
HAL Id: tel-04544207
https://laas.hal.science/tel-04544207v1

Submitted on 29 Jan 2024 (v1), last revised 12 Apr 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PERFORMANCE FORECASTING FOR WEB
SERVICES IN CLOUD ENVIRONMENT

Clément Cassé

To cite this version:
Clément Cassé. PERFORMANCE FORECASTING FOR WEB SERVICES IN CLOUD ENVI-
RONMENT. Networking and Internet Architecture [cs.NI]. UPS Toulouse, 2023. English. �NNT :
2023TOU30268�. �tel-04544207v1�

https://laas.hal.science/tel-04544207v1
https://hal.archives-ouvertes.fr

THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 26/10/2023 par :
Clément CASSÉ

PRÉVISION DES PERFORMANCES DES SERVICES WEB EN
ENVIRONNEMENT CLOUD

JURY
Pierre SENS Professeur Président du Jury
Géraldine TEXIER Professeure Rapporteure
Yves ROUDIER Professeur Rapporteur
Gilles TREDAN Chargé de Recherche Examinateur
Philippe OWEZARSKI Directeur de Recherche Directeur de Thèse
Pascal BERTHOU Professeur Co-Directeur de Thèse
Sébastien JOSSET Ingénieur Invité

École doctorale et spécialité :
MITT : Domaine STIC : Réseaux, Télécoms, Systèmes et Architecture

Unité de Recherche :
LAAS - Laboratoire d’Analyse et d’Architecture des Systèmes

Directeur(s) de Thèse :
Philippe OWEZARSKI et Pascal BERTHOU

Rapporteurs :
Géraldine TEXIER et Yves ROUDIER

i

Acknowledgments
Avant toute chose je tenais à adresser mes remerciements à toutes les personnes qui
ont pris part à l’encadrement de la thèse. En tout premier lieu Philippe et Pascal
pour l’encadrement académique: je vous remercie de vos conseils qui m’ont permis
de m’approprier et de développer ce sujet qui me tenait à coeur. Vos visions et vos
expertises m’ont apporté une aide précieuse pour structurer, organiser et présenter
mon avancement et mes idées. J’espère pouvoir tirer parti de ces enseignements
même au-delà du monde de la recherche.

De plus, je remercie aussi Sébastien JOSSET pour avoir rendu ce contexte in-
dustriel possible en me permettant d’intégrer Orange et sa division de recherche et
développement. Intégrer différentes équipes de développement d’application a été
l’occasion pour moi de me familiariser avec plusieurs problématiques réelles quant
à la conception d’application cloud.

Je remercie également Géraldine TEXIER et Yves ROUDIER d’avoir accepté
d’être rapporteurs pour cette thèse ainsi que Pierre SENS et Gilles TREDAN d’en
être examinateur.

J’exprime ma gratitude auprès des différentes équipes de développement à Or-
ange où toutes m’ont bien accueilli et fourni des informations précieuses pour mon
état de l’art ainsi que pour bien affiner ma problématique de recherche. Je remer-
cie en particulier les équipes de Djingo, et en particulier Charle-Henri GIDEL et
Sébastien DELEPLACE, qui m’ont accueilli dans leur équipe, ce qui a grandement
contribué à justifier mon approche. C’est dans cette équipe que j’ai pu développer
et tester mon modèle pour répondre à des problèmes concrets rencontrés par des
développeurs d’applications cloud.

En revanche, je ne remercie pas du tout la pandémie de COVID qui a eu lieu
pendant cette thèse, ni les joyeusetés qui y ont été associées telle que les confine-
ments et les interactions sociales à travers d’applications Web hébergées en environ-
nement cloud. Mais aussi le recentrage de l’entreprise Orange autour d’autres axes
de développement qui a conduit à limiter les développements sur Djingo avant que
je puisse tester mon modèle dans des conditions réelles.

C’est donc le moment d’adresser mes remerciements à tous mes amis et collègues
du LAAS qui ont partagé avec moi cette période de questionnement, particulière-
ment David, Guillaume, Flore, François, Lucian, Quentin, Alex, Laurent, Tanissia,
Imane, Stan, ... Enfin, j’adresse mes derniers remerciements à ma famille et surtout
à mes parents pour leur soutien sans failles tout au long de cette aventure. De la
candidature jusqu’à la soutenance, votre regard bienveillant m’a encouragé à donner
le meilleur de moi même.

Contents

Introduction 1
Cloud Native Applications . 1
Industrial Context & Problem . 3
Contributions & Dissertation Outline . 4

1 Cloud Application Performance Monitoring 7
1.1 Introduction . 7
1.2 The Cloud Computing Paradigm . 9

1.2.1 Overview and Definition of Cloud Computing 9
1.2.2 Evolution of Cloud Computing 12
1.2.3 Performance Measurements and Concerns 15
1.2.4 Closing Words on the Cloud Paradigm 17

1.3 Cloud-Native Application Architecture 17
1.3.1 The Microservices Architecture 18
1.3.2 The Evolution of Cloud Resource Management 22
1.3.3 Challenges Regarding Performance Evaluation 24

1.4 Cloud Application Monitoring . 24
1.4.1 Cloud Application Monitoring and Performance Analysis . . 24
1.4.2 Toward a Unified Cloud Application Monitoring Framework . 27
1.4.3 Research Challenges for Monitoring Cloud Application 28

1.5 Scope of the Thesis . 30
1.6 Conclusions . 31

2 A Hierarchical Property Graph Model 33
2.1 Introduction . 33
2.2 Distributed Tracing Ecosystem . 35

2.2.1 OpenTelemetry Data Collection Architecture 35
2.2.2 Collecting Traces in Jaeger Tracing 37
2.2.3 The Jaeger Analytic Library and its Limitations 38

2.3 Extracting a Structural Model from Traces 39
2.3.1 Identifying Common Elements to Aggregate Traces 39
2.3.2 Modelling an Application Hierarchical Structure 41

2.4 Modelling Components Interactions 43
2.4.1 Leveraging the Property Graph Model to Identify the Type

of Communication . 43
2.4.2 Graph Rewriting Operations 45
2.4.3 Building a Hierarchical Property Graph 49

2.5 Implementation . 50
2.5.1 Extracting Data from a Jaeger gRPC Endpoint 51
2.5.2 Property Graph Encoding . 52
2.5.3 Graph Rewriting Operations 55

2.6 Conclusions . 57

iv CONTENTS

3 Identifying Inefficient Service Composition 59
3.1 Introduction . 59
3.2 Modelling a System With Hierarchies 61

3.2.1 Definition and Subtypes of Hierarchy 61
3.2.2 Measuring Imperfect Flow Hierarchies 62
3.2.3 Cycle Identification . 64

3.3 Detecting Inefficient Service Composition 66
3.3.1 Application to the Hierarchical Property Graph 66
3.3.2 Proof of Work on a Sample Cloud Application 68

3.4 Implementation . 71
3.4.1 Designing a Multi Layers Platform with Zonal Kubernetes

Cluster . 71
3.4.2 Getting OpenTelemetry Traces With Network Level 72
3.4.3 Computing the Flow Hierarchy Metric 75
3.4.4 Results . 77

3.5 Conclusions . 79

4 Identifying Bottlenecks with Centrality 81
4.1 Introduction . 81
4.2 Generalizing the Graph Encoding Model 83

4.2.1 Including Multiple Resource Type in the Model 83
4.2.2 Configuring the Containment Hierarchy 85
4.2.3 Characterizing an AWS Application 87

4.3 Application to Complex Cloud Applications 88
4.3.1 Overview of Graph Centrality Algorithm 89
4.3.2 Distributed Applications Bottlenecks 92

4.4 Implementation . 93
4.4.1 Using Spigo for Emitting OpenTelemetry Traces 94
4.4.2 Scenario Selection and Representativeness 95
4.4.3 Observing the Impact of Betweenness Centrality in the Riak

Simulation . 97
4.5 Conclusions . 101

Conclusion & Future Works 103
Synthesis of Contributions . 104
Future Works . 105

Short-term Work . 106
Mid-term Work . 108
Long-term Work . 109

Closing Words . 109

A Résumé en Français 111
A.1 Monitoring d’Applications Cloud . 114

A.1.1 Introduction . 114
A.1.2 Présentation du Paradigme Cloud 114
A.1.3 Les Applications Cloud Natives 115

CONTENTS v

A.1.4 Monitoring et Analyse de Performance d’Application cloud . 116
A.2 Modélisation des Communications Internes 118

A.2.1 Introduction . 118
A.2.2 Présentation de l’Écosystème de Tracing 118
A.2.3 Extraction et Aggregation des Données dans un Graphe de

Propriétés . 119
A.3 Détection de Composition de Services Inefficaces 123

A.3.1 Introduction . 123
A.3.2 Modélisation d’une Application cloud grâce au Concept de

Hiérarchies . 123
A.3.3 Détection de Communications Inefficaces 124
A.3.4 Mise en œuvre . 126

A.4 Détection de Goulots d’Étranglements 128
A.4.1 Introduction . 128
A.4.2 Généralisation de l’Encodage en Graphe de Propriétés 128
A.4.3 Utilisation de l’analyse de Centralité pour l’Anticipation de

Goulots d’Étranglement . 130
A.4.4 Vérification Expérimentale 132

A.5 Conclusion . 137
A.5.1 Synthèse des Contributions 137
A.5.2 Pistes de Poursuite des Travaux 138

B Scala Notebook and Code 141
B.1 Data Aquisition . 141

B.1.1 Establishing a Channel With a Jaeger Instance 141
B.1.2 Mapping ProtoBuf Data to Standard Java/Scala API 143

B.2 Definition of the Analytics Trace-Data-Model 146
B.2.1 Operation Entities . 146
B.2.2 Resources Entities . 146
B.2.3 Span Entities . 147
B.2.4 Trace Entities . 148

B.3 Graph Encoding . 149
B.3.1 Defining the Property Graph Model 149
B.3.2 Encoding Process . 150
B.3.3 Graph Rewriting . 152

B.4 Calculation of the Flow hierarchy metric 153
B.5 Building and Running the Pipeline 155

Bibliography 159

List of Figures

1 Google Cloud Platform Data Centre and Network 2

1.1 Representation of abstraction levels with virtual machines and with
containers. Illustration from [Bistarelli 2018] 13

1.2 Amazon and Netflix “Death Stars” from 2016 21

2.1 OpenTelemetry Pipeline Architecture 35
2.2 Part of a Jaeger Trace from an Online Boutique Application 37
2.3 Graphical Representation of Jaeger Analytic Library Graph Encoding 38
2.4 Transforming a Trace in a Property Graph. 40
2.5 Transforming a Trace in a Property Graph. 42
2.6 Example of Local Communications and Network Communication Be-

tween Resources . 44
2.7 Graph Pattern Showing a Local Reference 44
2.8 Graph Pattern Showing a Network Reference 44
2.9 Graph Rewriting Approach to deduce resources dependencies (ap-

plied to Pods) based on a Simple Pushout operation. 47
2.10 Graph Rewriting process explained step by step 48
2.11 Visual Pattern representing equation 2.1 49
2.12 Hierarchical Graph Representation. 50
2.13 Complete Telemetry Processing Pipeline 51
2.14 Aggregation of Multiple Traces Within a Single Graph Instance . . . 55
2.15 Rewriting Operation on the Graph at the Pods level 57

3.1 Graph Representing Communications Between Components of a Dis-
tributed Application . 63

3.2 Focus on Portions of the Graph: With Clearly Identifiable Hierarchy
Levels (left) and With No Identifiable Order of Vertices (right) . . . 64

3.3 Illustration of Md matrix computation from [Luo 2011] where Mn is
the link adjacency matrix raised to the power n 65

3.4 Example of Vertices Grouped by Strongly Connected Components
(SCC) in a Sample Directed Graph 65

3.5 Examples of Flow Hierarchy Metric Calculation at Each Layer of the
Containment Hierarchy for Two Traces 67

3.6 Example Where All Pods Are Executed on the Same Node 68
3.7 Diagram of the Microservices Demo Application with Components

Interactions Provided by the documentation of the Application . . . 69
3.8 Graph Transformation for a Particular Trace 70
3.9 Illustration of a Normal Kubernetes Cluster (on the left) and a Zonal

Kubernetes Cluster (on the right) . 71
3.10 Complete Telemetry Pipeline . 73
3.11 Example of the Network Communications Reported in a Trace . . . 74

viii LIST OF FIGURES

3.12 Graphical representation of traces and their flow hierarchy metric
(hP ods, hNodes, hZones) depending on the end-to-end response time of
the trace . 78

4.1 Resource Base-Graph for a Generic Meta Model 85
4.2 Example of adding the containment of resources for the embedding

Pod ⊂ Node ⊂ Zone ⊂ Region. 86
4.3 Meta Model of the graph encoding applied to traces for AWS Appli-

cations . 87
4.4 OpenTelemetry graph encoding pipeline 88
4.5 Sample Graph Exhibiting Different Topologies. 90
4.6 Logical architecture of AWS components in the Riak Scenario 95
4.7 A sample of the graph of services with a focus in ingestMQ services . 97
4.8 Cloud Application Graph Visualization Where Vertices Size is Pro-

portional to the Betweenness Centrality Score of the Vertex 98
4.9 Cloud Application Graph Visualization respectively with one and five

instances of ingestMQ per zones . 100
5.1 Behaviour Principle of the Hierarchical Edge Bundling Visualization:

the Tension of the Arcs Depend on the Number of Layers Traversed 107
5.2 Example of Edge Bundling Visualization provided by infra-scrapper

to represent Pod Interaction in a Kubernetes Namespace 108

A.1 Visualisation sous forme de Graphe des Microservices des applica-
tions de Amazon et Netflix en 2016 par [Cockcroft 2016a, Cockcroft 2016b].116

A.2 Graphical Representation of Jaeger Analytic Library Graph Encoding119
A.3 Processus d’encodage d’une trace en un graphe de propriétés. 120
A.4 Représentation des motifs de communication locale et de communi-

cation réseau dans notre modèle d’encodage de graphe. 121
A.5 Formalisation du processus de réécriture de graphe 121
A.6 Trace encodée représentée sous forme de graphe hiérarchique 124
A.7 Identification des composants fortement connectés dans un graphe

dirigé . 125
A.8 Calcul d’indice de flow hierarchy sur deux placements de Pods dans

un Cluster Kubernetes . 126
A.9 Décomposition du modèle d’encodage de graphe en deux étapes pour

les relations EXECUTES_ON et IS_CONTAINED. 129
A.10 Méta Modèle du processus d’encodage de graphe après les étapes

d’extraction et de sélection des relations. 129
A.11 Graphe mettant en avant différentes topologies pour illustrer les dif-

férents algorithmes de centralité. 130
A.12 Architecture logique des composants formant le scénario Riak du

Simulateur Spigo . 133
A.13 Visualisation du scénario Riak de Spigo avec trois instances de in-

gestMQ par zones dans laquelle sommets du graphe sont d’autant
plus gros que leur indice de centralité intermédiaire est élevé. 134

LIST OF FIGURES ix

A.14 Visualisation des graphes après calcul de l’indice de centralité d’in-
termédiarité pour les cas où le nombre d’instances de ingestMQ est
respectivement de 1 et de 5 par zones de disponibilités 135

A.15 Visualisation Edge Bundling matérialisant la hiérarchie d’inclusion
par une tension des arcs plus forte vers le centre quand le nombre de
couches hiérarchiques traversées est élevé. 139

List of Tables

2.1 OpenTelemetry Cloud Semantic for Resource Location 36

4.1 OpenTelemetry Cloud Semantic for Graph Encoding 84
4.2 Legend of AWS symbols . 96
4.3 Betweenness Centrality score range for each group of services 99
4.4 Betweenness centrality score range for each group of services with a

varying number of ingestMQ instances 99

A.1 Score de centralité intermédiaire associé à chacun des services de
l’application cloud simulée Riak pour les cas ou le nombre d’instances
du service ingestMQ est respectivement de 1, 3, et de 5. 136

Introduction

Over the last decade, we observed an exponential growth of the number of Web
applications covering a wide spectrum of usages. Social-Networks, Online Shop-
ping and Multimedia Streaming platforms are just a few examples of the services
available today via these Web applications. And still today, the number of internet
managed services and applications keeps on increasing on a daily basis. This en-
vironment becomes extremely competitive; therefore, companies have to keep their
user-base engaged in their products. This user engagement is key for their business
and is maintained by a high quality of service. Indeed, over the past years, many
feedbacks from large-scale companies demonstrated that the application response
time was a driving metric for estimating user engagement. Back in 2006, Google
made an experiment that caused the response time of its search engine to be in-
creased by 500 ms, this extra delay caused the traffic of the search engine to drop
by 20% [Souders 2009, Ibidunmoye 2015]. Also, in 2008, Amazon declared that
each 100 ms added to their latency reduced their sales by 1% [Ibidunmoye 2015].
Therefore, monitoring and optimizing a Web application performance became an
important part of developers’ job.

In addition, a recent study on the impact of COVID-19 on internet traffic showed
that Youtube traffic represented more than 15% of all the global internet traffic.
Also, during the lockdown, the part of Netflix on the global traffic rose up to
11%, becoming the second most important website in terms of global traffic behind
YouTube [Cantor 2020]. To be able to sustain such a tremendous load, these ap-
plications have been designed to adapt to the number of users while maintaining
an almost 100% availability and keeping their response time as low as possible.
Although, not all Web-Application requires the extreme scalability of Youtube or
Netflix; these recent events highlighted that Web Applications are now designed to
manage a quickly evolving load of requests.

The main enabler of this extreme scalability has been the Cloud Computing
paradigm. By leveraging virtualization and automation technologies, the Cloud
Computing allows offloading the management of some components to Third-Party
companies. Developers can now focus on creating business-centric code and leave
the complex and time consuming tasks of operational management to Cloud Providers.

Cloud Native Applications
Cloud Computing is a complex concept involving an ever-increasing spectrum of
technologies, concepts and challenges. Still, this paradigm has been widely adopted
in the recent years and has changed the way software is designed and developed
nowadays. To keep these web applications performant and scalable, this approach
shifts away from the traditional definition of a computer program and defines a
software as a heavily distributed system. Today, the most popular applications have
adopted this change in design, they are now made of specialized business-centric
smaller components dedicated to one task and communicating with each other over

2 CLOUD NATIVE APPLICATIONS

the network. These applications are called Cloud Native Applications. Also they
take full benefits from the global distribution of the Cloud provider around the world
to replicate their applications on each continent as close to the user as possible.
Figure 1 shows the data centres owned by Google for their Google Cloud Platform
public Cloud. It also shows the network links dedicated to the platform and owned
by the company. Cloud Native Applications leverage this global distribution of data
centres get better performance.

Figure 1: Google Cloud Platform Data Centre and Network

Although, by embracing a distributed architecture, both software debugging and
performance analysis became a more complex problem. Indeed, whereas detecting
software bugs and hardware failures still take an important part in Cloud-Native
Application monitoring, there is also a wide variety of issues related to distributed
systems. At higher scale, an application performance can also be affected by the
network, or by the multiple virtualization layers involved, or even by other processes
executed in the same data centre. For Cloud-Native Application monitoring, this
results in new problems to detect and address:

1. Detection integration error and misconfiguration of the components of the
system. These misconfigurations may result in cascading errors or inefficient
service composition.

2. Detection of bottlenecks in the system. When an application has to undergo
an increased load, the load of each component in the system may not be
distributed evenly; some components may contribute to a greater extent to
the overall application response.

3. Detection of noisy neighbours or resource vampyrisation. Cloud environments
notoriously rely on resource over-commitment in their data centre, also while
designing a distributed application, over-commitment of computing resources
can also be a design strategy for cost optimization.

INTRODUCTION 3

Whereas Cloud Native Application Monitoring has not followed the evolution
pace of Cloud Computing in general, there are still initiatives aiming to address
these new challenges. OpenTelemetry is an open source project supported by the
most prominent Cloud-Computing companies like Google, Microsoft or Amazon.
It aims to standardize monitoring for Cloud-Native Application. At the time of
writing, the project was rather young and not suitable for a production usage, still
it had some promising building blocks we will focus on this thesis. OpenTeleme-
try focus on normalizing the semantic and the format of telemetry data in Cloud
environment. The main contribution of OpenTelemetry has been to normalize dis-
tributed tracing. Distributed Tracing is a new kind of instrumentation introduced
in 2010 by Google that is capable of following the propagation of a request in a dis-
tributed system and provide a high-level view of the components interaction for a
given request. With distributed tracing, monitoring data is not only a collection of
multi-dimensional points lying in space independently; on the contrary distributed
tracing focuses on exhibiting inter dependencies between measurements.

Given this context of open challenges for Cloud Native monitoring and this new
monitoring data-structure, the focus on this thesis has been to leverage traces to
address the issues of distributed systems.

Industrial Context & Problem

The work presented in this thesis has been part of a research project initiated by Or-
ange Labs Services, the research and development division of the Orange company.
This work has been motivated by the increased adoption of Cloud technologies to
design the company services. Recently, Orange started developing Djingo, a voice
assistant application hosted in multiple cloud data centres spread out across Europe.
By their nature, voice assistant applications require a high level of performance to
provide feedback to the user in a natural way. Multiple Cloud Service Providers
have been involved for deploying the Application, but the decision by the company
has been to avoid relying on resource over commitment. Still to maintain a low
response time, the detection of integration errors and misconfigurations as well as
bottlenecks was a crucial part.

During development and tests of the application, scattered on multiple data
centres, there was a need to investigate deeper the cause of some latency issues that
were observed. For this reason, the company integrated tracing to its product, to
help investigate on latency issues. Still the amount of data generated by tracing
instrumentation was too consequent to be analysed and required further processing.
Indeed, even with tracing, there was no immediate way of identifying problematic
behaviours and estimate their impact on the overall performance of the application.
In particular, with the automatic allocation of microservices in Cloud platforms,
there was a need of identifying the impact of the communications crossing data
centre boundaries. And while, these communications cannot be completely avoided,
they can, sometime, be reduced by opting for local component instead of distant
ones.

The problem of detecting Cloud Application specific performance issues has

4 CONTRIBUTION & DISSERTATION OUTLINE

been tackled down under the angle of modelling a global view of a distributed
application. Indeed, unlike standalone applications which can easily get the global
view of the system, distributed applications communicate over the network and hide
their underlying implementations. A monitoring technique capable of maintaining
a global application model at runtime would provide insight on the communications
of the different entities of the system and instrument a part, often disregarded of
application monitoring: the network.

Contributions & Dissertation Outline

In this thesis we propose to use the recent Distributed Tracing data that is being
normalized with the OpenTelemetry initiative. As of today, traces are used by
developers to debug their Cloud Applications but almost never on an application
running in production. With this thesis, we propose a model maintained at runtime
by traces that aims to maintain a global view of a physically distributed Cloud
Application. Then we leverage this model to address distributed systems common
issues that are traditionally encountered in Cloud Applications: the identification
of inefficient service placement and bottlenecks identification.

The contribution of this thesis is organized as follows:

Chapter 1: Cloud Application Performance Monitoring: This chapter presents
Cloud Computing in general, it provides a literature review of the key con-
cept that will be used throughout this thesis. An analysis is provided by
putting into perspective widely adopted academic works and definitions with
the State-of-the-Art Cloud technologies. Also, an emphasis is made on Cloud
Application structure and its impact on performance assessment. Then a re-
view is made on the up-to-date monitoring techniques used both by academics
and the industry to assess performance in a Cloud environment. This study
aims to provide the context behind the use of distributed tracing, an emergent
technology used in later chapters of this thesis.

Chapter 2: A Hierarchical Property Graph Model: In this chapter, a focus
is made on distributed tracing data in general. We present the actual ecosys-
tem for obtaining and processing traces on a Cloud Application. Then, by
leveraging the associated semantic, a generic model is detailed that focuses on
exhibiting the location of resources within a graph. The resulting graph rep-
resents components of a Cloud application located in multiple data centres,
and models them as a hierarchical property graph. A method that encodes
multiple traces is covered as well as its implementation working on an online
flow of traces. The work presented in this chapter corresponds to the common
grounding enabling both the detection of inefficient service composition and
bottlenecks, the topics covered in later chapters.

Chapter 3: Identifying Inefficient Service Composition: The focus of this
chapter is set on the interactions of components within the layers of the hi-
erarchical property graph. Communications among entities of a layer may

INTRODUCTION 5

exhibit patterns that translates into either inefficient placement or misconfigu-
rations. This chapter focuses on the identification of cycles among higher-level
resources, which translates in an inefficient resource composition. A platform,
hosted in a real cloud platform, has been deployed. It runs Kubernetes but
has a layered networking model, in our experiments, it has been shown that
Kubernetes does not provide an efficient resource composition, and in most
cases opts for a costly composition of services.
This work has been published in [Cassé 2021].

Chapter 4: Identifying Bottlenecks with Centrality This chapter focuses on
a global analysis of the application performance model provided in chapter 2.
This chapter presents a slighlty different approach to consume tracing data.
While the flow hierarchy metric was computed online on every individual
traces, this chapter proposes an approach to analyse the global model to iden-
tify hotpoints in the system. In this chapter, an offline analysis is presented
to detect services involved on many requests and service compositions that
act as bottlenecks for an application. Bottlenecks are identified with graph
centrality algorithms. The work presented in this chapter is tested on a simu-
lation application that implements several scenarios based on state-of-the-art
Amazon Web Services architectures.
This work has been published in [Cassé 2022].

Finally, the Conclusion & Future Works chapter closes the thesis by pro-
viding a summary of the contributions and opening on future works.

Chapter 1

Cloud Application Performance
Monitoring

Contents
1.1 Introduction . 7
1.2 The Cloud Computing Paradigm 9

1.2.1 Overview and Definition of Cloud Computing 9
1.2.2 Evolution of Cloud Computing 12
1.2.3 Performance Measurements and Concerns 15
1.2.4 Closing Words on the Cloud Paradigm 17

1.3 Cloud-Native Application Architecture 17
1.3.1 The Microservices Architecture 18
1.3.2 The Evolution of Cloud Resource Management 22
1.3.3 Challenges Regarding Performance Evaluation 24

1.4 Cloud Application Monitoring 24
1.4.1 Cloud Application Monitoring and Performance Analysis . . 24
1.4.2 Toward a Unified Cloud Application Monitoring Framework . 27
1.4.3 Research Challenges for Monitoring Cloud Application 28

1.5 Scope of the Thesis . 30
1.6 Conclusions . 31

1.1 Introduction
The concept of Cloud Computing emerged more than a decade ago; it qualifies the
idea of outsourcing computing resources into dedicated data centre managed by
third-party companies. Since 2008, the adoption of Cloud Technologies by compa-
nies has been massive at the point to now become the de facto model for designing
large-scale Web Applications. Nowadays, Cloud Computing is perceived as the en-
abler of many other well-rooted theories in the field of Information Technologies:
Infrastructure automation, microservice architecture, or processing pipelines used
in Big Data have all been empowered by Cloud technologies.

The most prominent American technology companies: Facebook, Amazon, Ap-
ple, Microsoft and Google, have all a part of their business now related to the Cloud.
And, whereas Facebook and Apple build and use their own data centres for their
internal usage, Amazon, Google and Microsoft have gone a step further by reselling

8 CHAPTER 1. CLOUD APPLICATION PERFORMANCE MONITORING

their computing power to other companies. They created their Public Clouds, re-
spectively named Amazon Web Services (AWS), Google Cloud Engine (GCE) and
Azure. These companies exposed some of their expertise through a catalogue of
services hosted in their data centres and available for all developers to use with
attractive pricing. Now, other companies providing similar offers appeared, they
are called Cloud Service Providers (CSPs).

Cloud Computing made far-reaching changes in the approach of resource provi-
sioning. By providing means to automate and dynamically scale application compo-
nents, this technology distorted the traditional software infrastructure. The adop-
tion of this paradigm is such that today numerous companies only rely to CSP to
host their entire infrastructure; as Netflix pioneered back in time to rely on AWS
to host their massive application.

While the economic benefits of Cloud Technologies are no longer to be demon-
strated, adopting this paradigm is a tremendous gap in terms of software design:
Cloud Native Applications are built by integrating third-party components with
business-centric code [Heinrich 2016]. A resulting side effect is that Cloud Com-
puting Software Design also shakes the foundations of software monitoring. Cloud
Applications are designed to act as distributed systems. Their underlying infras-
tructure is delivered as-a-Service: components are perceived as a black box and the
Quality of Service (QoS) remains one of the few metrics available.

In the following chapter, we will present a literature study presenting the Cloud
Computing and its evolution over the past years. Indeed, Cloud technologies have
evolved at a rapid pace over the last two decades motivated by an ever-increasing
industrial need. This chapter aims to set some steps back and to present the trends
that motivated this evolution. We put these trends in perspective with the impact
they had on system monitoring to identify the key challenges of Cloud-Application
performance analysis. Throughout our literature review, the term Cloud Computing
has taken multiple meanings: Often presented as a technology specific to data
centres based on multiple computing and networking virtualization techniques, it
evolved as framework helping developers to create distributed applications. Also,
initially presented for its centralization capabilities, the most recent challenges have
been to be extendable to multiple places around the world.

The following study is driven and supported by the performances challenges and
questions raised when developing Djingo, a Cloud application designed at Orange.
Djingo was designed to be a voice assistant that leveraged multiple data centres
to be as close as possible to the end user, so that this would reduce the response
time and aim to seamless interactions. Therefore, in this literature review, we first
consider Cloud-Computing as a technology. We focus on the original definition and
we set it in perspective with the technology that is actually in use to highlight
the key challenges of performance modelling. Then we shift our point of view to
consider Cloud computing as a framework to design highly scalable distributed ap-
plication applications. We address the microservices architecture and infrastructure
automation, then a focus is set on their impact on resource management. These
changes lead to design applications as distributed systems instead to design them
as standalone systems. So, we finally present research and industrial initiatives that
tackle distributed system monitoring in the context of Cloud Computing. That led

1.2. THE CLOUD COMPUTING PARADIGM 9

to the recent unified monitoring framework for Cloud Application that will support
our work throughout this thesis: OpenTelemetry.

The study is organized as follow:

Section 1.2 discusses the concept of Cloud Computing as a whole and provides
a state-of-the-art of this engineering-heavy topic. We start from the U.S.
National Institute of Standards and Technologies (NIST) definition and go
toward the main evolution observed through the last decade. In particular,
this section includes the adoption of containerization, a technology that is
now omnipresent in Cloud-related topics. We also provide a review of other
notable evolutions of the Cloud from the NIST definition like the concept of
FaaS or Edge-Computing to finally land on the performance aspect.

Section 1.3 focuses on a complementary aspect of Cloud Computing: Software de-
sign of Cloud-Native Applications. Indeed, as Cloud Technologies shacked the
foundations of software design by providing entirely new way of deploying ap-
plications, upper layers have therefore been affected. Cloud-Native Software
now opposes to Monolith Applications, they are made of a multitude of com-
ponents interacting with each other over the network. By taking the shape of
distributed systems, so-called Cloud-Native Application became more difficult
to monitor; this section reviews these new challenges.

Section 1.4 puts a focus on the advances and actual challenges of monitoring in
such an application. Starting from real-world observations from prominent
industrial, we generalize these feedbacks and identify the goal of monitoring
in this context. This section is put into perspective with the open source
initiative named OpenTelemetry.

Section 1.5 sums up the research challenges presented in this section and present
the positioning of these work regarding these open research challenges.

Section 1.6 Concludes the background study and opens toward the contribution
of the thesis.

1.2 The Cloud Computing Paradigm

1.2.1 Overview and Definition of Cloud Computing

The term Cloud Computing emerged as the buzzword that flooded commercial
speech of the brand-new services provided by IT companies these last decades.
While the term is very vague and gave rise to many interpretations, some more
formal definitions have been proposed to provide a better understanding of this
concept [Vaquero 2008, Mell 2011]. Even if there is still no consensus on the defi-
nition, the general idea remains the same: Cloud Computing allows outsourcing all
kinds of computing resources to third-party companies that will be managed in their
own data centre. These companies are called Cloud Service Providers (CSPs), they
provide an immediate network access to these resources following a pay-as-you-use
model.

10 CHAPTER 1. CLOUD APPLICATION PERFORMANCE MONITORING

The definition provided by the U.S. National Institute of Standards and Tech-
nologies (NIST) remains the most accepted among both academics and industry:

Cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing re-
sources (e.g. networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management ef-
fort or service provider interaction. This cloud model is composed of
five essential characteristics, three service models, and four deployment
models. ([Mell 2011])

The NIST definition also highlights the following essential characteristics shared
by Cloud implementations:

On-demand self-service Resource provisioning does not require any human in-
teractions in the process. Most cloud providers expose an API to allow cus-
tomers to provision or release resources in an automatic way.

Broad network access Once created, the computing resources are exposed to the
network and can be reached via traditional remote control mechanisms.

Resource pooling Cloud providers are able to serve multiple customers while
providing them virtually separated resources. They rely on virtualization
to segregate their pool of resources into smaller subgroups, thus enabling
multitenancy. The resource allocation made by the hypervisor is obfuscated
to the final user, giving it only minimal information on its virtualized resource.

Rapid elasticity With the pay-as-you-use model and the on-demand self-service,
Cloud customers can create their own logical component that adjusts, at run-
time, the amount of resources they subscribe to.

Measured service Cloud providers basically give access to their resources as-a-
Service. The Quality of Service (QoS) is, as a result, a metric driving both
providers and customers in order to qualify whether or not the services match
the expectations in terms of performance.

This definition also presents two complementary models: the deployment model
and the service model. These two models help to define the separation of the scope
of the CSP from the scope of the client. The deployment model describes the
management of the underlying resources used by CSPs as well as who they target
as customers. In another hand, the service model provides a classification of the
various kinds of services provided to the users by CSPs.

The deployment model details the following management of resources:

Private Cloud: They target exclusively customers within the organization they
are deployed on. They are often deployed on-premise but it’s not mandatory
and host Applications that should not be exposed over the internet. The goal
of building a private cloud for an organization is to propose a common base,
managed by a dedicated team, to be used by multiple projects within the
organization.

1.2. THE CLOUD COMPUTING PARADIGM 11

Community Cloud: They target a wider audience than the private Clouds but
still remains a closed audience. The communities are usually organizations or
working groups that share common concerns like compliance or security con-
straints. Community Clouds are Cloud implementations that usually satisfy
these constraints.

Public Cloud: They target the general public and are available on all the internet.
There are multiple public Cloud providers. However Amazon, Google and
Microsoft are leader on the market of Public Cloud. Their customers are
usually developers wanting to host a public web application.

Hybrid Cloud: They are a composition of several of the previous deployment
models while still being identifiable as a unique entity.

This definition heavily revolves around the separation of the client, consuming
resources, from a third party, fully dedicated to the management of these services.
It contrasts to the original software management in that it requires a company
to manage the full stack from physical machines to business-centric code. The
consequences are that Cloud computing introduced strong and opaque boundaries
between the Cloud Providers and the client. And, while it eases creating and
deploying software, these strong abstraction layers obscure debugging and make
performance analysis an extremely complex task.

In the following, we call a service a contract materializing this opaque abstrac-
tion layer separating the provider from the client. And, in Cloud Providers catalog,
services are many; to clearly identify the scope of these services, the NIST definition
provides the service model:

Infrastructure as a Service (IaaS) heavily revolves around the concept of vir-
tualization, it allows a CSP to separate resources in its data centre into smaller
units, each rented to different clients. These resources can be Virtual Machines
but also virtual network equipment or storage units.

Platform as a Service (PaaS) abstracts further the underlying system by pro-
viding already tuned up system capable of executing code. For example, PaaS
can provide Python, Java, PHP, Ruby or Node.js runtimes. By using a PaaS
developers do not have to install and manage these runtimes and rely on the
provider to get a service running immediately. PaaS catalogue also includes
common components like Databases or Caches. However, by relying on a
third party to manage underlying components the developer cannot access
lower-level metrics like the memory used, or the CPU time.

Software as a Service (SaaS) is the last abstraction layer: it allows the devel-
oper to use existing domain-specific software part of their application. SaaS
usually covers pieces of software that are common to many applications, this
includes user management, a search engine, a monitoring platform or a Pay-
ment solution.

12 CHAPTER 1. CLOUD APPLICATION PERFORMANCE MONITORING

This model acts as a reference to the concept of Cloud Computing: it describes
a centralized model focused around CSPs data centres. The Cloud Provider, by
relying on virtualization technology, subdivides its data centre into virtual resources
to rent them to multiple clients, therefore enabling multitenancy. The services
proposed are application building blocks, from On-the-Shelf pieces of software to
virtual machines that have initialized with their Operating System. Yet, this model
may not fully describe the current challenges that are facing the business of Cloud-
Computing nowadays. The remaining of this section showcases the actual trends in
this quickly evolving ecosystem and put more depth to the NIST Definition.

1.2.2 Evolution of Cloud Computing

While the NIST definition [Mell 2011] remains the most widely adopted, State-of-
the-Art Cloud technologies have undergone some major changes. Indeed, in the last
eight years, we observed a tremendous technology drift: the adoption of containers,
the introduction of Functions-as-a-Service, or edge deployments are a few examples
of new techniques partially breaking the original definition provided by the NIST.
Cloud computing became a solution widely adopted by the industry while it was still
a young topic with a wide range of open challenges [El-Gazzar 2016, Senyo 2018].
In this section we will review and analyse some of the evolution that changed the
face of the Cloud Computing as it has been originally defined.

1.2.2.1 Adoption of Containers

Another closely related topic to Cloud Computing is the containerization. Even if
the concept of containerization preceded Cloud Computing by many years, its adop-
tion drastically increased thanks to an Open Source Initiative from 2013 named
Docker1. Indeed, Docker revealed the potential of containers for Cloud environ-
ments; since then containers gradually act as a lightweight substitute to Virtual
Machines.

Whereas virtualization creates software-defined components to create a Virtual
Machine (VM), containers factor the Linux Kernel by relying on its isolation mech-
anisms. Containers act as a package embedding a program and its dependencies in
a unit having its own life cycle. Both of these techniques create so-called images,
that are files that can be executed by a dedicated runtime. However, as shown in
Figure 1.1, containers share the same and do not embed an Operating System (OS).
Therefore, container images are smaller as they do not carry an OS, and their boot
time is also reduced compared to VM as the program communicates with a running
kernel and does not require to start its own one. However, the abstraction provided
by containers is different from the abstraction provided by VMs. The boundaries
defined in the service model from the NIST definition do not fit containerization,
the definition needs to be extended.

Nowadays, Docker is a widely adopted technology in industry as its benefits are
many: it provides the portability for pieces of software along with a distribution
and a packaging model while keeping the performance overhead minimal. In this

1https://www.docker.com: homepage of the Docker project

https://www.docker.com

1.2. THE CLOUD COMPUTING PARADIGM 13

Figure 1.1: Representation of abstraction levels with virtual machines and with
containers. Illustration from [Bistarelli 2018]

thesis, we will focus on containerized Cloud Applications, in particular relying on
Docker containers. Therefore the next section provides a background study on
containerization in order to provide a better description of their performance.

In order to normalize the container ecosystem, after its exponential growth,
Docker and other leaders in the container industry (like RedHat, Google or Mi-
crosoft to quote few) released in 2015 the Open Container Initiative (OCI)2. The
OCI is an open governance structure modelled after the Linux Foundation whose
role is to define the specifications of containers engine. We will be referring to OCI-
compliant containers simply as containers throughout the rest of this thesis. The
notion of containers covers the runtime, the packaging and the distribution models.
While docker dominates this market other container engines exists like Podman3,
LXC4, or Youki5. OCI defines the following guidance for each of the following
topics related to the container ecosystem:

The isolation and execution runtime: Like VM, containers are files (called im-
ages) that are executed by a dedicated engine (called a container runtime).
Instead of creating virtual components (e.g. Hard Drives, Network Inter-
faces, Memory), the container runtime directly uses the host kernel isolation
mechanisms, namely namespaces and CGroups to launch the containerized
software. This software does not have the visibility of other processes and
resources managed by the host. As a result, when executing a container on
a host, a single process is started, the runtime only isolates it from the host.
To normalize this model, the OCI defines the runtime-spec6.

2https://opencontainers.org
3https://podman.io
4https://linuxcontainers.org
5https://github.com/containers/youki
6https://github.com/opencontainers/runtime-spec/blob/v1.0.2/spec.md: OCI Container

runtime specifications

https://opencontainers.org
https://podman.io
https://linuxcontainers.org
https://github.com/containers/youki
https://github.com/opencontainers/runtime-spec/blob/v1.0.2/spec.md

14 CHAPTER 1. CLOUD APPLICATION PERFORMANCE MONITORING

A packaging model: Docker images represent the way containers are packaged.
An image can be executed by a container runtime: it embeds the file system
containing the program and all its dependencies as well as the configuration
required by the runtime to run the program.

A distribution model: The distribution model represents how images are served
over the internet and how they are sent over the network.

1.2.2.2 Multiplication of Levels Within the Service Model

Containers have not been the only technology that disrupted the NIST service
model; Cloud providers recently introduced the concept of Function-as-a-Service
(FaaS). FaaS, also often referred as Serverless, are small pieces of code executed
in Cloud infrastructure triggered by external events. They take place in an event-
based platform and trigger a function based on an external solicitation, mostly
materialized an HTTP Request [Varghese 2018]. FaaS slips between the PaaS and
the SaaS layers: it allows running arbitrary code without managing the operational
layer, instead of billing for a dedicated platform, the billing corresponds to the
number of times the function is used. In the industry, their usage is mainly to offload
computations into a data centre to preserve the actual equipment from performing
computation intensive workload [van Eyk 2018]. Therefore, by its design, FaaS also
enables Edge Computing: developers can decide whether to execute a computation
close to the user of offloading intensive ones.

Once again, this new technology establishes a strong boundary between the
scope of the Cloud User and the Cloud Provider. In public Clouds, all main actors
propose their implementation of the FaaS concept:

• Amazon was the first public Cloud provider to introduce, in 2016, the concept
of FaaS within their catalogue with AWS lambdas7.

• Google followed in 2016 too and also added to their catalogue Cloud Func-
tions8 which covered a similar scope to AWS lambdas.

• Microsoft also followed in 2016 too and added Azure Functions9 to their cat-
alogue. Instead of relying on a Linux Base system, Microsoft opted to their
own OS as support for the underlying runtimes of languages.

With the multitude of providers supporting FaaS, this raised the question re-
garding a performance comparison of these services. In [Malawski 2018], the authors
created a framework to evaluate the performance of the different FaaS provider. As
they hide underlying implementation, the performance evaluation was a black box
evaluation. Their framework measured both the time spent to process the whole
request (including the time spent on the network) and only the processing time
within the function computation. While, in 2018, result showed AWS was having
better response time than other implementations, it is to consider that only the time

7https://aws.amazon.com/en/lambda/
8https://cloud.google.com/functions
9https://azure.microsoft.com/en-us/services/functions/

https://aws.amazon.com/en/lambda/
https://cloud.google.com/functions
https://azure.microsoft.com/en-us/services/functions/

1.2. THE CLOUD COMPUTING PARADIGM 15

to get the service delivered was considered in the performance evaluation. Indeed
CSPs do not allow user-defined functions in FaaS to reach lower-level metrics like
CPU usage or memory as it would break the isolation and separation of concerns
between Cloud User and Cloud Provider.

