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Résumé

Les robots aériens (ARs) connaissent un large intérêt pour diverses applications qui
vont des opérations sans contact telles que la surveillance de zones ou les missions de
recherche et de sauvetage, aux scénarios nécessitant un contact tels que l’inspection
de surface ou l’installation de capteurs. Les véhicules aériens à rotors multiples (multi-
rotor aerial vehicles (MRAVs)) suscitent une attention particulière de la communauté
robotique en raison de leur conception personnalisable, de leur facilité de déploiement
et de leur construction à base des composants standards disponible sur le marché.
Leur agilité et leurs capacités de manoeuvre leur permettent d’atteindre des zones
difficiles d’accès et d’accomplir une grande variété de tâches à l’aide de capteurs
embarqués et d’effecteurs terminaux spécialisés.

Ces dernières années, le montage d’outils fixes ou de bras articulés à plusieurs
degrés de liberté sur des robots aériens a permis à ces robots d’interagir physiquement
avec leur environnement et d’accomplir des tâches qui nécessitent d’exercer des forces
et des couples. Cette nouvelle approche ouvre la voie vers l’intégration de ces robots
dans des environnements quotidiens où ils pourront collaborer avec les humains ou
les assister dans diverses tâches. Pour des applications en hauteur, par exemple, les
robots aériens peuvent être utilisés pour surveiller les opérations à l’aide de capteurs
embarqués et fournir des outils nécessaires aux opérateurs humains.

Toutefois, le déploiement de robots aériens pour l’interaction humain-robot
représente de nouveaux défis qui nécessitent des solutions appropriées. Du point de
vue du contrôle, des algorithmes novateurs sont nécessaires pour que l’interaction
physique entre l’opérateur humain et le robot soit sûre. Ces algorithmes de contrôle
doivent garantir la sécurité des agents humains tout en les assistant de la manière la
plus ergonomique possible, par exemple en réduisant la charge articulaire.

Cette thèse aborde ces défis et propose différentes architectures de contrôle pour
les robots aériens à rotors multiples afin de réaliser des interactions physiques avec
les humains. L’accent principal est mis sur le problème du transfert d’un objet ou
d’un outil entre un robot aérien et un opérateur humain.

La méthodologie proposée combine des techniques de contrôle et d’estimation
classiques issues des connaissances bien établies en interactions humain-robot dans le
cas des manipulateurs terrestres et des algorithmes de contrôle basés sur l’optimisation
prédictive. Les robots aériens posent des difficultés particulières par rapport aux bras
manipulateurs industriels, dues notamment à des capacités d’actionnement limitées,
à l’absence d’une base fixe, à l’interaction entre le mouvement et la vision, ainsi qu’à
une dynamique rapide et hautement non linéaire.

Cette thèse propose une formulation du problème de transfert d’objet basée sur
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une décomposition en sous-problèmes et l’élaboration de méthodes de contrôle pour
aborder un sous-ensemble de ces sous-problèmes, puis elle fournit des éléments pour
aborder le problème dans sa globalité.

Bien que des recherches supplémentaires soient nécessaires, les résultats ana-
lytiques et expérimentaux présentés dans cette thèse démontrent la validité et la
pertinence pratique de la méthodologie proposée.

Ce travail a donné lieu à trois publications dans des conférences internationales
évaluées par les pairs, et la plupart des logiciels associés ont été publiés en open
source pour la communauté robotique.

Mots clefs - Robotique aérienne, Contrôle des robots, Manipulation aérienne,
Interactions physiques entre humain et robot, Échange d’objet et co-manipulation,
Robotique collaborative



Abstract

Aerial robots (ARs) are experiencing a large interest for various applications ranging
from contact-less operations, like area monitoring and search-and-rescue missions,
to contact-based scenarios, such as surface inspection, sensor installation, and pick-
and-place tasks. Multi-rotor aerial vehicles (MRAVs) are attracting the attention
of roboticists due to their customizable design, scalability, ease of deployment, and
assembling from off-the-shelf materials. Their agility and maneuvering capabilities,
combined with a larger workspace compared to wheeled and ground manipulators,
enable them to reach inaccessible areas and perform a broad variety of tasks relying
on onboard sensors and specialized end effectors.

In recent years, mounting fixed tools or multi-degree-of-freedom robotic arms on
aerial robots has allowed physical interaction with the environment, empowering them
to accomplish tasks that require exerting forces and torques. This new trend paves the
way for the integration of these robots into everyday-life settings, collaborating with
humans, and assisting them in various assignments. In high-from-ground applications,
for instance, ARs can be employed to monitor the operations using onboard sensors
and provide the necessary tools to the human operators. Similarly, in industrial
scenarios, aerial robots can swiftly move between locations to fetch the requested
materials and tools.

However, deploying aerial robots in human-robot interaction settings opens new
challenges that require safe and appropriate solutions. From a control perspective,
novel control algorithms are needed to enable aerial vehicles to interact physically
and safely with human operators. These control algorithms must ensure the safety
of the human agents while assisting them in an ergonomic manner, such as reducing
their joint stress.

This thesis addresses these challenges by proposing different control architectures
for multi-rotor aerial robots to achieve physical and safe interaction with humans.
The primary focus is on the handover problem consisting in an aerial robot handing
over an object or a tool to a human operator.

The proposed methodology combines classical control and estimation techniques
derived from the well-established knowledge of Human-Robot Interaction (HRI)
with ground manipulators and the exploitation of predictive optimization-based
algorithms. Aerial robots pose unique difficulties compared to industrial manipulator
arms, due to their limited actuation capabilities, the absence of a fixed base, the
interplay between motion and vision, and they own a rapid and highly nonlinear
dynamics.

This thesis provides a formulation of the handover problem as a decomposition
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into subproblems and it develops suitable control methods addressing a subset of
these subproblems. Lastly, it sketches some considerations aimed at tackling the
problem as a whole.

While further research is necessary, the analytical and experimental results
presented in this thesis demonstrate the validity and practical relevance of the
proposed methodology.

This work has resulted in three publications in international peer-reviewed confer-
ences, and most of the related software productions have been published open-source
for the robotics community.

Keywords - Aerial Robotics, Control of Robots, Aerial Manipulation, Physical
Human-Robot Interaction, Handover and co-manipulation, Collaborative Robotics
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Chapter 1

Introduction

In this manuscript, we investigate control solutions aimed at enabling aerial robots
(ARs) to interact effectively and safely with humans. In this chapter, we present
the main topics covered by our research. Specifically, in Section 1.1, we provide an
overview of the broad landscape of robotic systems that interact and collaborate
with human partners. In Section 1.2, we narrow our focus to autonomous robots
capable of flight, which constitute the subject of study in the field of aerial robotics.
Among the variety of existing designs, our work considers uniquely those ARs that
can fly by means of multiple rotors and propellers, known as multi-rotor aerial
vehicles (MRAVs). Anticipating the next analysis, the usage of MRAVs is rapidly
expanding across many applications, with a particularly interesting and promising
area being the deployment of these robots for tasks involving physical interaction
with both the environment and humans. Henceforth, in Sections 1.3 and 1.4, we
delve into these domains, introducing the reader to the fields of physical Aerial
Robot Interaction (pARI) and physical Human-Aerial Robot Interaction (pHARI). As
pHARI represents the primary focus of our research, Section 1.5 offers an overview of
the existing literature on that topic. This review of the state of the art paves the way
to Section 1.6, where we outline the motivations behind the choice of the research
problem we explored and the following investigation. Next, Section 1.7 provides
insights into the project context incorporating our work, and the related research
objectives. We then detail the key contributions and the research outcomes of the
conducted analysis, respectively, in Sections 1.8 and 1.9. Lastly, in Section 1.10, we
conclude this chapter with a summary of the content structure of this thesis.

1.1 Human-Robot Interaction

The idea of machines autonomously performing complex tasks, reasoning on the
surrounding environment and working aside humans, was originally born in the
fictional imagination1. In that context, for the first time, the term robot2 appeared
and the idea of automata started to spread out as the mental model of an automatic

1Notions of human-like creatures and machines dates back of centuries along with religion,
mythology and philosophy. The interested reader is referred to [Goodrich, 2008] for a historical
tour of the concept origins.

2The word robot comes from the Czech word “robota” meaning “labor”.
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and human-like-behaving machine. This gave birth to subsequent literal works which
found their emblem with the visionary novels of Isaac Asimov and the statement
of his famous and iconic Three Fundamental Laws of Robotics [Asimov, 1950].
Likewise, preliminary attempts of realizing functioning prototypes of machines
autonomously performing a simple assigned task followed in the course of centuries,
which contributed to the diffusion of the term and paved the way to modern robotics.

Today, that futuristic vision that seemed possible only in a distant future is a
concrete part of our everyday life. Industrial robots represent a first evident and
convincing case: while experiencing a large widespread that started almost 40 years
ago, these machines have been equipped with various sensors and tools to accomplish
a variety of tasks [Angerer, 2013; Djuric, 2016]. As a matter of fact, robots are
nowadays employed in a wide range of industrial fields, including assembly lines,
quality inspection, packaging, fabrication of electronic components, chemical and
pharmaceutic processes, to name a few. Thanks to their capability of executing
repetitive, tedious and hazards motions and actions in a precise and rapid manner,
robotic systems have contributed to improve the productivity and the efficiency
in many sectors [Hentout, 2019]. Although industrial automation existed before
the appearance of manipulator arms within factories, the use of robots has relieved
human workers of carrying out alienating manual activities and avoided exposing
many operators to dangerous working conditions [Heyer, 2010].

Due to the limited flexibility and adaptability, industrial robotic systems require
a precise knowledge of the surrounding environment and a re-programming phase to
be re-adjusted to a new working setup [Heyer, 2010]. Therefore, robots were initially
meant to operate apart from the human partners employed in the same factory.
Working cells and cages have been designed to restrain the workspace of the deployed
robotic systems, although offering a fixed and structured environment for the robots
to safely and efficiently perform their activities. Indeed, no particular restrictions in
terms of movements, speed and force profiles are necessary, unless those imposed by
the specific task and the avoidance of potential collisions. In these conditions, the
robot primary focus is on the task execution and the performance maximization.

Recently, robotic systems have gained increased motor capabilities, reasoning
skills and autonomy thanks to the huge research efforts made in the field of control,
motion planning, perception and artificial intelligence [Hirzinger, 1999]. This has
been accompanied by the exponential and favourable technological advances in
processing and computing hardware, software architectures, and the availability of
high-performance sensors and actuators [Bekey, 2008]. Robots are now capable of
performing accurate and rapid movements, process large volumes of data, perceive
the surrounding environment, and take complex decisions. Nevertheless, they are
still not capable of working fully independently from their human partners, since
they lack the high-level reasoning skills and the degree of adaptability to fast-
varying environmental conditions that is typical of humans. This brought the idea of
leveraging the strength and the accurate motor capabilities of robots, and combine
them with the versatility, the decision-making abilities and the cognitive skills of
humans [Djuric, 2016]. To facilitate the collaboration between human operators and
robotic systems, the physical barriers dividing their workspace are now removed.
Therefore, the two agents move and act in the same environment, so that the robots
can assist their partners in various tasks, which would be otherwise rather complex
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and costly to fully automatize. As a result, the paradigm of Human-Robot Interaction
(HRI) started to emerge in the mid 1990s and early 2000s. This new field aims at
reducing the physical and mental burden of human workers by successfully deploying
collaborative robots, or simply cobots, as useful human collaborators. Nevertheless,
this has been also accompanied by the arising of new challenges, such as guarantee
the user safety by avoiding potential collisions, increase the operator ergonomics, and
allow robots to better understand the human current activities and needs [Kirsch,
2010].

Currently, within factories, HRI is becoming easier and safer with the emergence
of industrial cobots, such as the UR5 of Universal Robots3, the Baxter of Rethink
Robotics [Soratana, 2018], the LBR iiwa of Kuka4, or the robotic arms from Franka
Emika5. Likewise, in the research panorama, the HRI trend brought forth the
development and the investigation of new types of robots in collaborative tasks with
humans, like assistive humanoids [Goodrich, 2013; Vianello, 2021], quadrupeds [Xiao,
2021; Morlando, 2023], and exoskeletons [Zhou, 2021], to name a few. This innovating
push is focusing on developing robotic assistants that can possibly help humans not
only in industrial settings, but also in domestic and office environments in a near
future. In fact, the goal of the robotics community is to improve the overall quality
of human life by not only reducing fatigue and stress but also increasing human
capabilities in terms of force, speed and precision [Santis, 2008].

The idea of robotic systems in collaboration with humans is crossing many other
research topics, such as the medical and the care-giving sectors, space and underwa-
ter exploration, automotive, and also sociology and ethics [Goodrich, 2008]. As a
matter of fact, HRI is not only meant to be physical and in closed proximity, but
it can be remote and it can encompass socio-cognitive aspects. Therefore, Human-
Robot Interaction is a multi-disciplinary domain which also comprises applications
like tele-operation of mobile robots in challenging terrains and hard-to-reach areas,
tele-manipulation of robotic arms, and robots assisting persons in everyday scenar-
ios [Darvish, 2023]. The interaction can take place either by means of a remote
device, which allows controlling a distant robot and receive sensory feedback from
its operational environment, or through emotive and cognitive computing, while
exploiting natural and body languages, exempli gratia (e.g.), speech and gestures.

As it will be clear later, one promising field where it is permeating the idea of
having humans interact with robotic agents is the one of aerial robotics.

1.2 Aerial robotics

In the wide panorama of robotic systems, aerial robots (ARs) have attracted ex-
ponential attention in the last decades. The term aerial robot refers to a system
capable of sustained flight with no direct human control and able to perform a specific
task [Feron, 2008]. Although this definition encompasses remotely controlled aircraft,
aerial robotics mainly focuses on the problem of increasing the system autonomy

3https://www.universal-robots.com/products/ur5-robot/.
4https://www.kuka.com/en-us/products/robotics-systems/industrial-robots/

lbr-iiwa.
5https://www.franka.de/.

https://www.universal-robots.com/products/ur5-robot/
https://www.kuka.com/en-us/products/robotics-systems/industrial-robots/lbr-iiwa
https://www.kuka.com/en-us/products/robotics-systems/industrial-robots/lbr-iiwa
https://www.franka.de/
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Courtesy of Wikipedia.

(a) The Hewitt-Sperry Automatic Airplane pro-
totype developed in 1918, being the first auto-
matic flying vehicle.

Courtesy of Wikipedia.

(b) The Royal Aircraft Establishment (RAE)
Larynx is an unmanned aircraft whose first tests
were carried out starting from 1927 in Great
Britain.

Figure 1.1: First historical prototypes of automatic aircraft.

Courtesy of [Balaram, 2021].

(a) The NASA “Ingenuity”
helicopter deployed on the
planet Mars within the scope
of the “Perseverance” ex-
ploratory mission.

Courtesy of [Hattenberger, 2022].

(b) Fixed-wing aircraft featuring an
onboard sensor for cloud sampling
and monitoring.

Courtesy of [Zufferey, 2021].

(c) The autonomous flapping-
wing robot “E-Flap” featur-
ing onboard sensing, plan-
ning and control capabilities.

Figure 1.2: The three main categories of aerial robots based on the typed of wing.

ideally aiming for zero human intervention or, more realistically, to minimal one. In
the aeronautic jargon, ARs are also popularly known as Unmanned Aerial Vehicles
(UAVs) since they lack a human pilot [Newcome, 2004].

The first prototypes of aerial robots, such as the Hewitt-Sperry Automatic
Airplane and the Larynx shown in Figures 1.1a and 1.1b, were consisting mainly
of flying vehicles with restricted autonomy and limited sensing capabilities. Over
the course of the last century, the technological advances in robotics allowed the
conception of more advanced and autonomous systems, capable not only of receiving
and executing specific tasks, but also reasoning and taking automatic decisions.
This was further encouraged by the integration of onboard sensors and powerful
computing units, which lead to the deployment of these aerial robots in more complex,
unknown or hazardous environments. Modern examples of ARs comprise, for instance,
autonomous helicopters, as the one in Figure 1.2a, the robotic airplane in Figure 1.2b,
or the bio-inspired robot in Figure 1.2c.

As evident from the examples reported in Figure 1.2, aerial robots encompass
diversified and heterogeneous designs. According to the type of wings utilized
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for flying, ARs can be categorized into three main classes6. The first category
comprises flapping-wing ARs (Figure 1.2c), which typically own a lightweight airframe
and a complex actuation system which imitates the flight mechanism employed
by living creatures like birds and insects [Croon, 2009]. Due to their intrinsic
mechanical complexity, a limited payload capacity, and the challenges in modeling
the aerodynamic phenomena induced by the flapping phenomenon [Hoeijmakers,
2022], they represent the less commonly adopted type of UAVs. With a simpler
structure, we have instead fixed-wing UAVs (Figure 1.2b). These aircraft were the
first ones to be historically realized as their similarity to classical airplanes allowed for
a smooth technological transfer [Newcome, 2004]. Compared to other aerial vehicles,
this class of flying robots is well suited for long-range cruising missions thanks to their
significant energy efficiency, since they exploit the effective wing-lifting mechanism
for flying. The third category includes rotary-wings ARs, also known as rotorcraft,
which feature one or more rotary wings capable of generating lift by accelerating the
surrounding air when spun (Figure 1.2a).

Mono-rotary rotorcraft, namely helicopters, own just one main rotor for the
generation of the lifting thrust, and they usually feature variable-pitch propellers and
a complex rotor mechanism. While the first prototypes of helicopters were realized
at the end of the 19th century, multi-rotor aerial vehicles (MRAVs) faced a slower
spread and made their appearance only in the second half of the 20th century. The
reasons behind their late development are mainly due to the scarcity of feasible
technological solutions in terms of actuators and computing units. Consequently,
the recent improvements in electrical motors and driving circuitry, combined with
the advent of powerful embedded processors, boosted the realization of numerous
designs and prototypes of MRAVs, mainly of small and medium sizes [Michael, 2010].
Compared to helicopters, MRAVs own a simple rotor mechanism as they use more
than one, usually at least two, fixed-pitch propellers to fly. In this case, the flight
stabilization is performed by regulating the speed of each individual actuator, which
allows generating a moment about any axis.

Differently from fixed and flapping-wing aerial vehicles, multi-rotor aerial vehicles
can perform precise maneuvers and stable flight at a given given location (id est (i.e.),
hover), which makes them more effective for those applications requiring accurate
positioning. This comes at the expenses of a higher power consumption, since
more energy is needed to sustain flight and cancel out gravity. Nevertheless, besides
hovering, they own Vertical Take-Off and Landing (VTOL) capabilities [Bicego, 2020],
and they can perform agile and high-speed maneuvers [Hehn, 2014; Mellinger, 2014;
Hanover, 2023]. To overcome the power efficiency issue, hybrid designs have been
proposed to combine the VTOL motion capabilities of MRAVs and the long-range
energy autonomy of fixed-wing aircraft, thus addressing the shortcomings of both
types of platforms [Morin, 2015; Anglade, 2019].

In recent years, the market flooded with affordable off-the-shelf materials and
spare parts favouring a rapid and affordable prototyping of rotorcraft designs [Cutler,

6Actually, there are four classes of aerial robots. Among the three discussed in this manuscript,
the fourth one includes lighter-than-air UAVs [Ruggiero, 2018]. Hereby, this category is not treated
since it usually comprises aircraft of considerable sizes and payloads, such as autonomous blimps.
Conversely, the present work focuses on small and medium-scale robots that can closely and
physically interact with humans.
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2015]. By exploiting this large hardware availability, the research community and
enthusiasts roboticists have released several open-hardware projects and open-source
software architectures which fostered the spread of MRAVs [Abeywardena, 2015;
Kotarski, 2021; Foehn, 2022].

Nowadays, the use of MRAVs is rapidly proliferating to a broad spectrum of
applications, thanks to their theoretical unlimited workspace7 [Yüksel, 2019], their
maneuvering capabilities and agility, and the possibility to transport different types of
payload, such as sensors [Lindsey, 2012; de Angelis, 2019]. By looking at the research
panorama, the scenarios where MRAVs have been employed do not only include
indoor and cluttered environments, but also outdoor scenarios and hard-to-reach
locations. To name a few, we can list applications involving aerial photography
and mapping [Trujillo, 2016; Petráček, 2020], environmental and urban monitoring
[Ristorto, 2015], search-and-rescue missions and area patrolling [Scherer, 2015].

Additionally, in the last decade, MRAVs have also got the attention from the
civil society and companies. As a matter of fact, commercial solutions have started
to experience a fascinating outbreak. Along this line, clear examples are the cases
of Parrot8 and, more recently, DJI 9, which propose commercial solutions in the
segment of personal and professional entertainment (mostly photography and video
making). Moreover, one may recall the statement from one of the most prominent
e-commerce websites in the world about the future plan of delivering packages to
its clients by means of autonomous aerial robots10. Recently, also other companies
started to envision the deployment of MRAVs for mass mobility and goods shipping.
For instance, the companies Jetson11 and Volocopter 12 are actively developing and
testing multi-rotor-based aircraft for the private and business transportation sector.
Lastly, also governments have started to deploy MRAVs for several civil applications
and they are currently evaluating the social and economic impacts derived from their
use. For instance, the Australian government has founded a research program with
the objective of evaluating the possible economic and social benefits provided by the
adoption of ARs in applications like agriculture, fire monitoring, disaster response
and management13.

1.2.1 Taxonomy of multi-rotor aerial vehicles

As a wide array of heterogeneous multi-rotor designs is available, it is important to
introduce the reader to some important taxonomy in order to facilitate the analysis
carried out in the rest of this manuscript. In the following, we provide a brief
taxonomy of multi-rotor aerial vehicles based on their actuation capabilities, i.e. their
ability to generate forces along one or more directions in space.

7However, when deployed in the real world, MRAVs operate in a limited workspace as, for
instance, they cannot fly outside the atmosphere and only a limited amount of energy can be stored
on-board with the current battery technology.

8https://www.parrot.com/us/drones.
9https://www.dji.com/fr.

10https://www.aboutamazon.com/news/transportation/a-drone-program-taking-flight
11https://www.jetsonaero.com/.
12https://www.volocopter.com/.
13https://www.infrastructure.gov.au/department/media/news/

drone-benefits-soar-new-report-shows

https://www.parrot.com/us/drones
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Courtesy of [Bicego, 2019].

Figure 1.3: Comparison of the thrust generation between an UDT (left) and a MDT
(right) multi-rotor aerial vehicle. The actuators of the former generate thrust forces (fi)
all parallel to the same axis with respect to (w.r.t.) the body. Hence, the Uni-directional
Thrust (UDT) quad-rotor has to apply a moment (τ ) in order to steer the total thrust
vector (f) along another direction. Contrary, the latter, i.e. the Multi-Directional Thrust
(MDT) hexa-rotor, can generate forces along multiple axes as summation of the individual
actuation contributions, while a null total moment can be achieved.

The typical MRAV design features all the rotors parallel to just one single axis
specified with respect to (w.r.t.) its body airframe. This configuration is said to be
collinear, and it is clearly the simplest in terms of assembly and, as all the thrust force
is usually oriented in such a way to compensate for gravity, the most energy efficient
one. In turn, this causes the total trust force, given by the sum of the individual
contributions produced by each actuator, to be applied only along that axis, as shown
on the left of Figure 1.3. This brought up the definition of Uni-directional Thrust
(UDT) robots. If a lateral displacement is desired, the platform needs to change
its body attitude in order to steer the thrust force vector towards the direction of
motion, and produce the necessary lateral accelerations. Consequently, this rotor
arrangement creates a coupling within the translational and the rotational dynamics.
To produce a lateral movement the robot needs to vary its orientation first, and
accordingly a change in the vehicle attitude generates a displacement in a certain
direction. For this reason, collinear MRAVs fall into the category of under-actuated
robots. Common examples of UDT MRAV are the quad-rotor and the collinear
hexa-rotor as the ones shown in Figures 1.4a and 1.4b, respectively.

Collinear MRAVs can achieve arbitrary 3D positioning at the price of sacrificing
the attitude regulation, as they cannot attain desired orientations while performing
a longitudinal or a lateral motion. Consequently, under actuation may constitute a
serious problem in those applications where it is required to navigate in narrow and
cluttered environments, or to resist wind gusts and other external disturbances while
maintaining a desired orientation [Bicego, 2019]. Special treatment is necessary at the
control level to account for the coupled dynamics, since its negligence can deteriorate
the system performance or possibly result in the task failure [Fantoni, 2001].

To solve this issue, the research community has recently proposed a different
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Courtesy of © Cyril FRESILLON / LAAS /
CNRS Photothèque.

(a) UDT quad-rotor: 4 motor-propeller pairs.

Courtesy of [Liu, 2013].

(b) UDT hexa-rotor: 6 motor-propeller pairs.

Figure 1.4: Examples of popular collinear MRAVs. All motor-propeller pairs are parallel
to a common axis which is perpendicular to the robot body.

rotor arrangement, where the propellers are mounted along different axes, as shown
in Figure 1.5. This allows generating forces along multiple directions, not only
perpendicular to the robot body but also laterally, in turn allowing the platform
to perform lateral displacements without the need to vary its body attitude. As a
result, these particular rotorcraft constitute fully-actuated robots, and they feature
a fully-decoupled translational and rotational dynamics. Interestingly, it has been
proven that MRAVs need to be equipped with at least 6 propellers in a non-collinear
(tilted) configuration to achieve full actuation [Michieletto, 2018]. Additionally, since
fully-actuated ARs can apply forces in all or more than one direction, as schematically
depicted on the right of Figure 1.3, the term Multi-Directional Thrust (MDT) is
used in the literature [Franchi, 2018; Bicego, 2019; Hamandi, 2021]. However, in
order to minimize the energy waste, tilted-rotor aerial vehicles are characterized by a
principal direction of thrust along which most of the thrust can be applied. Whereas,
the maximum thrust allowed along non-principal (lateral) directions is limited, and
it is typically much lower than the one along the vertical body axis. For this reason,
MDT robots are also termed laterally-bounded force (LBF) platforms by the research
community [Franchi, 2018; Bicego, 2019]. The larger the amount of lateral force they
can produce, the more closely ARs are proven to be capable of tracking an arbitrary
6D trajectory, i.e., any combination of position and orientation references [Franchi,
2018]. Thanks to the dynamical decoupling, fully-actuated MRAVs are well suited
for moving across obstacles, narrow gaps in cluttered environments, and they can
hover or take-off at non-flat attitude configurations.

The inclusion of an additional propeller in a fully-actuated hexa-rotor, thus
obtaining a hepta-rotor, is proven to be a necessary condition for obtaining omni
directionality, i.e. the ability to generate a force in any direction within a sphere
centered in the robot body [Tognon, 2018; Hamandi, 2020]. As a result, this
type of flying vehicles can arbitrarily fly in any direction and attaining any body
orientation, thus they have received the appellative of Omni-Directional Thrust
(ODT) aircraft. In recent years, prototypes of omni-directional ARs have been
realized, as the one reported in Figure 1.5b, and they have been shown to offer
incredible maneuvering capabilities [Allenspach, 2023]. Nevertheless, this is paid with
a more challenging modeling of their flight dynamics, the need of advanced control
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Courtesy of © Cyril FRESILLON / LAAS /
CNRS Photothèque.

(a) Example of MDT hexa-rotor built at LAAS.

Courtesy of [Hamandi, 2020].

(b) Example of ODT hepta-rotor built at LAAS.

Figure 1.5: Examples of Multi-Directional Thrust and Omni-Directional Thrust MRAVs.

algorithms to exploit the omni directionality, and a non-trivial mechanical design and
realization process [Hamandi, 2020]. When the platform has more than 6 propellers
and it is fully-actuated, it results in an over-actuated14 robot [Hamandi, 2021]. Indeed,
the platform can exploit the redundancy to perform secondary tasks, e.g., remain
operative in case of a rotor failure or better reject an external disturbance.

A straightforward approach to obtain a fully-actuated MRAV is by fixedly ar-
ranging the propellers along non-coplanar axes, as in the case of the platform shown
in Figure 1.5a, which results in a passive rotor configuration [Bicego, 2019]. This
design choice does not require additional components which would otherwise increase
the take-off mass, consequently reducing the transportable payload and the flight
time. Alternatively, the research community has recently proposed the adoption of
an active rotor arrangement by employing additional actuators (e.g., servo motors)
to control the orientation of the propellers, or just a subset of them [Ryll, 2012;
Odelga, 2016; Kamel, 2018; Zheng, 2020; Ryll, 2022; Aboudorra, 2023]. Clearly, this
ends up in a far more complex and heavier mechanical assembly, providing a less
energy efficient aircraft but granting increased motion capabilities to the robotic
system.

For an in-depth discussion on the actuation capabilities of ARs, their taxonomy
and more details about existing designs, the interested reader is referred to [Bicego,
2019; Rashad, 2020; Hamandi, 2021].

1.3 Physical Aerial Robot Interaction

Given the recent advancements in control, sensing, and actuation of ARs, the robotic
community shifted its interest from contact-less to contact-based applications [Ollero,
2021]. This has been possible by integrating an end effector (EE)15 on-board the
aircraft with the objective of enabling the robot to perform work on the environment.
The EE choice encompasses rigid tools fixedly mounted to the robot body [Nguyen,

14The over actuation is expressed w.r.t. the task of following a 6D pose trajectory.
15The end effector (EE) of a robot is usually the terminating part of its structure which performs

a task on the environment by being in contact and exchanging forces and torques with it.
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Courtesy of [Sanalitro, 2022].

(a) Example of MDT hexa-rotor built at LAAS.

Courtesy of [Nava, 2020].

(b) Example of ODT hepta-rotor built at LAAS.

Figure 1.6: Examples of Multi-Directional Thrust and Omni-Directional Thrust MRAVs.

2013; Gioioso, 2014; Bodie, 2021a], poly-articulated robotic arms [Kim, 2013; Baizid,
2017; Tognon, 2017; Nava, 2020], and even the use of one or more cables attached to
a payload to be transported [Sanalitro, 2022; Gabellieri, 2023].

On the one hand, MRAVs are typically under-actuated and the use of a robotic
arm aims at overcoming such a limitation and increasing the dexterity of the platform.
Thus, the system redundancy provided by the Degrees of Freedom (DoFs) of the
additional manipulator can be exploited to accomplish secondary tasks, such as
avoiding potential collisions, or performing postural adjustments in case of rotor
failure or external disturbances applied to the AR (e.g., wind gusts) [Afifi, 2022;
Pose, 2022]. However, this solution does not come without any drawback: the weight
of the attached manipulator arm decreases the available payload and reduces the
flight time, while increasing the overall mechanical complexity. Moreover, the arm
motion affects the dynamics of its flying base, thus leading to a more challenging
control problem [Ruggiero, 2018; Ryll, 2019].

On the other hand, the use of a rigid tool fixedly-attached to the robot airframe
requires to independently control the EE 6D pose. In the case of under-actuated ARs,
this requirement is unfeasible due to the coupled rotational and translation dynamics.
In this direction, recent research works have shown that the application of forces and
torques on under-actuated MRAV might create stability issues and complexify the
control problem. For instance, a force applied not at the center of mass (CoM) of
the robot body produces a dynamics which is neither guaranteed to be stable nor
easy to stabilize and even not practical for real applications [Nguyen, 2013].

A work-around solution could be the integration of one or more cables for
controlling the pose of a carried object and tool. While this simple and cost-effective
solution allows decoupling (partially) the rotational vehicle dynamics from the one of
the payload, it requires particular attention from the planning and control point of
view [Liang, 2018; Sanalitro, 2022]. Indeed, an imprecise load positioning might result
into undesired oscillations potentially affecting the platform stability and possibly
causing collisions with the environment, which clearly result into the task failure.

Henceforth, the research community has proposed the use of fully-actuated
MRAVs with tilted propellers, as they can apply forces along any spatial direction
and torques about any axis, i.e., a 6D wrench. This property makes them perfect
candidates for tasks requiring physical interaction, and besides they do not require
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particular extra components than a simple adjustment of their structural design. In
the literature, this idea has been proposed as “The Flying End-Effector” paradigm
[Ryll, 2019]. Specifically, it consists in the use of fully-actuated aerial vehicles which
are capable of controlling the 6D pose of a rigidly-attached EE and consequently
perform physical interaction in the environment. This has largely encouraged the
research community to adopt fully-actuated aerial robots in heterogeneous contact-
based applications. Examples are visual and physical inspection of hard-to-reach,
dangerous and industrial sites and structures [Jimenez-Cano, 2017; Sanchez-Cuevas,
2017; Jiang, 2018; Ollero, 2018; Tognon, 2019; Paneque, 2022; González-Morgado,
2023], payload transportation and manipulation [Fink, 2011; Villa, 2020; Cacace, 2021;
Sanalitro, 2022; Gabellieri, 2023] object grasping [Augugliaro, 2014], pick-and-place
and assembly tasks [Lindsey, 2012].

These research efforts contributed to the growth of the recent and flourishing field
of physical Aerial Robot Interaction (pARI), whose main challenge comprises obtaining
stable flight while the AR is physically interacting with the environment [Yüksel,
2019]. From the physics point of view, this is performed by applying meaningful
forces and torques (wrenches) from the robot actuators to the environment, while the
flying vehicle is accepting the contact reactions in a secure and controlled manner.

Nowadays, also the concept of Aerial Manipulation is emerging, i.e. of ARs with
manipulation capabilities similar to those owned by robotic arms [Ruggiero, 2018].
In order to properly manipulate objects, robots need more dexterity and possibly
a larger number of DoFs. In this context, aerial manipulators (AMs), which are
obtained by the combination of a MRAV (as flying base) and a robotic arm, are
excellent candidates. Therefore, the research community started to develop new
light-weight manipulators to be embedded on-board aerial vehicles, and to address
the mechanical and control issues which limited the diffusion of poly-articulated
AMs [Ruggiero, 2018; Ollero, 2021].

In the literature, this class of ARs has not only been equipped with a single open-
chain serial robotic arm, but also with dual and parallel manipulators. For instance,
in [Korpela, 2014], a dual-arm AM is employed for physical interaction tasks with the
environment, such as valve turning in an industrial setting. In [Cataldi, 2019], two
robotic arms are attached to a collinear hexa-rotor to increase the system redundancy
and make the system achieve multi-objective tasks involving EE positioning, camera
orientation and manipulation. Instead, in [Zhang, 2022], a delta manipulator16 is
mounted on a multi-rotor aircraft for aerial construction applications exploiting
additive technology. Similarly, the works in [Bodie, 2021b; Clark, 2022; Stephens,
2022] feature a parallel robotic arm mounted on-board a MRAV to increase the
system redundancy and perform precise tracking of the end effector pose.

1.3.1 From research to industries

After the initial interest from the research community, also several industries started
to invest in the field of physical aerial robotics motivated by the opportunities in
performing tasks in challenging and inaccessible areas with autonomous and cost-

16A delta manipulator, or more generically a parallel robot, is a closed-chain robot whose geometry
is composed of smaller manipulators which connect a base to an end effector [Siciliano, 2009].
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effective systems. This would allow enterprises to avoid the deployment of large
human teams in potentially dangerous working conditions and the use of expensive
machinery. An aerial robot capable of carrying out a simple manipulation job, and
featuring sensing capabilities, could assist human operators in hazardous and critical
situations [Ruggiero, 2018]. Consequently, in the last decade, new companies and
start-ups were founded to propose solutions in this direction.

In the field of contact inspection, Voliro17 and Donecle18 are experimenting dif-
ferent technological approaches. The former focuses on surface scanning of industrial
plants and inaccessible structures (e.g., transmission lines and wind turbines) for
monitoring purposes, while the latter on inspecting the fuselage of airplanes to find
manufacturing and welding defects. Similarly, the Skydio company19 aims at deploy-
ing MRAVs for several applications, ranging from area monitoring and surveillance,
to inspection of power plants and bridges.

The efforts of the enterprise sector are contributing to the advancement of the
technology required for increased real-world applications involving aerial robots in
physical interaction. However, for an effective deployment of MRAVs in everyday
environments, also social acceptability and environmental concerns shall be taken
into consideration and addressed.

1.4 Physical Human-Aerial Robot Interaction

As seen so far, ARs that can interact physically with the environment are increasingly
considered in the aerial robotics literature with emergent industrial use cases. From
an operational perspective, these flying robots have the potential to automate several
tasks in challenging scenarios. One prominent example of real-world use case, where
the deployment of an aerial robot is advantageous, is work at height. Representative
applications include non-destructive testing [Tognon, 2019], and inspection of wind
turbines and power lines [Cacace, 2021; Paneque, 2022].

These settings usually require specialized and trained personnel employing ex-
pensive equipment and bulky machinery. Carrying and accessing different tools in
these circumstances would require uncomfortable postures and a loss of focus from
the current activity. Therefore, we envision that the MRAVs can provide assistance
to human operators to perform their task, e.g. to retrieve the necessary tools and
provide useful information about the user activities [Afifi, 2022]. For instance, AR
can easily fly to a target location while transporting the essential tools, relieving the
human operator from carrying extra equipment. Similarly, multiple ARs could be
employed to help human operators to collaboratively handle bulky and long objects,
and move them from the ground to elevated locations.

Due to the task complexity, the dexterity and the decision-making skills of the
human workers are invaluable. Thus, for ARs to provide useful functionality in
these applications, they must be able to coexist and collaborate with their human
partners. In other words, the AR should become an aerial co-worker (ACW), i.e.

17https://voliro.com/.
18https://www.donecle.com/.
19https://www.skydio.com/.

https://voliro.com/
https://www.donecle.com/
https://www.skydio.com/
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a useful collaborator capable of performing the assigned task. Within this context,
AMs possess the required maneuvering, sensing and manipulation capabilities that
allow them to swiftly move in unstructured environments, reach inaccessible areas,
acquire useful data on the surrounding environment, handle and manipulate objects.
Furthermore, when interacting with humans, the larger dexterity offered by the
additional DoFs of a robotic arm can be used to easily reach the human worker
without jeopardizing the user safety, e.g., preventing the operator from staying too
close to the flying base and its sharp propellers.

This opens a new panorama of opportunities and paves the way to the field of
physical Human-Aerial Robot Interaction (pHARI), i.e., of aerial robots that can
safely and physically interact with their human partners.

1.5 Related works in pHARI

Motivated by the growing interest in having aerial robots interacting with humans,
the research community has started to investigate the problem of achieving safe,
comfortable and natural human-UAV interaction. Hereby, we provide a panorama
on the related works in this direction.

Early articles have been mostly encompassing the so-called domain of proxemics
[Lieser, 2021], i.e. identifying suitable approaching motions and engaging modalities
for aerial robots sharing the same workspace of humans. Along this investigation line,
Duncan et al. [Duncan, 2013] performed the first known user study to evaluate the
level of comfort experienced by several participants when a small-scale quad-rotor
is approaching at different distances and heights. Similarly, later works analyzed
the same problem with the objective of understanding how to improve the quality
of interaction between MRAVs and humans in everyday life and working scenarios
[Acharya, 2017; Yeh, 2017; Auda, 2021; Lieser, 2021].

The results obtained by the conducted user studies have highlighted how the close
proximity to an aerial robot is provoking more mental discomfort and distress among
the participants than a ground robot entering their personal space [Acharya, 2017].
In most cases, the main emerging factors are the unpredictability related to the
trajectory executed by the AR, the difficulty in understanding its intention and the
approaching direction, the unpleasant influence of the noise and the airflow generated
by the rotating propellers [Acharya, 2017; Yeh, 2017; Lieser, 2021]. Additionally, the
absence of human-like features in the design (e.g., face and limbs) and the erratic
behavior of ARs make the interaction with this type of robots more challenging than
in the case of ground mobile-based manipulators [Acharya, 2017].

Henceforth, the research community in the field of Human-Drone Interaction
(HDI)20 have explored the use of several sensory means (visual, acoustic) to convey
information about the robot state and intentions to the involved users, driven by the
goal of addressing these issues and improve the quality of the interaction [Naseer, 2013;
Cauchard, 2015; Cauchard, 2016; Gio, 2021; Wilson-Small, 2023]. In this context,

20The denomination drone originates from the military sector. It was used to denote the
autonomous aerial robots used in remote surveillance, training, and combat engagements. Then, it
permeated to the public and press domains to refer to the same class of vehicles and, in particular,
to indicate MRAVs [Bicego, 2019].
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new multi-modal interfaces have been designed to assign tasks to multiple ARs,
monitor their status and gather useful data from their onboard sensors [Cacace, 2016;
Fernández, 2016]. These tools allow the operator to utilize body gestures and voice
commands to naturally communicate with the MRAVs, since they represent the
common means adopted in human-human interactions [Nagi, 2014; Krishna, 2015].

Inspired by the insights gathered by the HDI community, roboticists in the fields
of HRI and pARI have realized that to achieve an effective and safe collaboration
with aerial robots new control and planning frameworks are needed. In particular,
proper methods have to be conceived to include the human state, such as ergonomics
and safety, and to allow a physical contact between the two agents.

Despite an extensive literature exists on MRAVs physically interacting with the
surrounding environment, the same cannot be said on physical collaboration with
human partners. The idea of direct and contact-based interaction between MRAVs
and human operators has only been considered just a few times in the literature.

In [Augugliaro, 2013], the authors investigate the physical interaction between
a collinear quad-rotor and a potential user. Similarly, in [Rajappa, 2017], they
consider the case of a human operator in direct contact with an under-actuated AR.
Rajappa et al. develop a control architecture that allows rejecting possible external
disturbances (e.g., wind and obstacle collisions) and, at the same time, it provides
physical compliance to the operator actions. However, in these two works, the user is
treated as a mere external disturbance acting on the robot dynamics, and the problem
of guaranteeing a safe and comfortable collaboration is neglected. In [Tognon, 2021;
Allenspach, 2022; Hallworth, 2023], the authors address a human-guiding use case
consisting of a MRAV pulling a human to a location via the tension force transmitted
along the cables connecting the robot and the user. Similarly to the previous works,
the employed platform does not include any robotic arm and there is no direct close
physical interaction between the aerial robot and the human operator. Differently,
in [Li, 2023], the physical collaboration between a team of MRAVs and a human
is investigated. In that paper, the authors propose a system that allows a human
worker to guide a tethered multi-aerial-robot system transporting a payload to a
desired location. At the same time, the developed architecture assures the avoidance
of collisions with the potential obstacles in the environment and between each robotic
agent. In [Suarez, 2022], the authors present a position-controlled delivery system,
composed an aerial vehicle and a cable-suspended manipulator, that is capable of
transporting a tool to the location where a human operator is standing.

In these works, neither human-centric metrics nor the state of the human are
fully considered from the robot control and planning standpoints. Moreover, the
operator is not in direct contact with the AR, since the interaction occurs by means
of cables, EE devices or robotic arms connected through cables to the flying base.
The use of tethers, although providing some degree of compliance, prevents a direct
exchange of forces and torques between the human and the robot, which could be
exploited to convey intentions during the interaction. With this idea in mind, Afifi
et al. [Afifi, 2022] propose a control methodology that allows an aerial manipulator,
equipped with a 3-DoFs robotic arm, to be in physical contact and in close proximity
to a human operator in a simulated environment. Despite the control architecture
allows the robot to be driven by the user actions, the method does not directly
account for the human safety and ergonomics during the generation of the actuator
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commands, as the robot may undertake motions that can injury the operator.

The authors in [Truc, 2022; Truc, 2023] propose an approach to consider the
human state at the planning level, in order to generate kinematic-feasible trajectories
for an ACW that considers the user safety, ergonomics and field of view. However,
the latter methodology does not include the dynamics of the aerial robot. Hence, the
resulting trajectory might be unfeasible to be tracked by the robot low-level motion
controller. Additionally, the method has not been tested and evaluated with an AM
in real-world experiments.

This brief overview of the literature in the field of pHARI evidences a lack of
suitable control methods addressing the problem of achieving a physical, safe and
comfortable human-aerial robot interaction.

1.6 Aim of the thesis

In the realm of HRI, the adoption of a robotic system has demonstrated its ability
to increase efficiency in various applications. These include tasks as handing parts
and tools to the workers in factories [Ortenzi, 2021], aiding in the manipulation
of large objects [Maroger, 2022; Rapetti, 2023], and supporting elderly persons or
physical-impaired patients at home by fetching essential items for daily activities
[Goodrich, 2013]. Among the myriad of human-robot collaborative scenarios, a
growing community of roboticists have tried to address the challenges in enabling
seamless object handovers [Yang, 2021], as evidenced by the large volume of articles
in this direction [Aleotti, 2012; Strabala, 2013; Medina, 2016; Yang, 2020; Ortenzi,
2021; Yang, 2021; Yang, 2022]. The capability for a smooth and safe object transfer
constitutes a pivotal skill for a successful and effective deployment of a robotic agent
in human-centric environments and manipulation tasks. When working at height,
the ability to exchange objects with human workers is critical in these challenging
and dangerous settings [Suarez, 2022].

As a preliminary step towards realizing a safe and effective physical Human-
Aerial Robot Interaction (pHARI), our research concentrates on the still unexplored
and challenging domain of Human-Aerial robot handover (HARH). Moreover, the
distinctive characteristics of ARs, such as rapid and complex dynamics and limited
actuation power, introduce novel challenges to the established domains of safe physical
Human-Robot Interaction (pHRI) and human-robot handovers. Henceforth, this
thesis aims to fill this research gap by investigating the HARH problem and proposing
innovative control architecture to take a significant step towards achieving a safe and
effective collaboration between humans and aerial robots. Our approach combines
insights from the well-established field of HRI with the emerging domain of pARI to
develop novel control methods tailored to the HARH case.

We specifically focus on small-scale MRAVs, capitalizing on their maneuverability
and suitable dimensions for cooperative use cases. Additionally, we limit our scope to
aerial manipulators equipped with a single open-chain serial manipulator, excluding
other existing designs and variants from our analysis21.

21For a comprehensive review of the existing designs of aerial manipulators, readers are pointed
to these articles [Ruggiero, 2018; Ollero, 2021].
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1.7 Context and objectives

The work conducted throughout this thesis takes place mainly in the context of
the French ANR project22 “The Flying Co-Worker” (FCW)23. This research project
results from the collaboration between the French laboratories Laboratoire d’analyse
et d’architecture des systèmes (LAAS) of Centre National de la Recherche Scientifique
(CNRS), and the Institut National de Recherche en Informatique et Automatique
(INRIA). These two laboratories are, respectively, affiliated with the Université de
Toulouse and the Université de Lorraine.

The FCW project aims at combining the recent advances in the fields of physical
Human-Robot Interaction (pHRI) and physical Aerial Robot Interaction (pARI)
with the final objective of developing an aerial co-worker, i.e. an aerial manipulator
capable of interacting with human partners in an industrial setting, e.g. in work-
at-height scenario or in the workspace of a factory. The envisaged collaborative
scenarios encompass (i) the Human-Aerial Robot (HAR) co-transportation and co-
manipulation of long and bulky objects (e.g., a bar), (ii) and the HAR handover
of a tool. Despite these problems have found several solutions for mobile-based
manipulators, the methods are not easily transferable to aerial robots, due to the
instability of their base, their complex and fast dynamics, and their onboard limited
energy and payload. From the research standpoint, novel planning and control
methods are necessary to guarantee a safe, effective and physical collaboration
between the two agents.

This thesis tackles the development of novel control approaches to achieve safe
and ergonomic physical Human-Aerial Robot Interaction (pHARI), in particular
focusing on the Human-Aerial robot handover (HARH) problem. The perception
and planning problems, such as a robust detection of the human pose and activity,
or the generation of suitable trajectories, are relegated to the other parts involved in
the FCW project.

Lastly, the activities presented in this manuscript are also partially comprised by
the European project “Aerial COgnitive integrated multi-task Robotic system with
Extended operation range and safety” (Aerial-CORE)24. Similarly to the FCW, it
aims at developing aerial cognitive robots capable of interacting with the environment
and assist human workers in high-from-ground and challenging environments, such
as the inspection of power lines and other large infrastructures.

1.8 Thesis contributions

The previous sections support the significant relevance of the problem of letting an
aerial robot collaborate with a human partner. As clear from the literature, the
field of pHARI opens promising opportunities to automatize several tasks and assist
human operators in several challenging and hazardous applications. However, the

22It is a public administrative institution under the authority of the French Ministry of Higher
Education, Research and Innovation. The agency funds project-based research carried out by public
operators cooperating with each other or with private companies. Source: https://anr.fr/en/.

