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sont libérées dans l’atmosphère et transportées sous l’effet du vent. En milieu urbain, les
bâtiments ont un effet de blocage sur l’écoulement ce qui peut entraîner des pics de pollu-
tion et donc des risques à court terme pour la santé et l’environnement. Localiser ces pics
nécessite de recourir à des modèles résolvant les équations fondamentales de la physique
des écoulements et leurs interactions avec le milieu bâti. Malgré leur complexité, ces mo-
dèles présentent des incertitudes notamment liées aux conditions atmosphériques. Cette
thèse vise à construire et valider un système de modélisation permettant d’estimer ces in-
certitudes et d’identifier les scénarios possibles de dispersion, en s’appuyant sur des outils
venant de l’apprentissage statistique et en informant le modèle à partir d’observations
in-situ.

Title: Assessing and reducing uncertainty in large-eddy simulation for microscale at-
mospheric dispersion.
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Plain language summary: Air quality is severely degraded during events such as
industrial accidents. Harmful gases and particles are released into the atmosphere and
carried by the wind. In built environments, these pollutants can lead to local pollution
peaks due to buildings blocking the flow, resulting in short-term health and environ-
mental risks. Locating these peaks requires the use of models solving the fundamental
equations of fluid dynamics and their interactions with the built environment. Despite
their complexity, these models are subject to uncertainties that are partly linked to at-
mospheric conditions. The aim of this thesis is to build and validate a modeling system
able of estimating these uncertainties and identifying possible dispersion scenarios. This
is achieved by using tools derived from statistical learning and by informing the model
with in-situ observations.
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Résumé

La dispersion des polluants à micro-échelle est une problématique fondamentale dans
l’évaluation de la qualité de l’air, avec des implications importantes pour la santé publique.
À cette échelle, de l’ordre de la centaine de mètres, l’objectif est de caractériser finement
les niveaux de concentration en polluants, ce qui est particulièrement pertinent dans les
environnements urbains du fait de leur grande hétérogénéité. La conception de modèles
précis de dispersion à micro-échelle est d’une importance capitale pour prévoir l’exposition
à la pollution atmosphérique et évaluer les risques associés, par exemple en cas d’accidents
industriels. Toutefois, il s’agit d’une tâche difficile car la structure et la trajectoire des
panaches de polluants sont fortement influencées par l’écoulement atmosphérique, qui
est intrinsèquement multi-échelle et turbulent, et qui interagit de façon complexe avec
l’environnement bâti.

La mécanique des fluides numérique (CFD) s’est imposée comme un outil puissant
pour résoudre ce problème en fournissant des simulations d’écoulement et de dispersion
qui prennent explicitement en compte les bâtiments. Cependant, les modèles CFD sont
très couteux, ce qui entrave leur utilisation dans des contextes opérationnels et en situa-
tion d’urgence. Par ailleurs, leur précision reste limitée en raison des fortes incertitudes
en jeu, en particulier celles liées au forçage atmosphérique à grande échelle et à la vari-
abilité interne de la couche limite atmosphérique. Pour les applications d’évaluation des
risques, il est essentiel de contrôler et de quantifier ces incertitudes, mais cela est rendu
difficile par le coût des modèles CFD.

Pour répondre à ces deux problèmes, nous mettons en œuvre et validons un sys-
tème de modélisation par simulation des grandes échelles de tourbillons (LES), qui in-
clut un modèle réduit et un algorithme d’assimilation de données basé sur un filtre
de Kalman d’ensemble. Cette thèse établit une preuve de concept de la capacité du
système à améliorer les prévisions LES de concentration de polluant dans le cas d’un
essai de la campagne expérimentale MUST. En particulier, nous démontrons que les
mesures locales de concentration peuvent être utilisées pour réduire les incertitudes
paramétriques météorologiques et corriger les biais dans les conditions aux limites du
modèle. L’utilisation d’un modèle réduit permet de générer des prévisions d’ensemble
qui tiennent compte avec précision des fortes non-linéarités du modèle LES, en quelques
dizaines de secondes seulement.

Une attention particulière est accordée à l’incertitude associée à la variabilité in-
terne de la couche limite atmosphérique, que nous proposons de quantifier à l’aide d’une
approche bootstrap. Nous démontrons que la variabilité interne impacte fortement les
prévisions de dispersion à micro-échelle des modèles LES mais aussi les observations sur
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Résumé

le terrain, et qu’elle ne doit donc pas être ignorée lors de l’évaluation des modèles de dis-
persion. Nous allons ensuite plus loin en tenant compte de cette variabilité interne dans
la construction du modèle réduit et du système d’assimilation de données. En partic-
ulier, nous montrons que l’analyse de la variabilité interne permet de choisir le nombre de
modes du modèle réduit afin d’éviter d’introduire du bruit dans ses prévisions. Enfin, nous
prenons en compte la variabilité interne à micro-échelle dans le processus d’assimilation
de données afin de le rendre plus robuste et réaliste. Ces développements sont faits de
manière élégante et sans générer de lourdeur d’implémentation ou de calcul.

D’un point de vue plus général, cette thèse montre quelques pistes pour adopter une
approche de modélisation probabiliste de processus atmosphériques complexes basée sur
la modélisation LES, qui est aujourd’hui reconnue comme une référence mais qui reste
soumise à des incertitudes, dont certaines sont intrinsèquement irréductibles.
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Abstract

Microscale pollutant dispersion is a critical aspect of air quality assessment with sig-
nificant implications for the environment and public health. At this scale, of the order
of a hundred meters, the aim is to characterize pollutant concentration levels in detail,
which is particularly relevant in urban environments due to their great heterogeneity.
Designing accurate microscale dispersion models is of paramount importance for predict-
ing air pollution exposure and assessing risks, for example in case of industrial accidents.
However, this is a challenging task, as the structure and trajectory of pollutant plumes
are strongly influenced by atmospheric flow, which is inherently multi-scale and turbulent
and interacts in complex ways with the built environment.

Computational Fluid Dynamics (CFD) has emerged as a powerful tool to address
this issue by providing obstacle-resolving flow and dispersion predictions. However, CFD
models are very costly, which hinders their use in operational and emergency contexts. In
addition, their accuracy remains limited because of the significant uncertainties involved,
in particular those arising from a lack of knowledge about the large-scale atmospheric
forcing and from the internal variability of the atmospheric boundary layer. For risk
assessment applications, controlling and quantifying these uncertainties is essential, but
made difficult by the cost of CFD models.

To address these dual issues, we design and validate a large-eddy simulation (LES)
modeling system that includes a reduced-order model and a data assimilation algorithm
based on an ensemble Kalman filter. This thesis provides a proof-of-concept of the sys-
tem’s ability to improve LES pollutant concentration field predictions in a neutral trial of
the MUST field experiment. In particular, we demonstrate that local pollutant concen-
tration measurements can be used to reduce meteorological parametric uncertainties and
correct bias in the model boundary conditions. The use of a reduced-order model enables
generating ensemble predictions that accurately account for the strong nonlinearities of
the LES model, in just a few tens of seconds.

Particular attention is paid to the uncertainty associated with the internal variability
of the atmospheric boundary layer. We adapt a bootstrap approach to quantify its
effect on microscale dispersion and demonstrate that internal variability significantly
affects not only LES model predictions but also field observations. By propagating the
associated uncertainties to the standard statistical metrics used for air quality model
evaluation, we show that the resulting variability in the validation metrics is significant
and cannot be ignored when evaluating LES model accuracy. We then go a step further
by accounting for this internal variability in the construction of the reduced-order model
and of the data assimilation system. In particular, we show that the analysis of internal
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Abstract

variability is of great interest to make an informed choice on the number of reduced-basis
modes to avoid introducing noise into the reduced-order model. Finally, we take into
account the microscale internal variability in the data assimilation process, making it
much more robust and realistic. These additions to the data assimilation framework are
made elegantly and without generating implementation or computational heaviness.

From a broader point of view, this thesis shows some ways to adopt a probabilistic
modeling approach for complex atmospheric phenomena based on LES, which are nowa-
days recognized as references, but remain subject to uncertainties, some of which are
inherently irreducible.
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Introduction générale

Contexte et enjeux
La dispersion atmosphérique fait référence à la manière dont divers polluants, tels

que des gaz, des particules et des composés chimiques, sont transportés et dispersés
dans l’atmosphère terrestre. Un polluant est défini comme une substance qui contamine
l’environnement et qui a des effets néfastes sur les écosystèmes et la santé humaine. Les
polluants atmosphériques proviennent soit de phénomènes naturels tels que les éruptions
volcaniques et les incendies de forêt, soit d’émissions anthropiques quotidiennes liées aux
activités industrielles, à l’agriculture et aux transports. Les polluants peuvent également
être dispersés dans l’atmosphère lors d’accidents industriels. Les accidents nucléaires de
Tchernobyl et Fukushima en 1986 et 2011, l’explosion de l’usine AZF en 2001 à Toulouse
et l’incendie de l’usine Lubrizol en 2019 à Rouen en sont la preuve (Fig. 1a). Depuis
les années 2000, l’inquiétude croissante face au terrorisme a également donné un nouvel
élan à l’étude de la dispersion des polluants dans les zones urbaines densément peuplées
(Allwine et al. 2002, 2004; Fox and Storwold 2011; Fox et al. 2022).

La dégradation de la qualité de l’air associée à la pollution atmosphérique a des im-
pacts significatifs sur la santé humaine (EEA 2020). À long terme, la contamination des
environnements extérieurs et intérieurs est à l’origine de maladies respiratoires et car-
diovasculaires, de cancers, d’allergies et d’asthme (Manisalidis et al. 2020). La pollution
atmosphérique est ainsi responsable de millions de décès chaque année, ce qui en fait la
troisième cause de mortalité dans le monde (Ritchie and Roser 2017). L’exposition à de
fortes concentrations de polluants peut également avoir des effets très graves sur la santé
à court terme, en particulier dans le cas d’accidents industriels. Par exemple, lors de la
catastrophe de Bhopal en Inde en 1984, une fuite d’isocyanate de méthyle, un pesticide
hautement toxique, a causé la mort d’environ 16 000 personnes (Eckerman 2005). Il est
important de noter que les populations les plus pauvres sont souvent les plus exposées
(Ritchie and Roser 2017).

La pollution atmosphérique a également des effets importants sur l’environnement et
le changement climatique. La contamination de l’atmosphère peut se propager à l’eau,
au sol et à la végétation, ce qui nuit à l’agriculture et menace la biodiversité (Rai et al.
2011). En outre, certains polluants atmosphériques, tels que le dioxyde de carbone et le
méthane, sont des gaz à effet de serre responsables du changement climatique qui a des
conséquences considérables et potentiellement catastrophiques pour la société humaine.
Le changement climatique contribue à son tour à la détérioration de la qualité de l’air en
augmentant l’ozone troposphérique, les allergènes en suspension dans l’air et le nombre
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(a) (b)

Figure 1: Exemples de dispersion de polluants en milieu urbain. (a) Photo de l’incendie de
l’usine Lubrizol ® en 2019 à Rouen, France. Crédit photo : Jean Pierre Mauger. (b) Concentra-
tion instantanée prédite par une simulation des grandes échelles de tourbillons (LES) de König
(2014) reproduisant un essai de la campagne de terrain MUST (Biltoft 2001) dans le désert de
l’Utah en 2001. Au cours de cette campagne, du propène a été relâché au milieu d’un ensemble
de conteneurs imitant une canopée urbaine simplifiée.

de feux de forêt (Reidmiller et al. 2017).

Le suivi de la concentration des polluants est un problème multi-échelle allant du
champ proche (à quelques mètres de la source) au champ lointain (à des échelles allant de
quelques centaines de mètres jusqu’à l’échelle globale). Dans cette thèse, nous examinons
la question de la dispersion atmosphérique en champ proche, en mettant l’accent sur la
dispersion de polluants gazeux en environnement urbain. Ce sont des environnements à
haut risque en raison de leur forte densité de population et parce que la topographie ur-
baine ralentit la dispersion atmosphérique et induit une forte variabilité spatio-temporelle
de la concentration des polluants, ce qui rend difficile la localisation des pics de pollution.
La nature intrinsèquement multi-échelle des écoulements urbains, dirigés par les condi-
tions météorologiques à grande échelle et influencés localement par l’environnement bâti,
représente un défi important lorsqu’il s’agit de comprendre et de prévoir la dispersion
de polluants en ville. Ainsi, le développement de modèles de dispersion à micro-échelle
capables de prédire la distribution spatiale des polluants est d’une importance capitale
pour l’évaluation des risques sanitaires pour les habitants. Ces modèles peuvent égale-
ment être utilisés de manière préventive pour définir des réseaux de surveillance de la
qualité de l’air et pour aider les urbanistes et les architectes à concevoir l’espace urbain
de manière à minimiser l’exposition aux polluants. Dans le contexte spécifique d’un rejet
accidentel de polluants, les modèles à micro-échelle sont nécessaires pour aider la sécurité
civile à prendre des mesures d’urgence efficaces et, par la suite, pour déterminer les cartes
d’exposition.
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Positionnement de la thèse
Pour étudier les processus atmosphériques à micro-échelle, tels que la dispersion, en

particulier en environnement urbain, la communauté scientifique s’accorde de plus en
plus sur la nécessité d’utiliser des modèles de mécanique des fluides numérique (CFD)
(Holmes and Morawska 2006; Blocken et al. 2013). Ces modèles haute fidélité résolvent
les équations complexes de Navier-Stokes à l’aide de différentes approches : par exemple
en les moyennant (RANS), ou bien en les filtrant (LES). La grande force des modèles
CFD est leur capacité à représenter les détails des processus complexes et multi-échelle
qui régissent les écoulements et la dispersion atmosphériques. En particulier, ces modèles
permettent de prendre en compte de manière explicite les interactions complexes entre
l’environnement bâti et la dispersion des polluants.

Néanmoins, il convient de noter que les modèles CFD sont très coûteux et requièrent
donc des moyens de calcul avancés. De plus, il est reconnu que la précision des modèles
CFD est fortement limitée par leurs incertitudes, et doit être encore améliorée (Blocken
2014; Dauxois et al. 2021). Ces incertitudes découlent en partie des hypothèses de modéli-
sation ou d’un manque de connaissance sur les conditions météorologiques. Cette double
limitation en coût et précision empêche la généralisation de l’utilisation des modèles CFD
pour l’étude de la dispersion atmosphérique à micro-échelle.

Parmi les différentes sources d’incertitude affectant les modèles CFD, nous nous in-
téressons particulièrement aux incertitudes sur les conditions météorologiques qui af-
fectent fortement les prédictions de dispersion atmosphérique. Une partie de ces incer-
titudes sont dues à un manque de connaissance de l’état de l’atmosphère à un moment
donné, par exemple en raison de capacités d’observation limitées. Une autre partie de ces
incertitudes sont liées à la variabilité interne de la couche limite atmosphérique (CLA). En
effet, lorsque l’on considère des moyennes sur des horizons temporels finis, cette variabilité
induit une incertitude irréductible tant sur les prévisions des modèles que sur les obser-
vations. Des études signalent que la variabilité interne est l’une des principales raisons
des écarts entre les expériences sur le terrain et les simulations CFD ou les expériences
en soufflerie et expriment la nécessité d’aller au-delà de la comparaison déterministe
entre les modèles et les observations (Schatzmann and Leitl 2011; Antonioni et al. 2012;
García-Sanchez et al. 2018; Dauxois et al. 2021). L’estimation de la variabilité interne
constituerait donc une avancée méthodologique majeure pour la validation robuste des
modèles CFD atmosphériques lorsque les données sont acquises sur des périodes limitées,
mais aussi pour l’analyse de sensibilité des modèles et les comparaisons multi-modèle.

Actuellement, il y a une prise de conscience croissante du potentiel de la modélisation
orientée données pour surmonter les limites des modèles CFD atmosphériques à micro-
échelle. En particulier, les techniques de réduction de modèle basées sur l’apprentissage
statistique fournissent une solution pour réduire le coût des modèles CFD, sans compro-
mettre la précision (Margheri and Sagaut 2016; Nony et al. 2023a; Pasquier et al. 2023).
Parallèlement, l’assimilation de données, un domaine de recherche initié en météorolo-
gie et en océanographie, commence à être appliquée à la micro-échelle pour réduire
l’incertitude sur les conditions aux limites météorologiques des modèles CFD à l’aide
de données d’observation, ce qui permet d’améliorer considérablement la précision des
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prévisions (Mons et al. 2017; Sousa et al. 2018; Sousa and Gorlé 2019; Defforge et al.
2021).

Cette thèse vise à explorer les horizons prometteurs offerts par les techniques de
réduction de modèle et d’assimilation de données dans la quête d’une modélisation plus
efficace et plus précise de la dispersion atmosphérique à micro-échelle basée sur la CFD. La
question spécifique de la prise en compte de l’incertitude irréductible liée à la variabilité
interne de la CLA dans ces techniques est au cœur du travail présenté dans cette thèse.
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Context and issues
Atmospheric pollutant dispersion refers to the way various pollutants, such as gases,

particulate matter, and chemical compounds, are transported and dispersed throughout
the Earth’s atmosphere. A pollutant is defined as a substance that contaminates the
environment, causing adverse effects on ecosystems and human health. Air pollutants
either originate from natural hazards such as volcanic eruptions and wildfires, or daily
anthropogenic emissions related to industrial activities, agriculture, and transportation.
Pollutants can also be dispersed into the atmosphere during industrial accidents. This
was evidenced by the Chernobyl and Fukushima nuclear accidents in 1986 and 2011, the
AZF factory explosion in 2001 in Toulouse, and the Lubrizol factory fire in 2019 in Rouen
(Fig. 2a). Since the 2000s, growing concern about terrorism has also given new impetus
to the study of pollutant dispersion in densely populated urban areas (Allwine et al. 2002,
2004; Fox and Storwold 2011; Fox et al. 2022).

Air pollutants can degrade air quality and have significant impacts on human health
(EEA 2020). In the long term, the contamination of both outdoor and indoor envi-
ronments is the cause of respiratory and cardiovascular diseases, cancers, allergies and
asthma (Manisalidis et al. 2020) and is attributed to millions of deaths each year, making
it the third largest cause of death worldwide (Ritchie and Roser 2017). Exposure to high
concentrations of pollutants can also have very serious short-term health effects, particu-
larly in the case of industrial accidents. For example, during the Bhopal disaster in India
in 1984, a leak of methyl isocyanate, a highly toxic pesticide, caused the fatalities of
approximately 16,000 people (Eckerman 2005). It is important to note that the poorest
populations are often the most exposed (Ritchie and Roser 2017).

Air pollution also has far-reaching effects on both the environment and climate change.
Contamination of the atmosphere can spread to water, soil and vegetation, adversely
affecting agriculture and threatening biodiversity (Rai et al. 2011). Moreover, some air
pollutants, such as carbon dioxide and methane, are greenhouse gases responsible for
climate change leading to global warming and climate instability. Climate change in turn
contributes to worsening air quality by increasing ground-level ozone, airborne allergens,
and the number of wildfires (Reidmiller et al. 2017).

Tracking the pollutant concentration is a multi-scale problem ranging from the near
field (within a few meters away from the source) to the far field (at scales ranging from
a few hundred meters up to the global scale). In this thesis, we examine the question
of atmospheric dispersion in the near field, with a particular focus on the dispersion of
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(a) (b)

Figure 2: Examples of pollutant dispersion in urban environments. (a) Picture of the Lubri-
zol ® factory fire in 2019 in Rouen, France. Photo credit: Jean Pierre Mauger. (b) Instantaneous
concentration predicted by a large-eddy simulation from König (2014). It reproduces one trial
of the MUST field campaign (Biltoft 2001) in the Utah desert in 2001, in which propylene was
released within an array of shipping containers that mimic a simplified urban canopy.

gaseous pollutants in urban environments. These are high-risk environments because of
their high population density and because the urban topography slows down atmospheric
dispersion and induces a strong spatio-temporal variability of pollutant concentration,
making it difficult to locate pollution peaks. The inherently multiscale nature of urban
flows, governed by large-scale weather patterns down to microscale turbulence generated
by the complex built environment, represents a substantial challenge when it comes to
understanding and predicting pollutant dispersion in cities. Thus, the development of
microscale dispersion models able to predict the spatial distribution of pollutants is of
paramount importance in assessing health risks for the inhabitants. These models can
also be used in a preventive manner to define air quality monitoring networks and to help
urban planners and architects design urban space in such a way as to minimize pollutant
exposure. In the specific context of accidental pollutant release, microscale models are
required to assist civil security in taking effective emergency response measures and,
subsequently, to determine exposure maps.

Thesis positioning
To study microscale atmospheric processes such as dispersion, especially in urban

environments, there is a growing consensus in research for the use of Computational
Fluid Dynamics (CFD) models (Holmes and Morawska 2006; Blocken et al. 2013). These
high-fidelity models include various approaches, such as Reynolds-Averaged Navier-Stokes
(RANS) and Large-Eddy Simulation (LES), all of which solve the complex Navier-Stokes
equations. The greatest strength of CFD models is their ability to represent fine details

6



General introduction

of the intricate and multiscale processes that govern atmospheric flows and dispersion. In
particular, these models make it possible to explicitly account for the complex interactions
between the built environment and pollutant dispersion.

Nonetheless, the application of CFD models is not without challenges. Two main
limitations are the substantial computational costs associated with running these simula-
tions and their various uncertainties, emerging for example from modeling assumptions,
or a lack of knowledge about the meteorological conditions. To this date, it is recognized
that the accuracy of CFD models is severely limited by their uncertainties, and needs to
be further improved (Blocken 2014; Dauxois et al. 2021). These two limitations hinder
the widespread application of CFD-based microscale atmospheric dispersion studies.

Among the different sources of uncertainty affecting CFD models, we are particularly
interested in the uncertainty of the meteorological conditions that directly affect disper-
sion processes. Part of this uncertainty is due to a lack of knowledge about the state of
the atmosphere at a given time, for example, because of limited observation capabilities.
Another part of this uncertainty is linked to the internal variability of the turbulent at-
mospheric boundary layer (ABL). When considering averages over finite time horizons,
this variability induces an irreducible uncertainty on both model predictions and observa-
tions. Studies report internal variability as one of the main reasons for the discrepancies
between field-scale experiments and CFD simulations or wind-tunnel experiments and
express the need to go beyond deterministic point-wise model/observations comparison
(Schatzmann and Leitl 2011; Antonioni et al. 2012; García-Sanchez et al. 2018; Dauxois
et al. 2021). Estimating internal variability would therefore be a major methodological
advance for the robust validation of atmospheric CFD models when data are acquired
over limited periods, but also for model sensitivity analysis and multi-model comparisons.

Recently, there has been a growing awareness of the potential of data-driven techniques
to overcome the limitations of microscale atmospheric CFD models and thus improve our
understanding of atmospheric microscale processes. In particular, data-driven model
reduction techniques provide a solution to mitigate the cost of CFD models, without
compromising on accuracy (Margheri and Sagaut 2016; Nony et al. 2023a; Pasquier et al.
2023). Meanwhile, data assimilation, a field of research initiated in meteorology and
oceanography, is beginning to be applied at the microscale to reduce the uncertainty on
the meteorological boundary conditions of CFD models using observational data, resulting
in significant improvements in prediction accuracy (Mons et al. 2017; Sousa et al. 2018;
Sousa and Gorlé 2019; Defforge et al. 2021).

This thesis aims to explore the promising horizons offered by model reduction and data
assimilation techniques in the quest for more efficient and accurate microscale atmospheric
dispersion modeling based on CFD. The specific question of how to take into account the
irreducible uncertainty related to the internal variability of the ABL in these techniques
is at the heart of the work presented in this thesis.
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Chapter I

Scientific context and approach

The general aim of this chapter is to present and position the work of this
thesis in the current state of scientific knowledge.

To begin with, we present the general physics of microscale pollutant dispersion
with a focus on urban environments, highlighting its complex interactions with the
atmospheric boundary layer and the challenges facing the modeler. An overview
of modeling techniques and the main experiments used for model validation is pro-
vided. A particular focus is given to Computational Fluid Dynamics (CFD) models
which explicitly solve the wind flow and pollutant dispersion between buildings.

In the second section, we take a closer look at the limitations of CFD models
in terms of computational cost and accuracy. We propose a detailed classification
of the source of errors involved, separating them between aleatory and epistemic
uncertainties. This review of the scientific literature shows that the internal vari-
ability of the atmospheric boundary layer plays a major role in the lack of accuracy
of CFD models and has not yet been fully addressed.

Recent works have shown that model reduction and data assimilation tech-
niques could be particularly suited to address this dual problem of computational
cost and uncertainty. We introduce the reader to these techniques before reviewing
applications with the potential for improving microscale dispersion CFD modeling.
In light of the scientific context presented throughout the chapter, we finally intro-
duce our reduced-cost data assimilation system to quantify and reduce uncertainty
related to large-scale atmospheric forcing while also accounting for microscale in-
ternal variability.

The last part of this chapter presents the main steps to build this system which
defines the structure of the manuscript.
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I.1 Air pollutant dispersion in urban environment
In this section, we introduce the main physical phenomena involved in atmospheric

flows and pollutant dispersion in urban environment. First, we define the different scales
at stakes in Sect. I.1.1, before introducing the governing equations and challenges arising
from the turbulence and stability of the atmosphere in Sect. I.1.2. Then, we give an
overview of the existing dispersion modeling techniques (Sect. I.1.3) and of the experi-
ments commonly used as validation basis (Sect. I.1.4).

I.1.1 A multi-scale problem
Atmospheric dispersion involves a wide variety of scales, from the transport of aerosols

around the globe down to the emission of pollutants by vehicles at street level. The typical
scales for studying dispersion, according to Seinfeld and Pandis (1998), are defined in
Table I.1. Britter and Hanna (2003) further develop this classification in the specific case
of dispersion in urban environments, defining four scales: regional, city, neighborhood and
street. The city scale covers the complete area of a city and approximately corresponds
to the urban scale defined in Table I.1. The regional scale includes a larger zone around
the urban area to account for the interaction with local meteorology. Neighborhood and
street scales both correspond to the microscale defined in Table I.1; the former typically
extends up to one or two kilometers, while the latter is limited to one street or few
buildings.

Table I.1: The typical spatial scales of atmospheric pollutant transport models, from Seinfeld
and Pandis (1998).

Scale Typical length scale Typical study domain

Global 5° 65 000 × 65 000 × 20 km
Synoptic (continental) 80 km 3 000 × 3 000 × 20 km
Regional 20 km 1 000 × 1 000 × 10 km
Urban 4 km 100 × 100 × 5 km
Microscale 5 m 200 × 200 × 100 m

Each of these scales requires a different modeling approach. For instance, at the re-
gional scale, a macroscopic viewpoint is adopted as the effect of buildings on atmospheric
flow and dispersion is evaluated statistically. In this thesis, we focus on microscale dis-
persion which requires explicitly representing the interactions between the built environ-
ment and atmospheric flow to accurately represent pollutant concentration levels. It is
however not possible to ignore larger atmospheric scales as all these scales are deeply in-
terconnected due to the mixing processes occurring in the atmosphere. The uncertainty
resulting from this coupling between scales is at the core of the thesis problematic. In the
following, we introduce in more detail the structure of the atmospheric boundary layer.

Figure I.1 shows the typical scales of motion involved in the atmosphere above urban
environments, as introduced in the pioneering works of Oke (1987) on urban climatology.
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Figure I.1: Conceptual representation of the urban atmosphere and different layers and flow
scales at stakes (from Bailey et al. (1997), modified after Oke (1987)). The situation represented
corresponds to an unstable daytime urban boundary layer. ABL, UBL, and UCL respectively
stand for atmospheric boundary, urban boundary, and urban canopy layers.

The urban boundary layer (UBL) is considered a special case of the atmospheric boundary
layer (ABL), which corresponds to the part of the atmosphere influenced by the ground
surface. It is characterized by well-developed mixing due to frictional drag induced by
surface elements, and thermal convection caused by the temperature difference between
air and surface.

The UBL can be divided into sublayers according to their mean and turbulent prop-
erties (Fig. I.1). A first distinction can be made between the surfacer layer, which is in
direct contact with the surface and where Coriolis forces can be neglected, and the outer
layer which is mostly determined by advection (Fisher et al. 2005) and features spatially
homogeneous physical properties (Oke 1987). At smaller scales (Fig. I.1b), the surface
layer is itself divided between:

• the roughness sublayer where the flow is directly driven by the urban canopy and
therefore essentially heterogeneous and three-dimensional (Raupach et al. 1991),

• and the inertial sub-layer above, which is horizontally homogeneous on average and
where the vertical flows of momentum and heat can be considered constant.
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The height of the ABL, also known as layer thickness or mixing depth, varies spa-
tially with ground topography, but also over time due to changes in the meteorological
conditions at the synoptic scale and daily solar cycle. In the daytime, the ground surface
is heated by the Sun, causing strong convection and increasing the height of the ABL to
a few kilometers. Then, during the night, the ground surface becomes colder than the
atmosphere, which reduces mixing and thus the height of the ABL to a few dozen meters.
In this case, the outer layer and inertial sublayer shrink and can even disappear. A more
detailed explanation of the effect of thermal stratification on atmospheric flow is given in
Sect. I.1.2.3.

Figure I.2: Schematic examples of different interaction regimes between buildings and at-
mospheric flow at microscale from Bouyer (2017). a) Wind flow around one isolated obstacle.
b) Interaction between two obstacles of different heights. c) Channeling effect between aligned
buildings. d) Local acceleration of the flow due to building layout.

In this thesis, we are mainly interested in giving a detailed description of the microscale
dispersion phenomena occurring in the urban canopy layer (UCL), the lowest part of the
surface layer. At this scale which extends up to several times the roof height (Fig. I.1c),
flow, heat transfer and pollutant dispersion are dominated by the local characteristics of
the surroundings (buildings, vegetation, street furniture, etc). For example, Figure I.2a
shows a schematic view of the effect of one isolated building on the flow: it is slowed
down and deflected in each direction before separating at the corners of the obstacle. At
ground level a standing vortex settles, and a recirculation builds up in the wake of the
building. Flow and dispersion around isolated buildings have been studied extensively in
the literature (Li and Meroney 1983a,b; Meroney et al. 1999; Tominaga and Stathopoulos
2010). Multi-obstacle configurations have also been widely studied (Hanna et al. 2002;
Vardoulakis et al. 2003; Blocken and Carmeliet 2004) as they lead to specific interaction
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effects such as vortex formation in street canyon (Fig I.2b), channeling effect (Fig I.2c),
or local bottleneck effect (Fig I.2d).

As a result, air pollutant dispersion at the microscale is directly determined by the
local configuration of the urban canopy. For example, when the wind is perpendicular
to a street, the resulting recirculation zone (Fig. I.2b) can trap air pollutants and be-
come a hot spot of pollutant concentrations (Fig. I.3a). This is why the street canyon
configuration is a canonical microscale dispersion case study (Pavageau and Schatzmann
1999; Vardoulakis et al. 2003). As shown in Figs. I.3a, b, pollutant removal from the
street notably depends on the ratio of the distance between buildings to their typical
height. In addition to building layout, the plume shape is also strongly affected by the
location of the source (Figs. I.3c, d). Because of the highly heterogeneous nature of
the real urban environment, these complex microscale processes can combine in virtu-
ally unlimited ways within the urban canopy layer, thus motivating the development of
obstacle-resolving models to predict and understand flows for any urban geometry.

Figure I.3: Influence of building on air pollutant dispersion for different geometries and
source location, from Oke (1987).

Finally, we emphasize that the scales introduced by Oke (1987) are strongly intercon-
nected. On the one hand, the microscale processes taking place in the urban canopy layer
influence the upper layers by slowing down the flow and increasing turbulence production.
On the other hand, local flow conditions, notably wind direction and speed, are directly
conditioned by regional-scale meteorology. This makes air pollutant dispersion an inher-
ently multiscale phenomenon and represents another grand challenge for modeling. For
instance, microscale studies are used to parameterize the effect of the urban environments
in regional-scale models (Nazarian et al. 2020; Nagel et al. 2023), while mesoscale data are
required to define boundary conditions of microscale dispersion models (García-Sanchez
and Gorlé 2018). In Sect. I.2.2, we present in greater detail the uncertainties associated
with this coupling of scales.
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I.1.2 Atmospheric flow and dispersion at microscale
I.1.2.1 Governing equations

The dispersion of pollutants in the atmosphere is intrinsically driven by atmospheric
flow, which is governed by the equations of fluid mechanics. These are the famous Navier-
Stokes equations that account for the fundamental principle of mass, energy, and momen-
tum balance. In the following, we present how these equations can be simplified at the
microscale to describe the local atmospheric flow and dispersion of passive species. This
concise theoretical presentation is based on Stull’s book (1988) and Seinfeld and Pan-
dis’ one (1998). When writing the equations, we adopt the index notation, including
Einstein’s rule of summation.

Conservation of mass Adopting an Eulerian description, the law of conservation of
mass applied to an elementary volume of air leads to the continuity equation:

Dρ

Dt
+ ρ

∂ui

∂xi

= 0, (I.1)

where ρ and u = (ui, uj, uk) are the fluid density and velocity vector fields, and where
Dρ
Dt

= ∂ρ
∂t

+ ui
∂ρ
∂xi

denotes the material derivative of density. In the surface layer, the first
term in Eq. I.1 is negligible compared to the second term (Stull 1988), which yields the
incompressible formulation of the mass conservation equation

∂ui

∂xi

= 0, (I.2)

Conservation of momentum In the surface boundary layer, the flow is seen in a
plane tangent to the Earth, and the Coriolis force can be neglected. Assuming that air
viscosity µ is constant in space and using the incompressibility assumption already made
(Dρ

Dt
= 0), the conservation of momentum equation can be written as

∂ui

∂t
+ uj

∂ui

∂xj

= − 1
ρ

∂p

∂xi︸ ︷︷ ︸
(i)

+ ν
∂2ui

∂xj
2︸ ︷︷ ︸

(ii)

− δi3g︸︷︷︸
(iii)

, (I.3)

This equation means that atmospheric flow motions are governed by three actions: the
pressure gradient (i); the effects of air viscosity (ii), with ν = µ/ρ (m2 s−1) the kinematic
viscosity of air; and gravity (iii), with g = 9.81 m s−2 the gravitational acceleration on
Earth and δij the Kronecker function defined as δij = 1 if i = j and δij = 0 otherwise.

Conservation of energy The first law of thermodynamics, which describes the con-
servation of enthalpy, is usually written for the potential temperature θ when describing
atmospheric flows. The potential temperature describes the temperature that a parcel of
air initially at temperature T and pressure p would have if adiabatically compressed or
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expanded to a reference pressure level p0, usually defined as 105 Pa. Using the ideal gas
state equation:

p = ρR∗T (I.4)
with R∗ = R/Ma the specific gas constant of air where R is the universal gas constant
and Ma is the molar mass of air, the potential temperature of air is defined as:

θ = T

(
p0

p

)R∗
cp

. (I.5)

By making it possible to compare parcels of air at different heights, the potential tem-
perature is convenient for expressing the conservation of energy, which is then expressed
as:

∂θ

∂t
+ uj

∂θ

∂xj

= 1
ρcp

∂

∂xj

(
λ

∂θ

∂xj

)
+ Sθ, (I.6)

with cp (J kg−1 K−1) the specific heat at constant pressure of the fluid, λ (W m−1 K−1) its
molecular thermal conductivity, and Sθ a source term associated with latent heat released
during phase change and radiation effects.

Boussinesq approximation In the surface layer of the ABL, we can apply the Boussi-
nesq approximation, which consists of neglecting density variations in momentum and
energy conservation equations except in the gravity term in Eq. I.3 (Stull 1988). This
leads to the simplified Navier-Stokes equations for the atmospheric surface layer:

∂ui

∂xi

= 0,

∂ui

∂t
+ uj

∂ui

∂xj

= − 1
ρ0

∂p′

∂xi

+ 1
ρ0

∂τij

∂xj

+ δi3

(
θ′

θ0

)
g,

∂θ

∂t
+ uj

∂θ

∂xj

= 1
ρ0cp

∂

∂xj

(
λ

∂θ

∂xj

)
+ Sθ,

(I.7a)

(I.7b)

(I.7c)

where hydrostatic equilibrium is assumed, i.e ∂p0

∂z
= −ρ0g with ρ0 the reference density,

p0 and θ0 the associated pressure and potential temperature using the equation of state
for ideal gases (Eq. I.4), and where p′ and θ′ are perturbation around the reference state.

Transport of pollutant Under the hypothesis described above, the mass conservation
principle applied to a pollutant species of volume concentration c leads to the transport
equation:

∂c

∂t
+ uj

∂c

∂xj︸ ︷︷ ︸
(I)

= D
∂2c

∂x2
j︸ ︷︷ ︸

(II)

+R + S, (I.8)

where D (m2 s−1) is the mass diffusivity of the species in the atmosphere, R is a chemical
reaction term, and S is the rate of emission (resp. removal) of the pollutant sources
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(resp. sinks). In this thesis, we restrict ourselves to the study of passive species both
in the chemical sense, i.e. that do not react with other chemical compounds in the
atmosphere (R = 0) on microscale time lengths, and in the mechanical sense, i.e. that
do not influence the flow (otherwise, an additional buoyancy contribution would appear
in Eq. I.7b). Neither source momentum effects nor deposition are studied since we are
focusing exclusively on the dispersion of gaseous species released passively. As a gateway
to these complex phenomena, we refer to Seinfeld and Pandis’ book (1998).

The advection term (I) in Eq. I.8 accounts for the fact that the species is carried by
the atmospheric flow, while the diffusion term (II) corresponds to the natural movement
of the species from areas of higher concentration to areas of lower concentration. The
latter results from random molecular motion, and therefore occurs even in the absence of
bulk fluid movement. These are the two fundamental transport processes, which is why
Eq. I.8 is also known as the advection-diffusion equation. In the ABL, molecular diffusion
is several orders of magnitude smaller than the advection term and can be neglected (Stull
1988).

I.1.2.2 Atmospheric turbulence and impact on dispersion

Surface atmospheric flows are highly turbulent (Stull 1988) and are therefore charac-
terized by the development of three-dimensional vortices, called eddies, whose size, loca-
tion and orientation are constantly changing. In the ABL, the length scale of these eddies
varies from a few kilometers down to the Kolmogorov scale on the order of millimeters,
where kinetic energy is dissipated as heat. These vortices cause fluid particles to move
in chaotic patterns, as opposed to laminar flows, making the prediction of atmospheric
flows particularly challenging because of the resulting scale disparity.

Figure I.4: Large-eddy simulation from Hwang and Gorlé (2023) of the instantaneous wind
normalized velocity Umag/Uref , with Uref a reference wind speed, in a vertical plane and a
horizontal plane of the urban boundary layer. The area studied is a neighborhood slum in Dhaka
(Bangladesh).
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As a result, the instantaneous wind field is highly heterogeneous, featuring consider-
able variability in both space and time. Figure I.4 shows the disordered aspect of velocity
in the urban boundary layer and the wide range of structure scales. In addition, the ur-
ban canopy increases flow turbulence, generating eddies up to several times the size of
the buildings, as evidenced in the wake of the tallest building in Fig. I.4. Finally, we
note that turbulence contributes to the coupling of the scales of motion mentioned in
Sect. I.1.1 by transferring energy back and forth between eddies of different sizes.

Figure I.5: Interaction regime between pollutant dispersion and turbulent eddies of size smaller
(a), larger (b), and comparable (c) to the characteristic plume scale. Extracted from Seinfeld
and Pandis (1998).

Turbulence also has a significant and complex impact on dispersion. First, it should
be stated that species are dispersed much more efficiently in a turbulent flow than in a
comparable laminar flow (Pope 2000). How turbulent eddies influence dispersion depends
on their size relative to that of the plume, as shown in Fig. I.5. Eddies significantly smaller
than the plume essentially spread the plume (Fig. I.5a). This is often called turbulent
diffusion as it acts similarly to molecular diffusion. Conversely, eddies much larger than
the plume advect the plume, without modifying the internal configuration of the plume
(Fig. I.5b). Finally, turbulent structures of a size comparable to the plume reshape it
and expand its edge, as illustrated in Fig. I.5c.

Because of the importance of these phenomena, accurately representing urban bound-
ary layer turbulence in all its complexity is essential for dispersion modeling.
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I.1.2.3 Atmospheric stability and impact on dispersion

Atmospheric stability corresponds to the equilibrium state of air parcels in the atmo-
sphere from a thermal point of view. The potential temperature θ (Eq. I.5) provides a
simple way of characterizing it:

• if ∂θ

∂z
> 0, the atmosphere is stable. The air near the surface has a lower potential

temperature than the air aloft, and air parcels that are displaced vertically tend to
return to their original position, resisting vertical motion. This is often the case
during clear nights when the ground loses heat, cooling the air near the surface.

• if ∂θ

∂z
< 0, the atmosphere is unstable. The air near the surface is much warmer than

the air aloft, in terms of potential temperature, and air parcels moving vertically
tend to keep rising.

• if ∂θ

∂z
= 0, the atmosphere is neutral. Potential temperature is constant over

altitude, which means that the decrease in absolute temperature with altitude is
in equilibrium with the dry adiabatic lapse rate (the rate at which unsaturated air
cools as it rises). Air parcels displaced vertically neither rise nor sink because of
buoyancy; their behavior depends on other forces or processes.

By modifying the mean wind velocity profile and the turbulence mixing, the atmo-
spheric stability strongly influences pollutant dispersion, as illustrated in the case of
continuous release in Fig. I.6. In a stable atmosphere, vertical motions of air parcels
are attenuated and dispersion is reduced (Fig. I.6c). Conversely, under unstable at-
mospheric conditions, large convective cells favor dispersion and are responsible for the
plume meandering (Fig. I.6a). In a neutral atmosphere, there is no buoyancy effect and
the turbulence generated by the surface is not attenuated, leading to a steady increase in
plume cross-section (Fig. I.6b). Note that the potential temperature profile is not neces-
sarily monotonic, which can lead to other dispersion regimes such as lofting (Fig. I.6d)
and fumigation (Fig. I.6e).

In this thesis, we focus on neutral atmospheric conditions, for which the governing
equations can be simplified as shown in the next section.

I.1.2.4 Similarity theory under neutral stratification conditions

The dynamic similarity between two systems refers to the fact that the ratio of forces
involved is the same in both systems, ensuring similar contributions to flow dynamics.
Similarity for the pollutant transport is defined in the same way. These similarity con-
ditions can be obtained by writing the governing equations in terms of dimensionless
quantities. It informs on how the physical quantities of interest scale which is essential
in wind-tunnel studies (Bezpalcová 2007), but also for the modeler as it provides a the-
oretical basis for model validation and simplification. It can also be used to reduce the
number of predictions required to describe the behavior of the system (Sousa et al. 2018).
In this section, we limit the discussion to neutral stratification conditions.
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Figure I.6: Effect of the atmospheric stability on the plume shape and trajectory, adapted from
Oke (1987). The profiles on the left correspond to the vertical profiles of potential temperature θ.

We first introduce the dimensionless flow quantities

u∗ = u
U0

, x∗ = x
L0

, t∗ = tU0

L0
, p′∗ = p′

ρ0U2
0

, (I.9)

where the subscript 0 denotes the characteristics scales. These scales are typical measures
of the problem such as the obstacle length for L0 and reference speed at a given height for
U0. Their definition is arbitrary but must be consistent when comparing different flows.
We also introduce the dimensionless pollutant concentration

c∗ = cU0L
2
0

Qsource

, (I.10)

with Qsource the volumetric release rate. The dimensionless source term S∗ is defined
similarly.
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Under neutral stratification conditions, the potential temperature is spatially uniform
implying that mass and momentum conservation equations (Eqs. I.7a, b) become inde-
pendent from the energy conservation equation which is trivially satisfied (Eq. I.7c). The
governing equations in terms of dimensionless quantities are then written as follows

∂u∗
i

∂x∗
i

= 0,

∂u∗
i

∂t∗ + u∗
j

∂u∗
i

∂x∗
j

= ∂p′∗

∂x∗
i

+
[

ν

U0L0

]
∂2u∗

i

∂x∗
j

2

∂c∗

∂t∗ + u∗
j

∂c∗

∂x∗
j

=
[

ν

L0U0

] [
D

ν

]
∂2c∗

∂x∗
j

2 + S∗,

(I.11a)

(I.11b)

(I.11c)

which reveals the Reynolds number

Re = U0L0

ν
, (I.12)

and the species Schmidt number
Sc = ν

D
. (I.13)

In the atmospheric surface layer, the Schmidt number depends on the transported
species but is typically of the order of 0.2 to 2 depending on the size of the molecule,
while the Reynolds number is usually greater than 106 (Stull 1988). This implies that
i) surface-layer atmospheric flows are inherently turbulent which induces the effects pre-
sented in Sect. I.1.2.2, ii) the viscous effects in Eq. I.11b become negligible, iii) the trans-
port of species is dominated by advection, as the molecular diffusion term in Eq. I.11c
becomes negligible. This weak dependence of flow and dispersion on Reynolds number ef-
fects implies that flow velocity and species concentration scale linearly with the reference
velocity U0.

It is also possible to establish the similarity theory using the Buckingham π-theorem
which leads to the well-known Monin-Obukhov similarity (Monin and Obukhov 1954), see
for example Stull’s book (1988). In this formulation, all the mean and turbulent wind and
temperature of the atmospheric surface layer depend on four scaling scales: the surface
roughness length z0, the displacement length d, the Monin-Obukhov length LMO, and
the friction velocity u∗. z0 and d are related to surface roughness elements, including the
buildings that compose the urban canopy layer, while LMO describes thermal stratification
effects (LMO →∞ under neutral conditions). Finally, the friction velocity is defined as:

u∗ = 1
ρ0

√
τ0 =

√
u′w′, (I.14)

with τ0 the surface Reynolds stress, and u′w′ the correlation between horizontal and
vertical wind velocity fluctuation which represents the vertical transport of momentum
by turbulence. The friction velocity can be assumed to be constant in the roughness
sublayer. Moreover, mean and turbulent velocities are proportional to u∗ in this layer.
We therefore use it as reference scaling throughout this thesis.
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I.1.3 A brief overview of dispersion modeling approaches
Modeling microscale dispersion of pollutants makes it possible to predict the effects

of an accidental release of pollutants in an urban environment, and also to carry out
upstream design studies, without the complexity of the real world or wind-tunnel ex-
periments (Blocken 2015). However, it is a challenging task because of the complex
interactions between urban boundary layer flow and dispersion (see Sect. I.1.2). In this
section, we briefly introduce the standard dispersion modeling approaches. For a de-
tailed overview, the reader is referred to Holmes and Morawska (2006) and Leelőssy et al.
(2014).

Gaussian and operational models Assuming steady and spatially homogeneous
wind flow, the solution of the transport equation (Eq. I.8) for a point source S which
releases a passive species at a constant-in-time flow rate Q is a plume where the mean
concentration c follows a Gaussian distribution in both vertical and cross-flow directions
(Seinfeld and Pandis 1998):

c(x, y, z) = Q

2πUσyσz

exp
(
−(y − ys)2

2σ2
y

− (z − zs)2

2σ2
z

)
, (I.15)

where U is the uniform velocity in the streamwise direction (x-direction), xs = (xs, ys, zs)
is the source location, and where σy and σz are spread parameters that depend on the dis-
tance from the source (x−xs) and on the atmospheric stability according to the so-called
Pasquill-Grifford curves (Turner 1969; Hanna et al. 1982). Other parameterizations can
be used to account for additional complex physical processes such as buoyancy, chemistry
or deposition (Seinfeld and Pandis 1998). The Gaussian model is a standard approach
that is used in a large number of operational models (Carruthers et al. 1994; Cimorelli
et al. 2005; Perry et al. 2005).

To take into account the effect of the urban canopy, Gaussian models describe the
urban canopy using roughness parameters that affect the spread terms (Hanna et al. 2003;
Philips et al. 2013). However, this mesoscopic approach does not allow explicit modeling
of microscale dispersion within the urban canopy (Carruthers et al. 1994; Scaperdas 2000),
making these models unsuitable for the microscale application context of this thesis. Still,
it should be noted that more complex models are developed to allow the description of
pollutants in the urban canopy, hybridizing Gaussian and simple box models with local
parameterizations of flow and turbulence (Soulhac et al. 2011, 2012).

Computational fluid dynamics (CFD) models solve the pollutant concentration
transport equation (Eq. I.8) based on the velocity field obtained from the Navier-Stokes
equation (Eqs. I.2–I.6). In contrast to operational models, they explicitly take into ac-
count the effect of the urban canopy on flow, therefore they are less restricted in terms
of assumptions and less sensitive to parameterization. Consequently, there is a grow-
ing consensus for using CFD models in atmospheric dispersion modeling at microscale
(Holmes and Morawska 2006; Blocken et al. 2013). However, CFD models require very
fine spatial discretization of the equations and hence considerably higher computational
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cost compared to established operational models. This problem is further detailed in
Sect. I.2.1.

The biggest challenge that comes with solving the Navier-Stokes equations is repre-
senting turbulence which, as explained in Sect. I.1.2.2, is highly nonlinear, chaotic and
occurs on a wide range of scales. The three main CFD approaches correspond to three
different paradigms for taking turbulence into account:

• the Direct Numerial Simulation (DNS) approach solves the Navier-Stokes
equations directly for all spatial and temporal scales making it ideal for captur-
ing fine-scale turbulence and detailed flow structure. This is the most accurate
approach, but also the most expensive, since it requires spatial resolution down to
the Kolmogorov scale. In an urban canopy context, some studies have used DNS to
simulate the flow around one or a few cubical obstacles in reduced-scale configura-
tion (Coceal et al. 2006; Rossi et al. 2010). But to date, this approach is considered
unrealistic for simulating dispersion at the real scale.

• the Reynolds-Averaged Navier-Stokes (RANS) approach solves the Navier-
Stokes equations in a statistically-averaged sense. This implies that the effect of
turbulence on the flow has to be fully modeled, using for example the standard k-ϵ
model (Jones and B.E 1972). Because of its reasonable computational cost (see
Sect. I.2.1), RANS is historically the most widely used CFD approach in microscale
applications (Meroney et al. 1999; Calhoun et al. 2004; Hanna et al. 2004; Milliez
and Carissimo 2007; Koutsourakis et al. 2012; Tominaga and Stathopoulos 2013;
Toparlar et al. 2017).

• Large-Eddy Simulation (LES) provides a balance between DNS and RANS ap-
proaches, simulating large turbulent structures explicitly while modeling the smaller
scales. This compromise limits the computational cost compared to DNS and the
need for parameterization compared to RANS. The unsteady nature of LES also
makes it possible to present the temporal variability of the ABL. For these reasons,
LES is also becoming popular in microscale studies (Gousseau et al. 2011; Moonen
et al. 2012; Tominaga and Stathopoulos 2013; Blocken 2014; García-Sanchez et al.
2018).

Most of the CFD solvers adopt an Eulerian approach to solve the Navier-Stokes equa-
tions. This means that a fixed reference frame is used to describe the flow, and the
equations are solved in terms of fields, discretized on a fixed grid. But it is also possible
to adopt a Lagrangian approach, which consists of tracking fluid parcels along their tra-
jectories. This approach is particularly natural to describe pollutant dispersion and has
interesting properties such as being non-dispersive, which improves the representation of
plume fronts, and being intensively parallelizable. Note that Eulerian and Lagrangian
approaches can be combined, for example, a Lagrangian approach can be used to model
the transport of a species in the flow field obtained by an Eulerian CFD model (Jicha
et al. 2000; Bahlali et al. 2019). In this thesis, we adopt an Eulerian viewpoint.

It is important to note that due to their computational cost, CFD approaches limit
the resolution of the governing equations to the microscale area of interest. However,
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as discussed in Sect. I.1.1, although mainly influenced by interaction with the built en-
vironment, microscale flow and dispersion are also directly by larger-scale atmospheric
motions. This is why the accuracy of CFD dispersion models is strongly linked to the rep-
resentativeness of boundary conditions, both for large-scale atmospheric conditions and
for the geometry of the urban canopy. Uncertainties related to the representativeness of
the boundary conditions of microscale CFD models are discussed in detail in Sect. I.2.2.

I.1.4 Experiments of dispersion in urban environment
Validating models by confronting them with the real world has always been at the

core of the scientific method. This is how the overall quality of a model can be assessed
and how limitations to its use can be defined. Although CFD models are theoretically
very accurate, they are no exception to the fundamental principle of validation (Meyers
et al. 2008). In the past decades, particular efforts have been conducted in the field
of microscale atmospheric flow and dispersion to harmonize validation procedures and
to provide best practice guidelines for CFD modeling (Franke et al. 2007; Schatzmann
et al. 2010; Tominaga and Stathopoulos 2013; Blocken 2015). It should be noted that
the quality of a model is multifactorial and its appreciation depends on the purpose of
the model (Blocken and Gualtieri 2012). In the following, we give an overview of some
dispersion experiments in urban environments commonly used for validation.

Reduced-scale laboratory experiments can be used to validate dispersion models.
Their advantage over full-scale campaigns is twofold: i) through greater instrumentation,
typically using laser Doppler anemometry and flame ionization detectors (Bezpalcová
2007; Garbero 2008), they can provide measurements of velocity and concentration at high
spatial and temporal resolution for validation, which provides an accurate description of
the operating boundary conditions; ii) they enable repeatability of experiments and the
acquisition of very long time series to obtain converged flow statistics, which is not feasible
with field campaigns (Schatzmann and Leitl 2011). These experiments are carried out in
wind tunnels (Meroney et al. 1999; Kastner-Klein et al. 2004; Garbero et al. 2010; Hajra
and Stathopoulos 2012) or water channels (Macdonald and Ejim 2002; Hilderman et al.
2008), which both rely on a thorough dimensional analysis to ensure that the reduced-
scale flow has the same Reynolds number (Eq. I.12) as its full-scale equivalent. However,
it is important to note that reduced-scale experiments cannot represent the complete
range of interactions that occur in real urban boundary layers. Besides, most of the
wind tunnels cannot reproduce stable and unstable atmospheric stratification conditions
(Blocken 2014).

Full-scale dispersion experiments in real urban environments are essential to rep-
resent the full complexity of dispersion processes in the urban boundary layer but are
time- and resource-intensive.

At the street scale, numerous full-scale experiments have been carried out to charac-
terize air pollution induced by the traffic in street canyon (Pfeffer et al. 1995; Namdeo
et al. 1999; Väkevä et al. 1999; Chan and Kwok 2000; Vachon 2001). At the neighborhood
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scale, experiments of various passive tracer released have been notably carried out in the
cities of Copenhagen (Denmark) (Gryning and Lyck 1984), Salt Lake City (U.S.) and
Oklahoma City (U.S.) as part of the URBAN 2000 and JOINT URBAN 2003 campaigns
(Allwine et al. 2002, 2004), Birmingham (U.K.) (Britter et al. 2002), Basel (Switzerland)
for the BUBBBLE campaign (Rotach et al. 2004), and London (U.K.) in the framework
of the DAPPLE project (Wood et al. 2009).

These experiments are fully representative of the urban canopy complexity but cannot
be transposed to the study of other cities because of the differences in city architectures.
In order to distinguish the general effects of the urban canopy from those specific to a
given site, other dispersion experiments were conducted with simplified representations
of the urban canopy: by an array of cubes in the field experiments of Davidson et al.
(1995), and by an array of shipping containers during the MUST (Biltoft 2001) and Jack
Rabbit II (Fox et al. 2022) field campaigns. In the Kit Fox (Hanna and Chang 2001)
and ATREUS-PICADA (Idczak et al. 2007) experiments, the urban canopy (respectively
a simplified industrial plant and an arrangement of canyon streets) was represented at a
reduced scale while maintaining real meteorological conditions.
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I.2 The limits of computational fluid dynamics dis-
persion models

Despite their substantial computational cost and great promises, the accuracy of mi-
croscale CFD models can still be improved (Blocken 2014; Dauxois et al. 2021). Some
studies even find limited gain in overall accuracy when using CFD models compared to
operational/empirical models (Neophytou et al. 2011; Antonioni et al. 2012). This is
because the higher the complexity of the model, the more it gets sensitive to input data
uncertainty (Hanna 1989a). In particular, the internal variability of the ABL implies that
field measurements are the result of stochastic processes and thus inherently uncertain.
This variability affects validation data and propagates to model predictions as observa-
tion data are used to define the model boundary conditions. This is why the internal
variability of the ABL is often referred to as one of the main reasons for the discrepancies
between CFD models and field experiments (Neophytou et al. 2011; Antonioni et al. 2012;
García-Sanchez et al. 2018; Dauxois et al. 2021).

In this section, we take a closer look at the problem of the computational cost of
CFD models (Sect. I.2.1), before proposing an insightful classification of the uncertainties
that limit the accuracy of CFD models (Sect. I.2.2). In our view, computational cost
and uncertainty are the two main limitations of CFD microscale dispersion models, and
overcoming them is the main issue addressed in this thesis.

I.2.1 The computational burden of CFD models
As previously mentioned, the computational cost of CFD models stems from the fact

that they require a very fine level of discretization. It is important to have a mesh fine
enough to accurately account for the effect of small-scale turbulence on the flow and
dispersion. The computational cost of CFD models therefore depends heavily on how
they treat turbulence.

In DNS, all the eddie scales down to the Kolmogorov scales must be solved. For wall-
bounded flows, such as in the ABL, this leads to a number of grid points proportional
to Re9/4 with Re the Reynolds number based on the integral scale of the flow (Pope
2000). In terms of computational cost, assuming that the number of operations scales
with the number of grid points, and that the time step is determined by a standard
CFL stability condition, the total cost rises to O(Re3) (Reynolds 1990). Considering the
very high Reynolds of the ABL (Re ∼ 106–108), this challenges the computing power of
the world’s most powerful supercomputers to date, which have just broken the 1018 flop
barrier (Trystram 2022).

For LES, grid requirements are less important since the effect of smaller scales is
modeled. For instance, Choi and Moin (2012) estimate the computational cost of an LES
of a turbulent boundary layer to O(Re2.5). Using wall-laws to model the effect of the
inner part of the boundary layer on the flow can cut this cost down to O(Re4/3) (Piomelli
2020), making it suitable for atmospheric flow modeling.

Finally, the computational cost of RANS simulations is way smaller since the necessary
number of grid points does not depend on the Reynolds number in the streamwise and
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spanwise directions, and scales as ln(Re) along the wall-normal direction (Pope 2000).
In concrete terms, to simulate flow and dispersion within the urban canopy for a

few hundred seconds, a RANS model typically takes between 100 and 1 000 CPU core
hours1, depending on the size of the simulated domain and the grid resolution (Hanna
et al. 2004). LES is much more demanding, with computational costs approximately one
to two orders of magnitude higher than with RANS (Cheng et al. 2003; Xie and Castro
2006; Salim et al. 2011).

The cost of CFD microscale dispersion models has a direct effect on their use. Indeed,
it is currently not possible to use a CFD model for real-time prediction of pollutant
dispersion in an urban area, since the computational time is far greater than the time
scales involved at the microscale. As a result, CFD models are used more as research
tools to improve scientific understanding of the processes involved, but also to formulate
parametrization for operational air quality models (Philips et al. 2013; Hertwig et al.
2018; Grylls et al. 2019).

This could change as computing power continues to increase, driven by the race be-
tween the world’s largest supercomputers (Trystram 2022), but also thanks to advances
in solver parallelization (Afzal et al. 2017) and the capabilities offered by new technolo-
gies such as GPUs (Graphics Processing Units) (Muñoz-Esparza et al. 2021). But this
comes at a cost as, to perform these simulations, high-performance computing centers
require a considerable amount of energy in electricity and cooling, as well as substantial
investment in infrastructure, hardware and maintenance. It also means that simulations
have a high carbon footprint (Berthoud et al. 2020) and therefore contribute to global
warming. Note that this is not mitigated by recent gains in energy efficiency, as they
are more than offset by the increase in computing volume, which is a typical example
of the rebound effect (Trystram 2022). To raise awareness of this issue, an estimate of
the emissions associated with the calculations carried out in this thesis is provided in
Appendix C.

I.2.2 Uncertainties in microscale atmospheric CFD models
Model uncertainties can be divided into two categories: aleatory uncertainties, and

epistemic uncertainties (Kiureghian and Ditlevsen 2009; Beven et al. 2018). Aleatory
uncertainties are inherent to the stochastic nature of the physical system under consid-
eration and are therefore irreducible. For example, the statistical behavior of a die is
perfectly known, but the outcome of a roll will always remain uncertain. Epistemic un-
certainties relate to a lack of knowledge, either about the physics of the phenomenon or
about the model inputs. This implies that they can be reduced, for example by using a
higher model resolution, a richer representation of the phenomenon, or more numerous
and precise data to define the model inputs. Tackling these uncertainties is one of the
modeler’s main challenges, as this can improve the model in terms of accuracy, preci-

1Corresponds to the total wall-clock time of the simulation multiplied by the number of processor
cores used. It corresponds to the actual cost of the simulation in terms of computational resources/energy
consumption and allows for a fair comparison between simulations performed using different supercom-
puters.
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sion and robustness. In the following, we present a brief overview of uncertainties in the
specific context of microscale atmospheric CFD models.

I.2.2.1 Epistemic uncertainties

The epistemic uncertainties of a microscale atmospheric CFD model are reduced com-
pared to an analytical model that heavily depends on parameterization, but are still sig-
nificant. In this thesis, we propose to divide these uncertainties into two subcategories:

a) Boundary condition uncertainties. They are due to the fact that microscale
CFD models only solve the governing equations over a limited computational do-
main. Interactions with the exterior of the domain are represented using boundary
conditions. Representativeness errors can thus arise from the boundary modeling
assumptions as well as from uncertainty in the data used to calibrate the boundary
conditions. For CFD dispersion models, these uncertainties relate in particular to:

◦ The meteorological conditions which correspond to the wind velocity and di-
rection forcing imposed at the boundaries to account for the operating con-
ditions but also for the larger scales of motions of the ABL (see Sect. I.1.1).
These uncertainties have been extensively studied (García-Sánchez et al. 2014;
Lucas et al. 2016; Wise et al. 2018) and they are known to be a major source
of uncertainty in atmospheric flow, and therefore in pollutant dispersion.
In the specific urban environment context, these uncertainties can be exac-
erbated by strong non-linear response between local flow and boundary con-
ditions. In particular, small deviations in wind direction can lead to large
changes in flow patterns in the urban canopy. In contrast, in some areas,
the flow is mostly determined by the local buildings, and hence insensitive to
larger-scale conditions (Fig. I.7).
◦ The urban geometry uncertainties arise from errors in the position and shape

of buildings. They may come from a lack of measurements or errors in the map,
but also from the fact that geometrical details are often omitted or simplified
to reduce the computational cost of models (Franke et al. 2007).
In the urban canopy layer, these uncertainties have significant impacts. For
instance, Montazeri and Blocken (2013) shows that building facade details
such as balconies drastically influence the flow pattern and the overall pressure
distribution on the building. Gromke et al. (2016) demonstrate that taking
into account hedgerows has a significant impact on the mean concentration
predicted within a street canyon. Note that even in cases featuring simplified
geometries, such as the array of containers used in the MUST field experiment,
small geometry irregularities can have a significant impact on the microscale
features of the flow as demonstrated by Santiago et al. (2010).
◦ The pollutant source can also be uncertain both in terms of location and in-

tensity. This makes the task of predicting pollutant dispersion significantly
more complex, and this requires observations to locate the source (Winiarek
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Figure I.7: Effect of minor changes in the wind direction on the local flow in a neighborhood
of Singapore, from Wise et al. (2018). Contours represent the ratio Kθ between the local wind
speed at 20 meters above the ground and a reference speed, predicted by RANS simulations for
varying incoming wind direction θ.

et al. 2012; Lucas et al. 2016). In addition, the pollutant release rate may
change over time, and there may be uncertainties related to source modeling
(Spicer and Tickle 2021).

b) Structural uncertainties correspond in this thesis to all the uncertainties that
are inherent to the model solver and its underlying modeling assumptions, outside
of the boundary conditions. In CFD models, this mainly concerns turbulence mod-
eling and wall modeling errors. It is a standard research area that has also been
investigated in the specific context of microscale atmospheric flows in urban environ-
ments (Blocken et al. 2008; Yue Yang and Wang 2008; Tominaga and Stathopoulos
2009; Gorlé and Iaccarino 2013; Gorlé et al. 2015; Xiao et al. 2016). Note that LES
is expected to have reduced uncertainties related to turbulence modeling compared
to RANS (Gousseau et al. 2011; García-Sanchez et al. 2018). In the classification
we propose, structural uncertainty also includes numerical errors, which depend
on the solver and numerical scheme used, as well as the model sensitivity to the
computational grid used.
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I.2.2.2 Aleatory uncertainty arising from the internal variability of the ABL

Definition and characterization As shown in Fig. I.8, the atmospheric flow is un-
steady with strong variations occurring over a wide range of frequencies corresponding
to the time-scales of the atmospheric eddies. When considering averages over finite peri-
ods, this internal variability yields sampling errors and is therefore a source of aleatory
uncertainty. This uncertainty is assumed to explain part of the discrepancies between
field-scale experiments on the one hand, and wind-tunnel experiments and CFD model
predictions on the other hand (Schatzmann and Leitl 2011; Neophytou et al. 2011; Anto-
nioni et al. 2012; García-Sanchez et al. 2018). We emphasize that this uncertainty does
not just concern CFD model predictions since it is inherent to the phenomenon under
study.