1.2.2.3 Deployment Extension

Cloud adoption these last decade has increased at a rapid pace. Nowadays, CSPs
host many businesses critical functions for their users, and, therefore, their expec-
tations in terms of performance also increased. In particular, they ask for shorter
latency and better availability; CSPs solve these constraints by adding data cen-
tre in different locations, closer to the end users. As a result, the Cloud, which
has been defined as a centralized model now scatters on multiple data centres
around the world. This allows computing resources to be closer to the users,
and to replicate data over several “availability zones”. However, this scattering of
computing resources changes the original model of Cloud computing and brings
new challenges regarding the placement of services in the different availability
zones [Chaczko 2011, Unuvar 2015, Moreno-Vozmediano 2017, Chou 2019].

Notably in [Chou 2019], Facebook published their work where they evaluate the
performance of their services deployed at the Edge in order to minimize latency and
to better balance the use of their data centre. In this publication, authors modelled
edge-to-data centre communication and used this model to maximize the number of
user requests the application can handle while optimizing their data centre capacity.
With the optimization achieved in their work, they managed to reduce the load of
their back-end storage by 17%.

Finally, in [Varghese 2018, Khan 2019], authors review the current technologies
as well as their actual challenges to identify research trends regarding Cloud de-
centralization. In [Varghese 2018], authors focus on the smartphone use case, as it
opened a wide range of new opportunities: they have a different usage from tra-
ditional computers, involve roaming, access to different data, with more latency
constraints. In another hand [Khan 2019] takes a wider scope than only smart-
phones and considers the IoT and the Big Data use cases where having computing
resources closer to data source could improve performance and resource usage. Both
of these publications mention Cloudlets which are extensions from the data centre
positioned closer to the final users, at the “edge” of the network.

1.2.3 Performance Measurements and Concerns

1.2.3.1 From a Provider Perspective

Regardless of the abstraction level or the location of the computing resource, the role
of CSP remains to allocate these resources to their tenants. In order to efficiently
use their available computing power, most CSPs over-allocate their tenant to their
underlying resource. While this leads to a better usage of the overall computing
power of the data centre, this over-allocation also leads to a uncertainty for the
tenant to really have access to resources it subscribed for.

16 CHAPTER 1. CLOUD APPLICATION PERFORMANCE MONITORING

This over-allocation of resources in data centre remains a well known prob-
lem [Yu 2018, Dabbagh 2015b, Dabbagh 2015a], however a good management of
this trade-off is critical for CSPs. Also, there is a variety of software implement-
ing computing services allocation to underlying computing resources [Boutin 2014,
Verma 2015, Vavilapalli 2013]. While implementations are many, there is no alloca-
tion method standing out from the crowd, most implementation are tightly tied to
the technology running services. As a result, CSPs leave their allocation methods
closed-source and rarely communicate on them, leaving performance studies only
black boxes.

In [Yu 2018], authors analysed a 24-hour “trace” dataset from a production in
Alibaba data centre, they used this trace to support a study on the Improvement
of Resource Utilization (IRU). In this study, a focus is made on the degradation
of performance caused by the way a High Elasticity co-locates resource intensives
services. In this work, authors defines Plasticity: the concept Alibaba that used
for bounding resources allocated to performance intensives Tasks in Cloud infras-
tructure. Bounding resources allocated to performance intensive short-lived services
allowed them have lesser “noisy-neighboors” issues when co-locating services in their
production cluster.

Another work from [Dabbagh 2015a] describes a framework which models Re-
source Utilization in the context of data centre resource over-commitment. Authors
also conducted a study where they analyse the impact of over-committing resources
on energy consumption [Dabbagh 2015b]. Both of these works have been based on
a “trace” published by Google from one of their +12,000 physical machines cluster.
Authors provide an optimization framework that predicts virtual machine alloca-
tion to maximize underlying infrastructure utilization and put some machines to
sleep to save energy.

Both [Dabbagh 2015a] and [Yu 2018] have been based on real-world scenarios
published by notorious companies running production Cloud, respectively Google
and Alibaba. Indeed, the impact of over-commitment is almost impossible to model
at smaller scale and requires real world data to be analysed.

1.2.3.2 From a Customer Perspective

On the contrary, as a Cloud customer, measuring the performance of a Cloud-
deployed application is a completely renewed task: When building an applica-
tion, developers create an application by composing third-party components with
business centric code [Heinrich 2016]. These Cloud resources provided by third-
parties as-a-Service separate ownership within the Application: maintenance and
operations are offloaded to CSPs whereas development and deployment are left
to developers. Whereas this abstraction boundary effectively eases deployment,
it makes debugging a more complex and tedious task, in particular performance
debugging [Jayathilaka 2017].

To assess performance of services offered by Cloud Providers, both Customers
and providers refer to QoS indicators. QoS indicators consists of simple metrics
that qualify the performance level of the service provided: they can be measured in
Black-Box and do not require any knowledge of the technology executing the service

1.3. CLOUD-NATIVE APPLICATION ARCHITECTURE 17

by the customer. There is a wide number of indicators describing the quality of the
service, it varies a lot according to the kind of service measured. In [Singh 2017] a
focus is made on the management and on the measurement of the QoS for Cloud
resources. Authors provide an extended list based on both experience and a lit-
erature review of Performance Indicators used for QoS measurement. While there
is a quantity of metrics describing the quality of service applied to Cloud services,
the latency/response time measurement outstands from the group and provides a
powerful indicator of almost all services offered by a Cloud Provider.

To manage performance, both Cloud provider and customer agree on Service
Level Agreement (SLA), an indicator representing a threshold in some QoS metrics.

1.2.4 Closing Words on the Cloud Paradigm

Throughout the years, the concept of Cloud Computing took some distance from
the original NIST definition, each of the aspects detailed gained a lot of nuances.
First, technologies evolved at an extremely fast pace, Docker adapted the container-
ization techniques to match Cloud-Computing usage and now, became one of the
building blocks of most of cloud technologies. Still, this technology fails to find a
representative spot in the NIST service model. Then Edge-Computing changed the
perception of Clouds, it brought two main challenges to original Clouds: Location
of computing resources and computation offloading. Finally, compared to tradi-
tional deployment, Cloud certainly eased designing application but it made them
more difficult to monitor as it introduced the concept of tenant. Tenants designate
Customers and their associated resources. This notion of tenant materialises as an
opaque barrier between what is visible by the providers and what is visible by the
customer, in term of resources. So when monitoring a Cloud application,wWhereas
the application structure has become more complicated, the customers have fewer
metrics to monitor to ensure that the application is running under good conditions.

Cloud providers also allowed business specific code to interact with the infras-
tructure through API. Therefore Applications developers integrated the logic of
making an application grow and shrink to follow its usage for example. In the fol-
lowing, we consider how these change on the application infrastructure has affected
Software design and therefore the application performance.

1.3 Cloud-Native Application Architecture

The impact of Cloud Computing on application’s architecture and software de-
sign has been massive: Software systems are now built by selecting, configuring,
and composing third-party software-defined services. Also, they are deployed on
virtualized, remote infrastructure where the quantity of requested resources can
be adjusted at any time [Heinrich 2017]. Therefore, developers building software
spend less time creating an infrastructure by using “on-the-shelf-components”, so
they focus more on the business logic.

Cloud providers build infrastructures capable of addressing the needs of most ap-
plication developers: the most prominent ones being the almost immediate elasticity

18 CHAPTER 1. CLOUD APPLICATION PERFORMANCE MONITORING

and the virtually infinite scalability of resources. To take benefits of these capabil-
ities, developers have changed their software architecture to adopt a distributed-
system structure. The benefits of this structure are many, this allows single com-
ponents to fail without harming the whole system, therefore allowing to reach the
almost 100% availability. Also, it allows granular scalability and deployments; in-
deed, according to the load of the application, only some components can be scaled
to reach the desired performance. Finally, components can be developed and de-
ployed more often and quicker, the organization is not forced to release all their
code and features at once, thus making deployments less risky.

The following section discusses the consequences of adopting this paradigm on
software engineering. We first discuss the Microservices architecture by presenting
its key concepts as well as studies and feedback from companies running large scale
microservices application. Then we discuss the evolution of tools commonly used
to interface with Cloud Providers and to design distributed applications. This
section opens on the challenges of monitoring in this context of fully distributed
and resilient application.

1.3.1 The Microservices Architecture

The Microservices approach emerged from industrial running large-scale applica-
tions, it consists of an evolution of the Service Oriented Approach (SOA) where
each component are materialized by standalone processes communicating with each
other over HTTP [Fowler 2014, Newman 2015]. In this thesis, we will not focus
ont the strict definition of Microservices, as it is a young topic that still undergoes
some adjustments and discussions currently. Indeed some reports from the com-
pany Uber, known as a precursor of the Microservices approach, revealed that they
already take distance with their early definition [Gluck 2020]. With all this rapidly
evolving context, in the following the term “Microservice” will be used to designate
a business-centric processes, part of a distributed application, communicating over
Application level protocol with other components of the system.

Creating smaller software units contributed to make each piece of a global appli-
cation simpler. So they are managed by a smaller teams, and capable of a quicker
evolution. Application developers take benefits of the rapid elasticity of Cloud
Providers to scale the number of instances of each service individually as the appli-
cation needs. Scaling individual components allows the infrastructure to follow the
load of the application at a finer grains. Some business components can be more
performance expensive than others and only these one are scaled in practice.

In the later, we discuss the nature of this new structure. We emphasize both
the distributed aspect and the ephemeral aspect of the multiple services composing
an application. Finally we will use studies from real-world applications to back up
our words.

1.3.1.1 Modeling Microservices as Service Composition

The way Cloud-Native Applications are built represents a major shift in the way
software is developed nowadays. Applications are now divided in multiple in-

1.3. CLOUD-NATIVE APPLICATION ARCHITECTURE 19

dependent components, running on numerous virtual machines hosted into data
centres scattered around the world. Separating a monolith into smaller business-
centric components is the foundation of the Microservices approach [Fowler 2014,
Newman 2015, Gluck 2020]. This approach consists of an evolution of the SOA in
which components consists of standalone processes. These processes communicate
with each other over the network through API calls (also often designated as Remote
Procedure Calls). The Netflix company that adopted Microservices to structure its
main application referred this approach as fine-grained SOA [Heinrich 2017]. In the
recent years, developers adopted this approach that borrowed many concepts from
distributed computing and network engineering. Application can now be modelled
as distributed systems, they are designed to be decentralized, to avoid Single Points
of Failures, to have self-healing capabilities.

In [Sampaio 2019], authors present an autonomic approach based on the MAPE-
K control loop. The MAPE-K control loop is a structure defining a self-managed
computing system. This control-loop is fed by monitoring data, which is then
analysed in order to identify actions the system has to take on itself in order to be
self-maintained. This control loop is supported by a model, rules and properties
maintained by a knowledge-basis at runtime [IBM 2005]. In this work, authors use
a state-of-the-art application and tools. Too feed their control-loop, authors pick
traditional monitoring sources from each individual components (some metrics, logs,
and traces). The goal of the control loop was to re-allocate microservices in order
to find their best placement onto the infrastructure. Their work demonstrated that
placement achieved by current tools are not efficient and that a lot of resources
can be saved up on host by finding better placement for microservices. Their work
highlighted also the complexity of the problem of finding the optimal placement for
a given application. Finally, authors reported their difficulty with current tooling
to get relevant monitoring data at an acceptable performance cost.

SOA architecture has been looked from many different angles in literature, and
studies have taken many different approaches regarding optimizing an SOA ap-
plication. In these papers [Alrifai 2009, Alrifai 2010], authors provide a method
that optimizes the composition of web services under QoS constraints. The main
interesting aspect of this work is that it tackles the performance problem from a
runtime selection point of view instead of taking part of resource placement perspec-
tive. Opting for a runtime selection of services in a SOA application is identical of a
load-balancing problem in the context of a Cloud internal network of microservices.

1.3.1.2 A Rise of Ephemeral Resources and Over-Allocation Issues

To keep each microservice under a manageable size, they are often associated with
a single business function; while some functions are designed to stay for a long
period of time (like serving user requests), others are designed to be short-lived
functions. In practice, this takes the form of separated computing resources in
Cloud Applications, Business functions designated to stay and deliver a service
are often referred as “Services” whereas short-lived function are referred as “Jobs”.
These jobs may consist of continuous validation of data or data management and
are especially encountered in the case of stateful services. These ephemeral jobs are

20 CHAPTER 1. CLOUD APPLICATION PERFORMANCE MONITORING

often computation intensive, and, to preserve other service performances, they are
scheduled in dedicated virtual resources.

Reports from large scale applications demonstrate the importance and the per-
formance impact of these functions. In [Ardelean 2018], Google research depart-
ment published a performance study of their GMail application: these functions
are designated by “non-UVR”, which stands for non User Visible Requests. In
this publication, non-UVRs cover all action generated by the application on itself:
examples provided are either data management actions and maintenance such as
repairs and software updates. Throughout this performance study non-UVR con-
tribute to a great amount of the global application load. While it is not the topic
of this work in particular, this publication also illustrate the scheduling challenges
of these short lived function.

In [Yu 2018], authors studies this allocation from real world perspective; they
use data published by the Alibaba company to analyse their scheduling techniques
and technology for short-lived function while the main application kept on deliver-
ing the service under acceptable objectives. Results of the study highlight a custom
technique used by Alibaba engineers to limit the elasticity in order to leave enougth
computing power to other computation intensive services in their Cloud Applica-
tion. Indeed, considering the common practice in virtualization of over-allocating
resources, the execution of computation-intensive services may have side effects
which cause uncertainty on the Quality of Service of others.

Even if this over-allocation problem and its side effects are well studied and has
been tackled down from different angles, there is still no consensus on the trading
between resource usage and the guarantee of respecting the expected SLA.Over-
allocation still is a critical issue that may only be observed in real-world scenarios
and that remains a business-centric challenge for companies. As a result, aca-
demic publications, instead of being ahead of time, take the form of feedback from
the industry, often hiding some important data for the sake of confidentiality. In
addition of the Google example provided earlier, the company Facebook made
numerous publications in the domain of data centre management [Boutin 2014,
Veeraraghavan 2016, Kaldor 2017, Veeraraghavan 2018, Chou 2019]. These publi-
cations covers the traffic engineering and migration techniques the company re-
sorted at the scale of the globally deployed Facebook Application. Although,
in [Grandi 2016], Microsoft published a study on improving scheduling policies for
jobs in a production analytic cluster. While the final study on new policies was run
on a simulation target, original data and problem have been observed from actual
monitoring data gathered from production cluster. The monitoring data considered
for the simulation to represent the cloud environment is the same trace that Google
made public that has already been mentioned in Section 1.2.3.1.

1.3.1.3 State-of-the-Art from Large Scale Cloud Applications

As we observed the expansion of Cloud Providers like AWS in the recent years,
we have also witnessed the apparition of many new web based Applications fully
exploiting their capabilities in term of resource pooling: Netflix, Uber, Twitter,
Twitch, AirBnB, Zoom are a few examples of AWS-powered applications.

1.3. CLOUD-NATIVE APPLICATION ARCHITECTURE 21

Some of these applications took gigantic proportions, Uber being one of them,
and they had to engineer quickly an application capable of using Cloud scaling
capabilities. Engineers made several communications through corporate channels,
to explain and detail the challenges they faced. In a blog post [Haddad 2018],
author provides a feedback on their implementation of Microservices; five years
later, in [Gluck 2020], they publish an update on their method to design global
applications. In the later, author mention that Uber is made of around 2,200
critical microservices, and, when considering non critical ones the order of mag-
nitudes climbs [Gud 2019]. Managing such an amount of microservices causes
scaling challenges as there are no monitoring tools capable of proving a unified
and wider view of a distributed Cloud application. Other companies went talky
about their internal structure and the way they handled distributed software de-
sign in engineering conferences. A lot of them published their so-called “Death-
stars”: a global map of the communications between microservices. Figure 1.2
provides maps from the Amazon and Netflix apps gathered from Engineering con-
ferences [Cockcroft 2016a, Cockcroft 2016b].

Figure 1.2: Amazon and Netflix “Death Stars” from 2016

Throughout their evolution, these companies frequently reported their difficul-
ties scaling their application through academic conferences, white papers and/or
technical blogs. A particular focus is often made on scaling monitoring tools: in-
deed in a distributed context the number of processes, or virtual machine to moni-
tor is rapidly evolving. In 2013, Quantacast reported to monitor around more than
2,000,000 unique metrics [Quantcast 2013]. In 2014, Netflix also reported to monitor
the same number of metrics to ensure the health of their application [Netflix 2014].
Finally, in 2016, Uber reported monitoring more than 500,000,000 unique series to
monitor their global application [Uber 2016]. All these companies reported strug-
gling scaling their monitoring to the size of their application, throughout their
massive data gathering.

22 CHAPTER 1. CLOUD APPLICATION PERFORMANCE MONITORING

1.3.2 The Evolution of Cloud Resource Management

One of the major advances provided by Cloud technologies has been the capability
of controlling the resources with business specific code. Indeed, all CSPs expose
an API that allows to request or release virtual resources without any human in-
teraction. This capability has been heavily used as a medium to execute feedback
from monitoring alerts. The main example being scaling up and down instances
of a service based on its CPU and memory usage. As a result, in Cloud-Native
Applications, interactions with the CSP took a prominent place in their design: in-
frastructure became dynamic and the strong boundary between the infrastructure
and the business specific code blurred.

With this dynamic infrastructure we saw the creation of Cloud Specific software
that manage life cycles of each of the components of the Application. We first
witnessed the adoption of Infrastructure as Code (IaC) where developers define
through a Domain Specific Language (DSL) the resources used by their applications.
Examples are Puppet, Ansible, Terraform. These applications manage the life cycle
of resources defined in the manifests written by developers, ensuring migrations
of the state held by services. Then, more elaborated tools appeared where this
logic was directly integrated into the Application itself through a control plane.
Unlike, IaC which computes changes only when developers trigger a new manifest,
control planes apply changes on the infrastructure at runtime. The most famous
control plane software is Kubernetes, it allows managing containers across multiple
machines.

1.3.2.1 Container Lifecycle Management with Kubernetes

Kubernetes is one of the most popular Open-Source Container Orchestrators; it
has been initially open sourced by Google and is now hosted by the Cloud Na-
tive Computing Foundation (CNCF). This project is the Open source version of
Borg [Verma 2015], which is the technology that Google used internally to deploy
their applications. Kubernetes is today considered as the State-of-the-Art way of
deploying a containerized application at scale. Today, many CSP provide managed
Kubernetes services.

Kubernetes’ role is to schedule and follow the execution of containers under a
multitude of machines. It acts as a DSL describing the distributions of workloads
under multiple executors; this DSL is understood by a control plane that manages
the life cycle of each individual workload in the system. Like other orchestrators,
Kubernetes is capable of detecting some issues within the system and can take
some countermeasures; although scenarios managed by the orchestrator are rather
minimal:

1. Replication Controllers allow to automatically restart microservices when
failures are detected.

2. Horizontal Pods Auto-Scalers allows the number of instances of a partic-
ular microservice to be scaled up / down based on the amount of resources
the container uses (CPU cycles or memory consumption).

1.3. CLOUD-NATIVE APPLICATION ARCHITECTURE 23

3. Most cloud providers deploy Kubernetes clusters based on an Automatically
Scaling Group which makes the number of machines executing containers
be dynamically adjusted based on the amount of resources requested when
scheduling containers on the cluster.

As a result, some basic scenarios for handling software bugs and hardware fail-
ures are automatically covered by the control plane, therefore minimizing their
impact in production. Other recent initiatives decided to push the limits of Kuber-
netes capabilities by extending it to manage with greater granularity the interactions
between components. This is done by embedding HTTP proxies in each microser-
vices where their configuration is managed by a logically centralized but physically
distributed control plane.

1.3.2.2 Instrumenting the Cloud Application Network

There were also other benefits brought by this new paradigm: Uber detailed some
techniques that have been used to test code in production thanks to micro services
structure and some internal traffic routing [Gud 2019]:

1. A/B Testing corresponds to routing traffic either to an instance of a given
service or to another having minor differences. It allows to measure the impact
of these minor differences on the global application performance, or the user
adoption of these new changes. For example, for a given microservice with two
different instances where A is experimental and B is production; a portion of
the traffic normally targeted to B is sent to A instead.

2. Blue/Green Deployments corresponds to gradually shifting traffic received
by a service from a version called Blue to a version called Green. Instances
of Blue microservices are gradually drained whereas instances of the Green
version are gradually provisioned. It allows application developers to better
manage the deployment of new version of each component while ensuring the
service remains online and available.

3. Canary Deployment corresponds to shadowing a portion of the traffic of a
production microservice to a testing instance. While the testing instance is not
involved in the response returned to the client, it allows application developers
to test in the real case scenario the behaviour of a specific microservice.

These scenarios are not made possible with standards Kubernetes implemen-
tations and require either to add specific code in each component to handle re-
quest routing either a particular instrumentation to apply the network configuration
finely on each individual component. To keep microservices simple and to segre-
gate network logic from business code, this role is often handled by Service-Meshes
that inject individual HTTP proxies that are managed by a centralized control
plane [Li 2019].

24 CHAPTER 1. CLOUD APPLICATION PERFORMANCE MONITORING

1.3.3 Challenges Regarding Performance Evaluation

1.3.3.1 Distributed Systems Monitoring Challenges

Therefore, developers embraced the “distributed system” design for Cloud-Native
Application. The benefits have been numerous: the distributed structure brought
an almost infinite scalability for critical components. Also, segregating resources
brought more granularity on the management of component lifecycles. Still, the
distributed architecture also came with its drawbacks. In [Kendall 1994], authors
explain that the abstraction efforts made to represent a distributed application as
a standalone and coherent entity have a negative effect on the monitoring of the
platform. They hide most of the failures that can occur in a distributed application.

The hard problems in distributed computing are not the problems of
how to get things on and off the wire. The hard problems in distributed
computing concern dealing with partial failure and the lack of a central
resource manager. The hard problems in distributed computing concern
insuring adequate performance and dealing with problems of concur-
rency. The hard problems have to do with differences in memory access
paradigms between local and distributed entities. ([Kendall 1994])

In another work [Woodruff 2017], authors provide an extended study of funda-
mental problems behind distributed computation: they study complexity of algo-
rithm commonly used in the message passing model. In this paper, authors prove
that computing exact solutions to many basic statistical and graph problems used to
model the message-passing paradigm are communication inefficient. There are two
consequences: in real world scenarios, we often observe a relaxation of the problem
and approximations to lessen the overall complexity of the problem. In addition,
communications contribute to a greater amount of time of the global latency of the
system. Computation cannot be both communication efficient and resource efficient
while bringing exact results.

1.4 Cloud Application Monitoring

As developers structure their applications as distributed systems, performance anal-
ysis and debugging tools also need to adapt these changes in design. Monitoring
and troubleshooting distributed applications is notoriously a hard problem. Be-
side detecting software and hardware failures, Cloud monitoring tools must also be
proficient at addressing distributed system issues, notably misconfigurations, noisy
neighbours or bottlenecks.

1.4.1 Cloud Application Monitoring and Performance Analysis

1.4.1.1 Cloud Application Monitoring: A Scaling Challenge

With the exponential growth of the number of systems to manage, monitoring a
Cloud Native Application has become a tedious task. Indeed, the vast majority

1.4. CLOUD APPLICATION MONITORING 25

of monitoring tools were inherited from traditional standalone system monitoring.
These monitoring tools usually collect two types of data:

Metrics They associate numerical values with timestamps, they are often qualified
as time series. They can represent, for example, CPU usage of a virtual
machine, the amount of memory used by a program, the number of items
stored by a message queue.

Logs They associate textual values with timestamps, this textual value can be
structured (e.g. JSON, protobuf or any serialization format). They represent
events within a system like, for example, a user’s request on the proxy, an
authentication attempt on the application, the decision by a component to
ask for more resources to the CSP, …

Multiple big tech companies reported that traditional monitoring does not scale
well considering the number of components involved in a Cloud Application. Each
application now being divided into multiple standalone system the amount of time
series or logging source has tremendously increased.

Indeed, in 2014, both Quantacast and Netflix reported using 2,000,000 unique
series for monitoring their Cloud Services; the same year Uber reported monitoring
500,000,000 unique series [Thalheim 2017, Quantcast 2013]. This high number of
metrics results in a higher monitoring cost, as it now requires machine learning and
big data techniques to identify performance anomalies [Dalmazo 2017, Dean 2014,
Gan 2018a, Gan 2020, Nedelkoski 2019]. However, the scope of monitoring is wider:
all of the quoted works used computation expensive techniques to establish causality
between measurements, or between heterogeneous data sources characterizing the
same system.

Logging has also undergone some massive scaling in the context of Cloud Ap-
plications: in [Chow 2014], Facebook provides feedback on using logging messages
to investigate latency issues. Throughout their work, authors used over 1.3 mil-
lion HTTP logs to study causality among component of their distributed applica-
tion. This augmentation increases complexity to extract significant signals from
this amount of data. While they managed to discover the structure of their appli-
cation only by analysing logs, the processing power required to extract dependency
information took the form of a powerful Spark Cluster running for hours. This work
marked the starting point of Facebook studies on the dependencies untangling of
their whole application. The following sections provide a comprehensive literature
study of their work regarding optimization of their massive Cloud Application.

1.4.1.2 The Case of the Facebook Application

At the scale of a globally used application, made of hundreds of services geograph-
ically distributed on multiple data centres, optimizing performance involves min-
imizing network latency while keeping the utilization of data centres as low as
possible. Facebook Engineering published various papers where they detail how
they used Traffic Engineering to preserve the balance between latency and data
centre utilization.

26 CHAPTER 1. CLOUD APPLICATION PERFORMANCE MONITORING

In [Veeraraghavan 2016], authors detail a solution that manages the traffic gen-
erated by users into a geographically distributed application. Their custom traffic
management improves hardware usage in production by 20%. In [Kumar 2018], au-
thors raised the problem of congestion and bottleneck links in Cloud-Application.
They address these problems with the implementation of a routing algorithm ded-
icated to service-to-service communications, balancing network calls in a more effi-
cient way. In addition, Maelstrom [Veeraraghavan 2018] applies traffic engineering
techniques to disaster mitigation and recovery. Finally, in [Chou 2019], authors
present Taiji, an application-level load balancer that pushes more in depth the
routing and placement of computing resources to the edge. In this contribution,
adding application-level parameters to the routing algorithm reduces the load of
back-end servers by 17%.

These various publications made on a real large-scale application (Facebook)
highlight that the importance of a smarter in-app request routing can greatly im-
prove a resource management in a multi data centre cloud. However, methods used
in these publications are not generic and result of years of engineering based on the
specificity of the Facebook application.

1.4.1.3 Untangling Services Dependencies in a Cloud Environment

Facebook Engineering team has not been the only team to study dependencies
appearing in their system. This field is an active area of research that has been
catching the interest of both academics and companies over the recent years.

A study from Google on the performance analysis of the GMail application has
highlighted that resource usage of communicating processes are not independent
from each other [Ardelean 2018]. In this publication Google expresses the balance
of the load generated by the user and also by its ephemeral tasks. To precisely
measure performance on a multitude of machines on scattered on multiple data
centres the paper details a technique where engineers directly modified the kernel
of the hosts: through the use of a particular system call they could sync performance
capture on multiple data centres, allowing capturing a trace embedding data with
precision. The data captured in the trace crossed multiple abstraction boundaries,
and the manipulation is feasible by Google as they manage the whole Cloud, from
the physical machine to the application.

In [Lin 2018], authors also instrument the kernel of the machines running a
Cloud Application. However, this work focuses on Kubernetes Clusters. With a
Custom Kernel instrumentation, authors have been able to extract the information
held in network calls so that their system keep track of which services communicates
to which service within the cluster. In this work, authors were able to maintain
causality graphs of the services deployed on a Kubernetes Cluster. This root-cause
analysis is performed in the context of Service Level Objective (SLO) monitoring
to help identify the source of the latency induced by each service.

In [Jayathilaka 2017], authors leverage HTTP headers to inject a unique ID for
each incoming request to allow them to observe the propagation of a single request
within the whole application. Dependencies are observed at runtime through HTTP
logs and authors rely on this dependency graph to perform root cause analysis. The

1.4. CLOUD APPLICATION MONITORING 27

implementation of this work is specific to a PaaS platform. However the method
of generating a unique ID for each incoming request is now well known as it is the
state-of-the-art way to build a trace [Kanzhelev 2020].

As a result, implementations are many, and most of the time context specific to a
company [Ardelean 2018, Kumar 2018]. Most cloud monitoring techniques observed
in this section used to break the software isolation layers, and have been done
by companies owning their data centre. The works presented in this section stay
implementation specific and only available for the owner of the Cloud infrastructure.
The problems tackled, however, remains at the application level. In the next section,
we focus on the normalization initiatives that have been observed around the Cloud
ecosystem that brings this visibility by respecting software isolation properties.

1.4.2 Toward a Unified Cloud Application Monitoring Framework

Whereas monitoring tools tend to become more and more exhaustive in the way
they describe Cloud environments, cloud orchestrators and providers, on the con-
trary, tend to obscure underlying implementations, making debugging more dif-
ficult [Jayathilaka 2017]. The recent OpenTelemetry initiative aims to normalize
Cloud monitoring by providing an open format and production-ready binaries for
Cloud-Native Monitoring. While the project is still in Beta at the time of writing,
it opens many research opportunities to enhance the quality of tracing data or the
way it is processed.

OpenTelemetry covers a wide range of issues related to Cloud monitoring, in
particular it defines a semantic that would be shared all the entities of the Cloud to
provide standardized monitoring data. In addition, OpenTelemetry defines a way of
establishing correlation between measurements in a distributed context. This tech-
nique is called context propagation and is supervised by the W3C [Kanzhelev 2020].
Context propagation enabled the Distributed Tracing by propagating along with ap-
plication data a unique ID that identifies the original action that triggered the com-
plete system. With context propagation, it is now possible to reconstruct execution
traces of a distributed application. OpenTelemetry aims to provide a normalized
format for traces as well as other monitoring data sources like metrics and logs.
And, while this section does not dive in the technical implementation of the tool,
section 2.2 will provide a more detailed introduction to the technology.

The project is not considered mature yet, but it inherits from its predecessors
OpenTracing and OpenCensus which were complementary projects already having
the goal of normalizing cloud monitoring. There are also works closely related
to OpenTelemetry, in particular for the purpose of enhancing context propaga-
tion with additional contextual information and to create more complex graph
of function calls [Mace 2018a, Mace 2018b]. Distributed Tracing also become an
increasingly adopted monitoring source in the industry, in [Las-Casas 2018] and
in [Las-Casas 2019] authors provide a study that details sparse sampling methods
for distributed traces.

There are also ongoing works that leverage traces as a new monitoring data
source to work on anomaly detection [Nedelkoski 2019] or on a visualization tech-
nique for debugging distributed systems [Anand 2020]. Even if traces are still rarely

28 CHAPTER 1. CLOUD APPLICATION PERFORMANCE MONITORING

used, the heavily connected nature of tracing data could constitute an opportunity
to tackle down some Cloud-specific monitoring challenges.

1.4.3 Research Challenges for Monitoring Cloud Application

In recent research works, a lot of attention has been brought to the impact of
these emerging constraints related to monitoring heavily distributed applications.
Numerous academic publications address the challenges of Cloud Native perfor-
mance evaluation and monitoring. In particular, in [Heinrich 2017], authors raise
the research challenges linked to an extremely dynamic environment: development
practices commonly adopted in the industry like Continuous Integration / Contin-
uous Deployment (CI/CD) allows performing tests on a subset of the application.
While they acknowledge the use of these practices, they also raise the additional dif-
ficulties and challenges of monitoring the software and modelling its performance.
The cloud ecosystem can be considered to be a volatile environment made of a
heterogeneous multiplication of technologies.

Still, this view does not cover all the challenges reported by the technological
companies to this date. The next sections focus on cloud application specific scenar-
ios reported to have a great impact on improving a Cloud application performance.

1.4.3.1 The Multiplications of Tools and a Lack of Global Vision of the
Application

In [Da Cunha Rodrigues 2016], authors address the actual complexity of monitoring
tools in the domain of Cloud applications. With the multiplication of entities to
monitor and all the abstraction layers proposed by CSPs, the number of dedicated
tools involved in monitoring an application is getting considerably high. And, while
authors remain on the strict definition of the abstractions levels provided by the
NIST (IaaS, PaaS and SaaS), the number of tools used in performance evaluation
and analysis still is too high to go toward a unified view of Cloud performance
evaluation.

Further, these tools do not collaborate with each other and keep monitoring
data under their own “realm”. And, while it is normal for an application to com-
pose services from different abstraction layers, these monitoring tools do not share
data or context. Therefore, this makes establishing a correlation among the partial
vision held by each of these tools a complex and open problem. The OpenTelemetry
initiative aims to provide a format allowing the multiple data sources (Logs, Metrics
and Traces) to share some context and establish a correlation between these data,
all managed by the tooling. Still, while this framework is promising and supported
by companies, it is still in beta and is not widely adopted yet. With OpenTeleme-
try, establishing correlation between multiple data sources from within the tools
would allow to group and form clusters of different type of monitoring data (logs,
metrics and traces) around the concepts of observed event. While the project is too
young to have concrete examples of such aggregations yet, actual implementation
and standardization heavily rely on the concept of context propagation to enrich
monitoring data with meaningfull context.

1.4. CLOUD APPLICATION MONITORING 29

Finally, in [Heger 2017], authors focus on a higher-level view of monitoring a
Cloud application instead of focusing only on its individual components. Notably,
authors focus on the usage and interpretation monitoring data. They extend the
scope of problem detection and alerting for each individual component to new top-
ics: mainly root-cause analysis and problem diagnosis which are two challenges of
distributed system monitoring. The next section provides a study on how bottle-
neck identification and Root Cause Analysis are tackled down in Cloud Computing
environment by current research works.

1.4.3.2 Root Cause Analysis, Bottleneck and Chokepoint Identification

Bottleneck and chokepoint identification in a complex environment still take a
prominent place in actual literature. In [Marvasti 2013], the company VMWare,
which dominates the market of virtualization technologies, presents a model for
evaluating the performance of virtualized IT environments. A particular attention
is brought on identifying bottlenecks in complex systems made of a multitude of
subsystems. While representing company IT infrastructure, the monitoring prob-
lem addressed remains valid in distributed applications. In this paper, authors use a
recommendation system to associate a new diagnosis to an aggregation of automat-
ically detected failures of a system. The data used to support the recommendation
engine is the history of events already classified by human operators on similar
infrastructure. In this work, bottlenecks are detected by selecting the resources
presenting a higher presence of networking failures, in particular delays.

Other publications studied bottleneck identification under a different angle: for
example, in [Gan 2018a], authors present a performance model that uses queuing
networks to identify the propagation of a bottleneck in a system. However, their
definition of bottleneck differs from the previous work, while it was centred on
networking errors and delays.

Also, in [Ibidunmoye 2015] authors provide an extensive literature study of the
topic of bottleneck and chokepoint identification. This topic is not only applied to
Cloud application monitoring but extends to a wide variety of distributed systems.
Nevertheless, authors address different kinds of bottlenecks that complete the vision
brought by previous studies : In a multi-tenant environment, noisy neighbours can
have a great impact on an application performance. Indeed, CSPs often overcom-
mit computing and network resources. Therefore a tenant can have its underlying
resources drained by another performance-hungry tenant.

This literature review samples some performance studies in Cloud environment
addressing bottleneck identification but each with a particular definition of a bot-
tleneck in a Cloud environment. All these definitions have their use cases and
demonstrate that bottleneck identification is still an active research topic. Also,
in [Ardelean 2018], Google engineers provide feedback on the performance evalua-
tion of the GMail application. While this study is not plainly focused on Bottleneck
Identification, it uses common mechanisms and problems: Monitoring a massive
Cloud Application like GMail involved more network monitoring. In a distributed
system of this scale, authors reported their main challenge was to have an automatic
root-cause analysis mechanism.

30 CHAPTER 1. CLOUD APPLICATION PERFORMANCE MONITORING

In [Jayathilaka 2017], authors instrument an open source PaaS platform to es-
tablish causality of events and perform Root-Causes analysis. Their implementation
remains technically very close to OpenTelemetry context propagation and enabled
authors to perform Root-Cause Analysis at runtime. While OpenTelemetry was not
mentioned in the paper, tagging user request with an ID and analysing the prop-
agation of this ID in the system is the technique that enabled distributed tracing.
Therefore, this work demonstrates some potential use cases for this new monitoring
format to perform Root-Cause Analysis in a Cloud Application. Also, in [Lin 2018],
authors propose a graph based technique that instruments a Kubernetes Cluster to
perform similar Root-Cause Analysis scenarios. This work also relies on a custom
instrumentation technique used by the authors to build a causality graph. This
implementation also observes network communication within a Cloud Application
to establish the Causal relationships between components.

Therefore, analysing bottlenecks and identifying the Root-Cause still remain an
active research topic open to various interpretations. Through the OpenTelemetry
initiative, networking observability in a Cloud become possible in a standardized
way.

1.5 Scope of the Thesis

Over this chapter we presented multiple concepts and research challenges related
to Cloud computing and Cloud application performance monitoring. The domain
covered is vast and there are multiple valid perspectives to tackle down the problem
of Cloud Application performance analysis. The work presented in this thesis echoes
the development of an application designed at Orange until 2020: Djingo. Indeed, in
its original design, Djingo was a voice assistant embedded in a speaker device. This
device used to communicate with a Cloud hosted application capable of processing
the audio signal to extracts the words, decode the intent of the user request and
then route to the service capable of addressing user requests.

From an architectural point of view the application was developed with the
micro-service approach, scattered in multiple data centre, called third-party ser-
vices, and was instrumented to emit traces. The application was instrumented with
State-of-the-Art cloud monitoring tools and faced performance issues during its de-
velopment. Whereas each component was individually monitored through metric
gathering and log collections, the lack of global vision of the application was arm-
ful and some performance issues required manual human investigations. The most
common question was detecting the cause of the latency observed, in particular
when the SLA were not respected.

In this thesis we take the opportunity of having a large-scale application with
this new monitoring data being traces. Indeed, the driving idea presented in this
document is to use the highly connected data presented in traces to investigate per-
formances anomalies where State-of-the-Art tools have been lacklustre. Therefore,
while this document does not invalidate the value of logging and metrics for perfor-
mance monitoring, the challenges presented here aims to use tracing not only for
debugging purpose but for production performance investigations. Indeed, current

1.6. CONCLUSIONS 31

cloud monitoring still fail to provide a high-level view and exhibit issues in com-
ponent interactions. Traces, as a monitoring data source, offers the opportunity to
exhibit such behaviours and Djingo has been a motivating example to be as close
as possible to real-world performance issues.

Throughout the rest of this thesis, we propose to address performance issues
and challenges that have been raised by both developers and operational teams. In
particular, it was complex to observe and qualify the path taken by an incoming
request in the whole system; a particular concern was that some request may have
higher latency due to inefficient routing among all the micro-services of the appli-
cation. Also, another concern of the team was the identification of bottlenecks at
runtime, especially during the load tests of the application. And, while each service
was monitored individually, the system did not help for root-cause analysis and fell
short for explainability of performance results.

The work presented here leverages the uses of traces and, in particular of normal-
ized tracing to exhibit inefficient service composition and hotpoints identification
in a vast system. Still, Djingo development was stopped a bit after the COVID-19
lockdown which led to difficulties for evaluating the approaches taken. Neverthe-
less, whereas the following experimentation part have been run on smaller-sized
projects or under a simulation environment, the underlying questions come from
the development of a large-scale application with heavy performance requirements.

1.6 Conclusions
In this chapter we reviewed the research literature on Cloud Computing in general.
A particular focus has been made on the performance evaluation of Cloud-based
Applications as well as their performance issues. We observed that, throughout the
years, the definition of Cloud has become to be more and more complex: many
tools and techniques which now take a prominent part in Cloud software design fall
out of the scope of the traditional NIST definition which still acts as a reference
nowadays. This initial definition can be enriched by new terms and concepts like
concept of containers, Functions-as-a-Service or the multi-data centre deployments.

Software performance evaluation has also undergone massive changes: Cloud
applications are now distributed system which can have different types of failures,
not covered by traditional standalone system monitoring. When perceived as a
distributed system, the network linking Cloud components take a prominent role
within an application performance. Literature tackles down these challenges im-
posed by the distributed nature of Cloud Applications by making customisation in
the network stack.

Also, under the vision of the CNCF, an open source project named OpenTeleme-
try proposes to standardize tracing of Cloud Applications. While this project is ex-
tremely young, it proposes to normalize Cloud Application Monitoring by defining a
common format for all the types of monitoring data: a common format for metrics,
logs and now traces. Traces are the only format capable of expressing the causality
of events, and many companies and researchers reported using tracing system to
solve performance issues related to the distributed nature of Cloud Applications.

Chapter 2

Modelling Cloud Application
Structure with Hierarchical

Property Graphs

Contents
2.1 Introduction . 33
2.2 Distributed Tracing Ecosystem 35

2.2.1 OpenTelemetry Data Collection Architecture 35
2.2.2 Collecting Traces in Jaeger Tracing 37
2.2.3 The Jaeger Analytic Library and its Limitations 38

2.3 Extracting a Structural Model from Traces 39
2.3.1 Identifying Common Elements to Aggregate Traces 39
2.3.2 Modelling an Application Hierarchical Structure 41

2.4 Modelling Components Interactions 43
2.4.1 Leveraging the Property Graph Model to Identify the Type of

Communication . 43
2.4.2 Graph Rewriting Operations 45
2.4.3 Building a Hierarchical Property Graph 49

2.5 Implementation . 50
2.5.1 Extracting Data from a Jaeger gRPC Endpoint 51
2.5.2 Property Graph Encoding . 52
2.5.3 Graph Rewriting Operations 55

2.6 Conclusions . 57

2.1 Introduction

In the previous chapter, we provided a context for Cloud-Native application mon-
itoring. We identified OpenTelemetry traces as a promising data source that ex-
presses relationships among performance measurements in a distributed context.
Also, while research initiatives on untangling dependencies in a Cloud environment
have been many, there are still few that reached the “production” stage within the
industry. Obtaining a wider view of a distributed application is still an active re-
search topic. Over the past years, distributing tracing has become more considered

34 CHAPTER 2. A HIERARCHICAL PROPERTY GRAPH MODEL

by both researchers and software engineers to observe components interactions in a
Cloud Application.

Distributed tracing provides means, through instrumentation and with a mini-
mal overhead, of formalizing dependencies between entities taking part in a Cloud
Application. And, while implementations have been many, the OpenTelemetry
initiative helped Cloud-Native Application Monitoring to make a step toward stan-
dardization. Indeed, behind the designation OpenTelemetry lies multiple concepts
and pieces of software: the data semantic, the software instrumentation li-
braries for specific languages, the collectors processes that form a pipeline
and, finally, the storage backends making data available for further processing.
Whereas the initiative covers in detail all these topics, we will mainly focus on the
two ends of the pipeline: the data semantic normalizing telemetry data and the
storage backend.

So, in this chapter, we propose a model leveraging the complete OpenTelemetry
ecosystem. This model builds and maintains, at runtime, an application-wide view
of its performance by using traces. It materializes as a hierarchical property graph
whose vertices are entities executing some services, relationships of the graph that
demonstrates some dependencies. These dependencies can take two forms: struc-
tural dependencies and flow dependencies which translates into either an entity is
executed onto another either the entity requests another one. It uses OpenTelemetry
resource semantic to represent resources as vertices and the relationships expressed
in traces to create the flow dependencies. Indeed, when considering traces, they
appear to be more than a collection of data objects living in a multi-dimensional
space independently. The core of tracing data resides in the interdependencies ex-
pressed between measurements. Property graphs provide a powerful machinery to
represent these traces; the capability to have labels and attributes on both vertices
and edges allows the preservation of the original data semantic.