23https://anr.fr/Project-ANR-18-CE33-0001.
24https://aerial-core.eu/.

https://anr.fr/en/
https://anr.fr/Project-ANR-18-CE33-0001
https://aerial-core.eu/
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presence of very few works on this topic suggests (i) the need of further exploring
this subject, and (ii) the lack of effective solutions enabling the HAR collaboration.
Moreover, from the authors’ knowledge, the problem of HARH has still not been
fully addressed, and no control methods are currently available within the research
domain of aerial robotics to achieve a safe and comfortable HAR interaction.

Therefore, with this work, we take a preliminary and pioneer step towards the
realization of aerial co-workers (ACWs) that safely and physically collaborate with
human partners. In particular, the contributions of this work are fourfold:

1. Formally define and analyze the HARH problem according to the literature on
human-robot handovers related to ground mobile-based robots.

2. Propose a valid decomposition of the considered problem into two subparts to
facilitate its tractability, and highlight the associated challenges.

3. Propose two control architectures respectively tackling the key aspects of the
HARH process, namely (i) the physical interaction between the two agents,
(ii) the inclusion of user state awareness and human-centric metrics within the
control framework.

4. Sketch an approach combining the two proposed methodologies in order to
thoroughly achieve a HARH.

In particular, the proposed methods are inspired from the control strategies
currently conceived in the fields of HRI and pARI. By exploiting our decomposition
of the problem under analysis, we propose two control approaches.

The first control method is based on a hierarchical control architecture, which
is a typical choice for controlling ARs and aerial manipulators (AMs), as we will
discuss in Chapter 2. Then, in Chapter 3, we will show that it enables the aerial
robotic agent to physically interact with the environment first, and with a human
worker later. Specifically, we perform experiments involving a pick-and-place task
and a tool-delivery scenario at height, respectively. In the former experimental case
(pick-and-place), the AR is a fully-actuated MRAV and it exchanges forces with
the environment through its end-effector. In the latter application (tool-delivery
at height), the human and the robotic partner, namely an AM equipped with a
poly-articulated robotic arm, directly interact without resorting to any intermediate
element such as cables or passive joints. Additionally, a small item is exchanged. The
collected results demonstrate the effectiveness of the proposed control solution to
achieve physical human-aerial robot interaction by means of an aerial manipulator.

The second control architecture adopts a state-of-the-art optimization-based
predictive control technique to conceive a “human-aware” controller. As outlined
in Chapter 3, the proposed method accounts for the human state and human-
centric metrics, such as safety and ergonomics, while taking into consideration the
platform dynamics and some other task-related constraints. We validate the control
architecture first in a safe and controlled, but yet realistic, simulation environment,
which allows proving the soundness of the control formulation. Then, we test the
controller in a set of experiments to showcase the effective applicability of such
a method in a real-world scenario. Despite the method being applicable to any
mobile-base robot, as we will show later in Chapter 6, we carry out the validation
by employing a collinear quad-rotor. This type of AR is chosen because the under
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actuation makes the achievement of the task more challenging, and the satisfaction
of the related constraints harder. Therefore, the successful experimental results
demonstrate the capabilities of the derived controller to cope with the platform
actuation properties and limits.

Our methodology is inspired from the state of the art in human-robot interaction
and aerial physical interaction, and it is tailored to this new use case, namely the
HARH. The achieved results prove the feasibility in achieving safe and physical
interaction between a human and heterogeneous aerial robotic platforms. The work
presented in this manuscript and the conducted experiments go beyond the state
of the art in the field of pHARI. We believe that this thesis can stimulate future
research in the same direction, and subsequently bring forth the proposition of new
control solutions tailored to collaborative ACWs.

1.9 Publication note

This thesis is based on three international conference articles, one of which has been
submitted also to a journal, but it has been rejected due to some considerations
raised by the reviewing committee. In this manuscript, and precisely in Chapter 6,
we will report those valuable comments and we will show how we can take them into
consideration to conceive improvements of that control method. Hence, we seek to
present the improved and extended version to a journal venue in future work. Finally,
a systematic view of the publications is reported in chronological order in Table 1.1.

1.10 Thesis outline

This section outlines the structure of the manuscript, making it easier for the reader
to navigate through its three parts. For each part, we provide a list of chapters along
with a brief description of the covered topics.

Part I Preliminaries has a fourfold objective. First, it introduces the main
research fields that provide the context for the work presented in the rest of
the document. Secondly, it familiarizes the reader with the problem under
investigation, the underlying assumptions, and the research challenges addressed.
Thirdly, it offers an overview of the literature related to the challenges associated
with the analyzed problem. Fourthly, we briefly present the key features behind
the proposed control methods and we summarize the main results obtained
from the validation campaign of our methodology.

Chapter 1 Introduction provides an overview of the research landscape
in the fields of Human-Robot Interaction (HRI), aerial robotics, and the
interaction of flying robots with both the environment and humans. This
background serves at setting the context for our work. Next, it outlines
the aims of our investigation, the objectives, and the related research
project. Lastly, it presents the contributions, academic outcomes, and
provides an outline of this manuscript.
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Publication Contribution

[Corsini, 2021]
2021 Workshop on Aerial
Robotic Systems Physically
Interacting with the
Environment.

Summary:

Hierarchical control architecture for fully-actuated ARs
performing tasks in the environment requiring perception
and physical interaction capabilities.
Key aspects:

• Control architecture suitable for any fully-actuated
MRAV.
• Modular architecture featuring (i) a visual servoing
scheme, (ii) a wrench observer and an admittance filter,
(iii) a geometric motion controller.

• Experimental validation with a real aerial robot in a
pick-and-place scenario.

[Corsini, 2022]
2022 IEEE/RSJ
International Conference on
Intelligent Robots and
Systems (IROS).
Joint submission also to
IEEE Robotics and
Automation Letters
(RA-L), but rejected.

Summary:

Human-aware optimization-based and predictive con-
troller for human-to-aerial robot handovers.
Key aspects:

• Control method suitable for any MRAV design.
• Based on Nonlinear Model Predictive Control.
• Inclusion of (i) human state, (ii) human-relative mo-
tion reference, (iii) human safety, (iv) human ergonomics,
(v) human visibility.

• Validation in simulations performed in the Gazebo
simulator.

[Afifi, 2023]
2023 International
Conference on Unmanned
Aircraft Systems.
Collaborative work.

Summary:

Hierarchical control architecture for aerial manipulators
physically interacting with human workers.
Key aspects:

• Control framework suitable for any AM equipped
with a single open-chain serial manipulator.
• Modular architecture comprising (i) a wrench observer
and an admittance filter, (ii) a feedback-linearization-
based motion controller.
• Experiments with a real robot in a human-to-aerial
robot handover scenario.
Personal participation:

• Assisting the preparation of the experiments.
• Preparing and testing the robot hardware.
• Co-writing the manuscript.

Table 1.1: The work detailed in this manuscript is based on the three publications listed
here. For each one, we provide a brief summary of the article content, a list of its main
elements and the international conference where it has been published.
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Chapter 2 Research problem introduces the Human-Aerial robot handover
scenario. It also emphasizes the addressed challenges and the underlying
assumptions. Furthermore, in this chapter, the considered problem is
decomposed into two parts to facilitate its investigation and the develop-
ment of effective control methods. Lastly, it provides a literature review
of the related works, which will serve as motivation for our methodology.

Chapter 3 Method overview contains an overview of our proposed method-
ology, introducing two control architectures that address the two sub-
problems defined in the previous chapter. Finally, it offers a qualitative
summary of the achieved results.

Part II Scientific work encompasses the technical content of our study. Hence-
forth, it provides the reader with the mathematical tools essential for deriving
our control methods. Next, it elaborates on the formulation of each control
architecture and presents quantitative results obtained from the validation
campaign.

Chapter 4 Modeling collects the mathematical tools we employ to de-
scribe the agents involved in the HARH problem and the models used in
formulating our control methodology.

Chapter 5 Control methodology for visual and physical Human-Aerial

Robot Interaction provides a detailed explanation of the first control
method. In particular, the considered subproblem involves an aerial
robot interacting with the environment first, and with a human worker
later. Lastly, this chapter presents quantitative results collected from the
conducted real-world experiments.

Chapter 6 Predictive human-aware control presents the second con-
trol architecture: a “human-aware” optimization-based and predictive
controller. This method considers the human state and human-centric
metrics, such as safety and ergonomics, during the second subproblem,
which involves a human-to-aerial robot handover. Additionally, the pro-
posed controller incorporates task-related constraints, robot actuation
limits, and a human-visibility requirement. Moreover, this chapter outlines
possible future improvements of this method. Lastly, quantitative results
on the controller performance are provided.

Part III Conclusions is the final part of this thesis, consisting of a single chapter
that summarizes the conclusions and the perspectives related to the presented
work.

Chapter 7 Conclusion terminates this manuscript. It synthesizes our
work, discusses our findings, acknowledges the limitations related to our
methodology. Additionally, it outlines the idea of combining the two
proposed control frameworks to address the handover problem compre-
hensively. Lastly, it highlights the challenges not considered in this work
and suggests potential future research directions.
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Research problem

This chapter defines the problem investigated in our studies, specifically the Human-
Aerial robot handover (HARH). Henceforth, in Section 2.1, we provide a precise
description of the problem, emphasizing the characteristics of the aerial case. Addi-
tionally, we outline the aspects of the problem that will receive our attention, and
we list the underlying assumptions. Next, in Section 2.2, we present the research
challenges that our work aims to address, laying the foundation for the problem
decomposition introduced in Section 2.3. There, we divide the handover problem
into two complementary parts to facilitate our subsequent analysis. Then, in Sec-
tion 2.4, we offer a literature overview of the main methodologies addressing the
challenges considered. Lastly, in Section 2.5, we conclude this chapter by providing
the motivation for our proposed methodology, which we will present in the following
chapter.

2.1 Human-Aerial Robot Handover

In this section, we delve into the Human-Aerial robot handover (HARH) problem,
which is the central focus of this manuscript. We start by illustrating a general
picture of the handover scenario, and subsequently we tailor it to the specific aerial
case considered.

2.1.1 Human-robot handover

In general terms, the handover process is a collaborative joint action where an agent
delivers an object to a second agent, as shown in Figure 2.1. The former is defined as
giver, while the latter as receiver [Medina, 2016; Ortenzi, 2021]. In this collaborative
operation, the two agents shall perform joint actions in space and time to effectively
achieve the task, i.e. exchanging the object. Clearly, the item can be transferred
in both directions: from the robot to the human, robot-to-human (R2H) handover,
or vice versa, i.e. human-to-robot (H2R), as respectively depicted in Figures 2.1a
and 2.1b. In many works, the focus is only on an individual object exchange direction.
For instance, in [Aleotti, 2012], the authors propose a planning methodology that
successfully drive a robot to give an item to a user in a comfortable way, but they do
not address the other transfer case. Contrary, the research in [Yang, 2021; Yang, 2022]

23
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A robot is handing over a tool to a human.
Courtesy of [Aleotti, 2012].

(a) Robot-to-human: the robot is the giver,
while the human the receiver.

A human is handing a small cube to a robot.
Courtesy of [Yang, 2020].

(b) Human-to-robot: the human is the giver,
while the robot the receiver.

Figure 2.1: Pictures showing two human-robot handovers. In the image on the left, the
robot is handing over the object to the human, while in the image on the right the inverse
situation is taking place.

focuses on the inverse situation as they propose a vision-based system architecture
to enable reactive H2R handovers for unknown objects.

As emerging from the investigation of human-to-human collaboration, the han-
dover process involves coordinated behaviors of both agents at a physical and a
social-cognitive level [Strabala, 2013]. The social-cognitive activities pivot on the
decision about three main points, the what, the when and the where/how. To give a
practical example, the agents must agree on the exchanged item (the what), decide
the moment at which start transferring the object (the when), and lastly on where
and how to meet for passing the object (the where and how). The physical level
consists simply in the implementation of what the agents have agreed on during the
social-cognitive coordination. Furthermore, the physical part comprises three main
phases, namely the approach, the reach, and the transfer. The approach phase sees
the giver moving towards the receiver while carrying the object to be exchanged.
When the two agents are at a convenient distance, the reach phase occurs and it
concludes with both agents being in contact through the object being passed. At this
point, the actual transfer is starting and, in this moment, the two agents are usually
maintaining a constant relative pose with respect to one another [Strabala, 2013].
After these three phases, the two agents retreat themselves. During this retraction
phase, the receiver is holding the grasped object passed by the giver. In [Ortenzi,
2021], the first two phases, approach and reach, constitute the prehandover part
of the process, while the third one (transfer) comprises the physical stage of the
handover, as schematically depicted in Figure 2.2.

2.1.2 The aerial case

In the particular case of the HARH, one agent is an aerial robot, and the second
one is a human worker who shares the same workspace of the robot and can move in
the environment. The aerial robot shall be capable of giving or receiving the object
to or from the partner in order to successfully perform the handover. In doing so,
the robot end effector (EE) shall be moved to a reachable and convenient position
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This figure has been realized by combining together two figures taken from [Ortenzi, 2021]
and [Strabala, 2013].

Figure 2.2: Schematic representation of the handover task. It comprises activities at the
physical and social-cognitive level which cover all the phases involved in the process. The
handover consists mainly of two phases: a prehandover part and a physical handover phase.
In the former, the two agents approach and reach themselves while agreeing on mutual
aspects of the collaboration. In the latter, the object transfer takes place. Later, in a
fourth phase, the two agents retract.

w.r.t. the human perspective. The aerial robot must rely solely on its onboard
perceptive sensors (e.g. a camera) to detect the human presence in the surrounding
environment and estimate the partner body pose. Additionally, the following set of
task requirements are assigned to the robot while performing the handover:

1. The visibility of the operator has to be maintained at all time. Indeed, if
lost, the human pose estimation quality will deteriorate and it may in turn
jeopardize the human safety, by possibly leading to a collision between the two
agents.

2. The object should be handed over in the most ergonomic configuration from the
human standpoint. Thus, that location shall prevent the user from attaining
body configurations which may result uncomfortable and unnatural during the
object transfer.

3. Yet, such a location shall be re-adjusted according to the human motion. In this
regard, the robot controller can exploit some visual clues in order to properly
move its EE towards the human, to receive or deliver the handed-over object,
and modify its position according to the partner movement.

4. The human can apply actions on the robot body or its EE to move the partner
to a more convenient position when at close distance.

2.1.3 Focus of the thesis

First of all, in our analysis, we do not fix a particular direction for the object transfer:
we seek for control algorithms that could be potentially applicable to both the H2R
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and the R2H cases. Moreover, we are interested in the physical layer of the considered
problem, while the social-cognitive part remains out of the scope of this work: we
assume that the object to be transferred is known and agreed beforehand. As for
the when and the where, we assume that the giver is taking these decisions. Hence,
during the R2H handover, we task the aerial robot to propose a handover location,
while in the opposite case (H2R) the human decides when handing over the tool to
the robotic partner and where. This is motivated by the choice of the application
we focus on. In high-from-ground applications, the human workers operate in a
limited workspace which can constrain their movement ability. In this context, the
aerial robot (AR) shall approach and reach the human thanks to its maneuvering
capabilities. Then, in a R2H handover, the robot carries the object and it must
deliver it in a comfortable way to the worker. Instead, in the H2R case, once the AR
is at close distance, it shall wait for the human to initiate the interaction and pass
the tool. As being in charge of the where, the human giver can possibly need to move
the robot to a more convenient location prior expressing the intention of performing
the exchange. For instance, the user can apply a force on the flying receiver, e.g. by
pulling and pushing its EE, to change its postural and spatial configurations.

As we aim at proposing motion control algorithms for a safe and effective HARH,
we consider both the prehandover and the physical parts of the problem. Thus, we
investigate only the approach, reach and transfer phases, while leaving the retraction
out from our analysis, as the former three phases constitute the core for a successful
handover process. To further simplify this complex and challenging problem, we
do not address the selection of a proper grasping pose in the H2R handover and,
in the R2H case, the issue of delivering the object by offering a comfortable object
grasp for the receiver. In a similar way, we leave for future work the problem of
modulating the gripping force during the transfer phase, which can be exploited to
obtain seamless and natural handovers [Ortenzi, 2021].

The objective of the current work is to pave the way to successful Human-Aerial
Robot handovers, and enhance ARs with reasoning capabilities on the human state
while coping with the physical interaction arising during this process.

2.1.4 Assumptions

Based on the previous problem statement and objectives, we can make a summary
of all the assumptions made on the investigated problem.

1. The robot can estimate its pose by means of a proper estimation pipeline which
integrates the measures available in the robot architecture. Therefore, in the
present work, we do not focus on the problem of guaranteeing a robust pose
estimation. Consequently, a sufficiently accurate pose estimation of the robot
state is always available to the motion controller.

2. The robot uses its onboard perceptive sensors to localize the operator in the
environment and to estimate the pose of the partner. This estimation algorithm
is assumed to detect sufficient features on the human body to provide a reliable
pose estimation as soon as the human trunk is visible. Accordingly, we neglect
the problem of selecting the number and the type of features on the human
body, and the task of maintaining them above a minimum amount inside the
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sensor Field of View (FoV).

3. We neglect the problem of visual occlusion as no other agents, except the
giver and receiver, act in the considered environment. If the camera is pointed
towards the human, we assume that the operator is visible, the pose estimation
is successfully carried out, and no other entity can obstruct the scene.

4. The human worker is cooperative, in the sense that it is not acting in an
unexpected way and does not intentionally and deliberately perform actions
aimed at provoking the instability of the platform.

5. As a result, the exchanged forces and torques can be assumed to be varying
slowly over time.

6. The geometrical and inertial properties of the exchanged objects are known.
In many structured environments, such as industrial working places, the robot
is interacting with entities whose properties are known beforehand.

2.2 Research challenges

The human-aerial robot handover is an interesting problem which encompasses several
research areas while offering various challenges from the control standpoint. Hereby,
we detail those among them that we intend to address.

2.2.1 Physical interaction

The main research area covered by the HARH problem is the physical interaction,
as it constitutes an essential part of the HAR collaboration. During a human-robot
handover, the robot has to exchange forces and torques first with the environment,
for instance, when picking up the tool requested by the human worker. Secondly,
during the transfer phase, the two agents are in contact through the passed item,
which results in a mutual exchange of an interaction wrench at the contact location.
On the one hand, the user might convey personal preferences to the robotic agent
by using intentionally physical clues. For instance, the worker could push or pull
the robot body or its EE to communicate the partner to move to a more convenient
location or to change configuration. On the other hand, the user might accidentally
enter in contact with the aerial robot resulting in the application of an unwanted
wrench on its body. Therefore, the robot motion controller shall take into account
this sensorial feedback and adapt accordingly the vehicle state. In the former case,
embedding a certain degree of compliance within the planning and control framework
can improve the physical interaction between the two agents, resulting in a better
and safer user experience [Afifi, 2022]. In the latter case, i.e. in the presence of
undesired interactions, the robotic co-worker must reject the additional forces and
torques that arise during the contact phase.

All these actions can perturb the platform stability, e.g. by overly tilting the robot,
and hence they must be properly treated. This is not a trivial problem since ARs do
not own a fixed base which can sustain their weight and they do not feature brakes
allowing an emergency stop, as in the case of ground and wheeled manipulators.
Besides, most of the actuation power is used to cancel out gravity, leaving a small
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portion to be employed for the physical interaction task and eventually counteract
external actions which could destabilize the platform. For the aforementioned reasons,
the control algorithms must be capable to compensate for the external wrenches
applied on the platform. At the same time, during the contact phase, the controller
should also exhibit a desired dynamics in response to user-predefined and intentional
interactions, while rejecting undesired ones.

2.2.2 Robot actuation properties

As discussed in Chapter 1, the capability of exerting a wrench on the environment is
strictly intertwined with the actuation capabilities of the aerial robot. To successfully
perform physical interaction and reject external disturbances, we saw that the ability
to exert a 6D wrench is fundamental [Ryll, 2017]. Therefore, fully-actuated multi-
rotor aerial vehicles (MRAVs) are suitable candidates for physically interacting with
humans, as the controller can exploit their full actuation in order to apply any
necessary combination of forces and torques. Conversely, under actuation makes the
robot dynamics difficult to stabilize when external actions are applied on the system,
which could jeopardize the safety of the potential users involved in the collaboration.

Aerial manipulators (AMs), which feature the same aerial base and a poly-
articulated robotic arm, can use their larger dexterity and the additional Degrees of
Freedom (DoFs) to improve the quality of the interaction when collaborating with
humans. As an example, they can employ their redundancy1 to optimize the human
comfort, or again to move the EE closer to the worker. As a result, the robot can
prevent exposing the human to potential risks, such as its rotating propellers and
sharp body geometries which could endanger the user. As we discussed in Chapter 1,
the motion of the attached arm induces disturbances in the flight dynamics, thus
introducing an additional challenge from the control point of view.

The actuators of aerial robots generate bounded forces and torques due to the
limited on-board energy and power. Besides, the thrusters cannot reach the requested
amount instantaneously, as the actuators undergo a dynamical transient prior to
reach the reference commands. When interacting with the environment or humans,
a wrench arises either at the robot airframe or at its EE which, as discussed earlier,
can affect the robot dynamics. Due to the leverage created by the kinematic chain
connecting the EE to the base, the torques acting at the arm tip location can produce
a considerably large effect on the robot body. In the effort of compensating for these
actions, the controller might saturate the motor commands, which in turn may lead
to the platform instability. Loosing stability is clearly unacceptable in Human-Robot
Interaction (HRI) settings and it must be prevented, since it would result in the task
failure and a threat to the human worker.

Hence, the robot controller must satisfy the following requirements:

1. Adapt to the different robot actuation capabilities and exploit them at best
for achieving the task. In the case of fully-actuated ARs, the controller shall

1Usually, in a handover setting, a gripper is mounted at the robot EE location to grasp and
then release objects. Therefore, the robot shall be able to control the full 6D pose (position and
orientation) of its end effector. Consequently, the robot degree of redundancy is evaluated w.r.t.
this task.
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be able to generate an arbitrary 6D wrench. If the robot is featuring an
additional robotic arm, it shall compensate for the dynamic coupling effects
while stabilizing the whole platform.

2. At the same time, the generated motor commands shall respect the limitations
of the low-level actuation hardware.

2.2.3 Perception

The aerial robot must perceive the external world in order to safely and physically
interact with it and the other agent(s) sharing the same workspace. Therefore,
perception plays a crucial role. For this reason, the robot is equipped with onboard
visual sensors allowing it to perceive the human worker acting in the surrounding
environment. Specifically, a perception pipeline is running on-board the robot and
it provides the control architecture with a body pose estimate of the partner. To
properly operate, these algorithms usually require the measurements of a set of
features belonging to the observed entity [Sarafianos, 2016]. If no features are
visible after the execution of the requested motion, then the estimation will diverge,
no matter of the algorithm robustness [Jacquet, 2022a]. As we assume that the
necessary features are located on the human body, this translates into the requirement
of maintaining visibility of the human trunk at all time during the handover. This
task is of the greatest importance, as neglecting it can lead to unacceptable collisions
and potentially injure the operator.

The estimation of the human pose is a crucial information not only from the safety
point of view but also for the successful task execution. Indeed, during the approach
and reach phases, and especially in the case where the human cannot move towards
the robotic agent, the latter is supposed to close the distance. In this situation,
the AR shall move its body and particularly its end effector towards the human,
either to give or receive the handed-over object. The robot architecture can exploit
some visual clues that are already available on-board in order to control the EE pose
towards the user and modify its position according to the partner movements.

To conclude, the robot must observe the environment and the human, reasoning
on the perceived context, and perform accordingly its actions. This implies that the
control architecture must not only visually drive the robot towards the perceived
goal and user, but also account for the visibility requirements necessary for a robust
perception.

2.2.4 Safety

When designing motion controllers for close and physical human-robot interaction, it
is of paramount importance to account for the user safety [Santis, 2008; Haddadin,
2017; Zacharaki, 2020]. The controller shall indeed guarantee the avoidance and
the prevention of any collision which may injure and endanger the human worker.
Therefore, it is essential to embed the notion of safety in the control architecture,
by letting the controller be aware of the operator motion and the relative distance.
For instance, the robot can forbid reducing excessively the gap to the human in
accordance to some minimal safety boundaries beyond which a collision is hardly
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unavoidable [Kulić, 2005]. Besides, other metrics can be defined to account for
safety. For example, it is possible to limit the amount of relative velocity with the
aim of reducing the amount of energy transferred in case of a potential collision.
Alternatively, one can prevent the robot from attaining dangerous human-relative
positions, e.g., flying above or behind the human partner.

2.2.5 Ergonomics

During the handover task, the human should not undertake prolonged articular stress
which may cause discomfort and injuries in the long run [Lorenzini, 2023]. Therefore,
the control architecture should include a metric or index to quantify the current
comfort level the human is experiencing in a given postural configuration. In the
case of a R2H handover, the computed location for the transfer phase must appear
natural and ergonomic to the operator while being compatible with the user current
activity and motion. Similar considerations can apply also in the inverse situation
where the robot shall receive the object from the human (H2R handover).

2.3 Problem decomposition

In this section, we present how we decompose the Human-Aerial robot handover
problem into two complementary subproblems to facilitate its tractability.

The first subproblem comprises the development of a visual and physical interac-
tion control architecture enabling the collaboration between aerial robots and humans.
This choice is motivated by the fact that the physical interaction and the perception
constitute two fundamental parts of the problem under analysis. Indeed, during the
contact phase, the human and the robot interactions can have a significant impact
on the platform stability and on successfully achieving a safe handover. Instead,
the robot perception capabilities shall be used to control the EE pose with the aim
of moving it towards a goal location (e.g., close to the human), and potentially
modifying its final position according to the changes in the environment. To further
simplify this first subproblem, we divide it into two milestones.

We start by designing a control architecture that can endow aerial robots with the
capability of applying forces and torques on the environment. Hence, in our study,
we adopt the “Flying End-Effector” paradigm, and we use fully-actuated ARs as they
can exert an arbitrary 6D wrench. Therefore, at the control level, we will exploit
the full actuation property to perform physical interaction tasks. Additionally, we
explore the inclusion of vision in the control framework. Specifically, the onboard
perception system will control the end effector pose and steer it towards the desired
location.

After reaching this first milestone, we extend it to the case of ARs physically
interacting with humans. Here, we equip the robot with a robotic arm, thus obtaining
an AM whose larger dexterity and redundancy can be used to achieve a better-quality
and safer interaction with a human worker. Once the robot shares the user workspace,
we assume that the reference trajectory for the robot body and EE is produced by
a more sophisticated planner accounting for the human state, as the one presented
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in [Truc, 2022], or known a priori. The robot controller tracks this reference motion
driving the platform close to the human agent. At this point, we expect that the user
can move the robotic partner towards a more convenient position through a physical
clue, e.g., a force applied on the robot end effector. For this reason, we will not make
use of the previous vision system to control the EE pose, as the human decides its
final location. Therefore, we focus essentially on extending the physical interaction
part of the previous control architecture to (i) a more complex robot dynamics and
(ii) to the physical human-aerial collaborative case. Thus, with the second milestone,
we aim at realizing physical Human-Aerial Robot Interaction (pHARI). It is clear at
this point that, in this first piece of work, the focus will be entirely on the transfer
(physical) phase shown in Figure 2.2.

The second subproblem comprises the inclusion of safety and ergonomic metrics
within the control framework, while accounting for the actuation limitations and the
visibility constraints required by the task. In the previous subproblem, the perception
is used to control the robot motion by driving the robotic platform towards the goal.
There, the control algorithm may not respect the constraints of the actuators, as well
as it may jeopardize the human detection. Since it does not account for the robot
dynamics, it may induce robot motions that cause the observed features to move
away from the onboard sensor FoV. Accordingly, in that case, we assume that the
robot can always perceive the entities of interest. In the second subproblem, instead,
we drop such a hypothesis and we focus on the requirement of guaranteeing constant
observability of the human during the whole handover. As stated in Section 2.1.4, this
assures in turn to have always enough features observable by the robot camera and a
reliable human-body pose estimation. As under actuation makes the perception task
even more challenging due to the coupling with the robot dynamics [Jacquet, 2021],
we consider the use of an under-actuated MRAV to perform the handover task.
Lastly, differently from the first subproblem, here we focus on the approach and
reach phases reported in Figure 2.2, and we stop the analysis of the handover process
just before the start of the interaction phase.

As evident at this stage, we obtain two problems that are complementary which
can be summarized in the form of two main questions, as follows.

1. How we can visually control aerial robots towards the desired goal
and enable them with physical interaction capabilities in order to
achieve pHARI?

2. How we can let an aerial robot be “aware” of the human during the
handover process, i.e. (i) accounting for safety, (ii) maximizing the
human ergonomics, (iii) satisfying the perception constraints and
(iv) considering the robot actuation limitations?

In Chapter 3, we introduce the reader to the replies addressing those two questions,
and we present an overview of the designed control architectures tackling the corre-
sponding subproblems. Table 2.1 visually summarizes this problem decomposition.
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Physical
interaction

Perception Actuation
Safety Ergonomics

C.EE.P. Visib. 6D Limit.

SP1
Section 3.1.1

✓ ✓ ✗ ✓ ✗ ✗ ✗
Chapter 5

SP2
Section 3.1.2

✗ ✗ ✓ ✗ ✓ ✓ ✓
Chapter 6

Table 2.1: This table shows the decomposition of the HARH problem into two comple-
mentary subproblems (SP1 and SP2) based on the research challenges we discussed in
this chapter. It shows the sections of the next chapter providing an introduction to the
methodology addressing each subproblem, and the chapters with a more in-depth treatment.
The symbols ✓ and ✗ denote, respectively, the analysis or the disregard of a certain aspect.
“C.EE.P.” and “Visib.” denote the use of perception to control the robot EE pose and the
problem of maintaining visibility of the human partner, respectively. Likewise, “6D” is
the exploitation of fully-actuated aerial robots, while “Limit.” is the consideration of the
actuation limitations.

2.4 Overview on the state of the art

After describing the problem at hand, outlining its associated challenges, and our
approach to investigate it, we offer an overview of the relevant methods found in the
literature. This overview serves as a motivation for the methodologies we introduce
in the subsequent chapter. It is important to note that this thesis does not aim
to provide an exhaustive review of all existing methods and published articles, but
rather a summary of the main ideas behind the primary approaches. Given our focus
on MRAVs, we mostly direct our attention to the application of these methods to
this particular class of aerial robots. Furthermore, our analysis of the state of the
art aligns with the aforementioned challenges that are encompassed by the HARH
problem.

2.4.1 Control for physical interaction

The problem of controlling the robot position and, at the same time, the interaction
force at the contact location, while preserving the system stability, has already been
addressed by the research community both in the fields of HRI and physical Aerial
Robot Interaction (pARI) [Santis, 2008; Ollero, 2021]. Typically, robots are position-
controlled. However, managing the interaction of a robot with the environment by
adopting a purely motion control strategy turns out to be inadequate [Santis, 2008].
In the case of unstructured environments, inaccurate planned tasks and unforeseen
contacts with the environment or other agents, a pure motion control may cause the
rise of undesired interaction forces. High values of these forces do not only deteriorate
the quality of the human-robot collaboration, but also they may excessively stress
the robot and the manipulated objects [Siciliano, 2009].

A very common approach adopted by roboticists is to employ an impedance (or
admittance) control scheme, which comprises reshaping the mechanical robot response
to match a virtual dynamic behavior, e.g. as a mass-damper-spring system [Dimeas,
2016]. This usually occurs by establishing the desired dynamic relationship between
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the robot EE coordinates and the interaction forces applied at that location. In
particular, in the impedance control, the system input is the external wrench applied
at the robot EE, while the output its displacement [Ollero, 2021]. The admittance
control is the dual of the previous scheme: the input is the robot EE displacement
and the output the interaction forces. These schemes belong to the category of
indirect force control methods as the interaction wrench is controlled by indirectly
regulating the robot motion.

For what concern the domain of aerial robotics, the admittance (or impedance)
control approach found various applications both for under-actuated and fully-
actuated aerial manipulators [Ollero, 2021]. Ruggiero et al. [Ruggiero, 2014] have
applied it to a collinear quad-rotor in combination with a momentum-based wrench
observer to let the robot withstand external disturbances while performing simple
maneuvering task, such as hovering in place or following a pre-defined trajectory.
Later, in [Ryll, 2019], this control paradigm has been applied to fully-actuated
MRAVs in order to achieve tasks requiring physical interaction, namely touching
and sliding over a surface, or inserting the tip of the robot EE in a narrow space for
inspection operations.

In [Augugliaro, 2013; Rajappa, 2017], it has been exploited to achieve pHARI.
Specifically, in [Augugliaro, 2013], the authors employed an admittance scheme to
let the aerial robot be compliant to the external actions which could be potentially
be applied by a user interacting with the platform. Similarly, in [Rajappa, 2017], the
admittance control has been combined with a wrench observer and contact-based
sensors to design a control architecture allowing the AR to physically interact with
a human operator. By exploiting model and sensor-based estimates of the contact
wrench, the platform can discriminate between human and environment actions,
and it enables the robot to withstand possible external disturbances, e.g., wind
or collisions with obstacles. More recently, in [Afifi, 2022], an admittance-based
control architecture has been used in a simulated environment to let a fully-actuated
hexa-rotor equipped with a poly-articulated robotic arm physically interact with
an operator. Particularly, the authors show that the parameters of the admittance
control loop can be tuned in such a way to provide comfortable and safe robot
responses during the human-aerial robot collaborative task. Instead, if the robot
controller is let directly respond to the human inputs, stiff and abrupt behaviors
may emerge emerge which could jeopardize the user experience. Hence, by adopting
this control strategy, the potential human operator can apply external actions on the
robot without destabilizing its dynamics.

Nevertheless, also direct force control methods exist, where the interaction force
is precisely controlled by an explicit closure of a force feedback loop [Siciliano, 2009].
In aerial robotics, this latter control approach originated schemes featuring both
motion and force control, which in turn have them granted the denomination of
hybrid position/force control methods. A first example is the work in [Nguyen, 2013],
where the authors propose a hybrid force/motion control for a quad-rotor equipped
with a rigid tool. The proposed control methodology allows controlling the under-
actuated robot dynamics in tasks requiring the application of forces over a surface
and the precise control of the EE tip position. In [Nava, 2020], an aerial manipulator
similar to the one in [Afifi, 2022] has been equipped with a force-torque sensor to
perform push-and-slide tasks. Thanks to the availability of the force measurements
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on-board the platform, the authors could close a direct force control loop. Therefore,
they designed a control architecture where an optimization-based reactive controller
can generate the low-level motor commands necessary for the robot to achieve the
contact-based task, e.g., push and slide over a surface. Similarly, in [Peric, 2021],
another optimization-based control algorithm has been used to achieve force and
motion control for inspection tasks on flat surfaces by means of an over-actuated
aerial robot.

In order to implement any force control method, it is necessary to estimate the
robot state and the contact wrench [Ollero, 2021]. For the latter, among the different
possibilities, model-based wrench observers are widely adopted, since they can exploit
the robot dynamic model and the onboard proprioceptive (inertial) sensors [Tomić,
2017; Peringal, 2022].

On the one hand, tasks like contact inspection, sensor installation and object
manipulation requires an accurate control over the EE pose and of the interaction
forces. This can be achieved by employing the direct force control methods previously
described. However, the latter category require precise measurements of the inter-
action forces, which could be hard to obtain with model-based observer. Modeling
mismatches, unpredicted effects (e.g., aerodynamic drag and inter-propeller interac-
tions), combined with unknown parameters and external actions can be detrimental
for methods that require an accurate knowledge of the robot model to estimate
the external forces applied on its body. A possible solution can be the integration
of force-torque sensors on-board the robotic system, but this type of hardware is
generally expensive. Moreover, their inclusion contributes to increase the robot mass
and, in turn, decrease the available payload and flight time.

On the other hand, applications involving human-robot interaction do not require
the fulfillment of an accurate regulation of the exchanged forces and torques. In
most cases, the adoption of an indirect force control method has appeared to be
much easier and intuitive from the implementation standpoint. This is particularly
relevant if we consider that most of the commercial Unmanned Aerial Vehicles (UAVs)
feature low-level position or velocity-based controllers, which makes the closure of
a force feedback loop unpractical or even impossible. Therefore, the application of
model-based observer is the typical go-to approach in these cases. Furthermore, an
impedance or admittance control scheme can handle the transition from contact-less
to contact-based flight operations by means of a smooth variation of the gains [Ollero,
2021].

2.4.2 Robot actuation properties and related control architectures

When it comes to control an aerial robot, its actuation properties and the presence
of an attached manipulator determine the nature of the control architecture.

Feedback linearization constitutes a common approach for controlling nonlinear
systems, such as ARs. This technique consists in the exploitation of the system
dynamic model and its inversion to cancel out the nonlinearities and obtain in turn a
linear system [Luca, 1998; Oriolo, 2002; Isidori, 2013]. Hence, the resulting dynamics
is much easier to control and classical control methods from the domain of linear
control theory can be applied, for instance, Proportional-Integral-Derivative (PID)
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controllers [Bicego, 2019].

A fully-actuated system can be directly feedback linearized as it is possible to
control independently its position and attitude [Ryll, 2019]. In [Franchi, 2018], an
inverse dynamics approach has been proposed to track an arbitrary 6D (position
and orientation) trajectory with fully-actuated aerial vehicles, while considering
virtual bounds on the amount of lateral forces they can produce. Later, the authors
in [Ryll, 2019] utilized the same control approach developed by Franchi et al. to
perform tasks requiring the application of a 6D wrench (forces and torques) on the
environment.

The application of feedback linearization to a Uni-directional Thrust (UDT) AR is
not directly possible, as an input transformation is first necessary which considers the
total thrust and moment as the new system inputs [Ollero, 2021]. By adopting this
change of coordinates the system can be feedback linearized, and the resulting system
is proven to be differentially-flat [Rajappa, 2015]. Differential flatness allows writing
the dynamic model of a nonlinear system by means of algebraic relationships between
a particular set of coordinates (the so-called flat outputs) and their derivatives. For
a collinear quad-rotor the flat outputs are proven to be the position of its center
of mass (CoM) and the heading (yaw) angle [Spica, 2012]. Fully-actuated aerial
vehicles are intrinsically differentially-flat systems. Differential flatness is particularly
attracting as it allows deriving control laws that compute the inputs of under-actuated
ARs such that any trajectory in Cartesian space, with a desired yaw angle, can be
tracked [Ruggiero, 2018].

For differential flatness-based approaches, identifying the appropriate flat output is
crucial and not always feasible. There are cases where the flat outputs are successfully
identified and they allow simplifying the control problem, such as quad-rotors and
UDT ARs with attached arms [Welde, 2021]. However, there are also cases where
differential flatness is less applicable, like controlling the tool-tip EE [Nguyen, 2013],
or requiring additional design constraints, e.g., having the arm attached to the
center of mass [Yüksel, 2016]. Therefore, due to these practical issues, the use of
differential-flat-based controllers is limited and, in most cases, unfeasible.

Alternatively, to address the under actuation of many MRAVs, hierarchical
control architectures are employed, which exploit the time-scale separation between
the translational and rotational dynamics [Mahony, 2004]. This allows formulating
a control architecture where a slower outer positional control loop is in charge of
computing the orientation reference signals for the faster inner loop stabilizing the
attitude dynamics. Thanks to the easiness of integrating several other modules
within the same framework, and the possibility of controlling both fully-actuated and
under-actuated aerial vehicles, hierarchical control architectures are very adopted in
the field of aerial robotics [Ruggiero, 2018]. As an example, Ruggiero et al. [Ruggiero,
2014] build a hierarchical control architecture which decouples the translational and
rotation dynamics of a Vertical Take-Off and Landing (VTOL) UAV, and it shapes
its closed-loop mechanical properties according to an impedance control law. In
a validation campaign, the AR controlled by means of the proposed framework is
shown to perform hovering and tracking tasks without requiring a precise knowledge
of the vehicle dynamics and in presence of external disturbances.

If we consider the presence of a poly-articulated robotic arm featuring several DoFs
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attached to an aerial robot, the control of its dynamics becomes more challenging.
As mentioned earlier, differential flatness is hardly applicable. A possible approach
comprises the use of separated controllers for the flying base and the robotic arm.
Control architectures of this type are categorized as decentralized control methods,
and their accuracy relies in the robustness of the position-and-attitude control loops
for the AR in compensating the coupling disturbances induced by the attached
manipulator [Ruggiero, 2018]. For the flying base the previously discussed control
strategies can be employed [Ruggiero, 2018], and the robotic arm features the well-
established control architectures developed for industrial robots [Siciliano, 2009].
An example of those control architectures is the work in [Ruggiero, 2015]. There,
the controller exploits a wrench observer to estimate the disturbances produced
by a servo-driven robot attached to a flying base, and compensate for them when
stabilizing the MRAV dynamics.

In opposition to decentralized architectures, centralized control methods allow
considering the AM (flying base and robotic arm) as a unique entity [Ruggiero, 2018].
Again, feedback linearization constitutes an example of centralized approaches. How-
ever, among the other alternatives [Ruggiero, 2018], optimization-based controllers
are particularly interesting and worth mentioning. These methods compute the
system inputs, and possibly the states, by solving an optimization problem. The
research community found them very attracting as they can not only consider the
full dynamic model of the AM, but also the platform actuation limitations and other
task-related constraints.

Optimization-based approaches can be further differentiated into reactive and
predictive methods, depending on the fact that the control action is computed based,
respectively, only on the information available at the current time, or also on the
one related to a near future [Bicego, 2019]. An example of reactive controller is the
Quadratic Programming (QP) regulator formulated in [Nava, 2020], which allows
to compute feasible motor commands for a fully-actuated hexa-rotor featuring a
3-DoFs robotic arm in physical contact with the environment. Instead, in the class of
predictive controllers, Model Predictive Control (MPC) is a promising and powerful
approach that is finding large adoption in many robotic systems [Bicego, 2020].

MPC consists in the formulation of a constrained Optimal Control Problem (OCP),
which is composed of a cost function to be optimized and a set of constraints to
be satisfied, and whose solution generates a stabilizing sequence of system inputs
[Raković, 2018]. In particular, MPC exploits the knowledge of the dynamic model
to anticipate the future behavior of the system over a finite time horizon, and to
compute proper stabilizing optimal inputs. Thanks to the recent advances in the
solution of nonlinear OCPs [Moritz, 2001], it can be applied to the control of nonlinear
dynamic systems in real-time, and it can naturally include the task constraints and
the bounds of the robot actuators.

For its predictive nature and the possibility to include constraints, it has been
widely adopted in the field of robotics, and particularly for controlling aerial robots.
In [Darivianakis, 2014], a hybrid MPC is employed for accurate trajectory tracking
and force control of a quad-rotor for contact-based inspection applications. Similarly,
in [Kocer, 2018], a similar optimization-based technique is used for ARs in close
proximity to ceilings again to perform surface inspection. Moreover, Hofer et al. [Hofer,
2016] show that it is possible to use a similar predictive controller to stabilize a small
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rotorcraft featuring limited onboard computational resources. In [Bicego, 2020], a
nonlinear MPC-based controller has been derived for controlling both under and fully-
actuated MRAVs in real-time, while taking into consideration also the real actuation
dynamics of the considered platform. Lastly, thanks to the possibility to include any
system model as part of the optimization process, it has been used to control much
more complex aerial systems. In this direction, in [Mart́ı-Saumell, 2021], the authors
provide simulations to validate their Nonlinear Model Predictive Control (NMPC)
formulation capable of controlling the entire coupled dynamics of a poly-articulated
AM, both in free flight and in physical interaction with the environment.

2.4.3 Perception-based control

As we mentioned in Section 2.2.3, during the HARH, the aerial robot shall drive
the EE towards the goal location and maintain visibility over the other agent for
successfully perform the collaborative task. Hereby, we present two vision-based
control techniques available in the state of the art that allows to obtain these two
objectives. For a review of the methods addressing the problem of detecting the
pose of the object in the image acquired by an onboard camera, we refer the reader
to [Jacquet, 2022b].

Once the knowledge of the environment is retrieved from the sensors, a vision-
based control can be formulated to generate the motion toward the fulfillment of
the task [Hutchinson, 1996]. One of the most classical and well-known method is
Visual Servoing (VS), which consists in a control law generating motion commands
(usually at the velocity level) that can nullify a vision-defined error. Depending on the
definition of this error metric, VS can be divided into two main classes [Chaumette,
2006]: Image-Based Visual Servoing (IBVS) and Position-based Visual Servoing
(PBVS).

IBVS defines the vision-based error in the image plane of the camera. Practically
speaking, this technique tries to position the camera w.r.t. a reference image.
Conversely, PBVS estimates the 3D pose of the features in the Cartesian camera
frame and minimizes the tracking error w.r.t. a reference position. Due to the
kinematic relationships between the visual clues in the image plane and the motion
of the camera, PBVS is usually considered harder to apply than IBVS. Moreover, as
PBVS uses a pose error, it requires the measure of the depth information, which for
a monocular camera is challenging and subject to uncertainty. Furthermore, PBVS
requires an accurate extrinsic camera calibration to nullify precisely the error, while
IBVS is more robust to such imprecision since it directly controls the motion of the
features in the image plane [Jacquet, 2022b]. Nevertheless, PBVS produces camera
motions that are more natural and legible compared to IBVS, since the Cartesian
motion of the camera is directly controlled by the former method (PBVS).

An intermediate solution is offered by Hybrid Visual Servoing (HVS) schemes
[Malis, 1999; Conticelli, 1999], which use features both from the image space and
the Cartesian space. The latter type of approaches addresses the aforementioned
drawbacks of classical techniques: hence HVS is less sensitive to calibration uncer-
tainties than PBVS, and it is more robust to singularities than IBVS. In addition,
HVS relies only on partial pose estimates of the tracked visual clues.
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For their general practicality, VS schemes have found large adoption not only
in industrial manipulators [Kragic, 2002], but also for aerial robots and aerial
manipulators to perform a variety of tasks [Santamaria-Navarro, 2019]. For instance,
in [Zheng, 2018], the authors utilize an IBVS-based motion planning algorithm to
compute smooth trajectories in the camera image plane letting a collinear quad-rotor
to move from an initial to a desired location. The method is validated both in
simulations and real-world experiments. Similarly, in [Keipour, 2022], an IBVS
scheme is used to make a collinear quad-rotor land on moving targets. However, in
the last two works, the considered robot does not feature any EE and it does not
perform any physical interaction task. Later, in [Lippiello, 2018], it is shown how to
employ a VS technique to drive the EE towards the goal. In particular, Lippiello
at al. propose a control scheme combining IBVS and impedance control for an
aerial manipulator comprising two robotic arms, one equipped with a camera and a
second one with a force-torque sensor. The first arm is used to observe the scene and
help the second one during the execution of manipulation tasks. Starting from the
collected features, a vision-based control module generates the velocity commands to
be fed to an inner motion control loop, which in turn produces the system control
inputs. The latter signals, being the robot accelerations, are then converted to motor
commands by means of a feedback linearization approach. The proposed method is
validated in simulations showing the system capabilities to visually drive the AM
EE into narrow gaps and achieve consequently complex peg-in-hole tasks. Very
recently, He et al. [He, 2023] adopt another IBVS scheme to control the EE of a
fully-actuated hexa-rotor in contact-based applications, namely bridge painting. This
method, combined with a hybrid motion and impedance force controller, is shown to
let the robot drive the EE to the desired location and apply a constant force on the
environment.

The motion control commands generated by the approaches presented so far do
not guarantee to maintain the tracked visual features always within the FoV of the
onboard sensors. Under particular conditions, a VS scheme may generate commands
violating this objective [Zheng, 2018]. For this reason, despite being a good candidate
for visually driving the robot EE, it may loose visibility of the human partner during
the handover.

