception Functions. Each section of this chapter discusses a specific aspect of
safety monitoring of machine learning perception.

or adverse input data are grouped as threats if they can be detected with similar approaches, or
if they can be addressed with similar corrective actions. Therefore, throughout this section, we
present such runtime threats and discuss their specificities with respect to detection, reaction,
and evaluation.

2.1.1 In-distribution errors

Modern Deep Learning architectures have obtained excellent results in many perception tasks
used in autonomous systems. For example, according to the current leader board listed on papers
with code1, the best performing model for semantic segmentation on Cityscapes Cordts et al.
[2016] has a mean intersection over the union of 84.5% [Yuan et al., 2021], the best model for
image classification on ImageNet [Deng et al., 2009] has a top-1 accuracy close to 91%, and the
leader for object detection on COCO [Lin et al., 2014a] has a mean average precision around
63% [Liu et al., 2021b]. These results were obtained on the test splits of these datasets, which
are assumed to come from the same distribution as the training data, i.e., In-Distribution (ID)
data. Although these results are excellent and allowed researchers to build useful applications,
the best-performing computer vision models are still not free of errors.To guarantee the system’s
safety, an SM should be able to handle these errors.

Beyond this fundamental model generalization issue, there is another problem: data incom-
pleteness. Rare conditions tend to be underrepresented since the training data only account for
a subset of all real-world possibilities [Shafaei et al., 2018]. New data presenting different char-
acteristics than the training data are usually referred to as Out-Of-Distribution (OOD) data.
Yang et al. [2021] presented a taxonomy of the different settings under which modern OOD
research is conducted. In this work, we present a different classification better suited to the
context of safety monitoring. In particular, we discuss how these threats can be monitored at
runtime. We note that there is no unified naming convention for the threats presented hereafter
and that they might be found under different names in the literature. We strive to propose clear
definitions of the threats discussed in this work to avoid ambiguity.

1https://paperswithcode.com/sota
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2.1.2 Novelty threats

A new input data encountered at runtime is considered “novel” when its category/label does not
refer to any of the predefined categories known by the model [Yang et al., 2021]. For example,
Blum et al. [2019] studied the problem of semantic segmentation of a driving scene and trained
their model on the Cityscapes dataset [Cordts et al., 2016]. At runtime, when a dog crosses the
road, its corresponding pixels are considered novelty as they do not belong to the predefined set
of classes of Cityscapes. Hence, when a novelty input is presented to an ML perception model,
it cannot return a correct answer.

The above example shows that facing novelty inputs is common for autonomous systems
evolving in unstructured environments. Hence, it is crucial to equip ML perception models
with defensive mechanisms against this runtime threat. A typical strategy consists in building
classification models with rejection [Condessa et al., 2017], with the ability to reject uncertain
predictions such as objects outside the network scope. Regarding the recovery after detecting
novelty threats, the actions implemented should not rely on the possibility of obtaining a better
estimate of the correct prediction. Concrete approaches to detect novelty threats, recover from
them and evaluate the ability of an SM to address them are discussed in Sections 2.3, 2.4, and
Section 2.5, respectively.

2.1.3 Distributional shift threats

A distributional shift occurs when the marginal distribution of the runtime input data is different
from the training distribution, while the label generation mechanism keeps unchanged [Shen
et al., 2021]. Regarding safety monitoring, we distinguish two distinct forms of distributional
shifts: covariate shifts and semantic shifts.

2.1.3.1 Covariate shift

A covariate shift is a condition that decreases the ML performance through time in dynamic en-
vironments [Ferreira et al., 2019]. In other words, covariate shift threats are new data presenting
different characteristics in their composition but for which the semantic content is not different
from training. For images, such threats are also called corruptions or perturbations and were
presented and discussed extensively by Hendrycks and Dietterich [2019]. The deteriorated data
can result from either failure in exteroceptive sensors or environmental conditions that were not
seen during training.

• Sensor failures Sensor failures represent data perturbations coming from hardware defects.
They include various errors such as pixel traps, shifted pixels, Gaussian noise, and Poisson
noise. There are specific approaches to identify sensor faults [Khalastchi et al., 2013],
which can be addressed by tuning the sensor parameters [Micheloni and Foresti, 2009] or
having a backup sensor system [Surya and Ravi, 2018].

• Changes in external conditions For autonomous systems evolving in unstructured envi-
ronments, the training datasets used for ML perception models cannot cover all possible
external conditions encountered in the real world. For example, the visual perception
functions of an autonomous vehicle should work for different kinds of weather (e.g., snow,
fog) and lighting conditions (e.g., night, sunset). As illustrated in the disengagement re-
ports by major companies, such external factors influence the performance of perception
components and can reduce the safety of the vehicle [Sinha et al., 2021].
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To deal with these two covariate shift types, both traditional signal processing [Motwani
et al., 2004] and modern deep learning approaches [Tian et al., 2020] have been used to detect
and reduce data noise. However, the techniques used against covariate shift threats depend
highly on the amount of noise in the data.

2.1.3.2 Semantic shift

Semantic shift threats are input data representing semantic objects that either:

• presents different attribute than known members of this category, e.g., pedestrian detector
trained during the summer which encounters people wearing winter clothes [Rasouli et al.,
2018],

• present a rare interaction between known classes and the environment, e.g., a standard
truck that is overturned on the road [Stumpf, 2020].

A semantic shift only includes cases where the categories of the objects present in the data are
within the predefined set of categories handled by the model (in contrast to novelty threats).
Although it would be valid to consider the semantic shift as a particular case of covariate shift,
we believe it presents different attributes concerning safety monitoring. In particular, such
distributional shifts cannot be handled by denoising or backup sensors. Instead, some works
have focused on detecting specific attributes of the objects which are less likely to change across
different environments [Zhang et al., 2020]. Although it was not implemented for ML monitoring,
we believe that it has the potential to detect model failures related to semantic shift threats. For
example, to monitor a pedestrian detector facing a shift in clothes attributes, one could imagine
detecting faces instead of bodies.

2.1.4 Adversarial threats

An adversarial input is an intentional modification of in-distribution data to make ML models
fail with high confidence [Akhtar and Mian, 2018, Kurakin et al., 2018]. In real-world scenarios,
these malicious attacks can be made by applying modifications on targeted physical objects such
as painting black lines on the road to force the ML model to interpret it as a road lane [Boloor
et al., 2020].

Adversarial threats can lead to serious safety issues if applied against the perception func-
tions of critical systems. Therefore, they should be handled by specific SM as they are likely
to fool generic monitoring approaches. However, specific hardening approaches, such as gradi-
ent hiding and defensive distillation, have been developed to identify them or increase model
robustness [Chakraborty et al., 2018].
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2.2 How to derive SM from safety objectives?

Safety monitoring guarantees that some safety properties are not violated, despite potential
faults occurring in the main system. The elicitation and modeling of these properties are essen-
tial steps in designing safety monitors. For instance, Machin et al. [2018] used a HAZOP-UML
analysis [Guiochet et al., 2010] to identify high-level safety objectives expressed in natural lan-
guage. These high-level objectives are then converted to low-level safety requirements, expressed
formally in the system’s state space, and observable by the monitor. For a mobile robotic plat-
form in a standard industrial setting, an example of a high-level safety objective is “the robot
platform must not collide with a human”. A low-level safety requirement can be derived by
comparing the braking distance with the distance of any obstacle sensed by a laser. In this
example, the low-level requirements are easy to express and implement since the sensor signal
can be interpreted in terms of the high-level requirement.

The high-level safety objectives can still be identified using standard hazard analysis tools
for complex systems involving machine learning perception. However, converting them into low-
level monitoring requirements is not straightforward. Indeed, expressing and implementing a
high-level requirement in raw sensors can result in solutions that are too conservative or even
infeasible to be deployed at runtime. For example, if we consider an emergency breaking system
(EBS) implemented in an autonomous vehicle:

• Using simple sensor signals such as a laser is not enough to capture the semantic infor-
mation required for an EBS to distinguish between pedestrians and other moving vehicles.
Such semantic information is crucial to EBS performing two very different low-level re-
quirements: to stop the ego vehicle when the EBS identifies an object as a pedestrian,
or slightly decelerate the ego vehicle when the EBS identifies an object as a moving ve-
hicle. Therefore, stopping the car for all sensed objects is too conservative, which would
significantly alter the availability of the system.

• Using complex sensor signals such as RGB image pixels from camera sensors is not enough
to guarantee that a high-level objective is not violated. That is, measuring the pixels
alone is infeasible to perform the EBS task since such raw RGB values cannot give useful
information to the EBS to perform a high-level requirement such as avoiding a collision.

Hence, we should specifically monitor the ML function responsible for localizing pedestrians. In
other words, the system-level safety objectives should be expressed as variables related to the
ML model (input, activation, output).

As explained above, most current works on ML monitoring focus on detecting when a model
is wrong and should not be trusted. This is a good generic formulation of the problem, agnostic
of the system in which the model is embedded. However, we believe that using information
from the application context to refine the low-level monitor requirements is a promising research
direction. In particular, the hazard analysis of the system could be used to identify safety-critical
regions of the ML model input/output space or to understand under which system configuration
an ML error is hazardous. In addition, building monitors for specific sub-regions of the state
space might allow us to come up with more effective local monitors and better allocation of
resources.

Although this lead has not yet been explored for ML monitoring, some research from ML
safety could serve as a first step towards building better specific monitors. In their work,
Dreossi et al. [2019a,b] propose to identify regions in the state space where a failure of the ML



2.3. WHICH DETECTION MECHANISMS CAN BE USED TO BUILD SM? 11

model results in a violation of a formal specification. For an autonomous vehicle use case, they
show that errors of an ML-based obstacle detection model are only threats for certain state
configurations (speed and distance to other vehicles). On the other hand, Salay et al. [2019a]
introduced an approach called Classification Failure Mode Effects Analysis (CFMEA) to study
the safety of an ML classifier. It serves to identify the kind of errors that can lead to a safety-
critical situation. For example, CFMEA can assess the severity of different control actions based
on different classification errors in an autonomous vehicle scenario. This approach represents a
promising research direction for runtime monitoring of ML perception functions. For example,
knowing that an ML failure would only cause catastrophic events in some subsets of the state
space could help to collect better data to design monitors in these specific regions.

2.3 Which detection mechanisms can be used to build SM?

Before we start discussing modern approaches to handle ML perception functions, we briefly
discuss traditional detection mechanisms that have been used to monitor regular autonomous
systems. These techniques are generally intended to detect violations of specific safety properties
based on a model of the system and its environment. Information from both exteroceptive sensors
(e.g., distance sensors) and proprioceptive sensors (e.g., speed) are processed to detect safety
threats such as the ability of a vehicle to stop before reaching an obstacle [Ozguner et al., 2007] or
to avoid a collision [Al-Khoury, 2017]. In addition, traditional approaches usually try to detect
abnormal temporal behavior or assumption violation. They rely on the fact that sensor data
can be interpreted in terms of formal specifications and that it can be trusted [Machin et al.,
2018]. However, for complex perception functions, traditional SM cannot be expressed directly
in terms of raw sensor signals (e.g., image pixels). Hence, new approaches are required to detect
errors in the signals provided by the ML models, which is the focus of this section. Nevertheless,
traditional SM approaches should still be implemented in autonomous systems that use ML
perception to deal with other sensors and ensure that the rest of the system appropriately
handles the correct ML predictions.

Despite the importance of safety monitoring of ML-based perception functions, few research
papers have explicitly focused on this topic. However, different approaches from the ML commu-
nity have the potential to be used as detection mechanisms in safety monitors. They come from
various ML sub-fields such as uncertainty estimation, anomaly detection, ensemble methods, or
multi-modal perception. This section discusses all approaches that could be used to detect a
failure of a critical ML perception function, even those not yet applied specifically to design
safety monitors. They are classified into two main categories: internal mechanisms and external
mechanisms. A visual representation of the proposed taxonomy of the existing detection mech-
anisms is proposed in Figure 3. We highlight that more research is needed to understand which
of the techniques presented hereafter are viable alternatives for safety monitoring.

2.3.1 Internal mechanisms

Internal detection mechanisms are approaches where the ML model is trained to predict its
failures. In other words, the deep neural network architecture is designed to return both its pre-
dictions and information regarding the trust in these predictions. We classify internal detection
mechanisms into three families of approaches.
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Figure 3: Taxonomy of detection mechanisms. A visual representation of the different
types of approaches to detect the failure of a critical ML-based perception function.
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2.3.1.1 Uncertainty estimation

Uncertainty estimation in deep learning has been widely studied recently (three surveys pub-
lished in 2021 [Mena et al., 2021, Gawlikowski et al., 2021, Ulmer, 2021]). Most deep learning
models produce point estimate predictions, i.e., a single output value per input data. Uncer-
tainty estimation approaches replace point estimate predictions with a probability distribution
over the output space. These probabilities can then be used to evaluate the risk of trusting the
prediction. For example, for deep learning classifiers, the outputs of the softmax layer define
a probability distribution over the possible classes. However, using the raw softmax output as
a proxy for uncertainty has been widely questioned by the community as they often lead to
overconfident predictions [Sensoy et al., 2018, Hendrycks and Gimpel, 2016b]. To tackle this
issue, external calibration approaches have been proposed (see Section 2.3.2.3), and internal
approaches as well.

The field that studies probabilistic neural networks is called Bayesian Deep Learning. In
this setting, the weights of a neural network are treated as random variables, and the objective
is to learn their distributions from the training data. Then, using the Bayes rule, one can com-
pute the distribution of the predictions for a given input data. These concepts from traditional
Bayesian statistics [Seeger, 2006, Box and Tiao, 2011] are a natural way to reason about un-
certainty in predictive models, but it comes with a prohibitive computational cost to be used
in practice. Various approaches have been proposed recently to compute approximate Bayesian
inference on large ML models to tackle this problem. Popular approaches include Variational
Inference [Chen et al., 2018, Milios et al., 2018, Malinin and Gales, 2018, Rossi et al., 2019],
Laplace approximation [Lee et al., 2018b] and sampling methods Welling and Teh [2011]. For a
detailed review of recent Bayesian deep learning approaches, we refer the reader to one of the
following works [Goan and Fookes, 2020, Mena et al., 2021].

Bayesian deep learning has already been applied to various tasks related to autonomous
driving [Feng et al., 2021], such as semantic segmentation [Mukhoti and Gal, 2018, Huang
et al., 2018], end-to-end vehicle control [Hubschneider et al., 2019] or visual odometry [Costante
and Mancini, 2020]. Among all the available techniques, the ones based on Monte-Carlo
Droupout [Gal and Ghahramani, 2016, Gal et al., 2017] appear to be the most popular for
practical scenarios due to their simplicity of implementation. It uses Dropout layers during
training and keeps them active at inference time to make stochastic predictions. Then, by run-
ning the model several times for a given input, one can compute statistics on the predictions to
evaluate model uncertainty.

2.3.1.2 Incorporating domain knowledge

Domain knowledge can be leveraged to improve the training of ML models. It can be in-
corporated into the architecture and training process in the form of logical or numerical con-
straints [Dash et al., 2021]. For example, a pioneering work proposed to build an object detection
model by training a hierarchy of classifiers using lexical-semantic networks to represent prior
knowledge about inter-class relationships [Marszalek and Schmid, 2007]. This architecture can
be used to detect anomalies in the runtime predictions. Likewise, information about the relation-
ship among different superpixels of an image is used in Chhablani et al. [2021] to build a robust
classification pipeline. The superpixel relationships are modeled using a graph neural network,
which processes the image jointly with a convolutional neural network in the final architecture.
This additional information in the model itself can be used to detect incoherence in the final
predictions. Ramanathan et al. [2015] builds an action retrieval model by incorporating other
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small linguistic, visual, and logical consistency-based actions to effectively identify relationships
between unobserved actions from known ones. Other such approaches include attempts to in-
corporate symbolic knowledge [Xu et al., 2018], as well as first-order fuzzy logic to reason about
logical formulas describing general properties of the data [Donadello et al., 2017].

2.3.1.3 Learning with rejection

In the setup of selective classification – also called classification with rejection – input data
can either be classified among one of the predefined categories or be rejected, i.e., the system
produces no prediction. This kind of approach has been presented as a promising way to control
the confidence in the monitored model in critical autonomous driving scenarios [Mohseni et al.,
2020]. These approaches are internal mechanisms as they consist in modifying the model and
learning algorithm to account for rejection. In other words, the predictor and the rejection
function are trained jointly and are part of a single unified model. Several approaches have
been proposed to integrate rejection options into traditional ML models such as support vector
machine [Fumera and Roli, 2002], K-nearest neighbors [Hellman, 1970], and boosting [Cortes
et al., 2016]. Recently, Geifman and El-Yaniv [2019] presented Selectivenet, a neural network
architecture optimized to perform classification and rejection simultaneously.

2.3.2 External mechanisms

External detection mechanisms are independent components in charge of monitoring the behav-
ior of an ML model during execution. As they are not directly tied to the ML model, they are
not required to be trained jointly and can be developed later by specific safety teams. We iden-
tified different mechanisms in the literature which differ in their position in the ML perception
pipeline. In particular, external detection mechanisms can monitor either the ML model inputs,
internal representations, outputs, or even data from other sources.

2.3.2.1 Monitoring the DNN inputs

Some approaches predict failures of an ML perception model by monitoring its inputs, e.g., the
raw images. These approaches characterize the expected operational conditions under which a
neural network can be used and discard new abnormal input data before the perception function
processes them. It is independent of the ML function, which facilitates the software engineering
process. However, this independence is also a drawback as it is hard to predict if a neural
network will fail on a given input without looking into the model itself. Next, we present the
existing approaches.

• Traditional approaches Traditional signal processing approaches can be used to identify
an anomalous sensory input before it enters the ML model [Ndong and Salamatian, 2011].
These approaches characterize some statistical patterns of “normal” data (i.e., from the
training set) and compare them to new online inputs. In particular, for images, one can
identify noise patterns of the camera and standard lighting conditions and detect abnormal
images using standard image processing [Kim and Reddy, 2006]. This kind of approach
was used in Liao et al. [2013] to identify water droplets in images for autonomous driving
scenarios.

• Input reconstruction Recently, a popular technique has relied on unsupervised deep learn-
ing to identify anomalous images. It starts by training an auto-encoder that learns a
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lower-dimensional latent representation of the images and how to reconstruct the original
images from it. Then, at runtime, the auto-encoder can be used to decide if a new im-
age is an outlier by comparing its reconstruction error to a fixed threshold defined during
training [Sabokrou et al., 2018, Denouden et al., 2018, Stocco et al., 2020, Cai et al., 2020].
Another approach consists in training an outlier detection model on the latent representa-
tion of the auto-encoder to predict the nonconformity of new inputs [Cai and Koutsoukos,
2020]. In practice, this family of approaches was used to identify unexpected conditions,
such as weather changes, to anticipate the misbehavior of an autonomous vehicle within
a simulation environment [Stocco and Tonella, 2020]. Finally, Feng and Easwaran [2021]
proposed to detect unusual movements in real-time by combining optical flow operation
with representation learning via a variational auto-encoder.