Throughout this chapter, we provide a study focussed on the distributed tracing
technology. We propose the model that leverages the data semantic and the traces
to build and structure a hierarchical description of the application. The study is
organized as follows:

Section 2.2 introduces the key elements of the OpenTelemetry ecosystem, from
the data collection architecture to its actual data model for traces.

Section 2.3 presents a way to use both data semantic and relationships expressed
in traces to encode a property graph describing the hierarchical structure of
an application.

Section 2.4 describes the graph rewriting approach that has been developed to
highlight the different levels of communications involved in a geographically
distributed context. It also formalizes graph rewriting with graph pattern
matching sequences to provide a generalized approach of our model.

Section 2.5 describes the implementation used in this thesis that process an online
flow of traces to maintain, at runtime a hierarchical model in a graph database.

2.2. DISTRIBUTED TRACING ECOSYSTEM 35

2.2 Distributed Tracing Ecosystem

2.2.1 OpenTelemetry Data Collection Architecture

The OpenTelemetry initiative covers a wide scope: standardizing Cloud Application
monitoring to allow multiple tools and vendors to interconnect. And, while we focus
on the tracing specifications in the scope of this thesis, the project also includes
semantic definitions for metrics and structured logs.

Whereas monitoring solutions applied to Cloud Computing have been myriad
over the past years, OpenTelemetry stood out from the crowd by being a standard
for creating observability data and not being an Observability platform. Observ-
ability platforms are commercial software that process monitoring data to extract
alerts, examples are : Opsani1, New Relic2, Lightstep3 and Datadog4 to quote few.

client collector storage

API

SDK

exporters

Jaeger

prometheus

Lightstep

receiver exporters

processors

Figure 2.1: OpenTelemetry Pipeline Architecture

Figure 2.1 describes OpenTelemetry components; they take the form of a data
pipeline collecting monitoring data from instrumented application. This pipeline is
made of three stages:

The Client collects and formats monitoring data to match the semantic defined
in the standard. Clients take the form of libraries included into the code or
standalone processes collocated with the monitored microservice.

The Collector receives monitoring data from multiple clients, this data is then
processed to be sent to other collectors or to storage applications. Process-
ing done in collectors includes enriching monitoring with metadata, sparse
sampling or filters.

1https://opsani.com
2https://newrelic.com
3https://lightstep.com
4https://www.datadoghq.com

https://opsani.com
https://newrelic.com
https://lightstep.com
https://www.datadoghq.com

36 CHAPTER 2. A HIERARCHICAL PROPERTY GRAPH MODEL

The Storage is the ultimate step of the pipeline, once monitoring data has all
attributes set, it is delivered to storage backends dedicated to exploit this
data. These storage applications may either be simple storage/visualization
application like Prometheus5 and Jaeger Tracing6 or Observability platforms.

OpenTelemetry pipeline has been designed to be able to chain multiple collectors
one after another. Therefore, the pipeline can match the expectations of a physically
distributed application by providing multiple points collecting data in each data
centre. For example, collectors can have local authority on the microservices hosted
in their data centre, providing additional context that follows the semantic, for then
referring to a central cloud collector that aggregates monitoring data from multiple
locations. Table 2.1 provides a sample of the semantic characterizing the location
of a microservice within a Cloud platform.

Attribute Description Examples
cloud.provider Name of the cloud

provider.
alibaba_cloud

cloud.account.id The cloud account ID
the resource is assigned
to.

111111111111;
opentelemetry

cloud.region The geographical region
the resource is running.
Refer to your provider’s
docs to see the available
regions, for example Al-
ibaba Cloud regions,
AWS regions, Azure re-
gions, or Google Cloud
regions.

us-central1; us-
east-1

cloud.availability_zone Cloud regions often
have multiple, isolated
locations known as
zones to increase avail-
ability. Availability
zone represents the
zone where the resource
is running.

us-east-1c

cloud.platform The cloud platform in
use.

alibaba_cloud_ecs

Table 2.1: OpenTelemetry Cloud Semantic for Resource Location

5https://prometheus.io An open-source system monitoring and alerting toolkit build around
a time series database discovering services and collecting metrics.

6https://www.jaegertracing.io An open-source distributed tracing system that helps provide
insight of microservices application and distributed systems.

https://prometheus.io
https://www.jaegertracing.io

2.2. DISTRIBUTED TRACING ECOSYSTEM 37

The project has the capabilities of describing and monitoring a complex en-
vironment made of multiple layers of resource locations involving a geographical
distribution of data centres. This is an opportunity for Application Performance
Monitor (APM) to support complex distributed structures like the Edge-Computing
paradigm that scatters Cloud computation units in multiple layers between a cen-
tral cloud and the users. However, the use of the semantic in the current monitoring
landscape is poor, Cloud application, even when distributed into multiple physical
locations, remains perceived as one flat network of components.

2.2.2 Collecting Traces in Jaeger Tracing

For traces, the storage backend application considered in this thesis is Jaeger
Tracing. Indeed, as OpenTelemetry remains a young project there are yet few tools
that are compatible with the pipeline. Still, Jaeger has been implemented multiple
times in production by many companies and is also designated by OpenTelemetry
as the reference implementation for storing traces. Figure 2.2 shows a part of a trace
captured in an instrumented system: this trace is made of 63 latency measurements
linked together, called Spans in the following.

These Spans are the building blocks of the model described throughout this
thesis; they correspond to a unique and attributed latency measure for a given
Operation on a given computing Resource. In figure 2.2, the spans displayed describe
the interactions of six micro-services that serve a web page of a product in an online
boutique application. A focus is made on one particular span of the currency service
component. It has multiple attributes describing the action and the resource serving
the request. These attributes follow the OpenTelemetry Semantic.

Figure 2.2: Part of a Jaeger Trace from an Online Boutique Application

Traces are built by Jaeger applications, the instrumentation clients only send
latency measurements and the metadata containing a unique ID that enables the

38 CHAPTER 2. A HIERARCHICAL PROPERTY GRAPH MODEL

aggregation of spans in a single trace. The main role of Jaeger is to aggregate
spans into traces and to visualize them in its User Interface, it does not process
the traces further. Therefore, by its nature, it is still heavily used in debugging
and development scenarios but more rarely in a production setup. The process of
investigating traces is a manual process requiring a human to perform the analysis.

Finally, Jaeger also exposes an API allowing users to request tracing data seri-
alized in a format allowing further processing. Jaeger API uses the gRPC protocol
with a protobuf encoding for a more efficient data format. Unlike REST APIs, pro-
tobuf APIs use a binary serialization format requiring an Interface Definition Lan-
guage (IDL) describing the data objects exchanged between Jaeger and its client.
Jaeger IDLs being public and Open Source, creating a client is still possible. Also,
gRPC API allows streaming data objects from the Jaeger endpoint to the client.

As a result, by being a commonly deployed tool in industry, compatible with
the OpenTelemetry pipeline, and having a powerful way to interface with custom
software, the following of this thesis will integrate with Jaeger.

2.2.3 The Jaeger Analytic Library and its Limitations

Jaeger Analytics Library is another open source project7 providing a set of functions
for interfacing custom code with a Jaeger instance to manipulate traces as data
objects. The core of this library consists of encoding each trace as a graph whose
vertices are spans, it is used by Jaeger Tracing to discover dependencies among
micro-services. Figure 2.3 provides an example of a simple trace encoded into a
graph with the Jaeger Analytic Library. In this model, each vertex of the graph
designates a span and all the metadata it holds. Edges are directed and designate
a reference of a parent span to its child.

Figure 2.3: Graphical Representation of Jaeger Analytic Library Graph Encoding
7https://github.com/jaegertracing/jaeger-analytics-java A Java project providing a

data model for traces in order to be manipulated for further data processing

https://github.com/jaegertracing/jaeger-analytics-java

2.3. EXTRACTING A STRUCTURAL MODEL FROM TRACES 39

With that model, each trace becomes a particular instance of a graph, and each
graph is independent from each other. As a result, all graphs-related operations are
not directly possible when analysing multiple traces. In addition, the model does
not extract nor process spans’ metadata.

In the following section, we present an approach that leverages OpenTelemetry
semantic to build a property graph exhibiting interactions between components in
a complex system. This will allow multiple traces to be merged in a single property
graph, the resulting graph would show the overall application performance and
components interactions.

2.3 Extracting a Structural Model from Traces
The Jaeger Analytic Library graph encoder creates one graph per trace and repre-
sents them as a Directed Acyclic Graph (DAG) of spans. In order to use traces to
represent a wider view of the applications, multiple instances of traces are required
and therefore a way to effectively compare spans must be found. However, spans
are dense in attributes and comparing them is not an immediate process. Two
spans may be characterizing the same operation done in two different instances of a
microservice or, two different operations in the same microservice. For this reason,
the OpenTelemetry semantic describes other entities that are related to spans: in
particular, they describe Resources:

A Resource is an immutable representation of the entity producing
telemetry as attributes. For example, a process producing telemetry
that is running in a container on Kubernetes has a Pod name, it is in
a namespace and possibly is part of a Deployment which also has a
name. All three of these attributes can be included in the Resource.
(OpenTelemetry Specifications of the Resource SDK8)

According to the definition, a resource may act as a common element shared
by multiple spans and multiple traces. However, they do not appear in current
implementations such as the Jaeger Analytic Library. Throughout this chapter,
we propose an alternative to this library implementing a graph encoding model
that allows to exhibit the multiple communications levels these Resources can have.
Later chapters will demonstrate some usages of this model to solve Cloud specific
performance issues like bottleneck identification or inefficient resource composition.

2.3.1 Identifying Common Elements to Aggregate Traces

In the definition of the Resource SDK of OpenTelemetry, a resource is defined as
an immutable representation of the entity. It remains a single abstract entity that
can take many shapes depending on the attributes it has. For instance, a resource
with attributes container.id and/or container.name is effectively a container, a
resource with attributes host.name and/or host.id is a virtual machine. In the

8https://opentelemetry.io/docs/reference/specification/resource/sdk/ Page providing
the specifications instrumentation libraries must adopt to follow OpenTelemetry Standard

https://opentelemetry.io/docs/reference/specification/resource/sdk/

40 CHAPTER 2. A HIERARCHICAL PROPERTY GRAPH MODEL

same vein, attribute k8s.pod.uid uniquely identifies a Kubernetes Pod, attribute
k8s.node.uid uniquely identifies a Kubernetes Node which is also a VM.

Nonetheless, attributes are not all mutually exclusives and, in a realistic cloud
deployment, a resource may hold all of the following attributes cloud.platform,
container.name, k8s.pod.uid and k8s.node.uid. A span in a trace having such
attributes would be a latency measurement done in a particular container situated
within a Pod, hosted in a particular Kubernetes node managed by a cloud provider.
As a result, this resource materializes multiple underlying entities taking part in
our cloud application, each being a potential cause of an issue or a failure. In our
graph encoding method, we match all types of resources (e.g. Pods, Nodes, …)
from the attributes present in the resource. Therefore, for each span in a trace, we
separate the performance measurement (the Span) from all the execution instances
it is associated with (the Resource).

Figure 2.4: Transforming a Trace in a Property Graph.

Figure 2.4 demonstrates this graph encoding method on a small trace where:
vertices can either be Spans (plain white circles in the figure) or instances of Re-
sources (smaller circles with a grey-scaled filling). Edges can also have multiple
types: in the figure, a plain arrow (→) represents a REFERENCE between two
spans; a dashed arrow (99K) represents a link between a latency measurement and
its identified Resources, this edge is typed EXECUTES_ON.

According to the Resource SDK, resource attributes k8s.pod.uid, host.id, or
k8s.node.uid are consistent across traces and allow to identify a resource taking
part in multiple traces. These ids attributes are used to merge resources created
from different traces into the same vertex in the property graph. Therefore, in a
single graph we can start accumulating multiple traces and identify each component
based on the flow of traces. Setting the resources in separated vertices allows to
identify the common resources shared by multiple traces in our graph model. Still,
these resources share no relationship with each other but some of them follow a
containment relationship: for example, in a Kubernetes context, containers are
always executed into pods, pods into nodes, nodes belong to clusters, etc. In the
next section, we propose to enhance the model by including hierarchical relationship
between these resources.

2.3. EXTRACTING A STRUCTURAL MODEL FROM TRACES 41

2.3.2 Modelling an Application Hierarchical Structure

These resources are inherently structured, the variety of services within a CSP
or a Cloud orchestrator catalogue demonstrate how intertwined these services and
resources are. In the scope of this thesis, we mainly focus on large-scale deployments
of Kubernetes Clusters. While this work is tightly tied to Kubernetes platform, it
remains a motivating example, and, in later chapters we apply the model to other
cloud platforms. In the following list, we provide an overview of the various kinds of
relationships that exists between resources in a large-scale Kubernetes deployment:

• containers require a host to be executed

• In the majors CSPs, hosts can belong to Automatically Scaling Groups

• Kubernetes hosts are called nodes in the Kubernetes DSL

• Kubernetes DSL defines pods as a collection of containers running within the
same host

• Kubernetes DSL also defines logical resources entities that manage pods:
replica set, daemon set and stateful set manage pods placements in the cluster.
In the same flavour, replica set can be managed by deployments

• Most CSPs define the concept of zone (or availability zones) as a group of
data centre tightly linked with each other within a region

Two main structures stand out from these observations for standard Kubernetes
deployments:

• a logical hierarchy of the entities that follow the Kubernetes DSL
Pods ⊂ Replica Set ⊂ Deployments and Pods ⊂ Stateful Set

• a physical hierarchy of resources describing the location of microservices within
a Kubernetes cluster: Pods ⊂ Nodes ⊂ Clusters

Whereas the logical hierarchy of Kubernetes entities does not have a particular
value outside of this specific scope, the physical hierarchy that describes Kuber-
netes pod placement within a given hierarchy is a generic problem. Through this
example we propose to use traces to model an automated process that can yield
some unwanted scenarios.

The concept of hierarchy has been particularly studied in [Zafeiris 2018]. Au-
thors propose an extensive review of hierarchical structures and their representa-
tiveness of real-world systems. Both of the previously identified hierarchies fit the
definition of the containment (also named nested, embedded or inclusive) hi-
erarchy. These hierarchies characterize structures in which entities are embedded
into one another. Higher-level entities consist of and contain lower-level ones. Au-
thors refer to the following definition for containment hierarchies: “larger and more
complex systems consist of and are dependent upon simpler systems and essential
system-component entities”. This definition also matches massive cloud deploy-
ments.

42 CHAPTER 2. A HIERARCHICAL PROPERTY GRAPH MODEL

Now, Cloud Native Applications are scattered in multiple data centres, they
bring computation resources to the edge. Voices assistants like Amazon Alexa,
Google Assitant or Apple Siri eventually process the voice signal on the user devices.
This allows serving the request with minimal latency while still depending on the
cloud backend for actions. This suggests that more and more Cloud deployments
will adopt this heavily hierarchical structure.

Most of major CSPs already adopted bigger scale Kubernetes deployment by
proposing Zonal Kubernetes Clusters in their catalogue. These clusters leverage
Availability Zones to make applications resilient to the loss of one data centre.
The containment hierarchy of resources may be represented as: Pods ⊂ Nodes ⊂
Zones ⊂ Clusters. Throughout the following we will consider these zonal clusters
as motivating example to support our model; indeed while they are now adopted
by cloud providers, they still have a range of open challenges. The main challenge
we focus on is the ambiguity between the flat nature of the overlay network linking
pods inside the cluster and the hierarchical structure of the network where all links
do not have the same “cost”.

From a mathematical point of view, the privileged representation of hierarchical
structures are graphs with directed edges [Zafeiris 2018]. The hierarchy represen-
tation is straightforward, entities are represented by the vertices of the graph while
dominance relationships between two entities are represented by an edge between
these entities. In the initial graph encoding described in figure 2.4, the graph ver-
tices already represent the resources. However none of the edges types define the
resources hierarchical ordering. To add this containment structure to the model,
we propose to add edges IS_CONTAINED to the embedded resources.

Figure 2.5: Transforming a Trace in a Property Graph.

Figure 2.5 describes the graph encoding meta-model: indeed, trivial graphs
representing a 7-spans trace with two levels of hierarchy already lead to complex
graphs. Instead, figure 2.5 represents the graph meta model, itself being a graph.
The text valuies of each vertices in the meta model represent the labels the final
graph can have, edges represent the relationship that can be found between two

2.4. MODELLING COMPONENTS INTERACTIONS 43

vertices of different labels.
Figure 2.5 show the vertices labels and edges annotation that represent the

trace-to-graph encoding mechanism in the context of a Zonal Kubernetes Cluster.
The base graph model presneted for tracing is Span vertices linked together through
REFERENCEs edges forming a DAG. With this graph encoding method, we go a
step further by extracting the common identifiers of resources to create vertices
that will bridge different traces in a bigger property graph. In the case of Zonal
Kubernetes Clusters a four levels hierarchy can be extracted from its definition:
Pod ⊂ Node ⊂ Zone ⊂ Region.

This resource extraction method makes steps aside from the OpenTelemetry se-
mantic definition of a resource: instead of defining a resource as a unique entity, we
define resource as an embedding of multiple sur resources. The proposed graph en-
coding of multiple resources following an order that forms a containment hierarchy.
With this property graph model, we can use vertices labels and edges types to filter
sub graphs that carry a special meaning. For instance, after accumulating multiple
traces, extracting the sub-graph of all vertices linked by an IS_CONTAINED edge
will provide a view of the way resources are structures forming the whole hierarchy
of Pods, Nodes and Zones taking part in a cluster of an application. Also, extracting
Span vertices adjacent to a particular resource will provide a filtering of all latency
measurements of this resource.

2.4 Modelling Components Interactions
By leveraging OpenTelemetry semantic with the knowledge of Cloud architectures,
we have been able to identify the physical components involved in the system from
its traces. These components follow a containment hierarchy that describes the
overall cloud-application structure. The graph meta-model defined in figure 2.5
highlights this physical organization of resources, but also another organization of
these resources. Indeed, REFERENCEs relationships indicates how services com-
pose together, and theses different compositions form a complementary organisation
of resources also describing the cloud application. These resources follow an organi-
zation similar to information processing networks [Durugbo 2013]. In this section,
we propose to use graph rewriting operations for extracting a hierarchical model
out of a flow of traces.

2.4.1 Leveraging the Property Graph Model to Identify the Type
of Communication

The REFERENCE edges can represent any level of function composition in a soft-
ware system. For example, an OpenTelemetry instrumented function f_parent
can call another function f_child_1 within the same program to do local com-
putations. Also, the same parent function can also use a Remote Procedure Call
(RPC) to process a function named f_child_2 executed on another machine. Both
of these scenarios generate OpenTelemetry references from the parent to the child
functions. However, one represents a local function call and the other represents a
network call. Figure 2.6 illustrates this example, the two references are labelled to

44 CHAPTER 2. A HIERARCHICAL PROPERTY GRAPH MODEL

identify which one is a local communication within the resource and which one is a
network communications between resources.

Figure 2.6: Example of Local Communications and Network Communication Be-
tween Resources

Figure 2.7: Graph Pattern
Showing a Local Reference

In our model, this difference does not ap-
pear directly on the REFERENCE edges. To
identify if the communication is local or goes
through the network traversing the graph is
mandatory. In figure 2.7, Span vertices linked by
a REFERENCE edge share a common resource.
The REFERENCE edge demonstrates a commu-
nication that lives within that resource and do not
cross its boundaries. Both spans s1 and s2 are
linked to the same resource r1.

Figure 2.8: Graph Pattern Showing
a Network Reference

On the contrary, in figure 2.8, span ver-
tices linked by a REFERENCE edge have dif-
ferent resources. This represents a function
call that crosses this resource boundaries. In
practice, it corresponds to a RPC, a REST
API call from a micro-service to another, it
also fits the case of a database query. There-
fore, not all REFERENCE edges characterize
the same level of dependency within a dis-
tributed application.

These REFERENCE edges are only de-
fined between Span vertices. Resources of the same level (e.g. Pods, Nodes, etc.)
are not linked by any edge. However, paths exist for linking them. These paths
linking two resources instances of the same level go back to the span vertices via an
EXECUTED_ON edge, then find another span vertex via a REFERENCE edge
that is executed on the target resource.

By identifying these paths between two resources of the same hierarchical layer,
we can deduce which kind of cross-process communications are involved in the
composition of service. Therefore, we can spot if the observed communication
occurs within the same machine, crosses the network but stay within the cloud
network, or if it goes through the internet. To identify the hierarchical level in
which lives a REFERENCE edge, we use graph rewriting operations that project
this REFERENCE edge at all the layers of the resource hierarchy.

2.4. MODELLING COMPONENTS INTERACTIONS 45

2.4.2 Graph Rewriting Operations

With our custom graph encoding process, we are able to identify, by traversing the
graph, at which layer of the containment hierarchy the communication is observed.
The graph pattern from figure 2.8 expresses that the two resources involved, commu-
nicate over the network. Spotting all these patterns in a layer of the containment
hierarchy would create a networking model of these resources. Graph rewriting
operations Grantt the possibility of creating these edges based on the previously
identified patterns.

In this section we first introduce formal definition of property graph and of graph
rewriting. Then we present the rules that have been defined to sort communications
in our model.

2.4.2.1 Formal Definition of Property Graphs and Graph Rewriting

Graph rewriting is a technique that defines algorithmic rules for creating a new
graph out of an original one. These algorithmic rules can define both situations to
apply the transformation and the transformation itself. Graph rewriting rules are
usually noted r : L → R where L and R are two attributed graph, L designates
the left-hand side of the operand and R the right-hand side. In this definition,
both L and R are attributed graphs entities, they are noted L = (VL, EL, λL) and
R = (VR, ER, λR).

In general, to define property graph, we use the definition of a multi-relational,
attributed, directed graph noted G = (V, E, λ). While there are multiple formal
definitions of property graphs, we will use the definition of [Rodriguez 2015]. This
definition is used for defining the Gremlin graph traversal language, used in the
section 2.5.

• V is the set of the vertices of the graph G, each vertex has exactly one label
l.

• E ⊆ (V ×V) is the multi-set of directed edges of the graph G, edges also have
exactly one label.

• λ is a partial function that represents properties in the graph. λ maps a pair
made of an element of G (a vertex or an edge) and a string to any of the allowed
attribute value of G. This partial function is noted λ : ((V ∪ E) × Σ∗) →
(U \ (V ∪E)). U refers to the universal set of values, λ partial function allow
linking to any values minus the element of G (noted (V ∪ E)).

This r : L → R rewriting rule is applied on the original graph by searching
occurrences of the pattern L, which is deleted and then replaced by the pattern
R. Deleting some of the elements in a graph may lead to cases where a vertex is
deleted but edges pointing to this vertex remains untouched. After such a trans-
formation, these edges would not point to any other vertices in the graph, they
are called suspended edges. Two mains approaches have been defined to handle
the cases of suspended edges: Single Pushout (SPO) and Double Pushout
(DPO) [Parisi-Presicce 1993].

46 CHAPTER 2. A HIERARCHICAL PROPERTY GRAPH MODEL

• Single Pushout (SPO): it allows to add, delete, merge or clone vertices or
edges in an attributed graph, deleting any suspended edges.

• Double Pushout (DPO): it allows to add, delete, merge or clone vertices or
edges in an attributed graph, but blocks if any suspended edges is encountered.

The graph L is designated as a pattern graph and can also be expressed as a
pattern matching sequence. In [Francis 2018], authors present the Cypher language
implemented in the Neo4J graph database. Unlike the Gremlin language that de-
scribes graph traversal, Cypher focuses heavily on pattern identification in graphs.
In this work, authors define graph pattern Π as a multiple path patterns noted π,.
They define a path pattern noted π as a sequence of vertices pattern, noted χ, and
edge patterns, noted ρ.

Π = {π1, π2, . . . πm}
π = χ1 ρ1 χ2 ρ2 . . . ρn−1 χn

Using pattern matching sequences would provide a more general formulation of
graph L that can be applied to all kind of resources existing in a cloud environment.
Consequently we provide a definition of the patterns χ and ρ that fits our initial
definition of property graph. Indeed, in [Francis 2018] vertices can have multiple
labels whereas in the definition of property graph taken from [Rodriguez 2015] ver-
tices can only hold one label. Hence, a node pattern χ is defined as a triple (a,L,P)
where:

• a is the name of the vertex in the pattern, the name may possibly be empty.
When it is not it allows to reuse this node in later stages of the matching
sequence.

• L corresponds to a constraint on the label of the vertex on which the pattern
χ is applied. It may be empty to match any vertex with any label.

• P corresponds to constraints on the properties of the vertex on which the
pattern χ is applied.

Edges patterns ρ are defined as the tuple (d, a,L,P, I) where:

• d ∈ {→,←,↔} specifies the direction of the edge.

• a is the name of the edge. Like for vertices, names allow to reuse the edge
whose pattern has been matched against in later stage of the matching se-
quence.

• L corresponds to a constraint on the label of the edge on which the pattern ρ
is applied, it may be empty to match any vertex with any label.

• P also corresponds to constraints on the properties of the edge on which the
pattern ρ is applied.

• I is either nil or (m, n). When defined, m, n ∈ N corresponds respectively to
the minimum and maximum number of edges to traverse.

2.4. MODELLING COMPONENTS INTERACTIONS 47

2.4.2.2 Graph Rewriting Rules for Finding Network Communications

Graph rewriting operation can be used to find the patterns that have been identified
to represent network communications between resources. The result of the operation
would be a graph representing only the communications between resource of the
level of hierarchy considered. Figure 2.9 provides a graphical representation of
the graph rewriting rule applied to Pods. The first line shows on the left side of
the operand the graph L being the pattern that will be searched into the graph.
On the right side the graph R is represented. It is the result of the process (the
creation of the new edge) applied on this pattern. The second line provides an
example of this transformation on a graph. The left part of this the second line
reprents the trace encoded as graph (like the one presented in figure 2.4 but only
with Pods being displayed as resources for the sake of clarity). It is the starting
point of the stransformation. On the other side the result of the graph rewriting
operation is presented. The goal of this rewriting process is to lessen the number
of vertices in the graph to better focus on resource interactions, materialized by a
PROJECTED_REF edge.

Figure 2.9: Graph Rewriting Approach to deduce resources dependencies (applied
to Pods) based on a Simple Pushout operation.

For the purpose of this transformation, the SPO is convenient because it deletes
the Span vertices and the EXECUTES_ON and REFERENCE edges once the
PROJECTED_REF has been created. Therefore, after the rewriting process, no
nodes labelled Span remains nor edges labelled EXECUTES_ON. The final graph
is only made of resources vertices with IS_CONTAINED and PROJECTED_REF
edges.

The rule illustrated in figure 2.9 is specific for Pods, but the rewriting rules
remains the same for any other pair of resource vertices belonging to the same

48 CHAPTER 2. A HIERARCHICAL PROPERTY GRAPH MODEL

abstraction layer of the resource containment hierarchy. Figure 2.10 details how the
rewriting rule simplifies the graph by providing intermediates steps in the pattern
matching process. In a first sub-step, the figure highlights the patterns of network
communications and discard the local communications. The pattern identified in
the first step of the graph rewriting notation from figure 2.9 appear in colored
groups in figure 2.10. Each colored group represents an instance of the network
communication pattern. the second sub-step shows the discarded Span vertices
and demonstrates the creation of the PROJECTED_REF edge between the Pod
vertices.

Figure 2.10: Graph Rewriting process explained step by step

This rewriting rule can be expressed with a graph pattern matching represen-
tation as defined in [Francis 2018]. Equation 2.1 defines the pattern π as being
a parameterized list of vertices and edges of the graph L and returns the nodes
r1 and r2 matching this representation. Pattern rule π is expressed as a function
taking a ResourceLabel as parameter to specify the pattern where ResourceLabel ∈
{Pods, Nodes, Zones, . . . }. A visual representation is provided in figure 2.11.

2.4. MODELLING COMPONENTS INTERACTIONS 49

π(ResourceLabel) = (r1, ResourceLabel,∅),
(←, nil, EXECUTES_ON,∅, (1, 1)),
(nil, Span,∅),
(→, nil, REFERENCE,∅, (1, 1)),
(nil, Span,∅),
(→, nil, EXECUTES_ON,∅, (1, 1)),
(r2, ResourceLabel,∅)

(2.1)

Figure 2.11: Visual Pattern representing equation 2.1

With the pattern matching rule defined in equation 2.1, we obtain the re-
sources vertices of label ResourceLabel designated as r1 and r2 that can later
be used to create an edge labeled PROJECTED_REF. Therefore, when these
PROJECTED_REF are added to the graph for all the pattern of the initial graph,
vertices labeled with ResourceLabel are linked together by edges modelling their
network references only.

2.4.3 Building a Hierarchical Property Graph

After the rewriting process, we obtain a new graph for each level of the containment
hierarchy. These new graphs express the communications between their entities for
a given set of traces. Merging these graphs back in the original graph would add
the edges PROJECTED_REF. Figure 2.12, represents the property graph with all
the new edges and vertices. In this figure, resources vertices have been grouped by
labels: a group of pod vertices has been named Pods and a group of node vertices has
been named Nodes. Also some EXECUTES_ON edges have been omitted between
the span vertices and the node vertices for the sake of readability.

50 CHAPTER 2. A HIERARCHICAL PROPERTY GRAPH MODEL

Figure 2.12: Hierarchical Graph Representation.

Whereas the property graph from figure 2.12 is not a hierarchical structure
by itself, it exhibits a multi-layers structure. Indeed, in [Drewes 2000], authors
propose to extend the SPO and DPO rewriting rules to hierarchical graphs. In
this work, authors define a hierarchical graph as a graph of graphs: a DAG whose
nodes are graphs and edges are morphisms between elements of these graphs. These
morphisms between elements of the graphs are called frames in [Drewes 2000].

The graph representation in figure 2.12 matches this definition. Nodes of the
hierarchical graphs are each of the graph obtained by the rewriting operation. In
this designation, Pods is a graph where its vertices are labelled Pod and its edges are
typed PROJECTED_REFs. The same applies to Nodes, and all the layers of re-
sources that can be extracted from traces. The frames, showing the hierarchical re-
lationship between entities of each layers, are materialized by the IS_CONTAINED
edges: Pods ⊂ Nodes ⊂ Zones ⊂ Clusters.

As a result, traces, which are flat graphs where abstraction levels are hidden,
have been turned, by this graph encoding method, in a multi-level location-aware
model that highlights the composition of service and resources. This encoding
model will be used in later chapters to process traces and detect issues specific to
distributed systems communicating over a multi-layer network. The next section,
details the implementation of this model.

2.5 Implementation

Both graph encoding logic and rewriting operation have been implemented in the
Scala programming language. This implementation is based on the Jaeger Ana-
lytics Library presented in section 2.2.3. Like the original, this work decodes data
from Jaeger gRPC API but transforms this data to implement the model and the
rewriting operation. The choice of the Scala programming language was natural as
Scala is compatible with the Java ecosystem and also has a wide range of libraries
related to graph processing. In addition, Scala uses a functional programming ap-
proach and is compatible with Spark, a technology enabling massive and parallel
data processing.

In this section we present the implementation of our online processing pipeline

2.5. IMPLEMENTATION 51

for parallel trace computations; this implementation has been used to process data
and structure our hierarchical property graph. To develop our pipeline we used
the Scala data-processing platform named Polynote9. This platform is a Notebook
engine capable of executing code written in Scala and in Python, it provides an
environment allowing to quickly build our pipeline on a real data flow. In this
section we present the four stages of the pipeline created in Polynote: reading data
from a Jaeger gRPC endpoint, applying the model to create graphs, and finally,
applying the rewriting process on the graph to generate a hierarchical structure.

Figure 2.13 represents the pipeline: the vertical left part is standardized by
OpenTelemetry and corresponds to a normal Jaeger Deployment. The horizontal
part of the pipeline represents what was added to support the graph operations
required to maintain the model. The two steps pipeline in Polynote corresponds
to the Scala code, all these steps can be parallelized to process Jaeger Data more
efficiently. The final model is hosted in a Graph database in which multiple scala
worker can write simultaneously.

Figure 2.13: Complete Telemetry Processing Pipeline

The Polynote notebook Scala code are presented in appendix B, in the following
we refer to some sections of the code presented with a focus on key elements. Still,
the Scala language can be verbose when dealing with nested data structures and
with Java libraries, therefore the code snippets presented may refer to code some
section that are only detailed in the appendix.

2.5.1 Extracting Data from a Jaeger gRPC Endpoint

The Jaeger Tracing tool exposes its data through a gRPC API; unlike REST APIs,
gRPC APIs are made of a binary data flow, using the Protocol Buffers (protobuf)
serialization format. It makes the decoding operation more complex to implement.

9https://polynote.org A Scala Notebook engine open sourced by Netflix

https://polynote.org

52 CHAPTER 2. A HIERARCHICAL PROPERTY GRAPH MODEL

For our pipeline we used the compatibility with the Java ecosystem to use the
decoding functions already defined in the Jaeger Analytics Library.

Once connected to the gRPC endpoint, Jaeger only provides a flow of Span data
objects (designated by the class renamed ProtoSpan in all the code extracts). While
these objects embed the Resource attached to the span, Trace objects are still to
be built. The first step of our pipeline is, therefore, to rebuild traces based on the
field traceid present in the Spans. Indeed, Jaeger provides through its endpoint,
all spans it collects without ensuring that they belong to a known trace. A naive
approach would be to collect all spans and group them based on the field traceid.
However, there are edge cases, especially when querying batches of Spans, having
a missing span from a trace would eventually break a DAG of spans into multiple
separated components. So, before deriving our model from Jaeger data we first
need to ensure that traces are complete.

In order to eliminate partial traces from span batches, we applied two checks
before providing the trace to our custom graph encoding method. The first one
checks if there is no missing Span objects; it checks that all spanId mentioned in
the references field exist within the group of spans forming the trace. Then we
check if the DAG of spans only has a single root element. We consider a root span
a Span Vertex with no incoming REFERENCE edges.

In listing 1, we provide a fragment of the logic that decodes gRPC flow and build
a data model that will later be used for encoding data as a property graph. At this
stage, we ensure data consistency before encoding a property graph. The function
Trace.of(pSs: List[ProtoSpan]) aims to process a list of protobuf encoded Span
objects that have already been grouped by traceId. This function return type is
Either[List[ProtoSpan], Trace], it means that the function will either be able
to process the list of Spans and return a trace, or it will fail and return back the data
without further processing. In our Jaeger client implementation, unprocessed data
is cached for being added to the next batch, as a result partial traces, distributed
into multiple batches of spans will still be processed by our client.

In this stage of the pipeline, we still follow the Jaeger data model; therefore
Resources are still a single entity with a variety of semantic attributes. Also, each
span has its own resource attached to it. In the next section, we will focus on
extracting more data from these resource field and apply our meta model and build
an instance of a property graph per traces.

2.5.2 Property Graph Encoding

With our Jaeger client, we query a batch of thousands of spans and aggregate these
spans in traces while eliminating most edge cases. In this step, we process these
traces to create an instance of a graph per trace. These graphs are merged in a
later step of the implementation.

This graph encoding process has been implemented with the Gremlin graph
query language [Rodriguez 2015] on an abstract implementation of property graphs.
Gremlin can have multiple underlying implementations: it can either be an in-
memory graph or graph databases. Both of these cases have been implemented in
the context of the graph encoding:

2.5. IMPLEMENTATION 53

1 // Renaming the class Span provided by the Jaeger Analytics Library
2 // as ProtoSpan to not interfere with our definition of Span
3 import io.jaegertracing.api_v2.Model.{Span => ProtoSpan}
4

5 // Definition of Trace as an aggregation of Spans
6 case class Trace(spans: List[Span])
7

8 // Companion Object providing static methods for the class `Trace`
9 object Trace {

10 def apply(spans: List[Span]): Trace = new Trace(traceId, spans)
11

12 // For a given collection of protobuf spans, either provides a
trace object or return back the given collection when the
trace is not consistent

↪→

↪→

13 def of(pSs: List[ProtoSpan]): Either[List[ProtoSpan], Trace] = {
14

15 // Convert each ProtoSpan in a Span
16 val spans: List[Span] = for { ps <- pSs } yield Span.of(ps)
17

18 val spanReferences = for {
19 span <- spans
20 ref <- span.references
21 } yield ref // Extract all References
22

23 // Check if all references are known within the trace
24 val isCompleteTrace = spanReferences forall {
25 spanRef => spans exists {
26 span => span.spanId == spanRef.spanId
27 }
28 }
29

30 // Find the spans without any ancestors within the reference
31 val rootSpans = spans filterNot {
32 span => spanReferences.map(_.spanId).contains(span.spanId)
33 }
34

35 // Return only the `Right` case when the trace is consistant
36 if (isCompleteTrace && rootSpans.length == 1) {
37 Right(this.apply(spans)) // Normal case: instanciate a Trace
38 } else {
39 Left(pSs) // Error case: leave parameter untouched
40 }
41 }
42 }

Listing 1: Trace Companion Object Ensuring Trace Consistency

54 CHAPTER 2. A HIERARCHICAL PROPERTY GRAPH MODEL

• In-Memory Graph: They make computations faster for small-scale graphs,
and, each trace being made of up to a hundred spans in the worst case, a
graph instance would still fit in memory. Tinkerpop Graphs are the stan-
dard implementation of property graphs using Gremlin, they are lightweight
and fast to traverse compared to graph databases. Still, there are not any
visualization tools associated to this implementation.

• Graph Databases: They are capable of storing and querying thousands of
vertices and edges, and are particularly efficient at high scale. Their perfor-
mance, however, on a smaller graph, are not good enough to provide an almost
real-time processing. We used Neo4j as a graph database. Neo4j addresses
the drawback of in-memory graph: it comes with an efficient graph browser
and a query language based on the pattern matching.

Therefore, all graph processing presented in this section can either be run on in-
memory graph or on graph databases. Creating a graph encoding process with an
abstract backend has granted us granularity for our experimentation and research.
In a first stage, we used the graph database backend to visualize the graph, and
to quickly iterate over our graph implementation. Then we use in-memory graph
when visualizations are not required any more and when the constraints were per-
formance.

The first stage of the graph encoding is to identify all the resources involved
in a trace. As we focus on Zonal Kubernetes Clusters, the following examples will
only cover the resources present in these clusters. To model the different types
of Resource vertices with their different attributes, we used Scala Algebraic Data
Types. Algebraic Data Types can be compared to enumerations in other languages.
Listing 2 present an abstract type (trait in Scala) called ResourceKind which can
be instantiated in one of the following objects: Pod, Node or Zone. Later we use
OpenTelemetry attributes to instantiate all these resources when the corresponding
labels are encountered.

sealed trait ResourceKind

case class Pod(name: String, ip: String, uid: String) extends
ResourceKind↪→

case class Node(name: String, ip: String) extends ResourceKind
case class Zone(name: String) extends ResourceKind

Listing 2: Algebraic Data Types Modelling Resource Matching

Figure 2.14 shows the result of the graph encoding method detailed previously.
In this visualization we consider a Neo4j backend where multiple traces have been
accumulated in a single graph instance. Still, not all vertices and edges have been
displayed for the sake of clarity, mauve-coloured vertices represent spans, orange
vertices represent pods. The green vertices represent Operations, Operation ver-
tices were initially used in early definitions of the model but finally were discarded

2.5. IMPLEMENTATION 55

to focus on the physical location of resources. The graph visualization still pro-
vides an expressive view that illustrates that each spans share common attributes
materialized with specific vertices.

Figure 2.14: Aggregation of Multiple Traces Within a Single Graph Instance

2.5.3 Graph Rewriting Operations

In that section, we focus on the implementation of the graph rewriting operation.
Graph rewriting operation has been implemented by integrating Gremlin functions
within the Scala code base. It takes the form of a chain of Gremlin functions that
are called on a particular graph tranversal object g already defined in the code.
The Gremlin queries rewrites the graph in-place, therefore, there is no creation of
a new graph at the end of the rewriting process. So, by directly calling Gremlin
functions on the graph object, we have been able to minimize the computation
resources required to perform this operation. The function returns the list of the
edges added to the graph.

Listing 3 provides the code of the rewriting function: some sections of the code
have been highlighted. The first one, from line 9 to line 13, shows a Gremlin
query are directly integrated into the logic of the code. This query represents the
Gremlin language direclty being integrated into the program logic: the result of
the query is directly mapped as a Scala value. This query returns a list of pairs of
Spans linked by a REFERENCE edge. These spans are later processed to find the
resources they are executed on (lines 22 and 23 in the same function). The second

56 CHAPTER 2. A HIERARCHICAL PROPERTY GRAPH MODEL

1 def projectDependencyOn(labels: String*)
2 (implicit graph: ScalaGraph): List[Edge] = {
3 import TraceMetaModel._
4 val g = graph.traversal
5

6 // Gremlin Query to find all REFERENCES edges and get the Source
7 // and Dest vertices
8 val clientServerSpanVertices =
9 g.V().hasLabel(SpanLabel).as("srcSpan")

10 .out(References)
11 .hasLabel(SpanLabel).as("dstSpan")
12 .select("srcSpan", "dstSpan")
13 .toList
14 .map(_.asScala)
15

16 val dependentResourcesEdges = for {
17 label <- labels
18 v <- clientServerSpanVertices
19 } yield {
20 val srcSpanV: Vertex = v("srcSpan").asInstanceOf[Vertex]
21 val dstSpanV: Vertex = v("dstSpan").asInstanceOf[Vertex]
22 val srcResOpt: Option[Vertex] =

g.V(srcSpanV).out(ExecutesOn).hasLabel(label).headOption↪→

23 val dstResOpt: Option[Vertex] =
g.V(dstSpanV).out(ExecutesOn).hasLabel(label).headOption↪→

24

25 // Uses Scala Pattern matching to know whether the communication
local or going through the network.↪→

26 (srcResOpt, dstResOpt) match {
27 case (Some(srcRes), Some(dstRes)) if srcRes != dstRes =>
28 Some(srcRes --- "PROJECTED_REF" --> dstRes)
29 case _ => None
30 }
31 }
32

33 dependentResourcesEdges collect { case Some(v) => v } toList
34 }

Listing 3: Function rewriting the graph in place

2.6. CONCLUSIONS 57

highlighted part of the code snippet, lines 27 and 28, represents the conditional
creation of the edge "PROJECTED_REF", which relies on scala pattern matching.
With this implementations, the rewriting part requires only to traverse the graph
once to list the source and destination spans of each REFERENCE edges. All
other gremlin queries in the function directly address indexed entities of the graph:
g.V(srcSpanV) reference a vertex by its ID and do not require to traverse the graph.
On the contrary g.V() queries traverse the graph until their stopping condition is
met.

Figure 2.15 shows the previous graph before and after the rewriting operation.
As the function is applied in-place, the right graph is a sub-graph of pods linked by
the PROJECTED_REF edges.