In aerial robotics, we have seen that MPC-based controller have found particular
attraction mainly for the possibility to include robot and task constraints. This
originated a specific branch denominated vision-based or perception-aware MPC
schemes. This variant of MPC allows including the visibility requirement as part of
the system constraints and within the cost function of the OCP. Then, the predictive
nature of this approach is used to “look ahead” and check that certain planned actions
do not jeopardize the perception-based task. Exemplary applications of such a scheme
are the works of Penin et al. [Penin, 2017; Penin, 2018], Falanga et al. [Falanga, 2018],
and Jacquet al. [Jacquet, 2021]. In [Penin, 2017], a NMPC-based motion planning
algorithm is formulated that allows generating minimum-time trajectories for a
quad-rotor equipped with a monocular camera and tasked to maintain visibility
over a set of visual features in the environment. Later, in [Penin, 2018], the same
authors show that the same method can additionally include collision and occlusion
constraints. Falanga et al. [Falanga, 2018] present an unified control and planning
perception-based NMPC including perception objectives for quad-rotors. Lastly,
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in [Jacquet, 2021], a perception-constrained NMPC is derived for generic designs
of MRAVs equipped with limited-FoV visual sensors. The proposed method allows
controlling in real-time the robot dynamics by generating feasible motor commands,
and satisfying the perception-based requirements while tracking a given motion
reference.

For a more detailed literature review in the field of perception-aware NMPC, we
refer the reader to the work of Jacquet [Jacquet, 2022b].

2.4.4 Safety

When addressing the second subproblem, the objective is the formulation of a“human-
aware” controller. The desired control law should consider both the human safety
and the user ergonomics when generating the motor commands enabling the aerial
robot to achieve a safe and comfortable handover. Hereby, we delve with the problem
of including human safety at the control level, while the user ergonomics is later
discussed in Section 2.4.5.

In the literature, safety can have different connotations. As a matter of fact,
it can be related to the subjective feeling of security perceived by the user during
the collaboration [Akalin, 2022], it can be expressed as function of the amount of
energy transferred from the robot to the human (or vice versa), or it can concern
the potential collisions between the two agents. For this reason, safety is usually
distinguished into perceived and physical safety.

In the former case, perceived safety requires a multi-disciplinary perspective
and comprises several factors, such as comfort, predictability, sense of control, and
trust [Akalin, 2022]. Henceforth, as it is typically hard to numerically quantify these
aspects by means of metrics, perceived safety is usually evaluated through user studies
involving several participants, whose personal feedback and opinions are collected
to validate the robotic system under analysis. Conversely, physical safety is related
to the occurrence of a contact between the two agents and, in such a case, to the
amount of exchanged energy and power [Santis, 2008]. Being a physics-based concept,
the latter type (physical safety) can be quantified. For instance, in [Haddadin, 2007;
Haddadin, 2009], a series of crash tests are performed involving an industrial robotic
manipulator which is made impacting several parts of a human mannequin. The
aim of these experiments is the quantification of the potential injury risks emanating
from the manipulator during an unexpected collision with a possible user. Although
Haddadin et al. focused only on certain types of impacts and EE geometries (frontal
collisions with non-sharp objects), valuable insights have been drawn. In particular,
they have shown that, for different robot masses, the larger is the robot EE velocity,
the higher is the injury risk expected after the impact. By means of the collected
data, they have been able to derive metrics and obtain information which could be
exploited in the design of planning and control algorithms. In this way, it would
be possible to generate robot motions not leading to high-speed profiles in close
proximity to sensitive human body parts, and that minimize the risk of severe injuries
in case of unavoidable human-robot collisions [Haddadin, 2017; Zacharaki, 2020].

As we aim at integrating the notion of safety within a control law, our attention
is focused only on its physical side, as mathematical tools can be derived for its
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evaluation and quantification. To achieve collision-free motions, and possibly limit
the maximum transferable energy in case of an unexpected collision, a suitable motion
planner could be derived which includes part of those insights and metrics. Along
this line, one of the earliest works in this area is [Sisbot, 2012], which develops a
manipulation planner for an assistive robot that takes into account safety among
other human aspects, such as ergonomics and field of view, to nave a few. For what
concerns the safety metrics, Sisbot et al. propose to use a simple function based on
the relative human-robot distance, which decreases as the robot is farther away from
the user. Similarly, we can mention the works of Truc et al. [Truc, 2022; Truc, 2023],
where a sampling-based motion planner is derived to compute safe and comfortable
trajectories letting an aerial manipulator approach and reach a human operator
in a R2H handover scenario. Also in this case, the safety metric is based on the
human-robot relative distance and velocity. Hence, the safety cost increases not only
if the relative distance decreases, but also if the velocity vector is oriented towards
the human, i.e. the robot is approaching the user. Therefore, in very proximity of
the human operator, the robot should perform motions at slower speeds which are in
turn related to smaller risks in the possibility of unexpected collisions.

The generation of a collision-free motion plan alone does not guarantee eliminating
any safety risk. Indeed, if the trajectory is not accurately tracked by the low-level
controller, a collision might anyway occur. In a similar way, if the plan is not
updated sufficiently fast on-line, a sudden motion of the operator or a change in
the environment might jeopardize the security of the human partner involved in
the collaboration [Li, 2021]. Therefore, it is important to re-plan locally the global
trajectory, while accounting for the changes in the surroundings.

As seen so far, optimization-based planning and control algorithms, mainly
based on MPC, are becoming quite popular when generating robot trajectories and
actuator commands to avoid collisions with dynamic entities in the environment. In
the field of aerial robotics, among all the existing articles, we can mention the works
in [Kamel, 2017; Castillo-Lopez, 2018; Dmytruk, 2022], where several NMPC-based
algorithms are designed to avoid collisions with static and/or dynamic obstacles in
the environment. The main idea pivots around the inclusion of either an expression
representing the obstacle-collision avoidance requirement within the set of constraints
to be satisfied, or a term to be minimized within the cost function. Henceforth,
in [Dmytruk, 2022], the authors introduce a constraint in the OCP bounding the
Euclidean norm of the relative distance between a moving obstacle in the environment
and the robot. This allows the MRAV to track an assigned trajectory while avoiding
the moving entities and achieving secondary perception-based tasks. Similarly,
in [Castillo-Lopez, 2018], the authors exploits the introduction of an additional
variable in the optimization process to relax the collision-avoidance constraints. In
this way, the NMPC-based controller can soften the constraints to facilitate the
resolution of the optimization problem, which is usually computationally hard to solve
in real-time. Additionally, in [Kamel, 2017], the authors propose a combination of
the previous two ideas. Inside the OCP formulation, they introduce both a collision-
avoidance constraint and a term in the cost function which allows two MRAVs to
avoid impacts between each other when sharing the same workspace as part of a
team. Furthermore, these works show that the predictive nature of MPC-based
methods can be used to predict the future displacements of the dynamic obstacles
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and anticipate potential collisions.

2.4.5 Ergonomics

As for human safety, ergonomics comprehends both physical and mental factors
[Lorenzini, 2023]. The former are related to the physical load applied on the human
worker body while performing the assigned task, e.g., when manipulating heavy
materials, in prolonged manual activities, or in attaining uncomfortable body postures.
The effects of this physical burden may provoke the so-called muscoloskeletal disorders,
whose most common examples are backache and upper limb pain. Conversely, the
mental factors affecting ergonomics are connected to the mental health problems
originated from an uncomfortable and unpleasant workplace. Typical examples are
stress and mental fatigue.

In this thesis, our interest is in the quantification and the evaluation of human
ergonomics, and the exploitation of this information to produce robot commands, and
in turn motions that result in a comfortable handover for the user. In the literature, a
way to quantify human ergonomics is using the popular rapid upper limb assessment
(RULA) [McAtamney, 1993] and rapid entire body assessment (REBA) [Hignett, 2000].
Both methods are developed to systematically evaluate the comfort level of human
workers in their workplaces, and they are conceived on the basis on the International
Organization for Standardization (ISO) normative 11228 and the European Standards
(EN) 1005 [Lorenzini, 2023]. Specifically, the former (RULA) consists of a series of
diagrams of body postures and scoring tables describing the physical burden that
workers undergo during their activities. Similarly, the latter (REBA) provides a
scoring system evaluating and ranking muscle activity caused by static, dynamic,
rapidly-changing and unstable postures in a variety of tasks.

Due to its simplicity and the possibility to numerically evaluate human ergonomics,
these methods have been applied in several planning algorithms to generate robot
trajectories leading to comfortable human-robot interactions. An example is con-
stituted by the work in [Busch, 2017], where the authors integrate the REBA in a
planning framework to allow a dual-manipulator-arm robot to estimate the human
ergonomics and propose more comfortable poses in an assembly-like collaborative
task. In [Zanchettin, 2019], a control strategy is presented for an industrial robotic
manipulator to minimize the muscular fatigue of a human operator during the manip-
ulation of large and heavy objects. In particular, the controller makes the robot move
the work-piece so that the human is always operating close to the most ergonomic
posture, which is computed by means of the REBA metric. Later, in [Makrini, 2022],
an algorithm is derived that proposes ergonomic human body postures in assembly
and human-robot collaborative tasks. Also in this case, the determination of the
comfortable joint positions is based on an optimization algorithm which exploits a
kinematic human model whose parameters are derived from the REBA guidelines. In
a similar fashion, other control and planning algorithms have integrated RULA-based
metrics [Shafti, 2019; Ferraguti, 2020].

Although these tabular ergonomic assessment methods are simple and intuitive,
their practical application within an optimization algorithm becomes challenging and
cumbersome. This difficulty arises because they employ linear step-wise functions
rather than differentiable expressions [Nejadasl, 2022]. To overcome this issue, in
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recent years, differentiable versions [Yazdani, 2022] or learning-based approximations
[Nejadasl, 2022] of RULA and REBA-based metrics have been proposed by the
research community. For example, in the work of Busch et al. [Busch, 2018], the
authors develop a differentiable polynomial approximation for the REBA metric.
This enables them to seamlessly incorporate it into an optimization-based task and
motion planning framework, which computes the joint actions and the corresponding
motion of the human and robotic agents involved in a collaborative task. With the
application of the proposed method, the user is shown to attain more comfortable
body postures.

An alternative to employing these differentiable approximations involves modeling
the human agent in a similar manner to robotic systems. [Parastegari, 2017]. In
particular, as we will also show later in Chapter 4, it is possible to consider the
human body as a poly-articulated multi-body system. Henceforth, it is possible to
compute the human joint torques and forces necessary to achieve a given task by
exploiting the same kinematic and dynamic modeling tools originally derived for
robots. This approach facilitates the derivation of quantitative metrics that can
be readily incorporated into an optimization framework. Then, these metrics can
be used to calculate robot commands and trajectories leading to both comfortable
human body postures and a reduction of the user physical burden. [Katayama, 2003].

Along this direction, in the literature, we can find the work of Peternel et
al. [Peternel, 2017], where the idea of minimizing the human overloading joint torques
is sketched. The latter method consists in reducing the effects that an external load
is producing on the human body joints (e.g., the back, neck, shoulder and elbow
articulations). To do so, Peternel et al. propose to compute the joint torques based on
a whole-body model of the human, and to integrate this estimation technique within
an optimization algorithm. Based on the computed solution, the work-piece held
by the robot is moved to a more comfortable location from the human standpoint,
which in turn minimizes the user joint torques.

A similar idea is later exploited in other works [Lorenzini, 2018; Kim, 2018; Kim,
2019]. Specifically Lorenzini et al. [Lorenzini, 2018] proposes an online estimation
of the overloading joint torques which, once integrated in an optimization problem,
allows generating robot trajectories that minimize the human joint torques. Again, in
the work of Kim et al. [Kim, 2018], a real-time technique for reducing the overloading
joint torques of the human body is proposed and applied to tasks involving the
human-robot co-manipulation of heavy objects. Later, the same authors utilize
the same idea to develop a control framework for a multi-human and mobile-robot
collaborative team [Kim, 2019]. In particular, the proposed optimization-based
methodology enables the mobile-base robot to assist several humans by reducing
their articular stress in collaborative tasks.

2.5 Conclusion

In this chapter, we described the Human-Aerial robot handover problem, we high-
lighted the characteristics of the considered aerial case, and we listed the underlying
assumptions. Subsequently, we divided the problem into two distinct parts. The first
one involves, respectively, a fully-actuated MRAV and an AM equipped with a robotic
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arm physically interacting with both the environment and humans. This subproblem
also addresses the challenge of controlling the EE to a desired location based on
visual clues. The second part of the problem deals with the integration of human
safety and ergonomics into the control architecture, leading to the development
of a “human-aware” controller. Simultaneously, this method must account for the
requirement of maintaining visibility of the human during the handover process, and
consider the actuation limitations of the AR. Lastly, we provided an overview of the
related works available in the literature.

From the research panorama, particularly relevant are indirect force control
methods which enable both position and force control of the robot EE. When the
AR is equipped with visual sensors (e.g., cameras), visual servoing has been shown
to be an effective and intuitive vision-based control capable of successfully driving
the robot EE towards the desired location. Furthermore, centralized and hierarchical
approaches, featuring controllers based on feedback linearization and optimization-
based algorithms, can be both applied to the control of any MRAV, and the flight
stabilization of a generic AM with a poly-articulated robotic arm attached to its
body. Specifically, among optimization-based methods, MPC is gaining particular
attention in the robotics community thanks to the natural integration of constraints
and objectives. For these advantageous features, it has been recently employed to
consider both actuation and perception-based constraints.

Therefore, in the next chapters, we base on the previous considerations to derive
our control methods enabling a physical and safe HARH.





Chapter 3

Method overview

The purpose of this chapter is to provide the reader with a succinct overview of the
methods proposed in this manuscript, and a summary of the main achievements. We
open this chapter in Section 3.1 by outlining the structure of the two control methods
developed to tackle the associated parts of the Human-Aerial robot handover (HARH)
problem. This serves to familiarize with the main concepts before presenting the
detailed formulations in the next chapters, namely Chapters 5 and 6. Afterwards,
in Section 3.2, we offer a panorama over the results obtained from the experimental
campaigns carried out to validate our methodology. Lastly, in Section 3.3, we
synthesize the content covered hereafter.

3.1 Methodology

To derive our methods, we take inspiration from (i) the rich and mature literature in
physical Human-Robot Interaction (pHRI), mostly involving ground manipulators,
and (ii) the emerging and greatly-inspiring efforts made in the field of physical Aerial
Robot Interaction (pARI). In this work, we want to combine the methodologies
emerging from both research domains to develop novel control methods empowering
aerial robots to physically and safely interact with humans, while including perception
requirements and accounting for their level of ergonomics.

In this section, we introduce the reader with the main key elements composing
the control architectures we propose for addressing the two subproblems defined
earlier. Consequently, this section is divided into two parts, each one associated to
one portion of the problem considered. The detailed derivations and formulations
are provided in Chapters 5 and 6.

3.1.1 Visual and physical control for HAR interaction

According to our problem decomposition discussed in Section 2.3, we aim here at
presenting the main concepts of the control architecture designed to tackle the first
subproblem. Precisely, we start by presenting a methodology addressing the first
milestone, i.e. the development of a control framework for fully-actuated aerial
vehicles in vision-based physical interaction tasks. First, the physical engagement is
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Figure 3.1: Generic control architecture for vision-based physical interaction with fully-
actuated platforms. In green the vision-based control, in orange the module in charge of
the physical interaction, in blue the geometric controller, and in gray the aerial robotic
platform.

limited to static objects in the environment, as we neglect the presence of an other
agent. Then, we extend the approach to the case of physical interaction between an
aerial manipulator and a human worker, thus accomplishing the second milestone.

Interaction with the environment

As analyzed in Chapter 2, several control strategies have been proposed in the
literature to let aerial robots perceive the surrounding environment and, at the same
time, accomplish physical tasks. A common approach is the use of a hierarchical
architecture which features several independent modules. We opt for this solution
not only for its intrinsic modularity and simplicity, which allow tailoring it to the
individual needs, but also for the possibility to integrate and compare different
control and planning algorithms [Pierri, 2018]. In Figure 3.1, we provide a block
diagram scheme of our proposed hierarchical control architecture which comprises
three modules.

A vision-based control loop generates the commands to control the robot end
effector (EE) pose and drive it towards the desired location. If we consider an
aerial robot (AR) in an activity requiring physical interaction, the robot tool tip
usually needs to reach a set of points located on a surface of an entity in order to
achieve the task. When considering a human-aerial robot handover, instead, the
EE goal position is a location at a convenient distance to the human to permit
the human-to-robot (H2R) or robot-to-human (R2H) object transfer. This module
relies on visual clues of the observed entities to control the position of the robot
end effector. The vision-based control is taking place at the kinematic level thus it
provides a desired velocity as output.

Through numerical integration, a desired trajectory is obtained from the previous
module, which is fed to a physical interaction layer. The latter (physical) component
provides a twofold functionality. First, it allows estimating the presence of an external
action, applied on the robot body. Then, if any force and torque is applied on the
platform, it shapes the robot behavior during the interaction according to a user-
defined virtual mass-damper-spring dynamics. This second functionality is achieved
by means of an admittance filter scheme, as depicted in Figure 3.1.
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The output of such a module is a new reference trajectory that the motion
controller must closely track in order to achieve the dynamics imposed by the
previous (physical) component. This motion control module generates the low-level
motor commands to control the robot actuators given a motion to follow. More
details about the internal structure and the mathematical formulation behind each
control module will be later provided in Chapter 5.

Interaction with humans

In the second case, i.e. in collaboration with a human worker, we rely on the same
hierarchical control framework presented in Figure 3.1. In this setting, the interaction
is intrinsically more challenging than in the case of static objects. Consequently, we
assume that a more sophisticated planner is generating the reference trajectory to
reach the human which is tracked by the robot controller. The human is moving in
the environment and performing other tasks while the robot approaches. Therefore,
it becomes necessary to review and re-adapt the original plan according to the user
actions. A possible solution could be employing a planner like the one discussed
in [Truc, 2022]. However, as the focus is not on designing the planning algorithm,
hereafter, we assume that the motion controller receives the reference trajectory from
an external module.

Contrary to the previous case, in this second subpart, we consider the use of
an aerial manipulator (AM). This type of AR can exploit its arm to move the EE
further away from the flying base and closer to the operator increasing the user safety
and comfort. As the previous approach is limited to fully-actuated ARs without
robotic arms, we employ a different control law which can take into account the larger
system dynamics. Precisely, we use a feedback-linearization-based controller which
allows controlling a poly-articulated platform and driving both the motor-propeller
actuators of the flying base and the joint motors of the attached manipulator. As
discussed in Chapter 2, this control method belongs to the category of centralized
control approaches as it considers the robot structure as a whole. Thus, it can
compensate for the coupling effects arising between the two subsystems.

Lastly, we will employ the same physical interaction layer introduced earlier in
the first milestone. However, it will make use of the model of the aerial manipulator
to estimate the external actions applied on the whole system, while accounting for
the disturbances created by the presence of the attached robotic arm.

3.1.2 Human-aware control for HAR handover

The control framework derived in Section 3.1.1 is “unaware” of the human presence,
since it treats the user as a source of an external disturbance influencing the robot
dynamics. As a matter of fact, the control framework does not include the human
comfort, and it does not consider either any real safety concern or the current user
activity.

The goal of this work is to derive a control strategy that can be “aware” of the
human presence, while accounting for other task requirements, thus improving the
overall quality of the handover. As a result, in the following part, we address the
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second half of the problem mentioned in Chapter 2. Contrary to the first subproblem,
hereafter we neglect the physical interaction occurring between the two agents, thus
we will focus our attention on the approach and reach phases. The objective is the
inclusion of human “awareness” within the control architecture in order to achieve a
safer and more ergonomic handover. Lastly, we validate our control framework with
an under-actuated robot, as this make the task more challenging and the proposed
method applicable to a broader spectrum of aerial vehicles (even under-actuated).

Nonlinear model predictive control

We adopt a control technique based on Nonlinear Model Predictive Control (NMPC)
to design a “human-aware” controller, which addresses the second part of the Human-
Aerial robot handover (HARH) problem.

Based on the discussion in Chapter 2, hereby, we list the considerations that
motivate this choice.

1. NMPC can predict the future evolution of the system as soon as a model is
available. Hence, we can include a mathematical description of the human
within the Optimal Control Problem (OCP) to anticipate the user motion and
actions.

2. Since it is based on the formulation of an optimization problem, it is well suited
to account for different objectives. Different terms can be included within the
cost function as a weighted summation where the weights are proportional to
the priority of the considered task. The final solution will constitute a trade-off
between the different goals.

3. As a successful handover comprises the satisfaction of a set of task requirements,
we can naturally include them within the OCP to constrain the feasible state
space where to search for the optimal solution.

4. Nowadays, efficient solvers are available which allow finding sub-optimal so-
lutions at high frequency rates enabling real-time control of the robotic plat-
form [Yutao, 2019]. This empowers researchers to develop NMPC-based con-
trollers to control the robot dynamics in real time.

Optimal control problem formulation

The essential part of any NMPC-based controller is the formulation of its OCP. Our
proposed formulation is visually summarized in Figure 3.2, and briefly discussed
hereafter. The full derivation is detailed in Chapter 6.

In the following, we list the terms composing the objective function in the OCP
reported in Figure 3.2.

• First, we have a human-relative motion part representing the task of approach-
ing and reaching the human during the handover. The reference trajectory
is specified w.r.t. a frame attached to the human (which justifies the name
“human-relative”) allowing the robot to adapt the computed solution to the
operator motion.
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Figure 3.2: A visual description of the OCP formulation employed in the second subproblem
(human-aware handover). We highlight the terms related to the reference trajectory, the
perception and actuation requirements in red, green and blue, respectively. Then, in orange
and purple we denote, respectively, the terms related to the safety and the ergonomics.
The solution to this minimization problem provides the optimal robot states and inputs.

• Then, we have a perception task consisting in maintaining visibility of the
human during the whole operation.

• Thirdly, the cost function accounts for the ergonomics of the human. As we
will show in more detail in Chapter 6, this term accounts for the joint articular
stress that the user undertakes during the handover. Therefore, the controller,
while generating the proper commands to let the robot perform the handover,
is tasked to minimize the physical burden required by the operator.

• Finally, a forth term is added to guarantee the human safety and to prevent
collisions between the two agents during the handover.

The constraints are as follows.

• An initialization of the OCP with the latest available system state measure,
that allows coping with the real system deviations w.r.t. its nominal model.

• The system dynamics composed of the robot and the human models. The
inclusion of the human model allows the robot to anticipate the user motion
by exploiting the predictive nature of the controller.

• The robot actuation limitations to ensure the generation of feasible motor
commands.

• A constraint on the perception to maintain visibility of the human body during
the entire handover.

• A minimal safety distance to enforce the collision avoidance requirement.

• A constraint on the human-relative velocities. We want to limit the velocities
in the human direction in order to constrain the amount of energy transferred
in case of an unavoidable collision [Villani, 2018].
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Remark. Perception and safety requirements. In the OCP shown in Figure 3.2,
the perception and safety requirements are not only included as constraints but
also as terms in the cost function. The reason behind this choice is related to the
applicability of this control approach to a real system. As the optimal solution
may be found at the feasibility boundaries of the search space, any uncertainty in
the robot and human states and models may cause the violation of any of those
constraints. Therefore, to avoid jeopardizing the satisfaction of those conditions, an
additional term is added to the cost function allowing maintaining a certain degree
of robustness to the uncertainties affecting the real system.

3.2 Main results

Here, we briefly present the results achieved with our proposed methodology. We
divide this section into two parts, each one introducing the validation setup and
the outcomes of the control architectures proposed for each subproblem. Therefore,
in Sections 3.2.1 and 3.2.2, we show the results related to the hierarchical control
architecture achieving physical Human-Aerial Robot Interaction and the human-
aware Nonlinear Model Predictive Control, respectively. The detailed discussion of
the quantitative results collected throughout the validation process is provided later
in Chapters 5 and 6.

3.2.1 Physical Human-Aerial robot interaction

We validate the hierarchical control architecture presented in Section 3.1.1 in two
scenarios. First, we test the developed framework in a task requiring physical
interaction with the environment and, later on, physical collaboration with a human
worker. As first validation setup we choose a pick-and-place operation, where one or
more objects shall be collected by the robot and transported to a different location.
We choose this application as first validation scenario because the ability to pick and
place an object represents a requisite to achieve any R2H handover. Conversely, for
the Human-Aerial Robot (HAR) collaborative scenario, we select a H2R handover
in a high-from-ground setting. Specifically, a human worker is located on a scaffold
while performing an activity with a certain tool. After completing the assigned task,
the operator wants to return the item which is not used anymore. Thus, the robot
shall retrieve the object from the partner.

Pick-and-place application

The validation setup comprises several bricks located in the environment which shall
be placed at a different location. The robot is a custom-designed fully-actuated
hexa-rotor equipped with a down-facing monocular camera and a gripper allowing
picking only one brick at the time, as shown in Figure 3.3. The pickable objects and
the placing location are marked with fiducial marker, namely AruCo tags [Garrido-
Jurado, 2014], which can be detected by the onboard camera. Both the placing
position and those of the bricks are not known a priori, thus the multi-rotor aerial
vehicle (MRAV) has to scan the area to find them. In Figures 3.3 and 3.4, we show
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(a) The robot scans the area searching a brick
to pick. On the right, no bricks appear within
the frame acquired by the onboard camera.

(b) The robot has detected a brick, which is
highlighted with a red circle. A successful object
detection is marked through a small red dot on
top of the identified fiducial marker.

(c) The robot arrives on top of the detected ob-
ject driven by the velocity commands generated
by the visual servoing control loop.

(d) In that position, the robot starts a descend-
ing maneuver to collect the brick, which is still
visible in the sensor FoV.

(e) The robot is in contact with the object. The
interaction is regulated by means of the physical
interaction module.

(f) The robot takes off with the collected brick.
The placing location, marked in green, starts
to move within the sensor image, but it is not
detectable yet.

Figure 3.3: First part of the pick-and-place operation designed to experimentally validate
the visual and physical control architecture allowing the robot to physically interact with
the environment. The frames acquired by the onboard camera are reported on the right of
each image. The second half of the experimental validation is reported in Figure 3.4.

some snapshots of the experiments conducted in the indoor arena at LAAS. The
figures are reported in chronological order, from left to right, and top to bottom.

At first, in Figure 3.3a, the robot is scanning the area to search for a collectable
brick while following a pre-defined trajectory. Then, in Figure 3.3b, the robot detects
the first object in the environment and the visual servoing is now enabled. This
module generates velocity commands to drive the robot on top of the brick, which
corresponds to the situation in Figure 3.3c. Once the robot is above it, the aerial
vehicle initiates the picking phase involving a descending maneuver to bring the
robot gripper in contact with the object to collect, as shown in Figure 3.3d. As the
MRAV gets closer to the brick, the camera Field of View (FoV) may be obstructed
by the surrounding environment or the robot gripper, thus the sight of the detected
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(a) The robot has detected the placing location,
which is marked in green. The visual servoing
will now drive the robot towards that spot.

(b) The robot is in the correct position to initi-
ate the placing phase.

(c) Once the robot is properly positioned, it
starts descending to place the brick.

(d) The robot is almost in contact with the
placing board and the AruCo tag is still within
the camera FoV.

(e) The robot has placed the object, and it is
taking off.

(f) The robot is now scanning again the area
for a new brick to repeat the process.

Figure 3.4: Second part of the pick-and-place operation.

object may be lost. For this reason, if the visibility is lost, the descending maneuver
is performed blindly until a sufficiently large external contact force is detected by
the wrench observer of the control architecture.

In Figure 3.3e, the robot is in contact with the brick and attempts to pick it.
Here, the brick is no more visible, as announced earlier. During the contact phase,
the physical interaction module modifies the original desired trajectory with a new
one allowing the system to be compliant with the environment. The robot picks up
the detected brick by applying a force at the contact location, so that the gripper
can effectively grasp the object. At this point, the robot should start scanning the
area again, this time searching the placing location. As the robot takes off with
the collected object, the placing location is not still completely visible within the
onboard camera FoV, as noticeable in Figure 3.3f. When the robot has completed
the ascending maneuver, in Figure 3.4a, the placing location is properly detected by
the onboard vision system, thus the visual servoing is now driving the AR towards
that position. From Figures 3.4b to 3.4d, it performs a new descending maneuver to
place the brick on top of the white board, next to the fiducial marker identifying that
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Video 3.1: QR code to the video showcasing the pick-and-place validation campaign. Link:
https://peertube.laas.fr/w/eEY4Q8nWdj1z5vs4JBaMpt.

spot. Lastly, once the object has been placed, the robot takes off to look for other
bricks, then it repeats the pick-and-place steps, as shown in Figures 3.4e and 3.4f.
In Video 3.1, a clickable link and a scannable QR code are provided redirecting the
reader to the video showing the experiments conducted at LAAS to validate the
proposed control architecture.

Human-to-robot handover

In this case, we design a validation scenario involving a Human-Aerial robot handover.
In particular, a user operator is positioned on a scaffolding elevated from the ground,
whose situation is simulated by means of a scaffold lift, as depicted in Figure 3.5a.
In that location, we imagine the human has performed a task with a certain tool
and needs to return it to a ground station. However, the user cannot descend easily,
so we use an AR to retrieve the object from the operator and bring it to the proper
location. In the considered HARH scenario, the item transfer is occurring from the
human to the robot (H2R handover). The AR is an aerial manipulator composed of
the same fully-actuated hexa-rotor base, as in the previous case, but now equipped
with a 3-Degrees of Freedom (DoFs) manipulator arm, as shown in Figure 3.5. We
assume that the handover location is known a priori and the robot is driven there by
following a pre-defined trajectory generated by an external module. However, the
user can reposition the robot to a more convenient location by pulling or pushing
its EE. In such a case, the AM is made compliant by the physical interaction layer
included in the proposed hierarchical control architecture, which allows the human
worker to re-position the robot. The final handover location decided by the user is
meant to meet the personal preferences of the operator regarding the object exchange.
Here, we show some photos taken during the experimental validation conducted at
the University of Twente1.

The robot starts from an initial location and it is tasked to approach the operator
who is signaling the need of returning the tool to the robot, as shown in Figure 3.5a.
Therefore, in Figure 3.5b, the robot starts approaching the scaffolding and heading
the EE towards the user. The desired end effector pose is pre-determined and the
robot joints are commanded accordingly. In Figure 3.5c, the robot has reached
the location for the handover and it has its EE closer to the operator. In that
configuration, it waits to receive the object. In Figure 3.5d, the operator signals
his intention to start the physical interaction phase. However, the current position

1This work has been conducted during a 3-month visiting period at the Robotics and Mechatronics
laboratory in the University of Twente, in Enschede (the Netherlands).

https://peertube.laas.fr/w/eEY4Q8nWdj1z5vs4JBaMpt
https://peertube.laas.fr/w/eEY4Q8nWdj1z5vs4JBaMpt
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(a) The robot is at its starting location, while a
human worker is on a scaffolding signaling the
intention to return an object and initiate the
handover.

(b) The robot is approaching the operator by
moving closer and heading the EE towards the
scaffolding.

(c) The robot has reached the handover location.
It has its EE closer to the user waiting for the
human to return the tool.

(d) The human signals his intention to start
the interaction. At this point, the physical
interaction layer of the robot control framework
is enabled.

Figure 3.5: Experimental validation of the hierarchical control architecture allowing the
robot to physically interact with a human worker. The experiments involve a Human-Aerial
robot handover scenario, where an operator is working on a scaffolding and needs to return
a tool to the robot. These images depict the approach and reach phases of the H2R
handover process. Pictures of the next part of the experiments are reported in Figure 3.6.

of the AM is uncomfortable and unpractical to the user, who decides to move it
to a more preferable location. As shown in Figure 3.6a, the worker does that by
pushing its end effector and moving it to the new position. The robot behavior is
regulated by the physical interaction layer of the control framework, which makes
the AR compliant with the human actions and move to the user desired position, as
reflected in Figures 3.6b and 3.6c. Lastly, in Figure 3.6d, the operator is attaching
the object to be returned to the robot end effector, which consists of a simple hook.

After having handed over the object as depicted in Figure 3.7a, the human worker
decides to move back the robot to the initial handover location. Consequently,
as shown in Figures 3.7b and 3.7c, the user pushes the robot EE again to make
the robot slide back to the point where it originally approached the scaffolding.
This demonstrates the validity of the proposed control architecture to account for
subsequent applications of external actions and properly stabilize the platform. Lastly,
in Figure 3.7d, the experiment concludes with the robot returning to its starting
position, where it can finally land. In Video 3.2, a clickable link and a scannable
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(a) The human worker decides to re-position the
robot to a more convenient location matching
his preferences by pushing on the robotic arm.

(b) The robot is compliant and moves accord-
ingly to the human pushing force.

(c) The robot has reached the location that the
operator prefers.

(d) The user is now handing over the tool to
the robot.

Figure 3.6: Photos of the interaction phase of the H2R handover. The last part of this
experimental validation is reported in Figure 3.7.

QR code can be used to be redirected to the multimedia material showcasing the
experiments conducted in the University of Twente, in the scope of the Aerial-CORE
project.

In order to asses the repeatability of the presented results, these experiments have
been replicated also at LAAS, since an identical aerial prototype has been assembled
within the time duration of the present manuscript.

Video 3.2: QR code to the video presenting the experiments conducted at the University of
Twente in the scope of the Aerial-CORE project. Link: https://youtu.be/LrQxXbQ5IHc.

https://youtu.be/LrQxXbQ5IHc
https://youtu.be/LrQxXbQ5IHc
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(a) The transferred tool is attached to the robot
EE which consists of a simple hook.

(b) The object transfer has terminated. The
human worker decides to move back the robot
to the initial handover location.

(c) The robot has reached the position from
where it originally approached the user.

(d) The robot is now moving back to the start-
ing point where it can land and conclude the
handover process.

Figure 3.7: Last part of the H2R handover. Here, the images show the last portion of the
interaction between the human and the aerial robot, and the retraction phase where the
robot returns to the initial position.

3.2.2 Human-aware aerial robot handover

We design another HAR handover scenario to validate the control methodology
proposed for the second subproblem. In this case, we imagine a human worker who
needs a tool and we employ an AR to deliver it. The operator can move freely in
the environment and the robot is an under-actuated quad-rotor equipped with a
front-facing monocular camera. The MRAV can detect the pose of the other agent
thanks to AruCo tags attached to the human body. The object to be exchanged is
represented by a spherical ball attached to the robot by means of a rigid EE.

Robot-to-human handover

We run a set of simulations in order to validate the control algorithm in a safe
environment implemented in the Gazebo simulator. In Figures 3.8 and 3.9, we report
some pictures captured during the simulations.

The robot starts from a point located behind the human operator where the
human body is visible and contained inside the FoV of the robot onboard sensor, as
shown in Figure 3.8a. The MRAV is tasked to reach a waypoint in front of the human
and then to hand over the object to the user. While the robot is moving to the
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(a) The robot starts behind the human worker
with the partner body inside the sensor FoV.

(b) The robot initiates the handover process. It
is commanded to approach the partner and to
reach an intermediary position in front of the
human.

(c) While the robot is moving to that location,
the human worker suddenly moves and turns.

(d) The aerial robot is adapting its motion ac-
cording to the one of the partner.

Figure 3.8: First part of the simulations of the R2H handover we carried out to validate
the human-aware NMPC framework. For each subfigure, the current frame acquired by the
onboard camera is reported on the bottom left corner. The tiny red dots over the fiducial
markers (AruCo tags) denote their correct detection. The second half of the simulation
validation is reported in Figure 3.9.



58 Chapter 3. Method overview

(a) The human stops moving, thus the robot
can continue its motion without performing any
adaptation.

(b) The AR has almost reached the intermediary
location in front of the human worker.

(c) The robot is in front of the human, thus
terminating the approach phase. From here, it
can now reach the human.

(d) The robot is handing over the object in an
ergonomic location computed by the NMPC-
based controller.

Figure 3.9: Snapshots related to the second part of the simulation validation campaign of
the “human-aware” controller.

commanded location, as depicted in Figure 3.8b, the human suddenly moves and turns.
Thus, the robot has to re-adapt the planned motion accordingly, while maintaining
visibility of the human trunk, as reflected in Figures 3.8c and 3.8d. Once the operator
stops moving, the robot manages to reach the intermediary position in front of
the partner without performing any motion adaptation, as shown in Figures 3.9a
and 3.9b. Once the approach is terminated, from that location, the aerial robot can
finally reach the worker to perform the tool handover, as depicted in Figure 3.9c. The
final handover position, reached by the robot in Figure 3.9d, is computed online by
the developed controller according to the proposed OCP formulation, which accounts
for the operator ergonomics. The mathematical details are provided in Chapter 6.
Additionally, in Video 3.3, a clickable link and a scannable QR code redirect to the
media content to appreciate the realized simulations presented earlier.

Once validated the effectiveness of the controller in the simulator, we conducted
a set of experiments in the indoor arena at LAAS. We decided to employ a moving
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Video 3.3: QR code to the video showing the simulations realized in the Gazebo simu-
lator for validating the “human-aware” controller. Link: https://peertube.laas.fr/w/
fvDnY4ZCaMhd5ztT2aUhS5.

(a) The robot is at the starting location before
approaching the avatar board being manipu-
lated by a user who is behind it.

(b) The user moves the panel while the robot is
reaching to perform the handover.

(c) The robot is at the final handover location
which is computed as a trade-off between the
human ergonomics, visibility and safety costs.

Figure 3.10: Experimental validation of the human-aware NMPC-based controller which
achieves a safe and ergonomic robot-to-human handover. The controller is informed that
a virtual object is frontally attached to the robot body. This virtual item is visualized
in 3.10c as a green dot attached to a virtual rigid arm (the dashed green line) at the robot
frame.

https://peertube.laas.fr/w/fvDnY4ZCaMhd5ztT2aUhS5
https://peertube.laas.fr/w/fvDnY4ZCaMhd5ztT2aUhS5
https://peertube.laas.fr/w/fvDnY4ZCaMhd5ztT2aUhS5


60 Chapter 3. Method overview

Video 3.4: QR code to the video presenting the preliminary experiments realized at
LAAS for testing the “human-aware” controller in real-world settings. Link: https:

//peertube.laas.fr/w/5aCzSTsi5BMhgXHSUB9Kg4.

panel as a mock-up of the human operator, in order to test the control framework in
a protected and controlled environment. Practically, a human user is standing behind
the board to operate and move it. We attach a set of AruCo tags to this panel to
exploit the same detection pipeline employed in the simulations. In Figure 3.10, we
report some photos taken while performing the real experiments.

In Figure 3.10a, the robot is moving in front of the human operator to hand
over the object. After the approaching phase, in Figure 3.10b, the user, who is
standing behind the board and manipulating it, is moving the panel. Consequently,
the robotic partner adapts its motion accordingly while trying to reach the board.
Lastly, in Figure 3.10c, the AR is in the final handover location which is derived
from solving the proposed OCP, thus being a trade-off between the safety, visibility,
ergonomic costs and satisfying the system constraints. In Video 3.4, a clickable link
and a scannable QR code are given and they redirect the reader to the multimedia
material to appreciate the preliminary experiments conducted at LAAS to test this
controller in real-world settings.

3.3 Synthesis

Hereby, we draw some preliminary conclusions about the work briefly presented so
far, while more exhaustive considerations will be derived in Chapter 7.

In this chapter, we unveiled the main ideas behind the proposed methodologies
addressing each subproblem. Specifically, we presented (i) a modular hierarchical
control architecture, and (ii) a predictive optimization-based approach. The former
allows to both visually control the EE towards the desired location, and to enhance
the AR with the capability to exchange forces and torques with the surrounding
environment and a human worker. The latter (NMPC-based controller) introduces
human-centric metrics within the control law, such as ergonomics and safety, and it
accounts for constraints related to perception and actuation tasks. With the inclusion
of the human state within the system dynamics of the OCP, the derived control
algorithm is “aware” of the human partner.

To validate the presented methods, we performed a set of simulations and experi-
ments. In particular, for the first subproblem, we designed two scenarios. First, we
analyzed the physical interaction capabilities of our hierarchical architecture in a pick-
and-place operation with a fully-actuated hexa-rotor. Then, we tested its extended
version in a H2R handover comprising the interaction between an aerial manipulator

https://peertube.laas.fr/w/5aCzSTsi5BMhgXHSUB9Kg4
https://peertube.laas.fr/w/5aCzSTsi5BMhgXHSUB9Kg4
https://peertube.laas.fr/w/5aCzSTsi5BMhgXHSUB9Kg4
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and a human worker on a scaffolding. Instead, for the second subproblem, we first
realized realistic simulations in a safe and controlled environment aimed at validating
the main features of the NMPC-based controller. This time, the considered scenario
involved a R2H handover. Then, we performed an experimental validation to assure
its applicability to real-world settings.
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Chapter 4

Modeling

The aim of this chapter is to provide the reader with the mathematical concepts
and tools that will be employed in the two subsequent chapters to detail our control
methodologies. In particular, the contribution of this chapter is to present the
mathematical models used to describe the state evolution of the main agents involved
in the Human-Aerial robot handover (HARH) problem presented in Chapter 2.

In this thesis, we rely on the assumption that the agents can be modeled as the
composition of one or more rigid bodies, i.e. physical entities that do not undergo
deformation or, more realistically, a deformation whose effect is so small which can
be neglected [Goldstein, 1950]. Conversely, the constituting particles of deformable
objects change relative spatial arrangement according to the intensity of the applied
deformation [Ruina, 2019].

Henceforth, this chapter is organized as follows. In Section 4.1, we offer an
overview of the notation that will be used in the remainder of this manuscript.
Additionally, in Sections 4.2 and 4.3, we recap the main definitions and concepts
in rigid-body kinematics and dynamics. After this introductory part, we unveil the
models of the agents involved in the HARH problem. Specifically, in Sections 4.4
and 4.5, we provide the models of the robotic agents, respectively a Generically-
Tilted Multi-Rotor (GTMR) and an aerial manipulator (AM), the latter being
equipped with a poly-articulated robotic arm. Next, in Section 4.6, we discuss the
actuation mechanism of the class of aerial robots (ARs) considered in our investigation,
namely that of multi-rotor aerial vehicles (MRAVs). Subsequently, in Section 4.7,
we introduce a state-space representation for the aerial robotic agents. Later on,
in Section 4.8, we continue by describing the perceptive sensors that are typically
mounted on-board MRAVs. Finally, in Section 4.9, we present the model associated
to the motion of the human agent and its upper limb. Similarly, we then show the
state-space formulation for the human models. Lastly, in Section 4.10, we conclude
this chapter with a brief reminder on the concepts covered in this chapter.

4.1 Notation

In this section, the main notation adopted throughout this manuscript is reported.
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4.1.1 Sets

Sets are written using standard letters, for example N and R denote the set of natural
and real numbers, respectively. Intervals are denoted using a set of parenthesis.
Specifically, continuous intervals are indicated with square brackets, as [a, b] is the
interval containing all real numbers within a and b given a, b ∈ R and a < b.
Similarly, discrete sets are denoted with curly braces, e.g. ¶n,m♢ and ¶1, . . . , 4♢
denote, respectively, a set containing two integer numbers n and m and a set of
integer numbers within 1 and 4.

Variables are written using Greek or Latin letters, with the following font style:

• Normal font for scalars, e.g., a ∈ R+ denotes a real positive scalar.

• Bold font for (column) vectors, e.g., v ∈ R2 and w ∈ R3 are two generic vectors
of real numbers, the former 2-dimensional (2D) and the latter 3D.

• Capital bold font for matrices, for instance, A ∈ R3×3 is a generic 3-by-3 matrix
of real numbers.

A vector of dimension p-by-1 full of zeros is denoted with op, while null matrices
of size n×m and n×n are respectively denoted as On×m and On. An n-by-n identity
matrix is indicated with the symbol In.

Elements of a generic vector v ∈ Rn and matrix A ∈ Rp×q are denoted, respec-
tively, with vk,∀k ∈ ¶1, . . . , n♢ and ai,j, i ∈ ¶1, . . . , p♢, j ∈ ¶1, . . . , q♢.

Lastly, functions are denoted with Latin letters - either in upper or lowercase
- and we adopt the same font formatting as variables. Therefore, a generic scalar
function will be denoted as b = g (a) : R → R, where a ∈ R and b ∈ R are,
respectively, the input and output scalars. Contrary, a vector function having as
input argument a vector v ∈ Rn and output a vector w ∈ Rm (n,m ∈ R+), is defined
as w = f (v) : Rn → Rm. Instead, using capital letters, we denote a function having
in input a matrix A ∈ Rn×m and output a matrix B ∈ Rp×q, as

B = F (A) : Rn×m → Rp×q. (4.1)

4.1.2 Operators

Given a generic vector v ∈ Rn, we denote with v⊤ the transpose of v. The Euclidean
(or 2-) norm of a vector v ∈ Rn is written as ∥v∥ ∈ R+. The skew-symmetric matrix1

associated to a generic vector w ∈ R3 is denoted with S(w) ∈ R3×3, and it is defined
as follows:

∀w =
[
w1 w2 w3

]⊤
∈ R3, S(w) =




0 −w3 w2

w3 0 −w1

−w2 w1 0


 . (4.2)

Next, the inverse operator is denoted with •∨, thus S(w)∨ = w.

Time derivation of a vector p ∈ Rn is denoted with the compact notation
d
dt

p = ṗ ∈ Rn. Similar notation is used for higher-order derivatives w.r.t. time: for

1A skew-symmetric (or antisymmetric or antimetric) matrix is a square matrix whose transpose
equals its negative, i.e. A ∈ Rn×n is skew-symmetric ⇐⇒ A⊤ = −A [Strang, 2006].
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instance, d2

dt2 p = p̈ and d3

dt3 p =
...
p are the second- and third-order derivatives of the

vector p ∈ Rn, respectively.

Lastly, when we write u
¯
< u < ū, u ∈ Rn, we mean that ui ∈

[
u
¯i, ūi

]
, i ∈

¶1, . . . , n♢. Therefore, the vectors u
¯
and ū collect, respectively, the lower and upper

bounds of all the elements of u. Moreover, u
¯i ̸= u

¯j with i, j ∈ ¶1, . . . , n♢, i ̸= j, and
similarly for the upper bounds gathered in ū.

4.1.3 Reference frames

A generic reference frame is denoted as FA, having origin in OA and orthogonal unit
axes xA,yA, zA. Alternatively, we write FA = OA, ¶xA,yA, zA♢.

Being Av ∈ R3 a 3D vector expressed w.r.t. FA, it is sometimes more intuitive
and convenient to denote its components as Av = [ Avx

Avy
Avz ], rather than relying

on numeric subscripts for indexing each element. For simplifying the notation, the
reference frame is omitted when implicitly obvious from the context. For instance
Av = [ vx vy vz ].

The position of OA expressed w.r.t. to another reference frame FB is denoted
with BpA. For what concerns the orientation of a frame w.r.t. another one, different
representations exist, which are discussed in the following section.

4.1.4 Subscripts

In this manuscript, when referring to a certain variable, the subscript can be either an
upper or lowercase letter. In the former case, the variable is related to a geometrical
point, e.g. pA can denote either the position of a point A or the one of the origin
OA of FA

2. If the subscript is a lowercase letter, then the variable is associated to
a certain entity. For instance, in the handover problem, ph denotes the position of
the human. Similarly, the robot body mass and the configuration of the robotic arm
attached to an aerial manipulator are denoted, respectively, with mb and qa.

4.2 Rigid-body attitude representations

Before presenting the derivation of the dynamic models describing the motion of
rigid bodies, it is worth reminding some concepts regarding the various approaches
to represent their orientation in 3D space. In general, we denote with BrA the
orientation of FA w.r.t. FB, where r denotes a generic rotation representation.
Different parametrizations are possible which are introduced hereafter.