Figure I.8: Measurements of the horizontal wind velocity at 10 meters above the ground during
the MUST field experiment (Biltoft 2001) over 200 seconds (a), 120 minutes (b), and 3 days (c).

In this thesis, we distinguish the microscale internal variability, which is related to
microscale turbulence fluctuations in the surface layer induced by buoyancy, wind shear
and interaction with the obstacles (Fig. I.8a), from the mesoscale variability induced by
large-scale fluctuations occurring in the ABL (Figs. I.8b, c).

To limit the effect of the microscale internal variability of the ABL, it is necessary to
achieve statistical convergence of the flow and transport phenomena. This requires the
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acquisition and simulation of periods significantly longer than the time scale characteris-
tic of internal variability. It is possible in wind-tunnel experiments where stationary wind
conditions can be imposed, but not in field-scale experimental campaigns (Schatzmann
and Leitl 2011). Longer acquisitions are indeed affected by transient phenomena such
as large-scale fluctuations of the ABL or day-night cycle (Figs. I.8b, c). In microscale
studies, it is therefore common to select short analysis periods to minimize the influence
of the mesoscale variability. For instance, 200-second quasi-stationary periods have been
extracted from each trial of the MUST experiment (Yee and Biltoft 2004). When study-
ing unsteady phenomena like puff pollutant emissions, useful acquisition times are even
shorter (Biltoft 2001; Allwine et al. 2004). In all these cases, statistics are computed over
relatively short periods and are thus affected by microscale internal variability.

Internal variability in CFD models This source of uncertainty in physical system
observations can also affect CFD model predictions, depending on the approach adopted.
In the RANS framework, all the scales of turbulence are modeled to predict ensemble-
averaged flow and dispersion fields, which implies that microscale internal variability
is not represented in RANS predictions, which are deterministic. Meanwhile, in DNS
and LES, most or all turbulent scales are explicitly resolved. Their predictions therefore
reproduce the microscale fluctuations observed in the ABL (Fig. I.8) and are thus affected
by internal variability (Sood et al. 2022). As in wind-tunnel experiments, it is possible to
limit the resulting uncertainty by running long simulations (Piomelli 1999) at the expense
of increasing the already substantial computational cost (see Sect. I.2.1).

At this point, it is important to note that the distinction between aleatory uncertainty
and epistemic uncertainty is sometimes blurred. For instance, observational data used
to define the wind velocity boundary conditions are also subject to aleatory uncertainty
related to the internal variability of the ABL. This is why the effect of mesoscale internal
variability on CFD predictions is often studied as a form of a boundary condition uncer-
tainty using an ensemble of simulations (García-Sánchez et al. 2014; García-Sanchez and
Gorlé 2018) or simulations with time-varying inflow conditions (Tominaga and Stathopou-
los 2017). In this thesis, we also adopt this point of view that considers mesoscale internal
variability as a boundary condition uncertainty.

In contrast to mesoscale variability, the effect of microscale internal variability in CFD
predictions has not been explored in detail. Schatzmann et al. (2010) show that microscale
variability significantly affects observations from MUST field experiment, while Sood
et al. (2022) give error bars associated with the internal variability of LES predictions
in a wind resource estimation context. In both cases, this uncertainty is significant but
not central to the study. In our view, assessing microscale internal variability would
therefore be a significant methodological advance for robust atmospheric CFD model
validation when data are acquired over limited periods. It can address the need to go
beyond deterministic point-wise model/observations comparison (Schatzmann and Leitl
2011; Harms et al. 2011; Dauxois et al. 2021). It also finds application in model sensitivity
analysis and multi-model comparisons as it provides a reference to assess whether changes
in CFD model predictions are significant or not.
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I.3 Thesis objectives and approach
In this section, we introduce two methods of applied mathematics tailored to address

the limitations of microscale CFD models: model reduction in Sect. I.3.1, and data
assimilation in Sect. I.3.2. Model reduction allows to greatly speed up CFD models,
while data assimilation provides a way to control and reduce part of their uncertainty
using observations. In Sect. I.3.3, we present the flowchart of the modeling system that
has been designed in this thesis, combining model reduction and data assimilation to
enhance microscale pollutant dispersion prediction. Implementing and evaluating this
system is the main objective of this thesis.

I.3.1 Accelerating predictions using reduced-order model
Model reduction refers to all the techniques employed to build reduced-order models

that emulate the response surface of a costly numerical model. A reduced-order model
should be as computationally efficient as possible, while also maximizing its accuracy in
reproducing the reference model predictions and avoiding the introduction of non-physical
artifacts in the predictions of the quantities of interest. This is very useful in contexts
where real-time prediction is required and is an active research topic in fluid mechanics
to cope with the heavy computational cost of CFD models (Lassila et al. 2014; Vinuesa
and Brunton 2022). It is also used for uncertainty quantification and sensitivity analysis
to allow model multi-queries (Cheng et al. 2020). For these reasons, model reduction is
particularly in line with the issues discussed in Sect. I.2.

The historical approach to reducing the cost of a numerical model is to substitute it
with a simplified model, which adopts a less complex description of the system based on
assumptions and simplifications. For pollutant dispersion, this can be done using a Gaus-
sian plume model instead of a CFD model. Information from high-fidelity simulations
can then be used to parameterize the simplified model (Philips et al. 2013). However, the
accuracy of such an approach remains limited by the assumptions used by the simplified
model. For instance, representing the complex local interactions of the flow with the built
environment remains out of reach for a Gaussian model.

In this thesis, we focus on model reduction approaches that emulate the full com-
plexity of the CFD model response surface by learning from a database of predictions
corresponding to different input parameters. This problem can be divided into two steps
(Chinesta et al. 2011):

1. a reduction step, which consists of determining a low-dimensional latent space
onto which model predictions can be projected without losing their key character-
istics (Fig. I.9a),

2. and a regression step to characterize the evolution of the reduced-basis projected
components with respect to model input parameters.

These two steps pertain to machine learning since they aim at establishing links between
the inputs and outputs of a system based on data. Once they are trained, the reduction
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and regression models are used successively to predict the emulated field for any new
parameter (Fig. I.9b). Note that it is also possible to build a reduced-order model by
Galerkin projection of the equations that govern the system physics onto the latent space
(Vervecken et al. 2015; Qian et al. 2020; Deng et al. 2021a), but this approach was not
considered in this study.

Field
space
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Field
space
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Figure I.9: Machine-learning-based model reduction principle, adapted from Vinuesa and
Brunton (2022). The reduction step (a) consists of learning a latent space to reduce the model
output dimension using a database of precomputed predictions. The aim is to preserve as much
as possible the key features of the predictions when reconstructing them. The regression step (b)
aims at predicting the field of interest for new input parameters. This is done using a pre-trained
regressor that directly estimates the decomposition in the latent space associated with the new
input parameters.

The data-driven model reduction approach we adopt has the advantage of being non-
intrusive, implying that: i) it does not require modification of the complex CFD code; and
ii) it can be adapted to different physical systems, which widens the field of applications
of the global framework presented in this thesis (see Sect. I.3.3). The counterpart is
that i) it requires the construction of a costly training base, and therefore substantial
preparatory work before it can be applied to operational contexts; and ii) it has a limited
generalization capability as it cannot predict flow configurations that are significantly
different from the ones of the training base. An additional concern is that predictions
may not satisfy physical constraints, since they are not directly governed by equations.
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Incorporating these constraints into a reduced-order model is an active field of research
(Swischuk et al. 2019; Wang et al. 2020a).

In the following, we give a short overview of the different dimension reduction and
regression methods used in fluid mechanics, before discussing applications to microscale
atmospheric modeling.

Dimension reduction techniques Proper orthogonal decomposition (POD) (Sirovich
1987; Berkooz et al. 1993) is one of the most commonly used reduction algorithms in fluid
mechanics (Taira et al. 2017; Vinuesa and Brunton 2022). Also known as principal com-
ponent analysis or singular value decomposition, POD has become a basic tool for data
analysis (Jolliffe and Cadima 2016). It provides a linear subspace of orthogonal modes
of decreasing importance to approximate field data. It can be extended to handle time
evolution with dynamic mode decomposition (Schmid 2022). More advanced nonlin-
ear techniques such as neural-network autoencoder (Bourlard and Kamp 1988; Hinton
and Zemel 1993) have also shown promising results in fluid mechanics applications as
they require less number of modes to represent strongly nonlinear dynamics (Milano and
Koumoutsakos 2002; Murata et al. 2020; Nony et al. 2023b).

Regression models Basic interpolation may fail to predict latent space components
(Brunton and Kutz 2019), but machine learning offers a wide variety of algorithms to
solve this problem such as polynomial chaos expansion (PCE) (Wiener 1938), Gaussian
process regression (GPR) (Rasmussen et al. 2006), decision trees (Hastie et al. 2009), and
neural networks (Specht 1991). The choice of best-suited method depends on the context,
on the available data and also on the explicability of the predictions. For instance,
GPR models provide probabilistic predictions, while PCE coefficients can be directly
used for sensitivity analysis (Sudret 2008), which makes them natural candidates for risk
assessment applications as well as for dealing with the uncertainty problem introduced
in Sect I.2.2.

Applications to microscale atmospheric flows Such reduced-order model has been
used to learn the dependence of CFD wind and dispersion predictions in the urban canopy
layer over a wide range of parameters, including meteorological boundary conditions pa-
rameters and/or pollutant source parameters (García-Sánchez et al. 2014, 2017; Margheri
and Sagaut 2016; Xiao et al. 2019; Lamberti and Gorlé 2021). In particular, Nony (2023)
compares numerous types of models to emulate an LES response surface in a canonical
dispersion case (i.e. boundary-layer flow interacting with a surface-mounted obstacle)
including POD and autoencoders for the reduction step, and GPR, PCE, and decision
trees for the regression step, thus providing guidelines for this specific context. One of
the main takeaways from Nony’s work (2023) is that taking into account the pollutant
source position is a difficult task for model reduction that requires a large learning base
and a high latent space dimension, especially for POD-based strategies.

These models can then be integrated into a more complex framework for uncertainty
quantification (García-Sánchez et al. 2014, 2017), and uncertainty reduction through data
assimilation (Mons et al. 2017; Sousa et al. 2018; Sousa and Gorlé 2019). For instance,
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García-Sánchez et al. (2014) and García-Sanchez and Gorlé (2018) use PCE to emulate
RANS predictions and study how uncertainties on inlet wind velocity and direction as well
as ground surface roughness length propagate on flow and pollutant dispersion quantities
in downtown Oklahoma City. The same model reduction approach is then used by Sousa
et al. (2018) and Sousa and Gorlé (2019) to estimate wind direction and velocity using an
ensemble-based data assimilation method (see Sect. I.3.2). Note that the reduced-order
model they use does not include the dimension reduction step (i.e. predictions are made
at each point of the domain independently), and thereby does not benefit from correlation
structures in the fields and could be improved in terms of efficiency. Mons et al. (2017)
go one step further, using an advanced POD–GPRs reduced-order model in a global
sensitivity analysis to define optimal sensor placement strategies for data assimilation.

These studies fully motivate the use of reduced-order models when the objective is to
take into account the uncertainties of microscale CFD dispersion models, in addition to
reducing their computational cost.

I.3.2 Data assimilation: harnessing observations to improve
predictions

Data assimilation (DA) refers to a series of methods for combining observational
data with numerical models of complex systems along their uncertainties in order to
improve their predictions, as schematically outlined in Fig. I.10. DA originated in weather
forecasting as a response to the challenge posed by the inherently chaotic nature of
weather, which inevitably leads to divergent model predictions. Within this context,
observational data represent a means of rectifying the model trajectory, but they are often
noisy and sparse in time and space. The main challenge of DA therefore lies in the optimal
and efficient combination of numerical models and observations, two complementary yet
inherently uncertain sources of information. Over time, DA has become a research field in
its own right, making it possible to reduce uncertainty on numerical model predictions in
a wide range of application fields. It is essential in weather and oceanography forecasting,
where it is employed in operational forecast services (Rabier 2005; Martin et al. 2015).
It also finds application in land surface sciences for improving environmental monitoring
such as the estimation of snow cover (Largeron et al. 2020). Furthermore, DA is used in
climate science for producing reanalyses of past climates based on historical observations
enhanced by contemporary meteorological models (Hersbach et al. 2020).

As mentioned by Asch et al. (2016), DA is a specific case of an inverse problem,
which is defined as the general problem of determining parameters, inputs or structures
of a mathematical model that would best explain the observed data (Tarantola 2005).
Inverse problems are encountered in a wider range of scientific and engineering applica-
tions, including for example control theory, medical imaging, and seismology. To bring
together DA and inverse problem techniques under the same formalism, it is convenient
to introduce the control vector, which is defined as the vector of the estimation targets,
i.e. the variables that are inferred using observations.

In historical DA applications, the control vector corresponds to the state of the system
under study, which is used as the initial condition for the numerical model (Fig. I.10),
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Figure I.10: General DA framework, adapted from Rochoux et al. (2014b).

for example, global temperature and wind speed fields in numerical weather prediction.
This is known as DA for state estimation. In contrast, we speak of parameter estimation,
when the control vector corresponds to model input parameters such as pollutant source
position or subgrid process parameters. Recently, DA methods have been developed to
jointly estimate state and parameters (Evensen 2009; Smith et al. 2013).

Two types of DA methods are classically employed:

• Variational methods formulates DA as an optimization problem, where the goal is
to minimize the difference between model predictions and observations by adjusting
the control vector. 3D–Var and 4D–Var are the most common variational methods
(Asch et al. 2016).

• Statistical methods seek the most likely probability distribution of the con-
trol vector given the observations and a priori knowledge of the system (back-
ground), both of which are also viewed probabilistically. Among statistical meth-
ods, ensemble-based methods, such as the particle filter (Gordon et al. 1993), and
the ensemble Kalman filter (EnKF) (Evensen 1994, 2003; Houtekamer and Mitchell
1998), are very popular for their ability to either deal with model non-linearity and
very large control vector dimension. These methods represent probability distribu-
tions through random sampling and run multiple model simulations to represent
model uncertainty. These ensemble members are then weighted based on their
agreement with observations to generate the updated control vector estimate.

Variational methods offer optimal estimates but may be computationally expensive and
sensitive to model errors. In contrast, statistical methods, and especially ensemble-based
approaches, are easy to implement, highly parallelizable, and more robust to model errors,
but can suffer from sampling errors and require careful consideration of ensemble size and
quality. As they provide probabilistic estimates, statistical methods are well-suited for
uncertainty quantification and ensemble forecasting. Quite recently, hybrid ensemble-
variational methods have been developed to combine the advantages of both approaches
(Hamill and Snyder 2000; Liu et al. 2008; Bocquet and Sakov 2014). These methods are

36



I.3. Thesis objectives and approach

now substituting standard DA methods in operational weather forecast systems (Raynaud
et al. 2011; Bonavita et al. 2011; Buehner et al. 2015). For a more detailed overview of
the existing DA methods, we refer to Asch et al. (2016) and Carrassi et al. (2018).

To sum up, using observational data, DA enables reducing the uncertainty on the
control vector, possibly correcting prior errors and improving the likelihood of the model
predictions (Fig. I.10). From this perspective, DA methods seem tailored to address the
problem of uncertainty in microscale atmospheric CFD models mentioned in Sect. I.2.2.
In the following, we present an overview of DA studies in the specific context of microscale
atmospheric dispersion and CFD modeling.

Data assimilation to improve atmospheric CFD models In contrast to fields like
meteorology and oceanography, the use of DA techniques to enhance microscale or local-
scale atmospheric dispersion predictions is still in its early stages. In our opinion, this is
explained by the fact that the community’s efforts were initially focused on building and
improving CFD models, and the idea of adopting a probabilistic representation due to
the involved uncertainties is relatively recent (García-Sanchez and Gorlé 2018; Dauxois
et al. 2021). In addition, the cost of CFD models and the scarcity of reliable observational
data at the microscale represent barriers that need to be overcome.

Nevertheless, some recent studies have demonstrated the full potential of DA to im-
prove microscale atmospheric CFD models (Mons et al. 2017; Sousa et al. 2018; Sousa
and Gorlé 2019; Aristodemou et al. 2019; Defforge et al. 2019, 2021; Bauweraerts and
Meyers 2021). A cross-analysis of the main studies we have identified in the literature is
presented in Chapter V. This analysis highlights the importance of the control vector def-
inition. In particular, Defforge (2019) shows that, given the typical temporal and length
scales involved at the microscale, it is more relevant to correct wind boundary conditions
than initial wind conditions. This is verified by the study of Aristodemou et al. (2019),
which shows very limited persistence of state corrections in an LES dispersion model.

These studies also show that it can be relevant to use reduction techniques to address
the issues of model cost and/or large field size. For instance, Sousa et al. (2018) use
a reduced-order model to substitute the CFD model, while Aristodemou et al. (2019)
and Bauweraerts and Meyers (2021) use techniques similar to POD to reduce the state
dimension. Another point that emerges from these studies is that sensor location has
a critical effect on DA accuracy (Mons et al. 2017; Sousa et al. 2018). In particular,
positioning sensors in areas of the urban canopy layer where the flow is mostly determined
by surrounding buildings can lead to ill-posed problems, as it does not contain much
information on the large-scale atmospheric condition. Finally, we have identified that
these works could be improved when it comes to the modeling of errors. Observation and
prior errors are often arbitrarily chosen and may underestimate the impact of internal
variability, while model error is most of the time simply ignored due to a lack of knowledge.

Data assimilation for source estimation The problem of determining the location
and characteristics of a pollutant release source based on observed data of pollutant
concentrations is another typical inverse problem. This is of particular importance in
emergency response to accidental release. It is for example used to estimate radionuclide
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release (Winiarek et al. 2012; Saunier et al. 2019; Dumont Le Brazidec et al. 2023) or to
retrieve volcanic ashes properties (Francis et al. 2012). At the microscale, Keats et al.
(2007) retrieve source location and release rate using measurements from the MUST and
JOINT URBAN 2003 field campaigns.

The source estimation problem is inherently ill-posed, as multiple sources or com-
binations of parameters can yield similar concentration patterns. Markov chain Monte
Carlo is one of the most popular approaches for solving this complex problem (Gilks
et al. 1995). For a detailed overview of source estimation methods, we refer the reader to
Hutchinson et al. (2017). We also note that Allen et al. (2007) and Lucas et al. (2016)
demonstrate the benefit of jointly estimating source parameters and wind conditions to
reduce the uncertainty on the source location.

Other data assimilation studies involving CFD models It is important to bear
in mind that microscale atmospheric flows represent only a small fraction of the flows
for which CFD models are used, implying that DA methods can be applied in other
application contexts. For instance, DA systems have been developed to improve CFD
model predictions in aeronautics (Misaka et al. 2008; Kato et al. 2015), combustion (Jahn
et al. 2012; Gao et al. 2017; Labahn et al. 2019; Wang et al. 2020b), or safety engineering
for the prediction of gas leakage in terminal and utility tunnel (Wu et al. 2021; Cai
et al. 2022). An interesting application for microscale simulations is the reduction of
uncertainties in turbulence modeling, for example, Xiao et al. (2016) use an EnKF for
the assessment and mitigation of turbulence model uncertainties in RANS simulations of
flow over periodic hills. It is also possible to go further by using DA to jointly correct the
state of the flow alongside turbulence and/or boundary condition parameters (Gronskis
et al. 2013; Kato et al. 2015; Kumar et al. 2019).
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I.3.3 Design of an efficient data assimilation system

The general objective of this thesis is to design and validate a reduced-cost DA sys-
tem that: i) uses in-situ observational data to assess and reduce uncertainty in microscale
CFD dispersion predictions; and ii) relies on model reduction techniques to provide prob-
abilistic predictions at almost no computational cost.

We focus the DA estimation problem on the correction of the boundary condition pa-
rameters that account for large-scale meteorological conditions. Meteorological boundary
conditions are indeed often uncertain because of the scarcity of measurements available to
define them, and because of the use of measurements from remote weather stations that
can introduce representativeness errors (Pimont et al. 2017). Even in field experiments,
where considerable instrumentation efforts can be made, meteorological conditions remain
uncertain due to the internal variability of the ABL (Schatzmann and Leitl 2011). This
uncertainty is all the more problematic as microscale CFD models are highly sensitive to
changes in boundary conditions (García-Sánchez et al. 2014; Lucas et al. 2016; Wise et al.
2018). For this reason, using DA to reduce uncertainty on the large-scale meteorological
boundary conditions has been shown to significantly improve the accuracy of microscale
CFD models (Mons et al. 2017; Sousa and Gorlé 2019; Defforge et al. 2021).

Furthermore, we employ a reduced-order model as a surrogate for the microscale CFD
model in the DA system. This approach is a way to drastically reduce the computational
cost of the DA process (Rochoux et al. 2014a; Sousa et al. 2018; Sousa and Gorlé 2019).
The reduced-order model is trained in an offline step to emulate the fields of interest
for varying meteorological boundary conditions from a database of precomputed CFD
simulations and then used online to accelerate DA. This surrogate modeling approach
enables the DA system to be used in real time and combines particularly well with
ensemble-based DA algorithms to provide probabilistic predictions that represent the
uncertainties involved. The counterpart is that it introduces a new source of error in
the DA scheme. Rochoux et al. (2014a) show that, given limited model reduction error,
using a reduced-order model does not impair DA performance, and may even improve DA
accuracy by allowing more model predictions. This is also valuable to carry out a large
number of trials to adjust and optimize the DA system, which is particularly relevant in
this thesis, as our DA system is implemented from A to Z.

The architecture of the reduced-cost DA system designed for this thesis is presented
in Fig. I.10. Thanks to in-situ measurements, an ensemble-based DA algorithm is used to
correct and reduce the uncertainty on prior large-scale meteorological boundary condition
parameters, such as wind direction and velocity. The inferred parameters can then be
used as inputs for the reduced-order model in order to provide a corrected prediction of the
quantity of interest, such as the pollutant concentration levels in an urban environment,
along with the associated uncertainty. A more exhaustive specification of the DA system
is given in Chapter V.

We highlight that the DA system presented in Fig. I.11 can reduce errors on the bound-
ary conditions induced by the mesoscale variability of the ABL. However, in contexts
where data are acquired over limited periods, this system cannot address the aleatory
uncertainty due to microscale internal variability associated with the smaller eddies of
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Figure I.11: The data-driven modeling system designed to address the problem of this the-
sis. It is a specification of the basic system shown in Fig. I.10. To reduce computational cost, a
reduced-order model is used as a surrogate of the CFD dispersion model. Model predictions asso-
ciated with uncertain prior of the model input parameters are compared to in-situ measurements
of the system state using a DA algorithm. This algorithm corrects input parameters, from which
the reduced-order model can predict an improved estimation of the system state. Uncertainty
on prior knowledge, measurements and model predictions are explicitly modeled and taken into
account to ensure the robustness of DA estimates.

the ABL, as it is intrinsically irreducible. To our knowledge, this source of error has not
yet been explored by this kind of DA system, although it may significantly impact both
model and measurement accuracy. In our opinion, incorporating this uncertainty in the
DA system would considerably improve its robustness by preventing it from giving too
much confidence in observations and model predictions, and the representativeness of its
uncertainty estimation. Hence, this thesis is a first attempt to realistically account for
this aleatory uncertainty in a DA system for microscale dispersion. This also motivates
the choice of an LES approach for the CFD model because of its ability to represent
the microscale internal variability of the ABL, whereas this important information is not
accessible with the averaged formalism of the RANS approach.

To sum up, the main objectives of the thesis are to:

1. build the proposed reduced-cost DA system and verify its ability to make fast
estimations of microscale pollutant dispersion based on LES while reducing mete-
orological boundary condition uncertainty,

2. take into account the observational and prediction uncertainty induced by the mi-
croscale internal variability of the ABL in this DA system, to ensure its robustness,

3. realistically represent the effect of the main uncertainties involved in the final pollu-
tant dispersion estimations, in order to go beyond standard point-wise predictions
which are intrinsically unsuited to the microscale atmospheric context.
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I.3.4 Implementation strategy
To build and validate the reduced-cost DA system presented in Fig. I.11, which is the

backbone of this thesis, we follow a four-stage action plan including all necessary new
developments.

i) Set up an LES model of a real field dispersion experiment
Among the different dispersion field experiments presented in Sect. I.1.4, we choose
to reproduce one trial of the MUST field experiment (Biltoft 2001) corresponding
to neutral stratification conditions, using an LES modeling approach. This choice is
also motivated by the internal variability problem, as it is shown to be particularly
significant in this experiment (Schatzmann et al., 2011, p. 88–101). In addition,
a large number of studies comparing CFD model predictions with experimental
measurements are already reported in the literature and can be used as a basis for
comparison.

ii) Estimate the LES model main uncertainties
We explore the main sources of uncertainty in microscale LES dispersion prediction,
in particular parameter perturbation tests are carried out to investigate the model
sensitivity to boundary condition parameters, but also part of the model structural
uncertainties. A significant effort is made to estimate the effect of microscale inter-
nal variability not only on LES predictions but also on observations. To do so, we
design and propose a bootstrap approach. The LES model is then validated in a
robust way, by taking these uncertainties into account when comparing its predic-
tions to experimental data. Source and geometry uncertainties are not studied in
this thesis, considering that they are well-controlled in the MUST field campaign.

iii) Build a reduced-order model of the LES model
First, we generate a large ensemble of 200 LES predictions to represent different
possible scenarios of meteorological boundary conditions, sampling the parameters
to which the model is most sensitive. The LES mean concentration response sur-
face is then emulated using a reduced-order modeling approach called POD–GPRs,
which relies on proper orthogonal decomposition (POD) for the reduction step, and
Gaussian process regressors (GPRs) for the regression step. This approach has been
successfully applied to a simplified 2–D dispersion case by Nony (2023). We extend
it to the MUST real case, which requires adaptations to deal with the very large field
dimension, and with the wide range of pollutant concentration levels involved. In
addition, we use our estimation of the aleatory uncertainty related to microscale in-
ternal variability to make an informed choice on the number of reduced-basis modes
used by the POD–GPRs model, in order to avoid overfitting noisy structures and
thus minimize model reduction errors.

iv) Assemble and validate the reduced-cost DA system
Finally, we assemble the reduced-cost DA system presented in Fig. I.11. To an-
swer the need for probabilistic prediction, the standard EnKF is chosen as the DA
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algorithm. We assess its ability to correct meteorological boundary condition pa-
rameters using local mean concentration measurements. The main innovation of
our approach is that we propose advanced and realistic error models for i) the prior
boundary condition parameters, thanks to a microclimatology study involving a
large amount of observational data; ii) the observation and model predictions, by
accounting for the aleatory uncertainty due to the microscale internal variability of
the ABL thanks to our bootstrap approach; and iii) the reduced-order model pre-
dictions compared to the ones of the LES model. In our opinion, this is significant
progress towards more realistic and robust DA systems for microscale atmospheric
applications. Finally, the DA system thus obtained is first set up by assimilating
synthetic observations (OSSE experiments), then validated using the real tracer
concentration measurements from the MUST field campaign.
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I.3.5 Structure of the manuscript
A thesis chapter is devoted to each of the four main stages previously introduced.

Figure I.12 gives a schematic view of the general outline of the manuscript. This figure
also illustrates the dependency structure between chapters.

Chapter II
LES of the MUST case

Chapter V
Data Assimilation

Chapter IV
Model Reduction

Chapter III
Uncertainty

Quantification
Provide error models

Inform design

Chapter I - Context

Conclusion and perspectives

Uncertainty reduction

Figure I.12: Overview of the manuscript structure. Each block corresponds to a thesis chapter.
Black arrows represent dependencies. The green dashed line highlights the general problematic
of the thesis.

The LES microscale atmospheric dispersion model, which is the starting point for all
other work, is presented in Chapter II. Robust validation of this model is then carried
out in Chapter III by taking into account its uncertainties and confronting its flow and
dispersion predictions with experimental measurements. This also helps determine which
model inputs have the most effect on the predictions and hence should be prioritized for
uncertainty reduction. Based on this knowledge, the POD–GPRs reduced-order model
is built and validated as a substitute for the LES model in Chapter IV. Once all these
prerequisites are in place, we demonstrate in Chapter V the ability of the data-driven
modeling system designed in Sect. I.3 to answer the general problematic of the thesis.
Finally, the last part of the manuscript summarizes our contributions and opens up
interesting perspectives.

Thesis-related publications

• Part of the content of Chapters II and III is the subject of an article published in the
journal Boundary-Layer Meteorology (Lumet et al. (2024). Assessing the internal
variability of large-eddy simulations for microscale pollutant dispersion prediction
in an idealized urban environment).

• Preparatory works for Chapters IV and V were presented during the 21st Interna-
tional Conference on Harmonisation within Atmospheric Dispersion Modelling for
Regulatory Purposes (HARMO 21) in Aveiro (Portugal) in September 2022.
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Chapter II

Microscale atmospheric dispersion
large-eddy simulation

This chapter presents the large-eddy simulation (LES) model used in this the-
sis to predict microscale pollutant dispersion, and how it is implemented to repro-
duce one trial of the Mock Urban Setting Test (MUST) field campaign experiment
(Biltoft 2001).

We first introduce the LES theoretical framework, with a particular focus on
microscale atmospheric flow and dispersion. We also explain how the chosen solver,
originally developed for reactive and compressible flows, is adapted to efficiently
simulate atmospheric flows.

Next, we present the MUST pollutant dispersion field campaign experiment
chosen to validate the LES model. We briefly describe the array of shipping con-
tainers used to mimic a simplified urban canopy, before providing an overview of
the main sensors installed during the experiment. A specific pollutant release trial,
the #2681829 which corresponds to neutral atmospheric conditions, is chosen as
the case study for this thesis.

The construction and adaptation of the LES model for this specific trial of the
MUST campaign is then presented. Proper definitions of the computational domain
and boundary and initial conditions are given. Particular emphasis is placed on the
implementation of turbulence injection to realistically reproduce the fluctuations of
the atmospheric boundary layer (ABL), as this is one of the new contributions of
this thesis to the model.

In the last part of the chapter, a preliminary study in a free field configuration,
i.e. without obstacles, is carried out to investigate the consistency between the
inflow conditions and the wall law imposed as the ground boundary condition, as
well as the development of the turbulent fluctuations injected at the inlet.
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II.1 Introduction
The aim of this section is to introduce the numerical model used for the prediction of

microscale pollutant dispersion throughout the thesis. In particular, we discuss in detail
the choices made in terms of CFD approach, solver, and validation case study.

Motivation of the LES modeling approach In this thesis, we focus on microscale
CFD dispersion models because of their ability to explicitly account for the complex in-
teractions between the built environment and atmospheric flow and dispersion. From the
main CFD approaches introduced in Sect. I.1.3, only the RANS and LES approaches are
affordable at the neighborhood scale, which takes into account ensembles of buildings in
order to be representative of the urban canopy layer in a real city. In this thesis, we
adopt the LES approach because it provides instantaneous realizations of the most ener-
getic atmospheric eddies, and can thereby reproduce the effect of the microscale internal
variability of the ABL on the model predictions. This important knowledge, which is
central to the objectives of this thesis, is not accessible with the average formalism of the
RANS approach. LES instantaneous realizations can also be directly used to estimate the
concentration statistics such as peak concentrations and fluctuations, which are of impor-
tance for pollutant dispersion studies (Tominaga and Stathopoulos 2013), whereas RANS
requires additional modeling assumptions to estimate these statistics (Milliez 2006). In
addition, LES is expected to reduce the uncertainties associated with turbulence model-
ing compared with RANS (Gousseau et al. 2011; García-Sanchez et al. 2018), allowing us
to focus on other forms of uncertainty, and in particular those associated with large-scale
meteorological conditions. The downside is that LES has a significantly higher compu-
tational cost than RANS as discussed in Sect. I.2.1. However, this drawback will be
mitigated by the reduced-order model developed in Chapter IV.

The AVBP solver choice In this thesis, we use the AVBP1 solver developed by
CERFACS to perform LES of compressible, reactive, turbulent flows on massively par-
allel architectures. It is a reference code in the High-Performance Computing (HPC)
community and it is widely used in the field of combustion, both for research purposes
and as a design tool for industry (Vermorel et al. 2017; Pérez Arroyo et al. 2020). It is
also used, to a lesser extent, to resolve non-reacting flows to study turbomachinery (Wang
et al. 2014), wind turbine (Dabas et al. 2022), and pollutant formation and dispersion
(Poubeau et al. 2016; Paoli et al. 2020).

This choice of solver is motivated by its high scalability and unstructured capability,
which simplifies the generation of meshes representing the urban canopy. In the longer
term, AVBP offers interesting prospects, such as the modeling of reactive phenomena and
realistic sources. This choice therefore opens the door to a broader safety environment
perspective, with applications in modeling industrial fires, wildland fires, and hydrogen
or liquified gas leaks.

As AVBP was not initially developed to solve environmental fluid flows and plume
1See documentation at http://www.cerfacs.fr/avbp7x/.
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dispersion in open areas, one of the contributions of this thesis is to validate AVBP in this
kind of context. To do so, we draw on model development work initiated by Rochoux et al.
(2021). The adaptation of the compressible formulation of the Navier-Stokes equations
used in AVBP to atmospheric flow is detailed in Sect. II.2.4. A particular development
carried out in this thesis is the addition of a turbulence injection method to improve the
representativeness of the inlet wind profile (Sect. II.4.3).

Choice of validation case study Among the different dispersion validation experi-
ments presented in Sect. I.1.4, we choose the MUST field campaign (Biltoft 2001) as the
case study for this thesis. MUST is an attractive test case to assess the accuracy and
reliability of microscale CFD dispersion models because i) it features an idealized urban
canopy made up of a regular array of shipping containers, simplifying the computational
grid construction; ii) the experimental test site is isolated, allowing the atmospheric
boundary layer to develop properly, which simplifies the definition of meteorological
boundary conditions for the model; iii) the pollutant species used in the experiment,
propylene, can be considered as passive chemical species and is released passively (Biltoft
1995, 2001), which simplifies its modeling; and iv) a large number of observations of wind,
turbulence and tracer concentration are available at different locations throughout the
field. This allows good control of the meteorological boundary conditions of the model
and offers the possibility of in-depth validation. More details on the experimental field
campaign are given in Sect.II.3.

MUST was selected as one of the reference case studies for the European COST2

Action 732 on the assurance of the quality of microscale dispersion models (Franke et al.
2007). In this exercise, including a dozen CFD models, measurements from the wind
tunnel reproduction of the MUST experiment from Bezpalcová (2007) are used as vali-
dation data instead of the field campaign data. This choice is motivated by the fact that
wind tunnels enable validation data to be acquired over very long acquisition windows,
thus avoiding flaws in the model validation and comparison because of the internal vari-
ability of the ABL (Schatzmann et al. 2010). In this thesis, we propose not to bypass
the problem of internal variability and to actually take it into account in the validation.
The approach developed to quantify the effect of internal variability will be presented in
Chapter III.

A large number of studies comparing the predictions of RANS and LES models with
experimental measurements from the MUST field campaign are reported in the literature
(see Table II.1). These studies can be used as a basis for building and evaluating our
LES model. Overall, these studies show acceptable agreement between CFD models and
experimental observation, but local differences between models and observations remain
and are not fully explained (Milliez and Carissimo 2007; König 2014; Nagel et al. 2022).
The choice of this case study is therefore relevant to the overall objective of this thesis,
which is to quantify and reduce uncertainties in microscale CFD models.

2COST (European Cooperation in Science and Technology) is an intergovernmental European orga-
nization that promotes research and innovation networks. See https://www.cost.eu/.
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Table II.1: Overview of the CFD modeling studies of the MUST field campaign. CFD studies
that use data from the wind tunnel experiment from Bezpalcová (2007) for validation are not
reported in this table. For an overview of the models used in COST Action 732, please refer
to Olesen et al. (2008) and Schatzmann et al. (2010). The blue color indicates the studies that
reproduce the trial # 2681829.

Study CFD approach Solver Trial(s)

Hanna et al. (2004) RANS FLACS 37 trials
Camelli et al. (2005) VLES1 FEFLO–URBAN # 2682353
Hsieh et al. (2007)2 RANS STREAM /
Milliez and Carissimo (2007) RANS Code–Saturne 20/21 trials3

Donnelly et al. (2009) RANS WinMISKAM 19/21 trials3

Efthimiou et al. (2011) RANS ADREA # 2682256
Antonioni et al. (2012) RANS/LES FLUENT # 2682353

König (2014) LES ASAM # 268182
and # 2682353

Kumar et al. (2015) RANS Fluidyn-PANACHE 20/21 trials3

Bahlali et al. (2019) RANS Code–Saturne # 2681829
and # 2692157

Nagel et al. (2022) LES Meso-NH # 2681829
1 Very Large Eddy Simulation.
2 Validation with data from the water channel modeling of MUST by Yee et al. (2006).
3 Among the 21 trials that were selected by Yee and Biltoft (2004) for their high quality.

This chapter is limited to the presentation of the case study and of the implementation
of the LES model used to reproduce it. The LES model will be validated in Chapter III,
in light of the various uncertainties involved.
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II.2 Large-eddy simulation dispersion modeling
In this section, we present the LES theoretical basis, and how it can be used to solve

the equations governing atmospheric flows and pollutant transport at microscale. We also
describe in more detail how the AVBP solver is adapted to solve these flows efficiently.
This section has been synthesized based on the lecture notes from Piomelli (2020), and
on Sagaut’s book (2005).

II.2.1 Large-eddy simulation principle
LES is a numerical approach for simulating flows governed by the Navier-Stokes equa-

tions. It consists of explicitly solving the larger-scale turbulence and modeling the effect
of smaller scale. This makes it possible to use coarser discretization than with direct
numerical simulations (DNS), which resolve all turbulence scales, and thereby reduce
simulation computational cost.

(a) Physical space (b) Fourier space

Figure II.1: Large-Eddy Simulation implicit filtering principle illustrated. The filter is defined
by the mesh resolution ∆ (a): the eddies larger than ∆ are resolved while the effect of the smaller
eddies is taken into account by the subgrid-scale model. In the Fourier space (b), the separation
of the resolved scales from the subgrid scales, at the cutoff wave number kc, is illustrated for
the turbulent energy spectrum associated with a homogeneous isotropic turbulent field. Figure
excerpt from Sagaut (2005).

In contrast to the RANS (Reynolds-Averaged Navier-Stokes) approach, LES provides
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a representation of the flow field with spatio-temporal resolution of the largest scales of
turbulent fluctuation. This limits turbulence modeling errors as they only concern the
small-scale subgrid motions provided that a sufficient fraction of the turbulent kinetic
energy is explicitly resolved, usually at least 80% (Pope 2000). Most of the time this
separation between the resolved and modeled scales is implicitly achieved thanks to the
grid used to discretize the Navier-Stokes equations as illustrated in Fig. II.1. Note that
the LES tends towards explicit DNS resolution when the filter size tends towards the
smallest scale of turbulence in the flow: the Kolmogorov scale.

II.2.2 LES-filtered governing equations
In this section, we explain how the governing equations for atmospheric flow and

pollutant dispersion at the microscale introduced in Sect.I.1.2 are filtered with the LES
paradigm. Since our focus in this thesis is on reproducing a specific MUST test carried out
under neutral atmospheric stratification conditions, we present the simplified equations
for neutral conditions.

The separation between the larger scales and the smaller scales involved in LES can
be conceptualized as a filter of a given characteristic length ∆. In this thesis, we only
use implicit filtering which means that the cut-off scale of the filter is of the order of
the spatial resolution of the grid as shown in Fig. II.1. Applying this filtering operation
to the incompressible Navier-Stokes equations using Boussinesq approximation (Eqs. I.7)
and under neutral stratification conditions, as well as to the passive species transport
equation (Eq. I.8) gives:
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(II.1a)

(II.1b)

(II.1c)

where ũ, p̃′ and c̃ are the filtered velocity, pressure variation and species concentration
fields respectively, and where τ̃ij is the filtered viscous stress tensor, defined as:

τ̃ij = 2ρ0νS̃ij, (II.2)

with S̃ij = 1
2

(
∂ũi

∂xj

+ ∂ũj

∂xi

)
the resolved large-scales strain-rate tensor. In addition, the

filtering brings out two new terms compared with the original equations: the subgrid-
scale (SGS) turbulent stress tensor τ̃ t

ij and the SGS diffusive flux vector of the transported
species J̃ t

i . These terms account for the effect of unresolved scales on flow and species
transport and are defined as follows

τ̃ t
ij = −ρ0 (ũiuj − ũiũj) ,

J̃ t
i = ũic− ũic̃,

(II.3a)
(II.3b)
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Because of the filtered product terms in Eq. II.3, such as ũiuj, that cannot be obtained
from the resolved filtered quantities ũi, p̃, and c̃, additional closure equations are required
to solve the system (Eq. II.1). These closure equations are of primary importance for
LES because they are the ones that model the effects of the subgrid turbulent scales
(see Fig II.1). The principle of subgrid-scale modeling and some fundamental models are
presented in the next section.

Note that some authors consider that it is more rigorous to call τ̃ t
ij, and J̃i

t the
subfilter-scale turbulent terms (Pope 2000; Piomelli 2020), but we decided to stick with
the subgrid-scale terminology because it is more common, and because we only use the
filter implicitly defined by the discretization grid.

II.2.3 Subgrid-scale modeling
A wide range of SGS models for the terms (Eq. II.3) have been developed to adequately

reproduce the effect of filtered-scale turbulence in LES. They can have various levels of
complexity from a scalar equation with one constant to a dynamic procedure that adapts
the subgrid-scale contribution in space and in time. In this section, we present the
historic Smagorinsky-Lilly model (Smagorinsky 1963; Lilly 1967) as well as the dynamic
Smagorinsky model (Germano et al. 1991) and wall-adaptative local eddy-viscosity model
(Nicoud and Ducros 1999) which are the two SGS models mainly used in this thesis for
the SGS turbulent stress tensor τ̃ t

ij (Eq. II.3a). We also present the modeling strategy
adopted for J̃i

t (Eq. II.3b).

The Smagorinsky-Lilly model from Smagorinsky (1963) and Lilly (1967) is one of
the most common subgrid-scale models because of its seniority, simplicity and ability to
model correctly the action of the unresolved scales. It is an eddy-viscosity model whose
principle is to model the subgrid-scale turbulent stress tensor analogously to the viscous
stress tensor (Eq. II.2) by introducing a subgrid-scale turbulent viscosity νt:

τ̃ t
ij −

δij

3 τ̃ t
kk = 2ρ0νtS̃ij. (II.4)

To ensure closure, the Smagorinsky model uses one algebraic equation for the subgrid-
scale turbulent viscosity:

νt = (Cs∆)2|S̃|, (II.5)

with ∆ the filter cutoff length, Cs the Smagorinsky constant and |S̃| =
√

2S̃ijS̃ij the
magnitude of the resolved strain-rate tensor. A relationship between this constant and
the Kolmogorov constant Cκ has been derived by Lilly (1967), for Cκ = 1.41 it gives
Cs = 0.18. In the solver we use, the filter scale ∆ is taken equal to the cubic root of
nodal volume3.

3The nodal volume corresponds to the volume associated with the node in the dual graph of the
original mesh.
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This model accounts for the dissipation of energy from the subgrid scales as it always
predicts νt ≥ 0. Nevertheless, it is well suited for isotropic turbulent flows in which
the turbulent cascade energy is well verified. Deardorff et al. (1970) showed that in the
presence of shear and thus especially around obstacles the Cs constant must be reduced.
In addition, this model should be adjusted when the grid size is not homogeneous, for
instance when refining towards solid boundaries (Piomelli 2020). This is usually done by
applying the van Driest damping function (van Driest 1956). Finally, it is known that it
can be too dissipative (Sagaut 2005). For these reasons, we avoid using the Smagorinsky-
Lilly model for ABL flows.

The dynamic Smagorinsky model from Germano et al. (1991) is a more accurate
version of the standard Smagorinsky model which requires an additional calculation step
to estimate and adapt the constant Cs during the simulation. To do so, a test filter
is introduced with a cutoff length scale ∆̂ larger than the one from the primary filter
scale ∆, and Cs is expressed using the Germano inequality following Lilly’s procedure
(1992) as:

C2
s = 1

2
⟨LijMij⟩
⟨MijMij⟩

, (II.6)

where Lij = ̂̃ui
̂̃uj− ̂̃uiũj and Mij = ∆̂2| ̂̃S| ̂̃Sij−∆2|̂S̃|S̃ij, and where the hat designates the

variables filtered with the test filter. An additional averaging denoted ⟨·⟩, often spacewise,
may be used to smooth local variations of the coefficient Cs (Piomelli 2020).

The wall-adaptive local eddy-viscosity (WALE) model introduced by Nicoud
and Ducros (1999) for wall-bounded flows in an attempt to recover the scaling laws of
turbulent viscosity in the near-wall region. As the Smagorinsky model, it is an eddy-
viscosity model so the subgrid-tensor turbulent stress tensor is expressed as in Eq. II.4.
But the subgrid turbulent viscosity νt is estimated by the following parametric closure
equation:

νt = (Cw∆)2
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where Cw is a model constant set to 0.5 (Nicoud and Ducros 1999), and sd
ij is the traceless

symmetric part of the square of the velocity gradient tensor:

sd
ij = 1

2
(
g̃2

ij + g̃2
ji

)
− 1

3 g̃2
kkδij, with g̃ij = ∂ũi

∂xj

. (II.8)

In this thesis, we chose to mainly use the WALE model because it is particularly
suited for our objective of performing wall-modeled LES of ABL flows. In addition, even
with a simple algebraic model for νt, the SGS modeling errors are expected to have a
limited effect on the overall accuracy of the model as i) the subgrid-scale stress only
accounts for a limited fraction of the total stress (Fig II.1), ii) the small scales tend to be
more homogeneous and isotropic than the large ones, so they are more likely to be easily

53



Chapter II. Microscale atmospheric dispersion large-eddy simulation

represented by simple models (Piomelli 2020). This was verified in our case by comparing
the WALE model with the dynamic Smagorinsky model. Results of the comparison are
presented in Sect. III.5.3, page 112.

The SGS species diffusive flux model. The effect of the subgrid-scales of turbulence
on the tracer transport is simply modeled using a gradient-diffusion hypothesis:

J̃ t
i = − νt

St
c

∂c̃

∂xj

, (II.9)

with νt the subgrid-scale turbulent viscosity in Eq. II.4 calculated by the SGS model
used for the subgrid-scale turbulent stress tensor, and St

c the turbulent Schmidt number
defined by analogy with the standard Schmidt number (Eq. I.13). Modeled in this way,
unresolved small-scale eddies affect species transport in a way analogous to molecular
diffusion (Fig. I.5a). In our simulations, we use a value of St

c = 0.6 in line with solver
best practice. Sensitivity tests to the value of St

c are carried out in Sect. III.5.3, page 112
and show very limited impact on model predictions.

II.2.4 Solver features and specifications
The solver used in this thesis, AVBP4, solves on unstructured grids the filtered com-

pressible Navier-Stokes equations for flow dynamics and the filtered passive transport
equation (Schönfeld and Rudgyard 1999; Gicquel et al. 2011):
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(II.10a)

(II.10b)

(II.10c)

(II.10d)

where P = ρRT/W is the pressure given by the equation of state for an ideal gas with
R = 8.314 J mol−1 K−1 and W the air molecular weight. E denotes the total energy per
unit mass (E = e + 1

2uiui, with e the internal energy), qj the heat flux vector, and w

the mass fraction of the transported species. Note that in AVBP, J
t
i and S are defined

in terms of mass fraction, not volume concentration. The standard filtration operation
is denoted by a bar, while the tilde indicates mass-weighted filtering from (Favre 1965)
(f̃ = ρf/ρ̃). Compared to the filtered incompressible Navier-Stokes equations under
neutral conditions (Eqs. II.1a and b), AVBP additionally solves the energy conservation
equation (Eq. II.10c), which requires a new SGS model for the SGS heat flux vector qt

j.
4See footnote 1, page 47.
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II.2.4.1 Numerical scheme

Different numerical schemes are implemented in AVBP to discretize and solve the
filtered LES equations (Eq. II.10). In most of this thesis, we use the second-order
Lax-Wendroff (LW) finite-volume scheme (Schönfeld and Rudgyard 1999). This explicit
scheme in time, and centered scheme in space, was chosen for its reduced computational
cost when compared to higher-order schemes. A comparison between LW and the two-step
Taylor-Galerkin (TTGC) scheme (Colin and Rudgyard 2000) is presented in Sect. III.5.3,
page 112. As a third-order in space and time, explicit scheme, TTGC reduces the numer-
ical errors but increases the simulation computational cost by a factor of approximately
1.8 in return.

II.2.4.2 Pressure gradient scaling to improve computational efficiency

The LES code AVBP is based on a fully compressible explicit formulation of the
Navier-Stokes equation. Therefore, the time step used for the time advancement of the
simulation is constrained by the Courant-Friedrichs-Lewy (CFL) number condition, which
must be lower than 0.9 for the stability of the explicit time integration. For the com-
pressible formulation used in the numerical solver, this constraint reads

CFL = ∆t(u + c)
∆x

< 0.9 , (II.11)

where u is the velocity norm, c is the speed of sound and ∆x is the characteristic grid
size. The key idea of the pressure gradient scaling (PGS) (Ramshaw et al. 1986) is to
artificially reduce the speed of sound c, which reduces the constraint on the time step.
Compressibility effects and acoustic propagation are modified by this transformation, but
they are not relevant for ABL flows, which are in the limit of very low Mach number. In
this limit, it is demonstrated that the solution of the Navier-Stokes is preserved (Ramshaw
et al. 1986). The transformation is done in practice by scaling the specific gas constant
r by a factor α2 < 1 in the equation of state

r∗ = α2r , p∗ = ρr∗T = ρα2rT , (II.12)

where the superscript * denotes artificially scaled quantities and T is the temperature.
The internal energy e and enthalpy h are linked by the relation

h = e + p

ρ
= e + rT , (II.13)

the internal energy is also rescaled by the same factor α2 to maintain consistency between
internal energy variation and mechanical work

e∗ = α2e, (II.14)

so that
h∗ = e∗ + p∗

ρ
= α2

(
e + p

ρ

)
= α2h. (II.15)
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The resulting speed of sound c∗ is therefore artificially reduced by a factor α

c∗ =
√

γ r∗ T =
√

γ α2r T = αc . (II.16)

This approach significantly alleviates the constraint on the time step due to the CFL
condition. For the hydrodynamic problem to remain unchanged, the artificial Mach
number Ma∗ = Ma/α must remain small (typically < 0.2− 0.4) (Ramshaw et al. 1986).
The value retained for this study is α = 0.22 leading to Ma∗ < 0.15. This results in
a four-time increase of the unsteady time-step ∆t and hence of the total computational
cost, which makes the solver competitive with incompressible or anelastic approaches
more conventionally used for ABL flows.

II.2.4.3 Conversion of species mass fraction into concentration

In practice, AVBP solves the transport equation (Eq. II.10d) for the species mass
fraction w, while pollutant concentrations are often measured in terms of volume concen-
tration c. Both quantities can be related using the ratio ρs/ρ between the density of the
species and that of the air:

c = w

w + (1− w)
(

ρs

ρ

) .

For most atmospheric dispersion applications, the considered species concentrations are
very low, implying that w << 1 which yields

c ≈ ρ

ρs

× w.

In the remaining of the thesis, concentration refers to volume concentration and is ex-
pressed in parts per million (ppm) by volume as in the literature (Yee and Biltoft 2004).
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II.3 The Mock Urban Setting Test field campaign

II.3.1 Experimental site description
MUST is a field-scale experiment performed in September 2001 at the US Army

Dugway Proving Ground test site in the Utah desert (USA) (Fig. II.2). Its objective
was to provide extensive measurements in the short-to-medium range of a plume within
an urban-like canopy in support of the development and validation of urban dispersion
models (Biltoft 2001; Yee and Biltoft 2004).

The idealized urban canopy is mimicked by an array of 10×12 regularly-spaced ship-
ping containers covering an area of about 200×200 m2 (Fig. II.3). The array (in its x-y
coordinate system) makes an angle of 30° to the north. The containers are 12.2-m long,
2.42-m wide, and 2.54-m high. The average distance between two containers is 12.9 m
along the x-axis and 7.9 m along the y-axis. The terrain is flat and homogeneous with a
mix of sparse greasewood and sagebrush ranging from 0.4 to 0.75 m high. It is worth men-
tioning that the geometry of the idealized canopy was slightly irregular, as the containers
were not all perfectly aligned, and one container was replaced by a van (Biltoft 2001).
Their impact on the flow field was studied in Santiago et al. (2010), but we consider this
study a regular case as in Milliez and Carissimo (2007) and Nagel et al. (2022).

During the experiments of the MUST field campaign, a non-reactive gas (propylene)
was released, passively, at different horizontal and vertical locations and for different
atmospheric conditions (in terms of wind direction, wind speed, and atmospheric stability
condition). The propylene density is ρs = 1.81 kg m−3 but the negative buoyancy effects
of the gas are insignificant (Yee and Biltoft 2004), and it can be considered a passive
tracer.

II.3.2 Available experimental data
The MUST experimental dataset includes wind velocity and tracer concentration mea-

surements within and outside the container array. This section summarizes the data that
are used in this thesis, for the design and evaluation of the LES model, as well as vali-
dation of the data assimilation approach (Chapter V). The reader should refer to Biltoft
(2001) for full details of the instruments used during the MUST field campaign.

For wind velocity measurements, two-dimensional and three-dimensional sonic anemo-
meters were provided by the Dugway Proving Ground’s West Desert Test Center (WDTC)
and deployed vertically on different masts (triangles in Fig. II.3): four anemometers were
mounted on the central tower T at z = 4, 8, 16 and 32 m; and three anemometers were
mounted at z = 4, 8 and 16 m on each of the towers S and N (located 30 m upstream and
downstream from the canopy, respectively). WDTC three-dimensional sonic anemome-
ters were also positioned within the canopy at z = 1.15 m on four tripods V (yellow
plus-symbols in Fig. II.3). An additional three-dimensional sonic anemometer, provided
by the Arizona State University (ASU), measured wind velocity upstream of the contain-
ers, near tower S, at z = 1.6 m (purple plus-symbol in Fig. II.3). In addition, a network of
meteorological data collection stations called Surface Atmospheric Measurement System
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(a)

(b)

Figure II.2: Satellite images of Dugway Proving Ground test site which hosted the MUST
field campaign. (a) Wide view of the surrounding area, the experimental site is represented by
the red crosshair, while the location of the SAMS meteorological stations #8, #9, #15, and #16
are indicated by the yellow, blue, green and red markers respectively. (b) Close-up view showing
in red the area occupied by the containers. The towers S, T, and N equipped with anemometers
are represented with the blue, red and green markers respectively.

(SAMS) is installed across the Dugway Proving Ground. Each station measures wind
velocity at z = 10 m, as well as temperature, humidity and pressure at z = 2 m with
acquisition times ranging from 5 to 15 minutes. The location of the SAMS stations for
which we have access to measurements (#8, #9, #15, #16) is indicated in Fig. II.2a.
The SAMS station #8 is the closest to the container array, about 1 600 meters southeast.
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Figure II.3: Schematic view of the MUST array configuration adapted from Kumar et al.
(2015), the coordinate system used is the same as in Yee and Biltoft (2004) such that north
corresponds to the angle of -30° in the x-y coordinate system. Black rectangles represent the
shipping containers used to mimic the urban canopy. Triangles correspond to the anemometers
mounted on towers S, T, and N. Yellow plus symbols correspond to the masts V equipped with
WDTC anemometers, and the purple plus symbol to the ASU anemometer. Colored circles
correspond to the DPID concentration samplers (one color for each line of sensors), and colored
squares correspond to the UVIC concentration samplers mounted on towers A, B, C, and D
(note that there is a DPID sampler at the same location as tower D). The upstream mean wind
direction (red arrow) and the propylene-source location (red star) of trial 2681829 retained for
the present study are also indicated.

For tracer concentration measurements, 48 digi-photoionization detectors (DPIDs,
colored circles in Fig. II.3) were used as well as 24 ultraviolet ion collectors (UVICs,
colored squares in Fig. II.3). The DPIDs have a detection threshold of 0.04 ppm against
0.01 ppm for the UVICs. 40 DPIDs were placed within the canopy at z = 1.6 m, forming
four sensor lines aligned with the y-axis (referred to as the DPIDs lines in Fig. II.3); eight
were placed on the central tower T at z = 1, 2, 4, 6, 8, 10, 12 and 16 m. Also, six UVICs
were mounted within the canopy on each of the four 6-m towers A, B, C, and D at z = 1,
2, 3, 4, 5, 5.9 m to obtain vertical concentration profiles.

We acknowledge the Defense Threat Reduction Agency (DTRA) for providing access
to the MUST dataset.
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II.3.3 Selected case
From all the available observations, 21 trials were chosen by Yee and Biltoft (2004)

for their high quality (i.e. tracer detection on the tower T and for three of the four
DPID lines). In addition, Yee and Biltoft (2004) extracted a 200-s quasi-stationary (in
the statistical sense) period in each 15-minute experiment that minimizes the effect of
mesoscale meteorological fluctuations on the tracer concentration time series. This time
window (referred to as the analysis period in the following) was chosen as the sequence
with the smallest variation in mean wind speed and direction at the upstream tower S
for each trial.

In this work, we simulate one of the 21 trials referred to as 2681829, which has
also been studied in other studies using both LES and RANS approach as shown in
Table II.1. The trial main characteristics extracted from the data of Yee and Biltoft
(2004) are summarized in Table II.2. This case is a configuration with neutral atmospheric
conditions (i.e. afternoon transition from unstable to stable conditions), characterized by
a high value of the surface Obukhov length Lo (Lo ≫ 2 500 m), no latent and sensible
heat fluxes, and a weak influence of buoyancy. The time-averaged wind speed u4 and
direction α4 at z = 4 m at the upstream tower S are respectively 7.93 m s−1 and -41° (this
angle is defined with respect to the x-axis of the container array indicated in Fig. II.3, the
north direction corresponding to an angle of -30°). The gas was released at zs = 1.8 m
near the inlet of the canopy (red star symbol in Fig. II.3) with a constant flow rate
Q = 225 L min−1. For this selected trial, the analysis period is between 300 and 500 s
after the acquisition start.

Table II.2: Main characteristics of the MUST trial 2681829 (Yee and Biltoft 2004): α4 and
u4 are respectively the time-averaged wind direction and wind speed at z = 4 m of the upstream
tower S, Lo is the surface Obukhov length estimated by Yee and Biltoft (2004) using the vertical
fluxes of temperature and velocity measured at z = 4 m of the central tower T, Q is the constant
tracer release rate at the source, and (xs, yz, zs) are the source coordinates. The flow statistics
are computed on the [300; 500 s] analysis period

Trial Local start time α4 u4 Lo Q xs ys zs

(UTC - 6 h) (°) (m s−1) (m) (L min−1) (m) (m) (m)

2681829 2001/09/25 1830 -41 7.93 28 000 225 8.87 70.35 1.8
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II.4 Large-eddy simulation model of the MUST trial
2681829

II.4.1 Computational domain and spatial discretization

Figure II.4: Computational domain of the LES model of the MUST experiment and view of
the reference mesh used in the obstacle region.

The computational domain in which the Navier-Stokes and the tracer transport equa-
tions are solved is a rectangular cuboid oriented so that the inlet boundary is normal
to the mean upstream wind direction (Fig. II.4). In the x-y plane, the domain is a
420× 420 m2 square centred on the container array. Along the z-axis, the height of the
domain is 50 m. To avoid lateral or vertical confinement effects, the distance between the
lateral boundaries and the container array is at least 80 m (corresponding to 30 H, with
H = 2.54 m the container height), and the distance between the top boundary and the
top of the containers is 18 H. This geometry ensures compliance with the guidelines for
CFD simulation of urban atmospheric flows (Tominaga et al. 2008; Franke et al. 2007),
with a blockage ratio of 3.1% and sufficient distances between the obstacles and the
boundary conditions. The results of a sensitivity test to the height of the domain are
given in Sect. A.2, page 233.

An unstructured and boundary-fitted mesh of 91 million tetrahedra is used to dis-
cretize the computational domain. In the region of interest (in a box of 246× 266× 3.6 m3

that contains the full container array), the mesh is uniform with a resolution equal to
∆x = ∆y = ∆z = 0.3 m. In the rest of the domain, the mesh has a resolution of 0.3 m at
the ground level except near the outlet and the lateral boundaries, where the resolution
was coarsened to 2 m to reduce the number of cells. On the vertical, the mesh is gradually
stretched to reach a 5-m resolution at the top boundary. The mesh is generated using
Centaur5 software with a maximum stretching ratio of 1.7. The main characteristics of
the resulting mesh are given in Table A.1, page 232.

5https://www.centaursoft.com/
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The mesh resolution used in this study is in line with the resolutions used in LES
modeling of the MUST experiment in the literature, which typically ranges from 50 cm in
König (2014) to 30 cm in Nagel et al. (2022). We also try to comply as much as possible
with the mesh guidelines required by the use of wall laws presented in Sect II.4.2.2:

• for the rough wall law used to model the effect of the ground (Eq. II.19), the first
node height z1 should z1 > 50z0 with z0 the aerodynamic roughness length (Basu
and Lacser 2017).

• for the smooth wall law used for the obstacles (Eq. II.20), the first cell should be
located within the log-layer of the boundary layer velocity profile. For atmospheric
flows in urban environments, Franke et al. (2007) recommend that 30 < z+ < 500,
with z+ = ρuτ z1/µ the height of the first node in wall units based on the local
friction velocity uτ .

The first node height of the mesh used in this study is z1 = 0.12 m which is equivalent to
approximately 5z0 and 12×103 wall units. This means that the mesh is too coarse for the
smooth wall laws near the obstacles and too refined for the rough wall law used for the
ground. It is a problem that cannot be solved as the two guidelines cannot be matched
simultaneously in this particular case. A compromise is made in the zone of interest by
using approximately 8 cells over the height of the obstacle (Fig II.4) to explicitly account
for the effect of the obstacles on the flow while keeping a reasonable model computational
cost. We demonstrate in Appendix A.1, page 231 that this spatial resolution is enough
to reach convergence of the LES predictions.

With the CFL condition on the LES time-step equal to 0.9 with the LW numerical
scheme (Eq. II.11), the time step associated with this mesh is equal to 7.9× 10−4 s when
applying the PGS technique presented in Sect. II.2.4.2, compared to 1.9×10−4 s without.
We therefore estimate that PGS reduces the computational cost of the LES model by a
factor of 4.