Figure 2.15: Rewriting Operation on the Graph at the Pods level

2.6 Conclusions
In this chapter we provide an overview the tracing ecosystem with the recent ini-
tiative OpenTelemetry. OpenTelemetry’s role is to standardize distributed tracing
by proving a semantic for traces as well as a default implementation suitable for
Cloud deployments. In the past years, this project matured and gained an increase
visibility in the field of Cloud technologies, several established cloud monitoring
projects adopted OpenTelemetry format for traces like Linkerd10 or Cilium11. And
while this telemetry data is increasingly present in Cloud ecosystem trace useage is
still poor in State-of-the-Art Cloud monitoring solution.

In this thesis, we identified the opportunity of this emerging data-source with
a well-defined semantic to create a runtime model of a Cloud Native Application.
Based on this data source we propose a model that uses traces to transform a flat
networking model of components in multilayer hierarchical graph that focuses on
resource location. The proposed model is generic as it does not rely on a particular

10https://github.com/linkerd/linkerd2/pull/6188 Replacmeent of OpenCensus Tracer by
OpenTelemetry

11https://isovalent.com/blog/post/2021-12-release-111 Addition of OpenTelemetry Trac-
ing into Cilium Service Mesh

https://github.com/linkerd/linkerd2/pull/6188
https://isovalent.com/blog/post/2021-12-release-111

58 CHAPTER 2. A HIERARCHICAL PROPERTY GRAPH MODEL

Cloud implementation, it can model each of the entities part of the OpenTelemetry
Resource semantic definition. This model has been inspired by Edge-Computing
and Fog-Computing layered networking model and represents components interac-
tions in a non-homogenuous network. Even in traces, resource location is partially
hidden as state-of-the-art tools put a heavier focus on representing the application
as a whole, not displaying the segregation among data centres, and other hierar-
chical layers. With the proposed model, we leverage OpenTelemetry semantic for
identifying resources and tracing data to maintain a model at runtime based on a
continuous data-flow of traces.

Then, an implementation of this model has been detailed capable of ingest-
ing a flow of traces at runtime and maintaining a property graph of components
interactions. This implementation is based on the Scala programming language,
on Tinkerpop In-Memory graphs for quick Graph rewritting operation and finally
on Neo4j for maintaining a graph model aggregating multiple traces. In the next
chapters we apply this model on two different Cloud architectures: Chapter 3 de-
scribes Zonal Kubernetes Clusters Applications and Chapter 4 focuses on AWS
global applications.

Chapter 3

Identifying Inefficient Service
Composition with Flow

Hierarchy Index

Contents
3.1 Introduction . 59
3.2 Modelling a System With Hierarchies 61

3.2.1 Definition and Subtypes of Hierarchy 61
3.2.2 Measuring Imperfect Flow Hierarchies 62
3.2.3 Cycle Identification . 64

3.3 Detecting Inefficient Service Composition 66
3.3.1 Application to the Hierarchical Property Graph 66
3.3.2 Proof of Work on a Sample Cloud Application 68

3.4 Implementation . 71
3.4.1 Designing a Multi Layers Platform with Zonal Kubernetes

Cluster . 71
3.4.2 Getting OpenTelemetry Traces With Network Level 72
3.4.3 Computing the Flow Hierarchy Metric 75
3.4.4 Results . 77

3.5 Conclusions . 79

3.1 Introduction

In the previous chapter we demonstrated that, by encoding traces as a property
graph, we can decline them into a graph of communications sorted by abstraction
layers. A trace, originally represented as a DAG of spans, can also represent inter-
actions between VMs, containers, availability zones or any physical or logical entity
identified in the trace. These graphs are obtained by leveraging the specificity of
traces: the relationships between measurements. These relationships, observed be-
tween spans, are “projected” to the resources entities associated with them. Once
projected, we observed that, for some traces, the initially acyclic trace graphs, can
fall back on themselves after the “projection”.

60 CHAPTER 3. IDENTIFYING INEFFICIENT SERVICE COMPOSITION

With this model, it became possible to address a challenge encountered by the
teams developing and maintaining the Djingo Application. Indeed, the microser-
vices of the application have been scattered in multiple data centres across Europe.
Some performance anomalies have been observed in the application and the moni-
toring team was searching for a mean to express these undesirable communication
patterns based on the global latency of the request.

In concrete terms, when a cloud application serves a request, the network com-
munications cycle get through hosts and translates in an inefficient composition
or placement of the microservices. To comply with the Non-Disclosure Agreement
related to the Djingo application, the following chapter will consider the case of
Zonal Kubernetes Clusters which exhibits a similar hierarchical pattern among the
resources executing the microservices. In the case of a Zonal Kubernetes Clus-
ter, observing network communications cycling between availability zones would
result in a more expensive Cloud bill. Considering a global application scattered
into multiple data centres, observing the communications of the services cycling
through data centres would likely have a greater impact on both the global latency
and on the cloud bill. In this, chapter we propose a method for processing the
hierarchical property graph defined in chapter 2 that highlights the previous use
cases through a generic approach.

This approach is based on the concept of flow hierarchy studied by [Luo 2011].
A particular focus is put on the flow hierarchy metric (noted h in the following).
This metric is computed on sub-graphs extracted from our hierarchical property
graph. The concept of flow hierarchy is associated with directed graphs and finds
its usage mainly for describing self-organizing networks. The flow hierarchy metric
h aims to detect and measure the extent to which all the edges in the graph follow a
holistic overall “underlying direction” [Luo 2011]. Throughout this chapter we use
the projections of OpenTelemetry traces onto the different resources to represent
our self-organized networks of cloud resources.

This chapter is structured as follows:

Section 3.2 presents the theoretical concepts behind the concept of flow hierarchy
with a focus on imperfect flow hierarchies and their capabilities of modelling
a distributed application. Then, we present the flow hierarchy metrics which
quantify the extent to which a directed graph follows an underlying direction.
Finally, we detail the approach for computing this metric.

Section 3.3 presents the use of the flow hierarchy metric in our model, the adapta-
tions of the metric to the hierarchical model and finally provides a theoretical
study on a sample Cloud Application.

Section 3.4 presents the Proof-of-Concept Cloud deployment executing the pre-
vious Cloud Application on a physically distributed platform. We detail both
the organization of the instrumentation and the integration of the computa-
tion of the flow hierarchy metric in the pipeline.

3.2. MODELLING A SYSTEM WITH HIERARCHIES 61

3.2 Modelling a System With Hierarchies

3.2.1 Definition and Subtypes of Hierarchy

In [Zafeiris 2018], authors provide a study on the hierarchical structures that model
common complex systems in nature. For example, social structures of animal
groups, human virtues, or even the structure of a computer program can be repre-
sented as hierarchies. Authors define a hierarchy as a structure whose entities belong
to a system that can be classified into levels. These levels follow an order and ele-
ments of a higher level have an influence over entities of lower levels. Through this
definition, authors set the core of the hierarchy definition being entities controlling,
or having an influence, on the behaviour of others.

A system is hierarchical if it has elements (or subsystems) that are in
dominant-subordinate relation with each other. A unit is dominant
over another unit to the extent of its ability to influence behaviour
of the other. In this relation, the latter unit is called subordinate.
([Zafeiris 2018])

While this definition does not characterize how hierarchical a system is, it ex-
presses the hierarchy through its elements relationships. In a more abstracted ap-
proach, a hierarchy can be seen as a generic structure in which levels are asymmet-
rically ranked. The way ranking is established can vary. Authors provide subtypes
of hierarchies to classify how the ranking occurs:

The ordered hierarchies correspond to an ordered set. This hierarchy does not
consider the network linking elements of the system. Each element of the
system is associated to a value that defines its rank in the set.

The containment hierarchies correspond to entities embedded into each other
like the Russian Matryoshka Dolls, the tree of life or resource placement in a
Cloud as defined in chapter 2. This hierarchy materializes by a “belonging”
relationship like Foxes ⊂ Canidae ⊂ Carnivora or Pods ⊂ Nodes ⊂ Zones.
This type of hierarchy can be represented by a pure tree dendrogram.

The flow hierarchies are materialized by a directed graph whose vertices are en-
tities of the system and the directed relationship corresponds to the flow of
orders. They are also called control hierarchies, and can represent flow of
order between armies or politicians. A perfect flow hierarchy is often model
as a DAG, however, many examples of imperfect flow hierarchies can be en-
countered to model real-world problems.

Most major studies on hierarchical structures have focused on containment hi-
erarchies [Anderson 1972, Clauset 2008, Sales-Pardo 2007]. In another hand, flow
hierarchies have remained rather uncovered [Luo 2011]. Still, these two subtypes
of hierarchies are not mutually exclusives: a directed graph may be modelled after
both a containment and a flow hierarchy. This is the case for most software systems:
a software is designed by writing functions, usually grouped in packages or libraries

62 CHAPTER 3. IDENTIFYING INEFFICIENT SERVICE COMPOSITION

which call each other in a directional flow. This example exhibits both the contain-
ment and the flow hierarchies: the first one describing a static architecture of the
software through a tree of subsystems. The second one, the flow hierarchy, corre-
sponds to the directional flow of these subsystems calling each other to assemble
the software output.

In practice, keeping a software code organized has always been a challenge, in
particular for large code bases: this problem has traditionally been encountered and
studied in the java ecosystem [Breivold 2008, Al-Mutawa 2014]. These studies focus
on circular and inter-modules dependencies on Java code bases and their impact
on software quality. While this pattern can be observed by a static analysis on a
standalone system referencing its internal functions, in a distributed system there
is no possibility to get a complete view of the system through a static analysis. In
the next chapter we focus on imperfect flow hierarchies, and the capability of the
flow hierarchy metric to represent these anti-pattern of software engineering.

3.2.2 Measuring Imperfect Flow Hierarchies

In [Luo 2011], authors provide a study specifically focused on the flow hierarchies.
Their approach has not been to focus on perfect flow hierarchies, indeed, authors
state that flow hierarchies usually do not appear in a pure form in complex self-
organizing systems. Instead, they focus on determining at which extent a network
follows a hierarchical pattern. Indeed, some self-organizing networks are not purely
hierarchical but still have some degree of hierarchy.

Self-organizing networks are usually networks which have no architects, some
examples provided by authors are food webs, industrial production networks or
Open Source Software. Still, these networks can partially exhibit a hierarchical
structure while not having clearly identified hierarchy levels. Figure 3.1 is the
graph representation of a distributed application whose vertices represent entities
taking part in the system and edges, labelled CONN that represents the network
connections between these entities. This graph is obtained by simulation of an
application and is similar to the network communications graphs generated by the
encoding of graphs with the model provided in previous chapter.

This graph does not match the definition of a perfect flow hierarchy. Indeed,
some cycles can be observed, but still we can find that edges tend to have an
overall global direction. Figure 3.2 focuses on two portions of the graphs, one
exhibiting a strong hierarchical pattern with clearly identifiable levels, and the
other one exhibiting multiple cycles and no clear levels grouping the vertices. Some
edge patterns are highlighted in the second portion of the graph to exhibit the cycles
and lack of hierarchical structure between some components.

To be able to detect and quantify at which extent a graph follows a flow hierar-
chical pattern, authors introduce a metric called the flow hierarchy metric (noted
h). Its role is to detect and measures the extent to which locals flows (i.e. edges
of the graph) follow a holistic overall underlying direction. This measure is calcu-
lated as the percentage of links that preserve the direction of the network, which
translates to the number of links that are not involved in any cycles. Equation 3.1
represents the formula:

3.2. MODELLING A SYSTEM WITH HIERARCHIES 63

Figure 3.1: Graph Representing Communications Between Components of a Dis-
tributed Application

h =
∑L

i=1 ei

L
(3.1)

where L = |E| corresponds to the number of edges in the graph and ei = 0 if the
ith edge belongs to a cycle or ei = 1 otherwise. Furthermore, authors also decline
the formula for the calculation of the flow hierarchy metric adapted to weighted
graphs. Equation 3.2 shows the adaptation for the calculation of the weighted flow
hierarchy metric hw:

hw =
∑L

i=1 wiei∑L
i=1 wi

(3.2)

In that formula, we have still L = |E| and ei being a coefficient that identifies
whether an edge belongs to a cycle or not. This calculation only considers the
weights of the edges, which are noted wi where i designates the ith edge in the
graph.

64 CHAPTER 3. IDENTIFYING INEFFICIENT SERVICE COMPOSITION

Figure 3.2: Focus on Portions of the Graph: With Clearly Identifiable Hierarchy
Levels (left) and With No Identifiable Order of Vertices (right)

In its unweighted form (equation 3.1), the flow hierarchy metric corresponds to
the percentage of edges contributing to retain the overall direction of the graph.
Also, it can be seen as the number of edges not involved in a cycle. Equation 3.2
extends the previous definition by considering weights on the edges, this variation
can be summed up as the percentages of weights involved in cycles. Still, both of
these formulas do not cover the cycle detection in the graph, which is a prerequisite
to get the flow hierarchy metric. They refer to the ei coefficient associated with
each edge. The next section focuses on cycle identification to associate with each
of the edges the appropriate ei coefficient.

3.2.3 Cycle Identification

In the original work, cycle identification is achieved through the exponentiation on
the link adjacency matrix. In the following we consider a non-attributed graph
G = (V, E), we provide an overview of the method for cycle identification provided
in [Luo 2011].

Figure 3.3 provides a visual representation of the computation of the link-
distance matrix used by authors to identify whether the edges belong to a cycle
or not. The first step is to compute the equivalent link network from the original
graph, then compute its adjacency matrix. This matrix is, therefore, a square ma-
trix of size |E|. By raising this matrix to the power p we obtain distance between
nodes of length p. By iterating over the possible values of p we build the link-
distance matrix noted Md. If the ith coefficient on the diagonal Md

(i,i) = p of the
link-distance matrix is not empty, therefore the edge i belongs of a cycle of length
p, and therefore ei = 0. Therefore, this algorithm has a complexity of O(|E||V |).

While, the method proposed by authors allows identifying cycles, it comes with
a high complexity. In addition, by computing the exponentiation of the adjacency
matrix, the formula also provides the length of the cycle, a parameter that is not
used in later steps of the flow hierarchy calculation.

Still, solely for the purpose of identifying cycles, some algorithms have been
proved to be more efficient, in particular when we focus on Strongly Connected

3.2. MODELLING A SYSTEM WITH HIERARCHIES 65

Figure 3.3: Illustration of Md matrix computation from [Luo 2011] where Mn is
the link adjacency matrix raised to the power n

Components (SCC). In a directed graph, we call a SCC a subset of the graph’s
vertices where there is a path between each pair of these vertices. Therefore, nodes
being in the same SCC belong to a cycle. So, edges take part in a cycle when its
two end vertices belong to the same SCC. As an example, figure 3.4 presents on a
sample graph the SCCs in dashed lines. All edges of the graph contained in the
same SCC belongs to a cycles; the ones crossing the boundaries of the SCC do not.

Figure 3.4: Example of Vertices Grouped by SCC in a Sample Directed Graph

Identification of SCC in a graph is now a well-known problem. In [Tarjan 1972]
authors provide an algorithm capable of identifying SCC with a complexity of

66 CHAPTER 3. IDENTIFYING INEFFICIENT SERVICE COMPOSITION

O(|E|+ |V |). To identify cycles in our flow hierarchy metric calculation, the Tarjan
algorithm was chosen. It allows to identify nodes which take part in a cycle. Finally,
for each edge, we create the coefficient ei and set it to 0 if the two ends of the edge
are associated with the same connected component, otherwise it is set to 1.

In this section, we provided a background study on hierarchical patterns, and set
a particular focus on the one encountered in software systems. Entities communicat-
ing together forming a distributed application have been shown to follow imperfect
flow hierarchies. The metric provided by [Luo 2011] can be used to demonstrate if a
distributed application follows a hierarchical pattern. Still, its calculation method
can be simplified by relying on more efficient cycle-identification algorithms. On
the next section, we set a focus on the use of this metric on the graphs created by
our trace-encoding model.

3.3 Detecting Inefficient Service Composition in Cloud
Applications

Whereas Cloud Applications are effectively designed by software architects, these
architects focus on the logical structure of components but not on their location.
Indeed, the physical resource allocation is managed by the CSP and specifying the
exact location of a service on a Cloud platform is considered to be an anti-pattern.
This is the role of cloud orchestrators like OpenStack or Kubernetes to allocate VMs
or containers on the underlying machines.

This resource allocation mechanism often results in inefficient placements, in
particular when considering the runtime composition of resources. Also, in a per-
formance study of the GMail Application [Ardelean 2018], authors demonstrated
that user requests are far from being independent from each other. Through the
user’s load of the application, the communications between services can tremen-
dously change in shape with time. Other parameters influencing the structure of
the application can be listed, such as the automated tasks, the developers pushing
new versions to the platform or even the Cloud Service Provider (CSP) manage-
ment of resources. All these parameters influencing the network make microservices
applications behave like a partially autonomous self-organizing network.

With traces, it is possible to build graphs of network communications between
entities involved in a distributed application. These graphs are directed, and, as
shown in the previous section, they can eventually exhibit cycles. In their initial
form, traces are a DAG of Spans, but, when deriving the references observed over
the resources layers, cycles can appear. In this section we propose to use the flow
hierarchy metric to detect when the networking graphs fallback on themselves.

3.3.1 Application to the Hierarchical Property Graph

With the trace encoding method proposed in chapter 2 we are able to create graphs
of the communications observed between the entities involved in serving the re-
quest. When encoding each trace with its own hierarchical property graph, we
observe that, depending on the placement of micro-services, each resource commu-

3.3. DETECTING INEFFICIENT SERVICE COMPOSITION 67

nication graph can eventually exhibit cycles. Considering a Cloud-Native Applica-
tion, having cycles within the topology for a single trace, spots unnecessary network
calls. Networking cycles reveals an inefficient placement of the underlying resources
involved in the cycle, and can contribute to performance degradation.

To illustrate a use case where the calculation of the flow hierarchy metric brings
valuable feedback regarding the placement of resources, we consider the case of
standard Kubernetes Cluster. With Kubernetes scaling mechanisms, when a single
instance of a Pod is not enough, other instances of this pods are scheduled on
other machines. Once they are ready, Kubernetes starts to send them network
traffic. Figure 3.5 represents the graph encoding and rewriting process for two traces
representing the same service composition, but using different resources served by
a load-balancer.

Figure 3.5: Examples of Flow Hierarchy Metric Calculation at Each Layer of the
Containment Hierarchy for Two Traces

In this example, we consider a two-nodes Kubernetes cluster executing four
micro-services, each of them being materialized by a Pod. Pod 4 has been replicated
twice: trace A shows that Pod 4 is hosted by Node 1, and, on trace B, Pod 4’ is
hosted on Node 2. This example highlights that, in the case of a load balancing
scenario, some service allocation may be more efficient than others. Indeed, the
service composition showed by trace B favours more local communications within
Kubernetes Nodes and favours local communications instead of distant ones.

Also, the rewriting process can lead to a projected graph made of a single vertex
with no edges, e.g. when all network communications remains contained within the

68 CHAPTER 3. IDENTIFYING INEFFICIENT SERVICE COMPOSITION

containers hosted on the same node. In that case L = |E| = 0 and then, according
to the mathematical definition, h is undefined. However, for the purpose of our
model, this use case materializes a normal case where all resources are co-located
under the same resource, and, therefore, network communications are efficient. As
a result, when the resource graph is only made of one vertex and no edges, we define
h = 1.

Figure 3.6: Example Where All Pods Are Executed on the Same Node

Figure 3.6 takes the previous example with all pods executed on the same node.
The final graph of Nodes communication does not have edges, but still characterize
a normal Kubernetes allocation use case. This case is considered normal and has
been integrated in the formula as the intent of the flow hierarchy metric is to assess
service composition.

3.3.2 Proof of Work on a Sample Cloud Application

In this section we consider an existing open source cloud application publicly avail-
able on GitHub1 which emulate the behaviour of an online boutique. This applica-
tion has been designed by Google Cloud engineers to have a demonstration appli-
cation for their GCE platform. It is made of ten microservices coded in different
languages, they communicate through gRPC and are instrumented with OpenCen-
sus, a precursor of OpenTelemetry. Figure 3.7 represents the architecture diagram
of the application, with the name of each of the microservices involved. This appli-
cation is designed after the API gateway pattern, where a particular service acts as
a central point of aggregation of other services results. In this section we focus on a
theoretical analysis of the application composition of services, still the next section
will focus on a deployment of this application on a real world Cloud Platform.

In this application, users can basically do five different operations traditionally
implemented in online boutiques. In the following we detail these operations and
their impact on how the components involved interact to create the final result:

1. Users can consult the catalogue of products: this operation will trigger
the execution of five services. The resulting execution graph is a star graph
with the Frontend service as a central part.

1https://github.com/GoogleCloudPlatform/microservices-demo Sample cloud-native appli-
cation with ten microservices showcasing Cloud native technologies

https://github.com/GoogleCloudPlatform/microservices-demo

3.3. DETECTING INEFFICIENT SERVICE COMPOSITION 69

Figure 3.7: Diagram of the Microservices Demo Application with Components In-
teractions Provided by the documentation of the Application

2. Users can consult the page of a specific product: this operation will
trigger the execution of six microservices. The resulting execution graph is
also a star graph focused around the Frontend service.

3. Users can consult their cart: this operation also triggers the execution of
six microservices and also generate a star graph around the Frontend service.

4. Users can change the currency of the boutique: this operation only
triggers one microservice.

5. Users can proceed to the checkout of the cart: this operation involves
nine out of the ten services in the application. The execution graph is a
complex graph with a depth of 4.

For the purpose of detecting when the graph falls back on itself after the rewrit-
ing process, the operations detailed in the operations 1, 2, 3 and 4 are useless.
Indeed, the star graphs obtained by these operations do not have sufficient depth
to produce a cycle when applying the rewriting process at higher abstraction levels.
Therefore, we will only focus on the checkout operation which provides the most
complex graph of service composition.

If we suppose that our ten microservices application has been deployed on a
Zonal Kubernetes Cluster made of four nodes (named Node1, Node2, Node3 and
Node4) scattered in two zones (named Zone1 and Zone2). Nodes are distributed as
the following : Node1 ⊂ Zone1, Node2 ⊂ Zone1, Node3 ⊂ Zone2 and Node4 ⊂ Zone2.
Figure 3.8 represents the complete hierarchical property graphs of the composition
of services required by the checkout operation for this particular deployment.

In this figure, on each abstraction layers, edges typed PROJECTED_REF and
involved in cycles have been coloured in red. So, edges typed PROJECTED_REF
in red have their associated ei = 0 while the black ones have their associated ei = 1.

70 CHAPTER 3. IDENTIFYING INEFFICIENT SERVICE COMPOSITION

Figure 3.8: Graph Transformation for a Particular Trace

Next to each layer, the flow hierarchy metric associated to each layer has been
displayed.

We can observe that an application deployed on a Kubernetes Cluster may
exhibit a topology creating multiple expensive network calls. And, while traces
help to understand how micro-services are composed together, they still obscure the
network, which is problematic considering the current adoption of edge deployments
for large-scale application. With this model, the hierarchical structure enables the
analysis of the communication of a physically distributed application where the
network linking elements of a distributed system is not even. The flow hierarchy
metric helps to assess the composition of services by providing a numerical indicator
characterizing the preservation of the structure over the abstractions levels. The
next section focuses on the technical implementation of a Proof-of-Concept platform
running the sample Online Boutique application presented in this section on a Zonal
Kubernetes Cluster.

3.4. IMPLEMENTATION 71

3.4 Implementation

To verify our approach a Proof of Concept platform has been developed to run the
Online Boutique application that has been studied in the previous section. Like in
the theoretical example, this application is deployed on a Zonal Kubernetes cluster.
While the components of the application have not been altered, the deployment
manifests have been tuned to support OpenTelemetry, which was not bundled by
default. In addition, at the time of the experiments, OpenTelemetry was still under
heavy development, the semantic definitions were almost stable but the collector
and the agent binaries were not ready to support a production use case. Still,
to illustrate the industrial use case and to mimic a real-world application, the
Kubernetes deployment manifests have been tweaked to support OpenTelemetry
nightly builds.

3.4.1 Designing a Multi Layers Platform with Zonal Kubernetes
Cluster

Zonal Kubernetes Clusters constitute a motivating example to illustrate cases when
the network linking the microservices cannot be considered even. Zonal Kubernetes
in this writing refers to Multi-Zonal Clusters and sometime are also called Regional
Clusters depending on the CSP own definition in its catalogue. So, behind the
designation Zonal Kubernetes cluster in this thesis we consider a Kubernetes whose
nodes (VM hosting the containers) are scattered in different subgroups that are
linked by a particular networking link different from the networking link that links
two nodes within the same group. Figure 3.9 illustrates the entities involved in
normal Kubernetes clusters and in Zonal clusters. In this illustration we see that
Zonal Clusters are constrained to the perimeter of a Region. Zonal clusters are
considered to be the default solution for having a high availability cluster, still they
are not a solution for scattering microservices closer to the users.

Figure 3.9: Illustration of a Normal Kubernetes Cluster (on the left) and a Zonal
Kubernetes Cluster (on the right)

72 CHAPTER 3. IDENTIFYING INEFFICIENT SERVICE COMPOSITION

The limitation on scattering microservices to the edge is heavily tied to the ac-
tual implementation of Kubernetes cluster. However, several projects tightly tied
to the Cloud Native Computing Foundation (CNCF) aims to remove this constraint
and scatter geographically a Kubernetes application. The main projects that fed-
erate multiple Kubernetes Clusters are Gloo2, Cilium3 and Kubefed4. All of these
solutions are still young and most of them were at an early prototyping stage a
year ago, so they have not been considered for the experimentation part. Still, they
open the room to extend the model developed for Zonal Kubernetes cluster to a
federated clusters described by a containment hierarchy.

3.4.2 Getting OpenTelemetry Traces With Network Level

3.4.2.1 Instrumenting the Application

The Online Boutique sample application has been modified to support OpenTeleme-
try and to generate traces with network-level telemetry data. The application is
made of ten microservices communicating with each other over gRPC and coded in
five different languages. Some services have part of their code basis instrumented
to emit traces spans based on the time spent in some functions; some have no in-
strumentation. This tracing implementation is made with OpenCensus, a precursor
of OpenTelemetry, which is backward compatible with the Open Telemetry format
used in this thesis. Also, to gain insight on the performance of non-instrumented
services, application proxies have been added to each micro-service, they also emit
telemetry data to complement code level instrumentation with network-level instru-
mentation. The tweaks realized to the deployment manifests have been to inject
two additional components in each of the ten microservices:

1. An OpenTelemetry Agent which catches the Opencensus telemetry data from
the application and converts them to the OpenTelemetry format. In addi-
tion, these agents enrich telemetry data with other properties defined in the
OpenTelemetry semantic.

2. An application proxy that catches and forward the communications between
microservices. These proxies also emit telemetry data that provides insight
on the network communications between services.

Figure 3.10 shows a network interaction between two micro-services and the
flow of telemetry data in the proposed implementation. Usually tracing data comes
from the code of the application, however, only relying on in-app instrumentation
to get traces do not provide the full picture, as it lacks networking data. In order to
observe cross-services network calls and to cover the latency introduced by services,

2https://www.solo.io/products/gloo-edge/ The project is defined as an API Gateway man-
aged by a dynamic Proxy whose configuration adapt to the different clusters it links.

3https://cilium.io a Service Mesh based on the eBPF technology that provides Multi-Cluster
Connectivity, in Beta at the time of writing.

4https://github.com/kubernetes-sigs/kubefed A part of the Kubernetes project in early
Beta at the time of writing whose goal is to define propagation of configuration across multiple
standalone clusters.

https://www.solo.io/products/gloo-edge/
https://cilium.io
https://github.com/kubernetes-sigs/kubefed

3.4. IMPLEMENTATION 73

Figure 3.10: Complete Telemetry Pipeline

we extended Kubernetes with a Service-Mesh [Li 2019]. A Service-Mesh is a Data-
Plane made of L4/L7 proxies injected in each microservice to better control and
observe service-to-service communications. The configuration of these proxies is
made through a control plane that ensures that their configuration is coherent.
For the purpose of our experiment, the Linkerd5 service mesh has been used as it
is compatible with OpenCensus format (and thus, has a backward compatibility
with current OpenTelemetry Beta binaries). With these two extra-processes added
to each micro-service, we can expect clean formatted OpenTelemetry data sent to
a Jaeger Tracing collector (despite Linkerd is not yet compatible with this trace
format).

This implementation provides a detailed view of all the steps that takes a request
of one microservice to another. Figure 3.11 set a focus on a portion of a trace illus-
trating the communication of the frontend service to the productcatalogservice.
In this figure, each network communications in pods is represented by a red arrow
numbered from 1 to 3. On the left side of the figure a trace is represented, the
frontend pod requests the productcatalogservice pod, the spans highlighted in
red are added by each of the proxies and reported by the OpenTelemetry agents.
These proxies intercept the communications and report the response time at the
boundaries of the pod. This technique also works for services which do not report

5https://linkerd.io/ a service mesh for Kubernetes hosted by CNCF

74 CHAPTER 3. IDENTIFYING INEFFICIENT SERVICE COMPOSITION

any spans, as its attached proxy will still report the service latency at its bound-
aries. As a result, pods whose code is instrumented may be perceived as a white-box
but pods whose code-basis is not instrumented can still have representative tracing
data, analysing its behaviours as a black-box.

Figure 3.11: Example of the Network Communications Reported in a Trace

3.4.2.2 Adding Networking Latency to Edges Weights

These traces also highlight the time spent on the network in a dependency chain:
Figure 3.11 provides the details of the networking delays induced by the tracing
pipeline on a particular requests. We can observe that the frontend microservice
requests the productcatalogservice: the calling function in the first microservice
last for 2.71 ms and the responding function in the distant microservice only takes
0.12 ms to reply. The time spent on the network for this exchange is 2.71 ms −
0.12 ms = 2.59 ms. The additional proxies injected provide further decomposition
of this latency: The arrow 1 shows that a local communication within a frontend
pod added 2.14 ms − 1.81 ms = 0, 33 ms, and the arrow 3 shows that the local
communication within the productcatalogservice pod added 0.91 ms−0.68 ms =
0.23 ms. Finally, the arrow 2 showed the time spent on the overlay network linking
the pods which induced a latency of 1.81 ms− 0.91 ms = 0.9 ms.

This implementation normalizes the the latency measurements at the boundaries
of microservices and focuses on network induced latency, which was not present in
the original application tracing. It also provides a better granularity of measures
but traces with this method are more dense and complex to analyse for humans. By
applying the graph encoding and rewriting method from chapter 2 on figure 3.11,
only the communication marked 2 is preserved.

Therefore, during the rewriting process, it is possible to extract properties from
the vertices and edges of the graphs to compute new properties that will be em-
bedded in the final graph. Edges typed "PROJECTED_REF" can be enriched with the
computation of the network time as described in the previous paragraph. Still, no
further studies have been conducted with the analysis of the impact of the network
time. Indeed, at the scale of the application we cannot observe a noticeable latency
increase due to cross-zones communications.

3.4. IMPLEMENTATION 75

3.4.3 Computing the Flow Hierarchy Metric

The calculation of the flow hierarchy metric h was computed online for each of the
incoming trace in the pipeline and was done after the rewriting process. Identifica-
tion of Strongly Connected Componentss (SCCs), is based on the implementation
provided by Gremlin with the method g.V().connectedComponent(). This func-
tion has been configured to compute SCCs instead of Connected Components. The
difference is that SCC follow the direction of the edges whereas for Connected Com-
ponents, two nodes belong to the same connected component if they are linked by
an edge without considering its direction.

Listing 4 details the Gremlin query embedded in the Scala code after the graph
rewriting part: at lines 4 and 5 the g.V().connectedComponent() function is re-
fined overwriting standard behaviour thanks to the .`with`() method. By specify-
ing, on the line 5, the custom Gremlin traversal query __.outE("PROJECTED_REF")
we indicate to the Gremlin traversal engine to only compute components by fol-
lowing the direction of the edges typed "PROJECTED_REF". This variable is part of
a function called stronglyConnectedComponents but the rest of the function has
been omitted as it does not bring much value and can still be found in appendix B.

1 val scc =
2 gJava.V()
3 .connectedComponent()
4 .`with`(ConnectedComponent.propertyName, "component")
5 .`with`(ConnectedComponent.edges, __.outE("PROJECTED_DEP"))
6 .project("id", "component")
7 .by(__.id())
8 .by("component")
9 .toList()

Listing 4: Computation of SCC with Gremlin: assign the variable scc to the list of
all vertices ID with their component ID

The previous Gremlin query associates a vertex ID with a unique component
ID Later steps consist of integrating this information into the vertices of the graph
as properties. Once each of the vertices has its SCC ID set in the "component"
property, computing the flow hierarchy metric is a straightforward process: Edges
whose start and end vertices belong to the same component are involved in a cycle.
On the contrary, edges whose start vertex has a different component ID from its
end do not belong to a cycle. Therefore, h can be computed as the ratio of the
number of edges not involved in a cycle by the total number of edges.

Listing 5 provides the full definition of the unweighted flow hierarchy compu-
tation function: the variable sccIndexedEdges is obtained by a gremlin query
returning all edges with the pair of component ID of the source vertex and desti-
nation vertex of each edges. This variable is then filtered (line 19) to only obtain
out-of-cycle edges. The value of h corresponds to the size of the filtered collection
of edges divided by the size of the complete collection when there is at least one

76 CHAPTER 3. IDENTIFYING INEFFICIENT SERVICE COMPOSITION

edge in the graph.

1 def flowHierarchy(graph: ScalaGraph): Double = {
2 import TraceMetaModel._
3

4 val scc = stronglyConnectedComponents(graph)
5 val g = scc.traversal
6

7 val sccIndexedEdges =
8 g.E.project(
9 _(By(__.inV.properties("component")))

10 .and(By(__.outV.properties("component")))
11)
12 .toList
13 .map {
14 case (kvSrc, kvDst) => (kvSrc.value(), kvDst.value())
15 }
16

17 val countEdgesOutOfCycles =
18 sccIndexedEdges
19 .filter { case (cSrc, cDst) => cSrc != cDst }
20 .size
21 .toDouble
22

23 val totalEdges = sccIndexedEdges.size.toDouble
24

25 if (totalEdges != 0) {
26 countEdgesOutOfCycles / totalWeight
27 } else {
28 1.0
29 }
30 }

Listing 5: Computation of the flow hierarchy metric

Whereas listing 5 provides a basic implementation of the flow hierarchy met-
ric calculation, this code has been generalized to also support the weighted for-
mula as provided in equation 3.2. Appendix B.4 provides a more generic definition
of the flow hierarchy computation function working for both weighted and un-
weighted computations. This function takes an additional parameters that handles
the weighted flow hierarchy computation formula.

From a technological standpoint, all these computations are performed on In-
Memory Graphs managed by the Gremlin library. Each traces are processed inde-
pendently and can be run in parallel. The following section provides a study on the
results of computing this flow hierarchy on traces.

3.4. IMPLEMENTATION 77

3.4.4 Results

By utilizing the flow hierarchy metric on each layer of the model, we can address the
issue reported by Orange in the Djingo project. Indeed, the flow hierarchy metric
allows to identify requests which loop among data centres. Since the formulation of
the problem, the project has undergone a massive structural changes and architects
decided to co-locate resource in the same data centre. This decision made impossible
to run a real-world experiment on the target platform. Therefore, the following
section provides a study on Zonal Kubernetes Clusters which mimic the pattern of
resources geographically distributed. This pattern is observed on many large-scale
Cloud Applications and tends to become an industry standard for High-performance
application, in particular considering use cases like multimedia streaming, or real-
time applications.

3.4.4.1 Analysing Traces of the Proof-of-Concept Platform

A Zonal Kubernetes Cluster has been instantiated on the Google Cloud Platform
with four Nodes scattered in two different availability zones: europe-west1-b and
europe-west1-c. The Online Boutique described in section 3.3.2 has been deployed
into this cluster. Each of the micro-services has been replicated four times with the
constraint that two replicas of an individual service cannot be hosted on the same
machine. As a result, each of the Kubernetes nodes hosted a single instance of each
service. The internal load-balancing configuration has been left untouched; the
balancing method used was a basic Round Robin that alternates through services.
Therefore this scenario aims to describe all possible service compositions that can
be encountered for a given application in a cluster.

For the experimentation, each trace was processed to generate a single trace
graph exhibiting the resource containment hierarchy Pods ⊂ Nodes ⊂ Zones. There-
fore for each trace, a tuple (hP ods, hNodes, hZones) was generated. Figure 3.12 plots
these flow hierarchy metric values depending on the total duration of the request
(expressed in ns). The first graph in figure 3.12 represents an histogram of the
distribution of the request based on their total duration. In the second graph,
each point represents, for a given trace, the flow hierarchy metric calculated for the
graph of Pods. The third and the fourth graph represent, the calculation of the flow
hierarchy metric respectively calculated for the graphs of Nodes and the Zones.

We can observe that, for many traces, the graph of resources falls back on itself
after following the containment hierarchy. For Zonal Kubernetes Clusters, these
plots cannot expose a direct impact of the flow hierarchy measure on the application
response time. And while, the graph demonstrates that the flow hierarchy metric
tends to lower when we consider the composition of higher level resources, the
presence of cycles does not seems to alter the application global latency.

3.4.4.2 Limitation and Experimentation Representativity

Whereas Zonal Kubernetes Clusters exhibit a similar architecture as the multi data
centre deployment of the Djingo project, they are still built with different assump-
tions in mind. In Djingo, scattering services across multiple data centres was meant

78 CHAPTER 3. IDENTIFYING INEFFICIENT SERVICE COMPOSITION

Figure 3.12: Graphical representation of traces and their flow hierarchy metric
(hP ods, hNodes, hZones) depending on the end-to-end response time of the trace

to support proximity with end-users. Whereas, the Zonal Clusters deployed in our
Proof-of-Concept are designed ensure availability in case of failure while keeping
the latency as low as possible. In both cases, the network linking services cannot be
considered even, but our experimentation showed that this irregularity materializes
in two different ways: On the one hand, the cost potentially manifests in terms of
latency, whereas, on the other hand, the cost is simply monetary.

Multiple reasons can explain this behaviour:

1. The scale of the cluster can barely represent a production-ready application:
the load of the service is not comparable. Indeed, Cloud application deployed
in a Development environment and in a production environment do not exhibit
the same performance anomalies. Performance anomalies are only observed
in production environment with a real load.

3.5. CONCLUSIONS 79

2. Among the multiple causes of latency that can be met in a Cloud environment,
cycles are not the predominant one on this platform. For instrumentation
purposes each microservice was added two extra programs that live within
each Pod.

3. The instrumentation libraries were still in Beta at the time of testing and were
not suitable for a production use case. They did not meet the requirements
to be deployed in an application running real user traffic.

The representativeness of the platform was bounded to all of these constraints,
and therefore it did not provide an environment capable of exhibiting the desirable
behaviour. Indeed, the monitoring need expressed by the Djingo operational team
was to know whether or not the latency peaks observed on some requests may be
caused by unnecessary communication between data centres. However, during the
development of the thesis, the team developing Djingo decided to opt for a single
cluster and discontinue most of the features from the original project. Still, whereas
the impact of cycles on the latency has been difficult to evaluate in the case of a
Zonal Kubernetes Clusters, the Proof-of-Concept has shown that it is possible to
correlate the latency of a request with the presence of inefficient communications.

3.5 Conclusions

In this chapter, we leveraged the model proposed in the previous chapter to address
the problematic initially formulated by Djingo teams in Orange. The concept of
flow hierarchy metric has been presented to detect the presence of cycles in a graph.
In Cloud applications, cycles translate in an inefficient composition of resources that
can only be observed at runtime. The flow hierarchy metric, propose to sum up
a trace, which is a complex data format into a numerical indicator translating the
extent to which the composition of resource preserve a hierarchical structure. For
multiple external reasons, the experimentation has not been able to run on real
world data. Instead a Proof-of-concept platform has been designed with state-of-
the-art Cloud technologies to match a problem of identifying the impact of cycles
in the composition of resources in a distributed application.

The work presented in this chapter, along with the description of the model
presented in Chapter 2, has been published in [Cassé 2021].

Regarding the Proof-of-Concept platform, the technological decisions to rely on
Service Meshes was inline with the strategy of Orange to study the potential of
this technology. Through this work, motivating examples have been provided to
highlight their capabilities to better control and observe the network linking micro-
services. Linkerd was one of the most mature Service-Mesh implementation along
with Istio6, and for the purpose of this thesis Linkerd was picked because of its
compatibility with OpenTelemetry. With the recent advances in technology today,
Cilium7 now appears to be a more suitable choice as it does not relies on adding

6https://istio.io
7https://cilium.io

https://istio.io
https://cilium.io

80 CHAPTER 3. IDENTIFYING INEFFICIENT SERVICE COMPOSITION

containers to each pods in Kubernetes. On the contrary, Cilium relies on instru-
menting the linux kernel with eBPF to modify the overlay network configuration
at runtime. In addition, Cilium also provides support for distributed Kubernetes
Clusters while reporting its metrics in the OpenTelemetry format. This technology
appears to be a promising candidate whose instrumentation is not as invasive as
the one picked for the experiments described in this chapter, without changing its
format.

Chapter 4

Identifying Bottlenecks with
Graph Centrality Analysis

Contents
4.1 Introduction . 81
4.2 Generalizing the Graph Encoding Model 83

4.2.1 Including Multiple Resource Type in the Model 83
4.2.2 Configuring the Containment Hierarchy 85
4.2.3 Characterizing an AWS Application 87

4.3 Application to Complex Cloud Applications 88
4.3.1 Overview of Graph Centrality Algorithm 89
4.3.2 Distributed Applications Bottlenecks 92

4.4 Implementation . 93
4.4.1 Using Spigo for Emitting OpenTelemetry Traces 94
4.4.2 Scenario Selection and Representativeness 95
4.4.3 Observing the Impact of Betweenness Centrality in the Riak

Simulation . 97
4.5 Conclusions . 101

4.1 Introduction
In this chapter, we propose to leverage the model to exhibit another anomalous
pattern that is commonly encountered in traditional Cloud Applications. Instead
of analysing each trace independently, we propose an approach that considers the
application as a whole. This approach uses the global communication graph of re-
sources managed by the graph encoding pipeline presented in figure 2.13 on page 51.
Indeed, the provided model is capable of maintaining a hierarchical graph repre-
senting the communication of resources from multiple abstraction layers.

The scale of the application used in the previous chapter for the experiment
is still small compared to the real-world example encountered in Orange. And,
whereas the previous application was considered to be small, running on a Zonal
Kubernetes Cluster these ten microservices still had an important cost. This section
is more focused on larger scale applications that cannot be easily grasped by a
human operator. For this reason a simulation environment is proposed to create a
large scale complex Death-Star Application.

82 CHAPTER 4. IDENTIFYING BOTTLENECKS WITH CENTRALITY

In this chapter, we propose to address a challenge commonly encountered in
distributed system monitoring: bottleneck identification. The layered graph model
constitutes an opportunity of tackle down bottleneck identification under a differ-
ent angle. The proposed model is capable of maintaining a high level view of a
distributed application in the form of a property graph. By running centrality al-
gorithm on this model, the most important vertices can be highlighted. Whereas
the definition of importance may vary depending of the algorithm, in the follow-
ing chapter, a theoretical study is provided on graph centrality algorithms. Then
we apply these definitions to the context of cross components communication in a
distributed Cloud application.

