
HAL Id: tel-04458457
https://laas.hal.science/tel-04458457v1

Submitted on 26 Jan 2024 (v1), last revised 14 Feb 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Polyhedral Framework for Reachability Problems in
Petri Nets
Nicolas Amat

To cite this version:
Nicolas Amat. A Polyhedral Framework for Reachability Problems in Petri Nets. Computer Science
[cs]. INSA TOULOUSE, 2023. English. �NNT : 2023ISAT0033�. �tel-04458457v1�

https://laas.hal.science/tel-04458457v1
https://hal.archives-ouvertes.fr

THÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par l'Institut National des Sciences Appliquées de
Toulouse

Présentée et soutenue par

Nicolas AMAT

Le 4 décembre 2023

A Polyhedral Framework for Reachability Problems in Petri Nets

Ecole doctorale : EDMITT - Ecole Doctorale Mathématiques, Informatique et
Télécommunications de Toulouse

Spécialité : Informatique et Télécommunications

Unité de recherche :
LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes

Thèse dirigée par
François VERNADAT et Didier LE BOTLAN

Jury
Mme Laure PETRUCCI, Rapporteure
M. Igor WALUKIEWICZ, Rapporteur

Mme Béatrice BÉRARD, Examinatrice
M. Fabrice KORDON, Examinateur

M. François VERNADAT, Directeur de thèse
M. Didier LE BOTLAN, Co-directeur de thèse
M. Silvano DAL ZILIO, Co-encadrant de thèse

M. Loïc HÉLOUËT, Président

To those who have accompanied me.

Three years already.

It is all yours.

Remerciements

Après trois belles années à travailler sur ce sujet de thèse, je vous livre dans ce manuscrit ma
vision d’un cadre polyédrique pour les problèmes d’accessibilité dans les réseaux de Petri, et
j’emporte avec moi tous les bons souvenirs.

Mes premiers remerciements vont à mes encadrants, sans qui ce travail n’aurait été mené à
bien. Merci à François Vernadat. En plus d’avoir partagé un bureau, on aura partagé des
idées, des débats, mais surtout des moments de vie agréables. Merci pour les conseils, la
sagesse et l’amitié ; je ressors grandi de notre rencontre. Merci à Didier Le Botlan, pour
son aide infaillible, sa passion, ses idées et sa virtuosité qui m’aura sorti plus d’une fois de
moments périlleux. Il ne finira jamais de m’étonner. Et pour finir, je tiens à remercier Silvano
Dal Zilio, mon respect est immense. Merci de m’avoir proposé ce sujet et de m’avoir enseigné
le métier de chercheur. Sa Science, son humour, son humilité, ainsi que sa confiance et sa
bienveillance envers moi, sont tant de choses pour lesquels je le remercie. Have fun.

Je remercie chaleureusement mes rapporteurs, Laure Petrucci et Igor Walukiewicz, qui m’ont
fait l’honneur d’évaluer mes travaux. Un grand merci également aux autres membres du jury,
Béatrice Bérard, Loïc Hélouët et Fabrice Kordon, d’avoir accepté de siéger à ma soutenance
de thèse. Merci à vous tous, pour les échanges et les retours.

Je suis convaincu que je n’aurais pas envisagé de réaliser une thèse en informatique théorique si
je n’avais pas croisé à l’ENSIMAG la route d’enseignants qui m’ont fait préférer les théorèmes
aux challenges RootMe. Merci à Sophie Quinton pour ses TDs de calculabilité. Merci à
Mnacho Echenim et Nicolas Peltier de m’avoir initié à la logique ; je garde un souvenir
particulier de notre formalisation de la logique de séparation en Isabelle.

Je tiens à remercier Jérôme Leroux et Yann Thierry-Mieg, pour avoir toujours répondu à
mes mails, pour m’avoir ouvert la porte de leurs bureaux et tout simplement pour m’avoir
inspiré dans mes travaux. Merci également aux organisateurs du Model Checking Contest, en
particulier à Fabrice Kordon pour sa patience et sa disponibilité ; ce fut un plaisir de prendre
part à ce terrain de jeu.

Merci à Pierre Bouvier et Hubert Garavel de INRIA Grenoble pour notre fructueuse collabo-
ration sur le problème des places concurrentes. Ce sujet m’a amené à introduire les Token

vi

Flow Graphs qui, par la suite, ont été essentiels à l’élimination de quantificateurs. Certaines
choses ne tiennent parfois qu’à une rencontre.

En parlant de rencontres, merci à l’équipe VERTICS du LAAS-CNRS, ma terre d’accueil
durant ces trois ans. Merci à Bernard Berthomieu d’avoir été un mentor au Model Checking
Contest. Certains lui sont reconnaissants pour les graphes de classes, d’autres pour le
développement de TINA, moi je lui suis pour son idée de réduction polyédrique, sans laquelle
mon sujet n’aurait pas existé. Mes remerciements vont également à Tomasz Kloda pour avoir
égayé ma dernière année au bureau et pour sa compagnie parfois tard le soir. Je n’oublie pas
Thomas Hujsa, de passage dans l’équipe, avec qui j’ai gardé une belle amitié.

Un grand merci à mes anciens collègues du LAAS. Merci aux (post-)doctorants que j’ai pu
côtoyer : Alexandre, Amaury, Éric, Ibis, Léonie et Rafael, merci pour les moments de détente.
Une mention spéciale pour Camille, qui m’a accompagné dans la rédaction de thèse. J’ai
hâte que tu me présentes tes nombreuses nouvelles idées, bonne route à toi l’ami. Merci
également à ceux qui m’ont rendu le travail plus facile au quotidien, en particulier à David
Gauchard et Thibault Hueber pour leur gentillesse et leur disponibilité. Et merci à tous
ceux qui m’ont fait confiance et avec qui j’ai pu enseigner dans la bonne humeur : Philippe
Esteban, Emmanuel Hebrard, Didier Le Botlan, Euriell Le Corronc et Pauline Ribot.

Comme chaque départ implique un lieu d’arrivé, je tiens à remercier Pierre Ganty et Alessio
Mansutti pour leur accueil à l’IMDEA Software Institute à Madrid.

Un grand merci à mes amis, avec qui j’ai partagé des moments de joie. Merci au crew TMC31
pour les semaines de surf, les week-ends de snowboard et les soirées au skatepark. Plus de
dix ans, et même si le temps nous éloigne, chaque fois, c’est comme si rien n’avait jamais
changé. Une pensée forte à Arno, tu nous manques. Merci à mes amis de l’IMAG en exil à
Toulouse. Baptiste, pour avoir rendu la thèse moins solitaire, pour son soutien et pour les
sorties sportives. Théo, pour m’avoir supporté toutes ces années sur les bancs de l’école. Et
Philémon, pour tous ces souvenirs à coups de chaîne à vélo.

Pour terminer merci à ma famille, de m’avoir permis de vivre mes rêves. À ma grande sœur,
qui m’a toujours rendu fier et qui a ouvert la voie de l’informatique. Merci à mes parents, de
m’avoir enseigné de courir après le bonheur et d’avoir tout mis en œuvre pour m’y aider. Le
petit garçon qui pianotait dans sa chambre sur son clavier d’ordinateur réalise aujourd’hui la
chance qu’il avait. Merci à Eva de partager ma vie. Merci de m’encourager à continuer de
rêver et de me m’accompagner dans cette nouvelle aventure à Madrid ; je suis certain que
demain sera aussi beau qu’hier . . .

Abstract

We propose and study a method to accelerate the verification of reachability problems in Petri
nets based on structural reductions. This approach, that we call polyhedral reduction, relies on
a state space abstraction that combines structural reductions and linear arithmetic constraints
on the marking of places.

The correctness of this method is based on a new notion of equivalence between nets. Combined
with an SMT-based model checker, one can transform a reachability problem about some Petri
net, into the verification of an equivalent reachability property on a reduced version of this net.
We also propose an automated procedure to prove that such an abstraction is correct, exploiting
a connection with a class of Petri nets with Presburger-definable reachability sets.

In addition, we present a data structure, called Token Flow Graph (TFG), that captures
the particular structure of constraints stemming from structural reductions. We leverage
TFGs to efficiently solve two problems. First, to eliminate quantifiers that appear during our
transformation, in the updated formula to be checked on the reduced net. Second, to compute
the concurrency relation of a net, that is all pairs of places that can be marked simultaneously
in some reachable marking.

We apply our approach to several symbolic model checking procedures and introduce a new
semi-decision procedure for checking reachability properties in Petri nets based on the Property
Directed Reachability (PDR) method. A distinctive feature of this PDR method is its ability to
generate verdict certificates that can be verified using an external SMT solver.

Our approach and algorithms are implemented in four open-source tools: SMPT for checking
reachability properties; Kong for accelerating the computation of concurrent places; Octant for
eliminating quantifiers; and Reductron for automatically proving the correctness of polyhedral
reductions. We give experimental results about their effectiveness, both for bounded and
unbounded nets, using a large benchmark provided by the Model Checking Contest. We focus
on the reproducibility of our results and provide an accompanying artifact that covers all our
experiments.

Keywords: Model checking Reachability problems Petri nets
Structural reductions Abstraction techniques SMT solving

Résumé

Nous proposons une méthode, appelée réduction polyédrique, pour accélérer la vérification de
problèmes d’accessibilité sur les réseaux de Petri basée sur des réductions structurelles. Notre
approche repose sur une abstraction de l’espace d’états qui combine réductions structurelles et
contraintes arithmétiques sur le marquage des places.

La correction de cette méthode est basée sur une nouvelle notion d’équivalence entre réseaux.
Combinée avec un model checker basé sur des méthodes SMT, nous montrons comment trans-
former un problème d’accessibilité sur un réseau de Petri, en la vérification d’une propriété
équivalente sur une version réduite de ce réseau. Nous proposons également une procédure
automatique pour prouver qu’une telle abstraction est correcte, en exploitant une connexion avec
une classe de réseaux de Petri qui ont un ensemble d’accessibilité définissable par l’arithmétique
de Presburger.

De plus, nous présentons une nouvelle structure de données, appelée Token Flow Graph (TFG),
qui capture la structure particulière des contraintes résultant des réductions structurelles. Nous
exploitons les TFGs pour résoudre efficacement deux problèmes. Premièrement, pour éliminer
les quantificateurs, qui apparaissent lors de notre transformation, dans la formule mise à jour à
vérifier sur le réseau réduit. Deuxièmement, pour le calcul de la relation de concurrence d’un
réseau, c’est-à-dire énumérer toutes les paires de places qui peuvent être marquées simultanément
dans un marquage accessible.

Nous appliquons notre approche à plusieurs procédures de vérification symboliques et nous intro-
duisons une nouvelle procédure de semi-décision pour la vérification des propriétés d’accessibilité
sur les réseaux de Petri, basée sur la méthode Property Directed Reachability (PDR). La partic-
ularité de cette méthode PDR réside dans sa capacité à générer des certificats de verdict qui
peuvent être vérifiés à l’aide d’un solveur SMT externe.

Notre approche et nos algorithmes sont implémentés dans quatre outils open source : SMPT
pour vérifier des propriétés d’accessibilité ; Kong pour accélérer le calcul de places concurrentes ;
Octant pour l’élimination de quantificateurs ; et enfin Reductron pour prouver automatiquement
la correction de réductions polyédriques. Nous donnons des résultats expérimentaux sur leur
efficacité, à la fois pour des réseaux bornés et non bornés, en utilisant les modèles et formules
fournis par le Model Checking Contest. Nous mettons l’accent sur la reproductibilité de nos
résultats et fournissons un artefact couvrant l’ensemble de nos expérimentations.

Mots clés : Model checking Problèmes d’accessibilité Réseaux de Petri
Réductions structurelles Techniques d’abstraction Résolution SMT

Table of Contents

List of Figures xvii

List of Tables xix

List of Algorithms xxi

Introduction 1
I High-Level Description of My Contributions 4
II Open Science and Reproducibility . 4
III Outline . 7

1 Petri Nets and Reachability 13
1.1 Petri Nets . 14

1.1.1 States . 15
1.1.2 Behavior . 15
1.1.3 Boundedness . 16
1.1.4 Labels and Observations . 16
1.1.5 Graphical Notations . 17
1.1.6 Relation to Linear Arithmetic Constraints 17

1.2 Presburger Arithmetic and Petri Net Semantics 18
1.2.1 Notations . 19
1.2.2 Presburger-Definable Sets . 19
1.2.3 Encoding of Petri Net Semantics . 19
1.2.4 SMT Theories . 21

1.3 Reachability Problems . 21
1.3.1 Coverability Properties . 22
1.3.2 The Concurrent Places Problem . 22

1.4 Theoretical Results . 23
1.4.1 Decidability . 23
1.4.2 Complexity . 24
1.4.3 Relation to Presburger Arithmetic . 25

xii Table of Contents

1.5 Model Checking Methods and Optimizations 26
1.5.1 Random Walk State Space Exploration 27
1.5.2 Bounded Model Checking (BMC) . 28
1.5.3 Induction and k-Induction . 30
1.5.4 State Space Over-Approximation . 31
1.5.5 Counter-Example Guided Abstraction Refinement (CEGAR) 34
1.5.6 Optimizations . 36

1.6 Well-Formed Nets . 38
1.7 Comparison with Thesis Contributions . 39

2 Computing Invariance Certificates 43
2.1 Introduction . 43
2.2 Linear Reachability Constraints . 45

2.2.1 Invariance Certificates . 45
2.2.2 Expressing Sequences . 46
2.2.3 Generalizing Scenarios . 47

2.3 Property Directed Reachability . 49
2.3.1 Description of the Algorithm . 49
2.3.2 State-Based Generalization . 52
2.3.3 Transition-Based Generalization . 53
2.3.4 Saturated Transition-Based Generalization 53
2.3.5 Incompleteness . 54

2.4 Experimental Results . 55
2.4.1 Evaluation on Expressiveness . 56
2.4.2 Evaluation on Performance . 58
2.4.3 Computation of Invariance Certificates 60

2.5 Discussion . 61

3 Polyhedral Reduction 65
3.1 Introduction . 65
3.2 Polyhedral Reduction and E-Equivalence . 67

3.2.1 Solvable Predicates . 68
3.2.2 E-Equivalence . 69

3.3 Basic Properties of Polyhedral Reduction . 71
3.4 Deriving E-Equivalences Using Reductions . 72

3.4.1 Reduction Rules . 73
3.4.2 Composition Laws . 79
3.4.3 Running Examples . 82

3.5 SMT-Based Model Checking Using Reductions 85

Table of Contents xiii

3.6 Combining Polyhedral Reduction with BMC 86
3.7 Experimental Results . 88

3.7.1 Distribution of Reduction Ratios . 88
3.7.2 Impact on the Number of Solvable Queries 89
3.7.3 Impact on Computation Time . 90

3.8 Discussion . 92

4 Token Flow Graphs 95
4.1 Introduction . 95
4.2 Polyhedral Equivalence Relaxation . 97
4.3 Token Flow Graphs . 99

4.3.1 Example of a Non-TFGizable Polyhedral Reduction 102
4.3.2 Example of a TFG Not Generated by Structural Reductions 103

4.4 Semantics . 103
4.5 Marking Reachability . 107

4.5.1 Examples of Marking Projection . 108
4.5.2 Description of the Algorithm . 109
4.5.3 State Space Partition . 111

4.6 Experimental Results . 112
4.6.1 Toolchain Description . 112
4.6.2 Distribution of Reduction Ratios for TFGs 112
4.6.3 Impact on the Marking Reachability Problem 113

4.7 Discussion . 114

5 Project and Conquer 117
5.1 Introduction . 117
5.2 Two Examples of Reachability Formulas . 119
5.3 Combining Reduction with Reachability . 121
5.4 Formula Rewriting . 122

5.4.1 Highest Literal Factor . 123
5.4.2 Formal Procedure . 124
5.4.3 Proof of the Procedure . 124
5.4.4 Examples on Polarized and Non-Polarized Constraints 127

5.5 Experimental Results . 128
5.5.1 Impact on Standard Model Checking Procedures 128
5.5.2 Impact Under Real Conditions . 130
5.5.3 Performance Evaluation of Fast Elimination 131

5.6 Discussion . 132

xiv Table of Contents

6 Concurrency Relation Computation 135
6.1 Introduction . 135
6.2 The Concurrent Places Problem and One of Its Applications 137

6.2.1 The Concurrent Places Problem . 137
6.2.2 Nested-Unit Petri Nets . 137

6.3 Safeness in Token Flow Graphs . 138
6.4 Dimensionality Reduction Algorithm . 139
6.5 Proof of Correctness . 142

6.5.1 Checking Nondead Nodes . 142
6.5.2 Checking Concurrent Nodes . 143
6.5.3 Soundness and Completeness . 145

6.6 Running Example . 146
6.7 Extensions to Incomplete Concurrency Relations 148

6.7.1 Propagation of Dead Nodes . 149
6.7.2 Nonconcurrency Between Siblings . 150
6.7.3 Heredity and Nonconcurrency . 150

6.8 Transposing Nested-Unit Petri Nets . 151
6.9 Experimental Results . 152

6.9.1 Toolchain Description . 152
6.9.2 Distribution of Reduction Ratios for Safe Nets 153
6.9.3 Impact on Fully Computed Concurrency Matrices 154
6.9.4 Impact on Partial Matrices . 155

6.10 Discussion . 156

7 Proving Polyhedral Equivalences 159
7.1 Introduction . 159
7.2 Overview of the Approach . 161
7.3 Parametric Reduction Rules and Equivalence 163

7.3.1 Coherency Constraints . 163
7.3.2 Parametric E-Equivalence Definition 164
7.3.3 Instantiation Laws . 165

7.4 Automated Proof Procedure . 166
7.4.1 Presburger Encoding of Parametric Petri Net Semantics 166
7.4.2 Core Requirements: Parametric E-Abstraction Encoding 168
7.4.3 Global Procedure . 172

7.5 Accelerating the Silent Transition Relation . 173
7.6 Decidability . 175
7.7 Checking the State Space Partition . 176
7.8 Generalizing Equivalence Rules . 178

Table of Contents xv

7.9 Experimental Validation . 180
7.10 Discussion . 181

8 Tools and Reproducibility 183
8.1 Experimental Benchmark . 183
8.2 Tools for Computing Polyhedral Reductions 185
8.3 SMPT: Satisfiability Modulo Petri Nets . 185
8.4 Kong: The Koncurrent Places Grinder . 189
8.5 Octant and Reductron: Two Hidden Tools . 191
8.6 Experimental Environment and Reproducibility 192
8.7 Three Years of Participation in the MCC . 192

Epilogue 197

References 203

List of Figures

1 Chapter and tool dependency graph . 7

1.1 An example of labeled Petri net . 17
1.2 Hopcroft and Pansiot Petri net example . 25
1.3 Petri net example for k-induction . 30
1.4 Petri net example for the state equation . 30

2.1 Two examples of Petri nets: Parity and PGCD 47
2.2 Inverse Hopcroft and Pansiot net . 55
2.3 Petri net example: CryptoMiner . 56
2.4 Petri net example: Process . 57
2.5 Petri net example: Murphy . 57
2.6 Minimal timeout to compute a given number of queries (PDR and MCC tools) 60
2.7 Certificate of invariance for the Parity net in Fig. 2.1 60
2.8 Certificate of invariance for the PGCD net in Fig. 2.1 61

3.1 An example of Petri net and one of its polyhedral reductions 68
3.2 Illustration of the “reachability checking” lemma 72
3.3 Illustration of the “invariance checking” lemma 72
3.4 Reduction rule [concat] . 74
3.5 Reduction rule [agg] . 76
3.6 Reduction rules [red] and [shortcut] . 77
3.7 Reduction rules [redt] and [deadt] . 78
3.8 Reduction rules [constant] and [source] 78
3.9 Example of a sequence of reductions . 83
3.10 The SmallOperatingSystem net and an equivalent polyhedral reduction . . . 84
3.11 Distribution of reduction ratios over the instances in the MCC 89
3.12 Computation time for BMC w/wo reductions 91

4.1 An example of Petri net and one of its polyhedral reduction 98
4.2 Redundancy reduction and its corresponding TFG 99

xviii List of Figures

4.3 Agglomeration reduction and its corresponding TFG 100
4.4 TFG of the running example in Fig. 4.1 . 102
4.5 Example of a non-TFGizable reduction rule [general loop agg] 102
4.6 Toolchain of the marking reachability decision procedure 112
4.7 Distribution of reduction ratios in the MCC 113
4.8 Number of computed reachability queries w/wo TFG 114

5.1 Another example of Petri net and one of its polyhedral reductions 119
5.2 Equations and TFG corresponding to the polyhedral reduction in Fig. 5.1 . . 120
5.3 Computation time of random walk w/wo reductions 129
5.4 Computation time of k-induction w/wo reductions 129
5.5 Computation time of Tapaal w/wo reductions 132
5.6 Comparison of the fast elimination with Redlog and isl 132

6.1 An example of safe Petri net and one of its polyhedral reductions 146
6.2 TFG corresponding to the polyhedral equivalence in Fig. 6.1 147
6.3 Toolchain of the concurrency acceleration algorithm 152
6.4 Distribution of reduction ratios over all the safe instances in the MCC 154
6.5 Number of computed concurrency matrices w/wo reduction 155
6.6 Comparison of the filling ratio for partial matrices w/wo reduction 156

7.1 Parametrized equivalence rule [concat] . 161
7.2 Parametrized equivalence rule [magic] . 162
7.3 Detailed dependency relation for proving polyhedral equivalence 166
7.4 Illustration of core requirement (Core 0) . 170
7.5 Illustration of core requirement (Core 1) . 170
7.6 Illustration of core requirement (Core 2) . 172
7.7 Illustration of core requirement (Core 3) . 172
7.8 A Petri net modeling users in a swimming pool 181

8.1 Architecture of Kong . 191
8.2 Evolution of tool performance at the MCC 193
8.3 Comparison of tools at the MCC’2023 on all computed queries. 193
8.4 Chapter and contribution dependency graph 198

List of Tables

2.1 Computation time of PDR and MCC tools on synthetic examples 58
2.2 Computation time of PDR and MCC tools on existing benchmarks 59

3.1 Impact of the reduction ratio on the number of solved instances 90

5.1 Impact of projection on challenging queries 131

6.1 Number of computed concurrency matrices w/wo reduction 155

8.1 List of models in the MCC benchmark . 195

List of Algorithms

1.1 Random walk state space exploration . 28
1.2 Bounded Model Checking (BMC) . 29
1.3 k-Induction . 31
1.4 State space over-approximation . 33
1.5 Counter-Example Guided Abstraction Refinement (CEGAR) 35
2.1 Property Directed Reachability – Prove . 50
2.2 Property Directed Reachability – Strengthen 51
2.3 Property Directed Reachability – InductivelyGeneralize 51
2.4 Property Directed Reachability – PushGeneralization 52
2.5 Property Directed Reachability – PropagateClauses 52
2.6 Property Directed Reachability – GenerateClause 52
4.1 Marking projection – Reachable . 109
4.2 Marking projection – BottomUp . 109
6.1 Dimensionality reduction – Matrix . 141
6.2 Dimensionality reduction – Propagate . 141

Introduction

Computer Science is no more about
computers than astronomy is about
telescopes.

Edsger Wybe Dijkstra

In this thesis, we address the problem of checking reachability properties, that is to find
whether a given state—or a class of states—can be reached by the model of a system.
Reachability is a fundamental and difficult problem, with many practical applications. It
obviously plays an important role in the formal verification of concurrent systems, for instance,
for testing the absence of “bad states”, such as deadlocks, or at the opposite, for testing that
an invariant is preserved. It can be used to study diverse kinds of systems, such as software
systems [GS92; BE12; KKW14], distributed systems [Cos+10], biological systems [Bal+10],
business workflows [Aal15], etc.

The question we study is a subproblem of model checking, a formal verification technique
introduced concurrently in the eighties by Emerson and Clarke [EC80], in the US, and Queille
and Sifakis [QS82], in France. Model checking defines a set of algorithmic methods for
determining whether an abstract model satisfies a formal specification, generally expressed
as a temporal logic formula [CGP99; BK08]. Model checking also often entails that, when
a property is not satisfied, then the method should exhibit a counter-example, that is, a
witness execution that shows the source of the problem.

In this context, a model defines a behavior abstraction of the system and a specification
describes its expected properties (in other words what the system should do and the charac-
teristics it should have). In our work, we will focus on models expressed using Petri nets
and on specifications reduced to reachability properties; such properties are also called state
formulas since their truth value only depends on the state of its evaluation.

Choice of Petri Nets as Formal Model. Petri nets (see, for example, [Rei12]) is one
of the earliest models proposed for the study of concurrency theory. In this respect, it can
be compared with other formalisms with a similar goal, such as: automata-based approaches
(like Kahn’s networks [Kah74], Nivat/Arnold’s networks of automata [Arn02], or Lynch’s I/O

2 Introduction

automaton [LT88]); process calculi, also called process algebras (such as the Communicating
Sequential Processes calculus (CSP) of Hoare [Hoa78] or the Calculus of Communicating
Systems (CCS) of Milner [Mil80]).

The choice of a particular formalism is not necessarily the dominant factor in model
checking. Indeed, it is often possible to translate or interpret a model from one formalism to
another. We use such examples in our experiments, where many Petri nets have been obtained
by translation from an original LOTOS model [BB87; ISO89; GS90]. See also [Bas98] for
a comparison between Petri nets and process algebra, for system design, and [BDK96] for
methods to translate models between the two.

But each theory also comes with its idiosyncrasies; its own distinctive features and
verification approaches. Typically, Petri net theory considers states and transitions as “equal”
(and even often as dual notions), whereas process algebra, for instance, tries to abstract away
the notion of state, and rather focuses on behavioral equivalences.

Another key aspect of Petri net theory is to largely rely on linear and integer programming
techniques, with specific concepts such as the state equation, or the use of structural invariants
for instance. As a matter of fact, we will make good use of integer arithmetic theory in our
work.

Finally, some Petri nets may have an unbounded number of reachable states; which
means that, in such cases, the reachability problem provides an interesting use case for the
analysis of infinite-state systems. The methods that we define in our work are, in most
cases, suitable for unbounded nets. Infinite-state systems are usually not the norm with
other formalisms. Notable exceptions include extensions of automata with counters or stacks;
process calculi with data or operators for recursive definition (see, for instance, [BPS01]); or
higher-order formalisms that center around the dynamic generation of new processes, or new
communication channels, like in Milner’s π-calculus [MPW92].

Reachability and Symbolic Techniques. The reachability problem for Petri nets has
been extensively studied, both from a theoretical and a practical point of view, with many
tools implementing specific reachability methods. One of the most celebrated results of
Petri net theory is that the reachability problem is decidable, which was first stated by
Mayr in 1981 [May81]. It is pretty remarkable that we had to wait another 40 years before
obtaining a complete characterization of this problem’s complexity. Indeed, it was not until
2022 that Leroux and Czerwiński independently settled [CO22; Ler22] that the problem
is Ackermann-complete, and therefore inherently more complex than, say, the coverability
problem, which is EXPSPACE-complete [Esp98].

A consequence of the “inherently high complexity” of the reachability problem for Petri
nets, and a general consensus among the Petri net community, is that we should not expect
to find a one-size-fits-all algorithm for solving it. A better strategy is to try to improve
the performances in some cases—for example by developing new tools, or optimizations,

3

that may perform better on some examples—or try to enlarge the class of handled models
(out-the-scope of current techniques).

An approach that has proved quite successful in this respect is to avoid exhaustive,
state-enumeration, techniques and rather rely on a symbolic representation of the state space
(like with decision diagrams [Bur+92]), or an abstraction of the problem, for instance with
the use of logical approaches, like SAT and SMT (Satisfiability Modulo Theory) solving.
Furthermore, we can also benefit from optimizations related to the underlying model. For
instance, when analyzing Petri nets, we can make use of techniques for decomposing and
simplifying nets, a method pioneered by Berthelot [Ber87], known as structural reduction.

Structural Reductions for Reachability. Berthomieu recently proposed a new abstrac-
tion technique (what we will call polyhedral reduction in this thesis), based on structural
reductions [BLD18; BLD19]. The idea is to compute reductions of the form (N,E,N ′),
where: N is an initial net (that we want to analyze); N ′ is a residual net (hopefully much
simpler than N); and E is a predicate of linear constraints. The idea is to preserve enough
information in E so that we can rebuild the reachable markings of N knowing only the ones
of N ′. In a nutshell, we capture and abstract the effect of reductions using linear constraints
between the places of N and N ′.

This technique has been previously applied in a symbolic model checker, called Tedd, that
uses Set Decision Diagrams [Thi+09] in order to generate an abstract representation for the
state space of a net N . In practice, an initial Petri net N with n places, can often be reduced
to a residual net, N ′, with far fewer places, say n′. Hence, this approach makes it possible to
represent the state space of N , which is a subset of integer vectors of dimension n, as the
“inverse image”, by the linear system E, of a subset of vectors of dimension n′. This technique
can result in a very compact representation of the state space. This effect has been observed
in practice, during the recent editions of the Model Checking Contest (MCC) [Amp+19],
where Tedd finished at first place for five consecutive years in the state space category.

The goal of this thesis is to study how a similar technique could be applied together with
SMT solvers, and in the context of the reachability problem, rather than for state space
generation. As a result, we propose new automatic verification techniques combining model
checking with methods from the fields of convex analysis and automated reasoning. We also
address related issues: how to formalize our approach (we define a new notion of marking
equivalence); how to efficiently integrate this approach with existing tools (we define an
automatic “projection” method that works on both models and formulas); and how to add
trust in our verification framework (we define a method that can generate verdict certificates
and also define an automated method for proving the soundness of new reduction rules).

4 Introduction

I High-Level Description of My Contributions

In this thesis, I propose and study a method for accelerating the verification of reachability
problems in Petri nets, based on structural reductions, that I called polyhedral reduction. The
approach relies on a state space abstraction that combines structural reductions and linear
arithmetic constraints on the marking of places.

The correctness of this method is based on a new notion of behavioral equivalence between
nets that I define in Chapter 3. Combined with an SMT-based model checker, one can
transform a reachability problem about some Petri net into the verification of an updated
reachability property on a reduced version of this net (Chapters 3 and 5). I also propose in
Chapter 7 an automated procedure to prove that such an abstraction is correct, exploiting a
connection with a known class of Petri nets with Presburger-definable reachability sets [Ler13].

In addition, I present in Chapter 4 a data structure, called Token Flow Graph (TFG),
that captures the particular structure of constraints stemming from structural reductions. I
leverage TFGs to solve two problems efficiently. First, in Chapter 5 to eliminate quantifiers
that appear during our transformation in the updated formula to be checked on the reduced
net. Second, in Chapter 6 to compute the concurrency relation of a net, i.e., all pairs of
places that can be marked simultaneously in some reachable marking. This work led to a
collaboration with the Convecs team at INRIA Grenoble [ABG24].

I apply my approach to several symbolic model checking procedures. A result of this
work is the definition of a new semi-decision procedure for checking reachability properties
on Petri nets based on the Property Directed Reachability (PDR) method; see Chapter 2.
A distinctive feature of this PDR method is its ability to generate verdict certificates in
Presburger arithmetic that can be verified using an external SMT solver [Ler10].

This thesis describes my efforts to conduct research that combines theoretical advances
with concrete implementations. I have implemented my approach and algorithms in four
open-source tools described in Chapter 8: SMPT for checking reachability properties; Kong
for accelerating the computation of concurrent places; Octant for eliminating quantifiers; and
Reductron for automatically proving the correctness of polyhedral reductions. I have also stud-
ied their effectiveness in extensive experimental evaluations, both for bounded and unbounded
nets, using a significant benchmark provided by the Model Checking Contest [Kor+23], an
international competition for model checking tools. This has also led me to take part in
the reachability category of the three last editions of the Model Checking Contest. My tool,
SMPT, has obtained the bronze medal during the last two editions.

II Open Science and Reproducibility

I would now like to turn my attention to an institutional aspect. Over the last three years,
as a young scientist, I have become aware of the importance of an open and reproducible

II Open Science and Reproducibility 5

science. Obtaining papers, and experimenting with other methods or tools have often been a
difficult and tiring task. I wanted this thesis to be part of a movement to liberate science.
This is why I provide an artifact accompanying this work, which should ease the process of
getting a working environment to use my tools and run the experiments included in this thesis.

I describe below some tenets that I tried to follow when producing this work.

Making papers accessible. I uploaded my articles to the HAL and arXiv platforms.
This gives everyone free access to my work, with no restrictions on access to publishers. In
addition, I was able to provide the full proof of my results in appendices, which is often not
possible with the page restriction in conference papers. I would also like to commend the
philosophy of EpiSciences journals, such as Fundamenta Informaticae in which I published a
paper, and which enforces the publication on HAL or arXiv in its submission process.

Experimenting on accessible benchmarks. I performed my experiments on an accessible
and peer-reviewed benchmark, that is mainly composed of models and formulas used during
the Model Checking Contest. When I developed new instances, I submitted them to the
contest organizers:

[ADH23a] N. Amat, S. Dal Zilio, and T. Hujsa. Model entitled “CryptoMiner” proposed for
the Model Checking Contest. 2023. url: https://mcc.lip6.fr/2023/pdf/CryptoMiner-
form.pdf (visited on 10/10/2023)

[ADH23b] N. Amat, S. Dal Zilio, and T. Hujsa. Model entitled “Murphy” proposed for the
Model Checking Contest. 2023. url: https://mcc.lip6.fr/2023/pdf/Murphy-form.pdf
(visited on 10/10/2023)

[ADH23c] N. Amat, S. Dal Zilio, and T. Hujsa. Model entitled “PGCD” proposed for the
Model Checking Contest. 2023. url: https://mcc.lip6.fr/2023/pdf/PGCD-form.pdf
(visited on 10/10/2023)

In addition, I also contributed to other benchmark suites, such as the SMT-LIB repository
used in the SMT-COMP, a competition for SMT solvers:

[ADH23a] N. Amat. A QF-LIA Benchmark Suite from Polyhedral Reductions of Petri Nets.
Research report. LAAS-CNRS, 2023

Producing available tools and artifacts. All my tools are open-source under a GPLv3
license. I added labels to the GitHub repositories corresponding to the versions used in my
papers when experimenting. The following is a list of my tools related to this thesis:

[Ama20b] N. Amat. SMPT: The Satisfiability Modulo Petri Nets Model Checker. An
SMT-based model checker for Petri nets focused on reachability problems that takes

https://mcc.lip6.fr/2023/pdf/CryptoMiner-form.pdf
https://mcc.lip6.fr/2023/pdf/CryptoMiner-form.pdf
https://mcc.lip6.fr/2023/pdf/Murphy-form.pdf
https://mcc.lip6.fr/2023/pdf/PGCD-form.pdf

6 Introduction

advantage of polyhedral reduction. 2020. url: https://github.com/nicolasAmat/SMPT
(visited on 10/10/2023)

[Ama20a] N. Amat. Kong: The Koncurrent Places Grinder. A tool to accelerate the
computation of the concurrency relation of a Petri net using polyhedral reduction. 2020.
url: https://github.com/nicolasAmat/Kong (visited on 10/10/2023)

[Ama23c] N. Amat. Octant: The Reachability Formula Projector. A tool to project Petri
net reachability properties on reduced nets using polyhedral reduction. 2023. url:
https://github.com/nicolasAmat/Octant (visited on 10/10/2023)

[Ama23d] N. Amat. Reductron: The Polyhedral Abstraction Prover. A tool to automatically
prove the correctness of polyhedral equivalences for Petri nets. 2023. url: https:
//github.com/nicolasAmat/Reductron (visited on 10/10/2023)

Although making its code free is valuable for open science, I think it is not a necessary
condition for reproducibility. What really counts, in my opinion, is to leave previous versions
of tools easily accessible. This allows the community to compare approaches in the best way.
In this idea of making my tools easily accessible to a certain version, I also provided three
artifacts, for conferences having an artifact evaluation in their submission process (TACAS,
FM and VMCAI):

[ADH22a] N. Amat, S. Dal Zilio, and T. Hujsa. Artifact for TACAS 2022 Paper: Property
Directed Reachability for Generalized Petri Nets. Zenodo, 2022. doi: 10.5281/zenodo.
5863379

[AD22] N. Amat and S. Dal Zilio. Artifact for FM 2023 Paper: SMPT: A Testbed for
Reachability Methods in Generalized Petri Nets. Zenodo, 2022. doi: 10.5281/zenodo.
7341426

[ADL23a] N. Amat, S. Dal Zilio, and D. Le Botlan. Artifact for VMCAI 2024 Paper "Project
and Conquer: Fast Quantifier Elimination for Checking Petri Net Reachability". Zenodo,
2023. doi: 10.5281/zenodo.10061156

As mentioned previously, this thesis is also accompanied of an artifact, permitting to
reproduce all my experimental work:

[Ama23b] N. Amat. Artifact for PhD thesis: "A polyhedral framework for reachability
problems in Petri nets". Zenodo, 2023. doi: 10.5281/zenodo.8349546

Participating in competitions. I participated in the three last editions of the Model
Checking Contest, or MCC for short, in the reachability category. My main takeaway is that
competition is not just about competing. Of course, this makes it possible to compare different
approaches, which is of immediate scientific interest. However, it also makes it possible to
improve the reliability of tools; to obtain a common format for nets and formulas; and to
provide (like artifacts) “ready-to-use” disk images for users. But above all, this experience

https://github.com/nicolasAmat/SMPT
https://github.com/nicolasAmat/Kong
https://github.com/nicolasAmat/Octant
https://github.com/nicolasAmat/Reductron
https://github.com/nicolasAmat/Reductron
https://doi.org/10.5281/zenodo.5863379
https://doi.org/10.5281/zenodo.5863379
https://doi.org/10.5281/zenodo.7341426
https://doi.org/10.5281/zenodo.7341426
https://doi.org/10.5281/zenodo.10061156
https://doi.org/10.5281/zenodo.8349546

III Outline 7

has been scientifically enriching for me. It gave me the opportunity to exchange ideas with
competitors and allowed me to transform my model checker, SMPT, from a prototype to
a tool that can be reused by others. It is partly due to this competition that many of the
results of my work are partly “tool-oriented”, rather than only theoretical.

The results of my three participations (discussed in Chapter 8) can be found on the MCC
website:

[Kor+21a] F. Kordon et al. Complete Results for the 2021 Edition of the Model Checking
Contest. 2021. url: http://mcc.lip6.fr/2021/results.php (visited on 10/10/2023)

[Kor+22] F. Kordon et al. Complete Results for the 2022 Edition of the Model Checking
Contest. 2022. url: http://mcc.lip6.fr/2022/results.php (visited on 10/10/2023)

[Kor+23] F. Kordon et al. Complete Results for the 2023 Edition of the Model Checking
Contest. 2023. url: https://mcc.lip6.fr/2023/results.php (visited on 10/10/2023)

III Outline

We give a brief summary of the content of each chapter in this document. To get a clearer
picture, we describe in Fig. 1 the dependencies between chapters and their relations to our
tools (depicted on the left). Each chapter starts with a short abstract; and an introduction
describing the context, its challenge and our proposal. Even though we provide a general
overview of the related work in the next chapter, we give a specific state-of-the-art description
at the end of each when discussing the contributions.

Chapter 1
Petri Nets and Reachability

Chapter 2
Computing Invariance Certificates

Chapter 3
Polyhedral Reduction

Chapter 4
Token Flow Graphs

Chapter 5
Project and Conquer

Chapter 6
Concurrency Relation Computation

Chapter 7
Proving Polyhedral Equivalences

uS
MPT

SM
PT

Kon
g

Octa
nt

Redu
ctr

on

Fig. 1 Chapter and tool dependency graph.

http://mcc.lip6.fr/2021/results.php
http://mcc.lip6.fr/2022/results.php
https://mcc.lip6.fr/2023/results.php

8 Introduction

Chapter 1 Petri Nets and Reachability: This chapter introduces the definitions and
notations used throughout the thesis. It also includes a general overview of related work,
which we compare with the contributions of this thesis. We rely on a presentation of Petri
net semantics that emphasizes the relation to Presburger arithmetic. We also choose, as
much as possible, to follow a syntax that corresponds to the theory for “quantifier-free linear
integer arithmetic”, used in SMT solvers.

A contribution to this chapter is an educational project:

[Ama23e] N. Amat. uSMPT: an educational project, targeting Master and PhD students
to showcase the application of SMT methods in system verification, by developing a
Petri net model checker for the reachability problem. 2023. url: https://github.com/
nicolasAmat/uSMPT (visited on 10/10/2023)

Chapter 2 Computing Invariance Certificates: In this chapter, we propose a
semi-decision procedure for checking reachability properties on Petri nets that is based on
the Property Directed Reachability (PDR) method. We present three different versions that
vary depending on the method used for abstracting possible witnesses. We have implemented
our methods in our model checker SMPT and give empirical evidences that our approach can
handle problems that are difficult or even impossible to check with current state-of-the-art
tools.

Related publication:

[ADH22b] N. Amat, S. Dal Zilio, and T. Hujsa. “Property Directed Reachability for
Generalized Petri Nets”. In: Tools and Algorithms for the Construction and Analysis
of Systems (TACAS). vol. 13243. Lecture Notes in Computer Science. Springer, 2022.
doi: 10.1007/978-3-030-99524-9_28

Chapter 3 Polyhedral Reduction: This is in this chapter that we define a method
for taking advantage of polyhedral reduction in combination with an SMT-based model
checker. The approach consists in transforming a reachability problem about some Petri
net into the verification of an updated reachability property on a reduced version of this
net. We prove the correctness of this method using a new notion of equivalence between
nets, called polyhedral abstraction equivalence. We provide a complete framework to define
and check the correctness of equivalence judgments, prove that this relation is a congruence,
and give examples of basic equivalence relations that derive from structural reductions.
This framework has also been implemented in the tool SMPT. As a testbed, we propose
an adaptation of the Bounded Model Checking (BMC) method. Experimental results

https://github.com/nicolasAmat/uSMPT
https://github.com/nicolasAmat/uSMPT
https://doi.org/10.1007/978-3-030-99524-9_28

III Outline 9

show that our approach works well, even when we only have a moderate amount of reductions.

Related publications:

[ABD21] N. Amat, B. Berthomieu, and S. Dal Zilio. “On the Combination of Polyhedral
Abstraction and SMT-Based Model Checking for Petri Nets”. In: Application and
Theory of Petri Nets and Concurrency (PETRI NETS). vol. 12734. Lecture Notes in
Computer Science. Springer, 2021. doi: 10.1007/978-3-030-76983-3_9

[ABD22] N. Amat, B. Berthomieu, and S. Dal Zilio. “A Polyhedral Abstraction for Petri
Nets and its Application to SMT-Based Model Checking”. In: Fundamenta Informaticae
187.2-4 (2022), pp. 103–138. doi: 10.3233/FI-222134

Chapter 4 Token Flow Graphs: The objective of this chapter is to propose a data
structure, called a Token Flow Graph (TFG) that captures the particular structure of
constraints stemming from polyhedral reductions. To illustrate the use of this new data
structure, we propose to accelerate the reachability check of a given marking. The approach
is implemented in a tool, called Kong.

Related publications:

[ADL21] N. Amat, S. Dal Zilio, and D. Le Botlan. “Accelerating the Computation of
Dead and Concurrent Places Using Reductions”. In: Model Checking Software (SPIN).
vol. 12864. Lecture Notes in Computer Science. Springer, 2021. doi: 10.1007/978-3-
030-84629-9_3.

[ADL23c] N. Amat, S. Dal Zilio, and D. Le Botlan. “Leveraging polyhedral reductions for
solving Petri net reachability problems”. In: International Journal on Software Tools
for Technology Transfer 25.1 (2023), pp. 95–114. doi: 10.1007/s10009-022-00694-8;

Chapter 5 Project and Conquer: As a continuation of Chapter 3, we propose a
method for checking reachability properties on Petri nets that takes advantage of polyhedral
reductions, but this time that can be used transparently, as a preprocessing step of existing
model checkers. The approach is based on a new procedure that can project a reachability
property, about an initial Petri net, into an equivalent formula that only refers to the
reduced version of this net. In particular, the projection is defined as a quantifier elimination
procedure for Presburger arithmetic tailored to the specific kind of constraints we handle in
Token Flow Graphs (defined in Chapter 4). The procedure is implemented in a tool, called
Octant.

https://doi.org/10.1007/978-3-030-76983-3_9
https://doi.org/10.3233/FI-222134
https://doi.org/10.1007/978-3-030-84629-9_3
https://doi.org/10.1007/978-3-030-84629-9_3
https://doi.org/10.1007/s10009-022-00694-8

10 Introduction

Related publication:

[ADL24] N. Amat, S. Dal Zilio, and D. Le Botlan. “Project and Conquer: Fast Quantifier
Elimination for Checking Petri Nets Reachability”. In: Verification, Model Checking,
and Abstract Interpretation (VMCAI). Lecture Notes in Computer Science. Springer,
2024. doi: 10.1007/978-3-031-50524-9_5.

Chapter 6 Concurrency Relation Computation: In this chapter, we also leverage
Token Flow Graphs to efficiently compute the concurrency relation of a net, a fundamental
problem for computing decompositions into networks of automata. It consists of enumerating
all pairs of places that can be marked simultaneously in some reachable marking. The
“acceleration” algorithm is also implemented in the tool Kong.

Related publications are the same as those for Chapter 4.

Chapter 7 Proving Polyhedral Equivalences: This chapter contains the last theoretical
contributions. We propose an automated procedure to prove the correctness of some
polyhedral reduction. Our approach relies on an encoding into a set of SMT formulas
whose satisfaction implies that the equivalence holds. For completeness, we exploit a
connection with a class of Petri nets that have Presburger-definable reachability sets. We
have implemented our procedure in a tool, called Reductron, and we illustrate its use in
several examples.

Related publication:

[ADL23b] N. Amat, S. Dal Zilio, and D. Le Botlan. “Automated Polyhedral Abstraction
Proving”. In: Application and Theory of Petri Nets and Concurrency (PETRI NETS).
vol. 13929. Lecture Notes in Computer Science. Springer, 2023. doi: 10.1007/978-3-
031-33620-1_18.

Chapter 8 Tools and Reproducibility: This chapter is the experimental counterpart of
the previous chapters, which are more theoretical in nature. We give a thorough presentation
of our tools, the benchmark suite from the Model Checking Contest used in our experiments,
and explain how to reproduce the whole experiments using the accompanying artifact. It
is also an opportunity to take stock of our three participations in the Model Checking Contest.

Related publications:

[AC22] N. Amat and L. Chauvet. “Kong: a Tool to Squash Concurrent Places”. In:
Application and Theory of Petri Nets and Concurrency (PETRI NETS). vol. 13288.
Springer, 2022. doi: 10.1007/978-3-031-06653-5_6.

https://doi.org/10.1007/978-3-031-50524-9_5
https://doi.org/10.1007/978-3-031-33620-1_18
https://doi.org/10.1007/978-3-031-33620-1_18
https://doi.org/10.1007/978-3-031-06653-5_6

III Outline 11

[AD23] N. Amat and S. Dal Zilio. “SMPT: A Testbed for Reachabilty Methods in General-
ized Petri Nets”. In: Formal Methods (FM). vol. 14000. Lecture Notes in Computer
Science. Springer, 2023. doi: 10.1007/978-3-031-27481-7_25;

[ABG24] N. Amat, P. Bouvier, and H. Garavel. “A Toolchain to Compute Concurrent
Places of Petri Nets”. In: Transactions on Petri Nets and Other Models of Concurrency
XVII. Lecture Notes in Computer Science 14150 (2024), pp. 1–26. doi: 10.1007/978-3-
662-68191-6_1;

The artifact accompanying this thesis is freely available on Zenodo:

https://doi.org/10.5281/zenodo.8349546

https://doi.org/10.1007/978-3-031-27481-7_25
https://doi.org/10.1007/978-3-662-68191-6_1
https://doi.org/10.1007/978-3-662-68191-6_1
https://doi.org/10.5281/zenodo.8349546

Chapter 1

Petri Nets and Reachability
Definitions, Related Work and Comparison

Computer Science is a science of
abstraction—creating the right model
for a problem and devising the
appropriate mechanizable techniques to
solve it.

Alfred Aho

This chapter introduces the definitions and notations used throughout the text. It also
includes a general overview of related work. We rely on a presentation of Petri net semantics
(Sect. 1.1) that emphasizes the relation to Presburger Arithmetic (PA) (Sect. 1.2). We also
choose, as much as possible, to follow a syntax that corresponds to the theory for “Quantifier-
Free Linear Integer Arithmetic” (QF-LIA), used in SMT solvers, which translates to the
quantifier-free fragment of Presburger Arithmetic (∃PA). We will sometimes use universal
quantification in our formulas, but we are careful to point out this fact when this is the case.

The rest of the chapter is as follows. We describe our main research goal, the generalized
reachability problem, in Sect. 1.3, then in Section 1.4, we list some known theoretical results
associated with it. Since our work is partly tool-oriented, we also use this chapter as an
opportunity to give an overview of some state-of-the-art tools solving the reachability problem
for Petri nets and describe the methods that they implement (Sects. 1.5 and 1.6). Finally, a
comparison with the thesis contributions is made in Sect. 1.7.

We believe that our presentation of Petri net semantics is better tailored than more
classical approaches, for instance [Mur89], when describing our results. The choice of a
language very close to the input format of SMT solvers is also motivated by our goal to
provide an actual implementation for all our methods. As a result, the formulas that we

14 Petri Nets and Reachability

define in this work are often the exact equivalent of the SMT-LIB script generated by our
tools. One of my original contributions in this context is a sandbox Petri net model checker
for the reachability problem, called uSMPT (https://github.com/nicolasAmat/uSMPT) (a
“micro”-version of my full-fledged tool SMPT), targeted at teaching SMT-based symbolic
methods to postgraduate students. Formulas generated with uSMPT correspond exactly to
the definitions that can be found in our presentation of the Petri net semantics and some of
the methods described in Sect. 1.5.

Note. We made the choice to consider specifically related work on the Petri net reachability
problem. This is why we do not discuss other formal methods and their associated techniques,
or provide a large overview of different formal verification methods and their benefits in the
development of complex systems. Some works, e.g., [Gar12], do it much better than what we
could pretend to achieve in an introductory chapter.

1.1 Petri Nets

Petri nets, also called Place/Transition (P/T) nets (see Definition 1.1), are a formal model
of concurrent and reactive systems, introduced by Carl Adam Petri.

Intuitively, Petri nets provide a calculus—what could be described as some sort of formal
assembly language—for the modeling and the analysis of discrete systems. In this context,
what we mean by calculus is a mathematical model that aims to be succinct, with as few
and as simple rules as possible, yet expressive enough to reason about interesting properties.
And in this case, Petri nets can be used to reason about concepts such as concurrency and
nondeterminism, or notions such as causality and temporal logic properties.

In practice, Petri nets and their extensions have been used in various application do-
mains related to computer science. For instance for reasoning about software [GS92; BE12;
KKW14] hardware [BKY00; LAG15], database [Boj+11], real-time [Hla+21], or robotic [CL07]
systems. But also for more general domains, such as the analysis of biological [Bal+10],
chemical [ADS11], ecological [PTG22] or business [Aal15] processes.

The basic idea behind Petri nets is to describe a system as a relation between the current
state of its “resources”, modeled using places, and its possible actions, or events, modeled
using transitions. Places and transitions are connected together by arcs that describe what
resources are needed to carry on an action and how they are modified when this action
actually happens. The state of a system, called a marking, is defined by the local state of
all its places, that can contain an arbitrary number of tokens. Then the system can change
its state by firing a transition. If a condition on the number of tokens in the input places is
met, the transition can fire. In this case, some tokens are removed from the input places, and

https://github.com/nicolasAmat/uSMPT

1.1 Petri Nets 15

others are added to the output places. A complete formalization of Petri nets can be found in
[Mur89; Dia09; Rei12].

In the following, we denote Z, the set of integers, and N, the set of natural numbers. We
may also use m..n for the set of integers (the interval) between m and n included. Assuming
P is a finite, totally ordered set {p1, . . . , pn}, we denote by NP the set of mappings from
P → N, and we overload the addition, subtraction, and comparison operators (=,⩾,⩽) to
act as their component-wise equivalent on mappings.

Definition 1.1 (Petri Net). A Petri net N is a tuple (P, T,Pre,Post) where:

• P ≜ {p1, . . . , pn} is a finite set of places;
• T ≜ {t1, . . . , tk} is a finite set of transitions (disjoint from P);
• Pre : T → (P → N) and Post : T → (P → N) are the pre- and post-condition

functions (also called the flow functions of N).

The pre-set of a transition t ∈ T is denoted •t ≜ {p ∈ P | Pre(t, p) > 0}, the post-set of
a transition t is denoted t• ≜ {p ∈ P | Post(t, p) > 0}. The values of Pre(t, p) (respectively
Post(t, p)) define the weight of the arc from p to t (respectively from t to p). An arc of
weight 0 is considered absent. A Petri net is called ordinary when its weights belong to
{0, 1}. These notations can be extended to the pre-set and post-set of a place p, with
•p ≜ {t ∈ T | Post(t, p) > 0} and p• ≜ {t ∈ T | Pre(t, p) > 0}.

1.1.1 States

A state m of a net, also called a marking, is a mapping m : P → N that assigns a number
of tokens, m(p), to each place p in P . When we write a marking, we list the marking of
all non-empty places, using the notation p∗k to state that place p has k tokens. Finally, a
marked net (N,m0) is a pair composed of a net N and an initial marking m0.

1.1.2 Behavior

A transition t ∈ T is enabled at marking m ∈ NP when m(p) ⩾ Pre(t, p) for all places p in
P . We can also simply write m ⩾ Pre(t). A marking m′ ∈ NP is reachable from a marking
m ∈ NP by firing transition t, denoted (N,m) t−→(N,m′) or simply m t−→m′ when N is obvious
from the context, if: (1) transition t is enabled at m; and (2) m′ = m − Pre(t) + Post(t).
When the identity of the transition is unimportant, we simply write this relation m−→m′.
The difference between m and m′ is a mapping ∆(t) ≜ Post(t) − Pre(t) in ZP , called the
displacement of t.

By extension, we say that a firing sequence ϱ ≜ t1 . . . tk ∈ T ∗ can be fired from m,
denoted (N,m) ϱ−→ (N,m′) or simply m ϱ−→m′, if there exist markings m0, . . . ,mk such that

16 Petri Nets and Reachability

m = m0, m′ = mk and mi
ti+1−−→ mi+1 for all i in the range 0..(k − 1). In this case, the

displacement of ϱ is the mapping ∆(ϱ) ≜ ∆(t1) + · · ·+ ∆(tk).
More generally, marking m′ is reachable from m in N , denoted m −→⋆ m′ if there is a

(possibly empty) sequence of transitions such that m−→ · · · −→m′. We denote R(N,m0) the
set of markings reachable from m0 in N :

R(N,m0) ≜ {m | m0 −→⋆ m} (1.1)

The semantics of a marked net is the Labelled Transition System (LTS), with nodes in
R(N,m0) and edges between states (m,m′) whenever m t−→m′ for some transition t ∈ T . We
focus mostly on reachable states in our work and will, therefore, seldom refer to the LTS of
the net.

Finally, we may use the Parikh vector of some sequence ϱ (also called the Parikh image)
that is the mapping ℘(ϱ) ∈ NT , counting the number of occurrences of each transition in ϱ.
Then, ℘(ϱ) ≜ (|ϱ|t1 , . . . , |ϱ|tk

), where |ϱ|ti denotes the number of occurrences of transition ti

in the sequence ϱ.

1.1.3 Boundedness

A marking m is k-bounded when each place has at most k tokens: property ∧p∈P m(p) ⩽ k

is true. Likewise, a marked Petri net (N,m0) is bounded when there is a constant k such
that all reachable markings are k-bounded. We will see in Sect. 1.4 that deciding whether a
net is bounded is a decidable problem.

A net is safe when it is 1-bounded. In our work, we consider generalized Petri nets (in
which net arcs may have weights larger than 1) and we do not restrict ourselves to bounded
nets.

Conversely, if no bound exists, we say that the net is unbounded. This is a necessary and
sufficient condition for its reachability set to be infinite.

1.1.4 Labels and Observations

In the following, we will often consider that each transition is associated with a label (a symbol
taken from an alphabet Σ). In this case, we assume that a net is associated with a labeling
function l : T → Σ ∪ {τ}, where τ is a special symbol for the silent action name. Every net
has a default labeling function lN such that Σ = T and lN (t) ≜ t for every transition t ∈ T .

We can lift any labeling function l : T → Σ ∪ {τ} to a mapping of sequences from T ∗ to
Σ∗. Specifically, we define inductively l(ϱ.t) ≜ l(ϱ) if l(t) = τ and l(ϱ.t) ≜ l(ϱ).l(t) otherwise,
where the dot operator (.) stands for concatenation, and l(ϵ) ≜ ϵ, where ϵ is the empty
sequence, verifying ϵ.σ = σ.ϵ = σ for any σ ∈ Σ∗. Given a sequence of labels σ ∈ Σ∗, we write

1.1 Petri Nets 17

(N,m0) σ=⇒ (N,m′) if there exists a firing sequence ϱ ∈ T ∗ such that (N,m0) ϱ−→ (N,m′) and
σ = l(ϱ). In this case, σ is referred to as an observable sequence of the marked net (N,m0).

1.1.5 Graphical Notations

We use the standard graphical notation for nets, where places are depicted as circles and
transitions as squares. We may use black dots or figures to represent the number of tokens
contained in places.

p1

t1

τ p2

t0 a

p4

t3 b

p5

t2

τp3

t4

c
4

p6

5

p0

Fig. 1.1 An example of labeled Petri net, (N,m0).

With the net displayed in Fig. 1.1, and with our convention, the initial marking is
m0 ≜ p0∗5 p6∗4 (places p0 and p6 have 5 and 4 tokens respectively). We have m0

ϱ−→m with
ϱ ≜ t0 t0 t1 t1 t2 t3 t4 and m ≜ p0∗3 p2∗1 p3∗1 p6∗3; and therefore m0

a a b c====⇒m when we only
look at (observable) labels.

1.1.6 Relation to Linear Arithmetic Constraints

Many results in Petri net theory are based on a relation to linear algebra and linear pro-
gramming techniques [Mur89; STC96]. A famous example is that the potentially reachable
markings (an over-approximation of the reachable markings) of a net (N,m0) are non-negative,
integer solutions to the state equation problem [Mur77], m = I · σ +m0, with I an integer
matrix defined from the flow functions of N called the incidence matrix and σ a vector in Nk.
We give more details about it in Section 1.5.

It is also known that solutions to the system of linear equations σT · I = 0 lead to place
invariants, that is, σT ·m = σT ·m0 for each reachable marking m. This can provide some
information used in verification techniques. For example, for the net N (Fig. 1.1), we can
compute the invariant p4 − p5 = 0. This gives us the information that both places always
contain the same number of tokens, and so can be marked together for some reachable
marking—what is called concurrent in [BG21]—if we prove that one of them is nondead.
Likewise, an invariant of the form p+ q = 1 is enough to prove that p and q are 1-bounded
and that both places are nonconcurrent.

18 Petri Nets and Reachability

Unfortunately, invariants provide only an over-approximation of the set of reachable
markings, and it may be difficult to find whether a net is part of the few known classes
where the set of reachable markings equals the set of potentially reachable ones [Huj+20a;
Huj+20b].

Our polyhedral approach shares some similarities with this kind of reasoning. A main
difference is that we will use linear constraints to draw a relation between the reachable
markings of two nets, not to express constraints about (potentially) reachable markings inside
one net.

1.2 Presburger Arithmetic and Petri Net Semantics

Petri nets and Presburger arithmetic [Pre29] share a fascinating relation (see Sect. 1.4).
Presburger arithmetic allows us to reason about markings (integer vectors), and so to express
properties or relations on them. We first define Presburger formulas:

Definition 1.2 (Presburger Arithmetic and Presburger Formula). Presburger arithmetic
(PA) is the first-order theory of the natural numbers, N, with addition, equality, and
the standard axioms of arithmetic. We use the notation F (x1, . . . , xn) for a generic
Presburger formula F with free variables x1, . . . , xn (meaning variables not bound by the
scope of a quantifier).

There are different presentations of PA, some relying on integers (Z) instead of natural
numbers (N), or using comparison (<) instead of equality. We choose to concentrate on
natural numbers since we reason on the markings of places. In practice, we will use arbitrary
Boolean combinations (using ∨,∧,¬) of quantified (∀, ∃) atomic propositions of the form
α ∼ β, where ∼ is one of =,⩽, or ⩾, and α, β are linear expressions with coefficients in Z.
In the following, we should often consider formulas F with support in the set of places P of
a net and simply use the term linear constraint to describe F .

We refer to quantifier-free formulas (sometimes also called short Presburger formulas) as
the subset of formulas without quantifiers, which are simply Boolean combinations of literals.
Given a formula F , we denote FV(F) the set of free variables contained in it. We shall
also often concentrate on formulas in Disjunctive Normal Form (DNF), for quantifier-free
formulas expressed as the disjunction of cubes, which are conjunctions of literals.

Presburger himself proved that the truth of a Presburger sentence (a quantifier-free
formula) is decidable [PJ91]. When it comes to complexity, we know that the satisfiability
problem for full PA is somewhere between 2EXPTIME [FR98] and 3EXPTIME [Opp78]. In
contrast, for the quantifier-free fragment of Presburger arithmetic, it is easy to prove that
the problem is NP-complete [Pap81]—then with an EXPTIME upperbound—, and that any

1.2 Presburger Arithmetic and Petri Net Semantics 19

satisfiable formula has some satisfying assignment of size at most polynomial in the size of
the formula [BT76].

1.2.1 Notations

In the remainder, we use the notation F (p) for the declaration of a formula F with variables
in p, instead of the more cumbersome notation F (p1, . . . , pn). We also simply use F (α)
for the substitution F{p1 ← α1} . . . {pn ← αn}, with α ≜ (α1, . . . , αn) a sequence of linear
expressions.

We say that a mapping m of NP is a model of F , denoted m |= F , if the ground formula
F (m) ≜ F (m(p1), . . . ,m(pn)) is true. Hence, we can also interpret F as a predicate over
markings. Finally, we define the semantics of F as the set JF K ≜ {m ∈ NP | m |= F}. As
usual, we say that a predicate F is valid (we also say a tautology), denoted |= F , when
all its interpretations are true (JF K = NP); and that F is unsatisfiable (or simply unsat),
denoted ⊭ F , when JF K = ∅.

In the following, we often express that some predicate F always implies a predicate G. It
corresponds to the logical notations: ∀p . F (p) =⇒ G(p) satisfiable, |= F (p) =⇒ G(p)
or JF K ⊆ JGK. In the following, we often prefer the equivalent query to be checked using
an SMT solver, that is, F (p) ∧ ¬G(p) unsat where variables p are implicitly existentially
quantified. Finally, we may write F ≡ G when JF K = JGK.

1.2.2 Presburger-Definable Sets

Given a Presburger formula, we can define its set of solutions, that is called a Presburger set.
We will often say that a set S is Presburger-definable if it corresponds to a Presburger set.

Definition 1.3 (Presburger Set). A set S ⊆ Nd is a Presburger set if there exists a
Presburger formula F (x) with x a vector of dimension d such that S = JF K.

There are other characterizations of Presburger sets. For example, a set is Presburger-
definable if and only if it is semilinear (i.e., it is a finite union of linear sets) [GS66].

1.2.3 Encoding of Petri Net Semantics

We can define many properties on the markings of a net N using Boolean combinations of
linear constraints with integer variables (that are quantifier-free Presburger formulas with
support on P), and so revisit the semantics of Petri nets. Assume that we have a marked
net (N,m0) with set of places P ≜ {p1, . . . , pn}. To any marking m over P , we can associate
a linear formula m(x1, . . . , xn), below, whose unique model in NP is m. In this context, an
equation xi = k means that there must be k tokens in place pi. Formula m is obviously a

20 Petri Nets and Reachability

conjunction of literals, what is called a cube in [Bra11].

m(x1, . . . , xn) ≜ (x1 = m(p1)) ∧ · · · ∧ (xk = m(pk)) (1.2)

We often use place names as variables (or parameters) and use p for the vector (p1, . . . , pn)
or F (p) for a formula with variables in P . We also often use m instead of m(p).

Definition 1.4 (Model of a Formula). We say that a marking m is a model of (or m
satisfies) property F , denoted m |= F , when formula F (p) ∧m(p) is satisfiable. In that
case, we may also write F (m) holds (or simply |= F (m)).

We can use this approach to reframe many properties on Petri nets. For instance, the
notion of safe markings, described previously: a marking m is safe when m |= BND1(p),
where BNDk is a predicate defined as:

BNDk(p) ≜
∧

i∈1..n

(pi ⩽ k) (1.3)

Likewise, the property that some transition t is enabled corresponds to the predicate
ENBLt below, in the sense that t is enabled at m when m |= ENBLt(p).

ENBLt(p) ≜
∧

i∈1..n

(pi ⩾ Pre(t, pi)) (1.4)

Another example is the definition of deadlocks, which are characterized by the formula:

DEAD(p) ≜
∧
t∈T

¬ENBLt(p) (1.5)

We can also define a linear predicate to describe the relation between the markings
before and after some transition fires. To this end, we use a vector p′ of “primed variables”
(p′

1, . . . , p
′
n), where p′

i will stand for the marking of place pi after a transition is fired. Hence,
we define formulas with 2n variables, and we use the notation ψ(p,p′) as a shorthand
for ψ(p1, . . . , pn, p

′
1, . . . , p

′
n). With this convention, formula FIREt(p,p′), defined next in

Equation (1.9), is such that FIREt(m,m′) entails m t−→ m′ when t is enabled at m.
With all these notations, we can define a predicate T(p,p′), see Equation (1.10), that

“encodes” the effect of firing one transition in the net N . By construction, formula m(p) ∧
T(p,p′) ∧m′(p′) is true when m −→m′. Note that m(p) ∧ T(p,p′) is not satisfiable if no
transition is enabled at m, in which case TEQ(p,p′) encodes the effect of firing at most one
transition, and then is true when m

t−→m′ for some transition t ∈ T or m = m′.

1.3 Reachability Problems 21

GEQm(p) ≜
∧

i∈1..n (pi ⩾ m(pi)) (1.6)
ENBLt(p) ≜

∧
i∈1..n (pi ⩾ Pre(t)(pi)) (1.7)

∆t(p,p′) ≜
∧

i∈1..n (p′
i = pi + Post(t)(pi)− Pre(t)(pi)) (1.8)

FIREt(p,p′) ≜ ENBLt(p) ∧∆t(p,p′) (1.9)
T(p,p′) ≜

∨
t∈T FIREt(p,p′) (1.10)

EQ(p,p′) ≜
∧

i∈1..n (p′
i = pi) (1.11)

TEQ(p,p′) ≜ EQ(p,p′) ∨ T(p,p′) (1.12)

1.2.4 SMT Theories

SMT solvers [KS08] (for Satisfiability Modulo Theories) are a modern technology that extends
the benefits of both SAT solvers and solvers for Integer Linear Programming (ILP) by offering
more flexibility in the way constraints are expressed.

Most of the predicates that we define in the remainder of this chapter are unquantified
(or can be thought of as having top-level existential quantification.) Hence, they can be
expressed using the Quantifier-Free Linear Integer Arithmetic (QF-LIA) theory in SMT
solvers. Compared to other possible choices, such as the theory of fixed size Bit Vectors (BV),
QF-LIA has also the advantage of supporting unbounded nets.

In practice, we rely on the SMT-LIB format [BFT17] with the z3 solver [MB08; Bjø].
When we give a query to the solver, it can answer satisfiable (sat) or unsatisfiable (unsat). If
the query is satisfiable we can extract a model from the current stack. For some unsatisfiable
queries, we may ask for a subset of clauses whose conjunction is still unsatisfiable, what is
called an unsatisfiable core (unsat core) of the original formula.