4.2.1 Rotation matrices

Given two reference frames FA and FB, the first method to represent the orientation
of FA w.r.t. FB is by means of the rotation matrix BRA ∈ R3×3. Each column

2The discrimination between those two cases will be clear from the context.
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of BRA is composed of the coordinates of the unit vectors of FA expressed w.r.t.
FB, namely BxA,

ByA,
BzA. The column vectors composing a rotation matrix are

mutually orthogonal, as they represent the unit vectors of an orthonormal frame, and
they have unit norm [Siciliano, 2008]. Therefore, it is said that rotation matrices form
a group named Special Orthogonal group of dimension m and denoted with SO(m),
where m = 3 for spatial rotations3 and m = 2 for planar ones [Siciliano, 2009]. As a
result, given v ∈ R3, we can write S(v) ∈ SO(3), where S(•) is the skew operator
of Equation (4.2). Additionally, for a given element R of the group SO(3) it can be
proven that

RR⊤ = R⊤R = I3 and det (R) = 1. (4.3)

Given a vector Ap ∈ R3 expressed in a frame FA, it is possible to express it in a
second frame FB thanks to the rotation matrix BRA as follows

Bp = BRA
Ap, (4.4)

where Bp denotes the same vector but expressed w.r.t. FB. Eventually, successive
rotations can be obtained by composing a set of finite individual rotation matrices,
each one consisting of an intermediary rotation from the previous frame to the next
one. For instance, given three reference frames FA, FB and FC , it is possible to write

Cp = CRA
Ap, (4.5a)

CRA = CRB
BRA, (4.5b)

where the intermediary rotation matrices - namely CRB and BRA - are being
concatenated by premultiplication. However, consecutive rotations can be also
specified by constantly referring them to a common fixed frame. In the latter case, it
is necessary to postmultiply each individual rotation matrix. For more details and
proofs the reader is addressed to [Siciliano, 2008; Siciliano, 2009].

Rotation matrices are very easy to manipulate and practical to use when, for
instance, it is necessary to rotate a vector and compose rotations, as shown Equa-
tions (4.4) and (4.5). However, they contain redundant information as 9 non-
independent parameters4 are required to represent an orientation. Nevertheless,
thanks to their practicality and the absence of singularities intrinsic to their redun-
dant nature, they find great application in robotics and especially large adoption in
control problems. In the following, other representations are discussed which requires
a smaller number of parameters.

4.2.2 Euler angles

As mentioned earlier, rotation matrices are redundant as 9 parameters are employed
to describe a transformation involving only 3 Degrees of Freedom (DoFs). Differently,
Euler angles consist in 3 angles of rotations around 3 chosen axes. As a consequence,
they constitute a minimal representation, as only 3 coordinates are used to describe

3While SO(3) denotes the special orthogonal group of 3D rotations, SE(3) is the special Euclidean
group comprising 3D rotations and translations.

4The 9 parameters are constrained by the orthogonality conditions in Equation (4.3).
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the orientation state of a rigid body. As a matter of fact, a minimal representation of
a special orthonomal group SO(m) requires m(m− 1)/2 parameters [Siciliano, 2009].
Therefore, for planar rotations in SO(2) only 2 parameters are needed, while 3 shall
be used for spatial rotations in SO(3).

There exist different combinations of such angles and axes - up to 12 - which shall
satisfy the requirement that two consecutive rotations are not made about parallel
axes [Siciliano, 2009]. The set of angles - also known as convention - is denoted with
three letters to denote the rotating axes. Examples are xyz, XY Z, zxz, or again
ZXZ. These letters are reported either in uppercase to denote rotations around
moving axes (intrinsic convention) or in lowercase for rotations around fixed axes
(extrinsic)5.

The most common convention of Euler angles in robotics, and also in the aero-
nautic sector, is the (extrinsic) Roll-Pitch-Yaw (RPY) angles or xyz. It consists in
the successive rotations around the x about roll angle, y about pitch, and lastly
around z about yaw w.r.t. a common fixed frame. They are usually denoted with
the Greek letters ϕ, θ, ψ and defined as follows:

η =



ϕ
θ
ψ


 ∈ ] − π, π] ×

]
−
π

2
,
π

2

]
× ] − π, π]. (4.6)

As elementary rotations about each axis can be identified, a rotation matrix can
be expressed as function of the Euler angles. For instance, given the RPY angles η,
the rotation matrix representing the same transformation can be obtained as follows:

R(η) = Rz(ψ) Ry(θ) Rx(ϕ). (4.7)

Other conventions are obtained similarly, and analytical expressions can be found
in [Siciliano, 2009].

Euler angles are very convenient and intuitive due their connection to the physical
domain. However, singularities can arise during successive vector rotations. Being
defined over a discontinuous set, as clearly noticeable in Equation (4.6), the transitions
of roll and yaw from −π to π, or vice versa, are not continuous. In addition, a pitch
angle of π

2
introduces numerical issues in the computation of Equation (4.7), as one

obtains

R(η) =




0 sin(ϕ− ψ) cos(ϕ− ψ)
0 cos(ϕ− ψ) − sin(ϕ− ψ)

−1 0 0


 . (4.8)

This phenomenon is known with the name of Gimbal lock. When this situation occurs,
the system is said to be locked as one DoF is lost and the system is constrained to
rotate laying on a plane. Indeed, in Equation (4.8), infinite combinations of ϕ and ψ
rotations produce the same rotation. This takes place whenever the first and last
rotations both occur about the same axis [Siciliano, 2008].

5Extrinsic and intrinsic can be obtained from one to another by inverting the order of rotations
and axes, e.g. the extrinsic ZY X is equivalent to the intrinsic xyz.
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4.2.3 Angle and axis

A third common orientation representation consists in defining an axis of rotation
and an angle about which rotate the rigid body. This representation is therefore
named angle-axis and it comprises 4 parameters: 3 for the 3D unit vector uθ of
the rotation axis, and an additional one for the angle θ ∈ [0, π[ of the rotation. By
applying the Rodrigues formula [Dai, 2015], the associated rotation matrix can be
computed as

R = I3 + sin θS(uθ) + (1 − cos θ)S(uθ)
2 . (4.9)

Interestingly, despite the use of 4 parameters, this representation constitutes a
minimal representation as one out four of them can be computed from the other three.
However, it is not exempt from singularities, which occur at rotations of θ = π radians,
which is consequently removed from the function domain. Indeed, the rotation about
uθ of θ and the opposite rotation about −uθ of −θ are equivalent and cannot be
distinguished leading to a non-uniqueness in attitude representation [Siciliano, 2008;
Siciliano, 2009]6. Moreover, a rotation of a null angle makes the axis undetermined
as infinite solutions exist, thus introducing a singularity.

4.2.4 Unit quaternions

Quaternions are another representation comprising 4 parameters. In fact, they
are composed of 4 real numbers belonging to a space denoted with Q, which is
homeomorphic to R4. A quaternion q is defined as follows

q = qw + iqx + jqy + kqz ∈ Q, (4.10)

and then conveniently written as

q =




qw

qx

qy

qz




∈ R4, (4.11)

where iqx + jqy + kqz is the vector part of q and qw the scalar one [Bork, 1966].
It is possible to find other conventions, which would make the whole formulation
different [Solà, 2017]. As an example, it is possible to place the scalar qw at the end
of the definition of q. Nevertheless, the convention used through this manuscript is
the one shown in Equation (4.11).

Given two quaternions q1 =
[
qw1 qx1 qy1 qz1

]⊤
and q2 =

[
qw2 qx2 qy2 qz2

]⊤
,

an important operator is the Hamilton product [Girard, 2007], which is defined as

q1 ⊗ q2 =




qw1qw2 − qx1qx2 − qy1qy2 − qz1qz2

qw1qx2 + qx1qw2 + qy1qz2 − qz1qy2

qw1qy2 + qy1qw2 + qz1qx2 − qx1qz2

qw1qz2 + qz1qw2 + qx1qy2 − qy1qx2



, (4.12)

6The non-uniqueness issue does not represent really a problem is one restricts the domain of
definition of theta to positive angles only, i.e. θ > 0.
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from which it can be derived that

∥q1 ⊗ q2∥ = ∥q1∥∥q2∥. (4.13)

Then, for a quaternion q ∈ Q, we denote its conjugate as q⋆. It is obtained from q

by negating the vector part, thus it is defined as follows:

q⋆ =




qw

−qx

−qy

−qz




∈ R4. (4.14)

Unit quaternions, i.e. those quaternions for which ∥q∥ = 1, can be interpreted
as orientation specification or a rotation operator. Indeed, unit quaternions can be
related to the Axis-angle representation introduced in Section 4.2.3, as it can be
proven that

q =


 cos θ

2

u sin θ
2


 , (4.15)

which in turn satisfies ∥q∥ = sin2 θ
2

+ cos2 θ
2

= 1. In case of unit quaternions the
conjugate of a non-zero quaternion can be proven to be equal to the inverse of the
same quaternion [Rucker, 2018], since the inverse of a quaternion is defined as

q−1 =
q⋆

∥q∥2 ∈ R4. (4.16)

As quaternions represent a rotation operator, the same transformation parametrized
by means of a rotation matrix R can be expressed with quaternions. This is proven
to be obtained by means of the Hamiltonian product operator, which provides the
compact and elegant form


0

Rp

]
= q ⊗


0
p

]
⊗ q⋆, (4.17)

which for unit quaternions and their property in Equation (4.16) can be rewritten as

q ⊗


0
p

]
⊗ q−1.

In a similar fashion to the composition of rotation matrices through multiplication,
rotations parametrized as quaternions are composed together again by means of the
Hamilton product which leads to


0

R1 R2p

]
= q1 ⊗ q2 ⊗


0
p

]
⊗ q⋆

1 ⊗ q⋆
2. (4.18)

Quaternions, and in particular unit quaternions, are widely adopted in robotics,
for instance to represent the attitude of a robot end its end effector orientation
[Xian, 2004]. They are employed to describe the vehicle attitude in the aerospace
sector [Costic, 2001] and recently in underwater robotics [Grande, 2018], since a
spacecraft or a glider might assume body attitudes that are singular if parametrized,
for instance, with Euler angles. Their use is also popular in computer vision and
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3D graphics for their computational efficiency, as they do not involve the use of
trigonometric functions and their differential equations are linear [Rucker, 2018].

The interested reader can find more details and derivations about this representa-
tion in [Kuipers, 1999; Silva, 2002; Diebel, 2006; Girard, 2007; Solà, 2017].

4.3 Overview on rigid body dynamics

In this section, the dynamics of rigid bodies is discussed. With dynamics we refer
to the relationship relating the motion of rigid bodies to the torques and forces (i.e.
wrenches) originating such a motion [Goldstein, 1950]. In Classical Mechanics7, two
are the main formalisms used to describe the dynamics of a rigid-body system,
precisely the Newtonian and the Lagrangian formalisms [Kurfess, 2005]. It is
important to underline that, while these approaches lead to the same outcome,
the backbone ideas are quite dissimilar. Moreover, as discussed hereafter, they can
provide different perspectives and insights on the model of the system and about its
properties.

The Lagrangian approach offers an elegant and systematic way of expressing
the dynamic model of rigid-body systems which is independent of the reference
coordinate frame [Siciliano, 2009]. It comprises firstly the choice of a set of generalized
coordinates ξ ∈ Rn, i.e. the free variables which the system dynamics will be expressed
with respect to. These coordinates, if properly chosen, allow to fully capture the
configuration of the robot and its DoFs, and account at the same time for all
the system constraints. First, the kinetic and potential energies are computed as
function of the chosen coordinates and, next, the dynamic model of the system can be
derived by applying the Lagrange equations. These equations establish the relations
existing between the generic forces applied to the system and the free coordinates
and derivatives [Siciliano, 2009].

This formalism is well-suited to identify the conserved quantities and the dissipa-
tive effects in the model, to derive insights on interesting properties of the system,
and to deal in a systematic way with constraints [Kurfess, 2005]. Despite its elegant
formulation, the method is revealed being unpractical and less computational efficient
for complex systems with a large number of DoFs.

A preliminary version of Newtonian formalism was firstly published by Isaac
Newton in 1687 for point-particle systems and later extended to rigid bodies by
Leonhard Euler in 1736. This justifies why in the literature this formalism is
commonly known as Newton-Euler [Beatty, 1986]. Differently from the Lagrangian
formalism, it is particularly well-suited to compute the dynamic model of a multi-
body system thanks to the existence of a recursive and efficient way to express this
methodology. In the literature, this version of the Newton-Euler method is named
Recursive Newton-Euler Algorithm (RNEA) [Siciliano, 2008].

In general, the Newton-Euler formalism considers the system dynamics in terms
of the applied forces and torques, which are expressed w.r.t. a precise reference frame.

7Classical Mechanics is that branch of Physics studying the motion of macroscopic objects
whose dimensions are not (sub-)atomic (field of interest of Quantum Mechanics) and speed is not
approaching the speed of light (field of interest of Relativity) [Kibble, 2004].
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In the case of multi-body systems, this formalism treat each rigid body independently
and model the couplings, which are introduced by the different joint mechanisms,
through the forces required to enforce them [Kurfess, 2005].

Given the existence of a recursive form, it is a very scalable method and particu-
larly efficient when implemented as a software algorithm. Moreover, the Newton-Euler
approach is systematic and of straightforward understanding, and it is revealed to
be effective when considering complex effects, like deformations of flexible links.
Nevertheless, it requires special attention and treatment in the case reaction forces
arise in constrained systems, or for robots containing a closed-chain kinematics.

Both formalism lead to the same dynamic model for the considered system, as
it will be outlined in Section 4.3.1 and Section 4.3.2. However, in this chapter, we
will provide the derivation of the dynamic model of a Generically-Tilted Multi-Rotor
(GTMR) (Section 4.4) an aerial manipulator (AM) (Section 4.5) solely by means of
the Newton-Euler formalism. The motivation lies in aforementioned advantages in
ease of application, computational efficiency and scalability of this approach when
deriving the dynamic model for complex systems with a large number of DoFs, being
the case for MRAVs equipped with robotic arms.

4.3.1 Lagrange formalism

As mentioned earlier, when adopting the Lagrange formalism, the first step consists
in the definition of the generalized coordinates ξ ∈ Rnξ and their derivatives ξ̇ ∈ Rnξ ,
where nξ ∈ N+. Then, as second step, the Lagrangian functions can be defined as

L

(
ξ, ξ̇

)
= K

(
ξ, ξ̇

)
− U (ξ) , (4.19)

where K

(
ξ, ξ̇

)
: Rnξ×nξ → Rnξ and U (ξ) : Rnξ → Rnξ are the kinetic and the

potential energy of the system [Siciliano, 2008]. Subsequently, the Lagrange equations
can be computed, which in compact form are given by

d

dt

∂L

∂ξ̇

⊤

−
∂L

∂ξ

⊤

= λ, (4.20)

where λ ∈ Rnξ collects the generalized forces associated with the generalized coordi-
nates ξ [Siciliano, 2009]. Particularly, the contributions to these generalized forces
comprise all the non-conservative effects. Thus, they include the forces and torques of
the actuators, the friction forces originating from non-ideal behaviors of the mechani-
cal parts, aerodynamic effects, and the external forces acting on the robot eventually
arising from any interaction with the environment or other (robotic and human)

agents. As an example, lets consider a set of nf forces f =
[

f1
⊤ ... fnf

⊤

]⊤
∈ R3nf ,

where each individual force fi ∈ R3 is applied to a generic point pi ∈ R3 of the
system, with i ∈ ¶1, . . . , nf♢. The generalized force component λj can be computed
as follows

λj

(
f , ξj

)
=

nf∑

i=1

fi
⊤∂pi

∂ξj

, j ∈ ¶1, . . . , nξ♢. (4.21)

Similarly, if a set of torques is additionally applied on the system, the generalized
force coordinates would account also for those torques producing an effect on the
considered generalized coordinate.
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Substituting the terms in Equation (4.21) into Equation (4.20), and evaluating
the system kinetic and potential energies as function of the generalized coordinates,
the dynamic model of the rigid-body system can be obtained. For the mechanical
systems considered in this manuscript, the kinetic energy can be proven to have
a quadratic form of the type K

(
ξ, ξ̇

)
= 1

2
ξ̇⊤M (ξ) ξ̇, where M ∈ R

nξ×nξ
+ is the

symmetric positive-definite configuration-dependent generalized inertia matrix which
accounts for the inertial effects. Hence, it is possible to write the system dynamical
model in the following compact form

M(ξ)ξ̈ + n(ξ, ξ̇) = λ, (4.22)

where ξ̈ ∈ Rnξ are the second-order derivatives of the generalized coordinates (i.e.
the accelerations), and the vector n ∈ Rnξ is the so-called generalized bias force
comprising all the effects that require a torque for being compensated at zero
accelerations. Thus, it accounts for the Coriolis and centrifugal forces, gravity and
dissipative effects such as friction [Featherstone, 2008]. As the potential energy
corresponds only to the gravitational potential [Siciliano, 2009], it is possible to have
the gravity term appear explicitly in Equation (4.22) resulting in

M(ξ)ξ̈ + c(ξ, ξ̇) + g(ξ) = λ, (4.23)

where g(ξ), c(ξ, ξ̇) ∈ Rnξ denote, respectively, the gravitational and the Coriolis-
centrifugal vectors. This last term can be partitioned into a matrix multiplying
the system velocities as c(ξ, ξ̇) = C(ξ, ξ̇)ξ̇. However, the choice of the partitioned
matrix C ∈ Rnξ×nξ is not unique and several choices exist. One common choice can
be obtained by means of the so-called Christoffel symbols of the first type. For more
details, the interested reader is addressed to [Siciliano, 2009].

Equations (4.23) are named Equation of Motion (EoM), or alternatively Canonical
equations [Siciliano, 2008], and they establish the relations existing between the
generalized coordinates (positional variables) and their derivatives (i.e. velocities
and accelerations), and the generalized force contributions. However, sometimes it is
more convenient to consider the system velocities expressed in Cartesian coordinates
rather than the derivatives of the generalized coordinates. In such a case, the twist
vector ζ ∈ Rnξ is introduced to collect the velocities of the system and, in general,
ξ̇ ̸= ζ, since a mapping T(ξ) between the two exists which is function of ξ. Hence,
Equation (4.23) can be rewritten by using the twist vector as

M(ξ)ζ̇ + c(ξ, ζ̇) + g(ξ) = λ, (4.24)

In Section 4.4.1 and Section 4.5.3, this mapping is shown, respectively, for the
case under consideration of GTMRs and AMs, as their dynamic models are derived
in the same form as Equation (4.24).

Remark. Direct dynamics. The direct dynamics problem consists in evaluating the
robot motion, i.e. the time evolution of the generalized coordinates ξ, ξ̇, ξ̈ as a result
of the given generalized forces λ and the system initial conditions. This corresponds
to simulate the robot given its model expressed as in Equation (4.22), since the
output of any simulator are the system positions, velocities and accelerations, given
as input the forces and torques applied.
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Remark. Inverse dynamics. The inverse dynamics problem, instead, consists in the
opposite case of the direct dynamics one. Therefore, given the time evolution of
the system coordinates, the generalized forces required to generate the motion are
computed. Consequently, this consists in the control problem, where the actuator
commands are generated to produce a desired system behavior.

4.3.2 Newton-Euler formalism

The Newton-Euler formalism is based on two fundamental physical quantities, namely
the linear and angular momenta. For a single rigid body, in the absence of an external
wrench (forces and torques), the total momenta - i.e. the sum of the linear and
angular ones - will not vary. Conversely, if a wrench is applied on the system, then
the time evolution of that quantity, expressed in an inertial frame, is related to the
net contribution of all forces and torques acting on the center of mass (CoM) of the
system. In mathematical terms, we can write:

d

dt

(
mCoM

W vCoM

)
= W fCoM, (4.25a)

d

dt

(
W JCoM

WωCoM

)
= WτCoM, (4.25b)

where W vCoM,
WωCoM ∈ R3 are, respectively, the linear and angular velocities of the

CoM expressed w.r.t. an inertial frame denoted with FW . The scalar mCoM ∈ R+

and the matrix W JCoM ∈ R3×3
+ are the mass and the inertia computed w.r.t. a frame

having its origin in the CoM of the rigid body, but expressed in FW . Lastly, the
vectors W fCoM,

WτCoM are the net forces and torques applied on the CoM of the body.

In the case of a system composed of multiple rigid bodies, the Newton formalism
foresees to treat each individual body independently. Therefore, for each one, a set of
equations for the linear and angular motions shall be written down, while accounting
for the coupling interactions induced by the joints within the neighboring bodies.
This process can be performed in a recursive way by employing the RNEA, which
is composed of two main phases: a forward recursion and a backward recursion. In
the former, the velocities and accelerations are propagated from the first rigid body
to the last one composing the system. In doing so, the kinematic quantities of each
body are computed from those of the previous one in the chain. In the backward
recursion, instead, the forces and torques are back-propagated starting from the last
rigid body, usually the end effector of the robot, to the first one, i.e. the fixed or
moving base of the structure [Siciliano, 2008].

The equations obtained from the application of the RNEA are not in closed
form, since the motion of each rigid body is coupled to the ones of the other bodies
through the kinematic relationships of the velocities and accelerations [Siciliano,
2008]. However, by applying such an algorithm, it is possible to derive the dynamic
model of the system as a whole, resulting in an expression identical to the one
in Equation (4.22), which was obtained by means of the Lagrange formalism.
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4.4 Generically-tilted multi-rotor systems

The robotic agent involved in the handover problem is an aerial robot whose possible
designs have been presented in Chapter 1. Despite their mechanical complexity and
actuation properties may largely differ, it is possible to model them by adopting
a common formulation presented hereafter. We first derive the model for a simple
flying aerial vehicle equipped with an arbitrary number of motor-propeller actuators
arbitrarily distributed w.r.t. to the body. This category of vehicles falls under the
umbrella of the Generically-Tilted Multi-Rotor formulation presented in [Bicego, 2020;
Jacquet, 2021] and adopted in the following. Once the main results are shown for a
simpler AR design, in Section 4.5, we provide the model for a more complex flying
robot, namely an aerial manipulator, being a GTMR equipped with a robotic arm.

4.4.1 Equations of motion

A GTMR is modeled as a rigid body of mass mb ∈ R+ and inertia Jb ∈ R3×3
+ . Besides,

it is actuated by np ∈ N+ motor-propeller actuators, arbitrarily placed and oriented
w.r.t. its main body.

As shown in Figure 4.1, we define a world inertial frame as FW , with its origin
OW and its axes xW ,yW , zW arbitrarily oriented. We introduce then a body frame
FB whose origin OB attached to the AR, in a point that usually and conveniently
coincides with its geometric center. Differently from the common assumption to have
the CoM of the system being coincident with OB [Michieletto, 2018; Bicego, 2020],
we assume it is located at a generic position BpCoM ∈ R3 w.r.t. OB ∈ SO(3).

Then, we define an actuator frame FAi for each motor-propeller pair i ∈
¶1, . . . , np♢, having zAi coincident with the motor axis. Therefore, their spatial
arrangement w.r.t. the main body is given by BpAi ∈ R3 and BRAi . Precisely, the
several existing configurations of motor-axis orientations, which generate the wide
spectrum of MRAV designs, can be represented with a pair of two angles: αi ∈ R

and βi ∈ R, being respectively the radial and tangential directions of each actuator.
As a result, we can write BRAi = BRAi (αi, βi).

We then denote with W pB ∈ R3 the position of OB w.r.t. FW , and with
W RB ∈ SO(3) the orientation of the rigid body expressed w.r.t. FW . Therefore, the
orientation parametrizations by means of unit quaternions is denoted with W qB ∈ R4,
while the one through Euler-Angles with WηB ∈ R3. We then indicate with W vB ∈ R3

the linear speed of OB expressed in FW , and with BωB ∈ R3 the angular velocity of
FB w.r.t. FW specified in FB.

Remark. Simplicity of notation. Hereafter, the reference frame is omitted for any
vector expressed w.r.t. the inertial frame FW , and for any rotation expressing the
orientation of a frame w.r.t. to FW .

The EoMs of a GTMR can be derived by exploiting the Newton-Euler formalism
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Figure 4.1: Here, a schematic representation of a Generically-Tilted Multi-Rotor (GTMR)
is provided as well as the depiction of the main frames used to describe its motion. The x,
y and z of each frame are respectively drawn using the RGB convention.

introduced in Section 4.3.2, which provide the following set of equations:

ṗB = vB, (4.26a)

q̇B =
1

2
qB ⊗


0

BωB

]
, (4.26b)

mbp̈B = −mbgzW + RB

(
Bfact + Bfext

)
(4.26c)

Jb
Bω̇B = −S

(
BωB

)
Jb

BωB − S
(

BpCoM

)
RB

⊤mbgzW + Bτact + Bτext, (4.26d)

where the scalar g = 9.81ms−1 is the intensity of the gravity acceleration. The pair
Bfact,

Bτact ∈ R3 denote the wrench applied by the actuators on the AR and expressed
in FB. It will be further detailed in Section 4.6.1. The pair Bfext,

Bτext ∈ R3, instead,
is the net contribution of the forces and torques exchanged between the AR and the
external environment, e.g. an obstacle, and with another (robotic or human) agent.
Therefore, given ne ∈ N contact locations belonging to the robot airframe, the net
contribution of the external wrenches can be written as

Bwext =




Bfext
Bτext


 =

ne∑

e=1




BRE,e O3

S
(

BpE,e

)
BRE,e

BRE,e


 EwE,e, (4.27)

where EwE,e ∈ R6 denotes an individual contribution applied to the contact location
e ∈ ¶1, . . . , ne♢ [Siciliano, 2009]. Each term is expressed in a local frame FE having
its origin OE in each contact point and roto-translated by BpE,e ∈ R3, BRE,e ∈ SO(3)
w.r.t. FB. As discussed in Chapter 1, multi-rotor ARs are usually equipped with
an end effector rigidly mounted on the main body for performing tasks requiring
physical interaction with the external environment, thus resulting in ne = 1 and FE

being the EE frame.

Equation (4.26b) is the time derivation of a unit quaternion, which is related
to the angular velocity of the rigid body BωB ∈ R3. A proof of such a formula
is provided in [Solà, 2017]. Moreover, the same equation can be written in the
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alternative form

q̇B =
1

2


0

WωB

]
⊗ qB, (4.28)

with the body angular rates expressed w.r.t. FW .

Remark. Reference frame. The translational part of the system dynamics in Equa-
tion (4.26) is expressed in the inertial frame FW , while the rotational part in FB.
The motivation behind this choice lies in the fact that the inertia matrix would
be configuration-dependent otherwise, if it was expressed w.r.t. FW . Therefore, as
quaternion dynamics, we adopt Equation (4.26b). Consequently, the state vector,
which is defined later in Section 4.7, does not contain the body angular rates expressed
in world frame but rather in FB, i.e.

BωB.

By rearranging and collecting the terms in Equations (4.26c) and (4.26d), it is
possible to write the GTMR dynamics in the same form as of Equation (4.24). As
previously carried out in Section 4.3.1, we first define the generalized coordinates and
the twist for the GTMR. The former is denoted with ξGTMR and it collects the position
and orientation of the robot expressed in FW , thus ξGTMR = [ pB

⊤ qB
⊤ ]⊤ ∈ R7. The

latter, instead, gathers the velocities of the aerial robot in Cartesian space [Doty,
1993] and it is defined as ζGTMR = [ vB

⊤ BωB
⊤ ]⊤ ∈ R6, where BωB is related to q̇B

by means of Equation (4.26b). At this point, we can conclude that


mbI3 O3

O3 Jb

]

︸ ︷︷ ︸


p̈B

Bω̇B

]

︸ ︷︷ ︸
+


 o3

S
(

BωB

)
Jb

BωB




︸ ︷︷ ︸
MGTMR (ξGTMR) ∈ R6×6 ζ̇GTMR ∈ R6 cGTMR (ξGTMR, ζGTMR) ∈ R6

+


 mbgzW

S
(

BpCoM

)
RB

⊤mbgzW




︸ ︷︷ ︸

=


RB O3

O3 I3

] 


Bfact + Bfext
Bτact + Bτext




︸ ︷︷ ︸

,

gGTMR (ξGTMR) ∈ R6 λGTMR ∈ R6

(4.29)

where ζ̇GTMR =
[

v̇⊤

B
Bω̇B

⊤

]⊤
∈ R6 is the derivative of the twist vector ζGTMR, hence

it contains the Cartesian accelerations of the aerial robot. The canonical form of the
GTMR dynamic model is as follows

M (ξ) ζ̇ + c (ξ, ζ) + g (ξ) = λ, (4.30)

where we have removed the subscript “GTMR” to lighten the notation.

4.4.2 Center of mass

A CoM location not coincident with the geometric center (i.e. BpCoM ̸= 0) induces
a non-zero torque in the rotational dynamics of the system, as noticeable in Equa-
tion (4.26b). Moreover, it affects also the computation of the inertia matrix Jb of
the platform. Specifically, in Equation (4.26d) the notation BJb should be used in
order to explicitly indicate that the inertia is expressed w.r.t. FB

8 Therefore any
inertia matrix relative to a pole O expressed w.r.t. a generic frame FA is denoted

8Through this manuscript we will use the same notation as in [Siciliano, 2009].
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as AJO. Therefore, it is possible to account for a non-zero BpCoM by means of the
Steiner’s theorem or parallel axis theorem [Siciliano, 2009] as follows

BJb = BRCoM
CoMJb

BRCoM
⊤

+ S
(

BpCoM

)⊤
S
(

BpCoM

)
, (4.31)

where conveniently it is assumed BRCoM = I3, being the choice of those coordinate
axes arbitrary. In Equation (4.31), CoMJb represents the inertia of the AR computed
w.r.t. the CoM. The value of this parameter is computed by integrating the mass
properties on the volume of each object composing the mechanical structure of the
robot. This process nowadays is automatized by Computer Aided Design (CAD)
software. Nevertheless, precise values of BpCoM and CoMJb are hard to obtain, as a
minimal change in the robot configuration, such as the addition of a sensor or the
displacement of an hardware component, will affect these parameters.

Knowing the CoM location has been shown to improve the tracking performances
of a given controller, thanks to the exploitation of a more precise knowledge of the
underlying robot physics [Mellinger, 2011; Jacquet, 2022b]. As a first guess, such a
parameter can be set to zero for preliminary experimental tests. However, simple
procedures can be designed to compute a rough estimate and consequently obtain
better results, as the one proposed in [Jacquet, 2022b].

4.4.3 Model assumptions

The dynamic model in Equations (4.26) relies on some assumptions, as it neglects
some high-order effects which are instead accounted by adopting more sophisticated
and complex models [Hanover, 2023]. To name a few, the model does not take into
consideration (i) the gyroscopic effect induced by the conservation of the angular
momentum of the propellers, which have a small but non-zero mass and inertia;
(ii) the blade flapping phenomenon induced by the non-rigidity of the propellers;
(iii) body drag and lift which, for the former, may be observed at very high-speed
maneuvers, while for the latter in windy environments for particular robot designs
offering specific surfaces that can produce lift if the relative wind speed is large;
(iv) ground and ceiling effects which produce additional disturbances on the robot
airframe. These effects are usually negligible compared to the main body dynamics,
as they can appear in particular conditions like during high-speed translational
maneuvers or in specific environmental settings, e.g. windy environments. In the
case of small-scale aerial robots and the tasks considered through this thesis, it is
particularly safe neglecting these effects. The reduced dimensions of the propeller
blades introduce minor flapping phenomena and small ground and ceiling effects
appear when interacting with the surrounding environment. On the other side, the
inertial parameters of some components, like those of the rotors and propellers,
play a bigger role if the scale of the vehicle increases [Pounds, 2010]. Analogously
aerodynamic effects cannot be neglected when performing maneuvers involving
very large speeds and accelerations [Salzmann, 2022]. Similarly, wind gusts and
disturbances with the nearby objects in the environment shall be considered if the
action of such a disturbance plays a noticeable effect on the robot dynamics. Usually,
and especially in the design phase of a control approach, the model should be capable
of taking into account the most important part of the phenomena under investigation
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Figure 4.2: This figure presents a schematic drawing of an aerial manipulator, being a
composition of a GTMR and a robotic arm.

without requiring an overly complex mathematical description for the class of robots
and applications considered.

4.5 Aerial manipulator systems

After presenting the model used to describe the dynamics and the motion of a
GTMR aerial robot, in this section we extend the formulation to account also for
an additional robotic arm mounted below. This extra device enhances the AR with
additional DoFs introducing more dexterity, which simplifies the execution of tasks
requiring physical interaction, and increasing the level of redundancy in the system.
As mentioned in Chapter 1, in this work we consider only aerial robots equipped
with serial manipulators, while parallel and dual-arm systems are not considered.

4.5.1 A flying base and a robotic arm

An aerial manipulator can be decomposed into two subsystems: a flying base and a
robotic arm. A schematic representation is provided in Figure 4.2. The flying base is
the GTMR modeled in Section 4.4. An open-chain serial manipulator is mounted
which introduces nq ∈ N+ DoFs to system. This manipulator is composed by nq

links interconnected to the flying base and within each other by nq joints, either
revolute or prismatic. We collect the joint variables in the vector qa ∈ Rnq , and we
denote its derivatives as q̇a, q̈a. They gather the joint angles and displacements of
the revolute and prismatic joints, respectively.

We define a frame attached to each link and we denote it as Fi = Oi, ¶xi,yi, zi♢, i ∈
¶1, . . . , nq♢, with zi parallel to the joint axis. The frames are defined according to
the Denavit-Hartenberg (DH) convention, explained in detail in [Siciliano, 2009]. We
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assume that the mass of each link is distributed uniformly and we denote the CoM
position of each link with ipCoM,i ∈ R3, which is expressed w.r.t. to frame attached
to the i-th link. The inertial properties of the i-th link are denoted as mi ∈ R+ and
iJi ∈ R3×3

+ . Lastly, we denote the position of Oi w.r.t. Fi−1 as i−1pi ∈ R3, and its
linear and angular velocities as i−1ṗi,

i−1ωi ∈ R3, respectively. Similar notation will
be adopted for the linear and angular accelerations of each link.

To derive the EoMs for an AM, we rely on the Newton-Euler formulation and
particularly on its recursive approach, i.e. the RNEA mentioned in Section 4.3.2.
Therefore, we will detail the mathematical steps of its forward and backward passes,
and then how to use them to derive the model for an aerial manipulator.

4.5.2 Recursive Newton-Euler algorithm

In the following, we will draw the main results for an AR equipped with a manipulator
owing only revolute DoFs. In case some prismatic joints are present, similar results
can be obtained. The interested reader is addressed to [Siciliano, 2009] for a full
derivation and proofs.

In the forward recursion of the RNEA, the velocities and accelerations of each
link i ∈ ¶1, . . . , nq♢ are computed starting from those of the GTMR base (i = 0).
Therefore, we write the following initial conditions

0p̈0 − 0g0 = W RB
⊤
(

W p̈B − gzW

)
, 0ω0 = BωB,

0ω̇0 = Bω̇B, (4.32)

where the linear accelerations of the base account also for gravity. Consequently, the
kinematic quantities of the manipulator links can be obtained using the following
equations

iωi = i−1Ri
⊤

(i−1ωi−1 + q̇izi), (4.33a)

iω̇i = i−1Ri
⊤

(i−1ω̇i−1 + q̈izi + q̇iS
(

i−1ωi−1

)
zi), (4.33b)

ip̈i = i−1Ri
⊤ i−1p̈i−1 + S

(
iω̇i

)
i−1Ri

⊤ i−1pi + S
(

iωi

) (
S
(

iωi

)
i−1Ri

⊤ i−1pi

)
,

(4.33c)

ip̈CoM,i = ip̈i + S
(

iω̇i

)
ipCoM,i + S

(
iωi

) (
S
(

iωi

)
+ ipCoM,i

)
, (4.33d)

given that

ip̈i = i−1Ri
⊤ i−1p̈i,

iṗi = i−1Ri
⊤ i−1ṗi,

ipi = i−1Ri
⊤ i−1pi,

iω̇i = i−1Ri
⊤ i−1ω̇i,

iωi = i−1Ri
⊤ i−1ωi,

(4.34)

It is worth it to point out that each variable is expressed w.r.t. the current i-th link
and as function of the velocities and accelerations of the previous link.

Having computed the velocities and accelerations from the base link to the end
effector with the forward recursion, a backward step is carried out for the forces and
moments. Given the wrench applied to the end effector (i.e. the last link of the
manipulator chain), the force and torques applied to each link, respectively fi ∈ R3
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and τi ∈ R3, can be computed as

ifi = iRi+1
i+1fi+1 +mi

ip̈CoM,i, (4.35a)

iτi = iRi+1
i+1τi+1 − S

(
ifi

) (
ipi + ipCoM,i

)

+ iRi+1S
(

i+1fi+1

)
ipCoM,i + iJi

iω̇i + S
(

iωi

) (
iJi

iωi

)
. (4.35b)

Then, the generalized force associated to the i-th joint is obtained as follows

λi = iτi
⊤i−1Ri

⊤
zi−1, (4.36)

where for the EE link, i.e. i = nq + 1, the forces and torques are given by the wrench
wE ∈ R6 as

wE =
[
fE

⊤ τE
⊤
]⊤

=
[
fnq+1

⊤ τnq+1
⊤
]⊤
. (4.37)

By means of the equations above, the generalized forces λa = [ λ1 ... λnq ]⊤ applied to
the links can be computed. Those instead related to the base, i.e. λb, correspond to
the right-handed side of Equation (4.29). Therefore, we rewrite here for convenience
that

λb =
[

W fact
⊤ Bτact

⊤
]⊤

∈ R6, (4.38)

λa =
[
λ1 . . . λnq

]⊤
∈ Rnq , (4.39)

where in the first equation we neglect the presence of external forces and torques
applied to the robot flying base. If instead an external wrench is applied to the main
body, we need to include in λb also the terms W fext ∈ R3 and Bτext ∈ R3.

Next, we can define the generalized coordinates of the aerial manipulator which
would intuitively be a combination of those of the aerial base, denoted as ξb and
corresponding to ξGTMR ∈ R7 of Section 4.4.1, and those for the robotic arm denoted
as ξa. Therefore, recalling the definitions in Equation (4.29), we can conclude

ξAM =
[
ξb

⊤ ξa
⊤
]⊤

=
[
pB

⊤ qB
⊤ qa

⊤
]⊤

∈ R7+nq . (4.40)

We draw similar definitions for the twist and its time derivative, namely

ζAM =
[
ζb

⊤ ζa
⊤
]⊤

=
[
vB

⊤ BωB
⊤

q̇⊤
a

]⊤
∈ R6+nq , (4.41)

ζ̇AM =
[
ζ̇⊤

b ζ̇⊤
a

]⊤
=
[
v̇⊤

B
Bω̇B

⊤
q̈⊤

a

]⊤
∈ R6+nq , (4.42)

where ζb ∈ R6 and ζa = ξ̇a ∈ Rnq are the twist vectors for the aerial base and the
manipulator, while ζ̇b ∈ R6 and ζ̇a = ξ̈a ∈ Rnq their time derivatives, respectively.

It is possible to gather together Equations (4.33a)-(4.36) into a generic routine
function. It takes as input the initial and terminal conditions given by Equations (4.32)
and (4.37), the generalized coordinates ξAM of the AM, the twist ζAM, and its
derivative ζ̇AM. As output, this function provides the generalized forces applied to
the whole system, i.e. λAM ∈ R6+nq , and it can be denoted as

λAM =
[
λb

⊤ λa
⊤
]⊤

= RNEA
(
ξAM, ζAM, ζ̇AM

)
. (4.43)
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It is important to point out that the function in Equation (4.43) is tailored to the
structure of the particular robot considered, as the DH convention is function of
the geometrical properties of the system. Additionally, the algorithm requires also
the inertial parameters of the AM, like link masses and inertias. By querying the
routine in Equation (4.43) for different input combinations, it is possible to obtain
the system matrices allowing to write the dynamic model in the same form as the
one in Equation (4.24). Precisely, it can be proven that

gAM (ξ) = RNEAg

(
ξ,o6+nq ,o6+nq

)
∈ R(6+nq), (4.44a)

cAM (ξ, ζ) = RNEA0

(
ξ, ζ,o6+nq

)
∈ R(6+nq), (4.44b)

MAM,i (ξ) = RNEA0

(
ξ,o6+nq , ei

)
∈ R(6+nq), (4.44c)

where MAM,i is the i-th column of the generalized inertia matrix of the aerial
manipulator, and ei ∈ R6+nq is the i-th column of an identity matrix I6+nq . It
is important to mention that the subscript 0 and g denote the application of the
algorithm in Equation (4.43), respectively, with and without the gravity in the initial
condition given by Equation (4.32).

4.5.3 Equations of motion

Similarly to Equation (4.30), we arrive to the canonical form of the AM dynamic
model by collecting the previous terms. If the EE of the aerial manipulator is in
contact with the environment, a portion of the actuation effort is used to balance
the wrench arising at the contact location. According to [Siciliano, 2009], such a
contribution is given by JAM

⊤ EwE, where JAM ∈ R6×(6+nq) is the geometric Jacobian
of the aerial manipulator mapping a wrench at the contact location to the robot
generalized coordinates. That quantity is function of the robot configuration ξAM.
The wrench EwE = [ EfE

⊤ EτE
⊤ ]⊤ ∈ R6 is the external wrench arising at the contact

location during the interaction. It is expressed in the frame FE, whose origin is
located at the end effector tip. Finally, assembling all terms together, we obtain the
following dynamic model for the AM:

M (ξ) ζ̇ + c (ξ, ζ) + g (ξ) = λ + J (ξ)⊤ EwE, (4.45)

where we have dropped again the subscript “AM” to simplify the notation.

4.6 Actuators of aerial robots

As remarked in [Bicego, 2019], the dynamic equations (4.30) and (4.45), can be applied
to a broader class of robots than the ones considered so far. As a matter of fact, those
equations describe the dynamics of any floating-base rigid body [Featherstone, 2008],
whose base is not attached to the ground, as in the case of fixed-based manipulators,
and optionally in contact with the external environment in a finite set of contact
locations, e.g. AMs during physical interaction [Tognon, 2019] or bipedal robots
during locomotion [Nakanishi, 2007]. Hereafter, we are going to refine that set of
equations to the case of multi-rotor ARs equipped with rotary wings and a robotic
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arm. This will be performed by making explicit and describing how the generalized
forces λ = [ λb⊤ λa

⊤ ]⊤ ∈ R6+nq are physically generated by their actuators, which are
the true and active responsible of the robot dynamics.

4.6.1 Motor-propeller actuation units

First of all, any GTMR and the flying base of any AM is equipped with np ∈ R+

actuation units. Each actuator is composed of one motor and one propeller spinning
coaxially at the same speed and same direction [Hamandi, 2021]. Therefore, if
we consider the two most widely adopted platforms, an Uni-directional Thrust
(UDT) quad-rotor and a Multi-Directional Thrust (MDT) hexa-rotor own np = 4
collinear and np = 6 tilted motor-propeller pairs, respectively. Each motor-propeller
unit produces a lift force with intensity γi ∈ R along the axis of the paired motor
and coincident with zAi , i ∈ ¶1, . . . , np♢ of FAi . Additionally, when spinning, each
propeller generates also a torque Bτγi ∈ R3 on the body as by-product of the produced
force and the arm leverage BpAi ∈ R3 (i.e. the position of OAi w.r.t. FB). Moreover,
a drag torque Bτdi ∈ R3 on the main body is induced by the interaction between
the rotating propeller and the air. The sum of all these forces and torques, properly
expressed w.r.t. FB, constitute the body wrench applied on the robot airframe.
Therefore, we can write that

Bwact =




Bfact
Bτact


 =

np∑

i=1




BRAi
Aifi

Bτγi + Bτdi




=
np∑

i=1




BRAizAiγi

S
(

BpAi

)
BRAizAiγi + BRAi

Aiτdi


. (4.46)

The drag torque Aiτdi are produced by the tangential forces applied along the profile
of the spinning rotor by the air resistance, which results in a torque collinear with
zAi . This moment can be synthetically modeled as

Aiτdi = zAi c̄s,icτ,iγi, (4.47)

where c̄s,i ∈ ¶−1,+1♢ denotes the rotating speed direction of each propeller, which is
equal to +1 for a propeller shape meant to rotate counter-clockwise (CCW) and −1
when clockwise (CW). The rotation direction can be obtained by directly inspecting
the angle of attack µi ∈ R of each propeller, as show in Figure 4.3. The scalar
cτ,i ∈ R+ is a coefficient that relates the amount of drag torque to the intensity of
the thrust force γi generated by the i-th propeller. The lift force γi is proven to be
related to the spinning velocity of the i-th propeller as follows

γi = cs,icγ,i ♣Ωi♣ Ωi, (4.48a)

cs,i = −c̄s,i, (4.48b)

where cγ,i ∈ R+ is a coefficient that provides the mapping from the propeller spinning
velocity Ωi ∈ R to the amount of lift thrust produced along zAi . Equations (4.46)-
(4.48) provide a generic model for the actuation of a MRAV as it depends only
on the thrust force γi leaving free choice for the particular mechanism of thrust
generation. In particular, it allows both for positive (CCW) and negative (CW)
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(a) CCW propeller spinning about the posi-
tive direction.

(b) CCW propeller spinning about the nega-
tive direction.

(c) CW propeller spinning about the positive
direction.

(d) CW propeller spinning about the negative
direction.

Figure 4.3: This pictures show the angle of attack µi and the value of c̄s,i of the i-th CCW
or CW propeller for positive (CCW) and negative (CW) spinning velocities Ωi. Accordingly,
the thrust force γi along the propeller axis zAi and the drag torque τd,i are drawn.

propeller spinning velocities w.r.t. zAi . The model assumes that the propeller
generates symmetrical values of thrust either for positive and negative spinning
velocities. However, the propeller blade is designed and optimized for a specific
spinning rotation sense, therefore that assumption may result to be too simplistic.
To account for more realistic conditions, the propeller coefficients cγ,i, cτ,i could be
considered configuration-dependent, i.e. they assume different values according to the
spinning directions of the rotors. Nevertheless, this mathematical characterization is
extensively adopted in the literature [Hamel, 2002; Bangura, 2014; Zhao, 2022] and
is experimentally proven to hold for the application under consideration [Ryll, 2012].

Nowadays, the thrust-generation model has been extended with a more sophisti-
cated mathematical description accounting also for the blade dynamics. For instance,
in [Bauersfeld, 2021], the dynamics of a spinning propeller is modeled exploiting
a combination of momentum and blade-element theory, which capture the effects
of varying relative air speed on the rotor thrust. On the one hand, the simple
mathematical description in Equation (4.48a) is valid for most of the user cases which
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generally involve maneuvers at low speeds typical during contact-based applications,
like surface inspection and sensor placement. On the other hand, more sophisticated
models accounting for the rotor aerodynamic effects shall be exploited when fast
maneuvering is achieved, e.g. during racing competitions [Bauersfeld, 2021].

Remark. Drag resistance. Interestingly, the drag torque is always opposed to the
rotor spinning sense and produces a resistant torque. Indeed, by substituting Equa-
tion (4.48a) into Equation (4.47), and considering Equation (4.48b), it is possible to
note that c̄s,ics,i = −1.

Substituting Equation (4.47) into Equation (4.46), and gathering all the lift forces
into the vector γ ∈ Rnp , we can write

Bwact =




Bfact
Bτact


 =

np∑

i=1




BRAizAiγi

S
(

BpAi

)
BRAizAiγi + BRAizAi c̄s,icτ,iγi


 (4.49a)

=


Gf

Gτ

] [
γ1, . . . , γnp

]⊤
= Gγ, (4.49b)

where the matrix G is the so-called allocation matrix and defined as

G =


Gf1

, . . . ,Gfi , . . . ,Gfnp

Gτ1
, . . . ,Gτi , . . .Gτnp


 ∈ R6×np , (4.50a)

Gi =


Gfi

Gτi

]
=




BRAizAi(
S
(

BpAi

)
+ cs,icτ,iI3

)
BRAizAi


 ∈ R6. (4.50b)

By considering Equations (4.38), (4.29) and (4.49), we conclude that

λb =




W fB
BτB


 =


RB O3

O3 I3

] 
Gf

Gτ

]
γ. (4.51)

Allocation matrix properties

The allocation matrix represents the mapping from the actuator forces to the body
wrench. In particular, it can be decomposed into the force and moment allocation
matrices, respectively Gf ∈ R3×np and Gτ ∈ R3×np , which relate the forces produced
by propellers to the forces and moments applied to the body. The allocation matrix
depends on the design of the considered MRAV, as it is a function of the spatial
arrangement of the actuators w.r.t. the main body. Interestingly, it can be noticed
from Equation (4.50b), that any displacement of an actuator along its zAi will not
alter the wrench applied on the body, as in mathematical terms it can be proven that

S
(

BpAi + BRAizAiδzAi

)
BfAi = S

(
BpAi

)
BfAi , (4.52)

where δzAi
∈ R represents a finite displacement along the propeller axis. This

property may come in handy during the design phase of the mechanical structure
of a MRAV, as different rotor arrangements may produce the same wrench on the
body, but differ in terms of mass distribution, i.e. different values for the resulting
BpCoM and BJb.
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Moreover, the rank of the allocation matrix is directly linked to the actuation
capabilities of the AR [Hamandi, 2021]. Recalling the taxonomy of Section 1.2.1,
under-actuated MRAVs cannot exert independently a 6D wrench Bwact. Conse-
quently, the rank of their allocation matrix is smaller than six, even if np ≥ 6. An
example is the case of collinear hexa-rotors which have six propellers but they fall
anyway into the class of under-actuated vehicles. The larger number of actuators
than those mounted on UDT quad-rotors (np = 4) makes them just redundant w.r.t.
the task of hovering in a certain waypoint9, but not fully-actuated. Differently, fully-
actuated ARs have rank (G) = 6 as they can decouple their linear and rotational
dynamics or, equivalently, they can exert a wrench in any direction while keeping
unaltered their body attitude. A MDT hexa-rotor with np = 6 tilted propellers is
an example of such a category. Lastly, over-actuated multi-rotor aerial vehicles are
those flying robots equipped with np > 6 and have rank (G) = 6.