To support this study, experiments have been made in simulation environment
that has been tuned to emit OpenTelemetry traces. This simulation environment
follows the model of AWS-deployed Web Applications, it is capable of emulating a
geographically distributed application. By analysing traces returned by this simu-
lation, we demonstrate the generic approach of the model. Whereas the simulation
environment can simulate multiple zones and regions in AWS, the model is not
strictly the same as the one described in Zonal Kubernetes Cluster covered in chap-
ter 2. This chapter therefore details the approach that has been taken to make the
containment hierarchy a configurable parameter of the model.

Finally, the results of the simulation are presented: the simulated application
was designed to rely on the geographical distribution of computation units. We
considered the case of scaling the number of instance of a particular service that,
after an architectural analysis, was acting as a bottleneck within the data ingestion
pipeline of the application. By changing the number of replicas of this bottleneck
service, we observed the evolution of the centrality score of these services. Therefore,
this chapter provides a study on identifying the bottleneck services in a Cloud
Application by running centrality algorithm on the graph maintained by traces.

This chapter is structured as follow:

Section 4.2 extends the work presented in Chapter 2 by providing an extension
to the initial model. In this use case, the approach of identifying resources
of a Zonal Kubernetes Clusters has been generalized to match Most of Open-
Telemetry Resources types defined in the semantic specification. The order of
containment of resource type is defined as a parameter of the model. The first
part of this section is focused on bringing generality to the approach defined
earlier. Meanwhile, in the second part, the focus is set on the application of
this model to AWS structured Applications.

Section 4.3 presents the graph centrality algorithms and their uses on the model
hierarchical model. In particular, this section details the betweenness cen-
trality measurement and its meaning in the context of our Cloud Application
Model.

Section 4.4 presents the simulation environment: Both the simulation software
and the choice of the scenario are detailed. Through this simulation, the
number of instances of a critical service is changed and we observe the evolu-
tion of ranking returned by the betweenness centrality algorithm.

4.2. GENERALIZING THE GRAPH ENCODING MODEL 83

4.2 Generalizing the Graph Encoding Model

The model presented in chapter 2 aims to describe geographically distributed ap-
plications. At this point of the document, its use case has only been material-
ized on a Zonal Kubernetes Clusters. However, these Zonal Clusters are not the
only Cloud technology that supports a geographical distribution of resources. In-
deed, in [Gonigberg 2018], a publication on Netflix Technological Blog, authors
describe their application proxy named Zuul which leverages the notion of “avail-
ability zones” and “regions” provided by AWS to scatter an application over the
globe while maintaining high availability SLAs. In this work, and more generally
in the immense majority of physically distributed Cloud providers, the computing
resources executing the application also obey to a containment hierarchy.

Also, the OpenTelemetry semantic for describing these computing resources is
designed to express these concepts of availability zones, regions too. Therefore,
traces also have the potential of expressing any embedding of resources in the same
way they expressed the Zonal Kubernetes Clusters containment logic. Table 2.1
from page 36 presents the attributes cloud.region and cloud.availability_zone
which characterize the physical location of the resources. And, while OpenTeleme-
try adoption is driven by cloud technologies, and mainly Kubernetes, it remains an
open project that has the potential to extend to new use cases.

In the following, an approach for generalizing the model is provided: the graph
encoding method presented earlier is decomposed in two different steps to extract
multiple resources from the metadata, and also to configure the containment hier-
archy.

4.2.1 Including Multiple Resource Type in the Model

The OpenTelemetry resource semantic is still improving and aims to cover more
and more concepts, not only related to traditional Kubernetes Clusters. Topics like
“Function-as-a-Service” or “end-device performance measurement” are now part of
the experimental specification. These topics take place in the context of providing
better insight in tracing data and to have the relevant metadata for characterizing
resources. For the Djingo Application multiple data centre were used, both to ensure
reliability but also to be closer to users. Scattering resources in multiple data
centre eventually from multiple CSPs has multiple business usages that resonate
with active research topics.

Therefore, while the main idea behind the model presented earlier remains the
same, the graph encoding method has been altered to identify the resource type de-
fined in the OpenTelemetry semantic and to be more flexible. The graph encoding
method has been turned into a two steps process where, in a first step the metadata
present in the resource description is translated into vertices, and in a second step
the containment hierarchy is added to the graph. Table 4.1 presents visually the
matching that is achieved from encoding metadata attributes to a property graph.
This encoding techniques allows to create custom labels for vertices which are writ-
ten in a capsule in the table. Also the vertex properties are listed in the top left
corner above the circle.

84 CHAPTER 4. IDENTIFYING BOTTLENECKS WITH CENTRALITY

Resource Attributes Graph Vertices

k8s.pod.name and k8s.pod.uid.
Also k8s.pod.ip was used for IP address but
it was removed from the standard.

k8s.node.name and k8s.node.uid.
Also host.ip was used for IP address but it
was removed from the standard.

k8s.cluster.name

cloud.availability_zone or cloud.zone
depending on the version of the standard.

cloud.region

service.name, service.namespace and
service.instance.id define a service in-
stance.

Table 4.1: OpenTelemetry Cloud Semantic for Graph Encoding

This table is not exhaustive. Indeed, in its last version, the semantic covers
more that 80 different attributes for defining resources. The table only extends the
resources presented with the one that will be used in the following for analysing
simulation results. Therefore, we expanded the encoding logic to support the iden-
tification of regions and service instances. The service instances vertices have been
simply labeled service to have more concise illustrations. A vertex labeled Service
in the following characterize only one instance of a particular service when it is
replicated and part of a load-balancing group.

As a result, the first step of the graph encoding generates multiple vertices
based on the resource attributes in the trace but does not express the containment
hierarchy. Figure 4.1 represents the meta model of the new graph where resources
can be matched from the attributes presented in table 4.1. For examples, traces
captured in a AWS application not relying on Kubernetes will not have all the
attributes starting with k8s.. Still the attributes cloud.region and cloud.zone
and also service.name and service.instance.id will be likely to be present.
Therefore, a normal AWS application will created traces that will result in vertices
labeled Service, Zone and Region. If, during the development, the application
developers subscribe to EKS (the Kubernetes cluster managed by AWS), the traces
will have these new attributes and the resources will be encoded in the graph.

4.2. GENERALIZING THE GRAPH ENCODING MODEL 85

Figure 4.1: Resource Base-Graph for a Generic Meta Model

Still, adding a Kubernetes abstraction in an application will change the embed-
ding of resources, and in particular their order of containment. The next section
discusses how the containment hierarchy is added.

4.2.2 Configuring the Containment Hierarchy

The relationships typed IS_CONTAINED are a fundamental building bloc of the model
and of the graph rewriting technique; they allow the creation of a hierarchical model.
The multiplication of resources presented in previous section raised questions on
the generality of the approach. Not all relationship IS_CONTAINED can be hard-
coded in the graph model, instead, the order of embedding of resources should be a
parameter of the model. Indeed, in practice, when building a Cloud Application, the
architectural changes that disturb the containment hierarchy order, are extremely
rare events that are planned by operational teams.

In order to add the relevant IS_CONTAINED relationships, a graph rewriting
approach has also been used: the embedding of resources materialized by the no-
tation Pod ⊂ Node ⊂ Zone ⊂ Region is converted in a pattern that matches re-
sources labels and creates the missing edges. Equation 4.1 provides the pattern
that identifies all tuples of vertices (r1, r2) where r1 is a Pod and r2 a Node. With
graph rewriting, these two vertices linked to the same Span will be linked by an
IS_CONTAINED relationship. The first line of this equation designates the vertex
pattern χ1 = (r1, Pod,∅) that identifies a vertex labeled Pod and name it r1 for

86 CHAPTER 4. IDENTIFYING BOTTLENECKS WITH CENTRALITY

future usage. The last line designates the vertex pattern χ3 that identifies a vertex
labeled Zone. Finally, between these two vertex patterns, there is the pattern of
the path that separates these two vertices: a Span labeled vertex and two outgoing
edges pointing to the r1 and r2 resources.

π = (r1, Pod,∅),
(←, nil, EXECUTES_ON,∅, (1, 1)),
(nil, Span,∅),
(→, nil, EXECUTES_ON,∅, (1, 1)),
(r2, Zone,∅)

(4.1)

Therefore, by applying this pattern at each containment level, all tuple of ver-
tices where an edges typed IS_CONTAINED can be identified in the graph encoding
the traces. After the application of the rewriting pattern, each trace graph exposes
the embedding of resources. Figure 4.2 represents the result of graph rewriting pro-
cess on the Meta-Model: the initial Meta-model from figure 4.1 is presented on the
left. On the right side, the graph represents the final meta model for the resource
embedding Pod ⊂ Node ⊂ Zone ⊂ Region.

Figure 4.2: Example of adding the containment of resources for the embedding
Pod ⊂ Node ⊂ Zone ⊂ Region.

To support a wider variety of Cloud application architectures, the graph en-
coding process initially presented in chapter 2 has been tuned to support multiple
types of resource and also being parameterized. With this approach, the concept
of resource embedding for Zonal Kubernetes Cluster can be supported by all hi-
erarchical applications whose layers are materialized by OpenTelemetry attributes.
Still, to expose the relevant abstraction layers, the resource embedding needs to be
formalized as an input for the graph encoding technique. The next section provides
an example of another type of geographically distributed application: Amazon Web

4.2. GENERALIZING THE GRAPH ENCODING MODEL 87

Services Application often leverage all the data centres to be the closest to the user
and have a low latency.

4.2.3 Characterizing an AWS Application

Amazon Web Services Applications are notorious examples of applications leverag-
ing the geographical distribution of microservices among data centres. The stream-
ing platforms Netflix and Twitch, both based on AWS built an application mini-
mizing latency by using the various data centre of the provider as point of presence
to have the lowest possible latency [Gonigberg 2018, Böttger 2018, Deng 2017].

These computing resources also follow a containment hierarchy that is defined
in the OpenTelemetry Resource Semantic. In global AWS applications, each mi-
croservice belongs an Availability Zone, and each of them belongs to a Region.
Unlike for Zonal Kubernetes Clusters, it is common for applications to be deployed
in multiple zones. All these layers have been presented in table 4.1 and can be
encoded by the graph model parameterized with the containment relationship:
Service ⊂ Zone ⊂ Region. Figure 4.3 represents this graph encoding meta-model.

Figure 4.3: Meta Model of the graph encoding applied to traces for AWS Applica-
tions

Netflix, in particular, has published multiple engineering works on creating a
load-balancer capable of considering these geographical constraints. This work ma-
terialises as an API-Gateway1 named Zuul and published in open source2. While
the following work takes these Zuul Applications as an example, deploying and eval-
uating the performance of an application at this scale would require a tremendous
amount of money. Indeed, maintaining the Zonal Kubernetes Cluster from previous
work already lead to bill climbing from one to three hundreds of euros per months,
the scale of such an application would be orders of magnituides higher.

For this reasons, the spigo3 simulation program will be used in the later. Spigo
author is Adrian Cockcroft, a former Netflix Engineer that created this simulation

1A microservice playing the role of routing the user requests of a Cloud application to the right
instance of the microservice to process it

2https://github.com/Netflix/zuul Public repository of the Zuul API gateway
3https://github.com/adrianco/spigo Public repository of the spigo simulation program

https://github.com/Netflix/zuul
https://github.com/adrianco/spigo

88 CHAPTER 4. IDENTIFYING BOTTLENECKS WITH CENTRALITY

environment to model the component interactions in a global AWS Application.
This is the application that was used to create the so-called Death Stars from
figure 1.2 presented in page 21.

Therefore, by decomposing the trace-to-graph encoding process in two steps, we
have been able to describe a wider variety of Cloud-based architectures. Throughout
this chapter we will consider these Amazon web services applications replicated in
multiple data-centre in the world. For an application of this scale the graph of
the communication of services will provide a new insight on the overall application
performance. In the next section we focus on a theoretical study on graph centrality
analysis, then we propose to evaluate the impact of some centrality measures in a
simulated Cloud application.

4.3 Application to Complex Cloud Applications

In chapter 2, a full graph encoding pipeline was proposed: each trace is encoded at
runtime, then the trace graph was added to a hierarchical graph that accumulates
all the traces and is stored in Neo4j. While the work presented on flow hierarchy
was executed online for each traces, in this chapter we focus on the analysis of the
knowledge graph. Figure 4.4 recalls the pipeline presented in section 2.5, the final
stage of the pipeline is the merging of the trace graph within the knowledge graph.

Figure 4.4: OpenTelemetry graph encoding pipeline

The proposed model and techniques leverage the heavily connected nature of
traces and their semantic to maintain a hierarchical property graph. Each layer of
the hierarchical graph is, itself, a directed graph whose vertices model the resources
and whose edges materialize their communications. As a result, each graph may
express different types of topology, having their own characteristics. The main goal
of having a global network-centric model in a distributed application is to extract

4.3. APPLICATION TO COMPLEX CLOUD APPLICATIONS 89

a global view of the application behaviour.
Microservice applications quickly grow in size, and performance anomalies oc-

curring in this wide crowd of services may not have the same effect on the overall
application performance. For this reason we propose a technique that highlights
critical services based on their communications within a global application. One of
the most prominent challenges when monitoring such an application is to identify
bottlenecks in the system. In the following we present centrality algorithms and
their application for the graph maintained by the trace encoding pipeline.

4.3.1 Overview of Graph Centrality Algorithm

Centrality analysis designates the fact of identifying the most important vertices
in a graph. This definition of importance may vary depending on the use case,
and therefore multiple algorithms exists. In the following, a review of the most
common graph centrality algorithm is proposed: a focus is made on the definition
of importance these algorithms express. Then, in a later section, these defini-
tions are set on perspective for graphs exhibiting network communications in a
distributed environment. Still, graph centrality analysis remains a vast and well
studied problem [Freeman 1979]. It has witnessed a wide variety of applications:
whether being for general anomaly detection in graphs [Akoglu 2015] or for study-
ing communication networks, sociology, geography or even protein network analy-
sis [Klein 2010, Jeong 2001].

To better define the computation of centrality scores in a graph, the following
concepts are defined to support a later formal definition of centrality computations.
The following supposes a graph is noted G = (V, E) where V is the set of vertices
and E the set of edges:

• Degree: the degree of a vertex v ∈ V is denoted kv, it represents the total
number of neighbours of the vertex v.

• In-Degree: the in-degree of a vertex v ∈ V is denoted kin
v ; for directed graphs,

the in-degree of a vertex v materializes the total number of its neighbour that
have a direct edge toward that vertex.

• Out-Degree: the out-degree of a vertex v ∈ V is denoted kout
v ; similarly to

the in-degree, the out-degree of a vertex v materializes the total number of its
neighbours that can be reached via an edge directed from the vertex v toward
them.

• Neighbour Set: The neighbour set is denoted M(v), it is a set containing
all the vertices adjacent to v ∈ V .

• Distance: the distance between two vertices v1, v2 ∈ V is denoted d(v1, v2).
The distance represents, if it exists, the length of the shortest path between
v1 and v2.

• We also propose the notations σst and σst(v) to represent, respectively, the
number of shortest path between the vertices s and t, and the number of

90 CHAPTER 4. IDENTIFYING BOTTLENECKS WITH CENTRALITY

shortest paths between s and t where the v acts as an intermediate vertex in
the path.

Figure 4.5: Sample Graph Exhibiting Different Topologies.

Figure 4.5 provides a sample graph with directed and undirected edges that ex-
hibits some vertices identified by a letter. Each of these vertices has a high centrality
measure according to a particular algorithm. The following list associates the cen-
trality algorithms with these labelled vertices and present a formal definition of the
computation of the centrality indices. While formal definitions of centrality formu-
las have many variations, the one presented in this list matches the implementation
used in later section, in particular the formulas supported by Neo4j.

Vertex A: Has the highest Degree Centrality ranking: The degree centrality mea-
sures, for all vertices in the graph, their degree. This term is directly linked
with the term degree or valence from graph theory which denotes the number
of neighbors of a particular vertex. In directed networks, it is possible to
restrict to the in-degree or the out-degree for detecting the most requested or
the most communicative node in the network. The degree centrality assess the
importance of a vertex based on the number of neighbours it has. A formal

4.3. APPLICATION TO COMPLEX CLOUD APPLICATIONS 91

definition of the calculation of the degree centrality for a vertex u ∈ V may
simply be expressed as:

Cd(u) = ku

Vertex B: Has the highest Closeness Centrality ranking: The closeness central-
ity measures the significance of a vertex through its distances to every other
vertices in the graph. The closer the vertex is to the others, the higher its
closeness centrality score will be. With the closeness centrality measure, cen-
tral vertices are at a close distance to every other vertex in the graph. Unlike
the degree centrality, the closeness centrality defines the importance of each
vertex by the distance it has with every other vertex of the network. The
closeness centrality can be computed for each vertex u ∈ V following this
formula:

Cc(u) = |V | − 1∑
∀v∈V
u6=v

d(u, v)

This formula requires, for each node in the network to find the distance with
every other nodes, that is computing the shortest paths. Therefore, computing
the closeness centrality may be an expensive operation on large graphs, which
led to approximation methods like [Saxena 2017].

Vertex C: Has the highest Betweenness Centrality ranking: The betweenness
centrality defines the importance of a vertex based on the total number of
shortest paths between any given couple of vertices passing through this ver-
tex. Betweenness centrality is known to exhibit so-called bridges vertices
which are nodes that help linking different communities. The computation of
the betweenness centrality score for a given vertex u ∈ V is expressed as the
following:

Cb(u) =
∑

s 6=t6=u

σst(u)
σst

Like for the closeness centrality, computing the betweenness centrality score
requires expensive computations involving the identification of shortest paths
between every couple of vertices in a given graph. There is also ongoing
work for making fast approximation of the betweenness centrality score for
large-scale graphs [Maurya 2019].

Vertex D: Has the highest Centrality ranking with the PageRank algorithm:
The PageRank Algorithm is one of the variants of the eigenvector algorithm
which was popularized by the search engine Google [Brin 1998]. In general,
eigenvector algorithm assess the importance of a node based on the importance
of its neighbors. An index is assigned to each vertices based on the number
of connections it has to other highly connected vertices.

Ce(u) = 1
λ

∑
t∈M(u)

Ce(t)

where λ is a constant called the eigenvalue so that, with AG being the ad-
jacency matrix of graph G, AGX = λX. As of today, this algorithm is still

92 CHAPTER 4. IDENTIFYING BOTTLENECKS WITH CENTRALITY

heavily used by the company and much work is achieved for optimizing its
performance [Stergiou 2020].

4.3.2 Distributed Applications Bottlenecks

While bottleneck and chokepoints identification is still an hot topic in research,
in particular when applied to the context of Cloud Applications, there is not a
precise definition that emerged from literature of a bottleneck. In [Gan 2018b],
authors propose to identify QoS violations that put an increased pressure on de-
livering predictable performance, as dependencies between microservices mean that
a single misbehaving service can cause cascading QoS violations across the sys-
tem. In actual literature [Ibidunmoye 2015, Marvasti 2013, Veeraraghavan 2016,
Veeraraghavan 2018], bottlenecks and chokepoints are often detected based on ser-
vice latency measurements and are refereed as QoS violations.

In this literature, bottlenecks often take one out of these two forms:

• The first one being the resource saturation bottleneck, it manifests when
a single component reaches its limits. While the kind of limit may vary ac-
cording to the type of service described, these limits may be CPU, memory
usage, disk queue or rate limits of requests to an external API; it always causes
significant delays to requests processing. Common methods to handle these
bottlenecks are the use of message queues that can handle the back-pressure
or the use of a dynamic scaling of such critical resources. Also, detecting these
saturation bottlenecks is part of standalone monitoring and tracing data may
not be game-changer in detecting this kind of bottlenecks.

• The second form of bottleneck is the resource contention bottleneck.
It manifests in environments having semaphores, messages queues, buffers
and mutexes. All of these mechanisms are software constructs commonly
used in distributed computing, they are notoriously difficult to investigate on.
Distributed tracing motivation has been providing data to ease investigation
on these distributed mechanisms, to grant the administrator better insight on
the application. This type of bottleneck is often explained by a poor software
design that does not leverage the scalability and the workload distribution
provided by the platform. Still, this kind of bottleneck is notoriously difficult
to find and to investigate on and distributed tracing only provides raw data
on components interactions.

The contention bottlenecks cause performance anomalies which usually result
into saturation, deadlocks or partial failures of the system [Ibidunmoye 2015]. How-
ever, their causes can be numerous : misconfigurations or bad system tuning can
greatly decrease performance, applications updates and introduction of buggy code
can also lead to performances issues on the short term. Finally, underlying transient
events or platforms re-configurations are common events that may cause bottlenecks
within the system.

As the contention bottleneck are difficult to detect at runtime, we propose using
the global application networking model to spot the chokepoints in a Cloud applica-
tion. We materialize the chokepoints as a potential bottleneck whose failure could

4.4. IMPLEMENTATION 93

greatly impact the behaviour of the application. The Betweenness centrality
algorithm is a promising candidate to identify chokepoint application as it main
interest is to identify the vertices in the graphs involved in the highest number of
path between any couple of vertices. Vertices with a high betweenness centrality
score are involved in multiple services compositions and are more likely to cause
congestion when the load will increase.

The following section details the instrumentation of the simulation program
named Spigo that has been used to create the microservices graph presented in
figure 1.2 of chapter 1. Its capability of creating large-scale application simulations
will be used to create complex communication graphs. Then, by computing the
centrality of each of the vertices of the graph, we will be able to quickly identify
chokepoints and rank services.

4.4 Implementation

In order to generate a graph representing a massively distributed application, a
simulation program has been used. Indeed the cost of a Zonal Kubernetes Cluster
in GCE was already high and the representativeness of this platform for bigger
application was not sufficient. Therefore, some experiments have been made with
the software Spigo4 that has been used by A. Cockcroft to present its workshop on
large scale cloud infrastructures [Cockcroft 2016a, Cockcroft 2016b].

Spigo is designed after the Actor Oriented Design Pattern [Lee 2003] that re-
volves around the concept of message passing and communication among the so-
called actors of the system. Actor can be compared to threads as they are indepen-
dent processing units within the program that react to incoming messages. Actors
life-cycle is also managed by a high level scheduler and actors are also organized
following a hierarchy. Instead of communicating over the network, actor commu-
nicate via pipes which make communications faster. By its construct, the actor
design pattern is extremely close to the microservices architecture. The Spigo envi-
ronment is coded in the language Go: it leverages the lightweight implementation
of threads named go-routines to run hundreds of actors simultaneously. Each of
these go-routines model a microservice that communicate with the over services
of the application. The communication is done through channels another distin-
guishing point of the go language that defines communication pipes between the
asynchronous elements of the application.

Spigo is bundled with existing scenarios defining several classical architectures
often used when building a web application on AWS. Some examples presented
in the environment are: the 3-tiers Architecture with Apache - PHP - Database,
its evolution with AWS components, a Big Data Pipeline, some Netflix-Inspired
architectures, a Distributed Timeseries Database for IoT inspired by the service
Riak5 and also a Flying Spaghetti Monster. While not being actively maintained

4https://github.com/adrianco/spigo Public repositoriy of the code the spigo simulation pro-
gram hosted on GitHub.

5https://riak.com/products/riak-ts/ a NoSQL database physically distributed ingesting
and enriching IoT Data

https://github.com/adrianco/spigo
https://riak.com/products/riak-ts/

94 CHAPTER 4. IDENTIFYING BOTTLENECKS WITH CENTRALITY

anymore by its creator, Spigo still constitutes an opportunity to emulate a multi
data centre Cloud Application in a standalone computer. In this section, a focus is
set on the usage of this environment to emulate a fully distributed application and
emit traces compliant with the OpenTelemetry format. Then, the simulation of a
large scale application is presented along with the choice of the scenario. Finally,
the centrality of the graph resulting is analysed and we illustrate the use of the
betweenness centrality to spot chokepoint in an application.

4.4.1 Using Spigo for Emitting OpenTelemetry Traces

By default, Spigo does not emit traces in the OpenTelemetry format, still it is
capable of creating a graph representing components interactions. This graph does
not match the model defined in chapter 2 and only represents microservices in
a single communication layer. The initial work aimed to instrument Spigo code
base with the OpenTelemetry instrumentation library: while it provided a real
OpenTelemetry compliant data for the simulation, the Go environment was old
and did not allow to freeze version of the instrumentation library of OpenTelemetry.
This lead to heavy work on the code base and unpredictable behaviours at compile
time of the simulation program. Instead of working on the migration of Spigo code
base to a more sustainable eco-system, we used Spigo connection with Neo4j and
applied multiple Cypher requests to rebuild the hierarchical model used throughout
this thesis.

Spigo graph model behaves exactly like the initial graph models representing
traces: the model is not hierarchical and vertices hold a dense amount of metadata
representing the resources. Listings 6 and 7 present the Cypher queries to recreate
the hierarchical model from the metadata held in each vertices in the graph. Indeed,
in listing 6, at line 2 of the query, metadata are extracted into the variables nodeId,
regionName and zoneName to be later used to create new vertices, if they do not
already exist. Also the last 5 lines of the requests add the relations to the newly
created vertices. Finally, listing 7 is the implementation of the graph rewriting
process presented in section 2.4.2.1 but in the Cypher language.

1 MATCH (n:riak)
2 WITH n, n.ip AS nodeId, n.region AS regionName, n.zone AS zoneName
3 MERGE (vm:VirtualMachine {ip: nodeId})
4 MERGE (zone:Zone {name: regionName + '-' + zoneName})
5 MERGE (region:Region {name: regionName})
6 MERGE (n)-[:EXECUTES_ON]->(vm)
7 MERGE (n)-[:EXECUTES_ON]->(zone)
8 MERGE (n)-[:EXECUTES_ON]->(region)
9 MERGE (vm)-[:IS_CONTAINED]->(zone)

10 MERGE (zone)-[:IS_CONTAINED]->(region)

Listing 6: Creation of the Hierarchical Layers

After executing these requests on the graph build by the Spigo environment the

4.4. IMPLEMENTATION 95

1 MATCH (r_src)<-[:EXECUTES_ON]-(src:riak)-[:CONN]->
2 (dst:riak)-[:EXECUTES_ON]->(r_dst)
3 WHERE labels(r_src) = labels(r_dst)
4 AND r_src <> r_dst
5 MERGE (r_src)-[r:PROJECTED_REF]->(r_dst)
6 ON CREATE SET r.total = 1
7 ON MATCH SET r.total = r.total+1

Listing 7: Projection of the Hierarchical Layers

graph stored in Neo4j follows the hierarchical model described earlier. Still, in these
two requests the vertices created by the simulation are labeled after the name of the
simulation, these requests have been run on the Riak IoT scenario. In the following
section this scenario is presented along with its chokepoints.

4.4.2 Scenario Selection and Representativeness

Spigo has several scenario bundled within the application; to represent a real-world
Cloud-IoT application, the scenario modelling the Riak distributed database was
identified to be the most suitable to the research area presented in this thesis.
Indeed, this scenario is based on Riak application which is a distributed and resilient
database targeted for IoT needs. Its structure is heavily hierarchical and leverages
the geographical distribution of computing resources to be as close as possible to
IoT devices. Figure 4.6 represents a logical chaining of the components of the
application. Table 4.2 details the signification of the symbols used in the figure.

Figure 4.6: Logical architecture of AWS components in the Riak Scenario

The use case of the Riak application provides an implementation of an heavily
hierarchical app, having multiple endpoints scattered across zones and positioned
close to the users. All these endpoints, materialized by the load-balancers converge
to processing data to write in the same common database. This Riak scenario

96 CHAPTER 4. IDENTIFYING BOTTLENECKS WITH CENTRALITY

Symbol Meaning
This symbol represent a traffic load-balancer. The spigo simula-
tion environment designates these components with ELB which
stands for Elastic Load Balancer. Usually, in AWS architecture,
an ELB is an entity that routes external traffic to the services in
the application.
This symbol represents generic instances of a service capable of
scaling. This is a generic symbol that can model almost any
replicated services whether being in the same zone or in different
regions.
This symbol represents a channel in AWS architecture diagrams.
In this simulation environment, in particular, they represent mes-
sage queues, a building block used to create data processing
pipelines.
This symbol represents Key-value store, a trivial database de-
signed for intensives reading operations. In this simulation sce-
nario, it represents the dictionary used for enriching IoT messages
with custom context. In a geographically distributed context
Key-Value Stores are scattered in multiple zones and the service
reading values request the entity in the same zone.
This symbol represents Data-Lakes. For this simulation they are
materialized by a Cassandra Cluster, a distributed Zone-aware
database that ensure the availability of data through replication.
While the Cassandra Database is aware of the location of the
instance, this setting is not used for optimizing traffic but only
for ensuring availability of data.

Table 4.2: Legend of AWS symbols

follows a conventional pattern of data-processing pipline architecture. Such data
pipelines are extremely vulnerable to bottlenecks; and in particular, to resource
contention bottlenecks. A single stage failing in these pipelines can take down the
whole system and result to data loss or SLA violations. This is the role of the
message queues in this architecture, to ease the load-balancing of the resources
creating data and consuming data. The service ingestMQ, in particular, plays a
critical role and aggregates data from two distinct endpoints and prepare it to be
consumed by the ingest microservice.

This architecture in Spigo is configured in a JSON file named after the scenario
and listing for each microservice. The scenario’s name, template, the number of
replicas the application has within a region and, finally, its dependencies are all
parametters that can be tuned. To replicate this architecture into multiple regions
when running the simulation environment, an option has to be specified at launch.
In a single region, both ingestMQ and enrichMQ are replicated three times, still
ingestMQ has to deal with more requests and have to undergo more pressure because
of the merge of the processing pipelines of iot_elb and stream_elb.

4.4. IMPLEMENTATION 97

Figure 4.7 presents an excerpt of the communication graph of services of a
simulated riak application whose components are replicated multiple times and
scattered in three zones. This results in 135 microservices communicating over
three zones. In this figure, each color of the vertices in the graph represents one of
the services presented in figure 4.6. A focus is set in the ingestMQ instances and
their bridge role in the application.

Figure 4.7: A sample of the graph of services with a focus in ingestMQ services

4.4.3 Observing the Impact of Betweenness Centrality in the Riak
Simulation

The simulated application of 135 microservices scattered over three zones creates
a big graph that cannot be simply processed by human mind, unlike the global
riak architecture overview. The service ingestMQ was identified as a potential
chokepoint of the application through an architectural analysis. In order to make
instances of this service less critical, a trivial solution is to increase the number
of replicas: the load of requests handled by each instance of the service would
become less important and, at the scale of the application the chokepoint would
be less important. Therefore we will focus making the service ingestMQ scale up
and down to observe the effect on global graph centrality scores. In the global
architecture, ingestMQ is a three-replicas message queue deployed in each zone to
serve local users. By its role and its design, this service is concerned by risk of
resource contention bottleneck.

To compute centrality indices of each vertices, we relied on the graph analytic
library6 of the Neo4j database. Figure 4.8 displays the graph of services and the size

6https://neo4j.com/product/graph-data-science/ a full set of graph algorithms that can be

https://neo4j.com/product/graph-data-science/

98 CHAPTER 4. IDENTIFYING BOTTLENECKS WITH CENTRALITY

of vertices represents their betweenness centrality score. Vertices highlighted in blue
represents the ingestMQ instances. Table 4.3 aggregates the results of the centrality
computation and provides a per-service range of the centrality scores obtained by
the betweenness centrality algorithm.

Figure 4.8: Cloud Application Graph Visualization Where Vertices Size is Propor-
tional to the Betweenness Centrality Score of the Vertex

run on a Neo4j graph

4.4. IMPLEMENTATION 99

Service Name Replicas Cb

ingestMQ 9 [181, 193]
ingester 18 [97, 104]
enrichMQ 9 [87, 97]
enricher 18 [53, 57]
normalization 18 [13, 18]
stream 18 [3, 12]
analytics 18 [5, 9]
riakTS 18 [0, 0]
riakKV 9 [0, 0]

Table 4.3: Betweenness Centrality score range for each group of services

The betweenness centrality calculation clearly identifies the service ingestMQ
as the most critical service along with the ingester service. Each ingestMQ has a
betweenness centrality score between 181 and 193 according to this formula (not
normalized), this score outshines other betweenness centrality score of any other
vertices in the graph. The betweenness centrality score grants a risk indicator of
the impact of a failure from these service. As the number of instance increases the
impact of a failure of these component should decrease.

To verify this assertion, the simulation has been executed by changing the num-
ber of replicas of the ingestMQ service. In a first scenario, the number of instances
of the ingestMQ services has been lowered to one per zone, and, in another scenario
it has been scaled up to 5 instances per regions. Both figure 4.9 and table 4.4 shows
the results of the simulation. The figure shows the two resulting graphs where
the size of the vertices depends on its centrality score, also ingestMQ instances are
highlighted in each graph. In the table 4.4, column Cb1 gives centrality score for the
whole graph when there is only one instance of ingestMQ service per zone. Col-
umn Cb3 keeps the previous values and Cb5 provides the score when there are five
instances of the service ingestMQ per zones.

Service Name Cb1 Cb3 Cb5
ingestMQ [383, 422] [181, 193] [104, 151]
ingester [187, 219] [97, 104] [118, 123]
enrichMQ [74, 77] [87, 97] [92, 110]
enricher [43, 44] [53, 57] [57, 65]
normalization [14, 16] [13, 18] [13, 25]
stream [3, 7] [3, 12] [8, 12]
analytics [5, 10] [5, 9] [5, 9]
riakTS [0, 0] [0, 0] [0, 0]
riakKV [0, 0] [0, 0] [0, 0]

Table 4.4: Betweenness centrality score range for each group of services with a
varying number of ingestMQ instances

As a result, we can observe that the betweenness centrality score drastically
increases when the service ingestMQ is only present once per region whereas it

100 CHAPTER 4. IDENTIFYING BOTTLENECKS WITH CENTRALITY

Figure 4.9: Cloud Application Graph Visualization respectively with one and five
instances of ingestMQ per zones

4.5. CONCLUSIONS 101

confounds with other scores when there are fives instances of this service per zones.
On a communication graph, computing the betweenness centrality on nodes has
the capability of exhibiting chokepoints, and while the chokepoints exhibited in
this example was solved by scaling up a particular service, in real world scenario
solution may not seems to be as trivial as this. Indeed, message queues like Kafka7,
RabbitMQ8 or NATS9 are stateful services and scaling them up and down is a costly
operation as it may require to re-think the sharding and the duplication of data
among instances.

Also, in this experimentation, we stayed at the first layer of the hierarchical
communication graph and none of the higher layers has been considered in this ex-
perimentation. The reason behind this choice is because in the Netflix architecture,
and unlike in Kubernetes, the placement decision in zones and regions is made by a
human architect. The simulation environment does not have the representativeness
to do a numerical study and projecting the communications relationships observed
between services among zones and region quickly create a complete graph that is
not representative of a real-world behaviour of a Cloud application.

4.5 Conclusions

In this chapter, a focus has been set on using the communication graph maintained
by the trace processing pipeline instead of using each trace individually. The com-
munication graph maintained by the trace encoding pipeline has the capability of
exhibiting chokepoint in a large scale architecture, which address a problem com-
monly encountered in massively distributed system monitoring. Centrality algo-
rithms have been proved to have the capability of addressing these challenges. We
addressed the generality of both the approach and the encoding pipeline by mod-
elling a Cloud Application made on AWS and following the Netflix architecture.

Throughout this chapter, we leveraged the Spigo simulation program capable
of emulating a physically distributed application that follows the architecture prin-
ciples of Netflix. These architecture principles result in consequent graphs of in-
tertwined services that are difficult to process for a human operator. With this
contribution, we propose the use of the betweenness centrality to spot chokepoints
in a massive service graph and therefore identify the critical assets of the system,
that cannot be identified with standalone system monitoring.

The work in this chapter reviewing the use of the simulation environment and
the centrality analysis has been published in [Cassé 2022].

This simulation program used throughout this chapter only represents compo-
nents interactions and does aim to be also representative of network latency of the
system or of dynamic placements of resources. Also, the Spigo software is not main-
tained anymore by its creator and its motivation was to represent interactions on
the building blocks of the Netflix architectural principles, which does not match
State-of-the-Art design principles for nowadays Cloud applications. For this rea-

7https://kafka.apache.org
8https://www.rabbitmq.com
9https://nats.io

https://kafka.apache.org
https://www.rabbitmq.com
https://nats.io

102 CHAPTER 4. IDENTIFYING BOTTLENECKS WITH CENTRALITY

son, the significance of this experiments can only stay on the qualitative aspect of
the monitoring but not on the quantitative aspect. Data from a real application
can exhibit important numerical measures: these measurements like the number of
bytes exchanged or the network latency, would allow to annotate edges in the model
with numerical scores.

Conclusion & Future Works

Contents
Synthesis of Contributions . 104
Future Works . 105

Short-term Work . 106
Mid-term Work . 108
Long-term Work . 109

Closing Words . 109

Over the last two decades, the adoption of Cloud Computing has had significant
impacts on the way we now think of software performance analysis, in particular
when hosted in a Cloud platform. Whereas the Cloud Computing paradigm eased
large scale application development, deployment and maintenance, it also hid soft-
ware execution, gave less control to developers to instrument their code and con-
siderably obscured debugging and performance analysis. Also, Cloud applications
embraced the distributed system architecture, which solved multiple scaling issues.
It also raised a new spectrum of challenges for software monitoring like spotting
partial failures, bottleneck or raising consistency issues. These two drastic software
shape changes lead to a wide corpus of literature tackling these monitoring chal-
lenges under multiple different angles. Multiple contributions addressed the scaling
problem of metric gathering, or the heterogeneity of monitoring data in a cloud
application. Also, root-cause analysis became increasingly important as the system
grew, as well as detecting and observing dependencies in a large and volatile system.

In this thesis, we have provided a study on Cloud Application performance
from the perspective of distributed system monitoring. This study is supported
by monitoring data gathered by OpenTelemetry, the last innovation brought by
the open source community, being increasingly adopted within the industry. With
this new monitoring standard, the monitoring of Cloud application has undergone
massive changes: by leveraging context propagation in a distributed application,
the recent monitoring tools are capable of aggregating latency measurements from
multiple services to recreate a “distributed trace”. These traces carry a unique
information that describes component interactions in the whole application. The
discovery of these services interaction is based on the observation of the system,
and aims to have a minimal performance footprint, suitable for an industrial use.
Despite this new kind of monitoring data becoming more and more popular among
Cloud developers, no consensus among the tech industry and the academic has been
observed on the usage of these traces.

A review of initiatives from the large tech industries highlighted the potential of
traces for investigating performance anomalies in massively distributed applications,
in particular addressing these new distributed system challenges. Still these usages
have been kept under closed sources by the industry actors, whether being the trace

104 CONCLUSION & FUTURE WORKS

format or their usage. The OpenTelemetry format, that emerged during the thesis,
opened the door of a more generic approach for observing and analysing distributed
applications under a different angle. The driving idea in this thesis has been to focus
on purely distributed performances challenges where the observation of components
interactions could bring valuable insights on the overall application performance.

The State-of-the-Art of distributed application challenges raised that Cloud ap-
plication hosting is not fully centralized anymore. Indeed, applications are scattered
among multiple data centre around the world, and, therefore the network linking
the components of the application cannot be considered even. By leveraging Open-
Telemetry semantic, we have identified that distributed tracing offers the potential
of observing and highlighting the different types of communication in Cloud appli-
cation. The contributions of this thesis centered around an OpenTelemetry trace
encoding model that exhibits the overall application structure. We proposed a new
usage of distributed tracing in geographically distributed application having an un-
even scattering of servers to spot inefficient service composition and bottlenecks.

While these scenarios and use-cases may appear to be quite niche today, we
witnessed, over the past years, an increased adoption of Edge computing, Cloudlets,
IoT or Points of Presence (for streaming) to increase application performance. All
of these concepts refer to the expansion of the Cloud toward the end-users, and the
model proposed in this thesis can easily fit these use-cases as long as the metadata
is correctly set in traces.

Synthesis of Contributions
Throughout this thesis we provided a study on Cloud Application performance
through the angle of distributed system monitoring. This study addressed the
following points:

• A literature review focused on Cloud environment, addressing both archi-
tectural challenges from a provider perspective and observability challenges
for the customer perspective. This study pointed out the need of a more
evolutionary Cloud Computing model and the impact of the adoption of the
distributed structure for monitoring, in particular at large scale. Also, in this
study a particular attention has been brought to the different initiative for
untangling dependencies and building a high level view of the application.

• The definition of an encoding model for OpenTelemetry traces that rebuilds a
global vision of a distributed application by focusing on its architecture and
component interactions. This model has been proved to be adaptive to fit
multiple Cloud-based architectures and relies on a well-defined semantic and
tooling.

• A proposition to use this model in a physically distributed application to
identify the cycles that can induce latency and an extra cost when composing
services from multiple zones in Zonal Kubernetes Clusters. This study has
been based on the need expressed by the team in Orange in charge of develop-
ing Djingo (a voice assistant) to have better observability on inefficient service

FUTURE WORKS 105

composition and their correlation with the overall application performance.
Unfortunately, the development of the voice assistant has witnessed multiple
changes, and the problem initially formulated by the architectural team was
not applicable in the last iteration of the product.

• An other proposition to use this model to spot chokepoints with centrality
algorithm in a large graph of services. Instead of processing each trace indi-
vidually, this proposition considers the accumulation of traces to recreate a
large graph of microservices interactions. A simulation environment was used
to recreate a large scale application, this program uses threads and messages
queues to mimic micro services and network calls. This simulation demon-
strates the use of the betweenness centrality algorithm to automatically detect
the chokepoints in a graph of micro services. Whereas this scenario was not
motivated by the Djingo environment, the detection of chokepoint within a
large and complex architecture was among the motivations that lead Orange
to this thesis.

In this thesis, an effort was made to address the challenges unique to Cloud
Application monitoring by proposing a model and an implementation based on
real-world tooling and constraints. Indeed, the trace encoding pipeline presented
in chapter 2 suppose the use of Jaeger, the de-facto tool for visualizing distributed
traces. The encoding pipeline is coded in the Scala language and has the capacity
of being executed in parallel. The implementations have all been realized with
massive data processing constraints in mind and are capable of being executed on
a production-ready Jaeger instance.

The recent evolution of OpenTelemetry has provided an environment to obtain
real-world measurements from an application and therefore enabled the capability
to have a quantitative study. OpenTelemetry specifications of traces and metrics
went stable during the redaction of this thesis, the specification of log messages and
their semantic are still in Beta at the time of writing. Two immediate extensions
of the work presented in this thesis would be to process a flow of traces of an
application in production:

• Plug the pipeline on an application instrumented with OpenTelemetry and
evaluate the results with a quantitative study.

• Evaluate sparse sampling of traces to not overwhelm the system with a massive
amount of data, like the work presented in [Las-Casas 2018].

In the next section, we discuss on the possible extensions of the work presented
in this thesis.

Future Works

The two different usages of the model proposed in chapter 3 and 4 are not based on
a real flow of traces from a fully fleshed cloud application. Both of these use-cases
require a large scale application instrumented to emit traces; also, OpenTelemetry is

106 CONCLUSION & FUTURE WORKS

a recent initiative which started in 2019 and that stayed in beta for a long time. The
production constraints on Djingo and the development timeline of OpenTelemetry
were not compatible and the traces were only used in a development environments.
For this reasons, the experiment presented in this thesis have been realized on small
scale clusters not receiving a real flow of user requests.