1.3 Reachability Problems

In our work, we focus on the verification of reachability properties, meaning properties on
the states that a marked net (N,m0) can reach. We can not only check the reachability
of a given state but also if it is possible to reach a marking that satisfies a combination of
linear constraints between places. In fact, we support two categories of queries (that we
characterize using modalities from Computation Tree Logic [CE81]): EFF , which is true only
if F is reachable; and AGF , which is true when F is an invariant, where F is a quantifier-free
Presburger formula with support on the set of places (it has no modalities). We have the
classic relation that AGF ≡ ¬ (EF¬F). At various times, we will use the fact that F is
invariant if and only if its negation is not reachable: EF¬F is false.

22 Petri Nets and Reachability

Definition 1.5 (Invariant and Reachable Properties). Property F is an invariant on
(N,m0) if and only if we have m |= F for all m ∈ R(N,m0). We say that F is reachable
when there exists m ∈ R(N,m0) such that m |= F .

A witness for property EFF is a reachable marking such that m |= F ; it is a coun-
terexample for AG¬F . We can deal with any property that can be expressed using a linear
predicate. Examples of properties we can express in this way include: whether some marking
m is reachable; whether some transition t is enabled, commonly known as quasi-liveness
(Definition 1.9); whether there is a deadlock (Definition 1.6); whether some generalized
constraint between place markings is true, such as (p0 + p1 = p2 + 2) ∧ (p1 ⩽ p2); etc.

Definition 1.6 (Deadlock). We say that a net (N,m0) admits a deadlock, if and only if
there is a marking m in R(N,m0) such that m ̸⩾ Pre(t) for all t in T .

1.3.1 Coverability Properties

A subproblem of the reachability problem is that of coverability (Definition 1.7). It consists
in deciding whether a given marking is included in some reachable marking of a given Petri
net.

Definition 1.7 (Marking Coverability). We say that a marking m of (N,m0) is coverable
if and only if there is m′ in R(N,m0) such that m′ ⩾ m.

This problem can be generalized to monotonic formulas, for which we may refer to
coverability properties (Definition 1.8).

Definition 1.8 (Coverability Property). Property F is a coverability property, that we
also call monotonic formula, if and only if m |= F implies m′ |= F for all markings
m′ ⩾ m.

Using coverability properties, it is obviously possible to encode the standard marking
coverability problem, but also the quasi-liveness of some transition t (Definition 1.9).

Definition 1.9 (Quasi-liveness). We say that a transition t of (N,m0) is quasi-live if
and only if there is m in R(N,m0) such that m ⩾ Pre(t).

1.3.2 The Concurrent Places Problem

In this work, we also study more complex reachability problems, such as the concurrent
places problem [BG21]. We say that places p, q of a net N are concurrent when there

1.4 Theoretical Results 23

exists a reachable marking m with both p and q marked. The concurrent places problem
consists of enumerating all such pairs of places. This problem is fundamental for computing
decompositions into networks of automata [BGP20; BG21]. Note that this problem can be
encoded by coverability properties.

Definition 1.10 (Dead and Concurrent Places). We say that a place p of (N,m0) is
nondead if there is m in R(N,m0) such that m(p) > 0. Similarly, we say that places p, q
are concurrent, denoted p ∥ q, if there is m in R(N,m0) such that both m(p) > 0 and
m(q) > 0. By extension, we use the notation p ∥ p when p is nondead. We say that p, q
are nonconcurrent, denoted p# q, when they are not concurrent.

1.4 Theoretical Results

We now present some theoretical results about Petri nets and the reachability problem.
Some references may refer to Vector Addition System (VAS for short, introduced by Karp
and Miller [KM69]), or even additionally considering control state, corresponding to Vector
Addition System with States (VASS) [Gre78; HP79]. These models are computationally
equivalent to Petri nets since they can simulate each other. Note that a Petri net can be
transformed by a straightforward polynomial-time translation (see [Sch16]) to an equivalent
VASS by preserving the reachability set, so the formal presentation of VASS can be skipped.

1.4.1 Decidability

One of the most important results in concurrency theory is the decidability of the reachability
problem for Petri nets proved by Mayr in 1981 [May81]. The proof was then simplified
by Kosarauju [Kos82] and Lambert [Lam92]. Even if this result is based on a constructive
proof, and its “construction” streamlined over time [Ler09], the classical Kosaraju-Lambert-
Mayr-Sacerdote-Tenney approach does not lead to a workable algorithm. It is in fact a feat
that this algorithm has been implemented at all, e.g., see the tool KReach [DL20]. A recent
approach developed by Leroux differs by considering Presburger inductive invariants [Ler09;
Ler11].

A particular belief in the Petri net community is that reachability is at the frontier of
decidability. The following quote from James L. Peterson is a good illustration:

“In general, it seems that any extension which does not allow zero testing will not
actually increase the modeling power (or decrease the decision power) of Petri
nets but merely result in another equivalent formulation of the basic Petri net
model. (Modeling convenience may be increased.)” [Pet81]

Actually, the most popular extensions to Petri nets, when they significantly increase their
expressiveness power, are Turing-complete, and so entail the undecidability of the reachability

24 Petri Nets and Reachability

problem. (We do not consider the issue of succinctness in our work.) For instance, the
addition of inhibitor (or zero test) arcs add the ability to test for the absence of tokens in a
place and result in a Turing equivalent model [Age74]. A less trivial example is with reset
arcs (for which undecidability has been proved in [AK76]), which consume all tokens from
their input place when the transition fires. The same holds for transfer arcs, used to transfer
all tokens from one place to another when a transition fires [DFS98].

It is also interesting to look at other decidability problems for Petri nets [EN94], outside
reachability. For instance, checking that a net is bounded, e.g., the reachability set is finite,
is decidable [KM69], and can be done by constructing the coverability tree. Some other
interesting problems are known as equivalent to the reachability problem [AK76], and so
decidable. For instance, Hack showed that the liveness problem (that is checking whether
any transition t can always be eventually fired from every reachable marking) is recursively
equivalent to the reachability problem [Hac76]. As presented previously in Definition 1.6,
the deadlock-freedom problem can be easily reduced to the reachability problem [CEP95].
Another interesting problem for our work consists of deciding if the reachability set of a
given Petri net is semilinear, and so Presburger-definable. The decidability was proved by
Hauschildt [Hau90] and Lambert [Lam90]. However, these works do not provide an algorithm
for computing Presburger formulas denoting the reachability set when it exists.

If we consider equivalence problems instead of reachability, we find that most of them are
undecidable. Hack proved in [Hac76] that marking equivalence, that is checking whether two
nets have the same reachability set, is undecidable. Similarly, trace and language equivalence
can be reduced to the marking equivalence problem [Hac76], even if more direct approaches
have been proposed to tackle the problem [AK76]. Finally, checking that the reachability
graphs of two nets are (strongly) bisimilar, what is referred to as the bisimulation equivalence
problem, is also undecidable [Jan94].

1.4.2 Complexity

A first lower bound for the complexity of the reachability problem was stated as early as
1976 by Lipton [Lip76], which gives an EXPSPACE lower bound. This bound has been
improved to NONELEMENTARY over 40 years after [Cze+20]. Finally, the complexity of
the reachability problem has been recently fully characterized as Ackermann-complete by
Leroux [Ler22], and by Czerwiǹski and Orlikowski [CO22] using two different constructions
(the upper bound was already stated as Ackemaniann [LS19]). Note that the subclass of
coverability problems has a “far simpler”, even though still EXPSPACE-complete, theoretical
complexity [Lip76; Rac78].

A practical consequence of this “inherent complexity”, and a consensus among the Petri
net community, is that we should not expect to find a one-size-fits-all algorithm that could
be usable in practice. A better strategy is to try to improve the performances on some

1.4 Theoretical Results 25

cases—for example by developing new tools, or optimizations, that may perform better on
some examples—or try to extend the class of problems we can handle—by finding algorithms
that can manage new cases.

This wisdom is illustrated by the current state-of-the-art at the Model Checking Con-
test. As a matter of fact, the top three tools in recent competitions—ITS-Tools [Thi15],
TAPAAL [Dav+12], and LoLA [Wol18]—all rely on a portfolio of approaches, and mix different
methods.

1.4.3 Relation to Presburger Arithmetic

In general, the reachability set of a Petri net is not Presburger-definable. A well-known
example is a net introduced by Hopcroft and Pansiot [HP79], see Figure 1.2, associated to a
reachability set R(N,m0) characterized as follows:{

(p0, p1, p2, p3, p4) ∈ N5
∣∣∣∣∣ ∨ (p0 = 1 ∧ p3 = 0 ∧ 1 ⩽ p1 + p2 ⩽ 2p4)

(p0 = 0 ∧ p3 = 1 ∧ 1 ⩽ p1 + 2p2 ⩽ 2p4+1)

}

t2

p1

p2t0 t1p0 p3

t3

p4

2

Fig. 1.2 Hopcroft and Pansiot Petri net example.

However, a specific class of Petri nets with Presburger-definable reachability sets have been
defined; called flat nets in [Bar+03; LS05; Bar+08; Ler13]. This class can be characterized
using a structural criterion at the level of VASS. Namely, flat nets are Petri nets that admit
a corresponding VASS that can be unfolded into a VASS without nested cycles, called a
flat VASS. Equivalently, a net N is flat if its language is flat, that is, there exists some
finite sequence ϱ1 . . . ϱk ∈ T ∗ such that for every reachable marking m in R(N,m0) there is a
sequence m0

ϱ−→m with ϱ ∈ ϱ∗
1 . . . ϱ

∗
k. In short, all reachable markings can be reached by simple

sequences, belonging to the language: ϱ∗
1 . . . ϱ

∗
k. Last but not least, Leroux stated in [Ler13],

Theorem 1.1, that a net is flat if and only if its reachability set is Presburger-definable.

26 Petri Nets and Reachability

Theorem 1.1 ([Ler13]). For every VASS V , for every Presburger set Cin of configura-
tions, the reachability set ReachV(Cin) is Presburger if, and only if, V is flattable from
Cin.

Even if the reachability set of a net is not Presburger-definable, following a property
proved by Leroux [Ler09; Ler10], for any non-reachable marking m (or property F) “there
exist checkable certificates of non-reachability in the Presburger arithmetic”. A certificate
of non-reachability (that we also call certificate of invariance in our work) is an inductive
predicate that contains the initial marking m0 but does not contain m (or intersect F).
However, this result does not explain how to effectively compute such an invariant, but we
propose a semi-decision procedure in Chapter 2.

Theorem 1.2 ([Ler10]). For every VASS V , for every Presburger sets of configurations
Cin, Cout, either cin

ϱ−→ cout for some configurations cin ∈ Cin and cout ∈ Cout and some
word ϱ of transitions, or there exists a Presburger inductive invariant C that contains
Cin and disjoints from Cout.

Note that the formulation of Theorems 1.1 and 1.2 is taken from an invited talk of
Leroux [Ler21] that provides an overview of results about the reachability problem for VASS
related to Presburger arithmetic.

1.5 Model Checking Methods and Optimizations

First symbolic model checkers were based on Binary Decision Diagrams (BDDs) [Bur+92],
a data structure able to efficiently represent the truth table of Boolean functions in a com-
pact way, and therefore also sets of Boolean vectors. One example is the model checker
SMV [McM93], used for the verification of the IEEE Future+ cache coherence protocol, which
is one of the celebrated breakthroughs in the area of formal verification listed in [Gar12].
Many state-of-the-art model checkers today use BDD-like structures (called decision dia-
grams) to encode sets of states and state transitions. For example, there are extensions of
decision diagrams that can handle multivalued logics, often on finite domains, for instance
with bounded intervals of integers. Examples include the Multivalued Decision Diagram
(MDD) [ADC20] used in GreatSPN [Amp+16; ADG22] or the Hierarchical Set Decision
Diagrams (SDD) [Thi+09] used in Tedd, part of the Tina toolbox [BRV04]. However, such
techniques are limited to bounded nets, and in practice do not measure up with other
approaches used in the Model Checking Contest for reachability properties [Amp+19].

In this work, we compare ourselves with three tools: ITS-Tools [Thi15], TAPAAL [Dav+12]
and LoLA [Wol18], that have in common to be in the top trio of the Model Checking

1.5 Model Checking Methods and Optimizations 27

Contest [Amp+19] (and therefore accept a common syntax for nets and properties, which
allow for a fair comparison).

Methods available in such portfolio tools include the use of symbolic techniques, such
as Bounded Model Checking [Bie+99], k-induction [Thi20; Thi21]; abstraction refine-
ment [CJL17]; the use of standard optimizations with Petri nets, like partial order re-
ductions [Wol07] or structural reductions [Thi20; Thi21]; the use of the “state equation”
method [Thi20; Thi21]; reduction to integer linear programming problems; or even simulation
techniques, which are often very effective at finding witnesses or counter-examples [Wol18;
Thi20; BHO21; Thi21; Hen+23].

The results obtained during the MCC highlight the very good performances achieved
when putting all these techniques together, on bounded and unbounded nets, with a collection
of randomly generated properties.

In the remainder of the section, we propose an overview of these different techniques.
We assume that we have a marked net (N,m0) with sets of places P ≜ {p1, . . . , pn} and
transitions T ≜ {t1, . . . , tk}.

1.5.1 Random Walk State Space Exploration

Random walk state space exploration [Wol18; Thi20; BHO21; Thi21; Hen+23], or random
walk for short, is the simplest model checking technique for finding witnesses to some property
F . It consists in randomly exploring the state space of the net, without the need to keep
track of the previously visited states, until a witness is found. This technique is implemented
in most of the portfolio model checkers and performs well since they are not memory-bound
and can therefore reach a very high throughput of visited states. We are in an instance that
illustrates the famous saying by Dijkstra that “testing can be used to show the presence of
bugs, but never to show their absence”.

Description of the Semi-Algorithm

The semi-algorithm (see Algorithm 1.1) starts from the initial marking m0, and checks if
it is a model for a given formula F , which usually models a set of “feared events”. If not,
it successively picks some random transition (randomChoice) among the set of enabled
transitions at the current marking m (enabledTransitions(m)); and fires it until a witness
is found. The procedure may restart from the initial marking after exploring a trace of
length maxTraceLength, or if a deadlock is reached (enabledTransitions(m) = ∅). Of
course, termination is not guaranteed, even if property F is reachable, and the procedure can
never prove F as not reachable (i.e., ¬F invariant) since we never know if we visited all the
reachable markings.

Tools may implement search heuristics to increase the likelihood of finding some witness
to property F . In ITS-Tools [Thi20; Thi21], the random explorer is more likely to fire a

28 Petri Nets and Reachability

transition again if it is still enabled after one firing (encouraging to fully empty places); and
can prefer newly enabled transitions (Depth-First Search), or transitions that have been
enabled a long time (Breadth-First Search). Authors in [Hen+23] proposed another search
heuristic, called Random Potency-First Search (RPFS), which combines a heuristic search
based on distance function together with randomness. It consists of learning which transitions
are more likely to contribute to achieving the reachability goal during the exploration, and
dynamically modiying the selection function.

Algorithm 1.1 Walk(EFF)
In: F : a linear predicate.
Out: if ⊤ then F is reachable.

1: m← m0
2: i← 0
3:
4: while m ̸|= F do
5: ;; Restart if the maximum length trace is reached or no transition is enabled at m.
6: if i = maxTraceLength or enabledTransitions(m) = ∅ then
7: i← 0
8: m← m0
9: else

10: ;; Fire a random transition enabled at m.
11: i← i+ 1
12: t← randomChoice(enabledTransitions(m))
13: m← fire(m, t)
14:
15: ;; A reachable marking m satisfying F has been found.
16: return ⊤

1.5.2 Bounded Model Checking (BMC)

Bounded Model Checking (BMC) is an iterative method for exploring the state space of
systems by unrolling their transitions [Bie+99]. The method was originally based on an
encoding of transition systems into (a family of) propositional logic formulas and the use of
SAT solvers to check these formulas for satisfiability [Cla+01]. Several works adapt BMC to
Petri nets, such as [Hel01]. More recently, this approach was extended to more expressive
models, and richer theories, using SMT solvers [AMP06].

Description of the Semi-Algorithm

In BMC, as with random walk, we try to find a reachable marking m that is a model for a
given formula F . The semi-algorithm (see Algorithm 1.2) starts by computing a formula, say
ϕ0, representing the initial marking and checking whether ϕ0 ∧ F is satisfiable (meaning F

1.5 Model Checking Methods and Optimizations 29

is initially true). If the formula is unsatisfiable, we compute a formula ϕ1 representing all
the markings reachable in one step, from the initial marking and check ϕ1 ∧ F . This way,
we compute a sequence of formulas (ϕi)i∈N until either ϕi ∧ F is satisfiable—in which case a
witness is found—or we have ϕi+1 =⇒ ϕi—in which case we have reached a fixed point and
no witness exists. This stopping test is not performed in practice since k-induction, presented
next, is preferred when we try to prove an invariant. The BMC method is not complete since
it is not possible, in general, to bound the number of iterations needed to give an answer.
Also, when the net is unbounded, we may very well have an infinite sequence of formulas
ϕ0 ⊊ ϕ1 ⊊ . . . However, in practice, this method can be very efficient in finding a witness
(or, depending on the context, a counter-example) when it exists.

The crux of the method is to compute formulas ϕi that represent the set of markings
reachable using firing sequences of length i. We show how we can build such formulas
incrementally.

Formula ϕi is the result of connecting i successive occurrences of formulas of the form
T(pj ,pj+1). We define the formulas inductively, with a base case (ϕ0) that states that only
m0 is reachable initially. To define the ϕi’s, we assume that we have a collection of (pairwise
disjoint) sequences of variables, (pi)i∈N. In the following listings, we use the auxiliary function
freshVariables to iterate over this family of variable vectors (and that takes the variables’
domain as input).

ϕ0 ≜ m0(p0) ϕi+1 ≜ ϕi ∧ T(pi,pi+1)

Algorithm 1.2 BMC(EFF)
In: F : a linear predicate.
Out: if ⊤ then F is reachable.

1: p← freshVariables(NP)
2: ϕ← m0(p)
3:
4: while unsat(ϕ ∧ F (p)) do
5: ;; Formula ϕ ∧ F is unsatisfiable, then consider a longer sequence for ϕ.
6: p′ ← freshVariables(NP)
7: ϕ← ϕ ∧ T(p,p′)
8: p← p′

9:
10: ;; ϕ ∧ F is satisfiable, then F is reachable.
11: return ⊤

We can prove that this family of BMC formulas provides a way to check reachability
properties, meaning that formula F is reachable in (N,m0) if and only if there exists i ⩾ 0
such that F (pi) ∧ ϕi(N,m0) is satisfiable. The approach we describe here is well-known (see,
for instance, [Bie+99]). It is also quite simplified. Actual model checkers that rely on BMC

30 Petri Nets and Reachability

apply several optimization techniques, such as compositional reasoning; acceleration methods;
or the use of invariants on the underlying model to add extra constraints.

1.5.3 Induction and k-Induction

While random walk and BMC are suited to find counter-examples or witnesses, other methods
can be used to prove that some property F is an invariant (that is, ¬F is not reachable).

Induction is a basic method that checks if a property is an inductive invariant, meaning
it is not possible to escape the invariant by firing any transition. This property is “easy” to
check, even though interesting properties are seldom inductive.

Definition 1.11 (Inductive Predicate). A linear predicate F is inductive if m0 |= F

for the initial marking m0 and, for all markings m and m′ we have (m |= F ∧m→ m′)
entails m′ |= F .

A property F is inductive if and only if both properties hold: (1) m0(p) ∧ ¬F (p) is
unsatisfiable; and (2) F (p) ∧T(p,p′) ∧ ¬F (p′) is unsatisfiable. Note that checking condition
(2) is equivalent to proving that (F (p) ∧ T(p,p′)) =⇒ F (p′) is a tautology.

But still, some simple invariants may not be inductive by unrolling transitions only once.
For example, F ≜ (q = 0) is clearly an invariant of the (dead) net depicted in Fig. 1.3. Yet,
condition (2) does not hold: (p = 1 ∧ q = 0) t−→ (p′ = 0 ∧ q′ = 1). However, by considering
sequences of k transitions, some invariants can be shown to hold. This is the idea behind
k-induction [SSS00], an extension of the BMC and “induction” methods. In fact, considering
our example, the invariant holds after two steps, i.e., |= ∀p,p′,p′′ . F (p)∧T(p,p′)∧F (p′)∧
T(p,p′′) =⇒ F (p′′). In this case, we say that property F is 2-inductive.

t

qp

Fig. 1.3 Net example for k-induction.

t

qp

Fig. 1.4 Net example for the state equation.

Description of the Semi-Algorithm

The semi-algorithm (Algorithm 1.3) starts by computing a formula ψ0(p0,p1) ≜ F (p0) ∧
T(p0,p1), and check whether ψ0(p0,p1)∧¬F (p1) is unsatisfiable or not. If it is unsatisfiable,
we must ensure that the first iteration (i = 0) of BMC does not find a witness. If not, we
proved that F is an invariant with exactly the same queries as the induction method. In
the other case, if ψ0(p0,p1) ∧ ¬F (p1) is satisfiable, we continue by unrolling the transitions
and computing a formula ψ1 representing the states reachable by firing two transitions
consecutively from F as: ψ1(p0,p1,p2) ≜ ψ0(p0,p1) ∧ F (p1) ∧T(p1,p2) and check whether

1.5 Model Checking Methods and Optimizations 31

ψ1 ∧ ¬F (p2) is unsatisfiable or not. The iteration continues until ψi ∧ ¬F is unsatisfiable.
But again, the procedure is not complete and may not terminate.

Algorithm 1.3 k-Induction(AGF)
In: F : a linear predicate.
Out: if ⊤ then F is an invariant,

if ⊥ then ¬F is reachable.

1: p← freshVariables(NP)
2: p′ ← freshVariables(NP)
3: ϕ← m0(p)
4: ψ ← F (p) ∧ T(p,p′)
5:
6: while ⊤ do
7: if sat(ϕ ∧ (¬F)(p)) then
8: ;; Formula ϕ ∧ ¬F is satisfiable, then ¬F is reachable (meaning F is not an invariant).
9: return ⊥

10: else if unsat(ψ ∧ (¬F)(p′)) then
11: ;; Formula ψ ∧ ¬F is unsatisfiable, then F is invariant.
12: return ⊤
13: else
14: ;; Consider a longer sequence for both formulas ϕ and ψ.
15: p′′ ← freshVariables(NP)
16: ϕ← ϕ ∧ T(p,p′)
17: ψ ← ψ ∧ F (p′) ∧ T(p′,p′′)
18: p← p′

19: p′ ← p′′

1.5.4 State Space Over-Approximation

A classical result from Petri net theory is the possibility to over-approximate the reachability
set, by only looking at the solutions of a linear system, called the state equation [Mur77].
Checking that these solutions, called potentially reachable markings, do not violate a predicate
F is sufficient for stating the invariance of F . If property F is true on all the solutions of the
state equation then necessarily F is an invariant.

Definition 1.12 (State Equation). Given a Petri net (N,m0), and its incidence matrix
I in ZP ×T , defined by Ip,t ≜ Post(t, p) − Pre(t, p). The state equation is the system
m0 + I · x = p, with p, x vectors over NP and NT . The solutions of p are called the
potentially reachable markings, and the ones of x are Parikh images of some sequences ϱ
in T ∗.

Recent works study Petri nets subclasses for which the set of reachable markings equals
the set of potentially reachable ones, a property called the PR-R equality in [Huj+20a;

32 Petri Nets and Reachability

Huj+20b]. A well-known class of Petri nets for which this property holds are live marked
graphs; ordinary nets such that every place has exactly one input and one output transition
(∀p ∈ P , |•p| = |p•| = 1). Note that liveness is easy to check for marked graphs [Com+71].
Recent work has studied more general classes, for instance by allowing weights on the arcs,
or by considering the case of live weighted marked graphs with a single shared place. On
such subclasses, the state equation method is complete and also allows us to state when some
property F is reachable (if and only if the solutions of the state equation satisfies F).

Description of the Algorithm

The algorithm (Algorithm 1.4) starts by checking if the query (m0(p) + I · x = p) ∧ ¬F (p)
has solutions. If unsatisfiable, the potentially reachable markings from the state equation are
sufficient to conclude that F is invariant. If satisfiable, we can proceed with a refinement by
adding additional constraints, preserving the reachability set.

For example, the net depicted in Fig. 1.4 has q = 0 for invariant. The state equation
is ineffective in proving it. Indeed, (p = 0) ∧ (q = xt) ∧ ¬(q > 0) is satisfiable, with
p = 0, q = xt = 1 as a model. It is a known limitation with the state equation since this
method does not provide an accurate approximation when we test a place (there is both an
input and an output arc to the same place from a transition). The author in [Thi20; Thi21]
proposes to constrain the state equation with read arc contraints; see Definition 1.13. It
requires that for any transition t used in the candidate Parikh vector, that reads from an
initially insufficiently marked place p, there must be a transition t′ with a positive Parikh
count that feeds p. If we go back to our example, place p is insufficiently marked for firing t,
and there does not exist such transition t′ feeding p, so we learn xt =⇒ ⊥. In this case, this
refinement is enough to prove that F is an invariant.

Definition 1.13 (Read Arc Constraints [Thi21]). For each transition t ∈ T , for every
initially insufficiently marked place it reads from, i.e., ∀p ∈ •t such that ∆(t, p) = 0 and
Pre(t, p) > m0(p), we assert that:

xt > 0 =⇒
∨

t′∈•p\{t} | ∆(p,t′)>0
xt′ > 0

Another well-known example of refinement relies on trap constraints [EM00; Esp+14]. A
trap (Definition 1.14) is a subset of places that “once marked, will always stay marked”: any
transition that consumes tokens from the (places in the) trap must have an output arc into
the trap. If we consider initially marked traps, we can discard unfeasible behavior that is
otherwise compatible with the state equation. Namely, if the trap is initially marked then it
is not possible to reach some marking for which the trap is unmarked.

1.5 Model Checking Methods and Optimizations 33

Algorithm 1.4 Over-Approximation(AGF)
In: F : a linear predicate.
Out: if ⊤ then F is an invariant.

1: p,x← FreshVariables(NP),FreshVariables(NT)
2:
3: ;; State equation.
4: C(p,x)← m0(p) + I · x = p
5:
6: ;; Is there a potentially reachable marking that contradicts F?
7: if unsat(C(p,x) ∧ ¬F (p)) then
8: ;; If not, F is an invariant.
9: return ⊤

10:
11: ;; Refine by adding read arc constraints.
12: for all ti in T do
13: for all p in •t such that ∆(p, t) = 0 and Pre(p, t) > m0(p) do
14: C ← C ∧ (xi > 0 =⇒ ∨

tj∈•p\{t} | ∆(p,tj)>0 xj > 0)
15:
16: while sat(C(p,x) ∧ ¬F (p)) do
17: ;; Extract a potential counter-example m.
18: m← getModel(C(p,x) ∧ ¬F (p))
19: ;; Search for an initially marked trap that contradicts m.
20: b← FreshVariables({0, 1}T)
21: T (b) ← (∨pi∈P | m0(p)>0 bi) ∧ (∀pi ∈ P . (bi =⇒ ∧

t∈p•
i
(∨pj∈t• bj))) ∧

(∧pi∈P | m(p)>0 ¬bi)
22: if sat(T (b)) then
23: ;; If such trap is found, then refine by adding a trap constraint.
24: S ← getModel(T (b))
25: C ← C ∧

∨
S(bi)=⊤ pi > 0

26: else
27: ;; Otherwise, the verdict is unknown.
28: return unkonwn
29:
30: ;; Refinements are sufficient to prove F invariant.
31: return ⊤

34 Petri Nets and Reachability

Definition 1.14 (Trap). A trap S ⊆ P is a subset of places such that any transition-
consuming tokens from the set S must also feed this set.

∀p ∈ S . ∀t ∈ p• . ∃p′ ∈ t• . p′ ∈ S

The author in [Thi21] proposes a method that starts from a potential candidate marking,
m, that is a counter-example according to the state equation. Then we try to contradict
this fact by finding if there is a trap initially marked, in m0, but not marked in m. This is
done iteratively and lazily since there can be an exponential number of traps in a net. The
idea is to use one Boolean variable bi per place pi, that will be true when pi is in the trap;
and checking the following set of constraints: (1) trap is initially marked: ∨pi∈P | m0(p)>0 bi;
(2) trap definition is satisfied: ∀pi ∈ P . (bi =⇒ ∧

t∈p•
i
(∨pj∈t• bj)); and (3) consider only

unmarked places for the trap candidate: ∧pi∈P | m(p)>0 ¬bi. If the constraints are satisfiable,
we have found a trap S from which we can derive a constraint expressed as ∨p∈S p > 0 that
can be added to the main procedure. The procedure is iterated until no more useful trap
constraints are found, or the refinement is sufficient to conclude.

The state equation method can be mixed with others. For instance, even if the net
does not satisfy the PR-R equality, and the solutions of the state equation do not permit
concluding, we can always learn a “Parikh vector” from the satisfiability of C(p,x) ∧ ¬F (p)
(line 2 of Algorithm 1.4); namely information about the number of occurrences of each
transition inside a potential execution sequence starting from m0 and leading to a (potential)
witness. This vector is not necessarily the image of a realizable sequence, but it is still a
good heuristic to use in order to “guide” a random walk state space exploration for instance.

The state equation method can also be used to improve k-induction. Indeed, the state
equation provides a good starting point for k-induction, by iterating from C ∧ F instead of
only F .

1.5.5 Counter-Example Guided Abstraction Refinement (CEGAR)

Counter-Example Guided Abstraction Refinement (CEGAR) approaches [Cla+00] combine
two key ideas: abstraction, by considering an over-approximation of the state space; and
refinement, as a way to incrementally improve the approximation of the state space. The
purpose of abstraction refinement is to exclude, or block, potential counter-examples (at the
abstraction level) that are not genuine in the actual system, without losing actual witnesses.
The CEGAR approach can be adapted to different formal models. In the context of Petri net,
an adequate choice for the initial abstraction is to choose the potentially reachable markings
from the state equation.

1.5 Model Checking Methods and Optimizations 35

Algorithm 1.5 CEGAR(AGF)
In: F : a linear predicate.
Out: if ⊤ then F is an invariant,

if ⊥ then ¬F is reachable.

1: p← FreshVariables(NP)
2: x← FreshVariables(NT)
3:
4: ;; State equation.
5: C(p,x)← m0(p) + I · x = p
6:
7: ;; Is there a potentially reachable marking that contradicts F?
8: while sat(C(p,x) ∧ ¬F (p)) do
9: ;; If it is the case, extract a model m and a Parikh vector π.

10: m,π ← getModel(C(p,x) ∧ ¬F (p))
11: for all firing sequences ϱ such that ℘(ϱ) ⩽ π. do
12: if ℘(ϱ) = π then
13: ;; Formula ¬F is reachable by firing a sequence ϱ such that ℘(ϱ) ⩽ π.
14: return ⊥
15: else
16: ;; Refine by blocking all sequences ϱ such that ℘(ϱ) = π.
17: C(p,x)← C(p,x) ∧ generateConstraint(C, π)
18:
19: ;; Refinements are sufficient to prove F invariant.
20: return ⊤

36 Petri Nets and Reachability

Description of the Semi-Algorithm

Initially, CEGAR (Algorithm 1.5) starts with the state equation and attempts to verify the
property of interest. As previously, if the state equation does not violate the predicate F , the
verification is considered successful, and we proved F invariant. However, if the intersection
is not empty, we can extract a Parikh vector π, which describes a potential sequence of
transitions ϱ (up-to permutation of the transitions) leading to a counter-example. There are
two cases. If such sequence ϱ is feasible from m0 then we have an actual counter-example,
and so ¬F is reachable. Otherwise, we can refine the state equation in order to block π from
the set of potential solutions. This test is repeated until we find a feasible counter-example
or until we can prove that F is an invariant. Note that we use a brute force approach (we
test all possible permutations) in order to check if at least one sequence is feasible. We could
use a more clever method, but it is not always possible to avoid iterating over a large number
of permutations in order to check if a feasible sequence exists.

To block spurious sequences (and so refine the state equation), the CEGAR approach
uses linear inequalities over transitions, called constraints. Authors in [WW12] refer to two
kinds of constraints: jump constraints of the form |ti| < n where |ti| represents the firing
count of the transition ti, and increment constraints of the form Σi∈1..kni.|ti| ⩾ n. A precise
description of the CEGAR method is outside the scope of this chapter, and we refer interested
readers to [Haj14] for more information. We also describe several methods for blocking
“potential counter-examples” in our instantiation of PDR for Petri nets (see Chapter 2). A
similar approach could be applied to derive a new instantiation of CEGAR for unbounded
Petri nets.

The initial approach developed in [WW12] was not entirely correct, and authors in [Haj14]
exhibited a counter-example. The same authors also proposed a correction. The tool TAPAAL
also includes a CEGAR-like approach, called Trace Abstraction Refinement (TAR) [HHP09].
Unfortunately, only their approach for time Petri nets has been published [CJL17], and no
documentation for standard Petri nets is available.

1.5.6 Optimizations

The previous model checking methods can be accelerated by using reduction techniques:
structural reductions, partial order reductions, slicing, etc. We give an overview of these
different techniques.

Structural Reductions

Structural reductions refer to a collection of well-known transformations that can reduce the
size of a net while preserving the property that we want to check, with the result of accelerating
the model checking phase. These approaches can be seen as reduction theorems [Lip75; CL98],

1.5 Model Checking Methods and Optimizations 37

that allow deducing properties of an initial model (N) from properties of a simpler, coarser-
grained version (NR). This technique has become a conventional optimization integrated
into several model checking tools [BLD18; Bøn+19; Thi21].

The concept was introduced by Berthelot [BL85; Ber87] and Murata [MK80; Mur89],
mainly for removing redundant places and transitions. Reduction is performed by applying
successive graph transformations, on subparts of the net satisfying given structural conditions.
The reduction rules preserve the properties of interest, such as liveness, boundedness, or
deadlock-freedom. Next, this approach has also been extended for LTL model checking [ES01].
Concerning reachability, Thierry-Mieg [Thi20; Thi21] recently proposed a large set of re-
ductions rules, which are sound when places of interest (the support of the formula) are
untouched; something started earlier in the tool TAPAAL [Jen+16]. Regarding Petri nets
extensions, structural reductions have also been adapted for colored nets [EHP05; HP06].

Partial Order Reductions and Symmetries

The aim of partial order reductions and symmetries is to build a reduced state space preserving
the designed properties.

Partial order techniques allow to reduce the part of combinatorial explosion due to the
representation of parallelism by interleaving. This is done by identifying transitions that are
independent of each other; meaning the order in which they are fired does not influence the
property of interest. In the case of persistent sets reductions [Val88; GW94], this is achieved
by considering only a subset of enabled transitions within each marking.

The reduction approaches based on symmetries [Sta91; Hub+85; Sch00], make it possible
to exploit the symmetries present in the system, in its architecture or in its data, to explore
only part of the accessible states while preserving the verification capabilities.

Slicing

We can also mention other approaches where the system is simplified with respect to a given
property, for instance by eliminating parts that cannot contribute to its truth value, like with
the slicing [Wei84] or cone of influence [CGP99] abstractions used in some model checkers.
Slicing methods are divided into two categories: static, when they do not consider the initial
marking, or dynamic, otherwise. A variety of slicing algorithms have been proposed, for
many types of problems [KKG18]: CTL*, LTL, liveness, boundedness, reachability, etc.

Regarding reachability properties, Rakow [Rak12] proposed a static algorithm that takes
the support of the property of interest as a criterion and gets rid of some subparts of the net
that do not affect such places. Finding such “parts” (places and transitions) in a Petri net is
not always easy, especially when the formula involves many places.

38 Petri Nets and Reachability

Decomposition in Network of Automata

Another example of valuable optimization is the decomposition of nets into automata networks,
i.e., sets of sequential components (such as finite-state machines). Such components execute
asynchronously, synchronize with each other, and exhibit the same global behavior as the
original Petri net.

In this thesis, we consider Nested-Unit Petri Nets (NUPNs, for short) [Gar15; Gar19] that
are an extension of Petri nets for expressing locality and hierarchy properties of concurrent
systems. Places can be grouped into units that express sequential components. Units can
be recursively nested to reflect both the concurrent and the hierarchical nature of complex
systems. The concept of NUPN is not recent (see, e.g., [GS90]), but it has been adopted by
recent Petri net analysis tools, which increase their performance by exploiting the NUPN
information.

1.6 Well-Formed Nets

During our presentation, we considered standard Petri nets. But, the Model Checking
Contest also provides in its benchmark well-formed nets (also called symmetric nets) [Chi+91;
Chi+93; IR93] that are a restriction of high-level Petri nets [Jen83].

Well-formed nets are standard Petri nets, where information is attached to each token,
and this information can be inspected or modified when a transition fires. All types have finite
domains and expressions are limited to a restricted set of operators. Note that well-formed
nets have the same modelling power as general colored Petri Nets [Jen81; Jen87]—that is
why in the MCC, as we will do, often refer to colored nets for well-formed nets.

Some model checking techniques and optimizations are specific to colored nets, such
as some structural reductions [EHP05; HP06], or use of symmetries [Hub+85; Jen96] as
mentioned before. But another interesting method is the use of the skeleton [Vau87] that
simply turns the colored tokens into “standard tokens”. The obtained net is an over-
approximation of the initial one, since some transitions may become enabled when not
considering the constraints on colored tokens. But still, this approximation is much simpler to
analyze and may be sufficient for proving invariants using the state equation as in Sect. 1.5.4.
We can also find some works about deadlock-preserving skeleton [Fin92], or more recent
works on the ACTL* logic in the model checker LoLA [WW22].

We will not consider colored Petri nets in the rest of this work. In fact, actual model
checkers mainly rely on an unfolding to standard Petri nets (P/T nets) when dealing with
colored nets. A naive approach is often enough. We can unfold each colored place into a
collection of P/T net places for each possible color; and similarly for transitions, considering
all possible combinations of the input places. While the size of the unfolded net may be
exponentially larger than its colored counterpart, many works have proposed more elaborated

1.7 Comparison with Thesis Contributions 39

unfolding algorithms [Mäk01; KLP06; LHY12; Dal20; Bil+21], leading to standalone tools that
can be used as preprocessors, such as MARIA [Mäk01], CPN-AMI [Ham+06] or mcc [Dal20].

1.7 Comparison with Thesis Contributions

In this chapter, we have laid the foundations of this work. We now discuss how the
contributions of this thesis relate to what we have presented.

Model Checker Development

One of the objectives of this thesis is to propose new model checking methods. To this end,
we developed a model checker, SMPT, used as a testbed in this work. This tool includes
all the techniques previously presented (random walk, BMC, k-induction, state equation,
etc.), except for CEGAR. In the absence of CEGAR, we propose an adaptation of the
Property Directed Reachability method (see Chapter 2), which also starts from a state
space over-approximation, and consecutively blocks potential counter-examples. The aim
here is to answer queries hitherto unanswerable by state-of-the-art tools while providing
checkable certificates. As mentioned, we are interested in the reachability problem (expressed
as linear formulas over the marking of places), but we also address a specific subproblem in
Chapter 6, that is the concurrent places problem. This problem turns out to be useful for
the decomposition into NUPNs, which is itself used in the MCC benchmark for safe Petri
nets. For this problem, we have developed a specific tool called Kong.

A recent approach to model checking is the development of preprocessors that can
be used with any out-of-the-box model checker. One example is the work of Thierry-
Mieg, who experimented at the Model Checking Contest [Kor+23] by connecting the ITS-
Tools preprocessing phase to various model checkers (including LoLA). The idea is that the
preprocessor either returns a verdict to the query; or returns a simpler problem, for which
any model checker can try to answer. Our work on polyhedral reduction is in line with this
philosophy. For example, given a formula F to be checked on a net N , our tool Octant (see
Chapter 5) can return a simpler formula F ′ to be checked on reduced net N ′. This simpler
problem be handled by any existing verification tool without modifying its algorithms.

Polyhedral Reduction

Like structural reductions, polyhedral reductions that we present in this thesis can be
interpreted as an example of reduction theorem [Lip75], that allows to deduce properties of
an initial model N from properties of a simpler, coarser-grained version N ′. But our notion
of reduction is more complex and corresponds to the one pioneered by Berthelot [Ber87],
but with the addition of some predicate of linear constraints E that permits to rebuild the
reachable markings of N , knowing only the ones of N ′. A difference with previous works

40 Petri Nets and Reachability

on structural reductions, e.g., [Ber87], is that our approach is not tailored to a particular
class of properties—such as the absence of deadlocks—but could be applied to more general
problems. While these works are related, they also mainly focus on reductions where one
can group a sequence of transitions into a single, atomic action. Hence, in our context, they
correspond to a restricted class of reductions, similar to a subset of the agglomeration rules
presented in Chapter 3.

What is more, polyhedral reductions are interesting since it means that we can apply
more aggressive reduction techniques than, say, slicing [Rak12; Llo+17; KKG18], cone of
influence [CGP99], or other methods [GRV08; KBJ21] that seek to remove or gather together
places that are not relevant to the property we want to check (and so cannot contribute
to its truth value). We do not share this restriction in our approach, since we reduce nets
beforehand and can therefore reduce places that occur in the initial property. We could argue
that approaches similar to slicing only simplify a model with respect to a formula, whereas we
simplify both the model and the formula using our new method. This is more efficient when
we need to check several properties on the same model and, in any case, nothing prevents us
from applying slicing techniques on the result of our reduction. Concerning the slicing or
cone of influence abstractions used in some model checkers, it is not always easy to find such
“parts” (places and transitions) in a Petri net, especially when the formula involves many
places. This is not a problem with our approach, since we can always abstract away a place,
as long as its effect is preserved in the predicate E.

Relation to Presburger Arithmetic

Finally, in this thesis, we exhibit results on the relation between Petri nets and Presbuger
arithmetic, which is why we have paid particular attention to related results. Of course,
our SMT methods all rely on Linear Integer Arithmetic (LIA) predicates. But a first
concrete example is the Property Directed Reachability method that we adapt to Petri nets
in Chapter 2. This semi-decision procedure provides certificates of invariance expressed as
Presburger formulas. This contribution is in accordance with Theorem 1.2 of Leroux.

We also show that the main philosophy of polyhedral reduction is to capture “flat” sub-
parts of nets (with Presburger-definable reachability sets). This idea is clearly highlighted
in Chapter 7, where we propose an automated procedure to prove that some polyhedral
reduction is correct.

41

This chapter is part of an educational project, called uSMPT, targeting Master and
PhD students. The goal of this project is to showcase the application of SMT methods in
system verification by developing a Petri net model checker for the reachability problem.

§ https://github.com/nicolasAmat/uSMPT

https://github.com/nicolasAmat/uSMPT

Chapter 2

Computing Invariance Certificates
With Property Directed Reachability

It is fair to state, that in this digital era
correct systems for information
processing are more valuable than gold.

Henk Barendregt

In this chapter, we propose a semi-decision procedure for checking reachability properties on
Petri nets that is based on the Property Directed Reachability (PDR) method. We define
three different versions that vary depending on the method used for abstracting possible
witnesses, and that can handle problems of increasing difficulty. For each method, we present
their limitations with a small example. We have implemented our methods in our model
checker SMPT and give empirical evidence that our approach can handle problems that are
difficult or even impossible to check with current state-of-the-art tools.

2.1 Introduction

This chapter introduces the first contributions of this thesis by describing a new semi-decision
procedure for the reachability problem in Petri nets. We have chosen it as a starting point in
order to introduce how to solve our problem of interest; while the following chapters focus on
accelerating the computation. Note that the results of this chapter are not a prerequisite for
understanding the rest of the thesis.

Context. While BMC is the right choice when we try to find witnesses, it usually performs
poorly when we want to check an invariant property, AG¬F true, or equivalently checking
F not reachable, EFF false. Some techniques are better suited to prove inductive invariants

44 Computing Invariance Certificates

in a transition system; that is a property that is true initially and stays true after firing any
transition.

But as mentioned in the previous chapter, a practical consequence of the Ackermannian
complexity of the reachability problem is that we should not expect to find a one-size-fits-all
algorithm that could be usable in practice. A better strategy is to try to improve the
performances on some cases—for example by developing new tools, or optimizations, that
may perform better on some examples—or try to improve “expressiveness”—by finding
algorithms that can manage new cases, that no other tool can handle.

Challenge. With this work, we seek improvements in terms of both performance and
expressiveness. We also target what we consider to be a difficult, and less studied area of
research: procedures to prove that a property is an invariant, that works on unbounded
nets or when the state space cannot be fully explored. We also focus on verifying “genuine”
reachability constraints, which are not instances of a coverability problem. These properties
are seldom studied in the context of unbounded nets. Interestingly enough, this work provides
a simple explanation of why coverability problems are also “simpler” in the case of PDR,
what we associated with the notion of monotonic formulas (see Definition 1.8).

Proposal. We propose a new semi-decision procedure for checking reachability properties
on generalized Petri nets, meaning that we do not impose constraints on the weights of
the arcs and do not require a finite state space. As formally presented in Sect. 1.3, we
also consider a generalized notion of reachability, in the sense that we do not only check
the reachability of a given state but also if it is possible to reach a marking that satisfies
a combination of linear constraints between places, such as (p0 + p1 = p2 + 2) ∧ (p1 ⩽ p2)
for example. Another interesting feature of our approach is that we are able to return a
certificate of invariance, in the form of an Presbuger inductive invariant, when we find that a
constraint is true on all the reachable markings. To the best of our knowledge, there is no
other tool able to compute such certificates for Petri nets in the general case.

Our approach is based on an extension of the Property Directed Reachability (PDR)
method, originally developed for hardware model checking [Bra11; Bra12], to the case of Petri
nets. One of the key steps in PDR is to generalize potential witnesses found by the SMT
solver. A generalization is defined as a linear subset of antecedents of a certain reachability
property F . We actually define three variants of our algorithm that vary based on the method
used for generalizing possible witnesses and can handle problems of increasing difficulty.

Let us return to our two main objectives. Concerning performances, we propose a method
based on a well-tried symbolic technique, PDR, that has proved successful with unbounded
model checking and when used together with SMT solvers [Cim+14; HB12]. Concerning
expressiveness, we define a small benchmark of “difficult nets”: a set of synthetic examples,
representative of patterns that can make the reachability problem harder.

2.2 Linear Reachability Constraints 45

Outline and Contributions. The chapter is organized as follows. We define additional
background material in Sect. 2.2. Section 2.3 describes our decision method, based on PDR
and SMT solvers, for checking the satisfiability of linear invariants over the reachable states
of a Petri net. Our method builds sequences of incremental invariants using both a property
that we want to disprove, and a stepwise approximation of the reachability relation. It also
relies on a generalization step where we can abstract possible “bad states” into clauses that
are propagated in order to find a counter-example or to block inconsistent states.

We describe a first generalization method (Sect. 2.3.2), based on the upward closure
of markings, that can deal with coverability properties. We propose a new, dual variant
(Sect. 2.3.3), based on the concept of hurdles [Hac76], that is without restrictions on the
properties. In this method, the goal is to block bad sequences of transitions. We show how
this approach can be further improved by defining a notion of saturated transition sequences
(Sect. 2.3.4), at the cost of adding universal quantification in our SMT problems. But in
Sect. 2.3.5, we show that some problems still cannot be solved by this method (hence the
algorithm may never terminate), whatever the generalization method used.

We have implemented our approach in our tool SMPT, and we compare it in Sect. 2.4
with other existing tools participating in the Model Checking Contest. In this context, one
of our contributions is the definition of a set of difficult nets that characterizes classes of
increasingly difficult reachability problems.

2.2 Linear Reachability Constraints

In this section, we provide additional background to reason about nets using Presburger
arithmetic. We first present invariance certificates (Sect. 2.2.1), which can be computed
using our adaptation of PDR. To achieve this goal, we define additional linear predicates for
representing sequences (Sect. 2.2.2), in order to generalize scenarios leading to some property
F that is the crux of the PDR method (Sect. 2.2.3).

2.2.1 Invariance Certificates

In Sect. 1.5.3, we showed that it is possible to characterize inductive predicates using our
logical framework. Indeed, F is inductive (Definition 1.11) if and only if the QF-LIA formulas
(i) F (m0) and (ii) F (p) ∧ T(p,p′) =⇒ F (p′) are valid. As a consequence, a sufficient
condition for a predicate F to be invariant is to have both conditions (i) and (ii); conditions
that can be checked using an SMT solver. Unfortunately, the predicates that we need to
check are often not inductive. In this case, the next best thing is to try to build an inductive
invariant, say R, such that JRK ⊆ JF K (i.e., |= R(p) =⇒ F (p) or equivalently, to simplify,
R(p)∧¬F (p) unsat). This predicate provides a certificate of invariance that can be checked
independently.

46 Computing Invariance Certificates

Proposition 2.1 (Invariance Certificate). A sufficient condition for a given predicate F
to be invariant on (N,m0) is to exhibit a Presburger predicate R that is (i) inductive:
R(m0) valid and R(p) ∧ T(p,p′) ∧ ¬R(p′) unsat; and (iii) entails F , that is, R(p) ∧
¬F (p) unsat.

This result is in line with Theorem 1.2 proved by Leroux [Ler09; Ler10], which states
that when a predicate ¬F is not reachable (i.e., F is invariant) there exists a Presburger
inductive invariant that contains m0 but is disjoint from J¬F K. This result does not explain
how to effectively compute such an invariant. Moreover, in our case, we provide a method
that works with general linear predicates, and not only with single configurations. On the
other side of the coin, given the known results about the complexity of the problem, we do
not expect our procedure to be complete in the general case.

2.2.2 Expressing Sequences

While reachable states are computed by adding a linear combination of “displacements”
(vectors in ZP), the set R(N,m0) is not necessarily semilinear or, equivalently, definable using
Presburger arithmetic [GS66; Ler09]. This is a consequence of the constraint that transitions
must be enabled before firing. But there is still some structure to the set R(N,m0), like for
instance the following monotonicity constraint:

∀m ∈ NP . m1
ϱ−→m2 implies m1 +m

ϱ−→m2 +m (H1)

We have other such results, such as with the notion of hurdle [Hac76]. Just as Pre(t) is
the smallest marking for which a given transition t is enabled, there is a smallest marking at
which a given firing sequence ϱ can be fired. This marking, denoted by H(ϱ), has a simple
inductive definition:

H(t) ≜ Pre(t) and H(ϱ1 · ϱ2) ≜ max (H(ϱ1), H(ϱ2)−∆(ϱ1)) (H2)

Given this notion of hurdles, we obtain that m ϱ−→m′ if and only if (1) the sequence ϱ is
enabled: m ⩾ H(ϱ), and (2) m′ = m+ ∆(ϱ). We use this result in the second variant of our
method.

We can go a step further and characterize a necessary and sufficient condition for firing the
sequence ϱ.ϱk, meaning firing the same sequence more than once. We call this the saturation
of the sequence ϱ, where k is a saturation variable. The saturation of a sequence ϱ is also
called acceleration in [FL02], meta-transitions in [BW94; Boi98], or exact widening in the
field of abstract interpretation.

2.2 Linear Reachability Constraints 47

Given ∆(ϱ), a place p with a negative displacement (say −d) means that we “loose” d
token each time we fire ϱ. Hence, we should budget d tokens in p for each new iteration. On
the opposite, nothing is needed for places with a positive displacement, which accrue tokens.

Therefore, we have m ϱ−→ ϱk

−→m′ if and only if (1) m ⩾ H(ϱ) + k ·max(0,−∆(ϱ)), and (2)
m′ = m+ (k + 1) ·∆(ϱ). Equivalently, if we denote by ∆+ the “positive” part of mapping ∆,
such that ∆+(p) ≜ 0 when ∆(p) ⩽ 0 and ∆+(p) ≜ ∆(p) otherwise, we have:

H(ϱk+1) = max (H(ϱ), H(ϱ)− k ·∆(ϱ)) = H(ϱ) + k · (−∆(ϱ))+ (H3)

Examples

p

t1 t2
2 2

2

p0

t1

p2

t0

p1

p3

2

3

2

Fig. 2.1 Two examples of Petri nets: Parity (left) and PGCD [ADH23c] (right).

We give two simple examples of unbounded nets in Fig. 2.1, which are both part of our
benchmark. Parity (left) has a single place, hence its state space can be interpreted as a
subset of N: with an initial marking of 1, this is exactly the set of odd numbers (and therefore
state (0) is not reachable). We are in a special case where the set R(N,m0) is semilinear.
For instance, it can be seen as a solution to the constraint ∃k . (p = 2k + 1), or equivalently
p ≡ 1 (mod 2). However, it cannot be expressed with a linear constraint involving only the
variable p without quantification or modulo arithmetic. This example can be handled by
most of the tools used in our experiments, e.g., with the help of k-induction.

In the net PGCD (right), transitions t0/t1 can decrement/increment the marking of p0

by 1. Nonetheless, with this initial state, it is the case that the number of occurrences of t0
is always less than the one of t1 in any feasible sequence ϱ. Hence, the two predicates p0 ⩾ 2
and p2 ⩾ p1 are valid invariants. (Since some tools do not accept literals of the form p ⩾ q,
we added the “redundant” place p3, so we can restate our second invariant as p3 ⩾ 1.) These
invariants cannot be proved by reasoning only on the displacements of traces (using the state
equation) and are already out of reach for both tools LoLA and TAPAAL.

2.2.3 Generalizing Scenarios

In the next section, we show how to (potentially) find such certificates using an adaptation of
the PDR method. An essential component of PDR is to abstract a “scenario” leading to the
model of some property F (p)—say a sequence m ϱ−→m′ with m′ |= F—into a predicate that

48 Computing Invariance Certificates

contains m (and potentially many more similar scenarios). More generally, a generalization
of the trio (m, ϱ, F) is a predicate G satisfied by m that corresponds to a subset of the
antecedents of F .

Definition 2.1 (Generalization). Assume that we have a trio (m, ϱ, F) such that m ϱ−→m′

and m′ |= F . We call such a trio a scenario and we say that a predicate G is a
generalization of (m, ϱ, F) if and only if: (1) m |= G; and (2) for every marking m1 |= G

there is some sequence ϱ′ such that m1
ϱ′
−→m2 and m2 |= F , meaning (m1, ϱ

′, F) is also
a scenario.

We can use properties (H1)–(H3), defined earlier, to build three generalizations.

Theorem 2.2 (Three Generalizations). Assume that we have m ϱ−→m′ and that m′ |= F .
Each property (H1)–(H3) leads to a generalization of scenario (m, ϱ, F).

(G1) If property F is monotonic then GEQm(p) is a generalization of (m, ϱ, F).
(G2) GEQH(ϱ)(p) ∧ F (p + ∆(ϱ)) is a generalization of (m, ϱ, F).
(G3) Assume that a, b are mappings of NP such that a = H(ϱ) and b = (−∆(ϱ))+, with

the notations used in (H3). Then

∃k .
([∧

i∈1..n

(pi ⩾ a(i) + k · b(i))
]
∧ F (p + (k + 1) ·∆(ϱ))

)

is a generalization of (m, ϱ, F).

Proof. Assume a scenario (m, ϱ, F) and m′ a marking such that m−→m′ and m′ |= F . We
prove each generalization separately.

(G1) Assume that F is monotonic and take a marking m1 such that m1 |= GEQm(p).
Property (H1) implies that there exists m2 ⩾ m′ such that m1

ϱ−→m2. Since F is
monotonic, we also have m2 |= F .

(G2) Take a marking m1 such that m1 |= GEQH(ϱ)(p) ∧ F (p + ∆(ϱ)). By construction of
(H2) there exists some marking m2 such that m1

ϱ−→m2. Since |= F (m1 + ∆(ϱ)) and
m2 = m1 + ∆(ϱ), we also have m2 |= F .

(G3) Let ϕ the generalization and take a marking m1 such that m1 |= ϕ. By construction of
(H3), there exists some k ⩾ 0 and marking m2 such that m1

ϱk+1
−−−→m2. As previously,

since m2 = m1 + (k + 1) ·∆(ϱ), we have m2 |= F .

For each generalization, it is clear that m is a valid candidate for m1 since m ϱ−→m′.

Property (G3) is the first and only instance of a linear formula using an extra variable, k,
that is not in P . The result is still a linear formula though, since we never need to use the

2.3 Property Directed Reachability 49

product of two variables. This generalization is used when we want to “saturate the sequence
ϱ”. This is the only situation where we may need to deal with quantified Presburger formulas.
Another solution would be to replace each quantification with the use of modulo arithmetic,
but this operation may be costly and could greatly increase the size of our formulas. It would
also not cut down the complexity of the SMT problems [Coo72].

2.3 Property Directed Reachability

As mentioned, some symbolic model checking procedures, such as BMC [Bie+99] or k-
induction [SSS00], are a good fit when we try to find counter-examples on infinite-state
systems. Unfortunately, they may perform poorly when we want to check an invariant. In this
case, adaptations of the PDR method [Bra11; Bra12] (also known as IC3, for “Incremental
Construction of Inductive Clauses for Indubitable Correctness”) have proved successful.

We assume that we start with an initial state m0 satisfying a linear property, I, and
that we want to prove that property P is an invariant of the marked net (N,m0). (We use
blackboard bold symbols to distinguish between parameters of the problem and formulas
that we build for solving it.) When checking for the reachability from the initial state, we
can simply choose I such that JIK = {m0}.

We define F ≜ ¬P as the “set of feared events”; such that P is not an invariant if we can
find m in R(N,m0) such that m |= F. We may freely assume that F is in Disjunctive Normal
Form (DNF). However, to simplify the presentation, we focus on a single cube, meaning that
P is a clause.

PDR is a combination of induction, over-approximation, and SAT or SMT solving. The
goal is to build an incremental sequence of predicates F0, . . . , Fk that are “inductive relative
to stepwise approximations” such that m |= Fi and m → m′ entails m′ |= Fi+1, but not
m′ |= F. The method stops when it finds a counter-example, or when we find that one of the
predicates Fi is inductive.

We adapt the PDR approach to Petri nets, using linear predicates and SMT solvers for
the QF-LIA and LIA logics in order to learn, generalize, and propagate new clauses. The
most innovative part of our approach is the use of specific “generalization algorithms” that
take advantage of the Petri nets theory, like the use of hurdles for example.

2.3.1 Description of the Algorithm

Our implementation follows closely the algorithm for IC3 described in [Bra11; Bra12], and
we only give a brief sketch of it.

The main function, Prove (Algorithm 2.1), computes an Over Approximated Reachability
Sequence (OARS) (F0, . . . , Fk) of linear predicates, called frames, with variables in p. An
OARS meets the following constraints: (1) it is monotonic: Fi ∧ ¬Fi+1 unsat for 0 ⩽ i < k;

50 Computing Invariance Certificates

(2) it contains the initial states: I ∧ ¬F0 unsat; (3) it does not contain feared states: Fi ∧ F
unsat for 0 ⩽ i ⩽ k; and (4) it satisfies consecution: Fi(p) ∧ T(p,p′) ∧ ¬Fi+1(p′) unsat for
0 ⩽ i < k.

By construction, each frame Fi in the OARS is defined as a set of clauses, CL(Fi),
meaning that Fi is built as a formula in CNF: Fi ≜

∧
cl∈CL(Fi) cl. We also enforce that

CL(Fi+1) ⊆ CL(Fi) for 0 ⩽ i < k, which means that the monotonicity property between
frames is trivially ensured.

The body of function Prove (Algorithm 2.1) contains a main iteration (line 6) that
increases the value of k (the number of levels of the OARS). At each step, we enter a second,
minor iteration (line 2 in function Strengthen, Algorithm 2.2), where we generate new
minimal inductive clauses that will be propagated to all the frames. Hence, both the length of
the OARS, and the set of clauses in its frames, increase during computation. The procedure
stops when we find an index i such that Fi = Fi+1 (lines 12–13 in Prove). In this case, we
know from (2) and (3) that Fi is an inductive invariant satisfying P. We can also stop during
the iteration if we find a counter-example (a model m of F); see lines 8–9 of Strengthen.
In this case, we can also return a trace leading to m.

Algorithm 2.1 Prove(I,F : linear predicate)
Ensure: ⊥ if F is reachable (P ≡ ¬F is not an invariant), otherwise ⊤.

1: if sat(I(p) ∧ TEQ(p,p′) ∧ F(p′)) then
2: return ⊥
3:
4: k ← 1, F0 ← I, Fi ← P for all i ⩾ 1
5:
6: while ⊤ do
7: if Strengthen(k) then
8: return ⊥
9:

10: PropagateClauses(k)
11:
12: if CL(Fi) = CL(Fi+1) for some 1 ⩽ i ⩽ k then
13: return ⊤
14:
15: k ← k + 1

When we start the first minor iteration, we have k = 1, F0 = I and F1 = P. If we have
Fk(p) ∧ T(p,p′) ∧ F(p′) unsat, it means that P is inductive, so we can stop and return that
P is an invariant (lines 12–13 of Prove, where condition line 12 trivially holds in this case).
Otherwise, we proceed with the strengthen phase, where each model of Fk(p)∧T(p,p′)∧F(p′)
becomes a potential counter-example, or witness, that we need to “block” (lines 3–5 of function
Strengthen).

2.3 Property Directed Reachability 51

Instead of blocking only one witness, we first generalize it into a predicate that abstracts
similar dangerous states (see the call to GeneralizeWitness). This is done by applying one
of the three generalization results in Theorem 2.2. We give more details about this step later.
By construction, each generalization is a cube s (a conjunction of literals). Hence, when we
block it, we learn new clauses from ¬s that can be propagated to the previous frames.

Algorithm 2.2 Strengthen(k: current level)
1: try
2: while (m t−→m′) |= Fk(p) ∧ T(p,p′) ∧ F(p′) do
3: s← GeneralizedWitness(m, t, F)
4: n← InductivelyGeneralize(s, k − 2, k)
5: PushGeneralization({(s, n+ 1)}, k)
6: return ⊤
7:
8: catch counter-example
9: return ⊥

Before pushing a new clause, we test whether s is reachable from previous frames. We
take advantage of this opportunity to find if we have a counter-example and, if not, to
learn new clauses in the process. This is the role of functions InductivelyGeneralize
(Algorithm 2.3) and PushGeneralization (Algorithm 2.4).

We find a counter-example (in the call to InductivelyGeneralize) if the generalization
from a witness found at level k, say s, reaches level 0 and F0(p)∧T(p,p′)∧s(p′) is satisfiable
(line 1 in InductivelyGeneralize). Indeed, it means that we can build a trace from I to F
by going through F1, . . . , Fk.

Algorithm 2.3 InductivelyGeneralize(s : cube, min: level, k: level)
1: if min < 0 and sat(F0(p) ∧ T(p,p′) ∧ s(p′)) then
2: raise counter-example
3:
4: for i← max(1,min+ 1) to k do
5: if sat(Fi(p) ∧ T(p,p′) ∧ ¬s(p) ∧ s(p′)) then
6: GenerateClause(s, i− 1, k)
7: return i− 1
8:
9: GenerateClause(s, k, k)

10:
11: return k

The method relies heavily on checking the satisfiability of linear formulas in QF-LIA,
which is achieved with a call to an SMT solver. In each function call, we need to test if
predicates of the form Fi ∧ T ∧G are unsat and, if not, enumerate its models. To accelerate

52 Computing Invariance Certificates

the strengthening of frames, we also rely on the unsat-core of properties in order to compute
a minimal inductive clause (MIC).

Our approach is parametrized by a generalization function (GeneralizeWitness) that
is crucial if we want to avoid enumerating a large, potentially unbounded, set of witnesses.
This can be the case, for example, in line 7 of PushGeneralization. In this particular
case, we find a state m at level n (because m |= Fn), and a transition t that leads to a
problematic clause in Fn+1. Therefore, we have a sequence ϱ of size k − n + 1 such that
m

ϱ−→m′ and m′ |= F. We consider three possible methods for generalizing the trio (m, ϱ,F),
that correspond to properties (G1)–(G3) in Theorem 2.2.

Algorithm 2.4 PushGeneralization(states: set of (state, level), k: level)
1: while ⊤ do
2: (s, n)← from states minimizing n
3:
4: if n > k then
5: return
6:
7: if (m t−→m′) |= Fn(p) ∧ T(p,p′) ∧ s(p′) then
8: p← GeneralizedWitness(m, t, s)
9: l← InductivelyGeneralize(p, n− 2, k)

10: states← states ∪ {(p, l + 1)}
11: else
12: l← InductivelyGeneralize(s, n, k)
13: states← states \ {(s, n)} ∪ {(s, l + 1)}

Algorithm 2.5 PropagateClauses(k: level)
1: for i← 1 to k do
2: for all cl ∈ CL(Fi) do
3: if ⊭ Fi(p) ∧ T(p,p′) ∧ ¬cl(p′) then
4: CL(Fi+1)← CL(Fi) ∪ {cl}

Algorithm 2.6 GenerateClause(s : cube, i: level, k: level)
1: cl← ¬unsat-core(¬s(p) ∧ Fi(p) ∧ T(p,p′) ∧ s(p′))
2:
3: for j ← 1 to i+1 do
4: CL(Fj)← CL(Fj) ∪ {cl}

2.3.2 State-Based Generalization

A special case of the reachability problem is when the predicate F is monotonic, meaning
that m1 |= F entails m1 +m2 |= F for all markings m1,m2. A sufficient (syntactic) condition

2.3 Property Directed Reachability 53

is for F to be a positive formula with literals of the form ∑
i∈I pi ⩾ a. This class of predicates

coincides with what we called a coverability property in Sect. 1.3 (Definition 1.8), for which
there exists specialized verification methods (see, e.g., [Fin91; FHK21]).

By property (G1), if we have to block a witness m such that m ϱ−→m′ and m′ |= F, we
can as well block all the states greater than m. Hence, we can choose the predicate GEQm

to generalize m. This is a very convenient case for verification and one of the optimizations
used in previous works on PDR for Petri nets [Klo+13; KBJ21]. First, the generalization is
very simple, and we can easily compute a MIC when we block predicate GEQm in a frame.
Also, we can prove the completeness of the procedure when F is monotonic. An intuition
is that it is enough, in this case, to check the property on the minimal coverability set of
the net, which is always finite [Fin91]. The procedure is also complete for finite transition
systems. These are the only cases where we have been able to prove that our method always
terminates.

2.3.3 Transition-Based Generalization

We propose a new generalization based on the notion of hurdles. This approach can be used
when F is not monotonic, for example when we want to check an invariant that contains
literals of the form p = k (e.g., the reachability of a fixed marking) or p ⩾ q with p and q

being two places.
Assume that we need to block a witness scenario of the form m

ϱ−→ m′ and m′ |= s.
Typically, s is a cube in F, or a state resulting from a call to PushGeneralization. By
property (G2), we can as well block all the states satisfying Gϱ(p) ≜ GEQH(ϱ)(p)∧s(p+∆(ϱ)).
This generalization is interesting when property s does not constrain all the places, or when
we have few equality constraints. In this case, Gϱ may have an infinite number of models.
It should be noted that using the duality between “feasible traces” and hurdles is not new.
For example, it was used recently [FHK21] to accelerate the computation of coverability
trees. Nonetheless, to the best of our knowledge, this is the first time that this generalization
method has been used with PDR.

2.3.4 Saturated Transition-Based Generalization

We still assume that we start from a witness scenario m ϱ−→m′ and m′ |= s. Our last method
relies on property (G3) and allows us to consider several iterations of ϱ. If we fix the value of
k, then a possible generalization is Gk

ϱ ≜ (∧i∈1..n(pi ⩾ a(i) + k · b(i))) ∧ s(p + (k + 1) ·∆(ϱ)),
where a, b are the mappings of NP defined in Theorem 2.2. (Note that G1

ϱ = Gϱ.) More
generally the predicate G⩽k

ϱ ≜ G1
ϱ ∨ · · · ∨Gk

ϱ is a valid generalization for the scenario (m, ϱ, s),
in the sense that if m1 |= G⩽k

ϱ then there is a trace m1 →⋆ m2 such that m2 |= s. At the
cost of using existential quantification (and therefore a “top-level” universal quantification

54 Computing Invariance Certificates

when we negate the predicate to block it in a frame), we can use the more general predicate
G⋆

ϱ ≜ ∃k . Gk
ϱ, which is still linear and has its support in P .