Allocation problem

To have the AR performing a desired maneuver (motion), the necessary body wrench
BwB can be computed by using the system dynamics (4.26). Afterwards, it is
necessary to compute the necessary actuation commands, i.e. the propeller forces (or
equivalent speeds) to effectively generate such a body wrench. In the literature, this
problem goes under the name of Allocation problem [Santos, 2022]. A simple method
to solve it is considering Equation (4.49b) and by computing the (pseudo-)inverse
of the allocation matrix [Brescianini, 2016], depending on the number of propellers
np. However, the obtained solution may not feasible, as it is not always possible
to guarantee that the computed propeller speeds Ωi, i ∈ ¶1, . . . , np♢ satisfies the
actuator limitations. The authors in [Sun, 2022] show that it is possible to solve
such an issue by formulating it as a Quadratic Programming (QP) and find through
numerical optimization the propeller inputs that produce a wrench resembling as
close as possible the desired one while satisfying the actuator bounds.

Propeller coefficients

The propellers are characterized by several parameters of the blade, like pitch angle,
diameter, angle of attack, rotor disk area and radius [Pounds, 2010; Mahony, 2012].
All these properties influence the amount of generated lift force and drag torque.
Moreover, propellers usually have specific requirements for the driving of electrical
motors in order to provide the best compromise in terms of produced force and
induced drag torques as function of the spinning frequency [Mahony, 2012]. All these
characteristics combined together contribute to the values assumed by the so-called
propeller coefficients, which are represented by the pairs cγ,i, cτ,i. Their values must
be experimentally identified given the particular hardware setup in use. It is worth
it to mention that in this manuscript it is assumed that an AR may not be equipped
with identical propellers and motors. Consequently, each motor-propeller actuation
unit i has its own pair of coefficients as explicitly pointed out by the subscript i
in cγ,i, cτ,i. If the actuators used are of the same type, then it is safe assuming

9For a more detailed definition of the hovering capabilities of ARs, the interested reader is
referred to [Baskaya, 2021].



88 Chapter 4. Modeling

that the variability within the coefficient pairs is negligible. Hence cγ,i = c̃f and
cτ,i = c̃τ ,∀i ∈ ¶1, . . . , np♢, where c̃f ∈ R+ and c̃τ ∈ R+ are two constant propeller
coefficients.

4.6.2 Joint actuators

The actuators of an aerial manipulator comprehend those of the flying base - i.e. the
np motor-propeller pairs - and nq actuator motors, one for each joint. We denote
with τa,i ∈ R the torque applied by the i-th joint motor at the joint coordinate
qi, i ∈ ¶1, . . . , nq♢. We collect all these torques in the vector τa ∈ Rnq . Therefore,
the generalized forces for the robotic arm of the AM is

λa =
[
τ1 . . . τnq

]⊤
= τa ∈ Rnq . (4.53)

Therefore, for the full aerial manipulator we conclude that the generalized forces are
as follows

λAM =


λb

λa

]
=





RB O3

O3 I3

] 
Gf

Gτ

]
γ

τa


 ∈ R6+nq . (4.54)

4.6.3 Actuation limitations

So far, we have assumed that the desired forces and torques generated by the robot
actuators can be varied instantaneously. This is a too simplistic assumption that
does not comply with the real behavior of the robot actuators. A real actuator is a
mechanical system with non-zero inertial parameters, friction, and non-unlimited
actions applied to it, which undergoes its own dynamics. This means that the motor
command exhibits a transient before reaching the desired set-point starting from a
given initial condition, which justifies why the variation of the actuator command is
limited and it shall be constrained.

From the hardware standpoint, the motors and their driving circuits, namely
the Electronic Speed Controllers (ESCs), have precise electrical requirements and
working conditions which, if not met, jeopardize their performances and may result
in a shorter lifespan or ultimate failures. For instance, causes of potential electronic
failures are the exceedance of the maximum current that the motor windings can
sustain, and the negligence of thermal operating conditions within which the system
can operate. Additionally, the ESCs driving a motor-propeller can effectively work
only within certain velocity ranges.

Constraints for the motor-propeller actuation units

In the case of the motor-propeller actuation units, these operating terms lead to
(i) a maximum torque that the motor can effectively apply on the rotor and the
propeller, thus a maximum acceleration and change of the produced thrust; (ii) a
maximum attainable rotor spinning rate beyond which the ESC cannot drive the
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motor and the propeller10; (iii) a minimum propeller speed which is required by the
ESC to properly operate11. This translates into a maximum propeller acceleration
and deceleration (alternatively, a maximum positive and negative variation of the
thrust force), bounds in the propeller velocities (forces) for the given actuation unit
mounted on the AR, and a non-negligible actuator dynamics.

In mathematical terms, this results into the following differential equation

γ̇ = fγ (γ) , (4.55)

describing the actuator dynamics, and a set of inequalities for the actuation con-
straints, namely

γ
¯

≤ γ ≤ γ̄, (4.56a)

γ̇
¯

≤ γ̇ ≤ ¯̇γ. (4.56b)

In Equation (4.55), fγ is the actuator dynamics relating the time evolution of the
thrust forces γ̇ ∈ Rnp to the actuator forces γ. Examples of such a function will be
introduced later in Section 4.7. In Equation (4.56), the terms γ

¯
, γ̄ ∈ Rnp are the

minimum and maximum forces that the actuators can produce, while γ̇
¯
, ¯̇γ ∈ Rnp the

lower and upper bounds of their derivatives. The values of these constraints shall be
experimentally validated according to the hardware available, as they depend on the
electronic components adopted, the individual software implementation and the user
operating conditions [Shi, 2017; Bicego, 2019].

Moreover, contrary to the bidirectionality of the thrust generation allowed by
the model in Equation (4.48a), ESCs normally cannot spin the propeller in both
directions. In fact, once being set, the rotation direction is typically kept constant
during their operation, causing the i-th propeller to rotate only CW, thus Ωi < 0
and cs < 0, or CCW, hence Ωi > 0 and cs > 0. Therefore, an optimal direction is
chosen, and Equation (4.48a) is rewritten as follows

γi = cγΩ2
i , i ∈ ¶1, . . . , np♢. (4.57)

As a result, the thrusts produced along zAi are always positive altogether with
their bounds, hence γ̄ > γ

¯
> 0. Interestingly, the motor spinning rates and the

generated thrust forces are now related by a simple change of coordinates by means
of Equation (4.57).

Constraints for the joint actuators

In the same way as propellers, the joints are typically powered by servo or brushless
motors which cannot produce arbitrary amounts of torques due to thermal and electro-
mechanical limitations [Chettibi, 2007]. Hence it is possible to define constraints also
for the joint torques of the manipulator attached to the flying base as

τ
¯a ≤ τa ≤ τ̄a, (4.58)

10The maximum allowable torque and the air resistance would reach a certain equilibrium point
where they compensate each other. Such an operating point is associated to the maximum speed at
which the propeller can be spun.

11Normally, ESCs need to detect the rotor position to effectively drive the propeller by producing
the required electrical motor commands. If the rotor speed is below a certain threshold, its position
cannot be estimated properly and the control becomes unpractical.
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where τ
¯a ∈ Rnq and τ̄a ∈ Rnq are the lower and upper bounds for the joint torques,

respectively. Lastly, if the dynamics of the joint actuators cannot be neglected, it
is possible to define similar expressions to those introduced earlier for the motor-
propellers pairs. Therefore, we have that

τ̇a = fτ (τa) , (4.59)

and we add the inequality τ̇
¯a ≤ τ̇a ≤ ¯̇τa, where τ̇

¯a ∈ Rnq and ¯̇τa ∈ Rnq are the lower
and upper bounds for the derivatives of the joint torques, respectively.

4.7 State-space representation of aerial robotic agents

At this point, we can derive the state-space representation of the dynamic models of
aerial robots. First of all, we need to define the state variables, i.e. those quantities
that represent the entire state of the system at any given time [Kelly, 1994]. Usually,
for mechanical systems, the state vector gathers positional and velocity variables
related to the system. This choice is motivated by the fact that those quantities are
related in turn to the total energy, which allows then to derive the dynamic model of
the system by means of the Lagrangian formalism described in Section 4.3.1.

4.7.1 The GTMR case

The positional and velocity variables for a GTMR are pB, qB, vB and BωB. Moreover,
in Section 4.6.3, we discussed that the motor-propeller actuation units undergo a
precise transient, which implies that it is not possible to vary arbitrarily the actuator
commands. Thus, to effectively take into account the actuator dynamics, the thrust
forces γ should be included within the state variables. We therefore define the GTMR
state vector xGTMR as

xGTMR =
[
ξGTMR

⊤ ζGTMR
⊤ γ⊤

]⊤

=
[
pB

⊤ qB
⊤ vB

⊤ BωB
⊤

γ⊤
]⊤

∈ R13+np . (4.60)

The time evolution of the state vector is given by the full dynamics of the GTMR
aerial robot, which can be obtained by concatenating the flying base dynamics,
i.e. Equation (4.26), and the one for the actuators, i.e. Equation (4.55). However,
we still have not defined the model for the actuators. A simple way to describe
their dynamics is by means of a first-order system, as proposed in [Faessler, 2017],
providing

γ̇i = fγi (γi) =
1

Tγ,i

(uγ,i − γi) ∀i ∈ ¶1, . . . , np♢, (4.61)

where Tγ,i ∈ R+ is the time constant of the i-th actuator (motor-propeller pair), and
uγ,i ∈ R the real motor input. Since the time constant shall be estimated, another
first-order model, which does not require any parameter to be estimated and it
is proven to work well, is obtained by adopting a first-order integrator, as shown
in [Bicego, 2020]. Therefore, the actuator dynamics is given by

γ̇ = fγ (γ) = u, (4.62)
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where u ∈ Rnp is the input vector collecting all the real motor commands, in this
case the derivatives of the propeller forces. Hence, we can write uGTMR = γ̇.

To conclude, we can write the state space representation of a GTMR as

ẋGTMR = fGTMR (xGTMR,uGTMR) , (4.63)

where fGTMR (xGTMR,uGTMR) : Rnx×nu → Rnx is a nonlinear function of the input
and state vectors, with nx = 13 + np and nu = np being respectively the number of
state and input variables of a GTMR. In this work, the function fGTMR is given by
stacking together the Equations (4.26) and (4.62).

4.7.2 The AM case

Here, similarly to the procedure described for a GTMR in Section 4.7, we derive the
state-space representation of the dynamic model for an aerial manipulator. We first
define the state and input variables as

xAM =
[
ξAM

⊤ ζAM
⊤ γ⊤

]⊤

=
[
pB

⊤ qB
⊤ qa

⊤ vB
⊤ BωB

⊤
q̇⊤

a γ⊤
]⊤

∈ R13+2nq+np (4.64)

uAM =
[
γ̇⊤ τa

⊤
]⊤

∈ Rnp+nq . (4.65)

Then, the state-space AM dynamics is given by

ẋAM = fAM (xAM,uAM) : Rnx×nu → Rnx , (4.66)

where nx = 13+np +2nq and nu = np +nq. The function fAM is obtained by stacking
together the inverted dynamic model of the aerial manipulator in Equation (4.45)
and the actuator dynamics in Equation (4.62).

Lastly, if an actuator dynamics is considered also for the joint motors, this shall
be included within Equation (4.66). In turn, the input and state vectors for the
aerial manipulator become

xAM =
[
pB

⊤ qB
⊤ qa

⊤ vB
⊤ BωB

⊤
q̇⊤

a γ⊤ τa
⊤
]⊤

∈ R13+3nq+np , (4.67)

uAM =
[
γ̇⊤ τ̇⊤

a

]⊤
∈ Rnp+nq , (4.68)

where τ̇a ∈ Rnq collects the derivatives of the joint torques τa. Similarly to what
discussed earlier for the propellers, the dynamics of the joint motors can be described,
for instance, with a 1st order system, thus

τ̇i = fτi (τi) =
1

Tτ,i

(
uτ,i − τi

)
∀i ∈ ¶1, . . . , nq♢, (4.69)

where Tτ,i ∈ R+ is the time constant for the i-th joint actuator, and uτ,i ∈ R its real
command. Alternatively, if available, a more complex model can be used to consider
the presence of elasticity or other non-linearities in the joint mechanisms.

In this thesis, we consider the joint motors to be ideal and do not exhibit
particular transient dynamics. Therefore, we rely on the state-space representation
given by Equations (4.64)-(4.66).
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4.8 Perceptive sensors on-board aerial robots

GTMRs are commonly equipped with exteroceptive sensors allowing them to retrieve
information about the external world and estimate their own state. Different sensor
choices are possible, among which monocular or stereo cameras represent the most
popular solution thanks to their compact and lightweight dimensions, affordable
prices and the availability of open-source software utilities to process the acquired
frames. Similarly, depth-infrared cameras, also known as RGB+Depth (RGBD), are
gaining a lot of attention by the robotic community as they flooded the market in
a large variety of models, many of which fitting the strict requirements in terms of
payload and computational power related to ARs. Additionally, their popularity
is increasing as they directly provide the depth measurement, which in standard
monocular camera is not available and therefore must be estimated with software
packages. In the latter case, it is possible to indirectly measure the distance to an
observed feature by either assuming some prior geometric knowledge [Thomas, 2017]
or relying on some deep learning-based algorithms [Wofk, 2019].

In recent years, thanks to advances in sensor miniaturization, cheaper and lighter
lidars are also available on the market. Several years ago, these sensors were solely
employed on ground robots due to not only their large weight and dimensions, but
also the large amount of computational power required to process the huge number
of collected samples. Nowadays, thanks to more affordable and smaller devices, and
the availability of powerful and compact computers, they are started to be employed
also on ARs, e.g. for environmental mapping [Mohta, 2018].

The sensors described so far are called range-and-bearing sensors, since they
provide both 2D angular information and a 1D depth measurement [Jacquet, 2022b].
This class naturally encompasses stereo and RGBD cameras. Instead, monocular
cameras are bearing-only sensors as they do not provide depth information by
themselves. However, they can fall in the previous category when accompanied by
a software package that allows at posteriori to retrieve such a measure from the
acquired frames.

Therefore, through this thesis, we consider only GTMR systems equipped with
a range-and-bearing sensor S, either native (e.g. a RGBD camera) or composed
by a sensor and a software package (as in the case of a monocular camera). As
in [Jacquet, 2021], and as shown in Figure 4.1, we model this sensing device as a
punctual device rigidly mounted on the robot chassis and centered in OS, having
principal axis zS (i.e. the axis describing its bearing). The other axes, xS and yS,
are chosen such that the frame is right-handed and they define the horizontal and
vertical directions of the sensor. In addition, the pose transformation between FS

and the one of the flying base FB is constant and known. The sensor is capable of
retrieving the 3D-pose of an observed entity, generically called feature, in the sensor
frame FS and denoted with SpF ∈ R3. The feature can be a geometrical property of
an object in the environment (e.g. the corner of a wall), or a particular point on the
body of the human interacting with the robot.
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4.9 Human agent

In this section, we present the model of the human agent involved in the human-aerial
robot handover presented in Chapter 2. The human operator is modeled in a simple
but effective way, namely as the composition of two subsystems: a trunk and an
arm. The model of the trunk is used to describe the motion of the person during
the handover, while the one of the arm will serve to evaluate the ergonomics level,
which will be further discussed in Chapter 6 and more specifically in Section 6.2.2.
Throughout this thesis, we focus only on one human arm being employed during
the human-robot collaboration, but a similar model can be applied to both arm,
if required. Moreover, we assume that each subsystem can be represented by the
interconnection of one or more rigid bodies, as shown in the following.

In the literature, it is possible to find models to describe the motion of the
human and of their limbs. For instance, Arachavaleta et al. [Arechavaleta, 2008]
show how the human locomotion is effectively described by a simple non-holonomic
system, i.e. a system where the forward heading direction is coupled to the body
orientation. The authors show that humans, while naturally moving to a desired
goal to perform a task, perform trajectories which are well approximated by those of
a unicycle vehicle. Moreover, they conclude that the best results are obtained when
considering the trajectories of the shoulders, while those measured at the head, the
torso and the pelvis are affected by the step alternation and do not provide good
repeatability among different users. In [Laumond, 2017], the authors provide a novel
interpretation of the human locomotion by means of the so-called Yoyo model. This
mathematical formulation approximates the motion of the human during a natural
walking gait as the trajectory performed by the geometric center of a rimless wheel.
The resulting motion is composed of a sequence of circle arcs whose radii correspond
to the stand beam of the rimless wheel, and it is showed to match quite accurately
the trajectory of the CoM of the walking body. Similarly, in [Carpentier, 2017], the
authors show how the trajectory of the CoM of a walking person is a key descriptor
in the understanding and the analysis of bipedal locomotion. Specifically, the CoM of
the body, in the sagittal plane, follows a curtate cycloid, which is the curve described
by a point rigidly attached to a virtual wheel rolling on a flat surface.

While in [Arechavaleta, 2008] the authors provide a model suitable to describe the
human motion over the transversal (x, y or horizontal) plane, the model of Laumond
et al. describes the human locomotion along the sagittal (x, z or vertical) plane. In
this thesis, we focus on describing the position over the horizontal plane, and we
assume that the height of the human is not changing noticeably during the handover.
Therefore, we take inspiration from the work of [Arechavaleta, 2008] to describe the
human motion by means of a constant-velocity model, as illustrated shortly. Contrary
to the unicycle model of Arachavaleta et al., our modeling choice allows accounting
also for lateral movements of the human, which is motivated by the intuitive idea
that during a handover the person may also perform lateral movements.

4.9.1 Trunk

The human motion is represented by the trajectory performed by the trunk of the
person. Hence, accordingly to Figure 4.4, we define a trunk reference frame FHt



94 Chapter 4. Modeling

Figure 4.4: This figure illustrates the model used to describe the human worker as a
composition of two parts: a trunk and an arm. The second arm is drawn just for visual
purposes.

having yHt
coincident to the line connecting the human shoulders, xHt

pointing in
the forward walking direction, and zHt

parallel to zW . For the sake of simplicity, we
assume that the human maintains a standing position while walking; so the human
trunk roll and pitch angles are set constant and null. Therefore, the human motion
is given by the position and heading of the trunk expressed in the inertial frame.
Consequently, we define the human state xh as

xh =
[
pHt

⊤ ψHt

]⊤
∈ R4, (4.70)

where pHt
∈ R3 is the position of OHt

in FW , and ψHt
∈ R is the angle between

xW and xHt
along zW . As mentioned at the beginning of this section, we adopt a

constant-velocity model to describe the time evolution of the human state, thus

ẋh =
[
vHt

⊤ ωHtψ

]⊤
, (4.71)

where vHt
∈ R3 are the linear velocities of the human trunk in the inertial frame, and

ωHtψ
∈ R is the angular speed about zHt

expressed in FW . We select these velocities
as the human inputs and we denote them with uh. Thus, we can write

ẋh = uh. (4.72)

4.9.2 Arm

Hereafter, we want to derive a model to describe the ergonomic stress at the human-
arm level in the handover scenario. To achieve this goal, we model the upper human
limb as a manipulator whose base is connected at the shoulder attaching point, as
depicted in Figure 4.1. Therefore, we define a shoulder reference frame denoted
by FHs

and centered at the manipulator base. The relative pose transformation
between FHs

and FHt
is assumed to be known. In particular, we take xHs

and yHs

to be parallel to xHt
and zHt

, respectively. This manipulator is composed of a serial
chain of rigid links in pairs connected by a 1-revolute joint. Thus, the human arm is
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modeled as an nh-link manipulator [Siciliano, 2009], where nh ∈ N+ is the number
of joints in the human arm model.

As a result, the dynamics of the upper limb is given by

Mh(qh)q̈h + Ch(qh, q̇h)q̇h + gh(qh) = τh + Jh(qh)⊤
fext, (4.73)

where Mh ∈ R
nh×nh
+ is the inertia matrix, Ch ∈ Rnh×nh accounts for the centrifugal

and Coriolis terms, and gh ∈ Rnh collects the gravitational effects of the human
arm. The vectors qh, q̇h, q̈h ∈ Rnh are respectively the joint positions, velocities,
and accelerations, while τh ∈ Rnh gathers the human-arm joint torques. The matrix
Jh(qh) ∈ R3×nh is the geometric Jacobian of the human arm mapping the effect of an
external force fext ∈ R3 applied to the hand to the arm dynamics. The model shown
in Equation (4.73) is in the canonical form as in Equation (4.23), given ξh = qh,
ξ̇h = q̇h and ξ̈h = q̈h. This is not surprising as we model it as a manipulator
composed of rigid bodies, in the same fashion as the robotic arm mounted on an
aerial manipulator.

Remark. Human arm parameters. The terms Mh, Ch, and gh in Equation (4.73)
are function of the geometric and inertial parameters of the nh links composing the
human upper limb. To identify their values, biomechanical datasets [Winter, 2009]
or estimation algorithms [Nagano, 2005; Ayusawa, 2011; Jovic, 2016] can be used.
Hereafter, we assume that these parameters are known since the proposition of a
suitable estimation method is outside the scope of this thesis.

4.10 Conclusion

In this chapter, we provided the reader with the theoretical background and the
mathematical models of the two agents (aerial robot and human) involved in the
Human-Aerial Robot (HAR) handover problem presented in Chapter 2. Specifically,
we presented the formulation for a Generically-Tilted Multi-Rotor and an aerial
manipulator. Then, we introduced the model describing the human motion and the
dynamics of the user upper limb. This allows understanding the control formulation
that will be later discussed in the next two chapters. Specifically, in Chapter 5, these
models will be employed to derive a control law allowing ARs to achieve physical
Human-Aerial Robot Interaction (pHARI), performing a HAR tool handover. Later,
in Chapter 6, the human (trunk and arm) models will be embedded into a predictive
controller to (i) evaluate the ergonomic stress undertaken by the human worker in
the handover process, and (ii) let the AR controller be aware of the partner motion.
In this way, the robot control algorithm can compute a human-aware trajectory and
actuator commands to successfully and ergonomically hand over a tool to the human
operator.





Chapter 5

Control methodology for visual and

physical Human-Aerial Robot

Interaction

The goal of this chapter is to present an in-depth formulation and derivation of
the hierarchical control architecture presented in Section 3.1.1. This proposed
methodology is designed to address the first subproblem described earlier, which
consists in achieving physical Human-Aerial Robot Interaction (pHARI).

As mentioned in Chapter 2, we first empower a fully-actuated aerial robot
(AR) with the capability to perform physical interaction tasks in the surrounding
environment. In Section 5.1, we detail the internal structure of each module composing
such a hierarchical control architecture. The resulting methodology allows the robot
to be driven to the goal by a vision-based system, and to apply an arbitrary 6D wrench
exploiting the fully actuation property of the robotic platform. We test the method
in a pick-and-place operation as previously mentioned. In Section 5.2, we bring
more technical and quantitative results related to the performance of the proposed
controller architecture in this validation application. Afterwards, in Section 5.3, we
extend the formulation of the control framework to the case of an aerial manipulator
physically interacting with a human worker. In Section 5.4, we describe promising
results obtained during the second validation scenario, namely the human-to-robot
(H2R) handover involving an operator returning an object to the robotic partner.
Finally, in Section 5.5, we conclude this chapter with some final thoughts on the
proposed methodology, we discuss its limitations and sketch potential future work.

5.1 Hierarchical control architecture

We present here the internal structure of the proposed hierarchical control architecture
allowing fully-actuated aerial robots to autonomously accomplish tasks that require
both perception and physical interaction with the external environment.

As shown in Figure 5.1, the vision-based control module is composed of a Hybrid
Visual Servoing (HVS) scheme. This method generates velocity commands driving an
autonomous system towards the desired goal based on the error between the current
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value of the selected visual clues, known with the term features, and their desired
ones. The formulation of this algorithm is very straightforward, as one has to start
from the definition of one or more visual features of interest. The features are local
patterns in the image that can be easily identified, such as corners, step edges, lines
or curves [Rosenfeld, 1988].

The physical interaction layer combines a Admittance filter (AF) and a Wrench
observer (WO). The AF modifies the input desired trajectory producing a new
one based on the external wrench experienced by the robot. The filtering process
is such that the robot dynamics acquires a new shape, emulating a virtual mass-
damper-spring system whose model parameters are selected according to the user
and task requirements. The WO computes the estimation of the external forces and
torques applied on the robot body by relying solely on the system model and minimal
onboard measurements. These measures can be obtained by a standard IMU, which
constitutes the bare minimal sensor equipment on-board any AR.

The output reference trajectory provided by the AF is then fed to a low-level
motion controller that produces the commands driving the robot actuators by relying
on the robot dynamic model. This module pivots on the novel Flying End-Effector
paradigm earlier mentioned in Chapter 3. It accounts for the fully actuation of
the robot to generate a full 6D wrench from which the motor-propellers commands
can be computed. Moreover, it considers virtual bounds on the lateral forces that
fully-actuated aerial vehicles can in general produce1.

In the following subsections, we detail the formulation of each block presented
in Figure 5.1. As done in Chapter 4, hereafter, we omit the reference frame for any
variable expressed in FW .

Figure 5.1: Generic visual and physical control architecture enhancing fully-actuated
MRAVs with physical interaction capabilities. In green, the vision-based control constituted
of a Hybrid Visual Servoing. In orange, the physical interaction layer comprising an external
wrench observer and admittance filter. In blue, the motion controller and, lastly, the aerial
robotic platform and the robot state estimation module in gray.

1These robots fall into the category of laterally-bounded fully-actuated multi-rotor aerial vehicles
(MRAVs) which we already presented in Chapter 1.
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5.1.1 Vision-based control

In order to autonomously generate the motion towards the object based on visual
clues we propose the use of a visual servoing scheme. Specifically, we adopt a Hybrid
Visual Servoing (HVS) [Chaumette, 2007]. We will show hereafter how this module
computes the desired velocity commands of the platform starting from the images
captured from the onboard camera.

Before starting, we recall the body and sensor (or camera)2 frames denoted as
FB = OB, ¶xB,yB, zB♢ and FS = OS, ¶xS,yS, zS♢, respectively, from Chapter 4.
The formulation of the HVS method begins from the definition of the visual feature
vector s and its reference s r. Next, a tracking error can be formulated as

es = s − s r. (5.1)

In a classical visual servoing scheme, the feature vector is defined as

s =
[
x̃ ỹ logz̃ θu

]
∈ R6, (5.2)

where x̃, ỹ ∈ R are the coordinates of the point of interest defined optionally in
(i) sensor frame, (ii) normalized camera coordinates, (iii) or as the positions in image
plane (pixel coordinates). The quantity z̃ ∈ R+ is the position of the feature along
the principal axis of the camera zS, and θu ∈ R3 is the angle-axis representation
of the orientation error. In the following, we select x̃ and ỹ to be the normalized
coordinates of a detected feature F, thus

x̃ =
SxF

SzF

, ỹ =
SyF

SzF

, z̃ = SzF , (5.3)

where the position of F expressed in FS is given by SpF = [ SxF
SyF

SzF ]⊤. The
reference vector s r has to be chosen in order to align the end effector with its target,
hence is specific to the considered task. We will show our choice later in Section 5.2.1.

The velocity control in FS is designed to nullify es. Typically an exponentially
decreasing rate is sought, thus we write

ės = −ϵses, (5.4)

where ϵs ∈ R+ represents a constant parameter dictating the convergence rate of the
error dynamics. At this point, the interaction matrices Lv, Lω and Lθu ∈ R3×3 can
be introduced. These matrices relate the error transient to the sensor twist, denoted
as SζS and expressed in FS, as follows

ės =


Lv Lω

O3 Lθu

] 
SvS
SωS

]
. (5.5)

In the equation above, the twist vector SζS = [ SvS
⊤ SωS

⊤ ]⊤ ∈ R6 collects the linear
and angular velocities of the camera expressed in FS. Clearly, the vision-based
system comprises two parts, one exploiting the sensor linear velocities to nullify the
error (top part of Equation (5.5)), and another one using the angular speeds (bottom

2Hereafter, we will use the term camera and sensor frame to denote the same reference system.
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part). Similarly, we can decompose the feature error vector into two portions as
follows

es =


est

esr

]
=


st − s r

t

sr − s r
r

]
, (5.6)

where est ∈ R3 and esr ∈ R3 are the translational and rotational parts of the feature
error, respectively. According to the feature selection above, we have that esr = θu,
as s r

r = θ ru r = o3.

The angular velocity control is defined as in [Chaumette, 2006]. As a result, we
define the orientation interaction matrix Lθu as

Lθu = I3 −
θ

2
S(u) +


1 −

sinθ

sinc2 θ
2


S(u)2 , (5.7)

where sinc (•) is the sinus cardinal function and it is defined as sinc (α) = sin(α)
α

for a
given angle α ∈ R. The determinant of the above matrix has the following expression

det (Lθu) =
1

sinc2 θ
2

, (5.8)

which brings singularities only for θ = 2kπ, k ̸= 0. However, these cases are out of the
potential workspace since θ ∈ [0, π], as mentioned in the definition of the angle-axis
representation in Chapter 4. As we can always invert the rotational (bottom) part
of Equation (5.5), we can combine Equations (5.2), (5.4), (5.5) and (5.6) to obtain

SωS = −λL−1
θu θu, (5.9)

where the interaction matrix Lθu is computed from Equation (5.7).

We can now define the linear velocity control scheme, following again [Chaumette,
2007]. We first define Lv and Lω as

Lv =
1

ρz z̃ r



−1 0 x̃
0 −1 ỹ
0 0 −1


 , (5.10)

Lω =




x̃ỹ −(1 + x̃2) ỹ
1 + ỹ2 −x̃ỹ −x̃

−ỹ x̃ 0


 , (5.11)

where ρz = z̃/z̃ r, z̃ r ∈ R+ being the reference for z̃, and x̃ ∈ R, ỹ ∈ R are the
normalized coordinates of the detected feature defined as in Equation (5.3). As noted
in [Chaumette, 2007], ρz can be obtained from a partial pose estimation scheme.
The matrix Lv is singular only when z̃ → ∞, making the inversion always feasible
also for the linear (top) part of Equation (5.5). Recalling again the definition of the
feature vector in Equation (5.2), we can invert Equation (5.5) to obtain

SvS = −L−1
v

(
λest + Lω

SωS

)
, (5.12)

where the matrices Lv and Lω are obtained from Equations (5.10) and (5.11).
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We can now define the desired linear and angular velocities of the AR in the
inertial frame FW by exploiting the kinematic linkage between the robot and sensor
bodies. Therefore, we have that

pS = pB + RB
BpS and RS = RB

BRS, (5.13)

where BpS ∈ R3 and BRS ∈ SO(3) represent the extrinsic camera parameters.
Their values depend on how the camera is mounted on the robot and in turn they
can estimated by means of any CAD software or by inspecting the real hardware.
Consequently, by differentiating Equation (5.13) and re-arranging the result, we
obtain the desired robot velocities as

vB = RB

(
BRS

SvS − S(ωB) BpC

)
, (5.14)

ωB = ωS = RB
BRS

SωS. (5.15)

As we assume that the camera is rigidly mounted on the robot body, in the equations
above, we have considered null any relative velocity between the camera and the AR.

5.1.2 Physical interaction control

Here, we discuss how our control architecture takes into consideration the physical
interaction. As visible in Figure 5.1, the physical interaction control features two
modules, a Wrench observer (WO) and an Admittance filter (AF). The former
estimates the external wrench arising during the interaction applied on the robot body.
The latter lets the platform be compliant to the external forces and torques. The
AR is modeled as the Generically-Tilted Multi-Rotor (GTMR) vehicle in Section 4.4,
and we assume that BpCoM = o3, thus OB coincides with the robot center of mass
(CoM). Moreover, the aerial robot interacts with the environment only through its
end effector (EE), hence we consider only one contact point (ne = 1) located at OE.
In such a position, we define the end effector frame FE = OE, ¶xE,yE, zE♢ which is
rigidly attached to the robot EE.

Wrench observer

To estimate the external wrench that is applied at the robot EE, we adopt the
observer proposed in [Tomić, 2017]. Taking inspiration from ground manipulators,
the authors propose a hybrid Wrench observer tailored to flying robots. It is composed
of an acceleration-based estimator for the external forces and a momentum-based
one for the external torques. This method is well suited for MRAVs since it exploits
only robot proprioceptive sensors, such as an IMU. These sensors are nowadays very
affordable and typically available on-board any aerial platform [Santamaria-Navarro,
2018]. The structure of the estimator is detailed in Figure 5.2. The WO computes
the external forces Bfext ∈ R3 and torques Bτext ∈ R3 applied on the robot body and
expressed in FB, by exploiting the knowledge of the robot dynamical model.

By recalling Equations (4.26), it is possible to estimate the external wrench as




B
f̂ext =

∫ t

0
QI,f

(
mb

BaB − Bfact −
B

f̂ext
)
dν

Bτ̂ext = QI,τ

(
Jb

Bω̇B +
∫ t

0

(
JbS

(
BωB

)
BωB − Bτact − Bτ̂ext

)
dν


,

(5.16)



102
Chapter 5. Control methodology for visual and physical

Human-Aerial Robot Interaction

Figure 5.2: Internal structure of the hybrid Wrench observer.

where QI,f , QI,τ ∈ R3×3 are respectively the estimator gains for the external forces
and moments. The quantity BaB = RB

⊤(p̈B +gzW ) ∈ R3 is the robot acceleration in
FB including the gravity contribution, and BωB the angular velocity of the platform
expressed in FB. The robot linear and angular accelerations are, respectively, provided
as output by the onboard accelerometer and gyroscope, which typically constitute
the sensor set of any standard IMU. Note that the notation •̂, in the equation
above, indicates the estimated value of a given quantity. Lastly, the estimator
needs to know the wrench produced by the actuators, i.e. the terms Bfact ∈ R3 and
Bτact ∈ R3. These two quantities are generated by the motion controller presented
later in Section 5.1.3.

Admittance filter

For having the robot compliant in the physical interaction, we resort to an Admittance
filter, which is a well-known technique in the literature [Siciliano, 2009]. The AF takes
in input the desired robot trajectory (• d) expressed in FW . As output, it produces a
new reference trajectory (• r), which shapes the robot dynamics as a virtual mass-
damper-spring system. Ultimately, the robot is compliant w.r.t. the applied external
wrench when tracking closely the new reference trajectory. By exploiting the rigid
kinematic linkage between the robot body and its EE, we can relate the motion of
OE to the one of OB and vice versa. Likewise, we can easily transpose the effect
of the external wrench in one of the two points, as stated by Equation (4.27). As
a result, the admittance filter can be applied to either the robot end effector or its
body, leading in both cases to a compliant system. Since the HVS scheme presented
earlier generates the desired velocities of OB expressed in FW , it is more convenient
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to write the admittance filter at the robot body. This results in

Γv


ëpB

ėωB

]
+ Λv


ėpB

eωB

]
+ ∆v


epB

eRB

]
=


 f̂ext
τ̂ext


 . (5.17)

The vector e(•) = (•) r − (•) d is the error between the reference (• r) and desired (• d)
values of a given quantity. Specifically, in our case, we have

epB = p r
B − p d

B, (5.18)

eRB
=

1

2

(
R r

BR d
B

⊤
− R d

BR r
B

⊤
)∨

, (5.19)

eωB = ω r
B − ω d

B, (5.20)

which represent the translational, rotational and angular velocity errors. The notation
(•)∨ denotes the inverse map of the skew operator S(•) [Lee, 2010]. The derivatives
of Equations (5.18) and (5.20) are simply obtained exploiting the linearity of the
differentiation operator, which results in

ėp,B = ṗ r
B − ṗ d

B, (5.21)

ëp,B = p̈ r
B − p̈ d

B, (5.22)

ėω̇B = ω̇ r
B − ω̇ d

B. (5.23)

In Equation (5.17), the matrices Γv ∈ R6×6, ΛB ∈ R6×6, K∆ ∈ R6×6 are the virtual
mechanical inertia, damping and stiffness, respectively. According to the desired robot
behavior, the user can choose these matrices to tune the virtual mass-damper-spring
dynamics that the AR will abide when physically interacting with the environment.
Finally, in Equation (5.17), the terms f̂ext and τ̂ext are the estimated external forces
and torques computed by the wrench observer through Equations (5.16), but ex-
pressed in FW . From Equation (5.17), it is possible to compute the new reference
robot accelerations, i.e. p̈ r

B ∈ R3 and ω̇ r
B ∈ R3, which make the robot behave as the

virtual dynamics when an external wrench EwE = [ EfE
⊤ EτE

⊤ ]⊤ is applied at its EE.
By numerically integrating those accelerations, it is possible to compute the rest of
the reference trajectory, up to the position p r

B and the attitude R r
B.

5.1.3 Motion control

The controller stabilizing the dynamics of the fully-actuated robot is derived from
the previous work [Franchi, 2018]. This controller ensures, in nominal conditions,
the tracking of a full 6D (position plus orientation) trajectory. Referring again
to Figure 5.1, this reference trajectory is provided by the AF after filtering the
desired motion commands generated by the HVS. Therefore, the controller receives
the following quantities from the Admittance filter: the linear terms p r

B, ṗ r
B, p̈ r

B, and
the angular quantities R r

B, ω
r
B, ω̇

r
B. As shown in Figure 5.3, this controller exploits

a cascade structure and it comprises two parts, a translational and a rotational one.

The translational loop, shown on the top of Figure 5.3, computes the necessary
thrust force f r

act ∈ R3 to track the reference trajectory. In order to do so, it exploits the
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Figure 5.3: Schematic representation of the geometric controller adopted to stabilize the
translational and rotational dynamics of the fully-actuated MRAV.

inversion of the translational part of the robot dynamic model, i.e. Equation (4.26c),
as

f r
act = mbp̈

r
B +mbgzW − f̂ext − KP,pep − KD,vev − KI,p

∫ t

0
ep(ν)dν, (5.24)

where the matrices KP,p ∈ R3×3
+ and KD,v ∈ R3×3

+ are diagonal positive-definite
gain matrices introducing a feedback term based on the tracking error. In Equa-
tion (5.24), the reference translational kinematic quantities p r

B, ṗ r
B are used with

the feedback variables pB, ṗB to compute the kinematic error quantities similarly
to Equations (5.18)-(5.23). Therefore, we can write

ep = pB − p r
B, (5.25)

ev = ėp = ṗB − ṗ r
B (5.26)

Besides, compared to [Franchi, 2018], we add an integral action on the translational
error with a diagonal positive-definite gain matrix denoted as KI,p ∈ R3×3

+ . We will
add a similar term also for the orientation control loop, as discussed later. Finally,

in Equation (5.24), the estimated external force f̂ext = RB

B
f̂ext appears, so that the

requested thrust compensates that force whenever it is present.

In Equation (5.24), the quantity f r
act represents the forces, expressed in FW , that

ideally one would like to apply to the aerial vehicle body to track the reference
translational trajectory. Such a quantity is related to the body force Bfact through
the platform orientation RB, precisely fact = RB

Bfact. As discussed in Chapter 1,
this class of ARs can exert only a limited amount of thrust along non-principal
(lateral) body directions due to the spatial arrangement of their rotors and the motor
limitations. This means that the x and y components of Bfact, i.e.

Bfactx ∈ R and
Bfacty ∈ R, are bounded, or alternatively




Bfactx
Bfacty


 ∈ Ux,y ⊂ R2, (5.27)
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where Ux,y represents the bounds on the lateral forces. Such a subspace has different
shapes according to the considered type of aerial vehicle and the size of the bounds.
The interested reader is referred to [Franchi, 2018] for different graphical visualizations
of the relationship in (5.27) according to different robot designs. Given a certain
robot attitude RB ∈ SO(3), the requested accelerations derived from f r

act may require
an amount of lateral forces that violate the constraint above. As a result, despite
being able to follow a 6D trajectory, this class of aerial robots cannot achieve any
full-pose motion. If the lateral forces are exceeded, the controller could decide either
to modify the platform orientation to match the requested linear accelerations in FW ,
or to jeopardize the positional tracking in favor of maintaining the same attitude.

The controller proposed in [Franchi, 2018] gives higher priority to the positional
tracking by sacrificing the attitude in the case the requested lateral forces exceed the
bounds. This choice is motivated by the fact that in a typical application a wrong
positional tracking is more likely to lead to an obstacle collision than an imperfect
orientation accuracy.

It can be proven that it exists a finite non-empty set of orientations that allow
tracking any demanded force f r

act without violating the lateral bounds of the actuators.
However, this set may or may not contain the reference orientation R r

B that one
would like the aerial robot to attain. The rotational part of the controller, shown on
the bottom of Figure 5.1, is in charge of finding the closest orientation to meet the
desired linear acceleration requirement, when the latter is violating the constraint
in Equation (5.27). At each time t, it selects an orientation R o

B ∈ SO(3) that
(i) belongs to the set of orientations allowing to track the computed reference force f r

B

(which in turn allows following the reference position trajectory), and (ii) minimizes
a certain cost function w.r.t. the given reference orientation. In the previous
work [Franchi, 2018], it is proven that the selected orientation R o

B will exponentially
converge to the reference orientation R r

B if the reference position p r
B leads to a

feasible f r
act. If the platform constraints are not met, then the closest orientation

to the reference one will be selected, which allows tracking the reference position
trajectory and satisfying the lateral bounds. In the optimization step, where the
new orientation is computed, a new angular velocity Bω o

B and acceleration Bω̇ o
B is

computed by adding a regularization term in the cost function.

Once the optimal orientation is found, the wrench to be applied on the robot
body can be found by employing the following control laws

Bfact = satUx,y

((
f r
act

⊤ RBxB

)
xB +

(
f r
act

⊤ RByB

)
yB

)
+
(
f r
act

⊤ RBzB

)
zB, (5.28)

Bτact = S
(

BωB

)
Jb

BωB − Bτ̂ext − KP,ReR − KD,ωeω − KI,ReI

− Jb

(
S
(

BωB

)
R⊤

BR o
B

Bω o
B − R⊤

BR o
B

Bω̇ o
B

)
, (5.29)

where satUx,y(•) is a saturation operator which guarantees that the output vector of
the lateral forces belongs to Ux,y. In Equation (5.29), similarly to Equation (5.24),
the term Bτ̂ext appears so that the controller computes a torque that can also
compensate any external moment applied on the EE, if present. The vectors eR ∈ R3

and eω ∈ R3 are the rotational and angular velocity errors and they are computed
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similarly to Equations (5.19) and (5.20). Thus

eR =
1

2

(
R o

B
⊤RB − R⊤

BR o
B

)∨
, (5.30)

eω = BωB − RB
⊤R o

B
Bω o

B. (5.31)

The matrices KP,R ∈ R3×3
+ , KD,ω ∈ R3×3

+ and KI,R ∈ R3×3
+ are diagonal positive-

definite gain matrices. For the integral error eI , we take inspiration from [Goodarzi,
2013], where it is defined as

eI =
∫ t

0
eω(ν) + c2eR(ν)dν, c2 ∈ R+. (5.32)

After computing the actuator wrench Bwact =
[

Bfact
⊤ Bτact

⊤
]⊤

∈ R6, the motor-

propeller commands can be computed by inverting Equation (4.49). Hence,

γ = G−1 Bwact. (5.33)

where γ ∈ R6 (np = 6) collects the forces generated by the robot actuators. Such
an inversion is always possible as fully-actuated aerial vehicles have a full-rank and
squared3 allocation matrix [Hamandi, 2021]. Then, the propeller speeds can be
obtained by employing Equation (4.57), i.e. γi = cγ,iΩ

2
p,i, i ∈ ¶1, . . . , 6♢.

5.2 Interaction with the environment

As mentioned in Chapter 3, the control scheme is validated in a pick-and-place
application, where multiple brick-shaped objects are autonomously picked and placed
at different locations by the AR. Hereby, we first provide more details about the
experimental setup used in the validation campaign. Then, we present quantitative
and performance results collected in the experimental campaign.

5.2.1 Validation setup

We employ a fixedly-tilted-propeller star-shaped hexa-rotor to conduct the exper-
iments. A picture is provided on the left of Figure 5.4. This fully-actuated AR
is a custom prototype called FiberTHex designed and realized in-house at LAAS,
where the experiments are performed. It is sized to have a comfortable payload while
providing enough lateral thrust to ensure rapid motion. The platform diameter is
about 80cm and is actuated by 6 evenly-spaced 13in propellers. It is equipped with
a monocular down-facing camera and an end effector capable of tightly gripping
an object, e.g., a simple brick, in order to move it in the workspace. The wrench
applied by the brick at the end effector is compensated by the controller using the
aforementioned strategy, so no prior knowledge of the brick mass or inertia is re-
quired. The robot features an onboard Intel NUC, comprising an Intel Core i7-8565U
and 8GB of DDR3 RAM, capable of running the image processing algorithms. It

3If the allocation matrix is not squared, one could employ the pseudo-inverse, as mentioned
in Section 4.6.1.
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Figure 5.4: On the left, a picture of the fully-actuated hexa-rotor used in the experimental
validation, while on the right a picture taken from the onboard camera. In the latter image,
the bricks and the placing location are shown. Their successful detection is marked with a
red dot displayed over their fiducial markers.

runs Ubuntu 18.04, and the software architecture is implemented in C++ using
GenOM [Mallet, 2010], i.e. a middleware agnostic component generator. This tool
allows creating software components that can be compiled for a given middleware,
e.g., for the Robot Operating System (ROS). We make use of the TeleKyb3 software
architecture for the state estimation as well as the low-level motor control, available
within the OpenRobots project4. The robot state feedback is provided by an onboard
IMU at 1kHz and an external Motion capture (Mocap) system at 100Hz. Sensor
fusion of the available measurements is realized by means of an Unscented Kalman
Filter (UKF), which provides the full state feedback at 1kHz. The onboard camera is
an Intel Realsense T265, chosen for its lightweight and commodity, but its odometry
feedback is not utilized. The integration of such a sensor in our architecture and the
exploitation of its visual-inertial odometry measures for the robot localization and
navigation are left for future work. The object detection is performed using AruCo
fiducial markers [Garrido-Jurado, 2014], as shown on the right of Figure 5.4, for the
sake of simplifying and abstracting the detection process. However, many MRAV-
oriented detection algorithms exist in the literature, for instance, deep-learning-based
ones, as presented in [Zhu, 2018; Akbari, 2021]. The detection algorithm identifies
the AruCo tags in the camera images and then it provides an estimate of the 6D state
of their central point knowing the geometrical dimensions of the fiducial markers.

To ensure a safe motion in the workspace, we impose without any loss of generality
that the motion shall occur at a constant altitude z r

B. We also impose to the motion
controller to attain a null roll and pitch, i.e. ϕ r

B = θ r
B = 0, during the whole operation

in order to exploit the full actuation property of the platform. Additionally, we enforce
the associated ϕ and θ components of the angular velocity ωB = [ ωBφ ωBθ ωBψ ]⊤ to
be zero in the HVS output, namely in Equation (5.15). Once the end effector is
aligned with the object, the AR descends until sufficient force feedback is measured
by the wrench observer along the vertical axis (i.e. zB), ensuring contact for picking.
Similarly, the placing operation is autonomously performed by visually servoing to

4https://git.openrobots.org/projects/telekyb3.

https://git.openrobots.org/projects/telekyb3
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the related location and employing contact feedback. Finally, in order to ensure the
feasibility of the task when the features are not within the camera Field of View
(FoV) or moving away from it, a position-based searching policy is implemented to
scan the pre-defined area until the brick is found or its detection recovered. Then,
the HVS controller is re-enabled. Similarly, the placing location is not known a
priori and, if not already visible, it is searched and detected by adopting the same
area-scanning routine.