As Cloud performances anomalies are still difficult to represent, the implemen-
tations presented in this thesis have been focused on a qualitative approach instead
of a quantitative approach. Since then, OpenTelemetry gained in maturity and now
has stable releases, newly developed applications can use this format to emit and
process traces. Also instrumentation libraries are expected to add multiple fields
in traces that would enable a numerical study, like for example, the number of
bytes in a network communication between two microservices. During the PhD, we
witnessed an strong adoption of this monitoring format within the cloud communi-
ties, the amount of instrumentation libraries presuppose of a rich eco-system and a
strong use by the industry, in particular for newly created software.

Still, a quantitative study will have to wait for a real data-source, from an ap-
plication geographically distributed and instrumented with OpenTelemetry. In this
section we present potential extensions of the works presented in this thesis: in the
short-term work we present a data visualization that leverages the encoding model
and the hierarchies to provide a global view of a distributed application. An ex-
pressive visualization could improve adoption of the distributed tracing technology
in production environment. Also in Mid-term work and later we will presuppose of
an adoption of the technology to achieve quantitative studies.

Short-term Work

Traces have the potential of exhibiting components interactions in a Cloud Appli-
cation, still there are almost no visualization tools that allow a human operators to
grasp the big picture of an application. Whether we consider Jaeger or dashboards
provided by Observability Platforms like DataDog, Lightbend or Grafana, there are
no application wide visualization representing the application as a whole. However,
the model presented in chapter 2 aims to exhibit complex placement and distribu-
tion of computing resources, and the application presented in chapter 3 focus on
inefficient communication at higher abstraction levels. In [Holten 2006], authors
define the “Edge Bundling Visualization” that represents the adjacency relations
among entities organised in hierarchy. This visualizations focuses on the communi-
cations represented as adjacency relations, and on the number of hierarchy layers
crossed for the communication of these entities. The hierarchy is represented as
a radial tree, also called a flare, where the root entity is situated at the center of
the flare. The further away we go from the center, we have the intermediate layers
of the hierarchy until the leaf elements of the hierarchy situated at the end of the
circle.

Figure 5.1 provides an example of the representation of a communication be-
tween two entities part of a hierarchy. On the left, there is a normal representation
of the adjacency relation with a strait line not displaying the number of layers
crossed by this communication. On the right, the line has been curved to follow the

FUTURE WORKS 107

branch of the hierarchical tree which represents that the entities communicating do
not share common layers. These adjacency relations are represented with a tension
toward the center that is more important for entities not sharing common parent
elements in the hierarchy.

Figure 5.1: Behaviour Principle of the Hierarchical Edge Bundling Visualization:
the Tension of the Arcs Depend on the Number of Layers Traversed

This visualization is particularly suitable for representing complex Cloud Ap-
plication like Zonal Kubernetes Cluster. In that case, the hierarchy in the flare
would be the physical positioning of resources and the representation of adjacency
relations would show the amount of communications that cross the Zonal bound-
aries and that are added to the cloud bill. Some software like infra-scrapper10 have
already used Edge Bundling Visualization to represent component interactions like
shown in figure 5.2, still the hierarchy used in the flare was not a representing the
physical location but the logical embedding of entities within Kubernetes. Therefore
the representation only displayed the interactions between Kubernetes namespaces,
which does not bring much value to the representation. Instead, with the hierarchy
inside the flare representing the geolocation of resources, the visualization would
highlight the amount of communication crossing the boundaries of servers, data
centres, availability zones or even regions.

Bringing this kind of visualization to Jaeger help to use tracing not only as a
debugging tool but also as a dashboarding tool to provide a higher view of a Cloud
Application. Implementing this visualization tool would provide another bridge
between the model from chapter 2 and the implementation proposed in chapter 3

10https://github.com/cznewt/infra-scraper/ Open source tool for analysing the infrastruc-
ture of a Cloud Application based on Kubernetes

https://github.com/cznewt/infra-scraper/

108 CONCLUSION & FUTURE WORKS

Figure 5.2: Example of Edge Bundling Visualization provided by infra-scrapper to
represent Pod Interaction in a Kubernetes Namespace

by providing another way of displaying the costly communication an application.
This visualization would also benefit from the gain in maturity of tooling and the
addition of fields, as it would allow to set a thickness to the adjacent relation like,
for example the number of bytes exchanged.

Mid-Term Work

Once the adoption of distributed tracing within the industry will settle down, gath-
ering traces representative of real world performance issues will be possible. This
would enable quantitative analysis on tracing data, and therefore to add weight
to the flow hierarchy metric calculation. In addition, adding weights to the model
would apply to the global application model where the betweenness centrality was
used to detect chokepoints. Both ideas leveraging the model have been presented
with a weighted and unweighted approach. The unweighted approach has been
preferred for a qualitative approach, still with time, a quantitative approach would
provide more accurate results.

Chapter 3 presented the use of the flow hierarchy metric that counts the number
of edges not involved in a cycle, and the impact of cycles in a Cloud Application.
Also, in [Zafeiris 2018], authors mention multiple other metrics related to flow hi-
erarchies that could find a use with the proposed model. In particular, authors
propose a metric that would complete the flow hierarchy: it consists on the mini-
mum fraction of edges to be removed to make the graph cycle-free. This approach
would complete the flow hierarchy to quantify the number of inefficient communi-
cations occurring when serving a request.

Also, Chapter 4 presented the use of the betweenness centrality to detect choke-

CLOSING WORDS 109

points in the application. The detection is note performed online and require to
recompute the entire graph at each computations. Also computing centrality scores
over the shortest path between any given vertices may not be representative of all
the kind of communications occurring between microservices. It would be possible
to enable an online computation of a scoring inspired y the betweenness centrality
where, instead of iterating over every shortest paths in the graph; iterations would
be performed over each traces collected from Jaeger.

Long-Term Work

Over this thesis we used distributed tracing to take another approach to distributed
application monitoring. A focus has been made on scenarios an use-cases where ob-
serving the dependencies at runtime would bring a high value. In a later future,
we could imagine the extension of the technology used by traces to observe com-
munications not only for application performance monitoring but also to a wider
variety of usages. For example, IT security relies on logging and networking probes
to rebuild a graph of entities taking part in the information system of the company.
Adding context propagation in the networking devices and policies of the compagny
could enable to recreate traces.

In IT security, these traces would also highlight communication behaviours be-
tween entities taking part in the system. Also companies structures are also in-
herently hierarchical: a multitude of hierarchies can be used to model interactions
between devices, employees, or even access rights. In a different context, the graph
rewriting approach that projects dependencies over higher abstraction layers can
show an attacker trying to access an different kind of resources.

Closing Words
Throughout this thesis we have set the focus on Cloud application performance
monitoring under the angle of distributed system anomalies by relying on a promis-
ing technology, still under heavy development. This technology takes the form of
traces, displaying, in a Gantt chart, a vast amount of properties following a well-
defined semantic. This data has a different usage than logs and metrics and has
the capability of monitoring and observing dependencies in a distributed system at
runtime. Actually mainly used for debugging purposes, in this work we propose
different usages targeting production environments and scenarios.

This work has long been a part of the Djingo Project in Orange, the team
has provided both the initial research challenges and data. But these last years
have lead the team and Orange to review their priorities and unfortunately, the
proposed model has not been able t reach production and to ingest a real flow of
traces. Still, the challengesllenges addressed remain generic, and over the past years
multiple other projects have tried and adopted OpenTelemetry as a framework for
monitoring their application.

110 CONCLUSION & FUTURE WORKS

Appendix A

Résumé en Français

Contents
A.1 Monitoring d’Applications Cloud 114

A.1.1 Introduction . 114
A.1.2 Présentation du Paradigme Cloud 114
A.1.3 Les Applications Cloud Natives 115
A.1.4 Monitoring et Analyse de Performance d’Application cloud . 116

A.2 Modélisation des Communications Internes 118
A.2.1 Introduction . 118
A.2.2 Présentation de l’Écosystème de Tracing 118
A.2.3 Extraction et Aggregation des Données dans un Graphe de

Propriétés . 119
A.3 Détection de Composition de Services Inefficaces 123

A.3.1 Introduction . 123
A.3.2 Modélisation d’une Application cloud grâce au Concept de

Hiérarchies . 123
A.3.3 Détection de Communications Inefficaces 124
A.3.4 Mise en œuvre . 126

A.4 Détection de Goulots d’Étranglements 128
A.4.1 Introduction . 128
A.4.2 Généralisation de l’Encodage en Graphe de Propriétés 128
A.4.3 Utilisation de l’analyse de Centralité pour l’Anticipation de

Goulots d’Étranglement . 130
A.4.4 Vérification Expérimentale 132

A.5 Conclusion . 137
A.5.1 Synthèse des Contributions 137
A.5.2 Pistes de Poursuite des Travaux 138

112 APPENDIX A. RÉSUMÉ EN FRANÇAIS

Introduction

Contexte

Au cours des dernières années nous avons pu observer un essor des Applications Web
dans notre quotidien. Qu’il s’agisse de réseaux sociaux, de sites marchands ou de
plateforme de diffusion de contenu multimédia, tous ces cas d’utilisation prennent
la forme d’applications Web. Et bien que la croissance de ces applications était déjà
importante, la crise du COVID-19 a accéléré cette expansion. Des études telles que
[Cantor 2020] ont démontré, lors du confinement, que YouTube drainait, à lui seul,
plus de 15% du trafic mondial juste devant Netflix qui lui en occupait 11%. Cet
exemple illustre l’avantage principal de ces applications : leur extrême scalabilité1 :
ces application sont capables de répondre à un nombre de requêtes utilisateur très
changeant tout en maintenant un niveau de service élevé pour l’utilisateur.

Cette scalabilité est permise par le paradigme du Cloud Computing, apparu il y
a une vingtaine d’année, qui permettait d’accéder quasiment instantanément à des
ressources de calculs hébergées dans des centres de données. Depuis, ce paradigme
a évolué et a radicalement changé les méthodes de développement de logiciels. Afin
de tirer le meilleur parti des avantages du Cloud Computing, les développeur se sont
adaptés et ont changé l’approche du développement d’applications. Les applications
dites Cloud Natives sont conçues comme des systèmes distribués. Elles exploitent les
capacités des systèmes distribués afin de maintenir un haut niveau de disponibilité,
et de performanceet ce quel que soit la charge appliquée par les utilisateurs.

L’adoption du paradigme du Cloud Computing a aussi eu un impact sur les
méthodologies de monitoring de ces applications. En effet, en tant que système
distribué, les cause de pannes et de dégradations de services ont été démultipliées.
Les systèmes de suivi de performance de ces applications doivent pouvoir détecter
de nouveaux types de pannes telles que les goulots d’étranglement, les erreurs d’in-
tégration ou même la vampirisation de ressources.

Environnement Industriel et Problématique

Les travaux présentés dans cette thèse font partie d’un projet de recherche initié par
Orange Labs Services, la division de R&D du Groupe Orange et ont été réalisés avec
la collaboration des équipes de conception de Djingo. Le projet Djingo consistait à
concevoir un assistant vocal intégré à l’écosystème Orange. Les serveurs de Djingo
avaient été conçu avec une approche Cloud Native et réparti sur plusieurs centres de
donnés en Europe. En tant qu’assistant vocal, les performances de Djingo étaient
critiques pour les équipes de développement. Cependant ce projet n’a pas été mené
à terme et Orange, pour des raisons stratégiques, n’a pas commercialisé le produit
et a arrété son développement en 2020. Malgré l’issue du projet, le cas de Djingo a
permis d’illustrer des problématiques de performances liées aux application Cloud
et a motivé les contributions présentées dans ce document.

1anglicisme du mot “scalability” communément utilisé dans le domaine de l’informatique pour
caractériser la capacités d’un système à s’adapter a une changment important dans la charge qu’il
gère.

113

J’ai donc mené des travaux pour formaliser une approche pour la détection
d’anomalies de performances mais sous l’angle de l’analyse de traces. Ainsi, cette
thèse propose une approche de la détection problèmes de performances au sein d’une
application Cloud sous l’angle de l’analyse de traces. Les contributions présentées
dans cette thèse s’inscrivent autour d’une initiative Open Source du nom de Open-
Telemetry. Cette initiative vise à unifier les différentes d’approches de monitor-
ing d’applications dans le Cloud regroupant l’analyse de journaux, la collecte de
métriques et de traces, autours d’une sémantique et d’interfaces communes.

Résumé des Contributions & Présentation du Plan

Les contributions présentées dans cette thèse utilisent le projet OpenTelemetry, et
en particulier la sémantique des données de télémétrie, pour présenter un modèle
d’encodage de ces données sous forme de graphe de propriétés. Ce modèle d’en-
codage de trace est utilisé de deux façons pour illustrer deux scénarios de détection
d’anomalies de performances propres aux architectures Cloud.

La thèse s’articule de la façon suivante :

A.1 : Monitoring d’Applications Cloud présente une analyse de littérature
sur le paradigme Cloud et son évolution. Une attention est portée aux dif-
férentes approches de monitoring des applications distribuées ainsi qu’aux
initiatives couvrant l’utilisation de systèmes de traces distribuées.

A.2 : Modélisation des Communications Internes présente la sématique Open-
Telemetry et explique les mécaniques d’encodage sous forme de graphe qui ont
permis de transformer des traces en un graphe de propriétés hierarchiques.

A.3 : Détection de Composition de Services Inefficaces présente la première
contribution qui utilise modèle précédent pour identifier les cas où la compo-
sition de service est inefficasse au cours de l’exécution du programme. Les
travaux présentés dans cette section ont été publié dans [Cassé 2021].

A.4 : Détection de Goulots d’Étranglements présente une approche basée sur
l’analyse de centralité dans le graphe pour identifier les potentiels goulots
d’étranglement dans une application distribuée. Les travaux de présentés
dans cette section ont été publiés dans [Cassé 2022].

114 APPENDIX A. RÉSUMÉ EN FRANÇAIS

A.1 Monitoring d’Applications Cloud

A.1.1 Introduction

Le concept de Cloud Computing est apparu en 2008 et n’a cessé de s’imposer dans
le paysage de l’informatique depuis. À l’origine, ce concept a été initié par des
entreprises de l’internet telles que Amazon, elles ont tiré parti de la virtualisation
et des capacités d’automatisation pour rentabiliser les ressources de leur centre de
données en les louant aux usagers. À l’origine vendu comme un simple produit, ce
concept a permis aux développeurs d’application d’accéder rapidement à de plus en
plus de ressources de calculs à la demande. Aujourd’hui, cet accès à une puissance de
calcul virtuellement infinie a permis la démocratisation d’applications nativement
distribuée telle que définie dans les applications Micro-Services ou dans les pipelines
de traitement Big-Data.

Aujourd’hui, les plus grandes entreprises de l’informatique ont toutes une partie
de leur bizness liée aux technologies cloud : Apple et Facebook créent et utilisent
leurs propres centres de données pour développer leurs services en ligne. D’un
autre côté, Amazon, Google et Microsoft utilisent et revendent leurs ressources de
calculs à leurs usagers. Ces derniers mettent à disposition un vaste catalogue de
services allant de la location de machine virtuelle à la gestion automatisée de bases
de données ; par la suite, on qualifiera ces acteurs des CSP que l’on peut traduire
par Fournisseurs de Services cloud.

A.1.2 Présentation du Paradigme Cloud

Le concept de Cloud Computing est apparu, en premier lieu, dans le milieu indus-
triel. C’est les publications [Vaquero 2008, Mell 2011] qui ont apporté une première
formalisation académique. Ces publications identifient les multiples caractéristiques
des plateformes Cloud qui restent majoritairement valables aujourd’hui : en parti-
culier le fait de mettre à disposition des ressources de calcul à la demande via un
catalogue (On-demand self-service), accessible de n’importe où sur le réseau (Broad
network access). Ces ressources du catalogue sont fournies as-a-Service, séparées
entre les clients, accessible quasiment immédiatement et surtout leur utilisation est
quantifiée, impactant directement la facture.

Les auteurs présentent aussi trois niveaux d’abstraction pour les ressources mises
à disposition par les CSPs : L’IaaS qui met à disposition des machines virtuelles
ainsi que des composants réseaux virtuels, le PaaS qui met à disposition des ma-
chines préconfigurées pour exécuter du code sans se soucier de l’environnement
d’exécution. Le dernier niveau d’abstraction est le SaaS qui est un logiciel avec son
interface de programmation générique capable de s’adapter au besoin des multiples
utilisateurs, par exemple un outil de gestion de paiements, ou bien un outil de mise
en relation avec les utilisateurs.

C’est en particulier sur ce dernier aspect de niveaux d’abstraction que cette
définition a été particulièrement challengée [El-Gazzar 2016, Senyo 2018]. En effet,
de nombreuses technologies ne rentrant pas dans ces catégories se sont peu à peu
imposées dans le paysage des technologies phares du Cloud. Le premier exemple
est la containerisation qui a été démocratisée par Docker, il s’agit d’un niveau in-

A.1. MONITORING D’APPLICATIONS CLOUD 115

termédiaire entre le IaaS et le PaaS qui offre de meilleures capacités d’isolation et
portabilité des logiciels exécutés dans le Cloud. Les architectures Serverless présen-
tées dans [Varghese 2018, van Eyk 2018] viennent aussi se glisser entre deux niveaux
d’abstraction proposés dans la définition précédente. L’architecture Serverless in-
troduit la notion de Function-as-a-Service (FaaS) qui se glisse entre les abstractions
de PaaS et de SaaS.

Aussi, la définition actuelle fait état de centralisation au sein des centres de
données, de nombreux travaux font état d’une distribution de plus en plus complexe
et proche del’utilisateur afin de servir un maximum d’utilisateur avec une latence
toujours plus basse. Ces travaux traitent tant de la distribution et réplication au
sein des centres de données [Chaczko 2011, Unuvar 2015, Chou 2019] que du Edge
Computing et de l’IoT [Khan 2019].

L’analyse de performance dans les environnements cloud est un sujet très actif
dans le milieu de la recherche et donne lieu à de nombreuses publications que ce
soit au travers de la vision des fournisseurs que des usagers. Les premiers cherchent
à rentabiliser leur infrastructure en servant un maximum d’utilisateurs [Yu 2018,
Dabbagh 2015a, Dabbagh 2015b]. De leur côté, les utilisateurs font aussi face à
de nouvelles problématiques, en effet le recours aux fournisseurs tiers ne donne pas
accès aux mêmes métriques pour estimer la performance logicielle d’une application.
Les travaux comme [Jayathilaka 2017, Singh 2017] montrent des initiatives basées
sur les niveaux de qualité de service et d’engagement par les fournisseurs. Ces
travaux sont d’autant plus complexes que le milieu technologique sous-jasant est en
constante évolution.

A.1.3 Les Applications Cloud Natives

Avec la démultiplication des niveaux d’abstraction permise par les technologies
cloud, les développeurs d’applications ont pu adopter une approche complètement
différente pour concevoir leurs logiciels. Les technologies cloud ont permis l’émer-
gence de l’approche dite Microservices [Fowler 2014, Newman 2015]. Elle est vue
comme l’extension de l’approche SOA, les composants sont cependant beaucoup
plus découplés, il s’agit de processus indépendant communicant entre eux via le
réseau, souvent en HTTP. Cette approche est même qualifiée de fine-grained SOA
dans les travaux de [Heinrich 2017].

Les applications cloud adoptent donc une architecture nativement distribuée :
ce qui permet de minimiser les temps de maintenance au point qu’il est actuellement
rare de trouver des sites “en maintenance”. Les propriétés de scalabilité des systèmes
distribués a permis à de nombreux sites de prendre une envergure mondiale tels que
Netflix, Uber, Twitch, AirBnB ou Zoom. Par exemple dans [Gluck 2020], l’auteur,
employé a Uber, mentionne que leur application se compose de plus de 2 200 mi-
croservices en production. À une telle échelle, le monitoring des composants de
l’application devient une tâche extrêmement complexe, et ces entreprises se heur-
tent aux limites des capacités des systèmes de monitoring des applications. Dès
2016, l’entreprise Uber avait rapporté qu’elle monitorait plus de 500 000 000 séries
temporelles pour s’assurer de la qualité de service de son application [Uber 2016].

À une telle échelle, les problèmes que doivent identifier les outils d’analyse de

116 APPENDIX A. RÉSUMÉ EN FRANÇAIS

Figure A.1: Visualisation sous forme de Graphe des Microservices des applications
de Amazon et Netflix en 2016 par [Cockcroft 2016a, Cockcroft 2016b].

performance ne relèvent plus uniquement de la performance individuelle de chacun
des composants, mais surtout de leur composition afin de répondre aux requêtes
utilisateurs. Les problèmes auxquels font face les applications de cette taille con-
sistent à identifier des problèmes de concurrence, d’accès mutualisé aux ressources,
de détection de goulots d’étranglement ou même de vampirisation d’une ressource
sur une autre.

A.1.4 Monitoring et Analyse de Performance d’Application cloud

Les applications cloud sont difficiles à monitorer et ce n’est pas uniquement dû
à leur taille. Elles sont faites de composants hétérogènes, de technologies appar-
tenant à des niveaux d’abstraction différents et potentiellement hébergées sur des
centres de données différents. Chaque composant émet ses propres données de
performance sans possibilité de recoupement avec des données provenant d’autres
sources. La masse de données créée à l’échelle d’une application tournant en pro-
duction est énorme et est souvent traitée avec une approche Big-Data dans la lit-
térature [Quantcast 2013, Dean 2014, Thalheim 2017, Dalmazo 2017, Gan 2018a,
Gan 2020].

L’entreprise Facebook a publié beaucoup de travaux sur leur approche du mon-
itoring. Au fil des années on a pu observer que l’entreprise a déployé beaucoup
d’énergie à identifier la causalité entre les évènements de monitoring reportés par
chacun des composants du site. Ces travaux ont commencé par la création d’un
arbre de causalité basé sur les interactions entre composants [Chow 2014] pour
adopter la forme d’un outil de collecte et d’analyse de traces comme on en trouve
aujourd’hui [Veeraraghavan 2016, Veeraraghavan 2018, Kumar 2018]. L’orientation
de ces travaux montre le besoin d’établir des regroupements logiques au sein des
données de monitoring.

De nombreux travaux viennent corroborer ce besoin d’établir des regroupements
entre les données émises par de multiples composants dans un système distribué

A.1. MONITORING D’APPLICATIONS CLOUD 117

afin de retrouver une vue plus globale du système que celle de chacun de ses com-
posants [Ardelean 2018, Lin 2018, Jayathilaka 2017]. C’est dans cette optique qu’a
été créé OpenTelemetry, proposer un ensemble d’outils pour traiter les données de
télémétrie des applications cloud. Le projet définit une sémantique visant à uni-
fier le format des données tels que les Logs, les métriques, et aussi les traces des
applications. De plus, le projet propose d’utiliser les techniques de propagation de
contexte [Kanzhelev 2020] afin d’établir une corrélation entre les données reportées
par plusieurs systèmes directement à l’exécution.

Conclusion

Les travaux de cette thèse se positionnent dans ce contexte d’adoption de la tech-
nologie OpenTelemetry comme moyen permettant la détection d’anomalies de per-
formances inhérentes aux systèmes distribués. Ces travaux sont supportés par l’util-
isation d’outils de tracing au sein de développements industriels comme ce fut le
cas pour Djingo. Bien qu’actuellement le tracing des applications cloud ne soit
majoritairement utilisé à des fins d’investigation, les chapitres suivants détaillent
une approche capable de suivre les performances de l’application directement à
l’exécution.

Dans les sections suivantes, nous détaillerons la conception d’un graphe de pro-
priété basé sur les dépendances exprimées dans les traces. Les sections suivantes
détaillent les contributions en proposant de détecter des compositions de services
inefficaces et des goulots d’étranglement. Ces deux approches proposent de traiter
le graphe en identifiant les cycles en en analysant la centralité des nœuds.

118 APPENDIX A. RÉSUMÉ EN FRANÇAIS

A.2 Modélisation des Communications Internes grâce
aux Données de Traces Distribuées

A.2.1 Introduction

Le projet OpenTelemetry a démarré en mai 2019 comme union de deux projets
open source existant : OpenCensus et OpenTracing. L’union de ces deux projets
couvrants chacun un pan de la télémétrie dans le Cloud a permis la création d’une
initiative OpenSource visant à proposer une normalisation des outils de collecte de
données de monitoring. Cette initiative est encadrée par la CNCF2 et de nombreux
acteurs privés y contribuent (comme Google, Uber, Amazon, etc.). Ce projet ne
vise qu’à créer un pipeline d’acheminement de données ainsi que leur format ; ni le
stockage ni l’exploitation ne sont couverts par le standard.

Les travaux présentés dans cette thèse exploitent la sémantique des données de
monitoring afin de modéliser une application physiquement distribuée sur plusieurs
centres de données dans un graphe de propriétés hiérarchique. L’étude présentée ici
s’appuie sur le cas des Cluster Kubernetes Zonaux qui sont des clusters Kubernetes
distribués dans plusieurs centres de données. Alors que Kubernetes présuppose d’un
réseau homogène connectant les différentes machines qui le compose, on observe que
cette hypothèse est mise à l’épreuve par les récentes exploitations du système. La
modélisation présentée dans cette section fait ressortir la structure hiérarchique
d’un réseau, les sections suivantes proposeront deux utilisations de ce modèle.

A.2.2 Présentation de l’Écosystème de Tracing

Le projet OpenTelemetry est complexe et pour ces travaux nous nous intéresserons
principalement à une sous-partie de ce projet: la sémantique des données. Le
standard définit le concept de Resource qui caractérise l’unité depuis laquelle est
émise la donnée de performance. Au sens OpenTelemetry, cette Resource est une
seule et unique entité, caractérisant le potentiellement le Pod si l’environnement
monitoré est Kubernetes. Cependant cette ressource peut aussi être une machine
virtuelle, ou simplement un processus. Il est possible d’identifier le type de cette
ressource en fonction des métadonnées que celle-ci possède.

Les traces OpenTelemetry se matérialisent chacune sous la forme d’un dia-
gramme de Gantt qui représente les relevés de latence de chacune des fonctions
instrumentées. Chacun de ces relevés est associé à une unique ressource et les
relevés forment un Graphe Acyclique Dirigé qui représente le chainage des fonc-
tions, par exemple associé à une action utilisateur. La figure A.2 montre un simple
exemple de trace et la conversion associée en Graphe Acyclique Dirigé.

Par la suite, nous proposons une approche visant à refléter les différents niveaux
d’abstraction grâce à la sémantique des métadonnées portées par ces ressources.
En effet la vision actuelle de l’outil ne reflète pas la complexité structurelle des
applications cloud et de leur plateforme. Dans l’approche suivante, nous ne nous

2Cloud Native Computing Foundation Organisation au même titre que la Apache foundation
dédiée aux outils de Cloud. Il s’agit notamment de la fondation qui encadre le développement de
projets phares tels que Kubernetes ou Prometheus.

A.2. MODÉLISATION DES COMMUNICATIONS INTERNES 119

Figure A.2: Graphical Representation of Jaeger Analytic Library Graph Encoding

limiterons pas à une seule et unique ressource par relevé de latence. L’approche con-
siste à faire apparaitre tous les niveaux d’abstraction en tant que Noeuds distincts
dans le graphe. Dans le cadre d’un cluster Kubernetes réparti sur plusieurs zones,
chaque relevé de latence sera, à la fois, associé à un Pod3, mais aussi à un Node
(VM exécutant le Pod), à une zone de disponibilité (centre de données hébergeant
la machine virtuelle).

A.2.3 Extraction et Aggregation des Données dans un Graphe de
Propriétés

Afin de décrire le processus d’encodage de graphe capable de représenter les in-
teractions entres les multiples ressources prenant part dans une application cloud
nous présenterons en premier lieux comment ces différentes ressources sont mod-
élisées et identifiées. En second lieu, nous présenterons un processus de réécriture
de graphe afin de simplifier le graphe pour ne représenter que les ressources et leurs
interactions.

A.2.3.1 Identification et Modélisation des Composants

Dans une application Cloud on peut observer que la structure des composants
est extrêmement hiérarchique. Dans le cas de Kubernetes on peut observer des
relations d’ordre et de précédence entre les niveaux d’abstraction que propose
l’outil, par exemple Pods ⊂ ReplicaSets ⊂ Deployments ⊂ Clusters. représente
l’ordre d’inclusion logique composants. D’un autre, coté il est possible de mod-
éliser l’ordre de positionnement physique par une hiérarchie d’inclusion différente :
Pods ⊂ Nodes ⊂ Zones ⊂ Clusters.

3Unité logique encadrant l’exécution de containers dans un environnement Kubernetes

120 APPENDIX A. RÉSUMÉ EN FRANÇAIS

Dans le cas des applications physiquement distribuées, la hiérarchie de place-
ment des ressources est particulièrement intéressante. En effet, elle permet de met-
tre en avant les décisions de placement prises Kubernetes. Nous avons donc décrit
un processus d’encodage de traces capable d’identifier chacune de ces ressources
comme un seul et unique nœud dans le graphe et chacun des relevés de latence
pointera vers ce nœud. De plus, ce système d’encodage permet aussi d’associer
plusieurs ressources de plusieurs types à un seul relevé de latence dans une trace.

La figure A.3 représente le rôle du processus d’encodage: il transforme un agré-
gat de relevés de latence (appelés Spans) formant diagramme de Gantt en un graphe
de propriété. Ce graphe met en avant dans des nœuds dédiés les ressources exécu-
tant l’application faisant ainsi ressortir la structure de l’application.

Figure A.3: Processus d’encodage d’une trace en un graphe de propriétés.

Dans cette figure nous n’avons fait apparaitre que deux niveaux de hiérarchie
pour ne pas complexifier la visualisation. Avec ce graphe il est possible de voir à
quel point deux relevés de latences sont “physiquement proches” dans l’application:
c’est-à-dire en fonction du nombre de nœuds de type Resource qu’ils partagent.
Cependant, ce modèle ne permet pas de mettre en avant des relations entre ces
nœuds de type Resource. La section suivante propose une approche pour mettre en
avant les relations de ces ressources avec des techniques de réécriture de graphe.

A.2.3.2 Identification et Modélisation des Interactions

Une trace traduit la composition des ressources entre elles afin de répondre à une
fonction. Le graphe présenté précédemment met en avant la relation d’inclusion
entre les ressources exécutant l’application. Dans le modèle présenté de la figure A.3,
nous pouvons observer que les relevés de latence (Span) sont liés entre eux et forment
un Graphe Acyclique Dirigé. Les ressources (Pods, Nodes), en revanches, ne sont
pas liées entre elles. Afin de mettre en avant les relations entre les ressources,
nous proposons de “projeter” les relations observées entre les Spans sur les nœuds
représentant les différents types de ressource.

Dans une trace, les noeuds et les arrètes forment des motifs différents quand
les communications représentées traversent les frontières des ressources. En effet,
une dépendance entre spans observés sur la même ressource se matérialisera dans

A.2. MODÉLISATION DES COMMUNICATIONS INTERNES 121

le graphe comme deux noeuds Spans pointant vers le même noeud Resource. Au
contraire, une communication réseau entre deux ressources sera représentée par
deux noeuds Span pointant vers deux noeuds Resource distincts.

Figure A.4: Représentation des motifs de communication locale et de communica-
tion réseau dans notre modèle d’encodage de graphe.

La figure A.4 fournit une représentation visuelle de ces deux motifs. Leur iden-
tification dans le graphe peut donc permettre de représenter quelles frontières tra-
versent les communications observées dans une application distribuée. Ce processus
de projection est réalisé grâce à la réécriture de graphes, la figure A.5 fournit une
formalisation de ce processus de réécriture ou on voit que seuls les motifs représen-
tant des communications réseau sont préservés alors que ceux représentant une
communication locale sont éliminés.

Figure A.5: Formalisation du processus de réécriture de graphe

122 APPENDIX A. RÉSUMÉ EN FRANÇAIS

Conclusion

Dans cette section nous avons présenté l’écosystème de tracing d’application cloud
et nous avons exploité ce format pour présenter un modèle de transformation de
ces données pour maintenir un graphe des communications réseau observées dans
une application cloud. L’annexe B présente le code qui a été réalisé en Scala pour
traiter les données de tracing et effectuer les transformations présentées. Tous les
traitements présentés ont été réalisés en mémoire et parallélisés pour de meilleures
performances lors de l’ingestion d’un volume plus conséquent de données.

Les sections suivantes détaillent deux applications de ce modèle pour répondre à
des problématiques de performances observées sur les applications cloud notamment
difficiles à adresser avec un outillage de monitoring plus conventionnel.

A.3. DÉTECTION DE COMPOSITION DE SERVICES INEFFICACES 123

A.3 Détection des Communications Inefficaces dans une
Application Physiquement Distribuée

A.3.1 Introduction

Dans la section précédente, nous avons vu comment les données de tracing d’appli-
cation cloud pouvaient être utilisées pour maintenir un graphe de communication
entre les entités prenant part à l’application. Dans cette section, nous proposons une
approche pour l’analyse de ces graphes afin de mettre en avant une problématique
intimement liée aux performances dans les applications physiquement distribuées.
En effet, nous proposons un moyen d’identifier les cas dans lequel la composition
de services peut être qualifiée d’inefficace.

Afin d’étayer notre étude, tout au long de cette section, nous nous intéresserons
aux “Cluster Kubernetes Zonaux” qui possèdent une structure et des propriétés sim-
ilaires aux infrastructures cloud étudiées dans le contexte industriel à Orange. Ces
Clusters Kubernetes Zonaux correspondent à un groupement de machines réparties
dans plusieurs centres de données qui contribuent ensemble à servir une application
cloud. Ces clusters zonaux sont créés dans le but de répondre à des probléma-
tiques de disponibilités, mais induisent des communications supplémentaires entre
les centres de données. Au sein d’Orange, la problématique soulevée par les équipes
de développement d’application était d’identifier si les va et-viens entre plusieurs
centres de données pouvaient avoir un impact négatif sur le temps de réponse de
l’application.

A.3.2 Modélisation d’une Application cloud grâce au Concept de
Hiérarchies

Le concept de hiérarchie est étudié en détail dans la publication [Zafeiris 2018]. Les
auteurs présentent une définition très large du concept de hiérarchie tel qu’on peut
l’observer au quotidien, puis propose une analyse plus approfondie de ce concept en
identifiant des sous-catégories de hiérarchies. Parmi les sous-catégories identifiées,
nous retrouvons principalement la hiérarchie d’inclusion (qui représente l’ordre d’in-
clusion des entités hiérarchisées comme les poupées russes ou les ressources dans
une application cloud : Pod ⊂ Node ⊂ Zone ⊂ Region). L’autre sous-catégorie
présentée dans la publication est la hiérarchie de flux, appelée aussi parfois hiérar-
chie de contrôle, elle matérialise l’influence d’une entité sur les autres entités du
même type (telles que l’influence des hommes politiques ou bien la communication
entre les différents microservices prenant part dans une application cloud). Bien
que les auteurs détaillent d’autres types de hiérarchie dans cette publication, ces
derniers ne seront pas abordés dans cette thèse.

Il apparait alors possible de modéliser différents aspects d’une application cloud
grâce aux sous-catégories de hiérarchie précédentes : Une hiérarchie d’inclusion
pour modéliser les différents niveaux d’abstraction des ressources et une hiérarchie
de flux pour modéliser les interactions entre ces ressources. La figure A.6 représente
le processus d’encodage de taces présenté dans la section précédente tout en met-
tant en avant ces deux types de hiérarchies pour un cluster Kubernetes classique.

124 APPENDIX A. RÉSUMÉ EN FRANÇAIS

Nous observons que l’ordre hierarchique entre les Pods et les Nodes se matérialise
par la relation d’inclusion IS_CONTAINED. Les relations REFERENCE créant
les relations PROJECTED_REF après réécriture du graphe forment une relation
hiérarchique de flux entre ressources d’un même niveau.

Figure A.6: Trace encodée représentée sous forme de graphe hiérarchique

Ces différentes catégories de hiérarchies ne sont cependant pas traitées dans la
même mesure dans la littérature, en particulier dans le milieu informatique. Une
vaste majorité des publications traite donc de la hiérarchie d’inclusion et délaisse
la hiérarchie de flux, cependant, dans la publication [Luo 2011], les auteurs s’in-
téressent aux hiérarchies de flux et en particulier aux hiérarchies de flux imparfaites.
Ils différencient les hiérarchies de flux parfaites, c’est à dire dépourvues de cycles
(telles que les DAG) et les hiérarchies de flux imparfaites où la structure “ordonnée”
du graphe est partiellement préservée. La présence de cycles dans un graphe inter-
fère avec la notion d’ordre dans la hiérarchie et, de ce fait, dans leur publication, les
auteurs proposent une métrique permettant de quantifier la structure hiérarchique
d’un graphe. Ils présent h, l’indice de “flow hierarchy” qui quantifie à quel point un
graphe possède une structure hiérarchique en dénombrant le nombre d’arêtes d’un
graphe ne prenant pas part à un cycle.

Dans le modèle de trace encodées avec le méta-modèle précédent, comme celui de
la figure A.6, on observe qu’un graphe initialement défini comme acyclique, pouvait,
après processus de réécriture présenter des cycles dans sa structure.

A.3.3 Détection de Communications Inefficaces

A.3.3.1 Les Cycles comme Marqueurs de Communications Inefficaces

Au sein d’une application cloud, ces cycles déterminent des communications réseau
entre des composants qui font des vas-et-viens. La présence de ces vas-et-viens
démontre une mauvaise composition des ressources formant l’application : qu’il
s’agisse d’un mauvais placement des resosurces ou d’une mauvaise décision de
“routage applicatif” (comprendre équilibrage de charge).

Dans le contexte industriel fourni par Orange pour cette thèse, au cours de
son développment, les concepteurs de l’application Djingo souhaitaient corréler la

A.3. DÉTECTION DE COMPOSITION DE SERVICES INEFFICACES 125

présence de communication inefficaces avec le temps de réponse de l’application.
La métrique de “flow hierarchy” présentée par [Luo 2011] appliqué à chacun des
niveaux d’abstraction présentés dans la section précédente constitue donc un mar-
queur d’effiicacité des communications réseaux sans pénaliser la distribution des
ressources.

A.3.3.2 Détection de Cycles

Figure A.7: Identification des
composants fortement connectés
dans un graphe dirigé

L’approche présentée dans [Luo 2011] proposait
une approche pour la détection de cycles basée
sur l’exponentiation successive de la matrice
d’adjacence. Cette méthode se révélant extrême-
ment couteuse en termes de calcul, elle n’était
pas adaptée à un traitement des traces en ligne.

Pour le calcul de l’indice de “flow hierarchy”,
j’ai proposé une approche basée sur la détec-
tion des composants fortement connectés dans
un graphe couplé à un parcours de graphe. En
effet, dans un graphe dirigé, les sommets ap-
partenant au même composant fortement con-
nectés sont nécessairement impliqués dans un
cycle. La figure A.7 montre le résultat de
l’identification des composants fortement con-
nectés dans un graphe dirigé. Les sommets
sont regroupés en composants fortement con-
nectés (représentés en pointillés), pour savoir si
les arêtes sont impliquées dans un cycle comme
le propose [Luo 2011], pour chacune des arêtes,
celle-ci n’est pas impliquée dans un cycle si les sommets qu’elles lient n’appartien-
nent pas au même composant fortement connecté.

A.3.3.3 Calcul d’Indice de Flow Hierarchy

La formule de l’indice de “flow hierarchy” pour un graphe dirigé G = (V, E) est
définie telle que :

h =
∑L

i=1 ei

L
(A.1)

Dans cette formule L = |E| soit le nombre total d’arêtes dans le graphe et ei

étant un coefficient dénotant si la iième arête du graphe appartient à un cycle ou
non. L’indice ei = 0 iième arête du graphe appartient à un cycle, sinon ei = 1.
Ainsi on peut reformuler la formule précédente par le ratio du nombre d’arêtes
non impliquées dans un cycle sur le nombre total d’arêtes dans le graphe. Le code
présenté dans l’annexe B.4 représente les différentes étapes de ce processus.

Ainsi, sur un flux de traces émises par une application cloud, il est possible
calculer, pour chacun des niveaux d’abstraction l’indice h associé. La figure A.8

126 APPENDIX A. RÉSUMÉ EN FRANÇAIS

Figure A.8: Calcul d’indice de flow hierarchy sur deux placements de Pods dans un
Cluster Kubernetes

montre comment, sur deux traces fictives utilisant deux instances d’un service dis-
tribué sur deux machines différentes, l’indice de flow hierarchy peut mettre en avant
la présence d’un cycle.

A.3.4 Mise en œuvre

Au cours de la thèse, l’approche a été d’utiliser les données exposées par l’outil
“Jaeger” qui était utilisé à Orange pour visualiser les traces de l’application Djingo.
Cependant, au cours de la thèse, l’application Djingo a été réduite et n’utilisait plus
de répartition sur plusieurs centres de données. L’approche présentée n’a pas donc
pu être validée sur une application à large échelle.

La validation a été réalisée sur une maquette dont l’infrastructure se rapprochait
de celle de Djingo: un cluster Kubernetes zonal. Une application de démonstra-
tion a été déployée sur un cluster zonal et celle-ci a été instrumentée pour utiliser
Jaeger au même titre que Djingo. Un cluster Kubernetes zonal n’introduit pas
de latence supplémentaire perceptible lors des communications entre les différentes
zones, cependant ces communications entre zones sont facturées par les fournisseurs
cloud.

Le but de cette maquette a donc été d’identification des communications qui al-
laient être facturées et surtout si celles-ci introduisaient des vas-et-viens qui allaient
être facturés sans apport bénéfique pour l’application.

A.3. DÉTECTION DE COMPOSITION DE SERVICES INEFFICACES 127

Conclusion

Dans cette section nous avons présenté une application du modèle présenté dans la
section précédente pour un traitement online des traces afin d’identifier les place-
ments de services introduisant des communications inefficaces. Cette problématique
est propre aux applications fortement distribuées et n’est actuellement pas traitée
dans la littérature actuelle. Les traces, couplées au modèle hiérarchique présenté
permettent de mettre en lumière des comportements qui n’apparaissent pas dans
les outils de monitoring actuels.

L’exploitation de l’application Djingo à permis de mettre en lumière une prob-
lématique réelle pour l’optimisation des communications dans un système distribué.
Bien qu’il n’ait pas été possible de tester l’approche sur un vrai flux de données,
une maquette a montré la validité de l’approche.

128 APPENDIX A. RÉSUMÉ EN FRANÇAIS

A.4 Détection de Goulots d’Étranglements dans une
Application Cloud

A.4.1 Introduction

Dans cette section, nous nous intéresserons à une autre application du modèle d’en-
codage de graphe présenté dans la section A.2. Au lieu d’appliquer une approche
traitant chaque trace individuellement au runtime, nous proposons dans cette par-
tie d’exploiter l’accumulation des traces dans un graphe de communication hiérar-
chique. Ainsi, dans cette section nous exploiterons le modèle d’encodage de trace
afin d’identifier les potentiels goulots d’étranglement dans une application cloud
distribuée.

Cette étude sera réalisée grâce à un simulateur d’applications cloud qui a été
modifié pour émettre des traces au format OpenTelemetry. Le simulateur utilisé
s’appelle Spigo et est disponible sur GitHub4, son auteur, A. Cockcroft, a conçu
ce simulateur pour représenter la figure A.1 présentée dans la première section.
Ce simulateur a permis de modéliser diverses applications cloud suivant les pra-
tiques d’architectures proposées par AWS, en particulier sur le positionnement des
ressources dans diverses régions sur le globe.