• Introspection A well-explored technique in the robotics domain aims at predicting future
failures at runtime. For instance, Gurău et al. [2018] proposed two models that predict per-
ception performance from observations gathered over time. Then, the monitor can switch
control to a human operator if the robot’s perception system is predicted to underperform.
Kuhn et al. [2020] proposed an introspective approach to predict future disengagements
of the car by learning from previous disengagement sequences. They monitor both input
images and other state data from the car.

2.3.2.2 Monitoring the DNN internal representations

Other ML failure detection approaches consider monitoring values taken by hidden layers of the
model. These techniques are based on the idea that the training data alone is not sufficient
to characterize what the model knows and that crucial information is contained in the model’s
weights. This can be justified intuitively by the fact that different models behave differently with
new inputs, even when trained on the same dataset [Gontijo-Lopes et al., 2021, Guérin et al.,
2021b]. This section discusses approaches to monitor neural network activations at runtime.

• Continuous layer values Several works have proposed to detect failures of a neural network
by looking at the values taken by the output of a given layer for new input data. For
example, Rahman et al. [2019] proposed to detect abnormal data by training a binary
classifier on features extracted from a given layer of the monitored ML model. Another
recent work proposed to extract a representation from the penultimate layer of the model
and to build a confidence estimator by truncating the activation values of the classification
head [Sun et al., 2021]. A threshold is then applied to this confidence to decide whether
an input is valid. Lukina et al. [2021] applied a centroid-based clustering approach to the
internal representation of a given layer to characterize known inputs. The distance to the
cluster centers is then used as an indicator to discard abnormal input data encountered
at runtime. Finally, Wang et al. [2021] monitor the neurons within a faster R-CNN by
representing distributions of neuron activation patterns and by calculating corresponding
distances between them with the Kullback-Leibler divergence.

• Binary layer activations To reduce the memory usage of internal representation monitors,
other works have proposed looking only at the binary activations of a given layer. As
rectified linear unit (ReLU) is one of the most popular activation functions in deep neural
networks, one can inspect whether a new input is triggering an activation of a specific neu-
ron or not, i.e., non-zero value. The advantage of considering such binary variables is that
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they can be stored easily using binary decision diagrams [Cheng et al., 2019] or abstraction
boxes [Henzinger et al., 2020a, Wu et al., 2021]. Then, abnormal data are identified by
comparing activation patterns encountered at runtime to those recorded during training.

• Coherence between layers Other works have proposed to look into several hidden layers
simultaneously. Wang et al. [2020a] proposed a tool called Dissector, which verifies if using
the outputs of different layers leads to coherent decisions. Their goal is to identify inputs
that represent unexpected conditions, which are considered outside of the model capabili-
ties. Schorn and Gauerhof [2020] proposed an approach called FACER to build a feature
vector representing the activations of different layers by summing the values of each fea-
ture map. Then a binary classifier is built by constructing a supervised dataset containing
OOD data. Similarly, Lee et al. [2018b] fitted class conditional Gaussian distributions to
both low-level and upper-level features of the deep learning model under Gaussian discrim-
inant analysis and built a confidence score based on the Mahalanobis distance. Another
approach was proposed in Chen et al. [2020], where the model’s internal representations
are tracked backward to build a saliency map of a given input. The patterns of the saliency
map are then compared with the ones obtained for the training set in the same category.

2.3.2.3 Monitoring the DNN outputs

Some detection approaches monitor the ML outputs. For example, for classification tasks, the
output contains information about the target class and the model’s confidence associated with
this label. The advantage of observing the neural network outputs is that it directly represents
what needs to be correct, i.e., the information passed to the system’s decision module. In con-
trast, the output layer contains less low-level information than earlier internal representations.

• Manipulation of softmax confidence A first intuitive technique to monitor the outputs
of a deep neural network consists in properly establishing what values of the softmax
confidence score can be considered reliable [Hendrycks and Gimpel, 2016b]. Several en-
hancements over this baseline method have been proposed to address the fact that softmax
confidence scores are often poorly calibrated. Liang et al. [2018a] presented an approach
called ODIN, which uses temperature scaling and small input perturbations to separate
the softmax score distributions between in- and out-of-distribution data. A modified input
pre-processing approach was introduced by Hsu et al. [2020] to allow ODIN to be trained
without OOD examples. To increase detection performance, they also proposed confidence
score decomposition to better represent regions with a high density of points. Finally, an
approach to characterize the optimal discriminator was proposed in Granese et al. [2021].
A feasible implementation was presented based only on the softmax probability.

• Consistency checking Other approaches focus on verifying the spatial or temporal consis-
tency of a sequence of predictions. The first technique to define constraints on output
sequences is to use expert knowledge. This way, Kang et al. [2018] built a monitor for
object detection by identifying flickering, i.e., an object should not keep appearing and
disappearing in successive frames of a video. Another direction is explored in Harper et al.
[2021], where the authors transform the rules and clauses of the official highway code into
logical expressions (assertions), which can be applied as monitoring checks. Another pos-
sibility is to learn these patterns from data. Recently, Chen et al. [2021] proposed a logical
framework to evaluate the temporal and spatial coherence of bounding box predictions and
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thus identify erroneous detection results. Temporal coherence is assessed by observing the
evolution of bounding box labels in consecutive frames. Spatial coherence is assessed by
learning the standard size of bounding boxes at different locations. On another note,
Guérin et al. [2020] proposed to build a consistency monitor for objects under periodic
motion (e.g., production lines). They train a Gaussian process to estimate the probability
for a bounding box to be at a specific location at a given time and use it to discard erro-
neous detections. Finally, Rabiee and Biswas [2019] proposed to detect failures of stereo
vision-based perception from divergence in plans generated by a vision and a supervisory
sensor. An advantage of these approaches is the possibility of collecting examples for fur-
ther ML training with human labeling or weak supervision. These approaches have been
developed for object detection problems.

• Ensemble methods A traditional way of improving the robustness of an ML model is to
use an ensemble of other ML models to support the decision. A good ensemble should
be composed of models that are “good”, “independent” and “sufficiently numerous”. In
particular, such ensembles for SM can be composed of other models with the same archi-
tecture but trained to identify different aspects of the data or with different architectures
trained with the same data [Theodoridis, 2015]. For DNN, Gontijo-Lopes et al. [2021]
conducted a study about the influence of different training parameters on what the model
knows, which can be used to maximize the ensembling benefits. In recent works, different
voting strategies were proposed to address the problem of anomaly detection. For exam-
ple, Yahaya et al. [2019] consider weighting each model vote based on its performance and
a score for what is considered normal, while Roitberg et al. [2018] leverage the estimated
uncertainty of each model in their predictions to measure the novelty of new input. When
computational power is not an issue, building such ensembles of deep neural networks
appear as a promising idea to monitor coherence between individual models and avoid
propagating errors of a single neural network. Finally, Roy et al. [2022] present a run-
time monitor based on predictive processing and dual-process theory. They developed a
bottom-up neural network comprising two layers:

1. a feature density model that learns the joint distribution of the original inputs, out-
puts, and the model’s explanation for its decisions.

2. a graph Markov neural network that captures an even broader context.

• Robustness to input perturbation To verify if a new input can be considered “normal”, it
was also proposed to measure its sensitivity to input perturbations. Such perturbations
can be applied either to the data (e.g., image compression [Kantaros et al., 2020]) or to
the ML model itself through random mutations [Wang et al., 2019]. Another possibility
is to check the stability of a model within a radius distance calibrated during the train-
ing [Liu et al., 2020a]. The underlying hypothesis for these approaches is that, for valid
input, the outputs of the neural network should be robust to small perturbations. This
approach is mostly used to detect adversarial inputs, but it has also been used for practical
scenarios involving critical systems. For example, Zhang et al. [2018] proposed DeepRoad,
a generative adversarial network (GAN) based metamorphic testing and input validation
framework for autonomous driving systems.
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2.3.2.4 External sensors

To conclude this section, we present one last family of approaches to detect failures of deep neural
networks. It aims at checking whether the ML predictions are consistent with signals coming
from other sensors. This way, Zhou et al. [2019] proposed to use an additional LIDAR sensor to
monitor the runtime behavior of a semantic segmentation model. By checking the consistency
of geometric properties between the predicted segmentation map and the LIDAR points, they
can measure the segmentation model accuracy at runtime. Similarly, Ramanagopal et al. [2018]
used a second camera to monitor the results of an object detection model. Inconsistencies in
the object detector outputs between a pair of similar images are used as a hypothesis to detect
false negatives, i.e., missed detections. Finally, Li et al. [2022] presents an approach to monitor
extrinsic camera calibration quality by using inertial measurement unit (IMU) data to capture
mismatches of road image features.

2.3.3 Combined detection approaches

Several recent approaches have proposed combining different techniques presented above to build
more robust detection systems. Loquercio et al. [2020] proposed to monitor data uncertainty
and model uncertainty separately, using two distinct mechanisms. First, the noise characteris-
tics of the sensor are propagated through the network to account for data uncertainty in future
predictions. Then, model uncertainty is assessed using Monte-Carlo Dropout [Gal and Ghahra-
mani, 2016], and the total uncertainty is obtained by combining both sources using stochastic
using Assumed Density Filtering. Buerkle et al. [2021] presented an approach using two types
of detection mechanisms called sensor checks (monitoring model input with an auto-encoder)
and plausibility checks (monitoring spatiotemporal coherence of model predictions). Cofer et al.
[2020] use four different monitors for a task of end-to-end aircraft taxiing. In particular, they
combine information from different sensors (GPS, Inertial Reference System), standard computer
vision algorithms, and input reconstructions approach to build a robust neural network moni-
toring system. Finally, Guerin et al. [2022a] combined three monitors (Monte-Carlo Dropout,
local resolution increase, and classification hierarchy) for the task of drone emergency landing.

2.4 Which recovery mechanisms can be used to build SM?

In Section 2.3, many approaches were presented to detect uncertain and potentially hazardous
predictions of an ML-based perception function. When activated, these detection mechanisms
raise a safety alert to the autonomous system, which must take appropriate actions to avoid
hazardous situations. In most ML monitoring studies, the basic alert is a flag, and more complex
actions are usually not investigated. We call such actions recovery mechanisms, which we discuss
them in this section.

2.4.1 Switching the control system

The most straightforward and widely used approach when detecting a potentially dangerous
error is to switch to a simpler control algorithm, not relying on the faulty ML perception
component. Phan et al. [2019] proposed the neural simplex architecture, allowing it to switch
from a high-performance ML-based controller to a simpler safe controller when unsafe behavior is
detected. Adapting this architecture to ML-based perception functions would be highly valuable
but challenging. It is hard to design simple controllers in many practical scenarios, not relying
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on ML for state estimation. As a result, for complex autonomous systems relying on visual
perception, the default recovery actions often consist in switching back control to a human
driver [Stocco et al., 2020] or triggering an emergency breaking [Cofer et al., 2020]. The former
can be hazardous when a fast reaction is required. The latter might not be safe for specific
scenarios, e.g., autonomous cars driving on the highway. We believe that the challenging task
of coming up with control procedures to bring complex autonomous systems back to safety is of
significant importance and should receive more attention.

2.4.2 Immediate prediction enhancement

For some specific kinds of threats, adapted safety measures can be used to improve the predic-
tions of the ML-based perception function and increase confidence in the system.

• Input reconstruction The first family of approaches consists in improving the quality of
the input of the ML model. These techniques are used when one can identify the cause
of the wrong prediction from the input image, and they mostly consist of removing the
specific type of noise that was found. Recently, most image-denoising approaches use
autoencoders, trained to reconstruct the original image without the identified noise pat-
tern [Gondara, 2016]. For example, image dehazing algorithms can be used to react to
fog or smoke [Abdulkareem et al., 2021], approaches have been proposed to react to dif-
ferent light exposure conditions [Yan et al., 2022, 2021], saturation [Liu et al., 2021c],
water drops [Liao et al., 2013, Qian et al., 2018], or even more standard Gaussian noise or
impulse noise [Zhou et al., 2020, Zhang and Gao, 2021]. Other works proposed to enhance
the original image by increasing its resolution artificially [Wang et al., 2020b] by using
convolutional neural networks [Shi et al., 2016] and generative adversarial networks [Ledig
et al., 2017, Marinescu et al., 2021]. Furthermore, to deal with images having chunks of
pixels damaged by sensor failures, image inpainting techniques can be used [Saharia et al.,
2021]. Finally, to handle errors related to incomplete color information (mosaicked im-
ages), some works have applied demosaicing techniques [Ni et al., 2020] or gradient-based
feature extraction [Zhou et al., 2021].

• Changing final prediction To respond to the detection of an adversarial example, Al-Afandi
and Horváth [2021] proposed to exclude the predicted classes (corresponding to the attack)
and to study the resulting loss landscape to recover the original class. On the other hand,
Li et al. [2021] proposed an approach to reverse the effect of an adversarial attack on a
classifier by studying the behavior of adversarial examples and establishing a mapping
between true classes and predicted classes. Whether similar approaches can be used to
respond to different kinds of threats is still an open question that is worth investigating.
For example, the work by Salay et al. [2019b] could be extended to downgrade classification
at runtime, e.g., if a high classification uncertainty is detected between the classes “car”
and “truck”, the prediction could be changed to the sup-class “vehicle”.

• Using alternative components When an error is detected in the state estimation, a possible
approach is to substitute some components of the perception pipeline and recompute its
output. For example, when a sensor failure is causing the perception error, one can rely
on existing backup sensors to still compute the expected prediction [Kakamanshadi et al.,
2015]. When high uncertainty is detected, one might use sensors with higher resolution
locally (spatially or temporally) to get a better prediction [Guerin et al., 2022a]. However,
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these high-resolution sensors might not be usable in the regular operation pipeline because
of processing time or energy consumption constraints. Another idea is to use an ensemble
of ML models with different coverage mechanisms to replace unsafe predictions [Gontijo-
Lopes et al., 2021].

2.4.3 Long-term system enhancement

Finally, we also discuss how runtime threats identified by a monitoring detection mechanism
can be used to improve the safety of the monitored system in the long run. A common strategy
in the industry is to store a huge amount of frames while the system is running for posterior
offline labeling and model retraining [Andrej Karpathy, 2021]. Post-labeling is usually done
manually, using other sensors, or automatically using other ML models. Specific continual-
learning approaches exist for model retraining, particularly to avoid catastrophic forgetting
when incorporating novel classes [Van de Ven and Tolias, 2019, Liu et al., 2021a]. If one chooses
to collect data detected as unsafe by a monitoring system for retraining, it will have a positive
long-term impact on the safety of the system.

Although these approaches do not guarantee the immediate safety of the system, they are
essential to reduce safety-critical errors in the long run. In addition, storing data detected as
threats can also be useful to build relevant datasets to test future developments of safety-critical
systems.

2.5 How to evaluate SM?

A proper evaluation protocol for monitoring should verify whether the SM presents the following
characteristics:

1. It guarantees that the system never reaches any safety-critical state.

2. It maintains the high availability of the system.

3. It complies with the runtime constraints of the system (execution time, hardware capacity).

This section discusses how the existing approaches for safety monitoring of ML-based perception
functions are evaluated. We first discuss how the detection mechanisms presented in Section 2.3
are evaluated. As they usually are generic components, they often can be evaluated indepen-
dently of a given system. Then, we show how the few existing approaches to monitor ML
perception components at the system level have been evaluated. Finally, we discuss how the
impact of research on SM could be increased by creating new, unified evaluation methodologies.

2.5.1 Evaluation of detection mechanisms

Most detection approaches presented in Section 2.3 intend to identify bad input data, which
would produce erroneous output when processed by the ML model. However, instead of predict-
ing model failures, these approaches are often evaluated on the surrogate problem of identifying
specific runtime threats. As explained in Section 2.1, different kinds of changes in the input
data encountered at runtime, which we call runtime threats, can hinder the performance of a
neural network. This section presents the datasets and metrics from the literature to evaluate
monitors for runtime threats.
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2.5.1.1 Evaluation datasets

In this subsection, we present how datasets are built for the evaluation of the SM detection
mechanism. It can be seen as a fault injection focused on the threats presented in Section 2.1.

• Novelty detection: This setting aims at identifying when the class label of an input image
does not belong to any of the predefined outputs of the ML model. Thus, to evaluate
the capacity of an SM to identify novel inputs, most approaches have modified standard
image classification datasets such as Imagenet [Deng et al., 2009], MNIST [Deng, 2012]
or CIFAR [Krizhevsky, 2009], among others. In particular, two main strategies can be
used to create novelty detection datasets. The first one consists in merging two datasets
with non-overlapping class labels. One dataset is used to fit the model (training split),
and its test split represents the in-distribution data for evaluation, while the other dataset
serves as novelty data. This approach was used for the experiments of many papers on
out-of-distribution detection [Sun et al., 2021, Schorn and Gauerhof, 2020, Lee et al.,
2018b, Hendrycks and Gimpel, 2016b, Liang et al., 2018a, Hsu et al., 2020, Shafaei et al.,
2019]. The second strategy uses a single dataset but splits the images into two subsets
with disjoint labels [Denouden et al., 2018, Sabokrou et al., 2018, Lukina et al., 2021,
Henzinger et al., 2020a, Wu et al., 2021, Roitberg et al., 2018].

• Distributional shift detection: This setting occurs when the marginal distribution of the
runtime input data differs from the training distribution, while the label set does not
change. It can come from sensor failures, changes in external conditions, or modifica-
tions to the environment itself. Thus, most papers have relied on injecting perturbations
to test images to evaluate runtime detection mechanisms for detecting such shifted data.
Then, the goal is to identify corrupted images. Several papers have proposed to inject
artificial corruption [Hendrycks and Dietterich, 2019] into standard image classification
datasets [Rahman et al., 2019, Schorn and Gauerhof, 2020, Hendrycks and Gimpel, 2016b,
Liang et al., 2018a, Hsu et al., 2020]. Others have injected faults into realistic autonomous
systems scenarios. Some have used autonomous vehicle simulators, such as CARLA [Doso-
vitskiy et al., 2017], to simulate different kinds of driving conditions (weather, light) [Feng
and Easwaran, 2021, Cai and Koutsoukos, 2020]. Others have applied artificial pertur-
bations to existing real-world datasets for autonomous driving [Chen et al., 2020, 2021,
Zhang et al., 2018, Zhou et al., 2019] or UAV emergency landing [Guerin et al., 2022a].

• Adversarial detection: This setting represents an intentional modification of in-distribution
data to make a deep learning model fail. The main approach to evaluate an SM detector
at this task consists in applying an adversarial attack (see Section 2.1.4 for examples) to
the test dataset under evaluation to constitute a binary classification dataset containing
both normal and attacked images. This has been applied to standard image datasets [Kan-
taros et al., 2020, Wang et al., 2019, Liu et al., 2020a] and simulated autonomous driving
scenarios [Cai and Koutsoukos, 2020, Chen et al., 2020].