Saturation Heuristics

In practice, it is not always useful to saturate a trace and, in our implementation, we use
heuristics to limit the number of quantification introduced by this operation.

A possible heuristic is to saturate sub-sequences of transitions instead of every transition
in some scenario sequence ϱ. In fact, when iterating backward, we can assume that we already
performed a generalization of the form: ϱc.ϱ

∗
1..ϱ

∗
l . Then, we decide to saturate ϱc if one of

the following conditions is met: (1) F is neither monotonic nor anti-monotonic (i.e., ¬F not
monotonic) ; (2) F is monotonic and ∆(ϱc, p) > 0 for all p ∈ FV(F); (3) F is anti-monotonic
and ∆(ϱc, p) < 0 for all p ∈ FV(F); or (4) for all p such that H(ϱ1..ϱl, p) ̸= 0 we have
∆(ϱc, p) > 0. Informally, we do not saturate ϱc if (1’) F is monotonic (resp. anti-monotonic)
and ϱc decrease (resp. increase) the number of tokens in at least one place in the support of
F; and (2’) firing ϱc an infinite number of times does not lead to an infinite firing of ϱ∗

1..ϱ
∗
l .

Actually, nothing prevents us from mixing our different kinds of generalization together,
and there is still much work to be done in order to find good tactics in this case.

2.3.5 Incompleteness

We know examples of invariants where the PDR method does not terminate except when
using saturation. A simple example is the net Parity, used as an example in Sect. 2.2.2,
with the invariant P ≜ (p ⩾ 1). In this case, F ≡ ¬P ≡ (p = 0). Hence, we are looking for
witnesses such that m→⋆ 0. The simplest example is p∗2 t2−→ p∗0, which corresponds to the
“blocking clause” p ̸= 2. In this case, we have H(t2) = p∗2 and ∆(t2) = −p∗2. Hence, the
transition-based generalization is (p ⩾ 2) ∧ (p− 2 = 0) ≡ (p = 2), which does not block new
markings. At this point, we try to block (p = 0) ∨ (p = 2). The following minor iteration of
our method will consider the witness 4 t2.t2==⇒ 0, etc. Hence, after k minor iterations, we have
Fk ≡ (p ̸= 0) ∧ (p ̸= 2) ∧ · · · ∧ (p ̸= 2k). If we saturate t2, we find in one step that we should
block ∃k . (p− 2 · (k + 1) = 0). This is enough to prove that (p ⩾ 1) is an invariant as soon
as the initial marking is an odd number.

This example proves that PDR is not complete, without saturation, in the general case.
Even though example Parity is extremely simple, it is also enough to demonstrate the limit
of our method without saturation. Indeed, when we only allow unquantified linear predicates
with variables in P , it is not possible to express all the possible semilinear sets in NP . (We
typically miss some periodic sets.)

However, the saturation is still not sufficient to obtain a complete procedure with PDR.
A small example is the inverse net (we invert all the arcs), say N−1, of the Hopcroft and
Pansiot marked net, say (N,m0), depicted Fig. 1.2.

2.4 Experimental Results 55

A basic property of inverse nets (Full reflection theorem in [SJJ91]) is that for any marking
m we have m ∈ R(N,m0) if and only if m0 ∈ R(N−1,m). As a corollary, given a marking
m if m ̸∈ R(N,m0) then m0 ̸∈ R(N−1,m). The idea of our example is to choose an initial
marking m′

0 for N−1 that is not reachable in N from m0. Hence, m0 is also not reachable in
(N−1,m′

0); and the whole reachability set of (N,m0) corresponds to witnesses of F ≡ m0.
We recall the (non Presburger-definable) reachability set of Hopcroft and Pansiot net,

(N,m0): {
(p0, p1, p2, p3, p4) ∈ N5

∣∣∣∣∣ ∨ (p0 = 1 ∧ p3 = 0 ∧ 1 ⩽ p1 + p2 ⩽ 2p4)
(p0 = 0 ∧ p3 = 1 ∧ 1 ⩽ p1 + 2p2 ⩽ 2p4+1)

}

Assume that m′
0 ≜ p0∗0 p1∗1 p2∗1 p3∗1 p4∗0 is the initial marking of the inverse net N−1

(see Fig. 2.2). By construction, m′
0 does not belong to R(N,m0). Hence, ¬m0 is an invariant

on (N−1,m′
0), and we can consider F ≡ m0 as “feared states”. Now consider the minor

iteration (line 2) of function Strengthen. This iteration stops when all the witnesses leading
to F in one step from ¬F are blocked. This set of states corresponds to the reachability set
of (N,m0), which is not Presburger-definable. Then, no Presburger generalization (as we
proposed) can be sufficient to obtain a complete PDR procedure because this minor iteration
never terminates.

t2

p1

p2t0 t1p0 p3

t3

p4

2

Fig. 2.2 Inverse Hopcroft and Pansiot net, (N−1,m′
0), with m′

0 ̸∈ R(N,m0).

2.4 Experimental Results

We have implemented our complete approach in our tool SMPT, which relies on the SMT
solver z3 to answer sat and unsat-core queries. In this section, we propose an experimental
evaluation divided into two considerations, expressiveness (Sect.2.4.1) and performance

56 Computing Invariance Certificates

(Sect. 2.4.2). We also report on the tool output in Sect. 2.4.3, which provides checkable
invariance certificates when the invariant is true.

2.4.1 Evaluation on Expressiveness

It is difficult to find benchmarks with unbounded Petri nets. To quote Blondin et al. [BHO21],
“due to the lack of tools handling reachability for unbounded state spaces, benchmarks arising
in the literature are primarily coverability instances”. It is also very difficult to randomly
generate a true invariant that does not follow, in an obvious way, from the state equation.
For this reason, we decided to propose our own benchmark, made of five synthetic examples
of nets, each with a given invariant. This benchmark is freely available and has been partly
joined to the benchmark used in the MCC [ADH23a; ADH23b; ADH23c].

Our benchmark is made of deceptively simple nets that have been engineered to be
difficult or impossible to check with current techniques. We already depicted our two first
examples in Fig. 2.1. We display all our other examples in Figs. 2.3, 2.4 and 2.5.

Block

OB

Connection

EX

ST

Wallet

GW

OC

Coin

GH

Hash

Fig. 2.3 CryptoMiner net [ADH23a] with P ≜ ¬(Block = 4 ∧ Connection = 1 ∧ Coin = 10)

We give a brief description of the nets composing our “reachability” benchmark (except
for Parity and PGCD from Fig. 2.1 already described previously). Each of our examples is
quite small, with less than 10 places or transitions, and is representative of patterns that can
make the reachability problem harder: the use of self-loops; dead transitions that cannot be
detected with the state equation; weights that are relatively prime; etc. Also, most of our
examples can be turned into families of nets using parameters such as the initial marking,
weights on the arcs, or by adding copies of a subnet.

• CryptoMiner [ADH23a] (Fig. 2.3) describes the, simplified, daily schedule of someone
mining bitcoins. The net is composed of two disjoint state machines synchronized by
self-loops (trivial cycles of weight 1). Removing the self-loops does not modify the
incidence matrix, and so does not change the solutions of the state equation. The
difficulty when analyzing this net lies in the presence of constraints that cannot be
derived from the state equation alone. For instance, the presence of tokens in Coin
implies Connection empty.

2.4 Experimental Results 57

p0

p1

t0

t1

t3

p3 p4p2

t2

t4

p6t53p5

t6

p7

t7

2

3

2

2

3

2

Fig. 2.4 Process net with P ≜ (p2 + p3 + p4 ⩾ 1 ∧ p7 ⩽ 2)

t1

p1

p0

t0

t4

3

p3

t5

t2

p4

2

p2

t3

p5

2

3

2

3 2 2

3

2

Fig. 2.5 Murphy net [ADH23b] with P ≜ (p1 ⩽ 2 ∧ p4 ⩾ p5)

58 Computing Invariance Certificates

• Process (Fig. 2.4) is a net composed of three subnets coupled by self-loops on the
places p2, p3 and p4. The component at the bottom includes a dead transition (t6);
it will never be enabled, although the state equation ensures at least one possibility
of firing it. Like with our previous example, reasoning only on the state equation is
not enough to capture the exact behavior of this net. For instance, the state equation
allows getting 3 tokens in p7, which would contradict our invariant.

• Murphy [ADH23b] (Fig. 2.5) is a net combining PGCD with the “bottom component”
of net Process.

We compared SMPT against ITS-Tools [Thi15], LoLA [Wol18], and TAPAAL [Dav+12];
and give our results in Table 2.1. All results are computed using 4 cores, a limit of 16 GB
of RAM, and a timeout of 1 h. A result of TLE stands for “Time Limit Exceeded”. For
SMPT, we marked with an asterisk (∗) the results computed using our saturation-based
generalization. Our results show that SMPT is able to answer queries on several classes of
examples that are out of reach for some, or all the other tools; often by orders of magnitude.

Instance SMPT ITS-Tools LoLA TAPAAL

Murphy 0.75 ∗ TLE TLE TLE
PGCD 0.11 ∗ 139.08 TLE TLE
CryptoMiner 0.19 ∗ 5.92 TLE 0.18
Parity 0.40 ∗ 3.36 0.01 4.16
Process 83.39 TLE 0.03 0.18

Table 2.1 Computation time on our synthetic examples (time in seconds).

We also experimented with two other recent tools for reachability: KReach [DL20],
which provides a complete implementation of Kosaraju’s original decision procedure, and
FastForward [BHO21], a tool for efficiently finding counter-examples in unbounded Petri nets
(but that may report that an invariant is true in some cases). We do not include these tools
in our findings since they were unable to answer any of our problems.

2.4.2 Evaluation on Performance

Since it is not sufficient to use only a small number of hand-picked examples to check the
performance of a tool, we also provide results obtained on a set of 30 problems (a net
together with an invariant) that are borrowed from test cases used by the tool Sara [WW12;
Wim13] (examples test{3, 4, 12}) and a similar software, called Reach, that is part of the
Tina toolbox [BRV04; LAA23] (examples 1, 3u, . . . , zz). Most of these problems can be
easily answered, but they are interesting to test our reliability on a relatively even-handed
benchmark.

2.4 Experimental Results 59

Our benchmark also includes 6 examples of bounded nets obtained by limiting the number
of times we can fire transitions in the nets PGCD and CryptoMiner. (This is achieved by
adding a new place that loses a token when a transition is fired.)

The experiments were performed with the same conditions as previously but with a
timeout of only 255 s. We display our results in the chart of Fig. 2.6, which gives the number
of feasible problems, for each tool, when we change the timeout value (we use a logarithmic
scale for the time value). We also provide the computation times, for the same dataset, in
Table 2.2. We observe that our performances are on par with TAPAAL, which is the fastest
among our three reference tools on this benchmark.

Instance SMPT ITS-Tools LoLA TAPAAL

1 0.15 0.78 5.01 0.17
3u 1.84 ∗ 0.80 0.01 0.16
5pi 6.86 0.88 0.01 0.17
6pi 0.21 0.88 0.01 0.16
7pi 0.15 0.78 5.00 0.16
Crypto 0.20 ∗ 4.94 TLE 0.16
Crypto-10000 0.25 ∗ 4.88 0.02 0.16
Crypto-50 0.22 ∗ 1.04 0.01 0.18
Crypto-500 0.24 ∗ 4.57 0.01 0.17
PGCD-10000 0.14 ∗ 142.63 TLE 96.59
PGCD-50 0.10 ∗ 0.87 0.01 0.17
PGCD-500 0.11 ∗ 1.13 0.08 0.30
b 0.09 0.79 5.02 0.16
kw2 0.18 0.78 5.01 0.16
mtx 0.60 0.86 0.00 0.16
nope 0.12 0.78 5.01 0.16
nope2 0.10 0.76 5.01 0.17
test12 0.10 0.76 5.00 0.05
test3 0.15 0.91 5.02 0.18
test4 0.15 0.82 0.01 0.17
u 0.09 0.77 5.00 0.17
w 0.10 0.79 5.02 0.16
w1 0.10 0.75 5.01 0.05
w2 0.10 0.80 5.00 0.17
wb 0.29 ∗ 0.80 5.00 0.17
we 0.16 0.78 5.01 0.17
x 1.24 ∗ 0.84 0.01 0.16
z 0.10 1.22 5.00 0.30
ze 0.71 0.88 5.03 0.17
zz 0.12 ∗ 1.64 5.01 0.25

Table 2.2 Computation time on existing benchmarks (time in seconds).

60 Computing Invariance Certificates

0 5 10 15 20 25 30
Cumulative computed queries

0.01

0.1

1

10

100

1000
M

in
.

tim
e

in
s

SMPT
ITS-Tools
LoLA
TAPAAL

Fig. 2.6 Minimal timeout to compute a given number of queries.

2.4.3 Computation of Invariance Certificates

A distinctive feature of SMPT is the ability to output a linear inductive invariant for
reachability problems: when we find that P is invariant, we are also able to output an
inductive formula C, of the form P ∧G, that can be checked independently with an SMT
solver. We can find the same capability in the tool Petrinizer [Esp+14] in the case of
coverability properties.

To get a better sense of this feature, we give the actual outputs computed with SMPT on
the two nets of Fig. 2.1. The invariant for the net Parity is P1 ≜ (p0 ⩾ 1), and for PGCD it
is P2 ≜ (p1 ⩽ p2).

The certificate for property P1 on Parity (see Fig. 2.7) is C1 ≡ (p0 ⩾ 1) ∧ ∀k . ((p0 <

2 k + 2) ∨ (p0 ⩾ 2 k + 3)), which is equivalent to (p0 ⩾ 1) ∧ (∀k ⩾ 1) . (p0 ̸= 2.k), meaning
the marking of p0 is odd. This invariant would be different if we changed the initial marking
to an even number.

[PDR] Certificate of invariance
(not (p0 < 1))
(forall (k1) ((p0 < (2 + (k1 * 2))) or (p0 + (-2 * (k1 + 1))) >= 1))

Fig. 2.7 Certificate of invariance for the Parity net in Fig. 2.1.

2.5 Discussion 61

The certificate for property P2 on PGCD (see Fig. 2.8) is C2 ≡ (p1 ⩽ p2) ∧ ∀k . ((p0 <

k + 3) ∨ (p2 − p1 ⩾ k + 1)) and may seem quite inscrutable. It happens actually that the
saturation “learned” the invariant p0 + p1 = p2 + 2 and was able to use this information to
strengthen property P2 into an inductive invariant.

[PDR] Certificate of invariance
(not (p1 > p2))
(forall (k1) ((p0 < (3 + (k1 * 1))) or ((p1 + (1 * (k1 + 1))) <= p2)))

Fig. 2.8 Certificate of invariance for the PGCD net in Fig. 2.1.

2.5 Discussion

An important result in concurrency theory is the decidability of reachability for Petri
nets [May81; Kos82; Lam92]. However, the Kosaraju-Lambert-Mayr-Sacerdote-Tenney
approach does not lead to a workable algorithm. It is in fact a feat that this algorithm has
been implemented at all, see, e.g., the tool KReach [DL20]. While the (very high) complexity
of the problem means that no single algorithm could work efficiently on all inputs, it does not
prevent the existence of methods that work well on some classes of problems. For example,
several algorithms are tailored for the discovery of counter-examples. We mention the tool
FastForward [BHO21] in our experiments, which explicitly targets the case of unbounded nets.

We propose a method that works as well on bounded as on unbounded ones; that behaves
well when the invariant is true; and that works with “genuine” reachability properties, and
not only with coverability. But there is of course no panacea. Our approach relies on the use
of linear predicates, which are incrementally strengthened until we find an invariant based on:
the transition relation of the net; the property we want to prove (it is “property-directed”);
and constraints on the initial states. As a reminder, this is in line with a property proved
by Leroux [Ler09; Ler10], which states that when a final configuration is not reachable then
“there exist checkable certificates of non-reachability in the Presburger arithmetic”.

This is not something new. Many tools rely on the use of integer programming techniques
to check reachability properties. We can mention the tool Sara [WW12] that is now integrated
inside LoLA [Wol18] and can answer reachability problems on unbounded nets; or tools
like FAST [Bar+08], designed for the analysis of systems manipulating unbounded integer
variables. An advantage of our method is that we proceed in a lazy way. We never explicitly
compute the structural invariants of a net, never switch between a Presburger formula and
its representation as a semilinear set (useful when one wants to compute the “Kleene closure”
of a linear constraint), . . . and instead let an SMT solver work its magic.

62 Computing Invariance Certificates

We can find other related works, such as [Klo+13; Esp+14; KBJ21]. Nonetheless, they
all focus on coverability properties. Coverability is not only a subclass of the general
reachability problem, it has a far simpler theoretical complexity (EXPSPACE [Lip76] vs
Ackermannian [CO22; Ler22]). It is also not expressive enough for checking the absence
of deadlocks or for complex invariants, for instance involving a comparison between the
marking of two places, such as p < q. The idea we advocate is that approaches based only on
the generalization of markings (such as (G1)) are not enough. This is why we believe that
abstractions (G2) and (G3) defined in Theorem 2.2 are noteworthy.

We can also compare our approach with tools oriented to the verification of bounded
Petri nets; since many of them integrate methods and semi-decision procedures that can
work in the unbounded case. We compared ourselves with three tools: ITS-Tools [Thi15],
TAPAAL [Dav+12] and LoLA, that have in common to be the top trio in the Model Checking
Contest [Amp+19]. Our main contribution in this context is to provide a new benchmark
of nets and properties that can be used to evaluate future reachability algorithms “for
expressiveness”.

The methods closest to ours in these portfolios are Bounded Model Checking and
k-induction [SSS00], which are also based on the use of SMT solvers. We can mention
the case of ITS-Tools that can build a symbolic over-approximation of the state space,
represented as sets of constraints [Thi20]. This approximation is enough when it is included
in the invariant that we check, but inconclusive otherwise. A subtle and important difference
between PDR and these methods is that PDR needs only 2n variables (the p and p′),
whereas we need n fresh variables at each new iteration of k-induction (so kn+ 1 variables
in total). This contributes to the good performances of PDR since the complexity of the
SMT problems is in part relative to the number of variables involved. Another example of
over-approximation is the use of the state equation method [Mur77], already described in
Sect.1.5.4, that can strengthen the computations of inductive invariants by adding extra
constraints, such as place invariants [STC96], traps [EM00; Esp+14], causality constraints,
etc. We exploit similar constraints with SMPT in the MCC to better refine our invariants.

To conclude, our experiments confirm that we benefit from using a more diverse set
of techniques, and are still in need of new techniques, able to handle new classes of prob-
lems. For instance, we can attribute the good results of TAPAAL, in our experiments,
to their implementation of a Trace Abstraction Refinement (TAR) techniques, guided by
counter-examples [CJL17]. The same can be said with LoLA, which also uses a CEGAR-like
method [WW12]. We believe that our approach could be a useful addition to these techniques,
which is why we integrated PDR in the workflow of SMPT during the Model Checking
Contest.

And last, but not least, our extension of PDR provides a constructive method for
computing certificates of invariance, when it terminates.

63

This work has been published in:

• N. Amat, S. Dal Zilio, and T. Hujsa. “Property Directed Reachability for General-
ized Petri Nets”. In: Tools and Algorithms for the Construction and Analysis of
Systems (TACAS). vol. 13243. Lecture Notes in Computer Science. Springer, 2022.
doi: 10.1007/978-3-030-99524-9_28

A conference artifact is available on Zenodo:

• N. Amat, S. Dal Zilio, and T. Hujsa. Artifact for TACAS 2022 Paper: Property
Directed Reachability for Generalized Petri Nets. Zenodo, 2022. doi: 10.5281/
zenodo.5863379

The tool related to this chapter is:

• SMPT § https://github.com/nicolasAmat/SMPT

https://doi.org/10.1007/978-3-030-99524-9_28
https://doi.org/10.5281/zenodo.5863379
https://doi.org/10.5281/zenodo.5863379
https://github.com/nicolasAmat/SMPT

Chapter 3

Polyhedral Reduction
Definition and Straightforward Application

The purpose of abstraction is not to be
vague, but to create a new semantic level
in which one can be absolutely precise.

Edsger Wybe Djikstra

In this chapter, we define a method for taking advantage of net reduction in combination
with an SMT-based model checker. The approach consists in transforming a reachability
problem about some Petri net into the verification of an updated reachability property on a
reduced version of this net. This method, called polyhedral reduction, relies on a new state
space abstraction based on linear constraints.

We prove the correctness of this method using a new notion of equivalence between nets,
called polyhedral abstraction equivalence. We provide a complete framework to define and
check the correctness of equivalence judgments, prove that this relation is a congruence, and
give examples of basic equivalence relations that derive from structural reductions.

Our approach has been implemented in the tool SMPT. As a testbed, we propose an
adaptation of the Bounded Model Checking (BMC) method. Experimental results show that
our approach works well, even when we only have a moderate amount of reductions.

3.1 Introduction

This chapter is the starting point of our work on polyhedral reduction, which is the central
topic of the following chapters (Chapters 4 to 7).

66 Polyhedral Reduction

Context. Berthomieu recently proposed a new abstraction technique [BLD18; BLD19]
based on reductions [BL85; Ber87]. The idea is to compute reductions of the form (N,E,N ′),
where: N is an initial net (that we want to analyze); N ′ is a residual net (hopefully much
simpler than N); and E is a Presburger predicate. The idea is to preserve enough information
in E to rebuild the reachable markings of N , knowing only the ones of N ′. In a nutshell, we
capture and abstract the effect of reductions using linear constraints between the places of N
and N ′. This has been previously applied technique in a symbolic model checker part of the
Tina toolbox [BRV04], called Tedd, that uses Set Decision Diagrams [Thi+09] in order to
generate an abstract representation for the state space of a net N .

Challenge. In this chapter, we want to show how this approach can be combined with
SMT-based verification. In particular, we want a theoretical framework and an “elegant” way
to integrate reductions into known verification procedures.

Proposal. We provide a complete theoretical framework based on the definition of a new
equivalence relation between Petri nets and show how to use it for checking reachability
properties. As with PDR, our method does not impose restrictions on the syntax of nets, such
as constraints on the weights of arcs or bounds on the marking of places. In practice, we can
often reduce a Petri net N with n places (from a high dimensional space) into a residual net
N ′ with far fewer places, say n′ (in a lower-dimensional space). Hence, with our approach, we
can represent the state space of N as the “inverse image” by the Presburger predicate E of a
subset of vectors of dimension n′. This technique can result in a very compact representation
of the state space. In this chapter, we show that we can benefit from this “dimensionality
reduction” effect when using automatic deduction procedures.

To adapt our approach to the theory of SMT solving, we define an abstraction based
on Boolean combinations of linear constraints between integer variables (representing the
marking of places). This results in a new relation N ≡E N ′, the counterpart of the tuple
(N,E,N ′) in an SMT setting. We named this relation a polyhedral abstraction equivalence (or
just polyhedral equivalence) in reference to “polyhedral models” used in program optimization
and static analysis [Fea96; BJT99]. Indeed, like in these works, we propose an algebraic
representation of the relation between a model and its state space based on the sets of
solutions to linear constraints. We should also often use the term E-abstraction equivalence
to emphasize the importance of the linear predicate E. One of our main results is that, given
a relation N ≡E N ′, we can derive a formula Ẽ such that F is reachable in N if and only
if Ẽ ∧ F is reachable in the net N ′. Since the residual net may be much simpler than the
initial one, we expect that checking Ẽ ∧ F on N ′ is more efficient than checking F on N .

Our approach has been implemented in the tool SMPT, and computing experiments
show that reductions are effective on the large benchmark of queries used in the Model

3.2 Polyhedral Reduction and E-Equivalence 67

Checking Contest, and our approach works well, even when we only have a moderate amount
of reductions.

Outline and Contributions. The chapter is organized as follows. We start by defining
our notion of polyhedral abstraction equivalence in Sect. 3.2 and prove several of its properties
in Sect. 3.3. Section 3.4.1 describes some structural reductions used in our approach and
shows how they correspond to axioms of our polyhedral equivalence. We also prove that
polyhedral equivalences are preserved by composition and transitivity (Sect. 3.4.2), which
gives a simple way to check the equivalence between two complex nets. We use these results
in Sect. 3.5 to provide a general framework for taking advantage of polyhedral reduction
with SMT-based verification methods; and then, we describe an adaptation of the Bounded
Model Checking (BMC) method in Sect. 3.6 and prove its correctness. Before concluding,
we report on experimental results on the extensive collection of nets and queries used in the
Model Checking Contest (Sect. 3.7). Our results are pretty promising. For example, on our
benchmark, we observe that we can compute twice as many results using reductions than
without.

3.2 Polyhedral Reduction and E-Equivalence

We define a new notion, called E-abstraction, that states a correspondence between the set of
reachable markings of two Petri nets “modulo” some Presburger predicate E. Basically, we
have that (N2,m2) is an abstraction of (N1,m1) when, for every sequence m1

σ1=⇒m′
1 in N1,

there must exist a sequence m2
σ2=⇒m′

2 in N2 such that E ∧m′
1 ∧m′

2 is satisfiable. We also
require that such a sequence exists for every marking m′

2 such that E ∧m′
1 ∧m′

2 is satisfiable.
Therefore, knowing E, we can compute the reachable markings of N1 from those of N2.

In this case, we also ask for the observable sequences (refer to Sect. 1.1.4), σ1 and σ2, to
be equal. With the addition of this constraint, we prove that the reflexive and symmetric
closure of an E-abstraction is also a congruence, which we call an E-equivalence and formally
define later.

We can illustrate these notions using the two nets M1,M2 in Fig. 3.1 and the linear
constraint EM ≜ ∃a1 . (p5 = p4) ∧ (a1 = p1 + p2) ∧ (a2 = p3 + p4) ∧ (a1 = a2). Net M1 (left)
is taken from Sect. 1.1.5 (Fig. 1.1) where we showed that marking m′

1 ≜ p0∗3 p2∗1 p3∗1 p6∗3
is reachable from the initial marking m1 by firing the sequence t0t0t1t1t2t3t4. Then we
have EM ∧ m′

1 entails (p0 = 3) ∧ (p6 = 3) ∧ (a2 = 1). Hence, if we prove that (M1,m1)
is EM -equivalent to (M2,m2), we can conclude that the marking m′

2 ≜ a2∗1 p0∗3 p6∗3 is
reachable in M2.

Conversely, we have several markings (exactly 4) in M1 that correspond to the constraint
EM ∧m′

2, that is, (p5 = p4) ∧ (p1 + p2 = 1) ∧ (p3 + p4 = 1). All these markings are reachable
in M1 using the same observable sequence a a b c.

68 Polyhedral Reduction

5

p0

p1 p2

p3

p4

p5

4

p6

t0 a

t1

τ

t2

τ

t3 b

t4

c

≡EM

t5

a a2

t7

c
4p6

t6

b
5p0

Fig. 3.1 An example of Petri net (Fig. 1.1), (M1,m1) (left), and one of its polyhedral reductions,
(M2,m2) (right), with EM ≜ ∃a1 . (p5 = p4) ∧ (a1 = p1 + p2) ∧ (a2 = p3 + p4) ∧ (a1 = a2).

In practice—but not directly entailed by our equivalence definition since the relation is
symmetric—, each marking m′

2 reachable in N2 can be associated with a unique subset of
markings reachable in N1, defined from the solutions to E ∧m′

2. We can show (Theorem 4.8
in Chapter 4) that this gives a partition of the reachable markings of (N1,m1) into “convex
sets”—hence the name polyhedral abstraction—each associated to a reachable marking in
N2. This motivates our choice of calling this relation a polyhedral abstraction (and polyhedral
abstraction equivalence, or just polyhedral equivalence, when the relation holds in both ways).

Our approach is particularly useful when the state space of N2 is very small compared to
that of N1. In the extreme case, we can even find examples where N2 is the “empty” net (a
net with zero places and, therefore, a unique marking), but this condition is not a requisite
in our approach.

While our approach does not dictate a particular method for finding pairs of equivalent
nets, we rely on an automatic approach based on the use of structural net reductions. When
the net N1 can be reduced, we will obtain a resulting net (N2) and a condition (E) such
that N2 is a polyhedral reduction of N1. In this case, E will always be expressed as a
conjunction of equality and inequality constraints between linear combinations of integer
variables (marking places and some existential variables). This is why we should often use
the term reduction constraints when referring to E. We aim to transform any reachability
problem on the net N1 into a reachability problem on the (reduced) net N2, which is typically
much easier to check.

3.2.1 Solvable Predicates

Before formally defining our equivalence, we must introduce some constraints on the condition,
E, used to correlate the markings of two different nets, N1 and N2. We say that a pair of
markings (m1,m2) over NP1 ×NP2 are compatible when they have the same number of tokens
on their shared places, meaning m1(p) = m2(p) for all p in P1 ∩ P2. This is a necessary and
sufficient condition for formula m1 ∧m2 to be satisfiable.

3.2 Polyhedral Reduction and E-Equivalence 69

Moreover, if V is the set of free variables of m1, m2, and the free variables of E are included
in V , we say that m1 and m2 are related up-to E, denoted m1≡E m2, when E ∧m1 ∧m2 is
satisfiable.

m1≡E m2 ⇔ ∃m ∈ NV . m |= E ∧m1 ∧m2 (3.1)

This leads to the notion of solvable predicate, such that every reachable marking of N1 can
be paired with at least one reachable marking of N2 to form a solution of E; and reciprocally.

Definition 3.1 (Solvable Predicate of Reduction Constraints). A Presburger predicate,
E, is solvable for N1, N2 if and only if for all reachable markings m1 in N1 there exists
at least one marking m2 of N2, related to m1 up-to E (i.e., m1≡E m2), and vice versa
for every reachable marking m2 in N2.

This relation defines an equivalence between markings of two different nets (≡E ⊆
NP1 × NP2) and, by extension, can be used to define an equivalence between nets themselves,
that is called polyhedral equivalence, where all reachable markings of N1 are related to
reachable markings of N2 (and conversely), as explained next.

3.2.2 E-Equivalence

In the following, when we use an E-abstraction equivalence between two marked nets (N1,m1)
and (N2,m2), we ask that condition E be solvable for N1, N2 (see condition (A2)). This
property will always be true for the reduction constraints generated with our method.

We define our notion of E-abstraction as an equivalence relation between the markings
reached using equal “observable sequences”. An E-abstraction equivalence (shortened as
E-equivalence) is an abstraction in both directions.

Definition 3.2 (E-Abstraction and E-Abstraction Equivalence). Assume that N1 ≜

(P1, T1,Pre1,Post1) and N2 ≜ (P2, T2,Pre2,Post2) are two Petri nets with respective
labeling functions l1, l2, over the same alphabet Σ, and that E is a Presburger formula
whose free variables are included in P1 ∪ P2. We say that the marked net (N2,m2) is an
E-abstraction of (N1,m1), denoted (N1,m1) ⊑E (N2,m2), if and only if:

(A1) the initial markings are related up-to E, meaning m1≡E m2;
(A2) for all firing sequences (N1,m1) ϱ1−→(N1,m

′
1) in N1, there is at least one marking m′

2
over P2 such that m′

1≡E m′
2 (i.e., solvable), and for all markings m′

2 over P2 such
that m′

1≡E m′
2 there exists a firing sequence ϱ2 ∈ T ⋆

2 such that (N2,m2) ϱ2−→(N2,m
′
2)

and l1(ϱ1) = l2(ϱ2).

We say that (N1,m1) is E-equivalent to (N2,m2), denoted (N1,m1) ≡E (N2,m2), when
we have both (N1,m1) ⊑E (N2,m2) and (N2,m2) ⊑E (N1,m1).

70 Polyhedral Reduction

Although E-abstraction looks like a simulation, it is not, since the pair of reachable
markings m′

1,m
′
2 from the definition does not satisfy (N1,m

′
1) ⊑E (N2,m

′
2) in general.

Therefore, this relation ⊑E is broader than a simulation, but suffices for our primary goal,
Petri net reduction. Of course, ≡E is not a bisimulation either. It is also quite simple to
show that checking E-abstraction equivalence is undecidable in general.

Theorem 3.1 (Undecidability of E-Equivalence). The problem of checking whether a
statement (N1,m1) ≡E (N2,m2) is valid is undecidable.

Proof. By contradiction, we suppose that there exists some algorithm, say A, that checks
the E-abstraction equivalence problem. More precisely, the input of A consists of two
marked nets (N1,m1) and (N2,m2), as well as a Presburger formula E with free variables
in the places of N1 and N2. The output of A is a Boolean, indicating whether (N1,m1) ≡E

(N2,m2) holds or not.
Let us consider another problem: given any pair of marked nets (N1,m1) and (N2,m2)

with the same set of places, and equal initial markings (i.e., m1 = m2), check the marking
equivalence of both nets, that is check if R(N1,m1) = R(N2,m2) holds. This problem is
known to be undecidable*. Yet, we will show that algorithm A is always able to answer to
this problem, hence the contradiction.

Take any pair of marked nets (N1,m1) and (N2,m2) with the same set of places and
m1 = m2. We equip each net with a labeling function l1 (resp. l2) such that l1(t) = τ (resp.
l2(t) = τ) for all transition t of N1 (resp. N2). Let us show first that: (N1,m1) ⊑E (N2,m2)
with the trivial constraint E ≜ True is equivalent to R(N1,m1) ⊆ R(N2,m2).

Condition (A1) trivially holds since m1 = m2. We now show that condition (A2) is
necessary and sufficient for R(N1,m1) ⊆ R(N2,m2):

• Assume that condition (A2) holds and take a marking m′
1 in R(N1,m1). We have

m′
1≡E m′

1. Then, by condition (A2) we get m′
1 ∈ R(N2,m2), and so R(N1,m1) ⊆

R(N2,m2).
• Assume that R(N1,m1) ⊆ R(N2,m2) and take a firing sequence (N1,m1) ϱ1−→(N1,m

′
1).

Since all transitions are silent we have l1(ϱ1) = ϵ. Both nets share the same sets
of places, thus m′

1 satisfies m′
1≡E m′

1 (and no other marking m′
2 ≠ m′

1 satisfies
the condition m′

1≡E m′
2). By assumption, m′

1 ∈ R(N2,m2), meaning (N2,m2) ϱ2−→
(N2,m

′
1) for some firing sequence ϱ2 such that l2(ϱ2) = ϵ, and so, condition (A2)

holds.
The statement above is proved. By immediate symmetry, we get that

R(N1,m1) = R(N2,m2) is equivalent to (N1,m1)≡E (N2,m2). As a consequence,
checking the marking equivalence problem is equivalent to checking the E-equivalence
problem on (N1,m1) and (N2,m2), with E the trivial constraint. Since algorithm A is sup-

3.3 Basic Properties of Polyhedral Reduction 71

posed to answer to the latter, it equivalently answers to the former, which is a contradiction.

* Hack proved the undecidability of the marking equivalence between two subparts of nets
N1, N2 given a pair of initial markings not necessary equal [Hac76]. However, his proof’s
construction leads to the same results when initial markings are equal.
Note that condition (A2) in Definition 3.2 can be defined in an alternative way using

directly observable sequences:

(A2’) for all observable sequences σ such that (N1,m1) σ=⇒ (N1,m
′
1), there is at least one

marking m′
2 over P2 such that m′

1≡E m′
2, and for all markings m′

2 over P2 such that
m′

1≡E m′
2 we must have (N2,m2) σ=⇒ (N2,m

′
2).

Condition (A2) also entails two necessary (but not sufficient) conditions on the sets of
reachable markings: (1) E∧m is satisfiable for all markings m in R(N1,m1) or R(N2,m2); and
(2) assume thatm′

1,m
′
2 are markings ofN1, N2, respectively, such that E∧m′

1∧m′
2 is satisfiable,

then m′
1 is reachable if and only if m′

2 is reachable, i.e., m′
1 ∈ R(N1,m1)⇔ m′

2 ∈ R(N2,m2).
By definition, relation ≡E is symmetric, but we expect that N2 is a reduced version of

N1. In particular, we expect that |P2| ⩽ |P1|. That is why by convention, we will consider
that the net on the right of an equivalent statement corresponds to the reduced net.

3.3 Basic Properties of Polyhedral Reduction

We prove that we can use E-equivalence to check the reachable markings of N1 simply by
looking at the reachable markings of N2. We give a first property that is useful in the context
of Bounded Model Checking (BMC) when we try to find a counter-example to a property by
looking at firing sequences with increasing length. Our second property is useful for checking
invariants and is at the basis of our implementation in SMPT of the PDR method for Petri
nets.

Lemma 3.2 (Reachability Checking). Assume that (N1,m1) ≡E (N2,m2). Then for all
pairs of markings m′

1,m
′
2 of N1, N2 such that m′

1≡E m′
2 and m′

2 ∈ R(N2,m2) it is the
case that m′

1 ∈ R(N1,m1).

Proof. Take m′
1,m

′
2 a pair of markings in N1, N2 such that m′

1≡E m′
2 and m′

2 ∈ R(N2,m2).
Hence, there is a firing sequence ϱ2 such that (N2,m2) ϱ2−→(N2,m

′
2). By condition (A2), since

m′
1≡E m′

2, there must be a firing sequence in N1, say ϱ1, such that (N1,m1) ϱ1−→ (N1,m
′
1).

Hence, m′
1 ∈ R(N1,m1).

Lemma 3.2 (see Fig. 3.2) can be used to find a counter-example m′
1 to some property F in

N1 (where F is a formula whose variables are in P1), just by looking at the reachable markings

72 Polyhedral Reduction

of N2. Indeed, it is enough to find a marking m′
2 reachable in N2 such that m′

2 |= E ∧ ¬F .
This is the result we use in our implementation of the BMC method.

Our second property can be used to prove that every reachable marking of N1 can be
traced back to at least one marking of N2 using the reduction constraints. (While this
mapping is surjective, it is not a function since a state in N2 could be associated with multiple
states in N1.)

Lemma 3.3 (Invariance Checking). Assume that (N1,m1) ≡E (N2,m2). Then for all
m′

1 in R(N1,m1) there is m′
2 in R(N2,m2) such that m′

1≡E m′
2.

Proof. Since m′
1 is reachable, there must be a firing sequence ϱ1 in N1 such that (N1,m1) ϱ1−→

(N1,m
′
1). By condition (A2), there must be some marking m′

2 over P2, related to m′
1 up-to

E, such that (N2,m2) ϱ2−→ (N2,m
′
2) (for some firing sequence ϱ2). Therefore, we have m′

2
reachable in N2 such that m′

1≡E m′
2.

Using Lemma 3.3 (see Fig. 3.3), we can easily extract an invariant on N1 from an invariant
on N2. If property E∧¬F is not reachable on N2, then we can prove that ¬F is not reachable
on N1, meaning F is an invariant. This property (the invariant conservation theorem of
Sect. 3.5) ensures the soundness of the model checking technique implemented in our tool.

m1 m′
1

m2 m′
2

m1 ≡E m2
∀m′

1 . m′
1 ≡E m′

2

Fig. 3.2 Illustration of Lemma 3.2.

m1 m′
1

m2 m′
2

m1 ≡E m2 ∃m′
2 . m′

1 ≡E m′
2

Fig. 3.3 Illustration of Lemma 3.3.

3.4 Deriving E-Equivalences Using Reductions

Before looking at the straightforward combination of the polyhedral equivalence with SMT-
based methods, we present some reduction rules (Sect. 3.4.1) and show that we can infer an
infinite number of equivalences from a single reduction rule using compositionality, transitivity,
and structural modifications involving labels (Sect. 3.4.2). Therefore, each reduction rule can
be interpreted as a schema for several polyhedral equivalences.

3.4 Deriving E-Equivalences Using Reductions 73

3.4.1 Reduction Rules

We define a simplified set of relations that can act as “axioms” in a system for deriving
E-abstraction equivalences. Each of these axioms derives from a standard structural reduction
rule (see, e.g., [Ber87; BLD19]), where labeled transitions play the role of interfaces with a
possible outside “context”.

Each rule is defined by a triplet ((N1,m1), E, (N2,m2)) such that (N1,m1) ≡E (N2,m2).
A rule also defines possible values for the initial markings, which can be expressed using
integer parameters, and may also include a condition that should be true initially.

Each of our rules corresponds to instances of the reduction system defined in a previous
work on “counting reachable markings” [BLD19]. Hence, they also correspond to instances of
reduction rules implemented in a tool called Reduce, which can automatically find occurrences
of reductions in Petri nets and apply them recursively. We give more information about this
tool and its relation to our approach in Sect. 3.4.3. This section also contains an example
showing how to apply our reduction rules to derive the equivalence stated in Fig. 3.1.

We consider four general families of reductions: first rules for agglomerating places (like
[concat] and [agg]); then rules based on a “place invariant” over the initial net (what we
call a redundancy rule like [red] and [shortcut]); rules for garbage collecting dead places or
transitions (like [deadt] and [redt]); and finally rules that can be used to abstract constant
or “closed” places (like [constant] and [source]).

We give a detailed proof of correctness for our first “reduction axiom”, rule [concat]
since it is representative of the complexity of checking simple instances of E-abstraction
equivalence. We do not prove similar results for all the rules defined in this section but will
only give one other example for the redundancy rule [red]. All the correctness proofs for the
reduction rules in this section are similar to one of these examples.

Rule [CONCAT]

Our first example is the prototypical example of net reduction, as defined in [Ber87]. It also
corresponds to the simplest example of the agglomeration rule.

Rule [concat], Fig. 3.4, can be used to fuse together two places “connected only through
a deterministic transition” (modeled as a silent transition in our approach). The constraint
for applying this rule is that place y2, in the initial net, must be empty. We also have the
condition that no transition except the one we agglomerate (hence no transition that can
potentially be merged with an outside context in a synchronous composition, see later in
Sect. 3.4.2) can add a token directly to place y2. This condition is necessary to ensure the
correctness of this rule; see Proposition 3.4.

Note that nets N1 and N2 are not bounded since transition a can always be fired to
increase the marking of places y1 and x. This means that we need to consider an unbounded
number of firing sequences.

74 Polyhedral Reduction

Ky1

τ

y2

a b

c

≡x = y1 + y2
K x

a b

c

Fig. 3.4 Rule [concat].

Proposition 3.4 (Correctness of Rule [concat]). We have (N1,m1) ≡E (N2,m2), with
E the system containing the single equation x = y1 + y2, and N1, N2 the nets depicted in
Fig. 3.4.

Proof. The constraints on the initial marking of the nets are such that m1(y1) = m2(x) =
K ⩾ 0 and m1(y2) = 0. To ease the presentation, we should use τ, a, b, c as the name of
the transitions and not only as labels. Following Definition 3.2, (N1,m1) ≡E (N2,m2) is
shown by proving both (N1,m1) ⊑E (N2,m2) and (N2,m2) ⊑E (N1,m1).

We start by proving condition (A1) and the first constraint of condition (A2) for
(N1,m1) ⊑E (N2,m2): by construction, we have m1≡E m2 and, for any marking m′

1,
m′

1≡E m′
2 holds by taking m′

2(x) = y1 + y2.
We now prove the second constraint of condition (A2) for the relation (N1,m1) ⊑E

(N2,m2). Assume that (N1,m1) ϱ1−→ (N1,m
′
1) and that m′

1≡E m′
2. By definition of E, we

must have m′
2(x) = m′

1(y1) +m′
1(y2). Take ϱ2 the unique firing sequence of N2 such that

l1(ϱ1) = l2(ϱ2) (ϱ2 is obtained from ϱ1 by erasing all occurrences of the silent transition).
We prove that it is the case that (N2,m2) ϱ2−→ (N2,m

′
2), by induction on the length of ϱ1:

• (Base Case) If ϱ1 = ϵ then we choose ϱ2 = ϵ and m′
2 = m2.

• (Induction Case) We have ϱ1 = ς1 t where t is one of the transitions τ, a, b or c.
Therefore, there is a marking m′′

1 over N1 such that (N1,m1) ς1−→ (N1,m
′′
1) t−→ (N1,m

′
1).

By induction hypothesis, there is a firing sequence ς2 and a marking m′′
2 over N2 such

that m′′
2(x) = m′′

1(y1) +m′′
1(y2) and (N2,m2) ς2−→ (N2,m

′′
2). The property follows a

case analysis on the possible choice of t.

3.4 Deriving E-Equivalences Using Reductions 75

Case t = τ : in this case, the overall number of tokens is left unchanged, and we
choose ϱ2 = ς2 and m′

2 = m′′
2.

Case t = a : transition a can always be fired, we choose ϱ2 = ς2 a and m′
2 the unique

marking such that m′′
2

a−→ m′
2.

Case t = b : since b can be fired from m′′
1 it must be the case that m′′

1(y1) ⩾ 1.
Hence, m′′

2(x) ⩾ 1 and b can also fire from m′′
2 in N2. We choose σ2 = ς2 b and

m′
2 the unique marking such that m′′

2
b−→ m′

2. The proof is similar in the case
where t = c.

Conversely, we show (N2,m2) ⊑E (N1,m1). Condition (A1) still holds by construction.
The first constraint of condition (A2) holds by noticing that, if m′

2 is given, it suffices to
define m′

1(y1) = m′
2(x) and m′

1(y2) = 0. Then, m′
1≡E m′

2 holds as expected.
We are left to prove the second constraint of condition (A2). Assume that we have

(N2,m2) ϱ2−→ (N2,m
′
2). To begin with, we prove that there is a firing sequence ϱ1 such

that (N1,m1) ϱ1−→ (N1,m
′
1) and l1(ϱ1) = l2(ϱ2), where m′

1 is the marking defined by
m′

1(y1) = m′
2(x) and m′

1(y2) = 0 (all the tokens are in y1). We define ϱ1 as the (unique)
sequence obtained from ϱ2 by adding one occurrence of the τ -transition before each
occurrence of c in ϱ2. Intuitively, we always keep all the tokens in place y1 of N1, except
before firing a c; in this case, we add a token to place y2. We prove, using induction on the
size of ϱ2, that ϱ1 is a legitimate firing sequence of (N1,m1) and that (N1,m1) ϱ1−→ (N1,m

′
1).

As in the previous case, we proceed by induction on the length of the firing sequence and
by case analysis on the last transition fired in N2.

• (Base Case) If ϱ2 = ϵ then we choose σ1 = ϵ and m′
2 = m2.

• (Induction Case) We have ϱ2 = ς2 t where t is one of the transitions a, b or c.
Therefore, there is a marking m′′

2 over N2 such that (N2,m2) ς2−→ (N2,m
′′
2) t−→ (N2,m

′
2).

By induction hypothesis, there is a firing sequence ς1 and a marking m′′
1 such that

m′′
1(y1) = m′′

2(x) and (N1,m1) ς1−→ (N1,m
′′
1).

Case t = a : transition a can always be fired, we choose ϱ1 = ς1 a and m′
1 the unique

marking such that m′′
1

a−→ m′
1.

Case t = b : since b can be fired from m′′
2 it must be the case that m′′

2(x) ⩾ 1. Hence,
m′′

1(y1) ⩾ 1 and b can also fire from m′′
1 in N2. We choose ϱ1 = ς1 b and m′

2 the
unique marking such that m′′

1
b−→ m′

1.
Case t = c : since c can be fired from m′′

2 it must be the case that m′′
2(x) ⩾ 1.

Hence, m′′
1(y1) ⩾ 1 and it is possible to fire the sequence τ c from m′′

1. So we
have ϱ1 = ς1 τ c.

Condition (A2) follows from the fact that, when marking m′
2 is fixed, then all solutions

m′
1 to the constraint m′

1≡E m′
2 can be reached by firing a sequence of τ transitions from

m0′
1 such that m0′

1 (y1) = m′
2(x) and m0′

1 (y2) = 0.

76 Polyhedral Reduction

Rule [AGG]

Our second example of a rule is for the agglomeration of places, see Fig. 3.5, that can be used
to simplify a “cluster of places”, where tokens can move freely between y1 and y2. This is an
instance of the general “loop agglomeration” rule given in Fig. 7 of [BLD19].

We could easily define a family of reduction rules similar to [agg] and [concat] but for
longer “loops” or “chains” of places or with the addition of weights on the arcs. For the sake
of brevity, we only list one archetypal instance of each rule in this section.

Ky1

τ

a b

τ

Ny2

dc

≡x = y1 + y2 K +Nx

c

a b

d

Fig. 3.5 Rule [agg].

Rules [RED] and [SHORTCUT]

Our following two rules, Fig. 3.6, are reductions that can be used to eliminate redundant
places, meaning places whose marking derives from a place invariant (and the knowledge of
the marking of other places).

In rule [red], for instance, with the assumption that we have more tokens in place z than
in y initially, it is always the case that m(z)−m(y) is a constant for all the reachable states
m. Hence, we can safely eliminate z and keep the relevant information in our linear system
E.

Rule [shortcut] gives a more involved example that relies on a condition involving more
than two places, an invariant of the form z = y1 + y2 +K.

We give the proof of correctness for the equivalence corresponding to rule [red]. The
proofs for other redundant place elimination rules are all similar.

Proposition 3.5 (Correctness of Rule [red]). Assuming K ⩽ N , we have (N1,m1) ≡E

(N2,m2), with E the system containing the single equation x = y +N −K, and N1, N2

the nets depicted in Fig. 3.6.

3.4 Deriving E-Equivalences Using Reductions 77

Proof. Condition K ⩽ N is necessary to have that N −K ⩾ 0, and therefore that the
marking of y in N2 is indeed non-negative.

By construction, we have m1≡E m2, satisfying condition (A1). The first constraint of
condition (A2) follows from the fact that z = y+N−K is an invariant on (N1,m1), meaning
that for all firing sequences ϱ such that (N1,m1) ϱ−→(N1,m

′
1) we have m′

1(z) = m′
1(y)+N−K.

This can be proved by a simple induction on the length of ϱ. Hence, E is satisfied for every
reachable marking in (N1,m1), and so E is solvable.

We now prove the second constraint of condition (A2) for the relation (N1,m1) ⊑E

(N2,m2). Assume that (N1,m1) ϱ−→ (N1,m
′
1). We have that ϱ is also a firing sequence

of (N2,m2) and, moreover, (N2,m2) ϱ−→ (N2,m
′
2) such that m′

2(y) = m′
1(y). The proof is

similar in the other direction.

Ky N z

b

a

≡z = y +N −K

a

Ky

b

a

y1

b

y2

c

K

z

ed

≡z = y1 + y2 + K a

y1

b

y2

c

ed

Fig. 3.6 Rule [red] (above), assuming K ⩽ N , and rule [shortcut] (below).

Rules [REDT] and [DEADT]

We can use the same approach to simplify transitions in a net rather than places. One
such example is rule [redt], to remove redundant transitions. Such rules are interesting
because, when applied in collaboration with others, they can create new opportunities to
apply reductions. We give an example of such a mechanism in the example of Sect. 3.4.3.

Another example is the elimination of dead transitions, rule [deadt] (Figure 3.7), that
can eliminate transitions that are “structurally dead”. In this example, we know that place x
will always stay empty since no transition can increase its marking. Hence, the τ transition is
dead, and we can remove it without modifying the set of reachable markings or the observable
sequences.

78 Polyhedral Reduction

y1

a b

τ τ

y2

c d

≡∅

y1

ba

τ

y2

c d

τx

y

z

a

b

≡x = 0

y

z

a

b

Fig. 3.7 Rules [redt] (above), and [deadt] (below).

Rules [CONSTANT] and [SOURCE]

Our last examples of rules illustrate the case of equivalences (N1,m1) ≡E (N2,m2) where
the final Petri net is “empty” (denoted ∅). A Petri net with an empty set of places has only
one marking; the empty mapping (the only function in ∅ → N).

In this case, the reachable markings of (N1,m1) are exactly defined by the non-negative
solutions of the predicate E.

Such cases may occur in practice when we can apply several reductions in a row. We say
that the initial net is “fully reducible”. In example [source], we can abstract the state space
of the initial net with the single constraint x ⩽ K.

Kx ≡x = K ∅ τKx ≡x ⩽ K ∅

Fig. 3.8 Rules [constant] (left) and [source] (right).

We have other rules that allow us to fully reduce a net. For instance, specific structural
or behavioral restrictions, such as nets that are marked graphs or other cases where the set
of reachable markings is exactly defined by the solutions of the state equation [Huj+20a;
Huj+20b].

3.4 Deriving E-Equivalences Using Reductions 79

3.4.2 Composition Laws

We prove that polyhedral equivalence is a transitive relation (Theorem 3.6) that is also closed
by synchronous composition (Theorem 3.8) and relabeling (Theorem 3.9). These results can
be used as a set of “algebraic laws” allowing us to derive complex equivalence assertions from
much simpler instances, or axioms, inside arbitrary contexts. We give an example of such
reasoning in Sect. 3.4.3.

Before defining our composition laws, we describe sufficient conditions to compose equiva-
lence relations safely. The goal is to avoid inconsistencies that could emerge if we inadvertently
reuse the same variable in different reduction constraints.

Let EQ be the statement (N1,m1) ≡E (N2,m2). We say that the equivalence statement
EQ′ : (N2,m2) ≡E′ (N3,m3) is compatible with EQ when P1 ∩ P3 ⊆ P2. We also say that a
net N3 is disjoint from EQ when (P1 ∪ P2) ∩ P3 = ∅.

The composition laws stated in the following theorems help build larger equivalences from
simpler axioms (reduction rules). In the next section, we show some examples of reductions
and how they occur in the example of Fig. 3.1.

Preservation by Chaining

We prove we can chain equivalences together to derive more general reduction rules. When
doing so, we need to combine constraints together. Since the equivalence is symmetric, it is
enough to prove the results on E-abstraction.

Theorem 3.6. Assume that (N1,m1) ⊑E (N2,m2) and (N2,m2) ⊑E′ (N3,m3) are two
compatible statements, then (N1,m1) ⊑∃P2\(P1∪P3).E∧E′ (N3,m3).

Proof. We show both conditions (A1) and (A2) of Definition 3.2 applied to the relation
(N1,m1) ⊑∃P2\(P1∪P3).E∧E′ (N3,m3). We start by proving (A1) and the first part of (A2).

Assume that S is the set of places “freshly” introduced in P2 but not in P3, i.e.,
S ≜ P2 \ (P1 ∪ P3). First, we prove that predicate ∃S . E ∧ E′ is solvable for N1, N3.
Take a marking m′

1 in R(N1,m1). From condition (A2) of the statement (N1,m1) ⊑E

(N2,m2) there is a marking m′
2 ∈ R(N2,m2) such that m′

1≡E m′
2. Again, from the

statement (N2,m2) ⊑E (N3,m3), there is also a marking m′
3 ∈ R(N3,m3) such that

m′
2≡E′ m′

3. By assumption, both equivalence statements are compatible, i.e., P1∩P3 ⊆ P2,
then m′

1 ∧ m′
2 ∧ m′

3 is satisfiable. Since FV(E) ⊆ P1 ∪ P2 and FV(E′) ⊆ P2 ∪ P3,
we have FV(E) ∩ FV(E′) ⊆ P2, then m′

1 ∧ m′
2 ∧ m′

3 ∧ E ∧ E′ is satisfiable. Hence,
|= ∃S . E ∧ E′ ∧m′

1 ∧m′
3, equivalent to m′

1≡∃S.E∧E′ m′
3.

For similar reasons, we have m1≡E m2 and m2≡E′ m3 entails m1≡∃S.E∧E′ m3. Indeed,
we still have the stronger property that ∃S . m1 ∧m2 ∧m3 ∧E ∧E′ is satisfiable. From
this, we obtain condition (A1) and the first constraint of condition (A2).

80 Polyhedral Reduction

For the second constraint of condition (A2), we assume that σ is an observable sequence
such that (N1,m1) σ=⇒ (N1,m

′
1). Hence, using the fact that (N1,m1) ⊑E (N2,m2), we have

(N2,m2) σ=⇒ (N2,m
′
2) for every marking m′

2 of N2 such that m′
1≡E m′

2. Using a similar
property from (N2,m2) ⊑E′ (N3,m3), we have (N3,m3) σ=⇒ (N3,m

′
3) for every marking m′

3
of N3 such that m′

2≡E m′
3. The result follows from the observation that, since E and E′

are both solvable and the nets are compatible, for all markings m′′
1 of N1, if a marking m′′

3
of N3 satisfies m′′

1 ≡∃S.E∧E′ m′′
3 then there must be a marking m′′

2 of N2 such that both
m′′

1 ≡E m′′
2 and m′′

2 ≡E′ m′′
3.

Preservation by Synchronous Composition

Our next result relies on the classical synchronous product operation between labeled Petri
nets [LAV91]. Assume that N1 ≜ (P1, T1,Pre1,Post1) and N2 ≜ (P2, T2,Pre2,Post2) are two
labeled Petri nets with respective labeling functions l1 and l2 on the respective alphabets Σ1

and Σ2. Without loss of generality, we can assume that the sets P1 and P2 are disjoint.
We introduce a new symbol, ◦, used to build (structured) names for transitions that are

not synchronized. The synchronous product between N1 and N2, denoted as N1∥N2, is the
net (P1 ∪ P2, T,Pre,Post) with labeling function l where T is the smallest set containing:

• transition (t, ◦) if l1(t) ̸∈ Σ2, such that l((t, ◦)) ≜ l1(t);
• transition (◦, t) if l2(t) ̸∈ Σ1, such that l((◦, t)) ≜ l2(t);
• and transition (t1, t2) if l1(t1) = l2(t2) ̸= τ , such that l((t1, t2)) ≜ l1(t1).

The flow functions of N1∥N2 are such that Pre((t1, t2), p) ≜ Pre1(t1, p) if p ∈ P1 and
t1 ̸= ◦, or Pre2(t2, p) if p ∈ P2 and t2 ̸= ◦ (and 0 in all the other cases). Similarly, for Post.

To simplify our proofs, we define a notion of projection over firing sequences of N1∥N2,
that is two functions ϱ · 1 and ϱ · 2 such that ϵ · i = ϵ and (ϱ t) · i = (ϱ · i) (t · i) for all i ∈ 1..2,
where (t1, ◦) · 1 = t, and (◦, t2) · 1 = ϵ, and (t1, t2) · 1 = t1 (and symmetrically with ·2 on the
second component of each transition pair).

Projections can be used to extract from a firing sequence of N1∥N2 the transitions that
were fired from the left (·1) and right (·2) components of the synchronous product.

We also need to define a dual relation, denoted ϱ1∥ϱ2, that defines the (potential) “zip
merge” of firing sequences in T ⋆

1 ×T ⋆
2 into firing sequences of N1∥N2, when the two sequences

can synchronize. When defined, ϱ1∥ϱ2 is the smallest set of sequences of N1∥N2 satisfying
the following inductive rules. In particular, we say that ϱ1 and ϱ2 can be synchronized when
ϱ1∥ϱ2 ̸= ∅.

• ϵ∥ϵ ≜ {ϵ}

• (t1 ϱ1)∥ϵ ≜
{
{(t1, ◦) ϱ | ϱ ∈ (ϱ1∥ϵ)} if l1(t1) ̸∈ Σ2,
∅ otherwise.

3.4 Deriving E-Equivalences Using Reductions 81

• ϵ∥(t2 ϱ2) ≜
{
{(◦, t2) ϱ | ϱ ∈ (ϵ∥ϱ2)} if l2(t2) ̸∈ Σ1,
∅ otherwise.

• (t1 ϱ1)∥(t2 ϱ2) ≜


{(t1, t2) ϱ | ϱ ∈ (ϱ1∥ϱ2)} if l1(t1) = l2(t2) ̸= τ ,
{(t1, ◦) ϱ | ϱ ∈ ϱ1∥(t2 ϱ2)} if l1(t1) ̸∈ Σ2,
{(◦, t2) ϱ | ϱ ∈ (t1 ϱ1)∥ϱ2} if l2(t2) ̸∈ Σ1,
∅ otherwise.

We can also project the reachable markings of a synchronous product over the reachable
markings of each component. Since the places in N1 and N2 are disjoint, we can always see a
marking m in N1∥N2 as the disjoint union of two (necessarily compatible) markings m1,m2

from N1, N2. In this case, we simply write m = m1∥m2.

More generally, we extend this product operation to marked nets and write
(N1,m1)∥(N2,m2) for the marked net (N1∥N2,m1∥m2). The following result underscores
the equivalence between the semantics (the Labeled Transition System) of N1∥N2 and the
product of the LTS of its components.

Lemma 3.7 (Projection and Product of Sequences). Assume that there is a firing
sequence (N1∥N2,m1∥m2) ϱ−→ (N1∥N2,m

′
1∥m′

2) on the synchronous product N1∥N2. Then
the projections ϱ · 1 and ϱ · 2 are firing sequences of their respective components,
(Ni,mi)

ϱ·i−→ (Ni,m
′
i) for all i ∈ 1..2, such that ϱ · 1 and ϱ · 2 can be synchronized:

ϱ · 1∥ϱ · 2 ̸= ∅. Conversely, if (Ni,mi)
ϱi−→ (Ni,m

′
i) for all i ∈ 1..2 and ϱ ∈ (ϱ1∥ϱ2) then

(N1∥N2,m1∥m2) ϱ−→ (N1∥N2,m
′
1∥m′

2).

Proof. See, for instance, Proposition 2.1 in [LAV91].

We can now prove that the E-abstraction equivalence is stable by synchronous composition.

Theorem 3.8 (Composability). Assume that (N1,m1) ⊑E (N2,m2) and that (M,m) is
disjoint from this equivalence then (N1,m1)∥(M,m) ⊑E (N2,m2)∥(M,m).

Proof. By hypothesis, predicate E is solvable for N1, N2. Hence, since M is disjoint, no
place in the net M can occur in one of the constraints of E. Therefore, E is also solvable
for the pair of nets (N1∥M) and (N2∥M). Likewise, the initial markings (m1∥m) and
(m2∥m) are compatible together and (m1∥m)≡E (m2∥m) (the constraints in m have no
effect on the constraints of E). Therefore, condition (A1) is valid for the marked nets
(N1,m1)∥(M,m) and (N2,m2)∥(M,m), and we obtain the first constraint of condition
(A2).

We are left with proving the second constraint of condition (A2). Assume that ϱ is a
firing sequence in N1∥M . By our projection property (Lemma 3.7) it must be the case

82 Polyhedral Reduction

that (N1∥M,m1∥m) ϱ−→ (N1∥M,m′
1∥m′) with (N1,m1) ϱ·1−−→ (N1,m

′
1). We also have that

(M,m) ϱ·2−−→ (M,m′) such that (ϱ · 1)∥(ϱ · 2) ̸= ∅.
By condition (A2) on the abstraction between N1 and N2, it must be the case that

(N2,m2) ϱ2−→ (N2,m
′
2), for some firing sequence ϱ2 of N2, for all markings m′

2 of N2 such
that m′

1≡E m′
2. Moreover, the observable sequence obtained from ϱ2 and ϱ · 1 are the

same: l1(ϱ · 1) = l2(ϱ2) (⋆), which means also that (ϱ2)∥(ϱ · 2) ̸= ∅. Hence, using the
second direction in Lemma 3.7, we can find a firing sequence in ϱ2∥(ϱ · 2), say ϱ′, such that
(N2∥N3,m2∥m3) ϱ′

−→ (N2∥M,m′
2∥m′). Like in the proof of condition (A1), we obtain that

(m′
1∥m′)≡E (m′

2∥m′) from the fact that m′
1≡E m′

2, and E is solvable, and M is disjoint.
We are left to prove that ϱ and ϱ′ have the same observable sequences. This is a

consequence of the fact that l1(ϱ · 1) = l2(ϱ2) (property (⋆) above); and the fact that, by
construction of ϱ′, we have ϱ′ · 1 = ϱ2 and ϱ′ · 2 = ϱ · 2.

Preservation by Relabeling

Another standard operation on labeled Petri nets is relabeling, denoted as N [a/b], which
applies a substitution to the labeling function of a net. Assume that l is the labeling function
over the alphabet Σ. We denote l[a/b] the labeling function on (Σ \ {a}) ∪ {b} such that
l[a/b](t) ≜ b when l(t) = a and l[a/b](t) ≜ l(t) otherwise. Then N [a/b] is the same as net N
but equipped with labeling function l[a/b]. Relabeling does not affect the marking of a net.
The relabeling law is true even when b is the silent action τ . In this case, we say that we
hide action a from the net.

We prove that E-abstraction equivalence is also preserved by relabeling and hiding.

Theorem 3.9. If (N1,m1) ⊑E (N2,m2) then (N1[a/b],m1) ⊑E (N2[a/b],m2).

Proof. Assume that (N1,m1) ⊑E (N2,m2). Condition (A1) does not depend on the labels,
and therefore it is also true between N1[a/b], E and N2[a/b]. For condition (A2), we use
the fact that for any firing sequences ϱ1 and ϱ2, l1(ϱ1) = l2(ϱ2) implies l1[a/b](ϱ1) =
l2[a/b](ϱ2).

3.4.3 Running Examples

We can compute net reductions by reusing a tool called Reduce, which was developed in a
previous work [BLD19]. The tool takes a marked Petri net as input and returns a reduced
net and a sequence of linear constraints. For example, given the net M1 of Fig. 3.1, Reduce
returns net M2 and equations (p5 = p4), (a1 = p1 + p2), (a2 = p3 + p4), and (a1 = a2), that
correspond to formula EM in Fig. 3.1 (if we forget about existential quantifiers).

The tool works by applying successive reduction rules in a compositional way. We give
an example of this mechanism in Fig. 3.9, showing the four reduction steps involved in this
running example.

3.4 Deriving E-Equivalences Using Reductions 83

5

p0

p1 p2

p3

p4

p5

4

p6

t0 a

t1

τ

t2

τ

t3 b

t4

c

≡p5=p4 5

p0

p1 p2

p3

p4

4

p6

t0 a

t1

τ

t5

τ

t6 b

t4

c

5

p0

p1 p2

p3

p4

4

p6

t0 a

t1

τ

t5

τ

t6 b

t4

c

≡a1=p1+p2

a1

5

p0

p3

p4

4

p6

t7 a

t5

τ

t8 b

t4

c

a1

5

p0

p3

p4

4

p6

t7 a

t5

τ

t8 b

t4

c

≡a2=p3+p4 5

p0

4

p6

t9 a

a1

a2

t10 b

t11

c

5

p0

4

p6

t9 a

a1

a2

t10 b

t11

c

≡a1=a2 5

p0

4

p6

t12 a

a2

t13 b

t14

c

Fig. 3.9 Example of sequence of four reductions leading from the net M1 to M2 from Fig. 3.1.

84 Polyhedral Reduction

The first step is a direct application of rule [red] inside a larger context; in each case,
we use colors to emphasize the subnet where the rule is applied. The two following ones are
variations of rule [concat]. Each rule introduces a fresh “place variable”, a1, and a2. Finally,
after simplification, we obtain a net with a new opportunity to apply a redundancy rule.

It is possible to prove that each reduction step computed by Reduce, from a net (Mi,mi) to
(Mi+1,mi+1) with constraints Ei, is such that (Mi,mi) ≡Ei (Mi+1,mi+1). From Theorem 3.6,
we have (M0,m0) ≡∃P2\(P1∪P2).E (Mn,mn), i.e., the results computed by Reduce always
translate into valid polyhedral equivalences.

Reduce can also perform some reduction steps that differ from structural reduction rules
(such as the ones described in Sect 3.4.1). This still entails a correct polyhedral equivalence.
For instance, the net depicted in Fig. 3.10 (left), from the MCC benchmark [Kor15], abstracts
the lifecycle of a task in a simplified operating system handling the execution of tasks on a
machine with several memory segments, disk controller units, and cores. The initial marking
of the net gives the number of resources available (e.g., there are 8192 available memory
segments in our example). A possible polyhedral reduction is depicted in Fig. 3.10 (right),
where:

E ≜ ∃a1, a2, a3 .