Ces travaux s’inscrivent dans le cadre des applications maintenues par Orange
dans lesquelles l’identification de goulot d’étranglement est critique pour assurer
et maintenir le service. Cette section illustre donc l’impact d’une instrumentation
de tracing avec OpenTelemetry pour identifier, les services les plus risqués au sein
d’une application distribuée.

A.4.2 Généralisation de l’Encodage en Graphe de Propriétés

Jusqu’à présent, les travaux d’encodage et d’exploitation de graphe de propriété
étaient intimement liés aux clusters Kubernetes zonaux. Cependant, la sémantique
des ressources présentées dans le projet OpenTelemetry couvre bien plus de types
de ressources, et inclut les applications AWS. Ainsi, nous avons adapté le proces-
sus d’encodage de graphe afin qu’il supporte plus de ressources pour modéliser les
applications AWS au même titre que les applications Kubernetes.

L’adaptation de ce processus couvre à la fois la modélisation des relations
EXECUTES_ON que l’on observe entre les Spans et les Resources ainsi que la modélisa-
tion des relations IS_CONTAINED qui traduit la hiérarchie d’inclusion des Resources
entre elles. La figure A.9 représente la décomposition en deux étapes pour la décou-
verte du méta modèle d’encodage de traces. La partie gauche de ce méta modèle
présente capable l’extraction de multiples relations EXECUTES_ON d’une trace en
suivant la sémantique décrite dans le projet OpenTelemetry.

La partie droite, quant à elle, représente l’ajout des relations IS_CONTAINED qui
n’apparait pas explicitement dans les données de tracing. En effet, cette seconde
partie nécessite une connaissance préalable de l’application et de sa structure. Ces
relations IS_CONTAINED représentent l’inclusion des différents types de ressources
entre eux, et ne sont pas tributaires des données captées au runtime. Ainsi, il est

4https://github.com/adrianco/spigo

https://github.com/adrianco/spigo

A.4. DÉTECTION DE GOULOTS D’ÉTRANGLEMENTS 129

possible d’ajouter, par réécriture de graphe, la relation d’inclusion Pod ⊂ Node ⊂
Zone ⊂ Region dans un deuxième temps comme représenté dans la figure suivante.
L’ordre d’inclusion des ressources reste un paramètre passé au modèle d’encodage
de trace précédent, seuls les sommets de type ressource liés entrent eux par une
relation IS_CONTAINED sont préservées au cours de la réécriture de graphe.

Figure A.9: Décomposition du modèle d’encodage de graphe en deux étapes pour
les relations EXECUTES_ON et IS_CONTAINED.

Dans le cas des applications AWS, l’ordre d’inclusion des ressources est le suiv-
ant : Service ⊂ Zone ⊂ Region. Toutes ces valeurs sont émises dans les données
de tracing et peuvent donc être aisément extraites et traitées par le processus d’en-
codage. La figure A.10 représente le méta modèle qui sera utilisé pour analyser les
applications AWS modélisées par le simulateur Spigo.

Figure A.10: Méta Modèle du processus d’encodage de graphe après les étapes
d’extraction et de sélection des relations.

130 APPENDIX A. RÉSUMÉ EN FRANÇAIS

A.4.3 Utilisation de l’analyse de Centralité pour l’Anticipation de
Goulots d’Étranglement

Grâce aux données de tracing et aux méthodes d’encodage présentées dans cette
thèse, il est possible de créer et de maintenir un graphe de communication des
différents types de ressources impliquées dans une application microservices. Dans
cette section nous proposons d’utiliser des algorithmes de calcul de centralité dans
un graphe pour identifier les goulots d’étranglement dans une application Cloud
physiquement distribuée. En effet, dans un graphe, l’analyse de centralité permet
d’identifier les sommets les plus importants. Il existe plusieurs algorithmes de calcul
de centralité, chacun proposant une définition différente de l’importance accordée à
chacun des sommets étudiés.

La figure A.11 représente un graphe mettant en avant différentes topologies
dans lequel certains sommets sont identifiés par une lettre, chacune de ces lettres
représente le somment le plus important selon un algorithme qui sera présenté par
la suite.

Figure A.11: Graphe mettant en avant différentes topologies pour illustrer les dif-
férents algorithmes de centralité.

A.4. DÉTECTION DE GOULOTS D’ÉTRANGLEMENTS 131

Le sommet A: Il possède le plus haut score de centralité de degré: la centralité de
degré mesure l’importance d’un sommet par le nombre de connexions qu’il
possède avec le reste du graphe. On peut identifier deux types de centralités
de degré, la centralité de degrés entrants et la centralité de degré sortant
qui s’applique pour les graphes dirigés. La première compte uniquement les
relations entrantes la seconde uniquement les sortantes. Pour un graphe G =
(V, E), la centralité de degré peut être exprimée pour chaque sommet u ∈ V
grâce à la formule suivante :

Cd(u) = ku

Le sommet B: Il possède le plus haut score de centralité de proximité: la centralité
de proximité accorde une forte importance aux sommets les plus proches de
l’ensemble des autres sommets du graphe. Pour un graphe G = (V, E), la
centralité de proximité peut être exprimée pour chaque sommet u ∈ V grâce
à la formule suivante :

Cc(u) = |V | − 1∑
∀v∈V
u6=v

d(u, v)

Le sommet C: Il possède le plus haut score de centralité d’intermédiarité: la cen-
tralité d’intermédiarité accorde une forte importance aux sommets agissant
comme point de passage lors de l’identification d’un plus court passage entre
deux sommets. La centralité intermédiaire permet d’identifier les sommets
drainant le plus de trafic dans un réseau de communication notamment. Pour
un graphe G = (V, E), la centralité d’intermédiarité peut être exprimée pour
chaque sommet u ∈ V grâce à la formule suivante :

Cb(u) =
∑

s 6=t6=u

σst(u)
σst

Dans cette équation, σst représente le nombre total de plus courts chemins
quelque soit les sommets (s, t) ∈ T 2 et σst(u) représente le nombre de plus
courts chemins passant par u.

Le sommet D: Il possède le plus haut score de centralité PageRank: L’algorithme
PageRank est une variante de l’algorithme d’une centralité de vecteur propre
qui a été publié par [Brin 1998] afin supporter le fonctionnement du moteur de
recherche de Google. Les algorithmes de centralité de vecteur propre estiment
l’importance d’un sommet basé sur l’importance des sommets connexes. Pour
un graphe G = (V, E) avec λ étant la valeur propre de la matrice d’adjacence
du graphe G, la centralité de vecteur propre peut être exprimée pour chaque
sommet u ∈ V grâce à la formule suivante :

Ce(u) = 1
λ

∑
t∈M(u)

Ce(t)

Parmi tous ces algorithmes de centralité, on peut identifier notamment la cen-
tralité de degré entrante et la centralité d’intermédiarité comme étant directement

132 APPENDIX A. RÉSUMÉ EN FRANÇAIS

applicables à un réseau de communication entre microservices. En effet, dans
la littérature actuelle qui traitre de l’identification de goulots d’étranglement, on
distingue deux typologies de goulots d’étranglement, un premier de saturation et
un second de concurrence [Ibidunmoye 2015, Marvasti 2013, Veeraraghavan 2016,
Veeraraghavan 2018].

La centralité de degré entrant peut être appliquée pour identifier la saturation
de certaines ressources, en effet des ressources saturées sont trop sollicitées et at-
teignent les limites des ressources qui leur sont allouées. Les ressources saturées sont
identifiées par un manque de CPU ou de mémoire ou d’accès disque, l’identification
de ressources saturées relève du monitoring de chacun des systèmes individuellement
et ne nécessite pas une vision globale.

Au contraire, les goulots d’étranglement de concurrence ne manifestent pas
d’anomalie de performance eux même, cependant ils sont souvent limités par des
dispositifs logiciels tels que des sémaphores, des accès partagé, ou des files de mes-
sages faisant office de ressource limitante qui doit être partagée. L’identification
de systèmes drainant une forte quantité de trafic dans une application permettrait
de donner une vision précise sur les services les plus critiques. L’utilisation de l’al-
gorithme de centralité d’intermédiarité propose une opportunité pour détecter les
composants critiques au bon fonctionnement de l’application.

La section suivante propose une approche expérimentale basée sur le simulateurs
d’application AWS Spigo présenté en introduction, nous y présenterons le mode
opératoire qui consite à valider cette approche.

A.4.4 Vérification Expérimentale

Pour valider l’identification de composants critiques, nous avons utilisé un simula-
teur sur lequel nous avons exécuté différentes scénarios en faisant varier le nombre
d’instances de certains services pour regarder l’impact sur l’indice de centralité in-
termédiaire. Le simulateur Spigo implémente divers scénarios, simulant des appli-
cation Cloud créées pour être exécutées par AWS. Parmi ces scénario, un s’intitule
Riak qui modélise une chaîne d’acquisition de données dans un Cloud provenant de
diverses zones.

Le simulateur fonctionne en modélisant chaque service d’une application AWS
par une routine dédiée sur la machine. Chacune de ces routine possède son propre
cycle de vie et les communications entre ces routines sont modéliées par un échange
de messages entre ces routines. Le simulateur a donc été modifié pour instrumenter
les échanges de messages comme si elles étaient des communications réseaux et
associer a chacune des routine sa propre hiérarchie de ressources.

La figure A.12 représente le chaînage logique des composants AWS entre eux
pour modéliser une application similaire à l’outil du commerce Riak5, il est impor-
tant de noter que ces composants sont répliqués sur différents centres de données
qui n’apparaissent pas sur ce schéma.

Dans ce scénario, les composants analystics, ingest, enricher, stream et normal-
ization sont des composants sans état scalables à convenance. D’un autre côté,
les composants enrichMQ et ingestMQ sont des files de messages, c’est-à-dire des

5https://riak.com/

https://riak.com/

A.4. DÉTECTION DE GOULOTS D’ÉTRANGLEMENTS 133

Figure A.12: Architecture logique des composants formant le scénario Riak du
Simulateur Spigo

dispositifs complexes qui jouent un rôle primordial dans l’application. Les files de
messages sont des services non triviaux à passer à l’échelle dynamiquement, leur
scaling peut prendre du temps dans un système traitant un volume de données
utilisateur. Dans ce cas, ingestMQ occupe un rôle prépondérant dans l’application,
en effet cette file de messages est un point de passage obligatoire pour les données
collectées par l’outil.

L’exécution du scénario dans Spigo nécessite une configuration décrivant le
placement des services dans les différentes zones géographiques. Ainsi, à moins
d’une précision contraire, chacun des services présentés dans la figure A.12 est
redondé trois fois dans chaque zone de disponibilité et il y a trois zones de disponi-
bilités. L’exécution d’une telle simulation crée des traces qui sont encodées comme
présentées dans les sections précédentes. Chacune des traces est ajoutée à une base
de données orientée graphe Neo4J et le processus de réécriture de graphe nous
permet d’isoler les différentes ressources.

Il est maintenant possible de valider notre approche en applicant un algorithme
de centralité d’intermédiarité sur le graphe de services. La figure A.13 représente ce
graphe de service dans lequel les sommets ont une taille proportionnelle à l’indice
de centralité calculé par l’algorithme. Les neuf sommets cerclés de bleu dans cette
figure sont les sommets représentant les neuf instances du service ingestMQ. Il s’agit
aussi des sommets avec le plus fort score de centralité intermédiaire, compris dans
l’intervalle [181, 193] alors que tous les autres services ont un score inférieur à 105.
L’algorithme de centralité d’intermédiarité permet donc de bien mettre en avant les
services que nous avions identifiés comme critiques après une analyse manuelle de
l’architecture de l’application.

Afin de valider cette approche, nous avons modifié la configuration de la simu-
lation pour changer le nombre d’instances du service ingestMQ. Dans une première
simulation, nous avons descendu le nombre d’instances de ingestMQ à une seule
instance par zone de disponibilité, rendant ce service encore plus critique. Dans un
second scénario, nous avons augmenté le nombre d’instances de ce service à cinq par

134 APPENDIX A. RÉSUMÉ EN FRANÇAIS

Figure A.13: Visualisation du scénario Riak de Spigo avec trois instances de in-
gestMQ par zones dans laquelle sommets du graphe sont d’autant plus gros que
leur indice de centralité intermédiaire est élevé.

zones de disponibilité, ceci rendant le service moins risqué, et donc moins critique.
La figure A.14 représente ces deux scénarios, on y voit toujours les sommets du
graphe représentant les instances des services ingestMQ (cerclés en bleu quand la
taille du sommet ne permettait pas d’afficher le nom). À l’instar de la figure A.13,
la taille des sommets est proportionnelle au score de centralité intermédiaire calculé
pour sur ce sommet. Il apparait effectivement que le score de centralité intermé-
diaire basé sur le graphe de trace permet d’identifier les services les plus critiques.
Le tableau A.1 représente le score de centralité d’intermédiarité pour chacun des
services dans l’application cloud simulée de Riak, chacune des colonnes notées Cbn

représente les scores de centralités pour le service dans la simulation contenant n
instances du service ingestMQ.

Il apparait que le score de centralité intermédiaire décroit d’autant plus que
le service ingestMQ est répliqué. Ce score de centralité d’intermédiarité permet
d’identifier les services les plus utilisés dans l’application et donc d’identifier de po-

A.4. DÉTECTION DE GOULOTS D’ÉTRANGLEMENTS 135

Figure A.14: Visualisation des graphes après calcul de l’indice de centralité d’inter-
médiarité pour les cas où le nombre d’instances de ingestMQ est respectivement de
1 et de 5 par zones de disponibilités

136 APPENDIX A. RÉSUMÉ EN FRANÇAIS

Service Name Cb1 Cb3 Cb5
ingestMQ [383, 422] [181, 193] [104, 151]
ingester [187, 219] [97, 104] [118, 123]
enrichMQ [74, 77] [87, 97] [92, 110]
enricher [43, 44] [53, 57] [57, 65]
normalization [14, 16] [13, 18] [13, 25]
stream [3, 7] [3, 12] [8, 12]
analytics [5, 10] [5, 9] [5, 9]
riakTS [0, 0] [0, 0] [0, 0]
riakKV [0, 0] [0, 0] [0, 0]

Table A.1: Score de centralité intermédiaire associé à chacun des services de l’appli-
cation cloud simulée Riak pour les cas ou le nombre d’instances du service ingestMQ
est respectivement de 1, 3, et de 5.

tentiels goulots d’étranglement que les opérateurs de l’application devront surveiller
avec une attention particulière.

Conclusion

Dans cette section, nous avons présenté une approche alternative au traitement du
modèle de propriétés hiérarchique créé par les traces d’applications. Au lieu de
traiter individuellement chaque trace, cette approche traite le graphe complet afin
d’identifier les services qui auraient le plus d’impact en cas de panne de l’application
ou bien les services les plus susceptibles de devenir des goulots d’étranglement.
Obtenir ces informations sans données de tracing ni modèles de performance est
actuellement une tâche difficile qui est industrialisée sur certaines plateformes très
précises. La solution présentée ici à l’avantage d’être générique et s’adapte à toutes
les hiérarchies d’inclusion de ressources.

Ces travaux sur l’étude de la centralité dans les graphes représentant des ap-
plications Cloud ont été publiés dans la conférence ICOIN2022 [Cassé 2022]. En
revanche, il n’a pas été possible de procéder à une étude numérique, car les la-
tences observées sur les communications entre processus ne suivent pas les mêmes
lois stochastiques que les communications observées entre microservices potentielle-
ment hébergés sur des datacenters différents.

A.5. CONCLUSION 137

A.5 Conclusion
Au cours de ces dernières décennies, les technologies cloud ont eu un impact consid-
érable sur les applications Clouds, ils ont permis de démocratiser les architectures
fortement distribuées, résilientes et dynamiques. Le monitoring de ces applica-
tions a, lui aussi, été considérablement affecté par l’adoption de technologies cloud
et l’écosystème de l’analyse de performance a été impacté à son tour. Au cours
de cette thèse, nous avons vu l’apparition d’un nouveau standard nommé Open-
Telemetry qui a eu pour approche d’unifier les différentes initiatives concernant le
monitoring des applications cloud.

Cette thèse s’inscrit dans l’adoption de OpenTelemetry chez les développeurs
d’application cloud en proposant une utilisation des données de tracing pour la
résolution de problèmes inhérents aux applications de nouvelle génération. Les
problématiques adressées couvrent la distribution des services qui composent une
application au sein de multiples centres de données, il s’agit d’un sujet de recherche
actif dans la littérature. Cette thèse propose une nouvelle utilisation des données
de tracing afin de traiter cette problématique sous un nouvel angle.

A.5.1 Synthèse des Contributions

Dans cette thèse nous avons abordé les sujets suivants :

• Une revue de la littérature axée sur l’environnement cloud abordant à la fois
les défis architecturaux les défis d’observabilité des applications cloud. Cette
étude a souligné la nécessité d’un modèle de Cloud Computing plus évolutif
ainsi que l’impact de la structure distribuée pour l’analyse de performance,
en particulier à grande échelle.

• La définition d’un modèle d’encodage des traces OpenTelemetry qui permet
de reconstituer une vision globale d’une application distribuée en se concen-
trant sur les interactions entre ses composants. Ce modèle s’est avéré être
suffisamment adaptatif pour s’adapter à plusieurs architectures cloud.

• Une proposition d’utilisation de ce modèle dans une application physique-
ment distribuée pour identifier les cycles pouvant induire une latence et un
cout supplémentaire lors de la composition de services à partir de plusieurs
zones dans des clusters zonaux Kubernetes. Cette étude s’est basée sur le
besoin exprimé par l’équipe d’Orange en charge du développement de Djingo
(un assistant vocal) d’avoir une meilleure observabilité sur la composition
des services inefficaces et leur corrélation avec les performances globales des
applications.

• Une autre proposition d’utilisation de ce modèle pour repérer les goulots
d’étranglement grâce à un algorithme de centralité appliqué dans un graphe
de services. Au lieu de traiter chaque trace individuellement, cette proposi-
tion considère l’accumulation de traces pour recréer un graphe d’interactions
de microservices. Un environnement de simulation a été utilisé pour recréer
une application à grande échelle, ce programme utilise des threads et des files

138 APPENDIX A. RÉSUMÉ EN FRANÇAIS

d’attente de messages pour modéliser les micro services et les appels réseau.
Cette simulation démontre l’utilisation de l’algorithme de centralité intermédi-
aire pour détecter automatiquement les points d’étranglement dans un graphe
de microservices.

Les propositions effectuées dans cette thèse ont pour but de proposer une utilisa-
tion complémentaire des traces d’applications distribuées à leur utilisation habituelle
(pour l’investigation lors du développement). Afin de pouvoir être utilisées dans un
environnement industriel, le choix a été fait de développer de s’interfacer avec le
plus d’outils standardisés et open sources : nous nous sommes intéressés au format
OpenTelemetry, à l’outil Jaeger pour accéder et visualiser les traces. De plus les
traitements d’encodage de graphe ont été codés en Scala et supportent la paralléli-
sation pour traiter plus rapidement un volume conséquent de données.

A.5.2 Pistes de Poursuite des Travaux

La majorité des travaux présentés dans cette thèse portent sur une preuve de con-
cept appliquée sur des maquettes vaguement représentatives de différents environ-
nements de déploiement cloud. Ainsi ces travaux n’ont pas pu être renforcés par des
études numériques, la représentativité des maquettes ne permettant pas de mod-
éliser tous les comportements des applications cloud actuelles. Le standard Open-
Telemetry a gagné en maturité le temps de réaliser ces travaux et son intégration
dans une application en production semble aujourd’hui envisageable.

Dans un court terme, il serait possible d’intégrer de concept de hiérarchie d’in-
clusion présentée dans la section sur le modèle dans des outils tels que Jaeger.
En effet, ces outils ne fournissent pas de vue globale de l’application et permet-
tent simplement de parcourir les traces collectées par l’outil. Le modèle, présenté
sous forme de graphe hiérarchique, pourrait fournir une vue de plus hauts niveaux
aux opérateurs de l’application cloud, notamment grâce à une visualisation telle
que l’Edge Bundling comme présentée en figure A.15. Cette visualisation met au
premier plan les communications interservices dans une visualisation radiale, plus
une communication observée entre deux services passe proche du centre, plus elle
traverse des niveaux hiérarchiques.

À moyen terme, quand les données de tracing seront plus démocratisées dans le
monitoring d’application cloud, il serait possible d’affiner les métriques proposées
dans cette thèse :

• Pour l’indice de flow hierarchy, une métrique complémentaire qui permettrait
d’identifier les cas où les allées retours sont très denses, et donc où la compo-
sition de service est très inefficace, serait le nombre d’arêtes minimum à ôter
au graphe afin qu’il soit dépourvu de cycles.

• Pour la détection de goulots d’étranglement à l’aide d’un calcul de centralité
d’intermédiarité, un calcul plus représentatif serait, non pas de calculer le plus
court chemin entre toutes les paires de sommets du graphe, mais d’utiliser les
passages observés et représentés par les traces.

A.5. CONCLUSION 139

Figure A.15: Visualisation Edge Bundling matérialisant la hiérarchie d’inclusion
par une tension des arcs plus forte vers le centre quand le nombre de couches
hiérarchiques traversées est élevé.

Enfin a plus long terme, on pourrait voir les mécanismes permettant de forger
les traces adoptées à d’autres environnements fortement distribués tels que les sys-
tèmes d’information d’entreprises, l’IoT ou les infrastructures 5G. Dans ces infras-
tructures, où la notion de confiance est primordiale pour assurer la sécurité des
échanges, l’utilisation d’un graphe de communication entre les différentes parties
prenantes d’un tel système pourrait aider à identifier les comportements malveil-
lants. Le modèle présenté nécessiterait des adaptations pour s’adapter à un nouvel
écosystème, mais l’observation des communications au sein du système ouvre des
portes à l’identification de comportements anormaux grâce aux différentes tech-
niques permises par l’analyse de graphes.

Appendix B

Scala Notebook and Code

Contents
B.1 Data Aquisition . 141

B.1.1 Establishing a Channel With a Jaeger Instance 141
B.1.2 Mapping ProtoBuf Data to Standard Java/Scala API 143

B.2 Definition of the Analytics Trace-Data-Model 146
B.2.1 Operation Entities . 146
B.2.2 Resources Entities . 146
B.2.3 Span Entities . 147
B.2.4 Trace Entities . 148

B.3 Graph Encoding . 149
B.3.1 Defining the Property Graph Model 149
B.3.2 Encoding Process . 150
B.3.3 Graph Rewriting . 152

B.4 Calculation of the Flow hierarchy metric 153
B.5 Building and Running the Pipeline 155

Introduction
This appendix presents the Polynote Scala notebook implementing and executing
the model and the computation of the flow hierarchy metric.

B.1 Data Aquisition

B.1.1 Establishing a Channel With a Jaeger Instance

To establish a connection with the gRPC API v2 of the Jaeger instance we define
a JaegerAPIClient class that will handle the query, and aggregation of Span data
into instances of the model we defined. In this code, we create a gRPC channel
with Jaeger API v2 and create a Trace Request on the root service that will be run
in the rest of the notebook.

To process Spans instances into traces a method batchAggregateAs[A] has
been defined: The method applies a “process” function on a batch of Jaeger Spans.
The process function take all spans as input and shall output a collection of elements
typed Either[Iterable[ProtoSpan], A]:

142 APPENDIX B. SCALA NOTEBOOK AND CODE

• The Right part of the process function returned type are individual elements
typed A returned by the batchAggregateAs method.

• The Left part is a collection of Spans that have not been processed but that
shall be processed in the future (e.g. spans of unfinished traces). These spans
are saved into the JaegerAPIClient.orphanSpans list and will be appended
to the next collection of Jaeger Spans retrived by the batchAggregateAs
function.

JaegerAPIClient can be used to build traces out of Spans: either traces can be
built from spans, either the trace is not complete and building this trace is defered
to the next batch.

import com.google.protobuf.ByteString
import io.grpc.{ManagedChannel, ManagedChannelBuilder}
import io.jaegertracing.api_v2.Model.{Span => ProtoSpan}
import io.jaegertracing.api_v2.Query._
import io.jaegertracing.api_v2.QueryServiceGrpc
import

io.jaegertracing.api_v2.QueryServiceGrpc.QueryServiceBlockingStub↪→

import collection.JavaConverters._

class JaegerAPIClient(jaegerQueryHostPort: String) {
// Allow to keep some spans between two batch function like

batchAggregateAs↪→

private var orphanSpans: List[ProtoSpan] = List[ProtoSpan]()

private val channel: ManagedChannel = ManagedChannelBuilder
.forTarget(jaegerQueryHostPort)
.usePlaintext
.build

val queryService: QueryServiceBlockingStub =
QueryServiceGrpc.newBlockingStub(channel)↪→

def queryTraces(serviceName: String, operationName: Option[String]
= None): Iterator[ProtoSpan] = {↪→

val queryBuilder = operationName match {
case Some(op) =>

TraceQueryParameters.newBuilder.setServiceName(serviceName).setOperationName(op)↪→

case None =>
TraceQueryParameters.newBuilder.setServiceName(serviceName)↪→

}
val query = queryBuilder.build

val jaegerTraceRequest =
FindTracesRequest.newBuilder.setQuery(query).build↪→

B.1. DATA AQUISITION 143

for {
spanChunks <-

queryService.findTraces(jaegerTraceRequest).asScala↪→

protoSpan <- spanChunks.getSpansList.asScala
} yield protoSpan

}

def batchAggregateAs[A](batchSize: Int, serviceName: String,
operationName: Option[String] = None,↪→

process: Iterable[ProtoSpan] =>
Iterable[Either[Iterable[ProtoSpan],
A]]): Iterable[A] = {

↪→

↪→

println(s"Retrieving ${batchSize} spans from Jaeger API")
val newSpanBatch = this.queryTraces(serviceName,

operationName).take(batchSize).toList↪→

val spanBatch = this.orphanSpans ++ newSpanBatch
println(s"Total of spans to process (including orphans):

${spanBatch.length}")↪→

this.orphanSpans = List[ProtoSpan]()

val processedSpans = process(spanBatch)

this.orphanSpans = processedSpans
.collect { case Left(protoSpans) => protoSpans }
.toList
.flatten

println(s"Got ${this.orphanSpans.size} spans unprocessed in this
batch")↪→

processedSpans.collect { case Right(a) => a }
}

}

object JaegerAPIClient {
def apply(jaegerQueryHostPort: String) = new

JaegerAPIClient(jaegerQueryHostPort: String)↪→

}

B.1.2 Mapping ProtoBuf Data to Standard Java/Scala API

This object Converter is the Scala transposition to my own needs of the Converter
class defined in io.jaegertracing.analytics.model. Then we define an object
named Converter that hold helper functions translating protobuf objects into Java
objects. Target Java objects are compatible with JVM 8 (matching Scala version

144 APPENDIX B. SCALA NOTEBOOK AND CODE

of the notebook) and are native Java objects (instead of Scala). This will parse:

• Jaeger SpanIDs and TracesIDs as String

• Protobuf Timestamps as LocalDateTime

• Jaeger Tags (typed Key-Value tuples) into Map[String, String]

• Jaeger Span References into Tuple3(String, String, String) where:

– the first item represents TraceID
– the second SpanID
– the third the type of relationship (either “CHILD_OF” or

“FOLLOWS_FROM”)

import com.google.protobuf.{
Timestamp => ProtoTimestamp,
Duration => ProtoDuration,
ByteString => ProtoByteString

}
import io.jaegertracing.api_v2.Model.{

KeyValue => JaegerKeyValue,
ValueType,
SpanRef,
SpanRefType

}
import io.jaegertracing.analytics.model.{Converter =>

JaegerBaseConverter}↪→

import collection.JavaConverters._

import java.time.{LocalDateTime, ZoneOffset, Duration}
import java.util.{List => JList}

object Converter {
def toStringId(pBs: ProtoByteString): String =

JaegerBaseConverter.toStringId(pBs)↪→

def toLocalDateTime(pTs: ProtoTimestamp): LocalDateTime =
LocalDateTime.ofEpochSecond(pTs.getSeconds, pTs.getNanos,
ZoneOffset.UTC)

↪→

↪→

def toDuration(pDur: ProtoDuration): Duration =
Duration.ofSeconds(pDur.getSeconds, pDur.getNanos)↪→

// Rewriting this method as it is defined as Private in
JaegerBaseConverter↪→

def toMap(kvs: JList[JaegerKeyValue]): Map[String, String] = {

B.1. DATA AQUISITION 145

for { kv <- kvs.asScala } yield
kv.getVType match {

case ValueType.STRING => (kv.getKey, kv.getVStr)
case ValueType.BOOL => (kv.getKey, kv.getVBool.toString)
case ValueType.INT64 => (kv.getKey, kv.getVInt64.toString)
case ValueType.FLOAT64 => (kv.getKey,

kv.getVFloat64.toString)↪→

case ValueType.BINARY => (kv.getKey,
kv.getVBinary.toStringUtf8)↪→

case _ => (kv.getKey, "unrecognized")
}

} toMap

// Definition of Reference pointers used in Spans
case class ReferenceId(traceId: String, spanId: String, name:

String)↪→

object ReferenceId {
def apply(traceId: String, spanId: String, name: String):

ReferenceId =↪→

new ReferenceId(traceId, spanId, name)

def of(tuple3: (String, String, String)): ReferenceId =
this.apply(traceId = tuple3._1, spanId = tuple3._2, name =

tuple3._3)↪→

def of(sr: SpanRef): ReferenceId = sr.getRefType match {
case SpanRefType.CHILD_OF =>
this.apply(toStringId(sr.getTraceId),

toStringId(sr.getSpanId), "CHILD_OF")↪→

case SpanRefType.FOLLOWS_FROM =>
this.apply(toStringId(sr.getTraceId),

toStringId(sr.getSpanId), "FOLLOWS_FROM")↪→

case _ =>
this.apply(toStringId(sr.getTraceId),

toStringId(sr.getSpanId), "unrecognized")↪→

}
}

def toReferenceIds(srs: JList[SpanRef]): List[ReferenceId] = {
for { sr <- srs.asScala } yield ReferenceId.of(sr)

} toList
}

146 APPENDIX B. SCALA NOTEBOOK AND CODE

B.2 Definition of the Analytics Trace-Data-Model
We define a set of Scala classes modeling Jaeger Traces, they will be used as Label
in our future property graph and are instantiated from protobuf data. In general
terms the model cans be summed up by the following statement:

• Operation: This class models the concept of Operation that are shared among
Spans in a Trace.

• Resource: This class represents instances executing of a program, thus costing
resources. OpenTelemetry Resource semantic is defined at https://github.
com/open-telemetry/opentelemetry-specification/blob/v0.6.0/specification/
resource/semantic_conventions/README.md

• Span: In OpenTelemetry Spans are the representation of the latency measure-
ment (at a given startTime there is an associated operation duration), they
bring also other relevant numerical data, like, for example, the number of byte
exchanged over the network. OpenTelemetry definition of Span can be found
at: https://github.com/open-telemetry/opentelemetry-specification/
blob/v0.6.0/specification/trace/api.md#span

• Trace: Trace is the aggregation of Spans characterizing the propagation of
Remote Procedure Calls or other network calls in a distributed system, this
spans build a Directed Acyclic Dependency Graph of Resources.

Each class defines a static .of() method used to wrap the constructor with
Protobuf data pre-processing, thus allowing to create model instances directly from
API data.

B.2.1 Operation Entities

import io.jaegertracing.api_v2.Model.{Span => ProtoSpan}

case class Operation(name: String, attributes: Map[String, String])

object Operation {
def apply(name: String, attributes: Map[String, String]) = new

Operation(name, attributes)↪→

def of(ps: ProtoSpan): Operation =
this.apply(ps.getOperationName,

Converter.toMap(ps.getTagsList)
.filterKeys { k => ! (k contains "span") })

}

B.2.2 Resources Entities

import io.jaegertracing.api_v2.Model.{Span => ProtoSpan}

https://github.com/open-telemetry/opentelemetry-specification/blob/v0.6.0/specification/resource/semantic_conventions/README.md
https://github.com/open-telemetry/opentelemetry-specification/blob/v0.6.0/specification/resource/semantic_conventions/README.md
https://github.com/open-telemetry/opentelemetry-specification/blob/v0.6.0/specification/resource/semantic_conventions/README.md
https://github.com/open-telemetry/opentelemetry-specification/blob/v0.6.0/specification/trace/api.md#span
https://github.com/open-telemetry/opentelemetry-specification/blob/v0.6.0/specification/trace/api.md#span

B.2. DEFINITION OF THE ANALYTICS TRACE-DATA-MODEL 147

case class Resource(name: String, attributes: Map[String, String])

object Resource {
def apply(name: String, attributes: Map[String, String]): Resource

= new Resource(name, attributes)↪→

def of(ps: ProtoSpan): Resource = {
val res = ps.getProcess
this.apply(res.getServiceName, Converter.toMap(res.getTagsList))

}
}

B.2.3 Span Entities

import io.jaegertracing.api_v2.Model.{Span => ProtoSpan}

case class Span(
spanId: String,
traceId: String,
startTime: LocalDateTime,
duration: Duration,
attributes: Map[String, String],
references: List[Converter.ReferenceId],
operation: Operation,
resource: Resource

)

object Span {
def apply(
spanId: String,
traceId: String,
startTime: LocalDateTime,
duration: Duration,
attributes: Map[String, String],
references: List[Converter.ReferenceId],
operation: Operation,
resource: Resource

): Span =
new Span(spanId, traceId, startTime, duration, attributes,

references, operation, resource)↪→

def of(ps: ProtoSpan): Span =
this.apply(

spanId = Converter.toStringId(ps.getSpanId),
traceId = Converter.toStringId(ps.getTraceId),
startTime = Converter.toLocalDateTime(ps.getStartTime),

148 APPENDIX B. SCALA NOTEBOOK AND CODE

duration = Converter.toDuration(ps.getDuration),
attributes = Converter.toMap(ps.getTagsList).filterKeys { _

contains "span" },↪→

references = Converter.toReferenceIds(ps.getReferencesList),
operation = Operation.of(ps),
resource = Resource.of(ps)

)
}

B.2.4 Trace Entities

import io.jaegertracing.api_v2.Model.{Span => ProtoSpan}

// Definition of Trace as an aggregation of Spans
case class Trace(traceId: String, spans: List[Span])

object Trace {
def apply(traceId: String, spans: List[Span]): Trace =

new Trace(traceId, spans)

def of(traceId: String, protoSpans: List[ProtoSpan]):
Either[List[ProtoSpan], Trace] = {↪→

val spans: List[Span] = for {
ps <- protoSpans

} yield Span.of(ps)

val spanReferences = for {
span <- spans
ref <- span.references

} yield ref

val isCompleteTrace = spanReferences forall {
spanRef => spans exists {
span => span.traceId == spanRef.traceId && span.spanId ==

spanRef.spanId↪→

}
}

val rootSpans = spans filterNot {
span => spanReferences.map(_.spanId).contains(span.spanId)

}

if (isCompleteTrace && rootSpans.length == 1) {
Right(this.apply(traceId, spans))

} else {

B.3. GRAPH ENCODING 149

Left(protoSpans)
}

}
}

B.3 Graph Encoding

B.3.1 Defining the Property Graph Model

In the following, we define a singleton object TraceMetaModel that own several
properties referencing the model defined in the section 2.3 Extracting a Structural
Model from Traces.

import gremlin.scala._

object TraceMetaModel {
// Vertices Labels
val SpanLabel = "Span"
val PodLabel = "Pod"
val NodeLabel = "Node"
val ZoneLabel = "Zone"
val RegionLabel = "Region"
val NamespaceLabel = "Namespace"
val ClusterLabel = "Cluster"

// Edges Types
val References = "REFERENCE"
val ExecutesOn = "EXECUTES_ON"
val IsContained = "IS_CONTAINED"

// Span Vertices properties
val traceId = Key[String]("traceId")
val spanId = Key[String]("spanId")
val startTime = Key[String]("startTime")
val duration = Key[Long]("duration")
val kind = Key[String]("kind")

// Resource Vertices properties
val name = Key[String]("name")
val ip = Key[String]("ip")
val uid = Key[String]("uid")

// Edge properties
val serviceName = Key[String]("serviceName")
val networkTime = Key[Long]("networkTime")

}

150 APPENDIX B. SCALA NOTEBOOK AND CODE

B.3.2 Encoding Process

The following code presents a functionnal and parallelizable approache to the pro-
cess of encoding a Graph with the custom model presented in this thesis. The
graph are created with the Gremlin Scala library and fits multiple graph backends.
Still, while the graph works on a Neo4j or a Gremlin Server centralized backend,
its purpose is to be used on in-memory graphs: because an heavy flow of traces can
apply too much pressure on the backend. Once processed this graph will be merged
into a centralized knowledge graph.

import gremlin.scala._
import collection.JavaConverters._
import java.util.{ List => JList, ArrayList => JArrayList, Map =>

JMap, Set => JSet }↪→

import java.time.{ LocalDateTime, Duration }

def fromTrace(t: Trace)(implicit graph: ScalaGraph): ScalaGraph = {
import TraceMetaModel._
implicit val g = graph.traversal
val supportsTransactions =

g.graph.features.graph.supportsTransactions↪→

val spanVertices: Map[String, Vertex] = {
for (s <- t.spans) yield {
// Adds a "Span" vertex with startTime and Duration attributes
val spanVertex = graph + (SpanLabel,
traceId -> s.traceId,
spanId -> s.spanId,
startTime -> s.startTime.toString,
duration -> s.duration.toNanos,
kind -> s.attributes.getOrElse("span.kind", "")

)

// Consistant creation / reuse of "Resource" vertices based on
both label and attributes↪→

val resourceVertices = for {
rks <- ResourceKind.fromAttributes(s.resource.attributes)

} yield rks match {
case Pod(n, i, u) => mergeVertex(PodLabel, name -> n, ip ->

i, uid -> u)↪→

case Node(n, i) => mergeVertex(NodeLabel, name -> n, ip ->
i)↪→

case Zone(n) => mergeVertex(ZoneLabel, name -> n)
case Region(n) => mergeVertex(RegionLabel, name -> n)
case Namespace(n) => mergeVertex(NamespaceLabel, name -> n)
case Cluster(n) => mergeVertex(ClusterLabel, name -> n)

}

B.3. GRAPH ENCODING 151

if (supportsTransactions) { g.graph.tx.commit }

// Link each identified resources to the span with the
relationship "EXECUTES_ON"↪→

resourceVertices foreach {
resourceVertex => spanVertex --- (ExecutesOn, serviceName ->

s.resource.name) --> resourceVertex↪→

}
if (supportsTransactions) { g.graph.tx.commit }

// Index Span Vertices by "SpanId" for later use (i.e. the
creation of the REFERENCE realtionships)↪→

s.spanId -> spanVertex
}

} toMap

// Iterate once again over spans to recreate the DAG of spans
for {
s <- t.spans
ref <- s.references if ref.traceId == s.traceId

} spanVertices(s.spanId) --- (References, kind -> ref.name) -->
spanVertices(ref.spanId)↪→

if (supportsTransactions) { g.graph.tx.commit }

graph
}

/** Helper function that eventually creates a new Node in the graph
* matching the label `label` and attributes `attrs` if it does
* not already exists */

def mergeVertex(label: String, attrs: KeyValue[String]*)(implicit g:
TraversalSource): Vertex = {↪→

// Forge the gremlin query by accumulating `.has("key", value)`
// after the `g.V.hasLabel()` for all items in `attrs`
val gremlinSearchQuery = attrs.foldLeft(g.V().hasLabel(label)) {

case (acc, kv) => acc.has[String](kv.key, kv.value)
}

// Consume the query and return the Node if it already exists
// otherwise the node is created
gremlinSearchQuery.headOption match {

case Some(v) => v
case None => g.graph + (label, attrs: _*)

}
}

152 APPENDIX B. SCALA NOTEBOOK AND CODE

B.3.3 Graph Rewriting

Definition of functions doing graph transformations on Gremlin In-Memory Graphs:

• The function projectDependencyOn(labels: String*) looks for REFER-
ENCE relations in the graph and applies the previous pattern to create the
PROJECTED_REF between Pods, Nodes, Zones (defined by the labels ar-
gument).

• The function subgraphOf(label: String)(implicit graph: ScalaGraph)
creates en Edge-induced subgraph.

import gremlin.scala._
import collection.JavaConverters._

def projectDependencyOn(labels: String*)(implicit graph:
ScalaGraph): List[Edge] = {↪→

import TraceMetaModel._

val g = graph.traversal

// Gremlin Query to find all REFERENCES relationships and get the
Source and Dest vertices↪→

val clientServerSpanVertices =
g.V().hasLabel(SpanLabel).as("srcSpan")
.out(References)
.hasLabel(SpanLabel).as("dstSpan")
.select("srcSpan", "dstSpan")
.toList
.map(_.asScala)

val dependentResourcesEdges = for {
label <- labels
v <- clientServerSpanVertices

} yield {
val srcSpanV: Vertex = v("srcSpan").asInstanceOf[Vertex]
val dstSpanV: Vertex = v("dstSpan").asInstanceOf[Vertex]
val srcResOpt: Option[Vertex] =

g.V(srcSpanV).out(ExecutesOn).hasLabel(label).headOption↪→

val dstResOpt: Option[Vertex] =
g.V(dstSpanV).out(ExecutesOn).hasLabel(label).headOption↪→

val tId = srcSpanV.property(traceId).value
val netT = dstSpanV.property(duration).value -

srcSpanV.property(duration).value↪→

(srcResOpt, dstResOpt) match {
case (Some(srcRes), Some(dstRes)) if srcRes != dstRes =>

B.4. CALCULATION OF THE FLOW HIERARCHY METRIC 153

Some(srcRes --- ("PROJECTED_DEP", traceId -> tId,
networkTime -> netT) --> dstRes)↪→

case _ => None
}

}

dependentResourcesEdges collect { case Some(v) => v } toList
}

def subgraphOf(label: String)(implicit graph: ScalaGraph):
ScalaGraph = {↪→

import TraceMetaModel._

val g = graph.traversal
val subgraphStepLabel = StepLabel[Graph]("subGraph")

g.V().hasLabel(label).outE("PROJECTED_DEP")
.subgraph(subgraphStepLabel)
.cap(subgraphStepLabel)
.head

}

B.4 Calculation of the Flow hierarchy metric
After the previous graph rewriting operations, the initial property graph made of
multiple labels for vertices and edges is turned in a graph where all vertices have
the same label and so have all the edges. As a result the graph after rewriting
operations, on which the flow hierarchy metric is calculated, can be summed up as
G = (V, E) where each vertices represents an instance of a resource (e.g. a Pod, a
Node, a Zone, a Cluster) and each edge a network communication between these
resources and is characterized by a Network Latency property.