• Predicting model errors: Finally, instead of identifying specific threats, several detection
mechanisms have been evaluated directly to identify inputs for which the ML model fails,
i.e., activation of the SM is correct if the prediction of the ML model is wrong. Several
papers have proposed experiments to evaluate the ability of an out-of-distribution detec-
tor to identify failures of the monitored neural network on the test split of the training
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dataset [Cheng et al., 2019, Wang et al., 2020a, Hendrycks and Gimpel, 2016b]. Oth-
ers further applied some of the perturbations presented above before conducting such an
evaluation [Kang et al., 2018, Granese et al., 2021].

2.5.1.2 Evaluation metrics

In the previous section, we discussed ways to create evaluation datasets containing both “good”
and “bad” data, thus defining binary classification problems. Hence, most of these papers assess
the strength of their approaches using standard binary classification metrics. Here, we consider
that a True Positive (TP) is a rejected invalid input, a True Negative (TN) is an accepted valid
input, a False Positive (FP) is a rejected valid input, and a False Negative (FN) is an accepted
invalid input. These metrics are defined as follows:

• Accuracy: proportion of correctly classified inputs. It can be misleading when the dataset
is not balanced.

• FP rate: proportion of valid inputs that were rejected.

• FN rate: proportion of invalid inputs that were missed.

• TPR@95TNR: TP Rate when the TN Rate is 0.95. It represents the probability to find
invalid data when the rejection threshold is set so that 95% of valid data are accepted.

• AUROC: Area Under the Receiver Operating Characteristic (TPR against FPR). AUROC
is threshold-independent and represents the probability that rejection scores of valid inputs
are lower than invalid ones.

• Precision: proportion of rejected inputs that were invalid.

• Recall: proportion of invalid inputs that were rejected.

• AUPR: Area Under the Precision-Recall curve. AUPR is better than AUROC when the
positive class and negative class have greatly differing base rates.

• P@80R: Precision when the recall is set to 0.8 Rahman et al. [2019].

• F1-score: harmonic mean of the precision and recall. This score represents a unified
performance evaluation when the rejection threshold has been fixed.

• Matthews Correlation Coefficient: it accounts for all categories of the confusion matrix
(TP, FP, TN, FN).

When the monitored model addresses a different task than classification (e.g., regression),
the definition of prediction failure might not be straightforward. For example, a neural network
predicting the steering angle of a vehicle for the next time step will always commit some degree of
error, and defining failure requires choosing a threshold for these errors. For such cases, to assess
the performance of a detection mechanism, one can compare the values of task-specific metrics
between accepted and rejected images. Examples of such metrics include average precision
for object detection, mean squared error for regression tasks, and intersection over union for
semantic segmentation.

Finally, it is also important to consider the detection mechanism’s execution time and mem-
ory to estimate the computational overhead by using such a safety monitor.
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2.5.2 System-level evaluation

When an ML-based perception component is embedded into the control loop of an autonomous
system, not all prediction errors will lead to the same outcomes. For example, as explained
in Salay et al. [2019b], some perception errors can generate catastrophic events (e.g., missing a
pedestrian crossing a road). In contrast, others might not even change the system’s behavior
(e.g., detecting a tree as a street lamp). In addition, Haq et al. [2020] showed that offline testing
(unit tests) is more optimistic than online testing (simulation) since several safety violations
that were identified in simulation could not be identified offline. For this reason, it is important
to evaluate how well a safety monitor is performing within the context of the system in which
it is integrated.

Recent works have designed safety monitors in a real-world application context, where the
impact of a prediction by the perception component can be assessed. For such cases, it is thus
possible to evaluate different aspects of the performance of an SM, such as the added safety and
the loss of system availability. An example was proposed by Stocco et al. [2020], Stocco and
Tonella [2020], where the monitor is implemented in a simulation environment for an end-to-end
autonomous driving scenario. This way, they can play the same scenarios with and without
the monitor and evaluate when critical misbehavior has been avoided (added safety) and when
interventions were unnecessary (loss of availability). Another simulation-based SM evaluation
was conducted by Cofer et al. [2020] for an aircraft taxiing application. On their experimental
dataset, they were able to avoid all the cases where the neural network leads the aircraft to exit
the runway thanks to their safety monitoring system. Finally, Guerin et al. [2022a] evaluated
safety monitors for a drone emergency landing scenario. By defining a safety score for any
landing zone, they can compare the emergency landing system with and without the monitors.
Different monitors can be compared based on their safety to the system.

2.5.3 Open-challenges for SM evaluation

Some open challenges are discussed in this Subsection.
Evaluation for certification: specific evaluation and certification procedures for au-

tonomous systems were proposed in the literature. Myers and Saigol [2020] developed a frame-
work to assess the safety of autonomous driving by applying two types of outcome-scoring rules:
prescriptive and risk-based. The first contains measurable rules, which must always be verified,
while the second contains undesirable outcomes which must not occur too often. De Gelder and
Den Camp [2020] proposed a certification scenario for self-driving vehicles, considering three
stakeholders: the applicant, the assessor, and the road/vehicle authority. The applicant applies
for the approval of one specific autonomous vehicle. The assessor assesses this vehicle and advises
the authority, who sets the requirements and approves the vehicle for road testing. De Gelder
et al. [2021] proposed a risk analysis expressed as the expected number of injuries in a poten-
tial collision to compare it to road crash statistics. The authors decompose the quantified risk
into the three aspects stipulated by the ISO-26262 and ISO/DIS-21448 standards: exposure,
severity, and controllability. On another note, Guérin et al. [2021a] assessed the requirements to
certify UAV operations in urban environments using a document called Specific Operations Risk
Assessment (SORA) Joint Authorities for Rulemaking of Unmanned Systems (JARUS) [2019],
which provides guidelines to develop and certify safe UAV operations.

As mentioned above, recent works have discussed evaluation frameworks for autonomous
vehicles. However, to certify perception components and their safety monitors, one needs to
establish the impact of perception errors on the safety of the entire system, which is an unsolved
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problem.
Evaluation coverage: when performing an evaluation, we need to consider two different

scenarios: simulated, and real-world scenarios.

• Simulated scenarios: to test perception functions, it is frequent to use a simulation en-
vironment [Stocco et al., 2020, Loquercio et al., 2020, Buerkle et al., 2021]. This allows
resetting the environment to a previous configuration and comparing the responses to
different perceptions and monitoring outputs. However, the existence of a reality/simula-
tion gap is frequent. Indeed, there are usually significant differences between simulation
environments and real-world scenarios, where new, unexpected threats can happen [Zand-
bergen, 2021]. On the other hand, when evaluating a perception function on real images,
the collected data never represent all possible threats to which a safety-critical system
might be exposed. Nevertheless, an exhaustive safety analysis of the system might help
cover a higher proportion of these threats [Borg et al., 2019].

• Real-world scenarios: even when evaluations are conducted in representative test scenarios,
it is hard to evaluate the performance of a perception function, and safety monitor as the
ground truth is often not available at runtime. This is often referred to as the oracle
problem [Jahangirova, 2017]. As a result, all frames and sensor values must be recorded
for off-line labeling and performance and safety evaluation. Such evaluations need to be
done periodically to avoid a decrease in ML performance and system safety due to dataset
shifts [Rabanser et al., 2019].

2.6 Conclusion

Machine Learning solutions are being used increasingly to build perception functions for au-
tonomous systems, but they cannot be trusted for safety-critical applications. Safety Monitors
aim to ensure that the system always remains in a safe state despite the occurrence of faults.
This chapter presents a comprehensive survey about the safety monitoring of ML perception
functions, addressing every step of the development process, i.e., threat identification, require-
ments elicitation, detection of failure and reaction, and evaluation. We present existing works
related to SM and highlight the current gaps in the literature to reach the level of integrity
required for such safety-critical systems. After conducting this extensive study, we consider that
the field’s biggest limitations and open challenges are the followings:

• Defining SM objectives: more research should be conducted regarding how to formulate the
monitoring requirements to reflect the outcomes of the safety analysis and other relevant
properties of the system. To illustrate this, we show in Chapter 3, that most detection
mechanisms based on out-of-distribution detection (threat identification) suffer from a
high number of false positives and false negatives when considering their ability to detect
a failure of the ML model. This limitation results from a misalignment between SM
specifications and system-level objectives. Indeed, not all threats lead to errors, and some
in-distribution images lead to wrong predictions.

• Choosing detection and reaction mechanisms: different types of detection and reaction
mechanisms were presented in this work. Such approaches must be properly combined
with the task at hand to build a good safety monitor, which is difficult due to the vast
possibilities. This choice is highly dependent on the application context, but we believe
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that meaningful research could be proposed to map task characteristics to detection/re-
action mechanisms. For example, identifying that certain generic detection mechanisms
are suitable for specific kinds of threats would be useful. Likewise, it would be valuable
to study whether specific recovery actions can improve the performance of the ML model
when combined with specific detection mechanisms.

• Combining SM architectures: it is probably desirable to use several monitoring approaches
for different aspects of the perception task. For example, specific detection mechanisms
could be responsible for different regions of the input space or different types of threats.
Additionally, strategies that are not purely based on data, such as plausibility checks [Kon-
tos et al., 2021], model assertion [Kang et al., 2020], and classification failure mode and
effects analysis [Salay et al., 2019b], can be applied to complement data-based monitors.
Studying how to best combine several safety monitors and verify the consistency of their
outputs is an important open challenge for the field.

• Implementation constraints: the SM discussed in this work is expected to perform within
embedded systems. Hence, it is essential to design SM that can function under limited
computing power and memory. Moreover, that complies with the system’s constraints
regarding energy consumption. In addition, an SM is executed at runtime, i.e., it must
follow strict requirements regarding execution time to ensure synchronization with the
main monitored system.

• Standardized evaluation: as explained earlier, many different test datasets and evaluation
metrics are used by practitioners who select evaluation procedures based on their own needs
and use cases. Such evaluation scenarios might differ between domains (e.g., automotive,
avionics, naval), making it difficult to compare different safety monitoring approaches. We
believe that the development of a unified benchmarking framework, including different
autonomous system use cases and evaluation metrics, is a promising research direction.
Indeed, it will foster the development of safety monitoring approaches that will help certify
safety-critical systems that rely on ML models.

As a first step to address the mentioned challenges, we believe that building unified evaluation
benchmarks and metrics, reflecting the different aspects highlighted in this survey, would greatly
help to develop SM better suited to the safety-critical context. For example, in the next chapter,
we propose two dimensions of evaluation that need to be investigated: the SM’s overall impact
on the system under test; and the detection performance of the SMs. Hence, we select one state-
of-the-art SM from each of the three main types of data-based SM presented in this chapter,
and we develop a benchmark framework that applies OOD perturbations on images.





Chapter 3

Testing SM for ML perception
functions at the unit level

In this chapter, we focus on unit testing of the monitor, which is isolated from the rest of the
system. Many recent works focus on monitors dedicated to ML model surveillance. They broadly
fall into three types of monitors: observation of the inputs of the ML model [Liu et al., 2020a], its
outputs [Hendrycks and Gimpel, 2016a] or from intermediate layers in case of DNN [Cheng et al.,
2019, Henzinger et al., 2020b]. However, they are all based on the exploitation of the training
data. Therefore, we refer to them as data-based monitors compared to safety monitors based
on rules (or safety properties). Similar to uncertainties inherent to the use of ML, confidence in
such SM is an open issue. Thus, it is essential to estimate how efficient such monitors are and if
it is possible to include them in a safety context. This estimation should consider all potential
situations leading to an error of the ML and should be based on metrics dedicated to measuring
the monitor efficiency. Therefore, we focus on a framework for benchmarking such monitors,
augmented with an additional primary mechanism to inhibit the decision in error detection.

As presented in Figure 4, the complete system under test is composed of an SM that inspects
the ML model. Our benchmark adapts and extends current metrics used in the ML community
to estimate the SM detection performance at runtime, its impact on the system, and the overhead
induced by the use of the monitor. Our main contributions are:

• A new baseline framework for benchmarking SM for ML classifiers. To the best of our
knowledge, this is the first work that proposes an initial framework that benchmarks SM
for ML components from different perspectives.

• A comprehensive benchmark experiment containing different data-based SM methods,
datasets, and results. Our experiments reveal the advantages and drawbacks of the main
modern data-based SM approaches for image classifiers built with ML. We perform exper-
iments on five challenging types of out-of-distribution data for image classifiers.

This work is organized as follows: in Section 3.1, we present an overview of our framework,
along with its main objectives. In Section 3.2 we present our experiments, datasets, and results
from our framework to three ML monitors. Finally, in Section 3.3, we present our conclusions.

SM 
(Safety monitor)

ML 
(Machine learning 

model)

Figure 4: System under test. It is composed of ML+SM.
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3.1 Benchmarking SM for ML classifiers

The proposed framework is an adaptation of the FARM [Arlat et al., 1990] methodology. FARM
is a methodology for fault injection for dependability validation. It uses the input domain of a
target system as a set of faults F and a set of activations A that specifies the domain to test the
target system. The output domain refers to a set of readouts R used for posterior evaluation
with a set of metrics M . Our framework is divided into three modules, as illustrated in Figure 5.

Figure 5: A high-level overview of the framework. It is divided into three modules.

After setting some initial parameters such as type of data generation, the amount of data to
be tested, and which ML models and SM to include, start with the first module, called the data
profile. This module generates benchmark datasets in the next module, called SUT.

The SUT is responsible for testing the ML and the SM performance, generating the results
(readouts) at the end of the process. Readouts are inputs for the evaluation module.

The evaluation module is responsible for analyzing the readouts through several metrics for
different components of the system. It provides the final analysis for each type of readout. Next,
we explain each module and its components.

3.1.1 Data profile

This is the first module and it is composed of two items:

• Activity: it contains in-distribution (ID) data, that is, instances from a distribution
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known by the ML.

• Fault template: it contains rules for generating OOD data.

The benchmark dataset receives the ID and OOD data to test how the ML and the SM
behave when exposed to expected and unexpected data. Even though all types of OOD data
can be part of a benchmark dataset, we generated datasets for each category of OOD data.

An essential premise is that the generated benchmark dataset is not applied to build or
validate the SM or train the ML model. This premise guarantees unbiased experiment results
and is more realistic since, in real scenarios, there are no guarantees about which type of data
will arrive at runtime.

3.1.2 System under test

The system under test (SUT) module receives the benchmark dataset as input and outputs
readouts for each component. To validate our framework, we chose ML models that classify
images and one SM for each of the three categories: based on input, internal mechanisms, and
outputs. Therefore, this module is composed of two main items: a third-party ML model
already trained; and a third-party safety monitor containing a detection mechanism. We call
the ML and the SM third-party components since they can be built aside from the framework.

This module simulates a stream of randomly ordered images. We apply datasets with random
images since the image datasets available in the literature use such a setting.

The simulation works as a stream of images coming from the benchmark dataset set D that
contains images X and labels y, arriving at one of each at a time. The ML model receives this
image and makes a ŷ classification.

Next, the system triggers the SM, which checks a set of predefined properties. These proper-
ties can be the ML’s classification ŷ with the associated confidence level, intermediate layers, the
input X, or even a combination of two or more of these properties. In the case of this pseudo-
code example, the SM inspects the ML model’s internal properties (DNN’s hidden layer) during
the classification, as recently suggested in the literature [Cheng et al., 2019, Henzinger et al.,
2020b].

After the inspection, the SM detector mechanism raises a detection alarm or not (m̂). For this
work, we consider a simple reaction strategy for SM. If an alarm is raised, it invalidates the ML
classification result; otherwise, it accepts the ML classification. Next, we observe whether such
intervention produced a desirable outcome for the system or not. We call it overall detection ŝ.
A desirable outcome means that canceling an ML output/agreeing with it was beneficial to the
SUT. This result is independent of whether the SM-specific detection was correct or not in the
OOD detection task. The criteria for considering these two dimensions of the detection (specific
and overall) correct or not is discussed in the following subsection. This process continues until
the end of the stream. Thus, the readouts are the ground truth y, the ML classification ŷ, the
SM specific detection m̂, and its overall detection ŝ. They are divided into three categories:

1. ML readouts: it contains classification (e.g., class number), confidence value from the
last layer, and intermediate values from hidden layers.

2. SM readouts: it contains two types of detection: a) specific (e.g., it outputs 1 for OOD
detection; 0 otherwise); b) overall (e.g., after OOD detection, it cancels the ML decision
(1); 0 otherwise).
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3. General readouts: it contains general outputs from all components above, such as pro-
cessing time and memory.

As can be noted, the SM readouts contain results in two dimensions: specific and overall.
Considering two dimensions for detection is more realistic and complete than just analyzing the
detection rate for the OOD data. The reason is that while the SM tries to detect OOD data,
it also can avoid the ML from giving an answer that is different from the ground truth. The
opposite is also true. As a result, the SM can incorrectly detect ID data as OOD data, hindering
the correct decisions of ML. All possible situations are given in the next subsection.

3.1.3 Evaluation

This module receives the readouts as inputs containing false positives/negatives and true posi-
tives/negatives regarding OOD data detection’s specific task and the overall task of avoiding an
unsafe outcome. This module evaluates two main aspects:

1. The SMs performance: the objective is to assess the SM results regarding the specific task
of detecting OOD data. This evaluation’s inputs are SM OOD detection (e.g., raises/does
not raise the alarm).

2. The overall impact of the SM: the objective is to determine if the SM improves or worsens
the overall SUT accuracy. We analyze the SUT using the ML alone (baseline) and ML
with the SM. This evaluation’s inputs are the overall decisions made by the SUT with ML
alone and ML with SM, processing time, and memory.

3. Time and memory overhead induced by SMs: the objective is to investigate the memory
and processing time efficiency of these methods during runtime.

This module contains two major items: the oracle, and the metrics for ML and SM. The
oracle determines positive and negative data and whether a test has passed or failed. Thus, the
oracle considers a correct specific detection when the SM correctly detects OOD data. Besides,
the oracle considers a correct overall detection for the SUT when the SM correctly avoids a
wrong ML classification for ID or OOD data. The oracle takes into consideration the following
scenarios to determine whether a readout is correct or incorrect:

• ID data arrives in the stream

– If the SM detects OOD data: it means a false positive for the specific task of
OOD detection.

∗ If the ML classification is equal to the ground truth: it means a false
positive for the overall task of avoiding a failure since the SM intervened without
necessity.

∗ If the ML classification is different than the ground truth: it means a
true positive for the overall task of avoiding a failure since it canceled the ML
misclassification for ID data.

– If the SM does not detect OOD data: it means a true negative for the specific
task of OOD detection.
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∗ If the ML classification is equal to the ground truth: it means a true
negative for the overall task of avoiding a failure since the ML gave a correct
classification even though the SM did not detect OOD data.

∗ If the ML classification is different than the ground truth: it means a
false negative for the overall task of avoiding a failure since the ML misclassified
the OOD data and the SM did not detect it, which could cancel a wrong ML
output.

• OOD data arrives in the stream

– If the SM detects OOD data: it means a true positive for the specific task of
OOD detection.