TaskOnDisk = DiskControllerUnit + 4096
a1 = CPUUnit + ExecutingTask
a2 = TaskSuspended + ExecutingTask
a1 = 8192
a3 = a2 + TaskReady
a4 = DiskControllerUnit + TransferToDisk
a5 = a3 + TransferToDisk

8192

FreeMemSegment

LoadingMem

endLoading

TaskReady

freeMemory

4096

DiskControllerUnit

8192

TaskOnDisk

endUnload

TransferToDisk

startUnload

startFirst

startNext

TaskSuspended8192

CPUUnit

ExecutingTask

suspend

startLoading

≡E

8192

FreeMemSegment startLoading

LoadingMem

endLoading

freeMemory

a5

4096

a4

Fig. 3.10 The SmallOperatingSystem net (left) and an equivalent polyhedral reduction (right).

3.5 SMT-Based Model Checking Using Reductions 85

This reduction is obtained, as previously, by applying successive rules. However, the
residual net is a live marked graph that is part of the PR-R class (see Sect. 1.5.4), i.e., the
potentially reachable markings (solutions of the state equation) are indeed reachable. Hence,
the residual net can be fully reduced, and the reachability set of the initial net corresponds
to the solutions of:

∃a4, a5 . E ∧
{

4096 = a4 + LoadingMem
8192 = FreeMemSegment + LoadingMem + a5

In conclusion, we can use Reduce to compute polyhedral reductions automatically. In
the other direction, we can use our notion of equivalence to prove the correctness of new
reduction patterns that could be added to the tool. While it is not always possible to reduce
the complexity of a net using this approach, we observed in our experiments (Sect. 3.7) that,
on a benchmark suite that includes almost 1 400 instances of nets, about half of them can be
reduced by a factor of more than 30%.

3.5 SMT-Based Model Checking Using Reductions

We introduce a general method for combining polyhedral reductions with SMT-based proce-
dures. Assume that we have (N1,m1) ≡E (N2,m2), where the nets N1, N2 have sets of places
P1, P2 respectively. In the following, we use p1 ≜ (p1

1, . . . , p
1
k) and p2 ≜ (p2

1, . . . , p
2
l) for the

places in P1 and P2. We also consider (disjoint) sequences of variables, x and y, ranging over
(the places of) N1 and N2. With these notations, we denote Ẽ(x,y) the formula obtained
from E where place names in N1 are replaced with variables in x, and place names in N2 are
replaced with variables in y. When we have the same place in both nets, say p1

i = p2
j , we

also add the constraint (xi = yj) to Ẽ in order to avoid shadowing variables. (Remark that
Ẽ(p1,p2) is equivalent to E, since equalities xi = yj become tautologies in this case.)

Ẽ(x,y) ≜ E{p1 ← x}{p2 ← y} ∧
∧

{(i,j)|p1
i =p2

j }
(xi = yj) (3.2)

Assume that F1 is a property that we want to study on N1, such that FV(F1) ⊆ P1. We
construct an equivalent formula F2, to study on N2, which we call the E-transform formula
of F1.

Definition 3.3 (E-Transform Formula). Assume that (N1,m1) ≡E (N2,m2) and take F1

a property with variables in P1, i.e., FV(F1) ⊆ P1. Formula F2(y) ≜ ∃x . Ẽ(x,y)∧F1(x)
is the E-transform of F1.

The following property states that, to check F1 reachable in N1, it is enough to check the
corresponding E-transform formula F2 on N2.

86 Polyhedral Reduction

Theorem 3.10 (Reachability Conservation). Assume that (N1,m1) ≡E (N2,m2) and
that F2 is the E-transform of formula F1 on N1. Then, formula F1 is reachable in N1 if
and only if F2 is reachable in N2.

Proof. Assume that (N1,m1) ≡E (N2,m2) and that property F1 is reachable in N1. Hence,
a reachable marking m′

1 in N1 exists such that m′
1 |= F1. By definition of E-abstraction,

we have at least one reachable marking m′
2 in N2 such that m′

1≡E m′
2. The condition

m′
1≡E m′

2 is equivalent to m′
1 ∧m′

2 ∧E satisfiable. By definition, we have Ẽ(p1,p2) ≡ E,
which implies m′

1(p1) ∧m′
2(p2) ∧ Ẽ(p1,p2) ∧ F1(p1) satisfiable, since the only variables

that are both in F1 and E must also be places of N1. Hence, m′
2 satisfies the E-transform

formula of F1.
Now assume that F2 is reachable in N2, i.e., there exists a reachable marking m′

2 in
N2 such that m′

2 |= F2. Since m′
2 |= ∃x . Ẽ(x,y) ∧ F1(x), we can exhibit a marking m′

1
such that |= Ẽ(m′

1,m
′
2)—that entails m′

1≡E m′
2—, and |= F1(m′

1). By definition of the
E-abstraction (condition (A2)), we have m′

1 reachable.
Since the relation ≡E is symmetric, the proof is similar in the other direction.

Since F1 invariant on N1 is equivalent to ¬F1 not reachable, we can directly infer an
equivalent conservation theorem for invariance:

Corollary 3.11 (Invariant Conservation). Assume that (N1,m1) ≡E (N2,m2) and that
F2 is the E-transform of formula ¬F1 on N1. Then F1 is an invariant on N1 if and
only if ¬F2 is an invariant on N2.

Note that ¬F2 is actually ∀x . Ẽ(x,y) =⇒ F1(x).

Negating the E-transform formula, as done in Corollary 3.11, introduces universally
quantified variables that may impact the solver performance since we require the “full” LIA
theory instead of only the quantifier-free fragment. In Chapter 5 we show how to get around
this problem using by introducing a quantifier elimination procedure.

Note also that given a formula F1, the E-transform of ¬F1 is usually not equal to the
negation of the E-transform of F1. We always compute the E-transform formula of the
formula we want to show reachable (F in EFF or AG ¬F).

3.6 Combining Polyhedral Reduction with BMC

We first developed the model checker SMPT for taking advantage of polyhedral reduction. In
addition to PDR, the tool includes the verification procedures presented in Sect. 1.5 (except
CEGAR) developed for generalized Petri nets. (No specific optimizations are applied when
we know the net is safe, like, for instance, using Boolean formulas instead of QF-LIA.) We
describe here our adaptation of BMC.

3.6 Combining Polyhedral Reduction with BMC 87

Bounded Model Checking (BMC)

We already described the BMC method in Sect. 1.5.2, an iterative method for exploring the
state space of systems by unrolling their transitions. In BMC, we compute formulas ϕi that
represent the set of markings reachable using firing sequence of length at most i until ϕi ∧ F
is satisfiable, e.g., we found a witness (or counter-example).

We aim not to develop a state-of-the-art BMC model checker for generalized Petri
nets. Instead, we develop a textbook implementation that is enough to test the impact on
performance when using reductions. BMC can rely on optimization techniques, such as
compositional reasoning; acceleration methods; or invariants on the underlying model to
add extra constraints. We do not consider such optimizations here, on purpose, since our
motivation is to study the impact of polyhedral reduction.

We believe that our use of reductions is orthogonal and does not overlap with many of
these optimizations because we do not preclude them. We show that this conjecture holds in
Chapter 5 where we combine polyhedral reductions with the best-performing tools at the
MCC.

Combination with Polyhedral Reduction

Assume that we have (N1,m1) ≡E (N2,m2). We denote T1,T2 the equivalent of the transition
relation predicate T, Equation (1.10) from Sect. 1.2.3, for the nets N1, N2 respectively. We
also use x, y for sequences of variables ranging over (the places of) N1 and N2, respectively.
We shall use ϕ(N1,m1) for the family of formulas built using operator T1 and variables
x0,x1, . . . and similarly for ϕ(N2,m2), where we use T2 and variables of the form yi.

The following property states that, to find a model of F in the reachable markings of N1

(meaning EFF true), it is enough to find a model for its E-transform in N2.

Theorem 3.12 (BMC with E-transform). Assume that (N1,m1) ≡E (N2,m2) and that
F2 is the E-transform of F1. Formula F1 is reachable in N1 if and only if there exists
j ⩾ 0 such that F2(yj) ∧ ϕj(N2,m2) is satisfiable.

Proof. Our proof relies on the property that BMC is sound and complete for finding a
finite witness (see, e.g., [Cim+16]): there is a firing sequence ϱ, of size less than i, such
that m1

ϱ−→m′
1 and m′

1 |= F1—meaning property F1 is reachable in N1— if and only if
F1 ∧ ϕi(N1,m1). We can prove this property by induction on the value of i and use the
fact that m−→m′ or m = m′ in N1 entails T1(m,m′).

By our reachability conservation theorem (Theorem 3.10), property F1 is reachable in
N1 (say with a witness sequence of size i) if and only if property F2 is reachable in N2 (say
with a witness sequence of size j). Therefore, there exists i such that F1(xi) ∧ ϕi(N1,m1)
is satisfiable if and only if there exists j such that F2(yj) ∧ ϕj(N2,m2) is satisfiable.

88 Polyhedral Reduction

We can give a stronger result, comparing the value of i and j, when the reductions used
in computing the E-abstraction equivalence never introduce new transitions. This is the case,
for example, with the reductions computed using the Reduce tool. Indeed, in this case, we can
show that we may find a witness of length i in N1 (a firing sequence of length i showing that
F1 is reachable in N1) when we find a witness of length j ⩽ i in N2. This is because, in this
case, reductions may compact a sequence of several transitions into a single one or, at worst,
not change it. Take the example of the [concat] rule in Fig. 3.9. Therefore, BMC benefits
from reductions in two ways. First, we can reduce the size of formulas ϕ (proportional to the
net’s size), and second, we can accelerate transition unrolling in the reduced net.

3.7 Experimental Results

We have implemented the approach described in Sect. 3.6 into our tool SMPT. In this section,
we report on some experimental results obtained with SMPT on the extensive benchmark of
models and formulas provided by the 2023 edition of the Model Checking Contest (MCC).

SMPT does not compute net reductions directly but relies on the tool Reduce, distributed
with the standard distribution of the Tina toolbox [BRV04; LAA23]. We also provide an open-
source, feature-complete version of an equivalent tool, called Shrink [Cha22], which provides
several Rust libraries for manipulating Petri nets and performing structural reductions.

A complete description of the benchmark and toolchain can be found in Chapter 8.

3.7.1 Distribution of Reduction Ratios

Since our approach relies on net reductions, it is natural to wonder if reductions occur in
practice. To answer this question, we computed the reduction ratio (r), obtained using
Reduce, as a quotient between the number of places deleted (pinit − pred) and the initial
number (pinit): r ≜ (pinit − pred)/pinit. We display in Fig. 3.11 the results for the whole
collection of instances in the MCC, sorted in descending order.

A ratio of 100% (r = 1) means that the net is fully reduced; the resulting net has only
one (empty) marking. We see a surprisingly high number of models that are fully reducible
with our approach (about 14% of the total number), with approximately half of the instances
that can be reduced by a ratio of 30% or more.

We evaluated the performance of SMPT using the formulas of the MCC’2023 on a selection
of 1 145 Petri nets (80% of the benchmark) taken from instances with a reduction ratio
greater than 1%.

A pair of an instance and a formula is called a test case. For each test case, we check the
formulas with and without the help of reductions using BMC and with a fixed timeout of
180 s. We selected queries that can be computed with BMC, that is, queries EFF true or

3.7 Experimental Results 89

0 200 400 600 800 1000 1200 1400
Number of instances

0

20

40

60

80

100
R

ed
uc

tio
n

ra
tio

(%
)

Fig. 3.11 Distribution of reduction ratios over the instances in the MCC.

AGF false. This adds up to a total of 9 989 test cases, which required the equivalent of 565
hours of CPU time.

3.7.2 Impact on the Number of Solvable Queries

We report our results in Table 3.1. Out of the almost 10 000 test cases, we could compute
6 423 results using reductions and only 2 903 without reductions (approximately twice more).

We compared our results with the ones provided by an oracle, which gives the expected
answer (as computed by a majority of tools, using different techniques, during the MCC
competition). We achieve 100% reliability on the benchmark, meaning we always give the
answer predicted by the oracle.

We give the number of computed results for four different categories of test cases: Full
contains only the fully reducible instances (the best possible case with our approach), while
Low/Good/High correspond to instances with a low/moderate/high level of reduction. We
chose the limits for these categories to obtain samples with comparable sizes. We also have a
general category, All, for the complete set of benchmarks.

We observe that we can compute almost twice as many results when we use reductions
than without. This gain is more significant on the High (×2.6) than on the Good (×1.57)
instances. Nonetheless, the fact that the number of additional queries solved using reductions
is still substantial, even for a reduction ratio under 50%, indicates that our approach can

90 Polyhedral Reduction

Reduction
Ratio (r)

Test
Cases

Computed Queries

With reductions Without

All r ∈ [0.01, 1] 9 989 6 423 2 903 ×2.21
Low r ∈ [0.01, 0.25[3 111 1 569 1 277 ×1.22
Good r ∈ [0.25, 0.5[2 302 1 198 762 ×1.57
High r ∈ [0.5, 1[4 748 2 724 1046 ×2.6
Full r = 1 2 130 2 130 580 ×3.67

Table 3.1 Impact of the reduction ratio on the number of solved instances.

benefit from all the reductions we can find in a model (and that numerous fully reducible
instances do not skew our results).

In the case of fully reducible nets, checking a query amounts to solving a linear predicate
on the initial marking of the reduced net. There are no iterations. For this category, we can
compute a result for all the queries, and most of these queries can be solved in less than a
few seconds (99% in less than 1 s).

3.7.3 Impact on Computation Time

To better understand the impact of reductions on the computation time, we compare the
computation time, with or without reductions, for each test case. These results do not
consider the time spent for reducing each instance. This time is negligible compared to each
test, usually in the order of 1 s. Also, we only need to reduce the net once when checking
different properties for the same instance (16 during the MCC).

We display our results in Fig. 3.12, where we give four scatter plots comparing the
computation time “with” (y-axis) and “without” reductions (x-axis), for the Low, Good, High
and Full categories of instances. Each chart uses a logarithmic scale. We also display a
histogram for each axis on the charts that gives the density of points for a given duration. To
avoid overplotting, we removed all the “trivial” properties (the bottom left part of the chart)
that can be computed with and without reduction in less than 10 ms. These “trivial” queries
(994) correspond to instances with a small state space or situations where a counter-example
can be found quickly.

We observe that almost all the data points are below the diagonal, meaning reductions
accelerate the computation, with many test cases exhibiting speed-ups larger than ×100. We
have added two light-colored, dashed lines to materialize data points with speed-ups larger
than ×10 and ×100, respectively.

On our 9 989 test cases, we timeout with reductions but compute a result without on
only 2 cases. These exceptions can be explained by border cases where the order in which
transitions are processed has a sizeable impact.

3.7 Experimental Results 91

0 1 10 100
Computation time without reduction (s)

0

1

10

100

C
om

pu
ta

tio
n

tim
e

w
ith

re
du

ct
io

n
(s

) 0
25

0 50

(a) r ∈ [0.01, 0.25[

0 1 10 100
Computation time without reduction (s)

0

1

10

100

C
om

pu
ta

tio
n

tim
e

w
ith

re
du

ct
io

n
(s

) 0

20

0 100

(b) r ∈ [0.25, 0.5[

0 1 10 100
Computation time without reduction (s)

0

1

10

100

C
om

pu
ta

tio
n

tim
e

w
ith

re
du

ct
io

n
(s

) 0
10

0 100

(c) r ∈ [0.5, 1[

0 1 10 100
Computation time without reduction (s)

0

1

10

100

C
om

pu
ta

tio
n

tim
e

w
ith

re
du

ct
io

n
(s

) 0

20

0 250

(d) r = 1

Fig. 3.12 Comparing computation time, “with” (y-axis) and “without” (x-axis) reductions
for categories Low (a), Good (b), High (c) and Full (d).

92 Polyhedral Reduction

Another interesting point is the ratio of properties that can be computed only using
reductions. This is best viewed when looking at the histogram values. A vast majority of the
points in the charts are either on the right border (computation without reductions timeout)
or on the x-axis (they can be computed in less than 10 ms using reductions).

3.8 Discussion

We propose a new method to combine structural reductions with SMT solving to check
properties on arbitrary Petri nets. While this idea is not original, the framework we developed
is new. Our main innovation resides in the use of a principled approach, where we can trace
back reachable markings (between an initial net and its residual) through a conjunction
of linear equalities (the formula Ẽ). Basically, we show that we can adapt an SMT-based
procedure for checking a property on a net (that relies on computing a family of formulas of
the form (ϕi)i∈I) into a procedure that relies on a reduced version of the net and formulas of
the form (ϕi ∧ Ẽ)i∈J .

As a proof of concept, we apply our approach to a basic implementation of the BMC
procedure. Our empirical evaluation shows promising results. For example, we can compute
twice as many results using reductions than without. In Chapter 5 we show that our approach
can be adapted to any decision procedure or tool by eliminating variables in E ∧ F that are
not places of the reduced net N2, and therefore act as existentially quantified variables in the
E-transform formula.

Our main theoretical results (the conservation theorems of Sect. 3.5) can be interpreted
as examples of reduction theorems [Lip75; CL98], that allow to deduce properties of an initial
model (N) from properties of a simpler, coarser-grained version (NR). While these works
are related, they mainly focus on reductions where one can group a sequence of transitions
into a single atomic action. Hence, in our context, they correspond to a restricted class of
reductions, similar to a subset of the agglomeration rules used in [BLD19].

We can also mention approaches where the system is simplified with respect to a given
property, for instance, by eliminating parts that cannot contribute to its truth value, like with
the slicing [Wei84] or cone of influence [CGP99] abstractions used in some model checkers.
Finding such “parts” (places and transitions) in a Petri net is not always easy, especially
when the formula involves many places. This is not a problem with our approach since we
can always abstract away a place as long as its effect is preserved in the E-transform formula.

In [Sch03], the author uses net invariants to compress the representation of markings.
This approach is based on the fact that place invariants provide linear constraints between
the markings of several places, like in our use of redundancy rules. However, the goal is to
reduce the memory footprint when computing the explicit state space while verification is
still performed on “uncompressed” markings. On the contrary, our approach can be used

3.8 Discussion 93

with symbolic methods—working on a reduced version of the net—and can use more general
rules. For instance, it cannot benefit from rules that agglomerate places.

In practice, we derive polyhedral equivalences using structural reductions, a concept
introduced by Berthelot in [Ber87]. In our work, we are interested in reductions preserving
reachable states. This contrasts with most works about reductions, where more powerful
transformations can be applied when focusing on specific properties, such as the absence of
deadlocks.

Several tools use reductions for checking reachability properties. TAPAAL [Dav+12], for
instance, is an explicit-state model checker that combines partial order reduction techniques
and structural reductions and can check properties on Petri nets with weighted arcs and
inhibitor arcs [Bøn+19]. A more relevant example is ITS-Tools [Thi15], which combines
several techniques, including structural reductions and using SAT and SMT solvers [Thi20;
Thi21]. But, it has to be kept in mind, though, that our goal is to study the impact of
polyhedral reduction in isolation from other techniques. A combination of polyhedral
reduction with ITS-Tools, TAPAAL and LoLA [Wol18] is proposed in Chapter 5.

In the following chapters, we extend our polyhedral framework. In particular, we apply our
approach to the verification of properties more complex than reachability, like the concurrent
places problem (Chapter 6). The problem, in this case, is to enumerate all pairs of places
that can be marked together for some reachable states. For this work, we rely on a new data
structure that precisely captures the structure of reduction constraints, what we call the
Token Flow Graph (Chapter 4).

On a more theoretical side, we also identified a need to develop an automated method
to prove the correctness of new reduction rules (see Chapter 7). This procedure permits
understanding the central philosophy of polyhedral reduction: to capture “flat” sub-parts of
nets, i.e., subnets with Presburger-definable reachability sets.

94

This work has been published in:

• N. Amat, B. Berthomieu, and S. Dal Zilio. “On the Combination of Polyhedral
Abstraction and SMT-Based Model Checking for Petri Nets”. In: Application and
Theory of Petri Nets and Concurrency (PETRI NETS). vol. 12734. Lecture Notes
in Computer Science. Springer, 2021. doi: 10.1007/978-3-030-76983-3_9

• N. Amat, B. Berthomieu, and S. Dal Zilio. “A Polyhedral Abstraction for Petri Nets
and its Application to SMT-Based Model Checking”. In: Fundamenta Informaticae
187.2-4 (2022), pp. 103–138. doi: 10.3233/FI-222134

The tool related to this chapter is:

• SMPT § https://github.com/nicolasAmat/SMPT

https://doi.org/10.1007/978-3-030-76983-3_9
https://doi.org/10.3233/FI-222134
https://github.com/nicolasAmat/SMPT

Chapter 4

Token Flow Graphs
Definition and Application for Marking Reachability

The first law of computer science: Every
problem is solved by yet another
indirection.

Bjarne Stroustrup

In this chapter, we propose a data structure called Token Flow Graph (TFG) that captures
the particular structure of constraints stemming from polyhedral reductions. To illustrate
the use of this new data structure, we propose to accelerate the reachability check of a given
marking.

Our data structure and algorithm are implemented in a tool, called Kong, that we evaluate
on the collection of models used in the Model Checking Contest. As when combined with
BMC, our experiments show that the approach works well, even when a moderate amount of
reductions applies.

4.1 Introduction

This chapter follows on directly from Chapter 3 by introducing Token Flow Graphs. We
reuse this new data structure in Chapter 5 to accelerate our main problem of interest, the
generalized reachability problem, by eliminating existentially quantified variables in the
E-transform formula F2(p2) ≜ ∃p1 . Ẽ(p1,p2) ∧ F1(p1), including those that may appear
in Ẽ(p1,p2); and in Chapter 6, by accelerating a more complex reachability problem, the
concurrent places problem.

96 Token Flow Graphs

Context. In Chapter 3, we introduced polyhedral reduction and used it on symbolic model
checking to accelerate the verification of “generalized” reachability properties, in the sense that
we check whether it is possible to reach a marking that satisfies a property F expressed as a
Boolean combination of linear constraints between places, such as (p0 +p1 = p2 +1)∧(p0 ⩽ p2)
for example.

This resulted in a new relation between nets, (N1,m1) ≡E (N2,m2), called polyhedral
equivalence. One of the main results is that, given a reachability formula F1 with support on
the initial net N1 it is possible to build a formula F2, called the E-transform formula of F1,
such that F1 is reachable in N1 if and only if F2 is reachable in N2.

Challenge. The challenge here is to capture the particular structure of the constraints
in E using a graph structure. To demonstrate the versatility of this approach, we want
to apply it to two specific reachability problems: first, to check the reachability of a given
marking (as an illustration in this chapter); second, to compute the concurrency relation of a
net (Chapter 6), that is all pairs of places that can be marked together in some reachable
marking.

Regarding marking reachability, we consider the simple problem of checking whether a
given marking m′

1 is reachable by firing a sequence of transitions in a net N1, starting from
an initial marking m1. We want to use TFGs to prove a stronger property than in Chapter 3
for the marking reachability problem, namely that, given a target marking m′

1 for N1, we
want to effectually compute a marking m′

2 of N2 such that m′
1 is reachable in N1 if and only

if m′
2 is reachable in N2.
This can be more efficient than our previous method since the E-transform formula

F2(p2) ≜ ∃p1 . Ẽ(p1,p2) ∧ F2(p1) can be quite complex in practice, even though the
property for marking reachability is a simple conjunction of equality constraints. For instance,
we cannot perform an explicit-state model checker since we need to solve an integer linear
problem for each new state instead of just evaluating a closed formula. Also, given a marking
m′

1 to be checked on N1, as things stand, there is nothing to prevent the existence of different
markings m′

2 related to m′
1 up-to E.

Proposal. Our algorithm relies on a new data structure, called a Token Flow Graph (TFG),
that captures the particular structure of constraints occurring in the predicate E. We describe
TFGs and show how to leverage this data structure in order to accelerate the computation of
solutions for the two reachability problems we mentioned: (1) marking reachability and (2)
concurrency relation (Chapter 6). We use the term acceleration to stress the “multiplicative
effect” of TFGs. Indeed, we propose a framework that, starting from a tool for solving
the problem (1) or (2), provides an augmented version of this tool that takes advantage of
reductions. The augmented tool can compute the solution for an initial instance, say on some
net N1, by solving it on a reduced version of N2 and then reconstructing a correct solution

4.2 Polyhedral Equivalence Relaxation 97

for the initial instance. In each case, our approach takes the form of an “inverse transform”
that relies only on E and does not involve expensive preprocessing on the reduced net.

For the marking reachability problem, we illustrate our approach by augmenting the tool
Sift, an explicit-state model checker for Petri nets part of the Tina toolbox [BRV04; LAA23]
that can check reachability properties on the fly.

Outline and Contributions Sections 4.3 and 4.4 contain our main contributions. We
describe Token Flow Graphs (TFGs) in Sect. 4.3 and prove several results about them in
Sect. 4.4. These results allow us to reason about the reachable markings of a net by playing a
“token game” on the nodes of a TFG. In Sect. 4.5, we use TFGs to define a decision procedure
for the reachability problem.

Our approach has been implemented, and computing experiments show that reductions
are effective on a large set of models (Sect. 4.6). We observe that even with a moderate
amount of reductions, we can check the marking reachability much faster with reductions
than without, often by several orders of magnitude.

4.2 Polyhedral Equivalence Relaxation

In Definition 3.2, we defined the notion of polyhedral equivalence, (N1,m1) ≡E (N2,m2),
which uses the observable sequences of nets (N1,m1) and (N2,m2), and E a Presburger
predicate with support on the places of N1 and N2 (e.g., FV(E) ⊆ P1 ∪ P2). For this current
work, we do not need to exhibit these sequences. This motivates the use of a simplified,
relaxed version of equivalence, which entails an equivalence between the state space of two
nets, (N1,m1) and (N2,m2), “up-to” a predicate E; without conditions on the observable
sequences.

Definition 4.1 (Relaxed E-Equivalence). Assume that N1 ≜ (P1, T1,Pre1,Post1) and
N2 ≜ (P2, T2,Pre2,Post2) are two Petri nets and that E is a Presburger predicate whose
free variables are in P1 ∪ P2. We say that (N2,m2) is E-equivalent to (N1,m1) with the
relaxed relation, denoted (N1,m1) ≡̇E (N2,m2), if and only if:

(A1) initial markings are related up-to E, meaning m1≡E m2;
(A2a) E ∧m is satisfiable for all markings m in R(N1,m1) or R(N2,m2);
(A2b) assume that m′

1,m
′
2 are markings of N1, N2 such that m′

1≡E m′
2, then m′

1 is
reachable if and only if m′

2 is reachable: m′
1 ∈ R(N1,m1)⇔ m′

2 ∈ R(N2,m2).

In practice, given a relation (N1,m1) ≡̇E (N2,m2), if E satisfies some well-formedness
condition then each marking m′

2 reachable in N2 can be associated with a unique subset of
markings reachable in N1, defined from the solutions to E ∧m′

2 (by conditions (A2a) and
(A2b)). We show in Theorem 4.8 that this gives a partition of the reachable markings of

98 Token Flow Graphs

(N1,m1) into “convex sets”, each associated to a reachable marking in N2. By construction,
the relaxed relation ≡̇E is directly implied by ≡E . In the following chapters, in order to
simplify the notation, the symbol ≡E stands for ≡̇E .

Proposition 4.1. If (N1,m1) ≡E (N2,m2) then (N1,m1) ≡̇E (N2,m2).

Proof. Condition (A1) for both relations is identical. Conditions (A2a) and (A2b) of the
relaxed E-equivalence (Definition 4.1) are a split of condition (A2) of the E-equivalence
(Definition 3.2) by only considering the reachability sets and omitting the observable
sequences.

The example in Fig. 4.1 (used as a running example in the previous chapter) is representa-
tive of the “shape” of reduction predicates: it mainly contains equalities of the form x = ∑

xi

over a sparse set of variables but may also include some inequalities. It can have a very
large number of literals (often proportional to the size of the initial net). Another interesting
feature is the absence of cyclic dependencies, which underlines a hierarchical relation between
variables.

5

p0

p1 p2

p3

p4

p5

4

p6

t0

t1

t2

t3

t4

≡EM

t5

a2

t74p6

t65p0

Fig. 4.1 An example of Petri net (Fig. 1.1), (M1,m1) (left), and one of its polyhedral reduction,
(M2,m2) (right), with EM ≜ ∃a1 . (p5 = p4) ∧ (a1 = p1 + p2) ∧ (a2 = p3 + p4) ∧ (a1 = a2).

In this chapter, we restrict the predicate E to the equations we obtain with our reduction
system (as the one implement in the tool Reduce), which we call linear system form in
Definition 4.2. Applying successive reductions steps (by Theorem 3.6) always leads to a
formula of the form E = ∃Q . ϕ1∧· · ·∧ϕn where ϕi’s are equalities. Existential variables in Q
correspond to the freshly introduced places not in N1 that have been removed afterward (also
from Theorem 3.6); or to slack variables introduced for encoding inequalities. For instance,
it is possible to encode p ⩽ K from the [source] rule (Fig. 3.8) into K = p+ s with s an
additional variable.

Definition 4.2 (Linear System Form). Given an equivalence statement (N1,m1) ≡E

(N2,m2) we say that the Presburger predicate E is in linear system form if and only if we
have E = ∃Q . E′, with Q a set of variables such that Q∩ (P1 ∪P2) = ∅, E′ ≜

∧
i∈1..n ϕi,

and each equality ϕi is of the form αi = Σj∈Iiβj where αi, βj in N ∪Q ∪ P1 ∪ P2.

4.3 Token Flow Graphs 99

In this chapter, as well as in Chapters 5 and 6, E is in linear system form by construction.
Thus, we simply write E ≜ ∃Q.E′ to indicate that Q and E′ are as defined in Definition 4.2
above. One of the goals of Token Flow Graphs is to abstract away the variables introduced
by the quantification ∃Q.

4.3 Token Flow Graphs

We introduce a set of structural constraints on the equations occurring in an equivalence
statement (N1,m1) ≡E (N2,m2). The goal here is to define a data structure that permits
to answer to reachability problems on N1, given a result on N2, by taking advantage of the
structure of the equations in E. Our method is tailored to the specific kind of constraints
that occur in polyhedral reductions. As stated in Definition 4.2, all our equations will be of
the form x = y1 + · · ·+ yl or y1 + · · ·+ yl = k (with k a constant in N).

We define the Token Flow Graph (TFG) of a system E ≜ ∃Q.E′ in linear system form as
a Directed Acyclic Graph (DAG) with one vertex for each variable occurring in E′. Arcs in
the TFG are used to depict the relation induced by equations in E′. We consider two kinds
of arcs, redundancy (→•) and agglomeration (◦→), corresponding to two main reduction rule
classes.

Arcs for redundancy equations, q→• p, represent equations of the form p = q (or p =
q+r+ . . .), expressing that place p can be removed and that its marking can be reconstructed
from the marking of q, r, Figure 4.2 illustrates such reduction rules on a subpart of the
net M1 given in Fig. 4.1. In this case, place p4 has the same Pre and Post relations than p5;
thus, both places are redundant. And so, by removing place p5, we obtain the TFG on the
right, corresponding to the equation p5 = p4 (modeled by a “black dot” arc).

p4

p5

t2

t3

≡p5=p4

p4

t8

t9
p4

p5

Fig. 4.2 Redundancy reduction applied on a subpart of the net M1 from Fig. 4.1 (left) and
its corresponding TFG (right).

The second kind of arc, a ◦→ p, is for agglomeration equations. It represents equations of
the form a = p+ q + . . . , generated when we agglomerate several places into a new one. In
this case, we expect that if we can reach a marking with k tokens in a, then we can certainly
reach a marking with k1 tokens in p and k2 tokens in q, . . . such that k = k1 + k2 + . . . (see
property Agglomeration in Lemma 4.3). Hence, the marking of p and q can be reconstructed
from the marking of a. In this case, places p, q, . . . are removed. We also say that node a is

100 Token Flow Graphs

inserted; it does not exist in N1 but may appear as a new place in N2 unless a subsequent
reduction removes it. We can have more than two places in an agglomeration. Figure 4.3
illustrates an example of such reduction obtained by agglomerating places p1, p2 together,
in net M1 of Fig. 4.1, into a new place a1. Thus, the TFG in Fig 4.3 (right) depicts the
obtained equation a1 = p1 + p2 (modeled by “white dot” arcs).

p1 p2

t0

t1

t3

≡EM

t10

a1

t11

a1

p1 p2

Fig. 4.3 Agglomeration reduction applied on a subpart of the net M1 from Fig. 4.1 (left) and
its corresponding TFG (right).

A TFG can also include nodes for constants, used to express invariant statements on the
markings of the form p+ q = k. To this end, we assume that we have a family of disjoint sets
K(n) (also disjoint from place and variable names), for each n in N, such that the “valuation”
of a node v ∈ K(n) will always be n. We use K to denote the set of all constants. We may
write vn (instead of just v) for a constant node whose value is n. Note that we can have
more than one constant node in K(n) with the same valuation n.

Definition 4.3 (Token Flow Graph). A Token Flow Graph (TFG) with set of places P
is a directed graph (P, S,R•, A◦) such that:

• V ≜ P ∪ S is a set of vertices (or nodes) with S ⊂ K a finite set of constants;
• R• ∈ V × V is a set of redundancy arcs, v→• v′;
• A◦ ∈ V × V is a set of agglomeration arcs, v ◦→ v′, disjoint from R•.

The primary source of complexity in our approach arises from the need to manage inter-
dependencies between A◦ and R• arcs, in situations where redundancies and agglomerations
are combined. This is not something that can be easily achieved by looking only at the
equations in E and thus motivates the need for a specific data structure.

We define several notations that will be useful in the following. We use the notation
v → v′ when we have (v→• v′) in R• or (v ◦→ v′) in A◦. We say that a node v is a root
if it is not the target of an arc, and a leaf denoted v ↛ when it has no output arc. It is
a ◦-leaf when it has no output arc of the form (v ◦→ v′). A sequence of nodes (v1, . . . , vn)
in V n is a path if for all 1 ⩽ i < n we have vi → vi+1. We use the notation v →⋆ v′ when
there is a path from v to v′ in the graph or when v = v′. We write v ◦→X when X is the
largest subset {v1, . . . , vk} of V such that X ̸= ∅ and v ◦→ vi ∈ A◦ for all i ∈ 1..k. And
similarly, we write X→• v when X is the largest, non-empty set of nodes {v1, . . . , vk} such

4.3 Token Flow Graphs 101

that vi→• v ∈ R• for all i ∈ 1..k. Finally, the notation ↓v denotes the set of successors of v,
that is: ↓v ≜ {v′ ∈ V | v →⋆ v′}. We extend it to a set of variables X with ↓X ≜

⋃
x∈X ↓x.

We display an example of Token Flow Graph in Fig. 4.4, which corresponds to reduction
equations in our running example, and where “black dot” arcs model edges in R• and “white
dot” arcs model edges in A◦. The idea is that each relation X→• v or v ◦→X corresponds
to one equation v = ∑

vi∈X vi in E, and that all the equations in E should be reflected in the
TFG. As mentioned, we deal with inequalities by adding slack variables, such as with the
TFG depicted in Fig. 5.2 corresponding to the polyhedral reduction of Fig. 5.1. We want
to avoid situations where the same place is removed more than once or where some place
occurs in the TFG but is never mentioned in N1, N2 or E. Furthermore, we also have the
roots (if we forget about constant nodes) that match the places in N2, and the ◦→-leaves
to the places in N1 (if we forget about slack variables). Finally, to ensure the state space
partition, slack variables may only be used on constant nodes (otherwise, one marking of the
initial net N1 may be related to two different markings in the reduced net N2). To simplify
the presentation, we also require at most one slack variable per constant (more does not
improve the expressiveness). All these constraints can be expressed using a suitable notion of
a well-formed graph built from E.

Definition 4.4 (Well-formed TFG). Assume the equivalent statement
(N1,m1)≡E (N2,m2) such that E ≜ ∃Q.E′ is in linear system form. A TFG
G ≜ (P, S,R•, A◦) for this equivalence statement is well-formed when the following
constraints are met, with P1, P2 the set of places in N1, N2:

(T1) no unused names: (P ∪ S) \K = P1 ∪ P2 ∪Q;
(T2) nodes in S are roots: if v ∈ S then v is a root of G;
(T3) nodes can be removed only once: it is not possible to have v ◦→ w and v′ → w

with v ̸= v′, or to have both v→• w and v ◦→ w;
(T4) G contains all and only the equations in E′: we have v ◦→X or X →• v if and

only if the equation v = ∑
vi∈X vi is in E′ ;

(T5) G is acyclic;
(T6) nodes in G match nets: roots in P \ S are exactly the set of places P2; for each

o-leaf v either v ∈ P1 or there is some constant root r ∈ S such that r ◦→ v ↛;
(T7) at most one slack variable per constant node: for each constant node k ∈ S there

is at most one successor v /∈ P1 such that k ◦→ v ↛.

Given a relation (N1,m1) ≡∃Q.E′ (N2,m2), the well-formedness conditions are enough to
ensure the unicity of a TFG (up-to the choice of constant nodes) when we set each equation
to be either in A◦ or in R•. In this case, we denote the graph JE′K. In practice, we use the
tool Reduce to generate the E-equivalence from the initial net (N1,m1). This tool outputs a
sequence of equations suitable to build a TFG, and for each equation, it adds a tag indicating

102 Token Flow Graphs

if it is a Redundancy or an Agglomeration. We display in Fig. 4.4 the equations generated by
Reduce for the net M1 given in Fig. 4.1, where annotations R and A indicate if an equation is
a redundancy or an agglomeration.

R |- p5 = p4
A |- a1 = p2 + p1
A |- a2 = p4 + p3
R |- a1 = a2

p0 p6a2

a1
p3 p4

p1 p2
p5

Fig. 4.4 Equations generated from net M1, in Fig. 4.1, and their associated TFG.

The constraints (T1)–(T7) are not artificial or arbitrary. In practice, we compute E-
equivalences using multiple steps of structural reductions, and a TFG exactly records the
constraints and information generated during these reductions. In some sense, equations E
abstract a relation between the semantics of two nets, whereas a TFG records the structure
of reductions between places.

4.3.1 Example of a Non-TFGizable Polyhedral Reduction

Even if every polyhedral reduction computed by our tool Reduce provides a system of
equations, with only top-level existential quantifiers, there are some reduction rules that are
non-TFGizable (i.e., no well-formed TFG can match E). An example is the [general loop
agg] rule in Fig. 4.5. We obtain E ≜ (a1 = p0 + p1)∧ (a2 = p0 + p2), and place p0 is removed
twice in two different agglomerations, a1 and a2. Hence, condition (T3) cannot be satisfied.

p0

t0

a

t1

b

t3

τ

t2

τ

p1

t4

c

t5

d

p2

t7

f

t6

e

≡E
a1

t8

a

t9

b

t11

d

t10

c

a2

t12

e

t13

f

Fig. 4.5 Example of a non-TFGizable reduction rule [general loop agg] with E ≜ (a1 =
p0 + p1) ∧ (a2 = p0 + p2).

This particular reduction rule can be applied to reduce the SmallOperatingSystem net
depicted in Fig. 3.10 by obtaining the additional reduction predicate (a1 = CPUUnit +
ExecutingTask) ∧ (a2 = TaskSuspended + ExecutingTask).

4.4 Semantics 103

We give in Sect. 4.6.2 a complete study on the few opportunities we lost to reduce a net
from the MCC benchmark due to our well-formedness constraint.

4.3.2 Example of a TFG Not Generated by Structural Reductions

It is important to mention that not only “structural reduction rules” can lead to TFGizable
polyhedral reduction. For example, the reduced version of the SmallOperatingSystem net in
Fig. 3.10 (right) is part of the PR-R class since it is a live marked graph, and its generated
equations form a well-formed TFG:

{
4096 ◦→ {a4,LoadingMem}
8192 ◦→ {FreeMemSegment,LoadingMem, a5}

4.4 Semantics

By construction, a strong connection exists between “systems of reduction equations”, ∃Q.E′,
and their associated graph, JE′K. We show that a similar relation exists between solutions of
∃Q.E′ and the “valuations” of the graph (that we then call configurations).

A configuration c of a TFG (P, S,R•, A◦) is a partial function from V to N. We use the
notation c(v) = ⊥ when c is not defined on v, and we always assume that c(v) = n when v is
a constant node in K(n).

Configuration c is total when c(v) is defined for all nodes v in V ; otherwise it is said
partial. We use the notation c|N for the configuration obtained from c by restricting its
domain to the set of places in the net N . We remark that when c is defined over all places of
N , then c|N can be viewed as a marking. As for markings, we say that two configurations c
and c′ are compatible, denoted c ≡ c′, if they have the same value on the nodes where they
are both defined: c(p) = c′(p) when c(v) ̸= ⊥ and c′(v) ̸= ⊥. (Same holds when comparing a
configuration to a marking.) We also use c to represent the system v1 = c(v1)∧· · ·∧vk = c(vk)
where the (vi)i∈1..k are the nodes such that c(vi) ̸= ⊥. We say that a configuration c is
well-defined when the valuation of the nodes agrees with the equations of JE′K.

Definition 4.5 (Well-Defined Configuration). Configuration c is well-defined when, for
all nodes p, the following two conditions hold:

(CBot) if v → w then c(v) = ⊥ if and only if c(w) = ⊥;
(CEq) if c(v) ̸= ⊥ and v ◦→X or X →• v then c(v) = ∑

vi∈X c(vi).

We prove that the well-defined configurations of a TFG JE′K are partial solutions of E′

and reciprocally. Therefore, because all the variables in E′ are nodes in the TFG (condition
(T1)), we have an equivalence between solutions of E′ and total, well-defined configurations
of JE′K.

104 Token Flow Graphs

Lemma 4.2 (Well-Defined Configurations are Solutions). Assume that JE′K is a well-
formed TFG for the equivalence (N1,m1) ≡∃Q.E′ (N2,m2). If c is a well-defined configu-
ration of JE′K, then E′ ∧ c is satisfiable. Conversely, if c is a total configuration of JE′K
such that E′ ∧ c is satisfiable then c is also well-defined.

Proof. We prove each property separately.
Assume that c is a well-defined configuration of JE′K. Since E′ is a system of reduction

equations, it is a sequence of equalities ϕ1, . . . , ϕk where each equation ϕi has the form
xi = y1 + · · ·+ yn. Also, since JE′K is well-formed we have Xi→• xi or xi ◦→Xi (only one
case is possible) with Xi ≜ {y1, . . . , yn} for all indices i ∈ 1..k. We define I as the subset
of indices in 1..k such that c(xi) is defined. By condition (CBot), we have c(xi) ̸= ⊥ if
and only if c(v) ̸= ⊥ for all v ∈ Xi. Therefore, if c(xi) ̸= ⊥, we have by condition (CEq)
that ϕi ∧ c is satisfiable. Moreover, the values of all the variables in ϕi are determined by
c (these variables have the same value in every solution). As a consequence, the system
combining c and the (ϕi)i∈I has a unique solution. On the opposite, if c(xi) = ⊥ then no
variables in ϕi are defined by c. Nonetheless, we know that system E′ is satisfiable. Indeed,
by property of E-equivalence, we know that E ∧m1 has solutions, which is also the case
with only E ≜ ∃Q.E′, hence E′ also admits solutions. Therefore, the system combining the
equations in (ϕi)i/∈I has solutions. Since this system shares no variables with the equations
in (ϕi)i∈I , we have E′ ∧ c satisfiable.

For the second case, we assume that c is total and that E′ ∧ c is satisfiable. Since
c is total, condition (CBot) is true (c(v) ̸= ⊥ for all nodes in JE′K). Assume that we
have (N1,m1) ≡∃Q.E′ (N2,m2). For condition (CEq), we rely on the fact that JE′K is
well-formed (T4). Indeed, for all equations in E′, we have a corresponding relation X→• v
or v ◦→X. Hence, E′ ∧ c satisfiable implies that c(v) = ∑

w∈X c(w).

We can prove several properties related to how the structure of a TFG constrains possible
values in well-defined configurations. These results can be thought of as the equivalent of
a “token game”, which explains how tokens can propagate along the arcs of a TFG. This is
useful in the context of Chapter 6 since we can assess that two nodes are concurrent when
we can mark them in the same configuration. (A similar result holds for finding pairs of
nonconcurrent nodes.)

Our first result shows that we can always propagate tokens from a node to its children,
meaning that if a node has a token, we can find one in its successors (possibly in a different
well-defined configuration). Property (Backward) states a dual result; if a child node is
marked, then one of its parents must be marked.

4.4 Semantics 105

Lemma 4.3 (Token Propagation). Assume that JE′K is a well-formed TFG for the
equivalence (N1,m1) ≡∃Q.E′ (N2,m2) and that c is a well-defined configuration of JE′K.

(Agglomeration) If p ◦→ {q1, . . . , qk} and c(p) ̸= ⊥ then for every sequence (li)i∈1..k

of Nk such that c(p) = ∑
i∈1..k li, we can find a well-defined configuration c′ such

that c′(p) = c(p), and c′(qi) = li for all i ∈ 1..k, and c′(v) = c(v) for every node v
not in ↓p.

(Forward) If p, q are nodes such that c(p) ̸= ⊥ and p →⋆ q then we can find a well-
defined configuration c′ such that c′(q) ⩾ c′(p) = c(p) and c′(v) = c(v) for every
node v not in ↓p.

(Backward) If c(p) > 0 then there is a root v such that v →⋆ p and c(v) > 0.

Proof. We prove each property separately. Without loss of generality, we assume that an
(arbitrary) total ordering on nodes exists.

Agglomeration: let p be a node such that p ◦→ X, with X ≜ {q1, . . . , qk}, and let
(l1, . . . , lk) ∈ Nk be a sequence such that c(p) = ∑

i∈1..k li. We define configuration c′ as a
recursive function. The base cases are defined by: c′(p) = c(p), for all i ∈ 1..k, c′(qi) = li,
and c′(v) = c(v) for all the nodes v such that v /∈ ↓p. The recursive cases concern only the
nodes that are successors of nodes in X. Let w be such a node. It cannot be a root (since
w is a successor of a node in X); hence it has at least one parent x. We consider two cases:

• Either x→• w holds: then, let Y be the set of parents of w (as expected, x ∈ Y).
Property (T3) of Definition 4.4 implies that Y →• w holds, and we define c′(w) =∑

y∈Y c
′(y).

• Or x ◦→ w holds: then x is the only parent of w by property (T3). Let Y be the set
of agglomeration children of x: we have x ◦→ Y , and w ∈ Y . We define c′(w) = c′(x)
if w is the smallest node of Y (according to the total ordering on nodes), or c′(w) = 0
otherwise. This entails c′(x) = ∑

y∈Y c
′(y) (where all terms are defined as zero except

one defined as c′(x)).
Note that the recursion always involves the parents of a given node and is, therefore,
well-founded since a TFG is a DAG. It is immediate to check that c′ is well-defined: by
construction, (CEq) is satisfied on all nodes where c′ is defined.

Forward: take a well-defined configuration c of JE′K and assume that we have two nodes
p, q such that c(p) ̸= ⊥ and p→⋆ q. The proof is by induction on the path length from p

to q. The initial case is when p = q, which is trivial. Otherwise, assume that p→ r →⋆ q.
It is enough to find a well-defined configuration c′ such that c′(r) ⩾ c′(p) = c(p). Since the

106 Token Flow Graphs

nodes not in ↓p are not in the paths from p to q, we can ensure c′(v) = c(v) for any node
v not in ↓p. The proof proceeds by case analysis on p→ r:

• Either X→•r with p ∈ X. Then by (CEq) we have c(r) = c(p)+∑v∈X,v ̸=p c(v) ⩾ c(p),
and we can choose c′ = c.

• Or we have p ◦→ X with r ∈ X. By (Agglomeration) we can find a well-defined
configuration c′ such that c′(r) = c′(p) = c(p) (and also c′(v) = 0 for all v ∈ X \ {r}).

Backward: let c be a well-defined configuration of JE′K such that c(p) > 0. The proof
is by reverse structural induction on the DAG. If p is a root, the result is immediate;
otherwise, p has at least one parent q such that q → p. As previously, we proceed by case
analysis.

• Either X →• p with q ∈ X. By (CEq), we have c(p) = ∑
v∈X c(v) > 0. Hence, there

must be at least one node q′ in X such that c(q′) > 0, and we conclude by induction
hypothesis on q′, which is a parent of p.

• Or we have q ◦→X with p ∈ X. By (CEq), we have c(q) = ∑
v∈X c(v) ⩾ c(p) > 0,

and we conclude by induction hypothesis on q, which is again a parent of p.

Until this point, none of our results rely on the properties of E-equivalence. We now
prove an equivalence between the reachable markings—of N1 and N2—and configurations of
JE′K. More precisely, we prove (Theorem 4.4) that every reachable marking in N1 or N2 can
be extended into a well-defined configuration of JE′K. This entails that we can reconstruct
all the reachable markings of N1 by looking at well-defined configurations obtained from
the reachable markings of N2. Our algorithm for computing the concurrency relation in
Chapter 6 will be a bit smarter since we do not need to enumerate exhaustively all the
markings of N2. Instead, we only need to know which roots can be marked together.

Theorem 4.4 (Configuration Reachability). Assume that JE′K is a well-formed TFG for
the equivalence (N1,m1) ≡∃Q.E′ (N2,m2). If m is a marking in R(N1,m1) or R(N2,m2)
then there exists a total, well-defined configuration c of JE′K such that c ≡ m. Conversely,
given a total, well-defined configuration c of JE′K, marking c|N1 is reachable in (N1,m1)
if and only if c|N2 is reachable in (N2,m2).

Proof. We prove each point separately.
First, we take a marking m in R(N1,m1) (the case m in R(N2,m2) is similar). By

property (A2a) of Definition 4.1, E ∧m is satisfiable. Hence, it admits a non-negative
integer solution c, meaning a valuation for all the variables and places in Q (existential
variables), N1 and N2 such that E′ ∧ c is satisfiable and c(p) = m(p) if p ∈ N1. We
may freely extend c to include constants in K (whose values are fixed), thus according to

4.5 Marking Reachability 107

condition (T1) of Definition 4.4, this solution c is defined over all the nodes of JE′K. It is
well-defined by virtue of Lemma 4.2.

For the converse property, we assume that c is a total, well-defined configuration of
JE′K and that c|N1 is in R(N1,m1) (the case c|N2 in R(N2,m2) is again similar). Since c is
a well-defined configuration, from Lemma 4.2 we have E ∧ c satisfiable. Therefore, we have
E ∧ c|N1 ∧ c|N2 satisfiable. By condition (A2b) of Definition 4.1, we have c|N2 in R(N2,m2),
as needed.
The second result of this theorem justifies the following definition.

Definition 4.6 (Reachable Configuration). Configuration c is reachable for an equiva-
lence statement (N1,m1) ≡∃Q.E′ (N2,m2) if c is total, well-defined and c|N1 ∈ R(N1,m1)
(resp. c|N2 ∈ R(N2,m2)).

The previous fundamental results demonstrate the possibilities of TFGs to reason about
the state space of the initial net from the one of the reduced net and vice versa.

4.5 Marking Reachability

We illustrate the benefit of Token Flow Graphs by describing a simple model checking
algorithm. The goal is to decide if a marking, say m′

1, is reachable in the initial net (N1,m1)
by checking a reachability property on the smaller net (N2,m2). We start by proving some
auxiliary results.

Lemma 4.5 (Unicity of Marking Reduction). Assume that JE′K is a well-formed TFG
for the equivalence (N1,m1) ≡∃Q.E′ (N2,m2). Given a marking m′

1 of N1 there exists at
most one total, well-defined configuration c such that c ≡ m′

1.

Proof. Let c1 and c2 be two total, well-defined configurations such that c1 ≡ m′
1 and

c2 ≡ m′
1. Let X be the set of nodes x such that c1(x) ̸= c2(x). By contradiction, we

suppose that X is not empty (that is, we suppose that c1 ̸= c2). For each node x in X, we
know that x does not belong to P1, since c1 and c2 agree on m′

1. Consequently, by virtue
of property (T6) of Definition 4.4, for each x in X either it admits an output x ◦→ y, or x
is a slack variable (there is some constant root r ∈ K such that r ◦→ x↛). We examine
the two cases in turn.

• We consider an element x0 of X such that x0 ◦→ Y0 holds with Y0 disjoint from
X (such an element x0 necessarily exists if some there is some x ∈ X and y such
that x ◦→ y; otherwise, X would contain a cycle of ◦-arcs, which is forbidden by the
acyclic property (T5) of the well-formed TFG). Then, since c1 is well-defined, we
know that c1(x0) = ∑

y∈Y0 c1(y) by property (CEq). However, we have c1(y) = c2(y)

108 Token Flow Graphs

for all y ∈ Y0 since Y0 is disjoint from X. Hence, c1(x0) = ∑
y∈Y0 c2(y) = c2(x0),

which contradicts x0 ∈ X.
• We consider an element x0 of X such that x0 ↛ and a constant root r such that
r ◦→ Y with x0 ∈ Y . By condition (T7), for all nodes v in Y we have either v ∈ P1

(then not in X), or v → v′ for some node v′. Our previous case demonstration
ensures that (Y \ {x0}) ∩X = ∅. We have c1(r) = c2(r), then by property (CEq)
Σv∈Y c1(v) = Σv∈Y c2(v), which contradicts x0 ∈ X, since c1(v) = c2(v) for all nodes
in Y \ {x}.

In conclusion, X must be empty, that is, c1 = c2. There can be, at most, one well-defined
configuration.
Then, as a corollary of this lemma and of Theorem 4.4, we get:

Theorem 4.6 (Reachability Decision). Assume that JE′K is a well-formed TFG for
the equivalence (N1,m1) ≡∃Q.E′ (N2,m2). Deciding if a marking m′

1 is reachable in
R(N1,m1) amounts to constructing a total, well-defined configuration c such that c ≡ m′

1
and then checking if c|N2 is reachable in R(N2,m2).

Proof. Let m′
1 a marking of N1. Assume that there exists a total, well-defined configuration

c of JE′K such that c ≡ m′
1. By Lemma 4.5 we know that such configuration c is unique.

Applying Theorem 4.4 ensures that m1 is reachable in R(N1,m1) if and only if c|N2 is
reachable in R(N2,m2).

Otherwise, if no such configuration c exists, we can immediately conclude that m′
1 is

not reachable by Theorem 4.4.

Hence, given an equivalence (N1,m1) ≡∃Q.E′ (N2,m2) and the associated TFG JE′K, we
first extend our marking of interest m′

1 into a total well-defined configuration c, as done by
Algorithm 4.1, next. (Lemma 4.5 ensures that if such configuration exists, then it is unique.)
As stated in Theorem 4.6, if c restricted to N2 is a marking reachable in (N2,m2), then m′

1
is reachable in (N1,m1). Otherwise, ¬m′

1 is an invariant on R(N1,m1).

4.5.1 Examples of Marking Projection

We illustrate this algorithm by taking two concrete examples on the marked net M1 given in
Fig. 4.1. Assume we want to decide if marking m′

1 ≜ (p0 = 0 , p1 = 2 , p2 = 0 , p3 = 1 , p4 =
1 , p5 = 1 , p6 = 0) is reachable in (N1,m1), for m1 as depicted in Fig. 4.1. This marking
can be extended into a total, well-defined configuration c, with c(a1) = c(a2) = 2. And so,
deciding of the reachability of marking m′

1 in (N1,m1) is equivalent to deciding whether
marking m′

2 ≜ (p0 = 0 , a2 = 2 , p6 = 0) is reachable in (N2,m
′
2) (which it is not). Observe

that m′
1 would be reachable if the initial marking m1 was (p0 = 2, p6 = 1) and the other

places empty.

4.5 Marking Reachability 109

Conversely, assume that our marking of interest is m′′
1 such that m′′

1(p4) = 2 and m′′
1(p1) =

m′′
1(p2) = 0. It is not possible to extend this marking into a well-defined configuration c,

since c(a1) = m′′
1(p1) + m′′

1(p2) = 0 and c(a1) = c(a2) > m′′
1(p4). In this case, we directly

obtain that m′′
1 is not reachable in (N1,m1) for every initial marking m1.

4.5.2 Description of the Algorithm

The Reachable function (Algorithm 4.1) is a direct implementation of Theorem 4.6: it
builds a total configuration c, then checks that it is well-defined (we omit the function
Well-Defined, which is obvious), and finally finds out if c|N2 is reachable in (N2,m2). This
algorithm relies on the recursive procedure BottomUp (Algorithm 4.2) that extends the
marking of interest m′

1 into a total, well-defined configuration if there is one.

Algorithm 4.1 Reachable(m′
1, JE′K, (N2,m2))

In: m′
1 : a marking of N1,

(N2,m2): reduced net such that (N1,m1) ≡∃Q.E′ (N2,m2) holds,
JE′K : well-formed TFG for the E-equivalence above.

Out: a boolean indicating if m′
1 ∈ R(N1,m1).

1: ;; c is a configuration of JE′K.
2: c← ⊥
3:
4: for all p ∈ P1 do c[p]← m1[p]
5: for all v ∈ K(n) for some n do c[v]← n
6:
7: ;; JE′K is (V,R,A), as in Definition 4.3.
8: for all v ∈ V do BottomUp(c, v, JE′K)
9:

10: return Well-Defined(c) ∧ c|N2 ∈ R(N2,m2)

Algorithm 4.2 BottomUp(c, v, JE′K)
In: JE′K : the TFG structure,

v : a node in JE′K.
In out: c : a partial configuration of JE′K.
Post: c is defined for all nodes of ↓v.

1: for all v′ such that v → v′ do
2: BottomUp(c, v′, JE′K)
3:
4: if v ∈ K(n) for some n and ∃v′ ̸∈ P1 such that v ◦→ v′ ↛ then
5: c[v′]← c[v]−∑w∈X\{v′}|v◦→X c[v′]
6:
7: if v ◦→X then c[v]←∑

v′∈X c[v′]

110 Token Flow Graphs

We note that the second algorithm, which is recursive, always terminates since it simply
follows the TFG structure. We still have to prove that Algorithm 4.1 always returns the
correct answer.

Theorem 4.7 (Algorithm 4.1 is Sound and Complete). The verdict returned by Reach-
able(m′

1, JE′K, (N2,m2)) is equivalent to deciding wether m′
1 ∈ R(N1,m1).

Proof. We consider two cases.
Case C1: the algorithm returns false because c is not well-defined (line 10). In this case,

we show that no well-defined configuration c extending m′
1 exists, and thus m′

1 is not
reachable by Theorem 4.4.

Case C2: the algorithm returns the value of c|N2 ∈ R(N2,m2). Thanks to Theorem 4.6,
it suffices to show that c is total, well-defined, and extends m′

1.

We start with case C2, which states the algorithm’s soundness. Let us show that c
is total: for every node v, if v is a constant, or if it belongs to P1, it is set by lines 4
and 5 of Algorithm 4.1. Otherwise, v is a slack variable or not a ◦-leaf (by property (T6)
of Definition 4.4), hence it is set by lines 5 or 7 of Algorithm 4.2, which is invoked on
every node of the TFG (line 8, Algorithm 4.1). Additionally, c is well-defined because it
passed the test line 10. It also extends m′

1 by consequence of line 4 (those values are not
overwritten later in Algorithm 4.2 because of property (T6)).

Case C1 states the completeness of the algorithm. By contraposition, we suppose that
there exists a total well-defined configuration c′ extending m′

1, and show by induction
on the recursive calls to BottomUp that the algorithm builds a configuration c equal
to c′. More precisely, we show that an invocation of BottomUp(c, v, JE′K) returns a
configuration c that coincides with c′ on all nodes of ↓v. The initial configuration c built by
the algorithm extends m′

1 and sets the constants (lines 4 and 5 of Algorithm 4.1). Then, for
any invocation of BottomUp(c, v, JE′K), for every node w in ↓v, if w is a node in P1, then
c(v) = c′(v) holds immediately. Otherwise, w is a slack variable or not a ◦-leaf. If w ̸= v,
then w is in ↓u for some child u of v, and c(v) = c′(v) holds by induction hypothesis on the
recursive call to BottomUp(c, u, JE′K) that occurred in line 2. In the special case where
w is a slack variable, then v is a constant root, and we have c(v) = c(v′), still by induction
hypothesis on the call line 5. If w = v, then c(v) is set by line 7, that is c(v) = ∑

v′∈X c(v′).
By the induction hypothesis, we have c(v′) = c′(v′) for all v′ children of v (the recursive
call occurred also in line 2). Hence, c(v) = ∑

v′∈X c′(v′) = c′(v) by property (Ceq) since
c′ is well-defined. Consequently, c(w) = c′(w) for all w in ↓v. As a result, c = c′, since
BottomUp is invoked on all nodes of the TFG.

4.5 Marking Reachability 111

4.5.3 State Space Partition

We can use the previous results to derive an interesting result about the state space of
equivalent Petri nets where the associated TFG is well-formed. Indeed, we can prove that, in
this case, we can build a partition of the reachable markings of (N1,m1) that is in bijection
with the reachable markings of (N2,m2).

Given a marking m′
2 of the reduced net N2, we define InvJE′K(m′

2) as the set of markings
of the initial net N1 compatible with m′

2.

InvJE′K(m′
2) ≜ {c|N1 | c total, well-defined configuration of JE′K such that c ≡ m′

2} (4.1)

Theorem 4.8 (State Space Partition). Assume that JE′K is a well-formed TFG for
the equivalence (N1,m1) ≡∃Q.E′ (N2,m2). The family of sets S ≜ {InvJE′K(m′

2) | m′
2 ∈

R(N2,m2)} is a partition of R(N1,m1).

Proof. The set S is a partition as a consequence of the following points:

No empty set in S. For any marking m′
2 in R(N2,m2), by Theorem 4.4, there exists a

total, well-defined configuration c such that c ≡ m. Thus, InvJE′K(m′
2) is not empty. This

implies ∅ /∈ S.

The union ∪A∈SA is equal to R(N1,m1). We prove the inclusion in both ways separately.
• Take a marking m′

1 in R(N1,m1). From Theorem 4.4 there exists a total, well-defined
configuration c such that c ≡ m and c|N2 ∈ R(N2,m2). Hence, R(N1,m1) ⊆ ∪A∈SA.

• Take a set A in S and a marking m′
1 from it. By construction, there is some marking

m′
2 ∈ R(N2,m2) and total, well-defined configuration c such that c ≡ m′

1 and
c ≡ m′

2. From Theorem 4.4, since m′
2 is reachable in (N2,m2) we have m′

1 reachable
in (N1,m1). Hence, ∪A∈SA ⊆ R(N1,m1).

Pairwise disjoint. Take two different markingsm′
2 andm′′

2 inR(N2,m2). From Lemma 4.5
we have InvJE′K(m′

2) ∩ InvJE′K(m′′
2) = ∅ since every marking of (N1,m1) can be extended

into at most one possible configuration c.

As a corollary, when a marked net (N1,m1) can be partially reduced, we know how to
partition its state space into a union of disjoint convex sets, meaning sets of markings defined
as solutions to a system of linear equations.

This result is fundamental for the first application of polyhedral reduction, model count-
ing [BLD18; BLD19], that is, counting the number of reachable markings of a net without

112 Token Flow Graphs

having to enumerate them first. Computing the cardinality of the reachability set has several
applications. For instance, it is a straightforward way to assess the correctness of tools—–all
tools should obviously find the same results on the same models.

4.6 Experimental Results

We have implemented the approach in a tool, called Kong, that performs the “inverse
transforms” described in Sect. 4.5. We use the database of models provided by the Model
Checking Contest (MCC) to experiment with our approach. A complete description of the
toolchain can be found in Chapter 8.

4.6.1 Toolchain Description

Figure 4.6 depicts the toolchain used for checking if a given marking, m′
1, is reachable in

an input net (N1,m1). In this case, marking m′
1 is defined in an input file using a simple

textual format. The tool Kong retrieves the reduction system, E, computed with Reduce and
uses it to project m′

1 into a marking m′
2, if possible. If the projection returns an error, we

know that m′
1 cannot be reachable. Otherwise, we call an auxiliary tool, in this case, Sift, to

explore the state space of (N2,m2) and try to find marking m′
2.

Reduce Sift

Kong

(N1,m1)

m′
1

m′
1 ∈ R(N1,m1)

⊥ or m′
2

E

(N2,m2)

Fig. 4.6 Toolchain of the marking reachability decision procedure.

4.6.2 Distribution of Reduction Ratios for TFGs

As in Chapter 3, we computed the reduction ratio (r), obtained using Reduce, on all the
instances (see Fig. 4.7). Here, we consider two values for the reduction ratio: one for reductions
leading to a well-formed TFG (in light orange), the other for the best possible reduction with
Reduce (in dark blue), used for instance in the SMPT model checker (Chapter 3).

A ratio of 100% (r = 1) means that the net is fully reduced; the residual net has no places,
and in this case all the roots in its TFG are constants. We see that there is a surprisingly
high number of models whose size is more than halved with our approach (about 27% of the

4.6 Experimental Results 113

instances have a ratio r ⩾ 0.5), with approximately 40% of the instances that can be reduced
by a ratio of 30% or more.

0 200 400 600 800 1000 1200 1400
Number of instances

0

20

40

60

80

100

R
ed

uc
tio

n
ra

tio
(%

)

Best possible reduction with Reduce
Reduction leading to a well-formed TFG

Fig. 4.7 Distribution of reduction ratios in the MCC.

We also observe that we lose few opportunities to reduce a net due to our well-formedness
constraint. We mostly lose the ability to simplify some instances of “partial” marking graphs
that could be reduced using inhibitor arcs or weights on the arcs, and opportunities to apply
the [general loop agg] rule (see Fig. 4.5).

4.6.3 Impact on the Marking Reachability Problem

We evaluated the performance of Kong for the marking reachability problem using a selection
of 1 092 Petri nets taken from instances with a reduction ratio greater than 1% (using
TFGizable reductions). For each instance, we generated 4 queries that are markings found
using a “random walk” on the state space of the net (for this, we used the tool Walk that is
part of the Tina toolbox [BRV04; LAA23]). We ran Kong and Sift on each query with a time
limit of 180 s.

We display our results in the charts of Fig. 4.8, which compare the minimal time limit
per query to compute a given number of queries, with and without the use of reductions.
(Note that we use a logarithmic scale for the time value). We consider two different samples
of instances: first, only the instances with a high reduction ratio (in the interval [0.5, 1]),
then the complete set of instances (r ⩾ 1).

114 Token Flow Graphs

We observe a clear advantage when we use reductions. For instance, with instances that
have a reduction ratio in the interval [0.5, 1], and with a time limit of 180 s, we double the
number of computed queries (from 556 with Sift alone, versus 1 154 with Kong). On the
opposite, the slight advantage of Sift alone, when the running time is below 0.1 s, can be
explained by the fact that we integrate the running time of Reduce to the one of Kong.

0 500 1000 1500 2000 2500
Number of computed queries

0.001

0.01

0.1

1

10

100

1000

T
im

e
lim

it
pe

r
qu

er
y

(s
)

Sift
Kong

(a) r ∈ [0.01, 1]

0 250 500 750 1000 1250
Number of computed queries

0.001

0.01

0.1

1

10

100

1000

T
im

e
lim

it
pe

r
qu

er
y

(s
)

Sift
Kong

(b) r ∈ [0.5, 1]

Fig. 4.8 Number of computed reachability queries given the query time limit for (a) all
instances, (b) instances with r ∈ [0.5, 1].

4.7 Discussion

In this chapter, we proposed a new data structure to transpose the computation of reachability
problems from an initial “high-dimensionality” domain (the set of places in the initial net)
into a smaller one (the set of places in the reduced net). Token Flow Graphs (TFGs) precisely
capture the structure of our reduction equations.