Reference values of the feature vector

As mentioned earlier, depending on the nature of the particular application considered,
the reference values of the feature vector s r ∈ R6 shall be chosen such that to align
the end effector with the desired goal location. In our pick-and-place scenario, the
gripper of our hexa-rotor shall meet the center of the object upper surface to perform
a successful and reliable pick. Considering the situation schematically depicted
in Figure 5.5, the previous requirement translates into having Sp r

F = SpE, where p r
F

is the reference value of the feature position and pE the robot EE position, both
expressed in camera frame. Hence, by taking into account the kinematic linkage
between the robot parts, we can write that

Sp r
F = SpE = SpB + SRB

BpE (5.34)

= BRS
⊤

(− BpS) + BRS
BpE

⊤
(5.35)

= BRS
⊤

(BpE − BpS). (5.36)

In the equation above, the extrinsic camera parameters appear again, and the quantity
BpE ∈ R3 represents the mounting location of the robot EE w.r.t. the robot body.
In a similar fashion, to orient the end effector with the object, we can impose

SR r
F = SRE = BRS

⊤ BRE, (5.37)

where BRE ∈ SO(3) represents the mounting orientation of the end effector expressed
in FB. Recalling our choice for the feature selection, namely the normalized camera
coordinates in Equation (5.3), we have that their reference values are obtained as

x̃ r =
Sx r

F

Sz r
F

, ỹ r =
Sy r

F

Sz r
F

, z̃ r = Sz r
F , (5.38)

where the coordinates Sx r
F ,

Sy r
F and Sz r

F ∈ R are the components of the vector Sp r
F .

Therefore, through Equations (5.36) and (5.38), we can obtain the reference values
for the translation part of the feature vector, i.e. the vector s r

t . As mentioned earlier
in Section 5.1.1, the orientation error esr is instead given by θu, as s r

r = o3. To
compute esr , we convert the error rotation matrix R̃ = SR r

F
SRF

5 to is axis-angle
representation, where SRF is the current feature orientation in camera frame and
SR r

F the feature reference attitude obtained through Equation (5.37).

5The interested reader is referred to [Campa, 2009] for details regarding this orientation error
for rotation matrices.
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Figure 5.5: Schematic drawing representing the AR closing the distance with the object
to pick, on the left, and during the contact phase, on the right. The origins of the main
frames are drawn. For instance, OF is the origin of the feature frame FF . The vectors
SpF and SpE are the positions of the feature point and the robot EE tip expressed in FS ,
respectively.

5.2.2 Experiments

In this section, we present the results of two conducted experiments, each one requiring
the robot to find a brick, pick it, and then place it at another location. We remind
the reader that a video of the experiments discussed hereafter is available in Video 3.1
or at this link: https://peertube.laas.fr/w/eEY4Q8nWdj1z5vs4JBaMpt.

In the first experiment, we employ the full control architecture presented earlier,
while in the second one, we disable the modules that handle the physical interaction,
precisely the wrench observer and the admittance filter. These two cases aim to
demonstrate the validity and effectiveness of our proposed methodology compared
to classical control approaches, which do not explicitly take into consideration the
physical interaction and rely solely on the disturbance-rejection capabilities of the
controller [Gioioso, 2014]. In both experiments, we deactivate the integral action in the
positional part of the geometric controller, i.e. we set KI,p = O3 in Equation (5.24).
Contrary, we keep it in the attitude part, namely in Equation (5.29), to highlight how
the proposed control method can achieve accurate tracking of the reference motion.

In Table 5.1, we report the metrics computed on the results obtained from two
experiments. They comprise the means and the standard deviations of the distance
and rotation-tracking errors. For each sample of the robot motion, the error terms
are calculated as the difference between the reference trajectory and the actual robot

Full No phy.
µd m 0.0512 0.1059
σd m 0.0281 0.0498

µη Deg [0.2634 0.2875 2.8201] [0.3059 0.2578 2.7623]
ση Deg [0.2175 0.2235 2.1948] [0.2063 0.1951 2.0716]

Table 5.1: Means and standard deviations of the distance error ed, and rotation-tracking
ones eη. The two columns refer to the two conducted experimental cases: using our entire
proposed control architecture (“Full”) and the same one, but with the physical interaction
module disabled (“No phy.”).

https://peertube.laas.fr/w/eEY4Q8nWdj1z5vs4JBaMpt
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Figure 5.6: Position tracking during the two experiments. In dashed lines, the position
references of the robot trajectory, while in continuous lines, the current robot coordinates.
The blue area shows a phase of interest, as detailed in Section 5.2.2.

state (position pB or attitude in Euler angles ηB ∈ R3). Particularly, the distance
error is then obtained as the (Euclidean) 2-norm of the position-tracking error. We
denote with ep,i ∈ R3 and eη,i ∈ R3 the position and rotation-tracking errors at the
i-th sample of the robot motion, respectively. Therefore, we have that

ed,i =∥ep,i∥2 = ∥p r
B,i − pB,i∥2, µd =

1

Ns

Ns∑

i=1

ed,i, σd =

√√√√ 1

Ns

Ns∑

i=1

ed,i − µd,

(5.39a)

eη,i = η r
B,i − ηB,i, µη =

1

Ns

Ns∑

i=1

eη,i, ση =

√√√√ 1

Ns

Ns∑

i=1

eη,i − µη,

(5.39b)

where Ns ∈ N+ is the number of samples, and ed,i ∈ R is the distance error for
the i-th sample of the robot motion. The pairs µd, σ ∈ R and µη, ση ∈ R3 are,
respectively, the mean and standard deviation of the distance error sequences, and
those of the rotation-tracking errors.

The results in Table 5.1 prove that the adoption of the our control architecture
(column “Full”) achieves better reference-tracking accuracy compared to a HVS
scheme solely combined with a standard controller which is unaware of the physical
interaction (column “No phy.”). During the second test, a larger mean and standard
deviation of the distance error are obtained on average. On the contrary, almost
identical attitude-tracking performance is achieved. To exploit the full actuation
property of the platform, we impose it to maintain a flat orientation w.r.t. the ground.
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The resulting lateral force required for the motion is not violating the virtual bounds
of the actuation forces, thus an accurate orientation tracking is achieved in both
cases. The larger position-tracking errors obtained during the second experimental
test, can be better appreciated by observing Figure 5.6.

The plot on the top of Figure 5.6 shows the reference trajectory over the robot
actual position during the first experiment, while the bottom one displays the same
information but for the second experiment. In the region highlighted in light blue, it
can be noticed how beneficial is the adoption of a control method which accounts for
the physical interaction. During the second experiment, a classical controller (bottom
plot) provides a noticeably larger deviation from the vertical motion reference z r

B.
Whereas, the tracking performances along the y and x components are less affected.
Since our validation scenario consists of a pick-and-place operation, it is clear that
the most stressed motion component is the vertical one, perpendicular to the ground.
Along that direction, larger interaction forces are arising due to the picked payload,
while smaller ones along the lateral directions. As a result, we expect that the
classical controller would deviate more also along the x and y coordinates, if a task
involving the exchange of noticeably larger forces along the lateral directions is
envisioned.

In Figure 5.7, we provide the robot height from the ground (top), and the
magnitude of the force exchanged between the robot and the brick along zB (bottom),
during the first experiment only. In the regions highlighted in green, the picking
phase occurs. In that stage, the robot z coordinate decreases down to the brick
level (denoted as zB,pick), while the vertical component of the estimated contact force
fextz arises. The contact phase is detected by monitoring the vertical external force
applied on the robot: when it exceeds the threshold of 2N, the physical interaction
is taking place. After that phase, fextz decreases as the robot and the brick are no
longer in contact. The variable zB restarts to increase as the robot is taking off
with the picked object. In the regions highlighted in red, the placing phase is taking
place. Contrary to the pick, the robot height firstly decreases to reach the placing
location (denoted by zB,place), with a subsequent increase of the interaction force.
Then, after the contact force has reached the pre-defined threshold and the brick has
been placed, the robot takes off again. However, as the placing location is very close
to the ground, the wind airflow generated by the rotating propellers is causing some
ground effect, interacting with the robot by applying a vertical force on the platform.
This can be clearly seen in Figure 5.7. The estimated external vertical force Fextz

increases before the contact is established. As a consequence, the placing phase is
much shorter than the picking one. In-between these two parts, while the robot
moves with the collected payload towards the placing area, Fextz oscillates around a
constant value of about 4N, which in turns corresponds to the object weight (mass
of ≈ 400g).

In Figure 5.8, we illustrate the displacement of the detected brick in the image
plane of the onboard camera with a continuous black line. Every 1s, the current brick
position is drawn as a red dot, and its current heading is synthetically displayed
through a purple segment. The adopted HVS scheme leads the robot to accurately
move the robot EE on top of the object in order to permit its proper pick. As the
brick approaches its reference position, denoted by the yellow squared marker, the
camera orientation converges to the desired one, displayed as a green segment.
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Figure 5.7: Plots related to the first experiment (“Full”) only. In the top, the robot height

from the ground in FW , while in the bottom, the estimated contact force
B

f̂extz along zB .

Figure 5.8: Figure related to the first experiment (“Full”) only. The displacement and
heading of the detected brick in the image plane of the onboard camera.
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The code related to the presented experiments is released open-source6.

5.3 Extension to aerial manipulators

In this section, we extend the control architecture presented earlier to achieve the
second milestone of the same first subproblem. This time the goal is to achieve
physical interaction between an aerial manipulator and a human worker.

5.3.1 Model of the aerial manipulator

Here, we present the dynamic model of the aerial manipulator (AM) employed in
the design phase of the motion controller. We start by recalling the generalized
coordinates, the twist and its derivative for an aerial manipulator, which are defined
as follows:

ξ =
[
ξb

⊤ ξa
⊤
]⊤

=
[
pB

⊤ qB
⊤ qa

⊤
]⊤

∈ R7+nq , (5.40)

ζ =
[
ζb

⊤ ζa
⊤
]⊤

=
[
vB

⊤ BωB
⊤

q̇⊤
a

]⊤
∈ R6+nq , (5.41)

ζ̇ =
[
ζ̇⊤

b ζ̇⊤
a

]⊤
=
[
v̇⊤

B
Bω̇B

⊤
q̈⊤

a

]⊤
∈ R6+nq . (5.42)

As the robot is composed of two subsystems, when considering the dynamic model
in the canonical form as in Equation (4.23), we can decompose into two parts.
Specifically, we get


Mbb Mba

Mab Maa

] 
ζ̇b

ζ̇a


+


cb

ca

]
+


gb

ga

]
=


λb

λa

]
, (5.43)

where •b and •a denote the parts related to the flying base and the robotic arm,
respectively. In particular, the generalized inertia matrix comprises two terms related
solely to the flying base, namely Mbb and Mba. The former accounts exclusively
for the inertial effects due to the dynamics of the MRAV, while the latter for the
dynamic coupling with the robotic arm. Similar considerations apply to the other
two terms, i.e. Maa and Mab, where the first one is related to the robotic arm only,
while the second one to the coupling. Exploiting the factorization of the Coriolis
vector, one can decompose such a term similarly in four terms, obtaining

c =


cb

ca

]
= Cζ =


Cbb Cba

Cab Caa

] 
ζb

ζa

]
. (5.44)

Likewise, we partition the gravitational vector as

g =


gb

ga

]
=


gbb + gba

gab + gaa

]
. (5.45)

While considering the previous results, we select only the upper line of Equation (5.43)
and, by rearranging the terms, we get

Mbbζ̇b + Cbbζb + gbb = λb +
(
−Mbaζ̇a − Cbaζa − gba

)
= λb + wa, (5.46)

6https://redmine.laas.fr/projects/visual-physical-control-architecture.

https://redmine.laas.fr/projects/visual-physical-control-architecture
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where wa ∈ R6 collects all the coupling effects induced by the robotic arm on the
flying base. If an external wrench wext ∈ R6 is applied on the robot, then an
additional term appears on the right-handed side of the equation above.

The terms on the left-handed side are related only to the dynamics of the flying
base, thus we have that Mbb = MGTMR, Cbbζb = cGTMR, gbb = gGTMR. Therefore,
by recalling Equation (4.29), it results that


mbI3 O3

O3 Jb

] 
p̈B

Bω̇B

]
+


 o3

S
(

BωB

)
Jb

BωB


+


mbgzW

o3

]
= wact + wa + wext, (5.47)

where we substituted BpCoM = o3.

Remark. Reference system. It is important to point out that the wrench vectors on
the right-handed side of the equation above are not expressed fully w.r.t. FW . While
the composing forces are expressed in that frame, the torque components are instead
defined w.r.t. the body coordinate system, i.e. FB. However, in the following, we
will not use any particular superscript to maintain a clean notation.

Remark. GTMR model. If one imposes wa = o6 in Equation (5.47), the dynamic
model of just the GTMR is obtained, where

λb =


RB O3

O3 I3

]
Bwact = wact. (5.48)

Remark. Dynamic coupling. The coupling wrench wa can be computed by means of
the Recursive Newton-Euler Algorithm (RNEA) introduced in Chapter 4 by querying
it with suitable inputs. The reader is referred to [Orsag, 2018] for more details.

5.3.2 Vision-based control

The HVS scheme presented previously allowed an AR to be visually controlled
towards the object, either to pick or to place it in the surrounding environment.
In a human-robot handover process, a similar vision-based control strategy can be
adopted to control the object pose exploiting visual clues. During a H2R handover,
the visual servoing could guide the AR to retrieve the object from the partner hand,
in a similar way to the previous picking phase. Contrary, in a robot-to-human (R2H)
handover, the pose of the object carried by the robot can be visually controlled and
moved towards the human hand, performing an action similar to the placing step.

Since hereafter we focus on deriving a controller for achieving physical interaction
between a dynamically more complex AR and a human partner, we neglect the
presence of the HVS scheme. In the validation scenario, being a H2R handover, we
assume that the final object position is known and the controller tracks an ad hoc
motion reference. The AF will modify this reference trajectory according to the
external wrench applied on the robot. We imagine that the final location may not
be comfortable for the human operator, who may want to move the robot EE to a
more preferable location. To do so, the user can deliberately apply a force on the
robot along a certain axis to convey this intention to the other agent and make the
robot move toward that direction.
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5.3.3 Physical interaction control

For what concerns the interaction layer, the module structure remains unaltered,
thus comprising again the same Wrench observer and Admittance filter introduced
previously. The main exception is the dynamic model used in the wrench observer:
now the estimator will employ the robot model presented earlier. In this way, it can
discriminate the internal wrench caused by the dynamic coupling between the two
subsystems and the one arising from the human-robot interaction.

Wrench observer

In this second milestone, we need to estimate the human wrench applied on the
MRAV during the physical interaction. We extended the precedent formulation
to account also for the wrench generated by the robotic arm. Therefore, we add
to Equations (5.16) the coupling term wa = [ fa

⊤ Bτa
⊤ ]⊤ as follows





f̂ext =
∫ t

0
QI,f

(
mbp̈B +mbgzW − fact − fa − f̂ext

)
dν

Bτ̂ext = QI,τ

(
Jb

Bω̇B +
∫ t

0

(
JbS

(
BωB

)
BωB − Bτact − Bτa − Bτ̂ext

)
dν


,
(5.49)

where we remove again the reference frame FW to simplify the notation. Compared
to the estimator in Section 5.1.2, here, the force estimation is performed in the
inertial reference frame.

Admittance filter

In the control scheme for the AM, the admittance filter, which is responsible for
the robot interaction behavior, acts only on the MRAV trajectory. This choice is in
contrast with the usual design of having the interaction control at the EE level for
poly-articulated robots [Bascetta, 2013]. It is necessary to control individually the
joint accelerations or the torques of the manipulator arm to successfully implement,
respectively, an admittance or an impedance control at the robot end effector. As
many aerial manipulator designs presented in the literature are still endowed with
position or velocity-controlled robotic arms, they make the application of a pure
admittance or impedance control scheme unfeasible. One would need a full torque-
controlled AM, as the one recently proposed in [Mart́ı-Saumell, 2023]. This motivate
us to implement the AF at the robot base level, and we assume that the MRAV
and the joint trajectories are available a priori and they correspond to a desired
EE pose. Consequently, given the desired motion, the admittance filter computes a
new reference trajectory for the MRAV based on the desired interaction dynamics
and the knowledge of the external wrench applied by the human on the robot.
Thus, the admittance filter has the same expression as before, i.e. the one given
by Equation (5.17).
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5.3.4 Motion control

As the robotic platform comprises a fully-actuated flying base endowed with an
additional robotic arm, we need to replace the previous motion controller. Here,
we rely on a feedback linearization approach which generates the commands for the
robot actuators with the only prerequisite of knowing its dynamical model.

We start by defining a virtual input that is composed of a Proportional-Derivative
(PD) and feed-forward term, and it has the objective of zeroing the tracking errors.
This is achieved by computing the nominal robot linear and angular accelerations as

ζ̇ n
b =


p̈ n

B
Bω̇ n

B

]
=


KP,pep + KD,vev + p̈ r

B

KP,ReR + KD,ωeω + Bω r
B

]
, (5.50)

where the error terms are computed as in Equations (5.25), (5.30), (5.26) and Equa-
tion (5.31). In Equation (5.50), the matrices KP,p, KD,v, KP,R, and KD,ω ∈ R3×3

+

represent the gains of the PD controller.

Then, these virtual inputs are used within a feedback linearization scheme.
Therefore, we invert the robot dynamic model obtained in Equation (5.47) as follows

wact =


fact

Bτact

]
= Mbbζ̇

n
b + Cbbζb + gb − wa − ŵext, (5.51)

where ŵext =
[

f̂⊤

ext

B τ̂ext
⊤

]⊤
∈ R6 is the external wrench computed by the WO. Lastly,

by recalling Equation (4.49), we can compute the motor-propeller actuator commands
as

γ = G−1


RB O3

O3 I3

]
wact, (5.52)

where the inversion is always feasible thanks to the full actuation property of the
aerial base, as G is a square full-rank matrix.

Joint velocity controller

If the robotic arm is controlled by servo motors featuring a low-level position or veloc-
ity controller, it can be safely assumed that they can track the desired joint commands
precisely, while rejecting external disturbances [Dietrich, 2016]. In mathematical
terms this translates into having

q̇a ≈ q̇ d
a , (5.53)

if the joints are velocity-controlled. Else, in the case of a low-level position controller,
we have that

qa ≈ q d
a . (5.54)

Finally, since it is usually required to move the arm at low speeds in tasks requiring
physical interaction, we can consider the joint accelerations q̈a ∈ Rnq to be null.
Consequently, the coupling effects induced by the arm motion are treated as external
disturbances at the control level of the aerial robot, while the robotic arm features
its own low-level joint-level controller.
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Figure 5.9: A picture of the aerial manipulator adopted in the H2R handover experiment.

5.4 Interaction with humans

In this section, we present the results obtained from the pHARI experiment presented
in Chapter 3. To briefly recap, it consists of a H2R handover where a human
worker placed on a scaffolding needs to return a tool to a robotic partner being
an aerial manipulator. Hereby, we first describe the aerial robot employed in the
validation campaign, and later we offer the technical outcomes deriving from the
experimentation.

5.4.1 Validation setup

The MRAV comprises the same fully-actuated hexa-rotor detailed in Section 5.2.1,
this time equipped with a 3-Degrees of Freedom (DoFs) manipulator driven by servo
motors, specifically by Dynamixel smart actuators7. A picture of the prototype
employed in the experimental campaign conducted in the University of Twente is
available in Figure 5.9. The Dynamixel units feature both an internal velocity and a
position-based controller which provides as feedback the measures of the joint angles
and their angular rates thanks to the integrated encoders. During the approach
and reach phases, we use precomputed joint trajectories to obtain the desired motor
velocity commands driving the robot EE to the desired position. Throughout the
physical interaction stage, we assume that the robotic arm is able to track precisely
the set-points, canceling out the effects induced by the contact wrench. The custom-
designed manipulator arm is composed of a differential gear providing two degrees
of freedom at the shoulder level, as visible in the design visualization reported
in Figure 5.10, and a pulley mechanism introducing an additional one at the elbow.
The end effector consists in a hook-like device that allows the human operator to
secure the tool to be handed over.

For conducting the experiments in a safe manner, the human worker wears

7https://www.robotis.us/dynamixel/.

https://www.robotis.us/dynamixel/
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Figure 5.10: A picture of the aerial manipulator adopted in the H2R handover experiment.
For visualization purposes, a hand gripper is mounted as end effector.

protective gear, such as an helmet with visor, gloves, and clothing that prevents
leaving any body part from being exposed. Moreover, the robot is secured by means
of a cable to the ceiling of the experimental room. In this way, if any technical
issue occurs, the experiment can be terminated immediately and the robot turned
off, without producing any potential danger for the human partner or damages
to the platform. Furthermore, an operator placed at a ground station supervises
the activities, operates the state machine of the software architecture through a
joystick, and decides whether proceeding with the different states or terminating the
experiments in case of any unexpected event.

The control method detailed in Section 5.3 is implemented in MATLAB and
Simulink, and it interfaces to the real hardware by means of a local network. We
rely again on the TeleKyb3 architecture for the robot state estimation and low-
level interfaces to the hardware components. A Mocap, installed in the ceiling
of the experimental room, is used to obtain the robot position and the attitude
measurements at 100Hz. Other sensor measurements are available which comprise
linear accelerations and angular velocities provided by an onboard IMU with a
sampling frequency of 1kHz. As before, the sensor fusion process is performed by
means of an UKF running at 1kHz.

Deadzone strategy for the external wrench

As the WO module computes an estimation of the external wrench applied on the
robot from the available sensor measurements, noise is naturally affecting its output.
If the estimated forces and wrenches are directly fed to the admittance filter, it may
influence the robot dynamics even though no real external action is applied on the
vehicle body by the human. This results in unexpected and unwanted robot motions.
To prevent this behavior, we apply a simple deadzoning strategy. We perform a
test flight during which we do not apply deliberately any external wrench on the
robot body. We record the output of the WO and, from the log files, we manually
estimate the maximum and minimum values of each estimated force and torque
component. We use these values to build deadzones for the output of the wrench
observer. Therefore, the real output of the WO module, i.e. the pair f̂ out

ext and τ̂ out
ext ,
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Figure 5.11: A picture of the H2R handover taken during the interaction phase. The
direction along which the robot is compliant and the human can guide its EE is shown in
red. It is parallel to xW . Along the other axes, the robot exhibits a stiff behavior.

is obtained as

f̂ out
ext =





f̂ext − f̄ext f̂ext ≥ f̄ext,

0 −f
¯ext

< f̂ext < f̄ext,

f̂ext + f
¯ext

f̂ext ≤ −f
¯ext

,

, (5.55)

τ̂ out
ext =





τ̂ext − τ̄ext τ̂ext ≥ τ̄ext,

0 −τ
¯ext < τ̂ext < τ̄ext,

τ̂ext + τ
¯ext τ̂ext ≤ −τ

¯ext,

(5.56)

where we denote with f̄ext, f
¯ext

∈ R3
+ and τ̄ext, τ

¯ext ∈ R3
+ respectively the lower

and upper bounds of the external forces and torques obtained from the test flight
mentioned above. The quantities f̂ out

ext and τ̂ out
ext constitute the actual external wrench

fed to the admittance filter, and the motion controller.

5.4.2 Experiments

In this section, we shortly recap the main stages of the pHARI experiment and then
we analyze the collected results. Before continuing, we encourage the reader to watch
again the video of the validation campaign, available in Video 3.2, or at this link:
https://youtu.be/LrQxXbQ5IHc.

The experiment is divided into three main parts, namely the approach-and-
reach, the interaction and the retraction, which corresponds to the handover phases
described in Chapter 2. These stages also constitute the three cases of the state
machine employed during the test, each one enabling or disabling certain functionality.
In the experimental validation, we employ only the estimation of the external forces,
while we neglect the use of the external torques, which is left as future work.

https://youtu.be/LrQxXbQ5IHc
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Figure 5.12: The plot is divided into three different highlighted regions representing the
three phases of the experiment. Here, the actual position of the AM and its reference
trajectory are displayed.

Figure 5.13: Here, we report the position errors of the aerial robot tracking the reference
trajectory throughout the experiment. In general, the motion controller provides acceptable
and satisfying tracking performance in all phases.
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Accordingly, we make use of the deadzone technique only for the force output of
the WO. We decide to use only the external forces as we believe that this would
constitute the most natural and human-like type of interaction, where the robot can
only be pushed or pulled by the partner along certain directions.

Initially, the AM, which is in the first phase (approach-and-reach), moves towards
the worker and stops in front of the scaffolding where the user is located. As no
contact is expected during the robot motion, the output of the wrench observer is
not fed to the admittance filter, as we would like the robot to reject any possible
unexpected external disturbance. The actual and reference position of the AR
collected during this part are reported in Figure 5.12, respectively as continuous
and dashed lines. In this phase, the robot motion controller is able to achieve good
tracking performance of the reference set-points. The accuracy of the feedback
linearization approach can be clearly appreciated in Figure 5.13, where we provide
the trajectory tracking errors. There, it is possible to notice that the position error
stays within ±5cm throughout this first phase. We consider this a satisfying result
considering the mechanical complexity and the degree of technological realization of
the robotic system in use.

After the approach-and-reach phase, the human on the elevated structure signals
the intention to physically interact with the robot, which marks the start of the
contact stage. The state machine is changed into the interaction state. This means
that the estimated external wrench is now fed to the admittance filter allowing the
aerial robot to implement the desired admittance behavior given by the selected
admittance parameters in Equation (5.17). In this application, the robot desired
interaction behavior is to permit the human to manually guide and position its EE
in the space. This is achieved by tuning properly the virtual-dynamics parameters
and updating at each control iteration the desired aerial vehicle position with the
current estimated position within the AF scheme. As mentioned earlier, the platform
is anchored to the ceiling by means of a cable. Therefore, the experimental setup
induces an external disturbance on the platform. We evaluated experimentally that
the induced disturbances affect the robot mainly along the y and z axes of the inertial
frame, and additionally the platform attitude. Therefore, in the experiment, the
desired admittance behavior is only enabled along xW . Whereas, the robot exhibits
a stiff behavior in the other DoFs. The x-axis of FW is parallel to the direction
corresponding to the aerial vehicle moving sideways once in front of the human during
the interaction phase, as shown in Figure 5.11. This choice is motivated by the fact
that the robot is neither supposed to move away from the scaffolding, otherwise the
human would not be able to hand over the object to the partner, nor too close for
safety reasons and avoid potential collisions with the structure. For similar concerns,
the robotic agent should not move excessively upwards and downwards to facilitate
the human-robot interaction.

When the robot has reached the scaffolding, the human worker decides to re-
position the robot EE by manually guiding it to a preferred position. By examining
the interaction parts of the plots in Figures 5.12 and 5.14b, we see that the robot
implements the desired admittance behavior in response to the estimated interaction
wrench from approximately t > 35s to t ≤≈ 45s. We can see a change in the position
reference in response to the estimated force provided to the AF, which computes
a new reference trajectory for the flying base. Once the robot is positioned in a
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comfortable location, the human worker proceeds to attach the tool to be handed
over to the robotic agent end effector. Attaching the payload to the robot does not
have any effect on the estimated external force, as shown in Figure 5.14b. As a
result, the admittance filter does not change the reference set-point along xW . After
the tool exchange, the human decides to move back the robot EE to the location
where it was when the robot initially reached the elevated structure. Consequently,
the operator applies another force on the robotic arm, which is hence followed by
a subsequent robot re-positioning, as displayed in Figure 5.12 approximately from
t ≥≈ 70s to t < 80s.

(a) Estimated force along xW originally provided by the wrench observer.

(b) Estimated force along xW after applying the deadzone strategy.

Figure 5.14: In these plots, we provide the estimated force along xW , which is the direction
excited by the human during the interaction phase. Due to real system uncertainties, a
non-zero force is estimated even when there is no contact, specifically during the approach-
and-reach phases and the retraction part of the handover. This constitutes one downside of
using a model-based wrench estimator. This problem is generally solved by using thresholds
within a deadzone strategy. Here, we show the output of the wrench observer without (top)
and with (bottom) using such a technique. The chosen deadzone thresholds for the force
output are f̄ext = f

¯ext
= [ 1 0 0 ]⊤. As we consider only the forces along xW , we set only the

first element different from zero in the vectors containing the threshold parameters.

The robot behavior during the interaction is properly achieved thanks to the
use of the deadzoning strategy described in the previous section. As mentioned
there, it allows removing the noise affecting the estimation of the external wrench
which would have provoked unwanted and unexpected robot movements during the
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interaction phase. In Figure 5.14a, we report the external force estimated without
applying the deadzoning strategy, while in Figure 5.14b, the signal obtained after
applying it. From these two pictures, it is evident how beneficial is the application
of such a technique. However, using a deadzone brings some downsides which will be
discussed in the final part of the chapter, precisely in Section 5.5.2.

Finally, once the interaction phase is concluded, the human signals the end of
the handover to the supervisor who can initiate the retraction phase, as shown
in Figure 5.12 at t >≈80s. During this last phase, the interaction control layer is
disabled again, as the robot is supposed to move backwards and then land at the
starting position.

5.5 Conclusion

In this section, we draw some final considerations regarding the work presented in this
chapter. After a brief summary of the main key elements and results, we highlight
potential limitations of the methodology we described earlier. Next, we conclude the
chapter by discussing possible extensions of the control methods presented so far.

5.5.1 Synthesis

We opened the chapter by deriving the formulation of the hierarchical control
architecture introduced in Chapter 3. Specifically, we showed how the HVS scheme
generates the velocity commands driving the robot towards the desired location based
on the selected feature information of the observed entities. We described the twofold
functionality of the interaction control layer: (i) estimate the external wrench applied
on the robot body, and (ii) shape the robot dynamics during the interaction. Finally,
we unveiled the motion control law allowing the generation of motor commands letting
a fully-actuated MRAV apply a 6D wrench on the environment. Then, we provided
quantitative results showcasing the trajectory-tracking accuracy of the proposed
control architecture compared to standard controllers not explicitly accounting for
the physical interaction. The obtained results demonstrate the capability of this
method to perform task requiring physical interaction. Additionally, we show that
the vision-based control system can effectively drive the robot EE to the desired
location by exploiting the visual clues provided by an onboard camera.

The features provided by this control framework are essential when considering
scenarios where ARs are requested to interact and cooperate with human operators
sharing their same workspace. Therefore, we extended the previous methodology to
aerial manipulators in physical interaction with humans. As AMs feature an additional
robotic arm, we replaced the geometric controller with a feedback linearization
approach capable of generating motor commands both for the motor-propeller and
the joint actuators. We validated this new architecture in a H2R handover experiment.
The conducted test proved the viability of a new use case in aerial robotics, namely
physical Human-Aerial Robot Interaction.



124
Chapter 5. Control methodology for visual and physical

Human-Aerial Robot Interaction

5.5.2 Limitations

The experimental results shed light on the potential limitations of the derived control
framework, which we list hereafter.

The proposed modular architecture comprises several gains and parameters which
require proper selection and adjustment. This might end up in a tedious and time-
consuming activity. However, automatic strategies, as the one described in [Roveda,
2020], can be potentially envisioned to facilitate this process for the motion controller.
However, the choice of the admittance parameters still requires manual effort and
several trials to correctly shape the interaction behavior of the robot to match the
desired one. Likewise, preliminary tests with the particular robotic platform in
use are necessary for estimating the threshold values of the deadzone removing the
noise affecting the output of the wrench observer. Additionally, the selection of
the threshold parameters is important, as they affect the system sensitivity to the
external wrench applied on the robot body. Too large values will require the user to
apply very large forces on the robot, thus resulting in an increased physical effort
from the human standpoint. At the same time, if the threshold values are selected
too small, the output of the wrench observer may be still affected by some noise,
which could make the robot move unintentionally.

Besides, the task has to be designed to be feasible both from the actuation and
the perception standpoints. The motion controller considers only the virtual bounds
on the lateral forces that the robotic platform can apply, while it neglects the real
actuation mechanism responsible of the vehicle motion. As discussed in Chapter 4,
the motor-propeller and joint actuation units can apply limited forces and torques.
Their bounds are neither encapsulated by the virtual constraints considered by the
geometric controller, nor accounted by the feedback linearization approach which
can command an arbitrary motor wrench. From the perception point of view, the
control architecture does not take into consideration any vision-based constraint,
such as the loss of visibility of the observed entities. In the conducted experiments,
the camera and the targets have to be placed and oriented in the workspace such
that the accomplishment of the task is ensured.

Lastly, the human is just a source of external actions applied on the robot body
that the controller has to treat either as a mean of conveying an intention (e.g. move
to a certain position) or to reject as representing an unwanted interaction. As a
matter of fact, the controller accounts neither for the human state nor for the user
current activity. Hence, the current control framework can potentially lead to an
ergonomic collaboration or an unacceptable collision between the two agents during
the object handover.

The derivation of a control method including human-centric metrics, such as
safety and ergonomics, and satisfying actuation and perception-based constraints
will be analyzed in the next chapter.

5.5.3 Perspectives

We relied on an indirect force control method to estimate the external wrench applied
on the robot by the surrounding environment. This has the benefit of not requiring
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the integration of any auxiliary measurement device. However, the quality of the
estimation provided by model-based methods is affected by the measurement noise
and the model uncertainties. The addition of a force-torque sensor would allow to
directly measure the external forces and torques and fuse them with the other data
sources to mitigate these issue and improve the estimation process. Along this line,
the availability of a more precise estimation of the external wrench may cause the
deadzone strategy to be less necessary.

Nevertheless, in the case this thresholding technique is still required, the use
of fixed values for the thresholds, if not well tuned, might lead the system to
underrespond to the human actions or overrespond to the external disturbances. In
future work, it can be interesting to investigate the use of a dynamic thresholding
strategy where the bounds are mathematically derived w.r.t. the system state or
the handover phase (e.g., approach, interaction, and retraction). This would make
the system more adaptive to the task and it would preclude from performing an
experimental campaign to empirically derive the thresholding values for each part of
the operation.

Furthermore, in the H2R handover process, the robot approaches and reaches the
human without exploiting the visual sensors which are usually available on-board
MRAVs. Therefore, in future work, it could be investigated the use of a similar
visual servoing scheme to visually guide the robot towards the operator and possibly
control the EE position during the object exchange. A similar strategy is employed
in [Costanzo, 2023] in order to achieve seamless and natural H2R and R2H handovers.

Lastly, the availability of a fully-torque-controllable aerial manipulator would
allow the investigation of a pure impedance or admittance control framework, as
the one proposed in [Dietrich, 2016]. This could allow obtaining a robot compliant
behavior by taking advantage of the extra DoFs encompassed by the attached robotic
arm, which are not actually exploited by our formulation.





Chapter 6

Predictive human-aware control

The goal of this chapter is to present an in-depth formulation and derivation of
the human-aware predictive controller introduced in Section 3.1.2. This proposed
methodology is designed to address the second subproblem described in Chapter 2.
To briefly recap, we are interested in deriving a control approach that can include
human-centric metrics, such as ergonomics and safety, while respecting the robot
actuation limits and satisfying a set of task requirements (e.g., visibility).

Section 6.1 opens this chapter by offering an overview about the main concepts
related to Model Predictive Control (MPC). Additionally, it introduces the general
formulation of an Optimal Control Problem (OCP), and the technique we utilize to
derive a Nonlinear Programming (NLP) problem. The MPC-based controller solves
the NLP at a certain sampling frequency in real-time, and the solution comprises
the optimal commands to be sent to the robot. Therefore, in Section 6.2, we detail
each term composing the OCP presented in Chapter 3. We validate this method in
a robot-to-human (R2H) handover operation. In Section 6.3, we present the results
collected in a safe and simulated, but yet realistic, environment. Next, in Section 6.4,
we analyze the comments received by the reviewers who evaluated our work for
a prestigious journal. We provide their valuable feedback, and we analyze it in
order to sketch possible improvements for our proposed controller. Afterwards,
in Section 6.5, we detail the results obtained by testing our control algorithm in real-
world experiments. Lastly, in Section 6.6, we conclude this chapter with some final
thoughts on the proposed methodology and a discussion on the potential limitations.

6.1 Model Predictive Control

Model Predictive Control (MPC) is a control technique developed in the second
half of the 20th century and it found great popularity and success in industrial
applications [Schwenzer, 2021], such as the control of chemical reactors [Diehl, 2002]
and food processing [Qin, 2003]. Later on, it started to be adopted in highly-
demanding applications, for instance in the automotive [Swief, 2019] and aerospace
sectors [Eren, 2017], and subsequently in the field of mobile and autonomous robotics,
e.g. for aerial and legged robots [HNguyen, 2021; Katayama, 2023].

As mentioned in Chapter 3, this control method consists in the formulation of
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an Optimal Control Problem (OCP), where a cost function is minimized and a set
of constraints shall be satisfied. The solution to this problem is obtained by means
of optimization process, where the future system behavior is predicted over a finite
time window by exploiting the model knowledge. This allows obtaining a sequence
of control actions over the finite-time prediction that lets the controlled dynamic
system achieve the desired goal. In the practice, as the optimization problem is
normally solved online at a given sampling frequency, only the part of the control
plan related to the nearest future is actually used to control the system, while the
rest discarded. Then, at the next sampling time instant, the computation is repeated
again by initializing the optimization problem possibly with a new state feedback
provided by the available sensors. This re-initialization procedure servers to mitigate
possible deviations of the real system from the expected one predicted by means
of its nominal model [Bicego, 2020]. The characteristic of repeatedly solving the
optimization problem grants this control technique the alternative name of Receding
Horizon Control (RHC) [Alessio, 2009]. Additionally, for its ability to naturally
include constraints, MPC is also known in the literature as constrained optimal
control.

As mentioned earlier, the solution is typically computed by finding online a
numerical solution to the finite-horizon open-loop OCP. As the optimization procedure
is usually computationally expensive, this results in mediocre running frequencies
which are not suitable for controlling fast-varying dynamic systems. Moreover,
the code implementing the solver might encounter numerical issues which, if not
properly treated, jeopardize the system stability and they can additionally create
software certification issues for safety-critical applications [Alessio, 2009]. The
research community, to decrease the online computational burden, has developed
a method to solve the optimization problem off-line so that the operations on-line
reduce to a simple function evaluation. By exploiting multi-parametric programming
techniques, it is possible to solve the optimization problem off-line for a given range of
operating conditions of interest [Alessio, 2009]. The result is usually a lookup table of
linear gains to be used on-line, which offers incredible fast software implementations.
Nevertheless, as it requires the evaluation of the entire workspace of a given system
and related application, it generates complex problems that admit feasible solutions
only for small-scale systems and low-dimensional state spaces. Despite removing
numerical issues of classic solvers and moving the optimization to a non-time-critical
off-line calculation, it additionally requires larger memory sizes which are not always
available on-board integrated processing units [Schwenzer, 2021]. Therefore, this
type of MPC, denominated explicit, still finds marginal use compared to the standard
(implicit) one where the solution is computed numerically and on-line. Moreover, the
recent advances in embedded processors and the availability of methods to rapidly
find a solution to the given OCP [Bock, 2007; Houska, 2011; Nurkanović, 2019; Gros,
2020] have enabled the application of MPC to the real-time control of fast-varying
dynamic systems with high-sampling rates. Hence, in this thesis, we will employ an
implicit solver for the OCP discussed later. The use of an explicit MPC technique
might be considered in future work.
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6.1.1 Optimal Control Problem formulation

Given a time-invariant continuous-time system, where t is the time, its dynamic
behavior is typically described by a system of Ordinary Differential Equations (ODEs)
with a certain initial condition, which can be written as





ẋ(t) = f
(
x(t),u(t)

)
,

x(t0) = x0,
(6.1)

where x ∈ Rnx and u ∈ Rnu denote, respectively, the system state and input vectors,
and the scalars nx ∈ N+ and nu ∈ N+ the number of state and input variables. The
function f : Rnx×nu → Rnx represents the system dynamic model and x0 ∈ Rnx is
its initial condition at time t = t0.

The solution computed by the MPC is the input vector that solves the following
OCP [Bicego, 2019]:

u⋆ = arg min
x,u

J
(
x(t),u(t)

)
= lf

(
x(tf )

)
+
∫ tf

t0

l
(
x(t),u(t)

)
dt (6.2a)

s.t. r
(
x(t),u(t)

)
= onr , (6.2b)

s
(
x(t),u(t)

)
≤ ons , (6.2c)

where the time window [t0, tf ] is the prediction horizon, whose length is named time
horizon and denoted as Th ∈ R+. Therefore, the MPC solver computes the optimal
control input vector u⋆ ∈ Rnu as the system inputs that minimize the cost function
J : Rnx×nu → R, while satisfying the set of constraints. The objective function is
composed of two parts. The first one, namely l : Rnx×nu → R, is the running-cost
and it provides the cost along the time horizon. The second part, i.e. lf : Rnx → R,
is instead the terminal cost and it is related to the last time instant tf of the time
horizon. The set of constraints are composed of nr ∈ N equality and ns ∈ N inequality
expressions. The former relationships, i.e. the equality constraints, are embodied
by the function r : Rnx×nu → Rnr , which normally include the system dynamics
and the initial condition given by Equation (6.1). The inequality ones, instead, are
synthetically represented by the function s : Rnx×nu → Rns , which usually comprise
three types of constraints.

• The first one comprises the input constraints which act on the system control
variables. They typically encompass the saturation of the system actuators
and other physical limitations related to the actuation units.

• Then, we have the state constraints, which limit the search space of the system
state variables. These bounds are usually related to restrictions on the robot
operating workspace, e.g. joint limits, safety boundaries, or kinematic con-
straints related to the robot trajectory, like maximum and minimum velocities
and accelerations.

• The third type includes the so-called general constraints, i.e. those bounds
whose expression is function of the state and input variables, or just one of
the two quantities. Examples of general constraints are the limited sensing
capabilities of the onboard sensors [Jacquet, 2022b] or the formulation of
collision-avoidance requirements [Lindqvist, 2020].
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The OCP, which is given by the Equations (6.2), is iteratively solved at each sampling
time Ts ∈ R+, and it provides the optimal control inputs u⋆ to be applied to the
robotic system.

Remark. Parameters. Additionally, one can parametrize the OCP in (6.2) by means
of a vector of npm ∈ N parameters, denoted as p(t) ∈ Rnpm , resulting in

u⋆ = arg min
x,u

J (x,u,p) = lf (x,p) +
∫ tf

t0

l (x,u,p) dt (6.3a)

s.t. r (x,u,p) = onr , (6.3b)

s (x,u,p) ≤ ons . (6.3c)

In the OCP above, we have dropped the time dependency for simplicity of notation.
The values of p are already known when trying to solve the optimization problem, thus
they do not constitute part of the solution computed by the numerical solver [Chen,
2019].

When either the cost function or the constraints, or both, have a nonlinear
dependency on the state and input variables, the OCP in Equation (6.2) leads to a
nonlinear optimization problem. As we will see later, this is the case for many robotic
systems, since their dynamic model comprises a set of nonlinear equations. Therefore,
from now on, we prefer to use the term Nonlinear Model Predictive Control (NMPC)
rather than simply MPC to highlight the nonlinearity of the optimization problem.

6.1.2 Nonlinear Programming Problem

The well-known classification of ways for solving optimal control problems is mainly
divided into indirect and direct methods1 [Dra֒g, 2016]. On the one hand, the
former (indirect) optimal control methods, also known as first-optimize-then-discretize
approaches, are characterized by the formulation of the infinite dimensional first-order
necessary optimality conditions in order to solve the OCP [Quirynen, 2017]. However,
they are hardly used in today’s NMPC applications as they require particular
attention when deriving the solution of the OCP [Yutao, 2019]. On the other hand,
the direct methods reformulate the original infinite dimensional optimization problem
adaptively into a finite-dimensional one through a parametrization of the controls
and states [Bock, 2000]. For this characteristic, they are also known as first-discretize-
then-optimize methods [Quirynen, 2017]. The resulting optimization problem can be
efficiently solved by numerical solvers, whose fast development in the recent years
contributed to the popularity of this type of approaches [Yutao, 2019]. For this
reason, in this thesis, we will consider only direct methods, and particularly the
popular multiple shooting approach. However, as the scope of this thesis is not the
one of contributing to these methods, we will not provide all the details regarding its
formulation, for which we refer the interested reader to [Yutao, 2019].

By applying the direct multiple shooting method, the time horizon Th is dis-
cretized over N samples, known as shooting points, and the time-continuous OCP is

1However, a third type of solving OCPs exists which is known as Dynamic Programming (DP).
The interested reader is referred to [Bellman, 1957; Bertsekas, 2010] for more details about this
third approach.
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transformed into a Nonlinear Programming (NLP) having the following form:

min
x0...xN

u0...uN−1

JN (xN ,pN) +
N∑

k=0

Jk (xk,uk,pk) (6.4a)

s.t. rk (xk,uk,pk) = onr , k∈¶0,...,N−1♢ (6.4b)

rN (xN ,pN) = onrN , (6.4c)

sk (xk,uk,pk) ≤ ons , k∈¶0,...,N−1♢ (6.4d)

sN (xN ,pN) ≤ onsN . (6.4e)

In the optimization problem above, we use the subscript k to denote the discretized
version of the variable evaluated at the k-th shooting point. Thus, if we consider for
instance the state vector, we have that xk = x(kTst),∀k ∈ ¶0, . . . , n♢, where Tst ∈ R+

is the shooting time, i.e. the time within each shooting point (or equivalently the
discretization time). where the equality and inequality constraints have been split
into two, since the input vector is defined up to k = N − 1. Consequently, we have
nr ∈ N+ equalities and ns ∈ N+ inequalities for all the shooting points within the
time horizon, and nrN ∈ N+ plus nsN ∈ N+ constraints for the last shooting point of
the sequence.

Typically, the cost function represents the need to drive certain system output
variables to their desired values. If we denote with y ∈ Rny the outputs of the
considered dynamic system, the objective function is typically given by the weighted
squared 2-norm of the difference between the output vector and its reference one,
denoted as y r ∈ Rny . Moreover, to prevent the NMPC controller from stressing
excessively the actuators, a similar regularization term is usually added to penalize
large actuation actions. Therefore, the minimization in (6.4a) can be rewritten as

min
x0...xN

u0...uN−1

N∑

k=0

∥yk − y r
k ∥2

Wy
+

N−1∑

k=0

∥uk∥2
Wu

(6.5)

where the matrices Wy ∈ Rny×ny and Wu ∈ Rnu×nu collect the weights for the
output and input variables respectively. The typical choice is to select the coefficients
such that those matrices are semi-definite positive and diagonal. The output vector
is given as

yk = hk (xk,uk,pk) ∈ Rny , ∀k ∈ ¶0, . . . , N − 1♢, (6.6)

yN = hN (xN ,pN) ∈ RnyN . (6.7)

The scalars ny ∈ N+ and nyN ∈ N+ denote, respectively, the number of the system
output variables during the horizon and at its end, and they are not necessarily equal.
The functions hk : Rnx×nu×npm → Rny and hN : Rnx×npm → RnyN provide the system
output variables.

6.2 Human-aware NMPC formulation

In this section, we mathematically describe each term of the OCP qualitatively intro-
duced in Chapter 3. For convenience, we report here the same picture in Figure 6.1.
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Figure 6.1: The visual description of the OCP already presented in Chapter 6, and
specifically in Figure 3.2.

Once, every term is derived, we will arrive to a NLP as the one in Equations (6.4),
but with the cost function in the same form as in Equation (6.5).

As discussed in Chapter 3, the OCP in Figure 6.1 aims to successfully hand
over an object handover to a human coworker by means of an multi-rotor aerial
vehicle (MRAV), acting as the giver, while guaranteeing human safety and accounting
for the user ergonomics. To achieve the goal, the controller has to: (i) execute a
human-centric motion that allows approaching the receiver; (ii) guarantee the safety
of the worker, thus avoiding unwanted collisions while handing over the carried tool;
(iii) evaluate the human articular stress to determine the most ergonomic handover
location; (iv) constantly observe the human, to maintain visibility of its partner
trunk; and (v) stabilize the robot dynamics by generating torque-level commands,
which are compatible with its actuation limitations. Hereby, we first define the state
and input variables. Then, we detail all the terms composing the objective function,
and the set of constraints incorporated in the optimization problem. In this way,
in Section 6.2.5, we can collect all the terms previously introduced, and consequently
compose the NLP.