∗ If the ML classification is equal to the ground truth: it means a false
positive for the overall task of avoiding a failure since the ML gave a correct
classification but the SM wrongly intervened.

∗ If the ML classification is different than the ground truth: it means
a true positive for the overall task of avoiding a failure since the ML gave an
incorrect classification and the SM correctly canceled the ML decision.

– If the SM does not detect OOD data: it means a false negative for the specific
task of OOD detection.

∗ If the ML classification is equal to the ground truth: it means a true
negative for the overall task of avoiding a failure since the SM detection for OOD
data also avoided an ML misclassification.

∗ If the ML classification is different from the ground truth: it means a
false negative for the overall task of avoiding a failure since the SM detection for
OOD data also avoided an ML misclassification.

The only exception to the above rules is novelty class detection. When OOD data arrives in
the stream, if the SM correctly detects OOD data, it will always be interpreted as true positive
since the SM always correctly cancel the ML classification, independently of the ground truth.
Conversely, if the SM does not detect OOD data, it will always be a false negative. If the SM
lets the ML deal with a class that it was not trained in before, it can be regarded as unsafe. In
order to evaluate these situations, we have selected in the literature a set of metrics that are
pertinent to our study. Hence, we apply seven metrics:

• Matthews correlation coefficient (MCC): it ranges from -1 if (ML or SM always wrong)
passing through 0 (ML or SM is accurate as random) to 1 (ML or SM always right). This
metric is more reliable than traditional metrics such as accuracy. It yields a high score
only if the ML or SM can be assertive in all of the four confusion matrix categories [Chicco
and Jurman, 2020]. In contrast, accuracy only considers the portion of the right answers.
In a scenario in which the number of a class is 80%, the accuracy could yield a score of
80% for an SM that did not detect other classes.

• False positive rate (FPR): also known as type-I error. It indicates how many false alerts
the SM raises for the task to detect OOD data. High values mean the SM indicates a
problem wherein there are not in most cases.
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• False negative rate (FNR): also known as type-II error. It indicates how often the SM
misses detecting OOD data. If this value is high, it indicates that the SM does not
recognize the difference between the ID and OOD data.

• Precision and recall (Pr and Re): the fraction of correct detection and the fraction of
available OOD data. These metrics help to indicate how well the SM detected OOD data
through the benchmark dataset.

• Micro-F1 : harmonic mean (global) for the prediction x recall. It helps to assess the
quality of multi-label binary problems, which makes them suitable to be applied in the
SUT evaluation.

• Critical difference diagram: it is applied for all MCC results through all datasets. It shows
how statistically different are the results between the SMs.

Next, we detail each component’s choice, its parameters, and the benchmark results.

3.2 Experiments and results

3.2.1 Data profile

We use three datasets as the activity of our framework:

• GTSRB [Sermanet and LeCun, 2011]: German traffic signs with 43 classes, with 39200
instances for training and 12600 for testing.

• BTSC [Jain et al., 2019]: Belgium traffic signs with 62 classes, divided into 7000 images
for training and testing.

• CIFAR-10 [Krizhevsky and Hinton, 2010]: ten general classes (e.g., dog, car ...), with 50000
instances for training and 10000 for testing.

Next, we apply a fault template for the five classes of OOD presented in Chapter 2.1: novelty,
anomaly, distributional shift, noise, and adversarial inputs. For adversarial inputs generation,
we apply the fast gradient signed method (FGSM) [Dong et al., 2017]. For the noise and
distributional shift, we generate 19 different transformations with two types of intensity varying
from 1 to 5 (e.g., snow (1) = image with a bit of snow; snow (5) = heavy snow) [Hendrycks and
Dietterich, 2019]. All transformations were applied over CIFAR-10 and GTSRB datasets. The
benchmark datasets are composed of a transformed version of the ID datasets that we previously
applied for training the ML algorithm and building the SM. Thus, we use 20% of the ID data
for the benchmark dataset without transformation. The entire original dataset is transformed
into a specific variation. This 20% of ID data was not applied to the ML training.

For novelty class detection, the fault template applies one dataset as an ID dataset and
another dataset with new classes as OOD data, resulting in three benchmark datasets:

• GTSRB as ID data, and BTSC as OOD data: this combination tests whether the SM can
distinguish new classes that have similar characteristics to the known ones.

• GTSRB as ID data, and CIFAR-10 as OOD data: this combination tests whether the SM
can distinguish new classes that are very different from the known ones.



3.2. EXPERIMENTS AND RESULTS 33

• CIFAR-10 as ID data, and GTSRB as OOD data: this combination tests the same as the
aforementioned combination. However, since the ID data is different, the ML and the SM
are built with different data. Hence, this permutation produces different outcomes.

In total, we produced 79 benchmark datasets. More details can be found in the results
section of our repository [Anonymous, 2021].

3.2.2 System under test

We simulate a scenario in which the SM has to detect OOD data by checking one RGB-colored
image at a time in a randomly ordered stream of images. Once the SM makes a detection, it
cancels the ML classification since this classification is potentially wrong. If nothing is detected,
the ML classification is accepted.

For the ML model, we use a LeNet [LeCun et al., 2015] since it is a simple and traditional
convolutional neural network (CNN) algorithm. It contains around 100,000 parameters and 128
neurons in the last hidden layer. For the monitors (noted as SM), we use one method of each of
the three different strategies of data-based SM for monitoring a DNN model:

• DNN inputs: adversarially learned one-class classifier for novelty detection
(ALOOC) [Sabokrou et al., 2018]. This method learns how to reconstruct each
class during the training phase. It receives an image during operation, tries to recon-
struct this image to the known class, and analyzes the loss error resulting from this
reconstruction. If this loss error surpasses a safe threshold, ALOOC flags it as OOD.

• DNN intermediate values: outside-of-the-box abstraction (OOB) [Henzinger et al., 2020b].
This method projects a 2D-box region from the activation function values (RELU) from
the hidden layers of the DNN during the training phase. At runtime, it receives an image
and projects a point from it built from the outputs of the activation function from the
same DNN layer used during the training. If this point falls outside the 2D box, OOB will
flag this image as OOD.

• DNN outputs: detector of out-of-distribution images in neural networks (ODIN) [Liang
et al., 2018a]. This method learns how to balance the confidence values outputted along
with the DNN decision. It uses these values from the last layer of DNN during training
and applies a method known as temperature scaling, which will scale the confidence values
to a new threshold for considering an image as OOD. During the operation, ODIN verifies
if the DNN confidence value over an incoming image respects the threshold. If not, ODIN
will flag this image as OOD.

3.2.3 Parameter’s evaluation and choice

Next, we present the chosen parameters for the SMs. To avoid biased results, all the initial
parameters were tuned using only the ID dataset and are summarized in Table 1.

We explored the original parameters for each SM, and we also found/tested new values/meth-
ods not mentioned in their original papers (marked with *). For ALOOC, the authors did not
investigate the influence of the optimizers in the original paper. Thus, we tested two different
optimizers: ADAM [Zhang, 2018] and RMSProp [Wichrowska et al., 2017]. We also analyzed the
best model for each class through different epochs. In general, all the models achieved a better
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Table 1: SM parameters tested in the experiments. We tested parameters beyond the
ones tested in the related works papers.

SM Parameter name Parameter values
ALOOC Optimizer ADAM, RMSProp

Epoch 200
Loss threshold average per class*

OOB γ 0, 0.1, 0.35
# of clusters 0, 3, 5*, 17*
Dimensionality reduction simple, PCA*, ISOMAP*

ODIN Temperature 1000
Magnitude 0.0014, 0.0025
Confidence threshold 0.0237*, 0.1007*

convergence around 200 epochs. Since the threshold value for considering whether a class is con-
sidered OOD does not indicate in the original paper, we considered the average reconstruction
loss for each class during the training.

For the OOB method, we test the parameter responsible for enlarging the size of boxes (τ)
with the same range of values proposed by the original paper. We applied the same number
of clusters as suggested by the original paper (no clusters or three clusters). However, we also
tested with a possible optimal number of clusters. The possible optimal number of clusters K for
the K-means algorithm contained in the OOB method is chosen through the Elbow analysis [Ko-
dinariya and Makwana, 2013]. Thus, the best K value was 5 and 17 for CIFAR-10 and GTSRB,
respectively. Finally, we also tested three different approaches for the 2D-dimensionality reduc-
tion parameter: simple projection (proposed in the original paper), PCA [Yang et al., 2004],
and ISOMAP [Balasubramanian et al., 2002]. ISOMAP is a popular nonlinear dimensionality
reduction method, and PCA is also a popular method, but linear. With these two methods, we
can analyze if the choice of the dimensionality reduction methods influences the outcomes.

Regarding ODIN, we set the temperature (1000) and the magnitude parameters (0.0025 and
0.0014, for GTSRB and CIFAR-10, respectively) as suggested by the authors. However, we
chose the confidence thresholds for determining OOD data by selecting the lower confidence
value outputted from the method when exposed to the training data. In this case, 0.0237 and
0.1007, for GTSRB and CIFAR-10, respectively. We had to assume a confidence value threshold
since it would not be possible to use ODIN as an SM without it.

3.2.4 Results

3.2.4.1 SMs performance

we use the positive/negative data and the evaluation metrics as mentioned in Section 3.1. Since
we measure the detection, there is no necessity to include the measurements for the ML. Best
results are written in bold.

Table 2 shows these results for novelty class: GTSRB as ID dataset and BTSC as OOD
dataset; CIFAR-10 as ID and GTSRB as OOD; and GTSRB as ID and CIFAR-10 as OOD. The
first benchmark dataset has the challenge of having ID and OOD data with a similar domain,
while the other two have very different classes from each other.

The MCC results indicate that the SM is sometimes slightly better than a random classifier
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Table 2: Comparing data-based monitors for novelty class. SMs yielded a high amount
of false positives.

Variation SM MCC FPR FNR Pr Re F1

GTSRB-BTSC
ALOOC

OOB
ODIN

0.01
0.23
0.03

0.50
0.61
0.99

0.49
0.11
0.0

0.17
0.24
0.16

0.51
0.90
1.0

0.57
0.52
0.06

CIFAR10-GTSRB
ALOOC

OOB
ODIN

0.02
0.11
0.23

0.63
0.72
0.61

0.34
0.16
0.10

0.18
0.20
0.24

0.66
0.84
0.9

0.47
0.41
0.52

GTSRB-CIFAR10
ALOOC

OOB
ODIN

0.05
0.15
0.07

0.56
0.79
1.0

0.37
0.09
0.02

0.81
0.82
0.17

0.63
0.91
0.98

0.63
0.74
0.06

Table 3: Comparing data-based monitors for CIFAR-10 and GTSRB datasets with
a adversarial attack. Methods based on inputs and internal values yield a high amount of
false positives while monitor based on outputs suffers from a high amount of false negatives.

CIFAR-10
Variation Method MCC FPR FNR Pr Re F1

FGSM
ALOOC

OOB
ODIN

-0.23
-0.13
0.06

0.89
0.92
0.14

0.29
0.16
0.81

0.28
0.31
0.37

0.71
0.84
0.19

0.25
0.24
0.62

GTSRB
Variation Method MCC FPR FNR Pr Re F1

FGSM
ALOOC

OOB
ODIN

0.19
-0.01
0.11

0.22
1.0
0.92

0.59
0.0
0.02

0.44
0.31
0.34

0.41
1.0
0.98

0.66
0.14
0.26

(MCC ≈ 0). We observe that these methods’ weakness is in the high amount of false positives,
yielding a borderline MCC performance. According to the results, just ALOOC obtained a false-
positive rate of around 50%. However, it had many false negatives, which can be considered
worse depending on the scenario. In general, all SM had a poor performance due to the unreliable
nature of DNN confidence values, and the high nonlinear nature of activation functions in ODIN
and OOB, respectively.

Next, in Table 3, we show the same analysis but using CIFAR-10 and GTSRB after being
modified through an adversarial attack known as FGSM.

According to the results, for CIFAR-10, the methods achieved negative values for MCC,
which indicates performance worse than a random classifier. For GTSRB, the results are slightly
better, but the MCC values can be considered as flawed as a random classifier. Despite the good
values of micro-F1 for ODIN and ALOOC, in the CIFAR-10 and GTSRB datasets, respectively,
the rate of false negatives was high. It means that the ML classifier did not give the correct
prediction, and the SM did not detect the attack.

Next, in Table 4, we show the results for CIFAR-10 and GTSRB datasets with different
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types of distributional shift. Here, we see a surprising but negative outcome: OOB suffers from
a lot of false positives. In contrast, ODIN suffers from many false negatives. It means that they
always tend to miss a detection or to say that everything is OOD data. ALOOC got a fair MCC
value for CIFAR-10 with intense fog and a good MCC value for GTSRB with heavy snow.

Table 4: Comparing data-based monitors for CIFAR-10 and GTSRB with distri-
butional shift. A high amount of false negatives from all methods most of the time.

CIFAR-10
Variation Method MCC FPR FNR Pr Re F1

rotated
ALOOC

OOB
ODIN

0.0
0.02
-0.1

0.0
1.0
0.32

0.29
0.0
0.81

1.0
0.14
0.09

0.71
1.0
0.19

0.83
0.04
0.66

snow (5)
ALOOC

OOB
ODIN

-0.01
0.0

0.14

0.42
1.0

0.08

0.59
0.0
0.81

0.14
0.14
0.29

0.41
1.0
0.19

0.62
0.04
0.8

fog (5)
ALOOC

OOB
ODIN

0.47
0.0

-0.01

0.03
1.0
0.21

0.59
0.0
0.81

0.68
0.14
0.13

0.41
1.0
0.19

0.88
0.04
0.73

GTSRB
Variation Method MCC FPR FNR Pr Re F1

rotated
ALOOC

OOB
ODIN

0.0
0.09
-0.12

0.0
0.75
1.0

0.55
0.16
0.02

1.0
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Another interesting result for ALOOC is that despite the low MCC performance on the
other benchmark datasets, it got relatively good micro-F1 results. It highlights that this method
tends to have a good amount of false negatives but rarely gives a wrong output when detection
is signaled. Again, methods based on inspecting inputs seem to be more effective in detecting
changes in the pixel value distribution.

Once we evaluate the methods in all datasets, we investigate how their results statistically
differ from each other. The reason is to observe if there is an SM that is better than the others.
We applied a Friedman test with Nemenyi posthoc with 95% the confidence level for all methods
ranks through every dataset regarding the MCC metric. From that, we build a critical difference
diagram illustrated in Figure 6.

The result shows that ODIN achieved the best results in more benchmark datasets than
the other two SM. However, there is no statistical difference between the SMs. It means that
regarding the MCC results, there is no best SM method. Next, we evaluate how much the SM
impacts the SUT when it works along with the ML classifier.
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Figure 6: Critical difference diagram: no statistical difference between the methods.

3.2.4.2 Overall impact of the SM

As previously explained, the objective is to evaluate how much the SM impacts the SUT when
it works along with the ML classifier. Table 5 shows the overall SM’s impact in the SUT when
using GTSRB or CIFAR-10 regarding ID data. The results are expressed as MCC values. To
evaluate the SM, we also use a percentage of relative change showing how much better/worse it
performed compared to the baseline (ML alone).

Table 5: MCC values for SUT with/without SM for GTSRB or CIFAR-10 as ID
dataset. Results indicate a huge negative impact of SM in the system.

Method GTSRB CIFAR-10
ML alone 0.96 0.74
ML + ALOOC 0.51 0.53
ML + OOB 0.64 0.61
ML + ODIN 0.50 0.64

In the GTSRB dataset, the best values for the ALOOC method were obtained when using the
ADAM optimizer. In contrast, the OOB method obtained the best results when using 3 clusters,
ISOMAP, and an enlargement factor of 0.1. As mentioned earlier, for ODIN, the threshold was
set to 0.0237.

For the CIFAR-10 dataset, the best optimizer for ALOOC was ADAM. For OOB, the best
parameters were: 5 clusters, ISOMAP, and an enlargement factor of 0.35. For ODIN, we set the
threshold to 0.1007.

As can be noted, all SM methods perform worse than ML alone when exposed to ID data.
This result is expected due to the generalization power of ML models. However, a reliable SM
is also one that can perform well when exposed to ID data, avoiding an ML misclassification or
simply not raising a false alarm hindering a correct ML classification.

These results show the best SM’s performance was obtained by the outside-of-the-box and
ODIN, on GTSRB and CIFAR-10, respectively. Results indicate that the SM performed con-
sistently better than a hypothetical random classifier (MCC = 0). However, they also show a
significant gap between the performance of the ML alone and the SM for ID data, especially in
the GTSRB which has four times more classes than CIFAR-10. This result is interesting since
the tested monitors use information from the ML model and build their hypothesis over ID data.

3.2.4.3 Time and memory overhead induced by SMs

We show in Table 6 an example of the performance for ALOOC, OOB, and ODIN, respectively,
in the three benchmark datasets for novelty class detection. The values are expressed in seconds
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and represent the average time spent on the tasks of classification and monitoring on a single
image. We used a computer with a Processor Intel(R) Core(TM) i7-9850H CPU @ 2.60GHz,
and 32GB of memory.

Worth mentioning that we can have slight differences between the prediction time in the
three methods since they use different deep learning libraries. ALOOC uses Keras, OOB uses
Tensorflow, and ODIN uses PyTorch. Besides, the SUT time also contains the remaining time
from other small processes involved in the experiment, so the sum between the prediction and
monitoring time is lower than the SUT time.

Table 6: Time impact of SM per instance in seconds for novelty class detection.
Monitors are responsible for more than 96% of the total processing time.

Method ML SM SUT
ALOOC 0.0070 (3.0%) 0.2217 (96.8%) 0.2288
OOB 0.0021 (3.9%) 0.0529 (96.0%) 0.0551
ODIN 0.0007 (3.0%) 0.0246 (96.9%) 0.0254

According to the results, ODIN is the fastest method. Except when using OOB with
ISOMAP, all three methods needed no more than 0.07 seconds to spot OOD data. Such process
time can be considered fast enough to be applied at runtime. Besides, they can be optimized,
potentially reducing this time.

However, the monitoring task is always slower than the prediction and can be responsible
for 96% of the necessary time for a SUT to do the task. Since memory is also an important
constraint, especially on embedded systems, we show in Table 7 the memory efficiency of the
methods when performing a novelty class detection over the GTSRB dataset.

Table 7: Memory size of ML, and SM in MB. Monitors based on autoencoders may
introduce a huge memory overhead to the SUT.

Method ML SM
ALOOC 3.8 98.9
OOB 4.3 6.4
ODIN 2 1.5

As can be seen, ALOOC needs a considerable amount of memory or disk space due to the
necessity of developing one monitor for each class. For instance, even though ALOOC needs
just 2.3MB per class, it is necessary almost 100MB to monitor all 43 classes contained in the
GTSRB dataset. For OOB, it is also necessary to build one monitor for each class. However, the
amount of memory needed is not huge since it uses just some stored arrays to make the boxes.
For ODIN, it is not necessary to build one SM for each class. Moreover, since the algorithm
needs to be applied during the training phase to collect the thresholds for the confidence values,
it can use just a tiny amount of memory to do the inspection.