II.4.2 Boundary conditions
II.4.2.1 Inflow boundary conditions

One challenge in LES of near-field pollutant dispersion relates to the modeling of in-
flow boundary conditions (Muñoz-Esparza et al. 2014; Dauxois et al. 2021). In field-scale
applications, there is usually a limited amount of information available to represent the
complexity of actual microscale inflow conditions that are influenced by the ABL variabil-
ity. One way to represent the mesoscale/microscale interactions is to perform a dynamical
downscaling of the atmospheric flow using a multi-scale meteorological model based on
grid nesting (Wiersema et al. 2020; Nagel et al. 2022). This multi-scale approach resulted
in a significant improvement of the microscale flow velocity and tracer concentration pre-
dictions for the Oklahoma City Joint Urban 2003 experiment (Wiersema et al. 2020).
However, this finding did not hold for the MUST idealized urban environment, where a
standalone microscale LES configuration based on idealized inflow boundary conditions
achieved the same level of accuracy as a multi-scale approach (Nagel et al. 2022). There-
fore, we represent the turbulent inflow boundary condition using an idealized approach
in this work.
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The logarithmic wind profile from Richards and Hoxey (1993), representing a fully
developed neutral atmospheric surface layer, is imposed at the inlet. This description is
sufficient as i) the selected trial corresponds to a neutral stratification condition; and ii) we
focus on the near-surface flow inside and just above the canopy. The mean horizontal
wind velocity uinlet at height z reads

uinlet(z) = u∗

κ
ln
(

z + z0

z0

)
, (II.17)

where z0 (m) is the aerodynamic roughness length equal to 0.045± 0.005 m according to
observations (Yee and Biltoft 2004), κ is the von Kármán constant equal to 0.4, and u∗
(m s−1) is the friction velocity. The parameter u∗ is calibrated here by fitting the profile
(Eq. II.17) through a least-square regression on wind speed measurements available at the
upstream tower S and for the ASU anemometer (these data are described in Sect. II.3.2),
which leads to a value of u∗ = 0.73 m s−1. The corresponding vertical profile for the inlet
mean wind is shown in Fig. II.5a along with the measurements used for regression.

A constant wind direction αinlet is imposed on the vertical at the inlet so that the
inlet wind vector reads

u = (uinlet cos(αinlet), uinlet sin(αinlet), 0)T , (II.18)
in the MUST frame of reference (see Fig. II.3). The constant wind direction is obtained
by spatially averaging the four wind direction measurements available at tower S and
for the ASU anemometer. This leads to αinlet = −41°, the same value as measured at
z = 4 m (see Table II.2).

II.4.2.2 Wall boundary conditions

The ground boundary is modeled as a rough surface with imposed shear stress τ
according to the Monin Obukhov similarity theory:

τ/ρ =
 κuh

ln
(

z1+z0
z0

)
2

, (II.19)

where uh is the horizontal velocity measured at height z1 of the first vertex above the
ground, ρ is the air density, κ = 0.4 is the von Kármán constant. Concerning the aerody-
namic roughness length we use the same value as for the inlet wind profile (Eq. II.17). By
using this law of the wall we assume that the ABL is well-established and in equilibrium.
We show in Sect. II.5 that the LES model preserves this profile rather well in free-field
conditions.

For the surfaces of the obstacles, the shear stress is imposed to match the law of the
wall for a smooth surface based on a viscous length (Larsson et al. 2016):

u+ = 1
κ

ln
(
Ez+

)
, (II.20)

where u+ = uh/uτ is the normalized horizontal velocity measured at the first vertex above
the obstacle surface in wall units, z+

1 = ρz1uτ /µ is the normalized height of this vertex,
and E a constant set equal to 9.2.
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Figure II.5: Vertical profiles (solid lines) of the (a) inlet mean wind speed uinlet(z), and the
(b) inlet wind speed fluctuations u′

iu
′
j(z) predicted by a precursor simulation and used to defined

the LES inflow boundary condition. Symbols correspond to experimental data.

II.4.2.3 Other boundary conditions

At the outlet and top boundaries, the static pressure is imposed in a soft manner
(with a relaxation towards the target) to evacuate acoustic waves (Poinsot and Lele
1992). Symmetry boundary conditions are used for the lateral boundaries as shown in
Fig. II.4. In addition, a 5-meter sponger layer with increased artificial viscosity is defined
along the outlet surface to prevent numerical instabilities.

II.4.3 Turbulence injection method in the context of ABL flow
The AVBP LES model of the MUST trial 2681829 studied in this thesis was originally

developed by Rochoux et al. (2021) as i) a validation test case for environmental fluid
flows in open areas as AVBP is not usually used in this context, ii) part of a multi-model
comparison to assess LES dispersion models structural uncertainties. However, for the
sake of comparison between the different codes, turbulence injection was not used since
the codes rely on different turbulence injection methods, which would add discrepancies
in the comparison. This implies that the prescribed inlet flow was uniform and steady
and thus an oversimplification of the real turbulent ABL.

64



II.4. Large-eddy simulation model of the MUST trial 2681829

One of the main contributions of this thesis to the AVBP model of the MUST case is
to rely on a turbulence injection method to have a more realistic inlet boundary condition,
i.e. representative of the turbulent nature of the ABL behavior. Various methods are
available in the literature for this purpose. They can be crudely classified into three cate-
gories: periodic precursor methods, recycling methods, and synthetic turbulence injection
methods (Dhamankar et al. 2018). We opt for the approach proposed by Vasaturo et al.
(2018) which consists of using synthetic turbulence injection with prescribed turbulence
statistics obtained from a periodic precursor. The approach has two main advantages:
firstly, it is relatively inexpensive, as the precursor simulation is only performed once at
a preliminary stage; secondly, as an objective of the study is to perform parametric vari-
ations on the inlet quantities, this is done easily in this framework by rescaling properly
the obtained turbulence statistics, without additional computations.

Concerning the synthetic turbulence injection, we use the Kraichnan-Celik (Kraichnan
1970; Smirnov et al. 2001) method already implemented in the AVBP solver. In this
method, temporal flow fluctuations u′ are added to the mean inlet wind profile (Eq. II.18),
according to Reynolds’ decomposition: u(x, t) = u(x)+u′(x, t), with x the position vector
and t the time. The fluctuations are first expressed using a three-dimensional Fourier
transform in space, and the Taylor assumption to link temporal and spatial fluctuations.
The solution is then approximated by a truncated Fourier series. The coefficients of the
series are adequately randomly drawn to satisfy the incompressibility assumption, and to
match the turbulence spectrum (Eq. II.21) from Passot and Pouquet (1987):

E(k) = 16u2
RMS

ke

√
2
π

(
k

ke

)4

exp
−2

(
k

ke

)2
 , with ke = 2π/λe. (II.21)

The Celik extension (Smirnov et al. 2001) of the Kraichnan method allows prescribing
anisotropic and heterogeneous profiles of the velocity fluctuations at the inlet. This
is done by an orthogonal transformation of the fluctuation field generated using the
Kraichnan method based on the target Reynolds stress tensor over the inlet surface:

Rij(x) = ρu′
iu

′
j(x). (II.22)

The components of the Reynolds stress tensor (Eq. II.22), used to prescribe the target
level of fluctuations in the Kraichnan-Celik method, are estimated using a preliminary
simulation with the same surface roughness but without obstacles, and with periodic
boundary conditions at the inlet and outlet (Keating et al. 2004; Munters et al. 2016;
Vasaturo et al. 2018). In this periodic setup, an additional pressure gradient term is
added in Eq. II.1b in order to drive the flow. This periodic simulation is run at a 6.25-m
resolution over a 400× 400× 250 m3 computational domain and a 2-hour period to ob-
tain converged velocity fluctuation statistics. The resulting mean velocity fluctuations
are shown in Fig. II.5b alongside fluctuation measurements. Even though experimental
measurements of fluctuations were not used to calibrate the precursor simulation, it is
overall consistent with the level of fluctuations measured at tower S upstream of the con-
tainers. The u′2

x fluctuation profile is accurately predicted, however, the precursor tends
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to underestimate u′2
y and overestimate

∣∣∣u′
xu′

y

∣∣∣, especially below 5 m. These fluctuations
statistics form the Reynolds stress tensor (Eq. II.22) imposed at the inlet of the microscale
domain.

Table II.3: Parameters values used in this study to calibrate the turbulence injection method.
Nmodes is the finite number of Fourier modes used to represent the fluctuations, λe is the most
energetic length of the turbulent spectrum, Lc is the cutoff length, Ubulk is the averaged bulk
velocity in the inlet section, and Rij is the Reynolds stress tensor.

Nmodes λe Lc Ubulk Rij

500 25 m 6 m 11.0 m s−1 computed using precursor

Table II.3 summarizes the turbulence injection parameter values used in this study.
The bulk velocity is calculated analytically by integrating the velocity mean profile
(Eq. II.17) over the cross-section of the inlet. The most energetic length of the tur-
bulent spectrum λe which parameterizes the turbulence spectrum injected (Eq. II.21) is
taken to its maximum limit which is half the height of the inlet surface. We refer the
reader to Boudin (2021) for additional details on the choice of parameters. The limitation
on λe leads to an undestimation of the integral scale of turbulence Λ = λe/

√
2π when

compared to the real ABL (Fig. II.6). The domain height could be increased to be able
to inject larger structures, but the method would remain imperfect because it assumes a
uniform integral scale. This is typically not the case within the ABL (Fig. II.6), for which
the integral scale increases linearly with height. Still, the retained value for λe allows it
to be consistent with the experimental data in the region of interest close to the ground.
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) Injected turbulence

Experiment

Simulation

Figure II.6: Turbulence integral time scale based on the velocity alongside the streamwise
direction u//. The simulation and experimental data are represented as blue and red lines
respectively. The integral time scale prescribed at the inlet is depicted as a dashed black line.

A detailed evaluation of the behavior of the injection method is investigated in
Sect. II.5, assessing how the injected mean and fluctuation statistics of velocity evolve
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through an obstacle-free computational domain. In addition, we assess how adding tur-
bulence injection impacts the LES model dispersion predictions in Appendix A.3, and
the model sensitivity to the level of turbulence prescribed at the inlet is investigated
Sect. III.5.2, page 109.

II.4.4 Tracer source modeling
The propylene source is modeled as a volumetric source term S in the transport

equation (Eq. II.1c). The momentum of the released gas is not taken into account as
it exits the outlet pipe at a velocity below 1 m s−1 and Biltoft (1995) showed that it
has a negligible effect on the plume elevation, especially for the strong wind conditions
considered in this trial. To avoid strong concentration discontinuities, a Gaussian shape
of radius rs in space is used, so for each vertex with coordinate x of the computational
domain, the source term reads

ϕr(x) = Q

Vs

ω(x)e
−∥x−xs∥2

2r2
s ,

with Q the experimental tracer release rate (m3 s−1), and xs = (xs, ys, zs) the source
location. Values of Q, xs, ys, and zs corresponding to the selected trial are given in
Table II.2. The dual volume of the vertex at location x is denoted ω(x), and Vs is the
total volume of the source model:

Vs =
∑
x∈Ω

ω(x)e
−∥x−xs∥2

2r2
s dx,

so that the total volumetric flow rate of the injected pollutant matches the experimental
one: ∑

x∈Ω
ϕr(x)dx = Q.

A source half-width rs of 0.45 m was chosen so the Gaussian-shaped source is covered by
approximately 6 cells in each direction.

II.4.5 Initial condition and spin-up time definition
The LES simulation is initialized using a homogeneous flow field in the horizontal

directions equal to the prescribed inlet mean field (Sect. II.4.2). A spin-up time of 60 s,
which corresponds to approximately 17 times the LES turnover time H/u∗, is used so
that first- and second-order statistics of the flow and the tracer reach a stationary state.
A 200-s time window corresponding to the [300; 500 s] analysis period (Sect. II.3.3) is
then simulated, from which statistics of the flow and tracer concentration variables can
be collected. At probe location, outputs are saved with a resolution of 0.05 s.

Figure II.7 shows different examples of time series of horizontal wind speed magnitude
and propylene concentration predicted by the LES model over the complete simulation
duration. It visually demonstrates that the 60-s spin-up time is sufficient to reach a
stationary state. In addition, we verify that the spin-up is sufficiently greater than the
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Figure II.7: LES predictions of the horizontal wind speed magnitude and propylene concen-
tration times series over at tower B (a, d), tower T (b, e), and tower C (c, f) at z = 2 m.
The location of these towers is depicted in Fig. II.3. Shaded grey areas correspond to the 60-s
spin-up.

convective time scale, since the tracer reaches tower C, located at the edge of the zone of
interest, after about 30 s, i.e. half the spin-up time (Fig. II.7e). It also shows the highly
volatile nature of the quantities of interest, which motivates the study not only of their
mean values but also of the statistics of their temporal distributions.

In terms of computational cost, simulating a 260-s physical time period (including the
spin-up and the 200-s analysis period) for this MUST configuration costs approximately
20 000 core hours, using 1 344 CPU cores on the TGCC Irene SKL supercomputing facility
(Intel Skylake architecture). More details on the computing resources used during this
thesis are given in Table IV.1, page 142.

Illustrative examples of instantaneous flow and tracer concentration fields obtained
by the LES model after the spin-up period are given in Fig. II.8a, b. The transition from
large-scale turbulence provided by the turbulent inlet forcing to small-scale turbulent
structures induced by the containers is visible in Fig. II.8a. The resulting instantaneous
tracer concentration field is shown in Fig. II.8b, highlighting the scale disparity of local
tracer concentration values that can reach 10 ppm near the emission source. Figure II.8c
shows the time-averaged propylene concentration over the 200-s analysis period within
the canopy. It highlights the deviation of the mean plume centerline from the incident
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mean wind direction because of the wind channeling effect induced by the obstacles.

Figure II.8: Horizontal cuts at z = 1.6 m of instantaneous (a) horizontal wind speed mag-
nitude uh (m s-1) and (b) propylene concentration c (ppm) at t = 60 s. (c) Horizontal cut of
the time-averaged concentration over the 200-s analysis period. White rectangles represent con-
tainers. The red star represents the tracer source, and the green line represents the mean wind
direction imposed at the inlet. The plume centerline, identified by the positions of the mean
concentration maximum on lines orthogonal to the incident wind angle, is represented as a red
line (c).
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II.5 Preliminary verification: simulation of a free-
field case

The goal of this preliminary study is to investigate how the profiles imposed at the
inlet boundary condition of the LES model evolve through the domain. In particular, we
aim to verify the consistency between inflow conditions and the ground wall boundary
condition (Eq. II.19), in an empty computational domain (without the obstacle array).
Inconsistencies between inlet and surface boundary conditions can indeed lead to unin-
tended streamwise gradients in the vertical profiles of mean wind speed and turbulence
quantities that might deform the incident profile on the zone of interest compared to
that imposed in the inlet (Vasaturo et al. 2018). Such preliminary free-field simulation is
considered best practice in CFD modeling of atmospheric surface flows both for RANS
approach (Franke et al. 2007; Blocken 2015) and LES approach (Vasaturo et al. 2018).

For the verification in the free-field configuration to be representative of the target
MUST case, the LES setup relies on the same computational domain and boundary
conditions (Fig. II.4), but without obstacles. Dimensions of the computational domain
are the same as for the model with obstacles i.e. 420× 420×50 m3 (Fig. II.4). Compared
to the mesh used in the MUST case, the mesh is still progressively stretched from a 0.3-m
resolution at ground level to a 5-m resolution at the top boundary, but the additional
refinement found in the obstacle array is omitted for this case, enabling the number of
grid cells to be divided by a factor of two compared to the MUST case. The 0.3-m
resolution corresponds to a ratio between the first off-wall grid point and the roughness
length z1/z0 = 6.7, which violates the guideline z1/z0 > 50 from Basu and Lacser (2017)
followed for the precursor simulation. This overly fine grid resolution may lead to a
misprediction of fluctuations which can degrade statistics predicted by LES (Basu and
Lacser 2017). However, this grey zone where the logarithmic law is not strictly valid is
required to ensure a smooth grid resolution transition to the fine grid resolutions required
in the obstacle-resolved region. Improving the representation of the rough surface in this
grey zone is still an active topic (Arthur et al. 2019; Maronga et al. 2020).

Aware of this modeling limitation, in the following, we examine the evolution of the
vertical profiles of the wind velocity statistics. For this purpose, probes have been placed
every 25 m after the inlet in the streamwise direction. We are particularly interested in
the profile obtained at a distance of around 80 m from the inlet since it corresponds to
where the first obstacle is located in the reference model (Fig. II.4), in order to verify the
incident mean and fluctuation velocity statistics on the zone of interest.

Figure. II.10 shows the evolution of the mean wind velocity vertical profile with in-
creasing distance from the inlet. The profiles appear to remain nearly constant in the
first 100 meters. The profile then deteriorates with acceleration close to the ground. It
was verified that this is due to the over-refinement of the mesh given the rough wall law
used (z1 < 50z0, as mentioned in Sect. II.4.1). Nevertheless, the profile is overall well-
preserved until the area of interest of the complete LES model of MUST (which starts at
dinlet ≈ 80 m).

Regarding higher order statistics, we also investigate how the velocity fluctuations
imposed at the inlet, with the turbulence injection approach presented in Sect. II.4.3,
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Figure II.9: Spatial evolution of the mean horizontal velocity uh vertical profile, at a distance
from the inlet ranging from 0 to 225 m. The blue lines correspond to the predicted profile through
the domain, while the profile imposed at the inlet is shown as black dashed lines. Symbols
correspond to tower S and ASU anemometer measurements.
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Figure II.10: Spatial evolution of the horizontal turbulent kinetic energy k2D vertical profile,
at a distance from the inlet varying from 0 to 225 m. The blue and red lines correspond respec-
tively to the reference LES and an additional LES with rescaled Reynolds tensor (Eq. II.23) to
increase the level of intensity of fluctuations injected. Symbols correspond to tower S and ASU
anemometer measurements.

evolve through the empty domain. The evolution of the horizontal turbulent kinetic
energy k2D = 1

2(u′2
x +u′2

y ) with increasing distance from the inlet is shown in Fig. II.10. We
do not compare the 3–D turbulent kinetic energy as tower S anemometers did not measure
the vertical velocity during the MUST field campaign. The horizontal turbulent kinetic
energy above the ground is fairly consistent at the first two locations with experimental
level and is coherent with ABL theory (which provides a rough estimate for the 3D
turbulent kinetic energy as k ≃ u∗2/0.090.5 = 1.8 m2/s2 (Richards and Hoxey 1993)).
Concerning the conservation of the injected fluctuation statistics, we find that turbulent
kinetic energy increases significantly near the ground for dinlet > 150 m, which might be
an effect of the overly fine resolution at the ground. It also tends to dissipate in the upper
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part of the domain as turbulence is damped by the outflow boundary condition imposed
at the top of the domain. The effect of the top boundary condition is further investigated
in Sect. A.2, page 233.

To investigate the capability of the turbulence injection method to represent pertur-
bations of turbulent kinetic energy, we carried out an additional simulation by rescaling
the Reynolds tensor prescripted at the inlet (Eq. II.22) as follows:

Rij ← λR
2 ×Rij. (II.23)

The evolution of the profile resulting from a 25% increase in injected fluctuations is shown
in Fig. II.10. We find that the increased turbulent kinetic energy profile, which would
correspond to a non-equilibrium situation, tends to return over a rather short distance
to the equilibrium levels.
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Figure II.11: Spatial evolution of the turbulent energy spectrum evaluated from the streamwise
velocity at z=4 m, at a distance from the inlet varying from 0 to 225 m. The predicted spectrum is
shown in blue, while the green spectrum is computed from the tower S anemometer measurement.

Looking at the turbulent scales, it is shown in Fig. II.11 that the injected synthetic
spectrum (Eq. II.21) lacks high-frequency content. Still, it develops well within the empty
computational domain until a fully-developed turbulence energy cascade is obtained at
around 100 m from the inlet. Moreover, the developed turbulent energy spectrum re-
produces rather well the measured turbulence spectrum near the ground. Note that
low-frequency fluctuation scales are filtered because of the limit on the integral scale λe

of the turbulence injection method used (Fig. II.6).
The results obtained above in terms of mean velocity, turbulent kinetic energy and

frequency content show that the constructed LES setup is well suited to reproduce the
idealized boundary layer in an equilibrium state, and is therefore weakly sensitive to
the parameters of the turbulent injection method, provided that a sufficient distance
is imposed between the inlet and the zone of interest, to allow for the cascade of the
initial synthetic spectra to a more physical state. In particular, this explains why LES
predictions in the area of interest are barely affected by turbulence injection parameters
(Sect. III.5.2, page 109). Further methodical work would be needed to define a proper
way to represent non-ideal effects, such as non-equilibrium between the flow and the
ground surface.
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Still, a slight deviation of the vertical profiles of mean and fluctuation velocity statis-
tics is observed, which can be attributed to the over-refinement of the mesh near the
ground required to resolve the container region. The top boundary condition imposed at
the top also has a detrimental impact on the turbulence statistics, as it dampens fluc-
tuations. Nevertheless, a rather good compromise between turbulence development and
mean inlet velocity profile conservation is obtained around 80 m, which corresponds to
the distance between the inlet and the first obstacle for the complete LES model of the
MUST experiment. Beyond, the effect of the ground boundary condition has a lesser
impact on the flow, as it becomes mainly driven by the significant drag forces resulting
from the interaction with the containers forming the canopy.
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II.6 Summary
In this chapter, we presented the LES microscale dispersion model implemented to

reproduce one specific trial (2681829) of the MUST field experiment, which corresponds
to neutral conditions. An important focus is placed on the definition of the inlet bound-
ary condition, as this is what controls the atmospheric forcing, which is at the core of
the general problem of this thesis of quantifying and reducing uncertainty in LES pre-
dictions induced by uncertainty in meteorological conditions. The main contribution of
this chapter is the implementation of a turbulence injection approach to reproduce the
microscale fluctuations of the atmospheric boundary layer. We verify the sanity of the
method using free-field simulations, which is a critical verification step often neglected in
the construction of LES models of ABL. The analysis of the result shows that, despite a
rather simplistic turbulence injection method, the mean and fluctuation velocity statis-
tics imposed at the domain inlet are established correctly and do not deviate significantly
as they propagate within the computational domain. The method is therefore able to
represent the ideal case of an atmospheric boundary layer at equilibrium.

We make extensive use of the LES model of the MUST case thus constructed through-
out the thesis:

◦ in Chapter III, we validate the LES wind flow and tracer concentration predictions
in light of the various uncertainties involved, and evaluate its main sensitivities,

◦ in Chapter IV, we build a reduced-order model to emulate the response surface of
the LES for different wind boundary condition parameters, allowing us to drastically
speed up predictions,

◦ in Chapter V, we attempt to improve LES predictions by reducing uncertainty on
the boundary conditions through the assimilation of actual concentration measure-
ments from the MUST experiment.
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Chapter III

Robust model validation under
uncertainty

The aim of this chapter is twofold: firstly, to validate the LES model introduced
in the previous chapter by comparing its predictions with experimental measure-
ments, and secondly, to quantify the uncertainties involved in order to enlighten the
comparison.

Among the different uncertainties involved in LES predictions, a particular
effort is placed on the uncertainty due to the microscale internal variability of the
atmospheric boundary layer (ABL). To quantify this aleatory uncertainty, we adopt
a bootstrap procedure based on sub-average samples. Rigorous verification of the
bootstrap assumptions in our case study led us to select the stationary bootstrap
algorithm from (Politis and Romano 1994) to account for time dependence between
samples. We then provide didactic guidance for selecting the parameters of the
algorithm. This approach appears to be particularly well suited to quantify the
internal variability inherent to time-averaged statistics collected on a finite time
window from LES and experimental data.

After briefly introducing the validation metrics used, the LES model is vali-
dated by comparing its prediction of flow and dispersion statistics with experimental
measurements from the MUST trial 2681829. We take internal variability into ac-
count in the validation to assess model-observation discrepancies, detect potential
model biases and quantify the uncertainty on the standard air quality scores ob-
tained.

Finally, we explore the main sensitivities of the LES model to better understand
how it can be improved. We analyze how the spatial discretization and the height
of the domain influence the model predictions. We also compare the effects of
modeling choices, for subgrid-scale models and numerical schemes, and those of
large-scale boundary condition parameters. This enables us to target which LES
model uncertainties are the most important to take into account in order to improve
LES accuracy, in response to the general problematic of the thesis.
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III.1 Introduction
The general aim of this chapter is to validate the LES model built in Chapter II of

the MUST trial 2681829, while also quantifying the uncertainties involved. By taking the
uncertainties into account, we can represent the predictions of the model in a probabilistic
way, in order to better reflect their accuracy. This can also shed light on the origin of
discrepancies between the model and observations. For a bibliographical overview of the
uncertainties involved in microscale atmospheric CFD models, we refer the reader to the
classification proposed in Sect. I.2.2, page 27.

Within the framework of the MUST field campaign, some sources of uncertainty typi-
cal of microscale dispersion models are very well controlled and can be expected to have a
limited effect on model predictions. In particular, for each experimental trial, the location
of the source, the rate and the duration of gas release are precisely identified and reported
in Biltoft (2001). In addition, the urban canopy is represented in a simplified manner by
an array of shipping containers which limits uncertainty related to the representation of
the urban canopy. Still, Santiago et al. (2010) show that taking into account irregularities
in the MUST experimental setup (container misalignment, replacement of a container by
a van) leads to changes in flow pattern predictions compared with predictions obtained
with simplified geometry. Nevertheless, these discrepancies are mainly limited to the
building scale, and the level of detail in the urban canopy geometry has no significant
effect on the spatially averaged flow properties.

In this thesis, we have decided to set aside these two forms of uncertainty and focus
instead on:

i) the uncertainty related to the large-scale atmospheric boundary conditions,

ii) the model structural uncertainties, i.e. those inherent in the solver code,

iii) the aleatory uncertainty due to the microcale internal variability of the ABL.

For the large-scale atmospheric forcing, we especially focus on the wind direction, the
friction velocity, and the atmospheric fluctuations. We also consider the uncertainty on
the aerodynamic roughness length of the terrain which is used both in the inlet wind
profile and in the wall law used for the ground boundary condition. However, we do
not consider uncertainty related to the thermal stratification of the atmosphere as the
considered trial is under well-established neutral conditions (Sect. II.3.3, page 60), and
the LES model has not yet been adapted and validated to handle other stratification
conditions. For the model structural uncertainties, we focus on the impact of the subgrid-
scale model and numerical scheme choices. In the following, we take a closer look at the
effect of microscale internal variability in the MUST field campaign.

Effect of the microscale internal variability in the MUST campaign
Because of the unsteadiness and turbulent state of the ABL, wind and pollutant

concentration statistics computed over limited acquisition periods are subject to sampling
errors and therefore inherently uncertain. This uncertainty is assumed to explain part of
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the discrepancies between CFD model predictions and field measurements (Neophytou
et al. 2011; Antonioni et al. 2012; García-Sanchez et al. 2018). A general presentation of
this issue is given in Sect. I.2.2, page 27.

The effect of internal variability on the experimental measurements of the MUST
campaign is investigated in detail by Schatzmann et al. (2010) (p.88–101). They use
moving windows to show that flow and tracer concentration statistics computed over the
200-s analysis period, selected by Yee and Biltoft (2004) to limit the effect of large-scale
atmospheric fluctuations, feature significant variability. This aleatory uncertainty affects
the measurements used for model validation and for defining the large-scale boundary
conditions of CFD models.
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Figure III.1: Tracer concentration simulated using LES at tower B. (a) Time series at z =
2 m. (b) Time-averaged vertical profiles. Colored lines correspond to three different realizations
of the time-averaged concentration obtained with different 200-s averaging windows ([60, 260 s]
in orange, [260, 460 s] in green and [460, 660 s] in red).

The microscale internal variability of the ABL also affects LES predictions, since part
of the scales of turbulent fluctuations of the ABL are explicitly resolved by the LES
model. As an illustration, Fig. III.1a shows that the predicted mean concentration at a
height of z = 2 m on tower B significantly changes between three LES estimates obtained
over three consecutive 200-second time periods after the spin-up. This variability is not
only present near the surface but extends to the whole vertical extent of the plume as
illustrated by the vertical profile changes in Fig. III.1b (see Sect. III.4.2 for a more detailed
analysis).

Note that increasing the acquisition time reduces the variability of the time-averaged
quantities because our LES model has steady boundary conditions and limits the size
for the largest eddies. Conversely, increasing the averaging time would increase the
experimental data variability because the time scale of the turbulent structures of the ABL
significantly exceeds the duration of the release experiment (Schatzmann and Leitl 2011).
This large-scale variability is shown in Fig. I.8, page 30. Comparing LES simulations and
field measurements for longer acquisition would therefore be inconsistent. This is why
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data from the wind tunnel reproduction of the MUST experiment of Bezpalcová (2007)
was chosen instead of the field measurements as validation data for the COST 732 model
intercomparison exercise (Schatzmann et al. 2010; Di Sabatino et al. 2011). It is indeed
possible to obtain statistically converged measurements in wind tunnels by increasing
acquisition times (Schatzmann and Leitl 2011).

In this thesis, we make a different choice: use field measurements and quantify their
uncertainty associated with internal variability, take advantage of the fact that the LES
provides a time-resolved representation of fluctuations to reproduce internal variability in
simulation estimates, and finally validate the model in light of the uncertainty involved.
The key idea is to be able to define observations and model predictions as envelopes rather
than deterministic point values, in order to avoid LES model validation conclusions being
dependent on the choice of the 200-s period (Fig. III.1).

Part of the results presented in this chapter is the subject of an article published in
the journal Boundary-Layer Meteorology (Lumet et al. (2024). Assessing the internal
variability of large-eddy simulations for microscale pollutant dispersion prediction in an
idealized urban environment).
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III.2 Internal microscale variability quantification
In this section, we propose a method for quantifying the effect of the microscale

internal variability of the ABL on LES model predictions and experimental measurements.
First, the concept of internal variability uncertainty is formally defined in Sect. III.2.1
as sampling noise due to the lack of statistical convergence of acquisitions. We then
present in Sect. III.2.2 a brief overview of methods for quantifying it, before focusing on
bootstrap methods in Sect. III.2.3, which have the advantage of not requiring additional
simulations to quantify internal variability. Finally, Section III.2.4 explains how to apply
this approach in the context of microscale atmospheric flow, and in particular how to
manage the time dependence of bootstrap samples, the choice of parameters for the
chosen algorithm and its application to LES model validation.

III.2.1 Internal variability definition
Let Y be the 200-s time-averaged estimation of a given field Y , for example, the mean

concentration field. It can be written as the mean of sub-samples averaged over shorter
time windows

(

Yk:

Y = 1
Tavg

∫ Tavg

0
Y (t)dt ,

Y = 1
Nt

Nt∑
k=1

(

Yk = 1
Nt

Nt−1∑
k=0

(
1
δt

∫ (k+1)δt

kδt

Y (τ)dτ

)
, (III.1)

where δt is a fraction of the total time-averaging window Tavg = 200 s such that Nt =
⌊Tavg/δt⌋ is the corresponding number of sub-samples. It is worth noting that extracting
sub-samples over small averaging periods is feasible with an LES simulation, which pro-
vides instantaneous realizations of the turbulent phenomena, contrary to other dispersion
modeling techniques such as RANS.

Written this way, the time-average Y can be seen as the sample estimator of the mean:

µ(Y ) = 1
Nt

Nt∑
k=1

(

Yk , (III.2)

and internal variability corresponds to the variability of µ(Y ) when the sample of sub-
averages

{ (

Yk

}Nt

k=1
changes. In this sense, internal variability describes sampling noise

error due to limited sample size Nt, i.e. limited acquisition time. The objective of this
section is to estimate the variance of the sample mean estimator V(µ).

III.2.2 Methods to quantify internal variability
To quantify model internal variability, the most straightforward approach is to run

several independent simulations and characterize the variance of the predictions (Costes
et al. 2021). However, this is very computationally intensive (each LES estimation costs
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about 20 000 CPU hours), and unfeasible for observations because one cannot reproduce
200-s acquisitions with the same atmospheric conditions.

Another method is to apply the central limit theorem that provides a confidence inter-
val for the sample mean estimator µ(Y ) (Eq. III.2). However, this interval is asymptotic
and a large number of realizations of µ(Y ) is needed for the sample mean to converge
in law to a normal distribution, which is not feasible in our case because of the model
computational cost.

Alternatively, one could model the statistical distribution of the sub-average samples

(

Yk to deduce, either analytically or through Monte Carlo estimation, the distribution of
the sample mean µ(Y ) and hence its variance. For example, the Gamma distribution
is well suited for tracer concentration modeling (Cassiani et al. 2020; Orsi et al. 2021).
However, this distribution assumption is not always appropriate. For example in our case,
the Kolmogorov-Smirnov test (Massey 1951) shows that it is rejected for 4 probes out of
47. More importantly, when Y is a vector, it is difficult to find a statistical distribution
that properly accounts for the correlation between its components. Yet, this is essential
to propagate internal variability to validation metrics without error compensation (see
Sect. III.2.4.5).

To circumvent these issues, it is possible to rely on the empirical distribution of the
available sub-average samples instead of assuming a priori their distribution. This is
the fundamental principle of Jackknife resampling and bootstrap methods (Efron 1979),
which are used in statistics for variance estimation and which are also widely used in
climate science for model internal variability estimation (Huybers et al. 2014; Diffenbaugh
et al. 2017; Risser et al. 2019; Chan et al. 2020). In our field of interest, Hanna (1989b)
used Bootstrap to quantify confidence intervals for air quality model validation metrics;
this is for instance implemented in the BOOT statistical model evaluation tool (Chang
and Hanna 2005). More recently, Sood et al. (2022) used bootstrap to assess confidence
intervals of ABL time-averaged estimates obtained with LES.

In what follows, we present the general bootstrap method and then explain how we
adapt it to the context of this study.

III.2.3 General bootstrap method principle
The bootstrap method from Efron (1979) and its variants provide a way to infer the

distribution of the sample mean (Eq. III.2) from replicates of the same size of the original
sample

{ (

Yk

}Nt

k=1
.

These replicates, called bootstrap samples, are obtained by resampling with replace-
ment of the sub-series values as illustrated in Fig. III.2. The i-th bootstrap sample is
formally defined as { (

Y
I

(i)
k

| I(i)
k ∼ U (1, Nt) , 1 ≤ k ≤ Nt

}
, (III.3)

where k is the time index of the sub-sample over the 200-s time period so that I
(i)
k

represents the time index of the sub-sample in the i-th bootstrap sample with i varying
between 1 and B (B being the total number of bootstrap samples considered). I

(i)
k follows
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Figure III.2: Bootstrap principle applied to LES average concentration estimation at tower B
(z = 2 m). (a) Sub-averages c̆k over 10 s (color bars) are computed over the 200-s simulated time
series (grey solid line). (b) Three examples of bootstrap replicates generated by resampling with
repetition from the 10-s sub-averages, their sample means {µ(1), µ(2), µ(B)} (Eq. III.2) are shown
as horizontal lines and illustrate the variability induced by the resampling. (c) The statistical
distribution of the sample mean estimator µ is inferred from the B bootstrap replicates. The three
examples of bootstrap realizations of time-averages of concentration over 200 s {µ(1), µ(2), µ(B)}
are also represented as vertical lines (c).

the uniform discrete distribution of the integers between 1 and Nt denoted by U (1, Nt).
The resulting samples can be used to generate an ensemble of sample means :

µ(i)(Y ) = 1
Nt

Nt∑
k=1

(

Y
I

(i)
k

, 1 ≤ i ≤ B. (III.4)

Because of the occurrence of repetitions in the resampling, the bootstrap replicates
of the sample mean

{
µ(i)(Y )

}B

i=1
show slight differences, as shown by the vertical dashed

lines in Fig. III.2c. This describes the variability of µ(Y ) due to sampling error, which
is precisely the internal variability of the 200-s average with the decomposition in sub-
averages we propose in Eq. III.1. Internal variability can thus be quantified in terms of
variance as follows:

s2
(

µ(Y )
)

= 1
B − 1

B∑
i=1

(
µ(i)(Y )− µ̂(Y )

)2
, (III.5)
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with

µ̂(Y ) = 1
B

B∑
i=1

µ(i)(Y ), (III.6)

which is an alternative to the original sample mean (Eq. III.2) to estimate the population
mean.

The bootstrap method does not only estimate the variance of the sample mean but
also describes its complete distribution, as shown by the shaded histogram in Fig. III.2c.
We can therefore infer more information about the distribution of µ, in particular, we can
construct confidence intervals from the bootstrap samples. Among the different methods
reported in the literature (Davison and Hinkley 1997), we use simple confidence intervals
based on the percentiles of the empirical bootstrap distribution.

III.2.4 Application of a bootstrap approach to MUST predic-
tions and observations

In this section, we explain how the bootstrap approach is implemented to quantify
the effect of internal variability on the LES model predictions as well as on the field
measurements. We begin by establishing that the original bootstrap method assumptions
are not verified in this context, before presenting the stationary bootstrap from Politis
and Romano (1994) that allows us to take into account the time dependence in the sub-
averages samples. We then explain how to choose the parameters of this algorithm, and
how to apply it to our quantities of interest.

III.2.4.1 On the independence of the samples

The general bootstrap procedure presented in Sect. III.2.3 is based on the assumption
that the sub-average samples

{ (

Y1, . . . ,

(

YNt

}
are independent and identically-distributed

(Efron 1979).
In the current study, the assumption of identically distributed samples is ensured for

the LES model because it is stationary by construction: first, we use a spin-up period
to remove the transient state; then, the inflow boundary conditions are stationary at the
scale of the total averaging period of 200 s. However, observations from field campaigns
are not necessarily stationary because of mesoscale fluctuations and daily variability in
weather conditions (Fig. I.8, page 30). In this regard, the 200-s analysis period for the
present case was chosen to minimize the large-scale variability (Yee and Biltoft 2004),
and can thus be considered quasi-stationary.

To assess the dependency between the sub-average samples
{ (

Yk

}Nt

k=1
, we use the cor-

relation length λ, defined as the maximum inter-sample distance such that the auto-
correlation function ρ (

Y
is larger than 20%. Figure III.3a shows the auto-correlation of

the sub-averages and the corresponding correlation length λ for the concentration at 2-m
high at tower D for both LES predictions and observations, using a sub-averaging pe-
riod of δt = 10 s (Nt = 20). It shows that observed concentration sub-averages are not
independent, with a correlation length of λobs = 2. Moreover, it appears to be the case
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Figure III.3: (a) Example of auto-correlation function vs. discrete time-lag k of the con-
centration sub-averages over 10 s, for both measured and simulated concentration at tower D at
z = 2 m. Vertical dashed lines correspond to the correlation length (in red for measurements
and in blue for simulations). (b,c) Correlation lengths computed at every probe location for
measurements (in red) and simulation sub-averages (in blue). Horizontal black dashed lines
correspond to the averaged correlation length over all the probes

for the majority of the probes over the detection threshold (Fig. III.3b). Note that LES
tends to underestimate the correlation of the concentration sub-averages compared to
the measurements (Fig. III.3c). This is because the size of the largest eddies in the LES
setup is limited by the size of the computational domain, as explained in Sect. II.4.3,
page 64, thus limiting long-term correlations related to large-scale fluctuations. The fact
that sample independence is not verified should not be overlooked, as it yields internal
variability underestimation when using the standard bootstrap, as shown in Fig. III.5.

To deal with sample dependency, several methods for stationary weakly dependent
samples are reported in the literature such as block bootstrap (Carlstein 1986), moving
block bootstrap (Kunsch 1989) and stationary bootstrap (Politis and Romano 1994).
In this study, we adopt the latter as i) it allows for compromise in the choice of the
block length as explained in Sect. III.2.4.3, ii) it does not undersample the first and
last sub-samples, and iii) it ensures that bootstrap replicates remain stationary, unlike
the other methods mentioned (Politis and Romano 1994). Note that the assumption of
weak dependency is verified in the current study as the correlation between sub-average
samples rapidly tends to zero for both simulation and observations (Fig. III.3a). This
is the case at every probe location since the estimated correlation lengths are always
small compared to the number of sub-average samples Nt (Fig. III.3b, c). The stationary
bootstrap method is presented in the following section.

III.2.4.2 Stationary bootstrap principle

As in block bootstrap methods, the stationary bootstrap replicates are generated
by drawing blocks of samples instead of individual samples, which enables taking into
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Figure III.4: Stationary bootstrap algorithm applied to LES average concentration estimation
at tower B (z = 2 m). (a) Sub-averages c̆k over 10 s (color bars) are computed over the 200-s
simulated time series (grey solid line). (b) Three examples of stationary bootstrap replicates
generated by resampling of blocks of 10-s sub-averages. In this example, the mean expected block
length is 2.5.

account the correlation between neighboring samples. The number of sub-averages in
each block is randomly selected according to a geometrical law, implying that not all
blocks are the same size, as shown in Fig. III.4b. The mean block length ℓ is an input
parameter of the stationary bootstrap algorithm. The bootstrap replicates thus obtained
can then be used to characterize the statistical distribution of the sample mean in the
same way as with the standard bootstrap procedure (Sect. III.2.3). The disadvantage of
stationary bootstrap is that it is very sensitive to the choice of the mean block length as
shown in Fig. III.5. The next section explains how to choose this parameter in concrete
applications.
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III.2.4.3 Stationary bootstrap parameters selection

The stationary bootstrap strongly depends on three parameters: the mean block
length ℓ, the number of bootstrap replicates B, and the original sample size Nt.

Mean block length selection In practice, the choice of ℓ results from a careful trade-
off as using larger blocks reduces the number of samples within each bootstrap replicate:
too few samples often result in internal variability underestimation (Davison and Hinkley
1997; Scheiner and Gurevitch 2001), however, using shorter blocks may also lead to inter-
nal variability underestimation as it implies neglecting sample dependency (Fig. III.5).
In the limit case ℓ = 1, stationary bootstrap is equivalent to the standard bootstrap. In
this study, we define the mean block length as the averaged value of the correlation length
over every probe location, i.e. ℓ = ⟨λ⟩ + 1, as done by Diffenbaugh et al. (2017). This
approach leads to ℓsim = 1.17 and ℓobs = 1.85 for the mean concentration c (Table III.1).

1 2 3 4 5 6
Expected mean block length `

0.08

0.09

0.10

0.11

0.12

〈s
(c

)/
c〉 Observation

Simulation

Figure III.5: Relative standard deviations of the concentration mean over 200 s estimated with
stationary bootstrap and averaged over every probe, for different mean block length ℓ. Results
for observations and simulations are indicated in cyan and magenta, respectively.

Note that a compromise is made since a single value of ℓ is used for the whole vector of
concentration measurements (and its model counterpart), while the probes have different
correlation lengths (Fig. III.3b, c). Indeed, to propagate the internal variability to the
validation scores (see Sect. III.2.4.5), the same stationary bootstrap resampling must be
used for every probe at once in order to preserve the spatial correlations between them.
Otherwise, the variability of the validation metrics would be underestimated because of
error compensation.

Number of bootstrap replicates It is important to use enough bootstrap replicates
to avoid sampling noise in the bootstrap estimates (Eqs. III.6–III.5). Note that the
minimum number of required replicates depends on the target statistical moment from
the estimator µ. Here we are mainly interested in 95% confidence intervals, which require
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larger B than first-order moments (Davison and Hinkley (1997) suggested B ≥ 1 000). A
convergence test showed that B = 5 000 was an appropriate value for the current study
(Sect. III.4.3.1).

Number of sub-average samples The sample size Nt depends on the physical con-
text and also on the statistical moment of the underlying distribution that we aim to
infer. In this study, our objective is to characterize the mean estimator (Eq. III.2), which
does not need as large Nt as the variance estimator or the median estimator (Davison and
Hinkley 1997). However, a too small value for Nt would result in too short confidence
intervals (Davison and Hinkley 1997; Scheiner and Gurevitch 2001) and hence internal
variability underestimation. Since the original samples are sub-averages (Eq. III.1), one
could simply reduce the averaging window δt to increase the number of sub-average sam-
ples Nt. However, it increases the dependency between samples which thus does not bring
additional information on the underlying distribution as shown in Sect. III.4.3.2. In this
study, based on this compromise, we retain sub-averages computed over 10 s, which yields
Nt = 20.

It is possible to increase the number of sub-average samples by increasing the duration
of the simulations to generate more samples to inform on internal variability. We have
compared bootstrap estimates obtained with sub-averages from 200-s, 400-s and 600-s
simulations (Sect. III.4.3.3). Results show that the acquisition of 200 s is enough to assess
the variability of the time-averaged quantities over 200 s. It is therefore not necessary to
run extended LES simulations to properly estimate microscale internal variability for the
considered MUST trial.

III.2.4.4 Application to statistics of interest

In this study, the stationary bootstrap method is used to assess the variability of
the average concentration c but also of the average wind horizontal velocity (in terms
of amplitude uh and direction α). As the richer description of LES provides access
to higher-order statistics beyond mean predictions, the stationary bootstrap method is
also applied to assess the variability of concentration fluctuation c′2 = (c− c)2 and flow
turbulent kinetic energy k = 1

2(u′2
x + u′2

y + u′2
z ). However, the fluctuations of a quantity

over a given averaging period are not equal to the average of its fluctuations over shorter
periods. This implies that the decomposition in Eq. III.1 does not hold for second-order
statistics. To overcome this issue, one can use a bootstrap sample of both the quantity
of interest and its squared value to draw the fluctuation bootstrap distribution:

µ( c′2 )(i) = µ( c2 )(i) −
[
µ( c )(i)

]2
, 1 ≤ i ≤ B, (III.7)

where µ(Y )(i) is the i-th bootstrap sample mean estimator of the quantity Y as defined
in Eq. III.4. Note that the sub-averages used to compute µ(c)(i) and µ(c2)(i) must come
from the same bootstrap resampling of the original sample. The bootstrap samples
of the turbulent kinetic energy estimator are computed similarly. With these samples,
the variability can be described by sample variance (Eq. III.5) or percentile confidence
intervals.
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Table III.1: Mean block lengths ℓ used for stationary bootstrap applied to the average con-
centration c, root mean square concentration crms, amplitude uh and direction α of the mean
horizontal wind vector and turbulent kinetic energy k. Values are determined for both simulated
and observed data.

ℓ(c) ℓ(crms) ℓ(uh) ℓ(α) ℓ(k)

Simulation 1.17 1.17 1.15 1.15 1.15
Observation 1.85 1.85 3.38 3.38 3.38

Table III.1 summarizes the mean block length ℓ used in this work for all these quan-
tities. Block lengths for observations are larger than for simulations because LES quan-
tities are less temporally correlated (as shown in Fig. III.3b, c). In addition, larger
block lengths are obtained for flow-related variables than for concentration, because the
wind measurement samples have relatively more data acquired at high altitudes, where
temporal correlations are expected to be larger.

III.2.4.5 Internal variability propagation to validation metrics

As the main objective of this study is to validate our LES modeling approach, we
also apply bootstrap to infer the distribution of the validation metrics (Sect. III.3). The
validation metrics will therefore be characterized by a range of variability rather than a
scalar value.

We explain here how the bootstrap approach can be applied to any metric f which
quantifies how close two vectors Y 1, Y 2 of time-averaged values are:

f : RN × RN −→ R

(Y 1, Y 2) 7−→ f(Y 1, Y 2).

The two compared vectors are typically prediction and observation values of a given quan-
tity at N different probe locations or two estimates of one field provided by two different
simulations. Replicates of the metric score f(Y 1, Y 2) given the internal variability of Y 1
and Y 2 are computed using two independent set of bootstrap replicates (Eq. III.4) of
these vectors:

µ(f)(i) = f
(

µ(Y 1)(i), µ(Y 2)(i)
)

, 1 ≤ i ≤ B. (III.8)
The bootstrap replicates thus obtained can then be used to infer the whole distribution
of the metrics score under internal variability, as in Sect. III.2.3.
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III.3. Model validation methodology

III.3 Model validation methodology

III.3.1 Wind speed and direction metrics
To assess the ability of the model to quantitatively predict the flow field within and

over the canopy, three metrics based on time-averaged quantities are used to quantify
the difference between model predictions and flow measurements. The hit rate (q) and
the mean absolute error (MAE) evaluate discrepancies for the horizontal flow velocity
uh while the scaled averaged angle (SAA) quantifies the deviations for the horizontal
direction of the flow α:

q = 1
Nobs

Nobs∑
k=1

ξk with ξk =



1 if
∣∣∣ uh

(k)
p − uh

(k)
o

∣∣∣ ≤ AD

1 if

∣∣∣ uh
(k)
p −uh

(k)
o

∣∣∣∣∣∣ uh
(k)
o

∣∣∣ ≤ RD

0 else,

, (III.9)

MAE = ⟨
∣∣∣uhp − uho

∣∣∣ ⟩, (III.10)

SAA = ⟨ uhp |αp − αo| ⟩
⟨ uhp ⟩

, (III.11)

where uho and αo are the observed time-averaged horizontal wind speed and direction,
and uhp and αp are the model colocated predictions. Each element of the Nobs dataset
is indexed by the superscript (k) in Eq. III.9, while the angle brackets ⟨·⟩ indicate the
average over the Nobs elements in Eqs. III.10–III.11. To compute the hit rate (Eq. III.9),
we use the same values of absolute deviation (AD) and relative deviation (RD) as Nagel
et al. (2022), i.e. AD = 1 m s−1 and RD = 0.

The hit rate and SAA metrics have been used in other MUST modeling validation
studies (Santiago et al. 2010; Nagel et al. 2022) and we use in addition the MAE follow-
ing recommendations by Santiago et al. (2010). The perfect scores associated with these
metrics are reported in Table III.2, page 95. Note that for the SAA (Eq. III.11), the wind
directions deviations are normalized by the wind magnitude because i) the wind angle
evaluation becomes ill-posed when velocities are low, and ii) wind directions associated
with the highest velocities are the most important for predicting tracer transport (Cal-
houn et al. 2004).

The metrics in Eqs. III.9–III.11 are evaluated on the full set of WDTC sonic anemome-
ter measurements, which are located on the towers S, T and N as well as on the four
masts V (Sect. II.3.2, page 57). Note that the first anemometer of the tower N down-
stream of the containers (located at z = 4 m) was excluded because of its failure during
the trial. The total number of measurements for LES model validation for flow prediction
is, therefore, Nobs = 13. The accuracy of the wind flow estimates is only assessed for the
horizontal velocity because most of the experimental measurements were provided by 2-D
anemometers.
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III.3.2 Tracer concentration metrics
LES model performance for tracer concentration prediction (in ppm) is evaluated

using the standard statistical metrics for air quality model evaluation (Chang and Hanna
2004), which were also used in previous MUST studies with CFD modeling approaches
(Milliez and Carissimo 2007; Antonioni et al. 2012; Nagel et al. 2022). These metrics
compare the simulated and observed tracer concentrations in terms of fractional bias
(FB), normalized mean square error (NMSE), the fraction of predictions within a factor
of two of observations (FAC2), geometric mean bias (MG), and geometric variance (VG):

FB = ⟨co⟩ − ⟨cp⟩
1
2 ( ⟨co⟩+ ⟨cp⟩ )

, (III.12)

NMSE = ⟨ (co − cp)2 ⟩
⟨co⟩ ⟨cp⟩

, (III.13)

FAC2 = 1
Nobs

Nobs∑
k=1

ξk with ξk =


1 if 0.5 ≤ c(k)

p / c(k)
o ≤ 2,

1 if c(k)
p ≤ ct and c(k)

o ≤ ct,

0 else,
(III.14)

MG = exp ( ⟨ln c̃o⟩ − ⟨ln c̃p⟩ ) , (III.15)

VG = exp
(
⟨ (ln c̃o − ln c̃p)2 ⟩

)
, (III.16)

where co is the observed time-averaged concentration, cp is the simulated counterpart, and
ct is the concentration sensor threshold. The tilde indicates that a threshold is applied
to the concentration, i.e. c̃ = max(c, ct). This concentration transformation suggested
by Chang and Hanna (2004) and also by Schatzmann et al. (2010) avoids issues with
the MG and VG metrics, which are not defined for a zero-value concentration and are
extremely sensitive to very low values.

FAC2, MG and FB measure the systematic bias in the model predictions; NMSE and
VG measure the mean relative scatter of the data. The scores that a perfect model would
obtain are reported in Table III.3, page 101. FB and NMSE are more sensitive to errors
on high concentrations, while MG and VG emphasize the ability of the model to predict
low concentrations.

For this analysis, the observation data are made of the tracer concentration measure-
ments at the 40 DPID sensors located at z = 1.6 m throughout the array of containers, at
the 8 DPID sensors mounted on the tower T as well as at the 24 UVIC sensors mounted
on the towers A, B, C and D (Fig. II.3, page 59). The threshold ct used to estimate
the MG and VG metrics are taken as the instrument detection threshold (0.04 ppm for
DPIDs and 0.01 ppm for UVICs as detailed in Sect. II.3.2, page 57). The sensors that
measure a time-averaged concentration below this threshold (over the [300; 500 s] analysis
period) are excluded from the metrics estimations. This implies that only Nobs = 47 out
of 72 concentration sensor measurements are used in the validation process in this study.

90



III.3. Model validation methodology

III.3.3 Comparing predicted fields
In this thesis, we not only seek to validate the model against observations, but also

to compare different simulations, whether for sensitivity analysis (Sect III.5.1), or for
reduced-order model validation (Chapter IV), or data assimilation system evaluation
(Chapter V). To do so, we use the metrics previously introduced for the wind flow
(Sect. III.3.1) and the tracer concentration (Sect. III.3.2). Indeed, these metrics can
be used to assess the differences between two discretized fields by replacing the vectors
(yo, yp) of observed and predicted values by two predicted fields (y(1)

p , y(2)
p ) in Eqs. III.9–

III.16. Note that the measurement threshold used in Eqs. III.14–III.16 is not relevant for
comparing two simulation predictions, and we replace it with a concentration threshold
of ct = 10−4 ppm, which represents the minimal resolution in the numerical predictions.

Since we use an unstructured mesh to discretize the computational domain, the nodes
at which the fields are expressed do not all occupy the same volume. And these volume
differences can be very significant (see examples in Table A.1, page 232). For spatial
averaging, we therefore weight by the dual volume of the nodes ω(x):

⟨f⟩ =
∑N

k=1 ω(xk)f(xk)∑N
k=1 ω(xk)

. (III.17)

Note that spatial averaging is involved in all the metrics presented so far (Eqs. III.9–
III.16).

For this specific purpose of field comparison, we also use the Figure of Merit in Space
(FMS) from Chang and Hanna (2004):

FMS(cℓ) = Ω∩(cℓ)
Ω∪(cℓ)

, (III.18)

where Ω∩(cℓ) denotes the volume, in m3, of the domain in which both c(1)
p and c(2)

p are
over a user-specified tracer value cℓ. In the same way Ω∪(cℓ) corresponds to the volume
where c(1)

p ≥ cℓ or c(2)
p ≥ cℓ. This metric quantifies how close the two plume shapes

are relative to one specific concentration level. Note that we do not use it for model
validation against observations because the observation network is not sufficiently dense
to perform accurate shape comparisons.
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III.4 LES model validation and microscale internal
variability quantification

In this section, the LES model presented in Chapter II is validated against MUST
field trial 2681829 measurements for both microscale wind flow statistics (Sect. III.4.1)
and tracer plume-related quantities for the 200-s analysis period (Sect. III.4.2). The
impact of the internal variability of the ABL on these quantities is quantified using the
stationary bootstrap approach from Sect. III.2.3. The same procedure is applied to both
the experimental measurements and the LES field estimates, only the mean block length
used in the stationary bootstrap differs (see Table III.1). Then we demonstrate the impact
of the estimated internal variability on the model validation.

The number of bootstrap replicates used is B = 5 000; the samples are composed
of Nt = 20 sub-averages over 10 s. Convergence tests and validation of the bootstrap
procedure are given in Sect. III.4.3. For the stationary bootstrap, we use the algorithm
implemented in the Python module Recombinator1.

III.4.1 Validation of microscale meteorology statistics
The accuracy of the LES model is assessed in terms of prediction of mean horizontal

wind velocity uh, direction α, and wind turbulent kinetic energy k. These quantities are
key features for the prediction of the plume dispersion within and above the container
canopy, as they control the tracer advection by the mean flow and the turbulent dispersion
process.

III.4.1.1 Wind flow vertical profiles

Figure III.6 shows the vertical profiles of uh, α and k obtained with LES at tower T
(this tower location is indicated in Fig. II.3, page 59). On the one hand, results show very
good agreement with the measurements of the sonic anemometers for the mean horizontal
velocity and direction. The flow deceleration induced by the urban canopy compared to
the inlet profile (Fig. II.5, page 64) is well reproduced. However, the model slightly
overestimates the flow deviation towards the negative angles, especially at z = 4 m and
8 m. This might be explained by the fact that a container was replaced by a van in
the vicinity of tower T during the field experiment (Biltoft 2001). On the other hand,
the turbulent kinetic energy profile shows that the peak of fluctuations just above the
containers is well estimated, whereas the model underestimates the turbulent kinetic
energy as altitude increases. The reason for this discrepancy is twofold: i) the synthetic
turbulence injection cuts off turbulence length scales larger than the domain scale and
ii) the internal region of the boundary-layer flow is known to be unaffected by the finite
vertical extent of the domain up to 0.2 time the height of the computational domain
(Calaf et al. 2011). In this case, it corresponds to a height of 10 m; above this level,
the vertical turbulent transport and other turbulent statistics start to be affected by the
top boundary layer which imposes zero vertical turbulent transport. An additional test

1See https://pypi.org/project/recombinator/
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Figure III.6: Vertical profiles of (a) mean horizontal wind velocity, (b) mean wind direction,
and (c) turbulent kinetic energy k at the central tower T (Fig. II.3, page 59). Available experi-
mental data are represented by circles, and black solid lines correspond to the LES time-averaged
profiles (two additional realizations of LES estimations over 200 s are also represented as co-
lored dotted lines). Shaded grey areas correspond to the uncertainty induced by LES internal
variability and are estimated by stationary bootstrap (the counterpart for the experimental data
is indicated as error bars).

presented in Sect. A.2 demonstrates that increasing the domain height largely solves this
issue.

Figure III.6 also shows the 95% confidence intervals corresponding to the bootstrap
estimations of the microscale internal variability as profile envelopes for the LES and as
error bars for the observations. It is found that the variability is overall quite low for
the mean horizontal wind velocity and direction. It is more important for the turbulent
kinetic energy but not sufficient to explain the model bias at altitude. Moreover, the LES
model tends to significantly underestimate the internal variability of uh and k compared
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to that observed. This is attributed to the larger turbulent and mesoscale fluctuations
which are not taken into account in the representation of the ABL by the LES model.
This is consistent with the results from Nagel et al. (2022) showing that including the
mesoscale processes improves the prediction of k at these locations.

Two additional independent LES estimations of time-averaged quantities over 200 s
were obtained by extending the original simulation (see cyan and magenta segments in
Fig. III.11, page 105). The resulting vertical profiles are shown as colored dotted lines in
Fig. III.6. The deviations from the baseline estimate (black solid line) illustrate the effect
of internal variability on the time averages. Overall, the estimated envelopes cover well
these independent realizations, which supports the plausibility of the stationary bootstrap
estimates, except for the turbulent kinetic energy just above the canopy (Fig. III.6c).

III.4.1.2 Quantification of wind flow predictions accuracy

In addition to the profiles at tower T (Fig. III.6), we also compare LES predictions
and observations using the wind flow metrics (Sect. III.3.1). Table III.2 presents the
scores obtained over the obstacles (towers S, T and N), within the obstacles (masts V)
and for all sensors at once. For every set, the hit rate is 100%, which means that the
difference between LES estimates and measurements for the wind horizontal velocity is
always less than the absolute deviation AD = 1 m s−1 used in Eq. III.9 by Nagel et al.
(2022). Indeed, the MAE metric shows a limited level of error for the wind velocity.
However, the error is larger for sensors located within the container array, as shown by
the higher MAE in this region, and this is even more pronounced for the SAA metric.
This is due to the proximity of the masts V to the containers (Fig. II.3, page 59), where
there are strong wind direction gradients as explained by Nagel et al. (2022). Still, the
overall accuracy of the LES flow estimations is satisfactory.

By computing two bootstrap samples of each measurement and colocated LES estima-
tion, we can obtain an ensemble of metrics realizations as explained in Sect. III.2.4.5, and
then quantify how uncertain the model validation scores are, given the internal variability
of the system. The resulting standard deviations of the flow validation metrics are given
in Table III.2. Results show that the internal variability has a limited effect on velocities,
with a standard deviation of MAE of approximately 0.1 m s−1. Note that this variability is
however larger than the sonic anemometer accuracy (between 0.01 m s−1 and 0.05 m s−1).
In contrast, the variability is less important for the wind direction. Moreover, the effect
of variability is rather homogeneous over the different datasets, which is coherent with
the vertical distribution of the internal variability envelopes at tower T (Fig. III.6).

III.4.2 Validation of tracer dispersion statistics
III.4.2.1 Mean concentration horizontal and vertical profiles

Model performance is first analyzed in terms of mean concentration horizontal profiles
within the container array in Fig. III.7a, b, c, d. At z = 1.6 m, the model underestimates
tracer concentration along the four DPID sensor sampling lines, which could be due to
a plume elevation overestimation, as discussed later. Still, the shape of the profiles is
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Table III.2: Mean horizontal wind velocity and direction: comparison between the LES model
and the experimental measurements at tower S, T and N, and the sensors at the containers
levels on the masts V (Fig. II.3, page 59). The differences are assessed in terms of hit rate
q, mean absolute error MAE, and scaled averaged angle SAA defined in Sect. III.3.1. The
stationary bootstrap method presented in Sect. III.2.4 is used to estimate standard deviations of
the scores.

q(uh) MAE(uh) (m.s−1) SAA (◦)

Perfect scores 100% 0 0

Scores - above canopy 9/9 = 100% 0.42 2.02
Standard deviation 0% 0.13 0.48

Scores - inside the canopy 4/4 = 100% 0.65 37.60
Standard deviation 0% 0.15 1.39

Global scores 13/13 = 100% 0.49 8.25
Standard deviation 0% 0.11 0.48

rather well reproduced by the model. The decrease in concentration is consistent with
the observations, both in the flow direction (between each line) and in the transverse
direction (on a given line). The plume deviation is also well predicted by the model as
illustrated by the concentration maximum position.

Model performance is then analyzed along the vertical (above the container array) by
comparing the estimated mean concentration vertical profiles with measurements from
towers B, T, C, and D (Fig. III.8a, b, c, d). Overall, the LES predictions are in acceptable
agreement with the observations. The model tends to overestimate the mean concentra-
tion at towers B and C. The same tendency was observed with other LES models by
Camelli et al. (2005) and Nagel et al. (2022) for tower B. The model also underestimates
the mean concentration at tower D due to a lack of lateral spread of the simulated plume
(Fig. III.7a), tower D being far from the plume centerline (Fig. II.3, page 59). In addition,
the predicted maximum concentration is located too high above the canopy, especially
at tower B (if we disregard the highest sensor that is inconsistent with the others). For
tower C, there are not enough sensors at high heights to conclude. This could mean that
the predicted plume rises too much, which would explain the near-ground concentration
underestimation (Fig. III.7a, b, c, d).

Note that there seems to be an inconsistency between the UVIC measurements from
tower C (Fig. III.8c) and those from the fourth line of DPIDs (Fig. III.7d), although they
are arranged on the same transverse line. Indeed, the UVIC sensor at tower C at z = 2 m
measures 0.21 ppm, while the two closest DPID sensors (10 m away) measure 0.54 ppm
and 1.10 ppm. This may also concern other UVIC measurements, explaining why LES
overestimates concentration at towers B and C.
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Figure III.7: Horizontal profiles of average concentration c (a, b, c, d) and concentration
fluctuation intensity i (e, f, g, h) between the containers at z = 1.6 m. The profiles are given
for each line of DPID sensors represented with a distinct color in Fig. II.3, page 59. Circles
correspond to measurements, black solid lines correspond to simulated time-averaged profiles
(two additional realizations of LES estimations over 200 s are also represented as colored dotted
lines). Shaded grey areas correspond to the uncertainty induced by LES internal variability and
are estimated by stationary bootstrap (the counterpart for the experimental data is indicated as
error bars).
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Figure III.8: Vertical profiles of average concentration c (a, b, c, d) and concentration
fluctuation intensity i (e, f, g, h) at towers B, T, C and D, respectively (Fig. II.3, page 59).
Circles correspond to measurements, black solid lines correspond to simulated time-averaged
profiles (two additional realizations of LES estimations over 200 s are also represented as colored
dotted lines). Shaded grey areas correspond to the uncertainty induced by LES internal variability
and are estimated by stationary bootstrap (the counterpart for the experimental data is indicated
as error bars).
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III.4.2.2 Mean concentration internal variability

The internal variability of the mean concentration is shown in Figs. III.7–III.8 with
the 95% confidence intervals estimated by stationary bootstrap. This internal variability
increases with altitude (Fig. III.8a, b, c, d), because, outside the canopy, the flow statistics
are more sensitive to incoming fluctuations from the ABL. LES profile envelopes are
generally consistent with the observed variability (Figs. III.7–III.8). Analysis of the
relative internal variability aggregated over all sensors (Fig. III.5, page 86) confirms that
the LES model can reproduce the observed internal variability overall, with a slight
tendency to underestimate it for instance at tower D (even if the relative variability
s(c)/c is similar to that of the measurements).