We showed how to use the TFGs to accelerate the marking reachability problem. We use
TFGs to prove a strong property for the marking reachability problem (see Sect. 4.5), namely
that, given a target marking m′

1 for N1, we can effectively compute a marking m′
2 of N2 such

that m′
1 is reachable in N1 if and only if m′

2 is reachable in N2. This can be more efficient
than our previous method since the E-transform formula F2(p2) ≜ ∃p1 . Ẽ(p1,p2) ∧ F1(p1)
can be quite complex in practice, even though the property for marking reachability is a
simple conjunction of equality constraints. For instance, we performed our experiments using
only a bare, explicit-state model checker, that cannot deal with quantifiers.

4.7 Discussion 115

This application of polyhedral reductions shows that TFGs are an effective method of
exploiting reductions. It also bears witness to the versatility of our approach. We propose
extending this approach in the following chapters. First, in Chapter 5 for projecting the
E-transform formula F2 into a quantifier-free formula with support on N2. Second, in
Chapter 6 for computing the concurrency relation of a net.

This work has been published in:

• N. Amat, S. Dal Zilio, and D. Le Botlan. “Accelerating the Computation of
Dead and Concurrent Places Using Reductions”. In: Model Checking Software
(SPIN). vol. 12864. Lecture Notes in Computer Science. Springer, 2021. doi:
10.1007/978-3-030-84629-9_3

• N. Amat, S. Dal Zilio, and D. Le Botlan. “Leveraging polyhedral reductions for
solving Petri net reachability problems”. In: International Journal on Software
Tools for Technology Transfer 25.1 (2023), pp. 95–114. doi: 10.1007/s10009-022-
00694-8

The tool related to this chapter is:

• Kong § https://github.com/nicolasAmat/Kong

https://doi.org/10.1007/978-3-030-84629-9_3
https://doi.org/10.1007/s10009-022-00694-8
https://doi.org/10.1007/s10009-022-00694-8
https://github.com/nicolasAmat/Kong

Chapter 5

Project and Conquer
Fast Quantifier Elimination for Checking
Reachability

The ability to simplify means to
eliminate the unnecessary so that the
necessary may speak.

Hans Hofmann

In this chapter, we propose a method for checking generalized reachability properties on
Petri nets that takes advantage of polyhedral reductions, but this time, that can be used
transparently as a preprocessing step of existing model checkers. The approach is based on a
new procedure that can project a reachability property, about an initial Petri net, into an
equivalent formula that only refers to the reduced version of this net.

Our projection is defined as a quantifier elimination procedure for Presburger arithmetic
tailored to the specific kind of constraints we handle in Token Flow Graphs (TFGs).

It has linear complexity, is guaranteed to return a sound property, and uses a simple
condition to detect when the result is exact. The procedure is implemented in a tool called
Octant; experimental results show that our approach works well.

5.1 Introduction

This chapter is the continuation of Chapter 3 on applying polyhedral reduction with SMT-
based methods. Nevertheless, here we rely on our specific data structure, i.e., Tokens Flow
Graphs described in Chapter 4.

118 Project and Conquer

Context. The approach we develop in this chapter relies on the notion of polyhedral
reduction from Chapter 3, which describes a linear dependence relation, E, between the
reachable markings of a net and those of its reduced version. This abstraction denoted
(N1,m1)≡E (N2,m2), after that, preserves enough information in E so that we can rebuild
the reachable markings of N1 knowing only those of N2. An interesting application of
this relation is the following reachability conservation theorem (Theorem 3.10): assume
that we have (N1,m1)≡E (N2,m2), then property F1 is reachable in N1 if and only if
F2(p2) ≜ ∃p1 . Ẽ(p1,p2) ∧ F1(p1) is reachable in N2.

We also presented a specific data structure, called Token Flow Graph, that captures
the particular structure of constraints occurring in E, and that permits to reason on the
reachable markings of N1 by playing a “token game” on the nodes of the TFG.

Challenge. Nevertheless, a complication arises from the fact that formula F2 usually
includes existentially quantified variables, standing for places that no longer occur in the
reduced net N2. This can complicate some symbolic verification techniques, such as k-
induction [SSS00], and impede the use of explicit, enumerative approaches, such as random
walk state space exploration. Indeed, in the latter case, we need to solve an integer linear
problem for each new state instead of just evaluating a closed formula.

Proposal. To overcome this problem, we propose a new method for projecting the formula
F2 into a quantifier-free one, F ′

2, that only refers to the places of N2 and preserves the verdict.
We define our projection as a procedure for quantifier elimination in Presburger Arithmetic

(PA) tailored to the specific constraints we handle in E. Whereas quantifier elimination for
existential formulas has an exponential complexity in general, our construction has linear
complexity and can only decrease the size of a formula. The procedure always terminates
and returns either (1) an exact formula F ′

2 such that F ′
2 is reachable in N2 if and only if F1

is reachable in N1; or (2) a formula F ′
2 that is (only) sound, meaning it under-approximates

the set of reachable models and, therefore, a witness of F ′
2 in N2 necessarily corresponds

to a witness of F1 in N1, but not conversely. Additionally, our approach includes a simple
condition on F1 that is enough to detect when our result is exact.

We have implemented this procedure into a new tool, called Octant, that can act as a
preprocessor, allowing any model checker to benefit from our optimization transparently.
Something that was not possible with the E-transform formula from Chapter 3. It means
we can use our approach as a front-end to accelerate any model checking tool that supports
generalized reachability properties without modifying them.

An interesting outcome of our work is the definition of a non-trivial fragment of existential
Presburger arithmetic with good complexity properties that we hope could be applicable in
other settings.

5.2 Two Examples of Reachability Formulas 119

Outline and Contributions. We define our quantifier elimination algorithm in Sect. 5.4
and prove its soundness. Our method has been implemented, and we report on the results of
several experiments (Sect. 5.5). We give quantitative evidence about several natural questions
raised by our approach. We start by proving the effectiveness of our optimization on both
k-induction and random walk. Then, we show that our method can be transparently added
to several off-the-shelf verification tools. We demonstrate this fact using three different
tools: ITS-Tools [Thi15]; LoLA [Wol18]; and TAPAAL [Dav+12]. Our experiments illustrate
the ability to use our optimization as a preprocessing step for any existing tool that can
accept the standard input formats used in the MCC. Our experiments include the top three
performing tools that participated in the reachability category of this competition, which
are, therefore, already optimized for the type of models and formulas used in our benchmark.
The results show that reductions are effective on a large set of queries and that their benefits
do not overlap with other existing optimizations, an observation already made in [Bøn+19].
We also prove that our procedure often computes an exact projection and compares favorably
well with the quantifier elimination method for full Presburger arithmetic implemented
in Redlog [DS97] and isl [Ver10]. This indicates that we can solve non-trivial quantifier
elimination problems.

5.2 Two Examples of Reachability Formulas

We start by illustrating how some formulas can be projected (and simplified). We use the
example in Fig. 5.1 throughout this chapter, composed of two nets (M1,m1) and (M2,m2),
and the relation E, for which we can prove that (M1,m1) ≡E (M2,m2). Since every marking
m′

2 with m′
2(p2) ⩾ 0 is reachable in M2, we can deduce, by condition (A2b) of the relaxed

E-equivalence (see Definition 4.1), that the reachable markings of M1 are exactly the solutions
of the system (p3 = p0 + p2 + 4) ∧ (p0 + p1 = 10) ∧ (p4 + p5 ⩽ 5). We also deduce that the
net M1 is unbounded, which is not a problem with our approach.

5

p5

t3

p4

t4

7

p3

t23

p2

t1

p0

t0

10

p1

≡E 3 p2

t5

t6

Fig. 5.1 An example of Petri net, (M1,m1) (left), and one of its polyhedral reductions, (M2,m2)
(right), with E ≜ ∃a1, a2 . (p3 = p0+p2+4)∧(a1 = p0+p1)∧(a2 = p4+p5)∧(a1 = 10)∧(a2 ⩽ 5).

120 Project and Conquer

We display the equations generated on our running example in Fig. 5.2, where annotations
R and A indicate if an equation is a redundancy or an agglomeration; and the corresponding
(unique) TFG.

R |- p3 = p0 + p2 + 4
A |- a1 = p0 + p1
A |- a2 = p4 + p5
R |- a1 = 10
R |- a2 <= 5

4 p2 p0

p3

a1

p1

10

p4 p5

a2

5

s

Fig. 5.2 Equations generated from the polyhedral reduction in Fig. 5.1, and the associated
TFG (where s is a slack variable for the constraint a2 ⩽ 5).

To keep things simple, we consider the reduction system, E ≜ (p3 = p0 + p2 + 4) ∧ (a1 =
p0 + p1), that is a subset of the constraints obtained in our running example (see the circled
part in the TFG of Fig. 4.4).

A first example of a reachability formula is G1 ≜ (p0 − p1 + p3 ⩽ 4). We want to
eliminate variables {p0, p1, p3} from E ∧G1 to keep only {a1, p2}. Using substitutions and
quantifying the variables we wish to eliminate, we map E ∧G1 into the equivalent formula
∃p0, p1 . (2 p0 − p1 + p2 + 4 ⩽ 4)∧ (a1 = p0 + p1) ≡ ∃p0 . (3 p0 + p2 ⩽ a1). From this formula,
we can obtain an exact projection of G1 by using both the isl numerical library [Ver10] and our
fast projection method, described below. This gives the projected formula (p2 ⩽ a1), whose
satisfiability in N2 is equivalent to G1 in N1. We can observe that non-trivial coefficients
(like 3 p0) can naturally appear in the problem, even though all the coefficients are 1 or −1
in the initial constraints.

Another example is G2 ≜ (p0 − p1 + p3 = 4), whose integer shadow on {a1, p2} are the
solutions to the PA formula (a1 ≡ p2 mod 3). This set is not convex, since (0, 0) and (0, 3) are
in the integer shadow, but not (0, 2). Our fast projection method will compute the formula
(a1 = p2 = 0) and flag it as an under-approximation.

In the following, we focus on the quantifier-free fragment of PA (∃PA). Without loss of
generality, we can consider only formulas in disjunctive normal forms (DNF), with linear
predicates of the form (∑ ki xi) + b ⩾ 0. We deliberately omit to add a divisibility operator
k | α, which requires that k evenly divides α since it can already be expressed with linear
predicates, though at the cost of an extra existentially quantified variable. As a reminder, this
fragment corresponds to the set of reachability formulas supported by many model checkers
for Petri nets, such as [BRV04; Dav+12; Thi15; Amp+16; Wol18].

5.3 Combining Reduction with Reachability 121

5.3 Combining Reduction with Reachability

We can define a counterpart to our notion of polyhedral abstraction which relates to reach-
ability formulas. We show that this equivalence can be used to speed up the verification
of properties by checking formulas on a reduced net instead of the initial one (see Theo-
rem 5.1 and its corollary). In the following, we assume that we have two marked nets such
that (N1,m1) ≡E (N2,m2). Our goal is to define a relation F1≡E F2, between reachability
formulas, such that F1 and F2 have the same truth values on equivalent models, with respect
to E.

Definition 5.1 (Equivalence Between Formulas). Assume that F1, F2 are reachability
formulas with variables in P1 and P2, respectively, and that FV(E) ⊆ P1 ∪ P2. We say
that formula F2 implies F1 up-to E, denoted F2⊑E F1, if for every marking m′

2 ∈ NP2

such that m′
2 |= E ∧ F2 there exists at least one marking m′

1 ∈ NP1 such that m′
1≡E m′

2
and m′

1 |= E ∧ F1.

F2⊑E F1 iff ∀m′
2 .

(
m′

2 |= E ∧ F2
)

=⇒ ∃m′
1 .

(
m′

1≡E m′
2 ∧m′

1 |= E ∧ F1
)

We say that F1 and F2 are equivalent, denoted F1 ≡E F2, when both F1⊑E F2 and
F2⊑E F1.

This notion is interesting when F1, F2 are reachability formulas on the nets N1, respectively
N2. Indeed, we prove that when F2⊑E F1, it is enough to find a witness of F2 in N2 to prove
that F1 is reachable in N1.

Theorem 5.1 (Finding a Witness). Assume that (N1,m1) ≡E (N2,m2) and F2⊑E F1,
and take a marking m′

2 reachable in (N2,m2) such that m′
2 |= F2. Then there exists

m′
1 ∈ R(N1,m1) such that m′

1≡E m′
2 and m′

1 |= F1.

Proof. Assume that we have m′
2 reachable in N2 such that m′

2 |= F2. By property (A2a)
of E-equivalence (Definition 4.1), formula E ∧m′

2 is satisfiable, which gives m′
2 |= E ∧ F2.

By definition of the E-implication F2⊑E F1, we get a marking m′
1 such that m′

1 |= F1 and
m′

1≡E m′
2. We conclude that m′

1 is reachable in N1 thanks to property (A2b).

Hence, when F2⊑E F1 holds, F2 reachable in N2 implies that F1 is reachable in N1. We can
derive stronger results when F1 and F2 are equivalent.

Corollary 5.2. Assume that (N1,m1) ≡E (N2,m2) and F1 ≡E F2, with FV(Fi) ⊆ Pi

for all i ∈ 1..2, then: (CEX) property F1 is reachable in N1 if and only if F2 is reachable
in N2; and (INV) F1 is an invariant on N1 if and only if F2 is an invariant on N2.

122 Project and Conquer

Theorem 5.1 means that we can check the reachability (or invariance) of a formula on the
net N1 by checking instead the reachability of another formula (F2) on N2. But it does not
indicate how to compute a good candidate for F2. By Definition 5.1, a natural choice is to
select F2 ≜ E ∧F1. We can actually do a bit better. It is enough to choose a formula F2 that
has the same (integer points) solution as E ∧ F1 over the places of N2. More formally, let
A ≜ P1 \ P2, then if F2 has the same integer solutions over NP2 than the Presburger formula
∃A . (E ∧ F1), we have F1≡E F2. We say in this case that F2 is the projection of E ∧ F1 on
the set P2, by eliminating the variables in A.

In the next section, we show how to compute a candidate projection formula without
resorting to a classical, complete variable elimination procedure on ∃A . E ∧ F1, when
E ≜ ∃Q.E′ is in linear system form. This eliminates a potential source of complexity blow-up.
This projection procedure applies to cubes only, meaning a conjunction of literals ∧i∈1..n αi.
Given a formula F1, assumed in DNF, we can apply the projection procedure to each of its
cubes, separately. Then the projection of F1 is the disjunction of the projected cubes. Hence,
for the sake of simplicity, we assume from now on that F1 is a cube formula.

We can use Fourier-Motzkin elimination (FM) as a point of reference. Given a system
of linear inequalities S, with variables in V , we denote FMA(S) the system obtained by
FM elimination of variables in A from S. (We do not describe the construction of FMA(S)
here, since there exists many good references [Imb93; Mon10] on the subject.) Borrowing an
intuition popularized by Pugh in its Omega test [Pug91], we can define two distinct notions
of “shadows” cast by the projection of S. On the one hand, we have the real shadow, relative
to A, which are the integer points (in NV \A) solutions of FMA(S). On the other hand, the
integer shadow of S is the set of markings m′ with an integer point antecedent in S. We need
the latter to check a query on N1.

The main source of complexity comes from the following: although the real shadow
would be exact when dealing with rational variables, this is no longer true in the integer
domain, where the real shadow may contain strictly more solutions than the integer shadow.
Moreover, while the real shadow of a convex region is necessarily convex, this is no longer
true with the integer shadow. Like with the real shadow, the set of equations computed
with our fast projection will always be convex. Unlike FM, our procedure will compute
an under-approximation of the integer shadow, not an over-approximation. Also, we never
rearrange or create more inequalities than the one contained in S; but instead rely on variable
substitution.

5.4 Formula Rewriting

We assume given a relation (N1,m1) ≡∃Q.E′ (N2,m2), and its associated well-formed TFG
written JE′K. We consider that F1 is a cube of n literals, F1 ≜

∧
i∈1..n α

0
i . Our algorithm

rewrites each α0
i by applying iteratively an elimination step, described next, according to the

5.4 Formula Rewriting 123

constraints expressed in JE′K. The final result is a conjunction F2 ≜
∧

i∈1..n βi, where each
literal βi has support in N2. Rewriting can only replace a variable with a group of other
variables that are its predecessors in the TFG, which ensures termination in polynomial time
(in the size of E′). Although the result has the same number of literals, it usually contains
many redundancies and trivial constant comparisons so that, after simplification, F2 can
actually be much smaller than F1.

A reduction step (to be applied repeatedly) takes as input the current set of literals,
C ≜ (αi)i∈1..n, and modifies it. To ease the presentation, we also keep track of a set of
variables, B, such that ⋃i∈1..n FV(αi) ⊆ B. We assume that every literal is in normal form,
αi ≜ (∑pj∈B k

i
j pj) + bi ⩾ 0, where the ki

j ’s and bi are in Z. In the following, we denote αi(q)
the coefficient associated with variable q in αi. We also use maxX αi and minX αi for the
maximal (resp. minimal) coefficient associated with variables in X ⊆ B.

αi ≜
∑
p∈B

αi(p) p+ bi ⩾ 0 and maxX αi ≜ max {αi(p) | p ∈ X} (5.1)

5.4.1 Highest Literal Factor

We define the Highest Literal Factor (HLF) of a set of variables X with respect to a set of
normalized literals (αi)i∈I . In the simplest case, the HLF of X with respect to a single literal,
α, is the subset of variables in X with the highest coefficients in α. Then, the HLF of X
with respect to a set of literals is the—possibly empty—intersection of the HLFs of X with
respect to each literal. When non-empty, it means that at least one variable in X always has
the highest coefficient, and we say then that the whole set X is polarized with respect to the
literals (αi).

HLFX(αi) ≜ {p ∈ X | αi(p) = maxX αi}

HLFX(αi)i∈I ≜
⋂
i∈I

HLFX(αi) (5.2)

Definition 5.2 (Polarized Set of Constraints). A set of variables X ⊆
FV(C) is said polarized with respect to a set of normalized literals C when
HLFX(C) ̸= ∅.

We prove below that our procedure is exact when the variables we eliminate are polarized.
While this condition looks pretty restrictive, we observe that it is often true with the queries
used in our experiments (our projection is complete for 80% of the formulas used in the
MCC).

124 Project and Conquer

5.4.2 Formal Procedure

An elimination step is a reduction written (B,C) 7→ (B′,C ′) where C ≜ (αi)i∈1..n and B′ ⊊ B,
defined as one of the three cases below (one for redundancy, and two for agglomerations,
depending on whether the removed variables are polarized or not). We assume that literals
are in normal form and that X is a set of variables {x1, . . . , xk}. Note the precondition
↓X ∩B ⊆ X (or ↓p ∩B ⊆ {p}) on all rules, which forces them to be applied bottom-up on
the TFG (remember it is a DAG). We give a short example of how to apply rules (AGP) and
(AGD) just after Theorem 5.3.

(RED) If X →• p and ↓p ∩ B ⊆ {p} then (B,C) 7→ (B′,C ′) holds, where B′ ≜ B \ {p}
and C ′ is the set of literals α′

i obtained by normalizing the linear constraint
αi{p ← x1 + · · · + xk}. That is, we substitute p with ∑xi∈X xi in C , which is the
meaning of the redundancy equation (constraint (T4) in Definition 4.4).

(AGP) If a ◦→ X with ↓X ∩ B ⊆ X, a ∈ B and X polarized with respect to C , then
(B,C) 7→ (B′,C ′) holds, where B′ ≜ B \ X, and, by taking xj ∈ HLFX(C), we
define C ′ as the set of literals α′

i obtained by normalizing the linear constraint
αi{xl ← 0}l ̸=j{xj ← a}. That is, we eliminate the variables xl, different from xj , from
C and replace xj with a, where xj is a variable of X that always has the highest
coefficient in each literal (among the ones of X).

(AGD) If a◦→X with ↓X ∩B ⊆ X, a ∈ B, and X is not polarized with respect to C . Then
(B,C) 7→ (B′,C ′) holds, where B′ ≜ B \X and C ′ is the set of literals α′

i obtained by
normalizing the linear constraint αi{xl ← 0}l ̸=j{xj ← a} such that αi(xj) = minX αi.
Meaning we eliminate the variables xl different from xj from αi and replace xj with a,
where xj is a variable with the smallest coefficient in αi (among the ones of X). Note
that the chosen variable xj is not necessarily the same in every literal of C .

We aim to preserve the semantics of formulas at each reduction step, in the sense of the
relations ⊑E and ≡E . In the following, we use C to represent both a set of literals (αi)i∈I

and the cube formula ∧i∈I αi. We can prove that the elimination steps corresponding to the
redundancy (RED) and polarized agglomeration (AGP) cases preserve the semantics of the
formula C . On the other hand, a non-polarized agglomeration step (AGD) may lose some
markings.

5.4.3 Proof of the Procedure

We prove the main result of the chapter (Theorem 5.3), namely that fast quantifier elimination
preserves the integer solutions of a system when we only have polarized agglomerations. To
this end, we need to prove two results. First, Theorem 5.3, which entails the soundness of one

5.4 Formula Rewriting 125

elimination step. It also entails completeness for rules (RED) and (AGP). Second, we prove
a progress property (Theorem 5.6 below), which guarantees that we can apply elimination
steps until we reach a set of literals C ′ with support on the reduced net N2.

Theorem 5.3 (Projection Equivalence). If (B,C) 7→ (B′,C ′) is a (RED) or (AGP)
reduction then C ′ ≡∃Q\B.E′ C; otherwise C ′ ⊑∃Q\B.E′ C.

We prove Theorem 5.3 in two steps. We start by proving that elimination steps are sound,
meaning that the integer solutions of C ′ are also solutions of C (up-to ∃Q \B . E′). Then,
we prove that elimination is complete for rules (RED) and (AGP). In the following, we use
C to represent both a set of literals (αi)i∈I and the cube formula ∧i∈I αi.

Lemma 5.4 (Soundness). If (B,C) 7→ (B′,C ′) then C ′ ⊑∃Q\B.E′ C.

Proof. Take a valuation m′ of NB′ such that m′ |= EB ∧ C ′, where EB is ∃Q \B . E′. We
want to show that there exists a marking m of NB such that m ≡EB

m′ satisfying EB ∧C .
We have three possible cases corresponding to rule (RED), (AGP), or (AGD). In each

case, we provide a marking m built from m′. Since m ≡EB
m′ is enough to prove m |= EB,

we only need to check two properties: first that m ≡EB
m′ (i), then that m |= α for every

literal α in C (ii).
(RED) In this case we have X →• p and B′ ≜ B \ {p}, with X ≜ {x1, . . . , xk}. We can

extend m′ into the unique valuation m of NB such that m(p) = m′(x1) + · · ·+m′(xk)
and m(v) = m′(v) for all other nodes v in B \ {p}. Since p = x1 + · · · + xk is
an equation of EB (condition (T4)) we obtain that m′ ≡EB

m and therefore also
m |= EB (i).
We now prove that m |= C . The literals in C ′ are of the form ασ with σ the
substitution {p← x1 + · · ·+ xk} and α in C . Remember that, with our notations,
we have m |= α if and only if α{m} is satisfiable. By hypothesis, m′ |= ασ. Hence,
ασ{m′} is satisfiable, which is equivalent to α{m} satisfiable, and therefore m |= α

(ii), as required.

(AGP) In this case we have a ◦→ X with X ≜ {x1, . . . , xk}, polarized relative to C ,
and B′ ≜ B \X. We consider xj in X the variable in HLFX(C) that was chosen
in the reduction; meaning that C ′ is a conjunction of literals of the form α{xl ←
0}l ̸=j{xj ← a}, with α a literal of C . Given m′ a model of C ′, we define m the unique
marking on NB such that m(xj) = m(a), m(xl) = 0 for all l ̸= j, and m(v) = m′(v)
for all other variables v in B \X.
From Lemma 4.3 of Chapter 4 (the “token propagation” property of TFGs), we know
that any distribution of m(a) tokens, in place a, over the (xi)i∈1..k, is also a model of

126 Project and Conquer

E′, hence of EB. Which means that m |= EB (∗). Note that the token propagation
Lemma does not imply that the value of m(v), for the nodes “below X” (v in ↓X),
is unchanged. This is not problematic since the side condition ↓X ∩ B ⊆ X ensures
that these nodes are not in B and, therefore, cannot influence the value of α{m}.
Consider a literal α in C . Since m′ |= C ′, we have α{xl ← 0}l ̸=j{xj ← a}{m′}
satisfiable, which is exactly α{m}, since ↓X ∩B ⊆ X, as needed (ii).

(AGD) In this case we have a ◦→X with X ≜ {x1, . . . , xk}, non-polarized relative to C ,
and B′ ≜ B \X. We know that m′ |= EB, therefore there is a marking m of NB that
extends m′ such that m ≡EB

m′ (i).
Consider a literal α in C . By definition of (AGD), we have an associated literal
α′ ≜ α{xl ← 0}l ̸=j{xj ← a} in C ′ such that α(xj) = minX αi. Since the coefficient
of xj is minimal, we have ∑i∈1..k α(xi)m(xi) ⩾ α(xj)

∑
i∈1..k m(xi) = α(xj)m′(a),

and therefore ∑v∈B α(v)m(v) ⩾∑
v∈B′ α′(v)m′(v). The result follows from the fact

that α{m} is satisfiable (ii).

Now, we prove that our quantifier elimination step for the (RED) and (AGP) cases leads
to a complete projection; that is, any solution of the initial formula corresponds to a projected
solution in the projected formula.

Lemma 5.5 (Completeness). If (B,C) 7→ (B′,C ′) is a (RED) or (AGP) reduction then
C ⊑∃Q\B.E′ C ′.

Proof. Take a marking m of NB such that m |= EB ∧ C , where EB is ∃Q \B . E′. We
want to show that there exists a valuation m′ of NB′ such that m ≡EB

m′ (i) and m′ |= C ′

(ii). This is enough to prove m′ |= EB ∧ C ′. We have two cases corresponding to the rules
(RED) and (AGP).
(RED) In this case we have X→• p with X ≜ {x1, . . . , xk} and B′ ≜ B \ {p}. We define

m′ as the (unique) projection of m on B′. Since m |= EB we have m′ ≡EB
m (i).

Also, literals in C ′ are of the form α′ ≜ α{p← x1 + · · ·+ xk} where α is a literal of
C . Since m(p) = ∑

i∈1..k m(xi) and m is a model of α, it is also the case that m′ is a
model of α′ (∗∗).

(AGP) In this case we have a ◦→X with X ≜ {x1, . . . , xk} and B′ ≜ B \X. We define
m′ as the (unique) projection of m on B′, by taking m′(a) = ∑

i∈1..k m(xi). Since
m |= EB we have m′ ≡EB

m (i).
We consider xj in X the variable in HLFX(C) that was chosen in the reduction;
meaning that C ′ is a conjunction of literals of the form α{xl ← 0}l ̸=j{xj ← a}, with
α a literal of C . Since ∑i∈1..k α(xi)m(xi) ⩽ α(xj)

∑
i∈1..k m(xi) = α(xj)m′(a), we

have m′ is a model of α′ (ii).

5.4 Formula Rewriting 127

The final step of our proof relies on a progress property, meaning there is always a reduction
step to apply except when all the literals have their support on the reduced net, N2. This
property relies on relation 7→∗, the transitive closure of 7→. Together with Theorem 5.3, the
progress theorem ensures the existence of a sequence (P,C) 7→∗ (P2,C ′), such that C ≡E′ C ′

(or C ′ ⊑E′ C if we have at least one non-polarized agglomeration). In this context, P is the
set of all variables occurring in the TFG of E′; therefore, it contains P1 ∪ P2.

Theorem 5.6 (Progress). Assume that (P, F1) 7→∗ (B,C) then either B ⊆ P2, the set of
places of N2, or there is an elimination step (B,C) 7→ (B′,C ′) such that FV(C ′) ⊆ B′

and the places removed from B have no successors in B′: for all places p in B \ B′, we
have ↓p ∩ B ⊆ {p}.

Proof. Assume that we have (P, F1) 7→∗ (B,C) and B ⊈ P2.
By condition (T6) in Definition 4.4, we know that P2 are roots in the TFG JE′K. We

consider the set of nodes in B \ P2, corresponding to nodes in B with at least one parent.
Also, by condition (T5), we know that JE′K is acyclic, then there are nodes in B \ P2 with
no successors in B. We call this set L. Hence, L ≜ {v | v ∈ B \ P2 ∧ ↓v ∩B ⊆ {v}}.

Take a node p in L. We have two possible cases. If there is a set X such that X →• p,
we can apply the (RED) elimination rule. Otherwise, a node a and a set X ⊆ L (by
condition (T2)) such as a ◦→ X with p ∈ X exists. In this case, apply rule (AGP) or
(AGD), depending on whether the agglomeration is polarized.

5.4.4 Examples on Polarized and Non-Polarized Constraints

Theorem 5.3 is enough to prove our main result, that is, F2≡E F1 when all the reduction
steps corresponding to an agglomeration are on polarized variables. With two examples, let
us illustrate why our approach is sound. Assume that we want to eliminate an agglomeration
a ◦→ {q, r}, meaning that we have the condition a = q + r and that both q and r must
disappear. We consider two examples of systems, each with only two literals. One polarized
(left), with the result of applying (AGP) below; another with the result of (AGD).

3 p + 2 q − 1 r ⩾ 0
2 p + 1 q + 1 r − 5 ⩾ 0

3 p + 2 q − r ⩾ 0
− p + q + 2 r − 5 ⩾ 0

3 p + 2 a ⩾ 0
2 p + 1 a − 5 ⩾ 0

3 p − a ⩾ 0
− p + a − 5 ⩾ 0

In the left example, the set {q, r} is polarized with respect to the initial system (top),
with the highest literal factor being q. So we replace q with a in both literals and eliminate r.
Uninvolved variables (just p in this case) are left unchanged. Both systems are equivalent
because it is possible to show that every solution of the initial system (top) corresponds to a

128 Project and Conquer

solution of the resulting system (bottom) by taking a = q + r. Conversely, every solution of
the resulting system can be associated with a solution of the initial system by taking q = a

and r = 0.
The initial system on the right (top) is non-polarized: the HLF relative to {q, r} is {q}

for the first literal (+2q versus −r) and {r} in the second (+q versus 2r). So, we substitute
a to the variable with the lowest literal factor in each literal and remove the other variable (q
or r). This is sound because we take into account the worst case in each literal. However,
this is not complete because we may be too pessimistic. For instance, the resulting system
has no solution for p = 2 because it entails a ⩽ 6 and a ⩾ 7. But p = 2, q = 3, r = 2 is a
model of the initial system.

Remark. We have designed the rule (AGD) to obtain at least F2⊑E F1 when the procedure
is not complete (instead of F2≡E F1), which is useful for finding witnesses (see Theorem 5.1).
Alternatively, we could propose a variant rule, say (AGD’), which chooses the variable xj

having the highest coefficient in αi, that is αi(xj) = maxX αi. This variant guarantees a dual
result, that is, F1⊑E F2. In this case, if F2 is not reachable, then F1 is not reachable, which
is useful to prove invariants.

5.5 Experimental Results

We have implemented our fast quantifier elimination procedure in a tool, called Octant. As
previously, we use the set of models and formulas collected from the 2023 edition of the
Model Checking Contest. The net reductions applied are the same as in the previous chapter
using the tool Reduce, and we still denote r as the reduction ratio.

The size of the reduction system, E, is proportional to the number of places that are
removed. To give a rough idea, the mean number of variables in E is 1 375, with a median
value of 114 and a maximum of about 62 000. The number of literals is also rather substantial:
a mean of 869 literals (62% of agglomerations and 38% of redundancies), with a median of
27 and a maximum of about 38 000.

We report on the results obtained on two main categories of experiments: first with model
checking, to evaluate if our approach is effective in practice, using real tools; then to assess
the precision and performance of our fast quantifier elimination procedure.

5.5.1 Impact on Standard Model Checking Procedures

We start by showing the effectiveness of our approach on both random walk and k-induction.
This is achieved by comparing the computation time, with and without reductions, on a
model checker that provides a “reference” implementation of these techniques. (Without
any other optimizations that could interfere with our experiments.) It is interesting to test

5.5 Experimental Results 129

0 2000 4000 6000 8000
Number of computed queries

0.01

0.1

1

10

100

1000

T
im

e
lim

it
pe

r
qu

er
y

(s
)

Original
Projected

(a) r ∈ [0.01, 0.5[

0 500 1000 1500 2000
Number of computed queries

0.01

0.1

1

10

100

1000

T
im

e
lim

it
pe

r
qu

er
y

(s
)

Original
Projected

(b) r ∈ [0.5, 1]

Fig. 5.3 Random walk w/wo reductions.

0 500 1000 1500 2000
Number of computed queries

0.1

1

10

100

1000

T
im

e
lim

it
pe

r
qu

er
y

(s
)

Original
Projected

(a) r ∈ [0.01, 0.5[

0 500 1000 1500
Number of computed queries

0.1

1

10

100

1000

T
im

e
lim

it
pe

r
qu

er
y

(s
)

Original
Projected

(b) r ∈ [0.5, 1]

Fig. 5.4 k-induction w/wo reductions.

the results of our optimization separately on these two techniques. Indeed, each technique
is adapted to a different category of queries: properties that can be decided by finding a
witness, meaning true EF formulas or false AG ones, can often be checked more efficiently
using a random state space exploration. On the other hand, symbolic verification methods
are required to check invariants.

We display our results using the four “cactus plots” in Figs. 5.3 and 5.4. (Note that
we use a logarithmic scale for the time value). We distinguish between two categories of
instances depending on their reduction ratio. Plots on the left are for models with a low or

130 Project and Conquer

moderate reduction ratio (value of r less than 50%) and on the right are for models that
can be reduced by more than half. The first category amounts to roughly 9 015 queries
(70% of our benchmark), while the second category contains about 4 000 queries. The most
interesting conclusion we can draw from these results is that our approach is beneficial even
when there is only a limited amount of reductions.

Our experiments were performed with a maximal timeout of 180 s and integrated the
projection time into the total execution time. We observe moderate performance gains with
random exploration (with ×1.05 more computed queries on low-reduction instances and
×1.24 otherwise) and good results with k-induction (respectively ×2.52 and ×2.96).

We obtain better results if we focus on queries that take more than 1 s on the original
formula, which indicates that reductions are most effective on “difficult problems” (there
is not much to gain on instances that are already easy to solve). With random walk, for
instance, the gain becomes ×1.25 for low-reduction instances and ×1.87 otherwise. The same
observation is true with k-induction, with performance gains of ×5.38 and ×4.43, respectively.

5.5.2 Impact Under Real Conditions

We also tested our approach by transparently adding polyhedral reductions as a front-end
to three different model checkers: ITS-Tools [Thi15], LoLA [Wol18] and TAPAAL [Dav+12]
that implement portfolios of verification techniques. All three tools regularly compete in the
MCC (on the same set of queries we use for our benchmark), and TAPAAL and ITS-Tools
share the top two places in the reachability category of the 2022 and 2023 editions.

We ran each tool on our set of complete projections, which amounts to almost 80 000
runs (one run for each tool, once on both the original and the projected query). We obtained
a 100% reliability result, meaning that all tools gave compatible results on all the queries
and, therefore, compatible results on the original and projected formulas.

A large part of the queries can be computed by all the tools in less than 100 ms and
can be considered as easy. These queries are useful for testing reliability but can skew the
interpretation of results when comparing performances. This is why we decided to focus
our results on a set of 897 challenging queries, which we define as queries for which either
TAPAAL or ITS-Tools, or both, cannot compute a result before projection. The 897 challenging
queries (4% of queries) are well distributed since they cover 212 different instances (13% of
all instances), themselves covering 45 different models (20% of the models).

We display the results obtained on the challenging queries, for a timeout of 180 s, in
Table 5.1. We provide the number of computed queries before and after projection, with
the mean and median speed-up (the ratio between the computation time with and without
projection). For each tool, the “Exclusive” column reports the number of queries that can
only be computed using the projected formula. Note that we may sometimes timeout with

5.5 Experimental Results 131

the projected query but obtain a result without. This can be explained by cases where the
size of the formula blows up during the transformation into DNF.

Tool
Computed Queries Speed-up # Exclusive

QueriesOriginal Projected Mean Median

ITS-Tools 281 333 1.63 1.04 98
LoLA 188 241 10.91 1.40 86
TAPAAL 168 274 1.43 1.10 134

Table 5.1 Impact of projection on the challenging queries.

We observe substantial performance gains with our approach and can solve about half
of the challenging queries. For instance, we can compute ×1.63 more challenging queries
with TAPAAL using projections than without. (We display more precise results on TAPAAL,
the winner of the MCC 2022 edition, in Fig. 5.5.) All these results show that polyhedral
reductions are effective on a large set of queries and that their benefits do not significantly
overlap with other existing optimizations. This observation was already made, independently,
in [Bøn+19].

The approach implemented in Octant was partially included in the version of our model
checker, called SMPT, that participated in the MCC 2023 edition. We mainly left aside the
handling of under-approximated queries when the formula projection is incomplete. While
SMPT placed third in the reachability category, the proportion of queries it was able to solve
raised by 5.5% between 2022 (without the use of Octant) and 2023, to reach a ratio of 93.6%
of all queries solved with our tool. This is a substantial result, considering that the ratios for
ITS-Tools and TAPAAL in 2023 are respectively 94.6% and 94.3%.

5.5.3 Performance Evaluation of Fast Elimination

Our last set of experiments is concerned with the accuracy and performance of our quantifier
elimination procedure implement in the tool Octant. We decided to compare our approach
with Redlog [DS97] and isl [Ver10].

We display our results in the cactus plot of Fig. 5.6, where we compare the number of
projections we can compute given a fixed timeout. We observe a significant performance
gap. For instance, with a timeout of 60 s, we are able to compute 17 389 projections, out
of 17 472 queries (99.5%), compared to 10 742 (61%) with isl and 5 754 (33%) with Redlog.
So, an increase of ×1.77. This provides more empirical evidence that the class of linear
systems we manage is not trivial, or, at least, does not correspond to an easy case for the
classical procedures implemented in isl and Redlog. We also have good results concerning the
precision of our approach since we observe that about 80% of the projections are complete.

132 Project and Conquer

0 100 200 300
Number of computed queries

1

10

100

1000

T
im

e
lim

it
pe

r
qu

er
y

(s
)

Original
Projected

Fig. 5.5 Tapaal w/wo reductions.

0 5000 10000 15000 20000
Number of computed projections

0.01

0.1

1

10

100

T
im

e
lim

it
pe

r
qu

er
y

(s
)

Redlog
isl
Octant

Fig. 5.6 Redlog isl vs fast elimination.

Furthermore, projections are inexpensive. For instance, the computation time is less than 1 s
for 97% of the formulas. We also obtained a median reduction ratio (computed as for the
number of places) of 0.2 for the number of cubes and their respective number of literals.

5.6 Discussion

In this chapter, we broaden the approach proposed in Chapter 3 to a larger set of verification
methods, most particularly k-induction, which is useful to prove invariants, and simulation
(or random walk state space exploration), which is useful for finding counter-examples. We
also find a new use for TFGs (from Chapter 4) as the backbone of our variable elimination
algorithm and show that we can efficiently eliminate variables in systems of the form E ∧ F
for an arbitrary F . There exist some well-known classes of linear systems where variable
elimination has a low complexity. A famous example is given by the link between unimodular
matrices and integral polyhedra [HK10], which is related to many examples found in abstract
domains used in program verification, such as systems of differences [AS80] or octagon [Min06;
JM09]. To the best of our knowledge, none of the known classes correspond to what we define
using TFGs.

We formulated our method as a quantifier elimination procedure for a restricted class of
linear systems. There is a rich literature about quantifier elimination in Presburger arithmetic,
such as Cooper’s algorithm [Coo72; Haa18] or the Omega test [Pug91] for instance, and how
to implement it efficiently [HLL92; LS07; Mon10]. These algorithms have been implemented
in several tools, using many different approaches: automata-based, e.g. TaPAS [LP09];
inside computer algebra systems, like with Redlog [DS97]; or in program analysis tools, like

5.6 Discussion 133

isl [Ver10], part of the Barvinok toolbox. Another solution would have been to retrieve
“projected formulas” directly from SMT solvers for linear arithmetic, which often use quantifier
elimination internally. Unfortunately, this feature is not available, even though some partial
solutions have been proposed recently [Bar+22]. All the exact methods that we tested have
proved impractical in our case. This was to be expected. Quantifier elimination can be very
complex, with an exponential time complexity in the worst case (for existential formulas as
we target); it can generate very large formulas; and it is highly sensitive to the number of
variables, when our problem often involves several hundreds and sometimes thousands of
variables. Also, quantifier elimination often requires the use of a divisibility operator (also
called stride format in [Pug91]), which is not part of the logic fragment that we target.

Another set of related work is concerned with polyhedral techniques [FL11], used in
program analysis. For instance, our approach obviously shares similarities with works
that try to derive linear equalities between variables of a program [CH78], and polyhedral
reductions are very close in spirit to the notion of linear dependence between vectors of
integers (markings in our case) computed in compiler optimizations. Another indication
of this close relation is the fact that isl, the numerical library that we use to compare our
performances, was developed to support polyhedral compilation. We need to investigate
this relation further and see if our approach could find an application with program verification.

In a nutshell, we proposed a quantifier elimination procedure that can benefit from
polyhedral reductions and be used transparently as a preprocessing step of existing model
checkers. The main characteristic of our approach is to rely on a graph structure, the Token
Flow Graphs, that encodes the specific shape of our reduction equations, E.

From a more theoretical viewpoint, we have characterized a fragment of Presburger
arithmetic that has interesting complexity properties. More work is needed to fully understand
if this fragment corresponds to a well-known class of constraints and if our projection algorithm
could be helpful in another setting. In the meantime, we are also looking into ways to improve
the precision of our projection in the case where we encounter non-polarized sets of constraints.

134

This work has been published in::

• N. Amat, S. Dal Zilio, and D. Le Botlan. “Project and Conquer: Fast Quantifier
Elimination for Checking Petri Nets Reachability”. In: Verification, Model Check-
ing, and Abstract Interpretation (VMCAI). Lecture Notes in Computer Science.
Springer, 2024. doi: 10.1007/978-3-031-50524-9_5

A conference artifact is available on Zenodo:

• N. Amat, S. Dal Zilio, and D. Le Botlan. Artifact for VMCAI 2024 Paper "Project
and Conquer: Fast Quantifier Elimination for Checking Petri Net Reachability".
Zenodo, 2023. doi: 10.5281/zenodo.10061156

The tool related to this chapter is:

• Octant § https://github.com/nicolasAmat/Octant

https://doi.org/10.1007/978-3-031-50524-9_5
https://doi.org/10.5281/zenodo.10061156
https://github.com/nicolasAmat/Octant

Chapter 6

Concurrency Relation Computation
By Leveraging Token Flow Graphs

Controlling complexity is the essence of
computer programming.

Brian Kernighan

In this chapter, we leverage Token Flow Graphs (TFGs) to efficiently compute the concurrency
relation of a net, that is, all pairs of places that can be marked simultaneously in some
reachable marking. We hope this more complex reachability problem showcases the benefits
of polyhedral reduction using TFGs.

The “acceleration” algorithm is implemented in the tool Kong, which we evaluate on the
collection of safe instances used during the Model Checking Contest. Even if we restrict this
application to safe nets, we show that the approach works well.

6.1 Introduction

This chapter refers to the Token Flow Graph data structure introduced in Chapter 4 and
concludes the problems accelerated by TFGs in this thesis.

Context. We presented some applications to leverage Token Flow Graphs in the previous
chapters. In particular, we illustrated the presentation of TFGs in Chapter 4 by tackling
the problem of checking the reachability of a given marking. We also used this structure in
Chapter 5 to accelerate our first problem of interest, the generalized reachability problem, by
eliminating variables in the E-transform formula (defined in Chapter 3) that no longer occur
in the reduced net, and therefore act as existentially quantified variable.

136 Concurrency Relation Computation

Challenge. To demonstrate the versatility of the polyhedral approach, we apply it to
the concurrent places problem, that is, enumerating all pairs of places that can be marked
simultaneously in some reachable marking. Concurrent places generalize the usual notion
of dead places and are particularly useful for decomposing a Petri net into synchronized
automata executing in parallel (e.g., NUPNs) [BGP20; BG21].

Although such computation could be done by reusing some existing Petri net model
checker, this approach would not be efficient, as the number of temporal-logic formulas to be
evaluated would be quadratic in the number of places: a more “global” algorithm should be
preferred. In this case, standard reduction techniques such as slicing [Rak12] or structural
reductions [Thi20; Thi21] are not feasible because all the places are necessary for our problem.
Here, using an equation system (E) for tracing back the effect of reductions is fundamental.

Proposal. In this chapter, we propose a similar approach to the one we proposed for the
marking reachability problem (see Chapter 4). Indeed, starting from a tool for solving the
concurrent places problem, we provide an augmented version of this tool that takes advantage
of reductions. The augmented tool can compute the solution for an initial instance, say on
some net N , by solving it on a reduced version of N and then reconstructing a correct solution
for the initial instance. Our approach takes the form of an “inverse transform” that relies
only on E and does not involve expensive preprocessing on the reduced net. We illustrate
our approach by augmenting the tool Cæsar.BDD, part of the CADP toolbox [BG21; INR],
that uses BDD techniques to explore the state space of a net and find concurrent places.

We show that our approach can result in massive speed-ups since the reduced net may have
far fewer places than the initial one, and the number of places is a predominant parameter in
the concurrency relation computation.

Outline and Contributions In Sect. 6.2, we define our problem of interest and one of its
applications, e.g., the decomposition of Petri nets into automata networks. Then in Sect. 6.3,
we present some additional results on Token Flow Graphs, mainly the safeness preservation.
Section 6.4 contains our main contributions. We propose an algorithm for finding concurrent
places (proof in Sect. 6.5 and running example in Sect. 6.6) and show in Sect. 6.7 how to adapt
it to situations where we only have partial knowledge of the residual concurrency relation.
Finally, we propose in Sect. 6.8 a simple method to transpose a NUPN decomposition of a
net to an equivalent one on the reduced version of this net. We can draw a parallel with our
formula projection method, that is, we start from a problem related to the initial net, in this
context with NUPN information, and provide a method to project it on the reduced one.

Our approach has been implemented, and computing experiments show that reductions
are effective on a large set of safe nets (Sect. 6.9). We observe that even with a moderate
amount of reductions, we can compute complete results much faster with reductions than

6.2 The Concurrent Places Problem and One of Its Applications 137

without and we also show that we perform well with incomplete relations, where we are both
faster and more accurate.

6.2 The Concurrent Places Problem and One of Its Applica-
tions

In this section, we recall the concurrent places problem, mentioned in Sect. 1.3, and its main
application, the decomposition of Petri nets into automata networks.

6.2.1 The Concurrent Places Problem

Given a net, two places p and p′ are concurrent if and only if a reachable marking m exists
such that both p and p′ have at least a token. This relation is symmetric and quasi-reflexive;
it is reflexive if the net has no dead place [BG21], i.e., no place that has no token in any
reachable marking.

Definition 6.1 (Dead and Concurrent Places). We say that a place p of (N,m0) is
nondead if there is m in R(N,m0) such that m(p) > 0. Similarly, we say that places p, q
are concurrent, denoted p ∥ q, if there is m in R(N,m0) such that both m(p) > 0 and
m(q) > 0. By extension, we use the notation p ∥ p when p is nondead. We say that p, q
are nonconcurrent, denoted p# q when they are not concurrent.

This relation characterizes those parts of the net that can be simultaneously active.
It is mentioned in many publications under various names, such as coexistency defined by
markings [Jan84], concurrency graph [Kar12; Wiś+14], or concurrency relation [Kov92; SY95;
KE96; Kov00; GS04; GS06], etc. These definitions slightly differ by minor details, such as
the kind of Petri nets considered or the handling of reflexivity, i.e., whether and when a place
is concurrent or not with itself.

While most of our results are valid in the general case—with nets that are not necessarily
bounded and without any restrictions on the flow functions (the weights of the arcs)—our
tool and experiments on the concurrency relation focus on the class of safe nets (1-bounded).
The reason for this choice is that the tool we are augmenting, Cæsar.BDD, only addresses the
problem on safe nets, as the main use case we present next is limited to this class.

Finally, given a net, the problem of computing all its pairs of concurrent places is PSPACE-
complete [BG21]. Most approaches for decomposing a net into a set of concurrent automata
or a NUPN [BGP20] require knowledge about concurrent places.

6.2.2 Nested-Unit Petri Nets

Nested-Unit Petri Nets (NUPNs, for short) [Gar15; Gar19] are an extension of Petri nets for
expressing locality and hierarchy properties of concurrent systems. The concept of NUPN

138 Concurrency Relation Computation

is not recent (see, e.g., [GS90]). However, it has been adopted by recent Petri net analysis
tools, which increase their performance by exploiting NUPN information about locality and
hierarchy.

Formally, a NUPN is defined as a 9-tuple (P, T,Pre,Post,m0, U, u0,⊑, unit), where:
(P, T,Pre,Post,m0) is a Petri net (as defined in Sect. 1.1); U is a finite, non-empty set
such that U ∩ T = U ∩ P = ∅ (the elements of U are called units); u0 is an element of U (u0

is called the root unit); ⊑ is a binary relation over U such that (U,⊒) is a tree with a single
root u0; unit is a function P → U such that ∀u ∈ U \ {u0} . ∃p ∈ P . unit(p) = u (intuitively,
unit(p) = u expresses that unit u directly contains place p). The height of a NUPN is the
height of its unit tree, not counting the root unit if it contains no place directly (i.e., for each
p ∈ P , unit(p) ̸= u0). The width of a NUPN is the number of leaf units in its unit tree.

The token game for NUPNs is the same as for Petri nets, meaning that introducing units
does not modify the rules for firing transitions and the set of reachable markings.

A fundamental property of NUPNs is the notion of unit safeness [Gar19], which generalizes
the one-safeness property of Petri nets. Formally, two units u1 and u2 are disjoint if (u1 ̸⊑ u2)
and (u2 ̸⊑ u1), meaning that both units are neither equal nor contained one in the other. A
NUPN is unit-safe if and only if its reachable markings only contain pairs of places located
into disjoint units, meaning that each unit, or two transitively nested units, may not contain
two tokens simultaneously. This property enables logarithmic reductions in the number of
bits or Boolean variables needed to represent reachable markings [Gar19].

In practice, the unit-related information, namely (U, u0,⊑, unit), is directly obtained
when the NUPN is produced from a higher-level model [Gar19]. For instance, if the NUPN
is generated from a process-calculus language such as LOTOS [ISO89] or LNT [GLS17],
the unit tree can be deduced from the parallel composition operators present in the source
specifications; if the NUPN is generated from a network of automata, the unit tree represents
the various automata that execute concurrently; etc.

6.3 Safeness in Token Flow Graphs

In the following, we will focus on safe nets. Fortunately, our reduction rules preserve safeness
(see Corollary 6.2). Hence, we do not need to check if (N2,m2) is safe when (N1,m1) is. The
fact that the nets are safe has consequences on configurations.

Lemma 6.1 (Safe Configurations). Assume that JE′K is a well-formed TFG for
(N1,m1) ≡∃Q.E′ (N2,m2) with (N1,m1) a safe Petri net. Then for every total, well-
defined configuration c of JE′K such that c|N1 reachable in (N1,m1), and every node v
(not in K), we have c(v) ∈ {0, 1}.

6.4 Dimensionality Reduction Algorithm 139

Proof. We prove the result by contradiction. Take a total, well-defined configuration c

such that c|N1 is reachable in (N1,m1) and a node v such that c(v) > 1. Since (N1,m1) is
safe, v does not belong to P1. We consider two cases: whether some place belongs to P1 in
↓v, or not.

First, suppose that a place p of N1 exists, such as v →⋆ p. By Lemma 4.3 (Forward),
we can find a well-defined configuration c′ of JE′K such that c′(p) ⩾ c′(v) = c(v) > 1 and
c′(w) = c(w) for every node w not in ↓v. By condition (T6) the places of N2 correspond
to the roots of JE′K (if we forget about constant nodes); the latter implies c′

|N2
= c|N2 .

Therefore, c′
|N2

is also reachable in (N2,m2).
Second, suppose that ↓v ∩ P1 = ∅, then by condition (T7) v corresponds to some slack

variable and there is some node w such that ↓w ∩ P1 ̸= ∅ and w ◦→ v. Take some node
v′ such that w ◦→ v′ and ↓v′ ∩ P1 ̸= ∅. By Lemma 4.3 (Agglomeration), we can find a
well-defined configuration c′′ of JE′K such that c′′(v′) = c(v). As in the previous case,
we can now find some configuration c′ and some node p in P1 such that v′ →⋆ p and
c′(p) ⩾ c′′(v′) = c(v).

Then, by Theorem 4.4, c′
|N1

is reachable in (N1,m1). However, c′(p) > 1 is in contra-
diction with the safeness of (N1,m1).

Corollary 6.2 (Safeness Preservation). Assume that JE′K is a well-formed TFG for
(N1,m1) ≡∃Q.E′ (N2,m2). If (N1,m1) is safe then (N2,m2) is safe.

We base our approach on the fact that we can extend the notion of concurrent places
(in a marked net) to the notion of concurrent nodes in a TFG, meaning nodes that can be
marked together in a reachable configuration (as defined in Definition 4.6).

By Theorem 4.4, if we take reachable markings in N2—meaning we fix the values of roots
in JE′K—we can find places of N1 that are marked together by propagating tokens from the
roots to the leaves (Lemma 4.3). In our algorithm, next, we show that we can compute the
concurrency relation of N1 by considering two cases: (1) we start with a token in a single
root p, with p nondead, and propagate this token forward until we find a configuration with
two places in N1 marked together (which is basically due to some redundant places); or (2)
we do the same but placing a token in two separate roots, p1, p2, such that p1 ∥ p2.

6.4 Dimensionality Reduction Algorithm

We assume that JE′K is a well-formed TFG for the relation (N1,m1) ≡∃Q.E′ (N2,m2). We
use symbol ∥2 for the concurrency relation on (N2,m2) and ∥1 on (N1,m1). The set of nodes
of JE′K is P .

We define an algorithm that takes as inputs a well-formed TFG JE′K plus the concurrency
relation ∥2 on the net (N2,m2), and outputs the concurrency relation ∥1 on (N1,m1). Our

140 Concurrency Relation Computation

algorithm computes a concurrency matrix, C, that is a symmetric matrix such that C[v, w] = 1
when the nodes v, w can be marked together in a reachable configuration, and 0 otherwise. We
prove (Theorem 6.8) that the relation induced by C matches with ∥1 on N1. Our algorithm
can be pragmatically interrupted after a given time limit; it then returns a partial relation ∥2.
Undefined cases are written C[v, w] = • in matrix C, which is then qualified as incomplete.

The complexity of computing the concurrency relation highly depends on the number
of places in the net. For this reason, we say that our algorithm performs some sort of
“dimensionality reduction” because it allows us to solve a problem in a high-dimension space
(the number of places in N1) by solving it first on a lower dimension space (since N2 may
have far fewer places) and then transporting back the result to the original net. In practice,
we compute the concurrency relation on (N2,m2) using the tool Cæsar.BDD from the CADP
toolbox [BG21; INR], but we can rely on any kind of “oracle” to compute this relation for us.
This step is unnecessary when the initial net is fully reducible; in this case, the concurrency
relation for N2 is trivial, and all the roots in JE′K are constants.

To simplify our notations, we assume that v ∥2 w when v is a constant node in K(1) and
w is nondead. On the opposite, v #2 w when v ∈ K(0) or w is dead.

Our algorithm is divided into two main functions, shown in Algorithms 6.1 and 6.2. It
also implicitly relies on an auxiliary function that returns the successors ↓x for a given node
x (we omit the details). In the main function, Matrix (Algorithm 6.1), we iterate over the
nondead roots of JE′K and recursively propagates the information that node v is nondead:
the call to Propagate in line 6 of Algorithm 6.1 updates the concurrency matrix C by
finding all the concurrent nodes that arise from a unique root v. We can prove that all such
cases arise from redundancy arcs originating in ↓v. More precisely, we prove in Lemma 6.6
that if v→• w holds, then the nodes in the set ↓v \ ↓w are concurrent to all the nodes in
↓w. This is made explicit in the for loop, line 10 of Algorithm 6.2. Next, in the second for
loop of Matrix (Algorithm 6.1 line 9), we compute the concurrent nodes that arise from
two distinct nondead roots (v, w). In this case, we can prove that all the successors of v are
concurrent with successors of w: all the pairs in ↓v × ↓w are concurrent.

We can perform a cursory analysis of the complexity of our algorithm. We update the
matrix by recursively invoking Propagate (Algorithm 6.2), along the edges of JE′K, starting
from the roots. (Of course, an immediate optimization consists of marking the visited nodes
so that the function Propagate is never invoked twice on the same node. We do not
provide the details of this optimization since it has no impact on soundness, completeness,
or theoretical complexity.) More precisely, we call Propagate only on the nodes that are
nondead in JE′K. Hence, our algorithm performs a number of function calls that is linear
in the number of nondead nodes. During each call to Propagate, we may update at most
O(N2) values in C, where N is the number of nodes in JE′K (see the for loop line 10). As a
result, the complexity of our algorithm is in O(N3), given the concurrency relation ∥2. This
has to be compared with the complexity of building then checking the state space of the net,

6.4 Dimensionality Reduction Algorithm 141

Algorithm 6.1 Matrix(JE′K, ∥2)
In: JE′K : the TFG structure,

∥2: concurrency relation on (N2,m2).
Out: the concurrency matrix C.

1: ;; C is a matrix indexed by P × P .
2: C← 0
3:
4: ;; v (∈ P2) is nondead if and only if v ∥2 v holds.
5: for all v nondead root node in JE′K do
6: Propagate(JE′K,C, v)
7:
8: ;; v and w (∈ P2) are concurrent if and only if v ∥2 w holds.
9: for all (v, w) distinct concurrent roots in JE′K do

10: for all(v′, w′) ∈ ↓v × ↓w do
11: C[v′, w′]← 1
12: C[w′, v′]← 1
13:
14: return C

Algorithm 6.2 Propagate(JE′K, C, v)
In: JE′K : the TFG structure,

v: node.
In out: C: the concurrency matrix.
Post: C contains all the concurrency relations induced by knowing that v is nondead.

1: ;; This loop includes C[v, v]← 1.
2: for all w ∈ ↓v do
3: C[v, w]← 1
4: C[w, v]← 1
5:
6: for all w such that v → w do
7: Propagate(JE′K,C, w)
8:
9: for all w such that v→• w do

10: for (v′, w′) ∈ ((↓v \ ↓w)× ↓w) do
11: C[v′, w′]← 1
12: C[w′, v′]← 1

142 Concurrency Relation Computation

which is PSPACE. Thus, computing the concurrency relation ∥2 of (N2,m2), with a lower
dimension, and tracing it back to (N1,m1) is quite benefiting.

In practice, our algorithm is efficient, and its execution time is often negligible compared
to the other tasks involved when computing the concurrency relation. We give some results
on our performances in Sect. 6.9.

6.5 Proof of Correctness

The soundness and completeness proofs of the algorithm rely on the following definition:

Definition 6.2 (Concurrent Nodes). The concurrency relation of JE′K, denoted C, is
the relation between pairs of nodes in JE′K such that v C w holds if and only if there is a
total, well-defined configuration c where: (1) c is reachable, meaning c|N2 ∈ R(N2,m2);
and (2) c(v) > 0 and c(w) > 0.

The concurrency relation C of JE′K is a generalization of both the concurrency relation ∥1
of N1 and ∥2 of N2: for any pair of places (p, q) ∈ P 2

1 , by Theorem 4.4, we have p ∥1 q if and
only if p C q. Similarly, for (p, q) ∈ P 2

2 : p ∥2 q if and only if p C q. We say in the latter case
that p, q are concurrent roots. As a result, C is symmetric, and v C v means that v is nondead
(that is, there is a valuation c with c(v) > 0). We can extend this notion to constants: we say
that two roots v1, v2 are concurrent when v1 C v2 holds, and that root v1 is nondead when we
have v1 C v1. This includes cases where v1 or v2 are in K(1) (constants with value 1).

We prove some properties about the relation C that are direct corollaries of our token
propagation properties. For all the following results, we implicitly assume that JE′K is a
well-formed TFG for the relation (N1,m1) ≡∃Q.E′ (N2,m2), that both marked nets are safe,
and that C is the concurrency relation of JE′K.

6.5.1 Checking Nondead Nodes

We start with a property (Lemma 6.3) stating that the successors of a nondead node are also
nondead. Lemma 6.4 provides a dual result useful to prove the completeness of our approach;
it states that it is enough to explore the nondead roots to find all the nondead nodes.

Lemma 6.3. If v C v and v →⋆ w then w C w and v C w.

Proof. Assume that v C v. This means that there is a total, well-defined configuration c

such that c(v) > 0 and c|N2 ∈ R(N2,m2). Take a successor node of v, say v →⋆ w. By
Lemma 4.3, we can find another reachable configuration c′ such that c′(w) ⩾ c′(v) = c(v)
and c′(x) = c(x) for all nodes x not in ↓v. Therefore, we have w C w and v C w.

6.5 Proof of Correctness 143

Lemma 6.4. If v C v then there is a root v0 such that v0 C v0 and v0 →⋆ v.

Proof. Assume that v C v. Then there is a total, well-defined configuration c such that
c|N2 ∈ R(N2,m2) and c(v) > 0. By the backward propagation property of Lemma 4.3,
we know that there is a root, say v0, such that c(v0) ⩾ c(v) and v0 →⋆ v. Hence, v0 is
nondead in JE′K.

6.5.2 Checking Concurrent Nodes

We can prove similar results for concurrent nodes instead of nondead ones. We consider
the two cases considered by function Matrix: when concurrent nodes are obtained from
two concurrent roots (Lemma 6.5); or when they are obtained from a single nondead root
(Lemma 6.6), because of redundancy arcs. Finally, Lemma 6.7 provides the associated
completeness result.

Lemma 6.5. Assume that v, w are two nodes in JE′K such that v /∈ ↓w and w /∈ ↓v. If
v C w then v′ C w′ for all pairs of nodes (v′, w′) ∈ ↓v × ↓w.

Proof. Assume that v C w, v /∈ ↓w and w /∈ ↓v. By definition, there exists a total, well-
defined configuration c such that c(v) > 0, c(w) > 0 and c|N2 ∈ R(N2,m2).

Take a successor v′ in ↓v, by applying the token propagation from Lemma 4.3 we can
construct a total, well-defined configuration c′ of JE′K such that c′(v′) ⩾ c′(v) = c(v) and
c′(x) = c(x) for any node x not in ↓v. Hence, c′(w) = c(w) > 0.

We can use the token propagation property again on c′. This gives a total, well-defined
configuration c′′ such that c′′(w′) ⩾ c′′(w) = c′(w) = c(w) and c′′(x) = c′(x) for any node
x not in ↓w.

We still have to prove v′ /∈ ↓w (which would be immediate in a tree structure but
requires extra proof in our DAG structure). Then, we will be able to conclude by observing
that it implies c′′(v′) = c′(v′) ⩾ c(v) and therefore v′ C w′ as needed.

We prove v′ /∈ ↓w by contradiction. Indeed, suppose that v′ ∈ ↓w. Hence, ↓v ∩ ↓w ̸= ∅.
Moreover, since JE′K is a well-formed TFG, there must exist (condition (T3)) three nodes
p, q, r such that X →• r, p ∈ ↓v ∩X and q ∈ ↓w ∩X. Like in the proof of Lemma 4.3, we
can propagate the tokens contained in v, w to p, q, and obtain c′′(r) > 1 from (CEq), which
contradicts our assumption that the nets are safe.

Lemma 6.6. If v C v and v→• w then v′ C w′ for every pair of nodes (v′, w′) such that
v′ ∈ (↓v \ ↓w) and w′ ∈ ↓w.

144 Concurrency Relation Computation

Proof. Assume that v C v and v→• w. By definition, there is a total, well-defined configu-
ration c such that c(v) > 0 and c|N2 ∈ R(N2,m2). Furthermore, by v→• w and condition
(CEq), we have c(w) > 0.

Take w′ in ↓w. From Lemma 4.3 we can find a total, well-defined configuration c′ such
that c′(w′) ⩾ c′(w) = c(w) > 0 and c′(x) = c(x) for any node x not in ↓w. Since v is not
in ↓w we have c′(v) = c(v). Likewise, places from N2 are roots and therefore cannot be in
↓w. So we have c′

|N2
≡ c|N2 , which means c′

|N2
is reachable in (N2,m2). At this point, we

have v C w′.
Now, consider v′ ∈ ↓v \ ↓w with v′ ̸= v (the expected result already holds if v′ = v).

Necessarily, there exists v0 ̸= w such that v → v0 and v0 →⋆ v′. We can use the forward
propagation in Lemma 4.3 on c′ to find a total, well-defined configuration c′′ such that
c′′(v0) ⩾ c′′(v) = c′(v) and c′′(x) = c(x) for all nodes x not in ↓v, and so, c′′

|N2
is reachable in

(N2,m2). Since configuration c′′ is well-defined, we have (condition CEq) that c′′(w) ⩾ c′′(v).
We consider three cases.

• Either v0 /∈ ↓w and w /∈ ↓v0, and we conclude by Lemma 6.5 that v′ C w′ holds for
every node v′ ∈ ↓v0.

• Or v0 ∈ ↓w: this case cannot happen since by hypothesis v′ /∈ ↓w and v0 →⋆ v′.
• Or w ∈ ↓v0: by applying the same proof as the one at the end of Lemma 6.5, we can

show that this case leads to a non-safe marking, which is therefore excluded.
As a result, we have v′ C w′ for all v′ ∈ ↓v \ ↓w and all w′ ∈ ↓w.

Lemma 6.7. If v C w holds with v /∈ ↓w and w /∈ ↓v then one of the following two
conditions is true.

(Redundancy) There is a nondead node v0 such that v0 →• w0 and either (v, w) or
(w, v) are in (↓v0 \ ↓w0)× ↓w0.

(Distinct) There is a pair of distinct roots (v0, w0) such that v0 C w0 with v ∈ ↓v0 and
w ∈ ↓w0.

Proof. Assume that v C w. Then there is a total, well-defined configuration c such that
c|N2 ∈ R(N2,m2) and c(v) = c(w) = 1 (the nets are safe). By the backward-propagation
property in Lemma 4.3 there exists two roots v0 and w0 such that c(v0) = c(w0) = 1 with
v ∈ ↓v0 and w ∈ ↓w0. We need to consider two cases.

• Either v0 ̸= w0, that is condition (Distinct).
• Or we have v0 = w0. We prove that there must be a node v1 such that v0 →⋆ v1 and
v1→• w1 with either (v, w) or (w, v) in (↓v1 \ ↓w1)× ↓w1. We prove this result by
contradiction. Indeed, if no such node exists, then both v and w can be reached from
v0 by following only edges in A (agglomeration arcs). Consider v0 ◦→ Y , there are
two nodes v′, w′ in Y such that v ∈ ↓v′ and w ∈ ↓w′. Since c is well-defined, from

6.5 Proof of Correctness 145

(CEq) either c(v′) = 0 or c(w′) = 0. Take c(v′) = 0 and the agglomeration path from
v′ to v, as v′ ◦→ a0 ◦→ · · · ◦→ an = v with n ∈ N. By induction on this path, we
necessarily have c(ai) = 0 for all i ∈ 0..n, since c is well-defined and a node can only
have one parent (condition (T3)). Hence, c(v′) = 0 that contradicts v C w.

6.5.3 Soundness and Completeness

We now prove that the algorithm is sound and complete.

Theorem 6.8 (Algorithm 6.1 is Sound and Complete). If C is the matrix returned by a
call to Matrix(JE′K, ∥), with ∥ the concurrency relation between roots of JE′K (meaning
N2 and constants), then for all nodes v, w we have v C w if and only if C[v, w] = 1.

Proof. First, let us remark that the call to Matrix(JE′K, ∥) always terminates since the
only recursion (Propagate) follows the DAG structure. We divide the proof into two
cases: first, we show that the computation of nondead nodes (the diagonal of C and the
nondead nodes of C) is sound and complete. Next, we prove soundness and completeness
for pairs of distinct nodes.