3.2.5 Threats to validity

In order to analyze and mitigate threats to the validity of the results, we present below a
summary of arguments for external and internal validation.
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• External validity: All tested SMs were already compared to other methods in their original
papers. They obtained the best results during the comparison. Besides, we also chose three
different approaches to monitoring (inputs, intermediate values, outputs) that may cover
an acceptable range of SM approaches based on data. However, it is worth mentioning
that this study is a first benchmark work. Thus, other approaches may be published with
better performances in the future.

• Internal validity: What could have led us to the wrong conclusions in our study?

– Bad parameters choices for the SM : aiming at improving the SM performance, we
explored additional parameter values than those explored in their original papers.
For instance, we applied different dimensionality reduction methods for the outside-
the-box. However, even though different dimensionality reduction methods can bring
better results, they also introduce a high cost to time and memory performance.
Regarding ALOOC and ODIN, we had to choose criteria for the threshold value for
considering whether a class is considered out-of-distribution or not. This way, if one
applies different criteria for these methods, they will result in different outcomes.
However, such criteria had to be deducted since they are not contained in their
original papers. Besides, ODIN used OOD data to calibrate their monitor, which
can be considered unrealistic. Hence, in this work, all the parameters were chosen
using just ID data. It makes the scenario more realistic and harder, which drastically
decreases the SMs performance.

– Choice of datasets: even though we chose datasets widely applied in the computer
vision literature, the choice of the amount of ID data accessible for building the ML
classifier and the SM can influence both. Furthermore, the amount of ID and OOD
data in the benchmark datasets also can influence the results. However, we followed
traditional ways to divide data (e.g., 80/20 for training and testing). Besides, the
authors of OOB [Henzinger et al., 2020b], and ALOOC [Sabokrou et al., 2018] test
their methods considering the same dataset for ID and OOD data, which they test
novelty detection by training the ML with 9 classes and omitting one, or training
with 8 classes and omitting two, and so on. However, we in this work we test novelty
detection using an entirely new dataset as OOD data along with a part of ID data
(ex: CIFAR-10 + GTSRB).
Domain of validity: The setting CIFAR10-GTSRB constitutes two different datasets
that do not have the same validity domain [Riccio and Tonella, 2020] (i.e., GTSRB
is not only out-of-distribution but also out of the validity domain). Thus, the task
of detecting OOD data should be less complicated in this scenario. However, the SM
methods continued to be inefficient.

3.3 Conclusion

In this work, we proposed a framework for benchmarking safety monitors for ML classifiers.
We argue that there is a need for a better framework for benchmark SMs based on data by
applying more metrics beyond accuracy and ROC curves. Thus, we proposed a minimal set of
measurements that should be considered when benchmarking such solutions.

Besides, we also showed that measuring the performance of these SMs is less straightforward
than it seems. We presented two dimensions that need to be investigated: the SM’s overall
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impact on the SUT; and the detection performance of the SMs. Our approach allowed insights
into three categories (e.g., for inputs, intermediate values, and outputs) of data-based monitors.

Our results indicate at least four general takeaways for the current solutions that are solely
based on DNN’s data:

• The overall accuracy in the detection tends to be as bad as a random classifier due to the
high amount of false positives or false negatives, depending on the scenario.

• Such methods tend to negatively affect the system under test since they yield too many
false positives interfering with the correct ML decision.

• They need a considerable amount of memory or disk space since a monitor can consume
up to 100MB.

• They are not so fast to perform the detection and have a considerable overhead compared
to the ML software.

The tested SM was exposed just to novelty detection in their original papers. However,
testing these SM with the other four types of OOD data was important to show that:

• SM based on DNN inputs: it has the advantage that it does not need to inspect the
internals of the DNN. Thus, it can make the monitoring independent of the ML classifier.
However, it has the drawback of being biased in the data used during the training.

• SM based on DNN intermediate values: it has the advantage of inspecting the ML model
as a white box. That is, it allows us to look at the internal values that led the DNN to
decide. However, the drawback is that the activation functions are insufficient to provide
all information helpfully learned from the DNN.

• SM based on DNN outputs: it has the advantage that it decreases and equilibrates the
confidence values from the DNN. However, similarly to approaches based on DNN inter-
mediate values, the drawback is that it relies heavily on the performance of the DNN.

The main conclusion is that current data-based monitors do not provide sufficient confidence
against all possible threats. However, we still need to assess them as part of a safety-critical
function in order to evaluate the safety aspect of the system, we propose, in the next chapter,
an evolutionary simulation testing of safety-critical perception systems, which comes integrated
into the CARLA simulator. Unlike related works that simulate scenarios that raise failures
for specific perception problems such as novelty, we provide an approach that finds the most
relevant OOD perturbations that can lead to hazards in safety-critical perception systems.



Chapter 4

Testing SM for ML perception
functions at the system level

As explained before, in order to evaluate the safety aspect of the system we need to simulate
relevant OOD perturbations that can lead to hazards in the system. Hence, we move from the
task of unit testing to the system-level test. As a case study, in this chapter, we move from an
image classification problem to a safety-critical system dependent on an object detector model
built with a modern deep learning algorithm. Such an experiment is relevant to the academy and
industry since object detection models tend to have problems such as ghost detections [Bogdoll
et al., 2022], misclassifications [Sun et al., 2021], or even being blind to the presence of new
objects [Sabokrou et al., 2018].

To increase ML robustness, practitioners usually apply data augmentation techniques during
training or OOD detectors during operation [Sabokrou et al., 2018, Sun et al., 2021, Liang et al.,
2018b]. The performance of such methods is usually demonstrated by inspecting the number of
false positives and false negatives when exposed to several datasets containing common image
perturbations and new objects [Hendrycks and Dietterich, 2019, Secci and Ceccarelli, 2020].
However, simulation is an essential part of testing since not all ML errors lead to hazards,
and most of the time, the physics of such autonomous systems need to be taken into account
when searching for hazards. Therefore, in this chapter, we present SiMOOD, an approach
dedicated to test perception functions built with ML. SiMOOD is integrated within CARLA
simulator [Dosovitskiy et al., 2017].

We apply OOD perturbations during simulation instead of using it over static datasets as it
is usually done in the literature [Hendrycks and Gimpel, 2016b, Hendrycks and Dietterich, 2019,
Shafaei et al., 2019]. However, since each OOD perturbation has several parameters, the number
of possible simulations to find a hazard grows exponentially. Moreover, the time to simulate
even a tiny part of these simulations grows quickly. To mitigate this problem, SiMOOD uses
a two-step approach. As illustrated in Figure 7, first, it performs a unit testing of the ML

Figure 7: SiMOOD simulation flow. After an initial configuration of all possible perturba-
tions, the algorithm searches possible candidates that will lead to hazards during simulation.
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model using a genetic algorithm (GA) on the same dataset applied to train the ML model.
It determines which combination of OOD perturbations with their respective intensity levels
increases the number of incorrect predictions. Second, the selected perturbations are applied to
the simulation to verify if they lead to hazards in the system. That is, SiMOOD takes a set
of existing scenarios and injects image perturbations selected by a GA-on-data approach and
posteriorly tests them on simulations, proving itself capable of turning safe scenarios into unsafe
ones, which can be analyzed in order to improve the safety of the system.

We consider four categories of OOD perturbations: novel classes, distributional shifts, noise,
and anomalies. Our main contributions are:

• Open-source testing approach integrated with CARLA simulator : SiMOOD apply several
relevant OOD perturbations at simulation time. Such perturbations also vary in inten-
sity. Performing such tests yields more realistic results than performing them over static
datasets. Besides, SiMOOD is open-source [Ferreira, 2022].

• Optimized search for hazards: SiMOOD is an off-the-shelf testing approach for perception
functions in a simulated environment. It uses an evolutionary approach to find the minimal
OOD perturbations that may lead to hazards during simulation. Due to its GA-on-data
approach, SiMOOD decreases 10 times the amount of time required to find a set of hazards
in safety-critical tests while considering a huge search space.

This chapter is organized as follows: in Section 4.1, we discuss specific literature about
the concepts used in our approach, the simulated OOD data, and existing related works. In
Section 4.2, we detail the architecture of our approach and introduce its main functionalities.
In Section 4.3, we show the experiments and the insights provided by the results. Finally, in
Section 6, we present our final considerations and limitations.

4.1 Background

We focus on simulation-based testing of perception systems composed of ML algorithms, specif-
ically object detectors exposed to out-of-distribution images. Therefore, works that focus on
finding safety violations on control [Li et al., 2020], system specifications [Zapridou et al., 2020],
error space exploration [Singh et al., 2021], path planning [Arcaini et al., 2021], and new driving
scenes generation [O’Kelly et al., 2018] are outside of the scope of this work.

As the first example of related work, Pei et al. [2017] proposes DeepXplore, an automated
white-box testing of deep learning systems. The authors argue that DeepXplore can measure
code coverage by measuring the neuron coverage of a deep learning algorithm when perturbing
the images that are fed into these ML models. Following a similar idea of neuron coverage,
Tian et al. [2018] propose DeepTest, an automated testing approach of deep-neural-network-
driven autonomous cars. The authors can find several ML failures in a test set in which the
ML model should perform a steering angle action correctly. Zhang et al. [2018] push forward
the idea of perturbing images for testing by proposing Deeproad: a gan-based metamorphic
testing and input validation framework for autonomous driving systems. DeepRoad generates
driving scenes with different weather conditions by using GAN along with the corresponding
real-world weather scenes. DeepXplore, DeepTest, and DeepRoad test safety-critical perception
functions against generated OOD images. However, these works perform tests on datasets, and
such offline testing alone cannot guarantee that safety violations will not happen during online
testing [Haq et al., 2021]. Therefore, our work also differs from the previous related works.
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Regarding related works that also propose simulation tests, Dreossi et al. [2019a] propose to
test the safety-critical system when exposed to novel classes. The authors apply a falsification
method over images with different light conditions and distances to find regions of uncertainty.
After that, they test it against a simulator. Rossolini et al. [2022] test the robustness of
semantic segmentation models by applying adversarial colored patches on the simulation and
real images. The authors present extensive experiments to validate the proposed attack and
defense approaches in real-world scenarios. Boloor et al. [2020] also test and simulate physical
adversarial examples that can affect the detection performance for object detection tasks. Boloor
et al. [2020] apply black lines on the streets to foul the object detector and force it to go in a
different direction. Fahmy et al. [2022] propose a tool to debug DNNs for safety analysis.
The tool finds clusters of images with common characteristics that lead to errors by using the
information propagated by DNN neurons during the prediction. Finally, Haq et al. [2021]
showed that for continuous values, DNN prediction errors not identified by testing DNNs with
static datasets can yield many safety violations during online testing. However, the authors
also emphasize that such a premise cannot be applied when testing perception-based tasks. Our
work goes one step further on this problem by focusing on minimal image perturbations that
lead to hazards during simulation.

Our approach differs from Rossolini et al. [2022] since our focus is on the object detection
task. Our approach also differs from Boloor et al. [2020], Dreossi et al. [2019a], Fahmy et al.
[2022] since these related works are focused on an in-depth analysis of one type of OOD data
(e.g., adversarial, novelty, and distributional shift respectively). In contrast, we consider four
types of OOD data that are a source of threats for perception systems with ML-based object
detectors. We also provide a list of fine-grained intensity perturbations selected over a higher
search space. Next, we present an overview of SiMOOD.

4.2 SiMOOD: evolutionary testing Simulation with Out-Of-
Distribution images

SiMOOD generates hazardous perturbations in a specific scenario in four types of OOD data:
novelty, anomaly, distributional shift, and noise. For novelty class and anomaly perturbations
SiMOOD works with binary intensity levels (true/false) and continuous values for distributional
shift and noise. For example, for novelty class experiments, SiMOOD can inject a new object
from the operation domain design in a random point of the scenario, and for anomaly exper-
iments, SiMOOD can inject a known object in a way that is not expected to be found in the
original dataset. As noted, there is no sense in applying intensity levels for novelty and anomaly
perturbations but rather in applying random locations for the novel/anomalous objects in the
scene.

For perturbations that can vary with a range of continuous values, SiMOOD needs to generate
values that can lead to hazards in the simulation. Since the search space for such values is large,
SiMOOD applies an evolutionary search to find the values that have more chance of provoking
ML failures that lead to hazards in the simulation.

As illustrated in Figure 8, SiMOOD is divided into three parts: generation, simulation, and
evaluation. Thus, during the generation, SiMOOD applies an evolutionary search to find the
n-most relevant OOD combinations. Each combination represents a vector containing m tuples
in the format (perturbation, intensity). Each perturbation has a range of intensity values. For
instance, a single combination of size m=2 can be formed by [(Gaussian noise, 0.2), (Blur, 3)].
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Figure 8: SiMOOD overview: generation, simulation, and evaluation phases.

Thus, we introduce the following definitions:

• Genes: A gene is represented as an OOD perturbation with its respective intensity value
(e.g., Gaussian noise, 0.2). Each OOD perturbation varies in intensity from 0 (no effect)
to L (severe perturbation but still interpretable).

• Individual: an individual is composed of a number of genes. For instance, an individual
of size m=2 is represented by a vector of m tuples: [(Gaussian noise, 0.2), (Blur, 1)].

• Population: it is a set of individuals. An initial population of size n means a generation
of n-individuals.

• Genetic algorithm iterations: since the number of combinations and their parameters
is large, the space search is similarly large. Therefore, in the first iteration, the GA
randomly selects an initial population of size n.

After this generation step, the n-most relevant individuals selected by the GA are iteratively
simulated in a safety-critical system. Each combination is applied to each frame. The trans-
formed image is exposed to the ML-based safety-critical function, and the results are stored for
future analysis. Next, we detail each part of SiMOOD.

4.2.1 Generation

During this part, SiMOOD performs the task of finding suitable configurations (e.g., combina-
tions of OOD perturbations) using a genetic algorithm (GA) approach as illustrated in Figure 9.
A GA comprises an initial population randomly selected from the original population. A popu-
lation represents a group of individuals. Each individual comprises a group of genes (or a group
of parameters). The GA selects the best individuals based on a fitness score outputted from a
fitness function. After it, the k best-selected individuals generate k new individuals for the next
generation. For each pair of selected individuals, a crossover point is chosen randomly from
within the genes. Finally, a mutation can occur to maintain diversity within the population.

These perturbations are combinations of distributional-shift and noise perturbations. For
example, Gaussian noise with a blur effect, or Spackle noise in an environment with heavy smoke.
Since the ML always gives wrong predictions to new classes, the novelty class category is not
applied in the GA but rather as an option when performing a simulation with our approach.
Next, we translate the GA terms to our task as illustrated in Figure 9:
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• Initial population it is randomly generated and represents a subset of all possible com-
binations of OOD transformations.

• Apply perturbations it sequentially applies a combination of perturbations over an
image following an order of occurrence of these perturbations inside of an individual.
That is, an individual containing [(Blur, 0.1), (Smoke, 0.3)] leads to a blur transformation
followed by a smoke transformation.

• Fitness evaluation each set of perturbations is applied to the same dataset used to train
the ML model. Hence, we have n transformed datasets that are exposed to a fitness func-
tion. The fitness function uses the same ML model applied later in the simulation as part
of the final fitness score. Thus, the fitness function calculates all true/false positives/nega-
tives yielded by the ML model when exposed to these transformed datasets. Any classical
ML metric value α between 0 and 1 can be used (e.g., mAP, false positive/negative rates
(FPR) regarding the detection task, precision and recall).
The fitness score f is a sum of α and the normalized vector of perturbation intensities
η multiplied by a smoothness term ω, that is, f = α + (η ∗ ω), ω ∈ IR[0, 1]. These terms
are added to α to force the GA to reward perturbations that lead to hazards but with
a minimum amount of intensity. Worth mentioning that if α is based on measuring the
ML model errors (ex: mean average error) instead of the model correct predictions, this
regularization term is decreased by α instead (e.g., |(η ∗ ω)− α|).
To calculate η we first normalize the vector of perturbation intensities v = v1, ..., vm

through the formula (val − min val)/(max val − min val), which val means the inten-
sity value of a particular OOD perturbation, min val and max val represents using the
minimum (e.g., 0, or no effect), and the maximum value of intensity for a particular OOD
perturbation. Hence, after applying the above formula for each gene of an individual of
size m, we obtain the final value by η = 1

m

∑m
i=1 vi.

Regarding ω, it is intended to penalize a high intensity η over the ML metric α. The value
of ω can be increased if one wants to give more importance to η, or decreased otherwise.
Besides, since our focus is to find different perturbations rather than find the highest
intensity levels, we do not allow ω > 1.

• Selection once all fitness scores are collected, the algorithm selects k best OOD pertur-
bations that had the most relevant fitness scores. In this work, we choose to work with
an odd number of individuals (e.g., k=2) since it is a simple premise of the GA, which
performs a crossover between the best pairs of the generation. This criteria is also generic
and depends on the objective of the test. In our case, we want to find the minimal OOD
perturbations that have a high probability of leading to hazards. Hence, the selection
mechanism will choose the one leading to the worst ML performances. For instance, if
the fitness score is based on accuracy, SiMOOD selects k individuals that led to the worst
results using minimal perturbation intensities.

• Crossover the selected individuals k generates k new individuals by exchanging their
genes.

• Mutation it might occur in the resulting pair of individuals by changing a specific gene
at an arbitrary point. Unlike the crossover, the mutation does not always happen and has
a low probability of occurrence. The mutation randomly chooses a gene to replace and
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assigns a new random value to it. In our approach, to avoid too many repeated individuals,
a mutation also occurs when there is a crossover between equal individuals.

• Population update the new individuals are added to the current population, their
fitness scores are evaluated and added to the fitness scores list of the current population.
After that, the algorithm selects the best k individuals for the next generation and
excludes the worst k ones. The process repeats until the desired number of generations is
reached.

Finally, at the end of the process, SiMOOD outputs the resulting population containing
the final selected individuals. That is the combinations that are candidates of being a source
of hazards during simulation. However, these possible hazards cannot be confirmed until we
perform the simulation tests. Next, we explain how we perform these simulations.

Figure 9: Genetic algorithm approach: searching for relevant OOD perturbations.

4.2.2 Simulation

Following the same term given in the previous subsection, in this part, we take the relevant
individuals selected from the previous step and apply them to each frame of the simulation.

During simulation, we collect the ground truth from the original image provided by CARLA
without perturbation, and we dynamically generate the object’s bounding boxes from the simu-
lator data, adapting the method developed in [Adib, 2022]. This method generates 2D bounding
boxes from the projected 3D bounding box of the visible objects in the camera image. It uses
a distance filter, an angle filter, an occlusion filter, and instance segmentation of the LiDAR
sensor provided by CARLA. Besides, to be as lightweight as possible, we adapted this module
to generate the ground truth of the objects of interest in the safety scenario. For instance, in
an advanced emergency braking scenario, one needs just the ground truth of the objects that
interact with the ego-vehicle, such as cars and pedestrians, instead of checking for all other
objects in the scene. All the ML model and safety results are stored for future analysis at the
end of the simulation.