Note that the stationary bootstrap estimations of the internal variability look plausible
regarding the two independent LES realizations of 200-s averaged concentration. The
bootstrap profile envelopes globally cover these realizations both inside and above the
canopy (Figs. III.7–III.8). However, one or both realizations can be locally slightly outside
the 95% confidence interval, for example at the concentration peak location (Fig. III.7a)
or at high altitude at tower T (Fig. III.8b). This indicates that the internal variability
is underestimated there, which is likely caused by an insufficient number of independent
sub-average samples Nt, as stated by Davison and Hinkley (1997) and Scheiner and
Gurevitch (2001).

Finally, although significant, the internal variability alone does not explain the mis-
match between LES estimates and vertical tower measurements (Fig. III.8a, b, c, d). The
lack of accuracy comes rather from another source of uncertainty. For instance, Milliez
and Carissimo (2007) explain that the vertical profiles are difficult to estimate accurately
because of their important sensitivity to the wind direction. This sensitivity is exacer-
bated in our case at tower B and to a lesser extent at tower T because both towers are
located near the steepest edge of the plume where concentration gradients are very large
(Fig. III.7a, b, c, d). In these areas, plume position errors have a larger impact on model
accuracy than microscale internal variability. A sensitivity test to a deviation of the inlet
wind direction is described in Sect. III.5.2 and confirms that it can have an important
impact on the estimated vertical concentration profiles (Fig. III.14).

III.4.2.3 Concentration fluctuation intensity

In addition to time-averaged values, LES models provide an explicit temporal reso-
lution of the flow fluctuations. In this section, we propose to further validate the model
by examining its ability to predict resolved concentration fluctuations, which are directly
accessible from LES data. To characterize concentration fluctuations, we use the fluctua-
tion intensity i as Yee and Biltoft (2004). It reads i =

√
c′2/(c + ct), where c′2 = (c− c)2

is the squared resolved fluctuation of the concentration. The concentration threshold
ct, equal to the detection threshold of the sensors, i.e. 0.01ppm for UVICs or 0.04ppm
for DPIDs, is added to the normalization term to avoid ill-posed values for very small
concentrations.

There is a very good agreement between LES estimations and observations of fluc-
tuation intensity. Among the containers, the LES model finely reproduces the observed
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III.4. LES model validation and microscale internal variability quantification

horizontal distributions (Fig. III.7e, f, g, h), including their asymmetry. However, the
fluctuation peak is slightly overestimated for the first line of sensors and lacks horizontal
extent for lines #3 and #4. Moreover, the LES model also appears to be very accurate
for the estimation of vertical fluctuation profiles (Fig. III.8e, f, g, h), except for the T
tower where the model overestimates them but still predicts a consistent profile. By
normalizing the fluctuations, we show that, despite being biased for the mean concentra-
tion vertical profiles at towers B, C and D, the LES model is still able to reproduce a
physically consistent estimation of the concentration second-order statistics.

The internal variability is also estimated for the concentration fluctuation intensity
with the bootstrap samples from Eq. III.7. Figures III.7e, f, g and h show that internal
variability is very large at the location of the peak fluctuation. Overall, the LES-predicted
fluctuation envelopes are in good agreement with the observed variability and the two
independent LES runs. Contrary to the average concentrations, and except for tower
T, the differences between the model and the observations can be attributed to the
internal variability, which is particularly visible for tower D where the fluctuations are
very important.

III.4.2.4 Quantification of dispersion predictions accuracy

In the following, the accuracy of the LES model tracer transport is assessed from a
more synthetic viewpoint. We also illustrate how the internal variability of the tracer
concentration field should be taken into account in this model validation exercise.
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Figure III.9: Scatter plots of simulated versus measured concentration statistics: (a) temporal
mean, (b) fluctuation intensity, (c) normalized 95th percentile at each sensor over the detection
threshold. Each type of sensor is represented with the same color as in Fig. II.3, page 59.
The correlation coefficient ρ is indicated for each statistic. The error bars represent the 95%
confidence intervals estimated with stationary bootstrap and account for the sampling error of
both simulated and measured statistics (error bars are not given for the concentration maximum
as the bootstrap procedure is not suitable for this statistic).
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Figure III.9 shows the scatter plots of the simulated versus measured concentration
main statistics. First, for the averaged concentration, the model estimates are overall
consistent with the observations (Fig. III.9a) with a correlation coefficient ρ = 0.78.
Higher tracer concentration values (above 0.5-1 ppm) are well represented, but the LES
model notably underestimates the lower concentration values. The same trend is found
for the concentration fluctuations (not shown). However, if we remove the bias on the
averages, the LES is able to accurately reproduce the fluctuations with a correlation
coefficient ρ = 0.91 for the concentration fluctuation intensity (Fig. III.9b). Overall, the
model tends to overestimate fluctuation intensities, and the prediction error appears to
be greater for larger fluctuations.

In addition, the microscale internal variability is depicted in the scatter plots of the
averaged concentration (Fig. III.9a) and fluctuation intensity (Fig. III.9b) with the 95%
confidence intervals obtained with bootstrap and depicted as two error bars for each
tracer concentration sensor measurement and colocated LES estimation. The internal
variability is heterogeneous, with locations for which it is negligible and others for which
it is very important. Note that, for most of the points the x-error and y-error bars
have similar lengths, which shows that LES estimates well the variability of predicted
quantities.

As suggested by Chang and Hanna (2005), we assess if the difference between simu-
lated and observed values is significantly different from zero at the 95% confidence inter-
val. This test is performed for each sensor, and we find that, given the internal variability,
the LES model fits only 13% and 45% of the measurements, for the mean concentration
and fluctuation intensity, respectively. Although internal variability is high in areas where
the model lacks precision (i.e. for the low mean concentrations and high fluctuation in-
tensities), it only explains a limited part of the misfit between simulation estimates and
measurements. Therefore most of the model errors, especially for the mean concentra-
tion, must come from other sources as suggested by the sensitivity tests presented in
Sect. III.5.

Besides, Figure III.9c also shows a fine agreement for the 95th percentile of concen-
tration time series over the 200-s analysis period. The LES model appears to well predict
the peak concentrations with a correlation coefficient ρ = 0.86. This demonstrates that
the LES model is able to represent all the complexity of the dispersion phenomenon and
not only mean concentration levels. The effect of internal variability on the peak concen-
trations is not assessed, since it is not accessible with the bootstrap procedure described
in Sect. III.2.3. Nevertheless, the peak concentrations are expected to be subjected to
a strong variability, as they correspond to extreme events in the LES realizations of the
tracer plume. Quantifying it would therefore be an interesting prospect.

The accuracy of the LES mean concentration estimations is finally evaluated using the
standard air quality metrics from Chang and Hanna (2004), following the methodology
presented in Sect. III.3. As in previous works (Milliez and Carissimo 2007; Kumar et al.
2015; Nagel et al. 2022), metrics are computed separately for the DPIDs sensors on the
horizontal z = 1.6 m plane on the one hand, and for the vertical sensors on towers A,
B, C, D and T on the other hand. Metrics are then evaluated for all sensors. Results
gathered in Table III.3 show an overall good agreement with observations, with only the
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Table III.3: Comparison between the LES model mean concentration prediction and experi-
mental measurements assessed in terms of fractional bias (FB), normalized mean square error
(NMSE), fraction of predictions within a factor of two of observations (FAC2), geometric mean
bias (MG), and geometric variance (VG). Definitions of these metrics are given in Sect. III.3.
They are computed for the horizontal sensors (i.e. the DPID sensors located at z = 1.6 m),
the vertical sensors (i.e. towers A, B, C, D and T), and all sensors. Sensors for which the
experimental mean concentration is under the detection threshold are excluded. LES results for
the same trial reported in the literature are given as an indicative basis.

FB NMSE FAC2 MG VG

Perfect scores 0 0 100% 1 1
Acceptable1 [-0.3, 0.3] <4 > 0.5 [0.7 1.3] <1.6

Horizontal 0.51 0.37 13/25 = 52% 2.22 2.62
Vertical -0.15 0.48 14/22 ≈ 64% 1.13 1.68
Global 0.20 0.41 27/47 ≈ 57% 1.62 2.13

Literature (LES)

Nagel et al. (2022) [0.38, 0.40] - [60%, 65%] [0.86, 1.05] [1.90, 2.33]
(3 model configurations)

1 According to Chang and Hanna (2004), note that these guidelines may not be tailored for this
microscale context.

MG and VG out of the range of acceptable scores. This seems to indicate that LES models
have some difficulty in capturing low tracer concentration values. Except for the MG,
the scores obtained are in line with those obtained by Nagel et al. (2022) with another
LES model and for the same trial. They are also comparable to the scores obtained with
RANS models on a larger number of trials including the present trial 2681829 (Milliez
and Carissimo 2007; Donnelly et al. 2009; Kumar et al. 2015).

The LES model appears to be less accurate on the horizontal plane within the canopy
than above. In this region, the concentration is overall underestimated by the model
(FB > 0 and MG > 1), which is seen in the horizontal profiles (Fig III.7a, b, c, d).
Interestingly, the opposite behavior, i.e. better performances on the horizontal than on
the vertical, was observed by Nagel et al. (2022). This may indicate that model structural
uncertainties are important in this study case, and it would be of interest to perform a
multi-model comparison to quantify it.

As explained in Sect. III.2.4.5, the internal variability of the time-averaged concentra-
tions is propagated to the air quality metrics to quantify their uncertainty. The resulting
distributions for each metric are summarized with box-and-whisker plots of the bootstrap
samples (Fig. III.10). It demonstrates that the scores obtained in this model validation
exercise are significantly uncertain. Moreover, it shows that the internal variability of the
concentration affects each metric differently. FB and MG are less sensitive to internal
variability because of error compensation, while wider spreads are found for NMSE and
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Figure III.10: Box plots of the air quality metrics distributions obtained by taking into ac-
count the internal variability of both simulated and observed data using stationary bootstrap.
Point estimations corresponding to the reference and two independent realizations of 200 s sim-
ulation are shown as red squares, cyan circles and magenta triangles. Results are given for
(a) FB, (b) NMSE, (c) FAC2, (d) MG, and (e) VG metrics (Sect. III.3). These metrics are
computed for all tracer concentration sensors over the detection thresholds (blue box), but also
for the subsets of the horizontal probes (i.e. the DPID sensors at z = 1.6 m) and vertical probes
(i.e. towers A, B, C, D and T), respectively represented as green and pink boxes.

VG. This is because NMSE and VG are quadratic metrics and thus measure the dataset
dispersion. Note that FAC2 also shows an important variability as it is a discrete and
nonlinear metric computed over a small number of sensors. The effect of the internal
variability is also higher on the vertical than on the horizontal, which is consistent with
the observed envelopes in Figs. III.7–III.8.

Figure III.10 also shows the validation scores obtained for three independent LES
predictions of time-averaged concentration over 200 s. Despite having exactly identical
model configurations, the discrepancies between each score are not negligible. The boot-
strap estimation of the variability of the metrics, obtained using only the sub-averages
of the first simulation ([60, 260] s), explains quite well this variability as only two out-
liers are not covered by the whiskers (first and third quantiles extended by 1.5 times the
inter-quartile range): one for the horizontal FAC2, and one for the horizontal MG.

In summary, we show that, for microscale dispersion experiments with small acqui-
sition times and/or limited analysis periods, validation scores feature a high range of
variability. It is thus vital to take this variability into account in a model validation
exercise, but also for sensitivity analysis or multi-model comparison, to avoid drawing
insignificant conclusions about the trends in the metrics. The bootstrap procedure based
on sub-average samples presented in Sect. III.2.4 appears well-suited to answer this need.
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III.4.3 Validation of the stationary bootstrap method
In this section, several tests are carried out to assess the convergence and vali-

date the internal variability estimation provided by the stationary bootstrap approach
(Sect. III.2.4) applied to the MUST trial.

III.4.3.1 Convergence with the number of bootstrap replicates

With bootstrap methods, such as the stationary bootstrap, bootstrap replicates of
one original sample are used to compute Monte-Carlo estimates of statistics of estimators
from the original sample. For instance, we estimate in this study variance (Eq. III.5) and
confidence interval of the time averages or fluctuations of physical quantities of interest.
As a Monte-Carlo method, the convergence of the estimated statistics is in O(1/

√
B)

with B the number of bootstrap replicates.
We assess the convergence for the 2.5th and 97.5th percentiles as it requires more

bootstrap replicates than for bias or variance estimation (Davison and Hinkley 1997).
Table III.4 shows the evolution of the 2.5th percentile of the mean concentration at tower
B at z = 2 m and of the model validation metrics evaluated according to the bootstrap
procedure (Eq. III.8) for different values of B. The bootstrap estimations of the 2.5th
percentiles show some variability for very low numbers of bootstrap replicates (between
100 and 500), but then quickly converge for all the considered quantities. The same
analysis was carried out for the 97.5th percentile and gave similar results. We conclude
that B = 5 000 bootstrap samples are more than sufficient to achieve convergence. This
result is in line with the literature, which recommends between 1 000 and 10 000 replicates
(Davison and Hinkley 1997; Chang and Hanna 2005).

Table III.4: Values of 2.5th percentiles evaluated with stationary bootstrap for different num-
bers of replicates B. Estimations are given for one example of simulated and observed mean
concentration (at tower B at z = 2 m), as well as for the air quality metrics (Sect. III.3.2) and
flow validation metrics (Sect. III.3.1)

B 100 500 1 000 5 000 10 000

cobs (ppm) 1.70 1.70 1.72 1.71 1.70
csim (ppm) 1.07 1.05 1.02 1.04 1.04

FB 0.13 0.14 0.14 0.14 0.13
NMSE 0.33 0.32 0.33 0.32 0.32
FAC2 0.49 0.49 0.49 0.49 0.49
MG 1.48 1.48 1.47 1.47 1.47
VG 1.73 1.76 1.77 1.77 1.77

MAE (m s−1) 0.37 0.35 0.35 0.34 0.35
SAA (°) 7.78 7.59 7.69 7.65 7.63
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Table III.5: Values of 2.5th percentiles evaluated with stationary bootstrap for different sub-
averaging period δt. Estimations are given for one example of simulated and observed mean
concentration (at tower B at z = 2 m), as well as for the air quality metrics (Sect. III.3.2)

2.5th percentile δt = 10 s δt = 5 s

cobs (ppm) 1.71 1.63
csim (ppm) 1.04 1.04

FB 0.14 0.13
NMSE 0.32 0.32
FAC2 0.49 0.49
MG 1.47 1.48
VG 1.77 1.80

III.4.3.2 Effect of the sub-averaging period

Since both simulated and measured time series are well sampled in time, it is possible
to change the sub-averaging period δt to adjust the number of sub-average samples Nt

(Eq. III.1). To assess the effect of the sub-averaging period on the internal variability
estimation, the estimated percentiles obtained with a stationary bootstrap of sub-averages
over δt = 10 s and δt = 5 s are compared. By reducing the sub-averaging period, the
samples are getting more dependent. It is therefore mandatory to adapt the mean block
length parameter ℓ of the stationary bootstrap method. For δt = 5 s, it results to new
values of ℓsim = 1.38 and ℓobs = 2.62 for the time-averaged concentrations. This is
consistent since it means that, for more dependent data, the blocks should be larger
than the ones used for δt = 10 s (Table III.1, page 88). Table III.5 shows the 2.5th
percentile estimates for the main quantities of interest for the two different values of δt.
Results indicate that changing the sub-averaging period has a very limited impact on
the stationary bootstrap estimations. This is because changing the sub-averaging period
only changes the division of the original sample (Eq. III.1) and so does not provide any
additional information on the underlying distribution of the time-averaged quantities.

III.4.3.3 Convergence with the number of sub-average samples

As mentioned in Sect. III.2.3, it is essential to have a sufficient number of sub-average
samples Nt in the original sample. In particular, too few samples may result in inter-
nal variability underestimation. To increase Nt, the LES simulation acquisition time is
increased from 200 s to 400 s, and then 600 s (Fig. III.11). With δt = 10 s the resulting
number of sub-averages is 40, and 60 respectively, against 20 for the reference sample. In
any case, the bootstrap replicates are obtained by resampling only 20 sub-averages over
the Nt available, even if Nt = 60. Indeed, the objective is still to quantify the variability
over the 200-s analysis period and not over 600 s. Two additional realizations of 200-s
averages (in cyan and magenta in Fig. III.11) are used for validation purposes.

Figure. III.12 shows the effect of the number of sub-average samples on the 95%
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Figure III.11: Time series of tracer concentration at tower B at z = 2 m estimated by
LES. Colored segments correspond to the time windows used to validate the bootstrap estimates,
namely: the reference sample ([60; 260 s]) in orange; validation samples ([60; 460 s], [60; 660 s])
in green and red; and test samples ([660; 860 s], [860; 1060 s]) in cyan and magenta.

confidence intervals estimated by the stationary bootstrap for the vertical profiles of
mean concentration at different towers. Small differences are found at tower D where
confidence intervals obtained with Nt = 20 are larger (Fig. III.12d), and at tower T in
altitude where the centers of the confidence intervals are shifted when increasing Nt which
results in better coverage of the independent test realizations (Fig. III.12b). Overall, the
stationary bootstrap has converged with Nt = 20 since providing additional sub-averages
does not change the envelopes much. The convergence with the number of samples was
also verified for wind velocity magnitude, direction and turbulent kinetic energy.

The distributions of the air quality metrics estimated by stationary bootstrap with
resampling of 20 sub-averages among Nt =20, 40 and 60 are shown in Fig. III.13. The
bootstrap ensemble averages slightly change because the time-averaged quantities over
200, 400 and 600 s are different. Nevertheless, increasing the number of samples for
stationary bootstrap gives similar estimations of the metrics dispersion. For FAC2, MG
and VG metrics, which are nonlinear, the tails of the distributions seem more dependent
on the number of samples. As the orders of magnitude of the three estimates are overall
consistent with each other, we conclude that Nt = 20 samples of sub-averages are sufficient
for the stationary bootstrap method to converge. This implies that it is not required to
run longer simulations to capture internal variability.
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Figure III.12: Vertical profiles of the 2.5th, and 97.5th percentiles of average concentration
c (ppm) (a, b, c, d) at towers B, T, C and D, respectively (Fig. II.3, page 59). The confidence
intervals are estimated with stationary bootstrap for the LES simulations with resampling of
20 sub-averages among 20, 40 and 60, in orange, green and red, respectively. Two additional
realizations of LES estimations over 200 s are also represented as colored dotted lines.
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Figure III.13: Box plots of the air quality metrics distributions obtained with stationary
bootstrap with resampling of 20 sub-averages among 20, 40 and 60, in orange, green and red,
respectively. Point estimations corresponding to the reference and two independent realizations
of 200-s simulation are represented as orange squares, cyan circles and magenta triangles re-
spectively. Results are given for (a) FB, (b) NMSE, (c) FAC2, (d) MG, and (e) VG metrics
(Sect. III.3.2).
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III.5 LES model sensitivity to the main sources of
uncertainty

In this section, we investigate how the various uncertainties associated with the LES
model might influence its predictions. This is primordial to answer the general problem of
this thesis of quantifying and reducing microscale LES dispersion prediction uncertainty.
Moreover, it allows us to identify which uncertain parameters have the most impact on
the model, in order to target them in the data assimilation system (Chapter V). Among
the different uncertainties at stakes (Sect. I.2.2, page 27), we focus on:

i) the uncertainty related to the boundary condition parameters and in particular the
one that accounts for the large-scale atmospheric forcing (Sect. III.5.2),

ii) the solver structural uncertainties linked to the subgrid-scale models and numerical
scheme used (Sect. III.5.2).

The uncertainties related to the representation of the source and of the urban canopy
are not considered in this study. Section III.5.1 presents the simple methodology used
to assess the model sensitivities. These sensitivities are compared to the model inter-
nal variability, previously quantified in Sect. III.4, to conclude which sensitivities are
significant.

III.5.1 One-at-a-time sensitivity analysis methodology
To find out which parameters have the most impact on the LES model mean concentra-

tion estimation, a One-At-a-Time (OAT) sensitivity analysis (Hamby 1995) is performed.
This basic method consists of perturbing one-by-one each parameter of the model around
its reference value while leaving the other parameters unchanged. The effect of each
perturbation is assessed by comparing the estimated profiles of wind velocity and tracer
concentration statistics with the baseline prediction. The discrepancies are quantified
using the metrics introduced in Sect. III.3.3, in order to compare the various sensitivities.
Using different metrics enables the detection of various effects on the mean concentra-
tion field: for example influence on the shape of the plume with FMS scores, or just on
the high concentration with NMSE. In addition, the metrics are computed on bootstrap
replicates of the fields to take into account the internal variability in the comparison, as
explained in Sect. III.2.4.5.

We chose the OAT approach to limit the computational cost of the sensitivity analysis,
as it requires only one model integration per parameter considered in addition to the
baseline estimate. The simplicity of this method has two main drawbacks: first, the model
sensitivities are evaluated locally around the reference parameters, second, this approach
does not allow quantifying the combined influence of several parameters (Saltelli and
Annoni 2010). Nevertheless, this approach allows us to quickly identify which uncertain
parameters have no significant effect on the model predictions. It can thus be seen as
a preliminary step towards a more in-depth but costly sensitivity analysis focused on
the main model sensitivities. For example, a detailed sensitivity analysis of the model
response to its two most impactful parameters using the Saltelli algorithm (Saltelli et al.
2010) is presented in Appendix. B.2, page 242.
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III.5.2 Sensitivity to meteorological boundary conditions pa-
rameters

Microscale CFD dispersion models are known to be highly sensitive to meteorological
boundary condition parameters (García-Sánchez et al. 2014; Lucas et al. 2016; Wise
et al. 2018). Moreover, these parameters are often uncertain because of the internal
variability of the ABL but also the limited amount of observation that can be used to
determine representative boundary conditions for the model (Schatzmann et al. 2010;
Pimont et al. 2017). In this study, we focus on the sensitivity of LES model prediction
to four boundary condition parameters of the LES model: the mean wind direction
αinlet, the friction velocity u∗, the aerodynamic roughness length z0, and the atmospheric
fluctuations scaling factor λR. A summary of where these parameters come into play and
of the arbitrary perturbations tested in the OAT sensitivity analysis is given in Table III.6.

Table III.6: LES model boundary condition parameters perturbations used for the OAT sen-
sitivity analysis. The first three lines summarize the equations in which these parameters are
involved.

αinlet u∗ z0 λR

Mean inlet wind profile (Eqs. II.17–II.18) ✓ ✓ ✓ ✗

Turbulence injection (Eq. II.22) ✓ ✓ ✓ ✓

Ground wall law (Eq. II.19) ✗ ✗ ✓ ✗

Perturbation -5° +25% +25% +25%
Reference value -41 ° 0.73 m s−1 0.045 m 1.0

Test value -46 ° 0.91 m s−1 0.056 m 1.25

The purpose of the Reynolds stress tensor scaling parameter λR defined in Eq. II.23,
page 72 is to be able to represent situations in which the incident ABL, is in a non-
equilibrium state. Indeed, it can happen that the ABL is not in equilibrium due to
obstacles that have not been taken into account, or due to large-scale fluctuations. Mean-
while, the precursor simulation used to estimate the injected fluctuations only represents
the fully-developed ABL over the rough ground surrounding the area of interest, as ex-
plained in Sect. II.4.3, page 64. Note that since the imposed fluctuations come from a
precursor simulation, they also depend on the other perturbed parameters (Table III.6).

Figure III.14 shows the effect of the -5° wind direction perturbation on the vertical
profiles of mean concentration at different locations in the canopy. It appears that the
inlet wind direction deviation significantly affects the mean concentration prediction by
causing the plume centerline to deviate. Note that with this clockwise deviation of
the wind direction, the vertical profiles at towers B, C and D are much closer to the
observations. This tends to support our hypothesis that the lack of accuracy of the
model could come from uncertainty in the wind direction, and could thus be improved
using data assimilation to reduce the uncertainty in the wind direction. However, the
-5° wind direction perturbation worsens the mean concentration prediction at tower T,
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Figure III.14: Vertical profiles of average concentration c (ppm) (a, b, c, d) at towers B,
T, C and D, respectively. The baseline simulation predictions (in blue) are compared with the
predictions obtained with a deviation of ∆αinlet = −5 ◦ in the incoming wind direction (in red).
Colored circles correspond to observations. Internal variability uncertainty is represented with
the [2.5th, 97.5th] percentile intervals estimated by stationary bootstrap as shaded blue areas for
the baseline simulation and as error bars for the observations.

indicating that other forms of error lead to inconsistent predicted vertical profiles.
Figure III.15 shows the effect of the three other boundary conditions perturbations

(see Table III.6) on the wind velocity mean amplitude and horizontal turbulent kinetic
energy at tower S. The 25% increase in friction velocity causes the same relative increase
in both the mean wind magnitude and horizontal turbulent kinetic energy, which is co-
herent with the inlet wind profile (Eq. II.17, page 63), and the Reynolds stress tensor
rescaling (Eq. IV.39). In contrast, the same relative increase of the aerodynamic rough-
ness length z0 just slightly slows down the wind velocity and does not affect the turbulent
kinetic energy. This is because it is the logarithm of z0 that is involved in the velocity
profile (Eq. II.17, page 63). We could have tested larger perturbations on z0 but the
currently tested perturbation (0.016 m) corresponds to three times the roughness uncer-
tainty determined by Yee and Biltoft (2004) for the MUST experimental site. For the
perturbation of the fluctuations, we wind that the horizontal turbulent kinetic at tower
S is significantly lower than the perturbed fluctuation profile imposed and is close to
the level obtained in the baseline simulation. This is because when developing through
the domain, the injected turbulent kinetic energy profile tends to return over a rather
short distance to the equilibrium levels, as shown by the free-field simulation presented
in Sect. II.5, page 70. Regarding tracer concentration (results not shown here), we verify
that the mean concentration is inversely proportional to the friction velocity, as predicted
by the similarity theory (Sect. I.1.2.4, page 19).
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Figure III.15: Vertical profiles of mean horizontal velocity (a) and horizontal turbulent kinetic
energy (b) at tower S. Results are given for the baseline simulation (in blue), and for simulation
with perturbed friction velocity (dashed green line), ground roughness (red solid line) and rescal-
ing of the Reynolds stress tensor (black dotted line). Perturbations are given in Table III.6.
Internal variability uncertainty is represented with the [2.5th, 97.5th] percentile intervals esti-
mated by stationary bootstrap as shaded blue areas for the baseline simulation.

In conclusion, the sensitivities of the mean concentration field to boundary conditions
parameters are quantified and compared using the air quality metrics (Fig. III.16). Re-
sults show that the inlet wind direction αinlet and the friction velocity u∗ are the two
most influential boundary condition parameters. The wind direction strongly influences
the plume shape (Fig. III.16c, d), as well as both high and low concentrations (Fig. III.16b,
f). Friction velocity introduces a mean bias to the model as concentrations decrease as
friction velocity increases (Fig III.16a, e). On the other hand, we find that perturbations
of the aerodynamic roughness length z0 and of the inlet velocity fluctuations using λR
have a much smaller effect on the mean concentration field. In particular, the scores ob-
tained are not significantly larger than those estimated for the internal variability alone
(Fig. III.16). In conclusion, for this study, the boundary condition parameters that are
most important to take into account for the construction of the reduced model are αinlet

and u∗.

111



Chapter III. Robust model validation under uncertainty

∆αinlet ∆u∗ ∆z0 λR

−0.2

0.0

0.2

F
B

(a)

∆αinlet ∆u∗ ∆z0 λR

0.0

2.5

5.0

7.5

N
M

S
E

(b)

∆αinlet ∆u∗ ∆z0 λR

0.6

0.8

1.0

F
M

S
(1

p
p

m
)

(c)

∆αinlet ∆u∗ ∆z0 λR

0.6

0.8

1.0

F
M

S
(0

.0
1

p
p

m
)

(d)

∆αinlet ∆u∗ ∆z0 λR

0.8

1.0

1.2
M

G
(e)

Perfect score

Internal variability mean error

Internal variability spread ([2.5th, 97.5th] percentiles)

∆αinlet
∆u∗

∆z0

λR

∆αinlet ∆u∗ ∆z0 λR

2

4

6

V
G

(f)

Figure III.16: Box plots of the mean concentration field sensitivities to the boundary con-
ditions parameters. Impacts of independent perturbations of the inlet wind direction ∆αinlet,
friction velocity ∆u∗, aerodynamic roughness length z0 and inlet Reynolds stress tensor ∆R
on the mean concentration are assessed using the metrics defined in Sect. III.3.3: (a) FB,
(b) NMSE, (c) FMS(1 ppm), (d) FMS(0.01 ppm), (e) MG, and (f) VG. Perturbations are given
in Table III.6. The perfect scores associated with each metric are represented as horizontal green
lines. The variance of the metrics induced by the microscale internal variability is estimated
from bootstrap replicates of the mean concentration fields (Sect. III.2.4.5) and is represented as
boxes-and-whiskers. The levels of error solely due to internal variability, also estimated using
stationary bootstrap, are shown as black dashed lines, alongside the associated 95% confidence
interval as grey shaded areas.

III.5.3 Sensitivity to modeling choices

The LES predictions are also subject to structural uncertainties, i.e. uncertainties
inherent to the solver code and the underlying modeling assumptions. In this section,
OAT sensitivity tests are carried out to assess the effect of the choices of the subgrid-scale
models and of the numerical scheme on model predictions.

We perform one sensitivity test for the numerical scheme by using the third-order
in space and time, two-step Taylor Galerkin (TTGC) finite-element scheme (Colin and
Rudgyard 2000) instead of the second-order Law-Wendroff (LW) finite-volume centered
scheme (Schönfeld and Rudgyard 1999). Another test illustrates the differences induced
by a change in the subgrid-scale model by using the dynamic Smagorinsky model (Ger-
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mano et al. 1991) instead of the WALE model from Nicoud and Ducros (1999). These
subgrid-scale models are defined in Sect. II.2.3, page 52. Two additional simulations
assess the effect of the turbulent Schmidt number St

c, which controls the subgrid-scale
tracer diffusive flux (Eq. II.9, page 54), with tested values close to the limits of the range
of optimum value St

c ∈ {0.2, 1.3} in RANS according to Tominaga and Stathopoulos
(2007). Table III.7 summarizes the four sensitivity tests.

Table III.7: OAT sensitivity tests performed to assess the structural uncertainties associated
with the LES model presented in Chapter II.

Numerical scheme SGS model St
c

Reference LW (2nd order) WALE 0.6
Test TTGC (3rd order) Dynamic Smagorinsky {0.2, 1.0}

Overall, these sensitivity tests show a very limited impact of the modeling choices on
the main predictions of the model. The only significant effect is found for the numerical
scheme as, with TTGC, the estimated mean flow velocity globally decreases which in-
creases the predicted levels of concentration (not shown here). On the other hand, there
is no clear tendency emerging from the test on the subgrid-scale model as most of the
differences are comparable to the internal variability of the model. Note that more signif-
icant differences were found near the obstacles, with changes in the wind flow patterns.
However, the LES model is under-resolved near the wall (see Sect. II.4.1, 61) and there
are no observations in these locations to be conclusive. In addition, the turbulent Schmit
number effects are totally negligible when compared to internal variability (not shown
here).

Figure III.17 illustrates the effect of the modeling choices on the mean concentration
field using the air quality metrics presented in Sect. III.3.3. This confirms the qualitative
analysis of the concentration profiles. Indeed, the numerical scheme has a small impact
on the mean concentration with an overall tendency to increase the concentration in the
domain (MG < 1). Regarding the effects of the subgrid-scale model and the turbulent
Schmidt number, they do not exceed the level of errors associated with internal variability
alone. Note that only the comparison between Sct = 1.0 and the reference value of 0.6 is
illustrated in Figure III.17, but identical conclusions are made for the test with Sct = 0.2.
Figure III.17 also compares the model sensitivities to structural uncertainties with the
model sensitivities to boundary condition uncertainties. It clearly shows that boundary
condition uncertainties have a predominant effect on the LES model predictions: espe-
cially the inlet wind direction and the friction velocity. This is the important message of
this section, and it is consistent with the literature which states that boundary condition
uncertainties (and geometrical differences) dominate uncertainties related to turbulence
modeling when reproducing field experiments (Neophytou et al. 2011; García-Sanchez
et al. 2018; Dauxois et al. 2021).
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Figure III.17: Box plots of the main sensitivities of the mean concentration field estimated by
the LES model. Yellow boxes, on the left, correspond to the effects of boundary condition param-
eters (Table III.6). Blue boxes correspond to the effects of the structural modeling uncertainties
(Table III.7). These effects are assessed using various metrics: (a) NMSE, (b) FMS(1 ppm),
and (c) MG. Perfect scores associated with each metric are represented as horizontal green
lines. Metric variance induced by the microscale internal variability of the ABL is estimated
from bootstrap replicates of the mean concentration fields (Sect. III.2.4.5) and is represented as
boxes and whiskers. The level of errors solely due to internal variability, also estimated using
stationary bootstrap, are shown as black dashed lines, alongside the associated 95% confidence
interval as grey zones.
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III.6 Conclusion
Summary In this chapter we have validated the LES model of the neutral MUST
trial 2681829 presented in Chapter II. This validation is assessed robustly by taking into
account the main sources of uncertainty involved in microscale atmospheric dispersion in
urban environments. Particular attention is paid to: i) the irreducible uncertainty linked
to the microscale internal variability of the ABL, ii) the effect of large-scale atmospheric
forcing uncertainty; and iii) structural modeling errors. We show that these uncertainties
significantly affect LES predictions and can explain part of the discrepancies between the
model and observations.

LES model validation Despite these uncertainties, the LES model is in acceptable
agreement with field measurements. Wind flow statistics predictions are very accurate,
except near the top of the computational domain, where the LES model underestimates
the turbulent kinetic energy. For the tracer mean concentration, we find some inconsis-
tencies in the model predictions compared to the field measurements. Nevertheless, the
scores obtained with the standard air quality metrics are in line with other LES studies
reported in the literature. In addition, we find that the LES model is very accurate at
predicting relative fluctuations and concentration peaks.

Internal variability quantification The main originality of this work is to provide a
way to quantify the effect of the microscale internal variability on wind flow and pollutant
concentration. For this purpose, we adopt a bootstrap approach based on sub-averages
resampling and implement the stationary bootstrap algorithm from Politis and Romano
(1994) to take into account the dependency between sub-averages. In the context of
the studied MUST field trial, we show that: i) field measurements of wind flow and
tracer dispersion are significantly affected by internal variability, ii) the LES model re-
produces very well the observed variability, despite the idealized representation of the
inflow (stationary flow with synthetic turbulence). As a result, internal variability leads
to significant uncertainty in the scores of the metrics used to validate the model. To
avoid misleading analysis, we therefore advise switching from point-wise validation to
probabilistic validation to account for this internal variability. In addition, we demon-
strate both the convergence and plausibility of the bootstrap estimates, which indicate
that it is not necessary to perform longer simulations to capture the microscale internal
variability involved. This is a significant advantage of the proposed approach, given the
computational cost of the LES model.

Sensitivity analysis We find that the differences between observations and LES es-
timates cannot be explained by internal variability alone, implying that other forms of
error must affect the LES model. We therefore carry out model sensitivity tests to as-
sess the effect of uncertainty on boundary condition parameters (in particular large-scale
atmospheric forcing and ground wall law parameters), and modeling choices (numerical
scheme and subgrid-scale model). Results show that LES predictions are significantly
more sensitive to meteorological boundary conditions perturbations than to structural
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modeling choices, which is in line with the literature (Dauxois et al. 2021). The compar-
ison with the error solely due to internal variability demonstrates that two parameters
have a predominant effect on the model mean concentration predictions: the inlet wind
direction and the friction velocity.

Link with thesis objective In this chapter, we have met one of the main objectives
of the thesis by assessing the main sources of uncertainty affecting the accuracy of the
model validated in this chapter. In addition, we have identified the uncertain parameters
that will be most interesting to target with the data assimilation system designed in this
thesis to improve the accuracy of the LES model. Finally, the internal variability quan-
tification approach proposed in this chapter provides a valuable methodology for guiding
the construction of the reduced-order model (Chapter IV) and quantifying irreducible
errors within the data assimilation (Chapter V).
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Chapter IV

Reduced-order modeling based on
LES statistical predictions

This chapter covers the construction and validation of a reduced-order model
to efficiently emulate the response surface of the LES model of the MUST field ex-
periment presented in Chapter II. In particular, we focus on the efficient prediction
of the mean concentration field for varying meteorological condition parameters.

After posing the model reduction problem in the opening section, we present the
theoretical principles of the data-driven reduced-order modeling approach adopted
in this thesis. This approach, called POD–GPRs, combines proper orthogonal de-
composition (POD) to reduce the dimension of the fields to be emulated, and Gaus-
sian process regressors (GPRs) to predict the reduced-basis projected components
for varying meteorological boundary condition parameters. We also derive in this
section the equations for estimating the uncertainty of the POD–GPRs predictions
from the posterior GPR distributions.

Then, the model reduction validation methodology is briefly presented as well
as another reduced-order model: the nearest neighbor. This trivial reduced-order
model provides a benchmark for assessing the added value of the more sophisticated
POD–GPRs approach.

Another section is devoted to the generation of the training base of 200 LES
field predictions, describing how the input parameter space is sampled and how the
LES model is adapted to compute such a large ensemble.

The last part of the chapter details the efforts made to apply the POD–GPRs
approach to the MUST case study. In particular, we show that it requires special
attention in the preprocessing of the training base to deal with the wide range of
scales involved. We also propose a methodology to select the number of POD–
GPRs reduced-basis modes in order to avoid overfitting noisy structures linked to
atmospheric internal variability. Finally, we present a thorough validation of the
POD–GPRs reduced-order model in order to assess its efficiency, accuracy and
sensitivity to the size of the training database.
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IV.1 Introduction
One of the main problems with LES dispersion models is their high computational cost

as outlined in Sect. I.2.1, page 26. This burden makes LES unsuitable for applications
requiring a large ensemble of fast predictions and thereby represents a major obstacle to
overcome in order to answer the problematic of the thesis of quantifying and reducing
uncertainty in microscale LES dispersion models. The general objective of this chapter is
to overcome this computational cost limitation by building a data-driven reduced-order
model of the LES model of the MUST experiment presented in Chapter II. In particular,
we aim at efficiently emulating the LES mean concentration response surface for varying
boundary condition parameters, in order to use this reduced-order model as a surrogate
for the LES model in the data assimilation system designed in Sect. I.3.3 and implemented
in Chapter V.

Data-driven reduced-order modeling techniques have emerged as a promising solution
to overcome the computational cost limitation of CFD models, as shown in the literature
overview presented in Sect. I.3.1. In an off-line phase, this type of reduced-order model
learns the response surface of the costly model for varying input parameters from a
database of pre-computed simulations. Once trained, reduced-order models can make new
online predictions at almost no computational cost and with very little loss of accuracy.

Among the various data-driven model reduction approaches presented in Sect. I.3.1,
we adopt an approach based on the combination of proper orthogonal decomposition
(POD) to reduce the field dimension, and Gaussian process regressors (GPRs) to estimate
the reduced-basis projected components for new input parameters. This reduced-order
modeling approach is referred to as POD–GPRs in the following. It has been used
by Nony (2023) to emulate LES predictions of a canonical dispersion case (i.e. two-
dimensional boundary-layer flow interacting with a surface-mounted obstacle) with a
very limited error and for a large range of uncertain input parameters including the
operating wind condition. One of the main challenges of this chapter is to adapt the
POD–GPRs to the challenges arising for the more realistic dispersion case which is the
MUST field experiment. These challenges notably include the considerable increase in
dimension, the more complex interactions between flow and obstacles, and the wider
ranges of concentration scales involved (the test case studied by Nony (2023) can be seen
as a focus on the near-source region).

In the following, we define more precisely the model reduction problem as well as the
input and output spaces considered.
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IV.1.1 Model reduction problem statement
The goal of this chapter is to build an efficient reduced-order model that emulates as

closely as possible the LES model response surface relative to the input parameters1 θ,
this means finding a function:

MROM : Ωθ −→ RN ,

θ 7−→ yROM,

(IV.1)

that minimizes
∫

Ωθ

∥yROM(θ)− yLES(θ)∥ dθ, where yLES ∈ RN is the field to emulate,
discretized on a grid of N nodes, yROM is its counterpart predicted by the reduced-order
model, and Ωθ ⊂ Rd is the input parameter space of dimension d.

In the data-driven method retained for this work, this function is obtained by learning
from a database of precomputed LES predictions

{
yLES(θ(i))

}Ntrain

i=1
called the train set.

A fundamental good practice is to set aside part of the database, the test set, and not
use it to build the reduced-order models. The generalization error of the reduced-order
model can be then evaluated on these test samples.

In this chapter, we focus on the emulation of the mean tracer concentration field,
meaning that y = c. This choice is motivated by the fact that mean concentration is:
i) the main quantity of interest in dispersion studies; and ii) the observational data we
want to use in the data assimilation system built in Chapter V. However, the chosen
reduced-order modeling approach can be used to emulate any field predicted by the LES
model, as shown in Appendix. B. The choice of emulating mean statistics represents a
first step in the proof-of-concept of the reduced-cost assimilation system designed in this
thesis. Taking into account the temporal dimension is an important prospect, but greatly
complicates the task of model reduction and is outside the scope of this thesis.

As explained in Chapter III, to prevent time averages from being affected by the
internal variability of the ABL, a very long simulation time should be used. Nevertheless,
we decided to limit simulation duration to 200-s of steady state, i.e. the same duration
as the analysis period defined by Yee and Biltoft (2004). This limited simulation time
allows us to greatly reduce the computational cost of the LES ensemble. Moreover,
this choice is more in line with the perspective of using the reduced-order model in a
data assimilation context where measurements are assimilated sequentially and therefore
defined over restricted time windows. Taking into account the aleatory uncertainty related
to the internal variability of the ABL in the construction of the reduced-order model and
its predictions represents one of the main challenges of this chapter.

IV.1.2 Choice of the reduced-order model input parameters
To be used in a data assimilation system, the reduced-order model must accurately

reproduce the LES response surface to the uncertain physical parameters involved. An
1Note that the input parameters vector θ should not be confused with potential temperature, which

is denoted θ in Chapter I by convention in meteorology, but is not used in the rest of the thesis.
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overview of the main sources of uncertainty affecting microscale CFD dispersion models
is given in Sect. I.2.2, page 27. Concerning pollutant source parameters, Nony (2023)
demonstrates that addressing uncertainties in source placement presents a strong chal-
lenge for model reduction, which requires a large training dataset. Because of the high
computational cost of the LES model used in this thesis (20 000 core hours per predic-
tion), we decided to focus on meteorological boundary conditions and not consider source
parameters.

As shown by the one-at-a-time sensitivity analysis presented in Sect. III.5.2, page 109,
the meteorological boundary condition parameters to which our model is most sensitive
are the inlet wind direction αinlet and friction velocity u∗. In this study, we therefore
consider only two parameters:

θ = (αinlet, u∗)T , (IV.2)
to define the input space of the reduced-order model.

We remind that this thesis is limited to the study of pollutant dispersion under neutral
thermal stratification conditions. The extension of the reduced-order modeling approach
developed in this chapter to varying thermal stratification conditions is a direct and
important prospect since i) the pollutant plume is significantly affected by the thermal
stratification of the atmosphere as shown in Fig. I.6, page 20; ii) the exact thermal
stratification state of the atmosphere might be uncertain in operational contexts.

IV.1.3 Physical similarity in reduced-order modeling
As shown in Sect. I.1.2.4, page 19, the velocity and species concentration fields are

linearly dependent on the friction velocity u∗ under neutral atmospheric conditions. This
information can be used to simplify the model reduction problem by predicting quantities
normalized by friction velocity:

c̃ = c u∗H
2

Qsource

,

ũ = u/u∗.

(IV.3a)

(IV.3b)
with H = 2.54 m the obstacle height and Qsource the volumetric release rate in the studied
MUST trial (Table II.2, page 60). This strategy was for example used in the reduced-order
model used by Sousa et al. (2018) to predict the wind flow on Stanford’s campus.

Using the similarity of the governing equations, it is no longer necessary to consider
friction velocity when constructing the LES set to train the reduced-order model. Nev-
ertheless, we decided to still sample the full space of input parameters (Eq. IV.2), as we
aim to i) demonstrate the ability of the chosen reduction method to handle more than
one dimension; ii) explore the effect of internal variability for different friction veloci-
ties; iii) use similarity theory as a theoretical basis to validate the reduced-order model;
iv) compare the reduced-order model accuracy with and without using similarity.
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IV.2 Reduced-order modeling approach
In this section, we define in more detail the POD–GPRs reduced-order modeling

approach adopted in this chapter. In particular, we present the theoretical basis of
the proper orthogonal decomposition (Sect. IV.2.2) and Gaussian process regression
(Sect. IV.2.3), which are at the core of the POD–GPRs approach. We also introduce
in Sect. IV.2.4 the various methods we use for preprocessing the fields used to train the
reduced-order model. Finally, we derive an analytical expression of the uncertainty of the
POD–GPRs estimates from the Gaussian process posterior distribution (Sect. IV.2.5).

IV.2.1 Principle
The fundamental principle of the POD–GPRs reduced-order modeling approach is to

combine a reduction dimension step and a regression step (Chinesta et al. 2011).
The reduction step consists in finding a reduced basis {ψℓ}L

ℓ=1 of dimension L on
which to project the LES modeled field y(θ) to be emulated:

T (y(θ)) ≈
L∑

ℓ=1
kℓ(θ)ψℓ, (IV.4)

with T a field preprocessing treatment, ψℓ ∈ RN the ℓth reduced basis vector, commonly
referred to as the ℓth mode, and kℓ(θ) ∈ R the unique coefficient associated with the ℓth
mode in the projection of the given field y(θ) on the latent space span

(
{ψℓ}L

ℓ=1

)
. The key

idea of the reduction step is to find the best-reduced basis to minimize the approximation
error in Eq. IV.4, while also minimizing the number of modes L to characterize the
variability of the quantity y in the parameter space. By finding a reduced basis of
dimension L ≪ N , the reduction step drastically decreases the computational burden
linked to the dimension of the outputs.

The regression step then consists in predicting the decomposition {kℓ(θ)}L
ℓ=1 of the

field y(θ) in the latent space given the train set
{
yLES(θ(i))

}Ntrain

i=1
.

One important thing to note is that this reduction-regression approach separates the
parametric dependence of the field y(θ) from the spatial variability. Indeed, the spatial
structure of the fields is now carried by the modes ψℓ, while the coefficients kℓ reflect the
field parametric dependency.

As its name suggests, the POD–GPRs method relies on Proper Orthogonal Decom-
position (POD) for the reduction step, and Gaussian Process Regression (GPR) for the
regression step. The POD–GPRs method follows the standard approach of statistical
learning methods, with an initial training phase that consists of i) preprocessing the LES
fields, ii) building the POD reduced basis based on the train set, and iii) optimizing
the GPRs in the latent space (Fig. IV.1a). This training phase is performed offline and
only once. Then the prediction phase takes place as follows, given any wind conditions
θ, i) the associated POD reduced coefficients are predicted by the fitted GPRs, ii) the in-
verse POD projection and inverse fields scaling are applied to these coefficients to recover
the physical field yROM (Fig. IV.1b). The following sections introduce the theoretical
basis of POD and GPR techniques.
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Figure IV.1: Schematic of the POD–GPRs reduced-order model. Its operation is divided into
two stages: the training phase (a), and the prediction phase (b). First, a preprocessing T is
applied to the LES predicted field, and the POD reduced basis is built on the scaled train set,
then L independent GPR models are optimized to emulate the L reduced coefficients (k1, ..., kL)
for the input parameters θ, with L the number of POD modes. For the prediction phase, the
fitted GPRs predict the POD reduced coefficients associated with the set of wind conditions θ
of interest, then the inverse POD projection and inverse scaling T −1 are applied to recover the
associated physical field.

IV.2.2 Proper orthogonal decomposition
Proper Orthogonal Decomposition (POD) is a dimension reduction method histori-

cally used in the context of fluid dynamics for turbulence analysis (Sirovich 1987; Berkooz
et al. 1993). It allows for defining a reduced basis for the modal decomposition of a phys-
ical field given an ensemble of snapshots. POD is also commonly referred to as Principal
Component Analysis (PCA) in geoscience and statistics, and Singular Value Decomposi-
tion (SVD) in linear algebra.

Because of its simplicity and its useful properties (see Eq. IV.9), POD is a very popular
tool in model reduction (Chinesta et al. 2011; Vinuesa and Brunton 2022). Note that
other methods exist, in particular, neural-network autoencoders (Bourlard and Kamp
1988; Hinton and Zemel 1993) can provide greater accuracy by better managing the
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Chapter IV. Reduced-order modeling based on LES statistical predictions

disparity of scales in the concentration field, as shown by Nony (2023). However, POD has
a substantial advantage over this approach, since it hierarchizes the information carried
by the modes in the reduced space. This property motivates our choice to use POD as
it allows filtering out the noise induced by the internal variability of the atmospheric
boundary layer (see Sect. IV.5.1). Concerning the problem of scale disparity, we address
it by preprocessing the fields before building the POD basis (see Sect. IV.2.4).

The POD is usually built thanks to a set of realizations, called snapshots, of one field,
for example at different acquisition times (Sirovich 1987; Berkooz et al. 1993). In this
work, the realizations correspond to the train set of time-averaged concentration fields{
yLES(θ(i))

}Ntrain

i=1
, obtained for different input parameters θ(i). In this way, the POD

spatial mode vectors describe the coherent spatial structures emerging from variations of
the wind conditions θ = (αinlet, u∗)T.

The POD basis is obtained by diagonalizing the covariance matrix of the snapshot
ensemble:

C = (Cov(yLES(xi), yLES(xj))1≤i,j≤N = 1
Ntrain − 1SST , (IV.5)

with S =
(
T (y(1)

LES), . . . , T (y(Ntrain)
LES )

)
∈ RN×Ntrain the snapshot matrix, and T a prepro-

cessing transformation applied to all snapshots which include centering (see Sect. IV.2.4).
As a real, symmetric matrix, C is diagonalizable, such as:

C = ΨΣ2ΨT, (IV.6)

with Ψ = {ψℓ}N
ℓ=1 an orthonormal basis of RN , and Σ = diag(Λ1, . . . , ΛN) the associated

eigenvalues of C. In this study, the POD modes Ψ are computed using the scikit-learn2

implementation of the stochastic algorithm from Halko et al. (2009).
The POD reduced basis is then defined by truncating the basis Ψ to the L vectors

associated with the first L eigenvalues sorted in decreasing order. This is motivated by
the fact that the fraction of total ensemble variance carried by the ℓth mode is quantified
by Λℓ, and a limited number of modes L ≪ N is often sufficient to represent accurately
the main features of the field (Cordier and Bergmann 2006; Nony 2023). In this thesis,
we introduce a new methodology to make an informed selection of the optimal num-
ber of modes by taking into account snapshot noise through a bootstrap approach (see
Sect. IV.5.1).

The projection on the POD reduced basis is then simply defined, by the linear trans-
formation:

PPOD : RN −→ RL,

y 7−→ a = Ψ̃TT (y),
(IV.7)

with a = {a1, . . . , aL} the coefficients in the projection of y on the truncated POD
mode vectors basis Ψ̃ = {ψ1, ...,ψL}. This allows approximating any field y as linear
combination of the POD mode vectors as in Eq. IV.4 with the POD inverse projection

2See https://scikit-learn.org/
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reading:
P−1

POD : RL −→ RN ,

a 7−→ y = T −1
(

L∑
ℓ=1

aℓψℓ

)
.

(IV.8)

Mode orthogonality for the scalar product gives rise to some very useful properties
(Berkooz et al. 1993; Cordier and Bergmann 2006):

(decorrelation) E(aiaj) =
Λi, if i = j,

0, else,
∀i, j ∈ 1, N, 1 ≤ i, j ≤ L,

(optimality)
n∑

ℓ=1
E(aℓaℓ) =

n∑
ℓ=1

Λℓ ≤
n∑

ℓ=1
E(bℓbℓ), ∀n < N,

(IV.9a)

(IV.9b)

with E the expectation operator which takes place in the ensemble space in our case, i.e.
E(f) = 1

Ntrain

∑Ntrain
i=1 f (i). The optimality property (Eq. IV.9a), specifies that, whatever

the truncation, the POD decomposition is the linear combination that reproduces the
most variance of the original set. This property motivates the use of POD in many
studies, in particular, it can be linked to kinetic energy maximization when POD is built
for an ensemble of snapshots of instantaneous velocity fluctuations fields (Berkooz et al.
1993).

In the general POD–GPRs framework, we want to predict the POD coefficients of any
field y using GPRs (Fig. IV.1). It is therefore interesting to rescale the latent space so
that the regression problem can be better posed. First, note that the POD coefficients are
already centered in average since the train fields are centered by the preprocessing opera-
tor T (see Sect. IV.2.4) and the POD projection is linear (Eq. IV.7). Then, we introduce
the POD reduced coefficients kℓ = aℓ/

√
Λℓ. This technique, sometimes called whitening

(Kessy et al. 2018), ensures that the POD reduced coefficients have unit component-wise
variances:

E(kℓ) = 0, ∀ℓ ∈ N, 1 ≤ ℓ ≤ L,

Cov(ki, kj) =
 1, if i = j,

0, else,
∀i, j ∈ 1, N, 1 ≤ i, j ≤ L.

(IV.10a)

(IV.10b)

The field decomposition now reads:

T (y) =
L∑

ℓ=1

√
Λℓkℓψℓ, (IV.11)

Note that the properties (Eq. IV.9–IV.10) only hold for the coefficients associated
with the projection of the fields of the train set

{
yLES(θ(i))

}Ntrain

i=1
. Nevertheless, given

the density of the Halton sequence (Fig IV.5) and since we expect the response surface
of the model to be fairly regular locally, we assume that these properties are verified in
a broader sense, i.e. hold for any set of fields y(θ), θ ∈ Ωθ. Numerical tests show that,
in our case, the properties IV.10 are approximately verified over the test set.

125



Chapter IV. Reduced-order modeling based on LES statistical predictions

IV.2.3 Gaussian process regression
Once the POD reduced basis is computed, we seek to predict the POD reduced co-

efficients {kℓ(θ)}L
ℓ=1 for any new wind conditions θ ∈ Ωθ, knowing the POD reduced

coefficients of the train set. Examples of these training point clouds for different mode
orders ℓ are given as a function of the inlet wind direction αinlet in Fig. IV.10. This vector
regression problem is then simplified by splitting it into L scalar regression subproblems,
as illustrated in Fig. IV.1. This is motivated by the fact that the POD reduced coef-
ficients are assumed to be decorrelated as explained in Sect. IV.2.2. Then, we choose
to use Gaussian Process Regressors (GPRs) to solve these regression problems because
GPRs predict complete probability distributions and not only point-wise estimates which
is particularly in line with the approach of this thesis. It allows us to embed the internal
variability uncertainty in GPRs predictions (as shown in Sect. IV.5.3) and then to ac-
count for this uncertainty in the data assimilation system built in Chapter V. In addition,
the comparison with other classical statistical methods such as polynomial chaos expan-
sion and decision tree shows that GPRs are well-suited for this LES dispersion model
reduction context (Nony 2023).

Gaussian processes (Rasmussen et al. 2006; Ebden et al. 2008), also often referred
to as kriging in geostatistics (Stein 1999), is a popular and rather universal statistical
learning method that consists is assuming that data distribution can be described by a
Gaussian stochastic process. In our context, it means:

kℓ = fℓ(θ) + ϵℓ (IV.12)

with: {
fℓ(θ) ∼ GP(mℓ(θ), rℓ(θ,θ∗)), ∀(θ,θ∗) ∈ Ωθ, (IV.13a)
ϵℓ ∼ N (0, s2

ℓ), (IV.13b)

where mℓ and rℓ are the mean and covariance functions of the Gaussian process, and ϵℓ

is an additive Gaussian noise of variance s2
ℓ . It accounts for the fact that the data is

noisy which is typically the case in this study, as shown in Fig. IV.7 and IV.9 in physical
and latent spaces, respectively. In addition, we do the common assumption (Ebden
et al. 2008) that the prior distribution of each GP fℓ is null everywhere in average, i.e.
∀θ ∈ Ωθ, mℓ(θ) = 0. In our case, this is supported because the POD reduced coefficients
are centered in average (Eq. IV.10a).

From the GP modeling assumption (Eq. IV.13a) follows the key property that any
finite subset K of realizations of the output data kl follows a multivariate Gaussian
distribution. In particular, if we denote (θtrain, Ktrain

ℓ ) the train set of the POD ℓth-
reduced coefficients and associated inputs parameters, and θ∗ a new set of inputs for
which we want to predict the POD reduced coefficients K∗

ℓ , we have the prior joint
distribution: Ktrain

ℓ

K∗
ℓ

 ∼ N
0,

rℓ(θtrain,θtrain) + σ2
ℓ rℓ(θtrain,θ∗)

rℓ(θ∗,θtrain) rℓ(θ∗,θ∗)

 . (IV.14)
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Then, the posterior distribution is obtained by conditioning this prior joint distribution
to the observations, which gives (Rasmussen et al. 2006):

K∗
ℓ | θ∗, Ktrain

ℓ ,θtrain ∼ N (µℓ, Cov(K∗
ℓ)), (IV.15)

with:
µℓ = rl(θ∗,θtrain)

[
rl(θtrain,θtrain) + s2

ℓI
]−1

Ktrain
ℓ , (IV.16a)

Cov(K∗
ℓ ) = rl(θ∗,θ∗)− rl(θ∗,θtrain)

[
rl(θtrain,θtrain) + s2

ℓI
]−1

rl(θtrain,θ∗). (IV.16b)

These equations are the predictive equations for GP regression. In the following, GPR
estimates are implicitly defined by the mean of the posterior distribution (Eq. IV.16a).
In addition, Eq. IV.16b provides an estimation of the uncertainty associated with the
GPRs mean estimates, and random realizations of the outputs can be sampled from the
posterior distribution (Eq. IV.15). To compute this distribution, we use the scikit-learn3

implementation which is based on the algorithm proposed by Rasmussen et al. (2006) in
which the matrix [rl(θtrain,θtrain) + s2

ℓI] is inverted using Cholesky decomposition.
Specifying the covariance function rℓ, mostly referred to as the kernel function in the

GP literature, is crucial as it is what defines the GPRs estimates (Eq. IV.16a). Kernel
functions typically express the covariance in Eq. IV.13a as a function of the distance in
the input space. One standard kernel choice is the Radial Basis Function (RBF) which
reads:

rRBF(θ,θ′) = ρ exp
(
−1

2d(θ,θ′)2
)

, (IV.17)

with ρ the maximum allowable covariance, which should be high for processes that have
to cover a wide range of output (Ebden et al. 2008), and d a distance in the input space,
Rd in our case. Following the POD–GPRs design proposed by Nony (2023), we also
consider using a Matérn kernel (Stein 1999):

rMatérn(θ,θ′) = ρ
21−ν

Γ(ν)
(√

2ν d(θ,θ′)
)ν
Bν

(√
2ν d(θ,θ′)

)
, (IV.18)

where Γ and Bν are the Gamma and modified Bessel functions, and ν is a smoothness pa-
rameter. This parameter is generally assigned a half-integer ν = p+ 1

2 , p ∈ N. The larger
ν is, the smoother the kernel, so in the limit ν → ∞ the kernel expression (Eq. IV.18)
tends to the one of the RBF (Eq. IV.17). For both kernels, we use an anisotropic ℓ2
distance in the input space:

d(θ,θ′) =
√

(θ − θ′)Tλ(θ − θ′), (IV.19)

where λ = diag
(
1/λ2

αinlet
, 1/λ2

u∗

)
is the length-scale matrix assuming independent and

distinct length scales for each parameter dimension. In a preliminary study (not shown
here), we compared the RBF and Matérn kernel functions and found that in our case the

3See footnote 2 page 124.
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choice of the kernel has a very limited impact on the GPRs accuracy, with slightly better
performance for the Matérn kernel with ν = 5/2. This is in line with the results obtained
by Nony (2023). And we use this kernel function in the rest of the study.

Each of the GPRs is defined by four hyperparameters: the noise variance, the maxi-
mum allowable covariance, and the parameters length scales. We note

γℓ = (sℓ, ρℓ, λαinlet,ℓ, λu∗,ℓ)T ∈ R+4
,

the vector of the hyperparameters. We use Maximimum Log-Likelihood (MLL) estima-
tion (Hastie et al. 2009) to determine the optimal set of hyperparameters using Bayes’
theorem:

γ∗
ℓ = argmax

γℓ

{
ln p(Ktrain

ℓ |θtrain,γℓ) + ln p(γℓ)
}

, (IV.20)

with p(Ktrain
ℓ |θtrain,γℓ) the conditional distribution of Ktrain

ℓ , knowing (θtrain,γℓ), and
p(γℓ) the hyperparameters prior distribution which is assumed to be uniform in MLL
estimation. In this study, this optimization problem is solved using the L-BFGS-B algo-
rithm of Liu and Nocedal (1989). Note that it is possible to provide a more informative
hyperparameter prior distribution p(ϵℓ) to guide the optimization (maximum a posteriori
estimation). But we do not use this alternative because Nony et al. (2023a) shows that,
with the same model architecture applied to a simplified case, it gives very similar results
as MLL.

An example of Gaussian process regression on a simple one-dimensional case is illus-
trated in Fig. IV.2. The prior distribution of the Gaussian process has zero mean and
constant variance over the input space (Fig. IV.2a). On the other hand, the mean of the
posterior distribution conditioned by the training data effectively and smoothly interpo-
lates the training data (Fig. IV.2b). As expected, the 95% confidence interval around the
mean, which is equal to plus or minus twice the Gaussian process standard deviation by
construction, is narrowed at learning points and looser as the distance increases. Note
that the variance at the training sample location does not cancel. This shows that the
Gaussian process noise variance s2 found by MLL estimation is not null, hence preventing
GPR from over-fitting noisy training data.

We would like to stress that, in the current model reduction context, GPRs are not
used "spatially" as in kriging. Indeed, we do not use GPRs to describe a physical field
based on local observations. Instead, we use them to predict the POD reduced coefficient
kℓ for different wind conditions θ = (αinlet, u∗)T, as shown in Fig. IV.10.

IV.2.4 Fields preprocessing
In this section, we present the field preprocessing applied before building the POD

reduced-basis (Fig. IV.1a). Preprocessing is used here in a broad sense to mean any field
transformation such as weighting, rescaling, thresholding, etc. We encapsulate all applied
transformations in the preprocessing operator T . Finding an adequate preprocessing is
critical as it changes the meaning of the optimality and orthogonality properties of the
POD modes (Schmidt and Colonius 2020), and therefore conditions the ability of the POD
to efficiently represent fields in a smaller dimension. Note that the inverse transformation
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Figure IV.2: Gaussian Process Regression principle illustrated on a one-dimensional exam-
ple from scikit-learn1. The black line corresponds to the mean of the Gaussian process prior
distribution (a), and posterior distribution (b). The training data used to build the posterior
distribution are represented as red circles. They are generated at 10 random locations using the
function x 7→ sin(x2) + ϵ with ϵ ∼ N (0, 0.15) an additional Gaussian noise. Four realizations
sampled from the Gaussian Process distribution are illustrated as colored dashed lines. The
shaded areas correspond to the 95% confidence interval estimated by the Gaussian Process. The
Gaussian process covariance function used is a Matérn kernel with ν = 5/2 (Eq. IV.18), and
the Gaussian Process hyperparameters γ = (s, ρ, λx)T are obtained by maximum log-likelihood
estimation.