6.2.1 Definition of system state, input and parameter variables

The system under consideration is composed of the two agents involved in the
Human-Aerial robot handover (HARH): the human as the receiver, and the aerial
robot (AR) as the giver, the latter being a Generically-Tilted Multi-Rotor (GTMR)
MRAV. By recalling the GTMR and the human state-space formulations introduced
in Section 4.7.1 and Section 4.9.1, respectively, we can define the system state vector
as the combination of the robot and human states, namely as

x =
[
xr

⊤ xh
⊤
]⊤

∈ Rnx . (6.8)
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We conveniently report here the robot and human states:

xGTMR = xr =
[
pB

⊤ qB
⊤ vB

⊤ BωB
⊤

γ⊤
]⊤

∈ R13+np , (6.9)

xh =
[
pHt

⊤ ψHt

]⊤
∈ R4, (6.10)

hence nx = 17 + np. Furthermore, we recall that pB ∈ R3, qB ∈ R4 and pHt
∈ R3,

ψHt
∈ R constitute the robot and human poses in FW , and the pair vB ∈ R3,

BωB ∈ R3 groups the robot linear and angular velocities, and γ ∈ Rnp the propeller
forces generated by the np ∈ N+ robot actuators. The inclusion of the human trunk
coordinates within the system state allows the NMPC controller to predict the user
motion along the prediction horizon. As we will show later, this offers the robot
more reactivity to the partner displacements during the handover process.

Next, we define the system inputs as the control commands to drive the robot
actuators. According to the discussion in Section 4.7.1, as we included the propeller
forces as part of the state vector, we select as system inputs the first-order derivatives
of the forces generated by the motor-propeller units. Thus, we can write that

u = ur = uGTMR = γ̇ ∈ Rnp , (6.11)

leading to nu = np.

Lastly, we consider the human trunk velocities vHt
∈ R3 and ωHt

∈ R as the
system parameters, hence recalling Equations (4.71) we have that and (4.72)

p = uh =
[
vHt

⊤ ωHt

]⊤
∈ R4, (6.12)

which implies that npm = 4 Therefore, their values is known when computing the
solution of the NLP problem and, in our case, they will be estimated by the robot
on-board vision system, as we will describe later in Section 6.3.2.

6.2.2 Objective function

As clear from Figure 6.1, the cost function is composed of four terms, namely (i) a
human-relative motion task, (ii) a perception objective, (iii) a ergonomic goal, and
lastly (iv) the safety task.

Human-relative motion

ARs are typically requested to follow a sequence of waypoints specified w.r.t. an
inertial reference frame to accomplish a given task. However, in Human-Robot
Interaction (HRI) scenarios, and especially during the exchange phase of a handover,
the robot is typically maintaining a certain relative position and orientation, in
conjunction with a precise velocity profile, w.r.t. its human partner [Strabala, 2013].
Hence, to ensure that the aerial robot tracks a human-relative trajectory, we introduce
a motion term expressed in the human trunk frame FHt

as part of the cost function.

We start by deriving the human-relative coordinates of the robot expressed in
FHt

, which are given by

HtpB = RHt

⊤(pB − pHt
), (6.13a)

HtRB = RHt

⊤ RB. (6.13b)
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Figure 6.2: This picture shows the vector representing the robot position expressed in the
human-trunk frame FHt , i.e., the quantity HtpB.

The rotation matrices RB ∈ SO(3) and RHt
∈ SO(3) represent the robot and

human orientations expressed in the inertial frame. An graphical representation of
the vector HtpB is given in Figure 6.2.

Then, we compute the derivatives of the equations above, which result into the
relative robot linear and angular velocities expressed in FHt

. Therefore, we can write
that

HtvB = RHt

⊤
(

vB − vHt
− S

(
ωHt

)
RHt

HtpB

)
, (6.14a)

S
(

HtωB

)
= HtRB

⊤
[ (

S
(

HtωW

)
RHt

⊤
)

RB + RHt

⊤
(
S(ωB) RB

) ]
, (6.14b)

where vB, ωB ∈ R3, and vHt
, ωHt

∈ R3 are the linear and angular velocities of the
robot and the human trunk, respectively. The velocity term HtωW ∈ R3 represents
the angular velocity of the inertial frame as seen from a theoretical observer fixed to
the human trunk, and it is given by

HtωW = RHt

⊤
(
− ωHt

)
. (6.15)

The vector ωHt
∈ R3 collects the angular velocities of the human trunk frame

expressed in FW .

The terms derived within this section in Equations (6.13a)-(6.14b) represent the
motion of the AR expressed as seen from the reference frame attached to the human
trunk. As one could expect, those quantities depend on the robot and human state
variables. If we collect those terms together, we can write that

ym =
[

HtpB
⊤ HtqB

⊤ HtvB
⊤ HtωB

⊤
]⊤

∈ R13, (6.16)

where ym denotes the human-relative motion task, i.e. the red block in the objective
criterion depicted in Figure 6.1.

Perception

During the handover, the robot has to maintain the human trunk always visible within
the limited Field of View (FoV) of the onboard sensor, so that a pose estimation of
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Courtesy of [Jacquet, 2022b].

Figure 6.3: A schematic drawing showing the bearing vector going from the camera origin
to the feature F , and the related angular distance β.

the human partner can be computed. This can be achieved by requiring the desired
feature point(s) to stay as close as possible to the center of the sensor FoV [Jacquet,
2022b]. Therefore, we can include this goal as part of the cost function, by adding
a perception task. As we discussed in Chapter 2, we assume that the human is
detected by the robot onboard vision system, as soon as the user trunk is visible
from the onboard sensor (a standard camera). Hence, we select as feature of interest
the origin OHt

of the human trunk frame. Thus, recalling Section 4.8, we can write
that

SpF = SpHt
=
[
xHt

yHt
zHt

]⊤
∈ R3. (6.17)

Based on the work of Jacquet [Jacquet, 2022b], to achieve robust visual tracking
of the feature, we need to maximize the cosine of the angular distance between
the camera axis zS and the bearing vector going from the camera origin OS to the
feature, thus the vector SpHt

∈ R3. This vector is shown in Figure 6.3 as a red
dashed line, while the angular distance is defined as the angle β ∈ R. Henceforth,
according to [Jacquet, 2022b], we define cβ = cos (β) and we can compute it through
the projection of the bearing vector on the axis zS as:

cβ =
SpHt

∥SpHt
∥2

zS ∈ R. (6.18)

The bearing vector can be calculated by considering some kinematic relationships as
follows

SpHt
= SpB + SRB

BpHt
(6.19a)

= SpB + SRB

(
RB

⊤(pHt
− pB)

)
(6.19b)

= BRS
⊤
(
RB

⊤(pHt
− pB) − Bps

)
, (6.19c)

where SpB = BRS
⊤

(− BpS).

The perception task can be defined as

yp = 1 − cβ ∈ R, (6.20)
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Figure 6.4: This picture shows the vector representing the human hand position expressed
in the shoulder frame FHs , i.e., the quantity HspHh

.

since the natural maximum value for cβ is 1. In this way, the perception objective
is maximized, i.e. it equals 1, when yp = 0, i.e. is minimum. The term in Equa-
tion (6.20) allows the controller to maintain the human trunk as close as possible to
the center of the FoV of the sensor, while coping with the other tasks. In Figure 6.1,
the perception task is represented by the green block in the cost function. However,
the minimization of that term does not guarantee that the human trunk is always
visible and not exiting the camera FoV. Therefore, we will introduce also a perception
constraint, as we will show later in Section 6.2.4.

Ergonomics

The human-robot interaction has to occur in the most natural and comfortable way.
Hence, we would like the robot to hand over the object in a position that is both
reachable and ergonomic from the human point of view. In this work, we relate the
degree of human ergonomics to the physical effort the human has to undertake to
receive an object in the handover process. Inspired by the work in [Peternel, 2017],
we quantify the ergonomics by estimating the human joint torques that the user
needs to apply to hold the received object in a given hand location. Additionally, we
perform this evaluation in the moment just after the object being received by the
human operator, and we consider only the contribution given by the human arm joint
torques. This is contrast with the work of Peternel et al, where also the user postural
changes and the related Degrees of Freedom (DoFs) are taken into consideration.
However, in the HARH, this does not constitute a conservative assumption, since the
objects which are typically transportable by means of medium-small scale MRAV
are lightweight. As a consequence, the user does not need to significantly perform
postural adjustments to receive these items from the robotic partner and being able
to sustain their weight. Besides, we evaluate the human ergonomics for a given
handover location from a quasi-static point of view, thus we assume the human joint
velocities and acceleration to be zero. Hence, we assume that

q̈h = q̇h = 0. (6.21)

Recalling the dynamic model introduced in Section 4.9.2 for the human arm,
i.e. Equation (4.73), and by substituting the condition in Equation (6.21), we can
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(a) This picture shows the shoulder-frame
xHs

, yHs
plane, and the related projected

quantities. In gray, the object position ex-
pressed in FHs

. In green and orange, respec-
tively, the z coordinate of Hspo, and its pro-
jection in the vertical shoulder-frame plane.

(b) The human workspace boundaries are
marked by the blue dashed circles. In orange,
the object position projected in the xHs

, yHs

plane, which is not reachable from the planar
human arm. In red and green, the object x

and y coordinates, respectively. In fuchsia,
an object position that is contained inside
the human arm workspace.

Figure 6.5: 3D (left) and 2D (right) representations of the shoulder-frame xHs , yHs plane.

compute the human arm joint torques as:

τh = gh(qh) − Jh(qh)⊤
fo. (6.22)

After the object handover, the only external forces fo acting on the human hand
are the gravity force given by the object mass mo ∈ R+. In the equation above, the
external force fo is expressed w.r.t. the human shoulder frame FHs

, thus

fo = RS
⊤
[
0 0 −mog

]⊤
, (6.23)

where the rotation matrix RS ∈ SO(3) is the orientation of FHs
expressed w.r.t.

FW .

At this point, by means of Equation (6.22), we can evaluate the human arm joint
torques as function of the arm coordinates qh ∈ Rnh , nh ∈ N+. Since we would like
to express the torques τh ∈ Rnh as function of the hand location, we need to rely
on the inverse kinematics of the human arm. This allows expressing the Cartesian
hand position in terms of the arm joint variables. If we denote with HspHh

the hand
location w.r.t. the shoulder frame FHs

, the following equation holds

qh = Φ
h
IK

(
HspHh

)
, (6.24)

where Φh
IK

(
HspHh

)
: R3 → Rnh denotes the inverse kinematics function of the human

arm. In Figure 6.4, we provide a drawing that illustrates the quantity HspHh
.

During the transfer phase of the handover, the human hand and the exchanged
object must be in the same position to successfully complete the passing action.
Therefore, the following condition shall be met:

HspHh
= Hspo, (6.25)
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where HspO ∈ R3 denotes the position of the object expressed in FHs
, as shown in Fig-

ure 6.5a. Therefore, substituting Equations (6.24) and (6.25) into Equation (6.22),
it results

τh = gh

(
Φ

h
IK

(
Hspo

) )
− Jh

(
Φ

h
IK

(
Hspo

) )⊤

fo. (6.26)

By considering the kinematic linkage from the robot body to its end effector (EE),
where typically there is a gripper to hold the object to be exchanged, it is possible
to relate the quantity HspO to the robot pose expressed in FHt

. Specifically, it is
possible to write the following relationship:

Hspo = HtRHs

⊤
(

Htpo − HtpHs

)
(6.27a)

= HtRHs

⊤
((

HtpB + HtRB
Bpo

)
− HtpHs

)
. (6.27b)

In the equation above, we can recognize the quantities HtpB ∈ R3 and HtRB ∈ SO(3)
being the human-relative robot pose, thus it depends in turn on the robot state xr.
The vector Bpo ∈ R3 being the object position expressed in the robot body frame.
In the case of a GTMR MRAV with a fixedly attached EE, that quantity is constant
and known. Lastly, HtpHs

∈ R3 is the distance between the two human frame origins,
and the rotation matrix HtRHs

∈ SO(3) their relative orientation, as mentioned
in Section 4.9.2.

Using Equation (6.26), we can compute the human arm joint torques necessary
to hold an object as function of the robot position and orientation expressed w.r.t.
the shoulder frame FHs

. Therefore, by including it within the cost function, the
NMPC controller can compute a robot handover pose that reduces the human joint
articular stress. To embed Equation (6.26) in the NMPC controller, we need to have
an analytical expression for the function Φ

h
IK (•), since the numerical solvers typically

use gradient-based methods to compute the solution of a NLP [Yutao, 2019]. In
general, the inverse kinematics problem of a manipulator involves the solution of
nonlinear equations, and it may have multiple, infinite, or no solution at all [Siciliano,
2009].

In the case of non-redundant manipulators with a small number of DoFs, it is
possible to derive geometrical relationships that allow solving the problem analytically.
Therefore, we decide to reduce the human arm to a simple 2-DoFs planar manipulator
(nh = 2), for which closed-form results are available in textbooks, and we select only
the elbow-down configuration to comply with the human elbow articulation. We
assume that the links of this human arm manipulator are all laying on the same
plane and the revolute joints have parallel axes. This assumption is justified by the
intuition that a human would naturally move the arm alongside the body during
the handover. Consequently, the human arm workspace lays on the vertical plane
(xHs

, yHs
), or equivalently (xHt

, zHt
), and the inverse kinematic function is given

according to [Siciliano, 2009] as

qh =


q1

q2

]
= Φ

h
IK

(
Hspo

)
=


atan2 (s1, c1)
atan2 (s2, c2)

]
, (6.28)

where si and ci are, respectively, the sine and cosine of the i-th joint coordinate qi,
where i ∈ ¶1, 2♢, and atan2 the 2-argument arctangent function. In turn, it can be
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proven that [Siciliano, 2009]:

c2 =
Hspox

2 + Hspoy
2 − a2

1 − a2
2

2a1a2

, (6.29)

s1 = +
√

1 − c2
2, (6.30)

s1 =
(a1 + a2c2)

Hspoy − a2s2
Hspox

Hspox
2 + Hspoy

2
, (6.31)

c1 =
(a1 + a2c2)

Hspox + a2s2
Hspoy

Hspox
2 + Hspoy

2
, (6.32)

where a1 ∈ R+ and a2 ∈ R+ are the human arm link lengths, and the quantities
Hspox ∈ R, Hspoy ∈ R are the x, y coordinates of the object position vector Hspo.

Moreover, the existence of solutions for the inverse kinematics problem is guaran-
teed only if the given object position, Hspo, belongs to the human arm workspace
[Siciliano, 2009]. For a 2-DoF planar manipulator, the workspace is the space in-
between two concentric co-planar circles [Siciliano, 2009], whose outer radius is equal
to the sum of the link lengths, and the inner radius to their difference. As a result,
the NMPC controller cannot evaluate the human ergonomics until the robot gets
close enough to enter the human arm workspace. To overcome this problem, in (6.26),
we consider the closest object position that belongs to the human arm workspace.
The procedure that follows can be better understood by referring to Figure 6.5.

We first consider the projection of the current object position onto the arm
plane, being the vertical plane spanned by the axes (xHs

, yHs
) of FHs

. As shown
in Figure 6.5b, we denote the projection of the object position with the 2D vector
Hspop ∈ R2, whose elements are given by the x, y coordinates of Hspo. If that
projected point is already part of the human arm workspace, the inverse kinematics
admits a feasible solution. If not, we radially project it onto the outer border of the
human arm workspace. This is obtained by computing the intersection between the
circular workspace centered in OHs

, and the vector Hspop . Then, we select the closest
point to OHs

between the planar object position and the computed intersection point.
Therefore, the coordinates of the closest point, which we denote as x̃o, ỹo and z̃o, are
obtained through geometrical considerations and by means of the following equations

x̃o = min
(

Hspo
⊤

xHs
,Hspix

)
, ỹo = µx̃o, z̃o = Hspo

⊤
zHs

, (6.33a)

µ =
ny

nx

, n =
Hspop

∥Hspop∥2

, (6.33b)

where r = a1 + a2 ∈ R+ denotes the total length of the human arm, nx ∈ R, ny ∈ R

are the x, y coordinates obtained by normalizing the planar vector Hspop ∈ R2, which
is then denoted as n ∈ R2. The quantity µ ∈ R is the angular coefficient (elevation
angle) of the vector n, as illustrated in Figure 6.5b. Lastly, the quantity Hspix ∈ R

denotes the x coordinate of the vector Hspi ∈ R2, where the latter variable is the
vector going from OHs

to the the intersection point between the circle of radius r and
the vector Hspop The coordinates of this intersection point are given by computing
the geometrical intersection between a circle and a line, thus as follows:

Hspix = ±

√
r2

1 + µ2
, Hspiy = µHspix . (6.34)



140 Chapter 6. Predictive human-aware control

(a) Top view showing the xHs
, zHs

plane. In
gray, the planar (x, z) object position expressed
in FHs

. In green, the desired handover distance.

(b) Top view showing the xHt
, yHt

plane. In
gray, the planar (x, y) robot position expressed
in FHt

. In brown, the minimum guard distance.

Figure 6.6: Schematic top view representation of the human-aerial robot handover. The
human trunk is the larger purple circle, while the smaller one represents the user shoulder.
The robot is depicted in yellow, while the carried object as a red circle.

In the equation above, two solutions exist: one for positive x coordinates, and another
one for negatives, which correspond to the handover performed in front and behind
the human trunk, respectively. As the handover shall take place in a comfortable
and safe configuration, we consider only the front half of such a region as the human

workspace. Hence, in Equation (6.33), we consider Hspix = +
√

r2

1+µ2 . The projected

object position , given by the coordinates x̃o, ỹo and z̃o in Equations (6.33), constitute
a handover location that assures a feasible solution to the inverse kinematics problem
and allows computing the human torques. Hence, in Equation (6.26), we consider
Hspo = [ x̃o ỹo z̃o ]⊤. At this point, we can finally define the articular stress objective
as

yτ = τh, (6.35)

where τh is given by Equation (6.26). This cost finds its origins in the work of
Katayama et al. [Katayama, 2003], where the authors proposed five different opti-
mization models to characterize human comfort, including this joint torque approach.

Besides, to assure having the object in the human arm plane, the controller is
tasked to minimize the normal projection of HspO to the plane (xHs

, yHs
). This is

achieved by introducing an additional term in the cost function, which we name
projection objective, and it is defined as:

yz = HspOz ∈ R, (6.36)

where HspOz ∈ R represents the z coordinate of HspO. This quantity is depicted
in Figure 6.5a.

By minimizing only the human joint torques, the robot would prefer to hand over
the object at either the hand location when the arm is fully stretched down or when
fully stretched up, since these two configurations constitute the two global minima
of (6.26). Obviously, these solutions are incompatible with the objective of achieving
a safe and natural interaction. Therefore, we introduce a third term representing
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the distance at which the handover appears comfortable and natural from the user
perspective. Hence, we define a handover objective function yo as

yo =
b

(dho − dref)
, (6.37)

where dref ∈ R+ is a desirable distance at which letting the object transfer phase
occur. In particular, we have that dg < dref < (a1 + a2) to assure having the object
exchange at a reachable position and, at the same time, not violating the operator
safety distance. The quantity b ∈ R+ is a scaling factor, while dho ∈ R is the relative
distance between the object and the human on the horizontal plane spanned by (xHs

,
zHs

). Thus, the latter term is computed as

dho = ∥Hspoxz∥2 =
√

Hspox
2 + Hspoz

2, (6.38)

where Hspox ∈ R and Hspoz ∈ R denote the x, y coordinates of Hspo. Figure 6.6a
offers a schematic illustration of the quantities previously introduced.

At this stage, the total ergonomics task ye is obtained as the combination of
the individual terms (the articular stress, the projection, and handover ones) given
by Equations (6.35)-(6.37), resulting in

ye =
[
yτ

⊤ yz yo

]⊤
∈ R4. (6.39)

This term is represented as a purple block in the cost function of Figure 6.1. By
inspecting the composition of the individual quantities within the ergonomic task,
we can notice that all of them depend on the robot state xr. Therefore, in our
proposed approach, the controller can compute the best handover location based on
the trade-off between minimizing the human articular effort, and maximizing the
spontaneity of the interaction.

Safety

During the whole operation and while handing over the object, the robot has to
ensure the safety of the human coworker. Thus, in the cost function, we introduce a
penalization term that precludes the robot from crossing a safety distance, which
guarantees to avoid collisions between the two agents. This quantity, which is
represented by the purple block in Figure 6.1, has to strongly affect the robot
behavior only in the near proximities of the chosen distance and provide a null
contribution to the net cost anywhere else to avoid disturbing the optimization
process. Therefore, we define the safety task as

ys =
ϵm

dhr − dg

∈ R, (6.40)

where dg ∈ R+ is a minimum guard distance, and ϵm ∈ R+ is a scaling factor to shape
ys according to an additional precautionary margin. Lastly, dhr is the relative distance
between the robot and the human on the plane (xHt

, yHt
), which is computed as

dhr = ∥HtpBxy∥2 =
√

HtpBx
2 + HtpBy

2, (6.41)
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where HtpBx ∈ R and HtpBy ∈ R denote the x, y coordinates of HtpB given by Equa-
tion (6.13a). Figure 6.6b provides a drawing clearly showing the quantities related
to the safety task. Additionally, this safety term corresponds to the yellow block in
the cost function of Figure 6.1.

Similarly, the perception task, the safety objective term does not guarantee alone
the avoidance of potential collisions between the human and the robotic partner, even
though it introduces a degree of robustness in the OCP. Hence, we will introduce
also a safety constraint, as we will discuss later in Section 6.2.4.

6.2.3 Equality constraints

The equality constraints are given by the system dynamics and the system initializa-
tion, which are illustrated as gray blocks in Figure 6.1.

System dynamics

Henceforth, recalling the definitions introduced in Section 6.2.1, we have that

f (x,u,p) =




fr (xr,ur)

fh (xh,uh)
(6.42)

where the system dynamics f is composed of the robot dynamic model fr, corre-
sponding to fGTMR of Equation (4.63), and the human dynamics fh, given by Equa-
tions (4.71).

System initial condition

The initial system state is x0 = [ xr0

⊤ xh0

⊤ ]⊤, where xr0
and xh0

are the estimated
robot and human states provided, respectively, by the robot state estimation and the
onboard camera. More details will be provided later when describing the validation
setup in Sections 6.3.2 and 6.5.1.

6.2.4 Inequality constraints

To ensure the task feasibility, we need to impose other constraints on the OCP, which
result into inequalities.

Perception

According to [Jacquet, 2022b], the perception cost alone does not guarantee that the
human feature does not exist the onboard camera FoV. Thus, to guarantee constant
visibility over the human trunk, we introduce a constraint on the trunk position,
expressed in FS, similarly to what has been proposed in [Jacquet, 2022b]. Hence, we
impose the following inequality relationships:

∣∣∣∣∣
xHt

zHt

∣∣∣∣∣ ≤ tan
αh

2
,

∣∣∣∣∣
yHt

zHt

∣∣∣∣∣ ≤ tan
αv

2
, (6.43)
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where the sensor FoV boundaries are characterized by a vertical and horizontal
angle denoted with αv ∈ R+ and αh ∈ R+, respectively. In the equation above,
the quantity SpHt

= [ xHt yHt zHt ]⊤ is the human position vector expressed in FHs
.

Equations (6.43) represent the perception constraints, which are depicted as the green
rectangle in Figure 6.1.

Safety

To guarantee the requirement of avoiding collisions, we embed a safety constraint
within the OCP, which is defined as

chrp = dhr = ∥HtpBxy∥2 ≥ dg. (6.44)

In a similar fashion, we introduce a human-relative velocity constraint as

chrv = − HtvB ≤ vBg , (6.45)

where HtvB ∈ R3 are the human-relative robot velocities obtained from Equa-
tion (6.14a), and vBg ∈ R3

+ collects their bounding values. The constraint in Equa-
tion (6.45) represents the need to limit the velocities in the direction of the human
(this explains the minus sign) in order to limit the amount of energy transferred
to the human in case of an unavoidable collision. This term is derived from the
work in [Haddadin, 2007], where the authors performed different crash tests with a
robotic manipulator to quantify the potential injury risk caused by a front impact
of the EE to several human parts. The carried experiments, involving a mannequin
typically used for the evaluation of car crashes, derived metrics to evaluate the risks
of an unexpected impact. In our case, we derive the values for vBg by inspecting
the tables reporting the data of an injury risk and the robot mass. Indeed, in view
of the compact dimensions of the ARs considered in our work, we can approximate
the robot to a single rigid body object of equivalent inertial properties. The con-
straints in Equations (6.44) and (6.45) constitute the safety constraints and they are
illustrated in yellow in Figure 6.1.

Actuation limitations

Next, to account for the physical limitations of the motor-propeller actuators, which
we discussed in Section 4.6.3, we impose bounds on the generated forces γ and their
derivatives γ̇ as

γ
¯

≤ γ ≤ γ̄, (6.46a)

γ̇
¯

(γ) ≤ ur ≤ ¯̇γ(γ). (6.46b)

In the expressions above, the upper and lower bounds γ
¯
, γ̄, γ̇

¯
(γ), ¯̇γ(γ) are obtained

through an identification campaign on the actual hardware, as detailed in [Bicego,
2019]. Those terms are depicted as the blue block in Figure 6.1.

Numerical feasibility

Lastly, the inverse kinematic function of the human arm discussed earlier does not
only admit a feasible solution beyond the circle of radius equal to the total human
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arm length, but also within the inner part of that workspace. Indeed, we mentioned
that the human arm workspace is the area in-between two concentric co-planar
circles [Siciliano, 2009], whose outer radius is equal to r = a1 + a2, and the inner
radius to ♣a1 − a2♣. Henceforth, we need to prevent the object from entering the
inner circle and make the solution of the inverse kinematics function numerically
feasible. To obtain that, we impose a feasibility constraint on the squared 2-norm of
the object position in the human arm vertical plane spanned by (xHs

,yHs
), which is

not reported in Figure 6.1. We denote this term with cho and we compute it as

cho = ∥Hspoxy∥2 ≥ (a1 − a2)
2, (6.47)

where Hspoxy are the x, y coordinates of Hspo, and a1, a2 ∈ R+ are the link lengths
of the human arm.

6.2.5 Human-aware NLP

In this section, we formulate the discrete-time OCP, sampled in N shooting points,
which is solved by the controller at each sampling instant Ts, over the receding
horizon Th.

First, we define the output map y ∈ Rny as the combination of all the objective
costs introduced previously as

y =
[
ym

⊤ yp
⊤ ye

⊤ ys
⊤
]⊤
, (6.48)

where ym, ys, ye, and yp are the motion, perception, ergonomics, and safety tasks, re-
spectively. In turn, the individual objectives are given by considering Equations (6.16),
(6.20), (6.39) and (6.40), which we conveniently report here:

ym =
[

HtpB
⊤ HtqB

⊤ HtvB
⊤ HtωB

⊤
]⊤

∈ R13, (6.49a)

yp = 1 − cβ ∈ R, (6.49b)

ye =
[
τh

⊤ yz yo

]⊤
∈ R4, (6.49c)

ys = ys ∈ R. (6.49d)

Therefore, we have that ny = 19. The reference values for each task are gathered
in the vector yr

•. Specifically, the motion reference yr
m is provided by an external

trajectory planner, and yr
p, yr

e, and yr
s are set to 0. The complete objective function

is obtained as the summation of the weighted squared 2-norms of the difference
between each task objective and its reference vector.
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As a result, we can formulate the OCP as

min
x0...xN

u0...uN−1

N∑

k=0

m,...,v∑

j

∥yj,k − yr
j,k∥2

Wj
+

N−1∑

k=0

∥ur∥
2
Wur

(6.50a)

s.t. x0 = x(t), (6.50b)

xk+1 = Π (xk,uk,pk) , k∈¶0,...,N−1♢ (6.50c)

yk = h (xk,pk) , k∈¶0,...,N♢ (6.50d)

γ
¯k

≤ γk ≤ γ̄k, k∈¶0,...,N♢ (6.50e)

γ̇
¯k

≤ uk ≤ ¯̇γk, k∈¶0,...,N−1♢ (6.50f)

chrp,k ≥ dg, k∈¶0,...,N♢ (6.50g)

chrv ,k ≤ vBg , k∈¶0,...,N♢ (6.50h)

cho,k ≥ (a1 − a2)
2, k∈¶0,...,N♢ (6.50i)

∣∣∣xHt
/zHt

∣∣∣
k

≤ tan
αh

2
, k∈¶0,...,N♢ (6.50j)

∣∣∣yHt
/zHt

∣∣∣
k

≤ tan
αv

2
, k∈¶0,...,N♢ (6.50k)

where the function Π represents the discretized version of f . The optimization
problem given by Equations (6.50a)-(6.50k) can be rewritten in the same form as
in Equations (6.4a)-(6.4e). By solving the NLP above, the proposed method computes
the robot commands that achieve the handover, taking into consideration all the
tasks, while satisfying the system constraints.

Numerical issues

The cost function as written in Equation (6.50a) would require to compute the
algebraic difference between two quaternions, since the motion task contains such
an orientation parametrization. However, the Euclidean distance between two unit
quaternions is not suited to express the dissimilarity between two orientations, as q

and −q represent the same orientation. Based on [Huynh, 2009], we rather compute
the distance between two unit quaternions, denoted as q1 and q2, by means of the
following distance function:

d (q1,q2) = 1 − ♣q1 · q2♣ ∈ [0, 1]. (6.51)

Moreover, a known issue when numerically integrating the quaternion dynamics,
e.g. by means of a Runge-Kutta integration scheme [Press, 1992; Butcher, 1996],
is constituted by the fact that the resulting quaternion may not adhere to the
quaternion manifold [Rucker, 2018]. Rucker et al. propose a solution involving
the use of regularized non-unit quaternions and a redundant manifold mapping
which allows preserving the unitary modulus. Their proposed method leads to an
efficient, singularity-free numerical integration of quaternions over long intervals
which preserves the structure of SO(3) during the integration step [Jacquet, 2022b].
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Figure 6.7: Two trajectories generated by the reference motion algorithm are provided for
two different starting robot positions, which are marked in blue and red, respectively. Each
trajectory is composed of five waypoints: WP1 to WP5.

6.3 Simulation validation

In this section, we describe first how the reference for the motion task is generated.
Then, we describe the setup for the simulation campaign and, lastly, we provide the
results obtained from the conducted simulations.

6.3.1 Motion reference generation

The motion reference task yr
m is designed to drive the AR in front of the human.

One could set directly that final position as desired waypoint in the OCP. However,
due to limited time horizon and the necessity to maintain real-time performance,
the solver is provided with an initial guess of the trajectory that the robot should
perform. This guess is generated by a simple motion planning strategy employing a
spline interpolation to connect a set of intermediary waypoints. Another possibility,
which we leave for future work, is the use of a more sophisticated planner, which
could provide a trajectory on-line and possibly account for the human state, e.g., the
one presented in [Truc, 2022].

In our approach, the trajectory consists of five intermediary waypoints, as shown
in Figure 6.7. The first one is the initial location of the AR, while the final position
is in front of the human, from where the robot can reach the partner. Therefore,
the approaching phase encompasses the remaining waypoints. Specifically, while
approaching, the robot is tasked to maintain a suitable distance to the human, which
is not too close to result unpleasant and intimidating from the user perspective. The
approaching phase comprises two parts. A first motion is performed towards the
human until that suitable distance is reached. Hence, from its starting location,
the robot reaches the first WP1 by performing a straight displacement towards
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the human. WP1 is located at the intersection of this straight line with a circle
whose radius is given by the suitable distance mentioned earlier. From this first
waypoint, the robot moves along the circumference until it enters the FoV of the
human sight. The intersection between the circular path and the line identifying one
of the boundaries of the human sight FoV represents WP2. From the latter position,
the robot approaches the final position in front of the human, which is marked as
WP5. The intermediary waypoints, i.e. WPi, i ∈ ¶1, . . . , 3, 4, 5♢, are situated at
different distances from WP5, and chosen such that the robot performs an arc to
reach the last waypoint.

In Figure 6.7, we illustrate two possible trajectories generated by our simple
strategy according to two different starting configurations of the aerial robot.

6.3.2 Simulation setup

Hereby, we depict the simulation setup utilized to validate the human-aware NMPC
controller. We select the Gazebo simulator2 as simulation environment.

The robot is the collinear quad-rotor shown in Figure 6.8a, which transports
a small spherical item of mass mo = 250g, representing a small tool. The object
is attached on a fixed bar placed in front of the AR at 45◦ w.r.t. two of its arms.
The simulated AR is equipped with a front-facing 60Hz monocular camera, and
in Figure 6.8b we report one frame acquired by this sensor. Then, in the simulator, we
have a simulated human featuring a set of AruCo fiducial tags [Garrido-Jurado, 2014],
as shown in Figure 6.8. There markers are used to retrieve the position of the human
trunk in the world frame, i.e. pHt

. This choice is motivated by the practicality of
such markers, and by the low computational time and little power required for the
detection process. Nevertheless, recent developments in machine learning algorithms
allow embedding fast, computationally efficient, and reliable entity detection solutions
on-board ARs, e.g., [Zhang, 2019]. The use of such algorithms would relieve the
human coworker from wearing markers. However, they are usually trained on specific
datasets, and might not provide the desired pose estimate in a handover configuration
where the AR is standing very close to the human. The integration of such tools is
promising, but left for future work. Lastly, in the simulator, we neglect the weight
of the carried tool and the wrench arising from the physical interaction. The latter
point will be later discussed in Section 6.4.3.

As for the experimental setup presented in Chapter 5, the framework is imple-
mented in C++ using GenOM [Mallet, 2010], our middleware-independent component
generator. Only the reference generation and the necessary scripts to initialize the
simulations and to control their evolution are implemented in MATLAB. The NMPC
implementation is the one introduced in the Appendix of [Jacquet, 2022b], based on
the work in [Chen, 2019]. The simulated hardware interface, the state estimation,
and the path planning rely again on the TeleKyb3 software, available on the Open-
Robots platform3. The software framework is connected to the Gazebo simulated
environment that emulates the actual platform interface, whose inputs are the rotor
velocities (as it would be for the real robot). Furthermore, in the simulator, we can

2https://gazebosim.org/home
3https://git.openrobots.org/projects/telekyb3.

https://gazebosim.org/home
https://git.openrobots.org/projects/telekyb3


148 Chapter 6. Predictive human-aware control

(a) The simulated collinear quad-rotor. (b) An image acquired by the robot onboard
monocular camera.

Figure 6.8: On the left, a snapshot of the simulated platform during the approaching phase.
On the right, a frame of the robot onboard camera taken during that motion. Some AruCo
markers are attached to the human body to allow the robot perception system to detect
and estimate the human pose from the camera images.

control the planar position, the yaw, and the arm motion of the simulated human
coworker by means of a joystick device. Details on how to use this software and the
related source code are made available to the community in our git repository4.

In Figure 6.9, we provide a block diagram of the implemented framework. The
robot state estimation is achieved using a simulated Motion capture (Mocap) and
IMU (accelerometer and gyroscope), whose respective frequencies are set to 50Hz and
500Hz. The rotor velocities are retrieved at 100Hz. Gaussian noise is applied to each
type of the collected measurements in the simulator. We apply a standard deviation of
0.003m to position measures, 0.003rad/s and 0.02m/s2 to velocities and accelerations,
and lastly we set a standard deviation of 0.03rad/s to rotor measurements. The
human state estimation module uses the measures received at 60Hz from the onboard
camera to provide as output the human positions and velocities at higher frequency.
The NMPC controller generates the robot commands to be sent to the actuators. As
mentioned earlier, the motion task is provided by an external reference generator,
while the remaining tasks have reference values set to zero.

6.3.3 Results analysis and discussion

The simulation is composed of two phases. First, the robot performs the approaching
phase where, from its initial position, it moves in front of the human using the
algorithm described in Section 6.3.1. Later, in the reaching phase, it narrows the
distance to the human partner to perform the object handover.

We start by presenting the greater reactivity allowed by considering the motion

4https://redmine.laas.fr/projects/nmpc-handover.

https://redmine.laas.fr/projects/nmpc-handover
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Figure 6.9: Block diagram showing the implementation of the “human-aware” control
framework.

in FHt
, which is specifically noticeable during the approaching phase. Then, we

demonstrate the benefits of the ergonomic cost function during the reaching phase,
whose conclusion marks the start of the actual object exchange.

We remind the reader that the video of the simulations, that are hereafter
described, can be found in Video 3.3 or at this link: https://peertube.laas.fr/
w/fvDnY4ZCaMhd5ztT2aUhS5.

Approaching

During the approaching phase, the human performs a sudden motion while the robot
is moving. The x, y displacements of the human and the robot during this part of
the simulations are provided in Figure 6.10. The blue (1) and orange (2) curves
correspond to simulations with and without the prediction of the human motion in
the controller, i.e. respectively with u

(1)
h ̸= 0 and u

(2)
h = 0. The initial AR position is

marked as a blue square while the starting human location as a red circle. The several
positions reached by the robot and the human during the simulations are denoted
using markers having different shapes and the same color scheme. Consequently, in
chronological order, the next robot positions are marked as a blue (or orange) circle,
a hexagonal star, and finally as a triangle. Likewise, for the human worker, we use
the same sequence, except that the operator starting position is denoted with the
red circle, as mentioned earlier.

We first consider the first simulation, i.e. the blue curve, where we enable the
human anticipation within the OCP, thus uh ̸= 0. When the AR reaches the blue
circle, after leaving the blue square, the human suddenly moves from the red circle
towards the location denoted by the red star. Then, after waiting a little in that
location, the human decides to move to the final location marked as a red triangle.
When that motion begins, the robot is in the position denoted by the blue star. Then,
while the human moves towards the location of the red triangle, the AR instead
moves from the star to the blue triangular shape. As the trajectory is specified w.r.t.
FHt

, we can notice how the controller modifies the robot motion according to the

https://peertube.laas.fr/w/fvDnY4ZCaMhd5ztT2aUhS5
https://peertube.laas.fr/w/fvDnY4ZCaMhd5ztT2aUhS5


150 Chapter 6. Predictive human-aware control

-2 -1 0 1 2 3 4

-2

-1

0

1

2

3

Figure 6.10: Top view of the approaching phase, i.e., in the xW , yW plane. In light blue,
the initial reference motion task generated by our motion planning strategy. In blue and
orange, we draw the executed trajectory of the robot in two simulations, (1) and (2), while
the trajectory of the human is illustrated in red. The human motion is the same one for
both cases.

displacement of the human partner.

The orange curve shows a replica of the previous simulation. However, this time,
we disable the human anticipation within the controller by setting uh = 0, while
the human partner will move in the same exact way. In this case, we can notice
from Figure 6.10 that the motion of the AR reflects with less fidelity the original
planned path. Moreover, the distance between the robot and the human is shorter,
which could induce safety hazards. This aspect clearly shows the benefit of including
the human model within the system dynamics of the NMPC-based controller. A
larger robot reactivity is achieved, which in turn makes the interaction safer, as the
human-relative motion reference is tracked more accurately. This is possible thanks
the predictive nature of the control technique, which exploits the available model to
compute the future positions of the human in a finite-time horizon, and to better
position the AR. Furthermore, the motion plan of Section 6.3.1, which is fed to the
controller, is computed only once, off-line, and then executed on-line. As showcased
by these simulations, our proposed control scheme allows positioning the AR in front
of the human regardless of the unknown human motion, and without updating online
the given trajectory.

In Figure 6.11, we show the quality of the estimation associated to the human
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Figure 6.11: Estimated and ground-truth values of the human position and yaw angle
during the approaching phase.

position and yaw angle. The dashed lines are the ground-truth values, while the
solid ones are the estimated quantities. The brown and pick vertical dotted lines
corresponds, respectively, to the first and second displacements of the human worker
during the simulation.

In general, the human position is well estimated, except for the first part of the
simulation. There, the distance separating the robot to the human is larger than
the one during the second part of the simulation, thus increasing the difficulty of
detecting precisely the AruCo markers. This is connected to the finite resolution
of onboard cameras, which make the detection harder at larger distances from the
observed entity [Jacquet, 2022b].

Counter-intuitively, when the human agent moves, we can notice that the estima-
tion is less affected by noise. The reason can be appreciated in Figure 6.8, where
an image acquired by the camera on-board the AR is shown. That photo is taken
while the robot moves around the human partner to reach the position in front of the
operator. At that moment, we can observe that the camera is detecting two fiducial
markers, which provide more measurements and in turn improve the estimation
process of the human pose.

Lastly, Figure 6.12 shows the visibility task during the first phase (approaching)
of the HARH. As the plot suggests, the controller can maintain the human trunk
inside the FoV of the camera during the whole simulation, and close to the center,
being characterized by c̄β = 1. Large deviations from the reference value are obtained
when the human is moving. This is related to the under actuation of the AR: as the
robot is forced to tilt in order to move, the sensor is no more pointed towards the
human worker, in turn jeopardizing the visibility task. Likewise, a similar behavior
is observable in the last portion of the plot, where the robot has to stop in the final
position. When the robot is moving forward, in order to decelerate, the quad-rotor
has to tilt backwards, making the onboard camera looking upwards. Thus the human
moves towards the edges of the sensor FoV.

Before concluding this part, it is important to mention that the lower bound of
the visibility constraint is given by cβ

¯
= cαβ, where αβ ∈ R is the angle denoting

the FoV limit of the onboard camera. For more details about its derivation, we refer
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Figure 6.12: Visibility constraint over time during the approaching phase. The quantity
cβ
¯

synthetically summarizes the FoV constraints Equations (6.50j) and (6.50k) in a 1D
representation.

the reader to [Jacquet, 2022b].

Reaching

Once the AR is in front of the operator, the reaching phase starts. At this stage, the
ergonomic objective cost is enabled, and the motion task is disabled, as we would
like to compute the final handover location based on the terms related to the human
comfort only. Indeed, the ergonomic part of the objective function can be computed
only when the robot is in the front portion of the human workspace, as mentioned
earlier during its derivation.

Figure 6.13 shows the path of the object carried by the AR in the xHs
, yHs

plane.
The color gradient is used to represent the level of human comfort, which is computed
as the sum of the absolute values of the human joint torques, as function of the object
position w.r.t. the human shoulder. The darker the background color is, the smaller
is the amount of the articular stress experienced by the operator when positioning
the hand in that location for the object exchange. Additionally, the limits of the
human arm workspace and the reference handover distance (dref) are, respectively,
illustrated by means of the solid white lines and a brown vertical dashed line.

From that plot, we can appreciate the object displacement in the shoulder plane,
which is drawn in fuchsia. Clearly, the ergonomics cost makes the robot move the
transported item towards the reference handover distance, while maintaining it in
the region that minimizes the human joint torques. The absolute minimum, which
corresponds to the resting configuration of the arm, is not reached due to the trade-off
between the visibility, the desired handover distance, and the joint torque-related
terms. Indeed, moving towards the most ergonomic location would jeopardize the
detection of the human trunk and result in an unnatural arm configuration from the
user standpoint. Henceforth, the controller computes a robot pose that would result
in a comfortable handover position for the object transfer phase.
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Figure 6.13: Side view of the human arm plane. The color gradient shows the sum of the
absolute values of the human arm joint torques. pO denotes the projection of the object
point O in the shoulder plane, during the reaching phase. In particular, the carried item
starts from the initial position, being the black square, and it moves to the final handover
location, which is marked as a black triangle.

6.4 Improvements

The work detailed in this chapter has been part of a publication jointly submitted
to the prestigious 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) and the journal venue IEEE Robotics and Automation Letters
(RA-L). Due to the non yet mature control formulation, it has been accepted only to
the former one, and rejected from the journal committee. From the latter venue, we
collected the precious comments of the reviewers, whom we deeply thank for their
work and critical effort. Our aim is to improve the proposed method, bringing it to
a more mature level, and publish it soon to a major venue. Therefore, hereby, we
will first discuss the comments of the reviewers and, later, we will present how we
can address the raised points.

6.4.1 Comments from the reviewers

The comments received by the reviewers pivot on three main points discussed
hereafter.

1. Model generalization and its applicability to any aerial robot.

2. Inclusion of physical interaction within the control framework.

3. Validation of the method in real experiments.

The first two points are not yet fully addressed and implemented, hence we will just
discuss them in the following. Conversely, since a preliminary experimental campaign
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has been realized, we will present the related results in the next section.

6.4.2 Generalization

The method can be applied to any floating-base robot. Therefore, we show how
it can be easily extended to the case of an aerial manipulator (AM) featuring an
n-DoFs robotic arm.

Aerial manipulators

To broaden the application of the method to AMs, we need to modify the terms
composing the OCP that we introduced previously. Therefore, it is necessary to
define again the state, the input and the parameter vectors. Then, we perform the
same operation for the set of equality and inequality constraints.

Henceforth, we start by recalling the state-space formulation of an AM, which has
been introduced in Chapter 4. By using the main results presented in Section 4.7.2,
we can write that:

x =
[
xr

⊤ xh
⊤
]⊤

∈ Rnx , (6.52)

u = ur ∈ Rnu , (6.53)

p = uh ∈ Rnpm , (6.54)

where xh and uh have the same definitions as in Equations (6.10) and (6.12). Thus,
we have that xh ∈ R4 and npm = 4.

Contrary, the robot states and inputs are now given by those of the AM, namely:

xr = xAM =
[
pB

⊤ qB
⊤ qa

⊤ vB
⊤ BωB

⊤
q̇⊤

a γ⊤
]⊤

∈ R13+2nq+np , (6.55)

ur = uAM =
[
γ̇⊤ τa

⊤
]⊤

∈ Rnp+nq , (6.56)

where we recall that qa ∈ Rnq and q̇a ∈ Rnq are the joint positions and velocities,
and τa ∈ Rnq the joint torques of the attached robotic arm. Hence, we can write
that nx = 17 + 2nq + np and nu = np + nq.

For what concern the system dynamics, it is similarly given by the composition of
the robot and the human models. While the latter is given again by Equation (4.71),
the former is composed of the AM dynamic function, which is denoted as fAM and
obtained from Equation (4.66). Accordingly, the initial system condition is given by
x0 = [ xr0

⊤ xh0

⊤ ]⊤ ∈ R17+2nq+np .

At this point, we have defined the necessary variables and the equality constraints
of our previous OCP for the case of a poly-articulated AM. Now, it just remains to
adjust the terms in the cost function and the set of inequality constraints.

Starting with the terms in the objective function, we can notice that the motion,
the perception and safety tasks remain unaltered. Therefore, ym, yp, and ys are
given by Equations (6.16), (6.20), and (6.40), respectively. For what concern the
last task, namely the ergonomics task ye given by Equation (6.39), we can notice
that all its composing terms are function of the same quantity, precisely Hspo ∈ R3.
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Therefore, we recall Equation (6.27), which provides the relationship between the
vector Hspo and the robot position expressed in FHt

, as follows:

Hspo = HtRHs

⊤
((

HtpB + HtRB
Bpo

)
− HtpHs

)
. (6.57)

In the equation above, the only term which needs to be properly re-defined is
Bpo ∈ R3. This quantity represents the position of the carried object w.r.t. the
robot body. If the robot is a GTMR with a fixedly-attached EE, then the latter is
constant. If instead the AR is a poly-articulated AM, then Bpo depends on the joint
configuration of the robotic arm attached to the flying robot. Therefore, we have
that

Bpo = Φ
r
FK (qa) , (6.58)

where Φ
r
FK (qa) : Rnq → R3 is the forward kinematics of the robotic arm. This

function maps the joint configuration space of a manipulator to its end-effector
position [Siciliano, 2009]. Additionally, Φr

FK (qa) depends on the mounting location
of the robotic arm w.r.t. the MRAV base. This information represents a constant
parameter in the robot forward kinematics function.

Remark. Forward kinematics. Differently from the inverse kinematics, the forward
one can be computed analytically. Hence, contrary to Φ

h
IK (•), the relationship

Φ
r
FK (qa) can be easily embedded within the OCP.