4.2.3 Evaluation

Besides simulation metrics such as processing time, and memory, we evaluate the safety-critical
function (hazards) and the ML model (ML metrics). We use the number of hazards during
simulation for the safety metrics. Here, we consider two types of hazards: a) accident (e.g.,
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car hits pedestrian); and b) dangerous stop (e.g., the emergency brake is activated without
necessity). For the ML metrics, we use the mean average precision (mAP) of the bounding
boxes generated by the ML model [Cartucho et al., 2018]. It is a standard metric applied to
evaluate object detectors. Next, we detail the experiments with SiMOOD.

4.3 Experiments and results

We evaluate SiMOOD capacity to find a suitable choice of minimal perturbations that lead to
hazards in CARLA simulations. We choose a safety-critical scenario in which a car uses an
emergency braking system equipped with an ML-based object detection model (e.g., YOLO).
In this scenario, a pedestrian crosses the street coming behind other objects. The ML model is
responsible for detecting all objects that enter a safety-critical region in front of the ego-vehicle.
Regarding the safety-critical region, the emergency braking system reacts to objects of interest
that enter the region, in our case, the pedestrians. The scenario is configured with CARLA
scenario runner [NVidia, 2022].

4.3.1 Experiment settings

Regarding the object detector algorithm, we use one of the most applied: YOLO v6 [Jocher
et al., 2021], a model based on stacked convolutional neural networks (CNN). The ML model
was trained on the COCO dataset [Lin et al., 2014b] with 10% of augmented data. We use the
same augmentation techniques for generating noise and distributional shift perturbations in our
approach. We also used data perturbations default in the YOLOv6 library, such as geometric
ones.

We applied 15 types of OOD perturbations presented in [Secci and Ceccarelli, 2020, Buslaev
et al., 2020], each one with its own levels of intensity (“no effect” included), resulting in 175
levels of intensity.

Table 8: OOD perturbation parameters. 15 types of OOD transformation with its levels
of intensity.

OOD perturbation Levels of intensity

Shifted pixels 11
Gaussian noise 8
Gaussian blur 24
Grid dropout 9
Coarse dropout 31
Channel dropout 3
Snow 6
Broken lens 11
Dirty 11
Condensation 11
Sun flare 11
Brightness 11
Contrast 11
Rain 6
Smoke 11
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For novelty class experiments, we inject a fallen tree on a random road point since it is a
familiar object in the operational design domain, but the ML model was not trained with this
object in the training set. For anomaly experiments, we inject a vehicle overturned on a random
point of the road since it is a known object to the ML model but in a way that is not expected
to be found in the original dataset. More details about all OOD perturbations can be found in
our repository [Ferreira, 2022].

Regarding the GA parameters, each individual has size m = 2. It is worth mentioning that
one can change the size of the individual to m = 1 in case to find just the single perturbations that
lead to hazards instead of a combination of them. Besides, the number of k selected individuals
per generation is also fixed in k = 2, that is, we select the best pair of individuals per generation,
replacing the worst ones. The mAP metric is applied as the ML metric. Therefore, the fitness
score includes the worst mAP obtained from a given pair of perturbations.

Regarding the crossover and mutation probabilities, we follow the recommendations of Yang
[2014] that showed from empirical results and theoretical studies that it is a good choice to set
a relatively higher probability for crossover (e.g., in the range of 0.6 to 0.99). In contrast, the
mutation probability can be very low (e.g., around 0.001 to 0.1). Therefore, we set our crossover
probability as 0.99 and the mutation as 0.1. Finally, regarding the other GA parameters: a
number of generations, population size, and smoothness term ω were chosen after performing
sensitivity analysis experiments.

4.3.2 Robustness of SiMOOD regarding its parameters

This subsection has the objective to measure the robustness of SiMOOD regarding its parameters
rather than performing a hyper-parameter optimization analysis. Moreover, for this analysis,
we prioritize finding hazards with a reasonable amount of different perturbations rather than
finding a huge number of hazards with repeated perturbations. That is, finding more hazards
while having more diversity indicates better quality results.

We vary the number of generations g between [10, 20, 30, 50], the initial population size n

between [10, 20, 30, 50], (each individual has 2 genes), and we also vary the value of ω between
[0.01, 0.1, 0.25, 0.5, 0.66, 0.75, 0.99]. Next, we perform a diversity analysis, and a hazard analysis
when varying the parameters of SiMOOD.

4.3.2.1 Diversity analysis on the influence of ω

The objective is to analyze how many unique individuals are generated when we change the
smoothness term ω across the different amount of generations and population sizes. More
unique individuals indicate more diversity in the results. Hence, as illustrated in Figure 10,
the best value for better diversity tends to be ω = 0.5. However, SiMOOD tends to be robust
regarding this parameter, since we observe small but steady variations in the diversity in which
ω ≤ 0.5 leads to slightly better results.

It is worth mentioning that in the next analysis, we keep ω with the best value. The reason
is that the amount of time to perform all simulation tests with different values of ω increases
quite fast. That is, the simple range of values chosen for these analyses leads to 3080 different
individuals, which would require 6,160 minutes of graphical simulation.
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Figure 10: Diversity analysis in the SiMOOD generation. Unique individuals per ω,
generated across all variations of generations and population size (440 individuals).

4.3.2.2 Hazard analysis on the influence of the population size and the number of
generations when ω = 0.5

Table 9 shows the number of unique genes, while Table 10 shows the number of hazards posteri-
orly found in the simulation. The best parameter values are the ones that lead to higher values
of unique genes (e.g., more diversity) and hazards. The best values of each column are marked
with (*).

Table 9: Number of unique genes in the selected population. SiMOOD generates
between 12% and 59% of diversity.

Generations Population size
10 20 30 50

10 7 (35%) 16 (40%) 34 (57%)* 59 (59%)*
20 8 (40%)* 20 (50%)* 28 (47%) 48 (48%)
30 6 (30%) 5 (12%) 26 (43%) 42 (42%)
50 6 (30%) 7 (17%) 19 (31%) 32 (32%)

Tables 9 and 10 show that the number of unique genes increases gradually along with the
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Table 10: Number of hazards. SiMOOD was capable of uncovering hazards in the simulation
up to 100% of the time.

Generations Population size
10 20 30 50

10 9 (90%) 11 (55%) 12 (40%) 12 (24%)
20 6 (60%) 20 (100%)* 23 (77%) 21 (42%)
30 10 (100%)* 20 (100%)* 30 (100%)* 25 (50%)
50 10 (100%)* 20 (100%)* 15 (50%) 23 (46%)

population size when performed over a low number of generations, but the number of hazards
seems to be steady. Considering the best results in Table 9 and 10, it seems that SiMOOD
achieve a good compromise between diversity and hazards when performing with 20 generations
g and population size n = 20. Besides, the number of predominant genes (e.g., repeated genes)
increases with the number of generations. It indicates that SiMOOD does not need too many
generations to find a good balance between diversity and uncovered hazards.

Regarding the variability of the experiments, we also run SiMOOD 10 times using the con-
figuration that achieved the best values in both Tables (generation=20, population=20). Such
experiments yielded standard deviation σ = 2.5 regarding the number of unique genes, and
σ = 5.5 regarding the number of hazards, which is acceptable for our experiments.

4.3.3 Results and analysis

In this subsection, we show the results of two main experiments: single OOD perturbations
that lead to hazards; and combinations of OOD perturbations that lead to hazards. These
experiments were performed with the best parameters presented in the previous subsection: 20
generations g, population size n = 20, and ω = 0.5.

4.3.3.1 Hazards provoked by single OOD perturbations

Figure 11 shows three examples. The first sub-figure resulted from a vehicle crash due to a
fallen tree not detected by the ML model. Since the safety-critical system depends on the ML
model to “see” objects in the safety-critical region in front of the ego-vehicle, it does not trigger
the brake action, and the vehicle collides with the tree. In the second sub-figure, since the
emergency braking system has the rule to react when a bounding box of a pedestrian intersects
a warning region, the emergency braking system stops the vehicle in the middle of the street
due to a “ghost” pedestrian detected by the ML model. Such a false detection was provoked by
condensed water on the camera lens. Finally, in Figure 5c), a new accident occurs; this time, the
vehicle does not avoid a crash with a pedestrian not detected by the ML model when exposed
to heavy smoke in the environment. Even though the ML model was capable of detecting the
pedestrian, the detection was not made at the right time to avoid a crash after the brake action
was triggered. This case also shows the importance of testing on simulations instead of testing
on static datasets.

4.3.3.2 Hazards provoked by combined OOD perturbations

Figure 12 shows an example of how the combination of different OOD perturbations can uncover
new hazards. In Figure 6c), we show a combination (smoke, 3) and (grid dropout, 1) found by
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Figure 11: Hazards uncovered by applying single OOD perturbations.
a) An accident due to a unknown object (tree) not detected by the ML model; b) A dangerous
stop due to a false detection (ghost pedestrian) provoked by condensed water on the camera lens;
c) An accident due to a known object (pedestrian) not detected by the ML model when exposed
to heavy smoke in the environment.

Figure 12: Hazards uncovered by combining two types of OOD perturbations.
a) YOLO detects a pedestrian in an environment with light smoke (intensity 0.25); b) YOLO
detects a pedestrian despite a light grid dropout failure on the camera sensor (intensity 2); c)
A collision happens due to a failure of YOLO on detecting a pedestrian when both conditions
happen at the same time even with smoke transformation having a lower intensity than before.

SiMOOD that led to a collision between the vehicle and the pedestrian due to the failure of
YOLO in detecting the pedestrian, leading to incorrect behavior of the emergency braking
system. However, when one of these combinations happens alone (sub-figures a) and b)), the
ML model can correctly detect the pedestrian, making the emergency braking system correctly
trigger the brakes.

Simple combinations such as a sensor failure in a moment with a small amount of smoke or
haze during runtime can be enough to provoke a hazard. Moreover, as illustrated in Figure 13,
the order of the perturbations also matters. The reason is that the same perturbations combined
in a different order produce subtle differences in the image outcome, which can be enough to
hinder the performance of ML models. Next, we analyze the required processing time and
memory to use SiMOOD.

4.3.3.3 Processing time and memory usage

the experiments were performed in an Intel(R) i5-10500 CPU @ 3.10GHz, with 32GB of memory,
six cores, and a GPU (Quadro RTX 4000). Below, we show time and memory analysis for the
two parts of the approach: a) generation, and b) simulation.

a) Generation: SiMOOD can reduce the time necessary for finding hazards during the
simulation due to its approach of performing the GA algorithm on data instead of applying
it directly to the simulation. In our experiments, there are 175 possible perturbations T with
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(a) Grid dropout (1) + smoke (0.3). (b) Smoke (0.3) + grid dropout (1).

Figure 13: Same OOD perturbations but in different order produce different image
outcomes, which may uncover new hazards.
a) YOLO detects a pedestrian in the scenario with the OOD combination grid dropout + smoke.
b) YOLO does not detect a pedestrian in the same scenario but with OOD perturbations in
inverted order (e.g., smoke + grid dropout).

their respective intensity levels, and the number of simultaneous perturbations for each com-
bination (individual) is m = 2. Since the order of transformations matters, the set of possible
combinations is given by 175!

2!×(175−2)!×2 = 30, 450 possible combinations.
Besides, applying the GA directly into the simulation is suitable for the classes exposed

during the test (in our case, pedestrians and cars). On the other hand, SiMOOD uses a GA-
on-data approach, which considers all 80 classes in the COCO dataset. It allows SiMOOD to
be extended to other types of scenarios and objects on it. Below, we provide a theoretical time
analysis considering our GA and its parameters.

First, the GA starts with a time complexity of O(nt) which n is the size of the initial
population, and t is the amount of time to compute the fitness function. Second, for each
subsequent generation, the GA will transform the k best individuals of the population with
crossover and mutation operators, and posteriorly compute the fitness function, which adds
k ∗ t ∗ g to the processing time. Finally, the theoretical processing time when performing the
GA is given by nt + ktg, and its required memory space is given by m ∗ k.

Considering the aforementioned processing time formula, we can calculate the expected
amount of time, in seconds, to find a population of hazards when performing GA directly on
the simulation. Therefore, if we chose a simple configuration with an initial population n = 20
(0.0001% of the entire population), with 20 generations g, and the amount of time to render
our scenario (t = 120), and the number of selected individuals per generation k = 2, then the
expected processing time is given by 20 ∗ 120 + 2 ∗ 120 ∗ 20 = 7, 200 seconds (120 minutes).

Regarding performing the GA-on-data-first approach, the time t to compute a fitness function
is replaced by the time spent generating the datasets (5 seconds per dataset) + the time applying
the fitness function over each one of the generated datasets (7 seconds per dataset). That is,
t = 12. Hence, the amount of time to perform GA over data is 20 ∗ 12 + 2 ∗ 12 ∗ 20 = 720
seconds. Finally, we add the time spent when running the simulation with the final population,
that is, 120 ∗ 20. Therefore the total amount of time is given by 720 + 120 ∗ 20 = 960 seconds
(16 minutes).

Besides, even SiMOOD reduced the processing time almost 10 times the GA-approach pro-
cessing time, this difference could be even higher if we use a bit more complex scenarios such as
longer scenarios with more objects to render, or if more than one different scenario needs to be
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tested.
b) Simulation: Table 11 shows the processing time (seconds) and the memory usage (MB)

when performing the simulation with and without using SiMOOD.

Table 11: Comparison of processing time and memory. Amount of memory added to
the simulation is significant due to image transformations performed by the framework.

Time Time (with SiMOOD) Overhead

101.94 123.10 20.75%

Memory Memory (with SiMOOD) Overhead

3975.58 6708.09 68.73%

It is worth mentioning that the number of perturbations does not increase the average sim-
ulation time or the total average memory used in the simulation. All perturbation functions
are performed over a matrix with a fixed image size. However, since SiMOOD applies pertur-
bations on high-resolution images (1280x720), it is necessary an extra amount of memory (2.7
GB) to perform the task without severely impacting the simulation speed. Therefore, SiMOOD
requires a computer with 8GB of memory, which is quite normal for the current computational
requirements. Moreover, SiMOOD can be optimized to perform better processing and consume
less memory by performing parallelization and data compression.

4.3.4 Threats to validity

In order to analyze and mitigate threats to the validity of the results, we present below a
summary of arguments for external and internal validation.

4.3.4.1 External validity

Regarding the simulated sensor failures and weather conditions, there is always a gap between
simulation and reality Stocco et al. [2021]. However, the tested OOD perturbations were already
applied in several other papers from the literature with different levels of intensity.

Regarding the chosen simulator to perform our experiments, it is worth mentioning that
different simulators can yield different outcomes. However, the CARLA simulator is an open-
source simulator widely applied in the industry and in the literature. Besides, our approach can
be extended to other simulators.

4.3.4.2 Internal validity

What could have led us to the wrong conclusions in our study?
Variability of simulated safety-critical scenarios we tested our approach over a single

but relevant safety-critical scenario. However, a safety-critical scenario can greatly vary de-
pending on the expert’s needs. Therefore, it is not feasible to guarantee in a theoretical way
that our approach will provide similar results across any safety-critical scenario. However, it
is worth mentioning that this study is the first approach to this challenging problem. Thus,
other scenarios can be added and tested in the future since our open-source code can easily be
adapted/extended to new scenarios.

Choice of OOD perturbation levels despite the choice of perturbations on images capable
of being interpreted by human eyes, the amount of intensity considered valid is a choice of the
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experts. Thus, the range of intensity over the perturbations can change the outcomes in different
simulated scenarios.

Choice of parameters of the GA different values for the parameters of the GA algorithm
(e.g., number of selected candidates per generation, number of newly generated individuals,
crossover/mutation probability) can lead to different outcomes in both diversity and number of
hazards in the simulation. However, we followed a traditional way to develop the GA approach
and we also followed the recommendations from the literature [Mirjalili, 2019].

Choice of datasets for the ML model and for the GA even though we chose a dataset
widely applied in the computer vision literature, the choice of the amount of data accessible for
training/validating and testing the ML model, and performing the GA, can influence the fitness
score and maybe also change the selected perturbations. However, we followed traditional ways
to divide data (e.g., 80/20 for training and testing).

4.4 Conclusion

In this work, we proposed SiMOOD, an evolutionary simulation testing for ML-based percep-
tion systems. SiMOOD is open-source [Ferreira, 2022] and is already integrated with CARLA,
an open-source simulator for autonomous vehicles. SiMOOD was capable of finding out-of-
distribution image perturbations that lead to hazards during simulation. Moreover, it was
possible without performing such optimization algorithms loops directly into the simulation.
Such a strategy is able to save, up to 10 times, the amount of time needed to find a set of
hazards in safety-critical simulation tests.

We also showed that combinations of perturbations could expose different hazards. Moreover,
these perturbations are not commutative. Hence, the order of occurrence of such perturbations
can also uncover new hazards in the simulation.

The main difference in findings between this chapter and Chapter 3 is that when bench-
marking unit tests the aspect of hazards is reduced to the ML errors regarding the classification,
being difficult to assess the outcomes of these hazards in the system usage, since there is no
real-time simulated data. However, in this chapter, we went further and proposed a framework
that finds hazards during the simulation. Both approaches could be combined into a pipeline
for assessing the safety of ML-based functions, starting by evaluating the ML model as a single
component and after, evaluating the entire ML-based component in a safety-critical system.

A limitation of this work is the additional memory usage added to the simulation. However,
this is the first version of SiMOOD, and it will be improved in the subsequent versions since it is
open to the community. As a next step, we intend to add a scenario generation process similar
to Abdessalem et al. [2018], capable of varying the scenarios, and parameters. Adding such a
generation process to SiMOOD is important to produce a more robust analysis.

The research presented in Chapters 3 and 4 covered the test and evaluation of SM at the
unitary and system levels. We showed that new SM methods should be proposed in order to
tackle the high amount of false positives and negatives in monitor detection. Therefore, in the
next chapter, we propose a hybrid SM called SENA. Since our research showed that not all
OOD data leads to failures, we focus on detecting when the ML is likely to fail. That is, instead
of trying to detect when an image is OOD data or a hard-to-predict ID data (which will not
always result in a wrong output), we focus on detecting if the combination incoming image+ML
model is an ”error-prune” combination (which will most of the time result in a wrong output).
Besides, we use information from both correct and incorrect data during ML model training.



Chapter 5

SENA: Similarity-based
Error-checking of Neural Activations

In Chapter 3, state-of-the-art SMs were empirically demonstrated to yield a considerable number
of false negatives (i.e., prediction errors not detected by the monitor) and false positives (i.e.,
correct predictions rejected by the monitor). On the one hand, false positives have a negative
impact on the performance of the ML model for ID data. One of the main reasons for the high
number of false positives is that current monitors treat OOD data as data that the ML model
should avoid. Hence, such monitors tend to be activated for all OOD data. However, not all
OOD data lead to a failure in the ML model [Guérin et al., 2023]. In addition, recent works
showed that OOD detectors solely based on uncertainty [Schwaiger et al., 2020], generative
models [Zhang et al., 2021] and its densities [Le Lan and Dinh, 2021], cannot safely guarantee
that the OOD detection is correct, except for specific combinations of datasets. On the other
hand, false negatives tend to decrease the safety of the ML system as unsafe data instances are
not detected. They are mostly due to the fact that ML models still have to deal with possible
wrong predictions for ID data as well, and recent works theoretically demonstrated that wrong
ML predictions for both ID and OOD data may be linked to the same phenomena of model
misestimation problem [Zhang et al., 2021].