1See scikit-learn documentation.

T −1 has to be applied at the end of the prediction chain (Fig. IV.1b). Different strategies
are presented here, and we show in Sect. IV.5.2 that choosing the right preprocessing is
essential to minimize the POD projection error.

The standard preprocessing T consists of centering the LES train set (Berkooz et al.
1993). Here we use in addition nodal volume weighting:

T : RN −→ RN ,

y(xk) 7−→
√

ω(xk)
Ω [y(xk)− ⟨yLES(xk)⟩] , 1 ≤ k ≤ N,

(IV.21)

where ⟨yLES⟩ is the field averaged over the train set, ω(xk) is the nodal volume4 of the
node xk, and Ω = ∑N

k=1 ω(xk) is the total volume of the domain. It is motivated by
the fact that, in this study, the fields y are expressed on an analysis mesh which is not
uniform (see Sect. II.4.1, page 61). In particular, the mesh resolution is higher in some

4See footnote 3, page 52.
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Chapter IV. Reduced-order modeling based on LES statistical predictions

areas, for instance near the obstacles. To avoid artificially putting too much weight on
these areas, we weight the field node values by the dual volume of the node, as suggested
by Schmidt and Colonius (2020). Early tests demonstrated that node volume weighting
had a limited impact on the overall performances of the complete POD–GPRs models
(not shown here).

Additionally, it would be possible to scale each grid node value y(xk) by its standard
deviation over the train set. This avoids putting too much weight on areas of the domain
where the variance is high but in return treats equally the variability induced by the wind
conditions θ that we want to emulate and the noise induced by internal variability. In
particular, we find that rescaling the mean concentration puts too much weight on areas
where the concentration is negligible and the variance is only due to numerical noise.
Therefore, we choose not to scale the fields by the train-set standard deviation.

We also consider using a log-transformation in addition to the standard normalization:

Tlog : RN −→ RN ,

y(xk) 7−→
√

ω(xk)
Ω [ln(y(xk) + yt)− ⟨ln(yLES(xk) + yt)⟩] , 1 ≤ k ≤ N,

(IV.22)

with yt a threshold to avoid issues with values close to zero. This transformation is
particularly in line with the mean concentration field, which decreases exponentially with
distance from the source, thus varying over several orders of magnitude (as shown in
by the standard Gaussian plume model defined in Eq. I.15, page 22). With this log-
transformation, the overall field reduction is no longer linear, and the field reconstruction
(Fig IV.1b) relies on the bijection of T −1

log :

T −1
log : RN −→ RN ,

ỹ(xk) 7−→ exp
(√

Ω
ω(xk) ỹ(xk) + ⟨ln(yLES(xk) + yt)⟩

)
− yt,

(IV.23)

with ỹ the log-transformed field.
In addition, the reduction of the model inputs dimension thanks to friction velocity

similarity presented in Sect. IV.1.3 can be encapsulated in the preprocessing operator. For
a field inversely proportional to the friction velocity u∗, such as the mean concentration,
it gives:

T1D : RN × R −→ RN ,

(y u∗) 7−→ T (y× u∗),
T −1

1D : RN × R −→ RN ,

(ỹ, u∗) 7−→ T −1(ỹ)/u∗.

(IV.24)

(IV.25)

The effect of different field preprocessing treatments on the POD projection error is
assessed in detail in Sect. IV.5.2.
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IV.2.5 Reduced-order model uncertainty prediction
In this section, we further develop the POD–GPR approach adopted by Nony et al.

(2023a) by explaining how to propagate the probability distributions estimated by the
GPRs in the latent space to the physical space (Fig. IV.1). From an uncertainty quan-
tification perspective, knowing these distributions is very useful as it gives confidence
intervals around the predictions of the reduced-order model. We use it extensively for
the validation of the POD–GPRs in Sect. IV.6, where we also demonstrate that the esti-
mated uncertainty reproduces well the aleatory uncertainty related to internal variability.
It is also particularly valuable for data assimilation, as it can be used to prevent putting
too much confidence in the model during the analysis (see Chapter V).

First, we recall that POD–GPRs predictions T (y(θ)) are written as linear combina-
tions of the POD reduced coefficients kℓ(θ) (Eq. IV.11). But, by model design assumption,
kℓ(θ) are decorrelated (Eq. IV.10b) and normally distributed since they are predicted by
GPRs (Eq. IV.16). At each grid node xk, the POD–GPRs prediction T (y(θ, xk)) there-
fore follows a normal distribution of expectation:

E (T (y(θ, xk))) =
L∑

ℓ=1

√
ΛℓE(kℓ(θ))ψℓ(xk), (IV.26)

and variance:

V (T (y(θ, xk))) =
L∑

ℓ=1
ΛℓV(kℓ(θ))ψℓ(xk)2, (IV.27)

with E(kℓ(θ)) and V(kℓ(θ)) the mean and variance the posterior distribution of the ℓth
GPR (Eq. IV.16b). It now remains to determine the distribution of the bijection T −1 of
T (y(θ, xk)) to express the distribution and hence the uncertainty of the physical field.

• If using the standard preprocessing T (Eq. IV.21), it is straightforward as T −1 is a
linear operator, and the rescaled predictions are therefore also normally distributed:

y(θ, xk) ∼ N (µ(θ, xk), σ(y(θ, xk))2), 1 ≤ k ≤ N, (IV.28)

with 
µ(θ, xk) =

√
Ω

ω(xk)

L∑
ℓ=1

√
Λℓkℓ(θ)ψℓ(xk) + ⟨yLES(xk)⟩, (IV.29a)

σ(θ, xk)2 =
(

Ω
ω(xk)

)
L∑

ℓ=1
ΛℓV(kℓ(θ))ψℓ(xk)2. (IV.29b)

where ⟨yLES⟩ is the field averaged over the train set.

• If using the log-transformation Tlog (Eq. IV.22), we find that ln(y(θ, xk) + yt) fol-
lows a normal distribution, implying that rescaled predictions are log-normally dis-
tributed:

y(θ, xk) + yt ∼ log-N (µ(θ, xk), σ(y(θ, xk))2), 1 ≤ k ≤ N, (IV.30)
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with

µ(θ, xk) =
√

Ω
ω(xk)

L∑
ℓ=1

√
Λℓkℓψℓ(xk) + ⟨ln(yLES + yt)⟩, (IV.31)

and with σ(y(θ, xk))2 defined as in Eq. IV.29b. In this case, the variance of the
field can be expressed as follows:

V(y(θ, xk)) = V(y(θ, xk) + yt) = [eσ(θ,xk)2 − 1]e(2µ(θ,xk)+σ(θ,xk)2). (IV.32)

Note that when normalizing the fields by the friction velocity with T1D (Eq. IV.24),
the distributions of the physical fields predicted by the POD–GPR are obtained by rescal-
ing the distributions (Eq. IV.28 or Eq. IV.30) by

(
Qsource

u∗H2

)
for the expected value and(

Qsource

u∗H2

)2
for the variance.
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IV.3 Reduced-order model validation methodology
In this section, we present the methodology used to validate the POD–GPRs reduced-

order model. First, we introduce another trivial model reduction approach, the nearest
neighbor, which provides a benchmark for assessing the added value of the more sophis-
ticated POD–GPRs approach (Sect. IV.3.1). Then we introduce the metrics employed
to quantify the model reduction over the test set (Sect. IV.3.2), and the cross-validation
procedure which allows us to assess the robustness of the POD–GPRs to the composition
of the train set (Sect. IV.3.3). Finally, we present how the internal variability error is
quantified to provide an estimate of an upper limit of the best accuracy achievable by
the POD–GPRs.

IV.3.1 A control model: the nearest neighbor
To provide a reference against which to compare the POD–GPRs model reduction

approach, we use the nearest neighbor model (1–NN) as a trivial control model. This
model is a simplified version of the classical regression k-nearest N neighbor (k–NN)
model (Hastie et al. 2009) with only one neighbor (k = 1). This means that the 1–NN
surrogate simply predicts the field of interest y as equal to the nearest LES train field in
the parameter space:

yROM(θ) = ytrain
LES (θ∗), with θ∗ = min

1≤i≤Ntrain

d(θtrain
i ,θ), (IV.33)

where d is a distance in Rd. In this work, we use the standard Euclidean norm but with
specific parameters rescaling:

θ̃ = (α̃inlet, ũ∗)T =
(

αinlet − αmin
inlet

αmax
inlet − αmin

inlet

, ζ

(
u∗ − umin

∗
umax

∗ − umin
∗

))T

, (IV.34)

with ζ a rescaling factor that distorts the distances in the parameter space.
This hyperparameter allows giving more or less weight to one parameter when look-

ing for which LES field is the closest in Eq. IV.33. A cross-validation procedure (see
Sect. IV.3.3), with 8-fold resampling of the train set, is used to calibrate this hyperpa-
rameter. For the mean concentration field, we find an optimal value of ζ = 0.275 which
gives the best compromise between the RMSE, VG and FMS(1 ppm) scores. This value
ζ < 1 reduces distances along the axis of friction velocity, which means that the 1–NN
is freer to select samples with friction velocities that are far apart, and thus tends to
seek out the nearest neighbor with very close wind directions. This is consistent with our
general observation that concentration is mainly controlled by the wind direction (see
Fig. IV.7, and Sect. III.5.2, page 109).

The 1–NN is a pertinent control model because it represents the generalization error
obtained by simply querying the available simulation database. Thus, if a more sophis-
ticated model does not reduce the NN error then it is not worth using.
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IV.3.2 Model reduction error quantification
In statistical learning, the fundamental principle of model validation is to evaluate

the model accuracy on a set of test samples independent of the train set used to build
the model (Hastie et al. 2009). This is essential to assess the ability of the reduced-
order model to transpose the information learned from the train set to other operating
conditions, in our case different wind conditions θ = (αinlet, u∗)T, and to detect possible
overfitting of the train set. In this study, we use 80% of the LES samples as train samples
(Ntrain = 160) and the remaining 20% as test samples. The resulting train and test sets
are depicted in Fig. IV.5.

To evaluate the reduced-order model accuracy after training, we then compare its
mean concentration field prediction yROM with the one from the LES model yLES for
each of the Ntest test samples. The comparison can be assessed using any of the standard
air quality metrics of Chang and Hanna (2004) presented in detail in Sect. III.3.2. The
overall accuracy of the reduced-order model is then assessed by averaging the scores
obtained with the chosen metric f over the whole test set:

⟨f⟩ = 1
Ntest

Ntest∑
i=1

f(yROM(θtest
i ), yLES(θtest

i )). (IV.35)

Instead of comparing spatially the predicted fields and then averaging the metrics
scores over the test set (Eq. IV.35), it is also possible to do the opposite, i.e. calculate
metrics over the test set and then average it spatially. The two approaches are comple-
mentary, as the first describes the reduced-order model accuracy per sample while its
counterpart evaluates the accuracy for each node of the domain. The second approach
focuses more on the ability of the model to reproduce the test set statistics, for example,
the Q2 metric, extensively used by Nony (2023), quantifies the variance explained by the
reduced-order model:

Q2(x) = 1− ∥yLES(x)− yROM(x)∥2

∥yLES(x)− ⟨yLES(x)⟩∥2 , (IV.36)

with ∥·∥ the Euclidean norm, and ⟨·⟩ the mean value over the test set. Q2 variation range
is ] −∞, 1] with Q2 = 1 the best possible score. A global score can then be calculated
by taking the local variance-weighted average over the whole domain:

Q2 =
∑N

k=1 V(yLES(xk))Q2(xk)∑N
n=k V(yLES(xk))

. (IV.37)

The choice of metrics used for validation is crucial and mostly depends on the
user’s needs. For example, if one is interested in predicting concentrations that exceed a
toxicity threshold, the FMS (Eq. III.18) would probably be the most important metric
as it evaluates the accuracy of the predicted exposure maps predicted relative to this
threshold. In this thesis, we decide not to favor any particular metric, which makes it
possible to further assess the strengths and weaknesses of the reduced-order model. The
counterpart of multi-criteria validation is that optimality may be impossible to define as
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improving one metric often deteriorates the others. These considerations are not only key
for model validation but also model optimization, however multi-objective optimization
makes the task much more difficult and is outside the scope of this applied study.

IV.3.3 Model cross-validation
When developing and validating the reduced-order model, we realized that reshuffling

the train/test samples could occasionally have a significant impact on the final perfor-
mances evaluated on the test set. This sensitivity can be explained by the presence of
outliers in the original data set and the limited size of the learning base.

To quantify this variability of the reduced-order model prediction errors, we adopt
the K-fold cross-validation procedure classically used in statistical learning (Hastie et al.
2009). Its principle is to: i) divide the samples set into K blocs; ii) calibrate the reduced-
order model on a train set of K − 1 blocs, and use the remaining bloc as a test set to
evaluate the accuracy of the surrogate; iii) repeat the last step K times so that the test
set is different each time.

Most of the time, cross-validation is used for model tuning or model selection. The
original train set is split K times into a new train subset and a validation (or calibration)
subset. Then the reduced-order model hyperparameters are selected based on the aver-
aged performances over the K validation subsets. Cross-validation allows to ensure robust
model reduction tuning by selecting averaged hyperparameters and limiting the general-
ization error. This method is used to calibrate the Nearest Neighbor model presented in
Sect. IV.3.1.

In addition, we use cross-validation on the complete database (train and set) for
the final evaluation of the mean reduced-order model prediction error. This allows for
providing in addition an order of magnitude of the variance of this error. This also enables
the assessment of the model performance for each sample of the complete database.
Associated results are given in Sect. IV.6.3.

The choice of the number of blocks is a matter of compromise because increasing K
improves the quality of the estimation but also increases the cost of the procedure (Hastie
et al. 2009). In this study, we use a relatively small value of K = 5 which results in a
train set of 160 samples. Figure IV.5 represents the train set of 160 simulations and
the test set of 40 simulations, as blue squares and green circles respectively, for the first
validation fold.

IV.3.4 Accounting for internal variability in the validation
As previously explained in Chapter III, LES predictions are subject to an irreducible

aleatory uncertainty due to the internal variability of the ABL. It would therefore be
pointless to try to build a reduced-order model whose accuracy exceeds this uncertainty.
To quantify the error solely due to internal variability, we use the stationary bootstrap
method presented in Sect. III.2.4, page 83, to generate two independent sets of bootstrap
replicates of the same LES field and then compare these replicates as shown in Fig. IV.3.
These comparisons can be carried out for any metric f , including the air quality metrics
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presented in Sect. III.3.2, page 90. In this way, we obtain a set of realizations of f from
which we can estimate statistics, and in particular, its mean value which characterizes the
mean error made when comparing two LES predictions obtained with exactly the same
inputs, taking into account the internal variability involved. This mean error corresponds,
for a given metric and a given field, to an upper limit of estimation accuracy.
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Figure IV.3: Schematic diagram of internal variability error quantification. Two independent
sets of replications of a mean field yLES predicted by the LES model are calculated from sub-
averages samples using the stationary bootstrap algorithm presented in Sect. III.2.4, page 83.
Each replication is then compared two by two using a metric f to obtain a set of B scores
quantifying the difference between two fields due to internal variability. Statistics can then be
calculated on the distribution thus obtained, in particular the mean error induced by internal
variability.

The internal variability error quantification method shown in Fig. IV.3, is applied for
each LES prediction sample in the train and test sets. Note that the mean block length
used by the stationary bootstrap is re-evaluated for each sample using the approach ex-
plained in Sect. III.2.4.3, page 86. Once averaged over the test set, the internal variability
errors give an upper bound estimate of the best overall accuracy achievable for each met-
ric when validating the POD–GPRs reduced-order model. An analysis of the distribution
of the internal variability errors as a function of input parameters θ = (αinlet, u∗)T is given
in Sect. IV.6.4.
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IV.4 LES ensemble generation
This section describes the construction of the ensemble of LES predictions used to

train and test the POD–GPRs. First, relevant wind boundary condition parameter ranges
are estimated from a mirco-climatology study (Sect. IV.4.1). The parameter space thus
defined is sampled using the low-discrepancy Halton sequence (Sect. IV.4.2). The LES
model is then integrated for each input parameter corresponding to the first 200 samples
of the Halton sequence. All the LES model adaptations that were made to compute
such a large ensemble of simulations are presented in Sect. IV.4.3. Finally, we provide
technical insights on the computation of the ensemble in Sect. IV.4.4, as well as a brief
overview of the LES response surface.

IV.4.1 Definition of parameter ranges from micro-climatology
The reduced-order model has to cover a wide, but plausible and feasible, range of

variation of the input parameters θ = (αinlet, u∗)T. In what follows, we propose to use
micro-climatology, i.e. a compilation of near-surface wind measurements over a long
period of time, to determine the lower and upper limits of αinlet and u∗.
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Figure IV.4: Distributions of the (a) time-averaged horizontal wind velocity and (b) time-
averaged wind direction measured at the SAMS meteorological station #8 at z = 10 m and over
12 days during the MUST field campaign.

The micro-climatology is built using all available data from the SAMS meteorological
station #8 located approximately one kilometer from the MUST site (Fig. II.2, page 58).
A total of 2391 wind measurements at z = 10 m, averaged over 15-minute periods, were
collected over 12 days during the MUST field campaign, the resulting distributions are
depicted in Fig. IV.4. It appears that all wind directions are likely to appear and that
more than 99% of the horizontal wind speed measurements are under 12 m s−1 which
corresponds to friction velocity of 0.89 m s−1 (Eq. II.17 page 63).

To reduce the number of LES computations required to cover the input space, the
range of variation for the inlet wind direction αinlet was narrowed to [−90 ◦, 30 ◦], so
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the corresponding plume always remains mostly in the canopy and therefore at the level
of existing sensors. The extension of this range of variation would not be a problem,
provided that a sufficient simulation budget is available. We also limit the minimal
friction velocity to 0.07 m s−1 which corresponds to a wind speed of about 1 m s−1 at 10 m
altitude as we are interested in windy conditions. In the end, the input parameter space
reads:

Ωθ = [−90 ◦, 30 ◦]× [0.07 m s−1, 0.89 m s−1]. (IV.38)

IV.4.2 Parameter space sampling
To sample the input parameter space (Eq. IV.38) we use Halton’s sequence (1964).

As a low-discrepancy sequence, it samples the space uniformly and covers it more effi-
ciently than a purely random sequence by avoiding sampling the same area several times.
Since samples tend to be equidistributed, no a priori assumptions are made about the
distribution of input parameters for the construction of the reduced-order model. In this
way, we expect it to perform equally well in any situation. Figure IV.5 shows the first
200 draws from the Halton sequence.

In the Halton sequence, each parameter vector sample has different values of αinlet

and u∗. When normalizing the fields by the friction velocity to build a one-dimensional
reduced-order model (see Sect. IV.1.3), this property prevents creating multiple an-
tecedents for a single value of αinlet when collapsing the parameter space into one dimen-
sion as shown in Fig. IV.5b. This is one of the strengths of the Halton sequence: if we were
to use regular sampling of the parameter space instead, we would lose Nsamples−

√
Nsamples

out of the Nsamples when reducing the problem dimension.
We then compute an LES prediction for each input parameter sample to provide the

database used to build the reduced-order model. To capture the nonlinear behavior of the
LES model and guarantee the accuracy of the reduced-order model, we have set ourselves
a budget of Nsamples = 200 simulations corresponding to the first draws from the Halton
sequence. As shown in Fig. IV.5, the resulting sampling is quite dense, particularly for
the reduced-dimension space. In Sect. IV.6.2, we investigate the effect of reducing the
size of the learning base on the performance of reduced models.

Ultimately, the samples obtained are separated into a train set and a test composed
respectively of the first Ntrain = 160 samples and the next Ntest = 40 samples. The
samples of the test set are not used during training to ensure proper validation of the
reduced models (see Sect. IV.3).

IV.4.3 Adaptation of the LES model to run ensembles
To explore the model answer to its inflow boundary conditions uncertainties, several

modifications have been made so that the LES model presented Sect. II.4 can predict
the fields of interest for every parameter θ = (αinlet, u∗) possible. The model is then
integrated for each parameter of the Halton sequence presented in Sect. IV.4 to generate
the LES ensemble used to build the reduced-order model.
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Figure IV.5: Input parameter space sampling obtained with Halton’s low-discrepancy se-
quence (a): each point is a pair of parameters for which we perform an LES prediction. The
training and test sets are represented as blue squares and green circles respectively. The horizon-
tal red shaded area corresponds to the parameter space sub-section scanned by taking a margin of
±5 % around the constant friction speed uplot

∗ = 0.45 m s−1. The vertical shaded area is similarly
defined around the constant inlet wind direction αplot

inlet = −43° with a margin of ±2°. The test
samples that are within these ranges are depicted as red triangles, they are used in Sect. IV.6.1
to evaluate the response surfaces of the reduced-order model. Another specific test sample (#91)
used to validate the models is identified by a yellow star. The projection of the parameter space
into one dimension obtained by normalizing the output fields by the friction velocity is repre-
sented in the second panel (b).

IV.4.3.1 Computational domain adaptation to the mean wind direction

In the reference LES model, if the mean flow direction deviates too much from the
reference wind direction value, it induces lateral confinement and numerical instabilities
because of the shear-free boundary conditions on the domain sides. This problem is
solved by rotating the computational domain so the sides always remain parallel to the
mean flow direction. To efficiently implement this feature, the domain is split into two
subdomains as shown in Fig. IV.6: the peripheral domain D2 that is rotated to align with
αinlet, and the internal domain D1 which is fixed. The Navier-Stokes equations are solved
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Figure IV.6: Schematic of a horizontal cut of the MUST computational domain at the height
of the container, the domain is divided into two subdomains: the fixed domain D1 in blue and
the rotating peripheral domain D2 in red. The interpolation overlapping area between D1 and
D2 used for the coupling is hatched. Lateral boundary conditions are indicated. The tracer
source location in the MUST trial 2681829 is identified as the orange star. The triangle symbols
represent the towers at which observations were acquired during the trial: the upstream tower S
is indicated in green, while the internal tower T is indicated in blue.

on each domain by parallel AVBP instances (Wang et al. 2014; Duchaine et al. 2015)
that are coupled using the CWIPI library developed by ONERA5 (Refloch et al. 2011).
This domain decomposition facilitates the generation of a large ensemble of simulations
because it does not require generating a new mesh for each new wind direction. In
addition, having a static internal domain avoids the use of interpolation to compare
LES estimates obtained with different wind conditions. The interpolation between the
two domains is computed over an overlapping region (shown cross-hatched in Fig. IV.6).
This region should contain at least 10 cells between the sub-domains boundaries and in
each direction, which leads to a 13% increase in the number of cells of the computational
mesh. Hopefully, it has less impact on the computational time since most of these cells
are large.

5Office national d’études et de recherches aérospatiales.
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IV.4.3.2 Reynolds stress tensor rescaling

To avoid running a precursor simulation to estimate the Reynolds stress tensor pre-
scribed in the turbulence injection method (see Sect. II.4.3) for each boundary condition
parameter θ in Halton sequence, the corresponding Reynolds stress tensor Rij(θ) is ob-
tained by rotating and then rescaling the reference Reynolds stress tensor R(ref)

ij :

Rij(θ) =
(

u∗

u
(ref)
∗

)2

×MαR(ref)
ij MT

α ,

with Mα =


cos(αinlet) − sin(αinlet) 0
sin(αinlet) cos(αinlet) 0

0 0 1

 .

(IV.39)

This transformation is based on the assumption that turbulent velocities are proportional
to the friction velocity u∗ in the surface layer (Sect. I.1.2.4, page 19).

IV.4.3.3 Adaptation of the spin-up time

The spin-up time of the LES model has to be adapted to the friction velocity u∗ since
the time required to reach a steady state depends on the bulk velocity of the flow which
is directly related to the friction velocity:

Ubulk =
∫ H

0
U(z)dz = u∗

κH

[
(H + z0) ln

(
H + z0

z0

)
−H

]
, (IV.40)

with H the height of the computation domain. In particular, if the friction velocity
decreases, then the convective timescale increases and the injected eddies take longer to
traverse the domain.

The spin-up time is therefore set by re-scaling the reference spin-up time by the friction
velocity as follows:

tspin−up = t
(ref)
spin−up ×

u
(ref)
∗

u∗
. (IV.41)

Given the variation range of the friction velocity considered in this study (Eq. IV.38),
the corresponding spin-up times, therefore, vary between 50 and 580 s.

IV.4.3.4 Field projection onto an analysis mesh for greater efficiency

To reduce the computational burden associated with the dimension of the fields N ≈
107 (see description of the mesh used by the LES model in Sect. II.4.1, page 61), all the
results presented in this section are obtained using an analysis mesh with fewer nodes.
The resolution of this mesh is twice coarser than that of the mesh used by the LES
model. In addition, we limit the analysis to the inner domain D1 in Fig. IV.6 and to a
height of 20 m as most of the pollutant is located in this area. This leads to an analysis
mesh of N = 1.88 × 106 nodes, with characteristic cell sizes ranging from 0.6 m to 4 m,
that efficiently facilitates the model reduction. In addition, it was verified that using a
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lower-resolution grid has negligible impact on the accuracy of the reduced-order models.
This is because little information is lost as the original resolution is significantly lower
than the correlation lengths of the fields of interest.

IV.4.4 Computation of the LES ensemble
The adapted LES model is then integrated for each of the 200 parameter samples of

the Halton sequence (Fig. IV.5).
The computation of the LES ensemble was performed on different supercomputers:

Nemo and Kraken from CERFACS, Météo-France’s Belenos, and Joliot-Curie, also known
as Irene, from TTGC6. Access to Irene’s resources was granted by GENCI7 as part of
the DARI project A0062A10822, 2020-2022. Technical characteristics of the different
supercomputers are summarized in Table IV.1. The scaling of the LES model was tested
for each cluster, resulting in different optimal numbers of cores (see Table IV.1). In total,
the 200 simulations of the LES ensemble have cost 5.7 million core hours. An estimation
of the associated carbon footprint is presented in Appendix C.

To limit the volume of data saved, instantaneous fields were not saved, apart from
those required to restart simulations, and mean fields were saved every 10 s of physical
time in order to enable internal variability quantification using the bootstrap approach
developed earlier (Fig. III.4, page 85). In total, the conserved LES fields occupy a volume
of approximately 40 To.

Table IV.1: Main characteristics of the supercomputers used to compute the LES ensemble.
NCPU corresponds to the number of cores on which the LES computations were parallelized.
Total consumption on each machine is given, in millions of core hours (M hCPU).

Supercomputer Nemo1 Kraken1 Joliot-Curie2 Belenos
Host CERFACS CERFACS TGCC Météo-France

Partitions Haswell Skylake Skylake Rome Rome
Processors Intel E5-2680v3 Intel 6140 Intel 8168 AMD Epyc 7H12 AMD Epyc 7742

NCPU 600 – 900 540 – 900 1344 1024 1536
M hCPU 0.699 0.335 1.57 1.15 1.95

1 https://cerfacs.fr/les-calculateurs-du-cerfacs
2 https://www-hpc.cea.fr/fr/Joliot-Curie.html

Figure IV.7 shows the topology of the resulting LES ensemble, with the example of the
mean concentration at tower B at z = 2 m. The mean concentration reaches a maximum
for αinlet ≈ 30 ° and then decays towards 0 ppm in both directions as the plume no longer
crosses tower B.

6Très Grand Centre de Calcul, a computing center operated by CEA (Commissariat à l’Energie
Atomique), and which hosts one of France’s three supercomputers available to the scientific community.

7Grand Équipement National de Calcul Intensif, an organization that steers the national HPC equip-
ment strategy for the benefit of French scientific research.
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Figure IV.7: LES prediction of the mean concentration at tower B at z = 2 m for each
sample of parameters θ = (αinlet, u∗)T from Halton sequence (Fig. IV.5). Results are given
for both the non-normalized (a) and normalized mean concentration (Eq. IV.3a) (b). Train
and test samples are represented as squares and circles respectively. The internal variability
uncertainty is represented as error bars corresponding to the 95% confidence intervals estimated
by the bootstrap procedure presented in Sect. III.2.4, page 83.

When collapsing the LES ensemble to one dimension by normalizing the concentra-
tion (Eq. IV.3a), the mean concentration similarity hypothesis appears to not be perfectly
verified: normalized concentration samples close to the same inlet wind directions αinlet

exhibit a significant scatter (Fig. IV.7b). The mean fields are indeed subject to internal
variability as they are not statistically converged over the 200-s analysis period, as ex-
plained in Sect. III.2, page 80. The internal variability of each sample is quantified using
the stationary bootstrap procedure presented in Sect. III.2.4 page 83, with mean block
lengths for the stationary bootstrap re-estimated for each sample. The obtained 95%
confidence intervals, shown as error bars in Fig. IV.7b, effectively explain the variability
between neighboring samples.
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Chapter IV. Reduced-order modeling based on LES statistical predictions

IV.5 Setting up the POD–GPRs model
This section discusses the implementation of the POD–GPRs reduced-order model

and its adaptation to the specific constraints arising from the emulation of the mean
concentration field predicted by LES. In a first step, we propose an approach to select the
number of reduced-basis POD modes in light of the aleatory uncertainty in the train fields
due to the internal variability of the ABL (Sect. IV.5.1). This important contribution
prevents the GPRs from overfitting noise during their optimization and thereby optimizes
the POD–GPRs accuracy. In a second step, we investigate how the field preprocessing
choice affects the POD projection error, which enables us to define best practices to deal
with the wide range of scales involved in the concentration fields (Sect. IV.5.2). Finally,
we validate the GPRs and their ability to infer and represent the internal variability in
the training LES ensemble (Sect. IV.5.3).

IV.5.1 Statistical approach to selecting the number of modes
In this section, we propose a method to make an informed selection of the number of

modes. This method builds on the bootstrap methodology developed in Chapter III to
quantify the effect of internal variability aleatory uncertainty on the POD modes. Results
are given for the concentration field, but the method can be generalized to any field.

The choice of the number of modes is problem-dependent and often comes down to
user choice. By construction, the more the number of modes, the more variance of the
original ensemble is captured in the POD reduced basis. Nony (2023) shows that using
a large number of modes (L = 100 for a training database of 450 LES snapshots) is
necessary to well represent local spatial concentration structures. However, the train
samples used to build the POD are noisy, as shown in Fig. IV.7. This noise is expected
to be captured by high-order POD modes (Forkman et al. 2019). In our context where the
decomposition is used to build predictive reduced-order models, it is desirable to discard
modes that encode mostly noise, since noise is inherently ungeneralizable.

To quantify the noise carried by each mode, we assume that, given its importance,
internal variability is responsible for most of the noise in the train set and we quantify it
using the bootstrap procedure proposed in Chapter III. Then, we propagate the internal
variability of the fields to the POD-reduced coefficients as illustrated in Fig. IV.8. First,
we build one POD reduced-order basis from the original time-averaged train samples.
Then we produce B replicates of each field y(i) of the Halton sequence, using a stationary
bootstrap based on sub-average samples as detailed in Sect. III.2, page 80. Note that the
mean block length used in the stationary bootstrap is re-calculated for each sample. This
is important to take into account the fact that sub-averages correlation in time may vary
in the parameter space, especially with the friction velocity (see Sect. IV.6.4). The field
replicates are then projected on the POD basis to obtain B realizations

{
µb(k(i)

ℓ )
}B

b=1
of

the POD reduced coefficients associated with each mode 1 ≤ ℓ ≤ L.
This approach is applied to the first L = 50 modes. And we use B = 1 000 replicates,

against 5 000 for the model validation in Chapter II, because the current procedure is
quite expensive. Indeed, it requires resampling of the complete field and it is applied to
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Figure IV.8: Schematic diagram of internal variability propagation to POD reduced coeffi-
cients. First, the POD basis is computed based on the LES train set. Then bootstrap repli-
cates µb(y

(i)
LES) of one given field y(i)

LES are computed using the stationary bootstrap algorithm
(Sect. III.2.4.2, page 84). Finally, each replicate is projected on the POD basis to get a set of
B realizations of the POD reduced coefficients of the field y(i)

LES.

each of the 200 LES samples of the Halton sequence. However, we show in Sect. III.4.3,
page 103, that bootstrap estimates of the 2.5th and 97.5th percentiles are already well
converged with B = 1 000 replicates.

Figure IV.9a shows the difference between the L original reduced coefficients of the
mean concentration train sample #11, and the first three bootstrap replicates of these
coefficients as colored dashed lines. It also represents the 95% confidence interval of
this difference, based on the 2.5th and 97.5th percentiles of the bootstrap ensemble.
It is striking that the latter coefficients are way more sensitive to internal variability
than the first ones. For this example in particular, the bootstrap replicates of the first
three reduced coefficients are nearly constant, meaning that these modes correspond to
systematic patterns associated with the wind conditions. Then the amount of internal
variability projected on the POD reduced coefficients increases and starts to explode near
L = 10 before reaching a plateau. This means that the physical noise that lies in the data
is carried by the higher modes. And since the noise is mostly independent of the input
parameters, the distribution of the reduced coefficients in the input parameter becomes
increasingly chaotic as the number of modes increases, as shown in Fig. IV.10.

On the other hand, Figures IV.9b and c show that the more the number of modes the
less the POD projection error. However, the gains in total variance become increasingly
negligible as L increases. This supports the idea that using a small number of modes
is often sufficient (Cordier and Bergmann 2006). Indeed, since the modes are sorted by
decreasing eigenvalues, the largest part of the total ensemble variance is projected on
the first POD modes, they are therefore the ones that represent interesting systematic
patterns in the fields given the parameters θ variability.

Note that the number of modes also affects the computational cost of the POD–GPRs

145



Chapter IV. Reduced-order modeling based on LES statistical predictions

1 10 20 30 40 50

−0.4

−0.2

0.0

0.2

0.4
µ

(k
`)
−
k
`

(a)

Bootstrap replicate µ1

Bootstrap replicate µ2

Bootstrap replicate µ3

Bootstrap ensemble spread
([2.5th, 97.5th] percentiles)

1 10 20 30 40 50
0.4

0.6

0.8

1.0

Q
2(

ln
(c

+
c t

))

(b)

2 4 6 8 10
0.4

0.6

0.8

1.0

Q
2(

ln
(c

+
c t

))

(c)

1 10 20 30 40 50
`

0

20

40

60

80

100

〈s
2
(µ

(k
`)

)〉/
Λ
`

(d)

2 4 6 8 10
`

0

2

4

6

8

10

〈s
2
(µ

(k
`)

)〉/
Λ
`

(e)

Figure IV.9: (a) Difference between the reduced coefficients kℓ of the POD projection of the
mean concentration train sample #11 with (αinlet, u∗) = (−11 °, 0.65 m s−1), and its bootstrap
replicates µ(kℓ) obtained following the procedure illustrated Fig. IV.8. The differences with three
bootstrap replicates are shown as colored dashed lines, and the grey-shaded area corresponds to
the bootstrap ensemble spread of the difference (defined by the 2.5th and 97.5th percentiles).
(b, c) POD projection error evaluated over the train set with the Q2 metric (Eq. IV.36) as
a function of the number of modes. (d, e) The ratio between the averaged variance of the
reduced coefficient bootstrap replicates ⟨s2(µ(kℓ))⟩ and the POD eigenvalue Λℓ associated with
each mode ℓ. The red dotted lines indicate the number of modes selected for this study. Panels
c and e are close-ups of panels b and d.
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Figure IV.10: Distribution of the reduced coefficients kℓ associated to the ℓth POD mode, as
a function of the inlet wind direction αinlet for ℓ = 1 (a), ℓ = 10 (b), and ℓ = 50 (c). Squares
and circles correspond to train and test samples respectively.

reduced-order model. We find that both training and prediction scales linearly with L.
This is coherent since the POD reduced-basis is computed using the randomized method
of Halko et al. (2009) which only estimates the first L modes, and since L independent
GPRs are optimized and used for prediction (Fig. IV.1). Nevertheless, cost is not an
issue, as it is very limited, as illustrated for L = 10 in the Table IV.4 on page 160.

In the end, the choice of the number of modes is a matter of compromise between
POD projection error minimization (Fig. IV.9b, c) and noise minimization (Fig. IV.9a).
We propose to assess this compromise by calculating the ratio of the noise related to
internal variability carried by the ℓth mode and the part of the total ensemble variance
represented by this mode:

⟨s2(µ(kℓ))⟩
Λℓ

, (IV.42)

with ⟨s2(µ(kℓ))⟩ the empirical variance of the bootstrap replicates of the POD reduced
coefficients (see Eq. III.5, page 82) averaged over the train set, and Λℓ the ℓth highest
eigenvalue of the POD decomposition. Figures IV.9d and e, show that this ratio is close
to zero for the six first modes and then increases sharply with the order of the mode
up to approximately 100. This demonstrates that the internal variability of the high-
order POD reduced coefficients dominates the part of explained variance carried by the
associated modes.

Based on this observation, we choose to use L = 10 modes to reduce the mean concen-
tration field in this study. The performances associated with this choice are highlighted
by the dotted red lines in Fig. IV.9, with an explained variance of Q2 = 0.98 and a
maximum ratio of between noise and explained variance reaches approximately 2.5 for
the tenth mode.

We highlight that the selection method we propose has the major advantage of being
entirely a priori: neither the test set nor the GPRs need to be used to choose L. However,
it is a rather qualitative method and hence it only gives an approximate value for L.
Defining an optimal criterion would be an interesting prospect but is outside the scope of
this study. The same analysis with the Tlog-1D preprocessing, which normalizes the data
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by the friction speed, yields results very similar to those shown in Fig IV.9. We use L = 10
for both Tlog and Tlog-1D and throughout the rest of this study, except in Sect IV.6.5 where
we compare a posteriori the results obtained by the complete POD–GPRs with 10 or 50
modes.

IV.5.2 Field preprocessing effect on proper orthogonal decom-
position

We compare the POD projection error for three different field preprocessing: the stan-
dard centering (Eq. IV.21), the logtransformation (Eq. IV.22), and the log-transformation
with friction velocity normalization (Eq. IV.24). To quantify the POD projection error,
we first build the POD reduced basis using the train set as explained in Sect. IV.2.2. Then,
each preprocessed field in the test set is projected on the POD reduced basis (Eq. IV.7).
Finally, the fields are reconstructed using the POD inverse projection (Eq. IV.8) and the
inverse preprocessing operator T −1. This procedure determines the loss of information
associated with the POD compression-decompression.

For the log-transformation in Tlog and Tlog-1D, we use a concentration threshold of
ct = 10−4 ppm (Eq. IV.22). This choice provides an effective compromise that does not
over-cut low concentrations and does not over-emphasize very low variances which are
mainly numerical noise. It represents 100 times the minimal concentration threshold of
the sensors used during the MUST field experiment.

Table IV.2: POD projection error with L = 10 modes and estimated with the different metrics
chosen in Sect. IV.3.2 computed over the test set. Perfect scores of the different metrics are
recalled in the second row. Results are given for three different field preprocessing: the standard
centering T (Eq. IV.21), the log-transformation Tlog (Eq. IV.22), and the log-transformation
with friction velocity normalization Tlog-1D (Eq. IV.24).

Q2(c) Q2(ln(c)) FB NMSE FAC2 MG VG FMS FMS
(1ppm) (0.01ppm)

Perfect score 1 1 0 0 1 1 1 1 1

T 0.93 0.05 -0.10 3.27 0.56 0.22 2.75× 106 0.67 0.43
Tlog -0.05 0.98 -0.03 20.4 0.91 1.00 1.33 0.75 0.93
Tlog-1D 0.84 0.98 -0.02 4.96 0.90 0.96 1.38 0.79 0.94

We first evaluate the POD projection error using the Q2 metric (Eq. IV.36) (see
Sect. IV.3.2). It is a relevant sanity check, as the POD is precisely designed to maximize
the reconstructed variance. Table IV.2 shows the Q2 scores averaged over the test set
and using L = 10 POD modes, which is the number of modes chosen in Sect. IV.5.1. The
POD works as expected, with Q2 scores close to the optimal value for the Q2 on concen-
tration with T and for the Q2 on log-concentration with Tlog and Tlog-1D. Indeed, with
logarithmic rescaling the POD optimizes the variance of the log-concentration, which
implies that it does not necessarily reproduce well the variance of the concentration as
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shown with the rather poor Q2(c) score obtained with Tlog. This is explained because the
area of the domain that corresponds to high variance is not the same for concentration
and log concentration. In particular, a large part of the total concentration variance is
located near the source, whereas it is more on the plume edges for the log concentra-
tion. Interestingly, using the Tlog-1D preprocessing gives good results for both Q2(c) and
Q2(ln(c)).

In addition to the Q2 metric, the POD projection error is also evaluated using the
air quality metrics defined in Sect. III.3.2, page 90. This second round of validation is
essential because a good Q2 score does not necessarily imply good scores for all air quality
metrics, as shown in Table IV.2. In particular, despite its good Q2(c) score, the standard
preprocessing T gives poor air quality metrics scores, except NMSE. This is because, in
this case, the POD puts too much weight on areas of high concentration and represents
poorly the areas where the variance is lower in absolute value. Conversely, with log-
transformation, the weights are distributed more evenly, which improves the overall POD
accuracy. Indeed, Tlog and Tlog-1D obtain air quality metrics scores close to the reference
internal variability error, defined in Sect. IV.3.4. However, the area near the source is
less well represented with this preprocessing as shown by the NMSE deterioration. This
deterioration is less important with Tlog-1D, which is thus the preprocessing that leads to
the best compromise in air quality metrics performances.

A qualitative checking of the reconstructed field obtained by POD compression-
decompression is also performed. Figure IV.11 shows horizontal cut at z = 1.6 m of the
mean concentration for the three preprocessing considered and for the original LES sample
#91. This sample corresponds to the wind conditions (α(91)

inlet, u
(91)
∗ ) = (−8.9 °, 0.38 m s−1)

and is represented as a yellow star in Fig. IV.5. This test sample is chosen because the
errors of the complete POD–GPRs model evaluated with the different air quality metrics
for this sample are close to the average errors over the entire test base (see Fig. IV.19,
page 163). The horizontal cut (Fig IV.11b) illustrates why POD with standard process-
ing T achieves very poor air quality metrics scores (Table IV.2). In this example, the
reconstructed concentration field is far from the reference as high concentrations cover
a larger area, artificial structures appear and the edges of the plume are sharper. On
the other hand, the fields obtained with Tlog and Tlog-1D seem to fit much better, but
the 5-ppm isoline is more elongated than in the reference field, and the zone close to the
source is not perfectly reconstructed (Fig IV.11c, d). This is consistent with the averaged
NMSE scores obtained (Table IV.2).

Figure IV.12 illustrates the spatial structures carried by different modes ψℓ of the
POD computed using Tlog preprocessing. The modes are normalized by the square root
of the ratio between the variance Λℓ explained by the ℓth mode, and the total variance
V(ctrain

LES ) of the field at each node of the domain and computed over the train set. In
this way, the maps in Fig. IV.12 represent spatially the correlation between the original
train set and the POD modes (Nony et al. 2023a). Overall, the POD modes have a fan-
shaped structure with cone shapes of opposite correlation signs that start from the source
and sweep across the domain (IV.12a, c, and e). When the number of modes increases
the number of cones increases, while the correlations decrease which is because the first
modes are the ones that explain most of the original sample variance. This organization
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Figure IV.11: Horizontal cuts at z = 1.6 m of the mean concentration field projected
to the latent space spanned by the L = 10 first POD modes and then reconstructed us-
ing the POD inverse transform (Eq. IV.8). Results are given for the LES test sample #91
with (α(91)

inlet, u
(91)
∗ ) = (−8.9 °, 0.38 m s−1) (a). Three different field preprocessing are compared:

the standard centering (Eq. IV.21) (b), the log-transformation (Eq. IV.22) (c), and the log-
transformation with friction velocity normalization (Eq. IV.24) (d).

echoes the plumes obtained for the different wind direction αinlet of the train set. This
suggests an important contribution of αinlet to the variance of the train set. Near the
source (IV.12b, d, and f), no clear pattern emerges which is probably linked to the fact
less weight is given to this area when building the POD on the log-concentration fields.

It is important to note that the overall accuracy of the POD–GPRs model is lim-
ited by the POD projection error, as GPRs are built in the latent space defined by the
POD reduced base (Fig. IV.1a), and predictions are reconstructed by POD inverse pro-
jection (Fig. IV.1b). Therefore, we decide not to use the standard preprocessing T for
the rest of the study as the standard preprocessing has poor overall accuracy and yields
distorted unphysical concentration fields (Fig IV.11b). An exception is made in Ap-
pendix. B.3, in which we propose an approach combining POD–GPRs with both linear
and log-transformation of the fields to get the best of both approaches.
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Figure IV.12: Horizontal cuts at z = 1.6 m of the normalized POD modes obtained with Tlog

preprocessing. The first row corresponds to a global view of normalized modes within the canopy,
while the second row shows a zoom at the source level. Each line corresponds to a specific mode,
ℓ = 1, 5, and 10 respectively.
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IV.5.3 Ability of Gaussian process regressors to represent in-
ternal variability

In this section, we optimize the GPRs and validate their ability to predict the POD-
reduced coefficients and to account for the effect of internal variability. Results are given
using a Matérn kernel function with ν = 5/2 (Eq. IV.18) and the Tlog fields preprocessing
(Eq. IV.22). Similar results were found with Tlog-1D.
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Figure IV.13: Gaussian Process Regressors hyperparameters obtained by maximum log-
likelihood estimation (see Sect. IV.2.3) for each mode. These hyperparameters are the max-
imum allowable covariance ρℓ (a), the noise variance s2

ℓ (b), and the length scales λαinlet,ℓ and
λu∗,ℓ (c, d). Orange shaded areas, with red edges, correspond to the hyperparameters bounds
prescribed for the optimization. White triangles and red plus symbols correspond respectively to
the average and maximum noise on the reduced coefficients induced by internal variability over
the train set and obtained using the bootstrap procedure depicted in Fig. IV.8.

GPRs optimization results Figure IV.13 shows the hyperparameters found by Maxi-
mum Log-Likelihood (MLL) estimation. As we arbitrarily choose hyperparameter bounds
for the optimization, we check that the optimization solutions are not constrained by
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our choice. In this case, results are satisfying as only one optimized hyperparameter,
λ∗

u∗,5, hits the bound (represented by the red edges in Fig. IV.13). The optimized max-
imum allowable covariance ρ∗

ℓ is around 3 for the first modes and 10 for the last modes
(Fig. IV.13a). This order of magnitude is coherent since the reduced coefficients kℓ have
unit variance (Eq. IV.10b). The increase of ρ∗

ℓ with ℓ means that GPRs should be less
constrained for higher modes. This indicates that differences between neighboring kℓ(θ)
in the parameter space tend to increase with ℓ, which is probably related to the increase
in noise (Fig. IV.9). We also note that the optimized length scales are shorter for αinlet

than for u∗. The GPRs predictions are therefore poorly correlated with train samples
that have distant wind directions, which is reassuring since the shape of the plume and
consequently the POD projection changes strongly with αinlet.

Validation of the estimated noise To validate the noise variance s2
ℓ inferred by MLL

estimation, we compare it to the noise induced by the internal variability of the mean
concentration and propagated to the latent space. To do so, we compute s2(µ(kℓ)) the
variance of the bootstrap replicates of the POD reduced coefficients kℓ generated using
the procedure detailed in Sect. IV.5.1. We find that MLL estimation tends to overesti-
mate the noise compared to internal variability averaged over the train set, but closely fits
the maximum level of internal variability among the train set (Fig. IV.13b). The noise
estimated by MLL is therefore aligned with the worst case, which here corresponds to a
low friction velocity (more details on the distribution of the internal variability are pre-
sented in Sect. IV.6.4). Using the worst-case scenario for the complete inputs parameter
space is fine as it is better not to underestimate the noise. Indeed, noise underestimation
would result in the train set overfitting and unphysical POD–GPRs surface. Overall, we
are very satisfied with these results that demonstrate that GPRs optimization can infer
correctly the LES theoretical noise based on its sampled response surface (Fig. IV.7)
and that that POD–GPRs could be used to account for the fields uncertainty related to
internal variability.

Instead of inferring the noise variance hyperparameter s2
ℓ , we have also considered

directly prescribing it as equal to the estimated variance of the POD reduced coefficients
averaged over the train set ⟨s2(µ(kℓ))⟩. Results show slightly less accurate GPR predic-
tions over the test set when prescribing the noise variance, probably because it removes
a degree of freedom for optimization. In addition, estimating the noise prior requires
a costly bootstrap procedure (Fig. IV.8), we therefore recommend inferring the noise
variance hyperparameter s2

ℓ when optimizing GPRs instead of prescribing it.

Validation of the POD reduced coefficients estimates Figure IV.14 shows the
error of GPRs in predicting the POD reduced coefficients. The error is quantified by
the Mean Squared Error MSE calculated over the train set (Fig. IV.14a), and test set
(Fig. IV.14b). The error is less than 0.05 for every mode which typically represents
about 5% of the POD reduced coefficient values. Moreover, the prediction error is much
smaller for the first modes, which are the most important to predict because they contain
the most information about the system (see Sect. IV.2.2). The fact that GPRs noise
variance aligns with maximum, rather than average, internal variability (Fig. IV.13b)
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Figure IV.14: Mean Squared Error (MSE) of the POD reduced coefficients estimated by the
GPRs over the train set (a), or the test set (b). Results are given for each mode as vertical bars.
The variance of the GPRs (Eq. IV.16b) is also represented by the orange line. White triangles
correspond to the noise induced by internal variability averaged over the train and test sets, and
obtained using the bootstrap procedure depicted in Fig. IV.8.

explains why the MSE over the train set exceeds the averaged internal variability error
(Fig. IV.14a). Finally, in addition to having very good overall accuracy, the variance of
the GPRs (Eq. IV.16b) is in agreement with the error they commit, including on the test
set (Fig. IV.14). We can therefore be confident in this estimate of the uncertainty of the
GPRs predictions, which covers both the regression error and the fact that the data to
be predicted are noisy.
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IV.6 Validation of the POD–GPRs model
In this section, we provide a thorough validation of the POD–GPRs reduced-order

model. Based on the findings of the previous section, the log-transformation preprocessing
is used to build the POD–GPRs and we compare the performances obtained with or
without normalizing by friction speed. We first assess in Sect. IV.6.1 the overall POD–
GPRs accuracy over the test set, the sanity of its parametric response surface, as well as
its efficiency. For each criterion, the 1–NN reduced-order model is used as a benchmark
to evaluate the added value of the POD–GPRs. This comparison between the different
versions of POD-GPRs and the 1-NN is deepened by investigating their robustness to
the reduction in the size of the learning base (Sect. IV.6.2). We also perform cross-
validation to assess the robustness of the POD–GPRs to the composition of the train set
(Sect. IV.6.3), and to describe how POD–GPRs performance varies in parameter space
(Sect. IV.6.4). Finally, we validate the relevance of our method for selecting the number
of modes in Sect. IV.6.5.

IV.6.1 Analysis of the model reduction error
In this section, we validate the POD–GPRs predictions of mean concentration follow-

ing the methodology introduced in Sect. IV.3. In particular, we use both the Nearest
Neighbor (1–NN) and the mean internal variability error as references for the validation
(see Sect. IV.3.1 and IV.3.4). We also compare the results obtained with the two fields
preprocessing with log-scaling (Tlog and Tlog-1D) as they minimize the overall POD pro-
jection error (Sect. IV.5.2). In both cases, we use L = 10 modes in agreement with the
informed choice made in Sect. IV.5.1.

Averaged prediction error The overall performance of the reduced-order models is
quantified using the air quality metrics presented in Sect. III.3.2, page 90. Table IV.3
gives the scores averaged over the test set. The POD–GPR models yield very satisfactory
overall results, with scores close to the error only due to internal variability (IV), which
represents the best achievable accuracy. However, this is not true for the NMSE and
FMS(1 ppm), indicating that POD–GPRs are less accurate at predicting high concen-
trations. We note that normalizing the fields by the friction velocity, i.e. using Tlog-1D,
improves the performances of the POD–GPRs over the high concentrations. In addition,
Table IV.3 demonstrates that there is added value in using the POD–GPRs model, as
it is more accurate than the trivial 1–NN model. We show in Sect. IV.6.2 that this gap
between POD–GPRs and 1–NN increases when the size of the train set decreases. Fi-
nally, we note that the POD–GPRs prediction errors are almost identical to the POD
projection errors (Table IV.2). This leads to the conclusion that the accuracy of the
POD–GPR model is constrained by the accuracy of the POD.

Note that averaging the metric scores over the test set presents several limitations:
in particular FB and MG are very low because of compensation errors, while the other
metrics averaged scores are worsened by the presence of outliers. A detailed sample-by-
sample analysis of the accuracy of the POD–GPRs model is provided in Sect. IV.6.4.
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Table IV.3: Comparison of the validation scores averaged over the test set for the POD–
GPRs and 1–NN reduced-order models. Results for the POD–GPRs are given for the two fields
preprocessing with log-scaling (Tlog and Tlog-1D). Definitions of the validation metrics are given
in Sect. III.3.2, page 90. Perfect scores of the different metrics are recalled in the second row.
The third row corresponds to the mean level of error solely due to internal variability (see
Sect. IV.3.4).

FB NMSE FAC2 MG VG FMS FMS
(1ppm) (0.01ppm)

Perfect score 0 0 1 1 1 1 1

Internal variability 0 1.80 0.95 1.00 1.39 0.83 0.93

1–NN -0.03 7.75 0.87 0.99 2.22 0.74 0.87
POD–GPRs – Tlog -0.04 20.6 0.91 1.00 1.39 0.75 0.92

POD–GPRs – Tlog-1D -0.02 4.61 0.90 0.97 1.40 0.79 0.93

Snapshots comparison For a more detailed assessment of the accuracy of reduced-
order models, we qualitatively examine their predictions. For instance, horizontal cuts
of the mean concentration at z = 1.6 m are given in Fig IV.15, for one LES test sample
and the associated reduced-order model predictions. We choose the test sample #91
(α(91)

inlet, u
(91)
∗ ) = (−8.9 °, 0.38 m s−1), depicted as a yellow star in Fig. IV.5, as a reference

sample for diagnostics because the validation scores obtained by the POD–GPRs model
for this sample are representative of its overall accuracy, as shown in Fig. IV.19. A
more detailed analysis of the model reduction error dispersion is given in Sect.IV.6.4.
Each reduced-order model prediction is in overall good agreement with the test LES
concentration field. 1–NN deviates from the plume towards negative angles as it uses
a neighbor train field with αinlet < α

(91)
inlet. Meanwhile, both versions of the POD–GPRs

tend to overestimate the extension of the higher concentration isolines.

These observations are corroborated by the comparison between the LES and reduced-
order model predictions of the 0.01 ppm and 5 ppm isolines (Fig. IV.16d, e, and f). In ad-
dition, every reduced-order model tends to overestimate the mean concentration between
the containers, with particularly important errors at the source location (Fig. IV.16a, b,
and c). This supports our first analysis, which associates high overall NMSE levels in Ta-
ble IV.3 with errors in high concentrations. This is because, with the log-transformation
applied to the concentration fields, the POD does not reproduce well the high concen-
trations, as already shown in Sect. IV.5.2. Moreover, the near-source area is naturally
uncertain, as it is highly sensitive to internal variability due to its position near the edge
of the canopy and strong concentration gradients. Finally, we note that when building
the POD–GPRs on the fields normalized by the friction velocity with Tlog-1D, it overesti-
mates less the extension of the 5 ppm isoline than his counterpart with Tlog (Fig. IV.16b,
and c), which is consistent with the overall trends presented in Table IV.3.
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Figure IV.15: Horizontal cuts at z = 1.6 m of the mean concentration estimated by the ref-
erence LES model (a), the 1–NN (b), and the POD–GPRs with the Tlog (c) and Tlog1D (d) pre-
processing. Results are given for the test sample #91 with (α(91)

inlet, u
(91)
∗ ) = (−8.9 °, 0.38 m s−1).

Analysis of the parametric response surfaces Another key aspect of reduced-
order model validation is to verify the sanity of the response surface y =MROM(θ). It is
particularly important in this thesis since we will use a reduced-order model in Chapter V
to infer θ given observations of y. Figure IV.17a shows the mean concentration predicted
by the POD–GPRs and 1–NN at the tower B at z = 2 m at constant friction velocity
uplot

∗ = 0.45 m s−1 and varying inlet wind direction. On the other hand, Figure IV.17b
gives the response surface for αplot

inlet = −43 °and varying u∗. In both cases, 1–NN and
POD–GPRs show fine agreement with the LES samples closest to the two segments of
parameter spaces thus scanned (see Fig. IV.5). As expected, the response surfaces of
1–NN are staircase-shaped and much less smooth than those of POD–GPRs which better
reproduce the physics of the LES model as evidenced by the comparison with the LES
response surface (Fig. IV.7).

The POD–GPRs built on the fields normalized by the friction velocity with Tlog-1D
gives more regular profiles than his counterpart with Tlog (Fig IV.17). For the u∗ profile,
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Figure IV.16: Horizontal cuts at z = 1.6 m of the absolute difference between LES and
reduced-order models mean concentration predictions, for the 1–NN (a), and the POD–GPRs
with the Tlog (b) and Tlog1D (c) preprocessing. The predictions are also compared for two specific
iso concentration levels: 0.01 ppm and 5 ppm (d, e, f), with the isolines predicted by LES and
by the reduced-order model in blue and green respectively. Results are given for the test sample
#91 with (α(91)

inlet, u
(91)
∗ ) = (−8.9 °, 0.38 m s−1).
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Figure IV.17: Reduced-order model estimates of the mean concentration at tower B at z = 2 m
as a function of the inlet wind direction αinlet (a), and of the friction velocity u∗ (b). When
varying one parameter, the other is set constant to either uplot

∗ = 0.45 m s−1 (a), or αplot
inlet =

−43 ° (b). The test samples closest to the two segments of parameter space thus scanned are
represented by red triangles and are also identified in Fig. IV.5. Results are given for three
different reduced-order models: POD–GPRs with Tlog, POD–GPRs with Tlog-1D, and 1–NN, as
orange dashed lines, green dashed-dotted line and blue solid line respectively. Orange and green
shaded areas correspond to the 95% confidence intervals estimated by the POD–GPRs according
to the procedure detailed in Sect. IV.2.5. The uncertainty of the LES test samples due to internal
variability is also depicted as red error bars.

this is simply because its dependency on the friction velocity is imposed by the fields
rescaling (Eq. IV.25). For the αinlet profile, this is because, by collapsing the train set
into one dimension, the number of neighboring train samples for one wind direction αinlet

drastically increases (Fig. IV.5b), thus smoothing the interpolation. It is interesting to
note that the POD–GPRs model with Tlog is also able to retrieve the inversely proportional
dependence of concentration on friction speed (Fig. IV.17b).

One main feature of the proposed POD–GPRs modeling is that we have access to
estimate the prediction uncertainty by propagating the GPRs variance in the physical
space as developed in Sect. IV.2.5. Figure IV.17 also depicts the estimated 95% confi-
dence intervals along the mean estimate profile. These intervals are based on the 2.5th
and 97.5th of the log-normal distribution which is the distribution of the POD–GPRs
estimates when using Tlog-1D and Tlog-1D by construction, as demonstrated in Sect. IV.2.5.
Results show that these intervals effectively cover the departure between the LES model
and the POD–GPRs. Moreover, the total POD–GPRs uncertainty is coherent with the
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field uncertainty induced by internal variability but always larger since it also accounts
for the regression error.

Model efficiency We evaluate the efficiency of the POD–GPRs model as we aim to
use it in contexts requiring real-time prediction or multi-query evaluation for ensemble
data assimilation. Table IV.4 gives the computational costs of the training, which can
be performed offline, and of the prediction. The efficiency objective appears to be con-
vincingly met by the POD–GPRs model with a prediction time of less than a tenth of
a second and a total training time of about 30 s. Note that the POD–GPRs training
time, which includes the fields preprocessing, the POD basis computation, and the GPRs
optimization (Fig. IV.1a), is insignificant compared to the construction of the learning
base, that cost 5.7 million core hours.

Table IV.4: Computational costs of the POD–GPRs reduced-order models using two different
preprocessing Tlog and Tlog-1D. Computational costs are expressed in seconds separately for the
complete reduced-order model training and a single prediction. Results are averaged over 10
training realizations and 1000 predictions. All the computations were performed using a single
core of an Intel Ice Lake processor.

Computational cost Training Prediction

POD–GPRs – Tlog 30 s 3.0× 10−2 s
POD–GPRs – Tlog-1D 29 s 3.0× 10−2 s

IV.6.2 Behavior of the reduced-order models for restricted
train set

In this section, we assess how prediction errors of the different reduced-order models
evolve as the size of the learning database decreases. This makes it possible to define a
compromise between accuracy and database size, which can be used as a guideline for
applying our approach to new case studies. It is especially important since the cost of
building the LES training database is very high (Table IV.1). In addition, by decreasing
the size of the train set without changing the test set, we gain insights into the ability of
a model to generalize from limited training data.

To evaluate the robustness of each reduced-order model to the size of the train set, we
train the model for decreasing train set size Ntrain ∈ {160, 128, 96, 64, 48, 32} by randomly
removing train samples. For the comparison to be fair, we always evaluate the averaged
prediction errors over the same test set of Ntest = 40 samples. Note that we do not use
FB nor MG for this diagnostic as their averaged value over the test is too prone to error
compensation (see Fig. IV.19). Figure IV.18 shows that, for FAC2, FMS(1 ppm), and
FMS(0.01 ppm) the decrease in accuracy is fairly constant for each reduced-order model
considered. By contrast, VG scores explode with the 1–NN but not with POD–GPRs.
Concerning the NMSE, results are contrasted, while the evolution of the scores is quite
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Figure IV.18: Reduced-order model mean concentration prediction error for decreasing sizes
of the train set. The prediction error is estimated using some of the standard air quality metrics
presented in Sect. III.3.2, page 90: namely FAC2 (a), FMS(1 ppm) (b), FMS(0.01 ppm) (c),
NMSE (d), and VG (e). Results are given for the 1–NN as blue squares and for the POD–GPRs
with both Tlog and Tlog−1D preprocessing as orange circles and green triangles respectively.

regular for the 1–NN it is not monotonous at all for the POD–GPRs. NMSE scores
quickly deteriorate when decreasing the size of the train size, but eventually, improve
for very small train sets. This behavior is probably linked to the high POD projection
error near the source when using log-transformation (see Table IV.2 and Fig. IV.16). In
general, the best performances are obtained by the POD–GPRs model using Tlog−1D. It
is in particular the more accurate for the minimum train set size (Ntrain = 32). This is
explained because normalizing the fields by the friction velocity increases the density of
the train set (Fig. IV.5b).

Overall, the POD–GPRs models, and especially with Tlog−1D, cope better with the
reduction in the size of the train set than the 1–NN model. This motivates the use of
a more sophisticated model reduction method when the size of the learning database is
limited.
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IV.6.3 Sensitivity to the choice of the training data
We apply in this section the K-fold cross-validation methodology presented in

Sect. IV.3.3 to test the sensitivity of the POD–GPRs model to the composition of the
train set. Results are given for the POD–GPRs with the Tlog−1D preprocessing.

Table IV.5: Comparison of the POD–GPRs mean concentration prediction error averaged
over five test sets following the 5-fold cross-validation procedure presented in Sect. IV.3.3. Min-
imum and maximum errors over the different test sets are also given. The prediction error is
evaluated by the standard air quality metrics presented in Sect. III.3.2, page 90. Results are
given for the POD–GPRs built using the Tlog−1D preprocessing. Perfect scores of the different
metrics are recalled in the second row. The third row corresponds to the mean level of error
solely due to internal variability (see Sect. IV.3.4).