Nondead Places, Diagonal of C:

(Completeness) If v C v holds for some node v, then, by Lemma 6.4, there exists a nondead
root v0 with v ∈ ↓v0. Hence, Algorithm 6.1 invokes Propagate line 6 with v0. Then, all
nodes in ↓v0 are recursively visited by line 7 in Algorithm 6.2 including v. As a consequence,
C[v, v] is set to 1 line 3 (and remains equal to 1 until the end of the algorithm, since no
line of the algorithm sets values of C to 0 after the initialization line 2). This concludes
the completeness part for nondead places.

(Soundness) Conversely, assume that C[v, v] = 1 for some node v. We consider three
subcases.

• C[v, v] was set line 11 or 12 of Algorithm 6.1: this means that there exist two distinct
concurrent roots v0 and w0 such that v ∈ ↓v0 ∩ ↓w0. Hence, v0 is nondead (as well
as w0). This implies that v is nondead by Lemma 6.3.

• C[v, v] was set line 3 of Algorithm 6.2: the for loops line 5 of Algorithm 6.1 and
line 6 of Algorithm 6.2 ensure that Propagate is only invoked on successors of
nondead roots of JE′K. Hence, v belongs to ↓v0 for some nondead root v0, and thus
v C v holds by Lemma 6.3.

• C[v, v] was set line 11 or 12 of Algorithm 6.2: this subcase is not possible, since these
lines only consider pairs (v′, w′) of distinct nodes.

146 Concurrency Relation Computation

To conclude this first case, the algorithm is sound and complete for nondead places
and the diagonal of C.

Concurrent Places:

(Completeness) We assume that v C w holds for two distinct nodes v and w. This implies
that both v and w are nondead, that is, v C v and w C w. If we have v ∈ ↓w, then C[v, w] is
set to 1 line 3 or 4 of Algorithm 6.2, and similarly if w ∈ ↓v, which is the expected result.
Hence, we now assume that v /∈ ↓w and w /∈ ↓w, and thus Lemma 6.7 applies. We consider
the two cases of the lemma.

• (Redundancy): then, C[v, w] is set to 1 line 11 or 12 of Algorithm 6.2.
• (Distinct): then C[v, w] is set to 1 line 11 or 12 of Algorithm 6.1.

This concludes the completeness of the algorithm for concurrent places.

(Soundness) We assume that C[v, w] = 1 for some distinct nodes v, w. We consider three
subcases.

• C[v, w] was set line 11 or 12 of Algorithm 6.1: we conclude by Lemma 6.5 that v C w
holds.

• C[v, w] was set line 3 or 4 of Algorithm 6.2: we conclude by Lemma 6.3.
• C[v, w] was set line 11 or 12 of Algorithm 6.2: we conclude by Lemma 6.6.

This concludes the soundness of the algorithm for concurrent places.

As a result, the algorithm is sound and complete for nondead places and concurrent
places.

6.6 Running Example

We now propose to illustrate the previous results about the computation of dead and
concurrent places on, a safe version, of the equivalence statement from Fig. 4.1 depicted in
Fig. 6.1.

p0

p1 p2

p3

p4

p5

p6

t0

t1

t2

t3

t4

≡E

t5

a2

t7p6

t6p0

Fig. 6.1 An example of Petri net, (N1,m1) (left), and one of its polyhedral reductions,
(N2,m2) (right), with E ≜ ∃a1 . (p5 = p4) ∧ (a1 = p1 + p2) ∧ (a2 = p3 + p4) ∧ (a1 = a2).

6.6 Running Example 147

p0 p6a2

a1
p3 p4

p1 p2
p5

Fig. 6.2 TFG corresponding to the polyhedral equivalence in Fig. 6.1.

The concurrency matrix C(N2,m2) of the reduced net, and the incomplete matrix C(N1,m1)

of the initial net are:

C(N2,m2) =


a2 p0 p6

a2 1
p0 0 1
p6 1 1 1

 C(N1,m1) =



p0 p1 p2 p3 p4 p5 p6

p0 1
p1 • •
p2 • • •
p3 • • • •
p4 • • • • •
p5 • • • • • •
p6 1 • • • • • 1


Now, by leveraging the TFG in Fig. 6.2 corresponding to the polyhedral reduction of

Fig. 6.1, we iteratively trace back the concurrency relation of the initial net (N1,m1).

1. Lemma 6.3: we have place a2, in the reduced net N2, nondead (because we can fire t5).
As a consequence, all the successors’ nodes of a2 in the TFG (that are also placed in
N1) must also be nondead, meaning C[pi, pi] = 1 for all i in 1..5.

C(N1,m1) =



p0 p1 p2 p3 p4 p5 p6

p0 1
p1 • 1
p2 • • 1
p3 • • • 1
p4 • • • • 1
p5 • • • • • 1
p6 1 • • • • • 1


2. Lemma 6.6: from the fact that a2 in nondead, we can deduce that p4 is concurrent to p5

(meaning C[p4, p5] = 1), because of the redundancy p5 = p4, and p1, p2 are concurrent
to p3, p4, p5.

148 Concurrency Relation Computation

C(N1,m1) =



p0 p1 p2 p3 p4 p5 p6

p0 1
p1 • 1
p2 • • 1
p3 • 1 1 1
p4 • 1 1 • 1
p5 • 1 1 • 1 1
p6 1 • • • • • 1


3. Lemma 6.5: we have a2 concurrent to p6. Then, all the successor nodes of a2 in the

TFG (of N1) are concurrent to p6, i.e., C[pi, p6] = 1 for all i in 1..5.

C(N1,m1) =



p0 p1 p2 p3 p4 p5 p6

p0 1
p1 • 1
p2 • • 1
p3 • 1 1 1
p4 • 1 1 • 1
p5 • 1 1 • 1 1
p6 1 1 1 1 1 1 1


4. Lemma 6.7: we propagated all nondead and concurrent places, and then we can set all

the unknown relations to 0 (nonconcurrent).

C(N1,m1) =



p0 p1 p2 p3 p4 p5 p6

p0 1
p1 0 1
p2 0 0 1
p3 0 1 1 1
p4 0 1 1 0 1
p5 0 1 1 0 1 1
p6 1 1 1 1 1 1 1


6.7 Extensions to Incomplete Concurrency Relations

We only write 1s into the concurrency matrix C with our approach. This is enough since we
know relation ∥2 exactly and, in this case, relation ∥1 must also be complete (we can have
only 0s or 1s in C). This is made clear by the fact that C is initialized with 0s everywhere.
We can extend our algorithm to support the case where we only have partial knowledge of ∥2.

6.7 Extensions to Incomplete Concurrency Relations 149

This is achieved by initializing C with the special value • (undefined) and adding rules that
let us “propagate 0s” on the TFG in the same way that our total algorithm only propagates
1s. For example, we know that if C[v, w] = 0 (v, w are nonconcurrent) and v ◦→ v′ (we know
that always c(v) ⩾ c(v′) on reachable configurations) then certainly C[v′, w] = 0. Likewise,
we can prove that the following rule for propagating “dead nodes” is sound: if X →• v and
C[w,w] = 0 (node w is dead) for all w ∈ X then C[v, v] = 0.

Partial knowledge of the concurrency relation can be useful. Indeed, many use cases
can deal with partial knowledge or only rely on the nonconcurrency relation (a 0 on the
concurrency matrix). This is the case, for instance, when computing a NUPN decomposition,
where it is always safe to replace a • with a 1. It also means that knowing that two places
are nonconcurrent is often more valuable than knowing that they are concurrent; 0s are more
informative than 1s.

Using this idea, we have implemented an extension of our algorithm for the case of
incomplete matrices, and we report some results obtained with it. It is slightly more involved
than the complete case and is based on a collection of six additional axioms.

In the following, we use the notation v C̄ w to say ¬(vCw), meaning v, w are nonconcurrent
according to C. With our notations, v C̄ v means that v is dead: there is no well-defined,
reachable configuration c with c(v) > 0.

6.7.1 Propagation of Dead Nodes

We prove that a dead node, v, is necessarily nonconcurrent to all the other nodes. Also, if all
a node’s “direct successors” are dead, then also is the node.

Lemma 6.9. Assume that v is a node in JE′K. If v C̄ v then for all nodes w in JE′K we
have v C̄ w.

Proof. Assume that v C̄ v. Then for any total, well-defined configuration c such that c|N2

is reachable in (N2,m2) we have c(v) = 0. By definition of the concurrency relation C, v
cannot be concurrent to any node.

Lemma 6.10. Assume that v is a node in JE′K such that v ◦→X or X→• v. Then v C̄ v
if and only if w C̄ w for all nodes w in X.

Proof. We prove by contradiction both directions.
Suppose that v C̄ v and take w ∈ X such that w C w. Then there is a total, well-defined

configuration c such that c(w) > 0. Necessarily, since v C̄ v we have c(v) = 0, which
contradicts (CEq).

150 Concurrency Relation Computation

Next, suppose that v C v and w C̄ w for every node w ∈ X. Then there is a total,
well-defined configuration c such that c(v) > 0. Necessarily, for all nodes w ∈ X, we have
c(w) = 0, which contradicts (CEq).
These properties imply the soundness of the following three axioms:

1. If C[v, v] = 0 then C[v, w] = 0 for all node w in JE′K.
2. If v ◦→X or X →• v and C[w,w] = 0 for all nodes w ∈ X then C[v, v] = 0.
3. If v ◦→X or X →• v and C[v, v] = 0 then C[w,w] = 0 for all nodes w ∈ X.

6.7.2 Nonconcurrency Between Siblings

We prove that direct successors of a node are nonconcurrent from each other (in the case
of safe nets). This is a consequence of the fact that c(v) = c(w) + c(w′) + . . . and c(v) ⩽ 1
implies that at most one of c(w) and c(w′) can be equal to 1 when the configuration is fixed.

Lemma 6.11. Assume that v is a node in JE′K such that v ◦→X or X→• v. For every
pair of nodes w,w′ in X we have w ̸= w′ implies wC̄w′.

Proof. The proof is by contradiction. Take a pair of distinct nodes w,w′ in X and suppose
that w C w′. Then there exists a total, well-defined configuration c such that c(w) = 1 and
c(w′) = 1, with c|N2 reachable in (N2,m2). Since c must satisfy (CEq), we have c(v) ⩾ 2,
which contradicts the fact that our nets are safe; see Lemma 6.1.

This property implies the soundness of the following axiom:

4. If v ◦→X or X→•v then C[w,w′] = 0 for all pairs of nodes w,w′ ∈ X such that w ̸= w′.

6.7.3 Heredity and Nonconcurrency

We prove that if v and v′ are nonconcurrent, then v′ must be nonconcurrent from all the
direct successors of v (and reciprocally). This is basically a consequence of the fact that
c(v) = c(w) + . . . and c(v) + c(v′) ⩽ 1 implies that c(w) + c(v′) ⩽ 1.

Lemma 6.12. Assume that v is a node in JE′K such that v ◦→X or X →• v. Then for
every node v′ such that v C̄ v′ we also have w C̄ v′ for every node w in X. Conversely, if
w C̄ v′ for every node w in X then v C̄ v′.

Proof. We prove by contradiction each property separately.
Suppose that v C̄ v′ and take w ∈ X such that w C v′. Then there is a total, well-defined

configuration c such that c(w) > 0 and c(v′) > 0. Necessarily, since v C̄ v′ we must have
c(v) = 0 or c(v′) = 0. We already know that c(v′) > 0, so c(v) = 0, which contradicts
(CEq) since w ∈ X.

6.8 Transposing Nested-Unit Petri Nets 151

Next, suppose that w C̄ v′ for all nodes w ∈ X, and that we have v C v′. Then there is
a total, well-defined configuration c such that c(v) > 0 and c(v′) > 0. Necessarily, for all
nodes w ∈ X we have c(w) = 0 or c(v′) = 0. We already know that c(v′) > 0, so c(w) = 0
for all nodes w ∈ X, which also contradicts (CEq).
These properties imply the soundness of the following two axioms:

5. If v ◦→X or X →• v and C[w, v′] = 0 for all nodes w ∈ X then C[v, v′] = 0.
6. If v ◦→X or X →• v and C[v, v′] = 0 for all nodes w in X then C[w, v′] = 0

This concludes the set of axioms that are implemented in Kong, for computing noncon-
current and dead places, in the case where the concurrency relation of the reduced net is
partial.

6.8 Transposing Nested-Unit Petri Nets

With the concurrent places problem, an interesting approach is to transpose the unit-related
information (if unit-safe) from the initial net to the reduced one. This is particularly valuable
when the initial net admits a NUPN decomposition generated from LOTOS, in which case,
this “free” concurrency information can be used by standard model checkers when checking
reachability properties (such as with the approach developed in Chapter 5).

We assume that the net N1 is associated with some unit-related information (U, u0,⊑
, unit1), such that the NUPN is unit-safe. We prove that every place p of the reduced net N2

can be associated with the unit of any successors of p in JE′K by preserving unit-safeness.

Theorem 6.13 (Unit-Safe Transposition). Their exists some relation unit2 such that
∀p2 ∈ P2 . ∃p1 ∈ P1 . unit2(p2) = unit1(p1) ∧ p1 ∈ ↓p2 ∩ P1. And if (N1,m1) associated
to (U, u0,⊑, unit1) is unit-safe then the same holds for (N2,m2) with (U, u0,⊑, unit2).

Proof. We prove the results in two steps.
First, we prove that some relation unit2 exists, satisfying the construction assumption.

That is for all places p2 in P2 there exists some place p1 in P1 such that p1 ∈ ↓p2. This is
entailed by condition (T6) of Definition 4.4.

Now, we prove that the obtained unit-related information satisfies the unit-safeness
condition. That is, for all reachable markings m′

2 in R(N2,m2), if m′
2(p2) = m′

2(p′
2) = 1

for two disjoint places p2, p′
2 then unit2(p2) and unit2(p′

2) are disjoint (meaning unit2(p2) ̸⊑
unit2(p′

2) and unit2(p′
2) ̸⊑ unit2(p2)). We prove the result by contradiction. Suppose that

p2, p
′
2 is a pair of disjoint places from P2 such that there is some reachable marking m′

2 in
R(N2,m2) for which m′

2(p2) = m′
2(p′

2) = 1. Also, suppose that either unit2(p2) ⊑ unit2(p′
2)

or unit2(p′
2) ⊑ unit2(p2). We can consider the case where unit2(p2) ⊑ unit2(p′

2) (the other
one is similar). By construction of unit2, there is a pair of places p1, p

′
1 from P1, such

152 Concurrency Relation Computation

that p1 ∈ ↓p2, p′
1 ∈ ↓p′

2, unit2(p2) = unit1(p1), and unit2(p′
2) = unit1(p′

1). Since unit1(p1) ⊑
unit1(p′

1) we have p1 ̸= p′
1. The contradiction arises from Lemma 6.5, that entails the

existence of a reachable marking m′
1 in R(N1,m1) such that m′

1(p1) = m′
1(p′

1) = 1.
Since the decomposition problem usually admits multiplies solutions, we can elaborate

some heuristics to select, for each place p2 of the reduced net N2, the unit among the ones of
its successors. For example, we chose to maximize the number of places per unit.

6.9 Experimental Results

We have implemented the tool Kong—for Koncurrent places Grinder—, that is in charge of
performing the “inverse transforms” that we described in Sect. 6.4.

6.9.1 Toolchain Description

We describe our toolchain in Fig. 6.3, which is the second toolchain of the tool after the
one depicted in Fig. 4.6. After computing a polyhedral reduction with Reduce, we compute
the concurrency matrix of the reduced net (N2,m2) using Cæsar.BDD, which is part of the
CADP toolbox [BG21; INR]. Our experimental results have been computed with version
v3.7 of Cæsar.BDD, part of CADP version 2023-h “Aachen”, published in August 2023. The
tool Kong takes this concurrency relation, denoted ∥2, and the reduction system, E, then
reconstructs the concurrency relation on the initial net.

Reduce Cæsar.BDD

Kong

(N1,m1)

∥1

(N2,m2)

∥2E

Fig. 6.3 Toolchain of the concurrency acceleration algorithm.

To compute the concurrent places, Cæsar.BDD uses dedicated data structures and imple-
ments four methods, which are detailed in [BG21] and used in combination:

1. Marking graph exploration performs a forward traversal of the state space, starting
from the initial marking. The visited markings are stored symbolically using BDDs,
as implemented in the Cudd library. The user can bound the exploration by setting
an environment variable to a maximum number of seconds or setting an environment
variable to a maximum depth. Once the exploration terminates, the BDD containing all
visited markings is queried repeatedly to decide whether a given pair of places belongs

6.9 Experimental Results 153

to at least one visited marking. The concurrency matrix is complete if the exploration
is complete; otherwise, only a subset of concurrent pairs of places can be inferred from
the visited markings.

2. Structural rules are a collection of propositions that enable one to conclude that certain
pairs of places are concurrent (or nonconcurrent) by examining only their local context.
In particular, if the net is a unit-safe NUPN, this information is exploited to conclude
that two places belonging to the same unit or two nested units are nonconcurrent.
Structural rules are applied repeatedly until saturation.

3. Quadratic under-approximation explores an abstraction of the marking graph by ap-
proximating a reachable marking m by the set of all pairs of places having a token in
m. This is an under-approximation because the algorithm may miss exploring certain
pairs of places that are reachable and concurrent. The exploration progresses forward,
starting from the initial marking (or, better, from all pairs of places already known to
be concurrent), and produces a subset of concurrent pairs of places.

4. Quadratic over-approximation also does a forward exploration of the marking graph,
again abstracted away using a set of pairs of places, but performs (improving the prior
approach of [KE96]) an over-approximation instead of an under-approximation. Indeed,
the algorithm explores all markings that it assumes to be potentially reachable because
all the pairs of places in each of these markings are potentially concurrent. If the
exploration is completed, it produces a subset of nonconcurrent pairs of places.

Cæsar.BDD applies these four complementary methods in sequence, in order 1-2-3-4. The
execution may terminate earlier once the concurrency matrix no longer contains unknown
values.

6.9.2 Distribution of Reduction Ratios for Safe Nets

Our benchmark is built from the 685 instances detected as safe during the 2023 edition of
the MCC by the tools competing in the onesafe category.

The observations on the distribution of reduction ratios made across all instances in
Sect. 4.6.2 still hold for safe nets (see Fig. 6.4). There is a high number of models whose size
is more than halved with our approach (about 30% of the instances have a ratio r ⩾ 0.5),
with approximately half of the instances that can be reduced by a ratio of 30% or more.
In Fig. 6.4, we consider two values for the reduction ratio: one for reductions leading to a
well-formed TFG (in light orange), the other for the best possible reduction with Reduce (in
dark blue).

As a reminder, we mostly lose the ability to simplify some instances of “partial” marking
graphs that could be reduced using inhibitor arcs or weights on the arcs (two features not
supported by Cæsar.BDD).

154 Concurrency Relation Computation

0 100 200 300 400 500 600
Number of instances

0

20

40

60

80

100
R

ed
uc

tio
n

ra
tio

(%
)

Best possible reduction with Reduce
Reduction leading to a well-formed TFG

Fig. 6.4 Distribution of reduction ratios over all the safe instances in the MCC.

We evaluated the performance of Kong on the 536 instances of safe Petri nets with a
reduction ratio greater than 1%. We ran Kong and Cæsar.BDD on each of those instances in
two main modes: first with a time limit of 30 min to compare the number of fully solved
instances (when the tool computes a complete concurrency matrix); following with a timeout
of 60 s to compare the number of values (the filling ratios) computed in the partial matrices.
Computation of a partial concurrency matrix with Cæsar.BDD is done in two phases: a
“BDD exploration” phase that the user can stop and a post-processing phase that cannot
be stopped. In practice, the execution time on the initial net is often longer than with the
reduced one: the mean computation time for Cæsar.BDD is about 319 s and less than 119 s
for Kong. In each test, we compared the output of Kong with the values obtained on the
initial net with Cæsar.BDD, and achieved 100% reliability.

Next, we give details about the results obtained from our experiments and analyze the
impact of using reductions.

6.9.3 Impact on Fully Computed Concurrency Matrices

Our subsequent results are for the computation of complete matrices, with a timeout of
30 min. We give the number of computed instances in Table 6.1. We split the results along
three different categories of instances, Low/Fair/High/Full, associated with different ratio
ranges. We observe that we can compute more results with reductions than without (+22%).

6.9 Experimental Results 155

As could be expected, the gain is more significant in category High (+57%), but it is still
significant with the Fair instances (+20%).

Reduction
Ratio (r)

Test
Cases

Computed Matrices

Kong Cæsar.BDD

Low r ∈ [0.01, 0.25[196 116 117 ×0.99
Fair r ∈ [0.25, 0.5[141 76 63 ×1.2
High r ∈ [0.5, 1] 172 115 73 ×1.57
Full r = 1 27 27 19 ×1.42

Total r ∈ [0.01, 1] 536 334 272 ×1.22
Table 6.1 Number of concurrency matrices computed in 30 min w/wo reduction.

Like in the previous case, we study the speed-up obtained with Kong using charts that
compare the time needed to compute a given number of instances; see Fig. 6.5.

0 100 200 300 400
Number of computed matrices

0.01

1

100

10000

T
im

e
lim

it
pe

r
in

st
an

ce
(s

)

Cæsar.BDD
Kong

(a) r ∈ [0.01, 1]

0 50 100 150
Number of computed matrices

0.01

1

100

10000

T
im

e
lim

it
pe

r
in

st
an

ce
(s

)

Cæsar.BDD
Kong

(b) r ∈ [0.5, 1]

Fig. 6.5 Number of computed concurrency matrices given the query time limit for: (a) all
instances, r ∈ [0.01, 1] and (b) instances with r ∈ [0.5, 1].

6.9.4 Impact on Partial Matrices

We can also compare the “accuracy” of our approach when we have incomplete results. To
this end, we compute the concurrency relation with a timeout of 60 s on Cæsar.BDD. We
compare the filling ratio obtained with and without reductions. For a net with n places,

156 Concurrency Relation Computation

this ratio is given by the formula 2 |C|/(n2 + n), where |C| is the number of 0s and 1s in the
matrix.

We display our results using a scatter plot with a linear scale; see Fig. 6.6. We observe
that almost all the data points are on one side of the diagonal, meaning in this case that
reductions increase the number of computed values, with many examples (top line of the plot)
where we can compute the complete relation in 60 s only using reductions. The graphic does
not discriminate between the number of 1s and 0s. However, we obtain similar good results
when considering the filling ratio for only the concurrent places (the 1s) or the nonconcurrent
places (the 0s).

0 20 40 60 80 100
Filling ratio using Caesar.bdd (without reduction) (%)

0

20

40

60

80

100

Fi
lli

ng
ra

tio
us

in
g

K
on

g
(w

ith
re

du
ct

io
n)

(%
)

r ∈ [0.5, 1]
r ∈ [0.25, 5[

Fig. 6.6 Comparing the filling ratio for partial matrices with Kong (y-axis) and Cæsar.BDD
(x-axis) for instances with r ∈ [0.25, 0.5[(light orange) and r ∈ [0.5, 1] (dark blue). (Compu-
tations done with a BDD exploration timeout of 60 s.)

6.10 Discussion

The main result of our work is a new approach for computing the concurrency relation of
a Petri net. This problem has practical applications, for instance, because of its use for
decomposing a Petri net into the product of concurrent processes [BGP20; Gar19]. It also
provides an interesting example of reachability property that nicely extends the notion of
dead places, meaning places that can never be reached in an execution. These problems raise
difficult technical challenges and provide an opportunity to test and improve new model
checking techniques [Gar20].

6.10 Discussion 157

Several works address the problem of finding or characterizing the concurrent places of a
Petri net. The main motivation is that the concurrency relation characterizes the sub-parts in
a net that can be simultaneously active. Therefore, it plays a valuable role when decomposing
a net into a collection of independent components. This is the case in [WWJ19], where the
authors draw a connection between concurrent places and the presence of “sequential modules”
(state machines). Another example is the decomposition of nets into unit-safe NUPNs (Nested-
Unit Petri Nets) [Gar19; BGP20], for which the computation of the concurrency relation is
one of the main bottlenecks.

We know only a couple of tools that support the computation of the concurrency relation.
A recent tool is part of the Hippo platform [WWJ19], available online. Our reference tool in
this work is Cæsar.BDD, from the CADP toolbox [BG21; INR]. It supports the computation
of a partial relation and can output the “concurrency matrix” of a net using a specific,
compressed, textual format [Gar20]. We adopt the same format since we use Cæsar.BDD
to compute the concurrency relation on the residual net, N2, and as a yardstick in our
benchmarks.

We propose (as in Chapters 4 and 5) a new method to transpose the computation of
reachability problems from an initial “high-dimensionality” domain (the set of places in the
initial net) into a smaller one (the set of places in the reduced net). Likewise, we show how to
use the TFGs to accelerate the computation of the concurrency relation, both in the complete
and partial cases.

We have several ideas on how to apply TFGs to other problems and how to extend them.
A natural application would be for model counting (the original goal in [BLD18]), where
the TFG could lead to new algorithms for counting the number of (integer) solutions in
the systems of linear equations we manage. For future work, we would like to answer even
more difficult questions, such as proofs of generalized mutual exclusion constraints [GDS92],
that require checking invariants involving weighted sums over the marking of places of the
form ∑

p∈P wp.m(p). Another possible application is the max-marking problem, which means
finding the maximum of the expression ∑p∈P m(p) over all reachable markings. This amounts
to finding the maximum number of places that can be marked together on safe nets. We can
easily adapt our algorithm to compute this value and even compute the result when the net
is unsafe.

We can even manage a more general problem related to the notion of max-concurrent sets
of places. We say that the set S is concurrent if there is a reachable m such that m(p) > 0
for all places p in S. (This subsumes the case of pairs and singleton of places.) The set S is
max-concurrent if no superset S′ ⊋ S is concurrent. Computing the max-concurrent sets of
a net is interesting for several reasons. First, it gives an alternative representation of the
concurrency relation that can sometimes be more space efficient: (1) the max-concurrent sets
provide a unique cover of the set of places of a net, and (2) we have p ∥ q if and only if there

158 Concurrency Relation Computation

is S max-concurrent such that {p, q} ⊆ S. Obviously, on safe nets, the size of the biggest
max-concurrent set is the answer to the max-marking problem.

Another possible extension will be to support non-ordinary nets (that would require
adding weights on the TFG’s arcs) and unsafe nets (that can already be done with our current
approach but requires changing some “axioms” used in our algorithm).

This work has been published in:

• N. Amat, S. Dal Zilio, and D. Le Botlan. “Accelerating the Computation of
Dead and Concurrent Places Using Reductions”. In: Model Checking Software
(SPIN). vol. 12864. Lecture Notes in Computer Science. Springer, 2021. doi:
10.1007/978-3-030-84629-9_3

• N. Amat, S. Dal Zilio, and D. Le Botlan. “Leveraging polyhedral reductions for
solving Petri net reachability problems”. In: International Journal on Software
Tools for Technology Transfer 25.1 (2023), pp. 95–114. doi: 10.1007/s10009-022-
00694-8

The tool related to this chapter is:

• Kong § https://github.com/nicolasAmat/Kong

https://doi.org/10.1007/978-3-030-84629-9_3
https://doi.org/10.1007/s10009-022-00694-8
https://doi.org/10.1007/s10009-022-00694-8
https://github.com/nicolasAmat/Kong

Chapter 7

Proving Polyhedral Equivalences
Using an Automated Method

When there are disputes among persons,
we can simply say: Let us calculate
[calculemus], without further ado, to see
who is right.

Gottfried Wilhelm Leibniz

In this chapter, we propose an automated procedure to prove polyhedral equivalences. Our
approach relies on an encoding into a set of SMT formulas whose satisfaction implies that
the equivalence holds. The difficulty, in this context, arises from the fact that we need to
handle infinite-state systems. For completeness, we exploit a connection with a class of Petri
nets that have Presburger-definable reachability sets.

We have implemented our procedure a the tool, called Reductron, and we illustrate its
use in several examples.

7.1 Introduction

This chapter concludes the theoretical contributions of the thesis, by providing an automated
method for proving polyhedral equivalences. It shares some similarities with the philosophy
of Chapter 2 (in which we compute certificates of invariance), that is, getting formal proofs
of the correctness of our methods and tools.

Context. We introduced the concept of polyhedral reduction to solve reachability problems
more efficiently. We applied this approach to two main problems: to check reachability
formulas (Chapters 3 and 5); and finally, to speed up the computation of concurrent places
(places that can be marked simultaneously in a reachable marking); see Chapter 6.

160 Proving Polyhedral Equivalences

We proved in Chapter 3 that deciding the correctness of a polyhedral equivalence is
undecidable (Theorem 3.1). This decidability result is not surprising since most equivalence
problems on Petri nets are undecidable [EN94; Esp98]. Indeed, polyhedral equivalence is
by essence related to the marking equivalence problem, which amounts to deciding if two
Petri nets with the same set of places have the same reachable markings; a problem proved
undecidable by Hack [Hac76]. Also, polyhedral equivalence (such as marking equivalence)
entails trace equivalence, another well-known undecidable equivalence problem when we
consider general Petri nets [Hac76; Hir94].

Challenge. In this context, we use the term parametric to stress that we manipulate
semilinear sets of markings, meaning sets that can be defined using a Presburger arithmetic
formula C. In particular, we reason about parametric nets (N,C) instead of marked nets
(N,m0), with the intended meaning that all markings satisfying C are potential initial
markings of N . We also define an extended notion of polyhedral equivalence between
parametric nets, called parametric polyhedral equivalence and denoted (N1, C1) ≊E (N2, C2),
whereas our original definition (Definition 3.2) was between marked nets only. Although the
parametric polyhedral equivalence is a subcase of our original equivalence relation, we show
that its additional constraints ensure the decidability of the problem. Our challenge here is
to provide a procedure to automatically prove the correctness of such parametric equivalence.

Proposal. We describe a procedure to automatically prove polyhedral equivalences between
pairs of parametric Petri nets. We show that given a valid equivalence statement (N1, C1) ≊E

(N2, C2), it is possible to derive a Presburger formula in a constructive way, whose satisfaction
implies that the equivalence holds. We implemented this procedure in the tool Reductron, on
top of an SMT-solver for Linear Integer Arithmetic (LIA) and show that our approach is
applicable in practice. Even if we prove that this problem is decidable (see Theorem 7.12),
our implementation is only a semi-decision procedure since we rely on the external tool FAST,
which may not terminate if the equivalence does not hold. If anything, it makes the fact that
we may translate our problem into Presburger arithmetic quite remarkable.

Outline and Contributions. The chapter is organized as follows. After presenting an
overview of the method in Sect. 7.2, we define our central notion of parametric polyhedral
equivalence in Sect. 7.3 and prove several of its properties in Sect. 7.8. In particular, we prove
that this new polyhedral equivalence is preserved when “duplicating labeled transitions”.
These properties mean that every abstraction rule we prove can be safely applied in every
context and that each rule can be used as a “rule schema”. Our definition relies on our notion
of polyhedral equivalence; see Definition 3.2 in Chapter 3. We describe our proof procedure
in Sect. 7.4, defined as constructing a set of four core requirements, each expressed as separate
quantified LIA formulas. A key ingredient in this translation is to build a predicate, τ⋆

C ,

7.2 Overview of the Approach 161

which encodes the markings reachable by firing only the silent transitions of a net. We defer
the definition of this predicate until Sect. 7.5, where we show how it can be obtained using
the output of the FAST tool. From this procedure, we prove that our problem is decidable
in Sect 7.6, and we conclude by presenting the results obtained with our tool Reductron
implementing our approach on some concrete examples.

7.2 Overview of the Approach

Our proof procedure is based on the standard E-abstraction equivalence defined in Chapter 3
(Definition 3.2), and not on its relaxed relation (Definition 4.1). This choice is motivated by
the fact that we want to prove reduction rules that can be composable, hence the need for a
sequence-based relation.

Our approach can be summarized as follows. We start from an initial net (N1, C1) and
derive a polyhedral equivalence (N1, C1) ≊E (N2, C2) by applying a set of reduction rules
in an iterative and compositional way. We have presented in Chapter 3 some hand-proved
structural reduction rules. However, we also implement several other kinds of reduction
rules—often subtler to use and more complicated to prove correct—which explains why we
want machine-checkable proofs of equivalence. For instance, some of our rules are based on
the identification of Petri nets subclasses in which the set of reachable markings equals the set
of potentially reachable ones, a property we call the PR-R equality in [Huj+20a; Huj+20b].
We use this kind of rule in the example of the “SwimmingPool” model of Fig. 7.8, a classical
example of Petri net often used in case studies (see e.g. [BF99]).

y1

τ

y2

a b

cd

C1 ≜ y2 = 0

≊x = y1 + y2
x

a b

cd

C2 ≜ True

Fig. 7.1 Parametrized equivalence rule [concat], (N1, C1) ≊E (N2, C2), between nets N1
(left) and N2 (right), for the relation E ≜ (x = y1 + y2).

162 Proving Polyhedral Equivalences

We give in Fig. 7.1 a parametric version of the fundamental [concat] reduction rule
(Fig. 3.4) that allows us to fuse two places connected by a direct, silent transition. We give
another example with [magic], in Fig. 7.2, which illustrates a more complex agglomeration
rule (more details about the “blue dashed” transitions are given in Sect.7.8), and refer to
other examples in Sect. 7.9.

The parametric net (N1, C1) (left of Fig. 7.1) has a condition that entails that place
y2 should be empty initially (y2 = 0), whereas net (N2, C2) has a trivial constraint, which
can be interpreted as simply x ⩾ 0. We can show (see Sect. 7.3) that nets N1 and N2 are
E-equivalent, which amounts to prove that any marking (y1 : k1, y2 : k2) of N1, reachable
by firing a transition sequence ϱ, can be associated with the marking (x : k1 + k2) of N2,
also reachable by the same firing sequence. Actually, we prove that this equivalence is sound
when no transition can input a token directly into place y2 of N1. This means that the rule is
correct in the absence of the “red dashed” transition (with label d), but that our procedure
should flag the rule as unsound when transition d is present.

The results presented in this chapter provide an automated technique for proving the
correctness of polyhedral reduction rules. This helps us gain more confidence in the correctness
of our tools and is also helpful if we want to add new reduction rules. Indeed, up until now,
all our rules were proven using “manual theorem proving” (see Sect. 3.4.1), which can be
tedious and error-prone. Incidentally, the theory we developed for this chapter also helped us

y1

a b

τ

τ τ

y3

τ τ

y4

c

y2

c′

C1 ≜ y2 + y3 + y4 = 0

≊x = y1 + y2 + y3 + y4

x

a b

cc′

C2 ≜ True

Fig. 7.2 Parametrized equivalence rule [magic].

better understand the constraints necessary when designing new reduction rules. A critical
part of our approach relies on the ability, given a Presburger predicate C, to encode the set of
markings reachable from C by firing only silent transitions, that we denote τ⋆

C in the following.

7.3 Parametric Reduction Rules and Equivalence 163

Our approach draws a connection with previous works [Bar+03; LS05; Bar+08; Ler13] that
study the class of Petri nets that have Presburger-definable reachability sets, called flat nets.
We should also use a tool implemented by the same authors, called FAST, which provides a
method for representing the reachability set of flat nets. Basically, we gain the insight that
polyhedral reduction provides a way to abstract away (or collapse) the sub-parts of a net
that are flat. Note that our approach may work even though the reachability set of the whole
net is not semilinear since only the abstracted part must be flat. We also prove that when
(N1, C1) ≊E (N2, C2) then necessarily the sets τ⋆

C1
and τ⋆

C2
are semilinear.

7.3 Parametric Reduction Rules and Equivalence

E-abstraction equivalence is defined on marked nets (Definition 3.2); thus the reduction rules
defined in Chapter 3, which also are E-abstraction equivalences mention marked nets as well.
Their soundness was proven manually, using constrained parameters for initial markings.
Such constraints on markings are called coherency constraints.

7.3.1 Coherency Constraints

We define a notion of coherency constraint, C, that must hold not only in the initial state but
also in a sufficiently large subset of reachable markings. We have already seen an example
with the constraint C1 ≜ (y2 = 0) used in rule [concat]. Without the use of C1, rule
[concat] would be unsound since net N2 (right of Fig. 7.1) could fire transition b more often
than its counterpart, N1.

Since C is a predicate on markings, we equivalently consider it as a subset of markings or
as a logic formula so that we may equivalently write m |= C or m ∈ C to indicate that C(m)
is true.

Remember we have already defined observable sequences (N,m) σ=⇒ (N,m′) in Sect. 1.1.4.
Now, we must consider firing sequences that must not finish with τ transitions. Hence, we
define a complementary relation (N,m) σ⟩=⇒ (N,m′), written simply m σ⟩=⇒m′, as follows:

• (N,m) ϵ⟩=⇒ (N,m) holds for any marking m.
• (N,m) σ.a⟩==⇒ (N,m′) holds for any markings m,m′ and a, σ ∈ Σ× Σ∗, if there exists a

marking m′′ and a transition t such that l(t) = a and (N,m) σ=⇒ (N,m′′) t−→ (N,m′).

It is immediate that m σ⟩=⇒m′ implies m σ=⇒m′. Note the difference between m ϵ=⇒m′, which
stands for any sequence of τ transitions, and m

ϵ⟩=⇒m′, which implies m = m′ (the sequence
is empty).

164 Proving Polyhedral Equivalences

Definition 7.1 (Coherent Net). Given a Petri net N and a predicate C on markings, we
say that N satisfies the coherency constraint C, or equivalently, that (N,C) is a coherent
net, if and only if for all firing sequences m σ=⇒m′ with m ∈ C we have

∃m′′ ∈ C . m
σ⟩=⇒m′′ ∧m′′ ϵ=⇒m′

Intuitively, if all τ transitions are irreversible, we can define a partial order on markings
with m < m′ whenever m τ−→m′ holds. Then, markings satisfying the coherency constraint C
must be minimal with respect to this partial order.

In this chapter, we wish to prove automatically the soundness of a given reduction rule. A
reduction rule basically consists of two nets with their coherency constraints and a Presburger
relation between markings.

Definition 7.2 (Parametric Reduction Rule). A parametric reduction rule is written
(N1, C1) >E (N2, C2), where (N1, C1) and (N2, C2) are both coherent nets, and C1, C2

and E are Presburger formulas whose free variables are in P1 ∪ P2.

A given reduction rule (N1, C1) >E (N2, C2) is a candidate, which we will analyze to
prove its soundness: is it an E-abstraction equivalence?

7.3.2 Parametric E-Equivalence Definition

Our analysis relies on a richer definition of E-abstraction, namely parametric E-abstraction
(Definition 7.3, next), which includes the coherency constraints C1, C2. Parametric E-
abstraction entails E-abstraction for each instance of its parameters (Theorem 7.1). Es-
sentially, for any sequence m1

σ=⇒m′
1 with m1 ∈ C1, there exists a marking m′

2 such that
m′

1≡E m′
2; and for every marking m2 ∈ C2 related to m1 up-to E, i.e., m1≡E m2, all

markings m′
2 related to m′

1 (i.e., m′
1≡E m′

2) can be reached from m2 by the same observable
sequence σ.

To ease the presentation, we define the notation

m1 ⟨C1EC2⟩m2 ≜ m1 |= C1 ∧m1≡E m2 ∧m2 |= C2 (7.1)

7.3 Parametric Reduction Rules and Equivalence 165

Definition 7.3 (Parametric E-Abstraction). Assume that (N1, C1) >E (N2, C2) is a
parametric reduction rule. We say that (N2, C2) is a parametric E-abstraction of (N1, C1),
denoted (N1, C1) ≼E (N2, C2) if and only if:

(S1) for all markings m1 satisfying C1 there exists a marking m2 such that
m1 ⟨C1EC2⟩m2;

(S2) for all firing sequences m1
ϵ=⇒m′

1 and all markings m2, we have m1≡E m2 implies
m′

1≡E m2;
(S3) for all firing sequences m1

σ=⇒m′
1 and all marking pairs m2, m′

2, if m1 ⟨C1EC2⟩m2

and m′
1≡E m′

2 then we have m2
σ=⇒m′

2.

We say that (N1, C1) and (N2, C2) are in parametric E-equivalence, denoted (N1, C1) ≊E

(N2, C2), when we have both (N1, C1) ≼E (N2, C2) and (N2, C2) ≼E (N1, C1).

Condition (S1) corresponds to the solvability of the Presburger formula E with respect to
the marking predicates C1 and C2. Condition (S2) ensures that silent transitions of N1 are
abstracted away by the formula E and are therefore invisible to N2. Condition (S3) closely
follows condition (A2) of the standard E-abstraction equivalence.

Note that equivalence ≊ is still not a bisimulation, in the same way, that ≡ from
Definition 3.2. It is defined only for observable sequences starting from states satisfying the
coherency constraint C1 of N1 or C2 of N2, and so this relation is usually not valid on every
pair of equivalent markings m1≡E m2.

7.3.3 Instantiation Laws

Parametric E-abstraction implies E-abstraction for every instance pair satisfying the co-
herency constraints C1, C2.

Theorem 7.1 (Parametric E-Abstraction Instantiation). Assume that (N1, C1) ≼E

(N2, C2) is a parametric E-abstraction. Then for every pair of markings m1,m2,
m1 ⟨C1EC2⟩m2 implies (N1,m1) ⊑E (N2,m2).

Proof. Consider (N1, C1) ≼E (N2, C2), a parametric E-abstraction, and m1, m2 such that
m1 ⟨C1EC2⟩m2 holds. By definition of m1 ⟨C1EC2⟩m2, see Equation (7.1), condition (A1)
of Definition 3.2 is immediately satisfied. We show (A2) by considering an observable
sequence (N1,m1) σ=⇒ (N1,m

′
1). Since m1 satisfies the coherency constraint C1, we get from

Definition 7.1 a marking m′′
1 ∈ C1 such that m1

σ⟩=⇒m′′
1

ϵ=⇒m′
1 holds. By applying (S1)

to m′′
1, we get a marking m′

2 such that m′′
1 ⟨C1EC2⟩m′

2 holds, which implies m′′
1 ≡E m′

2.
Then, by applying (S2) to m′′

1
ϵ=⇒m′

1, we obtain the expected result m′
1≡E m′

2. Finally, for

166 Proving Polyhedral Equivalences

all markings m′
2 such that m′

1≡E m′
2, we conclude m2

σ=⇒m′
2 from (S3). Condition (A2) is

proved, hence (N1,m1) ⊑E (N2,m2) holds.

7.4 Automated Proof Procedure

Our automated proof procedure receives a candidate reduction rule (Definition 7.2) as input
and has three possible outcomes: (i) the candidate is proven sound, congratulations you have
established a new parametric E-abstraction equivalence; (ii) the candidate is proven unsound,
try to understand why and fix it; or (iii) we cannot conclude, because part of our procedure
relies on a semi-algorithm (see Sect. 7.5) for expressing the set of reachable markings of a
flat subnet as a linear constraint.

Given the candidate reduction rule, the procedure generates SMT queries, which we call
core requirements (defined in Sect. 7.4.2) that are solvable if and only if the candidate is a
parametric E-abstraction (Theorems 7.9 and 7.10, Sect. 7.4.3). We express these constraints
into Presburger predicates, so it is enough to use solvers for the theory of formulas on Linear
Integer Arithmetic, what is known as LIA in SMT-LIB [BFT17]. We illustrate the results
given in this section using a diagram (Fig. 7.3) that describes the dependency relations
between conditions (S1), (S2), (S3) and their encoding as core requirements.

Core 0

Coherent nets
Lemma 7.5

Core 1

S1
Proposition 7.6

Core 2

S2
Lemma 7.7

Core 3

S3

Lemma 7.8

Lemma 7.3

Fig. 7.3 Detailed dependency relations.

7.4.1 Presburger Encoding of Parametric Petri Net Semantics

We start by defining a few formulas that ease the subsequent expression of core requirements.
This will help with the most delicate point of our encoding, which relies on how to encode
sequences of transitions. Note that the coherency constraints of reduction rules are already
defined as such.

In order to keep track of fired transitions in our encoding, and without any loss of
generality we assume that our alphabet of labels Σ is a subset of the natural numbers
(Σ ⊂ N∗), except 0 that is reserved for τ .

7.4 Automated Proof Procedure 167

We overload the Presburger predicate T(p,p′) from Sect. 1.2.3 into T(p,p′, a) to describe
the relation between the markings before (p) and after (p′) firing a transition with label
a. With this convention, formula T(m,m′, a) holds if and only if m t−→m′ holds for some
transition t such that l(t) = a (which implies a ̸= 0).

T(p,p′, a) ≜ ∨
t∈T (ENBLt(p) ∧∆t(p,p′) ∧ a = l(t)) (7.2)

We admit the following, for all markings m, m′ and label a:

|= T(m,m′, a) ⇐⇒ ∃t . m t−→m′ ∧ l(t) = a (7.3)

In order to define the core requirements, we additionally require a predicate τ∗
C(p,p′)

encoding the markings reachable by firing any sequence of silent transitions from a state
satisfying the coherency constraint C. And so, the following constraint must hold:

|= m ∈ C =⇒ (τ∗
C(m,m′) ⇐⇒ m

ϵ=⇒m′) (7.4)

Since m ϵ=⇒m′ may fire an arbitrary number of silent transitions τ , the predicate τC is not
guaranteed to be expressible as a Presburger formula in the general case. Yet, in Sect. 7.5, we
characterize the Petri nets for which τC can be expressed in Presburger arithmetic, including
all the polyhedral reductions we meet in practice (we explain why).

Thanks to this predicate, we define the formula T́C(p,p′, a) encoding the reachable
markings from a marking satisfying the coherency constraint C, by firing any number of
silent transitions, followed by a transition labeled with a. Then, we define T̂ which extends
T́ with any number of silent transitions after a and also allows for only silent transitions (no
transition a).

T́C(p,p′, a) ≜ ∃x . τ∗
C(p,x) ∧ T(x,p′, a) (7.5)

T̂C(p,p′, a) ≜
(
∃y . T́C(p,y, a) ∧ C(y) ∧ τ∗

C(y,p′)
)

(7.6)

∨
(
a = 0 ∧ τ∗

C(p,p′)
)

(7.7)

Lemma 7.2. For any markings m,m′ and label a such that m ∈ C, we have |=
T́C(m,m′, a) if and only if m a⟩=⇒m′ holds.

Proof. We show both directions separately.
• Assume that m a⟩=⇒ m′. By definition, this implies that there exists m′′ and a

transition t such that l(t) = a and m
ϵ=⇒m′′ t−→m′. Therefore, τ∗

C(m,m′′) is valid

168 Proving Polyhedral Equivalences

by Equation (7.4), and T(m′′,m′, a) is valid by Equation (7.3), hence the expected
result |= T́C(m,m′, a).

• Conversely, assume that T́C(m,m′, a) is valid. Then, by Equation (7.5) there
exists a marking m′′ such that both τ∗

C(m,m′′) and T(m′′,m′, a) are valid. From
Equation (7.4), we get m ϵ=⇒m′′, and Equation (7.3) implies ∃t . m′′ t−→m′ ∧ l(t) = a.
Thus, m ϵ=⇒m′′ t−→m′, that is the expected result m a⟩=⇒m′.

Lemma 7.3. Given a coherent net (N,C), for any markings m,m′ such that m ∈ C
and a ∈ Σ ∪ {0}, we have |= T̂C(m,m′, a) if and only if either m ϵ=⇒m′ and a = 0, or
m

a=⇒m′.

Proof. We show both directions separately.
• Assume that m ϵ=⇒m′ and a = 0, then τ∗

C(m,m′) is valid by Equation (7.4), hence
the expected result |= T̂C(m,m′, a) from Equation (7.7).

• Assume that m a=⇒m′. From Definition 7.1 (coherent net), there exists m′′ ∈ C such
thatm a⟩=⇒m′′ ϵ=⇒m′. Then, we get |= T́C(m,m′′, a) from Lemma 7.2, and |= τ∗

C(m′′,m′)
from Equation (7.4). Consequently, T̂C(m,m′, a) is valid from Equation (7.6).

• Conversely, assume that T̂C(m,m′, a) holds by Equation (7.7), then a = 0 and
|= τ∗

C(m,m′), which implies m ϵ=⇒m′ by Equation (7.4). This is the expected result.
• Finally, assume that T̂C(m,m′, a) holds by Equation (7.6), then there exists a marking
m′′ ∈ C such that |= T́C(m,m′′, a) and |= τ∗

C(m′′,m′). This implies m a⟩=⇒m′′ ϵ=⇒m′

from Lemma 7.2 and Equation (7.4). This implies the expected result m a=⇒m′.

Remember, we denote Ẽ(x,y) the formula obtained from E where free variables are
substituted as follows: place names in N1 are replaced with variables in x, and place names
in N2 are replaced with variables in y (making sure that bound variables of E are renamed
to avoid interference). When the same place occurs in both nets, say p1

i = p2
j , we also add

the equality constraint (xi = yj) to Ẽ in order to preserve this equality constraint.

7.4.2 Core Requirements: Parametric E-Abstraction Encoding

In order to check conditions (S1)–(S3) of parametric E-abstraction (Definition 7.3), we
define a set of Presburger formulas, called core requirements, to be verified using an external
SMT solver ((Core 1) to (Core 3)). You will find an illustration of these requirements in
Figs. 7.4–7.7. The satisfaction of these requirements entails the parametric E-abstraction
relation. We have deliberately stressed the notations to prove that (N2, C2) is a parametric
E-abstraction of (N1, C1). Of course, each constraint must be checked in both directions to
obtain the equivalence. Also, so as not to complexify the notations, we assume that it is
obvious from the context if a transition relation belongs to N1 or N2.

7.4 Automated Proof Procedure 169

Verifying That a Net is Coherent

The first step is verifying that both nets N1 and N2 satisfy their coherency constraints C1

and C2 (the coherency constraint is depicted in Figure 7.4). We recall Definition 7.1:

Definition (Coherent Net). For all firing sequences m σ=⇒m′ with m ∈ C there exists a
marking m′′ satisfying C such that m σ⟩=⇒m′′ and m′′ ϵ=⇒m′.

Below, we encode a simpler relation with sequences σ of size 1. This relies on the following
result:

Lemma 7.4. Parametric net (N,C) is coherent if and only if for all firing sequence
m

a⟩=⇒m′ with m ∈ C and a ∈ Σ we have ∃m′′ ∈ C . m
a⟩=⇒m′′ ∧m′′ ϵ=⇒m′.

We deliberately consider a firing sequence m a⟩=⇒m′ (and not m a=⇒m′), since the encoding
relies only on T́C (that is, a⟩=⇒), not on T̂C (that is, a=⇒).

Proof. The “only if” part is immediate, as a particular case of Definition 7.1 and noting
that m a⟩=⇒m′ implies m a=⇒m′. Conversely, assume that the property stated in the lemma
is true. Then, we show by induction on the size of σ that Definition 7.1 holds for any σ.
Note that the base case σ = ϵ always holds, for any net, by taking m′′ = m. Now, consider
a non-empty sequence σ = σ′.a and m

σ′.a==⇒m′ with m ∈ C. By definition, there exist m1

and m2 such that m σ′
=⇒m1

a⟩=⇒m2
ϵ=⇒m′. By induction hypothesis, on m

σ′
=⇒m1, there

exists m3 ∈ C such that m σ′⟩==⇒m3
ϵ=⇒m1. Therefore, we have m σ′⟩==⇒m3

ϵ=⇒m1
a⟩=⇒m2

ϵ=⇒m′,
which can simply be written m

σ′⟩==⇒m3
a⟩=⇒m2

ϵ=⇒m′. Using the property stated in the
lemma on m3

a⟩=⇒ m2, we get a marking m4 ∈ C such that m3
a⟩=⇒ m4

ϵ=⇒ m2. Hence,
m

σ′⟩==⇒m3
a⟩=⇒m4

ϵ=⇒m2
ϵ=⇒m′ holds, which can be simplified as m σ′.a⟩===⇒m4

ϵ=⇒m′. This is
the expected result.

Therefore, we can encode Definition 7.1 using the following formula:

∀p,p′, a . C(p) ∧ T́C(p,p′, a) =⇒ ∃p′′ . C(p′′) ∧ T́C(p,p′′, a) ∧ τ∗
C(p′′,p′) (Core 0)

Lemma 7.5. Given a Petri net N , the constraint (Core 0) is valid if and only if the net
satisfies the coherency constraint C.

Proof. Constraint (Core 0) is an immediate translation of the property stated in Lemma 7.4.

Given a net N , a constraint C expressed as a Presburger formula, and a formula τ∗
C that

captures ϵ=⇒ transitions (as obtained in Sect. 7.5), we are now able to check automatically that
a net (N,C) is coherent. Thus, from now on, we assume that the considered nets (N1, C1)
and (N2, C2) are indeed coherent.

170 Proving Polyhedral Equivalences

Coherent Solvability

The first requirement of the parametric E-abstraction relates to the solvability of formula E
with regard to the coherency constraint C1 and is encoded by (Core 1). This requirement
ensures that every marking of N1 satisfying C1 can be associated with at least one marking
of N2 satisfying C2. Let us recall (S1), taken from Definition 7.3:

Definition (S1). For all markings m1 satisfying C1 there exists a marking m2 such that
m1 ⟨C1EC2⟩m2.

Condition (S1) is depicted in Figure 7.5. We propose to encode it by the following
Presburger formula:

∀p1 . C1(p1) =⇒ ∃p2 . Ẽ(p1,p2) ∧ C2(p2) (Core 1)

Since the encoding is immediate, we admit this proposition:

Proposition 7.6. The constraint (Core 1) is valid if and only if (S1) holds.

R(N1, C1)C1

m1
m′

1
a

m′′
1

a⟩
ϵ

Fig. 7.4 Illustration of (Core 0).

R(N1, C1)C1

R(N2, C2)C2

m1

m2

E

Fig. 7.5 Illustration of (Core 1).

Silent Constraints

So far, we have focused on the specific case of coherent nets, which refers to intermediate
coherent markings. Another notable feature of parametric E-abstractions is the ability to
fire any number of silent transitions without altering the solutions of E. In other words, if
two markings, m1 and m2, are solutions of E, then firing any silent sequence from m1 (or
m2) will always lead to a solution of E ∧m2 (or E ∧m1). This means that silent transitions
must be invisible to the other net.

Let us recall (S2), taken from Definition 7.3:

7.4 Automated Proof Procedure 171

Definition (S2). For all firing sequences m1
ϵ=⇒ m′

1 and all markings m2, we have
m1≡E m2 implies m′

1≡E m2.

It actually suffices to show the result for each silent transition t ∈ T1 taken separately:

Lemma 7.7. Condition (S2) holds if and only if, for all markings m1, m2 such that
m1≡E m2, and for all t1 ∈ T1 such that l1(t1) = τ , we have m1

t1−→m′
1 implies m′

1≡E m2.

Proof. The “only if” way is only a particular case of (S2) with a single silent transition t1.
For the “if” way, (S2) is shown from the given property by transitivity.

Thanks to this result, we encode (S2) by the following core requirement:

∀p1,p2,p
′
1 . Ẽ(p1,p2) ∧ τ(p1,p

′
1) =⇒ Ẽ(p′

1,p2) (Core 2)

where τ(p1,p
′
1) is defined as τ(p1,p

′
1) ≜ ∨

t∈T |l(t)=τ (ENBLt(p1) ∧∆t(p1,p
′
1))

Reachability

Let us recall the definition of (S3), taken from Definition 7.3:

Definition (S3). For all firing sequences m1
σ=⇒m′

1 and all marking pairs m2, m′
2, if

m1 ⟨C1EC2⟩m2 and m′
1≡E m′

2 then we have m2
σ=⇒m′

2.

Condition (S3) mentions sequences σ of arbitrary length. We encode it with a formula
dealing only with sequences of length at most 1, thanks to the following result:

Lemma 7.8. Given a parametric reduction rule (N1, C1) >E (N2, C2) which satisfies
condition (S1), then condition (S3) holds if and only if for all firing sequences m1

σ=⇒m′
1

with σ = ϵ or σ = a with a ∈ Σ, and all markings m2,m
′
2, we have m1 ⟨C1EC2⟩m2 ∧

m′
1≡E m′

2 =⇒ m2
σ=⇒m′

2.

Proof. The given property is necessary as a particular case of (S3) taking σ = a or σ = ϵ.
Conversely, assume that the given property holds. We show by induction on the size of σ
that (S3) holds for any sequence σ. The hypothesis ensures the base cases σ = a and σ = ϵ.
Now, consider a non-empty sequence σ = σ′.a, and m1

σ=⇒m′
1 (i), as well as markings m2,

m′
2 such that m1 ⟨C1EC2⟩m2 and m′

1≡E m′
2 holds. We have to show m2

σ=⇒m′
2. From (i),

we have m1
σ′.a==⇒m′

1, that is, there exists a marking u1 such that m1
σ′

=⇒ u1
a=⇒m′

1 (ii). By
Definition 7.1, there exists u′

1 ∈ C1 such that m1
σ′⟩==⇒ u′

1
ϵ=⇒ u1 (iii). Also, by condition

(S1), there exists a marking u′
2 of N2 such that u′

1 ⟨C1EC2⟩u′
2, which implies u′

1≡E u′
2 (iv).

Hence, by induction hypothesis on m1
σ′

=⇒ u′
1, we have m2

σ′
=⇒ u′

2 (α). From (ii) and (iii),

172 Proving Polyhedral Equivalences

we get u′
1

a=⇒m′
1 (v). Applying the property of the lemma on (iv) and (v), we get u′

2
a=⇒m′

2
(β). Combining (α) and (β) leads to m2

σ′.a==⇒m′
2, that is the expected result m2

σ=⇒m′
2.

Thanks to Lemma 7.8, we can encode (S3) by the following formula:

∀p1,p2, a,p
′
1,p

′
2 . ⟨C1EC2⟩(p1,p2) ∧ T̂C1(p1,p

′
1) ∧ Ẽ(p′

1,p
′
2) =⇒ T̂C2(p2,p

′
2) (Core 3)

R(N1, C1)C1

R(N2, C2)C2

m1 m′
1ϵ

m2

E E

Fig. 7.6 Illustration of (Core 2).

R(N1, C1)C1

R(N2, C2)C2

m1 m′
1a

m2

E

m′
2

a

E

Fig. 7.7 Illustration of (Core 3).

7.4.3 Global Procedure

This section considers the entire process for proving parametric E-abstraction. We demon-
strate that verifying requirements (Core 0) to (Core 3) is sufficient for obtaining a sound
abstraction (Theorem 7.9). We also prove these conditions are necessary (Theorem 7.10).

Theorem 7.9 (Soundness). Given two nets N1, N2 and constraints C1, C2 expressed as
Presburger formulas, if core requirement (Core 0) holds for both (N1, C1) and (N2, C2),
and if core requirements (Core 1), (Core 2), and (Core 3) are valid, then the rule is a
parametric E-abstraction: (N1, C1) ≼E (N2, C2).

Proof. If (Core 0) holds for (N1, C1), then (N1, C1) is a coherent net by Lemma 7.5.
Similarly, for (N2, C2). Hence, (N1, C1) >E (N2, C2) is a parametric reduction rule. By
Proposition 7.6, and since (Core 1) is valid, we get (S1) from Definition 7.3. Similarly, by
Lemma 7.7, and since (Core 2) is valid, we get (S2). Finally, (S3) holds by Lemma 7.8 since
(Core 3) is valid and since (S1) is known to hold. (S1), (S2), (S3) entail (N1, C1) ≼E (N2, C2)
by Definition 7.3.

The converse also holds:

7.5 Accelerating the Silent Transition Relation 173

Theorem 7.10 (Completeness). Given a parametric E-abstraction (N1, C1) ≼E (N2, C2),
then core requirements (Core 1), (Core 2), and (Core 3) are valid, and (Core 0) holds
for both (N1, C1) and (N2, C2).

Proof. By hypothesis, conditions (S1), (S2) and (S3) hold and (N1, C1) and (N2, C2) are
coherent nets. Then, Lemma 7.5 implies that (Core 0) holds for both nets. Besides,
Proposition 7.6 and Lemmas 7.7 and 7.8 ensure that (Core 1), (Core 2), and (Core 3) are
valid.

Consequently, checking E-abstraction equivalence, i.e., (N1, C1) ≊E (N2, C2), amounts to
check that SMT formulas (Core 0)–(Core 3) are valid on both nets.

Our approach relies on our ability to express (arbitrarily long) sequences m ϵ=⇒m′ thanks
to a formula τ∗

C(p,p′). This is addressed in the next section.

7.5 Accelerating the Silent Transition Relation

The previous results, including Theorems 7.9 and 7.10, rely on our ability to express the
reachability set of silent transitions as a Presburger predicate, denoted τ∗

C . Finding a finite
formula τ∗

C that captures an infinite state space is not granted since τ -sequences may be of
arbitrary length. However, we now show that, since τ transitions must be abstracted away
by E in order to define a valid parametric E-equivalence (condition (S2)), and since E is
itself a Presburger formula, this implies that τ∗

C corresponds to the reachability set of a flat
subnet [Ler13], which is expressible as a Presburger formula too.

We define the silent reachability set of a net N from a coherent constraint C as Rτ (N,C) ≜
{m′ | m |= C ∧m ϵ=⇒m′}. We now want to find a predicate τ∗

C(p,p′) that satisfies the relation:

Rτ (N,C) = {m′ | m′ |= ∃p . C(p) ∧ τ∗
C(p,p′)} (7.4)

In order to express the formula τ∗
C , we first use the tool FAST [Bar+03], designed for

the analysis of infinite systems, and that permits to compute the reachability set of a
given Vector Addition System with States (VASS). As mentioned in Sect. 1.4.3, a Petri net
can be transformed to an equivalent VASS with the same reachability set. The algorithm
implemented in FAST is a semi-decision procedure, for which we have some termination
guarantees whenever the net is flat [Bar+05; Bar+08], i.e., its corresponding VASS can be
unfolded into a VASS without nested cycles, called a flat VASS. Equivalently, a net N is flat
for some coherent constraint C if its language is flat, that is, there exists some finite sequence
ϱ1 . . . ϱk ∈ T ∗ such that for every initial marking m |= C and reachable marking m′ there is a
sequence ϱ ∈ ϱ∗

1 . . . ϱ
∗
k such that m ϱ−→m′. In short, all reachable markings can be reached by

simple sequences belonging to the language: ϱ∗
1 . . . ϱ

∗
k. Last but not least, the authors stated

in [Ler13] that a net is flat if and only if its reachability set is Presburger-definable:

174 Proving Polyhedral Equivalences

Theorem ([Ler13]). For every VASS V , for every Presburger set Cin of configurations,
the reachability set ReachV(Cin) is Presburger if, and only if V is flatable from Cin.

Consequently, FAST’s algorithm terminates when its input is Presburger-definable. We show
in Theorem 7.11 that given a parametric E-abstraction equivalence (N1, C1) ≊E (N2, C2), the
silent reachability sets for both nets N1 and N2 with their coherency constraints C1 and C2

are indeed Presburger-definable—we can even provide the expected formulas. Nevertheless,
our computation is complete only if the candidate reduction rule is a parametric E-abstraction
equivalence (then, we are able to compute the τ∗

C relation), otherwise FAST, and therefore
our procedure, too, may not terminate.

Theorem 7.11 (Silent Reachability Sets are Presburger-Definable). Given a parametric
E-abstraction equivalence (N1, C1) ≊E (N2, C2), the silent reachability sets Rτ (N1, C1)
and Rτ (N2, C2) are Presburger-definable.

Proof. We prove only the result for (N1, C1), the proof for (N2, C2) is similar since ≊
is a symmetric relation. We first propose an expression that computes Rτ (N1,m1) for
any marking m1 satisfying C1. Consider an initial marking m1 in C1. From condition
(S1) (solvability of E), there exists a compatible marking m2 satisfying C2, meaning
m1 ⟨C1EC2⟩m2 holds. Take a silent sequence m1

ϵ=⇒ m′
1. From condition (S2) (silent

stability), we have m′
1≡E m2. Hence, Rτ (N1,m1) ⊆ {m′

1 | ∃m2 . C2(m2) ∧ Ẽ(m1,m2) ∧
Ẽ(m′

1,m2)}. Conversely, we show that all m′
1 solution of Ẽ(m′

1,m2) are reachable from
m1. Take m′

1 such that m′
1≡E m2. Since we have m2

ϵ=⇒m2, by condition (S3) we must
have m1

ϵ=⇒ m′
1. And finally we obtain Rτ (N1,m1) = {m′

1 | m′
1 |= ∃p1,p2 . m1(p1) ∧

C2(p2) ∧ Ẽ(p1,p2) ∧ Ẽ(p′
1,p2)}.

We can generalize this reachability set for all coherent markings satisfying C1. We first
recall its definition, Rτ (N1, C1) ≜ {m′

1 | ∃m1 . m1 |= C1∧m1
ϵ=⇒m′

1}. From condition (S1),
we can rewrite this set as {m′

1 | ∃m1,m2 . m1 ⟨C1EC2⟩m2 ∧m1
ϵ=⇒m′

1} without losing
any marking. Finally, thanks to the previous result we get Rτ (N1, C1) = {m′

1 | m′
1 |= P}

with P ≜ ∃p1,p2 . ⟨C1EC2⟩(p1,p2) ∧ Ẽ(p′
1,p2) a Presburger formula. Because of the

E-abstraction equivalence, (S1) holds in both directions, which gives ∀p2 . C2(p2) =⇒
∃p1 . Ẽ(p1,p2) ∧ C1(p1). Hence, P can be simplified into ∃p2 . C2(p2) ∧ Ẽ(p′

1,p2).
Note that this expression of Rτ (N,C) relies on the fact that the equivalence (N1, C1) ≊E

(N2, C2) already holds. Thus, we cannot conclude that a candidate rule is an E-abstraction
equivalence using this formula at once without the extra validation of FAST.

7.6 Decidability 175

Verifying FAST Results

We have shown that FAST terminates in case of a correct parametric E-abstraction. We now
show that it is possible to check that the predicates τ∗

C1
and τ∗

C2
, computed from the result

of FAST (see Theorem 7.11) are indeed correct (if the equivalence holds).
Assume that τ∗

C is, according to FAST, equivalent to the language ϱ∗
1 . . . ϱ

∗
n with ϱi ∈ T ∗.

We encode this language with the following Presburger predicate, which uses the formulas
H(σki) and ∆(σki) earlier in Chapter 2.

τ∗
C(p1,pn+1) ≜ ∃k1...kn,p

2 . . .pn−1 .
∧

i∈1..n

(
(pi ⩾ H(ϱki

i)) ∧∆(ϱki
i)(pi,pi+1

)
(7.8)

This definition introduces acceleration variables ki (that we called saturation variables in
Chapter 2), encoding the number of times we fire the sequence ϱi. The hurdle and delta of the
sequence of transitions ϱk

i , which depends on k, are written H(ϱk
i) and ∆(ϱk

i), respectively.
Their formulas are given in Equations (7.9) and (7.10) below, where 1>0(k) ≜ 1 if and only
if k > 0, and 0 otherwise.

H(ϱk) ≜ 1>0(k)× (H(ϱ) + (k − 1)× (−∆(ϱ))+) (7.9)
∆(ϱk) ≜ k ×∆(ϱ) (7.10)

Note that the definition differs slightly from that in Chapter 2. Here we also encode the
possibility of not firing the sequence ϱ (hence the adding of 1>0).

Finally, given a parametric rule (N1, C1) >E (N2, C2) we can now check that the reacha-
bility expression τ∗

C1
provided by FAST, and encoded as explained above, corresponds to the

solutions of ∃p2 . Ẽ(p1, p2) using the following additional SMT query:

∀p1,p
′
1 . C1(p1) =⇒ (∃p2 . Ẽ(p1,p2) ∧ Ẽ(p′

1,p2)⇐⇒ τ∗
C1(p1,p

′
1)) (7.11)

(and similarly for τ∗
C2

).
Once the equivalence Equation (7.11) above has been validated by a solver, it is, in

practice, way more efficient to use the formula ∃p2 . Ẽ(p1,p2) ∧ Ẽ(p′
1,p2) inside the core

requirements, rather than the formula τ∗
C1

(p1,p
′
1) given by FAST, since the latter introduces

many new acceleration variables.