All previous empirical and theoretical works seem to point to the importance of approaches
that can detect when the ML model can correctly deal with the data, independently if it is ID
or OOD. Therefore, in this work, we propose SENA, a data-based monitor focused on detecting
unreliable ML model predictions. The main idea is that instead of trying to detect when an
image is OOD, which will not always result in a wrong output, we focus on detecting if the
prediction from the ML model is not reliable, which will most of the time result in a wrong
output, independently of whether it is ID or OOD. In this chapter, we propose preliminary work
to validate that this approach is worthy of investigation. Therefore, we do not investigate the
optimization of our monitor, which will be future work.

To detect when a prediction is reliable or not, SENA differs from related works in two
main aspects: 1) It uses information from both true positives and false negatives collected
during the ML model training, which allows SENA to automatically choose thresholds that
are better adapted for a specific dataset. 2) It uses a statistical concept known as core support
extraction [Ferreira et al., 2019] combined with a simple distance metric, which makes SENA less
sensitive to ID outliers. The first results show that by applying the aforementioned approaches
an SM can achieve results comparable to state-of-the-art solutions without requiring any prior
OOD information, and without hyperparameter tuning (using only default values). Besides, the
code is publicly available for easy reproducibility 1.

Therefore, this chapter is organized as follows: In Section 5.1, we detail our approach by
showing how our SM is built with training data, how it automatically chooses thresholds, and
how it performs the ML monitoring at runtime. In Section 5.2, we show the experiments, and

1https://github.com/raulsenaferreira/SENA
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Figure 14: Similarity-based Error-checking of Neural Activations. SENA checks neural
activations that may lead to erroneous ML model predictions by comparing them to representative
neural activations from the training set.

the analysis of our results using classification metrics and safety ones. Finally, in Section 5.3,
we present our final considerations, limitations, and possible improvements to our method.

5.1 Similarity-based Error-checking of Neural Activations

SM approaches usually monitor an ML model at runtime through one of three types of source
of information: 1) the input (e.g., image [Sabokrou et al., 2018]); 2) the internal activation
values (e.g., model logits [Jiang et al., 2018], activation patterns [Henzinger et al., 2020b]); 3)
the outputs from the last layer (e.g., confidence values [Hsu et al., 2020]).

As illustrated in Figure 14, SENA uses the internal activation values (e.g., activation func-
tions) of the ML model combined with its prediction as its source of information to monitor a
specific input image at runtime. The verification is done by checking the similarity between the
neural activations of an incoming input and a set of representative neural activations recorded
during training. SENA uses information from both true positive and false negative examples
collected during training to verify if a prediction is reliable or not. The motivation for using
correct and incorrect examples from the training dataset is to help the monitor to deal with not
only OOD data but also incorrectly classified ID data.

SENA is built as a one-class classifier, such as one-class support vector machines [Li et al.,
2003], class-reconstruction-based methods [Sabokrou et al., 2018], or methods based on class-
activation-function patterns [Henzinger et al., 2020b]. Therefore, an independent monitor is
produced for each output class of the monitored model, and the ML prediction given at runtime
is used to choose which monitor will be used. In the remainder of this section, we explain the
processes to build a SENA monitor, and how to use it at runtime.

5.1.1 Monitor building

In this section, we explain how to build a SENA monitor for a specific class c. The complete
SENA monitor is composed of n such monitors, where n is the number of output classes of the
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Figure 15: SENA monitor building. 1) A core support extraction algorithm is applied for
weighting and selection of the most representative true positive neural activations to be stored
and used at runtime. 2) It calculates the neural activation similarities among representative true
positives, and also between true positives and false negatives.

monitored model. SENA is built for a specific class c by using the information of true positives
and false negatives outputted from the model for this specific class.

Worth mentioning that we do not use information from true negatives and false positives for
the simple reason that for a single class c, it is not possible to know in advance the true negative
objects, i.e. ¬c, that will appear at runtime. Without knowing the true negatives, we cannot
calculate the false positives in advance as well since false positives are the incorrect predictions
from the ML model when exposed to true negatives. Finally, as illustrated in Figure 15, four
steps are required to build a SENA monitor:

1. Training features extraction. We feed the trained neural network with all the training
images labeled as c. Then, we extract the neural activation vectors from these images and
store them in two distinct sets: ST P , containing all the feature vectors corresponding to
correctly classified data (i.e., predicted as c), and SF N , containing the incorrectly classified
feature vectors. ST P represents the features corresponding to the true positives for class
c, while SF N contains the false negatives. We note that these features are extracted from
the same images that were used previously to train the model itself.

2. Core support extraction. As the monitored neural network is mostly correct on its
training data, we usually have |ST P | >> |SF N |, and the number of samples in ST P can
quickly become very large. Hence, the second step of SENA intends to reduce the size
of ST P by selecting a small subset of representative samples. To do so, we apply a core
support extraction algorithm [Ferreira et al., 2019]. Core support samples are the ones
that contain the most informative characteristics of the underlying distribution of the set,
i.e., they can represent most of the entire original distribution. Besides reducing the size of
ST P , core support extraction helps SENA to filter out outliers. A core support extraction
algorithm has two steps:

• Weighting: In this step, the probability distribution from which elements in ST P

were drawn is estimated using any multivariate density estimator, such as Gaussian
mixture models (GMM) [Reynolds, 2015] or kernel density estimation (KDE) [Zhang
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et al., 2006]. In this work, we chose KDE for its flexibility since it does not require
knowing the parameters of the distribution to be fitted. In this work, the KDE
algorithm uses the Gaussian kernel, and the bandwidth value is automatically tuned
using a grid search algorithm. Hence, we train the KDE algorithm with ST P and use
the same trained estimator to calculate the probability density function value (PDF)
for each sample in ST P . Thus, each sample in ST P is weighted based on its PDF.

• Selection: Then, we select the k densest samples in ST P , i.e., the feature vectors
corresponding to the k highest PDF values attributed for ST P . A feature vector
h with a high PDF value means that the sample is more likely to be drawn from
the distribution learned by the KDE. Hence, these samples are the ones that best
represent the original distribution of ST P . The selected samples are stored in a set
RT P , containing the k most representative elements of ST P . The choice of k represents
a trade-off between accuracy in the training set and the amount of memory required
to store the samples to be used at runtime. Previous works showed that such density
estimation selection can discard up to 90% of the original dataset without a drastic
performance drop [Ferreira et al., 2018]. Therefore, in this work, we also choose k to
be 10% of the training set.

3. Distances computation. Next, SENA uses the set of true positive representative activa-
tions RT P and the set of false negative activations SF N , to calculate two sets of distances:
1) the set DT P −T P contains all the distances among elements of RT P , and 2) the set
DT P −F N contains all the distances between elements of RT P and elements of SF N . In this
work, we use Euclidean distances between vectors.

4. Automatic threshold computation. Finally, the overlapping region between the dis-
tributions of DT P −T P and DT P −F N are analyzed. A threshold α belonging to this region
is estimated by the algorithm (explained in Section 5.1.2). This threshold will be used at
runtime to determine if an ML model prediction is reliable or not.

After iterating over all training images labeled as c, we produce a SENA monitor for this
class, composed of a set of representative true positive feature vectors RT P , and a distance
threshold αc. By repeating this process for every possible output class of the monitored neural
network, we can build a complete SENA monitor.

5.1.2 Automatic threshold selection

As mentioned earlier, for a specific class, SENA generates the threshold α by analyzing the dis-
tributions of DT P −T P and DT P −F N . To understand how DT P −T P and DT P −F N are distributed,
Figure 16 illustrates the densities of DT P −T P (in blue) and DT P −F N (in orange) for the first
four classes of the CIFAR-10 dataset. Activation features were extracted from a ResNet model.

In the CIFAR-10 dataset, we can observe overlapping areas between DT P −T P and DT P −F N .
It indicates that monitors that rely on activation function vectors might experience false positives
(i.e., rejecting valid predictions) coming from the regions where there exist outliers, that is, false
negatives with a higher distance density in the original distribution than true positives. It means
that a threshold should be chosen considering the existence of such outliers to take a decision
when flagging a possible unreliable prediction or not.

The same analysis is illustrated for the SVHN dataset in Figure 17. The distribution over-
lapping level observed in CIFAR-10 is not present in the SVHN dataset. Activation functions



5.1. SIMILARITY-BASED ERROR-CHECKING OF NEURAL ACTIVATIONS 59

Figure 16: Activation vectors distances of the first 4 classes of CIFAR-10. The x-axis
represents the Euclidean distance values, and the y-axis represents the distribution density (e.g.,
amount of points). The blue line represents the distance distribution between true positives, and
the orange line represents the distance distribution between true positives against false negatives.

were extracted from the ResNet model. As can be noted, the margin for accepting a prediction
as reliable should be increased if compared to the same threshold in the CIFAR-10 dataset.
Therefore, it is clear that there is no single threshold that fits all datasets, and such a threshold
needs to be chosen according to a specific analysis of the dataset during training. To decrease the
human supervision from the daunting task of choosing a threshold, we apply a simple strategy
of varying the threshold α based on the overlapping area of the distributions.

As illustrated in Figure 18, the threshold α is set to µ + σ, where µ and σ are respectively
the mean and standard deviation of the intersection set, i.e., all the elements in DT P −T P and
DT P −F N that are greater than min(DT P −F N ) and smaller than max(DT P −T P ). The standard
deviation is very useful for measuring the data dispersion in the distributions regardless of
whether data are normally distributed. This allows α to assume different values depending on
how the data in ST P and SF N are spread. Therefore, in smaller overlapping regions, α will
naturally shift away and be more flexible to accept the predictions as reliable ones, which makes
sense since less distribution overlapping means better separation between the distributions. If
no FN exists for a specific class, the value of α will be the maximum value of DT P −T P , and
if an incoming average distance d̄ falls outside the range of DT P −T P it will be considered an
unreliable prediction.

Next, we present how the monitor behaves at runtime.

5.1.3 Monitor at runtime

For a given class c, SENA starts with two artifacts previously calculated in the monitor building
process: a threshold αc, and a set of TP representatives (Rc

T P ). As illustrated in Figure 19,
SENA verifies if the incoming prediction might be unreliable. It extracts the neural activation
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Figure 17: Activation function vectors distance of the first 4 classes of SVHN.
The x-axis represents the Euclidean distance values, and the y-axis represents the distribution
density (e.g., amount of points). The blue line represents the distance distribution between true
positives, and the orange line represents the distance distribution between true positives against
false negatives.

vector h from a particular neural-network layer during the ML model prediction on an image
X. In this work, we take it from the last layer since it is the most informative one [Henzinger
et al., 2020b]. Then, SENA calculates the average distance d̄c between h and elements of Rc

T P .
If d̄c is higher than αc, then SENA considers the prediction unreliable, otherwise, it considers
the prediction reliable. The steps mentioned above are presented in Algorithm 1.

Algorithm 1 SENA monitoring at runtime
Input: ML model f ; Image X; Prediction c; threshold αc; set of representative TP Rc

T P .
Output: Returns true if an unreliable prediction detected, false otherwise.

h← extract feature vector(X, f)
d̄c ← average distance by class(h, Rc

T P )

if d̄c ≥ αc then
return True (i.e., reject NN prediction)

else
return False (i.e., accept NN prediction)

end if

Next, we present an evaluation of our approach across image classification datasets.
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Figure 18: Flexible thresholds. SENA threshold for true positives and false negatives.

Figure 19: Two examples of SENA monitoring a class at runtime. The average
distance d̄c is calculated by comparing the feature vector from the incoming image to DT P −T P

1) SENA triggers an alarm since d̄c > αc (unreliable prediction);
2) SENA does not interfere in the ML prediction since d̄c ≤ αc (reliable prediction).

5.2 Experiments

Our experiments are conducted on several image classification tasks. Besides, since we want our
experiments to be as close as possible to real-world scenarios, we set some important constraints,
which can lead to different results from what has been reported in the literature previously. We
use the concept of out-of-model-scope (OMS) introduced in this section and in Guérin et al.
[2023]. Here are the details of our experiments:

• OOD vs OMS. In the OOD evaluation scenario, the monitor has to trigger an alarm when
an OOD input data is encountered. However, in our experiments, the goal is to detect
unreliable predictions instead of OOD data and we consider that a monitor is correct if
it rejects unreliable predictions, independently of their ID/OOD status. This evaluation
type is also known as out-of-model-scope detection (OMS).

• Stream of random images. We consider a scenario in which the images are randomly
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given to the ML model in a streaming fashion, that is, the data stream will feed one image
at a time to the ML model. Therefore, SMs based on time series, or using information
from batches of data to perform the detection are not considered.

• No hyperparameter tuning. Datasets are divided into ID data (training/test) and
OOD data (test), and the SMs are not allowed to use information or assumptions from
test data (ID and OOD) to fine-tune rejection thresholds or to model their detection
strategies. That is, SMs must be built using only the training data since in a real situation,
it is unrealistic to consider that we know which kind of data will be fed to the ML model
at runtime. Hence, related works that use information from test data (e.g., [Liang et al.,
2018a]) are not considered.

• No optimal performance metrics. Several works in the literature test their solutions on
the entire dataset with different rejection thresholds, and display the results corresponding
to the best results according to some metric (e.g., F1, ROC curves, etc) [Guérin et al.,
2023]. Although this approach can be relevant to demonstrate the optimal performance of
a detector over all possible threshold choices, in a real-world scenario, one cannot perform
such threshold optimization using the test data. Therefore, in this work, all analyses of the
results are performed using objective metrics that do not depend on multiple runs using
the test data. Thus, we decrease possible bias and conflicts between parameter fine-tuning
and observed results.

Next, we present the experiment settings, the chosen datasets and OOD scenarios, and the
comparative results.

5.2.1 Experiment settings

Regarding the experiments, we follow the FARM approach previously introduced in Chapter 3:

5.2.1.1 Fault model

We perform 38 experiments using three popular image datasets as ID, of which two are RGB:
CIFAR-10 [Krizhevsky et al., 2009], and SVHN [Netzer et al., 2011]; and one is grayscale:
MNIST [Deng, 2012]. For each ID dataset, we split it into train and test, in which the train
is used to fit the monitors, and the test is used to evaluate the monitor under ID data. Ex-
cept for novelty tasks, the ID test data is used to generate the OOD datasets through image
transformations. Below, we present the tested OOD scenarios:

• 16 class novelty experiments:

1. For CIFAR-10 we use CIFAR-100 [Krizhevsky et al., 2009], GTSRB [Houben et al.,
2013], SVHN, LSUN [Yu et al., 2015], Fractal [Hendrycks et al., 2022], and TinyIm-
ageNet (subset of ImageNet [Deng et al., 2009]) to represent the novel data.

2. For SVHN we use CIFAR-10, CIFAR-100, Fractal, GTSRB, LSUN, and TinyIma-
geNet.

3. For MNIST [Deng, 2012], we use Fashion-MNIST [Xiao et al., 2017], E-MNIST (let-
ters) [Cohen et al., 2017], American sign language (ASL) MNIST [Tecperson, 2017],
and Simpsons MNIST [Attia, 2018].
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• 16 distributional shift experiments: for each RGB ID dataset, we apply eight image
transformations from the AugLy library [Papakipos and Bitton, 2022]: brightness (fac-
tor=5), blur (radius=4), pixelization (ratio=0.1), shuffled pixels (factor=0.3), contrast
(factor=9), opacity (level=0.2), rotate (degrees=25), and saturation (factor=17).

• 6 adversarial attack experiments: for each RGB ID dataset, we apply three adversarial
attacks from Torchattacks [Kim, 2020], with default parameters: fast gradient sign method
(FGSM), DeepFool, and projected gradient descent (PGD).

5.2.1.2 Activity

Once the scenarios are set, we choose two different deep learning architectures to test with the
SMs: the ResNet models from [Lee et al., 2018a] for RGB images, and a custom CNN [Deng,
2012] model for grayscale images.

Regarding the SMs, we compare our proposal to four other related works: outside-the-box
(OTB) [Henzinger et al., 2020a], max softmax probability (MSP) [Hendrycks and Gimpel, 2017],
max logits [Hendrycks and Gimpel, 2017], and energy [Liu et al., 2020b].

It is worth mentioning that the OTB method tested in this work is an improved version of
the original paper that we developed for comparison purposes. In their original paper, the OTB
method creates 2D boxes by getting the max and min activation function values from two indices
of the feature vector. However, in this work, the optimized OTB produces n-dimensional boxes
by getting the max and min activation function values from all indices of the feature vector.
Another important note is that, except for SENA and OTB, the SMs tested in our experiments
require selecting a rejection threshold on the monitoring scores. The best strategy for choosing
thresholds is not addressed in this work. However, in our experiments, we conducted two simple
steps: 1) We fit the monitors using the same training data as the ML model. 2) We choose
a threshold for the fitted monitors based on the best Matthews Correlation Coefficient (MCC)
value for detecting correct/incorrect ML predictions from the training set. Such threshold tuning
based on the training set is challenging but realistic.

If the ML model has no error for a specific class then the threshold is chosen anyway, since
we select the threshold that resulted in the best MCC. Thus, it means that the first threshold
value will be chosen since the model performs a perfect MCC every time for that class.

5.2.1.3 Readouts

The oracle for the monitor evaluation is as follows:

• True positive: the monitor triggers an alarm and the ML model prediction is wrong.

• True negative: the monitor is not triggered and the ML model prediction is right.

• False positive: the monitor is triggered and the ML model prediction is right.

• False negative: the monitor is not triggered and the ML model prediction is wrong.

5.2.1.4 Metrics

For the metrics, we apply four classification metrics for imbalanced datasets, also applied in the
benchmark experiments presented in Chapter 3: Matthews Correlation Coefficient (MCC), false
positive rate (FPR), false negative rate (FNR), and macro-F1 scores regarding the monitor’s
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output. For the OOD categories with more than 15 experiments, it is possible to perform
Wilcoxon signed-rank tests with statistical guarantees [Dwivedi et al., 2017] for each pair of
tested SM. Thus, we are able to compare if the SM methods are significantly different from each
other across multiple experiments in a specific OOD category [Demšar, 2006].

5.2.2 Results

Below we show the results separated by novelty class, distributional shift, and adversarial attack.
The best results in the tables are written in bold.

5.2.2.1 Novelty class

Table 12: MCC results for novelty class: organized by ID data - OOD data.