FB NMSE FAC2 MG VG FMS FMS
(1ppm) (0.01ppm)

Perfect score 0 0 1 1 1 1 1

Internal variability 0 1.80 0.95 1.00 1.39 0.83 0.93

Average score -0.02 4.06 0.90 0.97 1.36 0.79 0.93
Minimum score -0.03 3.65 0.90 0.96 1.30 0.78 0.93
Maximum score -0.02 4.61 0.91 0.98 1.34 0.80 0.93

We use K = 5 folds for the cross-validation in order to keep the same test-train
ratio (25%) as the one previously used in Sect. IV.6. Table IV.5 gives the POD–GPRs
mean concentration prediction errors averaged over the five different test sets. Recall
that we start over the training for each fold so that each POD–GPRs validation exercise
is independent. As shown by minimum and maximum errors over each fold, apart from
the quadratic metrics NMSE and VG, the scores are not affected by changes in the train
set. The NMSE and VG metrics vary more since they measure data dispersion and are
therefore more sensitive to the presence of outliers in the test blocks.

In conclusion, it is not necessary to proceed to a more in-depth analysis of the variance
of the POD–GPRs validation scores since the metrics are not significantly sensitive to
the choice of the training data.

IV.6.4 Dispersion of errors over test samples
We take advantage of this cross-validation methodology to examine the distribution of

the POD–GPRs errors over the test samples. Indeed, each sample in the Halton sequence
(Fig. IV.5) once belongs to one of the five test blocks. Interestingly, we find that the POD–
GPRs errors are not uniformly distributed in the input parameter space. Figure IV.19
gives the air quality metrics distribution as a function of the friction velocity parameter.
Overall, we note a quite large dispersion of the metrics scores, especially for the quadratic
metrics NMSE and VG, with the presence of outliers indicating test samples for which
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Figure IV.19: POD–GPRs mean concentration prediction error for each sample evaluated
using a 5-fold cross-validation procedure (Sect. IV.3.3) and sorted by increasing friction velocity.
The prediction error is evaluated by the standard air quality metrics presented in Sect. III.3.2,
page 90: namely FB (a), NMSE (b), MG (c), VG (d), FMS(1 ppm) (e), FMS(0.01 ppm) (f),
and FAC2 (g). Results are given for the POD–GPRs built using the Tlog−1D preprocessing. The
test sample #91 used as an example for diagnostics in Sect. IV.6 is represented as a yellow
star. Red lines correspond to an internal variability error model fitted for each metric.

the POD–GPRs are less accurate. It also demonstrates that the very good global FB and
MG scores presented in Table IV.3 are due to error compensation. Moreover, we highlight
that POD–GPRs tend to perform less well for low friction velocities (Fig. IV.19b, c, d,
f, g), except for the FMS(1 ppm) which deteriorates for high friction velocities. This
singular behavior for the FMS(1 ppm) is due to a zoning effect as the area corresponding
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to the 1-ppm isoline decreases when u∗ decreases. The MG distribution indicates that the
POD–GPRs model tends to overestimate the low concentration at low friction velocities.
For the other metrics, the decrease in POD–GPRs accuracy is due to an increase in the
internal variability when u∗ decreases, which makes the mean concentration inherently
noisier and therefore impossible to perfectly predict.

To demonstrate this point, we estimate the error solely due to internal variability
for each metric and each sample using the methodology presented in Sect. IV.3.4. Then
we fit a parametric model for each metric to account for the dependency of the internal
variability on the friction velocity. The resulting internal variability error models are
represented as red lines in Fig. IV.19. The mean internal variability error is zero for
FB and MG as these metrics only measure systematic bias and not noise. For all the
other metrics, the error solely due to internal variability is inversely dependent on the
friction velocity. This is because when the advection slows down, the time correlation of
the tracer concentration increases, and the sampling error due to the lack of independent
realizations over the 200-s analysis period therefore also increases.

We have also investigated the dependence of the POD–GPRs accuracy on the inlet
wind direction parameter αinlet, and it appears that POD–GPRs errors are more uni-
formly distributed in this dimension. We only find zoning effects for FMS(1 ppm) and
FMS(0.01 ppm) as the plume delimited by these concentration levels occupies a smaller
volume within the analysis domain when the wind direction carries the plume outside the
containers array, i.e. for αinlet ≈ 30 °or αinlet ≈ −90 °.

The same exercise was applied to the POD–GPRs built using the Tlog fields prepro-
cessing. We find the same structure of dependence of the error on the friction velocity
but with higher dispersion of every score which explains the better overall performances
obtained with Tlog−1D (Table IV.3). We also note that without field normalization by the
friction velocity, the POD–GPRs model does not reproduce the MG bias and has better
FAC2 scores for the low friction velocities. This may indicate that the friction velocity
similarity used for rescaling does not hold perfectly for low friction velocities. Finally,
in both cases, the ensemble-averaged POD–GPRs prediction error is quite close to the
mean internal variability error (Fig. IV.19). Therefore, our model reduction approach is,
on average, close to the best achievable accuracy but can still be improved concerning
the dispersion of its errors.

IV.6.5 Why is it primordial to restrict the number of modes?
In Sect.IV.5.1, we present a method for selecting, a priori, the number of POD modes

as a compromise between the total variance embedded in the POD reduced basis and
the amount of noise related to internal variability carried by the modes. For the mean
concentration field, this approach gives an optimal value of approximately L = 10 modes.
In this section, we check the relevance of this choice a posteriori. Results are given with
the fields preprocessing Tlog, but similar results are found using Tlog-1D.

Figure IV.20 shows that increasing the number of modes L reduces the model reduc-
tion error averaged over the test. This result is supported by three different metrics,
i.e. NMSE, FMS(1 ppm), and VG, that assess the ability of the reduced-order model to
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Figure IV.20: POD–GPRs mean concentration estimation error as a function of the number
of the modes L and evaluated with NMSE (a), FMS(1 ppm) (b), and VG (c) over the test set.
Error levels corresponding to the selected number of modes (L = 10) are shown in red dotted
lines.

predict both high and low concentrations. As previously seen for the POD projection
error (Fig. IV.9d), validation metrics reach a plateau but for a larger number of modes
(L ≈ 15–25) than the a priori retained number of modes (L = 10).

However, increasing the number of modes leads to a deterioration of the POD–
GPRs response surfaces, as shown for the mean concentration at tower B at z = 2 m
in Fig. IV.21. It makes the response surfaces very noisy and even physically implausible.
In particular, with L = 50 modes, the POD–GPRs model is no longer able to retrieve
the inversely proportional dependence of concentration on friction speed expected from
theory (Fig. IV.21b). This deterioration is because modes of high orders are likely to only
account for noisy structures due to internal variability (Fig. IV.9a). They are therefore
not informative on systematic structures due to the wind conditions, implying that high-
order POD reduced coefficients are chaotically distributed in the input space (Fig IV.10c)
and thus nearly impossible to predict correctly for the GPRs. These errors pile up to
deteriorate the POD–GPRs predictions since they are defined as linear combinations of
the reduced coefficients predicted by the GPRs (Eq. IV.4). In addition, increasing the
number of modes also significantly increases the variance of the POD–GPRs because it
is expressed as the exponential of the sum of the variances of the L GPRs that compose
the POD–GPRs (Eqs. IV.29b and IV.32).

Interestingly the clear deterioration of the model response surface when using a large
number of modes is not reflected in the overall performances (Fig. IV.20), except for the
NMSE which ends up increasing when the number of modes becomes too large. This is
explained because global metrics are somehow short-sighted as they compare the reduced-
order model predictions with the test fields spatially before averaging each score obtained
over the test set (Eq. IV.35). It demonstrates the need to avoid drawing conclusions based
solely on scalar metrics.

In light of these tests, the a priori selection method for the number of modes presented
in Sect. IV.5.1 seems very effective. Indeed, the chosen compromise appears to obtain
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Figure IV.21: POD–GPRs estimates of the mean concentration at tower B at z = 2 m as a
function of the inlet wind direction αinlet (a), and of the friction velocity u∗ (b). When varying
one parameter, the other is set constant to either uplot

∗ = 0.45 m s−1 (a), or αplot
inlet = −43 ° (b).

The test samples closest to the two segments of parameter space thus scanned are represented
by red triangles and are also identified in Fig. IV.5. Results are obtained using the Tlog fields
preprocessing and are given for two numbers of POD modes: L = 10 as the orange dashed line,
and L = 50 as the cyan solid line. Associated shaded areas correspond to the 95% confidence
intervals estimated by the POD–GPRs according to the procedure detailed in Sect. IV.2.5. The
uncertainty of the LES test samples due to internal variability is also depicted as red error bars.

very good validation scores (Table IV.3) while avoiding problems of response surface
noise. We, therefore, continue to use the preselected value of L = 10 in the following.

Additional results obtained with the POD–GPRs reduced-order model, which are not
essential to the main objective of this thesis, are presented in Appendix B. It includes
an illustration of the ability of the POD–GPRs model to emulate other LES fields, an
application to global sensitivity analysis, and a technique for getting the best out of both
POD–GPRs predictions, with and without logarithmic transformation.
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IV.7 Conclusion

Summary In this chapter, a data-driven reduced-order model is built as a surrogate
for the LES dispersion model presented in Chapter II. To do so, we use the POD–
GPRs method constructed in the thesis of Nony (2023), which involves a reduction step
using Proper Orthogonal Decomposition (POD) and a regression step using independent
Gaussian Process Regressors (GPRs). Following the conclusions of Chapter III on the
main uncertainties of the LES model, we generate a database of LES realizations by
varying the two parameters that have the most impact on the model predictions: the inlet
wind direction and the friction velocity for which the theoretical dependency is known.
The POD–GPRs reduced-order model is trained on one part of this database and we
evaluate its ability to emulate the LES response surface for different wind conditions on
the rest of the database. The construction and validation of the POD–GPRs model is
focused on the mean concentration prediction as it is the quantity we seek to assimilate in
the data assimilation framework proposed in Chapter V. Nevertheless, the POD–GPRs
can emulate any other field predicted by the LES model, as illustrated in Appendix B.

Contributions This application to a more realistic context, i.e. the MUST disper-
sion field campaign, has enabled us to improve performance and our understanding of
the POD–GPRs method even further. In particular, we show that the POD projec-
tion error heavily depends on the field preprocessing, which is, therefore, a key model
design choice. In Sect. IV.5.2, we show that, for the mean concentration, using a log-
transformation preprocessing instead of the linear centering used by Nony (2023) greatly
improves the accuracy of the POD. Besides, we emphasize that validation should not be
based solely on the Q2 metric, since it can fail to detect non-physical predictions. We
also demonstrate in Sect. IV.6.1 that normalizing the fields by the friction velocity during
the preprocessing improves the overall performances of the POD–GPRs, and we therefore
recommend doing so.

Link with internal variability One of the major new contributions of this study is
the use of the internal variability quantification approach proposed in Chapter III to
build and validate the POD–GPRs model in an informed way. In particular, we develop
in Sect. IV.5.1 a method to propagate the internal variability of the LES fields to the
coefficients of the POD projection. From this method, we: i) show that POD modes
of high order mostly encode the noise in the LES train samples, ii) propose a criterion
to choose a priori the number of modes, iii) validate the GPRs noise hyperparameters
found during their optimization in Sect. IV.5.3. In our case, we find an optimal value
of 10 modes which is far less than the recommendation from Nony (2023). In addition,
we validate a posteriori the relevance of this choice as we show that using more modes
can, despite the better apparent performance, lead to non-physical POD–GPRs response
surfaces (Sect. IV.6.5). Finally, internal variability is also used throughout POD–GPRs
validation as it represents the best achievable accuracy.
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Estimation of the POD–GPRs uncertainty To answer the general objective of
this thesis of quantifying and controlling the dispersion model uncertainties, we propose
a method to quantify the uncertainties on the POD–GPRs predictions. To this end, we
derive in Sect. IV.2.5 the equations for propagating the variance predicted by the GPRs
to the quantity of interest. We show that the resulting uncertainty accounts for both the
GPR regression errors and the noise induced by internal variability. Finally, we verify in
Sect. IV.6 that the estimated uncertainty properly explains the differences between LES
test samples and POD–GPRs predictions. This, therefore, constitutes a new key asset of
the POD–GPRs methodology. In particular, we use it in Chapter V for data assimilation
to account for the reduced-order model error and prevent putting too much confidence
in the model during the analysis. Nevertheless, note that POD projection error is not
embedded yet in our estimation of the POD–GPrs uncertainty, and quantifying it would
be an interesting prospect.

Choice of the best reduced-order model and perspectives Finally, we show
that the POD–GPRs reduced-order model is very accurate at emulating the LES mean
concentration predictions. It predicts particularly well the general shape of the plume
and provides good-looking response surfaces for varying wind conditions (Sect. IV.6.1).
In addition, the POD–GPRs model is very efficient, with a prediction of a complete 3D
field in less than a tenth of a second. We also demonstrate that there is an added value
in using POD–GPRs compared to a trivial model such as the Nearest Neighbor, both in
terms of accuracy and robustness to decrease in the train set size. To conclude on the
POD–GPRs limits, error dispersion among test samples is quite important and could be
improved. More importantly, the POD–GPRs noticeably lacks accuracy in areas of high
concentration. We demonstrate in Sect. IV.5.2 that it comes from POD projection errors.
In Appendix B.3, we investigate the use of a pragmatic approach called Mixture-Of-
Experts which combines POD–GPRs with both linear and log-transformation of the fields
to get the best of both approaches. To improve it even more, better dimension reduction
would be key in our opinion. This could be done by looking to better field prescaling, such
as the one used by Mons et al. (2017), or using a mixture of PODs (Tipping and Bishop
1999), or nonlinear reduction techniques such as convolutional autoencoders (Murata
et al. 2020; Nony 2023), but is outside the scope the present study. Another direct
perspective of this work is its extension to handle the dependency on other parameters
such as the source location or the atmospheric stability condition.
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Chapter V

Data assimilation for wind condition
estimation

In this chapter, we assemble and test the data assimilation (DA) system to
address the thesis problematic of efficiently estimating and reducing uncertainties
in LES models for microscale atmospheric dispersion.

To begin with, we present a comprehensive overview of related studies that we
have identified in the literature. From their cross-analysis emerge important trends
that have motivated the design of our DA system, in particular the choice of cor-
recting meteorological boundary conditions and the use of a reduced-order model.
We have also identified avenues for improvement based on this cross-analysis, par-
ticularly in error modeling, which motivates the main methodological contributions
of this chapter.

To continue, we provide a concise introduction to fundamental DA concepts
and subsequently present the ensemble Kalman filter (EnKF) algorithm, our chosen
solution for solving the DA problem in a statistical way.

We then explain in detail how this algorithm is applied to the MUST trial
2681829 to estimate meteorological boundary conditions using local concentration
measurements averaged over a finite time horizon. A major effort is made in our DA
system to define realistic error models for observations, background parameters and
model predictions, which include the uncertainty linked to the internal variability
of the ABL.

A first step in validating the DA system is carried out with twin experiments,
i.e. assimilating synthetic observations generated from an LES prediction. This pro-
vides a controlled environment for checking and calibrating the EnKF. In particular,
we investigate the effect of the number of members and the effect of sampling noise
from ensemble generation. In a second step, the DA system is tested by assimilat-
ing the real field measurements from the MUST field campaign. We evaluate the
system’s ability to correct the large-scale meteorological boundary conditions, and
how these corrections improve mean concentration predictions.

169



Chapter V. Data assimilation for wind condition estimation

Chapter outline
V.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

V.1.1 Data assimilation review on the improvement of microscale at-
mospheric CFD models . . . . . . . . . . . . . . . . . . . . . . 171

V.1.2 Strategy adopted in this thesis . . . . . . . . . . . . . . . . . . 175
V.2 Data assimilation theoretical framework . . . . . . . . . . . . 178

V.2.1 Data assimilation problem and notations . . . . . . . . . . . . 178
V.2.2 The ensemble Kalman filter . . . . . . . . . . . . . . . . . . . . 181

V.3 Application to the MUST trial 2681829 . . . . . . . . . . . . 184
V.3.1 Concentration observations and anamorphosis . . . . . . . . . . 184
V.3.2 Observation error covariance matrix . . . . . . . . . . . . . . . 185
V.3.3 Uncertainty in background boundary conditions . . . . . . . . 187
V.3.4 Choice of the background parameters . . . . . . . . . . . . . . 189
V.3.5 Model definition and error . . . . . . . . . . . . . . . . . . . . . 191

V.4 Validation and calibration of the data assimilation system . 193
V.4.1 Twin experiment principle . . . . . . . . . . . . . . . . . . . . . 193
V.4.2 Results of the baseline twin experiment . . . . . . . . . . . . . 195
V.4.3 Effect of the ensemble size and sampling error estimation . . . 198

V.5 Assimilation of the real field measurements . . . . . . . . . . 200
V.5.1 Results for the MUST experimental data assimilation . . . . . 200
V.5.2 Effect of the concentration anamorphosis threshold . . . . . . . 205

V.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

170



V.1. Introduction

V.1 Introduction
This introduction aims to explain how data assimilation (DA) can improve CFD model

predictions in microscale atmospheric contexts and to further elaborate the design of our
reduced-cost DA system, whose general flowchart was already sketched in Chapter I.
We provide a review of related studies in Sect. V.1.1, before positioning our solution in
Sect. V.1.2.

Throughout this chapter, we use the main concepts, vocabulary and techniques of DA
introduced in Sect. I.3.2, page 35.

V.1.1 Data assimilation review on the improvement of
microscale atmospheric CFD models

Recent studies have highlighted the significant capabilities of DA in improving mi-
croscale or local-scale atmospheric CFD models. In this section, we present a cross-
analysis of the main studies we have identified in the literature, summarized in Table V.1.
Some of these studies are applied to microscale dispersion in urban environment (Mons
et al. 2017; Aristodemou et al. 2019), including to the MUST experiment (Defforge et al.
2021); others to pedestrian wind comfort/natural ventilation (Sousa et al. 2018; Sousa
and Gorlé 2019) or to wind energy resource assessment (Defforge et al. 2019; Bauweraerts
and Meyers 2021).

Choice of the control vector A key aspect of DA system design is the choice of the
control vector which defines the variables that are actually inferred by DA by translating
discrepancies between the observations and the model counterparts into a correction in the
control space. Concerning the control vector definition, the studies presented herein can
be grouped into two main approaches: those opting for state estimation to correct initial
conditions for the model as in traditional DA applications, and those opting for parameter
estimation (respectively in blue and green in Table V.1). Defforge (2019) explains that
this choice should be based on the ratio between the spatial scale and the temporal scale
of the problem under consideration. In large-scale atmospheric simulation, the spatial
extent of the domain L is much larger than the typical scale of motion, L ≫ T × U
with T the horizon time of the simulation and U the characteristic wind speed. This
implies that initial conditions have a much larger impact on model predictions than
boundary conditions, as illustrated in Fig. V.1a. The opposite occurs at the microscale
(L ≪ T × U), which means that initial conditions quickly fade away and boundary
conditions become predominant (Fig. V.1b). This theoretical argument is confirmed by
the study of Aristodemou et al. (2019), which shows very limited persistence of the state
correction with a microscale dispersion LES model.

Choice of the CFD approach LES is chosen for the problem of reconstructing a
sequence of instantaneous atmospheric states (Aristodemou et al. 2019; Bauweraerts and
Meyers 2021) since RANS only provides ensemble-averaged predictions. Meanwhile, both
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Figure V.1: Schematic view from Defforge (2019) of the influence of initial and boundary
conditions on the predictions of an atmospheric numerical model. Two scenarios are repre-
sented: large-scale meteorology (a), which typically corresponds to regional-to-synoptic scales in
Table I.1, and microscale meteorology (b). L, T , and U are the associated characteristic scales
of length, time, and velocity. a) The prediction is mainly influenced by the initial conditions
(IC), except for the green-shaded areas. b) Conversely, the prediction is mostly defined by the
boundary conditions (BC).

approaches are suitable for parameter estimation using time-averaged observations (Ta-
ble V.1). To the best of our knowledge, no study in this context has compared DA
performance using RANS and LES. One can expect the DA problem to be better posed
using LES as it has reduced turbulence modeling uncertainties (Gousseau et al. 2011;
García-Sanchez et al. 2018). However, the increased computational cost of LES may
limit the number of model predictions in the DA algorithm, and thus its accuracy. Fi-
nally, we note that, by adding the turbulent kinetic energy in the control vector, the
DA system of Defforge et al. (2021) based on a RANS model can estimate wind profiles
that are not in equilibrium. While the perturbation is readily imposed on the turbulent
kinetic energy which is a transported quantity in RANS, it requires more care in LES as
realistic perturbations have to be added to the resolved turbulent flow field.

These studies also show the relevant use of reduction techniques. For instance, Aris-
todemou et al. (2019) and Bauweraerts and Meyers (2021) reduce the state dimension
using singular value decomposition and proper orthogonal decomposition (POD). Mons
et al. (2017) also employ POD but in the ensemble space. In this way, they mitigate the
sampling error caused by the limited number of model evaluations for DA given the high
cost of CFD models (20 to 60 model evaluations in their study). Finally, Sousa et al.
(2018) build a reduced-order model based on polynomial chaos expansion (PCE) (Wiener
1938) as a surrogate for the CFD model. This drastically reduces the DA computational
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cost and enables the use of more ensemble members compared to other studies (Mons
et al. 2017; Defforge et al. 2019, 2021), at the expense of introducing a new source of error
in the DA scheme, i.e. the model reduction error. However, this disadvantage may be
very limited, for example, Rochoux et al. (2014a) show that replacing a fire propagation
model with a surrogate model based on PCE leads to similar DA performance. Note that
it is possible to adopt a different approach to solving the CFD model cost problem, for
instance, Defforge et al. (2019) use a state-of-the-art DA algorithm, the IEnKS (Bocquet
and Sakov 2014), to reduce the number of model predictions required compared to a
standard 3D–Var algorithm.

Choice of the observable The choice of observable (i.e. the quantity of interest in the
observation space) is another important aspect that emerges from this literature cross-
analysis. First, we mention that some studies present twin experiments, i.e. assimilate
synthetic observations obtained from a model prediction. This is the first usual level of
validation of a DA system, ensuring that the inverse problem is well-posed. Some studies
then go a step further, assimilating field observations to demonstrate the robustness and
maturity of their DA system. The rather exploratory state estimation studies of Aris-
todemou et al. (2019) and Bauweraerts and Meyers (2021) assimilate a large amount of
data, covering entire planes, thanks to laboratory measurement resources and a mod-
eled lidar. All other studies assimilate a small number of local observations (between 1
and 33) from measurement masts. For dispersion studies, Mons et al. (2017) and Def-
forge et al. (2021) both demonstrate that assimilating wind measurements in addition
to tracer concentration measurements greatly improves the reconstruction of the control
vector. Sousa et al. (2018) also show that sensor position has a critical effect on DA per-
formance. In particular, the DA problem becomes severely ill-posed if sensors are placed
in areas where the local flow is mostly determined by the local building arrangement. To
a priori optimize sensor positions for DA, Sousa et al. (2018) propose a brute force strat-
egy, while Mons et al. (2017) develop a method based on model sensitivity analysis. As
these methods require multiple model predictions, both studies employ a reduced-order
model as a surrogate for the CFD model.

Error modeling We note that error modeling – which is central to DA – can be
improved compared to the studies presented in Table V.1. On the one hand, back-
ground parameter errors are rigorously estimated from micro-climatology constructed
from nearby weather stations (Sousa et al. 2018; Sousa and Gorlé 2019; Defforge et al.
2021) or mesoscale atmospheric model simulations (Defforge et al. 2019). However, this
can introduce representativeness errors as the meteorological conditions in the area of
interest can significantly differ from observations at more distant stations or from large-
scale model simulations due to local effects (Pimont et al. 2017). On the other hand,
observation errors are chosen arbitrarily in all studies, at best by an expert’s choice.
Observation errors are also assumed to be uncorrelated, which is probably incorrect as
stated by Defforge et al. (2021). However, Sousa et al. (2018) show through sensitiv-
ity tests that observation error estimation significantly affects DA accuracy. Ultimately,
model error is never taken into account in the DA algorithm, except for the study by
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Sousa and Gorlé (2019), which quantifies the reduced-order model error compared to the
CFD model used as a reference. Still, this may underestimate the total uncertainty in
CFD model predictions.

To further improve DA applications in microscale atmospheric applications, there is
a need for an appropriate representation of both numerical predictions and observation
errors (Mons et al. 2017). In addition, we note that most studies only take into ac-
count errors originating from the measuring instruments, but as Chapter III shows, the
uncertainty linked to the internal variability of the ABL can be of the same order of
magnitude or even significantly larger than measurement errors. This emphasizes the
need to represent internal variability in error models.

V.1.2 Strategy adopted in this thesis
In this thesis, we propose a supplementary proof of concept of the potential of DA to

enhance microscale atmospheric CFD models. Drawing on the state of the art presented
in Sect. V.1.1, we present our own DA system in detail in this section.

Choice of the control vector First, we choose to use DA for estimating the large-
scale meteorological boundary conditions of the LES model of the MUST field experiment
presented in Chapter II. This is motivated by the huge impact of boundary condition
uncertainties on microscale CFD models (García-Sánchez et al. 2014; Lucas et al. 2016;
Wise et al. 2018); reducing them via DA would thereby significantly improve prediction
accuracy (Mons et al. 2017; Sousa et al. 2018; Sousa and Gorlé 2019; Defforge et al. 2019,
2021). In this thesis, the control vector θ is therefore defined as

θ = (αinlet, u∗)T, (V.1)

with αinlet and u∗ the direction and friction velocity of the incident flow. We selected
these two boundary condition parameters as they are the ones that have the greatest
impact on LES predictions, according to the sensitivity tests presented in Chapter III.
More complex parameterization of the boundary conditions could be adopted, thereby
increasing the control space dimension and thus the number of degrees of freedom to
solve the DA problem (Defforge et al. 2019). However, this aspect is outside the scope
of the present study. Moreover, we do not include the pollutant source position in the
control vector, as we assume that this is perfectly identified in the MUST field experiment
(Biltoft 2001).

Use of a reduced-order model Following the approach proposed by Rochoux et al.
(2014a) and Sousa et al. (2018), we use a reduced-order model as a surrogate for the LES
model to drastically reduce the cost of the DA system, and even open the way to real-time
applications. To do so, we rely on the POD–GPRs surrogate model built in Chapter IV,
which emulates the LES surface response for varying incoming wind directions and ve-
locities, and which can provide accurate mean concentration field predictions in less than
a tenth of a second. This allows us to carry out a larger number of experiments to adjust
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and optimize the DA system we propose, which is particularly relevant as this system
is built from scratch. In addition, benefiting from the estimation of the POD–GPRs
uncertainty (see Sect. IV.2.5, page 131), we take into account the model reduction error
in the DA system. Finally, we emphasize that this approach does not make the CFD
model cost problem disappear, but shifts this cost problem to the offline construction of
the reduced-order model, which requires learning from a database of LES predictions.

Choice of the main quantity of interest In this thesis, we aim to improve the
prediction of the mean concentration field using in-situ concentration measurements. We
do not assimilate other measurements such as wind speed and direction provided by local
anemometers, as this would greatly simplify the DA problem. The relationship between
large-scale meteorological conditions and local flow is indeed relatively straightforward
given the simplified urban canopy of the MUST case. In this way, our DA system would
require less measurement instrumentation efforts to be used in an operational context.
Here, we consider averages over the 200-s analysis period defined by Yee and Biltoft
(2004). This is a first step in developing a sequential DA system that assimilates a series
of observations over small periods to correct in real time the concentration field evolution.

Accounting for microscale internal variability An important innovation in our
approach is to take into account the irreducible uncertainties related to the microscale
internal variability of the ABL in the modeling of observation and model errors. For
this purpose, we benefit directly from the developments made in Chapters III and IV
to i) quantify the associated uncertainty using the stationary bootstrap algorithm from
Politis and Romano (1994), and ii) take into account this uncertainty in the reduced-order
model error thanks to the ability of GPR models to accurately identify the noise related
to internal variability. This is an important step forward in guaranteeing the robustness
of DA for real-world microscale dispersion applications.

Choice of the data assimilation algorithm Among the various DA algorithms re-
ported in the literature (Carrassi et al. 2018), we choose to use an EnKF (Evensen 1994,
2003; Houtekamer and Mitchell 1998). It is an off-the-shelf and easy-to-implement al-
gorithm, which is regarded as a benchmark solution for DA problems (Asch et al. 2016;
Carrassi et al. 2018). This algorithm relies on an ensemble of model queries to handle
non-linearity in the model response surface and to mitigate the effect of model errors,
which is relevant in our case given the strong impact of internal variability in model pre-
dictions (see Chapter III). The independence of the ensemble members, which makes the
algorithm highly parallelizable, and the use of a reduced-order model make it possible to
use very large ensembles to reduce sampling errors while still providing fast estimates.
Finally, as an ensemble-based method, the EnKF provides a probabilistic estimate of the
state of the system, which is fully in line with the general concern of this thesis and is
highly valuable for risk assessment applications.

Figure V.2 shows a schematic of the complete reduced-cost DA system designed in
this thesis to reduce uncertainty on meteorological boundary conditions and thus improve
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microscale dispersion predictions based on LES. Notations as well as the EnKF algorithm
are properly introduced in the following section.

Sensors

Background

parameters 𝜽!
Predicted

state 𝐱"

In-situ 
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Numerical Model
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Figure V.2: Specification of the reduced-cost DA system designed to address the thesis prob-
lematic. The pre-trained POD–GPRs reduced-order model constructed in Chapter IV is used as
a surrogate of the microscale LES dispersion model presented in Chapter II. The POD–GPRs
prediction of the physical system state xf , corresponding to prior and uncertain meteorological
boundary condition parameters θb, is mapped onto the observation space using the observation
operator H. An EnKF algorithm is then used to estimate corrected input parameters θa based
on in-situ measurements yo. The corresponding corrected estimate of the system state xa is
finally obtained by a new reduced-order model prediction.

177



Chapter V. Data assimilation for wind condition estimation

V.2 Data assimilation theoretical framework
In this section, we introduce the essential theoretical basis of DA based on the book

by Asch et al. (2016), before presenting the EnKF algorithm. Wherever possible, we use
standard notations as defined by Ide et al. (1997).

V.2.1 Data assimilation problem and notations
The objective of DA is to improve the estimation of the control vector by optimally

combining available observations, the prediction of the physical model, and all prior
knowledge on the control vector, taking into account their respective uncertainties. In
this thesis, the control vector is restricted to meteorological boundary condition param-
eters, as motivated in Sect. V.1.2. The following presentation is therefore given from the
perspective of parameter estimation. Moreover, we do not consider the time dimension
as the DA problem we are interested in is about estimating time-averaged variables.

The background error corresponds to the difference between the prior estimation of
the control vector θb, called background, and its true value θt:

eb = θb − θt, (V.2)

that is unknown. However, it is possible to estimate a priori the background error statis-
tics, and in particular the background error covariance matrix:

Bij = E
[
[eb]i[eb]j

]
. (V.3)

This is a symmetric matrix of dimension d×d, with d the dimension of the control space.
It is assumed to be positive definite, hence invertible. Moreover, the background error
is assumed to be unbiased, i.e. E[eb] = 0, or the bias has been subtracted. These are
standard DA assumptions (Asch et al. 2016).

The matrix B is a key input to the DA problem since it quantifies the uncertainty on
the background control vector, and therefore the confidence that can be attributed to it.

The model error corresponds to the misfit between the true physical system state
xt and the state xf predicted by the numerical model M using the background control
vector as input:

em = xf − xt,

=M(θb)− xt.

(V.4)

The state vector x ∈ RN denotes a field or a collection of fields discretized on a grid of
dimension N . The model error represents all errors that occur during a model prediction;
they can be linked to the choice of the computational mesh, the choice of the physical
parameterizations, the calibration of the numerical or physical parameters, etc. Note
that considering the very fine mesh used in this thesis (resolution of 60 cm in the area
of interest, see Sect. IV.4.3.4, page 141), the representativeness error related to mesh
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interpolation is assumed to be negligible here. The approach we propose to account for
the model error em is described in Sect. V.3.5.

The observation error quantifies how available observations1 yo differ from the truth:

eo = yo −H(xt), (V.5)

where H denotes the observation operator that maps the model state vector onto the
observation space. It can be a complex and nonlinear function, typically when using
indirect satellite or lidar observations. However, in this thesis, since the available obser-
vations are direct in-situ measurements, the H operator is a simple selection matrix that
interpolates the state vector at sensor positions. We also introduce the observation error
covariance matrix2:

Rij = E [[eo]i[eo]j] , (V.6)

of dimension p × p with p the number of available observations. As for the background
error, a standard DA assumption is that observation error is unbiased, i.e. E(eo) = 0
(Asch et al. 2016). The matrix R is an input of primary importance for DA, as it
quantifies the uncertainty related to observations.

Estimation problem

DA aims to optimally estimate the control vector θ using the background estimation
θb and associated uncertainty B, the predictive model M, the available measure-
ments yo and related uncertainty R.

The DA solution to this estimation problem θa is called the analysis. There are of course
many ways to define what is an optimal estimation. Yet, in DA the optimal solution is
defined as the one that minimizes the magnitude of the analysis error:

ea = θa − θt, (V.7)

which can be done by minimizing the trace of the analysis error covariance matrix A
defined as follows:

Aij = E [[ea]i[ea]j] . (V.8)

In addition to the analysis, DA techniques can estimate A and thus provide information
on the uncertainty that comes with the analysis θa considering all sources of uncertainty.

1The vector of observations, usually denoted yo in DA (Ide et al. 1997), should not be confused with
the predictions of the reduced models noted y in Chapter IV.

2Note that the Reynolds tensor is denoted R in Chapters II, III and IV, but the observation error
covariance matrix is also denoted by R by convention in DA (Ide et al. 1997). As the Reynolds tensor
is not involved in this chapter, we retain the usual notation for the observation error covariance matrix
for the rest of the chapter.
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Optimal estimation under simplified assumptions Assuming that the observa-
tion operator and the model operator are linear and perfect and that the background
estimation is unbiased, the analysis can be written using statistical interpolation as a
linear combination of all available information:

θa = θb + K
(
yo − G(θb)

)
, (V.9)

where G = H ◦M is the generalized observation operator combining model integration
and interpolation at sensor positions for parameter estimation, and where K is a gain
matrix. By minimizing the trace of the analysis error covariance matrix A associated
with Eq. V.9, it is possible to derive the optimal gain K∗, also known as the Kalman
gain:

K∗ = BGT
(
R + GBGT

)−1
, (V.10)

where G is the linear generalized observation operator. By replacing K by K∗ in Eq. V.9,
we obtain the so-called best linear unbiased estimator (BLUE), whose error covariance
matrix reads

A = (I−K∗G)B(I−K∗G)T + K∗RK∗T,

= (I−K∗G) B,

(V.11)

with I the identity matrix. It is possible to show that this linear solution to the DA
problem is also an analytical solution to Bayes’ theorem when considering linear model
and observation operators, and that background and observation errors follow Gaussian
distributions of zero mean (Asch et al. 2016).

Note that if we also consider that control and observation spaces are one-dimensional,
the Kalman gain can be simply written as

K∗ = σb
2

σb
2 + σo

2 , (V.12)

with σb and σo the background and observation error variance, i.e. the one-dimension
counterparts of B and R. This highlights that the analysis (Eq. V.9) is the result of a
balance between the background and observation uncertainties. Thus, if we underestimate
background uncertainty, the analysis will tend to stick to the prior estimate as K →
0. Conversely, if we underestimate the observation error, the analysis will overfit the
observations and will ignore the background information. In this one-dimensional case,
the analysis error variance σa can be expressed as

1
σa

2 = 1
σb

2 + 1
σo

2 , (V.13)

meaning that the confidence in the analysis is the sum of the confidence in the observation
and the confidence in the background. All the proofs of the results stated in this section
can be found in the book by Asch et al. (2016) or in the DA introduction lectures notes
from Bocquet (2014).
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This very simplified example in 1-D (Eqs. V.12–V.13) highlights that uncertainty
estimation is at the core of DA, and the importance of providing accurate error estimates
in a DA algorithm. Note that in real applications, the dimensions of the control, state
and observation spaces can be very large, and the model and observation operators can
be highly nonlinear, thereby requiring the use of more advanced DA techniques.

V.2.2 The ensemble Kalman filter
As motivated in Sect. V.1.2, we choose to solve the DA problem using the EnKF

algorithm (Evensen 1994, 2003; Houtekamer and Mitchell 1998; Ehrendorfer 2007). It is
a variant of the Kalman filter (Eqs V.9–V.10), which requires neither model lineariza-
tion, nor the propagation of large matrices as in Eqs V.10–V.11, which can be difficult
when dealing with high dimensional spaces. The EnKF relies on a collection of control
vectors, called the members of the ensemble, which are meant to be representative of
the uncertainty in the control vector and which are used to compute the Kalman Gain
using a Monte Carlo approach. Yet, it differs from the particle filter (Gordon et al. 1993)
as it relies on the assumptions that observation and background distributions are nor-
mally distributed. Since the model dynamics are evaluated for each ensemble member,
the EnKF is able to (at least partly) account for model non-linearities. However, it only
provides an exact solution to Bayes’ theorem when the model is linear and when error
distributions are Gaussian. Nevertheless, the EnKF has proven to be very efficient on
a large number of academic and operational DA problems including nonlinear problems
(Asch et al. 2016).

Among the reported implementations of the EnKF (Houtekamer and Zhang 2016),
we use in this thesis the stochastic EnKF (Burgers et al. 1998; Houtekamer and Mitchell
1998). Note that EnKF is usually applied sequentially as observations become available,
but since we are considering time-averaged quantities in this study, it can be simplified
to a single assimilation cycle. The complete procedure is given in Algorithm 1. It relies
on two main steps:

a) the prediction step, in which a prediction is made for each of the Ne members
(θb

i )Ne
i=1 that sample the background control vector distribution N (0, B),

b) the analysis step, where the error cross-covariance matrices BGT and GBGT are
estimated using the ensemble members as follows:

BGT ≈ 1
Ne − 1

Ne∑
i=1

(θb
i − θ

b)
(
H(xf

i )−H(xf
i )
)T

GBGT ≈ 1
Ne − 1

Ne∑
i=1

(
H(xf

i )−H(xf
i )
)(
H(xf

i )−H(xf
i )
)T

.

(V.14)

(V.15)

where (xf
i )Ne

i=1 = (M(θb
i ))Ne

i=1 is the ensemble of predictions associated to the back-
ground control vector ensemble obtained from the first step. These estimates are
then used to compute the Kalman gain using Eq. V.10, and the analysis is estimated
independently for each member using Eq. V.9.
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Algorithm 1 Stochastic Ensemble Kalman Filter (EnKF) for parameter estimation
Inputs

▷ Ensemble size Ne

▷ Background parameters θb ∈ Rd

▷ Background error covariance matrix B ∈ Rd×d

▷ Measurements y ∈ Rp

▷ Observation error covariance matrix R ∈ Rp×p

Outputs
▷ Parameter analysis ensemble Ea = (θa

1 , . . . ,θa
i , . . . ,θa

Ne
) ∈ Rd×Ne

Initialization
Sample the background ensemble

Eb = (θb
1, ...,θb

i , ...,θb
Ne

)T with θb
i ∼ N (θb, B)

a) Prediction step
for i = 1, ..., Ne do

Propagate the parameters in state space

xf
i =M(θb

i )

b) Analysis step
Estimate the error covariance matrix

BGT = 1
Ne − 1

Ne∑
i=1

(θb
i − θ

f )
(
H(xf

i )−H(xf
i )
)T

GBGT = 1
Ne − 1

Ne∑
i=1

(
H(xf

i )−H(xf
i )
)(
H(xf

i )−H(xf
i )
)T

Compute the Kalman gain K∗ = BGT(GBGT + R)−1

Sample an ensemble of perturbed observations

Y = (yo
1, ..., yo

Ne
)T with yo

i ∼ N (y, R)

for i = 1, ..., Ne do
Update each ensemble member θa

i = θb
i + K∗(yo

i −H(xb
i))

From the ensemble of analysis members obtained from the EnKF (Algorithm 1), we
derive the optimal estimate as the ensemble-average vector:

θa = 1
Ne

Ne∑
i=1
θa

i , (V.16)

but also an estimation of the analysis error covariance matrix:

A = 1
Ne − 1

Ne∑
i=1

(θa
i − θa)(θa

i − θa)T. (V.17)
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It is worth noting that each member is independent, implying that each prediction and
analysis are also independent, making the EnKF easily parallelizable and thus computa-
tionally efficient. Only BGT and GBGT computations require all the members together.

The main specificity of the stochastic EnKF lies in the fact that, during the analysis,
each member is compared with a different observation vector yo

i , obtained by perturbing
the actual observations yo

i ∼ N (yo, R). If the observations were not perturbed, the
analysis error would be underestimated (Burgers et al. 1998; Houtekamer and Mitchell
1998). In particular, under the assumptions of linear operators (H andM) and normally
distributed errors, and in the limit of a large ensemble size, the resulting analysis error
covariance matrix (Eq. V.17) would tend to

A = (I−K∗G)B(I−K∗G)T,

instead of the theoretical optimal value (Eq. V.11).
Beyond the intrinsic limitations linked to its optimality assumptions (linear model

and Gaussian-distributed errors), the EnKF is affected by sampling noise resulting from
the restriction on the ensemble size (Ehrendorfer 2007; Asch et al. 2016). While sampling
errors due to observation perturbations can be avoided by using more sophisticated imple-
mentations such as the ensemble-transform Kalman filter (Bishop et al. 2001; Houtekamer
and Zhang 2016), sampling errors due to background ensemble sampling are inherent to
the EnKF. In Sect. V.4.3, we quantify the background sampling noise for our case study.

Two techniques are commonly used in DA to enhance EnKF estimations: localiza-
tion and inflation (Anderson and Anderson 1999; Hamill et al. 2001; Ehrendorfer 2007).
Localization aims at filtering non-physical correlations between variables of the control
vector that can appear in the analysis covariance matrix A as assimilation cycles progress.
Inflation consists of increasing the spread of the ensemble after each analysis to avoid en-
semble collapse. However, we do not use these standard techniques in this thesis since
i) we only consider one cycle, which prevents the accumulation of errors; and ii) the di-
mension of the control vector is very low (d = 2) which limits sampling errors compared
to state estimation problems where d = N ≫ Ne.
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V.3 Application to the MUST trial 2681829

In this section, we design a numerical experiment to evaluate the ability of the EnKF
algorithm to improve the accuracy of the LES model of the MUST trial 2681829 presented
in Chapter II. We define a scenario where meteorological data available are incomplete
or highly uncertain and in which the wind boundary conditions of the model are inferred
using in-situ measurements provided by the observation network defined in Sect. V.3.1.
We provide realistic models for the so-called observation and background error covariance
matrices R (Sect. V.3.2) and B (Sect. V.3.3). The prior wind conditions are specified in
Sect. V.3.4, and the predictive model alongside its uncertainty in Sect. V.3.5.

V.3.1 Concentration observations and anamorphosis

As a reference observation network, we use one of the setups employed by Defforge
et al. (2021) for the same MUST trial. It includes 13 tracer concentration sensors, dis-
tributed over towers C (at z = 1, 2, 3 m), D (z = 1, 2, 3 m) and T (z = 1, 2, 4, 6, 8, 10 m),
plus the DPID sensor #26 (at z = 1.6 m). Figure V.3 shows the location of these differ-
ent sensors within the container array. Sensor measurements that are not assimilated are
used for validation. We use time-averaged measurements over the 200-s analysis period
defined by Yee and Biltoft (2004). As mentioned in Sect. V.1.2, we limit our study to
the assimilation of concentration measurements.

We exclude the observations that are under the sensor detection threshold for both
assimilation and validation steps. Indeed, while these near-zero concentration measure-
ments may be informative about the orientation and size of the plume, they may also
correspond to a problem with the sensors (as in the case of two sensors at tower C and
one at tower D), and assimilating them could lead to inconsistent results.

As tracer concentration values are always positive or zero, observation errors are not
normally distributed. To ensure better compliance with the assumptions of the EnKF
(Algorithm 1), we use the concentration anamorphosis used by Liu et al. (2017) and Def-
forge et al. (2021). This consists in assimilating the log-transformed mean concentration
observations ỹ instead of the actual concentration measurements y:

ỹ = ln(max(y, 0) + yt), (V.18)

with yt a given threshold to avoid putting too much weight on low-concentration val-
ues. In this study, we use the maximum sensor detection threshold yt = 0.04 ppm. A
sensitivity test of the DA performance to the choice of yt is carried out in Sect. V.5.2.
This transformation relies on the assumption that concentration observations follow a
log-normal distribution, which is a fairly standard assumption (Cassiani et al. 2020).
Note that Eq. V.18 is the same transformation as the preprocessing (Eq. IV.22) used in
Chapter IV, and with which we obtain the best POD reduction accuracy (see Sect. IV.5.2,
page 148).
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Figure V.3: Schematic view of the reference sensor network used for DA. Blue squares
correspond to sensors from which measurements are assimilated, and green circles correspond to
validation sensors. Towers A, B, C, D and the central tower T are identified by the corresponding
letters. Black rectangles represent the shipping containers used to mimic the urban canopy.
The propylene-source location of trial 2681829 is indicated by the red star. The red arrow
corresponds to the reference upstream wind direction estimated using all measurements available
(see Sect. II.4.2.1, page 62). For a more detailed overview of the different types of sensors, we
refer the reader to Fig. II.3, page 59.

V.3.2 Observation error covariance matrix
We consider three contributions to the observation error: i) the sensor uncertainty eµ,

ii) the uncertainty induced by the internal variability of the ABL eν (see Chapter III),
and iii) the representativeness error er that corresponds to the information lost in the
discretization of the system state. The observation error (Eq. V.5) thus reads:

eo = eµ + eν + er. (V.19)

Among these three sources of errors, we already assumed in Sect. V.2.1 that represen-
tativeness errors er are negligible considering the fine grid resolution used to represent
the system state. For the instrument measurement error eµ, we did not find information
either in the technical report (Biltoft 2001) or in the main MUST modeling studies (Yee
and Biltoft 2004; Milliez and Carissimo 2007; Dejoan et al. 2010; Nagel et al. 2022).
Moreover, we demonstrated in Chapter III that concentration measurements are subject
to significant aleatory uncertainty due to the internal variability of the ABL. Therefore,
we make the assumption that internal variability eν accounts for most of the observation
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error, hence:
eo ≈ eν . (V.20)

Note that this is the case for the wind velocity as we demonstrate in Sect. III.4.1.2,
page 94, that internal variability outweighs anemometer measurement errors.

To estimate statistics of the observation error due to internal variability, we use
the stationary bootstrap procedure based on sub-averages resampling and presented in
Sect. III.2, page 80. In particular, the observation error covariance matrix (Eq. V.6) is
estimated as

R = 1
B − 1

B∑
k=1

(
µk(ỹ)− µ̂(ỹ)

) (
µk(ỹ)− µ̂(ỹ)

)T
, (V.21)

where {µk(ỹ)}B
k=1 is the set of B bootstrap replicates of the vector of observations ỹ after

anamorphosis (Eq. V.18), and where µ̂(ỹ) = 1
B

B∑
k=1

µk(ỹ) is the ensemble average of the

replicates. To limit sampling errors, we use a very large number of bootstrap replicates
(B = 50 000). One asset of this approach is that it provides estimates of the cross-
covariance terms, which characterize error correlation between sensors, which is often
assumed to be zero due to a lack of information (Sousa et al. 2018; Aristodemou et al.
2019; Defforge et al. 2021).
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Figure V.4: Observation error covariance matrix R (Eq. V.6) estimated using bootstrap
replicates of the log-transformed concentration measurements (Eq. V.21) with (a) and without
normalization (b). Rows and column indices correspond to the sensors from which measurements
are assimilated, arranged in the following order: tower C (1, 2, 3 m), tower D (1, 2, 3 m), tower
T (1, 2, 4, 6, 8, 10 m), and DPID sensor #26 at z = 1.6 m.

Figure V.4 shows the estimated observation error covariance matrix. The distribution
of the covariances is realistic with normalized covariances that are unitary on the diag-
onal and that decrease as the distance between sensors increases (Fig. V.4a). Moreover,
Figure V.4 b shows that absolute covariances are particularly high for tower D sensors
and the DPID sensor #26. This is explained by their location near the plume edge (see

186



V.3. Application to the MUST trial 2681829

Fig. V.3), which is especially sensitive to internal variability as demonstrated in Chap-
ter III (see for example Fig. III.8, page 97). In addition, the logarithmic anamorphosis
(Eq. V.18) relatively increases the variance of low concentration values also located on
the plume edges. Tower D sensors seem to have a low correlation with other sensors,
whereas measurements from tower C and T sensors, and to a lesser extent from DPID
sensor #26, are significantly correlated. This is because the tower D sensors are located
on the edge of the plume, while the others are aligned with the direction of the flow.

V.3.3 Uncertainty in background boundary conditions
This section aims to quantify the uncertainty in the estimation of the background

boundary conditions θb = (αinlet, u∗)T when using measurements of neighboring meteo-
rological stations. We assume that data from tower S, located 30 meters from the area
of interest, are not available. The reason for this is twofold: on the one hand, we aim to
demonstrate that the proposed DA system can be generalized to a large number of urban
configurations that are not necessarily as well instrumented as the MUST field campaign;
on the other hand, this allows us to use the measurements from tower S for validation. To
define the background parameters and quantify the associated uncertainty, we instead use
data measured by the SAMS meteorological stations located a few kilometers around the
container array. We have access to 12 full days of acquisition with a temporal resolution
varying from 5 to 15 minutes and for the four stations #8, #9, #15, and #16 shown
in Fig. II.2a, page 58. For uncertainty quantification, we exclude stations #15 and #16
as we find significant measurement biases compared to the other two stations. This is
probably explained by the fact that these stations are closer to the mountains.

Figures V.5a, b, and c show the distribution of the differences in wind direction and
friction velocity measurements between SAMS stations #8 and #9. These differences are
indicative of the error caused by using measurements from the SAMS stations to define the
boundary condition background parameters. Results show significant dispersion of the
errors, especially for the wind direction for which the standard deviation reaches 65 ◦. To
validate these estimates, we also take a look at the differences between measurements from
the SAMS station #8 and tower S anemometers (d, e, f). This involves fewer samples as
only 40 hours of common acquisitions are available. Tower S measurements are averaged
over 200-s periods. The resulting distributions are much narrower, especially for the
wind direction, whose standard deviation is nearly divided by three. This is because
i) the distance between SAMS station #8 and tower S is much smaller than that between
stations #8 and #9, ii) the measurements from SAMS station #9 can be influenced by
its proximity to more mountainous terrain (Fig. II.2a, page 58), and iii) over the 12 days
of acquisition used for the first estimate, there are many time instants for which the wind
speed is almost zero and where the wind direction measurement becomes erratic.

Estimated error distributions are approximately centered around zero, which supports
the hypothesis that background estimates are unbiased (see Sect. V.2.1). We also recall
that, within the EnKF framework, background (and observation) errors are assumed to be
normally distributed (see Sect. V.2.2). Using a Kolmogorov-Smirnov test (Massey 1951),
we find that the plausibility of such distribution is rejected in every case. Looking at the
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Figure V.5: Estimation error distributions for the incoming wind friction velocity (a, d) and
direction (b, e), and associated scatter plots (c, f). The first row corresponds to the differences
between measurements at SAMS stations #8 and #9 over 12 days during the MUST campaign
(see Fig. II.2, page 58); and the second row shows the differences between SAMS station #8
and tower S anemometers during the trials at our disposal, giving a total of 40 h of acquisition.
The red line corresponds to the fitted normal distribution (obtained by maximum likelihood es-
timation).

histograms presented in Fig. V.5, the hypothesis of normally distributed errors is deemed
reasonable for friction velocity but not for wind direction. This is a standard problem in
circular statistics (Jammalamadaka and SenGupta 2001), which is simply explained by
the fact that wind direction is periodic and thus defined over the [−π, π] interval, while
normal distributions are defined on the set of real numbers. Other distributions, such
as the von Mises distribution (Mardia and Zemroch 1975), are more appropriate to deal
with circular quantity. However, adapting the EnKF (Algorithm 1) to these distributions
is outside the scope of the present work. Another possible solution would be to use a
particle filter algorithm (Gordon et al. 1993) to account for the real error distributions.

Finally, we define the background error covariance matrix as follows:

B =
σ2

αinlet
0

0 σ2
u∗

 (V.22)

with σαinlet
= 25 ◦ and σu∗ = 0.09 m s−1 the standard deviation of the inlet wind direction

and friction velocity background errors, estimated based on the error distributions pre-
sented in Fig. V.5. For friction velocity, we choose the worst-case scenario (Fig. V.5a).
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This is not feasible for the wind direction because of the definition range of the predic-
tive model, i.e. [−90 ◦, 30 ◦] (see Sect. V.3.5). We therefore limit the standard deviation
of the wind direction background error to 25 ◦, which is consistent with the error esti-
mated using tower S (Fig. V.5e). Nevertheless, we point out that in a real scenario,
local measurements such as the ones obtained at tower S would not be available to define
the background parameters and therefore could not be used to define the background
error covariance matrix. Increasing the operability range of the reduced-order model is
a straightforward way to improve this work, but the pollutant plume would not cross
the area of interest for such angles. Finally, defining B as a diagonal matrix is justified
because friction velocity and wind direction errors are uncorrelated (Fig. V.5c, f).

V.3.4 Choice of the background parameters
The mean wind direction and friction velocity measured by the SAMS stations during

the pollutant release of the MUST trial 2681829 are reported in Table V.2. Except for
the station #16, SAMS measurements are really close to our reference best estimates
using tower S and ASU anemometer measurements (see Sect. II.4.2.1, page 62). This
proximity is explained by the fact that the MUST test site is a flat desert where the ABL
can develop homogeneously (Defforge 2019).

However, we aim to test the ability of our DA system to correct larger biases in the
wind boundary conditions, more representative of the departure between meteorological
stations and local conditions that can occur in a real urban canopy (García-Sánchez
et al. 2014; Sousa and Gorlé 2019). We therefore choose to significantly perturb the
measurements to define the background parameters used in the DA algorithm. This
is also done by Defforge et al. (2021): in this study, a 10 ◦ deviation is applied to the
background wind direction. The chosen background parameters θb = (αb

inlet, ub
∗) are

reported in Table V.2. The difference between the background friction velocity and
the reference value measured by tower S and ASU anemometers is equal to 0.16 m s−1,
i.e. corresponding to twice the standard deviation of the background error we estimate
(Eq. V.22). For wind direction, we impose a deviation ∆αinlet = +16 ◦. This is less than
one standard deviation but this is comparable to the difference measured by the SAMS
station #16, which is heavily influenced by its local topography (see Fig. II.2a, page 58),
and this is larger than the deviation used by Defforge et al. (2021).

Table V.2: Values of the wind direction αinlet, and friction velocity u∗ measured near the
area of interest by tower S and ASU anemometers and measured further away by the SAMS
meteorological stations. Station locations are shown in Fig. II.2, page 58. The last column
corresponds to the background parameters θb actually used in the present DA experiments.

Tower S & ASU SAMS #8 SAMS #9 SAMS #15 SAMS #16 θb

αinlet −41 ◦ −45 ◦ −53 ◦ −37 ◦ −58 ◦ −25 ◦

u∗ 0.73 m s−1 0.79 m s−1 0.78 m s−1 0.79 m s−1 0.91 m s−1 0.57 m s−1

Since friction velocity is always larger or equal to zero, its distribution cannot be
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Chapter V. Data assimilation for wind condition estimation

properly represented by a normal distribution as shown in Fig. V.6. Since this problem
is analogous to that of assimilating concentration measurements presented in Sect. V.3.1,
we choose to apply an anamorphosis to friction velocity. A log-normal distribution is
fitted to all available observations at tower S and SAMS stations #8 and #9 by maximum
likelihood estimation (Fig. V.6). Note that the distribution of the tower S measurements is
slightly shifted towards higher friction velocity values because very few experiments were
carried out in near-zero wind conditions (Yee and Biltoft 2004). We check the likelihood
of this distribution using the Kolmogorov-Smirnov test (Massey 1951). We find a p-value
> 0.05, indicating that this distribution assumption is not rejected based on the 3 198
samples considered. In the end, we propose to apply the same logarithmic anamorphosis
as for concentration (Eq. V.18). We found that the threshold has a relatively limited
impact on the DA estimates; we retain the value of ut = 0.04 m s−1.

0.0 0.5 1.0
u∗ (m s−1)

0

1

2

3

4

D
en

si
ty

SAMS #8

SAMS #9

Tower S averaged over 200 s

Fitted log-normal distribution

p–value = 0.58

Figure V.6: Friction velocity distribution estimated at SAMS stations #8 and #9 over 12
days during the MUST field campaign and at tower S, over 200-s periods, during the 40 h of
available measurements. The red line corresponds to the fitted log-normal distribution on all
available measurements by maximum likelihood estimation.

This means that the DA algorithm is going to estimate the logarithmic friction velocity
ũ∗ = ln(u∗ + ut) instead of the friction velocity u∗. The background error covariance
matrix B must therefore be modified accordingly. For this purpose, we use the following
formula:

σ2 = ln
(

1 + V(X)
E(X)2

)
, (V.23)

which links the variance σ2 of ln(X) with the variance and expected value of X when
X follows a log-normal distribution. In our case, X is the non-transformed friction
velocity u∗, and we take for its expected value the chosen background value ub

∗ reported
in Table V.2. Note that this transformation does not drastically change the background
error distribution compared to the one presented in Fig. V.5b, e.
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V.3.5 Model definition and error
As motivated in Sect.V.1.2, we use the POD–GPRs reduced-order model built in

Chapter IV as a surrogate of the LES dispersion model within the DA system. In our
case, this reduces the prediction cost from 20 000 core hours to 30 milliseconds (see
Table IV.4, page 160). This opens up the possibility of using a much larger number of
members (Ne) in the EnKF in order to reduce sampling errors and to better account for
the model response surface.

Concerning the parameters of the POD–GPRs model, we truncate the POD basis
at L = 10 modes following diagnostics from Chapter IV, and we use the Tlog–1D pre-
processing, which includes logarithmic transformation (Eq. IV.22) and friction velocity
normalization (Eq. IV.24). Using these parameters, the POD–GPRs reduced-order model
very well reproduces the LES model predictions, except in the direct vicinity of the source
(see Sect. IV.6, page 155). The error added in the DA process due to the reduced-order
model is therefore limited.

In addition, when using friction velocity normalization, POD–GPRs predictions de-
pend only linearly on friction velocity. By assuming that the similarity theory holds for
any friction velocity u∗ ∈ R∗

+, the definition range of the model can be extended to:

Ωθ = [−90 ◦, 30 ◦]× R∗
+. (V.24)

This is convenient for ensemble-based DA methods as it allows representing larger uncer-
tainty in the friction velocity. However, one should keep in mind that the POD–GPRs
model was not validated for friction velocity outside the [0.0740, 0.8875] m s−1 interval.
Extra caution should be taken with predictions for very low friction velocity as the LES
model was not designed for near-zero wind conditions, and model reduction errors related
to internal variability tend to increase inversely proportional to friction speed (as shown
in Sect. IV.6.3).

Accounting for the model error is important as it prevents the DA algorithm from
overtrusting model predictions, while they are inherently uncertain as demonstrated in
Chapter III. For this purpose, Sousa and Gorlé (2019) perturb model predictions in
the EnKF algorithm (Algorithm 1) by adding a Gaussian noise term. In this thesis,
we directly take advantage of the fact that POD–GPRs not only predict time-averaged
concentration but also their error distribution as shown in Fig. V.7. As demonstrated
in Chapter IV, these distributions explain both internal variability and model reduction
errors. We therefore define the model prediction function M as a random realization
of the POD–GPRs (several examples are represented by the dashed lines in Fig. V.7)
obtained from the posterior distribution of the GPRs used in the reduced-order model
(Eqs. IV.15–IV.16, page 127) instead of the mean prediction corresponding to the solid
line in Fig. V.7.

This approach allows for a more realistic representation of the model error distribu-
tions compared to the approach of Sousa and Gorlé (2019), especially for low concentra-
tion values, as POD–GPRs predictions follow log-normal distributions. More importantly,
our method directly accounts for the spatial correlation in the model errors. Finally, it
is worth noting that the model randomness adds variability in the EnKF analysis step

191



Chapter V. Data assimilation for wind condition estimation

0 1 2 3
c (ppm)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
z

(m
)

POD–GPRs mean prediction

POD–GPRs uncertainty
(95% confidence interval)

POD–GPRs prediction samples

Figure V.7: Vertical profile of the mean concentration at tower B estimated by the POD–
GPRs reduced-order model with Tlog–1D preprocessing. The mean estimate is represented by the
black solid line, while the gray shaded area corresponds to the associated 95% confidence interval
estimated using the procedure detailed in Sect. IV.2.5, page 131. Dashed lines correspond to
random samples of POD–GPRs predictions, obtained from the posterior distributions of the
Gaussian processes.

(Algorithm 1), which can help to avoid ensemble collapse. This last point is particu-
larly of interest from an uncertainty quantification perspective, as it prevents the error
associated with the final DA estimation from being underestimated.
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V.4. Validation and calibration of the data assimilation system

V.4 Validation and calibration of the data assimila-
tion system

This section presents a first step in the validation and calibration of the EnKF al-
gorithm used to correct and reduce the uncertainty on the LES wind boundary condi-
tion parameters. This is done using the twin experiment framework properly defined in
Sect. V.4.1, in which synthetic observations are assimilated instead of the real measure-
ments. The operability of the DA system is thus assessed in Sect. V.4.2. Next, we further
investigate the effect of the sampling error inherent to the EnKF algorithm in Sect. V.4.3,
which enables us to calibrate the optimal ensemble size for the EnKF.

V.4.1 Twin experiment principle
In twin experiments, also known as observing system simulation experiments (OSSEs)

(Arnold and Dey 1986; Hoffman and Atlas 2016), the true control vector θt and system
state xt are assumed to be known. Synthetic observations are then generated from xt us-
ing the observation operator and adding a random noise representative of the observation
error:

yo = H(xt) + ϵ, with ϵ ∼ N (0, R). (V.25)
In this thesis, we use the baseline mean concentration field LES prediction presented
in Chapters II and III as the true state. The associated true control vector is thus
defined as our best guess of the boundary conditions using all measurements available:
i.e. θt = (−41 ◦, 0.73 m s−1)T. A schematic of the twin experiment framework is shown
in Fig. V.8.
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Figure V.8: Principle of the twin experiment setup used to set up and validate the reduced-cost
DA system designed in this thesis. As represented by the green dashed line, the objective of the
experiment is to assess the ability of the DA system to correctly infer the true input parameters
θt by assimilating synthetic observations yo (Eq. V.25) obtained from the reference LES model
prediction. The POD-GPRs reduced-order built in Chapter IV is used as a surrogate for the
LES model within the EnKF (Algorithm 1).

Twin experiments provide an ideal testing framework by giving access to the true
system state and control vector, which are never known in real applications, making
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Chapter V. Data assimilation for wind condition estimation

it possible to quantify the analysis accuracy by comparing θa and θt, as well as the
resulting state prediction accuracy by comparing xa and xt (Fig. V.8). In addition,
twin experiments enable the control of the model error, which is difficult to estimate
accurately in real applications, thus enabling optimal analysis. Indeed, generating the
true state using the same model as in the DA scheme ensures the existence of an exact
solution to the inverse problem. With the framework adopted in this section (Fig. V.8),
we make the inverse problem slightly more difficult by generating the true state with the
LES model MLES instead of the POD–GPR model M used in the DA scheme, which
gives rise to a model error η:

M(θt) = xt + η,

=MLES(θt) + η,

(V.26)

corresponding to the model reduction error. This error is not zero since θt does not
belong to the POD–GPRs training database, but is very limited as demonstrated when
validating the POD–GPRs in Chapter IV. Following this principle, more complex twin
experiment frameworks can be developed by using different models to generate the true
state to progressively complexify the DA estimation task (Halliwell et al. 2014).

Table V.3 summarizes the setup of the baseline twin experiment used to evaluate our
reduced-cost DA system. The definition of background and observational data are further
detailed in Sect. V.3. The ensemble size used in the EnKF is set to 500, and its influence
on the DA estimation is further investigated in Sect. V.4.3.