7.6 Decidability

Even if our method may not terminate, since FAST is only a semi-decision procedure we can
prove that checking the correctness of parametric E-abstraction is decidable.

176 Proving Polyhedral Equivalences

Theorem 7.12 (Checking Parametric E-abstraction is Decidable). Given two nets
N1, N2 and constraints C1, C2 expressed as Presburger formulas. The problem of deciding
whether the statement (N1, C1) ≊E (N2, C2) holds is decidable.

Proof. We proved in Theorems 7.9 and 7.10 that the statement (N1, C1) ≊E (N2, C2) holds
if and only if (Core 0) is valid for both nets (N1, C1) and (N2, C2) and core requirements
(Core 1), (Core 2), and (Core 3) are valid (in both ways). Furthermore, checking the truth
of Presburger formulas is decidable [PJ91].

We are left to prove that we can construct these formulas. The crux relies on the
computation of predicates τ∗

C1
and τ∗

C2
. We proved in Theorem 7.11 a necessary condition

to have a correct equivalence, that is, Rτ (N1, C1) and Rτ (N2, C2) must be Presburger-
definable. The problem of deciding if the reachability set of a general Petri net from
an initial Presburger set of markings is Presburger (equivalently semilinear [GS66]) is
decidable [Hau90; Lam90]. Then, if either Rτ (N1, C1) or Rτ (N2, C2) is not Presburger-
definable we can assert that the equivalence does not hold; without constructing the
core requirements. Otherwise, the net is flat [Ler13]; and computing τ∗

C1
and τ∗

C2
is also

decidable [FL02].
Hence, we proposed a theoretical procedure to answer the problem of deciding a

parametric E-equivalence holds, where all steps are decidable.

7.7 Checking the State Space Partition

We finally propose to check whether a statement provides a state space partition—that
is not entailed by the parametric E-equivalence (refer to Sect. 4.5.3)—since the relation
is symmetric—by verifying two additional core requirements ((Core 4) and (Core 5)) on
the reduced net N2. We already proved in Theorem 4.8 that any equivalence admitting a
well-formed Token Flow Graph forms a partition. It is important to emphasize that the state
space partition is not a prerequisite for solving reachability problems mentioned in this thesis.
Nevertheless, it is a requirement for some model counting methods, for which polyhedral
reduction were initially developed [BLD18; BLD19].

∀p2,p
′
2 . C2(p2) ∧ τ(p2,p

′
2) =⇒ EQ(p2,p

′
2) (Core 4)

∀p1,p2,p
′
2 . C2(p2) ∧ C2(p′

2) ∧ Ẽ(p1,p2) ∧ Ẽ(p1,p
′
2) =⇒ EQ(p2,p

′
2) (Core 5)

Given a marking m′
2 of the reduced net N2, we define InvE(m′

2) as the set of markings of
the initial net N1 related to m′

2.

InvE(m′
2) ≜ {m′

1 | m′
1≡E m′

2} (7.12)

7.7 Checking the State Space Partition 177

Theorem 7.13 (Checking State Space Partition). Given (N1, C1) ≊E (N2, C2). The
family of sets S ≜ {InvE(m′

2) | m′
2 ∈ R(N2, C2)} is a partition of R(N1, C1) if and only

(Core 4) and (Core 5) are valid.

Proof. The set S is a partition as a consequence of the following points:

No empty set in S. For any marking m′
2 in R(N2, C2) there exists some marking m2

and sequence σ such that m2 |= C2 and m2
σ=⇒m′

2. By condition (S1) of the parametric
E-abstraction, there is some marking m1 such that m1 ⟨C1EC2⟩m2. From Theorem 7.1, we
have (N1,m1) ≡E (N2,m2). Now, by condition (A2) of the E-abstraction (Definition 3.2),
there is some m′

1 such that m′
1≡E m′

2. Thus, InvE(m′
2) is not empty. This implies ∅ /∈ S.

The union ∪A∈SA is equal to R(N1, C1). We prove both inclusions separately.
• Take a marking m′

1 in R(N1, C1). As previously, we still have some markings m1 |= C1

and m2 |= C2 such that (N1,m1) ≡E (N2,m2) and m′
1 ∈ R(N1,m1) (by condition

(S1) and Theorem 7.1). By condition (A2) of the E-abstraction, there is some
marking m′

2 such that m′
2 ∈ R(N2,m2) and m′

1≡E m′
2. Hence, there is some set

A ∈ S such that m′
1 ∈ A and so R(N1, C1) ⊆ ∪A∈SA.

• Now take a set A in S and a marking m′
1 ∈ A. By construction, there is some

marking m′
2 in R(N2, C2) such that m′

1≡E m′
2. By condition (S1) and Theorem 7.1,

there is (N1,m1) ≡E (N2,m2) such that m1 |= C1, m2 |= C2 and m′
2 ∈ R(N2,m2).

By condition (A2) of Definition 3.2 we have m′
1 ∈ R(N1,m1). Hence, m′

1 ∈ R(N1, C1)
and so ∪A∈SA ⊆ R(N1, C1).

Pairwise disjoint. Take two different markings m′
2 and m′′

2 in R(N2, C2). Since (N2, C2)
is a coherent net, we can find some initial and intermediate markings such that m(1)

2 −→
m

(2)
2

ϵ=⇒m′
2 and m

(3)
2 −→m

(4)
2

ϵ=⇒m′′
2 with m

(i)
2 |= C2 for all i in 1..4. And since (Core 4) is

valid, we have m′
2 = m

(2)
2 and m′′

2 = m
(4)
2 (firing silent transitions from a coherent state do

not change the marking). Hence, we get m′
2 |= C2 (i) and m′′

2 |= C2 (ii).
Now, we prove by contradiction that InvE(m′

2) ∩ InvE(m′′
2) = ∅. Suppose that

InvE(m′
2) ∩ InvE(m′′

2) is not empty and take a marking m1 from it. Hence, m1≡E m′
2

and m1≡E m′′
2. From (i) and (ii), and the hypothesis m′

2 ̸≡ m′′
2, we contradict the validity

of (Core 5).

We are left to prove that the validity of (Core 4) and (Core 5) is a necessary condition
to obtain such partition. Assume that S is a partition of R(N1, C1).

• Suppose that (Core 4) is not valid. Then, there is a pair of different markings m2,m
′
2

of N2 such that m2 |= C2 and m2
ϵ=⇒m′

2. From condition (S1) there is some marking

178 Proving Polyhedral Equivalences

m1 such that m1≡E m2, and by condition (S2) we also have m1≡E m′
2. Then, there

are two sets A and A′ in S such that m1 ∈ A and m1 ∈ A′, which contradicts that
sets in S are pairwise disjoint.

• Suppose that (Core 5) is not valid. Then, there are some markings m1 of N1 and
m2,m

′
2 of N2 such that m2 |= C2, m′

2 |= C2, m1≡E m2, m1≡E m′
2 and m2 ̸≡ m′

2.
By construction of S, we can find some sets A,A′ in S, such that m1 ∈ A and
m1 ∈ A′, which also contradicts that sets in S are pairwise disjoint.

7.8 Generalizing Equivalence Rules

Before looking at our implementation, we discuss some results related to the genericity and
generalizability of our reduction rules. We consider several “dimensions” in which a rule can
be generalized. A first dimension is related to the parametricity of the initial marking, which
is considered by our use of a parametric equivalence, ≊ instead of ≡, see Theorem 7.1. Next,
we show that we can infer an infinite number of equivalences from a single reduction rule
using compositionality, transitivity, and structural modifications involving labels. Therefore,
each reduction rule can be interpreted as a schema for several equivalence rules.

Definition 7.4 (Transition Operations). Given a Petri net N ≜ (P, T,Pre,Post) and
its labeling function l : T → Σ ∪ {τ}, we define two operations: T−, for removing, and
T+, for duplicating transitions. Let a and b be labels in Σ.

• T−(a) is a net (P, T ′,Pre′,Post′), where T ′ ≜ T \ l−1(a), and Pre′ (resp. Post′) is
the projection of Pre (resp. Post) to the domain T ′.

• T+(a, b) is a net (P, T ′,Pre′,Post′), where T ′ is a subset of T × {0, 1} defined
by T ′ ≜ T × {0}∪ l−1(a) × {1}. Additionally, we define Pre′(t, i) ≜ Pre(t) and
Post′(t, i) ≜ Post(t) for all t ∈ T and i ∈ {0, 1}. Finally, the labeling function l′ is
defined with l′(t, 0) ≜ l(t) and l′(t, 1) ≜ b for all t ∈ T .

The operation T−(a) removes transitions labeled by a, while T+(a, b) duplicates all
transitions labeled by a and labels the copies with b. We illustrated T+ in the nets of rule
[magic], in Fig. 7.2, page 162 where the “blue dashed” transition c′ can be interpreted as
the result of applying operation T+(c, c′). Note that these operations only involve labeled
transitions. Silent transitions are kept untouched.

7.8 Generalizing Equivalence Rules 179

Theorem 7.14 (Preservation by Transition Operations). Assume that (N1, C1) ≊E

(N2, C2) is a parametric E-abstraction equivalence, and that a and b are labels in Σ.
Then,

• T−
i (a) and T+

i (a, b) satisfy the coherency constraint Ci, for i = 1, 2;
• (T−

1 (a), C1) ≊E (T−
2 (a), C2);

• (T+
1 (a, b), C1) ≊E (T+

2 (a, b), C2).

where T−
i , T+

i is (respectively) the operation T−, T+ on Ni.

Proof. We assume that (N1, C1) ≊E (N2, C2) (i) holds, which implies that N1 satisfies the
coherency constraint C1 (resp., N2 satisfies C2). For each operation T−, T+, we show
that the transformed nets N ′

1 and N ′
2 still satisfy the coherency constraints and that the

conditions (S1), (S2), (S3) of Definition 7.3 still hold. Conditions (S1) and (S2) do not
involve labeled transitions, so they immediately hold in N ′

1 and N ′
2. (S3) is proven by

considering each operation separately.
• Case T−(a): N ′

1 (resp. N ′
2) is N1 (resp. N2) without transitions labeled by a.

Assume that (N ′
1,m1) σ=⇒ (N ′

1,m
′
1) holds (hence, a /∈ σ). From (i), for all markings

m2, m′
2, such that m1 ⟨C1EC2⟩m2∧m′

1≡E m′
2, we have (N2,m2) σ=⇒(N2,m

′
2). Hence,

(N ′
2,m2) σ=⇒ (N ′

2,m
′
2) holds since a /∈ σ.

• Case T+(a, b): N ′
1 (resp. N ′

2) is N1 (resp. N2) with transitions labeled by a duplicated
and duplicates are labeled by b. Assume that (N ′

1,m1) σ=⇒ (N ′
1,m

′
1) holds. Let σa

be σ{b← a}. Then, we have (N1,m1) σa=⇒ (N1,m
′
1). From (i), for all markings m2,

m′
2, such that m1 ⟨C1EC2⟩m2 ∧m′

1≡E m′
2, we have (N2,m2) σa=⇒ (N2,m

′
2). Then,

(N ′
2,m2) σa=⇒ (N ′

2,m
′
2) holds since transitions of N2 are included in those of N ′

2. In N ′
2,

each transition labeled by a is identical to a twin transition labeled by b. Hence, any
such transition can be freely replaced by its twin. Therefore, (N ′

2,m2) σ=⇒ (N ′
2,m

′
2)

also holds. This concludes the case.
The proof that net N ′

1 (resp. N ′
2) still satisfies the coherency constraint C1 (resp. C2) is

also done by considering each operation separately, and is actually very similar to the
above cases (we omit the details). The three conditions (S1), (S2), (S3) hold on N ′

1 and
N ′

2, thus (N ′
1, C1) ≊E (N ′

2, C2) is shown.

Finally, we recall previous results from Chapter 3, which states that equivalence rules can
be combined using synchronous composition (Theorem 3.8), relabeling (Theorems 3.9), and
chaining (Theorem 3.6).

180 Proving Polyhedral Equivalences

Theorem (E-equivalence is a Congruence). Assume that (N1,m1) ≡E (N2,m2) and
(N2,m2) ≡E′ (N3,m3) are two compatible equivalence statements, and that M is a Petri
net such that N1 ∥M and N2 ∥M are defined, then

• (N1,m1) ∥(M,m) ≡E (N2,m2) ∥(M,m).
• (N1,m1) ≡∃P2\(P1∪P3).E∧E′ (N3,m3).
• (N1[a/b],m1) ≡E (N2[a/b],m2) for any a ∈ Σ and b ∈ Σ ∪ {τ}.

7.9 Experimental Validation

We have implemented our automated procedure in a new tool called Reductron. The tool
is open-source, under the GPLv3 license, and is freely available on GitHub [Ama23d]. The
repository contains a subdirectory, rules, that provides examples of equivalence rules
that can be checked using our approach. Each test contains two Petri nets, one for N1

(called initial.net) and another for N2 (called reduced.net), defined using the syntax of
Tina [BRV04; LAA23]. These nets also include declarations for constraints, C1 and C2, and
for the equation system E. Our list contains examples of rules that are implemented in Tedd
and SMPT, such as rule [concat] depicted in Fig. 7.1, but also some examples of unsound
equivalences rules. For instance, we provide example [fakeConcat], which corresponds to
the example of Fig. 7.1 with transition d added.

When a rule is unsound, an interesting feature of Reductron is to return which core
requirement failed. For instance, with [fakeConcat], we learn that (N1, C1) is not coherent
because of d (we cannot reach a coherent marking after firing d using only silent transitions).
We can also detect many cases with an error in the specification of either C or E.

We performed some experimentation using z3 [MB08] (version 4.8) as our target SMT
solver and FAST (version 2.1). Our repository’s examples can be solved in a few seconds.
Although we focus on automatically verifying reduction rules, we have also tested our tool
on moderate-sized nets, such as the swimming pool example in Fig. 7.8. In this context,
we use the fact that an equivalence of the form (N,C) ≊E (∅,True), between N and a net
containing an empty set of places, entails that the reachability set of (N,C) must be equal
to the solution set of E. In this case, also, the results are almost immediate.

These excellent results depend mainly on the continuous improvements made by SMT
solvers. Indeed, we generate very large LIA formulas, with sometimes hundreds of quantified
variables and a moderate amount of quantifier alternation (formulas of the form ∀ ∃∀). For
instance, experiments performed with older versions of z3 (such as 4.4.1, October 2015)
exhibit significantly degraded performances.

7.10 Discussion 181

τ

WaitBag

τ

Undress

τ

InBath

τ

Dress

τ

Dressed

Bags

τ

τ

Cabins

OutEntered

N1

C1 ≜ Cabins = 10 ∧Out = 20 ∧ Bags = 15 ∧
Entered + WaitingBag + Undress + Dress + Inbath + Dressed = 0

E ≜


Cabins + Dress + Dressed + Undress + WaitBag = 10
Dress + Dressed + Entered + InBath + Out + Undress + WaitBag = 20
Bags + Dress + InBath + Undress = 15

Fig. 7.8 A Petri net modeling users in a swimming pool, see e.g. [BF99].

7.10 Discussion

This chapter concludes the theoretical contributions of this thesis and aims to improve the
safety of our polyhedral reduction framework using automated reasoning techniques instead
of relying only on “manual theorem proving”. But the result we find the most interesting is
the fact that it enhances our understanding of the theoretical underpinnings of polyhedral
equivalence and its close relation to the notion of flat nets. It also underlines the importance
of coherency constraints, which takes a central role in our definition of a parametric version
of polyhedral equivalence. We also hope that it helps better understand how to construct
new reduction rules in the future.

There is still ample room to study polyhedral reduction. For instance, we are interested
in characterizing Petri nets that are fully reducible, but where E is a “convex” predicate (to
ensure that the equivalence defines a partition of the state space). This defines an interesting
and non-trivial subset of flat nets.

Finally, we exhibited a concrete use case for the problem of deciding whether the state
space of a given Petri net is Presburger-definable. This result can be found in two different
works [Hau90; Lam90], with proofs that do not easily translate into practical algorithms. We
believe that it would be worthwhile to revisit this problem.

182

This work has been published in:

• N. Amat, S. Dal Zilio, and D. Le Botlan. “Automated Polyhedral Abstraction
Proving”. In: Application and Theory of Petri Nets and Concurrency (PETRI
NETS). vol. 13929. Lecture Notes in Computer Science. Springer, 2023. doi:
10.1007/978-3-031-33620-1_18

The tool related to this chapter is:

• Reductron § https://github.com/nicolasAmat/Reductron

https://doi.org/10.1007/978-3-031-33620-1_18
https://github.com/nicolasAmat/Reductron

Chapter 8

Tools and Reproducibility
The Experimental Counterpart

Talk is cheap. Show me the code.

Linus Torvalds

This chapter is the experimental counterpart of the previous chapters, which are more
theoretical in nature. We give a thorough presentation of our tools, the benchmark suite
from the Model Checking Contest used in our experiments, and explain how to reproduce
our experiments using the accompanying artifact. It is also an opportunity to take stock of
our three participations in the Model Checking Contest.

8.1 Experimental Benchmark

For most of our experiments we used the extensive, and independently managed, set of models
and formulas collected from the 2023 edition of the Model Checking Contest (MCC) [Kor+23].

The Model Checking Contest was a key player during my PhD thesis. It is an annual
and international competition for model checking tools. The contest is divided in different
examinations: state space generation, computation of global properties, computation of queries
regarding the upper bounds of markings, evaluation of reachability formulas, evaluation of
CTL formulas, and evaluation of LTL formulas. The objective of the contest is to provide a
common benchmark, increasing each year with new submissions, and compare model checking
approaches in an open and independent way.

Participating in the reachability examination has been a motivation from the start; and
the resulting benchmark was an incredible help in carrying out experiments with models
from both academia and industry.

184 Tools and Reproducibility

Models. The benchmark is built from a collection of 132 models. Most of the models are
parametrized, and therefore there can be several instances for the same model. This amounts
to 1 678 different instances of Petri nets whose size varies widely. The larger models contain
up to 105 places, 106 transitions, and few million arcs. Most nets are ordinary (non-zero
weights on all arcs are equal to 1), but a significant number of instances (about 380) use
weighted arcs.

The MCC benchmark is composed of both (standard) Petri nets and colored Petri nets
(see Sect. 1.6). However, the MCC provides equivalent Petri nets for colored specifications,
except for some instances that cannot be unfolded due to an explosion in the size of the
resulting net. Then, the total number of standard Petri net instances amounts to 1 426.
Since this thesis only focuses on standard Petri nets, our benchmark is built on this subset of
instances.

Overall, the collection provides numerous examples with various structural and behavioral
characteristics, covering a large variety of use cases. We display in Table 8.1 (page 195) a
classification of the models along their application domain, provided by the MCC model
board in [Ama+23].

Formulas. Each year, 32 reachability formulas are randomly generated using the tool Citili1.
Formulas are divided into two categories of equal sizes: (1) cardinality queries, 16 formulas
that are linear predicates over the places (as defined in Sect. 1.3); and fireability queries, 16
formulas that are Boolean combinations of fireability predicates (quasi-liveness). Note that
fireability formulas can be converted into formulas that only deal with places, by expanding
the pre-conditions of the transitions.

In our experiments, we focus on the cardinality category, and we kept the most recent
formulas from the 2023 edition. This amounts to 22 816 pairs consisting of a model instance
and a cardinality formula; what we call queries in the thesis.

Input formats. The format for nets is the Petri Net Markup Language (PNML) [Hil+10],
an XML-based language. Reachability formulas are expressed using the MCC property
language [JP20], which is also XML-based. Cardinality formulas only represent a subclass
of the properties described in Sect. 1.3. Basically, the property language only supports the
encoding of Boolean combinations of inequalities of the form α ⩽ β, where α and β are either
sums of places, or integer constants. Hence, it is not possible to mix sums of variables and
integer constants in the literals α, β or use negative coefficients. As a consequence, it is not
possible to express conditions like p < q (since it is equivalent to p ⩽ q + 1), or p+ q ⩽ r + 1.
However, most tools participating in the contest, such as ITS-Tools, TAPAAL and LoLA,
support the full fragment of quantifier-free Presburger formulas.

1https://github.com/mcc-petrinets/citili

https://github.com/mcc-petrinets/citili

8.2 Tools for Computing Polyhedral Reductions 185

8.2 Tools for Computing Polyhedral Reductions

In our approach, the computation of structural reductions is delegated to a separate tool.
We propose two possibilities for this task.

First, the tool Reduce, which is a new addition to the Tina model checking toolbox [BRV04;
LAA23] since version 3.7. It is currently used by the Tedd model checker that competes in
the Model Checking Contest (MCC), on the state space examination.

We can also rely on a new open-source tool (and a Rust crate) [Cha22], called Shrink,
developed by Louis Chauvet, an intern I supervised. This is a highly customizable tool, and
also a library, that we hope can be reused and improved in other contexts.

Both tools implement the set of reduction rules described in [BLD18; BLD19]. A
particularity of Reduce is to provide additional (and more sophisticated) reductions, for
instance the detection of nets with the PR-R property [Huj+20a; Huj+20b], see Sect. 1.5.4,
meaning nets such that the set of reachable markings equals the set of potentially reachable
ones.

8.3 SMPT: Satisfiability Modulo Petri Nets

SMPT [Ama20b] is a model checker for reachability problems in Petri nets. The tool name
is an acronym that stands for Satisfiability Modulo Petri Net. This choice underlines the
fact that, for most of the new features we implemented, it acts as a front-end to an SMT
solver; but also that it adds specific knowledge from Petri net theory, such as invariants, use
of structural properties, etc.

SMPT started as a portfolio of methods to experiment with symbolic model checking and
was designed to be easily extended. Some distinctive features are its ability to benefit from
polyhedral reductions and to generate verdict certificates. In Sect. 8.7 we show that the tool
is quite mature and performed well compared to other state-of-the-art tools in the Model
Checking Contest.

General Presentation

SMPT is an open-source model checker designed to answer reachability queries (in the form
of linear predicates). It does not impose any restrictions on the marking of places or the
weight on the arcs and can in particular handle unbounded nets.

The design of SMPT reflects the two main phases during its development process. The
tool was initially developed as a testbed for symbolic model checking algorithms that can take
advantage of polyhedral reductions, see Chapters 3 and 5. This explains why it includes many
“reference” implementations of fundamental reachability algorithms, tailored for Petri nets,
such as Bounded Model Checking (BMC) or k-induction. It also includes our implementation
of Property Directed Reachability (PDR) from Chapter 2. One of our goals is to efficiently

186 Tools and Reproducibility

compare different algorithms, on a level playing field, with the ability to switch on or off
optimizations. This motivates our choice to build a tool that is highly customizable and
easily extensible.

In a second phase, since 2021, we worked to make SMPT more mature, with the goal of
improving its interoperability, and with the addition of new verification methods that handle
problems where symbolic methods are not the best suited. Following we discuss the portfolio
approach implemented in SMPT.

Other tools perform similar tasks. We provide a brief comparison of SMPT with two other
model checkers in Sect. 8.7, namely ITS-Tools [Thi15] and TAPAAL [Dav+12]. These tools
have in common their participation in the MCC and the use of symbolic techniques. They
also share common input formats for nets and formulas. We can offer two reasons for users
to use SMPT instead of—or more logically in addition to—these tools. First, SMPT takes
advantage of our polyhedral reduction, to accelerate the verification of reachability properties.
This approach can be extremely effective in some cases where other methods do not scale.
Another interesting feature of SMPT is the ability to return a verdict certificate. When a
property is invariant, we can return a “proof” that can be checked independently by an SMT
solver.

Design and Implementation

SMPT is open-source, under the GNU GPL v3 license, and is freely available on
GitHub [Ama20b]. It is a Python project of about 4 500 lines of code, and is fully typed using
the static type checker mypy. The code is heavily documented (5 000 lines) and we provide
many tracing and debugging options that can help understand its inner workings. The
project is packaged in libraries and provides abstract classes to help with future extensions.
Following we describe each library.

The ptio library defines the main data structures of the model checker, for Petri nets
(pt.py), reachability formulas (formula.py), and reduction equations (system.py). It also
provides the corresponding parsers, for different formats.

The interface library includes interfaces to external tools and solvers. For example, we
provide an integrated interface to z3 [MB08; Bjø] built around the SMT-LIB format [BFT17].
We can also interface with MiniZinc [Net+07], a solver based on constraint programming
techniques, and with a random state space explorer, Walk, distributed with the Tina
toolbox [BRV04; LAA23]. New tools can be added by implementing the abstract class
Solver (solver.py).

http://www.mypy-lang.org

8.3 SMPT: Satisfiability Modulo Petri Nets 187

The exec library provides a concurrent “jobs scheduler” that helps run multiple verification
tasks in parallel and manage their interactions.

The checker library is the core of our tool. It includes a portfolio of methods intended to be
executed in parallel. All methods implement an abstract class (abstractchecker.py) which
describes the abstract method prove. We currently support the following eight methods:

1. Induction: (Sect. 1.5.3): a basic method that checks if a property is an inductive
invariant. This property is “easy” to check, even though interesting properties are
seldom inductive. It is also useful to check verdict certificates.

2. BMC (Sect. 1.5.2): Bounded Model Checking [Bie+99] is an iterative method to
explore the state space of systems by unrolling their transitions. This method is only
useful for finding counter-examples.

3. k-Induction (Sect. 1.5.3): is an extension of BMC that can also prove invari-
ants [SSS00].

4. PDR (Chapter 2): Property Directed Reachability [Bra11; Bra12], also known as
IC3, is a method to strengthen a property that is not inductive, into an inductive one.
This method can return a verdict certificate. As mentioned, we provide three different
methods of increasing complexity (one for coverability and two for general reachability).

5. State Equation (Sect. 1.5.4): is a method for checking that a property is true for
all “potentially reachable markings” (solution of the state equation). This is a semi-
decision method, found in many portfolio tools, that can easily check for invariants. We
implement a refined version [Thi15; Thi20] that can over-approximate the result with
the help of trap constraints [EM00] and other structural information, such as NUPN
specifications [Gar19].

6. Random Walk (Sect. 1.5.1): relies on simulation tools to quickly find counter-examples.
It is also found in many tools that participate in the MCC [Kor+21b]. We currently
use Walk, distributed with the Tina toolbox [BRV04; LAA23].

7. Constraint Programming: is a method specific to SMPT in the case where nets
are “fully reducible” (the reduced net has only one marking). In this case, reachable
markings are exactly the solution of the reduction equations (E) and verdicts are
computed by solving linear system of equations.

8. Enumeration: performs an exhaustive exploration of the state space and relies on
the Tina model checker [BRV04; LAA23]. It can be used as a fail-safe, or to check the
reliability of our results.

Commands, Basic Usage and Installation

SMPT requires Python version 3.7 or higher. It also requires the sexpdata Python library
to parse some outputs from z3. The easiest method for experimenting with the tool is to

188 Tools and Reproducibility

directly run the smpt module as a script, using a command such as python3 -m smpt. Our
repository includes a script to simplify the installation of the tool and all its dependencies. It
is also possible to find disk images with a running installation in the MCC website and in
artifacts archived on Zenodo [ADH22a; AD22; ADL23a]. As usual, option --help returns an
abridged description of all the available options. We list some of them below, grouped by
usage.

Input formats. We accept Petri nets described using the Petri Net Markup Language
(PNML) [Hil+10] and can also support colored Petri nets (using option --colored) by
using the external unfolder mcc [Dal20]. For methods that rely on polyhedral reductions,
it is possible to automatically compute the reduction (--auto-reduce) or to provide a
pre-computed version (with option --reduced-net <path>). It is also possible to save a
copy of the reduced net with the option --save-reduced-net <path>. Finally, one can use
the option --project to enable our projection method defined in Chapter 5.

Verification methods. We support the verification of three predefined classes of reachabil-
ity properties: deadlock detection (--deadlock), which is self-descriptive; quasi-liveness
(--quasi-liveness t), to check if it is possible to fire transition t; and reachability
(--reachability p), to check if there is a reachable marking where place p is marked
(it has at least one token). It is also possible to check the reachability of several places,
at once, by passing a comma-separated list of names, --reachability p1,...,pn; and
similarly for quasi-liveness. Finally, SMPT supports properties expressed using the MCC
property language [JP20], in XML format. Several properties can be checked at once.

Output format. Results are printed in the format required by the MCC, which is a
single line of text of the form FORMULA <id> (TRUE/FALSE) for each answered query. There
are also options to output more information: --debug to print the SMT-LIB input/output
code exchanged with the SMT solver; --show-techniques, to return the methods that
successfully computed a verdict; --show-time, to print the execution time per property;
--show-reduction-ratio, to get the reduction ratio; --show-model, to print the counter-
example if it exists; --check-proof, to check verdict certificates (when we have one);
--export-proof, to export verdict certificates (inductive invariants, traces leading to counter-
examples, etc.).

Tweaking options We provide a set of options to control the behavior of our veri-
fication jobs scheduler. We can add a timeout, globally (--global-timeout <int>) or
per property (--timeout <int>). We can also restrict the choice of verification methods
(--methods <method_1> <method_n>). Finally, option --mcc puts the tool in “com-
petition mode”.

8.4 Kong: The Koncurrent Places Grinder 189

8.4 Kong: The Koncurrent Places Grinder

Kong [Ama20a], the Koncurrent places Grinder, is a formal verification tool for Petri nets
that can take advantage of polyhedral reductions to accelerate the verification of specific
reachability properties: checking whether a given marking is reachable; computing the
concurrency relation; of finding the dead places of a net.

Commands, Basic Usage and Installation

Kong is an open-source tool, under the GNU GPL v3 license, made freely available on
GitHub [Ama20a]. The project has about 1 000 lines of code.

Dependencies. Kong is written in Python and requires a version 3.5 or higher. It also
requires the graphviz Python library in order to output a graphical description of Token Flow
Graphs (optional). Kong is intended to be as understandable as possible; the code is heavily
documented, and we provide many tracing and debugging options that can help understand
its inner workings.

We support two different tools to compute polyhedral reductions, Reduce and Shrink,
that both use the same input and output formats. Kong runs Reduce if the executable is in
the current PATH environment variable, but automatically switches to Shrink otherwise. It is
still possible to enforce the use of Shrink by using the --shrink option. As with SMPT, it is
also possible to directly provide a pre-computed result of structural reductions with the
option --reduced-net.

Kong is a command-line tool organized into subcommands that expose its different features.
The tool provides several options that are described in the documentation using --help. We
give a brief description of some of them in the following.

Concurrent and Dead Places. The main subcommands of Kong are conc and dead for,
respectively, computing the concurrent relation and the list of dead places in a net. When
computing a concurrency matrix, Kong relies on an external tool to compute the concurrency
matrix of the reduced net. This is currently done using Cæsar.BDD, part of the CADP
toolbox [BG21; INR], which is the state-of-the-art tool for the concurrent places problem.

Kong takes as inputs ordinary, safe Petri nets defined using either the Petri Net Markup
Language (PNML) [Hil+10], or the Nested-Unit Petri Net (NUPN) format [Gar19]. (The file
format is automatically detected from the file extension.) The use of a NUPN decomposition,
which provides information about the concurrent structure of the net, can bring a significant
performance improvement. The tool was designed to be fully compatible with Petri net
instances used in the MCC. For instance, we can make use of NUPN information added to a
PNML model using its tool-specific extension mechanism.

190 Tools and Reproducibility

Kong can be executed as a Python script or converted into a standalone executable using
cx_Freeze. Each subcommand only requires the path to the input Petri net (with a .pnml or
.nupn extension). Hence, a typical call to Kong is of the form ./kong.py conc model.pnml.
We also provide two main options to limit the exploration performed by Cæsar.BDD:
--bdd-timeout to set a time limit and --bdd-iterations to limit the number of itera-
tions.

Our output format for the concurrency matrix is the same as the one of Cæsar.BDD. We
can output our results using a compressed format, based on a run-length encoding (RLE) of
the rows of C. For the sake of readability, it is possible to disable this encoding using option
--no-rle. It is also possible to print the place ordering with option --place-names.

A call to kong.py conc delegates the computation of the concurrent relation on the
reduced net to the tool Cæsar.BDD. It can also take as input a precomputed concurrency
matrix of the reduced net, using option --reduced-matrix. Likewise, the dead subcommand
provides option --reduced-vector if we have a precomputed list of dead places for the
reduced net. It is also possible to output the matrix computed by Cæsar.BDD with option
--show-reduced-matrix (resp. --show-reduced-vector if we use subcommand dead).

Marking Reachability. The reach subcommand provides a procedure to check if a given
marking is reachable. Like previously, this command relies on an external tool to check if
a marking is reachable in the reduced net. To this end, we use Sift, which is an explicit-
state model checker for Petri nets from the Tina toolbox [BRV04; LAA23], that can check
reachability properties on the fly.

The tool takes as input a Petri net—not necessarily safe, ordinary or bounded—described
either in the PNML or the NET format. (NET is the specification format of the Tina
toolbox). The target marking is defined using a simple textual format, as a space-separated
list of place identifiers with their multiplicities, of the form p*k, where p is a place and k
is a positive integer. By default, places that are not listed contain no tokens. The path to
the file describing the target marking is given using option --marking. Finally, the option
--show-projected-marking permits to output the projected marking on the reduced net, to
be checked by Sift.

Architecture of Kong

Our tool is basically composed of three modules: kong.py the front-end program in charge of
parsing command-line options; pt.py a Petri net parser; and tfg.py the data structure and
computational module based on Token Flow Graphs. We illustrate the architecture of Kong
in Fig. 8.1, where we describe the different steps involved during a typical computation.

The first step is to reduce the input Petri net, say (N,m), using the tool Reduce (or Shrink).
Reduce outputs a reduced net (N ′,m′) and a system of linear equations E. By construction,

8.5 Octant and Reductron: Two Hidden Tools 191

Net
Reduction (N ′,m′) and E(N,m)

TFG
Construction

E

JEK

Dimensionality
Reduction

Projection

JEK

C(N,m)

C(N ′,m′)

m2 or ⊥

m1

Shrink
Reduce

Kong

Fig. 8.1 Architecture of Kong.

the result of this first stage is guaranteed to be a polyhedral equivalence. Kong provides
an option, --save-reduced-net, to save the reduced net into a specific file. Additionally,
we can print the reduction equations with the option --show-equations. Then we build a
Token Flow Graph, JEK from the set of linear equations in E; a graphical version of the TFG
can be displayed using option --draw-graph.

At this stage, we must distinguish two possible cases. First, the net could be fully reduced,
meaning the resulting net is “empty”; it has no remaining places. In this case, the set of
markings of (N,m) is exactly the solution of the linear system E. Hence, the TFG is enough
to compute the concurrency matrix using an algorithm that we call dimensionality reduction
or to decide if a given marking is reachable. Otherwise, we have a non-trivial reduced net, in
which case we need to obtain the concurrency matrix of (N ′,m′) from an external tool or to
check the reachability of the projection of our marking of interest.

8.5 Octant and Reductron: Two Hidden Tools

We now present two other tools, Octant [Ama23c] and Reductron [Ama23d], that are part of
our toolchain but not dedicated to being used by end users (and so we do not detail their
usage). Both tools are under GPLv3 license and are freely available on GitHub.

Octant is a preprocessor that, given a polyhedral equivalence (N1,m1) ≡E (N2,m2),
projects an initial reachability property into a simpler one, to be checked on the reduced net
N2. Octant implements the projection procedure described in Chapter 5. The tool is written

192 Tools and Reproducibility

in OCaml (about 1 500 lines of code) and is named after the Octant map projection2 proposed
by Leonardo da Vinci in 1508; the first known example of a polyhedral map projection.

Reductron is the tool that permits to prove that some parametric polyhedral equivalence,
say (N1, C1) ≊E (N2, C2), is correct. The tool is written in Python (about 1 000 lines of code)
and relies on the tool FAST [Bar+03; Bar+08] and the SMT solver z3 [MB08; Bjø].

8.6 Experimental Environment and Reproducibility

As mentioned at the beginning of this chapter, the experiments of this thesis were realized on
the benchmark of the 2023 edition of the MCC (see Sect. 8.1). We used the latest versions of
our tools, presented in the previous sections. The experimental results may differ slightly from
those published, since we are using the latest versions of the binaries3 and, more importantly,
published papers use the formulas of previous MCC editions. Nonetheless, the results appear
to be qualitatively the same between the different benchmarks, which is reassuring.

All experiments were run on the same node of our computing platform, with the following
characteristics.

OS: Ubuntu 20.04.6 LTS (Focal Fossa)
CPU: 2× Intel Xeon-P 8352V (2× 36 cores @3.50 GhZ)
Memory: 512 GB (@3200 MHz)

We provide an artifact to replicate the experiments that is made available on the Zenodo
platform [Ama23b]. We have chosen to use a Docker image in order to be easily usable on
both amd64 and Apple Silicon architectures. Please refer to the README provided with the
artifact to build the Dockerfile file and replicate the experiments.

8.7 Three Years of Participation in the MCC

I conclude this chapter with a short experience report on our three participation, with
SMPT, in the reachability category of the Model Checking Contest; see for instance the
evolution of tool performances in Fig. 8.2. We also comment on the results obtained by
SMPT, ITS-Tools [Thi15], and TAPAAL [Dav+12] at the 2023 edition of the MCC [Kor+23].

Year-by-year Review

Our first participation was in 2021. At this time, SMPT was only composed of two methods:
Bounded Model Checking (BMC) and an initial implementation of PDR that used only the
state-based generalization described in Sect. 2.3.2. As a result, it was not able to manage true

2https://en.wikipedia.org/wiki/Octant_projection
3Except for ITS-Tools and TAPAAL, for which we used the binaries submitted to the 2022 edition of the

MCC [Kor+22] for compatibility with our libc.

https://en.wikipedia.org/wiki/Octant_projection

8.7 Three Years of Participation in the MCC 193

30%

40%

50%

60%

70%

80%

90%

100%

20
18

20
19

20
20

20
21

20
22

20
23

BVT

enPAC

GreatSPN

ITS−Tools

LoLA

smpt

Tapaal

tedd

Fig. 8.2 Evolution of tool performance.
(copied from [Ama+23])

SMPT
291

(CEX 243
INV 48)

TAPAAL
535

(CEX 339
INV 196)

ITS-Tools
302

(CEX 183/INV 119)

1 489
(1 125 / 364)

1 345
(321 / 1 024)

959
(838 / 121)

47 645
(30 851 / 16 794)

Fig. 8.3 Comparison of tools on all com-
puted queries in 2023.

invariants that are not coverability properties. Of course, SMPT was integrating polyhedral
reduction, using the E-transform formula described in Chapter 3. This prototype version of
SMPT was able to solve more than 50% of the queries, and already performed better than
exhaustive approaches using decision diagrams, like the one in GreatSPN [Amp+16; ADG22].

The following year, in 2022, we added a competition mode to SMPT, which includes a
basic strategy to orchestrate the different verification methods. Our simple, two step strategy
was to start by trying: (1) random walk state space exploration (in order to eliminate queries
decided by an easily found counter-example), and (2) the state equation method (to catch
invariants implied by the structural invariants of the net), in parallel, with a timeout of 120 s,
on all formulas. The second step was to run more demanding methods as long as possible:
BMC, k-induction, PDR, etc. These improvements made it possible to obtain the bronze
medal (behind TAPAAL and ITS-Tools) by computing 88.6% of the queries. In comparison,
TAPAAL computed 92.8% of the queries in the benchmark. SMPT obtained a 100% confidence
score in 2022 (meaning the tool never returned an erroneous verdict), a first proof that our
tool had become quite mature.

Finally, in 2023, we added support for our formula projection method, which is imple-
mented in our tool Octant; see Chapter 5. With this latest version, we were able to compute
93.6% of all queries in the benchmark; a substantial increase of 5.5% when compared with our
results from 2022. This is quite a good result, considering that the ratios of solved queries for
ITS-Tools and TAPAAL in 2023 are respectively 94.6% and 94.3%. SMPT still obtained the
bronze medal (ahead of LoLA [Wol18] and GreatSPN), but failed to reach the 100% confidence

194 Tools and Reproducibility

level due to an error with a single query, a mistake when parsing the output of a routine
function used to simplify formulas.

Detailed Results

We display the results of SMPT, ITS-Tools and TAPAAL during the 2023 edition in a Venn
diagram (Fig. 8.3) where we make a distinction between CEX (false AG properties or true
EF ones) and INV properties (true AG properties or false EF ones). There is a total of 52 566
answered queries (with almost 65% CEX). We observe that a vast majority of these queries
(47 645) are computed by all tools, and can be considered “easy”. Conversely, we have 4 921
difficult queries, solved by only one or two tools.

Overall, we observe that SMPT performs well compared to other state-of-the-art tools
in the Model Checking Contest and that tools are quite complementary. In particular, we
observe that SMPT is a sensible choice when checking invariants (INV queries), a result that
we would like to credit to our enhanced model checking procedures.

195

• Biology and chemistry: Angiogenesis, CircadianClock, Diffusion2D,
DNAWalker, EGFr, ERK, GPPP, MAPK, MAPKbis, PaceMaker, Phase-
Variation, ViralEpidemic;

• business process and automation: BugTracking, BusinessProcesses,
CryptoMiner, FamilyReunion, FMS, HealthRecord, HospitalTriage, House-
Construction, IBM (4 models), Kanban, Medical, ProductionCell, Param-
ProductionCell, RobotManipulation, UtilityControlRoom;

• distributed memory and related algorithms: CANConstruction,
CANInsertWithFailure, LeafsetExtension, MultiCrashLeafsetExtension,
QuasiCertifProtocol, SatelliteMemory, SharedMemory, StigmergyCommit;

• elections or consensus: Election2020, HirschbergSinclair, NeoElection,
Raft, StigmergyElection;

• games: DLCRound, DLCShifumi, NQueens, Solitaire, Sudoku:
• hardware: ARMCacheCoherence, ASLink, DiscoveryGPU, GPUForward-

Progress, NoC3x3, Ring, SafeBus, TokenRing, UtahNoC, Vasy2003;
• operating systems or middleware: PolyORBLF, PolyORBNT, Sim-

pleLoadBalancer, SmallOperatingSystem;
• IoT, cloud, reconfiguration: CloudDeployment, CloudOpsManage-

ment, CloudReconfiguration, Planning, SmartHome;
• mutual exclusion: Anderson, DatabaseWithMutex, Dekker, Double-

Lock, EisenbergMcGuire, FunctionPointer, GlobalResAllocation, Lam-
portFastMutEx, Peterson, Philosophers, PhilosophersDyn, ResAllocation,
RwMutex, SwimmingPool, Szymanski, TwoPhaseLocking;

• network protocols: CSRepetitions, Echo, HexagonalGrid, Hypercube-
Grid, HypertorusGrid, IOTPpurchase, NeighborGrid, PermAdmissibility,
SquareGrid, TCPcondis, TriangularGrid, VehicularWifi;

• security: DES, ShieldIIPs, ShieldIIPt, ShieldPPPs, ShieldPPPt, Shield-
RVs, ShieldRVt;

• synchronisations and message passing: ClientsAndServers, DBSin-
gleClientW, DLCflexbar, FlexibleBarrier, MultiwaySync, RingSingleMes-
sageInMbox, SemanticWebServices, ServersAndClients, SieveSingleMsgM-
box;

• academic and synthetic models: DoubleExponent, Eratosthenes,
DrinkVendingMachine, JoinFreeModules, Murphy, PGCD, Referendum,
RefineWMG, RERS (4 models);

• transportation systems: AirplaneLD, AutoFlight, AutonomousCar,
BART, BridgeAndVehicles, CircularTrains, EnergyBus, Parking, Railroad.

Table 8.1 List of models in the MCC benchmark (copied from [Ama+23]) divided according
to their application domain.

196

This work has been published in:

• N. Amat and L. Chauvet. “Kong: a Tool to Squash Concurrent Places”. In:
Application and Theory of Petri Nets and Concurrency (PETRI NETS). vol. 13288.
Springer, 2022. doi: 10.1007/978-3-031-06653-5_6

• N. Amat and S. Dal Zilio. “SMPT: A Testbed for Reachabilty Methods in Gen-
eralized Petri Nets”. In: Formal Methods (FM). vol. 14000. Lecture Notes in
Computer Science. Springer, 2023. doi: 10.1007/978-3-031-27481-7_25

• N. Amat, P. Bouvier, and H. Garavel. “A Toolchain to Compute Concurrent
Places of Petri Nets”. In: Transactions on Petri Nets and Other Models of
Concurrency XVII. Lecture Notes in Computer Science 14150 (2024), pp. 1–26.
doi: 10.1007/978-3-662-68191-6_1

A conference artifact is available on Zenodo:

• N. Amat and S. Dal Zilio. Artifact for FM 2023 Paper: SMPT: A Testbed for
Reachability Methods in Generalized Petri Nets. Zenodo, 2022. doi: 10.5281/
zenodo.7341426

The tools related to this chapter are:

• SMPT § https://github.com/nicolasAmat/SMPT
• Kong § https://github.com/nicolasAmat/Kong
• Octant § https://github.com/nicolasAmat/Octant
• Reductron § https://github.com/nicolasAmat/Reductron

https://doi.org/10.1007/978-3-031-06653-5_6
https://doi.org/10.1007/978-3-031-27481-7_25
https://doi.org/10.1007/978-3-662-68191-6_1
https://doi.org/10.5281/zenodo.7341426
https://doi.org/10.5281/zenodo.7341426
https://github.com/nicolasAmat/SMPT
https://github.com/nicolasAmat/Kong
https://github.com/nicolasAmat/Octant
https://github.com/nicolasAmat/Reductron

Epilogue
Contributions and Perspectives

We can only see a short distance ahead,
but we can see plenty there that needs
to be done.

Alan Turing

My initial goal, that was set to me at the beginning of my PhD thesis, was to study
how to combine structural reductions with the model checking of reachability properties, if
possible with the use of symbolic methods. As we reach the conclusion of this manuscript, it
is time to take stock and look at the different results that I have obtained trying to achieve
this goal.

My work led me to address different research problems. A cornerstone of my results is
the definition of a new notion of polyhedral equivalence between nets, see Chapter 3, whereas
the original approach used in [BLD18] relied on a single, monolithic reduction system. This
provides an elegant way to separate two different aspects of our approach: (1) a theoretical
one—what are the properties, between the state space of two nets, needed to apply our
methods—; and (2) a practical one—how can we automatically compute a useful equivalence
in practice, and how do we exploit it for model checking. The concurrent study, and the
interactions between these two aspects produced interesting results. This dual concern also
explains our choice of the term “framework” in the title of this thesis—instead of a more
mundane expression, like “polyhedral method” for example—as a way to stress the fact
that we provide both theoretical tools, to understand our approach, and a structured set of
software tools to apply it on real examples.

On the theoretical side, it led us to the question of extending our approach with more
general linear constraints. In this respect, the use of the QF-LIA theory, then the move to
Presburger arithmetic, appears as a natural choice. One of the unexpected results of this
endeavor was to unearth a deep connection between polyhedral equivalence and the notion
of flat nets [Bar+05]. This gives a better understanding of what we can achieve with our
polyhedral method, which can be roughly described as: simplifying a net by trying to find,

198 Epilogue

and then abstract away, its “flat” sub-parts. This connection plays a key role in our method
for automatically checking polyhedral equivalence (Chapter 7), which is one of our main
contributions.

We also obtained results concerning the practical aspects of our approach. We proposed
a new data stucture (the TFG of Chapter 4) that captures quite precisely the “shape” of
the equation system, E, obtained using structural reductions. TFGs have been used for two
of our main contributions: to optimize the computation of the concurrency relation (see
Chapter 6), and when defining our formula projection method (see Chapter 5).

But there is also a third protagonist in this story, in the form of the Model Checking
Contest. Participating in the MCC had a significant impact on my work. It obviously
affected the experimental evaluation of my methods, via the use of its benchmark, but it has
also been an ideal playground for performing open and reproducible science.

Before describing possible paths for future works, we describe some of our contributions
in more details. To get a clearer picture, we describe in Fig. 8.4 the dependencies between
chapters and their relations to our contributions.

Chapter 3
Polyhedral Reduction

Chapter 7
Proving Polyhedral Equivalences

Chapter 4
Token Flow Graphs

Chapter 5
Project and Conquer

Chapter 6
Concurrency Relation Computation

Chapter 8
Tools and Reproducibility

Chapter 2
Computing Invariance Certificates

(I)

(II)

(III)

(IV)

(V)

(VI)

Fig. 8.4 Chapter and contribution dependency graph.

199

(I) Polyhedral Abstraction Equivalence. To adapt our approach with the theory
of SMT solving, we have defined an abstraction based on Boolean combinations of linear
constraints between integer variables (representing the marking of places). This resulted
in a new relation, denoted N ≡E N ′. We called this equivalence polyhedral in reference to
“polyhedral models” used in program optimization and static analysis [Fea96; BJT99]. Indeed,
like in these works, we proposed an algebraic representation of the relation between a model
and its state space which relies on the sets of solutions to predicates of linear constraints.

One of our main results is that, given a relation N ≡E N ′, we can derive a formula Ẽ
such that F is reachable in N if and only if Ẽ ∧F is reachable in N ′. This is interesting if the
net N ′ has fewer places than N , in which case we may expect that checking the reachability
of Ẽ ∧ F on N ′ is more efficient than checking F in N .

A difference with previous works on structural reductions, e.g. [Ber87], is that our approach
is not tailored to a particular class of properties—such as the absence of deadlocks—but
can be applied to more general problems, expressed as linear formulas over the marking of
places. In particular, we can apply more aggressive reduction techniques than, say, with
slicing [Rak12; Llo+17; KKG18], cone of influence [CGP99], or other methods [GRV08;
KBJ21] that seek to remove or gather together places that are not relevant to the property we
want to check (and so cannot contribute to its truth value). We do not share this restriction
in our approach, since we reduce nets beforehand and can therefore reduce places that occur
in the initial property. We could argue that approaches similar to slicing only simplify a
model with respect to a formula, whereas we simplify both the model and the formula using
our new method. This is more efficient when we need to check several properties on the same
model and, in any case, nothing prevents us from applying slicing techniques on the result of
our reduction.

(II) Automated Proving. Polyhedral equivalence may be subtle, and there is no proof
method associated with it. To solve this problem, we propose a procedure to automatically
prove polyhedral equivalence between pairs of parametric Petri nets. This contribution is
motivated by our goal to increase our confidence on the tools that we implement. In this
context, we use the term parametric to stress the fact that we manipulate semilinear sets
of markings, meaning sets that can be defined using a Presburger arithmetic formula C.
In particular, we reason about parametric nets (N,C), instead of marked nets (N,m0),
with the intended meaning that all markings satisfying C are potential initial markings
of N . We define an extended notion of polyhedral equivalence between parametric nets,
denoted (N,C) ≊E (N ′, C ′), whereas our standard definition is between marked nets only.
We show that, given a valid equivalence statement (N,C) ≊E (N ′, C ′), it is possible to derive
a Presburger formula, in a constructive way, whose satisfaction implies that the equivalence
holds. Our approach relies on an encoding into a set of SMT formulas using the LIA theory—
which means that we may need quantifiers alternation in this case. The difficulty, in this

200 Epilogue

context, arises from the fact that we need to handle infinite-state systems. For completeness,
we exploit a connection with the class of Petri nets with Presburger-definable reachability
sets.

(III) Token Flow Graphs and the Concurrency Relation. Token Flow Graphs (TFG)
capture the particular structure of constraints occurring in the linear system, E, generated
using structural reductions. To demonstrate the versatility of this structure, we have applied
it in Chapter 6 to a specific problem, that is to compute the concurrency relation of a net,
i.e., enumerating all pairs of places that can be marked together in some reachable marking.
This problem turns out to be useful for the decomposition into NUPNs. We described TFGs
and showed how to leverage this data structure in order to accelerate the computation of
the concurrency relation of a net. We use the term acceleration to stress the “multiplicative
effect” of TFGs. Indeed, we propose a framework that, starting from a tool for solving the
concurrent places problem, provide an augmented version of this tool that takes advantage of
reductions. The augmented tool can compute the concurrency relation for the initial instance
N , by computing it on a reduced version N ′, and then reconstructing a correct solution for
the initial instance. In each case, our approach takes the form of an “inverse transform” that
relies only on E and that does not involve expensive preprocessing on the reduced net. This
foreshadows our next contribution, where we tried to come up with a similar architecture
when checking reachability formulas.

(IV) Formula Projection. Model checking with our polyhedral approach entails checking
formulas of the form E ∧ F . A complication arises from the fact that formula E ∧ F may
include variables (places) that no longer occur in the reduced net N ′, and therefore act as
existentially quantified variables. This can complicate some symbolic verification techniques,
such as k-induction, and impede the use of explicit, enumerative approaches. Indeed, in
the later case, it means that we need to solve an integer linear problem for each new state,
instead of just evaluating a closed formula. To overcome this problem, we proposed a new
method, Chapter 5, for projecting the formula E ∧ F into an equivalent one, F ′, that only
refers to the places of N ′. Then, F ′ can be checked on N ′ using any off-the-shelf verification
tool.

Our projection can be defined as a semi-procedure for quantifier elimination in Presburger
arithmetic, tailored for the specific kind of constraints we handle in E. Whereas quantifier
elimination has an exponential complexity in general for existential formulas, our construction
has linear complexity and can only decrease the size of a formula. It also always terminates
and returns a result that is guaranteed to be sound. Which means that it under-approximates
the set of reachable models and, therefore, a witness of F ′ in N ′ necessarily corresponds to
a witness of F in N . Additionally, our approach includes a simple condition on F that is

201

enough to detect when our result is exact, meaning that if F ′ is unreachable in N ′, then F is
unreachable in N .

(V) Software and Competition. Our approach and algorithms have been implemented
in four open-source (under GPLv3 license) tools that we described in Chapter 8: SMPT for
checking reachability properties; Kong for accelerating the computation of concurrent places;
Octant for eliminating quantifiers; and Reductron for automatically proving the correctness
of polyhedral equivalences. We gave experimental results about their effectiveness, both for
bounded and unbounded nets, using a large benchmark provided by the Model Checking
Contest. We paid attention to the reproducibility of our results, and provide an accompanying
artifact that covers all our experiments.

(VI) PDR and Certificates of Invariance. The last contribution in our list, and the
subject of Chapter 2, is not directly related to our polyhedral framework. Our work led
us to study the adaptation of several symbolic model checking algorithm for Petri nets,
such as Bounded Model Checking (BMC) and k-induction. We propose a new algorithm as
well, which is a semi-decision procedure based on the Property Directed Reachability (PDR)
method. A distinctive feature of our extension of PDR to Petri nets is the ability to generate
“certificate of invariance”, in the form of an inductive Presbuger invariant (see Theorem 1.2),
when we find that a property holds on all the reachable markings. We actually defined three
different versions, that vary depending on the method used for abstracting possible witnesses,
and that are able to handle problems of increasing difficulty. In this work, we have sought
improvements in terms of both “performance” and “expressiveness”. We also targeted what
we consider to be a difficult, and less studied area of research: procedures that can be applied
when a property is an invariant and when the net is unbounded, or its state space cannot be
fully explored.

Perspectives

There is much to be humble about the reachability problem, which seems quite simple at
first glance, but which has and will continue to pique the interest of researchers from the
theoretical computer science community.

I am convinced that further research is needed in order to develop new algorithms to
address reachability queries that are out of reach with current methods. In this context, my
adaptation of the PDR method could be improved; for instance by adding new heuristics or
new “acceleration methods” to better block groups of related witnesses.

I also believe that portfolio approaches will continue to be the most effective strategy
in practice, considering the theoretical difficulty of the problem. But new research is also

202 Epilogue

necessary in this context, to improve the strategies used to select, tune, and combine all the
available methods in a portfolio.

Another direction for future works would be to investigate the use of TFG with other
verification problems. For instance computing the max-marking of a net, which is the maximal
number of tokens in a reachable state. This is a first step towards tackling “optimization”
problems over the reachable states of a net. Another related problem is the generalized
mutual exclusion constraints [GDS92], which extends reachability queries by allowing the
use of non-trivial coefficients (other than 1 or −1) in atomic formulas. In the same line of
research, it would be interesting to improve the precision of our formula projection procedure
when the result is not complete. Even though we have shown that such cases rarely occur in
practice.

I am also interested in pursuing problems that are close, but not directly related to poly-
hedral reductions. For instance, finding a “workable” algorithm to decide if the reachability
set of a net is Presbuger-definable. This will would be helpful in our automated proving
procedure.

My theoretical works build on the close relation between Presburger arithmetic and Petri
nets theory, such as the development of an optimized quantifier elimination procedure. This
explains my motivation to explore current topics in Presburger arithmetic. Such subjects fit
logically within a broader research project on which I want to embark. The advances made in
SMT solvers in recent years have led to significant advances in verification tools. Nevertheless,
sometimes solvers remain too general and are not adapted to specific problems. In this
context, I plan to develop more specific solvers and decision procedures that take better into
account the underlying models. These results could have applications in several domains:
for model checking obviously; but also for solving problems occurring in planification and
schedulability analysis; or for checking the correctness of autonomous critical systems.

References

[Aal15] W. M. P. van der Aalst. “Business process management as the “Killer App” for
Petri nets”. In: Software & Systems Modeling 14.2 (2015), pp. 685–691. doi:
10.1007/s10270-014-0424-2.

[Age74] T. Agerwala. Complete model for representing the coordination of asynchronous
processes. Research report. Johns Hopkins University, 1974.

[Ama23a] N. Amat. A QF-LIA Benchmark Suite from Polyhedral Reductions of Petri Nets.
Research report. LAAS-CNRS, 2023.

[Ama23b] N. Amat. Artifact for PhD thesis: "A polyhedral framework for reachability
problems in Petri nets". Zenodo, 2023. doi: 10.5281/zenodo.8349546.

[Ama20a] N. Amat. Kong: The Koncurrent Places Grinder. A tool to accelerate the com-
putation of the concurrency relation of a Petri net using polyhedral reduction.
2020. url: https://github.com/nicolasAmat/Kong (visited on 10/10/2023).

[Ama23c] N. Amat. Octant: The Reachability Formula Projector. A tool to project Petri
net reachability properties on reduced nets using polyhedral reduction. 2023. url:
https://github.com/nicolasAmat/Octant (visited on 10/10/2023).

[Ama23d] N. Amat. Reductron: The Polyhedral Abstraction Prover. A tool to automatically
prove the correctness of polyhedral equivalences for Petri nets. 2023. url: https:
//github.com/nicolasAmat/Reductron (visited on 10/10/2023).

[Ama20b] N. Amat. SMPT: The Satisfiability Modulo Petri Nets Model Checker. An SMT-
based model checker for Petri nets focused on reachability problems that takes
advantage of polyhedral reduction. 2020. url: https://github.com/nicolasAmat/
SMPT (visited on 10/10/2023).

[Ama23e] N. Amat. uSMPT: an educational project, targeting Master and PhD students to
showcase the application of SMT methods in system verification, by developing a
Petri net model checker for the reachability problem. 2023. url: https://github.
com/nicolasAmat/uSMPT (visited on 10/10/2023).

[Ama+23] N. Amat, E. Amparore, B. Berthomieu, P. Bouvier, S. Dal Zilio, P. G. Jensen,
L. Jezequel, F. Kordon, S. Li, E. Paviot-Adet, J. Srba, Y. Thierry-Mieg, and
K. Wolf. “Behind the Scene of the Model Checking Contest, Analysis of Results
from 2018 to 2023”. Submitted. 2023.

[ABD22] N. Amat, B. Berthomieu, and S. Dal Zilio. “A Polyhedral Abstraction for Petri
Nets and its Application to SMT-Based Model Checking”. In: Fundamenta
Informaticae 187.2-4 (2022), pp. 103–138. doi: 10.3233/FI-222134.

[ABD21] N. Amat, B. Berthomieu, and S. Dal Zilio. “On the Combination of Polyhedral
Abstraction and SMT-Based Model Checking for Petri Nets”. In: Application
and Theory of Petri Nets and Concurrency (PETRI NETS). Vol. 12734. Lecture
Notes in Computer Science. Springer, 2021. doi: 10.1007/978-3-030-76983-3_9.

https://doi.org/10.1007/s10270-014-0424-2
https://doi.org/10.5281/zenodo.8349546
https://github.com/nicolasAmat/Kong
https://github.com/nicolasAmat/Octant
https://github.com/nicolasAmat/Reductron
https://github.com/nicolasAmat/Reductron
https://github.com/nicolasAmat/SMPT
https://github.com/nicolasAmat/SMPT
https://github.com/nicolasAmat/uSMPT
https://github.com/nicolasAmat/uSMPT
https://doi.org/10.3233/FI-222134
https://doi.org/10.1007/978-3-030-76983-3_9

204 References

[ABG24] N. Amat, P. Bouvier, and H. Garavel. “A Toolchain to Compute Concurrent
Places of Petri Nets”. In: Transactions on Petri Nets and Other Models of
Concurrency XVII. Lecture Notes in Computer Science 14150 (2024), pp. 1–26.
doi: 10.1007/978-3-662-68191-6_1.

[AC22] N. Amat and L. Chauvet. “Kong: a Tool to Squash Concurrent Places”. In: Ap-
plication and Theory of Petri Nets and Concurrency (PETRI NETS). Vol. 13288.
Springer, 2022. doi: 10.1007/978-3-031-06653-5_6.

[AD22] N. Amat and S. Dal Zilio. Artifact for FM 2023 Paper: SMPT: A Testbed for
Reachability Methods in Generalized Petri Nets. Zenodo, 2022. doi: 10.5281/
zenodo.7341426.

[AD23] N. Amat and S. Dal Zilio. “SMPT: A Testbed for Reachabilty Methods in
Generalized Petri Nets”. In: Formal Methods (FM). Vol. 14000. Lecture Notes
in Computer Science. Springer, 2023. doi: 10.1007/978-3-031-27481-7_25.

[ADH22a] N. Amat, S. Dal Zilio, and T. Hujsa. Artifact for TACAS 2022 Paper: Property
Directed Reachability for Generalized Petri Nets. Zenodo, 2022. doi: 10.5281/
zenodo.5863379.

[ADH23a] N. Amat, S. Dal Zilio, and T. Hujsa. Model entitled “CryptoMiner” proposed
for the Model Checking Contest. 2023. url: https://mcc.lip6.fr/2023/pdf/
CryptoMiner-form.pdf (visited on 10/10/2023).

[ADH23b] N. Amat, S. Dal Zilio, and T. Hujsa. Model entitled “Murphy” proposed for the
Model Checking Contest. 2023. url: https://mcc.lip6.fr/2023/pdf/Murphy-
form.pdf (visited on 10/10/2023).

[ADH23c] N. Amat, S. Dal Zilio, and T. Hujsa. Model entitled “PGCD” proposed for the
Model Checking Contest. 2023. url: https://mcc.lip6.fr/2023/pdf/PGCD-
form.pdf (visited on 10/10/2023).

[ADH22b] N. Amat, S. Dal Zilio, and T. Hujsa. “Property Directed Reachability for
Generalized Petri Nets”. In: Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Vol. 13243. Lecture Notes in Computer Science.
Springer, 2022. doi: 10.1007/978-3-030-99524-9_28.

[ADL21] N. Amat, S. Dal Zilio, and D. Le Botlan. “Accelerating the Computation of
Dead and Concurrent Places Using Reductions”. In: Model Checking Software
(SPIN). Vol. 12864. Lecture Notes in Computer Science. Springer, 2021. doi:
10.1007/978-3-030-84629-9_3.

[ADL23a] N. Amat, S. Dal Zilio, and D. Le Botlan. Artifact for VMCAI 2024 Paper "Project
and Conquer: Fast Quantifier Elimination for Checking Petri Net Reachability".
Zenodo, 2023. doi: 10.5281/zenodo.10061156.

[ADL23b] N. Amat, S. Dal Zilio, and D. Le Botlan. “Automated Polyhedral Abstraction
Proving”. In: Application and Theory of Petri Nets and Concurrency (PETRI
NETS). Vol. 13929. Lecture Notes in Computer Science. Springer, 2023. doi:
10.1007/978-3-031-33620-1_18.

[ADL23c] N. Amat, S. Dal Zilio, and D. Le Botlan. “Leveraging polyhedral reductions for
solving Petri net reachability problems”. In: International Journal on Software
Tools for Technology Transfer 25.1 (2023), pp. 95–114. doi: 10.1007/s10009-022-
00694-8.

[ADL24] N. Amat, S. Dal Zilio, and D. Le Botlan. “Project and Conquer: Fast Quanti-
fier Elimination for Checking Petri Nets Reachability”. In: Verification, Model
Checking, and Abstract Interpretation (VMCAI). Lecture Notes in Computer
Science. Springer, 2024. doi: 10.1007/978-3-031-50524-9_5.

https://doi.org/10.1007/978-3-662-68191-6_1
https://doi.org/10.1007/978-3-031-06653-5_6
https://doi.org/10.5281/zenodo.7341426
https://doi.org/10.5281/zenodo.7341426
https://doi.org/10.1007/978-3-031-27481-7_25
https://doi.org/10.5281/zenodo.5863379
https://doi.org/10.5281/zenodo.5863379
https://mcc.lip6.fr/2023/pdf/CryptoMiner-form.pdf
https://mcc.lip6.fr/2023/pdf/CryptoMiner-form.pdf
https://mcc.lip6.fr/2023/pdf/Murphy-form.pdf
https://mcc.lip6.fr/2023/pdf/Murphy-form.pdf
https://mcc.lip6.fr/2023/pdf/PGCD-form.pdf
https://mcc.lip6.fr/2023/pdf/PGCD-form.pdf
https://doi.org/10.1007/978-3-030-99524-9_28
https://doi.org/10.1007/978-3-030-84629-9_3
https://doi.org/10.5281/zenodo.10061156
https://doi.org/10.1007/978-3-031-33620-1_18
https://doi.org/10.1007/s10009-022-00694-8
https://doi.org/10.1007/s10009-022-00694-8
https://doi.org/10.1007/978-3-031-50524-9_5

References 205

[Amp+19] E. Amparore, B. Berthomieu, G. Ciardo, S. Dal Zilio, F. Gallà, L. M. Hillah,
F. Hulin-Hubard, P. G. Jensen, L. Jezequel, F. Kordon, D. Le Botlan, T. Liebke,
J. Meijer, A. Miner, E. Paviot-Adet, J. Srba, Y. Thierry-Mieg, T. van Dijk, and
K. Wolf. “Presentation of the 9th Edition of the Model Checking Contest”. In:
Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
Vol. 11429. Lecture Notes in Computer Science. Springer, 2019. doi: 10.1007/978-
3-662-58381-4_9.

[Amp+16] E. G. Amparore, G. Balbo, M. Beccuti, S. Donatelli, and G. Franceschinis. “30
Years of GreatSPN”. In: Principles of Performance and Reliability Modeling and
Evaluation. Springer, 2016, pp. 227–254. doi: 10.1007/978-3-319-30599-8_9.

[ADC20] E. G. Amparore, S. Donatelli, and G. Ciardo. “Variable order metrics for decision
diagrams in system verification”. In: International Journal on Software Tools for
Technology Transfer 22.5 (2020), pp. 541–562. doi: 10.1007/s10009-019-00522-6.

[ADG22] E. G. Amparore, S. Donatelli, and F. Gallà. “starMC: an automata based CTL*
model checker”. In: PeerJ Computer Science 8.e823 (2022). doi: 10.7717/peerj-
cs.823.

[ADS11] D. Angeli, P. De Leenheer, and E. D. Sontag. “Persistence Results for Chemical
Reaction Networks with Time-Dependent Kinetics and No Global Conservation
Laws”. In: SIAM Journal on Applied Mathematics 71.1 (2011), pp. 128–146. doi:
10.1137/090779401.