Experiments OTB MSP Max Logit Energy SENA

CIFAR 10 - CIFAR 100 0.41 0.27 0.29 0.28 0.38
CIFAR 10 - Fractal 0.76 0.54 0.42 0.35 0.71
CIFAR 10 - GTSRB 0.66 0.34 0.28 0.25 0.55
CIFAR 10 - LSUN 0.78 0.52 0.44 0.38 0.80
CIFAR 10 - SVHN 0.48 0.33 0.23 0.17 0.60
CIFAR 10 - Tiny Imagenet 0.69 0.51 0.43 0.38 0.75

SVHN - CIFAR 10 0.81 0.29 0.45 0.51 0.85
SVHN - CIFAR 100 0.80 0.29 0.45 0.52 0.84
SVHN - Fractal 0.85 0.42 0.53 0.58 0.77
SVHN - GTSRB 0.67 0.24 0.33 0.38 0.72
SVHN - LSUN 0.78 0.38 0.53 0.59 0.79
SVHN - Tiny ImageNet 0.81 0.40 0.54 0.60 0.82

MNIST - ASL MNIST 0.93 0.87 0.60 0.90 0.90
MNIST - EMNIST 0.67 0.30 0.46 0.37 0.60
MNIST - Fashion MNIST 0.74 0.51 0.50 0.63 0.70
MNIST - Simpsons MNIST 0.91 0.82 0.64 0.88 0.83
Average rank 1.5 4 3.7 3.2 1.5

The MCC results corresponding to novelty OOD scenarios are reported in Table 12. Looking
at the MCC results and the average rank, both SENA and OTB obtained the best results to
avoid wrong predictions in the novelty class scenario. All the other three SMs (MSP, Max logit,
and energy) performed similarly between themselves.

These results indicate that deploying SMs along with ML models for this scenario is a
promising research direction. Besides, the SM methods based on activation functions (OTB,
SENA) provided the best MCC results among the SMs.To understand better such behavior, we
illustrate a positive and negative analysis for all novelty class experiments in Figure 20.

In Figure 20a, the average false negative rate of activation-function-based methods is way
lower than the other SMs. This shows a better capacity of such a strategy in identifying data
that is clearly OMS.The figure also shows that the softmax probability can be very useful in
the verification of possible false positives in the novelty class scenario. The aggregated analysis
can be seen in the Sub-figure 20b. On average, the macro-F1 values for OTB and SENA show
stable and superior results.
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(a) FPR / FNR for novelty class experiments. (b) F1 for novelty class experiments.

Figure 20: False positives and negative analysis for novelty class experiments.
Figure 20a shows a lower number of false positives and false negatives for OTB and SENA.
Figure 20b illustrates a good balance and stability for OTB and SENA regarding recovery and
precision over new classes.

Figure 21: Novelty class experiments. SENA statistically differs from other methods except
for outside-of-the-box.

Finally, we perform a statistical analysis of the results. Blue boxes mean the MCC values
measured through the experiments, from two paired algorithms, were not significantly different
from each other. On the contrary, p-values lower than 0.05 indicates that two paired algorithms
have a statistical difference between their results for an OOD category. Figure 21 shows that
SENA and OTB results are significantly different than the other SMs. Since Table 12 shows
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Table 13: MCC results for distributional shift: organized by ID data - Transformation.

Experiments OTB MSP Max Logit Energy SENA

CIFAR 10 - Blur 0.65 0.20 0.12 0.09 0.57
CIFAR 10 - Brightness 0.32 0.33 0.38 0.38 0.48
CIFAR 10 - Contrast 0.42 0.39 0.44 0.44 0.36
CIFAR 10 - Opacity 0.39 0.46 0.46 0.44 0.43
CIFAR 10 - Pixelization 0.62 0.21 0.14 0.10 0.58
CIFAR 10 - Rotate 0.43 0.37 0.36 0.34 0.38
CIFAR 10 - Saturation 0.42 0.36 0.42 0.41 0.35
CIFAR 10 - Shuffled pixels 0.37 0.33 0.35 0.33 0.56

SVHN - Blur 0.58 0.24 0.35 0.40 0.60
SVHN - Brightness 0.72 0.16 0.19 0.21 0.55
SVHN - Contrast 0.50 0.46 0.52 0.53 0.28
SVHN - Opacity 0.55 0.31 0.42 0.47 0.29
SVHN - Pixelization 0.66 0.20 0.31 0.36 0.67
SVHN - Rotate 0.45 0.31 0.40 0.43 0.27
SVHN - Saturation 0.57 0.32 0.40 0.44 0.34
SVHN - Shuffled pixels 0.53 0.29 0.39 0.43 0.39
Average rank 1.6 3.8 2.6 2.6 2.5

that OTB and SENA obtained the best average ranks, this combined analysis indicates that in
fact, OTB and SENA were the best methods in the novelty class scenario.

5.2.2.2 Distributional shift

The parameter values for the distributional shift transformations (e.g., level of blur, opacity,
etc) were chosen such that the ML alone achieves MCC results between 0.2 and 0.8. It means
that the ML model is placed in a challenging scenario that justifies the use of an SM since the
ML is not capable of having strong results (MCC < 0.8), but at the same time, having reliably
better results than a random classifier (MCC > 0.2).

According to Table 13, all methods, except the one based on softmax, have comparable
results, in which SENA achieved the best MCC results in four times. The overall performance
in the distributional shift scenario was worse than in the novelty class scenario. This decrease
in the results indicates that activation function methods are better for novelty and less good
for distribution shift. Figure 22 illustrates the analysis of positives and negatives regarding the
distributional shift experiments.

We can see in Figure 22a the huge amount of false positives yielded by OTB and SENA since
the activation function-based methods tend to have difficulties in distributional shift scenarios.
On the other hand, MSP, Max logit, and energy, have lower FP rates since their thresholds
are entirely based on the performance of the ML model over the ID data. Thus, since ID data
support overlaps with OOD data, these methods tend to have lower FP rates. However, the
amount of FN is as high as the other SMs. Such phenomenon leads to not-so-good overall
macro-F1 results (Figure 22b).

Below, we summarize the SM performance over distributional shifts experiments by doing a
statistical analysis of the presented MCC results.
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(a) FPR/FNR for distributional shift. (b) F1 for distributional shift experiments.

Figure 22: False positives and negative analysis for distributional shift experiments.
Figure 22a shows a high rate of false negatives for all methods but a low rate of false positives
for the methods not based on activation functions.
Figure 22b shows that despite yielding more false positives, OTB still achieves a better balance
between precision and recovery between the tested methods.

Figure 23: Distributional shift experiments. SENA does not achieve results statistically
better than related works.

Figure 23 combined with the average ranks in Table 13 shows that just OTB was significantly
better than the other methods, while SENA and the other methods had similar performance.
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Table 14: MCC results for adversarial attack: organized by ID data - Attack.

Experiments OTB MSP Max Logit Energy SENA

CIFAR 10 - Deep fool 0.39 0.16 0.14 0.20 0.47
CIFAR 10 - FGSM 0.48 0.44 0.45 0.43 0.62
CIFAR 10 - PGD 0.20 0.06 0.20 0.21 0.68

SVHN - Deep fool 0.50 0.13 0.05 0.12 0.48
SVHN - FGSM 0.63 0.24 0.33 0.37 0.38
SVHN - PGD 0.54 0.09 0.15 0.38 0.50
Average rank 1.5 4.3 4 3.3 1.2

5.2.2.3 Adversarial attacks

An important note is that the tested methods were not originally developed to detect adversarial
images, and to perform such detection requires particular defense strategies for each type of
attack which is an open research problem. However, we find it relevant to experiment on these
three adversarial scenarios to give possible insights for future work and to complement the
analysis of all OOD categories mentioned early on in this work.

Table 14 shows the MCC results in the adversarial attack scenario in which the monitoring
strategy applied by the two activation-function-based SM were consistently better than the other
methods. Figure 24 illustrates this analysis under the optics of positives and negatives.

(a) FPR/FNR for adversarial attack. (b) F1 for adversarial attack experiments.

Figure 24: False positives and negative analysis for adversarial attack experiments.
Figure 24a shows that methods not based on activation functions interfere less in the ML decision,
which explains the high rate of false negatives and low rate of false positives.
Figure 24b shows that activation-function-based methods are able to have better macro-F1 on
average compared to the other methods.

Figure 24b shows good macro-F1 values for OTB and SENA. However, such results reflect
the precision and recall of the data with equal importance. It means that even though their
results are not bad when looking for both ID and OOD, it will depend on the amount of OOD
data exposed at runtime. Such phenomenon is better understood by seeing Figure 24a. All
tested SM yielded considerable amounts of false negatives. However, SENA obtained the lowest
value among the tested methods.
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5.3 Conclusion

In this work, we proposed SENA, an SM approach that uses a similarity-based error-checking
of neural activations to monitor ML predictions at runtime. SENA uses a statistical weighting
and filtering method to select the minimal set of the most representative samples from the
distribution which is used as a reference at runtime. This statistical method is combined with
a simple similarity algorithm such as a Euclidean distance. Moreover, the SENA threshold
is chosen automatically based on the distributions of true positives and false negatives in the
training set.

Differently from most previous works, SENA focuses on detecting when the ML prediction
is error-prune, independently if the data is ID or OOD, instead of detecting when an image is
OOD data or not. Our objective in this chapter was to demonstrate that such an approach is
realistic and comparable to other monitors. Finally, SENA and the optimized version of OTB
achieve the best overall results. Thus, SENA achieves a similar performance to OTB for novelty
class scenarios, a slightly worst performance in distributional shift scenarios, and better results
for adversarial attack scenarios. Our main lessons learned are:

• Neural activation vectors from true positives and false negatives can be very similar: most
related works rely on the assumption that incorrect classifications can be spotted by in-
specting all neural activation vectors that are not similar to the distribution of correct
ones. Most of the time this is true for new classes (novelty), but not entirely true for ID
data or other types of OOD data. We showed that feature vectors of TP and FN can be
very similar to each other inside ID data. The necessity of filtering the right data to be
used to model a better separation between TP and FN data led us to the second finding.

• Not all training data is needed to build a monitor: just a part of true positive samples is
needed to extract the necessary information to perform monitoring of a class. As shown,
there are several outliers present in the training data when comparing neural activation
vectors. By outliers, we mean activation function values from false negatives that are
similar to true positives, sometimes even more similar than other true positives compared
between themselves. Therefore, a good filtering mechanism, such as the core support
extraction algorithm applied in this work, can help to exclude samples that contribute
negatively to make a better separation between false negatives and true positives. However,
it can be hard to select different thresholds for different ID datasets. This showed the
importance to investigate further sources of information during training, which led us to
the third finding.

• Extracting information from both true positives and false negatives is advantageous: the use
of both, when possible, allowed us to check different boundaries for the monitor’s thresholds
by checking the distribution of false negatives (e.g., error-prune ID data) instead of just
checking what is normal (e.g., ID data that the ML model gives correct classification).

We believe that our approach can be improved in several ways. For example, better similarity
algorithms could be applied in place of Euclidean distance, or even the choice of better strategies
to set up the detection thresholds. There is also the possibility of applying pre-processing
algorithms to the sparse neural activation vectors, increasing the level of information to be
fitted in the monitor. Finally, most works in the literature, including ours, just use information
from the penultimate layer of neural networks, but the combination of more layers can also be
investigated [Hornauer and Belagiannis, 2023].
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An important future direction is to move from OOD/misclassification detection to error
classification since most works in the literature do not provide solutions on how to react after
an unreliable prediction is detected. Knowing such a reaction is fundamental to practical appli-
cations of autonomous systems. However, to be able to do that, researchers need to know how
to recognize which type of error-prune data is being detected at the moment. Finally, one can
also think about how to apply more generic safety metrics [Guerin et al., 2022b] to capture the
safety benefits of the evaluated monitor, availability costs, or negative impacts of the monitor
on the system’s availability.

In the next chapter, we conclude this thesis by highlighting a resume of our contributions,
limitations, and perspectives for future work.
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Conclusion

Computer vision models are commonly applied in safety-critical tasks on autonomous systems.
These models are generally built with deep learning algorithms due to their capacity on learning
patterns from complex data such as images. However, such deep learning models can output
wrong outputs even with high confidence. Safety monitors can be employed to inspect the model
inputs, internal values, and outputs to ensure the safety of such deep learning-based functions.
In this thesis, we presented the main steps and challenges to build a framework for monitoring
and handling the safety of ML-based vision functions for autonomous systems at runtime. This
research covered the current literature regarding safety monitors, and the necessary steps to
build, test, and evaluate them. We also proposed a new hybrid SM for ML-based classifiers.
Next, we summarize all the contributions originating from this research.

6.1 Resume of contributions

We presented a complete literature review in Chapter 2, in which we addressed what threats are
relevant for such ML-based vision functions, how to model the safety properties, how to detect
ML failures, how to recover from these failures, and how to evaluate such SMs. To the best
of our knowledge, this was the first study applied to the safety monitoring of ML-based vision
functions for safety-critical autonomous systems.

Next, we presented in Chapter 3, a framework for benchmarking safety monitors for image
classifiers. To the best of our knowledge, this was the first benchmark framework focused on
evaluating SM for vision-based functions covering the entire pipeline: data generation, system
testing, and evaluation. Besides, we also showed the main flaws in current state-of-the-art OOD
detectors, highlighting the necessity of new directions in the existing safe AI research.

In Chapter 4, we went one step further to the evaluation of SM approaches, going from the
unit level to the analysis of SM at the system level. We proposed an evolutionary OOD-image-
generation approach capable of finding relevant threats in a safety-critical system depending on
ML models. Our approach has the advantage of finding the minimal perturbations capable of
provoking failures in object detectors at runtime. Moreover, we could reduce the amount of time
to find such relevant perturbations up to ten times compared to other approaches.

Finally, in Chapter 5, we presented SENA, an SM that uses information from both true
positive and false negative activation functions combined with a statistical approach to select
the most representative feature vectors from training data. Unlike most works in the literature,
SENA is designed to detect incorrect predictions, independently if exposed to ID or OOD data.
Our proposal was able to achieve SOTA performance regarding the detection of wrong ML
predictions. The first results showed that selecting representative instances from the training
set can lead to better separation between two types of feature vectors: feature vectors that
represent the distribution of TP and FN. This work is a preliminary validation for exploring
new solutions that do not only focus on the OOD paradigm.
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6.2 Limitations

We recall the main limitations for each chapter and the main overall limitations regarding this
thesis. Hence, here are the limitations for each chapter:

• Chapter 2: we provided a picture of the current state-of-the-art but the domain evolves
very quickly.

• Chapter 3: we did not test more and bigger DNN architectures in our benchmark frame-
work. Such experiments could produce a more robust evaluation.

• Chapter 4: the first version of SIMOOD adds a significant memory overhead to the sim-
ulation. Besides, SIMOOD does not use a scenario generation capable of varying the
scenarios, and parameters which is important to produce a more robust analysis.

• Chapter 5: despite our SM having good preliminary results compared to related works, it
still has room for being optimized, and probably more analysis needs to be done.

Regarding the overall limitations of this work, we can highlight the fact that our work mainly
focuses on classification functions (except in Chapter 4). It means that existent solutions for
other ML-based vision functions such as object detectors were not deeply investigated neither
new SM methods proposed for this category of computer vision tasks. However, we focused
deeply on classification tasks in order to validate and provide a solid basis for further research
on more complex tasks such as object detection functions.

A second main limitation is the absence of proposals regarding possible recovery mechanisms.
Currently, the tested data-based SMs (including our proposal) are limited to detection only. In
real scenarios, triggering an alarm for possible model misclassification is critical and challenging
but still, it is just a part of the solution. An SM should also know how to recover once the
detection is made. However, developing and testing such a recovery mechanism combined with
the detection is also very challenging. The reason is that the reaction triggered by the recovery
mechanism can worsen the current state of the autonomous system. For example, a denoise
filter as a recovery mechanism after the detection of a dangerous noise/haze in the image can
result in an image even more difficult to read by the ML model. One possible direction to solve
this issue is to develop frameworks that allow quick testing of combinations of detection and
reaction mechanisms and choose the ones that lead to satisfactory safety outcomes.

Finally, a third main limitation is the lack of SM proposals for the system level. However, as
one could realize in Chapter 2, such SMs are also scarce in the literature due to many reasons
especially the one mentioned in the preceding paragraph. A possible alternative could be the
adaptation of the SENA monitor to work with neural-network-based object detectors, in which
the SM should be tested to handle multiple ML predictions at once.

6.3 Perspectives

Here we present short and long-term perspectives regarding the research performed during this
thesis. A short-term perspective is the development of recovery methods after an unreliable ML
prediction is detected. Since all resources to implement such recovery were mapped in Chapter 2,
and a proposal to detect ML misclassification at runtime was also implemented in Chapitre 5, it
is worth implementing a recovery mechanism to work with data-based monitors. Another short-
term perspective is to improve the SiMOOD framework to allow usage in industrial applications.
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The potential of SiMOOD in industrial applications has attracted some scientific partners such as
ANITI 1, and industrial companies from the automotive sector such as Continental Engineering
Services 2, resulting in invitations from these entities to present SiMOOD.

Regarding long-term perspectives, one of the most important ones is the development of an
entire SM solution (detection and recovery) applied to an industrial case. However, developing
such a full solution still requires a long-time research commitment. In the current state, SM
for perception tasks is very scarce in industrial cases since the solutions are normally not fully
disclosed and the amount of false positives/false negatives still is high, which slows the adoption
of such SM. Other important constraints for embedded systems are also a challenge for these
SMs such as memory, and processing time. Besides, other important tools for verifying, and
validating such solutions should be defined/developed as well.

1https://aniti.univ-toulouse.fr/en/
2https://conti-engineering.com/

https://aniti.univ-toulouse.fr/en/
https://conti-engineering.com/


Bibliography

Raja Ben Abdessalem, Shiva Nejati, Lionel C Briand, and Thomas Stifter. Testing vision-
based control systems using learnable evolutionary algorithms. In 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), pages 1016–1026. IEEE, 2018. 54

Karrar Hameed Abdulkareem, Nureize Arbaiy, AA Zaidan, BB Zaidan, Osamah Shihab Albahri,
MA Alsalem, and Mahmood M Salih. A new standardisation and selection framework for real-
time image dehazing algorithms from multi-foggy scenes based on fuzzy delphi and hybrid
multi-criteria decision analysis methods. Neural Computing and Applications, 33:1029–1054,
2021. 19

Mukhlas Adib. CARLA 2D Bounding Box Annotation Module. https://github.com/
MukhlasAdib/CARLA-2DBBox/, 2022. [Online; accessed 23-June-2022]. 46

Naveed Akhtar and Ajmal Mian. Threat of adversarial attacks on deep learning in computer
vision: A survey. Ieee Access, 6:14410–14430, 2018. 9
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Corina Gurău, Dushyant Rao, Chi Hay Tong, and Ingmar Posner. Learn from experience:
probabilistic prediction of perception performance to avoid failure. The International Journal
of Robotics Research, 37(9):981–995, 2018. 15

Sami Haddadin, Michael Suppa, Stefan Fuchs, Tim Bodenmüller, Alin Albu-Schäffer, and Gerd
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