Table V.3: Set-up of the twin experiment for application to the MUST 2681829 trial. The
first row corresponds to the true parameters used in the twin experiments. The background
parameters and observations as well are their associated uncertainties are defined in detail in
Sect. V.3.

Notation Setup

Truth parameters θt =
(
αt

inlet, ut
∗
) (

−41 ◦, 0.73 m s−1)
Background parameters θb =

(
αb

inlet, ub
∗

) (
−25 ◦, 0.57 m s−1)

Background errors B =
(

σ2
αinlet

0
0 σ2

u∗

)
with σαinlet

= 25 ◦, σu∗ = 0.09 m s−1

Observation network y
13 observations of concentration

at towers C (1, 2, 3 m), D (1, 2, 3 m)
T (1, 2, 4, 6, 8, 10 m) and DPID #26

Observation error R See Sect. V.3.2

EnKF ensemble size Ne 500
Anamorphosis threshold (yt, ut)

(
0.04 ppm, 0.04 m s−1)

Note that the observation error covariance matrix R is re-estimated specifically for
the twin experiments according to the procedure presented in Sect. V.3.2, in order to

194



V.4. Validation and calibration of the data assimilation system

take into account the actual aleatory uncertainty of the synthetic observations predicted
by the LES, which is not equal to that of the field measurements. In particular, since the
LES model underestimates the effect of the internal variability of the ABL as shown in
Fig. III.5, page 86, the resulting uncertainty on observations is lower in twin experiments
compared to when assimilating the real measurements.

V.4.2 Results of the baseline twin experiment
In this section, we give the estimation results obtained with the baseline twin experi-

ments defined in Table V.3. We first evaluate the ability of the EnKF (Algorithm 1) to
infer the control vector θ = (αinlet, u∗)T, since this is what is estimated in the first place
(Fig. V.8).

Table V.4: Control vector estimations in the baseline twin experiment, for the background (be-
fore DA), and the analysis (after DA). The two latter columns correspond to the parameter stan-
dard deviations. Background error standard deviations are estimated in advance in Sect. V.3.3.
Analysis error standard deviations are estimated from the analysis ensemble (Eq. V.17). The
first row corresponds to the true parameters used in the LES model prediction from which the
synthetic observations are obtained for this twin experiment.

αinlet u∗ σ(αinlet) σ(u∗)

Truth -41◦ 0.73 m s−1 / /

Background -25 ° 0.57 m s−1 25 ° 0.09 m s−1

Analysis -33 ° 0.62 m s−1 7.3 ° 0.11 m s−1

Table V.4 validates that the EnKF is working reliably, since i) it reduces the bias in the
control vector estimation compared to the background, and ii) it provides realistic uncer-
tainty predictions that explain well the estimation errors, as |αa

inlet − αt
inlet| < 2σ(αa

inlet)
and |ua

∗ − ut
∗| < 2σ(ua

∗). We also note that DA reduces the uncertainty on the wind direc-
tion estimation when compared to the background uncertainty, but not for the friction
velocity. Indeed, the uncertainty on u∗ even slightly increases after the analysis, meaning
that the DA algorithm is not able to improve the estimation of u∗ with the available noisy
observations and given the model prediction uncertainty defined in Sect. V.3.5. This is
confirmed by the distribution of the EnKF ensemble in the control space (Fig. V.9), whose
spread according to αinlet is greatly reduced after the analysis, while the spread according
to u∗ is unchanged. This distribution is explained by the fact that the concentration ob-
servations are more sensitive to variations in the wind direction, which induce large plume
position errors than to friction velocity, which has a linear effect on the concentration.

In the EnKF framework, the best estimate of the control vector is defined as the
mean of the analysis (Eq. V.16). Using this estimate as input for the reduced-order
model provides a new concentration field estimation corresponding to the corrected wind
boundary conditions (Fig. V.8). As the true state xt is entirely known in the twin
experiment framework, we can assess in detail the accuracy of the state estimated by DA.
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Figure V.9: Background and analysis EnKF ensembles obtained in the baseline twin ex-
periment. Background and analysis ensemble members are represented as green squares and
red circles respectively. The associated normal and log-normal probability density functions
(pdf) of the inlet wind direction and of the friction velocity are represented in the upper and
right panels respectively. The blue plus symbol indicates the true control vector (αt

inlet, ut
∗) =

(−41 ◦, 0.73 m s−1).

Figure V.10 compares two isolines (1 ppm and 0.01 ppm) for the background, analysis,
and true mean concentration fields, at z = 1.6 m. As expected, the gain in accuracy
in the control space propagates well to the state space, and the analysis estimation is
more in line with the true concentration field. In particular, we see that the analysis
plume centerline is better aligned with the true plume centerline. Moreover, the plume
spread, which was overestimated by the background, is well reduced especially at higher
concentrations. The accuracy of the analysis for the 1-ppm iso-concentration illustrates
in part why the DA system does not further correct for friction velocity (Fig. V.10a).

To better assess the accuracy of the mean concentration DA estimations, we compute
the air quality metrics defined in Sect. III.3.2, page 90. Metric scores calculated for the
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Figure V.10: Mean concentration field estimations at z = 1.6 m for two iso-concentration
levels: 1 ppm (a) and 0.01 ppm (b). The isolines corresponding to the background and analysis
predictions are represented in green and red respectively, while the blue isolines represent the
true concentration field predicted by LES.

complete fields are given in Table V.5. All the metrics considered show significant im-
provement in the accuracy of the mean concentration field estimation, thereby indicating
that the estimation is enhanced both for the far field and the near field. Note that the
analysis estimation of the mean concentration remains globally overestimated as FB < 0
and MG < 1. This is simply explained by the underestimation of the friction velocity
(Table V.4). Overall, the accuracy of the mean concentration field prediction can still be
improved as Table V.5 shows that there is still a significant gap between the validation
scores obtained at the analysis step and those considering only errors related to internal
variability, which represents the best scores that could be achieved in principle. This is
consistent with the fact that the DA system does not perfectly correct the control vector.

Table V.5: Mean concentration prediction errors for the background and analysis when
compared to the true concentration field. Definitions of the validation metrics are given in
Sect. III.3.2, page 90. Perfect scores of the different metrics are recalled in the second row. The
third row corresponds to the mean level of error solely due to internal variability estimated using
the bootstrap propagation method explained in Sect. IV.3.4, page 135.

FB NMSE FAC2 MG VG FMS FMS
(1ppm) (0.01ppm)

Perfect score 0 0 1 1 1 1 1

Internal variability 0 0.42 0.96 1.00 1.11 0.87 0.95

Background -0.41 26.8 0.53 0.71 6.0× 103 0.28 0.51
Analysis -0.29 7.55 0.65 0.77 12.6 0.66 0.74
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Computational cost of the DA system is shown to be very limited with a total
runtime of 50 s on average using a single core of an Intel Ice Lake processor. Almost all
of this time corresponds to the Ne + 1 reduced-order model queries. The prediction time
of the reduced model is a little slower than the one announced in Table IV.4, page 160,
because of implementation reasons as i) we do not use the mean POD–GPRs prediction
but a random realization (see Fig. V.7), and ii) we have not optimized the call to the
reduced-order model within the EnKF algorithm. The full cost of the DA system therefore
scales linearly with Ne, which allows the use of even larger ensemble sizes. Moreover,
the DA system could be significantly accelerated as the reduced-order model calls are
independent and thus parallelizable (Algorithm 1). Yet, we did not push optimization
any further in this thesis, as the return time is already very satisfactory. To conclude,
we have achieved one of the major objectives of this thesis, namely the construction of a
fast modeling system that could be suitable for real-time applications.

V.4.3 Effect of the ensemble size and sampling error estimation
In this section, we jointly address the issue of the choice of EnKF ensemble size and

the effect of sampling errors on the performance of the proposed DA system. This is
done by repeating the twin experiment described in Table V.3, varying Ne and varying
background ensemble sampling.

In particular, we perform multiple independent realizations of the EnKF by varying
the random seed for the background ensemble sampling in Algorithm 1, in order to esti-
mate the analysis error statistics using a Monte-Carlo approach. Tests show that between
100 and 200 realizations are enough to achieve convergence of the Monte-Carlo estimates.
Figure V.11 shows the averaged DA estimation error, along with the associated 95% con-
fidence interval estimated by Monte Carlo. Both estimations of the inlet wind direction
and friction velocity quickly converge with the ensemble size, with almost no change in
the mean prediction from Ne = 50 onwards. However, we find that background sampling
error in the EnKF induces a significant variability in the control vector estimation. This
variability is attenuated slowly as Ne increases, presumably in O(1/

√
Ne). With an en-

semble of Ne = 500 members, we estimate that the sampling error results in a relative
standard error of approximately 2.5% for both the wind direction and friction velocity
estimations. This error is deemed reasonable given the other forms of uncertainty in-
volved and is more than covered by the analysis uncertainty estimation (Table. V.4).
We therefore estimate that using Ne = 500 members provides a good compromise be-
tween sampling error and computational cost. For the results previously presented in
Sect. V.4.2, we chose a background sampling seed that yields performances closed to the
averaged DA performances as shown by the yellow stars in Fig. V.11.

Similar trends are found for the effect of ensemble size and sampling noise on the
analysis ensemble variances, i.e. σ(αa

inlet) and σ(ua
∗). However, as a second-order statistic,

it achieves convergence for a higher ensemble size, between 250 and 500 members.

Note that we have also investigated the effect of the other independent sampling seeds
involved in:
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Figure V.11: Mean absolute errors of the DA estimation of inlet wind direction (a) and
friction velocity (b), for varying EnKF ensemble size Ne. The black solid line corresponds
to the averaged analysis error, estimated by a Monte-Carlo procedure with between 100 and
200 realizations of the EnKF (Algorithm 1) corresponding to different random seeds for the
background ensemble sampling. The gray shaded area represents the 95% confidence interval of
the analysis error thus obtained. The baseline background ensemble sampling used in Sect. V.4.2
is depicted as a yellow star.

• the generation of the synthetic observations (Eq. V.25) that are assimilated within
the twin experiment framework,

• the perturbation of the observations in the stochastic EnKF (Algorithm 1),
• the random POD–GPRs realizations used to account for model error as explained

in Sect. V.3.5,
and it turns out that they all have less impact on DA performance than the background
sampling seed.

Further analysis is required to provide insights into the variability of DA estimates
due to the choice of the background sampling seed but this is beyond the scope of the
present work.
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V.5 Assimilation of the real field measurements
In this section, we apply the reduced-cost DA system designed in this thesis (Fig. V.2)

to estimate the wind boundary condition parameters using the actual measurements from
the MUST trial 2681829. Section V.5.1 presents the results obtained, with the aim of
assessing the ability of the DA system to improve the accuracy of the LES model in
a case where the available meteorological data are incomplete or highly uncertain. An
additional test is then carried out to investigate the sensitivity of the DA system to the
choice of threshold in the concentration anamorphosis.

V.5.1 Results for the MUST experimental data assimilation
This section presents the nominal results obtained by the DA system when using the

actual MUST field measurements. Outside of the measurements assimilated and their
associated uncertainties, which are defined in Sect. V.3.1 and V.3.2, the rest of the set-up
is the same as for the baseline twin experiment defined in Table V.3. From the findings
of Sect. V.4.3, an ensemble size of Ne = 500 is used in the EnKF. The analysis of the
results focuses on the assessment of:

1. the ability of the EnKF to estimate the wind boundary conditions when assimilating
real concentration measurements,

2. the effect of the control vector correction on the mean concentration prediction.

Estimation of the wind condition parameters

As opposed to twin experiments, when applying the DA system to a real case with
actual measurements we do not know the true control vector anymore. Nevertheless,
we have a fairly representative estimate of wind boundary condition parameters thanks
to measurements from the tower S and ASU anemometers, that we deliberately did
not use in the DA system and background definition. The resulting reference control
vector is thus the same as the true control vector used in the twin experiments, i.e.
θ(ref) = (−41 ◦, 0.73 m s−1)T.

Figure V.12 shows the distribution in control space of the background and analysis
ensembles of the EnKF. The reference estimation of the control vector is also represented
by the yellow cross. The EnKF is not able to infer the friction velocity from the real
measurements, as it does not reduce either the background bias compared to u

(ref)
∗ or the

background uncertainty. This is explained by the lack of sensitivity of the observations
to the friction velocity, which makes the inverse problem difficult to solve as already
shown in the quasi-ideal twin experiment framework (Fig. V.9). Concerning the inlet
wind direction, the EnKF tends to over-correct the inlet wind direction compared to the
reference measurements. Nevertheless, it achieves reducing the uncertainty compared
to background information, while still explaining the analysis error with respect to the
reference value α

(ref)
inlet . These results thus confirm the reliability of the proposed DA system

to estimate the wind direction, but also its inability to correct the friction velocity.
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Figure V.12: Background and analysis EnKF ensembles obtained assimilating the MUST field
measurements. Background and analysis ensemble members are represented as green squares and
red circles respectively. The associated normal and log-normal probability density functions (pdf)
of the inlet wind direction and of the friction velocity are represented in the upper and right panels
respectively. The yellow plus symbol indicates the reference control vector (α(ref)

inlet , u
(ref)
∗ ) =

(−41 ◦, 0.73 m s−1) based on measurements from tower S and ASU anemometers.

We also found that DA estimations are sensitive to background sampling error (not
shown) and that the resulting analysis error is of the same order of magnitude as in the
twin experiments (Sect. V.4.3). The results presented in this section are obtained for a
background sampling seed that yields DA performances representative of the averaged
accuracy estimated by Monte Carlo.

Effect on the mean concentration prediction

Using the corrected control vector as input to the surrogate model (Fig. V.2), we can
update the background estimate of the mean concentration field to determine whether or
not the analysis improves accuracy over field measurements. Table V.6 compares the air
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Table V.6: Air quality metrics (Sect. III.3.2, page 90) quantifying the global agreement
between the background and analysis mean concentration prediction and experimental measure-
ments. Metrics are computed for all available observations and for the validation observations
subset, i.e. those that are not assimilated (Fig. V.3). Sensors for which the experimental mean
concentration is under the detection threshold are excluded. Perfect scores of the different met-
rics are recalled in the second row.

FB NMSE FAC2 MG VG

Perfect score 0 0 1 1 1

All obs. Background -0.15 1.66 14/47 = 29.8 % 1.80 18.9
Analysis 0.42 0.60 22/47 = 46.8 % 1.94 4.61

Validation obs. Background -0.11 1.80 6/34 = 17.7 % 2.03 32.5
Analysis 0.32 0.39 22/34 = 64.71 % 1.88 3.92

quality metrics scores obtained with the background and analysis estimates. Metrics are
computed over either the subset of validation observations, i.e. that are not assimilated
by the DA system (see their location in Fig. V.3), or over every observation available.
The results show that the EnKF succeeds in improving mean concentration estimation,
with an improvement in all scores except FB. The value of fractional bias obtained by the
analysis (FB>0) indicates that it overall underestimates the mean concentration. Since
the analysis underestimates the friction velocity (Fig. V.12), which should lead to an
overestimation of the mean concentration, it is more likely due to a plume position error.
The fact that the analysis not only improves accuracy at the assimilated sensor location
but also at the validation sensor level, is explained by the choice of boundary condition
parameter correction, which ensures a physically consistent correction of the average
concentration. This demonstrates the ability of our DA system to extrapolate information
from local measurements. Note that DA performance is even slightly better for sensors
that are not assimilated. However, the difference in performance is not significant, given
the limited number of sensors considered and the fact that validation measurements are
also subject to internal variability.

To better understand the effect of the boundary condition parameter correction on the
mean concentration estimation, we show the resulting mean concentration horizontal and
vertical profiles in Figs. V.13 and V.14. The profiles shown correspond to the predictions
obtained with the ensemble-averaged control vectors for background (Table V.3) and
analysis (Eq. V.16). The shaded areas represent the 95% confidence interval resulting
from the POD–GPRs model error, which covers both the model reduction error and the
internal variability error predicted by LES. Note that the variance resulting from the
uncertainty on the control vector (Fig. V.12) is not shown in Figs.V.13 and V.14. The
overcorrection of wind direction by the EnKF directly affects the plume, as illustrated
by the increasing shift in the position of the plume centerline (Fig. V.13) and by the
concentration overestimation at tower D (Fig. V.14c). While this deviation of the plume
explains quite well the discrepancy with DPID measurements on the horizontal, the
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Figure V.13: Horizontal profiles of mean concentration c predicted by the POD–GPRs model
for the ensemble-averaged background and analysis control vectors in red solid and green dashed-
dotted lines respectively. Each row corresponds to a line of DPID sensors represented with a
distinct color in Fig. II.3, page 59. Cross and circle symbols respectively correspond to the
assimilated and validation measurements. Shaded areas represent the 95% confidence interval
associated with the POD–GPRs prediction (see Sect. IV.2.5, page 131), while error bars cor-
respond to the measurement uncertainty induced by the internal variability of the ABL and
estimated by stationary bootstrap (see Sect. III.2, page 80).

results are more ambiguous for the vertical profiles as the analysis significantly improves
the prediction at tower B, but degrades it at towers T and C (Fig. V.14). This result is
counter-intuitive, since we assimilate measurements from towers T, C and D but not from
tower B. We explain it because i) measurements from tower D carry too much weight
in the analysis, as shown in Sect. V.5.2; and ii) the lower sensitivity of the model to
friction speed compared to wind direction, which leads the DA system to overcorrect
wind direction to compensate for errors that are in fact due to the underestimation of
friction speed.
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Figure V.14: Vertical profiles of mean concentration c predicted by the POD–GPRs model
for the ensemble-averaged background and analysis control vector in red solid and green dashed-
dotted lines respectively. Results are given at towers B, T, C and D locations (see Fig. V.3).
Cross and circle symbols respectively correspond to the assimilated and validation measurements.
Shaded areas represent the 95% confidence interval associated with the POD–GPRs prediction
(see Sect. IV.2.5, page 131), while error bars correspond to the measurement uncertainty induced
by the internal variability of the ABL and estimated by stationary bootstrap (see Sect. III.2,
page 80).
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It is worth mentioning that even using the best possible estimate of the boundary
condition parameters θ(ref), the profiles predicted by the LES model are not consistent
between towers B, T and C, as illustrated in Fig. III.8, page 97. This may be due to a
misrepresentation of the plume spread and elevation, as well as potential inconsistency
between DPID and UVIC sensor measurements, as discussed in Sect. III.4.2.1, page 94.
The current experiment shows that our DA system fails to infer a value for the control
vector that corrects LES model inconsistencies. This limitation of the system is inherent
in the choice of correcting only the meteorological boundary parameters, which prevents
the correction of model biases explained by other sources of uncertainty. In particular, it
does not address the model’s structural uncertainty and thereby cannot correct biases in
the state space.

Concerning the computational cost, assimilating real measurements instead of syn-
thetic observations does not change anything. The total execution time is therefore the
same as for the baseline twin experiment (Sect. V.4.2).

V.5.2 Effect of the concentration anamorphosis threshold
Figure V.15 gives an overview of the estimation accuracy at sensor location before and

after the analysis, for two different concentration threshold yt used for the concentration
anamorphosis (Eq. V.18). In the baseline experiment presented in Sect. V.5.1, i.e. with
yt = 0.04 ppm chosen as the maximal sensor threshold in the experiment, the EnKF
significantly improves the estimation accuracy on DPIDs line #1 as well as on towers B
and D. The scatter plots presented in Figs. V.15a and b further demonstratres that the
DA system i) improves overall estimation accuracy with a Pearson correlation coefficient
ρ between predictions and observations increasing from 0.29 to 0.78, and ii) is able to
improve the accuracy on sensors that are not assimilated thanks to the choice of correcting
large-scale boundary condition parameters that affect the whole field.

However, we find that the DA system also deteriorates the prediction at certain lo-
cations, such as towers T and C, as already shown in Fig. V.14. We point out that a
logarithmic scale is used in Fig. V.15, which gives a good idea of the differences seen by
the EnKF analysis, given that a log-transformation is applied during the concentration
anamorphosis (Eq. V.18). Thus, in the view of the DA algorithm, the largest discrep-
ancy in the background estimation concerns the low concentrations at tower D, which
thereby gives these observations a greater weight in the analysis. As a result, the EnKF
tends to overcorrect the wind direction (Fig. V.12), which deteriorates the estimation
at other towers T and C. Note that the discrepancy obtained for these relatively high
concentrations is considered to be small by the DA system given the log-transformation
used.

This higher sensitivity to differences in low concentration has led us to try modifying
the concentration anamorphosis by changing the threshold yt used. Indeed, for an equal
relative deviation between prediction and observation, increasing yt reduces the weight
of differences in low concentrations in the analysis. Figure V.15c shows that with yt =
0.1 ppm the improvement in prediction obtained after analysis is much more homogeneous
than with the reference value of 0.04 ppm, despite a correlation coefficient of the same
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(c) Analysis – yt = 0.1 ppm
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Figure V.15: Scatter plots of the predicted versus measured mean concentration statistics for
the background estimate (a) and two analysis estimates with different thresholds for the con-
centration anamorphosis: yt = 0.04 ppm (b), and yt = 0.1 ppm (c). Each sensor is represented
with the same color as in Fig. II.3, page 59. Cross and circle symbols respectively represent
assimilated and validation measurements. The Pearson correlation coefficient ρ is indicated
in each case. The error bars represent the 95% confidence intervals estimated with stationary
bootstrap for the measurements (see Sect. III.2, page 80) and using the POD–GPRs uncertainty
estimation (see Sect. IV.2.5, page 131).

order of magnitude (ρ = 0.82). In particular, the EnKF no longer deteriorates prediction
at tower T, while continuing to improve the estimation at tower D. This is explained by
the fact that, in this new experiment, the weights on assimilated observations are more
homogeneous and the EnKF thus no longer overestimates wind direction. Indeed, we find
that the analysis wind direction bias goes from αa

inlet−α
(ref)
inlet = −8 ◦ with yt = 0.04 ppm to

just −0.5 ◦ with yt = 0.1 ppm. However, this does not improve the estimation of friction
velocity, since the bias of the analysis remains around −0.15 m s−1.
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V.6 Conclusion
Summary In this chapter, we have established a proof of concept of the reduced-
cost DA system designed to address the thesis problematic of efficiently estimating and
reducing uncertainties in LES models for microscale atmospheric dispersion. This system
relies on an EnKF algorithm assimilating in-situ pollutant concentration measurements
in order to infer two wind boundary condition parameters of the LES model presented
in Chapter II: the inlet wind direction and friction velocity. The POD–GPRs reduced-
order model built in Chapter IV replaces the LES model to successfully accelerate the
estimation of the DA system. In addition, the EnKF choice enables us to move from
deterministic prediction to probabilistic prediction that takes into account the various
uncertainties involved in microscale atmospheric flows, thus fulfilling one of the main
objectives of this thesis.

Improved error modeling Significant efforts have been made in this chapter to im-
prove error modeling.

◦ For the background error, we carried out a detailed study comparing wind condition
estimates from several weather stations to characterize representativeness and mea-
surement errors that typically affect the LES model when its boundary conditions
are calibrated from remote stations.

◦ For the observation error, we used the bootstrap approach developed in Chapter III
to quantify the irreducible representativeness error caused by the internal variability
of the ABL. This method provides efficient estimation of the complete observation
error covariance matrix, including the cross-correlations which are often overlooked
due to the lack of suitable estimates (Defforge et al. 2021).

◦ For the model error, we propose to take it into account in the EnKF by replacing the
POD–GPRs mean prediction with random realizations sampled from GPR posterior
distributions. As shown in Chapter IV, this allows us to account for both the model
reduction error and the LES internal variability error. This approach improves on
that of Sousa and Gorlé (2019) by preserving the spatial coherence of the errors.

All these developments constitute the main methodological contribution of this chapter
and offer a cost-effective solution to the challenge raised by Mons et al. (2017) and
Defforge et al. (2021), of providing realistic error models in the DA framework. This is
an important step forward in ensuring the robustness of the DA system, by preventing it
from giving too much credence to a source of information that is highly uncertain.

Validation of the DA system The proposed DA system was validated first in a twin
experiment framework, i.e. using synthetic observations obtained from a LES model
prediction, then using the real field measurements from the MUST trial 2681829. These
experiments show that the EnKF succeeds in improving mean concentration by reducing
the background bias in the wind direction. However, we have found that the DA system

207



Chapter V. Data assimilation for wind condition estimation

has difficulty inferring friction velocity due to the low sensitivity of the log-transformed
concentration to friction velocity. In addition, we show that a large enough ensemble
size (Ne ≥ 500 in our case) is required in the EnKF to limit the effect of background
sampling errors. Finally, regarding computational cost, we demonstrate that the DA
system achieves its objective with an ensemble prediction of the concentration field in less
than a minute, without even taking advantage of the EnKF’s parallelization opportunities.

Limitations and perspectives The assimilation of real observations has confronted
the DA system we have designed with its own limitations, the analysis of which enables
us to identify avenues for improvement.

◦ The inability of the DA system to infer the friction velocity limits the accuracy
of the prediction and can lead to wind direction overcorrection. This could be
solved by assimilating wind velocity measurements in addition to the concentration
measurements. The relationship between local flow velocity and friction velocity is
indeed much more direct, and it has been shown in the literature that assimilating
different quantities significantly improves the DA estimation accuracy (Mons et al.
2017; Defforge et al. 2021).

◦ When assimilating real measurements, we found that the DA system fails to cor-
rect biases from the LES model that are not due to the meteorological boundary
conditions. This inherent limitation of our system could be overcome by adopting a
joint state/parameter estimation DA approach (Evensen 2009; Ruckstuhl and Jan-
jić 2020; Zhang et al. 2019) to directly correct the mean concentration model biases
while still inferring the large-scale forcing parameters.

◦ We show that DA estimations are significantly affected by the choice of the threshold
used in the concentration anamorphosis, which ensures that the mean concentration
observation and prediction are normally distributed. To our knowledge, there are
no guidelines for selecting this parameter, so it would deserve further study in order
to define an a priori selection method.

◦ Finally, since DA estimates are also known to be highly sensitive to the design
of the assimilation sensor network (Mons et al. 2017; Sousa et al. 2018), testing
and comparing optimal sensor placement strategies (Choi and How 2011; Peng
et al. 2014; Dur et al. 2020; Deng et al. 2021b; Mons and Marquet 2021) seems a
promising perspective to further improve the DA system presented in this chapter.
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Contributions and lessons learned
This thesis is a proof of concept of the ability of a reduced-cost data assimilation (DA)

system to improve large-eddy simulation (LES) predictions of microscale dispersion in an
idealized urban environment. This system quantifies and reduces uncertainty related
to large-scale meteorological forcing by using information from in-situ measurements to
solve an inverse problem. It relies on a reduced-order model to significantly speed up
estimations. This is done while accounting for the internal variability of the atmospheric
boundary layer (ABL), making the DA system more realistic and robust.

The main milestones in the construction of this system were

i) the further development of an LES model of one trial of the MUST field experiment
(Biltoft 2001) corresponding to neutral stratification condition;

ii) the robust validation of this model by quantifying its main sources of uncertainty,
comparing its predictions with experimental measurements, and investigating its
sensitivities;

iii) the construction of a training database of 200 LES predictions, to train and optimize
a reduced-order model that combines proper orthogonal decomposition (POD) and
Gaussian process regressors (GPRs) to efficiently emulate the LES model response
to changes in the meteorological boundary conditions;

iv) the assembling and testing of the reduced-cost data assimilation (DA) system, first
via twin experiments, then using MUST field measurements.

The LES model, its reduced-order model, and the associated assimilation system have
all proved to reach state-of-the-art performance levels. LES statistical predictions can be
used to improve our understanding of complex flow patterns induced by the interaction
between the ABL and the built environment, and their effect on microscale dispersion.
Once trained for a specific urban configuration, the POD–GPRs reduced-order model
provides faithful probabilistic dispersion predictions in less than a tenth of a second, that
can be used to speed up the DA system and account for part of the prediction uncertainty.
Finally, the DA system achieves to correct biases in large-scale meteorological conditions
and provides robust and realistic uncertainty predictions.
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During this thesis, we have paid particular attention to the internal variability of the
ABL, which induces two forms of uncertainty in LES model predictions: i) an uncertainty
in the model boundary conditions due to large-scale fluctuations in the atmosphere, and
ii) a random and irreducible uncertainty corresponding to the effect of microscale fluctu-
ations. The effect of uncertainty on the large-scale boundary conditions has already been
quantified in microscale atmospheric flows (Wise et al. 2018; García-Sanchez and Gorlé
2018) and can be reduced through DA (Sousa et al. 2018; Sousa and Gorlé 2019; Defforge
et al. 2021). However, to the best of our knowledge, the aleatory uncertainty inherent
to microscale variability has been less thoroughly explored, and there are no ready-to-
use methods for quantifying it. To overcome this shortcoming, we have developed and
validated our approach based on the stationary bootstrap algorithm from Politis and
Romano (1994). It is a promising, simple, and yet efficient method that does not require
long acquisitions and relies on minimal statistical assumptions.

Using this bootstrap method, we demonstrate that microscale internal variability
significantly affects not only LES predictions but also field observations. We also explain
how it can be taken into account in model validation, thus meeting a need expressed
by the scientific community (Schatzmann and Leitl 2011; Dauxois et al. 2021). The
possibility to estimate the effect of internal variability has proven to be key throughout
the whole thesis, as we used it to:
◦ demonstrate that structural uncertainties (e.g. related to turbulence modeling and

numerical schemes) are not significant, unlike uncertainties linked to boundary con-
ditions;
◦ make an informed choice on the number of reduced-basis modes used by the POD–

GPRs model in order to avoid overfitting noisy structures linked to the aleatory
uncertainty associated with internal variability, and thus optimize POD–GPRs pre-
dictions accuracy;
◦ take this uncertainty into account in the DA system to provide realistic error models

for observations, background and model. These methodological improvements are
made elegantly and without generating implementation or computational heaviness.
They significantly improve the robustness of our DA system by preventing it from
underestimating uncertainties, thereby filling a gap expressed by the community
(Mons et al. 2017; Defforge et al. 2021).

From a broader point of view, this thesis underscores the potential for enhancing mod-
eling chains by significantly speeding up advanced numerical model predictions without
compromising their accuracy, all while assessing and reducing end-to-end uncertainties
thanks to observational data. Such advancements hold significant importance for risk
assessment applications.

Possible improvements
In the short-to-medium term, various improvements can be made to enhance the

reduced-cost DA system built in this thesis and extend its scope. In this section, we
summarize the main avenues for improving each component of our framework.

210



Conclusion and perspectives

The LES microscale dispersion model can be further improved in terms of accu-
racy, as demonstrated by the limited level of agreement with field observations shown in
Chapter III. Although we have explained some of these differences by the internal vari-
ability of the ABL or by the lack of vertical extent of the domain (Appendix A.2), there
are still some differences that could not be corrected by our DA system. This means that
model errors are not explained by meteorological boundary conditions uncertainty alone
and motivates the exploration of new avenues. We could increase the level of details
in the urban geometry representation as done by Santiago et al. (2010). We could also
improve the meteorological boundary condition representativeness, starting by adopting
more realistic wind direction and turbulent fluctuations vertical profiles, before going
towards downscaling from mesoscale simulations (García-Sanchez and Gorlé 2018; Nagel
et al. 2022). Comparison with other codes is also an exciting perspective, which could
determine whether the error in our LES model is structural or not.

Note that the LES ensemble computed in this thesis was mainly used to build the
reduced-order model for accelerating mean pollutant concentration predictions. This
requires only a small fraction of the data collected during these high-resolution simula-
tions. The substantial amount of data at hand merits further exploration to improve our
understanding of the physical processes involved in microscale dispersion.

Internal variability quantification is mainly restricted to microscale fluctuations in
this thesis since our LES model limits the size for the largest eddies. A rather straightfor-
ward and promising perspective is to quantify mesoscale variability, especially for longer
analysis periods. For this purpose, a solution would be to use an LES model with inflow
boundary conditions that are dynamically changing through a multi-scale meteorological
model based on grid nesting (Wiersema et al. 2020; Nagel et al. 2022). Improving the
representation of the large-scale atmospheric fluctuations is expected to fill the current
gap between predicted and observed internal variability (see Chapter III).

The representation of the internal variability in the reduced-order model predictions
could also be improved. Indeed, after optimization, the noise variance parameter of
the Gaussian processes regressors (GPRs) fits the maximum variability observed in the
training database (Chapter IV). However, the variance related to internal variability is
not homogeneous in the space of input parameters, since it increases when the friction
velocity decreases. To account for this heteroscedasticity of the response surface, it would
be interesting to consider that the noise variance depends on the inputs, as proposed by
Miyagusuku et al. (2015).

The reduced-order modeling approach we adopted remains limited in accuracy be-
cause of the error due to dimension reduction. We assume that this is mainly because
the large disparity of scales in the mean concentration field is difficult to faithfully rep-
resent with a linear reduction method such as POD. We are therefore looking forward
to replacing POD with non-linear reduction techniques such as convolutional autoen-
coders (Murata et al. 2020; Nony 2023). However, using autoencoders we could lose the
hierarchical aspect of decomposition that was useful to filter out the effect of internal
variability.
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There is also room for improvement in the field preparation stage, as we found that
it significantly affects the POD projection error. In particular, using a preprocessing
based on log-transformation of the mean concentration improves the overall accuracy of
field reconstruction, but deteriorates it in the vicinity of the source. Looking for optimal
preprocessing for building the POD could therefore be another avenue to improve the
reduction step. In Appendix B.3, we also show that it is possible to combine predic-
tions of POD–GPRs built with different types of preprocessing to get the best of each
preprocessing.

Data assimilation The experiments we have conducted in Chapter V to validate the
DA system have several shortcomings:
◦ they are limited to the assimilation of concentration measurements and it would be

interesting to investigate whether the gain in performance obtained by Mons et al.
(2017) and Defforge et al. (2021) when assimilating wind speed and direction data
can also be obtained in our case;
◦ we only correct an arbitrarily chosen bias on the meteorological boundary condition

parameters, but in real applications, this bias is unknown, it would therefore be
relevant to assess the robustness of our DA system for a wide range of biases;
◦ we show that DA predictions are strongly influenced by the threshold chosen for

concentration anamorphosis. Further efforts could be made to study this sensitivity
in order to understand how to make an informed choice of threshold value;
◦ according to observations we underestimate the background inlet wind direction

error variance. However, when considering larger wind direction error variance the
assumption of normally distributed errors no longer holds, highlighting the need
to modify the ensemble Kalman filter (EnKF) for directional variables (Jammala-
madaka and SenGupta 2001).

More importantly, when dealing with real observations, our DA system is not able to
perfectly improve concentration predictions as it overcorrects parameters to compensate
for model biases. This is an intrinsic limitation of our system, which can be overcome by
modifying the definition of the control vector. In a first step, we could first discretize the
boundary condition profiles to increase the parameter space dimension and thereby the
number of degrees of freedom to solve the DA problem (Defforge et al. 2021). In a second
step, we could investigate the use of joint state-parameters estimation DA algorithms
(Evensen 2009; Smith et al. 2013; Ruckstuhl and Janjić 2020). This exciting perspective
could allow for the correction of model biases (Zhang et al. 2019) but would require
extra caution in the definition of the background error covariance matrix to guarantee the
physical consistency of predictions. Given the huge size of the state vector (N ≈ 106), this
perspective may require combining reduction methods, such as the POD we are already
using, with the DA algorithm (Tissot et al. 2013; Arcucci et al. 2019; Bauweraerts and
Meyers 2021).

Finally, we note that recent efforts in associating machine learning techniques with
DA (Cheng et al. 2023) could provide significant improvements to our framework, in
particular, to better estimate model errors (Farchi et al. 2021).
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Perspectives
In this section, we detail long-term perspectives arising from the work presented in

this thesis. These prospects could significantly improve our reduced-cost DA system. In
a first step, we examine how we might extend the scope of this system to a broader safety
environment perspective. This is an opportunity to reflect on the scientific challenges
associated with these new applications, such as integrating the temporal dimension to
monitor unsteady phenomena. In the second step, we explore the specific but open
question of assimilating data from mobile sensors to enrich the DA framework presented
in this thesis.

Expanding the capacity of the data assimilation system
Towards broader safety environment applications To broaden the application
scope of our reduced-cost DA system, we shall first extend its capabilities. This first
includes complexifying the LES model to handle thermal stratification effects to gain
in generality, and pollutant buoyancy to deal with dense or volatile pollutant species.
Using the AVBP solver provides a way to model chemically reactive species and realistic
sources. This typically includes the important dynamic and thermodynamic effects that
occur when pressurized/liquified gases leak (Spicer and Tickle 2021). These developments
are key to studying the dispersion of species widely used in industry, such as ammonia,
and others for which there is growing interest, notably hydrogen as an energy carrier
(Guilbert 2021) and carbon dioxide for capture in efforts to mitigate climate change
(Delprat-Jannaud 2022). In the longer term, the choice to use AVBP also opens the
door to new safety environment applications such as hydrogen combustion (Boivin et al.
2012), explosions (Vermorel et al. 2017), wildfires (Rochoux et al. 2014b), as well as the
associated smoke dispersion.

These new applications will require well-instrumented validation experiments. We
could first use other MUST trials to assess the ability of our model to simulate unstable
and stable conditions (Biltoft 2001). The JOINT URBAN 2003 dispersion campaign
(Allwine et al. 2004) in Oklahoma City (U.S.) or the dispersion wind-tunnel experiments
reproducing Feyzin refinery (France) carried out by Vendel (2011) are also relevant case
studies to account for more realistic urban canopy and to study puff releases. The more
recent Jack Rabbit II chlorine dispersion field campaign (Fox et al. 2022), shown in
Fig. VI.2a, is particularly suited to consider buoyancy and source effects. Finally, we
note that major experimental efforts are underway to provide extensive measurements of
real wildland fires, for example with the field-scale experiment shown in Fig. VI.2b or the
more recent FASMEE campaign (Liu et al. 2019).

These new applications will also require developments in model reduction and data
assimilation. As we opted for a non-intrusive model reduction approach, our DA system
can be adapted to new case studies to integrate richer and more complex physics, provided
that we enrich its learning base. Given the computational cost of most numerical models,
limiting the number of simulations needed to train the reduced-order model is one of our
main concerns. Based on the experience of this thesis, we will be able to use physical
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similarity to reduce the number of simulations needed to account for different source
intensities and thermal stratification conditions. With the framework now established,
we will also be able to minimize the number of training simulations by incrementally
constructing the reduced-order model and stopping as soon as we attain an accuracy
plateau. In this sense, using adaptive sampling methods (Picheny et al. 2010; Braconnier
et al. 2011) could be relevant to optimize the gain of accuracy from each new sample
by prioritizing critical areas of the parameter space. Concerning the DA algorithm, the
choice of the EnKF will remain convenient thanks to its simplicity, and its ability to deal
with non-linear models and large control space dimensions.

In the following, we look at two specific issues arising from these potential applications.

Accounting for uncertainty in source location would allow our DA system to esti-
mate pollutant release location in addition to meteorological conditions. This has direct
application in safety monitoring for industrial sites such as refineries, where pollutants
can leak from several different locations. However, specific methodological issues arise
from the nature of source location uncertainty.

First, it would require a very large simulation ensemble to represent every possi-
ble combination of wind conditions and source location when training the reduced-order
model. To address this challenge, Nony (2023) shows that adopting a multi-fidelity frame-
work can save significant computational resources by decoupling sources of uncertainty.
This relies on the fact that Navier-Stokes equations are independent of the pollutant
transport equation when considering passive species. We could thus keep the reduced-
order modeling approach adopted in this thesis to predict the wind flow field for various
meteorological conditions, and then use these predictions as forcing for the decoupled
transport equation to predict the tracer concentration field. The latter could then be
solved for any source location possible using, for example, a highly parallelizable La-
grangian model.

Secondly, we note that the inverse problem of finding the source position is severely
ill-posed (Hutchinson et al. 2017). Moreover, EnKF assumptions are not well-suited to
describe the ensemble of possible source locations. We therefore should investigate the
use of more direct algorithms such as Markov chain Monte Carlo (Gilks et al. 1995) to
solve the Bayesian inverse problem. This algorithm is model-query intensive and therefore
requires the multi-fidelity reduced-order model to be very efficient.

Tracking non-stationary phenomena, such as puff emissions, front fire propagation,
or highly transient meteorological conditions, would require significant improvement of
our reduced-cost DA system. The LES approach we use already provides an instantaneous
representation of the atmospheric flow, and the EnKF is naturally suited for sequential
estimation but it would require initial conditions to be included in the control vector.
In our opinion, the greatest challenge lies in building a reduced-order model capable of
predicting physical time series under uncertainty. It is an active research topic in fluid
mechanics (Xie et al. 2018; Kim et al. 2019a; Deng et al. 2021a), but no perfect solution
with limited database requirements has yet emerged, to the best of our knowledge.

214



Conclusion and perspectives

In addition, we highlight that non-stationary phenomena, because of their character-
istic time scales, are likely to be highly sensitive to the internal variability of the ABL.
However, the internal variability quantification method we propose in this thesis relies on
a stationarity assumption. For non-stationary applications, the standard approach is to
perform several independent predictions corresponding to different turbulent states of the
ABL (Harms et al. 2011; Costes et al. 2021), which is computationally demanding with
LES. Methodological development towards accelerating internal variability quantification
in non-stationary contexts is therefore of great interest.

Assimilation of observations from mobile sensors
In recent years, unmanned aerial vehicles (UAVs), more commonly known as drones,

have undergone remarkable technological advances, and are increasingly used for environ-
mental monitoring (Manfreda et al. 2018), in applications such as agriculture (Kim et al.
2019b), river flooding (Perks et al. 2016), and wildland fire monitoring (Bailon-Ruiz and
Lacroix 2020; Hu et al. 2022). By carrying various types of sensors, UAVs make it possible
to i) sample a large area with a limited sensor budget, ii) take high-altitude pictures of a
phenomenon at higher resolution than conventional means (aircraft, satellites) and lower
cost (see Fig. VI.2a), and iii) target the area to be measured to maximize information
gathering.

For these reasons, UAVs also have a great potential for microscale dispersion appli-
cations (Villa et al. 2016a). To date, many studies have focussed on plume tracking and
pollutant source localization (Brink and Pebesma 2014; Montes et al. 2014; Letheren
et al. 2016), which required the development of on-board gas sensors (Neumann et al.
2013; Villa et al. 2016b), see for example Fig. VI.1a. Instead of relying on an ill-posed
inverse problem to identify pollutant source location, mobile sensors can directly track
the source by following the concentration gradient. However, these navigation algorithms
are often tested with simplified assumptions, for example using a Gaussian plume model
(Montes et al. 2014). Confronting these algorithms to more realistic plumes, using in-
stantaneous predictions of our LES model (Fig VI.1c), shows the need to further improve
their robustness in order to deal with the turbulence of the ABL.

In the following, we imagine two different but complementary ways of taking ad-
vantage of these new data provided by drones, to enrich our DA system for microscale
atmospheric dispersion.

i) Adaptive sampling for data assimilation

The pioneering study of Patrikar et al. (2020) has opened the way for the use of mobile
sensors in DA for microscale applications by demonstrating that measurements from an
anemometer carried by a UAV can be assimilated to improve CFD wind field predictions
in urban environments (Fig. VI.1b). However, this study is limited to the assimilation of
measurements alongside a predefined trajectory. In our opinion, it could be pushed even
further by adapting UAV navigation to minimize errors as much as possible in the DA
scheme.
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(a)

(b) (c)

Figure VI.1: (a) Experimental setup by Neumann et al. (2013) using an Airrobot AR100-
B micro-drone carrying a gas detector device (Dräger X-am 5600). (b) Real-world experiment
from Patrikar et al. (2020) in which UAV measurements from an onboard anemometer (magenta
arrows) are assimilated using a particle filter to correct inlet boundary conditions and improve
CFD wind field prediction (blue arrows). (c) One snapshot of a prediction of instantaneous
propylene concentration at z = 4 m from the LES model presented in Chapter II. Synthetic
measurements are obtained by coupling these predictions with a drone flight simulator and then
used to track the pollutant source with an adapted version of the navigation algorithm proposed
by Montes et al. (2014). The resulting trajectory starting from the blue marker is represented
by the dashed white line.

Sensor position has indeed a very important effect on DA performance since when
sensors are positioned in areas that are not very sensitive to the control vector, the as-
similation problem becomes ill-posed (Mons et al. 2017; Sousa et al. 2018). This motivates
the search for sensor networks that optimize DA accuracy (Dur et al. 2020; Deng et al.
2021b; Mons and Marquet 2021). Using mobile sensors would allow us to go even further
by targeting measurement locations in real time, based on DA uncertainty updates. The
development of such dynamic DA systems raises numerous issues including: i) the esti-
mation of the information that will be obtained a priori by assimilating measurements
from a given location (Choi and How 2011; Peng et al. 2014), ii) the choice of the sen-
sor positions to maximize the total information, which explodes in complexity with the
number of sensors to be placed (Qian and Claudel 2020), and iii) the trajectory planning
of the fleet of UAVs to reach optimal positions in a efficient way (Reymann et al. 2018).

These are research topics on their own, and assembling them into a complete DA
framework based on a CFD model and applied to a realistic case requires considerable
effort, the fruits of which are undoubtedly innovative.
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Possible limitations could arise from the uncertainty on drone positions, especially
in windy conditions. Representing position error in a DA system represents an important
issue (Rochoux et al. 2018) which should not be overlooked considering the strong gradi-
ents in a pollutant plume. Moreover, the short duration of the MUST experiments and
the relatively large size of the container array limit the distance that can cover drones
to provide representative measurements. We should therefore look for more appropriate
experimental trials to conduct preliminary synthetic experiments.

In addition to these technical constraints, we emphasize that the interaction between
mobile sensors and the observed phenomenon – typically the pollutant plume deformation
caused by the air flow induced by a rotorcraft – is an essential question to answer before
developing such dynamic DA systems. Simple parameterizations exist for correcting the
measurements of an anemometer carried by a UAV (Bruschi et al. 2016; Thorpe et al.
2018). However, we believe that further efforts are required before it can be accurately
taken into account in the DA system presented in this thesis. For instance, LES carried
out with AVBP, alongside real drone validation experiments, could enable fine charac-
terization of the effect of rotorcraft blades on the local flow and plume, drawing on the
analogy that can be made with wind turbine modeling in ABL simulations (Joulin et al.
2020; Dabas et al. 2022).

ii) Assimilation of plume front shape from airborne images

In some cases, UAVs can also be used to provide non-intrusive observational data by
flying over the phenomenon and monitoring it with onboard sensors (visual or infrared
cameras, and lidars). The data collected then offer macroscopic information on the
phenomenon, such as its size, propagation speed, surface roughness, etc. Examples of
airborne images from the Jack Rabbit II pollutant dispersion experiment, and from a
field-scale wildland fire experiment are shown in Fig. VI.2. Note that for large-scale
phenomena such as wildfires, rotorcrafts can be replaced by fixed-wing UAVs. This
approach solves the problem of interaction with observed phenomena. For pollutant
dispersion studies, it is however limited to species that are traceable at a distance.

This kind of observational data is very promising for DA. Although not directly mea-
suring the quantity of interest complicates the observation operator and introduces new
uncertainties, these global measurements can be more informative than precise local mea-
surements. This is all the more the case in contexts where position errors are important,
such as pollutant dispersion and fire front propagation (Rochoux et al. 2014b; Zhang
et al. 2019).

To carry out a first numerical experiment of such system in a dispersion context,
we imagine the following action plan: i) generate a sequence of synthetic images from
an LES model and an inverse observation operator to represent the link between the
pollutant concentration and the remotely measured quantity, ii) reconstruct the plume
shape using a contour detection algorithm (Xin-Yi et al. 2018; Chu et al. 2022), this
task basically consists in drawing the contour of the plume in Fig. VI.2a, and iii) apply
a shape-oriented DA algorithm (Rochoux et al. 2018) to correct the predicted plume
contour with the observed one. Once in place, this system could be validated with real
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(a) (b)

Figure VI.2: Aerial pictures of environmental field experiments of interest. (a) Picture of the
chlorine plume corresponding to the trial #7 of the Jack Rabbit II field experiment (2016, US).
Source: drone footage captured by Utah Valley University Emergency Services. (b) Picture of a
heather controlled-burn experiment in Northumberland (March 2010, UK). The blue, green and
red lines indicate the contours of the 500-K, 600-K and 700-K iso-temperatures respectively, as
identified by Paugam et al. (2013) using a helicopter-borne infrared thermal camera.

onboard visual measurements such as the ones from the Jack Rabbit II field campaign
(Fig. VI.2a).

Ultimately, these two types of observational data provided by UAVs – aerial images,
and direct in-situ measurements – could be assimilated jointly by our system. This has
the potential to better address the uncertainty in LES models by correcting both posi-
tional and intensity errors, and thus further enrich the accuracy of microscale dispersion
predictions.
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Contributions et enseignements
Cette thèse constitue une preuve de concept de la capacité d’un système d’assimilation

de données (AD) à coût réduit à améliorer les prévisions de dispersion à micro-échelle
dans un environnement urbain idéalisé par la simulation aux grandes échelles de tourbil-
lons (LES). Ce système quantifie et réduit l’incertitude liée au forçage météorologique à
grande échelle en utilisant des informations provenant de mesures in situ pour résoudre
un problème inverse. Il s’appuie sur un modèle d’ordre réduit pour accélérer considérable-
ment les estimations. Cela se fait tout en tenant compte de la variabilité interne de la
couche limite atmosphérique (CLA), ce qui rend le système d’AD plus réaliste et plus
robuste.
Les principales étapes de la construction de ce système ont été les suivantes :

i) le développement d’un modèle LES d’un essai de la campagne expérimentale MUST
correspondant à une condition de stratification neutre de l’atmosphère,

ii) la validation robuste de ce modèle en comparant ses prévisions avec les mesures
expérimentales, tout en quantifiant ses principales sources d’incertitude,

iii) la construction d’une base de données d’entraînement de 200 prévisions LES, afin
d’entraîner et d’optimiser un modèle d’ordre réduit qui combine décomposition
orthogonale aux valeurs propres (POD) et régression par processus gaussiens (GPR)
pour émuler efficacement la réponse du modèle LES aux changements des conditions
aux limites météorologiques,

iv) l’assemblage et le test du système d’assimilation de données (AD) à coût réduit,
d’abord par le biais d’expériences jumelles, puis en utilisant les mesures de terrain
de la campagne MUST.

Il est démontré que le modèle LES, son modèle d’ordre réduit et le système d’assimilat-
ion de données associé atteignent tous de hauts niveaux de performance. Les estimations
statistiques LES peuvent être utilisées pour améliorer notre compréhension des schémas
d’écoulement complexes induits par l’interaction entre la CLA et l’environnement bâti, et
leur effet sur la dispersion à micro-échelle. Une fois entraîné pour une configuration ur-
baine spécifique, le modèle d’ordre réduit POD–GPRs fournit des prévisions de dispersion
probabilistes précises en moins d’un dixième de seconde, qui peuvent être utilisées pour
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accélérer le système d’AD tout en tenant compte d’une partie des incertitudes en jeu.
Enfin, le système d’AD parvient à corriger des biais dans les conditions météorologiques
à grande échelle et fournit des prévisions d’incertitude robustes et réalistes.

Au cours de cette thèse, une attention particulière est portée à la variabilité interne
de la CLA, qui induit deux formes d’incertitude dans les estimations des modèles LES :
i) une incertitude sur les conditions aux limites du modèle due aux fluctuations à grande
échelle de l’atmosphère, et ii) une incertitude aléatoire et irréductible correspondant à
l’effet des fluctuations à micro-échelle. L’effet de l’incertitude sur les conditions limites
à grande échelle sur les prévisions d’écoulements à micro-échelle a déjà été étudié (Wise
et al. 2018; García-Sanchez and Gorlé 2018) et peut être réduit grâce à l’AD (Sousa et al.
2018; Sousa and Gorlé 2019; Defforge et al. 2021). Cependant, à notre connaissance,
l’incertitude aléatoire inhérente à la variabilité micro-échelle a été moins bien étudiée
et il n’existe pas de méthodes prêtes à l’emploi pour la quantifier. Pour combler cette
lacune, nous avons développé et validé une approche basée sur l’algorithme de bootstrap
stationnaire de Politis and Romano (1994). Il s’agit d’une méthode prometteuse, simple
et néanmoins efficace, qui ne nécessite pas de longues acquisitions et repose sur des
hypothèses statistiques minimales.

En utilisant cette méthode de bootstrap, nous démontrons que la variabilité interne
à micro-échelle affecte significativement non seulement les prévisions LES mais aussi
les observations de terrain. Nous expliquons également comment elle peut être prise
en compte dans la validation des modèles, répondant ainsi à un besoin exprimé par la
communauté scientifique (Schatzmann and Leitl 2011; Dauxois et al. 2021). La possibilité
d’estimer l’effet de la variabilité interne s’est avérée essentielle tout au long de la thèse,
puisque nous l’avons utilisée pour :
◦ démontrer que les incertitudes structurelles (par exemple liées à la modélisation de

la turbulence et aux schémas numériques) ne sont pas significatives, contrairement
aux incertitudes liées aux conditions aux limites,
◦ faire un choix éclairé du nombre de modes utilisés par le modèle POD–GPRs afin

d’éviter de reproduire les structures liées à l’incertitude aléatoire associée à la vari-
abilité interne lors de l’apprentissage, et ainsi optimiser la précision des prévisions
POD–GPRs,
◦ prendre en compte cette incertitude dans le système d’AD afin de fournir des mo-

dèles d’erreur réalistes pour les observations, l’ébauche et le modèle. Ces amélio-
rations méthodologiques sont apportées de manière élégante et sans générer de
lourdeur de mise en œuvre ou de calcul. Elles améliorent la robustesse de notre
système d’AD en l’empêchant de sous-estimer les incertitudes, comblant ainsi une
lacune exprimée par la communauté (Mons et al. 2017; Defforge et al. 2021).

D’un point de vue plus large, cette thèse souligne le potentiel d’amélioration des
chaînes de modélisation de la dispersion à micro-échelle en accélérant de manière signi-
ficative les prévisions d’un modèle CFD coûteux sans compromettre sa précision, tout en
évaluant et en réduisant les incertitudes de bout en bout grâce aux données d’observation.
De telles avancées revêtent une importance significative pour les applications de prévision
des risques.
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Améliorations possibles
À court et moyen terme, diverses modifications peuvent être apportées pour améliorer

et étendre le champ d’application du système d’AD à coût réduit construit dans cette
thèse. Dans cette section, nous résumons les principales pistes d’amélioration de chacune
des composantes du système

Le modèle de dispersion à micro-échelle LES peut être encore amélioré en ter-
mes de précision, comme illustré par le niveau limité de concordance avec les mesures
expérimentales constaté dans le Chapitre III. Bien que nous ayons expliqué certaines
de ces différences par la variabilité interne de la CLA ou par le manque d’étendue ver-
ticale du domaine (Annexe A.2), il existe encore des différences qui n’ont pas pu être
corrigées par notre système d’AD. Cela signifie que les erreurs du modèle ne s’expliquent
pas uniquement par l’incertitude des conditions aux limites météorologiques et motive
l’exploration de nouvelles pistes. Nous pourrions par exemple augmenter le niveau de
détail de la représentation de la géométrie urbaine, comme l’ont fait Santiago et al.
(2010). Nous pourrions également améliorer la représentativité des conditions aux limites
météorologiques, en commençant par adopter des profils verticaux de direction du vent et
de fluctuations turbulentes plus réalistes, avant de passer à la réduction d’échelle à partir
de simulations à méso-échelle (García-Sanchez and Gorlé 2018; Nagel et al. 2022). La
comparaison avec d’autres codes est également une perspective intéressante, qui pourrait
déterminer si l’erreur dans notre modèle LES est structurelle ou non.

Il convient de noter que l’ensemble LES calculé dans cette thèse a été principalement
utilisé pour construire le modèle d’ordre réduit permettant d’accélérer les prévisions de
concentration moyenne de polluant. Ceci ne nécessite qu’une petite fraction des données
collectées lors de ces simulations à haute résolution. La quantité substantielle de données
disponibles mérite d’être explorée davantage afin d’améliorer notre compréhension des
processus physiques impliqués dans la dispersion à micro-échelle.

La quantification de la variabilité interne est principalement limitée dans cette
thèse aux fluctuations à micro-échelle puisque notre modèle LES limite la taille des plus
grands tourbillons. Une perspective assez directe et prometteuse est donc de quantifier la
variabilité à méso-échelle, en particulier pour des périodes d’analyse plus longues. Pour
ce faire, une solution serait d’utiliser un modèle LES multi-échelle avec des conditions aux
limites d’entrée définies par descente d’échelle et qui changent dynamiquement (Wiersema
et al. 2020; Nagel et al. 2022). L’amélioration de la représentation des fluctuations atmo-
sphériques à grande échelle devrait permettre de combler l’écart actuel entre la variabilité
interne prévue et observée (voir le Chapitre III).

La représentation de la variabilité interne dans les prévisions du modèle d’ordre réduit
POD–GPRs pourrait également être améliorée. En effet, après optimisation, le paramètre
de variance du bruit des processus gaussiens correspond à la variabilité maximale ob-
servée dans la base de données d’apprentissage, comme démontré dans le Chapitre IV.
Cependant, la variance liée à la variabilité interne n’est pas homogène dans l’espace des
paramètres d’entrée, puisqu’elle augmente lorsque la vitesse de frottement diminue. Pour
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rendre compte de cette hétéroscédasticité de la surface de réponse, il serait intéressant
de prendre en compte la dépendance de la variance du bruit aux paramètres d’entrée,
comme le proposent Miyagusuku et al. (2015).

L’approche de réduction de modèle POD–GPRs que nous avons adoptée reste lim-
itée en termes de précision en raison de l’erreur due à l’étape de réduction de la dimension.
À notre avis, cela est principalement dû au fait qu’il est difficile de représenter fidèlement
l’intégralité des échelles de concentration avec une méthode de réduction linéaire telle que
la POD. Il nous semble donc très pertinent de réfléchir à remplacer la POD par des tech-
niques de réduction non linéaires telles que les auto-encodeurs convolutifs (Murata et al.
2020; Nony 2023). Cependant, en utilisant des auto-encodeurs, nous pourrions perdre
l’aspect hiérarchique de la décomposition qui est utile pour filtrer l’effet de la variabilité
interne.

Il est également possible d’améliorer l’étape de prétraitement des champs, car nous
avons constaté qu’elle affecte de manière significative l’erreur de projection POD. En
particulier, l’utilisation d’un prétraitement basé sur la transformation logarithmique de
la concentration moyenne améliore la précision globale du modèle réduit mais la détériore
à proximité de la source. La recherche d’un prétraitement optimal pour la construction
du POD pourrait donc constituer une autre moyen d’améliorer l’étape de réduction. Dans
l’Annexe B.3, nous montrons également qu’il est possible de combiner les prévisions des
POD–GPR construits avec différents types de prétraitement pour obtenir le meilleur de
chaque prétraitement.

Asimilation de données Les expériences que nous avons menées dans le Chapitre V
pour valider le système d’AD présentent plusieurs limitations :
◦ nous assimilons uniquement des mesures de concentration et il serait intéressant

d’étudier si le gain de performance obtenu par Mons et al. (2017) et Defforge et al.
(2021) lors de l’assimilation des données relatives à la vitesse et à la direction du
vent peut également être obtenu dans notre cas,
◦ nous ne corrigeons qu’un biais choisi arbitrairement sur les paramètres des con-

ditions aux limites météorologiques, mais dans les applications réelles, ce biais est
inconnu, il serait donc pertinent d’évaluer la robustesse de notre système d’AD pour
une large gamme de biais,
◦ nous montrons que les prévisions de l’AD sont fortement influencées par le seuil

choisi pour l’anamorphose de la concentration. Des efforts supplémentaires pour-
raient être menés pour étudier cette sensibilité afin de comprendre comment faire
un choix éclairé de la valeur du seuil,
◦ il conviendrait d’augmenter la variance d’erreur d’ébauche pour la direction du

vent car elle est sous-estimée par rapport aux observations. Toutefois, l’hypothèse
de distribution d’erreur gaussienne ne serait alors plus vérifiée, ce qui souligne la
nécessité de modifier le filtre de Kalman d’ensemble (EnKF) pour les variables
directionnelles (Jammalamadaka and SenGupta 2001).

222



Conclusion et perspectives

Plus important encore, lorsqu’il s’agit d’observations réelles, notre système d’AD n’est
pas en mesure d’améliorer parfaitement les prévisions de concentration car il surcorrige les
paramètres de contrôle pour compenser les biais du modèle. Il s’agit d’une limitation in-
trinsèque de notre système, qui peut être surmontée en modifiant la définition du vecteur
de contrôle. Dans un premier temps, nous pourrions discrétiser les profils de conditions
aux limites afin d’augmenter la dimension de l’espace des paramètres et donc le nombre
de degrés de liberté pour résoudre le problème d’AD (Defforge et al. 2021). Dans un sec-
ond temps, nous pourrions envisager d’utiliser des algorithmes d’AD d’estimation jointe
état-paramètres (Evensen 2009; Smith et al. 2013; Ruckstuhl and Janjić 2020). Cette
perspective prometteuse pourrait permettre de corriger les biais du modèle (Zhang et al.
2019), mais nécessite une prudence accrue dans la définition de la matrice de covariance
d’erreur d’ébauche afin de garantir la cohérence physique des estimations. Compte tenu
de la taille considérable du vecteur d’état (N ≈ 106), cette perspective peut nécessiter la
combinaison de méthodes de réduction, telles que la POD que nous utilisons déjà, avec
l’algorithme d’AD (Tissot et al. 2013; Arcucci et al. 2019; Bauweraerts and Meyers 2021).

Enfin, les récents progrès dans l’utilisation de techniques d’apprentissage automatique
pour l’AD (Cheng et al. 2023) pourraient apporter des améliorations significatives à notre
système, en particulier pour le traitement des erreurs du modèle (Farchi et al. 2021).

Perspectives
Dans cette section, nous détaillons les perspectives à long terme découlant des travaux

présentés dans cette thèse. Ces perspectives pourraient améliorer de manière significative
notre système d’AD à coût réduit. Dans un premier temps, nous examinons comment
nous pourrions étendre le champ d’application de ce système. C’est l’occasion de réfléchir
aux défis scientifiques associés à ces nouvelles applications, comme l’intégration de la
dimension temporelle pour le suivi des phénomènes instationnaires. Dans un second
temps, nous explorons la question spécifique mais ouverte de l’assimilation de données
provenant de capteurs mobiles pour enrichir le système d’AD présenté dans cette thèse.

Expansion des capacités du système d’assimilation de données
Vers de nouvelles applications Pour élargir le champ d’application de notre système
d’AD à coût réduit, il conviandra tout d’abord d’étendre les capacités du modèle LES,
pour : i) traiter tous les différents scénarios de stratification thermique de l’atmosphère,
afin de gagner en généralité, et ii) considérer la flottabilité des polluants, afin de pouvoir
traiter des espèces polluantes denses ou volatiles. De plus, l’utilisation du solveur AVBP
rend possible la modélisation d’espèces chimiquement réactives et des effets dynamiques
et thermodynamiques de source, qui se produisent par exemple lorsque des gaz pres-
surisés/liquifiés fuient (Spicer and Tickle 2021). Ces développements sont essentiels pour
étudier la dispersion d’espèces largement utilisées dans l’industrie, comme l’ammoniac,
et d’autres qui suscitent un intérêt croissant, notamment l’hydrogène en tant que vecteur
d’énergie (Guilbert 2021) et le dioxyde de carbone en vue de sa capture afin d’atténuer
le changement climatique (Delprat-Jannaud 2022). À plus long terme, le choix d’utiliser
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AVBP ouvre également la voie à de nouvelles applications dans le domaine de la sécurité,
telles que la combustion de l’hydrogène (Boivin et al. 2012), les explosions (Vermorel
et al. 2017), les feux de forêt (Rochoux et al. 2014b), ainsi que la dispersion des fumées
qui y sont associées.