[AK76] T. Araki and T. Kasami. “Some decision problems related to the reachability
problem for Petri nets”. In: Theoretical Computer Science 3.1 (1976), pp. 85–104.
doi: 10.1016/0304-3975(76)90067-0.

[AMP06] A. Armando, J. Mantovani, and L. Platania. “Bounded Model Checking of
Software Using SMT Solvers Instead of SAT Solvers”. In: Model Checking
Software (SPIN). Vol. 3925. Lecture Notes in Computer Science. Springer, 2006.
doi: 10.1007/11691617_9.

[Arn02] A. Arnold. “Nivat’s processes and their synchronization”. In: Theoretical Com-
puter Science 281.1 (2002), pp. 31–36. doi: 10.1016/S0304-3975(02)00006-3.

[AS80] B. Aspvall and Y. Shiloach. “A Polynomial Time Algorithm for Solving Systems
of Linear Inequalities with Two Variables Per Inequality”. In: SIAM Journal on
Computing 9.4 (1980), pp. 827–845. doi: 10.1137/0209063.

[BK08] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.
[Bal+10] P. Baldan, N. Cocco, A. Marin, and M. Simeoni. “Petri nets for modelling

metabolic pathways: a survey”. In: Natural Computing 9.4 (2010), pp. 955–989.
doi: 10.1007/s11047-010-9180-6.

[Bar+08] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. “FAST: acceleration from
theory to practice”. In: International Journal on Software Tools for Technology
Transfer 10.5 (2008), pp. 401–424. doi: 10.1007/s10009-008-0064-3.

[Bar+03] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. “FAST: Fast Acceleration of
Symbolic Transition Systems”. In: Computer Aided Verification (CAV). Vol. 2725.
Lecture Notes in Computer Science. Springer, 2003. doi: 10.1007/978-3-540-
45069-6_12.

[Bar+05] S. Bardin, A. Finkel, J. Leroux, and P. Schnoebelen. “Flat Acceleration in
Symbolic Model Checking”. In: Automated Technology for Verification and
Analysis (ATVA). Vol. 3707. Lecture Notes in Computer Science. Springer, 2005.
doi: 10.1007/11562948_35.

https://doi.org/10.1007/978-3-662-58381-4_9
https://doi.org/10.1007/978-3-662-58381-4_9
https://doi.org/10.1007/978-3-319-30599-8_9
https://doi.org/10.1007/s10009-019-00522-6
https://doi.org/10.7717/peerj-cs.823
https://doi.org/10.7717/peerj-cs.823
https://doi.org/10.1137/090779401
https://doi.org/10.1016/0304-3975(76)90067-0
https://doi.org/10.1007/11691617_9
https://doi.org/10.1016/S0304-3975(02)00006-3
https://doi.org/10.1137/0209063
https://doi.org/10.1007/s11047-010-9180-6
https://doi.org/10.1007/s10009-008-0064-3
https://doi.org/10.1007/978-3-540-45069-6_12
https://doi.org/10.1007/978-3-540-45069-6_12
https://doi.org/10.1007/11562948_35

206 References

[BFT17] C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB Standard: Version 2.6.
Standard. University of Iowa, 2017.

[Bar+22] M. Barth, D. Dietsch, M. Heizmann, and A. Podelski. Ultimate Eliminator at
SMT-COMP 2022. Research report. University of Freiburg, 2022.

[Bas98] T. Basten. “In terms of nets : system design with Petri nets and process algebra”.
PhD thesis. Technische Universiteit Eindhoven, 1998. doi: 10.6100/IR516117.

[BF99] B. Bérard and L. Fribourg. “Reachability Analysis of (Timed) Petri Nets Using
Real Arithmetic”. In: Concurrency Theory (CONCUR). Vol. 1664. Lecture Notes
in Computer Science. Springer, 1999. doi: 10.1007/3-540-48320-9_14.

[BPS01] J. A. Bergstra, A. Ponse, and S. A. Smolka. Handbook of process algebra. Elsevier,
2001. doi: 10.1016/B978-0-444-82830-9.X5017-6.

[Ber87] G. Berthelot. “Transformations and Decompositions of Nets”. In: Petri Nets:
Central Models and Their Properties (ACPN). Vol. 254. Lecture Notes in Com-
puter Science. Springer, 1987. doi: 10.1007/978-3-540-47919-2_13.

[BL85] G. Berthelot and Lri-Iie. “Checking properties of nets using transformations”.
In: Advances in Petri Nets (APN). Vol. 222. Lecture Notes in Computer Science.
Springer, 1985. doi: 10.1007/BFb0016204.

[BRV04] B. Berthomieu, P.-O. Ribet, and F. Vernadat. “The tool TINA – Construction
of abstract state spaces for Petri nets and time Petri nets”. In: International
Journal of Production Research 42.14 (2004), pp. 2741–2756. doi: 10.1080/
00207540412331312688.

[BLD19] B. Berthomieu, D. Le Botlan, and S. Dal Zilio. “Counting Petri net markings
from reduction equations”. In: International Journal on Software Tools for
Technology Transfer 22.2 (2019), pp. 163–181. doi: 10.1007/s10009-019-00519-1.

[BLD18] B. Berthomieu, D. Le Botlan, and S. Dal Zilio. “Petri net Reductions for Counting
Markings”. In: Model Checking Software (SPIN). Vol. 10869. Lecture Notes in
Computer Science. Springer, 2018. doi: 10.1007/978-3-319-94111-0_4.

[BJT99] F. Besson, T. Jensen, and J.-P. Talpin. “Polyhedral Analysis for Synchronous
Languages”. In: Static Analysis (SAS). Vol. 1694. Lecture Notes in Computer
Science. Springer, 1999. doi: 10.1007/3-540-48294-6_4.

[BDK96] E. Best, R. Devillers, and M. Koutny. “Petri nets, process algebras and concurrent
programming languages”. In: Lectures on Petri Nets II: Applications (ACPN).
Vol. 1492. Lecture Notes in Computer Science. Springer, 1996. doi: 10.1007/3-
540-65307-4_46.

[Bie+99] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. “Symbolic Model Checking without
BDDs”. In: Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). Vol. 1579. Lecture Notes in Computer Science. Springer, 1999. doi:
10.1007/3-540-49059-0_14.

[Bil+21] A. Bilgram, P. G. Jensen, T. Pedersen, J. Srba, and P. H. Taankvist. “Im-
provements in Unfolding of Colored Petri Nets”. In: Reachability Problems
(RP). Vol. 13035. Lecture Notes in Computer Science. Springer, 2021. doi:
10.1007/978-3-030-89716-1_5.

[Bjø] N. Bjørner. The Z3 Theorem Prover. url: https://github.com/Z3Prover/z3/
(visited on 10/10/2023).

https://doi.org/10.6100/IR516117
https://doi.org/10.1007/3-540-48320-9_14
https://doi.org/10.1016/B978-0-444-82830-9.X5017-6
https://doi.org/10.1007/978-3-540-47919-2_13
https://doi.org/10.1007/BFb0016204
https://doi.org/10.1080/00207540412331312688
https://doi.org/10.1080/00207540412331312688
https://doi.org/10.1007/s10009-019-00519-1
https://doi.org/10.1007/978-3-319-94111-0_4
https://doi.org/10.1007/3-540-48294-6_4
https://doi.org/10.1007/3-540-65307-4_46
https://doi.org/10.1007/3-540-65307-4_46
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-030-89716-1_5
https://github.com/Z3Prover/z3/

References 207

[BHO21] M. Blondin, C. Haase, and P. Offtermatt. “Directed Reachability for Infinite-
State Systems”. In: Tools and Algorithms for the Construction and Analysis of
Systems (TACAS). Vol. 12652. Lecture Notes in Computer Science. Springer,
2021. doi: 10.1007/978-3-030-72013-1_1.

[Boi98] B. Boigelot. “Symbolic methods for exploring infinite state spaces”. PhD thesis.
ULiège-Université de Liège, 1998.

[BW94] B. Boigelot and P. Wolper. “Symbolic verification with periodic sets”. In: Com-
puter Aided Verification (CAV). Vol. 818. Lecture Notes in Computer Science.
Springer, 1994. doi: 10.1007/3-540-58179-0_43.

[Boj+11] M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. “Two-
variable logic on data words”. In: ACM Transactions on Computational Logic
12.4 (2011), pp. 1–26. doi: 10.1145/1970398.1970403.

[BB87] T. Bolognesi and E. Brinksma. “Introduction to the ISO specification language
LOTOS”. In: Computer Networks and ISDN Systems 14.1 (1987), pp. 25–59.
doi: 10.1016/0169-7552(87)90085-7.

[Bøn+19] F. M. Bønneland, J. Dyhr, P. G. Jensen, M. Johannsen, and J. Srba. “Stubborn
versus structural reductions for Petri nets”. In: Journal of Logical and Algebraic
Methods in Programming 102 (2019), pp. 46–63. doi: 10.1016/j.jlamp.2018.09.
002.

[BT76] I. Borosh and L. B. Treybig. “Bounds on Positive Integral Solutions of Linear
Diophantine Equations”. In: Proceedings of the American Mathematical Society
55.2 (1976), pp. 299–304. doi: 10.2307/2041711.

[BE12] A. Bouajjani and M. Emmi. “Analysis of recursively parallel programs”. In: ACM
SIGPLAN Notices 47.1 (2012), pp. 203–214. doi: 10.1145/2103621.2103681.

[BG21] P. Bouvier and H. Garavel. “Efficient Algorithms for Three Reachability Problems
in Safe Petri Nets”. In: Application and Theory of Petri Nets and Concurrency
(Petri Nets). Vol. 12734. Lecture Notes in Computer Science. Springer, 2021.
doi: 10.1007/978-3-030-76983-3_17.

[BGP20] P. Bouvier, H. Garavel, and H. Ponce-de-León. “Automatic Decomposition of
Petri Nets into Automata Networks – A Synthetic Account”. In: Application
and Theory of Petri Nets and Concurrency (PETRI NETS). Vol. 12152. Lecture
Notes in Computer Science. Springer, 2020. doi: 10.1007/978-3-030-51831-8_1.

[Bra11] A. R. Bradley. “SAT-Based Model Checking without Unrolling”. In: Verification,
Model Checking, and Abstract Interpretation (VMCAI). Vol. 6538. Lecture Notes
in Computer Science. Springer, 2011. doi: 10.1007/978-3-642-18275-4_7.

[Bra12] A. R. Bradley. “Understanding IC3”. In: Theory and Applications of Satisfiability
Testing (SAT). Vol. 7317. Lecture Notes in Computer Science. Springer, 2012.
doi: 10.1007/978-3-642-31612-8_1.

[Bur+92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L.-J. Hwang. “Symbolic
model checking: 1020 states and beyond”. In: Information and Computation
98.2 (1992), pp. 142–170. doi: 10.1016/0890-5401(92)90017-A.

[BKY00] F. Burns, A. Koelmans, and A. Yakovlev. “WCET Analysis of Superscalar
Processors Using Simulation With Coloured Petri Nets”. In: Real-Time Systems
18.2 (2000), pp. 275–288. doi: 10.1023/A:1008101416758.

[CJL17] F. Cassez, P. G. Jensen, and K. G. Larsen. “Refinement of Trace Abstraction
for Real-Time Programs”. In: Reachability Problems (RP). Vol. 10506. Lecture
Notes in Computer Science. Springer, 2017. doi: 10.1007/978-3-319-67089-8_4.

https://doi.org/10.1007/978-3-030-72013-1_1
https://doi.org/10.1007/3-540-58179-0_43
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.1016/0169-7552(87)90085-7
https://doi.org/10.1016/j.jlamp.2018.09.002
https://doi.org/10.1016/j.jlamp.2018.09.002
https://doi.org/10.2307/2041711
https://doi.org/10.1145/2103621.2103681
https://doi.org/10.1007/978-3-030-76983-3_17
https://doi.org/10.1007/978-3-030-51831-8_1
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-31612-8_1
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1023/A:1008101416758
https://doi.org/10.1007/978-3-319-67089-8_4

208 References

[Cha22] L. Chauvet. PNets: a Rust library for manipulating and reducing Petri nets.
2022. url: https://github.com/Fomys/pnets (visited on 10/10/2023).

[CEP95] A. Cheng, J. Esparza, and J. Palsberg. “Complexity results for 1-safe nets”. In:
Theoretical Computer Science 147.1 (1995), pp. 117–136. doi: 10.1016/0304-
3975(94)00231-7.

[Chi+93] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. “Stochastic well-
formed colored nets and symmetric modeling applications”. In: Transactions on
Computers 42.11 (1993), pp. 1343–1360. doi: 10.1109/12.247838.

[Chi+91] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. “On Well-Formed
Coloured Nets and Their Symbolic Reachability Graph”. In: High-level Petri
Nets. Springer, 1991. doi: 10.1007/978-3-642-84524-6_13.

[Cim+16] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta. “Infinite-state invariant
checking with IC3 and predicate abstraction”. In: Formal Methods in System
Design 49.3 (2016), pp. 190–218. doi: 10.1007/s10703-016-0257-4.

[Cim+14] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta. “IC3 Modulo Theories via
Implicit Predicate Abstraction”. In: Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). Vol. 8413. Lecture Notes in Computer Science.
Springer, 2014. doi: 10.1007/978-3-642-54862-8_4.

[CGP99] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[Cla+01] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. “Bounded Model Checking Using

Satisfiability Solving”. In: Formal Methods in System Design 19.1 (2001), pp. 7–
34. doi: 10.1023/A:1011276507260.

[Cla+00] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. “Counterexample-Guided
Abstraction Refinement”. In: Computer Aided Verification (CAV). Vol. 1855.
Lecture Notes in Computer Science. Springer, 2000. doi: 10.1007/10722167_15.

[CE81] E. M. Clarke and E. A. Emerson. “Design and synthesis of synchronization
skeletons using branching time temporal logic”. In: Logic of Program. Vol. 131.
Lecture Notes in Computer Science. Springer. 1981. doi: 10.1007/BFb0025774.

[CL98] E. Cohen and L. Lamport. “Reduction in TLA”. In: Concurrency Theory (CON-
CUR). Vol. 1466. Lecture Notes in Computer Science. Springer, 1998. doi:
10.1007/BFb0055631.

[Com+71] F. Commoner, A. W. Holt, S. Even, and A. Pnueli. “Marked directed graphs”.
In: Journal of Computer and System Sciences 5.5 (1971), pp. 511–523. doi:
10.1016/S0022-0000(71)80013-2.

[Coo72] D. C. Cooper. “Theorem Proving in Arithmetic without Multiplication”. In:
Machine Intelligence 7 (1972), pp. 91–100.

[Cos+10] N. Coste, H. Garavel, H. Hermanns, F. Lang, R. Mateescu, and W. Serwe.
“Ten Years of Performance Evaluation for Concurrent Systems Using CADP”.
In: Leveraging Applications of Formal Methods, Verification, and Validation
(ISoLA). Vol. 6416. Lecture Notes in Computer Science. Springer. 2010. doi:
10.1007/978-3-642-16561-0_18.

[CL07] H. Costelha and P. Lima. “Modelling, analysis and execution of robotic tasks
using petri nets”. In: Intelligent Robots and Systems (IROS). IEEE, 2007. doi:
10.1109/IROS.2007.4399365.

[CH78] P. Cousot and N. Halbwachs. “Automatic discovery of linear restraints among
variables of a program”. In: Principles of Programming Languages (POPL).
ACM, 1978. doi: 10.1145/512760.512770.

https://github.com/Fomys/pnets
https://doi.org/10.1016/0304-3975(94)00231-7
https://doi.org/10.1016/0304-3975(94)00231-7
https://doi.org/10.1109/12.247838
https://doi.org/10.1007/978-3-642-84524-6_13
https://doi.org/10.1007/s10703-016-0257-4
https://doi.org/10.1007/978-3-642-54862-8_4
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0055631
https://doi.org/10.1016/S0022-0000(71)80013-2
https://doi.org/10.1007/978-3-642-16561-0_18
https://doi.org/10.1109/IROS.2007.4399365
https://doi.org/10.1145/512760.512770

References 209

[Cze+20] W. Czerwiński, S. Lasota, R. Lazić, J. Leroux, and F. Mazowiecki. “The Reach-
ability Problem for Petri Nets is Not Elementary”. In: Journal of the ACM 68.1
(2020), pp. 1–28. doi: 10.1145/3422822.

[CO22] W. Czerwiński and Ł. Orlikowski. “Reachability in Vector Addition Systems
is Ackermann-complete”. In: Foundations of Computer Science (FOCS). IEEE,
2022. doi: 10.1109/FOCS52979.2021.00120.

[Dal20] S. Dal Zilio. “MCC: A Tool for Unfolding Colored Petri Nets in PNML Format”.
In: Application and Theory of Petri Nets and Concurrency (PETRI NETS).
Vol. 12152. Lecture Notes in Computer Science. Springer, 2020. doi: 10.1007/978-
3-030-51831-8_23.

[Dav+12] A. David, L. Jacobsen, M. Jacobsen, K. Y. Jørgensen, M. H. Møller, and J.
Srba. “TAPAAL 2.0: Integrated Development Environment for Timed-Arc Petri
Nets”. In: Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). Vol. 7214. Lecture Notes in Computer Science. Springer, 2012. doi:
10.1007/978-3-642-28756-5_36.

[Dia09] M. Diaz. Petri Nets: Fundamental Models, Verification and Applications. Wiley-
ISTE, 2009.

[DL20] A. Dixon and R. Lazić. “KReach: A Tool for Reachability in Petri Nets”. In:
Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
Vol. 12078. Lecture Notes in Computer Science. Springer, 2020. doi: 10.1007/978-
3-030-45190-5_22.

[DS97] A. Dolzmann and T. Sturm. “REDLOG: computer algebra meets computer logic”.
In: ACM SIGMA Bulletin 31.2 (1997), pp. 2–9. doi: 10.1145/261320.261324.

[DFS98] C. Dufourd, A. Finkel, and P. Schnoebelen. “Reset nets between decidability and
undecidability”. In: Automata, Languages and Programming (ICALP). Vol. 1443.
Lecture Notes in Computer Science. Springer, 1998. doi: 10.1007/BFb0055044.

[EC80] E. A. Emerson and E. M. Clarke. “Characterizing correctness properties of
parallel programs using fixpoints”. In: Automata, Languages and Programming
(ICALP). Vol. 85. Lecture Notes in Computer Science. Springer, 1980. doi:
10.1007/3-540-10003-2_69.

[Esp98] J. Esparza. “Decidability and complexity of Petri net problems — An introduc-
tion”. In: Lectures on Petri Nets I: Basic Models (ACPN). Lecture Notes in
Computer Science. Springer, 1998. doi: 10.1007/3-540-65306-6_20.

[Esp+14] J. Esparza, R. Ledesma-Garza, R. Majumdar, P. Meyer, and F. Niksic. “An
SMT-Based Approach to Coverability Analysis”. In: Computer Aided Verification
(CAV). Vol. 8559. Lecture Notes in Computer Science. 2014. doi: 10.1007/978-
3-319-08867-9_40.

[EM00] J. Esparza and S. Melzer. “Verification of Safety Properties Using Integer
Programming: Beyond the State Equation”. In: Formal Methods in System
Design 16.2 (2000), pp. 159–189. doi: 10.1023/A:1008743212620.

[EN94] J. Esparza and M. Nielsen. “Decidability issues for Petri nets”. In: BRICS Report
Series 1.8 (1994). doi: 10.7146/brics.v1i8.21662.

[ES01] J. Esparza and C. Schröter. “Net Reductions for LTL Model-Checking”. In:
Correct Hardware Design and Verification Methods (CHARME). Vol. 2144.
Lecture Notes in Computer Science. Springer. 2001. doi: 10.1007/3-540-44798-
9_25.

https://doi.org/10.1145/3422822
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1007/978-3-030-51831-8_23
https://doi.org/10.1007/978-3-030-51831-8_23
https://doi.org/10.1007/978-3-642-28756-5_36
https://doi.org/10.1007/978-3-030-45190-5_22
https://doi.org/10.1007/978-3-030-45190-5_22
https://doi.org/10.1145/261320.261324
https://doi.org/10.1007/BFb0055044
https://doi.org/10.1007/3-540-10003-2_69
https://doi.org/10.1007/3-540-65306-6_20
https://doi.org/10.1007/978-3-319-08867-9_40
https://doi.org/10.1007/978-3-319-08867-9_40
https://doi.org/10.1023/A:1008743212620
https://doi.org/10.7146/brics.v1i8.21662
https://doi.org/10.1007/3-540-44798-9_25
https://doi.org/10.1007/3-540-44798-9_25

210 References

[EHP05] S. Evangelista, S. Haddad, and J. Pradat-Peyre. “Syntactical Colored Petri Nets
Reductions”. In: Automated Technology for Verification and Analysis (ATVA).
Vol. 3707. Lecture Notes in Computer Science. Springer, 2005. doi: 10.1007/
11562948_17.

[Fea96] P. Feautrier. “Automatic parallelization in the polytope model”. In: The Data
Parallel Programming Model. Vol. 1132. Lecture Notes in Computer Science.
Springer, 1996. doi: 10.1007/3-540-61736-1_44.

[FL11] P. Feautrier and C. Lengauer. “Polyhedron Model”. In: Encyclopedia of Parallel
Computing (2011), pp. 1581–1592. doi: 10.1007/978-0-387-09766-4_502.

[Fin92] G. Findlow. “Obtaining deadlock-preserving skeletons for coloured nets”. In:
Application and Theory of Petri Nets (ICATPN). Vol. 616. Lecture Notes in
Computer Science. Springer, 1992. doi: 10.1007/3-540-55676-1_10.

[Fin91] A. Finkel. “The minimal coverability graph for Petri nets”. In: Advances in Petri
Nets (ICATPN). Vol. 674. Lecture Notes in Computer Science. Springer, 1991.
doi: 10.1007/3-540-56689-9_45.

[FHK21] A. Finkel, S. Haddad, and I. Khmelnitsky. “Commodification of accelerations
for the Karp and Miller Construction”. In: Discrete Event Dynamic Systems
31.2 (2021), pp. 251–270. doi: 10.1007/s10626-020-00331-z.

[FL02] A. Finkel and J. Leroux. “How to Compose Presburger-Accelerations: Appli-
cations to Broadcast Protocols”. In: Foundations of Software Technology and
Theoretical Computer Science (FSTTCS). Vol. 2556. Lecture Notes in Computer
Science. Springer, 2002. doi: 10.1007/3-540-36206-1_14.

[FR98] M. J. Fischer and M. O. Rabin. “Super-Exponential Complexity of Presburger
Arithmetic”. In: Quantifier Elimination and Cylindrical Algebraic Decomposition.
Springer, 1998. doi: 10.1007/978-3-7091-9459-1_5.

[GRV08] P. Ganty, J.-F. Raskin, and L. Van Begin. “From Many Places to Few: Automatic
Abstraction Refinement for Petri Nets”. In: Fundamenta Informaticae 88.3 (2008),
pp. 275–305.

[Gar19] H. Garavel. “Nested-unit Petri nets”. In: Journal of Logical and Algebraic Methods
in Programming 104 (2019), pp. 60–85. doi: 10.1016/j.jlamp.2018.11.005.

[Gar15] H. Garavel. “Nested-Unit Petri Nets: A Structural Means to Increase Efficiency
and Scalability of Verification on Elementary Nets”. In: Application and Theory
of Petri Nets and Concurrency (PETRI NETS). Vol. 9115. Lecture Notes in
Computer Science. Springer, 2015. doi: 10.1007/978-3-319-19488-2_9.

[Gar20] H. Garavel. Proposal for Adding Useful Features to Petri-Net Model Checkers.
Research report 03087421. Inria Grenoble, 2020.

[Gar12] H. Garavel. “Three Decades of Success Stories in Formal Methods”. In: Formal
Methods for Industrial Critical Systems (FMICS). 2012.

[GLS17] H. Garavel, F. Lang, and W. Serwe. “From LOTOS to LNT”. In: ModelEd,
TestEd, TrustEd. Vol. 10500. Lecture Notes in Computer Science. Springer, 2017.
doi: 10.1007/978-3-319-68270-9_1.

[GS04] H. Garavel and W. Serwe. “State Space Reduction for Process Algebra Specifica-
tions”. In: Algebraic Methodology and Software Technology (AMAST). Vol. 3116.
Lecture Notes in Computer Science. Springer, 2004. doi: 10.1007/978-3-540-
27815-3_16.

https://doi.org/10.1007/11562948_17
https://doi.org/10.1007/11562948_17
https://doi.org/10.1007/3-540-61736-1_44
https://doi.org/10.1007/978-0-387-09766-4_502
https://doi.org/10.1007/3-540-55676-1_10
https://doi.org/10.1007/3-540-56689-9_45
https://doi.org/10.1007/s10626-020-00331-z
https://doi.org/10.1007/3-540-36206-1_14
https://doi.org/10.1007/978-3-7091-9459-1_5
https://doi.org/10.1016/j.jlamp.2018.11.005
https://doi.org/10.1007/978-3-319-19488-2_9
https://doi.org/10.1007/978-3-319-68270-9_1
https://doi.org/10.1007/978-3-540-27815-3_16
https://doi.org/10.1007/978-3-540-27815-3_16

References 211

[GS06] H. Garavel and W. Serwe. “State space reduction for process algebra speci-
fications”. In: Theoretical Computer Science 351.2 (2006), pp. 131–145. doi:
10.1016/j.tcs.2005.09.064.

[GS90] H. Garavel and J. Sifakis. “Compilation and verification of LOTOS specifications.”
In: Protocol Specification, Testing and Verification (PSTV). North-Holland, 1990.

[GS92] S. M. German and A. P. Sistla. “Reasoning about systems with many processes”.
In: Journal of the ACM 39.3 (1992), pp. 675–735. doi: 10.1145/146637.146681.

[GS66] S. Ginsburg and E. Spanier. “Semigroups, Presburger formulas, and languages”.
In: Pacific journal of Mathematics 16.2 (1966), pp. 285–296. doi: 10.2140/pjm.
1966.16.285.

[GDS92] A. Giua, F. DiCesare, and M. Silva. “Generalized mutual exclusion contraints on
nets with uncontrollable transitions”. In: Systems, Man, and Cybernetics (SMC).
IEEE, 1992. doi: 10.1109/ICSMC.1992.271666.

[GW94] P. Godefroid and P. Wolper. “A Partial Approach to Model Checking”. In:
Information and Computation 110.2 (1994), pp. 305–326. doi: 10.1006/inco.
1994.1035.

[Gre78] S. A. Greibach. “Remarks on blind and partially blind one-way multicounter
machines”. In: Theoretical Computer Science 7.3 (1978), pp. 311–324. doi:
10.1016/0304-3975(78)90020-8.

[Haa18] C. Haase. “A survival guide to Presburger arithmetic”. In: ACM SIGLOG News
5.3 (2018), pp. 67–82. doi: 10.1145/3242953.3242964.

[Hac76] M. H. T. Hack. “Decidability Questions for Petri Nets”. PhD thesis. Mas-
sachusetts Institute of Technology, 1976.

[HP06] S. Haddad and J.-F. Pradat-Peyre. “New Efficient Petri Nets Reductions for
Parallel Programs Verification”. In: Parallel Processing Letters 16.01 (2006),
pp. 101–116. doi: 10.1142/S0129626406002502.

[Haj14] Á. Hajdu. “Extensions to the CEGAR approach on Petri nets”. In: Acta Cyber-
netica 21.3 (2014), pp. 401–417. doi: 10.14232/actacyb.21.3.2014.8.

[Ham+06] A. Hamez, L. Hillah, F. Kordon, A. Linard, E. Paviot-Adet, X. Renault, and
Y. Thierry-Mieg. “New features in CPN-AMI 3: focusing on the analysis of
complex distributed systems”. In: Application of Concurrency to System Design
(ACSD). IEEE, 2006. doi: 10.1109/ACSD.2006.15.

[Hau90] D. Hauschildt. “Semilinearity of the reachability set is decidable for Petri nets”.
PhD thesis. University of Hamburg, Germany, 1990.

[HHP09] M. Heizmann, J. Hoenicke, and A. Podelski. “Refinement of Trace Abstraction”.
In: Static Analysis (SAS). Vol. 5673. Lecture Notes in Computer Science. Springer,
2009. doi: 10.1007/978-3-642-03237-0_7.

[Hel01] K. Heljanko. “Bounded Reachability Checking with Process Semantics”. In:
Concurrency Theory (CONCUR). Vol. 2154. Lecture Notes in Computer Science.
Springer, 2001. doi: 10.1007/3-540-44685-0_15.

[Hen+23] E. G. Henriksen, A. M. Khorsid, E. Nielsen, T. Risager, J. Srba, A. M. Stück, and
A. S. Sørensen. “Potency-Based Heuristic Search with Randomness for Explicit
Model Checking”. In: Model Checking Software (SPIN). Vol. 13872. Lecture
Notes in Computer Science. Springer, 2023. doi: 10.1007/978-3-031-32157-3_10.

https://doi.org/10.1016/j.tcs.2005.09.064
https://doi.org/10.1145/146637.146681
https://doi.org/10.2140/pjm.1966.16.285
https://doi.org/10.2140/pjm.1966.16.285
https://doi.org/10.1109/ICSMC.1992.271666
https://doi.org/10.1006/inco.1994.1035
https://doi.org/10.1006/inco.1994.1035
https://doi.org/10.1016/0304-3975(78)90020-8
https://doi.org/10.1145/3242953.3242964
https://doi.org/10.1142/S0129626406002502
https://doi.org/10.14232/actacyb.21.3.2014.8
https://doi.org/10.1109/ACSD.2006.15
https://doi.org/10.1007/978-3-642-03237-0_7
https://doi.org/10.1007/3-540-44685-0_15
https://doi.org/10.1007/978-3-031-32157-3_10

212 References

[Hil+10] L.-M. Hillah, F. Kordon, L. Petrucci, and N. Treves. “PNML Framework: An
Extendable Reference Implementation of the Petri Net Markup Languag”. In: Ap-
plication and Theory of Petri Nets and Concurrency (PETRI NETS). Vol. 6128.
Lecture Notes in Computer Science. Springer, 2010. doi: 10.1007/978-3-642-
13675-7_20.

[Hir94] Y. Hirshfeld. “Petri nets and the equivalence problem”. In: Computer Science
Logic (CSL). Vol. 832. Lecture Notes in Computer Science. Springer, 1994. doi:
10.1007/BFb0049331.

[Hla+21] P.-E. Hladik, F. Ingrand, S. Dal Zilio, and R. Tekin. “Hippo: A formal-model
execution engine to control and verify critical real-time systems”. In: Journal of
Systems and Software 181 (2021). doi: 10.1016/j.jss.2021.111033.

[Hoa78] C. A. R. Hoare. “Communicating sequential processes”. In: Communications of
the ACM 21.8 (1978), pp. 666–677. doi: 10.1145/359576.359585.

[HB12] K. Hoder and N. Bjørner. “Generalized Property Directed Reachability”. In:
Theory and Applications of Satisfiability Testing (SAT). Vol. 7317. Lecture Notes
in Computer Science. Springer, 2012. doi: 10.1007/978-3-642-31612-8_13.

[HK10] A. J. Hoffman and J. B. Kruskal. “Integral Boundary Points of Convex Polyhe-
dra”. In: 50 Years of Integer Programming 1958-2008. Springer, 2010, pp. 49–76.
doi: 10.1007/978-3-540-68279-0_3.

[HP79] J. Hopcroft and J.-J. Pansiot. “On the reachability problem for 5-dimensional
vector addition systems”. In: Theoretical Computer Science 8.2 (1979), pp. 135–
159. doi: 10.1016/0304-3975(79)90041-0.

[Hub+85] P. Huber, A. M. Jensen, L. O. Jepsen, and K. Jensen. “Towards reachability
trees for high-level Petri nets”. In: Advances in Petri Nets. Vol. 188. Lecture
Notes in Computer Science. Springer, 1985. doi: 10.1007/3-540-15204-0_13.

[Huj+20a] T. Hujsa, B. Berthomieu, S. D. Zilio, and D. L. Botlan. Checking marking
reachability with the state equation in Petri net subclasses. 2020. arXiv: 2006.
05600 [cs.LO].

[Huj+20b] T. Hujsa, B. Berthomieu, S. D. Zilio, and D. L. Botlan. On the Petri Nets with
a Single Shared Place and Beyond. 2020. arXiv: 2005.04818 [cs.DS].

[HLL92] T. Huynh, C. Lassez, and J.-L. Lassez. “Practical issues on the projection of
polyhedral sets”. In: Annals of Mathematics and Artificial Intelligence 6.4 (1992),
pp. 295–315. doi: 10.1007/BF01535523.

[IR93] J.-M. Ilié and O. Rojas. “On well-formed nets and optimizations in enabling
tests”. In: Application and Theory of Petri Nets (ICATPN). Vol. 691. Lecture
Notes in Computer Science. Springer, 1993.

[Imb93] J.-L. Imbert. “Fourier’s elimination: Which to choose?” In: Principles and
Practice of Constraint Programming (PPCP). 1993.

[INR] INRIA. CADP. url: https://cadp.inria.fr/ (visited on 10/10/2023).
[ISO89] ISO/IEC. LOTOS – A Formal Description Technique Based on the Temporal

Ordering of Observational Behaviour. Standard 8807. International Organiza-
tion for Standardization – Information Processing Systems – Open Systems
Interconnection, 1989. url: https://www.iso.org/standard/16258.html.

[Jan94] P. Jančar. “Decidability questions for bisimilarity of Petri nets and some related
problems”. In: Symposium on Theoretical Aspects of Computer Science (STACS).
Vol. 775. Lecture Notes in Computer Science. Springer, 1994. doi: 10.1007/3-
540-57785-8_173.

https://doi.org/10.1007/978-3-642-13675-7_20
https://doi.org/10.1007/978-3-642-13675-7_20
https://doi.org/10.1007/BFb0049331
https://doi.org/10.1016/j.jss.2021.111033
https://doi.org/10.1145/359576.359585
https://doi.org/10.1007/978-3-642-31612-8_13
https://doi.org/10.1007/978-3-540-68279-0_3
https://doi.org/10.1016/0304-3975(79)90041-0
https://doi.org/10.1007/3-540-15204-0_13
https://arxiv.org/abs/2006.05600
https://arxiv.org/abs/2006.05600
https://arxiv.org/abs/2005.04818
https://doi.org/10.1007/BF01535523
https://cadp.inria.fr/
https://www.iso.org/standard/16258.html
https://doi.org/10.1007/3-540-57785-8_173
https://doi.org/10.1007/3-540-57785-8_173

References 213

[Jan84] R. Janicki. “Nets, sequential components and concurrency relations”. In: Theo-
retical Computer Science 29.1-2 (1984), pp. 87–121. doi: 10.1016/0304-3975(84)
90014-8.

[JM09] B. Jeannet and A. Miné. “Apron: A Library of Numerical Abstract Domains
for Static Analysis”. In: Computer Aided Verification (CAV). Vol. 5643. Lecture
Notes in Computer Science. Springer, 2009. doi: 10.1007/978-3-642-02658-4_52.

[Jen+16] J. F. Jensen, T. Nielsen, L. K. Oestergaard, and J. Srba. “TAPAAL and Reach-
ability Analysis of P/T Nets”. In: Transactions on Petri Nets and Other Models
of Concurrency XI. Lecture Notes in Computer Science 9930 (2016), pp. 307–318.
doi: 10.1007/978-3-662-53401-4_16.

[Jen87] K. Jensen. “Coloured Petri Nets”. In: Petri Nets: Central Models and Their
Properties (ACPN). Vol. 254. Lecture Notes in Computer Science. Springer, 1987.
doi: 10.1007/978-3-540-47919-2_10.

[Jen81] K. Jensen. “Coloured petri nets and the invariant-method”. In: Theoretical
Computer Science 14.3 (1981), pp. 317–336. doi: https://doi.org/10.1016/0304-
3975(81)90049-9.

[Jen96] K. Jensen. “Condensed state spaces for symmetrical Coloured Petri nets”. In: For-
mal Methods in System Design 9.1 (1996), pp. 7–40. doi: 10.1007/BF00625967.

[Jen83] K. Jensen. “High-Level Petri Nets”. In: Applications and Theory of Petri Nets.
Vol. 66. Lecture Notes in Computer Science. Springer, 1983. doi: 10.1007/978-3-
642-69028-0_12.

[JP20] L. Jezequel and E. Paviot-Adet. Model Checking Contest: The Property Language
Manual. Standard. 2020.

[Kah74] G. Kahn. “The Semantics of a Simple Language for Parallel Programming”. In:
Information Processing (IFIP). North-Holland, 1974.

[KKW14] A. Kaiser, D. Kroening, and T. Wahl. “A Widening Approach to Multithreaded
Program Verification”. In: ACM Transactions on Programming Languages and
Systems 36.4 (2014), pp. 1–29. doi: 10.1145/2629608.

[KBJ21] J. Kang, Y. Bai, and L. Jiao. “Abstraction-Based Incremental Inductive Cover-
ability for Petri Nets”. In: Application and Theory of Petri Nets and Concurrency
(PETRI NETS). Vol. 12734. Lecture Notes in Computer Science. Springer, 2021.
doi: 10.1007/978-3-030-76983-3_19.

[Kar12] A. Karatkevich. “Conditions of SM-Coverability of Petri Nets”. In: Boolean
Problems. 2012. doi: 10.13140/2.1.2162.1762.

[KM69] R. M. Karp and R. E. Miller. “Parallel program schemata”. In: Journal of
Computer and System Sciences 3.2 (1969), pp. 147–195. doi: 10.1016/S0022-
0000(69)80011-5.

[KKG18] Y. I. Khan, A. Konios, and N. Guelfi. “A Survey of Petri Nets Slicing”. In: ACM
Computing Surveys 51.5 (2018), pp. 1–32. doi: 10.1145/3241736.

[Klo+13] J. Kloos, R. Majumdar, F. Niksic, and R. Piskac. “Incremental, Inductive
Coverability”. In: Computer Aided Verification (CAV). Vol. 8044. Lecture Notes
in Computer Science. Springer, 2013. doi: 10.1007/978-3-642-39799-8_10.

https://doi.org/10.1016/0304-3975(84)90014-8
https://doi.org/10.1016/0304-3975(84)90014-8
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-662-53401-4_16
https://doi.org/10.1007/978-3-540-47919-2_10
https://doi.org/https://doi.org/10.1016/0304-3975(81)90049-9
https://doi.org/https://doi.org/10.1016/0304-3975(81)90049-9
https://doi.org/10.1007/BF00625967
https://doi.org/10.1007/978-3-642-69028-0_12
https://doi.org/10.1007/978-3-642-69028-0_12
https://doi.org/10.1145/2629608
https://doi.org/10.1007/978-3-030-76983-3_19
https://doi.org/10.13140/2.1.2162.1762
https://doi.org/10.1016/S0022-0000(69)80011-5
https://doi.org/10.1016/S0022-0000(69)80011-5
https://doi.org/10.1145/3241736
https://doi.org/10.1007/978-3-642-39799-8_10

214 References

[Kor+21a] F. Kordon, P. Bouvier, H. Garavel, L. M. Hillah, F. Hulin-Hubard, N. Amat,
E. Amparore, B. Berthomieu, S. Biswal, D. Donatelli, F. Galla, S. Dal Zilio,
P. G. Jensen, L. Jezequel, C. He, D. Le Botlan, S. Li, E. Paviot-Adet, J. Srba,
Y. Thierry-Mieg, A. Walner, and K. Wolf. Complete Results for the 2021 Edition
of the Model Checking Contest. 2021. url: http://mcc.lip6.fr/2021/results.php
(visited on 10/10/2023).

[Kor+22] F. Kordon, P. Bouvier, H. Garavel, F. Hulin-Hubard, N. Amat, E. Amparore, B.
Berthomieu, D. Donatelli, S. Dal Zilio, P. G. Jensen, L. Jezequel, C. He, S. Li, E.
Paviot-Adet, J. Srba, and Y. Thierry-Mieg. Complete Results for the 2022 Edition
of the Model Checking Contest. 2022. url: http://mcc.lip6.fr/2022/results.php
(visited on 10/10/2023).

[Kor+23] F. Kordon, P. Bouvier, H. Garavel, F. Hulin-Hubard, N. Amat, E. Amparore, B.
Berthomieu, D. Donatelli, S. Dal Zilio, P. G. Jensen, L. Jezequel, E. Paviot-Adet,
J. Srba, and Y. Thierry-Mieg. Complete Results for the 2023 Edition of the
Model Checking Contest. 2023. url: https://mcc.lip6.fr/2023/results.php
(visited on 10/10/2023).

[Kor15] F. Kordon. Model entitled “SmallOperatingSystem” from the Model Checking Con-
test benchmark. 2015. url: https://mcc.lip6.fr/2023/pdf/SmallOperatingSystem-
form.pdf (visited on 10/10/2023).

[Kor+21b] F. Kordon, L. M. Hillah, F. Hulin-Hubard, L. Jezequel, and E. Paviot-Adet.
“Study of the efficiency of model checking techniques using results of the MCC
from 2015 To 2019”. In: International Journal on Software Tools for Technology
Transfer 23.6 (2021), pp. 931–952. doi: 10.1007/s10009-021-00615-1.

[KLP06] F. Kordon, A. Linard, and E. Paviot-Adet. “Optimized Colored Nets Unfold-
ing”. In: Formal Techniques for Networked and Distributed Systems (FORTE).
Vol. 4229. Lecture Notes in Computer Science. Springer, 2006. doi: 10.1007/
11888116_25.

[Kos82] S. R. Kosaraju. “Decidability of Reachability in Vector Addition Systems”. In:
Symposium on Theory of Computing (STOC). ACM, 1982. doi: 10.1145/800070.
802201.

[Kov92] A. V. Kovalyov. “Concurrency relations and the safety problem for Petri nets”.
In: Application and Theory of Petri Nets (ICATPN). Vol. 616. Lecture Notes in
Computer Science. Springer, 1992. doi: 10.1007/3-540-55676-1_17.

[Kov00] A. Kovalyov. “A Polynomial Algorithm to Compute the Concurrency Relation of
a Regular STG”. In: Hardware Design and Petri Nets. Springer, 2000, pp. 107–
126. doi: 10.1007/978-1-4757-3143-9_6.

[KE96] A. Kovalyov and J. Esparza. “A Polynomial Algorithm to Compute the Con-
currency Relation of Free-choice Signal Transition Graphs”. In: Workshop on
Discrete Event Systems (WODES). IEEE, 1996.

[KS08] D. Kroening and O. Strichman. Decision Procedures: An Algorithmic Point of
View. Springer, 2008.

[LAA23] LAAS-CNRS. Tina Toolbox. 2023. url: http://projects.laas.fr/tina (visited on
10/10/2023).

[Lam92] J. L. Lambert. “A structure to decide reachability in Petri nets”. In: Theoretical
Computer Science 99.1 (1992), pp. 79–104. doi: 10.1016/0304-3975(92)90173-d.

[Lam90] J. L. Lambert. Vector addition systems and semi-linearity. Université Paris-Nord.
Centre Scientifique et Polytechnique [CSP], 1990.

http://mcc.lip6.fr/2021/results.php
http://mcc.lip6.fr/2022/results.php
https://mcc.lip6.fr/2023/results.php
https://mcc.lip6.fr/2023/pdf/SmallOperatingSystem-form.pdf
https://mcc.lip6.fr/2023/pdf/SmallOperatingSystem-form.pdf
https://doi.org/10.1007/s10009-021-00615-1
https://doi.org/10.1007/11888116_25
https://doi.org/10.1007/11888116_25
https://doi.org/10.1145/800070.802201
https://doi.org/10.1145/800070.802201
https://doi.org/10.1007/3-540-55676-1_17
https://doi.org/10.1007/978-1-4757-3143-9_6
http://projects.laas.fr/tina
https://doi.org/10.1016/0304-3975(92)90173-d

References 215

[LS07] A. Lasaruk and T. Sturm. “Weak quantifier elimination for the full linear theory
of the integers: A uniform generalization of Presburger arithmetic”. In: Applicable
Algebra in Engineering, Communication and Computing 18.6 (2007), pp. 545–574.
doi: 10.1007/s00200-007-0053-x.

[LAG15] H. Leroux, D. Andreu, and K. Godary-Dejean. “Handling Exceptions in Petri
Net-Based Digital Architecture: From Formalism to Implementation on FPGAs”.
In: IEEE Transactions on Industrial Informatics 11.4 (2015), pp. 897–906. doi:
10.1109/TII.2015.2435696.

[Ler21] J. Leroux. “Flat Petri Nets (Invited Talk)”. In: Application and Theory of Petri
Nets and Concurrency (PETRI NETS). Vol. 12734. Lecture Notes in Computer
Science. Springer, 2021. doi: 10.1007/978-3-030-76983-3_2.

[Ler13] J. Leroux. “Presburger Vector Addition Systems”. In: Logic in Computer Science
(LICS). IEEE, 2013. doi: 10.1109/LICS.2013.7.

[Ler09] J. Leroux. “The General Vector Addition System Reachability Problem by
Presburger Inductive Invariants”. In: Logic in Computer Science (LICS). IEEE,
2009. doi: 10.1109/LICS.2009.10.

[Ler22] J. Leroux. “The Reachability Problem for Petri Nets is Not Primitive Recursive”.
In: Foundations of Computer Science (FOCS). IEEE, 2022. doi: 10 . 1109/
FOCS52979.2021.00121.

[Ler11] J. Leroux. “Vector addition system reachability problem: a short self-contained
proof”. In: Principles of Programming Languages (POPL). ACM, 2011. doi:
10.1145/1926385.1926421.

[Ler10] J. Leroux. “The General Vector Addition System Reachability Problem by
Presburger Inductive Invariants”. In: Logical Methods in Computer Science 6.3
(2010). doi: 10.2168/LMCS-6(3:22)2010.

[LP09] J. Leroux and G. Point. “TaPAS: the Talence Presburger arithmetic suite”. In:
Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
Vol. 5505. Lecture Notes in Computer Science. Springer, 2009. doi: 10.1007/978-
3-642-00768-2_18.

[LS19] J. Leroux and S. Schmitz. “Reachability in Vector Addition Systems is Primitive-
Recursive in Fixed Dimension”. In: Logic in Computer Science (LICS). IEEE,
2019. doi: 10.1109/LICS.2019.8785796.

[LS05] J. Leroux and G. Sutre. “Flat Counter Automata Almost Everywhere!” In:
Automated Technology for Verification and Analysis (ATVA). Vol. 3707. Lecture
Notes in Computer Science. Springer, 2005. doi: 10.1007/11562948_36.

[Lip76] R. Lipton. The Reachability Problem Requires Exponential Space. Research report
63. Department of Computer Science, Yale University, 1976.

[Lip75] R. J. Lipton. “Reduction: a method of proving properties of parallel programs”.
In: Communications of the ACM 18.12 (1975), pp. 717–721. doi: 10.1145/361227.
361234.

[LHY12] F. Liu, M. Heiner, and M. Yang. “An efficient method for unfolding colored
Petri nets”. In: Winter Simulation Conference (WSC). IEEE, 2012.

[Llo+17] M. Llorens, J. Oliver, J. Silva, and S. Tamarit. “An Integrated Environment for
Petri Net Slicing”. In: Application and Theory of Petri Nets and Concurrency
(PETRI NETS). Vol. 10258. Lecture Notes in Computer Science. Springer, 2017.
doi: 10.1007/978-3-319-57861-3_8.

https://doi.org/10.1007/s00200-007-0053-x
https://doi.org/10.1109/TII.2015.2435696
https://doi.org/10.1007/978-3-030-76983-3_2
https://doi.org/10.1109/LICS.2013.7
https://doi.org/10.1109/LICS.2009.10
https://doi.org/10.1109/FOCS52979.2021.00121
https://doi.org/10.1109/FOCS52979.2021.00121
https://doi.org/10.1145/1926385.1926421
https://doi.org/10.2168/LMCS-6(3:22)2010
https://doi.org/10.1007/978-3-642-00768-2_18
https://doi.org/10.1007/978-3-642-00768-2_18
https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1007/11562948_36
https://doi.org/10.1145/361227.361234
https://doi.org/10.1145/361227.361234
https://doi.org/10.1007/978-3-319-57861-3_8

216 References

[LAV91] J. C. Lloret, P. Azéma, and F. Vernadat. “Compositional design and verification
of communication protocols, using labelled Petri nets”. In: Computer-Aided
Verification (CAV). Vol. 531. Lecture Notes in Computer Science. Springer, 1991.
doi: 10.1007/BFb0023723.

[LT88] N. A. Lynch and M. R. Tuttle. An Introduction to Input/Output Automata.
Research report. Laboratory for Computer Science, Massachusetts Institute of
Technology, 1988.

[Mäk01] M. Mäkelä. “Optimising Enabling Tests and Unfoldings of Algebraic System
Nets”. In: Applications and Theory of Petri Nets (ICATPN). Vol. 2075. Lecture
Notes in Computer Science. Springer, 2001. doi: 10.1007/3-540-45740-2_17.

[May81] E. W. Mayr. “An Algorithm for the General Petri Net Reachability Problem”.
In: Symposium on Theory of Computing (STOC). ACM, 1981. doi: 10.1145/
800076.802477.

[McM93] K. L. McMillan. Symbolic Model Checking. Springer, 1993. doi: 10.1007/978-1-
4615-3190-6.

[Mil80] R. Milner. A Calculus of Communicating Systems. Springer, 1980. doi: 10.1007/3-
540-10235-3.

[MPW92] R. Milner, J. Parrow, and D. Walker. “A calculus of mobile processes, I”. In:
Information and Computation 100.1 (1992), pp. 1–40. doi: 10 . 1016/0890 -
5401(92)90008-4.

[Min06] A. Miné. “The octagon abstract domain”. In: Higher-order and Symbolic Com-
putation 19.1 (2006), pp. 31–100. doi: 10.1007/s10990-006-8609-1.

[Mon10] D. Monniaux. “Quantifier Elimination by Lazy Model Enumeration”. In: Com-
puter Aided Verification (CAV). Vol. 6174. Lecture Notes in Computer Science.
Springer, 2010. doi: 10.1007/978-3-642-14295-6_51.

[MB08] L. de Moura and N. Bjørner. “Z3: An Efficient SMT Solver”. In: Tools and
Algorithms for the Construction and Analysis of Systems (TACAS). Vol. 4963.
Lecture Notes in Computer Science. Springer, 2008. doi: 10.1007/978-3-540-
78800-3_24.

[Mur77] T. Murata. “State equation, controllability, and maximal matchings of Petri
nets”. In: Transactions on Automatic Control 22.3 (1977), pp. 412–416. doi:
10.1109/TAC.1977.1101509.

[MK80] T. Murata and J. Koh. “Reduction and expansion of live and safe marked
graphs”. In: Transactions on Circuits and Systems 27.1 (1980), pp. 68–71. doi:
10.1109/TCS.1980.1084711.

[Mur89] T. Murata. “Petri nets: Properties, analysis and applications”. In: Proceedings
of the IEEE 77.4 (1989), pp. 541–580. doi: 10.1109/5.24143.

[Net+07] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and G. Tack.
“MiniZinc: Towards a Standard CP Modelling Language”. In: Principles and
Practice of Constraint Programming (CP). Vol. 4741. Lecture Notes in Computer
Science. Springer, 2007. doi: 10.1007/978-3-540-74970-7_38.

[Opp78] D. C. Oppen. “A 222pn upper bound on the complexity of Presburger Arith-
metic”. In: Journal of Computer and System Sciences 16.3 (1978), pp. 323–332.
doi: 10.1016/0022-0000(78)90021-1.

[Pap81] C. H. Papadimitriou. “On the complexity of integer programming”. In: Journal
of the ACM 28.4 (1981), pp. 765–768. doi: 10.1145/322276.322287.

https://doi.org/10.1007/BFb0023723
https://doi.org/10.1007/3-540-45740-2_17
https://doi.org/10.1145/800076.802477
https://doi.org/10.1145/800076.802477
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1007/978-3-642-14295-6_51
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/TAC.1977.1101509
https://doi.org/10.1109/TCS.1980.1084711
https://doi.org/10.1109/5.24143
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1016/0022-0000(78)90021-1
https://doi.org/10.1145/322276.322287

References 217

[Pet81] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall
PTR, 1981.

[PTG22] F. Pommereau, C. Thomas, and C. Gaucherel. “Petri Nets Semantics of Reaction
Rules (RR) A Language for Ecosystems Modelling”. In: Application and Theory
of Petri Nets and Concurrency (PETRI NETS). Vol. 13288. Lecture Notes in
Computer Science. Springer, 2022. doi: 10.1007/978-3-031-06653-5_10.

[Pre29] M. Presburger. “Uber die vollstandigkeiteines gewissen systems der arithmetik
ganzer zahlen, in welchen die addition als einzige operation hervortritt”. In:
Comptes-Rendus du ler Congres des Mathematiciens des Pays Slavs. 1929.

[PJ91] M. Presburger and D. Jacquette. “On the completeness of a certain system of
arithmetic of whole numbers in which addition occurs as the only operation”.
In: History and Philosophy of Logic 12.2 (1991), pp. 225–233. doi: 10.1080/
014453409108837187.

[Pug91] W. Pugh. “The Omega Test: a fast and practical integer programming algorithm
for dependence analysis”. In: Supercomputing. ACM, 1991. doi: 10.1145/125826.
125848.

[QS82] J.-P. Queille and J. Sifakis. “Specification and verification of concurrent systems
in CESAR”. In: International Symposium on Programming (Programming).
Vol. 137. Lecture Notes in Computer Science. Springer, 1982. doi: 10.1007/3-
540-11494-7_22.

[Rac78] C. Rackoff. “The covering and boundedness problems for vector addition systems”.
In: Theoretical Computer Science 6.2 (1978), pp. 223–231. doi: 10.1016/0304-
3975(78)90036-1.

[Rak12] A. Rakow. “Safety Slicing Petri Nets”. In: Application and Theory of Petri Nets
and Concurrency (PETRI NETS). Vol. 7347. Lecture Notes in Computer Science.
Springer, 2012. doi: 10.1007/978-3-642-31131-4_15.

[Rei12] W. Reisig. Petri nets: An Introduction. Springer, 2012. doi: 10.1007/978-3-642-
69968-9.

[Sch00] K. Schmidt. “How to calculate symmetries of Petri nets”. In: Acta Informatica
36.7 (2000), pp. 545–590. doi: 10.1007/s002360050002.

[Sch03] K. Schmidt. “Using Petri Net Invariants in State Space Construction”. In:
Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
Vol. 2619. Lecture Notes in Computer Science. Springer, 2003. doi: 10.1007/3-
540-36577-X_35.

[Sch16] S. Schmitz. “The complexity of reachability in vector addition systems”. In:
ACM SIGLOG News 3.1 (2016), pp. 4–21. doi: 10.1145/2893582.2893585.

[SY95] A. Semenov and A. Yakovlev. “Combining partial orders and symbolic
traversal for efficient verification of asynchronous circuits”. In: ASP-
DAC’95/CHDL’95/VLSI’95 with EDA Technofair. IEEE, 1995. doi: 10.1109/
ASPDAC.1995.486371.

[SJJ91] Y. Shanlin, Z. Jie, and G. Jun. “Inverse petri nets: properties and applications”.
In: IFAC Proceedings Volumes 24.14 (1991), pp. 91–95. doi: 10.1016/S1474-
6670(17)69330-3.

[SSS00] M. Sheeran, S. Singh, and G. Stålmarck. “Checking Safety Properties Using
Induction and a SAT-Solver”. In: Formal Methods in Computer-Aided Design
(FMCAD). Vol. 1954. Lecture Notes in Computer Science. Springer, 2000. doi:
10.1007/3-540-40922-X_8.

https://doi.org/10.1007/978-3-031-06653-5_10
https://doi.org/10.1080/014453409108837187
https://doi.org/10.1080/014453409108837187
https://doi.org/10.1145/125826.125848
https://doi.org/10.1145/125826.125848
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/10.1007/978-3-642-31131-4_15
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/s002360050002
https://doi.org/10.1007/3-540-36577-X_35
https://doi.org/10.1007/3-540-36577-X_35
https://doi.org/10.1145/2893582.2893585
https://doi.org/10.1109/ASPDAC.1995.486371
https://doi.org/10.1109/ASPDAC.1995.486371
https://doi.org/10.1016/S1474-6670(17)69330-3
https://doi.org/10.1016/S1474-6670(17)69330-3
https://doi.org/10.1007/3-540-40922-X_8

218 References

[STC96] M. Silva, E. Terue, and J. M. Colom. “Linear algebraic and linear programming
techniques for the analysis of place/transition net systems”. In: Lectures on Petri
Nets I: Basic Models (ACPN). Vol. 1491. Lecture Notes in Computer Science.
Springer, 1996. doi: 10.1007/3-540-65306-6_19.

[Sta91] P. H. Starke. “Reachability Analysis of Petri Nets Using Symmetries”. In: Systems
Analysis Modelling Simulation 8.4-5 (1991), pp. 293–303. doi: 10.5555/115220.
115224.

[Thi20] Y. Thierry-Mieg. “Structural Reductions Revisited”. In: Application and Theory
of Petri Nets and Concurrency (PETRI NETS). Vol. 12152. Lecture Notes in
Computer Science. Springer, 2020. doi: 10.1007/978-3-030-51831-8_15.

[Thi21] Y. Thierry-Mieg. “Symbolic and Structural Model-Checking”. In: Fundamenta
Informaticae 183.3-4 (2021), pp. 319–342. doi: 10.3233/FI-2021-2090.

[Thi15] Y. Thierry-Mieg. “Symbolic Model-Checking Using ITS-Tools”. In: Tools and
Algorithms for the Construction and Analysis of Systems (TACAS). Vol. 9035.
Lecture Notes in Computer Science. Springer, 2015. doi: 10.1007/978-3-662-
46681-0_20.

[Thi+09] Y. Thierry-Mieg, D. Poitrenaud, A. Hamez, and F. Kordon. “Hierarchical Set
Decision Diagrams and Regular Models”. In: Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). Vol. 5505. Lecture Notes in
Computer Science. Springer, 2009. doi: 10.1007/978-3-642-00768-2_1.

[Val88] A. Valmari. “Error detection by reduced reachability graph generation”. In:
Proceedings of the 9th European Workshop on Application and Theory of Petri
Nets. 1988.

[Vau87] J. Vautherin. “Parallel systems specifications with coloured Petri nets and
algebraic specifications”. In: Advances in Petri Nets (APN). Vol. 266. Lecture
Notes in Computer Science. Springer, 1987. doi: 10.1007/3-540-18086-9_31.

[Ver10] S. Verdoolaege. “isl: An Integer Set Library for the Polyhedral Model”. In:
Mathematical Software (ICMS). Vol. 6327. Lecture Notes in Computer Science.
Springer, 2010. doi: 10.1007/978-3-642-15582-6_49.

[WW22] S. Wallner and K. Wolf. “Skeleton Abstraction for Universal Temporal Proper-
ties”. In: Fundamenta Informaticae 187.2–4 (2022), pp. 245–272. doi: 10.3233/FI-
222138.

[Wei84] M. Weiser. “Program Slicing”. In: Transactions on Software Engineering SE-10.4
(1984), pp. 352–357. doi: 10.1109/TSE.1984.5010248.

[Wim13] H. Wimmel. Sara: Structures for Automated Reachability Analysis. 2013. url:
https://github.com/nlohmann/service-technology.org/tree/master/sara (visited
on 10/10/2023).

[WW12] H. Wimmel and K. Wolf. “Applying CEGAR to the Petri Net State Equation”.
In: Logical Methods in Computer Science 8.3 (2012). doi: 10.2168/LMCS-8(3:
27)2012.

[Wiś+14] R. Wiśniewski, A. Karatkevich, M. Adamski, and D. Kur. “Application of compa-
rability graphs in decomposition of Petri nets”. In: Human System Interactions
(HSI). IEEE, 2014. doi: 10.1109/HSI.2014.6860478.

[WWJ19] R. Wiśniewski, M. Wiśniewska, and M. Jarnut. “C-Exact Hypergraphs in Con-
currency and Sequentiality Analyses of Cyber-Physical Systems Specified by
Safe Petri Nets”. In: IEEE Access 7 (2019), pp. 13510–13522. doi: 10.1109/
ACCESS.2019.2893284.

https://doi.org/10.1007/3-540-65306-6_19
https://doi.org/10.5555/115220.115224
https://doi.org/10.5555/115220.115224
https://doi.org/10.1007/978-3-030-51831-8_15
https://doi.org/10.3233/FI-2021-2090
https://doi.org/10.1007/978-3-662-46681-0_20
https://doi.org/10.1007/978-3-662-46681-0_20
https://doi.org/10.1007/978-3-642-00768-2_1
https://doi.org/10.1007/3-540-18086-9_31
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.3233/FI-222138
https://doi.org/10.3233/FI-222138
https://doi.org/10.1109/TSE.1984.5010248
https://github.com/nlohmann/service-technology.org/tree/master/sara
https://doi.org/10.2168/LMCS-8(3:27)2012
https://doi.org/10.2168/LMCS-8(3:27)2012
https://doi.org/10.1109/HSI.2014.6860478
https://doi.org/10.1109/ACCESS.2019.2893284
https://doi.org/10.1109/ACCESS.2019.2893284

References 219

[Wol07] K. Wolf. “Generating Petri Net State Spaces”. In: Petri Nets and Other Models of
Concurrency (ICATPN). Vol. 4546. Lecture Notes in Computer Science. Springer,
2007. doi: 10.1007/978-3-540-73094-1_5.

[Wol18] K. Wolf. “Petri Net Model Checking with LoLA 2”. In: Application and Theory
of Petri Nets and Concurrency (PETRI NETS). Vol. 10877. Lecture Notes in
Computer Science. Springer, 2018. doi: 10.1007/978-3-319-91268-4_18.

https://doi.org/10.1007/978-3-540-73094-1_5
https://doi.org/10.1007/978-3-319-91268-4_18

	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	I High-Level Description of My Contributions
	II Open Science and Reproducibility
	III Outline

	1 Petri Nets and Reachability
	1.1 Petri Nets
	1.1.1 States
	1.1.2 Behavior
	1.1.3 Boundedness
	1.1.4 Labels and Observations
	1.1.5 Graphical Notations
	1.1.6 Relation to Linear Arithmetic Constraints

	1.2 Presburger Arithmetic and Petri Net Semantics
	1.2.1 Notations
	1.2.2 Presburger-Definable Sets
	1.2.3 Encoding of Petri Net Semantics
	1.2.4 SMT Theories

	1.3 Reachability Problems
	1.3.1 Coverability Properties
	1.3.2 The Concurrent Places Problem

	1.4 Theoretical Results
	1.4.1 Decidability
	1.4.2 Complexity
	1.4.3 Relation to Presburger Arithmetic

	1.5 Model Checking Methods and Optimizations
	1.5.1 Random Walk State Space Exploration
	1.5.2 Bounded Model Checking (BMC)
	1.5.3 Induction and k-Induction
	1.5.4 State Space Over-Approximation
	1.5.5 Counter-Example Guided Abstraction Refinement (CEGAR)
	1.5.6 Optimizations

	1.6 Well-Formed Nets
	1.7 Comparison with Thesis Contributions

	2 Computing Invariance Certificates
	2.1 Introduction
	2.2 Linear Reachability Constraints
	2.2.1 Invariance Certificates
	2.2.2 Expressing Sequences
	2.2.3 Generalizing Scenarios

	2.3 Property Directed Reachability
	2.3.1 Description of the Algorithm
	2.3.2 State-Based Generalization
	2.3.3 Transition-Based Generalization
	2.3.4 Saturated Transition-Based Generalization
	2.3.5 Incompleteness

	2.4 Experimental Results
	2.4.1 Evaluation on Expressiveness
	2.4.2 Evaluation on Performance
	2.4.3 Computation of Invariance Certificates

	2.5 Discussion

	3 Polyhedral Reduction
	3.1 Introduction
	3.2 Polyhedral Reduction and E-Equivalence
	3.2.1 Solvable Predicates
	3.2.2 E-Equivalence

	3.3 Basic Properties of Polyhedral Reduction
	3.4 Deriving E-Equivalences Using Reductions
	3.4.1 Reduction Rules
	3.4.2 Composition Laws
	3.4.3 Running Examples

	3.5 SMT-Based Model Checking Using Reductions
	3.6 Combining Polyhedral Reduction with BMC
	3.7 Experimental Results
	3.7.1 Distribution of Reduction Ratios
	3.7.2 Impact on the Number of Solvable Queries
	3.7.3 Impact on Computation Time

	3.8 Discussion

	4 Token Flow Graphs
	4.1 Introduction
	4.2 Polyhedral Equivalence Relaxation
	4.3 Token Flow Graphs
	4.3.1 Example of a Non-TFGizable Polyhedral Reduction
	4.3.2 Example of a TFG Not Generated by Structural Reductions

	4.4 Semantics
	4.5 Marking Reachability
	4.5.1 Examples of Marking Projection
	4.5.2 Description of the Algorithm
	4.5.3 State Space Partition

	4.6 Experimental Results
	4.6.1 Toolchain Description
	4.6.2 Distribution of Reduction Ratios for TFGs
	4.6.3 Impact on the Marking Reachability Problem

	4.7 Discussion

	5 Project and Conquer
	5.1 Introduction
	5.2 Two Examples of Reachability Formulas
	5.3 Combining Reduction with Reachability
	5.4 Formula Rewriting
	5.4.1 Highest Literal Factor
	5.4.2 Formal Procedure
	5.4.3 Proof of the Procedure
	5.4.4 Examples on Polarized and Non-Polarized Constraints

	5.5 Experimental Results
	5.5.1 Impact on Standard Model Checking Procedures
	5.5.2 Impact Under Real Conditions
	5.5.3 Performance Evaluation of Fast Elimination

	5.6 Discussion

	6 Concurrency Relation Computation
	6.1 Introduction
	6.2 The Concurrent Places Problem and One of Its Applications
	6.2.1 The Concurrent Places Problem
	6.2.2 Nested-Unit Petri Nets

	6.3 Safeness in Token Flow Graphs
	6.4 Dimensionality Reduction Algorithm
	6.5 Proof of Correctness
	6.5.1 Checking Nondead Nodes
	6.5.2 Checking Concurrent Nodes
	6.5.3 Soundness and Completeness

	6.6 Running Example
	6.7 Extensions to Incomplete Concurrency Relations
	6.7.1 Propagation of Dead Nodes
	6.7.2 Nonconcurrency Between Siblings
	6.7.3 Heredity and Nonconcurrency

	6.8 Transposing Nested-Unit Petri Nets
	6.9 Experimental Results
	6.9.1 Toolchain Description
	6.9.2 Distribution of Reduction Ratios for Safe Nets
	6.9.3 Impact on Fully Computed Concurrency Matrices
	6.9.4 Impact on Partial Matrices

	6.10 Discussion

	7 Proving Polyhedral Equivalences
	7.1 Introduction
	7.2 Overview of the Approach
	7.3 Parametric Reduction Rules and Equivalence
	7.3.1 Coherency Constraints
	7.3.2 Parametric E-Equivalence Definition
	7.3.3 Instantiation Laws

	7.4 Automated Proof Procedure
	7.4.1 Presburger Encoding of Parametric Petri Net Semantics
	7.4.2 Core Requirements: Parametric E-Abstraction Encoding
	7.4.3 Global Procedure

	7.5 Accelerating the Silent Transition Relation
	7.6 Decidability
	7.7 Checking the State Space Partition
	7.8 Generalizing Equivalence Rules
	7.9 Experimental Validation
	7.10 Discussion

	8 Tools and Reproducibility
	8.1 Experimental Benchmark
	8.2 Tools for Computing Polyhedral Reductions
	8.3 SMPT: Satisfiability Modulo Petri Nets
	8.4 Kong: The Koncurrent Places Grinder
	8.5 Octant and Reductron: Two Hidden Tools
	8.6 Experimental Environment and Reproducibility
	8.7 Three Years of Participation in the MCC

	Epilogue
	References