Subsequently, for what concerns the inequality constraints, we can observe that
the perception and safety bounds remain unchanged as well. Thus, we can use
again Equations (6.43), (6.44), and Equation (6.45). Then, in the expression of
cho given by Equation (6.47), we need to use the new expression for Hspo obtained
previously. Lastly, in the case of a GTMR, we had as actuation constraints Equa-
tions (6.46a) and (6.46b), which represent the bounds on the motor-propeller thrusts
and their first-order derivatives. In the case of an aerial manipulator, we need
to consider also the limited torques generated by the joint motors, as discussed
in Section 4.6.3. Therefore, we have that

γ
¯

≤ γ ≤ γ̄,
γ̇¯

(γ)
τ
¯a


 ≤


γ̇

τa

]

︸ ︷︷ ︸
≤


¯̇γ(γ)
τ̄a

]
.

ur

(6.59a)

Arrived at this point, we can collect all the terms and apply again the multiple
shooting technique to obtain a new discrete-time NLP. The optimal sequence of
inputs uk, k ∈ ¶1, . . . , N − 1♢, allows controlling both the propellers and the joint
motors of the considered AM. Moreover, the solution of that optimization problem
will drive the new aerial robot towards a safe and comfortable handover location.

6.4.3 Physical interaction

The physical interaction can be incorporated within the previous predictive controller
by including the contact wrench arising during the transfer phase into the OCP. This
is possible by using Equation (4.45) as part of the robot dynamic function fAM. In
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Courtesy of © Cyril FRESILLON /
LAAS / CNRS Photothèque.

(a) Uni-directional Thrust (UDT) quad-rotor
adopted in the experimental validation of the
“human-aware” controller. The position of the
virtual object is qualitatively displayed in green.

(b) On the left, the wooden panel board utilized
as user avatar, and the human operator moving
it. On the right, a zoom-in image on the several
fiducial markers attached to the board.

Figure 6.14: In this picture, we show the testbed setup used in the experiments related to
the “human-aware” predictive controller.

that equation, the external wrench wext ∈ R6 is applied at the robot end-effector
and it affects the robot generalized coordinates ξAM.

The main difficulty is represented by providing the OCP with a mean to predict
the future behavior of the contact wrench [Alharbat, 2022]. A simple solution is
offered by treating the contact wrench as a constant parameter over the horizon. In
such a case, we have that the system parameter vector is given as

p =
[
uh

⊤ wext
⊤
]⊤
, (6.60)

where npm = 10. This approximation is valid until the external actions can be
modeled as slow time-varying disturbances. If that assumption is not holding, then
more sophisticated solutions and models can be used [Kocer, 2019; Tzoumanikas,
2020; Peric, 2021].

To obtain the current estimate of wext, a force-torque sensor or the wrench
estimator described in Chapter 5 could be employed.

6.5 Experimental validation

In this section, we first describe the testbed setup adopted in the experiments aimed
at validating the applicability of our predictive controller in real-world settings. Then,
we provide preliminary quantitative results.

6.5.1 Experimental setup

In the experimental campaign, we employ a collinear quad-rotor whose picture is
provided in Figure 6.14a. This AR is a custom prototype designed and realized
in-house at LAAS, where the experiments are performed. The platform diameter
is about 50cm and is actuated by 4 collinear 10in propellers. It is equipped with a
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monocular front-facing camera, namely an Intel Realsense T265, and its odometry
feedback is not utilized. The robot features an onboard Intel NUC, comprising an
Intel Core i7-8565U and 8GB of DDR3 RAM, capable of running the image processing
algorithms. It runs Ubuntu 18.04, and the software architecture is implemented in
C++ using the same software stack described in Section 6.3.2.

The robot state feedback is provided by an onboard IMU at 1kHz and an external
Mocap system at 100Hz. Sensor fusion of the available measurements is realized
by means of an Unscented Kalman Filter (UKF), which provides the full state
feedback at 1kHz. The object detection is performed again using AruCo fiducial
markers, which are attached to a wooden panel. This board, whose picture is
provided in Figure 6.14b, is used as an avatar to substitute a real participant in the
Human-Aerial Robot (HAR) interaction. However, a human operator is standing
behind the panel in order to control the board movements. The detection algorithm
identifies the AruCo tags in the camera images, and it provides an estimate of the 6D
state of the central point thanks to the knowledge of their geometrical dimensions.

Lastly, we consider that a virtual object is rigidly attached to the robot body by
means of a fixed EE, which is aligned with the same facing direction of the camera.
The qualitative placement w.r.t. the robot body is shown in Figure 6.14a as a green
circle. Accordingly, the controller considers this information when computing the
item position by means of Equation (6.27).

6.5.2 Experimental results

We remind the reader that the videos of the reported simulations can be found
in Video 3.4 or at this link: https://peertube.laas.fr/w/5aCzSTsi5BMhgXHSUB9Kg4.

In Figure 6.15, we report both the perception objective in the first top plot, the
panel board motion expressed in FW in the middle, and its yaw angle in the bottom
part. As it can be appreciated from the central plot, the human standing behind
the avatar board is moving the panel three times: the first at t ≈ 10 along xW , then
at t ≈ 70 along yW , and lastly at t ≈ 85 along xW . While moving the board, the
human applies also some rotations around zW , thus modifying the heading (yaw) of
the human mockup, as show in the bottom plot. From the top part of Figure 6.15, we
can observe that the human remains always visible throughout the whole experiment,
despite the performed displacements. As a matter of fact, cβ is well contained within
its bounds, and very close to its reference value (being 1).

A good visibility of the human board allows the robot to properly estimate the
pose of its partner. This can be noticed by inspecting Figure 6.16. There, the
top plot shows the estimated position of the human trunk compared against the
recorded ground-truth. Except a small error along the vertical axis, the human pose
estimation matches well the real values. Similar considerations apply to the yaw
angle estimation, which is shown in the bottom of Figure 6.16.

https://peertube.laas.fr/w/5aCzSTsi5BMhgXHSUB9Kg4
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Figure 6.15: In the top, the perception objective is shown. In the middle, the x, y and z

coordinates related to the ground-truth position of the human mockup panel, respectively
in red, green, and blue. In the bottom, the yaw angle of the human avatar board.

Figure 6.16: In the top, the estimated and the ground-truth position coordinates of the
human (trunk) board, respectively as dotted and dashed lines. In the bottom, and in a
similar fashion, its estimated and ground-truth yaw angles.
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6.6 Conclusion

In this work, we propose a human-aware NMPC designed to let a MRAV autonomously
perform the handover of a tool to a human worker. We start by introducing the
main working principles of the underlying approach, thus we offer an overview on
the Model Predictive Control (MPC) technique. Subsequently, we introduce all the
terms composing our “human-aware” Optimal Control Problem (OCP). First, the
formulation considers the human ergonomics, which is based on the concept of the
human overloading joint torques. The minimization of this term, whose expression is
composed of the closed-form equations of the human shoulder and elbow torques,
allows determining the handover position minimizing the human physical effort
required to receive the object. Moreover, the robot motion is computed relative to
the partner trunk which increases the reactivity of the framework to any unexpected
human motion, without the need for online re-planning. The worker motion model
is included within the NMPC system dynamics allowing the controller to predict
the future human poses along the horizon. Additionally, the relative formulation
allows embedding a safety barrier to avoid collisions with the human, and a velocity-
based term to reduce the injury level in case of an unexpected impact. Besides,
we build upon previous works to ensure that the robot actuation limitations are
strictly observed during the motion, while maintaining the human observable inside
the FoV of an onboard camera. The visibility of the worker body is crucial as its
detection allows the robot to estimate the human-AR relative pose. Initially, we
test our proposed framework in a Gazebo simulation. We show that the controller
tracks the desired path and brings the robot to a comfortable position for performing
the handover, even in the presence of sudden human displacements. Then, we
discuss a series of improvements related to the control formulation based on the
comments received by the reviewing committee of a journal venue. Next, we show
the applicability of the method in real-world experiments.

6.6.1 Limitations and perspectives

Despite its richness, the presented work still leaves open challenges which will be
addressed in future work. Firstly, the physical interaction between the two agents
has still to be fully investigated. The current formulation neglects the possible
wrench that may arise during the handover transfer phase. The controller should
compute motor commands to compensate for the human actions and, at the same
time, prevent the risk of losing stability and impacting the partner. Therefore, in
future work, we aim at addressing this point based on the considerations we drew
in Section 6.4. Secondly, the model used for the human arm considers only the
shoulder and the elbow articulations, and it neglects other human DoFs, like the neck
and the torso. It would be possible to take into consideration also the trunk torques
and relate the ergonomics to the variations in the partner body posture. Thirdly,
the use of higher DoF models makes finding a closed-form solution to the human
inverse kinematics problem challenging or even unfeasible. Consequently, the use
of numerical optimization to solve the human inverse kinematics problem could be
investigated. This allows to directly embed the mapping between the joint torques
and the object pose inside the OCP. Fourthly, we neglected the problem of occlusion.
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While this problem might not be critical in case of objects rigidly-attached to the
robot body, it could instead occur if the platform is equipped with a poly-articulated
robotic arm. The motion of the arm could indeed jeopardize the visibility task, as
the manipulator could occupy the camera FoV, in turn deteriorating the human
pose detection and estimation. Lastly, so far, we have not consider any human
socio-physicological factor related the collaboration, such as legibility, predictability
and social acceptability. In future work, we aim at investigating these aspects by
testing the controller either in a virtual-reality environment or by means of user
studies with several participants.
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Chapter 7

Conclusion

In recent years, the field of aerial robotics is rapidly growing, driven by the possibility
to deploy aerial robots (ARs), and particularly multi-rotor aerial vehicles (MRAVs),
to perform physical tasks in dangerous and challenging environments. This brings the
possibility to either avoid exposing human operators to hazardous working conditions
or to assist them in their activities. Aerial manipulators (AMs) feature the required
skills for being valuable aerial co-workers (ACWs), e.g., by delivering the necessary
tools and gathering useful data on the environment. Nowadays, they are equipped
with powerful sensing and decision-making algorithms and devices, which fuse well
with their maneuvering and manipulation capabilities. Therefore, the new domain
encompassing physical Human-Aerial Robot Interaction (pHARI) is emerging.

Despite the problem of physical Human-Robot Interaction (pHRI) has been
already explored with ground manipulators, the same cannot be said with ARs.
Except the few works that started investigating the social aspects of a Human-Aerial
Robot (HAR) interaction, still the problem of a physical and safe collaboration has
not been fully addressed by the research community. Henceforth, proper control
methods for a safe pHARI are necessary.

The contribution of this thesis is the proposition of control algorithms enabling
aerial robots to achieve a safe and comfortable physical interaction with their human
partners. In particular, this work focuses on the challenge of letting an AR deliver
(or receive) an object to (from) a human operator, i.e., on the Human-Aerial robot
handover (HARH) problem.

In this conclusive chapter, we first summarize the main contributions brought by
our research and the topics covered by this thesis in Section 7.1. Then, in Section 7.2,
we conclude the manuscript with final considerations on the challenges that have not
yet been addressed in our investigation, and the research perspectives for future work.
Regarding the latter point, we sketch an idea allowing combining the two proposed
methodologies and address the HARH thoroughly.

7.1 Overall contributions

This thesis focused on the Human-Aerial robot handover (HARH) problem involving
the object transfer between a robotic and a human agent.
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In Chapter 1, we provide an overview of the background related to our work and
motivate the following research problem. Therefore, we offer an overview over the
fields of Human-Robot Interaction (HRI), physical Aerial Robot Interaction (pARI),
and some of the recent articles published within the domain of pHARI. Moreover,
this first chapter serves to introduce the taxonomy of the aerial vehicles considered
in this thesis: MRAVs and AMs equipped with a multi-Degree of Freedom (DoF)
robotic arm.

Then, in Chapter 2, we describe the problem under analysis, highlighting the dif-
ferent phases composing HARH process (namely the approach, reach, and interaction
phases) and the underlying assumptions we made. Then, we analyze the research
challenges associated with the considered problem. Here, we provide a concise list.

• The study of the physical interaction arising between the two agents when the
object is exchanged.

• The problem of maintaining visibility of the human operator during the whole
process, as the robot relies only on the onboard visual sensor to determine the
human presence and estimate the user body pose.

• The inclusion of human safety at the control level ensuring at whole time to
avoid potential human-robot collisions, or to minimize the energy transferred
in case of an unexpected impact.

• The formulation of a suitable metric to account for the human ergonomics
when controlling the robot during the handover task.

Subsequently, we propose a way to address these challenges, in particular we decom-
pose the original problem into two complementary parts. This simplifies the analysis
of the HARH process, as we consider only a subset of the analyzed challenges at once.
Moreover, it facilitates the derivation of effective control methodologies. In particular,
Chapter 3 proposes two control architectures addressing these two subproblems.
Chapter 4 offers the mathematical tools which are used in the derivation of the two
control methods.

The first subproblem focuses on the interaction phase between the two agents
and the exchanged wrench arising when the object is transferred. In Chapter 3, we
introduce a hierarchical control architecture composed of a low-level controller, a
physical interaction layer, and a vision system. In Chapter 5, we present the details
behind the formulation of this control framework. Specifically, the first module
generates the robot motor commands exploiting the system model and its actuation
properties (full actuation) in order to apply a 6D wrench. The interaction layer
features a wrench observer and an admittance filter. The former estimates the
external disturbances applied on the robot which arise during the interaction, while
the latter enhances the robot with compliance during the HARH. The last vision-
based module comprises a visual servoing algorithm which generates the velocity
commands driving the robot towards the goal by observing a set of visual clues.

Conversely, the second subproblem pivots on the inclusion of human awareness
and related metrics at the control level in order to successfully perform the approach
and reach phases. In Chapter 3, we unveil our Nonlinear Model Predictive Control
(NMPC) formulation that can exploit the human and the robot models to predict
the future system behavior. Accordingly, in Chapter 6, we offer an overview of the
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MPC technique, and we detail the general structure of an Optimal Control Problem
(OCP). Henceforth, we derive all the terms that allow composing our “human-aware”
NMPC-based controller. The solution of the OCP results in the generation of feasible
motor commands and the computation of an ergonomic handover location minimizing
the articular stress undertaken by the operator. In addition, the solution satisfies a
set of task requirements. Specifically, the robot can maintain visibility of the human
partner during the handover. In this way, the onboard estimation architecture can
effectively provide the controller with an estimation of the user body. Moreover, the
robot motion minimizes both the risk of colliding with the operator and, in case of
an unwanted impact, the amount of transferred energy. Lastly, the human-relative
formulation allows natural re-plan in case of an unexpected human motion.

Chapters 3, 5, and 6 show the achieved results in several simulated scenarios and
real-world experiments justifying the soundness and effectiveness of the proposed
methodology.

7.2 Limitations and perspectives

The research presented along this manuscript left open many questions, both from
the theoretical and practical standpoint, which could lead to fruitful works in the
field of pHARI.

On the theoretical side, the first notable aspect not considered in this work is
the investigation of the HARH problem as a whole by addressing all the highlighted
challenges at the same time. A possibility could be the development of a hierarchical
control architecture obtained by combining our two proposed control methodologies.
Therefore, a visual servoing modules, as the one presented in Chapter 5, could be
used to drive the end effector (EE) pose towards the desired location, i.e., the hand of
the operator to hand over the object. Hence, visual clues could be extrapolated from
the human body and used within the vision-based control loop to visually guide the
robot to approach and reach the human partner. Likewise, a wrench observer and an
admittance filter can be again employed to deal with the physical interaction, since
they are revealed to be effective force control methods. Then, the low-level motion
system could be replaced by our NMPC-based algorithm. In the new architecture,
the latter module would receive the desired position and velocity commands from
the higher-level components, and generate feasible motor commands allowing the
robot to perform successfully the handover. Moreover, as proposed in this thesis, it
could consider the task requirements associated to the handover case, such as human
visibility, safety and ergonomics. As MPC allows controlling the platform from a
centralized perspective, it could make the method applicable not only to simple
MRAVs but also to more dexterous AMs equipped with multi-DoF robotic arms.

If the platform is equipped with a robotic arm, a very important aspect, that has
not been considered in this work, is the exploitation of the system redundancy to
actually perform a set of secondary tasks. For instance, the robot dexterity could be
used to avoid obstacles, prevent occlusions of the onboard visual sensors, or to better
reach the partner. By stretching the robotic arm towards the user, a larger distance
could be imposed between the operator and the dangerous parts of the robot body,
e.g., the sharp propellers. Within this context, a term in the cost function could be
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introduced to let the optimization-based controller find the best solution among the
several possible ones that improve the quality of the interaction.

The integration of a controllable gripper would allow investigating the problem
of modulating the gripping force during the object transfer phase. In the research
community, it has been observed that, during a human-human handover, there is a
correlation between the amount of gripping force of the giver and the evolution of
the amount of load shared between the two agents [Strabala, 2013; Ortenzi, 2021].
Additionally, if a force-torque sensor is added to such an EE, the contact wrench
could be used to detect the starting of the exchange phase, and hence to control the
robot grasping and releasing actions.

Another important aspect that has not been studied in this work is the problem of
taking into account the system uncertainty and the external disturbances (e.g., wind).
Their consideration is crucial, especially when considering real-world scenarios, as
their negligence may endanger the user. On this regard, a robust NMPC controller
could be investigated. In the literature, there is an emerging interest in designing
robust predictive controllers that can cope with the system uncertainties [Mesbah,
2016], e.g., an imprecise robot and human pose estimation. Among the different
possibilities, particularly interesting is chance-constrained NMPC. This variant of the
standard approach can account for the stochasticity associated to a real system, and
it treats the external disturbances as probabilistic events. The main idea consists in
defining an expression relating a certain event to its probability of occurring. Then, a
deterministic constraint can be derived expressing the need that such an event (e.g.,
the occurence of a collision) shall not occur given a desired probability threshold.
Once this constraint is incorporated inside the OCP, the solution computed by
the NMPC solver assures that the considered event will occur within the chosen
probability limits.

Lastly, as mentioned in Chapter 6, socio-physicological factors have not been
taken into account in our investigation. However, for effectively deploying ACWs
in collaborative scenarios, user studies are necessary to assess the level of social
acceptability and the robot factors that affect the collaboration. For instance, as ARs
have neither limbs nor a face, it is important to find other means by conveying the
robot intentions, e.g., by requesting the robot to create legible motions. Therefore,
new metrics could be defined and included within the optimization problem to
generate more predictable and legible robot movements, thus improving the quality
of the interaction.

On the practical side, still many efforts are necessary to realize a stable and
secure ACW. As discussed in Chapter 5, to allow the actual implementation of
a real force control method (e.g., impedance/admittance control), a fully torque-
controlled aerial manipulator is necessary, like the one developed in [Mart́ı-Saumell,
2023]. Furthermore, when considering more realistic experiments, it is essential
to rely on the sensors on-board the robot. Thus, GPS systems and visual-inertia
odometry algorithms can be employed to achieve a reliable robot pose localization
and estimation. Additionally, when moving to real experiments, fiducial markers
attached to the user body are unpractical for allowing the robot to detect and estimate
the partner pose. Therefore, more sophisticated algorithms, such as learning-based
methods, could be explored to provide the robot controller with a reliable estimate
of the human position [Fisch, 2022; Zheng, 2023]. In turn, this would relieve the
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operator from wearing particular vests featuring the AruCo markers. Lastly, it would
be interesting to conceive a suitable gripping mechanism whose design can actually
facilitate the object exchange between an aerial robot and a human operator.





Bibliography

[Abeywardena, 2015] D. Abeywardena, P. Pounds, D. Hunt, and G. Dis-
sanayake. “Design and development of ReCOPTER:
An open source ROS-based multi-rotor platform for re-
search”. In: 2015 Australasian Conference on Robotics
and Automation. 2015 (cit. on p. 8).

[Aboudorra, 2023] Y. Aboudorra, C. Gabellieri, Q. Sablé, and A. Franchi.
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Pfändler, U. Angst, R. Siegwart, and J. Nieto. “Active
Interaction Force Control for Contact-Based Inspection
With a Fully Actuated Aerial Vehicle”. In: IEEE Trans.
on Robotics 37.3 (2021), pp. 709–722 (cit. on p. 12).

[Bodie, 2021b] K. Bodie, M. Tognon, and R. Siegwart. “Dynamic End
Effector Tracking With an Omnidirectional Parallel
Aerial Manipulator”. In: IEEE Robotics and Automa-
tion Letters 6.4 (2021), pp. 8165–8172 (cit. on p. 13).

[Bork, 1966] A. M. Bork. ““Vectors Versus Quaternions”—The Let-
ters in Nature”. In: American Journal of Physics 34.3
(1966), pp. 202–211 (cit. on p. 70).

https://doi.org/10.1142/p542
https://doi.org/10.1142/p542
https://hal.laas.fr/tel-02433940
https://hal.laas.fr/tel-02433940
https://hal.laas.fr/tel-02433940
https://doi.org/10.1007/s10846-020-01250-9
https://doi.org/10.1007/s10846-020-01250-9
https://doi.org/10.1007/s10846-020-01250-9
https://doi.org/10.1007/978-3-0348-8407-5_14
https://doi.org/10.1007/978-3-0348-8407-5_14
https://doi.org/10.1007/978-3-540-72699-9_13
https://doi.org/10.1007/978-3-540-72699-9_13
https://doi.org/10.1109/TRO.2020.3036623
https://doi.org/10.1109/TRO.2020.3036623
https://doi.org/10.1109/TRO.2020.3036623
https://doi.org/10.1109/LRA.2021.3101864
https://doi.org/10.1109/LRA.2021.3101864
https://doi.org/10.1109/LRA.2021.3101864
https://doi.org/10.1119/1.1972887
https://doi.org/10.1119/1.1972887


Bibliography 173

[Brescianini, 2016] D. Brescianini and R. D’Andrea. “Design, modeling
and control of an omni-directional aerial vehicle”. In:
2016 IEEE Int. Conf. on Robotics and Automation.
2016, pp. 3261–3266 (cit. on p. 87).

[Busch, 2017] B. Busch, G. Maeda, Y. Mollard, M. Demangeat,
and M. Lopes. “Postural optimization for an er-
gonomic human-robot interaction”. In: 2017 IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems. 2017,
pp. 2778–2785 (cit. on p. 41).

[Busch, 2018] B. Busch, M. Toussaint, and M. Lopes. “Planning Er-
gonomic Sequences of Actions in Human-Robot Inter-
action”. In: 2018 IEEE Int. Conf. on Robotics and
Automation. 2018, pp. 1916–1923 (cit. on p. 42).

[Butcher, 1996] J.C. Butcher. “A history of Runge-Kutta methods”. In:
Applied Numerical Mathematics 20.3 (1996), pp. 247–
260 (cit. on p. 145).

[Cacace, 2016] J. Cacace, A. Finzi, V. Lippiello, M. Furci, N. Mimmo,
and L. Marconi. “A control architecture for multiple
drones operated via multimodal interaction in search
& rescue mission”. In: 2016 IEEE Int. Symp. on Safety,
Security and Rescue Robotics. 2016, pp. 233–239 (cit.
on p. 16).

[Cacace, 2021] J. Cacace, S. M. Orozco-Soto, A. Suarez, A. Caballero,
M. Orsag, S. Bogdan, G. Vasiljevic, E. Ebeid, J. A. A.
Rodriguez, and A. Ollero. “Safe Local Aerial Manipu-
lation for the Installation of Devices on Power Lines:
AERIAL-CORE First Year Results and Designs”. In:
Applied Sciences 11.13 (2021), p. 6220 (cit. on pp. 13,
14).

[Campa, 2009] R. Campa and H. de la Torre.“Pose control of robot ma-
nipulators using different orientation representations:
A comparative review”. In: 2009 American Control
Conference. 2009, pp. 2855–2860 (cit. on p. 108).

[Carpentier, 2017] J. Carpentier, M. Benallegue, and J-P. Laumond. “On
the centre of mass motion in human walking”. In: Inter-
national Journal of Automation and Computing 14.5
(2017), pp. 542–551 (cit. on p. 93).

[Castillo-Lopez, 2018] M. Castillo-Lopez, S. A. Sajadi-Alamdari, J. L.
Sanchez-Lopez, M. A. Olivares-Mendez, and H. Voos.
“Model Predictive Control for Aerial Collision Avoid-
ance in Dynamic Environments”. In: 2018 Mediter-
ranean Conf. on Control and Automation. 2018, pp. 1–
6 (cit. on p. 40).

https://doi.org/10.1109/ICRA.2016.7487497
https://doi.org/10.1109/ICRA.2016.7487497
https://doi.org/10.1109/IROS.2017.8206107
https://doi.org/10.1109/IROS.2017.8206107
https://doi.org/10.1109/ICRA.2018.8462927
https://doi.org/10.1109/ICRA.2018.8462927
https://doi.org/10.1109/ICRA.2018.8462927
https://doi.org/10.1016/0168-9274(95)00108-5
https://doi.org/10.1109/SSRR.2016.7784304
https://doi.org/10.1109/SSRR.2016.7784304
https://doi.org/10.1109/SSRR.2016.7784304
https://doi.org/10.3390/app11136220
https://doi.org/10.3390/app11136220
https://doi.org/10.3390/app11136220
https://doi.org/10.1109/ACC.2009.5160254
https://doi.org/10.1109/ACC.2009.5160254
https://doi.org/10.1109/ACC.2009.5160254
https://doi.org/10.1007/s11633-017-1088-5
https://doi.org/10.1007/s11633-017-1088-5
https://doi.org/10.1109/MED.2018.8442967
https://doi.org/10.1109/MED.2018.8442967


174 Bibliography

[Cataldi, 2019] E. Cataldi, F. Real, A. Suarez, P.A. Di Lillo, F. Pierri,
G. Antonelli, F. Caccavale, G. Heredia, and A. Ollero.
“Set-based Inverse Kinematics Control of an Anthro-
pomorphic Dual Arm Aerial Manipulator”. In: 2019
IEEE Int. Conf. on Robotics and Automation. 2019,
pp. 2960–2966 (cit. on p. 13).

[Cauchard, 2015] J. R. Cauchard, J. L. E, K. Y. Zhai, and J. A. Landay.
“Drone & Me: An Exploration into Natural Human-
Drone Interaction”. In: 2015 ACM Int. Joint Conf. on
Pervasive and Ubiquitous Computing. 2015, pp. 361–
365 (cit. on p. 15).

[Cauchard, 2016] J. R. Cauchard, K. Y. Zhai, M. Spadafora, and J. A.
Landay. “Emotion encoding in Human-Drone Interac-
tion”. In: 2016 ACM/IEEE Int. Conf. on Human-Robot
Interaction. 2016, pp. 263–270 (cit. on p. 15).

[Chaumette, 2006] F. Chaumette and S. Hutchinson. “Visual servo control.
I. Basic approaches”. In: IEEE Robotics & Automation
Magazine 13.4 (2006), pp. 82–90 (cit. on pp. 37, 100).

[Chaumette, 2007] F. Chaumette and S. Hutchinson. “Visual servo control.
II. Advanced approaches [Tutorial]”. In: IEEE Robotics
& Automation Magazine 14.1 (2007), pp. 109–118 (cit.
on pp. 99, 100).

[Chen, 2019] Y. Chen, M. Bruschetta, E. Picotti, and A. Beghi.
“MATMPC - A MATLAB Based Toolbox for Real-
time Nonlinear Model Predictive Control”. In: 2019
European Control Conference. 2019, pp. 3365–3370 (cit.
on pp. 130, 147).

[Chettibi, 2007] T. Chettibi and P. Lemoine. “Generation of Point to
Point Trajectories for Robotic Manipulators Under
Electro-Mechanical Constraints”. In: International Re-
view of Mechanical Engineering, IREME, ISSN 1970-
8734 1.2 (2007), pp. 131–143 (cit. on p. 89).

[Clark, 2022] A. B. Clark, N. Baron, L. Orr, M. Kovac, and N. Ro-
jas. “On a Balanced Delta Robot for Precise Aerial
Manipulation: Implementation, Testing, and Lessons
for Future Designs”. In: 2022 IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems. 2022, pp. 7359–7366
(cit. on p. 13).

[Conticelli, 1999] F. Conticelli, B. Allotta, and C. Colombo. “Hybrid
visual servoing: A combination of nonlinear control and
linear vision”. In: Robotics and Autonomous Systems
29.4 (1999), pp. 243–256 (cit. on p. 37).

https://doi.org/10.1109/ICRA.2019.8793470
https://doi.org/10.1109/ICRA.2019.8793470
https://doi.org/10.1145/2750858.2805823
https://doi.org/10.1145/2750858.2805823
https://doi.org/10.1109/HRI.2016.7451761
https://doi.org/10.1109/HRI.2016.7451761
https://doi.org/10.1109/MRA.2006.250573
https://doi.org/10.1109/MRA.2006.250573
https://doi.org/10.1109/MRA.2007.339609
https://doi.org/10.1109/MRA.2007.339609
https://doi.org/10.23919/ECC.2019.8795788
https://doi.org/10.23919/ECC.2019.8795788
https://hal.science/hal-00362618
https://hal.science/hal-00362618
https://hal.science/hal-00362618
https://doi.org/10.1109/IROS47612.2022.9981736
https://doi.org/10.1109/IROS47612.2022.9981736
https://doi.org/10.1109/IROS47612.2022.9981736
https://doi.org/10.1016/S0921-8890(99)00057-3
https://doi.org/10.1016/S0921-8890(99)00057-3
https://doi.org/10.1016/S0921-8890(99)00057-3


Bibliography 175

[Corsini, 2021] G. Corsini, M. Jacquet, A. E. Jimenez-Cano, A. Afifi, D.
Sidobre, and A. Franchi. “A General Control Architec-
ture for Visual Servoing and Physical Interaction Tasks
for Fully-actuated Aerial Vehicles”. In: 1st Work. on
Aerial Robotic Systems Physically Interacting with the
Environment. Biograd na Moru, Croatia, 2021, pp. 1–8
(cit. on p. 21).

[Corsini, 2022] G. Corsini, M. Jacquet, H. Das, A Afifi, D. Sidobre, and
A. Franchi. “Nonlinear Model Predictive Control for
Human-Robot Handover with Application to the Aerial
Case”. In: 2022 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems. Kyoto, Japan, 2022, pp. 7597–
7604 (cit. on p. 21).

[Costanzo, 2023] M. Costanzo, C. Natale, and M. Selvaggio. “Visual and
Haptic Cues for Human-Robot Handover”. In: 2023
IEEE Int. Symp. on Robots and Human Interactive
Communications. 2023 (cit. on p. 125).

[Costic, 2001] B. T. Costic, D. M. Dawson, M. S. de Queiroz, and V.
Kapila. “Quaternion-based adaptive attitude tracking
controller without velocity measurements”. In: AIAA
Journal of Guidance, Control, and Dynamics 24.6
(2001), pp. 1214–1222 (cit. on p. 71).

[Croon, 2009] G.C.H.E. de Croon, K.M.E. de Clercq, R. Ruijsink, B.
Remes, and C. de Wagter. “Design, Aerodynamics, and
Vision-Based Control of the DelFly”. In: International
Journal of Micro Air Vehicles 1.2 (2009), pp. 71–97
(cit. on p. 7).

[Cutler, 2015] M. Cutler and J. P. How. “Analysis and control of a
variable-pitch quadrotor for agile flight”. In: ASME
Journal on Dynamic Systems, Measurement, and Con-
trol 137 (2015) (cit. on p. 7).

[Dai, 2015] J. S. Dai. “Euler–Rodrigues formula variations, quater-
nion conjugation and intrinsic connections”. In: Mech-
anism and Machine Theory 92 (2015), pp. 144–152
(cit. on p. 70).

[Darivianakis, 2014] G. Darivianakis, K. Alexis, M. Burri, and R. Siegwart.
“Hybrid predictive control for aerial robotic physical
interaction towards inspection operations”. In: 2014
IEEE Int. Conf. on Robotics and Automation. 2014,
pp. 53–58 (cit. on p. 36).

[Darvish, 2023] K. Darvish, L. Penco, J. Ramos, R. Cisneros, J. Pratt,
E. Yoshida, S. Ivaldi, and D. Pucci. “Teleoperation
of Humanoid Robots: A Survey”. In: IEEE Trans. on
Robotics 39.3 (2023), pp. 1706–1727 (cit. on p. 5).

https://doi.org/10.1109/AIRPHARO52252.2021.9571053
https://doi.org/10.1109/AIRPHARO52252.2021.9571053
https://doi.org/10.1109/AIRPHARO52252.2021.9571053
https://doi.org/10.1109/IROS47612.2022.9981045
https://doi.org/10.1109/IROS47612.2022.9981045
https://doi.org/10.1109/IROS47612.2022.9981045
https://doi.org/10.2514/2.4837
https://doi.org/10.2514/2.4837
https://doi.org/10.1260/175682909789498288
https://doi.org/10.1260/175682909789498288
https://doi.org/10.1115/1.4030676
https://doi.org/10.1115/1.4030676
https://doi.org/10.1016/j.mechmachtheory.2015.03.004
https://doi.org/10.1016/j.mechmachtheory.2015.03.004
https://doi.org/10.1109/ICRA.2014.6906589
https://doi.org/10.1109/ICRA.2014.6906589
https://doi.org/10.1109/TRO.2023.3236952
https://doi.org/10.1109/TRO.2023.3236952


176 Bibliography

[de Angelis, 2019] E. L. de Angelis, F. Giulietti, and G. Pipeleers. “Two-
time-scale control of a multirotor aircraft for suspended
load transportation”. In: Aerospace Science and Tech-
nology 84 (2019), pp. 193–203 (cit. on p. 8).

[Diebel, 2006] J. Diebel. “Representing Attitude: Euler Angles, Unit
Quaternions, and Rotation Vectors”. In: Matrix 58.15-
16 (2006), pp. 1–35 (cit. on p. 72).

[Diehl, 2002] M. Diehl, H. G. Bock, J. P. Schlöder, R. Findeisen,
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Cuevas, and M.J. Maŕın-Jiménez. “Automatic genera-
tion and detection of highly reliable fiducial markers
under occlusion”. In: Pattern Recognition 47.6 (2014),
pp. 2280–2292 (cit. on pp. 50, 107, 147).

[Gio, 2021] Nicolas Gio, Ross Brisco, and Tijana Vuletic. “Control
of a drone with body gestures”. In: Proceedings of the
Design Society 1 (2021), pp. 761–770 (cit. on p. 15).

[Gioioso, 2014] G. Gioioso, M. Ryll, D. Prattichizzo, H. H. Bülthoff,
and A. Franchi. “Turning a near-hovering controlled
quadrotor into a 3D force effector”. In: 2014 IEEE Int.
Conf. on Robotics and Automation. 2014, pp. 6278–
6284 (cit. on pp. 12, 109).

[Girard, 2007] P. R. Girard. Quaternions, Clifford Algebras and Rela-
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[Tognon, 2017] M. Tognon, B. Yüksel, G. Buondonno, and A. Franchi.
“Dynamic Decentralized Control for Protocentric Aerial
Manipulators”. In: 2017 IEEE Int. Conf. on Robotics
and Automation. Singapore, May 2017, pp. 6375–6380
(cit. on p. 12).

[Tognon, 2018] M. Tognon and A. Franchi. “Omnidirectional Aerial
Vehicles With Unidirectional Thrusters: Theory, Op-
timal Design, and Control”. In: IEEE Robotics and
Automation Letters 3.3 (2018), pp. 2277–2282 (cit. on
p. 10).

[Tognon, 2019] M. Tognon et al. “A Truly-Redundant Aerial Manip-
ulator System With Application to Push-and-Slide
Inspection in Industrial Plants”. In: IEEE Robotics and
Automation Letters 4.2 (2019), pp. 1846–1851 (cit. on
pp. 13, 14, 83).

https://doi.org/10.5898/JHRI.2.1.Strabala
https://doi.org/10.5898/JHRI.2.1.Strabala
https://doi.org/10.1109/ICUAS54217.2022.9836039
https://doi.org/10.1109/ICUAS54217.2022.9836039
https://doi.org/10.1109/TRO.2022.3177279
https://doi.org/10.1109/TRO.2022.3177279
https://doi.org/10.1109/TRO.2022.3177279
https://doi.org/10.1109/ICAAID.2019.8934974
https://doi.org/10.1109/ICAAID.2019.8934974
https://doi.org/10.1109/ICAAID.2019.8934974
https://doi.org/10.1109/LRA.2017.2702198
https://doi.org/10.1109/LRA.2017.2702198
https://doi.org/doi={10.1109/ICRA.2017.7989753}
https://doi.org/doi={10.1109/ICRA.2017.7989753}
https://doi.org/10.1109/LRA.2018.2802544
https://doi.org/10.1109/LRA.2018.2802544
https://doi.org/10.1109/LRA.2018.2802544
https://doi.org/10.1109/LRA.2019.2895880
https://doi.org/10.1109/LRA.2019.2895880
https://doi.org/10.1109/LRA.2019.2895880


Bibliography 195

[Tognon, 2021] M. Tognon, R. Alami, and B. Siciliano. “Physical
Human-Robot Interaction With a Tethered Aerial Ve-
hicle: Application to a Force-Based Human Guiding
Problem”. In: IEEE Trans. on Robotics 37.3 (2021),
pp. 723–734 (cit. on p. 16).

[Tomić, 2017] T. Tomić, C. Ott, and S. Haddadin. “External Wrench
Estimation, Collision Detection, and Reflex Reaction
for Flying Robots”. In: IEEE Trans. on Robotics 33.6
(2017), pp. 1467–1482 (cit. on pp. 34, 101).

[Truc, 2022] J. Truc, P.-T. Singamaneni, D. Sidobre, S. Ivaldi,
and R. Alami. “KHAOS: a Kinematic Human Aware
Optimization-based System for Reactive Planning
of Flying-Coworker”. In: 2022 IEEE Int. Conf. on
Robotics and Automation. 2022, pp. 4764–4770 (cit.
on pp. 17, 31, 40, 47, 146).

[Truc, 2023] J. Truc, D. Sidobre, and R. Alami. “Reactive Planning
for Coordinated Handover of an Autonomous Aerial
Manipulator”. In: Companion of the 2023 ACM/IEEE
Int. Conf. on Human-Robot Interaction. 2023, pp. 122–
126 (cit. on pp. 17, 40).

[Trujillo, 2016] M. M. Trujillo, M. Darrah, K. Speransky, B. Deroos,
and M. Wathen. “Optimized flight path for 3D map-
ping of an area with structures using a multirotor”. In:
2016 Int. Conf. on Unmanned Aircraft Systems. 2016,
pp. 905–910 (cit. on p. 8).

[Tzoumanikas, 2020] D. Tzoumanikas, F. Graule, Q. Yan, D. Shah, M.
Popovic, and S. Leutenegger. “Aerial Manipulation
Using Hybrid Force and Position NMPC Applied to
Aerial Writing”. 2020 (cit. on p. 156).

[Vianello, 2021] L. Vianello, L. Penco, W. Gomes, Y. You, S. M. Anza-
lone, P. Maurice, V. Thomas, and S. Ivaldi. “Human-
Humanoid Interaction and Cooperation: a Review”. In:
Current Robotics Reports 2.4 (2021), pp. 441–454 (cit.
on p. 5).

[Villa, 2020] D. K. D. Villa, A. S. Brandão, and M. Sarcinelli-Filho.
“A Survey on Load Transportation Using Multirotor
UAVs”. In: Journal of Intelligent & Robotics Systems
98.2 (May 2020), pp. 267–296 (cit. on p. 13).

[Villani, 2018] V. Villani, F. Pini, F. Leali, and C. Secchi. “Survey
on human–robot collaboration in industrial settings:
Safety, intuitive interfaces and applications”. In: Mecha-
tronics 55 (2018), pp. 248–266 (cit. on p. 49).

[Welde, 2021] J. Welde, J. Paulos, and V. Kumar. “Dynamically Fea-
sible Task Space Planning for Underactuated Aerial
Manipulators”. In: IEEE Robotics and Automation Let-
ters 6.2 (2021), pp. 3232–3239 (cit. on p. 35).

https://doi.org/10.1109/TRO.2020.3038700
https://doi.org/10.1109/TRO.2020.3038700
https://doi.org/10.1109/TRO.2020.3038700
https://doi.org/10.1109/TRO.2020.3038700
https://doi.org/10.1109/TRO.2017.2750703
https://doi.org/10.1109/TRO.2017.2750703
https://doi.org/10.1109/TRO.2017.2750703
https://doi.org/10.1109/ICRA46639.2022.9811803
https://doi.org/10.1109/ICRA46639.2022.9811803
https://doi.org/10.1109/ICRA46639.2022.9811803
https://doi.org/10.1145/3568294.3580055
https://doi.org/10.1145/3568294.3580055
https://doi.org/10.1145/3568294.3580055
https://doi.org/10.1109/ICUAS.2016.7502538
https://doi.org/10.1109/ICUAS.2016.7502538
https://doi.org/10.48550/arXiv.2006.02116
https://doi.org/10.48550/arXiv.2006.02116
https://doi.org/10.48550/arXiv.2006.02116
https://doi.org/10.1007/s43154-021-00068-z
https://doi.org/10.1007/s43154-021-00068-z
https://doi.org/10.1007/s10846-019-01088-w
https://doi.org/10.1007/s10846-019-01088-w
https://doi.org/10.1016/j.mechatronics.2018.02.009
https://doi.org/10.1016/j.mechatronics.2018.02.009
https://doi.org/10.1016/j.mechatronics.2018.02.009
https://doi.org/10.1109/LRA.2021.3051572
https://doi.org/10.1109/LRA.2021.3051572
https://doi.org/10.1109/LRA.2021.3051572


196 Bibliography

[Wilson-Small, 2023] N. J. Wilson-Small, D. Goedicke, K. Petersen, and S.
Azenkot.“A Drone Teacher: Designing Physical Human-
Drone Interactions for Movement Instruction”. In: 2023
ACM/IEEE Int. Conf. on Human-Robot Interaction.
2023, pp. 311–320 (cit. on p. 15).

[Winter, 2009] D. A. Winter. “Anthropometry”. In: Biomechanics and
Motor Control of Human Movement. 2009. Chap. 4,
pp. 82–106 (cit. on p. 95).

[Wofk, 2019] D. Wofk, F. Ma, T-J. Yang, S. Karaman, and V. Sze.
“Fastdepth: Fast monocular depth estimation on em-
bedded systems”. In: 2019 IEEE Int. Conf. on Robotics
and Automation. 2019, pp. 6101–6108 (cit. on p. 92).

[Xian, 2004] B. Xian, M. S. de Queiroz, D. Dawson, and I. Walker.
“Task-space tracking control of robot manipulators via
quaternion feedback”. In: IEEE Trans. on Robotics 20.1
(2004), pp. 160–167 (cit. on p. 71).

[Xiao, 2021] A. Xiao, W. Tong, L. Yang, J. Zeng, Z. Li, and K.
Sreenath. “Robotic Guide Dog: Leading a Human with
Leash-Guided Hybrid Physical Interaction”. In: 2021
IEEE Int. Conf. on Robotics and Automation. 2021,
pp. 11470–11476 (cit. on p. 5).

[Yang, 2020] W. Yang, C. Paxton, M. Cakmak, and D. Fox. “Hu-
man Grasp Classification for Reactive Human-to-Robot
Handovers”. In: 2020 IEEE/RSJ Int. Conf. on Intelli-
gent Robots and Systems. 2020, pp. 11123–11130 (cit.
on pp. 17, 24).

[Yang, 2021] W. Yang, C. Paxton, A. Mousavian, Y.-W. Chao, M.
Cakmak, and D. Fox. “Reactive Human-to-Robot Han-
dovers of Arbitrary Objects”. In: 2021 IEEE Int. Conf.
on Robotics and Automation. 2021, pp. 3118–3124 (cit.
on pp. 17, 23).

[Yang, 2022] W. Yang, B. Sundaralingam, C. Paxton, I. Akinola, Y.-
W. Chao, M. Cakmak, and D. Fox. “Model Predictive
Control for Fluid Human-to-Robot Handovers”. In:
2022 IEEE Int. Conf. on Robotics and Automation.
2022, pp. 6956–6962 (cit. on pp. 17, 23).

[Yazdani, 2022] A. Yazdani, R. S. Novin, A. Merryweather, and T.
Hermans.“DULA and DEBA: Differentiable Ergonomic
Risk Models for Postural Assessment and Optimization
in Ergonomically Intelligent pHRI”. 2022 (cit. on p. 42).

[Yeh, 2017] A. Yeh, P. Ratsamee, K. Kiyokawa, Y. Uranishi, T.
Mashita, H. Takemura, M. Fjeld, and M. Obaid. “Ex-
ploring Proxemics for Human-Drone Interaction”. In:
2017 Int. Conf. on Human Agent Interaction. 2017,
pp. 81–88 (cit. on p. 15).

https://doi.org/10.1145/3568162.3576985
https://doi.org/10.1145/3568162.3576985
https://doi.org/https://doi.org/10.1002/9780470549148.ch4
https://doi.org/10.1109/ICRA.2019.8794182
https://doi.org/10.1109/ICRA.2019.8794182
https://doi.org/10.1109/TRA.2003.820932
https://doi.org/10.1109/TRA.2003.820932
https://doi.org/10.1109/ICRA48506.2021.9561786
https://doi.org/10.1109/ICRA48506.2021.9561786
https://doi.org/10.1109/IROS45743.2020.9341004
https://doi.org/10.1109/IROS45743.2020.9341004
https://doi.org/10.1109/IROS45743.2020.9341004
https://doi.org/10.1109/ICRA48506.2021.9561170
https://doi.org/10.1109/ICRA48506.2021.9561170
https://doi.org/10.1109/ICRA46639.2022.9812109
https://doi.org/10.1109/ICRA46639.2022.9812109
https://doi.org/10.48550/arXiv.2205.03491
https://doi.org/10.48550/arXiv.2205.03491
https://doi.org/10.48550/arXiv.2205.03491
https://doi.org/10.1145/3125739.3125773
https://doi.org/10.1145/3125739.3125773


Bibliography 197

[Yüksel, 2016] B. Yüksel, G. Buondonno, and A. Franchi. “Differential
flatness and control of protocentric aerial manipulators
with any number of arms and mixed rigid-/elastic-
joints”. In: 2016 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems. 2016, pp. 561–566 (cit. on p. 35).
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Résumé - Abstract

Les robots aériens et plus particulièrement les véhicules multi-rotors connaissent un
large intérêt pour diverses applications. Plus récemment l’intégration d’outils fixes
ou de bras articulés à plusieurs degrés de liberté sur les robots aériens a permis à ces
robots d’interagir physiquement avec leur environnement, ouvrant ainsi la voie à la
réalisation de tâches variés en collaboration entre humains et drones. Toutefois le
déploiement de robots aériens pour l’interaction humain-robot présente de nouveaux
défis. Du point de vue du contrôle, des algorithmes novateurs sont nécessaires pour
que l’interaction physique soit sûre.

Cette thèse aborde ces défis en proposant différentes architectures de contrôle
pour les véhicules aériens multi-rotors qui visent à assurer une interaction physique
sûre avec les humains. Des résultats analytiques et expérimentaux confirment la
validité et la pertinence pratique de la méthodologie proposée.

Mots clefs - Robotique aérienne, Contrôle des robots, Manipulation aérienne,
Interactions physiques entre humain et robot, Échange d’objet et co-manipulation,
Robotique collaborative

Aerial robots and more particularly multi-rotor aerial vehicles have experienced
a large interest for various applications, encompassing contact-less operations as
well as contact-based scenarios. Recently, the integration of fixed tools or multi-
degree-of-freedom robotic arms on aerial robots has enabled them to achieve physical
interaction with the environment. This has driven the robotic community to envision
the realization of collaborative tasks between humans and flying vehicles. However,
deploying aerial robots in scenarios involving human-robot interaction poses new
challenges. From a control standpoint, novel control algorithms are necessary for a
safe physical interaction.

This thesis tackles these challenges by presenting different control architectures for
multi-rotor aerial vehicles ensuring both physical and safe interaction with humans.
Analytical and experimental results substantiate the validity and practical relevance
of the proposed methodology.

Keywords - Aerial Robotics, Control of Robots, Aerial Manipulation, Physical
Human-Robot Interaction, Handover and co-manipulation, Collaborative Robotics
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