Ces nouvelles applications nécessiteront des expériences de validation bien instrumen-
tées. Nous pourrons d’abord utiliser d’autres essais MUST pour évaluer la capacité de
notre modèle à simuler des conditions instables et stables (Biltoft 2001). La campagne
de dispersion JOINT URBAN 2003 (Allwine et al. 2004) à Oklahoma City (États-Unis)
ou les expériences de dispersion en soufflerie reproduisant la raffinerie de Feyzin (France)
menées par Vendel (2011) sont également des études de cas pertinentes pour tenir compte
d’une canopée urbaine plus réaliste et pour étudier des rejets de polluants intermit-
tents. La campagne de dispersion de chlore Jack Rabbit II (Fox et al. 2022), illustrée
Fig. VI.4a, pourrait également être particulièrement adaptée à la prise en compte des
effets de flottabilité et de source. Enfin, nous notons que des efforts expérimentaux im-
portants sont menés pour fournir des mesures détaillées de feux de forêt réels, par exemple
avec l’expérience à l’échelle du terrain illustrée Fig. VI.4b ou la campagne FASMEE plus
récente (Liu et al. 2019).

Ces nouvelles applications demanderont également des développements en matière de
réduction de modèle et d’assimilation de données. Comme nous avons opté pour une
approche de réduction de modèle non intrusive, notre système d’AD peut être adapté
à de nouveaux cas d’étude pour intégrer une physique plus riche et plus complexe, à
condition d’enrichir sa base d’apprentissage. Etant donné le coût de calcul de la plupart
des modèles numériques, limiter le nombre de simulations nécessaires pour entraîner le
modèle d’ordre réduit est l’une de nos principales préoccupations. Grâce à l’expérience
de cette thèse, nous saurons comment exploiter la théorie de similitude physique de la
dispersion afin de réduire le nombre de simulations nécessaires pour émuler la réponse
du modèle LES pour différents débits d’émission de polluants et différentes conditions
de stratification thermique de l’atmosphère. Le système d’AD étant maintenant établi,
nous serons également en mesure de minimiser le nombre de simulations d’entraînement
en construisant de manière incrémentale le modèle d’ordre réduit et en nous arrêtant
dès que nous atteignons un plateau de précision. En ce sens, l’utilisation de méthodes
d’échantillonnage adaptatif (Picheny et al. 2010; Braconnier et al. 2011) pourrait être
pertinente pour optimiser le gain de précision de chaque nouvel échantillon en donnant la
priorité aux zones critiques de l’espace des paramètres. En ce qui concerne l’algorithme
d’AD, le choix de l’EnKF restera pratique grâce à sa simplicité et à sa capacité à traiter
des modèles non linéaires et des espaces de contrôle de grande dimension.

Dans ce qui suit, nous examinons deux problématiques spécifiques qui découlent de
ces potentielles nouvelles applications.

La prise en compte de l’incertitude liée à l’emplacement de la source per-
mettrait à notre système d’AD d’estimer l’emplacement des sources de polluants en plus
des conditions météorologiques. Cela a une application directe pour la surveillance des
sites industriels tels que les raffineries, où les polluants peuvent s’échapper de plusieurs
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endroits différents. Toutefois, la nature de l’incertitude relative à la localisation de la
source soulève des questions méthodologiques spécifiques.

Tout d’abord, il faudrait un très grand ensemble de simulations pour représenter
toutes les combinaisons possibles de conditions de vent et d’emplacement de source lors
de l’apprentissage du modèle d’ordre réduit. Pour relever ce défi, Nony (2023) montre
que l’adoption d’un système multi-fidélité peut permettre d’économiser des ressources de
calcul importantes en découplant les formes d’incertitude. Cela repose sur le fait que les
équations de Navier-Stokes sont indépendantes de l’équation de transport des polluants
lorsque l’on considère des espèces passives. Nous pourrions ainsi conserver l’approche de
réduction de modèle adoptée dans cette thèse pour prévoir le champ d’écoulement du vent
pour diverses conditions météorologiques, puis utiliser ces prévisions comme forçage pour
l’équation de transport découplée afin de prévoir le champ de concentration de polluant.
Cette dernière pourrait alors être résolue pour tout emplacement de source possible en
utilisant, par exemple, un modèle lagrangien hautement parallélisable.

Ensuite, il conviendra de prendre en compte que le problème inverse de la recherche
de la position de la source est fortement mal posé (Hutchinson et al. 2017). De plus, les
hypothèses de l’EnKF ne sont pas bien adaptées pour décrire l’ensemble des positions
possibles de la source. Nous devrions donc envisager d’utiliser des algorithmes d’AD
plus directs tels que les méthodes de Monte-Carlo par chaînes de Markov (Gilks et al.
1995) pour résoudre le problème inverse. Ce genre d’algorithme est très gourmand en
évaluations du modèle et nécessitera donc un modèle d’ordre réduit multi-fidélité très
efficace.

Le suivi des phénomènes instationnaires, tels que les émissions intermittentes, la
propagation des fronts de feux de forêt ou bien des conditions météorologiques fortement
transitoires, nécessiterait une amélioration significative de notre système d’AD à coût
réduit. L’approche de modélisation LES que nous utilisons fournit déjà une représenta-
tion instantanée de l’écoulement atmosphérique, et l’EnKF est naturellement adapté à
l’estimation séquentielle, mais nécesiterait d’inclure les conditions initiales dans le vecteur
de contrôle. À notre avis, le plus grand défi résiderait surtout dans la construction d’un
modèle d’ordre réduit capable de prévoir des séries temporelles physiques dans des con-
textes hautement incertains. Il s’agit d’un sujet de recherche actif en mécanique des
fluides (Xie et al. 2018; Kim et al. 2019a; Deng et al. 2021a), mais aucune solution idéale
avec des besoins limités en matière de base de données d’apprentissage n’a encore émergé
à notre connaissance.

De plus, nous soulignons que les phénomènes instationnaires, de par leurs échelles
de temps caractéristiques, sont susceptibles d’être très sensibles à la variabilité interne
de la CLA. Cependant, la méthode de quantification de la variabilité interne que nous
proposons dans cette thèse repose sur une hypothèse de stationnarité. Pour les ap-
plications instationnaires, l’approche standard consiste à effectuer plusieurs prévisions
indépendantes correspondant à différents états turbulents de la CLA (Harms et al. 2011;
Costes et al. 2021), ce qui est très exigeant en termes de calcul avec LES. Le développe-
ment méthodologique visant à accélérer la quantification de la variabilité interne dans
des contextes instationnaires est donc d’un grand intérêt.
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Assimilation d’observations provenant de capteurs mobiles
Ces dernières années, les véhicules aériens sans humain à bord (UAV), plus com-

munément appelés drones, ont connu des avancées technologiques remarquables et sont
de plus en plus utilisés pour la surveillance de l’environnement (Manfreda et al. 2018),
dans des applications telles que l’agriculture (Kim et al. 2019b) et la surveillance des
crues des rivières (Perks et al. 2016) et des feux de forêt (Bailon-Ruiz and Lacroix 2020;
Hu et al. 2022). En embarquant différents types de capteurs, les drones permettent i)
d’échantillonner une large zone avec un budget capteur limité, ii) de prendre des images
à haute altitude d’un phénomène (voir par exemple Fig. VI.4a) avec une résolution plus
élevée que les moyens d’observation conventionnels (avions, satellites) et à moindre coût,
et iii) de cibler la zone à mesurer pour maximiser la collecte d’informations.

Pour ces raisons, les drones ont également un grand potentiel pour l’étude de la dis-
persion à micro-échelle (Villa et al. 2016a). Jusqu’à présent, de nombreuses études se sont
concentrées sur le suivi des panaches et la localisation des sources de polluants (Brink and
Pebesma 2014; Montes et al. 2014; Letheren et al. 2016), ce qui a nécessité le développe-
ment de capteurs de concentration en gaz embarqués (Neumann et al. 2013; Villa et al.
2016b), comme illustré Fig. VI.3a. Au lieu de résoudre un problème inverse mal posé
pour identifier l’emplacement de la source des polluants, les capteurs mobiles peuvent
permettre de directement remonter à la source en suivant le gradient de concentration.
Cependant, ces algorithmes de navigation sont souvent testés avec des hypothèses sim-
plifiées, par exemple en utilisant un modèle de panache gaussien (Montes et al. 2014). La
confrontation de ces algorithmes à des panaches plus réalistes, en utilisant les prévisions
d’instantanés de notre modèle LES (Fig VI.3c), montre la nécessité d’améliorer encore
leur robustesse pour faire face à la turbulence de la CLA.

Dans la suite, nous imaginons deux manières différentes mais complémentaires de tirer
parti de ces nouvelles données fournies par les drones, pour enrichir notre système d’AD
pour la dispersion atmosphérique à micro-échelle.

i) Échantillonnage adaptatif pour l’assimilation de données

L’étude pionnière de Patrikar et al. (2020) a ouvert la voie de l’assimilation de don-
nées de capteurs mobiles pour des applications à micro-échelle en démontrant que les
mesures d’un anémomètre transporté par un drone peuvent être assimilées pour améliorer
les estimations d’un modèle CFD du champ de vent dans les environnements urbains
(Fig. VI.3b). Cependant, cette étude se limite à l’assimilation de mesures le long d’une
trajectoire prédéfinie. À notre avis, cette approche pourrait être poussée encore plus loin
en adaptant la navigation des drones dans l’objectif de minimiser l’erreur d’estimation
du système d’AD.

La position des capteurs a en effet un effet très important sur la performance de l’AD.
En effet, lorsque les capteurs sont positionnés dans des zones qui ne sont pas très sensibles
au vecteur de contrôle, le problème d’assimilation devient mal posé (Mons et al. 2017;
Sousa et al. 2018). Cela motive la recherche de réseaux de capteurs qui optimisent la pré-
cision de l’AD (Dur et al. 2020; Deng et al. 2021b; Mons and Marquet 2021). L’utilisation
de capteurs mobiles nous permettrait d’aller encore plus loin en ciblant les emplacements
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(a)

(b) (c)

Figure VI.3: (a) Dispositif expérimental mis au point par Neumann et al. (2013) compor-
tant un micro-drone Airrobot AR100-B qui transporte un détecteur de gaz (Dräger X-am 5600).
(b) Expérience réelle réalisée par Patrikar et al. (2020) dans laquelle les mesures d’un drone
provenant d’un anémomètre embarqué (flèches magenta) sont assimilées à l’aide d’un filtre par-
ticulaire pour corriger les conditions limites d’un modèle CFD et améliorer ses prévisions du
vent local (flèches bleues). (c) Champ de concentration instantanée de propène à z = 4 m es-
timé par le modèle LES présenté dans le Chapitre II. Des mesures synthétiques sont obtenues en
couplant ces estimations avec un simulateur de vol de drone, puis utilisées pour remonter à la
source de polluant avec une version adaptée de l’algorithme de navigation proposé par Montes
et al. (2014). La trajectoire résultante partant du marqueur bleu est représentée par la ligne
blanche en pointillés.

de mesure en temps réel, sur la base des mises à jour de l’incertitude estimée par l’AD.
Le développement de tels systèmes d’AD dynamiques soulève de nombreux challenges,
notamment : i) l’estimation de l’information qui sera obtenue a priori en assimilant les
mesures d’un emplacement donné (Choi and How 2011; Peng et al. 2014), ii) le choix des
positions des capteurs pour maximiser l’information totale, dont la complexité explose
avec le nombre de capteurs à placer (Qian and Claudel 2020), et iii) la planification de la
trajectoire de la flotte de drones pour atteindre les positions optimales de manière efficace
(Reymann et al. 2018).

Il s’agit là de sujets de recherche à part entière et leur assemblage dans un système
d’AD dynamique complet, basé sur un modèle CFD et appliqué à un cas réaliste, néces-
siterait un effort considérable, mais serait sans aucun doute très novateur.

Des limitations éventuelles pourraient résulter de l’incertitude liée à la position des
drones, en particulier dans des conditions venteuses. La représentation des erreurs de
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position dans un système d’AD constitue une question importante (Rochoux et al. 2018)
qui ne doit pas être négligée compte tenu des forts gradients dans un panache de polluants.
En outre, la courte durée des expériences MUST et la taille relativement importante de la
canopée urbaine simplifiée limitent la distance qui peuvent couvrir les drones pour fournir
des mesures représentatives. Nous devrions donc rechercher des essais expérimentaux plus
appropriés pour mener des expériences synthétiques préliminaires.

En plus de ces contraintes techniques, nous soulignons que l’interaction entre les cap-
teurs mobiles et le phénomène observé – typiquement la déformation du panache de
polluants causée par l’écoulement d’air induit par un giravion – est une question essen-
tielle à laquelle il faut répondre avant de développer de tels systèmes d’AD dynamiques.
Des paramétrisations simples existent pour corriger les mesures d’un anémomètre trans-
porté par un drone (Bruschi et al. 2016; Thorpe et al. 2018). Cependant, nous pensons
que des efforts supplémentaires sont nécessaires afin de pouvoir prendre en compte avec
précision ce genre d’interactions dans le système d’AD présenté dans cette thèse. Par
exemple, des LES réalisées avec AVBP, parallèlement à des campagnes de mesures de
drones, pourraient permettre de caractériser finement l’effet des pales d’un giravion sur
l’écoulement local et le panache, en s’inspirant de l’analogie qui peut être faite avec la
modélisation des éoliennes dans les simulations de CLA (Joulin et al. 2020; Dabas et al.
2022).

ii) Assimilation de données de front de panache à partir d’images aéroportées

Dans certains cas, les drones peuvent également être utilisés pour fournir des données
d’observation non intrusives en survolant le phénomène et en le surveillant à l’aide de
capteurs embarqués (caméras visuelles ou infrarouges, ou bien lidars). Les données collec-
tées offrent alors des informations macroscopiques sur le phénomène, telles que sa taille,
sa vitesse de propagation, la rugosité de sa surface, etc. Des exemples d’images aériennes
issues de l’expérience de dispersion de polluants Jack Rabbit II et d’une expérience de
feux de forêt sont présentés dans la Fig. VI.4. Cette approche résout le problème de
l’interaction avec les phénomènes observés. Pour les études de dispersion des polluants,
elle est cependant limitée aux espèces traçables à distance.

Ce type de données d’observation est très prometteur pour l’AD. En effet, bien
que le fait de ne pas mesurer directement la quantité d’intérêt complexifie l’opérateur
d’observation et introduit de nouvelles incertitudes, ces mesures globales peuvent être
plus informatives que des mesures locales précises. Ceci est d’autant plus vrai dans des
contextes où les erreurs de position sont importantes, comme la dispersion des polluants
et la propagation des fronts de feux (Rochoux et al. 2014b; Zhang et al. 2019).

Pour réaliser une première expérience numérique d’un tel système dans un contexte
de dispersion, nous imaginons le plan d’action suivant : i) générer une séquence d’images
synthétiques à partir d’un modèle LES et d’un opérateur d’observation inverse pour
représenter le lien entre la concentration de polluant et la quantité mesurée à distance,
ii) reconstruire la forme du panache à l’aide d’un algorithme de détection de contour
(Xin-Yi et al. 2018; Chu et al. 2022), cette tâche consiste essentiellement à dessiner le
contour du panache sur la Fig. VI.4a, et iii) appliquer un algorithme d’assimilation de
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(a) (b)

Figure VI.4: Images aériennes d’expériences environnementales de terrain pertinentes. (a)
Panache de chlore correspondant à l’essai #7 de l’expérience de terrain Jack Rabbit II (2016,
US). Source : caméra embarquée par un drone opéré par les services d’urgence de l’université de
Utah Valley. (b) Photo d’une expérience de brûlage contrôlé de bruyère dans le Northumberland
(mars 2010, Royaume-Uni). Les lignes bleues, vertes et rouges indiquent les contours des iso-
températures 500 K, 600 K et 700 K respectivement, telles qu’identifiées par Paugam et al. (2013)
à l’aide d’une caméra thermique infrarouge héliportée.

contours, comme celui proposé par Rochoux et al. (2018), pour corriger le contour estimé
du panache avec celui observé. Une fois mis en place, ce système pourrait être validé
par des mesures visuelles réelles à bord, comme celles de la campagne de terrain Jack
Rabbit II (Fig. VI.4a).

En fin de compte, ces deux types de données d’observation fournies par les drones –
images aériennes et mesures directes in situ – pourraient être assimilées conjointement par
notre système d’AD. Cela pourrait permettre de mieux prendre en compte l’incertitude
des modèles LES en corrigeant les erreurs de position et d’intensité, et donc d’améliorer
la précision des prévisions de dispersion à micro-échelle.
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Appendix A

Additional sensitivity tests of the
LES model

The general aim of this appendix is to present further tests carried out to assess the
validity, the robustness but also the limitations of the LES model used in the thesis. In
particular, we investigate the convergence of the LES predictions with the mesh resolution
in Sect. A.1. Then, we assess the model sensitivities to the computational domain height
(Sect. A.2) and to the addition of turbulence injection (Sect. A.3).

A.1 LES model mesh convergence
When using an LES model, it is of primary importance to validate the LES solution

convergence with the spatial discretization resolution (Piomelli 1999). Indeed the coarser
the mesh, the less the proportion of turbulence resolved (Fig. II.1, page 50), and so the
more room for model inaccuracy, as a larger part of the turbulent scales is modeled and
not simulated. To address this issue, it is recommended to perform a mesh sensitivity
analysis which consists of using several meshes with increasing spatial resolution and
establishing from which resolution the model estimates become independent of the mesh
resolution (Franke et al. 2007; Schatzmann et al. 2010; Blocken 2015).

To assess the mesh convergence of the LES model of the MUST case presented in
Chapter II, simulations are performed on two additional meshes: one coarser than the
reference one defined in Sect. II.4.1, page 61, and one with a more refined spatial res-
olution (see Table A.1). These two meshes are obtained by rescaling the cells of the
non-structured mesh by a uniform and isotropic factor λmesh, using the Mmg1 library.

Figure. A.1 shows the vertical profiles of three quantities of interest at tower T (located
in the canopy) for the three mesh resolutions: mean horizontal wind velocity, horizontal
turbulent kinetic energy and mean concentration. Note that tower T is located within
the canopy. The profiles do not overlap perfectly, especially for the horizontal turbulent
kinetic energy and the mean concentration. However, most of the differences are of the or-
der of magnitude of the internal variability error, as represented by the blue shaded areas

1See https://www.mmgtools.org/.
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Table A.1: Characteristics of the meshes used to assess the mesh convergence of the LES
MUST model with different refinement factors λmesh. Ncells, and Nnodes are the numbers of
tetrahedral cells and nodes in million; hmin (resp. hmax) is the minimum (resp. maximum) cell
edge length; z1 is the averaged height of the center of the first cell above the ground.

λmesh Ncells Nnodes hmin hmax z1

(×106) (×106) (m) (m) (m)

Coarse mesh 1.4 49 8.9 0.089 12.6 0.17
Reference mesh 1.0 91 17 0.118 10.7 0.12
Refined mesh 0.8 161 28 0.064 8.68 0.10

in Figure. A.1. Note at high altitudes the profiles associated with the tested meshes are
outside of the internal variability confidence intervals, but internal variability is probably
under-estimated in altitude (Fig. III.12, page 106).
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Figure A.1: Vertical profiles of mean horizontal velocity (a), horizontal turbulent kinetic en-
ergy (b), and mean concentration (c) at tower T. Results are given for the simulations performed
with the reference mesh, the coarse mesh, and the refined mesh (Table A.1), as blue solid lines,
dotted red lines and dashed green lines, respectively. Internal variability uncertainty is repre-
sented with the [2.5th, 97.5th] percentile intervals estimated by stationary bootstrap presented in
Sect. III.2.4, page 83 as shaded blue areas for the reference simulation.

In conclusion, given the inherent uncertainty of LES predictions over time-finite pe-
riods, we can consider the LES estimates are not significantly impacted by the mesh
resolution. We can conclude that the reference mesh is sufficiently well refined to reach
spatial discretization convergence in such an uncertain context.
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A.2 LES model sensitivity to computational domain
height

For CFD modeling of atmospheric flows, it is important to have a domain high enough
to limit the artificial impact from the top boundary condition on the area of interest and
to limit flow blockage. As described in Sect. II.4, page 61, the baseline computational
domain used in this study matches the usual recommendations for the domain height
(Tominaga et al. 2008; Franke et al. 2007). Nevertheless, during the validation of the
current LES model (Sect. III.4.1, page 92), it was found that the turbulent kinetic energy
was underestimated near the top of the domain (Fig. III.6, page 93). We investigate in
this section, the effect of the domain height on the turbulent fluctuations predicted over
the canopy.
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Figure A.2: Vertical profiles of horizontal turbulent kinetic energy at the inlet, tower S and
tower T for the reference domain height (50 m) and the one with extended height (150 m). The
dotted lines represent the subgrid-scale turbulent kinetic energy estimated with Eq. A.1. Circle
symbols correspond to the observations. Internal variability uncertainty is represented with the
[2.5th, 97.5th] percentile intervals estimated by stationary bootstrap as shaded blue areas for the
reference simulation and as orange bars for the observations.
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For this purpose, the computational domain height is increased from 50 m to 150 m.
A new mesh, with the same properties as the reference one (see Sect. II.4.1, page 61)
is generated to discretize the new domain. In this new domain, the turbulent injection
parameter λe, i.e., the most energetic length of the turbulent spectrum, is multiplied by
three as it was previously limited by the domain height. A new simulation is carried out
with this setup. Figure A.2 shows that increasing the domain height improves the overall
model accuracy at high altitudes. In particular, it solves the problem of the turbulent
kinetic energy dissipation for heights between 20 m and 40 m. This demonstrates that it is
the outflow boundary condition used for the top of the domain that dissipates turbulence.
We also find that, by reducing the error on the turbulent kinetic energy profile and
enabling the injection of larger structures, the simulation with increased domain height
better estimates the internal variability in altitude compared to the baseline simulation.

Note that the effect of domain height on the mean concentration is not significant
when compared to internal variability errors (not shown here). This is because most of
the plume is located near the ground.

Note also that, for the same MUST trial and using a different LES code (Meso-NH,
(Lac et al. 2018)), Nagel et al. (2022) found no significant differences in the vertical
profiles predicted by two simulations with different domain heights of 40 m and 3000 m,
respectively. This is because the top boundary condition treatment they use is a free-slip
boundary condition. In contrast, we use an outflow boundary condition that imposes zero
vertical turbulent transport and thus has more effect on the turbulent statistics within
the domain, as suggested by Calaf et al. (2011).

To analyze the effect on the turbulent kinetic energy in more detail, we also take into
account the subgrid-scale turbulent kinetic energy ksgs, which represents the part of the
turbulent energy that is modeled and not resolved by the LES (Fig. II.1, page 50). We
estimate it from the subgrid-scale turbulent viscosity νt as in Quillatre’s thesis (2014):

ksgs =
(

νt

Cm∆

)2
, (A.1)

with ∆ the cell size, and Cm = 0.091. Figure. A.2 shows the ksgs profiles added to the
horizontal turbulent kinetic energy. Interestingly, increasing the domain height reduces
the estimated subgrid-scale turbulence. Since the mesh resolution is the same for both
domains, it implies that the reference simulation overestimates subgrid-scale viscosity.

In conclusion, the finite vertical extent of the domain interferes locally with the pre-
dictions of turbulent statistics because of the outflow boundary condition used at the
top of the domain. In particular, the top boundary condition leads to a dissipation of
turbulent kinetic energy down to approximately z = 15 m. As in Calaf et al. (2011), we
find that the height of the domain should be at least three to five times the height of the
area of interest. Note that this is not an issue for computational cost as the upper part of
the domain contains much fewer cells when using unstructured mesh or non-conforming
structured mesh with refinement. Unfortunately, we could not change the model config-
uration for the thesis because the ensemble of LES (Sect. IV.4, page 137) was already
computed with a domain height of 50 m. Therefore we should be careful with the model
predictions above the canopy knowing that they are imperfect. Note this is not a ma-
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jor issue for dispersion analyses since all the concentration sensors are located near the
ground (under 6 m).

To check whether similar problems or horizontal flow blockage occur with lateral
boundary conditions, we also carried out a new simulation with an increased horizontal
extent (with a distance between the first obstacle and the lateral boundaries increased
from 80 m to 920 m). Results show that increasing the domain horizontal extent has
no significant effect on the wind flow statistics predicted by the LES model compared
with the internal variability involved. We conclude that our baseline LES model is not
artificially affected by the lateral boundary conditions.

A.3 Impact of adding turbulence injection on LES
predictions

One of the modeling contributions of this thesis is the implementation of a turbu-
lence injection method to improve the physical representativeness of the AVBP model
(Sect. II.4.3, page 64). In this section, we assess to what extent this addition influences
model predictions.
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Figure A.3: Vertical profiles of the horizontal turbulent kinetic energy at tower S (a) and
T (b). Simulation time-averaged profiles are given with and without turbulence injection, as
blue and red lines respectively. Colored circles correspond to observations. Internal variability
uncertainty is represented with the [2.5th, 97.5th] percentile intervals estimated by the stationary
bootstrap method presented in Sect. III.2.4, page 83, as shaded blue areas for the reference
simulation (with injection), and orange error bars for the observations.

This is done by comparing two simulations: one with turbulence injection and one
without. As expected, not using turbulence injection results in a drastic underestimation
of the horizontal turbulent kinetic energy k2D compared with both observations and
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simulation with turbulence injection (Fig. A.3). For tower S, located upstream of the
containers, there is no turbulence at all over the entire vertical (red line Fig. A.3a).
While at tower T, positioned after the fifth line of containers, some of the turbulence
induced by the containers is captured by the LES model without injection up to 15 m
above the ground. Still, the total turbulent kinetic energy is underestimated compared
with observations (Fig. A.3b), even in the obstacle region where one could expect a lesser
impact of the incoming atmospheric turbulence. This shows that the turbulence brought
by the atmospheric boundary layer is not negligible in this part of the simplified urban
canopy, at least for the studied trial.
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Figure A.4: Vertical profiles of mean horizontal wind velocity at tower T (a) and mean
concentration at tower C (b). Mean concentration isolines on the horizontal plane at z =
1.6m (a). Simulation time-averaged profiles are given with and without turbulence injection, as
blue and red lines respectively. Colored circles correspond to observations. Internal variability
uncertainty is represented with the [2.5th, 97.5th] percentile intervals estimated by stationary
bootstrap presented in Sect. III.2.4, page 83, as shaded blue areas for the reference simulation
(with injection), and error bars for the observations.

This underestimation of turbulent energy causes the flow in the canopy to slow down
(Fig. A.4a), which reduces tracer mixing and thereby increases concentration levels. This
is evidenced by the longer plume in the streamwise direction obtained without injec-
tion (Fig. A.4b). Compared to field measurements, the simulation without turbulence
injection underestimates mean horizontal wind velocity at tower T (Fig. A.4a), and over-
estimates mean concentration, as shown by the vertical profiles of mean concentration at
tower C (Fig. A.4b). Note that towers T and C are located within the canopy (Fig. A.4c).
In addition, we highlight that these changes in the LES predictions are not caused by
internal variability as the mean profiles obtained without injection are outside of the 95%
confidence intervals representing the internal variability uncertainty (Fig. A.3–A.4).
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In conclusion, this sensitivity test demonstrates that turbulence injection has a pre-
ponderant effect on LES predictions of wind flow and pollutant concentration statistics,
even after a few lines of obstacles. In particular, not using turbulence injection deterio-
rates the agreement between LES and field measurements, even inside the urban canopy.
This supports the use of turbulence injection for LES of microscale atmospheric flows, as
already suggested by Breuer (2007) and Vasaturo et al. (2018).
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Reduced-order model additional
applications

This appendix presents additional applications of the POD–GPRs (Proper Orthogo-
nal Decomposition and Gaussian Process Regressors) reduced-order model designed and
validated in Chapter IV for predicting mean concentration fields for varying inlet wind
direction and friction velocity. In Sect. B.1, we demonstrate that POD–GPRs can be
used to accurately predict other LES fields such as mean horizontal velocity, turbulent
kinetic energy and maximum concentration. In complement, Section B.2 illustrates how
to use the reduced-order model for global sensitivity analysis. Finally, we investigate
in Sect. B.3 an approach called mixture-of-experts that combines different POD–GPRs
models to improve the accuracy of mean concentration predictions.

B.1 Prediction of other fields
In Chapter IV, the construction and validation of the POD-GPRs model are focused

on mean concentration prediction. Here, we show that the POD-GPRs approach can be
easily transposed to the prediction of other quantities.

We consider the problem of predicting three additional fields: the mean horizontal
velocity uh, the horizontal turbulent kinetic energy k2D, and the maximum concentration
cmax over a 200-s analysis period. The first two could be typically used for data assim-
ilation as shown by Defforge et al. (2021). In addition, emulating the turbulent kinetic
energy can be used in promising multi-fidelity approaches for dispersion (Nony 2023).
Finally, maximum concentration can be useful in an operational context for maximal
exposure mapping. Concerning the preprocessing, we use a log-prescaling (Eq. IV.22) for
cmax and linear centering (Eq. IV.21) for the other two fields. In all cases, we normalize
fields by the friction velocity, as in Eq. IV.3a, b, for cmax and uh, and by dividing by u2

∗
for k2D.

For these other fields, the POD–GPRs predictions are in very good agreement with
the LES test fields, as shown by the horizontal cuts at z = 1.6 m for the reference sample
(Fig. B.1). The POD–GPRs model can capture the general appearance of the fields,
namely the flow slowdown through the canopy (Fig. B.1a, b), the peak of turbulent
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Figure B.1: Horizontal cuts at z = 1.6 m of the mean horizontal velocity uh (a, b), the
horizontal turbulent kinetic energy k2D (c, d), and the maximum concentration cmax over a
200-s analysis period (e, f). The first and second columns correspond respectively to the LES
and POD–GPRs predictions. Results are given for the test sample #91 with (α(91)

inlet, u
(91)
∗ ) =

(−8.9 °, 0.38 m s−1). The preprocessing used for each field is described in Sect. B.1.

kinetic energy behind the first line of containers (Fig. B.1c, d), and the less elongated
form of cmax isolines (Fig. B.1e, f). Careful examination shows that POD–GPRs may
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however miss some local features of the reference fields, for example, local increase of k2D
within the obstacles array or the puff of concentration that goes outside of the array in
Fig. B.1e. We presume that these local features are closely related to random fluctuations
of the atmospheric boundary layer and therefore not generalizable.

Table B.1: POD–GPRs prediction error for the mean horizontal velocity uh, the horizontal
turbulent kinetic energy k2D, and the maximum concentration cmax over a 200-s analysis period.
Errors are quantified using Q2 metric (Eq. IV.36), Mean Absolute Error MAE, and the air
quality metrics presented in Sect. III.3.2, page 90. The metrics scores are then averaged over
the test set.

Q2 MAE FB NMSE FAC2 MG VG FMS(1 ppm) FMS(0.01 ppm)

cmax 0.67 0.50 ppm 0.01 8.18 0.86 0.96 1.34 0.88 0.95
uh 0.99 0.11 m s−1 / / / / / / /
k2D 0.97 0.07 m2 s−2 / / / / / / /

We also proceed to a quantitative evaluation of the POD–GPRs accuracy over the
test set. First, we verify that POD–GPRs reproduce well the variance of the test set as
shown by the Q2 scores in Table B.1. Note that the less good Q2 score for cmax is mainly
due to the log-preprocessing that limits the ability of the POD to capture variance on
high values, as demonstrated in Sect. IV.5.2. As Q2 scores may fail at detecting non-
physical predictions (see Table IV.2, page 148), we also evaluate the POD–GPRs accuracy
using the Mean Absolute Error (MAE) and the standard air quality metrics for cmax.
Results show a very fine level of accuracy for uh and k2D. Concerning, cmax the validation
scores are slightly less good than for the mean concentration but are still in very good
agreement, especially for the shape of the maximum concentration plume. As for the
mean concentration, the model has difficulty predicting high maximum concentrations,
as illustrated by the average NMSE in Table B.1. Note that these already very fine results
are suboptimal since we use the same model design as for the mean concentration, i.e.
the choice of the model preprocessing, the number of modes, and the kernel function.
However, there is no a priori reason why these choices should remain optimal when
predicting uh, k2D, and cmax. If the prediction of other fields is of particular interest,
we recommend repeating the analyses presented in Sect. IV.2, page 122, to choose these
parameters.

Finally, note that the reduced-order models predicting a given field are built indepen-
dently. Building a single model, that could learn the underlying relationships between the
fields predicted by the LES model, is an interesting prospect but has not been considered
in this study.
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B.2 Application to global sensitivity analysis
In this section, we give the results of a global sensitivity analysis of the LES dispersion

model of the MUST case presented in Chapter II. These results are a continuation of the
preliminary One-At-a-Time sensitivity analysis presented in Chapter III. In this first step,
we have identified the parameters to which the LES model is most sensitive: the inlet wind
direction αinlet and the friction velocity u∗. In the current study, we go further by assessing
in detail the global sensitivities of the LES model to these two parameters. To take into
account non-linearities in the model surface response and investigate the coupled effect
of the parameters, we use a stochastic approach based on the computation of the Sobol’
indices presented in Sect. B.2.1. Since it requires a large number of model integrations
we use the POD–GPRs reduced-order model built in Chapter IV as a surrogate for the
LES model. Finally, results on the sensitivity of the mean concentration field are given
in Sect. B.2.2.

B.2.1 Sobol’ indices for sensitivity analysis
The calculation of Sobol’ indices is a stochastic sensitivity analysis method that has

the advantage of taking into account both the non-linearities of the model and the effects
of interactions between parameters (Sobol’ 1990). To quantify the sensitivity of a model
output y to a certain number d of input variables θ = {θi}d

i=1, the Sobol’ indices are
based on the decomposition of the total observed variance V = V(y):

V =
p∑

i=1
Vi +

∑
1≤i<j≤p

Vij + . . . + V1...p, (B.1)

with Vi = V (E(y|θi)) ,

Vij = V (E(y|θi, θj))− Vi − Vj,

Vijk = V (E(y|θi, θj, θk))− Vi − Vj − Vk − Vij − Vik − Vjk,

...

V1...p = V −
p∑

i=1
Vi −

∑
1≤i<j≤p

Vi,j − . . . −
∑

1≤i1<···<ip−1≤p

Vi1...ip−1 .

The first-order terms Vi quantifies the variance of y if it were conditioned solely by the
input variable θi. Using the useful formula Vi = V(Y ) − E(V(Y |Xi)) it can also be
interpreted as the expected decrease in the variance of Y when the variable θi is fixed.
Second-order terms Vij quantify the variance of y if it were conditioned solely by θi and
θj after removing the associated first-order contributions. Higher-order terms are defined
similarly.

Sobol’ sensitivity indices are then simply defined by normalizing Eq. B.1 by the total
variance:

1 =
p∑

i=1
Si +

∑
1≤i≤j≤p

Si,j + ... + S1,2,...,p, (B.2a)
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so that Si = Vi

V
, Sij = Vij

V
, . . . , S1...p = V1...p

V
. (B.2b)

The indices Si are referred to as first-order Sobol’ indices, Sij as second-order, and so on.
In addition, the total sensitivity indices STi are introduced to quantify all the effects of
a variable θi on the variance of the output, i.e. the direct effect and all cross-effects of
order greater than or equal to 2. They are defined as the sum of all sensitivity indices
relating to the variable θi:

STi = Si +
∑
j ̸=i

Si,j +
∑
j ̸=i

k ̸=i,j

Si,j,k + ... + S1,2,..p (B.3)

In practice, these indices are computed using Monte-Carlo techniques to estimate the
conditional variances in Eq. B.1. In the original method proposed by Sobol’ (1990), this
is done using a pseudo-random uniform sequence of samples of inputs θ defined so that
each sample shares k inputs with another sample, k being equal to the order of the indices
to estimate. Other methods exist (McKay 1995; Saltelli et al. 2010) but they all rely on
Monte-Carlo estimation. This implies that the convergence of the Sobol’ indices estimates
is in O(

√
N) with N the number of model evaluations, which is unsuitable for the LES

model because of its computational cost (see Chapter II). To circumvent this issue we
use the reduced-order model built in Chapter IV as a surrogate for the LES model. Note
that this is a classic strategy in sensitivity analysis (Sudret 2008; Cheng et al. 2020).

To write the variance decomposition as in Eq. B.1, the input variables are assumed
to be decorrelated. This is not necessarily true in reality: for example, high friction
velocities can be strongly correlated with certain wind directions. As this section is
mainly an example of how to apply the reduced model, we do not investigate this aspect
further. Note that if the variables were found to be correlated, we would have to use
another sensitivity quantification approach, for example using the indices from Shapley
(1953) instead of the Sobol’ indices, as shown by Iooss and Prieur (2019).

B.2.2 Global sensitivity of the mean concentration predictions
to wind conditions

In this section, we estimate the Sobol’ indices of the mean concentration field c of the
LES model of the MUST field experiment (see Chapter II), for each node of the domain.
To do so, we use the SALib1 implementation of the algorithm proposed by Saltelli et al.
(2010). In this method, the total number of input samples for which the model must
be evaluated is equal to N × (2d + 2) with N the number of terms in the Monte-Carlo
estimator and d the number of input variables. Here, we only consider the d = 2 most
important input parameters according to the preliminary sensitivity analysis presented
in Chapter III: the inlet wind direction αinlet and the friction velocity u∗. It implies that
it is not required to compute the indices of second order as they can simply be derived
from Eq. B.2a, thus reducing the number of model evaluations to 4N . In our case, a

1See https://salib.readthedocs.io/en/latest/
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convergence study shows that N = 2048 is enough to reach convergence of the Sobol’
indices estimates.
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Figure B.2: Input parameter space sampling obtained using the scheme from Saltelli et al.
(2010), each point is a pair of parameters for which we evaluate the reduced-order model.

To be able to carry out this large number of queries, we use the POD–GPRs reduced-
order model presented in Chapter IV as a surrogate for the LES model. We use log-
prescaling Tlog of the mean concentration field (see Sect. IV.2.4, page 128). However,
we do not normalize the fields by the friction velocity as it would force the structure
of dependency to this parameter. In opposition to the local One-At-a-Time sensitivity
analysis presented in Chapter III, we now study the model response surface for the whole
input parameter space Ωθ, as defined for the construction of the reduced-order model
(Eq. IV.38, page 138). The sampling of Ωθ obtained by the Saltelli sequence is illustrated
in Fig. B.2. Note that the 2048 first samples of the sequence are skipped following
recommendations from Campolongo et al. (2011) and Owen (2020).

Figure B.3 shows the spatial distribution of the Sobol’ indices of the first and sec-
ond order of the mean concentration at z = 1.6 m within the array of obstacles. It
appears that the variance of the model prediction is mainly explained by the inlet wind
direction (Fig B.3a). Conversely, the first-order Sobol’ indices relative to the friction ve-
locity are overall very close to zero, except near the source and along one inter-obstacles
axis (Fig B.3b). On the other hand, the second-order indices reach significant levels
(Sαinlet,u∗ ≥ 0.5), especially in a zone of about 5 obstacles by 5 obstacles around the
source (Fig B.3c). This demonstrates that there is an important interaction effect be-
tween αinlet and u∗. It is explained by the fact the mean concentration at one given
location can be either inversely proportional to friction speed or independent of u∗, de-
pending on whether or not the plume passes through this location. Hence the wind
direction conditions the dependence on friction velocity.

At a given location, when the majority of the concentration samples from the Saltelli
sequence (Fig. B.2) are close to zero, the computation of the Sobol’ indices becomes
ill-posed. The part of the domain where 99% of the concentration samples are under
a threshold ct = 10−4 ppm is highlighted by blue hatches in Fig. B.3. Note that the
estimated Sobol’ indices should also be treated with caution in the vicinity of the source,
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Figure B.3: Horizontal cuts at z = 1.6 m of the maps of the Sobol’ first-order indices quan-
tifying the sensitivity of the mean concentration field to the wind direction αinlet (a) and to the
friction velocity u∗ (b). The effect of interactions between these two parameters is quantified by
the second-order Sobol’ indices (c). The blue hatched area corresponds to mesh nodes for wich
99% of the concentration samples (Fig. B.2) are under the threshold ct = 10−4 ppm.

as we saw in Chapter IV that the POD–GPRs model lacks precision in this area.

Table B.2: Global Sobol’ indices quantifying the sensitivity of the mean concentration field
to two wind condition parameters: the inlet wind direction αinlet, and the friction velocity u∗.
Results given in this table are spatial averages of the Sobol’ indices of first order Si, second order
Sij and total order STi, computed for each parameter.

Si Sij STi

αinlet 0.69 0.25 0.94
u∗ 0.06 // 0.31

Finally, to give an overview of the model’s sensitivities, we give in Table B.2 the first,
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second, and total order Sobol’ indices averaged over the whole domain. Nodes for which
the computation of the Sobol’ indices is ill-posed are not taken into account in these scores.
The aggregated indices thus obtained are consistent with observations from Fig. B.3.
Indeed, the inlet wind direction αinlet is the predominant input parameter with a very
high global total-order indice STαinlet

. And the mean concentration dependence on u∗ is
still mostly conditioned by αinlet as Sαinlet,u∗ > Su∗ . We note that these results on the
global sensitivity of the model surface response are coherent with those of the preliminary
One-At-a-Time sensitivity analysis presented in Sect. III.5.2, page 109.

We highlight that Sobol’ indices maps (Fig. B.3) can be used to guide the positioning
of sensors during the design of experimental campaigns or observation networks. It is
particularly useful in the context of data assimilation for parameter estimation as shown
by Mons et al. (2017) in a very similar context. Indeed, these maps describe the effect
of a perturbation of each input parameter on the observed quantity at each point in the
domain. In practice for the current example, it tells us that to improve the chances of
correctly inferring friction speed, it is best to place sensors close to the source. Conversely,
to infer the inlet wind direction it is better to position sensors further away from the
source, on the edges of the obstacle array. Finally, we point out that placing sensors only
according to the Sobol’ indices can be problematic, as areas with zero concentrations in
most scenarios can obtain very high first-order indices, as illustrated by the hatched area
in blue Fig. B.3. We therefore suggest using, in addition to Sobol’ indices, a criterion on
the probability of actually detecting the tracer.
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B.3 Towards reduced-order modeling based on a mix-
ture of experts

To overcome the poor performances of the POD–GPRs at predicting high mean con-
centrations (see Sect. IV.6.1), we investigate the use of a Mixture-Of-Experts (MOE)
method. This method, inspired by the works of El Garroussi et al. (2020), broadly con-
sists of using a mix of predictions of different reduced-order models to optimize the overall
prediction accuracy.

In our case, we adopt a very pragmatic approach to assembly the predictions of two
POD–GPRs models, one with linear fields preprocessing T (Eq. IV.21) and the other
with log-transformation Tlog (Eq. IV.22). This takes advantage of the fact that the POD
built with T better represents the high concentration while using Tlog better captures the
shape of the plume and low concentrations, as shown in Table IV.2. The mix between the
two predictions cT is cTlog

is simply achieved by using the first for high concentrations and
the second for low concentrations. In practice, this translates into a spatial juxtaposition
of the two fields:

cMOE(xk) =
 cT (xk), if cT (xk) > cmix,

cTlog
(xk), else,

1 ≤ k ≤ N, (B.4)

with cmix the mixture concentration level, which separates the two predictions. To choose
cmix we compute the averaged FMS (Eq. III.18, page 91) scores obtained by both POD–
GPRs models for increasing levels of isoconcentration, and we select the level of concen-
tration for which the prediction with linear scaling becomes better than with log scaling.
This gives cmix = 5 ppm.

Figure B.4 illustrates the principle of the MOE reduced-order model with mean con-
centration prediction errors for the reference test sample #91 (represented as a yellow
star in Fig. IV.5). We can see that the MOE approach achieves to reduce the estimation
error for high concentrations close to the source compared with the POD–GPRs model
with Tlog (Fig. B.4a, c, e). Note that the error magnitude near the source remains im-
portant. In our opinion, this is because this zone is highly uncertain by nature, due to
the strong concentration gradients and the high internal variability close to the edges
of the obstacles array. On the other hand, MOE uses the POD–GPRs prediction with
Tlog for the rest of the domain which prevents it from predicting the large unphysical
concentration features obtained with T (Fig. B.4b, d, f).

The overall results of the MOE, with and without fields normalization by the friction
velocity, are given in Table B.3. In both cases, the MOE model achieves the highest
scores by capturing the best of both worlds, i.e. NMSE scores aligned with the ones of
the POD–GPRs models using linear preprocessing (T and T1D), and the scores obtained
with log-transformation (Tlog and Tlog−1D) a for every other metric. These results are
mainly because the validation metrics are highly spatialized, as this analysis formally
demonstrates. Finally, we note that when normalizing the fields by the friction velocity
(last row of the Table B.3) the improvement in NMSE is relatively less important because
the NMSE score obtained by the POD–GPRs model using Tlog−1D is better in the first
place.
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Figure B.4: Horizontal cuts at z = 1.6 m of the difference between the LES and reduced-order
model predictions of the mean concentration, for the POD–GPRs with the T (a, b), and Tlog

preprocessing (c, d), and for the MOE (e, f). The predictions are compared using absolute
difference on the first column and log difference on the second column. The panels of the first
column are a close-up view of the vicinity of the source. The yellow line corresponds to the
5-ppm isoline used to assemble the predictions (Eq. B.4). Results are given for the test sample
#91 with (α(91)

inlet, u
(91)
∗ ) = (−8.9 °, 0.38 m s−1).

One of the main issues with the MOE approach is that continuity both in spatial and
parameter spaces is no longer ensured which results in concentration jumps at c = cmix

(not shown here). On the contrary standard POD–GPRs models are continuous in the
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Table B.3: Comparison of the validation scores averaged over the test set for the POD–
GPRs and MOE reduced-order models. Results for the POD–GPRs are given for the two fields
preprocessing with and without log-scaling (Tlog and T ). Definitions of the validation metrics
are given in Sect. III.3.2, page 90. The second row corresponds to the mean level of error solely
due to internal variability (see Sect. IV.3.4). The third and fourth rows correspond respectively
to the results without and with fields normalization by the friction velocity.

FB NMSE FAC2 MG VG FMS FMS
(1ppm) (0.01ppm)

Internal variability 0 1.80 0.95 1.00 1.39 0.83 0.93

POD–GPRs – T -0.01 4.86 0.56 0.21 1.13× 106 0.68 0.43
POD–GPRs – Tlog -0.04 20.6 0.91 1.00 1.39 0.75 0.92

MOE -0.03 4.41 0.91 1.00 1.39 0.75 0.92

POD–GPRs – T1D -0.06 3.10 0.59 0.27 1.71× 105 0.78 0.47
POD–GPRs – Tlog−1D -0.02 4.61 0.90 0.97 1.40 0.79 0.93

MOE (1D) -0.02 3.29 0.90 0.97 1.40 0.79 0.93

parameter space by construction since they are expressed as a linear transformation of
continuous Gaussian processes predictions (Fig. IV.17) and the spatial continuity of the
predicted fields is well verified in practice (Fig. IV.15c, d).

In conclusion, the MOE approach achieves to get the best out of both POD–GPR
models, with and without logarithmic transformation and therefore offers a short-term
solution for improving the accuracy of reduced-order models. To further improve the
MOE approach, it would be pertinent to consider other reduced-order models for the
choice of expert. We also believe that choosing the predicting model according to input
parameters as El Garroussi et al. (2020) could improve the homogeneity of reduced-order
model accuracy in parameter space (see Sect. IV.6.4). Finally, the model choice could
be directly learned from the train set instead of being specified a priori in Eq. B.4. This
classification learning problem could be solved using support vector machines (Platt 1999)
or decision trees (Rokach and Maimon 2014).
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Carbon footprint estimation

Introduction

Climate change is an urgent and unprecedented environmental issue that is reshaping
the world as we know it. It refers to the long-term increase in the Earth’s average surface
temperature, primarily driven by the accumulation of greenhouse gases (GHG) in the
Earth’s atmosphere, such as carbon dioxide (CO2), methane (CH4), and nitrous oxide
(N2O), which trap heat in the atmosphere, leading to a gradual rise in temperatures.
This phenomenon has far-reaching and potentially catastrophic consequences, including
the melting of polar ice caps, rising sea levels, the expansion of deserts, the intensification
and increased frequency of heat waves and wildland fires, as well as the disruption of
ecosystems and biodiversity. The effects of climate change are already being felt, with a
1.00 °C to 1.25 °C rise in average surface temperature over the 2013–2022 decade compared
with the pre-industrial era (Forster et al. 2023), and GHG emissions related to human
activities have undoubtedly played a central role in this warming (Masson-Delmotte et al.
2023).

In order to mitigate the effects of climate change and prevent the climate system from
reaching tipping points, nations collectively committed, in the 2015 Paris Agreement,
to keep warming well below 2 °C, and preferably as low as 1.5 °C, compared with pre-
industrial levels. To limit global warming to 1.5 °C, humanity will need to cut emissions by
half by 2030 and achieve near-zero emissions by 2050 (Rogelj et al. 2022). A fundamental
first step in developing reduction strategies and committing human society to a low-
carbon transition is the quantification of all anthropogenic emissions, as well as their
classification by type of source (energy consumption, transport, industrial processes, etc).
This assessment, called carbon footprint, can be carried out at different scales, so that
individuals, companies and governments can make informed decisions to reduce their
impact on the climate.

In this context, the world of research has also begun to think about its carbon foot-
print. In France, Labos 1point5, a collective of members from the academic world, has
been at the forefront of estimating the carbon footprint of academic research. They no-
tably develop and provide access to a carbon footprint estimation tool for laboratories:
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GES 1point51, and initiated a multi-laboratory comparison (De Paepe et al. 2023). At
CERFACS, a working group was formed to estimate the carbon footprint of the lab-
oratory. During my thesis, I actively participated in the group’s activities, including
data collection and processing, as well as presenting our estimates. Figure C.1 gives an
overview of CERFACS’ carbon footprints for the years 2019, 2021 and 2022.
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Figure C.1: CERFACS’ carbon footprints for the years 2019, 2021 and 2022. Each emission
source is represented by a different color.

The aim of this appendix is to adopt a finer degree of emissions estimation in order
to assess the carbon footprint of the present thesis.

Emissions estimation methodology
To begin with, we need to define the scope of the thesis’s carbon footprint. To do so,

we decide to take into account the main emitting sources identified in CERFACS’ carbon
footprints (Fig. C.1):

1. computations emissions, which account for the use and life cycle of supercomputers,
2. emissions from travel to conferences, summer schools, etc.,
3. heating-related emissions, i.e. GHGs emitted directly by the gas-fired boiler used

to heat CERFACS,
4. electricity emissions, which correspond to the emissions caused by the production

and distribution of the energy consumed at CERFACS. In mainland France, the
associated emission factor is estimated at 0.052 kgCO2eq kWh−1±10 % in 20222,

5. commuting emissions,
6. fluid leaks, i.e. GHGs released directly in the atmosphere as a result of leaks, for

example from the fire-fighting circuit in CERFACS’ machine room. These leaks can
have a considerable impact on the carbon footprint, for example, we estimate that

1Available at: https://apps.labos1point5.org/ges-1point5
2According to ADEME estimates, see https://base-empreinte.ademe.fr/
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a leak of 400 kg of FM200 in 2013 had the same impact on climate change as the
emission of 1500 t of CO2,

7. purchases, which mainly take into account IT equipment in the scope of CERFACS’
carbon footprint.

This scope includes both direct GHG emissions linked to heating or fluid leaks, and
indirect emissions considered to be the most significant (emissions linked to electricity
production, travels, commutes and purchases). Other indirect emissions, for example,
related to catering, are not taken into account in the estimate presented here. Note
that the comparison of the carbon footprints of a hundred French research laboratories
proposed by De Paepe et al. (2023) highlights the same sources of emissions, but with a
greater contribution from purchasing-related emissions.

In the following, we describe the approach adopted to estimate the GHG emissions
associated with each of these items. Particular emphasis is placed on computation-related
emissions, given their predominant impact on CERFACS’ carbon footprint and their role
in the thesis. Carbon impacts are expressed in CO2 equivalent, which corresponds to
the quantity of CO2 that would cause the same cumulative radiative forcing over a given
period of time.

1 - Computations
Estimation of computation emission factor Numerical simulation is at the core of
the thesis project, and estimating the associated GHG emissions is therefore of primary
importance. As part of CERFACS’ carbon footprint assessment, a major effort was
made to quantify the emissions of in-house computation. Thanks to a precise accounting
of electrical and cooling consumption and of all the computing hours performed, we
have estimated the emission factor fuse to be of the order of 1.1 gCO2eq per core hour
of calculation at CERFACS. Information was also gathered from the major computing
centers we work with, in order to ascertain their emission factors. In cases where we did
not receive a reply, we took an average emission factor corresponding to supercomputers
of similar size and generation.

However, this emission factor only covers supercomputer energy consumption, and
it is important to also take into account the emissions linked to the supercomputer life
cycle, i.e. to include manufacturing, transport and recycling, in the emission factor. This
accounting is difficult because i) each supercomputer is custom-built and made up of
thousands of components, and ii) it requires that all the actors in the supercomputer’s
life cycle have also estimated their emissions and are willing to share them. Once es-
timated, the total emissions can be divided by the expected lifetime of the machines,
typically around 6 years, then divided each year by the number of core hours of compu-
tation performed. This makes it possible to express an emission factor findirect analogous
to that for supercalculator energy consumption fuse and to distribute life-cycle emissions
to users. We did not have the resources to carry out this study for CERFACS supercom-
puters, and we found only two estimates of such emissions in France: for a modest-sized
supercalculator (Berthoud et al. 2020), and for one partition of a national computing
center (private communication). Given these results and the large uncertainties involved,
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we estimate that the indirect emissions linked to the life cycle of supercomputers are of
the same order of magnitude as those linked to their use: findirect ≈ fuse. In the end, the
total emission factor of computation at CERFACS is estimated at

ftotal = fuse + findirect ≈ 2.2 gCO2eq hCPU
−1. (C.1)

Using this emission factor, we can estimate by proportionality the GHG emissions of the
simulations carried out in this thesis.

Accounting of computations made during the thesis Soon after the start of the
thesis, we began to track all the simulations carried out with AVBP3 as part of the thesis,
allowing us to a posteriori estimate the emissions associated with each simulation, based
on their durations and on the supercomputer used. It should be noted that the emission
factors of national supercomputers (Occigen, Irene and Belenos) are around twice as low
as that estimated by CERFACS (Eq. C.1), due to the economies of scale achieved on
these larger supercomputers. Figure C.2 shows the history of core hours consumed on
the various supercomputers used during the thesis. The generation of the LES ensemble
used to build the reduced-order model presented in Chapter IV, which was carried out
in two stages, in July 2022 and December 2022, appears to be the most important part
of the computation carried out during the thesis.
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Figure C.2: History of core hours consumed by AVBP simulations carried out during the the-
sis (from 10–03–2021). Each color corresponds to a different supercomputer: Nemo and Kraken
from CERFACS, Occigen from CINES (Centre Informatique National de l’Enseignement
Supérieur), Irene from TTGC (Très Grand Centre de Calcul), and Belenos from Météo-France.
Irene AMD designates a specific partition of the Irene supercomputer (c.f. Table IV.1, page 142).
Access to Occigen and Irene resources was granted by GENCI (Grand Équipement National de
Calcul Intensif) as part of the DARI project A0062A10822, 2020–2022.

3See footnote 1, page 47.
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Using the sacct4 Slurm command, we estimate that around 1 million of core hours
have been spent on CERFACS’ computers in addition to the simulations presented in
Fig. C.2. This substantial amount includes simulations carried out during model famil-
iarization before the start of simulation tracking, simulations performed with other codes
not presented in this thesis, and the majority of post-processing and data exploitation
work, including bootstrap applications (Chapter III), data assimilation (Chapter V) and
sensitivity analysis (Appendix B).

The total computation-related GHG emissions of the thesis are given in Table C.3.
It should be noted that this estimate does not include emissions related to data storage
because i) it requires significantly less energy than computation (in the context of this
thesis), and ii) it is much more difficult to attribute emissions from storage servers to
each user. Emissions linked to data transfer are considered negligible based on the study
of Ficher et al. (2021), which estimates the emissions associated with transferring 1 Go of
data over the RENATER5 fiber optic network between Orsay (France) and Montpellier
(France) at 1.4 gC02eq.

2 - Purchases (IT equipment)
Concerning purchases related to this thesis, we only take into account purchases of

IT equipment as i) the thesis did not require any specific experimental resources, ii)
emissions related to the manufacture of supercomputers are included in computation-
related emissions, and iii) we estimate that emissions related to other supplies (notebooks,
pencils, etc.) are negligible. Computer equipment purchased during the thesis period and
the related emissions are listed in Table C.1.

Table C.1: GHG emissions linked to IT equipment purchased during the thesis period, in CO2
equivalent.

Purchase Emissions (kgCO2e)

MacBook Pro 13" 256
Dell P2419HC 24" monitor 430

LG HDR UHD 4K 27" monitor 430

These emissions are estimated using Ecodiag6 tool developed by the EcoInfo service
group of the CNRS and cover impacts linked to the manufacture and transport of equip-
ment purchased. Both screens have the same carbon impact since they are similar in
size and the emissions estimated by the tool are directly linked to screen size. We note
that one screen has a greater carbon impact than a laptop computer. It is also worth
noting that for the laptop, manufacturing is estimated to contribute over 80% of total
GHG emissions (Ferreboeuf et al. 2018).

4See https://slurm.schedmd.com/sacct.html
5Réseau national de télécommunications pour la technologie, l’enseignement et la recherche.
6Available at https://ecoinfo.cnrs.fr/ecodiag-calcul/
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3 - Travels
For travel-related emissions, only three main travels were made by the PhD student

during the course of this thesis, to attend:
• the 21st International Conference on Harmonisation within Atmospheric Dispersion

Modelling for Regulatory Purposes (HARMO 21) in Aveiro (Portugal) in September
2022,

• a Lecture Series on CFD for atmospheric flows and wind engineering organized by
the von Karman Institute for Fluid Dynamics near Brussels (Belgique) in May 2023,

• a drone field campaign in Lannemezan (France).
For each trip, emissions are calculated using the GES 1point5 tool, which estimates
the travel distance and associated emissions based on the means of transport. In line
with ADEME7 guidelines, we decide to take into account the non-CO2 radiative effect
of contrails, which almost doubles the emission factor of air transport (Vieira Da Rocha
and André 2021). The resulting emissions are given in Table. C.2.

Table C.2: Carbon impact of travel undertaken during the thesis period, in CO2 equivalent.

Travel Means of transport Distance (km) Emissions (kgCO2e)

Toulouse ↔ Lisbon plane 2266 425
Lisbon ↔ Aveiro train 524 19

Toulouse ↔ Brussels train 2004 32
Toulouse ↔ Lannemezan car 262 57

As expected, air travel is responsible for the majority of travel-related emissions. Note
that there is no fast train connection between Toulouse and Aveiro, whereas, for a similar
distance, the trip to Brussels shows that, when the infrastructure is in place, emissions
linked to travel can be divided by 10 by choosing the train over the plane. We should
mention that travel-related emissions reported in Table C.2 do not account for travel by
thesis supervisors during the course of the thesis.

4 - Commutes
We also use the tool developed by Labos 1point5 to estimate the emissions associated

with daily commuting based on a typical week. Only the PhD student’s commute is taken
into account: 6km twice a day by bike, 5 days a week. This gives around 18 kgCO2eq
after 3 years, which is negligible compared to other sources of emissions, as shown in
Table C.3.

5 - Laboratory operation
For the three remaining emissions sources: heating, electricity consumption and fluid

leaks, we use laboratory-level estimates divided by the number of people working at
7Agence de l’environnement et de la maîtrise de l’énergie.
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CERFACS and assessed over the period October 2020 - November 2023. The thesis
footprint is assigned a share of emissions, considering only that of the PhD student. Note
that we do not include emissions linked to supercomputer electricity consumption, as this
has already been taken into account in the computation emissions. As the year 2023 is
not yet over at the time of estimating this carbon footprint, we interpolate electricity and
heating consumption from previous years. Only one fluid leak occurred during the thesis
period (27 kg of R407C in 2019, equivalent to 44 tCO2eq8).

Emissions linked to heating, electricity consumption and fluid leaks thus estimated are
given in Table C.3. These emissions are irreducible on the scale of the thesis since they
correspond to the operation of the laboratory. However, a strategy to reduce emissions
is currently being considered by CERFACS.

Thesis carbon footprint estimate
The total thesis carbon footprint is finally estimated to be of the order of 15 tCO2eq.

For comparison, 1 tCO2eq represents approximately the emissions associated with a return
flight from Paris to New York9 and 10 tCO2eq the annual footprint of a French person in
202210. The annual footprint of this thesis is around 5 tCO2eq, which is far more than the
2.3 tCO2eq per capita in France estimated to be required by 2050 to limit global warming
to 1.5 °C (Fouré et al. 2020).

Table C.3: Carbon footprint of the thesis and details of the carbon impact of each sector con-
sidered, in CO2 equivalent. GHG emissions related to the production of the electricity consumed
by supercomputers are included in computation-related emissions.

Source Emissions (tCO2eq)

Computations 10.4
Purchases (IT equipment) 1.1

Travels 0.5
Commutes 1.8× 10−2

Heating 1.3
Electricity consumption 0.6

(excluding supercomputers)
Fluid leaks 0.3

Thesis carbon footprint 14.2

Table C.3 and Figure C.3 show the contribution of the various emission sources con-
sidered to the carbon footprint of the thesis. Computations account for by far the largest

8According to the emission factor used in GES 1point5 (https://apps.labos1point5.org/ges-1point5).
9According to the GES 1point5 tool. See https://apps.labos1point5.org/travels-simulator.

10Estimated by the French Ministry of Ecological Transition and Solidarity, and updated in 2022 by
Carbone 4 (https://www.carbone4.com/myco2-empreinte-moyenne-evolution-methodo).
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share of the thesis’ GHG emissions (73%), yet this item is difficult to reduce since it
is at the heart of the thesis project. Emissions linked to laboratory operations are also
significant and difficult to reduce at the thesis level (15%). Emissions linked to purchases
and travels, the two main areas of emissions for research laboratories in France (De Paepe
et al. 2023), have been significantly limited in this thesis (1.6 tCO2eq).

73.1%

8.8%

7.9%

4.5%

3.8%

1.9%
0.1%

Computations

Heating

Purchases (IT equipment)

Electricity (w/o supercomputers)

Travels

Fluid leaks

Commutes

Figure C.3: Breakdown of contributions to the thesis carbon footprint.

Finally, it is important to note that there are various sources of uncertainty in this
carbon footprint estimate. On the one hand, emissions linked to heating, fluid leaks and
electricity consumption are fairly accurately estimated, the main source of error being the
emission factors used. For example, the uncertainty surrounding the electricity emission
factor is of the order of 10%11. On the other hand, for other emission sources, it is
impossible to exactly quantify emissions, and we only estimate orders of magnitude, for
which we sometimes have an estimate of the associated uncertainty. For example, for IT
equipment, the uncertainty is estimated to represent 50% of the emissions estimate; for
emissions linked to plane travel, the relative uncertainty even rises to 70% when taking
into account the effect of contrails12. Finally, we note that our rough estimation of the
emissions related to the construction, transport and recycling of the supercomputers (the
same order of magnitude as the electricity and cooling consumption emissions) is highly
uncertain, despite contributing more than a third to the total carbon footprint of the
thesis.

11See footnote 2.
12Uncertainty estimations provided by the GES 1point5 tool.

258



Appendix C. Carbon footprint estimation

Conclusion
In this study, we estimated the carbon footprint of the thesis to be around 14 tCO2eq.

Although there are significant uncertainties surrounding this estimate, it is highly relevant
for identifying the most important sources of emissions in order to target reduction efforts.
In the present case, the main sources of GHG emissions are related to computation. In
particular, the generation of the LES ensemble used in Chapter IV represents the most
substantial part of our emissions, highlighting the need to develop efficient sampling and
learning methods to limit the carbon footprint of data-driven reduced-order models. More
generally, this evaluation exercise raises awareness of the issue of carbon emissions in the
research sector and raises questions about the future direction of research.
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