The calculation of the flow requires to know whether each edge is in a cycle or
not; to do so, the selected approach relies on the identification of strongly connected
components, indeed an edge is in a cycle if and only if it is in a strongly connected
component.

import gremlin.scala._
import collection.JavaConverters._
import java.util.Arrays

def flowHierarchy(graph: ScalaGraph, weightKey: Key[Long] =
Key[Long]("Falls back to 1")): Double = {↪→

import TraceMetaModel._

val scc = stronglyConnectedComponents(graph)
val g = scc.traversal

154 APPENDIX B. SCALA NOTEBOOK AND CODE

val sccIndexedEdges =
g.E.project(_(By(__.inV().properties("component")))

.and(By(__.outV.properties("component")))

.and(By(__.coalesce(_.value(weightKey),
_.constant(1L)))) // get value from the `weight`
key or fall back to 1 to create the unweighted
formula

↪→

↪→

↪→

).toList
.map {

case (kvSrc, kvDst, edgeWeight) =>
(kvSrc.value(), kvDst.value(), edgeWeight)

}

val weightOutOfCycles =
sccIndexedEdges.filter { case (cSrc, cDst, _) => cSrc != cDst }

.map { case (_, _, edgeWeight) => edgeWeight }

.fold(0L) {_ + _}

.toDouble

val totalWeight = sccIndexedEdges
.map { case (_, _, edgeWeight) => edgeWeight }
.fold(0L) {_ + _}
.toDouble

if (totalWeight != 0) {
weightOutOfCycles / totalWeight

} else {
1.0

}
}

/** Scala traverser does not support the Connected Components
Algorithm, this function is based on the Java Implementation and
requires a to use an OLAP to compute the Strongly Connected
Components (SCC), the computation of the `scc` variable should
be async */

↪→

↪→

↪→

↪→

def stronglyConnectedComponents(graph: ScalaGraph): ScalaGraph = {
import

org.apache.tinkerpop.gremlin.process.traversal.dsl.graph.`__`↪→

import org.apache.tinkerpop.gremlin.process.traversal._
import org.apache.tinkerpop.gremlin.tinkergraph.structure._
import

org.apache.tinkerpop.gremlin.process.computer.traversal.step.map.ConnectedComponent↪→

val gJava = graph.asJava.traversal.withComputer()

B.5. BUILDING AND RUNNING THE PIPELINE 155

val scc =
gJava.V()

.connectedComponent()
.`with`(ConnectedComponent.propertyName, "component")
.`with`(ConnectedComponent.edges, __.outE("PROJECTED_DEP"))

.project("id", "component")
.by(__.id())
.by("component")

.toList()

// Ugly Java-Scala Wrapper, no other solution found
val vertexIdComponentTuples: List[(Long, Long)] = for { vertexAttr

<- scc.asScala.toList } yield↪→

Arrays.asList(vertexAttr.values().toArray: _*).asScala.toList
match {↪→

case vertexId :: componentId :: Nil =>
vertexId.asInstanceOf[Long] ->
componentId.asInstanceOf[String].toLong

↪→

↪→

case _ => ??? // Should never happen, if so raise an exception
}

// Fall back to Gremlin-Scala OLTP
val g = graph.traversal
val component = Key[Long]("component")

for {
(vid, cid) <- vertexIdComponentTuples

} g.V(vid).property(component -> cid).iterate

graph
}

B.5 Building and Running the Pipeline
Establishing connection with the two ends of the data transformation pipeline. This
case uses a Jaeger gRPC client and not a Kafka client.

val jaegerClient =
JaegerAPIClient(sys.env.getOrElse("JAEGER_API_URI",
"jaeger:16686"))

↪→

↪→

val neo4jConnector =
Neo4jGraphConnector(sys.env.getOrElse("NEO4J_BOLT_URI",
"bolt://neo4j/7687"), "neo4j", sys.env.get("NEO4J_PASSWORD"))

↪→

↪→

println("Connected to the local Jaeger instance and to the local
Neo4j instance")↪→

156 APPENDIX B. SCALA NOTEBOOK AND CODE

Creating two classes for wrapping results of flow hierarchy calculation.

sealed trait TraceComputation

case class TraceComputationUnweighted(
traceId: String,
timestamp: String,
duration: Long,
hPod: Double,
hNode: Double,
hZone: Double

) extends TraceComputation

case class TraceComputationWeighted(
traceId: String,
timestamp: String,
duration: Long,
hPod: Double,
hNode: Double,
hZone: Double

) extends TraceComputation

The following code manually consumes 5000 spans from Jaeger and rebuilds
traces while ensuring traces are complete. These traces are stored in the variable
traces.

import io.jaegertracing.api_v2.Model.{Span => ProtoSpan}

val traces = jaegerClient.batchAggregateAs[Trace](
batchSize = 5000,
serviceName = "frontend",
operationName = Some("Recv./cart/checkout"),
process = (protoSpans) => protoSpans groupBy {
span => Converter.toStringId(span.getTraceId)

} map {
case (traceId, traceProtoSpans) =>

Trace.of(traceId, traceProtoSpans.toList)↪→

}
) toList

println(s"Got a total of ${traces.size} traces out of 5000 spans")

Finally the trace variable is processed, each trace is encoded into an in-memory
hierarchical graph, each resource layers are extracted into their own graph and the
flow hierarchy is computed for each of these layers. Results of the computation are
sent into a list of TraceComputationUnweighted and TraceComputationWeighted
which are stored in Neo4j for convenience in this notebook, although this backend
is not suitable for this purpose.

B.5. BUILDING AND RUNNING THE PIPELINE 157

println(s"Processing traces:")

val traceGraphs: Seq[(TraceComputation, TraceComputation)] = for { t
<- traces } yield {↪→

val rootSpan = t.spans find { _.operation.name ==
"Recv./cart/checkout" } get↪→

implicit val graph = TinkerGraph.open.asScala
println(s"• Trace ${t.traceId} has ${t.spans.size} spans started

at ${rootSpan.startTime.toString} and had a duration of
${rootSpan.duration.toNanos} ns")

↪→

↪→

// 1. Fill the graph with vertices representing the trace
fromTrace(t)

// 2.1. Do the graph rewriting for each abstraction levels in the
hierachical location model↪→

projectDependencyOn("Pod", "Node", "Zone")
val podGraph = subgraphOf("Pod")
val nodeGraph = subgraphOf("Node")
val zoneGraph = subgraphOf("Zone")

// 2.2 Calculate the Flow Hierarchy
val computationUnweighted = TraceComputationUnweighted(t.traceId,

rootSpan.startTime.toString, rootSpan.duration.toNanos,↪→

flowHierarchy(podGraph), flowHierarchy(nodeGraph),
flowHierarchy(zoneGraph))↪→

println(s" Unweighted Flow Hierarchies computed: h_Pod =
${computationUnweighted.hPod} | h_Node =
${computationUnweighted.hNode} | h_Zone =
${computationUnweighted.hZone}")

↪→

↪→

↪→

val computationWeighted = TraceComputationWeighted(t.traceId,
rootSpan.startTime.toString, rootSpan.duration.toNanos,↪→

flowHierarchy(podGraph, Key[Long]("networkTime")),
flowHierarchy(nodeGraph, Key[Long]("networkTime")),
flowHierarchy(zoneGraph, Key[Long]("networkTime")))

↪→

↪→

println(s" Weighted Flow Hierarchies computed: h_Pod =
${computationWeighted.hPod} | h_Node =
${computationWeighted.hNode} | h_Zone =
${computationWeighted.hZone}")

↪→

↪→

↪→

// 3. persist the rewritten graphs in Neo4J
Try(neo4jConnector.addTrace(computationUnweighted)) match {

case Failure(e) => println(s" Did not manage to save this
Trace, an exception occured : ${e.getMessage}")↪→

case Success(_) => {

158 APPENDIX B. SCALA NOTEBOOK AND CODE

println(s" Trace and computations saved in Neo4j")
neo4jConnector.addResourceGraph(podGraph, t.traceId)
neo4jConnector.addResourceGraph(nodeGraph, t.traceId)
neo4jConnector.addResourceGraph(zoneGraph, t.traceId)

}
}
Try(neo4jConnector.addTrace(computationWeighted))
graph.close()

(computationUnweighted, computationWeighted)
}
traceGraphs

Bibliography

[Akoglu 2015] Leman Akoglu, Hanghang Tong and Danai Koutra. Graph based
anomaly detection and description: A survey. Number 3. 2015. (Cited in
page 89.)

[Al-Mutawa 2014] Hussain A. Al-Mutawa, Jens Dietrich, Stephen Marsland and
Catherine McCartin. On the Shape of Circular Dependencies in Java Pro-
grams. In 2014 23rd Aust. Softw. Eng. Conf., pages 48–57. IEEE, apr 2014.
(Cited in page 62.)

[Alrifai 2009] Mohammad Alrifai and Thomas Risse. Combining global optimization
with local selection for efficient QoS-aware service composition. Proc. 18th
Int. Conf. World wide web - WWW ’09, page 881, 2009. (Cited in page 19.)

[Alrifai 2010] Mohammad Alrifai, Dimitrios Skoutas and Thomas Risse. Selecting
skyline services for QoS-based web service composition. Proc. 19th Int. Conf.
World wide web - WWW ’10, no. October 2007, page 11, 2010. (Cited in
page 19.)

[Anand 2020] Vaastav Anand, Matheus Stolet, Thomas Davidson, Ivan Beschast-
nikh, Tamara Munzner and Jonathan Mace. Aggregate-Driven Trace Visu-
alizations for Performance Debugging. CoRR, oct 2020. (Cited in page 27.)

[Anderson 1972] P. W. Anderson. More Is Different: Broken symmetry and the
nature of the hierarchical structure of science. Science (80-.)., vol. 177,
no. 4047, pages 393–396, aug 1972. (Cited in page 61.)

[Ardelean 2018] Dan Ardelean, Amer Diwan and Chandra Erdman. Performance
analysis of cloud applications. USENIX Association, nov 2018. (Cited in
pages 20, 26, 27, 29, 66, and 117.)

[Bistarelli 2018] Stefano Bistarelli, Lars Kotthoff, Francesco Santini and Carlo Tat-
icchi. Containerisation and dynamic frameworks in ICCMA’19. CEUR
Workshop Proc., vol. 2171, no. September, pages 4–9, 2018. (Cited in
pages vii and 13.)

[Böttger 2018] Timm Böttger, Felix Cuadrado, Gareth Tyson, Ignacio Castro and
Steve Uhlig. Open connect everywhere: A glimpse at the internet ecosystem
through the lens of the netflix CDN. Comput. Commun. Rev., vol. 48, no. 1,
pages 28–34, 2018. (Cited in page 87.)

[Boutin 2014] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou,
Zhengping Qian, Ming Wu and Lidong Zhou. Apollo: Scalable and coor-
dinated scheduling for cloud-scale computing. Proc. 11th USENIX Symp.
Oper. Syst. Des. Implementation, OSDI 2014, pages 285–300, 2014. (Cited
in pages 16 and 20.)

160 BIBLIOGRAPHY

[Breivold 2008] Hongyu Pei Breivold, Ivica Crnkovic, Rikard Land and Stig Lars-
son. Using dependency model to support software architecture evolution. In
2008 23rd IEEE/ACM Int. Conf. Autom. Softw. Eng. - Work., pages 82–91.
IEEE, sep 2008. (Cited in page 62.)

[Brin 1998] Sergey Brin and Lawrence Page. The Anatomy of a Large-Scale Hy-
pertextual Web Search Engine. In COMPUTER NETWORKS AND ISDN
SYSTEMS, pages 107–117, 1998. (Cited in pages 91 and 131.)

[Cantor 2020] Lyn Cantor and Cam Cullen. Phenomena Report COVID-19 Spot-
light. Technical Report May, 2020. (Cited in pages 1 and 112.)

[Cassé 2021] Clément Cassé, Pascal Berthou, Philippe Owezarski and Sebastien
Josset. Using Distributed Tracing to Identify Inefficient Resources Compo-
sition in Cloud Applications. In IEEE 10th Int. Conf. Cloud Netw., Virtual,
2021. (Cited in pages 5, 79, and 113.)

[Cassé 2022] Clément Cassé, Pascal Berthou and Philippe Owezarski. A Tracing
Based Model to Identify Bottlenecks in Physically Distributed Applications.
In Int. Conf. Inf. Netw. (ICOIN 2022), Jeju Island, Korea (South), 2022.
(Cited in pages 5, 101, 113, and 136.)

[Chaczko 2011] Zenon Chaczko, Venkatesh Mahadevan, Shahrzad Aslanzadeh and
Christopher Mcdermid. Availability and Load Balancing in Cloud Com-
puting. In Int. Conf. Comput. Softw. Model., volume 14, pages 134–140,
Singapore, 2011. IACSIT Press. (Cited in pages 15 and 115.)

[Chou 2019] David Chou, Tianyin Xu, Kaushik Veeraraghavan, Andrew Newell,
Sonia Margulis and Lin Xiao. Taiji : Managing Global User Traffic for
Large-Scale Internet Services at the Edge. SOSP ’19 Proc. 27th ACM Symp.
Oper. Syst. Princ., pages 430–446, 2019. (Cited in pages 15, 20, 26, and 115.)

[Chow 2014] Michael Chow, David Meisner, Jason Flinn, Daniel Peek and
Thomas F. Wenisch. The mystery machine: End-to-end performance anal-
ysis of large-scale Internet services. Proc. 11th USENIX Symp. Oper. Syst.
Des. Implementation, OSDI 2014, pages 217–231, 2014. (Cited in pages 25
and 116.)

[Clauset 2008] Aaron Clauset, Cristopher Moore and M. E. J. Newman. Hierar-
chical structure and the prediction of missing links in networks. Nature,
vol. 453, no. 7191, pages 98–101, may 2008. (Cited in page 61.)

[Cockcroft 2016a] Adrian Cockcroft. Evolution of Microservices - Craft Conference,
2016. (Cited in pages viii, 21, 93, and 116.)

[Cockcroft 2016b] Adrian Cockcroft. Microservices Workshop - Craft Conference,
2016. (Cited in pages viii, 21, 93, and 116.)

[Da Cunha Rodrigues 2016] G. Da Cunha Rodrigues, R.N. Calheiros, V.T.
Guimaraes, G.L. Dos Santos, M.B. De Carvalho, L.Z. Granville, L.M.R.

BIBLIOGRAPHY 161

Tarouco and Rajkumar Buyya. Monitoring of cloud computing environ-
ments: Concepts, solutions, trends, and future directions. Proc. ACM Symp.
Appl. Comput., vol. 04-08-Apri, pages 378–383, 2016. (Cited in page 28.)

[Dabbagh 2015a] Mehiar Dabbagh, Bechir Hamdaoui, Mohsen Guizani and Am-
mar Rayes. Efficient datacenter resource utilization through cloud resource
overcommitment. Proc. - IEEE INFOCOM, vol. 2015-Augus, pages 330–335,
2015. (Cited in pages 16 and 115.)

[Dabbagh 2015b] Mehiar Dabbagh, Bechir Hamdaoui, Mohsen Guizani and Ammar
Rayes. Toward energy-efficient cloud computing: Prediction, consolidation,
and overcommitment. IEEE Netw., vol. 29, no. 2, pages 56–61, 2015. (Cited
in pages 16 and 115.)

[Dalmazo 2017] Bruno L. Dalmazo, João P. Vilela and Marilia Curado. Perfor-
mance Analysis of Network Traffic Predictors in the Cloud. J. Netw. Syst.
Manag., vol. 25, no. 2, pages 290–320, apr 2017. (Cited in pages 25 and 116.)

[Dean 2014] Daniel J Dean, Hiep Nguyen, Peipei Wang, Xiaohui Gu and North
Carolina. PerfCompass: toward runtime performance anomaly fault local-
ization for infrastructure-as-a-service clouds. Proc. 6th USENIX Conf. Hot
Top. Cloud Comput., page 16, 2014. (Cited in pages 25 and 116.)

[Deng 2017] Jie Deng, Gareth Tyson, Felix Cuadrado and Steve Uhlig. Internet
Scale User-Generated Live Video Streaming : The Twitch Case. In Passiv.
Act. Meas., pages 60–71, 2017. (Cited in page 87.)

[Drewes 2000] Frank Drewes, Berthold Hoffmann and Detlef Plump. Hierarchical
graph transformation. Lect. Notes Comput. Sci. (including Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 1784 LNCS, pages
98–113, 2000. (Cited in page 50.)

[Durugbo 2013] Christopher Durugbo, Ashutosh Tiwari and Jeffrey R. Alcock.
Modelling information flow for organisations: A review of approaches and
future challenges. Int. J. Inf. Manage., vol. 33, no. 3, pages 597–610, 2013.
(Cited in page 43.)

[El-Gazzar 2016] Rania El-Gazzar, Eli Hustad and Dag H. Olsen. Understanding
cloud computing adoption issues: A Delphi study approach. J. Syst. Softw.,
vol. 118, pages 64–84, 2016. (Cited in pages 12 and 114.)

[Fowler 2014] Martin Fowler and James Lewis. Microservices, a definition of this
new architectural term, 2014. (Cited in pages 18, 19, and 115.)

[Francis 2018] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin,
Tobias Lindaaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra
Selmer and Andrés Taylor. Cypher: An evolving query language for property
graphs. In Proc. ACM SIGMOD Int. Conf. Manag. Data, pages 1433–1445,
2018. (Cited in pages 46 and 48.)

162 BIBLIOGRAPHY

[Freeman 1979] L. C. Freeman. Centrality in social networks. Soc. Networks, vol. 1,
no. 3, pages 215–239, 1979. (Cited in page 89.)

[Gan 2018a] Yu Gan, Meghna Pancholi, Dailun Cheng, Siyuan Hu, Yuan He and
Christina Delimitrou. Seer: Leveraging Big Data to Navigate the Increasing
Complexity of Cloud Debugging. In 10th USENIX Work. Hot Top. Cloud
Comput. (HotCloud 18), apr 2018. (Cited in pages 25, 29, and 116.)

[Gan 2018b] Yu Gan, Meghna Pancholi, Dailun Cheng, Siyuan Hu, Yuan He and
Christina Delimitrou. Seer: Leveraging big data to navigate the increasing
complexity of cloud debugging. arXiv, 2018. (Cited in page 92.)

[Gan 2020] Yu Gan, Sundar Dev, David Lo and Christina Delimitrou. Sage: Lever-
aging ML To Diagnose Unpredictable Performance in Cloud Microservices.
ML Comput. Archit. Syst., 2020. (Cited in pages 25 and 116.)

[Gluck 2020] Adam Gluck. Introducing Domain-Oriented Microservice Architec-
ture, 2020. (Cited in pages 18, 19, 21, and 115.)

[Gonigberg 2018] Arthur Gonigberg, Mikey Cohen, Michael Smith, Gaya Varadara-
jan, Sudheer Vinukonda and Susheel Aroskar. Open Sourcing Zuul 2, 2018.
(Cited in pages 83 and 87.)

[Grandi 2016] Robert Grandi, Mosharaf Chowdhury, Aditya Akella and Ganesh
Ananthanarayanan. Altruistic scheduling in multi-resource clusters. Proc.
12th USENIX Symp. Oper. Syst. Des. Implementation, OSDI 2016, pages
65–80, 2016. (Cited in page 20.)

[Gud 2019] Amit Gud. Testing in Production at Scale. In SRECon19 _ Am.
(USENIX Assoc., Brooklyn, NY, 2019. USENIX Association. (Cited in
pages 21 and 23.)

[Haddad 2018] Einas Haddad. Service-Oriented Architecture: Scaling the Uber En-
gineering Codebase As We Grow, 2018. (Cited in page 21.)

[Heger 2017] Christoph Heger, André van Hoorn, Mario Mann and Dušan
Okanović. Application Performance Management. Proc. 8th ACM/SPEC
Int. Conf. Perform. Eng. - ICPE ’17, pages 429–432, 2017. (Cited in page 29.)

[Heinrich 2016] Robert Heinrich. Architectural Run-time Models for Performance
and Privacy Analysis in Dynamic Cloud Applications Categories and Subject
Descriptors. Perform. Eval. Rev., vol. 43, no. 4, pages 13–22, 2016. (Cited
in pages 8 and 16.)

[Heinrich 2017] Robert Heinrich, André van Hoorn, Holger Knoche, Fei Li,
Lucy Ellen Lwakatare, Claus Pahl, Stefan Schulte and Johannes Wettinger.
Performance Engineering for Microservices. Proc. 8th ACM/SPEC Int.
Conf. Perform. Eng. Companion - ICPE ’17 Companion, pages 223–226,
2017. (Cited in pages 17, 19, 28, and 115.)

BIBLIOGRAPHY 163

[Holten 2006] Danny Holten. Hierarchical Edge Bundles: Visualization of Adja-
cency Relations in Hierarchical Data. IEEE Transactions on Visualization
and Computer Graphics, vol. 12, no. 5, pages 741–748, 2006. (Cited in
page 106.)

[Ibidunmoye 2015] Olumuyiwa Ibidunmoye, Francisco Hernández-Rodriguez and
Erik Elmroth. Performance Anomaly Detection and Bottleneck Identifi-
cation. ACM Comput. Surv., vol. 48, no. 1, pages 1–35, 2015. (Cited in
pages 1, 29, 92, and 132.)

[IBM 2005] IBM. An architectural blueprint for autonomic computing. Number 3.
IBM Whitepapers, 2005. (Cited in page 19.)

[Jayathilaka 2017] Hiranya Jayathilaka, Chandra Krintz and Rich Wolski. Perfor-
mance Monitoring and Root Cause Analysis for Cloud-hosted Web Applica-
tions. Proc. 26th Int. Conf. World Wide Web - WWW ’17, pages 469–478,
2017. (Cited in pages 16, 26, 27, 30, 115, and 117.)

[Jeong 2001] H. Jeong, S. P. Mason, A.-L. Barabási and Z. N. Oltvai. Lethality and
centrality in protein networks. Nature, vol. 411, no. 6833, pages 41–42, may
2001. (Cited in page 89.)

[Kaldor 2017] Jonathan Kaldor, Jonathan Mace, Micha Bejda, Edison Gao, Wiktor
Kuropatwa, Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan, Brendan
Viscomi, Vinod Venkataraman, Kaushik Veeraraghavan and Yee Jiun Song.
Canopy: An End-to-End Performance Tracing And Analysis System. SOSP
2017 - Proc. 26th ACM Symp. Oper. Syst. Princ., pages 34–50, 2017. (Cited
in page 20.)

[Kanzhelev 2020] Sergey Kanzhelev, Morgan McLean, Alois Reitbauer, Bogdan
Drutu, Nik Molnar and Yuri Shkuro. W3C Recommendation on Trace Con-
text, 2020. (Cited in pages 27 and 117.)

[Kendall 1994] Samuel C. Kendall, Jim Waldo, Ann Wollrath and Geoff Wyant. A
Note on Distributed Computing. Technical Report, Sun Microsystems, Inc.,
1994. (Cited in page 24.)

[Khan 2019] Wazir Zada Khan, Ejaz Ahmed, Saqib Hakak, Ibrar Yaqoob and Arif
Ahmed. Edge computing: A survey. Futur. Gener. Comput. Syst., vol. 97,
pages 219–235, 2019. (Cited in pages 15 and 115.)

[Klein 2010] Douglas Klein. Centrality measure in graphs. Journal of Mathematical
Chemistry, vol. 47, pages 1209–1223, 05 2010. (Cited in page 89.)

[Kumar 2018] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster, Robert Klein-
berg, Petr Lapukhov, Chiun Lin Lim and Robert Soulé. Semi-Oblivious
Traffic Engineering : The Road Not Taken. 15th USENIX Symp. Net-
worked Syst. Des. Implement. (NSDI 18), pages 157–170, 2018. (Cited in
pages 26, 27, and 116.)

164 BIBLIOGRAPHY

[Las-Casas 2018] Pedro Las-Casas, Jonathan Mace, Dorgival Guedes and Rodrigo
Fonseca. Weighted Sampling of Execution Traces. In Proc. ACM Symp.
Cloud Comput. - SoCC ’18, pages 326–332, 2018. (Cited in pages 27
and 105.)

[Las-Casas 2019] Pedro Las-Casas, Giorgi Papakerashvili, Vaastav Anand and
Jonathan Mace. Sifter: Scalable Sampling for Distributed Traces, with-
out Feature Engineering. SoCC 2019 - Proc. ACM Symp. Cloud Comput.,
pages 312–324, 2019. (Cited in page 27.)

[Lee 2003] Edward A Lee. Model-driven development-from object-oriented design
to actor-oriented design. In Workshop on Software Engineering for Embed-
ded Systems: From Requirements to Implementation (aka The Monterey
Workshop), Chicago. Citeseer, 2003. (Cited in page 93.)

[Li 2019] Wubin Li, Yves Lemieux, Jing Gao, Zhuofeng Zhao and Yanbo Han. Ser-
vice Mesh: Challenges, state of the art, and future research opportunities.
Proc. - 13th IEEE Int. Conf. Serv. Syst. Eng. SOSE 2019, 10th Int. Work.
Jt. Cloud Comput. JCC 2019 2019 IEEE Int. Work. Cloud Comput. Robot.
Syst. CCRS 2019, pages 122–127, 2019. (Cited in pages 23 and 73.)

[Lin 2018] Jinjin Lin, Pengfei Chen and Zibin Zheng. Microscope: Pinpoint per-
formance issues with causal graphs in micro-service environments. In Lect.
Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), volume 11236 LNCS, pages 3–20, 2018. (Cited in pages 26,
30, and 117.)

[Luo 2011] Jianxi Luo and Christopher L. Magee. Detecting evolving patterns of
self-organizing networks by flow hierarchy measurement. Complexity, vol. 16,
no. 6, pages 53–61, jul 2011. (Cited in pages vii, 60, 61, 62, 64, 65, 66, 124,
and 125.)

[Mace 2018a] Jonathan Mace and Rodrigo Fonseca. Universal context propagation
for distributed system instrumentation. In Proc. Thirteen. EuroSys Conf.,
pages 1–18, New York, NY, USA, apr 2018. ACM. (Cited in page 27.)

[Mace 2018b] Jonathan Mace, Ryan Roelke and Rodrigo Fonseca. Pivot Tracing.
ACM Trans. Comput. Syst., vol. 35, no. 4, pages 1–28, 2018. (Cited in
page 27.)

[Malawski 2018] Maciej Malawski, Kamil Figiela, Adam Gajek and Adam Zima.
Benchmarking heterogeneous cloud functions. Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),
vol. 10659 LNCS, no. August, pages 415–426, 2018. (Cited in page 14.)

[Marvasti 2013] Mazda Marvasti, Arnak Poghosyan, Ashot Harutyunyan and Naira
Grigoryan. Identifying Root Causes, Bottlenecks, and Black Swans in IT
Environments. VMWARE Tech. J., vol. 2, no. 1, pages 35–45, 2013. (Cited
in pages 29, 92, and 132.)

BIBLIOGRAPHY 165

[Maurya 2019] Sunil Kumar Maurya, Xin Liu and Tsuyoshi Murata. Fast Ap-
proximations of Betweenness Centrality with Graph Neural Networks. In
Proceedings of the 28th ACM International Conference on Information and
Knowledge Management, CIKM ’19, page 2149–2152, New York, NY, USA,
2019. Association for Computing Machinery. (Cited in page 91.)

[Mell 2011] Peter Mell and Timothy Grance. The NIST Definition of Cloud Com-
puting Recommendations of the National Institute of Standards and Tech-
nology. Natl. Inst. Stand. Technol. Inf. Technol. Lab., vol. 145, page 7, 2011.
(Cited in pages 9, 10, 12, and 114.)

[Moreno-Vozmediano 2017] R. Moreno-Vozmediano, R. S. Montero, E. Huedo and
I. M. Llorente. Orchestrating the deployment of high availability services on
multi-zone and multi-cloud scenarios. J. Grid Comput., vol. 16, no. 1, pages
39–53, 2017. (Cited in page 15.)

[Nedelkoski 2019] Sasho Nedelkoski, Jorge Cardoso and Odej Kao. Anomaly de-
tection and classification using distributed tracing and deep learning. Proc.
- 19th IEEE/ACM Int. Symp. Clust. Cloud Grid Comput. CCGrid 2019,
pages 241–250, 2019. (Cited in pages 25 and 27.)

[Netflix 2014] Netflix. Introducing Atlas: Netflix’s Primary Telemetry Platform,
2014. (Cited in page 21.)

[Newman 2015] Sam Newman. Building Microservices. O’Reilly Media, Inc., 2015.
(Cited in pages 18, 19, and 115.)

[Parisi-Presicce 1993] Francesco Parisi-Presicce. Single vs. Double pushout deriva-
tions of graphs. Lect. Notes Comput. Sci. (including Subser. Lect. Notes
Artif. Intell. Lect. Notes Bioinformatics), vol. 657 LNCS, pages 248–262,
1993. (Cited in page 45.)

[Quantcast 2013] Quantcast. Wait, How Many Metrics ? Monitoring at Quantcast,
2013. (Cited in pages 21, 25, and 116.)

[Rodriguez 2015] Marko A. Rodriguez. The gremlin graph traversal machine and
language (Invited Talk). DBPL 2015 - Proc. 15th Symp. Database Program.
Lang., pages 1–10, 2015. (Cited in pages 45, 46, and 52.)

[Sales-Pardo 2007] M. Sales-Pardo, R. Guimera, A. A. Moreira and L. A. N. Ama-
ral. Extracting the hierarchical organization of complex systems. Proc. Natl.
Acad. Sci., vol. 104, no. 39, pages 15224–15229, sep 2007. (Cited in page 61.)

[Sampaio 2019] Adalberto R. Sampaio, Julia Rubin, Ivan Beschastnikh and Nel-
son S. Rosa. Improving microservice-based applications with runtime place-
ment adaptation. J. Internet Serv. Appl., vol. 10, no. 1, 2019. (Cited in
page 19.)

[Saxena 2017] Akrati Saxena, Ralucca Gera and S. R. S. Iyengar. A Faster Method
to Estimate Closeness Centrality Ranking. CoRR, vol. abs/1706.02083, 2017.
(Cited in page 91.)

166 BIBLIOGRAPHY

[Senyo 2018] Prince Kwame Senyo, Erasmus Addae and Richard Boateng. Cloud
computing research: A review of research themes, frameworks, methods and
future research directions. Int. J. Inf. Manage., vol. 38, no. 1, pages 128–139,
2018. (Cited in pages 12 and 114.)

[Singh 2017] Sukhpal Singh, Inderveer Chana and Maninder Singh. The Journey
of QoS-Aware Autonomic Cloud Computing. IT Prof., vol. 19, no. 2, pages
42–49, 2017. (Cited in pages 17 and 115.)

[Souders 2009] Steve Souders. Velocity and the Bottom Line, 2009. (Cited in
page 1.)

[Stergiou 2020] Stergios Stergiou. Scaling PageRank to 100 Billion Pages. In WWW
’20: The Web Conference, April 20–24, 2020, Taipei, Taiwan, 2020. (Cited
in page 92.)

[Tarjan 1972] Robert Tarjan. Depth-First Search and Linear Graph Algorithms.
SIAM J. Comput., vol. 1, no. 2, pages 146–160, jun 1972. (Cited in page 65.)

[Thalheim 2017] Jorg Thalheim, Antonio Rodrigues, Istemi Ekin Akkus, Pramod
Bhatotia, Ruichuan Chen, Bimal Viswanath, Lei Jiao and Christof Fetzer.
Sieve: Actionable insights from monitored metrics in distributed systems.
Middlew. 2017 - Proc. 2017 Int. Middlew. Conf., pages 14–27, 2017. (Cited
in pages 25 and 116.)

[Uber 2016] Uber. Observability at Uber Engineering: Past, Present, Future, 2016.
(Cited in pages 21 and 115.)

[Unuvar 2015] Merve Unuvar, Stefania Tosi, Yurdaer N. Doganata, Malgorzata
Steinder and Asser N. Tantawi. Selecting Optimum Cloud Availability Zones
by Learning User Satisfaction Levels. IEEE Trans. Serv. Comput., vol. 8,
no. 2, pages 199–211, 2015. (Cited in pages 15 and 115.)

[van Eyk 2018] Erwin van Eyk, Alexandru Iosup, Cristina L. Abad, Johannes
Grohmann and Simon Eismann. A SPEC RG Cloud Group’s Vision on
the Performance Challenges of FaaS Cloud Architectures. Companion 2018
ACM/SPEC Int. Conf. Perform. Eng. - ICPE ’18, pages 21–24, 2018. (Cited
in pages 14 and 115.)

[Vaquero 2008] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres and Maik
Lindner. A break in the clouds. ACM SIGCOMM Comput. Commun. Rev.,
vol. 39, no. 1, page 50, 2008. (Cited in pages 9 and 114.)

[Varghese 2018] Blesson Varghese and Rajkumar Buyya. Next generation cloud
computing: New trends and research directions. Futur. Gener. Comput.
Syst., vol. 79, pages 849–861, 2018. (Cited in pages 14, 15, and 115.)

[Vavilapalli 2013] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas,
Sharad Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason

BIBLIOGRAPHY 167

Lowe, Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo Curino, Owen O’Mal-
ley, Sanjay Radia, Benjamin Reed and Eric Baldeschwieler. Apache hadoop
YARN: Yet another resource negotiator. Proc. 4th Annu. Symp. Cloud
Comput. SoCC 2013, 2013. (Cited in page 16.)

[Veeraraghavan 2016] Kaushik Veeraraghavan, Justin Meza, David Chou, Wonho
Kim, Sonia Margulis, Scott Michelson, Rajesh Nishtala, Daniel Obenshain
and Dmitri Perelman. Kraken : Leveraging Live Traffic Tests to Iden-
tify and Resolve Resource Utilization Bottlenecks in Large Scale Web Ser-
vices. OSDI’16 Proc. 12th USENIX Conf. Oper. Syst. Des. Implement.,
pages 635–651, 2016. (Cited in pages 20, 26, 92, 116, and 132.)

[Veeraraghavan 2018] Kaushik Veeraraghavan, Justin Meza, Scott Michelson,
Sankaralingam Panneerselvam, Alex Gyori, David Chou, Sonia Margulis,
Daniel Obenshain, Shruti Padmanabha, Ashish Shah, Yee Jiun Song and
Tianyin Xu. Maelstrom: Mitigating Datacenter-level Disasters by Draining
Interdependent Traffic Safely and Efficiently. 2018. (Cited in pages 20, 26,
92, 116, and 132.)

[Verma 2015] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-
heimer, Eric Tune and John Wilkes. Large-scale cluster management at
Google with Borg. In Proc. 10th Eur. Conf. Comput. Syst. EuroSys 2015,
pages 1–17, New York, New York, USA, 2015. ACM Press. (Cited in pages 16
and 22.)

[Woodruff 2017] David P Woodruff and Qin Zhang. When distributed computation
is communication expensive. Distrib. Comput., vol. 30, no. 5, pages 309–323,
2017. (Cited in page 24.)

[Yu 2018] Zhibin Yu and Qixiao Liu. The Elasticity and Plasticity in Semi-
Containerized Co-locating Cloud Workload : a View from Alibaba Trace.
In Proc. ACM Symp. Cloud Comput. - SoCC ’18, pages 347 – 360, 2018.
(Cited in pages 16, 20, and 115.)

[Zafeiris 2018] Anna Zafeiris and Tamás Vicsek. Why We Live in Hierarchies?
Number July in SpringerBriefs in Complexity. Springer International Pub-
lishing, Cham, 2018. (Cited in pages 41, 42, 61, 108, and 123.)

Abstract:
Cloud Computing has changed how software is developed and deployed. Nowa-

days, Cloud applications are designed as rapidly evolving distributed systems that
are hosted in third-party data centre and potentially scattered around the globe.
This shift of paradigms also had a considerable impact on how software is monitored:
Cloud application have been growing to reach the scale of hundreds of services, and
state-of-the-art monitoring quickly faced scaling issues. In addition, monitoring
tools also now have to address distributed systems failures, like partial failures,
configuration inconsistencies, networking bottlenecks or even noisy neighbours.

In this thesis we present an approach based on a new source of telemetry that has
been growing in the realm of Cloud application monitoring. Indeed, by leveraging
the recent OpenTelemetry standard, we present a system that converts “distributed
tracing” data in a hierarchical property graph. With such a model, it becomes
possible to highlight the actual topology of Cloud applications like the physical
distribution of its workloads in multiple data centres. The goal of this model is
to exhibit the behaviour of Cloud Providers to the developers maintaining and
optimizing their application.

Then, we present how this model can be used to solve some prominent dis-
tributed systems challenges: the detection of inefficient communications and the
anticipation of hot points in a network of services. We tackle both of these prob-
lems with a graph-theory approach. Inefficient composition of services is detected
with the computation of the Flow Hierarchy index. A Proof of Concept is presented
based on a real OpenTelemetry instrumentation of a Zonal Kubernetes Cluster. In,
a last part we address the concern of hot point detection in a network of services
through the perspective of graph centrality analysis. This work is supported by
a simulation program that has been instrumented with OpenTelemetry in order
to emit tracing data. These traces have been converted in a hierarchical property
graph and a study on the centrality algorithms allowed to identify choke points.

Both of the approaches presented in this thesis comply with state-of-the-art
Cloud application monitoring. They propose a new usage of Distributed Tracing
not only for investigation and debugging but for automatic detection and reaction
on a full system.

Keywords: Cloud Application, Performance Monitoring, Distributed Tracing,
Flow Hierarchy, Centrality Analysis, Property Graphs

Résumé :
Le Cloud Computing a bouleversé la façon dont nous développons et déployons

les logiciels. De nos jours, les applications Cloud sont conçues comme des systèmes
distribués en permanente évolution, hébergés dans des data center, et potentielle-
ment même dispersés dans le monde entier. Ce changement de paradigme a égale-
ment eu un impact considérable sur la façon dont les logiciels sont monitorés : les
applications Cloud peuvent se composer de plusieurs centaines de services, et les
outils de monitoring ont rapidement rencontré des problèmes de passage à l’échelle.
De plus, ces outils de monitoring doivent désormais également traiter les défaillances
et les pannes inhérentes aux systèmes distribués, comme par exemple, les pannes
partielles, les configurations incohérentes, les goulots d’étranglement ou même la
vampirisation de ressources.

Dans cette thèse, nous présentons une approche basée sur une nouvelle source
de télémétrie qui s’est développée dans le domaine du monitoring des applications
Cloud. En effet, en nous appuyant sur le récent standard OpenTelemetry, nous
présentons un système qui convertit les données de “traces distribuées” en un graphe
de propriétés hiérarchique. Grâce à ce modèle, il devient possible de mettre en évi-
dence la topologie des applications, y compris sur plusieurs data-centers. L’objectif
de ce modèle est donc d’exposer le comportement des fournisseurs de service Cloud
aux développeurs qui maintiennent et optimisent leur application.

Ensuite, nous présentons l’utilisation de ce modèle pour résoudre certains des
défis majeurs des systèmes distribués : la détection des communications inefficaces
entre les services ainsi que l’anticipation des goulots d’étranglement. Nous abordons
ces deux problèmes avec une approche basée sur la théorie des graphes. La compo-
sition inefficace des services est détectée avec le calcul de l’indice de hiérarchie de
flux. Une plateforme Proof-of-Concept représentant un cluster Kubernetes zonal
pourvu d’une instrumentation OpenTelemetry est utilisée pour créer et détecter
les compositions de services inefficaces. Dans une dernière partie, nous abordons la
problématique de la détection des goulots d’étranglement dans un réseau de services
au travers de l’analyse de centralité du graphe hiérarchique précédent. Ce travail
s’appuie sur un programme de simulation qui a aussi été instrumenté avec Open-
Telemetry afin d’émettre des données de traçage. Ces traces ont été converties en
un graphe de propriétés hiérarchique et une étude sur les algorithmes de centralité
a permis d’identifier les points d’étranglement.

Les deux approches présentées dans cette thèse utilisent et exploitent l’état de
l’art en matière de monitoring des applications Cloud. Elles proposent une nouvelle
utilisation des données de “distributed tracing” pas uniquement pour l’investigation
et le débogage, mais pour la détection et la réaction automatiques sur un système
réel.

Mots Clés : Applications Cloud, Analyse de Performances, Traces Distribuées,
Hiérarchie de Flux, Analyse de Centralité, Graphes de Propriétés

	Introduction
	Cloud Native Applications
	Industrial Context & Problem
	Contributions & Dissertation Outline

	Cloud Application Performance Monitoring
	Introduction
	The Cloud Computing Paradigm
	Overview and Definition of Cloud Computing
	Evolution of Cloud Computing
	Performance Measurements and Concerns
	Closing Words on the Cloud Paradigm

	Cloud-Native Application Architecture
	The Microservices Architecture
	The Evolution of Cloud Resource Management
	Challenges Regarding Performance Evaluation

	Cloud Application Monitoring
	Cloud Application Monitoring and Performance Analysis
	Toward a Unified Cloud Application Monitoring Framework
	Research Challenges for Monitoring Cloud Application

	Scope of the Thesis
	Conclusions

	A Hierarchical Property Graph Model
	Introduction
	Distributed Tracing Ecosystem
	OpenTelemetry Data Collection Architecture
	Collecting Traces in Jaeger Tracing
	The Jaeger Analytic Library and its Limitations

	Extracting a Structural Model from Traces
	Identifying Common Elements to Aggregate Traces
	Modelling an Application Hierarchical Structure

	Modelling Components Interactions
	Leveraging the Property Graph Model to Identify the Type of Communication
	Graph Rewriting Operations
	Building a Hierarchical Property Graph

	Implementation
	Extracting Data from a Jaeger gRPC Endpoint
	Property Graph Encoding
	Graph Rewriting Operations

	Conclusions

	Identifying Inefficient Service Composition
	Introduction
	Modelling a System With Hierarchies
	Definition and Subtypes of Hierarchy
	Measuring Imperfect Flow Hierarchies
	Cycle Identification

	Detecting Inefficient Service Composition
	Application to the Hierarchical Property Graph
	Proof of Work on a Sample Cloud Application

	Implementation
	Designing a Multi Layers Platform with Zonal Kubernetes Cluster
	Getting OpenTelemetry Traces With Network Level
	Computing the Flow Hierarchy Metric
	Results

	Conclusions

	Identifying Bottlenecks with Centrality
	Introduction
	Generalizing the Graph Encoding Model
	Including Multiple Resource Type in the Model
	Configuring the Containment Hierarchy
	Characterizing an AWS Application

	Application to Complex Cloud Applications
	Overview of Graph Centrality Algorithm
	Distributed Applications Bottlenecks

	Implementation
	Using Spigo for Emitting OpenTelemetry Traces
	Scenario Selection and Representativeness
	Observing the Impact of Betweenness Centrality in the Riak Simulation

	Conclusions

	Conclusion & Future Works
	Synthesis of Contributions
	Future Works
	Short-term Work
	Mid-term Work
	Long-term Work

	Closing Words

	Résumé en Français
	Monitoring d'Applications Cloud
	Introduction
	Présentation du Paradigme Cloud
	Les Applications Cloud Natives
	Monitoring et Analyse de Performance d'Application cloud

	Modélisation des Communications Internes
	Introduction
	Présentation de l'Écosystème de Tracing
	Extraction et Aggregation des Données dans un Graphe de Propriétés

	Détection de Composition de Services Inefficaces
	Introduction
	Modélisation d'une Application cloud grâce au Concept de Hiérarchies
	Détection de Communications Inefficaces
	Mise en œuvre

	Détection de Goulots d'Étranglements
	Introduction
	Généralisation de l'Encodage en Graphe de Propriétés
	Utilisation de l'analyse de Centralité pour l'Anticipation de Goulots d'Étranglement
	Vérification Expérimentale

	Conclusion
	Synthèse des Contributions
	Pistes de Poursuite des Travaux

	Scala Notebook and Code
	Data Aquisition
	Establishing a Channel With a Jaeger Instance
	Mapping ProtoBuf Data to Standard Java/Scala API

	Definition of the Analytics Trace-Data-Model
	Operation Entities
	Resources Entities
	Span Entities
	Trace Entities

	Graph Encoding
	Defining the Property Graph Model
	Encoding Process
	Graph Rewriting

	Calculation of the Flow hierarchy metric
	Building and Running the Pipeline

	Bibliography

